Documentation Overview

Welcome, and thank you for using GMAT! This User Guide contains a wealth of
material to introduce you to GMAT and how it works. It also provides an
extensive Reference Guide that contains data on every Resource, Command, and
major subcomponent in the system.



Using GMAT

The Using GMAT chapter contains high level and introductory information on
the sytem. If you need information on how to install and run the system, would
like a tour of the system, want know how to configure data files, or how GMAT
is organized, start here.

The Using GMAT section provides general information on GMAT and how to
use the software.

The Welcome to GMAT contains a brief project and software overview, including
project status, licensing, and contributors.

The Getting Started section describes how to get and install GMAT, how to run
the provided samples, and where to turn for further help.

The Tour of GMAT is an in-depth guide through some of the key interface
features, including the Resources tree, Mission tree, Command Summary, and
Script Editor.

Note

We consider the User Interfaces Overview section to be
essential reading, as it describes some fundamental aspects of
how GMAT works.




Tutorials

The Tutorials section contains in-depth tutorials that show you how to use
GMAT for end-to-end analysis. The tutorials are designed to teach you how to
use GMAT in the context of performing real-world analysis and are intended to
take between 30 minutes and several hours to complete. Each tutorial has a
difficulty level and an approximate duration listed with any prerequisites in its
introduction, and are arranged in a general order of difficulty.

Here is a summary of selected Tutorials. For a complete list of tutorials see the
Tutorials chapter.

The Simulating an Orbit tutorial is the first tutorial you should take to learn how
to use GMAT to solve mission design problems. You will learn how to specify
an orbit and propagate to orbit periapsis.

The Mars B-Plane Targeting tutorial shows how to perform targeting by
application to a Mars transfer trajectory where you will target desired B-plane
conditions at Mars.

The Target Finite Burn to Raise Apogee tutorial shows how to use finite
maneuvers with an application to orbit apogee raising.

The Finding Eclipses and Station Contacts tutorial shows how to use GMAT to
locate elipses and station contacts.

The Electric Propulsion tutorial shows how to configure GMAT to model
electric propulsion systems.

The Mars B-Plane Targeting Using GMAT Functions tutorial shows how to use
GMAT functions to extend your analysis.




Reference Guide

The Reference Guide contains individual topics that describe each of GMAT's
resources and commands. When you need detailed information on syntax or
application-specific examples for specific features, go here. It also includes
system-level references that describe the script language syntax, parameter
listings, external interfaces, and configuration files.

The Resources section provides general information on GMAT Resources such
as Spacecraft, Propagators, Coordinate Systems, and EphemerisFiles to
name just a few. Go here for details regarding syntax, options, variable ranges
and data types, defaults, and expected behavior. Each section contains detailed,
copy-and-paste ready examples.

The Commands section provides general information on GMAT Commands such
as Maneuver, Assignment, Optimize, and Propagate to name just a few. Go
here for details regarding syntax, options, variable ranges and data types,
defaults, and expected behavior. Each section contains detailed, copy-and-paste
ready examples.

The System section provides information on system configuration, external
interfaces, the script language, and the command line interface.

Note

This document uses two typographical conventions throughout:

¢ Graphical user interface (GUI) elements and resource and
command names are presented in bold.

¢ Filenames, script examples, and user input are presented in
monospace.
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Chapter 1. Welcome to GMAT

The General Mission Analysis Tool (GMAT) is the world’s only enterprise,
multi-mission, open source software system for space mission design,
optimization, and navigation. The system supports missions in flight regimes
ranging from low Earth orbit to lunar, libration point, and deep space missions.
GMAT is developed by a team of NASA, private industry, public, and private
contributors and is used for real-world mission support, engineering studies, as a
tool for education, and public engagement. See the R2018a Release Notes for a
complete list of changes in R2018a.




Milestones and Accomplishments

We're excited that GMAT has recently seen signficant adoption for operational
misssion support..

GMAT is now used as the primary system for maneuver planning and
product generation for the Solar Dynamics Observatory (SDO).

GMAT is now used as the primary operational tool for orbit determination
for the Solar and Heliospheric Observatory (SOHO) mission.

GMAT is now used as the primary operational tool for maneuver planning,
orbit determination, and product generation for the Advanced Composition
Explorer (ACE) mission.

GMAT is now used as the primary operational tool for maneuver planning,
orbit determination, and product generation for the Wind mission.

In April 2018, the Transiting Exoplanet Survey Satellite (TESS) mission is
planned to launch. TESS has used GMAT as its primary tool for mission
design and maneuver planning from proposal development through
operations.

In April 2018, the LRO project will hold an operational readiness review to
perform final evaluation of GMAT to replace GTDS as the primary
operational orbit determination (OD) tool for the Lunar Reconnaissance
Orbiter (LRO).



Features Overview

GMAT is a feature rich system containing high fidelity space system models,
optimization and targeting, built in scripting and programming infrastructure,
and customizable plots, reports and data products, to enable flexible analysis and
solutions for custom and unique applications. GMAT can be driven from a fully
featured, interactive GUI or from a custom script language. Here are some of
GMAT’s key features broken down by feature group.

Dynamics and Environment Modelling

e High fidelity dynamics models including harmonic gravity, drag, tides, and
relativistic corrections

e High fidelity spacecraft modeling

e Formations and constellations

e Impulsive and finite maneuver modeling and optimization

e Propulsion system modeling including chemical and electric system

¢ Solar System modeling including high fidelity ephemerides, custom
celestial bodies, libration points, and barycenters

e Rich set of coordinate systems including J2000, ICREF, fixed, rotating,
topocentric, and many others

e Propagation using CCSDS, SPICE, STK, and Code 500 ephemeris files

e Propagators that naturally synchronize epochs of multiple vehicles and
avoid fixed step integration and interpolation

Plotting, Reporting and Product Generation

e Interactive 3-D graphics

e Customizable data plots and reports



e Post computation animation
e CCSDS, SPK, and Code-500 ephemeris generation

e Eclipse and station contact location

Optimization and Targeting

e Boundary value targeters

¢ Nonlinear, constrained optimization

e Custom, scriptable cost functions

e Custom, scriptable nonlinear equality and inequality constraint functions

e Custom targeter controls and constraints

Programming Infrastructure

e User defined variables, arrays, and strings

e User defined equations using MATLAB syntax. (i.e. overloaded array
operation)

e Control flow such as If, For, and While loops for custom applications
e Matlab interface

¢ Python interface

e User-defined functions (sub-routines)

e Built in parameters and calculations in multiple coordinate systems

Orbit Determination Infrastructure

e Batch estimator

e Extensive statistical results reporting



DSN data types

GN data types

Measurement data editing

Media corrections

¢ Error modeling

Interfaces

e Fully featured, interactive GUI that makes simple analysis quick and easy
e Custom scripting language that makes complex, custom analysis possible
e Matlab interface for custom external simulations and calculations
e Python interface for custom external simulations and calculations

e File interface for the TCOPS Vector Hold File format, for loading of initial
spacecraft data

e Command line interface for batch analysis



Heritage

GMAT has enabled and enhanced missions in nearly every NASA flight regime
including enabling new mission types, extending the life of existing missions,
and enabling new science observations. GMAT has supported 8 NASA missions
and 10+ NASA proposal efforts. The system has experienced broad application
and adoption around the world. To date, GMAT has been used by over 30
organizations, with 15 universities and 12 commercial firms publishing results in
the open literature.



Licensing

GMAT is licensed under the Apache License 2.0.



Platform Support

GMAT has been rigorously tested on the Windows 7 platform and we perform
nightly regression tests running almost 14,000 test cases for the system core and
over 4000 test cases for the GUI interface. The system core has been rigorously
tested on Windows 10, but the GUI has only undergone preliminary testing on
that platform. Note that R2018a is the last version that will be tested on
Windows 10. The Mac and Linux console versions are rigorously tested, but the
GUTI is provided in Beta form on those platforms. On Mac, the minimum OS
version is OSX 10.10 (Yosemite) and testing was performed on OSX 10.12
(Sierra).

The following plugin modules do not run under this release of GMAT on Mac
and Linux platforms:

e Optimizer libFmincon
e libMarsGRAM
and the Mac release does not support the following plugin:

e |ibMsise86



Component Status

GMAT is distributed with production and Alpha/Beta components. Components
that are in Alpha/Beta status are turned off by default. The status of plugin
components is shown below.

Production quality plugin components:
e libDatalnterface
¢ libEphemPropagator
¢ libEventLocator
¢ libFormation
¢ libGmatFunction
¢ libNewParameters
e libPythonInterface
e libStation
¢ libGmatEstimation
¢ libMatlabInterface
¢ libFminconOptimizer
¢ libProductionPropagators
e libScriptTools
¢ libYukonOptimizer
Alpha quality plugin components:

e libClInterface



¢ libGeometricMeasurements
¢ libExtraPropagators
¢ libPolyhedronGravity
¢ libSaveCommand
e libThrustFile
e |libEKF
Internal-only plugins (not included in public releases):

e proprietary/libMarsGRAM

proprietary/libMsise86

proprietary/libNRLMsise00

proprietary/libSNOptimizer

proprietary/libVF13Optimizer



Contributors

The Navigation and Mission Design Branch at NASA’s Goddard Space Flight
Center performs project management activities and is involved in most phases of
the development process including requirements, algorithms, design, and testing.
The Ground Software Systems Branch performs design, implementation, and
integration testing. External particpants contribute to design, implementation,
testing and documentation. We use a collaborative development model that
enables innovation and actively involves the public and private sector having
seen contributions from 12 commercial firms. External participants for R2018a
include:

e Thinking Systems, Inc. (system architecture and all aspects of
development)

¢ Omitron, Inc (testing, requirements, specifications)
e Emergent Space Technologies, Inc.

Past commercial and external contributors to GMAT include:
e Air Force Research Lab (all aspects of development)
e Boeing (algorithms and testing)

e The Schafer Corporation (all aspects of development)
¢ Honeywell Technology Solutions (testing)

e Computer Sciences Corporation (requirements)

e Korea Aerospace Research Institute

e Chonbuk National University, South Korea

e Korea Advanced Institute of Science and Technology

¢ Yonsei University, South Korea



The NASA Jet Propulsion Laboratory (JPL) has provided funding for integration
of the SPICE toolkit into GMAT. Additionally, the European Space Agency’s
(ESA) Advanced Concepts team has developed optimizer plug-ins for the Non-
Linear Programming (NLP) solvers SNOPT (Sparse Nonlinear OPTimizer) and
[POPT (Interior Point OPTimizer).



Chapter 2. Getting Started



Installation

Installers and application bundles are available on the GMAT SourceForge
project page, located at https://sourceforge.net/projects/gmat.

The following packages are available for the major platforms:

Installer Binary bundle Source code
Windows (7,10) v v v
Mac OS X v v
Linux v v

Installer

To use the Windows installer, download the appropriate gmat-winInstaller -
* . exe file from the SourceForge download page and run it. You'll be asked a
series of questions, and GMAT will be installed to your local user account.

By default, GMAT installs to the $LOCALAPPDATA% folder in your user directory,
and does not require elevated privileges to install. On Windows Vista and
Windows 7, this generally corresponds to the
C:\Users\username\AppData\Local folder. You are free to choose another
install location during the installation process, but elevated privileges may be
required to do so.

Binary Bundie
A binary bundle is available on Windows as a .zip archive. To use it, unzip it

anywhere in your file system, making sure to keep the folder structure intact. To
run GMAT, run the GMAT\bin\GMAT.exe executable in the extracted folder.

Source Code

GMAT is available as a platform-independent source code bundle. Note that all
testing is performed on Windows, so on other platforms it is considered a beta



release. See the GMAT Wiki for compiling instructions.

Rather than compiling from the source bundle, however, we generally
recommend checking out a snapshot from the Subversion repository:

svn://svn.code.sf.net/p/gmat/code

There are tags available for reach release.


http://gmatcentral.org

Running GMAT

Starting GMAT

On Microsoft Windows platforms there are several ways to start a GMAT
session. If you used the GMAT installer, you can click the GMAT R2018a item
in the Start menu. If you installed GMAT from a .zip file or by compiling the
system, locate the GMAT bin directory double-click GMAT . exe.

To start GMAT from the command line, run GMAT . exe. Various command-line
parameters are available; see Command-Line Usage for details.

Exiting GMAT

To end a GMAT session on Windows or Linux, in the menu bar, click File, then
click Exit. On Mac OS X, in the menu bar, click GMAT, then click Quit
GMAT, or type Command+Q.



Sample Missions

The GMAT distribution includes more than 30 sample missions. These samples
show how to apply GMAT to problems ranging from the Hohmann transfer to
libration point station-keeping to trajectory optimization. To locate and run a
sample mission:

Open GMAT.

On the toolbar click Open.

Navigate to the samples folder located in the GMAT root directory.
Double-click a script file of your choice.

Click Run (»).

ik W

To run optimization missions, you will need MATLAB and the MATLAB
Optimization Toolbox or the internal 1ibvFi30ptimizer plugin. These are
proprietary libraries and are not distributed with GMAT. MATLAB connectivity
is not yet fully supported in the Mac and Linux, and therefore you cannot run
optimization missions that use MATLAB’s fmincon optimizer on those
platforms. See MATLAB Interface for details on configuring the MATLAB
optimizer.




Getting Help

This User Guide provides documentation and tutorials for all of GMAT's feature.
But if you have further questions, or want to provide feedback, here are some
additional resources:

e Homepage: http://gmat.gsfc.nasa.gov

e Wiki: http://gmatcentral.org

e User forums: http://forums.gmatcentral.org

e Downloads and source code: http://sourceforge.net/projects/gmat
e Submit bug reports and feature requests: http://bugs.gmatcentral.org

e Official contact: <gmat@gsfc.nasa.gov>



mailto:gmat@gsfc.nasa.gov

Chapter 3. Tour of GMAT



User Interfaces Overview

GMAT offers multiple ways to design and execute your mission. The two
primary interfaces are the graphical user interface (GUI) and the script interface.
These interfaces are interchangeable and each supports most of the functionality
available in GMAT. When you work in the script interface, you are working in
GMAT’s custom script language. To avoid issues such as circular dependencies,
there are some basic rules you must follow. Below, we discuss these interfaces
and then discuss the basic rules and best practices for working in each interface.

GUI Overview

When you start a session, the GMAT desktop is displayed with a default mission
already loaded. The GMAT desktop has a native look and feel on each platform
and most desktop components are supported on all platforms.

Windows GUI

When you open GMAT on Windows and click Run in the Toolbar, GMAT
executes the default mission as shown in the figure below. The tools listed below
the figure are available in the GMAT desktop.

Figure 3.1. GMAT Desktop (Windows)
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The menu bar contains File, Edit, Window and Help functionality.

On Windows, the File menu contains standard Open, Save, Save As,
and Exit functionality as well as Open Recent. The Edit menu
contains functionality for script editing when the script editor is
active. The Window menu contains tools for organizing graphics
windows and the script editor within the GMAT desktop. Examples
include the ability to Tile windows, Cascade windows and Close
windows. The Help menu contains links to Online Help, Tutorials,
Forums, and the Report An Issue option links to GMAT’s defect
reporting system, the Welcome Page, and a Provide Feedback link.

Menu
Bar

The toolbar provides easy access to frequently used controls such as
file controls, Run, Pause, and Stop for mission execution, and
controls for graphics animation. On Windows and Linux, the toolbar
is located at the top of the GMAT window; on the Mac, it is located
on the left of the GMAT frame. Because the toolbar is vertical on the
Mac, some toolbar options are abbreviated.

Toolbar GMAT allows you to simultaneously edit the raw script file

representation of your mission and the GUI representation of your
mission. It is possible to make inconsistent changes in these mission
representations. The GUI/Script Sync Status indicator located in the
toolbar shows you the state of the two mission representations. See
the the section called “GUI/Script Interactions and Synchronization”
section for further discussion.

Resources The Resources tab brings the Resources tree to the foreground of the
Tab desktop.

The Resources tree displays all configured GMAT resources and
Resources organizes them into logical groups. All objects created in a GMAT
Tree script using a Create command are found in the Resources tree in

the GMAT desktop.



Mission
Tab

The Mission tab brings the Mission Tree to the foreground of the
desktop.

The Mission tree displays GMAT commands that control the time-
ordered sequence of events in a mission. The Mission tree contains
all script lines that occur after the BeginMissionSequence command
in a GMAT script. You can undock the Mission tree as shown in the
figure below by right-clicking on the Mission tab and dragging it into
the graphics window. You can also follow these steps:

1. Click on the Mission tab to bring the Mission Tree to the
foreground.

2. Right-click on the Mission Sequence folder in the Mission tree
and select Undock Mission Tree in the menu.

Figure 3.2. Undocked Mission Tree
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Output
Tab

Output
Tree

Message
Window

Status
Bar

The Output tab brings the Output Tree to the foreground of the
desktop.

The Output tree contains GMAT output such as report files and
graphical displays.

When you run a mission in GMAT, information including warnings,
errors, and progress are written to the message window. For example,
if there is a syntax error in a script file, a detailed error message is
written to the message window.

The status bar contains various informational messages about the
state of the GUI. When a mission is running, a Busy indicator will
appear in the left pane. The center pane displays the latitude and
logitude of the mouse cursor as it moves over a ground track window.

Script Interface Overview

The GMAT script editor is a textual interface that lets you directly edit your
mission in GMAT's built-in scripting language. In Figure 3.3, “GMAT Script
Editor” below, the script editor is shown maximized in the GMAT desktop and
the items relevant to script editing are labeled.

Figure 3.3. GMAT Script Editor
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The GMAT desktop allows you to have multiple script files
open simultaneously. Open script files are displayed in the
Scripts folder in the Resources tree. Double click on a script in
the Scripts folder to open it in the script editor. The GMAT
desktop displays each script in a separate script editor. GMAT
indicates the script currently represented in the GUI with a
boldface name. Only one script can be loaded into the GUI at a
time.

The Script Status box indicates whether or not the script being
edited is loaded in the GUI. The box says Active Script for the
script currently represented in the GUI and Inactive Script for
all others.

The Save,Sync button saves any script file changes to disk,
makes the script active, and synchronizes the GUI with the
script.

The Save,Sync,Run button saves any script file changes to
disk, makes the script active, synchronizes the GUI with the
script, and executes the script.

When you click Save As, GMAT displays the Choose A File
dialog box and allows you to save the script using a new file
name. After saving, GMAT loads the script into the GUI,
making the new file the active script.

The Close button closes the script editor.



GUI/Script Interface Interactions and Rules

The GMAT desktop supports both a script interface and a GUI interface and
these interfaces are designed to be consistent with each other. You can think of
the script and GUI as different "views" of the same data: the resources and the
mission command sequence. GMAT allows you to switch between views (script
and GUI) and have the same view open in an editable state simultaneously.
Below we describe the behavior, interactions, and rules of the script and GUI
interfaces so you can avoid confusion and potential loss of data.

GUI/Script Interactions and Synchronization

GMAT allows you to simultaneously edit both the script file representation and
the GUI representation of your mission. It is possible to make inconsistent
changes in these representations. The GUI/Script Sync Status window located
in the toolbar indicates the state of the two representations. On the Mac, the
status is indicated in abbreviated form in the left-hand toolbar. Synchronized
(green) indicates that the script and GUI contain the same information. GUI
Modified (yellow) indicates that there are changes in the GUI that have not been
saved to the script. Script Modified (yellow) indicates that there are changes in
the script that have not been loaded into the GUI. Unsynchronized (red)
indicates that there are changes in both the script and the GUI.

Caution

GMAT will not attempt to merge or resolve simultaneous
changes in the Script and GUI and you must choose which
representation to save if you have made changes in both
interfaces.

The Save button in the toolbar saves the GUI representation over the script. The
Save,Sync button on the script editor saves the script representation and loads it
into the GUL

How the GUI Maps to a Script



Clicking the Save button in the toolbar saves the GUI representation to the script
file; this is the same file you edit when working in the script editor. GUI items
that appear in the Resources tree appear before the BeginMissionSequence
command in a script file and are written in a predefined order. GUI items that
appear in the Mission Tree appear after the BeginMissionSequence command in
a script file in the same order as they appear in the GUI.

Caution

If you have a script file that has custom formatting such as
spacing and data organization, you should work exclusively in
the script. If you load your script into the GUI, then click Save
in the toolbar, you will lose the formatting of your script. (You
will not, however, lose the data.)

How the Script Maps to the GUI

Clicking the Save,Sync button on the script editor saves the script representation
and loads it into the GUI. When you work in a GMAT script, you work in the
raw file that GMAT reads and writes. Each script file must contain a command
called BeginMissionSequence. Script lines that appear before the
BeginMissionSequence command create and configure models and this data will
appear in the Resources tree in the GUI. Script lines that appear after the
BeginMissionSequence command define your mission sequence and appear in
the Mission tree in the GUI. Here is a brief script example to illustrate:

Create Spacecraft Sat
Sat.X = 3000
BeginMissionSequence
Sat.X = 1000

The line sat.X = 3000 sets the x-component of the Cartesian state to 3000; this
value will appear on the Orbit tab of the Spacecraft dialog box. However,
because the line Sat.X = 1000 appears after the BeginMissionSequence
command, the line Sat.X = 1000 will appear as an assignment command in the
Mission tree in the GUL.



Basic Script Syntax Rules

e Each script file must contain one and only one BeginMissionSequence
command.

e GMAT commands are not allowed before the BeginMissionSequence
command.

¢ You cannot use inline math statements (equations) before the
BeginMissionSequence command in a script file. (GMAT considers in-line
math statements to be an assignment command. You cannot use equations
in the Resources tree, so you also cannot use equations before the
BeginMissionSequence command.)

¢ In the GUI, you can only use in-line math statements in an assignment
command. So, you cannot type 3600 + 4000 or Sat.Y - 8 in the text box
for setting a spacecraft’s dry mass.

e GMAT’s script language is case-sensitive.

For a more complete discussion of GMAT's script language, see the Script
Language documentation.



Resources Tree

The Resources tree displays GMAT resources and organizes them into logical
groups and represents any objects that might be used or called in the Mission
tree. This tree allows a user to add, edit, rename, or delete most available
resources. The Resources tree can be edited either in the GMAT GUI or by
loading or syncing a script file. All objects created in a GMAT script using a
Create command are found in the Resources tree in the GMAT desktop. The
default Resource tree is displayed below (Figure 3.4).

Figure 3.4. Default Resources tree
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The Resources tree displays created resources organized into folders by object
category. The SolarSystem and Solvers folders contain more specific folders



which can be found by clicking the expand (+) icon. Conversely, folders can be
collapsed by clicking the minimize (-) icon.

Folder Menus

Resources can be added by right clicking the folder of the resource and clicking
the resource type from the available menu. Most folders have only one available
resource type; for example if the Spacecraft folder is right-clicked, the user can
only click “Add Spacecraft” (Figure 3.5). Other folders have multiple objects
that can be added and the user must first select the “Add” menu before selecting
the object; for example to add a ChemicalTank, right click the “Hardware”
folder, select “Add”, then the list of available resource types is displayed and the
user can click “Fuel Tank” (Figure 3.6). User-defined solar system resources are
added by right-clicking either Sun or a default CelestialBody resource. By right-
clicking Sun the user can add a Planet, Comet, or Asteroid to the solar system.
By right-clicking a Planet the user can add a Moon to that Planet.

Figure 3.5. Folder menu for Spacecraft
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Resource Menus



Resources can be edited by right-clicking on the resources and selecting one of
the options from the menu (Figure 3.7).

Figure 3.7. Resource menu
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To open a resource, you can either right-click the resource and select “Open”, or
you can double click the resource. Conversely, the resource can be closed either
by options in the resource properties window or selecting “Close” from the
resource menu. When a resource is opened and the name is right-clicked in the
Resource tree, the only options in the object menu are “Open” and “Close”.

Rename

Once a resource has been created, the user can rename it to any valid name.
Valid names must begin with a letter and may be followed by any combination
of letters digits and underscores. Invalid names include:

e Folder names (eg, Spacecraft)

Command names (eg, Propagate)

Names already in use (eg, naming two variables “var™)

Keywords (eg, “GMAT” or “function”)

Names with spaces



Delete

Resources can be deleted by right clicking the object and selecting “Delete”.
Resources cannot be deleted if they are used by another resource or command
and an error with be thrown. For example, a Spacecraft resource cannot be
deleted if one of its properties (eg. DefaultSC.A1ModJulian) is being used by
the Report command. Some default objects cannot be deleted. In such cases, the
Delete menu item will not be shown. They include:

e Default coordinate systems
o EarthMJ2000Eq
o EarthMJ2000Ec
o EarthFixed
o EarthICRF

e Default planetary bodies
o Sun
o Mercury
o Venus
o Earth
o Luna
o Mars
o Jupiter
o Saturn
o Uranus

o Neptune



o Pluto

Clone

Objects can be cloned by selecting the “Clone” option in the menu. A cloned
object will be an exact copy of the original object with a different name. Some
objects cannot be cloned. In such cases, the Clone menu item will not be
available. The only objects that cannot be cloned are:

e Default coordinate systems (listed above)
e Default planetary bodies (listed above)

e Propagator resource objects



Mission Tree

The Mission Tree is an ordered, hierarchical, display of your GMAT script
command mission sequence (everything after the BeginMissionSequence in
your script). It represents the ordered list of commands to be executed to model
your mission. The hierarchical grouping in the mission tree represent commands
that are executed inside a control logic command, e.g., If, For, While, etc. The
mission tree allows you to add, edit, delete and rename commands. It allows you
to configure or filter the display of the commands in the Mission Tree to make
the command execution easier to understand or modify. An example Mission
Tree screenshot is below. The Mission Tree window is made up of 2 elements:
the Mission Sequence on the left and the view filters toolbar on the right.
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Warning

Edits to the Mission Tree will be reflected in your script after it
is synchronized and vice-versa. If you edit the Mission Tree,
you need to synchronize with the script to see it in the script




editor. If you edit the script, you need to synchronize with the
GUI to see your changes reflected in the Mission Tree.

Mission Tree Display

The Mission Tree Display shows your hierarchical, ordered list of commands.
Normally, the Mission Tree displays only the command name in the tree for each
command node (more information such as command type, construction
information, etc can be displayed using the Show Detail menu option).
Commands are executed in the order they appear, e.g., GMAT executes
commands from the top of the Mission Tree to the bottom. For control logic (If,
For, and While) and the Optimize and Target commands, you can define a
block of commands that execute as children of the parent command. These child
commands of the control logic or the Optimize and Target commands appear
indented. Use the plus (+) symbol to the left of the control logic command to
show all the grouped commands and the minus (-) symbol to hide all the grouped
commands. Commands that are grouped under control logic commands (e.g. If,
For, and While) only execute if that control logic command is successfully
executed (e.g., if the local expression evaluates to true for If command, or the
loop condition evaluates to true for For and While commands).

In general, commands are executed only once. However, child commands
grouped under the loop commands (e.g. For and While) may execute multiple
times. These commands will execute for each time the loop command evaluates
to true. Commands under the If commands are only executed if the If condition
evaluates to true; otherwise, they are skipped. For the If-Else command, child
commands grouped under the If portion of the command execute if the
conditional statement evaluates to true; otherwise, the child commands grouped
under the Else portion of the command execute.

Note

Note that all commands in the Mission Tree are grouped under
a special Mission Sequence home item. This home item is
always present as the first item in the Mission Tree and cannot
be deleted.




View Filters Toolbar

The Mission Tree may display a subset of the commands of the full mission
sequence based on your view filter options. There are 3 basic filtering options
available within GMAT:

e Filter by branch level
e Filter by command types (inclusive)
e Filter by command types (exclusive)

The view filters activate by clicking one of the view filter buttons to the right of
the Mission Tree. The pressed (pushed in) button indicates which filter is
currently enabled. The four buttons on the top are the Filter by branch level
buttons. The next four buttons in the middle are the inclusive filter-by-
command-types buttons, and the four buttons on the bottom are the exclusive
filter-by-command-types buttons. The button at the very bottom of the view
filters toolbar allows you to define a custom filter. You cannot combine filter-by-
branch-level filters with the filter-by-command-type filters nor combine
inclusive and exclusive command type filters. However, multiple inclusive
command type filters can be combined (e.g., filter both physics related and
solver related commands) or multiple exclusive command type filters can be
combined.

Note

Note that all parents of a viewable command are displayed,
even if the parent command is not part of the viewable
command set.

Also note that the Mission Tree automatically reconfigures to
show all commands when the user Appends or Inserts a new
command.

Filter by Branch Level



Filtering by branch level causes GMAT to not display commands in the mission
tree that are below a certain level. To select the number of levels you wish to
display, click the buttons on the top. The four buttons correspond to (from top to
bottom):

e Show all branches

e Show one level of branching

e Show two levels of branching
e Show three levels of branching

Only one filter-by-branch-level button may be active at a time. The default
GMAT behavior is to display all branches of a mission tree.

Filter by Command Types

GMAT allows you to filter what commands are displayed by their command
type. You may select to only display commands that are in a filter command type
set (inclusive) or only display commands that are not in a filter command type
set (exclusive). GMAT provides both pre-configured command type sets (e.g.,
physics related or output related) and custom command type sets that you define

The four middle buttons in the View Options toolbar are pre-configured
inclusive command filters, e.g., only display commands that are in the desired
command set. The four inclusive filter buttons correspond to (from top to
bottom):

¢ Physics Related (Propagate, Maneuver, BeginFiniteBurn, and
EndFiniteBurn)

e Solver Related (Target, Optimize, Vary, Achieve, NonlinearConstraint,
Minimize, EndTarget, EndOptimize)

¢ ScriptEvent commands
e Control Flow (If, If-Else, For, and While)

Multiple inclusive command type filters can be active at once. For example, to



filter both physics related and solver related commands, click both the physics-
related and solver-related filter buttons so that they appear pressed down. This
option will show all physics related and solver related commands and hide all
other commands (except Parents of the viewable commands)).

The four buttons at the bottom in the View Options toolbar are pre-configured
exclusive command filters, e.g., only display commands that are not in the
command set. The four exclusive filter buttons correspond to (from top to
bottom):

e Report
e Equation

e QOutput-related (Report, Toggle, PenUp, PenDown, MarkPoint, and
ClearPlot)

¢ Function calls (CallMatlabFunction)

Multiple exclusive command type filters can be active at once. For example, to
show everything but Report and output-related commands, click both the
Report and output-related filter buttons so that they appear pressed down.

Note

Note that the Mission Tree shows an ellipsis (...) after a
command name if the command is followed by items not
graphically displayed in the tree because of filter options.

Mission Sequence Menu

The Mission Tree has two context-sensitive popup menus, depending on whether
you right-click the Mission Sequence home item or a command in the Mission
Tree. The Mission Sequence popup menu primarily allows you to manipulate
the Mission Tree window and the entire command sequence. It also enables
appending (adding to the end) commands to the mission tree.
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Mission Sequence menu options are always available and active in the menu
list.

Mission Sequence Menu Options:

Collapse All

This menu option collapses all the branches in the Mission Tree so that you only
see the top-level commands. To show branches, click the plus (+) button next to
a command or select Expand All from the Mission Sequence popup menu.

Expand All

This menu option expands all the branches and sub-branches in the Mission Tree
so that you see every command in the mission sequence. To hide branches, click
the minus (-) button next to a command or select Collapse All from the Mission
Sequence popup menu.

Append

The Append menu option displays the submenu of commands that can be
appended to the mission sequence. This menu is not available when the Mission
Tree view is filtered.



Run

The Run menu option executes the mission command sequence. This menu
option is always available.

Show Detail

The Show Detail menu option toggles an option to display the mission tree with
short or verbose text. When the show detail menu option is checked, each
command is displayed with the script line for the command (e.g. what appears in
“Show Script” for the command). When the show detail menu option is
unchecked, the mission tree shows only the label for the command which will be
your custom label if you have provided one and a system provided label if you
have not labelled the command. This menu option is always available.

Show Mission Sequence

The Show Mission Sequence menu option displays a streamlined text view of
the mission sequence in text window. This view shows a hierarchical view of
every command (similar to a script view) in the mission sequence. Unlike the
script editor, this view only includes the command names and labels. This menu
option is always available.

Show Script

The Show Script menu option displays the script associated with the GUI
version of the current mission script. This is the complete script that would be
saved to a file if you clicked the GUI save button. Note that when the GUI is
unsynchronized with the script editor (please see Script Editor for more details),
this mission script is different than the script displayed in the script editor. This
menu option is always available

Mission Summary - All

The Mission Summary - All menu option displays a mission simulation
summary for the all commands in the mission sequence. This summary
information includes spacecraft state information, spacecraft physical properties,
time information, planetodetic properties, and other orbit data for each
command. This information is only available after a mission simulation is run



and the data shows state information after the execution of the command.
Showing Mission Summary data for a ScriptEvent command is equivalent to
showing summary data for the last command in that ScriptEvent. If commands
are nested in control flow or solver branches, the summary data that is displayed
is for the last pass through the sequence. This menu option is always available.

Mission Summary - Physics

The Mission Summary - Physics menu option displays a mission simulation
summary for physics related commands in the mission sequence. This summary
information includes spacecraft state information, spacecraft physical properties,
time information, planetodetic properties, and other orbit data for each
command. This information is only available after a mission simulation is run
and the data shows state information after the execution of the command. Note
that if you have physics-based commands such as Propagate or Maneuver
inside a ScriptEvent command, then summary information for those commands,
are not displayed. Showing Mission Summary data for a ScriptEvent is
equivalent to showing summary data for the last command in that ScriptEvent.
If commands are nested in control flow or solver branches, the summary data
that is displayed is for the last pass through the sequence. This menu option is
always available.

Dock Mission Tree

The Dock Mission Tree menu option docks the Mission Tree window in the
notebook containing the Resources tree and Output tree. This option is only
selectable if the Mission Tree is currently floating or undocked. Please see the
Docking/Undocking/Placement section for more information.

Undock Mission Tree

The Undock Mission Tree menu option undocks, or makes floating, the Mission
Tree window from the Resources tree and Output tree. The undocked Mission
Tree window may be resized, moved, maximized, minimized, and restored. This
option is only selectable if the Mission Tree is currently docked. Please see the
the section called “Docking/Undocking/Placement” section for more
information.

Command Menu



The Command popup menu allows you to add, edit, or delete the commands in
the Mission Tree by using the right mouse button. This displays a context
sensitive menu for adding and modifying commands as well as viewing your
command sequence and command summary. To add commands to the Mission
Tree, right click a command and select Append, Insert Before, or Insert After.
To edit commands, double click the command name or right click and select
Open.

Most commands in GMAT can appear anywhere in the mission sequence.
However, there are some exceptions and the Command popup menu is context
sensitive, meaning the options available under the menu change based on what
command is selected and where in the tree the command occurs. Here is a
complete list of context sensitivities:

Insert and Append are not available unless the mission tree filter is set to
show all levels.

Achieve commands can only appear inside of a Target sequence.

Vary commands can only appear in a Target or Optimize sequence,

NonlinearConstraint and Minimize commands can only appear in an
Optimize sequence.
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Command Menu Options

Open

This menu option opens the command editor window for the selected command.

Control I._ug.i.:.:

BeginFiniteBurn
CallMatlabFunction
ClearPlot
EndFiniteBurn

Equation
Maneuver
MarkP oint
Optimize
PenDown
PenUp
Propagate
Report
ScriptEvent
Stop
Target
Toggle

The Open menu option is always active in the menu list. If the window is

already open, the Open option brings the window to the front and makes it the

active window.

Close

This menu options closes the command editor window for the selected
command. The Close menu option is always active in the menu list.



Append

The Append menu option displays the submenu of commands that can be
appended as the last sub-item of the selected command in the Mission Tree. As
such, the Append menu option only appears when the selected tree item can
contain sub-items, e.g., the Mission Sequence home item, control logic
commands, and Optimize and Target commands. Note that the Append
submenu is context-sensitive and will only show commands that may be
appended to the selected command. Finally, this menu is not available when the
Mission Tree view is filtered.

Insert After

The Insert After menu option displays the submenu of commands that can be
inserted after the selected command (and any child commands, if any) in the
Mission Tree. Nominally, the new command is inserted at the same level as the
selected command. However, if the selected command is the “End” command of
a control logic or Optimize or Target command (e.g., End For, End If, End
Optimize, etc), the new command is inserted after the End command and on the
same level (e.g., the next level up) as the parent command. The Insert After
menu option is always active in the menu list except when the Mission
Sequence home item is selected. Note that the Insert After submenu is context-
sensitive and will only show commands that may be added after the selected
command. Finally, this menu is not available when the Mission Tree view is
filtered.

Insert Before

The Insert Before menu option displays the submenu of commands that can be
inserted before the selected command (and any child commands, if any) in the
Mission Tree. The new command is always inserted at the same level as the
selected command. The Insert Before menu option is always active in the menu
list except when the Mission Sequence Home item is selected. Note that the
Insert Before submenu is context-sensitive and will only show commands that
may be added before the selected command. Finally, this menu is not available
when the Mission Tree view is filtered.

Rename



The Rename menu option displays a dialog box where you can rename the
selected command. A command name may contain any characters except the
single quote. Note that, unlike resources, command names do not have to be
unique. The Rename menu option is always active in the menu list except when
the Mission Sequence home item is selected.

Delete

The Delete menu option deletes the selected command. GMAT does not confirm
the option before deletion occurs. The Delete menu option is always active in the
menu list except when the Mission Sequence home item is selected.

Command Summary

The Command Summary menu option displays a mission simulation summary
for the selected command, including spacecraft state information, time
information, planetodetic properties, and other orbit data. This information is
only available after a mission simulation run. This menu option is always
available. However, command summary data is not available for Propagate
command in single step mode. The button is available but no data is displayed.

Docking/Undocking/Placement

The Mission Tree window may be used as a floating window or docked with the
Resource tree. GMAT remembers the placement and docking status of the
Mission Tree even after you quit. The undocked Mission Tree window may be
resized, moved, or minimized. When the Mission Tree is undocked, and the user
opens a dialog box for a GUI component, the dialog box does not cover the
Mission Tree.

To undock the Mission Tree Display, either:
e Right click and drag the Mission tab out of the Resource Tree window.

e Right click the Mission Sequence home item and select Undock Mission
Tree.

To dock the Mission Tree display, either:



e Left click the close button (x) of the undocked Mission Tree window.

e RIght click the Mission Sequence home item and select Dock Mission
Tree.



Command Summary

The Command Summary is a summary of orbit and spacecraft state
information after execution of a command. For example, if the command is a
Propagate command, the Command Summary contains state data after
propagation is performed.

To view the Command Summary, right-click on the desired command, and
select Command Summary. Or alternatively, double-click on the desired
command, and click the Command Summary icon located near the lower left
corner of the panel. You must run the mission before viewing Command
Summary data.

Snapshot of a sample Command Summary is shown in the following figure.
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Data Availability

To view a Command Summary, you must first run the mission. If the mission
has not been run during the current session, the Command Summary will be
empty. If changes are made to your configuration, you must rerun the mission for
those changes to take effect in the Command Summary.

Data Contents

The Command Summary contains several types of data. Orbit state
representations include Cartesian, spherical, and Keplerian. For hyperbolic
orbits, B-Plane coordinates, DL A and RLA are provided. Planetodetic
information includes Longitude and Latitude among others. For a Maneuver
command, the Maneuver properties are displayed in the CoordinateSystem
specified on the ImpulsiveBurn resource. See the Coordinate Systems
subsection below for more information on the command summary contents when
some data is undefined.

In the event when the orbit is nearly singular conic section and/or any of the
keplerian elements are undefined, an abbreviated Command Summary is
displayed as shown in the Coordinate Systems subsection below.

Supported Commands

For performance reasons, propagation in step mode does not write out a
command summary. Additionally, if a command is nested in control logic and
that command does not execute as a result, no command summary data is
available.

Coordinate Systems

The Coordinate System menu at the top of the Command Summary dialog
allows you to select the desired coordinate system for the state data. When the
Coordinate System has a celestial body at the origin, the Command Summary
shows all supported data including Cartesian, Spherical, Keplerian, Other
OrbitData, and Planetodetic properties as shown in the GUI screenshot above.
When the Coordinate System does not have a celestial body at the origin, the
CommandSummary contains an abbreviated command summary as shown



below.

Note: GMAT currently requires that the selected CoordinateSystem cannot

reference a spacecraft.

Propagate Command: Propagatel

Spacecraft : DefaultSC
Coordinate System: EarthMJ2000Eq

Time System Gregoria
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UTC Epoch: 01 Jan 2000 15:19:28.000
TAI Epoch: 01 Jan 2000 15:20:00.000
TT Epoch: 01 Jan 2000 15:20:32.184
TDB Epoch: 01 Jan 2000 15:20:32.184
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83.3866452444
8.7370006427¢



Output Tree

The Output tree contains data files and plots after a mission is executed. Files
consist of output from ReportFile and EphemerisFile resources. Plots consist
of graphical OrbitView, GroundTrackPlot, and XYPlots windows.

To display the contents of an output file, double-click the name in the Output
tree. A simple text display window will appear with the contents of the file.

Graphical output is automatically displayed during the mission run, but double-
clicking the name of the output window in the Output tree will bring that display
to the front. If you close the display window, however, you must rerun the
mission to display it again.

A populated Output tree is shown in the following figure.
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Script Editor

A GMAT mission can be created in either the graphical user interface (GUI), or
in a text script language. When a mission is loaded into the GUI from a script, or
when it is saved from the GUI, there is a script file that can be accessed from the
Scripts folder in the resources tree. When you open this script, it opens in a
dedicated editor window called the Script Editor. While a GMAT script can be
edited in any text editor, the GMAT script editor offers more features, such as:

e GUI/script synchronization

e Mission execution from the editor

e Syntax highlighting

e Comment/uncomment or indent blocks of text

e Standard features like copy/paste, line numbering, find-and-replace, etc.

The following figure shows a basic script editor session with the major features
labeled.

Figure 3.8. Parts of the script editor
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Active Script

When you load a script into the GMAT GUI, it is added to the script list in the
resources tree. GMAT can have many scripts loaded at any one time, but only
one can be synchronized with the GUI. This script is called the active script, and
is distinguished by a bolded name in the script list. The editor status indicator in
the script editor for the active script shows “Active Script” as well. All other
scripts are inactive, but can be viewed and edited in the script editor.

Figure 3.9. Active script indicators
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Inactive Script

To synchronize with the GUI, you must make an inactive script active by
clicking either of the synchronization buttons (described in the next section).
This will change the current script to active, synchronize the GUI, and change
the the previously active script to inactive. Alternately, you can right-click the
script name in the resources tree and click Build.

GUI/Script Synchronization

GMAT provides two separate representations of a mission: a script file and the
GUI resources and mission trees. As shown in Figure 3.8, “Parts of the script
editor”, you can have both representations open and active at the same time, and
can make changes in both places. The GUI/Script Sync Status indicator shows
the current status of the two representations relative to each other. The following
states are possible:

Synchronized
The GUI and script representations are synchronized (they
contain the same data).

Script Modified
The mission has been modified in the script representation,

but has not been synchronized to the GUI. Use the
synchronization buttons in the script editor to perform this
synchronization. To revert the modifications, close the script
editor without saving your changes.



GUI Modified
The mission has been modified in the GUI, but has not been

synchronized to the script. To perform this synchronization,
click the Save button in the GMAT toolbar. To revert the
modifications, use the synchronization buttons in the script
editor, or restart GMAT itself.

Unsynchronized
The mission has been modified both in the GUI and in the

script. The changes cannot be merged; you have a choice of
whether to save the modifications in either representations,

or whether to revert either of them. See the notes above for

instructions for either case.

Script Error
There is an error in the script. This puts the GUI in a

minimal safe state. The error must be corrected before
continuing.

Warning

Saving modifications performed in the GUI will overwrite the
associated script. The data will be saved as intended, but with
full detail, including fields and settings that were not explicitly
listed in the original script. A copy of the original script with
the extension “.bak” will be saved alongside the new version.

The script editor provides two buttons that perform synchronization from the
script to the GUI. Both the Save,Sync and the Save,Sync,Run buttons behave
identically, except that the Save,Sync,Run button runs the mission after
synchronization is complete. The following paragraphs describe the behavior of
the Save,Sync button only, but the description applies to both buttons. If you
right-click the name of a script in the resources tree, a context menu is displayed



with the items Save, Sync and Save, Sync, Run. These are identical to the
Save,Sync and Save,Sync,Run buttons in the script editor.

When pressed, the Save,Sync button performs the following steps:

Saves any modifications to the script

Closes all open windows (except the script editor itself)
Validates the script file

Refreshes the GUI by loading the saved script

Sets GUI/Script Sync Status to Synchronized.

ik

If the GUI has existing modifications, a confirmation prompt will be displayed.
If confirmed, the GUI modifications will be overwritten.

If the script is not active, a confirmation prompt will be displayed. If confirmed,
the script will be made active before the steps above are performed.

If the script has errors, the GUI will revert to an empty base state until all errors
are corrected and the script is synchronized successfully.

Scripts List

The scripts folder in the Resources tree contains items for each script that has
been loaded into GMAT. Individual scripts can be added to the list by right-
clicking the Scripts folder and clicking Add Script.

The right-click menu for an individual script contains several options:
e Open: opens the script in the edit window
e Close: closes any open edit windows for this script

e Save, Sync: opens the script and synchronizes it with the GUI, making it
the active script. This is identical to the Save,Sync button in the script
editor.

e Save, Sync, Run: builds the script (see above), and also runs it. This is
identical to the Save,Sync,Run button on the script editor.

¢ Reload: reloads the script from the last-saved version and refreshes the



script editor

¢ Remove: removes the script from the script list

Edit Window

The edit window displays the text of the loaded script and provides tools to edit
it. The edit window provides the following features:

¢ Line numbering: Line numbers along the left side of the window

e Syntax highlighting: Certain elements of the GMAT script language are
colored for immediate recognition.

e Folding: Script blocks (like For loops, Target sequences, etc.) can be
collapsed by clicking the black downward-pointing triangle to the left of the
command that begins the block.

If you right-click anywhere in the edit window, GMAT will display a context
menu with the following options:

e Undo/Redo: Undo or redo any number of changes since the last time the
script was saved

e Cut/Copy/Paste: Cut, copy, or paste over the current selection, or paste the
current clipboard contents at the location of the cursor

e Delete: Delete the current selection
e Select All: Select the entire script contents

When the script editor is active in the GMAT GUI, the Edit menu is also
available with the following options:

e Undo/Redo: Undo or redo any number of changes since the last time the
script was saved

e Cut/Copy/Paste: Cut, copy, or paste over the current selection, or paste the
current clipboard contents at the location of the cursor



e Comment/Uncomment: Add or remove a comment symbol (%) at the
beginning of the current selection

e Select All: Select the entire script contents
¢ Find/Replace: Starts the Find & Replace utility (see below)

¢ Show line numbers: When selected (default), the editor window displays
line numbering to the left of the script contents.

¢ Goto: Place the cursor on a specific line number

e Indent more/less: Adds or removes an indentation from the current line or
selection. The default indentation is three space characters.

See the Keyboard Shortcuts reference page for the list of keyboard shortcuts that
are available when working in the script editor:

Find and Replace

On the Edit menu, if you click Find or Replace (or press Ctrl+F or Ctrl+H),
GMAT displays the Find & Replace utility, which can be used to find text in the
active script and optionally replace it with different text. The utility looks like
the following figure.

Find & Replace e S

Find What - | Find Mext ||Find Frevious |

Replace With - l Replace || Replace All |

Close

L A

To find text within the active script, type the text you wish to find in the Find
What box and click Find Next or Find Previous. Find Next (F3) will start
searching forward (below) the current cursor position, while Find Previous will
start searching backward (above). If a match is found, the match will be
highlighted. You can continue clicking Find Next or Find Previous to continue
searching. The search text (in the Find What box) can be literal text only;
wildcards are not supported. To replace found instances with different text, type



the replacement text in the Replace With box. Click Replace to replace the
currently-highlighted match and highlight the next match, or click Replace All
to replace all matches in the file at once. The Find & Replace utility saves a
history of text previously entered in the Find What and Replace With boxes in
the current session. Click the down arrow in each box to choose a previously-
entered value.

File Controls

The Save button saves the current script without checking syntax or
synchronizing with the GUI, and without switching the active script. The Save
As button is identical, but allows you to save to a different file.

The Close button closes the script editor, and prompts you to save any unsaved
changes.

Save Status Indicator

When the contents of the script have been modified, the script editor displays
“**modified**” in the save status indicator. This is a visual indicator that there
are unsaved changes in the script. Once the changes are saved or reverted, the
indicator turns blank.



Chapter 4. Configuring GMAT

Below we discuss the files and data that are distributed with GMAT and are
required for GMAT execution. GMAT uses many types of data files, including
planetary ephemeris files, Earth orientation data, leap second files, and gravity
coefficient files. This section describes how these files are organized and the
controls provided to customize them.



File Structure

The default directory structure for GMAT is broken into eight main
subdirectories, as shown in Figure 4.1, “GMAT Root Directory Structure”. These
directories organize the files and data used to run GMAT, including binary
libraries, data files, texture maps, and 3D models. The only two files in the
GMAT root directory are license. txt, which contains the text of the Apache
License 2.0, and README. txt, which contains user information for the current
GMAT release. A summary of the contents of each subdirectory is provided in
the sections below.

Figure 4.1. GMAT Root Directory Structure

bin
data
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|| README et

bin

The bin directory contains all binary files required for the core functionality of
GMAT. These libraries include the executable file (GMAT.exe on Windows,

GMAT . app on the Mac, and GMAT on Linux) and platform-specific support
libraries. The bin directory also contains two text files: gmat_startup_file.txt
and gmat . ini. The startup file is discussed in detail in a separate section below.
The gmat . ini file is used to configure some GUI panels, set paths to external
web links, and define GUI tooltip messages.

data

The data directory contains all required data files to run GMAT and is organized



according to data type, as shown in Figure 4.2, “GMAT Data Directory
Structure” and described below.

Figure 4.2. GMAT Data Directory Structure
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The graphics directory contains data files for GMAT’s visualization utilities, as
well as application icons and images. The splash directory contains the GMAT
splash screen that is displayed briefly while GMAT is initializing. The stars
directory contains a star catalogue used for displaying stars in 3D graphics. The
texture folder contains texture maps used for the 2D and 3D graphics resources.
The icons directory contains graphics files for icons and images loaded at run
time, such as the GMAT logo and GUI icons.

The gravity directory contains gravity coefficient files for each body with a
default non-spherical gravity model. Within each directory, the coefficient files
are named according to the model they represent, and use the extension .cof.

The gui_config directory contains files for configuring some of the GUI dialog
boxes for GMAT resources and commands. These files allow you to easily create
a GUI panel for a user-provided plugin, and are also used by some of the built-in
GUI panels.

The planetary_coeff directory contains the Earth orientation parameters (EOP)
provided by the International Earth Rotation Service (IERS) and nutation
coefficients for different nutation theories.

The planetary_ephem directory contains planetary ephemeris data in both DE



and SPK formats. The de directory contains the binary digital ephemeris DE405
files for the 8 planets, the Moon, and Pluto developed and distributed by JPL.
The spk directory contains the DE421 SPICE kernel and kernels for selected
comets, asteroids and moons. All ephemeris files distributed with GMAT are in
the little-endian format.

The time directory contains the JPL leap second kernel naife010.t1s and the
GMAT leap second file tai-utc.dat.

The vehicle directory contains ephemeris data and 3D models for selected
spacecraft. The ephem directory contains SPK ephemeris files, including orbit,
attitude, frame, and time kernels. The models directory contains 3D model files
in 3DS or POV format for use by GMAT’s orbitVview visualization resource.

docs

The docs directory contains end-user documentation, including draft PDF
versions of the Mathematical Specification, Architectural Specification, and
Estimation Specification. The GMAT User’s Guide is available in the help
directory in PDF and HTML formats, and as a Windows HTML Help file.

extras

The extras directory contains various extra convenience files that are helpful for
working with GMAT but aren't part of the core codebase. The only file here so
far is a syntax coloring file for the GMAT scripting language in the Notepad++
text editor.

matlab

The matlab directory contains M-files required for GMAT’s MATLAB
interfaces, including the interface to the fmincon optimizer. All files in the
matlab directory and its subdirectories must be included in your MATLAB path
for the MATLAB interfaces to function properly.

output

The output directory is the default location for file output such as ephemeris
files and report files. If no path information is provided for reports or ephemeris



files created during a GMAT session, then those files will be written to the
output folder.

plugins

The plugins directory contains optional plugins that are not required for use of
GMAT. The proprietary directory is used for for third-party libraries that
cannot be distributed freely and is an empty folder in the open source
distribution.

samples

The samples directory contains sample missions and scripts, ranging from a
Hohmann transfer to libration point station-keeping to Mars B-plane targeting.
Example files begin with "Ex_" and files that correspond to GMAT tutorials
begin with "Tut_". These files are intended to demonstrate GMAT’s capabilities
and to provide you with a potential starting point for building common mission
types for your application and flight regime. Samples with specific requirements
are located in subdirectories such as NeedMatlab and NeedVF13ad.

userfunctions

The userfunctions directory contains MATLAB, Python, and GMAT functions
that are included in the GMAT distribution. You can also store your own custom
functions in the subdirectories named GMAT, Python, and MATLAB. GMAT
includes those subdirectories in its search path to locate functions referenced in
GMAT scripts and GMAT functions.



Configuring Data Files

GMAT uses many emprical data files that are periodically updated. In some
cases files are updated by the owning organization as often as every 3 hours.
GMAT is distributed with a python script
\utilities\python\GMATDataFileManager .py that automates file updates, logs
changes, and optionally archives old versions of data files used by GMAT. See
the help documentation contained in the Python class for detailed usage
instructions. Below we describe the emprical data files used by GMAT, and
which startup file variables are used to define those files' locations on your
system. The source of the data file and comments describe where the files are
obtained and how they are used.

Startup File

Variable Data Source

EOP_FILE ftp://hpiers.obspm.fr/iers/series/ opa/eopc04_IAU2000/

EOP_FILE_SPICE  https://naif.jpl.nasa.gov/pub/naif/ generic_kernels/pck/
earth_latest_high_prec.bpc

PLANETARY_PCK https://naif.jpl.nasa.gov/pub/naif/ generic_kernels/pck/
_FILE



LEAP_SECS_FILE ftp://maia.usno.navy.mil/ser7/tai-utc.dat

LSK_FILE https://naif.jpl.nasa.gov/pub/naif/generic_kernels/Isk/

CSSI_FLUX_FILE ftp://ftp.agi.com/pub/DynamicEarthData/SpaceWeather-A
v1.2.txt



SCHATTEN_FILE  https://fdf.gsfc.nasa.gov/forms

IRI2007_APDATA  Constructed from CSSI_FLUX_FILE using

GMATDataManager.py
EARTH_PCK https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/
_PREDICTED_FILE
EARTH_PCK https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/

_CURRENT_FILE



LUNA_PCK https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/
_CURRENT_FILE

LUNA_FRAME https://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satell
_KERNEL_FILE



Loading Custom Plugins

Custom plugins are loaded by adding a line to the startup file
(bin/gmat_startup_file.txt) specifying the name and location of the plugin
file. In order for a plugin to work with GMAT, the plugin library must be placed
in the folder referenced in the startup file. For all details, see the Startup File
reference.

Configuring the MATLAB Inteface

GMAT contains an interface to MATLAB. See the MATLAB Interface reference
to configure the MATLAB interface.

Configuring the Python Inteface

GMAT contains an interface to Python. See the Python Interface reference to
configure the Python interface.

User-defined Function Paths

If you create custom MATLAB functions, you can provide the path to those files
and GMAT will locate them at run time. The default startup file is configured so
you can place MATLAB functions (with a .m extension) in the
userfunctions/matlab directory. GMAT automatically searches that location at
run time. You can change the location of the search path to your MATLAB
functions by changing these lines in your startup file to reflect the location of
your files with respect to the GMAT bin folder:

MATLAB_FUNCTION_PATH = ../userfunctions/matlab

If you wish to organize your custom functions in multiple folders, you can add
multiple search paths to the startup file. For example,

MATLAB_FUNCTION_PATH
MATLAB_FUNCTION_PATH
MATLAB_FUNCTION_PATH

../MyFunctions/utils
../MyFunctions/StateConversion
../MyFunctions/TimeConversion



GMAT will search the paths in the order specified in the startup file and will use
the first function with a matching name.



Tutorials

The Tutorials section contains in-depth tutorials that show you how to use
GMAT for end-to-end analysis. The tutorials are designed to teach you how to
use GMAT in the context of performing real-world analysis and are intended to
take between 30 minutes and several hours to complete. Each tutorial has a
difficulty level and an approximate duration listed with any prerequisites in its
introduction, and are arranged in a general order of difficulty.

Here is a summary of selected Tutorials. For a complete list of tutorials see the
Tutorials chapter.

The Simulating an Orbit tutorial is the first tutorial you should take to learn how
to use GMAT to solve mission design problems. You will learn how to specify
an orbit and propagate to orbit periapsis.

The Mars B-Plane Targeting tutorial shows how to use GMAT to design a Mars
transfer trajectory by targeting desired B-plane conditions at Mars.

The Target Finite Burn to Raise Apogee tutorial shows how to raise orbit apogee
using finite maneuver targeting.



Chapter 5. Simulating an Orbit

Audience  Beginner
Length 30 minutes
Prerequisites None

Script File Tut_SimulatingAnOrbit.script



Objective and Overview

Note

The most fundamental capability of GMAT is to propagate, or
simulate the orbital motion of, spacecraft. The ability to
propagate spacecraft is used in nearly every practical aspect of
space mission analysis, from simple orbital predictions (e.g.
When will the International Space Station be over my house?)
to complex analyses that determine the thruster firing sequence
required to send a spacecraft to the Moon or Mars.

This tutorial will teach you how to use GMAT to propagate a spacecraft. You
will learn how to configure Spacecraft and Propagator resources, and how to
use the Propagate command to propagate the spacecraft to orbit periapsis, which
is the point of minimum distance between the spacecraft and Earth. The basic
steps in this tutorial are:

Configure a spacecraft and define its epoch and orbital elements.
Configure a Propagator.

Modify the default orbitVview plot to visualize the spacecraft trajectory.
Modify the Propagate command to propagate the spacecraft to periapsis.
Run the mission and analyze the results.

e e



Configure the Spacecraft

In this section, you will rename the default Spacecraft and set the Spacecraft’s
initial epoch and classical orbital elements. You’ll need GMAT open, with the
default mission loaded. To load the default mission, click New Mission (=) or
start a new GMAT session.

Rename the Spacecraft

1.
2.
3.

In the Resources tree, right-click DefaultSC and click Rename.
Type sat.
Click OK.

Set the Spacecraft Epoch

1.

2.

3.

4.

In the Resources tree, double-click Sat. Click the Orbit tab if it is not
already selected.

In the Epoch Format list, select UTCGregorian. You’ll see the value in
the Epoch field change to the UTC Gregorian epoch format.

In in the Epoch box, type 22 Jul 2014 11:29:10.811. This field is case-
sensitive, and must be entered in the exact format shown.

Click Apply or press the ENTER key to save these changes.

Set the Keplerian Orbital Elements

1.

2.
3.

In the StateType list, select Keplerian. In the Elements list, you will see
the GUI reconfigure to display the Keplerian state representation.

In the SMA box, type 83474 .318.

Set the remaining orbital elements as shown in the table below.

Table 5.1. Sat Orbit State Settings

Field Value
ECC 0.89652

INC 12.4606

RAAN  292.8362



AOP 218.9805

TA 180

4. Click OK.

5. Click Save (). If this is the first time you have saved the mission, you’ll be
prompted to provide a name and location for the file.

Figure 5.1. Spacecraft State Setup
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Configure the Propagator

In this section you’ll rename the default Propagator and configure the force
model.

Rename the Propagator

1.
2.
3.

In the Resources tree, right-click DefaultProp and click Rename.
Type LowEarthProp.

Click OK.

Configure the Force Model

For this tutorial you will use an Earth 10x10 spherical harmonic model, the
Jacchia-Roberts atmospheric model, solar radiation pressure, and point mass
perturbations from the Sun and Moon.

e e
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10.

In the Resources tree, double-click LowEarthProp.

Under Gravity, in the Degree box, type 10.

In the Order box, type 10.

In Atmosphere Model list, click JacchiaRoberts.

Click the Select button next to the Point Masses box. This opens the
CelesBodySelectDialog window.

In the Available Bodies list, click Sun, then click -> to add Sun to the
Selected Bodies list.

Add the moon (named Luna in GMAT) in the same way.

Click OK to close the CelesBodySelectDialog.

Select Use Solar Radiation Pressure to toggle it on. Your screen should
now match Figure 5.2, “Force Model Configuration™.

Click OK.

Figure 5.2. Force Model Configuration
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Configuring the Orbit View Plot

Now you will configure an orbitview plot so you can visualize Sat and its
trajectory. The orbit of Sat is highly eccentric. To view the entire orbit at once,
we need to adjust the settings of DefaultOrbitView.

1. In the Resources tree, double-click DefaultOrbitView.

2. In the three boxes to the right of View Point Vector, type the values
-60000, 30000, and 20000 respectively.

3. Under Drawing Option to the left, clear Draw XY Plane. Your screen
should now match Figure 5.3, “DefaultOrbitView Configuration”.

4. Click OK.

Figure 5.3. DefaultOrbitView Configuration




@) OrbitView - DefaultOrbitView =R

Plot Option View Object

Collect data every 1 step Spacecraft Selected Spacecraft
Sat
Update plotevery 5p  cyde
Enable Stars @
Draw Object

Enable Constelations Celestial Chject . Selected Celestial Object
Mumber of stars 7900 Jupiter s | 55 |Earth

Luna |—|
Mumber of points to redraw Mars -
(Enter 0 to redraw whole plot) Mercury

Manh ina 2
Show Plot
Show Labels
Drawing Option View Definition
[ Draw wireFrame Coordinate System [EarmMJzﬂﬂﬂEq ‘]
["] raw Edliptic Plane View Point Reference [Earm = ]
["| Draw X¥ Plane ]
Draw Axes LSRN ["-"ECtOf ‘] -60000 30000 20000 km
[l oraw Grid View Scale Factor 4

|:| Draw 5un Line

View Direction
Solver Iterations [Earﬂﬂ b ]

View Option View Up Definition

[¥] Use Initial View Def. Coordinate System |EarthMJ2000Eq v |  Axis

¥




Configure the Propagate Command

This is the last step before running the mission. Below you will configure a
Propagate command to propagate (or simulate the motion of) Sat to orbit
periapsis.

1.
2.
3.

Click the Mission tab to display the Mission tree.

Double-click Propagatel.

Under Stopping Conditions, click the (...) button to the left of
Sat.ElapsedSecs. This will display the ParameterSelectDialog window.
In the Object List box, click Sat if it is not already selected. This directs
GMAT to associate the stopping condition with the spacecraft Sat.

In the Object Properties list, double-click Periapsis to add it to the
Selected Values list. This is shown in Figure 5.4, “Propagate Command
ParameterSelectDialog Configuration”.

Figure 5.4. Propagate Command ParameterSelectDialog Configuration
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6. Click OK. Your screen should now match Figure 5.5, “Propagate

Command Configuration”.
7. Click OK.

Figure 5.5. Propagate Command Configuration
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Run and Analyze the Results

Congratulations, you have now configured your first GMAT mission and are
ready to run the mission and analyze the results.

1. Click Save () to save your mission.
2. Click the Run (»).

You will see GMAT propagate the orbit and stop at orbit periapsis. Figure 5.6,
“Orbit View Plot after Mission Run” illustrates what you should see after
correctly completing this tutorial. Here are a few things you can try to explore
the results of this tutorial:

1. Manipulate the DefaultOrbitView plot using your mouse to orient the
trajectory so that you can to verify that at the final location the spacecraft is
at periapsis. See the OrbitView reference for details.

2. Display the command summary:

1. Click the Mission tab to display the Mission tree.
2. Right-click Propagatel and select Command Summary to see data
on the final state of Sat.
3. Use the Coordinate System list to change the coordinate system in
which the data is displayed.
3. Click Start Animation (@) to animate the mission and watch the orbit
propagate from the initial state to periapsis.

Figure 5.6. Orbit View Plot after Mission Run
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Chapter 6. Simple Orbit Transfer

Audience  Beginner

Length 30 minutes

Prerequisites Complete Simulating an Orbit

Script File Tut_SimpleOrbitTransfer.script



Objective and Overview

Note

One of the most common problems in space mission design is
to design a transfer from one circular orbit to another circular
orbit that lie within the same orbital plane. Circular coplanar
transfers are used to raise low-Earth orbits that have degraded
due to the effects of atmospheric drag. They are also used to
transfer from a low-Earth orbit to a geosynchronous orbit and
to send spacecraft to Mars. There is a well known sequence of
maneuvers, called the Hohmann transfer, that performs a
circular, coplanar transfer using the least possible amount of
fuel. A Hohmann transfer employs two maneuvers. The first
maneuver raises the orbital apoapsis (or lowers orbital
periapsis) to the desired altitude and places the spacecraft in an
elliptical transfer orbit. At the apoapsis (or periapsis) of the
elliptical transfer orbit, a second maneuver is applied to
circularize the orbit at the final altitude.

In this tutorial, we will use GMAT to perform a Hohmann transfer from a low-
Earth parking orbit to a geosynchronous mission orbit. This requires a targeting
sequence to determine the required maneuver magnitudes to achieve the desired
final orbit conditions. In order to focus on the configuration of the targeter, we
will make extensive use of the default configurations for spacecraft, propagators,
and maneuvers.

The target sequence employs two velocity-direction maneuvers and two
propagation sequences. The purpose of the first maneuver is to raise orbit
apoapsis to 42,165 km, the geosynchronous radius. The purpose of the second
maneuver is to nearly circularize the orbit and yield a final eccentricity of 0.005.
The basic steps of this tutorial are:

1. Create and configure a DifferentialCorrector resource.
2. Modify the befaultOrbitVview to visualize the trajectory.



w

Create two ImpulsiveBurn resources with default settings.

Create a Target sequence to (1) raise apoapsis to geosynchronous altitude
and (2) circularize the orbit.

Run the mission and analyze the results.



Configure Maneuvers, Differential Corrector, and
Graphics

For this tutorial, you’ll need GMAT open, with the default mission loaded. To
load the default mission, click New Mission (¢ ) or start a new GMAT session.
We will use the default configurations for the spacecraft (DefaultSC), the
propagator (DefaultProp), and the two maneuvers. DefaultSC is configured by
default to a near-circular orbit, and DefaultProp is configured to use Earth as the
central body with a nonspherical gravity model of degree and order 4. You may
want to open the dialog boxes for these objects and inspect them more closely as
we will leave them at their default settings.

Create the Differential Corrector

The Target sequence we will create later needs a DifferentialCorrector
resource to operate, so let’s create one now. We'll leave the settings at their
defaults.

1. In the Resource tree, expand the Solvers folder if it isn’t already.
2. Right-click the Boundary Value Solvers folder, point to Add, and click
Differential Corrector. A new resource called DC1 will be created.

Modify the Default Orbit View

We need to make minor modifications to DefaultOrbitView so that the entire
final orbit will fit in the graphics window.

1. In the Resource Tree, double-click DefaultOrbitView to edit its
properties.
2. Set the values shown in the table below.

Table 6.1. DefaultOrbitView settings

Field Value

Solver Iterations, under Drawing Option Current

Axis, under View Up Defintion X




3.

View Point Vector boxes, under View 0, 0, and 120000 respectively
Definition

Click OK to save these changes.

Create the Maneuvers.

We’ll need two ImpulsiveBurn resources for this tutorial, both using default
values. Below, we’ll rename the default ImpulsiveBurn and create a new one.

1.
2.
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In the Resources tree, right-click DefaultIB and click Rename.

In the Rename box, type TOI, an acronym for Transfer Orbit Insertion, and
click OK.

Right-click the Burns folder, point to Add, and click ImpulsiveBurn.
Rename the new ImpulsiveBurn1 resource to 60I, an acronym for
Geosynchronous Orbit Insertion.



Configure the Mission Sequence

Now we will configure a Target sequence to solve for the maneuver values
required to raise the orbit to geosynchronous altitude and circularize the orbit.
We’ll begin by creating an initial Propagate command, then the Target
sequence itself, then the final Propagate command. To allow us to focus on the
Target sequence, we’ll assume you have already learned how to propagate an
orbit to a desired condition by working through the Chapter 5, Simulating an
Orbit tutorial.

Configure the Initial Propagate Command

1. Click on the Mission tab to show the Mission tree.
2. Configure Propagatel to propagate to DefaultSC.Earth.Periapsis.
3. Rename Propagatel to Prop To Periapsis.

Create the Target Sequence

Now create the commands necessary to perform the Target sequence.

Figure 6.1, “Final Mission Sequence for the Hohmann Transfer” illustrates the
configuration of the Mission tree after you have completed the steps in this
section. We’ll discuss the Target sequence after it has been created.

Figure 6.1. Final Mission Sequence for the Hohmann Transfer

=) Mission Sequence
% Prop To Periapsis
=- Hohmann Transfer
A vary TOI
----- Al Perform TOIL
% Prop To Apoapsis
(@l Achieve RMAG = 42165
A3 vary GOI
----- Al Perform GOI
-A@) Achieve ECC = 0.005

----- 4 End Hohmann Transfer
----- ga Prop One Day

To create the Target sequence:
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In the Mission tree, right-click Prop To Periapsis, point to Insert After,
and click Target. This will insert two separate commands: Target1 and
EndTargetl.

Right-click Targetl and click Rename.

Type Hohmann Transfer and click OK.

Right-click Hohmann Transfer, point to Append, and click Vary.
Rename Varyl to vary TOI.

Complete the Target sequence by appending the commands in Table 6.2
“Additional Target Sequence Commands”.

Table 6.2. Additional Target Sequence Commands

Maneuver Perform TOI

Propagate Prop To Apoapsis

Achieve Achieve RMAG = 42165

Vary Vary GOI

Maneuver Perform GOI

Achieve Achieve ECC = 0.005
Note

Let’s discuss what the Target sequence does. We know that
two maneuvers are required to perform the Hohmann transfer.
We also know that for our current mission, the final orbit radius
must be 42,165 km and the final orbital eccentricity must be
0.005. However, we don’t know the size (or AV magnitudes) of
the maneuvers that precisely achieve the desired orbital
conditions. You use the Target sequence to solve for those
precise maneuver values. You must tell GMAT what controls
are available (in this case, two maneuvers) and what conditions
must be satisfied (in this case, a specific orbital radius and
eccentricity). You accomplish this using the vary and Achieve




commands. Using the vary command, you tell GMAT what to
solve for—in this case, the AV values for T0I and GoI. You use
the Achieve command to tell GMAT what conditions the
solution must satisfy—in this case, the final orbital conditions.

Create the Final Propagate Command

We need a Propagate command after the Target sequence so that we can see
our final orbit.

1.
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In the Mission tree, right-click End Hohmann Transfer, point to Insert
After, and click Propagate. A new Propagate3 command will appear.
Rename Propagate3 to Prop One Day.

Double-click Prop One Day to edit its properties.

Under Condition, replace the value 12000.0 with 86400, the number of
seconds in one day.

Click OK to save these changes.

Figure 6.2. Prop One Day Command Configuration
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Configure the Target Sequence

Now that the structure is created, we need to configure the various parts of the
Target sequence to do what we want.

Configure the Vary TOl Command

1. Double-click Vary TOI to edit its properties. Notice that the variable in the
Variable box is TOI.Element1, which by default is the velocity component
of TOI in the local Velocity-Normal-Binormal (VNB) coordinate system.
That’s what we need, so we’ll keep it.

2. In the Initial Value box, type 1.0.

In the Max Step box, type 0.5.

4. Click OK to save these changes.

w

Figure 6.3. Vary TOI Command Configuration
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Configure the Perform TOl Command

1. Double-click Perform TOI to edit its properties. Notice that the command
is already set to apply the TOI burn to the DefaultSC spacecraft, so we
don’t need to change anything here.

2. Click OK.

Figure 6.4. Perform TOI Command Configuration

48) Perform TOI R
Burn [Tor z)
spacecraft |pefaultsc ™
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Configure the Prop to Apoapsis Command

1. Double-click Prop to Apoapsis to edit its properties.

2. Under Parameter, replace DefaultSc.ElapsedSecs with
DefaultSC.Earth.Apoapsis.

3. Click OK to save these changes.

Figure 6.5. Prop to Apoapsis Command Configuration
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Configure the Achieve RMAG = 42165 Command

1. Double-click Achieve RMAG = 42165 to edit its properties.

2. Notice that Goal is set to DefaultSC.Earth.RMAG. This is what we need,

so we make no changes here.

3. In the Value box, type 42164.169, a more precise number for the radius of a
geosynchronous orbit (in kilometers).

4. Click OK to save these changes.

Figure 6.6. Achieve RMAG = 42165 Command Configuration
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Configure the Vary GOl Command

1. Double-click Vary GOI to edit its properties.
2. Next to Variable, click the Edit button.
3. Under Object List, click GOI.
4. In the Object Properties list, double-click Element1 to move it to the
Selected Value(s) list. See the image below for results.
Figure 6.7. Vary GOI Parameter Selection
r@ ParameterSelectDialog =R &1
Object Type Object Properties Selected Value(s)
o | I [ET—
Obyject List El:ngg -
[ QK ] ’ Cancel ] ’ Help ]

5. Click OK to close the ParameterSelectDialog window.
6. In the Initial Value box, type 1.0.
7. In the MaxStep text box, type 0. 2.
8. Click OK to save these changes.



Figure 6.8. Vary GOI Command Configuration
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Configure the Perform GOl Command

1.
2.
3.

Double-click Perform GOI to edit its properties.
In the Burn list, click GOI.
Click OK to save these changes.

Figure 6.9. Perform GOI Command Configuration

§8) Perform GOI R
Burn [GOI v|
spacecraft |pefaultsc z)

Configure the Achieve ECC = 0.005 Command

NouhkwhE

Double-click Achieve ECC = 0.005 to edit its properties.
Next to Goal, click the Edit button.

In the Object Properties list, double-click ECC.

Click OK to close the ParameterSelectDialog window.
In the Value box, type 0.005.

In the Tolerance box, type 0.0001.

Click OK to save these changes.



Figure 6.10. Achieve ECC = 0.005 Command Configuration
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Run the Mission

Before running the mission, click Save (#) and save the mission to a file of your
choice. Now click Run (»). As the mission runs, you will see GMAT solve the
targeting problem. Each iteration and perturbation is shown in
DefaultOrbitView window in light blue, and the final solution is shown in red.
After the mission completes, the 3D view should appear as in to the image
shown below. You may want to run the mission several times to see the targeting
in progress.

Figure 6.11. 3D View of Hohmann Transfer
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If you were to continue developing this mission, you can store the final solution
of the Target sequence as the initial conditions of the TOI and GOI resources
themselves, so that if you make small changes, the subsequent runs will take less
time. To do this, follow these steps:

1. In the Mission tree, double-click Hohmann Transfer to edit its properties.
2. Click Apply Corrections.



3. Now re-run the mission. If you inspect the results in the message window,
you will see that the Target sequence converges in one iteration because
you stored the solution as the initial condition.



Chapter 7. Target Finite Burn to Raise Apogee
Audience Intermediate level
Length 45 minutes

Prerequisites Complete Simulating an Orbit and Simple Orbit Transfer

Script File Tut_Target_Finite Burn_to_Raise_Apogee.script



Objective and Overview

Note

One of the most common operational problems in space
mission design is the design of a finite burn that achieves a
given orbital goal. A finite burn model, as opposed to the
idealized impulsive burn model used for preliminary design, is
needed to accurately model actual spacecraft maneuvers.

In this tutorial, we will use GMAT to perform a finite burn for a spacecraft in
low Earth orbit. The goal of this finite burn is to achieve a certain desired
apogee radius. Since the most efficient orbital location to affect apoapsis is at
periapsis, the first step in this tutorial is to propagate the spacecraft to perigee.

To calculate the duration of the perigee burn needed to achieve a desired apogee
radius of 12000 km, we must create the appropriate targeting sequence. The
main portion of the target sequence employs a Begin/End FiniteBurn command
pair, for a velocity direction maneuver, followed by a command to propagate the
spacecraft to orbit apogee.

The basic steps of this tutorial are:

1. Create and configure the Spacecraft hardware and FiniteBurn resources
2. Create the DifferentialCorrector and Target Control Variable
3. Configure the Mission Sequence. To do this, we will
a. Create Begin/End FiniteBurn commands with default settings.
b. Create a Target sequence to achieve a 12000 km apogee radius.
4. Run the mission and analyze the results.



Create and Configure Spacecraft Hardware and
Finite Burn

For this tutorial, you’ll need GMAT open with the default mission loaded. To
load the default mission, click New Mission (¢ ) or start a new GMAT session.
We will use the default configurations for the spacecraft (DefaultSC) and the
propagator (DefaultProp). DefaultSC is configured by default to a near-circular
orbit, and DefaultProp is configured to use Earth as the central body with a
nonspherical gravity model of degree and order 4. You may want to open the
dialog boxes for these objects and inspect them more closely as we will leave
them at their default settings.

Create a Thruster and a Fuel Tank

To model thrust and fuel use associated with a finite burn, we must create a
ChemicalThruster and a ChemicalTank and then attach the newly created
ChemicalTank to the ChemicalThruster.

1. In the Resources tree, right-click on the Hardware folder, point to Add,
and click ChemicalThruster. A resource named ChemicalThruster1 will
be created.

2. In the Resources tree, right-click on the Hardware folder, point to Add,

and click ChemicalTank. A resource named ChemicalTank1 will be

created.

Double-click ChemicalThruster1 to edit its properties.

4. Select the Decrement Mass box so that GMAT will model fuel use
associated with a finite burn.

5. Use the drop down menu to the right of the Tank field to select
ChemicalTank1 as the fuel source for ChemicalThrusterl. Click OK.
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Figure 7.1, “ChemicalTank1 Configuration” below shows the default
ChemicalTank]1 configuration that we will use and Figure 7.2,
“ChemicalThruster1 Configuration” shows the finished ChemicalThruster1l
configuration.

Figure 7.1. ChemicalTank1 Configuration
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Figure 7.2. ChemicalThruster1 Configuration
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Note that the default Thruster1 Coordinate System, as shown in Figure 7.2,
“ChemicalThruster1 Configuration”, is Earth-based Velocity, Normal, Bi-
normal (VNB) and that the default Thrust Vector of (1,0,0) represents our
desired velocity oriented maneuver direction.

For a general finite burn, if desired, we can specify how both the thrust and the
fuel use depend upon fuel tank pressure. The user does this by inputting
coefficients of certain pre-defined polynomials. To view the values for the thrust
coefficients, click the Edit Thruster Coef. button and to view the ISP
coefficients which determine fuel use, click the Edit Impulse Coef. button. For
this tutorial, we will use the default ISP polynomial coefficient values but we
will change the ChemicalThruster1 polynomial coefficients as follows.



Modify Thrusterl Thrust Coefficients

1. In the Resources tree, double-click ChemicalThruster1 to edit its
properties

2. Click the Edit Thruster Coef. button to bring up the
ThrusterCoefficientDialog box, shown in Figure 7.3,
“ChemicalThruster1 Thrust Coefficients”. Replace the default C1
coefficient value of 10 with 1000. Click OK.

Figure 7.3. ChemicalThruster1 Thrust Coefficients
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The exact form of the pre-defined Thrust polynomial, associated with the
coefficients above, are given in the ChemicalThruster help. We note that, by
default, all of the Thrust coefficients associated with terms that involve tank
pressure are zero. We have kept the default zero values for all of these
coefficients. We simply changed the constant term in the Thrust polynomial from
10 to 1000 which is much larger than the thrust for a typical chemical thruster.
The Thrust and ISP polynomials used in this tutorial are shown below.

Thrust = 1000 (Newtons)

ISP = 300 (seconds)

Attach ChemicalTankl and Thrusterl to DefaultSC

1. In the Resources tree, double-click DefaultSC to edit its properties.

2. Select the Tanks tab. In the Available Tanks column, select
ChemicalTank1. Then click the right arrow button to add ChemicalTank1
to the SelectedTanks list. Click Apply.

3. Select the Actuators tab. In the Available Thrusters column, select
ChemicalThrusterl. Then click the right arrow button to add
ChemicalThruster1 to the SelectedThrusters list. Click OK.

Figure 7.4. Attach ChemicalTank1 to DefaultSC
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Figure 7.5. Attach ChemicalThrusterl to DefaultSC
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Create the Finite Burn Maneuver

We’ll need a single FiniteBurn resource for this tutorial.

1. In the Resources tree, right-click the Burns folder and add a FiniteBurn. A



resource named FiniteBurnl will be created.
2. Double-click FiniteBurnl1 to edit its properties.
3. Use the menu to the right of the Thruster field to select

ChemicalThruster1 as the thruster associated with FiniteBurnl. Click
OK.

Figure 7.6. Creation of FiniteBurn Resource FiniteBurnl
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Create the Differential Corrector and Target
Control Variable

The Target sequence we will create later needs a Differential Corrector
resource to operate, so let’s create one now. We'll leave the settings at their
defaults.

1. In the Resources tree, expand the Solvers folder if it isn’t already.
2. Right-click the Boundary Value Solvers folder, point to Add, and click
Differential Corrector. A new resource called DC1 will be created.

The Target sequence we will later create uses the Vary command to adjust a
user defined target control variable in order to achieve the desired orbital goal of
raising apogee to 12000 km. We must first create this variable which we will
name BurnDuration.

1. In the Resources tree, right-click the Variables/Arrays/Strings folder,
point to Add, and click Variable. A new window will come up with two
input fields, Variable Name and Variable Value. For Variable Name,
input BurnDuration and for Variable Value, input 0. Click the => button
to create the variable, then click Close.

2. To verify that we have created this new variable correctly, double-click
BurnDuration to view its properties.

Figure 7.7. Creation of Variable Resource, BurnDuration
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Configure the Mission Sequence

Now we will configure a Target sequence to solve for the finite burn duration
required to raise apogee to 12000 km. We’ll begin by creating the initial
Propagate command, then the Target sequence itself.

Configure the Initial Propagate Command

1. Click on the Mission tab to show the Mission tree.
2. Configure Propagatel to propagate to DefaultSC.Earth.Periapsis.
3. Rename Propagatel to Prop To Perigee.

Figure 7.8. Prop To Perigee Command Configuration
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Create the Target Sequence

Now create the commands necessary to perform the Target sequence.

Figure 7.9, “Final Mission Sequence” illustrates the configuration of the Mission
tree after we have completed the steps in this section. We’ll discuss the Target
sequence after it has been created.

Figure 7.9. Final Mission Sequence
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To create the Target sequence:

1. In the Mission tree, right-click Prop To Perigee, point to Insert After, and
click Target. This will insert two separate commands: Targetl and
EndTargetl.

Right-click Targetl and click Rename. Type Raise Apogee and click OK.
Right-click Raise Apogee, point to Append, and click Vary. Rename the
newly created command as Vary Burn Duration.

Right-click Vary Burn Duration, point to Insert After, and click
BeginFiniteBurn. Rename the newly created command as Turn Thruster
On.

Complete the Target sequence by inserting the commands shown in

Table 7.1, “Additional Target Sequence Commands”.

Table 7.1. Additional Target Sequence Commands

Propagate Prop BurnDuration

EndFiniteBurn Turn Thruster Off




Propagate Prop To Apogee

Achieve Achieve Apogee Radius = 12000

Configure the Target Sequence

Now that the structure is created, we need to configure the various parts of the
Target sequence to do what we want.

Configure the Raise Apogee Command

1. Double-click Raise Apogee to edit its properties.

2. In the ExitMode list, click SaveAndContinue. This instructs GMAT to
save the final solution of the targeting problem after you run it.

3. Click OK to save these changes.

Figure 7.10. Raise Apogee Command Configuration
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Configure the Vary Burn Duration Command

1. Double-click Vary Burn Duration to edit its properties. We want this
command to adjust (or “Vary”) the finite burn duration represented by the
previously created control variable, BurnDuration. To accomplish this,
click on the Edit button to bring up the ParameterSelectDialog. Use the
ObjectType menu to select the Variable object type. The ObjectList menu
will then display a list of user defined variables. Double-click on the



variable, BurnDuration, so that BurnDuration appears in the
SelectedValues(s) menu. Click the OK button to save the changes and
return to the Vary Burn Duration command menu.

In the Initial Value box, type 200

In the Upper box, type 10000

In the Max Step box, type 100.

Click OK to save these changes.
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Figure 7.11. Vary Burn Duration Command Configuration
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Configure the Turn Thruster On Command

1. Double-click Turn Thruster On to edit its properties. Notice that the
command is already set to apply FiniteBurn1 to the DefaultSC spacecraft,
so we don’t need to change anything here.

2. Click OK.

Figure 7.12. Turn Thruster On Command Configuration
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Configure the Prop BurnDuration Command

1. Double-click Prop BurnDuration to edit its properties.
2. We will use the default Parameter value of DefaultSC.ElapsedSecs.
3. Under Condition, replace the default value with Variable, BurnDuration.

4. Click OK to save these changes.

Figure 7.13. Prop BurnDuration Command Configuration
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Configure the Turn Thruster Off Command

1. Double-click Turn Thruster Off to edit its properties. Notice that the
command is already set to end FiniteBurn1 as applied to the DefaultSC
spacecraft, so we don’t need to change anything here..

2. Click OK.

Figure 7.14. Turn Thruster Off Command Configuration
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Configure the Prop To Apogee Command

1. Double-click Prop to Apogee to edit its properties.

2. Under Parameter, replace DefaultSC.ElapsedSecs with
DefaultSC.Earth.Apoapsis.

3. Click OK to save these changes.

Figure 7.15. Prop To Apogee Command Configuration
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Configure the Achieve Apogee Radius = 12000 Command

1. Double-click Achieve Apogee Radius = 12000 to edit its properties.

2. Notice that Goal is set to DefaultSC.Earth.RMAG. This is what we need,
so we make no changes here.

In the Value box, type 12000

4. Click OK to save these changes

w

Figure 7.16. Achieve Apogee Radius = 12000 Command Configuration
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Run the Mission

Before running the mission, click Save to save the mission to a file of your
choice. Now click Run. As the mission runs, you will see GMAT solve the
targeting problem. Each iteration and perturbation is shown in
DefaultOrbitView window in light blue, and the final solution is shown in red.
After the mission completes, the 3D view should appear as shown in the image
shown below. You may want to run the mission several times to see the targeting
in progress.

Inspect Orbit View and Message Window

Inspect the 3D DefaultOrbitView window. Manipulate the window as needed to
view the orbit "face-on." Visually verify that apogee has indeed been raised.

Figure 7.17. 3D View of Finite Burn to Raise Apogee
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As shown below, we inspect the output message window to determine the
number of iterations it took the Differential Corrector to converge and the final
value of the control variable, BurnDuration. Verify that you obtained a similar
value for BurnDuration.

*** Targeting Completed in 13 iterations
Final Variable values:

BurnDuration = 1213.19316329

Explore the Command Summary Reports



All of the commands in the Mission tree have associated Command Summary
reports. As shown below, we review these reports to help verify that our script
performed as expected.

1. In the Mission tree, select Prop To Perigee, then right-click to open the
associated Command Summary which describes the state of DefaultSC
after the Prop To Perigee command has been performed. We verify perigee
has indeed been achieved by finding the mean anomaly value of
DefaultSC. To do this, we look at the value of MA under the Keplerian
State. As expected, the mean anomaly is zero.

2. View the Turn Thruster On command summary. Note that, as expected,
prior to the start of the maneuver, the fuel mass is 756 kg.

3. View the Turn Thruster Off command summary.

a. Note that the mean anomaly at the end of the maneuver is 25.13
degrees. Thus, as the burn occurred, the mean anomaly increased from
0 to 25.13 degrees. By orbital theory, we know that an apogee raising
burn is best performed at perigee. Thus, we may be able to achieve our
orbital goal using less fuel if we “center” the burn. For example, we
could try starting our burn at a mean anomaly of -(25.13/2) instead
of o degrees.

b. Note that, at the end of the maneuver, the fuel mass is
343.76990815648 kg. Thus, this finite burn used approximately 756 -
343.8 = 412.2 kg of fuel.

4. View the Prop To Apogee command summary.

a. We note that the mean anomaly is 180 degrees which proves that we
are indeed at apogee.

b. We note that the orbital radius (RMAG) is 11999.999998192 km
which proves that we have achieved our desired 12000 km apogee
radius to within our desired tolerance of 0.1 km.



Chapter 8. Mars B-Plane Targeting
Audience  Advanced
Length 75 minutes

Complete Simulating an Orbit, Simple Orbit Transfer and a basic
Prerequisites understanding of B-Planes and their usage in targeting is
required.

Script File Tut _Mars_B Plane Targeting.script



Objective and Overview

Note

One of the most challenging problems in space mission design
is to design an interplanetary transfer trajectory that takes the
spacecraft within a very close vicinity of the target planet. One
possible approach that puts the spacecraft close to a target
planet is by targeting the B-Plane of that planet. The B-Plane is
a planar coordinate system that allows targeting during a
gravity assist. It can be thought of as a target attached to the
assisting body. In addition, it must be perpendicular to the
incoming asymptote of the approach hyperbola. Figure 8.1,
“Geometry of the B-Plane as seen from a viewpoint
perpendicular to the B-Plane” and Figure 8.2, “The B-vector as
seen from a viewpoint perpendicular to orbit plane” show the
geometry of the B-Plane and B-vector as seen from a viewpoint
perpendicular to orbit plane. To read more on B-Planes, please
consult the GMATMathSpec document. A good example
involving the use of B-Plane targeting is a mission to Mars.
Sending a spacecraft to Mars can be achieved by performing a
Trajectory Correction Maneuver (TCM) that targets Mars B-
Plane. Once the spacecraft gets close to Mars, then an orbit
insertion maneuver can be performed to capture into Mars
orbit.

Figure 8.1. Geometry of the B-Plane as seen from a viewpoint perpendicular
to the B-Plane
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Figure 8.2. The B-vector as seen from a viewpoint perpendicular to orbit
plane

Central Body

Incoming Trajectory

Incoming
Asymptote

In this tutorial, we will use GMAT to model a mission to Mars. Starting from an
out-going hyperbolic trajectory around Earth, we will perform a TCM to target
Mars B-Plane. Once we are close to Mars, we will adjust the size of the
maneuver to perform a Mars Orbit Insertion (MOI) to achieve a final elliptical
orbit with an inclination of 90 degrees. Meeting these mission objectives
requires us to create two separate targeting sequences. In order to focus on the
configuration of the two targeters, we will make extensive use of the default
configurations for spacecraft, propagators, and maneuvers.

The first target sequence employs maneuvers in the Earth-based Velocity (V),
Normal (N) and Bi-normal (B) directions and includes four propagation



sequences. The purpose of the maneuvers in VNB directions is to target BdotT
and BdotR components of the B-vector. BdotT is targeted to 0 km and BdotR is
targeted to a non-zero value to generate a polar orbit that has inclination of 90
degrees. BdotR is targeted to -7000 km to avoid having the orbit intersect Mars,
which has a radius of approximately 3396 km.

The second target sequence employs a single, Mars-based anti-velocity direction
(-V) maneuver and includes one propagation sequence. This single anti-velocity
direction maneuver will occur at periapsis. The purpose of the maneuver is to
achieve MOI by targeting position vector magnitude of 12,000 km at apoapsis.
The basic steps of this tutorial are:

1. Modify the Defaultsc to define spacecraft’s initial state. The initial state is
an out-going hyperbolic trajectory that is with respect to Earth.
2. Create and configure a Fuel Tank resource.
Create two ImpulsiveBurn resources with default settings.
4. Create and configure three Propagators: NearEarth, DeepSpace and
NearMars
Create and configure DifferentialCorrector resource.
6. Create and configure three DefaultOrbitView resources to visualize Earth,
Sun and Mars centered trajectories.
7. Create and configure three CoordinateSystems: Earth, Sun and Mars
centered.
8. Create first Target sequence to target BdotT and BdotR components of the
B-vector.
9. Create second Target sequence to implement MOI by targeting position
magnitude at apoapsis.
10. Run the mission and analyze the results.

w
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Configure Fuel Tank, Spacecraft properties,
Maneuvers, Propagators, Differential Corrector,
Coordinate Systems and Graphics

For this tutorial, you’ll need GMAT open, with the default mission loaded. To
load the default mission, click New Mission (=) or start a new GMAT session.
DefaultSC will be modified to set spacecraft’s initial state as an out-going
hyperbolic trajectory.

Create Fuel Tank

We need to create a fuel tank in order to see how much fuel is expended after
each impulsive burn. We will modify DefaultSC resource later and attach the
fuel tank to the spacecraft.

1. In the Resources tree, right-click the Hardware folder, point to Add and
click ChemicalTank. A new resource called ChemicalTank1 will be
created.

Right-clickChemicalTank1 and click Rename.

In theRename box, type MainTank and click OK.

Double click onMainTank to edit its properties.

Set the values shown in the table below.

ik

Table 8.1. MainTank settings

Field Value

Fuel Mass 1718

Fuel Density 1000

Pressure 5000

Volume 2

6. Click OK to save these changes.



Modify the DefaultSC Resource

We need to make minor modifications to DefaultSC in order to define
spacecraft’s initial state and attach the fuel tank to the spacecraft.

1.

o1

In the Resources tree, under Spacecraft folder, right-click DefaultSC and
click Rename.

In the Rename box, type MAVEN and click OK.

Double-click on MAVEN to edit its properties. Make sure Orbit tab is
selected.

Set the values shown in the table below.

Table 8.2. MAVEN settings

Field Value

Epoch Format UTCGregorian

Epoch 18 Nov 2013 20:26:24.315
Coordinate System EarthMJ2000Eq

State Type Keplerian

SMA under Elements -32593.21599272796

ECC under Elements 1.202872548116185

INC under Elements 28.80241266404142

RAAN under Elements 173.9693759331483

AQOP under Elements 240.9696529532764

TA under Elements 359.9465533778069

Click on Tanks tab now.

Under Available Tanks, you'll see MainTank. This is the fuel tank that we
created earlier.

We attach MainTank to the spacecraft MAVEN by bringing it under
Selected Tanks box. Select MainTank under Available Tanks and bring it
over to the right-hand side under the Selected Tanks.

Click OK to save these changes.



Create the Maneuvers

We’ll need two ImpulsiveBurn resources for this tutorial. Below, we’ll rename
the default ImpulsiveBurn and create a new one. We’ll also select the fuel tank
that was created earlier in order to access fuel for the burns.

1.

2.

ok W

9.
10.
11.
12.

13.

In the Resources tree, under the Burns folder, right-click DefaultIB and
click Rename.

In the Rename box, type TCM, an acronym for Trajectory Correction
Maneuver and click OK to edit its properties.

Double-Click TCM to edit its properties to edit its properties.

Check Decrement Mass under Mass Change.

For Tank field under Mass Change, select MainTank from drop down
menu.

Click OK to save these changes.

Right-click theBurns folder, point to Add, and click ImpulsiveBurn. A
new resource called ImpulsiveBurnl will be created.

Rename the new ImpulsiveBurn1 resource to MOI, an acronym for Mars
Orbit Insertion and click OK.

Double-click MOI to edit its properties.

For Origin field under Coordinate System, select Mars.

Check Decrement Mass under Mass Change.

For Tank field under Mass Change, select MainTank from the drop down
menu.

Click OK to save these changes.

Create the Propagators

We’ll need to add three propagators for this tutorial. Below, we’ll rename the
default DefaultProp and create two more propagators.

1.

2.
3.

In the Resources tree, under the Propagators folder, right-click
DefaultProp and click Rename.

In the Rename box, type NearEarth and click OK.
Double-click on NearEarth to edit its properties.

Set the values shown in the table below.

Table 8.3. NearEarth settings
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Field Value

Initial Step Size under Integrator 600

Accuracy under Integrator le-013

Min Step Size under Integrator 0

Max Step Size under Integrator 600

Model under Gravity JGM-2

Degree under Gravity 8

Order under Gravity 8

Atmosphere Model under Drag None

Point Masses under Force Model Add Luna and Sun
Use Solar Radiation Pressure under Force Check this field
Model

Click on OK to save these changes.

. Right-click the Propagators folder and click Add Propagator. A new
resource called Propagatorl will be created.

Rename the new Propagatorl1 resource to DeepSpace and click OK.
Double-click DeepSpace to edit its properties.

. Set the values shown in the table below.

Table 8.4. DeepSpace settings

Field Value

Type under Integrator PrinceDormand78
Initial Step Size under Integrator 600

Accuracy under Integrator le-012

Min Step Size under Integrator 0

Max Step Size under Integrator 864000

Central Body under Force Model Sun




10.
11.

12.
13.
14.

Primary Body under Force Model

None

Point Masses under Force Model

Add Earth, Luna, Sun,
Mars, Jupiter,
Neptune, Saturn,
Uranus, Venus

Use Solar Radiation Pressure under Force

Model

Check this field

Click OK to save these changes.

Right-click the Propagators folder and click Add Propagator. A new

resource called Propagatorl will be created.

Rename the new Propagator1 resource to NearMars and click OK.

Double-click on NearMars to edit its properties.
Set the values shown in the table below.

Table 8.5. NearMars settings

Field Value

Type under Integrator PrinceDormand78
Initial Step Size under Integrator 600
Accuracy under Integrator le-012
Min Step Size under Integrator 0

Max Step Size under Integrator 86400
Central Body under Force Model Mars
Primary Body under Force Model Mars
Model under Gravity Mars-50C
Degree under Gravity 8

Order under Gravity 8
Atmosphere Model under Drag None
Point Masses under Force Model Add Sun




15.

Use Solar Radiation Pressure under Force Check this field
Model

Click OK to save the changes.

Create the Differential Corrector

Two Target sequences that we will create later need a DifferentialCorrector
resource to operate, so let’s create one now. We'll leave the settings at their
defaults.

1.
2.

3.

In the Resources tree, expand the Solvers folder if it isn’t already.
Right-click the Boundary Value Solvers folder, point to Add, and click
DifferentialCorrector. A new resource called DC1 will be created.
Rename the new DC1 resource to DefaultDC and click OK.

Create the Coordinate Systems

The BdotT and BdotR constraints that we will define later under the first Target
sequence require us to create a coordinate system. Orbit View resources that we

will create later also need coordinate system resources to operate. We will create
Sun and Mars centered coordinate systems. So let’s create them now.

1.
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In the Resources tree, right-click the Coordinate Systems folder and click
Add Coordinate System. A new Dialog box is created with a title New
Coordinate System.

Type SunEcliptic under Coordinate System Name box.

Under Origin field, select Sun.

For Type under Axes, select MJ2000Ec.

Click OK to save these changes. You’ll see that a new coordinate system
SunEdcliptic is created under Coordinate Systems folder.

Right-click the Coordinate Systems folder and click Add Coordinate
System. A new Dialog Box is created with a title New Coordinate System.
Type MarsInertial under Coordinate System Name box.

Under Origin field, select Mars.

For Type under Axes, select BodyInertial.

Click OK to save these changes. You’ll see that a new coordinate system



MarslInertial is created under Coordinate Systems folder.

Create the Orbit Views

We’ll need three DefaultOrbitView resources for this tutorial. Below, we’ll
rename the default DefaultOrbitView and create two new ones. We need three
graphics windows in order to visualize spacecraft’s trajectory centered around
Earth, Sun and then Mars

1.

ik

In the Resources tree, under Output folder, right-click DefaultOrbitView
and click Rename.

In the Rename box, type EarthView and click OK.

In the Output folder, delete DefaultGroundTrackPlot.

Double-click EarthView to edit its properties.

Set the values shown in the table below.

Table 8.6. EarthView settings

Field Value

View Scale Factor under View Definition 4

View Point Vector boxes, under View 0, 06, 30000
Definition

Click OK to save these changes.

Right-click the Output folder, point to Add, and click OrbitView. A new
resource called OrbitView1 will be created.

Rename the new OrbitView1 resource to SolarSystemView and click OK.
Double-click SolarSystemView to edit its properties.

Set the values shown in the table below.

Table 8.7. SolarSystemView settings

Field Value

From Celestial Object under View Object, add Mars, Sun (Do not
following objects to Selected Celestial Object remove Earth)
box




11.
12.

13.
14.
15.

Coordinate System under View Definition

SunEdcliptic

View Point Reference under View Definition = Sun

View Point Vector boxes, under View 0, 0, 5e8
Definition

View Direction under View Definition Sun
Coordinate System under View Up Definition SunEcliptic

Click OK to save these changes.

Right-click the Output folder, point to Add, and click OrbitView. A new

resource called OrbitView1 will be created.

Rename the new OrbitView1 resource to MarsView and click OK.

Double-click MarsView to edit its properties.
Set the values shown in the table below.

Table 8.8. MarsView settings

Field Value

From Celestial Object under View Object, add Mars (You don’t have

following object to Selected Celestial Object
box

to remove Earth)

Coordinate System under View Definition

MarslInertial

View Point Reference under View Definition

Mars

View Point Vector boxes, under View
Definition

22000, 22000, 0

View Direction under View Definition

Mars

Coordinate System under View Up Definition

MarslInertial

16. Click OK to save the changes.



Configure the Mission Sequence

Now we will configure first Target sequence to solve for the maneuver values
required to achieve BdotT and BdotR components of the B-vector. BdotT will be
targeted to 0 km and BdotR is targeted to a non-zero value in order to generate a
polar orbit that will have an inclination of 90 degrees. To allow us to focus on
the first Target sequence, we’ll assume you have already learned how to
propagate an orbit by having worked through Chapter 5, Simulating an Orbit
tutorial.

The second Target sequence will perform the MOI maneuver so that the
spacecraft can orbit around Mars, but that sequence will be created later.

Create the First Target Sequence

Now create the commands necessary to perform the first Target sequence.

Figure 8.3, “Mission Sequence for the First Target sequence” illustrates the
configuration of the Mission tree after you have completed the steps in this
section. We’ll discuss the first Target sequence after it has been created.

Figure 8.3. Mission Sequence for the First Target sequence

B4 P Sequence
=-{@) Target desired B-Plane Coordinates

----- Prop 3 Days

----- Prop 12 Days to TCM

-4 Vary TCM.V

A3 vary TCM.N

A vary TCM.B

----- A% Apply TCM

----- Prop 280 Days

----- Prop to Mars Periapsis

--{@y Achieve BdotT

@ Achieve Bdoth
----- 4 End Target desired B-Plane Coordinates

To create the first Target sequence:

1. Click on the Mission tab to show the Mission tree.



W

o Ul

You'’ll see that there already exists a Propagatel command. We need to
delete this command

Right-click on Propagatel command and click Delete.

Right-click on Mission Sequence folder, point to Append, and click
Target. This will insert two separate commands: Targetl and EndTarget1.
Right-click Target1 and click Rename.

Type Target desired B-plane Coordinates and click OK.

Right-click Target desired B-plane Coordinates, point to Append, and
click Propagate. A new command called Propagatel will be created.
Right-click Propagatel and click Rename.

In the Rename box, type Prop 3 Days and click OK.

Complete the Target sequence by appending the commands in Table 8.9
“Additional First Target Sequence Commands”.

Table 8.9. Additional First Target Sequence Commands

Propagate Prop 12 Days to TCM
Vary vary TCM.V
Vary vary TCM.N
Vary vary TCM.B
Maneuver Apply TCM
Propagate Prop 280 Days
Propagate Prop to Mars Periapsis
Achieve Achieve BdotT
Achieve Achieve BdotR

Note

Let’s discuss what the first Target sequence does. We know
that a maneuver is required to perform the B-Plane targeting.




We also know that the desired B-Plane coordinate values for
BdotT and BdotR are 0 and -7000 km, resulting in a polar orbit
with 90 degree inclination. However, we don’t know the size
(or AV magnitude) and direction of the TCM maneuver that
will precisely achieve the desired orbital conditions. We use the
Target sequence to solve for those precise maneuver values.
We must tell GMAT what controls are available (in this case,
three controls associated with three components of the TCM
maneuver) and what conditions must be satisfied (in this case,
BdotT and BdotR values). You accomplish this by using the
Vary and Achieve commands. Using the Vary command, you
tell GMAT what to solve for—in this case, the AV value and
direction for TCM. You use the Achieve command to tell
GMAT what conditions the solution must satisfy—in this case,
BdotT and BdotR values that result in a 90 degree inclination.

Configure the First Target Sequence

Now that the structure is created, we need to configure various parts of the first
Target sequence to do what we want.

Configure the Target desired B-plane Coordinates
Command

1. 1Double-click Target desired B-plane Coordinates to edit its properties.

2. In the ExitMode list, click SaveAndContinue. This instructs GMAT to
save the final solution of the targeting problem after you run it.

3. Click OK to save these changes.

Figure 8.4. Target desired B-plane Coordinates Command Configuration
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Configure the Prop 3 Days Command

N
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Double-click Prop 3 Days to edit its properties.

Under Propagator, make sure that NearEarth is selected
Under Parameter, replace MAVEN.ElapsedSeconds with
MAVEN.ElapsedDays.

Under Condition, replace 0.0 with 3.

Click OK to save these changes.

Figure 8.5. Prop 3 Days Command Configuration
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Configure the Prop 12 Days to TCM Command

1. Double-click Prop 12 Days to TCM to edit its properties.

Under Propagator, replace NearEarth with DeepSpace.

3. Under Parameter, replace MAVEN.ElapsedSeconds with
MAVEN.ElapsedDays.

4. Under Condition, replace 0.0 with 12.

Click OK to save these changes.

N

v

Figure 8.6. Prop 12 Days to TCM Command Configuration
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Configure the Vary TCM.V Command

1.
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Double-click Vary TCM.V to edit its properties. Notice that the variable in
the Variable box is TCM.Element1, which by default is the velocity
component of TCM in the local Velocity-Normal-Binormal (VNB)
coordinate system. That’s what we need, so we’ll keep it.

In the Initial Value box, type 1e-005.

In the Perturbation box, type 0.00001.

In the Lower box, type -10e300.

In the Upper box, type 10e300.

In the Max Step box, type 0.002.

Click OK to save these changes.

Figure 8.7. Vary TCM.V Command Configuration
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Configure the Vary TCM.N Command

1.

Double-click Vary TCM.N to edit its properties. Notice that the variable in
the Variable box is still TCM.Element1, which by default is the velocity
component of TCM in the local VNB coordinate system. We need to insert
TCM.Element2 which is the normal component of TCM in the local VNB
coordinate system. So let’s do that.

Next to Variable, click the Edit button..

Under Object List, click TCM.

In the Object Properties list, double-click Element2 to move it to the
Selected Value(s) list. See the image below for results.

Click OK to close the ParameterSelectDialog window.

Notice that the variable in the Variable box is now TCM.Element?2.

In the Initial Value box, type 1e-005.

In the Perturbation box, type 0.00001.

In the Lower box, type -10e300.

In the Upper box, type 10e300.

. In the Max Step box, type 0.002.
. Click OK to save these changes.

Figure 8.8. Vary TCM.N Parameter Selection
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Figure 8.9. Vary TCM.N Command Configuration
@ Vary TCMN [
Solver [Deﬁ:uItDC =
Variable Setup
Variable :.TCI"«"I.E.iementz Edit
Initial Value Perturbation Lower pper Max Step
1e-005| 0.00001 | -10e300 © 10e300 0.002
Additive Scale Factor .0
Multiplicative Scale Factor 1.
[(J(E) o ][y ][ conc e

Configure the Vary TCM.B Command



1. Double-click Vary TCM.B to edit its properties. Notice that the variable in
the Variable box is still TCM.Element1, which by default is the velocity
component of TCM. We need to insert TCM.Element3 which is the bi-
normal component of TCM in the local VINB coordinate system. So let’s do
that.

2. Next to Variable, click the Edit button.

3. Under Object List, click TCM.

4. In the Object Properties list, double-click Element3 to move it to the
Selected Value(s) list. See the image below for results.

5. Click OK to close the ParameterSelectDialog window.

6. Notice that the variable in the Variable box is now TCM.Element3.

7. In the Initial Value box, type 1e-005.

8. In the Perturbation box, type 0.00001.

9. In the Lower box, type -10e300.

10. In the Upper box, type 10e300.
11. In the Max Step box, type 0.002.
12. Click OK to save these changes.
Figure 8.10. Vary TCM.B Parameter Selection
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Figure 8.11. Vary TCM.N Command Configuration
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Configure the Apply TCM Command

e Double-click Apply TCM to edit its properties. Notice that the command is
already set to apply the TCM burn to the MAVEN spacecraft, so we don’t
need to change anything here.

Figure 8.12. Apply TCM Command Configuration
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Configure the Prop 280 Days Command



1. Double-click Prop 280 Days to edit its properties.

N

MAVEN.ElapsedDays.

4. Under Condition, replace 0.0 with 280.

v

Click OK to save these changes.

Figure 8.13. Prop 280 Days Command Configuration
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Configure the Prop to Mars Periapsis Command

1. Double-click Prop to Mars Periapsis to edit its properties.
Under Propagator, replace NearEarth with NearMars.
3. Under Parameter, replace MAVEN.ElapsedSeconds with

N

MAVEN.Mars.Periapsis.
4. Click OK to save these changes.




Figure 8.14. Prop to Mars Periapsis Command Configuration
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Configure the Achieve BdotT Command

A=

Double-click Achieve BdotT to edit its properties.
Next to Goal, click the Edit button.

In the Object Properties list, click BdotT.

Under Coordinate System, select MarsInertial and double-click on

BdotT.

NG

Click OK to close the ParameterSelectDialog window.
In the Value box, type 0.

In the Tolerance box, type 0.00001.

Click OK to save these changes.

Figure 8.15. Achieve BdotT Command Configuration
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Configure the Achieve BdotR Command

A=
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Double-click Achieve BdotR to edit its properties.

Next to Goal, click the Edit button.

In the Object Properties list, click BdotR.
Under Coordinate System, select MarsInertial and double-click on

BdotR.

Click OK to close the ParameterSelectDialog window.

In the Value box, type -7000.

In the Tolerance box, type 0.00001.

Click OK to save these changes.

Figure 8.16. Achieve BdotR Command Configuration
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Run the Mission with first Target Sequence

Before running the mission, click Save (#) and save the mission to a file of your
choice. Now click Run (»). As the mission runs, you will see GMAT solve the
targeting problem. Each iteration and perturbation is shown in EarthView,
SolarSystemView and MarsView windows in light blue, and the final solution
is shown in red. After the mission completes, the 3D views should appear as in
the images shown below. You may want to run the mission several times to see

the targeting in progress.

Figure 8.17. 3D View of departure hyperbolic trajectory (EarthView)
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Figure 8.18. 3D View of heliocentric transfer trajectory (SolarSystemView)
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Figure 8.19. 3D View of approach hyperbolic trajectory. MAVEN stopped at
periapsis (MarsView)
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Since we are going to continue developing the mission tree by creating the
second Target sequence, we will store the final solution of the first Target
sequence as the initial conditions of the TCM resource. This is so that when you




make small changes, the subsequent runs will take less time. To do this, follow
these steps:

1.

w

In the Mission tree, double-click Target desired B-plane Coordinates to
edit its properties.

Click Apply Corrections.

Click OK to save these changes.

Now re-run the mission. If you inspect the results in the message window,
you will see that the first Target sequence converges in one iteration. This
is because you stored the solution as the initial conditions.

In the Mission tree, double-click Vary TCM.V, Vary TCM.N and Vary
TCM.B, you will notice that the values in Initial Value box have been
updated to the final solution of the first Target sequence.

If you want to know TCM maneuver’s delta-V vector values and how much fuel
was expended during the maneuver, do the following steps:

1.

2.

4.

In the Mission tree, right-click Apply TCM, and click on Command
Summary.
Scroll down and under Maneuver Summary heading, values for delta-V
vector are:

Delta V Vector:
Element 1: 0.0039376963731 km/s
Element 2: 0.0060423170483 km/s

Element 3: -0.0006747125434 km/s

Scroll down and under Mass depletion from MainTank heading, Delta V
and Mass Change tells you TCM maneuver’s magnitude and how much fuel
was used for the maneuver:

Delta V: 0.0072436375569 km/s

Mass change: -6.3128738639690 kg
Click OK to close Command Summary window.

Just to make sure that the goals of first Target sequence were met successfully,
let us access command summary for Prop to Mars Periapsis command by
doing the following steps:



1. In the Mission tree, right-click Prop to Mars Periapsis, and click on
Command Summary.

2. Under Coordinate System, select MarsInertial.

3. Under Hyperbolic Parameters heading, see the values of BdotT and

BdotR. Under Keplerian State, see the value for INC. You can see that the

desired B-Plane coordinates were achieved which result in a 90 degree
inclined trajectory:

BdotT -0.0000053320678 km

BdotR -7000.0000019398 km

INC = 90.000000039301 deg

Create the Second Target Sequence

Recall that we still need to create second Target sequence in order to perform
Mars Orbit Insertion maneuver to achieve the desired capture orbit. In the
Mission tree, we will create the second Target sequence right after the first
Target sequence.

Now let’s create the commands necessary to perform the second Target
sequence. Figure 8.20, “Mission Sequence showing first and second Target
sequences” illustrates the configuration of the Mission tree after you have
completed the steps in this section. Notice that in Figure 8.20, “Mission
Sequence showing first and second Target sequences”, the second Target
sequence is created after the first Target sequence. We’ll discuss the second
Target sequence after it has been created.

Figure 8.20. Mission Sequence showing first and second Target sequences
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To create the second Target sequence:

1. Click on the Mission tab to show the Mission tree.

2. In the Mission tree, right-click on Mission Sequence folder, point to

Append, and click Target. This will insert two separate commands:

Target2 and EndTarget2.

Right-click Target2 and click Rename.

Type Mars Capture and click OK.

Right-click Mars Capture, point to Append, and click Vary. A new

command called Vary4 will be created.

6. Right-click Vary4 and click Rename.

In the Rename box, type Vary MOL.V and click OK.

8. Complete the Target sequence by appending the commands in Table 8.10
“Additional Second Target Sequence Commands”.

ok W

N

Table 8.10. Additional Second Target Sequence Commands

Maneuver Apply MOI

Propagate Prop to Mars Apoapsis




Achieve Achieve RMAG

Note

Let’s discuss what the second Target sequence does. We know
that a maneuver is required for the Mars capture orbit. We also
know that the desired radius of capture orbit at apoapsis must
be 12,000 km. However, we don’t know the size (or AV
magnitude) of the MOI maneuver that will precisely achieve
the desired orbital conditions. You use the second Target
sequence to solve for that precise maneuver value. You must
tell GMAT what controls are available (in this case, a single
maneuver) and what conditions must be satisfied (in this case,
radius magnitude value). Once again, just like in the first
Target sequence, here we accomplish this by using the Vary
and Achieve commands. Using the Vary command, you tell
GMAT what to solve for—in this case, the AV value for MOI.
You use the Achieve command to tell GMAT what conditions
the solution must satisfy—in this case, RMAG value of 12,000
km.

Create the Final Propagate Command

We need a Propagate command after the second Target sequence so that we can
see our final orbit.

1.

ok Wi

In the Mission tree, right-click End Mars Capture, point to Insert After,
and click Propagate. A new Propagate6 command will appear.
Right-click Propagate6 and click Rename.

Type Prop for 1 day and click OK.

Double-click Prop for 1 day to edit its properties.

Under Propagator, replace NearEarth with NearMars.

Under Parameter, replace MAVEN.ElapsedSeconds with
MAVEN.ElapsedDays.

Under Condition, replace the value 0.0 with 1.



8. Click OK to save these changes

Figure 8.21. Prop for 1 day Command Configuration
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Configure the second Target Sequence

Now that the structure is created, we need to configure various parts of the
second Target sequence to do what we want.

Configure the Mars Capture Command

1. Double-click Mars Capture to edit its properties.

2. In the ExitMode list, click SaveAndContinue. This instructs GMAT to
save the final solution of the targeting problem after you run it.

3. Click OK to save these changes



Figure 8.22. Mars Capture Command Configuration
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Configure the Vary MOL.V Command

1.

W

_

PoL®NO U

Double-click Vary MOL.V to edit its properties. Notice that the variable in
the Variable box is TCM.Element1. We want MOIL.Element1 which is the
velocity component of MOI in the local VINB coordinate system. So let’s
change that.

Next to Variable, click the Edit button.

Under Object List, click MOL.

In the Object Properties list, double-click Element1 to move it to the
Selected Value(s) list. See the image below for results.

Click OK to close the ParameterSelectDialog window.

In the Initial Value box, type -1.0.

In the Perturbation box, type 0.00001.

In the Lower box, type -10e300.

In the Upper box, type 10e300.

In the Max Step box, type 0.1.

Click OK to save these changes.

Figure 8.23. Vary MOI Parameter Selection
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Configure the Apply MOl Command

1. Double-click Apply MOI to edit its properties.
2. In the Burn list, click MOIL.
3. Click OK to save these changes.

Figure 8.25. Apply MOI Command Configuration
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Configure the Prop to Mars Apoapsis Command

1. Double-click Prop to Mars Apoapsis to edit its properties.

Under Propagator, replace NearEarth with NearMars.

3. Under Parameter, replace MAVEN.ElapsedSeconds with
MAVEN.Mars.Apoapsis.

4. Click OK to save these changes.

N

Figure 8.26. Prop to Mars Apoapsis Command Configuration
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Configure the Achieve RMAG Command

Double-click Achieve RMAG to edit its properties.

Next to Goal, click the Edit button.

In the Object Properties list, click RMAG.

Under Central Body, select Mars and double-click on RMAG.
Click OK to close the ParameterSelectDialog window.

In the Value box, type 12000.

Click OK to save these changes.

NouhkwhE

Figure 8.27. Achieve RMAG Command Configuration
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Run the Mission with first and second Target
Sequences

Before running the mission, click Save (#). This will save the additional changes
that we implemented in the Mission tree. Now click Run (»). The first Target
sequence will converge in one-iteration. This is because earlier, we stored the
solution as the initial conditions. The second Target sequence may converge
after 10 tol1 iterations.

As the mission runs, you will see GMAT solve the second Target sequence’s
targeting problem. Each iteration and perturbation is shown in MarsView
windows in light blue, and the final solution is shown in red. After the mission
completes, the MarsView 3D view should appear as in the image shown below.
EarthView and SolarSystemView 3D views are same as before. You may want
to run the mission several times to see the targeting in progress.

Figure 8.28. 3D view of Mars Capture orbit after MOI maneuver
(MarsView)
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If you were to continue developing this mission, you can store the final solution
of the second Target sequence as the initial condition of MOI resource. This is
so that when you make small changes, the subsequent runs will take less time.



To do this, follow these steps:

N

In the Mission tree, double-click Mars Capture to edit its properties.
Click Apply Corrections.

Now re-run the mission. If you inspect the results in the message window,
you will see that now the second Target sequence also converges in one
iteration. This is because you stored the solution as the initial condition.
Now whenever you re-run the mission, both first and second Target
sequences will converge in just one iteration.

In the Mission tree, double-click Vary MOL.V, you will notice that the
values in Initial Value box have been updated to the final solution of the
second Target sequence.

If you want to know MOI maneuver’s delta-V vector values and how much fuel
was expended during the maneuver, do the following steps:

1.

2.

In the Mission tree, right-click Apply MOI, and click on Command
Summary.

Scroll down and under Maneuver Summary heading, values for delta-V
vector are:

Delta V Vector:
Element 1: -1.6034665169868 km/s
Element 2: 0.0000000000000 km/s

Element 3: 0.0000000000000 km/s

Scroll down and under Mass depletion from MainTank heading, Delta V
and Mass Change tells you MOI maneuver’s magnitude and how much fuel
was used for the maneuver:

Delta V: 1.6034665169868 km/s

Mass change: -1076.0639629424 kg

Just to make sure that the goal of second Target sequence was met successfully,
let us access command summary for Achieve RMAG command by doing the
following steps:

1.

In the Mission tree, right-click Achieve RMAG, and click on Command



Summary.

. Under Coordinate System, select MarsInertial.

. Under Keplerian State and and Spherical State headings, see the
values of TA and RMAG. You can see that the desired radius of the capture
orbit at apoapsis was achieved successfully:

TA = 180.00000241484 deg

RMAG = 12000.019889021 km



Chapter 9. Optimal Lunar Flyby using Multiple
Shooting

Audience Advanced

Length 90 minutes

Complete Simulating an Orbit, Simple Orbit Transfer, Mars B-
Prerequisites Plane Targeting tutorial and take GMAT Fundamentals training
course or watch videos

Tut_MultipleShootingTutorial Stepl.script,
Script File Tut_MultipleShootingTutorial Step2.script, ...
Tut_MultipleShootingTutorial Step5.script



Objective and Overview

Note

For highly elliptic earth orbits (HEO), it is often cheaper to use
the Moon’s gravity to raise periapsis or to perform plane
changes, than it is to use the spacecraft’s propulsion resources.
However, designing lunar flyby’s to achieve multiple specific
mission constraints is non-trivial and requires modern
optimization techniques to minimize fuel usage while
simultaneously satisfying trajectory constraints. In this tutorial,
you will learn how to design flyby trajectories by writing a
GMAT script to perform multiple shooting optimization. As the
analyst, your goal is to design a lunar flyby that provides a
mission orbit periapsis of TBD km and changes the inclination
of the mission orbit to TBD degrees. (Note: There are other
mission constraints that will be discussed in more detail below.)

To efficiently solve the problem, we will employ the Multiple
Shooting Method to break down the sensitive boundary value
problem into smaller, less sensitive problems. We will employ
three trajectory segments. The first segment will begin at
Transfer Orbit Insertion (TOI) and will propagate forward; the
second segment is centered at lunar periapsis and propagates
both forward and backwards. The third segment is centered on
Mission Orbit Insertion (MOI) and propagates forwards and
backwards. See figures 1 and 2 that illustrate the final orbit
solution and the “Control Points” and “Patch Points” used to
solve the problem.

To begin this tutorial we start with a several views of the solution to provide a
physical understanding of the problem. In Fig. 1, an illustration of a lunar flyby
is shown with the trajectory displayed in red and the Moon’s orbit displayed in
yellow. The Earth is at the center of the frame. We require that the following
constraints are satisfied at TOI:



1. The spacecraft is at orbit perigee,
2. The spacecraft is at an altitude of 285 km.
3. The inclination of the transfer orbit is 28.5 degrees.

At lunar flyby, we only require that the flyby altitude is greater than 100 km.
This constraint is satisfied implicitly so we will not explicitly script this
constraint. An insertion maneuver is performed at earth perigee after the lunar
fly to insert into the mission orbit. The following constraints must be satisfied
after MOL.

1. The mission orbit perigee is 15 Earth radii.
2. The mission orbit apogee is 60 Earth radii.
3. The mission orbit inclination is 10 degrees.

Note: (Phasing with the moon is important for these orbits but design
considerations for lunar phasing are beyond the scope of this tutorial)

Figure 9.1. View of Lunar Flyby from Normal to Earth Equator
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Figure 9.2. View of Lunar Flyby Geometry



Figure 3 illustrates the mission timeline and how control points and patch points
are defined. Control points are drawn using a solid blue circle and are defined as
locations where the state of the spacecraft is treated as an optimization variable.
Patch points are drawn with an empty blue circle and are defined as locations
where position and/or velocity continuity is enforced. For this tutorial, we place
control points at TOI, the lunar flyby and MOI. At each patch point, the six
Cartesian state elements, and the epoch are varied for a total of 18 optimization
variables. At the MOI patch point, there is an additional optimization variable
for the delta V to

Figure 9.3. Definition of Control and Patch Points
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Notice that while there are only three patch points, we have 5 segments (which
will result in 5 spacecraft). The state at the lunar flyby, which is defined as a
control point, is propagated backwards to a patch point and forwards to a patch
point. The same occurs for the MOI control point. To design this trajectory, you
will need to create the following GMAT resources.

Create a Moon-centered coordinate system.

Create 5 spacecraft required for modeling segments.
Create an Earth-centered and a Moon-centered propagator.
Create an impulsive maneuver.

Create many user variables for use in the script.

Create A VF13ad optimizer.

Create plots for tracking the optimization process.

NouhkwhE

After creating the resources using script snippets you will construct the
optimization sequence using GMAT script. Pseudo-code for the optimization
sequence is shown below.

Define optimization initial guesses
Initialize variables
Optimize
Loop initializations
Vary control point epochs
Set epochs on spacecraft
Vary control point state values
Configure/initialize spacecraft
Apply constraints on initial control points (i.e before propag
Propagate spacecraft
Apply patch point constraints
Apply constraints on mission orbit
Apply cost function



EndOptimize

After constructing the basic optimization sequence we will perform the
following steps:

ik whe

Run the sequence and analyze the initial guess.

Run the optimizer satisfying only the patch point constraints.

Turn on the mission orbit constraints and find a feasible solution.

Use the feasible solution as the initial guess and find an optimal solution.
Apply an altitude constraint at lunar orbit periapsis



Configure Coordinate Systems, Spacecratft,
Optimizer, Propagators, Maneuvers, Variables,
and Graphics

For this tutorial, you’ll need GMAT open, with a blank script editor open. To
open a blank script editor, click the New Script button in the toolbar.

Create a Moon-centered Coordinate System

You will need a Moon-centered CoordinateSystem for the lunar flyby control
point so we begin by creating an inertial system centered at the moon. Use the
MJ2000Eq axes for this system.

Create CoordinateSystem MoonMJ2000Eq
MoonMJ2000Eq.0Origin = Luna
MoonMJ2000E(Q . Axes = MJ2000E(q

Create the Spacecraft

You will need 5 Spacecraft for this mission design. The epoch and state
information will be set in the mission sequence and here we only need to
configure coordinate systems for the Spacecraft. The Spacecraft named satTOI
models the transfer orbit through the first patch point. Use the EarthMJ200Eq
CoordinateSystem for satTOI. satFlyBy_Forward and satFlyBy_Backward
model the trajectory from the flyby backwards to patch point 1 and forward to
patch point 2 respectively. Use the MoonMJ2000Eq CoordinateSystem for
satFlyBy_Forward and satFlyBy_Backward. Similarly, satMOI_Forward
and satMOI_Backward model the trajectory on either side of the MOI
maneuver. Use the MoonMJ2000Eq CoordinateSystem for satMOI_Forward
and satMOI_Backward.



% The TOI control point
Create Spacecraft satTOI

satTOI.DateFormat = TAIModJulian
satTOI.CoordinateSystem = EarthMJ2000Eq
% Flyby control point

Create Spacecraft satFlyBy_Forward
satFlyBy_Forward.DateFormat = TAIModJulian
satFlyBy_Forward.CoordinateSystem = MoonMJ2000Eq
% Flyby control point

Create Spacecraft satFlyBy_Backward
satFlyBy_Backward.DateFormat = TAIModJulian
satFlyBy_Backward.CoordinateSystem = MoonMJ2000Eq
% MOI control point

Create Spacecraft satMOI_Backward
satMOI_Backward.DateFormat = TAIModJulian
satMOI_Backward.CoordinateSystem = EarthMJ2000Eq
% MOI control point

Create Spacecraft satMOI_Forward
satMOI_Forward.DateFormat = TAIModJulian
satMOI_Forward.CoordinateSystem = EarthMJ2000Eq

Create the Propagators

Modeling the motion of the spacecraft when near the earth and near the moon
requires two propagators; one Earth-centered, and one Moon-centered. The
script below configures the ForceModel named NearEarthForceModel to use
JGM-2 8x8 harmonic gravity model, with point mass perturbations from the Sun
and Moon, and the SRP perturbation. The ForceModel named
NearMoonForceModel is similar but uses point mass gravity for all bodies.
Note that the integrators are configured for performance and not for accuracy to
improve run times for the tutorial. There are times when integrator accuracy can
cause issues with optimizer performance due to noise in the numerical solutions.

Create ForceModel NearEarthForceModel
NearEarthForceModel.CentralBody = Earth



NearEarthForceModel.PrimaryBodies {Earth}

NearEarthForceModel.PointMasses = {Luna, Sun}
NearEarthForceModel.SRP = 0On
NearEarthForceModel.GravityField.Earth.Degree = 8
NearEarthForceModel.GravityField.Earth.Order = 8

Create ForceModel NearMoonForceModel
NearMoonForceModel.CentralBody = Luna
NearMoonForceModel.PointMasses = {Luna, Earth, Sun}
NearMoonForceModel.Drag = None
NearMoonForceModel.SRP = 0n

Create Propagator NearEarthProp

NearEarthProp.FM = NearEarthForceModel

NearEarthProp.Type = PrinceDormand78
NearEarthProp.InitialStepSize = 60
NearEarthProp.Accuracy = le-11
NearEarthProp.MinStep = 0.0
NearEarthProp.MaxStep = 86400

Create Propagator NearMoonProp

NearMoonProp.FM = NearMoonForceModel
NearMoonProp.Type = PrinceDormand78
NearMoonProp.InitialStepSize = 60
NearMoonProp.Accuracy = le-11
NearMoonProp.MinStep =0
NearMoonProp.MaxStep = 86400

Create the Maneuvers

We will require one ImpulsiveBurn to insert the spacecraft into the mission
orbit. Define the maneuver as MOI and configure the maneuver to be applied in
the VNB (Earth-referenced) Axes.

Create ImpulsiveBurn MOI

MOI.CoordinateSystem = Local
MOI.Origin = Earth
MOI.Axes = VNB

Create the User Variables



IThe optimization sequence requires many user variables that will be discussed
in detail later in the tutorial when we define those variables. For now, we simply
create the variables (which initializes them to zero). The naming convention
used here is that variables used to define constraint values begin with “con”. For
example, the variable used to define the constraint on TOI inclination is called
conTOIInclination. Variables beginning with “error” are used to compute
constraint variances. For example, the variable used to define the error in MOI
inclination is called errorTOIInclination.

% Variables for defining constraint values

Create Variable conTOIPeriapsis conMOIPeriapsis conTOIInclination
Create Variable conLunarPeriapsis conMOIApoapsis conMOIInclination
Create Variable launchRdotV finalPeriapsisValue

% Variables for computing constraint violations
Create Variable errorPosl errorVell errorPos2 errorVel2
Create Variable errorMOIRadApo errorMOIRadPer errorMOIInclination

% Variables for managing time calculations

Create Variable patchTwoElapsedDays patchOneEpoch patchTwoEpoch refE
Create Variable toiEpoch flybyEpoch moiEpoch patchOneElapsedDays
Create Variable deltaTimeFlyBy

% Constants and miscellaneous variables
Create Variable earthRadius earthMu launchEnergy launchVehicleDeltaV
Create Variable toibDeltaV launchCircularVelocity loopIdx Cost

Create the Optimizer

The script below creates a VF13ad optimizer provided in the Harwell
Subroutine Library. VF13ad is an Sequential Quadratic Programming (SQP)
optimizer that uses a line search method to solve the Non-linear Programming
Problem (NLP). Here we configure the optimizer to use forward differencing to
compute the derivatives, define the maximum iterations to 200, and define
convergence tolerances.



Create VF13ad NLPOpt

NLPOpt.ShowProgress = true
NLPOpt.ReportStyle = Normal
NLPOpt.ReportFile = 'VF13adVF13adl.data'
NLPOpt.MaximumIterations = 200
NLPOpt.Tolerance = le-004
NLPOpt.UseCentralDifferences = false
NLPOpt.FeasibilityTolerance = 0.1

Create the 3-D Graphics

You will need an OrbitView 3-D graphics window to visualize the trajectory
and especially the initial guess. Below we configure an orbit view to view the
entire trajectory in the EarthMJ2000Eq coordinate system. Note that we must
add all five Spacecraft to the OrbitView. Updating an OrbitView during
optimization can dramatically slow down the optimization process and they are
best use to check initial configuration and then us XY plots to track numerical
progress. Later in the tutorial, we will toggle the ShowPlot field to false once we
have verified the initial configuration is correct.

Create OrbitView EarthView
EarthView.ShowPlot
EarthvView.SolverIterations
EarthView.UpperLeft

[ 0.4960127591706539 0. 00992063492063492 1;
Earthview.Size =

[ 0.4800637958532695 0. 5218253968253969 1;
EarthvView.RelativeZOrder = 501
Earthview.Add = ...
{satTO0I, satFlyBy Forward, satFlyBy_Backward, satMOI_Backward,
Earth, Luna, satMOI_Forward}
EarthView.CoordinateSystem
EarthView.DrawObject
EarthView.OrbitColor Ces
[ 255 32768 1743054 16776960 32768 12632256 14268074 ]
EarthView.TargetColor = ...
[ 65280 124 4227327 255 12345 9843 16711680 ];
EarthView.DataCollectFrequency 1
EarthView.UpdatePlotFrequency 50

true
All

EarthMJ2000Eq
[ true true true true true]



EarthView.NumP

ointsToRedraw

EarthView.ViewScaleFactor
EarthView.ViewUpAxis

EarthView.UseI

nitialView

Create XPPlots/Reports

300
35

on

Below we create several XYPlots and a ReportFile. We will use XYPlots to
monitor the progress of the optimizer in satisfying constraints. PositionErrorl
plots the position error at the first patch point... VelocityError2 plots the
velocity error at the second patch point, and so on. OrbitDimErrors plots the
errors in the periapsis and apoapsis radii for the mission orbit. When
optimization is proceeding as expected, these plots should show errors driven to

Zero.

Create XYPlot
PositionError
PositionError.
PositionError
PositionError.
PositionError
PositionError
PositionError
PositionError

Create XYPlot
VelocityError
VelocityError.
VelocityError
VelocityError.
VelocityError
VelocityError
VelocityError
VelocityError

Create XYPlot

OrbitDimErrors.
OrbitDimErrors.
OrbitDimErrors.
OrbitDimErrors.

OrbitDimErrors
OrbitDimErrors

OrbitDimErrors.
OrbitDimErrors.

ShowPlot

PositionError

.SolverIterations = All

UpperLeft = [ 0.02318840579710145 0.43582089552

.Size = [ 0.4594202898550724 0.52835820895¢%
RelativeZzOrder = 378

.XVariable = loopIdx

.YVariables = {errorPosl, errorPos2}

.ShowGrid = true

.ShowPlot = true

VelocityError

.SolverIterations = All

UpperLeft = [ 0.02463768115942029 0.0119402985C

.Size = [ 0.4565217391304348 0.420895522388
RelativezOrder = 410

.XVariable = loopIdx

.YVariables = {errorVell, errorVel2}

.ShowGrid = true

.ShowPlot = true

OrbitDimErrors
SolverIterations = All
UpperLeft = [ 0.4960127591706539 0.5337301587301
Size = [ 0.481658692185008 0.42460317460317
RelativeZOrder = 347

.XVariable = loopIdx

.Yvariables = {errorMOIRadApo, errorMOIRadPer}
ShowGrid = true

true



Create XYPlot IncError
IncError.SolverIterations
IncError.UpperLeft
IncError.Size

All
[ 0.4953586497890296 0.01306240928882438
[ 0.479324894514768 0.5079825834542816 ]

IncError.RelativezZOrder = 382
IncError.YVariables = {errorMOIInclination}
IncError.XVariable = loopIdx
IncError.ShowGrid = true
IncError.ShowPlot = true

Create a ReportFile to allow reporting useful information to a text file for
review after the optimization process is complete.

Create ReportFile debugData

debugbData.SolverIterations = Current
debugbData.Precision = 16
debugData.WriteHeaders = Off
debugData.LeftJustify = 0n
debugbData.ZeroFill = Off
debugbData.Columnwidth = 20
debugData.WriteReport = false



Configure the Mission Sequence

Overview of the Mission Sequence

Now that the resources are created and configured, we will construct the
optimization sequence. Pseudo-script for the optimization sequence is shown
below. We will start by defining initial guesses for the control point optimization
variables. Next, selected variables are initialized. Take some time and study the
structure of the optimization loop before moving on to the next step.

Define optimization initial guesses
Initialize variables
Optimize
Loop initializations
Vary control point epochs
Set epochs on spacecraft
Vary control point state values
Set state values on spacecraft
Apply constraints on control points (i.e before propagation)
Propagate spacecraft
Apply patch point constraints (i.e. after propagation)
Apply constraints on mission orbit
Apply cost function
EndOptimize

Define Initial Guesses

Below we define initial guesses for the optimization variables. Initial guesses are
often difficult to generate and to ensure you can take this tutorial we have
provided a reasonable initial guess for this problem. You can use GMAT to
produce initial guesses and the sample script named
Ex_GivenEpochGoToTheMoon distributed with GMAT can be used for that
purpose for this tutorial.

The time variables launchEpoch, flybyEpoch and moiEpoch are the TAI
modified Julian epochs of the launch, flyby, and MOL. It is not obvious yet that
these are TAI modified Julian epochs, but later we use statements like this to set
the epoch: satTOI.Epoch.TAIModJulian = launchEpoch. Recall that we
previously set up the spacecraft to used coordinate systems appropriate to the
problem. Setting satTOIL.X sets the quantity in EarthMJ2000Eq and



satFlyBy_Forward.X sets the quantity in MoonMJ2000Eq because of the
configuration of the spacecraft.

BeginMissionSequence

% Define initial guesses for optimization variables
BeginScript 'Initial Guess Values'

% Robust intial guess but not feasible
toiEpoch = 27698.1612435
flybyEpoch = 27703.7658714

moiEpoch = 27723.305398

satTOI.X = -6659.70273964
satTOI.Y = -229.327053112
satTO0I.Z = -168.396030559
satTOI.VX = 0.26826479315
satTOI.VY = -9.54041067213
satTOI.VZ = 5.17141415746

869.478955662
-6287.76679557
-3598.47087228
1.14619150302
-0.73648611256
-0.624051812914
-53544.9703742
-68231.6310266
-1272.76362793
2.051823425

satFlyBy_Forward.X
satFlyBy_Forward.Y
satFlyBy_Forward.Z
satFlyBy_Forward.VX
satFlyBy_Forward.VY
satFlyBy_Forward.VZ
satMOI_Backward.X
satMOI_Backward.Y
satMOI_Backward.Z
satMOI_Backward.VX
satMOI_Backward.VY -1.91406286218
satMOI_Backward.VZ -0.280408526046
MOI.Elementl = -0.0687322937282

EndScript

Initialize Variables

The script below is used to define some constants and to define the values for
various constraints applied to the trajectory. Pay particular attention to the
constraint values and time values. For example, the variable conTOIPeriapsis
defines the periapsis radius at launch constraint to be at about 285 km (geodetics
will cause altitude to vary slightly). The variable conMOIApoapsis defines the
mission orbit apoapsis to be 60 earth radii. The variables
patchOneElapsedDays, patchTwoElapsedDays, and refEpoch are particularly
important as they define the epochs of the patch points later in the script using



lines like this patchOneEpoch = refEpoch +
patchOneElapsedDayspatchOneEpoch. The preceding line defines the epoch
of the first patch point to be one day after refEpoch (refEpoch is set to
launchEpoch). Similarly, the epoch of the second patch point is defined as 13
days after refEpoch. Note, the patch point epochs can be treated as optimization
variables but that was not done to reduce complexity of the tutorial.

% Define constants and configuration settings
BeginScript 'Constants and Init'

% Some constants
earthRadius

6378.1363

% Define constraint values and other constants

constraint on launch periaps
constraint launch inclinatic
constraint on flyby altitude

conTOIPeriapsis
conTOIInclination
conLunarPeriapsis
conMOIApoapsis
conMOIInclination
conMOIPeriapsis
patchOneElapsedDays
patchTwoElapsedDays
refEpoch

EndScript

% The optimization loop

Optimize 'Optimize Flyby'

6378 + 285 %

28.5 %
8000 %
60*earthRadius
10
15*earthRadius
1
13
toiEpoch %

NLPOpt

%
%
%
%
%

constraint on mission apc
constraint on mission inc
constraint on mission per
define epoch of patch 1
define epoch of patch 2

ref. epoch for time quantiti

{SolveMode = Solve, ExitMode = DiscardAndContinue}

% Loop initializations

loopIdx = loopIdx + 1

EndOptimize

Caution

In the above script snippet, we have included the EndOptimize
command so that your script will continue to build while we
construct the optimization sequence. You must paste
subsequence script snippets inside of the optimization loop.




Vary and Set Spacecraft Epochs

Now we will write the commands that vary the control point epochs and apply
those epochs to the spacecraft. The first three script lines below define
launchEpoch, flybyEpoch, and meiEpoch to be optimization variables. It is
important to note that when a Vary command is written like this

Vary NLPOpt(launchEpoch = launchEpoch,

that you are telling the optimizer to vary launchEpoch (the RHS of the equal
sign), and to use as the initial guess the value contained in launchEpoch when
the command is first executed. This will allow us to easily change initial guess
values and perform “Apply Corrections” via the script interface which will be
shown later. Continuing with the script explanation, the last five lines below set
the epochs of the spacecraft according to the optimization variables and set up
the patch point epochs.

% Vary the epochs

Vary NLPOpt(toiEpoch = toiEpoch, {Perturbation = 0.0001, MaxStep
Vary NLPOpt(flybyEpoch = flybyEpoch, {Perturbation=0.0001,MaxStep=
Vary NLPOpt(moiEpoch = moiEpoch, {Perturbation = 0.0001, MaxStep=C

% Configure epochs and spacecraft

satTOI.Epoch.TAIModJulian = toiEpoch
satMOI_Backward.Epoch.TAIModJulian = moiEpoch

satFlyBy Forward.Epoch.TAIModJulian = flybyEpoch

patchOneEpoch = refEpoch + patchOneElapsedC
patchTwoEpoch = refEpoch + patchTwoElapsedC

Vary Control Point States

The script below defines the control point optimization variables and defines the
initial guess values for each optimization variable. For example, the following
line

Vary NLPOpt(satTOI.X = satTOI.X, {Perturbation = 0.00001, MaxStep =
100})

tells GMAT to vary the X Cartesian value of satTOI using as the initial guess
the value of satTOIL.X at initial command execution. The Perturbation used to
compute derivatives is 0.00001 and the optimizer will not take steps larger than



100 for this variable. Note: units of settings like Perturbation are the same as
the unit for the optimization variable.

Notice the lines at the bottom of this script snippet that look like this:

satFlyBy Backward = satFlyBy Forward

This line assigns an entire Spacecraft to another Spacecraft. Because we are
varying one control point in the middle of a segment, this assignment allows us
to conveniently set the second Spacecraft without independently varying its
state properties.

% Vary the states and delta V

Vary NLPOpt(satTOI.X = ...

satTOI.X, {Perturbation 0.00001, MaxStep = 100})
Vary NLPOpt(satTOI.Y =
satTOI.Y, {Perturbation
Vary NLPOpt(satTOI.z
satT0I.Z, {Perturbation
Vary NLPOpt(satTOI.VX
satTOI.VX, {Perturbation
Vary NLPOpt(satTOI.VY

0.000001, MaxStep = 100})

0.00001, MaxStep = 100})

0.00001, MaxStep = 0.05})

satTOI.VY, {Perturbation = 0.000001, MaxStep = 0.05})
Vary NLPOpt(satT0I.VZ = ...
satT0I.VZ, {Perturbation = 0.000001, MaxStep = 0.05})

Vary NLPOpt(satFlyBy Forward.X = ...
satFlyBy_Forward.MoonMJ2000Eq.X, {Perturbation
Vary NLPOpt(satFlyBy Forward.Y = ...
satFlyBy_Forward.MoonMJ2000Eq.Y, {Perturbation
Vary NLPOpt(satFlyBy Forward.zZ = ...
satFlyBy_Forward.MoonMJ2000Eq.Z, {Perturbation
Vary NLPOpt(satFlyBy Forward.VX =

satFlyBy Forward.MoonMJ2000Eq.VX, {Perturbation
Vary NLPOpt(satFlyBy Forward.VY =

satFlyBy Forward.MoonMJ2000Eq.VY, {Perturbation
Vary NLPOpt(satFlyBy Forward.VZ =

satFlyBy Forward.MoonMJ2000Eq.VZ, {Perturbation
Vary NLPOpt(satMOI_Backward.X =

0.00001, MaxStep

0.00001, MaxStep

0.00001, MaxStep

0.00001, MaxSte

0.00001, MaxSte

0.00001, MaxSte

satMOI_Backward.X, {Perturbation = 0.000001, MaxStep = 40000})
Vary NLPOpt(satMOI_Backward.Y = ...

satMOI_Backward.Y, {Perturbation = 0.000001, MaxStep = 40000})
Vary NLPOpt(satMOI_Backward.Z = ...

satMOI_Backward.Z, {Perturbation = 0.000001, MaxStep = 40000})
Vary NLPOpt(satMOI_Backward.VX =

satMOI_Backward.VX, {Perturbation = 0.00001, MaxStep = 0.1})



Vary NLPOpt(satMOI_Backward.VY =

satMOI_Backward.VY, {Perturbation = 0.00001, MaxStep = 0.1})
Vary NLPOpt(satMOI_Backward.Vz = ...
satMOI_Backward.Vz, {Perturbation = 0.00001, MaxStep = 0.1})

Vary NLPOpt(MOI.Elementl = ...
MOI.Elementl, {Perturbation = 0.0001, MaxStep = 0.005})

% Initialize spacecraft and do some reporting
satFlyBy_Backward satFlyBy_Forward
satMOI_Forward satMOI_Backward
deltaTimeFlyBy flybyEpoch - toiEpoch

Apply Constraints at Control Points

Now that the control points have been set, we can apply constraints that occur at
the control points (i.e. before propagation to the patch point). Notice below that
the NonlinearContraint commands are commented out. We will uncomment
those constraints later. The commands below, when uncommented, will apply
constraints on the launch inclination, the launch periapsis radius, the mission
orbit periapsis, and the last constraint ensures that TOI occurs at periapsis of the
transfer orbit.

% Apply constraints on initial states

%NonlinearConstraint NLPOpt(satTOI.INC=conTOIInclination)
%NonlinearConstraint NLPOpt(satTOI.RadPer=conTOIPeriapsis)
%NonlinearConstraint NLPOpt(satMOI_Backward.RadPer = conMOIPeriap
errorMOIRadPer = satMOI_Backward.RadPer - conMOIPeriapsis

% This constraint ensures that satTOI state is at periapsis at i
launchRdotV = (satTOI.X *satTOI.VX + satTOI.Y *satTOI.VY + ...
satTOI.Z *satTOI.VZ)/1000

%NonlinearConstraint NLPOpt(launchRdotV=0)

Propagate the Segments

We are now ready to propagate the spacecraft to the patch points. We must
propagate satTOI forward to patchOneEpoch, propagate satFlyBy_Backward
backwards to patchOneEpoch, propagate satFlyBy_Forward to
patchTwoEpoch, and propagate satMOI_Backward to patchTwoEpoch.
Notice that some Propagate commands are applied inside of If statements to
ensure that propagation is performed in the correct direction.%



% DO NOT PASTE THESE LINES INTO THE SCRIPT, THEY ARE
% INCLUDED IN THE COMPLETE SNIPPET LATER IN THIS SECTION
If satFlyBy_ Forward.TAIModJulian > patchTwoEpoch
Propagate BackProp NearMoonProp(satFlyBy_Forward)
Else
Propagate NearMoonProp(satFlyBy_Forward)
EndIf

If In the script below, you will notice like this:

% DO NOT PASTE THESE LINES INTO THE SCRIPT, THEY ARE

% INCLUDED IN THE COMPLETE SNIPPET LATER IN THIS SECTION

Propagate NearEarthProp(satTOI) {satTOI.TAIModJulian = patchOneEpoch
PenUp EarthView % The next three lines handle plot epoch discont
Propagate BackProp NearMoonProp(satFlyBy_ Backward)

PenDown EarthView

These lines are used to clean up discontinuities in the OrbitView that occur
because we are making discontinuous changes to time in this complex script.

% Propagate the segments
Propagate NearEarthProp(satTOI) {satTOI.TAIModJulian =
patchOneEpoch, StopTolerance = 1e-005}
PenUp EarthView % The next three lines handle discontinuity in
Propagate BackProp NearMoonProp(satFlyBy_ Backward)
PenDown EarthView
Propagate BackProp NearMoonProp(satFlyBy_Backward)...
{satFlyBy Backward.TAIModJulian = patchOneEpoch, StopTolerance =

% Propagate FlybySat to Apogee and apply apogee constraints
PenUp EarthView % The next three lines handle discontinuity in
Propagate NearMoonProp(satFlyBy_Forward)

PenDown EarthView

Propagate NearMoonProp(satFlyBy_Forward)

{satFlyBy Forward.Earth.Apoapsis, StopTolerance = 1e-005}

Report debugData satFlyBy_Forward.RMAG

% Propagate FlybSat and satMOI_Backward to patchTwoEpoch
If satFlyBy Forward.TAIModJulian > patchTwoEpoch
Propagate BackProp NearMoonProp(satFlyBy_Forward)...

{satFlyBy_ Forward.TAIModJulian = patchTwoEpoch, StopTolerance = 1
Else

Propagate NearMoonProp(satFlyBy_Forward)...
{satFlyBy_ Forward.TAIModJulian = patchTwoEpoch, StopTolerance = 1

EndIf
PenUp EarthView % The next three lines handle discontinuity i



Propagate BackProp NearMoonProp(satMOI_Backward)

PenDown EarthView

Propagate BackProp NearMoonProp(satMOI_Backward)...
{satMOI_Backward.TAIModJulian = patchTwoEpoch, StopTolerance = le-

Compute Some Quantities and Apply Patch Constraints

The variables errorPos1 and others below are used in XYPlots to display
position and velocity errors at the patch points.

% Compute constraint errors for plots

errorPosl = sqrt((satTOI.X - satFlyBy_ Backward.X)/A2 +

(satTOI.Y - satFlyBy Backward.Y)A2 + (satTOI.zZ - satFlyBy Backwar
errorVell = sqrt((satTOI.VX - satFlyBy Backward.VX)A2 +
(satTOI.VY-satFlyBy Backward.VY)A2+(satTOI.VZ-satFlyBy Backward.V
errorPos2 = sqrt((satMOI_Backward.X - satFlyBy Forward.X)A2 +
(satMOI_Backward.Y - satFlyBy Forward.Y)A2 +

(satMOI_Backward.Z - satFlyBy Forward.zZ)A2)

errorVel2 = sqrt((satMOI_Backward.VX - satFlyBy_ Forward.VX)A2 +
(satMOI_Backward.VY - satFlyBy Forward.VY)A2 +
(satMOI_Backward.VZ - satFlyBy Forward.VZ)A2)

Apply Patch Point Constraints

The NonlinearConstraint commands below apply the patch point constraints.

% Apply the collocation constraints constraints on final states
NonlinearConstraint NLPOpt(satTOI.EarthMJ2000EqQ.X=...

satFlyBy Backward.EarthMJ2000Eq.X)

NonlinearConstraint NLPOpt(satTOI.EarthMJ2000EqQ.Y=...

satFlyBy Backward.EarthMJ2000Eq.Y)

NonlinearConstraint NLPOpt(satTOI.EarthMJ2000Eq.Z=...

satFlyBy Backward.EarthMJ2000Eq.Z)

NonlinearConstraint NLPOpt(satTOI.EarthMJ2000EqQ.VX=...
satFlyBy Backward.EarthMJ2000Eq.VX)

NonlinearConstraint NLPOpt(satTOI.EarthMJ2000EqQ.VY=...
satFlyBy Backward.EarthMJ2000Eq.VY)

NonlinearConstraint NLPOpt(satTOI.EarthMJ2000Eq.VZ=...
satFlyBy Backward.EarthMJ2000Eq.VZ)

NonlinearConstraint NLPOpt(satMOI_Backward.EarthMJ2000EqQ.X=...
satFlyBy Forward.EarthMJ2000Eq.X)

NonlinearConstraint NLPOpt(satMOI_Backward.EarthMJ2000Eq.Y=...
satFlyBy Forward.EarthMJ2000Eq.Y)



NonlinearConstraint NLPOpt(satMOI_Backward.EarthMJ2000Eq.Z=...
satFlyBy Forward.EarthMJ2000Eq.Z)
NonlinearConstraint NLPOpt(satMOI_Backward.EarthMJ2000Eq.VX=...
satFlyBy Forward.EarthMJ2000Eq.VX)
NonlinearConstraint NLPOpt(satMOI_Backward.EarthMJ2000Eq.VY=...
satFlyBy Forward.EarthMJ2000Eq.VY)
NonlinearConstraint NLPOpt(satMOI_Backward.EarthMJ2000Eq.VZ=...
satFlyBy Forward.EarthMJ2000Eq.VZ)

Apply Constraints on Mission Orbit

We can now apply constraints on the final mission orbit that cannot be applied
until after propagation. The script snippet below applies the inclination
constraint on the final mission orbit, and applies the apogee radius constraint on
the final mission orbit after MOI is applied.

% Apply mission orbit constraints/others on segments after propa

errorMOIInclination = satMOI_Forward.INC - conMOIInclination
%NonlinearConstraint NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC =
% conMOIInclination)

% Propagate satMOI_Forward to apogee

PenUp EarthView % The next three lines handle discontinuity i

Propagate NearEarthProp(satMOI_Forward)
PenDown EarthView
If satMOI_Forward.Earth.TA > 180

Propagate NearEarthProp(satMOI_Forward){satMOI_Forward.Earth.Pe

Else
Propagate BackProp NearEarthProp(satMOI_Forward)...
{satMOI_Forward.Earth.Periapsis}

EndIf

Maneuver MOI(satMOI_Forward)

Propagate NearEarthProp(satMOI_Forward) {satMOI_Forward.Earth.Apc
%NonlinearConstraint NLPOpt(satMOI_Forward.RadApo=conMOIApoapsis)

errorMOIRadApo = satMOI_Forward.Earth.RadApo - conMOIApoapsis

Apply Cost Function

The last script snippet applies the cost function and a Stop command. The Stop
command is so that we can QA your script configuration and make sure the
initial guess is providing reasonable results before attempting optimization.

% Apply cost function and
Cost = sqrt( MOI.Elementlin2 + MOI.Element2/2 + MOI.Element3/2)



%Minimize NLPOpt(Cost)

% Report stuff at the end of the loop
Report debugData MOI.Elementl
Report debugbData satMOI_Forward.RMAG conMOIApoapsis conMOIInclina

Stop



Design the Trajectory

Overview

We are now ready to design the trajectory. We’ll do this in a couple of steps:

1.
2.

Run the script configuration and verify your configuration.
Run the mission applying only the patch point constraints to provide a
smooth trajectory.

3. Run the mission with all constraints applied generating an optimal solution.
4.
5.

Run the mission with an alternative initial guess.
Add a new constraint and rerun the mission.

Step 1: Verify Your Configuration

If your script is configured correctly, when you click Save-Sync-Run in the
bottom of the script editor, you should see an OrbitView graphics window
display the initial guess for the trajectory as shown below. In the graphics,
satTOI is displayed in green, satFlyBy_Backward is displayed in orange,
satFlyBy_Forward is displayed in dark red, and satMOI_Backward is
displayed in bright red, and satMOI_Forward is displayed in blue.

Figure 9.4. View of Discontinuous Trajectory



Chkamaeleon

You can use the mouse to manipulate the OrbitView to see that the patch points
are indeed discontinuous for the initial guess as shown below in the two screen
captures. If your configuration does not provide you with similar graphics,
compare your script to the one provided for this tutorial and address any
differences.

Figure 9.5. Alternate View (1) of Discontinuous Trajectory



Figure 9.6. Alternate View (2) of Discontinuous Trajectory
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Step 2: Find a Smooth Trajectory

At this point in the tutorial, your script is configured to eliminate the patch point
discontinuities but does not apply mission constraints. We need to make a few
small modifications before proceeding. We will turn off the OrbitView to
improve the run time, and we will remove the Stop command so that the
optimizer will attempt to find a solution.

1. Near the bottom of the script, comment out the Stop command.
2. In the configuration of EarthView, change ShowPlot to false.
3. Click Save Sync Run.

After a few optimizer iterations you should see “NLPOpt converged to within
target accuracy" displayed in the GMAT message window and your XY plot
graphics should appear as shown below. Let’s discuss the content of these



windows. The upper left window shows the RSS history of velocity error at the
two patch points during the optimization process. The lower left window shows
the RSS history of the position error. The upper right window shows error in
mission orbit inclination, and the lower right window shows error mission orbit
apogee and perigee radii. You can see that in all cases the patch point
discontinuities were driven to zero, but since other constraints were not applied
there are still errors in some mission constraints.

Figure 9.7. Smooth Trajectory Solution
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Before proceeding to the next step, go to the message window and copy and
paste the final values of the optimization variables to a text editor for later use:

Step 3: Find an Optimal Trajectory

At this point in the tutorial, your script is configured to eliminate the patch point
discontinuities but does not apply constraints. We need to make a few small
modifications to the script to find an solution that meets the constraints.

1. Remove the “%” sign from the all NonlinearConstraint commands and the
Minimize command:



NonlinearConstraint
NonlinearConstraint
NonlinearConstraint
NonlinearConstraint
NonlinearConstraint
NonlinearConstraint
Minimize NLPOpt(Cos

2. Click Save Sync Run.

NLPOpt(satTOI.INC=conTOIInclination)

NLPOpt (satTOI.RadPer=conTOIPeriapsis)

NLPOpt (satMOI_Backward.RadPer = conMOIPeriaf
NLPOpt (launchRdotV=0)
NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC =.
NLPOpt (satMOI_Forward.RadApo=conMOIApoapsis)
t)

The screen capture below shows the plots after optimization has been completed.
Notice that the constraint errors have been driven to zero in the plots

Figure 9.8. Optimal Trajectory Solution
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Another way to verify that the constraints have been satisfied is to look in the

message window where the

final constraint variances are displayed as shown

below. We could further reduce the variances by lowering the tolerance setting

on the optimizer.

Equality Constraint Var
Delta satTOI.INC
Delta satTOI.RadP
Delta satMOI_Back

iances:

= 1.44773082411e-011

er = 7.08496372681e-010
ward.RadPer = -3.79732227884e-007



Delta launchRdotV = -1.87725390788e-014

Delta satTOI.EarthMJ2000Eq.X 0.00037122167123

Delta satTOI.EarthMJ2000Eq.Y 2.79954474536e-005

Delta satTOI.EarthMJ2000Eq.Z 2.78138068097e-005

Delta satTOI.EarthMJ2000Eq.VX -3.87579257577e-009

Delta satTOI.EarthMJ2000Eq.VY 1.5329883335e-009

Delta satTOI.EarthMJ2000Eq.VZ -6.84140494256e-010

Delta satMOI_Backward.EarthMJ2000Eq.X 0.0327844279818
Delta satMOI_Backward.EarthMJ2000Eq.Y 0.0501471919124
Delta satMOI_Backward.EarthMJ2000Eq.Z 0.0063349630509
Delta satMOI_Backward.EarthMJ2000Eq.VX -7.5196416871e-008
Delta satMOI_Backward.EarthMJ2000Eq.VY -7.48570442854e-008
Delta satMOI_Backward.EarthMJ2000Eq.VZ -6.01668809219e-009
Delta satMOI_Forward.EarthMJ2000Eq.INC -1.25488952563e-010
Delta satMOI_Forward.RadApo = -0.000445483252406

Finally, let’s look at the delta-V of the solution. In this case the delta-V is simply
the value of MOI.Element1 which is displayed in the message window with a
value of -0.09171 km/s.

Step 4: Use a New Initial Guess

In Step 2 above, you saved the final solution for the smooth trajectory run. Let’s
use those values as the initial guess and see if we find a similar solution as found
in the previous step. In the ScriptEvent that defines the initial guess, paste the
values below, below the values already there. (don’t overwrite the old values!).
Once you have changed the guess, run the mission again.

launchEpoch = 27698.2503232
flybyEpoch = 27703.7774182

moiEpoch = 27723.6487435

satTOI.X = -6651.63393843
satTOI.Y = -229.372171037
satTOI.Z = -168.481408909
satTOI.VX = 0.244028352166
satTOI.VY = -9.56544906767
satTOI.VZ = 5.11103080924

869.368923086

-6284.53685414

-3598.94426638
1.14614444527

satFlyBy_Forward.X

satFlyBy_Forward.Y

satFlyBy_Forward.Z

satFlyBy Forward.VX
satFlyBy Forward.VY -0.726070354598
satFlyBy_Forward.VZ -0.617780594192
satMOI_Backward.X = -53541.9714485



satMOI_Backward.Y
satMOI_Backward.Z
satMOI_Backward.VX
satMOI_Backward.VY
satMOI_Backward.VZ

-68231.6304631

-1272.77554803
2.0799329871
-1.89082570193
-0.284385092038

We see in this case the optimization converged and found essentially the same
solution of -0.0907079 km/s

Figure 9.9. Solution Using New Guess
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Step 5: Apply a New Constraint

We leave it as an exercise, to apply a constraint that the lunar flyby periapsis
radius must be greater than or equal to 5000 km.



Chapter 10. Mars B-Plane Targeting Using GMAT
Functions

Audience Advanced
Length 75 minutes

Complete Simulating an Orbit, Simple Orbit Transfer, Mars B-
Prerequisites Plane Targeting and a basic understanding of B-Planes and their
usage in targeting is required.

Script and
function
Files

Tut_UsingGMATFunctions.script,
TargeterInsideFunction.gmf



Objective and Overview

Note

One of the most challenging problems in space mission design
is to design an interplanetary transfer trajectory that takes the
spacecraft within a very close vicinity of the target planet. One
possible approach that puts the spacecraft close to a target
planet is by targeting the B-Plane of that planet. The B-Plane is
a planar coordinate system that allows targeting during a
gravity assist. It can be thought of as a target attached to the
assisting body. In addition, it must be perpendicular to the
incoming asymptote of the approach hyperbola. Figure 10.1,
“Geometry of the B-Plane as seen from a viewpoint
perpendicular to the B-Plane” and Figure 10.2, “The B-vector
as seen from a viewpoint perpendicular to orbit plane” show the
geometry of the B-Plane and B-vector as seen from a viewpoint
perpendicular to orbit plane. To read more on B-Planes, please
consult the GMATMathSpec document. A good example
involving the use of B-Plane targeting is a mission to Mars.
Sending a spacecraft to Mars can be achieved by performing a
Trajectory Correction Maneuver (TCM) that targets Mars B-
Plane. Once the spacecraft gets close to Mars, then an orbit
insertion maneuver can be performed to capture into Mars
orbit.

Figure 10.1. Geometry of the B-Plane as seen from a viewpoint
perpendicular to the B-Plane
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Figure 10.2. The B-vector as seen from a viewpoint perpendicular to orbit
plane
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In this tutorial, we will use GMAT to model a mission to Mars with the emphasis
of how to use GMAT functions. Starting from an out-going hyperbolic trajectory
around Earth, we will perform a TCM to target Mars B-Plane. Once we are close
to Mars, we will adjust the size of the maneuver to perform a Mars Orbit
Insertion (MOI) to achieve a final elliptical orbit with an inclination of 90
degrees. Meeting these mission objectives requires us to create two separate
targeting sequences. In order to focus on the configuration of the two targeters,
we will make extensive use of the default configurations for spacecraft,
propagators, and maneuvers.

The first target sequence employs maneuvers in the Earth-based Velocity (V),



Normal (N) and Bi-normal (B) directions and includes four propagation
sequences. The purpose of the maneuvers in VNB directions is to target BdotT
and BdotR components of the B-vector. BdotT is targeted to 0 km and BdotR is
targeted to a non-zero value to generate a polar orbit that has inclination of 90
degrees. BdotR is targeted to -7000 km to avoid having the orbit intersect Mars,
which has a radius of approximately 3396 km. The entire first target sequence
will be created inside a GMAT function. In the Mission tree, this function will
be called through GMAT's CallGmatFunction command. Additionally, we'll go
ahead and declare pertinent objects (e.g. spacecraft, force models, subscribers,
impulsive burns etc.) as global in both the main script and inside the function
through GMAT's Global command.

The second target sequence employs a single, Mars-based anti-velocity direction
(-V) maneuver and includes one propagation sequence. This single anti-velocity
direction maneuver will occur at periapsis. The purpose of the maneuver is to
achieve MOI by targeting position vector magnitude of 12,000 km at apoapsis.
Unlike the first target sequence, the second target sequence will not be created
inside a function.

The purpose behind this tutorial is to demonstrate how GMAT functions are
created, populated, called-upon and used as part of practical mission design. In
this tutorial, we'll deliberately put the entire first target sequence inside a GMAT
function. Next in the Mission tree, we'll call and execute the function, then
continue with the design of the second target sequence outside of the function.
Key objects such as the spacecraft, force models, subscribers etc. will be
declared global in order to assure continuous flow of data is plotted and reported
to all the subscribers. The basic steps of this tutorial are:

1. Modify the Defaultsc to define spacecraft’s initial state. The initial state is
an out-going hyperbolic trajectory that is with respect to Earth.

2. Create and configure a Fuel Tank resource.

Create two ImpulsiveBurn resources with default settings.

4. Create and configure three Propagators: NearEarth, DeepSpace and

NearMars

Create and configure DifferentialCorrector resource.

6. Create and configure three DefaultOrbitView resources to visualize Earth,
Sun and Mars centered trajectories.

7. Create and configure single ReportFile resource that will be used in
reporting data.

W
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10.

11.

12.

Create and configure three CoordinateSystems: Earth, Sun and Mars
centered.

Create and configure single GmatFunction resource that will be called and
executed in the Mission tree.

Create first Target sequence inside the GMAT function. This sequence will
be used to target BdotT and BdotR components of the B-vector.

Create second Target sequence to implement MOI by targeting position
magnitude at apoapsis.

Run the mission and analyze the results.



Configure Fuel Tank, Spacecraft properties,
Maneuvers, Propagators, Differential Corrector,
Coordinate Systems and Graphics

For this tutorial, you’ll need GMAT open, with the default mission loaded. To
load the default mission, click New Mission (=) or start a new GMAT session.
DefaultSC will be modified to set spacecraft’s initial state as an out-going
hyperbolic trajectory.

Create Fuel Tank

We need to create a fuel tank in order to see how much fuel is expended after
each impulsive burn. We will modify DefaultSC resource later and attach the
fuel tank to the spacecraft.

1. In the Resources tree, right-click the Hardware folder, point to Add and
click ChemicalTank. A new resource called ChemicalTank1 will be
created.

Right-clickChemicalTank1 and click Rename.

In theRename box, type MainTank and click OK.

Double click onMainTank to edit its properties.

Set the values shown in the table below.
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Table 10.1. MainTank settings

Field Value

Fuel Mass 1718

Fuel Density 1000

Pressure 5000

Volume 2

6. Click OK to save these changes.



Modify the DefaultSC Resource

We need to make minor modifications to DefaultSC in order to define
spacecraft’s initial state and attach the fuel tank to the spacecraft.

1.

o1

In the Resources tree, under Spacecraft folder, right-click DefaultSC and
click Rename.

In the Rename box, type MAVEN and click OK.

Double-click on MAVEN to edit its properties. Make sure Orbit tab is
selected.

Set the values shown in the table below.

Table 10.2. MAVEN settings

Field Value

Epoch Format UTCGregorian

Epoch 18 Nov 2013 20:26:24.315
Coordinate System EarthMJ2000Eq

State Type Keplerian

SMA under Elements -32593.21599272796

ECC under Elements 1.202872548116185

INC under Elements 28.80241266404142

RAAN under Elements 173.9693759331483

AQOP under Elements 240.9696529532764

TA under Elements 359.9465533778069

Click on Tanks tab now.

Under Available Tanks, you'll see MainTank. This is the fuel tank that we
created earlier.

We attach MainTank to the spacecraft MAVEN by bringing it under
Selected Tanks box. Select MainTank under Available Tanks and bring it
over to the right-hand side under the Selected Tanks.

Click OK to save these changes.



Create the Maneuvers

We’ll need two ImpulsiveBurn resources for this tutorial. Below, we’ll rename
the default ImpulsiveBurn and create a new one. We’ll also select the fuel tank
that was created earlier in order to access fuel for the burns.

1.

2.

ok W

9.
10.
11.
12.

13.

In the Resources tree, under the Burns folder, right-click DefaultIB and
click Rename.

In the Rename box, type TCM, an acronym for Trajectory Correction
Maneuver and click OK to edit its properties.

Double-Click TCM to edit its properties.

Check Decrement Mass under Mass Change.

For Tank field under Mass Change, select MainTank from drop down
menu.

Click OK to save these changes.

Right-click theBurns folder, point to Add, and click ImpulsiveBurn. A
new resource called ImpulsiveBurn1 will be created.

Rename the new ImpulsiveBurn1 resource to MOI, an acronym for Mars
Orbit Insertion and click OK.

Double-click MOI to edit its properties.

For Origin field under Coordinate System, select Mars.

Check Decrement Mass under Mass Change.

For Tank field under Mass Change, select MainTank from the drop down
menu.

Click OK to save these changes.

Create the Propagators

We’ll need to add three propagators for this tutorial. Below, we’ll rename the
default DefaultProp and create two more propagators.

1.

2.
3.

In the Resources tree, under the Propagators folder, right-click
DefaultProp and click Rename.

In the Rename box, type NearEarth and click OK.
Double-click on NearEarth to edit its properties.

Set the values shown in the table below.

Table 10.3. NearEarth settings
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Field Value

Initial Step Size under Integrator 600

Accuracy under Integrator le-013

Min Step Size under Integrator 0

Max Step Size under Integrator 600

Model under Gravity JGM-2

Degree under Gravity 8

Order under Gravity 8

Atmosphere Model under Drag None

Point Masses under Force Model Add Luna and Sun
Use Solar Radiation Pressure under Force Check this field
Model

Click on OK to save these changes.

. Right-click the Propagators folder and click Add Propagator. A new
resource called Propagatorl will be created.

Rename the new Propagatorl1 resource to DeepSpace and click OK.
Double-click DeepSpace to edit its properties.

. Set the values shown in the table below.

Table 10.4. DeepSpace settings

Field Value

Type under Integrator PrinceDormand78
Initial Step Size under Integrator 600

Accuracy under Integrator le-012

Min Step Size under Integrator 0

Max Step Size under Integrator 864000

Central Body under Force Model Sun




10.
11.

12.
13.
14.

Primary Body under Force Model

None

Point Masses under Force Model

Add Earth, Luna, Sun,
Mars, Jupiter,
Neptune, Saturn,
Uranus, Venus

Use Solar Radiation Pressure under Force

Model

Check this field

Click OK to save these changes.

Right-click the Propagators folder and click Add Propagator. A new

resource called Propagatorl will be created.

Rename the new Propagator1 resource to NearMars and click OK.

Double-click on NearMars to edit its properties.
Set the values shown in the table below.

Table 10.5. NearMars settings

Field Value

Type under Integrator PrinceDormand78
Initial Step Size under Integrator 600
Accuracy under Integrator le-012
Min Step Size under Integrator 0

Max Step Size under Integrator 86400
Central Body under Force Model Mars
Primary Body under Force Model Mars
Model under Gravity Mars-50C
Degree under Gravity 8

Order under Gravity 8
Atmosphere Model under Drag None
Point Masses under Force Model Add Sun




15.

Use Solar Radiation Pressure under Force Check this field
Model

Click OK to save the changes.

Create the Differential Corrector

Two Target sequences that we will create later need a DifferentialCorrector
resource to operate, so let’s create one now. We'll leave the settings at their
defaults.

1.
2.

3.

In the Resources tree, expand the Solvers folder if it isn’t already.
Right-click the Boundary Value Solvers folder, point to Add, and click
DifferentialCorrector. A new resource called DC1 will be created.
Rename the new DC1 resource to DefaultDC and click OK.

Create the Coordinate Systems

The BdotT and BdotR constraints that we will define later under the first Target
sequence require us to create a coordinate system. Orbit View resources that we

will create later also need coordinate system resources to operate. We will create
Sun and Mars centered coordinate systems. So let’s create them now.

1.
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In the Resources tree, right-click the Coordinate Systems folder and click
Add Coordinate System. A new Dialog box is created with a title New
Coordinate System.

Type SunEcliptic under Coordinate System Name box.

Under Origin field, select Sun.

For Type under Axes, select MJ2000Ec.

Click OK to save these changes. You’ll see that a new coordinate system
SunEdcliptic is created under Coordinate Systems folder.

Right-click the Coordinate Systems folder and click Add Coordinate
System. A new Dialog Box is created with a title New Coordinate System.
Type MarsInertial under Coordinate System Name box.

Under Origin field, select Mars.

For Type under Axes, select BodyInertial.

Click OK to save these changes. You’ll see that a new coordinate system



MarslInertial is created under Coordinate Systems folder.

Create the Orbit Views

We’ll need three DefaultOrbitView resources for this tutorial. Below, we’ll
rename the default DefaultOrbitView and create two new ones. We need three
graphics windows in order to visualize spacecraft’s trajectory centered around
Earth, Sun and then Mars

1.
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In the Resources tree, under Output folder, right-click DefaultOrbitView
and click Rename.

In the Rename box, type EarthView and click OK.

In the Output folder, delete DefaultGroundTrackPlot.

Double-click EarthView to edit its properties.

Set the values shown in the table below.

Table 10.6. EarthView settings

Field Value

View Scale Factor under View Definition 4

View Point Vector boxes, under View 0, 06, 30000
Definition

Click OK to save these changes.

Right-click the Output folder, point to Add, and click OrbitView. A new
resource called OrbitView1 will be created.

Rename the new OrbitView1 resource to SolarSystemView and click OK.
Double-click SolarSystemView to edit its properties.

Set the values shown in the table below.

Table 10.7. SolarSystemView settings

Field Value

From Celestial Object under View Object, add Mars, Sun (Do not
following objects to Selected Celestial Object remove Earth)
box




Coordinate System under View Definition SunEdcliptic

View Point Reference under View Definition Sun

View Point Vector boxes, under View 0, 0, 5e8
Definition
View Direction under View Definition Sun

Coordinate System under View Up Definition SunEcliptic

11. Click OK to save these changes.

12. Right-click the Output folder, point to Add, and click OrbitView. A new
resource called OrbitView1 will be created.

13. Rename the new OrbitView1 resource to MarsView and click OK.

14. Double-click MarsView to edit its properties.

15. Set the values shown in the table below.

Table 10.8. MarsView settings

Field Value

From Celestial Object under View Object, add Mars (You don’t have
following object to Selected Celestial Object  to remove Earth)
box

Coordinate System under View Definition MarslInertial

View Point Reference under View Definition Mars

View Point Vector boxes, under View 22000, 22000, O
Definition
View Direction under View Definition Mars

Coordinate System under View Up Definition MarsInertial

16. Click OK to save the changes.

Create single Report File



We’ll need a single ReportFile resource for this tutorial that we'll use to report
data to.

1. Right-click the Output folder, point to Add, and click ReportFile. A new
resource called ReportFilel will be created.

Rename the new ReportFilel resource to rf and click OK.

Double-Click rf to edit its properties.

Empty the Parameter List by clicking on the Edit button.

Click OK to save these changes.
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Create a GMAT Function

We’ll need a single GMATFunction resource for this tutorial. The first target
sequence will be implemented inside this function.

1. Right-click the Functions folder, point to Add, point to GMAT Function
and click New.

2. A new GMAT function panel will open. Type the following name for the
function TargeterInsideFunction and click OK to save these changes.

3. Now open TargeterInsideFunction resource and paste the below shown
first targeter sequence snippet into this function.

4. After pasting of the below snippet is done, click on Save As button and
save your function. After saving your function, close
TargeterInsideFunction resource by clicking on the Close button.

% Target Desired B-Plane Coordinates in this function:
function TargeterInsideFunction()
BeginMissionSequence

Global 'Make Objects Global' MAVEN DeepSpace_ForceModel DefaultDC ..
EarthvView MainTank MarsView MOI NearEarth_ForceModel ...
NearMars_ForceModel rf SolarSystemView TCM

Target 'Target B-plane coordinates' DefaultDC {SolveMode = Solve,
ExitMode = SaveAndContinue}
Propagate 'Prop 3 days' NearEarth(MAVEN) {MAVEN.ElapsedDays = 3}
Propagate 'Prop 12 Days to TCM' DeepSpace(MAVEN) {MAVEN.ElapsedDa
Vary 'Vary TCM.V' DefaultDC(TCM.Elementl = 0.001,
{Perturbation = 0.00001, MaxStep = 0.002})



Vary 'Vary TCM.N' DefaultDC(TCM.Element2 = 0.001,
{Perturbation = 0.00001, MaxStep = 0.002})

Vary 'Vary TCM.B' DefaultDC(TCM.Element3 = 0.001,
{Perturbation = 0.00001, MaxStep = 0.002})

Maneuver 'Apply TCM' TCM(MAVEN)

Propagate 'Prop 280 Days' DeepSpace(MAVEN) {MAVEN.ElapsedDays = 2

Propagate 'Prop to Mars Periapsis' NearMars(MAVEN) {MAVEN.Mars.Pe

Achieve 'Achieve BdotT' DefaultDC(MAVEN.MarsInertial.BdotT = 0O,
{Tolerance = 0.00001})

Achieve 'Achieve BdotR' DefaultDC(MAVEN.MarsInertial.BdotR = -70€
{Tolerance = 0.00001})

EndTarget;

% Report MAVEN parameters to global 'rf'

Report 'Report Parameters' rf MAVEN.UTCGregorian TCM.Elementl ...
TCM.Element2 TCM.Element3 MAVEN.MarsInertial.BdotT ...
MAVEN.MarsInertial.BdotR MAVEN.MarsInertial.INC

Reminder that the first target sequence will target desired B-Plane coordinates
which will get the spacecraft MAVEN close to Mars. Note that we have declared
all the pertinent objects as global at the beginning of the function. These same
objects will also be declared global in the Mission Sequence as well. Notice that
in this first target sequence, spacecraft MAVEN props for 3 days using
NearEarth propagator. Next using the DeepSpace propagator, we propagate for
12 days and execute TCM impulsive maneuver. Again using the DeepSpace
propagator, we propagate for another 280 days and finally propagate to Mars
Periapsis. The desired constraints of the B-Plane coordinates are to be met at the
Mars periapsis. The three components of the TCM impulsive burn are the
controls that will help us achieve these two constraints. Note that the tolerances
on the two B-Plane constraints are relatively tight.



Configure the Mission Sequence

Now we are ready to configure the Mission Sequence. We will first insert a
Global command and declare the same objects as global that were declared
global inside the TargeterInsideFunction function. Next we'll insert
CallGmatFunction command which will call and initiate our
TargeterInsideFunction function that contains our first target sequence. The
first target sequence will solve for the TCM maneuver values required to
achieve BdotT and BdotR components of the B-vector. BdotT will be targeted to
0 km and BdotR is targeted to a non-zero value in order to generate a polar orbit
that will have an inclination of 90 degrees.

The second target sequence employs a single, Mars-based anti-velocity direction
(-V) maneuver and includes one propagation sequence. This single anti-velocity
direction maneuver will occur at periapsis. The purpose of the maneuver is to
achieve MOI by targeting position vector magnitude of 12,000 km at apoapsis.
The basic steps of this tutorial are:

Create Commands to Initiate the First Target Sequence

Now create the commands necessary to perform the first Target sequence.
Figure 10.3, “Mission Sequence for the First Target sequence” illustrates the
configuration of the Mission tree after you have completed the steps in this
section.

Figure 10.3. Mission Sequence for the First Target sequence
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Do following steps to set-up for the first Target sequence:

1. Click on the Mission tab to show the Mission tree.
2. You’ll see that there already exists a Propagatel command. We need to
delete this command
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Right-click on Propagatel command and click Delete.

Right-click on Mission Sequence folder, point to Append, and click
Global. A new command called Gleball will be created.

Right-click Globall and click Rename. In the Rename box, type Make
Objects Global and click OK.

Right-click on Mission Sequence folder, point to Append, and click
CallGmatFunction. A new command called CallGmatFunctionl will be
created.

Right-click CallGmatFunctionl and click Rename. In the Rename box,
type Target Desired B-Plane Coord. From Inside Function and click
OK.

Right-click on Mission Sequence folder, point to Append, and click
Report. A new command called Reportl will be created.

Right-click Reportl and click Rename. In the Rename box, type Report
Parameters and click OK.

Configure the Mission Tree to Run the First Target
Sequence

Now that the structure is created, we need to configure various parts of the first
Target sequence to do what we want.

Configure the Make Objects Global Command

1.
2.

Double-click Make Objects Global to edit its properties.

Under Please Select Objects to Make Global check all the available object
and make all available objects as global. Recall that same objects were
declared as global inside TargeterInsideFunction function as well.

Click OK to save these changes.

Figure 10.4. Make Objects Global Command Configuration
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Configure the Target Desired B-Plane Coord. From Inside
Function Command

1. Double-click Target Desired B-Plane Coord. From Inside Function to
edit its properties.

2. Under Function, select TargeterInsideFunction from drop down menu. In
this particular example, since we're not passing any input(s) or receiving
any output(s) to and from the function, hence we won't be editing
Input/Output menu.

3. Click OK to save these changes.

Figure 10.5. Target Desired B-Plane Coord. From Inside Function
Command Configuration
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Configure the Report Parameters Command

1. Double-click Report Parameters to edit its properties.

Under ReportFile, make sure rf is selected from the from drop down menu.

3. Under Parameter List click on View. This opens up a new
ParameterSelectDialog panel. Make sure to select the parameters that are
shown in the below Report Parameters screenshot image.

4. Click OK to save these changes.

N

Figure 10.6. Report Parameters Command Configuration
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Run the Mission with first Target Sequence

Before running the mission, click Save (#) and save the mission to a file of your
choice. Now click Run (»). As the mission runs, you will see GMAT solve the
targeting problem. Each iteration and perturbation is shown in EarthView,
SolarSystemView and MarsView windows in light blue, and the final solution
is shown in red. After the mission completes, the 3D views should appear as in
the images shown below. You may want to run the mission several times to see

the targeting in progress.

Figure 10.7. 3D View of departure hyperbolic trajectory (EarthView)
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Figure 10.8. 3D View of heliocentric transfer trajectory (SolarSystemView)
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Figure 10.9. 3D View of approach hyperbolic trajectory. MAVEN stopped at
periapsis (MarsView)
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Now go to the Output tree and open rf. Recall that rf was declared as a global
object both inside the function and in the main script. Notice that both the
controls (i.e. TCM burn elements) and constraints (i.e. BdotT, BdotR) are
reported as well as MAVEN inclination relative to MarsInertial coordinate
system. The desired constraints that were set in the first targeter sequence have
been successfully achieved.

Now go back to Mission tree and right click on Target Desired B-Plane Coord.
From Inside Function command and click on Command Summary option.
Under Coordinate System drop down menu, select MarsIntertial and study the
command summary. This command summary corresponds to the very last
Propagate command (i.e. 'Prop to Mars Periapsis') from inside the GMAT
function. Under Hyperbolic Parameters, notice the values of BdotT and
BdotR. These are the constraints that have been achieved on the very last 'Prop
to Mars Periapsis' Propagate command from the first targeter which was set up
inside the GMAT function.

Create the Second Target Sequence

Recall that we still need to create second Target sequence in order to perform
Mars Orbit Insertion maneuver to achieve the desired capture orbit. In the
Mission tree, we will create the second Target sequence right after the first
Target sequence which was defined inside the GMAT function
TargeterInsideFunction.

Now let’s create the commands necessary to perform the second Target
sequence. Figure 10.10, “Mission Sequence showing first and second Target
sequences” illustrates the configuration of the Mission tree after you have
completed the steps in this section. Notice that in Figure 10.10, “Mission
Sequence showing first and second Target sequences”, the second Target
sequence is created after the first Target sequence which was called via the
CallGmatFunction command. We’ll discuss the second Target sequence after it
has been created.

Figure 10.10. Mission Sequence showing first and second Target sequences
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To create the second Target sequence:
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Click on the Mission tab to show the Mission tree.

In the Mission tree, right-click on Mission Sequence folder, point to
Append, and click Target. This will insert two separate commands:
Targetl and EndTarget].

Right-click Targetl and click Rename.

Type Mars Capture and click OK.

Right-click Mars Capture, point to Append, and click Vary. A new
command called Vary4 will be created.

Right-click Vary4 and click Rename.

In the Rename box, type Vary MOL.V and click OK.

Complete the Target sequence by appending the commands in Table 10.9
“Additional Second Target Sequence Commands”.

Table 10.9. Additional Second Target Sequence Commands

Maneuver Apply MOI

Propagate Prop to Mars Apoapsis

Achieve Achieve RMAG




Note

Let’s discuss what the second Target sequence does. We know
that a maneuver is required for the Mars capture orbit. We also
know that the desired radius of capture orbit at apoapsis must
be 12,000 km. However, we don’t know the size (or AV
magnitude) of the MOI maneuver that will precisely achieve
the desired orbital conditions. You use the second Target
sequence to solve for that precise maneuver value. You must
tell GMAT what controls are available (in this case, a single
maneuver) and what conditions must be satisfied (in this case,
radius magnitude value). Once again, just like in the first
Target sequence, here we accomplish this by using the Vary
and Achieve commands. Using the Vary command, you tell
GMAT what to solve for—in this case, the AV value for MOI.
You use the Achieve command to tell GMAT what conditions
the solution must satisfy—in this case, RMAG value of 12,000
km.

Create the Final Propagate Command

We need a Propagate command after the second Target sequence so that we can
see our final orbit.

1. In the Mission tree, right-click End Mars Capture, point to Insert After,
and click Propagate. A new Propagate3 command will appear.
Right-click Propagate6 and click Rename.

Type Prop for 1 day and click OK.

Double-click Prop for 1 day to edit its properties.

Under Propagator, replace NearEarth with NearMars.

Under Parameter, replace MAVEN.ElapsedSeconds with
MAVEN.ElapsedDays.

Under Condition, replace the value 0.0 with 1.

8. Click OK to save these changes
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Figure 10.11. Prop for 1 day Command Configuration
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Configure the second Target Sequence

Now that the structure is created, we need to configure various parts of the
second Target sequence to do what we want.

Configure the Mars Capture Command

1. Double-click Mars Capture to edit its properties.

2. In the ExitMode list, click SaveAndContinue. This instructs GMAT to
save the final solution of the targeting problem after you run it.

3. Click OK to save these changes

Figure 10.12. Mars Capture Command Configuration
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Configure the Vary MOL.V Command

1.
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Double-click Vary MOL.V to edit its properties. Notice that the variable in
the Variable box is TCM.Element1. We want MOIL.Element1 which is the
velocity component of MOI in the local VINB coordinate system. So let’s
change that.

Next to Variable, click the Edit button.

Under Object List, click MOL.

In the Object Properties list, double-click Element1 to move it to the
Selected Value(s) list. See the image below for results.

Click OK to close the ParameterSelectDialog window.

In the Initial Value box, type -1.0.

In the Perturbation box, type 0.00001.

In the Lower box, type -10e300.

In the Upper box, type 10e300.

In the Max Step box, type 0.1.

Click OK to save these changes.

Figure 10.13. Vary MOI Parameter Selection
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Configure the Apply MOl Command

1. Double-click Apply MOI to edit its properties.
2. In the Burn list, click MOIL.
3. Click OK to save these changes.

Figure 10.15. Apply MOI Command Configuration

@ Apply MOI =N Eol =

Burn [MDI - I

Spacecraft [MA'I:'EN = ]

D Apply Cancel ] [ Help

Configure the Prop to Mars Apoapsis Command

1. Double-click Prop to Mars Apoapsis to edit its properties.

Under Propagator, replace NearEarth with NearMars.

3. Under Parameter, replace MAVEN.ElapsedSeconds with
MAVEN.Mars.Apoapsis.

4. Click OK to save these changes.

N

Figure 10.16. Prop to Mars Apoapsis Command Configuration
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Configure the Achieve RMAG Command

Double-click Achieve RMAG to edit its properties.

Next to Goal, click the Edit button.

In the Object Properties list, click RMAG.

Under Central Body, select Mars and double-click on RMAG.
Click OK to close the ParameterSelectDialog window.

In the Value box, type 12000.

Click OK to save these changes.

NouhkwhE

Figure 10.17. Achieve RMAG Command Configuration
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Run the Mission with first and second Target
Sequences

Before running the mission, click Save (#). This will save the additional changes
that we implemented in the Mission tree. Now click Run (»). The first Target
sequence will converge first after a few iterations.

As the mission runs, you will see GMAT solve the second Target sequence’s
targeting problem. Each iteration and perturbation is shown in MarsView
windows in light blue, and the final solution is shown in red. After the mission
completes, the MarsView 3D view should appear as in the image shown below.
EarthView and SolarSystemView 3D views are same as before. You may want
to run the mission several times to see the targeting in progress.

Figure 10.18. 3D view of Mars Capture orbit after MOI maneuver
(MarsView)



Marserial
Epoch: 23 Sep 2014 07:35:41.430




If you want to know MOI maneuver’s delta-V vector values and how much fuel
was expended during the maneuver, do the following steps:

1.

2.

In the Mission tree, right-click Apply MOI, and click on Command
Summary.

Scroll down and under Maneuver Summary heading, values for delta-V
vector are:

Delta V Vector:
Element 1: -1.6032580309280 km/s
Element 2: 0.0000000000000 km/s

Element 3: 0.0000000000000 km/s

Scroll down and under Mass depletion from MainTank heading, Delta V
and Mass Change tells you MOI maneuver’s magnitude and how much fuel
was used for the maneuver:

Delta V: 1.6032580309280 km/s

Mass change: -1075.9520121897 kg

Just to make sure that the goal of second Target sequence was met successfully,
let us access command summary for Achieve RMAG command by doing the
following steps:

1.

2.
3.

In the Mission tree, right-click Achieve RMAG, and click on Command
Summary.

Under Coordinate System, select MarsInertial.

Under Keplerian State and and Spherical State headings, see the
values of TA and RMAG. You can see that the desired radius of the capture
orbit at apoapsis was achieved successfully:

TA = 180.00000085377 deg

RMAG = 12000.017390989 km



Chapter 11. Finding Eclipses and Station
Contacts

Audience  Beginner
Length 30 minutes

Prerequisites Complete Simple Orbit Transfer

Script File Tut_EventlLocation.script



Objective and Overview

In this tutorial we will modify an existing mission to add eclipse and station
contact detection using the EclipseLocator and ContactLocator resources. We
will start with the completed Simple Orbit Transfer mission and modify it to add
these event reports.

The basic steps of this tutorial are:

Load the Simple Orbit Transfer mission.

Configure GMAT for event location.

Add and configure an EclipseLocator to report eclipses.

Run the mission and analyze the eclipse report.

Add and configure a GroundStation and a ContactLocator to report
contact times.

Run the mission and analyze the contact report.
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Load the Mission

For this tutorial, we will start with a preexisting mission created during the
Simple Orbit Transfer tutorial. You can either complete that tutorial prior to this
one, or you can load the end result directly, as shown below.

1. Open GMAT.

2. Click Open in the toolbar and navigate to the GMAT samples directory.
3. Select Tut_SimpleOrbitTransfer.script and click Open.

4. Click Run (») to run the mission.

You should see the following result in the DefaultOrbitView window.

DefaultOrbitView [o | = |3

EarthMJ2000Eq
“Epoch: 02"Jan 2000'78:32:14.278. %




Configure GMAT for Event Location

GMAT's event location subsystem is based on the NAIF SPICE library, which
uses its own mechanism for configuration of the solar system. Instead of settings
specified in GMAT via CelestialBody resources like Earth and Luna, SPICE uses
"kernel" files that define similar parameters independently. This is discussed in
detail in the Contactl.ocator and Eclipsel.ocator references.

By default, GMAT offers general consistency between both configurations. But,
it's useful to verify that the appropriate parameters are correct, and it's necessary
for precise applications.

Verify SolarSystem Configuration

First, let's verify that the SolarSystem resource is configured properly for both
configurations.

1. On the Resources tab, double-click the SolarSystem folder. This will
display the SolarSystem configuration.
2. Scroll to the end of each input box to see the actual filenames being loaded.

You should see a configuration like this:

@ SolarSystemn - SolarSystem El@
Options
Epherneris Update Interval seconds
Epherneris Source
Ephemeris Filename Mightly\bin\..\data\planetary_ephem\de\leDE1941.405
5PK Kernel ‘bin/../data/planetary_ephem/spk/DE405AIIPlanets.bsp
Leap Second Kernel \Software\ GMAT\Nighthy\bin\..\data\time\naif0011.tls

Planetary Constants Kernel \AT\Nighthy\bin'..\data\planetary_coeff\pck00010.tpd
[] Use TT for Ephemeris



http://naif.jpl.nasa.gov/naif/

Note the following items:

e Ephemeris Source: This is set to use the DE405 planetary ephemeris, the
default in GMAT. If you switch to another ephemeris version, the fields
below will update accordingly.

e Ephemeris Filename: This is the DE-format ephemeris file used for
propagation and parameter calculations in GMAT itself.

e SPK Kernel: This is the SPICE SPK file used for planetary ephemeris for
SPK propagation and for event location. Note that this is set consistent with
Ephemeris Filename (both DE405)

e Leap Second Kernel: This is the SPICE LSK file used to keep track of
leap seconds in the UTC time system for the SPICE subsystem. This is kept
consistent with GMAT's internal leap seconds file (tai-utc.dat) specified in
the GMAT startup file.

¢ Planetary Constants Kernel: This is the SPICE PCK file used for default
configuration for all the default celestial bodies. This file contains planetary
shape and orientation information, similar to but independent from the
settings in GMAT's CelestialBody resources (Earth, Luna, etc.).

These are already configured correctly, so we don't need to make any changes.

Configure CelestialBody Resources

Next, let's configure the Earth model for precise usage with the ContactLocator
resource. By default, the Earth size and shape differ by less than 1 m in
equatorial and polar radii between the two subsystems But we can make them
match exactly by modifying GMAT's Earth properties.

1. On the Resources tab, expand the SolarSystem folder.
2. Double-click Earth to display the Earth configuration.
3. Note the various configuration options available:

e Equatorial Radius and Flattening define the Earth shape for GMAT
itself. PCK Files lists additional SPICE PCK files to load, in addition
to the file shown above in the SolarSystem Planetary Constants
Kernel box. In this case, these files provide high-fidelity Earth



orientation parameters (EOP) data.

¢ On the Orientation tab, Spice Frame Id indicates the Earth-fixed

frame to use for the SPICE subsystem, and FK Files provides

additional FK files that define the frame. In this case, Earth is using
the built-in ITRF93 frame, which is different but very close to GMAT's
EarthFixed coordinate system. See the CoordinateSystem reference

for details on that system.
4. Set Equatorial Radius to 6378.1366.
5. Set Flattening to 0.00335281310845547.

6. Click OK.

These two values were taken from the pck00010.tpc file referenced in the
SolarSystem configuration. Setting them for Earth ensures that the position of
the GroundStation we create later will be referenced to the exact same Earth
definition throughout the mission. Note that the exact position may still differ
between the two based on the different body-fixed frame definition and the

different EOP data sources, but this residual difference is small.

Your Earth panel should look like this after these steps are complete:
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Configure and Run the Eclipse Locator

Now we are ready to search for eclipses in our mission. We do this by creating
an EclipseLocator resource that holds the search configuration. Then we can
perform a search by running the FindEvents command, but GMAT does this
automatically at the end of the mission unless you configure it otherwise. In this
case, we will use the automatic option.

Create and Configure the EclipseLocator

First we create the EclipseLocator:

e On the Resources tab, right-click the Event Locators folder, point to Add,
and click EclipseLocator.

This will result in a new resource called EclipseLocator1.
. EarthFixed H ‘

..... I23) Functior Add r Eclipselocator

ContactLocator
i 1 3

Next, we need to configure the new resource for our mission:
1. Double-click EclipseLocator1 to edit the configuration.

Note the following default settings:

e Spacecraft is set to DefaultSC, the name of our spacecraft.

e OccultingBodies is set to Earth and Luna. These are the two bodies
that will be searched for eclipses.

e EclipseTypes is set to search for all eclipse types (umbra or total,
penumbra or partial, and antumbra or annular)

¢ Run Mode is set to Automatic mode, which means the eclipse search
will be run automatically at the end of the mission.

e Use Entire Interval is checked, so the entire mission time span will be
searched.



e Light-time delay and stellar aberration are both enabled, so eclipse
times will be adjusted appropriately.
e Step size is set to 10 s. This is the minimum-duration eclipse (or gap
between eclipses) that this locator is guaranteed to find.
2. Click OK to accept the default settings. They are fine for our purposes.

The final configuration should match the following screenshot.

P

@‘ Eclipselocator - Eclipselocatorl

Spacecraft DefaultsC bt

Occulting Bodies [7] Earth -
[ Jupiter
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[7] satumn

m

[ 5un
" Uranus i

Eclipse Types [¥] Antumbra
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Filename
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[¥] Write Report

Eclipselocator] ot

(o5 |l

[¥] Use Entire Interval
Epoch Format TAIModlulian

Initial Epoch 21545

Final Epoch 21545138

[¥] Use stellar aberration

Step size 10 5

Help

Run the Mission

Now it's time to run the mission and look at the results.

1. Click Run (») to run the mission.

The eclipse search will take a few seconds. As it progresses, you'll see the
following message in the message window at the bottom of the screen:

Finding events for EclipselLocator EclipselLocatoril




Celestial body properties are provided by SPICE kernels.
2. When the run is complete, click the Output tab to view the available
output.
3. Double-click EclipseLocator1 to view the eclipse report.

You'll see a report that looks similar to this:

- \

@ Eclipselocatorl '_.:. & | =]
Spacecraft: Default3C -
Start Time (UIC) Stop Time (UIC) Duration (3) Occ Body
01 Jan 2000 12:10:05.13& 01 Jan 2000 12:10:15.516& 10.379568336 Earth
01 Jan 2000 12:10:15.516& 01 Jan 2000 12:45:00.414 2084.8983078 Earth
01 Jan 2000 12:45:00.414 01 Jan 2000 12:45:10.&70 10.256495947 Earth

Humber of individual ewvents : 3

Humber of total ewvents 4

Maximum duration (3) - 2105.5343751
Maximum duration at the 1lat eclipse.

Cloze Help

m
(=]

Three eclipses were found, all part of a single "total" eclipse event totalling
about 35 minutes. A total event consists of all adjacent and overlapping portions,
such as penumbra eclipses occuring adjacent to umbra eclipses as in this case.

¢ Click Close to close the report. The report text is still available as
EclipseLocatoril.txt in the GMAT output folder.



Configure and Run the Contact Locator

Finding ground station contact times is a very similar process, but we'll use the
ContactLocator resource instead. First we need to add a GroundStation, then we
can configure the locator to find contact times between it and our spacecraft.

Create and Configure a Ground Station

Let's create a ground station that will be in view from the final geostationary
orbit. By looking at the DefaultGroundTrackPlot window, our spacecraft is
positioned over the Indian Ocean. A ground station in India should be in view.
We can choose the Hyderabad facility, which has the following properties:

e Latitude: 17.0286 deg
e Longitude: 78.1883 deg
e Altitude: 0.541 km
Let's create this ground station in GMAT:

1. First, close all graphics and solver windows, to allow full manipulation of
resources.

2. On the Resources tab, right-click the Ground Station folder and click Add

Ground Station. This will create a new resource called GroundStation1.

Rename GroundStationl1 to Hyderabad.

4. Double-click Hyderabad to edit its configuration.

w

The following values are configured appropriately by default, so we won't
change them:

e Min. Elevation: This is the minimum elevation angle from the ground
station for a valid contact. The current value (7 deg) is appropriate for
this case.

e Central Body: Earth is the only allowed value at this time.

5. In the State Type list, select Spherical. This allows input in latitude,
longitude, and altitude.

6. In the Horizon Reference list, select Ellipsoid.

7. In the Latitude box, type 17.0286.



8. In the Longitude box, type 78.1883.
9. In the Altitude box, type 0.541.
10. Click OK to accept these changes.

The configured GroundStation should look like the following screenshot:

@ Ground5tation - Hyderabad El@
ID Stationld
Min. Elevation: 7 deg
Location

Central Body IEarth

State Type I Spherical - I
Horizon F{eferencelE“ipmid v]
Latitude 17,0286 ey
Longitude 781883 La
Altitude 0541 km
Colors

Orbit Cu:ulur[: Target Cu:ulur[:
D Ok Apph | Cancel | | Help |

If you add the GroundStation to the DefaultGroundTrackPlot, you can see the
location visually:



DefaultGroundTrackPlot o |[= | =

Create and Configure the ContactLocator

Now we can create a ContactLocator that will search for contact times between
our spacecraft and the Hyderabad station.

1. On the Resources tab, right-click the Event Locators folder, point to Add,
and click ContactLocator. This will create ContactLocator1.
2. Double-click ContactLocator1 to edit the configuration.

Many of the default values are identical to the EclipseLocator, so we don't
need to explain them again. There are a couple new properties that we'll
note, but won't change:

e Occulting Bodies: These are celestial bodies that GMAT will search
for occultations of the line of sight between the spacecraft and the
ground station. Since our spacecraft is orbiting the Earth, we don't
need to choose any occulting bodies. Note that Earth is considered
automatically because it is the central body of the ground station.

e Light-time direction: This is the signal sense of the ground station.
You can choose to calculate light-time delay as if the ground station is
transmitting, or if it is receiving.

3. In the Observers list, enable Hyderabad. This will cause GMAT to search
for contacts to this station.
4. In the Step size box, type 600. Since we're not using third-body



occultations, this step size can be increased significantly without missing
events. See the Contactl.ocator documentation for details.

5. Click OK to accept the changes.

When fully configured, the GroundStation1 window will look like the following

screenshot:
@ Contactlocator - Contactlocatorl
Target | DefaultsC |
Occulting Bodies [7] Earth -
[T] Jupiter
[ Luna
[ Mars
[C] Mercury E
[C] Meptune
[ Pluto
[7] saturn
[7] Sun
[ Uranus i
Observers [¥] Hyderabad
Filename ContactLocator] b
Run Mode lAutomatic "I
[¥] Write Report
v v

[¥] Use Entire Interval
Epoch Format

Initial Epoch

Final Epoch

[¥] Use light-time delay
[¥] Use stellar aberration
Light-time direction

Step size

TAIModlulian
21545

21545138

(o5 |l

Transmit
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Run the Mission

Now it's time to run the mission again and look at these new results.

1. Click Run (») to run the mission.

The contact search will take much less time than the eclipse search, since
we're using a larger step size. As it progresses, you'll see the following
message in the message window at the bottom of the screen:

Finding events for ContactLocator ContactLocatorl



Celestial body properties are provided by SPICE kernels.
2. When the run is complete, click the Output tab to view the available
output.
3. Double-click ContactLocator1 to view the report.

You'll see a report that looks similar to this:

@ Contactlocatorl E'@

Target: DefaultsSC

Observer: Hyderabad

Start Time (UIC) Stop Time (UIC) Duration (3)
01 Jan 2000 11:5%:28.000 01 Jan 2000 12:05:58.248 390.24814353
01 Jan 2000 13:34:20.816 02 Jan 2000 18:32:14.157 104273.34069

~
“
_
<

s

Humber of events : 2

Notice that two contact intervals were found: one about 6 minutes long at the
very beginning of the mission (it starts at the Spacecraft's initial epoch), and a
second one about 29 hours long, starting once it gets into geosynchronous orbit
and extending to the end of the simulation.

e Click Close to close the report. The report text is still available as
ContactLocatoril.txt in the GMAT output folder.



Further Exercises

To expand on this tutorial, try the following exercise:

e For a mission like this, you probably will want ground station coverage
during both maneuvers. Try the following steps to make sure the coverage
is adequate:

(¢]

Change the colors of the Propagate commands, so you can see
visually where the burns are located.

Add GroundStation resources near the locations of the burns on the
ground track.

Confirm the burn epochs in the Command Summary for each
Maneuver command.

Confirm in the contact report that these times occur during a contact
interval.

Check the eclipse report, too: you may not want to perform a
maneuver during an eclipse!

This tutorial shows you the basics of adding eclipse and station contact location
to your mission. These resources have a lot of power, and there are many
different ways to use them. Consult the Contactl.ocator and Eclipsel.ocator
documentation for details.




Chapter 12. Electric Propulsion
Audience  Beginner
Length 15 minutes

Prerequisites Complete Simulating an Orbit

Script File Tut _ElectricPropulsionModelling.script



Objective and Overview

In this tutorial, we will use GMAT to perform a finite burn for a spacecraft using
an electric propulsion system. Note that targeting and design using electric
propulsion is identical to chemical propulsion and we refer you to the tutorial
named Iarget Finite Burn to Raise Apogee for targeting configuration. This
tutorial focuses only on configuration and modelling using electric propulsion
systems.

The basic steps of this tutorial are:

1. Create and configure the Spacecraft hardware and FiniteBurn Resources
2. Configure the Mission Sequence. To do this, we will
a. Create Begin/End FiniteBurn commands with default settings.
b. Create a Propagate command to propagate while applying thrust from
the electric propulsion system.
3. Run the mission



Create and Configure Spacecraft Hardware and
Finite Burn

For this tutorial, you’ll need GMAT open with the default mission loaded. To
load the default mission, click New Mission (¢ ) or start a new GMAT session.
We will use the default configurations for the spacecraft (DefaultSC) and the
propagator (DefaultProp). DefaultSC is configured by default to a near-circular
orbit, and DefaultProp is configured to use Earth as the central body with a
nonspherical gravity model of degree and order 4. You may want to open the
dialog boxes for these objects and inspect them more closely as we will leave
them at their default settings.

Create a Thruster, Fuel Tank, and Solar Power System

To model thrust and fuel use associated with a finite burn, we must create an
ElectricThruster, an ElectricTank, a power system, and then attach the newly
created ElectricTank to the ElectricThruster, and attach all hardware to the
spacecraft. We'll start by creating the hardware objects.

1. In the Resources tree, right-click on the Hardware folder, point to Add,
and click ElectricThruster. A Resource named ElectricThrusterl will be
created.

2. In the Resources tree, right-click on the Hardware folder, point to Add,
and click ElectricTank. A Resource named ElectricTank1 will be created.

3. In the Resources tree, right-click on the Hardware folder, point to Add,
and click SolarPowerSystem. A Resource named SolarPowerSystem1
will be created.

Configure the Hardware

Now we'll configure the hardware models for this exercise.

Double-click ElectricThruster1 to edit its properties.

In the Mass Change group box, check Decrement Mass.

In the Mass Change group box, select ElectricTank1 for the Tank.
In the Thrust Config group box, select ConstantThrustAndIsp for
ThrustModel and set ConstantThrust to 5.0 N.

A=



Figure 12.1, “ElectricThruster1 Configuration” below shows the
ElectricThruster1 configuration that we will use.

Figure 12.1. ElectricThrusterl Configuration
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@ ElectricThruster - ElectricThrusterl o | =@ | =
Coordinate System
Coordinate System |Lm:a| = |
Origin |Earth v
Axes o v
Thrust Vector
ThrustDirectionl 1
ThrustDirection2 0
ThrustDirection3 0
Duty Cycle 1
Thrust Scale Factor 1
Mass Change
Decrement Mass
Tank ElectricTankl b
Gravitational Accel 981 mys"2
Thrust Config.
Thrust Model ConstantThrustAndlsp  ~
Minimum Usable Power 0.638 kW
Maximum Usable Power 7.266 kW
Fixed Efficiency 0.7
Isp 4200 5
Constant Thrust 5 N
Configure Polynomials




We will use the default tank settings. Figure 12.2, “ElectricTank1
Configuration” shows the finished ElectricTank1 configuration.

Figure 12.2. ElectricTank1 Configuration
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@ElectricTank—EIectricTankl % | || [=] || x|

Properties

"] Allow Negative Fuel Mass
Fuel Mass 758 kg

1. Double-click SolarPowerSystem1 to edit its properties.
2. In the General group box, click the Select button next to ShadowBodies.
3. Remove Earth from the ShadowBodies list.

Figure 12.3, “SolarPowerSystem1 Configuration” shows the finished
SolarPowerSystem1 configuration.

Figure 12.3. SolarPowerSystem1 Configuration
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@ SolarPowerSystem - SolarPowerSystem1 %
General Coefficients
Epoch Format | yTCGregorian v Bus Coeffl
Initial Epoch 01 Jan 2000 11:59:28.00C Bus Coeff2
Initial Max Power 12 kw Bus Coeff3
Decay Rate 5 percent/year Solar Coeffl
Margin 5 percent Solar Coeff2
Shadow Model  [pyalCone = ‘ Solar Coeff3
Shadow Bodies Solar Coeff4
Solar Coeff5
D Apply Cancel

03

0

0
132077
-0.10848
-0.11665
0.10843
-0.01279

kW
kW*AU
KW=AUA2

Help

Attach Hardware to the Spacecraft

1. In the Resources tree, double-click DefaultSC to edit its properties.

2. Select the Tanks tab. In the Available Tanks column, select

ElectricTank1. Then click the right arrow button to add ElectricTank1 to

the SelectedTanks list. Click Apply.

3. Select the Actuators tab. In the Available Thrusters column, select

ElectricThrusterl. Then click the right arrow button to add
ElectricThruster1 to the SelectedThrusters list. Click OK.
4. Select the PowerSystem tab. In the PowerSystem tab, select

SolarPowerSystem1. Click OK.

Figure 12.4. Attach ElectricTank1 to DefaultSC
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Figure 12.5. Attach ElectricThrusterl to DefaultSC
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Figure 12.6. Attach SolarPowerSystem1 to DefaultSC
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Create the Finite Burn Maneuver

We’ll need a single FiniteBurn Resource for this tutorial.

1. In the Resources tree, right-click the Burns folder and add a FiniteBurn. A



Resource named FiniteBurn1 will be created.

. Double-click FiniteBurnl1 to edit its properties.

. Use the menu to the right of the Thruster field to select ElectricThrusterl
as the thruster associated with FiniteBurnl. Click OK.

Figure 12.7. Creation of FiniteBurn Resource FiniteBurnl

&) FiniteBurn - FiniteBurnl o B ||
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Configure the Mission Sequence

Now we will configure the mission sequence to apply a finite maneuver using
electric propulsion for a two day propagation. When we're done, the mission
sequence will appear as shown below.

Figure 12.8. Final Mission Sequence

= L Start the Maneuver
%, Propagate Two Days

Create the Commands

1. In the Mission Tree, right click on Propagatel, select Rename, and enter
Propagate Two Days.

2. Right click on the command named Propagate Two Days, select Insert
Before, then select BeginFiniteBurn.

3. Right click on the command named Propagate Two Days, select Insert
After, then select EndFiniteBurn.

4. Rename the command named BeginFiniteBurnl to StartTheManeuver.

5. Rename the command named EndFiniteBurnl to EndTheManeuver.

Note that for more complex analysis that has multiple FiniteBurn objects, you
will need to configure the BeginFiniteBurn and EndFiniteBurn commands to
select the desired FiniteBurn Resource. As there is only one FiniteBurn
Resource in this example, the system automatically selected the correct
FiniteBurn Resource.

Configure the Propagate Command

Configure the Propagate Two Days command to propagate for
DefaultSC.ElapsedDays = 2.0

Figure 12.9. Prop To Perigee Command Configuration
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Run the Mission

Before running the mission, click Save to save the mission to a file of your
choice. Now click Run. As the mission runs, you will see the orbit spiral way
from Earth. Note we exaggerated the thrust level so that an appreciable change

in the orbit occurs in two days.

Figure 12.10. 3D View of Finite Electric Maneuver
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Chapter 13. Simulate DSN Range and Doppler
Data

Audience Intermediate level
Length 40 minutes

Prerequisites Basic Mission Design Tutorials

Tut_Simulate_DSN_Range_and_Doppler_Data.script
Script Files
Tut_Simulate_DSN_Range_and_Doppler_Data_3_weeks.script



Objective and Overview

Note

GMAT currently implements a number of different data types
for orbit determination. Please refer to Tracking Data Types for
OD for details on all the measurement types currently
supported by GMAT. The measurements being considered here
are DSN two way range and DSN two way Doppler.

In this tutorial, we will use GMAT to generate simulated DSN range and
Doppler measurement data for a sample spacecraft in orbit about the Sun. The
spacecraft in this tutorial is in an Earth “drift away” type orbit about 1 AU away
from the Sun and almost 300 million km away from the Earth.

The basic steps of this tutorial are:

1. Create and configure the spacecraft, spacecraft transponder, and related
parameters

Create and configure the Ground Station and related parameters

Define the types of measurements to be simulated

Create and configure Force model and propagator

Create and configure Simulator object

Run the mission and analyze the results

Create a realistic GMAT Measurement Data (GMD) file

NoUuhkwWN

Note that this tutorial, unlike most of the mission design tutorials, will be
entirely script based. This is because most of the resources and commands
related to navigation are not implemented in the GUI and are only available via
the script interface.

As you go through the tutorial below, it is recommended that you paste the script
segments into GMAT as you go along. After each paste into GMAT, you should
perform a syntax check by hitting the Save, Sync button ( =~ ). To avoid syntax
errors, where needed, don’t forget to add the following command to the last line
of the script segment you are checking.



BeginMissionSequence

We note that in addition to the material presented here, you should also look at
the individual Help resources for all the objects and commands we create and
use here. For example, Spacecraft, Transponder, Transmitter,
GroundStation, ErrorModel, TrackingFileSet, RunSimulator, etc all have
their own Help pages.



Create and configure the spacecraft, spacecraft
transponder, and related parameters

For this tutorial, you’ll need GMAT open, with a new empty script open. To
create a new script, click New Script, ()

Create a satellite and set its epoch and Cartesian
coordinates

Since this is a Sun-orbiting spacecraft, we choose to represent the orbit in a Sun-
centered coordinate frame which we define using the scripting below.

% Create the Sun-centered J2000 frame.

Create CoordinateSystem SunMJ2000Eq;

SunMJ2000Eq.0rigin = Sun;

SunMJ2000Eq.Axes = MJ2000Eq; %Earth mean equator axes

Next, we create a new spacecraft, Sat, and set its epoch and Cartesian
coordinates.

Create Spacecraft Sat;

Sat.DateFormat = UTCGregorian;
Sat.CoordinateSystem = SunMJ2000E(Q;
Sat.DisplayStateType = Cartesian;
Sat.Epoch = 19 Aug 2015 00:00:00.000;
Sat.X = -126544968
Sat.Y = 61978514
Sat.Zz = 24133221
Sat.VX = -13.789
Sat.Vvy = -24.673
Sat.VvZz = -10.662
Sat.Id = 11111;

Note that, in addition to setting Sat’s coordinates, we also assigned it an ID
number. This is the number that will be written to the GMAT Measurement Data
(GMD) file that we will discuss later.

Create a Transponder object and attach it to our spacecraft



To simulate navigation measurements for a given spacecraft, GMAT requires
that a Transponder object, which receives the ground station uplink signal and
re-transmits it, typically, to a ground station, be attached to the spacecraft.
Below, we create the Transponder object and attach it to our spacecraft.

Create Antenna HGA;

Create Transponder SatTransponder;

SatTransponder.PrimaryAntenna = HGA;
SatTransponder .HardwareDelay = 1le-06; %seconds
SatTransponder.TurnAroundRatio = '880/749';

Sat.AddHardware

{SatTransponder, HGA};

After we create the Transponder object, there are three fields,
PrimaryAntenna, HardwareDelay, and TurnAroundRatio that must be set.

The PrimaryAntenna is the antenna that the spacecraft transponder,
SatTransponder, uses to receive and retransmit RF signals. In the example
above, we set this field to HGA which is an Antenna object we have created.
Currently the Antenna resource has no function but in a future release, it may
have a function. HardwareDelay, the transponder signal delay in seconds, is set
to one micro-second. We set TurnAroundRatio, which is the ratio of the
retransmitted to the input signal, to '880/749.' See the FRC-21_RunSimulator
Help and Appendix A — Determination of Measurement Noise Values for a
discussion on how GMAT uses this input field. As described in the Help, if our
DSN data does not use a ramp table, this turn around ratio is used directly to
calculate the Doppler measurements.

Note that in the last script command above, we attach our newly created
Transponder and its related Antenna object to our spacecraft, Sat.



Create and configure the Ground Station and
related parameters

Create Ground Station Transmitter, Receiver, and Antenna
objects

Before we create the GroundStation object itself, as shown below, we first
create the Transmitter, Receiver, and Antenna objects that must be associated
with any GroundStation.

% Ground Station electronics.
Create Transmitter DSNTransmitter;
Create Receiver DSNReceiver;
Create Antenna DSNAntenna;

DSNTransmitter.PrimaryAntenna
DSNReceiver.PrimaryAntenna
DSNTransmitter.Frequency

DSNAntenna,;
DSNAntenna;
7200, %MHZz

In the script segment above, we first created Transmitter, Receiver, and
Antenna objects. The GMAT script line DSNTransmitter.PrimaryAntenna =
DSNAntenna, sets the main antenna that the Transmitter object will be using.
Likewise, the DSNReceiver.PrimaryAntenna = DSNAntenna script line sets the
main antenna that the Receiver object will be using. As previously mentioned,
the Antenna object currently has no function, but we include it here both
because GMAT requires it and for completeness since the Antenna resource
may have a function in a future GMAT release. Finally, we set the transmitter
frequency in the last GMAT script line above. See the RunSimulator Help for a
complete description of how this input frequency is used. As described in the
Help, since in this example we will not be using a ramp table, this input
frequency will be used to calculate the simulated value of the range and Doppler
observations. In addition, this input frequency will also be output to the range
data file created by the RunSimulator command.

Create Ground Station

Below, we create and configure a GroundStation object.



% Create ground station and associated error models
Create GroundStation CAN;

CAN.CentralBody Earth;
CAN.StateType Cartesian;
CAN.HorizonReference Ellipsoid;

CAN.Locationl
CAN.Location2
CAN.Location3

-4461.083514
2682.281745
-3674.570392

CAN. Id = 22222,
CAN.MinimumElevationAngle = 7.0;
CAN.IonosphereModel 'IRI2007';

CAN.TroposphereModel '"HopfieldSaastamoinen';

CAN.AddHardware

{DSNTransmitter, DSNAntenna,
DSNReceiver};

The script segment above is broken into five sections. In the first section, we
create our GroundStation object and we set our Earth-Centered Fixed Cartesian
coordinates. In the second section, we set the ID of the ground station that will
output to the GMD file created by the RunSimulator command. In the third
section, we set the minimum elevation angle to 7 degrees. Below this ground
station to spacecraft elevation angle, no simulated data will be created. In the
fourth section, we specify which troposphere and ionosphere model we wish to
use to model RF signal atmospheric refraction effects. Finally, in the fifth
section, we attached three pieces of previously created required hardware to our
ground station, a transmitter, a receiver, and an antenna.

Create Ground Station Error Models

It is well known that all measurement types have random noise and/or biases
associated with them. For GMAT, these affects are modelled using ground
station error models. Since we have already created the GroundStation object
and its related hardware, we now create the ground station error models. Since
we wish to simulate both range and Doppler data, we need to create two error
models as shown below, one for range measurements and one for Doppler
measurements.

% Create Ground station error models
Create ErrorModel DSNrange;



DSNrange.Type 'DSN_SeqRange';

DSNrange.NoiseSigma = 10.63;
DSNrange.Bias = 0.0,
Create ErrorModel DSNdoppler;
DSNdoppler.Type = 'DSN_TCP';
DSNdoppler.NoiseSigma = 0.0282;
DSNdoppler.Bias = 0.0,

CAN.ErrorModels {DSNrange, DSNdoppler};

The script segment above is broken into three sections. The first section defines
an ErrorModel named DSNrange. The error model Type is DSN_SeqRange
which indicates that it is an error model for DSN sequential range
measurements. The 1 sigma standard deviation of the Gaussian white noise is set
to 10.63 Range Units (RU) and the measurement bias is set to 0 RU.

The second section above defines an ErrorModel named DSNdoppler. The
error model Type is DSN_TCP which indicates that it is an error model for DSN
total count phase-derived Doppler measurements. The 1 sigma standard
deviation of the Gaussian white noise is set to 0.0282 Hz and the measurement
bias is set to 0 Hz.

The third section above attaches the two ErrorModel resources we have just
created to the CAN GroundStation. Note that in GMAT, the measurement noise
or bias is defined on a per ground station basis. Thus, any range measurement
error involving the CAN GroundStation is defined by the DSNRange
ErrorModel and any Doppler measurement error involving the CAN
GroundStation is defined by the DSNdoppler ErrorModel. Note that since
GMAT currently only models two way measurements where the transmitting and
receiving ground stations are the same, we do not have to consider the case
where the transmitting and receiving ground stations are different. Suppose we
were to add an additional GroundStation to this simulation. The measurement
error for observations involving this new GroundStation would be defined by
the ErrorModel resources attached to it.

See Appendix A — Determination of Measurement Noise Values for a discussion
of how we determined the values for NoiseSigma for the two ErrorModel

resources we created.



Define the types of measurements to be
simulated

Now we will create and configure a TrackingFileSet resource. This resource
defines the type of data to be simulated, the ground stations that will be used,
and the file name of the output GMD file which will contain the simulated data.
In addition, the TrackingFileSet resource will define needed simulation
parameters for the various data types.

Create TrackingFileSet DSNsimData;
DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig
DSNsimData.FileName

{{CAN, Sat, CAN}, 'DSN_SeqRang
{{CAN, Sat, CAN}, 'DSN_TCP'};

{'Sat_dsn_range_and_doppler_measurements.gmd'};

DSNsimData.UselLightTi = true;
DSNsimData.UseRelativityCorrection = true;
DSNsimData.UseETminusTAI = true;
DSNsimData.SimDopplerCountInterval 10.0;

DSNsimData.SimRangeModuloConstant 3.3554432e+07;

The script lines above are broken into three sections. In the first section, the
resource name, DSNsimData, is declared, the data types are defined, and the
output file name is specified. AddTrackingConfig is the field that is used to
define the data types. The first AddTrackingConfig line tells GMAT to simulate
DSN range two way measurements for the CAN to Sat to CAN measurement
strand. The second AddTrackingConfig line tells GMAT to simulate DSN
Doppler two way measurements for the CAN to Sat to CAN measurement
strand.

The second section above sets some simulation parameters that apply to both the
range and Doppler measurements. We set UseLightTime to True in order to
generate realistic measurements where GMAT takes into account the finite speed
of light. The last two parameters in this section, UseRelativityCorrection and
UseETminusTAI, are set to True so that general relativistic corrections, as
described in Moyer [2000], are applied to the light time equations.

The third section above sets simulation parameters that apply to a specific



measurement type. SimDopplerCountInterval applies only to Doppler
measurements and SimRangeModuloConstant applies only to range
measurements. We note that the “Sim” in the field names is used to indicate that
these fields only are applicable when GMAT is in simulation mode (i.e., when
using the RunSimulator command) data and not when GMAT is in estimation
mode (i.e., when using the RunEstimator command).
SimDopplerCountInterval, the Doppler Count Interval, is set to 10 seconds and
SimRangeModuloConstant, the maximum possible range value, is set to
33554432. See the RunSimulator Help and Appendix A — Determination of
Measurement Noise Values for a description of how these parameters are used to
calculate the measurement values.



Create and configure Force model and
propagator

We now create and configure the force model and propagator that will be used
for the simulation. For this deep space drift away orbit, we naturally choose the
Sun as our central body. Since we are far away from all the planets, we use point
mass gravity models and we include the effects of the Sun, Earth, Moon, and
most of the other planets. In addition, we model Solar Radiation Pressure (SRP)
affects and we include the affect of general relativity on the dynamics. The script
segment accomplishing this is shown below.

Create ForceModel Fm;
Create Propagator Prop;
Fm.CentralBody
Fm.PointMasses

Sun;
{Sun, Earth, Luna, Mars, Saturn,
Uranus, Mercury, Venus, Jupiter};

Fm.SRP = 0n;
Fm.RelativisticCorrection = 0On;
Fm.ErrorControl = None;
Prop.FM = Fm;
Prop.MinStep =0,



Create and configure Simulator object

As shown below, we create and configure the Simulator object used to define
our simulation.

Create Simulator Sim;
Sim.AddData
Sim.EpochFormat
Sim.InitialEpoch
Sim.FinalEpoch

{DSNsimData};
UTCGregorian;
'19 Aug 2015 00:00:00.000';
'19 Aug 2015 00:12:00.000';

Sim.MeasurementTimeStep 600;
Sim.Propagator Prop;
Sim.AddNoise off;

In the first script line above, we create a Simulator object, Sim. The next field
set is AddData which is used to specify which TrackingFileSet should be used.
Recall that the TrackingFileSet specifies the type of data to be simulated and
the file name specifying where to store the data. The TrackingFileSet,
DSNsimData, that we created in the Define the types of measurements to be
simulated section, specified that we wanted to simulate two way DSN range and
Doppler data that involved the CAN GroundStation.

The next three script lines, which set the EpochFormat, InitialEpoch, and
FinalEpoch fields, specify the time period of the simulation. Here, we choose a
short 12 minute duration.

The next script line sets the MeasurementTimeStep field which specifies the
requested time between measurements. We choose a value of 10 minutes. This
means that our data file will contain a maximum of two range measurements and
two Doppler measurements.

The next script line sets the Propagator field which specifies which Propagator
object should be used. We set this field to the Prop Propagator object which we
created in the Create and configure Force model and propagator section.

Finally, in the last line of the script segment, we set the AddNoise field which
specifies whether or not we want to add noise to our simulated measurements.
The noise that can be added is defined by the ErrorModel objects that we

created in the Create and configure the Ground Station and related parameters




section. As discussed in the Create and configure the Ground Station and related
parameters section and Appendix A — Determination of Measurement Noise
Values, the noise added to the range measurements would be Gaussian with a
one sigma value of 10.63 Range Units and the noise added to the Doppler
measurements would be Gaussian with a one sigma value of 0.0282 Hz. For this
simulation, we choose not to add noise.




Run the mission and analyze the results

The script segment used to run the mission is shown below.
BeginMissionSequence

RunSimulator Sim

The first script line, BeginMissionSequence, is a required command which
indicates that the “Command” section of the GMAT script has begun. The
second line of the script issues the RunSimulator command with the Sim
Simulator resource, defined in the Create and configure Simulator object section,
as an argument. This tells GMAT to perform the simulation specified by the Sim
resource.

We have now completed all of our script segments. See the file, Simulate DSN
Range and Doppler Data.script, for a listing of the entire script. We are now
ready to run the script. Hit the Save,Sync,Run button, (=~=). Because we are
only simulating a small amount of data, the script should finish execution in
about one second.

Let’s take a look at the output created. The file created,
Sat_dsn_range_and_doppler_measurements.gmd, was specified in the
TrackingFileSet resource, DSNsimData, that we created in the Define the types
of measurements to be simulated section. The default directory, if none is
specified, is the GMAT ‘output’ directory. Let’s analyze the contents of this
“GMAT Measurement Data” or GMD file as shown below.

% GMAT Internal Measurement Data File

27253.500405092593 DSN_SegRange 9004 22222 11111 26016945.24902344 2
27253.500405092593 DSN_TCP 90606 22222 11111 2 10 -8459336323.893498
27253.507349537038 DSN_SegRange 9004 22222 11111 21728172.10375977 2
27253.507349537038 DSN_TCP 9006 22222 11111 2 10 -8459335611.284097

The first line of the file is a comment line indicating that this is a file containing
measurement data stored in GMAT’s internal format. There are 4 lines of data
representing range data at two successive times and Doppler data at two
successive times. As we expected, we have no more than 4 total measurements.
Refer to the TrackingFileSet Help for a description of the range and Doppler



GMD file format.

We now analyze the first line of data which represents a DSN two way range
measurement at the start of the simulation at '19 Aug 2015 00:00:00.000 UTCG’
which corresponds to the output TAI modified Julian Day of
27253.500405092593 TAIMJD.

The second and third fields, DSN_SeqRange and 9004, are just internal GMAT
codes indicating the use of DSN range (Trk 2-34 type 7) data.

The 4th field, 22222, is the Downlink station ID. This is the ID we gave the
CAN GroundStation object that we created in the Create and configure the
Ground Station and related parameters section. The 5th field, 11111, is the
spacecraft ID. This is the ID we gave the Sat Spacecraft object that we created
in the Create and configure the spacecraft, spacecraft transponder, and related

parameters section.

The 6th field, 26016945.24902344, is the actual DSN range observation value in
RU.

The 7th field, 2, is an integer which represents the Uplink Band of the uplink
GroundStation, CAN. The designation, 2, represents X-band. See the
RunSimulator Help for a detailed discussion of how GMAT determines what
value should be written here. As described in the Help, since we are not using a
ramp table, GMAT determines the Uplink Band by looking at the transmit
frequency of the Transmitter object attached to the CAN ground station. GMAT
knows that the 7200 MHz value that we assigned to CAN’s Transmitter
resource, DSNTransmitter, corresponds to an X-band frequency.

The 8th field, 7.2e+0009, is the transmit frequency of CAN at the time of the
measurement. Since we are not using a ramp table, this value will be constant for
all measurements and it is given by the value of the frequency of the
Transmitter object, DSNTransmitter, that we attached to the CAN ground
station. Recall the following script segment, DSNTransmitter.Frequency =
7200; %MHz, from the Create and configure the Ground Station and related

parameters section.

The 9th field, 3.3554432e+007, represents the integer range modulo number that
helps define the DSN range measurement. This is the value that we set when we
created and configured the TrackingFileSet DSNsimData object in the Define



the types of measurements to be simulated section. Recall the following script
command,

DSNsimData.SimRangeModuloConstant = 3.3554432e+07;

This range modulo number is discussed in Appendix A — Determination of
Measurement Noise Values and is defined as M, the length of the ranging code in
RU.

We now analyze the second line of data which represents a DSN two way
Doppler measurement at the start of the simulation at '19 Aug 2015 00:00:00.000
UTCG’ which corresponds to the output TAI modified Julian Day of
27253.500405092593 TAIMJD.

The second and third fields, Doppler and 9006, are just internal GMAT codes
indicating the use of DSN Doppler (derived from two successive Trk 2-34 type
17 Total Count Phase measurements) data.

The 4th field, 22222, is the Downlink station ID. This is the ID we gave the
CAN GroundStation object that we created in the Create and configure the
Ground Station and related parameters section. The 5th field, 11111, is the
spacecraft ID. This is the ID we gave the Sat Spacecraft object that we created
in the Create and configure the spacecraft, spacecraft transponder, and related

parameters section.

The 6th field, 2, is an integer which represents the Uplink Band of the uplink
GroundStation, CAN. As we mentioned when discussing the range
measurement, the designation, 2, represents X-band.

The 7th field, 10, is the Doppler Count Interval (DCI) used to help define the
Doppler measurement. This is the value that we set when we created and
configured the TrackingFileSet DSNsimData object in the Define the types of
measurements to be simulated section. Recall the following script command,

DSNsimData.SimDopplerCountInterval = 10.0;

The DCI is also discussed in Appendix A — Determination of Measurement Noise
Values.

The 8th field, -7819057474.22393610, is the actual DSN Doppler observation



value in Hz.

The third line of data represents the second DSN two way range measurement at
'19 Aug 2015 00:10:00.000 UTCG’ which corresponds to the output TAI
modified Julian Day time of 27253.507349537038 TAIMJD. The fourth line of
data represents the second DSN two way Doppler measurement at '19 Aug 2015
00:10:00.000 UTCG.’



Create a more realistic GMAT Measurement Data
(GMD)

We have run a short simple simulation and generated a sample GMD file. Our
next goal is to generate a realistic GMD file that a different script can read in and
generate an orbit determination solution. To add more realism, we will do the
following:

e Generate data from additional ground stations
e Add the use of a ramp table

e Perform a longer simulation

¢ Add measurement noise

In order to generate measurement data from additional ground stations, we must
first create and configure additional GroundStation objects. Below, we create
and configure two new ground stations, GDS and MAD.

Create GroundStation GDS;

GDS.CentralBody Earth;
GDS.StateType Cartesian;
GDS.HorizonReference Ellipsoid;

GDS.Locationl
GDS.Location2
GDS.Location3

-2353.621251;
-4641.341542;
3677.052370;

GDS.Id '33333"';

GDS.AddHardware {DSNTransmitter, DSNAntenna, DSNReceiver
GDS.MinimumElevationAngle 7.0;

GDS.IonosphereModel 'IRI2007';

GDS.TroposphereModel '"HopfieldSaastamoinen';

Create GroundStation MAD;

MAD.CentralBody Earth;
MAD.StateType Cartesian;
MAD.HorizonReference Ellipsoid;

MAD.Locationl
MAD.Location2
MAD.Location3
MAD. Id

4849.519988;
-0360.641653;
4114.504590;
'44444"



MAD.AddHardware
MAD.MinimumElevationAngle
MAD.IonosphereModel
MAD.TroposphereModel

{DSNTransmitter, DSNAntenna, DSNReceiver
7.0;

'IRI2007';

'"HopfieldSaastamoinen';

Now that we have defined two additional ground stations, we must specify the
measurement noise associated with these new ground stations. This can be done
using the previously created ErrorModel resources as shown below.

GDS.ErrorModels
MAD.ErrorModels

{DSNrange, DSNdoppler};
{DSNrange, DSNdoppler};

Next, we must add the corresponding two way range and Doppler measurements
associated with our new ground stations to our TrackingFileSet object,
DSNsimData, as shown below.

DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig

{{GDS, Sat, GDS}, 'DSN_SeqRange'};
{{GDS, Sat, GDS}, 'DSN_TCP'};

DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig

{{MAD, Sat, MAD}, 'DSN_SeqRange'};
{{MAD, Sat, MAD}, 'DSN_TCP'};

We now create our ramp table that many but not all missions use. A ramp table is
a table that allows GMAT to calculate the transmit frequency of all the ground
stations involved in our simulation. Recall that GMAT needs to know the
transmit frequency, as a function of time, in order to calculate the value of the
observations. The term “ramp” is used because the transmit frequency increases
linearly with time and a graph of transmit frequency vs. time would typically
show a ramp. A mission that does not use a ramp table simply uses a constant
transmit frequency for a given ground station.

To modify our script to accommodate the use of a ramp table, we modify our
TrackingFileSet object, DSNsimData, as shown below.

DSNsimData.RampTable = ...
{'../output/Simulate DSN Range and Doppler Data 3 weeks.rmp'};

We must now create a file with the name shown above in the GMAT ‘output’
directory. Refer to the TrackingFileSet Help for a description of the ramp table
file format. In order for GMAT to determine the transmit frequencies of all the
ground stations, the ramp table must have at least one row of data for every
ground station providing measurement data. The contents of our ramp table is



shown below.

27252 22222 11111 2 1 7.2e09 0.2
27252 33333 11111 2 1 7.3e09 0.3
27252 44444 11111 2 1 7.4e09 0.4

Each row of data above is called a ramp record. Let’s analyze the first ramp
record. The first field, 27252, is the TAIMJD date of the ramp record.

The second field, 22222, is the ground station ID of the GroundStation object
whose frequency is being specified. We note that the ID 22222 corresponds to

the CAN ground station. The third field, 11111, is the ID of the spacecraft that

the CAN ground station is transmitting to. We recognize 11111 as the ID of the
Sat spacecraft.

The 4th field, 2, is an integer representing the uplink band of the transmission.
The integer 2 represents X-band. The 5th field, 1, is an integer describing the
ramp type. The integer 1 represents the start of a new ramp.

The 6th field, 7.2e9, is the transmission frequency in Hz, from CAN to Sat at the
time given by the first field. The 7th input is the ramp rate in Hz/s.

We now describe how GMAT uses the ramp record to determine the transmit
frequency of CAN to Sat at a given time. We let TAIMJD be the time associated
with the ramp record. Then GMAT will calculate the value of the transmit
frequency at t = 27252.5 TAIMJD as shown below.

f(t)=f(to)+RampRate*86400*(t—-to)
where

f (t o) = Transmit Frequency at the start of the ramp record
f (t) = Transmit Frequency at a later time, t >t o

Note that, in the typical case where there are numerous ramp records, it is
assumed that t o <t is chosen as close to time t as possible. For our case above,
the transmit frequency from CAN to Sat at time t is

f(t)=72e9+0.2*86400 * (27252.5 — 27252 ) = 7200008640 Hz



The second and third rows of the ramp table allow GMAT to calculate the
transmit frequency from GDS to Sat and MAD to Sat, respectively. We now
create a file, Simulate DSN Range and Doppler Data Realistic GMD.rmp,
with the contents shown above and place it in GMAT’s ‘output’ folder.

We make one final comment about the use of a ramp table. We note that when a
ramp table is used, GMAT uses the various script inputs (e.g.,
SatTransponder.TurnAroundRatio and DSNTransmitter.Frequency)
differently. See the RunSimulator Help for details.

We only have two steps remaining in order to create a script that generates more
realistic measurement data. The first step is to increase the simulation time from
10 minutes to the more realistic 3 weeks worth of data that is typically needed to
generate an orbit determination solution for a spacecraft in this type of deep
space orbit. The second step is to turn on the measurement noise. These two
steps are accomplished by making the following changes to our TrackingFileSet
object, DSNsimData.

Sim.FinalEpoch
Sim.AddNoise
Sim.MeasurementTimeStep

'09 Sep 2015 00:00:00.000';
On;
3600,

Note that above, in addition to implementing the two needed steps, we also
changed the measurement time step from 600 seconds to 3600 seconds. This is
not a realistic time step as many missions would use a time step that might even
be less than 600 seconds. We used this larger time step for tutorial purposes only
so that the script would not take too long to run.

A complete script, containing all the changes we have made in the Create a more
realistic GMAT Measurement Data (GMD) section, is contained in the file,
Tut_Simulate_DSN_Range_and_Doppler_Data_3_weeks.script. Note that in
this file, in addition to the changes above, we have also changed the GMD
output file name to Simulate DSN Range and Doppler Data 3 weeks.gmd.

Now run the script which should take approximately 1-2 minutes since we are
generating much more data than previously. We will use the GMD file we have
created here as input to an estimation script we will build in the next tutorial,
Orbit Estimation using DSN Range and Doppler Data.
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Appendix A — Determination of Measurement
Noise Values

We now say a few words on how we determined the values for NoiseSigma for
the two ErrorModel resources we created. The computed value of the DSN
range measurement is given by (Moyer [2000]):

Cft1t3fT(t)dt, modM (RU)
where

t 1,t3 = Transmission and Reception epoch, respectively

f T = Ground Station transmit frequency

C = transmitter dependent constant (221/1498 for X-band and 1/2 for S-Band)
M = length of the ranging code in RU

We note that M as defined above is equal to SimRangeModuloConstant which
was discussed in the Define the types of measurements to be simulated section.

By manipulation of the equation above, we can find a relationship between RU
and meters, as shown below.

Cd(inmeters)cf T = d(in RU)
where

f T= [t1t3fT(t)dt(t3-tl)=

average transmit frequency (between transmit and receive),
c=speed of light in m/s

d= round trip distance

If we assume the round trip distance is 1 meter, we have
dinRU)=Cf Tc

Recall that in the Create and configure the Ground Station and related
parameters section, we set DSNTransmitter.Frequency = 7200; This
corresponds to an X-band frequency (so, C=221/1498) of 7200e6 Hz. For the




case where a ramp table is not used, we have a constant frequency, f T=fT,
and thus

d(in RU)= 221 1498 7200 e 6 299792458 =3 .543172 RU

For this example, for DSN range measurements, we want to use a 1 sigma noise
bias of 3 meters (Schanzle [1995]). From the calculations above, we determine
that this corresponds to 3*3.543172 ~ 10.63 RU.

We now turn our attention to the DSN Doppler measurement. The DSN Doppler
measurement that GMAT uses is actually a derived observation, O, calculated
using two successive Total Count Phase, ¢ , (type 17 Trk 2-34 record)
measurements as shown below.

O=-[0(t3e)-0(t3s)]t3e—-t3s (Hz)
where

t1s,t1e=start and end of transmission interval
t3s,t3 e =start and end of reception interval
¢ = Total Count Phase (type 17 Trk 2-34 record)

In the absence of measurement noise, one can show (Moyer [2000]), that the
Observed value (O) above equals the Computed (C) value below.

C=-M2(t3e-t3s)ftlstlefT(tl)dtl =-M2(tle—-tls)D
CIf T (Hz)

where

t1s,t1e=start and end of transmission interval

f T = transmit frequency

M 2 = Transponder turn around ratio (typically, 240/221 for S-

band and 880/749 for X-band)

DCI= (t3e—-1t3s)= Doppler Count Interval

f T=ftlstlefT(tl)dtl(tle—t1ls) =average transmit frequency

Neglecting ionospheric media corrections, further calculation (Mesarch [2007])
shows that the values of O and C can be related to an average range rate value, p
", as shown below.



p’ Observed=c(1+OM2f T), p° Computed=c(1+CM
2f7T)

where

p = (Round Trip distance at t 3 e ) — ( Round Trip distance at t3s)t3e —t
3s

Thus, we determine that
p’ Observed-p° Computed=cM2f T(O-C)

The quantity, (O — C ), above represents the measurement noise and thus the
equation gives us a way to convert measurement noise in Hz to measurement
noise in mmy/s. To convert from mm/s to Hz, simply multiplyby M2 f Tc=M
2 f T 299792458000 . In our case, where we use a constant X-band frequency
of 7.2e9, the conversion factor is given by 880 749 7.2 e 9 299792458000 ~ 0
.0282 . For this tutorial, we use a 1 sigma noise value of 1 mm/s (Schanzle
[1995]) which corresponds to this value of 0.0282 Hz.



Chapter 14. Orbit Estimation using DSN Range
and Doppler Data

Audience Intermediate level
Length 60 minutes

Prerequisites Simulate DSN Range and Doppler Data Tutorial

Script Files Tut_Orbit Estimation_using DSN_Range_and_Doppler_Data. s



Objective and Overview

Note

GMAT currently implements a number of different data types
for orbit determination. Please refer to Tracking Data Types for
OD for details on all the measurment types currently supported
by GMAT. The measurements being considered here are DSN
two way range and DSN two way Doppler.

In this tutorial, we will use GMAT to read in simulated DSN range and Doppler
measurement data for a sample spacecraft in orbit about the Sun and determine
its orbit. The spacecraft is in an Earth “drift away” type orbit about 1 AU away
from the Sun and almost 300 million km away from the Earth. This tutorial has
many similarities with the Simulate DSN Range and Doppler Data Tutorial in
that most of the same GMAT resources need to be created and configured. There
are differences, however, in how GMAT uses the resources that we will point out
as we go along.

The basic steps of this tutorial are:

1. Create and configure the spacecraft, spacecraft transponder, and related
parameters

Create and configure the Ground Station and related parameters

Define the types of measurements to be processed

Create and configure Force model and propagator

Create and configure Batch Estimator object

Run the mission and analyze the results

ok Wi

Note that this tutorial, unlike most of the mission design tutorials, will be
entirely script based. This is because most of the resources and commands
related to navigation are not implemented in the GUI and are only available via
the script interface.

As you go through the tutorial below, it is recommended that you paste the script
segments into GMAT as you go along. After each paste into GMAT, you should



perform a syntax check by hitting the Save, Sync button ( =~ ). To avoid syntax
errors, where needed, don’t forget to add the following command, as needed, to
the last line of the script segment you are checking.

BeginMissionSequence

We note that in addition to the material presented here, you should also look at
the individual Help resources for all the objects and commands we create and
use here. For example, Spacecraft, Transponder, Transmitter,
GroundStation, ErrorModel, TrackingFileSet, RunEstimator, etc all have
their own Help pages.



Create and configure the spacecraft, spacecraft
transponder, and related parameters

For this tutorial, you’ll need GMAT open, with a new empty script open. To
create a new script, click New Script, (*)

Create a satellite and set its epoch and Cartesian
coordinates

Since this is a Sun-orbiting spacecraft, we choose to represent the orbit in a Sun-
centered coordinate frame which we define using the scripting below.

% Create the Sun-centered J2000 frame.

Create CoordinateSystem SunMJ2000Eq;

SunMJ2000Eq.0rigin = Sun;

SunMJ2000Eq.Axes = MJ2000Eq; %Earth mean equator axes

Next, we create a new spacecraft, Sat, and set its epoch and Cartesian
coordinates.

Create Spacecraft Sat;
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Sat.DateFormat = UTCGregorian;
Sat.CoordinateSystem = SunMJ2000E(Q;
Sat.DisplayStateType = Cartesian;

Sat.Epoch = 19 Aug 2015 00:00:00.000;
Sat.X = -126544963 %-126544968
Sat.Y = 61978518 %61978514
Sat.Zz = 24133225 %24133221
Sat.VX = -13.789

Sat.Vvy = -24.673

Sat.VvZz = -10.662

Sat.Id = 11111;

Note that, in addition to setting Sat’s coordinates, we also assigned it an ID
number. When GMAT finds this number in the GMD file that it reads in, it will
know that the associated data corresponds to the Sat Spacecraft.

For the simulation tutorial, the Cartesian state above represented the “true” state.
Here, the Cartesian state represents the spacecraft operator’s best “estimate” of



the state, the so-called a priori estimate. Because, one never has exact
knowledge of the true state, we have perturbed the Cartesian state above by a
few km in each component as compared to the simulated true state shown in the
comment field.

Create a Transponder object and attach it to our spacecraft

To estimate an orbit state for a given spacecraft, GMAT requires that a
Transponder object, which receives the ground station uplink signal and re-
transmits it, typically, to a ground station, be attached to the spacecraft. Below,
we create the Transponder object and attach it to our spacecraft. Note that after
we create the Transponder object, there are three fields, PrimaryAntenna,
HardwareDelay, and TurnAroundRatio that must be set.

Create Antenna HGA; %High Gain Antenna

Create Transponder SatTransponder;

SatTransponder.PrimaryAntenna = HGA;
SatTransponder .HardwareDelay = 1e-06; %seconds
SatTransponder.TurnAroundRatio = '880/749';

Sat.AddHardware
Sat.SolveFors

{SatTransponder, HGA};
{CartesianState};

The PrimaryAntenna is the antenna that the spacecraft transponder,
SatTransponder, uses to receive and retransmit RF signals. In the example
above, we set this field to HGA which is an Antenna object we have created.
Currently the Antenna resource has no function but in a future release, it may
have a function. HardwareDelay, the transponder signal delay in seconds, is set
to one micro-second.

We set TurnAroundRatio, which is the ratio of the retransmitted to the input
signal, to '880/749." See the RunEstimator Help for a discussion on how GMAT
uses this input field. Recall that, as part of their calculations, estimators need to
form a quantity called the observation residual, O-C, where O is the “Observed”
value of a measurement and C is the “Computed,” based upon the current
knowledge of the orbit state, value of a measurement. As described in the Help,
since our DSN data, for this tutorial, uses a ramp table, this input turn around
ratio is not used to calculate the computed, C, Doppler measurements. Instead,
the turn-around ratio used to calculate the computed Doppler measurement will



be inferred from the value of the uplink band contained in the ramp table.

Note that in the second to last script command above, we attach our newly
created Transponder resource, SatTransponder, and its related Antenna
resource, HGA, to our spacecraft, Sat.

The last script line, which was not present in the simulation script, is needed to
tell GMAT what quantities the estimator will be estimating, the so-called “solve-
fors.” Here, we tell GMAT to solve for the 6 components of our satellite’s
Cartesian state. Since we input the Sat state in SunMJ2000 coordinates, this is
the coordinate system GMAT will use to solve for the Cartesian state.



Create and configure the Ground Station and
related parameters

Create Ground Station Transmitter, Receiver, and Antenna
objects

Before we create the GroundStation object itself, as shown below, we first
create the Transmitter, Receiver, and Antenna objects that must be associated
with any GroundStation.

% Ground Station electronics.
Create Transmitter DSNTransmitter;
Create Receiver DSNReceiver;
Create Antenna DSNAntenna;

DSNTransmitter.PrimaryAntenna
DSNReceiver.PrimaryAntenna
DSNTransmitter.Frequency

DSNAntenna,;
DSNAntenna;
7200, %MHZz

In the script segment above, we first created Transmitter, Receiver, and
Antenna objects. The GMAT script line DSNTransmitter.PrimaryAntenna =
DSNAntenna, sets the main antenna that the Transmitter resource,
DSNTransmitter, will be using. Likewise, the DSNReceiver.PrimaryAntenna =
DSNAntenna script line sets the main antenna that the Receiver resource,
DSNReceiver, will be using. As previously mentioned, the Antenna object
currently has no function, but we include it here both because GMAT requires it
and for completeness since the Antenna resource may have a function in a
future GMAT release. Finally, we set the transmitter frequency in the last GMAT
script line above. See the RunEstimator Help for a complete description of how
this input frequency is used. As described in the Help, since in this example we
will be using a ramp table, this input frequency will not be used to calculate the
computed value of the range and Doppler observations. Instead, the frequency
value in the ramp table will be used to calculate the computed range and Doppler
observations.

There is one clarification to the statement above. As discussed in the
RunEstimator Help, the DSNTransmitter.Frequency value discussed above as
well as the previously discussed SatTransponder TurnAroundRatio value will



be used to calculate the, typically small, media corrections needed to determine
the computed, C, value of the range and Doppler measurements.

Create Ground Station

Below, we create and configure our CAN GroundStation object.

% Create ground station and associated error models
Create GroundStation CAN;

CAN.CentralBody Earth;
CAN.StateType Cartesian;
CAN.HorizonReference Ellipsoid;

CAN.Locationl
CAN.Location2
CAN.Location3

-4461.083514
2682.281745
-3674.570392

CAN. Id = 22222,
CAN.MinimumElevationAngle = 7.0;
CAN.IonosphereModel 'IRI2007';

CAN.TroposphereModel '"HopfieldSaastamoinen';

CAN.AddHardware

{DSNTransmitter, DSNAntenna,
DSNReceiver};

The script segment above is broken into five sections. In the first section, we
create our GroundStation object and we set our Earth-Centered Fixed Cartesian
coordinates. In the second section, we set the ID of the ground station so that
GMAT will be able to identify data from this ground station contained in the
GMD file.

In the third section, we set the minimum elevation angle to 7 degrees. Below this
ground station to spacecraft elevation angle, no measurement data will be used
to form an orbit estimate. In the fourth section, we specify which troposphere
and ionosphere model we wish to use to model RF signal atmospheric refraction
effects. Finally, in the fifth section, we attach three pieces of previously created
required hardware to our ground station, a transmitter, a receiver, and an
antenna.

Next, we create and configure the GDS GroundStation resource, and associated
Transmitter resource.



% Create GDS transmitter and ground station
Create Transmitter GDSTransmitter
GDSTransmitter.Frequency 7300, %MHZ .

GDSTransmitter.PrimaryAntenna DSNAntenna;
Create GroundStation GDS;

GDS.CentralBody Earth;
GDS.StateType Cartesian;
GDS.HorizonReference Ellipsoid;

GDS.Locationl
GDS.Location2
GDS.Location3

-2353.621251;
-4641.341542;
3677.052370;

GDS. Id '33333"';

GDS.AddHardware {GDSTransmitter,
DSNAntenna, DSNReceiver};

GDS.MinimumElevationAngle = 7.0,

GDS.IonosphereModel = 'IRI2007';

Next, we create and configure the MAD GroundStation resource, and
associated Transmitter resource.

% Create MAD transmitter and ground station
Create Transmitter MADTransmitter
MADTransmitter.Frequency 7400, %MHZ .

MADTransmitter.PrimaryAntenna DSNAntenna;
Create GroundStation MAD;

MAD.CentralBody Earth;
MAD.StateType Cartesian;
MAD.HorizonReference Ellipsoid;

MAD.Locationl
MAD.Location2
MAD.Location3

4849.519988;
-360.641653;
4114.504590;

MAD. Id '44444"';

MAD.AddHardware {MADTransmitter,
DSNAntenna, DSNReceiver};

MAD.MinimumElevationAngle = 7.0,

MAD.IonosphereModel = 'IRI2007';

Note that for the GDS and MAD ground stations, we don’t re-use the
DSNTransmitter resource that we used for the CAN ground station. We do this
so we can set the transmitter frequencies for the different ground station to
different values. Note that we didn’t do this in the Simulator tutorial. This will
only add a small error, however, since, because we are using a ramp table, the
frequency set on the Transmitter.Frequency field is only used to calculate



media corrections.

Create Ground Station Error Models

It is well known that all measurement types have random noise and/or biases
associated with them. For GMAT, these affects are modelled using ground
station error models. Since we have already created the GroundStation object
and its related hardware, we now create the ground station error models. Since
we wish to form an orbit estimate using both range and Doppler data, we need to
create two error models as shown below, one for range measurements and one
for Doppler measurements.

% Create Ground station error models
Create ErrorModel DSNrange;

DSNrange.Type 'DSN_SeqRange';

DSNrange.NoiseSigma = 10.63;
DSNrange.Bias = 0.0,
Create ErrorModel DSNdoppler;
DSNdoppler.Type = 'DSN_TCP';
DSNdoppler.NoiseSigma = 0.0282;
DSNdoppler.Bias = 0.0,

CAN.ErrorModels
GDS.ErrorModels
MAD.ErrorModels

{DSNrange, DSNdoppler};
{DSNrange, DSNdoppler};
{DSNrange, DSNdoppler};

The script segment above is broken into three sections. The first section defines
an ErrorModel named DSNrange. The error model Type is DSN_SeqRange
which indicates that it is an error model for DSN sequential range
measurements. The 1 sigma standard deviation of the Gaussian white noise is set
to 10.63 Range Units (RU) and the measurement bias is set to 0 RU.

The second section above defines an ErrorModel named DSNdoppler. The
error model Type is DSN_TCP which indicates that it is an error model for DSN
total count phase-derived Doppler measurements. The 1 sigma standard
deviation of the Gaussian white noise is set to 0.0282 Hz and the measurement
bias is set to 0 Hz. The range and Doppler NoiseSigma values above will be
used to form measurement weighting matrices used by the estimator algorithm.

The third section above attaches the two ErrorModel resources we have just



created to the CAN, GDS, and MAD GroundStation resources. Note that in
GMAT, the measurement noise or bias is defined on a per ground station basis.
Thus, any range measurement error involving the CAN, GDS, and MAD
GroundStation is defined by the DSNRange ErrorModel and any Doppler
measurement error involving the CAN, GDS, and MAD GroundStation is
defined by the DSNdoppler ErrorModel. Note that, if desired, we could have
created 6 different ErrorModel resources, two error models representing the
two data types for 3 ground stations.



Define the types of measurements that will be
processed

Now we will create and configure a TrackingFileSet resource. This resource
defines the type of data to be processed, the ground stations that will be used,
and the file name of the input GMD file which will contain the measurement
data. Note that in order to just cut and paste from our simulation tutorial, we
name our resource DSNsimData. But, since, in this script, we are estimating,
perhaps a better name would have been DSNestData.

Create TrackingFileSet DSNsimData;
DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig
DSNsimData.AddTrackingConfig
DSNsimData.FileName Cs

{'../output/Simulate DSN Range and Doppler Data 3 weeks.gmd'};
DSNsimData.RampTable = ...

{'../output/Simulate DSN Range and Doppler Data 3 weeks.rmp'};

{{CAN, Sat, CAN}, 'DSN_SeqRan
{{CAN, Sat, CAN}, 'DSN_TCP'};
{{GDS, Sat, GDS}, 'DSN_SeqRan
{{GDS, Sat, GDS}, 'DSN_TCP'};
{{MAD, Sat, MAD}, 'DSN_SeqRan
{{MAD, Sat, MAD}, 'DSN_TCP'};

DSNsimData.UseLightTime = true;
DSNsimData.UseRelativityCorrection = true;
DSNsimData.UseETminusTAI = true;

The script lines above are broken into three sections. In the first section, the
resource name, DSNsimData, is declared, the data types are defined, and the
input GMD file and ramp table name are specified. AddTrackingConfig is the
field that is used to define the data types. The first AddTrackingConfig line
tells GMAT to process DSN range two way measurements for the CAN to Sat to
CAN measurement strand. The second AddTrackingConfig line tells GMAT to
process DSN Doppler two way measurements for the CAN to Sat to CAN
measurement strand. The remaining 4 AddTrackingConfig script lines tell
GMAT to also process GDS and MAD range and Doppler measurements. Note
that the input GMD and ramp table files that we specified are files that we
created as part of the Simulate DSN Range and Doppler Data Tutorial. Don’t
forget to put these files in the GMAT “output” directory.

The second section above sets some processing parameters that apply to both the



range and Doppler measurements. We set UseLightTime to True in order to
generate realistic computed, C, measurements that take into account the finite
speed of light. The last two parameters in this section, UseRelativityCorrection
and UseETminusTALI, are set to True so that general relativistic corrections, as
described in Moyer [2000], are applied to the light time equations.

Note that, in the simulation tutorial, we set two other DSNsimData fields,
SimDopplerCountInterval and SimRangeModuloConstant. Since these fields
only apply to simulations, there is no need to set them here as their values would
only be ignored.



Create and configure Force model and
propagator

We now create and configure the force model and propagator that will be used
for the simulation. For this deep space drift away orbit, we naturally choose the
Sun as our central body. Since we are far away from all the planets, we use point
mass gravity models and we include the effects of the Sun, Earth, Moon, and
most of the other planets. In addition, we model Solar Radiation Pressure (SRP)
affects and we include the effect of general relativity on the dynamics. The script
segment accomplishing this is shown below.

Create ForceModel Fm;
Create Propagator Prop;
Fm.CentralBody
Fm.PointMasses

Sun;
{Sun, Earth, Luna, Mars, Saturn,
Uranus, Mercury, Venus, Jupiter};

Fm.SRP = 0n;
Fm.RelativisticCorrection = On;
Fm.ErrorControl = None;
Prop.FM = Fm;
Prop.MinStep = 0,

We set ErrorControl = None because for the current release of GMAT, batch
estimation requires fixed step numerical integration. The fixed step size is given
by Prop.InitialStepSize which has a default value of 60 seconds. For our
deep space orbit, the dynamics are slowly changing and this step size is not too
big. For more dynamic force models, a smaller step size may be needed.



Create and configure BatchEstimatorinv object

As shown below, we create and configure the BatchEstimatorInv object used to
define our estimation process.

Create BatchEstimatorInv bat
bat.ShowProgress
bat.ReportStyle
bat.ReportFile

true;
Normal;

DSN Range and Doppler Data.report';
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'"FromParticipants';
"Internal';

bat.EstimationEpochFormat
bat.InversionAlgorithm

bat.MatlabFile ce
'Orbit Estimation using DSN Range and Doppler Data.mat'

'Orbit Estimation using
bat.Measurements = {DSNsimData}
bat.AbsoluteTol = 0.001;
bat.RelativeTol = 0.0001;
bat.MaximumIterations = 10
bat.MaxConsecutiveDivergences = 3;
bat.Propagator = Prop;
bat.ShowAllResiduals = On;
bat.OLSEInitialRMSSigma = 10000,
bat.OLSEMultiplicativeConstant = 3;
bat.OLSEAdditiveConstant = 0;

All of the fields above are described in BatchEstimatorInv Help but we
describe them briefly here as well. In the first script line above, we create a
BatchEstimatorInv object, bat. In the next line, we set the ShowProgress field
to true so that detailed output of the batch estimator will be shown in the
message window.

In the third line, we set the ReportStyle to Normal. For the R2016A GMAT
release, this is the only report style that is available. In a future release, If we
wanted to see additional data such as measurement partial derivatives, we would
use the Verbose style. In the next line, we set the ReportFile field to the name of
our desired output file which by default is written to GMAT’s ‘output’ directory.

We set the Measurements field to the name of the TrackingFileSet resource we
wish to use. Recall that the TrackingFileSet, DSNsimData, that we created in
the Define the types of measurements that will be processed section defines the
type of measurements that we wish to process. In our case, we wish to process




DSN range and Doppler data associated with the CAN, GDS, and MAD ground
stations.

The next four fields, AbsoluteTol, RelativeTol, MaximumlIterations, and
MaxConsecutiveDivergences define the batch estimator convergence criteria.
See the “Behavior of Convergence Criteria” discussion in the
BatchEstimatorInv Help for complete details.

The next script line sets the Propagator field which specifies which Propagator
object should be used during estimation. We set this field to the Prop
Propagator object which we created in the Define the types of measurements
that will be processed section.

In the 11th script line, we set the ShowAllResiduals field to true show that the
observation residuals plots, associated with the various ground stations, will be
displayed

The next three script lines set fields, OLSEInitialRMSSigma,
OLSEMultiplicativeConstant, and OLSEAdditiveConstant, that are
associated with GMAT’s Outer Loop Sigma Editing (OLSE) capability that is
used to edit, i.e., remove, certain measurements so that they are not used to
calculate the orbit estimate. See the “Behavior of Outer Loop Sigma Editing
(OLSE)” discussion in the BatchEstimatorInv Help for complete details.

Next, we set the EstimationEpochFormat field to 'FromParticipants’ which
tells GMAT that the epoch associated with the solve-for variables, in this case
the Cartesian State of Sat, comes from the value of Sat.Epoch which we have
set to “19 Aug 2015 00:00:00.000 UTCG.”

Next, we set the InversionAlgorithm field to 'Internal’ which specifies which
algorithm GMAT should use to invert the normal equations. There are two other
inversion algorithms, 'Cholesky' or 'Schur' that we could optionally use.

Finally, we set the value of MatlabFile. This is the name of the MATLAB
output file that will be created, which, by default, is written to GMAT’s ‘output’
directory. This file can be read into MATLAB to perform detailed calculations
and analysis. The MATLAB file can only be created if you have MATLAB
installed and properly configured for use with GMAT.



Run the mission and analyze the results

The script segment used to run the mission is shown below.
BeginMissionSequence

RunEstimator bat

The first script line, BeginMissionSequence, is a required command which
indicates that the “Command” section of the GMAT script has begun. The
second line of the script issues the RunEstimator command with the bat
BatchEstimatorInv resource, defined in the Create and configure
BatchEstimatorInv object section, as an argument. This tells GMAT to perform
the estimation using parameters specified by the bat resource.

We have now completed all of our script segments. See the file, orbit
Estimation using DSN Range and Doppler Data.script, for a listing of the
entire script. We are now ready to run the script. Hit the Save,Sync,Run button, (
=«swun ), Given the amount of data we are processing, our mission orbit, and our
choice of force model, the script should finish execution in about 1-2 minutes.

We analyze the results of this script in many ways. In the first subsection, we
analyze the Message window output. In the second subsection, we look at the
plots of the observation residuals, and in the third subsection, we analyze the

batch estimation report. Finally, in the fourth subsection, we discuss how the

contents of the MATLAB output file can be used to analyze the results of our
estimation process.

Message Window Output

We first analyze the message window output focusing on the messages that may
require some explanation. Follow along using Appendix A — GMAT Message
Window Output where we have put a full listing of the output. Soon into the
message flow, we get a message telling us how many measurement records were
read in.

Data file 'Simulate DSN Range and Doppler Data 3 weeks.gmd' has 1348
of 1348 records used for estimation.



The value of 1348 is the number of lines of measurement data in the GMD file
listed above.

Next, the window output contains a description of the tracking configuration.
The output below confirms that we are processing range and Doppler data from
the CAN, GDS, and MAD ground stations.

List of tracking configurations (present in participant ID) for load

records from data file
'Simulate DSN Range and Doppler Data 3 weeks.gmd':

Config 0: {{22222,11111,22222},DSN_SeqRange}
Config 1: {{22222,11111,22222},DSN_TCP}
Config 2: {{33333,11111,33333},DSN_SeqRange}
Config 3: {{33333,11111,33333},DSN_TCP}
Config 4: {{44444,11111,44444},DSN_SeqRange}
Config 5: {{44444,11111,44444%},DSN_TCP}

Later on in the output, GMAT echoes out the a priori estimate that we input into
the script.

a priori state:
Estimation Epoch:

27253.500417064603 A.1 modified Julian
27253.500416666666 TAI modified Julian

19 Aug 2015 00:00:00.000 UTCG

Sat
Sat
Sat
Sat
Sat
Sat

.SUnMJ2000Eq.X = -126544963
.SUnMJ2000Eq.Y = 61978518
.SUnMJ2000Eq.Z = 24133225
.SUnMJ2000Eq.VX = -13.789
.SUnMJ2000Eq.VY = -24.673
.SUnMJ2000EQq.VZ = -10.662

Next, GMAT outputs some data associated with the initial iteration of the Outer
Loop Sigma Editing (OLSE) process as shown below.

Number of Records Removed Due To:
. No Computed Value Configuration Available : 0
. Out of Ramp Table Range : 0
. Signal Blocked 1 0
Initial RMS Sigma Filter : 0O
Outer-Loop Sigma Editor : 0
Number of records used for estimation: 1348

As previously mentioned, the OLSE process can edit (i.e., remove) certain data



from use as part of the estimation algorithm. There are five conditions which
could cause a data point to be edited. For each condition, the output above
specifies how many data points were edited. We now discuss the meaning of the
five conditions.

The first condition, “No Computed Value Configuration Available” means that
GMAT has read in some measurement data but no corresponding tracking
configuration has been defined in the GMAT script. Thus, GMAT has no way to
form the computed, C, value of the measurement. For example, this might
happen if our script did not define a GroundStation object corresponding to
some data in the GMD file. Since we have defined everything we need to, no
data points are edited for this condition.

The second condition, “Out of Ramp Table Range,” means that while solving the
light time equations, GMAT needs to know the transmit frequency, for some
ground station, at a time that is not covered by the ramp table specified in our
TrackingFileSet resource, DSNsimData. Looking at our input GMD file, we
see that our measurement times range from 27253.500416666669 to
27274.500416666662 TAIMJID. Since our ramp table has a ramp record for all
three ground stations at 27252 TAIMJD which is about 1 %2 days before the first
measurement and since our a priori Cartesian state estimate is fairly good, it
makes sense that no measurements were edited for this condition.

The third condition, “Signal Blocked,” indicates that while taking into account
its current estimate of the state, GMAT calculates that a measurement for a
certain measurement strand is not possible because the signal is “blocked.”
Actually, the signal does not have to blocked, it just has to violate the minimum
elevation angle constraint associated with a given ground station. Consider a
GDS to Sat to GDS range two way range measurement at given time. If the
GDS to Sat elevation angle was 6 degrees, the measurement would be edited out
since the minimum elevation angle, as specified by the
GDS.MinimumElevationAngle field, is set at 7 degrees. Since, in our
simulation, we specified that only data meeting this 7 degree constraint should
be written out, it is plausible that no data were edited because of this condition.

The fourth condition, “Initial RMS Sigma Filter,” corresponds to GMAT’s OLSE
processing for the initial iteration. As mentioned before, you can find a complete
description of the OLSE in the “Behavior of Outer Loop Sigma Editing (OLSE)”
discussion in the BatchEstimatorInv Help. As described in the Help, for the



initial iteration, data is edited if
|[Weighted Measurement Residual| > OLSEInitialRMSSigma

where the Weighted Measurement Residual for a given measurement is given by
(O-C)/NoiseSigma

and where NoiseSigma are inputs that we set when we created the various
ErrorModel resources.

We note that for a good orbit solution, the Weighted Measurement Residual has a
value of approximately one. Since our a priori state estimate is not that far off
from the truth and since we have set OLSEInitialRMSSigma to a very large
value of 10,000, we do not expect any data to be edited for this condition.

The fifth condition, “Outer-Loop Sigma Editor,” corresponds to GMAT’s OLSE
processing for the second or later iteration. Since the output we are analyzing is
for the initial iteration of the batch estimator, the number of data points edited
because of this condition is 0. We will discuss the OLSE processing for the
second or later iterations when we analyze the output for a later iteration.

WeightedRMS residuals for this iteration : 1459.94235975
BestRMS residuals for this iteration : 1459.94235975
PredictedRMS residuals for next iteration: 1.01539521333

The first output line above gives the weighted RMS calculated when the estimate
of the state is the input a priori state (i.e., the Oth iteration state). The weighted
RMS value of approximately 1460 is significantly far away from the value of 1
associated with a good orbit solution. The second output line gives the best
(smallest) weighted RMS value for all of the iterations. Since this is our initial
iteration, the value of the BestRMS is the same as the WeightedRMS. The third
output line is the predicted weighted RMS value for the next iteration. Because
of the random noise involved in generating the simulated input data, the numbers
you see may differ from that above.

Next, GMAT outputs the state associated with the first iteration of the batch
estimator. Let’s define what we mean by iteration. The state at iteration ‘n’ is the
state after GMAT has solved the so-called normal equations (e.g., Eq. 4.3.22 or
4.3.25 in Tapley [2004]) ‘n’ successive times. By convention, the state at



iteration 0 is the input a priori state.

Iteration 1

Current estimated state:
Estimation Epoch:
27253.500417064603 A.1 modified Julian
27253.500416666666 TAI modified Julian
19 Aug 2015 00:00:00.000 UTCG
Sat.SunMJ2000E(q. X -126544968.377
Sat.SunMJ2000Eq.Y 61978514 .8777
Sat.SunMJ2000Eq.Z 24133217 .2547
Sat.SunMJ2000EqQ.VX -13.7889998632
Sat.SunMJ2000Eq.VY -24.6730006664
Sat.SunMJ2000Eq.VZ -10.6619986007

Next, GMAT outputs statistics on how many data points were edited for this
iteration.

Number of Records Removed Due To:
. No Computed Value Configuration Available : 0
. Out of Ramp Table Range : 0
. Signal Blocked : 0
Initial RMS Sigma Filter : 0O
. Outer-Loop Sigma Editor : 2
Number of records used for estimation: 1346

For the same reasons we discussed for the initial Oth iteration, as expected, no
data points were edited because “No Computed Value Configuration Available”
or because a requested frequency was “Out of Ramp Table Range.” Also, for the
same reasons discussed for the Oth iteration, it is plausible that no data points
were edited for this iteration because of signal blockage. Note that there are no
data points edited because of the “Initial RMS Sigma Filter” condition. This is as
expected because this condition only edits data on the initial Oth iteration.
Finally, we note that 2 data points out of 1348 data points are edited because of
the OLSE condition. As discussed in the “Behavior of Outer Loop Sigma
Editing (OLSE)” section in the BatchEstimatorInv Help,” data is edited if

|[Weighted Measurement Residual| > OLSEMultiplicativeConstant *
WRMSP + OLSEAdditiveConstant

where



WRMSP is the predicted weighted RMS calculated at the end of the
previous iteration.

In the Create and configure BatchEstimatorInv object section, we chose
OLSEMultiplicativeConstant = 3 and OLSEAdditiveConstant = 0 and thus
the equation above becomes

|[Weighted Measurement Residual| > 3 * WRMSP

It is a good sign that only 2 of 1348, or 0.15 % of the data is edited out. If too
much data is edited out, even if you have a good weighted RMS value, it
indicates that you may have a problem with your state estimate. Next, GMAT

outputs some root mean square, (RMS), statistical data associated with iteration
1.

WeightedRMS residuals for this iteration : 1.00807187051
BestRMS residuals for this iteration : 1.00807187051
PredictedRMS residuals for next iteration: 1.00804237273

The first output line above gives the weighted RMS calculated when the estimate
of the state is the iteration 1 state. The weighted RMS value of 1.00807187051 is
very close to the value of 1 associated with a good orbit solution. The second
output line gives the best (smallest) weighted RMS value for all of the iterations.
Since this iteration 1 WeightedRMS value is the best so far, BestRMS is set to
the current WeightedRMS value. The third output line is the predicted weighted
RMS value for the next iteration. Note that the RMS values calculated above
only use data points that are used to form the state estimate. Thus, the edited
points are not used to calculate the RMS.

Because the predicted WeightedRMS value is very close to the BestRMS value,
GMAT, as shown in the output below, concludes that the estimation process has
converged. As previously mentioned, see the “Behavior of Convergence
Criteria” discussion in the BatchEstimatorInv Help for complete details.

This iteration is converged due to relative convergence criteria.
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*** Estimating Completed in 2 iterations
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Estimation converged!
|1 - RMSP/RMSB| = | 1- 1.00804 / 1.00807| = 2.92616e-005 is
less than RelativeTol, 0.0001

GMAT then outputs the final, iteration 2, state. Note that GMAT does not
actually calculate the weighted RMS associated with this state but we assume
that it is close to the predicted value of 1.00804237273 that was previously
output.

Final Estimated State:

Estimation Epoch:

27253.500417064603 A.1 modified Julian

27253.500416666666 TAI modified Julian
19 Aug 2015 00:00:00.000 UTCG
Sat.SunMJ2000E(q. X -126544968.759
Sat.SunMJ2000Eq.Y = 61978514.3889
Sat.SunMJ2000Eq.Z 24133216.7847
Sat.SunMJ2000E(q. VX -13.7889997238
Sat.SunMJ2000Eq.VY -24.673000621
Sat.SunMJ2000Eq.VZ -10.6619988668

Finally, GMAT outputs the final Cartesian state error covariance matrix and
correlation matrix, as well as the time required to complete this script.

Final Covariance Matrix:

6.566855211518e+000 1.044634165793e+001 3.1128
1.044634082751e+001 2.043155461343e+001 -4.2583
3.112865361595e+000 -4.258297445960e+000 2.3717
-2.345908159193e-006 -3.704076213842e-006 -1.178¢
5.035500497713e-007 2.022939026968e-007 1.683¢
1.602400700119e-006 3.971536117909e-006 -2.6741
Final Correlation Matrix:
1.000000000000 0.901851016006 0
0.901850944314 1.000000000000 -C
0.249430019216 -0.193442720520 1
-0.999655971438 -0.894844322236 -€
0.193376219732 0.044042425647 C
0.260176714594 0.365581179531 -C
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Mission run completed.



===> Total Run Time: 85.739000 seconds

Plots of Observation Residuals

GMAT creates plots on a per iteration, per ground station, and per measurement
type basis. We elaborate on what this means. When the script first runs, the first
plots that show up are the Oth iteration residuals. This means that when
calculating the ‘O-C’ observation residual, GMAT calculates the Computed, C,
value of the residual using the a priori state. As shown in Appendix B — Zeroth
Iteration Plots of Observation Residuals, there are 6 of these Oth iteration
residual plots. For each of the 3 stations, there is one plot of the range residuals
and one plot of the Doppler residuals. After iteration 1 processing is complete,
GMAT outputs the iteration 1 residuals as shown in Appendix C — First Iteration
Plots of Observation Residuals. As previously mentioned, although for this
script, GMAT takes two iterations to converge, the actual iteration 2 residuals are
neither calculated nor plotted.
DSN_Estimation_Create_and_configure_the_Ground_Station_and_related_parar

We now analyze the CAN range and Doppler residuals. For the Oth iteration, the
range residuals vary from approximately 11,000 to 31,000 RU. These residuals
are this large because our a priori estimate of the state was deliberately perturbed
from the truth. There are multiple indicators on this graph that indicate that
GMAT has not yet converged. First, the residuals have an approximate linear
structure. If you have modeled the dynamics and measurements correctly, the
plots should have a random appearance with no structure. Additionally, the
residuals are biased, i.e., they do not have zero mean. For a well modeled
system, the mean value of the residuals should be near zero. Finally, the
magnitude of the range residuals is significantly too large. Recall that in the
Create and configure the Ground Station and related parameters section, we set
the 1 sigma measurement noise for the CAN range measurements to 10.63 RU.
Thus, for a large sample of measurements, we expect, roughly, that the vast
majority of measurements will lie between the values of approximately -32 and
+32 RU. Taking a look at the 1st iteration CAN range residuals, this is,
approximately, what we get.

The Oth iteration CAN Doppler residuals range from approximately 0.0050 to
0.01535 Hz. As was the case for the range Oth iteration residuals, the fact that the



Doppler residuals are biased indicates that GMAT has not yet converged. Recall
that in the Create and configure the Ground Station and related parameters
section, we set the 1 sigma measurement noise for the CAN Doppler
measurements to 0.0282 Hz. Thus, for a large sample of measurements, we
expect, roughly, that the vast majority of measurements will lie between the
values of approximately -0.0846 and +0.0846 RU. Taking a look at the 1st
iteration CAN Doppler residuals, this is, approximately, what we get.

There is one important detail on these graphs that you should be aware of.
GMAT only plots the residuals for data points that are actually used to calculate
the solution. Recall that for iteration 0, all 1348 of 1348 total measurements
were used to calculate the orbit state, i.e., no data points were edited. Thus, if
you counted up all the data points on the 6 iteration O plots, you would find 1348
points. The situation is different for the 1st iteration. Recall that for iteration 1,
1346 of 1348 total measurements were used to calculate the orbit state, i.e., 2
data points were edited. Thus, if you counted up all the data points on the 6
iteration 1 plots, you would find 1346 points. If you wish to generate plots that
contain both non-edited and edited measurements, you will need to generate
them yourself using the MATLAB output file as discussed in the Matlab Output
File section.

We note that the graphs have some interactive features. Hover your mouse over
the graph of interest and then right click. You will see that you have four options.
You can toggle both the grid lines and the Legend on and off. You can also
export the graph data to a text file, and finally, you can export the graph image to
a bmp file.

Batch Estimator Output Report

When we created our BatchEstimatorInv resource, bat, in the Create and
configure BatchEstimatorInv object section, we specified that the output file
name would be 'Orbit Estimation using DSN Range and Doppler Data.report. Go
to GMAT’s ‘output’ directory and open this file, preferably using an editor such
as Notepad++ where you can easily scroll across the rows of data.

The first approximately 150 lines of the report are mainly an echo of the
parameters we input into the script such as initial spacecraft state, force model,
propagator settings, measurement types to be processed, etc.



After this echo of the input data, the output report contains measurement
residuals associated with the initial Oth iteration. Search the file for the words,
‘ITERATION 0: MEASUREMENT RESIDUALS’ to find the location of where
the relevant output begins. This output sections contains information on all of
the measurements, both non-edited and edited, that can possibly be used in the
estimation process. Each row of data corresponds to one measurement. For each
measurement, the output tells you the following

e Jteration Number
e Record Number
e Epoch in UTC Gregorian format

e Observation type. ‘DSN_SegRange’ corresponds to DSN sequential range
and ‘DSN_TCP’ corresponds to DSN total count phase-derived Doppler.

¢ Participants. For example, ‘22222,11111,22222’ tells you that your
measurement comes from a CAN to Sat to CAN link.

e Edit Criteria.

e Observed Value (O)

e Computed Value (C)

e Observation Residual (O-C)
e Elevation Angle

We have previously discussed the edit criteria. In particular, we discussed the
various reasons why data might be edited. If the edit criteria shown in the output
is ‘-,” this means that the data was not edited and the data was used, for this
iteration, to calculate a state estimate.

Note that if the elevation angle of any of the measurements is below our input
criteria of 7 degrees, then the measurement would be edited because the signal
would be considered to be “blocked.” For range data, we would see Bn where n
is an integer specifying the leg number. For our two way range data type, we
have two legs, the uplink leg represented by the integer, 1, and the downlink leg,



represented by the integer 2. Thus, if we saw “B1” in this field, this would mean
that the signal was blocked for the uplink leg. Correspondingly, for Doppler data,
we would also see Bn, but the integer n would be 1 or 2 depending upon whether
the blockage occurred in the start path (n=1) or the end path (n=2).

After all of the individual iteration O residuals are printed out, four different
iteration 0 observation summary reports, as shown below, are printed out.

e Observation Summary by Station and Data Type
e Observation Summary by Data Type and Station
e Observation Summary by Station

e Observation Summary by Data Type

After all of the observation summaries are printed out, the updated state and
covariance information, obtained by processing the previous residual
information, are printed out. The output also contains statistical information
about how much the individual components of the state estimate have changed
for this iteration.

At this point, the output content repeats itself for the next iteration. The new
state estimate is used to calculate new residuals and the process starts all over
again. The process stops when the estimator has either converged or diverged.

We now give an example of how this report can be used. In the Message
Window Output section, we noted that, for iteration 1, two measurements were
edited because of the OLSE criteria. Let’s investigate this in more detail. What
type of data was edited? From what station? Could there be a problem with this
data type at this station? We look at the ‘Observation Summary by Station and
Data Type’ for iteration 1. We see that one range measurement from the GDS
station and one range measurement from the MAD station was edited. The mean
residual and 1 sigma standard deviation for GDS range measurements was
-0.828187 and 10.595392 RU, respectively. The mean residual and 1 sigma
standard deviation for MAD range measurements was 0.976758 and 11.047855
RU, respectively.

Now that we know that the issue was with GDS and MAD range measurements,
we look at the detailed residual output, for iteration 1, to determine the time



these measurements occurred. We can search for the OLSE keyword to help do
this. We determine that a GDS range measurement was edited at 07 Sep 2015
19:00:00.000 UTCG and that it had an observation residual of -32.432373 RU.
This is just a bit beyond the 3 sigma value and we conclude that there is no real
problem with the GDS range measurements. This is just normal statistical
variation.

We also determine that a MAD range measurement was edited at 31 Aug 2015
11:00:00.000 UTCG and that it had an observation residual of -33.497559 RU.
Again, this is just a bit beyond the 3 sigma value and we conclude that there is
no real problem with the MAD range measurements. We remind you, that when
you do your run, you may have a different number of data points edited. This is
because, when you do your simulation, GMAT uses a random number generator
and you will be using a different data set.

Matlab Output File

In the Create and configure BatchEstimatorInv object section, when we created
our BatchEstimatorInv resource, bat, we chose our MATLAB output file name,
'Orbit Estimation using DSN Range and Doppler Data.mat.' By default, this
file is created in GMAT’s ‘output’ directory. This file will only be created if you
have MATLAB installed and properly configured for use with GMAT.

Start up a MATLAB session. Change the directory to your GMAT ‘output’
directory and then type the following at the MATLAB command prompt.

>> load 'Orbit Estimation using DSN Range and Doppler Data.mat'

After the file has loaded, type the following command to obtain a list of
available variable names inside this file.

>> whos

You should see something similar to the following:

>> whos
Name Size Bytes Class Attributes
Iteration® 1x1 847660 struct
Iterationi 1x1 847690 struct

Iteration2 1x1 847696 struct



You may see more or fewer iterations depending on your run. Each iteration
variable is a structure containing the following arrays:

Status

Observation status flag, 1 =
observation is good/useable

IterationNumber

The iteration number. This matches the
iteration number in the structure name.

Epoch

The TAIModJulian time tag of each
observation, computed value, and
residual

Observed

The observed value (from the GMD
file) in Range Units or Hertz

Calculated

The predicted observation, in Range
Units or Hertz, computed by GMAT
using the force modeling specified in
the batch estimator propagator

ObsMinusCalculated

The observation residual, in Range
Units or Hertz

Elevation

The computed elevation of the
observation, in degrees

Frequency

The transmit frequency at the time of
the observation, in Hertz

FrequencyBand

The frequency band of the observation.
See the TrackingFileSet help for a list
of frequency band indicators.

DopplerCountInterval

The Doppler count interval in seconds,
for Doppler observations. Set to -1 for
range observations.

Participants

For each observation, a comma-
separated string identifying the
transmit station, tracked object, and
receive station in order

Type

A string identifying the observation



type, DSN_SeqRange or DSN_TCP

UTCGregorian The UTCGregorian epoch string of
each observation

ObsEditFlag The editing status flag for each
observation. N = not edited, U = no
computed value configuration
available, R = out of ramp table range,
B = blocked by elevation edit criteria,
IRMS = initial RMS sigma edit, OLSE
= outer-loop sigma edit

Any unset or uncomputed values are set to -1. You can use these arrays to
perform custom plots and statistical analysis using MATLAB. For example, to
produce a plot of all range residuals from the final iteration, you can do the
following:

>> I = find(strcmp(Iteration2.Type, 'DSN_SeqRange'));
>> plot(Iteration2.Epoch(I), Iteration2.0bsMinusCalc(I), 'go');
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Appendix A - GMAT Message Window Output

Running mission...

Data file 'Simulate DSN Range and Doppler Data 3 weeks.gmd' has 1348
of 1348 records used for estimation.
Total number of load records : 1348

List of tracking configurations (present in participant ID) for load
records from data file
'Simulate DSN Range and Doppler Data 3 weeks.gmd':

Config 0: {{22222,11111,22222},DSN_SeqRange}
Config 1: {{22222,11111,22222},DSN_TCP}
Config 2: {{33333,11111,33333},DSN_SeqRange}
Config 3: {{33333,11111,33333},DSN_TCP}
Config 4: {{44444,11111,44444},DSN_SeqRange}
Config 5: {{44444,11111,44444%},DSN_TCP}

FHRFH No tracking configuration was generated because the tracking
configuration is defined in the script.

R R R I S I S I S R S S S b B R b R b R S b S b I S S S S S S S R S b S

*** Performing Estimation (using "bat")

* % %
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a priori state:
Estimation Epoch:
27253.500417064603 A.1 modified Julian
27253.500416666666 TAI modified Julian
19 Aug 2015 00:00:00.000 UTCG

Sat.SunMJ2000Eq.X = -126544963
Sat.SunMJ2000Eq.Y = 61978518
Sat.SunMJ2000Eq.Z = 24133225
Sat.SunMJ2000Eq.VX = -13.789
Sat.SunMJ2000Eq.VY = -24.673
Sat.SunMJ2000Eq.VZ = -10.662

Number of Records Removed Due To:
No Computed Value Configuration Available : 0
Out of Ramp Table Range 1 0
Signal Blocked : 0
Initial RMS Sigma Filter : 0O
Outer-Loop Sigma Editor : 0O



Number of records used for estimation: 1348

WeightedRMS residuals for this iteration : 1459.94235975
BestRMS residuals for this iteration : 1459.,94235975
PredictedRMS residuals for next iteration: 1.01539521333

Iteration 1

Current estimated state:
Estimation Epoch:
27253.500417064603 A.1 modified Julian
27253.500416666666 TAI modified Julian
19 Aug 2015 00:00:00.000 UTCG
Sat.SunMJ2000EqQ.X -126544968.377
Sat.SunMJ2000Eq.Y 61978514.8777
Sat.SunMJ2000Eq.Z 24133217 .2547
Sat.SunMJ2000Eq.VX -13.7889998632
Sat.SunMJ2000Eq.VY -24.6730006664
Sat.SunMJ2000Eq.VZ -10.6619986007

Number of Records Removed Due To:
No Computed Value Configuration Available
Out of Ramp Table Range
Signal Blocked
Initial RMS Sigma Filter
Outer-Loop Sigma Editor :
Number of records used for estimation :1346

WNOOOOo

WeightedRMS residuals for this iteration : 1.00807187051
BestRMS residuals for this iteration : 1.00807187051
PredictedRMS residuals for next iteration: 1.00804237273

This iteration is converged due to relative convergence criteria.

R R I S I S kS b I b b b b b b b b S I S S S I S b S S b S S b b

*** Estimating Completed in 2 iterations

R I S S b b S b I b b b b b b S e S I S S S I S b S S b S b b

Estimation converged!
|1 - RMSP/RMSB| = | 1- 1.00804 / 1.00807| = 2.92616e-005 is
less than RelativeTol, 0.0001

Final Estimated State:

Estimation Epoch:
27253.500417064603 A.1 modified Julian



27253.500416666666 TAI modified Julian

19 Aug 2015 00:00:00.000 UTCG
Sat.SunMJ2000Eq. X -126544968.759
Sat.SunMJ2000Eq.Y 61978514 .3889
Sat.SunMJ2000Eq.Z 24133216.7847
Sat.SunMJ2000Eq.VX -13.7889997238
Sat.SunMJ2000Eq.VY -24.673000621
Sat.SunMJ2000Eq.VZ -10.6619988668

Final Covariance Matrix:

6.566855211518e+000 1.044634165793e+001
1.044634082751e+001 2.043155461343e+001
3.112865361595e+000 -4.258297445960e+000
-2.345908159193e-006 -3.704076213842e-006
5.035500497713e-007 2.022939026968e-007
1.602400700119e-006 3.971536117909€e-006

Final Correlation Matrix:

1.000000000000 0.
0.901850944314 1.
0.249430019216 -0.
-0.999655971438 -0.
0.193376219732 0.
0.260176714594 0.

khkkhkhkkhkhkhkhkhkhhhkhkhkhhhhkhkhkhkhhkhhhkhkrkhkhhkhhkhk khkhkkhhkhk kikhkkhkhk ) kikkkk*

Mission run completed.
===> Total Run Time: 85.739000 seconds

901851016006
000000000000
193442720520
894844322236
044042425647
365581179531

3.1128
-4.2583
2.3717
-1.178¢
1.683¢
-2.6741



Appendix B - Zeroth Iteration Plots of
Observation Residuals
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Appendix C - First Iteration Plots of Observation
Residuals
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Reference Guide

The Reference Guide contains individual topics that describe each of GMAT's
resources and commands. When you need detailed information on syntax or
application-specific examples for specific features, go here. It also includes
system-level references that describe the script language syntax, parameter
listings, external interfaces, and configuration files.

The Resources section provides general information on GMAT Resources such
as Spacecraft, Propagators, Coordinate Systems, and EphemerisFiles to
name just a few. Go here for details regarding syntax, options, variable ranges
and data types, defaults, and expected behavior. Each section contains detailed,
copy-and-paste ready examples.

The Commands section provides general information on GMAT Commands such
as Maneuver, Assignment, Optimize, and Propagate to name just a few. Go
here for details regarding syntax, options, variable ranges and data types,
defaults and expected behavior. Each section contains detailed, copy-and-paste
ready examples.

The System section provides information on system configuration, external
interfaces, the script language, and the command line interface.



Resources




AcceptFilter

AcceptFilter — Allows selection of data subsets for processing by the batch least
squares estimator.



Description

Starting with the R2017A release of GMAT, the AcceptFilter resource replaces
the StatisticsAcceptFilter resource. The StatisticsAcceptFilter resource is still
available in this release but it is deprecated and will be removed in a future
release.

The AcceptFilter object is used to create criteria for the inclusion of subsets of
the available data in the estimation process based on observation frequency,
tracker, measurement type, record number, or time. Instances of AcceptFilter
are specified for use on the DataFilters field of a TrackingFileSet or
BatchEstimatorInv object.

GMAT implements two levels of data editing for estimation. First-level editing
criteria are specified on the DataFilters field of the TrackingFileSet instance.
At this level, the user may choose what data is admitted into the overall pool of
observations provided to the estimator. Any data excluded at the tracking file set
level will be immediately discarded and not available to the estimation process.

Second-level data editing is specified on the DataFilters field of the
BatchEstimatorInv instance. At this level, the user may choose what data is
used in the estimation state update. Residuals will be computed for any
observations admitted through first-level editing, but any data excluded at the
estimator level will be flagged as user edited, and will not affect the computation
of the state correction. This allows the user to evaluate the quality of untrusted
data against a solution computed using a trusted set of measurements.

A single AcceptFilter may employ multiple selection criteria (for example
simultaneously thinning different stations or data types by differing intervals).
Multiple criteria on a single filter are considered in an AND sense. When
multiple criteria are specified on a single filter, an observation must meet all
specified criteria to be accepted.

Multiple AcceptFilters with different selection criteria may be specified on a
single TrackingFileSet or BatchEstimatorInv. When multiple filters are
specified, these act in an OR sense. Data meeting criteria for any of the specified
filters will be accepted.



See Also RejectFilter, TrackingFileSet, BatchEstimatorInv



Fields

Field Description

DataTypes
List of data types
Data Type String Array
Allowed A set of any supported GMAT
Values measurement types, or 'All'
Access set
Default {All}
Value
Units N/A
Interfaces script
EpochFormat

Allows user to select format of the epoch

Data String
Type

Allowed UTCGregorian, UTCModJulian,



Values TAIGregorian, TAIModJulian,
TTGregorian, TTModJulian A1Gregorian,
Al1ModJulian, TDBGregorian,
TDBModJulian

Access set

Default TAIModJulian
Value

Units N/A

Interfaces script

FileNames

List of file names (a subset of the relevant
TrackingFileSet's FileName field) containing the
tracking data. If this field equals
From_AddTrackingConfig, then two things happen; (1)
All of the files in the relevant TrackingFileSet are used
as a starting point, and (2) Of the data in all of the files,
only the data defined by the AddTrackingConfig field
of the relevant TrackingFileSet are used. This field is
only applicable when the AcceptFilter is used on a
TrackingFileSet.

Data Type StringArray

Allowed valid file name, 'All', or
Values 'From_AddTrackingConfig'



Access set

Default {All}
Value

Units N/A

Interfaces  script

FinalEpoch
Final epoch of desired data to process
Data Type String
Allowed Values any valid epoch
Access set
Default Value latest day defined in GMAT
Units N/A
Interfaces script
InitialEpoch

Initial epoch of desired data to process



Data Type String

Allowed Values any valid epoch

Access set

Default Value earliest day defined in GMAT

Units N/A

Interfaces script

ObservedObjects
List of user-created tracked objects (e.g., name of the

Spacecraft resource being tracked)

Data Type Object Array

Allowed Values User defined observed object or 'All'

Access set

Default Value {All}

Units N/A



Interfaces script

RecordNumbers
A list of one or more single record numbers or spans of

record numbers to accept. Observation record numbers
are reported in the GMAT estimator output file. This
field is only applicable when the AcceptFilter is used on
the estimator level.

Data Type String array

Allowed Integers or spans of integers (see
Values examples)

Access set

Default Value {All}

Units N/A

Interfaces script

ThinMode
'Frequency' for record count frequency mode and "Time'
for time interval mode. This field is only applicable
when the AcceptFilter is used on a TrackingFileSet.

Data Type String



1

Allowed Values 'Frequency' or "Time

Access set

Default Value Frequency

Units N/A

Interfaces script

ThinningFrequency
If ThinMode is Frequency, the integer 'n' is used to
specify that every nth data point should be accepted. For
example, 3 specifies that every third data point, meeting
all the accept criteria, should be accepted and 1 specifies
that every data point, meeting all the accept criteria,
should be accepted. If ThinMode is Time, the integer 'n'
is a number of seconds between accepted observations,
using the first available observation as the anchor epoch.
For example, a value of 300 means that observations will
be accepted every 300 seconds, starting from the first
available observation. This field is only applicable when
the AcceptFilter is used on a TrackingFileSet.

Data Type Integer

Allowed Values Positive Integer

Access set



Default Value 1

Units Depends on ThinMode value

Interfaces script

Trackers
List of user-created trackers (e.g., name of the

GroundStation resource being used)

Data Object Array
Type

Allowed any valid user-created Tracker object (e.g.,
Values GroundStation) or 'All'

Access set

Default {All}
Value

Units N/A

Interfaces script




Remarks

Some fields of AcceptFilter are not applicable at either the first-level (tracking
file set) or second-level (estimator) editing stages. The RecordNumbers field
has no functionality when applied to an accept filter at the tracking file set level.
The FileNames, ThinningFrequency, and ThinMode fields have no
functionality when applied to an accept filter at the estimator level.

Use of combinations of instances of AcceptFilter and RejectFilter at both
levels is permitted.



Examples

First-level (TrackingFileSet) Data Editing

The following examples illustrate use of an AcceptFilter for first-level data
editing. At this level, the AcceptFilter instance should be assigned to the
DataFilters field of a TrackingFileSet. In these examples, only data meeting
the criteria specified by the accept filter will be admitted through. All other data
is immediately discarded.

This example shows how to create an AcceptFilter to sample the data at a
frequency of 1:10 (thinning the data to one tenth of its volume).

Create AcceptFilter af;
af.ThinningFrequency = 10;
Create TrackingFileSet estData;
estData.DataFilters = {af};

BeginMissionSequence;

The next example will accept all data from station GDS and accept every 5th
observation from station CAN. Only data from stations GDS and CAN will be
accepted.

Create AcceptFilter af1i;
Create AcceptFilter af2;

Create GroundStation GDS CAN;

afl.Trackers = {'GDS'};
af2.Trackers = {'CAN'};
af2.ThinningFrequency = 5;

Create TrackingFileSet estData;
estData.DataFilters = {afl, af2};

BeginMissionSequence;



The last example illustrates thinning data by time interval, using a 300-second
thinning interval.

Create AcceptFilter saf;

af.ThinMode
af.ThinningFrequency

'"Time';
300;

Create TrackingFileSet estData;
estData.DataFilters = {af};

BeginMissionSequence;
Second-level (estimator) Data Editing

The following examples illustrate use of an AcceptFilter for second-level data
editing. At this level, the AcceptFilter instance should be assigned to the
DataFilters field of a BatchEstimatorInv. In these examples, only data meeting
the criteria specified by the accept filter will be used in the estimation state
update. Residuals will be computed for all available data (all data admitted at the
first level), but data not accepted at the estimator level will be flagged as user
edited.

This example shows how to create an AcceptFilter to accept specific data
records by record number.

Create AcceptFilter af;

af.RecordNumbers = {10, 11, 20-150, 155-300};
Create BatchEstimatorInv bls;

bls.DataFilters = {af};

BeginMissionSequence;

The next example will accept only range data from station MAD over the time
span 10 Jun 2012 02:56 to 13:59.

Create AcceptFilter af;
Create GroundStation MAD;



af.InitialEpoch
af.FinalEpoch

'10 Jun 2012 02:56:00.000';
'10 Jun 2012 13:59:00.000';

af.Trackers = {'MAD'};
af.DataTypes = {'Range'};
af.EpochFormat = UTCGregorian;

Create BatchEstimatorInv bls;
bls.DataFilters = {af};

BeginMissionSequence;

The last example illustrates accepting all data from station MAD and only range
data from station CAN.

Create AcceptFilter af1 af2;
Create GroundStation MAD CAN;

afl.Trackers = {'MAD'};
af2.Trackers = {'CAN'};
af2.DataTypes = {'Range'};

Create BatchEstimatorInv bls;
bls.DataFilters = {afl1, af2};

BeginMissionSequence;



Antenna

Antenna — Transmits or receives an RF signal.



Description

A number of GMAT resources, GroundStation, Transponder, Receiver, and
Transmitter, use an Antenna resource to transmit and/or receive RF signals.

See Also: GroundStation, Transponder, Receiver, Transmitter




Fields

There are no fields for the Antenna resource.



Examples

This example shows how the Antenna resource is used.
Create Antenna SatTranponderAntenna DSNReceiverAntenna DSNTransmitte

Create Transponder SatTransponder;
SatTransponder.PrimaryAntenna = SatTranponderAntenna

Create Spacecraft Sat
Sat.AddHardware = {SatTransponder, SatTranponderAnte

Create Transmitter DSNTransmitter
DSNTransmitter.PrimaryAntenna = DSNTransmitterAntenna

Create Receiver DSNReceiver
DSNReceiver.PrimaryAntenna

DSNReceiverAntenna;

Create GroundStation DSN;
DSN.AddHardware = ...

{DSNTransmitter, DSNReceiver, DSNTransmitterAntenna, DSNReceiverAnt
BeginMissionSequence;

Since the Antenna resource currently has no fields and thus has no function, for
this GMAT release, we only need to create one Antenna resource that can be
used multiple times. Thus, the example above simplifies as shown below.

Create Antenna GenericAntenna;

Create Transponder SatTransponder;
SatTransponder.PrimaryAntenna

GenericAntenna

Create Spacecraft Sat
Sat.AddHardware

{SatTransponder, GenericAntenna}

Create Transmitter DSNTransmitter

DSNTransmitter.PrimaryAntenna = GenericAntenna
Create Receiver DSNReceiver
DSNReceiver.PrimaryAntenna = GenericAntenna;

Create GroundStation DSN;
DSN.AddHardware = ...

{DSNTransmitter, DSNReceiver, GenericAntenna}
BeginMissionSequence;



Array

Array — A user-defined one- or two-dimensional array variable



Description

The Array resource is used to store a one- or two-dimensional set of numeric
values, such as a vector or a matrix. Individual elements of an array can be used
in place of a literal numeric value in most commands.

Arrays must be dimensioned at the time of creation, using the following syntax:

Create Array anArray[rows, columns]
If only one dimension is specified, a row vector is created.

Array values are initialized to zero at creation. Values can be assigned
individually using literal numeric values or (in the Mission Sequence) Variable
resources, Array resource elements, resource parameters of numeric type, or
Equation commands that evaluate to scalar numeric values.

anArray(row, column) = value
If only one dimension is specified during assignment, row is assumed to be 1.

An Array can also be assigned as a whole in the Mission Sequence using
another Array resource or an Equation that evaluates to an array. Both sides of
the assignment must be identically-sized.

anArray = array expression

See Also: String, Variable



Fields

The Array resource has no fields; instead, the resource elements themselves are
set to the desired values.

Field Description

o The number of rows (during creation), or the row being addressed.

The total size of the array is rows x columns. This field is required.

Data Type Integer

Allowed Values 1 < rows <1000

Access set

Default Value 1

Units N/A

Interfaces GUI, script
columns

The number of columns (during creation), or the column being
addressed. The total size of the array is rows x columns. This field
is required.

Data Type Integer



Allowed Values 1 < columns <1000

Access set

Default Value 1

Units N/A

Interfaces GUI, script

value
The value of the array element being addressed.

Data Type Real number

Allowed Values - < value < o

Access set, get

Default Value 0.0

Units N/A

Interfaces GUI, script






GUI
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Edit

The GMAT GUI lets you create multiple Array resources at once without
leaving the window. To create an Array:

1.
2.

3.
4.

In the Array Name box, type the desired name of the array.

In the Row and Column boxes, type the desired number of rows and
columns, respectively. To create a one-dimensional array, set Row to 1.
Click the => button to create the array and add it to the list on the right.
Click the Edit button to edit the array element values.

You can create multiple Array resources this way. To edit an existing array in
this window, click it in the list on the right. Click Edit to change the element
values, or edit the Row and Column values. You must click the => button again
to save changes to the size of the array.
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Cancel Help

You can edit the elements of an Array by either clicking Edit while creating an
array, or by double-clicking the array in the resources tree in the main GMAT
window. The edit window allows you to change array elements individually
using the row and column lists and clicking Update, or by directly entering data
in the table in the lower portion of the window. The data table recognizes a few
different mouse and keyboard controls:

Click a cell once to select it

Click a selected cell again, double-click an unselected cell, or press F2 to
edit the value

Use the arrow keys to select adjacent cells
Click the corner header cell to select the entire table

Drag the column and row separators to adjust the row height or column

Double-click the row or column separators in the heading to auto-size the
row height or column width



Remarks

GMAT Array resources store an arbitrary number of numeric values organized
into one or two dimensions, up to a maximum of 1000 elements per dimension.
Internally, the elements are stored as double-precision real numbers, regardless
of whether or not fractional portions are present. Array resources can be created
and assigned using one or two dimension specifiers. This example shows the
behavior in each case:

% a 1s a row vector with 3 elements
Create Array a[3]

a(l) = 1 %
a(2) = 2 %
a(3) =3 %

same as a(1, 1) =1
same as a(1, 2) = 2
same as a(1, 3) = 3

% b is a matrix with 5 rows and 3 columns
Create Array b[5, 3]

b(1) =1 %
b(2) =2 %
b(3) =3 %
b(4) =4 %

same as b(1, 1) =1
same as b(1, 2) = 2
same as b(1, 3) = 3

error: b(1, 4) does not exist
row 4, column 3



Examples

Creating and reporting an array:

Create ReportFile aReport
Create Variable i idx1 idx2
Create Array fib[9]

BeginMissionSequence

fib(1)
fib(2)
For i=3:9
idx1 = i
idx2 =
fib(1)
EndFor
Report aReport fib

0
1

=dl
=2
fi

I PP

b(idx1) + fib(idx2)



Barycenter

Barycenter — The center of mass of selected celestial bodies



Description

A Barycenter is the center of mass of a set of celestial bodies. GMAT contains
two barycenter resources: a built-in SolarSystemBarycenter resource and the
Barycenter resource that allows you to build a custom Barycenter such as the
Earth-Moon barycenter. This resource cannot be modified in the Mission
Sequence.

See Also: LibrationPoint, CoordinateSystem, CelestialBody, SolarSystem, Color




Fields

Field Description

BodyNames
The list of CelestialBody resources included in the
Barycenter. Providing empty brackets sets the bodies to the
default list described below.
Data String array
Type
Allowed array of celestial bodies. You cannot add
Values bodies to the built-in
SolarySystemBarycenter resource. A
CelestialBody can only appear once in the
BodyNames list.
Access set
Default Earth, Luna
Value
Units N/A
Interfaces GUI, script
OrbitColor

Allows you to set available colors on user-defined
Barycenter object orbits. The barycenter orbits are drawn



using the OrbitView graphics resource. Colors on
Barycenter object can be set through a string or an integer
array. For example: Setting a barycenter's orbit color to red
can be done in the following two ways:
Barycenter.OrbitColor = Red Or
Barycenter.OrbitColor = [255 0 0]. This field can be
modified in the Mission Sequence as well.

Data Integer Array or String
Type

Allowed Any color available from the Orbit Color
Values Picker in GUI. Valid predefined color name or
RGB triplet value between 0 and 255.

Access set

Default Gold
Value

Units N/A

Interfaces GUI, script

TargetColor

Allows you to select available colors for Barycenter
object's perturbing orbital trajectories that are drawn during
iterative processes such as Differential Correction or
Optimization. The target color can be identified through a
string or an integer array. For example: Setting a
barycenter's perturbing trajectory color to yellow can be



done in following two ways: Barycenter.TargetColor =
Yellow or Barycenter.TargetColor = [255 255 0]. This
field can be modified in the Mission Sequence as well.

Data Integer Array or String
Type

Allowed Any color available from the Orbit Color
Values Picker in GUI. Valid predefined color name or
RGB triplet value between 0 and 255.

Access set

Default  DarkGray
Value

Units N/A

Interfaces GUI, script




GUI

- 'y

@Bar}rcenter-Bar}rcenterl == ][ == ]
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The Barycenter dialog box allows you to define the celestial bodies included in
a custom Barycenter. All celestial bodies, including user-defined bodies, are
available for use in a Barycenter and appear in either the Available Bodies list
or the Selected Bodies list. The example above illustrates the default
configuration which contains Earth and Luna.
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The SolarySystemBarycenter dialog box shown above is a built-in object and
you cannot modify its configuration. See the Remarks section for details
regarding the model for the SolarSystemBarycenter.



Remarks

Built-in SolarSystemBarycenter Object

The built-in SolarSystemBarycenter is modelled using the ephemerides
selected in the SolarySystem.EphemerisSource field. For example, if you
select DE421 for SolarSystem.EphemerisSource, then the barycenter location
is computed by calling the DE421 ephemeris routines. For DE and SPICE
ephemerides, the model for the solar system barycenter includes the planets and
several hundred minor planets and asteroids. Note that you cannot add bodies to
the SolarSystemBarycenter.

Custom Barycenter Objects

You can create a custom barycenter using the Barycenter resource. The position
and velocity of a Barycenter is a mass-weighted average of the position and

velocity of the included celestial bodies. In the equations below m;, r;, and v; are

respectively the mass, position, and velocity of the i body in the barycenter, and
r, and vy, are respectively the position and velocity of the barycenter.

Setting Colors On Barycenter Orbits

GMAT allows you to assign colors to barycenter orbits that are drawn using the



OrbitView graphics resource. GMAT also allows you to assign colors to
perturbing barycenter orbital trajectories which are drawn during iterative
processes such as differential correction or optimization. The Barycenter
object's OrbitColor and TargetColor fields are used to assign colors to both
orbital and perturbing trajectories. See the Fields section to learn more about
these two fields. Also see Color documentation for discussion and examples on
how to set colors on a barycenter orbit.




Examples

Define the state of a spacecraft in SolarSystemBarycenter coordinates.

Create CoordinateSystem SSB
SSB.0Origin = SolarSystemBarycenter
SSB.Axes = MJ2000Eq

Create ReportFile aReport

Create Spacecraft aSpacecraft
aSpacecraft.CoordinateSystem = SSB
aSpacecraft.X -27560491.88656896
aSpacecraft.yY 132361266 .8009069
aSpacecraft.z 57419875.95483227
aSpacecraft.VvX -29.78491261798486
aSpacecraft.vy 2.320067257851091
aSpacecraft.vz -1.180722388963864

BeginMissionSequence

Report aReport aSpacecraft.EarthMJ2000Eq.X aSpacecraft.EarthMJ2000Eq
aSpacecraft.EarthMJ2000Eq.Z

Report the state of a spacecraft in SolarSystemBarycenter coordinates.
Create CoordinateSystem SSB

SSB.0Origin = SolarSystemBarycenter

SSB.Axes = MJ2000E(q

Create Spacecraft aSpacecraft
Create ReportFile aReport

BeginMissionSequence

Report aReport aSpacecraft.SSB.X aSpacecraft.SSB.Y aSpacecraft.SSB.Zz
aSpacecraft.SSB.VX aSpacecraft.SSB.VY aSpacecraft.SSB.VZ

Create an Earth-Moon Barycenter and use it in a Sun-Earth-Moon
LibrationPoint.

Create Barycenter EarthMoonBary
EarthMoonBary.BodyNames = {Earth, Luna}



Create LibrationPoint SunEarthMoonlL2

SunEarthMoonL2.Primary = Sun
SunEarthMoonL2.Secondary = EarthMoonBary
SunEarthMoonL2.Point = L2

Create CoordinateSystem SEML2Coordinates
SEML2Coordinates.Origin = SunEarthMoonlL2
SEML2Coordinates.Axes = MJ2000Eq

Create Spacecraft aSpacecraft

GMAT aSpacecraft.DateFormat = UTCGregorian

GMAT aSpacecraft.Epoch = '09 Dec 2005 13:00:00.000'
GMAT aSpacecraft.CoordinateSystem = SEML2Coordinates
GMAT aSpacecraft.X -32197.88223741966

GMAT aSpacecraft.Y 211529.1500044117

GMAT aSpacecraft.z 44708.57017366499

GMAT aSpacecraft.VX 0.03209516489451751

GMAT aSpacecraft.Vvy 0.06086386504053736

GMAT aSpacecraft.vz 0.0550442738917212

Create ReportFile aReport
BeginMissionSequence

Report aReport aSpacecraft.EarthMJ2000Eq.X aSpacecraft.EarthMJ2000Eq
aSpacecraft.EarthMJ2000Eq.Z



BatchEstimatorinv

BatchEstimatorlnv — A batch least squares estimator



Description

A batch least squares estimator is a method for obtaining an estimate for a
parameter vector, x0, such that a performance index, which is a function of that
parameter, J = J(x0), is minimized. For our application, x0 typically includes the
spacecraft position and velocity at a specific epoch and the performance index is
a weighted sum of the squares of the measurement residuals.

See Also: TrackingFileSet, RunEstimator




Fields

Field Description

AbsoluteTol
Absolute Weighted RMS convergence criteria
tolerance
Data Type Real
Allowed Values Real >0
Access set
Default Value 0.001
Units dimensionless
Interfaces script
DataFilters

Defines filters to be applied to the data. One or
more filters of either type (AcceptFilter,
RejectFilter) may be specified. Rules
specified by data filters on a
BatchEstimatorInv are applied to determine
what data is accepted or rejected from the
computation of the state update.



Data
Type

Allowed
Values

Access

Default
Value

Units

Resource array

User defined instances of
AcceptFilter and RejectFilter
resources

set

None

N/A

Interfaces script

EstimationEpoch

Estimation Epoch. This is the epoch associated
with the "solve-fors." As of R2016A, this
epoch comes from the participants defined in
the Measurements field. In later releases,
additional options will be allowed.

Data Type

String

Allowed Values 'FromParticipants'

Access

set



Default Value 'FromParticipants'

Units N/A

Interfaces script

EstimationEpochFormat

Estimation Epoch format. This is the desired
input format for the EstimationEpoch field.
For release R2016A, the only allowed value is
'FromParticipants' which means that the
EstimationEpoch comes from the participants
defined in the Measurements field. In later
releases, additional options will be allowed.

Data Type String

Allowed Values 'FromParticipants'

Access set

\l

Default Value 'FromParticipants

Units N/A

Interfaces script

Freezelteration



Specifies which iteration to freeze the selection
of measurements that are edited out

Data Type integer

Allowed Values any positive integer

Access set

Default Value 4

Units N/A

Interfaces script

FreezeMeasurementEditing

Allows the selection of measurements that are
edited out to be frozen

Data Type true/false

Allowed Values true or false

Access set

Default Value false



Units N/A

Interfaces script

InversionAlgorithm
Algorithm used to invert the normal equations
Data Type String
Allowed Values Internal, Cholesky, Schur
Access set
Default Value Internal
Units N/A
Interfaces script
MatlabFile

File name for the output MATLAB file.
Leaving this parameter unset means that no
MATLAB file will be output.

Data Type String

Allowed Values Any valid file name.



Access

Default Value

Units

Interfaces

set

(unset)

N/A

script

MaxConsecutiveDivergences

Specifies maximum number of consecutive
diverging iterations allowed before batch
estimation processing is stopped

Data Type

integer

Allowed Values any positive integer

Access

Default Value

Units

Interfaces

set

N/A

script




MaximumlIterations Specifies maximum number of iterations
allowed for batch estimation

Data Type integer

Allowed Values any positive integer

Access set

Default Value 15

Units N/A

Interfaces script

Measurements
Specifies a list of measurements used for batch

estimation

Data Type ObjectArray

Allowed one or more valid
Values TrackingFileSet objects

Access set



Default empty list
Value

Units N/A

Interfaces script

OLSEAdditiveConstant

Additive constant used for outer loop sigma

editing (OLSE)

Data Type Real

Allowed Values any real number

Access set

Default Value 0.0

Units N/A

Interfaces script
OLSEInitialRMSSigma

Initial predicted root-mean-square value used
for outer loop sigma editing (OLSE)

Data Type Real



Allowed Values Real > 0.0

Access set

Default Value 3000.0

Units dimensionless

Interfaces script

OLSEMultiplicativeConstant
Multiplicative constant used for outer loop

sigma editing (OLSE)

Data Type Real

Allowed Values Real > 0.0

Access set

Default Value 3.0

Units dimensionless



Interfaces script

OLSEUseRMSP
Flag used to specify editing algorithm used for
outer loop sigma editing (OLSE) for iterations
greater than 1. See Behavior of Outer Loop
Sigma Editing (OLSE) in the Remarks
section for details.

Data Type true/false

Allowed Values true or false

Access set

Default Value true

Units dimensionless

Interfaces script

Propagator
Propagator object used for batch estimation

Data Type Object

Allowed Values valid Propagator object



Access set

Default Value None

Units N/A

Interfaces script

RelativeTol
Relative Weighted RMS convergence criteria
tolerance
Data Type Real
Allowed Values Real >0
Access set
Default Value 0.0001
Units dimensionless
Interfaces script
ReportFile

Specifies the name of estimation report file



Data Type String

Allowed string containing a valid file
Values name

Access set

Default 'BatchEstimatorInv' +
Value instancename + '.data’
Units N/A

Interfaces script

ReportStyle

Specifies the type of estimation report. The
Normal style excludes reporting of observation
TAI, partials, and frequency information. For
this current GMAT version, for normal GMAT
operation, only the Normal style is an allowed
choice.

Data Type String

Allowed Values Normal

Access set



Default Value Normal

Units N/A

Interfaces script

ResetBestRMSIfDiverging

If set true and the estimation process has
diverged, then the Best RMS is reset to the
current RMS.

Data Type true/false

Allowed Values true or false

Access set

Default Value false

Units N/A

Interfaces script

ShowAllResiduals

Allows residuals plots to be shown



Data Type On/Off

Allowed Values On or Off

Access set

Default Value On

Units N/A

Interfaces script

ShowProgress
Allows detailed output of the batch estimator

to be shown in the message window

Data Type true/false

Allowed Values true or false

Access set

Default Value true

Units N/A



Interfaces script

UselnitialCovariance

If set true, a priori error covariance term is
added to the estimation cost function. This
option should be set to true when estimating
with an applied
Spacecraft.OrbitErrorCovariance,
Spacecraft.CdSigma, Spacecraft.CrSigma,
or ErrorModel.BiasSigma. See the Remarks

section below for some restrictions on the use
of this field.

Data Type true/false

Allowed Values true or false

Access set

Default Value false

Units N/A

Interfaces script




Remarks

Navigation Requires Use of Fixed Step Numerical
Integration

GMAT navigation requires use of fixed stepped propagation. The
BatchEstimatorInv resource has a Propagator field containing the name of the
Propagator resource that will be used during the estimation process. As shown
in the Note below, there are some hard restrictions on the choice of error control
specified for the ForceModel resource associated with your propagator.

Note

For batch estimation, the ErrorControl parameter specified for
the ForceModel resource associated with the
BatchEstimatorInv Propagator must be set to 'None.' Of
course, when using fixed step control, the user must choose a
step size, as given by the Propagator InitialStepSize field,
for the chosen orbit regime and force profile, that yields the
desired accuracy.

Behavior of Convergence Criteria

GMAT has four input fields, RelativeTol, AbsoluteTol, MaximumlIterations,
and MaxConsecutiveDivergences that are used to determine if the estimator has
converged after each new iteration. Associated with these input fields are the two
convergence tests shown below:

Absolute Weighted RMS convergence criteria
Weighted RMScurrent <= AbsoluteTol
Relative Weighted Root Mean Square (RMS) convergence criteria

[IRMSP — RMSB|/ RMSB <= RelativeTol



where

RMSB = smallest Weighted RMS achieved during the current and previous
iterations

RMSP = predicted Weighted RMS of next iteration

Batch estimation is considered to have converged when either or both of the
above criteria is met within MaximumlIterations iterations or less.

Batch estimation is considered to have diverged when number of consecutive
diverging iterations is equal to or greater than MaxConsecutiveDivergences or
the number of iterations exceeds MaximumIterations.

Behavior of Outer Loop Sigma Editing (OLSE)

GMAT has four input fields, OLSEMultiplicativeConstant,
OLSEAdditiveConstant, OLSEUseRMSP, and OLSEInitialRMSSigma, that
are used to 'edit’ (i.e., reject or throw away) bad measurement data. There are
plans to have both an inner loop and and outer loop iteration editing procedure.
Currently, only the outer loop iteration editing procedure is implemented. This
editing procedure is done on a per iteration basis. Data that is edited is not used
to calculate the state vector estimate for the current iteration but the data is
available as a candidate measurement for subsequent iterations. On the first outer
loop iteration, data is edited if

|[Weighted Measurement Residual| > OLSEInitialRMSSigma

where the Weighted Measurement Residual for a single given measurement is
given by

(O-C)/NoiseSigma

and where NoiseSigma is the input noise (one sigma) for the measurement type
associated with the given measurement. On subsequent outer loop iterations, the
data is edited if

|[Weighted Measurement Residual| > OLSEMultiplicativeConstant * RMS
+ OLSEAdditiveConstant



The editing algorithm above depends upon the user input value of
OLSEUseRMSP. If OLSEUseRMSP = True, then RMS = WRMSP where
WRMSP is the predicted weighted RMS calculated at the end of the previous
iteration. Otherwise, If OLSEUseRMSP = False, then RMS = WRMS where
WRMS is the actual weighted RMS calculated at the end of the previous
iteration.

Behavior of Freezing Measurement Editing

GMAT has two input fields, FreezeMeasurementEditing and Freezelteration,
that are used to determine if and when to 'freeze’ (i.e., no longer change) the
selection of measurements which are edited out by the Outer Loop Sigma Editor.
Freezing the measurement editing only takes place when
FreezeMeasurementEditing is true.

If freezing is enabled, the selection of measurements to edit is locked after the
iteration specified by Freezelteration. If the value of Freezelteration is 1, the
estimator uses the value of OLSEInitialRMSSigma, as defined above, to
determine which measurements are used to calculate the first iteration of the
state vector deviation vector. Afterwards, the same measurements edited out by
the initial RMS sigma filter are edited out for the remainder of the iterations. If
the value of Freezelteration is 2 or greater, the estimator uses the above defined
outer loop sigma editing to determine the state vector deviation vector up to the
iteration specified by Freezelteration, at which point whichever measurements
are edited out by the outer loop sigma editor stay edited out for the remainder of
the iterations. Frozen measurements that are edited out will retain the edit flag
the outer loop sigma editor used the iteration they were edited out.

Freezing measurement editing can be useful in situations where a solution takes
an excessive number of iterations to converge and latter iterations are only
editing a small amount of data. If this is the case, enabling the editing freeze on
an appropriate iteration will generally force the solution to converge quickly
after reaching the frozen iteration.

Propagator Settings

The BatchEstimatorInv resource has a Propagator field containing the name
of the Propagator resource that will be used during the estimation process. The
minimum step size, MinStep, of your propagator should always be set to 0.



UselnitialCovariance Restrictions

As mentioned in the Field spec above, if this field is set to true, then the a priori
error covariance term is added to the estimation cost function. For the current
GMAT release, there are some restrictions on the use of this field as given below.

1. The user must input the a priori orbit state covariance in the EarthMJ200Eq
coordinate system.

2. If the user is solving for the Cartesian orbit state, e.g., Sat.SolveFors =
{CartesianState}, then the input a priori orbit state covariance must be in
terms of Cartesian elements. Likewise, if the user is solving for the
Keplerian orbit state, e.g., Sat.SolveFors = {KeplerianState}, then the input
a priori orbit state covariance must be in terms of Keplerian elements.

3. If the user is solving for the Keplerian orbit state, e.g., Sat.SolveFors =
{KeplerianState}, then the input a priori orbit state covariance must be
expressed in terms in terms of spacecraft Mean Anomaly (MA) and not
True Anomaly (TA). To be more specific, in this situation, the diagonal
elements of the 6x6 orbit state error covariance are the variance of the SMA
(kmA2), eccentricity (dimensionless), INC (deg/2), RAAN (deg/2), AOP
(deg/2), and MA (deg/?2). Note that, in this case, we require the a priori
covariance to be input in terms of MA even though, for the current release
of GMAT, the associated orbit state can not be set using MA.

Interactions

Resource Description

TrackingFileSet
resource Must be created in order to tell the BatchEstimatorInv

resource which data will be processed

Propagator Used by GMAT to generate the predicted orbit
resource

RunEstimator
command Must use the RunEstimator command to actually process

the data defined by the BatchEstimatorInv resource




Examples

Below is an example of a configured batch estimator instance. In this example,
estData is an instance of a TrackingFileSet and ODProp is an instance of

Propagator.
Create BatchEstimatorInv bat;

bat.ShowProgress
bat.Measurements
bat.AbsoluteTol
bat.RelativeTol
bat.MaximumIterations
bat.MaxConsecutiveDivergences
bat.Propagator
bat.ShowAllResiduals
bat.OLSEInitialRMSSigma
bat.OLSEMultiplicativeConstant
bat.OLSEAdditiveConstant
bat.InversionAlgorithm
bat.EstimationEpochFormat
bat.EstimationEpoch
bat.ReportStyle
bat.ReportFile

BeginMissionSequence;

true;

{estData}

0.000001;

0.001;

10;

3;

ODProp;

Oon;

3000,

3;

0;

"Internal';
'"FromParticipants';
'"FromParticipants';
"Normal';
'BatchEstimator_Report.txt';

For a comprehensive example of reading in measurements and running the
estimator, see the Chapter 14, Orbit Estimation using DSN Range and Doppler

Data tutorial.



CelestialBody

CelestialBody — A celestial body model



Description

The CelestialBody resource is a model of a celestial body containing settings for
the physical properties, as well as the models for the orbital motion and
orientation. GMAT contains built-in models for the Sun, the 8 planets, Earth's
moon, and Pluto. You can create a custom CelestialBody resource to model a
planet, asteroid, comet, or moon. This resource cannot be modified in the
Mission Sequence.

See Also: SolarSystem, Barycenter, LibrationPoint, CoordinateSystem, Color




Fields

Field Description

3DModelFile
Allows you to load 3D models for your celestial
.3ds model formats.
Data Type String
Allowed Values . 3ds model formats only
Access set
Default Value empty
Units N/A
Interfaces GUI, script
3DModelOffsetX

This field lets you translate a celestial body in +X
body's coordinate system.

Data Type Real

Allowed Values -3.5 <= Real <= 3.5



Access set

Default Value 0.000000

Units N/A

Interfaces GUI, script
3DModelOffsetY

This field lets you translate a celestial body in +Y

body's coordinate system.

Data Type Real

Allowed Values -3.5 <= Real <=3.5

Access set

Default Value 0.000000

Units N/A

Interfaces GUI, script
3DModelOffsetZ

This field lets you translate a celestial body in +Z
body's coordinate system.



Data Type Real

Allowed Values -3.5 <= Real <=3.5

Access set

Default Value 0.000000

Units N/A

Interfaces GUI, script

3DModelRotationX
Allows you to perform a fixed rotation of a celest

X-axis of central body's coordinate system.

Data Type Real

Allowed Values -180 <= Real <= 180

Access set

Default Value 0.000000

Units Deg.



Interfaces GUI, script

3DModelRotationY

Allows you to perform a fixed rotation of a celest

Y-axis of central body's coordinate system.

Data Type Real

Allowed Values -180 <= Real <= 180

Access set

Default Value 0.000000

Units Deg.

Interfaces GUI, script
3DModelRotationZ

Allows you to perform a fixed rotation of a celest
Z-axis of central body's coordinate system.

Data Type Real

Allowed Values -180 <= Real <= 180



Access set

Default Value 0.000000

Units Deg.

Interfaces GUI, script
3DModelScale

Allows you to apply a scale factor to the celestial

Data Type Real

Allowed Values 0.001 <= Real <= 1000

Access set

Default Value 10

Units N/A

Interfaces GUI, script
CentralBody

The central body of the celestial body. The centra
primarily by the GUI.



Data Type String

Allowed Comet, Planet, Asteroid, or Moon
Values

Access set

Default For Comet, Planet, Asteroid, the di
Value Moon, the default is Earth.

Units N/A

Interfaces GUI, script

EquatorialRadius
The body's equatorial radius.

Data Type Real

Allowed Values Real >0

Access set

Default Value 6378.1363

Units km



Interfaces GUI, script

EopFileName
Optional Earth EOP file to use instead of the EOP

startup file. Note that an emtpy string is the defau
empty string, the EOP file defined in the GMAT s
field is only valid for Earth .

Data Type Filename

Allowed Values Valid file name

Access set

Default Value "

Units N/A

Interfaces script

FileName
Path and/or name of texture map file used in Orb

Data String
Type

Allowed A file of the following format:
Values



.jpeg, .bmp, .png, .gif, .tif, .pcx, .pnic

Access set

Default '../data/graphics/texture/Gener
Value

Units N/A

Interfaces GUI, script

Flattening
The body's polar flattening.

Data Type Real

Allowed Values Real >=0

Access set

Default Value 0.0033527

Units N/A

Interfaces GUI, script




FrameSpiceKernelName List of SPICE FK files to load for this body. Used
properties for use with ContactLocator and Eclij
Remarks.

Data Type String array

Allowed Paths to valid SPICE FK files
Values
Access set

Default Value Varies for built-in bodies. Empt

bodies.
Units N/A
Interfaces GUI, script

The body's gravitational parameter.

Data Type Real

Allowed Values Real >0

Access set



Default Value 398600.4415

Units kmA3/s/2

Interfaces GUI, script
NAIFId

NAIF Integer ID for body.

Data Type Integer

Allowed Values Integer

Access set

Default Value -123456789

Units N/A

Interfaces GUI, script

NutationUpdatelInterval
The time interval between updates for Earth nutat

NutationUpdatelnterval = 3600, then GMAT only
hourly basis.

Data Type Real



Allowed Values Real >=0

Access set

Default Value 60

Units sec.

Interfaces GUI, script

OrbitColor

Allows you to set available colors on built-in or u
CelestialBody objects that are drawn on the 3D C
displays. Colors on a CelestialBody object can be
an integer array. For example: Setting a celestial t
can be done in the following two ways: Celestia
Red or Celestialbody.OrbitColor = [255 0 0]
modified in the Mission Sequence as well.

Data Integer Array or String
Type

Allowed Any color available from the Orbit C
Values Valid predefined color name or RGB
and 255.

Access set



Default  Orchid for user-defined Planet, Pink

Value Comet, Salmon for user-defined Ast
defined Moon
Units N/A

Interfaces GUI, script

OrbitSpiceKernelName
List of SPK kernels. Providing emtpy brackets un
kernels.
Data Type Reference array
Allowed Values valid array of SPK kernels
Access set
Default Value N/A
Units N/A
Interfaces GUI, script
OrientationEpoch

The reference epoch for orientation data.

Data Type String



Allowed Values 6116.0 <= Epoch <= 58127.5

Access

Default Value

Units

Interfaces

set

21545.0

A1 Modified Julian Epoch

GUI, script

PlanetarySpiceKernelName

List of SPICE PCK files to load for this body. Ust
body properties for use with ContactLocator anc

Remarks.

Data Type

Allowed
Values

Access

Default Value

Units

String array

Paths to valid SPICE PCK files

set

Varies for built-in bodies. Empt
bodies.

N/A



Interfaces GUI, script

PosVelSource
The model for user-defined body orbit ephemered
only supports a single ephemeris model for custor
this is set using PosVelSource field. The default {
SPICE and it is not necessary to configure this fie
of GMAT. This field has no effect for built-in bod
Data Type String
Allowed SPICE
Values
Access set
Default Value DEA405 for built-in bodies. SPIC

bodies.

Units N/A
Interfaces GUI, script

RotationConstant

The body's spin angle at the orientation epoch.

Data Type Real



Allowed Values Real

Access set

Default Value 190.147

Units deg

Interfaces GUI, script
RotationDataSource

Deprecated.

Data String

Type

Allowed IAUSimplified, DEFile, FK5IAU19

Values Remarks for more details as not all o
all bodies.
Access none

Default See the Remarks for how the default
Value on the celestial body

Units N/A



Interfaces GUI

RotationRate
The body's spin rate.
Data Type Real
Allowed Values Real
Access set
Default Value 360.9856235
Units deg/day
Interfaces GUI, script
SpiceFrameld

SPICE ID of body-fixed frame. Used to define ce
for use with ContactLocator and EclipseLocato!

Data Type String

Allowed Valid SPICE frame ID (text or n
Values

Access set



Default Value Varies for built-in bodies. Empt

bodies.

Units N/A

Interfaces GUI, script
SpinAxisDECConstant

The declination of the body's spin axis at the orier

Data Type Real

Allowed Values Real

Access set

Default Value 90

Units deg

Interfaces GUI, script
SpinAxisDECRate

The rate of change of the body's spin axis declinar

Data Type Real



Allowed Values Real

Access set

Default Value -0.5570

Units deg/century

Interfaces GUI, script

SpinAxisRAConstant
The right ascension of the body's spin axis at the «

Data Type Real

Allowed Values Real

Access set

Default Value -0.641

Units deg

Interfaces GUI, script




SpinAxisRARate The rate of change of the body's right ascension.

Data Type Real

Allowed Values Real

Access set

Default Value -0.641

Units deg/century

Interfaces GUI, script

TargetColor
Allows you to set available colors on CelestialBo

orbital trajectories that are drawn during iterative

Differential Correction or Optimization. The targe
through a string or an integer array. For example:

perturbing trajectory color to yellow can be done

Celestialbody.TargetColor = Yellow Or Celes
= [255 255 0] . This field can be modified in the
well.

Data Integer Array or String
Type

Allowed Any color available from the Orbit C



Values Valid predefined color name or RGB
and 255.

Access set

Default  Dark Gray for built-in or user-define
Value Asteroid and Moon

Units N/A

Interfaces GUI, script

TextureMapFileName
Allows you to load a texture map file for your cel

Data Type String

Allowed Values texture map files in jpeg format

Access set

Default Value 'GenericCelestialBody. jpg'

Units N/A

Interfaces GUI, script






GUI

The CelestialBody GUI has three tabs that allow you to set the physical
properties, orbital properties, and the orientation model. CelestialBody
resources can be used in ForceModels, CoordinateSystems, LibrationPoints,
and Barycenters, among others. For a built-in CelestialBody, the Orbit and
Orientation tabs are largely inactive and the behavior is discussed below. To
create a custom Asteroid - as an example of how to create a custom
CelestialBody - perform the following steps.

1. In the Resource Tree, expand the SolarSystem folder.
2. Right-click Sun and select Add -> Asteroid.
3. In the New Asteroid dialog box, type the desired name.

—_;l SolarSystem
=I-{J) Spedal Points
il % SolarSystemBarycenter

----- @ Mg Add 3 Planet
..... @ Ve GFIEH ot
..... @ Mz Close Asteroid :

The CelestialBody Properties tab is shown below. GMAT models all bodies as
spherical ellipsoids and you can set the Equatorial Radius, Flattening, and Mu
(gravitational parameter) on this dialog box, as well as the texture map used in
OrbitView graphics displays.



&) Planet - Earth o =[]

Properties |Gr|:}it | Orientation | Visualization

Options
Mu 398600.4415 km*3/sec”2
Equatorial Radius 53781363 km
Flattening 00033527
PCK Files 070425 _370426_predict.bpc

720101 _070425.bpc

000101 151228 151006.bp

4 i

| Add || Remove |

O

The CelestialBody Orbit tab is shown below for creating a custom
CelestialBody. Settings on this panel are inactive for built-in celestial bodies
and the ephemeris for built-in bodies is configured on the SolarSystem dialog.
The CentralBody field is populated automatically when the object is created
and is always inactive. To configure SPICE ephemerides for a custom body,
provide a list of SPK files and the NAIF ID. See the discussion below for more
information on configuring SPICE files.



@ Planet - aPlanet El@
Properties | Orbit |Grientation Visualization

Epherneris Data

Central Body o

Ephemeris Source | spjcE =
NAIF ID -123456789

SPK Files

| Add || Remove |

¥

The CelestialBody Orientation tab is shown below. Most settings on this panel
are inactive for built-in celestial bodies and exceptions for the Earth and Earth's
moon are described further below. To define the orientation for a celestial body
you provide a reference epoch, the initial orientation at the reference epoch, and
angular rates. See the discussion below for a more detailed description of the
orientation model.



i =

@ Planet - aPlanet El@

| Properties | Orbit | Orientation | Visualization

Orientation Data

Spin Axis RA Constant deg

Spin Axis RA Rate 0641 deg/century
Spin Axis DEC Constant g deg

Spin Axis DEC Rate -0.5570000000000001 deg/century
Rotation Constant 190,147 deg
Rotation Rate 350.9856235 deg/day

Rotation Data Source IAUSimplified

Spice Frame Id

FK Files

| Add || Remove |

0

The Earth and Earth's moon have unique fields to configure their orientation
models. The Earth has an extra field called NutationUpdatelnterval that can be
used when lower fidelity, higher performance simulations are required.



i =

&) Planet - Earth o =[]

| Properties | Orbit | Orientation | Visualization

Orientation Data

Spin Axis RA Constant | deg

Spin Axis RA Rate -0641 deg/century
Spin Axis DEC Constant | g deg

Spin Axis DEC Rate -0.5570000000000001 deg/century
Rotation Constant 190.147 deg
Rotation Rate 350.9856235 deg/day
Mutation Update Interval gp SEeC

Rotation Data Source EKSIALLO80

Spice Frame Id ITRFS3

FK Files

| Add || Remove |

¥

The CelestialBody Visualization tab is shown below for creating a custom
CelestialBody. On the visualization tab, you can set data such as 3d model of a
celestial body, texture file, translation and rotation of a celestial body on all three
axes, scale of the 3D model as well as assign orbit and target colors to the orbit
of the body.



Properties | Orbit | Orientation | Visualization

Vizualization Data

Tesxture File ModifiedBlueMarble.jpg

30 Model File

30 Model Offset X

30 Model OffsetY

30 Model OffsetZ

3D Model Rotation X

3D Model Rotation ¥

3D Model Rotation Z

3D Model Scale 10

Colors

deg
deg

deg

0 lwocJ[ Ay | |uuConce ]




Remarks

Celestial body orientation model

The orientation of built-in celestial bodies is modeled using high fidelity theories
on a per-body basis. The orientation of Earth is modeled using IAU-1976/FK5.
The orientation of the Moon is modeled using lunar librations from the DE file.
The orientation of Neptune is modeled using [AU-2002. The remaining built-in
celestial body orientations are modeled using data published by the IAU/IAG in
"Report of the IAU/IAG Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites: 2000".

The orientation of a custom CelestialBody is modeled by providing three angles
and their rates based on IAU/IAG conventions. The figure below illustrates the
angles. The angles a0, 60, and W, are respectively the SpinAxisRAConstant,
SpinAxisDECConstant, and RotationConstant. The angular rates are
respectively SpinAxisRARate, SpinAxisDECRate, and RotationRate. All
angles are referenced to the X-Y plane of the ICRF axis system. The constant
values SpinAxisRA Constant, SpinAxisDECConstant, and RotationConstant
are defined to be the values at the epoch defined in OrientationEpoch.

(g, 0g) .
el North pole of planet

| Prime Meridian

by ._‘../j_“_ g
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XY Plane of ICRF

Below is an example illustrating how to configure a CelestialBody according to
the IAU 2006 recommended values for Vesta. Note the orientation epoch



typically used by the IAU is 01 Jan 2000 12:00:00.00.000 TDB and this must be
converted to A1ModJulian which can easily be performed using the Spacecraft

Orbit dialog box.

Create Asteroid Vesta

Vesta.CentralBody = Sun

% Note that currently the only available

% format for OrientationEpoch is AlModJulian
Vesta.OrientationEpoch 21544.99962789878

Vesta.SpinAxisRAConstant = 301.9
Vesta.SpinAxisRARate = 0.9
Vesta.SpinAxisDECConstant = 90.9
Vesta.SpinAxisDECRate = 0.0
Vesta.RotationConstant = 292.9

Vesta.RotationRate 1617.332776

Note: The orientation models available for Earth and Luna have additional fields
for configuration. Earth has an additional field called NutationUpdateInterval
that controls the update frequency for the Nutation matrix. For high fidelity
applications, NutationUpdatelInterval should be set to zero. The
RotationDataSource field for Earth and Luna defines the theory used for the
rotation of those bodies. Currently, only FK5IAU1980 and DE are available for
Earth and Luna respectively and the field is displayed for information purposes
only.

Setting colors on orbits of celestial bodies

GMAT allows you to assign colors to orbits of celestial bodies that are drawn in
the OrbitView graphics display windows. GMAT also allows you to assign
colors to perturbing celestial body orbital trajectories drawn during iterative
processes such as differential correction or optimization. The CelestialBody
object's OrbitColor and TargetColor fields are used to assign colors to both
orbital and perturbing trajectories. See the Fields section for description of these
two fields. Also see Color documentation for discussion and examples on how to
set colors on a celestial body.

Configuring orbit ephemerides

The ephemerides for built-in celestial bodies is specified by the
SolarSystem.EphemerisSource field and the same source is used for all built-in
bodies. Ephemerides for a custom CelestialBody are provided by SPICE files.



Archives of available SPICE files can be found at the JPL. NAIF site and the
Solar System Dynamics site . JPL provides utilities to create custom SPICE files
in the event existing kernels don't satisfy requirements for your application. To
create custom SPICE kernels, see the documentation provided by JPL. The list
of NAIF Ids for celestial bodies is located here.

Note that the DE files model the barycenter of planetary systems. So for Jupiter,
when using DE405 for example, you are modeling Jupiter's location as the
barycenter of the Jovian system. SPICE kernels differentiate the barycenter of a
planetary system from the location of the individual bodies. So when using
SPICE to model Jupiter, you are modeling the location of Jupiter using Jupiter's
center of mass.

To specify the SPICE kernels for a custom CelestialBody, use the NAIFId,
CentralBody, and SourceFileName fields. GMAT is distributed with an SPK
file for CERES which has NAIF ID 2000001. Here is how to configure a
CelestialBody to use the CERES SPICE ephemeris data.

Create CelestialBody Ceres
Ceres.CentralBody = Sun
Ceres.SourceFilename = '../data/planetary_ephem/spk/ceres_1900_2100.

Note: GMAT currently only supports a single ephemeris model for custom
bodies (SPICE) and this is set using PosVelSource field. The default for
PosVelSource is SPICE and it is not necessary to configure this field in the
current version of GMAT.

Warning

NAIF distributes SPICE kernels for many celestial bodies and
each kernel is consistent with a particular primary ephemeris
release such as DE421. For high precision analysis, it is
important to ensure that the ephemerides used for a custom
celestial body are consistent with the ephemeris source
selection in the SolarSystem.EphemerisSource field. SPICE
kernels are typically distributed with a ".cmt" file and in that
file the line that contains the ephemeris model looks like this:



ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/
ftp://ssd.jpl.nasa.gov/pub/eph/planets/bsp/
http://naif.jpl.nasa.gov/naif/documentation.html
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html

Planetary Ephemeris Number: DE-0421/LE-0421

Configuring physical properties

GMAT models all celestial bodies as spherical ellipsoids. To define the physical
properties use the Flattening, EquatorialRadius, and Mu fields.

Configuring for event location

GMAT's event location subsystem (consisting of ContactLocator and
EclipseLocator) uses celestial body definitions from the SPICE toolKkit.
Properites such as radius, flattening, ephemeris, and orientation must be
configured separately for use with the event locators.

CelestialBody shape and orientation are configured via SPICE PCK files,
loaded from two sources in the following order:

1. SolarSystem.PCKFilename

2. Sun.PlanetarySpiceKernelName (in list order), followed by Mercury,
Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Luna

3. User-defined bodies

Data loaded last takes precedence over data loaded first, if there is a conflict.
Note that because the SPICE kernel pool is shared for the entire run, a PCK file
loaded for Plute may override data loaded by Sun, if the file contains conflicting
data. Note that this order isn't absolute—coordinate systems that with an SPK-
defined origin load differently, for example. To determine the exact load order,
see the GmatLog. txt file.

Note

GMAT's SPICE kernel load order is based on many factors, and
can be unpredictable. Therefore, it is important that the kernels
referenced by a mission be consistent. For example, NAIF's
de421.bsp and mar085. bsp are consistent, because they are
both based on the DE421 model. Inconsistent kernels can cause
unpredictable behavior based on the order in which they are




loaded.

The body-fixed frame for a CelestialBody is defined on the Orientation tab by
the SpiceFrameld and SpiceFrameKernelFile fields. The SpiceFrameld
contains the SPICE ID for the body-fixed frame, which may be built-in or
defined via external FK files. External FK files can be loaded by adding them to
the SpiceFrameKernelFile list for each body. These files are loaded just after
PlanetarySpiceKernelName for each body. The list of built-in frames is
available as an appendix in the SPICE documentation. GMAT's default frames
are:

e Earth: ITRF93
e L.una: MOON_PA
e Other default bodies: IAU_CelestialBody

The Earth ITRF93 frame is defined by three high-fidelity orientation PCK files,
shown below. More information on these files can be found in the NAIF
aareadme. txt file.

e earth_start_end_predict.bpc: long-term low-fidelity EOP predictions
e earth_start_end.bpc: long-term low-fidelity historical EOP

e earth_start_end_filedate.bpc: near-term high-fidelity EOP history and
predictions

The Luna MOON_PA frame is defined by an orientation PCK file and a frame-
defining FK file, shown below. More information can be found in the NAIF
PCK aareadme. txt file and the FK aareadme. txt file. Other versions of the
MOON_PA frame are available from NAIF.

e moon_pa_de421_1900-2050.bpc: Moon orientation consistent with DE421
PA frame

e moon_080317.tf: MOON_PA frame definition


http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/aareadme.txt
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/aareadme.txt
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/aareadme.txt

Examples

Configure a CelestialBody to model Saturn's moon Titan. Note you must obtain
the SPICE kernel named "sat288.bsp" from here and place it in the directory

identified in the script snippet below

Create Moon Titan

Titan.NAIFId = 606
Titan.OrbitSpiceKernelName = { .
'../data/planetary_ ephem/spk/sat288 bsp'
}
Titan.SpiceFrameId = 'TAU_TITAN'
Titan.EquatorialRadius = 2575
Titan.Flattening =0
Titan.Mu = 8978.5215
Titan.PosVelSource = 'SPICE'
Titan.CentralBody = 'Saturn'
Titan.RotationDataSource = 'TAUSimplified'
Titan.OrientationEpoch = 21545
Titan.SpinAxisRAConstant = 36.41
Titan.SpinAxisRARate = -0.036
Titan.SpinAxisDECConstant = 83.94
Titan.SpinAxisDECRate = -0.004
Titan.RotationConstant = 189.64
Titan.RotationRate = 22.5769768


ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/

CoordinateSystem

CoordinateSystem — An axis and origin pair



Description

A CoordinateSystem in GMAT is defined as an origin and an axis system. You
can select the origin of a CoordinateSystem from various points such as a
CelestialBody, Spacecraft, GroundStation, or LibrationPoint to name a few.
GMAT supports numerous axis systems such as J2000 equator, J2000 ecliptic,
ICRF, ITRF, Topocentric, and ObjectReferenced among others.
CoordinateSystems are tightly integrated into GMAT to enable you to define,
report, and visualize data in coordinate systems relevant to your application.
This resource cannot be modified in the Mission Sequence.

See Also: Spacecraft, Calculation Parameters, OrbitView




Fields

Field Description

AlignmentVectorX
The x component of the AlignmentVector
expressed in the local frame (for example,
expressed in the LocalAlignedConstrained
frame). Used for the following axis systems:
LocalAlignedConstrained.
Data Real
Type
Allowed -o0 <Real < o (norm of
Values AlignmentVector >= 1e-9)
Access set
Default 1
Value
Units N/A
Interfaces gui,script

AlignmentVectorY

The y component of the AlignmentVector
expressed in the local frame (for example,
expressed in the LocalAlignedConstrained



frame). Used for the following axis systems:
LocalAlignedConstrained.

Data Real
Type

Allowed -0 <Real < o (norm of
Values AlignmentVector>= 1e-9)

Access set
Default 0
Value

Units N/A

Interfaces gui, script

AlignmentVectorZ
The z component of the AlignmentVector

expressed in the local frame (for example,
expressed in the LocalAlignedConstrained
frame). Used for the following axis systems:
LocalAlignedConstrained.

Data Real
Type

Allowed -0 <Real < o (norm of



Values

Access

Default
Value

Units

AlignmentVector>= 1e-9)

set

0

N/A

Interfaces gui,script

Axes

The axes of the CoordinateSystem.

Data
Type

Allowed
Values

Access

Default

String

MJ2000Eq, MJ2000Ec, ICRF,
ITRF, MODEq, MODECc,
TODEq, TODEc, MOEEq,
MOEEc, TOEEq, TOEEc,
ObjectReferenced, Equator,
BodyFixed, BodyInertial, GSE,
GSM, Topocentric,
BodySpinSun

set

MJ2000Eq



Value

Units N/A

Interfaces GUI, script

ConstraintVectorX

The x component of the ConstraintVector
expressed in the local frame (for example,
expressed in the LocalAlignedConstrained
frame). Used for the following axis systems:
LocalAlignedConstrained.

Data Real
Type

Allowed -0 <Real < o (norm of

Values ConstraintVector>= le-9)
Access set

Default 0

Value

Units N/A

Interfaces gui,script




ConstraintVectorY The y component of the ConstraintVector
expressed in the local frame (for example,
expressed in the LocalAlignedConstrained
frame). Used for the following axis systems:
LocalAlignedConstrained.

Data Real

Type

Allowed -0 <Real < o (norm of

Values ConstraintVector>= le-9)

Access set

Default 0

Value

Units N/A

Interfaces gui,script
ConstraintVectorZ

The z component of the ConstraintVector
expressed in the local frame (for example,
expressed in the LocalAlignedConstrained
frame). Used for the following axis systems:
LocalAlignedConstrained.

Data Real



Type

Allowed -0 <Real < o (norm of

Values ConstraintVector>= le-9)
Access set

Default 1

Value

Units N/A

Interfaces gui,script

ConstraintReferenceVectorX

The x component of the
ConstraintReferenceVector expressed in the
ConstraintCoordinateSystem. Used for the
following axis systems:
LocalAlignedConstrained.

Data Real
Type

Allowed -0 <Real < o (norm of

Values ConstraintReferenceVector>=
le-9)



Access set

Default 0
Value
Units N/A

Interfaces gui,script

ConstraintReferenceVectorY
The y component of the

ConstraintReferenceVector expressed in the
ConstraintCoordinateSystem. Used for the
following axis systems:
LocalAlignedConstrained.

Data Real
Type

Allowed -0 <Real < o (norm of

Values ConstraintReferenceVector>=
le-9)

Access set

Default 0

Value

Units N/A



Interfaces gui,script

ConstraintReferenceVectorZ
The z component of the

ConstraintReferenceVector expressed in the
ConstraintCoordinateSystem. Used for the
following axis systems:
LocalAlignedConstrained.

Data Real
Type

Allowed -0 <Real < o (norm of

Values ConstraintReferenceVector>=
le-9)

Access set

Default 1

Value

Units N/A

Interfaces gui,script

Constraint Coordinate
System The coordinate system for the

ConstraintReferenceVector. Used for the
following axis sytems:



LocalAlignedConstrained.

Data Type Resource

Allowed Values CoordinateSystem

Access set

Default Value EarthMJ2000Eq

Units N/A

Interfaces gui,script

Epoch
The reference epoch for the
CoordinateSystem. This field is only used for
TOE amd MOE acxis types.

Data Type String

Allowed Values A1 Modified Julian epoch.

Access set

Default Value 21545



Units Modified Julian Date

Interfaces GUI, script
Origin
The origin of the CoordinateSystem.
Data String
Type
Allowed CelestialBody, Spacecraft,
Values LibrationPoint, Barycenter,
SolarSystemBarycenter,
GroundStation
Access set
Default Earth
Value
Units N/A
Interfaces GUI, script
Primary

The primary body for an ObjectReferenced
axis system. This field is only used if Axes =
ObjectReferenced. See the discussion below
for more information on how Primary and



Secondary are used to compute
ObjectReferenced axes.

Data String
Type

Allowed CelestialBody, Spacecraft,

Values LibrationPoint, Barycenter,
SolarSystemBarycenter,
GroundStation

Access set

Default Earth
Value

Units N/A

Interfaces GUI, script

ReferenceObject
The reference object for a

LocalAlignedConstrained axis system. The
axes are computed such that the
AlignmentVector in the body frame is aligned
with the vector pointing from the Origin to the
ReferenceObject.

Data Resource

Type



Allowed A Resource that has coordinates.

Values For example: CelestialBody,
Spacecraft, LibrationPoint,
Barycenter,
SolarSystemBarycenter,
GroundStation.

Access set

Default Luna
Value

Units N/A

Interfaces gui,script

Secondary

The secondary body for an ObjectReferenced
axis system. This field is only used if Axes =
ObjectReferenced. See the discussion below
for more information on how Primary and
Secondary are used to compute
ObjectReferenced axes.

Data String
Type

Allowed CelestialBody, Spacecraft,
Values LibrationPoint, Barycenter,
SolarSystemBarycenter,



GroundStation

Access set

Default Luna

Value

Units N/A

Interfaces GUI, script

XAxis

The x-axis definition for an ObjectReferenced
axis system. This field is only used if Axes =
ObjectReferenced. See the discussion below
for more information on how the axes are
computed for ObjectReferenced axis systems.

Data Type

Allowed
Values

Access

Default Value

Units

String

R,V, N, -R, -V, -N, or
empty

set

N/A



Interfaces GUI, script

YAxis
The y-axis definition for an ObjectReferenced
axis system. This field is only used if Axes =
ObjectReferenced. See the discussion below
for more information on how the axes are
computed for ObjectReferenced axis systems.

Data Type String

Allowed Values R,V, N, -R, -V,-N, or empty

Access set

Default Value No Default

Units N/A

Interfaces GUI, script

Zaxis
The z-axis for an ObjectReferenced axis
system. This field is only used if Axes =
ObjectReferenced. See the discussion below
for more information on how the axes are
computed for ObjectReferenced axis systems.



Data Type String

Allowed Values R,V, N, -R, -V,-N, or empty

Access set

Default Value N

Units N/A

Interfaces GUI, script
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The New Coordinate System dialog box shown above appears when you add a
new coordinate system in the Resource Tree. You provide a name for the new
CoordinateSystem in the Coordinate System Name box and configure the
CoordinateSystem by selecting the Origin and Axes types along with other
settings. Some settings, such as Primary and Secondary, are only active for
particular Axes types and those dependencies are described below.
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When editing an existing CoordinateSystem, you use the CoordinateSystem
dialog box. The default configuration is shown above.
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If you select ObjectReferenced for the Axes type, then the Primary,
Secondary, X, Y, and Z fields are activated. You can use the ObjectReferenced
axis system to define coordinates based on the motion of two space objects such
as Spacecraft, CelestialBodies, or Barycenters to name a few. See the
discussion below for a detailed definition of the ObjectReferenced axis system.
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If you select TOEEq, TOEEc, MOEE(q, or MOEECc as the axis type, then the
A1MJd Epoch field is activated. Use the A1MJd Epoch field to define the
reference epoch of the coordinate system.
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If you select LocalAlignedConstrained as the axes Type, then
CoordinateSystem dialog displays the fields illustrated above for configuring
the axes.



Remarks

Computation of J2000-Based Axes using IAU76/FK5
Reduction

FKS5 reduction is the transformation that rotates a vector expressed in the
MJ2000Eq system to the EarthFixed CoordinateSystem. There are many
coordinate systems that are intermediate rotations in FK5 reduction and this
section describes how the following axes types are computed: MJ2000Eq,
MJ2000Ec, EarthFixed, MODEq, MODEc,TODEq, TODEc, MODEgq,
MODEc, TODEq, and TODECc axes systems.

The time varying orientation of the Earth is complex due to interactions between
the Earth and its external environment (the Sun and Moon and Planets) and
internal dynamics. The orientation cannot currently be modelled to the accuracy
required by many space applications and FK5 reduction is a combination of
dynamical modelling along with daily corrections from empirical observations.
The figure below illustrates components of motion of the Earth with respect to
inertial space. The primary components of the motion of the Earth with respect
to inertial space are Precession, Nutation, Sidereal time and, Polar Motion.



Ecliptic North Pole

-

Ecliptic Plane

Equatonal Plane

The principal moment of inertia is defined as the Celestial Ephemeris Pole. Due
to the fact that Earth’s mass distribution changes with time, the Celestial
Ephemeris Pole is not constant with respect to the Earth’s surface. Precession is
defined as the coning motion that the Celestial Ephemeris Pole makes around the
ecliptic north pole. The other principal component of the motion of the Celestial
Ephemeris Pole is called nutation and is the oscillation in the angle between the
Celestial Ephemeris Pole and the north ecliptic pole. The theory of Precession
and Nutation come from dynamical models of the Earth’s motion. The Sidereal
time is the rotation of the Earth about the Celestial Ephemeris Pole. The sidereal
time model is a combination of theory and observation. The Earth’s spin axis
direction is not constant with respect to the Earth’s crust and its motion is called
Polar Motion. A portion of polar motion is due to complicated dynamics, and a
portion is due to unmodelled errors in nutation. Polar motion is determined from
observation.

The True of Date (TOD) systems and Mean of Date (MOD) systems are
intermediate coordinate systems in FK5 reduction and are commonly used in
analysis. The details of the computations are contained in the GMAT
mathematical specification and the figure below is included here for summary
purposes. The following abbreviations are used in the figure. PM: Polar Motion,



ST: Sideral Time, NUT: Nutation, PREC: Precession, ITRF: International
Terrestrial Reference Frame (Earth Fixed), PEF: Pseudo Earth Fixed, TODEQ:
True of Date Equator, TODEc: True of Date Ecliptic, MODEc: Mean of Date
Ecliptic, MODEQ: Mean of Date Equator, FK5: J2000 Equatorial Inertial (IAU-
1976/1980).
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Computation of ICRF and ITRF Axes using IAU2000
Conventions

The computation for the International Celestial Reference Frame (ICRF) and the
International Terestrial Reference Fame (ITRF) are computed using the TAU
2000A theory with the 2006 update to precession. GMAT uses the Celestial
Intermediate Origin (CIO) method of transformation which avoids issues
associated with precession and nutation. In the CIO model, the Celestial
Intermediate Pole unit vector is modeled using the variables X and S and the
CIO locator, s. For performance reasons, GMAT interpolates X, Y, and s, from
precomputed values stored in the file named ICRF_Table.txt distributed with
GMAT.

GMAT models the rotation from ICRF to MJ200Eq by rotating through the
EarthFixed frame which is identical for both the old (1976) and new (2000)
theories. For performance reasons, the conversion from ICRF to MJ2000Eq is
interplolated from pre-computed values of the Euler axis and angle between
those frames. Note that GMAT does not currenty support the IAU2000 body



fixed frame for Earth and that model will be included in a future release.

Computation of ObjectReference Axis System

An ObjectReferenced axis system is defined by the motion of one object with
respect to another object. The figure below defines the six principal directions of
an Object Referenced axis system. One is the relative position of the secondary
object with respect to the primary object, denoted by r, expressed in the inertial
frame. The second is the relative velocity, denoted here by v, of the secondary
object with respect to the primary, expressed in the inertial frame. The third
direction is the vector normal to the direction of motion which is denoted by n
and is calculated using n =r x v. The remaining three directions are the negative
of the first three yielding the complete set: {R,-R, V,-V, N,-N}.
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You define an Object Referenced axis system by defining two axes from the
three available [X, Y, and Z] using the six available options {R,-R, V,-V, N,-N}.
Given two directions, GMAT constructs an orthogonal, right-handed
CoordinateSystem. For example, if you choose the x-axis to be in the direction
of R and the z-axis to be in the direction of N, GMAT completes the right-
handed set by setting the y-axis in the direction of NxR. If you choose
permutations that result in a non-orthogonal or left-handed CoordinateSystem,
GMAT will throw an error message.




Warning

GMAT currently assumes that terms involving the cross and dot
product of acceleration are zero when computing
ObjectReferenced rotation matrices.

Overview of Built-in Coordinate Systems

Name Origin Axes

EarthMJ2000Eq Earth MJ2000Eq

Description

An Earth equator inertial system based
on IAU-1976/FKS5 theory with 1980
update to nutation.

EarthMJ2000Ec Earth MJ2000Ec

An Earth ecliptic inertial system based
on IAU-1976/FKS5 theory with 1980
update to nutation.

EarthFixed Earth BodyFixed

An Earth fixed system based on TAU-
1976/FK5 theory with 1980 update to
nutation.

EarthICRF Earth ICRF

An Earth equator inertial system based
on IAU-2000 theory with 2006 update
to precession.

Description of Axes Types

Axes Name Origin

B .
a5€ Description

Limitations Type
IAU-

MJ2000Eq None



1976
FK5

An inertial coordinate system.
The nominal x-axis points
along the line formed by the
intersection of the Earth’s mean
equatorial plane and the mean
ecliptic plane (at the J2000
epoch), in the direction of
Aries. The z-axis is normal to
the Earth’s mean equator at the
J2000 epoch and the y-axis
completes the right-handed
system. The mean planes of the
ecliptic and equator, at the
J2000 epoch, are computed
using IAU-1976/FKS5 theory
with 1980 update for nutation.

MJ2000Ec

None

IAU-
1976
FK5

An inertial coordinate system.
The x-axis points along the line
formed by the intersection of
the Earth’s mean equator and
the mean ecliptic plane at the
J2000 epoch. The z-axis is
normal to the mean ecliptic
plane at the J2000 Epoch and
the y-axis completes the right-
handed set. This system is
computed using [AU-
1976/FKS5 theory with 1980
update for nutation.

ICRF

None

TAU-
2000

An inertial coordinate system.
The axes are close to the mean
Earth equator and pole at the
J2000 epoch, and at the Earth’s
surface, the RSS difference



between vectors expressed in
MJ2000Eq and ICREF is less
than 1 m. Note that since
MJ2000Eq and ICRF are
imperfect realizations of
inertial systems, the
transformation between them is
time varying. This axis system
is computed using IAU-2000A
theory with 2006 update for
precession.

LocalAlignedConstrained None

IAU-
1976
FK5

The
LocalAlignedConstrained
axis system is an aligned
constrained system based on
the position of the
ReferenceObject with respect
to the Origin and is computed
using the well known Triad
algorithm. The axes are
computed such that the
AlignmentVector, defined as
the components of the
alignment vector expressed in
the LocalAlignedConstrained
system, is aligned with the
position of the ReferenceBody
w/t/t the origin. The rotation
about the AlignmentVector is
resolved by minimizing the
angle between the
ContraintVector, defined as
the constraint vector expressed
in the
LocalAlignedConstrained
system, and the



ConstraintReferenceVector,
defined as the constraint
reference vector expressed in
the
ConstraintCoordinateSystem.
The alignment vectors and the
constraint vectors cannot have
zero length. Similarly, the cross
products of the constraint
vector and alignment vector
cannot have zero length.

MODEq

None

IAU-
1976
FK5

A quasi-inertial coordinate
system referenced to Earth’s
mean equator at the current
epoch. The current epoch is
defined by the context of use
and usually comes from the
spacecraft or graphics epoch.
This system is computed using
[AU-1976/FKS5 theory with
1980 update for nutation.

MODECc

None

IAU-
1976
FK5

A quasi-inertial coordinate
system referenced to the mean
ecliptic at the current epoch.
The current epoch is defined by
the context of use and usually
comes from the spacecraft or
graphics epoch. This system is
computed using [AU-
1976/FK5 theory with 1980
update for nutation.

TODEq

None

TAU-
1976

A quasi-inertial coordinate



FK5

system referenced to Earth’s
true equator at the current
epoch. The current epoch is
defined by the context of use
and usually comes from the
spacecraft or graphics epoch.
This system is computed using
[AU-1976/FKS5 theory with
1980 update for nutation.

TODECc

None

IAU-
1976
FK5

A quasi-inertial coordinate
system referenced to Earth’s
true ecliptic at the current
epoch. The current epoch is
defined by the context of use
and usually comes from the
spacecraft or graphics epoch.
This system is computed using
[AU-1976/FKS5 theory with
1980 update for nutation.

MOEEq

None

IAU-
1976
FK5

A quasi-inertial coordinate
system referenced to Earth’s
mean equator at the reference
epoch. The reference epoch is
defined on the
CoordinateSystem object.
This system is computed using
[AU-1976/FKS5 theory with
1980 update for nutation.

MOEECc

None

IAU-
1976
FK5

A quasi-inertial coordinate

system referenced to the mean
ecliptic at the reference epoch.
The reference epoch is defined



on the CoordinateSystem
object. This system is
computed using IAU-
1976/FK5 theory with 1980

update for nutation.

TOEEq

None

IAU-
1976
FK5

A quasi-inertial coordinate
system referenced to Earth’s
true equator at the reference
epoch. The reference epoch is
defined on the
CoordinateSystem object.
This system is computed using
[AU-1976/FKS5 theory with
1980 update for nutation.

TOEECc

None

IAU-
1976
FK5

A quasi-inertial coordinate
system referenced to the true
ecliptic at the reference epoch.
The reference epoch is defined
on the CoordinateSystem
object. This system is
computed using [AU-
1976/FKS5 theory with 1980
update for nutation.

ObjectReferenced

None

IAU-
1976
FK5

An ObjectReferenced system
is a CoordinateSystem whose
axes are defined by the motion
of one object with respect to
another object. See the
discussion above for a detailed
description of the
ObjectReferenced axis
system.



Equator Celestial [AU-
Body 1976 A true of date equator axis

FK5 system for the celestial body
selected as the origin. The
Equator system is defined by
the body’s equatorial plane and
its intersection with the ecliptic
plane, at the current epoch. The
current epoch is defined by the
context of use and usually
comes from the spacecraft or
graphics epoch. See the
Remarks for Celestial body
models for axis system
definitions for celestial bodies.

BodyFixed Celestial [AU-
Body or 1976 The BodyFixed axis system is

Spacecraft FK5 referenced to the body equator
and the prime meridian of the
body. See the Remarks for
Celestial body models for axis
system definitions for celestial
bodies.

When Origin is a Spacecraft,
the axes are computed using
the Spacecraft’s attitude
model. Note: not all attitude
models compute body rates. In
the case that body rates are not
available on a spacecraft, a
request for velocity
transformations using a
BodyFixed axis system will
result in an error.




BodylInertial

Celestial
Body

IAU-

1976
FK5

An inertial system referenced
to the equator ( at the J2000
epoch ) of the celestial body
selected as the origin of the
CoordinateSystem. Because
the BodyInertial axis system
uses different theories for
different bodies, the following
definitions describe only the
nominal axis configurations.
The x-axis points along the line
formed by the intersection of
the bodies equator and earth’s
mean equator at J2000. The z-
axis points along the body's
spin axis direction at the J2000
epoch. The y-axis completes
the right-handed set. For Earth,
the BodylInertial axis system is
identical to the MJ2000Eq
system. See the Remarks for
Celestial body models for axis
system definitions for all other
celestial bodies.

GSE

None

IAU-
1976
FK5

The Geocentric Solar Ecliptic
system. The x-axis points from
Earth to the Sun. The z-axis is
defined as the cross product
RxV where R and V are earth’s
position and velocity with
respect to the sun respectively.
The y-axis completes the right-
handed set. The GSE axes are
computed using the relative
motion of the Earth and Sun
even if the origin is not Earth.



GSM

None

IAU-
1976
FK5

The Geocentric Solar Magnetic
system. The x-axis points from
Earth to the Sun. The z-axis is
defined to be orthogonal to the
x-axis and lies in the plane of
the x-axis and Earth’s magnetic
dipole vector. The y-axis
completes the right-handed set.
The GSM axes are computed
using the relative motion of the
Earth and Sun even if the
origin is not Earth.

Topocentric

Earth

IAU-
1976
FK5

A GroundStation-based
coordinate system. The y-axis
points due East and the z-axis
is normal to the local horizon.
The x-axis completes the right
handed set.

BodySpinSun

Celestial
Body

IAU-
1976
FK5

A celestial body spin-axis-
referenced system. The x-axis
points from the celestial body
to the Sun. The y-axis is
computed as the cross product
of the x-axis and the body's
spin axis. The z-axis completes
the right-handed set.




Examples

Define a Spacecraft’s state in EarthFixed coordinates.

Create Spacecraft aSpacecraft
aSpacecraft.CoordinateSystem = EarthFixed

aSpacecraft.X = 7100
aSpacecraft.Y = 0
aSpacecraft.zZ = 1300
aSpacecraft.vX = 0
aSpacecraft.vy = 7.35
aSpacecraft.vz = 1

Report a Spacecraft’s state in GroundStation Topocentric coordinates.

Create Spacecraft aSat
Create Propagator aProp
Create GroundStation aStation

Create CoordinateSystem stationTopo
stationTopo.0Origin aStation
stationTopo.Axes Topocentric

Create ReportFile aReport

aReport.Filename = 'ReportFilel.txt'

aReport.Add = {aSat.stationTopo.X aSat.stationTopo.Y aSat.stationTop
aSat.stationTopo.VX aSat.stationTopo.VY aSat.stationT

BeginMissionSequence

Propagate aProp(aSat) {aSat.ElapsedSecs = 8640.0}

View a trajectory in an ObjectReferenced, rotating-LibrationPoint system.
% Create the Earth-Moon Barycenter and Libration Point

Create Barycenter EarthMoonBary

EarthMoonBary.BodyNames = {Earth,Luna};

Create LibrationPoint SunEarthMoonL1

SunEarthMoonL1.Primary = Sun;
SunEarthMoonL1.Secondary = EarthMoonBary
SunEarthMoonL1.Point = L1;

% Create the coordinate system



Create CoordinateSystem RotatingSEML1Coord

RotatingSEML1Coord.Origin = SunEarthMoonL1
RotatingSEML1Coord.Axes = ObjectReferenced
RotatingSEML1Coord.XAxis =R
RotatingSEML1Coord.ZAxis =N
RotatingSEML1Coord.Primary = Sun
RotatingSEML1Coord.Secondary = EarthMoonBary

% Create the spacecraft and propagator
Create Spacecraft aSpacecraft
aSpacecraft.DateFormat
aSpacecraft.Epoch
aSpacecraft.CoordinateSystem RotatingSEML1Coord
aSpacecraft.X -32197.88223741966

aSpacecraft.yY 211529.1500044117

aSpacecraft.z 44708.57017366499

UTCGregorian

aSpacecraft.VvX 0.03209516489451751
aSpacecraft.vy 0.06100386504053736
aSpacecraft.Vvz 0.0550442738917212

Create Propagator aPropagator
aPropagator.FM = aForceModel
aPropagator.MaxStep = 86400

Create ForceModel aForceModel
aForceModel.PointMasses = {Earth,Sun, Luna}

% Create a 3-D graphic
Create OrbitView anOrbitView

'09 Dec 2005 13:00:00.000'

anOrbitView.Add = {aSpacecraft, Earth, Sun,
anOrbitView.CoordinateSystem = RotatingSEML1Coord
anOrbitView.ViewPointReference = SunEarthMoonL1
anOrbitView.ViewPointVector = [-1500000 0 0 ]
anOrbitView.ViewDirection = SunEarthMoonL1
anOrbitView.ViewUpCoordinateSystem = RotatingSEML1Coord
anOrbitView.Axes = Off

anOrbitView.XYPlane = Off

BeginMissionSequence

Propagate aPropagator(aSpacecraft,

{aSpacecraft.ElapsedDays

Luna}

180})



ContactLocator

ContactLocator — A line-of-sight event locator between a target Spacecraft and
an observer GroundStation



Description

Note

ContactLocator is a SPICE-based subsystem that uses a
parallel configuration for the solar system and celestial bodies
from other GMAT components. For precision applications, care
must be taken to ensure that both configurations are consistent.
See Remarks for details.

A ContactLocator is an event locator used to find line-of-sight contact events
between a Spacecraft and a GroundStation. By default, a ContactLocator
generates a text event report listing the beginning and ending times of each line-
of-sight event, along with the duration. Contact location can be performed over
the entire propagation interval or over a subinterval, and can optionally adjust
for light-time delay and stellar aberration. Contact location can be configured to
search for times of occultation of other CelestialBody resources that may block
line of sight, and can limit contact events to a specified minimum elevation angle
configured on the GroundStation.

Contact location can be performed between one Spacecraft (Target) and any
number of GroundStation resources (Observers). Each target-observer pair is
searched individually, and results in a separate segment of the resulting report.
All pairs must use the same interval and search options; to customize the options
per pair, use multiple ContactLocator resources.

Third-body occultation searches can be included by listing one or more
CelestialBody resources in the OccultingBodies list. Any configured
CelestialBody can be used as an occulting body, including user-defined ones. By
default, no occultation searches are performed; the central body of the
GroundStation is included automatically in the basic line-of-sight algorithm.

By default, the ContactLocator searches the entire interval of propagation of

the Target, after applying certain endpoint light-time adjustments; see Remarks
for details. To search a custom interval, set UseEntireInterval to False and set
InitialEpoch and FinalEpoch accordingly. Note that these epochs are assumed



to be at the observer, and so must be valid when translated to the target via light-
time delay and stellar aberration, if configured. If they fall outside the
propagation interval of the Target, GMAT will display an error.

The contact locator can optionally adjust for both light-time delay and stellar
aberration, using either a transmit sense (Observer — Target) or receive sense
(Observer — Target) depending on the value of LightTimeDirection. The light-
time direction affects the valid search interval by limiting searches near the start
of the interval (for transmit sense) or the end of the interval (for receive sense).
See Remarks for details. Stellar aberration is only applied for the line-of-sight
portion of the search; it has no effect during occultation searches.

The event search is performed at a fixed step through the interval. You can
control the step size (in seconds) by setting the StepSize field. An appropriate
choice for step size is no greater than half the period of the line-of-sight function
—that is, half the orbit period for an elliptical orbit. If third-body occultations
are used, the maximum step size is no greater than the minimum-duration
occultation event you wish to find. See Remarks for details.

GMAT uses the SPICE library for the fundamental event location algorithm. As
such, all celestial body data is loaded from SPICE kernels for this subsystem,
rather than GMAT's own CelestialBody shape and orientation configuration. See
Remarks for details.

Unless otherwise mentioned, ContactLocator fields cannot be set in the mission
sequence.

See Also: CelestialBody, GroundStation, Spacecraft, Eclipsel.ocator, FindEvents




Fields

Field Description

Filename
Name and path of the contact report file. This field can
be set in the mission sequence.
Data Type String
Allowed Values Valid file path
Access set
Default Value 'ContactLocator.txt'
Units N/A
Interfaces GUI, script
FinalEpoch

Last epoch to search for contacts, in the format
specified by InputEpochFormat. The epoch is relative
to the Observer, and must map to a valid epoch in the
Target ephemeris interval, including any light time.
This field can be set in the mission sequence.

Data Type String



Allowed
Values

Access

Default
Value

Units

Interfaces

Valid epoch in available spacecraft
ephemeris

set

'21545.138"

ModifiedJulian epoch formats: days

Gregorian epoch formats: N/A

GUI, script

InitialEpoch

First epoch to search for contacts, in the format
specified by InputEpochFormat. The epoch is relative
to the Observer, and must map to a valid epoch in the
Target ephemeris interval, including any light time.
This field can be set in the mission sequence.

Data Type

Allowed
Values

Access

Default

String

Valid epoch in available spacecraft
ephemeris

set

'21545"



Value

Units ModifiedJulian epoch formats: days

Gregorian epoch formats: N/A

Interfaces  GUI, script

LightTimeDirection
Sense of light-time calculation: transmit from observer
or receive at observer. The clock is always hosted on
the Target.
Data Type Enumeration
Allowed Values Transmit, Receive
Access set
Default Value Transmit
Units N/A
Interfaces GUI, script
Observers

List of the contact observer objects. Can be any
number of GMAT GroundStation resources.



Data Type List of GroundStation resources

Allowed Any existing GroundStation
Values resources
Access set

Default Value Empty list

Units N/A

Interfaces GUI, script

OccultingBodies

List of occulting bodies to search for contacts. Can be
any number of GMAT CelestialBody-type resources,
such as Planet, Moon, Asteroid, etc. Note that an
occulting body must have a mass (e.g. not
LibrationPoint or Barycenter).

Data List of CelestialBody resources (e.g.
Type Planet, Asteroid, Moon, etc.)

Allowed Any existing CelestialBody-class
Values resources

Access set



Default Empty list
Value

Units N/A

Interfaces GUI, script

RunMode
Mode of event location execution. 'Automatic'
triggers event location to occur automatically at the end
of the run. 'Manual' limits execution only to the
FindEvents command. 'Disabled' turns of event
location entirely.
Data Type Enumeration
Allowed Values Automatic, Manual, Disabled
Access set
Default Value 'Automatic’
Units N/A
Interfaces GUI, script

StepSize

Step size of event locator. See Remarks for discussion



of appropriate values.

Data Type

Real

Allowed Values StepSize > 0

Access

Default Value

Units

Interfaces

set

10

GUI, script

Target

The target Spacecraft resource to search for contacts.

Data Type

Allowed
Values

Access

Default Value

Spacecraft resource

Any existing Spacecraft resource

set

First configured Spacecraft
resource



Units N/A

Interfaces GUI, script

UseEntirelnterval

Search the entire available Target ephemeris interval,
after adjusting the end-points for light-time delay as
appropriate. See Remarks for details. This field can be
set in the mission sequence.

Data Type Boolean

Allowed Values true, false

Access set

Default Value true

Units N/A

Interfaces GUI, script

UseLightTimeDelay

Use light-time delay in the event-finding algorithm.
The clock is always hosted on the Observer.

Data Type Boolean



Allowed Values true, false

Access set

Default Value true

Units N/A

Interfaces GUI, script

UseStellarAberration

Use stellar aberration in addition to light-time delay in
the event-finding algorithm. Light-time delay must be
enabled. Stellar aberration only affects line-of-sight
searches, not occultation searches.

Data Type Boolean

Allowed Values true, false

Access set

Default Value true

Units N/A



Interfaces GUI, script

WriteReport
Write an event report when event location is executed.

This field can be set in the mission sequence.

Data Type Boolean

Allowed Values true, false

Access set

Default Value true

Units N/A

Interfaces GUI, script




GUI

e

@‘ Contactlocator - Contactlocatorl EI@

Target - :

DefaultSC /| Use Entire Interval
Occulting Bodies | [7] Earth & Epoch Format TAIModlulian

[T Jupiter i

Pl Luna Initial Epach 21544.999993960206

g Final Epoch 21545.13799960206

"] Mercury E

Meptune
"/ Pluto [¥] Use light-time delay
| Saturn 7| Use stellar aberration

"} Sun : : A

] Uranus - Light-time direction Transmit -
Observers | GroundStationl Step size s )
Filename ContactLocatorl b EI
Run Mode |Automatic "|

[¥] Write Report

) [Look ][ sy | [ cancel  Hep

The default ContactLocator GUI for a new resource is shown above. You can
choose one Spacecraft from Target, which is populated by all the Spacecraft
resources currently configured in the mission. In the Observers list, you can
check the box next to all GroundStations you want to search for contacts to.

To search for third-body occultations, check the boxes next to any applicable
CelestialBody resources in the Occulting Bodies list. This list shows all
celestial bodies currently configured in the mission. Note that each occultation
search will increase the execution time of the overall search.

You can configure the output via Filename, Run Mode, and Write Report near
the bottom. If Write Report is enabled, a text report will be written to the file
specified in Filename. The search will execute during FindEvents commands
(for Manual or Automatic modes) and automatically at the end of the mission



(for Automatic mode), depending on the Run Mode.

You can configure the search interval via the options in the upper right. Uncheck
Use Entire Interval to set the search interval manually. See the Remarks section
for considerations when setting the search interval.

You can control the search algorithm via the options in the bottom right.
Configure light-time and stellar aberration via the check boxes next to each, and
select the signal direction via the Light-time direction selection.

To control the fidelity and execution time of the search, set the Step size
appropriately. See the Remarks section for details.



Remarks

Data configuration

The ContactLocator implementation is based on the NAIF SPICE toolkit,
which uses a different mechanism for environmental data such as celestial body
shape and orientation, planetary ephemerides, body-specific frame definitions,
and leap seconds. Therefore, it is necessary to maintain two parallel
configurations to ensure that the event location results are consistent with
GMAT's own propagation and other parameters. The specific data to be
maintained is:

e Planetary shape and orientation:

o GMAT core: CelestialBody.EquatorialRadius, Flattening,
SpinAxisRAConstant, SpinAxisRARate, etc.

o ContactLocator: SolarSystem.PCKFilename,
CelestialBody.PlanetarySpiceKernelName

¢ Planetary ephemeris:

o GMAT core: SolarSystem.DEFilename, or
(SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName, CelestialBody.NAIFId)

o ContactLocator: SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName, CelestialBody. NAIFId

e Body-fixed frame:
o GMAT core: built-in

o ContactLocator: CelestialBody.SpiceFrameld,
CelestialBody.FrameSpiceKernelName

e Leap seconds:


http://naif.jpl.nasa.gov/naif/

o GMAT core: startup file LEAP_SECS_FILE setting

o ContactLocator: SelarSystem.L.SKFilename

Note

For precise applications, the Earth shape must be consistent in
both subsystems to ensure consistent placement of a
GroundStation. The following script lines make the two
definitions consistent.

SolarSystem.PCKFilename = '..\data\planetary_ coeff\pck00010.t
Earth.EquatorialRadius = 6378.1366
Earth.Flattening = 0.00335281310845547

See SolarSystem and CelestialBody for more details.

Search interval

The ContactLocator search interval can be specified either as the entire
ephemeris interval of the Target, or as a user-defined interval. Each mode offers
specific behavior related to handling of light-time delay and discontinuous
intervals.

If UseEntireInterval is true, the search is performed over the entire ephemeris
interval of the Target, including any gaps or discontinuities. If light-time delay
is enabled, the search interval is truncated by the approximate light time to allow
SPICE to determine the exact light-time delay between the participants during
the search. If LightTimeDirection is Transmit, the beginning of the interval is
truncated. If LightTimeDirection is Receive, the end of the interval is
truncated. In either case, the other end of the interval is trimmed slightly via
bisection to avoid stepping beyond the end of the ephemeris due to numeric
precision issues. This trimming is typically less than 1 s. The endpoints of gaps
or discontinuities are not modified, so these are not fully supported if light-time
delay is enabled. If light-time delay is disabled, the entire interval is used
directly, with no endpoint manipulation.

If UseEntireInterval is false, the provided InitialEpoch and FinalEpoch are



used to form the search interval directly. This interval is consistent with the
Observer clock, and does not support the inclusion of gaps or discontinuities
from the Target ephemeris. The user must ensure than the provided interval
results in valid Target ephemeris epochs after light-time delay and stellar
aberration have been applied.

These rules are summarized in the following table, where t, and t; are the

beginning and end of the Target ephemeris, respectively, and It is the light time
between the Target and the Observer.

UseEntireInterval true UseEntireInterval false
UseLightTimeDelay
true Effective interval Effective interval
LightTimeDirection [InitialEpoch,
= 'Transmit': [ty+]t, FinalEpoch]
tel

Discontinuous intervals

LightTimeDirection

= 'Receive': [ty, tq-lt] Unsupported.

Behavior is undefined.

Discontinuous intervals

Unsupported.
Behavior is undefined.

UseLightTimeDelay
false Effective interval Effective interval
[to, te [InitialEpoch,
FinalEpoch]

Discontinuous intervals
Discontinuous intervals

Fully supported
Fully supported

Run modes



The ContactLocator works in conjunction with the FindEvents command: the
ContactLocator resource defines the configuration of the event search, and the
FindEvents command executes the search at a specific point in the mission
sequence. The mode of interaction is defined by ContactLocator.RunMode,
which has three options:

e Automatic: All FindEvents commands are executed as-is, plus an
additional FindEvents is executed automatically at the end of the mission
sequence.

e Manual: All FindEvents commands are executed as-is.

e Disabled: FindEvents commands are ignored.

Search algorithm

The ContactLocator uses the NAIF SPICE GF (geometry finder) subsystem to
perform event location. Specifically, the following two calls are used for the
search:

e gfposc c: For line-of-sight search above the
GroundStation.MinimumElevationAngle

e gfoclt c: For third-body occultation searches

Both functions implement a fixed-step search method through the interval, with
an embedded root-location step if an event is found. Proper selection of StepSize
differs between the two functions.

For the basic line-of-sight search, without third-body occultations, StepSize can
be set as high as one-half the period of the event function. For an elliptic orbit,
this is up to one-half the orbit period.

For third-body occultations, StepSize should be set equal to the length of the
minimum-duration event to be found, or equal to the lenght of the minimum-
duration gap between events, whichever is smaller. To guarantee location of 10-
second occultations, set StepSize = 10.

If no third-body occultations are to be found, you can increase performance of
the search by increasing StepSize per the notes above.


http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/gfposc_c.html
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/gfoclt_c.html

For details, see the reference documentation for the two functions linked above.

Report format

When WriteReport is enabled, ContactLocator outputs an event report at the

end of each search execution. The report contains the following data:

e Target name
e For each Observer:;
o Observer name

o For each event;

= Event start time (UTC)

= Event stop time (UTC)

m Duration (s)

o Total number of events

A sample report is shown below.

Target: DefaultSC

Observer: GroundStationi
Start Time (UTC)

01 Jan 2000 13:18:45.268
01 Jan 2000 15:06:44.752

Number of events : 2

Observer: GroundStation2
Start Time (UTC)
01 Jan 2000 13:36:13.792

Number of events : 1

Stop Time (UTC)
01 Jan 2000 13:29:54.824
01 Jan 2000 15:18:22.762

Stop Time (UTC)
01 Jan 2000 13:47:51.717

Duration (
669.55576¢
698.01023€

Duration (
697.92488%5



Event location with SPK propagator

When using the SPK propagator, you load one or more SPK ephemeris files
using the Spacecraft.OrbitSpiceKernelName field. For the purposes of event
location, this field causes the appropriate ephemeris files to be loaded
automatically on run, and so use of the Propagate command is not necessary.
This is an easy way of performing event location on an existing SPK ephemeris
file. See the example below.



Examples

Perform a basic contact search in LEO:

SolarSystem.EphemerisSource = 'DE421'

Ear
Ear

th.EquatorialRadius = 6378.1366
th.Flattening = 0.00335281310845547

Create Spacecraft sat

sat.
sat.
sat.
sat.

sat

sat.
sat.
sat.

sat
sat

DateFormat = UTCGregorian
Epoch = '15 Sep 2010 16:00:00.000'

CoordinateSystem = EarthMJ2000Eq
DisplayStateType = Keplerian
.SMA = 6678.14

ECC = 0.001

INC = 0

RAAN = 0

.AOP = 0

.TA = 180

Create ForceModel fm

fm
fm
fm
fm
fm
fm
fm
fm
fm
fm

.CentralBody = Earth

.PrimaryBodies = {Earth}
.GravityField.Earth.PotentialFile = 'JGM2.cof"'
.GravityField.Earth.Degree = 0
.GravityField.Earth.Order = 0
.GravityField.Earth.TideModel = 'None'
.Drag.AtmosphereModel = None

.PointMasses = {}

.RelativisticCorrection = Off

.SRP = Off

Create Propagator prop
prop.FM = fm
prop.Type = RungeKutta89

Create GroundStation GS

GS.
GS
GS.
GS.
GS.
GS.

CentralBody = Earth

.StateType = Spherical

HorizonReference = Ellipsoid

Locationl = 0;
Location2 = 0;
Location3 = 0;



Create ContactLocator cl
cl.Target = sat

cl.Observers = {GS}
cl.Filename = 'Simple.report'

BeginMissionSequence

Propagate prop(sat) {sat.ElapsedSecs = 10800}

Perform a contact event search from an Earth ground station to a Mars orbiter,
with Phobos occultations:

% Mars orbiter, 2 days, Mars and Phobos eclipses

SolarSystem.EphemerisSource = 'SPICE'
SolarSystem.SPKFilename = 'de421.bsp'

Mars.OrbitSpiceKernelName = '../data/planetary_ephem/spk/mar063.bsp'

Earth.EquatorialRadius = 6378.1366
Earth.Flattening = 0.00335281310845547

Create Spacecraft sat

sat.DateFormat = UTCGregorian
sat.Epoch = '11 Mar 2004 12:00:00.000'
sat.CoordinateSystem = MarsMJ2000Eq
sat.DisplayStateType = Cartesian

sat.X = -1.436997966893255e+003
sat.Y = 2.336077717512823e+003
sat.Z = 2.477821416108639e+003
sat.VX = -2.978497667195258e+000
sat.VY = -1.638005864673213e+000
sat.VZ = -1.836385137438366e-001

Create ForceModel fm

fm.CentralBody = Mars

fm.PrimaryBodies = {Mars}
fm.GravityField.Mars.PotentialFile = 'Mars50c.cof'
fm.GravityField.Mars.Degree = 0
fm.GravityField.Mars.Order = 0
fm.Drag.AtmosphereModel = None

fm.PointMasses = {}

fm.RelativisticCorrection = Off

fm.SRP = Off



Create

prop.FM

Propagator prop
= fm

prop.Type = RungeKutta89

Create

Phobos.
Phobos.
Phobos.
Phobos.
Phobos.
Phobos.
Phobos.
Phobos.

Create

Deimos.
Deimos.
Deimos.
Deimos.
Deimos.
Deimos.
Deimos.
Deimos.

Create

Moon Phobos

CentralBody = 'Mars'

PosVelSource = 'SPICE'

NAIFId = 401

OrbitSpiceKernelName = {'mar063.bsp'}
SpiceFrameId = 'IAU_PHOBOS'
EquatorialRadius = 13.5

Flattening = 0.3185185185185186

Mu = 7.093399e-004

Moon Deimos

CentralBody = 'Mars'

PosVelSource = 'SPICE'

NAIFId = 402

OrbitSpiceKernelName = {'mar063.bsp'}
SpiceFrameId = 'IAU_DEIMOS'
EquatorialRadius = 7.5

Flattening = 0.30666666666666664

Mu = 1.588174e-004

CoordinateSystem MarsMJ2000Eq

MarsMJ2000Eq.Origin = Mars
MarsMJ2000Eq.Axes = MJ2000E(q

Create

GroundStation GS

GS.CentralBody = Earth
GS.StateType = Spherical
GS.HorizonReference = Ellipsoid

GS.Locationl
GS.Location2
GS.Location3

Create

36.3269
127.433
0.081

ContactLocator cl

cl.Target = sat

cl.Observers = {GS}

cl.OccultingBodies = {Sun, Mercury, Venus, Luna, Mars,
cl.Filename = 'Martian.report'

cl.StepSize = 5

BeginMissionSequence

Propagate prop(sat) {sat.ElapsedDays = 2}

Phobos,

Deimc



Perform contact location on an existing SPK ephemeris file:
SolarSystem.EphemerisSource = 'DE421'

Earth.EquatorialRadius = 6378.1366
Earth.Flattening = 0.00335281310845547

Create Spacecraft sat
sat.orbitSpiceKernelName = {'../data/vehicle/ephem/spk/Events_Simple

Create GroundStation GS
GS.CentralBody = Earth
GS.StateType = Spherical
GS.HorizonReference = Ellipsoid

GS.Locationl = 0
GS.Location2 = 0
GS.Location3 = 0

Create ContactLocator cl

cl.Target = sat

cl.Observers = {GS}

cl.Filename = 'SPKPropagation.report'

BeginMissionSequence



DifferentialCorrector

Differential Corrector — A numerical solver



Description

A Differential Corrector (DC) is a numerical solver for solving boundary value
problems. It is used to refine a set of variable parameters in order to meet a set of
goals defined for the modeled mission. The DC in GMAT supports several
numerical techniques. In the mission sequence, you use the

Differential Corrector resource in a Target control sequence to solve the
boundary value problem. In GMAT, differential correctors are often used to
determine the maneuver components required to achieve desired orbital
conditions, say, B-plane conditions at a planetary flyby.

You must create and configure a Differential Corrector resource for your
application by setting numerical properties of the solver such as the algorithm
type, the maximum number of allowed iterations and choice of derivative
method used to calculate the finite differences. You can also select among
different output options that show increasing levels of information for each
differential corrector iteration.

This resource cannot be modified in the Mission Sequence.

See Also: Target, Vary, Achieve




Fields

Field Description

Algorithm
The numerical method used to solve the boundary value
problem.
Data Type  String
Allowed NewtonRaphson, Broyden,
Values ModifiedBroyden
Access set
Default NewtonRaphson
Value
Units N/A
Interfaces  GUI, script
DerivativeMethod

Chooses between one-sided and central differencing for
numerically determining the derivative. Only used when
Algorithm is set to NewtonRaphson.

Data String
Type



Allowed
Values

Access

Default
Value

Units

ForwardDifference,
BackwardDifference, CentralDifference

set

ForwardDifference

N/A

Interfaces GUI, script

MaximumlIterations

Sets the maximum number of nominal passes the
Differential Corrector is allowed to take during the
attempt to find a solution. If the maximum iterations is
reached, GMAT exits the target loop and continues to the
next command in the mission sequence. In this case, the
objects retain their states as of the last nominal pass
through the targeting loop.

Data Type

Integer

Allowed Values Integer >= 1

Access

set

Default Value 25



Units N/A

Interfaces GUI, script
ReportFile
Specifies the path and file name for the
Differential Corrector report. The report is only
generated if ShowProgress is set to true.
Data String
Type
Allowed Filename consistent with OS
Values
Access set
Default DifferentialCorrectorDCName.data,
Value where DCname is the name of the
Differential Corrector
Units N/A
Interfaces GUI, script
ReportStyle

Controls the amount and type of information written to
the file defined in the ReportFile field. Currently, the



Normal and Concise options contain the same
information: the Jacobian, the inverse of the Jacobian,
the current values of the control variables, and achieved
and desired values of the constraints. Verbose contains
values of the perturbation variables in addition to the
data for Normal and Concise. Debug contains detailed
script snippets at each iteration for objects that have
control variables.

Data Type String

Allowed Values Normal, Concise, Verbose, Debug

Access set

Default Value Normal

Units N/A

Interfaces GUI, script

ShowProgress

When the ShowProgress field is set to true, then data
illustrating the progress of the differential correction
process are written to the message window and the
ReportFile. The message window is updated with
information on the current control variable values and
the contraint variances. When the ShowProgress field
is set to false, no information on the progress of the
differential correction process is displayed to the
message window or written to the ReportFile.



Data Type String

Allowed Values true, false

Access set

Default Value true

Units N/A

Interfaces GUI, script




GUI

The Differential Corrector dialog box allows you to specify properties of a
Differential Corrector such as the numerical algorithm, maximum iterations,
choice of derivative method used to calculate the finite differences, and choice of
reporting options.

To create a Differential Corrector resource, navigate to the Resources tree,
expand the Selvers folder, right-click on the Boundary Value Solvers folder,
point to Add, and click Differential Corrector. A resource named DC1 will be
created. Double-click on the DC1 resource to bring up the following
Differential Corrector dialog box.

-

@ DifferentialCorrector - aDC '_ o || B &3 |
Options
Algorithm I NewtonRaphson v ]
Max Iterations 25
Derivative Method IanardDiﬁerence v]
Output
|| show Progress
Report Style INDrmaI V‘
Report File DifferentialCorrectoraDC.data

w [ oK H Apply H Cancel ] [ Help




Remarks

Supported Algorithm Details

GMAT supports several algorithms for solving boundary value problems
including Newton Raphson, Broyden, and Modified Broyden. These
algorithms use finite differencing or other numerical approximations to compute
the Jacobian of the constraints and independent variables. The default algorithm
is currently NewtonRaphson. Brodyen’s method and ModifiedBroyden
usually take more iterations but fewer function evaluations than
NewtonRaphson and so are often faster. A description of each algorithm is
provided below. We recommend trying different algorithm options for your
application to determine which algorithm provides the best balance of
performance and robustness.

Newton-Raphson

The NewtonRaphson algorithm is a quasi-Newton method that computes the
Jacobian using finite differencing. GMAT supports forward, central, and
backward differencing to compute the Jacobian.

Broyden

Broyden’s method uses the slope between state iterations as an approximation of
the first derivative instead of numerically calculating the first derivative using
finite differencing. This results in substantially fewer function evaluations. The
Broyden iterate is updated using the following equation.

flag) — Fixg-q) = Jreoq g — X4 )

lIxx = Xp-1l?

Jk =Jk-1+ (X — Xpe—1)"

ModifiedBroyden

The modified Broyden’s method updates the inverse of the Jacobian matrix to



avoid numerical issues in matrix inversion when solving near singular problems.
Like Broyden’s method, it requires fewer function evaluations than the
NewtonRaphson algorithm. The inverse of the Jacobian, H, is updated using the
following equation,

Hy+1 = Hi + (Sk — Hiyi) v

where

Sk = Xk+1— Xk
Vie = f (Xke1) — f(xx)

__Hysy
Ve = Ty
SkHk¥Yk

Resource and Command Interactions
The Differential Corrector object can only be used in the context of targeting-

type commands. Please see the documentation for Target, Vary, and Achieve
for more information and worked examples.



Examples

Create a Differential Corrector configured to use Broyden's method and use it
to solve for an apogee raising maneuver.

Create Spacecraft aSat
Create Propagator aProp
Create ImpulsiveBurn aDeltaV
Create OrbitView a3DPlot
a3DPlot.Add = {aSat,Earth};

Create DifferentialCorrector aDC
abDC.Algorithm = 'Broyden'

BeginMissionSequence
Propagate aProp(aSat){aSat.Periapsis}
Target abDC
Vary aDC(aDeltaV.Elementl = 0.01)
Maneuver aDeltaV(aSat)
Propagate aProp(aSat){aSat.Apoapsis}
Achieve aDC(aSat.RMAG = 12000)

EndTarget

To see further examples for how the DifferentialCorrector object is used in
conjunction with Target, Vary, and Achieve commands to solve orbit problems,
see the Target command examples.



ElectricTank

ElectricTank — A model of a tank containing fuel for an electric propulsion
system



Description

An ElectricTank is a model of a tank and is required for finite burns employing
an electric propulsion system. To use an ElectricTank, you must first create the
tank, and then attach it to the desired Spacecraft and associate it with an

ElectricThruster as shown in the example below. Additionally you must create
a SolarPowerSystem or NuclearPowerSystem and attach it to the Spacecraft.

For a complete descripton of how to configure all Resources required for electric
propulsion modelling, see the Tutorial named Chapter 12, Electric Propulsion

See Also ElectricThruster,NuclearPowerSystem,SolarPowerSystem




Fields

Field Description

AllowNegativeFuelMass
This field allows the ElectricTank to have negative

fuel mass which can be useful in optimization and
targeting sequences before convergence has
occurred. This field cannot be modified in the
Mission Sequence.

Data Type Boolean
Allowed Values true, false
Access set

Default Value false
Units N/A

Interfaces GUI, script

FuelMass
The mass of fuel in the tank.

Data Type Real



Allowed Values Real >0

Access set, get

Default Value 756

Units kg

Interfaces GUI, script




GUI

The ElectricTank dialog box allows you to specify properties of a fuel tank. The
layout of the ElectricTank dialog box is shown below.

P

(= &=

@ ElectricTank - ElectricTankl %
Properties
"] Allow Negative Fuel Mass
Fuel Mass 758 kg




Remarks

Use of ElectricTank Resource in Conjunction with
Maneuvers

An ElectricTank is used in conjunction with finite maneuvers. To implement a
finite maneuver, you must first create both an ElectricThruster and a
FiniteBurn resource. You must also associate the ElectricTank with the
ElectricThruster resource and you must associate the ElectricThruster with
the FiniteBurn resource. The finite maneuver is implemented using the
BeginFiniteBurn/EndFiniteBurn commands. See the
BeginFiniteBurn/EndFiniteBurn command documentation for worked
examples on how the ElectricTank resource is used in conjunction with finite
maneuvers.

For a complete descripton of how to configure all Resources required for electric
propulsion modelling, see the Tutorial named Chapter 12, Electric Propulsion

Behavior When Configuring Tank and Attached Tank
Properties

Create a default ElectricTank and attach it to a Spacecraft and
ElectricThruster.

% Create the ElectricTank Resource
Create ElectricTank aTank
aTank.AllowNegativeFuelMass = false
aTank.FuelMass = 756

% Create an ElectricThruster and assign it a ElectricTank
Create ElectricThruster aThruster
aThruster.Tank = {aTank}

% Add the ElectricTank and Thruster to a Spacecraft
Create Spacecraft aSpacecraft

aSpacecraft.Tanks = {aTank}

aSpacecraft.Thrusters = {aThruster}

As exhibited below, there are some subtleties associated with setting and getting



parent vs. cloned resources. In the example above, aTank is the parent
ElectricTank resource and the field aSpacecraft.Tanks is populated with a
cloned copy of aTank.

Create a second spacecraft and attach a fuel tank using the same procedure used
in the previous example. Set the FuelMass in the parent resource, aTank, to 900
kg.

% Add the ElectricTank and ElectricThruster to a second Spacecraft

Create Spacecraft bSpacecraft

bSpacecraft.Tanks = {aTank}

bSpacecraft.Thrusters = {aThruster}

aTank.FuelMass = 900 %Can be performed in both resource and
%command modes

Note that in the example above, setting the value of the parent resource, aTank,
changes the fuel mass value in both cloned fuel tank resources. More
specifically, the value of both aSpacecraft.aTank.FuelMass and
bSpacecraft.aTank.FuelMass are both now equal to the new value of 900 kg.
We note that the assignment command for the parent resource, aTank.FuelMass,
can be performed in both resource and command modes.

To change the value of the fuel mass in only the first created spacecraft,
aSpacecraft, we do the following.

% Create the Fuel Tank Resource

BeginMissionSequence

aTank.FuelMass = 756  %Fuel tank mass in both s/c set back to defau
aSpacecraft.aTank.FuelMass = 1000 %Can only be performed in command

As a result of the commands in the previous example, the value of
aSpacecraft.aTank.FuelMass is 1000 kg and the value of
bSpacecraft.aTank.FuelMass is 756 kg. We note that the assignment command
for the cloned resource, aSpacecraft.aTank.FuelMass, can only be performed
in command mode.

Caution: Value of AllowNegativeFuelMass Flag Can Affect Iterative
Processes

By default, GMAT will not allow the fuel mass to be negative. However,
occasionally in iterative processes such as targeting, a solver will try values of a



maneuver parameter that result in total fuel depletion. Using the default tank
settings, this will throw an exception stopping the run unless you set the
AllowNegativeFuelMass flag to true. GMAT will not allow the the total
spacecraft mass to be negative. If DryMass + FuelMass is negative GMAT will
throw an exception and stop.



Examples

Create a default ElectricTank and attach it to a Spacecraft and
ElectricThruster.

% Create the ElectricTank Resource
Create ElectricTank aTank
aTank.AllowNegativeFuelMass = false
aTank.FuelMass = 756

% Create an ElectricThruster and assign it a ElectricTank
Create ElectricThruster aThruster
aThruster.Tank = {aTank}

% Add the ElectricTank and ElectricThruster to a Spacecraft
Create Spacecraft aSpacecraft

aSpacecraft.Tanks = {aTank}

aSpacecraft.Thrusters = {aThruster}

BeginMissionSequence



ElectricThruster

ElectricThruster — An electric thruster model



Description

The ElectricThruster resource is a model of an electric thruster which supports
several models for thrust and mass flow computation. The ElecticThruster
model also allows you to specify properties such as a duty cycle and scale factor
and to connect an ElectricThruster with an ElectricTank. You can flexibly
define the direction of the thrust by specifying the thrust components in
coordinate systems such as (locally defined) SpacecraftBody or LVLH, or by
choosing any configured CoordinateSystem resource.

For a complete descripton of how to configure all Resources required for electric
propulsion modelling, see the Tutorial named Chapter 12, Electric Propulsion

See Also ElectricTank, NuclearPowerSystem, SolarPowerSystem




Fields

Field Description

Axes
Allows the user to define a spacecraft centered set of
axes for the ElectricThruster. This field cannot be
modified in the Mission Sequence
Data Type  Reference Array
Allowed VNB, LVLH, MJ2000Eq,
Values SpacecraftBody
Access set
Default VNB
Value
Units N/A
Interfaces GUI, script
ConstantThrust

Thrust value used ThrustModel is set to
ConstantThrustAndIsp.

Data Type Real



Allowed Values Real >0

Access set, get

Default Value 0.237

Units N

Interfaces GUI, script

CoordinateSystem
Determines what coordinate system the orientation

parameters, ThrustDirection1, ThrustDirection2, an
ThrustDirection3 refer to. This field cannot be
modified in the Mission Sequence.

Data Reference Array

Type

Allowed Local, EarthMJ2000Eq,
Values EarthMJ2000Ec, EarthFixed, or any
user defined system

Access set

Default Local
Value



Units N/A

Interfaces GUI, script

DecrementMass
Flag which determines if the FuelMass is to be
decremented as it used. This field cannot be modified
in the Mission Sequence.
Data Type Boolean
Allowed Values true, false
Access set
Default Value false
Units N/A
Interfaces GUI, script
DutyCycle

Fraction of time that the thrusters are on during a
maneuver. The thrust applied to the spacecraft is scale:
by this amount. Note that this scale factor also affects
mass flow rate.

Data Type Real Number



Allowed Values 0 <= Real <=1

Access set, get

Default Value 1

Units N/A

Interfaces GUI, script

FixedEfficiency
Thruster efficiency. Only used when ThrustModel is

FixedEfficiency.

Data Type Real

Allowed Values Real >0

Access set, get

Default Value 0.7

Units Decimal Percent

Interfaces GUI, script



GravitationalAccel
Value of the gravitational acceleration used for the

FuelTank/Thruster calculations.

Data Type Real Number

Allowed Values Real >0

Access set, get

Default Value 9.81

Units m/s?

Interfaces GUI, script

Isp
Thruster specific impulse. Only used when
ThrustModel is set to FixedEfficiency or
ConstantThrustAndIsp.

Data Type Real

Allowed Values Real >0

Access set, get



Default Value 4200

Units seconds

Interfaces GUI, script
MassFlowCoeffl

Mass flow coefficient.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value -0.004776

Units See Mathematical Models

Interfaces GUI, script
MassFlowCoeff2

Mass flow coefficient.

Data Type Real



Allowed Values Real Number

Access set, get

Default Value 0.05717

Units See Mathematical Models

Interfaces GUI, script

MassFlowCoeff3
Mass flow coefficient.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value -0.09956

Units See Mathematical Models

Interfaces GUI, script

MassFlowCoeff4



Mass flow coefficient.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value 0.03211

Units See Mathematical Models

Interfaces GUI, script

MassFlowCoeff5
Mass flow coefficient.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value 2.13781

Units See Mathematical Models




Interfaces GUI, script

MaximumUsablePower
The maximum power the thruster can use to generate

thrust. Power provided above MaximumUsablePower
is not used in the thrust model.

Data Type Real

Allowed Real > 0, Real <
Values MinimumUsablePower
Access set, get

Default Value 7.266

Units kW

Interfaces GUI, script

MinimumUsablePower
The minimum power the thruster can use to generate

thrust. If power provided to thruster is below
MinimumUsablePower, no thrust is generated.

Data Type Real



Allowed Real > 0, Real >
Values MinimumUsablePower

Access set, get

Default Value 0.638

Units kW

Interfaces GUI, script

MixRatio

The mixture ratio employed to draw fuel from multipl
tanks. For example, if there are two tanks and
MixRatio is set to [2 1], then twice as much fuel will
be drawn from tank one as from tank 2 in the Tank lis
Note, if a MixRatio is not supplied, fuel is drawn from
tanks in equal amounts, (the MixRatio is set to a
vector of ones the same length as the Tank list).

Data Array
Type

Allowed Array of real numbers with same length
Values as number of tanks in the Tank array

Access set

Default [1]



Value

Units N/A

Interfaces GUI, script

Origin

This field, used in conjunction with the Axes field,
allows the user to define a spacecraft centered set of
axes for the ElectricThruster. Origin has no affect
when a Local coordinate system is used and the Axes
are set to MJ2000Eq or SpacecraftBody. This field
cannot be modified in the Mission Sequence.

Data Reference Array

Type

Allowed Sun, Mercury, Venus, Earth, Luna,
Values Mars,Jupiter, Saturn, Uranus,
Neptune, Pluto

Access set

Default Earth
Value

Units N/A

Interfaces GUI, script



Tanks
ElectricTank from which the ElectricThruster draws

propellant from. In a script command, an empty list,
e.g., Thrusteri.Tank = {}, is NOT allowed. Via the
script, if you wish to indicate that no ElectricTank is
associated with an ElectricThruster, do not include

commands such as Thruster1.Tank = ... in your
script. This field cannot be modified in the Mission
Sequence.

Data Type Reference Array

Allowed Values User defined list of FuelTank(s).

Access set

Default Value N/A

Units N/A

Interfaces GUI, script

ThrustCoeff1
Thrust coefficient.

Data Type Real

Allowed Values Real Number



Access set, get

Default Value -5.19082

Units See Mathematical Models

Interfaces GUI, script
ThrustCoeff2

Thrust coefficient.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value 2.96519

Units See Mathematical Models

Interfaces GUI, script
ThrustCoeff3

Thrust coefficient.



Data Type Real

Allowed Values Real Number

Access set, get

Default Value -14.41789

Units See Mathematical Models

Interfaces GUI, script

ThrustCoeff4
Thrust coefficient.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value 54.05382

Units See Mathematical Models




Interfaces GUI, script

ThrustCoeff5

Thrust coefficient.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value -0.00100092

Units See Mathematical Models

Interfaces GUI, script
ThrustDirectionl

X component of the spacecraft thrust vector direction.

Data Type Real

Allowed Values Real Number

Access set, get



Default Value

Units N/A

Interfaces GUI, script
ThrustDirection2

Y component of the spacecraft thrust vector direction.

Data Type Real

Allowed Values Real Number

Access set, get

Default Value 1

Units N/A

Interfaces GUI, script
ThrustDirection3

Z component of the spacecraft thrust vector direction.

Data Type Real



Allowed Values Real Number

Access set, get

Default Value 0

Units N/A

Interfaces GUI, script

ThrustModel
The type of thruster model. See Mathematical Models

for a detailed description of the options.

Data String
Type

Allowed ThrustMassPolynomial,
Values ConstantThrustAndIsp,FixedEfficiency

Access set, get

Default  ThrustMassPolynomial
Value

Units N/A



Interfaces GUI, script

ThrustScaleFactor

ThrustScaleFactor is a scale factor that is multiplied
by the thrust vector, for a given thruster, before the
thrust vector is added into the total acceleration. Note
that the value of this scale factor does not affect the
mass flow rate.

Data Type Real Number

Allowed Values Real >=0

Access set, get

Default Value 1

Units N/A

Interfaces GUI, script




Interactions

Command or Resource Description

BeginFiniteBurn/EndFiniteBurn
command Use these commands, which require a

Spacecraft and a FiniteBurn name as
input, to implement a finite burn.

ElectricTank resource
This resource contains the fuel used to

power the ElectricThruster specified by
the FiniteBurn resource.

FiniteBurn resource
When using the

BeginFiniteBurn/EndFiniteBurn
commands, you must specify which
FiniteBurn resource to implement. The
FiniteBurn resource specifies which
ElectricThruster(s) to use for the finite
burn.

Spacecraft resource
When using the

BeginFiniteBurn/EndFiniteBurn
commands, you must specify which
Spacecraft to apply the finite burn to.

Propagate command
In order to implement a non-zero finite

burn, a Propagate statement must occurr
within the BeginFiniteBurn and
EndFiniteBurn statements.




GUI

The ElectricThruster dialog box allows you to specify properties of an
ElectricThruster including the Coordinate System of the thrust acceleration
direction vector, the thrust magnitude and Isp coefficients, and choice of
ElectricTank. The layout of the ElectricThruster dialog box is shown below.



- '

@'ElectricThruster-ElectricThrusterl [= || = || EE__|

Coordinate System

Coordinate System | Local v

Origin [Earth v

Axes I v
Thrust Vector

ThrustDirectionl 1

ThrustDirection? ]

ThrustDirection3 ]

Duty Cycle 1

Thrust 5cale Factor 1

Mass Change
[7] Decrement Mass
9.81
Thrust Cenfig.
Thrust Model ThrustMassPolynomial A
Minimum Usable Power 0638 kW
Maximurn Usable Power 7.266 kW
0.7
4200
0.237

’ Configure Polynomials ]

0 ) ) (e

When configuring the Coordinate System field, you can choose between
existing coordinate systems or use locally defined coordinate systems. The Axes
field is only active if Coordinate System is set to Local. The Origin field is
only active if Coordinate System is set to Local and Axes is set to either VNB



or LVLH.

Selecting the Configure Polynomials button brings up the following dialog box
where you may input the coefficients for the ElectricThruster polynomial.

e Electric Thruster Configuration | = =l DX
Thrust Coefficients | Mass Flow Coefficients
Coefficient Value Unit

ThrustCoeffl -5.19082 See Docs

ThrustCoeff2 296519 See Docs

ThrustCoeff3 -14.4789 See Docs

ThrustCoeff4 5405382 See Docs

ThrustCoeffs -0.00100082 See Docs
OK ‘ ‘ Cancel ‘ ‘ Help

L A

Similarly, clicking the Configure Polynomials also allows you to edit mass flow
coefficients as shown below.

eElectricThrusterCcnﬁguratiﬁn = & DX

Thrust Coefficients | Mass Flow Coefficients

Coefficient Value Unit
MassFlowCoeffl -0.004776 See Docs
MassFlowCoeff2 0.05717 See Docs
MassFlowCoeff3 -0.09956 See Docs
MassFlowCoeff4 0.03211 See Docs
MassFlowCoeff5 2.13781 See Docs

Ok H Cancel H Help




Remarks

Mathematical Models

The ElectricThruster model supports several models for computation of thrust
and and mass flow rate and the model used is set by the ThrustModel field.
When ThrustModel is set to ThrustMassPolynomial, the following
polynomials are used to compute thrust and mass flow rate

m = tfd((ﬁmﬁpzt i CHF—IP3 * CHJGPE * CmZP Al le)
T =ff(CsP* +CYP° + CoP* +CoP + Cy)RyT

where P is the power provided to the thruster which is computed using the power
logic defined on the FiniteBurn resource, f_d is duty cycle, f_s is thrust scale
factor, R_iT is the rotation matrix from the thrust coordinate system to the
inertial system, and T_hat is the thrust unit vector. By industry convention, the
mass flow rate and thrust polynomial equations are in mg/s and milli-Newtons
respectively. GMAT internally converts the units to be consistent with the
equations of motion.

When ThrustModel is set to ConstantThrustAndIsp, the following
polynomials are used to compute thrust and mass flow rate

T =fdfCnReT

where C_t1 is set using the ConstantThrust field, Isp is set using the Isp field,
f_dis duty cycle, f_s is thrust scale factor, R_iT is the rotation matrix from the
thrust coordinate system to the inertial system, and T_hat is the thrust unit
vector. Note, by industry convention, the mass flow rate and thrust polynomial
equations are in mg/s and milli-Newtons respectively. GMAT internally converts
the units to be consistent with the equations of motion.



When ThrustModel is set to FixedEfficiency, the following polynomials are
used to compute thrust and mass flow rate

—_ -2 P —_ ~
/4 :frfsfsj_gGRiTT

where P is the power provided to the thruster which is computed from the power
logic defined on the FiniteBurn Resource. "Eta" is the FixedEfficiency setting,
f_dis duty cycle, f_s is thrust scale factor, R_iT is the rotation matrix from the
thrust coordinate system to the inertial system, and T_hat is the thrust unit
vector.

Use of Thruster Resource in Conjunction With Maneuvers

An ElectricThruster resource is used only in association with finite maneuvers.
To implement a finite maneuver, you must first create both an ElectricTank and
a FiniteBurn resource. You must also associate an ElectricTank with the
ElectricThruster resource and you must associate an ElectricThruster with the
FiniteBurn resource. The actual finite maneuver is implemented using the
BeginFiniteBurn/EndFiniteBurn commands.

For a complete descripton of how to configure all Resources required for electric
propulsion modelling, see the Tutorial named Chapter 12, Electric Propulsion

Local Coordinate Systems

Here, a Local coordinate system is defined as one that we configure "locally"
using the ElectricThruster resource interface as opposed to defining a
coordinate system using the Coordinate Systems folder in the Resources Tree.

To configure a local coordinate system, you must specify the coordinate system
of the input thrust acceleration direction vector, ThrustDirection1-3. If you
choose a local coordinate system, the four choices available, as given by the
Axes sub-field, are VNB, LVLH, MJ2000Eq, and SpacecraftBody. VNB or
Velocity-Normal-Binormal is a non-inertial coordinate system based upon the



motion of the spacecraft with respect to the Origin sub-field. For example, if the
Origin is chosen as Earth, then the X-axis of this coordinate system is the along
the velocity of the spacecraft with respect to the Earth, the Y-axis is along the
instantaneous orbit normal (with respect to the Earth) of the spacecraft, and the
Z-axis completes the right-handed set.

Similarly, Local Vertical Local Horizontal or LVLH is also a non-inertial
coordinate system based upon the motion of the spacecraft with respect to the
Origin sub-field. Again, if we choose Earth as the origin, then the X-axis of this
coordinate system is the position of the spacecraft with respect to the Earth, the
Z-axis is the instantaneous orbit normal (with respect to the Earth) of the
spacecraft, and the Y-axis completes the right-handed set.

MJ2000Eq is the J2000-based Earth-centered Earth mean equator inertial
coordinate system. Note that the Origin sub-field is not needed to define this
coordinate system.

SpacecraftBody is the attitude system of the spacecraft. Since the thrust is
applied in this system, GMAT uses the attitude of the spacecraft, a spacecraft
attribute, to determine the inertial thrust direction. Note that the Origin sub-field
is not needed to define this coordinate system.

Caution Regarding Force Model Discontinuties

Note that when modellign shadows on a SolarPowerSystem Resource, it is
possible that there is not enough power available to power an ElectricThruster.
This occurs when the power available from the SolarPowerSystem, or the
power distributed to the thruster, is less than MinimumUsablePower. When this
occurs, the thruster model turns off thrust and this can cause a discontinuity in
the force model. To avoid this, you must propagate to the boundary and switch
propagators, or configure the Propagator to continue propagating if a poor step
occurs.



Examples

Create a default ElectricTank and an ElectricThruster that allows for fuel
depletion, assign the ElectricThruster the default ElectricTank, and attach both

to a Spacecraft.

% Create an ElectricTank Resource
Create ElectricTank anElectricTank

% Create an Electric Thruster Resource
Create ElectricThruster anElectricThruster

anElectricThruster.CoordinateSystem = Local
anElectricThruster.Origin = Earth
anElectricThruster.Axes = VNB
anElectricThruster.ThrustDirectionl = 1
anElectricThruster.ThrustDirection2 = 0
anElectricThruster.ThrustDirection3 = 0
anElectricThruster.DutyCycle = 1
anElectricThruster.ThrustScaleFactor = 1
anElectricThruster.DecrementMass = true
anElectricThruster.Tank = {anElectricTank}
anElectricThruster.GravitationalAccel = 9.810000000000001
anElectricThruster.ThrustModel = ThrustMassPolynomial
anElectricThruster.MaximumUsablePower = 7.266
anElectricThruster.MinimumUsablePower = 0.638
anElectricThruster.ThrustCoeffl = -5.19082
anElectricThruster.ThrustCoeff2 = 2.96519
anElectricThruster.ThrustCoeff3 = -14.4789
anElectricThruster.ThrustCoeff4 = 54.05382
anElectricThruster.ThrustCoeff5 = -0.00100092
anElectricThruster.MassFlowCoeffl = -0.004776
anElectricThruster.MassFlowCoeff2 = 0.05717
anElectricThruster.MassFlowCoeff3 = -0.09956
anElectricThruster.MassFlowCoeff4 = 0.03211
anElectricThruster.MassFlowCoeff5 = 2.13781
anElectricThruster.FixedEfficiency = 0.7
anElectricThruster.Isp = 4200
anElectricThruster.ConstantThrust = 0.237

% Create a SolarPowerSystem Resource
Create SolarPowerSystem aSolarPowerSystem

% Create a Spacecraft Resource and attach hardware
Create Spacecraft DefaultSC



DefaultSC.Tanks = {anElectricTank}
DefaultSC.Thrusters = {anElectricThruster}
DefaultSC.PowerSystem = aSolarPowerSystem

BeginMissionSequence



EclipseLocator

EclipseLocator — A Spacecraft eclipse event locator



Description

Note

EclipseLocator is a SPICE-based subsystem that uses a
parallel configuration for the solar system and celestial bodies
from other GMAT components. For precision applications, care
must be taken to ensure that both configurations are consistent.
See Remarks for details.

An EclipseLocator is an event locator used to find solar eclipse events as seen
by a Spacecraft. By default, an EclipseLocator generates a text event report
listing the beginning and ending times of each event, along with the duration,
eclipsing body, shadow type, and information about simultaneous and adjacent
nested events. Eclipse location can be performed over the entire propagation
interval or over a subinterval, and can optionally adjust for light-time delay and
stellar aberration.

Eclipse location can be performed with one or more CelestialBody resources as
eclipsing (or occulting) bodies. Any configured CelestialBody can be used as an
occulting body, including user-defined ones. Any type of eclipse can be found,
including total (umbra), partial (penumbra), and annular (antumbra). All selected
occulting bodies are searched using the same selection for eclipse types, search
interval, and search options; to customize the options per body, use multiple
EclipseLocator resources.

By default, the EclipseLocator searches the entire interval of propagation of the
Spacecraft. To search a custom interval, set UseEntireInterval to False and set
InitialEpoch and FinalEpoch accordingly. Note that these epochs are assumed
to be Spacecraft epochs, and so must be valid and within the Spacecraft
ephemeris interval. If they fall outside the propagation interval of the
Spacecraft, GMAT will display an error.

The contact locator can optionally adjust for both light-time delay and stellar
aberration, though stellar aberration currently has no effect.



The event search is performed at a fixed step through the interval. You can
control the step size (in seconds) by setting the StepSize field. An appropriate
choice for step size is no greater than the duration of the minimum event you
wish to find, or the minimum gap between events you want to resolve,
whichever is smaller. See Remarks for details.

GMAT uses the SPICE library for the fundamental event location algorithm. As
such, all celestial body data is loaded from SPICE kernels for this subsystem,
rather than GMAT's own CelestialBody shape and orientation configuration. See
Remarks for details.

Unless otherwise mentioned, EclipseLocator fields cannot be set in the mission
sequence.

See Also: CelestialBody, Spacecraft, Contactl.ocator, FindEvents




Fields

Field Description

EclipseTypes
Types of eclipses (shadows) to search for. May be
Umbra (total eclipses), Penumbra (partial eclipses), or
Antumbra (annular eclipses).
Data Type Enumeration array
Allowed Values Antumbra, Penumbra, Umbra
Access set
Default Value {Antumbra, Penumba, Umbra}
Units N/A
Interfaces GUI, script

Filename

Name and path of the eclipse report file. This field can
be set in the mission sequence.

Data Type String

Allowed Values Valid file path



Access set

Default Value ‘'Eclipselocator.txt'

Units N/A

Interfaces GUI, script

FinalEpoch

Last epoch to search for eclipses, in the format
specified by InputEpochFormat. The epoch must be a
valid epoch in the Spacecraft ephemeris interval. This
field can be set in the mission sequence.

Data Type String

Allowed Valid epoch in available spacecraft
Values ephemeris

Access set

Default '21545.138"

Value

Units ModifiedJulian epoch formats: days

Gregorian epoch formats: N/A



Interfaces  GUI, script

InitialEpoch
First epoch to search for eclipses, in the format
specified by InputEpochFormat. The epoch must be a
valid epoch in the Spacecraft ephemeris interval. This
field can be set in the mission sequence.
Data Type String
Allowed Valid epoch in available spacecraft
Values ephemeris
Access set
Default 121545"
Value
Units ModifiedJulian epoch formats: days

Gregorian epoch formats: N/A

Interfaces  GUI, script

OccultingBodies

List of occulting bodies to search for eclipses. Can be
any number of GMAT CelestialBody-type resources,
such as Planet, Moon, Asteroid, etc. Note that an
occulting body must have a mass (e.g. not
LibrationPoint or Barycenter).



Data
Type

Allowed
Values

Access

Default
Value

Units

List of CelestialBody resources (e.g.
Planet, Asteroid, Moon, etc.)

Any existing CelestialBody-class
resources

set

Empty list

N/A

Interfaces GUI, script

RunMode

Mode of event location execution. 'Automatic'

triggers event location to occur automatically at the end

of the run. 'Manual' limits execution only to the
FindEvents command. 'Disabled' turns of event
location entirely.

Data Type

Enumeration

Allowed Values Automatic, Manual, Disabled

Access

set



Default Value 'Automatic'

Units N/A
Interfaces GUI, script
Spacecraft
The observing Spacecraft resource to search for
eclipses.
Data Type Spacecraft resource
Allowed Any existing Spacecraft resource
Values
Access set
Default Value First configured Spacecraft
resource
Units N/A
Interfaces GUI, script
StepSize

Step size of event locator. See Remarks for discussion
of appropriate values.



Data Type Real

Allowed Values StepSize > 0

Access set

Default Value 10

Units S

Interfaces GUI, script

UseEntireInterval
Search the entire available Target ephemeris interval.

This field can be set in the mission sequence.

Data Type Boolean

Allowed Values true, false

Access set

Default Value true

Units N/A



Interfaces GUI, script

UseLightTimeDelay
Use light-time delay in the event-finding algorithm.

Data Type Boolean

Allowed Values true, false

Access set

Default Value true

Units N/A

Interfaces GUI, script

UseStellarAberration
Use stellar aberration in addition to light-time delay in

the event-finding algorithm. Light-time delay must be
enabled. Stellar aberration currently has no effect on
eclipse searches.

Data Type Boolean

Allowed Values true, false



Access set

Default Value true

Units N/A

Interfaces GUI, script

WriteReport
Write an event report when event location is executed.

This field can be set in the mission sequence.

Data Type Boolean

Allowed Values true, false

Access set

Default Value true

Units N/A

Interfaces GUI, script




GUI
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The default EclipseLocator GUI for a new resource is shown above. You can
choose one Spacecraft from the list, which is populated by all the Spacecraft
resources currently configured in the mission. In the Occulting Bodies list, you
can check the box next to all CelestialBody resources you want to search for
eclipses. This list shows all celestial bodies currently configured in the mission.

In the Eclipse Types list, choose the types of eclipses to search for. Note that
each selection will increase the duration of the search.

You can configure the output via Filename, Run Mode, and Write Report near
the bottom. If Write Report is enabled, a text report will be written to the file
specified in Filename. The search will execute during FindEvents commands
(for Manual or Automatic modes) and automatically at the end of the mission
(for Automatic mode), depending on the Run Mode.



You can configure the search interval via the options in the upper right. Uncheck
Use Entire Interval to set the search interval manually. See the Remarks section
for considerations when setting the search interval.

You can control the search algorithm via the options in the bottom right.
Configure light-time and stellar aberration via the check boxes next to each, and
select the signal direction via the Light-time direction selection.

To control the fidelity and execution time of the search, set the Step size
appropriately. See the Remarks section for details.



Remarks

Data configuration

The EclipseLocator implementation is based on the NAIF SPICE toolkit, which
uses a different mechanism for environmental data such as celestial body shape
and orientation, planetary ephemerides, body-specific frame definitions, and leap
seconds. Therefore, it is necessary to maintain two parallel configurations to
ensure that the event location results are consistent with GMAT's own
propagation and other parameters. The specific data to be maintained is:

e Planetary shape and orientation:

o GMAT core: CelestialBody.EquatorialRadius, Flattening,
SpinAxisRAConstant, SpinAxisRARate, etc.

o ContactLocator: SolarSystem.PCKFilename,
CelestialBody.PlanetarySpiceKernelName

e Planetary ephemeris:

o GMAT core: SolarSystem.DEFilename, or
(SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName, CelestialBody.NAIFId)

o ContactLocator: SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName, CelestialBody. NAIFId

e Body-fixed frame:
o GMAT core: built-in

o ContactLocator: CelestialBody.SpiceFrameld,
CelestialBody.FrameSpiceKernelName

e Leap seconds:

o GMAT core: startup file LEAP_SECS_FILE setting


http://naif.jpl.nasa.gov/naif/

o ContactLocator: SelarSystem.LSKFilename

See SolarSystem and CelestialBody for more details.

Search interval

The EclipseLocator search interval can be specified either as the entire
ephemeris interval of the Spacecraft, or as a user-defined interval. If
UseEntireInterval is true, the search is performed over the entire ephemeris
interval of the Spacecraft, including any gaps or discontinuities. If
UseEntireInterval is false, the provided InitialEpoch and FinalEpoch are used
to form the search interval directly. The user must ensure than the provided
interval results in valid Spacecraft and CelestialBody ephemeris epochs.

Run modes

The EclipseLocator works in conjunction with the FindEvents command: the
EclipseLocator resource defines the configuration of the event search, and the
FindEvents command executes the search at a specific point in the mission
sequence. The mode of interaction is defined by EclipseLocator.RunMode,
which has three options:

e Automatic: All FindEvents commands are executed as-is, plus an
additional FindEvents is executed automatically at the end of the mission
sequence.

e Manual: All FindEvents commands are executed as-is.

e Disabled: FindEvents commands are ignored.

Search algorithm

The EclpseLocator uses the NAIF SPICE GF (geometry finder) subsystem to
perform event location. Specifically, the following call is used for the search:

e gfoclt c: For third-body occultation searches

This function implements a fixed-step search method through the interval, with
an embedded root-location step if an event is found. StepSize should be set


http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/gfoclt_c.html

equal to the length of the minimum-duration event to be found, or equal to the
length of the minimum-duration gap between events, whichever is smaller. To
guarantee location of 10-second eclipses, or 10-second gaps between adjacent
eclipses, set StepSize = 10.

For details, see the reference documentation for the function linked above.

Report format

When WriteReport is enabled, the EclipseLocator outputs an event report at
the end of each search execution. The report contains the following data:

e Spacecraft name
e For each event:
o Event start time (UTC)
o Event stop time (UTC)
o Event duration (5s)
o Occulting body name
o Eclipse type
o Total event number
o Total duration
e Number of individual events
e Number of total events
¢ Maximum total duration
e Eclipse number of total duration
The report makes the distinction between an individual event and a total event.

¢ An individual event is a single continuous event of a single type (umbra,



penumbra, etc.) from a single occulting body. Individual events can be
nested for a single occulting body, such as a penumbra event followed
immediately by an umbra event, or they can be nested from multiple
occulting bodies, such as a Luna eclipse occuring in the middle of an Earth
eclipse.

e A total event is the entire set of nested individual events. The total event is
given a single number, and the total duration is reported in the output file.

Event location with SPK propagator

When using the SPK propagator, you load one or more SPK ephemeris files
using the Spacecraft.OrbitSpiceKernelName field. For the purposes of event
location, this field causes the appropriate ephemeris files to be loaded
automatically on run, and so use of the Propagation command is not necessary.
This is an easy way of performing event location on an existing SPK ephemeris
file. See the example below.



Examples

Perform a basic eclipse search in LEO:

SolarSystem.EphemerisSource = 'DE421'

Create Spacecraft sat
sat.DateFormat = UTCGregorian

sat.Epoch = '15 Sep 2010 16:00:00.000'
sat.CoordinateSystem = EarthMJ2000Eq

sat.DisplayStateType = Keplerian

sat.SMA = 6678.14
sat.ECC = 0.001
sat.INC = 0
sat.RAAN = 0
sat.AOP = 0

sat.TA = 180

Create ForceModel fm
fm.CentralBody = Earth
fm.PrimaryBodies = {Earth}

fm.GravityField.Earth.PotentialFile = 'JGM2.cof'

fm.GravityField.Earth.Degree = 0
fm.GravityField.Earth.Order = 0

fm.GravityField.Earth.TideModel = 'None'

fm.Drag.AtmosphereModel = None
fm.PointMasses = {}
fm.RelativisticCorrection = Off
fm.SRP = Off

Create Propagator prop
prop.FM = fm
prop.Type = RungeKutta89

Create EclipselLocator el
el.Spacecraft = sat
el.Filename = 'Simple.report'
el.OccultingBodies = {Earth}

el.EclipseTypes = {'Umbra', 'Penumbra',

BeginMissionSequence

Propagate prop(sat) {sat.ElapsedSecs

"Antumbra'}

10800}



Perform an eclipse event search from a Mars orbiter, with Phobos, Earth, and
Moon eclipses:

% Mars orbiter with annular eclipses of Earth and Moon.

SolarSystem.EphemerisSource = 'SPICE'
SolarSystem.SPKFilename = 'de421.bsp'

Mars.NAIFId = 499
Mars.OrbitSpiceKernelName = {'../data/planetary_ephem/spk/mar063.bsg

Create Spacecraft sat

sat.DateFormat = UTCGregorian
sat.Epoch = '10 May 1984 00:00:00.000'
sat.CoordinateSystem = MarsMJ2000Eq
sat.DisplayStateType = Keplerian

sat.SMA = 6792.38
sat.ECC = 0
sat.INC = 45
sat.RAAN = 0
sat.AOP = 0
sat.TA = 0

Create ForceModel fm

fm.CentralBody = Mars

fm.PrimaryBodies = {Mars}
fm.GravityField.Mars.PotentialFile = 'Mars50c.cof'
fm.GravityField.Mars.Degree = 0
fm.GravityField.Mars.Order = 0
fm.Drag.AtmosphereModel = None

fm.PointMasses = {}

fm.RelativisticCorrection = Off

fm.SRP = Off

Create Propagator prop
prop.FM = fm
prop.Type = RungeKutta89

Create CoordinateSystem MarsMJ2000Eq
MarsMJ2000Eq.Origin = Mars
MarsMJ2000Eq.Axes = MJ2000E(q

Create Moon Phobos
Phobos.CentralBody = 'Mars'
Phobos.PosVelSource = 'SPICE'
Phobos.NAIFId = 401



Phobos.OrbitSpiceKernelName = {'mar063.bsp'}
Phobos.SpiceFrameId = 'IAU_PHOBOS'
Phobos.EquatorialRadius = 13.5
Phobos.Flattening = 0.3185185185185186
Phobos.Mu = 7.093399e-004

Create Moon Deimos

Deimos.CentralBody = 'Mars'
Deimos.PosVelSource = 'SPICE'

Deimos.NAIFId = 402
Deimos.OrbitSpiceKernelName = {'mar063.bsp'}
Deimos.EquatorialRadius = 7.5
Deimos.SpiceFrameId = 'IAU_DEIMOS'
Deimos.Flattening = 0.30666666666666664
Deimos.Mu = 1.588174e-004

Create EclipselLocator ec

ec.Spacecraft = sat

ec.OccultingBodies = {Mercury, Venus, Earth, Luna, Mars, Phobos, Dei
ec.Filename = 'EarthTransit.report'

BeginMissionSequence

Propagate prop(sat) {sat.ElapsedDays = 2}

Perform eclipse location on an existing SPK ephemeris file:
SolarSystem.EphemerisSource = 'DE421'

Create Spacecraft sat
sat.orbitSpiceKernelName = {'../data/vehicle/ephem/spk/Events_Simple

Create EclipselLocator cl
cl.Spacecraft = sat
cl.OccultingBodies = {Earth}
cl.Filename = 'SPKPropagation.report'

BeginMissionSequence



EphemerisFile

EphemerisFile — Generate spacecraft’s ephemeris data



Description

EphemerisFile is a user-defined resource that generates spacecraft’s ephemeris
in a report format. You can generate spacecraft’s ephemeris data in any of the
user-defined coordinate frames. GMAT allows you to output ephemeris data in
CCSDS-0OEM, SPK, Code-500 and STK .e (STK -TimePosVel) formats. See the
Remarks section for more details. EphemerisFile resource can be configured to
generate ephemeris data at default integration steps or by entering user-selected
step sizes.

GMAT allows you to generate any number of ephemeris data files by creating
multiple EphermisFile resources. An EphemerisFile resource can be created
using either the GUI or script interface. GMAT also provides the option of when
to write and stop writing ephemeris data to a text file through the Toggle On/Off
commands. See the Remarks section below for detailed discussion of the
interaction between EphemerisFile resource and Toggle command.

See Also: CoordinateSystem, Toggle




Fields

Field Description

CoordinateSystem
Allows you to generate spacecraft ephemeris w.r.t
the coordinate system that you select for this field.
Ephemeris can also be generated w.r.t a user-
specified coordinate system. This field cannot be
modified in the Mission Sequence.
Data Enumeration
Type
Allowed Any default coordinate system or a
Values user-defined coordinate system
Access set, get
Default EarthMJ2000Eq
Value
Units N/A
Interfaces GUI, script

DistanceUnit

The unit for distance quantities written to STK
ephemeris files. Only active when FileFormat is
set to STK-TimePosVel.



Data Type String

Allowed Values Kilometers or Meters

Access set

Default Values Kilometers

Units N/A

Interfaces GUI, script

EpochFormat
The field allows you to set the type of the epoch

that you choose to enter for InitialEpoch and
FinalEpoch fields. This field cannot be modified in
the Mission Sequence.

Data Enumeration

Type

Allowed Any of the following epoch formats:

Values UTCGregorian UTCModJulian,
TAIGregorian, TAIModJulian,
TTGregorian, TTModJulian,
A1Gregorian, AlModJulian

Access Set



Default UTCGregorian
Value

Units N/A

Interfaces GUI, script

FileFormat

Allows the user to generate ephemeris file in four
available ephemeris formats: CCSDS-OEM, SPK,
Code-500 or STK-TimePosVel (i.e. STK .e format).
This field cannot be modified in the Mission
Sequence.

Data Type Enumeration

Allowed CCSDS-OEM, SPK, Code-500,
Values STK-TimePosVel

Access Set

Default CCSDS-OEM
Value

Units N/A

Interfaces GUI, script



FileName
Allows the user to name the ephemeris file that is
generated. File extensions for CCSDS-OEM, SPK,
Code-500 and STK-TimePosVel ephemeris types
are *.oem, *.bsp, *.eph and *.e respectively. This
field cannot be modified in the Mission Sequence.

Data Type String

Allowed Values Valid File Path and Name

Access set

Default Value EphemerisFilel.eph

Units N/A

Interfaces GUI, script

FinalEpoch
Allows the user to specify the time span of an
ephemeris file. Ephemeris file is generated up to
final epoch that is specified in FinalEpoch field.
This field cannot be modified in the Mission
Sequence.

Data Type String

Allowed user-defined final epoch or Default



Values Value

Access set

Default FinalSpacecraftEpoch
Value

Units N/A

Interfaces  GUI, script

IncludeEventBoundaries

Flag to optionally write event data and boundaries
to an STK ephem file. Only active when
FileFormat is set to STK-TimePosVel. When set
to true, if there are discontinuities in the ephemeris
data, the times of the discontinuities are written to
the file along with blank lines at the discontinuity.

Data Type Boolean

Allowed Values true, false

Access set

Default Values true

Units N/A



Interfaces GUI, script

InitialEpoch
Allows the user to specify the starting epoch of the
ephemeris file. Ephemeris file is generated starting
from the epoch that is defined in InitialEpoch
field. This field cannot be modified in the Mission
Sequence.
Data Type  String
Allowed user-defined initial epoch or
Values Default Value
Access set
Default InitialSpacecraftEpoch
Value
Units N/A
Interfaces  GUI, script

InterpolationOrder

Allows you to set the interpolation order for the
available interpolator methods (Lagrange or
Hermite) for any of the ephemeris types. This field
cannot be modified in the Mission Sequence.



Data Type Integer

Allowed Values 1 <= Integer Number <= 10

Access Set

Default Value 7

Units N/A

Interfaces GUI, script

Interpolator

This field defines the available interpolator method
that was used to generate ephemeris file. Available
Interpolators are Lagrange or Hermite. This field

cannot be modified in the Mission Sequence.

Data String
Type

Allowed Lagrange for CCSDS-OEM, Code-
Values 500 and STK-TimePos Vel ephemeris

types,Hermite for SPK file

Access set



Default Lagrange
Value

Units N/A

Interfaces GUI, script

Maximized
Allows the user to maximize the generated
ephemeris file window. This field cannot be
modified in the Mission Sequence.
Data Type Boolean
Allowed Values true,false
Access set
Default Value false
Units N/A
Interfaces script
OutputFormat

Allows the user to specify what type of format they
want GSFC Code-500 ephmeris to be generated in.
GSFC Code-500 ephemeris can be generated in the
Little-Endian or Big-Endian format. This field



cannot be modified in the Mission Sequence.

Data Type String

Allowed Values LittleEndian, BigEndian

Access Set

Default Value LittleEndian

Units N/A

Interfaces GUI, script

RelativeZOrder

Allows the user to select which generated
ephemeris file display window is to displayed first
on the screen. The EphemerisFile resource with
lowest RelativeZOrder value will be displayed last
while EphemerisFile resource with highest
RelativeZOrder value will be displayed first. This
field cannot be modified in the Mission Sequence.

Data Type Integer

Allowed Values Integer >0



Access set

Default Value 0

Units N/A

Interfaces script

Size

Allows the user to control the display size of
generated ephemeris file panel. First value in [0 0]
matrix controls horizonal size and second value
controls vertical size of ephemeris file display
window. This field cannot be modified in the
Mission Sequence.

Data Type Real array

Allowed Values Any Real number

Access set

Default Value [00 ]

Units N/A

Interfaces script




Spacecraft

Allows the user to generate ephemeris data of
spacecraft(s) that are defined in Spacecraft field.
This field cannot be modified in the Mission
Sequence.

Data String
Type

Allowed Default spacecraft or any number of
Values user-defined spacecrafts or formations

Access set, get

Default DefaultSC
Value

Units N/A

Interfaces GUI, script

StepSize

The ephemeris file is generated at the step size that
is specified for StepSize field. The user can
generate ephemeris file at default Integration step
size (using raw integrator steps) or by defining a
fixed step size. For cCSDS-0EM and STK-TimePosVel
file formats, you can generate ephemeris at either
Integrator steps or fixed step size. For SPK file
format, GMAT lets you generate ephemeris at only
raw integrator step sizes. For Code-500 ephemeris



file type, you can generate ephemeris at only fixed
step sizes. This field cannot be modified in the
Mission Sequence.

Data Real
Type

Allowed Real Number > 0.0 or equals Default
Values Value

Access Set

Default 1IntegratorSteps for CCSDS-0EM, SPK
Value and STK-TimePosVel file formats and
60 seconds for code-500 file format

Units N/A

Interfaces GUI, script

UpperLeft
Allows the user to pan the generated ephemeris file

display window in any direction. First value in [0 0]
matrix helps to pan the window horizontally and
second value helps to pan the window vertically.
This field cannot be modified in the Mission
Sequence.

Data Type Real array



Allowed Values Any Real number

Access set

Default Value [00 ]

Units N/A

Interfaces script

WriteEphemeris

Allows the user to optionally calculate/write or not
calculate/write an ephemeris that has been created
and configured. This field cannot be modified in the
Mission Sequence.

Data Type Boolean

Allowed Values true,false

Access set

Default Value true

Units Unit



Interfaces GUI, script




GUI

The figure below shows the default settings for the EphemerisFile resource:

F- =

@ EphernerisFile - EphemnerisFile2 El@
Options
Spacecraft TempSpacecraftASC ~
Coordinate System EarthMJ2000Eq ~
[] Write Ephemeris
File Settings
File Format CCSDS-0EM =
File Mame | EphemerisFile2.oem | =
Interpolator Lagrange
Interpolation Order | 7 |
Step Size | IntegratorSteps V| e
Output Format PC
Kilometers
Include Event Boundaries
Epoch
Epoch Format UTCGregorian et
Initial Epach | Initial5pacecraftEpoch V|
Final Epoch | Final5pacecraftEpoch V|
D Ok Applh Cancel Help

GMAT allows you to modify InitialEpoch, FinalEpoch and StepSize fields of
EphemerisFile resource. Instead of always generating the ephemeris file at
default time span settings of InitialSpacecraftEpoch and
FinalSpacecraftEpoch, you can define your own initial and final epochs.
Similarly, instead of using the default IntegratorSteps setting for StepSize field,
you can generate the ephemeris file at the step size of your choice.

The GUI figure below shows ephemeris file which will be generated from initial



epoch of 01 Jan 2000 14:00:00.000 to final epoch of 01 Jan 2000 20:00:00.000
while using non-default step size of 300 seconds:

F- =

) EphemerisFile - EphemerisFile2 [ ][ B3
Options
Spacecraft TermnpSpacecraftASC ~
Coordinate System EarthMJ2000Eq e
Write Ephemeris
File Settings
File Format COSDS-0EM w
File Name | EphemerisFile2.oem I=
Interpolator Lagrange
Interpolation Order | 7 |
Step Size | 300 v| SEeC
Output Format PC
Kilometers
Include Event Boundaries
Epoch
Epoch Format UTCGregorian b
Initial Epoch | 01 Jan 2000 14:00:00.000 v|
Einal Epoch | 01 Jan 2000 20:00:00.000 v|
oK Apply Help




Remarks

Behavior of Coordinate System Field for CCSDS, Code 500
and SPK File Formats

If the selected CoordinateSystem uses MJ2000Eq axes, the CCSDS ephemeris
file contains “EME2000” for the REF_FRAME according to CCSDS
convention. By CCSDS requirements, non-standard axes names are allowed
when documented in an ICD. The CoordinateSystems specifications document
in the user's guide is the ICD for all axes supported by GMAT. Also if you create
a new coordinate system whose origin is Luna, then the CCSDS ephemeris file
contains “Moon” for the CENTER_NAME.

For code 500 file format, GMAT can write ephemeris for a CoordinateSystem
under CoordinateSystem field that references a MJ2000Eq, BodyFixed, or TOD
axis for any central body. For SPK file format, GMAT can only write ephemeris
for a coordinate system under CoordinateSystem field that references
MJ2000Eq axis type for any central body.

There is one important difference between GMAT and IAU conventions. By IAU
convention, there is no name for the IAU2000 axes that is independent of the
origin. GCRF is coordinate system centered at earth with [AU2000 axes, and
ICRF is a coordinate system centered at the solar system barycenter with
[TAU2000 axes. We have chosen to name the IAU2000 axes ICRF regardless of
the origin. Please refer to CoordinateSystems specifications document to read
more about built-in coordinate systems and description of Axes types that
GMAT supports.

Behavior of Ephemeris File during Discontinuous &
Iterative Processes

When generating an ephemeris file for a mission sequence, GMAT separately
interpolates ephemeris segments that are bounded by discontinuous or discrete
mission events. Discontinuous or discrete mission sequence events can range
from impulsive or finite-burn maneuvers, changes in dynamics models or when
using assignment commands. Furthermore, when a mission sequence employs
iterative processes such as differential correction or optimization, GMAT only



writes the ephemeris for the final solution from the iterative processes. See the
Examples section below to see how an ephemeris file is generated during a
discontinuous event such as an impulsive burn and iterative process like
differential correction.

Version 1 of CCSDS Orbit Data Messages (ODMs) document used to require
that the ephemeris be generated in increasing time order and only going forward.
However version 2 of CCSDS ODM document now allows for ephemeris file to
be generated backwards as well. Currently in GMAT, when you propagate a
spacecraft backwards in time, then the CCSDS ephemeris is also generated
backwards.

Warning

The Code500 ephemeris file requires fixed time steps and has a
pre-defined format for handling chunks of ephemeris data. The
format does not allow chunking to stop and start at state
discontinuities that occur at impulsive maneuvers. GMAT's
current behavior is to interpolate across those discontinuities as
the code 500 format does not elegantly support ephemerides
with discontinuities. This is acceptable for small maneuvers but
becomes less accurate as the maneuvers grow in magnitude. We
recommend using more modern ephemeris file formats for this
reason. In the event you must use a Code500 ephemeris file
with a discontinuous trajectory, we recommend using a
propagator with small, fixed times steps, and a small StepSize
setting on the ephemeris file to reduce interpolation error near
the discontinuity.

Similar to CCSDS ephemeris format, the STK-TimePosVel ephemeris is also
generated in separate chunks of ephemeris data whenever an event such as an
impulsive or a finite maneuver takes place or a change in dynamic models
occurs. However, unlike the CCSDS ephemeris, STK-TimePosVel ephemeris is
not generated during backward propagations and only forward propagation
ephemeris is reported.



Behavior of Ephemeris File When It Does Not Meet CCSDS
File Format Requirements

When an ephemeris file is generated, it needs to follow the Recommended
Standard for ODMs that has been prepared by the CCSDS. The set of orbit data
messages described in the Recommended Standard is the baseline concept of
trajectory representation in data interchange applications that are cross-supported
between Agencies of the CCSDS. CCSDS-ODM Recommended Standard
documents establishes a common framework and provides a common basis for
the interchange of orbit data.

Currently, the ephemeris file that is generated by GMAT meets most of the
recommended standards that are prescribed by the CCSDS. However whenever
there is a case when GMAT’s ephemeris violates CCSDS file format
requirements, then the generated ephemeris file will display a warning in
ephemeris file’s Header section. More specifically, this warning will be given
under COMMENT and it will let you know that this ephemeris file does not
fully satisfy CCSDS file formatting requirements.

Behavior of Interpolation Order Field for the Ephemeris File
Formats:

For CCSDS file formats, whenever there is not enough raw data available to
support the requested interpolation type and order, GMAT throws an error
message and stops interpolation. GMAT still generates the ephemeris file but no
spacecraft ephemeris data is written to the file and only the file’s Header section
will be there. Within the Header section and under COMMENT, a message will
be thrown saying that not enough raw data is available to generate spacecraft
ephemeris data at the requested interpolation order.

For SPK file formats, raw data is always collected at every integrator step for
each segment and then sent to SPK kernel writer. GMAT does not perform any
interpolation for SPK files as SPK contains its own interpolation. As a result,
InitialEpoch and FinalEpoch fields behave differently for SPK ephemerides.
The first epoch on the file is the first step after InitialEpoch. The last epoch on
the file is the last step before FinalEpoch.

For code 500 file formats, you can set the interpolation order and currently



GMAT supports Lagrange as the available interpolator method. For code 500 file
formats, if there is not enough raw data available to support interpolation type
and order, GMAT will throw an error message and stop interpolation.

For the STK-TimePosVel ephemeris format, whenever there is not enough raw
data available to support the generation of ephemeris at the requested
interpolation order and fixed step size, GMAT will internally adjust the
interpolation order such that at least the beginning and the last ephemeris points
are reported in the STK .e ephemeris file. This new interpolation order will be
reported at STK . e ephemeris's header data.

Behavior When Using EphemerisFile Resource & Toggle
Command

EphemerisFile resource generates ephemeris file at each propagation step of the
entire mission duration. If you want to generate ephemeris data during specific
points in your mission, then a Toggle On/Off command can be inserted into the
Mission tree to control when the EphemerisFile resource writes data. When
Toggle Off command is issued for an EphemerisFile subscriber, no data is sent
to a file until a Toggle On command is issued. Similarly, when a Toggle On
command is used, ephemeris data is sent to a file at each integration step until a
Toggle Off command is used. The Toggle command can be used on all four
ephemeris types that GMAT supports.

Below is an example script snippet that shows how to use Toggle Off/On
commands while using the EphemerisFile resource. No ephemeris data is sent
for first two days of propagation and only the data that is collected during last
four days of propagation is sent to text file called ‘EphemerisFilel.eph’:

Create Spacecraft aSat
Create Propagator aProp

Create EphemerisFile anEphmerisFile

anEphmerisFile.Spacecraft = aSat
anEphmerisFile.Filename = 'EphemerisFilel.eph'

BeginMissionSequence

Toggle anEphmerisFile Off
Propagate aProp(aSat) {aSat.ElapsedDays = 2}



Toggle anEphmerisFile On
Propagate aProp(aSat) {aSat.ElapsedDays = 4}

Behavior of Code 500 Ephemeris File During
Discontinuous & Iterative Processes

Code 500 ephemeris file follows the ephemeris format and definitions that have
been defined in Flight Dynamics Division (FDD) Generic Data Product Formats
Interface Control Document.

Unlike CCSDS ephemeris file, code 500 ephemeris does not support separate
chunks in the data blocks whenever discontinuous or discrete mission events
such as impulsive/finite maneuvers, change in dynamics or assignment
command takes place. Rather, code 500 ephemeris is generated all in one
continuous data block regardless of any number of mission events that may
occur between initial and final epochs of ephemeris file. Furthermore, when a
mission sequence employs iterative processes such as differential correction or
optimization, GMAT will only write the ephemeris for the final solution from the
iterative processes. Code 500 ephemeris does not allow non-monotonic
ephemeris generation and an exception will be thrown if propagation direction
changes. Furthermore, any discontinuities created by assignments may result in
invalid code 500 files.

Code 500 Ephemeris Header Records

The standard format for Code 500 ephemeris files has a logical record length of
2800 bytes. Code 500 files have two header records, ephemeris header record 1
and ephemeris record 2, followed by as many ephemeris data records as required
for the file timespan. Many parameters in ephemeris file's header records are
mandatory while some fields are optional. GMAT's Code 500 ephemeris header
records only specifies fields that are mandatory and optional fields have not been
included. Code 500's ephemeris header record 1 is mandatory while ephemeris
record 2 is optional. Complete description of ephemeris format and list of
mandatory and optional ephemeris header record parameters is defined in Flight
Dynamics Division (FDD) Generic Data Product Formats Interface Control
Document. In GMAT, only required fields have been written in header record 1
while header record 2 is left blank. Table below lists header record 1's required
fields and any additional comments pertaining to that field.



Required Fields Comments
productld

'EPHEM '
satld

123.000000
timeSystemIndicator

2.000000

StartDateOfEphem_YYYMMDD
value depends on run time

startDayCountOfYear
value depends on run time

startSecondsOfDay
value depends on run time

endDateOfEphem_YYYMMDD
value depends on run time

endDayCountOfYear
value depends on run time

endSecondsOfDay
value depends on run time

stepSize_SEC
value depends on run time

startYYYYMMDDHHMMSSsss.
value depends on run time

endYYYYMMDDHHMMSSsss.
value depends on run time



tapeld

'STANDARD'
sourceld

'GTDS'
headerTitle
centralBodyIndicator

Set to central body of
corrdinate system. Note

GMAT allows users to

change central body of

integration.
refTimeForDUT_YYMMDD

570918.000000
coordSystemIndicatorl

'2000'
coordSystemIndicator2

4
orbitTheory

'COWELL'

timeIntervalBetweenPoints DUT
value depends on run time

timelntervalBetweenPoints_ SEC
value depends on run time

outputintervallndicator



epochTimeOfElements_DUT

value depends on run time

epochTimeOfElements_DAY.

value depends on run time

epochA1Greg.

value depends on run time

epochUtcGreg.

value depends on run time

yearOfEpoch_YYY

value depends on run time

monthOfEpoch_ MM

value depends on run time

dayOfEpoch_DD

value depends on run time

hourOfEpoch_HH

value depends on run time

minuteOfEpoch_MM

value depends on run time

secondsOfEpoch_MILSEC

value depends on run time

keplerianElementsAtEpoch_RADI[0]

value depends on run time

keplerianElementsAtEpoch_RADI[1]

value depends on run time



keplerianElementsAtEpoch_RADI2]

value depends on run time

keplerianElementsAtEpoch_RADI3]

value depends on run time

keplerianElementsAtEpoch_RAD[4]

value depends on run time

keplerianElementsAtEpoch_RADI5]

value depends on run time

cartesianElementsAtEpoch_DULTI[0]

value depends on run time

cartesianElementsAtEpoch_DULTI[1]

value depends on run time

cartesianElementsAtEpoch_DULT]2]

value depends on run time

cartesianElementsAtEpoch_DULT]3]

value depends on run time

cartesianElementsAtEpoch_DULT[4]

value depends on run time

cartesianElementsAtEpoch_DULTI5]

value depends on run time

startTimeOfEphemeris_DUT

value depends on run time

endTimeOfEphemeris_DUT

value depends on run time




timeIntervalBetweenPoints DUT
value depends on run time

dateOfInitiationOfEphemComp_YYYMMDD
value depends on run time

timeOfInitiationOfEphemComp_HHMMSS
value depends on run time

utcTimeAdjustment_SEC
0.000000

Pecession/Nutation indicator

For ephemeris header record 1, there are some required fields that have not been
tabulated in GMAT's Code 500 ephemeris header record 1. These fields that
have not been tabulated in header record 1 are listed in the table below. 0.0
indicates "used" and 1.0 means "not used".

Required Fields Comments

Zonal and tesseral harmonics indicator

1.0
Lunar gravitation perturbation
indicator 1.0
Solar radiation perturbation indicator

1.0
Solar gravitation perturbation
indicator 1.0

Atmospheric drag perturbation
indicator 1.0



Greenwich hour angle at epoch

1.0




Examples

This example shows how to generate a simple ephemeris file. Ephemeris file is
generated for two days of propagation. At default settings, ephemeris file is
generated at each integrator step and in CCSDS file format. Ephemeris data is
sent to text file called ‘EphemerisFile2.eph’:

Create Spacecraft aSat
Create Propagator aProp

Create EphemerisFile anEphmerisFile

anEphmerisFile.Spacecraft = aSat
anEphmerisFile.Filename = 'EphemerisFile2.eph'

BeginMissionSequence

Propagate aProp(aSat) {aSat.ElapsedDays = 2}

This example shows how an ephemeris file is generated during an iterative
process like differential correction that includes a discontinuous event like an
impulsive burn. Ephemeris data is sent to text file called ‘EphemerisFile3.eph’:

Create Spacecraft aSat
Create Propagator aProp

Create ImpulsiveBurn TOI
Create DifferentialCorrector aDC

Create EphemerisFile anEphmerisFile

anEphmerisFile.Spacecraft = aSat
anEphmerisFile.Filename = 'EphemerisFile3.eph'

BeginMissionSequence
Propagate aProp(aSat) {aSat.Earth.Periapsis}

Target abDC

Vary aDC(TOI.Elementl = 0.24, {Perturbation = 0.001, Lower = 0.0,
Upper = 3.14159, MaxStep = 0.5})

Maneuver TOI(aSat)

Propagate aProp(aSat) {aSat.Earth.Apoapsis}



Achieve aDC(aSat.Earth.RMAG = 42165)
EndTarget

Propagate aProp(aSat) {aSat.ElapsedDays = 1}

This example shows how to generate a simple STK-TimePosVel (i.e. STK .e)
ephemeris file. Ephemeris file is generated for 1 day of propagation, then a
simple impulsive maneuver takes place and spacecraft propagates for another
day. This ephemeris is generated at raw integrator steps.

Create Spacecraft aSat
Create Propagator aProp

Create ImpulsiveBurn IB
IB.Elementl = 0.5

Create EphemerisFile anEphmerisFile
anEphmerisFile.Spacecraft = aSat

anEphmerisFile.Filename = 'EphemerisFile.e'
anEphmerisFile.FileFormat STK-TimePosVel

BeginMissionSequence

Propagate aProp(aSat) {aSat.ElapsedDays = 1}
Maneuver IB(aSat)
Propagate aProp(aSat) {aSat.ElapsedDays = 1}



ErrorModel

ErrorModel — Used to specify measurement noise for simulation and
estimation, and to apply or estimate measurement biases.



Description

An ErrorModel is assigned on the ErrorModels field of an instance of
GroundStation or a spacecraft-attached Receiver to model biases and noise,
and optionally to estimate biases on each measurement type provided by the
ground station or receiver. An error model must be specified for each data type
employed by each tracking station or receiver, but a single instance of
ErrorModel may be used by multiple ground stations or spacecraft receivers.

An error model is only assigned to a receiver if GPS_PosVec data is employed.
The GPS_PosVec observation type models position estimates provided by an
on-board GPS receiver. Since this type of data is not derived from ground station
measurement modeling, the error model for GPS_PosVec data is specified on
the ErrorModels field of a Receiver resource instead. The receiver must be
attached to the corresponding Spacecraft object. Error models for all other
observation types should be specified on the ErrorModels field of the relevant
ground station resources. Error models cannot be assigned on receivers attached
to ground stations.

The ErrorModel is used by both the simulator and the estimator. For a data
simulation run, the ErrorModel specifies the measurement type and noise
employed when generating the simulated measurement. A bias may optionally
be applied to the simulated observations.

For an estimation run, the ErrorModel specifies the observation type, presumed
observation noise, and an optional bias to be applied to the observation. An
observation bias may also be estimated by adding the keyword Bias to the
ErrorModel.SolveFors list. If the SolveFors list is empty, no bias will be
estimated. The SolveFors list is ignored by the simulator.

The ErrorModel resource does not currently support application or estimation
of biases for the GPS_PosVec data type.

See Also GroundStation, Receiver




Fields

Field Description

Bias
The constant bias associated with the measurement. For
simulations, this bias is added to the measurement. As
shown below, the units used depend upon measurement
type, ErrorModel.Type.

Data Type Real

Allowed Values Any Real number
Access set

Default Value 0.0

Units See Remarks section

Interfaces script

BiasSigma
Standard deviation of Bias. This field, which only has a
function if both (1)
BatchEstimatorInv.UselnitialCovariance = true and (2)
Bias is a solve-for parameter, is used to constrain the
estimated value of Bias. As shown below, the units used
depend upon measurement type, ErrorModel. Type. This
parameter is not implemented for GPS_PosVec data.



Data Type Real

Allowed Values Real >0

Access set

Default Value 1e+70

Units See Remarks section

Interfaces script

NoiseSigma

One sigma value of Gaussian noise. For simulations, if
Sim.AddNoise = true, this noise is added to the
measurements. For estimation, this value is used to as part
of the batch processing algorithms to calculate the
measurement type weighting. As shown below, the units
used depend upon measurement type, ErrorModel. Type.

Data Type Real

Allowed Values Real >0

Access set

Default Value 103



Units See Remarks section

Interfaces script

SolveFors
List of parameters to estimate. This parameter is not
implemented for GPS_PosVec data.
Data Type StringArray
Allowed Values {} or {Bias}
Access set
Default Value {}
Units N/A
Interfaces script
Type

Measurement data type.

Data Type Enumeration

Allowed DSN_SeqRange, DSN_TCP, GPS_PosVec,



Values

Access

Default
Value

Units

Interfaces

Range, RangeRate

set

DSN_SeqRange

N/A

script




Remarks

Units for Bias, BiasSigma, and NoiseSigma

The following table shows the units to be used for Bias, BiasSigma, and
NoiseSigma for each measurement data type that GMAT supports.

GMAT Measurement Type Units

DSN_SegRange Range Units
DSN_TCP Hertz
GPS_PosVec Kilometers
Range Kilometers
RangeRate Kilometers/sec

Deprecated Measurement Type Names

This version of GMAT deprecates the DSNRange/Range_RU and
Doppler/Doppler_HZ measurement type names. These have been replaced by
the DSN_SegRange and DSN_TCP types. These new names are employed
identically in the GMAT Measurement Data (GMD) data file, the
ErrorModel. Type parameter, and the TrackingFileSet. AddTrackingConfig
parameter. Scripts employing the deprecated measurement type names will still
work in this version of GMAT, but future versions will remove this support.
Users are encouraged to update their scripts to use the new names.

The new data type names employ the same name in the GMD file, error model,
and tracking file set tracking configuration, eliminating the need for a mapping
between the names employed in each resource. For those still using the
deprecated data type names, the following table provides a guide.

Deprecated GMD File and Deprecated ErrorModel

Measurement Type Name

TrackingFileSet. AddTrackingConfig
Measurement Type Name

DSNRange Range_RU




Doppler Doppler_HZ




Examples

This example shows how to create an error model for DSN Sequential Range
observations and illustrates estimation of a range bias parameter.

% Create an ErrorModel
% Measurement noise is in Range Units

Create ErrorModel RangeModel;

RangeModel.Type 'DSN_SeqRange';
RangeModel.NoiseSigma 11.;

RangeModel.Bias =0.;
RangeModel.SolveFors {Bias};

%  Assign it to a ground station
Create GroundStation DSN;
DSN.ErrorModels = {RangeModel};

BeginMissionSequence;

This example shows how to create an error model for on-board GPS
observations.

% Create an ErrorModel
%  Measurement noise is in kilometers. Bias estimation is not permi

Create ErrorModel PosVecModel;

PosVecModel. Type
PosVecModel.NoiseSigma

'GPS_PosVec';
0.010;

%  Assign the error model to a receiver and add that receiver to a

Create Antenna GpsAntenna,
Create Receiver GpsReceiver;

GpsReceiver.Id = 800;
GpsReceiver.PrimaryAntenna = GpsAntenna;
GpsReceiver.ErrorModels = {PosVecModel};

Create Spacecraft Sat;



Sat.AddHardware = {GpsReceiver, GpsAntenna};

BeginMissionSequence;



FileInterface

FileInterface — An interface to a data file



Description

The FileInterface resource is an interface to a data file that can be used to load
mission data, like Spacecraft state information and physical properties. Once an
interface is established to a file, the Set command can be used to load the data

and apply it to a destination.
The following file formats are currently supported:

e TVHF_ASCII: ASCII format of the TCOPS Vector Hold File (TVHF),
defined by the NASA Goddard Space Flight Center Flight Dynamics
Facility. This file contains spacecraft state and physical information that can

be transferred to a Spacecraft resource.

See Also: Set



Fields

Field Description

Filename
Full path of the file to read. Relative paths are interpreted as relative

to the directory containing the GMAT executable. If the path is
omitted, it is assumed to be “. /”.

Data Type String
Allowed Values Valid file path
Access set

Default Value (None)

Units N/A
Interfaces GUI, script
Format
Format of the file to read. Currently, the only allowed format is
“TVHF_ASCII”.
Data Type Enumerated value

Allowed Values TVHF_ASCII



Access set

Default Value TVHF_ASCII

Units N/A

Interfaces GUI, script




GUI

&) Filelnterface - Filelnterfacel o & |3
Format  TyHF_ascl -
Filename

The FileInterface GUI has two fields: a list of accepted options for Format
(currently only TVHF_ASCII), and an input box for Filename. Click Browse to
the right of the Filename box to interactively select a file.



Remarks

Each file format supported by the FileInterface resource exposes a set of
keywords that can be used to extract certain data elements. These keywords can
be used in the Data option of the Set command, as follows:

Set destination source (Data = {keyword[, keyword]})

If the 'A11' keyword is used, those fields with a checkmark in the “All” column
are selected.

TVHF_ASCII

Keyword Source field Description 'All’

CartesianState "CARTESIAN  Cartesian state elements v
COORDINATES" (X, Y, Z, VX, VY, VZ)

Cr "CSUBR" Coefficient of reflectivity v

Epoch "EPOCH TIME Epoch of state vector v
FOR
ELEMENTS"

Limitations

The following limitations apply to the TVHF_ASCII format:
¢ Only the J2000 coordinate system is supported.

e Only the first record in a multiple-record file is loaded.



Examples

Read a TVHF file and use it to configure a spacecraft.

Create Spacecraft aSat

Create FileInterface tvhf
tvhf.Filename = 'statevec.txt'
tvhf.Format = 'TVHF_ASCII'

BeginMissionSequence

Set aSat tvhf



FiniteBurn

FiniteBurn — A finite burn



Description

The FiniteBurn resource is used when continuous propulsion is desired.
Impulsive burns happen instantaneously through the use of the Maneuver
command, while finite burns occur continuously starting at the BeginFiniteBurn
command and lasting until the EndFiniteBurn command is reached in the
mission sequence. In order to apply a non-zero Finite Burn, there must be a
Propagate command between the BeginFiniteBurn and EndFiniteBurn
commands.

See Also: ChemicalTank, ChemicalThruster, Spacecraft, BeginFiniteBurn,
EndFiniteBurn, Calculation Parameters




Fields

Field Description

Thrusters

The Thruster field allows the selection of which
Thruster, from a list of previously created thrusters, to use
when applying a finite burn. Currently, using the GUI, you
can only select one Thruster to attach to a FiniteBurn
resource. Using the scripting interface, you may attach
multiple thrusters to a FiniteBurn resource. Using the
scripting interface, you may attach multiple thrusters to a
FiniteBurn resource. In a script command, an empty list,
e.g., FiniteBurni.Thruster={}, is allowed but is of
limited utility since the GUI will automatically associate a
ChemicalThruster, if one has been created, with the
FiniteBurn. This field cannot be modified in the Mission

Sequence.

Data
Type

Allowed

Values

Access

Default
Value

Reference Array

A list of Thrusters created by user. Can be a
list of ChemicalThrusters or
ElectricThrusters but you cannot mix
chemical and electric thrusters.

set

No Default



Units N/A

Interfaces GUI, script, or only one

VectorFormat

Deprecated. Allows you to define the format of the finite
burn thrust direction. This field has no affect. The finite
burn thrust direction, as specified in the Thruster resource,
is always given in Cartesian format. Note: You can use
GMAT scripting to covert from other representations to
Cartesian and then set the Cartesian format.

Data Type Enumeration

Allowed Values cartesian, Spherical

Access set

Default Value Cartesian

Units N/A

Interfaces script




GUI

The FiniteBurn dialog box allows you to specify which thruster to use for the
finite burn. The layout of the FiniteBurn dialog box is shown below.

@ FiniteBurn - FiniteBurnl El@

Thruster [Thrusterl - ]

0 o) Comn) o)




Remarks

Configuring a FiniteBurn

To perform a finite burn, the FiniteBurn resource itself and a number of related
resources and commands must be properly configured. You must associate a
specific ChemicalThruster hardware resource with a created FiniteBurn. You
must associate a specific ChemicalTank hardware resource with the chosen
ChemicalThruster. Finally, you must attach both the chosen Thrusters and
Tanks to the desired Spacecraft. See the example below for additional details.

FiniteBurn Using Multiple Thrusters

Using the GUI, a FiniteBurn resource must be associated with exactly one
Thruster.

Using the scripting interface, one can assign multiple thrusters to a single
FiniteBurn resource.



Interactions

Field Description

Spacecraft

resource Must be created in order to apply any burn.

Thruster

resource As discussed in the Remarks, every FiniteBurn resource
must be associated with at least one ChemicalThruster or
ElectricThruster. Any thruster created in the resource tree
can be incorporated into a FiniteBurn but thruster types
cannot be mixed.

ChemicalTank

resource To perform a finite burn, a Tank must be attached to the
Spacecraft. (A ChemicalTank is needed to provide
pressure and temperature data used when modeling the
thrust and specific impulse. A Tank is also needed if you
want to model mass depletion.)

BeginFiniteBurn

and After a FiniteBurn is created, to apply it in the mission

EndFiniteBurn sequence, a BeginFiniteBurn and EndFiniteBurn

command command must be appended to the mission tree.

Propagate

command In order to apply a non-zero finite burn, there must be a

Propagate command between the BeginFiniteBurn and
EndFiniteBurn commands.

Reporting FiniteBurn Parameters

GMAT now supports finite burn parameters that report the thrust component data
for a finite burn. The parameters include total thrust from all thrusters in the



three coordinate directions, the total acceleration from all thrusters in the three
coordinate directions, and the total mass flow rate from all thrusters. Currently,
by default the total thrust and total acceleration parameters in the three
coordinate directions are reported only in the J2000 system and do not support
any other coordinate system dependency. Furthermore, you can now also report
out any thruster's individual parameters such as thrust magnitude, Isp and mass
flow rate. See the Calculation Parameters reference for definitions of these finite
burn and thruster specific parameters. Also see the Examples section for an
example that shows how to report the finite burn and individual thruster specific
parameters to a report file.




Examples

Configure a chemical finite burn. Create a default Spacecraft and
ChemicalTank Resource; Create a default ChemicalThruster that allows for
fuel depletion from the default ChemicalTank; Attach ChemicalTank and
ChemicalThruster to the Spacecraft; Create default ForceModel and
Propagator; Create a Finite Burn that uses the default thruster and apply a 30
minute finite burn to the spacecraft.

% Create a default Spacecraft and ChemicalTank Resource
Create Spacecraft DefaultSC
Create ChemicalTank FuelTankl

% Create a default ChemicalThruster. Allow for fuel depletion from
% the default ChemicalTank.

Create ChemicalThruster Thrusteril

Thrusterl.DecrementMass = true

Thrusterl.Tank = {FuelTank1}

% Attach ChemicalTank and ChemicalThruster to the spacecraft
DefaultSC.Thrusters = {Thruster1}
DefaultSC.Tanks = {FuelTank1}

% Create default ForceModel and Propagator
Create ForceModel DefaultProp_ForceModel
Create Propagator DefaultProp
DefaultProp.FM = DefaultProp_ForceModel

% Create a Finite Burn that uses the default thruster
Create FiniteBurn FiniteBurnl
FiniteBurnl.Thrusters = {Thruster1}

BeginMissionSequence

% Implement 30 minute finite burn

BeginFiniteBurn FiniteBurnl(DefaultSC)

Propagate DefaultProp(DefaultSC) {DefaultSC.ElapsedSecs = 1800}
EndFiniteBurn FiniteBurnl(DefaultSC)

This example shows how to report finite burn parameters such as total
acceleration (from all thrusters), total thrust (from all thrusters) in the three
coordinate directions. We also report total mass flow rate from all thrusters.



Additionally, individual thruster specific parameters such as thruster mass flow
rate, thrust magnitude and thruster Isp are also reported. Note that in the
generated report, all finite burn and thruster parameters are reported as zeros

when thrusters are not turned on.
Create Spacecraft aSat
Create ChemicalTank aFuelTank

Create ChemicalThruster aThruster
aThruster.DecrementMass = true
aThruster.Tank = {aFuelTank}
aThruster.C1 1000 % Constant Thrust
aThruster.K1 300 % Constant Isp

aSat.Thrusters = {aThruster}
aSat.Tanks = {aFuelTank}

Create ForceModel aFM
aFM.CentralBody = Earth
aFM.PointMasses = {Earth}

Create Propagator aProp
aProp.FM = aFM

Create FiniteBurn aFB
aFB.Thrusters = {aThruster}

Create ReportFile rf

rf.Add = {aSat.UTCGregorian, aFB.TotalAccelerationl, aFB.TotalAccele
aFB.TotalAcceleration3, aFB.TotalMassFlowRate, aFB.TotalThrusti,
aFB.TotalThrust2, aFB.TotalThrust3, aSat.aThruster.MassFlowRate,
aSat.aThruster.ThrustMagnitude, aSat.aThruster.Isp}

BeginMissionSequence

Propagate aProp(aSat) {aSat.ElapsedSecs
% Do a Finite-Burn for 1800 Secs
BeginFiniteBurn aFB(aSat)

Propagate aProp(aSat) {aSat.ElapsedSecs
EndFiniteBurn aFB(aSat)

Propagate aProp(aSat) {aSat.ElapsedSecs

1000}

1800}

1000}



FminconOptimizer

FminconOptimizer — The Sequential Quadratic Programming (SQP) optimizer,
fmincon



Description

fmincon is a Nonlinear Programming solver provided in MATLAB's
Optimization Toolbox. fmincon performs nonlinear constrained optimization
and supports linear and nonlinear constraints. To use this solver, you must
configure the solver options including convergence criteria, maximum iterations,
and how the gradients will be calculated. In the mission sequence, you
implement an optimizer such as fmincon by using an Optimize/EndOptimize
sequence. Within this sequence, you define optimization variables by using the
Vary command, and define cost and constraints by using the Minimize and
NonlinearConstraint commands respectively.

This resource cannot be modified in the Mission Sequence.

See Also: VF13ad,Optimize,Vary, NonlinearConstraint, Minimize



Fields

Field Description

DiffMaxChange
Upper limit on the perturbation used in MATLAB's

finite differencing algorithm. For fmincon, you don't
specify a single perturbation value, but rather give
MATLAB a range, and it uses an adaptive algorithm that
attempts to find the optimal perturbation.

Data Type String

Allowed Values Real Number > 0
Access Set

Default Value 0.1

Units None

Interfaces GUI, script

DiffMinChange
Lower limit on the perturbation used in MATLAB's

finite differencing algorithm. For fmincon, you don't
specify a single perturbation value, but rather give
MATLAB a range, and it uses an adaptive algorithm that
attempts to find the optimal perturbation.



Data Type String

Allowed Values Real Number > 0

Access Set

Default Value 1e-8

Units None

Interfaces GUI, script

MaxFunEvals

Specifies the maximum number of cost function
evaluations used in an attempt to find an optimal
solution. This is equivalent to setting the maximum
number of passes through an optimization loop in a
GMAT script. If a solution is not found before the
maximum function evaluations, fmincon outputs an
ExitFlag of zero, and GMAT continues.

Data Type String

Allowed Values Integer > 0

Access Set

Default Value 1000



Units None

Interfaces GUI, script

MaximumlIterations
Specifies the maximum allowable number of nominal

passes through the optimizer. Note that this is not the
same as the number of optimizer iterations that is shown
for the VF13ad optimzer.

Data Type String

Allowed Values Integer > 0

Access Set

Default Value 25

Units None

Interfaces GUI, script

ReportFile
Contains the path and file name of the report file.

Data Type String



Allowed Values Any user-defined file name

Access Set

Default Value FminconOptimizerSQP1.data

Units None

Interfaces GUI, script

ReportStyle

Determines the amount and type of data written to the
message window and to the report specified by field
ReportFile for each iteration of the solver (when
ShowProgress is true). Currently, the Normal, Debug,
and Concise options contain the same information: the
values for the control variables, the constraints, and the
objective function. In addition to this information, the
Verbose option also contains values of the optimizer-
scaled control variables.

Data Type String

Allowed Values Normal, Concise, Verbose, Debug

Access Set

Default Value Normal



Units None

Interfaces GUI, script

ShowProgress
Determines whether data pertaining to iterations of the

solver is both displayed in the message window and
written to the report specified by the ReportFile field.
When ShowProgress is true, the amount of information
contained in the message window and written in the
report is controlled by the ReportStyle field.

Data Type Boolean

Allowed Values true, false

Access Set

Default Value true

Units None

Interfaces GUI, script

TolCon
Specifies the convergence tolerance on the constraint

functions.



Data Type String

Allowed Values Real Number > 0

Access Set

Default Value 1le-4

Units None
Interfaces GUI, script
TolFun
Specifies the convergence tolerance on the cost function
value.
Data Type String

Allowed Values Real Number > 0

Access Set

Default Value 1le-4

Units None



Interfaces GUI, script

TolX
Specifies the termination tolerance on the vector of

independent variables, and is used only if the user sets a
value for this field.

Data Type String

Allowed Values Real Number > 0

Access Set

Default Value 1le-4

Units None

Interfaces GUI, script




GUI

The FminconOptimizer dialog box allows you to specify properties of a
FminconOptimizer resource such as maximum iterations, maximum function
evaluations, control variable termination tolerance, constraint tolerance, cost
function tolerance, finite difference algorithm parameters, and choice of
reporting options.

To create a FminconOptimizer resource, navigate to the Resources tree, expand
the Seolvers folder, highlight and then right-click on the Optimizers sub-folder,
point to Add and then select SQP (fmincon). This will create a new
FminconOptimizer resource, SQP1. Double-click on SQP1 to bring up the
FminconOptimizer dialog box shown below.

@ FrninconOptirmizer - SQP1 El@

Options
Max. Iterations 25

Max, Func. Evals.  1pon

Tol X 1,0000e-04
Tol Con 1,0000e-04
Tol Fun 1,0000e-04

Diff Max Change . 1000

Diff Min Change  1.0000e-08

Output
7| show Progress
Report Style e = |

Repoart File FminconOptimizerSQP 1.data Browse
D QK App Cancel | | Help I




Remarks

fmincon Optimizer Availability

This optimizer is only available if you have access to both MATLAB and
MATLAB's Optimization toolbox. GMAT contains an interface to the fmincon
optimizer and it will appear to you that fmincon is a built in optimizer in GMAT.
Field names for this resource have been copied from those used in MATLAB’S
optimset function for consistency with MATLAB in contrast with other solvers
in GMAT.

GMAT Stop Button Does Not work, in Some Situations,
When Using Fmincon

Sometimes, when developing GMAT scripts, you may inadvertently create a
situation where GMAT goes into an inifinite propagation loop. The usual remedy
for this situation is to apply the GMAT Stop button. Currently, however, if the
infinite loop occurs within an Optimize sequence using fmincon, there is no way
to stop GMAT and you have to shut GMAT down. Fortunately, there are some
procedures you can employ to avoid this situation. You should use multiple
stopping conditions so that a long propagation cannot occur. For example, if
fmincon controls variable, myVar, and we know myVar should never be more
than 2, then do this.

Propagate myProp(mySat){mySat.ElapsedDays = myVar, mySat.ElapsedDays
Resource and Command Interactions

The FminconOptimizer resource can only be used in the context of
optimization-type commands. Please see the documentation for Optimize, Vary,
NonlinearConstraint, and Minimize for more information and worked
examples.



Examples

Create a FminconOptimizer resource named SQP1.

Create FminconOptimizer SQP1
SQP1.ShowProgress = true
SQP1.ReportStyle = Normal
SQP1.ReportFile = 'FminconOptimizerSQP1.data'
SQP1.MaximumIterations = 25
SQP1.DiffMaxChange = '0.1000'
SQP1.DiffMinChange = '1.0000e-08'
SQP1.MaxFunEvals = '1000'
SQP1.TolX = '1.0000e-04'
SQP1.TolFun '1.0000e-04"
SQP1.TolCon '1.0000e-04"

For an example of how a FminconOptimizer resource can be used within an
optimize sequence, see the Optimize command examples.



ForceModel

ForceModel — Used to specify force modeling options such as gravity, drag,
solar radiation pressure, and non-central bodies for propagation.



Description

For details on the ForceModel resource, see the section called “Force Model” in
the Propagator resource.




Formation

Formation — A collection of spacecraft.



Description

A Formation resource allows you to combine spacecraft in a “container” object
and then GMAT’s propagation subsystem will model the collection of spacecraft
as a coupled dynamic system. You can only propagate Formation resources
using numerical-integrator type propagators. This resource cannot be modified in
the Mission Sequence.

See Also: Propagate, Color



Fields

Field Description

Add
Adds a list of Spacecraft to the Formation. The list cannot be
empty.
Data Type Resource array

Allowed Values array of spacecraft

Access set

Default Value empty list

Units N/A

Interfaces GUI, script




GUI

To create a simple Formation and configure its Spacecraft, in the Resource
Tree:

1. Right-click the Spacecraft folder and select Add Spacecraft.
2. Right click the Formations folder and select Add Formation.
3. Double-click Formation1 to open its dialog box.
4. Click the right-arrow button twice to add DefaultSC and Spacecraft1 to
Formationl.
5. Click Ok.
[ @ Formation - Formationl |E||E”E| |
Spacecraft Spacecraft in Formation
DefaultsC

A !
| W

0 o) o) [Ccma )

Note

A Spacecraft can only be added to one Formation.




Remarks

A Formation is a container object that allows you to model a group of
Spacecraft as a coupled system. You can add Spacecraft to a Formation using
the Add field as shown in the script examples below or in the GUI example
above. The primary reasons to use a Formation Resource are (1) to simplify the
propagation of multiple spacecraft and (2) for performance reasons. You can
only add a spacecraft to a one formation, and you cannot add a formation to a
formation. GMAT’s propagation subsystem models Formations as a coupled
dynamic system. Once spacecraft have been added to a Formation, you can
easily propagate all of the spacecraft by simply including the formation in the
Propagate command statement like this:

Propagate aPropagator(aFormation) {aSatl.ElapsedSecs = 12000.0}

You can only propagate Formation resources using numerical-integrator type
propagators. GMAT does not support propagation of the orbit state transition
matrix when propagating formations.

When propagating a Formation, all spacecraft in the Formation must have
equivalent epochs. GMAT will allow you to separately propagate a Spacecraft
that has been added to a Formation, like this:

aFormation.Add = {aSatl, aSat2}
Propagate aPropagator(aSatl) {aSatl.ElapsedSecs = 12000.0}

However, when a Formation is propagated, if the epochs of all Spacecraft in
the Formation are not equivalent to a tolerance of a few microseconds, GMAT
will throw an error and execution will stop.

Setting Colors On Spacecrafts In Formation Resource

If you want to set unique colors on spacecraft trajectories that are nested in the
Formation resource, then change colors through either the Spacecraft resource
or the Propagate command. See the Color documentation for discussion and
examples on how to set unique colors on Spacecraft resource and Propagate
command.



Examples

Create two Spacecraft, add them to a Formation, and propagate the
Formation.

Create Spacecraft aSatl aSat2

Create Formation aFormation
aFormation.Add = {aSatl, aSat2}

Create Propagator aPropagator
BeginMissionSequence

Propagate aPropagator(aFormation) {aSatl.ElapsedSecs = 12000.0}



ChemicalTank

ChemicalTank — Model of a chemical fuel tank



Description

A ChemicalTank is a thermodynamic model of a tank and is required for finite
burn modeling or for impulsive burns that use mass depletion. The
thermodynamic properties of the tank are modeled using Boyle’s law and
assume that there is no temperature change in the tank as fuel is depleted. To use
a ChemicalTank, you must first create the tank, and then attach it to the desired
Spacecraft and associate it with a ChemicalThruster as shown in the example

below.

See Also ImpulsiveBurn,ChemicalThruster



Fields

Field Description

AllowNegativeFuelMass
This field allows the ChemicalTank to have

negative fuel mass which can be useful in
optimization and targeting sequences before
convergence has occurred. This field cannot be
modified in the Mission Sequence.

Data Type Boolean
Allowed Values true, false
Access set

Default Value false

Units N/A

Interfaces GUI, script
FuelDensity

The density of the fuel.

Data Type Real



Allowed Values Real >0

Access set, get

Default Value 1260

Units kg/mA3

Interfaces GUI, script

FuelMass
The mass of fuel in the tank.

Data Type Real

Allowed Values Real >0

Access set, get

Default Value 756

Units kg

Interfaces GUI, script

Pressure



The pressure in the tank.

Data Type Real

Allowed Values Real >0

Access set, get

Default Value 1500

Units kPa

Interfaces GUI, script

PressureModel
The pressure model describes how pressure in the

ChemicalTank changes as fuel is depleted. This
field cannot be modified in the Mission Sequence.

Data Type Enumeration

Allowed Values PressureRegulated, BlowDown

Access set

Default Value PressureRegulated



Units N/A

Interfaces GUI, script
RefTemperature
The temperature of the tank when fuel was loaded.
Data Type Real
Allowed Values Real > -273.15 and |Real| > 0.01
Access se