
Documentation	Overview
Welcome,	and	thank	you	for	using	GMAT!	This	User	Guide	contains	a	wealth	of
material	to	introduce	you	to	GMAT	and	how	it	works.	It	also	provides	an
extensive	Reference	Guide	that	contains	data	on	every	Resource,	Command,	and
major	subcomponent	in	the	system.



Using	GMAT
The	Using	GMAT	chapter	contains	high	level	and	introductory	information	on
the	sytem.	If	you	need	information	on	how	to	install	and	run	the	system,	would
like	a	tour	of	the	system,	want	know	how	to	configure	data	files,	or	how	GMAT
is	organized,	start	here.

The	Using	GMAT	section	provides	general	information	on	GMAT	and	how	to
use	the	software.

The	Welcome	to	GMAT	contains	a	brief	project	and	software	overview,	including
project	status,	licensing,	and	contributors.

The	Getting	Started	section	describes	how	to	get	and	install	GMAT,	how	to	run
the	provided	samples,	and	where	to	turn	for	further	help.

The	Tour	of	GMAT	is	an	in-depth	guide	through	some	of	the	key	interface
features,	including	the	Resources	tree,	Mission	tree,	Command	Summary,	and
Script	Editor.

Note

We	consider	the	User	Interfaces	Overview	section	to	be
essential	reading,	as	it	describes	some	fundamental	aspects	of
how	GMAT	works.



Tutorials
The	Tutorials	section	contains	in-depth	tutorials	that	show	you	how	to	use
GMAT	for	end-to-end	analysis.	The	tutorials	are	designed	to	teach	you	how	to
use	GMAT	in	the	context	of	performing	real-world	analysis	and	are	intended	to
take	between	30	minutes	and	several	hours	to	complete.	Each	tutorial	has	a
difficulty	level	and	an	approximate	duration	listed	with	any	prerequisites	in	its
introduction,	and	are	arranged	in	a	general	order	of	difficulty.

Here	is	a	summary	of	selected	Tutorials.	For	a	complete	list	of	tutorials	see	the
Tutorials	chapter.

The	Simulating	an	Orbit	tutorial	is	the	first	tutorial	you	should	take	to	learn	how
to	use	GMAT	to	solve	mission	design	problems.	You	will	learn	how	to	specify
an	orbit	and	propagate	to	orbit	periapsis.

The	Mars	B-Plane	Targeting	tutorial	shows	how	to	perform	targeting	by
application	to	a	Mars	transfer	trajectory	where	you	will	target	desired	B-plane
conditions	at	Mars.

The	Target	Finite	Burn	to	Raise	Apogee	tutorial	shows	how	to	use	finite
maneuvers	with	an	application	to	orbit	apogee	raising.

The	Finding	Eclipses	and	Station	Contacts	tutorial	shows	how	to	use	GMAT	to
locate	elipses	and	station	contacts.

The	Electric	Propulsion	tutorial	shows	how	to	configure	GMAT	to	model
electric	propulsion	systems.

The	Mars	B-Plane	Targeting	Using	GMAT	Functions	tutorial	shows	how	to	use
GMAT	functions	to	extend	your	analysis.



Reference	Guide
The	Reference	Guide	contains	individual	topics	that	describe	each	of	GMAT's
resources	and	commands.	When	you	need	detailed	information	on	syntax	or
application-specific	examples	for	specific	features,	go	here.	It	also	includes
system-level	references	that	describe	the	script	language	syntax,	parameter
listings,	external	interfaces,	and	configuration	files.

The	Resources	section	provides	general	information	on	GMAT	Resources	such
as	Spacecraft,	Propagators,	Coordinate	Systems,	and	EphemerisFiles	to
name	just	a	few.	Go	here	for	details	regarding	syntax,	options,	variable	ranges
and	data	types,	defaults,	and	expected	behavior.	Each	section	contains	detailed,
copy-and-paste	ready	examples.

The	Commands	section	provides	general	information	on	GMAT	Commands	such
as	Maneuver,	Assignment,	Optimize,	and	Propagate	to	name	just	a	few.	Go
here	for	details	regarding	syntax,	options,	variable	ranges	and	data	types,
defaults,	and	expected	behavior.	Each	section	contains	detailed,	copy-and-paste
ready	examples.

The	System	section	provides	information	on	system	configuration,	external
interfaces,	the	script	language,	and	the	command	line	interface.

Note

This	document	uses	two	typographical	conventions	throughout:

Graphical	user	interface	(GUI)	elements	and	resource	and
command	names	are	presented	in	bold.

Filenames,	script	examples,	and	user	input	are	presented	in
monospace.



Using	GMAT
The	Using	GMAT	chapter	contains	high	level	and	introductory	information	on
the	sytem.	If	you	need	information	on	how	to	install	and	run	the	system,	would
like	a	tour	of	the	system,	want	know	how	to	configure	data	files,	or	how	GMAT
is	organized,	start	here.

The	Using	GMAT	section	provides	general	information	on	GMAT	and	how	to
use	the	software.

The	Welcome	to	GMAT	contains	a	brief	project	and	software	overview,	including
project	status,	licensing,	and	contributors.

The	Getting	Started	section	describes	how	to	get	and	install	GMAT,	how	to	run
the	provided	samples,	and	where	to	turn	for	further	help.

The	Tour	of	GMAT	is	an	in-depth	guide	through	some	of	the	key	interface
features,	including	the	Resources	tree,	Mission	tree,	Command	Summary,	and
Script	Editor.

Note

We	consider	the	User	Interfaces	Overview	section	to	be
essential	reading,	as	it	describes	some	fundamental	aspects	of
how	GMAT	works.



Chapter	1.	Welcome	to	GMAT
The	General	Mission	Analysis	Tool	(GMAT)	is	the	world’s	only	enterprise,
multi-mission,	open	source	software	system	for	space	mission	design,
optimization,	and	navigation.	The	system	supports	missions	in	flight	regimes
ranging	from	low	Earth	orbit	to	lunar,	libration	point,	and	deep	space	missions.
GMAT	is	developed	by	a	team	of	NASA,	private	industry,	public,	and	private
contributors	and	is	used	for	real-world	mission	support,	engineering	studies,	as	a
tool	for	education,	and	public	engagement.	See	the	R2018a	Release	Notes	for	a
complete	list	of	changes	in	R2018a.



Milestones	and	Accomplishments
We're	excited	that	GMAT	has	recently	seen	signficant	adoption	for	operational
misssion	support..

GMAT	is	now	used	as	the	primary	system	for	maneuver	planning	and
product	generation	for	the	Solar	Dynamics	Observatory	(SDO).

GMAT	is	now	used	as	the	primary	operational	tool	for	orbit	determination
for	the	Solar	and	Heliospheric	Observatory	(SOHO)	mission.

GMAT	is	now	used	as	the	primary	operational	tool	for	maneuver	planning,
orbit	determination,	and	product	generation	for	the	Advanced	Composition
Explorer	(ACE)	mission.

GMAT	is	now	used	as	the	primary	operational	tool	for	maneuver	planning,
orbit	determination,	and	product	generation	for	the	Wind	mission.

In	April	2018,	the	Transiting	Exoplanet	Survey	Satellite	(TESS)	mission	is
planned	to	launch.	TESS	has	used	GMAT	as	its	primary	tool	for	mission
design	and	maneuver	planning	from	proposal	development	through
operations.

In	April	2018,	the	LRO	project	will	hold	an	operational	readiness	review	to
perform	final	evaluation	of	GMAT	to	replace	GTDS	as	the	primary
operational	orbit	determination	(OD)	tool	for	the	Lunar	Reconnaissance
Orbiter	(LRO).



Features	Overview
GMAT	is	a	feature	rich	system	containing	high	fidelity	space	system	models,
optimization	and	targeting,	built	in	scripting	and	programming	infrastructure,
and	customizable	plots,	reports	and	data	products,	to	enable	flexible	analysis	and
solutions	for	custom	and	unique	applications.	GMAT	can	be	driven	from	a	fully
featured,	interactive	GUI	or	from	a	custom	script	language.	Here	are	some	of
GMAT’s	key	features	broken	down	by	feature	group.

Dynamics	and	Environment	Modelling

High	fidelity	dynamics	models	including	harmonic	gravity,	drag,	tides,	and
relativistic	corrections

High	fidelity	spacecraft	modeling

Formations	and	constellations

Impulsive	and	finite	maneuver	modeling	and	optimization

Propulsion	system	modeling	including	chemical	and	electric	system

Solar	System	modeling	including	high	fidelity	ephemerides,	custom
celestial	bodies,	libration	points,	and	barycenters

Rich	set	of	coordinate	systems	including	J2000,	ICRF,	fixed,	rotating,
topocentric,	and	many	others

Propagation	using	CCSDS,	SPICE,	STK,	and	Code	500	ephemeris	files

Propagators	that	naturally	synchronize	epochs	of	multiple	vehicles	and
avoid	fixed	step	integration	and	interpolation

Plotting,	Reporting	and	Product	Generation

Interactive	3-D	graphics

Customizable	data	plots	and	reports



Post	computation	animation

CCSDS,	SPK,	and	Code-500	ephemeris	generation

Eclipse	and	station	contact	location

Optimization	and	Targeting

Boundary	value	targeters

Nonlinear,	constrained	optimization

Custom,	scriptable	cost	functions

Custom,	scriptable	nonlinear	equality	and	inequality	constraint	functions

Custom	targeter	controls	and	constraints

Programming	Infrastructure

User	defined	variables,	arrays,	and	strings

User	defined	equations	using	MATLAB	syntax.	(i.e.	overloaded	array
operation)

Control	flow	such	as	If,	For,	and	While	loops	for	custom	applications

Matlab	interface

Python	interface

User-defined	functions	(sub-routines)

Built	in	parameters	and	calculations	in	multiple	coordinate	systems

Orbit	Determination	Infrastructure

Batch	estimator

Extensive	statistical	results	reporting



DSN	data	types

GN	data	types

Measurement	data	editing

Media	corrections

Error	modeling

Interfaces

Fully	featured,	interactive	GUI	that	makes	simple	analysis	quick	and	easy

Custom	scripting	language	that	makes	complex,	custom	analysis	possible

Matlab	interface	for	custom	external	simulations	and	calculations

Python	interface	for	custom	external	simulations	and	calculations

File	interface	for	the	TCOPS	Vector	Hold	File	format,	for	loading	of	initial
spacecraft	data

Command	line	interface	for	batch	analysis



Heritage
GMAT	has	enabled	and	enhanced	missions	in	nearly	every	NASA	flight	regime
including	enabling	new	mission	types,	extending	the	life	of	existing	missions,
and	enabling	new	science	observations.	GMAT	has	supported	8	NASA	missions
and	10+	NASA	proposal	efforts.	The	system	has	experienced	broad	application
and	adoption	around	the	world.	To	date,	GMAT	has	been	used	by	over	30
organizations,	with	15	universities	and	12	commercial	firms	publishing	results	in
the	open	literature.



Licensing
GMAT	is	licensed	under	the	Apache	License	2.0.



Platform	Support
GMAT	has	been	rigorously	tested	on	the	Windows	7	platform	and	we	perform
nightly	regression	tests	running	almost	14,000	test	cases	for	the	system	core	and
over	4000	test	cases	for	the	GUI	interface.	The	system	core	has	been	rigorously
tested	on	Windows	10,	but	the	GUI	has	only	undergone	preliminary	testing	on
that	platform.	Note	that	R2018a	is	the	last	version	that	will	be	tested	on
Windows	10.	The	Mac	and	Linux	console	versions	are	rigorously	tested,	but	the
GUI	is	provided	in	Beta	form	on	those	platforms.	On	Mac,	the	minimum	OS
version	is	OSX	10.10	(Yosemite)	and	testing	was	performed	on	OSX	10.12
(Sierra).

The	following	plugin	modules	do	not	run	under	this	release	of	GMAT	on	Mac
and	Linux	platforms:

Optimizer	libFmincon

libMarsGRAM

and	the	Mac	release	does	not	support	the	following	plugin:

libMsise86



Component	Status
GMAT	is	distributed	with	production	and	Alpha/Beta	components.	Components
that	are	in	Alpha/Beta	status	are	turned	off	by	default.	The	status	of	plugin
components	is	shown	below.

Production	quality	plugin	components:

libDataInterface

libEphemPropagator

libEventLocator

libFormation

libGmatFunction

libNewParameters

libPythonInterface

libStation

libGmatEstimation

libMatlabInterface

libFminconOptimizer

libProductionPropagators

libScriptTools

libYukonOptimizer

Alpha	quality	plugin	components:

libCInterface



libGeometricMeasurements

libExtraPropagators

libPolyhedronGravity

libSaveCommand

libThrustFile

libEKF

Internal-only	plugins	(not	included	in	public	releases):

proprietary/libMarsGRAM

proprietary/libMsise86

proprietary/libNRLMsise00

proprietary/libSNOptimizer

proprietary/libVF13Optimizer



Contributors
The	Navigation	and	Mission	Design	Branch	at	NASA’s	Goddard	Space	Flight
Center	performs	project	management	activities	and	is	involved	in	most	phases	of
the	development	process	including	requirements,	algorithms,	design,	and	testing.
The	Ground	Software	Systems	Branch	performs	design,	implementation,	and
integration	testing.	External	particpants	contribute	to	design,	implementation,
testing	and	documentation.	We	use	a	collaborative	development	model	that
enables	innovation	and	actively	involves	the	public	and	private	sector	having
seen	contributions	from	12	commercial	firms.	External	participants	for	R2018a
include:

Thinking	Systems,	Inc.	(system	architecture	and	all	aspects	of
development)

Omitron,	Inc	(testing,	requirements,	specifications)

Emergent	Space	Technologies,	Inc.

Past	commercial	and	external	contributors	to	GMAT	include:

Air	Force	Research	Lab	(all	aspects	of	development)

Boeing	(algorithms	and	testing)

The	Schafer	Corporation	(all	aspects	of	development)

Honeywell	Technology	Solutions	(testing)

Computer	Sciences	Corporation	(requirements)

Korea	Aerospace	Research	Institute

Chonbuk	National	University,	South	Korea

Korea	Advanced	Institute	of	Science	and	Technology

Yonsei	University,	South	Korea



The	NASA	Jet	Propulsion	Laboratory	(JPL)	has	provided	funding	for	integration
of	the	SPICE	toolkit	into	GMAT.	Additionally,	the	European	Space	Agency’s
(ESA)	Advanced	Concepts	team	has	developed	optimizer	plug-ins	for	the	Non-
Linear	Programming	(NLP)	solvers	SNOPT	(Sparse	Nonlinear	OPTimizer)	and
IPOPT	(Interior	Point	OPTimizer).



Chapter	2.	Getting	Started



Installation
Installers	and	application	bundles	are	available	on	the	GMAT	SourceForge
project	page,	located	at	https://sourceforge.net/projects/gmat.

The	following	packages	are	available	for	the	major	platforms:

	 Installer Binary	bundle Source	code

Windows	(7,10) ✔ ✔ ✔
Mac	OS	X 	 ✔ ✔
Linux 	 ✔ ✔

Installer

To	use	the	Windows	installer,	download	the	appropriate	gmat-winInstaller-
*.exe	file	from	the	SourceForge	download	page	and	run	it.	You'll	be	asked	a
series	of	questions,	and	GMAT	will	be	installed	to	your	local	user	account.

By	default,	GMAT	installs	to	the	%LOCALAPPDATA%	folder	in	your	user	directory,
and	does	not	require	elevated	privileges	to	install.	On	Windows	Vista	and
Windows	7,	this	generally	corresponds	to	the
C:\Users\username\AppData\Local	folder.	You	are	free	to	choose	another
install	location	during	the	installation	process,	but	elevated	privileges	may	be
required	to	do	so.

Binary	Bundle

A	binary	bundle	is	available	on	Windows	as	a	.zip	archive.	To	use	it,	unzip	it
anywhere	in	your	file	system,	making	sure	to	keep	the	folder	structure	intact.	To
run	GMAT,	run	the	GMAT\bin\GMAT.exe	executable	in	the	extracted	folder.

Source	Code

GMAT	is	available	as	a	platform-independent	source	code	bundle.	Note	that	all
testing	is	performed	on	Windows,	so	on	other	platforms	it	is	considered	a	beta



release.	See	the	GMAT	Wiki	for	compiling	instructions.

Rather	than	compiling	from	the	source	bundle,	however,	we	generally
recommend	checking	out	a	snapshot	from	the	Subversion	repository:

svn://svn.code.sf.net/p/gmat/code

There	are	tags	available	for	reach	release.

http://gmatcentral.org


Running	GMAT

Starting	GMAT

On	Microsoft	Windows	platforms	there	are	several	ways	to	start	a	GMAT
session.	If	you	used	the	GMAT	installer,	you	can	click	the	GMAT	R2018a	item
in	the	Start	menu.	If	you	installed	GMAT	from	a	.zip	file	or	by	compiling	the
system,	locate	the	GMAT	bin	directory	double-click	GMAT.exe.

To	start	GMAT	from	the	command	line,	run	GMAT.exe.	Various	command-line
parameters	are	available;	see	Command-Line	Usage	for	details.

Exiting	GMAT

To	end	a	GMAT	session	on	Windows	or	Linux,	in	the	menu	bar,	click	File,	then
click	Exit.	On	Mac	OS	X,	in	the	menu	bar,	click	GMAT,	then	click	Quit
GMAT,	or	type	Command+Q.



Sample	Missions
The	GMAT	distribution	includes	more	than	30	sample	missions.	These	samples
show	how	to	apply	GMAT	to	problems	ranging	from	the	Hohmann	transfer	to
libration	point	station-keeping	to	trajectory	optimization.	To	locate	and	run	a
sample	mission:

1.	 Open	GMAT.
2.	 On	the	toolbar	click	Open.
3.	 Navigate	to	the	samples	folder	located	in	the	GMAT	root	directory.
4.	 Double-click	a	script	file	of	your	choice.
5.	 Click	Run	( ).

To	run	optimization	missions,	you	will	need	MATLAB	and	the	MATLAB
Optimization	Toolbox	or	the	internal	libVF13Optimizer	plugin.	These	are
proprietary	libraries	and	are	not	distributed	with	GMAT.	MATLAB	connectivity
is	not	yet	fully	supported	in	the	Mac	and	Linux,	and	therefore	you	cannot	run
optimization	missions	that	use	MATLAB’s	fmincon	optimizer	on	those
platforms.	See	MATLAB	Interface	for	details	on	configuring	the	MATLAB
optimizer.



Getting	Help
This	User	Guide	provides	documentation	and	tutorials	for	all	of	GMAT's	feature.
But	if	you	have	further	questions,	or	want	to	provide	feedback,	here	are	some
additional	resources:

Homepage:	http://gmat.gsfc.nasa.gov

Wiki:	http://gmatcentral.org

User	forums:	http://forums.gmatcentral.org

Downloads	and	source	code:	http://sourceforge.net/projects/gmat

Submit	bug	reports	and	feature	requests:	http://bugs.gmatcentral.org

Official	contact:	<gmat@gsfc.nasa.gov>

mailto:gmat@gsfc.nasa.gov


Chapter	3.	Tour	of	GMAT



User	Interfaces	Overview
GMAT	offers	multiple	ways	to	design	and	execute	your	mission.	The	two
primary	interfaces	are	the	graphical	user	interface	(GUI)	and	the	script	interface.
These	interfaces	are	interchangeable	and	each	supports	most	of	the	functionality
available	in	GMAT.	When	you	work	in	the	script	interface,	you	are	working	in
GMAT’s	custom	script	language.	To	avoid	issues	such	as	circular	dependencies,
there	are	some	basic	rules	you	must	follow.	Below,	we	discuss	these	interfaces
and	then	discuss	the	basic	rules	and	best	practices	for	working	in	each	interface.

GUI	Overview

When	you	start	a	session,	the	GMAT	desktop	is	displayed	with	a	default	mission
already	loaded.	The	GMAT	desktop	has	a	native	look	and	feel	on	each	platform
and	most	desktop	components	are	supported	on	all	platforms.

Windows	GUI

When	you	open	GMAT	on	Windows	and	click	Run	in	the	Toolbar,	GMAT
executes	the	default	mission	as	shown	in	the	figure	below.	The	tools	listed	below
the	figure	are	available	in	the	GMAT	desktop.

Figure	3.1.	GMAT	Desktop	(Windows)





Menu
Bar

The	menu	bar	contains	File,	Edit,	Window	and	Help	functionality.

On	Windows,	the	File	menu	contains	standard	Open,	Save,	Save	As,
and	Exit	functionality	as	well	as	Open	Recent.	The	Edit	menu
contains	functionality	for	script	editing	when	the	script	editor	is
active.	The	Window	menu	contains	tools	for	organizing	graphics
windows	and	the	script	editor	within	the	GMAT	desktop.	Examples
include	the	ability	to	Tile	windows,	Cascade	windows	and	Close
windows.	The	Help	menu	contains	links	to	Online	Help,	Tutorials,
Forums,	and	the	Report	An	Issue	option	links	to	GMAT’s	defect
reporting	system,	the	Welcome	Page,	and	a	Provide	Feedback	link.

Toolbar

The	toolbar	provides	easy	access	to	frequently	used	controls	such	as
file	controls,	Run,	Pause,	and	Stop	for	mission	execution,	and
controls	for	graphics	animation.	On	Windows	and	Linux,	the	toolbar
is	located	at	the	top	of	the	GMAT	window;	on	the	Mac,	it	is	located
on	the	left	of	the	GMAT	frame.	Because	the	toolbar	is	vertical	on	the
Mac,	some	toolbar	options	are	abbreviated.

GMAT	allows	you	to	simultaneously	edit	the	raw	script	file
representation	of	your	mission	and	the	GUI	representation	of	your
mission.	It	is	possible	to	make	inconsistent	changes	in	these	mission
representations.	The	GUI/Script	Sync	Status	indicator	located	in	the
toolbar	shows	you	the	state	of	the	two	mission	representations.	See
the	the	section	called	“GUI/Script	Interactions	and	Synchronization”
section	for	further	discussion.

Resources
Tab

The	Resources	tab	brings	the	Resources	tree	to	the	foreground	of	the
desktop.

Resources
Tree

The	Resources	tree	displays	all	configured	GMAT	resources	and
organizes	them	into	logical	groups.	All	objects	created	in	a	GMAT
script	using	a	Create	command	are	found	in	the	Resources	tree	in
the	GMAT	desktop.



Mission
Tab

The	Mission	tab	brings	the	Mission	Tree	to	the	foreground	of	the
desktop.

The	Mission	tree	displays	GMAT	commands	that	control	the	time-
ordered	sequence	of	events	in	a	mission.	The	Mission	tree	contains
all	script	lines	that	occur	after	the	BeginMissionSequence	command
in	a	GMAT	script.	You	can	undock	the	Mission	tree	as	shown	in	the
figure	below	by	right-clicking	on	the	Mission	tab	and	dragging	it	into
the	graphics	window.	You	can	also	follow	these	steps:

1.	 Click	on	the	Mission	tab	to	bring	the	Mission	Tree	to	the
foreground.

2.	 Right-click	on	the	Mission	Sequence	folder	in	the	Mission	tree
and	select	Undock	Mission	Tree	in	the	menu.

Figure	3.2.	Undocked	Mission	Tree



Mission
Tree



Output
Tab

The	Output	tab	brings	the	Output	Tree	to	the	foreground	of	the
desktop.

Output
Tree

The	Output	tree	contains	GMAT	output	such	as	report	files	and
graphical	displays.

Message
Window

When	you	run	a	mission	in	GMAT,	information	including	warnings,
errors,	and	progress	are	written	to	the	message	window.	For	example,
if	there	is	a	syntax	error	in	a	script	file,	a	detailed	error	message	is
written	to	the	message	window.

Status
Bar

The	status	bar	contains	various	informational	messages	about	the
state	of	the	GUI.	When	a	mission	is	running,	a	Busy	indicator	will
appear	in	the	left	pane.	The	center	pane	displays	the	latitude	and
logitude	of	the	mouse	cursor	as	it	moves	over	a	ground	track	window.

Script	Interface	Overview

The	GMAT	script	editor	is	a	textual	interface	that	lets	you	directly	edit	your
mission	in	GMAT's	built-in	scripting	language.	In	Figure	3.3,	“GMAT	Script
Editor”	below,	the	script	editor	is	shown	maximized	in	the	GMAT	desktop	and
the	items	relevant	to	script	editing	are	labeled.

Figure	3.3.	GMAT	Script	Editor





Scripts	Folder

The	GMAT	desktop	allows	you	to	have	multiple	script	files
open	simultaneously.	Open	script	files	are	displayed	in	the
Scripts	folder	in	the	Resources	tree.	Double	click	on	a	script	in
the	Scripts	folder	to	open	it	in	the	script	editor.	The	GMAT
desktop	displays	each	script	in	a	separate	script	editor.	GMAT
indicates	the	script	currently	represented	in	the	GUI	with	a
boldface	name.	Only	one	script	can	be	loaded	into	the	GUI	at	a
time.

Script	Status
Box

The	Script	Status	box	indicates	whether	or	not	the	script	being
edited	is	loaded	in	the	GUI.	The	box	says	Active	Script	for	the
script	currently	represented	in	the	GUI	and	Inactive	Script	for
all	others.

Save,Sync
Button

The	Save,Sync	button	saves	any	script	file	changes	to	disk,
makes	the	script	active,	and	synchronizes	the	GUI	with	the
script.

Save,Sync,Run
Button

The	Save,Sync,Run	button	saves	any	script	file	changes	to
disk,	makes	the	script	active,	synchronizes	the	GUI	with	the
script,	and	executes	the	script.

Save	As
Button

When	you	click	Save	As,	GMAT	displays	the	Choose	A	File
dialog	box	and	allows	you	to	save	the	script	using	a	new	file
name.	After	saving,	GMAT	loads	the	script	into	the	GUI,
making	the	new	file	the	active	script.

Close The	Close	button	closes	the	script	editor.



GUI/Script	Interface	Interactions	and	Rules

The	GMAT	desktop	supports	both	a	script	interface	and	a	GUI	interface	and
these	interfaces	are	designed	to	be	consistent	with	each	other.	You	can	think	of
the	script	and	GUI	as	different	"views"	of	the	same	data:	the	resources	and	the
mission	command	sequence.	GMAT	allows	you	to	switch	between	views	(script
and	GUI)	and	have	the	same	view	open	in	an	editable	state	simultaneously.
Below	we	describe	the	behavior,	interactions,	and	rules	of	the	script	and	GUI
interfaces	so	you	can	avoid	confusion	and	potential	loss	of	data.

GUI/Script	Interactions	and	Synchronization

GMAT	allows	you	to	simultaneously	edit	both	the	script	file	representation	and
the	GUI	representation	of	your	mission.	It	is	possible	to	make	inconsistent
changes	in	these	representations.	The	GUI/Script	Sync	Status	window	located
in	the	toolbar	indicates	the	state	of	the	two	representations.	On	the	Mac,	the
status	is	indicated	in	abbreviated	form	in	the	left-hand	toolbar.	Synchronized
(green)	indicates	that	the	script	and	GUI	contain	the	same	information.	GUI
Modified	(yellow)	indicates	that	there	are	changes	in	the	GUI	that	have	not	been
saved	to	the	script.	Script	Modified	(yellow)	indicates	that	there	are	changes	in
the	script	that	have	not	been	loaded	into	the	GUI.	Unsynchronized	(red)
indicates	that	there	are	changes	in	both	the	script	and	the	GUI.

Caution

GMAT	will	not	attempt	to	merge	or	resolve	simultaneous
changes	in	the	Script	and	GUI	and	you	must	choose	which
representation	to	save	if	you	have	made	changes	in	both
interfaces.

The	Save	button	in	the	toolbar	saves	the	GUI	representation	over	the	script.	The
Save,Sync	button	on	the	script	editor	saves	the	script	representation	and	loads	it
into	the	GUI.

How	the	GUI	Maps	to	a	Script



Clicking	the	Save	button	in	the	toolbar	saves	the	GUI	representation	to	the	script
file;	this	is	the	same	file	you	edit	when	working	in	the	script	editor.	GUI	items
that	appear	in	the	Resources	tree	appear	before	the	BeginMissionSequence
command	in	a	script	file	and	are	written	in	a	predefined	order.	GUI	items	that
appear	in	the	Mission	Tree	appear	after	the	BeginMissionSequence	command	in
a	script	file	in	the	same	order	as	they	appear	in	the	GUI.

Caution

If	you	have	a	script	file	that	has	custom	formatting	such	as
spacing	and	data	organization,	you	should	work	exclusively	in
the	script.	If	you	load	your	script	into	the	GUI,	then	click	Save
in	the	toolbar,	you	will	lose	the	formatting	of	your	script.	(You
will	not,	however,	lose	the	data.)

How	the	Script	Maps	to	the	GUI

Clicking	the	Save,Sync	button	on	the	script	editor	saves	the	script	representation
and	loads	it	into	the	GUI.	When	you	work	in	a	GMAT	script,	you	work	in	the
raw	file	that	GMAT	reads	and	writes.	Each	script	file	must	contain	a	command
called	BeginMissionSequence.	Script	lines	that	appear	before	the
BeginMissionSequence	command	create	and	configure	models	and	this	data	will
appear	in	the	Resources	tree	in	the	GUI.	Script	lines	that	appear	after	the
BeginMissionSequence	command	define	your	mission	sequence	and	appear	in
the	Mission	tree	in	the	GUI.	Here	is	a	brief	script	example	to	illustrate:

Create	Spacecraft	Sat

Sat.X	=	3000

BeginMissionSequence

Sat.X	=	1000

The	line	Sat.X	=	3000	sets	the	x-component	of	the	Cartesian	state	to	3000;	this
value	will	appear	on	the	Orbit	tab	of	the	Spacecraft	dialog	box.	However,
because	the	line	Sat.X	=	1000	appears	after	the	BeginMissionSequence
command,	the	line	Sat.X	=	1000	will	appear	as	an	assignment	command	in	the
Mission	tree	in	the	GUI.



Basic	Script	Syntax	Rules

Each	script	file	must	contain	one	and	only	one	BeginMissionSequence
command.

GMAT	commands	are	not	allowed	before	the	BeginMissionSequence
command.

You	cannot	use	inline	math	statements	(equations)	before	the
BeginMissionSequence	command	in	a	script	file.	(GMAT	considers	in-line
math	statements	to	be	an	assignment	command.	You	cannot	use	equations
in	the	Resources	tree,	so	you	also	cannot	use	equations	before	the
BeginMissionSequence	command.)

In	the	GUI,	you	can	only	use	in-line	math	statements	in	an	assignment
command.	So,	you	cannot	type	3000	+	4000	or	Sat.Y	-	8	in	the	text	box
for	setting	a	spacecraft’s	dry	mass.

GMAT’s	script	language	is	case-sensitive.

For	a	more	complete	discussion	of	GMAT's	script	language,	see	the	Script
Language	documentation.



Resources	Tree
The	Resources	tree	displays	GMAT	resources	and	organizes	them	into	logical
groups	and	represents	any	objects	that	might	be	used	or	called	in	the	Mission
tree.	This	tree	allows	a	user	to	add,	edit,	rename,	or	delete	most	available
resources.	The	Resources	tree	can	be	edited	either	in	the	GMAT	GUI	or	by
loading	or	syncing	a	script	file.	All	objects	created	in	a	GMAT	script	using	a
Create	command	are	found	in	the	Resources	tree	in	the	GMAT	desktop.	The
default	Resource	tree	is	displayed	below	(Figure	3.4).

Figure	3.4.	Default	Resources	tree

Organization

The	Resources	tree	displays	created	resources	organized	into	folders	by	object
category.	The	SolarSystem	and	Solvers	folders	contain	more	specific	folders



which	can	be	found	by	clicking	the	expand	(+)	icon.	Conversely,	folders	can	be
collapsed	by	clicking	the	minimize	(-)	icon.

Folder	Menus

Resources	can	be	added	by	right	clicking	the	folder	of	the	resource	and	clicking
the	resource	type	from	the	available	menu.	Most	folders	have	only	one	available
resource	type;	for	example	if	the	Spacecraft	folder	is	right-clicked,	the	user	can
only	click	“Add	Spacecraft”	(Figure	3.5).	Other	folders	have	multiple	objects
that	can	be	added	and	the	user	must	first	select	the	“Add”	menu	before	selecting
the	object;	for	example	to	add	a	ChemicalTank,	right	click	the	“Hardware”
folder,	select	“Add”,	then	the	list	of	available	resource	types	is	displayed	and	the
user	can	click	“Fuel	Tank”	(Figure	3.6).	User-defined	solar	system	resources	are
added	by	right-clicking	either	Sun	or	a	default	CelestialBody	resource.	By	right-
clicking	Sun	the	user	can	add	a	Planet,	Comet,	or	Asteroid	to	the	solar	system.
By	right-clicking	a	Planet	the	user	can	add	a	Moon	to	that	Planet.

Figure	3.5.	Folder	menu	for	Spacecraft

Figure	3.6.	Folder	menu	for	Hardware

Resource	Menus



Resources	can	be	edited	by	right-clicking	on	the	resources	and	selecting	one	of
the	options	from	the	menu	(Figure	3.7).

Figure	3.7.	Resource	menu

Open/Close

To	open	a	resource,	you	can	either	right-click	the	resource	and	select	“Open”,	or
you	can	double	click	the	resource.	Conversely,	the	resource	can	be	closed	either
by	options	in	the	resource	properties	window	or	selecting	“Close”	from	the
resource	menu.	When	a	resource	is	opened	and	the	name	is	right-clicked	in	the
Resource	tree,	the	only	options	in	the	object	menu	are	“Open”	and	“Close”.

Rename

Once	a	resource	has	been	created,	the	user	can	rename	it	to	any	valid	name.
Valid	names	must	begin	with	a	letter	and	may	be	followed	by	any	combination
of	letters	digits	and	underscores.	Invalid	names	include:

Folder	names	(eg,	Spacecraft)

Command	names	(eg,	Propagate)

Names	already	in	use	(eg,	naming	two	variables	“var”)

Keywords	(eg,	“GMAT”	or	“function”)

Names	with	spaces



Delete

Resources	can	be	deleted	by	right	clicking	the	object	and	selecting	“Delete”.
Resources	cannot	be	deleted	if	they	are	used	by	another	resource	or	command
and	an	error	with	be	thrown.	For	example,	a	Spacecraft	resource	cannot	be
deleted	if	one	of	its	properties	(eg.	DefaultSC.A1ModJulian)	is	being	used	by
the	Report	command.	Some	default	objects	cannot	be	deleted.	In	such	cases,	the
Delete	menu	item	will	not	be	shown.	They	include:

Default	coordinate	systems

EarthMJ2000Eq

EarthMJ2000Ec

EarthFixed

EarthICRF

Default	planetary	bodies

Sun

Mercury

Venus

Earth

Luna

Mars

Jupiter

Saturn

Uranus

Neptune



Pluto

Clone

Objects	can	be	cloned	by	selecting	the	“Clone”	option	in	the	menu.	A	cloned
object	will	be	an	exact	copy	of	the	original	object	with	a	different	name.	Some
objects	cannot	be	cloned.	In	such	cases,	the	Clone	menu	item	will	not	be
available.	The	only	objects	that	cannot	be	cloned	are:

Default	coordinate	systems	(listed	above)

Default	planetary	bodies	(listed	above)

Propagator	resource	objects



Mission	Tree
The	Mission	Tree	is	an	ordered,	hierarchical,	display	of	your	GMAT	script
command	mission	sequence	(everything	after	the	BeginMissionSequence	in
your	script).	It	represents	the	ordered	list	of	commands	to	be	executed	to	model
your	mission.	The	hierarchical	grouping	in	the	mission	tree	represent	commands
that	are	executed	inside	a	control	logic	command,	e.g.,	If,	For,	While,	etc.	The
mission	tree	allows	you	to	add,	edit,	delete	and	rename	commands.	It	allows	you
to	configure	or	filter	the	display	of	the	commands	in	the	Mission	Tree	to	make
the	command	execution	easier	to	understand	or	modify.	An	example	Mission
Tree	screenshot	is	below.	The	Mission	Tree	window	is	made	up	of	2	elements:
the	Mission	Sequence	on	the	left	and	the	view	filters	toolbar	on	the	right.

Warning

Edits	to	the	Mission	Tree	will	be	reflected	in	your	script	after	it
is	synchronized	and	vice-versa.	If	you	edit	the	Mission	Tree,
you	need	to	synchronize	with	the	script	to	see	it	in	the	script



editor.	If	you	edit	the	script,	you	need	to	synchronize	with	the
GUI	to	see	your	changes	reflected	in	the	Mission	Tree.

Mission	Tree	Display

The	Mission	Tree	Display	shows	your	hierarchical,	ordered	list	of	commands.
Normally,	the	Mission	Tree	displays	only	the	command	name	in	the	tree	for	each
command	node	(more	information	such	as	command	type,	construction
information,	etc	can	be	displayed	using	the	Show	Detail	menu	option).
Commands	are	executed	in	the	order	they	appear,	e.g.,	GMAT	executes
commands	from	the	top	of	the	Mission	Tree	to	the	bottom.	For	control	logic	(If,
For,	and	While)	and	the	Optimize	and	Target	commands,	you	can	define	a
block	of	commands	that	execute	as	children	of	the	parent	command.	These	child
commands	of	the	control	logic	or	the	Optimize	and	Target	commands	appear
indented.	Use	the	plus	(+)	symbol	to	the	left	of	the	control	logic	command	to
show	all	the	grouped	commands	and	the	minus	(-)	symbol	to	hide	all	the	grouped
commands.	Commands	that	are	grouped	under	control	logic	commands	(e.g.	If,
For,	and	While)	only	execute	if	that	control	logic	command	is	successfully
executed	(e.g.,	if	the	local	expression	evaluates	to	true	for	If	command,	or	the
loop	condition	evaluates	to	true	for	For	and	While	commands).

In	general,	commands	are	executed	only	once.	However,	child	commands
grouped	under	the	loop	commands	(e.g.	For	and	While)	may	execute	multiple
times.	These	commands	will	execute	for	each	time	the	loop	command	evaluates
to	true.	Commands	under	the	If	commands	are	only	executed	if	the	If	condition
evaluates	to	true;	otherwise,	they	are	skipped.	For	the	If-Else	command,	child
commands	grouped	under	the	If	portion	of	the	command	execute	if	the
conditional	statement	evaluates	to	true;	otherwise,	the	child	commands	grouped
under	the	Else	portion	of	the	command	execute.

Note

Note	that	all	commands	in	the	Mission	Tree	are	grouped	under
a	special	Mission	Sequence	home	item.	This	home	item	is
always	present	as	the	first	item	in	the	Mission	Tree	and	cannot
be	deleted.



View	Filters	Toolbar

The	Mission	Tree	may	display	a	subset	of	the	commands	of	the	full	mission
sequence	based	on	your	view	filter	options.	There	are	3	basic	filtering	options
available	within	GMAT:

Filter	by	branch	level

Filter	by	command	types	(inclusive)

Filter	by	command	types	(exclusive)

The	view	filters	activate	by	clicking	one	of	the	view	filter	buttons	to	the	right	of
the	Mission	Tree.	The	pressed	(pushed	in)	button	indicates	which	filter	is
currently	enabled.	The	four	buttons	on	the	top	are	the	Filter	by	branch	level
buttons.	The	next	four	buttons	in	the	middle	are	the	inclusive	filter-by-
command-types	buttons,	and	the	four	buttons	on	the	bottom	are	the	exclusive
filter-by-command-types	buttons.	The	button	at	the	very	bottom	of	the	view
filters	toolbar	allows	you	to	define	a	custom	filter.	You	cannot	combine	filter-by-
branch-level	filters	with	the	filter-by-command-type	filters	nor	combine
inclusive	and	exclusive	command	type	filters.	However,	multiple	inclusive
command	type	filters	can	be	combined	(e.g.,	filter	both	physics	related	and
solver	related	commands)	or	multiple	exclusive	command	type	filters	can	be
combined.

Note

Note	that	all	parents	of	a	viewable	command	are	displayed,
even	if	the	parent	command	is	not	part	of	the	viewable
command	set.

Also	note	that	the	Mission	Tree	automatically	reconfigures	to
show	all	commands	when	the	user	Appends	or	Inserts	a	new
command.

Filter	by	Branch	Level



Filtering	by	branch	level	causes	GMAT	to	not	display	commands	in	the	mission
tree	that	are	below	a	certain	level.	To	select	the	number	of	levels	you	wish	to
display,	click	the	buttons	on	the	top.	The	four	buttons	correspond	to	(from	top	to
bottom):

Show	all	branches

Show	one	level	of	branching

Show	two	levels	of	branching

Show	three	levels	of	branching

Only	one	filter-by-branch-level	button	may	be	active	at	a	time.	The	default
GMAT	behavior	is	to	display	all	branches	of	a	mission	tree.

Filter	by	Command	Types

GMAT	allows	you	to	filter	what	commands	are	displayed	by	their	command
type.	You	may	select	to	only	display	commands	that	are	in	a	filter	command	type
set	(inclusive)	or	only	display	commands	that	are	not	in	a	filter	command	type
set	(exclusive).	GMAT	provides	both	pre-configured	command	type	sets	(e.g.,
physics	related	or	output	related)	and	custom	command	type	sets	that	you	define

The	four	middle	buttons	in	the	View	Options	toolbar	are	pre-configured
inclusive	command	filters,	e.g.,	only	display	commands	that	are	in	the	desired
command	set.	The	four	inclusive	filter	buttons	correspond	to	(from	top	to
bottom):

Physics	Related	(Propagate,	Maneuver,	BeginFiniteBurn,	and
EndFiniteBurn)

Solver	Related	(Target,	Optimize,	Vary,	Achieve,	NonlinearConstraint,
Minimize,	EndTarget,	EndOptimize)

ScriptEvent	commands

Control	Flow	(If,	If-Else,	For,	and	While)

Multiple	inclusive	command	type	filters	can	be	active	at	once.	For	example,	to



filter	both	physics	related	and	solver	related	commands,	click	both	the	physics-
related	and	solver-related	filter	buttons	so	that	they	appear	pressed	down.	This
option	will	show	all	physics	related	and	solver	related	commands	and	hide	all
other	commands	(except	Parents	of	the	viewable	commands)).

The	four	buttons	at	the	bottom	in	the	View	Options	toolbar	are	pre-configured
exclusive	command	filters,	e.g.,	only	display	commands	that	are	not	in	the
command	set.	The	four	exclusive	filter	buttons	correspond	to	(from	top	to
bottom):

Report

Equation

Output-related	(Report,	Toggle,	PenUp,	PenDown,	MarkPoint,	and
ClearPlot)

Function	calls	(CallMatlabFunction)

Multiple	exclusive	command	type	filters	can	be	active	at	once.	For	example,	to
show	everything	but	Report	and	output-related	commands,	click	both	the
Report	and	output-related	filter	buttons	so	that	they	appear	pressed	down.

Note

Note	that	the	Mission	Tree	shows	an	ellipsis	(…)	after	a
command	name	if	the	command	is	followed	by	items	not
graphically	displayed	in	the	tree	because	of	filter	options.

Mission	Sequence	Menu

The	Mission	Tree	has	two	context-sensitive	popup	menus,	depending	on	whether
you	right-click	the	Mission	Sequence	home	item	or	a	command	in	the	Mission
Tree.	The	Mission	Sequence	popup	menu	primarily	allows	you	to	manipulate
the	Mission	Tree	window	and	the	entire	command	sequence.	It	also	enables
appending	(adding	to	the	end)	commands	to	the	mission	tree.



Mission	Sequence	menu	options	are	always	available	and	active	in	the	menu
list.

Mission	Sequence	Menu	Options:

Collapse	All

This	menu	option	collapses	all	the	branches	in	the	Mission	Tree	so	that	you	only
see	the	top-level	commands.	To	show	branches,	click	the	plus	(+)	button	next	to
a	command	or	select	Expand	All	from	the	Mission	Sequence	popup	menu.

Expand	All

This	menu	option	expands	all	the	branches	and	sub-branches	in	the	Mission	Tree
so	that	you	see	every	command	in	the	mission	sequence.	To	hide	branches,	click
the	minus	(-)	button	next	to	a	command	or	select	Collapse	All	from	the	Mission
Sequence	popup	menu.

Append

The	Append	menu	option	displays	the	submenu	of	commands	that	can	be
appended	to	the	mission	sequence.	This	menu	is	not	available	when	the	Mission
Tree	view	is	filtered.



Run

The	Run	menu	option	executes	the	mission	command	sequence.	This	menu
option	is	always	available.

Show	Detail

The	Show	Detail	menu	option	toggles	an	option	to	display	the	mission	tree	with
short	or	verbose	text.	When	the	show	detail	menu	option	is	checked,	each
command	is	displayed	with	the	script	line	for	the	command	(e.g.	what	appears	in
“Show	Script”	for	the	command).	When	the	show	detail	menu	option	is
unchecked,	the	mission	tree	shows	only	the	label	for	the	command	which	will	be
your	custom	label	if	you	have	provided	one	and	a	system	provided	label	if	you
have	not	labelled	the	command.	This	menu	option	is	always	available.

Show	Mission	Sequence

The	Show	Mission	Sequence	menu	option	displays	a	streamlined	text	view	of
the	mission	sequence	in	text	window.	This	view	shows	a	hierarchical	view	of
every	command	(similar	to	a	script	view)	in	the	mission	sequence.	Unlike	the
script	editor,	this	view	only	includes	the	command	names	and	labels.	This	menu
option	is	always	available.

Show	Script

The	Show	Script	menu	option	displays	the	script	associated	with	the	GUI
version	of	the	current	mission	script.	This	is	the	complete	script	that	would	be
saved	to	a	file	if	you	clicked	the	GUI	save	button.	Note	that	when	the	GUI	is
unsynchronized	with	the	script	editor	(please	see	Script	Editor	for	more	details),
this	mission	script	is	different	than	the	script	displayed	in	the	script	editor.	This
menu	option	is	always	available

Mission	Summary	-	All

The	Mission	Summary	-	All	menu	option	displays	a	mission	simulation
summary	for	the	all	commands	in	the	mission	sequence.	This	summary
information	includes	spacecraft	state	information,	spacecraft	physical	properties,
time	information,	planetodetic	properties,	and	other	orbit	data	for	each
command.	This	information	is	only	available	after	a	mission	simulation	is	run



and	the	data	shows	state	information	after	the	execution	of	the	command.
Showing	Mission	Summary	data	for	a	ScriptEvent	command	is	equivalent	to
showing	summary	data	for	the	last	command	in	that	ScriptEvent.	If	commands
are	nested	in	control	flow	or	solver	branches,	the	summary	data	that	is	displayed
is	for	the	last	pass	through	the	sequence.	This	menu	option	is	always	available.

Mission	Summary	-	Physics

The	Mission	Summary	-	Physics	menu	option	displays	a	mission	simulation
summary	for	physics	related	commands	in	the	mission	sequence.	This	summary
information	includes	spacecraft	state	information,	spacecraft	physical	properties,
time	information,	planetodetic	properties,	and	other	orbit	data	for	each
command.	This	information	is	only	available	after	a	mission	simulation	is	run
and	the	data	shows	state	information	after	the	execution	of	the	command.	Note
that	if	you	have	physics-based	commands	such	as	Propagate	or	Maneuver
inside	a	ScriptEvent	command,	then	summary	information	for	those	commands,
are	not	displayed.	Showing	Mission	Summary	data	for	a	ScriptEvent	is
equivalent	to	showing	summary	data	for	the	last	command	in	that	ScriptEvent.
If	commands	are	nested	in	control	flow	or	solver	branches,	the	summary	data
that	is	displayed	is	for	the	last	pass	through	the	sequence.	This	menu	option	is
always	available.

Dock	Mission	Tree

The	Dock	Mission	Tree	menu	option	docks	the	Mission	Tree	window	in	the
notebook	containing	the	Resources	tree	and	Output	tree.	This	option	is	only
selectable	if	the	Mission	Tree	is	currently	floating	or	undocked.	Please	see	the
Docking/Undocking/Placement	section	for	more	information.

Undock	Mission	Tree

The	Undock	Mission	Tree	menu	option	undocks,	or	makes	floating,	the	Mission
Tree	window	from	the	Resources	tree	and	Output	tree.	The	undocked	Mission
Tree	window	may	be	resized,	moved,	maximized,	minimized,	and	restored.	This
option	is	only	selectable	if	the	Mission	Tree	is	currently	docked.	Please	see	the
the	section	called	“Docking/Undocking/Placement”	section	for	more
information.

Command	Menu



The	Command	popup	menu	allows	you	to	add,	edit,	or	delete	the	commands	in
the	Mission	Tree	by	using	the	right	mouse	button.	This	displays	a	context
sensitive	menu	for	adding	and	modifying	commands	as	well	as	viewing	your
command	sequence	and	command	summary.	To	add	commands	to	the	Mission
Tree,	right	click	a	command	and	select	Append,	Insert	Before,	or	Insert	After.
To	edit	commands,	double	click	the	command	name	or	right	click	and	select
Open.

Most	commands	in	GMAT	can	appear	anywhere	in	the	mission	sequence.
However,	there	are	some	exceptions	and	the	Command	popup	menu	is	context
sensitive,	meaning	the	options	available	under	the	menu	change	based	on	what
command	is	selected	and	where	in	the	tree	the	command	occurs.	Here	is	a
complete	list	of	context	sensitivities:

Insert	and	Append	are	not	available	unless	the	mission	tree	filter	is	set	to
show	all	levels.

Achieve	commands	can	only	appear	inside	of	a	Target	sequence.

Vary	commands	can	only	appear	in	a	Target	or	Optimize	sequence,

NonlinearConstraint	and	Minimize	commands	can	only	appear	in	an
Optimize	sequence.



Command	Menu	Options

Open

This	menu	option	opens	the	command	editor	window	for	the	selected	command.
The	Open	menu	option	is	always	active	in	the	menu	list.	If	the	window	is
already	open,	the	Open	option	brings	the	window	to	the	front	and	makes	it	the
active	window.

Close

This	menu	options	closes	the	command	editor	window	for	the	selected
command.	The	Close	menu	option	is	always	active	in	the	menu	list.



Append

The	Append	menu	option	displays	the	submenu	of	commands	that	can	be
appended	as	the	last	sub-item	of	the	selected	command	in	the	Mission	Tree.	As
such,	the	Append	menu	option	only	appears	when	the	selected	tree	item	can
contain	sub-items,	e.g.,	the	Mission	Sequence	home	item,	control	logic
commands,	and	Optimize	and	Target	commands.	Note	that	the	Append
submenu	is	context-sensitive	and	will	only	show	commands	that	may	be
appended	to	the	selected	command.	Finally,	this	menu	is	not	available	when	the
Mission	Tree	view	is	filtered.

Insert	After

The	Insert	After	menu	option	displays	the	submenu	of	commands	that	can	be
inserted	after	the	selected	command	(and	any	child	commands,	if	any)	in	the
Mission	Tree.	Nominally,	the	new	command	is	inserted	at	the	same	level	as	the
selected	command.	However,	if	the	selected	command	is	the	“End”	command	of
a	control	logic	or	Optimize	or	Target	command	(e.g.,	End	For,	End	If,	End
Optimize,	etc),	the	new	command	is	inserted	after	the	End	command	and	on	the
same	level	(e.g.,	the	next	level	up)	as	the	parent	command.	The	Insert	After
menu	option	is	always	active	in	the	menu	list	except	when	the	Mission
Sequence	home	item	is	selected.	Note	that	the	Insert	After	submenu	is	context-
sensitive	and	will	only	show	commands	that	may	be	added	after	the	selected
command.	Finally,	this	menu	is	not	available	when	the	Mission	Tree	view	is
filtered.

Insert	Before

The	Insert	Before	menu	option	displays	the	submenu	of	commands	that	can	be
inserted	before	the	selected	command	(and	any	child	commands,	if	any)	in	the
Mission	Tree.	The	new	command	is	always	inserted	at	the	same	level	as	the
selected	command.	The	Insert	Before	menu	option	is	always	active	in	the	menu
list	except	when	the	Mission	Sequence	Home	item	is	selected.	Note	that	the
Insert	Before	submenu	is	context-sensitive	and	will	only	show	commands	that
may	be	added	before	the	selected	command.	Finally,	this	menu	is	not	available
when	the	Mission	Tree	view	is	filtered.

Rename



The	Rename	menu	option	displays	a	dialog	box	where	you	can	rename	the
selected	command.	A	command	name	may	contain	any	characters	except	the
single	quote.	Note	that,	unlike	resources,	command	names	do	not	have	to	be
unique.	The	Rename	menu	option	is	always	active	in	the	menu	list	except	when
the	Mission	Sequence	home	item	is	selected.

Delete

The	Delete	menu	option	deletes	the	selected	command.	GMAT	does	not	confirm
the	option	before	deletion	occurs.	The	Delete	menu	option	is	always	active	in	the
menu	list	except	when	the	Mission	Sequence	home	item	is	selected.

Command	Summary

The	Command	Summary	menu	option	displays	a	mission	simulation	summary
for	the	selected	command,	including	spacecraft	state	information,	time
information,	planetodetic	properties,	and	other	orbit	data.	This	information	is
only	available	after	a	mission	simulation	run.	This	menu	option	is	always
available.	However,	command	summary	data	is	not	available	for	Propagate
command	in	single	step	mode.	The	button	is	available	but	no	data	is	displayed.

Docking/Undocking/Placement

The	Mission	Tree	window	may	be	used	as	a	floating	window	or	docked	with	the
Resource	tree.	GMAT	remembers	the	placement	and	docking	status	of	the
Mission	Tree	even	after	you	quit.	The	undocked	Mission	Tree	window	may	be
resized,	moved,	or	minimized.	When	the	Mission	Tree	is	undocked,	and	the	user
opens	a	dialog	box	for	a	GUI	component,	the	dialog	box	does	not	cover	the
Mission	Tree.

To	undock	the	Mission	Tree	Display,	either:

Right	click	and	drag	the	Mission	tab	out	of	the	Resource	Tree	window.

Right	click	the	Mission	Sequence	home	item	and	select	Undock	Mission
Tree.

To	dock	the	Mission	Tree	display,	either:



Left	click	the	close	button	(x)	of	the	undocked	Mission	Tree	window.

RIght	click	the	Mission	Sequence	home	item	and	select	Dock	Mission
Tree.



Command	Summary
The	Command	Summary	is	a	summary	of	orbit	and	spacecraft	state
information	after	execution	of	a	command.	For	example,	if	the	command	is	a
Propagate	command,	the	Command	Summary	contains	state	data	after
propagation	is	performed.

To	view	the	Command	Summary,	right-click	on	the	desired	command,	and
select	Command	Summary.	Or	alternatively,	double-click	on	the	desired
command,	and	click	the	Command	Summary	icon	located	near	the	lower	left
corner	of	the	panel.	You	must	run	the	mission	before	viewing	Command
Summary	data.

Snapshot	of	a	sample	Command	Summary	is	shown	in	the	following	figure.





Data	Availability

To	view	a	Command	Summary,	you	must	first	run	the	mission.	If	the	mission
has	not	been	run	during	the	current	session,	the	Command	Summary	will	be
empty.	If	changes	are	made	to	your	configuration,	you	must	rerun	the	mission	for
those	changes	to	take	effect	in	the	Command	Summary.

Data	Contents

The	Command	Summary	contains	several	types	of	data.	Orbit	state
representations	include	Cartesian,	spherical,	and	Keplerian.	For	hyperbolic
orbits,	B-Plane	coordinates,	DLA	and	RLA	are	provided.	Planetodetic
information	includes	Longitude	and	Latitude	among	others.	For	a	Maneuver
command,	the	Maneuver	properties	are	displayed	in	the	CoordinateSystem
specified	on	the	ImpulsiveBurn	resource.	See	the	Coordinate	Systems
subsection	below	for	more	information	on	the	command	summary	contents	when
some	data	is	undefined.

In	the	event	when	the	orbit	is	nearly	singular	conic	section	and/or	any	of	the
keplerian	elements	are	undefined,	an	abbreviated	Command	Summary	is
displayed	as	shown	in	the	Coordinate	Systems	subsection	below.

Supported	Commands

For	performance	reasons,	propagation	in	step	mode	does	not	write	out	a
command	summary.	Additionally,	if	a	command	is	nested	in	control	logic	and
that	command	does	not	execute	as	a	result,	no	command	summary	data	is
available.

Coordinate	Systems

The	Coordinate	System	menu	at	the	top	of	the	Command	Summary	dialog
allows	you	to	select	the	desired	coordinate	system	for	the	state	data.	When	the
Coordinate	System	has	a	celestial	body	at	the	origin,	the	Command	Summary
shows	all	supported	data	including	Cartesian,	Spherical,	Keplerian,	Other
OrbitData,	and	Planetodetic	properties	as	shown	in	the	GUI	screenshot	above.
When	the	Coordinate	System	does	not	have	a	celestial	body	at	the	origin,	the
CommandSummary	contains	an	abbreviated	command	summary	as	shown



below.

Note:	GMAT	currently	requires	that	the	selected	CoordinateSystem	cannot
reference	a	spacecraft.

Propagate	Command:	Propagate1

								Spacecraft							:	DefaultSC

								Coordinate	System:	EarthMJ2000Eq

								Time	System			Gregorian																					Modified	Julian		

								--------------------------------------------------------------------				

								UTC	Epoch:				01	Jan	2000	15:19:28.000						21545.1385185185

								TAI	Epoch:				01	Jan	2000	15:20:00.000						21545.1388888889

								TT		Epoch:				01	Jan	2000	15:20:32.184						21545.1392613889

								TDB	Epoch:				01	Jan	2000	15:20:32.184						21545.1392613881

								Cartesian	State																							Spherical	State	

								---------------------------											------------------------------	

								X		=			7047.3574396928	km													RMAG	=			7195.1179781105	km

								Y		=		-821.00373455465	km													RA			=		-6.6448962577676	deg	

								Z		=			1196.0053110175	km													DEC		=			9.5683789596091	deg	

								VX	=			0.8470865225276	km/sec									VMAG	=			7.4415324037805	km/s

								VY	=			7.3062391027010	km/sec									AZI		=			81.377585410118	deg

								VZ	=			1.1303623817297	km/sec									VFPA	=			88.583915406742	deg		

																																														RAV		=			83.386645244484	deg

																																														DECV	=			8.7370006427902	deg

								Spacecraft	Properties	

								------------------------------

								Cd																				=			2.200000

								Drag	area													=			15.00000	m^2

								Cr																				=			1.800000

								Reflective	(SRP)	area	=			1.000000	m^2

								Dry	mass														=			850.00000000000	kg

								Total	mass												=			850.00000000000	kg



Output	Tree
The	Output	tree	contains	data	files	and	plots	after	a	mission	is	executed.	Files
consist	of	output	from	ReportFile	and	EphemerisFile	resources.	Plots	consist
of	graphical	OrbitView,	GroundTrackPlot,	and	XYPlots	windows.

To	display	the	contents	of	an	output	file,	double-click	the	name	in	the	Output
tree.	A	simple	text	display	window	will	appear	with	the	contents	of	the	file.

Graphical	output	is	automatically	displayed	during	the	mission	run,	but	double-
clicking	the	name	of	the	output	window	in	the	Output	tree	will	bring	that	display
to	the	front.	If	you	close	the	display	window,	however,	you	must	rerun	the
mission	to	display	it	again.

A	populated	Output	tree	is	shown	in	the	following	figure.



Script	Editor
A	GMAT	mission	can	be	created	in	either	the	graphical	user	interface	(GUI),	or
in	a	text	script	language.	When	a	mission	is	loaded	into	the	GUI	from	a	script,	or
when	it	is	saved	from	the	GUI,	there	is	a	script	file	that	can	be	accessed	from	the
Scripts	folder	in	the	resources	tree.	When	you	open	this	script,	it	opens	in	a
dedicated	editor	window	called	the	Script	Editor.	While	a	GMAT	script	can	be
edited	in	any	text	editor,	the	GMAT	script	editor	offers	more	features,	such	as:

GUI/script	synchronization

Mission	execution	from	the	editor

Syntax	highlighting

Comment/uncomment	or	indent	blocks	of	text

Standard	features	like	copy/paste,	line	numbering,	find-and-replace,	etc.

The	following	figure	shows	a	basic	script	editor	session	with	the	major	features
labeled.

Figure	3.8.	Parts	of	the	script	editor



Active	Script

When	you	load	a	script	into	the	GMAT	GUI,	it	is	added	to	the	script	list	in	the
resources	tree.	GMAT	can	have	many	scripts	loaded	at	any	one	time,	but	only
one	can	be	synchronized	with	the	GUI.	This	script	is	called	the	active	script,	and
is	distinguished	by	a	bolded	name	in	the	script	list.	The	editor	status	indicator	in
the	script	editor	for	the	active	script	shows	“Active	Script”	as	well.	All	other
scripts	are	inactive,	but	can	be	viewed	and	edited	in	the	script	editor.

Figure	3.9.	Active	script	indicators



To	synchronize	with	the	GUI,	you	must	make	an	inactive	script	active	by
clicking	either	of	the	synchronization	buttons	(described	in	the	next	section).
This	will	change	the	current	script	to	active,	synchronize	the	GUI,	and	change
the	the	previously	active	script	to	inactive.	Alternately,	you	can	right-click	the
script	name	in	the	resources	tree	and	click	Build.

GUI/Script	Synchronization

GMAT	provides	two	separate	representations	of	a	mission:	a	script	file	and	the
GUI	resources	and	mission	trees.	As	shown	in	Figure	3.8,	“Parts	of	the	script
editor”,	you	can	have	both	representations	open	and	active	at	the	same	time,	and
can	make	changes	in	both	places.	The	GUI/Script	Sync	Status	indicator	shows
the	current	status	of	the	two	representations	relative	to	each	other.	The	following
states	are	possible:

Synchronized
The	GUI	and	script	representations	are	synchronized	(they
contain	the	same	data).

Script	Modified
The	mission	has	been	modified	in	the	script	representation,
but	has	not	been	synchronized	to	the	GUI.	Use	the
synchronization	buttons	in	the	script	editor	to	perform	this
synchronization.	To	revert	the	modifications,	close	the	script
editor	without	saving	your	changes.



GUI	Modified
The	mission	has	been	modified	in	the	GUI,	but	has	not	been
synchronized	to	the	script.	To	perform	this	synchronization,
click	the	Save	button	in	the	GMAT	toolbar.	To	revert	the
modifications,	use	the	synchronization	buttons	in	the	script
editor,	or	restart	GMAT	itself.

Unsynchronized
The	mission	has	been	modified	both	in	the	GUI	and	in	the
script.	The	changes	cannot	be	merged;	you	have	a	choice	of
whether	to	save	the	modifications	in	either	representations,
or	whether	to	revert	either	of	them.	See	the	notes	above	for
instructions	for	either	case.

Script	Error
There	is	an	error	in	the	script.	This	puts	the	GUI	in	a
minimal	safe	state.	The	error	must	be	corrected	before
continuing.

Warning

Saving	modifications	performed	in	the	GUI	will	overwrite	the
associated	script.	The	data	will	be	saved	as	intended,	but	with
full	detail,	including	fields	and	settings	that	were	not	explicitly
listed	in	the	original	script.	A	copy	of	the	original	script	with
the	extension	“.bak”	will	be	saved	alongside	the	new	version.

The	script	editor	provides	two	buttons	that	perform	synchronization	from	the
script	to	the	GUI.	Both	the	Save,Sync	and	the	Save,Sync,Run	buttons	behave
identically,	except	that	the	Save,Sync,Run	button	runs	the	mission	after
synchronization	is	complete.	The	following	paragraphs	describe	the	behavior	of
the	Save,Sync	button	only,	but	the	description	applies	to	both	buttons.	If	you
right-click	the	name	of	a	script	in	the	resources	tree,	a	context	menu	is	displayed



with	the	items	Save,	Sync	and	Save,	Sync,	Run.	These	are	identical	to	the
Save,Sync	and	Save,Sync,Run	buttons	in	the	script	editor.

When	pressed,	the	Save,Sync	button	performs	the	following	steps:

1.	 Saves	any	modifications	to	the	script
2.	 Closes	all	open	windows	(except	the	script	editor	itself)
3.	 Validates	the	script	file
4.	 Refreshes	the	GUI	by	loading	the	saved	script
5.	 Sets	GUI/Script	Sync	Status	to	Synchronized.

If	the	GUI	has	existing	modifications,	a	confirmation	prompt	will	be	displayed.
If	confirmed,	the	GUI	modifications	will	be	overwritten.

If	the	script	is	not	active,	a	confirmation	prompt	will	be	displayed.	If	confirmed,
the	script	will	be	made	active	before	the	steps	above	are	performed.

If	the	script	has	errors,	the	GUI	will	revert	to	an	empty	base	state	until	all	errors
are	corrected	and	the	script	is	synchronized	successfully.

Scripts	List

The	scripts	folder	in	the	Resources	tree	contains	items	for	each	script	that	has
been	loaded	into	GMAT.	Individual	scripts	can	be	added	to	the	list	by	right-
clicking	the	Scripts	folder	and	clicking	Add	Script.

The	right-click	menu	for	an	individual	script	contains	several	options:

Open:	opens	the	script	in	the	edit	window

Close:	closes	any	open	edit	windows	for	this	script

Save,	Sync:	opens	the	script	and	synchronizes	it	with	the	GUI,	making	it
the	active	script.	This	is	identical	to	the	Save,Sync	button	in	the	script
editor.

Save,	Sync,	Run:	builds	the	script	(see	above),	and	also	runs	it.	This	is
identical	to	the	Save,Sync,Run	button	on	the	script	editor.

Reload:	reloads	the	script	from	the	last-saved	version	and	refreshes	the



script	editor

Remove:	removes	the	script	from	the	script	list

Edit	Window

The	edit	window	displays	the	text	of	the	loaded	script	and	provides	tools	to	edit
it.	The	edit	window	provides	the	following	features:

Line	numbering:	Line	numbers	along	the	left	side	of	the	window

Syntax	highlighting:	Certain	elements	of	the	GMAT	script	language	are
colored	for	immediate	recognition.

Folding:	Script	blocks	(like	For	loops,	Target	sequences,	etc.)	can	be
collapsed	by	clicking	the	black	downward-pointing	triangle	to	the	left	of	the
command	that	begins	the	block.

If	you	right-click	anywhere	in	the	edit	window,	GMAT	will	display	a	context
menu	with	the	following	options:

Undo/Redo:	Undo	or	redo	any	number	of	changes	since	the	last	time	the
script	was	saved

Cut/Copy/Paste:	Cut,	copy,	or	paste	over	the	current	selection,	or	paste	the
current	clipboard	contents	at	the	location	of	the	cursor

Delete:	Delete	the	current	selection

Select	All:	Select	the	entire	script	contents

When	the	script	editor	is	active	in	the	GMAT	GUI,	the	Edit	menu	is	also
available	with	the	following	options:

Undo/Redo:	Undo	or	redo	any	number	of	changes	since	the	last	time	the
script	was	saved

Cut/Copy/Paste:	Cut,	copy,	or	paste	over	the	current	selection,	or	paste	the
current	clipboard	contents	at	the	location	of	the	cursor



Comment/Uncomment:	Add	or	remove	a	comment	symbol	(%)	at	the
beginning	of	the	current	selection

Select	All:	Select	the	entire	script	contents

Find/Replace:	Starts	the	Find	&	Replace	utility	(see	below)

Show	line	numbers:	When	selected	(default),	the	editor	window	displays
line	numbering	to	the	left	of	the	script	contents.

Goto:	Place	the	cursor	on	a	specific	line	number

Indent	more/less:	Adds	or	removes	an	indentation	from	the	current	line	or
selection.	The	default	indentation	is	three	space	characters.

See	the	Keyboard	Shortcuts	reference	page	for	the	list	of	keyboard	shortcuts	that
are	available	when	working	in	the	script	editor:

Find	and	Replace

On	the	Edit	menu,	if	you	click	Find	or	Replace	(or	press	Ctrl+F	or	Ctrl+H),
GMAT	displays	the	Find	&	Replace	utility,	which	can	be	used	to	find	text	in	the
active	script	and	optionally	replace	it	with	different	text.	The	utility	looks	like
the	following	figure.

To	find	text	within	the	active	script,	type	the	text	you	wish	to	find	in	the	Find
What	box	and	click	Find	Next	or	Find	Previous.	Find	Next	(F3)	will	start
searching	forward	(below)	the	current	cursor	position,	while	Find	Previous	will
start	searching	backward	(above).	If	a	match	is	found,	the	match	will	be
highlighted.	You	can	continue	clicking	Find	Next	or	Find	Previous	to	continue
searching.	The	search	text	(in	the	Find	What	box)	can	be	literal	text	only;
wildcards	are	not	supported.	To	replace	found	instances	with	different	text,	type



the	replacement	text	in	the	Replace	With	box.	Click	Replace	to	replace	the
currently-highlighted	match	and	highlight	the	next	match,	or	click	Replace	All
to	replace	all	matches	in	the	file	at	once.	The	Find	&	Replace	utility	saves	a
history	of	text	previously	entered	in	the	Find	What	and	Replace	With	boxes	in
the	current	session.	Click	the	down	arrow	in	each	box	to	choose	a	previously-
entered	value.

File	Controls

The	Save	button	saves	the	current	script	without	checking	syntax	or
synchronizing	with	the	GUI,	and	without	switching	the	active	script.	The	Save
As	button	is	identical,	but	allows	you	to	save	to	a	different	file.

The	Close	button	closes	the	script	editor,	and	prompts	you	to	save	any	unsaved
changes.

Save	Status	Indicator

When	the	contents	of	the	script	have	been	modified,	the	script	editor	displays
“**modified**”	in	the	save	status	indicator.	This	is	a	visual	indicator	that	there
are	unsaved	changes	in	the	script.	Once	the	changes	are	saved	or	reverted,	the
indicator	turns	blank.



Chapter	4.	Configuring	GMAT
Below	we	discuss	the	files	and	data	that	are	distributed	with	GMAT	and	are
required	for	GMAT	execution.	GMAT	uses	many	types	of	data	files,	including
planetary	ephemeris	files,	Earth	orientation	data,	leap	second	files,	and	gravity
coefficient	files.	This	section	describes	how	these	files	are	organized	and	the
controls	provided	to	customize	them.



File	Structure
The	default	directory	structure	for	GMAT	is	broken	into	eight	main
subdirectories,	as	shown	in	Figure	4.1,	“GMAT	Root	Directory	Structure”.	These
directories	organize	the	files	and	data	used	to	run	GMAT,	including	binary
libraries,	data	files,	texture	maps,	and	3D	models.	The	only	two	files	in	the
GMAT	root	directory	are	license.txt,	which	contains	the	text	of	the	Apache
License	2.0,	and	README.txt,	which	contains	user	information	for	the	current
GMAT	release.	A	summary	of	the	contents	of	each	subdirectory	is	provided	in
the	sections	below.

Figure	4.1.	GMAT	Root	Directory	Structure

bin

The	bin	directory	contains	all	binary	files	required	for	the	core	functionality	of
GMAT.	These	libraries	include	the	executable	file	(GMAT.exe	on	Windows,
GMAT.app	on	the	Mac,	and	GMAT	on	Linux)	and	platform-specific	support
libraries.	The	bin	directory	also	contains	two	text	files:	gmat_startup_file.txt
and	gmat.ini.	The	startup	file	is	discussed	in	detail	in	a	separate	section	below.
The	gmat.ini	file	is	used	to	configure	some	GUI	panels,	set	paths	to	external
web	links,	and	define	GUI	tooltip	messages.

data

The	data	directory	contains	all	required	data	files	to	run	GMAT	and	is	organized



according	to	data	type,	as	shown	in	Figure	4.2,	“GMAT	Data	Directory
Structure”	and	described	below.

Figure	4.2.	GMAT	Data	Directory	Structure

The	graphics	directory	contains	data	files	for	GMAT’s	visualization	utilities,	as
well	as	application	icons	and	images.	The	splash	directory	contains	the	GMAT
splash	screen	that	is	displayed	briefly	while	GMAT	is	initializing.	The	stars
directory	contains	a	star	catalogue	used	for	displaying	stars	in	3D	graphics.	The
texture	folder	contains	texture	maps	used	for	the	2D	and	3D	graphics	resources.
The	icons	directory	contains	graphics	files	for	icons	and	images	loaded	at	run
time,	such	as	the	GMAT	logo	and	GUI	icons.

The	gravity	directory	contains	gravity	coefficient	files	for	each	body	with	a
default	non-spherical	gravity	model.	Within	each	directory,	the	coefficient	files
are	named	according	to	the	model	they	represent,	and	use	the	extension	.cof.

The	gui_config	directory	contains	files	for	configuring	some	of	the	GUI	dialog
boxes	for	GMAT	resources	and	commands.	These	files	allow	you	to	easily	create
a	GUI	panel	for	a	user-provided	plugin,	and	are	also	used	by	some	of	the	built-in
GUI	panels.

The	planetary_coeff	directory	contains	the	Earth	orientation	parameters	(EOP)
provided	by	the	International	Earth	Rotation	Service	(IERS)	and	nutation
coefficients	for	different	nutation	theories.

The	planetary_ephem	directory	contains	planetary	ephemeris	data	in	both	DE



and	SPK	formats.	The	de	directory	contains	the	binary	digital	ephemeris	DE405
files	for	the	8	planets,	the	Moon,	and	Pluto	developed	and	distributed	by	JPL.
The	spk	directory	contains	the	DE421	SPICE	kernel	and	kernels	for	selected
comets,	asteroids	and	moons.	All	ephemeris	files	distributed	with	GMAT	are	in
the	little-endian	format.

The	time	directory	contains	the	JPL	leap	second	kernel	naif0010.tls	and	the
GMAT	leap	second	file	tai-utc.dat.

The	vehicle	directory	contains	ephemeris	data	and	3D	models	for	selected
spacecraft.	The	ephem	directory	contains	SPK	ephemeris	files,	including	orbit,
attitude,	frame,	and	time	kernels.	The	models	directory	contains	3D	model	files
in	3DS	or	POV	format	for	use	by	GMAT’s	OrbitView	visualization	resource.

docs

The	docs	directory	contains	end-user	documentation,	including	draft	PDF
versions	of	the	Mathematical	Specification,	Architectural	Specification,	and
Estimation	Specification.	The	GMAT	User’s	Guide	is	available	in	the	help
directory	in	PDF	and	HTML	formats,	and	as	a	Windows	HTML	Help	file.

extras

The	extras	directory	contains	various	extra	convenience	files	that	are	helpful	for
working	with	GMAT	but	aren't	part	of	the	core	codebase.	The	only	file	here	so
far	is	a	syntax	coloring	file	for	the	GMAT	scripting	language	in	the	Notepad++
text	editor.

matlab

The	matlab	directory	contains	M-files	required	for	GMAT’s	MATLAB
interfaces,	including	the	interface	to	the	fmincon	optimizer.	All	files	in	the
matlab	directory	and	its	subdirectories	must	be	included	in	your	MATLAB	path
for	the	MATLAB	interfaces	to	function	properly.

output

The	output	directory	is	the	default	location	for	file	output	such	as	ephemeris
files	and	report	files.	If	no	path	information	is	provided	for	reports	or	ephemeris



files	created	during	a	GMAT	session,	then	those	files	will	be	written	to	the
output	folder.

plugins

The	plugins	directory	contains	optional	plugins	that	are	not	required	for	use	of
GMAT.	The	proprietary	directory	is	used	for	for	third-party	libraries	that
cannot	be	distributed	freely	and	is	an	empty	folder	in	the	open	source
distribution.

samples

The	samples	directory	contains	sample	missions	and	scripts,	ranging	from	a
Hohmann	transfer	to	libration	point	station-keeping	to	Mars	B-plane	targeting.
Example	files	begin	with	"Ex_"	and	files	that	correspond	to	GMAT	tutorials
begin	with	"Tut_".	These	files	are	intended	to	demonstrate	GMAT’s	capabilities
and	to	provide	you	with	a	potential	starting	point	for	building	common	mission
types	for	your	application	and	flight	regime.	Samples	with	specific	requirements
are	located	in	subdirectories	such	as	NeedMatlab	and	NeedVF13ad.

userfunctions

The	userfunctions	directory	contains	MATLAB,	Python,	and	GMAT	functions
that	are	included	in	the	GMAT	distribution.	You	can	also	store	your	own	custom
functions	in	the	subdirectories	named	GMAT,	Python,	and	MATLAB.	GMAT
includes	those	subdirectories	in	its	search	path	to	locate	functions	referenced	in
GMAT	scripts	and	GMAT	functions.



Configuring	Data	Files
GMAT	uses	many	emprical	data	files	that	are	periodically	updated.	In	some
cases	files	are	updated	by	the	owning	organization	as	often	as	every	3	hours.
GMAT	is	distributed	with	a	python	script
\utilities\python\GMATDataFileManager.py	that	automates	file	updates,	logs
changes,	and	optionally	archives	old	versions	of	data	files	used	by	GMAT.	See
the	help	documentation	contained	in	the	Python	class	for	detailed	usage
instructions.	Below	we	describe	the	emprical	data	files	used	by	GMAT,	and
which	startup	file	variables	are	used	to	define	those	files'	locations	on	your
system.	The	source	of	the	data	file	and	comments	describe	where	the	files	are
obtained	and	how	they	are	used.

Startup	File
Variable Data	Source

EOP_FILE ftp://hpiers.obspm.fr/iers/series/	opa/eopc04_IAU2000/

EOP_FILE_SPICE https://naif.jpl.nasa.gov/pub/naif/	generic_kernels/pck/
earth_latest_high_prec.bpc

PLANETARY_PCK
_FILE

https://naif.jpl.nasa.gov/pub/naif/	generic_kernels/pck/



LEAP_SECS_FILE ftp://maia.usno.navy.mil/ser7/tai-utc.dat

LSK_FILE https://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/

CSSI_FLUX_FILE ftp://ftp.agi.com/pub/DynamicEarthData/SpaceWeather-All-
v1.2.txt



SCHATTEN_FILE https://fdf.gsfc.nasa.gov/forms

IRI2007_APDATA Constructed	from	CSSI_FLUX_FILE	using
GMATDataManager.py

EARTH_PCK
_PREDICTED_FILE

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/

EARTH_PCK
_CURRENT_FILE

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/



LUNA_PCK
_CURRENT_FILE

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/

LUNA_FRAME
_KERNEL_FILE

https://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/



Loading	Custom	Plugins

Custom	plugins	are	loaded	by	adding	a	line	to	the	startup	file
(bin/gmat_startup_file.txt)	specifying	the	name	and	location	of	the	plugin
file.	In	order	for	a	plugin	to	work	with	GMAT,	the	plugin	library	must	be	placed
in	the	folder	referenced	in	the	startup	file.	For	all	details,	see	the	Startup	File
reference.

Configuring	the	MATLAB	Inteface

GMAT	contains	an	interface	to	MATLAB.	See	the	MATLAB	Interface	reference
to	configure	the	MATLAB	interface.

Configuring	the	Python	Inteface

GMAT	contains	an	interface	to	Python.	See	the	Python	Interface	reference	to
configure	the	Python	interface.

User-defined	Function	Paths

If	you	create	custom	MATLAB	functions,	you	can	provide	the	path	to	those	files
and	GMAT	will	locate	them	at	run	time.	The	default	startup	file	is	configured	so
you	can	place	MATLAB	functions	(with	a	.m	extension)	in	the
userfunctions/matlab	directory.	GMAT	automatically	searches	that	location	at
run	time.	You	can	change	the	location	of	the	search	path	to	your	MATLAB
functions	by	changing	these	lines	in	your	startup	file	to	reflect	the	location	of
your	files	with	respect	to	the	GMAT	bin	folder:

MATLAB_FUNCTION_PATH	=	../userfunctions/matlab

If	you	wish	to	organize	your	custom	functions	in	multiple	folders,	you	can	add
multiple	search	paths	to	the	startup	file.	For	example,

MATLAB_FUNCTION_PATH	=	../MyFunctions/utils

MATLAB_FUNCTION_PATH	=	../MyFunctions/StateConversion	

MATLAB_FUNCTION_PATH	=	../MyFunctions/TimeConversion



GMAT	will	search	the	paths	in	the	order	specified	in	the	startup	file	and	will	use
the	first	function	with	a	matching	name.



Tutorials
The	Tutorials	section	contains	in-depth	tutorials	that	show	you	how	to	use
GMAT	for	end-to-end	analysis.	The	tutorials	are	designed	to	teach	you	how	to
use	GMAT	in	the	context	of	performing	real-world	analysis	and	are	intended	to
take	between	30	minutes	and	several	hours	to	complete.	Each	tutorial	has	a
difficulty	level	and	an	approximate	duration	listed	with	any	prerequisites	in	its
introduction,	and	are	arranged	in	a	general	order	of	difficulty.

Here	is	a	summary	of	selected	Tutorials.	For	a	complete	list	of	tutorials	see	the
Tutorials	chapter.

The	Simulating	an	Orbit	tutorial	is	the	first	tutorial	you	should	take	to	learn	how
to	use	GMAT	to	solve	mission	design	problems.	You	will	learn	how	to	specify
an	orbit	and	propagate	to	orbit	periapsis.

The	Mars	B-Plane	Targeting	tutorial	shows	how	to	use	GMAT	to	design	a	Mars
transfer	trajectory	by	targeting	desired	B-plane	conditions	at	Mars.

The	Target	Finite	Burn	to	Raise	Apogee	tutorial	shows	how	to	raise	orbit	apogee
using	finite	maneuver	targeting.



Chapter	5.	Simulating	an	Orbit

Audience Beginner

Length 30	minutes

Prerequisites None

Script	File Tut_SimulatingAnOrbit.script



Objective	and	Overview

Note

The	most	fundamental	capability	of	GMAT	is	to	propagate,	or
simulate	the	orbital	motion	of,	spacecraft.	The	ability	to
propagate	spacecraft	is	used	in	nearly	every	practical	aspect	of
space	mission	analysis,	from	simple	orbital	predictions	(e.g.
When	will	the	International	Space	Station	be	over	my	house?)
to	complex	analyses	that	determine	the	thruster	firing	sequence
required	to	send	a	spacecraft	to	the	Moon	or	Mars.

This	tutorial	will	teach	you	how	to	use	GMAT	to	propagate	a	spacecraft.	You
will	learn	how	to	configure	Spacecraft	and	Propagator	resources,	and	how	to
use	the	Propagate	command	to	propagate	the	spacecraft	to	orbit	periapsis,	which
is	the	point	of	minimum	distance	between	the	spacecraft	and	Earth.	The	basic
steps	in	this	tutorial	are:

1.	 Configure	a	Spacecraft	and	define	its	epoch	and	orbital	elements.
2.	 Configure	a	Propagator.
3.	 Modify	the	default	OrbitView	plot	to	visualize	the	spacecraft	trajectory.
4.	 Modify	the	Propagate	command	to	propagate	the	spacecraft	to	periapsis.
5.	 Run	the	mission	and	analyze	the	results.



Configure	the	Spacecraft
In	this	section,	you	will	rename	the	default	Spacecraft	and	set	the	Spacecraft’s
initial	epoch	and	classical	orbital	elements.	You’ll	need	GMAT	open,	with	the
default	mission	loaded.	To	load	the	default	mission,	click	New	Mission	( )	or
start	a	new	GMAT	session.

Rename	the	Spacecraft

1.	 In	the	Resources	tree,	right-click	DefaultSC	and	click	Rename.
2.	 Type	Sat.
3.	 Click	OK.

Set	the	Spacecraft	Epoch

1.	 In	the	Resources	tree,	double-click	Sat.	Click	the	Orbit	tab	if	it	is	not
already	selected.

2.	 In	the	Epoch	Format	list,	select	UTCGregorian.	You’ll	see	the	value	in
the	Epoch	field	change	to	the	UTC	Gregorian	epoch	format.

3.	 In	in	the	Epoch	box,	type	22	Jul	2014	11:29:10.811.	This	field	is	case-
sensitive,	and	must	be	entered	in	the	exact	format	shown.

4.	 Click	Apply	or	press	the	ENTER	key	to	save	these	changes.

Set	the	Keplerian	Orbital	Elements

1.	 In	the	StateType	list,	select	Keplerian.	In	the	Elements	list,	you	will	see
the	GUI	reconfigure	to	display	the	Keplerian	state	representation.

2.	 In	the	SMA	box,	type	83474.318.
3.	 Set	the	remaining	orbital	elements	as	shown	in	the	table	below.

Table	5.1.	Sat	Orbit	State	Settings

Field Value

ECC 0.89652

INC 12.4606

RAAN 292.8362



AOP 218.9805

TA 180

4.	 Click	OK.
5.	 Click	Save	( ).	If	this	is	the	first	time	you	have	saved	the	mission,	you’ll	be

prompted	to	provide	a	name	and	location	for	the	file.

Figure	5.1.	Spacecraft	State	Setup



Configure	the	Propagator
In	this	section	you’ll	rename	the	default	Propagator	and	configure	the	force
model.

Rename	the	Propagator

1.	 In	the	Resources	tree,	right-click	DefaultProp	and	click	Rename.
2.	 Type	LowEarthProp.
3.	 Click	OK.

Configure	the	Force	Model

For	this	tutorial	you	will	use	an	Earth	10×10	spherical	harmonic	model,	the
Jacchia-Roberts	atmospheric	model,	solar	radiation	pressure,	and	point	mass
perturbations	from	the	Sun	and	Moon.

1.	 In	the	Resources	tree,	double-click	LowEarthProp.
2.	 Under	Gravity,	in	the	Degree	box,	type	10.
3.	 In	the	Order	box,	type	10.
4.	 In	Atmosphere	Model	list,	click	JacchiaRoberts.
5.	 Click	the	Select	button	next	to	the	Point	Masses	box.	This	opens	the

CelesBodySelectDialog	window.
6.	 In	the	Available	Bodies	list,	click	Sun,	then	click	->	to	add	Sun	to	the

Selected	Bodies	list.
7.	 Add	the	moon	(named	Luna	in	GMAT)	in	the	same	way.
8.	 Click	OK	to	close	the	CelesBodySelectDialog.
9.	 Select	Use	Solar	Radiation	Pressure	to	toggle	it	on.	Your	screen	should

now	match	Figure	5.2,	“Force	Model	Configuration”.
10.	 Click	OK.

Figure	5.2.	Force	Model	Configuration



Configuring	the	Orbit	View	Plot

Now	you	will	configure	an	OrbitView	plot	so	you	can	visualize	Sat	and	its
trajectory.	The	orbit	of	Sat	is	highly	eccentric.	To	view	the	entire	orbit	at	once,
we	need	to	adjust	the	settings	of	DefaultOrbitView.

1.	 In	the	Resources	tree,	double-click	DefaultOrbitView.
2.	 In	the	three	boxes	to	the	right	of	View	Point	Vector,	type	the	values

-60000,	30000,	and	20000	respectively.
3.	 Under	Drawing	Option	to	the	left,	clear	Draw	XY	Plane.	Your	screen

should	now	match	Figure	5.3,	“DefaultOrbitView	Configuration”.
4.	 Click	OK.

Figure	5.3.	DefaultOrbitView	Configuration





Configure	the	Propagate	Command
This	is	the	last	step	before	running	the	mission.	Below	you	will	configure	a
Propagate	command	to	propagate	(or	simulate	the	motion	of)	Sat	to	orbit
periapsis.

1.	 Click	the	Mission	tab	to	display	the	Mission	tree.
2.	 Double-click	Propagate1.
3.	 Under	Stopping	Conditions,	click	the	(...)	button	to	the	left	of

Sat.ElapsedSecs.	This	will	display	the	ParameterSelectDialog	window.
4.	 In	the	Object	List	box,	click	Sat	if	it	is	not	already	selected.	This	directs

GMAT	to	associate	the	stopping	condition	with	the	spacecraft	Sat.
5.	 In	the	Object	Properties	list,	double-click	Periapsis	to	add	it	to	the

Selected	Values	list.	This	is	shown	in	Figure	5.4,	“Propagate	Command
ParameterSelectDialog	Configuration”.

Figure	5.4.	Propagate	Command	ParameterSelectDialog	Configuration



6.	 Click	OK.	Your	screen	should	now	match	Figure	5.5,	“Propagate
Command	Configuration”.

7.	 Click	OK.

Figure	5.5.	Propagate	Command	Configuration



Run	and	Analyze	the	Results
Congratulations,	you	have	now	configured	your	first	GMAT	mission	and	are
ready	to	run	the	mission	and	analyze	the	results.

1.	 Click	Save	( )	to	save	your	mission.
2.	 Click	the	Run	( ).

You	will	see	GMAT	propagate	the	orbit	and	stop	at	orbit	periapsis.	Figure	5.6,
“Orbit	View	Plot	after	Mission	Run”	illustrates	what	you	should	see	after
correctly	completing	this	tutorial.	Here	are	a	few	things	you	can	try	to	explore
the	results	of	this	tutorial:

1.	 Manipulate	the	DefaultOrbitView	plot	using	your	mouse	to	orient	the
trajectory	so	that	you	can	to	verify	that	at	the	final	location	the	spacecraft	is
at	periapsis.	See	the	OrbitView	reference	for	details.

2.	 Display	the	command	summary:

1.	 Click	the	Mission	tab	to	display	the	Mission	tree.
2.	 Right-click	Propagate1	and	select	Command	Summary	to	see	data

on	the	final	state	of	Sat.
3.	 Use	the	Coordinate	System	list	to	change	the	coordinate	system	in

which	the	data	is	displayed.
3.	 Click	Start	Animation	( )	to	animate	the	mission	and	watch	the	orbit

propagate	from	the	initial	state	to	periapsis.

Figure	5.6.	Orbit	View	Plot	after	Mission	Run





Chapter	6.	Simple	Orbit	Transfer

Audience Beginner

Length 30	minutes

Prerequisites Complete	Simulating	an	Orbit

Script	File Tut_SimpleOrbitTransfer.script



Objective	and	Overview

Note

One	of	the	most	common	problems	in	space	mission	design	is
to	design	a	transfer	from	one	circular	orbit	to	another	circular
orbit	that	lie	within	the	same	orbital	plane.	Circular	coplanar
transfers	are	used	to	raise	low-Earth	orbits	that	have	degraded
due	to	the	effects	of	atmospheric	drag.	They	are	also	used	to
transfer	from	a	low-Earth	orbit	to	a	geosynchronous	orbit	and
to	send	spacecraft	to	Mars.	There	is	a	well	known	sequence	of
maneuvers,	called	the	Hohmann	transfer,	that	performs	a
circular,	coplanar	transfer	using	the	least	possible	amount	of
fuel.	A	Hohmann	transfer	employs	two	maneuvers.	The	first
maneuver	raises	the	orbital	apoapsis	(or	lowers	orbital
periapsis)	to	the	desired	altitude	and	places	the	spacecraft	in	an
elliptical	transfer	orbit.	At	the	apoapsis	(or	periapsis)	of	the
elliptical	transfer	orbit,	a	second	maneuver	is	applied	to
circularize	the	orbit	at	the	final	altitude.

In	this	tutorial,	we	will	use	GMAT	to	perform	a	Hohmann	transfer	from	a	low-
Earth	parking	orbit	to	a	geosynchronous	mission	orbit.	This	requires	a	targeting
sequence	to	determine	the	required	maneuver	magnitudes	to	achieve	the	desired
final	orbit	conditions.	In	order	to	focus	on	the	configuration	of	the	targeter,	we
will	make	extensive	use	of	the	default	configurations	for	spacecraft,	propagators,
and	maneuvers.

The	target	sequence	employs	two	velocity-direction	maneuvers	and	two
propagation	sequences.	The	purpose	of	the	first	maneuver	is	to	raise	orbit
apoapsis	to	42,165	km,	the	geosynchronous	radius.	The	purpose	of	the	second
maneuver	is	to	nearly	circularize	the	orbit	and	yield	a	final	eccentricity	of	0.005.
The	basic	steps	of	this	tutorial	are:

1.	 Create	and	configure	a	DifferentialCorrector	resource.
2.	 Modify	the	DefaultOrbitView	to	visualize	the	trajectory.



3.	 Create	two	ImpulsiveBurn	resources	with	default	settings.
4.	 Create	a	Target	sequence	to	(1)	raise	apoapsis	to	geosynchronous	altitude

and	(2)	circularize	the	orbit.
5.	 Run	the	mission	and	analyze	the	results.



Configure	Maneuvers,	Differential	Corrector,	and
Graphics
For	this	tutorial,	you’ll	need	GMAT	open,	with	the	default	mission	loaded.	To
load	the	default	mission,	click	New	Mission	( )	or	start	a	new	GMAT	session.
We	will	use	the	default	configurations	for	the	spacecraft	(DefaultSC),	the
propagator	(DefaultProp),	and	the	two	maneuvers.	DefaultSC	is	configured	by
default	to	a	near-circular	orbit,	and	DefaultProp	is	configured	to	use	Earth	as	the
central	body	with	a	nonspherical	gravity	model	of	degree	and	order	4.	You	may
want	to	open	the	dialog	boxes	for	these	objects	and	inspect	them	more	closely	as
we	will	leave	them	at	their	default	settings.

Create	the	Differential	Corrector

The	Target	sequence	we	will	create	later	needs	a	DifferentialCorrector
resource	to	operate,	so	let’s	create	one	now.	We'll	leave	the	settings	at	their
defaults.

1.	 In	the	Resource	tree,	expand	the	Solvers	folder	if	it	isn’t	already.
2.	 Right-click	the	Boundary	Value	Solvers	folder,	point	to	Add,	and	click

DifferentialCorrector.	A	new	resource	called	DC1	will	be	created.

Modify	the	Default	Orbit	View

We	need	to	make	minor	modifications	to	DefaultOrbitView	so	that	the	entire
final	orbit	will	fit	in	the	graphics	window.

1.	 In	the	Resource	Tree,	double-click	DefaultOrbitView	to	edit	its
properties.

2.	 Set	the	values	shown	in	the	table	below.

Table	6.1.	DefaultOrbitView	settings

Field Value

Solver	Iterations,	under	Drawing	Option Current

Axis,	under	View	Up	Defintion X



View	Point	Vector	boxes,	under	View
Definition

0,	0,	and	120000	respectively

3.	 Click	OK	to	save	these	changes.

Create	the	Maneuvers.

We’ll	need	two	ImpulsiveBurn	resources	for	this	tutorial,	both	using	default
values.	Below,	we’ll	rename	the	default	ImpulsiveBurn	and	create	a	new	one.

1.	 In	the	Resources	tree,	right-click	DefaultIB	and	click	Rename.
2.	 In	the	Rename	box,	type	TOI,	an	acronym	for	Transfer	Orbit	Insertion,	and

click	OK.
3.	 Right-click	the	Burns	folder,	point	to	Add,	and	click	ImpulsiveBurn.
4.	 Rename	the	new	ImpulsiveBurn1	resource	to	GOI,	an	acronym	for

Geosynchronous	Orbit	Insertion.



Configure	the	Mission	Sequence
Now	we	will	configure	a	Target	sequence	to	solve	for	the	maneuver	values
required	to	raise	the	orbit	to	geosynchronous	altitude	and	circularize	the	orbit.
We’ll	begin	by	creating	an	initial	Propagate	command,	then	the	Target
sequence	itself,	then	the	final	Propagate	command.	To	allow	us	to	focus	on	the
Target	sequence,	we’ll	assume	you	have	already	learned	how	to	propagate	an
orbit	to	a	desired	condition	by	working	through	the	Chapter	5,	Simulating	an
Orbit	tutorial.

Configure	the	Initial	Propagate	Command

1.	 Click	on	the	Mission	tab	to	show	the	Mission	tree.
2.	 Configure	Propagate1	to	propagate	to	DefaultSC.Earth.Periapsis.
3.	 Rename	Propagate1	to	Prop	To	Periapsis.

Create	the	Target	Sequence

Now	create	the	commands	necessary	to	perform	the	Target	sequence.
Figure	6.1,	“Final	Mission	Sequence	for	the	Hohmann	Transfer”	illustrates	the
configuration	of	the	Mission	tree	after	you	have	completed	the	steps	in	this
section.	We’ll	discuss	the	Target	sequence	after	it	has	been	created.

Figure	6.1.	Final	Mission	Sequence	for	the	Hohmann	Transfer

To	create	the	Target	sequence:



1.	 In	the	Mission	tree,	right-click	Prop	To	Periapsis,	point	to	Insert	After,
and	click	Target.	This	will	insert	two	separate	commands:	Target1	and
EndTarget1.

2.	 Right-click	Target1	and	click	Rename.
3.	 Type	Hohmann	Transfer	and	click	OK.
4.	 Right-click	Hohmann	Transfer,	point	to	Append,	and	click	Vary.
5.	 Rename	Vary1	to	Vary	TOI.
6.	 Complete	the	Target	sequence	by	appending	the	commands	in	Table	6.2,

“Additional	Target	Sequence	Commands”.

Table	6.2.	Additional	Target	Sequence	Commands

Command Name

Maneuver Perform	TOI

Propagate Prop	To	Apoapsis

Achieve Achieve	RMAG	=	42165

Vary Vary	GOI

Maneuver Perform	GOI

Achieve Achieve	ECC	=	0.005

Note

Let’s	discuss	what	the	Target	sequence	does.	We	know	that
two	maneuvers	are	required	to	perform	the	Hohmann	transfer.
We	also	know	that	for	our	current	mission,	the	final	orbit	radius
must	be	42,165	km	and	the	final	orbital	eccentricity	must	be
0.005.	However,	we	don’t	know	the	size	(or	ΔV	magnitudes)	of
the	maneuvers	that	precisely	achieve	the	desired	orbital
conditions.	You	use	the	Target	sequence	to	solve	for	those
precise	maneuver	values.	You	must	tell	GMAT	what	controls
are	available	(in	this	case,	two	maneuvers)	and	what	conditions
must	be	satisfied	(in	this	case,	a	specific	orbital	radius	and
eccentricity).	You	accomplish	this	using	the	Vary	and	Achieve



commands.	Using	the	Vary	command,	you	tell	GMAT	what	to
solve	for—in	this	case,	the	ΔV	values	for	TOI	and	GOI.	You	use
the	Achieve	command	to	tell	GMAT	what	conditions	the
solution	must	satisfy—in	this	case,	the	final	orbital	conditions.

Create	the	Final	Propagate	Command

We	need	a	Propagate	command	after	the	Target	sequence	so	that	we	can	see
our	final	orbit.

1.	 In	the	Mission	tree,	right-click	End	Hohmann	Transfer,	point	to	Insert
After,	and	click	Propagate.	A	new	Propagate3	command	will	appear.

2.	 Rename	Propagate3	to	Prop	One	Day.
3.	 Double-click	Prop	One	Day	to	edit	its	properties.
4.	 Under	Condition,	replace	the	value	12000.0	with	86400,	the	number	of

seconds	in	one	day.
5.	 Click	OK	to	save	these	changes.

Figure	6.2.	Prop	One	Day	Command	Configuration



Configure	the	Target	Sequence

Now	that	the	structure	is	created,	we	need	to	configure	the	various	parts	of	the
Target	sequence	to	do	what	we	want.

Configure	the	Vary	TOI	Command

1.	 Double-click	Vary	TOI	to	edit	its	properties.	Notice	that	the	variable	in	the
Variable	box	is	TOI.Element1,	which	by	default	is	the	velocity	component
of	TOI	in	the	local	Velocity-Normal-Binormal	(VNB)	coordinate	system.
That’s	what	we	need,	so	we’ll	keep	it.

2.	 In	the	Initial	Value	box,	type	1.0.
3.	 In	the	Max	Step	box,	type	0.5.
4.	 Click	OK	to	save	these	changes.

Figure	6.3.	Vary	TOI	Command	Configuration



Configure	the	Perform	TOI	Command

1.	 Double-click	Perform	TOI	to	edit	its	properties.	Notice	that	the	command
is	already	set	to	apply	the	TOI	burn	to	the	DefaultSC	spacecraft,	so	we
don’t	need	to	change	anything	here.

2.	 Click	OK.

Figure	6.4.	Perform	TOI	Command	Configuration

Configure	the	Prop	to	Apoapsis	Command

1.	 Double-click	Prop	to	Apoapsis	to	edit	its	properties.
2.	 Under	Parameter,	replace	DefaultSC.ElapsedSecs	with

DefaultSC.Earth.Apoapsis.
3.	 Click	OK	to	save	these	changes.

Figure	6.5.	Prop	to	Apoapsis	Command	Configuration



Configure	the	Achieve	RMAG	=	42165	Command

1.	 Double-click	Achieve	RMAG	=	42165	to	edit	its	properties.
2.	 Notice	that	Goal	is	set	to	DefaultSC.Earth.RMAG.	This	is	what	we	need,

so	we	make	no	changes	here.
3.	 In	the	Value	box,	type	42164.169,	a	more	precise	number	for	the	radius	of	a

geosynchronous	orbit	(in	kilometers).
4.	 Click	OK	to	save	these	changes.

Figure	6.6.	Achieve	RMAG	=	42165	Command	Configuration



Configure	the	Vary	GOI	Command

1.	 Double-click	Vary	GOI	to	edit	its	properties.
2.	 Next	to	Variable,	click	the	Edit	button.
3.	 Under	Object	List,	click	GOI.
4.	 In	the	Object	Properties	list,	double-click	Element1	to	move	it	to	the

Selected	Value(s)	list.	See	the	image	below	for	results.

Figure	6.7.	Vary	GOI	Parameter	Selection

5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 In	the	Initial	Value	box,	type	1.0.
7.	 In	the	MaxStep	text	box,	type	0.2.
8.	 Click	OK	to	save	these	changes.



Figure	6.8.	Vary	GOI	Command	Configuration

Configure	the	Perform	GOI	Command

1.	 Double-click	Perform	GOI	to	edit	its	properties.
2.	 In	the	Burn	list,	click	GOI.
3.	 Click	OK	to	save	these	changes.

Figure	6.9.	Perform	GOI	Command	Configuration

Configure	the	Achieve	ECC	=	0.005	Command

1.	 Double-click	Achieve	ECC	=	0.005	to	edit	its	properties.
2.	 Next	to	Goal,	click	the	Edit	button.
3.	 In	the	Object	Properties	list,	double-click	ECC.
4.	 Click	OK	to	close	the	ParameterSelectDialog	window.
5.	 In	the	Value	box,	type	0.005.
6.	 In	the	Tolerance	box,	type	0.0001.
7.	 Click	OK	to	save	these	changes.



Figure	6.10.	Achieve	ECC	=	0.005	Command	Configuration



Run	the	Mission
Before	running	the	mission,	click	Save	( )	and	save	the	mission	to	a	file	of	your
choice.	Now	click	Run	( ).	As	the	mission	runs,	you	will	see	GMAT	solve	the
targeting	problem.	Each	iteration	and	perturbation	is	shown	in
DefaultOrbitView	window	in	light	blue,	and	the	final	solution	is	shown	in	red.
After	the	mission	completes,	the	3D	view	should	appear	as	in	to	the	image
shown	below.	You	may	want	to	run	the	mission	several	times	to	see	the	targeting
in	progress.

Figure	6.11.	3D	View	of	Hohmann	Transfer



If	you	were	to	continue	developing	this	mission,	you	can	store	the	final	solution
of	the	Target	sequence	as	the	initial	conditions	of	the	TOI	and	GOI	resources
themselves,	so	that	if	you	make	small	changes,	the	subsequent	runs	will	take	less
time.	To	do	this,	follow	these	steps:

1.	 In	the	Mission	tree,	double-click	Hohmann	Transfer	to	edit	its	properties.
2.	 Click	Apply	Corrections.



3.	 Now	re-run	the	mission.	If	you	inspect	the	results	in	the	message	window,
you	will	see	that	the	Target	sequence	converges	in	one	iteration	because
you	stored	the	solution	as	the	initial	condition.



Chapter	7.	Target	Finite	Burn	to	Raise	Apogee

Audience Intermediate	level

Length 45	minutes

Prerequisites Complete	Simulating	an	Orbit	and	Simple	Orbit	Transfer

Script	File Tut_Target_Finite_Burn_to_Raise_Apogee.script



Objective	and	Overview

Note

One	of	the	most	common	operational	problems	in	space
mission	design	is	the	design	of	a	finite	burn	that	achieves	a
given	orbital	goal.	A	finite	burn	model,	as	opposed	to	the
idealized	impulsive	burn	model	used	for	preliminary	design,	is
needed	to	accurately	model	actual	spacecraft	maneuvers.

In	this	tutorial,	we	will	use	GMAT	to	perform	a	finite	burn	for	a	spacecraft	in
low	Earth	orbit.		The	goal	of	this	finite	burn	is	to	achieve	a	certain	desired
apogee	radius.		Since	the	most	efficient	orbital	location	to	affect	apoapsis	is	at
periapsis,	the	first	step	in	this	tutorial	is	to	propagate	the	spacecraft	to	perigee.

To	calculate	the	duration	of	the	perigee	burn	needed	to	achieve	a	desired	apogee
radius	of	12000	km,	we	must	create	the	appropriate	targeting	sequence.		The
main	portion	of	the	target	sequence	employs	a	Begin/End	FiniteBurn	command
pair,	for	a	velocity	direction	maneuver,	followed	by	a	command	to	propagate	the
spacecraft	to	orbit	apogee.

The	basic	steps	of	this	tutorial	are:

1.	 Create	and	configure	the	Spacecraft	hardware	and	FiniteBurn	resources
2.	 Create	the	DifferentialCorrector	and	Target	Control	Variable
3.	 Configure	the	Mission	Sequence.	To	do	this,	we	will

a.	 Create	Begin/End	FiniteBurn	commands	with	default	settings.
b.	 Create	a	Target	sequence	to	achieve	a	12000	km	apogee	radius.

4.	 Run	the	mission	and	analyze	the	results.



Create	and	Configure	Spacecraft	Hardware	and
Finite	Burn
For	this	tutorial,	you’ll	need	GMAT	open	with	the	default	mission	loaded.	To
load	the	default	mission,	click	New	Mission	( )	or	start	a	new	GMAT	session.
We	will	use	the	default	configurations	for	the	spacecraft	(DefaultSC)	and	the
propagator	(DefaultProp).	DefaultSC	is	configured	by	default	to	a	near-circular
orbit,	and	DefaultProp	is	configured	to	use	Earth	as	the	central	body	with	a
nonspherical	gravity	model	of	degree	and	order	4.	You	may	want	to	open	the
dialog	boxes	for	these	objects	and	inspect	them	more	closely	as	we	will	leave
them	at	their	default	settings.

Create	a	Thruster	and	a	Fuel	Tank

To	model	thrust	and	fuel	use	associated	with	a	finite	burn,	we	must	create	a
ChemicalThruster	and	a	ChemicalTank	and	then	attach	the	newly	created
ChemicalTank	to	the	ChemicalThruster.

1.	 In	the	Resources	tree,	right-click	on	the	Hardware	folder,	point	to	Add,
and	click	ChemicalThruster.		A	resource	named	ChemicalThruster1	will
be	created.

2.	 In	the	Resources	tree,	right-click	on	the	Hardware	folder,	point	to	Add,
and	click	ChemicalTank.		A	resource	named	ChemicalTank1	will	be
created.

3.	 Double-click	ChemicalThruster1	to	edit	its	properties.
4.	 Select	the	Decrement	Mass	box	so	that	GMAT	will	model	fuel	use

associated	with	a	finite	burn.
5.	 Use	the	drop	down	menu	to	the	right	of	the	Tank	field	to	select

ChemicalTank1	as	the	fuel	source	for	ChemicalThruster1.		Click	OK.		

Figure	7.1,	“ChemicalTank1	Configuration”	below	shows	the	default
ChemicalTank1	configuration	that	we	will	use	and	Figure	7.2,
“ChemicalThruster1	Configuration”	shows	the	finished	ChemicalThruster1
configuration.

Figure	7.1.	ChemicalTank1	Configuration



Figure	7.2.	ChemicalThruster1	Configuration



Note	that	the	default	Thruster1	Coordinate	System,	as	shown	in	Figure	7.2,
“ChemicalThruster1	Configuration”,	is	Earth-based	Velocity,	Normal,	Bi-
normal	(VNB)	and	that	the	default	Thrust	Vector	of	(1,0,0)	represents	our
desired	velocity	oriented	maneuver	direction.

For	a	general	finite	burn,	if	desired,	we	can	specify	how	both	the	thrust	and	the
fuel	use	depend	upon	fuel	tank	pressure.	The	user	does	this	by	inputting
coefficients	of	certain	pre-defined	polynomials.	To	view	the	values	for	the	thrust
coefficients,	click	the	Edit	Thruster	Coef.	button	and	to	view	the	ISP
coefficients	which	determine	fuel	use,	click	the	Edit	Impulse	Coef.	button.	For
this	tutorial,	we	will	use	the	default	ISP	polynomial	coefficient	values	but	we
will	change	the	ChemicalThruster1	polynomial	coefficients	as	follows.



Modify	Thruster1	Thrust	Coefficients

1.	 In	the	Resources	tree,	double-click	ChemicalThruster1	to	edit	its
properties

2.	 Click	the	Edit	Thruster	Coef.	button	to	bring	up	the
ThrusterCoefficientDialog	box,	shown	in	Figure	7.3,
“ChemicalThruster1	Thrust	Coefficients”.	Replace	the	default	C1
coefficient	value	of	10	with	1000.	Click	OK.

Figure	7.3.	ChemicalThruster1	Thrust	Coefficients



The	exact	form	of	the	pre-defined	Thrust	polynomial,	associated	with	the
coefficients	above,	are	given	in	the	ChemicalThruster	help.	We	note	that,	by
default,	all	of	the	Thrust	coefficients	associated	with	terms	that	involve	tank
pressure	are	zero.	We	have	kept	the	default	zero	values	for	all	of	these
coefficients.	We	simply	changed	the	constant	term	in	the	Thrust	polynomial	from
10	to	1000	which	is	much	larger	than	the	thrust	for	a	typical	chemical	thruster.
The	Thrust	and	ISP	polynomials	used	in	this	tutorial	are	shown	below.

Thrust	=	1000	(Newtons)

ISP	=	300	(seconds)

Attach	ChemicalTank1	and	Thruster1	to	DefaultSC

1.	 In	the	Resources	tree,	double-click	DefaultSC	to	edit	its	properties.
2.	 Select	the	Tanks	tab.	In	the	Available	Tanks	column,	select

ChemicalTank1.	Then	click	the	right	arrow	button	to	add	ChemicalTank1
to	the	SelectedTanks	list.	Click	Apply.

3.	 Select	the	Actuators	tab.	In	the	Available	Thrusters	column,	select
ChemicalThruster1.	Then	click	the	right	arrow	button	to	add
ChemicalThruster1	to	the	SelectedThrusters	list.	Click	OK.

Figure	7.4.	Attach	ChemicalTank1	to	DefaultSC



Figure	7.5.	Attach	ChemicalThruster1	to	DefaultSC



Create	the	Finite	Burn	Maneuver

We’ll	need	a	single	FiniteBurn	resource	for	this	tutorial.

1.	 In	the	Resources	tree,	right-click	the	Burns	folder	and	add	a	FiniteBurn.	A



resource	named	FiniteBurn1	will	be	created.
2.	 Double-click	FiniteBurn1	to	edit	its	properties.
3.	 Use	the	menu	to	the	right	of	the	Thruster	field	to	select

ChemicalThruster1	as	the	thruster	associated	with	FiniteBurn1.	Click
OK.

Figure	7.6.	Creation	of	FiniteBurn	Resource	FiniteBurn1



Create	the	Differential	Corrector	and	Target
Control	Variable
The	Target	sequence	we	will	create	later	needs	a	DifferentialCorrector
resource	to	operate,	so	let’s	create	one	now.	We'll	leave	the	settings	at	their
defaults.

1.	 In	the	Resources	tree,	expand	the	Solvers	folder	if	it	isn’t	already.
2.	 Right-click	the	Boundary	Value	Solvers	folder,	point	to	Add,	and	click

DifferentialCorrector.	A	new	resource	called	DC1	will	be	created.

The	Target	sequence	we	will	later	create	uses	the	Vary	command	to	adjust	a
user	defined	target	control	variable	in	order	to	achieve	the	desired	orbital	goal	of
raising	apogee	to	12000	km.	We	must	first	create	this	variable	which	we	will
name	BurnDuration.

1.	 In	the	Resources	tree,	right-click	the	Variables/Arrays/Strings	folder,
point	to	Add,	and	click	Variable.	A	new	window	will	come	up	with	two
input	fields,	Variable	Name	and	Variable	Value.	For	Variable	Name,
input	BurnDuration	and	for	Variable	Value,	input	0.	Click	the	=>	button
to	create	the	variable,	then	click	Close.

2.	 To	verify	that	we	have	created	this	new	variable	correctly,	double-click
BurnDuration	to	view	its	properties.

Figure	7.7.	Creation	of	Variable	Resource,	BurnDuration





Configure	the	Mission	Sequence
Now	we	will	configure	a	Target	sequence	to	solve	for	the	finite	burn	duration
required	to	raise	apogee	to	12000	km.	We’ll	begin	by	creating	the	initial
Propagate	command,	then	the	Target	sequence	itself.

Configure	the	Initial	Propagate	Command

1.	 Click	on	the	Mission	tab	to	show	the	Mission	tree.
2.	 Configure	Propagate1	to	propagate	to	DefaultSC.Earth.Periapsis.
3.	 Rename	Propagate1	to	Prop	To	Perigee.

Figure	7.8.	Prop	To	Perigee	Command	Configuration



Create	the	Target	Sequence

Now	create	the	commands	necessary	to	perform	the	Target	sequence.
Figure	7.9,	“Final	Mission	Sequence”	illustrates	the	configuration	of	the	Mission
tree	after	we	have	completed	the	steps	in	this	section.	We’ll	discuss	the	Target
sequence	after	it	has	been	created.

Figure	7.9.	Final	Mission	Sequence

To	create	the	Target	sequence:

1.	 In	the	Mission	tree,	right-click	Prop	To	Perigee,	point	to	Insert	After,	and
click	Target.	This	will	insert	two	separate	commands:	Target1	and
EndTarget1.

2.	 Right-click	Target1	and	click	Rename.	Type	Raise	Apogee	and	click	OK.
3.	 Right-click	Raise	Apogee,	point	to	Append,	and	click	Vary.	Rename	the

newly	created	command	as	Vary	Burn	Duration.
4.	 Right-click	Vary	Burn	Duration,	point	to	Insert	After,	and	click

BeginFiniteBurn.	Rename	the	newly	created	command	as	Turn	Thruster
On.

5.	 Complete	the	Target	sequence	by	inserting	the	commands	shown	in
Table	7.1,	“Additional	Target	Sequence	Commands”.

Table	7.1.	Additional	Target	Sequence	Commands

Command Name

Propagate Prop	BurnDuration

EndFiniteBurn Turn	Thruster	Off



Propagate Prop	To	Apogee

Achieve Achieve	Apogee	Radius	=	12000

Configure	the	Target	Sequence

Now	that	the	structure	is	created,	we	need	to	configure	the	various	parts	of	the
Target	sequence	to	do	what	we	want.

Configure	the	Raise	Apogee	Command

1.	 Double-click	Raise	Apogee	to	edit	its	properties.
2.	 In	the	ExitMode	list,	click	SaveAndContinue.	This	instructs	GMAT	to

save	the	final	solution	of	the	targeting	problem	after	you	run	it.
3.	 Click	OK	to	save	these	changes.

Figure	7.10.	Raise	Apogee	Command	Configuration

Configure	the	Vary	Burn	Duration	Command

1.	 Double-click	Vary	Burn	Duration	to	edit	its	properties.	We	want	this
command	to	adjust	(or	“Vary”)	the	finite	burn	duration	represented	by	the
previously	created	control	variable,	BurnDuration.	To	accomplish	this,
click	on	the	Edit	button	to	bring	up	the	ParameterSelectDialog.	Use	the
ObjectType	menu	to	select	the	Variable	object	type.	The	ObjectList	menu
will	then	display	a	list	of	user	defined	variables.	Double-click	on	the



variable,	BurnDuration,	so	that	BurnDuration	appears	in	the
SelectedValues(s)	menu.	Click	the	OK	button	to	save	the	changes	and
return	to	the	Vary	Burn	Duration	command	menu.

2.	 In	the	Initial	Value	box,	type	200
3.	 In	the	Upper	box,	type	10000
4.	 In	the	Max	Step	box,	type	100.
5.	 Click	OK	to	save	these	changes.

Figure	7.11.	Vary	Burn	Duration	Command	Configuration

Configure	the	Turn	Thruster	On	Command

1.	 Double-click	Turn	Thruster	On	to	edit	its	properties.	Notice	that	the
command	is	already	set	to	apply	FiniteBurn1	to	the	DefaultSC	spacecraft,
so	we	don’t	need	to	change	anything	here.

2.	 Click	OK.

Figure	7.12.	Turn	Thruster	On	Command	Configuration



Configure	the	Prop	BurnDuration	Command

1.	 Double-click	Prop	BurnDuration	to	edit	its	properties.
2.	 We	will	use	the	default	Parameter	value	of	DefaultSC.ElapsedSecs.
3.	 Under	Condition,	replace	the	default	value	with	Variable,	BurnDuration.
4.	 Click	OK	to	save	these	changes.

Figure	7.13.	Prop	BurnDuration	Command	Configuration



Configure	the	Turn	Thruster	Off	Command

1.	 Double-click	Turn	Thruster	Off	to	edit	its	properties.	Notice	that	the
command	is	already	set	to	end	FiniteBurn1	as	applied	to	the	DefaultSC
spacecraft,	so	we	don’t	need	to	change	anything	here..

2.	 Click	OK.

Figure	7.14.	Turn	Thruster	Off	Command	Configuration



Configure	the	Prop	To	Apogee	Command

1.	 Double-click	Prop	to	Apogee	to	edit	its	properties.
2.	 Under	Parameter,	replace	DefaultSC.ElapsedSecs	with

DefaultSC.Earth.Apoapsis.
3.	 Click	OK	to	save	these	changes.

Figure	7.15.	Prop	To	Apogee	Command	Configuration



Configure	the	Achieve	Apogee	Radius	=	12000	Command

1.	 Double-click	Achieve	Apogee	Radius	=	12000	to	edit	its	properties.
2.	 Notice	that	Goal	is	set	to	DefaultSC.Earth.RMAG.	This	is	what	we	need,

so	we	make	no	changes	here.
3.	 In	the	Value	box,	type	12000
4.	 Click	OK	to	save	these	changes

Figure	7.16.	Achieve	Apogee	Radius	=	12000	Command	Configuration





Run	the	Mission
Before	running	the	mission,	click	Save	to	save	the	mission	to	a	file	of	your
choice.	Now	click	Run.	As	the	mission	runs,	you	will	see	GMAT	solve	the
targeting	problem.	Each	iteration	and	perturbation	is	shown	in
DefaultOrbitView	window	in	light	blue,	and	the	final	solution	is	shown	in	red.
After	the	mission	completes,	the	3D	view	should	appear	as	shown	in	the	image
shown	below.	You	may	want	to	run	the	mission	several	times	to	see	the	targeting
in	progress.

Inspect	Orbit	View	and	Message	Window

Inspect	the	3D	DefaultOrbitView	window.	Manipulate	the	window	as	needed	to
view	the	orbit	"face-on."	Visually	verify	that	apogee	has	indeed	been	raised.

Figure	7.17.	3D	View	of	Finite	Burn	to	Raise	Apogee



As	shown	below,	we	inspect	the	output	message	window	to	determine	the
number	of	iterations	it	took	the	DifferentialCorrector	to	converge	and	the	final
value	of	the	control	variable,	BurnDuration.	Verify	that	you	obtained	a	similar
value	for	BurnDuration.

***	Targeting	Completed	in	13	iterations

						Final	Variable	values:

						BurnDuration	=	1213.19316329

Explore	the	Command	Summary	Reports



All	of	the	commands	in	the	Mission	tree	have	associated	Command	Summary
reports.	As	shown	below,	we	review	these	reports	to	help	verify	that	our	script
performed	as	expected.

1.	 In	the	Mission	tree,	select	Prop	To	Perigee,	then	right-click	to	open	the
associated	Command	Summary	which	describes	the	state	of	DefaultSC
after	the	Prop	To	Perigee	command	has	been	performed.	We	verify	perigee
has	indeed	been	achieved	by	finding	the	mean	anomaly	value	of
DefaultSC.	To	do	this,	we	look	at	the	value	of	MA	under	the	Keplerian
State.	As	expected,	the	mean	anomaly	is	zero.

2.	 View	the	Turn	Thruster	On	command	summary.	Note	that,	as	expected,
prior	to	the	start	of	the	maneuver,	the	fuel	mass	is	756	kg.

3.	 View	the	Turn	Thruster	Off	command	summary.
a.	 Note	that	the	mean	anomaly	at	the	end	of	the	maneuver	is	25.13

degrees.	Thus,	as	the	burn	occurred,	the	mean	anomaly	increased	from
0	to	25.13	degrees.	By	orbital	theory,	we	know	that	an	apogee	raising
burn	is	best	performed	at	perigee.	Thus,	we	may	be	able	to	achieve	our
orbital	goal	using	less	fuel	if	we	“center”	the	burn.	For	example,	we
could	try	starting	our	burn	at	a	mean	anomaly	of	–(25.13/2)	instead
of	0	degrees.

b.	 Note	that,	at	the	end	of	the	maneuver,	the	fuel	mass	is
343.76990815648	kg.	Thus,	this	finite	burn	used	approximately	756	–
343.8	=	412.2	kg	of	fuel.

4.	 View	the	Prop	To	Apogee	command	summary.
a.	 We	note	that	the	mean	anomaly	is	180	degrees	which	proves	that	we

are	indeed	at	apogee.
b.	 We	note	that	the	orbital	radius	(RMAG)	is	11999.999998192	km

which	proves	that	we	have	achieved	our	desired	12000	km	apogee
radius	to	within	our	desired	tolerance	of	0.1	km.



Chapter	8.	Mars	B-Plane	Targeting

Audience Advanced

Length 75	minutes

Prerequisites
Complete	Simulating	an	Orbit,	Simple	Orbit	Transfer	and	a	basic
understanding	of	B-Planes	and	their	usage	in	targeting	is
required.

Script	File Tut_Mars_B_Plane_Targeting.script



Objective	and	Overview

Note

One	of	the	most	challenging	problems	in	space	mission	design
is	to	design	an	interplanetary	transfer	trajectory	that	takes	the
spacecraft	within	a	very	close	vicinity	of	the	target	planet.	One
possible	approach	that	puts	the	spacecraft	close	to	a	target
planet	is	by	targeting	the	B-Plane	of	that	planet.	The	B-Plane	is
a	planar	coordinate	system	that	allows	targeting	during	a
gravity	assist.	It	can	be	thought	of	as	a	target	attached	to	the
assisting	body.	In	addition,	it	must	be	perpendicular	to	the
incoming	asymptote	of	the	approach	hyperbola.	Figure	8.1,
“Geometry	of	the	B-Plane	as	seen	from	a	viewpoint
perpendicular	to	the	B-Plane”	and	Figure	8.2,	“The	B-vector	as
seen	from	a	viewpoint	perpendicular	to	orbit	plane”	show	the
geometry	of	the	B-Plane	and	B-vector	as	seen	from	a	viewpoint
perpendicular	to	orbit	plane.	To	read	more	on	B-Planes,	please
consult	the	GMATMathSpec	document.	A	good	example
involving	the	use	of	B-Plane	targeting	is	a	mission	to	Mars.
Sending	a	spacecraft	to	Mars	can	be	achieved	by	performing	a
Trajectory	Correction	Maneuver	(TCM)	that	targets	Mars	B-
Plane.	Once	the	spacecraft	gets	close	to	Mars,	then	an	orbit
insertion	maneuver	can	be	performed	to	capture	into	Mars
orbit.

Figure	8.1.	Geometry	of	the	B-Plane	as	seen	from	a	viewpoint	perpendicular
to	the	B-Plane



Figure	8.2.	The	B-vector	as	seen	from	a	viewpoint	perpendicular	to	orbit
plane

In	this	tutorial,	we	will	use	GMAT	to	model	a	mission	to	Mars.	Starting	from	an
out-going	hyperbolic	trajectory	around	Earth,	we	will	perform	a	TCM	to	target
Mars	B-Plane.	Once	we	are	close	to	Mars,	we	will	adjust	the	size	of	the
maneuver	to	perform	a	Mars	Orbit	Insertion	(MOI)	to	achieve	a	final	elliptical
orbit	with	an	inclination	of	90	degrees.	Meeting	these	mission	objectives
requires	us	to	create	two	separate	targeting	sequences.	In	order	to	focus	on	the
configuration	of	the	two	targeters,	we	will	make	extensive	use	of	the	default
configurations	for	spacecraft,	propagators,	and	maneuvers.

The	first	target	sequence	employs	maneuvers	in	the	Earth-based	Velocity	(V),
Normal	(N)	and	Bi-normal	(B)	directions	and	includes	four	propagation



sequences.	The	purpose	of	the	maneuvers	in	VNB	directions	is	to	target	BdotT
and	BdotR	components	of	the	B-vector.	BdotT	is	targeted	to	0	km	and	BdotR	is
targeted	to	a	non-zero	value	to	generate	a	polar	orbit	that	has	inclination	of	90
degrees.	BdotR	is	targeted	to	-7000	km	to	avoid	having	the	orbit	intersect	Mars,
which	has	a	radius	of	approximately	3396	km.

The	second	target	sequence	employs	a	single,	Mars-based	anti-velocity	direction
(-V)	maneuver	and	includes	one	propagation	sequence.	This	single	anti-velocity
direction	maneuver	will	occur	at	periapsis.	The	purpose	of	the	maneuver	is	to
achieve	MOI	by	targeting	position	vector	magnitude	of	12,000	km	at	apoapsis.
The	basic	steps	of	this	tutorial	are:

1.	 Modify	the	DefaultSC	to	define	spacecraft’s	initial	state.	The	initial	state	is
an	out-going	hyperbolic	trajectory	that	is	with	respect	to	Earth.

2.	 Create	and	configure	a	Fuel	Tank	resource.
3.	 Create	two	ImpulsiveBurn	resources	with	default	settings.
4.	 Create	and	configure	three	Propagators:	NearEarth,	DeepSpace	and

NearMars
5.	 Create	and	configure	DifferentialCorrector	resource.
6.	 Create	and	configure	three	DefaultOrbitView	resources	to	visualize	Earth,

Sun	and	Mars	centered	trajectories.
7.	 Create	and	configure	three	CoordinateSystems:	Earth,	Sun	and	Mars

centered.
8.	 Create	first	Target	sequence	to	target	BdotT	and	BdotR	components	of	the

B-vector.
9.	 Create	second	Target	sequence	to	implement	MOI	by	targeting	position

magnitude	at	apoapsis.
10.	 Run	the	mission	and	analyze	the	results.



Configure	Fuel	Tank,	Spacecraft	properties,
Maneuvers,	Propagators,	Differential	Corrector,
Coordinate	Systems	and	Graphics
For	this	tutorial,	you’ll	need	GMAT	open,	with	the	default	mission	loaded.	To
load	the	default	mission,	click	New	Mission	( )	or	start	a	new	GMAT	session.
DefaultSC	will	be	modified	to	set	spacecraft’s	initial	state	as	an	out-going
hyperbolic	trajectory.

Create	Fuel	Tank

We	need	to	create	a	fuel	tank	in	order	to	see	how	much	fuel	is	expended	after
each	impulsive	burn.	We	will	modify	DefaultSC	resource	later	and	attach	the
fuel	tank	to	the	spacecraft.

1.	 In	the	Resources	tree,	right-click	the	Hardware	folder,	point	to	Add	and
click	ChemicalTank.	A	new	resource	called	ChemicalTank1	will	be
created.

2.	 Right-clickChemicalTank1	and	click	Rename.
3.	 In	theRename	box,	type	MainTank	and	click	OK.
4.	 Double	click	onMainTank	to	edit	its	properties.
5.	 Set	the	values	shown	in	the	table	below.

Table	8.1.	MainTank	settings

Field Value

Fuel	Mass 1718

Fuel	Density 1000

Pressure 5000

Volume 2

6.	 Click	OK	to	save	these	changes.



Modify	the	DefaultSC	Resource

We	need	to	make	minor	modifications	to	DefaultSC	in	order	to	define
spacecraft’s	initial	state	and	attach	the	fuel	tank	to	the	spacecraft.

1.	 In	the	Resources	tree,	under	Spacecraft	folder,	right-click	DefaultSC	and
click	Rename.

2.	 In	the	Rename	box,	type	MAVEN	and	click	OK.
3.	 Double-click	on	MAVEN	to	edit	its	properties.	Make	sure	Orbit	tab	is

selected.
4.	 Set	the	values	shown	in	the	table	below.

Table	8.2.	MAVEN	settings

Field Value

Epoch	Format UTCGregorian

Epoch 18	Nov	2013	20:26:24.315

Coordinate	System EarthMJ2000Eq

State	Type Keplerian

SMA	under	Elements -32593.21599272796

ECC	under	Elements 1.202872548116185

INC	under	Elements 28.80241266404142

RAAN	under	Elements 173.9693759331483

AOP	under	Elements 240.9696529532764

TA	under	Elements 359.9465533778069

5.	 Click	on	Tanks	tab	now.
6.	 Under	Available	Tanks,	you'll	see	MainTank.	This	is	the	fuel	tank	that	we

created	earlier.
7.	 We	attach	MainTank	to	the	spacecraft	MAVEN	by	bringing	it	under

Selected	Tanks	box.	Select	MainTank	under	Available	Tanks	and	bring	it
over	to	the	right-hand	side	under	the	Selected	Tanks.

8.	 Click	OK	to	save	these	changes.



Create	the	Maneuvers

We’ll	need	two	ImpulsiveBurn	resources	for	this	tutorial.	Below,	we’ll	rename
the	default	ImpulsiveBurn	and	create	a	new	one.	We’ll	also	select	the	fuel	tank
that	was	created	earlier	in	order	to	access	fuel	for	the	burns.

1.	 In	the	Resources	tree,	under	the	Burns	folder,	right-click	DefaultIB	and
click	Rename.

2.	 In	the	Rename	box,	type	TCM,	an	acronym	for	Trajectory	Correction
Maneuver	and	click	OK	to	edit	its	properties.

3.	 Double-Click	TCM	to	edit	its	properties	to	edit	its	properties.
4.	 Check	Decrement	Mass	under	Mass	Change.
5.	 For	Tank	field	under	Mass	Change,	select	MainTank	from	drop	down

menu.
6.	 Click	OK	to	save	these	changes.
7.	 Right-click	theBurns	folder,	point	to	Add,	and	click	ImpulsiveBurn.	A

new	resource	called	ImpulsiveBurn1	will	be	created.
8.	 Rename	the	new	ImpulsiveBurn1	resource	to	MOI,	an	acronym	for	Mars

Orbit	Insertion	and	click	OK.
9.	 Double-click	MOI	to	edit	its	properties.
10.	 For	Origin	field	under	Coordinate	System,	select	Mars.
11.	 Check	Decrement	Mass	under	Mass	Change.
12.	 For	Tank	field	under	Mass	Change,	select	MainTank	from	the	drop	down

menu.
13.	 Click	OK	to	save	these	changes.

Create	the	Propagators

We’ll	need	to	add	three	propagators	for	this	tutorial.	Below,	we’ll	rename	the
default	DefaultProp	and	create	two	more	propagators.

1.	 In	the	Resources	tree,	under	the	Propagators	folder,	right-click
DefaultProp	and	click	Rename.

2.	 In	the	Rename	box,	type	NearEarth	and	click	OK.
3.	 Double-click	on	NearEarth	to	edit	its	properties.
4.	 Set	the	values	shown	in	the	table	below.

Table	8.3.	NearEarth	settings



Field Value

Initial	Step	Size	under	Integrator 600

Accuracy	under	Integrator 1e-013

Min	Step	Size	under	Integrator 0

Max	Step	Size	under	Integrator 600

Model	under	Gravity JGM-2

Degree	under	Gravity 8

Order	under	Gravity 8

Atmosphere	Model	under	Drag None

Point	Masses	under	Force	Model Add	Luna	and	Sun

Use	Solar	Radiation	Pressure	under	Force
Model

Check	this	field

5.	 Click	on	OK	to	save	these	changes.
6.	 Right-click	the	Propagators	folder	and	click	Add	Propagator.	A	new

resource	called	Propagator1	will	be	created.
7.	 Rename	the	new	Propagator1	resource	to	DeepSpace	and	click	OK.
8.	 Double-click	DeepSpace	to	edit	its	properties.
9.	 Set	the	values	shown	in	the	table	below.

Table	8.4.	DeepSpace	settings

Field Value

Type	under	Integrator PrinceDormand78

Initial	Step	Size	under	Integrator 600

Accuracy	under	Integrator 1e-012

Min	Step	Size	under	Integrator 0

Max	Step	Size	under	Integrator 864000

Central	Body	under	Force	Model Sun



Primary	Body	under	Force	Model None

Point	Masses	under	Force	Model Add	Earth,	Luna,	Sun,
Mars,	Jupiter,
Neptune,	Saturn,
Uranus,	Venus

Use	Solar	Radiation	Pressure	under	Force
Model

Check	this	field

10.	 Click	OK	to	save	these	changes.
11.	 Right-click	the	Propagators	folder	and	click	Add	Propagator.	A	new

resource	called	Propagator1	will	be	created.
12.	 Rename	the	new	Propagator1	resource	to	NearMars	and	click	OK.
13.	 Double-click	on	NearMars	to	edit	its	properties.
14.	 Set	the	values	shown	in	the	table	below.

Table	8.5.	NearMars	settings

Field Value

Type	under	Integrator PrinceDormand78

Initial	Step	Size	under	Integrator 600

Accuracy	under	Integrator 1e-012

Min	Step	Size	under	Integrator 0

Max	Step	Size	under	Integrator 86400

Central	Body	under	Force	Model Mars

Primary	Body	under	Force	Model Mars

Model	under	Gravity Mars-50C

Degree	under	Gravity 8

Order	under	Gravity 8

Atmosphere	Model	under	Drag None

Point	Masses	under	Force	Model Add	Sun



Use	Solar	Radiation	Pressure	under	Force
Model

Check	this	field

15.	 Click	OK	to	save	the	changes.

Create	the	Differential	Corrector

Two	Target	sequences	that	we	will	create	later	need	a	DifferentialCorrector
resource	to	operate,	so	let’s	create	one	now.	We'll	leave	the	settings	at	their
defaults.

1.	 In	the	Resources	tree,	expand	the	Solvers	folder	if	it	isn’t	already.
2.	 Right-click	the	Boundary	Value	Solvers	folder,	point	to	Add,	and	click

DifferentialCorrector.	A	new	resource	called	DC1	will	be	created.
3.	 Rename	the	new	DC1	resource	to	DefaultDC	and	click	OK.

Create	the	Coordinate	Systems

The	BdotT	and	BdotR	constraints	that	we	will	define	later	under	the	first	Target
sequence	require	us	to	create	a	coordinate	system.	Orbit	View	resources	that	we
will	create	later	also	need	coordinate	system	resources	to	operate.	We	will	create
Sun	and	Mars	centered	coordinate	systems.	So	let’s	create	them	now.

1.	 In	the	Resources	tree,	right-click	the	Coordinate	Systems	folder	and	click
Add	Coordinate	System.	A	new	Dialog	box	is	created	with	a	title	New
Coordinate	System.

2.	 Type	SunEcliptic	under	Coordinate	System	Name	box.
3.	 Under	Origin	field,	select	Sun.
4.	 For	Type	under	Axes,	select	MJ2000Ec.
5.	 Click	OK	to	save	these	changes.	You’ll	see	that	a	new	coordinate	system

SunEcliptic	is	created	under	Coordinate	Systems	folder.
6.	 Right-click	the	Coordinate	Systems	folder	and	click	Add	Coordinate

System.	A	new	Dialog	Box	is	created	with	a	title	New	Coordinate	System.
7.	 Type	MarsInertial	under	Coordinate	System	Name	box.
8.	 Under	Origin	field,	select	Mars.
9.	 For	Type	under	Axes,	select	BodyInertial.
10.	 Click	OK	to	save	these	changes.	You’ll	see	that	a	new	coordinate	system



MarsInertial	is	created	under	Coordinate	Systems	folder.

Create	the	Orbit	Views

We’ll	need	three	DefaultOrbitView	resources	for	this	tutorial.	Below,	we’ll
rename	the	default	DefaultOrbitView	and	create	two	new	ones.	We	need	three
graphics	windows	in	order	to	visualize	spacecraft’s	trajectory	centered	around
Earth,	Sun	and	then	Mars

1.	 In	the	Resources	tree,	under	Output	folder,	right-click	DefaultOrbitView
and	click	Rename.

2.	 In	the	Rename	box,	type	EarthView	and	click	OK.
3.	 In	the	Output	folder,	delete	DefaultGroundTrackPlot.
4.	 Double-click	EarthView	to	edit	its	properties.
5.	 Set	the	values	shown	in	the	table	below.

Table	8.6.	EarthView	settings

Field Value

View	Scale	Factor	under	View	Definition 4

View	Point	Vector	boxes,	under	View
Definition

0,	0,	30000

6.	 Click	OK	to	save	these	changes.
7.	 Right-click	the	Output	folder,	point	to	Add,	and	click	OrbitView.	A	new

resource	called	OrbitView1	will	be	created.
8.	 Rename	the	new	OrbitView1	resource	to	SolarSystemView	and	click	OK.
9.	 Double-click	SolarSystemView	to	edit	its	properties.
10.	 Set	the	values	shown	in	the	table	below.

Table	8.7.	SolarSystemView	settings

Field Value

From	Celestial	Object	under	View	Object,	add
following	objects	to	Selected	Celestial	Object
box

Mars,	Sun	(Do	not
remove	Earth)



Coordinate	System	under	View	Definition SunEcliptic

View	Point	Reference	under	View	Definition Sun

View	Point	Vector	boxes,	under	View
Definition

0,	0,	5e8

View	Direction	under	View	Definition Sun

Coordinate	System	under	View	Up	Definition SunEcliptic

11.	 Click	OK	to	save	these	changes.
12.	 Right-click	the	Output	folder,	point	to	Add,	and	click	OrbitView.	A	new

resource	called	OrbitView1	will	be	created.
13.	 Rename	the	new	OrbitView1	resource	to	MarsView	and	click	OK.
14.	 Double-click	MarsView	to	edit	its	properties.
15.	 Set	the	values	shown	in	the	table	below.

Table	8.8.	MarsView	settings

Field Value

From	Celestial	Object	under	View	Object,	add
following	object	to	Selected	Celestial	Object
box

Mars	(You	don’t	have
to	remove	Earth)

Coordinate	System	under	View	Definition MarsInertial

View	Point	Reference	under	View	Definition Mars

View	Point	Vector	boxes,	under	View
Definition

22000,	22000,	0

View	Direction	under	View	Definition Mars

Coordinate	System	under	View	Up	Definition MarsInertial

16.	 Click	OK	to	save	the	changes.



Configure	the	Mission	Sequence
Now	we	will	configure	first	Target	sequence	to	solve	for	the	maneuver	values
required	to	achieve	BdotT	and	BdotR	components	of	the	B-vector.	BdotT	will	be
targeted	to	0	km	and	BdotR	is	targeted	to	a	non-zero	value	in	order	to	generate	a
polar	orbit	that	will	have	an	inclination	of	90	degrees.	To	allow	us	to	focus	on
the	first	Target	sequence,	we’ll	assume	you	have	already	learned	how	to
propagate	an	orbit	by	having	worked	through	Chapter	5,	Simulating	an	Orbit
tutorial.

The	second	Target	sequence	will	perform	the	MOI	maneuver	so	that	the
spacecraft	can	orbit	around	Mars,	but	that	sequence	will	be	created	later.

Create	the	First	Target	Sequence

Now	create	the	commands	necessary	to	perform	the	first	Target	sequence.
Figure	8.3,	“Mission	Sequence	for	the	First	Target	sequence”	illustrates	the
configuration	of	the	Mission	tree	after	you	have	completed	the	steps	in	this
section.	We’ll	discuss	the	first	Target	sequence	after	it	has	been	created.

Figure	8.3.	Mission	Sequence	for	the	First	Target	sequence

To	create	the	first	Target	sequence:

1.	 Click	on	the	Mission	tab	to	show	the	Mission	tree.



2.	 You’ll	see	that	there	already	exists	a	Propagate1	command.	We	need	to
delete	this	command

3.	 Right-click	on	Propagate1	command	and	click	Delete.
4.	 Right-click	on	Mission	Sequence	folder,	point	to	Append,	and	click

Target.	This	will	insert	two	separate	commands:	Target1	and	EndTarget1.
5.	 Right-click	Target1	and	click	Rename.
6.	 Type	Target	desired	B-plane	Coordinates	and	click	OK.
7.	 Right-click	Target	desired	B-plane	Coordinates,	point	to	Append,	and

click	Propagate.	A	new	command	called	Propagate1	will	be	created.
8.	 Right-click	Propagate1	and	click	Rename.
9.	 In	the	Rename	box,	type	Prop	3	Days	and	click	OK.
10.	 Complete	the	Target	sequence	by	appending	the	commands	in	Table	8.9,

“Additional	First	Target	Sequence	Commands”.

Table	8.9.	Additional	First	Target	Sequence	Commands

Command Name

Propagate Prop	12	Days	to	TCM

Vary Vary	TCM.V

Vary Vary	TCM.N

Vary Vary	TCM.B

Maneuver Apply	TCM

Propagate Prop	280	Days

Propagate Prop	to	Mars	Periapsis

Achieve Achieve	BdotT

Achieve Achieve	BdotR

Note

Let’s	discuss	what	the	first	Target	sequence	does.	We	know
that	a	maneuver	is	required	to	perform	the	B-Plane	targeting.



We	also	know	that	the	desired	B-Plane	coordinate	values	for
BdotT	and	BdotR	are	0	and	-7000	km,	resulting	in	a	polar	orbit
with	90	degree	inclination.	However,	we	don’t	know	the	size
(or	ΔV	magnitude)	and	direction	of	the	TCM	maneuver	that
will	precisely	achieve	the	desired	orbital	conditions.	We	use	the
Target	sequence	to	solve	for	those	precise	maneuver	values.
We	must	tell	GMAT	what	controls	are	available	(in	this	case,
three	controls	associated	with	three	components	of	the	TCM
maneuver)	and	what	conditions	must	be	satisfied	(in	this	case,
BdotT	and	BdotR	values).	You	accomplish	this	by	using	the
Vary	and	Achieve	commands.	Using	the	Vary	command,	you
tell	GMAT	what	to	solve	for—in	this	case,	the	ΔV	value	and
direction	for	TCM.	You	use	the	Achieve	command	to	tell
GMAT	what	conditions	the	solution	must	satisfy—in	this	case,
BdotT	and	BdotR	values	that	result	in	a	90	degree	inclination.

Configure	the	First	Target	Sequence

Now	that	the	structure	is	created,	we	need	to	configure	various	parts	of	the	first
Target	sequence	to	do	what	we	want.

Configure	the	Target	desired	B-plane	Coordinates
Command

1.	 1Double-click	Target	desired	B-plane	Coordinates	to	edit	its	properties.
2.	 In	the	ExitMode	list,	click	SaveAndContinue.	This	instructs	GMAT	to

save	the	final	solution	of	the	targeting	problem	after	you	run	it.
3.	 Click	OK	to	save	these	changes.

Figure	8.4.	Target	desired	B-plane	Coordinates	Command	Configuration



Configure	the	Prop	3	Days	Command

1.	 Double-click	Prop	3	Days	to	edit	its	properties.
2.	 Under	Propagator,	make	sure	that	NearEarth	is	selected
3.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.ElapsedDays.
4.	 Under	Condition,	replace	0.0	with	3.
5.	 Click	OK	to	save	these	changes.

Figure	8.5.	Prop	3	Days	Command	Configuration



Configure	the	Prop	12	Days	to	TCM	Command

1.	 Double-click	Prop	12	Days	to	TCM	to	edit	its	properties.
2.	 Under	Propagator,	replace	NearEarth	with	DeepSpace.
3.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.ElapsedDays.
4.	 Under	Condition,	replace	0.0	with	12.
5.	 Click	OK	to	save	these	changes.

Figure	8.6.	Prop	12	Days	to	TCM	Command	Configuration



Configure	the	Vary	TCM.V	Command

1.	 Double-click	Vary	TCM.V	to	edit	its	properties.	Notice	that	the	variable	in
the	Variable	box	is	TCM.Element1,	which	by	default	is	the	velocity
component	of	TCM	in	the	local	Velocity-Normal-Binormal	(VNB)
coordinate	system.	That’s	what	we	need,	so	we’ll	keep	it.

2.	 In	the	Initial	Value	box,	type	1e-005.
3.	 In	the	Perturbation	box,	type	0.00001.
4.	 In	the	Lower	box,	type	-10e300.
5.	 In	the	Upper	box,	type	10e300.
6.	 In	the	Max	Step	box,	type	0.002.
7.	 Click	OK	to	save	these	changes.

Figure	8.7.	Vary	TCM.V	Command	Configuration



Configure	the	Vary	TCM.N	Command

1.	 Double-click	Vary	TCM.N	to	edit	its	properties.	Notice	that	the	variable	in
the	Variable	box	is	still	TCM.Element1,	which	by	default	is	the	velocity
component	of	TCM	in	the	local	VNB	coordinate	system.	We	need	to	insert
TCM.Element2	which	is	the	normal	component	of	TCM	in	the	local	VNB
coordinate	system.	So	let’s	do	that.

2.	 Next	to	Variable,	click	the	Edit	button..
3.	 Under	Object	List,	click	TCM.
4.	 In	the	Object	Properties	list,	double-click	Element2	to	move	it	to	the

Selected	Value(s)	list.	See	the	image	below	for	results.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 Notice	that	the	variable	in	the	Variable	box	is	now	TCM.Element2.
7.	 In	the	Initial	Value	box,	type	1e-005.
8.	 In	the	Perturbation	box,	type	0.00001.
9.	 In	the	Lower	box,	type	-10e300.
10.	 In	the	Upper	box,	type	10e300.
11.	 In	the	Max	Step	box,	type	0.002.
12.	 Click	OK	to	save	these	changes.

Figure	8.8.	Vary	TCM.N	Parameter	Selection



Figure	8.9.	Vary	TCM.N	Command	Configuration

Configure	the	Vary	TCM.B	Command



1.	 Double-click	Vary	TCM.B	to	edit	its	properties.	Notice	that	the	variable	in
the	Variable	box	is	still	TCM.Element1,	which	by	default	is	the	velocity
component	of	TCM.	We	need	to	insert	TCM.Element3	which	is	the	bi-
normal	component	of	TCM	in	the	local	VNB	coordinate	system.	So	let’s	do
that.

2.	 Next	to	Variable,	click	the	Edit	button.
3.	 Under	Object	List,	click	TCM.
4.	 In	the	Object	Properties	list,	double-click	Element3	to	move	it	to	the

Selected	Value(s)	list.	See	the	image	below	for	results.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 Notice	that	the	variable	in	the	Variable	box	is	now	TCM.Element3.
7.	 In	the	Initial	Value	box,	type	1e-005.
8.	 In	the	Perturbation	box,	type	0.00001.
9.	 In	the	Lower	box,	type	-10e300.
10.	 In	the	Upper	box,	type	10e300.
11.	 In	the	Max	Step	box,	type	0.002.
12.	 Click	OK	to	save	these	changes.

Figure	8.10.	Vary	TCM.B	Parameter	Selection



Figure	8.11.	Vary	TCM.N	Command	Configuration

Configure	the	Apply	TCM	Command

Double-click	Apply	TCM	to	edit	its	properties.	Notice	that	the	command	is
already	set	to	apply	the	TCM	burn	to	the	MAVEN	spacecraft,	so	we	don’t
need	to	change	anything	here.

Figure	8.12.	Apply	TCM	Command	Configuration

Configure	the	Prop	280	Days	Command



1.	 Double-click	Prop	280	Days	to	edit	its	properties.
2.	 Under	Propagator,	replace	NearEarth	with	DeepSpace.
3.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.ElapsedDays.
4.	 Under	Condition,	replace	0.0	with	280.
5.	 Click	OK	to	save	these	changes.

Figure	8.13.	Prop	280	Days	Command	Configuration

Configure	the	Prop	to	Mars	Periapsis	Command

1.	 Double-click	Prop	to	Mars	Periapsis	to	edit	its	properties.
2.	 Under	Propagator,	replace	NearEarth	with	NearMars.
3.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.Mars.Periapsis.
4.	 Click	OK	to	save	these	changes.



Figure	8.14.	Prop	to	Mars	Periapsis	Command	Configuration

Configure	the	Achieve	BdotT	Command

1.	 Double-click	Achieve	BdotT	to	edit	its	properties.
2.	 Next	to	Goal,	click	the	Edit	button.
3.	 In	the	Object	Properties	list,	click	BdotT.
4.	 Under	Coordinate	System,	select	MarsInertial	and	double-click	on

BdotT.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 In	the	Value	box,	type	0.
7.	 In	the	Tolerance	box,	type	0.00001.
8.	 Click	OK	to	save	these	changes.

Figure	8.15.	Achieve	BdotT	Command	Configuration



Configure	the	Achieve	BdotR	Command

1.	 Double-click	Achieve	BdotR	to	edit	its	properties.
2.	 Next	to	Goal,	click	the	Edit	button.
3.	 In	the	Object	Properties	list,	click	BdotR.
4.	 Under	Coordinate	System,	select	MarsInertial	and	double-click	on

BdotR.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 In	the	Value	box,	type	-7000.
7.	 In	the	Tolerance	box,	type	0.00001.
8.	 Click	OK	to	save	these	changes.

Figure	8.16.	Achieve	BdotR	Command	Configuration



Run	the	Mission	with	first	Target	Sequence
Before	running	the	mission,	click	Save	( )	and	save	the	mission	to	a	file	of	your
choice.	Now	click	Run	( ).	As	the	mission	runs,	you	will	see	GMAT	solve	the
targeting	problem.	Each	iteration	and	perturbation	is	shown	in	EarthView,
SolarSystemView	and	MarsView	windows	in	light	blue,	and	the	final	solution
is	shown	in	red.	After	the	mission	completes,	the	3D	views	should	appear	as	in
the	images	shown	below.	You	may	want	to	run	the	mission	several	times	to	see
the	targeting	in	progress.

Figure	8.17.	3D	View	of	departure	hyperbolic	trajectory	(EarthView)



Figure	8.18.	3D	View	of	heliocentric	transfer	trajectory	(SolarSystemView)



Figure	8.19.	3D	View	of	approach	hyperbolic	trajectory.	MAVEN	stopped	at
periapsis	(MarsView)



Since	we	are	going	to	continue	developing	the	mission	tree	by	creating	the
second	Target	sequence,	we	will	store	the	final	solution	of	the	first	Target
sequence	as	the	initial	conditions	of	the	TCM	resource.	This	is	so	that	when	you



make	small	changes,	the	subsequent	runs	will	take	less	time.	To	do	this,	follow
these	steps:

1.	 In	the	Mission	tree,	double-click	Target	desired	B-plane	Coordinates	to
edit	its	properties.

2.	 Click	Apply	Corrections.
3.	 Click	OK	to	save	these	changes.
4.	 Now	re-run	the	mission.	If	you	inspect	the	results	in	the	message	window,

you	will	see	that	the	first	Target	sequence	converges	in	one	iteration.	This
is	because	you	stored	the	solution	as	the	initial	conditions.

5.	 In	the	Mission	tree,	double-click	Vary	TCM.V,	Vary	TCM.N	and	Vary
TCM.B,	you	will	notice	that	the	values	in	Initial	Value	box	have	been
updated	to	the	final	solution	of	the	first	Target	sequence.

If	you	want	to	know	TCM	maneuver’s	delta-V	vector	values	and	how	much	fuel
was	expended	during	the	maneuver,	do	the	following	steps:

1.	 In	the	Mission	tree,	right-click	Apply	TCM,	and	click	on	Command
Summary.

2.	 Scroll	down	and	under	Maneuver	Summary	heading,	values	for	delta-V
vector	are:

Delta	V	Vector:

Element	1:	0.0039376963731	km/s

Element	2:	0.0060423170483	km/s

Element	3:	-0.0006747125434	km/s

3.	 Scroll	down	and	under	Mass	depletion	from	MainTank	heading,	Delta	V
and	Mass	Change	tells	you	TCM	maneuver’s	magnitude	and	how	much	fuel
was	used	for	the	maneuver:

Delta	V:	0.0072436375569	km/s

Mass	change:	-6.3128738639690	kg

4.	 Click	OK	to	close	Command	Summary	window.

Just	to	make	sure	that	the	goals	of	first	Target	sequence	were	met	successfully,
let	us	access	command	summary	for	Prop	to	Mars	Periapsis	command	by
doing	the	following	steps:



1.	 In	the	Mission	tree,	right-click	Prop	to	Mars	Periapsis,	and	click	on
Command	Summary.

2.	 Under	Coordinate	System,	select	MarsInertial.
3.	 Under	Hyperbolic	Parameters	heading,	see	the	values	of	BdotT	and

BdotR.	Under	Keplerian	State,	see	the	value	for	INC.	You	can	see	that	the
desired	B-Plane	coordinates	were	achieved	which	result	in	a	90	degree
inclined	trajectory:

BdotT	=	-0.0000053320678	km

BdotR	=	-7000.0000019398	km

INC	=	90.000000039301	deg

Create	the	Second	Target	Sequence

Recall	that	we	still	need	to	create	second	Target	sequence	in	order	to	perform
Mars	Orbit	Insertion	maneuver	to	achieve	the	desired	capture	orbit.	In	the
Mission	tree,	we	will	create	the	second	Target	sequence	right	after	the	first
Target	sequence.

Now	let’s	create	the	commands	necessary	to	perform	the	second	Target
sequence.	Figure	8.20,	“Mission	Sequence	showing	first	and	second	Target
sequences”	illustrates	the	configuration	of	the	Mission	tree	after	you	have
completed	the	steps	in	this	section.	Notice	that	in	Figure	8.20,	“Mission
Sequence	showing	first	and	second	Target	sequences”,	the	second	Target
sequence	is	created	after	the	first	Target	sequence.	We’ll	discuss	the	second
Target	sequence	after	it	has	been	created.

Figure	8.20.	Mission	Sequence	showing	first	and	second	Target	sequences



To	create	the	second	Target	sequence:

1.	 Click	on	the	Mission	tab	to	show	the	Mission	tree.
2.	 In	the	Mission	tree,	right-click	on	Mission	Sequence	folder,	point	to

Append,	and	click	Target.	This	will	insert	two	separate	commands:
Target2	and	EndTarget2.

3.	 Right-click	Target2	and	click	Rename.
4.	 Type	Mars	Capture	and	click	OK.
5.	 Right-click	Mars	Capture,	point	to	Append,	and	click	Vary.	A	new

command	called	Vary4	will	be	created.
6.	 Right-click	Vary4	and	click	Rename.
7.	 In	the	Rename	box,	type	Vary	MOI.V	and	click	OK.
8.	 Complete	the	Target	sequence	by	appending	the	commands	in	Table	8.10,

“Additional	Second	Target	Sequence	Commands”.

Table	8.10.	Additional	Second	Target	Sequence	Commands

Command Name

Maneuver Apply	MOI

Propagate Prop	to	Mars	Apoapsis



Achieve Achieve	RMAG

Note

Let’s	discuss	what	the	second	Target	sequence	does.	We	know
that	a	maneuver	is	required	for	the	Mars	capture	orbit.	We	also
know	that	the	desired	radius	of	capture	orbit	at	apoapsis	must
be	12,000	km.	However,	we	don’t	know	the	size	(or	ΔV
magnitude)	of	the	MOI	maneuver	that	will	precisely	achieve
the	desired	orbital	conditions.	You	use	the	second	Target
sequence	to	solve	for	that	precise	maneuver	value.	You	must
tell	GMAT	what	controls	are	available	(in	this	case,	a	single
maneuver)	and	what	conditions	must	be	satisfied	(in	this	case,
radius	magnitude	value).	Once	again,	just	like	in	the	first
Target	sequence,	here	we	accomplish	this	by	using	the	Vary
and	Achieve	commands.	Using	the	Vary	command,	you	tell
GMAT	what	to	solve	for—in	this	case,	the	ΔV	value	for	MOI.
You	use	the	Achieve	command	to	tell	GMAT	what	conditions
the	solution	must	satisfy—in	this	case,	RMAG	value	of	12,000
km.

Create	the	Final	Propagate	Command

We	need	a	Propagate	command	after	the	second	Target	sequence	so	that	we	can
see	our	final	orbit.

1.	 In	the	Mission	tree,	right-click	End	Mars	Capture,	point	to	Insert	After,
and	click	Propagate.	A	new	Propagate6	command	will	appear.

2.	 Right-click	Propagate6	and	click	Rename.
3.	 Type	Prop	for	1	day	and	click	OK.
4.	 Double-click	Prop	for	1	day	to	edit	its	properties.
5.	 Under	Propagator,	replace	NearEarth	with	NearMars.
6.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.ElapsedDays.
7.	 Under	Condition,	replace	the	value	0.0	with	1.



8.	 Click	OK	to	save	these	changes

Figure	8.21.	Prop	for	1	day	Command	Configuration

Configure	the	second	Target	Sequence

Now	that	the	structure	is	created,	we	need	to	configure	various	parts	of	the
second	Target	sequence	to	do	what	we	want.

Configure	the	Mars	Capture	Command

1.	 Double-click	Mars	Capture	to	edit	its	properties.
2.	 In	the	ExitMode	list,	click	SaveAndContinue.	This	instructs	GMAT	to

save	the	final	solution	of	the	targeting	problem	after	you	run	it.
3.	 Click	OK	to	save	these	changes



Figure	8.22.	Mars	Capture	Command	Configuration

Configure	the	Vary	MOI.V	Command

1.	 Double-click	Vary	MOI.V	to	edit	its	properties.	Notice	that	the	variable	in
the	Variable	box	is	TCM.Element1.	We	want	MOI.Element1	which	is	the
velocity	component	of	MOI	in	the	local	VNB	coordinate	system.	So	let’s
change	that.

2.	 Next	to	Variable,	click	the	Edit	button.
3.	 Under	Object	List,	click	MOI.
4.	 In	the	Object	Properties	list,	double-click	Element1	to	move	it	to	the

Selected	Value(s)	list.	See	the	image	below	for	results.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 In	the	Initial	Value	box,	type	-1.0.
7.	 In	the	Perturbation	box,	type	0.00001.
8.	 In	the	Lower	box,	type	-10e300.
9.	 In	the	Upper	box,	type	10e300.
10.	 In	the	Max	Step	box,	type	0.1.
11.	 Click	OK	to	save	these	changes.

Figure	8.23.	Vary	MOI	Parameter	Selection



Figure	8.24.	Vary	MOI	Command	Configuration



Configure	the	Apply	MOI	Command

1.	 Double-click	Apply	MOI	to	edit	its	properties.
2.	 In	the	Burn	list,	click	MOI.
3.	 Click	OK	to	save	these	changes.

Figure	8.25.	Apply	MOI	Command	Configuration

Configure	the	Prop	to	Mars	Apoapsis	Command

1.	 Double-click	Prop	to	Mars	Apoapsis	to	edit	its	properties.
2.	 Under	Propagator,	replace	NearEarth	with	NearMars.
3.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.Mars.Apoapsis.
4.	 Click	OK	to	save	these	changes.

Figure	8.26.	Prop	to	Mars	Apoapsis	Command	Configuration



Configure	the	Achieve	RMAG	Command

1.	 Double-click	Achieve	RMAG	to	edit	its	properties.
2.	 Next	to	Goal,	click	the	Edit	button.
3.	 In	the	Object	Properties	list,	click	RMAG.
4.	 Under	Central	Body,	select	Mars	and	double-click	on	RMAG.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 In	the	Value	box,	type	12000.
7.	 Click	OK	to	save	these	changes.

Figure	8.27.	Achieve	RMAG	Command	Configuration





Run	the	Mission	with	first	and	second	Target
Sequences
Before	running	the	mission,	click	Save	( ).	This	will	save	the	additional	changes
that	we	implemented	in	the	Mission	tree.	Now	click	Run	( ).	The	first	Target
sequence	will	converge	in	one-iteration.	This	is	because	earlier,	we	stored	the
solution	as	the	initial	conditions.	The	second	Target	sequence	may	converge
after	10	to11	iterations.

As	the	mission	runs,	you	will	see	GMAT	solve	the	second	Target	sequence’s
targeting	problem.	Each	iteration	and	perturbation	is	shown	in	MarsView
windows	in	light	blue,	and	the	final	solution	is	shown	in	red.	After	the	mission
completes,	the	MarsView	3D	view	should	appear	as	in	the	image	shown	below.
EarthView	and	SolarSystemView	3D	views	are	same	as	before.	You	may	want
to	run	the	mission	several	times	to	see	the	targeting	in	progress.

Figure	8.28.	3D	view	of	Mars	Capture	orbit	after	MOI	maneuver
(MarsView)



If	you	were	to	continue	developing	this	mission,	you	can	store	the	final	solution
of	the	second	Target	sequence	as	the	initial	condition	of	MOI	resource.	This	is
so	that	when	you	make	small	changes,	the	subsequent	runs	will	take	less	time.



To	do	this,	follow	these	steps:

1.	 In	the	Mission	tree,	double-click	Mars	Capture	to	edit	its	properties.
2.	 Click	Apply	Corrections.
3.	 Now	re-run	the	mission.	If	you	inspect	the	results	in	the	message	window,

you	will	see	that	now	the	second	Target	sequence	also	converges	in	one
iteration.	This	is	because	you	stored	the	solution	as	the	initial	condition.
Now	whenever	you	re-run	the	mission,	both	first	and	second	Target
sequences	will	converge	in	just	one	iteration.

4.	 In	the	Mission	tree,	double-click	Vary	MOI.V,	you	will	notice	that	the
values	in	Initial	Value	box	have	been	updated	to	the	final	solution	of	the
second	Target	sequence.

If	you	want	to	know	MOI	maneuver’s	delta-V	vector	values	and	how	much	fuel
was	expended	during	the	maneuver,	do	the	following	steps:

1.	 In	the	Mission	tree,	right-click	Apply	MOI,	and	click	on	Command
Summary.

2.	 Scroll	down	and	under	Maneuver	Summary	heading,	values	for	delta-V
vector	are:

Delta	V	Vector:

Element	1:	-1.6034665169868	km/s

Element	2:	0.0000000000000	km/s

Element	3:	0.0000000000000	km/s

3.	 Scroll	down	and	under	Mass	depletion	from	MainTank	heading,	Delta	V
and	Mass	Change	tells	you	MOI	maneuver’s	magnitude	and	how	much	fuel
was	used	for	the	maneuver:

Delta	V:	1.6034665169868	km/s

Mass	change:	-1076.0639629424	kg

Just	to	make	sure	that	the	goal	of	second	Target	sequence	was	met	successfully,
let	us	access	command	summary	for	Achieve	RMAG	command	by	doing	the
following	steps:

1.	 In	the	Mission	tree,	right-click	Achieve	RMAG,	and	click	on	Command



Summary.
2.	 Under	Coordinate	System,	select	MarsInertial.
3.	 Under	Keplerian	State	and	and	Spherical	State	headings,	see	the

values	of	TA	and	RMAG.	You	can	see	that	the	desired	radius	of	the	capture
orbit	at	apoapsis	was	achieved	successfully:

TA	=	180.00000241484	deg

RMAG	=	12000.019889021	km



Chapter	9.	Optimal	Lunar	Flyby	using	Multiple
Shooting

Audience Advanced

Length 90	minutes

Prerequisites
Complete	Simulating	an	Orbit,	Simple	Orbit	Transfer,	Mars	B-
Plane	Targeting	tutorial	and	take	GMAT	Fundamentals	training
course	or	watch	videos

Script	File
Tut_MultipleShootingTutorial_Step1.script,

Tut_MultipleShootingTutorial_Step2.script,...

Tut_MultipleShootingTutorial_Step5.script



Objective	and	Overview

Note

For	highly	elliptic	earth	orbits	(HEO),	it	is	often	cheaper	to	use
the	Moon’s	gravity	to	raise	periapsis	or	to	perform	plane
changes,	than	it	is	to	use	the	spacecraft’s	propulsion	resources.
However,	designing	lunar	flyby’s	to	achieve	multiple	specific
mission	constraints	is	non-trivial	and	requires	modern
optimization	techniques	to	minimize	fuel	usage	while
simultaneously	satisfying	trajectory	constraints.	In	this	tutorial,
you	will	learn	how	to	design	flyby	trajectories	by	writing	a
GMAT	script	to	perform	multiple	shooting	optimization.	As	the
analyst,	your	goal	is	to	design	a	lunar	flyby	that	provides	a
mission	orbit	periapsis	of	TBD	km	and	changes	the	inclination
of	the	mission	orbit	to	TBD	degrees.	(Note:	There	are	other
mission	constraints	that	will	be	discussed	in	more	detail	below.)

To	efficiently	solve	the	problem,	we	will	employ	the	Multiple
Shooting	Method	to	break	down	the	sensitive	boundary	value
problem	into	smaller,	less	sensitive	problems.	We	will	employ
three	trajectory	segments.	The	first	segment	will	begin	at
Transfer	Orbit	Insertion	(TOI)	and	will	propagate	forward;	the
second	segment	is	centered	at	lunar	periapsis	and	propagates
both	forward	and	backwards.	The	third	segment	is	centered	on
Mission	Orbit	Insertion	(MOI)	and	propagates	forwards	and
backwards.	See	figures	1	and	2	that	illustrate	the	final	orbit
solution	and	the	“Control	Points”	and	“Patch	Points”	used	to
solve	the	problem.

To	begin	this	tutorial	we	start	with	a	several	views	of	the	solution	to	provide	a
physical	understanding	of	the	problem.	In	Fig.	1,	an	illustration	of	a	lunar	flyby
is	shown	with	the	trajectory	displayed	in	red	and	the	Moon’s	orbit	displayed	in
yellow.	The	Earth	is	at	the	center	of	the	frame.	We	require	that	the	following
constraints	are	satisfied	at	TOI:



1.	 The	spacecraft	is	at	orbit	perigee,
2.	 The	spacecraft	is	at	an	altitude	of	285	km.
3.	 The	inclination	of	the	transfer	orbit	is	28.5	degrees.

At	lunar	flyby,	we	only	require	that	the	flyby	altitude	is	greater	than	100	km.
This	constraint	is	satisfied	implicitly	so	we	will	not	explicitly	script	this
constraint.	An	insertion	maneuver	is	performed	at	earth	perigee	after	the	lunar
fly	to	insert	into	the	mission	orbit.	The	following	constraints	must	be	satisfied
after	MOI.

1.	 The	mission	orbit	perigee	is	15	Earth	radii.
2.	 The	mission	orbit	apogee	is	60	Earth	radii.
3.	 The	mission	orbit	inclination	is	10	degrees.

Note:	(Phasing	with	the	moon	is	important	for	these	orbits	but	design
considerations	for	lunar	phasing	are	beyond	the	scope	of	this	tutorial)

Figure	9.1.	View	of	Lunar	Flyby	from	Normal	to	Earth	Equator



Figure	9.2.	View	of	Lunar	Flyby	Geometry



Figure	3	illustrates	the	mission	timeline	and	how	control	points	and	patch	points
are	defined.	Control	points	are	drawn	using	a	solid	blue	circle	and	are	defined	as
locations	where	the	state	of	the	spacecraft	is	treated	as	an	optimization	variable.
Patch	points	are	drawn	with	an	empty	blue	circle	and	are	defined	as	locations
where	position	and/or	velocity	continuity	is	enforced.	For	this	tutorial,	we	place
control	points	at	TOI,	the	lunar	flyby	and	MOI.	At	each	patch	point,	the	six
Cartesian	state	elements,	and	the	epoch	are	varied	for	a	total	of	18	optimization
variables.	At	the	MOI	patch	point,	there	is	an	additional	optimization	variable
for	the	delta	V	to

Figure	9.3.	Definition	of	Control	and	Patch	Points



Notice	that	while	there	are	only	three	patch	points,	we	have	5	segments	(which
will	result	in	5	spacecraft).	The	state	at	the	lunar	flyby,	which	is	defined	as	a
control	point,	is	propagated	backwards	to	a	patch	point	and	forwards	to	a	patch
point.	The	same	occurs	for	the	MOI	control	point.	To	design	this	trajectory,	you
will	need	to	create	the	following	GMAT	resources.

1.	 Create	a	Moon-centered	coordinate	system.
2.	 Create	5	spacecraft	required	for	modeling	segments.
3.	 Create	an	Earth-centered	and	a	Moon-centered	propagator.
4.	 Create	an	impulsive	maneuver.
5.	 Create	many	user	variables	for	use	in	the	script.
6.	 Create	A	VF13ad	optimizer.
7.	 Create	plots	for	tracking	the	optimization	process.

After	creating	the	resources	using	script	snippets	you	will	construct	the
optimization	sequence	using	GMAT	script.	Pseudo-code	for	the	optimization
sequence	is	shown	below.

Define	optimization	initial	guesses

Initialize	variables

Optimize

						Loop	initializations

						Vary	control	point	epochs

						Set	epochs	on	spacecraft

						Vary	control	point	state	values

						Configure/initialize	spacecraft	

						Apply	constraints	on	initial	control	points	(i.e	before	propagation)

						Propagate	spacecraft

						Apply	patch	point	constraints

						Apply	constraints	on	mission	orbit

						Apply	cost	function



EndOptimize

After	constructing	the	basic	optimization	sequence	we	will	perform	the
following	steps:

1.	 Run	the	sequence	and	analyze	the	initial	guess.
2.	 Run	the	optimizer	satisfying	only	the	patch	point	constraints.
3.	 Turn	on	the	mission	orbit	constraints	and	find	a	feasible	solution.
4.	 Use	the	feasible	solution	as	the	initial	guess	and	find	an	optimal	solution.
5.	 Apply	an	altitude	constraint	at	lunar	orbit	periapsis



Configure	Coordinate	Systems,	Spacecraft,
Optimizer,	Propagators,	Maneuvers,	Variables,
and	Graphics
For	this	tutorial,	you’ll	need	GMAT	open,	with	a	blank	script	editor	open.	To
open	a	blank	script	editor,	click	the	New	Script	button	in	the	toolbar.

Create	a	Moon-centered	Coordinate	System

You	will	need	a	Moon-centered	CoordinateSystem	for	the	lunar	flyby	control
point	so	we	begin	by	creating	an	inertial	system	centered	at	the	moon.	Use	the
MJ2000Eq	axes	for	this	system.

%----------------------------------------------------

%	Configure	coordinate	systems

%----------------------------------------------------

Create	CoordinateSystem	MoonMJ2000Eq

MoonMJ2000Eq.Origin	=	Luna

MoonMJ2000Eq.Axes			=	MJ2000Eq

Create	the	Spacecraft

You	will	need	5	Spacecraft	for	this	mission	design.	The	epoch	and	state
information	will	be	set	in	the	mission	sequence	and	here	we	only	need	to
configure	coordinate	systems	for	the	Spacecraft.	The	Spacecraft	named	satTOI
models	the	transfer	orbit	through	the	first	patch	point.	Use	the	EarthMJ200Eq
CoordinateSystem	for	satTOI.	satFlyBy_Forward	and	satFlyBy_Backward
model	the	trajectory	from	the	flyby	backwards	to	patch	point	1	and	forward	to
patch	point	2	respectively.	Use	the	MoonMJ2000Eq	CoordinateSystem	for
satFlyBy_Forward	and	satFlyBy_Backward.	Similarly,	satMOI_Forward
and	satMOI_Backward	model	the	trajectory	on	either	side	of	the	MOI
maneuver.	Use	the	MoonMJ2000Eq	CoordinateSystem	for	satMOI_Forward
and	satMOI_Backward.

%----------------------------------------------------

%	Configure	spacecraft

%----------------------------------------------------



%		The	TOI	control	point

Create	Spacecraft	satTOI

satTOI.DateFormat																		=	TAIModJulian

satTOI.CoordinateSystem												=	EarthMJ2000Eq

%		Flyby	control	point

Create	Spacecraft	satFlyBy_Forward

satFlyBy_Forward.DateFormat								=	TAIModJulian

satFlyBy_Forward.CoordinateSystem		=	MoonMJ2000Eq

%		Flyby	control	point

Create	Spacecraft	satFlyBy_Backward

satFlyBy_Backward.DateFormat							=	TAIModJulian

satFlyBy_Backward.CoordinateSystem	=	MoonMJ2000Eq

%	MOI	control	point

Create	Spacecraft	satMOI_Backward

satMOI_Backward.DateFormat									=	TAIModJulian

satMOI_Backward.CoordinateSystem			=	EarthMJ2000Eq

%	MOI	control	point

Create	Spacecraft	satMOI_Forward

satMOI_Forward.DateFormat										=	TAIModJulian

satMOI_Forward.CoordinateSystem				=	EarthMJ2000Eq

Create	the	Propagators

Modeling	the	motion	of	the	spacecraft	when	near	the	earth	and	near	the	moon
requires	two	propagators;	one	Earth-centered,	and	one	Moon-centered.	The
script	below	configures	the	ForceModel	named	NearEarthForceModel	to	use
JGM-2	8x8	harmonic	gravity	model,	with	point	mass	perturbations	from	the	Sun
and	Moon,	and	the	SRP	perturbation.	The	ForceModel	named
NearMoonForceModel	is	similar	but	uses	point	mass	gravity	for	all	bodies.
Note	that	the	integrators	are	configured	for	performance	and	not	for	accuracy	to
improve	run	times	for	the	tutorial.	There	are	times	when	integrator	accuracy	can
cause	issues	with	optimizer	performance	due	to	noise	in	the	numerical	solutions.

%----------------------------------------------------

%	Configure	propagators	and	force	models

%----------------------------------------------------

Create	ForceModel	NearEarthForceModel

NearEarthForceModel.CentralBody															=	Earth



NearEarthForceModel.PrimaryBodies													=	{Earth}

NearEarthForceModel.PointMasses															=	{Luna,	Sun}

NearEarthForceModel.SRP																							=	On

NearEarthForceModel.GravityField.Earth.Degree	=	8

NearEarthForceModel.GravityField.Earth.Order		=	8

Create	ForceModel	NearMoonForceModel

NearMoonForceModel.CentralBody																=	Luna

NearMoonForceModel.PointMasses																=	{Luna,	Earth,	Sun}

NearMoonForceModel.Drag																							=	None

NearMoonForceModel.SRP																								=	On

Create	Propagator	NearEarthProp

NearEarthProp.FM	=	NearEarthForceModel

NearEarthProp.Type																					=	PrinceDormand78

NearEarthProp.InitialStepSize										=	60

NearEarthProp.Accuracy																	=	1e-11

NearEarthProp.MinStep																		=	0.0

NearEarthProp.MaxStep																		=	86400

Create	Propagator	NearMoonProp

NearMoonProp.FM																								=	NearMoonForceModel

NearMoonProp.Type																						=	PrinceDormand78

NearMoonProp.InitialStepSize											=	60

NearMoonProp.Accuracy																		=	1e-11

NearMoonProp.MinStep																			=	0

NearMoonProp.MaxStep																			=	86400

Create	the	Maneuvers

We	will	require	one	ImpulsiveBurn	to	insert	the	spacecraft	into	the	mission
orbit.	Define	the	maneuver	as	MOI	and	configure	the	maneuver	to	be	applied	in
the	VNB	(Earth-referenced)	Axes.

%----------------------------------------------------

%	Configure	maneuvers

%----------------------------------------------------

Create	ImpulsiveBurn	MOI

MOI.CoordinateSystem			=	Local

MOI.Origin													=	Earth

MOI.Axes															=	VNB

Create	the	User	Variables



IThe	optimization	sequence	requires	many	user	variables	that	will	be	discussed
in	detail	later	in	the	tutorial	when	we	define	those	variables.	For	now,	we	simply
create	the	variables	(which	initializes	them	to	zero).	The	naming	convention
used	here	is	that	variables	used	to	define	constraint	values	begin	with	“con”.	For
example,	the	variable	used	to	define	the	constraint	on	TOI	inclination	is	called
conTOIInclination.	Variables	beginning	with	“error”	are	used	to	compute
constraint	variances.	For	example,	the	variable	used	to	define	the	error	in	MOI
inclination	is	called	errorTOIInclination.

%----------------------------------------------------

%	Create	user	data:	variables,	arrays,	strings

%----------------------------------------------------

%		Variables	for	defining	constraint	values

Create	Variable	conTOIPeriapsis	conMOIPeriapsis	conTOIInclination

Create	Variable	conLunarPeriapsis	conMOIApoapsis	conMOIInclination

Create	Variable	launchRdotV	finalPeriapsisValue

%		Variables	for	computing	constraint	violations

Create	Variable	errorPos1	errorVel1	errorPos2	errorVel2	

Create	Variable	errorMOIRadApo	errorMOIRadPer	errorMOIInclination	

%		Variables	for	managing	time	calculations

Create	Variable	patchTwoElapsedDays	patchOneEpoch	patchTwoEpoch	refEpoch

Create	Variable	toiEpoch	flybyEpoch	moiEpoch	patchOneElapsedDays

Create	Variable	deltaTimeFlyBy

%		Constants	and	miscellaneous	variables

Create	Variable	earthRadius	earthMu	launchEnergy	launchVehicleDeltaV

Create	Variable	toiDeltaV	launchCircularVelocity	loopIdx	Cost

Create	the	Optimizer

The	script	below	creates	a	VF13ad	optimizer	provided	in	the	Harwell
Subroutine	Library.	VF13ad	is	an	Sequential	Quadratic	Programming	(SQP)
optimizer	that	uses	a	line	search	method	to	solve	the	Non-linear	Programming
Problem	(NLP).	Here	we	configure	the	optimizer	to	use	forward	differencing	to
compute	the	derivatives,	define	the	maximum	iterations	to	200,	and	define
convergence	tolerances.

%----------------------------------------------------

%	Configure	solvers

%----------------------------------------------------



Create	VF13ad	NLPOpt

NLPOpt.ShowProgress										=	true

NLPOpt.ReportStyle											=	Normal

NLPOpt.ReportFile												=	'VF13adVF13ad1.data'

NLPOpt.MaximumIterations					=	200

NLPOpt.Tolerance													=	1e-004

NLPOpt.UseCentralDifferences	=	false

NLPOpt.FeasibilityTolerance		=	0.1

Create	the	3-D	Graphics

You	will	need	an	OrbitView	3-D	graphics	window	to	visualize	the	trajectory
and	especially	the	initial	guess.	Below	we	configure	an	orbit	view	to	view	the
entire	trajectory	in	the	EarthMJ2000Eq	coordinate	system.	Note	that	we	must
add	all	five	Spacecraft	to	the	OrbitView.	Updating	an	OrbitView	during
optimization	can	dramatically	slow	down	the	optimization	process	and	they	are
best	use	to	check	initial	configuration	and	then	us	XY	plots	to	track	numerical
progress.	Later	in	the	tutorial,	we	will	toggle	the	ShowPlot	field	to	false	once	we
have	verified	the	initial	configuration	is	correct.

%----------------------------------------------------

%	Configure	plots,	reports,	etc.

%----------------------------------------------------

Create	OrbitView	EarthView

EarthView.ShowPlot															=	true

EarthView.SolverIterations							=	All

EarthView.UpperLeft														=	...

				[	0.4960127591706539	0.00992063492063492	];

EarthView.Size																			=	...

				[	0.4800637958532695	0.5218253968253969	];

EarthView.RelativeZOrder									=	501

EarthView.Add																				=	...

{satTOI,	satFlyBy_Forward,	satFlyBy_Backward,	satMOI_Backward,	...

	Earth,	Luna,	satMOI_Forward}

EarthView.CoordinateSystem							=	EarthMJ2000Eq

EarthView.DrawObject													=	[	true	true	true	true	true]

EarthView.OrbitColor													=	...

[	255	32768	1743054	16776960	32768	12632256	14268074	]

EarthView.TargetColor												=	...

[	65280	124	4227327	255	12345	9843	16711680	];

EarthView.DataCollectFrequency			=	1

EarthView.UpdatePlotFrequency				=	50



EarthView.NumPointsToRedraw						=	300

EarthView.ViewScaleFactor								=	35

EarthView.ViewUpAxis													=	X

EarthView.UseInitialView									=	On

Create	XPPlots/Reports

Below	we	create	several	XYPlots	and	a	ReportFile.	We	will	use	XYPlots	to
monitor	the	progress	of	the	optimizer	in	satisfying	constraints.	PositionError1
plots	the	position	error	at	the	first	patch	point...	VelocityError2	plots	the
velocity	error	at	the	second	patch	point,	and	so	on.	OrbitDimErrors	plots	the
errors	in	the	periapsis	and	apoapsis	radii	for	the	mission	orbit.	When
optimization	is	proceeding	as	expected,	these	plots	should	show	errors	driven	to
zero.

Create	XYPlot	PositionError

PositionError.SolverIterations	=	All

PositionError.UpperLeft								=	[	0.02318840579710145	0.4358208955223881	];

PositionError.Size													=	[	0.4594202898550724	0.5283582089552239	];

PositionError.RelativeZOrder			=	378

PositionError.XVariable								=	loopIdx

PositionError.YVariables							=	{errorPos1,	errorPos2}

PositionError.ShowGrid									=	true

PositionError.ShowPlot									=	true

Create	XYPlot	VelocityError

VelocityError.SolverIterations	=	All

VelocityError.UpperLeft								=	[	0.02463768115942029	0.01194029850746269	];

VelocityError.Size													=	[	0.4565217391304348	0.4208955223880597	];

VelocityError.RelativeZOrder			=	410

VelocityError.XVariable								=	loopIdx

VelocityError.YVariables							=	{errorVel1,	errorVel2}

VelocityError.ShowGrid									=	true

VelocityError.ShowPlot									=	true

Create	XYPlot	OrbitDimErrors

OrbitDimErrors.SolverIterations	=	All

OrbitDimErrors.UpperLeft						=	[	0.4960127591706539	0.5337301587301587	];

OrbitDimErrors.Size											=	[	0.481658692185008	0.4246031746031746	];

OrbitDimErrors.RelativeZOrder	=	347

OrbitDimErrors.XVariable						=	loopIdx

OrbitDimErrors.YVariables					=	{errorMOIRadApo,	errorMOIRadPer}

OrbitDimErrors.ShowGrid							=	true

OrbitDimErrors.ShowPlot							=	true



Create	XYPlot	IncError

IncError.SolverIterations	=	All

IncError.UpperLeft								=	[	0.4953586497890296	0.01306240928882438	];

IncError.Size													=	[	0.479324894514768	0.5079825834542816	];

IncError.RelativeZOrder			=	382

IncError.YVariables							=	{errorMOIInclination}

IncError.XVariable								=	loopIdx

IncError.ShowGrid									=	true

IncError.ShowPlot									=	true

Create	a	ReportFile	to	allow	reporting	useful	information	to	a	text	file	for
review	after	the	optimization	process	is	complete.

Create	ReportFile	debugData

debugData.SolverIterations	=	Current

debugData.Precision								=	16

debugData.WriteHeaders					=	Off

debugData.LeftJustify						=	On

debugData.ZeroFill									=	Off

debugData.ColumnWidth						=	20

debugData.WriteReport						=	false



Configure	the	Mission	Sequence

Overview	of	the	Mission	Sequence

Now	that	the	resources	are	created	and	configured,	we	will	construct	the
optimization	sequence.	Pseudo-script	for	the	optimization	sequence	is	shown
below.	We	will	start	by	defining	initial	guesses	for	the	control	point	optimization
variables.	Next,	selected	variables	are	initialized.	Take	some	time	and	study	the
structure	of	the	optimization	loop	before	moving	on	to	the	next	step.

Define	optimization	initial	guesses

Initialize	variables

Optimize

						Loop	initializations

						Vary	control	point	epochs

						Set	epochs	on	spacecraft

						Vary	control	point	state	values

						Set	state	values	on	spacecraft	

						Apply	constraints	on	control	points	(i.e	before	propagation)

						Propagate	spacecraft

						Apply	patch	point	constraints	(i.e.	after	propagation)

						Apply	constraints	on	mission	orbit

						Apply	cost	function

EndOptimize

Define	Initial	Guesses

Below	we	define	initial	guesses	for	the	optimization	variables.	Initial	guesses	are
often	difficult	to	generate	and	to	ensure	you	can	take	this	tutorial	we	have
provided	a	reasonable	initial	guess	for	this	problem.	You	can	use	GMAT	to
produce	initial	guesses	and	the	sample	script	named
Ex_GivenEpochGoToTheMoon	distributed	with	GMAT	can	be	used	for	that
purpose	for	this	tutorial.

The	time	variables	launchEpoch,	flybyEpoch	and	moiEpoch	are	the	TAI
modified	Julian	epochs	of	the	launch,	flyby,	and	MOI.	It	is	not	obvious	yet	that
these	are	TAI	modified	Julian	epochs,	but	later	we	use	statements	like	this	to	set
the	epoch:	satTOI.Epoch.TAIModJulian	=	launchEpoch.	Recall	that	we
previously	set	up	the	spacecraft	to	used	coordinate	systems	appropriate	to	the
problem.	Setting	satTOI.X	sets	the	quantity	in	EarthMJ2000Eq	and



satFlyBy_Forward.X	sets	the	quantity	in	MoonMJ2000Eq	because	of	the
configuration	of	the	spacecraft.

BeginMissionSequence

%		Define	initial	guesses	for	optimization	variables

BeginScript	'Initial	Guess	Values'

			%		Robust	intial	guess	but	not	feasible		

			toiEpoch	=	27698.1612435

			flybyEpoch	=	27703.7658714

			moiEpoch	=	27723.305398

			satTOI.X	=	-6659.70273964

			satTOI.Y	=	-229.327053112

			satTOI.Z	=	-168.396030559

			satTOI.VX	=	0.26826479315

			satTOI.VY	=	-9.54041067213

			satTOI.VZ	=	5.17141415746

			satFlyBy_Forward.X	=	869.478955662

			satFlyBy_Forward.Y	=	-6287.76679557

			satFlyBy_Forward.Z	=	-3598.47087228

			satFlyBy_Forward.VX	=	1.14619150302

			satFlyBy_Forward.VY	=	-0.73648611256

			satFlyBy_Forward.VZ	=	-0.624051812914

			satMOI_Backward.X	=	-53544.9703742

			satMOI_Backward.Y	=	-68231.6310266

			satMOI_Backward.Z	=	-1272.76362793

			satMOI_Backward.VX	=	2.051823425

			satMOI_Backward.VY	=	-1.91406286218

			satMOI_Backward.VZ	=	-0.280408526046

			MOI.Element1	=	-0.0687322937282

		

EndScript

Initialize	Variables

The	script	below	is	used	to	define	some	constants	and	to	define	the	values	for
various	constraints	applied	to	the	trajectory.	Pay	particular	attention	to	the
constraint	values	and	time	values.	For	example,	the	variable	conTOIPeriapsis
defines	the	periapsis	radius	at	launch	constraint	to	be	at	about	285	km	(geodetics
will	cause	altitude	to	vary	slightly).	The	variable	conMOIApoapsis	defines	the
mission	orbit	apoapsis	to	be	60	earth	radii.	The	variables
patchOneElapsedDays,	patchTwoElapsedDays,	and	refEpoch	are	particularly
important	as	they	define	the	epochs	of	the	patch	points	later	in	the	script	using



lines	like	this	patchOneEpoch	=	refEpoch	+
patchOneElapsedDayspatchOneEpoch.	The	preceding	line	defines	the	epoch
of	the	first	patch	point	to	be	one	day	after	refEpoch	(refEpoch	is	set	to
launchEpoch).	Similarly,	the	epoch	of	the	second	patch	point	is	defined	as	13
days	after	refEpoch.	Note,	the	patch	point	epochs	can	be	treated	as	optimization
variables	but	that	was	not	done	to	reduce	complexity	of	the	tutorial.

%		Define	constants	and	configuration	settings

BeginScript	'Constants	and	Init'

			

			%		Some	constants

			earthRadius										=	6378.1363

						

			%		Define	constraint	values	and	other	constants	

			conTOIPeriapsis					=	6378	+	285			%	constraint	on	launch	periapsis

			conTOIInclination			=	28.5									%	constraint	launch	inclination

			conLunarPeriapsis			=	8000									%	constraint	on	flyby	altitude

			conMOIApoapsis						=	60*earthRadius		%	constraint	on	mission	apoapsis

			conMOIInclination			=	10														%	constraint	on	mission	inc.

			conMOIPeriapsis					=	15*earthRadius		%	constraint	on	mission	periapsis

			patchOneElapsedDays	=	1															%	define	epoch	of	patch	1

			patchTwoElapsedDays	=	13														%	define	epoch	of	patch	2

			refEpoch												=	toiEpoch					%	ref.	epoch	for	time	quantities

			

EndScript

%		The	optimization	loop

Optimize	'Optimize	Flyby'	NLPOpt	...

			{SolveMode	=	Solve,	ExitMode	=	DiscardAndContinue}

			

			%			Loop	initializations

			loopIdx	=	loopIdx	+	1

			

EndOptimize

Caution

In	the	above	script	snippet,	we	have	included	the	EndOptimize
command	so	that	your	script	will	continue	to	build	while	we
construct	the	optimization	sequence.	You	must	paste
subsequence	script	snippets	inside	of	the	optimization	loop.



Vary	and	Set	Spacecraft	Epochs

Now	we	will	write	the	commands	that	vary	the	control	point	epochs	and	apply
those	epochs	to	the	spacecraft.	The	first	three	script	lines	below	define
launchEpoch,	flybyEpoch,	and	moiEpoch	to	be	optimization	variables.	It	is
important	to	note	that	when	a	Vary	command	is	written	like	this

Vary	NLPOpt(launchEpoch	=	launchEpoch,	.	.	.

that	you	are	telling	the	optimizer	to	vary	launchEpoch	(the	RHS	of	the	equal
sign),	and	to	use	as	the	initial	guess	the	value	contained	in	launchEpoch	when
the	command	is	first	executed.	This	will	allow	us	to	easily	change	initial	guess
values	and	perform	“Apply	Corrections”	via	the	script	interface	which	will	be
shown	later.	Continuing	with	the	script	explanation,	the	last	five	lines	below	set
the	epochs	of	the	spacecraft	according	to	the	optimization	variables	and	set	up
the	patch	point	epochs.

			%		Vary	the	epochs	

			Vary	NLPOpt(toiEpoch	=	toiEpoch,	{Perturbation	=	0.0001,	MaxStep	=	0.5})

			Vary	NLPOpt(flybyEpoch	=	flybyEpoch,{Perturbation=0.0001,MaxStep=0.5})

			Vary	NLPOpt(moiEpoch	=	moiEpoch,	{Perturbation	=	0.0001,MaxStep=0.5})

			%		Configure	epochs	and	spacecraft

			satTOI.Epoch.TAIModJulian											=	toiEpoch

			satMOI_Backward.Epoch.TAIModJulian		=	moiEpoch

			satFlyBy_Forward.Epoch.TAIModJulian	=	flybyEpoch

			patchOneEpoch																							=	refEpoch	+	patchOneElapsedDays

			patchTwoEpoch																							=	refEpoch	+	patchTwoElapsedDays

Vary	Control	Point	States

The	script	below	defines	the	control	point	optimization	variables	and	defines	the
initial	guess	values	for	each	optimization	variable.	For	example,	the	following
line

Vary	NLPOpt(satTOI.X	=	satTOI.X,	{Perturbation	=	0.00001,	MaxStep	=

100})

tells	GMAT	to	vary	the	X	Cartesian	value	of	satTOI	using	as	the	initial	guess
the	value	of	satTOI.X	at	initial	command	execution.	The	Perturbation	used	to
compute	derivatives	is	0.00001	and	the	optimizer	will	not	take	steps	larger	than



100	for	this	variable.	Note:	units	of	settings	like	Perturbation	are	the	same	as
the	unit	for	the	optimization	variable.

Notice	the	lines	at	the	bottom	of	this	script	snippet	that	look	like	this:

satFlyBy_Backward	=	satFlyBy_Forward

This	line	assigns	an	entire	Spacecraft	to	another	Spacecraft.	Because	we	are
varying	one	control	point	in	the	middle	of	a	segment,	this	assignment	allows	us
to	conveniently	set	the	second	Spacecraft	without	independently	varying	its
state	properties.

			%		Vary	the	states	and	delta	V

			Vary	NLPOpt(satTOI.X												=	...

			satTOI.X,	{Perturbation	=	0.00001,	MaxStep	=	100})

			Vary	NLPOpt(satTOI.Y												=	...

			satTOI.Y,	{Perturbation	=	0.000001,	MaxStep	=	100})

			Vary	NLPOpt(satTOI.Z												=	...

			satTOI.Z,	{Perturbation	=	0.00001,	MaxStep	=	100})

			Vary	NLPOpt(satTOI.VX											=	...

			satTOI.VX,	{Perturbation	=	0.00001,	MaxStep	=	0.05})

			Vary	NLPOpt(satTOI.VY											=	...

			satTOI.VY,	{Perturbation	=	0.000001,	MaxStep	=	0.05})

			Vary	NLPOpt(satTOI.VZ											=	...

			satTOI.VZ,	{Perturbation	=	0.000001,	MaxStep	=	0.05})

			Vary	NLPOpt(satFlyBy_Forward.X		=	...

			satFlyBy_Forward.MoonMJ2000Eq.X,	{Perturbation	=	0.00001,	MaxStep	=	100})

			Vary	NLPOpt(satFlyBy_Forward.Y		=	...

			satFlyBy_Forward.MoonMJ2000Eq.Y,	{Perturbation	=	0.00001,	MaxStep	=	100})

			Vary	NLPOpt(satFlyBy_Forward.Z		=	...

			satFlyBy_Forward.MoonMJ2000Eq.Z,	{Perturbation	=	0.00001,	MaxStep	=	100})

			Vary	NLPOpt(satFlyBy_Forward.VX	=	...

			satFlyBy_Forward.MoonMJ2000Eq.VX,	{Perturbation	=	0.00001,	MaxStep	=	0.1})

			Vary	NLPOpt(satFlyBy_Forward.VY	=	...

			satFlyBy_Forward.MoonMJ2000Eq.VY,	{Perturbation	=	0.00001,	MaxStep	=	0.1})

			Vary	NLPOpt(satFlyBy_Forward.VZ	=	...

			satFlyBy_Forward.MoonMJ2000Eq.VZ,	{Perturbation	=	0.00001,	MaxStep	=	0.1})

			Vary	NLPOpt(satMOI_Backward.X			=	...

			satMOI_Backward.X,	{Perturbation	=	0.000001,	MaxStep	=	40000})

			Vary	NLPOpt(satMOI_Backward.Y			=	...

			satMOI_Backward.Y,	{Perturbation	=	0.000001,	MaxStep	=	40000})

			Vary	NLPOpt(satMOI_Backward.Z			=	...

			satMOI_Backward.Z,	{Perturbation	=	0.000001,	MaxStep	=	40000})

			Vary	NLPOpt(satMOI_Backward.VX		=	...

			satMOI_Backward.VX,	{Perturbation	=	0.00001,	MaxStep	=	0.1})



			Vary	NLPOpt(satMOI_Backward.VY		=	...

			satMOI_Backward.VY,	{Perturbation	=	0.00001,	MaxStep	=	0.1})

			Vary	NLPOpt(satMOI_Backward.VZ		=	...

			satMOI_Backward.VZ,	{Perturbation	=	0.00001,	MaxStep	=	0.1})

			Vary	NLPOpt(MOI.Element1								=	...

			MOI.Element1,	{Perturbation	=	0.0001,	MaxStep	=	0.005})

			

			%		Initialize	spacecraft	and	do	some	reporting

			satFlyBy_Backward	=	satFlyBy_Forward

			satMOI_Forward				=	satMOI_Backward

			deltaTimeFlyBy				=	flybyEpoch	-	toiEpoch

Apply	Constraints	at	Control	Points

Now	that	the	control	points	have	been	set,	we	can	apply	constraints	that	occur	at
the	control	points	(i.e.	before	propagation	to	the	patch	point).	Notice	below	that
the	NonlinearContraint	commands	are	commented	out.	We	will	uncomment
those	constraints	later.	The	commands	below,	when	uncommented,	will	apply
constraints	on	the	launch	inclination,	the	launch	periapsis	radius,	the	mission
orbit	periapsis,	and	the	last	constraint	ensures	that	TOI	occurs	at	periapsis	of	the
transfer	orbit.

				%		Apply	constraints	on	initial	states

			%NonlinearConstraint	NLPOpt(satTOI.INC=conTOIInclination)

			%NonlinearConstraint	NLPOpt(satTOI.RadPer=conTOIPeriapsis)

			%NonlinearConstraint	NLPOpt(satMOI_Backward.RadPer	=	conMOIPeriapsis)

			errorMOIRadPer	=	satMOI_Backward.RadPer	-	conMOIPeriapsis

			

			%		This	constraint	ensures	that	satTOI	state	is	at	periapsis	at	injection

			launchRdotV	=	(satTOI.X	*satTOI.VX	+	satTOI.Y	*satTOI.VY	+	...

			satTOI.Z	*satTOI.VZ)/1000

			%NonlinearConstraint	NLPOpt(launchRdotV=0)

Propagate	the	Segments

We	are	now	ready	to	propagate	the	spacecraft	to	the	patch	points.	We	must
propagate	satTOI	forward	to	patchOneEpoch,	propagate	satFlyBy_Backward
backwards	to	patchOneEpoch,	propagate	satFlyBy_Forward	to
patchTwoEpoch,	and	propagate	satMOI_Backward	to	patchTwoEpoch.
Notice	that	some	Propagate	commands	are	applied	inside	of	If	statements	to
ensure	that	propagation	is	performed	in	the	correct	direction.%



%		DO	NOT	PASTE	THESE	LINES	INTO	THE	SCRIPT,	THEY	ARE	

%		INCLUDED	IN	THE	COMPLETE	SNIPPET	LATER	IN	THIS	SECTION

If	satFlyBy_Forward.TAIModJulian	>	patchTwoEpoch

						Propagate	BackProp	NearMoonProp(satFlyBy_Forward)	.	.	.

			Else

						Propagate	NearMoonProp(satFlyBy_Forward)	.	.	.

EndIf

If	In	the	script	below,	you	will	notice	like	this:

%		DO	NOT	PASTE	THESE	LINES	INTO	THE	SCRIPT,	THEY	ARE	

%		INCLUDED	IN	THE	COMPLETE	SNIPPET	LATER	IN	THIS	SECTION

Propagate	NearEarthProp(satTOI)	{satTOI.TAIModJulian	=	patchOneEpoch,	…

PenUp	EarthView				%		The	next	three	lines	handle	plot	epoch	discontinuity	

Propagate	BackProp	NearMoonProp(satFlyBy_Backward)

PenDown	EarthView		

These	lines	are	used	to	clean	up	discontinuities	in	the	OrbitView	that	occur
because	we	are	making	discontinuous	changes	to	time	in	this	complex	script.

%		Propagate	the	segments

			Propagate	NearEarthProp(satTOI)	{satTOI.TAIModJulian	=	...

				patchOneEpoch,	StopTolerance	=	1e-005}

			PenUp	EarthView		%		The	next	three	lines	handle	discontinuity	in	plots

			Propagate	BackProp	NearMoonProp(satFlyBy_Backward)

			PenDown	EarthView		

			Propagate	BackProp	NearMoonProp(satFlyBy_Backward)...

			{satFlyBy_Backward.TAIModJulian	=	patchOneEpoch,	StopTolerance	=	1e-005}

			

			%		Propagate	FlybySat	to	Apogee	and	apply	apogee	constraints

			PenUp	EarthView		%		The	next	three	lines	handle	discontinuity	in	plots

			Propagate	NearMoonProp(satFlyBy_Forward)

			PenDown	EarthView

			Propagate	NearMoonProp(satFlyBy_Forward)	...

			{satFlyBy_Forward.Earth.Apoapsis,	StopTolerance	=	1e-005}

			Report	debugData	satFlyBy_Forward.RMAG

	

			%		Propagate	FlybSat	and	satMOI_Backward	to	patchTwoEpoch

			If	satFlyBy_Forward.TAIModJulian	>	patchTwoEpoch

						Propagate	BackProp	NearMoonProp(satFlyBy_Forward)...

			{satFlyBy_Forward.TAIModJulian	=	patchTwoEpoch,	StopTolerance	=	1e-005}

			Else

						Propagate	NearMoonProp(satFlyBy_Forward)...

			{satFlyBy_Forward.TAIModJulian	=	patchTwoEpoch,	StopTolerance	=	1e-005}

			EndIf

			PenUp	EarthView				%		The	next	three	lines	handle	discontinuity	in	plots



			Propagate	BackProp	NearMoonProp(satMOI_Backward)

			PenDown	EarthView

			Propagate	BackProp	NearMoonProp(satMOI_Backward)...

		{satMOI_Backward.TAIModJulian	=	patchTwoEpoch,	StopTolerance	=	1e-005}

Compute	Some	Quantities	and	Apply	Patch	Constraints

The	variables	errorPos1	and	others	below	are	used	in	XYPlots	to	display
position	and	velocity	errors	at	the	patch	points.

			%		Compute	constraint	errors	for	plots

			errorPos1	=	sqrt((satTOI.X	-	satFlyBy_Backward.X)^2	+	...

			(satTOI.Y	-	satFlyBy_Backward.Y)^2	+	(satTOI.Z	-	satFlyBy_Backward.Z)^2)

			errorVel1	=	sqrt((satTOI.VX	-	satFlyBy_Backward.VX)^2	+	...

			(satTOI.VY-satFlyBy_Backward.VY)^2+(satTOI.VZ-satFlyBy_Backward.VZ)^2)

			errorPos2	=	sqrt((satMOI_Backward.X	-	satFlyBy_Forward.X)^2	+	...

			(satMOI_Backward.Y	-	satFlyBy_Forward.Y)^2	+	...

			(satMOI_Backward.Z	-	satFlyBy_Forward.Z)^2)

			errorVel2	=	sqrt((satMOI_Backward.VX	-	satFlyBy_Forward.VX)^2	+	...

			(satMOI_Backward.VY	-	satFlyBy_Forward.VY)^2	+	...

			(satMOI_Backward.VZ	-	satFlyBy_Forward.VZ)^2)

			

			

Apply	Patch	Point	Constraints

The	NonlinearConstraint	commands	below	apply	the	patch	point	constraints.

			%		Apply	the	collocation	constraints	constraints	on	final	states

			NonlinearConstraint	NLPOpt(satTOI.EarthMJ2000Eq.X=...

			satFlyBy_Backward.EarthMJ2000Eq.X)

			NonlinearConstraint	NLPOpt(satTOI.EarthMJ2000Eq.Y=...

			satFlyBy_Backward.EarthMJ2000Eq.Y)

			NonlinearConstraint	NLPOpt(satTOI.EarthMJ2000Eq.Z=...	

			satFlyBy_Backward.EarthMJ2000Eq.Z)

			NonlinearConstraint	NLPOpt(satTOI.EarthMJ2000Eq.VX=...

			satFlyBy_Backward.EarthMJ2000Eq.VX)

			NonlinearConstraint	NLPOpt(satTOI.EarthMJ2000Eq.VY=...

			satFlyBy_Backward.EarthMJ2000Eq.VY)

			NonlinearConstraint	NLPOpt(satTOI.EarthMJ2000Eq.VZ=...

			satFlyBy_Backward.EarthMJ2000Eq.VZ)

			NonlinearConstraint	NLPOpt(satMOI_Backward.EarthMJ2000Eq.X=...

			satFlyBy_Forward.EarthMJ2000Eq.X)

			NonlinearConstraint	NLPOpt(satMOI_Backward.EarthMJ2000Eq.Y=...

			satFlyBy_Forward.EarthMJ2000Eq.Y)



			NonlinearConstraint	NLPOpt(satMOI_Backward.EarthMJ2000Eq.Z=...

			satFlyBy_Forward.EarthMJ2000Eq.Z)

			NonlinearConstraint	NLPOpt(satMOI_Backward.EarthMJ2000Eq.VX=...

			satFlyBy_Forward.EarthMJ2000Eq.VX)

			NonlinearConstraint	NLPOpt(satMOI_Backward.EarthMJ2000Eq.VY=...

			satFlyBy_Forward.EarthMJ2000Eq.VY)

			NonlinearConstraint	NLPOpt(satMOI_Backward.EarthMJ2000Eq.VZ=...

			satFlyBy_Forward.EarthMJ2000Eq.VZ)

Apply	Constraints	on	Mission	Orbit

We	can	now	apply	constraints	on	the	final	mission	orbit	that	cannot	be	applied
until	after	propagation.	The	script	snippet	below	applies	the	inclination
constraint	on	the	final	mission	orbit,	and	applies	the	apogee	radius	constraint	on
the	final	mission	orbit	after	MOI	is	applied.

			%		Apply	mission	orbit	constraints/others	on	segments	after	propagation

			errorMOIInclination	=	satMOI_Forward.INC	-	conMOIInclination

			%NonlinearConstraint	NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC	=	...

			%	conMOIInclination)

						%		Propagate	satMOI_Forward	to	apogee

			PenUp	EarthView				%		The	next	three	lines	handle	discontinuity	in	plots

			Propagate	NearEarthProp(satMOI_Forward)

			PenDown	EarthView

			If	satMOI_Forward.Earth.TA	>	180

					Propagate	NearEarthProp(satMOI_Forward){satMOI_Forward.Earth.Periapsis}

			Else

						Propagate	BackProp	NearEarthProp(satMOI_Forward)...

						{satMOI_Forward.Earth.Periapsis}

			EndIf

			Maneuver	MOI(satMOI_Forward)

			Propagate	NearEarthProp(satMOI_Forward)	{satMOI_Forward.Earth.Apoapsis}

			%NonlinearConstraint	NLPOpt(satMOI_Forward.RadApo=conMOIApoapsis)

			errorMOIRadApo	=	satMOI_Forward.Earth.RadApo	-	conMOIApoapsis

Apply	Cost	Function

The	last	script	snippet	applies	the	cost	function	and	a	Stop	command.	The	Stop
command	is	so	that	we	can	QA	your	script	configuration	and	make	sure	the
initial	guess	is	providing	reasonable	results	before	attempting	optimization.

			%		Apply	cost	function	and	

			Cost	=	sqrt(	MOI.Element1^2	+	MOI.Element2^2	+	MOI.Element3^2)



			%Minimize	NLPOpt(Cost)

			

			%		Report	stuff	at	the	end	of	the	loop

			Report	debugData	MOI.Element1

			Report	debugData	satMOI_Forward.RMAG	conMOIApoapsis	conMOIInclination

			

			Stop		



Design	the	Trajectory

Overview

We	are	now	ready	to	design	the	trajectory.	We’ll	do	this	in	a	couple	of	steps:

1.	 Run	the	script	configuration	and	verify	your	configuration.
2.	 Run	the	mission	applying	only	the	patch	point	constraints	to	provide	a

smooth	trajectory.
3.	 Run	the	mission	with	all	constraints	applied	generating	an	optimal	solution.
4.	 Run	the	mission	with	an	alternative	initial	guess.
5.	 Add	a	new	constraint	and	rerun	the	mission.

Step	1:	Verify	Your	Configuration

If	your	script	is	configured	correctly,	when	you	click	Save-Sync-Run	in	the
bottom	of	the	script	editor,	you	should	see	an	OrbitView	graphics	window
display	the	initial	guess	for	the	trajectory	as	shown	below.	In	the	graphics,
satTOI	is	displayed	in	green,	satFlyBy_Backward	is	displayed	in	orange,
satFlyBy_Forward	is	displayed	in	dark	red,	and	satMOI_Backward	is
displayed	in	bright	red,	and	satMOI_Forward	is	displayed	in	blue.

Figure	9.4.	View	of	Discontinuous	Trajectory



You	can	use	the	mouse	to	manipulate	the	OrbitView	to	see	that	the	patch	points
are	indeed	discontinuous	for	the	initial	guess	as	shown	below	in	the	two	screen
captures.	If	your	configuration	does	not	provide	you	with	similar	graphics,
compare	your	script	to	the	one	provided	for	this	tutorial	and	address	any
differences.

Figure	9.5.	Alternate	View	(1)	of	Discontinuous	Trajectory



Figure	9.6.	Alternate	View	(2)	of	Discontinuous	Trajectory



Step	2:	Find	a	Smooth	Trajectory

At	this	point	in	the	tutorial,	your	script	is	configured	to	eliminate	the	patch	point
discontinuities	but	does	not	apply	mission	constraints.	We	need	to	make	a	few
small	modifications	before	proceeding.	We	will	turn	off	the	OrbitView	to
improve	the	run	time,	and	we	will	remove	the	Stop	command	so	that	the
optimizer	will	attempt	to	find	a	solution.

1.	 Near	the	bottom	of	the	script,	comment	out	the	Stop	command.
2.	 In	the	configuration	of	EarthView,	change	ShowPlot	to	false.
3.	 Click	Save	Sync	Run.

After	a	few	optimizer	iterations	you	should	see	“NLPOpt	converged	to	within
target	accuracy"	displayed	in	the	GMAT	message	window	and	your	XY	plot
graphics	should	appear	as	shown	below.	Let’s	discuss	the	content	of	these



windows.	The	upper	left	window	shows	the	RSS	history	of	velocity	error	at	the
two	patch	points	during	the	optimization	process.	The	lower	left	window	shows
the	RSS	history	of	the	position	error.	The	upper	right	window	shows	error	in
mission	orbit	inclination,	and	the	lower	right	window	shows	error	mission	orbit
apogee	and	perigee	radii.	You	can	see	that	in	all	cases	the	patch	point
discontinuities	were	driven	to	zero,	but	since	other	constraints	were	not	applied
there	are	still	errors	in	some	mission	constraints.

Figure	9.7.	Smooth	Trajectory	Solution

Before	proceeding	to	the	next	step,	go	to	the	message	window	and	copy	and
paste	the	final	values	of	the	optimization	variables	to	a	text	editor	for	later	use:

Step	3:	Find	an	Optimal	Trajectory

At	this	point	in	the	tutorial,	your	script	is	configured	to	eliminate	the	patch	point
discontinuities	but	does	not	apply	constraints.	We	need	to	make	a	few	small
modifications	to	the	script	to	find	an	solution	that	meets	the	constraints.

1.	 Remove	the	“%”	sign	from	the	all	NonlinearConstraint	commands	and	the
Minimize	command:



NonlinearConstraint	NLPOpt(satTOI.INC=conTOIInclination)

NonlinearConstraint	NLPOpt(satTOI.RadPer=conTOIPeriapsis)

NonlinearConstraint	NLPOpt(satMOI_Backward.RadPer	=	conMOIPeriapsis)

NonlinearConstraint	NLPOpt(launchRdotV=0)

NonlinearConstraint	NLPOpt(satMOI_Forward.EarthMJ2000Eq.INC	=.	.	.

NonlinearConstraint	NLPOpt(satMOI_Forward.RadApo=conMOIApoapsis)

Minimize	NLPOpt(Cost)

2.	 Click	Save	Sync	Run.

The	screen	capture	below	shows	the	plots	after	optimization	has	been	completed.
Notice	that	the	constraint	errors	have	been	driven	to	zero	in	the	plots

Figure	9.8.	Optimal	Trajectory	Solution

Another	way	to	verify	that	the	constraints	have	been	satisfied	is	to	look	in	the
message	window	where	the	final	constraint	variances	are	displayed	as	shown
below.	We	could	further	reduce	the	variances	by	lowering	the	tolerance	setting
on	the	optimizer.

Equality	Constraint	Variances:

						Delta	satTOI.INC	=	1.44773082411e-011

						Delta	satTOI.RadPer	=	7.08496372681e-010

						Delta	satMOI_Backward.RadPer	=	-3.79732227884e-007



						Delta	launchRdotV	=	-1.87725390788e-014

						Delta	satTOI.EarthMJ2000Eq.X	=	0.00037122167123

						Delta	satTOI.EarthMJ2000Eq.Y	=	2.79954474536e-005

						Delta	satTOI.EarthMJ2000Eq.Z	=	2.78138068097e-005

						Delta	satTOI.EarthMJ2000Eq.VX	=	-3.87579257577e-009

						Delta	satTOI.EarthMJ2000Eq.VY	=	1.5329883335e-009

						Delta	satTOI.EarthMJ2000Eq.VZ	=	-6.84140494256e-010

						Delta	satMOI_Backward.EarthMJ2000Eq.X	=	0.0327844279818

						Delta	satMOI_Backward.EarthMJ2000Eq.Y	=	0.0501471919124

						Delta	satMOI_Backward.EarthMJ2000Eq.Z	=	0.0063349630509

						Delta	satMOI_Backward.EarthMJ2000Eq.VX	=	-7.5196416871e-008

						Delta	satMOI_Backward.EarthMJ2000Eq.VY	=	-7.48570442854e-008

						Delta	satMOI_Backward.EarthMJ2000Eq.VZ	=	-6.01668809219e-009

						Delta	satMOI_Forward.EarthMJ2000Eq.INC	=	-1.25488952563e-010

						Delta	satMOI_Forward.RadApo	=	-0.000445483252406

Finally,	let’s	look	at	the	delta-V	of	the	solution.	In	this	case	the	delta-V	is	simply
the	value	of	MOI.Element1	which	is	displayed	in	the	message	window	with	a
value	of	-0.09171	km/s.

Step	4:	Use	a	New	Initial	Guess

In	Step	2	above,	you	saved	the	final	solution	for	the	smooth	trajectory	run.	Let’s
use	those	values	as	the	initial	guess	and	see	if	we	find	a	similar	solution	as	found
in	the	previous	step.	In	the	ScriptEvent	that	defines	the	initial	guess,	paste	the
values	below,	below	the	values	already	there.	(don’t	overwrite	the	old	values!).
Once	you	have	changed	the	guess,	run	the	mission	again.

launchEpoch	=	27698.2503232

flybyEpoch	=	27703.7774182

moiEpoch	=	27723.6487435

satTOI.X	=	-6651.63393843

satTOI.Y	=	-229.372171037

satTOI.Z	=	-168.481408909

satTOI.VX	=	0.244028352166

satTOI.VY	=	-9.56544906767

satTOI.VZ	=	5.11103080924

satFlyBy_Forward.X	=	869.368923086

satFlyBy_Forward.Y	=	-6284.53685414

satFlyBy_Forward.Z	=	-3598.94426638

satFlyBy_Forward.VX	=	1.14614444527

satFlyBy_Forward.VY	=	-0.726070354598

satFlyBy_Forward.VZ	=	-0.617780594192

satMOI_Backward.X	=	-53541.9714485



satMOI_Backward.Y	=	-68231.6304631

satMOI_Backward.Z	=	-1272.77554803

satMOI_Backward.VX	=	2.0799329871

satMOI_Backward.VY	=	-1.89082570193

satMOI_Backward.VZ	=	-0.284385092038

We	see	in	this	case	the	optimization	converged	and	found	essentially	the	same
solution	of	-0.0907079	km/s

Figure	9.9.	Solution	Using	New	Guess

Step	5:	Apply	a	New	Constraint

We	leave	it	as	an	exercise,	to	apply	a	constraint	that	the	lunar	flyby	periapsis
radius	must	be	greater	than	or	equal	to	5000	km.



Chapter	10.	Mars	B-Plane	Targeting	Using	GMAT
Functions

Audience Advanced

Length 75	minutes

Prerequisites
Complete	Simulating	an	Orbit,	Simple	Orbit	Transfer,	Mars	B-
Plane	Targeting	and	a	basic	understanding	of	B-Planes	and	their
usage	in	targeting	is	required.

Script	and
function
Files

Tut_UsingGMATFunctions.script,

TargeterInsideFunction.gmf



Objective	and	Overview

Note

One	of	the	most	challenging	problems	in	space	mission	design
is	to	design	an	interplanetary	transfer	trajectory	that	takes	the
spacecraft	within	a	very	close	vicinity	of	the	target	planet.	One
possible	approach	that	puts	the	spacecraft	close	to	a	target
planet	is	by	targeting	the	B-Plane	of	that	planet.	The	B-Plane	is
a	planar	coordinate	system	that	allows	targeting	during	a
gravity	assist.	It	can	be	thought	of	as	a	target	attached	to	the
assisting	body.	In	addition,	it	must	be	perpendicular	to	the
incoming	asymptote	of	the	approach	hyperbola.	Figure	10.1,
“Geometry	of	the	B-Plane	as	seen	from	a	viewpoint
perpendicular	to	the	B-Plane”	and	Figure	10.2,	“The	B-vector
as	seen	from	a	viewpoint	perpendicular	to	orbit	plane”	show	the
geometry	of	the	B-Plane	and	B-vector	as	seen	from	a	viewpoint
perpendicular	to	orbit	plane.	To	read	more	on	B-Planes,	please
consult	the	GMATMathSpec	document.	A	good	example
involving	the	use	of	B-Plane	targeting	is	a	mission	to	Mars.
Sending	a	spacecraft	to	Mars	can	be	achieved	by	performing	a
Trajectory	Correction	Maneuver	(TCM)	that	targets	Mars	B-
Plane.	Once	the	spacecraft	gets	close	to	Mars,	then	an	orbit
insertion	maneuver	can	be	performed	to	capture	into	Mars
orbit.

Figure	10.1.	Geometry	of	the	B-Plane	as	seen	from	a	viewpoint
perpendicular	to	the	B-Plane



Figure	10.2.	The	B-vector	as	seen	from	a	viewpoint	perpendicular	to	orbit
plane

In	this	tutorial,	we	will	use	GMAT	to	model	a	mission	to	Mars	with	the	emphasis
of	how	to	use	GMAT	functions.	Starting	from	an	out-going	hyperbolic	trajectory
around	Earth,	we	will	perform	a	TCM	to	target	Mars	B-Plane.	Once	we	are	close
to	Mars,	we	will	adjust	the	size	of	the	maneuver	to	perform	a	Mars	Orbit
Insertion	(MOI)	to	achieve	a	final	elliptical	orbit	with	an	inclination	of	90
degrees.	Meeting	these	mission	objectives	requires	us	to	create	two	separate
targeting	sequences.	In	order	to	focus	on	the	configuration	of	the	two	targeters,
we	will	make	extensive	use	of	the	default	configurations	for	spacecraft,
propagators,	and	maneuvers.

The	first	target	sequence	employs	maneuvers	in	the	Earth-based	Velocity	(V),



Normal	(N)	and	Bi-normal	(B)	directions	and	includes	four	propagation
sequences.	The	purpose	of	the	maneuvers	in	VNB	directions	is	to	target	BdotT
and	BdotR	components	of	the	B-vector.	BdotT	is	targeted	to	0	km	and	BdotR	is
targeted	to	a	non-zero	value	to	generate	a	polar	orbit	that	has	inclination	of	90
degrees.	BdotR	is	targeted	to	-7000	km	to	avoid	having	the	orbit	intersect	Mars,
which	has	a	radius	of	approximately	3396	km.	The	entire	first	target	sequence
will	be	created	inside	a	GMAT	function.	In	the	Mission	tree,	this	function	will
be	called	through	GMAT's	CallGmatFunction	command.	Additionally,	we'll	go
ahead	and	declare	pertinent	objects	(e.g.	spacecraft,	force	models,	subscribers,
impulsive	burns	etc.)	as	global	in	both	the	main	script	and	inside	the	function
through	GMAT's	Global	command.

The	second	target	sequence	employs	a	single,	Mars-based	anti-velocity	direction
(-V)	maneuver	and	includes	one	propagation	sequence.	This	single	anti-velocity
direction	maneuver	will	occur	at	periapsis.	The	purpose	of	the	maneuver	is	to
achieve	MOI	by	targeting	position	vector	magnitude	of	12,000	km	at	apoapsis.
Unlike	the	first	target	sequence,	the	second	target	sequence	will	not	be	created
inside	a	function.

The	purpose	behind	this	tutorial	is	to	demonstrate	how	GMAT	functions	are
created,	populated,	called-upon	and	used	as	part	of	practical	mission	design.	In
this	tutorial,	we'll	deliberately	put	the	entire	first	target	sequence	inside	a	GMAT
function.	Next	in	the	Mission	tree,	we'll	call	and	execute	the	function,	then
continue	with	the	design	of	the	second	target	sequence	outside	of	the	function.
Key	objects	such	as	the	spacecraft,	force	models,	subscribers	etc.	will	be
declared	global	in	order	to	assure	continuous	flow	of	data	is	plotted	and	reported
to	all	the	subscribers.	The	basic	steps	of	this	tutorial	are:

1.	 Modify	the	DefaultSC	to	define	spacecraft’s	initial	state.	The	initial	state	is
an	out-going	hyperbolic	trajectory	that	is	with	respect	to	Earth.

2.	 Create	and	configure	a	Fuel	Tank	resource.
3.	 Create	two	ImpulsiveBurn	resources	with	default	settings.
4.	 Create	and	configure	three	Propagators:	NearEarth,	DeepSpace	and

NearMars
5.	 Create	and	configure	DifferentialCorrector	resource.
6.	 Create	and	configure	three	DefaultOrbitView	resources	to	visualize	Earth,

Sun	and	Mars	centered	trajectories.
7.	 Create	and	configure	single	ReportFile	resource	that	will	be	used	in

reporting	data.



8.	 Create	and	configure	three	CoordinateSystems:	Earth,	Sun	and	Mars
centered.

9.	 Create	and	configure	single	GmatFunction	resource	that	will	be	called	and
executed	in	the	Mission	tree.

10.	 Create	first	Target	sequence	inside	the	GMAT	function.	This	sequence	will
be	used	to	target	BdotT	and	BdotR	components	of	the	B-vector.

11.	 Create	second	Target	sequence	to	implement	MOI	by	targeting	position
magnitude	at	apoapsis.

12.	 Run	the	mission	and	analyze	the	results.



Configure	Fuel	Tank,	Spacecraft	properties,
Maneuvers,	Propagators,	Differential	Corrector,
Coordinate	Systems	and	Graphics
For	this	tutorial,	you’ll	need	GMAT	open,	with	the	default	mission	loaded.	To
load	the	default	mission,	click	New	Mission	( )	or	start	a	new	GMAT	session.
DefaultSC	will	be	modified	to	set	spacecraft’s	initial	state	as	an	out-going
hyperbolic	trajectory.

Create	Fuel	Tank

We	need	to	create	a	fuel	tank	in	order	to	see	how	much	fuel	is	expended	after
each	impulsive	burn.	We	will	modify	DefaultSC	resource	later	and	attach	the
fuel	tank	to	the	spacecraft.

1.	 In	the	Resources	tree,	right-click	the	Hardware	folder,	point	to	Add	and
click	ChemicalTank.	A	new	resource	called	ChemicalTank1	will	be
created.

2.	 Right-clickChemicalTank1	and	click	Rename.
3.	 In	theRename	box,	type	MainTank	and	click	OK.
4.	 Double	click	onMainTank	to	edit	its	properties.
5.	 Set	the	values	shown	in	the	table	below.

Table	10.1.	MainTank	settings

Field Value

Fuel	Mass 1718

Fuel	Density 1000

Pressure 5000

Volume 2

6.	 Click	OK	to	save	these	changes.



Modify	the	DefaultSC	Resource

We	need	to	make	minor	modifications	to	DefaultSC	in	order	to	define
spacecraft’s	initial	state	and	attach	the	fuel	tank	to	the	spacecraft.

1.	 In	the	Resources	tree,	under	Spacecraft	folder,	right-click	DefaultSC	and
click	Rename.

2.	 In	the	Rename	box,	type	MAVEN	and	click	OK.
3.	 Double-click	on	MAVEN	to	edit	its	properties.	Make	sure	Orbit	tab	is

selected.
4.	 Set	the	values	shown	in	the	table	below.

Table	10.2.	MAVEN	settings

Field Value

Epoch	Format UTCGregorian

Epoch 18	Nov	2013	20:26:24.315

Coordinate	System EarthMJ2000Eq

State	Type Keplerian

SMA	under	Elements -32593.21599272796

ECC	under	Elements 1.202872548116185

INC	under	Elements 28.80241266404142

RAAN	under	Elements 173.9693759331483

AOP	under	Elements 240.9696529532764

TA	under	Elements 359.9465533778069

5.	 Click	on	Tanks	tab	now.
6.	 Under	Available	Tanks,	you'll	see	MainTank.	This	is	the	fuel	tank	that	we

created	earlier.
7.	 We	attach	MainTank	to	the	spacecraft	MAVEN	by	bringing	it	under

Selected	Tanks	box.	Select	MainTank	under	Available	Tanks	and	bring	it
over	to	the	right-hand	side	under	the	Selected	Tanks.

8.	 Click	OK	to	save	these	changes.



Create	the	Maneuvers

We’ll	need	two	ImpulsiveBurn	resources	for	this	tutorial.	Below,	we’ll	rename
the	default	ImpulsiveBurn	and	create	a	new	one.	We’ll	also	select	the	fuel	tank
that	was	created	earlier	in	order	to	access	fuel	for	the	burns.

1.	 In	the	Resources	tree,	under	the	Burns	folder,	right-click	DefaultIB	and
click	Rename.

2.	 In	the	Rename	box,	type	TCM,	an	acronym	for	Trajectory	Correction
Maneuver	and	click	OK	to	edit	its	properties.

3.	 Double-Click	TCM	to	edit	its	properties.
4.	 Check	Decrement	Mass	under	Mass	Change.
5.	 For	Tank	field	under	Mass	Change,	select	MainTank	from	drop	down

menu.
6.	 Click	OK	to	save	these	changes.
7.	 Right-click	theBurns	folder,	point	to	Add,	and	click	ImpulsiveBurn.	A

new	resource	called	ImpulsiveBurn1	will	be	created.
8.	 Rename	the	new	ImpulsiveBurn1	resource	to	MOI,	an	acronym	for	Mars

Orbit	Insertion	and	click	OK.
9.	 Double-click	MOI	to	edit	its	properties.
10.	 For	Origin	field	under	Coordinate	System,	select	Mars.
11.	 Check	Decrement	Mass	under	Mass	Change.
12.	 For	Tank	field	under	Mass	Change,	select	MainTank	from	the	drop	down

menu.
13.	 Click	OK	to	save	these	changes.

Create	the	Propagators

We’ll	need	to	add	three	propagators	for	this	tutorial.	Below,	we’ll	rename	the
default	DefaultProp	and	create	two	more	propagators.

1.	 In	the	Resources	tree,	under	the	Propagators	folder,	right-click
DefaultProp	and	click	Rename.

2.	 In	the	Rename	box,	type	NearEarth	and	click	OK.
3.	 Double-click	on	NearEarth	to	edit	its	properties.
4.	 Set	the	values	shown	in	the	table	below.

Table	10.3.	NearEarth	settings



Field Value

Initial	Step	Size	under	Integrator 600

Accuracy	under	Integrator 1e-013

Min	Step	Size	under	Integrator 0

Max	Step	Size	under	Integrator 600

Model	under	Gravity JGM-2

Degree	under	Gravity 8

Order	under	Gravity 8

Atmosphere	Model	under	Drag None

Point	Masses	under	Force	Model Add	Luna	and	Sun

Use	Solar	Radiation	Pressure	under	Force
Model

Check	this	field

5.	 Click	on	OK	to	save	these	changes.
6.	 Right-click	the	Propagators	folder	and	click	Add	Propagator.	A	new

resource	called	Propagator1	will	be	created.
7.	 Rename	the	new	Propagator1	resource	to	DeepSpace	and	click	OK.
8.	 Double-click	DeepSpace	to	edit	its	properties.
9.	 Set	the	values	shown	in	the	table	below.

Table	10.4.	DeepSpace	settings

Field Value

Type	under	Integrator PrinceDormand78

Initial	Step	Size	under	Integrator 600

Accuracy	under	Integrator 1e-012

Min	Step	Size	under	Integrator 0

Max	Step	Size	under	Integrator 864000

Central	Body	under	Force	Model Sun



Primary	Body	under	Force	Model None

Point	Masses	under	Force	Model Add	Earth,	Luna,	Sun,
Mars,	Jupiter,
Neptune,	Saturn,
Uranus,	Venus

Use	Solar	Radiation	Pressure	under	Force
Model

Check	this	field

10.	 Click	OK	to	save	these	changes.
11.	 Right-click	the	Propagators	folder	and	click	Add	Propagator.	A	new

resource	called	Propagator1	will	be	created.
12.	 Rename	the	new	Propagator1	resource	to	NearMars	and	click	OK.
13.	 Double-click	on	NearMars	to	edit	its	properties.
14.	 Set	the	values	shown	in	the	table	below.

Table	10.5.	NearMars	settings

Field Value

Type	under	Integrator PrinceDormand78

Initial	Step	Size	under	Integrator 600

Accuracy	under	Integrator 1e-012

Min	Step	Size	under	Integrator 0

Max	Step	Size	under	Integrator 86400

Central	Body	under	Force	Model Mars

Primary	Body	under	Force	Model Mars

Model	under	Gravity Mars-50C

Degree	under	Gravity 8

Order	under	Gravity 8

Atmosphere	Model	under	Drag None

Point	Masses	under	Force	Model Add	Sun



Use	Solar	Radiation	Pressure	under	Force
Model

Check	this	field

15.	 Click	OK	to	save	the	changes.

Create	the	Differential	Corrector

Two	Target	sequences	that	we	will	create	later	need	a	DifferentialCorrector
resource	to	operate,	so	let’s	create	one	now.	We'll	leave	the	settings	at	their
defaults.

1.	 In	the	Resources	tree,	expand	the	Solvers	folder	if	it	isn’t	already.
2.	 Right-click	the	Boundary	Value	Solvers	folder,	point	to	Add,	and	click

DifferentialCorrector.	A	new	resource	called	DC1	will	be	created.
3.	 Rename	the	new	DC1	resource	to	DefaultDC	and	click	OK.

Create	the	Coordinate	Systems

The	BdotT	and	BdotR	constraints	that	we	will	define	later	under	the	first	Target
sequence	require	us	to	create	a	coordinate	system.	Orbit	View	resources	that	we
will	create	later	also	need	coordinate	system	resources	to	operate.	We	will	create
Sun	and	Mars	centered	coordinate	systems.	So	let’s	create	them	now.

1.	 In	the	Resources	tree,	right-click	the	Coordinate	Systems	folder	and	click
Add	Coordinate	System.	A	new	Dialog	box	is	created	with	a	title	New
Coordinate	System.

2.	 Type	SunEcliptic	under	Coordinate	System	Name	box.
3.	 Under	Origin	field,	select	Sun.
4.	 For	Type	under	Axes,	select	MJ2000Ec.
5.	 Click	OK	to	save	these	changes.	You’ll	see	that	a	new	coordinate	system

SunEcliptic	is	created	under	Coordinate	Systems	folder.
6.	 Right-click	the	Coordinate	Systems	folder	and	click	Add	Coordinate

System.	A	new	Dialog	Box	is	created	with	a	title	New	Coordinate	System.
7.	 Type	MarsInertial	under	Coordinate	System	Name	box.
8.	 Under	Origin	field,	select	Mars.
9.	 For	Type	under	Axes,	select	BodyInertial.
10.	 Click	OK	to	save	these	changes.	You’ll	see	that	a	new	coordinate	system



MarsInertial	is	created	under	Coordinate	Systems	folder.

Create	the	Orbit	Views

We’ll	need	three	DefaultOrbitView	resources	for	this	tutorial.	Below,	we’ll
rename	the	default	DefaultOrbitView	and	create	two	new	ones.	We	need	three
graphics	windows	in	order	to	visualize	spacecraft’s	trajectory	centered	around
Earth,	Sun	and	then	Mars

1.	 In	the	Resources	tree,	under	Output	folder,	right-click	DefaultOrbitView
and	click	Rename.

2.	 In	the	Rename	box,	type	EarthView	and	click	OK.
3.	 In	the	Output	folder,	delete	DefaultGroundTrackPlot.
4.	 Double-click	EarthView	to	edit	its	properties.
5.	 Set	the	values	shown	in	the	table	below.

Table	10.6.	EarthView	settings

Field Value

View	Scale	Factor	under	View	Definition 4

View	Point	Vector	boxes,	under	View
Definition

0,	0,	30000

6.	 Click	OK	to	save	these	changes.
7.	 Right-click	the	Output	folder,	point	to	Add,	and	click	OrbitView.	A	new

resource	called	OrbitView1	will	be	created.
8.	 Rename	the	new	OrbitView1	resource	to	SolarSystemView	and	click	OK.
9.	 Double-click	SolarSystemView	to	edit	its	properties.
10.	 Set	the	values	shown	in	the	table	below.

Table	10.7.	SolarSystemView	settings

Field Value

From	Celestial	Object	under	View	Object,	add
following	objects	to	Selected	Celestial	Object
box

Mars,	Sun	(Do	not
remove	Earth)



Coordinate	System	under	View	Definition SunEcliptic

View	Point	Reference	under	View	Definition Sun

View	Point	Vector	boxes,	under	View
Definition

0,	0,	5e8

View	Direction	under	View	Definition Sun

Coordinate	System	under	View	Up	Definition SunEcliptic

11.	 Click	OK	to	save	these	changes.
12.	 Right-click	the	Output	folder,	point	to	Add,	and	click	OrbitView.	A	new

resource	called	OrbitView1	will	be	created.
13.	 Rename	the	new	OrbitView1	resource	to	MarsView	and	click	OK.
14.	 Double-click	MarsView	to	edit	its	properties.
15.	 Set	the	values	shown	in	the	table	below.

Table	10.8.	MarsView	settings

Field Value

From	Celestial	Object	under	View	Object,	add
following	object	to	Selected	Celestial	Object
box

Mars	(You	don’t	have
to	remove	Earth)

Coordinate	System	under	View	Definition MarsInertial

View	Point	Reference	under	View	Definition Mars

View	Point	Vector	boxes,	under	View
Definition

22000,	22000,	0

View	Direction	under	View	Definition Mars

Coordinate	System	under	View	Up	Definition MarsInertial

16.	 Click	OK	to	save	the	changes.

Create	single	Report	File



We’ll	need	a	single	ReportFile	resource	for	this	tutorial	that	we'll	use	to	report
data	to.

1.	 Right-click	the	Output	folder,	point	to	Add,	and	click	ReportFile.	A	new
resource	called	ReportFile1	will	be	created.

2.	 Rename	the	new	ReportFile1	resource	to	rf	and	click	OK.
3.	 Double-Click	rf	to	edit	its	properties.
4.	 Empty	the	Parameter	List	by	clicking	on	the	Edit	button.
5.	 Click	OK	to	save	these	changes.

Create	a	GMAT	Function

We’ll	need	a	single	GMATFunction	resource	for	this	tutorial.	The	first	target
sequence	will	be	implemented	inside	this	function.

1.	 Right-click	the	Functions	folder,	point	to	Add,	point	to	GMAT	Function
and	click	New.

2.	 A	new	GMAT	function	panel	will	open.	Type	the	following	name	for	the
function	TargeterInsideFunction	and	click	OK	to	save	these	changes.

3.	 Now	open	TargeterInsideFunction	resource	and	paste	the	below	shown
first	targeter	sequence	snippet	into	this	function.

4.	 After	pasting	of	the	below	snippet	is	done,	click	on	Save	As	button	and
save	your	function.	After	saving	your	function,	close
TargeterInsideFunction	resource	by	clicking	on	the	Close	button.

%	Target	Desired	B-Plane	Coordinates	in	this	function:

function	TargeterInsideFunction()

BeginMissionSequence

Global	'Make	Objects	Global'	MAVEN	DeepSpace_ForceModel	DefaultDC	...

EarthView	MainTank	MarsView	MOI	NearEarth_ForceModel	...

NearMars_ForceModel	rf	SolarSystemView	TCM

Target	'Target	B-plane	coordinates'	DefaultDC	{SolveMode	=	Solve,	...

	 ExitMode	=	SaveAndContinue}

			Propagate	'Prop	3	days'	NearEarth(MAVEN)	{MAVEN.ElapsedDays	=	3}

			Propagate	'Prop	12	Days	to	TCM'	DeepSpace(MAVEN)	{MAVEN.ElapsedDays	=	12}

			Vary	'Vary	TCM.V'	DefaultDC(TCM.Element1	=	0.001,	...

	 {Perturbation	=	0.00001,	MaxStep	=	0.002})



			Vary	'Vary	TCM.N'	DefaultDC(TCM.Element2	=	0.001,	...

	 {Perturbation	=	0.00001,	MaxStep	=	0.002})

			Vary	'Vary	TCM.B'	DefaultDC(TCM.Element3	=	0.001,	...

	 {Perturbation	=	0.00001,	MaxStep	=	0.002})

			Maneuver	'Apply	TCM'	TCM(MAVEN)

			Propagate	'Prop	280	Days'	DeepSpace(MAVEN)	{MAVEN.ElapsedDays	=	280}

			Propagate	'Prop	to	Mars	Periapsis'	NearMars(MAVEN)	{MAVEN.Mars.Periapsis}

			Achieve	'Achieve	BdotT'	DefaultDC(MAVEN.MarsInertial.BdotT	=	0,	...

	 {Tolerance	=	0.00001})

			Achieve	'Achieve	BdotR'	DefaultDC(MAVEN.MarsInertial.BdotR	=	-7000,	...

	 {Tolerance	=	0.00001})

EndTarget;	

%	Report	MAVEN	parameters	to	global	'rf'	:

Report	'Report	Parameters'	rf	MAVEN.UTCGregorian	TCM.Element1	...

TCM.Element2	TCM.Element3	MAVEN.MarsInertial.BdotT	...

MAVEN.MarsInertial.BdotR	MAVEN.MarsInertial.INC

Reminder	that	the	first	target	sequence	will	target	desired	B-Plane	coordinates
which	will	get	the	spacecraft	MAVEN	close	to	Mars.	Note	that	we	have	declared
all	the	pertinent	objects	as	global	at	the	beginning	of	the	function.	These	same
objects	will	also	be	declared	global	in	the	Mission	Sequence	as	well.	Notice	that
in	this	first	target	sequence,	spacecraft	MAVEN	props	for	3	days	using
NearEarth	propagator.	Next	using	the	DeepSpace	propagator,	we	propagate	for
12	days	and	execute	TCM	impulsive	maneuver.	Again	using	the	DeepSpace
propagator,	we	propagate	for	another	280	days	and	finally	propagate	to	Mars
Periapsis.	The	desired	constraints	of	the	B-Plane	coordinates	are	to	be	met	at	the
Mars	periapsis.	The	three	components	of	the	TCM	impulsive	burn	are	the
controls	that	will	help	us	achieve	these	two	constraints.	Note	that	the	tolerances
on	the	two	B-Plane	constraints	are	relatively	tight.



Configure	the	Mission	Sequence
Now	we	are	ready	to	configure	the	Mission	Sequence.	We	will	first	insert	a
Global	command	and	declare	the	same	objects	as	global	that	were	declared
global	inside	the	TargeterInsideFunction	function.	Next	we'll	insert
CallGmatFunction	command	which	will	call	and	initiate	our
TargeterInsideFunction	function	that	contains	our	first	target	sequence.	The
first	target	sequence	will	solve	for	the	TCM	maneuver	values	required	to
achieve	BdotT	and	BdotR	components	of	the	B-vector.	BdotT	will	be	targeted	to
0	km	and	BdotR	is	targeted	to	a	non-zero	value	in	order	to	generate	a	polar	orbit
that	will	have	an	inclination	of	90	degrees.

The	second	target	sequence	employs	a	single,	Mars-based	anti-velocity	direction
(-V)	maneuver	and	includes	one	propagation	sequence.	This	single	anti-velocity
direction	maneuver	will	occur	at	periapsis.	The	purpose	of	the	maneuver	is	to
achieve	MOI	by	targeting	position	vector	magnitude	of	12,000	km	at	apoapsis.
The	basic	steps	of	this	tutorial	are:

Create	Commands	to	Initiate	the	First	Target	Sequence

Now	create	the	commands	necessary	to	perform	the	first	Target	sequence.
Figure	10.3,	“Mission	Sequence	for	the	First	Target	sequence”	illustrates	the
configuration	of	the	Mission	tree	after	you	have	completed	the	steps	in	this
section.

Figure	10.3.	Mission	Sequence	for	the	First	Target	sequence

Do	following	steps	to	set-up	for	the	first	Target	sequence:

1.	 Click	on	the	Mission	tab	to	show	the	Mission	tree.
2.	 You’ll	see	that	there	already	exists	a	Propagate1	command.	We	need	to

delete	this	command



3.	 Right-click	on	Propagate1	command	and	click	Delete.
4.	 Right-click	on	Mission	Sequence	folder,	point	to	Append,	and	click

Global.	A	new	command	called	Global1	will	be	created.
5.	 Right-click	Global1	and	click	Rename.	In	the	Rename	box,	type	Make

Objects	Global	and	click	OK.
6.	 Right-click	on	Mission	Sequence	folder,	point	to	Append,	and	click

CallGmatFunction.	A	new	command	called	CallGmatFunction1	will	be
created.

7.	 Right-click	CallGmatFunction1	and	click	Rename.	In	the	Rename	box,
type	Target	Desired	B-Plane	Coord.	From	Inside	Function	and	click
OK.

8.	 Right-click	on	Mission	Sequence	folder,	point	to	Append,	and	click
Report.	A	new	command	called	Report1	will	be	created.

9.	 Right-click	Report1	and	click	Rename.	In	the	Rename	box,	type	Report
Parameters	and	click	OK.

Configure	the	Mission	Tree	to	Run	the	First	Target
Sequence

Now	that	the	structure	is	created,	we	need	to	configure	various	parts	of	the	first
Target	sequence	to	do	what	we	want.

Configure	the	Make	Objects	Global	Command

1.	 Double-click	Make	Objects	Global	to	edit	its	properties.
2.	 Under	Please	Select	Objects	to	Make	Global	check	all	the	available	object

and	make	all	available	objects	as	global.	Recall	that	same	objects	were
declared	as	global	inside	TargeterInsideFunction	function	as	well.

3.	 Click	OK	to	save	these	changes.

Figure	10.4.	Make	Objects	Global	Command	Configuration



Configure	the	Target	Desired	B-Plane	Coord.	From	Inside
Function	Command

1.	 Double-click	Target	Desired	B-Plane	Coord.	From	Inside	Function	to
edit	its	properties.

2.	 Under	Function,	select	TargeterInsideFunction	from	drop	down	menu.	In
this	particular	example,	since	we're	not	passing	any	input(s)	or	receiving
any	output(s)	to	and	from	the	function,	hence	we	won't	be	editing
Input/Output	menu.

3.	 Click	OK	to	save	these	changes.

Figure	10.5.	Target	Desired	B-Plane	Coord.	From	Inside	Function
Command	Configuration



Configure	the	Report	Parameters	Command

1.	 Double-click	Report	Parameters	to	edit	its	properties.
2.	 Under	ReportFile,	make	sure	rf	is	selected	from	the	from	drop	down	menu.
3.	 Under	Parameter	List	click	on	View.	This	opens	up	a	new

ParameterSelectDialog	panel.	Make	sure	to	select	the	parameters	that	are
shown	in	the	below	Report	Parameters	screenshot	image.

4.	 Click	OK	to	save	these	changes.

Figure	10.6.	Report	Parameters	Command	Configuration





Run	the	Mission	with	first	Target	Sequence
Before	running	the	mission,	click	Save	( )	and	save	the	mission	to	a	file	of	your
choice.	Now	click	Run	( ).	As	the	mission	runs,	you	will	see	GMAT	solve	the
targeting	problem.	Each	iteration	and	perturbation	is	shown	in	EarthView,
SolarSystemView	and	MarsView	windows	in	light	blue,	and	the	final	solution
is	shown	in	red.	After	the	mission	completes,	the	3D	views	should	appear	as	in
the	images	shown	below.	You	may	want	to	run	the	mission	several	times	to	see
the	targeting	in	progress.

Figure	10.7.	3D	View	of	departure	hyperbolic	trajectory	(EarthView)





Figure	10.8.	3D	View	of	heliocentric	transfer	trajectory	(SolarSystemView)



Figure	10.9.	3D	View	of	approach	hyperbolic	trajectory.	MAVEN	stopped	at
periapsis	(MarsView)





Now	go	to	the	Output	tree	and	open	rf.	Recall	that	rf	was	declared	as	a	global
object	both	inside	the	function	and	in	the	main	script.	Notice	that	both	the
controls	(i.e.	TCM	burn	elements)	and	constraints	(i.e.	BdotT,	BdotR)	are
reported	as	well	as	MAVEN	inclination	relative	to	MarsInertial	coordinate
system.	The	desired	constraints	that	were	set	in	the	first	targeter	sequence	have
been	successfully	achieved.

Now	go	back	to	Mission	tree	and	right	click	on	Target	Desired	B-Plane	Coord.
From	Inside	Function	command	and	click	on	Command	Summary	option.
Under	Coordinate	System	drop	down	menu,	select	MarsIntertial	and	study	the
command	summary.	This	command	summary	corresponds	to	the	very	last
Propagate	command	(i.e.	'Prop	to	Mars	Periapsis')	from	inside	the	GMAT
function.	Under	Hyperbolic	Parameters,	notice	the	values	of	BdotT	and
BdotR.	These	are	the	constraints	that	have	been	achieved	on	the	very	last	'Prop
to	Mars	Periapsis'	Propagate	command	from	the	first	targeter	which	was	set	up
inside	the	GMAT	function.

Create	the	Second	Target	Sequence

Recall	that	we	still	need	to	create	second	Target	sequence	in	order	to	perform
Mars	Orbit	Insertion	maneuver	to	achieve	the	desired	capture	orbit.	In	the
Mission	tree,	we	will	create	the	second	Target	sequence	right	after	the	first
Target	sequence	which	was	defined	inside	the	GMAT	function
TargeterInsideFunction.

Now	let’s	create	the	commands	necessary	to	perform	the	second	Target
sequence.	Figure	10.10,	“Mission	Sequence	showing	first	and	second	Target
sequences”	illustrates	the	configuration	of	the	Mission	tree	after	you	have
completed	the	steps	in	this	section.	Notice	that	in	Figure	10.10,	“Mission
Sequence	showing	first	and	second	Target	sequences”,	the	second	Target
sequence	is	created	after	the	first	Target	sequence	which	was	called	via	the
CallGmatFunction	command.	We’ll	discuss	the	second	Target	sequence	after	it
has	been	created.

Figure	10.10.	Mission	Sequence	showing	first	and	second	Target	sequences



To	create	the	second	Target	sequence:

1.	 Click	on	the	Mission	tab	to	show	the	Mission	tree.
2.	 In	the	Mission	tree,	right-click	on	Mission	Sequence	folder,	point	to

Append,	and	click	Target.	This	will	insert	two	separate	commands:
Target1	and	EndTarget1.

3.	 Right-click	Target1	and	click	Rename.
4.	 Type	Mars	Capture	and	click	OK.
5.	 Right-click	Mars	Capture,	point	to	Append,	and	click	Vary.	A	new

command	called	Vary4	will	be	created.
6.	 Right-click	Vary4	and	click	Rename.
7.	 In	the	Rename	box,	type	Vary	MOI.V	and	click	OK.
8.	 Complete	the	Target	sequence	by	appending	the	commands	in	Table	10.9,

“Additional	Second	Target	Sequence	Commands”.

Table	10.9.	Additional	Second	Target	Sequence	Commands

Command Name

Maneuver Apply	MOI

Propagate Prop	to	Mars	Apoapsis

Achieve Achieve	RMAG



Note

Let’s	discuss	what	the	second	Target	sequence	does.	We	know
that	a	maneuver	is	required	for	the	Mars	capture	orbit.	We	also
know	that	the	desired	radius	of	capture	orbit	at	apoapsis	must
be	12,000	km.	However,	we	don’t	know	the	size	(or	ΔV
magnitude)	of	the	MOI	maneuver	that	will	precisely	achieve
the	desired	orbital	conditions.	You	use	the	second	Target
sequence	to	solve	for	that	precise	maneuver	value.	You	must
tell	GMAT	what	controls	are	available	(in	this	case,	a	single
maneuver)	and	what	conditions	must	be	satisfied	(in	this	case,
radius	magnitude	value).	Once	again,	just	like	in	the	first
Target	sequence,	here	we	accomplish	this	by	using	the	Vary
and	Achieve	commands.	Using	the	Vary	command,	you	tell
GMAT	what	to	solve	for—in	this	case,	the	ΔV	value	for	MOI.
You	use	the	Achieve	command	to	tell	GMAT	what	conditions
the	solution	must	satisfy—in	this	case,	RMAG	value	of	12,000
km.

Create	the	Final	Propagate	Command

We	need	a	Propagate	command	after	the	second	Target	sequence	so	that	we	can
see	our	final	orbit.

1.	 In	the	Mission	tree,	right-click	End	Mars	Capture,	point	to	Insert	After,
and	click	Propagate.	A	new	Propagate3	command	will	appear.

2.	 Right-click	Propagate6	and	click	Rename.
3.	 Type	Prop	for	1	day	and	click	OK.
4.	 Double-click	Prop	for	1	day	to	edit	its	properties.
5.	 Under	Propagator,	replace	NearEarth	with	NearMars.
6.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.ElapsedDays.
7.	 Under	Condition,	replace	the	value	0.0	with	1.
8.	 Click	OK	to	save	these	changes

Figure	10.11.	Prop	for	1	day	Command	Configuration



Configure	the	second	Target	Sequence

Now	that	the	structure	is	created,	we	need	to	configure	various	parts	of	the
second	Target	sequence	to	do	what	we	want.

Configure	the	Mars	Capture	Command

1.	 Double-click	Mars	Capture	to	edit	its	properties.
2.	 In	the	ExitMode	list,	click	SaveAndContinue.	This	instructs	GMAT	to

save	the	final	solution	of	the	targeting	problem	after	you	run	it.
3.	 Click	OK	to	save	these	changes

Figure	10.12.	Mars	Capture	Command	Configuration



Configure	the	Vary	MOI.V	Command

1.	 Double-click	Vary	MOI.V	to	edit	its	properties.	Notice	that	the	variable	in
the	Variable	box	is	TCM.Element1.	We	want	MOI.Element1	which	is	the
velocity	component	of	MOI	in	the	local	VNB	coordinate	system.	So	let’s
change	that.

2.	 Next	to	Variable,	click	the	Edit	button.
3.	 Under	Object	List,	click	MOI.
4.	 In	the	Object	Properties	list,	double-click	Element1	to	move	it	to	the

Selected	Value(s)	list.	See	the	image	below	for	results.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 In	the	Initial	Value	box,	type	-1.0.
7.	 In	the	Perturbation	box,	type	0.00001.
8.	 In	the	Lower	box,	type	-10e300.
9.	 In	the	Upper	box,	type	10e300.
10.	 In	the	Max	Step	box,	type	0.1.
11.	 Click	OK	to	save	these	changes.

Figure	10.13.	Vary	MOI	Parameter	Selection



Figure	10.14.	Vary	MOI	Command	Configuration



Configure	the	Apply	MOI	Command

1.	 Double-click	Apply	MOI	to	edit	its	properties.
2.	 In	the	Burn	list,	click	MOI.
3.	 Click	OK	to	save	these	changes.

Figure	10.15.	Apply	MOI	Command	Configuration

Configure	the	Prop	to	Mars	Apoapsis	Command

1.	 Double-click	Prop	to	Mars	Apoapsis	to	edit	its	properties.
2.	 Under	Propagator,	replace	NearEarth	with	NearMars.
3.	 Under	Parameter,	replace	MAVEN.ElapsedSeconds	with

MAVEN.Mars.Apoapsis.
4.	 Click	OK	to	save	these	changes.

Figure	10.16.	Prop	to	Mars	Apoapsis	Command	Configuration



Configure	the	Achieve	RMAG	Command

1.	 Double-click	Achieve	RMAG	to	edit	its	properties.
2.	 Next	to	Goal,	click	the	Edit	button.
3.	 In	the	Object	Properties	list,	click	RMAG.
4.	 Under	Central	Body,	select	Mars	and	double-click	on	RMAG.
5.	 Click	OK	to	close	the	ParameterSelectDialog	window.
6.	 In	the	Value	box,	type	12000.
7.	 Click	OK	to	save	these	changes.

Figure	10.17.	Achieve	RMAG	Command	Configuration





Run	the	Mission	with	first	and	second	Target
Sequences
Before	running	the	mission,	click	Save	( ).	This	will	save	the	additional	changes
that	we	implemented	in	the	Mission	tree.	Now	click	Run	( ).	The	first	Target
sequence	will	converge	first	after	a	few	iterations.

As	the	mission	runs,	you	will	see	GMAT	solve	the	second	Target	sequence’s
targeting	problem.	Each	iteration	and	perturbation	is	shown	in	MarsView
windows	in	light	blue,	and	the	final	solution	is	shown	in	red.	After	the	mission
completes,	the	MarsView	3D	view	should	appear	as	in	the	image	shown	below.
EarthView	and	SolarSystemView	3D	views	are	same	as	before.	You	may	want
to	run	the	mission	several	times	to	see	the	targeting	in	progress.

Figure	10.18.	3D	view	of	Mars	Capture	orbit	after	MOI	maneuver
(MarsView)





If	you	want	to	know	MOI	maneuver’s	delta-V	vector	values	and	how	much	fuel
was	expended	during	the	maneuver,	do	the	following	steps:

1.	 In	the	Mission	tree,	right-click	Apply	MOI,	and	click	on	Command
Summary.

2.	 Scroll	down	and	under	Maneuver	Summary	heading,	values	for	delta-V
vector	are:

Delta	V	Vector:

Element	1:	-1.6032580309280	km/s

Element	2:	0.0000000000000	km/s

Element	3:	0.0000000000000	km/s

3.	 Scroll	down	and	under	Mass	depletion	from	MainTank	heading,	Delta	V
and	Mass	Change	tells	you	MOI	maneuver’s	magnitude	and	how	much	fuel
was	used	for	the	maneuver:

Delta	V:	1.6032580309280	km/s

Mass	change:	-1075.9520121897	kg

Just	to	make	sure	that	the	goal	of	second	Target	sequence	was	met	successfully,
let	us	access	command	summary	for	Achieve	RMAG	command	by	doing	the
following	steps:

1.	 In	the	Mission	tree,	right-click	Achieve	RMAG,	and	click	on	Command
Summary.

2.	 Under	Coordinate	System,	select	MarsInertial.
3.	 Under	Keplerian	State	and	and	Spherical	State	headings,	see	the

values	of	TA	and	RMAG.	You	can	see	that	the	desired	radius	of	the	capture
orbit	at	apoapsis	was	achieved	successfully:

TA	=	180.00000085377	deg

RMAG	=	12000.017390989	km



Chapter	11.	Finding	Eclipses	and	Station
Contacts

Audience Beginner

Length 30	minutes

Prerequisites Complete	Simple	Orbit	Transfer

Script	File Tut_EventLocation.script



Objective	and	Overview
In	this	tutorial	we	will	modify	an	existing	mission	to	add	eclipse	and	station
contact	detection	using	the	EclipseLocator	and	ContactLocator	resources.	We
will	start	with	the	completed	Simple	Orbit	Transfer	mission	and	modify	it	to	add
these	event	reports.

The	basic	steps	of	this	tutorial	are:

1.	 Load	the	Simple	Orbit	Transfer	mission.
2.	 Configure	GMAT	for	event	location.
3.	 Add	and	configure	an	EclipseLocator	to	report	eclipses.
4.	 Run	the	mission	and	analyze	the	eclipse	report.
5.	 Add	and	configure	a	GroundStation	and	a	ContactLocator	to	report

contact	times.
6.	 Run	the	mission	and	analyze	the	contact	report.



Load	the	Mission
For	this	tutorial,	we	will	start	with	a	preexisting	mission	created	during	the
Simple	Orbit	Transfer	tutorial.	You	can	either	complete	that	tutorial	prior	to	this
one,	or	you	can	load	the	end	result	directly,	as	shown	below.

1.	 Open	GMAT.
2.	 Click	Open	in	the	toolbar	and	navigate	to	the	GMAT	samples	directory.
3.	 Select	Tut_SimpleOrbitTransfer.script	and	click	Open.
4.	 Click	Run	( )	to	run	the	mission.

You	should	see	the	following	result	in	the	DefaultOrbitView	window.



Configure	GMAT	for	Event	Location
GMAT's	event	location	subsystem	is	based	on	the	NAIF	SPICE	library,	which
uses	its	own	mechanism	for	configuration	of	the	solar	system.	Instead	of	settings
specified	in	GMAT	via	CelestialBody	resources	like	Earth	and	Luna,	SPICE	uses
"kernel"	files	that	define	similar	parameters	independently.	This	is	discussed	in
detail	in	the	ContactLocator	and	EclipseLocator	references.

By	default,	GMAT	offers	general	consistency	between	both	configurations.	But,
it's	useful	to	verify	that	the	appropriate	parameters	are	correct,	and	it's	necessary
for	precise	applications.

Verify	SolarSystem	Configuration

First,	let's	verify	that	the	SolarSystem	resource	is	configured	properly	for	both
configurations.

1.	 On	the	Resources	tab,	double-click	the	SolarSystem	folder.	This	will
display	the	SolarSystem	configuration.

2.	 Scroll	to	the	end	of	each	input	box	to	see	the	actual	filenames	being	loaded.

You	should	see	a	configuration	like	this:

http://naif.jpl.nasa.gov/naif/


Note	the	following	items:

Ephemeris	Source:	This	is	set	to	use	the	DE405	planetary	ephemeris,	the
default	in	GMAT.	If	you	switch	to	another	ephemeris	version,	the	fields
below	will	update	accordingly.

Ephemeris	Filename:	This	is	the	DE-format	ephemeris	file	used	for
propagation	and	parameter	calculations	in	GMAT	itself.

SPK	Kernel:	This	is	the	SPICE	SPK	file	used	for	planetary	ephemeris	for
SPK	propagation	and	for	event	location.	Note	that	this	is	set	consistent	with
Ephemeris	Filename	(both	DE405)

Leap	Second	Kernel:	This	is	the	SPICE	LSK	file	used	to	keep	track	of
leap	seconds	in	the	UTC	time	system	for	the	SPICE	subsystem.	This	is	kept
consistent	with	GMAT's	internal	leap	seconds	file	(tai-utc.dat)	specified	in
the	GMAT	startup	file.

Planetary	Constants	Kernel:	This	is	the	SPICE	PCK	file	used	for	default
configuration	for	all	the	default	celestial	bodies.	This	file	contains	planetary
shape	and	orientation	information,	similar	to	but	independent	from	the
settings	in	GMAT's	CelestialBody	resources	(Earth,	Luna,	etc.).

These	are	already	configured	correctly,	so	we	don't	need	to	make	any	changes.

Configure	CelestialBody	Resources

Next,	let's	configure	the	Earth	model	for	precise	usage	with	the	ContactLocator
resource.	By	default,	the	Earth	size	and	shape	differ	by	less	than	1	m	in
equatorial	and	polar	radii	between	the	two	subsystems	But	we	can	make	them
match	exactly	by	modifying	GMAT's	Earth	properties.

1.	 On	the	Resources	tab,	expand	the	SolarSystem	folder.
2.	 Double-click	Earth	to	display	the	Earth	configuration.
3.	 Note	the	various	configuration	options	available:

Equatorial	Radius	and	Flattening	define	the	Earth	shape	for	GMAT
itself.	PCK	Files	lists	additional	SPICE	PCK	files	to	load,	in	addition
to	the	file	shown	above	in	the	SolarSystem	Planetary	Constants
Kernel	box.	In	this	case,	these	files	provide	high-fidelity	Earth



orientation	parameters	(EOP)	data.
On	the	Orientation	tab,	Spice	Frame	Id	indicates	the	Earth-fixed
frame	to	use	for	the	SPICE	subsystem,	and	FK	Files	provides
additional	FK	files	that	define	the	frame.	In	this	case,	Earth	is	using
the	built-in	ITRF93	frame,	which	is	different	but	very	close	to	GMAT's
EarthFixed	coordinate	system.	See	the	CoordinateSystem	reference
for	details	on	that	system.

4.	 Set	Equatorial	Radius	to	6378.1366.
5.	 Set	Flattening	to	0.00335281310845547.
6.	 Click	OK.

These	two	values	were	taken	from	the	pck00010.tpc	file	referenced	in	the
SolarSystem	configuration.	Setting	them	for	Earth	ensures	that	the	position	of
the	GroundStation	we	create	later	will	be	referenced	to	the	exact	same	Earth
definition	throughout	the	mission.	Note	that	the	exact	position	may	still	differ
between	the	two	based	on	the	different	body-fixed	frame	definition	and	the
different	EOP	data	sources,	but	this	residual	difference	is	small.

Your	Earth	panel	should	look	like	this	after	these	steps	are	complete:



Configure	and	Run	the	Eclipse	Locator
Now	we	are	ready	to	search	for	eclipses	in	our	mission.	We	do	this	by	creating
an	EclipseLocator	resource	that	holds	the	search	configuration.	Then	we	can
perform	a	search	by	running	the	FindEvents	command,	but	GMAT	does	this
automatically	at	the	end	of	the	mission	unless	you	configure	it	otherwise.	In	this
case,	we	will	use	the	automatic	option.

Create	and	Configure	the	EclipseLocator

First	we	create	the	EclipseLocator:

On	the	Resources	tab,	right-click	the	Event	Locators	folder,	point	to	Add,
and	click	EclipseLocator.

This	will	result	in	a	new	resource	called	EclipseLocator1.

Next,	we	need	to	configure	the	new	resource	for	our	mission:

1.	 Double-click	EclipseLocator1	to	edit	the	configuration.

Note	the	following	default	settings:
Spacecraft	is	set	to	DefaultSC,	the	name	of	our	spacecraft.
OccultingBodies	is	set	to	Earth	and	Luna.	These	are	the	two	bodies
that	will	be	searched	for	eclipses.
EclipseTypes	is	set	to	search	for	all	eclipse	types	(umbra	or	total,
penumbra	or	partial,	and	antumbra	or	annular)
Run	Mode	is	set	to	Automatic	mode,	which	means	the	eclipse	search
will	be	run	automatically	at	the	end	of	the	mission.
Use	Entire	Interval	is	checked,	so	the	entire	mission	time	span	will	be
searched.



Light-time	delay	and	stellar	aberration	are	both	enabled,	so	eclipse
times	will	be	adjusted	appropriately.
Step	size	is	set	to	10	s.	This	is	the	minimum-duration	eclipse	(or	gap
between	eclipses)	that	this	locator	is	guaranteed	to	find.

2.	 Click	OK	to	accept	the	default	settings.	They	are	fine	for	our	purposes.

The	final	configuration	should	match	the	following	screenshot.

Run	the	Mission

Now	it's	time	to	run	the	mission	and	look	at	the	results.

1.	 Click	Run	( )	to	run	the	mission.

The	eclipse	search	will	take	a	few	seconds.	As	it	progresses,	you'll	see	the
following	message	in	the	message	window	at	the	bottom	of	the	screen:

Finding	events	for	EclipseLocator	EclipseLocator1	...



Celestial	body	properties	are	provided	by	SPICE	kernels.

2.	 When	the	run	is	complete,	click	the	Output	tab	to	view	the	available
output.

3.	 Double-click	EclipseLocator1	to	view	the	eclipse	report.

You'll	see	a	report	that	looks	similar	to	this:

Three	eclipses	were	found,	all	part	of	a	single	"total"	eclipse	event	totalling
about	35	minutes.	A	total	event	consists	of	all	adjacent	and	overlapping	portions,
such	as	penumbra	eclipses	occuring	adjacent	to	umbra	eclipses	as	in	this	case.

Click	Close	to	close	the	report.	The	report	text	is	still	available	as
EclipseLocator1.txt	in	the	GMAT	output	folder.



Configure	and	Run	the	Contact	Locator
Finding	ground	station	contact	times	is	a	very	similar	process,	but	we'll	use	the
ContactLocator	resource	instead.	First	we	need	to	add	a	GroundStation,	then	we
can	configure	the	locator	to	find	contact	times	between	it	and	our	spacecraft.

Create	and	Configure	a	Ground	Station

Let's	create	a	ground	station	that	will	be	in	view	from	the	final	geostationary
orbit.	By	looking	at	the	DefaultGroundTrackPlot	window,	our	spacecraft	is
positioned	over	the	Indian	Ocean.	A	ground	station	in	India	should	be	in	view.
We	can	choose	the	Hyderabad	facility,	which	has	the	following	properties:

Latitude:	17.0286	deg

Longitude:	78.1883	deg

Altitude:	0.541	km

Let's	create	this	ground	station	in	GMAT:

1.	 First,	close	all	graphics	and	solver	windows,	to	allow	full	manipulation	of
resources.

2.	 On	the	Resources	tab,	right-click	the	Ground	Station	folder	and	click	Add
Ground	Station.	This	will	create	a	new	resource	called	GroundStation1.

3.	 Rename	GroundStation1	to	Hyderabad.
4.	 Double-click	Hyderabad	to	edit	its	configuration.

The	following	values	are	configured	appropriately	by	default,	so	we	won't
change	them:

Min.	Elevation:	This	is	the	minimum	elevation	angle	from	the	ground
station	for	a	valid	contact.	The	current	value	(7	deg)	is	appropriate	for
this	case.
Central	Body:	Earth	is	the	only	allowed	value	at	this	time.

5.	 In	the	State	Type	list,	select	Spherical.	This	allows	input	in	latitude,
longitude,	and	altitude.

6.	 In	the	Horizon	Reference	list,	select	Ellipsoid.
7.	 In	the	Latitude	box,	type	17.0286.



8.	 In	the	Longitude	box,	type	78.1883.
9.	 In	the	Altitude	box,	type	0.541.
10.	 Click	OK	to	accept	these	changes.

The	configured	GroundStation	should	look	like	the	following	screenshot:

If	you	add	the	GroundStation	to	the	DefaultGroundTrackPlot,	you	can	see	the
location	visually:



Create	and	Configure	the	ContactLocator

Now	we	can	create	a	ContactLocator	that	will	search	for	contact	times	between
our	spacecraft	and	the	Hyderabad	station.

1.	 On	the	Resources	tab,	right-click	the	Event	Locators	folder,	point	to	Add,
and	click	ContactLocator.	This	will	create	ContactLocator1.

2.	 Double-click	ContactLocator1	to	edit	the	configuration.

Many	of	the	default	values	are	identical	to	the	EclipseLocator,	so	we	don't
need	to	explain	them	again.	There	are	a	couple	new	properties	that	we'll
note,	but	won't	change:

Occulting	Bodies:	These	are	celestial	bodies	that	GMAT	will	search
for	occultations	of	the	line	of	sight	between	the	spacecraft	and	the
ground	station.	Since	our	spacecraft	is	orbiting	the	Earth,	we	don't
need	to	choose	any	occulting	bodies.	Note	that	Earth	is	considered
automatically	because	it	is	the	central	body	of	the	ground	station.
Light-time	direction:	This	is	the	signal	sense	of	the	ground	station.
You	can	choose	to	calculate	light-time	delay	as	if	the	ground	station	is
transmitting,	or	if	it	is	receiving.

3.	 In	the	Observers	list,	enable	Hyderabad.	This	will	cause	GMAT	to	search
for	contacts	to	this	station.

4.	 In	the	Step	size	box,	type	600.	Since	we're	not	using	third-body



occultations,	this	step	size	can	be	increased	significantly	without	missing
events.	See	the	ContactLocator	documentation	for	details.

5.	 Click	OK	to	accept	the	changes.

When	fully	configured,	the	GroundStation1	window	will	look	like	the	following
screenshot:

Run	the	Mission

Now	it's	time	to	run	the	mission	again	and	look	at	these	new	results.

1.	 Click	Run	( )	to	run	the	mission.

The	contact	search	will	take	much	less	time	than	the	eclipse	search,	since
we're	using	a	larger	step	size.	As	it	progresses,	you'll	see	the	following
message	in	the	message	window	at	the	bottom	of	the	screen:

Finding	events	for	ContactLocator	ContactLocator1	...



Celestial	body	properties	are	provided	by	SPICE	kernels.

2.	 When	the	run	is	complete,	click	the	Output	tab	to	view	the	available
output.

3.	 Double-click	ContactLocator1	to	view	the	report.

You'll	see	a	report	that	looks	similar	to	this:

Notice	that	two	contact	intervals	were	found:	one	about	6	minutes	long	at	the
very	beginning	of	the	mission	(it	starts	at	the	Spacecraft's	initial	epoch),	and	a
second	one	about	29	hours	long,	starting	once	it	gets	into	geosynchronous	orbit
and	extending	to	the	end	of	the	simulation.

Click	Close	to	close	the	report.	The	report	text	is	still	available	as
ContactLocator1.txt	in	the	GMAT	output	folder.



Further	Exercises
To	expand	on	this	tutorial,	try	the	following	exercise:

For	a	mission	like	this,	you	probably	will	want	ground	station	coverage
during	both	maneuvers.	Try	the	following	steps	to	make	sure	the	coverage
is	adequate:

Change	the	colors	of	the	Propagate	commands,	so	you	can	see
visually	where	the	burns	are	located.

Add	GroundStation	resources	near	the	locations	of	the	burns	on	the
ground	track.

Confirm	the	burn	epochs	in	the	Command	Summary	for	each
Maneuver	command.

Confirm	in	the	contact	report	that	these	times	occur	during	a	contact
interval.

Check	the	eclipse	report,	too:	you	may	not	want	to	perform	a
maneuver	during	an	eclipse!

This	tutorial	shows	you	the	basics	of	adding	eclipse	and	station	contact	location
to	your	mission.	These	resources	have	a	lot	of	power,	and	there	are	many
different	ways	to	use	them.	Consult	the	ContactLocator	and	EclipseLocator
documentation	for	details.



Chapter	12.	Electric	Propulsion

Audience Beginner

Length 15	minutes

Prerequisites Complete	Simulating	an	Orbit

Script	File Tut_ElectricPropulsionModelling.script



Objective	and	Overview
In	this	tutorial,	we	will	use	GMAT	to	perform	a	finite	burn	for	a	spacecraft	using
an	electric	propulsion	system.		Note	that	targeting	and	design	using	electric
propulsion	is	identical	to	chemical	propulsion	and	we	refer	you	to	the	tutorial
named	Target	Finite	Burn	to	Raise	Apogee	for	targeting	configuration.	This
tutorial	focuses	only	on	configuration	and	modelling	using	electric	propulsion
systems.

The	basic	steps	of	this	tutorial	are:

1.	 Create	and	configure	the	Spacecraft	hardware	and	FiniteBurn	Resources
2.	 Configure	the	Mission	Sequence.	To	do	this,	we	will

a.	 Create	Begin/End	FiniteBurn	commands	with	default	settings.
b.	 Create	a	Propagate	command	to	propagate	while	applying	thrust	from

the	electric	propulsion	system.
3.	 Run	the	mission



Create	and	Configure	Spacecraft	Hardware	and
Finite	Burn
For	this	tutorial,	you’ll	need	GMAT	open	with	the	default	mission	loaded.	To
load	the	default	mission,	click	New	Mission	( )	or	start	a	new	GMAT	session.
We	will	use	the	default	configurations	for	the	spacecraft	(DefaultSC)	and	the
propagator	(DefaultProp).	DefaultSC	is	configured	by	default	to	a	near-circular
orbit,	and	DefaultProp	is	configured	to	use	Earth	as	the	central	body	with	a
nonspherical	gravity	model	of	degree	and	order	4.	You	may	want	to	open	the
dialog	boxes	for	these	objects	and	inspect	them	more	closely	as	we	will	leave
them	at	their	default	settings.

Create	a	Thruster,	Fuel	Tank,	and	Solar	Power	System

To	model	thrust	and	fuel	use	associated	with	a	finite	burn,	we	must	create	an
ElectricThruster,	an	ElectricTank,	a	power	system,	and	then	attach	the	newly
created	ElectricTank	to	the	ElectricThruster,	and	attach	all	hardware	to	the
spacecraft.	We'll	start	by	creating	the	hardware	objects.

1.	 In	the	Resources	tree,	right-click	on	the	Hardware	folder,	point	to	Add,
and	click	ElectricThruster.		A	Resource	named	ElectricThruster1	will	be
created.

2.	 In	the	Resources	tree,	right-click	on	the	Hardware	folder,	point	to	Add,
and	click	ElectricTank.		A	Resource	named	ElectricTank1	will	be	created.

3.	 In	the	Resources	tree,	right-click	on	the	Hardware	folder,	point	to	Add,
and	click	SolarPowerSystem.		A	Resource	named	SolarPowerSystem1
will	be	created.

Configure	the	Hardware

Now	we'll	configure	the	hardware	models	for	this	exercise.

1.	 Double-click	ElectricThruster1	to	edit	its	properties.
2.	 In	the	Mass	Change	group	box,	check	Decrement	Mass.
3.	 In	the	Mass	Change	group	box,	select	ElectricTank1	for	the	Tank.	
4.	 In	the	Thrust	Config	group	box,	select	ConstantThrustAndIsp	for

ThrustModel	and	set	ConstantThrust	to	5.0	N.	



Figure	12.1,	“ElectricThruster1	Configuration”	below	shows	the
ElectricThruster1	configuration	that	we	will	use.

Figure	12.1.	ElectricThruster1	Configuration





We	will	use	the	default	tank	settings.	Figure	12.2,	“ElectricTank1
Configuration”	shows	the	finished	ElectricTank1	configuration.

Figure	12.2.	ElectricTank1	Configuration

1.	 Double-click	SolarPowerSystem1	to	edit	its	properties.
2.	 In	the	General	group	box,	click	the	Select	button	next	to	ShadowBodies.
3.	 Remove	Earth	from	the	ShadowBodies	list.	

Figure	12.3,	“SolarPowerSystem1	Configuration”	shows	the	finished
SolarPowerSystem1	configuration.

Figure	12.3.	SolarPowerSystem1	Configuration



Attach	Hardware	to	the	Spacecraft

1.	 In	the	Resources	tree,	double-click	DefaultSC	to	edit	its	properties.
2.	 Select	the	Tanks	tab.	In	the	Available	Tanks	column,	select

ElectricTank1.	Then	click	the	right	arrow	button	to	add	ElectricTank1	to
the	SelectedTanks	list.	Click	Apply.

3.	 Select	the	Actuators	tab.	In	the	Available	Thrusters	column,	select
ElectricThruster1.	Then	click	the	right	arrow	button	to	add
ElectricThruster1	to	the	SelectedThrusters	list.	Click	OK.

4.	 Select	the	PowerSystem	tab.	In	the	PowerSystem	tab,	select
SolarPowerSystem1.	Click	OK.

Figure	12.4.	Attach	ElectricTank1	to	DefaultSC



Figure	12.5.	Attach	ElectricThruster1	to	DefaultSC



Figure	12.6.	Attach	SolarPowerSystem1	to	DefaultSC



Create	the	Finite	Burn	Maneuver

We’ll	need	a	single	FiniteBurn	Resource	for	this	tutorial.

1.	 In	the	Resources	tree,	right-click	the	Burns	folder	and	add	a	FiniteBurn.	A



Resource	named	FiniteBurn1	will	be	created.
2.	 Double-click	FiniteBurn1	to	edit	its	properties.
3.	 Use	the	menu	to	the	right	of	the	Thruster	field	to	select	ElectricThruster1

as	the	thruster	associated	with	FiniteBurn1.	Click	OK.

Figure	12.7.	Creation	of	FiniteBurn	Resource	FiniteBurn1



Configure	the	Mission	Sequence
Now	we	will	configure	the	mission	sequence	to	apply	a	finite	maneuver	using
electric	propulsion	for	a	two	day	propagation.	When	we're	done,	the	mission
sequence	will	appear	as	shown	below.

Figure	12.8.	Final	Mission	Sequence

Create	the	Commands

1.	 In	the	Mission	Tree,	right	click	on	Propagate1,	select	Rename,	and	enter
Propagate	Two	Days.

2.	 Right	click	on	the	command	named	Propagate	Two	Days,	select	Insert
Before,	then	select	BeginFiniteBurn.

3.	 Right	click	on	the	command	named	Propagate	Two	Days,	select	Insert
After,	then	select	EndFiniteBurn.

4.	 Rename	the	command	named	BeginFiniteBurn1	to	StartTheManeuver.
5.	 Rename	the	command	named	EndFiniteBurn1	to	EndTheManeuver.

Note	that	for	more	complex	analysis	that	has	multiple	FiniteBurn	objects,	you
will	need	to	configure	the	BeginFiniteBurn	and	EndFiniteBurn	commands	to
select	the	desired	FiniteBurn	Resource.	As	there	is	only	one	FiniteBurn
Resource	in	this	example,	the	system	automatically	selected	the	correct
FiniteBurn	Resource.

Configure	the	Propagate	Command

Configure	the	Propagate	Two	Days	command	to	propagate	for
DefaultSC.ElapsedDays	=	2.0

Figure	12.9.	Prop	To	Perigee	Command	Configuration





Run	the	Mission
Before	running	the	mission,	click	Save	to	save	the	mission	to	a	file	of	your
choice.	Now	click	Run.	As	the	mission	runs,	you	will	see	the	orbit	spiral	way
from	Earth.	Note	we	exaggerated	the	thrust	level	so	that	an	appreciable	change
in	the	orbit	occurs	in	two	days.

Figure	12.10.	3D	View	of	Finite	Electric	Maneuver



Chapter	13.	Simulate	DSN	Range	and	Doppler
Data

Audience Intermediate	level

Length 40	minutes

Prerequisites Basic	Mission	Design	Tutorials

Script	Files
Tut_Simulate_DSN_Range_and_Doppler_Data.script

Tut_Simulate_DSN_Range_and_Doppler_Data_3_weeks.script



Objective	and	Overview

Note

GMAT	currently	implements	a	number	of	different	data	types
for	orbit	determination.	Please	refer	to	Tracking	Data	Types	for
OD	for	details	on	all	the	measurement	types	currently
supported	by	GMAT.	The	measurements	being	considered	here
are	DSN	two	way	range	and	DSN	two	way	Doppler.

In	this	tutorial,	we	will	use	GMAT	to	generate	simulated	DSN	range	and
Doppler	measurement	data	for	a	sample	spacecraft	in	orbit	about	the	Sun.	The
spacecraft	in	this	tutorial	is	in	an	Earth	“drift	away”	type	orbit	about	1	AU	away
from	the	Sun	and	almost	300	million	km	away	from	the	Earth.

The	basic	steps	of	this	tutorial	are:

1.	 Create	and	configure	the	spacecraft,	spacecraft	transponder,	and	related
parameters

2.	 Create	and	configure	the	Ground	Station	and	related	parameters
3.	 Define	the	types	of	measurements	to	be	simulated
4.	 Create	and	configure	Force	model	and	propagator
5.	 Create	and	configure	Simulator	object
6.	 Run	the	mission	and	analyze	the	results
7.	 Create	a	realistic	GMAT	Measurement	Data	(GMD)	file

Note	that	this	tutorial,	unlike	most	of	the	mission	design	tutorials,	will	be
entirely	script	based.	This	is	because	most	of	the	resources	and	commands
related	to	navigation	are	not	implemented	in	the	GUI	and	are	only	available	via
the	script	interface.

As	you	go	through	the	tutorial	below,	it	is	recommended	that	you	paste	the	script
segments	into	GMAT	as	you	go	along.	After	each	paste	into	GMAT,	you	should
perform	a	syntax	check	by	hitting	the	Save,	Sync	button	( ).	To	avoid	syntax
errors,	where	needed,	don’t	forget	to	add	the	following	command	to	the	last	line
of	the	script	segment	you	are	checking.



BeginMissionSequence

We	note	that	in	addition	to	the	material	presented	here,	you	should	also	look	at
the	individual	Help	resources	for	all	the	objects	and	commands	we	create	and
use	here.	For	example,	Spacecraft,	Transponder,	Transmitter,
GroundStation,	ErrorModel,	TrackingFileSet,	RunSimulator,	etc	all	have
their	own	Help	pages.



Create	and	configure	the	spacecraft,	spacecraft
transponder,	and	related	parameters
For	this	tutorial,	you’ll	need	GMAT	open,	with	a	new	empty	script	open.	To
create	a	new	script,	click	New	Script,	( )

Create	a	satellite	and	set	its	epoch	and	Cartesian
coordinates

Since	this	is	a	Sun-orbiting	spacecraft,	we	choose	to	represent	the	orbit	in	a	Sun-
centered	coordinate	frame	which	we	define	using	the	scripting	below.

%		Create	the	Sun-centered	J2000	frame.

Create	CoordinateSystem	SunMJ2000Eq;

SunMJ2000Eq.Origin	=	Sun;

SunMJ2000Eq.Axes			=	MJ2000Eq;		%Earth	mean	equator	axes

Next,	we	create	a	new	spacecraft,	Sat,	and	set	its	epoch	and	Cartesian
coordinates.

Create	Spacecraft	Sat;

Sat.DateFormat							=	UTCGregorian;

Sat.CoordinateSystem	=	SunMJ2000Eq;

Sat.DisplayStateType	=	Cartesian;

Sat.Epoch												=	19	Aug	2015	00:00:00.000;

Sat.X																=	-126544968

Sat.Y																=		61978514

Sat.Z																=		24133221

Sat.VX															=	-13.789

Sat.VY															=	-24.673

Sat.VZ															=	-10.662

Sat.Id															=	11111;

Note	that,	in	addition	to	setting	Sat’s	coordinates,	we	also	assigned	it	an	ID
number.	This	is	the	number	that	will	be	written	to	the	GMAT	Measurement	Data
(GMD)	file	that	we	will	discuss	later.

Create	a	Transponder	object	and	attach	it	to	our	spacecraft



To	simulate	navigation	measurements	for	a	given	spacecraft,	GMAT	requires
that	a	Transponder	object,	which	receives	the	ground	station	uplink	signal	and
re-transmits	it,	typically,	to	a	ground	station,	be	attached	to	the	spacecraft.
Below,	we	create	the	Transponder	object	and	attach	it	to	our	spacecraft.

Create	Antenna	HGA;

Create	Transponder	SatTransponder;

SatTransponder.PrimaryAntenna						=	HGA;

SatTransponder.HardwareDelay							=	1e-06;	%seconds

SatTransponder.TurnAroundRatio					=	'880/749';

Sat.AddHardware																				=	{SatTransponder,	HGA};

After	we	create	the	Transponder	object,	there	are	three	fields,
PrimaryAntenna,	HardwareDelay,	and	TurnAroundRatio	that	must	be	set.

The	PrimaryAntenna	is	the	antenna	that	the	spacecraft	transponder,
SatTransponder,	uses	to	receive	and	retransmit	RF	signals.	In	the	example
above,	we	set	this	field	to	HGA	which	is	an	Antenna	object	we	have	created.
Currently	the	Antenna	resource	has	no	function	but	in	a	future	release,	it	may
have	a	function.	HardwareDelay,	the	transponder	signal	delay	in	seconds,	is	set
to	one	micro-second.	We	set	TurnAroundRatio,	which	is	the	ratio	of	the
retransmitted	to	the	input	signal,	to	'880/749.'	See	the	FRC-21_RunSimulator
Help	and	Appendix	A	–	Determination	of	Measurement	Noise	Values	for	a
discussion	on	how	GMAT	uses	this	input	field.	As	described	in	the	Help,	if	our
DSN	data	does	not	use	a	ramp	table,	this	turn	around	ratio	is	used	directly	to
calculate	the	Doppler	measurements.

Note	that	in	the	last	script	command	above,	we	attach	our	newly	created
Transponder	and	its	related	Antenna	object	to	our	spacecraft,	Sat.



Create	and	configure	the	Ground	Station	and
related	parameters

Create	Ground	Station	Transmitter,	Receiver,	and	Antenna
objects

Before	we	create	the	GroundStation	object	itself,	as	shown	below,	we	first
create	the	Transmitter,	Receiver,	and	Antenna	objects	that	must	be	associated
with	any	GroundStation.

%		Ground	Station	electronics.	

Create	Transmitter	DSNTransmitter;

Create	Receiver	DSNReceiver;

Create	Antenna	DSNAntenna;

DSNTransmitter.PrimaryAntenna					=	DSNAntenna;

DSNReceiver.PrimaryAntenna								=	DSNAntenna;

DSNTransmitter.Frequency										=	7200;			%MHz

In	the	script	segment	above,	we	first	created	Transmitter,	Receiver,	and
Antenna	objects.	The	GMAT	script	line	DSNTransmitter.PrimaryAntenna	=
DSNAntenna,	sets	the	main	antenna	that	the	Transmitter	object	will	be	using.
Likewise,	the	DSNReceiver.PrimaryAntenna	=	DSNAntenna	script	line	sets	the
main	antenna	that	the	Receiver	object	will	be	using.	As	previously	mentioned,
the	Antenna	object	currently	has	no	function,	but	we	include	it	here	both
because	GMAT	requires	it	and	for	completeness	since	the	Antenna	resource
may	have	a	function	in	a	future	GMAT	release.	Finally,	we	set	the	transmitter
frequency	in	the	last	GMAT	script	line	above.	See	the	RunSimulator	Help	for	a
complete	description	of	how	this	input	frequency	is	used.	As	described	in	the
Help,	since	in	this	example	we	will	not	be	using	a	ramp	table,	this	input
frequency	will	be	used	to	calculate	the	simulated	value	of	the	range	and	Doppler
observations.	In	addition,	this	input	frequency	will	also	be	output	to	the	range
data	file	created	by	the	RunSimulator	command.

Create	Ground	Station

Below,	we	create	and	configure	a	GroundStation	object.



%			Create	ground	station	and	associated	error	models

Create	GroundStation	CAN;

CAN.CentralBody											=	Earth;

CAN.StateType													=	Cartesian;

CAN.HorizonReference						=	Ellipsoid;

CAN.Location1													=	-4461.083514

CAN.Location2													=	2682.281745

CAN.Location3													=	-3674.570392

CAN.Id																				=	22222;

CAN.MinimumElevationAngle	=	7.0;

CAN.IonosphereModel							=	'IRI2007';

CAN.TroposphereModel						=	'HopfieldSaastamoinen';

CAN.AddHardware											=	{DSNTransmitter,	DSNAntenna,	...

																																DSNReceiver};

The	script	segment	above	is	broken	into	five	sections.	In	the	first	section,	we
create	our	GroundStation	object	and	we	set	our	Earth-Centered	Fixed	Cartesian
coordinates.	In	the	second	section,	we	set	the	ID	of	the	ground	station	that	will
output	to	the	GMD	file	created	by	the	RunSimulator	command.	In	the	third
section,	we	set	the	minimum	elevation	angle	to	7	degrees.	Below	this	ground
station	to	spacecraft	elevation	angle,	no	simulated	data	will	be	created.	In	the
fourth	section,	we	specify	which	troposphere	and	ionosphere	model	we	wish	to
use	to	model	RF	signal	atmospheric	refraction	effects.	Finally,	in	the	fifth
section,	we	attached	three	pieces	of	previously	created	required	hardware	to	our
ground	station,	a	transmitter,	a	receiver,	and	an	antenna.

Create	Ground	Station	Error	Models

It	is	well	known	that	all	measurement	types	have	random	noise	and/or	biases
associated	with	them.	For	GMAT,	these	affects	are	modelled	using	ground
station	error	models.	Since	we	have	already	created	the	GroundStation	object
and	its	related	hardware,	we	now	create	the	ground	station	error	models.	Since
we	wish	to	simulate	both	range	and	Doppler	data,	we	need	to	create	two	error
models	as	shown	below,	one	for	range	measurements	and	one	for	Doppler
measurements.

%			Create	Ground	station	error	models

Create	ErrorModel	DSNrange;



DSNrange.Type																		=	'DSN_SeqRange';

DSNrange.NoiseSigma												=	10.63;

DSNrange.Bias																		=	0.0;

Create	ErrorModel	DSNdoppler;

DSNdoppler.Type																=	'DSN_TCP';

DSNdoppler.NoiseSigma										=	0.0282;

DSNdoppler.Bias																=	0.0;

CAN.ErrorModels																=	{DSNrange,	DSNdoppler};

The	script	segment	above	is	broken	into	three	sections.	The	first	section	defines
an	ErrorModel	named	DSNrange.	The	error	model	Type	is	DSN_SeqRange
which	indicates	that	it	is	an	error	model	for	DSN	sequential	range
measurements.	The	1	sigma	standard	deviation	of	the	Gaussian	white	noise	is	set
to	10.63	Range	Units	(RU)	and	the	measurement	bias	is	set	to	0	RU.

The	second	section	above	defines	an	ErrorModel	named	DSNdoppler.	The
error	model	Type	is	DSN_TCP	which	indicates	that	it	is	an	error	model	for	DSN
total	count	phase-derived	Doppler	measurements.	The	1	sigma	standard
deviation	of	the	Gaussian	white	noise	is	set	to	0.0282	Hz	and	the	measurement
bias	is	set	to	0	Hz.

The	third	section	above	attaches	the	two	ErrorModel	resources	we	have	just
created	to	the	CAN	GroundStation.	Note	that	in	GMAT,	the	measurement	noise
or	bias	is	defined	on	a	per	ground	station	basis.	Thus,	any	range	measurement
error	involving	the	CAN	GroundStation	is	defined	by	the	DSNRange
ErrorModel	and	any	Doppler	measurement	error	involving	the	CAN
GroundStation	is	defined	by	the	DSNdoppler	ErrorModel.	Note	that	since
GMAT	currently	only	models	two	way	measurements	where	the	transmitting	and
receiving	ground	stations	are	the	same,	we	do	not	have	to	consider	the	case
where	the	transmitting	and	receiving	ground	stations	are	different.	Suppose	we
were	to	add	an	additional	GroundStation	to	this	simulation.	The	measurement
error	for	observations	involving	this	new	GroundStation	would	be	defined	by
the	ErrorModel	resources	attached	to	it.

See	Appendix	A	–	Determination	of	Measurement	Noise	Values	for	a	discussion
of	how	we	determined	the	values	for	NoiseSigma	for	the	two	ErrorModel
resources	we	created.



Define	the	types	of	measurements	to	be
simulated
Now	we	will	create	and	configure	a	TrackingFileSet	resource.	This	resource
defines	the	type	of	data	to	be	simulated,	the	ground	stations	that	will	be	used,
and	the	file	name	of	the	output	GMD	file	which	will	contain	the	simulated	data.
In	addition,	the	TrackingFileSet	resource	will	define	needed	simulation
parameters	for	the	various	data	types.

Create	TrackingFileSet	DSNsimData;

DSNsimData.AddTrackingConfig								=	{{CAN,	Sat,	CAN},	'DSN_SeqRange'};			

DSNsimData.AddTrackingConfig								=	{{CAN,	Sat,	CAN},	'DSN_TCP'};																	

DSNsimData.FileName																	=	...

																					{'Sat_dsn_range_and_doppler_measurements.gmd'};

DSNsimData.UseLightTi															=	true;

DSNsimData.UseRelativityCorrection		=	true;

DSNsimData.UseETminusTAI												=	true;

DSNsimData.SimDopplerCountInterval		=	10.0;

DSNsimData.SimRangeModuloConstant			=	3.3554432e+07;

The	script	lines	above	are	broken	into	three	sections.	In	the	first	section,	the
resource	name,	DSNsimData,	is	declared,	the	data	types	are	defined,	and	the
output	file	name	is	specified.	AddTrackingConfig	is	the	field	that	is	used	to
define	the	data	types.	The	first	AddTrackingConfig	line	tells	GMAT	to	simulate
DSN	range	two	way	measurements	for	the	CAN	to	Sat	to	CAN	measurement
strand.	The	second	AddTrackingConfig	line	tells	GMAT	to	simulate	DSN
Doppler	two	way	measurements	for	the	CAN	to	Sat	to	CAN	measurement
strand.

The	second	section	above	sets	some	simulation	parameters	that	apply	to	both	the
range	and	Doppler	measurements.	We	set	UseLightTime	to	True	in	order	to
generate	realistic	measurements	where	GMAT	takes	into	account	the	finite	speed
of	light.	The	last	two	parameters	in	this	section,	UseRelativityCorrection	and
UseETminusTAI,	are	set	to	True	so	that	general	relativistic	corrections,	as
described	in	Moyer	[2000],	are	applied	to	the	light	time	equations.

The	third	section	above	sets	simulation	parameters	that	apply	to	a	specific



measurement	type.	SimDopplerCountInterval	applies	only	to	Doppler
measurements	and	SimRangeModuloConstant	applies	only	to	range
measurements.	We	note	that	the	“Sim”	in	the	field	names	is	used	to	indicate	that
these	fields	only	are	applicable	when	GMAT	is	in	simulation	mode	(i.e.,	when
using	the	RunSimulator	command)	data	and	not	when	GMAT	is	in	estimation
mode	(i.e.,	when	using	the	RunEstimator	command).
SimDopplerCountInterval,	the	Doppler	Count	Interval,	is	set	to	10	seconds	and
SimRangeModuloConstant,	the	maximum	possible	range	value,	is	set	to
33554432.	See	the	RunSimulator	Help	and	Appendix	A	–	Determination	of
Measurement	Noise	Values	for	a	description	of	how	these	parameters	are	used	to
calculate	the	measurement	values.



Create	and	configure	Force	model	and
propagator
We	now	create	and	configure	the	force	model	and	propagator	that	will	be	used
for	the	simulation.	For	this	deep	space	drift	away	orbit,	we	naturally	choose	the
Sun	as	our	central	body.	Since	we	are	far	away	from	all	the	planets,	we	use	point
mass	gravity	models	and	we	include	the	effects	of	the	Sun,	Earth,	Moon,	and
most	of	the	other	planets.	In	addition,	we	model	Solar	Radiation	Pressure	(SRP)
affects	and	we	include	the	affect	of	general	relativity	on	the	dynamics.	The	script
segment	accomplishing	this	is	shown	below.

Create	ForceModel	Fm;

Create	Propagator	Prop;

Fm.CentralBody												=	Sun;

Fm.PointMasses												=	{Sun,	Earth,	Luna,	Mars,	Saturn,	...

																													Uranus,	Mercury,	Venus,	Jupiter};

Fm.SRP																				=	On;

Fm.RelativisticCorrection	=	On;

Fm.ErrorControl											=	None;

Prop.FM																			=	Fm;

Prop.MinStep														=	0;



Create	and	configure	Simulator	object
As	shown	below,	we	create	and	configure	the	Simulator	object	used	to	define
our	simulation.

Create	Simulator	Sim;

Sim.AddData													=	{DSNsimData};

Sim.EpochFormat									=	UTCGregorian;

Sim.InitialEpoch								=	'19	Aug	2015	00:00:00.000';

Sim.FinalEpoch										=	'19	Aug	2015	00:12:00.000';

Sim.MeasurementTimeStep	=	600;

Sim.Propagator										=	Prop;

Sim.AddNoise												=	Off;

In	the	first	script	line	above,	we	create	a	Simulator	object,	Sim.	The	next	field
set	is	AddData	which	is	used	to	specify	which	TrackingFileSet	should	be	used.
Recall	that	the	TrackingFileSet	specifies	the	type	of	data	to	be	simulated	and
the	file	name	specifying	where	to	store	the	data.	The	TrackingFileSet,
DSNsimData,	that	we	created	in	the	Define	the	types	of	measurements	to	be
simulated	section,	specified	that	we	wanted	to	simulate	two	way	DSN	range	and
Doppler	data	that	involved	the	CAN	GroundStation.

The	next	three	script	lines,	which	set	the	EpochFormat,	InitialEpoch,	and
FinalEpoch	fields,	specify	the	time	period	of	the	simulation.	Here,	we	choose	a
short	12	minute	duration.

The	next	script	line	sets	the	MeasurementTimeStep	field	which	specifies	the
requested	time	between	measurements.	We	choose	a	value	of	10	minutes.	This
means	that	our	data	file	will	contain	a	maximum	of	two	range	measurements	and
two	Doppler	measurements.

The	next	script	line	sets	the	Propagator	field	which	specifies	which	Propagator
object	should	be	used.	We	set	this	field	to	the	Prop	Propagator	object	which	we
created	in	the	Create	and	configure	Force	model	and	propagator	section.

Finally,	in	the	last	line	of	the	script	segment,	we	set	the	AddNoise	field	which
specifies	whether	or	not	we	want	to	add	noise	to	our	simulated	measurements.
The	noise	that	can	be	added	is	defined	by	the	ErrorModel	objects	that	we
created	in	the	Create	and	configure	the	Ground	Station	and	related	parameters



section.	As	discussed	in	the	Create	and	configure	the	Ground	Station	and	related
parameters	section	and	Appendix	A	–	Determination	of	Measurement	Noise
Values,	the	noise	added	to	the	range	measurements	would	be	Gaussian	with	a
one	sigma	value	of	10.63	Range	Units	and	the	noise	added	to	the	Doppler
measurements	would	be	Gaussian	with	a	one	sigma	value	of	0.0282	Hz.	For	this
simulation,	we	choose	not	to	add	noise.



Run	the	mission	and	analyze	the	results
The	script	segment	used	to	run	the	mission	is	shown	below.

BeginMissionSequence

	

RunSimulator	Sim

The	first	script	line,	BeginMissionSequence,	is	a	required	command	which
indicates	that	the	“Command”	section	of	the	GMAT	script	has	begun.	The
second	line	of	the	script	issues	the	RunSimulator	command	with	the	Sim
Simulator	resource,	defined	in	the	Create	and	configure	Simulator	object	section,
as	an	argument.	This	tells	GMAT	to	perform	the	simulation	specified	by	the	Sim
resource.

We	have	now	completed	all	of	our	script	segments.	See	the	file,	Simulate	DSN
Range	and	Doppler	Data.script,	for	a	listing	of	the	entire	script.	We	are	now
ready	to	run	the	script.	Hit	the	Save,Sync,Run	button,	( ).	Because	we	are
only	simulating	a	small	amount	of	data,	the	script	should	finish	execution	in
about	one	second.

Let’s	take	a	look	at	the	output	created.	The	file	created,
Sat_dsn_range_and_doppler_measurements.gmd,	was	specified	in	the
TrackingFileSet	resource,	DSNsimData,	that	we	created	in	the	Define	the	types
of	measurements	to	be	simulated	section.	The	default	directory,	if	none	is
specified,	is	the	GMAT	‘output’	directory.	Let’s	analyze	the	contents	of	this
“GMAT	Measurement	Data”	or	GMD	file	as	shown	below.

%	GMAT	Internal	Measurement	Data	File

27253.500405092593	DSN_SeqRange	9004	22222	11111	26016945.24902344	2	7.2e+009	3.3554432e+007

27253.500405092593	DSN_TCP		9006	22222	11111	2	10	-8459336323.89349840	

27253.507349537038	DSN_SeqRange	9004	22222	11111	21728172.10375977	2	7.2e+009	3.3554432e+007	

27253.507349537038	DSN_TCP		9006	22222	11111	2	10	-8459335611.28409770

The	first	line	of	the	file	is	a	comment	line	indicating	that	this	is	a	file	containing
measurement	data	stored	in	GMAT’s	internal	format.	There	are	4	lines	of	data
representing	range	data	at	two	successive	times	and	Doppler	data	at	two
successive	times.	As	we	expected,	we	have	no	more	than	4	total	measurements.
Refer	to	the	TrackingFileSet	Help	for	a	description	of	the	range	and	Doppler



GMD	file	format.

We	now	analyze	the	first	line	of	data	which	represents	a	DSN	two	way	range
measurement	at	the	start	of	the	simulation	at	'19	Aug	2015	00:00:00.000	UTCG’
which	corresponds	to	the	output	TAI	modified	Julian	Day	of
27253.500405092593	TAIMJD.

The	second	and	third	fields,	DSN_SeqRange	and	9004,	are	just	internal	GMAT
codes	indicating	the	use	of	DSN	range	(Trk	2-34	type	7)	data.

The	4th	field,	22222,	is	the	Downlink	station	ID.	This	is	the	ID	we	gave	the
CAN	GroundStation	object	that	we	created	in	the	Create	and	configure	the
Ground	Station	and	related	parameters	section.	The	5th	field,	11111,	is	the
spacecraft	ID.	This	is	the	ID	we	gave	the	Sat	Spacecraft	object	that	we	created
in	the	Create	and	configure	the	spacecraft,	spacecraft	transponder,	and	related
parameters	section.

The	6th	field,	26016945.24902344,	is	the	actual	DSN	range	observation	value	in
RU.

The	7th	field,	2,	is	an	integer	which	represents	the	Uplink	Band	of	the	uplink
GroundStation,	CAN.	The	designation,	2,	represents	X-band.	See	the
RunSimulator	Help	for	a	detailed	discussion	of	how	GMAT	determines	what
value	should	be	written	here.	As	described	in	the	Help,	since	we	are	not	using	a
ramp	table,	GMAT	determines	the	Uplink	Band	by	looking	at	the	transmit
frequency	of	the	Transmitter	object	attached	to	the	CAN	ground	station.	GMAT
knows	that	the	7200	MHz	value	that	we	assigned	to	CAN’s	Transmitter
resource,	DSNTransmitter,	corresponds	to	an	X-band	frequency.

The	8th	field,	7.2e+009,	is	the	transmit	frequency	of	CAN	at	the	time	of	the
measurement.	Since	we	are	not	using	a	ramp	table,	this	value	will	be	constant	for
all	measurements	and	it	is	given	by	the	value	of	the	frequency	of	the
Transmitter	object,	DSNTransmitter,	that	we	attached	to	the	CAN	ground
station.	Recall	the	following	script	segment,	DSNTransmitter.Frequency	=
7200;	%MHz,	from	the	Create	and	configure	the	Ground	Station	and	related
parameters	section.

The	9th	field,	3.3554432e+007,	represents	the	integer	range	modulo	number	that
helps	define	the	DSN	range	measurement.	This	is	the	value	that	we	set	when	we
created	and	configured	the	TrackingFileSet	DSNsimData	object	in	the	Define



the	types	of	measurements	to	be	simulated	section.	Recall	the	following	script
command,

																	DSNsimData.SimRangeModuloConstant	=	3.3554432e+07;

This	range	modulo	number	is	discussed	in	Appendix	A	–	Determination	of
Measurement	Noise	Values	and	is	defined	as	M,	the	length	of	the	ranging	code	in
RU.

We	now	analyze	the	second	line	of	data	which	represents	a	DSN	two	way
Doppler	measurement	at	the	start	of	the	simulation	at	'19	Aug	2015	00:00:00.000
UTCG’	which	corresponds	to	the	output	TAI	modified	Julian	Day	of
27253.500405092593	TAIMJD.

The	second	and	third	fields,	Doppler	and	9006,	are	just	internal	GMAT	codes
indicating	the	use	of	DSN	Doppler	(derived	from	two	successive	Trk	2-34	type
17	Total	Count	Phase	measurements)	data.

The	4th	field,	22222,	is	the	Downlink	station	ID.	This	is	the	ID	we	gave	the
CAN	GroundStation	object	that	we	created	in	the	Create	and	configure	the
Ground	Station	and	related	parameters	section.	The	5th	field,	11111,	is	the
spacecraft	ID.	This	is	the	ID	we	gave	the	Sat	Spacecraft	object	that	we	created
in	the	Create	and	configure	the	spacecraft,	spacecraft	transponder,	and	related
parameters	section.

The	6th	field,	2,	is	an	integer	which	represents	the	Uplink	Band	of	the	uplink
GroundStation,	CAN.	As	we	mentioned	when	discussing	the	range
measurement,	the	designation,	2,	represents	X-band.

The	7th	field,	10,	is	the	Doppler	Count	Interval	(DCI)	used	to	help	define	the
Doppler	measurement.	This	is	the	value	that	we	set	when	we	created	and
configured	the	TrackingFileSet	DSNsimData	object	in	the	Define	the	types	of
measurements	to	be	simulated	section.	Recall	the	following	script	command,

																DSNsimData.SimDopplerCountInterval	=	10.0;

The	DCI	is	also	discussed	in	Appendix	A	–	Determination	of	Measurement	Noise
Values.

The	8th	field,	-7819057474.22393610,	is	the	actual	DSN	Doppler	observation



value	in	Hz.

The	third	line	of	data	represents	the	second	DSN	two	way	range	measurement	at
'19	Aug	2015	00:10:00.000	UTCG’	which	corresponds	to	the	output	TAI
modified	Julian	Day	time	of	27253.507349537038	TAIMJD.	The	fourth	line	of
data	represents	the	second	DSN	two	way	Doppler	measurement	at	'19	Aug	2015
00:10:00.000	UTCG.’



Create	a	more	realistic	GMAT	Measurement	Data
(GMD)
We	have	run	a	short	simple	simulation	and	generated	a	sample	GMD	file.	Our
next	goal	is	to	generate	a	realistic	GMD	file	that	a	different	script	can	read	in	and
generate	an	orbit	determination	solution.	To	add	more	realism,	we	will	do	the
following:

Generate	data	from	additional	ground	stations

Add	the	use	of	a	ramp	table

Perform	a	longer	simulation

Add	measurement	noise

In	order	to	generate	measurement	data	from	additional	ground	stations,	we	must
first	create	and	configure	additional	GroundStation	objects.	Below,	we	create
and	configure	two	new	ground	stations,	GDS	and	MAD.

Create	GroundStation	GDS;		

GDS.CentralBody											=	Earth;

GDS.StateType													=	Cartesian;

GDS.HorizonReference						=	Ellipsoid;

GDS.Location1													=	-2353.621251;

GDS.Location2													=	-4641.341542;

GDS.Location3													=	3677.052370;

GDS.Id																				=	'33333';

GDS.AddHardware											=	{DSNTransmitter,	DSNAntenna,	DSNReceiver};

GDS.MinimumElevationAngle	=	7.0;

GDS.IonosphereModel							=	'IRI2007';

GDS.TroposphereModel						=	'HopfieldSaastamoinen';

Create	GroundStation	MAD;		

MAD.CentralBody											=	Earth;

MAD.StateType													=	Cartesian;

MAD.HorizonReference						=	Ellipsoid;

MAD.Location1													=	4849.519988;

MAD.Location2													=	-0360.641653;

MAD.Location3													=	4114.504590;

MAD.Id																				=	'44444';



MAD.AddHardware											=	{DSNTransmitter,	DSNAntenna,	DSNReceiver};

MAD.MinimumElevationAngle	=	7.0;

MAD.IonosphereModel							=	'IRI2007';

MAD.TroposphereModel						=	'HopfieldSaastamoinen';

Now	that	we	have	defined	two	additional	ground	stations,	we	must	specify	the
measurement	noise	associated	with	these	new	ground	stations.	This	can	be	done
using	the	previously	created	ErrorModel	resources	as	shown	below.

GDS.ErrorModels											=	{DSNrange,	DSNdoppler};

MAD.ErrorModels											=	{DSNrange,	DSNdoppler};

Next,	we	must	add	the	corresponding	two	way	range	and	Doppler	measurements
associated	with	our	new	ground	stations	to	our	TrackingFileSet	object,
DSNsimData,	as	shown	below.

DSNsimData.AddTrackingConfig	=	{{GDS,	Sat,	GDS},	'DSN_SeqRange'};			

DSNsimData.AddTrackingConfig	=	{{GDS,	Sat,	GDS},	'DSN_TCP'};

DSNsimData.AddTrackingConfig	=	{{MAD,	Sat,	MAD},	'DSN_SeqRange'};			

DSNsimData.AddTrackingConfig	=	{{MAD,	Sat,	MAD},	'DSN_TCP'};

We	now	create	our	ramp	table	that	many	but	not	all	missions	use.	A	ramp	table	is
a	table	that	allows	GMAT	to	calculate	the	transmit	frequency	of	all	the	ground
stations	involved	in	our	simulation.	Recall	that	GMAT	needs	to	know	the
transmit	frequency,	as	a	function	of	time,	in	order	to	calculate	the	value	of	the
observations.	The	term	“ramp”	is	used	because	the	transmit	frequency	increases
linearly	with	time	and	a	graph	of	transmit	frequency	vs.	time	would	typically
show	a	ramp.	A	mission	that	does	not	use	a	ramp	table	simply	uses	a	constant
transmit	frequency	for	a	given	ground	station.

To	modify	our	script	to	accommodate	the	use	of	a	ramp	table,	we	modify	our
TrackingFileSet	object,	DSNsimData,	as	shown	below.

DSNsimData.RampTable	=	...

{'../output/Simulate	DSN	Range	and	Doppler	Data	3	weeks.rmp'};

We	must	now	create	a	file	with	the	name	shown	above	in	the	GMAT	‘output’
directory.	Refer	to	the	TrackingFileSet	Help	for	a	description	of	the	ramp	table
file	format.	In	order	for	GMAT	to	determine	the	transmit	frequencies	of	all	the
ground	stations,	the	ramp	table	must	have	at	least	one	row	of	data	for	every
ground	station	providing	measurement	data.	The	contents	of	our	ramp	table	is



shown	below.

										27252			22222			11111			2			1			7.2e09			0.2
										27252			33333			11111			2			1			7.3e09			0.3
										27252			44444			11111			2			1			7.4e09			0.4

Each	row	of	data	above	is	called	a	ramp	record.	Let’s	analyze	the	first	ramp
record.	The	first	field,	27252,	is	the	TAIMJD	date	of	the	ramp	record.

The	second	field,	22222,	is	the	ground	station	ID	of	the	GroundStation	object
whose	frequency	is	being	specified.	We	note	that	the	ID	22222	corresponds	to
the	CAN	ground	station.	The	third	field,	11111,	is	the	ID	of	the	spacecraft	that
the	CAN	ground	station	is	transmitting	to.	We	recognize	11111	as	the	ID	of	the
Sat	spacecraft.

The	4th	field,	2,	is	an	integer	representing	the	uplink	band	of	the	transmission.
The	integer	2	represents	X-band.	The	5th	field,	1,	is	an	integer	describing	the
ramp	type.	The	integer	1	represents	the	start	of	a	new	ramp.

The	6th	field,	7.2e9,	is	the	transmission	frequency	in	Hz,	from	CAN	to	Sat	at	the
time	given	by	the	first	field.	The	7th	input	is	the	ramp	rate	in	Hz/s.

We	now	describe	how	GMAT	uses	the	ramp	record	to	determine	the	transmit
frequency	of	CAN	to	Sat	at	a	given	time.	We	let	TAIMJD	be	the	time	associated
with	the	ramp	record.	Then	GMAT	will	calculate	the	value	of	the	transmit
frequency	at	t	=	27252.5	TAIMJD	as	shown	below.

f	(	t	)	=	f	(	t	o	)	+	R	a	m	p	R	a	t	e	*	86400	*	(	t	−	t	o	)

where

f	(	t	o	)	=	Transmit	Frequency	at	the	start	of	the	ramp	record
f	(	t	)	=	Transmit	Frequency	at	a	later	time,		t	>	t	o

Note	that,	in	the	typical	case	where	there	are	numerous	ramp	records,	it	is
assumed	that	t	o	<	t	is	chosen	as	close	to	time	t	as	possible.	For	our	case	above,
the	transmit	frequency	from	CAN	to	Sat	at	time	t	is

f	(	t	)	=	7.2	e	9	+	0.2	*	86400	*	(	27252.5	−	27252	)	=	7200008640	Hz



The	second	and	third	rows	of	the	ramp	table	allow	GMAT	to	calculate	the
transmit	frequency	from	GDS	to	Sat	and	MAD	to	Sat,	respectively.	We	now
create	a	file,	Simulate	DSN	Range	and	Doppler	Data	Realistic	GMD.rmp,
with	the	contents	shown	above	and	place	it	in	GMAT’s	‘output’	folder.

We	make	one	final	comment	about	the	use	of	a	ramp	table.	We	note	that	when	a
ramp	table	is	used,	GMAT	uses	the	various	script	inputs	(e.g.,
SatTransponder.TurnAroundRatio	and	DSNTransmitter.Frequency)
differently.	See	the	RunSimulator	Help	for	details.

We	only	have	two	steps	remaining	in	order	to	create	a	script	that	generates	more
realistic	measurement	data.	The	first	step	is	to	increase	the	simulation	time	from
10	minutes	to	the	more	realistic	3	weeks	worth	of	data	that	is	typically	needed	to
generate	an	orbit	determination	solution	for	a	spacecraft	in	this	type	of	deep
space	orbit.	The	second	step	is	to	turn	on	the	measurement	noise.	These	two
steps	are	accomplished	by	making	the	following	changes	to	our	TrackingFileSet
object,	DSNsimData.

Sim.FinalEpoch										=	'09	Sep	2015	00:00:00.000';

Sim.AddNoise												=	On;

Sim.MeasurementTimeStep	=	3600;

Note	that	above,	in	addition	to	implementing	the	two	needed	steps,	we	also
changed	the	measurement	time	step	from	600	seconds	to	3600	seconds.	This	is
not	a	realistic	time	step	as	many	missions	would	use	a	time	step	that	might	even
be	less	than	600	seconds.	We	used	this	larger	time	step	for	tutorial	purposes	only
so	that	the	script	would	not	take	too	long	to	run.

A	complete	script,	containing	all	the	changes	we	have	made	in	the	Create	a	more
realistic	GMAT	Measurement	Data	(GMD)	section,	is	contained	in	the	file,
Tut_Simulate_DSN_Range_and_Doppler_Data_3_weeks.script.	Note	that	in
this	file,	in	addition	to	the	changes	above,	we	have	also	changed	the	GMD
output	file	name	to	Simulate	DSN	Range	and	Doppler	Data	3	weeks.gmd.

Now	run	the	script	which	should	take	approximately	1-2	minutes	since	we	are
generating	much	more	data	than	previously.	We	will	use	the	GMD	file	we	have
created	here	as	input	to	an	estimation	script	we	will	build	in	the	next	tutorial,
Orbit	Estimation	using	DSN	Range	and	Doppler	Data.
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Appendix	A	–	Determination	of	Measurement
Noise	Values
We	now	say	a	few	words	on	how	we	determined	the	values	for	NoiseSigma	for
the	two	ErrorModel	resources	we	created.	The	computed	value	of	the	DSN
range	measurement	is	given	by	(Moyer	[2000]):

C	∫	t	1	t	3	f	T	(	t	)	d	t	,		mod	M													(RU)

where

t	1	,	t	3	=	Transmission	and	Reception	epoch,	respectively
f	T	=	Ground	Station	transmit	frequency
C	=	transmitter	dependent	constant	(221/1498	for	X-band	and	1/2	for	S-Band)
M		=		length	of	the	ranging	code	in	RU

We	note	that	M	as	defined	above	is	equal	to	SimRangeModuloConstant	which
was	discussed	in	the	Define	the	types	of	measurements	to	be	simulated	section.

By	manipulation	of	the	equation	above,	we	can	find	a	relationship	between	RU
and	meters,	as	shown	below.

C	d	(	in	meters	)	c	f	¯	T	=		d(in	RU)

where

f	¯	T	=			∫	t	1	t	3	f	T	(	t	)	d	t	(	t	3	−	t	1	)	=
average	transmit	frequency	(between	transmit	and	receive),
c=speed	of	light	in	m/s
d=	round	trip	distance

If	we	assume	the	round	trip	distance	is	1	meter,	we	have

d(in	RU)	=	C	f	¯	T	c

Recall	that	in	the	Create	and	configure	the	Ground	Station	and	related
parameters	section,	we	set	DSNTransmitter.Frequency	=	7200;	This
corresponds	to	an	X-band	frequency	(so,	C=221/1498)	of	7200e6	Hz.	For	the



case	where	a	ramp	table	is	not	used,	we	have	a	constant	frequency,	f	¯	T	=	f	T	,
and	thus

d(in	RU)=		221	1498	7200	e	6	299792458			=	3	.543172	RU

For	this	example,	for	DSN	range	measurements,	we	want	to	use	a	1	sigma	noise
bias	of	3	meters	(Schanzle	[1995]).	From	the	calculations	above,	we	determine
that	this	corresponds	to	3*3.543172	≈	10.63	RU.

We	now	turn	our	attention	to	the	DSN	Doppler	measurement.	The	DSN	Doppler
measurement	that	GMAT	uses	is	actually	a	derived	observation,	O,	calculated
using	two	successive	Total	Count	Phase,	ϕ	,	(type	17	Trk	2-34	record)
measurements	as	shown	below.

			O		≡	−	[	ϕ	(	t	3	e	)	−	ϕ	(	t	3	s	)	]	t	3	e	−	t	3	s			(Hz)

where

t	1	s	,	t	1	e	=	start	and	end	of	transmission	interval
t	3	s	,	t	3	e	=	start	and	end	of	reception	interval
ϕ	=	Total	Count	Phase	(type	17	Trk	2-34	record)

In	the	absence	of	measurement	noise,	one	can	show	(Moyer	[2000]),	that	the
Observed	value	(O)	above	equals	the	Computed	(C)	value	below.

		C	=	−	M	2	(	t	3	e	−	t	3	s	)	∫	t	1	s	t	1	e	f	T	(	t	1	)	d	t	1			=	−	M	2	(	t	1	e	−	t	1	s	)	D
C	I	f	¯	T					(Hz)

where

t	1	s	,	t	1	e	=	start	and	end	of	transmission	interval
f	T	=	transmit	frequency
M	2	=	Transponder	turn	around	ratio	(typically,	240/221	for	S-
band	and	880/749	for	X-band)
DCI	=		(	t	3	e	−	t	3	s	)	=		Doppler	Count	Interval
f	¯	T	≡	∫	t	1	s	t	1	e	f	T	(	t	1	)	d	t	1	(	t	1	e	−	t	1	s	)			=	average	transmit	frequency	

Neglecting	ionospheric	media	corrections,	further	calculation	(Mesarch	[2007])
shows	that	the	values	of	O	and	C	can	be	related	to	an	average	range	rate	value,	ρ
˙	¯	,	as	shown	below.



ρ	˙	¯	O	b	s	e	r	v	e	d	=	c	(	1	+	O	M	2	f	¯	T	)	,			ρ	˙	¯	C	o	m	p	u	t	e	d	=	c	(	1	+	C	M
2	f	¯	T	)

where

ρ	˙	¯	≡	(	Round	Trip	distance	at		t	3	e	)	−	(	Round	Trip	distance	at		t	3	s	)	t	3	e	−	t
3	s

Thus,	we	determine	that

ρ	˙	¯	O	b	s	e	r	v	e	d	−	ρ	˙	¯	C	o	m	p	u	t	e	d	=	c	M	2	f	¯	T	(	O	−	C	)

The	quantity,	(	O	−	C	)	,	above	represents	the	measurement	noise	and	thus	the
equation	gives	us	a	way	to	convert	measurement	noise	in	Hz	to	measurement
noise	in	mm/s.	To	convert	from	mm/s	to	Hz,	simply	multiply	by	M	2	f	¯	T	c	=	M
2	f	¯	T	299792458000	.	In	our	case,	where	we	use	a	constant	X-band	frequency
of	7.2e9,	the	conversion	factor	is	given	by	880	749	7.2	e	9	299792458000	≈	0
.0282	.	For	this	tutorial,	we	use	a	1	sigma	noise	value	of	1	mm/s	(Schanzle
[1995])	which	corresponds	to	this	value	of	0.0282	Hz.



Chapter	14.	Orbit	Estimation	using	DSN	Range
and	Doppler	Data

Audience Intermediate	level

Length 60	minutes

Prerequisites Simulate	DSN	Range	and	Doppler	Data	Tutorial

Script	Files Tut_Orbit_Estimation_using_DSN_Range_and_Doppler_Data.script



Objective	and	Overview

Note

GMAT	currently	implements	a	number	of	different	data	types
for	orbit	determination.	Please	refer	to	Tracking	Data	Types	for
OD	for	details	on	all	the	measurment	types	currently	supported
by	GMAT.	The	measurements	being	considered	here	are	DSN
two	way	range	and	DSN	two	way	Doppler.

In	this	tutorial,	we	will	use	GMAT	to	read	in	simulated	DSN	range	and	Doppler
measurement	data	for	a	sample	spacecraft	in	orbit	about	the	Sun	and	determine
its	orbit.	The	spacecraft	is	in	an	Earth	“drift	away”	type	orbit	about	1	AU	away
from	the	Sun	and	almost	300	million	km	away	from	the	Earth.	This	tutorial	has
many	similarities	with	the	Simulate	DSN	Range	and	Doppler	Data	Tutorial	in
that	most	of	the	same	GMAT	resources	need	to	be	created	and	configured.	There
are	differences,	however,	in	how	GMAT	uses	the	resources	that	we	will	point	out
as	we	go	along.

The	basic	steps	of	this	tutorial	are:

1.	 Create	and	configure	the	spacecraft,	spacecraft	transponder,	and	related
parameters

2.	 Create	and	configure	the	Ground	Station	and	related	parameters
3.	 Define	the	types	of	measurements	to	be	processed
4.	 Create	and	configure	Force	model	and	propagator
5.	 Create	and	configure	Batch	Estimator	object
6.	 Run	the	mission	and	analyze	the	results

Note	that	this	tutorial,	unlike	most	of	the	mission	design	tutorials,	will	be
entirely	script	based.	This	is	because	most	of	the	resources	and	commands
related	to	navigation	are	not	implemented	in	the	GUI	and	are	only	available	via
the	script	interface.

As	you	go	through	the	tutorial	below,	it	is	recommended	that	you	paste	the	script
segments	into	GMAT	as	you	go	along.	After	each	paste	into	GMAT,	you	should



perform	a	syntax	check	by	hitting	the	Save,	Sync	button	( ).	To	avoid	syntax
errors,	where	needed,	don’t	forget	to	add	the	following	command,	as	needed,	to
the	last	line	of	the	script	segment	you	are	checking.

BeginMissionSequence

We	note	that	in	addition	to	the	material	presented	here,	you	should	also	look	at
the	individual	Help	resources	for	all	the	objects	and	commands	we	create	and
use	here.	For	example,	Spacecraft,	Transponder,	Transmitter,
GroundStation,	ErrorModel,	TrackingFileSet,	RunEstimator,	etc	all	have
their	own	Help	pages.



Create	and	configure	the	spacecraft,	spacecraft
transponder,	and	related	parameters
For	this	tutorial,	you’ll	need	GMAT	open,	with	a	new	empty	script	open.	To
create	a	new	script,	click	New	Script,	( )

Create	a	satellite	and	set	its	epoch	and	Cartesian
coordinates

Since	this	is	a	Sun-orbiting	spacecraft,	we	choose	to	represent	the	orbit	in	a	Sun-
centered	coordinate	frame	which	we	define	using	the	scripting	below.

%		Create	the	Sun-centered	J2000	frame.

Create	CoordinateSystem	SunMJ2000Eq;

SunMJ2000Eq.Origin	=	Sun;

SunMJ2000Eq.Axes			=	MJ2000Eq;		%Earth	mean	equator	axes

Next,	we	create	a	new	spacecraft,	Sat,	and	set	its	epoch	and	Cartesian
coordinates.

Create	Spacecraft	Sat;

Sat.DateFormat							=	UTCGregorian;

Sat.CoordinateSystem	=	SunMJ2000Eq;

Sat.DisplayStateType	=	Cartesian;

Sat.Epoch												=	19	Aug	2015	00:00:00.000;

Sat.X																=	-126544963			%-126544968

Sat.Y																=	61978518					%61978514

Sat.Z																=	24133225					%24133221

Sat.VX															=	-13.789

Sat.VY															=	-24.673

Sat.VZ															=	-10.662

Sat.Id															=	11111;

Note	that,	in	addition	to	setting	Sat’s	coordinates,	we	also	assigned	it	an	ID
number.	When	GMAT	finds	this	number	in	the	GMD	file	that	it	reads	in,	it	will
know	that	the	associated	data	corresponds	to	the	Sat	Spacecraft.

For	the	simulation	tutorial,	the	Cartesian	state	above	represented	the	“true”	state.
Here,	the	Cartesian	state	represents	the	spacecraft	operator’s	best	“estimate”	of



the	state,	the	so-called	a	priori	estimate.	Because,	one	never	has	exact
knowledge	of	the	true	state,	we	have	perturbed	the	Cartesian	state	above	by	a
few	km	in	each	component	as	compared	to	the	simulated	true	state	shown	in	the
comment	field.

Create	a	Transponder	object	and	attach	it	to	our	spacecraft

To	estimate	an	orbit	state	for	a	given	spacecraft,	GMAT	requires	that	a
Transponder	object,	which	receives	the	ground	station	uplink	signal	and	re-
transmits	it,	typically,	to	a	ground	station,	be	attached	to	the	spacecraft.	Below,
we	create	the	Transponder	object	and	attach	it	to	our	spacecraft.	Note	that	after
we	create	the	Transponder	object,	there	are	three	fields,	PrimaryAntenna,
HardwareDelay,	and	TurnAroundRatio	that	must	be	set.

Create	Antenna	HGA;		%High	Gain	Antenna

Create	Transponder	SatTransponder;

SatTransponder.PrimaryAntenna			=	HGA;

SatTransponder.HardwareDelay				=	1e-06;	%seconds

SatTransponder.TurnAroundRatio		=	'880/749';

Sat.AddHardware																	=	{SatTransponder,	HGA};

Sat.SolveFors																			=	{CartesianState};

The	PrimaryAntenna	is	the	antenna	that	the	spacecraft	transponder,
SatTransponder,	uses	to	receive	and	retransmit	RF	signals.	In	the	example
above,	we	set	this	field	to	HGA	which	is	an	Antenna	object	we	have	created.
Currently	the	Antenna	resource	has	no	function	but	in	a	future	release,	it	may
have	a	function.	HardwareDelay,	the	transponder	signal	delay	in	seconds,	is	set
to	one	micro-second.

We	set	TurnAroundRatio,	which	is	the	ratio	of	the	retransmitted	to	the	input
signal,	to	'880/749.'	See	the	RunEstimator	Help	for	a	discussion	on	how	GMAT
uses	this	input	field.	Recall	that,	as	part	of	their	calculations,	estimators	need	to
form	a	quantity	called	the	observation	residual,	O-C,	where	O	is	the	“Observed”
value	of	a	measurement	and	C	is	the	“Computed,”	based	upon	the	current
knowledge	of	the	orbit	state,	value	of	a	measurement.	As	described	in	the	Help,
since	our	DSN	data,	for	this	tutorial,	uses	a	ramp	table,	this	input	turn	around
ratio	is	not	used	to	calculate	the	computed,	C,	Doppler	measurements.	Instead,
the	turn-around	ratio	used	to	calculate	the	computed	Doppler	measurement	will



be	inferred	from	the	value	of	the	uplink	band	contained	in	the	ramp	table.

Note	that	in	the	second	to	last	script	command	above,	we	attach	our	newly
created	Transponder	resource,	SatTransponder,	and	its	related	Antenna
resource,	HGA,	to	our	spacecraft,	Sat.

The	last	script	line,	which	was	not	present	in	the	simulation	script,	is	needed	to
tell	GMAT	what	quantities	the	estimator	will	be	estimating,	the	so-called	“solve-
fors.”	Here,	we	tell	GMAT	to	solve	for	the	6	components	of	our	satellite’s
Cartesian	state.	Since	we	input	the	Sat	state	in	SunMJ2000	coordinates,	this	is
the	coordinate	system	GMAT	will	use	to	solve	for	the	Cartesian	state.



Create	and	configure	the	Ground	Station	and
related	parameters

Create	Ground	Station	Transmitter,	Receiver,	and	Antenna
objects

Before	we	create	the	GroundStation	object	itself,	as	shown	below,	we	first
create	the	Transmitter,	Receiver,	and	Antenna	objects	that	must	be	associated
with	any	GroundStation.

%		Ground	Station	electronics.	

Create	Transmitter	DSNTransmitter;

Create	Receiver	DSNReceiver;

Create	Antenna	DSNAntenna;

DSNTransmitter.PrimaryAntenna					=	DSNAntenna;

DSNReceiver.PrimaryAntenna								=	DSNAntenna;

DSNTransmitter.Frequency										=	7200;			%MHz

In	the	script	segment	above,	we	first	created	Transmitter,	Receiver,	and
Antenna	objects.	The	GMAT	script	line	DSNTransmitter.PrimaryAntenna	=
DSNAntenna,	sets	the	main	antenna	that	the	Transmitter	resource,
DSNTransmitter,	will	be	using.	Likewise,	the	DSNReceiver.PrimaryAntenna	=
DSNAntenna	script	line	sets	the	main	antenna	that	the	Receiver	resource,
DSNReceiver,	will	be	using.	As	previously	mentioned,	the	Antenna	object
currently	has	no	function,	but	we	include	it	here	both	because	GMAT	requires	it
and	for	completeness	since	the	Antenna	resource	may	have	a	function	in	a
future	GMAT	release.	Finally,	we	set	the	transmitter	frequency	in	the	last	GMAT
script	line	above.	See	the	RunEstimator	Help	for	a	complete	description	of	how
this	input	frequency	is	used.	As	described	in	the	Help,	since	in	this	example	we
will	be	using	a	ramp	table,	this	input	frequency	will	not	be	used	to	calculate	the
computed	value	of	the	range	and	Doppler	observations.	Instead,	the	frequency
value	in	the	ramp	table	will	be	used	to	calculate	the	computed	range	and	Doppler
observations.

There	is	one	clarification	to	the	statement	above.	As	discussed	in	the
RunEstimator	Help,	the	DSNTransmitter.Frequency	value	discussed	above	as
well	as	the	previously	discussed	SatTransponder	TurnAroundRatio	value	will



be	used	to	calculate	the,	typically	small,	media	corrections	needed	to	determine
the	computed,	C,	value	of	the	range	and	Doppler	measurements.

Create	Ground	Station

Below,	we	create	and	configure	our	CAN	GroundStation	object.

%			Create	ground	station	and	associated	error	models

Create	GroundStation	CAN;

CAN.CentralBody											=	Earth;

CAN.StateType													=	Cartesian;

CAN.HorizonReference						=	Ellipsoid;

CAN.Location1													=	-4461.083514

CAN.Location2													=	2682.281745

CAN.Location3													=	-3674.570392

CAN.Id																				=	22222;

CAN.MinimumElevationAngle	=	7.0;

CAN.IonosphereModel							=	'IRI2007';

CAN.TroposphereModel						=	'HopfieldSaastamoinen';

CAN.AddHardware											=	{DSNTransmitter,	DSNAntenna,	...

																																DSNReceiver};

The	script	segment	above	is	broken	into	five	sections.	In	the	first	section,	we
create	our	GroundStation	object	and	we	set	our	Earth-Centered	Fixed	Cartesian
coordinates.	In	the	second	section,	we	set	the	ID	of	the	ground	station	so	that
GMAT	will	be	able	to	identify	data	from	this	ground	station	contained	in	the
GMD	file.

In	the	third	section,	we	set	the	minimum	elevation	angle	to	7	degrees.	Below	this
ground	station	to	spacecraft	elevation	angle,	no	measurement	data	will	be	used
to	form	an	orbit	estimate.	In	the	fourth	section,	we	specify	which	troposphere
and	ionosphere	model	we	wish	to	use	to	model	RF	signal	atmospheric	refraction
effects.	Finally,	in	the	fifth	section,	we	attach	three	pieces	of	previously	created
required	hardware	to	our	ground	station,	a	transmitter,	a	receiver,	and	an
antenna.

Next,	we	create	and	configure	the	GDS	GroundStation	resource,	and	associated
Transmitter	resource.



%			Create	GDS	transmitter	and	ground	station	

Create	Transmitter	GDSTransmitter

GDSTransmitter.Frequency						=	7300;			%MHz.

GDSTransmitter.PrimaryAntenna	=	DSNAntenna;

Create	GroundStation	GDS;		

GDS.CentralBody															=	Earth;

GDS.StateType																	=	Cartesian;

GDS.HorizonReference										=	Ellipsoid;

GDS.Location1																	=	-2353.621251;

GDS.Location2																	=	-4641.341542;

GDS.Location3																	=	3677.052370;

GDS.Id																								=	'33333';

GDS.AddHardware															=	{GDSTransmitter,	...

																																	DSNAntenna,	DSNReceiver};

GDS.MinimumElevationAngle					=	7.0;

GDS.IonosphereModel											=	'IRI2007';

Next,	we	create	and	configure	the	MAD	GroundStation	resource,	and
associated	Transmitter	resource.

%			Create	MAD	transmitter	and	ground	station	

Create	Transmitter	MADTransmitter

MADTransmitter.Frequency						=	7400;			%MHz.

MADTransmitter.PrimaryAntenna	=	DSNAntenna;

Create	GroundStation	MAD;		

MAD.CentralBody															=	Earth;

MAD.StateType																	=	Cartesian;

MAD.HorizonReference										=	Ellipsoid;

MAD.Location1																	=	4849.519988;

MAD.Location2																	=	-360.641653;

MAD.Location3																	=	4114.504590;

MAD.Id																								=	'44444';

MAD.AddHardware															=	{MADTransmitter,	...

																																		DSNAntenna,	DSNReceiver};

MAD.MinimumElevationAngle					=	7.0;

MAD.IonosphereModel											=	'IRI2007';

Note	that	for	the	GDS	and	MAD	ground	stations,	we	don’t	re-use	the
DSNTransmitter	resource	that	we	used	for	the	CAN	ground	station.	We	do	this
so	we	can	set	the	transmitter	frequencies	for	the	different	ground	station	to
different	values.	Note	that	we	didn’t	do	this	in	the	Simulator	tutorial.	This	will
only	add	a	small	error,	however,	since,	because	we	are	using	a	ramp	table,	the
frequency	set	on	the	Transmitter.Frequency	field	is	only	used	to	calculate



media	corrections.

Create	Ground	Station	Error	Models

It	is	well	known	that	all	measurement	types	have	random	noise	and/or	biases
associated	with	them.	For	GMAT,	these	affects	are	modelled	using	ground
station	error	models.	Since	we	have	already	created	the	GroundStation	object
and	its	related	hardware,	we	now	create	the	ground	station	error	models.	Since
we	wish	to	form	an	orbit	estimate	using	both	range	and	Doppler	data,	we	need	to
create	two	error	models	as	shown	below,	one	for	range	measurements	and	one
for	Doppler	measurements.

%			Create	Ground	station	error	models

Create	ErrorModel	DSNrange;

DSNrange.Type																			=	'DSN_SeqRange';

DSNrange.NoiseSigma													=	10.63;

DSNrange.Bias																			=	0.0;

Create	ErrorModel	DSNdoppler;

DSNdoppler.Type																	=	'DSN_TCP';

DSNdoppler.NoiseSigma											=	0.0282;

DSNdoppler.Bias																	=	0.0;

CAN.ErrorModels																	=	{DSNrange,	DSNdoppler};

GDS.ErrorModels																	=	{DSNrange,	DSNdoppler};

MAD.ErrorModels																	=	{DSNrange,	DSNdoppler};

The	script	segment	above	is	broken	into	three	sections.	The	first	section	defines
an	ErrorModel	named	DSNrange.	The	error	model	Type	is	DSN_SeqRange
which	indicates	that	it	is	an	error	model	for	DSN	sequential	range
measurements.	The	1	sigma	standard	deviation	of	the	Gaussian	white	noise	is	set
to	10.63	Range	Units	(RU)	and	the	measurement	bias	is	set	to	0	RU.

The	second	section	above	defines	an	ErrorModel	named	DSNdoppler.	The
error	model	Type	is	DSN_TCP	which	indicates	that	it	is	an	error	model	for	DSN
total	count	phase-derived	Doppler	measurements.	The	1	sigma	standard
deviation	of	the	Gaussian	white	noise	is	set	to	0.0282	Hz	and	the	measurement
bias	is	set	to	0	Hz.	The	range	and	Doppler	NoiseSigma	values	above	will	be
used	to	form	measurement	weighting	matrices	used	by	the	estimator	algorithm.

The	third	section	above	attaches	the	two	ErrorModel	resources	we	have	just



created	to	the	CAN,	GDS,	and	MAD	GroundStation	resources.	Note	that	in
GMAT,	the	measurement	noise	or	bias	is	defined	on	a	per	ground	station	basis.
Thus,	any	range	measurement	error	involving	the	CAN,	GDS,	and	MAD
GroundStation	is	defined	by	the	DSNRange	ErrorModel	and	any	Doppler
measurement	error	involving	the	CAN,	GDS,	and	MAD	GroundStation	is
defined	by	the	DSNdoppler	ErrorModel.	Note	that,	if	desired,	we	could	have
created	6	different	ErrorModel	resources,	two	error	models	representing	the
two	data	types	for	3	ground	stations.



Define	the	types	of	measurements	that	will	be
processed
Now	we	will	create	and	configure	a	TrackingFileSet	resource.	This	resource
defines	the	type	of	data	to	be	processed,	the	ground	stations	that	will	be	used,
and	the	file	name	of	the	input	GMD	file	which	will	contain	the	measurement
data.	Note	that	in	order	to	just	cut	and	paste	from	our	simulation	tutorial,	we
name	our	resource	DSNsimData.	But,	since,	in	this	script,	we	are	estimating,
perhaps	a	better	name	would	have	been	DSNestData.

Create	TrackingFileSet	DSNsimData;

DSNsimData.AddTrackingConfig									=	{{CAN,	Sat,	CAN},	'DSN_SeqRange'};			

DSNsimData.AddTrackingConfig									=	{{CAN,	Sat,	CAN},	'DSN_TCP'};																	

DSNsimData.AddTrackingConfig									=	{{GDS,	Sat,	GDS},	'DSN_SeqRange'};			

DSNsimData.AddTrackingConfig									=	{{GDS,	Sat,	GDS},	'DSN_TCP'};																	

DSNsimData.AddTrackingConfig									=	{{MAD,	Sat,	MAD},	'DSN_SeqRange'};			

DSNsimData.AddTrackingConfig									=	{{MAD,	Sat,	MAD},	'DSN_TCP'};																	

DSNsimData.FileName																		=	...

						{'../output/Simulate	DSN	Range	and	Doppler	Data	3	weeks.gmd'};

DSNsimData.RampTable																	=	...	

						{'../output/Simulate	DSN	Range	and	Doppler	Data	3	weeks.rmp'};

DSNsimData.UseLightTime														=	true;

DSNsimData.UseRelativityCorrection			=	true;

DSNsimData.UseETminusTAI													=	true;

The	script	lines	above	are	broken	into	three	sections.	In	the	first	section,	the
resource	name,	DSNsimData,	is	declared,	the	data	types	are	defined,	and	the
input	GMD	file	and	ramp	table	name	are	specified.	AddTrackingConfig	is	the
field	that	is	used	to	define	the	data	types.	The	first	AddTrackingConfig	line
tells	GMAT	to	process	DSN	range	two	way	measurements	for	the	CAN	to	Sat	to
CAN	measurement	strand.	The	second	AddTrackingConfig	line	tells	GMAT	to
process	DSN	Doppler	two	way	measurements	for	the	CAN	to	Sat	to	CAN
measurement	strand.	The	remaining	4	AddTrackingConfig	script	lines	tell
GMAT	to	also	process	GDS	and	MAD	range	and	Doppler	measurements.	Note
that	the	input	GMD	and	ramp	table	files	that	we	specified	are	files	that	we
created	as	part	of	the	Simulate	DSN	Range	and	Doppler	Data	Tutorial.	Don’t
forget	to	put	these	files	in	the	GMAT	“output”	directory.

The	second	section	above	sets	some	processing	parameters	that	apply	to	both	the



range	and	Doppler	measurements.	We	set	UseLightTime	to	True	in	order	to
generate	realistic	computed,	C,	measurements	that	take	into	account	the	finite
speed	of	light.	The	last	two	parameters	in	this	section,	UseRelativityCorrection
and	UseETminusTAI,	are	set	to	True	so	that	general	relativistic	corrections,	as
described	in	Moyer	[2000],	are	applied	to	the	light	time	equations.

Note	that,	in	the	simulation	tutorial,	we	set	two	other	DSNsimData	fields,
SimDopplerCountInterval	and	SimRangeModuloConstant.	Since	these	fields
only	apply	to	simulations,	there	is	no	need	to	set	them	here	as	their	values	would
only	be	ignored.



Create	and	configure	Force	model	and
propagator
We	now	create	and	configure	the	force	model	and	propagator	that	will	be	used
for	the	simulation.	For	this	deep	space	drift	away	orbit,	we	naturally	choose	the
Sun	as	our	central	body.	Since	we	are	far	away	from	all	the	planets,	we	use	point
mass	gravity	models	and	we	include	the	effects	of	the	Sun,	Earth,	Moon,	and
most	of	the	other	planets.	In	addition,	we	model	Solar	Radiation	Pressure	(SRP)
affects	and	we	include	the	effect	of	general	relativity	on	the	dynamics.	The	script
segment	accomplishing	this	is	shown	below.

Create	ForceModel	Fm;

Create	Propagator	Prop;

Fm.CentralBody													=	Sun;

Fm.PointMasses													=	{Sun,	Earth,	Luna,	Mars,	Saturn,	...

																													Uranus,	Mercury,	Venus,	Jupiter};

Fm.SRP																					=	On;

Fm.RelativisticCorrection		=	On;

Fm.ErrorControl												=	None;

Prop.FM																				=	Fm;

Prop.MinStep															=	0;				

We	set	ErrorControl	=	None	because	for	the	current	release	of	GMAT,	batch
estimation	requires	fixed	step	numerical	integration.	The	fixed	step	size	is	given
by	Prop.InitialStepSize	which	has	a	default	value	of	60	seconds.	For	our
deep	space	orbit,	the	dynamics	are	slowly	changing	and	this	step	size	is	not	too
big.	For	more	dynamic	force	models,	a	smaller	step	size	may	be	needed.



Create	and	configure	BatchEstimatorInv	object
As	shown	below,	we	create	and	configure	the	BatchEstimatorInv	object	used	to
define	our	estimation	process.

Create	BatchEstimatorInv	bat

bat.ShowProgress															=	true;

bat.ReportStyle																=	Normal;

bat.ReportFile																	=		...

									'Orbit	Estimation	using	DSN	Range	and	Doppler	Data.report';

bat.Measurements															=	{DSNsimData}	

bat.AbsoluteTol																=	0.001;

bat.RelativeTol																=	0.0001;

bat.MaximumIterations										=	10

bat.MaxConsecutiveDivergences		=	3;

bat.Propagator																	=	Prop;

bat.ShowAllResiduals											=	On;

bat.OLSEInitialRMSSigma								=	10000;

bat.OLSEMultiplicativeConstant	=	3;

bat.OLSEAdditiveConstant							=	0;

bat.EstimationEpochFormat						=	'FromParticipants';	

bat.InversionAlgorithm									=	'Internal';				

bat.MatlabFile																	=		...

											'Orbit	Estimation	using	DSN	Range	and	Doppler	Data.mat'

All	of	the	fields	above	are	described	in	BatchEstimatorInv	Help	but	we
describe	them	briefly	here	as	well.	In	the	first	script	line	above,	we	create	a
BatchEstimatorInv	object,	bat.	In	the	next	line,	we	set	the	ShowProgress	field
to	true	so	that	detailed	output	of	the	batch	estimator	will	be	shown	in	the
message	window.

In	the	third	line,	we	set	the	ReportStyle	to	Normal.	For	the	R2016A	GMAT
release,	this	is	the	only	report	style	that	is	available.	In	a	future	release,	If	we
wanted	to	see	additional	data	such	as	measurement	partial	derivatives,	we	would
use	the	Verbose	style.	In	the	next	line,	we	set	the	ReportFile	field	to	the	name	of
our	desired	output	file	which	by	default	is	written	to	GMAT’s	‘output’	directory.

We	set	the	Measurements	field	to	the	name	of	the	TrackingFileSet	resource	we
wish	to	use.	Recall	that	the	TrackingFileSet,	DSNsimData,	that	we	created	in
the	Define	the	types	of	measurements	that	will	be	processed	section	defines	the
type	of	measurements	that	we	wish	to	process.	In	our	case,	we	wish	to	process



DSN	range	and	Doppler	data	associated	with	the	CAN,	GDS,	and	MAD	ground
stations.

The	next	four	fields,	AbsoluteTol,	RelativeTol,	MaximumIterations,	and
MaxConsecutiveDivergences	define	the	batch	estimator	convergence	criteria.
See	the	“Behavior	of	Convergence	Criteria”	discussion	in	the
BatchEstimatorInv	Help	for	complete	details.

The	next	script	line	sets	the	Propagator	field	which	specifies	which	Propagator
object	should	be	used	during	estimation.	We	set	this	field	to	the	Prop
Propagator	object	which	we	created	in	the	Define	the	types	of	measurements
that	will	be	processed	section.

In	the	11th	script	line,	we	set	the	ShowAllResiduals	field	to	true	show	that	the
observation	residuals	plots,	associated	with	the	various	ground	stations,	will	be
displayed

The	next	three	script	lines	set	fields,	OLSEInitialRMSSigma,
OLSEMultiplicativeConstant,	and	OLSEAdditiveConstant,	that	are
associated	with	GMAT’s	Outer	Loop	Sigma	Editing	(OLSE)	capability	that	is
used	to	edit,	i.e.,	remove,	certain	measurements	so	that	they	are	not	used	to
calculate	the	orbit	estimate.	See	the	“Behavior	of	Outer	Loop	Sigma	Editing
(OLSE)”	discussion	in	the	BatchEstimatorInv	Help	for	complete	details.

Next,	we	set	the	EstimationEpochFormat	field	to	'FromParticipants’	which
tells	GMAT	that	the	epoch	associated	with	the	solve-for	variables,	in	this	case
the	Cartesian	State	of	Sat,	comes	from	the	value	of	Sat.Epoch	which	we	have
set	to	“19	Aug	2015	00:00:00.000	UTCG.”

Next,	we	set	the	InversionAlgorithm	field	to	'Internal'	which	specifies	which
algorithm	GMAT	should	use	to	invert	the	normal	equations.	There	are	two	other
inversion	algorithms,	'Cholesky'	or	'Schur'	that	we	could	optionally	use.

Finally,	we	set	the	value	of	MatlabFile.	This	is	the	name	of	the	MATLAB
output	file	that	will	be	created,	which,	by	default,	is	written	to	GMAT’s	‘output’
directory.	This	file	can	be	read	into	MATLAB	to	perform	detailed	calculations
and	analysis.	The	MATLAB	file	can	only	be	created	if	you	have	MATLAB
installed	and	properly	configured	for	use	with	GMAT.



Run	the	mission	and	analyze	the	results
The	script	segment	used	to	run	the	mission	is	shown	below.

BeginMissionSequence

	

RunEstimator	bat

The	first	script	line,	BeginMissionSequence,	is	a	required	command	which
indicates	that	the	“Command”	section	of	the	GMAT	script	has	begun.	The
second	line	of	the	script	issues	the	RunEstimator	command	with	the	bat
BatchEstimatorInv	resource,	defined	in	the	Create	and	configure
BatchEstimatorInv	object	section,	as	an	argument.	This	tells	GMAT	to	perform
the	estimation	using	parameters	specified	by	the	bat	resource.

We	have	now	completed	all	of	our	script	segments.	See	the	file,	Orbit
Estimation	using	DSN	Range	and	Doppler	Data.script,	for	a	listing	of	the
entire	script.	We	are	now	ready	to	run	the	script.	Hit	the	Save,Sync,Run	button,	(

).	Given	the	amount	of	data	we	are	processing,	our	mission	orbit,	and	our
choice	of	force	model,	the	script	should	finish	execution	in	about	1-2	minutes.

We	analyze	the	results	of	this	script	in	many	ways.	In	the	first	subsection,	we
analyze	the	Message	window	output.	In	the	second	subsection,	we	look	at	the
plots	of	the	observation	residuals,	and	in	the	third	subsection,	we	analyze	the
batch	estimation	report.	Finally,	in	the	fourth	subsection,	we	discuss	how	the
contents	of	the	MATLAB	output	file	can	be	used	to	analyze	the	results	of	our
estimation	process.

Message	Window	Output

We	first	analyze	the	message	window	output	focusing	on	the	messages	that	may
require	some	explanation.	Follow	along	using	Appendix	A	–	GMAT	Message
Window	Output	where	we	have	put	a	full	listing	of	the	output.	Soon	into	the
message	flow,	we	get	a	message	telling	us	how	many	measurement	records	were
read	in.

Data	file	'Simulate	DSN	Range	and	Doppler	Data	3	weeks.gmd'	has	1348	

	 		of	1348	records	used	for	estimation.



The	value	of	1348	is	the	number	of	lines	of	measurement	data	in	the	GMD	file
listed	above.

Next,	the	window	output	contains	a	description	of	the	tracking	configuration.
The	output	below	confirms	that	we	are	processing	range	and	Doppler	data	from
the	CAN,	GDS,	and	MAD	ground	stations.

List	of	tracking	configurations	(present	in	participant	ID)	for	load	

	 		records	from	data	file	

	 		'Simulate	DSN	Range	and	Doppler	Data	3	weeks.gmd':

			Config	0:	{{22222,11111,22222},DSN_SeqRange}

			Config	1:	{{22222,11111,22222},DSN_TCP}

			Config	2:	{{33333,11111,33333},DSN_SeqRange}

			Config	3:	{{33333,11111,33333},DSN_TCP}

			Config	4:	{{44444,11111,44444},DSN_SeqRange}

			Config	5:	{{44444,11111,44444},DSN_TCP}

Later	on	in	the	output,	GMAT	echoes	out	the	a	priori	estimate	that	we	input	into
the	script.

a	priori	state:

			Estimation	Epoch:

							27253.500417064603	A.1	modified	Julian

							27253.500416666666	TAI	modified	Julian

			19	Aug	2015	00:00:00.000	UTCG

			Sat.SunMJ2000Eq.X	=	-126544963

			Sat.SunMJ2000Eq.Y	=	61978518

			Sat.SunMJ2000Eq.Z	=	24133225

			Sat.SunMJ2000Eq.VX	=	-13.789

			Sat.SunMJ2000Eq.VY	=	-24.673

			Sat.SunMJ2000Eq.VZ	=	-10.662

Next,	GMAT	outputs	some	data	associated	with	the	initial	iteration	of	the	Outer
Loop	Sigma	Editing	(OLSE)	process	as	shown	below.

Number	of	Records	Removed	Due	To:

			.	No	Computed	Value	Configuration	Available	:	0

			.	Out	of	Ramp	Table	Range			:	0

			.	Signal	Blocked												:	0

			.	Initial	RMS	Sigma	Filter		:	0

			.	Outer-Loop	Sigma	Editor			:	0

Number	of	records	used	for	estimation:	1348

As	previously	mentioned,	the	OLSE	process	can	edit	(i.e.,	remove)	certain	data



from	use	as	part	of	the	estimation	algorithm.	There	are	five	conditions	which
could	cause	a	data	point	to	be	edited.	For	each	condition,	the	output	above
specifies	how	many	data	points	were	edited.	We	now	discuss	the	meaning	of	the
five	conditions.

The	first	condition,	“No	Computed	Value	Configuration	Available”	means	that
GMAT	has	read	in	some	measurement	data	but	no	corresponding	tracking
configuration	has	been	defined	in	the	GMAT	script.	Thus,	GMAT	has	no	way	to
form	the	computed,	C,	value	of	the	measurement.	For	example,	this	might
happen	if	our	script	did	not	define	a	GroundStation	object	corresponding	to
some	data	in	the	GMD	file.	Since	we	have	defined	everything	we	need	to,	no
data	points	are	edited	for	this	condition.

The	second	condition,	“Out	of	Ramp	Table	Range,”	means	that	while	solving	the
light	time	equations,	GMAT	needs	to	know	the	transmit	frequency,	for	some
ground	station,	at	a	time	that	is	not	covered	by	the	ramp	table	specified	in	our
TrackingFileSet	resource,	DSNsimData.	Looking	at	our	input	GMD	file,	we
see	that	our	measurement	times	range	from	27253.500416666669	to
27274.500416666662	TAIMJD.	Since	our	ramp	table	has	a	ramp	record	for	all
three	ground	stations	at	27252	TAIMJD	which	is	about	1	½	days	before	the	first
measurement	and	since	our	a	priori	Cartesian	state	estimate	is	fairly	good,	it
makes	sense	that	no	measurements	were	edited	for	this	condition.

The	third	condition,	“Signal	Blocked,”	indicates	that	while	taking	into	account
its	current	estimate	of	the	state,	GMAT	calculates	that	a	measurement	for	a
certain	measurement	strand	is	not	possible	because	the	signal	is	“blocked.”
Actually,	the	signal	does	not	have	to	blocked,	it	just	has	to	violate	the	minimum
elevation	angle	constraint	associated	with	a	given	ground	station.	Consider	a
GDS	to	Sat	to	GDS	range	two	way	range	measurement	at	given	time.	If	the
GDS	to	Sat	elevation	angle	was	6	degrees,	the	measurement	would	be	edited	out
since	the	minimum	elevation	angle,	as	specified	by	the
GDS.MinimumElevationAngle	field,	is	set	at	7	degrees.	Since,	in	our
simulation,	we	specified	that	only	data	meeting	this	7	degree	constraint	should
be	written	out,	it	is	plausible	that	no	data	were	edited	because	of	this	condition.

The	fourth	condition,	“Initial	RMS	Sigma	Filter,”	corresponds	to	GMAT’s	OLSE
processing	for	the	initial	iteration.	As	mentioned	before,	you	can	find	a	complete
description	of	the	OLSE	in	the	“Behavior	of	Outer	Loop	Sigma	Editing	(OLSE)”
discussion	in	the	BatchEstimatorInv	Help.	As	described	in	the	Help,	for	the



initial	iteration,	data	is	edited	if

								|Weighted	Measurement	Residual|	>	OLSEInitialRMSSigma

where	the	Weighted	Measurement	Residual	for	a	given	measurement	is	given	by

								(O-C)/NoiseSigma

and	where	NoiseSigma	are	inputs	that	we	set	when	we	created	the	various
ErrorModel	resources.

We	note	that	for	a	good	orbit	solution,	the	Weighted	Measurement	Residual	has	a
value	of	approximately	one.	Since	our	a	priori	state	estimate	is	not	that	far	off
from	the	truth	and	since	we	have	set	OLSEInitialRMSSigma	to	a	very	large
value	of	10,000,	we	do	not	expect	any	data	to	be	edited	for	this	condition.

The	fifth	condition,	“Outer-Loop	Sigma	Editor,”	corresponds	to	GMAT’s	OLSE
processing	for	the	second	or	later	iteration.	Since	the	output	we	are	analyzing	is
for	the	initial	iteration	of	the	batch	estimator,	the	number	of	data	points	edited
because	of	this	condition	is	0.	We	will	discuss	the	OLSE	processing	for	the
second	or	later	iterations	when	we	analyze	the	output	for	a	later	iteration.

WeightedRMS	residuals	for	this	iteration	:	1459.94235975

			BestRMS	residuals	for	this	iteration					:	1459.94235975

			PredictedRMS	residuals	for	next	iteration:	1.01539521333

The	first	output	line	above	gives	the	weighted	RMS	calculated	when	the	estimate
of	the	state	is	the	input	a	priori	state	(i.e.,	the	0th	iteration	state).	The	weighted
RMS	value	of	approximately	1460	is	significantly	far	away	from	the	value	of	1
associated	with	a	good	orbit	solution.	The	second	output	line	gives	the	best
(smallest)	weighted	RMS	value	for	all	of	the	iterations.	Since	this	is	our	initial
iteration,	the	value	of	the	BestRMS	is	the	same	as	the	WeightedRMS.	The	third
output	line	is	the	predicted	weighted	RMS	value	for	the	next	iteration.	Because
of	the	random	noise	involved	in	generating	the	simulated	input	data,	the	numbers
you	see	may	differ	from	that	above.

Next,	GMAT	outputs	the	state	associated	with	the	first	iteration	of	the	batch
estimator.	Let’s	define	what	we	mean	by	iteration.	The	state	at	iteration	‘n’	is	the
state	after	GMAT	has	solved	the	so-called	normal	equations	(e.g.,	Eq.	4.3.22	or
4.3.25	in	Tapley	[2004])	‘n’	successive	times.	By	convention,	the	state	at



iteration	0	is	the	input	a	priori	state.

------------------------------------------------------

Iteration	1

Current	estimated	state:

			Estimation	Epoch:

							27253.500417064603	A.1	modified	Julian

							27253.500416666666	TAI	modified	Julian

			19	Aug	2015	00:00:00.000	UTCG

			Sat.SunMJ2000Eq.X	=	-126544968.377

			Sat.SunMJ2000Eq.Y	=	61978514.8777

			Sat.SunMJ2000Eq.Z	=	24133217.2547

			Sat.SunMJ2000Eq.VX	=	-13.7889998632

			Sat.SunMJ2000Eq.VY	=	-24.6730006664

			Sat.SunMJ2000Eq.VZ	=	-10.6619986007

Next,	GMAT	outputs	statistics	on	how	many	data	points	were	edited	for	this
iteration.

Number	of	Records	Removed	Due	To:

			.	No	Computed	Value	Configuration	Available	:	0			

			.	Out	of	Ramp	Table	Range			:	0

			.	Signal	Blocked	:	0

			.	Initial	RMS	Sigma	Filter		:	0

			.	Outer-Loop	Sigma	Editor	:	2

Number	of	records	used	for	estimation:	1346

For	the	same	reasons	we	discussed	for	the	initial	0th	iteration,	as	expected,	no
data	points	were	edited	because	“No	Computed	Value	Configuration	Available”
or	because	a	requested	frequency	was	“Out	of	Ramp	Table	Range.”	Also,	for	the
same	reasons	discussed	for	the	0th	iteration,	it	is	plausible	that	no	data	points
were	edited	for	this	iteration	because	of	signal	blockage.	Note	that	there	are	no
data	points	edited	because	of	the	“Initial	RMS	Sigma	Filter”	condition.	This	is	as
expected	because	this	condition	only	edits	data	on	the	initial	0th	iteration.
Finally,	we	note	that	2	data	points	out	of	1348	data	points	are	edited	because	of
the	OLSE	condition.	As	discussed	in	the	“Behavior	of	Outer	Loop	Sigma
Editing	(OLSE)”	section	in	the	BatchEstimatorInv	Help,”	data	is	edited	if

								|Weighted	Measurement	Residual|	>	OLSEMultiplicativeConstant	*
WRMSP	+	OLSEAdditiveConstant

where



								WRMSP	is	the	predicted	weighted	RMS	calculated	at	the	end	of	the
previous	iteration.

In	the	Create	and	configure	BatchEstimatorInv	object	section,	we	chose
OLSEMultiplicativeConstant	=	3	and	OLSEAdditiveConstant	=	0	and	thus
the	equation	above	becomes

								|Weighted	Measurement	Residual|	>	3	*	WRMSP

It	is	a	good	sign	that	only	2	of	1348,	or	0.15	%	of	the	data	is	edited	out.	If	too
much	data	is	edited	out,	even	if	you	have	a	good	weighted	RMS	value,	it
indicates	that	you	may	have	a	problem	with	your	state	estimate.	Next,	GMAT
outputs	some	root	mean	square,	(RMS),	statistical	data	associated	with	iteration
1.

			WeightedRMS	residuals	for	this	iteration	:	1.00807187051

			BestRMS	residuals	for	this	iteration					:	1.00807187051

			PredictedRMS	residuals	for	next	iteration:	1.00804237273

The	first	output	line	above	gives	the	weighted	RMS	calculated	when	the	estimate
of	the	state	is	the	iteration	1	state.	The	weighted	RMS	value	of	1.00807187051	is
very	close	to	the	value	of	1	associated	with	a	good	orbit	solution.	The	second
output	line	gives	the	best	(smallest)	weighted	RMS	value	for	all	of	the	iterations.
Since	this	iteration	1	WeightedRMS	value	is	the	best	so	far,	BestRMS	is	set	to
the	current	WeightedRMS	value.	The	third	output	line	is	the	predicted	weighted
RMS	value	for	the	next	iteration.	Note	that	the	RMS	values	calculated	above
only	use	data	points	that	are	used	to	form	the	state	estimate.	Thus,	the	edited
points	are	not	used	to	calculate	the	RMS.

Because	the	predicted	WeightedRMS	value	is	very	close	to	the	BestRMS	value,
GMAT,	as	shown	in	the	output	below,	concludes	that	the	estimation	process	has
converged.	As	previously	mentioned,	see	the	“Behavior	of	Convergence
Criteria”	discussion	in	the	BatchEstimatorInv	Help	for	complete	details.

This	iteration	is	converged	due	to	relative	convergence	criteria.

********************************************************

***	Estimating	Completed	in	2	iterations

********************************************************



Estimation	converged!

						|1	-	RMSP/RMSB|	=	|	1-	1.00804	/	1.00807|	=	2.92616e-005	is	

	 		less	than	RelativeTol,	0.0001

GMAT	then	outputs	the	final,	iteration	2,	state.	Note	that	GMAT	does	not
actually	calculate	the	weighted	RMS	associated	with	this	state	but	we	assume
that	it	is	close	to	the	predicted	value	of	1.00804237273	that	was	previously
output.

Final	Estimated	State:

			Estimation	Epoch:

							27253.500417064603	A.1	modified	Julian

							27253.500416666666	TAI	modified	Julian

			19	Aug	2015	00:00:00.000	UTCG

			Sat.SunMJ2000Eq.X	=	-126544968.759

			Sat.SunMJ2000Eq.Y	=	61978514.3889

			Sat.SunMJ2000Eq.Z	=	24133216.7847

			Sat.SunMJ2000Eq.VX	=	-13.7889997238

			Sat.SunMJ2000Eq.VY	=	-24.673000621

			Sat.SunMJ2000Eq.VZ	=	-10.6619988668

Finally,	GMAT	outputs	the	final	Cartesian	state	error	covariance	matrix	and
correlation	matrix,	as	well	as	the	time	required	to	complete	this	script.

Final	Covariance	Matrix:

								6.566855211518e+000								1.044634165793e+001								3.112863356104e+000							-2.345908150453e-006								5.035500518048e-007								1.602400702334e-006

								1.044634082751e+001								2.043155461343e+001							-4.258301029878e+000							-3.704075903144e-006								2.022938490903e-007								3.971535902921e-006

								3.112865361595e+000							-4.258297445960e+000								2.371732979013e+001							-1.178974996784e-006								1.683977194948e-006							-2.674173473312e-006

							-2.345908159193e-006							-3.704076213842e-006							-1.178974284159e-006								8.386165742100e-013							-1.658563839962e-013							-6.047842793431e-013

								5.035500497713e-007								2.022939026968e-007								1.683977056710e-006							-1.658563826712e-013								1.032575255469e-012							-2.190676053421e-012

								1.602400700119e-006								3.971536117909e-006							-2.674174002075e-006							-6.047842762516e-013							-2.190676053038e-012								5.776276322091e-012

Final	Correlation	Matrix:

													1.000000000000													0.901851016006													0.249429858518												-0.999655967713													0.193376220513													0.260176714954

													0.901850944314													1.000000000000												-0.193442883328												-0.894844247176													0.044042413976													0.365581159741

													0.249430019216												-0.193442720520													1.000000000000												-0.264356490609													0.340284723675												-0.228471850851

												-0.999655971438												-0.894844322236												-0.264356330820													1.000000000000												-0.178233614796												-0.274786120507

													0.193376219732													0.044042425647													0.340284695741												-0.178233613372													1.000000000000												-0.897001819395

													0.260176714594													0.365581179531												-0.228471896026												-0.274786119102												-0.897001819239													1.000000000000

********************************************************

Mission	run	completed.



===>	Total	Run	Time:	85.739000	seconds

========================================

Plots	of	Observation	Residuals

GMAT	creates	plots	on	a	per	iteration,	per	ground	station,	and	per	measurement
type	basis.	We	elaborate	on	what	this	means.	When	the	script	first	runs,	the	first
plots	that	show	up	are	the	0th	iteration	residuals.	This	means	that	when
calculating	the	‘O-C’	observation	residual,	GMAT	calculates	the	Computed,	C,
value	of	the	residual	using	the	a	priori	state.	As	shown	in	Appendix	B	–	Zeroth
Iteration	Plots	of	Observation	Residuals,	there	are	6	of	these	0th	iteration
residual	plots.	For	each	of	the	3	stations,	there	is	one	plot	of	the	range	residuals
and	one	plot	of	the	Doppler	residuals.	After	iteration	1	processing	is	complete,
GMAT	outputs	the	iteration	1	residuals	as	shown	in	Appendix	C	–	First	Iteration
Plots	of	Observation	Residuals.	As	previously	mentioned,	although	for	this
script,	GMAT	takes	two	iterations	to	converge,	the	actual	iteration	2	residuals	are
neither	calculated	nor	plotted.
DSN_Estimation_Create_and_configure_the_Ground_Station_and_related_parameters

We	now	analyze	the	CAN	range	and	Doppler	residuals.	For	the	0th	iteration,	the
range	residuals	vary	from	approximately	11,000	to	31,000	RU.	These	residuals
are	this	large	because	our	a	priori	estimate	of	the	state	was	deliberately	perturbed
from	the	truth.	There	are	multiple	indicators	on	this	graph	that	indicate	that
GMAT	has	not	yet	converged.	First,	the	residuals	have	an	approximate	linear
structure.	If	you	have	modeled	the	dynamics	and	measurements	correctly,	the
plots	should	have	a	random	appearance	with	no	structure.	Additionally,	the
residuals	are	biased,	i.e.,	they	do	not	have	zero	mean.	For	a	well	modeled
system,	the	mean	value	of	the	residuals	should	be	near	zero.	Finally,	the
magnitude	of	the	range	residuals	is	significantly	too	large.	Recall	that	in	the
Create	and	configure	the	Ground	Station	and	related	parameters	section,	we	set
the	1	sigma	measurement	noise	for	the	CAN	range	measurements	to	10.63	RU.
Thus,	for	a	large	sample	of	measurements,	we	expect,	roughly,	that	the	vast
majority	of	measurements	will	lie	between	the	values	of	approximately	-32	and
+32	RU.	Taking	a	look	at	the	1st	iteration	CAN	range	residuals,	this	is,
approximately,	what	we	get.

The	0th	iteration	CAN	Doppler	residuals	range	from	approximately	0.0050	to
0.01535	Hz.	As	was	the	case	for	the	range	0th	iteration	residuals,	the	fact	that	the



Doppler	residuals	are	biased	indicates	that	GMAT	has	not	yet	converged.	Recall
that	in	the	Create	and	configure	the	Ground	Station	and	related	parameters
section,	we	set	the	1	sigma	measurement	noise	for	the	CAN	Doppler
measurements	to	0.0282	Hz.	Thus,	for	a	large	sample	of	measurements,	we
expect,	roughly,	that	the	vast	majority	of	measurements	will	lie	between	the
values	of	approximately	-0.0846	and	+0.0846	RU.	Taking	a	look	at	the	1st
iteration	CAN	Doppler	residuals,	this	is,	approximately,	what	we	get.

There	is	one	important	detail	on	these	graphs	that	you	should	be	aware	of.
GMAT	only	plots	the	residuals	for	data	points	that	are	actually	used	to	calculate
the	solution.	Recall	that	for	iteration	0,	all	1348	of	1348	total	measurements
were	used	to	calculate	the	orbit	state,	i.e.,	no	data	points	were	edited.	Thus,	if
you	counted	up	all	the	data	points	on	the	6	iteration	0	plots,	you	would	find	1348
points.	The	situation	is	different	for	the	1st	iteration.	Recall	that	for	iteration	1,
1346	of	1348	total	measurements	were	used	to	calculate	the	orbit	state,	i.e.,	2
data	points	were	edited.	Thus,	if	you	counted	up	all	the	data	points	on	the	6
iteration	1	plots,	you	would	find	1346	points.	If	you	wish	to	generate	plots	that
contain	both	non-edited	and	edited	measurements,	you	will	need	to	generate
them	yourself	using	the	MATLAB	output	file	as	discussed	in	the	Matlab	Output
File	section.

We	note	that	the	graphs	have	some	interactive	features.	Hover	your	mouse	over
the	graph	of	interest	and	then	right	click.	You	will	see	that	you	have	four	options.
You	can	toggle	both	the	grid	lines	and	the	Legend	on	and	off.	You	can	also
export	the	graph	data	to	a	text	file,	and	finally,	you	can	export	the	graph	image	to
a	bmp	file.

Batch	Estimator	Output	Report

When	we	created	our	BatchEstimatorInv	resource,	bat,	in	the	Create	and
configure	BatchEstimatorInv	object	section,	we	specified	that	the	output	file
name	would	be	'Orbit	Estimation	using	DSN	Range	and	Doppler	Data.report.	Go
to	GMAT’s	‘output’	directory	and	open	this	file,	preferably	using	an	editor	such
as	Notepad++	where	you	can	easily	scroll	across	the	rows	of	data.

The	first	approximately	150	lines	of	the	report	are	mainly	an	echo	of	the
parameters	we	input	into	the	script	such	as	initial	spacecraft	state,	force	model,
propagator	settings,	measurement	types	to	be	processed,	etc.



After	this	echo	of	the	input	data,	the	output	report	contains	measurement
residuals	associated	with	the	initial	0th	iteration.	Search	the	file	for	the	words,
‘ITERATION	0:	MEASUREMENT	RESIDUALS’	to	find	the	location	of	where
the	relevant	output	begins.	This	output	sections	contains	information	on	all	of
the	measurements,	both	non-edited	and	edited,	that	can	possibly	be	used	in	the
estimation	process.	Each	row	of	data	corresponds	to	one	measurement.	For	each
measurement,	the	output	tells	you	the	following

Iteration	Number

Record	Number

Epoch	in	UTC	Gregorian	format

Observation	type.	‘DSN_SeqRange’	corresponds	to	DSN	sequential	range
and	‘DSN_TCP’	corresponds	to	DSN	total	count	phase-derived	Doppler.

Participants.	For	example,	‘22222,11111,22222’	tells	you	that	your
measurement	comes	from	a	CAN	to	Sat	to	CAN	link.

Edit	Criteria.

Observed	Value	(O)

Computed	Value	(C)

Observation	Residual	(O-C)

Elevation	Angle

We	have	previously	discussed	the	edit	criteria.	In	particular,	we	discussed	the
various	reasons	why	data	might	be	edited.	If	the	edit	criteria	shown	in	the	output
is	‘-,’	this	means	that	the	data	was	not	edited	and	the	data	was	used,	for	this
iteration,	to	calculate	a	state	estimate.

Note	that	if	the	elevation	angle	of	any	of	the	measurements	is	below	our	input
criteria	of	7	degrees,	then	the	measurement	would	be	edited	because	the	signal
would	be	considered	to	be	“blocked.”	For	range	data,	we	would	see	Bn	where	n
is	an	integer	specifying	the	leg	number.	For	our	two	way	range	data	type,	we
have	two	legs,	the	uplink	leg	represented	by	the	integer,	1,	and	the	downlink	leg,



represented	by	the	integer	2.	Thus,	if	we	saw	“B1”	in	this	field,	this	would	mean
that	the	signal	was	blocked	for	the	uplink	leg.	Correspondingly,	for	Doppler	data,
we	would	also	see	Bn,	but	the	integer	n	would	be	1	or	2	depending	upon	whether
the	blockage	occurred	in	the	start	path	(n=1)	or	the	end	path	(n=2).

After	all	of	the	individual	iteration	0	residuals	are	printed	out,	four	different
iteration	0	observation	summary	reports,	as	shown	below,	are	printed	out.

Observation	Summary	by	Station	and	Data	Type

Observation	Summary	by	Data	Type	and	Station

Observation	Summary	by	Station

Observation	Summary	by	Data	Type

After	all	of	the	observation	summaries	are	printed	out,	the	updated	state	and
covariance	information,	obtained	by	processing	the	previous	residual
information,	are	printed	out.	The	output	also	contains	statistical	information
about	how	much	the	individual	components	of	the	state	estimate	have	changed
for	this	iteration.

At	this	point,	the	output	content	repeats	itself	for	the	next	iteration.	The	new
state	estimate	is	used	to	calculate	new	residuals	and	the	process	starts	all	over
again.	The	process	stops	when	the	estimator	has	either	converged	or	diverged.

We	now	give	an	example	of	how	this	report	can	be	used.	In	the	Message
Window	Output	section,	we	noted	that,	for	iteration	1,	two	measurements	were
edited	because	of	the	OLSE	criteria.	Let’s	investigate	this	in	more	detail.	What
type	of	data	was	edited?	From	what	station?	Could	there	be	a	problem	with	this
data	type	at	this	station?	We	look	at	the	‘Observation	Summary	by	Station	and
Data	Type’	for	iteration	1.	We	see	that	one	range	measurement	from	the	GDS
station	and	one	range	measurement	from	the	MAD	station	was	edited.	The	mean
residual	and	1	sigma	standard	deviation	for	GDS	range	measurements	was
-0.828187	and	10.595392	RU,	respectively.	The	mean	residual	and	1	sigma
standard	deviation	for	MAD	range	measurements	was	0.976758	and	11.047855
RU,	respectively.

Now	that	we	know	that	the	issue	was	with	GDS	and	MAD	range	measurements,
we	look	at	the	detailed	residual	output,	for	iteration	1,	to	determine	the	time



these	measurements	occurred.	We	can	search	for	the	OLSE	keyword	to	help	do
this.	We	determine	that	a	GDS	range	measurement	was	edited	at	07	Sep	2015
19:00:00.000	UTCG	and	that	it	had	an	observation	residual	of	-32.432373	RU.
This	is	just	a	bit	beyond	the	3	sigma	value	and	we	conclude	that	there	is	no	real
problem	with	the	GDS	range	measurements.	This	is	just	normal	statistical
variation.

We	also	determine	that	a	MAD	range	measurement	was	edited	at	31	Aug	2015
11:00:00.000	UTCG	and	that	it	had	an	observation	residual	of	-33.497559	RU.
Again,	this	is	just	a	bit	beyond	the	3	sigma	value	and	we	conclude	that	there	is
no	real	problem	with	the	MAD	range	measurements.	We	remind	you,	that	when
you	do	your	run,	you	may	have	a	different	number	of	data	points	edited.	This	is
because,	when	you	do	your	simulation,	GMAT	uses	a	random	number	generator
and	you	will	be	using	a	different	data	set.

Matlab	Output	File

In	the	Create	and	configure	BatchEstimatorInv	object	section,	when	we	created
our	BatchEstimatorInv	resource,	bat,	we	chose	our	MATLAB	output	file	name,
'Orbit	Estimation	using	DSN	Range	and	Doppler	Data.mat.'	By	default,	this
file	is	created	in	GMAT’s	‘output’	directory.	This	file	will	only	be	created	if	you
have	MATLAB	installed	and	properly	configured	for	use	with	GMAT.

Start	up	a	MATLAB	session.	Change	the	directory	to	your	GMAT	‘output’
directory	and	then	type	the	following	at	the	MATLAB	command	prompt.

>>	load	'Orbit	Estimation	using	DSN	Range	and	Doppler	Data.mat'

After	the	file	has	loaded,	type	the	following	command	to	obtain	a	list	of
available	variable	names	inside	this	file.

>>	whos

You	should	see	something	similar	to	the	following:

>>	whos

		Name												Size													Bytes		Class					Attributes

		Iteration0						1x1													847660		struct														

		Iteration1						1x1													847690		struct														

		Iteration2						1x1													847696		struct													



You	may	see	more	or	fewer	iterations	depending	on	your	run.	Each	iteration
variable	is	a	structure	containing	the	following	arrays:

Status Observation	status	flag,	1	=
observation	is	good/useable

IterationNumber The	iteration	number.	This	matches	the
iteration	number	in	the	structure	name.

Epoch The	TAIModJulian	time	tag	of	each
observation,	computed	value,	and
residual

Observed The	observed	value	(from	the	GMD
file)	in	Range	Units	or	Hertz

Calculated The	predicted	observation,	in	Range
Units	or	Hertz,	computed	by	GMAT
using	the	force	modeling	specified	in
the	batch	estimator	propagator

ObsMinusCalculated The	observation	residual,	in	Range
Units	or	Hertz

Elevation The	computed	elevation	of	the
observation,	in	degrees

Frequency The	transmit	frequency	at	the	time	of
the	observation,	in	Hertz

FrequencyBand The	frequency	band	of	the	observation.
See	the	TrackingFileSet	help	for	a	list
of	frequency	band	indicators.

DopplerCountInterval The	Doppler	count	interval	in	seconds,
for	Doppler	observations.	Set	to	-1	for
range	observations.

Participants For	each	observation,	a	comma-
separated	string	identifying	the
transmit	station,	tracked	object,	and
receive	station	in	order

Type A	string	identifying	the	observation



type,	DSN_SeqRange	or	DSN_TCP

UTCGregorian The	UTCGregorian	epoch	string	of
each	observation

ObsEditFlag The	editing	status	flag	for	each
observation.	N	=	not	edited,	U	=	no
computed	value	configuration
available,	R	=	out	of	ramp	table	range,
B	=	blocked	by	elevation	edit	criteria,
IRMS	=	initial	RMS	sigma	edit,	OLSE
=	outer-loop	sigma	edit

Any	unset	or	uncomputed	values	are	set	to	-1.	You	can	use	these	arrays	to
perform	custom	plots	and	statistical	analysis	using	MATLAB.	For	example,	to
produce	a	plot	of	all	range	residuals	from	the	final	iteration,	you	can	do	the
following:

>>	I	=	find(strcmp(Iteration2.Type,	'DSN_SeqRange'));

>>	plot(Iteration2.Epoch(I),	Iteration2.ObsMinusCalc(I),	'go');
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Appendix	A	–	GMAT	Message	Window	Output
Running	mission...

Data	file	'Simulate	DSN	Range	and	Doppler	Data	3	weeks.gmd'	has	1348	

of	1348	records	used	for	estimation.

Total	number	of	load	records	:	1348		

List	of	tracking	configurations	(present	in	participant	ID)	for	load	

records	from	data	file	

'Simulate	DSN	Range	and	Doppler	Data	3	weeks.gmd':

			Config	0:	{{22222,11111,22222},DSN_SeqRange}

			Config	1:	{{22222,11111,22222},DSN_TCP}

			Config	2:	{{33333,11111,33333},DSN_SeqRange}

			Config	3:	{{33333,11111,33333},DSN_TCP}

			Config	4:	{{44444,11111,44444},DSN_SeqRange}

			Config	5:	{{44444,11111,44444},DSN_TCP}

****			No	tracking	configuration	was	generated	because	the	tracking	

configuration	is	defined	in	the	script.

********************************************************

***	Performing	Estimation	(using	"bat")

***	

********************************************************

a	priori	state:

			Estimation	Epoch:

							27253.500417064603	A.1	modified	Julian

							27253.500416666666	TAI	modified	Julian

			19	Aug	2015	00:00:00.000	UTCG

			Sat.SunMJ2000Eq.X	=	-126544963

			Sat.SunMJ2000Eq.Y	=	61978518

			Sat.SunMJ2000Eq.Z	=	24133225

			Sat.SunMJ2000Eq.VX	=	-13.789

			Sat.SunMJ2000Eq.VY	=	-24.673

			Sat.SunMJ2000Eq.VZ	=	-10.662

Number	of	Records	Removed	Due	To:

			.	No	Computed	Value	Configuration	Available	:	0

			.	Out	of	Ramp	Table	Range			:	0

			.	Signal	Blocked	:	0

			.	Initial	RMS	Sigma	Filter		:	0

			.	Outer-Loop	Sigma	Editor	:	0



Number	of	records	used	for	estimation:	1348

			WeightedRMS	residuals	for	this	iteration	:	1459.94235975

			BestRMS	residuals	for	this	iteration					:	1459.94235975

			PredictedRMS	residuals	for	next	iteration:	1.01539521333

------------------------------------------------------

Iteration	1

Current	estimated	state:

			Estimation	Epoch:

							27253.500417064603	A.1	modified	Julian

							27253.500416666666	TAI	modified	Julian

			19	Aug	2015	00:00:00.000	UTCG

			Sat.SunMJ2000Eq.X	=	-126544968.377

			Sat.SunMJ2000Eq.Y	=	61978514.8777

			Sat.SunMJ2000Eq.Z	=	24133217.2547

			Sat.SunMJ2000Eq.VX	=	-13.7889998632

			Sat.SunMJ2000Eq.VY	=	-24.6730006664

			Sat.SunMJ2000Eq.VZ	=	-10.6619986007

Number	of	Records	Removed	Due	To:

			.	No	Computed	Value	Configuration	Available	:	0			

			.	Out	of	Ramp	Table	Range																			:	0

			.	Signal	Blocked																												:	0

			.	Initial	RMS	Sigma	Filter																		:	0

			.	Outer-Loop	Sigma	Editor																			:	2

Number	of	records	used	for	estimation										:1346

			WeightedRMS	residuals	for	this	iteration	:	1.00807187051

			BestRMS	residuals	for	this	iteration					:	1.00807187051

			PredictedRMS	residuals	for	next	iteration:	1.00804237273

This	iteration	is	converged	due	to	relative	convergence	criteria.

********************************************************

***	Estimating	Completed	in	2	iterations

********************************************************

Estimation	converged!

						|1	-	RMSP/RMSB|	=	|	1-	1.00804	/	1.00807|	=	2.92616e-005	is	

	 		less	than	RelativeTol,	0.0001

Final	Estimated	State:

			Estimation	Epoch:

							27253.500417064603	A.1	modified	Julian



							27253.500416666666	TAI	modified	Julian

			19	Aug	2015	00:00:00.000	UTCG

			Sat.SunMJ2000Eq.X	=	-126544968.759

			Sat.SunMJ2000Eq.Y	=	61978514.3889

			Sat.SunMJ2000Eq.Z	=	24133216.7847

			Sat.SunMJ2000Eq.VX	=	-13.7889997238

			Sat.SunMJ2000Eq.VY	=	-24.673000621

			Sat.SunMJ2000Eq.VZ	=	-10.6619988668

Final	Covariance	Matrix:

								6.566855211518e+000								1.044634165793e+001								3.112863356104e+000							-2.345908150453e-006								5.035500518048e-007								1.602400702334e-006

								1.044634082751e+001								2.043155461343e+001							-4.258301029878e+000							-3.704075903144e-006								2.022938490903e-007								3.971535902921e-006

								3.112865361595e+000							-4.258297445960e+000								2.371732979013e+001							-1.178974996784e-006								1.683977194948e-006							-2.674173473312e-006

							-2.345908159193e-006							-3.704076213842e-006							-1.178974284159e-006								8.386165742100e-013							-1.658563839962e-013							-6.047842793431e-013

								5.035500497713e-007								2.022939026968e-007								1.683977056710e-006							-1.658563826712e-013								1.032575255469e-012							-2.190676053421e-012

								1.602400700119e-006								3.971536117909e-006							-2.674174002075e-006							-6.047842762516e-013							-2.190676053038e-012								5.776276322091e-012

Final	Correlation	Matrix:

													1.000000000000													0.901851016006													0.249429858518												-0.999655967713													0.193376220513													0.260176714954

													0.901850944314													1.000000000000												-0.193442883328												-0.894844247176													0.044042413976													0.365581159741

													0.249430019216												-0.193442720520													1.000000000000												-0.264356490609													0.340284723675												-0.228471850851

												-0.999655971438												-0.894844322236												-0.264356330820													1.000000000000												-0.178233614796												-0.274786120507

													0.193376219732													0.044042425647													0.340284695741												-0.178233613372													1.000000000000												-0.897001819395

													0.260176714594													0.365581179531												-0.228471896026												-0.274786119102												-0.897001819239													1.000000000000

********************************************************

Mission	run	completed.

===>	Total	Run	Time:	85.739000	seconds

========================================



Appendix	B	–	Zeroth	Iteration	Plots	of
Observation	Residuals



Appendix	C	–	First	Iteration	Plots	of	Observation
Residuals



Reference	Guide
The	Reference	Guide	contains	individual	topics	that	describe	each	of	GMAT's
resources	and	commands.	When	you	need	detailed	information	on	syntax	or
application-specific	examples	for	specific	features,	go	here.	It	also	includes
system-level	references	that	describe	the	script	language	syntax,	parameter
listings,	external	interfaces,	and	configuration	files.

The	Resources	section	provides	general	information	on	GMAT	Resources	such
as	Spacecraft,	Propagators,	Coordinate	Systems,	and	EphemerisFiles	to
name	just	a	few.	Go	here	for	details	regarding	syntax,	options,	variable	ranges
and	data	types,	defaults,	and	expected	behavior.	Each	section	contains	detailed,
copy-and-paste	ready	examples.

The	Commands	section	provides	general	information	on	GMAT	Commands	such
as	Maneuver,	Assignment,	Optimize,	and	Propagate	to	name	just	a	few.	Go
here	for	details	regarding	syntax,	options,	variable	ranges	and	data	types,
defaults	and	expected	behavior.	Each	section	contains	detailed,	copy-and-paste
ready	examples.

The	System	section	provides	information	on	system	configuration,	external
interfaces,	the	script	language,	and	the	command	line	interface.



Resources



AcceptFilter
AcceptFilter	—	Allows	selection	of	data	subsets	for	processing	by	the	batch	least
squares	estimator.



Description
Starting	with	the	R2017A	release	of	GMAT,	the	AcceptFilter	resource	replaces
the	StatisticsAcceptFilter	resource.	The	StatisticsAcceptFilter	resource	is	still
available	in	this	release	but	it	is	deprecated	and	will	be	removed	in	a	future
release.

The	AcceptFilter	object	is	used	to	create	criteria	for	the	inclusion	of	subsets	of
the	available	data	in	the	estimation	process	based	on	observation	frequency,
tracker,	measurement	type,	record	number,	or	time.	Instances	of	AcceptFilter
are	specified	for	use	on	the	DataFilters	field	of	a	TrackingFileSet	or
BatchEstimatorInv	object.

GMAT	implements	two	levels	of	data	editing	for	estimation.	First-level	editing
criteria	are	specified	on	the	DataFilters	field	of	the	TrackingFileSet	instance.
At	this	level,	the	user	may	choose	what	data	is	admitted	into	the	overall	pool	of
observations	provided	to	the	estimator.	Any	data	excluded	at	the	tracking	file	set
level	will	be	immediately	discarded	and	not	available	to	the	estimation	process.

Second-level	data	editing	is	specified	on	the	DataFilters	field	of	the
BatchEstimatorInv	instance.	At	this	level,	the	user	may	choose	what	data	is
used	in	the	estimation	state	update.	Residuals	will	be	computed	for	any
observations	admitted	through	first-level	editing,	but	any	data	excluded	at	the
estimator	level	will	be	flagged	as	user	edited,	and	will	not	affect	the	computation
of	the	state	correction.	This	allows	the	user	to	evaluate	the	quality	of	untrusted
data	against	a	solution	computed	using	a	trusted	set	of	measurements.

A	single	AcceptFilter	may	employ	multiple	selection	criteria	(for	example
simultaneously	thinning	different	stations	or	data	types	by	differing	intervals).
Multiple	criteria	on	a	single	filter	are	considered	in	an	AND	sense.	When
multiple	criteria	are	specified	on	a	single	filter,	an	observation	must	meet	all
specified	criteria	to	be	accepted.

Multiple	AcceptFilters	with	different	selection	criteria	may	be	specified	on	a
single	TrackingFileSet	or	BatchEstimatorInv.	When	multiple	filters	are
specified,	these	act	in	an	OR	sense.	Data	meeting	criteria	for	any	of	the	specified
filters	will	be	accepted.



See	Also	RejectFilter,	TrackingFileSet,	BatchEstimatorInv



Fields

Field Description

DataTypes
List	of	data	types

Data	Type String	Array

Allowed
Values

A	set	of	any	supported	GMAT
measurement	types,	or	'All'

Access set

Default
Value

{All}

Units N/A

Interfaces script

EpochFormat
Allows	user	to	select	format	of	the	epoch

Data
Type

String

Allowed UTCGregorian,	UTCModJulian,



Values TAIGregorian,	TAIModJulian,
TTGregorian,	TTModJulian	A1Gregorian,
A1ModJulian,	TDBGregorian,
TDBModJulian

Access set

Default
Value

TAIModJulian

Units N/A

Interfaces script

FileNames
List	of	file	names	(a	subset	of	the	relevant
TrackingFileSet's	FileName	field)	containing	the
tracking	data.	If	this	field	equals
From_AddTrackingConfig,	then	two	things	happen;	(1)
All	of	the	files	in	the	relevant	TrackingFileSet	are	used
as	a	starting	point,	and	(2)	Of	the	data	in	all	of	the	files,
only	the	data	defined	by	the	AddTrackingConfig	field
of	the	relevant	TrackingFileSet	are	used.	This	field	is
only	applicable	when	the	AcceptFilter	is	used	on	a
TrackingFileSet.

Data	Type StringArray

Allowed
Values

valid	file	name,	'All',	or
'From_AddTrackingConfig'



Access set

Default
Value

{All}

Units N/A

Interfaces script

FinalEpoch
Final	epoch	of	desired	data	to	process

Data	Type String

Allowed	Values any	valid	epoch

Access set

Default	Value latest	day	defined	in	GMAT

Units N/A

Interfaces script

InitialEpoch
Initial	epoch	of	desired	data	to	process



Data	Type String

Allowed	Values any	valid	epoch

Access set

Default	Value earliest	day	defined	in	GMAT

Units N/A

Interfaces script

ObservedObjects
List	of	user-created	tracked	objects	(e.g.,	name	of	the
Spacecraft	resource	being	tracked)

Data	Type Object	Array

Allowed	Values User	defined	observed	object	or	'All'

Access set

Default	Value {All}

Units N/A



Interfaces script

RecordNumbers
A	list	of	one	or	more	single	record	numbers	or	spans	of
record	numbers	to	accept.	Observation	record	numbers
are	reported	in	the	GMAT	estimator	output	file.	This
field	is	only	applicable	when	the	AcceptFilter	is	used	on
the	estimator	level.

Data	Type String	array

Allowed
Values

Integers	or	spans	of	integers	(see
examples)

Access set

Default	Value {All}

Units N/A

Interfaces script

ThinMode
'Frequency'	for	record	count	frequency	mode	and	'Time'
for	time	interval	mode.	This	field	is	only	applicable
when	the	AcceptFilter	is	used	on	a	TrackingFileSet.

Data	Type String



Allowed	Values 'Frequency'	or	'Time'

Access set

Default	Value Frequency

Units N/A

Interfaces script

ThinningFrequency
If	ThinMode	is	Frequency,	the	integer	'n'	is	used	to
specify	that	every	nth	data	point	should	be	accepted.	For
example,	3	specifies	that	every	third	data	point,	meeting
all	the	accept	criteria,	should	be	accepted	and	1	specifies
that	every	data	point,	meeting	all	the	accept	criteria,
should	be	accepted.	If	ThinMode	is	Time,	the	integer	'n'
is	a	number	of	seconds	between	accepted	observations,
using	the	first	available	observation	as	the	anchor	epoch.
For	example,	a	value	of	300	means	that	observations	will
be	accepted	every	300	seconds,	starting	from	the	first
available	observation.	This	field	is	only	applicable	when
the	AcceptFilter	is	used	on	a	TrackingFileSet.

Data	Type Integer

Allowed	Values Positive	Integer

Access set



Default	Value 1

Units Depends	on	ThinMode	value

Interfaces script

Trackers
List	of	user-created	trackers	(e.g.,	name	of	the
GroundStation	resource	being	used)

Data
Type

Object	Array

Allowed
Values

any	valid	user-created	Tracker	object	(e.g.,
GroundStation)	or	'All'

Access set

Default
Value

{All}

Units N/A

Interfaces script



Remarks
Some	fields	of	AcceptFilter	are	not	applicable	at	either	the	first-level	(tracking
file	set)	or	second-level	(estimator)	editing	stages.	The	RecordNumbers	field
has	no	functionality	when	applied	to	an	accept	filter	at	the	tracking	file	set	level.
The	FileNames,	ThinningFrequency,	and	ThinMode	fields	have	no
functionality	when	applied	to	an	accept	filter	at	the	estimator	level.

Use	of	combinations	of	instances	of	AcceptFilter	and	RejectFilter	at	both
levels	is	permitted.



Examples

First-level	(TrackingFileSet)	Data	Editing

The	following	examples	illustrate	use	of	an	AcceptFilter	for	first-level	data
editing.	At	this	level,	the	AcceptFilter	instance	should	be	assigned	to	the
DataFilters	field	of	a	TrackingFileSet.	In	these	examples,	only	data	meeting
the	criteria	specified	by	the	accept	filter	will	be	admitted	through.	All	other	data
is	immediately	discarded.

This	example	shows	how	to	create	an	AcceptFilter	to	sample	the	data	at	a
frequency	of	1:10	(thinning	the	data	to	one	tenth	of	its	volume).

Create	AcceptFilter	af;

		

af.ThinningFrequency	=	10;

Create	TrackingFileSet	estData;

estData.DataFilters	=	{af};

BeginMissionSequence;

The	next	example	will	accept	all	data	from	station	GDS	and	accept	every	5th
observation	from	station	CAN.	Only	data	from	stations	GDS	and	CAN	will	be
accepted.

Create	AcceptFilter	af1;

Create	AcceptFilter	af2;

	

Create	GroundStation	GDS	CAN;

af1.Trackers										=	{'GDS'};	

af2.Trackers										=	{'CAN'};

af2.ThinningFrequency	=	5;

	

Create	TrackingFileSet	estData;

	

estData.DataFilters	=	{af1,	af2};

BeginMissionSequence;



The	last	example	illustrates	thinning	data	by	time	interval,	using	a	300-second
thinning	interval.

Create	AcceptFilter	saf;

	

af.ThinMode										=	'Time';	

af.ThinningFrequency	=	300;

	

Create	TrackingFileSet	estData;

	

estData.DataFilters	=	{af};

BeginMissionSequence;

Second-level	(estimator)	Data	Editing

The	following	examples	illustrate	use	of	an	AcceptFilter	for	second-level	data
editing.	At	this	level,	the	AcceptFilter	instance	should	be	assigned	to	the
DataFilters	field	of	a	BatchEstimatorInv.	In	these	examples,	only	data	meeting
the	criteria	specified	by	the	accept	filter	will	be	used	in	the	estimation	state
update.	Residuals	will	be	computed	for	all	available	data	(all	data	admitted	at	the
first	level),	but	data	not	accepted	at	the	estimator	level	will	be	flagged	as	user
edited.

This	example	shows	how	to	create	an	AcceptFilter	to	accept	specific	data
records	by	record	number.

Create	AcceptFilter	af;

		

af.RecordNumbers	=	{10,	11,	20-150,	155-300};

Create	BatchEstimatorInv	bls;

bls.DataFilters	=	{af};

BeginMissionSequence;

The	next	example	will	accept	only	range	data	from	station	MAD	over	the	time
span	10	Jun	2012	02:56	to	13:59.

Create	AcceptFilter	af;

Create	GroundStation	MAD;



af.Trackers					=	{'MAD'};

af.DataTypes				=	{'Range'};

af.EpochFormat		=	UTCGregorian;

af.InitialEpoch	=	'10	Jun	2012	02:56:00.000';

af.FinalEpoch			=	'10	Jun	2012	13:59:00.000';

Create	BatchEstimatorInv	bls;

bls.DataFilters	=	{af};

BeginMissionSequence;

The	last	example	illustrates	accepting	all	data	from	station	MAD	and	only	range
data	from	station	CAN.

Create	AcceptFilter	af1	af2;

Create	GroundStation	MAD	CAN;

	

af1.Trackers									=	{'MAD'};	

af2.Trackers									=	{'CAN'};

af2.DataTypes								=	{'Range'};

	

Create	BatchEstimatorInv	bls;

	

bls.DataFilters	=	{af1,	af2};

BeginMissionSequence;



Antenna
Antenna	—	Transmits	or	receives	an	RF	signal.



Description
A	number	of	GMAT	resources,	GroundStation,	Transponder,	Receiver,	and
Transmitter,	use	an	Antenna	resource	to	transmit	and/or	receive	RF	signals.

See	Also:	GroundStation,	Transponder,	Receiver,	Transmitter



Fields
There	are	no	fields	for	the	Antenna	resource.



Examples
This	example	shows	how	the	Antenna	resource	is	used.

Create	Antenna	SatTranponderAntenna	DSNReceiverAntenna	DSNTransmitterAntenna;

Create	Transponder	SatTransponder;

SatTransponder.PrimaryAntenna			=	SatTranponderAntenna

Create	Spacecraft	Sat

Sat.AddHardware																	=	{SatTransponder,	SatTranponderAntenna};

Create	Transmitter	DSNTransmitter

DSNTransmitter.PrimaryAntenna			=	DSNTransmitterAntenna

Create	Receiver	DSNReceiver

DSNReceiver.PrimaryAntenna						=	DSNReceiverAntenna;

Create	GroundStation	DSN;

DSN.AddHardware																	=	...

	{DSNTransmitter,	DSNReceiver,	DSNTransmitterAntenna,	DSNReceiverAntenna};

BeginMissionSequence;

Since	the	Antenna	resource	currently	has	no	fields	and	thus	has	no	function,	for
this	GMAT	release,	we	only	need	to	create	one	Antenna	resource	that	can	be
used	multiple	times.	Thus,	the	example	above	simplifies	as	shown	below.

Create	Antenna	GenericAntenna;

Create	Transponder	SatTransponder;

SatTransponder.PrimaryAntenna					=	GenericAntenna

Create	Spacecraft	Sat

Sat.AddHardware																			=	{SatTransponder,	GenericAntenna};

Create	Transmitter	DSNTransmitter

DSNTransmitter.PrimaryAntenna					=	GenericAntenna

Create	Receiver	DSNReceiver

DSNReceiver.PrimaryAntenna								=	GenericAntenna;

Create	GroundStation	DSN;

DSN.AddHardware																			=	...

																							{DSNTransmitter,	DSNReceiver,	GenericAntenna};

BeginMissionSequence;



Array
Array	—	A	user-defined	one-	or	two-dimensional	array	variable



Description
The	Array	resource	is	used	to	store	a	one-	or	two-dimensional	set	of	numeric
values,	such	as	a	vector	or	a	matrix.	Individual	elements	of	an	array	can	be	used
in	place	of	a	literal	numeric	value	in	most	commands.

Arrays	must	be	dimensioned	at	the	time	of	creation,	using	the	following	syntax:

Create	Array	anArray[rows,	columns]

If	only	one	dimension	is	specified,	a	row	vector	is	created.

Array	values	are	initialized	to	zero	at	creation.	Values	can	be	assigned
individually	using	literal	numeric	values	or	(in	the	Mission	Sequence)	Variable
resources,	Array	resource	elements,	resource	parameters	of	numeric	type,	or
Equation	commands	that	evaluate	to	scalar	numeric	values.

anArray(row,	column)	=	value

If	only	one	dimension	is	specified	during	assignment,	row	is	assumed	to	be	1.

An	Array	can	also	be	assigned	as	a	whole	in	the	Mission	Sequence	using
another	Array	resource	or	an	Equation	that	evaluates	to	an	array.	Both	sides	of
the	assignment	must	be	identically-sized.

anArray	=	array	expression

See	Also:	String,	Variable



Fields
The	Array	resource	has	no	fields;	instead,	the	resource	elements	themselves	are
set	to	the	desired	values.

Field Description
rows

The	number	of	rows	(during	creation),	or	the	row	being	addressed.
The	total	size	of	the	array	is	rows	×	columns.	This	field	is	required.

Data	Type Integer

Allowed	Values 1	≤	rows	≤	1000

Access set

Default	Value 1

Units N/A

Interfaces GUI,	script

columns

The	number	of	columns	(during	creation),	or	the	column	being
addressed.	The	total	size	of	the	array	is	rows	×	columns.	This	field
is	required.

Data	Type Integer



Allowed	Values 1	≤	columns	≤	1000

Access set

Default	Value 1

Units N/A

Interfaces GUI,	script

value

The	value	of	the	array	element	being	addressed.

Data	Type Real	number

Allowed	Values -∞	<	value	<	∞

Access set,	get

Default	Value 0.0

Units N/A

Interfaces GUI,	script





GUI

The	GMAT	GUI	lets	you	create	multiple	Array	resources	at	once	without
leaving	the	window.	To	create	an	Array:

1.	 In	the	Array	Name	box,	type	the	desired	name	of	the	array.
2.	 In	the	Row	and	Column	boxes,	type	the	desired	number	of	rows	and

columns,	respectively.	To	create	a	one-dimensional	array,	set	Row	to	1.
3.	 Click	the	=>	button	to	create	the	array	and	add	it	to	the	list	on	the	right.
4.	 Click	the	Edit	button	to	edit	the	array	element	values.

You	can	create	multiple	Array	resources	this	way.	To	edit	an	existing	array	in
this	window,	click	it	in	the	list	on	the	right.	Click	Edit	to	change	the	element
values,	or	edit	the	Row	and	Column	values.	You	must	click	the	=>	button	again
to	save	changes	to	the	size	of	the	array.



You	can	edit	the	elements	of	an	Array	by	either	clicking	Edit	while	creating	an
array,	or	by	double-clicking	the	array	in	the	resources	tree	in	the	main	GMAT
window.	The	edit	window	allows	you	to	change	array	elements	individually
using	the	row	and	column	lists	and	clicking	Update,	or	by	directly	entering	data
in	the	table	in	the	lower	portion	of	the	window.	The	data	table	recognizes	a	few
different	mouse	and	keyboard	controls:

Click	a	cell	once	to	select	it

Click	a	selected	cell	again,	double-click	an	unselected	cell,	or	press	F2	to
edit	the	value

Use	the	arrow	keys	to	select	adjacent	cells

Click	the	corner	header	cell	to	select	the	entire	table

Drag	the	column	and	row	separators	to	adjust	the	row	height	or	column
width

Double-click	the	row	or	column	separators	in	the	heading	to	auto-size	the
row	height	or	column	width



Remarks
GMAT	Array	resources	store	an	arbitrary	number	of	numeric	values	organized
into	one	or	two	dimensions,	up	to	a	maximum	of	1000	elements	per	dimension.
Internally,	the	elements	are	stored	as	double-precision	real	numbers,	regardless
of	whether	or	not	fractional	portions	are	present.	Array	resources	can	be	created
and	assigned	using	one	or	two	dimension	specifiers.	This	example	shows	the
behavior	in	each	case:

%	a	is	a	row	vector	with	3	elements

Create	Array	a[3]

a(1)	=	1				%	same	as	a(1,	1)	=	1

a(2)	=	2				%	same	as	a(1,	2)	=	2

a(3)	=	3				%	same	as	a(1,	3)	=	3

%	b	is	a	matrix	with	5	rows	and	3	columns

Create	Array	b[5,	3]

b(1)	=	1				%	same	as	b(1,	1)	=	1

b(2)	=	2				%	same	as	b(1,	2)	=	2

b(3)	=	3				%	same	as	b(1,	3)	=	3

b(4)	=	4				%	error:	b(1,	4)	does	not	exist

b(4,	3)	=	4	%	row	4,	column	3



Examples
Creating	and	reporting	an	array:

Create	ReportFile	aReport

Create	Variable	i	idx1	idx2

Create	Array	fib[9]

BeginMissionSequence

fib(1)	=	0

fib(2)	=	1

For	i=3:9

			idx1	=	i-1

			idx2	=	i-2

			fib(i)	=	fib(idx1)	+	fib(idx2)

EndFor

Report	aReport	fib



Barycenter
Barycenter	—	The	center	of	mass	of	selected	celestial	bodies



Description
A	Barycenter	is	the	center	of	mass	of	a	set	of	celestial	bodies.	GMAT	contains
two	barycenter	resources:	a	built-in	SolarSystemBarycenter	resource	and	the
Barycenter	resource	that	allows	you	to	build	a	custom	Barycenter	such	as	the
Earth-Moon	barycenter.	This	resource	cannot	be	modified	in	the	Mission
Sequence.

See	Also:	LibrationPoint,	CoordinateSystem,	CelestialBody,	SolarSystem,	Color



Fields

Field Description

BodyNames
The	list	of	CelestialBody	resources	included	in	the
Barycenter.	Providing	empty	brackets	sets	the	bodies	to	the
default	list	described	below.

Data
Type

String	array

Allowed
Values

array	of	celestial	bodies.	You	cannot	add
bodies	to	the	built-in
SolarySystemBarycenter	resource.	A
CelestialBody	can	only	appear	once	in	the
BodyNames	list.

Access set

Default
Value

Earth,	Luna

Units N/A

Interfaces GUI,	script

OrbitColor
Allows	you	to	set	available	colors	on	user-defined
Barycenter	object	orbits.	The	barycenter	orbits	are	drawn



using	the	OrbitView	graphics	resource.	Colors	on
Barycenter	object	can	be	set	through	a	string	or	an	integer
array.	For	example:	Setting	a	barycenter's	orbit	color	to	red
can	be	done	in	the	following	two	ways:
Barycenter.OrbitColor	=	Red	or
Barycenter.OrbitColor	=	[255	0	0].	This	field	can	be
modified	in	the	Mission	Sequence	as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit	Color
Picker	in	GUI.	Valid	predefined	color	name	or
RGB	triplet	value	between	0	and	255.

Access set

Default
Value

Gold

Units N/A

Interfaces GUI,	script

TargetColor
Allows	you	to	select	available	colors	for	Barycenter
object's	perturbing	orbital	trajectories	that	are	drawn	during
iterative	processes	such	as	Differential	Correction	or
Optimization.	The	target	color	can	be	identified	through	a
string	or	an	integer	array.	For	example:	Setting	a
barycenter's	perturbing	trajectory	color	to	yellow	can	be



done	in	following	two	ways:	Barycenter.TargetColor	=
Yellow	or	Barycenter.TargetColor	=	[255	255	0].	This
field	can	be	modified	in	the	Mission	Sequence	as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit	Color
Picker	in	GUI.	Valid	predefined	color	name	or
RGB	triplet	value	between	0	and	255.

Access set

Default
Value

DarkGray

Units N/A

Interfaces GUI,	script



GUI

The	Barycenter	dialog	box	allows	you	to	define	the	celestial	bodies	included	in
a	custom	Barycenter.	All	celestial	bodies,	including	user-defined	bodies,	are
available	for	use	in	a	Barycenter	and	appear	in	either	the	Available	Bodies	list
or	the	Selected	Bodies	list.	The	example	above	illustrates	the	default
configuration	which	contains	Earth	and	Luna.



The	SolarySystemBarycenter	dialog	box	shown	above	is	a	built-in	object	and
you	cannot	modify	its	configuration.	See	the	Remarks	section	for	details
regarding	the	model	for	the	SolarSystemBarycenter.



Remarks
Built-in	SolarSystemBarycenter	Object

The	built-in	SolarSystemBarycenter	is	modelled	using	the	ephemerides
selected	in	the	SolarySystem.EphemerisSource	field.	For	example,	if	you
select	DE421	for	SolarSystem.EphemerisSource,	then	the	barycenter	location
is	computed	by	calling	the	DE421	ephemeris	routines.	For	DE	and	SPICE
ephemerides,	the	model	for	the	solar	system	barycenter	includes	the	planets	and
several	hundred	minor	planets	and	asteroids.	Note	that	you	cannot	add	bodies	to
the	SolarSystemBarycenter.

Custom	Barycenter	Objects

You	can	create	a	custom	barycenter	using	the	Barycenter	resource.	The	position
and	velocity	of	a	Barycenter	is	a	mass-weighted	average	of	the	position	and
velocity	of	the	included	celestial	bodies.	In	the	equations	below	mi,	ri,	and	vi	are
respectively	the	mass,	position,	and	velocity	of	the	ith	body	in	the	barycenter,	and
rb	and	vb	are	respectively	the	position	and	velocity	of	the	barycenter.

Setting	Colors	On	Barycenter	Orbits

GMAT	allows	you	to	assign	colors	to	barycenter	orbits	that	are	drawn	using	the



OrbitView	graphics	resource.	GMAT	also	allows	you	to	assign	colors	to
perturbing	barycenter	orbital	trajectories	which	are	drawn	during	iterative
processes	such	as	differential	correction	or	optimization.	The	Barycenter
object's	OrbitColor	and	TargetColor	fields	are	used	to	assign	colors	to	both
orbital	and	perturbing	trajectories.	See	the	Fields	section	to	learn	more	about
these	two	fields.	Also	see	Color	documentation	for	discussion	and	examples	on
how	to	set	colors	on	a	barycenter	orbit.



Examples
Define	the	state	of	a	spacecraft	in	SolarSystemBarycenter	coordinates.

Create	CoordinateSystem	SSB

SSB.Origin	=	SolarSystemBarycenter

SSB.Axes			=	MJ2000Eq

Create	ReportFile	aReport

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	SSB

aSpacecraft.X		=	-27560491.88656896

aSpacecraft.Y		=	132361266.8009069

aSpacecraft.Z		=	57419875.95483227

aSpacecraft.VX	=	-29.78491261798486

aSpacecraft.VY	=	2.320067257851091

aSpacecraft.VZ	=	-1.180722388963864

BeginMissionSequence

Report	aReport	aSpacecraft.EarthMJ2000Eq.X	aSpacecraft.EarthMJ2000Eq.Y	...																

													aSpacecraft.EarthMJ2000Eq.Z	

Report	the	state	of	a	spacecraft	in	SolarSystemBarycenter	coordinates.

Create	CoordinateSystem	SSB

SSB.Origin	=	SolarSystemBarycenter

SSB.Axes			=	MJ2000Eq

Create	Spacecraft	aSpacecraft

Create	ReportFile	aReport

BeginMissionSequence

Report	aReport	aSpacecraft.SSB.X	aSpacecraft.SSB.Y	aSpacecraft.SSB.Z	...

						aSpacecraft.SSB.VX	aSpacecraft.SSB.VY	aSpacecraft.SSB.VZ

Create	an	Earth-Moon	Barycenter	and	use	it	in	a	Sun-Earth-Moon
LibrationPoint.

Create	Barycenter	EarthMoonBary

EarthMoonBary.BodyNames	=	{Earth,Luna}



Create	LibrationPoint	SunEarthMoonL2

SunEarthMoonL2.Primary			=	Sun

SunEarthMoonL2.Secondary	=	EarthMoonBary

SunEarthMoonL2.Point					=	L2

Create	CoordinateSystem	SEML2Coordinates

SEML2Coordinates.Origin	=	SunEarthMoonL2

SEML2Coordinates.Axes			=	MJ2000Eq

Create	Spacecraft	aSpacecraft

GMAT	aSpacecraft.DateFormat	=	UTCGregorian

GMAT	aSpacecraft.Epoch	=	'09	Dec	2005	13:00:00.000'

GMAT	aSpacecraft.CoordinateSystem	=	SEML2Coordinates

GMAT	aSpacecraft.X		=	-32197.88223741966

GMAT	aSpacecraft.Y		=	211529.1500044117

GMAT	aSpacecraft.Z		=	44708.57017366499

GMAT	aSpacecraft.VX	=	0.03209516489451751

GMAT	aSpacecraft.VY	=	0.06086386504053736

GMAT	aSpacecraft.VZ	=	0.0550442738917212

Create	ReportFile	aReport

BeginMissionSequence

Report	aReport	aSpacecraft.EarthMJ2000Eq.X	aSpacecraft.EarthMJ2000Eq.Y	...																

													aSpacecraft.EarthMJ2000Eq.Z	



BatchEstimatorInv
BatchEstimatorInv	—	A	batch	least	squares	estimator



Description
A	batch	least	squares	estimator	is	a	method	for	obtaining	an	estimate	for	a
parameter	vector,	x0,	such	that	a	performance	index,	which	is	a	function	of	that
parameter,	J	=	J(x0),	is	minimized.	For	our	application,	x0	typically	includes	the
spacecraft	position	and	velocity	at	a	specific	epoch	and	the	performance	index	is
a	weighted	sum	of	the	squares	of	the	measurement	residuals.

See	Also:	TrackingFileSet,	RunEstimator



Fields

Field Description

AbsoluteTol
Absolute	Weighted	RMS	convergence	criteria
tolerance

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 0.001

Units dimensionless

Interfaces script

DataFilters
Defines	filters	to	be	applied	to	the	data.	One	or
more	filters	of	either	type	(AcceptFilter,
RejectFilter)	may	be	specified.	Rules
specified	by	data	filters	on	a
BatchEstimatorInv	are	applied	to	determine
what	data	is	accepted	or	rejected	from	the
computation	of	the	state	update.



Data
Type

Resource	array

Allowed
Values

User	defined	instances	of
AcceptFilter	and	RejectFilter
resources

Access set

Default
Value

None

Units N/A

Interfaces script

EstimationEpoch
Estimation	Epoch.	This	is	the	epoch	associated
with	the	"solve-fors."	As	of	R2016A,	this
epoch	comes	from	the	participants	defined	in
the	Measurements	field.	In	later	releases,
additional	options	will	be	allowed.

Data	Type String

Allowed	Values 'FromParticipants'

Access set



Default	Value 'FromParticipants'

Units N/A

Interfaces script

EstimationEpochFormat
Estimation	Epoch	format.	This	is	the	desired
input	format	for	the	EstimationEpoch	field.
For	release	R2016A,	the	only	allowed	value	is
'FromParticipants'	which	means	that	the
EstimationEpoch	comes	from	the	participants
defined	in	the	Measurements	field.	In	later
releases,	additional	options	will	be	allowed.

Data	Type String

Allowed	Values 'FromParticipants'

Access set

Default	Value 'FromParticipants'

Units N/A

Interfaces script

FreezeIteration



Specifies	which	iteration	to	freeze	the	selection
of	measurements	that	are	edited	out

Data	Type integer

Allowed	Values any	positive	integer

Access set

Default	Value 4

Units N/A

Interfaces script

FreezeMeasurementEditing
Allows	the	selection	of	measurements	that	are
edited	out	to	be	frozen

Data	Type true/false

Allowed	Values true	or	false

Access set

Default	Value false



Units N/A

Interfaces script

InversionAlgorithm
Algorithm	used	to	invert	the	normal	equations

Data	Type String

Allowed	Values Internal,	Cholesky,	Schur

Access set

Default	Value Internal

Units N/A

Interfaces script

MatlabFile
File	name	for	the	output	MATLAB	file.
Leaving	this	parameter	unset	means	that	no
MATLAB	file	will	be	output.

Data	Type String

Allowed	Values Any	valid	file	name.



Access set

Default	Value (unset)

Units N/A

Interfaces script

MaxConsecutiveDivergences
Specifies	maximum	number	of	consecutive
diverging	iterations	allowed	before	batch
estimation	processing	is	stopped

Data	Type integer

Allowed	Values any	positive	integer

Access set

Default	Value 3

Units N/A

Interfaces script



MaximumIterations Specifies	maximum	number	of	iterations
allowed	for	batch	estimation

Data	Type integer

Allowed	Values any	positive	integer

Access set

Default	Value 15

Units N/A

Interfaces script

Measurements
Specifies	a	list	of	measurements	used	for	batch
estimation

Data	Type ObjectArray

Allowed
Values

one	or	more	valid
TrackingFileSet	objects

Access set



Default
Value

empty	list

Units N/A

Interfaces script

OLSEAdditiveConstant
Additive	constant	used	for	outer	loop	sigma
editing	(OLSE)

Data	Type Real

Allowed	Values any	real	number

Access set

Default	Value 0.0

Units N/A

Interfaces script

OLSEInitialRMSSigma
Initial	predicted	root-mean-square	value	used
for	outer	loop	sigma	editing	(OLSE)

Data	Type Real



Allowed	Values Real	>	0.0

Access set

Default	Value 3000.0

Units dimensionless

Interfaces script

OLSEMultiplicativeConstant
Multiplicative	constant	used	for	outer	loop
sigma	editing	(OLSE)

Data	Type Real

Allowed	Values Real	>	0.0

Access set

Default	Value 3.0

Units dimensionless



Interfaces script

OLSEUseRMSP
Flag	used	to	specify	editing	algorithm	used	for
outer	loop	sigma	editing	(OLSE)	for	iterations
greater	than	1.	See	Behavior	of	Outer	Loop
Sigma	Editing	(OLSE)	in	the	Remarks
section	for	details.

Data	Type true/false

Allowed	Values true	or	false

Access set

Default	Value true

Units dimensionless

Interfaces script

Propagator
Propagator	object	used	for	batch	estimation

Data	Type Object

Allowed	Values valid	Propagator	object



Access set

Default	Value None

Units N/A

Interfaces script

RelativeTol
Relative	Weighted	RMS	convergence	criteria
tolerance

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 0.0001

Units dimensionless

Interfaces script

ReportFile
Specifies	the	name	of	estimation	report	file



Data	Type String

Allowed
Values

string	containing	a	valid	file
name

Access set

Default
Value

'BatchEstimatorInv'	+
instancename	+	'.data'

Units N/A

Interfaces script

ReportStyle
Specifies	the	type	of	estimation	report.	The
Normal	style	excludes	reporting	of	observation
TAI,	partials,	and	frequency	information.	For
this	current	GMAT	version,	for	normal	GMAT
operation,	only	the	Normal	style	is	an	allowed
choice.

Data	Type String

Allowed	Values Normal

Access set



Default	Value Normal

Units N/A

Interfaces script

ResetBestRMSIfDiverging
If	set	true	and	the	estimation	process	has
diverged,	then	the	Best	RMS	is	reset	to	the
current	RMS.

Data	Type true/false

Allowed	Values true	or	false

Access set

Default	Value false

Units N/A

Interfaces script

ShowAllResiduals
Allows	residuals	plots	to	be	shown



Data	Type On/Off

Allowed	Values On	or	Off

Access set

Default	Value On

Units N/A

Interfaces script

ShowProgress
Allows	detailed	output	of	the	batch	estimator
to	be	shown	in	the	message	window

Data	Type true/false

Allowed	Values true	or	false

Access set

Default	Value true

Units N/A



Interfaces script

UseInitialCovariance
If	set	true,	a	priori	error	covariance	term	is
added	to	the	estimation	cost	function.	This
option	should	be	set	to	true	when	estimating
with	an	applied
Spacecraft.OrbitErrorCovariance,
Spacecraft.CdSigma,	Spacecraft.CrSigma,
or	ErrorModel.BiasSigma.	See	the	Remarks
section	below	for	some	restrictions	on	the	use
of	this	field.

Data	Type true/false

Allowed	Values true	or	false

Access set

Default	Value false

Units N/A

Interfaces script



Remarks

Navigation	Requires	Use	of	Fixed	Step	Numerical
Integration

GMAT	navigation	requires	use	of	fixed	stepped	propagation.	The
BatchEstimatorInv	resource	has	a	Propagator	field	containing	the	name	of	the
Propagator	resource	that	will	be	used	during	the	estimation	process.	As	shown
in	the	Note	below,	there	are	some	hard	restrictions	on	the	choice	of	error	control
specified	for	the	ForceModel	resource	associated	with	your	propagator.

Note

For	batch	estimation,	the	ErrorControl	parameter	specified	for
the	ForceModel	resource	associated	with	the
BatchEstimatorInv	Propagator	must	be	set	to	'None.'	Of
course,	when	using	fixed	step	control,	the	user	must	choose	a
step	size,	as	given	by	the	Propagator	InitialStepSize	field,
for	the	chosen	orbit	regime	and	force	profile,	that	yields	the
desired	accuracy.

Behavior	of	Convergence	Criteria

GMAT	has	four	input	fields,	RelativeTol,	AbsoluteTol,	MaximumIterations,
and	MaxConsecutiveDivergences	that	are	used	to	determine	if	the	estimator	has
converged	after	each	new	iteration.	Associated	with	these	input	fields	are	the	two
convergence	tests	shown	below:

Absolute	Weighted	RMS	convergence	criteria

								Weighted	RMScurrent	<=	AbsoluteTol

Relative	Weighted	Root	Mean	Square	(RMS)	convergence	criteria

								|RMSP	–	RMSB|/	RMSB	<=	RelativeTol



where

								RMSB	=	smallest	Weighted	RMS	achieved	during	the	current	and	previous
iterations

								RMSP	=	predicted	Weighted	RMS	of	next	iteration

Batch	estimation	is	considered	to	have	converged	when	either	or	both	of	the
above	criteria	is	met	within	MaximumIterations	iterations	or	less.

Batch	estimation	is	considered	to	have	diverged	when	number	of	consecutive
diverging	iterations	is	equal	to	or	greater	than	MaxConsecutiveDivergences	or
the	number	of	iterations	exceeds	MaximumIterations.

Behavior	of	Outer	Loop	Sigma	Editing	(OLSE)

GMAT	has	four	input	fields,	OLSEMultiplicativeConstant,
OLSEAdditiveConstant,	OLSEUseRMSP,	and	OLSEInitialRMSSigma,	that
are	used	to	'edit'	(i.e.,	reject	or	throw	away)	bad	measurement	data.	There	are
plans	to	have	both	an	inner	loop	and	and	outer	loop	iteration	editing	procedure.
Currently,	only	the	outer	loop	iteration	editing	procedure	is	implemented.	This
editing	procedure	is	done	on	a	per	iteration	basis.	Data	that	is	edited	is	not	used
to	calculate	the	state	vector	estimate	for	the	current	iteration	but	the	data	is
available	as	a	candidate	measurement	for	subsequent	iterations.	On	the	first	outer
loop	iteration,	data	is	edited	if

								|Weighted	Measurement	Residual|	>	OLSEInitialRMSSigma

where	the	Weighted	Measurement	Residual	for	a	single	given	measurement	is
given	by

								(O-C)/NoiseSigma

and	where	NoiseSigma	is	the	input	noise	(one	sigma)	for	the	measurement	type
associated	with	the	given	measurement.	On	subsequent	outer	loop	iterations,	the
data	is	edited	if

								|Weighted	Measurement	Residual|	>	OLSEMultiplicativeConstant	*	RMS
+	OLSEAdditiveConstant



The	editing	algorithm	above	depends	upon	the	user	input	value	of
OLSEUseRMSP.	If	OLSEUseRMSP	=	True,	then	RMS	=	WRMSP	where
WRMSP	is	the	predicted	weighted	RMS	calculated	at	the	end	of	the	previous
iteration.	Otherwise,	If	OLSEUseRMSP	=	False,	then	RMS	=	WRMS	where
WRMS	is	the	actual	weighted	RMS	calculated	at	the	end	of	the	previous
iteration.

Behavior	of	Freezing	Measurement	Editing

GMAT	has	two	input	fields,	FreezeMeasurementEditing	and	FreezeIteration,
that	are	used	to	determine	if	and	when	to	'freeze'	(i.e.,	no	longer	change)	the
selection	of	measurements	which	are	edited	out	by	the	Outer	Loop	Sigma	Editor.
Freezing	the	measurement	editing	only	takes	place	when
FreezeMeasurementEditing	is	true.

If	freezing	is	enabled,	the	selection	of	measurements	to	edit	is	locked	after	the
iteration	specified	by	FreezeIteration.	If	the	value	of	FreezeIteration	is	1,	the
estimator	uses	the	value	of	OLSEInitialRMSSigma,	as	defined	above,	to
determine	which	measurements	are	used	to	calculate	the	first	iteration	of	the
state	vector	deviation	vector.	Afterwards,	the	same	measurements	edited	out	by
the	initial	RMS	sigma	filter	are	edited	out	for	the	remainder	of	the	iterations.	If
the	value	of	FreezeIteration	is	2	or	greater,	the	estimator	uses	the	above	defined
outer	loop	sigma	editing	to	determine	the	state	vector	deviation	vector	up	to	the
iteration	specified	by	FreezeIteration,	at	which	point	whichever	measurements
are	edited	out	by	the	outer	loop	sigma	editor	stay	edited	out	for	the	remainder	of
the	iterations.	Frozen	measurements	that	are	edited	out	will	retain	the	edit	flag
the	outer	loop	sigma	editor	used	the	iteration	they	were	edited	out.

Freezing	measurement	editing	can	be	useful	in	situations	where	a	solution	takes
an	excessive	number	of	iterations	to	converge	and	latter	iterations	are	only
editing	a	small	amount	of	data.	If	this	is	the	case,	enabling	the	editing	freeze	on
an	appropriate	iteration	will	generally	force	the	solution	to	converge	quickly
after	reaching	the	frozen	iteration.

Propagator	Settings

The	BatchEstimatorInv	resource	has	a	Propagator	field	containing	the	name
of	the	Propagator	resource	that	will	be	used	during	the	estimation	process.	The
minimum	step	size,	MinStep,	of	your	propagator	should	always	be	set	to	0.



UseInitialCovariance	Restrictions

As	mentioned	in	the	Field	spec	above,	if	this	field	is	set	to	true,	then	the	a	priori
error	covariance	term	is	added	to	the	estimation	cost	function.	For	the	current
GMAT	release,	there	are	some	restrictions	on	the	use	of	this	field	as	given	below.

1.	 The	user	must	input	the	a	priori	orbit	state	covariance	in	the	EarthMJ200Eq
coordinate	system.

2.	 If	the	user	is	solving	for	the	Cartesian	orbit	state,	e.g.,	Sat.SolveFors	=
{CartesianState},	then	the	input	a	priori	orbit	state	covariance	must	be	in
terms	of	Cartesian	elements.	Likewise,	if	the	user	is	solving	for	the
Keplerian	orbit	state,	e.g.,	Sat.SolveFors	=	{KeplerianState},	then	the	input
a	priori	orbit	state	covariance	must	be	in	terms	of	Keplerian	elements.

3.	 If	the	user	is	solving	for	the	Keplerian	orbit	state,	e.g.,	Sat.SolveFors	=
{KeplerianState},	then	the	input	a	priori	orbit	state	covariance	must	be
expressed	in	terms	in	terms	of	spacecraft	Mean	Anomaly	(MA)	and	not
True	Anomaly	(TA).	To	be	more	specific,	in	this	situation,	the	diagonal
elements	of	the	6x6	orbit	state	error	covariance	are	the	variance	of	the	SMA
(km^2),	eccentricity	(dimensionless),	INC	(deg^2),	RAAN	(deg^2),	AOP
(deg^2),	and	MA	(deg^2).	Note	that,	in	this	case,	we	require	the	a	priori
covariance	to	be	input	in	terms	of	MA	even	though,	for	the	current	release
of	GMAT,	the	associated	orbit	state	can	not	be	set	using	MA.

Interactions

Resource Description

TrackingFileSet
resource Must	be	created	in	order	to	tell	the	BatchEstimatorInv

resource	which	data	will	be	processed

Propagator
resource

Used	by	GMAT	to	generate	the	predicted	orbit

RunEstimator
command Must	use	the	RunEstimator	command	to	actually	process

the	data	defined	by	the	BatchEstimatorInv	resource



Examples
Below	is	an	example	of	a	configured	batch	estimator	instance.	In	this	example,
estData	is	an	instance	of	a	TrackingFileSet	and	ODProp	is	an	instance	of
Propagator.

Create	BatchEstimatorInv	bat;

bat.ShowProgress															=	true;

bat.Measurements															=	{estData}	

bat.AbsoluteTol																=	0.000001;

bat.RelativeTol																=	0.001;

bat.MaximumIterations										=	10;

bat.MaxConsecutiveDivergences		=	3;

bat.Propagator																	=	ODProp;

bat.ShowAllResiduals											=	On;

bat.OLSEInitialRMSSigma								=	3000;

bat.OLSEMultiplicativeConstant	=	3;

bat.OLSEAdditiveConstant							=	0;

bat.InversionAlgorithm									=	'Internal';

bat.EstimationEpochFormat						=	'FromParticipants';

bat.EstimationEpoch												=	'FromParticipants';	

bat.ReportStyle																=	'Normal';

bat.ReportFile																	=	'BatchEstimator_Report.txt';

BeginMissionSequence;

For	a	comprehensive	example	of	reading	in	measurements	and	running	the
estimator,	see	the	Chapter	14,	Orbit	Estimation	using	DSN	Range	and	Doppler
Data	tutorial.



CelestialBody
CelestialBody	—	A	celestial	body	model



Description
The	CelestialBody	resource	is	a	model	of	a	celestial	body	containing	settings	for
the	physical	properties,	as	well	as	the	models	for	the	orbital	motion	and
orientation.	GMAT	contains	built-in	models	for	the	Sun,	the	8	planets,	Earth's
moon,	and	Pluto.	You	can	create	a	custom	CelestialBody	resource	to	model	a
planet,	asteroid,	comet,	or	moon.	This	resource	cannot	be	modified	in	the
Mission	Sequence.

See	Also:	SolarSystem,	Barycenter,	LibrationPoint,	CoordinateSystem,	Color



Fields

Field Description

3DModelFile
Allows	you	to	load	3D	models	for	your	celestial	body.	
.3ds	model	formats.

Data	Type String

Allowed	Values .	3ds	model	formats	only

Access set

Default	Value empty

Units N/A

Interfaces GUI,	script

3DModelOffsetX
This	field	lets	you	translate	a	celestial	body	in	+X	
body's	coordinate	system.

Data	Type Real

Allowed	Values -3.5	<=	Real	<=	3.5



Access set

Default	Value 0.000000

Units N/A

Interfaces GUI,	script

3DModelOffsetY
This	field	lets	you	translate	a	celestial	body	in	+Y	
body's	coordinate	system.

Data	Type Real

Allowed	Values -3.5	<=	Real	<=	3.5

Access set

Default	Value 0.000000

Units N/A

Interfaces GUI,	script

3DModelOffsetZ
This	field	lets	you	translate	a	celestial	body	in	+Z	
body's	coordinate	system.



Data	Type Real

Allowed	Values -3.5	<=	Real	<=	3.5

Access set

Default	Value 0.000000

Units N/A

Interfaces GUI,	script

3DModelRotationX
Allows	you	to	perform	a	fixed	rotation	of	a	celestial	
X-axis	of	central	body's	coordinate	system.

Data	Type Real

Allowed	Values -180	<=	Real	<=	180

Access set

Default	Value 0.000000

Units Deg.



Interfaces GUI,	script

3DModelRotationY
Allows	you	to	perform	a	fixed	rotation	of	a	celestial	
Y-axis	of	central	body's	coordinate	system.

Data	Type Real

Allowed	Values -180	<=	Real	<=	180

Access set

Default	Value 0.000000

Units Deg.

Interfaces GUI,	script

3DModelRotationZ
Allows	you	to	perform	a	fixed	rotation	of	a	celestial	
Z-axis	of	central	body's	coordinate	system.

Data	Type Real

Allowed	Values -180	<=	Real	<=	180



Access set

Default	Value 0.000000

Units Deg.

Interfaces GUI,	script

3DModelScale
Allows	you	to	apply	a	scale	factor	to	the	celestial	

Data	Type Real

Allowed	Values 0.001	<=	Real	<=	1000

Access set

Default	Value 10

Units N/A

Interfaces GUI,	script

CentralBody
The	central	body	of	the	celestial	body.	The	central	
primarily	by	the	GUI.



Data	Type String

Allowed
Values

Comet,	Planet,	Asteroid,	or	Moon

Access set

Default
Value

For	Comet,	Planet,	Asteroid,	the	default	is	
Moon,	the	default	is	Earth.

Units N/A

Interfaces GUI,	script

EquatorialRadius
The	body's	equatorial	radius.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 6378.1363

Units km



Interfaces GUI,	script

EopFileName
Optional	Earth	EOP	file	to	use	instead	of	the	EOP	
startup	file.	Note	that	an	emtpy	string	is	the	default,	and	when	set	to	an
empty	string,	the	EOP	file	defined	in	the	GMAT	startup	file	is	used.	This
field	is	only	valid	for	Earth	.

Data	Type Filename

Allowed	Values Valid	file	name

Access set

Default	Value ''

Units N/A

Interfaces script

FileName
Path	and/or	name	of	texture	map	file	used	in	OrbitView

Data
Type

String

Allowed
Values

A	file	of	the	following	format:



.jpeg,	.bmp,	.png,	.gif,	.tif,	.pcx,	.pnm,	.tga,	or	

Access set

Default
Value

'../data/graphics/texture/GenericCelestialBody.jpg'

Units N/A

Interfaces GUI,	script

Flattening
The	body's	polar	flattening.

Data	Type Real

Allowed	Values Real	>=	0

Access set

Default	Value 0.0033527

Units N/A

Interfaces GUI,	script



FrameSpiceKernelName List	of	SPICE	FK	files	to	load	for	this	body.	Used	to	
properties	for	use	with	ContactLocator	and	EclipseLocator
Remarks.

Data	Type String	array

Allowed
Values

Paths	to	valid	SPICE	FK	files

Access set

Default	Value Varies	for	built-in	bodies.	Empty	for	user-defined
bodies.

Units N/A

Interfaces GUI,	script

Mu
The	body's	gravitational	parameter.

Data	Type Real

Allowed	Values Real	>	0

Access set



Default	Value 398600.4415

Units km^3/s^2

Interfaces GUI,	script

NAIFId
NAIF	Integer	ID	for	body.

Data	Type Integer

Allowed	Values Integer

Access set

Default	Value -123456789

Units N/A

Interfaces GUI,	script

NutationUpdateInterval
The	time	interval	between	updates	for	Earth	nutation	
NutationUpdateInterval	=	3600,	then	GMAT	only	updates	
hourly	basis.

Data	Type Real



Allowed	Values Real	>=	0

Access set

Default	Value 60

Units sec.

Interfaces GUI,	script

OrbitColor
Allows	you	to	set	available	colors	on	built-in	or	user-defined
CelestialBody	objects	that	are	drawn	on	the	3D	OrbitView
displays.	Colors	on	a	CelestialBody	object	can	be	set	
an	integer	array.	For	example:	Setting	a	celestial	body's	orbit	color	to	red
can	be	done	in	the	following	two	ways:	CelestialBody.OrbitColor	=
Red	or	Celestialbody.OrbitColor	=	[255	0	0]
modified	in	the	Mission	Sequence	as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit	Color	Picker	in	
Valid	predefined	color	name	or	RGB	triplet	value	
and	255.

Access set



Default
Value

Orchid	for	user-defined	Planet,	Pink	for	user-defined
Comet,	Salmon	for	user-defined	Asteroid
defined	Moon

Units N/A

Interfaces GUI,	script

OrbitSpiceKernelName
List	of	SPK	kernels.	Providing	emtpy	brackets	unloads	previously	loaded
kernels.

Data	Type Reference	array

Allowed	Values valid	array	of	SPK	kernels

Access set

Default	Value N/A

Units N/A

Interfaces GUI,	script

OrientationEpoch
The	reference	epoch	for	orientation	data.

Data	Type String



Allowed	Values 6116.0	<=	Epoch	<=	58127.5

Access set

Default	Value 21545.0

Units A1	Modified	Julian	Epoch

Interfaces GUI,	script

PlanetarySpiceKernelName
List	of	SPICE	PCK	files	to	load	for	this	body.	Used	
body	properties	for	use	with	ContactLocator	and	
Remarks.

Data	Type String	array

Allowed
Values

Paths	to	valid	SPICE	PCK	files

Access set

Default	Value Varies	for	built-in	bodies.	Empty	for	user-defined
bodies.

Units N/A



Interfaces GUI,	script

PosVelSource
The	model	for	user-defined	body	orbit	ephemeredes.	
only	supports	a	single	ephemeris	model	for	custom	
this	is	set	using	PosVelSource	field.	The	default	for	
SPICE	and	it	is	not	necessary	to	configure	this	field	in	the	current	version
of	GMAT.	This	field	has	no	effect	for	built-in	bodies.

Data	Type String

Allowed
Values

SPICE

Access set

Default	Value DE405	for	built-in	bodies.	SPICE
bodies.

Units N/A

Interfaces GUI,	script

RotationConstant
The	body's	spin	angle	at	the	orientation	epoch.

Data	Type Real



Allowed	Values Real

Access set

Default	Value 190.147

Units deg

Interfaces GUI,	script

RotationDataSource
Deprecated.

Data
Type

String

Allowed
Values

IAUSimplified,	DEFile,	FK5IAU1980
Remarks	for	more	details	as	not	all	options	are	allowed	for
all	bodies.

Access none

Default
Value

See	the	Remarks	for	how	the	default	model	is	chosen	based
on	the	celestial	body

Units N/A



Interfaces GUI

RotationRate
The	body's	spin	rate.

Data	Type Real

Allowed	Values Real

Access set

Default	Value 360.9856235

Units deg/day

Interfaces GUI,	script

SpiceFrameId
SPICE	ID	of	body-fixed	frame.	Used	to	define	celestial	body	properties
for	use	with	ContactLocator	and	EclipseLocator

Data	Type String

Allowed
Values

Valid	SPICE	frame	ID	(text	or	numeric)

Access set



Default	Value Varies	for	built-in	bodies.	Empty	for	user-defined
bodies.

Units N/A

Interfaces GUI,	script

SpinAxisDECConstant
The	declination	of	the	body's	spin	axis	at	the	orientation	epoch.

Data	Type Real

Allowed	Values Real

Access set

Default	Value 90

Units deg

Interfaces GUI,	script

SpinAxisDECRate
The	rate	of	change	of	the	body's	spin	axis	declination.

Data	Type Real



Allowed	Values Real

Access set

Default	Value -0.5570

Units deg/century

Interfaces GUI,	script

SpinAxisRAConstant
The	right	ascension	of	the	body's	spin	axis	at	the	orientation	epoch.

Data	Type Real

Allowed	Values Real

Access set

Default	Value -0.641

Units deg

Interfaces GUI,	script



SpinAxisRARate The	rate	of	change	of	the	body's	right	ascension.

Data	Type Real

Allowed	Values Real

Access set

Default	Value -0.641

Units deg/century

Interfaces GUI,	script

TargetColor
Allows	you	to	set	available	colors	on	CelestialBody
orbital	trajectories	that	are	drawn	during	iterative	processes	such	as
Differential	Correction	or	Optimization.	The	target	color	can	be	
through	a	string	or	an	integer	array.	For	example:	
perturbing	trajectory	color	to	yellow	can	be	done	in	following	two	ways:
Celestialbody.TargetColor	=	Yellow	or	Celestialbody.TargetColor
=	[255	255	0]	.	This	field	can	be	modified	in	the	Mission	Sequence	as
well.

Data
Type

Integer	Array	or	String

Allowed Any	color	available	from	the	Orbit	Color	Picker	in	



Values Valid	predefined	color	name	or	RGB	triplet	value	
and	255.

Access set

Default
Value

Dark	Gray	for	built-in	or	user-defined	
Asteroid	and	Moon

Units N/A

Interfaces GUI,	script

TextureMapFileName
Allows	you	to	load	a	texture	map	file	for	your	celestial	body.

Data	Type String

Allowed	Values texture	map	files	in	jpeg	format

Access set

Default	Value 'GenericCelestialBody.jpg'

Units N/A

Interfaces GUI,	script





GUI
The	CelestialBody	GUI	has	three	tabs	that	allow	you	to	set	the	physical
properties,	orbital	properties,	and	the	orientation	model.	CelestialBody
resources	can	be	used	in	ForceModels,	CoordinateSystems,	LibrationPoints,
and	Barycenters,	among	others.	For	a	built-in	CelestialBody,	the	Orbit	and
Orientation	tabs	are	largely	inactive	and	the	behavior	is	discussed	below.	To
create	a	custom	Asteroid	-	as	an	example	of	how	to	create	a	custom
CelestialBody	-	perform	the	following	steps.

1.	 In	the	Resource	Tree,	expand	the	SolarSystem	folder.
2.	 Right-click	Sun	and	select	Add	->	Asteroid.
3.	 In	the	New	Asteroid	dialog	box,	type	the	desired	name.

The	CelestialBody	Properties	tab	is	shown	below.	GMAT	models	all	bodies	as
spherical	ellipsoids	and	you	can	set	the	Equatorial	Radius,	Flattening,	and	Mu
(gravitational	parameter)	on	this	dialog	box,	as	well	as	the	texture	map	used	in
OrbitView	graphics	displays.



The	CelestialBody	Orbit	tab	is	shown	below	for	creating	a	custom
CelestialBody.	Settings	on	this	panel	are	inactive	for	built-in	celestial	bodies
and	the	ephemeris	for	built-in	bodies	is	configured	on	the	SolarSystem	dialog.
The	CentralBody	field	is	populated	automatically	when	the	object	is	created
and	is	always	inactive.	To	configure	SPICE	ephemerides	for	a	custom	body,
provide	a	list	of	SPK	files	and	the	NAIF	ID.	See	the	discussion	below	for	more
information	on	configuring	SPICE	files.



The	CelestialBody	Orientation	tab	is	shown	below.	Most	settings	on	this	panel
are	inactive	for	built-in	celestial	bodies	and	exceptions	for	the	Earth	and	Earth's
moon	are	described	further	below.	To	define	the	orientation	for	a	celestial	body
you	provide	a	reference	epoch,	the	initial	orientation	at	the	reference	epoch,	and
angular	rates.	See	the	discussion	below	for	a	more	detailed	description	of	the
orientation	model.



The	Earth	and	Earth's	moon	have	unique	fields	to	configure	their	orientation
models.	The	Earth	has	an	extra	field	called	NutationUpdateInterval	that	can	be
used	when	lower	fidelity,	higher	performance	simulations	are	required.



The	CelestialBody	Visualization	tab	is	shown	below	for	creating	a	custom
CelestialBody.	On	the	visualization	tab,	you	can	set	data	such	as	3d	model	of	a
celestial	body,	texture	file,	translation	and	rotation	of	a	celestial	body	on	all	three
axes,	scale	of	the	3D	model	as	well	as	assign	orbit	and	target	colors	to	the	orbit
of	the	body.





Remarks

Celestial	body	orientation	model

The	orientation	of	built-in	celestial	bodies	is	modeled	using	high	fidelity	theories
on	a	per-body	basis.	The	orientation	of	Earth	is	modeled	using	IAU-1976/FK5.
The	orientation	of	the	Moon	is	modeled	using	lunar	librations	from	the	DE	file.
The	orientation	of	Neptune	is	modeled	using	IAU-2002.	The	remaining	built-in
celestial	body	orientations	are	modeled	using	data	published	by	the	IAU/IAG	in
"Report	of	the	IAU/IAG	Working	Group	on	Cartographic	Coordinates	and
Rotational	Elements	of	the	Planets	and	Satellites:	2000".

The	orientation	of	a	custom	CelestialBody	is	modeled	by	providing	three	angles
and	their	rates	based	on	IAU/IAG	conventions.	The	figure	below	illustrates	the
angles.	The	angles	αo,	δo,	and	W,	are	respectively	the	SpinAxisRAConstant,
SpinAxisDECConstant,	and	RotationConstant.	The	angular	rates	are
respectively	SpinAxisRARate,	SpinAxisDECRate,	and	RotationRate.	All
angles	are	referenced	to	the	X-Y	plane	of	the	ICRF	axis	system.	The	constant
values	SpinAxisRAConstant,	SpinAxisDECConstant,	and	RotationConstant
are	defined	to	be	the	values	at	the	epoch	defined	in	OrientationEpoch.

Below	is	an	example	illustrating	how	to	configure	a	CelestialBody	according	to
the	IAU	2006	recommended	values	for	Vesta.	Note	the	orientation	epoch



typically	used	by	the	IAU	is	01	Jan	2000	12:00:00.00.000	TDB	and	this	must	be
converted	to	A1ModJulian	which	can	easily	be	performed	using	the	Spacecraft
Orbit	dialog	box.

Create	Asteroid	Vesta

Vesta.CentralBody									=	Sun

%		Note	that	currently	the	only	available

%		format	for	OrientationEpoch	is	A1ModJulian

Vesta.OrientationEpoch				=	21544.99962789878		

Vesta.SpinAxisRAConstant		=	301.9

Vesta.SpinAxisRARate						=	0.9

Vesta.SpinAxisDECConstant	=	90.9

Vesta.SpinAxisDECRate					=	0.0

Vesta.RotationConstant				=	292.9

Vesta.RotationRate								=	1617.332776

Note:	The	orientation	models	available	for	Earth	and	Luna	have	additional	fields
for	configuration.	Earth	has	an	additional	field	called	NutationUpdateInterval
that	controls	the	update	frequency	for	the	Nutation	matrix.	For	high	fidelity
applications,	NutationUpdateInterval	should	be	set	to	zero.	The
RotationDataSource	field	for	Earth	and	Luna	defines	the	theory	used	for	the
rotation	of	those	bodies.	Currently,	only	FK5IAU1980	and	DE	are	available	for
Earth	and	Luna	respectively	and	the	field	is	displayed	for	information	purposes
only.

Setting	colors	on	orbits	of	celestial	bodies

GMAT	allows	you	to	assign	colors	to	orbits	of	celestial	bodies	that	are	drawn	in
the	OrbitView	graphics	display	windows.	GMAT	also	allows	you	to	assign
colors	to	perturbing	celestial	body	orbital	trajectories	drawn	during	iterative
processes	such	as	differential	correction	or	optimization.	The	CelestialBody
object's	OrbitColor	and	TargetColor	fields	are	used	to	assign	colors	to	both
orbital	and	perturbing	trajectories.	See	the	Fields	section	for	description	of	these
two	fields.	Also	see	Color	documentation	for	discussion	and	examples	on	how	to
set	colors	on	a	celestial	body.

Configuring	orbit	ephemerides

The	ephemerides	for	built-in	celestial	bodies	is	specified	by	the
SolarSystem.EphemerisSource	field	and	the	same	source	is	used	for	all	built-in
bodies.	Ephemerides	for	a	custom	CelestialBody	are	provided	by	SPICE	files.



Archives	of	available	SPICE	files	can	be	found	at	the	JPL	NAIF	site	and	the
Solar	System	Dynamics	site	.	JPL	provides	utilities	to	create	custom	SPICE	files
in	the	event	existing	kernels	don't	satisfy	requirements	for	your	application.	To
create	custom	SPICE	kernels,	see	the	documentation	provided	by	JPL.	The	list
of	NAIF	Ids	for	celestial	bodies	is	located	here.

Note	that	the	DE	files	model	the	barycenter	of	planetary	systems.	So	for	Jupiter,
when	using	DE405	for	example,	you	are	modeling	Jupiter's	location	as	the
barycenter	of	the	Jovian	system.	SPICE	kernels	differentiate	the	barycenter	of	a
planetary	system	from	the	location	of	the	individual	bodies.	So	when	using
SPICE	to	model	Jupiter,	you	are	modeling	the	location	of	Jupiter	using	Jupiter's
center	of	mass.

To	specify	the	SPICE	kernels	for	a	custom	CelestialBody,	use	the	NAIFId,
CentralBody,	and	SourceFileName	fields.	GMAT	is	distributed	with	an	SPK
file	for	CERES	which	has	NAIF	ID	2000001.	Here	is	how	to	configure	a
CelestialBody	to	use	the	CERES	SPICE	ephemeris	data.

Create	CelestialBody	Ceres

Ceres.CentralBody	=	Sun

Ceres.SourceFilename	=	'../data/planetary_ephem/spk/ceres_1900_2100.bsp'

Note:	GMAT	currently	only	supports	a	single	ephemeris	model	for	custom
bodies	(SPICE)	and	this	is	set	using	PosVelSource	field.	The	default	for
PosVelSource	is	SPICE	and	it	is	not	necessary	to	configure	this	field	in	the
current	version	of	GMAT.

Warning

NAIF	distributes	SPICE	kernels	for	many	celestial	bodies	and
each	kernel	is	consistent	with	a	particular	primary	ephemeris
release	such	as	DE421.	For	high	precision	analysis,	it	is
important	to	ensure	that	the	ephemerides	used	for	a	custom
celestial	body	are	consistent	with	the	ephemeris	source
selection	in	the	SolarSystem.EphemerisSource	field.	SPICE
kernels	are	typically	distributed	with	a	".cmt"	file	and	in	that
file	the	line	that	contains	the	ephemeris	model	looks	like	this:

ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/
ftp://ssd.jpl.nasa.gov/pub/eph/planets/bsp/
http://naif.jpl.nasa.gov/naif/documentation.html
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/naif_ids.html


Planetary	Ephemeris	Number:	DE-0421/LE-0421

Configuring	physical	properties

GMAT	models	all	celestial	bodies	as	spherical	ellipsoids.	To	define	the	physical
properties	use	the	Flattening,	EquatorialRadius,	and	Mu	fields.

Configuring	for	event	location

GMAT's	event	location	subsystem	(consisting	of	ContactLocator	and
EclipseLocator)	uses	celestial	body	definitions	from	the	SPICE	toolkit.
Properites	such	as	radius,	flattening,	ephemeris,	and	orientation	must	be
configured	separately	for	use	with	the	event	locators.

CelestialBody	shape	and	orientation	are	configured	via	SPICE	PCK	files,
loaded	from	two	sources	in	the	following	order:

1.	 SolarSystem.PCKFilename
2.	 Sun.PlanetarySpiceKernelName	(in	list	order),	followed	by	Mercury,

Venus,	Earth,	Mars,	Jupiter,	Saturn,	Uranus,	Neptune,	Pluto,	Luna
3.	 User-defined	bodies

Data	loaded	last	takes	precedence	over	data	loaded	first,	if	there	is	a	conflict.
Note	that	because	the	SPICE	kernel	pool	is	shared	for	the	entire	run,	a	PCK	file
loaded	for	Pluto	may	override	data	loaded	by	Sun,	if	the	file	contains	conflicting
data.	Note	that	this	order	isn't	absolute—coordinate	systems	that	with	an	SPK-
defined	origin	load	differently,	for	example.	To	determine	the	exact	load	order,
see	the	GmatLog.txt	file.

Note

GMAT's	SPICE	kernel	load	order	is	based	on	many	factors,	and
can	be	unpredictable.	Therefore,	it	is	important	that	the	kernels
referenced	by	a	mission	be	consistent.	For	example,	NAIF's
de421.bsp	and	mar085.bsp	are	consistent,	because	they	are
both	based	on	the	DE421	model.	Inconsistent	kernels	can	cause
unpredictable	behavior	based	on	the	order	in	which	they	are



loaded.

The	body-fixed	frame	for	a	CelestialBody	is	defined	on	the	Orientation	tab	by
the	SpiceFrameId	and	SpiceFrameKernelFile	fields.	The	SpiceFrameId
contains	the	SPICE	ID	for	the	body-fixed	frame,	which	may	be	built-in	or
defined	via	external	FK	files.	External	FK	files	can	be	loaded	by	adding	them	to
the	SpiceFrameKernelFile	list	for	each	body.	These	files	are	loaded	just	after
PlanetarySpiceKernelName	for	each	body.	The	list	of	built-in	frames	is
available	as	an	appendix	in	the	SPICE	documentation.	GMAT's	default	frames
are:

Earth:	ITRF93

Luna:	MOON_PA

Other	default	bodies:	IAU_CelestialBody

The	Earth	ITRF93	frame	is	defined	by	three	high-fidelity	orientation	PCK	files,
shown	below.	More	information	on	these	files	can	be	found	in	the	NAIF
aareadme.txt	file.

earth_start_end_predict.bpc:	long-term	low-fidelity	EOP	predictions

earth_start_end.bpc:	long-term	low-fidelity	historical	EOP

earth_start_end_filedate.bpc:	near-term	high-fidelity	EOP	history	and
predictions

The	Luna	MOON_PA	frame	is	defined	by	an	orientation	PCK	file	and	a	frame-
defining	FK	file,	shown	below.	More	information	can	be	found	in	the	NAIF
PCK	aareadme.txt	file	and	the	FK	aareadme.txt	file.	Other	versions	of	the
MOON_PA	frame	are	available	from	NAIF.

moon_pa_de421_1900-2050.bpc:	Moon	orientation	consistent	with	DE421
PA	frame

moon_080317.tf:	MOON_PA	frame	definition

http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/aareadme.txt
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/aareadme.txt
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/fk/satellites/aareadme.txt


Examples
Configure	a	CelestialBody	to	model	Saturn's	moon	Titan.	Note	you	must	obtain
the	SPICE	kernel	named	"sat288.bsp"	from	here	and	place	it	in	the	directory
identified	in	the	script	snippet	below

Create	Moon	Titan

Titan.NAIFId															=	606

Titan.OrbitSpiceKernelName	=	{	...

				'../data/planetary_ephem/spk/sat288.bsp'	...

				}

Titan.SpiceFrameId									=	'IAU_TITAN'

Titan.EquatorialRadius					=	2575

Titan.Flattening											=	0

Titan.Mu																			=	8978.5215

Titan.PosVelSource									=	'SPICE'

Titan.CentralBody										=	'Saturn'

Titan.RotationDataSource			=	'IAUSimplified'

Titan.OrientationEpoch					=	21545

Titan.SpinAxisRAConstant			=	36.41

Titan.SpinAxisRARate							=	-0.036

Titan.SpinAxisDECConstant		=	83.94

Titan.SpinAxisDECRate						=	-0.004

Titan.RotationConstant					=	189.64

Titan.RotationRate									=	22.5769768

ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/


CoordinateSystem
CoordinateSystem	—	An	axis	and	origin	pair



Description
A	CoordinateSystem	in	GMAT	is	defined	as	an	origin	and	an	axis	system.	You
can	select	the	origin	of	a	CoordinateSystem	from	various	points	such	as	a
CelestialBody,	Spacecraft,	GroundStation,	or	LibrationPoint	to	name	a	few.
GMAT	supports	numerous	axis	systems	such	as	J2000	equator,	J2000	ecliptic,
ICRF,	ITRF,	Topocentric,	and	ObjectReferenced	among	others.
CoordinateSystems	are	tightly	integrated	into	GMAT	to	enable	you	to	define,
report,	and	visualize	data	in	coordinate	systems	relevant	to	your	application.
This	resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	Spacecraft,	Calculation	Parameters,	OrbitView



Fields

Field Description

AlignmentVectorX
The	x	component	of	the	AlignmentVector
expressed	in	the	local	frame	(for	example,
expressed	in	the	LocalAlignedConstrained
frame).	Used	for	the	following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	(norm	of
AlignmentVector	>=	1e-9)

Access set

Default
Value

1

Units N/A

Interfaces gui,script

AlignmentVectorY
The	y	component	of	the	AlignmentVector
expressed	in	the	local	frame	(for	example,
expressed	in	the	LocalAlignedConstrained



frame).	Used	for	the	following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	(norm	of
AlignmentVector>=	1e-9)

Access set

Default
Value

0

Units N/A

Interfaces gui,	script

AlignmentVectorZ
The	z	component	of	the	AlignmentVector
expressed	in	the	local	frame	(for	example,
expressed	in	the	LocalAlignedConstrained
frame).	Used	for	the	following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed -∞	<	Real	<	∞	(norm	of



Values AlignmentVector>=	1e-9)

Access set

Default
Value

0

Units N/A

Interfaces gui,script

Axes
The	axes	of	the	CoordinateSystem.

Data
Type

String

Allowed
Values

MJ2000Eq,	MJ2000Ec,	ICRF,
ITRF,	MODEq,	MODEc,
TODEq,	TODEc,	MOEEq,
MOEEc,	TOEEq,	TOEEc,
ObjectReferenced,	Equator,
BodyFixed,	BodyInertial,	GSE,
GSM,	Topocentric,
BodySpinSun

Access set

Default MJ2000Eq



Value

Units N/A

Interfaces GUI,	script

ConstraintVectorX
The	x	component	of	the	ConstraintVector
expressed	in	the	local	frame	(for	example,
expressed	in	the	LocalAlignedConstrained
frame).	Used	for	the	following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	(norm	of
ConstraintVector>=	1e-9)

Access set

Default
Value

0

Units N/A

Interfaces gui,script



ConstraintVectorY The	y	component	of	the	ConstraintVector
expressed	in	the	local	frame	(for	example,
expressed	in	the	LocalAlignedConstrained
frame).	Used	for	the	following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	(norm	of
ConstraintVector>=	1e-9)

Access set

Default
Value

0

Units N/A

Interfaces gui,script

ConstraintVectorZ
The	z	component	of	the	ConstraintVector
expressed	in	the	local	frame	(for	example,
expressed	in	the	LocalAlignedConstrained
frame).	Used	for	the	following	axis	systems:
LocalAlignedConstrained.

Data Real



Type

Allowed
Values

-∞	<	Real	<	∞	(norm	of
ConstraintVector>=	1e-9)

Access set

Default
Value

1

Units N/A

Interfaces gui,script

ConstraintReferenceVectorX
The	x	component	of	the
ConstraintReferenceVector	expressed	in	the
ConstraintCoordinateSystem.	Used	for	the
following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	(norm	of
ConstraintReferenceVector>=
1e-9)



Access set

Default
Value

0

Units N/A

Interfaces gui,script

ConstraintReferenceVectorY
The	y	component	of	the
ConstraintReferenceVector	expressed	in	the
ConstraintCoordinateSystem.	Used	for	the
following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	(norm	of
ConstraintReferenceVector>=
1e-9)

Access set

Default
Value

0

Units N/A



Interfaces gui,script

ConstraintReferenceVectorZ
The	z	component	of	the
ConstraintReferenceVector	expressed	in	the
ConstraintCoordinateSystem.	Used	for	the
following	axis	systems:
LocalAlignedConstrained.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	(norm	of
ConstraintReferenceVector>=
1e-9)

Access set

Default
Value

1

Units N/A

Interfaces gui,script

Constraint	Coordinate
System The	coordinate	system	for	the

ConstraintReferenceVector.	Used	for	the
following	axis	sytems:



LocalAlignedConstrained.

Data	Type Resource

Allowed	Values CoordinateSystem

Access set

Default	Value EarthMJ2000Eq

Units N/A

Interfaces gui,script

Epoch
The	reference	epoch	for	the
CoordinateSystem.	This	field	is	only	used	for
TOE	amd	MOE	axis	types.

Data	Type String

Allowed	Values A1	Modified	Julian	epoch.

Access set

Default	Value 21545



Units Modified	Julian	Date

Interfaces GUI,	script

Origin
The	origin	of	the	CoordinateSystem.

Data
Type

String

Allowed
Values

CelestialBody,	Spacecraft,
LibrationPoint,	Barycenter,
SolarSystemBarycenter,
GroundStation

Access set

Default
Value

Earth

Units N/A

Interfaces GUI,	script

Primary
The	primary	body	for	an	ObjectReferenced
axis	system.	This	field	is	only	used	if	Axes	=
ObjectReferenced.	See	the	discussion	below
for	more	information	on	how	Primary	and



Secondary	are	used	to	compute
ObjectReferenced	axes.

Data
Type

String

Allowed
Values

CelestialBody,	Spacecraft,
LibrationPoint,	Barycenter,
SolarSystemBarycenter,
GroundStation

Access set

Default
Value

Earth

Units N/A

Interfaces GUI,	script

ReferenceObject
The	reference	object	for	a
LocalAlignedConstrained	axis	system.	The
axes	are	computed	such	that	the
AlignmentVector	in	the	body	frame	is	aligned
with	the	vector	pointing	from	the	Origin	to	the
ReferenceObject.

Data
Type

Resource



Allowed
Values

A	Resource	that	has	coordinates.
For	example:	CelestialBody,
Spacecraft,	LibrationPoint,
Barycenter,
SolarSystemBarycenter,
GroundStation.

Access set

Default
Value

Luna

Units N/A

Interfaces gui,script

Secondary
The	secondary	body	for	an	ObjectReferenced
axis	system.	This	field	is	only	used	if	Axes	=
ObjectReferenced.	See	the	discussion	below
for	more	information	on	how	Primary	and
Secondary	are	used	to	compute
ObjectReferenced	axes.

Data
Type

String

Allowed
Values

CelestialBody,	Spacecraft,
LibrationPoint,	Barycenter,
SolarSystemBarycenter,



GroundStation

Access set

Default
Value

Luna

Units N/A

Interfaces GUI,	script

XAxis
The	x-axis	definition	for	an	ObjectReferenced
axis	system.	This	field	is	only	used	if	Axes	=
ObjectReferenced.	See	the	discussion	below
for	more	information	on	how	the	axes	are
computed	for	ObjectReferenced	axis	systems.

Data	Type String

Allowed
Values

R,V,	N,	-R,	-V,	-N,	or
empty

Access set

Default	Value R

Units N/A



Interfaces GUI,	script

YAxis
The	y-axis	definition	for	an	ObjectReferenced
axis	system.	This	field	is	only	used	if	Axes	=
ObjectReferenced.	See	the	discussion	below
for	more	information	on	how	the	axes	are
computed	for	ObjectReferenced	axis	systems.

Data	Type String

Allowed	Values R,V,	N,	-R,	-V,-N,	or	empty

Access set

Default	Value No	Default

Units N/A

Interfaces GUI,	script

Zaxis
The	z-axis	for	an	ObjectReferenced	axis
system.	This	field	is	only	used	if	Axes	=
ObjectReferenced.	See	the	discussion	below
for	more	information	on	how	the	axes	are
computed	for	ObjectReferenced	axis	systems.



Data	Type String

Allowed	Values R,V,	N,	-R,	-V,-N,	or	empty

Access set

Default	Value N

Units N/A

Interfaces GUI,	script



GUI

The	New	Coordinate	System	dialog	box	shown	above	appears	when	you	add	a
new	coordinate	system	in	the	Resource	Tree.	You	provide	a	name	for	the	new
CoordinateSystem	in	the	Coordinate	System	Name	box	and	configure	the
CoordinateSystem	by	selecting	the	Origin	and	Axes	types	along	with	other
settings.	Some	settings,	such	as	Primary	and	Secondary,	are	only	active	for
particular	Axes	types	and	those	dependencies	are	described	below.



When	editing	an	existing	CoordinateSystem,	you	use	the	CoordinateSystem
dialog	box.	The	default	configuration	is	shown	above.



If	you	select	ObjectReferenced	for	the	Axes	type,	then	the	Primary,
Secondary,	X,	Y,	and	Z	fields	are	activated.	You	can	use	the	ObjectReferenced
axis	system	to	define	coordinates	based	on	the	motion	of	two	space	objects	such
as	Spacecraft,	CelestialBodies,	or	Barycenters	to	name	a	few.	See	the
discussion	below	for	a	detailed	definition	of	the	ObjectReferenced	axis	system.



If	you	select	TOEEq,	TOEEc,	MOEEq,	or	MOEEc	as	the	axis	type,	then	the
A1MJd	Epoch	field	is	activated.	Use	the	A1MJd	Epoch	field	to	define	the
reference	epoch	of	the	coordinate	system.



If	you	select	LocalAlignedConstrained	as	the	axes	Type,	then
CoordinateSystem	dialog	displays	the	fields	illustrated	above	for	configuring
the	axes.



Remarks

Computation	of	J2000-Based	Axes	using	IAU76/FK5
Reduction

FK5	reduction	is	the	transformation	that	rotates	a	vector	expressed	in	the
MJ2000Eq	system	to	the	EarthFixed	CoordinateSystem.	There	are	many
coordinate	systems	that	are	intermediate	rotations	in	FK5	reduction	and	this
section	describes	how	the	following	axes	types	are	computed:	MJ2000Eq,
MJ2000Ec,	EarthFixed,	MODEq,	MODEc,TODEq,TODEc,	MODEq,
MODEc,	TODEq,	and	TODEc	axes	systems.

The	time	varying	orientation	of	the	Earth	is	complex	due	to	interactions	between
the	Earth	and	its	external	environment	(the	Sun	and	Moon	and	Planets)	and
internal	dynamics.	The	orientation	cannot	currently	be	modelled	to	the	accuracy
required	by	many	space	applications	and	FK5	reduction	is	a	combination	of
dynamical	modelling	along	with	daily	corrections	from	empirical	observations.
The	figure	below	illustrates	components	of	motion	of	the	Earth	with	respect	to
inertial	space.	The	primary	components	of	the	motion	of	the	Earth	with	respect
to	inertial	space	are	Precession,	Nutation,	Sidereal	time	and,	Polar	Motion.



The	principal	moment	of	inertia	is	defined	as	the	Celestial	Ephemeris	Pole.	Due
to	the	fact	that	Earth’s	mass	distribution	changes	with	time,	the	Celestial
Ephemeris	Pole	is	not	constant	with	respect	to	the	Earth’s	surface.	Precession	is
defined	as	the	coning	motion	that	the	Celestial	Ephemeris	Pole	makes	around	the
ecliptic	north	pole.	The	other	principal	component	of	the	motion	of	the	Celestial
Ephemeris	Pole	is	called	nutation	and	is	the	oscillation	in	the	angle	between	the
Celestial	Ephemeris	Pole	and	the	north	ecliptic	pole.	The	theory	of	Precession
and	Nutation	come	from	dynamical	models	of	the	Earth’s	motion.	The	Sidereal
time	is	the	rotation	of	the	Earth	about	the	Celestial	Ephemeris	Pole.	The	sidereal
time	model	is	a	combination	of	theory	and	observation.	The	Earth’s	spin	axis
direction	is	not	constant	with	respect	to	the	Earth’s	crust	and	its	motion	is	called
Polar	Motion.	A	portion	of	polar	motion	is	due	to	complicated	dynamics,	and	a
portion	is	due	to	unmodelled	errors	in	nutation.	Polar	motion	is	determined	from
observation.

The	True	of	Date	(TOD)	systems	and	Mean	of	Date	(MOD)	systems	are
intermediate	coordinate	systems	in	FK5	reduction	and	are	commonly	used	in
analysis.	The	details	of	the	computations	are	contained	in	the	GMAT
mathematical	specification	and	the	figure	below	is	included	here	for	summary
purposes.	The	following	abbreviations	are	used	in	the	figure.	PM:	Polar	Motion,



ST:	Sideral	Time,	NUT:	Nutation,	PREC:	Precession,	ITRF:	International
Terrestrial	Reference	Frame	(Earth	Fixed),	PEF:	Pseudo	Earth	Fixed,	TODEq:
True	of	Date	Equator,	TODEc:	True	of	Date	Ecliptic,	MODEc:	Mean	of	Date
Ecliptic,	MODEq:	Mean	of	Date	Equator,	FK5:	J2000	Equatorial	Inertial	(IAU-
1976/1980).

Computation	of	ICRF	and	ITRF	Axes	using	IAU2000
Conventions

The	computation	for	the	International	Celestial	Reference	Frame	(ICRF)	and	the
International	Terestrial	Reference	Fame	(ITRF)	are	computed	using	the	IAU
2000A	theory	with	the	2006	update	to	precession.	GMAT	uses	the	Celestial
Intermediate	Origin	(CIO)	method	of	transformation	which	avoids	issues
associated	with	precession	and	nutation.	In	the	CIO	model,	the	Celestial
Intermediate	Pole	unit	vector	is	modeled	using	the	variables	X	and	S	and	the
CIO	locator,	s.	For	performance	reasons,	GMAT	interpolates	X,	Y,	and	s,	from
precomputed	values	stored	in	the	file	named	ICRF_Table.txt	distributed	with
GMAT.

GMAT	models	the	rotation	from	ICRF	to	MJ200Eq	by	rotating	through	the
EarthFixed	frame	which	is	identical	for	both	the	old	(1976)	and	new	(2000)
theories.	For	performance	reasons,	the	conversion	from	ICRF	to	MJ2000Eq	is
interplolated	from	pre-computed	values	of	the	Euler	axis	and	angle	between
those	frames.	Note	that	GMAT	does	not	currenty	support	the	IAU2000	body



fixed	frame	for	Earth	and	that	model	will	be	included	in	a	future	release.

Computation	of	ObjectReference	Axis	System

An	ObjectReferenced	axis	system	is	defined	by	the	motion	of	one	object	with
respect	to	another	object.	The	figure	below	defines	the	six	principal	directions	of
an	Object	Referenced	axis	system.	One	is	the	relative	position	of	the	secondary
object	with	respect	to	the	primary	object,	denoted	by	r,	expressed	in	the	inertial
frame.	The	second	is	the	relative	velocity,	denoted	here	by	v,	of	the	secondary
object	with	respect	to	the	primary,	expressed	in	the	inertial	frame.	The	third
direction	is	the	vector	normal	to	the	direction	of	motion	which	is	denoted	by	n
and	is	calculated	using	n	=	r	×	v.	The	remaining	three	directions	are	the	negative
of	the	first	three	yielding	the	complete	set:	{R,-R,	V,-V,	N,-N}.

You	define	an	Object	Referenced	axis	system	by	defining	two	axes	from	the
three	available	[X,	Y,	and	Z]	using	the	six	available	options	{R,-R,	V,-V,	N,-N}.
Given	two	directions,	GMAT	constructs	an	orthogonal,	right-handed
CoordinateSystem.	For	example,	if	you	choose	the	x-axis	to	be	in	the	direction
of	R	and	the	z-axis	to	be	in	the	direction	of	N,	GMAT	completes	the	right-
handed	set	by	setting	the	y-axis	in	the	direction	of	NxR.	If	you	choose
permutations	that	result	in	a	non-orthogonal	or	left-handed	CoordinateSystem,
GMAT	will	throw	an	error	message.



Warning

GMAT	currently	assumes	that	terms	involving	the	cross	and	dot
product	of	acceleration	are	zero	when	computing
ObjectReferenced	rotation	matrices.

Overview	of	Built-in	Coordinate	Systems

Name Origin Axes Description

EarthMJ2000Eq Earth MJ2000Eq
An	Earth	equator	inertial	system	based
on	IAU-1976/FK5	theory	with	1980
update	to	nutation.

EarthMJ2000Ec Earth MJ2000Ec
An	Earth	ecliptic	inertial	system	based
on	IAU-1976/FK5	theory	with	1980
update	to	nutation.

EarthFixed Earth BodyFixed
An	Earth	fixed	system	based	on	IAU-
1976/FK5	theory	with	1980	update	to
nutation.

EarthICRF Earth ICRF
An	Earth	equator	inertial	system	based
on	IAU-2000	theory	with	2006	update
to	precession.

Description	of	Axes	Types

Axes	Name Origin
Limitations

Base
Type Description

MJ2000Eq None IAU-



1976
FK5

An	inertial	coordinate	system.
The	nominal	x-axis	points
along	the	line	formed	by	the
intersection	of	the	Earth’s	mean
equatorial	plane	and	the	mean
ecliptic	plane	(at	the	J2000
epoch),	in	the	direction	of
Aries.	The	z-axis	is	normal	to
the	Earth’s	mean	equator	at	the
J2000	epoch	and	the	y-axis
completes	the	right-handed
system.	The	mean	planes	of	the
ecliptic	and	equator,	at	the
J2000	epoch,	are	computed
using	IAU-1976/FK5	theory
with	1980	update	for	nutation.

MJ2000Ec None IAU-
1976
FK5

An	inertial	coordinate	system.
The	x-axis	points	along	the	line
formed	by	the	intersection	of
the	Earth’s	mean	equator	and
the	mean	ecliptic	plane	at	the
J2000	epoch.	The	z-axis	is
normal	to	the	mean	ecliptic
plane	at	the	J2000	Epoch	and
the	y-axis	completes	the	right-
handed	set.	This	system	is
computed	using	IAU-
1976/FK5	theory	with	1980
update	for	nutation.

ICRF None IAU-
2000 An	inertial	coordinate	system.

The	axes	are	close	to	the	mean
Earth	equator	and	pole	at	the
J2000	epoch,	and	at	the	Earth’s
surface,	the	RSS	difference



between	vectors	expressed	in
MJ2000Eq	and	ICRF	is	less
than	1	m.	Note	that	since
MJ2000Eq	and	ICRF	are
imperfect	realizations	of
inertial	systems,	the
transformation	between	them	is
time	varying.	This	axis	system
is	computed	using	IAU-2000A
theory	with	2006	update	for
precession.

LocalAlignedConstrained None IAU-
1976
FK5

The
LocalAlignedConstrained
axis	system	is	an	aligned
constrained	system	based	on
the	position	of	the
ReferenceObject	with	respect
to	the	Origin	and	is	computed
using	the	well	known	Triad
algorithm.	The	axes	are
computed	such	that	the
AlignmentVector,	defined	as
the	components	of	the
alignment	vector	expressed	in
the	LocalAlignedConstrained
system,	is	aligned	with	the
position	of	the	ReferenceBody
w/r/t	the	origin.	The	rotation
about	the	AlignmentVector	is
resolved	by	minimizing	the
angle	between	the
ContraintVector,	defined	as
the	constraint	vector	expressed
in	the
LocalAlignedConstrained
system,	and	the



ConstraintReferenceVector,
defined	as	the	constraint
reference	vector	expressed	in
the
ConstraintCoordinateSystem.
The	alignment	vectors	and	the
constraint	vectors	cannot	have
zero	length.	Similarly,	the	cross
products	of	the	constraint
vector	and	alignment	vector
cannot	have	zero	length.

MODEq None IAU-
1976
FK5

A	quasi-inertial	coordinate
system	referenced	to	Earth’s
mean	equator	at	the	current
epoch.	The	current	epoch	is
defined	by	the	context	of	use
and	usually	comes	from	the
spacecraft	or	graphics	epoch.
This	system	is	computed	using
IAU-1976/FK5	theory	with
1980	update	for	nutation.

MODEc None IAU-
1976
FK5

A	quasi-inertial	coordinate
system	referenced	to	the	mean
ecliptic	at	the	current	epoch.
The	current	epoch	is	defined	by
the	context	of	use	and	usually
comes	from	the	spacecraft	or
graphics	epoch.	This	system	is
computed	using	IAU-
1976/FK5	theory	with	1980
update	for	nutation.

TODEq None IAU-
1976 A	quasi-inertial	coordinate



FK5 system	referenced	to	Earth’s
true	equator	at	the	current
epoch.	The	current	epoch	is
defined	by	the	context	of	use
and	usually	comes	from	the
spacecraft	or	graphics	epoch.
This	system	is	computed	using
IAU-1976/FK5	theory	with
1980	update	for	nutation.

TODEc None IAU-
1976
FK5

A	quasi-inertial	coordinate
system	referenced	to	Earth’s
true	ecliptic	at	the	current
epoch.	The	current	epoch	is
defined	by	the	context	of	use
and	usually	comes	from	the
spacecraft	or	graphics	epoch.
This	system	is	computed	using
IAU-1976/FK5	theory	with
1980	update	for	nutation.

MOEEq None IAU-
1976
FK5

A	quasi-inertial	coordinate
system	referenced	to	Earth’s
mean	equator	at	the	reference
epoch.	The	reference	epoch	is
defined	on	the
CoordinateSystem	object.
This	system	is	computed	using
IAU-1976/FK5	theory	with
1980	update	for	nutation.

MOEEc None IAU-
1976
FK5

A	quasi-inertial	coordinate
system	referenced	to	the	mean
ecliptic	at	the	reference	epoch.
The	reference	epoch	is	defined



on	the	CoordinateSystem
object.	This	system	is
computed	using	IAU-
1976/FK5	theory	with	1980
update	for	nutation.

TOEEq None IAU-
1976
FK5

A	quasi-inertial	coordinate
system	referenced	to	Earth’s
true	equator	at	the	reference
epoch.	The	reference	epoch	is
defined	on	the
CoordinateSystem	object.
This	system	is	computed	using
IAU-1976/FK5	theory	with
1980	update	for	nutation.

TOEEc None IAU-
1976
FK5

A	quasi-inertial	coordinate
system	referenced	to	the	true
ecliptic	at	the	reference	epoch.
The	reference	epoch	is	defined
on	the	CoordinateSystem
object.	This	system	is
computed	using	IAU-
1976/FK5	theory	with	1980
update	for	nutation.

ObjectReferenced None IAU-
1976
FK5

An	ObjectReferenced	system
is	a	CoordinateSystem	whose
axes	are	defined	by	the	motion
of	one	object	with	respect	to
another	object.	See	the
discussion	above	for	a	detailed
description	of	the
ObjectReferenced	axis
system.



Equator Celestial
Body

IAU-
1976
FK5

A	true	of	date	equator	axis
system	for	the	celestial	body
selected	as	the	origin.	The
Equator	system	is	defined	by
the	body’s	equatorial	plane	and
its	intersection	with	the	ecliptic
plane,	at	the	current	epoch.	The
current	epoch	is	defined	by	the
context	of	use	and	usually
comes	from	the	spacecraft	or
graphics	epoch.	See	the
Remarks	for	Celestial	body
models	for	axis	system
definitions	for	celestial	bodies.

BodyFixed Celestial
Body	or
Spacecraft

IAU-
1976
FK5

The	BodyFixed	axis	system	is
referenced	to	the	body	equator
and	the	prime	meridian	of	the
body.	See	the	Remarks	for
Celestial	body	models	for	axis
system	definitions	for	celestial
bodies.

When	Origin	is	a	Spacecraft,
the	axes	are	computed	using
the	Spacecraft’s	attitude
model.	Note:	not	all	attitude
models	compute	body	rates.	In
the	case	that	body	rates	are	not
available	on	a	spacecraft,	a
request	for	velocity
transformations	using	a
BodyFixed	axis	system	will
result	in	an	error.



BodyInertial Celestial
Body

IAU-
1976
FK5

An	inertial	system	referenced
to	the	equator	(	at	the	J2000
epoch	)	of	the	celestial	body
selected	as	the	origin	of	the
CoordinateSystem.	Because
the	BodyInertial	axis	system
uses	different	theories	for
different	bodies,	the	following
definitions	describe	only	the
nominal	axis	configurations.
The	x-axis	points	along	the	line
formed	by	the	intersection	of
the	bodies	equator	and	earth’s
mean	equator	at	J2000.	The	z-
axis	points	along	the	body's
spin	axis	direction	at	the	J2000
epoch.	The	y-axis	completes
the	right-handed	set.	For	Earth,
the	BodyInertial	axis	system	is
identical	to	the	MJ2000Eq
system.	See	the	Remarks	for
Celestial	body	models	for	axis
system	definitions	for	all	other
celestial	bodies.

GSE None IAU-
1976
FK5

The	Geocentric	Solar	Ecliptic
system.	The	x-axis	points	from
Earth	to	the	Sun.	The	z-axis	is
defined	as	the	cross	product
RxV	where	R	and	V	are	earth’s
position	and	velocity	with
respect	to	the	sun	respectively.
The	y-axis	completes	the	right-
handed	set.	The	GSE	axes	are
computed	using	the	relative
motion	of	the	Earth	and	Sun
even	if	the	origin	is	not	Earth.



GSM None IAU-
1976
FK5

The	Geocentric	Solar	Magnetic
system.	The	x-axis	points	from
Earth	to	the	Sun.	The	z-axis	is
defined	to	be	orthogonal	to	the
x-axis	and	lies	in	the	plane	of
the	x-axis	and	Earth’s	magnetic
dipole	vector.	The	y-axis
completes	the	right-handed	set.
The	GSM	axes	are	computed
using	the	relative	motion	of	the
Earth	and	Sun	even	if	the
origin	is	not	Earth.

Topocentric Earth IAU-
1976
FK5

A	GroundStation-based
coordinate	system.	The	y-axis
points	due	East	and	the	z-axis
is	normal	to	the	local	horizon.
The	x-axis	completes	the	right
handed	set.

BodySpinSun Celestial
Body

IAU-
1976
FK5

A	celestial	body	spin-axis-
referenced	system.	The	x-axis
points	from	the	celestial	body
to	the	Sun.	The	y-axis	is
computed	as	the	cross	product
of	the	x-axis	and	the	body's
spin	axis.	The	z-axis	completes
the	right-handed	set.



Examples
Define	a	Spacecraft’s	state	in	EarthFixed	coordinates.

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	EarthFixed

aSpacecraft.X	=	7100

aSpacecraft.Y	=	0

aSpacecraft.Z	=	1300

aSpacecraft.VX	=	0

aSpacecraft.VY	=	7.35

aSpacecraft.VZ	=	1

Report	a	Spacecraft’s	state	in	GroundStation	Topocentric	coordinates.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	GroundStation	aStation

Create	CoordinateSystem	stationTopo

stationTopo.Origin	=	aStation

stationTopo.Axes			=	Topocentric

Create	ReportFile	aReport

aReport.Filename	=	'ReportFile1.txt'

aReport.Add	=	{aSat.stationTopo.X	aSat.stationTopo.Y	aSat.stationTopo.Z	...	

															aSat.stationTopo.VX	aSat.stationTopo.VY	aSat.stationTopo.VZ}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	8640.0}

View	a	trajectory	in	an	ObjectReferenced,	rotating-LibrationPoint	system.

%		Create	the	Earth-Moon	Barycenter	and	Libration	Point

Create	Barycenter	EarthMoonBary

EarthMoonBary.BodyNames	=	{Earth,Luna};

Create	LibrationPoint	SunEarthMoonL1

SunEarthMoonL1.Primary			=	Sun;

SunEarthMoonL1.Secondary	=	EarthMoonBary

SunEarthMoonL1.Point					=	L1;

%		Create	the	coordinate	system



Create	CoordinateSystem	RotatingSEML1Coord

RotatingSEML1Coord.Origin				=	SunEarthMoonL1

RotatingSEML1Coord.Axes						=	ObjectReferenced

RotatingSEML1Coord.XAxis					=	R

RotatingSEML1Coord.ZAxis					=	N

RotatingSEML1Coord.Primary			=	Sun

RotatingSEML1Coord.Secondary	=	EarthMoonBary

%		Create	the	spacecraft	and	propagator

Create	Spacecraft	aSpacecraft

aSpacecraft.DateFormat							=	UTCGregorian

aSpacecraft.Epoch												=	'09	Dec	2005	13:00:00.000'

aSpacecraft.CoordinateSystem	=	RotatingSEML1Coord

aSpacecraft.X		=	-32197.88223741966

aSpacecraft.Y		=	211529.1500044117

aSpacecraft.Z		=	44708.57017366499

aSpacecraft.VX	=	0.03209516489451751

aSpacecraft.VY	=	0.06100386504053736

aSpacecraft.VZ	=	0.0550442738917212

Create	Propagator	aPropagator

aPropagator.FM											=	aForceModel

aPropagator.MaxStep	=	86400

Create	ForceModel	aForceModel

aForceModel.PointMasses	=	{Earth,Sun,Luna}

%	Create	a	3-D	graphic

Create	OrbitView	anOrbitView

anOrbitView.Add																		=	{aSpacecraft,		Earth,	Sun,	Luna}

anOrbitView.CoordinateSystem					=	RotatingSEML1Coord

anOrbitView.ViewPointReference			=	SunEarthMoonL1

anOrbitView.ViewPointVector						=	[-1500000	0	0	]

anOrbitView.ViewDirection								=	SunEarthMoonL1

anOrbitView.ViewUpCoordinateSystem	=	RotatingSEML1Coord

anOrbitView.Axes																	=	Off

anOrbitView.XYPlane														=	Off

BeginMissionSequence

Propagate	aPropagator(aSpacecraft,	{aSpacecraft.ElapsedDays	=	180})



ContactLocator
ContactLocator	—	A	line-of-sight	event	locator	between	a	target	Spacecraft	and
an	observer	GroundStation



Description

Note

ContactLocator	is	a	SPICE-based	subsystem	that	uses	a
parallel	configuration	for	the	solar	system	and	celestial	bodies
from	other	GMAT	components.	For	precision	applications,	care
must	be	taken	to	ensure	that	both	configurations	are	consistent.
See	Remarks	for	details.

A	ContactLocator	is	an	event	locator	used	to	find	line-of-sight	contact	events
between	a	Spacecraft	and	a	GroundStation.	By	default,	a	ContactLocator
generates	a	text	event	report	listing	the	beginning	and	ending	times	of	each	line-
of-sight	event,	along	with	the	duration.	Contact	location	can	be	performed	over
the	entire	propagation	interval	or	over	a	subinterval,	and	can	optionally	adjust
for	light-time	delay	and	stellar	aberration.	Contact	location	can	be	configured	to
search	for	times	of	occultation	of	other	CelestialBody	resources	that	may	block
line	of	sight,	and	can	limit	contact	events	to	a	specified	minimum	elevation	angle
configured	on	the	GroundStation.

Contact	location	can	be	performed	between	one	Spacecraft	(Target)	and	any
number	of	GroundStation	resources	(Observers).	Each	target-observer	pair	is
searched	individually,	and	results	in	a	separate	segment	of	the	resulting	report.
All	pairs	must	use	the	same	interval	and	search	options;	to	customize	the	options
per	pair,	use	multiple	ContactLocator	resources.

Third-body	occultation	searches	can	be	included	by	listing	one	or	more
CelestialBody	resources	in	the	OccultingBodies	list.	Any	configured
CelestialBody	can	be	used	as	an	occulting	body,	including	user-defined	ones.	By
default,	no	occultation	searches	are	performed;	the	central	body	of	the
GroundStation	is	included	automatically	in	the	basic	line-of-sight	algorithm.

By	default,	the	ContactLocator	searches	the	entire	interval	of	propagation	of
the	Target,	after	applying	certain	endpoint	light-time	adjustments;	see	Remarks
for	details.	To	search	a	custom	interval,	set	UseEntireInterval	to	False	and	set
InitialEpoch	and	FinalEpoch	accordingly.	Note	that	these	epochs	are	assumed



to	be	at	the	observer,	and	so	must	be	valid	when	translated	to	the	target	via	light-
time	delay	and	stellar	aberration,	if	configured.	If	they	fall	outside	the
propagation	interval	of	the	Target,	GMAT	will	display	an	error.

The	contact	locator	can	optionally	adjust	for	both	light-time	delay	and	stellar
aberration,	using	either	a	transmit	sense	(Observer→Target)	or	receive	sense
(Observer←Target)	depending	on	the	value	of	LightTimeDirection.	The	light-
time	direction	affects	the	valid	search	interval	by	limiting	searches	near	the	start
of	the	interval	(for	transmit	sense)	or	the	end	of	the	interval	(for	receive	sense).
See	Remarks	for	details.	Stellar	aberration	is	only	applied	for	the	line-of-sight
portion	of	the	search;	it	has	no	effect	during	occultation	searches.

The	event	search	is	performed	at	a	fixed	step	through	the	interval.	You	can
control	the	step	size	(in	seconds)	by	setting	the	StepSize	field.	An	appropriate
choice	for	step	size	is	no	greater	than	half	the	period	of	the	line-of-sight	function
—that	is,	half	the	orbit	period	for	an	elliptical	orbit.	If	third-body	occultations
are	used,	the	maximum	step	size	is	no	greater	than	the	minimum-duration
occultation	event	you	wish	to	find.	See	Remarks	for	details.

GMAT	uses	the	SPICE	library	for	the	fundamental	event	location	algorithm.	As
such,	all	celestial	body	data	is	loaded	from	SPICE	kernels	for	this	subsystem,
rather	than	GMAT's	own	CelestialBody	shape	and	orientation	configuration.	See
Remarks	for	details.

Unless	otherwise	mentioned,	ContactLocator	fields	cannot	be	set	in	the	mission
sequence.

See	Also:	CelestialBody,	GroundStation,	Spacecraft,	EclipseLocator,	FindEvents



Fields

Field Description

Filename
Name	and	path	of	the	contact	report	file.	This	field	can
be	set	in	the	mission	sequence.

Data	Type String

Allowed	Values Valid	file	path

Access set

Default	Value 'ContactLocator.txt'

Units N/A

Interfaces GUI,	script

FinalEpoch
Last	epoch	to	search	for	contacts,	in	the	format
specified	by	InputEpochFormat.	The	epoch	is	relative
to	the	Observer,	and	must	map	to	a	valid	epoch	in	the
Target	ephemeris	interval,	including	any	light	time.
This	field	can	be	set	in	the	mission	sequence.

Data	Type String



Allowed
Values

Valid	epoch	in	available	spacecraft
ephemeris

Access set

Default
Value

'21545.138'

Units ModifiedJulian	epoch	formats:	days

Gregorian	epoch	formats:	N/A

Interfaces GUI,	script

InitialEpoch
First	epoch	to	search	for	contacts,	in	the	format
specified	by	InputEpochFormat.	The	epoch	is	relative
to	the	Observer,	and	must	map	to	a	valid	epoch	in	the
Target	ephemeris	interval,	including	any	light	time.
This	field	can	be	set	in	the	mission	sequence.

Data	Type String

Allowed
Values

Valid	epoch	in	available	spacecraft
ephemeris

Access set

Default '21545'



Value

Units ModifiedJulian	epoch	formats:	days

Gregorian	epoch	formats:	N/A

Interfaces GUI,	script

LightTimeDirection
Sense	of	light-time	calculation:	transmit	from	observer
or	receive	at	observer.	The	clock	is	always	hosted	on
the	Target.

Data	Type Enumeration

Allowed	Values Transmit,	Receive

Access set

Default	Value Transmit

Units N/A

Interfaces GUI,	script

Observers
List	of	the	contact	observer	objects.	Can	be	any
number	of	GMAT	GroundStation	resources.



Data	Type List	of	GroundStation	resources

Allowed
Values

Any	existing	GroundStation
resources

Access set

Default	Value Empty	list

Units N/A

Interfaces GUI,	script

OccultingBodies
List	of	occulting	bodies	to	search	for	contacts.	Can	be
any	number	of	GMAT	CelestialBody-type	resources,
such	as	Planet,	Moon,	Asteroid,	etc.	Note	that	an
occulting	body	must	have	a	mass	(e.g.	not
LibrationPoint	or	Barycenter).

Data
Type

List	of	CelestialBody	resources	(e.g.
Planet,	Asteroid,	Moon,	etc.)

Allowed
Values

Any	existing	CelestialBody-class
resources

Access set



Default
Value

Empty	list

Units N/A

Interfaces GUI,	script

RunMode
Mode	of	event	location	execution.	'Automatic'
triggers	event	location	to	occur	automatically	at	the	end
of	the	run.	'Manual'	limits	execution	only	to	the
FindEvents	command.	'Disabled'	turns	of	event
location	entirely.

Data	Type Enumeration

Allowed	Values Automatic,	Manual,	Disabled

Access set

Default	Value 'Automatic'

Units N/A

Interfaces GUI,	script

StepSize
Step	size	of	event	locator.	See	Remarks	for	discussion



of	appropriate	values.

Data	Type Real

Allowed	Values StepSize	>	0

Access set

Default	Value 10

Units s

Interfaces GUI,	script

Target
The	target	Spacecraft	resource	to	search	for	contacts.

Data	Type Spacecraft	resource

Allowed
Values

Any	existing	Spacecraft	resource

Access set

Default	Value First	configured	Spacecraft
resource



Units N/A

Interfaces GUI,	script

UseEntireInterval
Search	the	entire	available	Target	ephemeris	interval,
after	adjusting	the	end-points	for	light-time	delay	as
appropriate.	See	Remarks	for	details.	This	field	can	be
set	in	the	mission	sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units N/A

Interfaces GUI,	script

UseLightTimeDelay
Use	light-time	delay	in	the	event-finding	algorithm.
The	clock	is	always	hosted	on	the	Observer.

Data	Type Boolean



Allowed	Values true,	false

Access set

Default	Value true

Units N/A

Interfaces GUI,	script

UseStellarAberration
Use	stellar	aberration	in	addition	to	light-time	delay	in
the	event-finding	algorithm.	Light-time	delay	must	be
enabled.	Stellar	aberration	only	affects	line-of-sight
searches,	not	occultation	searches.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units N/A



Interfaces GUI,	script

WriteReport
Write	an	event	report	when	event	location	is	executed.
This	field	can	be	set	in	the	mission	sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units N/A

Interfaces GUI,	script



GUI

The	default	ContactLocator	GUI	for	a	new	resource	is	shown	above.	You	can
choose	one	Spacecraft	from	Target,	which	is	populated	by	all	the	Spacecraft
resources	currently	configured	in	the	mission.	In	the	Observers	list,	you	can
check	the	box	next	to	all	GroundStations	you	want	to	search	for	contacts	to.

To	search	for	third-body	occultations,	check	the	boxes	next	to	any	applicable
CelestialBody	resources	in	the	Occulting	Bodies	list.	This	list	shows	all
celestial	bodies	currently	configured	in	the	mission.	Note	that	each	occultation
search	will	increase	the	execution	time	of	the	overall	search.

You	can	configure	the	output	via	Filename,	Run	Mode,	and	Write	Report	near
the	bottom.	If	Write	Report	is	enabled,	a	text	report	will	be	written	to	the	file
specified	in	Filename.	The	search	will	execute	during	FindEvents	commands
(for	Manual	or	Automatic	modes)	and	automatically	at	the	end	of	the	mission



(for	Automatic	mode),	depending	on	the	Run	Mode.

You	can	configure	the	search	interval	via	the	options	in	the	upper	right.	Uncheck
Use	Entire	Interval	to	set	the	search	interval	manually.	See	the	Remarks	section
for	considerations	when	setting	the	search	interval.

You	can	control	the	search	algorithm	via	the	options	in	the	bottom	right.
Configure	light-time	and	stellar	aberration	via	the	check	boxes	next	to	each,	and
select	the	signal	direction	via	the	Light-time	direction	selection.

To	control	the	fidelity	and	execution	time	of	the	search,	set	the	Step	size
appropriately.	See	the	Remarks	section	for	details.



Remarks

Data	configuration

The	ContactLocator	implementation	is	based	on	the	NAIF	SPICE	toolkit,
which	uses	a	different	mechanism	for	environmental	data	such	as	celestial	body
shape	and	orientation,	planetary	ephemerides,	body-specific	frame	definitions,
and	leap	seconds.	Therefore,	it	is	necessary	to	maintain	two	parallel
configurations	to	ensure	that	the	event	location	results	are	consistent	with
GMAT's	own	propagation	and	other	parameters.	The	specific	data	to	be
maintained	is:

Planetary	shape	and	orientation:

GMAT	core:	CelestialBody.EquatorialRadius,	Flattening,
SpinAxisRAConstant,	SpinAxisRARate,	etc.

ContactLocator:	SolarSystem.PCKFilename,
CelestialBody.PlanetarySpiceKernelName

Planetary	ephemeris:

GMAT	core:	SolarSystem.DEFilename,	or
(SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName,	CelestialBody.NAIFId)

ContactLocator:	SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName,	CelestialBody.NAIFId

Body-fixed	frame:

GMAT	core:	built-in

ContactLocator:	CelestialBody.SpiceFrameId,
CelestialBody.FrameSpiceKernelName

Leap	seconds:

http://naif.jpl.nasa.gov/naif/


GMAT	core:	startup	file	LEAP_SECS_FILE	setting

ContactLocator:	SolarSystem.LSKFilename

Note

For	precise	applications,	the	Earth	shape	must	be	consistent	in
both	subsystems	to	ensure	consistent	placement	of	a
GroundStation.	The	following	script	lines	make	the	two
definitions	consistent.

SolarSystem.PCKFilename	=	'..\data\planetary_coeff\pck00010.tpc'

Earth.EquatorialRadius	=	6378.1366

Earth.Flattening	=	0.00335281310845547

See	SolarSystem	and	CelestialBody	for	more	details.

Search	interval

The	ContactLocator	search	interval	can	be	specified	either	as	the	entire
ephemeris	interval	of	the	Target,	or	as	a	user-defined	interval.	Each	mode	offers
specific	behavior	related	to	handling	of	light-time	delay	and	discontinuous
intervals.

If	UseEntireInterval	is	true,	the	search	is	performed	over	the	entire	ephemeris
interval	of	the	Target,	including	any	gaps	or	discontinuities.	If	light-time	delay
is	enabled,	the	search	interval	is	truncated	by	the	approximate	light	time	to	allow
SPICE	to	determine	the	exact	light-time	delay	between	the	participants	during
the	search.	If	LightTimeDirection	is	Transmit,	the	beginning	of	the	interval	is
truncated.	If	LightTimeDirection	is	Receive,	the	end	of	the	interval	is
truncated.	In	either	case,	the	other	end	of	the	interval	is	trimmed	slightly	via
bisection	to	avoid	stepping	beyond	the	end	of	the	ephemeris	due	to	numeric
precision	issues.	This	trimming	is	typically	less	than	1	s.	The	endpoints	of	gaps
or	discontinuities	are	not	modified,	so	these	are	not	fully	supported	if	light-time
delay	is	enabled.	If	light-time	delay	is	disabled,	the	entire	interval	is	used
directly,	with	no	endpoint	manipulation.

If	UseEntireInterval	is	false,	the	provided	InitialEpoch	and	FinalEpoch	are



used	to	form	the	search	interval	directly.	This	interval	is	consistent	with	the
Observer	clock,	and	does	not	support	the	inclusion	of	gaps	or	discontinuities
from	the	Target	ephemeris.	The	user	must	ensure	than	the	provided	interval
results	in	valid	Target	ephemeris	epochs	after	light-time	delay	and	stellar
aberration	have	been	applied.

These	rules	are	summarized	in	the	following	table,	where	t0	and	tf	are	the
beginning	and	end	of	the	Target	ephemeris,	respectively,	and	lt	is	the	light	time
between	the	Target	and	the	Observer.

	 UseEntireInterval	true UseEntireInterval	false

UseLightTimeDelay
true Effective	interval

LightTimeDirection
=	'Transmit':	[t0+lt,
tf]

LightTimeDirection
=	'Receive':	[t0,	tf-lt]

Discontinuous	intervals

Unsupported.
Behavior	is	undefined.

Effective	interval

[InitialEpoch,
FinalEpoch]

Discontinuous	intervals

Unsupported.
Behavior	is	undefined.

UseLightTimeDelay
false Effective	interval

[t0,	tf]

Discontinuous	intervals

Fully	supported

Effective	interval

[InitialEpoch,
FinalEpoch]

Discontinuous	intervals

Fully	supported

Run	modes



The	ContactLocator	works	in	conjunction	with	the	FindEvents	command:	the
ContactLocator	resource	defines	the	configuration	of	the	event	search,	and	the
FindEvents	command	executes	the	search	at	a	specific	point	in	the	mission
sequence.	The	mode	of	interaction	is	defined	by	ContactLocator.RunMode,
which	has	three	options:

Automatic:	All	FindEvents	commands	are	executed	as-is,	plus	an
additional	FindEvents	is	executed	automatically	at	the	end	of	the	mission
sequence.

Manual:	All	FindEvents	commands	are	executed	as-is.

Disabled:	FindEvents	commands	are	ignored.

Search	algorithm

The	ContactLocator	uses	the	NAIF	SPICE	GF	(geometry	finder)	subsystem	to
perform	event	location.	Specifically,	the	following	two	calls	are	used	for	the
search:

gfposc_c:	For	line-of-sight	search	above	the
GroundStation.MinimumElevationAngle

gfoclt_c:	For	third-body	occultation	searches

Both	functions	implement	a	fixed-step	search	method	through	the	interval,	with
an	embedded	root-location	step	if	an	event	is	found.	Proper	selection	of	StepSize
differs	between	the	two	functions.

For	the	basic	line-of-sight	search,	without	third-body	occultations,	StepSize	can
be	set	as	high	as	one-half	the	period	of	the	event	function.	For	an	elliptic	orbit,
this	is	up	to	one-half	the	orbit	period.

For	third-body	occultations,	StepSize	should	be	set	equal	to	the	length	of	the
minimum-duration	event	to	be	found,	or	equal	to	the	lenght	of	the	minimum-
duration	gap	between	events,	whichever	is	smaller.	To	guarantee	location	of	10-
second	occultations,	set	StepSize	=	10.

If	no	third-body	occultations	are	to	be	found,	you	can	increase	performance	of
the	search	by	increasing	StepSize	per	the	notes	above.

http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/gfposc_c.html
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/gfoclt_c.html


For	details,	see	the	reference	documentation	for	the	two	functions	linked	above.

Report	format

When	WriteReport	is	enabled,	ContactLocator	outputs	an	event	report	at	the
end	of	each	search	execution.	The	report	contains	the	following	data:

Target	name

For	each	Observer:

Observer	name

For	each	event:

Event	start	time	(UTC)

Event	stop	time	(UTC)

Duration	(s)

Total	number	of	events

A	sample	report	is	shown	below.

Target:	DefaultSC

Observer:	GroundStation1

Start	Time	(UTC)												Stop	Time	(UTC)															Duration	(s)									

01	Jan	2000	13:18:45.268				01	Jan	2000	13:29:54.824						669.55576907				

01	Jan	2000	15:06:44.752				01	Jan	2000	15:18:22.762						698.01023654				

Number	of	events	:	2

Observer:	GroundStation2

Start	Time	(UTC)												Stop	Time	(UTC)															Duration	(s)									

01	Jan	2000	13:36:13.792				01	Jan	2000	13:47:51.717						697.92488540				

Number	of	events	:	1



Event	location	with	SPK	propagator

When	using	the	SPK	propagator,	you	load	one	or	more	SPK	ephemeris	files
using	the	Spacecraft.OrbitSpiceKernelName	field.	For	the	purposes	of	event
location,	this	field	causes	the	appropriate	ephemeris	files	to	be	loaded
automatically	on	run,	and	so	use	of	the	Propagate	command	is	not	necessary.
This	is	an	easy	way	of	performing	event	location	on	an	existing	SPK	ephemeris
file.	See	the	example	below.



Examples
Perform	a	basic	contact	search	in	LEO:

SolarSystem.EphemerisSource	=	'DE421'

Earth.EquatorialRadius	=	6378.1366

Earth.Flattening	=	0.00335281310845547

Create	Spacecraft	sat

sat.DateFormat	=	UTCGregorian

sat.Epoch	=	'15	Sep	2010	16:00:00.000'

sat.CoordinateSystem	=	EarthMJ2000Eq

sat.DisplayStateType	=	Keplerian

sat.SMA	=	6678.14

sat.ECC	=	0.001

sat.INC	=	0

sat.RAAN	=	0

sat.AOP	=	0

sat.TA	=	180

Create	ForceModel	fm

fm.CentralBody	=	Earth

fm.PrimaryBodies	=	{Earth}

fm.GravityField.Earth.PotentialFile	=	'JGM2.cof'

fm.GravityField.Earth.Degree	=	0

fm.GravityField.Earth.Order	=	0

fm.GravityField.Earth.TideModel	=	'None'

fm.Drag.AtmosphereModel	=	None

fm.PointMasses	=	{}

fm.RelativisticCorrection	=	Off

fm.SRP	=	Off

Create	Propagator	prop

prop.FM	=	fm

prop.Type	=	RungeKutta89

Create	GroundStation	GS

GS.CentralBody	=	Earth

GS.StateType	=	Spherical

GS.HorizonReference	=	Ellipsoid

GS.Location1	=	0;

GS.Location2	=	0;

GS.Location3	=	0;



Create	ContactLocator	cl

cl.Target	=	sat

cl.Observers	=	{GS}

cl.Filename	=	'Simple.report'

BeginMissionSequence

Propagate	prop(sat)	{sat.ElapsedSecs	=	10800}

Perform	a	contact	event	search	from	an	Earth	ground	station	to	a	Mars	orbiter,
with	Phobos	occultations:

%	Mars	orbiter,	2	days,	Mars	and	Phobos	eclipses

SolarSystem.EphemerisSource	=	'SPICE'

SolarSystem.SPKFilename	=	'de421.bsp'

Mars.OrbitSpiceKernelName	=	'../data/planetary_ephem/spk/mar063.bsp'

Earth.EquatorialRadius	=	6378.1366

Earth.Flattening	=	0.00335281310845547

Create	Spacecraft	sat

sat.DateFormat	=	UTCGregorian

sat.Epoch	=	'11	Mar	2004	12:00:00.000'

sat.CoordinateSystem	=	MarsMJ2000Eq

sat.DisplayStateType	=	Cartesian

sat.X	=	-1.436997966893255e+003

sat.Y	=	2.336077717512823e+003

sat.Z	=	2.477821416108639e+003

sat.VX	=	-2.978497667195258e+000

sat.VY	=	-1.638005864673213e+000

sat.VZ	=	-1.836385137438366e-001

Create	ForceModel	fm

fm.CentralBody	=	Mars

fm.PrimaryBodies	=	{Mars}

fm.GravityField.Mars.PotentialFile	=	'Mars50c.cof'

fm.GravityField.Mars.Degree	=	0

fm.GravityField.Mars.Order	=	0

fm.Drag.AtmosphereModel	=	None

fm.PointMasses	=	{}

fm.RelativisticCorrection	=	Off

fm.SRP	=	Off



Create	Propagator	prop

prop.FM	=	fm

prop.Type	=	RungeKutta89

Create	Moon	Phobos

Phobos.CentralBody	=	'Mars'

Phobos.PosVelSource	=	'SPICE'

Phobos.NAIFId	=	401

Phobos.OrbitSpiceKernelName	=	{'mar063.bsp'}

Phobos.SpiceFrameId	=	'IAU_PHOBOS'

Phobos.EquatorialRadius	=	13.5

Phobos.Flattening	=	0.3185185185185186

Phobos.Mu	=	7.093399e-004

Create	Moon	Deimos

Deimos.CentralBody	=	'Mars'

Deimos.PosVelSource	=	'SPICE'

Deimos.NAIFId	=	402

Deimos.OrbitSpiceKernelName	=	{'mar063.bsp'}

Deimos.SpiceFrameId	=	'IAU_DEIMOS'

Deimos.EquatorialRadius	=	7.5

Deimos.Flattening	=	0.30666666666666664

Deimos.Mu	=	1.588174e-004

Create	CoordinateSystem	MarsMJ2000Eq

MarsMJ2000Eq.Origin	=	Mars

MarsMJ2000Eq.Axes	=	MJ2000Eq

Create	GroundStation	GS

GS.CentralBody	=	Earth

GS.StateType	=	Spherical

GS.HorizonReference	=	Ellipsoid

GS.Location1	=	36.3269

GS.Location2	=	127.433

GS.Location3	=	0.081

Create	ContactLocator	cl

cl.Target	=	sat

cl.Observers	=	{GS}

cl.OccultingBodies	=	{Sun,	Mercury,	Venus,	Luna,	Mars,	Phobos,	Deimos}

cl.Filename	=	'Martian.report'

cl.StepSize	=	5

BeginMissionSequence

Propagate	prop(sat)	{sat.ElapsedDays	=	2}



Perform	contact	location	on	an	existing	SPK	ephemeris	file:

SolarSystem.EphemerisSource	=	'DE421'

Earth.EquatorialRadius	=	6378.1366

Earth.Flattening	=	0.00335281310845547

Create	Spacecraft	sat

sat.OrbitSpiceKernelName	=	{'../data/vehicle/ephem/spk/Events_Simple.bsp'}

Create	GroundStation	GS

GS.CentralBody	=	Earth

GS.StateType	=	Spherical

GS.HorizonReference	=	Ellipsoid

GS.Location1	=	0

GS.Location2	=	0

GS.Location3	=	0

Create	ContactLocator	cl

cl.Target	=	sat

cl.Observers	=	{GS}

cl.Filename	=	'SPKPropagation.report'

BeginMissionSequence



DifferentialCorrector
DifferentialCorrector	—	A	numerical	solver



Description
A	DifferentialCorrector	(DC)	is	a	numerical	solver	for	solving	boundary	value
problems.	It	is	used	to	refine	a	set	of	variable	parameters	in	order	to	meet	a	set	of
goals	defined	for	the	modeled	mission.	The	DC	in	GMAT	supports	several
numerical	techniques.	In	the	mission	sequence,	you	use	the
DifferentialCorrector	resource	in	a	Target	control	sequence	to	solve	the
boundary	value	problem.	In	GMAT,	differential	correctors	are	often	used	to
determine	the	maneuver	components	required	to	achieve	desired	orbital
conditions,	say,	B-plane	conditions	at	a	planetary	flyby.

You	must	create	and	configure	a	DifferentialCorrector	resource	for	your
application	by	setting	numerical	properties	of	the	solver	such	as	the	algorithm
type,	the	maximum	number	of	allowed	iterations	and	choice	of	derivative
method	used	to	calculate	the	finite	differences.	You	can	also	select	among
different	output	options	that	show	increasing	levels	of	information	for	each
differential	corrector	iteration.

This	resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	Target,	Vary,	Achieve



Fields

Field Description

Algorithm
The	numerical	method	used	to	solve	the	boundary	value
problem.

Data	Type String

Allowed
Values

NewtonRaphson,	Broyden,
ModifiedBroyden

Access set

Default
Value

NewtonRaphson

Units N/A

Interfaces GUI,	script

DerivativeMethod
Chooses	between	one-sided	and	central	differencing	for
numerically	determining	the	derivative.	Only	used	when
Algorithm	is	set	to	NewtonRaphson.

Data
Type

String



Allowed
Values

ForwardDifference,
BackwardDifference,	CentralDifference

Access set

Default
Value

ForwardDifference

Units N/A

Interfaces GUI,	script

MaximumIterations
Sets	the	maximum	number	of	nominal	passes	the
DifferentialCorrector	is	allowed	to	take	during	the
attempt	to	find	a	solution.	If	the	maximum	iterations	is
reached,	GMAT	exits	the	target	loop	and	continues	to	the
next	command	in	the	mission	sequence.	In	this	case,	the
objects	retain	their	states	as	of	the	last	nominal	pass
through	the	targeting	loop.

Data	Type Integer

Allowed	Values Integer	>=	1

Access set

Default	Value 25



Units N/A

Interfaces GUI,	script

ReportFile
Specifies	the	path	and	file	name	for	the
DifferentialCorrector	report.		The	report	is	only
generated	if	ShowProgress	is	set	to	true.	

Data
Type

String

Allowed
Values

Filename	consistent	with	OS

Access set

Default
Value

DifferentialCorrectorDCName.data,
where	DCname	is	the	name	of	the
DifferentialCorrector

Units N/A

Interfaces GUI,	script

ReportStyle
Controls	the	amount	and	type	of	information	written	to
the	file	defined	in	the	ReportFile	field.	Currently,	the



Normal	and	Concise	options	contain	the	same
information:	the	Jacobian,	the	inverse	of	the	Jacobian,
the	current	values	of	the	control	variables,	and	achieved
and	desired	values	of	the	constraints.	Verbose	contains
values	of	the	perturbation	variables	in	addition	to	the
data	for	Normal	and	Concise.	Debug	contains	detailed
script	snippets	at	each	iteration	for	objects	that	have
control	variables.

Data	Type String

Allowed	Values Normal,	Concise,	Verbose,	Debug

Access set

Default	Value Normal

Units N/A

Interfaces GUI,	script

ShowProgress
When	the	ShowProgress	field	is	set	to	true,	then	data
illustrating	the	progress	of	the	differential	correction
process	are	written	to	the	message	window	and	the
ReportFile.	The	message	window	is	updated	with
information	on	the	current	control	variable	values	and
the	contraint	variances.		When	the	ShowProgress	field
is	set	to	false,	no	information	on	the	progress	of	the
differential	correction	process	is	displayed	to	the
message	window	or	written	to	the	ReportFile.



Data	Type String

Allowed	Values true,	false

Access set

Default	Value true

Units N/A

Interfaces GUI,	script



GUI
The	DifferentialCorrector	dialog	box	allows	you	to	specify	properties	of	a
DifferentialCorrector	such	as	the	numerical	algorithm,	maximum	iterations,
choice	of	derivative	method	used	to	calculate	the	finite	differences,	and	choice	of
reporting	options.

To	create	a	DifferentialCorrector	resource,	navigate	to	the	Resources	tree,
expand	the	Solvers	folder,	right-click	on	the	Boundary	Value	Solvers	folder,
point	to	Add,	and	click	DifferentialCorrector.	A	resource	named	DC1	will	be
created.	Double-click	on	the	DC1	resource	to	bring	up	the	following
Differential	Corrector	dialog	box.



Remarks

Supported	Algorithm	Details

GMAT	supports	several	algorithms	for	solving	boundary	value	problems
including	Newton	Raphson,	Broyden,	and	Modified	Broyden.	These
algorithms	use	finite	differencing	or	other	numerical	approximations	to	compute
the	Jacobian	of	the	constraints	and	independent	variables.	The	default	algorithm
is	currently	NewtonRaphson.	Brodyen’s	method	and	ModifiedBroyden
usually	take	more	iterations	but	fewer	function	evaluations	than
NewtonRaphson	and	so	are	often	faster.	A	description	of	each	algorithm	is
provided	below.	We	recommend	trying	different	algorithm	options	for	your
application	to	determine	which	algorithm	provides	the	best	balance	of
performance	and	robustness.

Newton-Raphson

The	NewtonRaphson	algorithm	is	a	quasi-Newton	method	that	computes	the
Jacobian	using	finite	differencing.	GMAT	supports	forward,	central,	and
backward	differencing	to	compute	the	Jacobian.

Broyden

Broyden’s	method	uses	the	slope	between	state	iterations	as	an	approximation	of
the	first	derivative	instead	of	numerically	calculating	the	first	derivative	using
finite	differencing.	This	results	in	substantially	fewer	function	evaluations.	The
Broyden	iterate	is	updated	using	the	following	equation.

ModifiedBroyden

The	modified	Broyden’s	method	updates	the	inverse	of	the	Jacobian	matrix	to



avoid	numerical	issues	in	matrix	inversion	when	solving	near	singular	problems.
Like	Broyden’s	method,	it	requires	fewer	function	evaluations	than	the
NewtonRaphson	algorithm.	The	inverse	of	the	Jacobian,	H,	is	updated	using	the
following	equation,

where

Resource	and	Command	Interactions

The	DifferentialCorrector	object	can	only	be	used	in	the	context	of	targeting-
type	commands.	Please	see	the	documentation	for	Target,	Vary,	and	Achieve
for	more	information	and	worked	examples.



Examples
Create	a	DifferentialCorrector	configured	to	use	Broyden's	method	and	use	it
to	solve	for	an	apogee	raising	maneuver.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ImpulsiveBurn	aDeltaV

Create	OrbitView	a3DPlot

a3DPlot.Add	=	{aSat,Earth};

Create	DifferentialCorrector	aDC

aDC.Algorithm	=	'Broyden'

BeginMissionSequence

Propagate	aProp(aSat){aSat.Periapsis}

Target	aDC

				Vary	aDC(aDeltaV.Element1	=	0.01)

				Maneuver	aDeltaV(aSat)

				Propagate	aProp(aSat){aSat.Apoapsis}

				Achieve	aDC(aSat.RMAG	=	12000)

EndTarget				

To	see	further	examples	for	how	the	DifferentialCorrector	object	is	used	in
conjunction	with	Target,	Vary,	and	Achieve	commands	to	solve	orbit	problems,
see	the	Target	command	examples.



ElectricTank
ElectricTank	—	A	model	of	a	tank	containing	fuel	for	an	electric	propulsion
system



Description
An	ElectricTank	is	a	model	of	a	tank	and	is	required	for	finite	burns	employing
an	electric	propulsion	system.	To	use	an	ElectricTank,	you	must	first	create	the
tank,	and	then	attach	it	to	the	desired	Spacecraft	and	associate	it	with	an
ElectricThruster	as	shown	in	the	example	below.	Additionally	you	must	create
a	SolarPowerSystem	or	NuclearPowerSystem	and	attach	it	to	the	Spacecraft.

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modelling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion

See	Also	ElectricThruster,NuclearPowerSystem,SolarPowerSystem



Fields

Field Description

AllowNegativeFuelMass
This	field	allows	the	ElectricTank	to	have	negative
fuel	mass	which	can	be	useful	in	optimization	and
targeting	sequences	before	convergence	has
occurred.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value false

Units N/A

Interfaces GUI,	script

FuelMass
The	mass	of	fuel	in	the	tank.

Data	Type Real



Allowed	Values Real	>	0

Access set,	get

Default	Value 756

Units kg

Interfaces GUI,	script



GUI
The	ElectricTank	dialog	box	allows	you	to	specify	properties	of	a	fuel	tank.	The
layout	of	the	ElectricTank	dialog	box	is	shown	below.



Remarks

Use	of	ElectricTank	Resource	in	Conjunction	with
Maneuvers

An	ElectricTank	is	used	in	conjunction	with	finite	maneuvers.	To	implement	a
finite	maneuver,	you	must	first	create	both	an	ElectricThruster	and	a
FiniteBurn	resource.	You	must	also	associate	the	ElectricTank	with	the
ElectricThruster	resource	and	you	must	associate	the	ElectricThruster	with
the	FiniteBurn	resource.	The	finite	maneuver	is	implemented	using	the
BeginFiniteBurn/EndFiniteBurn	commands.	See	the
BeginFiniteBurn/EndFiniteBurn	command	documentation	for	worked
examples	on	how	the	ElectricTank	resource	is	used	in	conjunction	with	finite
maneuvers.

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modelling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion

Behavior	When	Configuring	Tank	and	Attached	Tank
Properties

Create	a	default	ElectricTank	and	attach	it	to	a	Spacecraft	and
ElectricThruster.

%		Create	the	ElectricTank	Resource

Create	ElectricTank	aTank

aTank.AllowNegativeFuelMass	=	false

aTank.FuelMass	=	756

%		Create	an	ElectricThruster	and	assign	it	a	ElectricTank

Create	ElectricThruster	aThruster

aThruster.Tank	=	{aTank}

%		Add	the	ElectricTank	and	Thruster	to	a	Spacecraft

Create	Spacecraft	aSpacecraft

aSpacecraft.Tanks	=	{aTank}

aSpacecraft.Thrusters	=	{aThruster}				

As	exhibited	below,	there	are	some	subtleties	associated	with	setting	and	getting



parent	vs.	cloned	resources.	In	the	example	above,	aTank	is	the	parent
ElectricTank	resource	and	the	field	aSpacecraft.Tanks	is	populated	with	a
cloned	copy	of	aTank.

Create	a	second	spacecraft	and	attach	a	fuel	tank	using	the	same	procedure	used
in	the	previous	example.	Set	the	FuelMass	in	the	parent	resource,	aTank,	to	900
kg.

%		Add	the	ElectricTank	and	ElectricThruster	to	a	second	Spacecraft

Create	Spacecraft	bSpacecraft

bSpacecraft.Tanks	=	{aTank}

bSpacecraft.Thrusters	=	{aThruster}

aTank.FuelMass	=	900				%Can	be	performed	in	both	resource	and	

																								%command	modes

Note	that	in	the	example	above,	setting	the	value	of	the	parent	resource,	aTank,
changes	the	fuel	mass	value	in	both	cloned	fuel	tank	resources.	More
specifically,	the	value	of	both	aSpacecraft.aTank.FuelMass	and
bSpacecraft.aTank.FuelMass	are	both	now	equal	to	the	new	value	of	900	kg.
We	note	that	the	assignment	command	for	the	parent	resource,	aTank.FuelMass,
can	be	performed	in	both	resource	and	command	modes.

To	change	the	value	of	the	fuel	mass	in	only	the	first	created	spacecraft,
aSpacecraft,	we	do	the	following.

%		Create	the	Fuel	Tank	Resource

BeginMissionSequence

aTank.FuelMass	=	756			%Fuel	tank	mass	in	both	s/c	set	back	to	default

aSpacecraft.aTank.FuelMass	=	1000	%Can	only	be	performed	in	command	mode.

As	a	result	of	the	commands	in	the	previous	example,	the	value	of
aSpacecraft.aTank.FuelMass	is	1000	kg	and	the	value	of
bSpacecraft.aTank.FuelMass	is	756	kg.	We	note	that	the	assignment	command
for	the	cloned	resource,	aSpacecraft.aTank.FuelMass,	can	only	be	performed
in	command	mode.

Caution:	Value	of	AllowNegativeFuelMass	Flag	Can	Affect	Iterative
Processes

By	default,	GMAT	will	not	allow	the	fuel	mass	to	be	negative.	However,
occasionally	in	iterative	processes	such	as	targeting,	a	solver	will	try	values	of	a



maneuver	parameter	that	result	in	total	fuel	depletion.	Using	the	default	tank
settings,	this	will	throw	an	exception	stopping	the	run	unless	you	set	the
AllowNegativeFuelMass	flag	to	true.	GMAT	will	not	allow	the	the	total
spacecraft	mass	to	be	negative.	If	DryMass	+	FuelMass	is	negative	GMAT	will
throw	an	exception	and	stop.



Examples
Create	a	default	ElectricTank	and	attach	it	to	a	Spacecraft	and
ElectricThruster.

%		Create	the	ElectricTank	Resource

Create	ElectricTank	aTank

aTank.AllowNegativeFuelMass	=	false

aTank.FuelMass	=	756

%		Create	an	ElectricThruster	and	assign	it	a	ElectricTank

Create	ElectricThruster	aThruster

aThruster.Tank	=	{aTank}

%		Add	the	ElectricTank	and	ElectricThruster	to	a	Spacecraft

Create	Spacecraft	aSpacecraft

aSpacecraft.Tanks	=	{aTank}

aSpacecraft.Thrusters	=	{aThruster}			

BeginMissionSequence				



ElectricThruster
ElectricThruster	—	An	electric	thruster	model



Description
The	ElectricThruster	resource	is	a	model	of	an	electric	thruster	which	supports
several	models	for	thrust	and	mass	flow	computation.	The	ElecticThruster
model	also	allows	you	to	specify	properties	such	as	a	duty	cycle	and	scale	factor
and	to	connect	an	ElectricThruster	with	an	ElectricTank.	You	can	flexibly
define	the	direction	of	the	thrust	by	specifying	the	thrust	components	in
coordinate	systems	such	as	(locally	defined)	SpacecraftBody	or	LVLH,	or	by
choosing	any	configured	CoordinateSystem	resource.

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modelling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion

See	Also	ElectricTank,	NuclearPowerSystem,	SolarPowerSystem



Fields

Field Description

Axes
Allows	the	user	to	define	a	spacecraft	centered	set	of
axes	for	the	ElectricThruster.	This	field	cannot	be
modified	in	the	Mission	Sequence

Data	Type Reference	Array

Allowed
Values

VNB,	LVLH,	MJ2000Eq,
SpacecraftBody

Access set

Default
Value

VNB

Units N/A

Interfaces GUI,	script

ConstantThrust
Thrust	value	used	ThrustModel	is	set	to
ConstantThrustAndIsp.

Data	Type Real



Allowed	Values Real	>	0

Access set,	get

Default	Value 0.237

Units N

Interfaces GUI,	script

CoordinateSystem
Determines	what	coordinate	system	the	orientation
parameters,	ThrustDirection1,	ThrustDirection2,	and
ThrustDirection3	refer	to.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data
Type

Reference	Array

Allowed
Values

Local,	EarthMJ2000Eq,
EarthMJ2000Ec,	EarthFixed,	or	any
user	defined	system

Access set

Default
Value

Local



Units N/A

Interfaces GUI,	script

DecrementMass
Flag	which	determines	if	the	FuelMass	is	to	be
decremented	as	it	used.	This	field	cannot	be	modified
in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value false

Units N/A

Interfaces GUI,	script

DutyCycle
Fraction	of	time	that	the	thrusters	are	on	during	a
maneuver.	The	thrust	applied	to	the	spacecraft	is	scaled
by	this	amount.	Note	that	this	scale	factor	also	affects
mass	flow	rate.

Data	Type Real	Number



Allowed	Values 0	<=	Real	<=	1

Access set,	get

Default	Value 1

Units N/A

Interfaces GUI,	script

FixedEfficiency
Thruster	efficiency.	Only	used	when	ThrustModel	is
FixedEfficiency.

Data	Type Real

Allowed	Values Real	>	0

Access set,	get

Default	Value 0.7

Units Decimal	Percent

Interfaces GUI,	script



GravitationalAccel
Value	of	the	gravitational	acceleration	used	for	the
FuelTank/Thruster	calculations.

Data	Type Real	Number

Allowed	Values Real	>	0

Access set,	get

Default	Value 9.81

Units m/s2

Interfaces GUI,	script

Isp
Thruster	specific	impulse.	Only	used	when
ThrustModel	is	set	to	FixedEfficiency	or
ConstantThrustAndIsp.

Data	Type Real

Allowed	Values Real	>	0

Access set,	get



Default	Value 4200

Units seconds

Interfaces GUI,	script

MassFlowCoeff1
Mass	flow	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value -0.004776

Units See	Mathematical	Models

Interfaces GUI,	script

MassFlowCoeff2
Mass	flow	coefficient.

Data	Type Real



Allowed	Values Real	Number

Access set,	get

Default	Value 0.05717

Units See	Mathematical	Models

Interfaces GUI,	script

MassFlowCoeff3
Mass	flow	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value -0.09956

Units See	Mathematical	Models

Interfaces GUI,	script

MassFlowCoeff4



Mass	flow	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0.03211

Units See	Mathematical	Models

Interfaces GUI,	script

MassFlowCoeff5
Mass	flow	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 2.13781

Units See	Mathematical	Models



Interfaces GUI,	script

MaximumUsablePower
The	maximum	power	the	thruster	can	use	to	generate
thrust.	Power	provided	above	MaximumUsablePower
is	not	used	in	the	thrust	model.

Data	Type Real

Allowed
Values

Real	>	0,	Real	<
MinimumUsablePower

Access set,	get

Default	Value 7.266

Units kW

Interfaces GUI,	script

MinimumUsablePower
The	minimum	power	the	thruster	can	use	to	generate
thrust.	If	power	provided	to	thruster	is	below
MinimumUsablePower,	no	thrust	is	generated.

Data	Type Real



Allowed
Values

Real	>	0,	Real	>
MinimumUsablePower

Access set,	get

Default	Value 0.638

Units kW

Interfaces GUI,	script

MixRatio
The	mixture	ratio	employed	to	draw	fuel	from	multiple
tanks.	For	example,	if	there	are	two	tanks	and
MixRatio	is	set	to	[2	1],	then	twice	as	much	fuel	will
be	drawn	from	tank	one	as	from	tank	2	in	the	Tank	list.
Note,	if	a	MixRatio	is	not	supplied,	fuel	is	drawn	from
tanks	in	equal	amounts,	(the	MixRatio	is	set	to	a
vector	of	ones	the	same	length	as	the	Tank	list).

Data
Type

Array

Allowed
Values

Array	of	real	numbers	with	same	length
as	number	of	tanks	in	the	Tank	array

Access set

Default [1]



Value

Units N/A

Interfaces GUI,	script

Origin
This	field,	used	in	conjunction	with	the	Axes	field,
allows	the	user	to	define	a	spacecraft	centered	set	of
axes	for	the	ElectricThruster.	Origin	has	no	affect
when	a	Local	coordinate	system	is	used	and	the	Axes
are	set	to	MJ2000Eq	or	SpacecraftBody.	This	field
cannot	be	modified	in	the	Mission	Sequence.

Data
Type

Reference	Array

Allowed
Values

Sun,	Mercury,	Venus,	Earth,	Luna,
Mars,Jupiter,	Saturn,	Uranus,
Neptune,	Pluto

Access set

Default
Value

Earth

Units N/A

Interfaces GUI,	script



Tanks
ElectricTank	from	which	the	ElectricThruster	draws
propellant	from.	In	a	script	command,	an	empty	list,
e.g.,	Thruster1.Tank	=	{},	is	NOT	allowed.	Via	the
script,	if	you	wish	to	indicate	that	no	ElectricTank	is
associated	with	an	ElectricThruster,	do	not	include
commands	such	as	Thruster1.Tank	=	...	in	your
script.	This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Reference	Array

Allowed	Values User	defined	list	of	FuelTank(s).

Access set

Default	Value N/A

Units N/A

Interfaces GUI,	script

ThrustCoeff1
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number



Access set,	get

Default	Value -5.19082

Units See	Mathematical	Models

Interfaces GUI,	script

ThrustCoeff2
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 2.96519

Units See	Mathematical	Models

Interfaces GUI,	script

ThrustCoeff3
Thrust	coefficient.



Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value -14.41789

Units See	Mathematical	Models

Interfaces GUI,	script

ThrustCoeff4
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 54.05382

Units See	Mathematical	Models



Interfaces GUI,	script

ThrustCoeff5
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value -0.00100092

Units See	Mathematical	Models

Interfaces GUI,	script

ThrustDirection1
X	component	of	the	spacecraft	thrust	vector	direction.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

1



Default	Value

Units N/A

Interfaces GUI,	script

ThrustDirection2
Y	component	of	the	spacecraft	thrust	vector	direction.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 1

Units N/A

Interfaces GUI,	script

ThrustDirection3
Z	component	of	the	spacecraft	thrust	vector	direction.

Data	Type Real



Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units N/A

Interfaces GUI,	script

ThrustModel
The	type	of	thruster	model.	See	Mathematical	Models
for	a	detailed	description	of	the	options.

Data
Type

String

Allowed
Values

ThrustMassPolynomial,
ConstantThrustAndIsp,FixedEfficiency

Access set,	get

Default
Value

ThrustMassPolynomial

Units N/A



Interfaces GUI,	script

ThrustScaleFactor
ThrustScaleFactor	is	a	scale	factor	that	is	multiplied
by	the	thrust	vector,	for	a	given	thruster,	before	the
thrust	vector	is	added	into	the	total	acceleration.	Note
that	the	value	of	this	scale	factor	does	not	affect	the
mass	flow	rate.

Data	Type Real	Number

Allowed	Values Real	>=	0

Access set,	get

Default	Value 1

Units N/A

Interfaces GUI,	script



Interactions

Command	or	Resource Description

BeginFiniteBurn/EndFiniteBurn
command Use	these	commands,	which	require	a

Spacecraft	and	a	FiniteBurn	name	as
input,	to	implement	a	finite	burn.

ElectricTank	resource
This	resource	contains	the	fuel	used	to
power	the	ElectricThruster	specified	by
the	FiniteBurn	resource.

FiniteBurn	resource
When	using	the
BeginFiniteBurn/EndFiniteBurn
commands,	you	must	specify	which
FiniteBurn	resource	to	implement.	The
FiniteBurn	resource	specifies	which
ElectricThruster(s)	to	use	for	the	finite
burn.

Spacecraft	resource
When	using	the
BeginFiniteBurn/EndFiniteBurn
commands,	you	must	specify	which
Spacecraft	to	apply	the	finite	burn	to.

Propagate	command
In	order	to	implement	a	non-zero	finite
burn,	a	Propagate	statement	must	occurr
within	the	BeginFiniteBurn	and
EndFiniteBurn	statements.



GUI
The	ElectricThruster	dialog	box	allows	you	to	specify	properties	of	an
ElectricThruster	including	the	Coordinate	System	of	the	thrust	acceleration
direction	vector,	the	thrust	magnitude	and	Isp	coefficients,	and	choice	of
ElectricTank.	The	layout	of	the	ElectricThruster	dialog	box	is	shown	below.



When	configuring	the	Coordinate	System	field,	you	can	choose	between
existing	coordinate	systems	or	use	locally	defined	coordinate	systems.	The	Axes
field	is	only	active	if	Coordinate	System	is	set	to	Local.	The	Origin	field	is
only	active	if	Coordinate	System	is	set	to	Local	and	Axes	is	set	to	either	VNB



or	LVLH.

Selecting	the	Configure	Polynomials	button	brings	up	the	following	dialog	box
where	you	may	input	the	coefficients	for	the	ElectricThruster	polynomial.

Similarly,	clicking	the	Configure	Polynomials	also	allows	you	to	edit	mass	flow
coefficients	as	shown	below.



Remarks

Mathematical	Models

The	ElectricThruster	model	supports	several	models	for	computation	of	thrust
and	and	mass	flow	rate	and	the	model	used	is	set	by	the	ThrustModel	field.
When	ThrustModel	is	set	to	ThrustMassPolynomial,	the	following
polynomials	are	used	to	compute	thrust	and	mass	flow	rate

where	P	is	the	power	provided	to	the	thruster	which	is	computed	using	the	power
logic	defined	on	the	FiniteBurn	resource,	f_d	is	duty	cycle,	f_s	is	thrust	scale
factor,	R_iT	is	the	rotation	matrix	from	the	thrust	coordinate	system	to	the
inertial	system,	and	T_hat	is	the	thrust	unit	vector.	By	industry	convention,	the
mass	flow	rate	and	thrust	polynomial	equations	are	in	mg/s	and	milli-Newtons
respectively.	GMAT	internally	converts	the	units	to	be	consistent	with	the
equations	of	motion.

When	ThrustModel	is	set	to	ConstantThrustAndIsp,	the	following
polynomials	are	used	to	compute	thrust	and	mass	flow	rate

where	C_t1	is	set	using	the	ConstantThrust	field,	Isp	is	set	using	the	Isp	field,
f_d	is	duty	cycle,	f_s	is	thrust	scale	factor,	R_iT	is	the	rotation	matrix	from	the
thrust	coordinate	system	to	the	inertial	system,	and	T_hat	is	the	thrust	unit
vector.	Note,	by	industry	convention,	the	mass	flow	rate	and	thrust	polynomial
equations	are	in	mg/s	and	milli-Newtons	respectively.	GMAT	internally	converts
the	units	to	be	consistent	with	the	equations	of	motion.



When	ThrustModel	is	set	to	FixedEfficiency,	the	following	polynomials	are
used	to	compute	thrust	and	mass	flow	rate

where	P	is	the	power	provided	to	the	thruster	which	is	computed	from	the	power
logic	defined	on	the	FiniteBurn	Resource.	"Eta"	is	the	FixedEfficiency	setting,
f_d	is	duty	cycle,	f_s	is	thrust	scale	factor,	R_iT	is	the	rotation	matrix	from	the
thrust	coordinate	system	to	the	inertial	system,	and	T_hat	is	the	thrust	unit
vector.

Use	of	Thruster	Resource	in	Conjunction	With	Maneuvers

An	ElectricThruster	resource	is	used	only	in	association	with	finite	maneuvers.
To	implement	a	finite	maneuver,	you	must	first	create	both	an	ElectricTank	and
a	FiniteBurn	resource.	You	must	also	associate	an	ElectricTank	with	the
ElectricThruster	resource	and	you	must	associate	an	ElectricThruster	with	the
FiniteBurn	resource.	The	actual	finite	maneuver	is	implemented	using	the
BeginFiniteBurn/EndFiniteBurn	commands.

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modelling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion

Local	Coordinate	Systems

Here,	a	Local	coordinate	system	is	defined	as	one	that	we	configure	"locally"
using	the	ElectricThruster	resource	interface	as	opposed	to	defining	a
coordinate	system	using	the	Coordinate	Systems	folder	in	the	Resources	Tree.

To	configure	a	local	coordinate	system,	you	must	specify	the	coordinate	system
of	the	input	thrust	acceleration	direction	vector,	ThrustDirection1-3.	If	you
choose	a	local	coordinate	system,	the	four	choices	available,	as	given	by	the
Axes	sub-field,	are	VNB,	LVLH,	MJ2000Eq,	and	SpacecraftBody.	VNB	or
Velocity-Normal-Binormal	is	a	non-inertial	coordinate	system	based	upon	the



motion	of	the	spacecraft	with	respect	to	the	Origin	sub-field.	For	example,	if	the
Origin	is	chosen	as	Earth,	then	the	X-axis	of	this	coordinate	system	is	the	along
the	velocity	of	the	spacecraft	with	respect	to	the	Earth,	the	Y-axis	is	along	the
instantaneous	orbit	normal	(with	respect	to	the	Earth)	of	the	spacecraft,	and	the
Z-axis	completes	the	right-handed	set.

Similarly,	Local	Vertical	Local	Horizontal	or	LVLH	is	also	a	non-inertial
coordinate	system	based	upon	the	motion	of	the	spacecraft	with	respect	to	the
Origin	sub-field.	Again,	if	we	choose	Earth	as	the	origin,	then	the	X-axis	of	this
coordinate	system	is	the	position	of	the	spacecraft	with	respect	to	the	Earth,	the
Z-axis	is	the	instantaneous	orbit	normal	(with	respect	to	the	Earth)	of	the
spacecraft,	and	the	Y-axis	completes	the	right-handed	set.

MJ2000Eq	is	the	J2000-based	Earth-centered	Earth	mean	equator	inertial
coordinate	system.	Note	that	the	Origin	sub-field	is	not	needed	to	define	this
coordinate	system.

SpacecraftBody	is	the	attitude	system	of	the	spacecraft.	Since	the	thrust	is
applied	in	this	system,	GMAT	uses	the	attitude	of	the	spacecraft,	a	spacecraft
attribute,	to	determine	the	inertial	thrust	direction.	Note	that	the	Origin	sub-field
is	not	needed	to	define	this	coordinate	system.

Caution	Regarding	Force	Model	Discontinuties

Note	that	when	modellign	shadows	on	a	SolarPowerSystem	Resource,	it	is
possible	that	there	is	not	enough	power	available	to	power	an	ElectricThruster.
This	occurs	when	the	power	available	from	the	SolarPowerSystem,	or	the
power	distributed	to	the	thruster,	is	less	than	MinimumUsablePower.	When	this
occurs,	the	thruster	model	turns	off	thrust	and	this	can	cause	a	discontinuity	in
the	force	model.	To	avoid	this,	you	must	propagate	to	the	boundary	and	switch
propagators,	or	configure	the	Propagator	to	continue	propagating	if	a	poor	step
occurs.



Examples
Create	a	default	ElectricTank	and	an	ElectricThruster	that	allows	for	fuel
depletion,	assign	the	ElectricThruster	the	default	ElectricTank,	and	attach	both
to	a	Spacecraft.

%		Create	an	ElectricTank	Resource

Create	ElectricTank	anElectricTank

%		Create	an	Electric	Thruster	Resource

Create	ElectricThruster	anElectricThruster

anElectricThruster.CoordinateSystem	=	Local

anElectricThruster.Origin	=	Earth

anElectricThruster.Axes	=	VNB

anElectricThruster.ThrustDirection1	=	1

anElectricThruster.ThrustDirection2	=	0

anElectricThruster.ThrustDirection3	=	0

anElectricThruster.DutyCycle	=	1

anElectricThruster.ThrustScaleFactor	=	1

anElectricThruster.DecrementMass	=	true

anElectricThruster.Tank	=	{anElectricTank}

anElectricThruster.GravitationalAccel	=	9.810000000000001

anElectricThruster.ThrustModel	=	ThrustMassPolynomial

anElectricThruster.MaximumUsablePower	=	7.266

anElectricThruster.MinimumUsablePower	=	0.638

anElectricThruster.ThrustCoeff1	=	-5.19082

anElectricThruster.ThrustCoeff2	=	2.96519

anElectricThruster.ThrustCoeff3	=	-14.4789

anElectricThruster.ThrustCoeff4	=	54.05382

anElectricThruster.ThrustCoeff5	=	-0.00100092

anElectricThruster.MassFlowCoeff1	=	-0.004776

anElectricThruster.MassFlowCoeff2	=	0.05717

anElectricThruster.MassFlowCoeff3	=	-0.09956

anElectricThruster.MassFlowCoeff4	=	0.03211

anElectricThruster.MassFlowCoeff5	=	2.13781

anElectricThruster.FixedEfficiency	=	0.7

anElectricThruster.Isp	=	4200

anElectricThruster.ConstantThrust	=	0.237

%		Create	a	SolarPowerSystem	Resource

Create	SolarPowerSystem	aSolarPowerSystem

%		Create	a	Spacecraft	Resource	and	attach	hardware

Create	Spacecraft	DefaultSC



DefaultSC.Tanks	=	{anElectricTank}

DefaultSC.Thrusters	=	{anElectricThruster}

DefaultSC.PowerSystem	=	aSolarPowerSystem

BeginMissionSequence



EclipseLocator
EclipseLocator	—	A	Spacecraft	eclipse	event	locator



Description

Note

EclipseLocator	is	a	SPICE-based	subsystem	that	uses	a
parallel	configuration	for	the	solar	system	and	celestial	bodies
from	other	GMAT	components.	For	precision	applications,	care
must	be	taken	to	ensure	that	both	configurations	are	consistent.
See	Remarks	for	details.

An	EclipseLocator	is	an	event	locator	used	to	find	solar	eclipse	events	as	seen
by	a	Spacecraft.	By	default,	an	EclipseLocator	generates	a	text	event	report
listing	the	beginning	and	ending	times	of	each	event,	along	with	the	duration,
eclipsing	body,	shadow	type,	and	information	about	simultaneous	and	adjacent
nested	events.	Eclipse	location	can	be	performed	over	the	entire	propagation
interval	or	over	a	subinterval,	and	can	optionally	adjust	for	light-time	delay	and
stellar	aberration.

Eclipse	location	can	be	performed	with	one	or	more	CelestialBody	resources	as
eclipsing	(or	occulting)	bodies.	Any	configured	CelestialBody	can	be	used	as	an
occulting	body,	including	user-defined	ones.	Any	type	of	eclipse	can	be	found,
including	total	(umbra),	partial	(penumbra),	and	annular	(antumbra).	All	selected
occulting	bodies	are	searched	using	the	same	selection	for	eclipse	types,	search
interval,	and	search	options;	to	customize	the	options	per	body,	use	multiple
EclipseLocator	resources.

By	default,	the	EclipseLocator	searches	the	entire	interval	of	propagation	of	the
Spacecraft.	To	search	a	custom	interval,	set	UseEntireInterval	to	False	and	set
InitialEpoch	and	FinalEpoch	accordingly.	Note	that	these	epochs	are	assumed
to	be	Spacecraft	epochs,	and	so	must	be	valid	and	within	the	Spacecraft
ephemeris	interval.	If	they	fall	outside	the	propagation	interval	of	the
Spacecraft,	GMAT	will	display	an	error.

The	contact	locator	can	optionally	adjust	for	both	light-time	delay	and	stellar
aberration,	though	stellar	aberration	currently	has	no	effect.



The	event	search	is	performed	at	a	fixed	step	through	the	interval.	You	can
control	the	step	size	(in	seconds)	by	setting	the	StepSize	field.	An	appropriate
choice	for	step	size	is	no	greater	than	the	duration	of	the	minimum	event	you
wish	to	find,	or	the	minimum	gap	between	events	you	want	to	resolve,
whichever	is	smaller.	See	Remarks	for	details.

GMAT	uses	the	SPICE	library	for	the	fundamental	event	location	algorithm.	As
such,	all	celestial	body	data	is	loaded	from	SPICE	kernels	for	this	subsystem,
rather	than	GMAT's	own	CelestialBody	shape	and	orientation	configuration.	See
Remarks	for	details.

Unless	otherwise	mentioned,	EclipseLocator	fields	cannot	be	set	in	the	mission
sequence.

See	Also:	CelestialBody,	Spacecraft,	ContactLocator,	FindEvents



Fields

Field Description

EclipseTypes
Types	of	eclipses	(shadows)	to	search	for.	May	be
Umbra	(total	eclipses),	Penumbra	(partial	eclipses),	or
Antumbra	(annular	eclipses).

Data	Type Enumeration	array

Allowed	Values Antumbra,	Penumbra,	Umbra

Access set

Default	Value {Antumbra,	Penumba,	Umbra}

Units N/A

Interfaces GUI,	script

Filename
Name	and	path	of	the	eclipse	report	file.	This	field	can
be	set	in	the	mission	sequence.

Data	Type String

Allowed	Values Valid	file	path



Access set

Default	Value 'EclipseLocator.txt'

Units N/A

Interfaces GUI,	script

FinalEpoch
Last	epoch	to	search	for	eclipses,	in	the	format
specified	by	InputEpochFormat.	The	epoch	must	be	a
valid	epoch	in	the	Spacecraft	ephemeris	interval.	This
field	can	be	set	in	the	mission	sequence.

Data	Type String

Allowed
Values

Valid	epoch	in	available	spacecraft
ephemeris

Access set

Default
Value

'21545.138'

Units ModifiedJulian	epoch	formats:	days

Gregorian	epoch	formats:	N/A



Interfaces GUI,	script

InitialEpoch
First	epoch	to	search	for	eclipses,	in	the	format
specified	by	InputEpochFormat.	The	epoch	must	be	a
valid	epoch	in	the	Spacecraft	ephemeris	interval.	This
field	can	be	set	in	the	mission	sequence.

Data	Type String

Allowed
Values

Valid	epoch	in	available	spacecraft
ephemeris

Access set

Default
Value

'21545'

Units ModifiedJulian	epoch	formats:	days

Gregorian	epoch	formats:	N/A

Interfaces GUI,	script

OccultingBodies
List	of	occulting	bodies	to	search	for	eclipses.	Can	be
any	number	of	GMAT	CelestialBody-type	resources,
such	as	Planet,	Moon,	Asteroid,	etc.	Note	that	an
occulting	body	must	have	a	mass	(e.g.	not
LibrationPoint	or	Barycenter).



Data
Type

List	of	CelestialBody	resources	(e.g.
Planet,	Asteroid,	Moon,	etc.)

Allowed
Values

Any	existing	CelestialBody-class
resources

Access set

Default
Value

Empty	list

Units N/A

Interfaces GUI,	script

RunMode
Mode	of	event	location	execution.	'Automatic'
triggers	event	location	to	occur	automatically	at	the	end
of	the	run.	'Manual'	limits	execution	only	to	the
FindEvents	command.	'Disabled'	turns	of	event
location	entirely.

Data	Type Enumeration

Allowed	Values Automatic,	Manual,	Disabled

Access set



Default	Value 'Automatic'

Units N/A

Interfaces GUI,	script

Spacecraft
The	observing	Spacecraft	resource	to	search	for
eclipses.

Data	Type Spacecraft	resource

Allowed
Values

Any	existing	Spacecraft	resource

Access set

Default	Value First	configured	Spacecraft
resource

Units N/A

Interfaces GUI,	script

StepSize
Step	size	of	event	locator.	See	Remarks	for	discussion
of	appropriate	values.



Data	Type Real

Allowed	Values StepSize	>	0

Access set

Default	Value 10

Units s

Interfaces GUI,	script

UseEntireInterval
Search	the	entire	available	Target	ephemeris	interval.
This	field	can	be	set	in	the	mission	sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units N/A



Interfaces GUI,	script

UseLightTimeDelay
Use	light-time	delay	in	the	event-finding	algorithm.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units N/A

Interfaces GUI,	script

UseStellarAberration
Use	stellar	aberration	in	addition	to	light-time	delay	in
the	event-finding	algorithm.	Light-time	delay	must	be
enabled.	Stellar	aberration	currently	has	no	effect	on
eclipse	searches.

Data	Type Boolean

Allowed	Values true,	false



Access set

Default	Value true

Units N/A

Interfaces GUI,	script

WriteReport
Write	an	event	report	when	event	location	is	executed.
This	field	can	be	set	in	the	mission	sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units N/A

Interfaces GUI,	script



GUI

The	default	EclipseLocator	GUI	for	a	new	resource	is	shown	above.	You	can
choose	one	Spacecraft	from	the	list,	which	is	populated	by	all	the	Spacecraft
resources	currently	configured	in	the	mission.	In	the	Occulting	Bodies	list,	you
can	check	the	box	next	to	all	CelestialBody	resources	you	want	to	search	for
eclipses.	This	list	shows	all	celestial	bodies	currently	configured	in	the	mission.

In	the	Eclipse	Types	list,	choose	the	types	of	eclipses	to	search	for.	Note	that
each	selection	will	increase	the	duration	of	the	search.

You	can	configure	the	output	via	Filename,	Run	Mode,	and	Write	Report	near
the	bottom.	If	Write	Report	is	enabled,	a	text	report	will	be	written	to	the	file
specified	in	Filename.	The	search	will	execute	during	FindEvents	commands
(for	Manual	or	Automatic	modes)	and	automatically	at	the	end	of	the	mission
(for	Automatic	mode),	depending	on	the	Run	Mode.



You	can	configure	the	search	interval	via	the	options	in	the	upper	right.	Uncheck
Use	Entire	Interval	to	set	the	search	interval	manually.	See	the	Remarks	section
for	considerations	when	setting	the	search	interval.

You	can	control	the	search	algorithm	via	the	options	in	the	bottom	right.
Configure	light-time	and	stellar	aberration	via	the	check	boxes	next	to	each,	and
select	the	signal	direction	via	the	Light-time	direction	selection.

To	control	the	fidelity	and	execution	time	of	the	search,	set	the	Step	size
appropriately.	See	the	Remarks	section	for	details.



Remarks

Data	configuration

The	EclipseLocator	implementation	is	based	on	the	NAIF	SPICE	toolkit,	which
uses	a	different	mechanism	for	environmental	data	such	as	celestial	body	shape
and	orientation,	planetary	ephemerides,	body-specific	frame	definitions,	and	leap
seconds.	Therefore,	it	is	necessary	to	maintain	two	parallel	configurations	to
ensure	that	the	event	location	results	are	consistent	with	GMAT's	own
propagation	and	other	parameters.	The	specific	data	to	be	maintained	is:

Planetary	shape	and	orientation:

GMAT	core:	CelestialBody.EquatorialRadius,	Flattening,
SpinAxisRAConstant,	SpinAxisRARate,	etc.

ContactLocator:	SolarSystem.PCKFilename,
CelestialBody.PlanetarySpiceKernelName

Planetary	ephemeris:

GMAT	core:	SolarSystem.DEFilename,	or
(SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName,	CelestialBody.NAIFId)

ContactLocator:	SolarSystem.SPKFilename,
CelestialBody.OrbitSpiceKernelName,	CelestialBody.NAIFId

Body-fixed	frame:

GMAT	core:	built-in

ContactLocator:	CelestialBody.SpiceFrameId,
CelestialBody.FrameSpiceKernelName

Leap	seconds:

GMAT	core:	startup	file	LEAP_SECS_FILE	setting

http://naif.jpl.nasa.gov/naif/


ContactLocator:	SolarSystem.LSKFilename

See	SolarSystem	and	CelestialBody	for	more	details.

Search	interval

The	EclipseLocator	search	interval	can	be	specified	either	as	the	entire
ephemeris	interval	of	the	Spacecraft,	or	as	a	user-defined	interval.	If
UseEntireInterval	is	true,	the	search	is	performed	over	the	entire	ephemeris
interval	of	the	Spacecraft,	including	any	gaps	or	discontinuities.	If
UseEntireInterval	is	false,	the	provided	InitialEpoch	and	FinalEpoch	are	used
to	form	the	search	interval	directly.	The	user	must	ensure	than	the	provided
interval	results	in	valid	Spacecraft	and	CelestialBody	ephemeris	epochs.

Run	modes

The	EclipseLocator	works	in	conjunction	with	the	FindEvents	command:	the
EclipseLocator	resource	defines	the	configuration	of	the	event	search,	and	the
FindEvents	command	executes	the	search	at	a	specific	point	in	the	mission
sequence.	The	mode	of	interaction	is	defined	by	EclipseLocator.RunMode,
which	has	three	options:

Automatic:	All	FindEvents	commands	are	executed	as-is,	plus	an
additional	FindEvents	is	executed	automatically	at	the	end	of	the	mission
sequence.

Manual:	All	FindEvents	commands	are	executed	as-is.

Disabled:	FindEvents	commands	are	ignored.

Search	algorithm

The	EclpseLocator	uses	the	NAIF	SPICE	GF	(geometry	finder)	subsystem	to
perform	event	location.	Specifically,	the	following	call	is	used	for	the	search:

gfoclt_c:	For	third-body	occultation	searches

This	function	implements	a	fixed-step	search	method	through	the	interval,	with
an	embedded	root-location	step	if	an	event	is	found.	StepSize	should	be	set

http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/gfoclt_c.html


equal	to	the	length	of	the	minimum-duration	event	to	be	found,	or	equal	to	the
length	of	the	minimum-duration	gap	between	events,	whichever	is	smaller.	To
guarantee	location	of	10-second	eclipses,	or	10-second	gaps	between	adjacent
eclipses,	set	StepSize	=	10.

For	details,	see	the	reference	documentation	for	the	function	linked	above.

Report	format

When	WriteReport	is	enabled,	the	EclipseLocator	outputs	an	event	report	at
the	end	of	each	search	execution.	The	report	contains	the	following	data:

Spacecraft	name

For	each	event:

Event	start	time	(UTC)

Event	stop	time	(UTC)

Event	duration	(s)

Occulting	body	name

Eclipse	type

Total	event	number

Total	duration

Number	of	individual	events

Number	of	total	events

Maximum	total	duration

Eclipse	number	of	total	duration

The	report	makes	the	distinction	between	an	individual	event	and	a	total	event.

An	individual	event	is	a	single	continuous	event	of	a	single	type	(umbra,



penumbra,	etc.)	from	a	single	occulting	body.	Individual	events	can	be
nested	for	a	single	occulting	body,	such	as	a	penumbra	event	followed
immediately	by	an	umbra	event,	or	they	can	be	nested	from	multiple
occulting	bodies,	such	as	a	Luna	eclipse	occuring	in	the	middle	of	an	Earth
eclipse.

A	total	event	is	the	entire	set	of	nested	individual	events.	The	total	event	is
given	a	single	number,	and	the	total	duration	is	reported	in	the	output	file.

Event	location	with	SPK	propagator

When	using	the	SPK	propagator,	you	load	one	or	more	SPK	ephemeris	files
using	the	Spacecraft.OrbitSpiceKernelName	field.	For	the	purposes	of	event
location,	this	field	causes	the	appropriate	ephemeris	files	to	be	loaded
automatically	on	run,	and	so	use	of	the	Propagation	command	is	not	necessary.
This	is	an	easy	way	of	performing	event	location	on	an	existing	SPK	ephemeris
file.	See	the	example	below.



Examples
Perform	a	basic	eclipse	search	in	LEO:

SolarSystem.EphemerisSource	=	'DE421'

Create	Spacecraft	sat

sat.DateFormat	=	UTCGregorian

sat.Epoch	=	'15	Sep	2010	16:00:00.000'

sat.CoordinateSystem	=	EarthMJ2000Eq

sat.DisplayStateType	=	Keplerian

sat.SMA	=	6678.14

sat.ECC	=	0.001

sat.INC	=	0

sat.RAAN	=	0

sat.AOP	=	0

sat.TA	=	180

Create	ForceModel	fm

fm.CentralBody	=	Earth

fm.PrimaryBodies	=	{Earth}

fm.GravityField.Earth.PotentialFile	=	'JGM2.cof'

fm.GravityField.Earth.Degree	=	0

fm.GravityField.Earth.Order	=	0

fm.GravityField.Earth.TideModel	=	'None'

fm.Drag.AtmosphereModel	=	None

fm.PointMasses	=	{}

fm.RelativisticCorrection	=	Off

fm.SRP	=	Off

Create	Propagator	prop

prop.FM	=	fm

prop.Type	=	RungeKutta89

Create	EclipseLocator	el

el.Spacecraft	=	sat

el.Filename	=	'Simple.report'

el.OccultingBodies	=	{Earth}

el.EclipseTypes	=	{'Umbra',	'Penumbra',	'Antumbra'}

BeginMissionSequence

Propagate	prop(sat)	{sat.ElapsedSecs	=	10800}



Perform	an	eclipse	event	search	from	a	Mars	orbiter,	with	Phobos,	Earth,	and
Moon	eclipses:

%	Mars	orbiter	with	annular	eclipses	of	Earth	and	Moon.

SolarSystem.EphemerisSource	=	'SPICE'

SolarSystem.SPKFilename	=	'de421.bsp'

Mars.NAIFId	=	499

Mars.OrbitSpiceKernelName	=	{'../data/planetary_ephem/spk/mar063.bsp'}

Create	Spacecraft	sat

sat.DateFormat	=	UTCGregorian

sat.Epoch	=	'10	May	1984	00:00:00.000'

sat.CoordinateSystem	=	MarsMJ2000Eq

sat.DisplayStateType	=	Keplerian

sat.SMA	=	6792.38

sat.ECC	=	0

sat.INC	=	45

sat.RAAN	=	0

sat.AOP	=	0

sat.TA	=	0

Create	ForceModel	fm

fm.CentralBody	=	Mars

fm.PrimaryBodies	=	{Mars}

fm.GravityField.Mars.PotentialFile	=	'Mars50c.cof'

fm.GravityField.Mars.Degree	=	0

fm.GravityField.Mars.Order	=	0

fm.Drag.AtmosphereModel	=	None

fm.PointMasses	=	{}

fm.RelativisticCorrection	=	Off

fm.SRP	=	Off

Create	Propagator	prop

prop.FM	=	fm

prop.Type	=	RungeKutta89

Create	CoordinateSystem	MarsMJ2000Eq

MarsMJ2000Eq.Origin	=	Mars

MarsMJ2000Eq.Axes	=	MJ2000Eq

Create	Moon	Phobos

Phobos.CentralBody	=	'Mars'

Phobos.PosVelSource	=	'SPICE'

Phobos.NAIFId	=	401



Phobos.OrbitSpiceKernelName	=	{'mar063.bsp'}

Phobos.SpiceFrameId	=	'IAU_PHOBOS'

Phobos.EquatorialRadius	=	13.5

Phobos.Flattening	=	0.3185185185185186

Phobos.Mu	=	7.093399e-004

Create	Moon	Deimos

Deimos.CentralBody	=	'Mars'

Deimos.PosVelSource	=	'SPICE'

Deimos.NAIFId	=	402

Deimos.OrbitSpiceKernelName	=	{'mar063.bsp'}

Deimos.EquatorialRadius	=	7.5

Deimos.SpiceFrameId	=	'IAU_DEIMOS'

Deimos.Flattening	=	0.30666666666666664

Deimos.Mu	=	1.588174e-004

Create	EclipseLocator	ec

ec.Spacecraft	=	sat

ec.OccultingBodies	=	{Mercury,	Venus,	Earth,	Luna,	Mars,	Phobos,	Deimos}

ec.Filename	=	'EarthTransit.report'

BeginMissionSequence

Propagate	prop(sat)	{sat.ElapsedDays	=	2}

Perform	eclipse	location	on	an	existing	SPK	ephemeris	file:

SolarSystem.EphemerisSource	=	'DE421'

Create	Spacecraft	sat

sat.OrbitSpiceKernelName	=	{'../data/vehicle/ephem/spk/Events_Simple.bsp'}

Create	EclipseLocator	cl

cl.Spacecraft	=	sat

cl.OccultingBodies	=	{Earth}

cl.Filename	=	'SPKPropagation.report'

BeginMissionSequence



EphemerisFile
EphemerisFile	—	Generate	spacecraft’s	ephemeris	data



Description
EphemerisFile	is	a	user-defined	resource	that	generates	spacecraft’s	ephemeris
in	a	report	format.	You	can	generate	spacecraft’s	ephemeris	data	in	any	of	the
user-defined	coordinate	frames.	GMAT	allows	you	to	output	ephemeris	data	in
CCSDS-OEM,	SPK,	Code-500	and	STK	.e	(STK	-TimePosVel)	formats.	See	the
Remarks	section	for	more	details.	EphemerisFile	resource	can	be	configured	to
generate	ephemeris	data	at	default	integration	steps	or	by	entering	user-selected
step	sizes.

GMAT	allows	you	to	generate	any	number	of	ephemeris	data	files	by	creating
multiple	EphermisFile	resources.	An	EphemerisFile	resource	can	be	created
using	either	the	GUI	or	script	interface.	GMAT	also	provides	the	option	of	when
to	write	and	stop	writing	ephemeris	data	to	a	text	file	through	the	Toggle	On/Off
commands.	See	the	Remarks	section	below	for	detailed	discussion	of	the
interaction	between	EphemerisFile	resource	and	Toggle	command.

See	Also:	CoordinateSystem,	Toggle



Fields

Field Description

CoordinateSystem
Allows	you	to	generate	spacecraft	ephemeris	w.r.t
the	coordinate	system	that	you	select	for	this	field.
Ephemeris	can	also	be	generated	w.r.t	a	user-
specified	coordinate	system.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data
Type

Enumeration

Allowed
Values

Any	default	coordinate	system	or	a
user-defined	coordinate	system

Access set,	get

Default
Value

EarthMJ2000Eq

Units N/A

Interfaces GUI,	script

DistanceUnit
The	unit	for	distance	quantities	written	to	STK
ephemeris	files.	Only	active	when	FileFormat	is
set	to	STK-TimePosVel.



Data	Type String

Allowed	Values Kilometers	or	Meters

Access set

Default	Values Kilometers

Units N/A

Interfaces GUI,	script

EpochFormat
The	field	allows	you	to	set	the	type	of	the	epoch
that	you	choose	to	enter	for	InitialEpoch	and
FinalEpoch	fields.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data
Type

Enumeration

Allowed
Values

Any	of	the	following	epoch	formats:
UTCGregorian	UTCModJulian,
TAIGregorian,	TAIModJulian,
TTGregorian,	TTModJulian,
A1Gregorian,	A1ModJulian

Access Set



Default
Value

UTCGregorian

Units N/A

Interfaces GUI,	script

FileFormat
Allows	the	user	to	generate	ephemeris	file	in	four
available	ephemeris	formats:	CCSDS-OEM,	SPK,
Code-500	or	STK-TimePosVel	(i.e.	STK	.e	format).
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Enumeration

Allowed
Values

CCSDS-OEM,	SPK,	Code-500,
STK-TimePosVel

Access Set

Default
Value

CCSDS-OEM

Units N/A

Interfaces GUI,	script



FileName
Allows	the	user	to	name	the	ephemeris	file	that	is
generated.	File	extensions	for	CCSDS-OEM,	SPK,
Code-500	and	STK-TimePosVel	ephemeris	types
are	*.oem,	*.bsp,	*.eph	and	*.e	respectively.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type String

Allowed	Values Valid	File	Path	and	Name

Access set

Default	Value EphemerisFile1.eph

Units N/A

Interfaces GUI,	script

FinalEpoch
Allows	the	user	to	specify	the	time	span	of	an
ephemeris	file.	Ephemeris	file	is	generated	up	to
final	epoch	that	is	specified	in	FinalEpoch	field.
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type String

Allowed user-defined	final	epoch	or	Default



Values Value

Access set

Default
Value

FinalSpacecraftEpoch

Units N/A

Interfaces GUI,	script

IncludeEventBoundaries
Flag	to	optionally	write	event	data	and	boundaries
to	an	STK	ephem	file.	Only	active	when
FileFormat	is	set	to	STK-TimePosVel.	When	set
to	true,	if	there	are	discontinuities	in	the	ephemeris
data,	the	times	of	the	discontinuities	are	written	to
the	file	along	with	blank	lines	at	the	discontinuity.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Values true

Units N/A



Interfaces GUI,	script

InitialEpoch
Allows	the	user	to	specify	the	starting	epoch	of	the
ephemeris	file.	Ephemeris	file	is	generated	starting
from	the	epoch	that	is	defined	in	InitialEpoch
field.	This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type String

Allowed
Values

user-defined	initial	epoch	or
Default	Value

Access set

Default
Value

InitialSpacecraftEpoch

Units N/A

Interfaces GUI,	script

InterpolationOrder
Allows	you	to	set	the	interpolation	order	for	the
available	interpolator	methods	(Lagrange	or
Hermite)	for	any	of	the	ephemeris	types.	This	field
cannot	be	modified	in	the	Mission	Sequence.



Data	Type Integer

Allowed	Values 1	<=	Integer	Number	<=	10

Access Set

Default	Value 7

Units N/A

Interfaces GUI,	script

Interpolator
This	field	defines	the	available	interpolator	method
that	was	used	to	generate	ephemeris	file.	Available
Interpolators	are	Lagrange	or	Hermite.	This	field
cannot	be	modified	in	the	Mission	Sequence.

Data
Type

String

Allowed
Values

Lagrange	for	CCSDS-OEM,	Code-
500	and	STK-TimePosVel	ephemeris
types,Hermite	for	SPK	file

Access set



Default
Value

Lagrange

Units N/A

Interfaces GUI,	script

Maximized
Allows	the	user	to	maximize	the	generated
ephemeris	file	window.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values true,false

Access set

Default	Value false

Units N/A

Interfaces script

OutputFormat
Allows	the	user	to	specify	what	type	of	format	they
want	GSFC	Code-500	ephmeris	to	be	generated	in.
GSFC	Code-500	ephemeris	can	be	generated	in	the
Little-Endian	or	Big-Endian	format.	This	field



cannot	be	modified	in	the	Mission	Sequence.

Data	Type String

Allowed	Values LittleEndian,	BigEndian

Access Set

Default	Value LittleEndian

Units N/A

Interfaces GUI,	script

RelativeZOrder
Allows	the	user	to	select	which	generated
ephemeris	file	display	window	is	to	displayed	first
on	the	screen.	The	EphemerisFile	resource	with
lowest	RelativeZOrder	value	will	be	displayed	last
while	EphemerisFile	resource	with	highest
RelativeZOrder	value	will	be	displayed	first.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Integer

Allowed	Values Integer	≥	0



Access set

Default	Value 0

Units N/A

Interfaces script

Size
Allows	the	user	to	control	the	display	size	of
generated	ephemeris	file	panel.	First	value	in	[0	0]
matrix	controls	horizonal	size	and	second	value
controls	vertical	size	of	ephemeris	file	display
window.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number

Access set

Default	Value [	0	0	]

Units N/A

Interfaces script



Spacecraft
Allows	the	user	to	generate	ephemeris	data	of
spacecraft(s)	that	are	defined	in	Spacecraft	field.
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data
Type

String

Allowed
Values

Default	spacecraft	or	any	number	of
user-defined	spacecrafts	or	formations

Access set,	get

Default
Value

DefaultSC

Units N/A

Interfaces GUI,	script

StepSize
The	ephemeris	file	is	generated	at	the	step	size	that
is	specified	for	StepSize	field.	The	user	can
generate	ephemeris	file	at	default	Integration	step
size	(using	raw	integrator	steps)	or	by	defining	a
fixed	step	size.	For	CCSDS-OEM	and	STK-TimePosVel
file	formats,	you	can	generate	ephemeris	at	either
Integrator	steps	or	fixed	step	size.	For	SPK	file
format,	GMAT	lets	you	generate	ephemeris	at	only
raw	integrator	step	sizes.	For	Code-500	ephemeris



file	type,	you	can	generate	ephemeris	at	only	fixed
step	sizes.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data
Type

Real

Allowed
Values

Real	Number	>	0.0	or	equals	Default
Value

Access Set

Default
Value

IntegratorSteps	for	CCSDS-OEM,	SPK
and	STK-TimePosVel	file	formats	and
60	seconds	for	Code-500	file	format

Units N/A

Interfaces GUI,	script

UpperLeft
Allows	the	user	to	pan	the	generated	ephemeris	file
display	window	in	any	direction.	First	value	in	[0	0]
matrix	helps	to	pan	the	window	horizontally	and
second	value	helps	to	pan	the	window	vertically.
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Real	array



Allowed	Values Any	Real	number

Access set

Default	Value [	0	0	]

Units N/A

Interfaces script

WriteEphemeris
Allows	the	user	to	optionally	calculate/write	or	not
calculate/write	an	ephemeris	that	has	been	created
and	configured.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type Boolean

Allowed	Values true,false

Access set

Default	Value true

Units Unit



Interfaces GUI,	script



GUI
The	figure	below	shows	the	default	settings	for	the	EphemerisFile	resource:

GMAT	allows	you	to	modify	InitialEpoch,	FinalEpoch	and	StepSize	fields	of
EphemerisFile	resource.	Instead	of	always	generating	the	ephemeris	file	at
default	time	span	settings	of	InitialSpacecraftEpoch	and
FinalSpacecraftEpoch,	you	can	define	your	own	initial	and	final	epochs.
Similarly,	instead	of	using	the	default	IntegratorSteps	setting	for	StepSize	field,
you	can	generate	the	ephemeris	file	at	the	step	size	of	your	choice.

The	GUI	figure	below	shows	ephemeris	file	which	will	be	generated	from	initial



epoch	of	01	Jan	2000	14:00:00.000	to	final	epoch	of	01	Jan	2000	20:00:00.000
while	using	non-default	step	size	of	300	seconds:



Remarks

Behavior	of	Coordinate	System	Field	for	CCSDS,	Code	500
and	SPK	File	Formats

If	the	selected	CoordinateSystem	uses	MJ2000Eq	axes,	the	CCSDS	ephemeris
file	contains	“EME2000”	for	the	REF_FRAME	according	to	CCSDS
convention.	By	CCSDS	requirements,	non-standard	axes	names	are	allowed
when	documented	in	an	ICD.	The	CoordinateSystems	specifications	document
in	the	user's	guide	is	the	ICD	for	all	axes	supported	by	GMAT.	Also	if	you	create
a	new	coordinate	system	whose	origin	is	Luna,	then	the	CCSDS	ephemeris	file
contains	“Moon”	for	the	CENTER_NAME.

For	code	500	file	format,	GMAT	can	write	ephemeris	for	a	CoordinateSystem
under	CoordinateSystem	field	that	references	a	MJ2000Eq,	BodyFixed,	or	TOD
axis	for	any	central	body.	For	SPK	file	format,	GMAT	can	only	write	ephemeris
for	a	coordinate	system	under	CoordinateSystem	field	that	references
MJ2000Eq	axis	type	for	any	central	body.

There	is	one	important	difference	between	GMAT	and	IAU	conventions.	By	IAU
convention,	there	is	no	name	for	the	IAU2000	axes	that	is	independent	of	the
origin.	GCRF	is	coordinate	system	centered	at	earth	with	IAU2000	axes,	and
ICRF	is	a	coordinate	system	centered	at	the	solar	system	barycenter	with
IAU2000	axes.	We	have	chosen	to	name	the	IAU2000	axes	ICRF	regardless	of
the	origin.	Please	refer	to	CoordinateSystems	specifications	document	to	read
more	about	built-in	coordinate	systems	and	description	of	Axes	types	that
GMAT	supports.

Behavior	of	Ephemeris	File	during	Discontinuous	&
Iterative	Processes

When	generating	an	ephemeris	file	for	a	mission	sequence,	GMAT	separately
interpolates	ephemeris	segments	that	are	bounded	by	discontinuous	or	discrete
mission	events.	Discontinuous	or	discrete	mission	sequence	events	can	range
from	impulsive	or	finite-burn	maneuvers,	changes	in	dynamics	models	or	when
using	assignment	commands.	Furthermore,	when	a	mission	sequence	employs
iterative	processes	such	as	differential	correction	or	optimization,	GMAT	only



writes	the	ephemeris	for	the	final	solution	from	the	iterative	processes.	See	the
Examples	section	below	to	see	how	an	ephemeris	file	is	generated	during	a
discontinuous	event	such	as	an	impulsive	burn	and	iterative	process	like
differential	correction.

Version	1	of	CCSDS	Orbit	Data	Messages	(ODMs)	document	used	to	require
that	the	ephemeris	be	generated	in	increasing	time	order	and	only	going	forward.
However	version	2	of	CCSDS	ODM	document	now	allows	for	ephemeris	file	to
be	generated	backwards	as	well.	Currently	in	GMAT,	when	you	propagate	a
spacecraft	backwards	in	time,	then	the	CCSDS	ephemeris	is	also	generated
backwards.

Warning

The	Code500	ephemeris	file	requires	fixed	time	steps	and	has	a
pre-defined	format	for	handling	chunks	of	ephemeris	data.	The
format	does	not	allow	chunking	to	stop	and	start	at	state
discontinuities	that	occur	at	impulsive	maneuvers.	GMAT's
current	behavior	is	to	interpolate	across	those	discontinuities	as
the	code	500	format	does	not	elegantly	support	ephemerides
with	discontinuities.	This	is	acceptable	for	small	maneuvers	but
becomes	less	accurate	as	the	maneuvers	grow	in	magnitude.	We
recommend	using	more	modern	ephemeris	file	formats	for	this
reason.	In	the	event	you	must	use	a	Code500	ephemeris	file
with	a	discontinuous	trajectory,	we	recommend	using	a
propagator	with	small,	fixed	times	steps,	and	a	small	StepSize
setting	on	the	ephemeris	file	to	reduce	interpolation	error	near
the	discontinuity.

Similar	to	CCSDS	ephemeris	format,	the	STK-TimePosVel	ephemeris	is	also
generated	in	separate	chunks	of	ephemeris	data	whenever	an	event	such	as	an
impulsive	or	a	finite	maneuver	takes	place	or	a	change	in	dynamic	models
occurs.	However,	unlike	the	CCSDS	ephemeris,	STK-TimePosVel	ephemeris	is
not	generated	during	backward	propagations	and	only	forward	propagation
ephemeris	is	reported.



Behavior	of	Ephemeris	File	When	It	Does	Not	Meet	CCSDS
File	Format	Requirements

When	an	ephemeris	file	is	generated,	it	needs	to	follow	the	Recommended
Standard	for	ODMs	that	has	been	prepared	by	the	CCSDS.	The	set	of	orbit	data
messages	described	in	the	Recommended	Standard	is	the	baseline	concept	of
trajectory	representation	in	data	interchange	applications	that	are	cross-supported
between	Agencies	of	the	CCSDS.	CCSDS-ODM	Recommended	Standard
documents	establishes	a	common	framework	and	provides	a	common	basis	for
the	interchange	of	orbit	data.

Currently,	the	ephemeris	file	that	is	generated	by	GMAT	meets	most	of	the
recommended	standards	that	are	prescribed	by	the	CCSDS.	However	whenever
there	is	a	case	when	GMAT’s	ephemeris	violates	CCSDS	file	format
requirements,	then	the	generated	ephemeris	file	will	display	a	warning	in
ephemeris	file’s	Header	section.	More	specifically,	this	warning	will	be	given
under	COMMENT	and	it	will	let	you	know	that	this	ephemeris	file	does	not
fully	satisfy	CCSDS	file	formatting	requirements.

Behavior	of	Interpolation	Order	Field	for	the	Ephemeris	File
Formats:

For	CCSDS	file	formats,	whenever	there	is	not	enough	raw	data	available	to
support	the	requested	interpolation	type	and	order,	GMAT	throws	an	error
message	and	stops	interpolation.	GMAT	still	generates	the	ephemeris	file	but	no
spacecraft	ephemeris	data	is	written	to	the	file	and	only	the	file’s	Header	section
will	be	there.	Within	the	Header	section	and	under	COMMENT,	a	message	will
be	thrown	saying	that	not	enough	raw	data	is	available	to	generate	spacecraft
ephemeris	data	at	the	requested	interpolation	order.

For	SPK	file	formats,	raw	data	is	always	collected	at	every	integrator	step	for
each	segment	and	then	sent	to	SPK	kernel	writer.	GMAT	does	not	perform	any
interpolation	for	SPK	files	as	SPK	contains	its	own	interpolation.	As	a	result,
InitialEpoch	and	FinalEpoch	fields	behave	differently	for	SPK	ephemerides.
The	first	epoch	on	the	file	is	the	first	step	after	InitialEpoch.	The	last	epoch	on
the	file	is	the	last	step	before	FinalEpoch.

For	code	500	file	formats,	you	can	set	the	interpolation	order	and	currently



GMAT	supports	Lagrange	as	the	available	interpolator	method.	For	code	500	file
formats,	if	there	is	not	enough	raw	data	available	to	support	interpolation	type
and	order,	GMAT	will	throw	an	error	message	and	stop	interpolation.

For	the	STK-TimePosVel	ephemeris	format,	whenever	there	is	not	enough	raw
data	available	to	support	the	generation	of	ephemeris	at	the	requested
interpolation	order	and	fixed	step	size,	GMAT	will	internally	adjust	the
interpolation	order	such	that	at	least	the	beginning	and	the	last	ephemeris	points
are	reported	in	the	STK	.e	ephemeris	file.	This	new	interpolation	order	will	be
reported	at	STK	.	e	ephemeris's	header	data.

Behavior	When	Using	EphemerisFile	Resource	&	Toggle
Command

EphemerisFile	resource	generates	ephemeris	file	at	each	propagation	step	of	the
entire	mission	duration.	If	you	want	to	generate	ephemeris	data	during	specific
points	in	your	mission,	then	a	Toggle	On/Off	command	can	be	inserted	into	the
Mission	tree	to	control	when	the	EphemerisFile	resource	writes	data.	When
Toggle	Off	command	is	issued	for	an	EphemerisFile	subscriber,	no	data	is	sent
to	a	file	until	a	Toggle	On	command	is	issued.	Similarly,	when	a	Toggle	On
command	is	used,	ephemeris	data	is	sent	to	a	file	at	each	integration	step	until	a
Toggle	Off	command	is	used.	The	Toggle	command	can	be	used	on	all	four
ephemeris	types	that	GMAT	supports.

Below	is	an	example	script	snippet	that	shows	how	to	use	Toggle	Off/On
commands	while	using	the	EphemerisFile	resource.	No	ephemeris	data	is	sent
for	first	two	days	of	propagation	and	only	the	data	that	is	collected	during	last
four	days	of	propagation	is	sent	to	text	file	called	‘EphemerisFile1.eph’:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'EphemerisFile1.eph'

BeginMissionSequence

Toggle	anEphmerisFile	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}



Toggle	anEphmerisFile	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

Behavior	of	Code	500	Ephemeris	File	During
Discontinuous	&	Iterative	Processes

Code	500	ephemeris	file	follows	the	ephemeris	format	and	definitions	that	have
been	defined	in	Flight	Dynamics	Division	(FDD)	Generic	Data	Product	Formats
Interface	Control	Document.

Unlike	CCSDS	ephemeris	file,	code	500	ephemeris	does	not	support	separate
chunks	in	the	data	blocks	whenever	discontinuous	or	discrete	mission	events
such	as	impulsive/finite	maneuvers,	change	in	dynamics	or	assignment
command	takes	place.	Rather,	code	500	ephemeris	is	generated	all	in	one
continuous	data	block	regardless	of	any	number	of	mission	events	that	may
occur	between	initial	and	final	epochs	of	ephemeris	file.	Furthermore,	when	a
mission	sequence	employs	iterative	processes	such	as	differential	correction	or
optimization,	GMAT	will	only	write	the	ephemeris	for	the	final	solution	from	the
iterative	processes.	Code	500	ephemeris	does	not	allow	non-monotonic
ephemeris	generation	and	an	exception	will	be	thrown	if	propagation	direction
changes.	Furthermore,	any	discontinuities	created	by	assignments	may	result	in
invalid	code	500	files.

Code	500	Ephemeris	Header	Records

The	standard	format	for	Code	500	ephemeris	files	has	a	logical	record	length	of
2800	bytes.	Code	500	files	have	two	header	records,	ephemeris	header	record	1
and	ephemeris	record	2,	followed	by	as	many	ephemeris	data	records	as	required
for	the	file	timespan.	Many	parameters	in	ephemeris	file's	header	records	are
mandatory	while	some	fields	are	optional.	GMAT's	Code	500	ephemeris	header
records	only	specifies	fields	that	are	mandatory	and	optional	fields	have	not	been
included.	Code	500's	ephemeris	header	record	1	is	mandatory	while	ephemeris
record	2	is	optional.	Complete	description	of	ephemeris	format	and	list	of
mandatory	and	optional	ephemeris	header	record	parameters	is	defined	in	Flight
Dynamics	Division	(FDD)	Generic	Data	Product	Formats	Interface	Control
Document.	In	GMAT,	only	required	fields	have	been	written	in	header	record	1
while	header	record	2	is	left	blank.	Table	below	lists	header	record	1's	required
fields	and	any	additional	comments	pertaining	to	that	field.



Required	Fields Comments

productId
'EPHEM	'

satId
123.000000

timeSystemIndicator
2.000000

StartDateOfEphem_YYYMMDD
value	depends	on	run	time

startDayCountOfYear
value	depends	on	run	time

startSecondsOfDay
value	depends	on	run	time

endDateOfEphem_YYYMMDD
value	depends	on	run	time

endDayCountOfYear
value	depends	on	run	time

endSecondsOfDay
value	depends	on	run	time

stepSize_SEC
value	depends	on	run	time

startYYYYMMDDHHMMSSsss.
value	depends	on	run	time

endYYYYMMDDHHMMSSsss.
value	depends	on	run	time



tapeId
'STANDARD'

sourceId
'GTDS	'

headerTitle
'

centralBodyIndicator
Set	to	central	body	of
corrdinate	system.	Note
GMAT	allows	users	to
change	central	body	of
integration.

refTimeForDUT_YYMMDD
570918.000000

coordSystemIndicator1
'2000'

coordSystemIndicator2
4

orbitTheory
'COWELL	'

timeIntervalBetweenPoints_DUT
value	depends	on	run	time

timeIntervalBetweenPoints_SEC
value	depends	on	run	time

outputIntervalIndicator
1



epochTimeOfElements_DUT
value	depends	on	run	time

epochTimeOfElements_DAY.
value	depends	on	run	time

epochA1Greg.
value	depends	on	run	time

epochUtcGreg.
value	depends	on	run	time

yearOfEpoch_YYY
value	depends	on	run	time

monthOfEpoch_MM
value	depends	on	run	time

dayOfEpoch_DD
value	depends	on	run	time

hourOfEpoch_HH
value	depends	on	run	time

minuteOfEpoch_MM
value	depends	on	run	time

secondsOfEpoch_MILSEC
value	depends	on	run	time

keplerianElementsAtEpoch_RAD[0]
value	depends	on	run	time

keplerianElementsAtEpoch_RAD[1]
value	depends	on	run	time



keplerianElementsAtEpoch_RAD[2]
value	depends	on	run	time

keplerianElementsAtEpoch_RAD[3]
value	depends	on	run	time

keplerianElementsAtEpoch_RAD[4]
value	depends	on	run	time

keplerianElementsAtEpoch_RAD[5]
value	depends	on	run	time

cartesianElementsAtEpoch_DULT[0]
value	depends	on	run	time

cartesianElementsAtEpoch_DULT[1]
value	depends	on	run	time

cartesianElementsAtEpoch_DULT[2]
value	depends	on	run	time

cartesianElementsAtEpoch_DULT[3]
value	depends	on	run	time

cartesianElementsAtEpoch_DULT[4]
value	depends	on	run	time

cartesianElementsAtEpoch_DULT[5]
value	depends	on	run	time

startTimeOfEphemeris_DUT
value	depends	on	run	time

endTimeOfEphemeris_DUT
value	depends	on	run	time



timeIntervalBetweenPoints_DUT
value	depends	on	run	time

dateOfInitiationOfEphemComp_YYYMMDD
value	depends	on	run	time

timeOfInitiationOfEphemComp_HHMMSS
value	depends	on	run	time

utcTimeAdjustment_SEC
0.000000

Pecession/Nutation	indicator
1

For	ephemeris	header	record	1,	there	are	some	required	fields	that	have	not	been
tabulated	in	GMAT's	Code	500	ephemeris	header	record	1.	These	fields	that
have	not	been	tabulated	in	header	record	1	are	listed	in	the	table	below.	0.0
indicates	"used"	and	1.0	means	"not	used".

Required	Fields Comments

Zonal	and	tesseral	harmonics	indicator
1.0

Lunar	gravitation	perturbation
indicator 1.0

Solar	radiation	perturbation	indicator
1.0

Solar	gravitation	perturbation
indicator 1.0

Atmospheric	drag	perturbation
indicator 1.0



Greenwich	hour	angle	at	epoch
1.0



Examples
This	example	shows	how	to	generate	a	simple	ephemeris	file.	Ephemeris	file	is
generated	for	two	days	of	propagation.	At	default	settings,	ephemeris	file	is
generated	at	each	integrator	step	and	in	CCSDS	file	format.	Ephemeris	data	is
sent	to	text	file	called	‘EphemerisFile2.eph’:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'EphemerisFile2.eph'

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

This	example	shows	how	an	ephemeris	file	is	generated	during	an	iterative
process	like	differential	correction	that	includes	a	discontinuous	event	like	an
impulsive	burn.	Ephemeris	data	is	sent	to	text	file	called	‘EphemerisFile3.eph’:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ImpulsiveBurn	TOI

Create	DifferentialCorrector	aDC

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'EphemerisFile3.eph'

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.Earth.Periapsis}

Target	aDC

	Vary	aDC(TOI.Element1	=	0.24,	{Perturbation	=	0.001,	Lower	=	0.0,	...

	Upper	=	3.14159,	MaxStep	=	0.5})

	Maneuver	TOI(aSat)

	Propagate	aProp(aSat)	{aSat.Earth.Apoapsis}



	Achieve	aDC(aSat.Earth.RMAG	=	42165)

EndTarget

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

This	example	shows	how	to	generate	a	simple	STK-TimePosVel	(i.e.	STK	.e)
ephemeris	file.	Ephemeris	file	is	generated	for	1	day	of	propagation,	then	a
simple	impulsive	maneuver	takes	place	and	spacecraft	propagates	for	another
day.	This	ephemeris	is	generated	at	raw	integrator	steps.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ImpulsiveBurn	IB

IB.Element1	=	0.5

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'EphemerisFile.e'

anEphmerisFile.FileFormat	=	STK-TimePosVel

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Maneuver	IB(aSat)

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}



ErrorModel
ErrorModel	—	Used	to	specify	measurement	noise	for	simulation	and
estimation,	and	to	apply	or	estimate	measurement	biases.



Description
An	ErrorModel	is	assigned	on	the	ErrorModels	field	of	an	instance	of
GroundStation	or	a	spacecraft-attached	Receiver	to	model	biases	and	noise,
and	optionally	to	estimate	biases	on	each	measurement	type	provided	by	the
ground	station	or	receiver.	An	error	model	must	be	specified	for	each	data	type
employed	by	each	tracking	station	or	receiver,	but	a	single	instance	of
ErrorModel	may	be	used	by	multiple	ground	stations	or	spacecraft	receivers.

An	error	model	is	only	assigned	to	a	receiver	if	GPS_PosVec	data	is	employed.
The	GPS_PosVec	observation	type	models	position	estimates	provided	by	an
on-board	GPS	receiver.	Since	this	type	of	data	is	not	derived	from	ground	station
measurement	modeling,	the	error	model	for	GPS_PosVec	data	is	specified	on
the	ErrorModels	field	of	a	Receiver	resource	instead.	The	receiver	must	be
attached	to	the	corresponding	Spacecraft	object.	Error	models	for	all	other
observation	types	should	be	specified	on	the	ErrorModels	field	of	the	relevant
ground	station	resources.	Error	models	cannot	be	assigned	on	receivers	attached
to	ground	stations.

The	ErrorModel	is	used	by	both	the	simulator	and	the	estimator.	For	a	data
simulation	run,	the	ErrorModel	specifies	the	measurement	type	and	noise
employed	when	generating	the	simulated	measurement.	A	bias	may	optionally
be	applied	to	the	simulated	observations.

For	an	estimation	run,	the	ErrorModel	specifies	the	observation	type,	presumed
observation	noise,	and	an	optional	bias	to	be	applied	to	the	observation.	An
observation	bias	may	also	be	estimated	by	adding	the	keyword	Bias	to	the
ErrorModel.SolveFors	list.	If	the	SolveFors	list	is	empty,	no	bias	will	be
estimated.	The	SolveFors	list	is	ignored	by	the	simulator.

The	ErrorModel	resource	does	not	currently	support	application	or	estimation
of	biases	for	the	GPS_PosVec	data	type.

See	Also	GroundStation,	Receiver



Fields

Field Description

Bias
The	constant	bias	associated	with	the	measurement.	For
simulations,	this	bias	is	added	to	the	measurement.	As
shown	below,	the	units	used	depend	upon	measurement
type,	ErrorModel.Type.

Data	Type Real

Allowed	Values Any	Real	number

Access set

Default	Value 0.0

Units See	Remarks	section

Interfaces script

BiasSigma
Standard	deviation	of	Bias.	This	field,	which	only	has	a
function	if	both	(1)
BatchEstimatorInv.UseInitialCovariance	=	true	and	(2)
Bias	is	a	solve-for	parameter,	is	used	to	constrain	the
estimated	value	of	Bias.	As	shown	below,	the	units	used
depend	upon	measurement	type,	ErrorModel.Type.	This
parameter	is	not	implemented	for	GPS_PosVec	data.



Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e+70

Units See	Remarks	section

Interfaces script

NoiseSigma
One	sigma	value	of	Gaussian	noise.	For	simulations,	if
Sim.AddNoise	=	true,	this	noise	is	added	to	the
measurements.	For	estimation,	this	value	is	used	to	as	part
of	the	batch	processing	algorithms	to	calculate	the
measurement	type	weighting.	As	shown	below,	the	units
used	depend	upon	measurement	type,	ErrorModel.Type.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 103



Units See	Remarks	section

Interfaces script

SolveFors
List	of	parameters	to	estimate.	This	parameter	is	not
implemented	for	GPS_PosVec	data.

Data	Type StringArray

Allowed	Values {}	or	{Bias}

Access set

Default	Value {}

Units N/A

Interfaces script

Type
Measurement	data	type.

Data	Type Enumeration

Allowed DSN_SeqRange,	DSN_TCP,	GPS_PosVec,



Values Range,	RangeRate

Access set

Default
Value

DSN_SeqRange

Units N/A

Interfaces script



Remarks

Units	for	Bias,	BiasSigma,	and	NoiseSigma

The	following	table	shows	the	units	to	be	used	for	Bias,	BiasSigma,	and
NoiseSigma	for	each	measurement	data	type	that	GMAT	supports.

GMAT	Measurement	Type Units

DSN_SeqRange Range	Units

DSN_TCP Hertz

GPS_PosVec Kilometers

Range Kilometers

RangeRate Kilometers/sec

Deprecated	Measurement	Type	Names

This	version	of	GMAT	deprecates	the	DSNRange/Range_RU	and
Doppler/Doppler_HZ	measurement	type	names.	These	have	been	replaced	by
the	DSN_SeqRange	and	DSN_TCP	types.	These	new	names	are	employed
identically	in	the	GMAT	Measurement	Data	(GMD)	data	file,	the
ErrorModel.Type	parameter,	and	the	TrackingFileSet.AddTrackingConfig
parameter.	Scripts	employing	the	deprecated	measurement	type	names	will	still
work	in	this	version	of	GMAT,	but	future	versions	will	remove	this	support.
Users	are	encouraged	to	update	their	scripts	to	use	the	new	names.

The	new	data	type	names	employ	the	same	name	in	the	GMD	file,	error	model,
and	tracking	file	set	tracking	configuration,	eliminating	the	need	for	a	mapping
between	the	names	employed	in	each	resource.	For	those	still	using	the
deprecated	data	type	names,	the	following	table	provides	a	guide.

Deprecated	GMD	File	and
TrackingFileSet.AddTrackingConfig

Measurement	Type	Name

Deprecated	ErrorModel
Measurement	Type	Name

DSNRange Range_RU



Doppler Doppler_HZ



Examples
This	example	shows	how	to	create	an	error	model	for	DSN	Sequential	Range
observations	and	illustrates	estimation	of	a	range	bias	parameter.

%			Create	an	ErrorModel

%			Measurement	noise	is	in	Range	Units

	

Create	ErrorModel	RangeModel;

		

RangeModel.Type							=	'DSN_SeqRange';

RangeModel.NoiseSigma	=	11.;

RangeModel.Bias							=	0.;

RangeModel.SolveFors		=	{Bias};

	

%			Assign	it	to	a	ground	station

	

Create	GroundStation	DSN;

	

DSN.ErrorModels	=	{RangeModel};

BeginMissionSequence;

This	example	shows	how	to	create	an	error	model	for	on-board	GPS
observations.

%			Create	an	ErrorModel

%			Measurement	noise	is	in	kilometers.	Bias	estimation	is	not	permitted.

	

Create	ErrorModel	PosVecModel;

		

PosVecModel.Type							=	'GPS_PosVec';

PosVecModel.NoiseSigma	=	0.010;

	

%			Assign	the	error	model	to	a	receiver	and	add	that	receiver	to	a	spacecraft.

	

Create	Antenna	GpsAntenna;

Create	Receiver	GpsReceiver;

GpsReceiver.Id													=	800;

GpsReceiver.PrimaryAntenna	=	GpsAntenna;

GpsReceiver.ErrorModels				=	{PosVecModel};

Create	Spacecraft	Sat;



Sat.AddHardware	=	{GpsReceiver,	GpsAntenna};

BeginMissionSequence;



FileInterface
FileInterface	—	An	interface	to	a	data	file



Description
The	FileInterface	resource	is	an	interface	to	a	data	file	that	can	be	used	to	load
mission	data,	like	Spacecraft	state	information	and	physical	properties.	Once	an
interface	is	established	to	a	file,	the	Set	command	can	be	used	to	load	the	data
and	apply	it	to	a	destination.

The	following	file	formats	are	currently	supported:

TVHF_ASCII:	ASCII	format	of	the	TCOPS	Vector	Hold	File	(TVHF),
defined	by	the	NASA	Goddard	Space	Flight	Center	Flight	Dynamics
Facility.	This	file	contains	spacecraft	state	and	physical	information	that	can
be	transferred	to	a	Spacecraft	resource.

See	Also:	Set



Fields

Field Description

Filename
Full	path	of	the	file	to	read.	Relative	paths	are	interpreted	as	relative
to	the	directory	containing	the	GMAT	executable.	If	the	path	is
omitted,	it	is	assumed	to	be	“./”.

Data	Type String

Allowed	Values Valid	file	path

Access set

Default	Value (None)

Units N/A

Interfaces GUI,	script

Format
Format	of	the	file	to	read.	Currently,	the	only	allowed	format	is
“TVHF_ASCII”.

Data	Type Enumerated	value

Allowed	Values TVHF_ASCII



Access set

Default	Value TVHF_ASCII

Units N/A

Interfaces GUI,	script



GUI

The	FileInterface	GUI	has	two	fields:	a	list	of	accepted	options	for	Format
(currently	only	TVHF_ASCII),	and	an	input	box	for	Filename.	Click	Browse	to
the	right	of	the	Filename	box	to	interactively	select	a	file.



Remarks
Each	file	format	supported	by	the	FileInterface	resource	exposes	a	set	of
keywords	that	can	be	used	to	extract	certain	data	elements.	These	keywords	can
be	used	in	the	Data	option	of	the	Set	command,	as	follows:

Set	destination	source	(Data	=	{keyword[,	keyword]})

If	the	'All'	keyword	is	used,	those	fields	with	a	checkmark	in	the	“All”	column
are	selected.

TVHF_ASCII

Keyword Source	field Description 'All'

CartesianState "CARTESIAN
COORDINATES"

Cartesian	state	elements
(X,	Y,	Z,	VX,	VY,	VZ)

✓

Cr "CSUBR" Coefficient	of	reflectivity ✓
Epoch "EPOCH	TIME

FOR

ELEMENTS"

Epoch	of	state	vector ✓

Limitations

The	following	limitations	apply	to	the	TVHF_ASCII	format:

Only	the	J2000	coordinate	system	is	supported.

Only	the	first	record	in	a	multiple-record	file	is	loaded.



Examples
Read	a	TVHF	file	and	use	it	to	configure	a	spacecraft.

Create	Spacecraft	aSat

Create	FileInterface	tvhf

tvhf.Filename	=	'statevec.txt'

tvhf.Format	=	'TVHF_ASCII'

BeginMissionSequence

Set	aSat	tvhf



FiniteBurn
FiniteBurn	—	A	finite	burn



Description
The	FiniteBurn	resource	is	used	when	continuous	propulsion	is	desired.
Impulsive	burns	happen	instantaneously	through	the	use	of	the	Maneuver
command,	while	finite	burns	occur	continuously	starting	at	the	BeginFiniteBurn
command	and	lasting	until	the	EndFiniteBurn	command	is	reached	in	the
mission	sequence.	In	order	to	apply	a	non-zero	Finite	Burn,	there	must	be	a
Propagate	command	between	the	BeginFiniteBurn	and	EndFiniteBurn
commands.

See	Also:	ChemicalTank,	ChemicalThruster,	Spacecraft,	BeginFiniteBurn,
EndFiniteBurn,	Calculation	Parameters



Fields

Field Description

Thrusters
The	Thruster	field	allows	the	selection	of	which
Thruster,	from	a	list	of	previously	created	thrusters,	to	use
when	applying	a	finite	burn.	Currently,	using	the	GUI,	you
can	only	select		one	Thruster	to	attach	to	a	FiniteBurn
resource.	Using	the	scripting	interface,	you	may	attach
multiple	thrusters	to	a	FiniteBurn	resource.	Using	the
scripting	interface,	you	may	attach	multiple	thrusters	to	a
FiniteBurn	resource.	In	a	script	command,	an	empty	list,
e.g.,	FiniteBurn1.Thruster={},	is	allowed	but	is	of
limited	utility	since	the	GUI	will	automatically	associate	a
ChemicalThruster,	if	one	has	been	created,	with	the
FiniteBurn.	This	field	cannot	be	modified	in	the	Mission
Sequence.

Data
Type

Reference	Array

Allowed
Values

A	list	of	Thrusters	created	by	user.	Can	be	a
list	of	ChemicalThrusters	or
ElectricThrusters	but	you	cannot	mix
chemical	and	electric	thrusters.

Access set

Default
Value

No	Default



Units N/A

Interfaces GUI,	script,	or	only	one

VectorFormat
Deprecated.	Allows	you	to	define	the	format	of	the	finite
burn	thrust	direction.	This	field	has	no	affect.	The	finite
burn	thrust	direction,	as	specified	in	the	Thruster	resource,
is	always	given	in	Cartesian	format.	Note:	You	can	use
GMAT	scripting	to	covert	from	other	representations	to
Cartesian	and	then	set	the	Cartesian	format.

Data	Type Enumeration

Allowed	Values Cartesian,	Spherical

Access set

Default	Value Cartesian

Units N/A

Interfaces script



GUI
The	FiniteBurn	dialog	box	allows	you	to	specify	which	thruster	to	use	for	the
finite	burn.	The	layout	of	the	FiniteBurn	dialog	box	is	shown	below.



Remarks

Configuring	a	FiniteBurn

To	perform	a	finite	burn,	the	FiniteBurn	resource	itself	and	a	number	of	related
resources	and	commands	must	be	properly	configured.	You	must	associate	a
specific	ChemicalThruster	hardware	resource	with	a	created	FiniteBurn.	You
must	associate	a	specific	ChemicalTank	hardware	resource	with	the	chosen
ChemicalThruster.	Finally,	you	must	attach	both	the	chosen	Thrusters	and
Tanks	to	the	desired	Spacecraft.	See	the	example	below	for	additional	details.

FiniteBurn	Using	Multiple	Thrusters

Using	the	GUI,	a	FiniteBurn	resource	must	be	associated	with	exactly	one
Thruster.

Using	the	scripting	interface,	one	can	assign	multiple	thrusters	to	a	single
FiniteBurn	resource.



Interactions

Field Description

Spacecraft
resource Must	be	created	in	order	to	apply	any	burn.

Thruster
resource As	discussed	in	the	Remarks,	every	FiniteBurn	resource

must	be	associated	with	at	least	one	ChemicalThruster	or
ElectricThruster.	Any	thruster	created	in	the	resource	tree
can	be	incorporated	into	a	FiniteBurn	but	thruster	types
cannot	be	mixed.

ChemicalTank
resource To	perform	a	finite	burn,	a	Tank	must	be	attached	to	the

Spacecraft.	(A	ChemicalTank	is	needed	to	provide
pressure	and	temperature	data	used	when	modeling	the
thrust	and	specific	impulse.	A	Tank	is	also	needed	if	you
want	to	model	mass	depletion.)

BeginFiniteBurn
and
EndFiniteBurn
command

After	a	FiniteBurn	is	created,	to	apply	it	in	the	mission
sequence,	a	BeginFiniteBurn	and	EndFiniteBurn
command	must	be	appended	to	the	mission	tree.

Propagate
command In	order	to	apply	a	non-zero	finite	burn,	there	must	be	a

Propagate	command	between	the	BeginFiniteBurn	and
EndFiniteBurn	commands.

Reporting	FiniteBurn	Parameters

GMAT	now	supports	finite	burn	parameters	that	report	the	thrust	component	data
for	a	finite	burn.	The	parameters	include	total	thrust	from	all	thrusters	in	the



three	coordinate	directions,	the	total	acceleration	from	all	thrusters	in	the	three
coordinate	directions,	and	the	total	mass	flow	rate	from	all	thrusters.	Currently,
by	default	the	total	thrust	and	total	acceleration	parameters	in	the	three
coordinate	directions	are	reported	only	in	the	J2000	system	and	do	not	support
any	other	coordinate	system	dependency.	Furthermore,	you	can	now	also	report
out	any	thruster's	individual	parameters	such	as	thrust	magnitude,	Isp	and	mass
flow	rate.	See	the	Calculation	Parameters	reference	for	definitions	of	these	finite
burn	and	thruster	specific	parameters.	Also	see	the	Examples	section	for	an
example	that	shows	how	to	report	the	finite	burn	and	individual	thruster	specific
parameters	to	a	report	file.



Examples
Configure	a	chemical	finite	burn.	Create	a	default	Spacecraft	and
ChemicalTank	Resource;	Create	a	default	ChemicalThruster	that	allows	for
fuel	depletion	from	the	default	ChemicalTank;	Attach	ChemicalTank	and
ChemicalThruster	to	the	Spacecraft;	Create	default	ForceModel	and
Propagator;	Create	a	Finite	Burn	that	uses	the	default	thruster	and	apply	a	30
minute	finite	burn	to	the	spacecraft.

%	Create	a	default	Spacecraft	and	ChemicalTank	Resource

Create	Spacecraft	DefaultSC

Create	ChemicalTank	FuelTank1

%	Create	a	default	ChemicalThruster.		Allow	for	fuel	depletion	from	

%	the	default	ChemicalTank.

Create	ChemicalThruster	Thruster1

Thruster1.DecrementMass	=	true

Thruster1.Tank	=	{FuelTank1}

%		Attach	ChemicalTank	and	ChemicalThruster	to	the	spacecraft

DefaultSC.Thrusters	=	{Thruster1}

DefaultSC.Tanks	=	{FuelTank1}

%		Create	default	ForceModel	and	Propagator

Create	ForceModel	DefaultProp_ForceModel

Create	Propagator	DefaultProp

DefaultProp.FM	=	DefaultProp_ForceModel

%		Create	a	Finite	Burn	that	uses	the	default	thruster

Create	FiniteBurn	FiniteBurn1

FiniteBurn1.Thrusters	=	{Thruster1}

BeginMissionSequence

%		Implement	30	minute	finite	burn

BeginFiniteBurn	FiniteBurn1(DefaultSC)

Propagate	DefaultProp(DefaultSC)	{DefaultSC.ElapsedSecs	=	1800}

EndFiniteBurn	FiniteBurn1(DefaultSC)		

This	example	shows	how	to	report	finite	burn	parameters	such	as	total
acceleration	(from	all	thrusters),	total	thrust	(from	all	thrusters)	in	the	three
coordinate	directions.	We	also	report	total	mass	flow	rate	from	all	thrusters.



Additionally,	individual	thruster	specific	parameters	such	as	thruster	mass	flow
rate,	thrust	magnitude	and	thruster	Isp	are	also	reported.	Note	that	in	the
generated	report,	all	finite	burn	and	thruster	parameters	are	reported	as	zeros
when	thrusters	are	not	turned	on.

Create	Spacecraft	aSat

Create	ChemicalTank	aFuelTank

Create	ChemicalThruster	aThruster

aThruster.DecrementMass	=	true

aThruster.Tank	=	{aFuelTank}

aThruster.C1	=	1000		%	Constant	Thrust

aThruster.K1	=	300	%	Constant	Isp

aSat.Thrusters	=	{aThruster}

aSat.Tanks	=	{aFuelTank}

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	FiniteBurn	aFB

aFB.Thrusters	=	{aThruster}

Create	ReportFile	rf

rf.Add	=	{aSat.UTCGregorian,	aFB.TotalAcceleration1,	aFB.TotalAcceleration2,	...

aFB.TotalAcceleration3,	aFB.TotalMassFlowRate,	aFB.TotalThrust1,	...

aFB.TotalThrust2,	aFB.TotalThrust3,	aSat.aThruster.MassFlowRate,	...

aSat.aThruster.ThrustMagnitude,	aSat.aThruster.Isp}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000}

%	Do	a	Finite-Burn	for	1800	Secs

BeginFiniteBurn	aFB(aSat)

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1800}

EndFiniteBurn	aFB(aSat)

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000}



FminconOptimizer
FminconOptimizer	—	The	Sequential	Quadratic	Programming	(SQP)	optimizer,
fmincon



Description
fmincon	is	a	Nonlinear	Programming	solver	provided	in	MATLAB's
Optimization	Toolbox.	fmincon	performs	nonlinear	constrained	optimization
and	supports	linear	and	nonlinear	constraints.	To	use	this	solver,	you	must
configure	the	solver	options	including	convergence	criteria,	maximum	iterations,
and	how	the	gradients	will	be	calculated.	In	the	mission	sequence,	you
implement	an	optimizer	such	as	fmincon	by	using	an	Optimize/EndOptimize
sequence.	Within	this	sequence,	you	define	optimization	variables	by	using	the
Vary	command,	and	define	cost	and	constraints	by	using	the	Minimize	and
NonlinearConstraint	commands	respectively.

This	resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	VF13ad,Optimize,Vary,	NonlinearConstraint,	Minimize



Fields

Field Description

DiffMaxChange
Upper	limit	on	the	perturbation	used	in	MATLAB's
finite	differencing	algorithm.	For	fmincon,	you	don't
specify	a	single	perturbation	value,	but	rather	give
MATLAB	a	range,	and	it	uses	an	adaptive	algorithm	that
attempts	to	find	the	optimal	perturbation.

Data	Type String

Allowed	Values Real	Number	>	0

Access Set

Default	Value 0.1

Units None

Interfaces GUI,	script

DiffMinChange
Lower	limit	on	the	perturbation	used	in	MATLAB's
finite	differencing	algorithm.	For	fmincon,	you	don't
specify	a	single	perturbation	value,	but	rather	give
MATLAB	a	range,	and	it	uses	an	adaptive	algorithm	that
attempts	to	find	the	optimal	perturbation.



Data	Type String

Allowed	Values Real	Number	>	0

Access Set

Default	Value 1e-8

Units None

Interfaces GUI,	script

MaxFunEvals
Specifies	the	maximum	number	of	cost	function
evaluations	used	in	an	attempt	to	find	an	optimal
solution.	This	is	equivalent	to	setting	the	maximum
number	of	passes	through	an	optimization	loop	in	a
GMAT	script.	If	a	solution	is	not	found	before	the
maximum	function	evaluations,	fmincon	outputs	an
ExitFlag	of	zero,	and	GMAT	continues.

Data	Type String

Allowed	Values Integer	>	0

Access Set

Default	Value 1000



Units None

Interfaces GUI,	script

MaximumIterations
Specifies	the	maximum	allowable	number	of	nominal
passes	through	the	optimizer.		Note	that	this	is	not	the
same	as	the	number	of	optimizer	iterations	that	is	shown
for	the	VF13ad	optimzer.

Data	Type String

Allowed	Values Integer	>	0

Access Set

Default	Value 25

Units None

Interfaces GUI,	script

ReportFile
Contains	the	path	and	file	name	of	the	report	file.

Data	Type String



Allowed	Values Any	user-defined	file	name

Access Set

Default	Value FminconOptimizerSQP1.data

Units None

Interfaces GUI,	script

ReportStyle
Determines	the	amount	and	type	of	data	written	to	the
message	window	and	to	the	report	specified	by	field
ReportFile	for	each	iteration	of	the	solver	(when
ShowProgress	is	true).		Currently,	the	Normal,	Debug,
and	Concise	options	contain	the	same	information:	the
values	for	the	control	variables,	the	constraints,	and	the
objective	function.		In	addition	to	this	information,	the
Verbose	option	also	contains	values	of	the	optimizer-
scaled	control	variables.	

Data	Type String

Allowed	Values Normal,	Concise,	Verbose,	Debug

Access Set

Default	Value Normal



Units None

Interfaces GUI,	script

ShowProgress
Determines	whether	data	pertaining	to	iterations	of	the
solver	is	both	displayed	in	the	message	window	and
written	to	the	report	specified	by	the	ReportFile	field.
When	ShowProgress	is	true,	the	amount	of	information
contained	in	the	message	window	and	written	in	the
report	is	controlled	by	the	ReportStyle	field.

Data	Type Boolean

Allowed	Values true,	false

Access Set

Default	Value true

Units None

Interfaces GUI,	script

TolCon
Specifies	the	convergence	tolerance	on	the	constraint
functions.



Data	Type String

Allowed	Values Real	Number	>	0

Access Set

Default	Value 1e-4

Units None

Interfaces GUI,	script

TolFun
Specifies	the	convergence	tolerance	on	the	cost	function
value.

Data	Type String

Allowed	Values Real	Number	>	0

Access Set

Default	Value 1e-4

Units None



Interfaces GUI,	script

TolX
Specifies	the	termination	tolerance	on	the	vector	of
independent	variables,	and	is	used	only	if	the	user	sets	a
value	for	this	field.	

Data	Type String

Allowed	Values Real	Number	>	0

Access Set

Default	Value 1e-4

Units None

Interfaces GUI,	script



GUI
The	FminconOptimizer	dialog	box	allows	you	to	specify	properties	of	a
FminconOptimizer	resource	such	as	maximum	iterations,	maximum	function
evaluations,	control	variable	termination	tolerance,	constraint	tolerance,	cost
function	tolerance,	finite	difference	algorithm	parameters,	and	choice	of
reporting	options.

To	create	a	FminconOptimizer	resource,	navigate	to	the	Resources	tree,	expand
the	Solvers	folder,	highlight	and	then	right-click	on	the	Optimizers	sub-folder,
point	to	Add	and	then	select	SQP	(fmincon).	This	will	create	a	new
FminconOptimizer	resource,	SQP1.	Double-click	on	SQP1	to	bring	up	the
FminconOptimizer	dialog	box	shown	below.



Remarks

fmincon	Optimizer	Availability

This	optimizer	is	only	available	if	you	have	access	to	both	MATLAB	and
MATLAB's	Optimization	toolbox.	GMAT	contains	an	interface	to	the	fmincon
optimizer	and	it	will	appear	to	you	that	fmincon	is	a	built	in	optimizer	in	GMAT.
Field	names	for	this	resource	have	been	copied	from	those	used	in	MATLAB’S
optimset	function	for	consistency	with	MATLAB	in	contrast	with	other	solvers
in	GMAT.

GMAT	Stop	Button	Does	Not	work,	in	Some	Situations,
When	Using	Fmincon

Sometimes,	when	developing	GMAT	scripts,	you	may	inadvertently	create	a
situation	where	GMAT	goes	into	an	inifinite	propagation	loop.	The	usual	remedy
for	this	situation	is	to	apply	the	GMAT	Stop	button.	Currently,	however,	if	the
infinite	loop	occurs	within	an	Optimize	sequence	using	fmincon,	there	is	no	way
to	stop	GMAT	and	you	have	to	shut	GMAT	down.	Fortunately,	there	are	some
procedures	you	can	employ	to	avoid	this	situation.	You	should	use	multiple
stopping	conditions	so	that	a	long	propagation	cannot	occur.	For	example,	if
fmincon	controls	variable,	myVar,	and	we	know	myVar	should	never	be	more
than	2,	then	do	this.

Propagate	myProp(mySat){mySat.ElapsedDays	=	myVar,	mySat.ElapsedDays	=	2}					

Resource	and	Command	Interactions

The	FminconOptimizer	resource	can	only	be	used	in	the	context	of
optimization-type	commands.	Please	see	the	documentation	for	Optimize,	Vary,
NonlinearConstraint,	and	Minimize	for	more	information	and	worked
examples.



Examples
Create	a	FminconOptimizer	resource	named	SQP1.

Create	FminconOptimizer	SQP1

SQP1.ShowProgress	=	true

SQP1.ReportStyle	=	Normal

SQP1.ReportFile	=	'FminconOptimizerSQP1.data'

SQP1.MaximumIterations	=	25

SQP1.DiffMaxChange	=	'0.1000'

SQP1.DiffMinChange	=	'1.0000e-08'

SQP1.MaxFunEvals	=	'1000'

SQP1.TolX	=	'1.0000e-04'

SQP1.TolFun	=	'1.0000e-04'

SQP1.TolCon	=	'1.0000e-04'											

For	an	example	of	how	a	FminconOptimizer	resource	can	be	used	within	an
optimize	sequence,	see	the	Optimize	command	examples.



ForceModel
ForceModel	—	Used	to	specify	force	modeling	options	such	as	gravity,	drag,
solar	radiation	pressure,	and	non-central	bodies	for	propagation.



Description
For	details	on	the	ForceModel	resource,	see	the	section	called	“Force	Model”	in
the	Propagator	resource.



Formation
Formation	—	A	collection	of	spacecraft.



Description
A	Formation	resource	allows	you	to	combine	spacecraft	in	a	“container”	object
and	then	GMAT’s	propagation	subsystem	will	model	the	collection	of	spacecraft
as	a	coupled	dynamic	system.	You	can	only	propagate	Formation	resources
using	numerical-integrator	type	propagators.	This	resource	cannot	be	modified	in
the	Mission	Sequence.

See	Also:	Propagate,	Color



Fields

Field Description

Add
Adds	a	list	of	Spacecraft	to	the	Formation.	The	list	cannot	be
empty.

Data	Type Resource	array

Allowed	Values array	of	spacecraft

Access set

Default	Value empty	list

Units N/A

Interfaces GUI,	script



GUI
To	create	a	simple	Formation	and	configure	its	Spacecraft,	in	the	Resource
Tree:

1.	 Right-click	the	Spacecraft	folder	and	select	Add	Spacecraft.
2.	 Right	click	the	Formations	folder	and	select	Add	Formation.
3.	 Double-click	Formation1	to	open	its	dialog	box.
4.	 Click	the	right-arrow	button	twice	to	add	DefaultSC	and	Spacecraft1	to

Formation1.
5.	 Click	Ok.

Note

A	Spacecraft	can	only	be	added	to	one	Formation.



Remarks
A	Formation	is	a	container	object	that	allows	you	to	model	a	group	of
Spacecraft	as	a	coupled	system.	You	can	add	Spacecraft	to	a	Formation	using
the	Add	field	as	shown	in	the	script	examples	below	or	in	the	GUI	example
above.	The	primary	reasons	to	use	a	Formation	Resource	are	(1)	to	simplify	the
propagation	of	multiple	spacecraft	and	(2)	for	performance	reasons.	You	can
only	add	a	spacecraft	to	a	one	formation,	and	you	cannot	add	a	formation	to	a
formation.	GMAT’s	propagation	subsystem	models	Formations	as	a	coupled
dynamic	system.	Once	spacecraft	have	been	added	to	a	Formation,	you	can
easily	propagate	all	of	the	spacecraft	by	simply	including	the	formation	in	the
Propagate	command	statement	like	this:

Propagate	aPropagator(aFormation)	{aSat1.ElapsedSecs	=	12000.0}

You	can	only	propagate	Formation	resources	using	numerical-integrator	type
propagators.	GMAT	does	not	support	propagation	of	the	orbit	state	transition
matrix	when	propagating	formations.

When	propagating	a	Formation,	all	spacecraft	in	the	Formation	must	have
equivalent	epochs.	GMAT	will	allow	you	to	separately	propagate	a	Spacecraft
that	has	been	added	to	a	Formation,	like	this:

aFormation.Add	=	{aSat1,	aSat2}

Propagate	aPropagator(aSat1)	{aSat1.ElapsedSecs	=	12000.0}

However,	when	a	Formation	is	propagated,	if	the	epochs	of	all	Spacecraft	in
the	Formation	are	not	equivalent	to	a	tolerance	of	a	few	microseconds,	GMAT
will	throw	an	error	and	execution	will	stop.

Setting	Colors	On	Spacecrafts	In	Formation	Resource

If	you	want	to	set	unique	colors	on	spacecraft	trajectories	that	are	nested	in	the
Formation	resource,	then	change	colors	through	either	the	Spacecraft	resource
or	the	Propagate	command.	See	the	Color	documentation	for	discussion	and
examples	on	how	to	set	unique	colors	on	Spacecraft	resource	and	Propagate
command.



Examples
Create	two	Spacecraft,	add	them	to	a	Formation,	and	propagate	the
Formation.

Create	Spacecraft	aSat1	aSat2

Create	Formation	aFormation

aFormation.Add	=	{aSat1,	aSat2}

Create	Propagator	aPropagator

BeginMissionSequence

Propagate	aPropagator(aFormation)	{aSat1.ElapsedSecs	=	12000.0}



ChemicalTank
ChemicalTank	—	Model	of	a	chemical	fuel	tank



Description
A	ChemicalTank	is	a	thermodynamic	model	of	a	tank	and	is	required	for	finite
burn	modeling	or	for	impulsive	burns	that	use	mass	depletion.	The
thermodynamic	properties	of	the	tank	are	modeled	using	Boyle’s	law	and
assume	that	there	is	no	temperature	change	in	the	tank	as	fuel	is	depleted.	To	use
a	ChemicalTank,	you	must	first	create	the	tank,	and	then	attach	it	to	the	desired
Spacecraft	and	associate	it	with	a	ChemicalThruster	as	shown	in	the	example
below.

See	Also	ImpulsiveBurn,ChemicalThruster



Fields

Field Description

AllowNegativeFuelMass
This	field	allows	the	ChemicalTank	to	have
negative	fuel	mass	which	can	be	useful	in
optimization	and	targeting	sequences	before
convergence	has	occurred.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value false

Units N/A

Interfaces GUI,	script

FuelDensity
The	density	of	the	fuel.

Data	Type Real



Allowed	Values Real	>	0

Access set,	get

Default	Value 1260

Units kg/m^3

Interfaces GUI,	script

FuelMass
The	mass	of	fuel	in	the	tank.

Data	Type Real

Allowed	Values Real	>	0

Access set,	get

Default	Value 756

Units kg

Interfaces GUI,	script

Pressure



The	pressure	in	the	tank.

Data	Type Real

Allowed	Values Real	>	0

Access set,	get

Default	Value 1500

Units kPa

Interfaces GUI,	script

PressureModel
The	pressure	model	describes	how	pressure	in	the
ChemicalTank	changes	as	fuel	is	depleted.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Enumeration

Allowed	Values PressureRegulated,	BlowDown

Access set

Default	Value PressureRegulated



Units N/A

Interfaces GUI,	script

RefTemperature
The	temperature	of	the	tank	when	fuel	was	loaded.

Data	Type Real

Allowed	Values Real	>	-273.15	and	|Real|	>	0.01

Access set,	get

Default	Value 20

Units C

Interfaces GUI,	script

Temperature
The	temperature	of	the	fuel	and	ullage	in	the	tank.
GMAT	currently	assumes	ullage	and	fuel	are	always
at	the	same	temperature.

Data	Type Real



Allowed	Values Real	>	-273.15

Access set,	get

Default	Value 20

Units C

Interfaces GUI,	script

Volume
The	volume	of	the	tank.	GMAT	checks	to	ensure
that	the	input	volume	of	the	tank	is	larger	than	the
calculated	volume	of	fuel	loaded	in	the	tank	and
throws	an	exception	in	the	case	that	the	calculated
fuel	volume	is	larger	than	the	input	tank	volume.

Data
Type

Real

Allowed
Values

Real	>	0	such	that	calculated	fuel
volume	is	<	input	tank	Volume.

Access set,	get

Default
Value

0.75



Units m^3

Interfaces GUI,	script



GUI
The	ChemicalTank	dialog	box	allows	you	to	specify	properties	of	a	fuel	tank
including	fuel	mass,	density,	and	temperature	as	well	as	tank	pressure	and
volume.	The	layout	of	the	ChemicalTank	dialog	box	is	shown	below.

The	ChemicalThruster	resource	is	closely	related	to	the	ChemicalTank
resource	and	thus,	we	also	discuss	it	here.	The	ChemicalThruster	dialog	box
allows	you	to	specify	properties	of	a	thruster	including	the	coordinate	system	of
the	Thrust	acceleration	direction	vector,	the	thrust	magnitude	and	Isp.	The	layout
of	the	ChemicalThruster	dialog	box	is	shown	below.



When	performing	a	finite	burn,	you	will	typically	want	to	model	fuel	depletion.
To	do	this,	select	the	Decrement	Mass	button	and	then	select	the	previously
created	ChemicalTank	as	shown	below.



Thus	far,	we	have	created	both	a	ChemicalTank	and	a	ChemicalThruster,	and
we	have	associated	a	ChemicalTank	with	our	ChemicalThruster.	We	are	not
done	yet.	We	must	tell	GMAT	that	we	want	to	attach	both	the	ChemicalTank
and	the	ChemicalThruster	to	a	particular	spacecraft.	To	do	this,	double	click	on
the	desired	spacecraft	under	the	Spacecraft	resource	to	bring	up	the	associated
GUI	panel.	Then	click	on	the	Tanks	tab	to	bring	up	the	following	GUI	display.



Next,	select	the	desired	ChemicalTank	and	use	the	right	arrow	button	to	attach
the	ChemicalTank	to	the	spacecraft.	Then,	click	the	Apply	button	as	shown
below.



Similarly,	to	attach	a	ChemicalThruster	to	a	spacecraft,	double	click	on	the
desired	spacecraft	under	the	Spacecraft	resource	and	then	select	the	Actuators
tab.	Then	select	the	desired	thruster	and	use	the	right	arrow	to	attach	the	thruster
to	the	spacecraft.	Finally,	click	the	Apply	button	as	shown	below.





Remarks

Use	of	ChemicalTank	Resource	in	Conjunction	with
Maneuvers

A	ChemicalTank	is	used	in	conjunction	with	both	impulsive	and	finite
maneuvers.	To	implement	an	impulsive	maneuver,	one	must	first	create	an
ImpulsiveBurn	resource	and	(optionally)	associate	a	ChemicalTank	with	it.
The	actual	impulsive	maneuver	is	implemented	using	the	Maneuver	command.
See	the	Maneuver	command	documentation	for	worked	examples	on	how	the
ChemicalTank	resource	is	used	in	conjunction	with	impulsive	maneuvers.

To	implement	a	finite	maneuver,	you	must	first	create	both	a	ChemicalThruster
and	a	FiniteBurn	resource.	You	must	also	associate	a	ChemicalTank	with	the
ChemicalThruster	resource	and	you	must	associate	a	Thruster	with	the
FiniteBurn	resource.	The	actual	finite	maneuver	is	implemented	using	the
BeginFiniteBurn/EndFiniteBurn	commands.	See	the
BeginFiniteBurn/EndFiniteBurn	command	documentation	for	worked
examples	on	how	the	ChemicalTank	resource	is	used	in	conjunction	with	finite
maneuvers.

Behavior	When	Configuring	Tank	and	Attached	Tank
Properties

Create	a	default	ChemicalTank	and	attach	it	to	a	Spacecraft	and
ChemicalThruster.

%		Create	the	ChemicalTank	Resource

Create	ChemicalTank	aTank

aTank.AllowNegativeFuelMass	=	false

aTank.FuelMass	=	756

aTank.Pressure	=	1500

aTank.Temperature	=	20

aTank.RefTemperature	=	20

aTank.Volume	=	0.75

aTank.FuelDensity	=	1260

aTank.PressureModel	=	PressureRegulated

%		Create	a	ChemicalThruster	and	assign	it	a	ChemicalTank

Create	ChemicalThruster	aThruster



aThruster.Tank	=	{aTank}

%		Add	the	ChemicalTank	and	ChemicalThruster	to	a	Spacecraft

Create	Spacecraft	aSpacecraft

aSpacecraft.Tanks	=	{aTank}

aSpacecraft.Thrusters	=	{aThruster}				

As	exhibited	below,	there	are	some	subtleties	associated	with	setting	and	getting
parent	vs.	cloned	resources.	In	the	example	above,	aTank	is	the	parent
ChemicalTank	resource	and	the	field	aSpacecraft.Tanks	is	populated	with	a
cloned	copy	of	aTank.

Create	a	second	spacecraft	and	attach	a	fuel	tank	using	the	same	procedure	used
in	the	previous	example.	Set	the	FuelMass	in	the	parent	resource,	aTank,	to	900
kg.

%		Add	the	ChemicalTank	and	ChemicalThruster	to	a	second	Spacecraft

Create	Spacecraft	bSpacecraft

bSpacecraft.Tanks	=	{aTank}

bSpacecraft.Thrusters	=	{aThruster}

aTank.FuelMass	=	900				%Can	be	performed	in	both	resource	and	

																								%command	modes

Note	that,	in	the	example	above,	setting	the	value	of	the	parent	resource,	aTank,
changes	the	fuel	mass	value	in	both	cloned	fuel	tank	resources.	More
specifically,	the	value	of	both	aSpacecraft.aTank.FuelMass	and
bSpacecraft.aTank.FuelMass	are	both	now	equal	to	the	new	value	of	900	kg.
We	note	that	the	assignment	command	for	the	parent	resource,	aTank.FuelMass,
can	be	performed	in	both	resource	and	command	modes.

To	change	the	value	of	the	fuel	mass	in	only	the	first	created	spacecraft,
aSpacecraft,	we	do	the	following.

%		Create	the	Fuel	Tank	Resource

aTank.FuelMass	=	756			%Fuel	tank	mass	in	both	s/c	set	back	to	default

aSpacecraft.aTank.FuelMass	=	1000	%Can	only	be	performed	in	command	mode.

As	a	result	of	the	commands	in	the	previous	example,	the	value	of
aSpacecraft.aTank.FuelMass	is	1000	kg	and	the	value	of
bSpacecraft.aTank.FuelMass	is	756	kg.	We	note	that	the	assignment	command
for	the	cloned	resource,	aSpacecraft.aTank.FuelMass,	can	only	be	performed
in	command	mode.



Caution:	Value	of	AllowNegativeFuelMass	Flag	Can	Affect	Iterative
Processes

By	default,	GMAT	will	not	allow	the	fuel	mass	to	be	negative.	However,
occasionally	in	iterative	processes	such	as	targeting,	a	solver	will	try	values	of	a
maneuver	parameter	that	result	in	total	fuel	depletion.	Using	the	default	tank
settings,	this	will	throw	an	exception	stopping	the	run	unless	you	set	the
AllowNegativeFuelMass	flag	to	true.	GMAT	will	not	allow	the	the	total
spacecraft	mass	to	be	negative.	If	DryMass	+	FuelMass	is	negative	GMAT	will
throw	an	exception	and	stop.



Examples
Create	a	default	ChemicalTank	and	attach	it	to	a	Spacecraft	and
ChemicalThruster.

%		Create	the	Fuel	Tank	Resource

Create	ChemicalTank	aTank

aTank.AllowNegativeFuelMass	=	false

aTank.FuelMass	=	756

aTank.Pressure	=	1500

aTank.Temperature	=	20

aTank.RefTemperature	=	20

aTank.Volume	=	0.75

aTank.FuelDensity	=	1260

aTank.PressureModel	=	PressureRegulated

%		Create	a	ChemicalThruster	and	assign	it	a	ChemicalTank

Create	ChemicalThruster	aThruster

aThruster.Tank	=	{aTank}

%		Add	the	ChemicalTank	and	ChemicalThruster	to	a	Spacecraft

Create	Spacecraft	aSpacecraft

aSpacecraft.Tanks	=	{aTank}

aSpacecraft.Thrusters	=	{aThruster}

BeginMissionSequence				



GMATFunction
GMATFunction	—	Declaration	of	a	GMAT	function



Description
The	GmatFunction	resource	declares	a	new	GMAT	function	or	can	be	used	to
load-in	a	pre-existing	GMAT	function.	This	function	can	be	called	in	the	Mission
Sequence	through	GMAT's	CallGmatFunction	command.	See	the
CallGmatFunction	reference	for	details.

Through	this	GMAT	function,	data	can	be	passed	in	the	function	as	input	and
received	as	output.	Data	that	is	passed	into	the	function	as	input	or	received	from
the	function	as	output	can	also	be	declared	as	global.	See	the	Global	reference
for	more	details.	See	also	the	Remarks	and	Examples	sections	for	detailed
discussion	on	GMAT	functions	and	how	to	use	them.

See	Also:	CallGmatFunction,	Global



Fields

Field Description

FunctionPath
Allows	the	user	to	define	a	valid	function	path.	In	the	GUI,	the
FunctionPath	field	is	activated	after	editing	the	function	and
then	clicking	on	the	function's	Save	As	button.	The	path	of	the
function	can	be	defined	as	either	absolute	or	relative.

Data
Type

String

Allowed
Values

Valid	file	path.	The	path	can	be	either	absolute	or
relative.	In	the	Script	mode,	if	this	field	is	not	used
at	all,	then	default	location	of	functions	is	GMAT's
...\userfunctions\gmat\	directory

Access set

Default
Value

User-defined

Units N/A

Interfaces GUI,	script



GUI
In	the	GUI,	a	new	GmatFunction	resource	is	created	as	follows:

1.	 In	the	Resources	Tree,	right	click	on	the	Functions	folder,	select	Add	->
GMAT	Function	->	New

2.	 In	the	New	GMAT	function	dialog	box,	type	the	desired	name	of	your
function.

The	GmatFunction	resource's	GUI	window	is	very	simple.	When	a	new	GMAT
function	is	created	through	the	GUI,	the	FunctionPath	field	is	defined	by	first
editing	the	function	and	then	clicking	on	the	Save	As	button.	This	lets	you
graphically	define	the	path.





Remarks

Input	and	Output	Arguments

Arguments	can	be	passed	into	a	GMAT	function	as	input	and	returned	from	a
GMAT	function	as	output.	You	can	pass	GMAT	objects	as	input	to	a	function
and	receive	entire	objects	as	output	from	the	function.	If	a	given	GMAT	object	is
not	declared	as	global	in	both	the	main	script	and	in	the	function,	then	all	objects
that	are	passed	into	or	received	as	output	from	the	function	are	considered	to	be
local	to	that	function	and	the	main	script.

In	GMAT,	you	can	use	CallGmatFunction	command	to	pass	GMAT	objects	as
input	arguments	and	receive	objects	as	output	from	the	function.	In	general,	any
objects	in	GMAT's	Resources	tree	can	be	passed	as	input	to	the	function.	Most
common	objects	that	a	user	is	likely	to	pass	as	input	to	the	function	are	objects
that	are	related	to	propagating	a	spacecraft,	performing	differential	correction
(DC)	in	a	targeter,	implementing	optimization	in	an	optimizer	loop,	user-defined
variables/arrays/strings	or	subscribers	that	are	used	to	draw	or	report	parameters.
Most	common	objects	that	are	likely	to	be	passed	as	output	arguments	from	the
function	maybe	a	Spacecraft	resource	or	user-defined	objects	such	as	Variables,
Arrays	or	Strings.

Below	is	a	list	of	allowed	objects	that	can	be	passed	as	input	and	output	to	and
from	the	function.	Also	see	Examples	section	that	show	two	distinct	methods	in
two	separate	examples	of	how	to	pass	local	objects	as	inputs	to	the	function,
perform	an	operation	inside	the	function,	then	receive	local	objects	as	outputs
from	the	function.

The	input	arguments	can	be	any	of	the	following	types:

Any	resource	objects	(e.g.	Spacecraft,	Propagator,	DC,	Optimizers,
Impulsive	or	FiniteBurns)

resource	parameter	of	real	number	type	(e.g.	Spacecraft.X)

resource	parameter	of	string	type	(e.g.	Spacecraft.UTCGregorian)

Array,	String,	or	Variable	resource



The	output	arguments	can	be	any	of	the	following	types:

Resource	object	like	Spacecraft

resource	parameter	of	real	number	type	(e.g.	Spacecraft.X)

resource	parameter	of	string	type	(e.g.	Spacecraft.UTCGregorian)

Array,	String,	or	Variable	resource

Global	Spacecraft,	Subscribers	and	Other	Objects

In	GMAT,	objects	can	be	declared	as	global	by	using	the	Global	command	in	the
Mission	tree.	All	default	objects	present	in	GMAT's	Resources	tree	or	any	new
user-defined	resources	can	be	declared	as	global.	Currently	any	default	or	new
user-defined	coordinate	systems,	SolarSystemBarycenter,	SolarSystem,
default	or	new	user-defined	propagators	are	automatic	global	objects	and	not
needed	to	be	specifically	declared	as	global	via	the	Global	command.

Often	times,	there	will	be	cases	when	you	will	propagate	a	spacecraft	both	in	the
main	script	and	from	inside	the	GMAT	function.	Additionally	users	may	want	to
report	and/or	plot	spacecraft's	trajectory,	parameters,	variables,	arrays	and	strings
to	same	subscribers	both	from	the	main	script	and/or	solely	from	inside	the
function.	If	you	want	to	report	and	plot	continuous	set	of	data	to	any	of	the	five
subscribers	(i.e.	OrbitView,	GroundTrackPlot,	XYPlot,	ReportFile,
EphemerisFile),	then	always	declare	your	Spacecraft	object	and	subscriber
objects	as	global	both	in	the	main	script	and	inside	the	function.	Abiding	by	this
rule	draws	plots,	reports	and	ephemeris	files	correctly	and	flow	of	data	will	be
reported	continuously	to	all	the	subscribers.

In	general,	a	good	scripting	practice	is	that	objects	that	have	been	declared
global	don't	need	to	be	sent	as	input	or	output	arguments	to	and	from	the
function.	For	example,	if	Spacecraft,	all	subscriber	objects	or	objects	that	are
used	to	perform	propagation,	targeting	or	optimization	have	already	been
declared	global,	then	you	don't	to	be	redundant	and	send	those	global	objects
again	as	input	or	receive	them	as	output	from	the	function.	Having	said	that,
GMAT	does	allow	globally	declared	objects	such	as	Spacecraft,	global
variables/arrays/strings	to	be	passed	as	input/output	argument	to	and	from	the
function.	Globally	declared	objects	such	as	spacecraft,	variables/arrays/strings



can	be	plotted	or	reported	interchangeably	both	from	the	main	script	and	inside
the	function	to	globally	declared	subscribers.

See	Examples	section	that	shows	three	examples	of	how	to	declare	spacecraft,
all	five	subscribers	and	variables/arrays	as	global	in	both	the	main	script	and
inside	the	function.	As	you	run	the	examples,	notice	that	the	flow	of	data
reported	to	all	five	subscribers	is	continuous.

Using	GMAT	Functions	in	an	Assignment	Command

GMAT	allows	you	to	use	simple	GMAT	functions	in	the	main	script	in	an
assignment	command	mode.	Below	example	snippet	shows	how	to	use	simple
GMAT	functions	in	mathematical	statements.	Note	that	in	the	below	snippet,
function	path	to	GMAT	function's	FunctionPath	field	was	not	specifically
defined.	Whenever	the	FunctionPath	field	is	not	defined	in	the	script	mode,
then	preferred	default	path	of	these	functions	is	in	the	following	directory	where
GMAT	was	installed:	..GMAT\userfunctions\gmat\

%%Using	a	GMAT	function	in	a	mathematical	statement

Create	ReportFile	rf

Create	GmatFunction	Math_GmatPi	Math_GmatSin

Create	GmatFunction	Math_GmatAtan2	Math_GmatInv

Create	Variable	x	y	z	pi	in

Create	Array	A[2,2]	B[2,2]

BeginMissionSequence

A(1,1)	=	1

A(1,2)	=	3

A(2,1)	=	4

A(2,2)	=	2

%	no	inputs	into	the	function

pi	=	Math_GmatPi	*	2

Report	rf	pi

%	one	input	into	the	function

[pi]	=	Math_GmatPi

in	=	pi/4

x	=	Math_GmatSin(in)	-	15



Report	rf	x

%	two	inputs:

in	=	0.5

y	=	Math_GmatAtan2(in,	x)^2

Report	rf	y

%	array	input/output:

B	=	Math_GmatInv(A)'

Report	rf	B

%%%%	Math_GmatPi	Function	begins	below:

function	[pi]	=	Math_GmatPi

Create	Variable	pi

BeginMissionSequence

pi	=	acos(-1)

%%%%	Math_GmatSin	Function	begins	below:

function	[y]	=	Math_GmatSin(x)

Create	Variable	y

BeginMissionSequence

y	=	sin(x)

%%%%	Math_GmatAtan2	Function	begins	below:

function		[z]	=	Math_GmatAtan2(y,	x)

Create	Variable	z

BeginMissionSequence

z	=	atan2(y,	x)

%%%%	Math_GmatInv	Function	begins	below:

function		[B]	=	Math_GmatInv(A)

Create	Array	B[2,2]

BeginMissionSequence

B	=	inv(A)



Examples
Method	1	of	how	to	pass	local	objects	into	the	function	and	receiving	local
objects	as	the	output	from	the	function.	Pass	local	spacecraft,	other	local	objects
into	the	function,	perform	hohmann	targeting	inside	the	function,	receive
updated	local	spacecraft,	local	variables	as	output	and	finally	report	them	to
local	subscribers	in	the	main	script.	Since	the	spacecraft	and	all	five	subscribers
were	only	local	objects	(i.e.	not	declared	as	global),	hence	notice	that	all
subscribers	begin	to	draw	and	report	data	once	the	updated	spacecraft	is	returned
back	and	propagated	in	the	main	script.

Create	Spacecraft	aSat

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	ImpulsiveBurn	TOI

Create	ImpulsiveBurn	GOI

Create	DifferentialCorrector	DC

Create	OrbitView	anOrbitView

anOrbitView.SolverIterations	=	Current

anOrbitView.Add	=	{aSat,	Earth}

Create	GroundTrackPlot	GroundTrackPlot1

GroundTrackPlot1.Add	=	{aSat}

GroundTrackPlot1.CentralBody	=	Earth

Create	XYPlot	XYPlot1

XYPlot1.XVariable	=	aSat.ElapsedDays

XYPlot1.YVariables	=	{aSat.EarthMJ2000Eq.X}

Create	ReportFile	rf

rf.Add	=	{aSat.UTCGregorian,	aSat.EarthMJ2000Eq.X,	...	

aSat.EarthMJ2000Eq.Y,	aSat.EarthMJ2000Eq.Z,	...

aSat.EarthMJ2000Eq.VX,	aSat.EarthMJ2000Eq.VY,	aSat.EarthMJ2000Eq.VZ}

Create	ReportFile	rf2



rf2.WriteHeaders	=	false

Create	EphemerisFile	anEphemerisFile

GMAT	anEphemerisFile.Spacecraft	=	aSat

Create	GmatFunction	Targeter_Inside_Function

Targeter_Inside_Function.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\Targeter_Inside_Function.gmf'	

Create	Variable	DV1	DV2			

BeginMissionSequence;

%	Pass	local	S/C,	local	objects	into	function	and	receive	back

%	updated	local	S/C	and	local	variables:

'Hohmann	Transfer'[DV1,	DV2,	aSat]	...

=	Targeter_Inside_Function(aSat,	aProp,	TOI,	GOI,	DC)

	

TOI.Element1	=	DV1

GOI.Element1	=	DV2

%	Report	updated	S/C:

Report	rf2	aSat.UTCModJulian	aSat.UTCGregorian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ	TOI.Element1	GOI.Element1

Propagate	'Prop	one	day'	aProp(aSat)	{aSat.ElapsedDays	=	1.0}

	

Report	rf2	aSat.UTCModJulian	aSat.UTCGregorian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ

%%%%%%%%%%%	Function	begins	below:

function	[dv1,	dv2,	aSat]	=	Targeter_Inside_Function(aSat,	aProp,	TOI,	GOI,	DC)

%	Create	local	S/C,	local	variables:

Create	Spacecraft	aSat

Create	Variable	dv1	dv2

BeginMissionSequence

Propagate	'Propagate	to	Periapsis'	aProp(aSat)	{aSat.Earth.Periapsis}			

	Target	'Hohmann	Transfer'	DC	{SolveMode	=	Solve,	ExitMode	=	SaveAndContinue}

				Vary	'Vary	TOI'	DC(TOI.Element1	=	1.0,	{Perturbation	=	0.0001,	...

	 Lower	=	0.0,	Upper	=	3.14159,	MaxStep	=	0.5})

				Maneuver	'Perform	TOI'	TOI(aSat)



				Propagate	'Prop	to	Apoapsis'	aProp(aSat)	{aSat.Earth.Apoapsis}

				Achieve	'Achieve	RMAG	=	42165'	DC(aSat.Earth.RMAG	=	42165)

				Vary	'Vary	GOI'	DC(GOI.Element1	=	1.0,	{Perturbation	=	0.0001,	...

	 Lower	=	0.0,	Upper	=	3.14159,	MaxStep	=	0.2})

				Maneuver	'Perform	GOI'	GOI(aSat)

				Achieve	'Achieve	ECC	=	0.005'	DC(aSat.Earth.ECC	=	0.005)

	EndTarget	

	

dv1	=	TOI.Element1

dv2	=	GOI.Element1

Method	2	of	how	to	pass	local	objects	into	the	function	and	receiving	local
objects	as	the	output	from	the	function.	In	this	method,	notice	that	we	now	only
pass	local	spacecraft	as	input	to	the	function.	Instead	of	passing	additional	local
objects	into	the	function,	we	now	create	those	required	local	objects	inside	the
function	itself.	Similar	to	method	1,	we	perform	hohmann	targeting	inside	the
function,	then	send	updated	spacecraft	and	variables	back	to	the	main	script	as
output	from	the	function.	Finally	updated	spacecraft	is	propagated	for	one	day	in
main	script	and	reported	by	all	subscribers.	Since	the	spacecraft	and	all	five
subscribers	were	only	local	objects	(i.e.	not	declared	as	global),	hence	notice	that
all	subscribers	begin	to	draw	and	report	data	once	the	updated	spacecraft	begins
propagation	in	the	main	script.

Create	Spacecraft	aSat

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	ImpulsiveBurn	TOI

Create	ImpulsiveBurn	GOI

Create	DifferentialCorrector	DC

Create	OrbitView	anOrbitView

anOrbitView.SolverIterations	=	Current

anOrbitView.Add	=	{aSat,	Earth}

Create	GroundTrackPlot	GroundTrackPlot1

GroundTrackPlot1.Add	=	{aSat}

GroundTrackPlot1.CentralBody	=	Earth



Create	XYPlot	XYPlot1

XYPlot1.XVariable	=	aSat.ElapsedDays

XYPlot1.YVariables	=	{aSat.EarthMJ2000Eq.X}

Create	ReportFile	rf

rf.Add	=	{aSat.UTCGregorian,	aSat.EarthMJ2000Eq.X,	...	

aSat.EarthMJ2000Eq.Y,	aSat.EarthMJ2000Eq.Z,	...

aSat.EarthMJ2000Eq.VX,	aSat.EarthMJ2000Eq.VY,	aSat.EarthMJ2000Eq.VZ}

Create	ReportFile	rf2

rf2.WriteHeaders	=	false

Create	EphemerisFile	anEphemerisFile

GMAT	anEphemerisFile.Spacecraft	=	aSat

Create	GmatFunction	Targeter_Inside_Function

Targeter_Inside_Function.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\Targeter_Inside_Function.gmf'	

Create	Variable	DV1	DV2			

BeginMissionSequence;

%	Pass	only	local	S/C	into	the	function	and	receive	back

%	updated	local	S/C	and	local	variables:

'Hohmann	Transfer'[DV1,	DV2,	aSat]	...

=	Targeter_Inside_Function(aSat)

	

TOI.Element1	=	DV1

GOI.Element1	=	DV2

%	Report	updated	S/C:

Report	rf2	aSat.UTCModJulian	aSat.UTCGregorian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ	TOI.Element1	GOI.Element1

Propagate	'Prop	one	day'	aProp(aSat)	{aSat.ElapsedDays	=	1.0}

	

Report	rf2	aSat.UTCModJulian	aSat.UTCGregorian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ

%%%%%%%%%%%	Function	begins	below:

function	[dv1,	dv2,	aSat]	=	Targeter_Inside_Function(aSat)

%	Create	local	S/C:



Create	Spacecraft	aSat

%	Create	local	objects	that	are	used	to	do	targeting:

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	ImpulsiveBurn	TOI

Create	ImpulsiveBurn	GOI

Create	DifferentialCorrector	DC

%	Create	local	variables:

Create	Variable	dv1	dv2

BeginMissionSequence

Propagate	'Propagate	to	Periapsis'	aProp(aSat)	{aSat.Earth.Periapsis}			

	Target	'Hohmann	Transfer'	DC	{SolveMode	=	Solve,	ExitMode	=	SaveAndContinue}

				Vary	'Vary	TOI'	DC(TOI.Element1	=	1.0,	{Perturbation	=	0.0001,	...

	 Lower	=	0.0,	Upper	=	3.14159,	MaxStep	=	0.5})

				Maneuver	'Perform	TOI'	TOI(aSat)

				Propagate	'Prop	to	Apoapsis'	aProp(aSat)	{aSat.Earth.Apoapsis}

				Achieve	'Achieve	RMAG	=	42165'	DC(aSat.Earth.RMAG	=	42165)

				Vary	'Vary	GOI'	DC(GOI.Element1	=	1.0,	{Perturbation	=	0.0001,	...

	 Lower	=	0.0,	Upper	=	3.14159,	MaxStep	=	0.2})

				Maneuver	'Perform	GOI'	GOI(aSat)

				Achieve	'Achieve	ECC	=	0.005'	DC(aSat.Earth.ECC	=	0.005)

	EndTarget	

	

dv1	=	TOI.Element1

dv2	=	GOI.Element1

In	this	example,	we	declare	spacecraft,	all	subscribers	and	other	objects	as	global
in	both	main	script	and	in	function.	Propagate	inside	the	function,	perform
targeting	inside	function,	and	report	local	variables,	global	spacecraft	state	and
global	variable	(DV1,	DV2)	to	global	reportfile.	Next,	we	continue	to	propagate
in	the	main	script	and	continue	to	report	spacecraft	state	to	global	reportfile	in
the	main	script.	After	running	this	example,	pay	special	attention	to	all
subscribers.	Note	that	spacecraft	trajectory	is	plotted	continuously	on	three
plotting	subscribers	and	data	is	reported	continuously	as	well	to	both	reportfiles



and	ephemerisfile.

Create	Spacecraft	aSat

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	ImpulsiveBurn	TOI

Create	ImpulsiveBurn	GOI

Create	DifferentialCorrector	DC

Create	OrbitView	anOrbitView

anOrbitView.SolverIterations	=	Current

anOrbitView.Add	=	{aSat,	Earth}

Create	GroundTrackPlot	GroundTrackPlot1

GroundTrackPlot1.Add	=	{aSat}

GroundTrackPlot1.CentralBody	=	Earth

Create	XYPlot	XYPlot1

XYPlot1.XVariable	=	aSat.ElapsedDays

XYPlot1.YVariables	=	{aSat.EarthMJ2000Eq.X}

Create	ReportFile	rf

rf.Add	=	{aSat.UTCGregorian,	aSat.EarthMJ2000Eq.X,	...	

aSat.EarthMJ2000Eq.Y,	aSat.EarthMJ2000Eq.Z,	...

aSat.EarthMJ2000Eq.VX,	aSat.EarthMJ2000Eq.VY,	aSat.EarthMJ2000Eq.VZ}

Create	ReportFile	rf2

rf2.WriteHeaders	=	false

Create	EphemerisFile	anEphemerisFile

GMAT	anEphemerisFile.Spacecraft	=	aSat

Create	GmatFunction	Global_Subscribers

Global_Subscribers.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\Global_Subscribers.gmf'	

Create	Variable	DV1	DV2

BeginMissionSequence;



%	Declare	aSat,	Subscribers	and	other	objects	as	Global:

Global	aSat

Global	aFM	TOI	GOI	DC	%aProp	is	global	by	default.	

Global	anOrbitView	GroundTrackPlot1	XYPlot1	rf	rf2	anEphemerisFile

Global	DV1	DV2

Report	rf2	aSat.UTCGregorian	aSat.UTCModJulian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ

%	Call	function:

Global_Subscribers()

	

%	Report	updated	Global	S/C,	TOI	and	GOI:

Report	rf2	aSat.UTCGregorian	aSat.UTCModJulian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ	TOI.Element1	GOI.Element1

Propagate	'Prop	one	more	day'	aProp(aSat)	{aSat.ElapsedDays	=	1.0}

	

Report	rf2	aSat.UTCGregorian	aSat.UTCModJulian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ

%	Report	Global	DV1	and	DV2	to	global	'rf2'	in	main	script:

Report	rf2	DV1	DV2

%%%%%%%%%%%	Function	begins	below:

function	Global_Subscribers()

%	Create	Local	variables,	string:

Create	Variable	sc_epoch	x	y	z	vx	vy	vz	dv1	dv2;

Create	String	utc_epoch

Global	aSat

Global	aFM	TOI	GOI	DC

Global	anOrbitView	GroundTrackPlot1	XYPlot1	rf	rf2	anEphemerisFile

Global	DV1	DV2

BeginMissionSequence

Propagate	'Propagate	to	Periapsis'	aProp(aSat)	{aSat.Earth.Periapsis}			

	Target	'Hohmann	Transfer'	DC	{SolveMode	=	Solve,	ExitMode	=	SaveAndContinue}

				Vary	'Vary	TOI'	DC(TOI.Element1	=	1.0,	{Perturbation	=	0.0001,	...

	 Lower	=	0.0,	Upper	=	3.14159,	MaxStep	=	0.5})

				Maneuver	'Perform	TOI'	TOI(aSat)

				Propagate	'Prop	to	Apoapsis'	aProp(aSat)	{aSat.Earth.Apoapsis}



				Achieve	'Achieve	RMAG	=	42165'	DC(aSat.Earth.RMAG	=	42165)

				Vary	'Vary	GOI'	DC(GOI.Element1	=	1.0,	{Perturbation	=	0.0001,	...

	 Lower	=	0.0,	Upper	=	3.14159,	MaxStep	=	0.2})

				Maneuver	'Perform	GOI'	GOI(aSat)

				Achieve	'Achieve	ECC	=	0.005'	DC(aSat.Earth.ECC	=	0.005)

	EndTarget	

		

sc_epoch	=	aSat.UTCModJulian

utc_epoch	=	aSat.UTCGregorian

x	=	aSat.X			

y	=	aSat.Y

z	=	aSat.Z

vx	=	aSat.VX							

vy	=	aSat.VY

vz	=	aSat.VZ

dv1	=	TOI.Element1	

dv2	=	GOI.Element1

%	Report	local	variables/strings	to	Global	reportfile	'rf2':

Report	rf2	utc_epoch	sc_epoch	x	y	z	vx	vy	vz	dv1	dv2

	

Propagate	'Prop	one	Day	Inside	Function'	aProp(aSat)	{aSat.ElapsedDays	=	1.0}

%	Report	Global	aSat	state	to	global	'rf2':

Report	rf2	aSat.UTCGregorian	aSat.UTCModJulian		aSat.X	aSat.Y	aSat.Z	aSat.VX	...

aSat.VY	aSat.VZ	TOI.Element1	GOI.Element1

%	Report	Global	variables	DV1	and	DV2	to	global	'rf2'	in	main	script:

DV1	=	TOI.Element1

DV2	=	TOI.Element1

Just	as	previous	example,	we	declare	spacecraft,	all	subscribers	and	other	objects
as	global	in	both	main	script	and	in	function.	This	time	GMAT	function	is	nested
inside	control	logic	statements	like	While	and	If-EndIf.	LEO	station-keeping	is
performed	inside	the	function.	As	the	example	will	be	running,	pay	special
attention	to	all	subscribers.	Note	that	spacecraft	trajectory	is	plotted	continuously
on	three	plotting	subscribers	and	data	is	reported	continuously	as	well	to	both
reportfiles	and	ephemerisfile.

Create	Spacecraft	LEOsat

LEOsat.DisplayStateType	=	Keplerian

LEOsat.SMA	=	6733.989999999996

LEOsat.ECC	=	0.0004329999999984123

LEOsat.INC	=	34.98399999999998



LEOsat.RAAN	=	274.742

LEOsat.AOP	=	287.8049999999732

LEOsat.TA	=	294.0690000000269

Create	ForceModel	LEOprop_ForceModel

LEOprop_ForceModel.CentralBody	=	Earth

LEOprop_ForceModel.PrimaryBodies	=	{Earth}

LEOprop_ForceModel.PointMasses	=	{Luna,	Sun}

LEOprop_ForceModel.SRP	=	On

LEOprop_ForceModel.GravityField.Earth.Degree	=	4

LEOprop_ForceModel.GravityField.Earth.Order	=	4

LEOprop_ForceModel.GravityField.Earth.PotentialFile	=	'JGM2.cof'

LEOprop_ForceModel.Drag.AtmosphereModel	=	JacchiaRoberts

LEOprop_ForceModel.Drag.F107	=	150

LEOprop_ForceModel.Drag.F107A	=	150

Create	Propagator	LEOprop

GMAT	LEOprop.FM	=	LEOprop_ForceModel

Create	ImpulsiveBurn	TCM1

Create	ImpulsiveBurn	TCM2

Create	DifferentialCorrector	DC

Create	OrbitView	DefaultOrbitView

DefaultOrbitView.Add	=	{LEOsat,	Earth}

Create	XYPlot	XYPlot1

GMAT	XYPlot1.XVariable	=	LEOsat.A1ModJulian

GMAT	XYPlot1.YVariables	=	{LEOsat.Earth.Altitude}

Create	GroundTrackPlot	GroundTrackPlot1

GroundTrackPlot1.Add	=	{LEOsat}

Create	ReportFile	rf

Create	ReportFile	rf2

rf2.Add	=	{LEOsat.UTCModJulian,	LEOsat.Earth.Altitude,	...

LEOsat.Earth.RMAG,	LEOsat.Earth.ECC}

Create	EphemerisFile	anEphemerisFile

GMAT	anEphemerisFile.Spacecraft	=	LEOsat

Create	GmatFunction	TargetLEOStationKeeping

TargetLEOStationKeeping.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\TargetLEOStationKeeping.gmf'	



Create	Variable	desiredRMAG	desiredECC	X	Y	Z

BeginMissionSequence

desiredRMAG	=	6737

desiredECC	=	0.00005

%	Declare	LEOsat,	Subscribers	and	other	objects	as	Global:

Global	LEOsat

Global	DC	TCM1	TCM2	LEOprop_ForceModel

Global	DefaultOrbitView	XYPlot1	GroundTrackPlot1

Global	rf	rf2	anEphemerisFile

While	'While	ElapsedDays	<	10'	LEOsat.ElapsedDays	<	10.0

Propagate	'Prop	One	Step'	LEOprop(LEOsat)

	

If	'If	Alt	<	Threshold'	LEOsat.Earth.Altitude	<	342

Propagate	'Prop	To	Periapsis'	LEOprop(LEOsat)	{LEOsat.Periapsis}

%	Call	function	to	implement	SK.	Pass	local	variables	as	input:

TargetLEOStationKeeping(desiredRMAG,desiredECC)

EndIf

	

EndWhile

Report	rf	LEOsat.UTCGregorian	LEOsat.UTCModJulian	LEOsat.X	...

LEOsat.Y	LEOsat.Z	LEOsat.Earth.Altitude	LEOsat.Earth.ECC

%%%%%%%%%%%	Function	begins	below:

function	TargetLEOStationKeeping(desiredRMAG,desiredECC)

		

BeginMissionSequence

Global	LEOsat

Global	DC	TCM1	TCM2	LEOprop_ForceModel

Global	DefaultOrbitView	XYPlot1	GroundTrackPlot1

Global	rf	rf2	anEphemerisFile

		

Target	'Raise	Orbit'	DC	{SolveMode	=	Solve,	ExitMode	=	DiscardAndContinue}

	 Vary	'Vary	TCM1.V'	DC(TCM1.Element1	=	0.002,	{Perturbation	=	0.0001,	...

	 Lower	=	-9.999999e300,	Upper	=	9.999999e300,	MaxStep	=	0.05})

	 Maneuver	'Apply	TCM1'	TCM1(LEOsat);



	 Propagate	'Prop	to	Apoapsis'	LEOprop(LEOsat)	{LEOsat.Apoapsis}

	 Achieve	'Achieve	RMAG'	DC(LEOsat.RMAG	=	desiredRMAG,	{Tolerance	=	0.1})

	 Vary	'Vary	TCM2.V'	DC(TCM2.Element1	=	1e-005,	{Perturbation	=	0.00005,	...

	 Lower	=	-9.999999e300,	Upper	=	9.999999e300,	MaxStep	=	0.05})

	 Maneuver	'Apply	TCM2'	TCM2(LEOsat);

	 Achieve	'Achieve	ECC'	DC(LEOsat.Earth.ECC	=	desiredECC)

EndTarget

In	this	example,	all	arrays,	string	and	a	single	subscriber	are	declared	global	both
in	main	script	and	inside	function.	Note	that	global	arrays	are	passed	into	the
function,	cross	products	are	computed	and	computed	global	arrays	(v5,	v6)	are
sent	back	to	the	main	script.	Also	note	that	global	arrays,	string	are	reported	to
global	report	file	in	both	main	script	and	inside	the	function.

Create	ReportFile	rf

rf.WriteHeaders	=	false

Create	GmatFunction	cross3by1;

GMAT	cross3by1.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\cross3by1.gmf'						

Create	Array	v1[3,1]	v2[3,1]	v3[3,1]	...

v4[3,1]	v5[3,1]	v6[3,1]

Create	String	tempstring

BeginMissionSequence

%	Declare	Arrays,	string	and	subscriber	as	global:

Global	v1	v2	v3	v4	v5	v6		tempstring	rf

v1(1,1)	=	1

v1(2,1)	=	2

v1(3,1)	=	3

v2(1,1)	=	4

v2(2,1)	=	5

v2(3,1)	=	6

v3(1,1)	=	8

v3(2,1)	=	9

v3(3,1)	=	10

v4(1,1)	=	10

v4(2,1)	=	11

v4(3,1)	=	12

%	Report	global	arrays/string	to	global	'rf':

Report	rf	v1	v2	v3	v4



tempstring	=	'--------------------'

Report	rf	tempstring

%	Call	function.	Pass	in	Global	arrays

%	Receive	global	arrays	in	return:

GMAT	[v5,	v6]	=	cross3by1(v1,	v2,	v3,	v4)

%	Report	global	output	to	global	'rf':

Report	rf	v5	v6

tempstring	=	'--------------------'

Report	rf	tempstring

%%%%%%%%%%%	Function	begins	below:

function	[v5,	v6]	=	cross3by1(vector1,vector2,	vector3,	vector4)

BeginMissionSequence

Global	v1	v2	v3	v4	v5	v6		tempstring	rf

v5(1,1)	=	vector1(2,1)*vector2(3,1)	-	vector1(3,1)*vector2(2,1)

v5(2,1)	=	-(vector1(1,1)*vector2(3,1)	-	vector1(3,1)*vector2(1,1))

v5(3,1)	=	vector1(1,1)*vector2(2,1)	-	vector1(2,1)*vector2(1,1)

v6(1,1)	=	vector3(2,1)*vector4(3,1)	-	vector3(3,1)*vector4(2,1)

v6(2,1)	=	-(vector3(1,1)*vector4(3,1)	-	vector3(3,1)*vector4(1,1))

v6(3,1)	=	vector3(1,1)*vector4(2,1)	-	vector3(2,1)*vector4(1,1)

v1	=	v1	+	1

v2	=	v2*2

v3	=	v3/2

v4	=	v4	+	v4

%	Continue	to	report	global	arrays/string	to	global	'rf':

Report	rf	v1	v2	v3	v4

tempstring	=	'--------------------'

Report	rf	tempstring



GroundStation
GroundStation	—	A	ground	station	model.



Description
A	GroundStation	models	a	facility	fixed	to	the	surface	of	a	CelestialBody.
There	are	several	state	representations	available	for	defining	the	location	of	a
ground	station	including	Cartesian	and	spherical.	This	resource	cannot	be
modified	in	the	mission	sequence.

See	Also:	ContactLocator,	CoordinateSystem,	Color



Fields

Field Description

AddHardware
List	of	all	Transmitter,	Receiver,	and	Antenna
hardware	used	by	ground	station

Data
Type

Object	Array

Allowed
Values

Each	element	in	the	list	has	to	be	a
valid	Transmitter,	Receiver,	or
Antenna

Access set

Default
Value

None

Units N/A

Interfaces script

Altitude
The	altitude	of	the	station	with	respect	to	the
HorizonReference.

Data	Type Real



Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0

Units km

Interfaces GUI,	script

CentralBody
The	central	body	of	the	GroundStation.

Data
Type

String

Allowed
Values

Earth.	(Ground	stations	are	currenly
only	supported	with	respect	to	Earth)

Access set

Default
Value

Earth

Units N/A



Interfaces GUI,	script

DataSource
Source	of	where	to	get	Temperature,	Pressure,
Humidity,	and	MinimumElevationAngle.	If	the
value	is	Constant,	then	the	values	of	these
parameters,	as	set	in	the	GroundStation	resource,
remain	constant	for	all	relevant	measurements.
Currently,	the	value	of	Constant	is	the	only	allowed
value.

Data	Type Enumeration

Allowed	Values Constant

Access set

Default	Value Constant

Units N/A

Interfaces script

ErrorModels
User-defined	list	of	ErrorModel	objects	that
describe	the	measurement	error	models	used	for
this	GroundStation.

Data	Type StringList



Allowed
Values

Any	valid	user-defined
ErrorModel	resource

Access set

Default
Value

None

Units N/A

Interfaces script

HorizonReference
The	system	used	for	the	horizon.	Sphere	is
equivalent	to	Geocentric,	Ellipsoid	is	equivalent	to
Geodetic.

Data	Type String

Allowed	Values Sphere,	Ellipsoid

Access set

Default	Value Sphere

Units N/A



Interfaces GUI,	script

Humidity
Humidity	at	ground	station	used	to	calculate
tropospheric	correction	for	the
HopfieldSaastamoinen	model.	GMAT	only	uses
this	value	if	DataSource	is	set	to	Constant.

Data	Type Real

Allowed	Values 0.0	<=	Real	<=100.0

Access set,	get

Default	Value 55

Units percentage

Interfaces script

Id
Id	of	the	GroundStation	used	in	simulation	and
estimation

Data	Type String

Allowed
Values

May	contain	letters,	integers,	dashes,
underscores



Access set,

Default
Value

StationId

Units N/A

Interfaces GUI,	script

IonosphereModel
Specification	of	ionospheric	model	used	in	the
light	time	calculations.

Data	Type Enumeration

Allowed	Values 'None',	'IRI2007'

Access set

Default	Value 'None'

Units N/A

Interfaces script



Latitude The	latitude	of	the	station	with	respect	to
HorizonReference.

Data	Type Real

Allowed	Values -90	<	Real	<	90

Access set

Default	Value 0

Units deg.

Interfaces GUI,	script

Location1
The	first	component	of	the	GroundStation
location.	When	StateType	is	Cartesian,
Location1	is	the	x-component	of	station	location
in	the	body-fixed	system.	When	StateType	is
Spherical	or	Elliposoid,	Location1	is	the
Longitude	(deg.)	of	the	GroundStation.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	for	Cartesian,	See
Longitude,	Latitude,	Altitude	for
others.



Access set

Default
Value

6378.1363

Units see	description

Interfaces GUI,	script

Location2
The	second	component	of	the	GroundStation
location.	When	StateType	is	Cartesian,
Location2	is	the	y-component	of	station	location
in	the	body-fixed	system.	When	StateType	is
Spherical	or	Ellipsoid,	Location2	is	the	Latitude
(deg.)	of	the	GroundStation.

Data
Type

Real

Allowed
Values

-∞	<	Real	<	∞	for	Cartesian,	See
Longitude,	Latitude,	Altitude	for
others.

Access set

Default
Value

0



Units see	description

Interfaces GUI,	script

Location3
The	third	component	of	the	GroundStation
location.	When	StateType	is	Cartesian,
Location3	is	the	z-component	of	station	location	in
the	body-fixed	system.	When	StateType	is
Spherical	or	Elliposoid,	Location3	is	the	height
(km)	of	the	GroundStation	above	the	reference
shape.

Data
Type

Reals

Allowed
Values

-∞	<	Real	<	∞	for	Cartesian,	See
Longitude,	Latitude,	Altitude	for
others.

Access set,

Default
Value

0

Units see	description

Interfaces GUI,	script



Longitude The	longitude	of	the	station.

Data	Type Real

Allowed	Values value	>=0

Access set

Default	Value 0

Units deg.

Interfaces GUI,	script

MinimumElevationAngle
Minimum	elevation	angle	constraint	for	use	with
ContactLocator.	For	navigation	related
processing,	this	is	minimum	elevation	angle	for
signal	transmitted	from	spacecraft	to	ground
station.	During	simulation,	this	is	the	minimum
elevation	angle	required	in	order	for	data	to	be
output.	During	estimation,	this	is	the	minimum
elevation	angle	required	for	data	to	be	used	to
calculate	an	estimate.	GMAT	only	uses	this	value	if
DataSource	is	set	to	Constant.

Data	Type Real



Allowed
Values

-90	≤	MinimumElevationAngle
≤	90

Access set

Default	Value 7

Units deg

Interfaces GUI,	script

OrbitColor
Allows	you	to	select	available	colors	for	a	user-
defined	GroundStation.	The	GroundStation
object	is	drawn	on	a	spacecraft's	ground	track	plot
created	by	GroundTrackPlot	2D	graphics	display
resource.	The	colors	can	be	identified	through	a
string	or	an	integer	array.	For	example:	Setting
groundstation's	color	to	red	can	be	done	in
following	two	ways:	GroundStation.OrbitColor
=	Red	or	GroundStation.OrbitColor	=	[255	0
0].	This	field	can	be	modified	in	the	Mission
Sequence	as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit
Color	Picker	in	GUI.	Valid	predefined
color	name	or	RGB	triplet	value
between	0	and	255.



Access set

Default
Value

Thistle

Units N/A

Interfaces GUI,	script

Pressure
Air	pressure	at	ground	station	used	to	calculate
tropospheric	correction	for	the
HopfieldSaastamoinen	model.	GMAT	only	uses
this	value	if	DataSource	is	set	to	Constant.

Data	Type Real

Allowed	Values Real	>0.0

Access set,	get

Default	Value 1013.5

Units hPa

Interfaces script



StateType
The	type	of	state	used	to	define	the	location	of	the
ground	station.	For	example,	Cartesian	or
Ellipsoid.

Data	Type String

Allowed	Values Cartesian,	Spherical,	Ellipsoid

Access set

Default	Value Cartesian

Units N/A

Interfaces GUI,	script

SpiceFrameId
The	station's	SPICE	frame	ID.	Note	this	field	does
not	have	a	default,	and	is	not	saved	to	script,	unless
it	is	set	to	a	specific	allowed	value.

Data
Type

String	or	Integer

Allowed
Values

Valid	SPICE	frame	ID	(text	or
numeric).	The	convention	for	stations
is	'399xyz',	where	'xyz'	are	integers



mapped	to	the	station.	For	example,
DSN	station	'DSS-66'	has	Id	'399066'.

Access set

Default
Value

No	default.

Units N/A

Interfaces script

TargetColor
Allows	you	to	select	available	colors	for	a	user-
defined	GroundStation	object	during	iterative
processes	such	as	Differential	Correction	or
Optimization.	The	target	color	can	be	identified
through	a	string	or	an	integer	array.	For	example:
Setting	groundstation's	target	color	to	yellow	color
can	be	done	in	following	two	ways:
GroundStation.TargetColor	=	Yellow	or
GroundStation.TargetColor	=	[255	255	0].
This	field	can	be	modified	in	the	Mission	Sequence
as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit
Color	Picker	in	GUI.	Valid	predefined
color	name	or	RGB	triplet	value



between	0	and	255.

Access set

Default
Value

DarkGray

Units N/A

Interfaces GUI,	script

Temperature
Air	temperature	at	ground	station	used	to	calculate
tropospheric	correction	for	the
HopfieldSaastamoinen	model.	GMAT	only	uses
this	value	if	DataSource	is	set	to	Constant.

Data	Type Real

Allowed	Values Real	>0.0

Access set,	get

Default	Value 295.1

Units Kelvin



Interfaces script

TroposphereModel
Specification	of	tropospheric	model	used	in	the
light	time	calculations.

Data	Type Enumeration

Allowed
Values

'None',	'HopfieldSaastamoinen',
'Marini'

Access set

Default
Value

'None'

Units N/A

Interfaces script



GUI
To	create	a	GroundSation,	starting	from	the	Resource	Tree:

1.	 Right-click	the	GroundStation	folder	and	select	Add	Ground	Station.
2.	 Double-click	GroundStation1.

You	can	set	the	ground	station	location	in	several	state	representations.	The
Cartesian	representation	is	illustrated	above.	To	set	the	Longitude,	Latitude,
and	Altitude	to	45	deg.,	270	deg.,	and	0.1	km	respectively,	with	respect	to	the
reference	ellipsoid:

1.	 In	the	StateType	menu,	select	Spherical.
2.	 In	the	HorizonReference	menu,	select	Ellipsoid.
3.	 In	the	Latitude	text	box,	type	45.
4.	 In	the	Longitude	text	box,	type	270.
5.	 In	the	Altitude	text	box,	type	0.1.





Remarks
The	GroundStation	model	allows	you	to	configure	a	facility	by	defining	the
location	in	body-fixed	coordinates	using	one	of	several	state	representations.
GMAT	supports	Cartesian,	Sphere,	and	Ellipsoid	representations	and	examples
below	show	how	to	configure	a	GroundStation	in	each	representation.	When
using	the	Ellipsoid	model	or	Sphere	representations,	GMAT	uses	the	physical
properties	-	flattening	and	radius	for	example	-	defined	on	the	CelestialBody
resource.

Setting	Colors	On	a	Ground	Station	Facility

GMAT	allows	you	to	set	colors	on	a	ground	station	facility	that	you	create.	The
GroundStations	are	drawn	on	the	GroundTrackPlot	2D	graphics	display.	The
GroundStation	object's	OrbitColor	and	TargetColor	fields	are	used	to	set
colors	on	a	ground	station	facility.	See	the	Fields	section	to	read	more	about
these	two	fields.	Also	See	Color	documentation	for	discussion	and	examples	on
how	to	set	colors	on	a	ground	station	facility.

Marini	Troposphere	Model	Data	File

The	Marini	troposphere	model	utilizes	a	data	file	which	contains	monthly	mean
values	for	the	model	calculation	for	different	locations	on	the	Earth's	surface.
This	data	file's	location	is	specified	by	the	MARINI_TROPO_FILE	property	in	the
startup	file.	Each	line	in	the	data	file	contains	a	latitude	longitude	pair,	followed
by	12	values,	one	for	each	month	of	the	year.	Each	value	in	the	data	file
combines	both	the	refractivity	and	a	scale	height	factor	into	a	single	integer,
which	are	both	used	in	the	Marini	model.	The	two	rightmost	digits	are	used	to
obtain	the	scale	height,	while	the	remaining	digits	to	the	left	represent	the
refractivity.	The	digits	used	for	the	scale	height	have	the	decimal	point	placed
between	the	two	digits,	while	the	refractivity	values	have	the	decimal	point
placed	at	the	right	of	its	rightmost	digit.	For	example,	a	value	in	the	data	file	of
37068	would	correspond	to	a	refractivity	of	370,	and	a	scale	height	of	6.8.

The	line	in	the	data	file	is	selected	for	use	if	it	is	within	one	degree	of	latitude
and	one	degree	of	longitude	of	the	ground	station	location.	The	column	is	then
selected	based	on	the	month	of	the	year.	If	the	location	of	the	ground	station	is



within	one	degree	of	latitude	and	longitude	of	multiple	locations	in	the	data	file,
the	first	line	is	the	one	selected.	If	the	location	of	the	ground	station	is	not	within
one	degree	of	latitude	and	longitude	of	a	location	in	the	data	file,	a	default	value
of	37068	is	used	instead,	regardless	of	month.	The	latitude	ranges	from	-90	to	90
degrees,	while	the	longitude	spans	from	0	to	360	degrees.



Examples
Configure	a	GroundStation	in	Geodetic	coordinates.

Create	GroundStation	aGroundStation

aGroundStation.CentralBody						=	Earth

aGroundStation.StateType								=	Spherical

aGroundStation.HorizonReference	=	Ellipsoid

aGroundStation.Location1								=	60

aGroundStation.Location2								=	45

aGroundStation.Location3								=	0.01

%	or	alternatively

aGroundStation.Latitude		=	60

aGroundStation.Longitude	=	45

aGroundStation.Altitude		=	0.01

Configure	a	GroundStation	in	Geocentric	coordinates.

Create	GroundStation	aGroundStation

aGroundStation.CentralBody						=	Earth

aGroundStation.StateType								=	Spherical

aGroundStation.HorizonReference	=	Sphere

aGroundStation.Location1								=	59.83308194090783

aGroundStation.Location2								=	45

aGroundStation.Location3								=	-15.99424674414058

%	or	alternatively

aGroundStation.Latitude								=	59.83308194090783

aGroundStation.Longitude							=	45

aGroundStation.Altitude								=	-15.99424674414058

Configure	a	GroundStation	in	Geocentric	coordinates.

Create	GroundStation	aGroundStation

aGroundStation.CentralBody	=	Earth

aGroundStation.StateType			=	Cartesian

aGroundStation.Location1			=	2260.697433050543

aGroundStation.Location2			=	2260.697433050542

aGroundStation.Location3			=	5500.485954732006



Configure	a	GroundStation	that,	when	used	for	navigation,	will	model	how	the
RF	signal	is	refracted	in	the	atmosphere.

Create	GroundStation	aGroundStation

aGroundStation.IonosphereModel							=	'IRI2007';

aGroundStation.TroposphereModel						=	'HopfieldSaastamoinen';

BeginMissionSequence;

Attach	a	Transmitter	and	Receiver	resource	to	a	GroundStation.

Create	Transmitter	Transmitter1

Create	Receiver	Receiver1

Create	GroundStation	aGroundStation;

aGroundStation.AddHardware	=	{Transmitter1,	Receiver1};

BeginMissionSequence;



GroundTrackPlot
GroundTrackPlot	—	A	user-defined	resource	that	draws	longitude	and	latitude
time-history	of	a	spacecraft



Description
The	GroundTrackPlot	resource	allows	you	to	draw	spacecraft’s	longitude	and
latitude	time-history	onto	the	texture	map	of	a	user-selected	central	body.	GMAT
allows	you	to	draw	ground	track	plots	of	any	number	of	spacecrafts	onto	a	single
texture	map.	You	can	also	create	multiple	GroundTrackPlot	resources	by	using
either	the	GUI	or	script	interface	of	GMAT.	GMAT	also	provides	the	option	of
when	to	plot	and	stop	plotting	ground	track	of	a	spacecraft	to	a
GroundTrackPlot	through	the	Toggle	On/Off	command.	See	the	Remarks
section	below	for	detailed	discussion	of	the	interaction	between
GroundTrackPlot	resource	and	the	Toggle	command.	GroundTrackPlot
resource	also	allows	you	to	display	any	number	of	user-defined	ground	stations
onto	the	texture	map	of	the	central	body.

See	Also:	Toggle,	GroundStation,	Color



Fields

Field Description

Add
Allows	the	user	to	pick	selected	resources	such	as	Spacecrafts
GroundStations.	The	GroundTrackPlot	object	is	used	to	draw
spacecraft's	longtitude	and	latitude	time-history	on	a	two-
dimensional	texture	map	of	a	central	body	that	you	select.	
creating	GroundStation	object,	you	can	also	add	ground	stations
onto	the	the	texture	map	of	the	central	body.	To	select	multiple
Spacecrafts	or	GroundStations,	seperate	the	list	by	comma	
enclose	the	list	in	curly	brackets.	For	Example:
DefaultGroundTrackPlot.Add	=	{aSat,	bSat,	aGroundStaton,

bGroundStation}.	This	field	cannot	be	modified	in	the	
Sequence.

Data	Type Reference	Array

Allowed	Values Spacecraft,	GroundStation

Access Set

Default	Value DefaultSC

Units N/A

Interfaces GUI,	script

CentralBody



The	central	body	of	the	Ground	track	plot.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Resource	reference

Allowed	Values CelestialBody

Access set

Default	Value Earth

Units N/A

Interfaces GUI,	script

DataCollectFrequency
The	number	of	integration	steps	to	skip	between	plot	points.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Integer

Allowed	Values integer	>=	1

Access set

Default	Value 1



Units N/A

Interfaces GUI,	script

Maximized
Allows	the	user	to	maximize	the	GroundTrackPlot	window.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values true,false

Access set

Default	Value false

Units N/A

Interfaces script

NumPointsToRedraw
The	number	of	plot	points	to	retain	and	redraw	during	propagation
and	animation.	0	indicates	to	redraw	all.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Integer



Allowed	Values integer	>=	0

Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

RelativeZOrder
Allows	the	user	to	select	which	GroundTrackPlot	window	to
display	first	on	the	screen.	The	GroundTrackPlot	with	lowest
RelativeZOrder	value	will	be	displayed	last	while
GroundTrackPlot	with	highest	RelativeZOrder	value	will	be
displayed	first.	This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Integer

Allowed	Values Integer	≥	0

Access set

Default	Value 0

Units N/A



Interfaces script

ShowPlot
This	field	specifies	whether	to	show	ground	track	plot	during	a
mission	run.	This	field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values True,	False

Access set

Default	Value True

Units N/A

Interfaces GUI,	script

Size
Allows	the	user	to	control	the	display	size	of	GroundTrackPlot
window.	First	value	in	[0	0]	matrix	controls	horizonal	size	and
second	value	controls	vertical	size	of	GroundTrackPlot
window.	This	field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number



Access set

Default	Value [	0	0	]

Units N/A

Interfaces script

SolverIterations
This	field	determines	whether	or	not	ground	track	data	associated
with	perturbed	trajectories	during	a	solver	(Targeter,	Optimize
sequence	is	displayed	in	the	GroundTrackPlot.	When
SolverIterations	is	set	to	All,	all	perturbations/iterations	are	plotted
in	the	GroundTrackPlot.	When	SolverIterations	is	set	to	
only	the	current	solution	or	perturbation	is	plotted	in
GroundTrackPlot.	When	SolverIterations	is	set	to	None
final	nominal	run	is	plotted	on	the	GroundTrackPlot.

Data	Type Enumeration

Allowed	Values All,	Current,	None

Access set

Default	Value Current

Units N/A



Interfaces,	Interfaces GUI,	script

TextureMap
Allows	you	to	enter	or	select	any	user-defined	texture	map	image	for
the	central	body.	This	field	cannot	be	modified	in	the	Mission
Sequence.

Data
Type

String

Allowed
Values

Valid	File	Path	and	Name

Access set

Default
Value

../data/graphics/texture/ModifiedBlueMarble.jpg

Units N/A

Interfaces GUI,	script

UpdatePlotFrequency
The	number	of	plot	points	to	collect	before	updating	a	ground	track
plot.	This	field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Integer



Allowed	Values integer	>	1

Access set

Default	Value 50

Units N/A

Interfaces GUI,	script

Upperleft
Allows	the	user	to	pan	the	GroundTrackPlot	display	window	in	any
direction.	First	value	in	[0	0]	matrix	helps	to	pan	the
GroundTrackPlot	window	horizontally	and	second	value	helps	to
pan	the	window	vertically.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number

Access set

Default	Value [	0	0	]

Units None



Interfaces script



GUI
Default	Name	and	Settings	for	the	GroundTrackPlot	Resource:



Remarks

Behavior	when	using	GroundTrackPlot	Resource	&	Toggle
Command

The	GroundTrackPlot	resource	draws	the	longitude	and	latitude	time-history	of
a	spacecraft	at	each	propagation	step	of	the	entire	mission	duration.	If	you	want
to	report	data	to	a	GroundTrackPlot	at	specific	points	in	your	mission,	then	a
Toggle	On/Off	command	can	be	inserted	into	the	mission	sequence	to	control
when	the	GroundTrackPlot	is	to	draw	data.	When	Toggle	Off	command	is
issued	for	a	GroundTrackPlot,	no	ground	track	data	is	drawn	until	a	Toggle	On
command	is	issued.	Similarly	when	a	Toggle	On	command	is	used,	ground	track
data	is	drawn	at	each	integration	step	until	a	Toggle	Off	command	is	used.

Below	is	an	example	script	snippet	that	shows	how	to	use	Toggle	Off	and
Toggle	On	command	while	using	the	GroundTrackPlot	resource.
GroundTrackPlot	is	turned	off	for	the	first	2	days	of	the	propagation:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	GroundTrackPlot	aGroundTrackPlot

aGroundTrackPlot.Add	=	{aSat}

BeginMissionSequence

Toggle	aGroundTrackPlot	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

Toggle	aGroundTrackPlot	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

Behavior	when	Plotting	Data	in	Iterative	Processes

GMAT	allows	you	to	specify	how	data	is	plotted	onto	a	plot	during	iterative
processes	such	as	differential	correction	or	optimization.	The	SolverIterations
field	of	GroundTrackPlot	resource	supports	3	options	which	are	described	in
the	table	below:

SolverIterations Description



options

Current
Shows	only	current	iteration/perturbation	in	an	iterative
process	and	draws	current	iteration	to	a	plot

All
Shows	all	iterations/perturbations	in	an	iterative	process	and
draws	all	iterations/perturbations	to	a	plot

None
Shows	only	the	final	solution	after	the	end	of	an	iterative
process	and	draws	only	final	solution	to	a	plot

Behavior	when	Plotting	Longitude	and	Latitude	time-
history	of	a	Spacecraft

GMAT’s	GroundTrackPlot	resource	allows	you	to	draw	longitude	and	latitude
time-history	of	a	spacecraft.	You	can	choose	to	draw	ground	track	plot	of
multiple	spacecrafts	onto	a	single	texture	map	of	a	central	body.

Warning

The	longitude	and	latitude	of	a	spacecraft	is	drawn	as	an
approximation	that	includes	straight	line	segments	and
longitude/latitude	data	does	not	takes	into	account	central	body
shape	or	its	oblateness.

Behavior	When	Specifying	Empty	Brackets	in
GroundTrackPlot's	Add	Field

When	using	GroundTrackPlot.Add	field,	if	brackets	are	not	populated	with
user-defined	spacecrafts,	then	GMAT	turns	off	GroundTrackPlot	resource	and
no	plot	is	generated.	If	you	run	the	script	with	Add	field	having	empty	brackets,



then	GMAT	throws	in	a	warning	message	in	the	Message	Window	indicating
that	GroundTrackPlot	resource	will	be	turned	off	since	no	SpacePoints	were
added	to	the	plot.	Below	is	a	sample	script	snippet	that	generates	such	a	warning
message:

Create	Spacecraft	aSat	aSat2

Create	Propagator	aProp

Create	GroundTrackPlot	aGroundTrackPlot

aGroundTrackPlot.Add	=	{}

BeginMissionSequence;

Propagate	aProp(aSat,	aSat2)	{aSat.ElapsedDays	=	1}



Examples
This	example	shows	how	to	use	GroundTrackPlot	resource.	A	single	spacecraft
and	a	ground	station	is	added	to	the	GroundTrackPlot.	Spacecraft’s	ground
track	is	plotted	for	one	day	of	propagation:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	GroundStation	aGroundStation

Create	GroundTrackPlot	aGroundTrackPlot

aGroundTrackPlot.Add	=	{aSat,	aGroundStation}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Propagate	a	spacecraft	for	two	days	around	a	non-default	central	body.
Spacecraft’s	ground	track	is	plotted	on	planet	Mars:

Create	Spacecraft	aSat

aSat.CoordinateSystem	=	MarsJ2000Eq

aSat.SMA	=	8000

aSat.ECC	=	0.0003

Create	ForceModel	aFM

aFM.CentralBody	=	Mars

aFM.PointMasses	=	{Mars}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	CoordinateSystem	MarsJ2000Eq

MarsJ2000Eq.Origin	=	Mars

MarsJ2000Eq.Axes	=	MJ2000Eq

Create	GroundTrackPlot	aGroundTrackPlot

aGroundTrackPlot.Add	=	{aSat}

aGroundTrackPlot.CentralBody	=	Mars

BeginMissionSequence



Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}



ImpulsiveBurn
ImpulsiveBurn	—	An	impulsive	maneuver



Description
The	ImpulsiveBurn	resource	allows	the	spacecraft	to	undergo	an	instantaneous
Delta-V	(ΔV),	as	opposed	to	a	finite	burn	which	is	not	instantaneous,	by
specifying	the	three	vector	components	of	the	Delta-V.	You	can	configure	the
burn	by	defining	its	coordinate	system	and	vector	component	values.	For	Local
coordinate	systems,	the	user	can	choose	the	Origin	and	type	of	Axes.	Depending
on	the	mission,	it	may	be	simpler	to	use	one	coordinate	system	over	another.

See	Also	Maneuver,ChemicalTank,BeginFiniteBurn



Fields

Field Description

Axes
Allows	you	to	define	a	spacecraft	centered	set	of	axes	for
the	impulsive	burn.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type String

Allowed
Values

VNB,	LVLH,	MJ2000Eq,
SpacecraftBody

Access set

Default	Value VNB

Units N/A

Interfaces GUI,	script

B
Deprecated.	Z-component	of	the	applied	impulsive	burn
(Delta-V)

Data	Type Real



Allowed	Values Real

Access set,	get

Default	Value 0

Units km/s

Interfaces GUI,	script

CoordinateSystem
Determines	what	coordinate	system	the	orientation
parameters,	Element1,	Element2,	and	Element3	refer	to.
This	field	cannot	be	modified	in	the	Mission	Sequence.

Data
Type

Reference	Array

Allowed
Values

Local,	EarthMJ2000Eq,	EarthMJ2000Ec,
EarthFixed,	or	any	user	defined	system

Access set

Default
Value

Local

Units N/A



Interfaces GUI,	script

DecrementMass
Flag	which	determines	if	the	FuelMass	is	to	be
decremented	as	it	used.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type String

Allowed	Values true,	false

Access set

Default	Value false

Units N/A

Interfaces GUI,	script

Element1
X-component	of	the	applied	impulsive	burn	(Delta-V)

Data	Type Real

Allowed	Values Real



Access set,	get

Default	Value 0

Units km/s

Interfaces GUI,	script

Element2
Y-component	of	the	applied	impulsive	burn	(Delta-V)

Data	Type Real

Allowed	Values Real

Access set,	get

Default	Value 0

Units km/s

Interfaces GUI,	script

Element3
Z-component	of	the	applied	impulsive	burn	(Delta-V)



Data	Type Real

Allowed	Values Real

Access set,	get

Default	Value 0

Units km/s

Interfaces GUI,	script

GravitationalAccel
Value	of	the	gravitational	acceleration	used	to	calculate
fuel	depletion.

Data	Type Real

Allowed	Values Real	>	0

Access set,	get

Default	Value 9.81

Units m/s^2



Interfaces GUI,	script

Isp
Value	of	the	specific	impulse	of	the	fuel

Data	Type Real

Allowed	Values Real

Access set,	get

Default	Value 300

Units s

Interfaces GUI,	script

N
Deprecated.	Y-component	of	the	applied	impulsive	burn
(Delta-V)

Data	Type Real

Allowed	Values Real

Access set,	get



Default	Value 0

Units km/s

Interfaces GUI,	script

Origin
The	Origin	field,	used	in	conjunction	with	the	Axes
field,	allows	the	user	to	define	a	spacecraft	centered	set	of
axes	for	the	impulsive	burn.	This	field	cannot	be	modified
in	the	Mission	Sequence.

Data
Type

Reference	Array

Allowed
Values

Sun,	Mercury,	Venus,	Earth,	Luna,
Mars,Jupiter,	Saturn,	Uranus,	Neptune,
Pluto

Access set

Default
Value

Earth

Units N/A

Interfaces GUI,	script



Tank ChemicalTank	from	which	the	ChemicalThruster
draws	propellant	from.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Reference	Array

Allowed	Values User	defined	list	of	ChemicalTanks

Access set

Default	Value N/A

Units N/A

Interfaces GUI,	script

V
Deprecated.	X-component	of	the	applied	impulsive	burn
(Delta-V)

Data	Type Real

Allowed	Values Real

Access set,	get

Default	Value 0



Units km/s

Interfaces GUI,	script

VectorFormat
Deprecated.	Allows	you	to	define	the	format	of	the
ImpulsiveBurn	Delta-V	Vector.	This	field	has	no	affect.
The	ImpulsiveBurn	Delta-V	Vector	is	always	given	in
Cartesian	format.

Data	Type Enumeration

Allowed	Values Cartesian,	Spherical

Access set

Default	Value Cartesian

Units N/A

Interfaces script



GUI
The	ImpulsiveBurn	dialog	box	allows	you	to	specify	properties	of	an
ImpulsiveBurn	including	Delta-V	component	values	and	choice	of	Coordinate
System.	If	you	choose	to	model	fuel	loss	associated	with	an	impulsive	burn,	you
must	specify	choice	of	fuel	tank	as	well	as	ISP	value	and	gravitational
acceleration	used	to	calculate	fuel	use.	The	layout	of	the	ImpulsiveBurn	dialog
box	is	shown	below.

The	Origin	and	Axes	fields	are	only	relevant	if	Coordinate	System	is	set	to
Local.	See	the	Remarks	for	more	detail	on	local	coordinate	systems.

If	Decrement	Mass	is	checked,	then	you	can	select	the	desired	ChemicalTank
used	as	the	fuel	supply	for	mass	depletion.



Remarks

Local	Coordinate	Systems

Here,	a	Local	Coordinate	System	is	defined	as	one	that	we	configure	"locally"
using	the	ImpulsiveBurn	resource	interface	as	opposed	to	defining	a	coordinate
system	using	the	Coordinate	Systems	folder	in	the	Resources	Tree.

To	configure	a	Local	Coordinate	System,	you	must	specify	the	coordinate
system	of	the	input	Delta-V	vector,	Element1-3.	If	you	choose	a	local
Coordinate	System,	the	four	choices	available,	as	given	by	the	Axes	sub-field,
are	VNB,	LVLH,	MJ2000Eq,	and	SpacecraftBody.	VNB	or	Velocity-Normal-
Binormal	is	a	non-inertial	coordinate	system	based	upon	the	motion	of	the
spacecraft	with	respect	to	the	Origin	sub-field.	For	example,	if	the	Origin	is
chosen	as	Earth,	then	the	X-axis	of	this	coordinate	system	is	the	along	the
velocity	of	the	spacecraft	with	respect	to	the	Earth,	the	Y-axis	is	along	the
instantaneous	orbit	normal	(with	respect	to	the	Earth)	of	the	spacecraft,	and	the
Z-axis	points	away	from	the	Earth	as	much	as	possible	while	remaining
orthogonal	to	the	other	two	axes,	completing	the	right-handed	set.

Similarly,	Local	Vertical	Local	Horizontal	or	LVLH	is	a	non-inertial	coordinate
system	based	upon	the	motion	of	the	spacecraft	with	respect	to	the	body
specified	in	the	Origin	sub-field.	If	you	choose	Earth	as	the	origin,	then	the	X-
axis	of	this	coordinate	system	points	from	the	center	of	the	Earth	to	the
spacecraft,	the	Z-axis	is	along	the	instantaneous	orbit	normal	(with	respect	to	the
Earth)	of	the	spacecraft,	and	the	Y-axis	completes	the	right-handed	set.	For
typical	bound	orbits,	the	Y-axis	is	approximately	aligned	with	the	velocity
vector.	In	the	event	of	a	perfectly	circular	orbit,	the	Y	axis	is	exactly	along	the
velocity	vector.

MJ2000Eq	is	the	J2000-based	Earth-centered	Earth	mean	equator	inertial
Coordinate	System.	Note	that	the	Origin	sub-field	is	not	needed	to	define	this
coordinate	system.

SpacecraftBody	is	the	coordinate	system	used	by	the	spacecraft.	Since	the	thrust
is	applied	in	this	system,	GMAT	uses	the	attitude	of	the	spacecraft,	a	spacecraft
attribute,	to	determine	the	inertial	thrust	direction.	Note	that	the	Origin	sub-field
is	not	needed	to	define	this	coordinate	system.



Deprecated	Field	Names	for	an	ImpulsiveBurn

Note	that	the	standard	method,	as	shown	below,	for	specifying	the	components
of	an	ImpulsiveBurn	is	to	use	the	Element1,	Element2,	and	Element3	field
names.

Create	ImpulsiveBurn	DefaultIB

DefaultIB.Element1	=	-3

DefaultIB.Element2	=	7

DefaultIB.Element3	=	-2				

For	this	current	version	of	GMAT,	you	may	also	use	the	field	names	V,	N,	and	B
in	place	of	Element1,	Element2,	and	Element3,	respectively.	The	commands
below	are	equivalent	to	the	commands	above.

Create	ImpulsiveBurn	DefaultIB

DefaultIB.V	=	-3

DefaultIB.N	=	7

DefaultIB.B	=	-2

It	is	important	to	note	that	the	V,	N,	B	field	names	do	not	necessarily	correspond
to	some	Velocity,	Normal,	Binormal	coordinate	system.	The	coordinate	system
of	any	ImpulsiveBurn	is	always	specified	by	the	CoordinateSystem,	Origin,
and	Axes	fields.	Because	of	the	confusion	that	the	V,	N,	B	field	names	can
cause,	their	use	will	not	be	allowed	in	future	versions	of	GMAT.	If	you	use	the
V,	N,	B	field	names	in	this	version	of	GMAT,	you	will	receive	a	warning	to	this
affect.

Backwards-propagated	Impulsive	maneuvers	defined
using	the	spacecraft	velocity

Examples	of	axes	defined	using	the	spacecraft	velocity	are	the	VNB	and	LVLH
axes	discussed	above	as	well	as	some	user-defined	axes.	The	behavior	when
applying	an	impulsive	maneuver	using	these	types	of	axes	during	a	backwards-
propagation	is	subtle	and	requires	some	explanation.	In	the	examples	that	follow,
we	will	focus	our	discussion	on	a	VNB	maneuver.

As	will	be	shown	in	the	script	samples	below,	an	impulsive	maneuver	is	applied
during	a	backwards	propagation	using	the	‘BackProp’	keyword.	The	maneuver
components	that	you	specify	for	a	backwards	propagation	are	used	to	calculate



the	components	of	the	maneuver	actually	applied.	Refer	to	the	script	sample
below	where	a	backwards-propagated	impulsive	maneuver	is	followed	by	the
same	maneuver	using	a	normal	formal	propagation.	The	impulsive	maneuver	is
defined	so	that	the	velocity	of	the	spacecraft	is	unchanged	after	the	script	is	run.

Create	Spacecraft	Sat;

Create	ImpulsiveBurn	myImpulsiveBurn;

GMAT	myImpulsiveBurn.CoordinateSystem	=	Local;

GMAT	myImpulsiveBurn.Origin	=	Earth;

GMAT	myImpulsiveBurn.Axes	=	VNB;

myImpulsiveBurn.Element1	=	3.1

myImpulsiveBurn.Element2	=	-0.1

myImpulsiveBurn.Element3	=	0.2

BeginMissionSequence

Maneuver	BackProp	myImpulsiveBurn(Sat);

Maneuver	myImpulsiveBurn(Sat);

To	calculate	the	actual	maneuver	components	applied,	GMAT,	internally,	uses	an
iterative	calculation	method.	This	iteration	method	works	best	for	maneuver
magnitudes	that	are	not	an	appreciable	fraction	of	the	overall	spacecraft	velocity.
In	addition,	for	VNB	maneuvers,	the	iteration	method	works	best	for	maneuvers
where	the	‘N’	and	‘B’	component	magnitudes	are	relatively	small	as	compared	to
the	'V'	component	magnitude.	If	the	GMAT	internal	iterative	method	fails	to
converge,	a	warning	message	will	be	generated.	Currently,	there	is	not	an	easy
way	for	the	user	to	report	out	the	actual	applied	back-propagated	maneuver
components.	(The	maneuver	report	outputs	the	user	supplied	VNB	coordinates).
After	the	back-propagated	maneuver	has	been	applied,	however,	we	do	know
what	the	components	of	the	maneuver	are.	If	the	VNB	maneuver	has	user-
supplied	components,	(Vx,	Vy,	Vz),	then	after	the	back-propagated	maneuver
has	been	applied,	the	VNB	components	of	the	maneuver	are	(-Vx,	-Vy,	-Vz).

Consider	the	script	sample	below	where	the	‘N’	and	‘B’	components	of	the
maneuver	are	zero	and	the	‘V’	component	is	+5	km/s.	If	the	spacecraft	velocity
is	(7,0,0)	km/s	in	J2000	inertial	coordinates,	then	after	the	backwards-propagated
impulsive	maneuver,	the	velocity	of	the	spacecraft	will	be	(2,0,0)	km/s.

Create	Spacecraft	Sat;

Create	ImpulsiveBurn	myImpulsiveBurn;

GMAT	myImpulsiveBurn.CoordinateSystem	=	Local;

GMAT	myImpulsiveBurn.Origin	=	Earth;

GMAT	myImpulsiveBurn.Axes	=	VNB;



myImpulsiveBurn.Element1	=	5

myImpulsiveBurn.Element2	=	0.0

myImpulsiveBurn.Element3	=	0.0

BeginMissionSequence

Maneuver	BackProp	myImpulsiveBurn(Sat);

Finally,	we	note	that	when	mass	change	is	modeled	for	a	backwards-propagated
impulsive	maneuver,	mass	is	added	to	the	tank.	This	is	done	so	there	is	no
change	in	mass	when	a	backwards-propagated	impulsive	maneuver	is	followed
by	the	same	maneuver	using	a	normal	forward	propagation.

Interactions

Resource Description

Spacecraft
resource Must	be	created	in	order	to	apply	any	ImpulsiveBurn

ChemicalTank
resource If	you	want	to	model	mass	depletion	for	an	ImpulsiveBurn,

attach	a	ChemicalTank	to	the	maneuvered	Spacecraft	as	a
source	of	fuel	mass.

Maneuver
command Must	use	the	Maneuver	command	to	apply	an

ImpulsiveBurn	to	a	Spacecraft.

Vary
command If	you	want	to	allow	the	ImpulsiveBurn	components	to	vary

in	order	to	achieve	some	goal,	then	the	Vary	command,	as	part
of	a	Target	or	Optimize	command	sequence,	must	be	used.



Examples
Create	a	default	ChemicalTank	and	an	ImpulsiveBurn	that	allows	for	fuel
depletion,	assign	the	ImpulsiveBurn	the	default	ChemicalTank,	attach	the
ChemicalTank	to	a	Spacecraft,	and	apply	the	ImpulsiveBurn	to	the
Spacecraft.

%		Create	the	ChemicalTank	Resource

Create	ChemicalTank	FuelTank1

FuelTank1.AllowNegativeFuelMass	=	false

FuelTank1.FuelMass	=	756

FuelTank1.Pressure	=	1500

FuelTank1.Temperature	=	20

FuelTank1.RefTemperature	=	20

FuelTank1.Volume	=	0.75

FuelTank1.FuelDensity	=	1260

FuelTank1.PressureModel	=	PressureRegulated

Create	ImpulsiveBurn	DefaultIB

DefaultIB.CoordinateSystem	=	Local

DefaultIB.Origin	=	Earth

DefaultIB.Axes	=	VNB

DefaultIB.Element1	=	0.001

DefaultIB.Element2	=	0

DefaultIB.Element3	=	0

DefaultIB.DecrementMass	=	true

DefaultIB.Tank	=	{FuelTank1}

DefaultIB.Isp	=	300

DefaultIB.GravitationalAccel	=	9.810000000000001

%		Add	the	the	ChemicalTank	to	a	Spacecraft

Create	Spacecraft	DefaultSC

DefaultSC.Tanks	=	{FuelTank1}

BeginMissionSequence

Maneuver	DefaultIB(DefaultSC)	



LibrationPoint
LibrationPoint	—	An	equilibrium	point	in	the	circular,	restricted	3-body	problem



Description
A	LibrationPoint,	also	called	a	Lagrange	point,	is	an	equilibrium	point	in	the
circular	restricted	three-body	problem	(CRTBP).	There	are	five	libration	points,
three	of	which	are	unstable	in	the	CRTBP	sense,	and	two	that	are	stable.	See	the
discussion	below	for	a	detailed	explanation	of	the	different	libration	points	and
for	examples	configuring	GMAT	for	common	libration	point	regimes.	This
resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	Barycenter,	Color



Fields

Field Description

OrbitColor
Allows	you	to	set	available	colors	on	user-defined
LibrationPoint	orbits.	The	libration	point	orbits	are	drawn	using
the	3D	OrbitView	graphics	displays.	Colors	on	a
LibrationPoint	object	can	be	set	through	a	string	or	an	integer
array.	For	example:	Setting	a	libration	point's	orbit	color	to	red
can	be	done	in	the	following	two	ways:
LibrationPoint.OrbitColor	=	Red	or
LibrationPoint.OrbitColor	=	[255	0	0].	This	field	can	be
modified	in	the	Mission	Sequence	as	well..

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit	Color	Picker	in
GUI.	Valid	predefined	color	name	or	RGB	triplet
value	between	0	and	255.

Access set

Default
Value

GreenYellow

Units N/A

Interfaces GUI,	script



Point
The	libration	point	index.

Data	Type String

Allowed	Values L1,	L2,	L3,	L4,	or	L5

Access set

Default	Value L1

Units N/A

Interfaces GUI,	script

Primary
The	primary	body	or	barycenter.

Data
Type

String

Allowed
Values

CelestialBody	or	Barycenter.	Primary	cannot	be
SolarSystemBarycenter	and	Primary	cannot	be
the	same	as	Secondary.

Access set



Default
Value

Sun

Units N/A

Interfaces GUI,	script

Secondary
The	secondary	body	or	barycenter.

Secondary String

Allowed
Values

CelestialBody	or	Barycenter.	Secondary	cannot
be	SolarSystemBarycenter	and	Primary	cannot
be	the	same	as	Secondary.

Access set

Default
Value

Earth

Units N/A

Interfaces GUI,	script

TargetColor
Allows	you	to	set	available	colors	on	LibrationPoint	object's
perturbing	orbital	trajectories	that	are	drawn	during	iterative
processes	such	as	Differential	Correction	or	Optimization.	The



target	color	can	be	identified	through	a	string	or	an	integer	array.
For	example:	Setting	a	libration	point's	perturbing	trajectory
color	to	yellow	can	be	done	in	following	two	ways:
LibrationPoint.TargetColor	=	Yellow	or
LibrationPoint.TargetColor	=	[255	255	0].	This	field	can
be	modified	in	the	Mission	Sequence	as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit	Color	Picker	in
GUI.	Valid	predefined	color	name	or	RGB	triplet
value	between	0	and	255.

Access set

Default
Value

DarkGray

Units N/A

Interfaces GUI,	script



GUI

The	LibrationPoint	dialog	box	allows	you	to	select	the	Primary	Body,
Secondary	Body,	and	the	libration	point	index.	You	can	select	from	celestial
bodies	and	barycenters.	You	cannot	choose	the	SolarSystemBarycenter	as
either	the	Primary	or	Secondary	and	the	Primary	and	Secondary	cannot	be	the
same	object.



Remarks
Overview	of	Libration	Point	Geometry

A	LibrationPoint,	also	called	a	Lagrange	point,	is	an	equilibrium	point	in	the
Circular	Restricted	Three	Body	Problem	(CRTBP).	The	definitions	for	the
libration	points	used	in	GMAT	are	illustrated	in	the	figure	below	where	the
Primary	and	Secondary	bodies	are	shown	in	a	rotating	frame	defined	with	the
x-axis	pointing	from	the	Primary	to	the	Secondary.	GMAT	is	configured	for	the
full	ephemeris	problem	and	computes	the	location	of	the	libration	points	by
assuming	that	at	a	given	instant	in	time,	the	CRTBP	theory	developed	by
Lagrange	and	Szebehely	can	be	used	to	compute	the	location	of	the	libration
points	using	the	locations	of	the	primary	and	secondary	from	the	JPL
ephemerides.	The	three	collinear	points	(L1,	L2,	and	L3)	are	unstable	(even	in
the	CRTBP)	and	the	triangular	points	(L4,	and	L5)	are	stable	in	CRTBP.

Configuring	a	Libration	Point

GMAT	allows	you	to	define	the	Primary	and/or	Secondary	as	a	CelestialBody
or	Barycenter	(except	SolarSystemBarycenter).	This	allows	you	to	set	the
Primary	as	the	Sun,	and	the	Secondary	as	the	Earth-Moon	barycenter	for
modelling	Sun-Earth-Moon	libration	points.	See	the	examples	below	for	details.

Setting	Colors	On	Libration	Point	Orbits



GMAT	allows	you	to	assign	colors	to	libration	point	orbits	that	are	drawn	using
the	OrbitView	graphics	display	windows.	GMAT	also	allows	you	to	assign
colors	to	perturbing	libration	point	orbital	trajectories	which	are	drawn	during
iterative	processes	such	as	differential	correction	or	optimization.	The
LibrationPoint	object's	OrbitColor	and	TargetColor	fields	are	used	to	assign
colors	to	both	orbital	and	perturbing	trajectories.	See	the	Fields	section	to	learn
more	about	these	two	fields.	Also	see	Color	documentation	for	discussion	and
examples	on	how	to	set	colors	on	a	libration	point	orbit.



Examples
Create	and	use	an	Earth-Moon	LibrationPoint.

%		Create	the	libration	point	and	rotating	libration	point	coordinate	system

Create	LibrationPoint	EarthMoonL2

EarthMoonL2.Primary			=	Earth

EarthMoonL2.Secondary	=	Luna

EarthMoonL2.Point					=	L2

Create	CoordinateSystem	EarthMoonRotLibCoord

EarthMoonRotLibCoord.Origin				=	EarthMoonL2

EarthMoonRotLibCoord.Axes						=	ObjectReferenced

EarthMoonRotLibCoord.XAxis					=	R

EarthMoonRotLibCoord.ZAxis					=	N

EarthMoonRotLibCoord.Primary			=	Earth

EarthMoonRotLibCoord.Secondary	=	Luna

%		Configure	the	spacecraft	and	propagator

Create	Spacecraft	aSat

aSat.DateFormat							=	TAIModJulian

aSat.Epoch												=	'25220.0006220895'

aSat.CoordinateSystem	=	EarthMoonRotLibCoord

aSat.DisplayStateType	=	Cartesian

aSat.X		=	9999.752137149568

aSat.Y		=	1.774296833900735e-007

aSat.Z		=	21000.02640446094

aSat.VX	=	-1.497748388797418e-005

aSat.VY	=	-0.2087816321971509

aSat.VZ	=	-5.42471673237177e-006

Create	ForceModel	EarthMoonL2Prop_ForceModel

EarthMoonL2Prop_ForceModel.PointMasses	=	{Earth,	Luna,	Sun}

Create	Propagator	EarthMoonL2Prop

EarthMoonL2Prop.FM	=	EarthMoonL2Prop_ForceModel

%		Create	the	orbit	view

Create	OrbitView	ViewEarthMoonRot

ViewEarthMoonRot.Add																=	{Earth,	Luna,	Sun,...

																																												aSat,	EarthMoonL2}

ViewEarthMoonRot.CoordinateSystem			=	EarthMoonRotLibCoord

ViewEarthMoonRot.ViewPointReference	=	EarthMoonL2

ViewEarthMoonRot.ViewDirection						=	EarthMoonL2

ViewEarthMoonRot.ViewScaleFactor				=	5



Create	Variable	I

BeginMissionSequence

%	Prop	for	3	xz-plane	crossings

For	I	=	1:3

		Propagate	'Prop	to	Y	Crossing'	EarthMoonL2Prop(aSat)	...

																						{aSat.EarthMoonRotLibCoord.Y	=	0}

EndFor

Create	and	use	a	Sun,	Earth-Moon	LibrationPoint.

%		Create	the	Earth-Moon	Barycenter	and	Libration	Point

Create	Barycenter	EarthMoonBary

EarthMoonBary.BodyNames	=	{Earth,Luna}

Create	LibrationPoint	SunEarthMoonL1

SunEarthMoonL1.Primary			=	Sun

SunEarthMoonL1.Secondary	=	EarthMoonBary

SunEarthMoonL1.Point					=	L1

%		Create	the	coordinate	system

Create	CoordinateSystem	RotatingSEML1Coord

RotatingSEML1Coord.Origin				=	SunEarthMoonL1

RotatingSEML1Coord.Axes						=	ObjectReferenced

RotatingSEML1Coord.XAxis					=	R

RotatingSEML1Coord.ZAxis					=	N

RotatingSEML1Coord.Primary			=	Sun

RotatingSEML1Coord.Secondary	=	EarthMoonBary

%		Create	the	spacecraft	and	propagator

Create	Spacecraft	aSpacecraft

aSpacecraft.DateFormat							=	UTCGregorian

aSpacecraft.Epoch												=	'09	Dec	2005	13:00:00.000'

aSpacecraft.CoordinateSystem	=	RotatingSEML1Coord

aSpacecraft.X		=	-32197.88223741966

aSpacecraft.Y		=	211529.1500044117

aSpacecraft.Z		=	44708.57017366499

aSpacecraft.VX	=	0.03209516489451751

aSpacecraft.VY	=	0.06100386504053736

aSpacecraft.VZ	=	0.0550442738917212

Create	Propagator	aPropagator

aPropagator.FM											=	aForceModel

aPropagator.MaxStep	=	86400

Create	ForceModel	aForceModel



aForceModel.PointMasses	=	{Earth,Sun,Luna}

%	Create	a	3-D	graphic

Create	OrbitView	anOrbitView

anOrbitView.Add																					=	{aSpacecraft,		Earth,	Sun,	Luna}

anOrbitView.CoordinateSystem								=	RotatingSEML1Coord

anOrbitView.ViewPointReference						=	SunEarthMoonL1

anOrbitView.ViewPointVector									=	[-1500000	0	0	]

anOrbitView.ViewDirection											=	SunEarthMoonL1

anOrbitView.ViewUpCoordinateSystem	=	RotatingSEML1Coord

anOrbitView.Axes																				=	Off

anOrbitView.XYPlane																	=	Off

BeginMissionSequence

											

Propagate	aPropagator(aSpacecraft,	{aSpacecraft.ElapsedDays	=	180})



MatlabFunction
MatlabFunction	—	Declaration	of	an	external	MATLAB	function



Description
The	MatlabFunction	resource	declares	to	GMAT	that	the	name	given	refers	to
an	existing	external	function	in	the	MATLAB	language.	This	function	can	be
called	in	the	Mission	Sequence	like	a	built-in	function,	with	some	limitations.
See	the	CallMatlabFunction	reference	for	details.	Both	user-created	functions
and	built-in	functions	(like	cos	or	path)	are	supported.

GMAT	supports	passing	data	to	and	from	MATLAB	through	the	function.	It
requires	that	a	supported	and	properly	configured	version	of	MATLAB	exist	on
the	system.	See	the	MATLAB	Interface	documentation	for	general	details	on	the
interface.

See	Also:	CallMatlabFunction,	MATLAB	Interface



Fields

Field Description

FunctionPath
Paths	to	add	to	the	MATLAB	search	path	when	the	associated
function	is	called.	Separate	multiple	paths	with	semicolons	(on
Windows)	or	colons	(on	other	platforms).

Data	Type String

Allowed
Values

Valid	file	path(s)

Access set,	get

Default	Value MATLAB_FUNCTION_PATH	properties	in	the
startup	file

Units N/A

Interfaces GUI,	script



GUI

The	MatlabFunction	GUI	window	is	very	simple;	it	has	a	single	file	input	box
for	the	function	path,	and	a	Browse	button	that	lets	you	graphically	select	the
path.



Remarks

Search	Path

When	a	function	declared	as	a	MatlabFunction	is	called,	GMAT	starts
MATLAB	in	the	background	with	a	custom,	configurable	search	path.	MATLAB
then	searches	for	the	named	function	in	this	search	path.	The	search	is	case-
sensitive,	so	the	name	of	the	function	name	and	the	MatlabFunction	resource
must	be	identical.

The	search	path	consists	of	the	following	components,	in	order:

1.	 FunctionPath	field	of	the	associated	MatlabFunction	resource	(default:
empty)

2.	 MATLAB_FUNCTION_PATH	entries	in	the	GMAT	startup	file	(default:
GMAT\userfunctions\matlab)

3.	 MATLAB	search	path	(returned	by	the	MATLAB	path()	function)

If	multiple	MATLAB	functions	are	called	within	a	run,	the	FunctionPath	fields
for	each	are	prepended	to	the	search	path	at	the	time	of	the	function	call.

Multiple	paths	can	be	combined	in	the	FunctionPath	field	by	separating	the
paths	with	a	semicolon	(on	Windows)	or	a	colon	(on	Mac	OS	X	and	Linux).

Working	Directory

When	MATLAB	starts	in	the	background,	its	working	directory	is	set	to	the
GMAT	bin	directory.



Examples
Call	a	simple	built-in	MATLAB	function:

Create	MatlabFunction	sinh

Create	Variable	x	y

BeginMissionSequence

x	=	1

[y]	=	sinh(x)

Call	an	external	custom	MATLAB	function:

Create	Spacecraft	aSat

Create	ImpulsiveBurn	aBurn

Create	Propagator	aProp

Create	MatlabFunction	CalcHohmann

CalcHohmann.FunctionPath	=	'C:\path\to\functions'

Create	Variable	a_target	mu	dv1	dv2

mu	=	398600.4415

BeginMissionSequence

%	calculate	burns	for	circular	Hohmann	transfer	(example)

[dv1,	dv2]	=	CalcHohmann(aSat.SMA,	a_target,	mu)

%	perform	first	maneuver

aBurn.Element1	=	dv1

Maneuver	aBurn(aSat)

%	propagate	to	apoapsis

Propagate	aProp(aSat)	{aSat.Apoapsis}

%	perform	second	burn

aBurn.Element1	=	dv2

Maneuver	aBurn(aSat)

Return	the	MATLAB	search	path	and	working	directory:

Create	MatlabFunction	path	pwd

Create	String	pathStr	pwdStr



Create	ReportFile	aReport

BeginMissionSequence

[pathStr]	=	path

[pwdStr]	=	pwd

Report	aReport	pathStr

Report	aReport	pwdStr



NuclearPowerSystem
NuclearPowerSystem	—	A	nuclear	power	system



Description
The	NuclearPowerSystem	models	a	nuclear	power	system	including	power
generated	as	function	of	time	and	distance	from	the	sun.

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modelling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion

See	Also	ElectricTank,	ElectricThruster,	SolarPowerSystem



Fields

Field Description

AnnualDecayRate
The	annual	decay	rate	of	the	power	system.

Data	Type Real

Allowed	Values 0	<=Real	<=	100

Access set

Default	Value 5

Units Percent/Year

Interfaces GUI,	script

BusCoeff1
Coefficient	of	power	required	by	spacecraft	bus.

Data	Type Real

Allowed	Values Real

Access set



Default	Value 0.3

Units kW

Interfaces GUI,	script

BusCoeff2
Coefficient	of	power	required	by	spacecraft	bus.

Data	Type Real

Allowed	Values Real

Access set

Default	Value 0

Units kW*AU

Interfaces GUI,	script

BusCoeff3
Coefficient	of	power	required	by	spacecraft	bus.

Data	Type Real



Allowed	Values Real

Access set

Default	Value 0

Units kw*AU2

Interfaces GUI,	script

EpochFormat
The	epoch	format	for	the	PowerInitialEpoch	field.

Data	Type String

Allowed	Values Valid	Epoch	format.

Access set

Default	Value UTCGregorian

Units N/A

Interfaces GUI,	script



InitialEpoch The	initial	epoch	of	the	system	used	to	define	power
system	elapsed	lifetime.

Data
Type

String

Allowed
Values

Valid	GMAT	Epoch	consistent	with
PowerInitialEpochFormat

Access set

Default
Value

01	Jan	2000	11:59:27.966

Units N/A

Interfaces GUI,	script

InitialMaxPower
The	maximum	power	generated	at	the
PowerInitialEpoch.

Data	Type Real

Allowed	Values Real	>=	0

Access set



Default	Value 1.2

Units kW

Interfaces GUI,	script

Margin
The	required	margin	between	power	left	after	power
bus,	and	power	used	by	the	propulsion	system.

Data	Type Real

Allowed	Values 0	<=Real	<=	100

Access set

Default	Value 5

Units Percent

Interfaces GUI,	script



GUI
The	GUI	for	the	NuclearPowerSystem	is	shown	below.



Remarks

Computation	of	Base	Power

The	NuclearPowerSystem	models	power	degradation	as	a	function	of	time.	You
must	provide	a	power	system	initial	epoch,	the	power	generated	at	that	epoch,
and	an	annual	power	decay	rate.	Additionally,	the	AnnualDecayRate	field
models	the	power	degredation	on	a	per	year	basis.	The	base	power	is	computed
using

where	"tau"	is	the	power	AnnualDecayRate,	P_0	is	InitialMaxPower,	and
"delta	t"	is	the	elapsed	time	between	the	simulation	epoch	and	InitialEpoch.

Computation	of	Bus	Power

The	power	required	by	the	spacecraft	bus	for	all	subsystems	other	than	the
propulsion	system	is	computed	using

where	A_Bus,	B_Bus,	and	C_Bus	are	BusCoeff1,	BusCoeff2,	and	BusCoeff3
respectively	and	r	is	the	distance	from	the	Sun	in	Au.

Computation	of	Power	Available	for	Propulsion

Total	power	is	compute	using

Thrust	power	available	for	electric	propulsion	is	finaly	computed	using



Where	"delta	M"	is	power	Margin.



Examples
Create	a	NuclearPowerSystem	and	attach	it	to	a	Spacecraft.

Create	Spacecraft	DefaultSC

DefaultSC.PowerSystem	=	NuclearPowerSystem1

Create	NuclearPowerSystem	NuclearPowerSystem1

BeginMissionSequence

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modeling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion.



OrbitView
OrbitView	—	A	user-defined	resource	that	plots	3-Dimensional	trajectories



Description
The	OrbitView	resource	allows	you	to	plot	trajectories	of	a	spacecraft	or	a
celestial	body.	GMAT	also	allows	you	to	plot	trajectories	associated	with
multiple	spacecrafts	or	celestial	bodies.	You	can	create	multiple	OrbitView
resources	by	using	either	the	GUI	or	script	interface	of	GMAT.	OrbitView	plots
also	come	with	multiple	options	that	allow	you	to	customize	the	view	of
spacecraft’s	trajectories.	See	the	Fields	section	below	for	detailed	discussion	on
available	plotting	and	drawing	options.

GMAT	also	provides	the	option	of	when	to	start	and	stop	plotting	spacecraft’s
trajectories	to	an	OrbitView	resource	through	the	Toggle	On/Off	command.	See
the	Remarks	section	below	for	detailed	discussion	of	the	interaction	between	an
OrbitView	resource	and	the	Toggle	command.	GMAT’s	Spacecraft,
SolarSystem	and	OrbitView	resources	also	interact	with	each	other	throughout
the	entire	mission	duration.	Discussion	of	the	interaction	between	these
resources	is	also	mentioned	in	the	Remarks	section.

See	Also:	Toggle,	Spacecraft,	SolarSystem,	CoordinateSystem,	Color



Fields

Field Description

Add
This	field	allows	you	to	add	a	Spacecraft,
Celestial	body,	Libration	Point,	or	Barycenter
resource	to	a	plot.	When	creating	a	plot,	the
Earth	is	added	as	a	default	body	and	may	be
removed	at	any	time.	You	can	add	a	Spacecraft,
Celestial	body,	Libration	Point,	or	Barycenter
to	a	plot	by	using	the	name	used	to	create	the
resource.	The	GUI's	Selected	field	is	the
equivalent	of	the	script's	Add	field.	In	the	event
of	no	Add	command	or	no	resources	in	the
Selected	field,	GMAT	should	run	without	the
OrbitView	plot	and	a	warning	message	will	be
displayed	in	the	message	window.	The	following
warning	message	is	sufficient:	The	OrbitView
named	"DefaultOrbitView"	will	be	turned	off.	No
SpacePoints	were	added	to	plot.	This	field	cannot
be	modified	in	the	Mission	Sequence.

Data
Type

Reference	Array

Allowed
Values

Spacecraft,	CelestialBody,
LibrationPoint,	Barycenter

Access set

Default
Value

DefaultSC,	Earth



Units N/A

Interfaces GUI,	script

Axes
Allows	you	to	draw	the	Cartesian	axis	system
associated	with	the	coordinate	system	selected
under	the	CoordinateSystem	field	of	an
OrbitView	plot.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value On

Units N/A

Interfaces GUI,	script

EclipticPlane
Allows	you	to	draw	a	grid	representing	the
Ecliptic	Plane	in	an	OrbitView	plot.	This	field
cannot	be	modified	in	the	Mission	Sequence.



Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value Off

Units N/A

Interfaces GUI,	script

CoordinateSystem
Allows	you	to	select	which	coordinate	system	to
use	to	draw	the	plot	data.	A	coordinate	system	is
defined	as	an	origin	and	an	axis	system.	The
CoordinateSystem	field	allows	you	to	determine
the	origin	and	axis	system	of	an	OrbitView	plot.
See	the	CoordinateSystem	resource	fields	for
information	of	defining	different	types	of
coordinate	systems.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type String

Allowed	Values CoordinateSystem	resource

Access set



Default	Value EarthMJ2000Eq

Units N/A

Interfaces GUI,	script

DataCollectFrequency
Allows	you	to	define	how	data	is	collected	for
plotting.	It	is	often	inefficient	to	draw	every
ephemeris	point	associated	with	a	trajectory.
Often,	drawing	a	smaller	subset	of	the	data	still
results	in	smooth	trajectory	plots,	while	executing
more	quickly.	The	DataCollectFrequency	is	an
integer	that	represents	how	often	to	collect	data
and	store	for	plotting.	If	DataCollectFrequency
is	set	to	10,	then	data	is	collected	every	10
integration	steps.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Integer

Allowed	Values Integer	≥	1

Access set

Default	Value 1

Units N/A



Interfaces GUI,	script

DrawObject
The	DrawObject	field	allows	you	the	option	of
displaying	Spacecraft	or	Celestial	resources	on
the	OrbitView	plot.	This	field	cannot	be	modified
in	the	Mission	Sequence.

Data	Type Boolean	array

Allowed	Values true,	false

Access set

Default	Value [true	true]

Units N/A

Interfaces GUI,	script

EnableConstellations
Allows	you	the	option	of	displaying	star
constellations	on	the	OrbitView	Plot.	This	field
cannot	be	modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values On,	Off



Access set

Default	Value On

Units N/A

Interfaces GUI,	script

EnableStars
This	field	gives	you	the	option	of	displaying	stars
on	the	OrbitView	Plot.	When	the	EnableStars
field	is	turned	off,	then	EnableConstellations
field	is	automatically	diabled.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value On

Units N/A

Interfaces GUI,	script



Grid
Allows	you	to	draw	a	grid	representing	the
longitude	and	latitude	lines	on	the	celestial	bodies
added	to	an	OrbitView	plot.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value Off

Units N/A

Interfaces GUI,	script

Maximized
Allows	you	to	maximize	the	OrbitView	plot
window.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type Boolean

Allowed	Values True,	False



Access set

Default	Value false

Units N/A

Interfaces script

NumPointsToRedraw
When	NumPointsToRedraw	field	is	set	to	zero,
all	ephemeris	points	are	drawn.	When
NumPointsToRedraw	is	set	to	a	positive	integer,
say	10	for	example,	only	the	last	10	collected	data
points	are	drawn.	See	DataCollectFrequency	for
explanation	of	how	data	is	collected	for	an
OrbitView	plot.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Integer

Allowed	Values Integer	≥	1

Access set

Default	Value 0

Units N/A



Interfaces GUI,	script

RelativeZOrder
Allows	you	to	select	which	OrbitView	window	to
display	first	on	the	screen.	The	OrbitViewPlot
with	lowest	RelativeZOrder	value	will	be
displayed	last	while	OrbitViewPlot	with	highest
RelativeZOrder	value	will	be	displayed	first.
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Integer

Allowed	Values Integer	≥	0

Access set

Default	Value 0

Units N/A

Interfaces script

ShowPlot
Allows	you	to	turn	off	a	plot	for	a	particular	run,
without	deleting	the	plot,	or	removing	it	from	the
script.	If	you	select	true,	then	the	plot	will	be
shown.	If	you	select	false,	then	the	plot	will	not
be	shown.	This	field	cannot	be	modified	in	the
Mission	Sequence.



Data	Type Boolean

Allowed	Values True,	False

Access set

Default	Value True

Units N/A

Interfaces GUI,	script

ShowLabels
Allows	you	to	turn	on	or	off	spacecraft	and
celestial	body	Object	labels.	If	you	select	true,
then	spacecraft	and	celestial	body	object	labels
will	show	up	in	orbit	view	plot.	If	you	select	false,
then	spacecraft	and	celestial	body	labels	will	not
be	shown	in	the	orbit	plot.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values True,	False

Access set



Default	Value True

Units N/A

Interfaces GUI,	script

Size
Allows	you	to	control	the	display	size	of
OrbitViewPlot	window.	First	value	in	[0	0]
matrix	controls	horizonal	size	and	second	value
controls	vertical	size	of	OrbitViewPlot	display
window.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number

Access set

Default	Value [0	0]

Units N/A

Interfaces script

SolverIterations
This	field	determines	whether	or	not	data



associated	with	perturbed	trajectories	during	a
solver	(Targeter,	Optimize)	sequence	is	plotted
to	OrbitView.	When	SolverIterations	is	set	to
All,	all	perturbations/iterations	are	plotted	to	an
OrbitView	plot.	When	SolverIterations	is	set	to
Current,	only	current	solution	is	plotted	to	an
OrbitView.	When	SolverIterations	is	set	to
None,	this	shows	only	final	solution	after	the	end
of	an	iterative	process	and	draws	only	final
trajectory	to	an	OrbitView	plot.

Data	Type Enumeration

Allowed	Values All,	Current,	None

Access set

Default	Value Current

Units N/A

Interfaces GUI,	script

StarCount
Allows	you	to	enter	the	number	of	stars	that	need
to	be	displayed	in	an	OrbitView	plot.	This	field
cannot	be	modified	in	the	Mission	Sequence.

Data	Type Integer



Allowed	Values Integer	≥	1

Access set

Default	Value 7000

Units N/A

Interfaces GUI,	script

SunLine
Allows	you	to	draw	a	line	that	starts	at	the	center
of	central	body	and	points	towards	the	Sun.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value Off

Units N/A

Interfaces GUI,	script



UpdatePlotFrequency
This	field	lets	you	specify	how	often	to	update	an
OrbitView	plot	is	updated	with	new	data
collected	during	the	process	of	propagating
spacecraft	and	running	a	mission.	Data	is
collected	for	a	plot	according	to	the	value	defined
by	DataCollectFrequency.	An	OrbitView	plot	is
updated	with	the	new	data,	according	to	the	value
set	in	UpdatePlotFrequency.	If
UpdatePlotFrequency	is	set	to	10	and
DataCollectFrequency	is	set	to	2,	then	the	plot	is
updated	with	new	data	every	20	(10*2)
integration	steps.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Integer

Allowed	Values Integer	≥	1

Access set

Default	Value 50

Units N/A

Interfaces GUI,	script

UpperLeft
Allows	you	to	pan	the	OrbitView	plot	window	in
any	direction.	First	value	in	[0	0]	matrix	helps	to
pan	the	OrbitView	window	horizontally	and



second	value	helps	to	pan	the	window	vertically.
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number

Access set

Default	Value [0	0]

Units N/A

Interfaces script

UseInitialView
This	field	lets	you	control	the	view	of	an
OrbitView	plot	between	multiple	runs	of	a
mission	sequence.	The	first	time	a	specific
OrbitView	plot	is	created,	GMAT	will
automatically	use	the	view	as	defined	by	the
fields	associated	with	View	Definition,	View	Up
Direction,	and	View	Option.	However,	if	you
change	the	view	using	the	mouse,	GMAT	will
retain	this	view	upon	rerunning	the	mission	as
long	as	UseInitialView	is	set	to	false.	If
UseInitialView	is	set	to	true,	the	view	for	an
OrbitView	plot	will	be	returned	to	the	view
defined	by	the	initial	settings.	This	field	cannot	be
modified	in	the	Mission	Sequence.



Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value On

Units N/A

Interfaces GUI,	script

ViewDirection
Allows	you	to	select	the	direction	of	view	in	an
OrbitView	plot.	You	can	specify	the	view
direction	by	choosing	a	resource	to	point	at	such
as	a	Spacecraft,	Celestial	body,	Libration
Point,	or	Barycenter.	Alternatively,	you	can	also
specify	a	vector	of	the	form	[x	y	z].	If	the	user
specification	of	ViewDirection,
ViewPointReference,	and	ViewPointVector
results	in	a	zero	vector,	GMAT	uses	[0	0	10000]
for	ViewDirection.	This	field	cannot	be	modified
in	the	Mission	Sequence.

Data
Type

Reference	array



Allowed
Values

Spacecraft,	CelestialBody,
LibrationPoint,	Barycenter,	or	a	3-
vector	of	numerical	values

Access set

Default
Value

Earth

Units km	or	N/A

Interfaces GUI,	script

ViewPointReference
This	optional	field	allows	you	to	change	the
reference	point	from	which	ViewPointVector	is
measured.	ViewPointReference	defaults	to	the
origin	of	the	coordinate	system	for	the	plot.	A
ViewPointReference	can	be	any	Spacecraft,
Celestial	body,	Libration	Point,	or	Barycenter.
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data
Type

Reference	array

Allowed
Values

Spacecraft,	CelestialBody,
LibrationPoint,	Barycenter,	or	a	3-
vector	of	numerical	values



Access set

Default
Value

Earth

Units km	or	N/A

Interfaces GUI,	script

ViewPointVector
The	product	of	ViewScaleFactor	and
ViewPointVector	field	determines	the	view	point
location	with	respect	to	ViewPointReference.
ViewPointVector	can	be	a	vector,	or	any	of	the
following	resources:	Spacecraft,	Celestial	body,
Libration	Point,	or	Barycenter.	The	location	of
the	view	point	in	three-dimensional	space	is
defined	as	the	vector	addition	of
ViewPointReference	and	the	vector	defined	by
product	of	ViewScaleFactor	and
ViewPointVector	in	the	coordinate	system
chosen	by	you.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data
Type

Reference	array

Allowed
Values

Spacecraft,	CelestialBody,
LibrationPoint,	Barycenter,	or	a	3-
vector	of	numerical	values



Access set

Default
Value

[30000	0	0]

Units km	or	N/A

Interfaces GUI,	script

ViewScaleFactor
This	field	scales	ViewPointVector	before	adding
it	to	ViewPointReference.	The	ViewScaleFactor
allows	you	to	back	away	from	an	object	to	fit	in
the	field	of	view.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Real

Allowed	Values Real	Number	≥	0

Access set

Default	Value 1

Units N/A

Interfaces GUI,	script



ViewUpAxis
This	field	lets	you	define	which	axis	of	the
ViewUpCoordinateSystem	field	will	appear	as
the	up	direction	in	an	OrbitView	plot.	See	the
comments	under	ViewUpCoordinateSystem	for
more	details	of	fields	used	to	determine	the	up
direction	in	an	OrbitView	plot.	This	field	cannot
be	modified	in	the	Mission	Sequence.

Data	Type Enumeration

Allowed	Values X	,	-X	,	Y	,	-Y	,	Z	,	-Z

Access set

Default	Value Z

Units N/A

Interfaces GUI,	script

ViewUpCoordinateSystem
The	ViewUpCoordinateSystem	and
ViewUpAxis	fields	are	used	to	determine	which
direction	appears	as	up	in	an	OrbitView	plot	and
together	with	the	fields	associated	the	the	View
Direction,	uniquely	define	the	view.	The	fields
associated	with	the	View	Definition	allows	you	to
define	the	point	of	view	in	three-dimensional
space,	and	the	direction	of	the	line	of	sight.
However,	this	information	alone	is	not	enough	to



uniquely	define	the	view.	We	also	must	provide
how	the	view	is	oriented	about	the	line	of	sight.
This	is	accomplished	by	defining	what	direction
should	appear	as	the	up	direction	in	the	plot	and	is
configured	using	the	ViewUpCoordinateSystem
field	and	the	ViewUpAxis	field.	The
ViewUpCoordinateSystem	allows	you	to	select	a
coordinate	system	to	define	the	up	direction.	Most
of	the	time	this	system	will	be	the	same	as	the
coordinate	system	chosen	under	the
CoordinateSystem	field.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type String

Allowed	Values CoordinateSystem	resource

Access set

Default	Value EarthMJ2000Eq

Units N/A

Interfaces GUI,	script

WireFrame
When	the	WireFrame	field	is	set	to	On,	celestial
bodies	are	drawn	using	a	wireframe	model.	When
the	WireFrame	field	is	set	to	Off,	then	celestial
bodies	are	drawn	using	a	full	map.	This	field
cannot	be	modified	in	the	Mission	Sequence.



Data	Type Boolean

Allowed	Values Off,	On

Access set

Default	Value Off

Units N/A

Interfaces GUI,	script

XYPlane
Allows	you	to	draw	a	grid	representing	the	XY-
plane	of	the	coordinate	system	selected	under	the
CoordinateSystem	field	of	the	OrbitView	plot.
This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value On



Units N/A

Interfaces GUI,	script



GUI
The	figure	below	shows	the	default	settings	for	the	OrbitView	resource:

OrbitView	Window	Mouse	Controls

The	list	of	controls	in	the	table	below	helps	you	navigate	through	the	OrbitView
graphics	window.	"Left"	and	"Right"	designate	the	mouse	button	which	have	to
be	pressed.



Control Description

Left	Drag
Helps	to	change	camera	orientation.	Camera	orientation	can	be
changed	in	Up/Down/Left/Right	directions.

Right	Drag
Helps	to	zoom	in	and	out	of	the	graphics	window.	Moving	the
cursor	in	Up	direction	leads	to	zoom	out	of	the	graphics
window.	Moving	the	cursor	in	Down	direction	helps	to	zoom
into	the	graphics	window.

Shift+Right
Drag Helps	to	adjust	the	Field	of	View.



Remarks

Behavior	when	using	OrbitView	Resource	&	Toggle
Command

The	OrbitView	resource	plots	spacecraft’s	trajectory	at	each	propagation	step	of
the	entire	mission	duration.	If	you	want	to	report	data	to	an	OrbitView	plot	at
specific	points	in	your	mission,	then	a	Toggle	On/Off	command	can	be	inserted
into	the	mission	sequence	to	control	when	OrbitView	is	to	plot	a	given
trajectory.	When	Toggle	Off	command	is	issued	for	an	OrbitView,	no	trajectory
is	drawn	until	a	Toggle	On	command	is	issued.	Similarly,	when	a	Toggle	On
command	is	used,	trajectory	is	plotted	at	each	integration	step	until	a	Toggle	Off
command	is	used.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Toggle	anOrbitView	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

Toggle	anOrbitView	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

Behavior	when	using	OrbitView,	Spacecraft	and
SolarSystem	Resources

Spacecraft	resource	contains	information	about	spacecraft’s	orbit.	Spacecraft
resource	interacts	with	OrbitView	throughout	the	entire	mission	duration.	The
trajectory	data	retrieved	from	the	spacecraft	is	what	gets	plotted	at	each
propagation	step	of	the	entire	mission	duration.	Similarly,	the	sun	and	all	other
planets	available	under	the	SolarSystem	resource	may	be	plotted	or	referenced
in	the	OrbitView	resource	as	well.

Behavior	when	reporting	data	in	Iterative	Processes



GMAT	allows	you	to	specify	how	trajectories	are	plotted	during	iterative
processes	such	as	differential	correction	or	optimization.	The	SolverIterations
field	of	OrbitView	resource	supports	3	options	which	are	described	in	the	table
below:

SolverIterations
options Description

Current
Shows	only	current	iteration/perturbation	in	an	iterative
process	and	plots	current	trajectory.

All
Shows	all	iterations/perturbations	in	an	iterative	process	and
plots	all	perturbed	trajectories.

None
Shows	only	the	final	solution	after	the	end	of	an	iterative
process	and	plots	only	that	final	trajectory.

Behavior	when	plotting	multiple	spacecrafts

GMAT	allows	you	to	plot	trajectories	of	any	number	of	spacecrafts	when	using
the	OrbitView	resource.	The	initial	epoch	of	all	the	spacecrafts	must	be	same	in
order	to	plot	the	trajectories.	If	initial	epoch	of	one	of	the	spacecrafts	does	not
match	with	initial	epoch	of	other	spacecrafts,	then	GMAT	throws	in	an	error
alerting	you	that	there	is	a	coupled	propagation	error	mismatch	between	the
spacecrafts.	GMAT	also	allows	you	to	propagate	trajectories	of	spacecrafts	using
any	combination	of	the	propagators	that	you	may	create.

Below	is	an	example	script	snippet	that	shows	how	to	plot	trajectories	of
multiple	spacecrafts	that	use	different	propagators:

Create	Spacecraft	aSat	aSat2	aSat3

aSat2.INC	=	45.0

aSat3.INC	=	90.0

aSat3.SMA	=	9000

Create	Propagator	aProp



Create	Propagator	bProp

Create	OrbitView	anOrbitView	anOrbitView2

anOrbitView.Add	=	{aSat,	aSat2,	Earth}

anOrbitView2.Add	=	{aSat3,	Earth}

BeginMissionSequence

Propagate	aProp(aSat,	aSat2)	bProp(aSat3)	{aSat.ElapsedSecs	=	12000.0}

OrbitView	View	Definition	Controls

GMAT	is	capable	of	drawing	orbit	plots	that	allow	you	to	visualize	the	motion	of
spacecraft	and	celestial	bodies	throughout	the	mission	sequence.	Here	we
discuss	the	options	you	can	use	in	setting	up	and	viewing	Orbit	plots.	You	can
choose	many	properties	including	the	coordinate	system	of	the	orbit	view	plot
and	the	view	location	and	direction	from	where	visualizations	can	be	seen.	The
script	snippet	below	shows	how	to	create	OrbitView	resource	that	includes	key
view	definition	controls	fields	as	well.	Detailed	definitions	of	all	fields	for
OrbitView	resource	can	be	found	in	Fields	section.

Create	OrbitView	PlotName

PlotName.CoordinateSystenm						=	CoordinateSystemName

PlotName.Add																				=	[SpacecraftName,	BodyName,	...	

																																		LibrationPoint,	Barycenter]

PlotName.ViewPointReference					=	[ObjectName,	VectorName]

PlotName.ViewPointVector								=	[ObjectName,	VectorName]

PlotName.ViewDirection										=	[ObjectName,	VectorName]

PlotName.ViewScaleFactor								=	[Real	Number]

PlotName.ViewUpCoordinateSystem	=	CoordinateSystemName

PlotName.ViewUpAxis													=	[X,-X,Y,-Y,Z,-Z];

You	can	specify	the	view	location	and	direction	of	OrbitView	plot	object	by
using	the	ViewPointReference,	ViewPointVector,	ViewDirection,
ViewUpCoordinateSystem	and	ViewUpAxis	fields.	Figure	below	shows	a
graphical	definition	of	ViewPointReference,	ViewPointVector,	and
ViewDirection	fields	and	how	they	determine	the	actual	view	location	and	view
direction.	You	can	supply	ViewPointReference,	ViewPointVector	and
ViewDirection	fields	by	either	giving	a	vector	in	the	format	[x	y	z]	or	by
specifying	an	object	name.	If	a	vector	is	given	for	one	of	the	quantities,	then	we
simply	use	it	in	its	appropriate	place	in	the	computations	below.	If	an	object	is



given,	we	must	determine	the	vector	associated	with	it.	The	rest	of	this	section	is
devoted	in	determining	ViewPointReference,	ViewPointVector	and
ViewDirection	fields	if	you	specify	an	object.

ViewPointReference	field	defines	the	point	from	which	ViewPointVector	is



measured.	If	an	object	is	given	for	ViewPointReference	field,	i.e.	when	you
have	the	following	in	the	sample	script:

MyOrbitViewPlot.CoordinateSystenm				=	MyCoordSys	

MyOrbitViewPlot.ViewPointReference			=	ViewRefObject

then	we	need	to	determine	rr	as	illustrated	in	above	figure.	If	ViewRefObject	is
the	same	as	the	origin	of	MyCoordSys,	then	rr	=	[0	0	0].	Otherwise	rr	is	the
cartesian	position	of	ViewPointReference	in	MyCoordSys.

ViewPointVector	field	points	from	ViewPointReference	(rr)	in	the	direction	of
the	view	point	location.	If	an	object	is	given	for	ViewPointVector	field,	i.e.	you
have	the	following	in	the	sample	script:

MyOrbitViewPlot.CoordinateSystenm				=	MyCoordSys	

MyOrbitViewPlot.ViewPointVector						=	ViewPointObject

then	we	need	to	determine	rv	as	illustrated	in	above	figure	by	using	the
coordinate	system	conversion	routine	to	calculate	the	following:

We	now	know	everything	to	calculate	the	location	of	the	view	point	in	the
desired	coordinate	system.	From	inspection	of	the	above	figure,	we	see	that	the
relation	is:



Now	that	we	know	the	view	point	location,	we	need	to	determine	the
ViewDirection:	rd	as	illustrated	in	above	figure.	If	a	vector	was	specified	for
ViewDirection	field,	then	no	computations	are	required.	However,	if	an	object
was	given	as	shown	in	the	following	sample	script:

MyOrbitViewPlot.CoordinateSystenm				=	MyCoordSys	

MyOrbitViewPlot.ViewDiection									=	ViewDirectionObject

then	we	calculate	rd	from	the	following:

Note	that	ViewDirection	vector	rd	must	not	be	zero	vector	[0	0	0].

ViewUpCoordinateSystem	and	ViewUpAxis	fields	are	used	to	determine
which	direction	appears	as	up	in	an	OrbitView	plot.	Most	of	the	time,
coordinate	system	chosen	under	ViewUpCoordinateSystem	field	will	be	the
same	as	the	coordinate	system	selected	under	the	CoordinateSystem	field.
ViewUpAxis	field	allows	you	to	define	which	axis	of	the
ViewUpCoordinateSystem	field	will	appear	as	the	up	direction	in	an	orbit	plot.

Below	are	some	examples	that	show	how	to	generate	OrbitView	plots	using
different	View	Definition	Controls	configurations:

Earth	Inertial	view	with	spacecraft:	This	example	shows	orbit	view	plot	with
Earth	and	a	spacecraft.	Since	ViewPointReference	field	is	set	to	an	object	(i.e.
Earth),	hence	ViewPointRef	vector	in	above	figure	is	[0	0	0]	in	EarthMJ2000Eq
coordinate	system.	The	ViewPointVector	field	is	set	to	a	vector	(	i.e.	set	to	[0	0
40000]	).	This	means	that	the	view	is	from	40000	km	above	the	Earth's



equatorial	plane	on	the	z-axis	of	the	EarthMJ2000Eq	coordinate	system.	The
view	direction	(specified	in	ViewDirection	field)	is	towards	the	earth.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

anOrbitView.CoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewPointReference	=	Earth

anOrbitView.ViewPointVector	=	[	0	0	40000	]

anOrbitView.ViewDirection	=	Earth

anOrbitView.ViewScaleFactor	=	1

anOrbitView.ViewUpCoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewUpAxis	=	Z

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Earth	Inertial	view	with	spacecraft	and	Luna:	This	example	shows	orbit	view
plot	with	Earth,	spacecraft	and	Moon.	Note	ViewPointReference	field	is	set	to
an	object	(i.e.	Earth),	hence	ViewPointRef	vector	in	above	figure	=	[0	0	0]	in
EarthMJ2000Eq	coordinate	system.	ViewPointVector	field	is	still	set	to	a	vector
(	i.e.	set	to	[0	0	500000]	).	This	means	that	the	view	is	from	500000	km	above
the	Earth's	equatorial	plane	on	the	z-axis	of	the	EarthMJ2000Eq	coordinate
system.	ViewDirection	field	defines	the	view	direction	which	is	set	towards	the
earth.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth,	Luna}

anOrbitView.CoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewPointReference	=	Earth

anOrbitView.ViewPointVector	=	[	0	0	500000	]

anOrbitView.ViewDirection	=	Earth

anOrbitView.ViewScaleFactor	=	1

anOrbitView.ViewUpCoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewUpAxis	=	Z



BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	5}

View	of	spacecraft	from	Luna	in	Earth	inertial	frame:	This	example	of	an	orbit
view	plot	shows	spacecraft	as	viewed	from	Luna	orbiting	around	Earth	in	an
inertial	reference	frame.	ViewPointReference	field	is	set	to	an	object	(i.e.
Earth),	hence	ViewPointRef	vector	is	[0	0	0]	in	EarthMJ2000Eq	coordinate
system.	This	time	ViewPointVector	field	is	set	to	an	object	(i.e.	Luna	).	This
means	that	the	spacecraft	will	be	seen	from	the	vantage	point	of	Luna.	Note	that
ViewDirection	field	is	set	to	spacecraft	(aSat).	This	means	that	view	direction	as
seen	from	Luna	is	towards	the	spacecraft.	After	you	run	this	example,	re-run	this
example	but	this	time	with	ViewScaleFactor	field	set	to	2	and	see	what	happens.
You'll	notice	that	ViewScaleFactor	simply	scales	ViewPointVector	field.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth,	Luna}

anOrbitView.CoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewPointReference	=	Earth

anOrbitView.ViewPointVector	=	Luna

anOrbitView.ViewDirection	=	aSat

anOrbitView.ViewScaleFactor	=	1

anOrbitView.ViewUpCoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewUpAxis	=	Z

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	5}

View	towards	Luna	from	Earth	as	spacecraft	orbits	around	Luna	in	inertial
frame:	This	example	of	an	orbit	view	plot	shows	view	of	Luna	from	vantage
point	of	Earth	as	a	spacecraft	orbits	around	Luna.	ViewPointReference	field	is
set	to	an	object	(i.e.	Luna),	hence	ViewPointRef	vector	in	above	figure	is	[0	0	0]
in	LunaMJ2000Eq	coordinate	system.	ViewPointVector	field	is	set	to	an	object
(i.e.	Earth	).	This	means	that	the	camera	or	vantage	point	is	located	at	Earth.
ViewDirection	field	is	also	set	to	an	object	(i.e.	Luna).	This	means	that	view
direction	as	seen	from	Earth	is	towards	Luna.



Create	Spacecraft	aSat

Create	CoordinateSystem	LunaMJ2000Eq

LunaMJ2000Eq.Origin	=	Luna

LunaMJ2000Eq.Axes	=	MJ2000Eq

aSat.CoordinateSystem	=	LunaMJ2000Eq

aSat.SMA	=	7300

aSat.ECC	=	0.4

aSat.INC	=	90

aSat.RAAN	=	270

aSat.AOP	=	315

aSat.TA	=	180

Create	ForceModel	aFM

aFM.CentralBody	=	Luna

aFM.PointMasses	=	{Luna}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Luna,	Earth}

anOrbitView.CoordinateSystem	=	LunaMJ2000Eq

anOrbitView.ViewPointReference	=	Luna

anOrbitView.ViewPointVector	=	Earth

anOrbitView.ViewDirection	=	Luna

anOrbitView.ViewScaleFactor	=	1;

anOrbitView.ViewUpCoordinateSystem	=	LunaMJ2000Eq;

anOrbitView.ViewUpAxis	=	Z;

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	5}

View	towards	spacecraft1	from	spacecraft2	in	inertial	frame:	This	example	of	an
orbit	view	plot	shows	spacecraft1	(aSat1)	being	viewed	from	spacecraft2	(aSat2)
as	they	move	in	inertial	reference	frame.	ViewPointReference	field	is	set	to	an
object	(i.e.	Earth),	hence	ViewPointRef	vector	in	above	figure	is	[0	0	0]	in
EarthMJ2000Eq	coordinate	system.	ViewPointVector	field	is	set	to	an	object
(i.e.	aSat2	)	and	ViewDirection	field	is	also	set	to	an	object	(i.e.	aSat1).	This
means	that	aSat1	will	be	viewed	from	the	vantage	point	of	aSat2.

Create	Spacecraft	aSat	aSat2

aSat2.X	=	19500



aSat2.Z	=	10000

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	aSat2,	Earth,}

anOrbitView.CoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewPointReference	=	Earth

anOrbitView.ViewPointVector	=	aSat2

anOrbitView.ViewDirection	=	aSat

anOrbitView.ViewScaleFactor	=	1.0

anOrbitView.ViewUpCoordinateSystem	=	EarthMJ2000Eq

anOrbitView.ViewUpAxis	=	Z

BeginMissionSequence

Propagate	aProp(aSat,	aSat2){aSat.ElapsedSecs	=	12000.0}

Orbit	view	plot	of	Sun-Earth-Moon	L1	Rotating	System:	This	example	of	an
orbit	view	plot	shows	the	Earth	and	spacecraft	in	the	Sun-Earth-Moon	rotating
coordinate	system.	ViewPointReference	field	is	set	to	an	object	(i.e.	ESL1),
hence	ViewPointRef	vector	in	above	figure	is	[0	0	0]	in	SunEarthMoonL1
rotating	coordinate	system.	ViewPointVector	field	is	set	to	a	vector	(i.e.	[0	0
30000]	).	This	means	that	the	view	is	taken	from	30000	km	above	the
SunEarthMoonL1	coordinate	system's	XY	plane	on	the	z-axis	of	the
SunEarthMoonL1	coordinate	system.	ViewDirection	field	is	also	set	to	an	object
(i.e.	ESL1).	This	means	that	view	direction	as	seen	from	30000	km	above	the
SunEarthMoonL1	coordinate	system's	XY	plane	is	towards	ESL1.	Note	that	in
this	example,	ViewScaleFactor	is	set	to	25.	This	simply	scales	or	amplifies
ViewPointVector	field	25	times	its	original	value.

Create	Spacecraft	aSat

GMAT	aSat.DateFormat	=	UTCGregorian;

GMAT	aSat.Epoch	=	'01	Apr	2013	00:00:00.000'	

GMAT	aSat.CoordinateSystem	=	EarthMJ2000Eq

GMAT	aSat.DisplayStateType	=	Cartesian

GMAT	aSat.X	=	1429457.8833484

GMAT	aSat.Y	=	147717.32846679

GMAT	aSat.Z	=	-86529.655549364

GMAT	aSat.VX	=	-0.037489820883615																					

GMAT	aSat.VY	=	0.32032521614858

GMAT	aSat.VZ	=	0.15762889268226



Create	Barycenter	EarthMoonBarycenter

GMAT	EarthMoonBarycenter.BodyNames	=	{Earth,	Luna}

Create	LibrationPoint	ESL1

GMAT	ESL1.Primary	=	Sun

GMAT	ESL1.Secondary	=	EarthMoonBarycenter

GMAT	ESL1.Point	=	L1

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Luna,	Sun}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	CoordinateSystem	SunEarthMoonL1

GMAT	SunEarthMoonL1.Origin	=	ESL1

GMAT	SunEarthMoonL1.Axes	=	ObjectReferenced

GMAT	SunEarthMoonL1.XAxis	=	R

GMAT	SunEarthMoonL1.ZAxis	=	N

GMAT	SunEarthMoonL1.Primary	=	Sun

GMAT	SunEarthMoonL1.Secondary	=	EarthMoonBarycenter

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth,	Sun}

anOrbitView.CoordinateSystem	=	SunEarthMoonL1

anOrbitView.ViewPointReference	=	ESL1

anOrbitView.ViewPointVector	=	[	0	0	30000	]

anOrbitView.ViewDirection	=	ESL1

anOrbitView.ViewScaleFactor	=	25

anOrbitView.ViewUpCoordinateSystem	=	SunEarthMoonL1

anOrbitView.ViewUpAxis	=	Z

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	15}

Behavior	when	using	View	Definition	panel	of	OrbitView
Resource

Currently	in	OrbitView	resource’s	View	Definition	panel,	fields	like
ViewPointReference,	ViewPointVector	and	ViewDirection	are	initialized	but
not	dynamically	updated	during	a	mission	run.	OrbitView	resource’s	View
Definition	panel	sets	up	geometry	at	initial	epoch	and	then	mouse	controls
geometry	of	the	simulation	from	that	point	on.



Spacecraft	Model	Considerations	in	GMAT's	OrbitView

GMAT	displays	spacecraft	models	by	reading	model	data	from	3D	Studio	files
describing	the	spacecraft	shape	and	colors.	These	files	have	the	file	extension
.3ds,	and	are	generally	called	3ds	files.	3ds	files	contain	data	that	defines	the	3-
dimensional	coordinates	of	vertices	outlining	the	spacecraft,	a	mapping	of	those
vertices	into	triangles	used	to	create	the	displayed	surface	of	the	spacecraft,	and
information	about	the	colors	and	texture	maps	used	to	fill	in	the	displayed
triangles.

GMAT's	implementation	of	the	spacecraft	model	can	display	models	consisting
of	up	to	200,000	vertices	that	map	up	to	100,000	triangles.	The	GMAT	model
can	use	up	500	separate	color	or	texture	maps	to	fill	in	these	triangles.

Behavior	When	Specifying	Empty	Brackets	in	OrbitView's
Add	Field

When	using	OrbitView.Add	field,	if	brackets	are	not	populated	with	user-
defined	spacecrafts,	then	GMAT	turns	off	OrbitView	resource	and	no	plot	is
generated.	If	you	run	the	script	with	Add	field	having	empty	brackets,	then
GMAT	throws	in	a	warning	message	in	the	Message	Window	indicating	that
OrbitView	resource	will	be	turned	off	since	no	SpacePoints	were	added	to	the
plot.	Below	is	a	sample	script	snippet	that	generates	such	a	warning	message:

Create	Spacecraft	aSat	aSat2

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{}

BeginMissionSequence

Propagate	aProp(aSat,	aSat2){aSat.ElapsedSecs	=	12000.0}



Examples
Propagate	spacecraft	for	1	day	and	plot	the	orbit	at	every	integrator	step:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Plotting	orbit	during	an	iterative	process.	Notice	SolverIterations	field	is
selected	as	All.	This	means	all	iterations/perturbations	will	be	plotted.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ImpulsiveBurn	TOI

Create	DifferentialCorrector	aDC

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

anOrbitView.SolverIterations	=	All

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.Earth.Periapsis}

Target	aDC

		Vary	aDC(TOI.Element1	=	0.24,	{Perturbation	=	0.001,	Lower	=	0.0,	...

		Upper	=	3.14159,	MaxStep	=	0.5})

		Maneuver	TOI(aSat)

		Propagate	aProp(aSat)	{aSat.Earth.Apoapsis}

		Achieve	aDC(aSat.Earth.RMAG	=	42165)

EndTarget

Plotting	spacecraft’s	trajectory	around	non-default	central	body.	This	example
shows	how	to	plot	a	spacecraft’s	trajectory	around	Luna:

Create	Spacecraft	aSat



		

Create	CoordinateSystem	LunaMJ2000Eq

LunaMJ2000Eq.Origin	=	Luna

LunaMJ2000Eq.Axes	=	MJ2000Eq

aSat.CoordinateSystem	=	LunaMJ2000Eq

aSat.SMA	=	7300

aSat.ECC	=	0.4

aSat.INC	=	90

aSat.RAAN	=	270

aSat.AOP	=	315

aSat.TA	=	180

Create	ForceModel	aFM

aFM.CentralBody	=	Luna

aFM.PointMasses	=	{Luna}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Luna}

anOrbitView.CoordinateSystem	=	LunaMJ2000Eq

anOrbitView.ViewPointReference	=	Luna

anOrbitView.ViewDirection	=	Luna

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Plotting	spacecraft’s	trajectory	around	non-default	central	body.	This	example
shows	how	to	plot	a	spacecraft’s	trajectory	around	Mars:

Create	Spacecraft	aSat

Create	CoordinateSystem	MarsMJ2000Eq

MarsMJ2000Eq.Origin	=	Mars

MarsMJ2000Eq.Axes	=	MJ2000Eq

aSat.CoordinateSystem	=	MarsMJ2000Eq

aSat.SMA	=	7300

aSat.ECC	=	0.4

aSat.INC	=	90

aSat.RAAN	=	270

aSat.AOP	=	315



aSat.TA	=	180

Create	ForceModel	aFM

aFM.CentralBody	=	Mars

aFM.PointMasses	=	{Mars}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Mars}

anOrbitView.CoordinateSystem	=	MarsMJ2000Eq

anOrbitView.ViewPointReference	=	Mars

anOrbitView.ViewDirection	=	Mars

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Plotting	spacecraft’s	trajectory	around	non-default	central	body.	This	example
shows	how	to	plot	a	spacecraft’s	trajectory	around	Sun.	This	is	an	interplanetary
trajectory.	Spacecraft	is	shown	on	an	out-going	hyperbolic	trajectory	in	an
EarthView	and	then	an	interplanetary	trajectory	is	drawn	around	Sun	in	a
SunView.	Mars	Orbit	around	Sun	is	also	shown:

Create	Spacecraft	aSat

aSat.CoordinateSystem	=	EarthMJ2000Eq

aSat.DateFormat	=	UTCGregorian

aSat.Epoch	=	'18	Nov	2013	20:26:24.315'

aSat.X	=	3728.345810006184

aSat.Y	=	4697.943961035268

aSat.Z	=	-2784.040094879185

aSat.VX	=	-9.502477543864449

aSat.VY	=	5.935188001372066

aSat.VZ	=	-2.696272103530009

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	ForceModel	bFM

aFM.CentralBody	=	Sun

aFM.PointMasses	=	{Sun}



Create	Propagator	aProp

aProp.FM	=	aFM

Create	Propagator	bProp

aProp.FM	=	bFM

Create	CoordinateSystem	SunEcliptic

SunEcliptic.Origin	=	Sun

SunEcliptic.Axes	=	MJ2000Ec

Create	OrbitView	EarthView	SunView

EarthView.Add	=	{aSat,	Earth}

EarthView.CoordinateSystem	=	EarthMJ2000Eq

EarthView.ViewPointReference	=	Earth

EarthView.ViewDirection	=	Earth

SunView.Add	=	{aSat,	Mars,	Sun}

SunView.CoordinateSystem	=	SunEcliptic

SunView.ViewPointReference	=	Sun

SunView.ViewDirection	=	Sun

SunView.ViewPointVector	=	[	0	0	500000000	]

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	3}

Propagate	bProp(aSat)	{aSat.ElapsedDays	=	225}



Propagator
Propagator	—	A	propagator	models	spacecraft	motion



Overview	of	Propagator	Components
A	Propagator	is	the	GMAT	component	used	to	model	spacecraft	motion.	GMAT
contains	two	types	of	propagators:	a	numerical	integrator	type,	and	an	ephemeris
type.	When	using	a	numerical	integrator	type	Propagator,	you	can	choose
among	a	suite	of	numerical	integrators	implementing	Runge-Kutta	and	predictor
corrector	methods.	Numeric	Propagators	also	require	a	ForceModel.
Additionally,	you	can	configure	a	Propagator	to	use	SPICE	kernels	or	Code500
ephemeris	files	for	propagation.	This	resource	cannot	be	modified	in	the	Mission
Sequence.	However,	you	set	one	Propagator	equal	to	another	Propagator	in	the
mission,(	i.e.	myPropagator	=	yourPropagator	).

GMAT's	documentation	for	Propagator	components	is	broken	down	into	three
sections:

For	numerical	Propagator	documentation	see	Numerical	Propagator

For	ForceModel	documentation	see	Force	Model

For	SPICE	Propagator	documentation	see	SPK-Configured	Propagator

For	Code500	ephemeris	Propagator	documentation	see	Code500
Ephemeris-Configured	Propagator

For	STK	ephemeris	Propagator	documentation	see	STK	Ephemeris-
Configured	Propagator

See	Also:	Spacecraft,	Propagate



Numerical	Propagator

Overview

A	Propagator	object	that	uses	a	numerical	integrator	(as	opposed	to	an
ephemeris	propagator)	is	one	of	a	few	objects	in	GMAT	that	is	configured
differently	in	the	scripting	and	in	the	GUI.	In	the	GUI,	you	configure	the
integrator	and	force	model	setting	on	the	same	dialog	box.	See	the	Remarks
section	below	for	detailed	discussion	of	GMAT’s	numerical	integrators	as	well
as	performance	and	accuracy	comparisons,	and	usage	recommendations.	This
resource	cannot	be	modified	in	the	Mission	Sequence.	However,	you	can	do
whole	object	assignment	in	the	mission,(	i.e.	myPropagator	=	yourPropagator
).

When	working	in	the	script,	you	must	create	a	ForceModel	object	separately
from	the	Propagator	and	specify	the	force	model	using	the	“FM”	field	on	the
propagator	object.	See	the	Examples	section	later	in	this	section	for	details.

Options

Option Description

Accuracy
The	desired	accuracy	for	an	integration	step.	GMAT	uses
the	method	selected	in	the	ErrorControl	field	on	the
Force	Model	to	determine	a	metric	of	the	integration
accuracy.	For	each	step,	the	integrator	ensures	that	the
error	in	accuracy	is	smaller	than	the	value	defined	by	the
ErrorControl	metric.

Data	Type Real

Allowed
Values

Real	>	0	AND	Real	<	1



Default
Value

1e-11	except	for	ABM	integrator	which	is
1e-10

Interfaces GUI,	script

Access set

Units N/A

FM
Identifies	the	force	model	used	by	an	integrator.	If	no	force
model	is	provided,	GMAT	uses	an	Earth	centered
propagator	with	a	4x4	gravity	model.

Data	Type Resource	reference

Allowed	Values ForceModel

Default	Value N/A

Interfaces GUI,	script

Access set

Units N/A

InitialStepSize



The	size	of	the	first	step	attempted	by	the	integrator.

Data	Type Real

Allowed	Values Real	>	0.0001

Default	Value 60

Interfaces GUI,	script

Access set

Units sec.

LowerError
The	lower	bound	on	integration	error,	used	to	determine
when	to	make	the	step	size	larger.	Applies	only	to
AdamsBashforthMoulton	integrator.

Data	Type Real

Allowed
Values

Real	>	0	AND	0	<	LowerError
<TargetError	<	Accuracy

Default
Value

1e-13



Interfaces GUI,	script

Access set

Units N/A

MaxStep
The	maximum	allowable	step	size.

Data	Type Real

Allowed	Values Real	>	0	AND	MinStep	<=	MaxStep

Default	Value 2700

Interfaces GUI,	script

Access set

Units N/A

MaxStepAttempts
The	number	of	attempts	the	integrator	takes	to	meet	the
tolerance	defined	by	the	Accuracy	field.

Data	Type Integer



Allowed	Values Integer	>=	1

Default	Value 50

Interfaces GUI,	script

Access set

Units N/A

MinStep
The	minimum	allowable	step	size.

Data	Type Real

Allowed	Values Real	>	0	AND	MinStep	<=	MaxStep

Default	Value 0.001

Interfaces GUI,	script

Access set

Units sec.



StopIfAccuracy-
IsViolated

Flag	to	stop	propagation	if	integration	error	value	defined
by	Accuracy	is	not	satisfied.

Data	Type Boolean

Allowed	Values true,	false

Default	Value true

Interfaces GUI,	script

Access set

Units N/A

TargetError
The	nominal	bound	on	integration	error,	used	to	set	the
target	integration	accuracy	when	adjusting	step	size.
Applies	only	to	AdamsBashforthMoulton	integrator.

Data	Type Real

Allowed
Values

Real	>	0	AND	0	<	LowerError	<
TargetError	<	Accuracy

Default
Value

1e-11



Interfaces GUI,	script

Access set

Units N/A

Type
Specifies	the	integrator	or	analytic	propagator	used	to
model	the	time	evolution	of	spacecraft	motion.

Data
Type

Enumeration

Allowed
Values

PrinceDormand78,	PrinceDormand853,
PrinceDormand45,
RungeKutta89,RungeKutta68,
RungeKutta56,	AdamsBashforthMoulton,
SPK,	Code500

Default
Value

RungeKutta89

Interfaces GUI,	script

Access set



Units N/A

GUI

Settings	for	the	embedded	Runge-Kutta	integrators.	Select	the	desired	integrator
from	the	Type	menu.

The	Adams-Bashforth-Moulton	integrator	has	additional	settings	as	shown.

Remarks

Best	Practices	for	Using	Numerical	Integrators



The	comparison	data	presented	in	a	later	section	suggest	that	the
PrinceDormand78	integrator	is	the	best	all	purpose	integrator	in	GMAT.	When
in	doubt,	use	the	PrinceDormance78	integrator,	and	set	MinStep	to	zero	so	that
the	integrator’s	adaptive	step	algorithm	controls	the	minimum	integration	step
size.	Below	are	some	important	comments	on	GMAT’s	step	size	control
algorithms	and	the	dangers	of	using	a	non-zero	value	for	the	minimum
integration	step	size.	The	AdamsBashforthMoulton	integrator	is	a	low	order
integrator	and	we	only	recommend	its	use	for	low	precision	analysis	when	a
predictor-corrector	algorithm	is	required.	We	recommend	that	you	study	the
performance	and	accuracy	analysis	documented	later	in	this	section	to	select	a
numerical	integrator	for	your	application.	You	may	need	to	perform	further
analysis	and	comparisons	for	your	application.

Caution

Caution:	GMAT’s	default	error	computation	mode	is	RSStep
and	this	is	a	more	stringent	error	control	method	than	RSSState
that	is	often	used	as	the	default	in	other	software	such	as	STK.
If	you	set	Accuracy	to	a	very	small	number,	1e-13	for	example,
and	leave	ErrorControl	set	to	RSSStep,	integrator
performance	will	be	poor,	for	little	if	any	improvement	in	the
accuracy	of	the	orbit	integration.	To	find	the	best	balance
between	integration	accuracy	and	performance,	we	recommend
you	experiment	with	the	accuracy	setting	for	your	selected
integrator	for	your	application.	You	can	start	with	a	relatively
high	setting	of	Accuracy,	say	1e-9,	and	lower	the	accuracy	by
an	order	of	magnitude	at	a	time	and	compare	the	final	orbital
states	to	determine	where	smaller	values	of	Accuracy	result	in
longer	propagation	times	without	providing	more	accurate
orbital	solutions.

Caution

Caution:	GMAT	allows	you	to	set	a	minimum	step	on



numerical	integrators.	It	is	possible	that	the	requested
Accuracy	cannot	be	achieved	given	the	MinimumStep	setting.
The	Propagator	flag	StopIfAccuracyIsViolated	determines
the	behavior	if	Accuracy	cannot	be	satisfied.	If
StopIfAccuracyIsViolated	is	true,	GMAT	will	throw	an	error
and	stop	execution	if	integration	accuracy	is	not	satisfied.	If
StopIfAccuracyIsViolated	is	false,	GMAT	will	only	throw	a
warning	that	the	integration	accuracy	was	not	satisfied	but	will
continue	to	propagate	the	orbit.

Numerical	Integrators	Overview

The	table	below	describes	each	numerical	integrator	in	detail.

Option Description

RungeKutta89
An	adaptive	step,	ninth	order	Runge-Kutta
integrator	with	eighth	order	error	control.	The
coefficients	were	derived	by	J.	Verner.	Verner
developed	several	sets	of	coefficients	for	an	89
integrator	and	we	have	chosen	the	coefficients	that
are	the	most	robust	but	not	necessarily	the	most
efficient.

PrinceDormand78
An	adaptive	step,	eighth	order	Runge-Kutta
integrator	with	seventh	order	error	control.	The
coefficients	were	derived	by	Prince	and	Dormand.

PrinceDormand853
An	adaptive	step,	eighth	order	Runge-Kutta
integrator	with	5th	order	error	control	that
incorporates	a	3rd	order	correction,	as	described	in
section	II.10	of	"Solving	Ordinary	Differential
Equations	I:	Nonstiff	Problems"	by	Hairer,	Norsett
and	Warner.	The	coefficients	were	derived	by
Prince	and	Dormand.	This	integrator	performs



surprisingly	well	at	loose	Accuracy	settings.

PrinceDormand45 An	adaptive	step,	fifth	order	Runge-Kutta
integrator	with	fourth	order	error	control.	The
coefficients	were	derived	by	Prince	and	Dormand.

RungeKutta68
A	second	order	Runge-Kutta-Nystrom	type
integrator	with	coefficients	developed	by	by
Dormand,	El-Mikkawy	and	Prince.	The	integrator
is	a	9-stage	Nystrom	integrator,	with	error	control
on	both	the	dependent	variables	and	their
derivatives.	This	second	order	implementation	will
correctly	integrate	forces	that	are	non-conservative
but	it	is	not	recommended	for	this	use.	See	the
integrator	comparisons	below	for	numerical
comparisons.	You	cannot	use	this	integrator	to
integrate	mass	during	a	finite	maneuver	because
the	mass	flow	rate	is	a	first	order	differential
equation	not	supported	by	this	integrator.

RungeKutta56
An	adaptive	step,	sixth	order	Runge-Kutta
integrator	with	fifth	order	error	control.	The
coefficients	were	derived	by	E.	Fehlberg.

AdamsBashforthMoulton
A	fourth-order	Adams-Bashford	predictor	/
Adams-Moulton	corrector	as	described	in
Fundamentals	of	Astrodynamics	by	Bate,	Mueller,
and	White.	The	predictor	step	extrapolates	the	next
state	of	the	variables	using	the	the	derivative
information	at	the	current	state	and	three	previous
states	of	the	variables.	The	corrector	uses
derivative	information	evaluated	for	this	state,
along	with	the	derivative	information	at	the
original	state	and	two	preceding	states,	to	tune	this
state,	giving	the	final,	corrected	state.	The	ABM
integrator	uses	the	RungeKutta89	integrator	to	start



the	integration	process.	The	ABM	is	a	low	order
integrator	and	should	not	be	used	for	precise
applications	or	for	highly	nonlinear	applications
such	as	celestial	body	flybys.

Performance	&	Accuracy	Comparison	of	Numerical	Integrators

The	tables	below	contain	performance	comparison	data	for	GMAT's	numerical
integrators.	The	first	table	shows	the	orbit	types,	dynamics	models,	and
propagation	duration	for	each	test	case	included	in	the	comparison.	Five	orbit
types	were	compared:	low	earth	orbit,	Molniya,	Mars	transfer	(Type	2),	Lunar
transfer,	and	finite	burn	(case	1	is	blow	down,	and	case	2	is	pressure	regulated).
For	each	test	case,	the	orbit	was	propagated	forward	for	a	duration	and	then
back-propagated	to	the	intial	epoch.	The	error	values	in	the	table	are	the	RSS
difference	of	the	final	position	after	forward	and	backward	propagation	to	the
initial	position.	The	run	time	data	for	each	orbit	type	is	normalized	on	the
integrator	with	the	fasted	run	time	for	that	orbit	type.	For	all	test	cases	the
ErrorControl	setting	was	set	to	RSSStep.	Accuracy	was	set	to	1e-12	for	all
integrators	except	for	AdamsBashfourthMoulton	which	was	set	to	1e-11
because	of	poor	performance	when	Accuracy	was	set	to	1e-11.

Orbit Dynamics	Model Duration

LEO
Earth	20x20,	Sun,	Moon,	drag
using	MSISE90	density,	SRP

1	day

Molniya
Earth	20x20,	Sun,	Moon,	drag
using	Jacchia	Roberts	density,	SRP

3	days

Mars	Transfer
Near	Earth:	Earth	8x8,	Sun,	Moon,
SRP

Deep	Space:	All	planets	as	point
mass	perturbations

333	days



Near	Mars:	Mars	8x8	SRP

Lunar	Transfer
Earth	central	body	with	all	planets
as	point	mass	perturbations

5.8	days

Finite	Burn	(case	1
and	2) Point	mass	gravity 7200	sec.

Comparing	the	run	time	data	for	each	integrator	shown	in	the	table	below	we	see
that	the	PrinceDormand78	integrator	was	the	fastest	for	4	of	the	6	cases	and
tied	with	the	RungeKutta89	integrator	for	LEO	test	case.	For	the	Lunar	flyby
case,	the	RungeKutta89	was	the	fastest	integrator,	however,	in	this	case	the
PrinceDormand78	integrator	was	at	least	2	orders	of	magnitude	more	accurate
given	equaivalent	Accuracy	settings.	Notice	that	the	AdamsBashforthMoulton
integrator	has	km	level	errors	for	some	orbits	because	it	is	a	low-order	integrator.

Fields	Unique	to	the	AdamsBashforthMoulton	Integrator

The	AdamsBashforthMoulton	integrator	has	two	additional	fields	named
TargetError	and	LowerError	that	are	only	active	when	Type	is	set	to
AdamsBashforthMoulton.	If	you	are	using	another	integrator	type,	those	fields
must	be	removed	from	your	script	file	to	avoid	parsing	errors.	When	working	in
the	GUI,	this	is	performed	automatically.	See	examples	below	for	more	details.



Examples

Propagate	an	orbit	using	a	general	purpose	Runge-Kutta	integrator:

Create	Spacecraft	aSat

Create	ForceModel	aForceModel

Create	Propagator	aProp

aProp.FM														=	aForceModel

aProp.Type												=	PrinceDormand78

aProp.InitialStepSize	=	60

aProp.Accuracy								=	1e-011

aProp.MinStep									=	0

aProp.MaxStep									=	86400

aProp.MaxStepAttempts	=	50

aProp.StopIfAccuracyIsViolated	=	true

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	.2}

Propagate	using	a	fixed	step	configuration.	Do	this	by	setting	InitialStepSize	to
the	desired	fixed	step	size	and	setting	ErrorControl	to	None.	This	example
propagates	in	constant	steps	of	30	seconds:

Create	Spacecraft	aSat

Create	ForceModel	aForceModel

aForceModel.ErrorControl	=	None

Create	Propagator	aProp

aProp.FM														=	aForceModel

aProp.Type												=	PrinceDormand78

aProp.InitialStepSize	=	30

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	.2}

Propagate	an	orbit	using	an	Adams-Bashforth-Moulton	predictor-corrector
integrator:

Create	Spacecraft	aSat

Create	ForceModel	aForceModel

aForceModel.ErrorControl	=	RSSStep



Create	Propagator	aProp

aProp.FM														=	aForceModel

aProp.Type												=	AdamsBashforthMoulton

aProp.InitialStepSize	=	60

aProp.MinStep									=	0

aProp.MaxStep									=	86400

aProp.MaxStepAttempts	=	50

%		Note	the	following	fields	must	be	set	with	decreasing	values!

aProp.Accuracy								=	1e-010

aProp.TargetError					=	1e-011

aProp.LowerError						=	1e-013

aProp.StopIfAccuracyIsViolated	=	true

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	.2}



Force	Model

Overview

A	ForceModel	is	a	model	of	the	environmental	forces	and	dynamics	that	affect
the	motion	of	a	spacecraft.	GMAT	supports	numerous	force	models	such	as	point
mass	and	spherical	harmonic	gravity	models,	atmospheric	drag,	solar	radiation
pressure,	tide	models,	and	relativistic	corrections.	A	ForceModel	is	configured
and	attached	to	the	Propagator	object	(see	the	Propagator	object	for
differences	between	script	and	GUI	configuration	when	configuring	a
Propagator).	The	Propagator,	along	with	the	Propagate	command,	uses	a
ForceModel	to	numerically	solve	the	orbital	equations	of	motion	(forwards	or
backwards	in	time)	using	the	forces	configured	in	the	ForceModel	object,	and
may	include	thrust	terms	in	the	case	of	powered	flight.	See	the	discussion	below
for	detailed	information	on	how	to	configure	force	models	for	your	application.
This	resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	Propagator

Fields

Option Description

CentralBody
The	central	body	of	propagation.	
body	and	cannot	be	a	LibrationPoint
other	special	point.

Data	Type Resource	reference

Allowed	Values CelestialBody

Access set



Default	Value Earth

Units N/A

Interfaces GUI,	script

Drag
Deprecated.	This	field	has	been	replaced	with
Drag.AtmosphereModel.

Drag.AtmosphereModel
Specifies	the	atmosphere	model	used	in	the	drag	
only	active	if	there	is	a	PrimaryBody

Data
Type

Enumeration

Allowed
Values

If	PrimaryBody	is	Earth
MSISE86,	MSISE90
(with	plugin)

If	PrimaryBody	is	Mars
(with	plugin)

Access set

Default
Value

None

Units N/A



Interfaces GUI,	script

Drag.CSSISpaceWeatherFile
The	file	name	of	the	CSSI	space	weather	file	with	
information.	See	Remarks	for	details	on	file	

Data	Type String

Allowed
Values

String	containing	name	of	the	CSSI	file	with	
path	information.

Access set

Default
Value

'CSSI_2004To2026.txt'

Units N/A

Interfaces GUI,	script

Drag.DensityModel
Enabled	when	Drag.AtmosphereModel
Specifies	the	Mars-GRAM	density	model	to	use.	
density	with	any	optional	wave	model	perturbations	enabled	by	the
input	file.	High	is	Mean	density	plus	1	standard	deviation.	
Mean	density	minus	1	standard	deviation.

Data	Type Enumeration



Allowed	Values High,	Low,	Mean

Access set

Default	Value Mean

Units N/A

Interfaces script

Drag.F107
The	instantaneous	value	of	solar	flux	at	wavelength	
field	is	only	active	if	there	is	a	PrimaryBody
this	seeting	are	50	<=	Drag.F107

Data	Type Real

Allowed	Values Drag.F107>=	0

Access set

Default	Value 150

Units 10^-22	W/m^2/Hz



Interfaces GUI,	script

Drag.F107A
The	average	(monthly)	value	of	solar	flux	at	
This	field	is	only	active	in	the	script	
Realistic	values	for	this	seeting	are	50	<=	

Data	Type Real

Allowed	Values Drag.F107A>=0

Access set

Default	Value 150

Units 10^-22	W/m^2/Hz

Interfaces script

Drag.HistoricWeatherSource
Defines	the	source	for	historical	flux	and	
in	Earth	density	modeling.

Data	Type Enumeration

Allowed
Values

ConstantFluxAndGeoMag
CSSISpaceWeatherFile



Access set

Default	Value ConstantFluxAndGeoMag

Units N/A

Interfaces GUI,	script

Drag.InputFile
Enabled	when	Drag.AtmosphereModel
to	the	Mars-GRAM	input	namelist	file	that	configures	the	model.	See
the	MarsGRAM2005	section	for	details	on	the	individual	settings	in
this	file	and	how	they	are	used	by	GMAT.	Relative	paths	are	relative
to	the	GMAT	bin	directory.

Data
Type

String

Allowed
Values

Valid	path	to	a	Mars-GRAM	input	namelist	

Access set

Default
Value

'../data/atmosphere/MarsGRAM2005/inputstd0.txt'

Units N/A



Interfaces script

Drag.MagneticIndex
The	geomagnetic	index	(Kp)	used	in	density	
planetary	3-hour-average,	geomagnetic	
effects	of	solar	radiation.	This	field	is	only	active	if	there	is	a
PrimaryBody.

Data	Type Real

Allowed	Values 0	<=	Real	Number	<=	9

Access set

Default	Value 3

Units N/A

Interfaces script

Drag.PredictedWeatherSource
Defines	the	source	for	predicted	flux	and	
in	Earth	density	modeling.

Data	Type Enumeration

Allowed	Values SchattenFile,	



Access set

Default	Value ConstantFluxAndGeoMag

Units N/A

Interfaces GUI,	script

Drag.SchattenErrorModel
The	error	model	used	from	the	Schatten	file.	
include	mean,	+2	sigma,	and	-2	sigma	models.	
details	on	the	file	format.

Data	Type Enumeration

Allowed	Values Nominal,	PlusTwoSigma

Access set

Default	Value Nominal

Units N/A

Interfaces GUI,	script

Drag.SchattenFile
The	file	name	of	the	Schatten	file	with	optional	



Remarks	for	details	on	file	format.

Data	Type String

Allowed
Values

String	containing	name	of	the	Schatten	file	with
optional	path	information.

Access set

Default
Value

'SchattenPredict.txt'

Units N/A

Interfaces GUI,	script

Drag.SchattenTimingModel
The	timing	model	used	from	the	Schatten	file.	
include	a	nominal	solar	cycle	model,	an	early	
model.	See	Remarks	for	details	on	the	file	

Data	Type Enumeration

Allowed	Values NominalCycle

Access set



Default	Value NominalCycle

Units N/A

Interfaces GUI,	script

ErrorControl
Controls	how	error	in	the	current	integration	step	
error	in	the	current	step	is	computed	by	the	
ErrorControl	and	compared	to	the	value	set	in	the	
to	determine	if	the	step	has	an	acceptable	error	or	needs	to	be
improved.	All	error	measurements	are	relative	error,	however,	
reference	for	the	relative	error	changes	depending	upon	the	
of	ErrorControl.	RSSStep	is	the	Root	Sum	Square	(RSS)	
error	measured	with	respect	to	the	current	step.	
(RSS)	relative	error	measured	with	respect	to	the	current	state.
LargestStep	is	the	state	vector	component	
error	measured	with	respect	to	the	
state	vector	component	with	the	largest	relative	error	measured	with
respect	to	the	current	state.	Setting	
error	control	and	the	integrator	takes	constant	steps	
defined	by	InitialStepSize	on	the	numerical	integrator.

Data	Type Enumeration

Allowed
Values

None,	RSSStep
LargestStep

Access set

Default	Value RSSStep



Units N/A

Interfaces GUI,	script

GravityField.​PrimaryBodyName.Degree
The	degree	of	the	harmonic	gravity	field.	This	
there	is	a	PrimaryBody.

Data
Type

Integer

Allowed
Values

0<=Degree<=Max	Degree	

Access set

Default
Value

4	(When	loading	a	custom	file	in	the	GUI,	GMAT	
Degree	to	the	max	value	on	the	

Units N/A

Interfaces GUI,	script

GravityField.​PrimaryBodyName.Order
The	order	of	the	harmonic	gravity	field.	This	field	
there	is	a	PrimaryBody.

Data Integer



Type

Allowed
Values

0<=Order<=Max	Degree	On	
Order

Access set

Default
Value

4	(When	loading	a	custom	file	in	the	GUI,	GMAT	
Order	to	the	max	value	on	the	

Units N/A

Interfaces GUI,	script

GravityField.​PrimaryBodyName.PotentialFile
The	gravity	potential	file.	This	field	is	only	
PrimaryBody.	See	discussion	below	for	detailed	explanation	of
supported	file	types	and	how	to	configure	gravity	files.

Data	Type String

Allowed	Values path	and	name	of	.cof,	.grv,	.gfc	OR	.tab	

Access set

Default	Value JGM2.cof



Units N/A

Interfaces GUI,	script

GravityField.​PrimaryBodyName.StmLimit
The	upper	bound	on	the	degree	and	order	to	be	used	
calculating	the	State	Transition	Matrix	(STM).	The	STM	will	
a	degree	or	order	greater	than	that	specified	by	either	
Order	fields	or	the	StmLimit.	This	field	has	no	
or	order	used	to	calculate	the	state,	only	
active	if	there	is	a	PrimaryBody

Data	Type Integer

Allowed	Values Int	>=	0

Access set

Default	Value 100

Units N/A

Interfaces GUI,	script

GravityField.​PrimaryBodyName.TideFile
The	tide	file.	This	field	is	only	active	if	there	
discussion	below	for	detailed	explanation	of	supported	file	types	and
how	to	configure	tide	files.



Data	Type String

Allowed	Values path	and	name	of	.tide	file

Access set

Default	Value (None)

Units N/A

Interfaces GUI,	script

GravityField.​PrimaryBodyName.TideModel
Flag	for	type	of	tide	model.	This	field	is	always	
in	the	dynamics	when	there	is	a	harmonic	

Data	Type Enumeration

Allowed	Values None,	Solid,	SolidAndPole

Access set

Default	Value None

Units N/A



Interfaces GUI,	script

Model
A	GUI	list	of	"configured'	gravity	files	defined	in	
gmat_startup_file.txt.	Model	allows	you	to	quickly	choose	between
gravity	files	distributed	with	GMAT.	For	example,	if	
is	Earth,	you	can	select	among	Earth	gravity	models	provided	with
GMAT	such	as	JGM-2	and	EGM-96
provide	the	path	and	filename	for	a	custom	gravity	file.

Data	Type String

Allowed
Values

JGM-2,	JGM-3
180U

Access set,get

Default	Value JGM-2

Units N/A

Interfaces GUI

PointMasses
A	list	of	celestial	bodies	to	be	treated	as	point	
model.	A	body	cannot	be	both	the	
PointMasses	list.	An	empty	list	"{}"	
the	list.

Data	Type Resource	array



Allowed
Values

array	of	CelestialBodies
PrimaryBody

Access set

Default	Value Empty	List

Units N/A

Interfaces GUI,	script

PrimaryBodies
A	body	modeled	with	a	"complex"	force	model.	A	
have	an	atmosphere	and	harmonic	gravity	model.	
only	supports	one	primary	body	per	force	model.	
must	be	the	same	as	the	CentralBody
PointMasses	field.

Data	Type Resource	reference

Allowed	Values CelestialBody

Access set

Default	Value Earth



Units N/A

Interfaces GUI,	script

RelativisticCorrection
Sets	relativistic	correction	on	or	off.

Data	Type Enumeration

Allowed	Values On,	Off

Access set

Default	Value Off

Units N/A

Interfaces GUI,	script

SRP
Sets	SRP	force	on	or	off.	See	the	Remarks	section	
explanation	of	SRP	configuration.	The	SRP	model	
SRP.Model	field.

Data	Type Enumeration

Allowed	Values On,	Off



Access set

Default	Value Off

Units N/A

Interfaces GUI,	script

SRP.Flux
The	value	of	SRP	flux	at	1	AU.	This	field	is	only	
if	SRP	is	on.

Data	Type Real

Allowed	Values 1200	<SRP.Flux

Access set

Default	Value 1367

Units W/m^2

Interfaces script

SRP.Flux_Pressure
The	solar	flux	at	1	AU	divided	by	the	speed	of	



only	active	in	the	script	if	SRP	is	on.	See	
detailed	explanation	of	SRP	configuration.

Data	Type Real

Allowed	Values 4.33e-6	<	SRP.Flux_Pressure

Access set

Default	Value 4.55982118135874e-006

Units W	*s/m^3

Interfaces script

SRP.Model
The	model	for	SRP	acceleration.

Data	Type Enumeration

Allowed	Values Spherical,SPADFile

Access set

Default	Value Spherical



Units N/A

Interfaces GUI,	script

SRP.Nominal_Sun
The	value	of	one	Astronomical	Unit	in	km	used	in	
which	is	flux	at	1	AU,	to	the	flux	at	
This	field	is	only	active	in	the	script	if	SRP	is	on.	See	the	Remarks
section	for	a	detailed	explanation	of	SRP	configuration.

Data	Type Real

Allowed	Values 135e6<Nominal_Sun

Access set

Default	Value 149597870.691

Units km

Interfaces script

GUI



Settings	for	the	ForceModel	object.

Remarks

Overview	of	Primary	Body/Central	Body	and	Field	Interactions

In	GMAT,	a	primary	body	is	a	celestial	body	that	is	modeled	with	a	complex
force	model	which	may	include	a	spherical	harmonic	gravity	model,	tides,	or
drag.	A	body	cannot	appear	in	both	the	PrimaryBodies	and	PointMasses	fields.
GMAT	currently	requires	that	there	are	no	more	than	one	primary	body	per
ForceModel,	but	this	behavior	will	change	in	future	versions	and	the	user
interface	is	designed	to	naturally	support	this	future	development	area.

GMAT	currently	requires	that	the	primary	body	is	either	the	same	as	the
CentralBody	or	set	to	None.	If	you	change	the	CentralBody	in	the	GUI,	GMAT



changes	the	primary	body	to	None,	and	you	can	then	select	between	None	and
the	central	body.	When	you	select	a	primary	body	in	the	GUI,	the	Gravity	and
Drag	fields	activate	and	allow	you	to	select	models	for	those	forces	consistent
with	the	body	selected	in	the	PrimaryBodies	field.	For	example,	if	you	select
Earth	as	the	primary	body,	you	can	only	select	Earth	drag	models	in	the
Drag.AtmosphereModel	field.	See	the	field	list	above	for	available	models.

Configuring	Gravitational	Models

GMAT	supports	point	mass	gravity,	spherical	harmonic,	and	tide	modeling	for
all	celestial	bodies.	On	a	Propagator,	all	celestial	bodies	are	classified	into	two
mutually	exclusive	categories:	PrimaryBodies,	and	Point	Masses.	To	model	a
body	as	a	point	mass,	add	it	to	the	PointMasses	list.	GMAT	currently	requires
that	there	be	only	a	single	body	in	the	PrimaryBodies	list.	When	a	primary	body
is	selected,	the	CentralBody	and	primary	body	must	be	the	same.

Bodies	modeled	as	PointMasses	use	the	gravitational	parameter	defined	on	the
body	(i.e.	Earth.Mu)	in	the	equations	of	motion.	Bodies	defined	as
PrimaryBodies	use	the	constants	defined	on	the	potential	file	in	the	equations	of
motion.	GMAT	supports	four	gravity	file	formats:	the	.cof	format,	the	STK	.grv
format,	the	.gfc	format,	and	the	.tab	format.	You	can	provide	a	custom	potential
file	for	your	application	as	long	as	it	is	one	of	the	supported	formats.	Potential
files	defined	in	the	startup	file	are	available	in	the	Model	list	in	the	GUI.	For
example,	the	following	lines	in	the	startup	file	configure	GMAT	so	that	EGM96
is	an	available	option	for	Model	in	the	GUI	when	the	primary	body	is	Earth:

EARTH_POT_PATH									=	DATA_PATH/gravity/earth/

EGM96_FILE													=	EARTH_POT_PATH/EGM96.cof	

Below	is	an	example	script	snippet	for	configuring	a	custom	gravity	model.

Create	ForceModel	aForceModel

aForceModel.CentralBody	=	Earth

aForceModel.PrimaryBodies	=	{Earth}

aForceModel.GravityField.Earth.Degree	=	21

aForceModel.GravityField.Earth.Order		=	21

aForceModel.GravityField.Earth.PotentialFile	=	'c:\MyData\File.cof'

Overview	of	Tide	Model	Field	Interactions

By	default,	the	tide	data	source	is	set	to	None	and	the	tide	model	selector	is



disabled	if	no	tide	model	is	selected.	To	use	a	tide	model,	first	the	tide	data
source	must	be	changed	to	either	Inherited	or	Tide	File,	at	which	point	the	Tide
Model	selector	becomes	enabled	to	select	from	the	tide	models	supported	by	the
tide	data	source.	See	the	field	list	above	for	available	models.	The	Inherited
option	indicates	that	the	data	for	the	tide	model	is	provided	either	by	the	gravity
potential	file	or	the	data	is	built	into	GMAT.	The	tide	data	contained	in	a	gravity
potential	file	has	precedence	over	any	built-in	values.	The	Tide	File	option
enables	the	file	selector	to	choose	a	file	containing	the	Love	numbers	to	be	used
as	the	data	source	for	the	tide	model.	The	tide	data	contained	in	a	tide	file	has
precedence	over	all	other	tide	data	sources.

Configuring	Tide	Models

GMAT	supports	solid	tide	modeling	for	all	central	bodies,	and	both	solid	and
pole	tide	modeling	for	the	Earth.	Tide	models	can	only	be	used	if	a
PrimaryBody	is	set.	GMAT	contains	built-in	values	for	both	solid	and	pole	tides
for	the	Earth.	External	files	can	also	be	used	to	provide	the	Love	numbers	to	be
used	in	the	tide	model,	either	from	a	gravity	file	that	supports	tides,	or	a	separate
tide	file.

If	a	gravity	file	with	Love	numbers	is	provided,	those	Love	numbers	will	be	used
for	the	solid	tide	model	calculations.	If	a	tide	file	is	provided,	the	Love	numbers
in	the	tide	file	will	be	used.	If	both	a	gravity	file	with	Love	numbers	and	a	tide
file	are	provided,	the	Love	numbers	from	both	files	will	be	used,	with	the	Love
numbers	in	the	tide	file	having	precedence	over	the	gravity	file.	Only	if	no	tide
file	is	provided	and	the	gravity	potential	file	has	no	love	numbers	are	GMAT's
default	Love	numbers	used	for	the	Earth.	GMAT's	built-in	values	are	the	only
data	source	for	pole	tides.

Below	is	an	example	script	snippet	for	configuring	a	custom	gravity	model
including	Lunar	solid	tides.

Create	ForceModel	aForceModel

aForceModel.CentralBody	=	Luna

aForceModel.PrimaryBodies	=	{Luna}

aForceModel.GravityField.Luna.Degree	=	21

aForceModel.GravityField.Luna.Order		=	21

aForceModel.GravityField.Luna.PotentialFile	=	'c:\MyData\File.cof'

aForceModel.GravityField.Luna.TideFile	=	'c:\MyData\File.tide'

aForceModel.GravityField.Luna.TideModel	=	'Solid'



Tide	files	use	the	.tide	file	extension.	You	can	provide	a	custom	tide	file	for	your
application	as	long	as	it	is	in	the	supported	format.	Tide	files	contain	the	Love
numbers	to	be	used	to	model	the	solid	tides.	Tide	files	can	include	the	k2,	k3,
and	k+	coefficients.	The	format	used	by	the	tide	file	is	'k	{degree}	{order}
{value}'	or	'kplus	{order}	{value}'	for	k+.

Below	is	a	sample	tide	file	using	the	built-in	values	that	GMAT	uses	for	the
Earth's	Love	numbers

k	2	0	0.30190

k	2	1	0.29830

k	2	2	0.30102

k	3	0	0.093

k	3	1	0.093

k	3	2	0.093

k	3	3	0.094

kplus	0	-0.00087

kplus	1	-0.00079

kplus	2	-0.00057

Zero	Tide	and	Tide	Free	Models

The	selection	of	a	tide	model	is	closely	linked	to	the	gravitational	potential
model	that	is	used.	Some	gravitational	potential	models	incorporate	some	tidal
effects	into	the	gravitational	potential	model.	Two	common	ways	gravitational
models	handle	modeling	tidal	forces	are	by	being	tide-free	and	zero-tide.	Tide
free	gravitational	models	contain	no	effects	of	tidal	forces	in	the	gravitational
potential,	while	zero	tide	gravitational	models	contain	the	permanent	(time-
independent)	effect	of	tides	on	the	potential.	For	STK	.grv	files,	the
"IncludesPermTides"	keyword	is	recognized	to	identify	if	the	gravitational
potential	model	includes	permanent	tide	effects,	however	the	coefficients	in	the
"TideFreeValues"	and	"ZeroTideValues"	keyword	blocks	are	currently	ignored.

Caution

Caution:	If	a	zero	tide	gravitational	model	is	used	with	the
Solid	or	SolidAndPole	tide	options,	the	effect	of	permanent
tides	is	double	counted	and	may	yield	inaccurate	results.	For
further	a	more	in-depth	discussion,	please	consult	the	IERS



Conventions	(2010).	GMAT	does	not	convert	between	a	zero
tide	and	tide	free	potential,	therefore	the	user	must	pay
attention	to	which	potential	they	intend	on	using,	particularly
when	modeling	solid	tides.

Configuring	Drag	Models

GMAT	supports	many	density	models	for	Earth	including	Jacchia-Roberts	and
various	MSISE	models.	Density	models	for	non-Earth	bodies	--	the	Mars-
GRAM	model	for	example	--	are	included	using	custom	plug-in	components	and
are	currently	only	supported	in	the	script	interface.

To	configure	Earth	density	models,	select	Earth	as	the	primary	body,	In	the	GUI,
this	activates	the	AtmosphereModel	list.	You	can	configure	the	solar	flux	values
using	the	Setup	button	next	to	the	AtmosphereModel	list	after	you	have
selected	an	atmosphere	model.	Below	is	an	example	script	snippet	for
configuring	the	NRLMSISE00	density	model.

Create	ForceModel	aForceModel

GMAT	aForceModel.PrimaryBodies	=	{Earth}

GMAT	aForceModel.Drag.AtmosphereModel	=	NRLMSISE00

Caution

Caution:	GMAT	uses	the	original	single	precision	FORTAN
code	developed	by	the	scientists	who	created	the	MSISE
models.	At	low	altitudes,	the	single	precision	density	can	cause
numeric	issues	in	the	double	precision	integrator	step	size
control	and	integration	can	be	unacceptably	slow.	You	can
avoid	the	performance	issue	by	using	either	fixed	step
integration	or	by	using	a	relatively	high	Accuracy	value	such
as	1e-8.	You	may	need	to	experiment	with	the	Accuracy	setting
to	a	value	acceptable	for	your	application.

Note	that	when	you	select	None	for	Drag.AtmosphereModel	,	the	fields
associated	with	density	configuration,	such	as	Drag.F107,	Drag.F107A,	and



Drag.MagneticIndex	and	others	are	inactive	and	must	be	removed	from	your
script	file	to	avoid	parsing	errors.	When	working	in	the	GUI,	this	is	performed
automatically.

The	table	below	describes	the	limits	on	altitude	for	drag	models	supported	by
GMAT.

Model Theoretical	Altitude
(h)	Limits Comments

MSISE86
90	<	h	<	1000 GMAT	will	not	allow

propagation	below	90	km
altitude.

MSISE90
0	<	h	<1000 GMAT	will	allow	propagation

below	0	km	altitude	but	results
are	non-physical.

NRLMSISE00 0	<	h	<1000
GMAT	will	allow	propagation
below	0	km	altitude	but	results
are	non-physical.

JacchiaRoberts
h	>	100 GMAT	will	not	allow

propagation	below	100	km
altitude.

MarsGRAM2005

When	PrimaryBody	is	Mars,	you	can	choose	Mars-GRAM	2005	as	your
atmosphere	model.	This	model	is	only	available	when	the	libMarsGRAM	plugin	is
available	and	enabled	in	the	GMAT	startup	file.



Warning

As	of	version	R2015a,	you	can	only	have	one	unique	Mars-
GRAM	force	model	configuration	in	a	given	script.	If	you
include	multiple	propagators	with	Mars-GRAM	force	models
with	different	Mars-GRAM	configurations,	the	different
configurations	are	not	honored,	and	all	of	the	propagators	will
use	the	same	configuration	for	Mars-GRAM.

When	using	the	MarsGRAM2005	atmosphere	model,	three	new	fields	are
available	in	the	script	language	(but	not	the	GUI):

Drag.InputFile

Drag.DensityModel

See	the	Fields	section	for	details	on	these	fields.

In	addition,	the	space	weather	fields	are	treated	as	follows:

Drag.F107:	value	of	10.7	cm	solar	flux	at	1	AU,	as	documented	in	the
Fields	section

Drag.F107A:	not	used

Drag.MagneticIndex:	not	used

The	Mars-GRAM	2005	input	file	is	a	text	file	in	FORTRAN	NAMELIST
format.	Most	variables	in	this	file	are	passed	directly	to	the	Mars-GRAM	model
and	are	used	as	intended.	However,	some	are	replaced	internally	by	GMAT-
supplied	values.	The	following	table	lists	those	input	variables	that	are	handled
specially.

Input	Variable GMAT	usage

(Unlisted) Passed	through	to	Mars-GRAM	2005	model
DATADIR Always

'../data/atmosphere/MarsGRAM2005/binFiles'



GCMDIR Always
'../data/atmosphere/MarsGRAM2005/binFiles'

IERT Always	1	(Earth-receive	time)
IUTC Always	0	(TT	time)
MONTH Replaced	by	current	propagation	epoch
MDAY Replaced	by	current	propagation	epoch
MYEAR Replaced	by	current	propagation	epoch
NPOS Always	1
IHR Replaced	by	current	propagation	epoch
IMIN Replaced	by	current	propagation	epoch
ISEC Replaced	by	current	propagation	epoch
LonEW Always	1	(positive	East)
F107 Replaced	by	value	of	Drag.F107
FLAT Replaced	by	current	propagation	state
FLON Replaced	by	current	propagation	state
FHGT Replaced	by	current	propagation	state
MOLAhgts Always	0	(reference	ellipsoid)
iup Always	0	(no	output)
ipclat Always	0	(planetographic	input)
requa Replaced	by	value	of	Mars.EquatorialRadius
rpole Replaced	by	GMAT's	value	of	Mars	polar	radius

(calculated	from	Mars.EquatorialRadius	and
Mars.Flattening)

The	input	file	is	read	by	the	Mars-GRAM	2005	model	code,	which	has	limited
error	checking.	If	the	input	file	or	data	files	are	incorrect	or	missing,	GMAT	may
exhibit	unintended	behavior.	Note	that	local	winds	returned	by	the	Mars-GRAM
2005	model	are	not	included	in	GMAT's	drag	model.

Configuring	Space	Weather	Data	for	Density	Models



GMAT	supports	several	space	weather	input	types	for	drag	modelling	including
constant	flux	and	Geo-magnetic	index	values,	a	historical	weather	data	file,	and
a	predicted	weather	data	file.	You	can	separately	configure	the	data	used	for
historical	data	and	predicted	data.	For	historical	data	you	can	choose	between
constant	values	and	a	CSSI	space	weather	file.	For	predicted	data	you	can
choose	between	constant	values	and	a	Schatten	predict	file.	Each	of	those
sources	is	discussed	in	detail	below.

The	precedence	for	data	source	is	determined	by	the	simulation	epoch	(i.e.	the
epoch	when	density	is	evaluated),	and	the	epochs	contained	on	the	data	files

If	both	historical	data	and	predicted	data	sources	are	set	to	constants,	then
constant	values	are	always	used.

If	you	have	selected	a	CSSI	file	as	the	historical	data	source,	if	the
simulation	epoch	falls	before	the	last	row	of	historical	data	in	the	CSSI
file's	historical	data	block,	then	the	CSSI	data	is	used	(the	first	row	is	used
if	the	simulation	epoch	is	before	the	first	historical	data	record),	otherwise,
the	predicted	data	source	is	used.	Note:	GMAT	does	not	use	any	of	the
predicted	data	from	the	CSSI	file.

If	you	have	selected	the	Schatten	file	for	predicted	data,	if	the	simulation
epoch	is	NOT	in	the	CSSI	file	historical	data,	or	the	historical	data	source	is
set	to	constant	values,	then	the	data	is	used	from	the	Schatten	file.

Constant	Values

GMAT	supports	constant	flux	and	Geo-magnetic	index	values	for	all	Earth
density	models.	You	configure	GMAT	to	use	those	values	for	historical	and
predicted	data	as	shown	below	using	NRLMSISE00	for	the	example.

Create	ForceModel	aForceModel

GMAT	aForceModel.Drag.AtmosphereModel	=	NRLMSISE00

GMAT	aForceModel.Drag.HistoricWeatherSource	=	'ConstantFluxAndGeoMag'

GMAT	aForceModel.Drag.PredictedWeatherSource	=	'ConstantFluxAndGeoMag'

GMAT	aForceModel.Drag.F107	=	150

GMAT	aForceModel.Drag.F107A	=	150

GMAT	aForceModel.Drag.MagneticIndex	=	3

Historical	Space	Weather	Data



You	can	provide	a	Center	for	Space	Standards	and	Innovation	(CSSI)	file	for
historical	space	weather	data.	GMAT	does	not	use	the	predicted	portion	of	the
file	but	does	use	the	historical	portion	of	the	data.	The	CCSI	file	format	is
described	in	detail	at	the	Celestrak	website	and	the	files	are	available	for
download	at	that	site	and	here.	You	configure	GMAT	to	use	historical	data	as
shown	below.

Create	ForceModel	aForceModel

GMAT	aForceModel.Drag.AtmosphereModel	=	NRLMSISE00

GMAT	aForceModel.Drag.HistoricWeatherSource	=	'CSSISpaceWeatherFile'

GMAT	aForceModel.Drag.CSSISpaceWeatherFile	=	'CSSI_2004To2026.txt'

You	can	provide	a	full	or	relative	path	to	the	file,	or	put	the	file	in	GMAT’s	data
file	folders	documented	in	the	startup	file	help.

Predicted	Space	Weather	Data

You	configure	GMAT	to	use	Schatten	predicted	data	as	shown	below

Create	ForceModel	aForceModel

GMAT	aForceModel.Drag.AtmosphereModel	=	NRLMSISE00

GMAT	aForceModel.Drag.PredictedWeatherSource	=	'SchattenFile'

GMAT	aForceModel.Drag.SchattenFile	=	'SchattenPredict.txt'

GMAT	aForceModel.Drag.SchattenErrorModel	=	'Nominal'

GMAT	aForceModel.Drag.SchattenTimingModel	=	'NominalCycle'

You	can	provide	a	full	or	relative	path	to	the	file,	or	put	the	file	in	GMAT’s	data
file	folders	documented	in	the	startup	file	help.	Additionally	you	can	choose
between	Nominal,	PlusTwoSigma,	and	MinusTwoSigma	for	the
SchattenErrorModel,	and	between	NominalCycle,	EarlyCycle,	and
LateCycle	for	the	SchattenTimingModel.

The	Schatten	file	is	distributed	by	the	Flight	Dynamics	Facility	(FDF)	at
Goddard	Space	Flight	Center.	You	can	apply	for	an	account	to	obtain	Schatten
file	updates	at	the	FDF	Forms	Interface.	Note	that	GMAT	reads	the	raw	file
containing	all	permutation	of	mean,	+2	sigma,	and	-2	sigma,	and	nominal,	early
and	late	solar	cycles.	The	files	from	the	FDF	must	be	modified	to	include
keywords	that	indicate	when	data	starts	and	ends	as	shown	below:

											NOMINAL	TIMING						EARLY	TIMING								LATE	TIMING						

	mo.	yr.		mean	+2sig	-2sig	ap	mean	+2sig	-2sig	ap	mean	+2sig	-2sig	ap

BEGIN_DATA	

https://celestrak.com/SpaceData/
ftp://ftp.agi.com/pub/DynamicEarthData/
http://fdf.gsfc.nasa.gov/forms


		2	2011				92		107			76				9		105		125			85			10			77			87			66				8

		3	2011				93		110			77				9		106		128			86			10			79			89			67				8

		4	2011				95		112			78				9		108		129			87			10			80			92			69				8

END_DATA

Data	must	be	formatted	according	to	FORMAT(I3,I5,I6,11I5),	and	no	comments
or	blank	lines	can	occur	between	the	BEGIN_DATA	and	END_DATA	keywords.

Configuring	SRP	Models

GMAT	supports	a	spherical	SRP	model,	and	an	SRP	file	for	high	fidelity	SRP
modelling.	Both	models	use	a	dual	cone	model	for	central	body	shadowing	of
the	spacecraft.	See	the	Spacecraft	Ballistic/Mass	Properties	documentation	for
configuring	a	SPAD	file	for	a	spacecraft.	The	script	snippet	below	shows	how	to
configure	two	ForceModels,	one	that	use	Spherical	and	on	that	uses	a
SPADFile.

%	A	spherical	SRP	model

Create	ForceModel	aForceModel_1

aForceModel_1.PrimaryBodies	=	{Earth}

aForceModel_1.SRP	=	On

aForceModel_1.SRP.Model	=	Spherical

%	A	SPAD	SRP	model

Create	ForceModel	aForceModel_2

aForceModel_2.PrimaryBodies	=	{Earth}

aForceModel_2.SRP	=	On

aForceModel_2.SRP.Model	=	SPADFile

You	can	define	the	solar	flux	using	two	approaches	which	are	currently	only
supported	in	the	script	interface.	One	approach	is	to	define	the	flux	value	using
the	SRP.Flux	field	and	the	value	of	an	astronomical	unit	(in	km)	using	the
Nominal_Sun	field	as	shown	in	the	following	example.

Create	ForceModel	aForceModel

aForceModel.PrimaryBodies	=	{Earth}

aForceModel.SRP	=	On

aForceModel.SRP.Flux	=	1367

aForceModel.SRP.Nominal_Sun	=	149597870.691

An	alternative	approach	is	to	define	the	flux	pressure	at	1	astronomical	unit
using	the	Flux_Pressure	field	as	shown	below..



Create	ForceModel	aForceModel

aForceModel.PrimaryBodies	=	{Earth}

aForceModel.SRP	=	On

aForceModel.SRP.Flux_Pressure	=	4.53443218374393e-006

aForceModel.SRP.Nominal_Sun	=	149597870.691

If	you	mix	flux	settings,	as	shown	in	the	example	below,	GMAT	will	use	the	last
approach	in	the	script.	Here,	GMAT	will	use	the	Flux_Pressure	setting.

Create	ForceModel	aForceModel

aForceModel.PrimaryBodies	=	{Earth}

aForceModel.SRP	=	On

aForceModel.SRP.Flux	=	1370

aForceModel.SRP.Nominal_Sun	=	149597870

aForceModel.SRP.Flux_Pressure	=	4.53443218374393e-006

Caution

Caution:	GMAT’s	default	option	for	configuring	solar	flux	for
an	SRP	model	is	to	use	SRP.Flux	and	Nominal_Sun	fields.	If
you	initially	configured	the	Flux_Pressure	field,	when	you
save	your	mission	via	the	save	button	in	the	toolbar,	GMAT
will	write	out	SRP.Flux	and	Nominal_Sun	values	consistent
with	your	setting	of	Flux_Pressure.

Variational	Equations	and	the	STM

GMAT	can	optionally	propagate	the	orbit	State	Transition	Matrix	(STM).	For
more	information	on	how	to	configure	GMAT	to	compute	the	STM,	see	the
Propagate	command	documentation.

Caution

Caution:	GMAT	allows	you	to	propagate	the	State	Transition
Matrix	(STM)	along	with	the	orbital	state.	However,	not	all
variational	terms	are	implemented	for	STM	propagation.	The



following	are	implemented:	point	mass	perturbation,	spherical
harmonics	(with	tide	models),	drag,	and	solar	radiation
pressure.	The	following	are	NOT	implemented:	relativistic
terms	and	finite	burns.	Additionally,	the	SRP	variational	term
does	not	include	the	partial	derivative	of	the	percent	shadow
with	respect	to	orbital	state.	This	approximation	is	acceptable
for	orbits	with	short	penumbra	durations	but	is	inaccurate	for
orbits	that	spend	relatively	long	periods	of	time	in	penumbra.

Examples

A	ForceModel	for	point	mass	propagation.

Create	Spacecraft	aSat

Create	ForceModel	aForceModel

aForceModel.CentralBody	=	Earth

aForceModel.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aForceModel

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	.2}

A	ForceModel	for	high	fidelity	low	Earth	orbit	propagation.

Create	Spacecraft	aSat

Create	ForceModel	aForceModel

aForceModel.CentralBody	=	Earth

aForceModel.PrimaryBodies	=	{Earth}

aForceModel.PointMasses	=	{Sun,	Luna}

aForceModel.SRP	=	On

aForceModel.RelativisticCorrection	=	On

aForceModel.ErrorControl	=	RSSStep

aForceModel.GravityField.Earth.Degree	=	20

aForceModel.GravityField.Earth.Order	=	20

aForceModel.GravityField.Earth.PotentialFile	=	'EGM96.cof'

aForceModel.GravityField.Earth.TideModel	=	'None'

aForceModel.Drag.AtmosphereModel	=	MSISE90

aForceModel.Drag.F107	=	150



aForceModel.Drag.F107A	=	150

aForceModel.Drag.MagneticIndex	=	3

aForceModel.SRP.Flux	=	1359.388569998901

aForceModel.SRP.SRPModel	=	Spherical;

aForceModel.SRP.Nominal_Sun	=	149597870.691

Create	Propagator	aProp

aProp.FM	=	aForceModel

BeginMissionSequence

Propagate	aProp(aSat){aSat.ElapsedDays	=	.2}

A	ForceModel	that	uses	a	SPAD	SRP	File.

Create	Spacecraft	aSpacecraft;

aSpacecraft.DryMass			=	2000

aSpacecraft.SPADSRPFile	=	'..\data\vehicle\spad\SphericalModel.spo'

aSpacecraft.SPADSRPScaleFactor	=	1;

Create	ForceModel	aFM;

aFM.SRP	=	On;

aFM.SRP.SRPModel	=	SPADFile

Create	Propagator	aProp;

aProp.FM	=	aFM;

BeginMissionSequence

Propagate	aProp(aSpacecraft)	{aSpacecraft.ElapsedDays	=	0.2}

A	ForceModel	for	high	fidelity	lunar	orbit	propagation.

Create	Spacecraft	moonSat

GMAT	moonSat.DateFormat	=	UTCGregorian

GMAT	moonSat.Epoch.UTCGregorian	=	01	Jun	2004	12:00:00.000

GMAT	moonSat.CoordinateSystem	=	MoonMJ2000Eq

GMAT	moonSat.DisplayStateType	=	Cartesian

GMAT	moonSat.X	=	-1486.792117191545200

GMAT	moonSat.Y	=	0.0

GMAT	moonSat.Z	=	1486.792117191543000

GMAT	moonSat.VX	=	-0.142927729144255

GMAT	moonSat.VY	=	-1.631407624437537

GMAT	moonSat.VZ	=	0.142927729144255

Create	CoordinateSystem	MoonMJ2000Eq



MoonMJ2000Eq.Origin	=	Luna

MoonMJ2000Eq.Axes			=	MJ2000Eq

Create	ForceModel	MoonLP165P

GMAT	MoonLP165P.CentralBody	=	Luna

GMAT	MoonLP165P.PrimaryBodies	=	{Luna}

GMAT	MoonLP165P.SRP	=	On

GMAT	MoonLP165P.SRP.Flux	=	1367

GMAT	MoonLP165P.SRP.Nominal_Sun	=	149597870.691

GMAT	MoonLP165P.Gravity.Luna.PotentialFile	=	../data/gravity/luna/LP165P.cof

GMAT	MoonLP165P.Gravity.Luna.Degree	=	20

GMAT	MoonLP165P.Gravity.Luna.Order	=	20

Create	Propagator	RKV89

GMAT	RKV89.FM	=	MoonLP165P

BeginMissionSequence

Propagate	RKV89(moonSat)	{moonSat.ElapsedSecs	=	300}



SPK-Configured	Propagator

Description

An	SPK-configured	Propagator	propagates	a	spacecraft	by	interpolating	user-
provided	SPICE	kernels.	You	configure	a	Propagator	to	use	an	SPK	kernel	by
setting	the	Type	field	to	SPK.	SPK	kernels	and	the	NAIFId	are	defined	on	the
Spacecraft	Resource.	You	control	propagation,	including	stopping	conditions,
using	the	Propagate	command.	This	resource	cannot	be	modified	in	the	Mission
Sequence.	However,	you	can	do	whole	object	assignment	in	the	mission,(	i.e.
myPropagator	=	yourPropagator	).

See	Also:	Spacecraft,	Propagate

Fields

Field Description

CentralBody
The	central	body	of	propagation.	This	field	has	no
effect	for	SPK,	Code500,	or	STK	propagators.

Data	Type Resource	reference

Allowed	Values Celestial	body

Access set

Default	Value Earth

Units N/A



Interfaces GUI,	script

EpochFormat
Only	used	for	an	SPK,	Code500,	or	STK	propagator.
The	format	of	the	epoch	contained	in	the	StartEpoch
field.

Data
Type

Enumeration

Allowed
Values

A1ModJulian,	TAIModJulian,
UTCModJulian,	TTModJulian,
TDBModJulian,	A1Gregorian,
TAIGregorian,	TTGregorian,
UTCGregorian,	TDBGregorian

Access set

Default
Value

A1ModJulian

Units N/A	unless	Mod	Julian	and	in	that	case
Modified	Julian	Date

Interfaces GUI,	script

Start	Epoch
Only	used	for	an	SPK,	Code500,	or	STK	propagator.
The	initial	epoch	of	propagation.	When	an	epoch	is
provided	that	epoch	is	used	as	the	initial	epoch.	When



the	keyword	"FromSpacecraft"	is	provided,	the	start
epoch	is	inherited	from	the	spacecraft.

Data
Type

String

Allowed
Values

"Gregorian:	04	Oct	1957	12:00:00.000	<=
Epoch	<=	28	Feb	2100	00:00:00.000
Modified	Julian:	6116.0	<=	Epoch	<=
58127.5	or	"FromSpacecraft"

Access set

Default
Value

21545

Units N/A

Interfaces GUI,	script

StepSize
The	step	size	for	an	SPK,	Code500,	or	STK
Propagator.

Data	Type Real

Allowed	Values Real	>	0



Access set

Default	Value 300

Units N/A

Interfaces GUI,	script

Type
Specifies	the	integrator	or	analytic	propagator	used	to
model	time	evolution	of	spacecraft	motion.

Data
Type

Enumeration

Allowed
Values

PrinceDormand78,	PrinceDormand45,
RungeKutta89,RungeKutta68,
RungeKutta56,	BulirschStoer,
AdamsBashforthMoulton,	SPK,
Code500

Access set

Default
Value

RungeKutta89

Units N/A



Interfaces GUI,	script

GUI

To	configure	a	Propagator	to	use	SPK	files,	on	the	Propagator	dialog	box,
select	SPK	in	the	Type	menu.	There	are	four	fields	you	can	configure	for	an
SPK	propagator	including	StepSize,	CentralBody,	EpochFormat,	and
StartEpoch.	Note	that	changing	the	EpochFormat	setting	converts	the	input
epoch	to	the	selected	format.	You	can	also	type	FromSpacecraft	into	the
StartEpoch	field	and	the	Propagator	will	use	the	epoch	of	the	Spacecraft	as
the	initial	propagation	epoch.

Remarks

To	use	an	SPK-configured	Propagator,	you	must	specify	the	SPK	kernels	and
NAIFId	on	the	Spacecraft,	configure	a	Propagator	to	use	SPK	files	as	opposed



to	numerical	methods,	and	configure	the	Propagate	command	to	use	the
configured	SPK	propagator.	The	subsections	and	examples	below	discuss	each
of	these	items	in	detail.

Configuring	Spacecraft	SPK	Kernels

To	use	an	SPK-configured	Propagator,	you	must	add	the	SPK	kernels	to	the
Spacecraft	and	define	the	spacecraft's	NAIFId.	SPK	Kernels	for	selected
spacecraft	are	available	here.	Two	sample	vehicle	spk	kernels,	(GEOSat.bsp	and
MoonTransfer.bsp)	are	distributed	with	GMAT	for	example	purposes.	An
example	of	how	to	add	spacecraft	kernels	via	the	script	interface	is	shown	below.

Create	Spacecraft	aSpacecraft

GMAT	aSpacecraft.NAIFId	=	-123456789

GMAT	aSpacecraft.OrbitSpiceKernelName	=	{...

																																				'..\data\vehicle\ephem\spk\GEOSat.bsp'}

To	add	Spacecraft	SPK	kernels	via	the	GUI:

1.	 On	the	Spacecraft	dialog	box,	click	the	SPICE	tab.
2.	 Under	the	SPK	Files	list,	click	Add.
3.	 Browse	to	locate	and	select	the	desired	SPK	file
4.	 Repeat	to	add	all	necessary	SPK	kernels
5.	 In	the	NAIF	ID	field,	enter	the	spacecraft	integer	NAIF	id	number.	Note:

For	a	given	mission,	each	spacecraft	should	have	a	unique	NAIF	ID	if	the
spacecraft	are	propagated	with	an	SPK	propagator.

http://naif.jpl.nasa.gov/naif/data_archived.html


You	can	add	more	than	one	kernel	to	a	spacecraft	as	shown	via	scripting	below,
where	the	files	GEOSat1.bsp	and	GEOSat2.bsp	are	dummy	file	names	used	for
example	purposes	only	and	are	not	distributed	with	GMAT.	In	the	script,	you	can
use	relative	path	or	absolute	path	to	define	the	location	of	an	SPK	file.	Relative
paths	are	defined	with	respect	to	the	GMAT	bin	directory	of	your	local
installation.

Create	Spacecraft	aSpacecraft

aSpacecraft.OrbitSpiceKernelName	={'C:\MyDataFiles\GEOSat1.bsp',...

																																			'C:\MyDataFiles\GEOSat2.bsp'}

Configuring	an	SPK	Propagator

You	can	define	the	StartEpoch	of	propagation	of	an	SPK-configured
Propagator	on	either	the	Propagator	Resource	or	inherit	the	StartEpoch	from



the	Spacecraft.	Below	is	a	script	snippet	that	shows	how	to	inherit	the
StartEpoch	from	the	Spacecraft.	To	inherit	the	StartEpoch	from	the
Spacecraft	using	the	GUI

1.	 Open	the	SPK	propagator	dialog	box,
2.	 In	the	StartEpoch	field.,	type	FromSpacecraft	or	select	FromSpacecraft

from	the	drop-down	menu

To	explicitly	define	the	StartEpoch	on	the	Propagator	Resource	use	the
following	syntax.

Create	Propagator	spkProp

spkProp.EpochFormat	=	'UTCGregorian'

spkProp.StartEpoch	=	'22	Jul	2014	11:29:10.811'

Create	Propagator	spkProp2

spkProp2.EpochFormat	=	'TAIModJulian'

spkProp2.StartEpoch	=	'23466.5'

To	configure	the	step	size,	use	the	StepSize	field.

Create	Propagator	spkProp

spkProp.Type	=	SPK

spkProp.StepSize	=	300

Interaction	with	the	Propagate	Command

An	SPK-configured	Propagator	works	with	the	Propagate	command	in	the
same	way	numerical	propagators	work	with	the	Propagate	command	with	the
following	exceptions:

If	a	Propagate	command	uses	an	SPK	propagator,	then	you	can	only
propagate	one	spacecraft	using	that	propagator.	You	can	however,	mix	SPK
propagators	and	numeric	propagators	in	a	single	propagate	command.

SPK-configured	Propagators	will	not	propagate	the	STM	or	compute	the
orbit	Jacobian	(A	matrix).

In	the	example	below,	we	assume	a	Spacecraft	named	aSpacecraft	and	a
Propagator	named	spkProp	have	been	configured	a-priori.	An	example
command	to	propagate	aSpacecraft	to	Earth	Periapsis	using	spkProp	is	shown



below.

Propagate	spkProp(aSpacecraft)	{aSpacecraft.Earth.Periapsis}

Below	is	a	script	snippet	that	demonstrates	how	to	propagate	backwards	using	an
SPK	propagator.

Propagate	BackProp	spkProp(aSpacecraft)	{aSpacecraft.ElapsedDays	=	-1.5}

Behavior	Near	Ephemeris	Boundaries

In	general,	ephemeris	interpolation	is	less	accurate	near	the	boundaries	of
ephemeris	files	and	we	recommend	providing	ephemeris	for	significant	periods
beyond	the	initial	and	final	epochs	of	your	application	for	this	and	other	reasons.
When	propagating	near	the	beginning	or	end	of	ephemeris	files,	the	use	of	the
double	precision	arithmetic	may	affect	results.	For	example,	if	an	ephemeris	file
has	has	an	initial	epoch	TDBModJulian	=	21545.00037249916,	and	you	specify
the	StartEpoch	in	UTC	Gregorian,	round	off	error	in	time	conversions	and/or
truncation	of	time	using	the	Gregorian	format	(only	accurate	to	millisecond)	may
cause	the	requested	epoch	to	fall	slightly	outside	of	the	range	provided	on	the
ephemeris	file.	The	best	solution	is	to	provide	extra	ephemeris	data	to	avoid	time
issues	at	the	boundaries	and	the	more	subtle	issue	of	poor	interpolation.

Warning

To	locate	requested	stopping	conditions,	GMAT	needs	to
bracket	the	root	of	the	stopping	condition	function.	Then,
GMAT	uses	standard	root	finding	techniques	to	locate	the
stopping	condition	to	the	requested	accuracy.	If	the	requested
stopping	condition	lies	at	or	near	the	beginning	or	end	of	the
ephemeris	data,	then	bracketing	the	stopping	condition	may	not
be	possible	without	stepping	off	the	ephemeris	file	which	throw
an	error	and	execution	will	stop.	In	this	case,	you	must	provide
more	ephemeris	data	to	locate	the	desired	stopping	condition.

Examples



Propagate	a	GEO	spacecraft	using	an	SPK-configured	Propagator.	Define	the
StartEpoch	from	the	spacecraft.	Note:	the	SPK	kernel	GEOSat.bsp	is
distributed	with	GMAT.

Create	Spacecraft	aSpacecraft;

aSpacecraft.Epoch.UTCGregorian	=	'02	Jun	2004	12:00:00.000'

aSpacecraft.NAIFId	=	-123456789

aSpacecraft.OrbitSpiceKernelName	=	{'..\data\vehicle\ephem\spk\GEOSat.bsp'}

Create	Propagator	spkProp

spkProp.Type	=	SPK

spkProp.StepSize	=	300

spkProp.CentralBody	=	Earth

spkProp.StartEpoch	=	FromSpacecraft

Create	OrbitView	EarthView

EarthView.Add	=	{aSpacecraft,	Earth,	Luna}

EarthView.ViewPointVector	=	[	30000	-20000	10000	]

EarthView.ViewScaleFactor	=	2.5

BeginMissionSequence

Propagate	spkProp(aSpacecraft)	{aSpacecraft.TA	=	90}

Propagate	spkProp(aSpacecraft)	{aSpacecraft.ElapsedDays	=	2.4}

Simulate	a	lunar	transfer	using	an	SPK-configured	Propagator.	Define
StartEpoch	on	the	Propagator.	Note:	the	SPK	kernel	MoonTransfer.bsp	is
distributed	with	GMAT.

Create	Spacecraft	aSpacecraft

aSpacecraft.NAIFId	=	-123456789

aSpacecraft.OrbitSpiceKernelName	=	{...

																										'..\data\vehicle\ephem\spk\MoonTransfer.bsp'}

Create	Propagator	spkProp

spkProp.Type	=	SPK

spkProp.StepSize	=	300

spkProp.CentralBody	=	Earth

spkProp.EpochFormat	=	'UTCGregorian'

spkProp.StartEpoch	=	'22	Jul	2014	11:29:10.811'

Create	OrbitView	EarthView

EarthView.Add	=	{aSpacecraft,	Earth,	Luna}

EarthView.ViewPointVector	=	[	30000	-20000	10000	]

EarthView.ViewScaleFactor	=	30



BeginMissionSequence

Propagate	spkProp(aSpacecraft)	{aSpacecraft.ElapsedDays	=	12}



Code500	Ephemeris-Configured	Propagator

Description

A	Code500	ephemeris-configured	Propagator	propagates	a	spacecraft	by
interpolating	or	stepping	along	a	user-provided	Code500-format	binary
ephemeris	file.	You	configure	a	Propagator	to	use	a	Code500	ephemeris	by
setting	the	Type	field	to	Code500.	The	Code500	ephemeris	file	is	specified	on
the	Spacecraft.EphemerisName	resource.	The	user	controls	propagation,
including	stopping	conditions,	using	the	Propagate	command.	This	resource
cannot	be	modified	in	the	Mission	Sequence.	However,	you	can	do	whole	object
assignment	in	the	mission	sequence,	(i.e.	myPropagator	=	yourPropagator	).

The	Propagator	CentralBody	option	is	not	applicable	to	the	Code500
propagator	and	should	not	be	used	with	the	Code500	propagator	type.	GMAT
will	automatically	detect	and	use	the	central	body	of	the	ephemeris	file.	The
Propagate	command	should	be	used	to	traverse	the	ephemeris	file.	GMAT	will
throw	an	error	message	and	terminate	when	attempting	to	propagate	outside	the
bounds	of	the	ephemeris	file.

Code500	ephemeris	files	are	binary-format	files.	As	discussed	in	the
EphemerisFile	help,	GMAT	can	generate	Code500	ephemeris	files	in	both	little-
endian	and	big-endian	binary	format	(via	EphemerisFile.OutputFormat).	The
ephemeris	propagator	can	read	Code500	ephemeris	files	in	either	endian	format.
The	endian	format	of	the	ephemeris	file	will	be	automatically	detected	by
GMAT.

See	Also:	Spacecraft,	Propagate,	EphemerisFile

Fields

The	only	Propagator	fields	applicable	to	the	Code500	ephemeris	propagator	are
EpochFormat,	StartEpoch,	StepSize	and	Type.

Field Description

EpochFormat
Only	used	for	an	SPK,	Code500,	or	STK	propagator.



Specifies	format	of	the	epoch	contained	in	the
StartEpoch	field.

Data
Type

Enumeration

Allowed
Values

A1ModJulian,	TAIModJulian,
UTCModJulian,	TTModJulian,
TDBModJulian,	A1Gregorian,
TAIGregorian,	TTGregorian,
UTCGregorian,	TDBGregorian

Access set

Default
Value

A1ModJulian

Units N/A	unless	Mod	Julian	and	in	that	case
Modified	Julian	Date

Interfaces GUI,	script

Start	Epoch
Only	used	for	an	SPK,	Code500,	or	STK	propagator.
Specifies	initial	epoch	of	propagation.	When	an	epoch
is	provided	that	epoch	is	used	as	the	initial	epoch.
When	the	keyword	FromSpacecraft	is	provided,	the
start	epoch	is	inherited	from	the	spacecraft.

Data String



Type

Allowed
Values

"Gregorian:	04	Oct	1957	12:00:00.000	<=
Epoch	<=	28	Feb	2100	00:00:00.000
Modified	Julian:	6116.0	<=	Epoch	<=
58127.5	or	"FromSpacecraft"

Access set

Default
Value

21545

Units N/A

Interfaces GUI,	script

StepSize
The	step	size	for	an	Code500	Propagator.	GMAT	will
use	this	step	size	when	traversing	the	ephemeris	file,
regardless	of	the	internal	step	size	of	the	ephemeris.
GMAT	will	perform	interpolation	between	vectors	on
the	file	as	needed.

Data	Type Real

Allowed	Values Real	>	0

Access set



Default	Value 300

Units N/A

Interfaces GUI,	script

Type
Specifies	the	integrator	or	analytic	propagator	used	to
model	time	evolution	of	spacecraft	motion.	Specify
Code500	for	a	Code500	ephemeris	propagator.

Data
Type

Enumeration

Allowed
Values

PrinceDormand78,	PrinceDormand45,
RungeKutta89,RungeKutta68,
RungeKutta56,	BulirschStoer,
AdamsBashforthMoulton,	SPK,
Code500

Access set

Default
Value

RungeKutta89

Units N/A

Interfaces GUI,	script



GUI

To	configure	a	Propagator	from	the	GMAT	GUI	to	use	Code500	ephemeris
files,	select	and	open	a	Propagator	from	the	Resources	tree.	In	the	Integrator
category	select	Code500	from	the	Type	drop-down	box.	This	will	display	the
Code500	propagator	options	dialog.	There	are	four	fields	displayed	for	a
Code500	propagator	-	StepSize,	CentralBody,	EpochFormat,	and	StartEpoch.



Note	that	changing	the	EpochFormat	setting	converts	the	input	epoch	to	the
selected	format.	You	can	also	type	FromSpacecraft	into	the	StartEpoch	field
and	the	Propagator	will	use	the	epoch	of	the	Spacecraft	as	the	initial
propagation	epoch.	The	CentralBody	field	is	displayed	to	the	user,	but	is	unused
when	the	integrator	type	is	Code500.

Remarks

There	is	currently	no	GUI	option	to	assign	the	Code500	ephemeris	file	to	the
Spacecraft	resource.	You	must	specify	the	Code500	ephemeris	file	on	the
Spacecraft.EphemerisName	parameter	via	script.	The	subsections	below
provide	examples	of	how	to	do	this.

Configuring	Spacecraft	Ephemeris	Files

To	use	a	Code500	ephemeris-configured	Propagator,	you	must	add	the
Code500	ephemeris	file	to	the	Spacecraft.	A	sample	spacecraft	Code500
ephemeris,	(sat_leo.ephem,	in	the	data/vehicle/ephem/code500	directory)	is
distributed	with	GMAT.	This	sample	file	has	a	span	of	4/20/2015	00:00:00	to
4/30/2015	00:00:00.	An	example	of	how	to	assign	this	ephemeris	to	a	spacecraft
is	shown	below.	Relative	paths	are	defined	with	respect	to	the	GMAT	bin
directory	of	your	local	installation.

Create	Spacecraft	aSpacecraft

aSpacecraft.EphemerisName	=	'../data/vehicle/ephem/code500/sat_leo.ephem'

BeginMissionSequence

A	spacecraft	may	have	only	one	Code500	ephemeris	assigned.	There	is	currently
no	GUI	option	to	add	a	Code500	ephemeris	file	to	a	spacecraft.

Configuring	a	Code500	Ephemeris	Propagator

If	you	have	assigned	the	ephemeris	file	to	your	spacecraft,	configuring	the
propagator	only	requires	assigning	the	Code500	type	and	the	desired	step	size	on
a	Propagator	resource.	The	central	body	of	propagation	will	be	the	central	body
of	the	the	ephemeris	file.	If	desired,	you	may	also	specify	an	EpochFormat	and
StartEpoch	on	the	propagator	to	specify	an	initial	epoch	from	which	to	start



propagation.	The	same	effect	can	be	accomplished	with	an	independent
Propagate	command	(see	Propagate)	to	the	desired	starting	epoch.

Create	Propagator	Code500Prop

Code500Prop.Type					=	'Code500'

Code500Prop.StepSize	=	60.

BeginMissionSequence

The	same	remarks	mentioned	in	the	prior	section	on	SPK	propagators	with
regard	to	interaction	with	the	Propagate	command	and	behavior	near	ephemeris
boundaries	also	apply	to	the	Code500	ephemeris	propagator.

Examples

This	example	propagates	a	spacecraft	using	a	Code500	ephemeris,	defining	the
StartEpoch	from	the	spacecraft.	The	ephemeris	file	used	in	this	example	is
included	in	the	GMAT	distribution	at	the	indicated	location.	The	code	below	will
run	if	you	copy	and	paste	it	into	a	new	GMAT	script.

Create	Spacecraft	aSpacecraft

%	Ephem	file	span	is	4/20/2015	-	4/30/2015

aSpacecraft.EphemerisName	=	'../data/vehicle/ephem/code500/sat_leo.ephem'

aSpacecraft.DateFormat				=	UTCGregorian

aSpacecraft.Epoch									=	'22	Apr	2015	00:00:00.000'

Create	Propagator	Code500Prop

Code500Prop.Type							=	'Code500'

Code500Prop.StepSize			=	60.

Code500Prop.StartEpoch	=	'FromSpacecraft'

Create	ReportFile	PropReport

PropReport.Filename					=	'EphemPropagator_Code500_ForwardProp.txt'

PropReport.WriteHeaders	=	True

BeginMissionSequence

While	aSpacecraft.ElapsedDays	<=	1



				Propagate	Code500Prop(aSpacecraft)

				Report	PropReport	aSpacecraft.UTCGregorian	aSpacecraft.TAIModJulian	...

								aSpacecraft.X	aSpacecraft.Y	aSpacecraft.Z	...

								aSpacecraft.VX	aSpacecraft.VY	aSpacecraft.VZ

EndWhile

An	additional,	more	detailed,	example	of	use	of	the	Code500	ephemeris
propagator	is	shown	in	the	Ex_Code500_EphemerisCompare.script	file
provided	in	the	samples\Navigation	directory.	This	script	generates	a	report
showing	the	difference,	in	RIC	coordinates,	between	the	orbits	in	two	different
Earth-centered	Code500	ephemeris	files.



STK	Ephemeris-Configured	Propagator

Description

An	STK	ephemeris-configured	Propagator	propagates	a	spacecraft	by
interpolating	or	stepping	along	a	user-provided	STK-format	binary	ephemeris
file.	You	configure	a	Propagator	to	use	an	STK	ephemeris	by	setting	the	Type
field	to	STK.	The	STK	ephemeris	file	is	specified	on	a	Spacecraft	resource	using
the	Spacecraft.EphemerisName	field.	The	user	controls	propagation,	including
stopping	conditions,	using	the	Propagate	command.	This	resource	cannot	be
modified	in	the	Mission	Sequence.	However,	you	can	do	whole	object
assignment	in	the	mission	sequence,	(i.e.	myPropagator	=	yourPropagator	).

The	Propagator	CentralBody	option	is	not	applicable	to	the	STK	propagator
and	should	not	be	used	with	the	STK	propagator	type.	GMAT	will	automatically
detect	and	use	the	central	body	of	the	ephemeris	file.	The	Propagate	command
should	be	used	to	traverse	the	ephemeris	file.	GMAT	will	throw	an	error
message	and	terminate	when	attempting	to	propagate	outside	the	bounds	of	the
ephemeris	file.	The	STK	propagator	includes	code	that	steps	the	spacecraft	to	the
ephem	boundary	before	stepping	out	of	the	span	of	the	ephem

STK	ephemeris	files	are	ASCII	files	conforming	to	the	Satellite	Tool	Kit
TimePosVel	specifications.	As	discussed	in	the	EphemerisFile	help,	GMAT	can
generate	STK	ephemeris	files	using	the	EphemerisFile.OutputFormat	field.
The	STK	propagator	works	with	STK	formatted	files,	starting	with	STK	4.0,	or
GMAT	STK	ephemerides.

See	Also:	Spacecraft,	Propagate,	EphemerisFile

Fields

The	only	Propagator	fields	applicable	to	the	STK	ephemeris	propagator	are
EpochFormat,	StartEpoch,	StepSize	and	Type.

Field Description

EpochFormat
Only	used	for	an	SPK,	Code500,	or	STK	propagator.



Specifies	format	of	the	epoch	contained	in	the
StartEpoch	field.

Data
Type

Enumeration

Allowed
Values

A1ModJulian,	TAIModJulian,
UTCModJulian,	TTModJulian,
TDBModJulian,	A1Gregorian,
TAIGregorian,	TTGregorian,
UTCGregorian,	TDBGregorian

Access set

Default
Value

A1ModJulian

Units N/A	unless	Mod	Julian	and	in	that	case
Modified	Julian	Date

Interfaces GUI,	script

Start	Epoch
Only	used	for	an	SPK,	Code500,	or	STK	propagator.
Specifies	initial	epoch	of	propagation.	When	an	epoch
is	provided	that	epoch	is	used	as	the	initial	epoch.
When	the	keyword	FromSpacecraft	is	provided,	the
start	epoch	is	inherited	from	the	spacecraft.

Data String



Type

Allowed
Values

"Gregorian:	04	Oct	1957	12:00:00.000	<=
Epoch	<=	28	Feb	2100	00:00:00.000
Modified	Julian:	6116.0	<=	Epoch	<=
58127.5	or	"FromSpacecraft"

Access set

Default
Value

21545

Units N/A

Interfaces GUI,	script

StepSize
The	step	size	for	the	Propagator.	GMAT	will	use	this
step	size	when	traversing	the	ephemeris	file,	regardless
of	the	internal	step	size	of	the	ephemeris.	GMAT	will
perform	interpolation	between	vectors	on	the	file	as
needed.

Data	Type Real

Allowed	Values Real	>	0

Access set



Default	Value 300

Units N/A

Interfaces GUI,	script

Type
Specifies	the	integrator	or	analytic	propagator	used	to
model	time	evolution	of	spacecraft	motion.	Specify
STK	for	an	STK	ephemeris	propagator.

Data
Type

Enumeration

Allowed
Values

PrinceDormand78,	PrinceDormand45,
RungeKutta89,RungeKutta68,
RungeKutta56,	BulirschStoer,
AdamsBashforthMoulton,	SPK,
Code500,	STK

Access set

Default
Value

RungeKutta89

Units N/A

Interfaces GUI,	script



GUI

To	configure	a	Propagator	from	the	GMAT	GUI	to	use	STK	ephemeris	files,
select	and	open	a	Propagator	from	the	Resources	tree.	In	the	Integrator
category	select	STK	from	the	Type	drop-down	box.	This	will	display	the	STK
propagator	options	dialog.	There	are	four	fields	displayed	for	an	STK	propagator
that	affect	propagation	-	StepSize,	CentralBody,	EpochFormat,	and
StartEpoch.	Note	that	changing	the	EpochFormat	setting	converts	the	input
epoch	to	the	selected	format.	You	can	also	type	FromSpacecraft	into	the
StartEpoch	field	and	the	Propagator	will	use	the	epoch	of	the	Spacecraft	as
the	initial	propagation	epoch.	The	CentralBody	field	is	displayed	to	the	user,	but
is	unused	when	the	integrator	type	is	STK.



Implementation	Notes

Position	interpolation	by	default	is	performed	using	a	7th	order	Hermite-Newton
divided	difference	interpolator	using	function	value	only	data	(i.e.	position	data
for	the	position	interpolation).	Velocity	interpolation	uses	the	derivative	of	the
position	polynomial	to	produce	interpolated	values.

For	segmented	ephemerides,	the	interpolator	restarts	at	segment	boundaries.	If
an	ephemeris	segment	has	fewer	than	8	points,	the	interpolator	activates
derivative	information	for	the	position	interpolation	by	including	the	velocity
data	for	the	interpolation.	The	order	of	the	interpolator	changes	to	match	the
number	of	points	in	the	segment	(for	n	data	points,	order	=	2n	-	1	for	position
and	n	-	1	for	velocity).	The	first	time	this	happens,	a	warning	notice	is	posted	to
the	message	window	indicating	the	order	of	the	velocity	interpolation.
Subsequent	changes	are	not	reported,	but	the	interpolation	order	will	adapt	to	the
number	of	points	in	subsequent	segments.

Propagating	with	stopping	conditions	can	show	sub-millisecond	related
differences.

STK	ephemeris	files	can	set	an	ephemeris	epoch	that	is	very	different	from	the
data	in	the	file	by	setting	a	distant	in	time	Scenario	Epoch,	and	compensating
using	the	time	offset	for	each	ephemeris	point	in	the	file.	This	can	lead	to	round-
off	issues	in	propagation,	particularly	when	propagating	to	the	end	of	an
ephemeris	(or	back	propagating	to	the	start).

Remarks

There	is	currently	no	GUI	option	to	assign	the	STK	ephemeris	file	to	the
Spacecraft	resource.	You	must	specify	the	STK	ephemeris	file	on	the
Spacecraft.EphemerisName	parameter	via	script.	The	subsections	below
provide	examples	of	how	to	do	this.

Configuring	Spacecraft	Ephemeris	Files

To	use	a	STK	ephemeris-configured	Propagator,	you	must	add	the	STK
ephemeris	file	to	the	Spacecraft.	A	sample	spacecraft	Code500	ephemeris,
(sat_leo.ephem,	in	the	data/vehicle/ephem/code500	directory)	is	distributed



with	GMAT.	This	sample	file	has	a	span	of	4/20/2015	00:00:00	to	4/30/2015
00:00:00.	An	example	of	how	to	assign	this	ephemeris	to	a	spacecraft	is	shown
below.	Relative	paths	are	defined	with	respect	to	the	GMAT	bin	directory	of
your	local	installation.

Create	Spacecraft	aSpacecraft;

aSpacecraft.EphemerisName	=	'../data/vehicle/ephem/stk/SampleSTKEphem.e';

BeginMissionSequence;

A	spacecraft	may	have	only	one	STK	ephemeris	assigned.	There	is	currently	no
GUI	option	to	add	an	STK	ephemeris	file	to	a	spacecraft.

Configuring	an	STK	Ephemeris	Propagator

If	you	have	assigned	the	ephemeris	file	to	your	spacecraft,	configuring	the
propagator	only	requires	assigning	the	STK	type	and	the	desired	step	size	on	a
Propagator	resource.	The	central	body	of	propagation	will	be	the	central	body
of	the	ephemeris	file.	If	desired,	you	may	also	specify	an	EpochFormat	and
StartEpoch	on	the	propagator	to	specify	an	initial	epoch	from	which	to	start
propagation.	The	same	effect	can	be	accomplished	with	an	independent
Propagate	command	(see	Propagate)	to	advance	the	Spacecraft	to	the	desired
starting	epoch.

Create	Propagator	STKProp;

STKProp.Type					=	'STK';

STKProp.StepSize	=	60;

BeginMissionSequence;

The	same	remarks	mentioned	in	the	section	on	SPK	propagators	with	regard	to
interaction	with	the	Propagate	command	and	behavior	near	ephemeris
boundaries	also	apply	to	the	STK	ephemeris	propagator.

Examples

This	example	propagates	a	spacecraft	using	an	STK	ephemeris,	defining	the
StartEpoch	from	the	spacecraft.	The	ephemeris	file	used	in	this	example	is
included	in	the	GMAT	distribution	at	the	indicated	location.	The	code	below	will



run	if	you	copy	and	paste	it	into	a	new	GMAT	script.

%

%			Spacecraft

%	

Create	Spacecraft	STKSat;

GMAT	STKSat.DateFormat	=	UTCGregorian;

GMAT	STKSat.Epoch	=	'01	Jan	2000	12:00:00.000';

GMAT	STKSat.EphemerisName	=	'../data/vehicle/ephem/stk/SampleSTKEphem.e';

%

%			Propagator

%

Create	Propagator	STKProp;

GMAT	STKProp.Type	=	STK;

GMAT	STKProp.StepSize	=	60;

GMAT	STKProp.CentralBody	=	Earth;

GMAT	STKProp.EpochFormat	=	'A1ModJulian';

GMAT	STKProp.StartEpoch	=	'FromSpacecraft';

%

%			Output	

%

Create	OrbitView	OrbitView1;

GMAT	OrbitView1.SolverIterations	=	Current;

GMAT	OrbitView1.UpperLeft	=	[	0	0	];

GMAT	OrbitView1.Size	=	[	0	0	];

GMAT	OrbitView1.RelativeZOrder	=	0;

GMAT	OrbitView1.Maximized	=	false;

GMAT	OrbitView1.Add	=	{STKSat,	Earth};

%----------------------------------------

%----------	Arrays,	Variables,	Strings

%----------------------------------------

Create	Array	initialState[6,1]	finalState[6,1];

%

%	Miscellaneous	variables.

%



Create	String	initialEpoch	finalEpoch;

%

%			Mission	Sequence

%

BeginMissionSequence;

GMAT	[initialEpoch,	initialState,	finalEpoch,	finalState]	=	...

			GetEphemStates('STK',	STKSat,	'UTCGregorian',	EarthMJ2000Eq);

GMAT	STKSat.Epoch	=	initialEpoch;

While	STKSat.ElapsedDays	<=	1

						

			Propagate	STKProp(STKSat);

EndWhile;

This	example	is	provided	in	the	samples	directory,	in	the
Ex_2017a_STKEphemPropagation	script.



Receiver
Receiver	—	Hardware	that	receives	an	RF	signal.



Description
A	GroundStation	or	Spacecraft	resource	needs	a	Receiver.	A	GroundStation
resource,	for	example,	needs	to	receive	the	RF	signal	from	ground	station	user
spacecraft.	A	Receiver	is	assigned	on	the	AddHardware	list	of	an	instance	of	a
GroundStation	or	Spacecraft.

The	receiver	resource	is	also	used	as	the	host	object	for	the	GPS_PosVec
measurement	error	model.	When	using	GPS_PosVec	data	for	estimation	or
simulation,	an	ErrorModel	instance	specifying	the	GPS_PosVec	measurement
type	should	be	assigned	on	a	Receiver	object,	and	that	receiver	should	be
assigned	to	the	associated	Spacecraft	object.

See	Also:	GroundStation,	Antenna



Fields

Field Description

ErrorModels
User-defined	list	of	ErrorModel	objects	that	describe	the
measurement	error	models	used	for	this	receiver.	The	only
error	model	type	currently	supported	is	GPS_PosVec.	This
parameter	is	only	needed	when	simulating	or	estimating
using	GPS_PosVec	data.

Data
Type

StringList

Allowed
Values

An	instance	of	ErrorModel	using	the
GPS_PosVec	observation	type

Access set

Default
Value

None

Units N/A

Interfaces script

Id
Integer	identification	number	for	this	receiver.	This	should
match	the	receiver	ID	specified	for	the	GPS_PosVec	data
in	the	GMD	file.	This	parameter	is	only	needed	when



simulating	or	estimating	using	GPS_PosVec	data.

Data	Type Integer

Allowed	Values Integer	>=	0

Access set

Default	Value 800

Units N/A

Interfaces script

PrimaryAntenna
Antenna	resource	used	by	Receiver	or	Spacecraft
resource	to	receive	a	signal

Data	Type Antenna	Object

Allowed	Values Any	valid	Antenna	object

Access set

Default	Value None



Units N/A

Interfaces script



Examples
Create	and	configure	a	Receiver	object	and	attach	it	to	a	GroundStation.

Create	Antenna	DSNReceiverAntenna;

Create	Receiver	Receiver1;

Receiver1.PrimaryAntenna	=	DSNReceiverAntenna;

Create	GroundStation	DSN

DSN.AddHardware	=	{Receiver1};

BeginMissionSequence;



RejectFilter
RejectFilter	—	Allows	selection	of	data	subsets	for	processing	by	the	batch	least
squares	estimator.



Description
Starting	with	release	R2017A	of	GMAT,	the	RejectFilter	resource	replaces	the
StatisticsRejectFilter	resource.	The	StatisticsRejectFilter	resource	is	still
available	in	this	release	but	it	is	deprecated	and	will	be	removed	in	a	future
release.

The	RejectFilter	object	is	used	to	create	criteria	for	the	exclusion	of	subsets	of
the	available	data	in	the	estimation	process	based	on	tracker,	observed	object,
measurement	type,	or	time.	Instances	of	RejectFilter	are	specified	for	use	on	the
DataFilters	field	of	a	TrackingFileSet	or	BatchEstimatorInv	object.

GMAT	implements	two	levels	of	data	editing	for	estimation.	First-level	editing
criteria	are	specified	on	the	DataFilters	field	of	the	TrackingFileSet	instance.
At	this	level,	the	user	may	choose	what	data	is	admitted	into	the	overall	pool	of
observations	provided	to	the	estimator.	Any	data	excluded	at	the	tracking	file	set
level	will	be	immediately	discarded	and	not	available	to	the	estimation	process.

Second-level	data	editing	is	specified	on	the	DataFilters	field	of	the
BatchEstimatorInv	instance.	At	this	level,	the	user	may	choose	what	data	is
used	in	the	estimation	state	update.	Residuals	will	be	computed	for	any
observations	admitted	through	first-level	editing,	but	any	data	excluded	at	the
estimator	level	will	be	flagged	as	user	edited,	and	will	not	affect	the	computation
of	the	state	correction.	This	allows	the	user	to	evaluate	the	quality	of	untrusted
data	against	a	solution	computed	using	a	trusted	set	of	measurements.

A	single	reject	filter	may	employ	multiple	selection	criteria	(for	example
simultaneous	thinning	by	time	and	tracker).	Multiple	criteria	on	a	single	filter	are
considered	in	an	AND	sense.	When	multiple	criteria	are	specified	in	a	single
filter,	an	observation	must	meet	all	specified	criteria	to	be	rejected.	Multiple
filters	with	different	selection	criteria	may	be	specified	on	a	single
TrackingFileSet	or	BatchEstimatorInv.	When	multiple	filters	are	specified,
these	act	in	an	OR	sense.	Data	meeting	criteria	for	any	of	the	specified	filters
will	be	rejected.

See	Also	AcceptFilter,	TrackingFileSet,	BatchEstimatorInv



Fields

Field Description

DataTypes
List	of	data	types

Data	Type String	Array

Allowed
Values

A	set	of	any	supported	GMAT	measurement
types,	or	'All'

Access set

Default
Value

{All}

Units N/A

Interfaces script

EpochFormat
Allows	user	to	select	format	of	the	epoch

Data
Type

String

Allowed UTCGregorian,	UTCModJulian,



Values TAIGregorian,	TAIModJulian,	TTGregorian,
TTModJulian	A1Gregorian,	A1ModJulian,
TDBGregorian,	TDBModJulian

Access set

Default
Value

TAIModJulian

Units N/A

Interfaces script

FileNames
List	of	file	names	(a	subset	of	the	relevant
TrackingFileSet's	FileName	field)	containing	the	tracking
data,	to	be	excluded	from	processing.	This	field	is	only
applicable	when	the	RejectFilter	is	used	on	a
TrackingFileSet.

Data	Type StringArray

Allowed	Values valid	file	name	or	'All'

Access set

Default	Value {All}



Units N/A

Interfaces script

FinalEpoch
Final	epoch	of	desired	data	to	process

Data	Type String

Allowed	Values any	valid	epoch

Access set

Default	Value latest	day	defined	in	GMAT

Units N/A

Interfaces script

InitialEpoch
Initial	epoch	of	desired	data	to	process

Data	Type String

Allowed	Values any	valid	epoch



Access set

Default	Value earliest	day	defined	in	GMAT

Units N/A

Interfaces script

ObservedObjects
List	of	user-created	tracked	objects	(e.g.,	name	of	the
Spacecraft	resource	being	tracked)

Data	Type Object	Array

Allowed	Values User	defined	observed	object	or	'All'

Access set

Default	Value {All}

Units N/A

Interfaces script

RecordNumbers
A	list	of	one	or	more	single	record	numbers	or	spans	of
record	numbers	to	reject.	Observation	record	numbers	are



reported	in	the	GMAT	estimator	output	file.	This	field	is
only	applicable	when	the	RejectFilter	is	used	on	the
estimator	level.

Data	Type String	array

Allowed
Values

Integers	or	spans	of	integers	(see
examples)

Access set

Default	Value {}

Units N/A

Interfaces script

Trackers
List	of	user-created	trackers	(e.g.,	name	of	the
GroundStation	resource	being	used)

Data
Type

Object	Array

Allowed
Values

any	valid	user-created	Tracker	object	(e.g.,
GroundStation)	or	'All'

Access set



Default
Value

{All}

Units N/A

Interfaces script



Remarks
Some	fields	of	RejectFilter	are	not	applicable	at	either	the	first-level	(tracking
file	set)	or	second-level	(estimator)	editing	stages.	The	RecordNumbers	field
has	no	functionality	when	applied	to	a	reject	filter	at	the	tracking	file	set	level.
The	FileNames	field	has	no	functionality	when	applied	to	a	reject	filter	at	the
estimator	level.

Use	of	combinations	of	instances	AcceptFilter	and	RejectFilter	at	both	levels	is
permitted.



Examples

First-level	(TrackingFileSet)	Data	Editing

The	following	examples	illustrate	use	of	a	RejectFilter	for	first-level	data
editing.	At	this	level,	the	RejectFilter	instance	should	be	assigned	to	the
DataFilters	field	of	a	TrackingFileSet.	In	these	examples,	data	meeting	the
criteria	specified	by	the	reject	filter	will	be	immediately	discarded.	All	other	data
is	admitted.

This	example	shows	how	to	create	a	RejectFilter	to	reject	all	observations	from
station	GDS.

Create	GroundStation	GDS;

Create	RejectFilter	rf;

rf.Trackers	=	{'GDS'};

	

Create	TrackingFileSet	estData;

	

estData.DataFilters	=	{rf};

BeginMissionSequence;

The	next	example	will	reject	all	DSN	Doppler	(i.e.,	DSN_TCP)	tracking
measurements	from	station	GDS,	and	all	tracking	of	any	type	from	station	CAN.
All	other	tracking	measurements	will	be	accepted.

Create	GroundStation	GDS	CAN;

Create	RejectFilter	rf1;

Create	RejectFilter	rf2;

	

rf1.Trackers		=	{'GDS'};	

rf1.DataTypes	=	{'DSN_TCP'};

rf2.Trackers		=	{'CAN'};

	

Create	TrackingFileSet	estData;

	

estData.DataFilters	=	{rf1,	rf2};

BeginMissionSequence;



Second-level	(estimator)	Data	Editing

The	following	examples	illustrate	use	of	a	RejectFilter	for	second-level	data
editing.	At	this	level,	the	RejectFilter	instance	should	be	assigned	to	the
DataFilters	field	of	a	BatchEstimatorInv.	In	these	examples,	data	meeting	the
criteria	specified	by	the	reject	filter	will	excluded	from	the	estimation	state
update.	Residuals	will	be	computed	for	all	available	data	(all	data	admitted	at	the
first	level),	but	data	rejected	at	the	estimator	level	will	be	flagged	as	user	edited.

This	example	shows	how	to	create	a	RejectFilter	to	reject	specific	observations
by	record	number.

Create	RejectFilter	rf;

rf.RecordNumbers	=	{13,	25,	75-87};

	

Create	BatchEstimatorInv	bls;

	

bls.DataFilters	=	{rf};

BeginMissionSequence;

The	next	example	shows	how	to	simultaneously	employ	multiple	reject	filters.	In
this	example:

MAD	range	data	over	the	span	10	Jun	2012	02:56	to	13:59	is	rejected

All	CAN	DSN_TCP	data	is	rejected

All	RangeRate	data	(from	any	station)	is	rejected

Create	RejectFilter	rf1	rf2	rf3;

Create	GroundStation	MAD	CAN;

rf1.Trackers					=	{'MAD'};

rf1.DataTypes				=	{'Range'};

rf1.EpochFormat		=	UTCGregorian;

rf1.InitialEpoch	=	'10	Jun	2012	02:56:00.000';

rf1.FinalEpoch			=	'10	Jun	2012	13:59:00.000';

rf2.Trackers					=	{'CAN'};

rf2.DataTypes				=	{'DSN_TCP'};



rf3.DataTypes				=	{'RangeRate'};

Create	BatchEstimatorInv	bls;

bls.DataFilters	=	{rf1,	rf2,	rf3};

BeginMissionSequence;



ReportFile
ReportFile	—	Report	data	to	a	text	file



Description
The	ReportFile	resource	allows	you	to	write	data	to	a	text	file	that	can	be
viewed	after	a	mission	run	has	been	completed.	GMAT	allows	you	to	report
user-defined	Variables,	Arrays,	Strings	and	Object	Parameters.	GMAT	gives
you	control	over	setting	formatting	properties	of	the	output	report	file	that	is
generated	at	the	end	of	a	mission	run.	You	can	create	ReportFile	resource	in
either	the	GUI	or	script	interface.	GMAT	also	provides	the	option	of	when	to
write	and	stop	writing	data	to	a	text	file	through	the	Toggle	On/Off	command.
See	the	Remarks	section	below	for	detailed	discussion	of	the	interaction	between
ReportFile	resource	and	Toggle	command.

See	Also:	Report,	Toggle



Fields

Field Description

Add
Allows	a	user	to	add	any	number	of	user-defined
Variables,	Arrays,	Strings	or	Object	Parameters	to	a
report	file.	To	add	multiple	user-defined	variables	or
parameters,	enclose	the	reported	values	with	curly
brackets.	Ex.	MyReportName.Add	={Sat.X,	Sat.Y,	Var1,
Array(1,1)};	The	GUI's	Selected	Value(s)	field	is	the
equivalent	of	the	script's	Add	field.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data
Type

Reference	array

Allowed
Values

Any	user-defined	parameter.	Ex.	Variables,
Arrays,	Strings,	or	Object	parameters

Access set

Default
Value

{DefaultSC.A1ModJulian,

DefaultSC.EarthMJ2000Eq.X}

Units N/A

Interfaces GUI,	script

ColumnWidth



This	field	defines	the	width	of	the	data	columns	in	a	report
file.	The	value	for	ColumnWidth	is	applied	to	all	columns
of	data.	For	example,	if	ColumnWidth	is	set	to	20,	then
each	data	column	will	be	20	white-spaces	wide.

Data	Type Integer

Allowed	Values Integer	>	1

Access set

Default	Value 23

Units Characters

Interfaces GUI,	script

Delimiter
When	FixedWidth	field	is	turned	off,	this	field	become
active.	The	Delimiter	field	allows	you	to	report	data	to	a
report	file	in	Comma,	Semicolon,	Space	and	Tab	delimited
format.

Data	Type Enumeration

Allowed
Values

Comma,	SemiColon,	Space,	Tab



Access set

Default	Value When	this	field	is	active,	then	default	is
Space

Units N/A

Interfaces GUI,	script

Filename
Allows	the	user	to	define	the	file	path	and	file	name	for	a
report	file.

Data	Type String

Allowed	Values Valid	File	Path	and	Name

Access set

Default	Value ReportFile1.txt

Units N/A

Interfaces GUI,	script

FixedWidth
Allows	you	to	enable	or	disable	Delimiter	and
ColumnWidth	fields.	When	this	field	is	turned	on,	the



Delimiter	field	is	inactive	and	ColumnWidth	field	is
active	and	can	be	used	to	vary	the	width	of	the	data
columns.	When	FixedWidth	field	is	turned	off,	the
ColumnWidth	field	becomes	inactive	and	Delimiter	field
is	active	for	use.

Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value On

Units N/A

Interfaces GUI,	script

LeftJustify
When	the	LeftJustify	field	is	set	to	On,	then	the	data	is	left
justified	and	appears	at	the	left	most	side	of	the	column.	If
the	LeftJustify	field	is	set	to	Off,	then	the	data	is	centered
in	the	column.

Data	Type Boolean

Allowed	Values On,	Off



Access set

Default	Value On

Units N/A

Interfaces GUI,	script

Maximized
Allows	the	user	to	maximize	the	ReportFile	window.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values true,false

Access set

Default	Value false

Units N/A

Interfaces script

Precision
Allows	the	user	to	set	the	number	of	significant	digits	of
the	data	written	to	a	report.



Data	Type Integer

Allowed	Values Integer	>	1

Access set

Default	Value 16

Units Same	as	variable	being	reported

Interfaces GUI,	script

RelativeZOrder
Allows	the	user	to	select	which	ReportFile	to	display	first
on	the	screen.	The	ReportFile	with	lowest
RelativeZOrder	value	will	be	displayed	last	while
ReportFile	with	highest	RelativeZOrder	value	will	be
displayed	first.	This	field	cannot	be	modified	in	the
Mission	Sequence.

Data	Type Integer

Allowed	Values Integer	≥	0

Access set



Default	Value 0

Units N/A

Interfaces script

Size
Allows	the	user	to	control	the	display	size	of	generated
report	file.	First	value	in	[0	0]	matrix	controls	horizonal
size	and	second	value	controls	vertical	size	of	report	file
window.	This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number

Access set

Default	Value [	0	0	]

Units N/A

Interfaces script

SolverIterations
This	field	determines	whether	or	not	data	associated	with
perturbed	trajectories	during	a	solver	(Targeter,	Optimize)
sequence	is	written	to	a	report	file.	When	SolverIterations



is	set	to	All,	all	perturbations/iterations	are	written	to	a
report	file.	When	SolverIterations	is	set	to	Current,	only
current	solution	is	written	to	a	report	file.	When
SolverIterations	is	set	to	None,	this	shows	only	final
solution	after	the	end	of	an	iterative	process	and	reports
only	final	solution	to	a	report	file.

Data	Type Enumeration

Allowed	Values All,	Current,	None

Access set

Default	Value Current

Units N/A

Interfaces GUI,	script

Upperleft
Allows	the	user	to	pan	the	generated	report	file	display
window	in	any	direction.	First	value	in	[0	0]	matrix	helps
to	pan	the	report	file	window	horizontally	and	second	value
helps	to	pan	the	window	vertically.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number



Access set

Default	Value [	0	0	]

Units N/A

Interfaces script

WriteHeaders
This	field	specifies	whether	to	include	headers	that
describe	the	variables	in	a	report	file.

Data	Type Boolean

Allowed	Values True,	False

Access set

Default	Value True

Units N/A

Interfaces GUI,	script

WriteReport
This	field	specifies	whether	to	write	data	to	the	report



FileName.

Data	Type Boolean

Allowed	Values True,	False

Access set

Default	Value True

Units N/A

Interfaces GUI,	script

ZeroFill
Allows	zeros	to	be	placed	in	data	written	to	a	report	to
match	set	precision.

Data	Type Boolean

Allowed	Values On,	Off

Access set

Default	Value Off



Units N/A

Interfaces GUI,	script



GUI
Figure	below	shows	default	name	and	settings	for	the	ReportFile	resource:



Remarks

Behavior	When	using	Filename	field

GMAT	allows	you	to	specify	the	name	of	the	report	file	in	two	ways.	The	default
naming	convention	for	a	report	file	when	using	FileName	field	is	shown	below:

Create	ReportFile	aReport

aReport.Filename	=	'ReportFile1.txt'

aReport.WriteReport	=	true

An	alternate	method	for	naming	a	report	file	is	to	name	the	file	without	using
any	single	quotes	around	the	report	file’s	name.

Create	ReportFile	aReport

aReport.Filename	=	ReportFile1.txt

aReport.WriteReport	=	true

How	data	is	reported	to	a	report	file

GMAT	allows	you	to	report	data	to	a	report	file	in	two	ways:	You	can	use
ReportFile.Add	field	or	a	Report	command.

You	can	add	data	using	the	.Add	field	of	ReportFile	resource	and	this	method
reports	data	to	the	report	file	at	each	propagation	step.	Below	is	an	example
script	snippet	that	shows	how	to	report	epoch	and	selected	orbital	elements	using
the	.Add	field:

Create	Spacecraft	aSat

Create	ReportFile	aReport

aReport.Add	=	{aSat.UTCGregorian	aSat.Earth.SMA,	aSat.Earth.ECC,	...

aSat.Earth.TA,	aSat.EarthMJ2000Eq.RAAN}

Create	Propagator	aProp

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	8640.0}

GMAT’s	ReportFile.Add	field	will	not	report	selected	data	to	the	report	file	at



each	propagation	step	if	Propagate	command	is	not	included	under	the
BeginMissionSequence.

An	alternative	method	of	reporting	data	to	the	report	file	is	via	the	Report
command.	Using	the	Report	command	allows	you	to	report	data	to	the	report
file	at	specific	points	in	your	mission.	Below	is	an	example	script	snippet	that
shows	how	to	report	epoch	and	selected	orbital	elements	using	the	Report
command:

Create	Spacecraft	aSat

Create	ReportFile	aReport

Create	Propagator	aProp

BeginMissionSequence

Report	aReport	aSat.UTCGregorian	aSat.Earth.SMA	aSat.Earth.ECC	...

aSat.Earth.TA	aSat.EarthMJ2000Eq.RAAN

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	8640.0}

Report	aReport	aSat.UTCGregorian	aSat.Earth.SMA	aSat.Earth.ECC	...

aSat.Earth.TA	aSat.EarthMJ2000Eq.RAAN

Behavior	and	Interactions	when	using	ReportFile	Resource
&	Report	Command

Suppose	you	utilize	a	ReportFile	resource	and	opt	not	to	write	a	report	and
select	false	for	the	field	name	WriteReport,	as	shown	in	the	example	below:

Create	ReportFile	aReport

aReport.Filename	=	ReportFile1.txt

aReport.Add	=	{aSat.A1ModJulian,	aSat.Earth.SMA}

aReport.WriteReport	=	false

Now	assume	that	at	the	same	time,	you	decide	to	utilize	Report	command	in	the
Mission	tree,	as	shown	in	the	example	script	snippet	below:

BeginMissionSequence;

Report	aReport	aSat.A1ModJulian	aSat.Earth.SMA	aSat.Earth.ECC

Propagate	aProp(aSat)	{aSat.Earth.Periapsis}

Report	aReport	aSat.A1ModJulian	aSat.Earth.SMA	aSat.Earth.ECC



At	this	point,	you	may	think	that	since	false	option	is	selected	under	the	field
name	WriteReport	in	ReportFile	resource,	hence	GMAT	will	not	generate	the
report	file	called	ReportFile1.txt.	On	the	Contrary,	GMAT	will	generate	a
report	called	ReportFile1.txt,	but	this	report	will	only	contain	data	that	was
requested	using	the	Report	command.	ReportFile1.txt	text	file	will	contain
epoch,	semi-major-axis	and	eccentricity	only	at	specific	points	of	the	mission.

Behavior	when	reporting	data	in	Iterative	Processes

GMAT	allows	you	to	specify	how	data	is	written	to	reports	during	iterative
processes	such	as	differential	correction	or	optimization.	SolverIterations	field
of	ReportFile	resource	supports	3	options	which	are	described	in	the	table
below:

SolverIterations
options Description

All
Shows	only	current	iteration/perturbation	after	the	end	of	an
iterative	process	and	reports	current	solution	to	a	report	file.

Current
Shows	all	iterations/perturbations	in	an	iterative	process	and
reports	all	iterations/perturbations	to	a	report	file.

None
Shows	only	final	solution	after	the	end	of	an	iterative	process
and	reports	only	final	solution	to	a	report	file.

Where	Reports	are	written

GMAT	allows	you	to	write	reports	to	any	desired	path	or	location.	You	can	do
this	by	going	to	GMAT’s	startup	file	called	gmat_startup_file.txt	and	define
an	absolute	path	under	OUTPUT_PATH.	This	allows	you	to	save	report	files	in	the
directory	of	your	choice	as	oppose	to	saving	report	files	in	GMAT's	default
Output	folder.	In	ReportFile.FileName	field,	If	no	path	is	provided	and	only
name	of	the	report	file	is	defined,	then	report	files	are	written	to	GMAT's	default



Output	folder.	The	default	path	where	reports	are	written	to	is	the	Output	folder
located	in	the	main	directory	where	GMAT	is	installed.

Below	is	an	example	script	snippet	that	shows	where	generated	reports	are
written	when	only	report	file’s	name	is	provided	under	the	FileName	field.	In
this	example,	'ReportFile1.txt'report	is	written	to	the	Output	folder	located	in
the	main	directory	where	GMAT	is	installed:

Create	ReportFile	aReport

aReport.Filename	=	'ReportFile1.txt'

aReport.Add	=	{aSat.A1ModJulian,	aSat.Earth.ECC}

An	alternate	method	where	report	files	can	be	written	is	by	defining	a	relative
path.	You	can	define	the	relative	path	in	GMAT’s	startup	file
gmat_startup_file.txt	under	OUTPUT_PATH.	For	example,	you	can	set	a
relative	path	by	setting	OUTPUT_PATH	=
C:/Users/rqureshi/Desktop/GMAT/mytestfolder/../output2/.	In	this	path,
the	syntax	".."	means	to	“go	up	one	level”.	After	saving	the	startup	file,	when	the
script	is	executed,	the	generated	report	file	named	under	FileName	field	will	be
written	to	a	path	C:\Users\rqureshi\Desktop\GMAT\output2.

Another	method	where	report	files	can	be	written	to	is	by	defining	an	absolute
path	in	GMAT’s	startup	file	gmat_startup_file.txt	under	OUTPUT_PATH.	For
example,	you	can	set	an	absolute	path	by	setting	OUTPUT_PATH	=
C:/Users/rqureshi/Desktop/GMAT/mytestfolder/.	When	the	script	is
executed,	report	file	named	under	FileName	field	will	be	written	to	an	absolute
path	C:\Users\rqureshi\Desktop\GMAT\mytestfolder.

Instead	of	defining	a	relative	or	an	absolute	path	in	GMAT's	startup	file,	you	can
choose	to	define	an	absolute	path	under	FileName	field	too.	For	example,	if	you
set	ReportFile.FileName	=
C:\Users\rqureshi\Desktop\GMAT\mytestfolder\ReportFile.txt,	then
report	file	will	be	saved	in	mytestfolder.

Behavior	when	using	ReportFile	Resource	&	Toggle
Command

GMAT	allows	you	to	use	Toggle	command	while	using	the	Add	field	of
ReportFile	resource.	When	Toggle	Off	command	is	issued	for	a	ReportFile,	not



data	is	sent	to	a	report	file	until	a	Toggle	On	command	is	issued.	Similarly,	when
a	Toggle	On	command	is	used,	data	is	sent	to	a	report	file	at	each	integration
step	until	a	Toggle	Off	command	is	used.

Below	is	an	example	script	snippet	that	shows	how	to	use	Toggle	Off	and
Toggle	On	command	while	using	the	ReportFile	resource.	Spacecraft’s
cartesian	position	vector	is	reported	to	the	report	file.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ReportFile	aReport

aReport.Filename	=	'ReportFile1.txt'

aReport.Add	=	{aSat.UTCGregorian,	aSat.EarthMJ2000Eq.X	...

aSat.EarthMJ2000Eq.Y	aSat.EarthMJ2000Eq.Z}

BeginMissionSequence

Toggle	aReport	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

Toggle	aReport	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

Behavior	When	Specifying	Empty	Brackets	in	ReportFile's
Add	Field

When	using	ReportFile.Add	field,	GMAT	does	not	allow	brackets	to	be	left
empty.	The	brackets	must	always	be	populated	with	values	that	you	wish	to
report.	If	brackets	are	left	empty,	then	GMAT	throws	in	an	exception.	Below	is	a
sample	script	snippet	that	shows	an	example	of	empty	brackets.	If	you	were	to
run	this	script,	then	GMAT	throws	in	an	execption	reminding	you	that	brackets
cannot	be	left	empty.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ReportFile	aReport

aReport.Add	=	{}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	8640.0}



Examples
Propagate	an	orbit	and	write	cartesian	state	to	a	report	file	at	every	integrator
step

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ReportFile	aReport

GMAT	aReport.Filename	=	'ReportFile1.txt'

aReport.Add	=	{aSat.EarthMJ2000Eq.X	aSat.EarthMJ2000Eq.Y	...

aSat.EarthMJ2000Eq.Z	aSat.EarthMJ2000Eq.VX	...

aSat.EarthMJ2000Eq.VY	aSat.EarthMJ2000Eq.VZ}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	8640.0}

Propagate	an	orbit	for	1	day	and	write	cartesian	state	to	a	report	file	at	specific
points	in	your	mission

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ReportFile	aReport

GMAT	aReport.Filename	=	'ReportFile1.txt'

BeginMissionSequence

Report	aReport	aSat.EarthMJ2000Eq.X	aSat.EarthMJ2000Eq.Y	...

aSat.EarthMJ2000Eq.Z	aSat.EarthMJ2000Eq.VX	...

aSat.EarthMJ2000Eq.VY	aSat.EarthMJ2000Eq.VZ

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Report	aReport	aSat.EarthMJ2000Eq.X	aSat.EarthMJ2000Eq.Y	...

aSat.EarthMJ2000Eq.Z	aSat.EarthMJ2000Eq.VX	...

aSat.EarthMJ2000Eq.VY	aSat.EarthMJ2000Eq.VZ



Simulator
Simulator	—	Configures	the	generation	of	simulated	tracking	data
measurements.



Description
A	Simulator	configures	the	generation	of	simulated	tracking	data	measurements.
These	measurements	can	then	be	used	by	a	BatchEstimatorInv	resource	as	part
of	an	estimation	run.

The	Simulator	object	requires	specification	of	one	or	more	instances	of	a
TrackingFileSet	resource	which	identify	the	specific	tracking	data	observation
strands,	data	types,	desired	measurement	corrections,	and	the	output	tracking
data	file	name.	Simulated	data	will	be	written	in	the	GMAT	Measurement	Data
(GMD)	ASCII	tracking	data	format.	You	must	additionally	specify	a	time	span
for	the	simulation	run	and	a	time	interval	between	simulated	observations.
Simulated	observations	are	only	generated	when	a	tracking	strand	meets	the
visibility	constraints	of	all	objects	in	the	strand	(for	example,	the	observation
must	be	above	the	ground	station	minimum	elevation	mask).	Additionally,	you
must	configure	and	specify	an	instance	of	a	Propagator	for	the	simulator.
Finally,	you	can	choose	to	add	random	Gaussian	white	noise	to	the	generated
measurements	or	to	generate	measurements	without	noise.	If	the
Simulator.AddNoise	option	is	set	to	On,	noise	with	the	standard	deviation
specified	on	each	measurement	strand’s	GroundStation.ErrorModel,	is	added
to	the	measurements.

See	Also:	TrackingFileSet,	RunEstimator



Fields

Field Description

AddData
A	list	of	one	or	more	TrackingFileSets

Data	Type TrackingFileSet	object

Allowed	Values Any	valid	TrackingFileSet	object

Access set

Default	Value None

Units N/A

Interfaces script

AddNoise
If	true,	adds	noise	to	simulated	observations

Data	Type Boolean

Allowed	Values true,	false,	on,	off

Access set



Default	Value false

Units N/A

Interfaces script

EpochFormat
Epoch	format	of	both	the	initial	and	final	epoch

Data
Type

STRING_TYPE

Allowed
Values

A1ModJulian,	TAIModJulian,
UTCModJulian,	TTModJulian,
TDBModJulian,	A1Gregorian,
TAIGregorian,	TTGregorian,
UTCGregorian,	TDBGregorian

Access set

Default
Value

TAIModJulian

Units N/A

Interfaces script



InitialEpoch
The	initial	(start)	epoch	of	the	data	simulation	span.
In	the	GMAT	script,	the	EpochFormat	field	needs	to
be	set	before	this	field	is	set.

Data
Type

STRING_TYPE

Allowed
Values

Gregorian:	04	Oct	1957	12:00:00.000
<=	Epoch	<=	28	Feb	2100	00:00:00.000

Modified	Julian:	6116.0	<=	Epoch	<=
58127.5

Access set

Default
Value

'21545'

Units N/A

Interfaces script

FinalEpoch
The	final	(ending)	epoch	of	the	data	simulation	span.
In	the	GMAT	script,	the	EpochFormat	field	needs	to
be	set	before	this	field	is	set.

Data
Type

STRING_TYPE



Allowed
Values

Gregorian:	04	Oct	1957	12:00:00.000
<=	Epoch	<=	28	Feb	2100	00:00:00.000

Modified	Julian:	6116.0	<=	Epoch	<=
58127.5

Access set

Default
Value

'21545'

Units N/A

Interfaces script

MeasurementTimeStep
Specifies	time	step	in	seconds	between	two
consecutive	simulated	observations

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 60



Units seconds

Interfaces script

Propagator
Name	of	Propagator	object	used	for	calculation

Data	Type Propagator	Object

Allowed	Values Any	valid	Propagator	object

Access set

Default	Value None

Units N/A

Interfaces script



Remarks

Navigation	Requires	Use	of	Fixed	Step	Numerical
Integration

GMAT	navigation	requires	use	of	fixed	stepped	propagation.	The	Simulator
resource	has	a	Propagator	field	containing	the	name	of	the	Propagator
resource	that	will	be	used	during	the	simulation.	As	shown	in	the	Note	below,
there	are	some	hard	restrictions	on	the	choice	of	error	control	specified	for	the
ForceModel	resource	associated	with	your	propagator.

Note

For	simulation,	the	ErrorControl	parameter	specified	for	the
ForceModel	resource	associated	with	the	Simulator
Propagator	must	be	set	to	'None.'	Of	course,	when	using	fixed
step	control,	the	user	must	choose	a	step	size,	as	given	by	the
Propagator	InitialStepSize	field,	for	the	chosen	orbit
regime	and	force	profile,	that	yields	the	desired	accuracy.

Propagator	Settings

The	Simulator	resource	has	a	Propagator	field	containing	the	name	of	the
Propagator	resource	that	will	be	used	during	the	estimation	process.	The
minimum	step	size,	MinStep,	of	your	propagator	should	always	be	set	to	0.

Interactions

Resource Description

TrackingFileSet
resource Must	be	created	in	order	to	tell	the	Simulator	resource,	via

the	AddData	field,	which	data	types	will	be	simulated	and	to
specify	the	name	of	the	output	tracking	data	file	(via
FileName)



Propagator
resource

Used	by	GMAT	to	generate	the	simulated	orbit

RunSimulator
command Must	use	the	RunSimulator	command	to	actually	create	the

data	defined	by	the	Simulator	resource



Examples
The	example	below	illustrates	using	the	simulator	to	generate	DSN	range
measurements.	This	example	is	more	detailed	than	usual	as	it	can	actually	be	run
to	produce	a	file,	simData.gmd,	that	contains	a	single	range	measurement	for	a
fictional	DSN	ground	station.	For	a	more	comprehensive	example	of	simulating
measurements,	see	the	Chapter	13,	Simulate	DSN	Range	and	Doppler	Data
tutorial.

%Create	and	Configure	Spacecraft

Create	Spacecraft	SimSat;

GMAT	SimSat.DateFormat		=	UTCGregorian;

GMAT	SimSat.Epoch							=	'19	Aug	2015	00:00:00.000';

GMAT	SimSat.X											=	-126544963;						

GMAT	SimSat.Y											=	61978518;							

GMAT	SimSat.Z											=	24133225;					

GMAT	SimSat.VX										=	-13.789;

GMAT	SimSat.VY										=	-24.673;

GMAT	SimSat.VZ										=	-10.662;

GMAT	SimSat.AddHardware	=	{SatTransponder,	SatTranponderAntenna};

%Create	and	configure	RF	hardware

Create	Antenna	SatTranponderAntenna	DSNReceiverAntenna	DSNTransmitterAntenna;

Create	Transponder	SatTransponder;

GMAT	SatTransponder.PrimaryAntenna	=	SatTranponderAntenna;

Create	Transmitter	DSNTransmitter;

GMAT	DSNTransmitter.PrimaryAntenna	=	DSNTransmitterAntenna;

GMAT	DSNTransmitter.Frequency						=	7200;

Create	Receiver	DSNReceiver;

GMAT	DSNReceiver.PrimaryAntenna	=	DSNReceiverAntenna;

%Create	and	configure	ground	station	and	related	error	model

Create	GroundStation	DSN;

GMAT	DSN.AddHardware	=	...

		{DSNTransmitter,	DSNReceiver,	DSNTransmitterAntenna,	DSNReceiverAntenna};

GMAT	DSN.ErrorModels	=	{DSNrange};

Create	ErrorModel	DSNrange;

GMAT	DSNrange.Type							=	'DSN_SeqRange';



GMAT	DSNrange.NoiseSigma	=	10;

%Define	data	types

Create	TrackingFileSet	simData;

GMAT	simData.AddTrackingConfig	=	{{DSN,SimSat,DSN},	DSN_SeqRange};

GMAT	simData.FileName										=	{'simData.gmd'};

%			Create	and	configure	the	Simulator	object

Create	ForceModel	FM1

FM1.ErrorControl	=	None			%Fixed	step	integration	required	for	Navigation

Create	Propagator	prop;

prop.FM	=	FM1

prop.MinStep	=	0										%For	Navigation,	allow	propagator	to	take	arbitrarily	small	steps			

Create	Simulator	sim;

GMAT	sim.AddData													=	{simData};

GMAT	sim.Propagator										=	prop;

GMAT	sim.EpochFormat									=	UTCGregorian;

GMAT	sim.InitialEpoch								=	'19	Aug	2015	08:00:00.000';

GMAT	sim.FinalEpoch										=	'19	Aug	2015	08:00:01.000';

GMAT	sim.MeasurementTimeStep	=	60;

GMAT	sim.AddNoise												=	On;

%		Mission	Sequence	-	run	the	simulator.

BeginMissionSequence;

RunSimulator	sim;



SNOPT
SNOPT	—	The	Sequential	Quadratic	Programming	(SQP)	optimizer,	SNOPT



Description
The	SNOPT	optimizer	is	a	SQP-based	Nonlinear	Programming	solver
developed	by	Stanford	Business	Software,	Inc.	It	is	a	proprietary	component	that
is	not	distritbuted	with	GMAT	and	must	be	obtained	from	the	vendor.	SNOPT
performs	nonlinear	constrained	optimization	and	supports	both	linear	and
nonlinear	constraints.	To	use	this	solver,	you	must	configure	the	solver	options
including	convergence	criteria,	maximum	iterations,	among	other	options.	In	the
mission	sequence,	you	implement	an	optimizer	such	as	SNOPT	by	using	an
Optimize/EndOptimize	sequence.	Within	this	sequence,	you	define
optimization	variables	by	using	the	Vary	command,	and	define	cost	and
constraints	by	using	the	Minimize	and	NonlinearConstraint	commands
respectively.

This	resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	FminconOptimizer,Optimize,Vary,	NonlinearConstraint,	Minimize



Fields

Field Description

MajorFeasibilityTolerance
Specifies	how	accurately	the	nonlinear
constraints	should	be	satisfied.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e-5

Units None

Interfaces GUI,	script

MajorIterationsLimit
The	maximum	number	of	major	iterations
allowed.	It	is	intended	to	guard	against	an
excessive	number	of	linearizations	of	the
constraints

Data	Type Integer



Allowed	Values Integer	>	0

Access set

Default	Value 1e-5

Units None

Interfaces GUI,	script

MajorOptimalityTolerance
Specifies	the	final	accuracy	of	the	dual	variables.	
See	the	SNOPT	user	guide	for	further	details.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e-5

Units None

Interfaces GUI,	script



OutputFileName Contains	the	path	and	file	name	of	the	report	file.
This	report	contains	data	written	by	SNOPT
regarding	optimization	progress	and	information.

Data	Type String

Allowed	Values Any	user-defined	file	name

Access set

Default	Value SNOPT.out

Units N/A

Interfaces GUI,	script

OverrideSpecsFileValues
Flag	to	indicate	if	options	settable	in	the	GMAT
script/GUI	should	override	values	set	in	the
SNOPT	Specs	file.	Note	that	if	the	specs	file	is
not	found	during	initialization,	GMAT
configurations	are	applied	even	if	the
OverrideSpecsFileValues	field	is	set	to	false.

Data	Type Boolean

Allowed	Values true,	false



Access set

Default	Value true

Units None

Interfaces GUI,	script

ReportFile
Contains	the	path	and	file	name	of	the	report	file.
This	report	contains	data	written	by	GMAT
regarding	optimization	progress	and	information.

data	Type String

Allowed	Values Any	user-defined	file	name

Access set

Default	Value SNOPTSNOPT1.data

Units N/A

Interfaces GUI,script

ReportStyle
Determines	the	amount	and	type	of	data	written



to	the	message	window	and	to	the	report
specified	by	field	ReportFile	for	each	iteration
of	the	solver	(When	ShowProgress	is	true).	
Currently,	the	Normal,	Debug,	and	Concise
options	contain	the	same	information:	the	values
for	the	control	variables,	the	constraints,	and	the
objective	function.		In	addition	to	this
information,	the	Verbose	option	also	contains
values	of	the	optimizer-scaled	control	variables.	

Data	Type String

Allowed
Values

Normal,	Concise,	Verbose,
Debug

Access set

Default	Value Normal

Units None

Interfaces GUI,	script

ShowProgress
Determines	whether	data	pertaining	to	iterations
of	the	solver	is	both	displayed	in	the	message
window	and	written	to	the	report	specified	by	the
ReportFile	field.	When	ShowProgress	is	true,
the	amount	of	information	contained	in	the
message	window	and	written	in	the	report	is
controlled	by	the	ReportStyle	field.



Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units None

Interfaces GUI,	script

SpecsFileName
File	read	by	SNOPT	to	configure	all	settings	of
the	optimizer.	The	GMAT	script/gui	interface
only	supportsa	small	subset	of	the	SNOPT
configuration	options.	This	file	allows	you	to	set
any	options	supported	by	SNOPT.	This	file	is
only	loaded	if	it	is	found	during	initialization	and
selected	values	set	on	the	file	can	be	overwritten
by	the	GMAT	configuration	by
OverrideSpecsFileValues	=	true.	See	the
Remarks	section	for	more	information.

Data	Type String

Allowed	Values Any	user-defined	file	name



Access set

Default	Value SNOPT.spec

Units N/A

Interfaces GUI,	script

TotalIterationsLimit
The	maximum	number	of	minor	iterations
allowed.	

Data	Type Integer

Allowed	Values Integer	>	0

Access set

Default	Value 100000

Units None

Interfaces GUI,	script



GUI
The	SNOPT	dialog	box	allows	you	to	specify	properties	of	a	SNOPT	such	as	as
maximum	iterations,	cost	function	tolerance,	feasibility	tolerance,	choice	of
reporting	options,	and	choice	of	whether	or	not	to	use	the	central	difference
derivative	method.

To	create	a	SNOPT	resource,	navigate	to	the	Resources	tree,	expand	the	Solvers
folder,	highlight	and	then	right-click	on	the	Optimizers	sub-folder,	point	to	Add
and	then	select	SNOPT.	This	will	create	a	new	SNOPT	resource,	SNOPT1.
Double-click	on	SNOPT1	to	bring	up	the	SNOPT	dialog	box	shown	below.



Remarks

SNOPT	Optimizer	Version	and	Availability

GMAT	currently	uses	SNOPT	7.2-12.2.	This	optimizer	is	not	included	as	part	of
the	nominal	GMAT	installation	and	is	only	available	if	you	have	created	and
installed	the	SNOPT	plug-in	or	obtained	SNOPT	from	the	vendor.

SPECS	File	Configuration

The	Specs	file	contains	a	list	of	options	and	values	in	the	following	general
form:.

Begin	options

			Iterations	limit	500

			Minor	feasibility	tolerance	1.0e-7

			Solution	Yes

End	options		

The	file	starts	with	the	keyword	Begin	and	ends	with	End.	The	file	is	in	free
format.	Each	line	specifies	a	single	option,	using	one	or	more	items	as	follows:

1.	 A	keyword	(required	for	all	options).
2.	 A	phrase	(one	or	more	words)	that	qualifies	the	keyword	(only	for	some

options).
3.	 A	number	that	specifies	an	integer	or	real	value	(only	for	some	options).

Such	numbers	may	be	up	to	16	contiguous	characters	in	Fortran	77’s	I,	F,	E
or	D	formats,	terminated	by	a	space	or	new	line.

The	items	may	be	entered	in	upper	or	lower	case	or	a	mixture	of	both.	Some	of
the	keywords	have	synonyms,	and	certain	abbreviations	are	allowed,	as	long	as
there	is	no	ambiguity.	Blank	lines	and	comments	may	be	used	to	improve
readability.	A	comment	begins	with	an	asterisk	(*)	anywhere	on	a	line.	All
subsequent	characters	on	the	line	are	ignored.	The	Begin	line	is	echoed	to	the
Summary	file.

For	a	complete	list	of	SNOPT	options,	see	the	SNOPT	user	guide.



Configuring	SNOPT	for	Effective	Optimization

When	using	SNOPT,	the	Upper	and	Lower	bounds	in	the	Vary	commands	are
required	fields.	By	setting	these	values	appropriately	for	your	problem,	you
reduce	the	likelihood	that	SNOPT	will	try	values	that	are	unphysical	or	that	can
result	in	numerical	singularities	in	the	physical	models.	It	is	important	to	set
bounds	carefully	when	using	SNOPT.

Aditionally,	SNOPT	is	quite	senstive	to	scaling	and	care	must	be	taken	to
provide	acceptable	values	of	AdditiveScaleFactor	and
MultiplicativeScaleFactor	in	the	Vary	commands.	When	using	SNOPT,
derivatives	are	computed	by	SNOPT	via	the	optimizer's	built-in	finite
differencing.	If	an	optimization	problem	is	not	appropriately	scaled,	optimization
may	fail,	or	take	an	un-nesessarily	long	time.	Note	that	SNOPT	has	built-in
scaling	options	that	can	be	set	via	the	Specs	file	and	are	described	in	further
detail	in	the	SNOPT	user	guide.

Resource	and	Command	Interactions

Warning

GMAT's	Vary	command	is	a	generic	interface	designed	to
support	many	optimizers	and	not	all	settings	supported	by	the
Vary	command	are	supported	by	SNOPT.	See	the	Vary
command	documentation	for	details	on	the	which	Vary
command	settings	are	supported	by	SNOPT.

The	SNOPT	resource	can	only	be	used	in	the	context	of	optimization-type
commands.	Please	see	the	documentation	for	Optimize,	Vary,
NonlinearConstraint,	and	Minimize	for	more	information	and	worked
examples.



Examples
A	simple	mathematical	optimization	problem	using	SNOPT.

Create	SNOPT	NLP

GMAT	NLP.ShowProgress	=	true

GMAT	NLP.ReportStyle	=	Normal

GMAT	NLP.ReportFile	=	output.report

GMAT	NLP.MajorOptimalityTolerance	=	0.001

GMAT	NLP.MajorFeasibilityTolerance	=	0.0001

GMAT	NLP.MajorIterationsLimit	=	456

GMAT	NLP.TotalIterationsLimit	=	789012

GMAT	NLP.OutputFileName	=	'SNOPTName123.out'

GMAT	NLP.SpecsFileName	=	'SNOPT.spec'

GMAT	NLP.OverrideSpecsFileValues	=	true

Create	Variable	X1	X2	J	G

BeginMissionSequence

Optimize	NLP	{SolveMode	=	Solve,	ExitMode	=	DiscardAndContinue}

			

			%		Vary	the	independent	variables

			Vary	'Vary	X1'	NLP(X1	=	0,	{Perturbation	=	0.0000001,	Upper	=	10,	...

			Lower	=	-10,	AdditiveScaleFactor	=	0.0,	...

			MultiplicativeScaleFactor	=	1.0})

			Vary	'Vary	X2'	NLP(X2	=	0,	{Perturbation	=	0.0000001,	Upper	=	10,	...

			Lower	=	-10,	AdditiveScaleFactor	=	0.0,	...

			MultiplicativeScaleFactor	=	1.0})

			

			%		The	cost	function	and	Minimize	command

			J	=	(	X1	-	2	)^2	+	(	X2	-	2	)^2

			Minimize	'Minimize	Cost	(J)'	NLP(J)

			

			%		Calculate	constraint	and	use	NonLinearConstraint	command

			GMAT	G	=	X2	+	X1

			NonlinearConstraint	NLP(G<=8)

EndOptimize			



SolarPowerSystem
SolarPowerSystem	—	A	solar	power	system	model



Description
The	SolarPowerSystem	models	a	solar	power	system	including	power
generated	as	function	of	time	and	distance	from	the	sun,	and	includes	shadow
modeling	by	celestial	bodies.	The	model	allows	you	to	configure	the	power
generated	by	the	solar	arrays,	and	the	power	required	by	the	spacecraft	bus.

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modelling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion

See	Also	ElectricTank,	ElectricThruster,	NuclearPowerSystem



Fields

Field Description

AnnualDecayRate
The	annual	decay	rate	of	the	power	system.

Data	Type Real

Allowed	Values 0	<=Real	<=	100

Access set

Default	Value 5

Units Percent/Year

Interfaces GUI,	script

BusCoeff1
Coefficient	of	power	required	by	spacecraft	bus.

Data	Type Real

Allowed	Values Real

Access set



Default	Value 0.3

Units kW

Interfaces GUI,	script

BusCoeff2
Coefficient	of	power	required	by	spacecraft	bus.

Data	Type Real

Allowed	Values Real

Access set

Default	Value 0

Units kW*AU

Interfaces GUI,	script

BusCoeff3
Coefficient	of	power	required	by	spacecraft	bus.

Data	Type Real



Allowed	Values Real

Access set

Default	Value 0

Units kw*AU2

Interfaces GUI,	script

EpochFormat
The	epoch	format	for	the	PowerInitialEpoch	field.

Data	Type String

Allowed	Values Valid	Epoch	format.

Access set

Default	Value UTCGregorian

Units N/A

Interfaces GUI,	script



InitialEpoch The	initial	epoch	of	the	system	used	to	define	power
system	elapsed	lifetime.

Data
Type

String

Allowed
Values

Valid	GMAT	Epoch	consistent	with
PowerInitialEpochFormat

Access set

Default
Value

01	Jan	2000	11:59:27.966

Units N/A

Interfaces GUI,	script

InitialMaxPower
The	maximum	power	generated	at	the
PowerInitialEpoch.

Data	Type Real

Allowed	Values Real	>=	0

Access set



Default	Value 1.2

Units kW

Interfaces GUI,	script

Margin
The	required	margin	between	power	left	after	power
bus,	and	power	used	by	the	propulsion	system.

Data	Type Real

Allowed	Values 0	<=Real	<=	100

Access set

Default	Value 5

Units Percent

Interfaces GUI,	script

ShadowBodies
A	list	of	celestial	bodies	for	use	in	the	shadow
computation.	A	body	cannot	be	added	more	than
once.



Data	Type String	List

Allowed	Values A	list	of	celestial	bodies.

Access set

Default	Value Earth

Units N/A

Interfaces GUI,	script

ShadowModel
The	model	used	for	shadow	computation	in	the	Solar
System	Power	Model.

Data	Type String

Allowed	Values None,	DualCone

Access set

Default	Value DualCone

Units N/A



Interfaces GUI,	script

SolarCoeff1
Coefficient	of	power	created	by	solar	power	system.

Data	Type Real

Allowed	Values Real

Access set

Default	Value 1.32077

Units See	Remarks

Interfaces GUI,	script

SolarCoeff2
Coefficient	of	power	created	by	solar	power	system.

Data	Type Real

Allowed	Values Real

Access set



Default	Value -0.10848

Units See	Remarks

Interfaces GUI,	script

SolarCoeff3
Coefficient	of	power	created	by	solar	power	system.

Data	Type Real

Allowed	Values Real

Access set

Default	Value -0.11665

Units See	Remarks

Interfaces GUI,	script

SolarCoeff4
Coefficient	of	power	created	by	solar	power	system.

Data	Type Real



Allowed	Values Real

Access set

Default	Value 0.10843

Units See	Remarks

Interfaces GUI,	script

SolarCoeff5
Coefficient	of	power	created	by	solar	power	system.

Data	Type Real

Allowed	Values Real

Access set

Default	Value -0.01279

Units See	Remarks

Interfaces GUI,	script



GUI
The	GUI	for	the	SolarPowerSystem	is	shown	below.



Remarks

Computation	of	Base	Power

The	SolarPowerSystem	models	power	degradation	as	a	function	of	time.	You
must	provide	a	power	system	initial	epoch,	the	power	generated	at	that	epoch,
and	an	annual	power	decay	rate.	Additionally,	the	AnnualDecayRate	field
models	the	power	degredation	on	a	per	year	basis.	The	base	power	is	computed
using

where	"tau"	is	the	power	AnnualDecayRate,	P_0	is	InitialMaxPower,	and
"delta	t"	is	the	elapsed	time	between	the	simulation	epoch	and	InitialEpoch.

Computation	of	Bus	Power

The	power	required	by	the	spacecraft	bus	for	all	subsystems	other	than	the
propulsion	system	is	computed	using

where	A_Bus,	B_Bus,	and	C_Bus	are	BusCoeff1,	BusCoeff2,	and	BusCoeff3
respectively	and	r	is	the	distance	from	the	Sun	in	Au.

Computation	of	Power	Available	for	Propulsion

The	solar	power	model	scales	the	base	power	based	on	a	polynomial	function	in
terms	of	the	solar	distance.	Total	power	is	compute	using



where	P_Sun	is	the	percent	sun	(	full	sun	is	1.0,	no	sun	is	0.0),	r	is	the	distance
from	the	Sun	in	Au,	and	C_1	is	SolarCoeff1	and	so	on.	Thrust	power	available
for	electric	propulsion	is	finaly	computed	using

Where	"delta	M"	is	power	Margin.

Shadow	Modelling	and	Discontinuities

Note	that	when	modeling	shadows	for	a	solar	power	system,	discontinuities	in
the	force	model	can	occur	when	the	power	avialable	for	propulsion	is	less	than	a
thruster's	minimum	useable	power	setting.	As	a	spacecraft	passes	from
penumbra	to	umbra,	and	power	avialable	for	thusting	goes	to	zero,	thrust	power
causes	thrust	acceleration	to	discontinuously	terminate,	causing	issues	when
using	adaptive	step	integrators.	In	this	case,	there	are	a	few	options.	You	can
configure	any	itegrator	to	use	fixed	step	integration	by	setting	the	ErrorControl
to	None.	Or	you	can	configure	the	integrator	to	continue	propagating	if	a	bad
step,	in	this	case	a	small	discontinuity,	occurs.	See	the	Propagator	reference
material	for	more	information.



Examples
Create	a	SolarPowerSystem	and	attach	it	to	a	Spacecraft.

%		Create	the	Solar	Power	System

Create	SolarPowerSystem	SolarPowerSystem1

%		Create	a	spacecraft	an	attach	the	Solar	Power	System

Create	Spacecraft	DefaultSC

DefaultSC.PowerSystem	=	SolarPowerSystem1

BeginMissionSequence

For	a	complete	descripton	of	how	to	configure	all	Resources	required	for	electric
propulsion	modeling,	see	the	Tutorial	named	Chapter	12,	Electric	Propulsion.



SolarSystem
SolarSystem	—	High	level	solar	system	configuration	options



Description
The	SolarSystem	resource	allows	you	to	define	global	properties	for	the	model
of	the	solar	system	including	the	ephemeris	source	for	built-in	celestial	bodies
and	selected	settings	to	improve	performance	when	medium	fidelity	modelling	is
acceptable	for	your	application.	This	resource	cannot	be	modified	in	the	mission
sequence.

Note

As	of	release	R2015a,	GMAT	uses	two	separate	solar	system
configurations	for	core	parts	of	the	system.	For	propagation,
GMAT	uses	the	source	specified	by
SolarSystem.EphemerisSource	and	the	CelestialBody
properties	configured	on	each	resource.	For	event	location	with
the	new	ContactLocator	and	EclipseLocator	resources,
GMAT	always	uses	SPICE	data	for	SolarSystem	and
CelestialBody	properties.	See	ContactLocator,	EclipseLocator,
and	CelestialBody	for	details.

See	Also:	CelestialBody,	LibrationPoint,	Barycenter,	CoordinateSystem



Fields

Field Description

DEFilename
The	path	and	name	of	the	DE	file.

Data	Type String

Allowed	Values Valid	DE	file

Access set

Default	Value ../data/planetary_ephem/de/leDE1941.405

Units N/A

Interfaces GUI,	script

EphemerisSource
The	ephemeris	model	for	built-in	celestial	bodies.

Data	Type String

Allowed	Values DE405,	DE421,	DE424,	or	SPICE

Access set



Default	Value DE405

Units N/A

Interfaces GUI,	script

EphemerisUpdateInterval
The	time	between	time	updates	for	celetial	body	ephemeris.	For
example,	if	EphemerisUpdateInterval	=	60,	if	an	ephemeris	
made	at	time	t	=	1200,	and	a	subsequent	call	is	made	at	
1210,	the	same	ephemeris	will	be	returned	for	the	second	
option	is	for	high	speed,	low	fidelity	modelling	or	for	
modelling	orbits	far	from	third	body	perturbation	sources.

Data	Type Real

Allowed	Values Real	>=	0

Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

LSKFilename



The	path	and	name	of	the	SPK	leap	second	kernel.

Data	Type String

Allowed	Values Valid	SPK	leapsecond	kernel

Access set

Default	Value ../data/time/naif0011.tls

Units N/A

Interfaces GUI,	script

PCKFilename
The	path	and	name	of	the	PCK	planetary	constants	

Data	Type String

Allowed
Values

Path	to	valid	PCK	planetary	constants	kernel
(.tpc)

Access set

Default	Value ../data/planetary_coeff/pck00010.tpc



Units N/A

Interfaces GUI,	script

SPKFilename
The	path	and	name	of	the	SPK	orbit	ephemeris	kernel.

Data
Type

String

Allowed
Values

Valid	SPK	ephemeris	kernel	(.bsp)

Access set

Default
Value

../data/planetary_ephem/spk/DE405AllPlanets.bsp

Units N/A

Interfaces GUI,	script

UseTTForEphemeris
Flag	to	use	Terrestrial	Time	(TT)	as	input	to	the	orbital	ephemeris
routines.	When	set	to	false,	TDB	is	used.

Data	Type String



Allowed	Values true,false

Access set

Default	Value false

Units N/A

Interfaces GUI,	script



GUI

The	SolarSystem	dialog	box	allows	you	to	configure	global	properties	for	solar
system	modelling.	The	default	configuration	is	illustrated	above.	Use
Ephemeris	Source	to	choose	the	ephemeris	model	for	built-in	celestial	bodies.
If	you	select	either	DE405,	DE421,	or	DE424	the	dialog	box	above	illustrates
available	options.

Warning

GMAT	allows	you	to	provide	user-created	DE	or	SPK	kernel
files	but	we	recommend	using	the	files	distributed	with	GMAT.
The	files	provided	with	GMAT	have	been	extensively	tested	for
consistency	and	accuracy	with	the	original	data	provided	by
JPL	and	other	models	in	GMAT.	Using	inconsistent	ephemeris
files	or	user-generated	files	can	result	in	instability	or	numerical
issues	if	the	files	are	not	generated	correctly.

Changing	the	ephemeris	source	for	an	application	is	equivalent
to	making	a	fundamental	change	to	the	model	of	the	solar



system.	We	recommend	selecting	the	EphemerisSource	early
in	the	analysis	process	and	using	that	model	consistently.	In	the
event	that	an	ephemeris	model	change	is	necessary,	we
recommend	that	you	change	the	model	in	the	script	file	and	not
via	the	GUI.	We	allow	you	to	change	EphemerisSource	via	the
GUI	for	convenience	in	early	design	phases	when	rigorous
consistency	in	modelling	is	less	important.

Additionally,	when	using	DE	as	the	EphemerisSource,
modelling	is	with	respect	to	planetary	system	barcyenter.	When
using	SPICE	as	the	EphemerisSource,	modelling	is	with
respect	to	the	planet	center.

If	you	select	SPICE	for	Ephemeris	Source,	the	SolarSystem	dialog	box
reconfigures	to	disable	the	Ephemeris	Filename	option,	indicating	that	this	is
no	longer	used	in	this	mission..



Remarks
GMAT	uses	the	ephemeris	file	selected	in	the	EphemerisSource	field	for	all
built-in	celestial	bodies.	For	user-defined	bodies,	the	ephemeris	model	is
specified	on	the	CelestialBody	object.

For	more	information	on	the	DE	files	provided	by	JPL	see	here.

For	general	information	on	SPICE	ephemeris	files	see	the	JPL	NAIF	site.

For	information	on	the	SPK	kernel	named	DE???AllPlanets.bsp
distributed	with	GMAT,	see	the	Readme-DE???AllPlanets.txt	files	located
in	\data\planetary_ephem\spk	in	the	GMAT	distribution.

Note:	The	SolarSystem	and	built-in	CelestialBody	resources	require	several
hundred	fields	for	full	configuration.	GMAT	only	saves	non-default	values	for
SolarSystem	and	CelestialBody	to	the	script	so	that	scripts	are	not	populated
with	hundreds	of	default	settings.

http://iau-comm4.jpl.nasa.gov/README
http://naif.jpl.nasa.gov/naif/toolkit.html


Examples
Use	DE421	for	ephemeris.

GMAT	SolarSystem.EphemerisSource	=	'DE421'

Create	Spacecraft	aSpacecraft

Create	Propagator	aPropagator

aPropagator.FM	=	aForceModel

Create	ForceModel	aForceModel

aForceModel.PointMasses	=	{Luna,	Sun}

BeginMissionSequence

Propagate	aPropagator(aSpacecraft)	{aSpacecraft.ElapsedSecs	=	12000.0}

Use	SPICE	for	ephemeris.

GMAT	SolarSystem.EphemerisSource	=	'SPICE'

Create	Spacecraft	aSpacecraft

Create	Propagator	aPropagator

aPropagator.FM	=	aForceModel

Create	ForceModel	aForceModel

aForceModel.PointMasses	=	{Luna,	Sun}

BeginMissionSequence

Propagate	aPropagator(aSpacecraft)	{aSpacecraft.ElapsedSecs	=	12000.0}



Spacecraft
Spacecraft	—	A	spacecraft	model



Description
A	Spacecraft	resource	is	GMAT's	spacecraft	model	and	includes	data	and
models	for	the	spacecraft's	orbit,	epoch,	attitude,	and	physical	parameters	(such
as	mass	and	drag	coefficient),	as	well	as	attached	hardware,	including	tanks	and
thrusters.	The	Spacecraft	model	also	contains	the	data	that	configures	how	the
Spacecraft	3-D	CAD	model	is	used	in	an	OrbitView.	Spacecraft	has	certain
fields	that	can	be	set	in	the	Mission	Sequence	and	some	that	cannot.	See	the	field
tables	on	the	pages	below	for	more	information.

GMAT's	documentation	for	Spacecraft	is	extensive	and	is	broken	down	into	the
following	sections:

Spacecraft	Attitude

Spacecraft	Ballistic/Mass	Properties

Spacecraft	Epoch

Spacecraft	Hardware

Spacecraft	Navigation

Spacecraft	Orbit	State

Spacecraft	Visualization	Properties



Spacecraft	Attitude
Spacecraft	Attitude	—	The	spacecraft	attitude	model



Description
GMAT	models	the	orientation	and	rate	of	rotation	of	a	spacecraft	using	several
different	mathematical	models.	Currently,	GMAT	assumes	that	a	Spacecraft	is	a
rigid	body.	The	currently	supported	attitude	models	are	Spinner,
CoordinateSystemFixed,	and	SpiceAttitude.	The	Spinner	model	is	a	simple,
inertially	fixed	spin	axis	model.	The	CoordinateSystemFixed	model	allows	you
to	use	any	CoordinateSystem	supported	by	GMAT	as	the	attitude	of	a
Spacecraft.	The	SpiceAttitude	model	allows	you	to	define	the	Spacecraft
attitude	based	on	SPICE	attitude	kernels.

See	Also:	Spacecraft



Fields

Field Description

AngularVelocityX
The	x-component	of	Spacecraft	body	angular
velocity	expressed	in	the	inertial	frame.
AngularVelocityX	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real<	∞

Access set,get

Default	Value 0

Units deg/sec

Interfaces GUI,	script

AngularVelocityY
The	y-component	of	Spacecraft	body	angular
velocity	expressed	in	the	inertial	frame.
AngularVelocityY	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real



Allowed	Values -∞	<	Real<	∞

Access set,get

Default	Value 0

Units deg/sec

Interfaces GUI,	script

AngularVelocityZ
The	z-component	of	Spacecraft	body	angular
velocity	expressed	in	the	inertial	frame.
AngularVelocityZ	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real<	∞

Access set,get

Default	Value 0

Units deg/sec



Interfaces GUI,	script

Attitude
The	attitude	mode	for	the	Spacecraft.

Data
Type

String

Allowed
Values

CoordinateSystemFixed,	Spinner,
SpiceAttitude,	NadirPointing,
CCSDS-AEM,	PrecessingSpinner

Access set

Default
Value

CoordinateSystemFixed

Units N/A

Interfaces GUI,	script

AttitudeConstraintType
The	constraint	type	for	resolving	attitude
ambiguity.	The	attitude	is	computed	such	that	the
angle	between	the	BodyConstraintVector	and
the	constraint	defined	by
AttitudeConstraintType	is	minimized.	A
Velocity	constraint	uses	the	inertial	velocity
vector	expressed	with	respect	to	the
AttitudeReferenceBody.	An	OrbitNormal
constraint	uses	the	orbit	normal	vector	expressed



with	respect	to	the	AttitudeReferenceBody.
AttitudeConstraintType	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Enumeration

Allowed	Values Velocity,	OrbitNormal

Access set

Default	Value OrbitNormal

Units N/A

Interfaces GUI,	script

AttitudeCoordinateSystem
The	CoordinateSystem	used	in	attitude
computations.	The	AttitudeCoordinateSystem
field	is	only	used	for	the	following	attitude
models:	CoordinateSystemFixed.

Data	Type String

Allowed	Values CoordinateSystem	resource.

Access set



Default	Value EarthMJ2000Eq

Units N/A

Interfaces GUI,	script

AttitudeFileName
Path	(optional)	and	name	of	CCSDS	attitude
ephemeris	message	file.	If	a	path	is	not	provided,
and	GMAT	does	not	find	the	file	in	the	current
directory,	then	an	error	occurs	and	execution	is
halted.

Data	Type String

Allowed	Values AEM	File

Access set

Default	Value N/A

Units N/A

Interfaces GUI,	script

AttitudeRate-
DisplayStateType The	attitude	rate	representation	to	display	in	the



GUI	and	script	file.	AttitudeRateDisplayType	is
used	for	the	following	attitude	models:	Spinner.

Data	Type String

Allowed
Values

AngularVelocity,
EulerAngleRates

Access set

Default
Value

AngularVelocity

Units N/A

Interfaces GUI,	script

AttitudeReferenceBody
The	celestial	body	used	to	define	nadir.
AttitudeReferenceBody	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Resource

Allowed	Values Celestial	Body

Access set



Default	Value Earth

Units N/A

Interfaces GUI,	script

AttitudeSpiceKernelName
SPK	Kernels	for	Spacecraft	attitude.	SPK
atttitude	kernels	have	extension	".BC".	This	field
cannot	be	set	in	the	Mission	Sequence.	An	empty
list	unloads	all	kernels	of	this	type	on	the
Spacecraft.

Data	Type String	array

Allowed	Values Array	of	attitude	kernel	files

Access set

Default	Value empty	array

Units N/A

Interfaces GUI,	script

BodyAlignmentVectorX
The	x-component	of	the	alignment	vector,
expressed	in	the	body	frame,	to	align	with	the



opposite	of	the	radial	vector.
BodyAlignmentVectorX	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 1

Units N/A

Interfaces GUI,	script

BodyAlignmentVectorY
The	y-component	of	the	alignment	vector,
expressed	in	the	body	frame,	to	align	with	the
opposite	of	the	radial	vector.
BodyAlignmentVectorY	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set



Default	Value 0

Units N/A

Interfaces GUI,	script

BodyAlignmentVectorZ
The	z-component	of	the	alignment	vector,
expressed	in	the	body	frame,	to	align	with	the
opposite	of	the	radial	vector.
BodyAlignmentVectorZ	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

BodyConstraintVectorX
The	x-component	of	the	constraint	vector,



expressed	in	the	body	frame.	See	NadirPointing
description	for	further	details.
BodyConstraintVectorX	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

BodyConstraintVectorY
The	y-component	of	the	constraint	vector,
expressed	in	the	body	frame.	See	NadirPointing
description	for	further	details.
BodyConstraintVectorY	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞



Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

BodyConstraintVectorZ
The	z-component	of	the	constraint	vector,
expressed	in	the	body	frame.	See	NadirPointing
description	for	further	details.
BodyConstraintVectorZ	is	used	for	the
following	attitude	models:	NadirPointing.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 1

Units N/A

Interfaces GUI,	script



BodySpinAxisX The	x-component	of	the	spin	axis,	expressed	in
the	body	frame.	BodySpinAxisX	is	used	for	the
following	attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

BodySpinAxisY
The	y-component	of	the	spin	axis,	expressed	in
the	body	frame.	BodySpinAxisY	is	used	for	the
following	attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set



Default	Value 0

Units N/A

Interfaces GUI,	script

BodySpinAxisZ
The	z-component	of	the	spin	axis,	expressed	in
the	body	frame.	BodySpinAxisZ	is	used	for	the
following	attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 1

Units N/A

Interfaces GUI,	script

DCM11
Component	(1,1)	of	the	Direction	Cosine	Matrix.
DCM11	is	used	for	the	following	Attitude
models:	Spinner.



Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get

Default	Value 1

Units N/A

Interfaces GUI,	script

DCM12
Component	(1,2)	of	the	Direction	Cosine	Matrix.
DCM12	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get

Default	Value 0

Units N/A



Interfaces GUI,	script

DCM13
Component	(1,3)	of	the	Direction	Cosine	Matrix.
DCM13	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get

Default	Value 0

Units N/A

Interfaces GUI,	script

DCM21
Component	(2,1)	of	the	Direction	Cosine	Matrix.
DCM21	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -1	<=	Real	<=1



Access set,get

Default	Value 0

Units N/A

Interfaces GUI,	script

DCM22
Component	(2,2)	of	the	Direction	Cosine	Matrix.
DCM22	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get

Default	Value 1

Units N/A

Interfaces GUI,	script

DCM23
Component	(2,3)	of	the	Direction	Cosine	Matrix.



DCM23	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get

Default	Value 0

Units N/A

Interfaces GUI,	script

DCM31
Component	(3,1)	of	the	Direction	Cosine	Matrix.
DCM31	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get



Default	Value 0

Units N/A

Interfaces GUI,	script

DCM32
Component	(3,2)	of	the	Direction	Cosine	Matrix.
DCM32	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get

Default	Value 1

Units N/A

Interfaces GUI,	script

DCM33
Component	(3,3)	of	the	Direction	Cosine	Matrix.
DCM33	is	used	for	the	following	Attitude
models:	Spinner.



Data	Type Real

Allowed	Values -1	<=	Real	<=1

Access set,get

Default	Value 1

Units N/A

Interfaces GUI,	script

EulerAngle1
The	value	of	the	first	Euler	angle.	EulerAngle1
is	used	for	the	following	Attitude	models:
Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0

Units deg.



Interfaces GUI,	script

EulerAngle2
The	value	of	the	second	Euler	angle.
EulerAngle2	is	used	for	the	following	Attitude
models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0

Units deg.

Interfaces GUI,	script

EulerAngle3
The	value	of	the	third	Euler	angle.	EulerAngle3
is	used	for	the	following	Attitude	models:
Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞



Access set,get

Default	Value 0

Units deg.

Interfaces GUI,	script

EulerAngleRate1
The	value	of	the	first	Euler	angle	rate.
EulerAngleRate1	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0

Units deg./sec.

Interfaces GUI,	script

EulerAngleRate2



The	value	of	the	second	Euler	angle	rate.
EulerAngleRate2	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 1

Units deg./sec.

Interfaces GUI,	script

EulerAngleRate3
The	value	of	the	third	Euler	angle	rate.
EulerAngleRate3	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get



Default	Value 1

Units deg./sec.

Interfaces GUI,	script

FrameSpiceKernelName
SPK	Kernels	for	Spacecraft	body	frame.	SPK
Frame	kernels	have	extension	".TF".	This	field
cannot	be	set	in	the	Mission	Sequence.	An	empty
list	unloads	all	kernels	of	this	type	on	the
Spacecraft.

Data	Type String	array

Allowed	Values Array	of	.tf	files.

Access set

Default	Value emtpy	array

Units N/A

Interfaces GUI,	script

EulerAngleSequence
The	Euler	angle	sequence	used	for	Euler	angle
input	and	output..



Data	Type String

Allowed
Values

123,231,312,132,321,213,121,
232,313,131,323,212

Access set

Default
Value

321

Units N/A

Interfaces GUI,	script

InitialPrecessionAngle
The	initial	precession	angle.
InitialPrecessionAngle	is	used	for	the	following
attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0



Units deg.

Interfaces GUI,	script

InitialSpinAngle
The	initial	attitude	spin	angle.	InitialSpinAngle
is	used	for	the	following	attitude	models:
PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0

Units deg.

Interfaces GUI,	script

NAIFIdReferenceFrame
The	Id	of	the	spacecraft	body	frame	used	in
SPICE	kernels.

Data	Type Integer



Allowed	Values -∞	<	Integer	<	∞

Access set

Default	Value -9000001

Units N/A

Interfaces GUI,	script

NutationAngle
The	attitude	nutation	angle.	NutationAngle	is
used	for	the	following	attitude	models:
PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 15

Units deg.

Interfaces GUI,	script



NutationReferenceVectorX
The	x-component	of	the	nutation	reference
vector,	expressed	in	the	inertial	frame.
NutationReferenceVectorX	is	used	for	the
following	attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

NutationReferenceVectorY
The	y-component	of	the	nutation	reference
vector,	expressed	in	the	inertial	frame.
NutationReferenceVectorY	is	used	for	the
following	attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞



Access set

Default	Value 0

Units N/A

Interfaces GUI,	script

NutationReferenceVectorZ
The	z-component	of	the	nutation	reference
vector,	expressed	in	the	inertial	frame.
NutationReferenceVectorZ	is	used	for	the
following	attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 1

Units N/A

Interfaces GUI,	script



MRP1 The	value	of	the	first	modified	Rodrigues
parameter.	MRP1	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0

Units dimensionless

Interfaces GUI,	script

MRP2
The	value	of	the	second	modified	Rodrigues
parameter.	MRP2	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get



Default	Value 0

Units dimensionless

Interfaces GUI,	script

MRP3
The	value	of	the	second	modified	Rodrigues
parameter.	MRP2	is	used	for	the	following
Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0

Units dimensionless

Interfaces GUI,	script

PrecessionRate
The	rate	of	attitude	precession.
InitialPrecessionAngle	is	used	for	the	following
attitude	models:	PrecessingSpinner.



Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set

Default	Value 0

Units deg./s

Interfaces GUI,	script

Q1
First	component	of	quaternion.	GMAT’s
quaternion	representation	includes	the	three
“vector”	components	as	the	first	three	elements
in	the	quaternion	and	the	“rotation”	component
as	the	last	element	in	the	quaternion.	Q1	is	used
for	the	following	Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0



Units dimensionless

Interfaces GUI,	script

Q2
Second	component	of	quaternion.	GMAT’s
quaternion	representation	includes	the	three
“vector”	components	as	the	first	three	elements
in	the	quaternion	and	the	“rotation”	component
as	the	last	element	in	the	quaternion.	Q2	is	used
for	the	following	Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0

Units dimensionless

Interfaces GUI,	script

Q3
Third	component	of	quaternion.	GMAT’s
quaternion	representation	includes	the	three
“vector”	components	as	the	first	three	elements



in	the	quaternion	and	the	“rotation”	component
as	the	last	element	in	the	quaternion.	Q3	is	used
for	the	following	Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞

Access set,get

Default	Value 0

Units dimensionless

Interfaces GUI,	script

Q4
Fourth	component	of	quaternion.	GMAT’s
quaternion	representation	includes	the	three
“vector”	components	as	the	first	three	elements
in	the	quaternion	and	the	“rotation”	component
as	the	last	element	in	the	quaternion.	Q4	is	used
for	the	following	Attitude	models:	Spinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞



Access set,get

Default	Value 1

Units dimensionless

Interfaces GUI,	script

Quaternion
The	quaternion	vector.	GMAT’s	quaternion
representation	includes	the	three	“vector”
components	as	the	first	three	elements	in	the
quaternion	and	the	“rotation”	component	as	the
last	element	in	the	quaternion.	Quaternion	is
used	for	the	following	Attitude	models:	Spinner.

Data	Type Real	array

Allowed	Values Real	array	(length	four)

Access set,get

Default	Value [0	0	0	1];

Units dimensionless

Interfaces GUI,	script



SCClockSpiceKernelName
SPK	Kernels	for	spacecraft	clock.	SPK	clock
kernels	have	extension	".TSC".	This	field	cannot
be	set	in	the	Mission	Sequence.	An	empty	list
unloads	all	kernels	of	this	type	on	the
Spacecraft.	An	empty	list	unloads	all	kernels	of
this	type	on	the	Spacecraft.

Data	Type String	array

Allowed	Values Array	of	.tsc	file	names

Access set,get

Default	Value empty	array

Units N/A

Interfaces GUI,	script

SpinRate
The	attitude	spin	rate.	SpinRate	is	used	for	the
following	attitude	models:	PrecessingSpinner.

Data	Type Real

Allowed	Values -∞	<	Real	<	∞



Access set

Default	Value 10

Units deg./s

Interfaces GUI,	script



Remarks

Overview	of	Availble	Attitude	Models

GMAT	supports	many	attitude	models	including	the	following:
CoordinateSystemFixed,	SpiceAttitude,	NadirPointing,	CCSDS-AEM,
PrecessingSpinner,	and	Spinner	(we	recommend	using	thew	new
PrecessingSpinner	model	instead	of	Spinner).	Different	attitude	models	require
different	information	to	fully	configure	the	model.	For	example,	when	you	select
the	CoordinateSystemFixed	model,	the	attitude	and	body	rates	are	entirely
determined	by	the	CoordinateSystem	model	and	defining	Euler	angles	or
angular	velocity	components	are	not	required	and	have	no	effect.	The	reference
tables	above,	and	the	detailed	examples	for	each	model	type	below,	describe
which	fields	are	used	for	each	model.

Note

GMAT	attitude	parameterizations	such	as	the	DCM	rotate	from
inertial	to	body.

Overview	of	State	Representations

Quaternion

The	quaternion	is	a	four	element,	non-singular	attitude	representation.	GMAT’s
quaternion	representation	includes	the	three	“vector”	components	as	the	first
three	elements	in	the	quaternion	and	the	“rotation”	component	as	the	last
element	in	the	quaternion.	In	assignment	mode,	you	can	set	the	quaternions
element	by	element	like	this

aSpacecraft.Q1	=	0.5

aSpacecraft.Q2	=	0.5

aSpacecraft.Q3	=	0.5

aSpacecraft.Q4	=	0.5																



or	simultaneously	set	the	entire	quaternion	like	this

aSpacecraft.Quaternion	=	[0.5	0.5	0.5	0.5]									

GMAT	normalizes	the	quaternion	before	use.	In	command	mode,	you	must	enter
the	entire	quaternion	as	a	single	vector	to	avoid	scaling	components	of	the
quaternion	before	the	entire	quaternion	is	set.

DirectionCosineMatrix	(DCM)

The	Direction	Cosine	Matrix	is	a	3x3	array	that	contains	cosines	of	the	angles
that	rotate	from	the	x,	y,	and	z	inertial	axes	to	the	x,	y,	and	z	body	axes.	The
direction	cosine	matrix	must	be	ortho-normal	and	you	define	the	DCM	element
by	element.	Here	is	an	example	that	shows	how	to	define	the	attitude	using	the
DCM.

aSpacecraft.DCM11	=	1

aSpacecraft.DCM12	=	0

aSpacecraft.DCM13	=	0

aSpacecraft.DCM21	=	0

aSpacecraft.DCM22	=	1

aSpacecraft.DCM23	=	0

aSpacecraft.DCM31	=	0

aSpacecraft.DCM32	=	0

aSpacecraft.DCM33	=	1								

Euler	Angles

Euler	angles	are	a	sequence	of	three	rotations	about	coordinate	axes	to	transform
from	one	system	to	another	system.	GMAT	supports	all	12	Euler	angle
sequences.	Here	is	an	example	setting	attitude	using	a	“321”	sequence.

aSpacecraft.EulerAngleSequence	=	'321'

aSpacecraft.EulerAngle1	=	45

aSpacecraft.EulerAngle2	=	45

aSpacecraft.EulerAngle3	=	90						

Warning



Caution:	The	Euler	angles	have	singularities	that	can	cause
issues	during	modeling.	We	recommend	using	other
representations	for	this	reason.

Modified	Rogriques	parameters

The	modified	Rodgriques	parameters	are	a	modification	of	the	Euer	Axis/Angle
representation.	Specifically,	the	MRP	vector	is	equal	to	nhat*	tan(Euler	Angle/4)
where	nhat	is	the	unitized	Euler	Axis.

aSpacecraft.MRP1	=	0.2928932188134525

aSpacecraft.MRP2	=	0.2928932188134524

aSpacecraft.MRP3	=	1.149673585146546e-017

Euler	Angles	Rates

The	Euler	angle	rates	are	the	first	time	derivative	of	the	Euler	angles	and	can	be
used	to	define	the	body	rates.	Euler	angle	rates	use	the	same	sequence	as	the
EulerAngles.	The	example	below	shows	how	to	define	the	Euler	angle	rates	for	a
spacecraft.

aSpacecraft.EulerAngleSequence	=	'321'

aSpacecraft.EulerAngleRate1	=	-5

aSpacecraft.EulerAngleRate2	=	20

aSpacecraft.EulerAngleRate3	=	30						

Angular	Velocity

The	angular	velocity	is	the	angular	velocity	of	the	spacecraft	body	with	respect
to	the	inertial	frame,	expressed	in	the	inertial	frame.	The	example	below	shows
how	to	define	the	angular	velocity	for	a	spacecraft.

aSpacecraft.AngularVelocityX	=	5;

aSpacecraft.AngularVelocityY	=	10;

aSpacecraft.AngularVelocityZ	=	5;

Coordinate	System	Fixed	Attitude	Model

The	CoordinateSystemFixed	model	allows	you	to	use	any	existing



CoordinateSystem	to	define	the	attitude	of	a	Spacecraft.	The	attitude	uses	the
axes	defined	on	the	CoordinateSystem	to	compute	the	body	fixed	to	inertial
matrix	and	attitude	rate	parameters	such	as	the	angular	velocity.	To	configure
this	attitude	mode,	select	CoordinateSystemFixed,	for	Attitude.	You	can	define
the	EulerAngleSequence	used	when	outputting	EulerAngles	and	EulerAngle
rates.

Warning

For	the	CoordinateSystemFixed	attitude	model,	the	attitude	is
completely	described	by	the	selected	coordinate	system.	If	you
are	working	in	the	script,	setting	attitude	parameters	(Euler
Angles,	Quaternion	etc.)	or	setting	attitude	rate	parameters	such
as	(Euler	Angle	Rates	etc.)	has	no	effect.

The	script	example	below	shows	how	to	configure	a	Spacecraft	to	use	a
spacecraft	VNB	attitude	system.



Create	Spacecraft	aSat

aSat.Attitude																	=	CoordinateSystemFixed

aSat.ModelRotationZ											=	-90

aSat.AttitudeCoordinateSystem	=	'attCoordSys'

Create	ForceModel	Propagator1_ForceModel

Create	Propagator	Propagator1

Propagator1.FM								=	Propagator1_ForceModel

Propagator1.MaxStep			=	10

Create	CoordinateSystem	attCoordSys

attCoordSys.Origin				=	Earth

attCoordSys.Axes						=	ObjectReferenced

attCoordSys.XAxis					=	V

attCoordSys.YAxis					=	N

attCoordSys.Primary			=	Earth

attCoordSys.Secondary	=	aSat

Create	OrbitView	OrbitView1;

OrbitView1.Add																=	{aSat,	Earth}

OrbitView1.ViewPointReference	=	Earth

OrbitView1.ViewPointVector				=	[	30000	0	0	]

BeginMissionSequence

Propagate	Propagator1(aSat)	{aSat.ElapsedSecs	=	12000.0}

Spinner	Attitude	Model

The	Spinner	attitude	model	propagates	the	attitude	assuming	the	spin	axis
direction	is	fixed	in	inertial	space.	We	recommend	using	the	newer
PrecessingSpinner	model	instead	of	Spinner,	and	this	model	is	maintained
primarily	for	backwards	compatibility.	You	define	the	attitude	by	providing
initial	body	orientation	and	rates.	GMAT	propagates	the	attitude	by	computing
the	angular	velocity	and	then	rotates	the	Spacecraft	about	that	angular	velocity
vector	at	a	constant	rate	defined	by	the	magnitude	of	the	angular	velocity.	You
can	define	the	initial	attitude	using	quaternions,	Euler	angles,	the	DCM,	or	the
modified	Rodriques	parameters.	You	can	define	the	attitude	rates	using	Euler
angles	rates	or	angular	velocity.	When	working	with	Euler	angles,	the	rotation
sequence	is	determined	by	the	EulerAngleSequence	field.



Warning

Caution:	If	you	are	working	in	the	script,	setting	the
CoordinateSystem	for	the	Spinner	attitude	model	has	no
effect.

The	example	below	configures	a	spacecraft	to	spin	about	the	inertial	z	axis.

Create	Spacecraft	aSat;

aSat.Attitude									=	Spinner

aSat.ModelRotationZ			=	-90

aSat.AngularVelocityZ	=	5

Create	ForceModel	Propagator1_ForceModel

Create	Propagator	Propagator1

GMAT	Propagator1.FM								=	Propagator1_ForceModel

GMAT	Propagator1.MaxStep			=	10

Create	CoordinateSystem	attCoordSys

attCoordSys.Origin				=	Earth



attCoordSys.Axes						=	ObjectReferenced

attCoordSys.XAxis					=	V

attCoordSys.YAxis					=	N

attCoordSys.Primary			=	Earth

attCoordSys.Secondary	=	aSat

Create	OrbitView	OrbitView1;

OrbitView1.Add																=	{aSat,	Earth}

OrbitView1.ViewPointReference	=	Earth

OrbitView1.ViewPointVector				=	[	30000	0	0	]

BeginMissionSequence

Propagate	Propagator1(aSat)	{aSat.ElapsedSecs	=	12000.0}

SPK	Attitude	Model

The	SpiceAttitude	model	propagates	the	attitude	using	attitude	SPICE	kernels.
To	configure	a	Spacecraft	to	use	SPICE	kernels	select	SpiceAttitude	for	the
Attitude	field	as	shown	below.

Warning

Caution:	For	the	SpiceAttitude	model,	the	attitude	is
completely	described	by	the	spice	kernels.	When	working	in
the	script,	setting	the	CoordinateSystem,	attitude	parameters
(EulerAngles,	Quaternion	etc.)	or	attitude	rate	parameters
such	as	(EulerAngleRates	etc.)	has	no	effect.



You	must	provide	three	SPICE	kernel	types	for	the	SpiceAttitude	model:	the
attitude	kernel	(.bc	file),	the	frame	kernel	(.tf	file)	and	the	spacecraft	clock	kernel
(.tsc	file).	These	files	are	defined	on	the	Spacecraft	SPICE	tab	as	shown	below.
In	addition	to	the	kernels,	you	must	also	provide	the	Spacecraft	NAIFId	and	the
NAIFIdReferenceFrame.	Below	is	an	illustration	of	the	SPICE	tab	configured
for	MarsExpress	script	found	later	in	this	section.



The	example	below	configures	a	Spacecraft	to	use	SPK	kernels	to	propagator
the	attitude	for	Mars	Express.	The	SPK	kernels	are	distributed	with	GMAT.

Create	Spacecraft	MarsExpress

MarsExpress.NAIFId	=	-41

MarsExpress.NAIFIdReferenceFrame	=	-41001

MarsExpress.Attitude	=	'SpiceAttitude'

MarsExpress.OrbitSpiceKernelName	=	...

{'../data/vehicle/ephem/spk/MarsExpress_Short.BSP'}

MarsExpress.AttitudeSpiceKernelName	=	...

{'../data/vehicle/ephem/spk/MarsExpress_ATNM_PTR00012_100531_002.BC'}

MarsExpress.SCClockSpiceKernelName	=	...

{'../data/vehicle/ephem/spk/MarsExpress_MEX_100921_STEP.TSC'}

MarsExpress.FrameSpiceKernelName	=	...

{'../data/vehicle/ephem/spk/MarsExpress_MEX_V10.TF'}

Create	Propagator	spkProp



spkProp.Type	=	SPK

spkProp.StepSize	=	60

spkProp.CentralBody	=	Mars

spkProp.EpochFormat	=	'UTCGregorian'

spkProp.StartEpoch	=	'01	Jun	2010	16:59:09.815'

Create	CoordinateSystem	MarsMJ2000Eq

MarsMJ2000Eq.Origin	=	Mars

MarsMJ2000Eq.Axes	=	MJ2000Eq

Create	OrbitView	Enhanced3DView1

Enhanced3DView1.Add	=	{MarsExpress,	Mars}

Enhanced3DView1.CoordinateSystem	=	MarsMJ2000Eq

Enhanced3DView1.ViewPointReference	=	Mars

Enhanced3DView1.ViewPointVector	=	[	10000	10000	10000	]

Enhanced3DView1.ViewDirection	=	Mars

BeginMissionSequence

Propagate	spkProp(MarsExpress)	{MarsExpress.ElapsedDays	=	0.2}

Nadir	Pointing	Model

The	NadirPointing	attitude	mode	configures	the	attitude	of	a	spacecraft	to	point
a	specified	vector	in	the	spacecraft	body	system	in	the	nadir	direction.	The
ambiguity	in	angle	about	the	nadir	vector	is	resolved	by	minimizing	the	angle
between	two	constraint	vectors.	Note:	the	nadir	pointing	mode	points	the	attitude
in	the	negative	radial	direction	(not	opposite	the	planetodetic	normal).

To	configure	which	axis	points	to	nadir,	set	the	AttitudeReferenceBody	field	to
the	desired	celestial	body	and	define	the	body	components	of	the	alignment
vector	using	the	BodyAlignmentVector	fields.	To	configure	the	constraint,	set
the	AttitudeConstraintType	field	to	the	desired	constraint	type,	and	define	the
body	components	of	the	constraint	using	the	BodyConstraintVector	fields.
GMAT	supports	two	constraint	types,	OrbitNormal	and	Velocity,	and	in	both
cases	the	vectors	are	constructed	using	the	inertial	spacecraft	state	with	respect
to	the	AttitudeReferenceBody.

Warning



Attitude	rates	are	not	computed	for	the	NadirPointing	model.
If	you	perform	a	computation	that	requires	attitude	rate
information	when	using	the	NadirPointing	mode,	GMAT	will
throw	an	error	message	and	execution	will	stop.	Similarly,	if
the	definitions	of	the	BodyAlignmentVector	and
BodyConstraintVector	fields	result	in	an	undefined	attitude,
an	error	message	is	thrown	and	execution	will	stop.

The	script	example	below	shows	how	to	configure	a	Spacecraft	to	use	an	Earth
NadirPointing	attitude	system	where	the	body	y-axis	points	nadir	and	the	angle
between	the	body	x-axis	and	the	orbit	normal	vector	is	a	minimum.

Create	Spacecraft	aSat;

GMAT	aSat.Attitude																	=	NadirPointing;



GMAT	aSat.AttitudeReferenceBody				=	Earth

GMAT	aSat.AttitudeConstraintType			=	OrbitNormal

GMAT	aSat.BodyAlignmentVectorX		=	0

GMAT	aSat.BodyAlignmentVectorY		=	1

GMAT	aSat.BodyAlignmentVectorZ		=	0

GMAT	aSat.BodyConstraintVectorX	=	1

GMAT	aSat.BodyConstraintVectorX	=	0

GMAT	aSat.BodyConstraintVectorX	=	0

Create	ForceModel	Propagator1_ForceModel

Create	Propagator	Propagator1

Propagator1.FM								=	Propagator1_ForceModel

Propagator1.MaxStep			=	10

Create	OrbitView	OrbitView1;

OrbitView1.Add																=	{aSat,	Earth}

OrbitView1.ViewPointReference	=	Earth

OrbitView1.ViewPointVector				=	[	30000	0	0	]

BeginMissionSequence

Propagate	Propagator1(aSat)	{aSat.ElapsedSecs	=	12000.0}

CCSDS	Attitude	Ephemeris	Message

The	CCSDS	Attitude	Ephemeris	Message	(AEM)	is	an	ASCII	standard	for
attitude	ephemerides	documented	in	“ATTITUDE	DATA	MESSAGES”
RECOMMENDED	STANDARD	CCSDS	504.0-B-1.	GMAT	supports	some,	but
not	all,	of	the	attitude	messages	defined	in	the	standard.	According	to	the
CCSDS	AEM	specification,	“The	set	of	attitude	data	messages	described	in	this
Recommended	Standard	is	the	baseline	concept	for	attitude	representation	in
data	interchange	applications	that	are	cross-supported	between	Agencies	of	the
CCSDS.”	Additionally,	the	forward	of	the	standard	states	“Derived	Agency
standards	may	implement	only	a	subset	of	the	optional	features	allowed	by	the
Recommended	Standard	and	may	incorporate	features	not	addressed	by	this
Recommended	Standard.	See	the	details	below	for	supported	keyword	types	and
details	for	creating	AEM	files	that	GMAT	can	use	for	attitude	modelling.



An	AEM	file	must	have	the	format	illustrated	below	described	in	Table	4-1	of
the	standard.	The	header	section	contains	high	level	information	on	the	version,
originator,	and	date.	The	body	of	the	file	is	composed	of	paired	blocks	of
Metadata	and	data.	The	Metadata	sections	contain	information	on	the	data	such
as	the	first	and	last	epoch	of	the	block,	the	time	system	employed,	the	reference
frames,	the	attitude	type	(quaternion,	Euler	Angle,	etc.)	and	many	other	items
documented	in	later	sections.	The	data	sections	contain	lines	of	epoch	and
attitude	data.



An	example	CCSDS	AEM	file	is	shown	below

CCSDS_AEM_VERS	=	1.0

CREATION_DATE	=	2002-11-04T17:22:31

ORIGINATOR	=	NASA/JPL

META_START

COMMENT	This	file	was	produced	by	M.R.	Somebody,	MSOO	NAV/JPL,	2002	OCT	04.

COMMENT	It	is	to	be	used	for	attitude	reconstruction	only.

COMMENT		The	relative	accuracy	of	these	attitudes	is	0.1	degrees	per	axis.

OBJECT_NAME	=	MARS	GLOBAL	SURVEYOR

OBJECT_ID	=	1996-062A

CENTER_NAME	=	mars	barycenter

REF_FRAME_A	=	EME2000

REF_FRAME_B	=	SC_BODY_1

ATTITUDE_DIR	=	A2B

TIME_SYSTEM	=	UTC

START_TIME	=	1996-11-28T21:29:07.2555

USEABLE_START_TIME	=	1996-11-28T22:08:02.5555

USEABLE_STOP_TIME	=	1996-11-30T01:18:02.5555

STOP_TIME	=	1996-11-30T01:28:02.5555

ATTITUDE_TYPE	=	QUATERNION

QUATERNION_TYPE	=	LAST

INTERPOLATION_METHOD	=	hermite

INTERPOLATION_DEGREE	=	7

META_STOP



DATA_START

1996-11-28T21:29:07.2555	0.56748	0.03146	0.45689	0.68427

1996-11-28T22:08:03.5555	0.42319	-0.45697	0.23784	0.74533

1996-11-28T22:08:04.5555	-0.84532	0.26974	-0.06532	0.45652

<	intervening	data	records	omitted	here	>

1996-11-30T01:28:02.5555	0.74563	-0.45375	0.36875	0.31964

DATA_STOP

META_START

COMMENT	This	block	begins	after	trajectory	correction	maneuver	TCM-3.

OBJECT_NAME	=	mars	global	surveyor

OBJECT_ID	=	1996-062A

CENTER_NAME	=	MARS	BARYCENTER

REF_FRAME_A	=	EME2000

REF_FRAME_B	=	SC_BODY_1

ATTITUDE_DIR	=	A2B

TIME_SYSTEM	=	UTC

START_TIME	=	1996-12-18T12:05:00.5555

USEABLE_START_TIME	=	1996-12-18T12:10:00.5555

USEABLE_STOP_TIME	=	1996-12-28T21:23:00.5555

STOP_TIME	=	1996-12-28T21:28:00.5555

ATTITUDE_TYPE	=	QUATERNION

QUATERNION_TYPE	=	LAST

META_STOP

DATA_START

1996-12-18T12:05:00.5555	-0.64585	0.018542	-0.23854	0.72501

1996-12-18T12:10:05.5555	0.87451	-0.43475	0.13458	-0.16767

1996-12-18T12:10:10.5555	0.03125	-0.65874	0.23458	-0.71418

<	intervening	records	omitted	here	>

1996-12-28T21:28:00.5555	-0.25485	0.58745	-0.36845	0.67394

DATA_STOP

CCSDS	files	require	many	keywords	and	fields,	some	are	required	for	all	file
types,	others	are	Situationally	Required	(SR)	depending	upon	the	type	of	file
(i.e.	If	ATTITUDE_TYPE	=	QUATERNION,	then	QUATERNION_TYPE	must
be	included).	The	tables	below	describe	GMAT’s	implementation	starting	with
header	keywords

Keyword Required Description	and	Supported	Values

CCSDS_AEM_VERS
Y Format	version	in	the	form	of	‘x.y’,	where

‘y’	is	incremented	for	corrections	and	minor
changes,	and	‘x’	is	incremented	for	major



changes.	This	particular	line	must	be	the
first	non-blank	line	in	the	file.	In	GMAT	the
version	must	be	set	to	1.0.	If	the	version	is
not	set	to	a	supported	version,	then	GMAT
throws	an	exception.

Example:

CCSDS_AEM_VERS	=1.0

COMMENT
N Comments	(allowed	after	AEM	version

number	and	META_START	and	before	a
data	block	of	ephemeris	lines).	Each
comment	line	shall	begin	with	this
keyword.	GMAT	does	not	use	this	field.

CREATION_DATE
Y File	creation	date/time	in	one	of	the

following	formats:	YYYY-MM-
DDThh:mm:ss[.d?d]	or	YYYY-
DDDThh:mm:ss[.d?d]	where	‘YYYY’	is
the	year,	‘MM’	is	the	two-digit	month,	‘DD’
is	the	two-digit	day,	‘DDD’	is	the	threedigit
day	of	year,	‘T’	is	constant,	‘hh:mm:ss[.d?
d]’	is	the	UTC	time	in	hours,	minutes,
seconds,	and	optional	fractional	seconds.
As	many	‘d’	characters	to	the	right	of	the
period	as	required	may	be	used	to	obtain
the	required	precision.	All	fields	require
leading	zeros.	GMAT	does	not	use	this
field.

ORIGINATOR
Y Creating	agency	(value	should	be	specified

in	an	ICD).	GMAT	does	not	use	this	field.



MetaData	Keywords	are	described	in	the	table	below.

Keyword Required Description	and	Supported	Values

META_START
Y The	AEM	message	contains	both

metadata	and	attitude	ephemeris	data;	this
keyword	is	used	to	delineate	the	start	of	a
metadata	block	within	the	message
(metadata	are	provided	in	a	block,
surrounded	by	‘META_START’	and
‘META_STOP’	markers	to	facilitate	file
parsing).	This	keyword	must	appear	on	a
line	by	itself.

COMMENT
N Comments	allowed	only	at	the	beginning

of	the	Metadata	section.	Each	comment
line	shall	begin	with	this	keyword.	GMAT
does	not	use	this.

Example:

COMMENT	This	is	a	comment

OBJECT_NAME
Y Spacecraft	name	of	the	object

corresponding	to	the	attitude	data	to	be
given.	There	is	no	CCSDS-based
restriction	on	the	value	for	this	keyword,
but	it	is	recommended	to	use	names	from
the	SPACEWARN	Bulletin,	which
include	the	Object	name	and	international
designator	of	the	participant.

Example:

OBJECT_NAME	=	EUTELSAT



Note:	GMAT	does	not	use	this	field.	In
GMAT,	you	associate	a	file	with	a
particular	spacecraft	by	configuring	a
particular	spacecraft	to	use	the	file	as
shown	below.

Create	Spacecraft	aSat

aSat.Attitude	=	CCSDS-AEM

aSat.AttitudeFileName	=	myFile.aem

OBJECT_ID
Y Spacecraft	identifier	of	the	object

corresponding	to	the	attitude	data	to	be
given.	See	the	AEM	specification	for
recommendations	for	spacecraft	Ids.
GMAT	does	not	use	this	field.

CENTER_NAME
N Origin	of	reference	frame,	which	may	be

a	natural	solar	system	body	(planets,
asteroids,	comets,	and	natural	satellites),
including	any	planet	barycenter	or	the
solar	system	barycenter,	or	another
spacecraft	(in	this	the	value	for
‘CENTER_NAME’	is	subject	to	the	same
rules	as	for	‘OBJECT_NAME’).	There	is
no	CCSDS-based	restriction	on	the	value
for	this	keyword,	but	for	natural	bodies	it
is	recommended	to	use	names	from	the
NASA/JPL	Solar	System	Dynamics
Group	.	GMAT	does	not	use	this	field.

REF_FRAME_A
Y The	name	of	the	reference	frame

specifying	one	frame	of	the
transformation,	whose	direction	is
specified	using	the	keyword
ATTITUDE_DIR.	The	full	set	of	values	is
enumerated	in	annex	A	of	the	AEM



standard,	with	an	excerpt	provided	in	the
‘Values	/	Examples’	column.

In	GMAT,	REF_FRAME_A	can	be	any	of
the	following	and	must	be	different	than
REF_FRAME_B:	EME2000,
SC_BODY_1

Example:

REF_FRAME_A	=	EME2000

REF_FRAME_A	=	SC_Body_1

REF_FRAME_B
Y The	name	of	the	reference	frame

specifying	one	frame	of	the
transformation,	whose	direction	is
specified	using	the	keyword
ATTITUDE_DIR.	The	full	set	of	values	is
enumerated	in	annex	A	of	the	AEM
standard,	with	an	excerpt	provided	in	the
‘Values	/	Examples’	column.

In	GMAT,	REF_FRAME_B	can	be	any	of
the	following	and	must	be	different	than
REF_FRAME_A:	EME2000,
SC_BODY_1

Example:

REF_FRAME_A	=	EME2000

REF_FRAME_A	=	SC_Body_1

ATTITUDE_DIR
Y Rotation	direction	of	the	attitude

specifying	from	which	frame	the
transformation	is	to:	A2B	specifies	a



transformation	from	the	REF_FRAME_A
to	the	REF_FRAME_B;	B2A	specifies	a
transformation	from	the	REF_FRAME_B
to	the	REF_FRAME_A.

Examples:

ATTITUDE_DIR	=	A2B

ATTITUDE_DIR	=	B2A

TIME_SYSTEM
Y Time	system	used	for	both	attitude

ephemeris	data	and	metadata.	GMAT
supports	the	following	options:	UTC

Example:

TIME_SYSTEM	=	UTC

START_TIME
Y Start	of	TOTAL	time	span	covered	by

attitude	ephemeris	data	immediately
following	this	metadata	block.	The
START_TIME	time	tag	at	a	new	block	of
attitude	ephemeris	data	must	be	equal	to
or	greater	than	the	STOP_TIME	time	tag
of	the	previous	block.	See	the
CREATION_DATE	specification	for
detailed	information	on	time	formats.
Note:	precision	in	the	seconds	place	is
only	preserved	to	a	few	microseconds.

Example:

START_TIME	=	1996-12-
18T14:28:15.117

USEABLE_



START_TIME,
USEABLE_
STOP_TIME

N Optional	start	and	end	of	USEABLE	time
span	covered	by	attitude	ephemeris	data
immediately	following	this	metadata
block.	To	allow	for	proper	interpolation
near	the	ends	of	the	attitude	ephemeris
data	block,	it	may	be	necessary,
depending	upon	the	interpolation	method
to	be	used,	to	utilize	these	keywords	with
values	within	the	time	span	covered	by
the	attitude	ephemeris	data	records	as
denoted	by	the	START/STOP_TIME	time
tags.	If	this	is	provided,	GMAT	only	uses
data	in	the	USEABLE	timespan	for
interpolation.	If	it	is	not	provided,	GMAT
uses	the	data	in	the
START_TIME/STOP_TIME	segment	for
interpolation.	See	the	CREATION_DATE
specification	for	detailed	information	on
time	formats.

Example:

USEABLE_	START_TIME	=	1996-12-
18T14:28:15.117

USEABLE_	STOP_TIME	=	1996-12-
18T14:28:15.117

STOP_TIME
Y End	of	TOTAL	time	span	covered	by	the

attitude	ephemeris	data	immediately
following	this	metadata	block.	The
STOP_TIME	time	tag	for	the	block	of
attitude	ephemeris	data	must	be	equal	to
or	less	than	the	START_TIME	time	tag	of
the	next	block.	See	the
CREATION_DATE	specification	for
detailed	information	on	time	formats.
Note:	precision	in	the	seconds	place	is



only	preserved	to	a	few	microseconds.

Example:

STOP_TIME	=	1996-12-18T14:28:15.117

ATTITUDE_TYPE
Y The	format	of	the	data	lines	in	the

message.	GMAT	supports	the	following
types

ATTITUDE_TYPE	=	QUATERNION

ATTITUDE_TYPE	=	EULER_ANGLE

QUATERNION_TYPE
SR The	placement	of	the	scalar	portion	of	the

quaternion	(QC)	in	the	attitude	data.	This
keyword	is	only	used	if
ATTITUDE_TYPE	denotes	quaternion
and	in	that	case	the	field	is	required.

Example:

QUATERNION_TYPE	=	FIRST

QUATERNION_TYPE	=	LAST

EULER_ROT_SEQ
SR The	rotation	sequence	of	the	Euler	angles

that	rotate	from	REF_FRAME_A	to
REF_FRAME_B,	or	vice	versa,	as
specified	using	the	ATTITUDE_DIR
keyword.	This	keyword	is	only	used	if
ATTITUDE_TYPE	denotes	EulerAngles
and	in	that	case	the	field	is	required.

Example:



EULER_ROT_SEQ	=	321

RATE_FRAME
N GMAT	does	not	use	this	field.

INTERPOLATION
_METHOD N Recommended	interpolation	method	for

attitude	ephemeris	data	in	the	block
immediately	following	this	metadata
block.	Note.	GMAT	uses	spherical	linear
interpolation	when	ATTITUDE_TYPE	=
QUATERNION.	GMAT	uses	lagrange
interpolation	for	ATTITUDE_TYPE	=
EULER_ANGLE.

Examples:

INTERPOLATION	_METHOD	=
LINEAR

INTERPOLATION	_METHOD	=
LAGRANGE

INTERPOLATION
_DEGREE SR Recommended	interpolation	degree	for

attitude	ephemeris	data	in	the	block
immediately	following	this	metadata
block.	It	must	be	an	integer	value.	This
keyword	must	be	used	if	the
‘INTERPOLATION_METHOD’	keyword
is	used.	The	field	is	only	used	for
Lagrange	Interpolation	and	in	that	case
the	value	must	be	between	0	and	9.	In	the
case	order	is	zero	for	Lagrange
interpolation,	no	interpolation	is
performed,	and	the	attitude	returned	is	the
value	immediately	before	the	requested
epoch.



Example:

INTERPOLATION	_DEGREE	=	7

META_STOP
Y The	end	of	a	metadata	block	within	the

message.	The	AEM	message	contains
both	metadata	and	attitude	ephemeris
data;	this	keyword	is	used	to	delineate	the
end	of	a	metadata	block	within	the
message	(metadata	are	provided	in	a
block,	surrounded	by	‘META_START’
and	‘META_STOP’	markers	to	facilitate
file	parsing).	This	keyword	must	appear
on	a	line	by	itself.

Data	Keywords	are	described	in	the	table	below.

Keyword Required Description	and	Supported	Values

DATA_START
Y

The	start	of	an	attitude	data	block	within	the
message.	The	AEM	message	contains	both
metadata	and	attitude	ephemeris	data;	this
keyword	is	used	to	delineate	the	start	of	a	data
block	within	the	message	(data	are	provided	in
a	block,	surrounded	by	‘DATA_START’	and
‘DATA_STOP’	markers	to	facilitate	file
parsing).	This	keyword	must	appear	on	a	line
by	itself.

DATA_STOP
Y The	end	of	an	attitude	data	block	within	the

message.	The	AEM	message	contains	both
metadata	and	attitude	ephemeris	data;	this
keyword	is	used	to	delineate	the	end	of	a	data
block	within	the	message	(data	are	provided	in
a	block,	surrounded	by	‘DATA_START’	and
‘DATA_STOP’	markers	to	facilitate	file



parsing).	This	keyword	must	appear	on	a	line
by	itself.

QUATERNION
SR Required	when	ATTITUDE_TYPE	=

QUATERNION.	The	general	format	of	a
quaternion	data	line	is:	Epoch,	QC,	Q1,	Q2,	Q3
or	Epoch,	Q1,	Q2,	Q3,	QC

Example:

2000-01-01T11:59:28.000	0.195286	-0.079460
0.3188764	0.92404936

EULER	ANGLE
SR Required	when	ATTITUDE_TYPE	=

EULER_ANGLE.	The	general	format	of	an
Euler	angle	data	line	is:	Epoch,	X_Angle,
Y_Angle,	Z_Angle.

Example:

2000-001T11:59:28.000	35.45409	-15.74726
18.803877

Propagate	a	spacecraft's	attitude	using	a	CCSDS	AEM	file

Create	Spacecraft	aSat	;

GMAT	aSat.Attitude	=	CCSDS-AEM;

GMAT	aSat.AttitudeFileName	=	...

									'../data/vehicle/ephem/ccsds/CCSDS_BasicEulerFile.aem'

Create	Propagator	aProp;

Create	OrbitView	a3DView

a3DView.Add	=	{aSat,Earth}

BeginMissionSequence;

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	3600};



Precessing	Spinner	Model

The	PrecessingSpinner	attitude	mode	configures	the	attitude	of	a	spacecraft	to
have	steady-state	precession	motion	with	respect	to	a	specified	vector	defined	in
the	inertial	frame.	The	spin	axis	must	be	provided	in	the	spacecraft	body	frame.

To	configure	the	spin	axis	of	the	spacecraft	body,	set	the	BodySpinAxis,	which
is	expressed	in	the	body	frame,	and	define	the	reference	vector	of	the	steady-
state	precession	motion	using	the	NutationReferenceVector,	which	is	expressed
in	the	inertial	frame.	To	configure	the	initial	attitude	of	the	spacecraft,	set
InitialPrecessionAngle	to	define	the	initial	angle	of	the	precession,	set
InitialSpinAngle	to	define	the	initial	angle	of	the	spin,	and	set	NutationAngle
to	define	the	nutation	angle	which	is	constant.	To	configure	the	rate	of
precession	and	spin	rate,	set	PrecessingRate	and	SpinRate	which	are	constant.

Note

The	PrecessingSpinner	model	uses	the	cross	product	of	the
BodySpinAxis	axis	and	the	inertial	x-axis	as	a	reference	for	the
initial	attitude.	To	avoid	an	undefined	attitude	when	the	spin
axis	is	aligned,	or	nearly	aligned,	with	the	inertial	x-axis,	a
different	reference	vector	is	used	in	that	case.	In	the	event	that
the	cross	product	of	BodySpinAxis	and	the	inertial	x-axis	is
less	than	1e-5,	the	inertial	y-axis	is	used	as	the	reference	vector.
For	further	details	see	the	engineering/mathematical
specifications.



The	script	example	below	shows	how	to	configure	a	Spacecraft	to	have
PrecessingSpinner	attitude	mode	where	the	body	z-axis	spins	with	respect	to
the	inertial	z-axis.	PrecessionRate	is	set	to	1	deg./sec.,	InitialPrecessionAngle
is	set	to	0	deg./sec.,	SpinRate	is	set	to	2	deg./sec.,	InitialSpinAngle	is	set	to	0
deg./sec.,	and	NutationAngle	is	set	to	30	deg.

Create	Spacecraft	aSat;	

GMAT	aSat.Attitude	=	PrecessingSpinner;

GMAT	aSat.NutationReferenceVectorX	=	0;

GMAT	aSat.NutationReferenceVectorY	=	0;

GMAT	aSat.NutationReferenceVectorZ	=	1;

GMAT	aSat.BodySpinAxisX	=	0;

GMAT	aSat.BodySpinAxisY	=	0;

GMAT	aSat.BodySpinAxisZ	=	1;

GMAT	aSat.InitialPrecessionAngle	=	0;

GMAT	aSat.PrecessionRate	=	1;



GMAT	aSat.NutationAngle	=	30;

GMAT	aSat.InitialSpinAngle	=	0;

GMAT	aSat.SpinRate	=	2;

Create	OrbitView	OrbitView1;

OrbitView1.Add	=	{aSat,	Earth}

OrbitView1.ViewPointReference	=	Earth

OrbitView1.ViewPointVector	=	[	30000	0	0	]

Create	Propagator	aProp

aProp.MaxStep	=	10

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	12000.0}



Spacecraft	Ballistic/Mass	Properties
Spacecraft	Ballistic/Mass	Properties	—	The	physical	properties	of	the	spacecraft



Description
The	Spacecraft	ballistic	and	mass	properties	include	the	drag	and	SRP	areas	and
coefficients	as	well	as	the	spacecraft	dry	mass.	These	quantities	are	used
primarily	in	orbital	dynamics	modelling.	GMAT	supports	a	spherical	SRP	model,
and	higher	fidelity	SRP	file	option.

See	Also:	Propagate,	Propagator,Spacecraft



Fields

Field Description

Cd
The	coefficent	of	drag	used	to	compute	the
acceleration	due	to	drag.

Data	Type Real

Allowed	Values Real	>=	0

Access set,	get

Default	Value 2.2

Units dimensionless

Interfaces GUI,	script

Cr
The	coefficent	of	reflectivity	used	to	compute	the
acceleration	due	to	SRP.	A	value	of	zero	means	the
spacecraft	is	translucent	to	incoming	radiation.	A
value	of	1.0	indicates	all	radiaion	is	absorbed	and	all
the	force	is	transmitted	to	the	spacecraft.	A	value	of
2.0	indicates	all	radiation	is	reflected	and	twice	the
force	is	transmitted	to	the	spacecraft.



Data	Type Real

Allowed	Values 0	<=	Cr	<=	2.0

Access set,	get

Default	Value 1.8

Units dimensionless

Interfaces GUI,	script

Drag	Area
The	area	used	to	compute	acceleration	due	to
atmospheric	drag.

Data	Type Real

Allowed	Values Real	>	=	0

Access set,	get

Default	Value 15

Units m^2



Interfaces GUI,	script

DryMass
The	dry	mass	of	the	Spacecraft	(does	not	include	fuel
mass).

Data	Type Real

Allowed	Values Real	>=0

Access set,	get

Default	Value 850

Units kg

Interfaces GUI,	script

SPADSRPFile
Name	(	and	optionally	path	information)	of	SPAD	file.

Data	Type String

Allowed	Values valid	path	and	SPAD	file

Access set



Default	Value N/A

Units N/A

Interfaces GUI,	script

SPADSRPScaleFactor
Scale	factor	applied	to	SRP	force	when	using	a
SPADModel	in	the	propagation.

Data	Type Real

Allowed	Values Real	>=	0

Access set

Default	Value 1

Units dimensionless

Interfaces GUI,	script

SRPArea
The	area	used	to	compute	acceleration	due	to	solar
radiation	pressure.



Data	Type Real

Allowed	Values Real	>	0

Access set,	get

Default	Value 1

Units m^2

Interfaces GUI,	script



GUI

The	GUI	interface	for	ballistic	and	mass	properties	is	contained	on	the
Ballistic/Mass	tab	of	the	Spacecraft	resource.	You	can	enter	physical	properties
such	as	the	drag	and	SRP	areas	and	coefficients	and	the	Spacecraft	dry	mass
which	are	used	in	orbital	dynamics	modelling.	GMAT	supports	a	spherical	SRP
model	and	a	SPAD	(Solar	Pressure	and	Aerodynamic	Drag)	file.



Remarks

Configuring	Ballistic	and	Mass	Properties	for	the	Spherical
Model

GMAT	supports	a	cannonball	model	for	drag	and	SRP	modeling.	In	the
cannonball	model,	the	area	is	assumed	to	be	independent	of	the	spacecraft’s
orientation	with	respect	to	the	local	velocity	vector	and	the	sun	vector.	For	more
details	on	the	computation	and	configuration	of	drag	and	SRP	models	see	the
Force	Model	documentation.

Configuring	Ballistic	and	Mass	Properties	for	the	SRP	File

The	(SPAD)	SRP	file	can	be	used	for	high	fidelity	SRP	modelling	taking	into
account	the	physical	properties	of	the	spacecraft	(shape	and	reflectivity)	and	the
spacecraft	attitude.	SPAD	stands	for	Solar	Pressure	and	Aerodynamic	Drag.
SPAD	files	are	tabulated	data	that	contain	the	spacecraft	area	scaled	by	physical
properties	like	Cr	including	specular,	diffuse,	and	reflective	properties.	Data	is
expressed	as	a	function	of	azimuth	and	elevation	in	the	spacecraft	body	frame.
Note:	the	azimuth	and	elevation	tabulated	on	the	file	are	the	azimuth	and
elevation	of	the	vector	from	the	Sun,	to	the	Spacecraft,	expressed	in	the	body
frame.	To	compute	the	SRP	acceleration,	GMAT	computes	the	sun	vector’s
azimuth	and	elevation	in	the	spacecraft	body	frame,	and	then	interpolates	the
SPAD	data	using	bi-linear	interpolation.	Note	that	this	formulation	results	in	an
attitude	dependent	SRP	acceleration.	For	more	details	on	the	computation	and
configuration	of	drag	and	SRP	models	see	the	Force	Model	documentation.

Caution

When	using	a	SPAD	SRP	file,	GMAT	uses	the	attitude	defined
on	the	Spacecraft	resource	to	compute	the	Sun's	positon	in	the
body	frame.	If	the	attitude	uses	a	coordinate	system	with	Axes
set	to	ObjectReferenced,	and	those	axes	refer	back	to	the
Spacecraft	orbit	state	(i.e.	VNB	or	LVLH	systems),	GMAT
holds	the	attitude	constant	over	a	given	integration	step.	In



those	cases,	we	recommend	carefully	choosing	a	maximum
step	size	small	enough	to	ensure	the	resulting	approximation	is
acceptable	for	your	application.

A	valid	SPAD	file	header,	and	the	first	three	lines	of	data	are	shown	below	for
illustrative	purposes.	Note,	GMAT	does	not	use	all	values	provide	on	the	file	and
GMAT's	usage	of	SPAD	files	is	described	in	detail	in	the	table	below	the
example.

Version												:	4.21

System													:	sphericalSat

Analysis	Type						:	Area

Pixel	Size									:	5

Spacecraft	Size				:	436.2

Pressure											:	1

Center	of	Mass					:		(50.9,	184.9,	-49)

Current	time							:	May		7,	2009		15:53:38.00

Motion				:	1

		Name				:	Azimuth

		Method		:	Step

		Minimum	:	-180

		Maximum	:	180

		Step				:	5

Motion				:	2

		Name				:	Elevation

		Method		:	Step

		Minimum	:	-90

		Maximum	:	90

		Step				:	5

:	END

Record	count							:	2701

	AzimuthElevatio		Force(X)		Force(Y)		Force(Z)		

	degrees	degrees						m^2						m^2						m^2						

	-------	-------	---------	---------	---------	---------	

	-180.00			-90.00	-0.00000000000000	-0.00000000000000	-8.94500000000000	

	-180.00			-85.00	-0.77960811887780	-0.00000000000000	-8.91096157443066	

	-180.00			-80.00	-1.55328294923069	-0.00000000000000	-8.80910535069420	

A	SPAD	file	contains	three	sections	as	illustrated	below.	Data	specifications	for
items	in	each	section	are	described	in	the	tables	below



A	SPAD	file	header	may	contain	many	fields	but	only	a	few	are	used	by	GMAT
as	described	below.	Other	fields	are	ignored.

Keyword Required Description	and	Supported	Values

Analysis	Type
Y The	SPAD	software	can	creates	files	with

Analysis	Types	of	Solar	Pressure,	Area,	and
Drag.	GMAT	only	supports	the	Area	option.

Example:

Analysis	Type	:	Area

Pressure
N SPAD	supports	the	ability	to	apply	a	pressure

scale	factor	for	SRP	files.	GMAT	does	not	read
this	value,	but	the	SRP	properties	on	the	file
have	been	scaled	by	the	Pressure	factor.	The
value	is	usually	“1”.	However,	when	not	1,	it	is
possible	to	apply	an	SRP	scale	factor	twice,	once
from	the	value	applied	in	SPAD,	and	once	from
SPADSRPScaleFactor.	Care	should	be	taken	to



ensure	that	if	the	desired	scale	factor	was
applied	during	file	creation	that	it	is	not
reapplied	in	GMAT.

The	SPAD	file	Motion	Data	section	describes	the	data	contained	in	the	body	of
the	file.	The	Motion	Data	fields	used	by	GMAT	are	described	below.	Others	are
ingored.

Keyword Required Description	and	Supported	Values

Motion
Y Together,	the	Motion	and	Name	fields	specify

the	type	of	data	in	the	first	two	columns	of	the
body	of	the	file.	GMAT	currently	supports
Azimuth	and	Elevation	Motion	only	(no
articulating	appendages)	and	requires	that	the
first	Motion	is	Azimuth	and	the	second	Motion
is	Elevation	as	shown	below.

Examples:

Motion	:	1

Name	:	Azimuth

and

Motion	:	2

Name	:	Elevation

Name
Y Together,	the	Motion	and	Name	fields	specify

the	type	of	data	in	the	first	two	columns	of	the
body	of	the	file.	GMAT	currently	supports
Azimuth	and	Elevation	Motion	only	(no
articulating	appendages)	and	requires	that	the
first	Motion	is	Azimuth	and	the	second	Motion
is	Elevation	as	shown	below.



Examples:

Motion	:	1

Name	:	Azimuth

and

Motion	:	2

Name	:	Elevation

Method
Y The	step	size	in	the	independent	variable.	The

only	supported	value	is	Step.

Example:

Motion	:	1

Method	:	Step

Maximum
Y The	maximum	value	for	an	independent	variable

(Motion	Type).	For	Azimuth,	Maximum	must
be	180,	and	for	Elevation	Maximum	must	be	90.

Example:

Motion	:	1

Name	:	Azimuth

Maximum	:	180

Motion	:	2

Name	:	Elevation

Maximum	:	90



Minimum
Y The	minimum	value	for	an	independent

variable.	(Motion	Type).	For	Azimuth,
minimum	must	be	-180,	and	for	Elevation
minimum	must	be	-90.

Example:

Motion	:	1

Name	:	Azimuth

Minimum	:	-180

Motion	:	2

Name	:	Elevation

Minimum	:	-90

Step
Y The	step	size	for	the	independent	variable

(Motion	Type).	If	Step	does	not	divide	evenly
into	the	variable	range,	then	errors	may	occur
because	the	maximum	and/or	minimum	values
may	not	be	on	the	file.

Example:

Motion	:	1

Step	:	15

Record	count
Y Record	count	is	the	number	of	rows	of	data	in

the	data	segment.	Record	count	=
(360/(Azimuth	Step)	+1)*(180/(Elevation	Step)
+1).



Example:

Record	count	:	325

The	SPAD	file	data	block	contains	tabulated	acceleration	data	as	described
below.

Keyword Required Description	and	Supported	Values

Azimuth
Y Azimuth	data	column.	Must	be	first	column	in

the	data.	Units	must	be	degrees.	Azimuth	is	the
azimuth	of	the	vector	from	spacecraft	to	sun,
expressed	in	the	body	frame:	atan2(ySun,xSun)).

Example:

AzimuthElevatio

degrees	degrees

-------	-------

-180.00	-90.00

-180.00	-75.00

-180.00	-60.00

Elevation
N Elevation	data	column.	Must	be	second	column

in	the	data.	Units	must	be	degrees.	Elevation	is
the	elevation	of	the	vector	from	spacecraft	to
sun,	expressed	in	the	body	frame:
atan2(zSun,sqrt(xSun^2	+	ySun^2)).

Example:

AzimuthElevatio



degrees	degrees

-------	-------

-180.00	-90.00

-180.00	-75.00

-180.00	-60.00

Force(*)
N Area	vector	columns.	Must	be	columns	3-5	in

the	data.	Quantities	must	be	in	base	units	of
m^2,mm^2,cm^2,in^2,ft^2.	If	another	unit	is
provided	in	the	header	lines,	an	exception	is
thrown.	The	area	vector	is	the	direction	of	the
resulting	SRP	force,	scaled	by	area	and	Cr
properties.

Example:	See	code	listing	above.

Total	Mass	Computation

The	TotalMass	property	of	a	Spacecraft	is	a	read-only	property	that	is	the	sum
of	the	DryMass	value	and	the	sum	of	the	fuel	mass	in	all	attached	fuel	tanks.
GMAT’s	propagators	will	not	allow	the	total	mass	of	a	spacecraft	to	be	negative.
However,	GMAT	will	allow	the	mass	of	a	ChemicalTank	to	be	negative.	See	the
ChemicalTank	documentation	for	details.



Examples
Configure	physical	properties	for	a	spherical	SRP	model.

Create	Spacecraft	aSpacecraft

aSpacecraft.Cd								=	2.2

aSpacecraft.Cr								=	1.8

aSpacecraft.DragArea		=	40

aSpacecraft.SRPArea			=	35

aSpacecraft.DryMass			=	2000

Create	Propagator	aPropagator

BeginMissionSequence

Propagate			aPropagator(aSpacecraft,	{aSpacecraft.ElapsedSecs	=	600})

Configure	a	SPAD	SRP	model.

Create	Spacecraft	aSpacecraft;

aSpacecraft.DryMass			=	2000

aSpacecraft.SPADSRPFile	=	'..\data\vehicle\spad\SphericalModel.spo'

aSpacecraft.SPADSRPScaleFactor	=	1;

Create	ForceModel	aFM;

aFM.SRP	=	On;

aFM.SRP.SRPModel	=	SPADFile

Create	Propagator	aProp;

aProp.FM	=	aFM;

BeginMissionSequence

Propagate	aProp(aSpacecraft)	{aSpacecraft.ElapsedDays	=	0.2}



Spacecraft	Epoch
Spacecraft	Epoch	—	The	spacecraft	epoch



Description
The	epoch	of	a	Spacecraft	is	the	time	and	date	corresponding	to	the	specified
orbit	state.	See	the	Spacecraft	Orbit	State	section	for	interactions	between	the
epoch,	coordinate	system,	and	spacecraft	state	fields.

See	Also:	Spacecraft

Caution

GMAT’s	Modified	Julian	Date	(MJD)	format	differs	from	that
of	other	software.	The	Modified	Julian	format	is	a	constant
offset	from	the	full	Julian	date	(JD):

MJD	=	JD	-	offset

GMAT	uses	a	non-standard	offset,	as	shown	in	the	following
table.

Epoch	Type GMAT common

reference	epoch 05	Jan	1941
12:00:00.000

17	Nov	1858
00:00:00.000

Modified	Julian
offset

2430000.0 2400000.5



Fields

Field Description

DateFormat
The	time	system	and	format	of	the	Epoch	field.	In
the	GUI,	this	field	is	called	EpochFormat.

Data
Type

Enumeration

Allowed
Values

A1ModJulian,	TAIModJulian,
UTCModJulian,	TTModJulian,
TDBModJulian,	A1Gregorian,
TAIGregorian,	TTGregorian,
UTCGregorian,	TDBGregorian

Access set	only

Default
Value

TAIModJulian

Interfaces GUI,	script

Epoch
The	time	and	date	corresponding	to	the	specified
orbit	state.

Data
Type

Time



Allowed
Values

Gregorian:	04	Oct	1957
12:00:00.000	<=	Epoch	<=	28	Feb
2100	00:00:00.000

Modified	Julian:	6116.0	<=	Epoch	<=
58127.5

Access set	only

Default
Value

21545

Interfaces GUI,	script

A1ModJulian
The	Spacecraft	orbit	epoch	in	the	A.1	system	and
the	Modified	Julian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 21545.00000039794

Units Days



Interfaces script

Epoch.A1ModJulian
The	spacecraft	orbit	epoch	in	the	A.1	system	and	the
Modified	Julian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get

Default	Value 21545.00000039794

Units Days

Interfaces none

CurrA1MJD
This	field	has	been	deprecated	and	should	no	longer
be	used.

The	current	epoch	in	the	A1ModJulian	format.	This
field	can	only	be	used	within	the	mission	sequence.

Data	Type Time

Allowed
Values

6116.0	<=	CurrA1MJD	<=	58127.5



Access get,	set	(mission	sequence	only)

Default
Value

converted	equivalent	of	21545
Modified	Julian	(TAI)

Interfaces script	only

A1Gregorian
The	Spacecraft	orbit	epoch	in	the	A.1	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 01	Jan	2000	12:00:00.034

Units N/A

Interfaces GUI,	script

TAIGregorian
The	Spacecraft	orbit	epoch	in	the	TAI	system	and
the	Gregorian	format.



Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 01	Jan	2000	12:00:00.000

Units Gregorian	date

Interfaces GUI,	script

TAIModJulian
The	Spacecraft	orbit	epoch	in	the	TAI	system	and
the	Modified	Julian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 21545

Units See	A1ModJulian



Interfaces GUI,	script

TDBGregorian
The	Spacecraft	orbit	epoch	in	the	TDB	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 01	Jan	2000	12:00:32.184

Units See	A1Gregorian

Interfaces GUI,	script

TDBModJulian
The	Spacecraft	orbit	epoch	in	the	TDB	system	and
the	Modified	Julian	format.

Data	Type String

Allowed	Values See	Epoch



Access set,	get	(mission	sequence	only)

Default	Value 21545.00037249916

Units See	A1ModJulian

Interfaces GUI,	script

TTGregorian
The	Spacecraft	orbit	epoch	in	the	TT	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 01	Jan	2000	12:00:32.184

Units See	A1Gregorian

Interfaces GUI,	script

TTModJulian
The	Spacecraft	orbit	epoch	in	the	TT	system	and
the	Modified	Julian	format.



Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 21545.0003725

Units See	A1ModJulian

Interfaces GUI,	script

UTCGregorian
The	Spacecraft	orbit	epoch	in	the	UTC	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 01	Jan	2000	11:59:28.000

Units See	A1Gregorian



Interfaces GUI,	script

UTCModJulian
The	Spacecraft	orbit	epoch	in	the	UTC	system	and
the	Modified	Julian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get	(mission	sequence	only)

Default	Value 21544.99962962963

Units See	A1ModJulian

Interfaces GUI,	script

Epoch.A1Gregorian
The	Spacecraft	orbit	epoch	in	the	A.1	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get



Default	Value 01	Jan	2000	12:00:00.034

Units N/A

Interfaces GUI,	script

Epoch.TAIGregorian
The	Spacecraft	orbit	epoch	in	the	TAI	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get

Default	Value DefaultValue

Units 01	Jan	2000	12:00:00.000

Interfaces GUI,	script

Epoch.TAIModJulian
The	Spacecraft	orbit	epoch	in	the	TAI	system	and
the	Modified	Julian	format.



Data	Type String

Allowed	Values See	Epoch.A1ModJulian

Access set,	get

Default	Value 21545

Units See	Epoch.A1ModJulian

Interfaces GUI,	script

Epoch.TDBGregorian
The	Spacecraft	orbit	epoch	in	the	TDB	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get

Default	Value 01	Jan	2000	12:00:32.184

Units See	Epoch.A1Gregorian



Interfaces GUI,	script

Epoch.TDBModJulian
The	Spacecraftorbit	epoch	in	the	TDB	system	and
the	Modified	Julian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get

Default	Value 21545.00037249916

Units See	Epoch.A1ModJulian

Interfaces GUI,	script

Epoch.TTGregorian
The	Spacecraft	orbit	epoch	in	the	TT	system	and
the	Gregorian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get



Default	Value 01	Jan	2000	12:00:32.184

Units See	Epoch.A1Gregorian

Interfaces GUI,	script

Epoch.TTModJulian
The	Spacecraftorbit	epoch	in	the	TT	system	and	the
Modified	Julian	format.

Data	Type String

Allowed	Values See	Epoch

Access set,	get

Default	Value 21545.0003725

Units See	Epoch.A1ModJulian

Interfaces GUI,	script

Epoch.UTCGregorian
The	Spacecraftorbit	epoch	in	the	UTC	system	and
the	Gregorian	format.



Data	Type String

Allowed	Values See	Epoch

Access set,	get

Default	Value 01	Jan	2000	11:59:28.000

Units See	Epoch.A1Gregorian

Interfaces GUI,	script

Epoch.UTCModJulian
The	Spacecraft	orbit	epoch	in	the	UTC	system	and
the	Modified	Julian	format.

Data	Type String

Allowed	Values Range

Access See	Epoch

Default	Value 21544.99962962963

Units See	Epoch.A1ModJulian



Interfaces GUI,	script



GUI

A	change	in	EpochFormat	causes	an	immediate	update	to	Epoch	to	reflect	the
chosen	time	system	and	format.



Remarks
GMAT	supports	five	time	systems	or	scales	and	two	formats:

A.1 USNO	atomic	time;	GMAT’s	internal
time	system

TAI International	Atomic	Time

TDB Barycentric	Dynamical	Time

TT Terrestrial	Time

UTC Coordinated	Universal	Time

Gregorian
Text	with	the	following	format:	dd	mmm
yyyy	HH:MM:SS.FFF

dd two-digit	day	of	month

mmm first	three	letters	of	month

yyyy four-digit	year

HH two-digit	hour

MM two-digit	minute

SS two-digit	second

FFF three-digit	fraction	of	second



Modified	Julian Floating-point	number	of	days	from	a
reference	epoch.	In	GMAT,	the
reference	epoch	is	05	Jan	1941
12:00:00.000	(JD	2430000.0).

The	epoch	can	be	set	in	multiple	ways.	The	default	method	is	to	set	the
DateFormat	field	to	the	desired	time	system	and	format,	then	set	the	Epoch
field	to	the	desired	epoch.	This	method	cannot	be	used	to	get	the	epoch	value,
such	as	on	the	right-hand	side	of	an	assignment	statement.

aSat.DateFormat	=	UTCGregorian

aSat.Epoch	=	'18	May	2012	12:00:00.000'

An	alternate	method	is	to	specify	the	DateFormat	in	the	parameter	name.	This
method	works	in	both	“get”	and	“set”	modes.

aSat.Epoch.UTCGregorian	=	'18	May	2012	12:00:00.000'

Report	aReport	aSat.Epoch.UTCGregorian

A	third	method	can	be	used	in	“get”	mode	everywhere,	but	in	“set”	mode	only	in
the	mission	sequence	(i.e.	after	the	BeginMissionSequence	command).

aSat.UTCGregorian	=	'18	May	2012	12:00:00.000'

Report	aReport	aSat.UTCGregorian

GMAT	uses	the	A.1	time	system	in	the	Modified	Julian	format	for	its	internal
calculations.	The	system	converts	all	other	systems	and	formats	on	input	and
again	at	output.

Leap	Seconds

When	converting	to	and	from	the	UTC	time	system,	GMAT	includes	leap
seconds	as	appropriate,	according	to	the	tai-utc.dat	data	file	from	the	IERS.
This	file	contains	the	conversion	between	TAI	and	UTC,	including	all	leap
seconds	that	have	been	added	or	announced.

GMAT	applies	the	leap	second	as	the	last	second	before	the	date	listed	in	the
tai-utc.dat	file,	which	historically	has	been	either	January	1	or	July	1.	In	the
Gregorian	date	format,	the	leap	second	appears	as	a	“60th	second”:	for	example,



“31	Dec	2008	23:59:60.000”.	From	the	International	Astronomical	Union's
Standards	of	Fundamental	Astronomy	"SOFA	Time	Scale	and	Calendar	Tools"
documentation:	"Note	that	UTC	has	to	be	expressed	as	hours,	minutes	and
seconds	(or	at	least	in	seconds	in	a	given	day)	if	leap	seconds	are	to	be	taken
into	account	in	the	correct	manner.	In	particular,	it	is	inappropriate	to	express
UTC	as	a	Julian	Date,	because	there	will	be	an	ambiguity	during	a	leap	second
so	that	for	example	1994	June	30	23:59:60:0	and	1994	July	1	00:00:00:0	would
both	come	out	as	MJD	49534.00000	and	because	subtracting	two	such	JDs
would	not	yield	the	correct	interval	in	cases	that	contain	leap	seconds."	For	this
reason,	we	discourage	use	of	the	UTC	modified	Julian	system,	and	recommend
using	UTC	Gregorian	when	a	UTC	time	system	is	required.

For	epochs	prior	to	the	first	entry	in	the	leap-second	file,	the	UTC	and	TAI	time
systems	are	considered	identical	(i.e.	zero	leap	seconds	are	added).	For	epochs
after	the	last	entry,	the	leap	second	count	from	the	last	entry	is	used.

The	tai-utc.dat	file	is	periodically	updated	by	the	IERS	when	new	leap
seconds	are	announced.	The	latest	version	of	this	file	can	always	be	found	at
http://maia.usno.navy.mil/ser7/tai-utc.dat.	To	replace	it,	download	the
latest	version	and	replace	GMAT’s	file	in	the	location	<GMAT>/data/time/tai-
utc.dat,	where	<GMAT>	is	the	install	directory	of	GMAT	on	your	system.

http://maia.usno.navy.mil/ser7/tai-utc.dat


Examples
Setting	the	epoch	for	propagation

Create	Spacecraft	aSat

aSat.DateFormat	=	TAIModJulian

aSat.Epoch	=	25562.5

Create	ForceModel	aFM

Create	Propagator	aProp

aProp.FM	=	aFM

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Plotting	and	reporting	the	epoch	(syntax	#1)

Create	Spacecraft	aSat

aSat.DateFormat	=	A1Gregorian

aSat.Epoch	=	'12	Jul	2015	08:21:45.921'

Create	XYPlot	aPlot

aPlot.XVariable	=	aSat.UTCModJulian

aPlot.YVariables	=	aSat.Earth.Altitude

Create	Report	aReport

aReport.Add	=	{aSat.UTCGregorian,	aSat.EarthMJ2000Eq.ECC}

Plotting	and	reporting	the	epoch	(syntax	#2)

Create	Spacecraft	aSat

aSat.DateFormat	=	TTGregorian

aSat.Epoch	=	'01	Dec	1978	00:00:00.000'

Create	XYPlot	aPlot

aPlot.XVariable	=	aSat.Epoch.TTModJulian

aPlot.YVariables	=	aSat.Earth.RMAG

Create	Report	aReport

aReport.Add	=	{aSat.Epoch.A1Gregorian,	aSat.Earth.RMAG}



Spacecraft	Hardware
Spacecraft	Hardware	—	Add	hardware	to	a	spacecraft



Description
The	hardware	fields	allow	you	to	attach	pre-configured	hardware	models	to	a
spacecraft.	Current	models	include	ChemicalTank,	ChemicalThruster
,ElectricTank,	and	ElectricThruster.	Before	you	attach	a	hardware	model	to	a
Spacecraft,	you	must	first	create	the	model.

See	Also:	ChemicalTank,	ChemicalThruster,ElectricTank,	ElectricThruster



Fields

Field Description

Tanks
This	field	is	used	to	attach	FuelTank(s)	to	a	Spacecraft.	In	a	script
command,	an	empty	list,	e.g.,	DefaultSC.Tanks={},	is	allowed	and
is	used	to	indicate	that	no	FuelTank(s)	is	attached	to	the	spacecraft.

Data	Type Reference	Array

Allowed
Values

A	list	of	ChemicalTanks	and	Chemical
Thrusters.

Access set

Default	Value N/A

Units N/A

Interfaces GUI,	script.

Thrusters
This	field	is	used	to	attach	Thruster(s)	to	a	Spacecraft.	In	a	script
command,	an	empty	list,	e.g.,	DefaultSC.Thrusters={},	is	allowed
and	is	used	to	indicate	that	no	Thrusters	are	attached	to	the
spacecraft.

Data	Type Reference	Array



Allowed
Values

A	list	of	ChemicalThrusters	and
ElectricThrusters.

Access set

Default	Value N/A

Units N/A

Interfaces GUI,	script



GUI
There	are	two	spacecraft	hardware	items,	the	FuelTank	and	the	Thruster,	that
can	be	attached	to	a	Spacecraft.	Here,	we	describe	the	method	used	to	create	and
then	attach	these	items	to	a	Spacecraft.	For	details	on	how	to	configure	the
FuelTank	and	Thruster	resources,	see	the	help	for	the	individual	hardware
item.	Note	the	discussion	below	uses	a	chemical	system	as	an	example	but
applies	equally	to	electric	systems.

As	shown	below,	to	add	a	ChemicalTank	to	your	script,	highlight	the
Hardware	resource	and	then	right	click	to	add	a	ChemicalTank.

To	add	a	Thruster	to	your	script,	highlight	the	Hardware	resource	and	then
right	click	to	add	a	Thruster.

Thus	far,	we	have	created	both	a	ChemicalTank	and	a	ChemicalThruster.
Next,	we	attach	both	the	ChemicalTank	and	the	ChemicalThruster	to	a
particular	Spacecraft.	To	do	this,	double	click	on	the	desired	Spacecraft	under
the	Spacecraft	resource	to	bring	up	the	associated	GUI	panel.	Then	click	on	the



Tanks	tab	to	bring	up	the	following	GUI	display.

Next,	select	the	desired	ChemicalTank	and	use	the	right	arrow	button	to	attach
the	ChemicalTank	to	the	Spacecraft	as	shown	below.	Then	click	the	Apply
button.



Similarly,	to	attach	a	ChemicalThruster	to	a	Spacecraft,	double	click	on	the
desired	Spacecraft	under	the	Spacecraft	resource	and	then	select	the	Actuators
tab.	Then	select	the	desired	ChemicalThruster	and	use	the	right	arrow	to	attach
the	ChemicalThruster	to	the	Spacecraft	as	shown	below.	Finally,	click	the
Apply	button.





Remarks
To	use	a	Thruster	to	apply	a	finite	burn	to	a	Spacecraft,	additional	steps	are
required.	For	example,	when	you	create	the	ChemicalThruster	resource,	you
have	to	associate	a	ChemicalTank	with	the	ChemicalThruster.	For	details	on
this	and	related	matters,	see	the	help	for	the	ChemicalTank,
ChemicalThruster,	and	FiniteBurn	resources.



Examples
Create	a	default	Spacecraft.	Create	ChemicalTank	and	ChemicalThruster
resources	and	attach	them	to	the	Spacecraft.

%	Create	default	Spacecraft,	ChemicalTank,	and	Thruster	Resources

Create	Spacecraft	DefaultSC

Create	ChemicalTank	FuelTank1

Create	ChemicalThruster	Thruster1

%		Attach	ChemicalTank	and	Thruster	to	the	spacecraft

DefaultSC.Thrusters	=	{Thruster1}

DefaultSC.Tanks	=	{FuelTank1}

BeginMissionSequence						



Spacecraft	Navigation
Spacecraft	Navigation	—	There	are	a	number	of	Spacecraft	fields	that	are	used
exclusively	to	support	GMAT's	navigation	capability.



Description
When	using	GMAT's	navigation	capabilities,	certain	Spacecraft	parameters	can
be	"solved-for."	As	discussed	in	the	Spacecraft	Ballistic/Mass	Properties	section,
the	Spacecraft	ballistic	and	mass	properties	include	the	coefficient	of
reflectivity,	Cr,	and	the	coefficient	of	drag,	Cd.	As	discussed	in	the	Spacecraft
Orbit	State	section,	you	can	specify	the	CartesianState,	i.e.,	the	X,	Y,	Z
position	(km),	and	the	Vx,	Vy,	Vz	velocity	(km/s)	of	a	Spacecraft.	As	part	of
GMAT's	navigation	capability,	GMAT	can	ingest	measurements	and	estimate
("solve-for")	values	for	Cr,	Cd,	and	either	the	CartesianState,	or
KeplerianState.

See	Also:	BatchEstimatorInv



Fields

Field Description

AddHardware
List	of	Antenna,	Transmitter,	Receiver,	and
Transponder	objects	attached	to	a	Spacecraft

Data
Type

Antenna,	Transmitter,	Receiver,	or
Transponder	object

Allowed
Values

Any	user	defined	Antenna,
Transmitter,	Receiver,	or
Transponder	object

Access set

Default
Value

None

Units N/A

Interfaces script

CdSigma
Standard	deviation	of	the	coefficient	of	reflectivity,
Cd.	This	field	is	only	used	if	the
UseInitialCovariance	field	of	the
BatchEstimatorInv	resource	is	set	to	True	and	Cd	is
being	solved	for.



Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e70

Units dimensionless

Interfaces script

CrSigma
Standard	deviation	of	the	coefficient	of	reflectivity,
Cr.	This	field	is	only	used	if	the
UseInitialCovariance	field	of	the
BatchEstimatorInv	resource	is	set	to	True	and	Cr	is
being	solved	for.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e70



Units dimensionless

Interfaces script

OrbitErrorCovariance
State	6x6	error	covariance	matrix.	If	CartesianState
is	estimated,	this	must	be	a	Cartesian	covariance.	If
KeplerianState	is	estimated,	this	must	be	a	Keplerian
covariance.	Regardless	of	choice	of	spacecraft
coordinate	system,	the	covariance	must	be	specified
in	the	EarthMJ2000Eq	coordinate	system.

This	field	is	only	used	if	the	UseInitialCovariance	of
the	BatchEstimatorInv	resource	is	set	to	True.

Data
Type

Real	Matrix

Allowed
Values

6x6	positive	definite	symmetric	Array

Access set

Default
Value

6x6	diagonal	matrix	with	1e70	in	all
diagonal	entries.

Units For	Cartesian	elements:	covariance
matrix	where	position	is	specified	in	km
and	velocity	in	km/s.	(Thus,	first	three
diagonal	elements	have	units	km^2	and
last	three	diagonal	elements	have	units



(km/s)^2)

For	Keplerian	elements:	covariance
matrix	in	km	and	degrees	(For	example,
the	SMA	element	of	the	matrix	has	units
km^2	and	the	INC	element	has	units
deg^2).	The	order	of	Keplerian	elements
is	(SMA,	ECC,	INC,	RAAN,	AOP,
MA).	See	the	Remarks	section	for
additional	notes.

Interfaces script

SolveFors
List	of	fields	to	be	solved	for.	This	list	must	at	least
include	either	CartesianState	or	KeplerianState	(but
not	both).	For	example,	Cr	cannot	be	the	only
parameter	solved	for.

Data	Type StringArray

Allowed
Values

CartesianState,	KeplerianState,	Cr,
Cd

Access set

Default	Value None

Units N/A



Interfaces script



Remarks
When	estimating	CartesianState,	the	input	OrbitErrorCovariance	matrix	must
represent	a	Cartesian	covariance,	and	when	estimating	KeplerianState	the
OrbitErrorCovariance	must	represent	a	Keplerian	covariance.	Note	that
Keplerian	covariance	input	employs	Mean	Anomaly	(MA)	instead	of	True
Anomaly.	The	current	release	of	GMAT	only	supports	input	of	Keplerian	orbit
elements	using	TA	and	does	not	permit	explicitly	setting	an	initial	MA.

For	more	details,	see	the	section	called	“UseInitialCovariance	Restrictions”	in
the	Batch	Estimator	resource.



Examples
Solve	for	Cr	and	the	spacecraft	Cartesian	state.

Create	Spacecraft	Sat

Create	BatchEstimatorInv	bat

Sat.SolveFors	=	{CartesianState,	Cr}

%User	must	create	a	TrackingFileSet

%and	set	up	bat	appropriately

BeginMissionSequence

RunEstimator	bat

Solve	for	Cd	and	the	spacecraft	Cartesian	state	assuming	that	the	a	priori
information	is	included	in	the	estimation	state	vector.

Create	Spacecraft	Sat

Sat.SolveFors	=	{CartesianState,	Cd}

Create	BatchEstimatorInv	bat

bat.UseInitialCovariance=	True		

%User	must	create	a	TrackingFileSet

%and	set	up	bat	appropriately

Create	Array	Initial_6x6_covariance[6,6]

BeginMissionSequence

Initial_6x6_covariance	=	...

							diag([1e-6	1e70	1e70	1e70	1e70	1e70])	%X	pos	known	very	well

Sat.OrbitErrorCovariance	=	Initial_6x6_covariance

Sat.CrSigma	=	1e-6			%Cr	known	very	well

RunEstimator	bat



Spacecraft	Orbit	State
Spacecraft	Orbit	State	—	The	orbital	initial	conditions



Description
GMAT	supports	a	suite	of	state	types	for	defining	the	orbital	state,	including
Cartesian	and	Keplerian,	among	others.	In	addtion,	you	can	define	the	orbital
state	in	different	coordinate	systems,	for	example	EarthMJ2000Eq	and
EarthFixed.	GMAT	provides	three	general	state	types	that	can	be	used	with	any
coordinate	system:	Cartesian,	SphericalAZFPA,	and	SphericalRADEC.	There
are	three	additional	state	types	that	can	be	used	with	coordinate	systems	centered
at	a	celestial	body:	Keplerian,	ModifiedKeplerian,	and	Equinoctial.

In	the	section	called	“Remarks”	below,	we	describe	each	state	type	in	detail
including	state-type	definitions,	singularities,	and	how	the	state	fields	interact
with	the	CoordinateSystem	and	Epoch	fields.	There	are	some	limitations	when
setting	the	orbital	state	during	initialization,	which	are	discussed	in	the	section
called	“Remarks”.	We	also	include	examples	for	setting	each	state	type	in
commonly	used	coordinate	systems.

See	Also:	Spacecraft,	Propagator,	and	Spacecraft	Epoch



Fields

Field Description

AltEquinoctialP
A	measure	of	the	orientation	of	the	orbit.	AltEquinoctialP
and	AltEquinoctialQ	together	govern	how	an	orbit	is
oriented.	AltEquinotialP	=	sin(INC/2)*sin(RAAN).

Data	Type Real

Allowed	Values -1	≤	AltEquinoctialP	≤	1

Access set,	get

Default	Value 0.08982062789020774

Units (None)

Interfaces GUI,	script

AltEquinoctialQ
A	measure	of	the	orientation	of	the	orbit.	AltEquinoctialP
and	AltEquinoctialQ	together	govern	how	an	orbit	is
oriented.	AltEquinotialP	=	sin(INC/2)*cos(RAAN).

Data	Type Real



Allowed	Values -1	≤	AltEquinoctialQ	≤	1

Access set,	get

Default	Value 0.06674269576352432

Units (None)

Interfaces GUI,	script

AOP
The	orbital	argument	of	periapsis	expressed	in	the
coordinate	system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	AOP	<	∞

Access set,	get

Default	Value 314.1905515359921

Units deg.

Interfaces GUI,	script



AZI The	orbital	velocity	azimuth	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	AZI	<	∞

Access set,	get

Default	Value 82.37742168155043

Units deg.

Interfaces GUI,	script

BrouwerLongAOP

BrouwerShortAOP

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	argument	of	periapsis.

Data	Type Real

Allowed
Values

-∞	<
BrouwerLongAOP/BrouwerShortAOP
<	∞

Access set,	get



Default
Value

Conversion	from	default	Cartesian	state

Units deg

Interfaces GUI,	script

BrouwerLongECC

BrouwerShortECC

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	eccentricity.

Data	Type Real

Allowed
Values

0	≤
BrouwerLongECC/BrouwerShortECC
≤	0.99

Access set,	get

Default
Value

Conversion	from	default	Cartesian	state

Units N/A

Interfaces GUI,	script

BrouwerLongINC Brouwer-Lyddane	long-term	averaged	(short-term



BrouwerShortINC averaged)	mean	inclination.

Data	Type Real

Allowed
Values

0	≤
BrouwerLongINC/BrouwerShortINC
180

Access set,	get

Default
Value

Conversion	from	default	Cartesian	state

Units deg

Interfaces GUI,	script

BrouwerLongMA

BrouwerShortMA

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	MA	(mean	anomaly).

Data	Type Real

Allowed
Values

-∞	<
BrouwerLongMA/BrouwerShortMA
∞

Access set,	get



Default
Value

Conversion	from	default	Cartesian	state

Units deg

Interfaces GUI,	script

BrouwerLongRAAN

BrouwerShortRAAN

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	RAAN	(right	ascension	of	the	ascending
node).

Data
Type

Real

Allowed
Values

-∞	<
BrouwerLongRAAN/BrouwerShortRAAN
<	∞

Access set,	get

Default
Value

Conversion	from	default	Cartesian	state

Units deg

Interfaces GUI,	script



BrouwerLongSMA

BrouwerShortSMA

Long-term	averaged	(short-term	averaged)	mean	semi-
major	axis.

Data	Type Real

Allowed
Values

Brouwer*SMA	>	3000/(1-
Brouwer*ECC)

Access set,	get

Default	Value Conversion	from	default	Cartesian	state

Units km

Interfaces GUI,	script

CoordinateSystem
The	coordinate	system	with	respect	to	which	the	orbital
state	is	defined.	The	CoordinateSystem	field	is
dependent	upon	the	DisplayStateType	field.	If	the
coordinate	system	chosen	by	the	user	does	not	have	a
gravitational	body	at	the	origin,	then	the	state	types
Keplerian,	ModifiedKeplerian,	and	Equinoctial	are	not
permitted.

Data	Type String

Allowed	Values CoordinateSystem	resource



Access set

Default	Value EarthMJ2000Eq

Units N/A

Interfaces GUI,	script

DEC
The	declination	of	the	orbital	position	expressed	in	the
coordinate	system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -90	≤	DEC	≤	90

Access set,	get

Default	Value 10.37584492005105

Units deg

Interfaces GUI,	script

DECV



The	declination	of	orbital	velocity	expressed	in	the
coordinate	system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -90	≤	DECV	≤	90

Access set,	get

Default	Value 7.747772036108118

Units deg

Interfaces GUI,	script

Delaunayg
Delaunay	"g"	element,	identical	to	AOP,	expressed	in	the
coordinate	system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	Delaunayg	<	∞

Access set,	get

Default	Value 314.1905515359921



Units deg

Interfaces GUI,	script

DelaunayG
Delaunay	"G"	element,	the	magnitude	of	the	orbital
angular	momentum,	expressed	in	the	coordinate	system
chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values 0	≤	DelaunayG	<	∞

Access set,	get

Default	Value 53525.52895581695

Units km2/s

Interfaces GUI,	script

Delaunayh
Delaunay	"h"	element,	identical	to	RAAN,	expressed	in
the	coordinate	system	chosen	in	the	CoordinateSystem
field.

Data	Type Real



Allowed	Values -∞	<	Delaunayh	<	∞

Access set,	get

Default	Value 306.6148021947984

Units deg

Interfaces GUI,	script

DelaunayH
Delaunay	"H"	element,	the	z-component	of	the	orbital
angular	momentum	vector,	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	Delaunayl	<	∞

Access set,	get

Default	Value 52184.99999999999

Units km2/s

Interfaces GUI,	script



Delaunayl
Delaunay	"ℓ"	element,	identical	to	the	mean	anomaly,
expressed	in	the	coordinate	system	chosen	in	the
CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	Delaunayl	<	∞

Access set,	get

Default	Value 97.10782663991999

Units deg

Interfaces GUI,	script

DelaunayL
Delaunay	"L"	element,	related	to	the	two-body	orbital
energy,	expressed	in	the	coordinate	system	chosen	in	the
CoordinateSystem	field.

Data	Type Real

Allowed	Values 0	≤	DelaunayL	<	∞

Access set,	get



Default	Value 53541.66590560955

Units km2/s

Interfaces GUI,	script

DisplayStateType
The	orbital	state	type	displayed	in	the	GUI.	Allowed	state
types	are	dependent	upon	the	selection	of
CoordinateSystem.	For	example,	if	the	coordinate	system
does	not	have	a	celestial	body	at	the	origin,	Keplerian
ModifiedKeplerian,	and	Equinoctial	are	not	allowed
options	for	DisplayStateType.

Data
Type

String

Allowed
Values

Cartesian,	Keplerian,	ModifiedKeplerian
SphericalAZFPA,	SphericalRADEC,	or
Equinoctial

Access set

Default
Value

Cartesian

Units N/A



Interfaces GUI,	script

ECC
The	orbital	eccentricity	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.

Data
Type

Real

Allowed
Values

ECC	<	0.9999999	or	ECC	>	1.0000001.	If
ECC	>	1,	SMA	must	be	<	0

Access set,	get

Default
Value

0.02454974900598137

Units N/A

Interfaces GUI,	script

EquinoctialH
A	measure	of	the	orbital	eccentricity	and	argument	of
periapsis.	EquinoctialH	and	EquinoctialK	together
govern	how	elliptic	an	orbit	is	and	where	the	periapsis	is
located.	EquinotialH	=	ECC	*	sin(AOP	+	RAAN)	.

Data
Type

Real



Allowed
Values

-0.99999	<	EquinoctialH	<	0.99999,	AND
sqrt(EquinoctialH^2	+	EquinoctialK^2)	<
0.99999

Access set,	get

Default
Value

-0.02423431419337062

Units dimless

Interfaces GUI,	script

EquinoctialK
A	measure	of	the	orbital	eccentricity	and	argument	of
periapsis.	EquinoctialH	and	EquinoctialK	together
govern	how	elliptic	an	orbit	is	and	where	the	periapsis	is
located.	EquinotialK	=	ECC	*	cos(AOP	+	RAAN)	.

Data
Type

Real

Allowed
Values

-0.99999	<	EquinoctialK	<	0.99999,	AND
sqrt(EquinoctialH^2	+	EquinoctialK^2)	<
0.99999

Access set,	get



Default
Value

-0.003922778585859663

Units dimless

Interfaces GUI,	script

EquinoctialP
A	measure	of	the	orientation	of	the	orbit.	EquinoctialP
and	EquinoctialQ	together	govern	how	an	orbit	is
oriented.	EquinotialP	=	tan(INC/2)*sin(RAAN).

Data	Type Real

Allowed	Values -∞	<	EquinoctialP	<	∞

Access set,	get

Default	Value -0.09038834725719359

Units dimless

Interfaces GUI,	script

EquinoctialQ
A	measure	of	the	orientation	of	the	orbit.	EquinoctialP
and	EquinoctialQ	together	govern	how	an	orbit	is
oriented.	EquinotialQ	=	tan(INC/2)*cos(RAAN).



Data	Type Real

Allowed	Values -∞	<	EquinoctialQ	<	∞

Access set,	get

Default	Value 0.06716454898232072

Units dimless

Interfaces GUI,	script

FPA
The	orbital	flight	path	angle	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values 0	≤	FPA	≤	180

Access set,	get

Default	Value 88.60870365370448

Units Deg.



Interfaces GUI,	script

Id
The	spacecraft	Id	used	in	tracking	data	files.	This	field	is
only	used	for	EstimationPlugin	protype	functionality.

Data	Type String

Allowed	Values String

Access set

Default	Value SatId

Units N/A

Interfaces script

INC
The	orbital	inclination	expressed	in	the	coordinate	system
chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values 0	≤	INC	≤	180

Access set,	get



Default	Value 12.85008005658097

Units deg

Interfaces GUI,	script

IncomingBVAZI

OutgoingBVAZI

IncomingBVAZI/OutgoingBVAZI	is	the	B-vector
azimuth	at	infinity	of	the	incoming/outgoing	asymptote
measured	counter-clockwise	from	south.	If	C3Energy
the	apsides	vector	is	substituted	for	the	outgoing/incoming
asymptote.

Data	Type Real

Allowed
Values

-∞	<	IncomingBVAZI/OutgoingBVAZI
<	∞

Access set,	get

Default	Value Conversion	from	default	Cartesian	state

Units deg

Interfaces GUI,	script



IncomingC3Energy

OutgoingC3Energy

C3	energy.	C3Energy	=	-mu/SMA.
IncomingC3Energy/OutgoingC3Energy	differ	only	in
that	they	are	associated	with	the	IncomingAsymptote
OutgoingAsymptote	state	representations,	respectively.

Data	Type Real

Allowed
Values

IncomingC3Energy	≤	-1e-7	or
IncomingC3Energy	≥	1e-7

OutgoingC3Energy	≤	-1e-7	or
OutgoingC3Energy	≥	1e-7

Access set,	get

Default
Value

Conversion	from	default	Cartesian	state

Units km2/s2

Interfaces GUI,	script

IncomingDHA

OutgoingDHA

IncomingDHA/OutgoingDHA	is	the	declination	of	the
incoming/outgoing	asymptote.	If	C3Energy	<	0	the
apsides	vector	is	substituted	for	the	incoming/outgoing
asymptote..

Data	Type Real



Allowed
Values

-90°	≤	IncomingDHA/OutgoingDHA
90°

Access set,	get

Default	Value Conversion	from	default	Cartesian	state

Units deg

Interfaces GUI,	script

IncomingRadPer

OutgoingRadPer

The	orbital	radius	of	periapsis.	The	radius	of	periapsis	is
the	minimum	distance	(osculating)	between	the	spacecraft
and	celestial	body	at	the	origin	of	coordinate	system.
IncomingRadPer/OutgoingRadPer	differ	from	RadPer
only	in	that	they	are	associated	with	the
IncomingAsymptote	and	OutgoingAsymptote	state
representations,	respectively.

Data	Type Real

Allowed	Values abs(IncomingRadPer)	≥	1	meter.

abs(OutgoingRadPer)	≥	1	meter.

Access set,	get

Default	Value Conversion	from	default	Cartesian	state



Units km

Interfaces GUI,	script

IncomingRHA

OutgoingRHA

IncomingRHA/OutgoingRHA	is	the	right	ascension	of
the	incoming/outgoing	asymptote.	If	C3Energy	<	0	the
apsides	vector	is	substituted	for	the	incoming/outgoing
asymptote.

Data	Type Real

Allowed
Values

-∞	<	IncomingRHA/OutgoingRHA
∞

Access set,	get

Default	Value Conversion	from	default	Cartesian	state

Units deg

Interfaces GUI,	script

MLONG
A	measure	of	the	location	of	the	spacecraft	in	it's	orbit.
MLONG	=	AOP	+	RAAN	+	MA.



Data	Type Real

Allowed	Values -360	≤	MLONG	≤	360

Access set,	get

Default	Value 357.9131803707105

Units deg.

Interfaces GUI,	script

ModEquinoctialF
Components	of	the	eccentricity	vector	(with
ModEquinoctialG).	The	eccentricity	vector	has	a
magnitude	equal	to	the	eccentricity	and	it	points	from	the
central	body	to	perigee.	ModEquinoctialF	=	ECC	*
cos(AOP+RAAN)

Data	Type Real

Allowed	Values -∞	<	ModEquinoctialF	<	∞

Access set,	get

Default	Value -0.003922778585859663



Units (None)

Interfaces GUI,	script

ModEquinoctialG
Components	of	eccentricity	vector	(with
ModEquinoctialF).	ModEquinoctialG	=	ECC	*
sin(AOP+RAAN)

Data	Type Real

Allowed	Values -∞	<	ModEquinoctialG	<	∞

Access set,	get

Default	Value -0.02423431419337062

Units (None)

Interfaces GUI,	script

ModEquinoctialH
Identical	to	EquinoctialQ.

Data	Type Real

Allowed	Values -∞	<	ModEquinoctialH	<	∞



Access set,	get

Default	Value 0.06716454898232072

Units (None)

Interfaces GUI,	script

ModEquinoctialK
Idential	to	EquinoctialP.

Data	Type Real

Allowed	Values -∞	<	ModEquinoctialK	<	∞

Access set,	get

Default	Value -0.09038834725719359

Units (None)

Interfaces GUI,	script

NAIFId
The	spacecraft	Id	used	in	SPICE	kernels.



Data	Type String

Allowed	Values String

Access set

Default	Value -123456789

Units N/A

Interfaces GUI,	script

OrbitSpiceKernelName
SPK	Kernels	for	spacecraft	orbit.	SPK	orbit	kernels	have
extension	".BSP".	This	field	cannot	be	set	in	the	Mission
Sequence.

Data	Type String	array

Allowed	Values List	of	path	and	filenames.

Access set

Default	Value No	Default.	The	field	is	empty.

Units N/A



Interfaces GUI,	script

PlanetodeticAZI
The	orbital	velocity	azimuth	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.	Unlike	the
AZI	field,	PlanetodeticAZI	is	associated	with	the
Planetodetic	state	representation,	which	is	only	valid	for
coordinate	systems	with	BodyFixed	axes.

Data	Type Real

Allowed	Values -∞	<	PlanetodeticAZI	<	∞

Access set,	get

Default	Value 81.80908019114962

Units deg

Interfaces GUI,	script

PlanetodeticHFPA
The	orbital	horizontal	flight	path	angle	expressed	in	the
coordinate	system	chosen	in	the	CoordinateSystem	field.
PlanetodeticHFPA	is	only	valid	for	coordinate	systems
with	BodyFixed	axes.

Data	Type Real



Allowed	Values -90	≤	PlanetodeticHFPA	≤	90

Access set,	get

Default	Value 1.494615814842774

Units deg

Interfaces GUI,	script

PlanetodeticLAT
The	planetodetic	latitude	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.	This	field
is	only	valid	for	coordinate	systems	with	BodyFixed	axes.

Data	Type Real

Allowed	Values -90	≤	PlanetodeticLAT	≤	90

Access set,	get

Default	Value 10.43478253114861

Units deg

Interfaces GUI,	script



PlanetodeticLON
The	planetodetic	longitude	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.	This	field
is	only	valid	for	coordinate	systems	with	BodyFixed	axes.

Data	Type Real

Allowed	Values -∞	<	PlanetodeticLON	<	∞

Access set,	get

Default	Value 79.67188405807977

Units deg

Interfaces GUI,	script

PlanetodeticRMAG
The	magnitude	of	the	orbital	position	vector	expressed	in
the	coordinate	system	chosen	in	the	CoordinateSystem
field.	Unlike	the	RMAG	field,	PlanetodeticRMAG	is
associated	with	the	Planetodetic	state	representation,
which	is	only	valid	for	coordinate	systems	with
BodyFixed	axes.

Data	Type Real

Allowed	Values PlanetodeticRMAG	≥	1e-10



Access set,	get

Default	Value 7218.032973047435

Units km

Interfaces GUI,	script

PlanetodeticVMAG
The	magnitude	of	the	orbital	velocity	vector	expressed	in
the	coordinate	system	chosen	in	the	CoordinateSystem
field.	Unlike	the	VMAG	field,	PlanetodeticVMAG	is
associated	with	the	Planetodetic	state	representation,
which	is	only	valid	for	coordinate	systems	with
BodyFixed	axes.

Data	Type Real

Allowed	Values PlanetodeticVMAG	≥	1e-10

Access set,	get

Default	Value 6.905049647173787

Units km/s



Interfaces GUI,	script

RA
The	right	ascension	of	the	orbital	position	expressed	in	the
coordinate	system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	RA	<	∞

Access set,get

Default	Value 0

Units deg

Interfaces GUI,	script

RAAN
The	orbital	right	ascension	of	the	ascending	node
expressed	in	the	coordinate	system	chosen	in	the
CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	RAAN	<	∞

Access set,	get



Default	Value 306.6148021947984

Units deg

Interfaces GUI,	script

RadApo
The	orbital	radius	of	apoapsis	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.	The	radius
of	apoapsis	is	the	maximum	distance	(osculating)	between
the	Spacecraft	and	celestial	body	at	the	origin	of
CoordinateSystem.

Data	Type Real

Allowed	Values abs(RadApo)	≥	1	meter.

Access set,	get

Default	Value 7368.49911046818

Units km

Interfaces GUI,	script

RadPer
The	orbital	radius	of	periapsis	expressed	in	the	coordinate



system	chosen	in	the	CoordinateSystem	field.	The	radius
of	periapsis	is	the	minimum	distance	(osculating)	between
the	Spacecraft	and	celestial	body	at	the	origin	of
CoordinateSystem.

Data	Type Real

Allowed	Values abs(RadPer)	≥	1	meter.

Access set,	get

Default	Value 7015.378524789846

Units km

Interfaces GUI,	script

RAV
The	right	ascension	of	orbital	velocity	expressed	in	the
coordinate	system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	RAV	<	∞

Access set,get



Default	Value 90

Units deg

Interfaces GUI,	script

RMAG
The	magnitude	of	the	orbital	position	vector	expressed	in
the	coordinate	system	chosen	in	the	CoordinateSystem
field.

Data	Type Real

Allowed	Values RMAG	≥	1e-10

Access set,	get

Default	Value 7218.032973047435

Units km

Interfaces GUI,	script

SemilatusRectum
Magnitude	of	the	position	vector	when	at	true	anomaly	
90	deg.

Data	Type Real



Allowed	Values SemilatusRectum	>	1e-7

Access set,	get

Default	Value 7187.60430675539

Units km

Interfaces GUI,	script

SMA
The	orbital	semi-major	axis	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.

Data
Type

Real

Allowed
Values

SMA	<	-0.001	m	or	SMA	>	0.001	meter.	If
SMA	<	0,	then	ECC	must	be	>	1

Access set,	get

Default
Value

7191.938817629013

Units km



Interfaces GUI,	script

TA
The	orbital	true	anomaly	expressed	in	the	coordinate
system	chosen	in	the	CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	TA	<	∞

Access set,	get

Default	Value 99.8877493320488

Units deg.

Interfaces GUI,	script

TLONG
True	longitude	of	the	osculating	orbit.	TLONG	=	RAAN
+	AOP	+	TA

Data	Type Real

Allowed	Values -∞	<	TLONG	<	∞



Access set,	get

Default	Value 0.6931030628392251

Units deg

Interfaces GUI,	script

VMAG
The	magnitude	of	the	orbital	velocity	vector	expressed	in
the	coordinate	system	chosen	in	the	CoordinateSystem
field.

Data	Type Real

Allowed	Values VMAG	≥	1e-10

Access set,	get

Default	Value 7.417715281675348

Units km/s

Interfaces GUI,	script

VX
The	x-component	of	the	Spacecraft	velocity	with	respect



to	the	coordinate	system	chosen	in	the	spacecraft's
CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	VX	<	∞

Access set,	get

Default	Value 0

Units km/s

Interfaces GUI,	script

VY
The	y-component	of	the	Spacecraft	velocity	with	respect
to	the	coordinate	system	chosen	in	the	spacecraft's
CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	VY	<	∞

Access set,	get

Default	Value 7.35



Units km/s

Interfaces GUI,	script

VZ
The	z-component	of	the	Spacecraft	velocity	with	respect
to	the	coordinate	system	chosen	in	the	spacecraft's
CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	VZ	<	∞

Access set,	get

Default	Value 1

Units km/s

Interfaces GUI,	script

X
The	x-component	of	the	Spacecraft	position	with	respect
to	the	coordinate	system	chosen	in	the	spacecraft's
CoordinateSystem	field.

Data	Type Real



Allowed	Values -∞	<	X	<	∞

Access set,get

Default	Value 7100

Units km

Interfaces GUI,	script

Y
The	y-component	of	the	Spacecraft	position	with	respect
to	the	coordinate	system	chosen	in	the	spacecraft's
CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	Y	<	∞

Access set,	get

Default	Value 0

Units km



Interfaces GUI,	script

Z
The	z-component	of	the	Spacecraft	position	with	respect
to	the	coordinate	system	chosen	in	the	spacecraft's
CoordinateSystem	field.

Data	Type Real

Allowed	Values -∞	<	Z	<	∞

Access set,	get

Default	Value 1300

Units km

Interfaces GUI,	script



GUI

The	Spacecraft	orbit	state	dialog	box	allows	you	to	set	the	epoch,	coordinate
system,	and	state	type	values	for	the	Spacecraft	orbital	state.	When	you	specify
an	orbital	state,	you	define	the	state	in	the	representation	selected	in	the
StateType	menu,	with	respect	to	the	coordinate	system	specified	in	the
CoordinateSystem	menu,	at	the	epoch	defined	in	the	Epoch	menu.	If	the
selected	CoordinateSystem	is	time	varying,	the	epoch	of	the	coordinate	system
is	defined	by	the	Epoch	field,	and	changing	the	epoch	changes	the	inertial
representation	of	the	orbital	state.

A	change	in	Epoch	Format	causes	an	immediate	update	to	Epoch	to	reflect	the
chosen	time	system	and	format.



The	Keplerian,	ModifiedKeplerian,	and	Equinoctial	state	types	cannot	be
computed	if	the	CoordinateSystem	does	not	have	a	central	body	at	the	origin,	or
if	the	CoordinateSystem	references	the	current	spacecraft	(resulting	in	a
circular	reference).	For	example,	if	you	have	selected	the	Keplerian	state	type,
coordinate	systems	for	which	the	Keplerian	elements	cannot	be	computed	do	not
appear	in	the	CoordinateSystem	menu.	Similarly,	if	you	have	selected	a
CoordinateSystem	that	does	not	have	a	celestial	body	at	the	origin,	Keplerian-
based	state	types	will	not	appear	as	options	in	the	StateType	menu.	The
Planetodetic	state	type	cannot	be	selected	untill	the	CoordinateSystem	has
BodyFixed	axes.



Remarks

Cartesian	State

The	Cartesian	state	is	composed	of	the	position	and	velocity	components
expressed	with	respect	to	the	selected	CoordinateSystem.

Keplerian	and	Modified	Keplerian	State	Types

The	Keplerian	and	ModifiedKeplerian	state	types	use	the	osculating	Keplerian
orbital	elements	with	respect	to	the	selected	CoordinateSystem.	To	use	either
the	Keplerian	or	ModifiedKeplerian	state	type,	the	Spacecraft’s	coordinate
system	must	have	a	central	body	at	the	origin.	The	two	representations	differ	in
how	the	orbit	size	and	shape	are	defined.	The	Keplerian	state	type	is	composed
of	the	following	elements:	SMA,	ECC,	INC,	RAAN,	AOP,	and	TA.	The
ModifiedKeplerian	state	type	is	composed	of	the	following	elements:	RadApo,
RadPer,	INC,	RAAN,	AOP,	and	TA.	The	tables	and	figures	below	describe
each	Keplerian	state	element	in	detail	including	singularities.

Geometry	of	the	Keplerian	Elements

Name Description

SMA
SMA	contains	information	on	the	type	and	size	of	an	orbit.	If	SMA
>	0	the	orbit	is	elliptic.	If	SMA	<0	the	orbit	is	hyperbolic.	SMA	is
infinite	for	parabolic	orbits.

ECC
ECC	contains	information	on	the	shape	of	an	orbit.	If	ECC	=	0,
then	the	orbit	is	circular.	If	0	<	ECC	<	1,	the	orbit	is	elliptical.	If	,
ECC	=	1	the	orbit	is	parabolic.	If	ECC	>	1	then	the	orbit	is
hyperbolic.

INC
INC	is	the	angle	between	the	orbit	angular	momentum	vector	and
the	z-axis.	If	INC	<	90	deg.,	then	the	orbit	is	prograde.	If	INC	>	90



deg,	then	the	orbit	is	retrograde

RAAN
RAAN	is	defined	as	the	angle	between	x-axis	and	the	node	vector
measured	counterclockwise.	The	node	vector	is	defined	as	the	cross
product	of	the	z-axis	and	orbit	angular	momentum	vector.	RAAN	is
undefined	for	equatorial	orbits.

AOP
AOP	is	the	angle	between	a	vector	pointing	at	periapsis	and	a	vector
pointing	in	the	direction	of	the	line	of	nodes.	AOP	is	undefined	for
circular	orbits.

TA
TA	is	defined	as	the	angle	between	a	vector	pointing	at	periapsis
and	a	vector	pointing	at	the	spacecraft.	TA	is	undefined	for	circular
orbits.



The	Keplerian	and	ModifiedKeplerian	state	types	have	several	singularities.
The	table	below	describes	the	different	singularities	and	how	each	is	handled	in
the	state	conversion	algorithms.

Singularity Comments	and	Behavior

ECC	=	1
SMA	is	infinite	and	cannot	be	used	to	define	the	size	of	the
orbit.	GMAT	requires	ECC	<	0.9999999	or	ECC	>
1.0000001	when	setting	ECC	or	when	performing
conversions.	For	transformations	performed	near	these
limits,	loss	of	precision	may	occur.



ECC	=	0
AOP	is	undefined.	If	ECC	<=	1e-11,	GMAT	sets	AOP	to
zero	in	the	conversion	from	Cartesian	to
Keplerian/ModKeplerian	and	includes	all	orbital-plane
angular	displacement	in	the	true	anomaly.

SMA	=	0
Results	in	a	singular	conic	section.	GMAT	requires	|SMA|
>	1	meter	when	inputting	SMA.

SMA	=	INF
SMA	is	infinite	and	another	parameter	is	required	to
capture	the	size	of	the	orbit.	Keplerian	elements	are	not
supported.

INC	=	0
RAAN	is	undefined.	If	INC	<	6e-10,	GMAT	sets	RAAN
to	0	in	the	conversion	from	Cartesian	to
Keplerian/ModKeplerian.	Then,	if	ECC	<	1e-11,	AOP	is
set	to	0	and	GMAT	includes	all	angular	displacement
between	the	x-axis	and	the	spacecraft	in	the	true	anomaly.
If	ECC	≥	1e-11,	then	AOP	is	computed	as	the	angle
between	the	eccentricity	vector	and	the	x-axis.

INC	=	180
RAAN	is	undefined.	If	INC	>	(180	-	6e-10),	GMAT	sets
RAAN	to	0	in	the	conversion	from	Cartesian	to
Keplerian/ModKeplerian.	Then,	if	ECC	<	1e-11,	AOP	is
set	to	0	and	GMAT	includes	all	angular	displacement
between	the	x-axis	and	the	spacecraft	in	the	true	anomaly.
If	ECC	≥	1e-11,	then	AOP	is	computed	as	the	angle
between	the	eccentricity	vector	and	the	x-axis.

RadPer	=	0
Singular	conic	section.	GMAT	requires	RadPer	>	1	meter
in	state	conversions.



RadApo	=	0
Singular	conic	section.	GMAT	requires	abs(RadApo)	>	1
meter	in	state	conversions.

Delaunay	State	Type

The	conversion	between	Delaunay	and	Cartesian	is	performed	passing	through
classical	Keplerian	state.	Therefore,	Delaunay	state	cannot	represent	parabolic
orbits.	Also,	the	Delaunay	state	cannot	represent	hyperbolic	orbits	because	of
the	definition	of	DelaunayL,	which	is	not	a	real	value	when	SMA	is	negative.
The	table	below	describes	the	elements	of	the	Delaunay	state.

Element Description

Delaunayl
The	mean	anomaly.	It	is	related	to	uniform	angular
motion	on	a	circle	of	radius	SMA.

Delaunayg
See	“Keplerian	State”	section,	AOP

Delaunayh
See	“Keplerian	State”	section,	RAAN

DelaunayL
Related	to	the	two-body	orbital	energy.	DelaunayL
=	sqrt(mu*SMA)

DelaunayG
Magnitude	of	the	orbital	angular	momentum	vector.
DelaunayG	=	DelaunayL*sqrt(1-ECC^2)

DelaunayH
The	K	component	of	the	orbital	angular	momentum.
DelaunayH	=	DelaunayG	*	cos(INC)



Singularities	in	the	Delaunay	Elements

Singularities	in	the	Delaunay	elements	is	the	same	as	the	Keplerian	elements,
because	it	uses	the	Keplerian	elements	during	conversion.	See	“Keplerian
State”	section.	The	table	below	shows	the	additional	singularities	regarding	the
Delaunay	state	type.

Element Description

ECC	>	1
DelaunayL	is	not	real	for	hyperbolic	orbits	by	its
definition.

Brouwer-Lyddane	Mean	State	Type

The	BrouwerMeanShort	state	represents	short-term	averaged	mean	motion
under	low-order	zonal	harmonics	(i.e.	J2-J5).	Likewise,	BrouwerMeanLong
state	represents	long-term	averaged	mean	motion	under	low-order	zonal
harmonics	(i.e.	J2-J5).	GMAT	uses	JGM-2	zonal	coefficients	in	Brouwer	Mean
states	algorithms.	Both	are	singular	for	near	parabolic	or	hyperbolic	orbits.	To
use	BrouwerMeanShort/BrouwerMeanLong	state	type	in	GMAT,	the	central
body	must	be	the	Earth.	If	the	central	body	is	the	Earth,	GMAT	can	calculate
BrouwerMeanShort/BrouwerMeanLong	state	from	the	osculating	state
(Cartesian,	Keplerian,	etc.)	and	vice-versa.

Element Description

BrouwerLongAOP

BrouwerShortAOP

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	argument	of	periapsis.

BrouwerLongMA

BrouwerShortMA

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	MA	(mean	anomaly).



BrouwerLongECC

BrouwerShortECC

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	eccentricity.

BrouwerLongINC

BrouwerShortINC

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	inclination.

BrouwerLongRAAN

BrouwerShortRAAN

Brouwer-Lyddane	long-term	averaged	(short-term
averaged)	mean	RAAN	(right	ascension	of	the
ascending	node).

BrouwerLongSMA

BrouwerShortSMA

Long-term	averaged	(short-term	averaged)	mean
semi-major	axis.

Singularities	in	the	Brouwer-Lyddane	Mean	Elements

The	table	below	shows	the	characteristics	of	singularities	regarding
BrouwerMeanShort/BrouwerMeanLong	state	and	the	implemented	method	to
handle	the	singularities	in	GMAT	state	conversion	algorithms.	Note	that	because
Brouwer-Lyddane	mean	elements	involve	an	iterative	solution,	loss	of	precision
may	occur	near	singularities.

Element Description

BrouwerSMA	<
3000/(1-BrouwerECC) Because	Brouwer’s	formulation	based	on	Earth’s

zonal	harmonics,	BrouwerMeanShort	and
BrouwerMeanLong	cannot	address	orbits	with
mean	perigee	distance	is	smaller	than	Earth’s	radius,
3000	km	because	of	numerical	instability.

BrouwerLongINC=	63,



BrouwerLongINC	=
117

If	given	BrouwerLongINC	(long-term	averaged
INC	only)	is	close	to	ic=	63	deg.	or	117	deg.,	the
algorithm	is	unstable	because	of	singular	terms	(non-
zero	imaginary	components).	Thus,	GMAT	cannot
calculate	osculating	elements.

BrouwerLongECC	=	0,
BrouwerLongECC	≥	1 If	BrouwerECC	is	larger	than	0.9,	or	BrouwerECC

is	smaller	than	1E-7,	it	has	been	reported	that
Cartesian	to	BrouwerMeanLong	state	does	not
converge	statistically.	For	these	cases,	GMAT	gives
a	warning	message	with	the	current	conversion	error.

Spherical	State	Types

The	SphericalAZFPA	and	SphericalRADEC	state	types	are	composed	of	the
polar	coordinates	of	the	spacecraft	state	expressed	with	respect	to	the	selected
CoordinateSystem.	The	two	spherical	representations	differ	in	how	the	velocity
is	defined.	The	SphericalRADEC	state	type	is	composed	of	the	following
elements:	RMAG,	RA,	DEC,	VMAG,	RAV,	and	DECV.	The
SphericalAZFPA	state	type	is	composed	of	the	following	elements:	RMAG,
RA,	DEC,	VMAG,	AZI	and	FPA.	The	tables	and	figures	below	describe	each
spherical	state	element	in	detail	including	singularities.

Geometry	of	the	Spherical	Elements

Name Description

RMAG
The	magnitude	of	the	position	vector.

RA
The	right	ascension	which	is	the	angle	between	the	projection	of	the
position	vector	into	the	xy-plane	and	the	x-axis	measured
counterclockwise.

DEC



The	declination	which	is	the	angle	between	tjhe	position	vector	and
the	xy-plane.

VMAG
The	magnitude	of	the	velocity	vector.

FPA
The	vertical	flight	path	angle.	The	angle	measured	from	a	plane
normal	to	the	postion	vector	to	the	velocity	vector	,	measured	in	the
plane	formed	by	position	vector	and	velocity	vector.

AZI
The	flight	path	azimuth.	The	angle	measured	from	the	vector
perpendicular	to	the	position	vector	and	pointing	north,	to	the
projection	of	the	velocity	vector,	into	a	plane	normal	to	the	position
vector.

RAV
The	right	ascension	of	velocity.	The	angle	between	the	projection	of
the	velocity	vector	into	the	xy-plane	and	the	x-axis	measured
counterclockwise.

DECV
The	flight	path	azimuth.	The	angle	between	the	velocity	vector	and
the	xy-plane.



Singularities	in	the	Spherical	Elements

Singularity Comments	and	Behavior

RMAG	=	0
Results	in	a	singular	conic	section:	declination	and	flight
path	angle	are	undefined.	GMAT	will	not	allow
transformations	if	RMAG	<	1e-10.	For	RMAG	values
greater	than,	but	near	1e-10,	loss	of	precision	may	occur	in
transformations.

VMAG	=	0
Results	in	a	singular	conic	section:	velocity	declination	and
flight	path	angle	are	undefined.	GMAT	will	not	allow
transformations	if	VMAG	<	1e-10.For	VMAG	values
greater	than,	but	near	1e-10,	loss	of	precision	may	occur	in
transformations.



Planetodetic	State	Type

The	Planetodetic	state	type	is	useful	for	specifying	states	relative	to	the	surface
of	a	central	body.	It	is	very	similar	to	the	spherical	state	types,	but	uses	the
central	body's	flattening	in	its	definition.	To	use	the	Planetodetic	state	type,	the
spacecraft’s	coordinate	system	must	have	a	celestial	body	at	the	origin,	and	must
have	BodyFixed	axes.

Element Description

PlanetodeticRMAG
Magnitude	of	the	orbital	radius	vector.

PlanetodeticLON
Planetodetic	longitude.

PlanetodeticLAT
Planetodetic	latitude,	using	the	Flattening	of	the
central	body.

PlanetodeticVMAG
Magnitude	of	the	orbital	velocity	vector	in	the	fixed
frame.

PlanetodeticAZI
Orbital	velocity	azimuth	in	the	fixed	frame.

PlanetodeticHFPA
Horizontal	flight	path	angle.	HFPA	=	90	-	VFPA

Singularities	in	the	Planetodetic	Elements

Singularity Comments	and	Behavior

PlanetodeticRMAG



=	0 Results	in	a	singular	conic	section:	declination	and	flight
path	angle	are	undefined.	GMAT	will	not	allow
transformations	if	PlanetodeticRMAG	<	1e-10.	For
PlanetodeticRMAG	values	greater	than,	but	near	1e-10,
loss	of	precision	may	occur	in	transformations.

PlanetodeticVMAG
=	0 Results	in	a	singular	conic	section:	velocity	declination

and	flight	path	angle	are	undefined.	GMAT	will	not
allow	transformations	if	PlanetodeticVMAG	<	1e-10.
For	PlanetodeticVMAG	values	greater	than,	but	near
1e-10,	loss	of	precision	may	occur	in	transformations.

Equinoctial	State	Type

GMAT	supports	the	Equinoctial	state	representation	which	is	non-singular	for
elliptic	orbits	with	inclinations	less	than	180	degrees.	To	use	the	Equinoctial
state	type,	the	spacecraft’s	coordinate	system	must	have	a	central	body	at	the
origin.

Element Description

SMA
See	Keplerian	section.

EquinoctialH
A	measure	of	the	orbital	eccentricity	and	argument
of	periapsis.	EquinoctialH	and	EquinoctialK
together	govern	how	elliptical	an	orbit	is	and	where
the	periapsis	is	located.	EquinotialH	=	ECC	*
sin(AOP).

EquinoctialK
A	measure	of	the	orbital	eccentricity	and	argument
of	periapsis.	EquinoctialH	and	EquinoctialK
together	govern	how	eliptical	an	orbit	is	and	where
the	periapsis	is	located.	EquinotialK	=	ECC	*



cos(AOP)

EquinoctialP
A	measure	of	the	orientation	of	the	orbit.
EquinoctialP	and	EquinoctialQ	together	govern
how	an	orbit	is	oriented.	EquinotialP	=
tan(INC/2)*sin(RAAN).

EquinoctialQ
A	measure	of	the	orientation	of	the	orbit.
EquinoctialP	and	EquinoctialQ	together	govern
how	an	orbit	is	oriented.	EquinotialQ	=
tan(INC/2)*cos(RAAN).

MLONG
A	measure	of	the	mean	location	of	the	spacecraft	in
its	orbit.	MLONG	=	AOP	+	RAAN	+	MA.

Singularities	in	the	Equinoctial	Elements

Element Description

INC	=	180
RAAN	is	undefined.	If	INC	>	180	-	1.0e-11,	GMAT
sets	RAAN	to	0	degrees.	GMAT	does	not	support
Equinoctial	elements	for	true	retrograde	orbits.

ECC	>	0.9999999
Equinoctial	elements	are	not	defined	for	parabolic
or	hyperbolic	orbits.

Alternate	Equinoctial	State	Type

The	AlternateEquinoctial	state	type	is	a	slight	variation	on	the	Equinoctial
elements	that	uses	sin(INC/2)	instead	of	tan(INC/2)	in	the	"P"	and	"Q"
elements.	Both	representations	have	the	same	singularties.



Element Description

SMA
See	Keplerian	section.

EquinoctialH
See	Equinoctial	section.

EquinoctialK
See	Equinoctial	section.

AltEquinoctialP
A	measure	of	the	orientation	of	the	orbit.
AltEquinoctialP	and	AltEquinoctialQ	together
govern	how	an	orbit	is	oriented.	AltEquinotialP	=
sin(INC/2)*sin(RAAN).

AltEquinoctialQ
A	measure	of	the	orientation	of	the	orbit.
AltEquinoctialP	and	AltEquinoctialQ	together
govern	how	an	orbit	is	oriented.	AltEquinotialP	=
sin(INC/2)*cos(RAAN).

MLONG
See	Equinoctial	section.

Modified	Equinoctial	State	Type

The	ModifiedEquinoctial	state	representation	is	non-singular	for	circular,
elliptic,	parabolic,	and	hyperbolic	orbits.	The	only	singularity	is	for	retrograde
equatorial	orbits,	because,	like	Equinoctial	and	ModifiedEquinoctial,	GMAT
does	not	support	the	retrograde	factor.

Element Description

SemilatusRectum
Magnitude	of	the	position	vector	when	at	true



anomaly	of	90	deg	SemilatusRectum	=	SMA*(1-
ECC^2)

ModEquinoctialF
Components	of	eccentricity	vector	(with
ModEquinoctialG).	Projection	of	eccentricity
vector	onto	x.	ModEquinoctialF	=	ECC	*	cos
(AOP+RAAN)

ModEquinoctialG
Components	of	eccentricity	vector	(with
ModEquinoctialF).	Projection	of	eccentricity	vector
onto	y.	ModEquinoctialG	=	ECC	*	sin
(AOP+RAAN)

ModEquinoctialH
Identical	to	EquinoctialQ.

ModEquinoctialK
Idential	to	EquinoctialP.

TLONG
A	measure	of	the	true	location	of	the	spacecraft	in	its
orbit.	TLONG	=	AOP	+	RAAN	+	TA.

Singularities	in	the	Modified	Equinoctial	Elements

Element Description

INC	=	180
Similar	to	Equinoctial	elements,	there	is	singularity
at	INC	=	180	deg.	GMAT	does	not	support
ModifiedEquinoctial	elements	for	retrograde
equatorial	orbits.



Hyperbolic	Asymptote	State	Type

GMAT	supports	two	related	hyperbolic	asymptote	state	types:
IncomingAsymptote	for	defining	the	incoming	hyperbolic	asymptote,	and
OutgoingAsymptote,	for	defining	the	outgoing	hyperbolic	asymptote.	Both
representations	are	useful	for	defining	flybys.

Element Description

IncomingRadPer

OutgoingRadPer

The	orbital	radius	of	periapsis.	The	radius	of
periapsis	is	the	minimum	distance	(osculating)
between	the	spacecraft	and	celestial	body	at	the
origin	of	coordinate	system.
IncomingRadPer/OutgoingRadPer	differ	from
RadPer	only	in	that	they	are	associated	with	the
IncomingAsymptote	and	OutgoingAsymptote
state	representations,	respectively.

IncomingC3Energy

OutgoingC3Energy

C3	energy.	C3Energy	=	-mu/SMA.
IncomingC3Energy/OutgoingC3Energy	differ
only	in	that	they	are	associated	with	the
IncomingAsymptote	and	OutgoingAsymptote
state	representations,	respectively.

IncomingRHA

OutgoingRHA

IncomingRHA/OutgoingRHA	is	the	right
ascension	of	the	incoming/outgoing	asymptote.	If
C3Energy	<	0	the	apsides	vector	is	substituted	for
the	incoming/outgoing	asymptote.

IncomingDHA

OutgoingDHA

IncomingDHA/OutgoingDHA	is	the	declination	of
the	incoming/outgoing	asymptote.	If	C3Energy	<	0
the	apsides	vector	is	substituted	for	the
incoming/outgoing	asymptote..



IncomingBVAZI

OutgoingBVAZI

IncomingBVAZI/OutgoingBVAZI	is	the	B-vector
azimuth	at	infinity	of	the	incoming/outgoing
asymptote	measured	counter-clockwise	from	south.
If	C3Energy	<	0	the	apsides	vector	is	substituted	for
the	outgoing/incoming	asymptote.

TA
See	Keplerian.

Singularities	in	the	Hyperbolic	Asymptote	Elements

Element Description

IncomingC3Energy/OutgoingC3Energy
=	0 If

IncomingC3Energy/OutgoingC3Energy
=	0	the	spacecraft	has	a	parabolic	orbit.
Hyperbolic	asymptote	states	do	not
support	parabolic	orbits.	It	must	be
avoided	that	-1E-7	≤
IncomingC3Energy/OutgoingC3Energy
≤	1E-7	by	choosing	a	proper	set	of
elements.

ECC	=	0
For	the	case	of	circular	orbits,	TA	is
undefined.	It	must	be	avoided	that	ECC
1E-7	by	choosing	a	proper	set	of
elements.	GMAT	does	not	support
hyperbolic	asymptote	representation	for
true	circular	orbits.

Asymptote	vector	parallel	to	z-axis
If	the	asymptote	vector	is	parallel	or
antiparallel	to	coordinate	system’s	z-
direction,	then	the	B-plane	is	undefined.	It



must	be	avoided	by	choosing	either	a
proper	coordinate	system	or	set	of
elements.

State	Component	Interactions	with	the	Spacecraft
Coordinate	System	Field

When	you	define	Spacecraft	state	elements	such	as	SMA,	X,	or	DEC	for
example,	these	values	are	set	in	coordinates	defined	by	the	Spacecraft’s
CoordinateSystem	field.	For	example,	the	following	lines	result	in	the	X-
component	of	the	Cartesian	state	of	MySat	to	be	1000,	in	the	EarthFixed
system.

aSpacecraft.CoordinateSystem	=	EarthFixed

aSpacecraft.X	=	1000								

When	the	script	lines	above	are	executed	in	a	script,	GMAT	converts	the	state	to
the	specified	coordinate	system,	in	this	case	EarthFixed,	sets	the	X	component
to	1000,	and	then	converts	the	state	back	to	the	internal	inertial	representation.

The	following	example	sets	SMA	to	8000	in	the	EarthMJ2000Eq	system,	then
sets	X	to	6000	in	the	Earth	fixed	system.	(Note	this	is	NOT	allowed	in
initialization	mode;	see	later	remarks	for	more	information).

aSpacecraft.CoordinateSystem	=	EarthMJ2000Eq

aSpacecraft.SMA	=	8000

aSpacecraft.CoordinateSystem	=	EarthFixed

aSpacecraft.X	=	6000

State	Component	Interactions	with	the	Spacecraft	Epoch
Field

When	you	specify	the	Spacecraft’s	epoch,	you	define	the	initial	epoch	of	the
spacecraft	in	the	specified	coordinate	system.	If	your	choice	for	the	Spacecraft's
coordinate	system	is	a	time	varying	system	such	as	the	EarthFixed	system,	then
you	define	the	state	in	the	EarthFixed	system	at	that	epoch.	For	example,	the
following	lines	would	result	in	the	cartesian	state	of	MySat	to	be	set	to	[7000	0
1300	0	7.35	1]	in	the	EarthFixed	system	at	01	Dec	2000	12:00:00.000



UTC.

Create	Spacecraft	MySat

MySat.Epoch.UTCGregorian	=	'01	Dec	2000	12:00:00.000'

MySat.CoordinateSystem	=	EarthFixed

MySat.X	=	7000

MySat.Y	=	0

MySat.Z	=	1300

MySat.VX	=	0

MySat.VY	=	7.35

MySat.VZ	=	1						

The	corresponding	EarthMJ2000Eq	representation	is

X		=	-2320.30266

Y		=	-6604.25075

Z		=		1300.02599

VX	=		7.41609

VY	=	-2.60562

VZ	=		0.99953

You	can	change	the	epoch	of	a	Spacecraft	in	the	mission	sequence	using	a	script
line	like	this:

MySat.Epoch.TAIGregorian	=	'02	Dec	2000	12:00:00.000'

When	the	above	line	is	executed	in	the	mission	sequence,	GMAT	converts	the
state	to	the	specified	coordinate	system	and	then	to	the	specified	state	type	—	in
this	case	EarthFixed	and	Cartesian	respectively	—	sets	the	epoch	to	the	value
of	02	Dec	2000	12:00:00.000,	and	then	converts	the	state	back	to	the	internal
representation.	This	behavior	is	identical	to	that	of	the	spacecraft	orbit	dialog
box	in	the	GUI.	Because	the	coordinate	system	in	this	case	is	time	varying,
changing	the	spacecraft	epoch	has	resulted	in	a	change	in	the	spacecraft's	inertial
state	representation.	After	the	epoch	is	changed	to	02	Dec	2000	12:00:00.000,
the	EarthMJ2000Eq	state	representation	is	now:

X		=	-2206.35771

Y		=	-6643.18687

Z		=		1300.02073

VX	=		7.45981

VY	=	-2.47767

VZ	=		0.99953													



Scripting	Limitations	during	Initialization

When	setting	the	Spacecraft	orbit	state	in	a	script,	there	are	a	few	limitations	to
be	aware	of.	In	the	initialization	portion	of	the	script	(before	the
BeginMissionSequence	command),	you	should	set	the	epoch	and	coordinate
system	only	once;	multiple	definitions	of	these	parameters	will	result	in	either
errors	or	warning	messages	and	may	lead	to	unexpected	results.

Also	when	setting	a	state	during	initialization,	you	must	set	the	orbit	state	in	a	set
of	fields	corresponding	to	a	single	state	type.	For	example,	set	the	orbit	state
using	the	X,	Y,	Z,	VX,	VY,	VZ	fields	(for	the	Cartesian	state	type)	or	the
SMA,	ECC,	INC,	RAAN,	AOP,	TA	fields	(for	the	Keplerian	state	type),	but
not	a	mixture	of	the	two.	If	you	need	to	mix	state	types,	coordinate	systems,	or
epochs	to	define	the	state	of	a	spacecraft,	you	must	set	the	state	using	scripting	in
the	mission	sequence	(after	the	BeginMissionSequence	command).

Shared	State	Components

Some	state	components,	such	as	SMA,	are	shared	among	multiple	state
representations.	In	the	mission	sequence,	GMAT	does	not	require	you	to	specify
the	state	representation	that	you	are	setting;	rather,	you	may	specify	a
combination	of	elements	from	different	representations.

For	these	shared	components,	GMAT	defines	a	default	representation	for	each,
and	uses	that	representation	when	setting	or	retrieving	the	value	for	the	shared
component.	This	is	normally	transparent,	though	it	can	have	side	effects	if	the
default	representation	has	singularities	or	numerical	precision	losses	caused	by
the	value	being	set	or	retrieved.	The	following	table	lists	each	shared	state
component	and	its	default	representation.

Field Shared	Between Default	Representation

AOP Keplerian,	ModifiedKeplerian Keplerian

DEC SphericalAZFPA,
SphericalRADEC

SphericalAZFPA

EquinoctialH AlternateEquinoctial,
Equinoctial

Equinoctial

EquinoctialK AlternateEquinoctial, Equinoctial



Equinoctial

INC Keplerian,	ModifiedKeplerian Keplerian

RA SphericalAZFPA,
SphericalRADEC

SphericalAZFPA

RAAN Keplerian,	ModifiedKeplerian Keplerian

RMAG SphericalAZFPA,
SphericalRADEC

SphericalAZFPA

SMA AlternateEquinoctial,
Equinoctial,	Keplerian

Keplerian

TA IncomingAsymptote,
OutgoingAsymptote,
Keplerian,	ModifiedKeplerian

Keplerian

VMAG SphericalAZFPA,
SphericalRADEC

SphericalAZFPA

As	an	example,	consider	the	following	mission	sequence.	Because	GMAT
executes	each	command	sequentially,	it	uses	the	assigned	state	representation	to
calculation	each	component.	For	shared	components,	it	uses	the	default
representation	for	reach.

BeginMissionSequence

aSpacecraft.SMA	=	20000						%	conversion	goes	through	Keplerian

aSpacecraft.RA	=	30										%	conversion	goes	through	SphericalAZFPA

aSpacecraft.OutgoingDHA	=	90	%	conversion	goes	through	OutgoingAsymptote

aSpacecraft.TA	=	45										%	conversion	goes	through	Keplerian

Warning

When	setting	state	parameters	(especially	in	Keplerian-based
representations)	using	non-default	dependencies,	be	careful	of
the	loss	of	precision	caused	by	large	translations	in	the
intermediate	orbit.



Examples
Define	a	Spacecraft’s	Earth	MJ2000Eq	coordinates	in	the	Keplerian
representation:

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	EarthMJ2000Eq

aSpacecraft.SMA		=	7100

aSpacecraft.ECC		=	0.01

aSpacecraft.INC		=	30

aSpacecraft.RAAN	=	45

aSpacecraft.AOP		=	90

aSpacecraft.TA			=	270					

Define	a	Spacecraft’s	Earth	fixed	coordinates	in	the	Cartesian	representation:

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	EarthFixed

aSpacecraft.X	=	7100

aSpacecraft.Y	=	0

aSpacecraft.Z	=	1300

aSpacecraft.VX	=	0

aSpacecraft.VY	=	7.35

aSpacecraft.VZ	=	1

Define	a	Spacecraft’s	Moon	centered	coordinates	in	ModifiedKeplerian
representation.

Create	CoordinateSystem	MoonInertial

MoonInertial.Origin	=	Luna

MoonInertial.Axes	=	BodyInertial

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	MoonInertial

aSpacecraft.RadPer	=	2100

aSpacecraft.RadApo	=	2200

aSpacecraft.INC	=	90

aSpacecraft.RAAN	=	45

aSpacecraft.AOP	=	45

aSpacecraft.TA	=	180

Define	a	Spacecraft’s	Rotating	Libration	Point	coordinates	in	the
SphericalAZFPA	representation:



Create	LibrationPoint	ESL1

ESL1.Primary	=	Sun

ESL1.Secondary	=	Earth

ESL1.Point	=	L1

Create	CoordinateSystem	EarthSunL1CS

EarthSunL1CS.Origin	=	ESL1	

EarthSunL1CS.Axes	=	ObjectReferenced

EarthSunL1CS.XAxis	=	R

EarthSunL1CS.ZAxis	=	N

EarthSunL1CS.Primary	=	Sun

EarthSunL1CS.Secondary	=	Earth

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	EarthSunL1CS

aSpacecraft.DateFormat	=	UTCGregorian

aSpacecraft.Epoch	=	'09	Dec	2005	13:00:00.000'

aSpacecraft.RMAG	=	1520834.130720907

aSpacecraft.RA	=	-111.7450242065574

aSpacecraft.DEC	=	-20.23326432189756

aSpacecraft.VMAG	=	0.2519453702907011

aSpacecraft.AZI	=	85.22478175803107

aSpacecraft.FPA	=	97.97050698644287								

Define	a	Spacecraft’s	Earth-fixed	coordinates	in	the	Planetodetic
representation:

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	EarthFixed

aSpacecraft.PlanetodeticRMAG	=	7218.032973047435

aSpacecraft.PlanetodeticLON	=	79.67188405817301

aSpacecraft.PlanetodeticLAT	=	10.43478253417053

aSpacecraft.PlanetodeticVMAG	=	6.905049647178043

aSpacecraft.PlanetodeticAZI	=	81.80908019170981

aSpacecraft.PlanetodeticHFPA	=	1.494615714741736

Set	a	Spacecraft’s	Earth	MJ2000	ecliptic	coordinates	in	the	Equinoctial
representation:

Create	Spacecraft	aSpacecraft

aSpacecraft.CoordinateSystem	=	EarthMJ2000Ec

aSpacecraft.SMA	=	9100

aSpacecraft.EquinoctialH	=	0.00905

aSpacecraft.EquinoctialK	=	0.00424

aSpacecraft.EquinoctialP	=	-0.1059

aSpacecraft.EquinoctialQ	=	0.14949



aSpacecraft.MLONG	=	247.4528



Spacecraft	Visualization	Properties
SpacecraftVisualizationProperties	—	The	visual	properties	of	the	spacecraft



Description
The	Spacecraft	Visualization	Properties	lets	you	define	a	spacecraft	model,
translate	the	spacecraft	in	X,Y,	Z	directions	or	apply	a	fixed	rotation	to	the
attitude	orientation	of	the	model.	You	can	also	adjust	the	scale	factor	of	the
spacecraft	model	size.	GMAT	lets	you	set	orbit	colors	via	the	spacecraft
visualization	properties	as	well.	You	can	set	colors	to	spacecraft	orbital
trajectories	and	any	perturbing	trajectories	that	are	drawn	during	iterative
processes.	See	Color	documentation	for	discussion	and	examples	on	how	to	set
orbital	colors	using	Spacecraft	object's	OrbitColor	and	TargetColor	fields.
Also	see	the	Fields	section	below	to	read	more	about	these	two	fields.	The
Spacecraft	visualization	properties	can	be	configured	either	through	GMAT’s
GUI	or	the	script	interface.

See	Also:	OrbitView,	Color



Fields

Field Description

ModelOffsetX
This	field	lets	you	translate	a	spacecraft	in	+X	or	-X	axis	of
central	body's	coordinate	system.

Data	Type Real

Allowed	Values -3.5	<=	Real	<=	3.5

Access set

Default	Value 0.000000

Units N/A

Interfaces GUI,	script

ModelOffsetY
Allows	you	to	translate	a	spacecraft	in	+Y	or	-Y	axis	of
central	body's	coordinate	system.

Data	Type Real

Allowed	Values -3.5	<=	Real	<=	3.5



Access set

Default	Value 0.000000

Units N/A

Interfaces GUI,	script

ModelOffsetZ
Allows	you	to	translate	a	spacecraft	in	+Z	or	-Z	axis	of
central	body's	coordinate	system.

Data	Type Real

Allowed	Values -3.5	<=	Real	<=	3.5

Access set

Default	Value 0.000000

Units N/A

Interfaces GUI,	script

ModelRotationX
Allows	you	to	perform	a	fixed	rotation	of	spacecraft's
attitude	w.r.t	X-axis	of	central	body's	coordinate	system.



Data	Type Real

Allowed	Values -180	<=	Real	<=	180

Access set

Default	Value 0.000000

Units Deg.

Interfaces GUI,	script

ModelRotationY
Allows	you	to	perform	a	fixed	rotation	of	spacecraft's
attitude	w.r.t	Y-axis	of	central	body's	coordinate	system.

Data	Type Real

Allowed	Values -180	<=	Real	<=	180

Access set

Default	Value 0.000000

Units Deg.



Interfaces GUI,	script

ModelRotationZ
Allows	you	to	perform	a	fixed	rotation	of	spacecraft's
attitude	w.r.t	Z-axis	of	central	body's	coordinate	system.

Data	Type Real

Allowed	Values -180	<=	Real	<=	180

Access set

Default	Value 0.000000

Units Deg.

Interfaces GUI,	script

ModelScale
Allows	you	to	apply	a	scale	factor	to	the	spacecraft	model's
size.

Data	Type Real

Allowed	Values 0.001	<=	Real	<=	1000

Access set



Default	Value 3.000000

Units N/A

Interfaces GUI,	script

ModelFile
Allows	you	to	load	spacecraft	models	that	are	in	.3ds
model	formats.

Data	Type String

Allowed	Values .	3ds	spacecraft	model	formats	only

Access set

Default	Value ../data/vehicle/models/aura.3ds

Units N/A

Interfaces GUI,	script

OrbitColor
Allows	you	to	set	available	colors	on	spacecraft	orbits.	The
spacecraft	orbits	are	drawn	using	the	OrbitView	graphics
displays.	The	colors	can	be	identified	through	a	string	or	an



integer	array.	For	example:	Setting	spacecraft's	orbit	color
to	red	can	be	done	in	following	two	ways:
DefaultSC.OrbitColor	=	Red	or	DefaultSC.OrbitColor
=	[255	0	0].	This	field	can	be	modified	in	the	Mission
Sequence	as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit	Color
Picker	in	GUI.	Valid	predefined	color	name	or
RGB	triplet	value	between	0	and	255.

Access set

Default
Value

Red

Units N/A

Interfaces GUI,	script

TargetColor
Allows	you	to	set	available	colors	on	a	spacecraft's
perturbing	trajectories	during	iterative	processes	such	as
Differential	Correction	or	Optimization.	The	perturbing
trajectories	are	drawn	through	the	OrbitView	resource.
The	target	color	can	be	identified	through	a	string	or	an
integer	array.	For	example:	Setting	spacecraft's	perturbing
trajectories	to	yellow	color	can	be	done	in	following	two
ways:	DefaultSC.TargetColor	=	Yellow	or



DefaultSC.TargetColor	=	[255	255	0]	.	This	field	can
be	modified	in	the	Mission	Sequence	as	well.

Data
Type

Integer	Array	or	String

Allowed
Values

Any	color	available	from	the	Orbit	Color
Picker	in	GUI.	Valid	predefined	color	name	or
RGB	triplet	value	between	0	and	255.

Access set

Default
Value

Teal

Units N/A

Interfaces GUI,	script



GUI
The	figure	below	shows	the	default	settings	for	the	Spacecraft	Visualization
Properties	resource:

The	GUI	interface	for	Spacecraft	Visualization	Properties	is	contained	on	the
Visualization	tab	of	the	Spacecraft	resource.	You	can	configure	visualization
properties	of	the	spacecraft	and	visualize	the	changes	in	the	Display	window.

Within	the	Display	window,	you	can	Left	click	and	drag	your	mouse	to	change



camera	orientation.	Camera	orientation	can	be	changed	in	Up/Down/Left/Right
directions.	You	can	also	Right	click	and	drag	your	mouse	to	zoom	in	and	out	of
the	Display	window.	Right	click	and	moving	the	cursor	in	Up	direction	helps	to
zoom	out	and	moving	the	cursor	in	Down	direction	helps	to	zoom	in.



Remarks

Configuring	Spacecraft	Visualization	Properties

GMAT	lets	you	define	any	spacecraft	model	but	currently	GMAT	supports	only
.3ds	model	format.	Several	.3ds	spacecraft	model	formats	are	available	here.	You
can	also	download	more	.3ds	models	by	clicking	here.	Most	of	these	models	are
in	.3ds	format,	which	can	be	read	by	most	3D	programs.

GMAT	lets	you	apply	fixed	rotation	to	the	attitude	orientation	of	the	spacecraft
model	or	translate	the	model	in	any	of	the	X,	Y	and	Z	directions.	You	can	also
apply	a	scale	factor	to	the	selected	spacecraft	model	to	adjust	the	size	of	the
model.	Any	changes	that	are	made	to	the	spacecraft	model,	attitude	orientation,
translation	or	scale	size	factor	will	also	be	displayed	in	OrbitView	resource’s
graphics	window.	The	configured	spacecraft	visualization	properties	will	only
show	up	in	OrbitView	graphics	window	after	you	have	run	the	mission.	See
OrbitView	resource’s	user-specification	document	to	learn	more	about
OrbitView	graphics	window.

http://www.nasa.gov/multimedia/3d_resources/models.html
http://www.celestiamotherlode.net/


Examples
This	example	shows	you	how	to	configure	Spacecraft	Visualization	Properties
resource.	All	values	are	non-default	values.

Create	Spacecraft	aSat

aSat.ModelFile	=	'../data/vehicle/models/aura.3ds'

aSat.ModelOffsetX	=	1.5

aSat.ModelOffsetY	=	-2

aSat.ModelOffsetZ	=	3

aSat.ModelRotationX	=	180

aSat.ModelRotationY	=	180

aSat.ModelRotationZ	=	90

aSat.ModelScale	=	15

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	9000}



String
String	—	A	user-defined	string	variable



Description
The	String	resource	is	used	to	store	a	string	value	for	use	by	commands	in	the
Mission	Sequence.

In	the	script	environment,	String	resources	are	initialized	to	the	string
'STRING_PARAMETER_UNDEFINED'	on	creation.	In	the	GUI	environment,	they’re
initialized	to	the	empty	string	('').	String	resources	can	be	assigned	using	string
literals	or	(in	the	Mission	Sequence)	other	String	resources,	numeric	Variable
resources,	or	resource	parameters	that	have	string	types.

See	Also:	Array,	Variable



Fields
The	String	resource	has	no	fields;	instead,	the	resource	itself	is	set	to	the	desired
value.

Field Description
value

The	value	of	the	string	variable.

Data	Type String

Allowed
Values

N/A

Access set,	get

Default	Value ''	(empty)	(GUI)

'STRING_PARAMETER_UNDEFINED'	(script)

Units N/A

Interfaces GUI,	script



GUI

The	GMAT	GUI	lets	you	create	multiple	String	resources	at	once	without
leaving	the	window.	To	create	a	String:

1.	 In	the	String	Name	box,	type	the	desired	name	of	the	string.
2.	 In	the	String	Value	box,	type	the	initial	value	of	the	string.	This	is	required

and	must	be	a	literal	string	value.	Quotes	are	not	necessary	when	setting	the
value.

3.	 Click	the	=>	button	to	create	the	string	and	add	it	to	the	list	on	the	right.

You	can	create	multiple	String	resources	this	way.	To	edit	an	existing	string	in
this	window,	click	it	in	the	list	on	the	right	and	edit	the	value.	You	must	click	the
=>	button	again	to	save	your	changes.



You	can	also	double-click	an	existing	String	in	the	resources	tree	in	the	main
GMAT	window.	This	opens	the	string	properties	box	above	that	allows	you	to
edit	the	value	of	that	individual	string.



Remarks
String	resources	can	(in	the	Mission	Sequence)	be	set	using	numeric	Variable
resources.	The	numeric	value	of	the	Variable	is	converted	to	a	string	during	the
assignment.	The	numeric	value	is	converted	to	a	string	representation	in	either
floating-point	or	scientific	notation	(whichever	is	more	appropriate)	with	a
maximum	of	16	significant	figures.



Examples
Creating	a	string	and	assigning	it	a	literal	value:

Create	ReportFile	aReport

Create	String	aStr

aStr	=	'MyString'

BeginMissionSequence

Report	aReport	aStr



TrackingFileSet
TrackingFileSet	—	Manages	the	observation	data	contained	in	one	or	more
external	tracking	data	files.



Description
A	TrackingFileSet	is	required	for	both	simulator	and	estimator	runs.	For	a	data
simulation	run,	the	user	must	specify	the	desired	tracking	strings	for	the
simulated	data	(via	AddTrackingConfig)	and	provide	an	output	file	name	for
the	simulated	tracking	observations	(via	FileName).	In	simulation	mode,	the
user	may	specify	a	range	modulo	constant,	Doppler	count	interval,	and	other
parameters,	depending	on	the	type	of	tracking	data	being	simulated.	See	the
remarks	below	for	more	details.

When	running	the	estimator,	the	FileName	parameter	specifies	the	path	to	a
pregenerated	external	tracking	data	file.	It	is	not	necessary	to	explicitly	specify
tracking	configurations	when	running	the	estimator;	GMAT	will	examine	the
specified	external	tracking	data	file	and	determine	the	tracking	configurations
automatically.	GMAT	will	throw	an	error	message	if	it	is	unable	to	uniquely
identify	all	objects	found	in	the	tracking	data	file.

When	running	the	estimator,	one	or	more	AcceptFilters	and/or	RejectFilters
may	be	employed	to	select	from	all	available	observations	a	smaller	subset	for
use	in	the	estimation	process.

The	SimRangeModuloConstant	and	SimDopplerCountInterval	fields	apply
only	to	the	simulator	and	are	ignored	by	the	estimator.	When	running	the
estimator,	these	values	are	provided	in	the	tracking	data	file.	For	both	the
simulator	and	estimator,	relativity,	light	time,	and	ET-TAI	corrections	may
optionally	be	applied.

See	Also:	Simulator,	BatchEstimatorInv,	AcceptFilter,	RejectFilter,	Tracking
Data	Types	for	OD



Fields

Field Description

AddTrackingConfig
One	or	more	signal	paths	and	measurement	types
for	simulation	or	estimation.	See	the	Remarks
section	below	for	details	on	the	Tracking	Strand
specification.

Data
Type

String

Allowed
Values

{{Tracking	Strand},
MeasurementType1[,
MeasurementType2,	...]}

Access set

Default
Value

None

Units N/A

Interfaces script

DataFilters
Defines	filters	to	be	applied	to	the	data.	One	or
more	filters	of	either	type	(AcceptFilter,
RejectFilter)	may	be	specified.	Rules	specified



by	data	filters	on	a	TrackingFileSet	are	applied
to	determine	what	data	is	admitted	or	rejected	as
input	to	the	estimation	process.

Data
Type

Resource	array

Allowed
Values

User	defined	instances	of
AcceptFilter	and	RejectFilter
resources

Access set

Default
Value

None

Units N/A

Interfaces script

FileName
For	simulation,	specifies	an	output	file	for	the
simulated	measurement	data.	For	estimation,
specifies	one	or	more	preexisting	tracking	data
input	files	in	GMD-format.

Data	Type String

Allowed	Values Valid	file	path



Access set

Default	Value None

Units N/A

Interfaces script

RampTable
Specifies	a	transmit	frequency	ramp	table	to	be
used	when	computing	measurements	for	both
simulation	and	estimation.

Data	Type String

Allowed	Values Valid	file	path

Access set

Default	Value None

Units N/A

Interfaces script

SimDopplerCountInterval



Specifies	the	Doppler	count	interval	used	for
Doppler	and	range-rate	measurements.	This
value	is	only	used	in	simulation	mode.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1.0

Units Seconds

Interfaces script

SimRangeModuloConstant
Specifies	the	value	of	the	DSN	range	ambiguity
interval.	This	value	is	only	used	in	simulation
mode.

Data	Type Real

Allowed	Values Real	>	0

Access set



Default	Value 1.00E+18

Units Range	Units	(RU)

Interfaces script

UseETminusTAI
Flag	specifying	if	General	Relativistic	time
corrections	should	be	made	to	the	measurements.
If	this	flag	is	set,	GMAT	will	apply	the
adjustment	from	TAI	to	Ephemeris	Time	when
solving	the	light	time	equations	for	the	computed
measurement.	See	Remarks	below	for	more
details.

Data	Type Boolean

Allowed	Values True,	False

Access set

Default	Value False

Units N/A

Interfaces script

UseLightTime
Flag	specifying	whether	light	time	corrections



should	be	applied	to	computed	measurements.

Data	Type Boolean

Allowed	Values True,	False

Access set

Default	Value True

Units N/A

Interfaces script

UseRelativityCorrection
Flag	specifying	if	General	Relativistic
corrections	should	be	made	to	the	computed
measurements.	If	this	flag	is	set,	GMAT	will
adjust	the	computed	light	time	to	include	the
effects	due	to	the	coordinate	velocity	of	light	and
bending	of	the	signal	path.	See	Remarks	below
for	more	details.

Data	Type Boolean

Allowed	Values True,	False

Access set



Default	Value False

Units N/A

Interfaces script



Remarks
See	Tracking	Data	Types	for	OD	for	a	detailed	listing	of	all	tracking	data	types
and	tracking	data	file	formats	supported	by	GMAT	for	orbit	determination.

Setting	UseETminusTAI	to	True	corresponds	to	inclusion	in	the	computed
round-trip	light	time	of	the	ET-TAI	uplink	and	downlink	terms	in	Eq.	11-7	of
Moyer,	Formulation	of	Observed	and	Computed	Values	of	Deep	Space	Network
Data	Types	for	Navigation,	JPL	Publication	00-7,	October	2000.	Setting
UseRelativityCorrection	to	True	corresponds	to	inclusion	of	the	RLT	uplink
and	downlink	terms	in	Eq.	11-7	of	Moyer.

The	SimRangeModuloConstant	field	is	used	only	in	the	simulation	of	DSN
range	tracking	data.	The	user	may	specify	a	value	to	be	used	for	this	field	or	may
omit	it,	in	which	case	the	default	value	is	used.	This	field	is	not	applicable	to
estimation.	In	estimation,	this	value	is	provided	in	the	input	tracking	data	file.

The	SimDopplerCountInterval	is	used	in	the	simulation	of	DSN_TCP	and
RangeRate	tracking	data.	The	user	may	specify	a	value	to	be	used	for	this	field
or	may	omit	it,	in	which	case	default	value	of	1	second	is	used.	This	field	is	not
applicable	to	estimation.	In	estimation,	this	value	is	provided	in	the	input
tracking	data	file.

When	displaying	or	saving	a	TrackingFileSet	object	using	the	Write	command,
GMAT	will	display	a	number	of	items	relevant	to	simulating	TDRS	data	formats.
These	options	are	not	implemented	in	the	current	release	and	should	be	ignored
or	manually	removed	from	the	output	file.

Tracking	Strand	Specification

When	simulating	tracking	data,	at	least	one	tracking	strand	must	be	specified
using	the	AddTrackingConfig	parameter.	The	tracking	strand	must	be	enclosed
within	curly	braces.	The	format	of	the	tracking	strand	depends	on	the
measurement	data	type	being	generated.	Use	the	following	table	as	a	guide.

Measurement	Type	Name Tracking	Strand	Specification	Format

DSN_SeqRange, {XMIT_GroundStation,	Spacecraft,



DSN_TCP,	Range,
RangeRate

RECV_GroundStation}

GPS_PosVec {Spacecraft.Receiver}



Examples
This	example	illustrates	use	of	the	TrackingFileSet	object	for	simulation	of
DSN	tracking	data.	Specification	of	the	tracking	configurations
(AddTrackingConfig)	is	optional	when	running	the	estimator.	If	omitted,
GMAT	will	attempt	to	automatically	detect	the	tracking	configurations	present	in
the	tracking	data	file.

In	this	example,	the	frequency	ramp	table	file	dsn.ramp	must	be	a	preexisting
ramp	table.	GMAT	will	not	simulate	ramp	table	records.	Alternatively,	the	user
may	omit	specification	of	a	ramp	table	when	simulating	data.	If	the	ramp	table	is
omitted,	the	simulator	will	use	the	frequency	specified	on	the	Transmitter
object	attached	to	each	GroundStation.

Create	TrackingFileSet	dsnObs;

%Create	objects	referenced	by	dnsObs

Create	GroundStation	GDS	CAN	MAD;

Create	Spacecraft	EstSat;

Create	AcceptFilter	af;

		

dsnObs.AddTrackingConfig							=	{{GDS,	EstSat,	GDS},	'DSN_TCP'};

dsnObs.AddTrackingConfig							=	{{CAN,	EstSat,	CAN},	'DSN_TCP'};

dsnObs.AddTrackingConfig							=	{{MAD,	EstSat,	MAD},	'DSN_TCP',	'DSN_SeqRange'};

dsnObs.FileName																=	{'dsn.gmd'};

dsnObs.RampTable															=	{'dsn.ramp'};

dsnObs.UseLightTime												=	True;

dsnObs.UseRelativityCorrection	=	False;

dsnObs.UseETminusTAI											=	False;

dsnObs.SimRangeModuloConstant		=	67108864;

dsnObs.SimDopplerCountInterval	=	10.;	

dsnObs.DataFilters													=	{af};

BeginMissionSequence;

This	example	illustrates	use	of	the	TrackingFileSet	object	for	simulation	of
GPS_PosVec	tracking	data.	This	example	assumes	that	GpsReceiver	is	a
previously	created	instance	of	Receiver	and	has	been	attached	to	SimSat	using
the	AddHardware	method.

Create	TrackingFileSet	PosVecObs;



PosVecObs.FileName										=	{'posvec_obs.gmd'};

PosVecObs.AddTrackingConfig	=	{{SimSat.GpsReceiver},	'GPS_PosVec'};

SimMeas.DataFilters									=	{};

BeginMissionSequence;



Transmitter
Transmitter	—	Defines	the	electronics	hardware,	attached	to	a	GroundStation
resource,	that	transmits	an	RF	signal.



Description
A	ground	station	needs	a	Transmitter	to	transmit	the	RF	signal	to	both	user
spacecraft	and	to	navigation	spacecraft	such	as	TDRS.	A	Transmitter	is
assigned	on	the	AddHardware	list	of	an	instance	of	a	GroundStation.

See	Also	GroundStation,	Antenna



Fields

Field Description

Frequency
Transmit	frequency

Data	Type Real

Allowed	Values Real	>=	0

Access set

Default	Value 0

Units MHz

Interfaces script

PrimaryAntenna
Antenna	resource	used	by	GroundStation	resource	to
transmit	a	signal

Data	Type Antenna	Object

Allowed	Values Any	Antenna	object



Access set

Default	Value None

Units N/A

Interfaces script



Remarks

Discussion	of	how	Transmitter	frequency	is	used

A	transmitter	will	be	attached	to	a	GroundStation	resource.	As	discussed	in	the
RunSimulator	Help,	for	the	case	where	a	ramp	table	is	not	used,	the	transmit
frequency	is	used	directly	to	calculate	the	DSN	range	and	Doppler
measurements.	If	a	ramp	table	is	specified	on	the	relevant	TrackingFileSet,	the
frequency	profile	specified	in	the	ramp	table	is	used	and	the	transmitter
frequency	is	ignored.



Examples
Create	and	configure	a	Transmitter	object

Create	Antenna	DSNAntenna;

Create	Transmitter	Transmitter1;

Transmitter1.PrimaryAntenna	=	DSNAntenna;

Transmitter1.Frequency	=	7186.3;	

Create	GroundStation	DSN

DSN.AddHardware	=	{Transmitter1};

BeginMissionSequence;



Transponder
Transponder	—	Defines	the	electronics	hardware,	typically	attached	to	a
spacecraft,	that	receives	and	automatically	re-transmits	an	incoming	signal.



Description
The	spacecraft	Transponder	model	is	required	for	modeling	DSN	two	way
range	and	Doppler	data	types.	The	Transponder	object	includes	modeling	of	a
retransmission	delay	due	to	the	spacecraft	transponder	electronics.	You	can	also
specify	a	turn	around	ratio	which	is	a	multiplicative	ratio	describing	how	the
frequency	of	the	retransmitted	signal	differs	from	the	received	frequency.	The
incoming	and	outgoing	frequencies	are	designed	to	be	different	so	as	to	avoid	RF
interference	between	the	signal	transmitted	by	the	ground	station	to	the
spacecraft	and	the	return	signal	from	the	spacecraft	to	the	ground	station.

See	Also:	GroundStation,	Antenna



Fields

Field Description

HardwareDelay
Transponder	electronics	delay	between	receiving	time	and
transmitting	time	at	the	transponder.	It	is	applied	for	both
simulation	and	estimation,	with	or	without	ramp	table	use.

Data	Type Real

Allowed	Values Real	>=	0

Access set

Default	Value 0

Units seconds

Interfaces script

PrimaryAntenna
Antenna	resource	used	by	the	Transponder	resource

Data	Type Antenna	Object

Allowed	Values Any	valid	Antenna	object



Access set

Default	Value None

Units N/A

Interfaces script

TurnAroundRatio
Transponder	turn	around	ratio	which	is	used	in	both
simulation	and	estimation.	For	the	DSN	Doppler	data	type
where	an	input	ramp	table	is	not	used,	changing	the
transponder	turn	around	ratio	appreciably	changes	the
measurement.	For	all	DSN	data	types,	changing	the	turn
around	ratio	affects	the	media	correction	calculations
which	will	typically	result	in	a	small	change	in	the
measurement.	See	the	RunSimulator	and	RunEstimator
help	for	additional	details.

Data	Type STRING_TYPE

Allowed
Values

A	string	in	form	of	'a/b'	where	a	and	b	are
real	numbers

Access set

Default
Value

'240/221'



Units N/A

Interfaces script



Remarks

Turn	around	ratio	affects	media	correction	calculations

Suppose	you	are	given	a	signal	with	multiple	‘n’	legs.	In	order	to	calculate	the
media	corrections	for	a	given	leg,	we	need	to	know	the	associated	frequency	for
that	leg.	The	turn-around	ratio	is	used	to	calculate	the	frequency	for	legs	2
through	n.	If	media	corrections	are	modeled,	then,	for	both	DSN	range	and
Doppler	measurements,	the	value	of	the	turn-around	ratio,	as	set	in	the
Transponder	resource,	will	have	an	effect	on	the	measurements	and	thus	both
simulation	and	estimation	processes	will	be	affected.

Independent	of	media	corrections,	how	does	the	turn
around	ratio,	as	set	in	the	Transponder	resource,	affect
DSN	measurements?

Assume	that	media	corrections	are	turned	off	so	that	we	can	ignore	any,	typically
small,	changes	to	the	DSN	measurements	caused	by	media	corrections.	We	make
the	following	observations.

1.	 The	value	of	Transponder.TurnAroundRatio	has	no	effect	on	DSN	range
measurements.

2.	 If	a	ramp	table	is	provided,	then	the	value	of
Transponder.TurnAroundRatio	has	no	effect	on	DSN	Doppler
measurements.	In	this	case,	the	multiplicative	turn	around	ratio	used	to
calculate	the	computed	measurement	is	based	upon	the	Uplink	Band	given
in	the	ramp	table.	(240/221	for	S-band	and	880/749	for	X	band)

3.	 If	a	ramp	table	is	not	provided,	then	the	value	of
Transponder.TurnAroundRatio	has	a	proportional	effect	on	DSN	Doppler
measurements.	For	example,	if	the	turn	around	ratio	is	doubled,	then	so	is
the	DSN	Doppler	measurement	in	Hz.

For	additional	discussion	on	how	the	Transponder.TurnAroundRatio	field
affects	the	DSN	measurements,	see	the	RunSimulator	and	RunEstimator	help.

Custom	turn-around	ratios	for	DSN	Doppler	data



As	mentioned	above,	the	DSN	Doppler	(TRK-2-34	Type	17)	data	type
observation	value	depends	upon	the	transponder	turn-around	ratio.	As	shown	in
the	tables	in	the	RunSimulator	and	RunEstimator	help,	for	ramped	Doppler
data,	GMAT	only	allows	for	the	use	of	the	standard	S-band	(240/221)	and	X-
band	(880/749)	turn-around	ratios.	For	Doppler	data	where	a	ramp	table	is	not
used,	setting	the	Transponder	turn-around	ratio	will	correctly	model	the
Doppler	data.	GMAT	cannot	currently	accommodate	custom	turn-around	ratios
for	ramped	Doppler	data.



Examples
%	Create	and	configure	a	Transponder	object

Create	Spacecraft	Sat1;

Create	Antenna	HGA;

Create	Transponder	Transponder1;

Transponder1.PrimaryAntenna		=	HGA;

Transponder1.HardwareDelay			=	0.0;

Transponder1.TurnAroundRatio	=	'240/221';

Sat1.AddHardware	=	{HGA,	Transponder1};

BeginMissionSequence;



ChemicalThruster
ChemicalThruster	—	A	chemical	thruster	model



Description
The	ChemicalThruster	resource	is	a	model	of	a	chemical	thruster	which	uses
polynomials	to	model	the	thrust	and	specific	impulse	as	a	function	of	tank
pressure	and	temperature.	The	ChemicalThruster	model	also	allows	you	to
specify	properties	such	as	a	duty	cycle	and	scale	factor	and	to	connect	a
ChemicalThruster	with	a	ChemicalTank.	You	can	flexibly	define	the	direction
of	the	thrust	by	specifying	the	thrust	components	in	coordinate	systems	such	as
(locally	defined)	SpacecraftBody	or	LVLH,	or	by	choosing	any	configured
CoordinateSystem	resource.

See	Also:	BeginFiniteBurn,ChemicalTank,FiniteBurn



Fields
The	constants	Ci	below	are	used	in	the	following	equation	to	calculate	thrust	(in
Newtons),	FT,	as	a	function	of	pressure	P	(kPa)	and	temperature	T	(Celsius).

The	constants	Ki	below	are	used	in	the	following	equation	to	calculate	ISP	(in
seconds),	Isp,	as	a	function	of	pressure	P	(kPa)	and	temperature	T	(Celsius).

Field Description

Axes
Allows	the	user	to	define	a	spacecraft	centered	set	of	axes
for	the	ChemicalThruster.	This	field	cannot	be	modified
in	the	Mission	Sequence

Data	Type Reference	Array

Allowed
Values

VNB,	LVLH,	MJ2000Eq,
SpacecraftBody

Access set

Default	Value VNB

Units N/A



Interfaces GUI,	script

CoordinateSystem
Determines	what	coordinate	system	the	orientation
parameters,	ThrustDirection1,	ThrustDirection2,	and
ThrustDirection3	refer	to.	This	field	cannot	be	modified
in	the	Mission	Sequence.

Data
Type

Reference	Array

Allowed
Values

Local,	EarthMJ2000Eq,	EarthMJ2000Ec,
EarthFixed,	or	any	user	defined	system

Access set

Default
Value

Local

Units N/A

Interfaces GUI,	script

C1
Thrust	coefficient.

Data	Type Real



Allowed	Values Real	Number

Access set,	get

Default	Value 10

Units N

Interfaces GUI,	script

C2
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units N/kPa

Interfaces GUI,	script



C3 Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units N

Interfaces GUI,	script

C4
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0



Units N/kPa

Interfaces GUI,	script

C5
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units N/kPa2

Interfaces GUI,	script

C6
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number



Access set,	get

Default	Value 0

Units N/kPaC7

Interfaces GUI,	script

C7
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None

Interfaces GUI,	script

C8
Thrust	coefficient.



Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units N/kPaC9

Interfaces GUI,	script

C9
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None



Interfaces GUI,	script

C10
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units N/kPaC11

Interfaces GUI,	script

C11
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get



Default	Value 0

Units None

Interfaces GUI,	script

C12
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units N

Interfaces GUI,	script

C13
Thrust	coefficient.

Data	Type Real



Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None

Interfaces GUI,	script

C14
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units 1/kPa

Interfaces GUI,	script

C15



Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None

Interfaces GUI,	script

C16
Thrust	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units 1/kPa



Interfaces GUI,	script

DecrementMass
Flag	which	determines	if	the	FuelMass	is	to	be
decremented	as	it	used.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value false

Units N/A

Interfaces GUI,	script

DutyCycle
Fraction	of	time	that	the	thrusters	are	on	during	a
maneuver.	The	thrust	applied	to	the	spacecraft	is	scaled
by	this	amount.	Note	that	this	scale	factor	also	affects
mass	flow	rate.

Data	Type Real	Number



Allowed	Values 0	<=	Real	<=	1

Access set,	get

Default	Value 1

Units N/A

Interfaces GUI,	script

GravitationalAccel
The	gravitational	acceleration.

Data	Type Real	Number

Allowed	Values Real	>	0

Access set,	get

Default	Value 9.81

Units m/s2

Interfaces GUI,	script

K1



ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 300

Units s

Interfaces GUI,	script

K2
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units s/kPa



Interfaces GUI,	script

K3
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units s

Interfaces GUI,	script

K4
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get



Default	Value 0

Units s/kPa

Interfaces GUI,	script

K5
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units s/kPa2

Interfaces GUI,	script

K6
ISP	coefficient.

Data	Type Real



Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units s/kPaC7

Interfaces GUI,	script

K7
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None

Interfaces GUI,	script

K8



ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units s/kPaC9

Interfaces GUI,	script

K9
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None



Interfaces GUI,	script

K10
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units s/kPaC11

Interfaces GUI,	script

K11
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get



Default	Value 0

Units None

Interfaces GUI,	script

K12
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units s

Interfaces GUI,	script

K13
ISP	coefficient.

Data	Type Real



Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None

Interfaces GUI,	script

K14
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units 1/kPa

Interfaces GUI,	script

K15



ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units None

Interfaces GUI,	script

K16
ISP	coefficient.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 0

Units 1/kPa



Interfaces GUI,	script

MixRatio
The	mixture	ratio	employed	to	draw	fuel	from	multiple
tanks.	For	example,	if	there	are	two	tanks	and	MixRatio
is	set	to	[2	1],	then	twice	as	much	fuel	will	be	drawn	from
tank	one	as	from	tank	2	in	the	Tank	list.	Note,	if	a
MixRatio	is	not	supplied,	fuel	is	drawn	from	tanks	in
equal	amounts,	(the	MixRatio	is	set	to	a	vector	of	ones
the	same	length	as	the	Tank	list).

Data
Type

Array

Allowed
Values

Array	of	real	numbers	with	same	length	as
number	of	tanks	in	the	Tank	array

Access set

Default
Value

[1]

Units N/A

Interfaces GUI,	script

Origin
This	field,	used	in	conjunction	with	the	Axes	field,	allows



the	user	to	define	a	spacecraft	centered	set	of	axes	for	the
ChemicalThruster.	Origin	has	no	affect	when	a	Local
coordinate	system	is	used	and	the	Axes	are	set	to
MJ2000Eq	or	SpacecraftBody.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data
Type

Reference	Array

Allowed
Values

Sun,	Mercury,	Venus,	Earth,	Luna,
Mars,Jupiter,	Saturn,	Uranus,	Neptune,
Pluto

Access set

Default
Value

Earth

Units N/A

Interfaces GUI,	script

Tanks
A	list	of	ChemicalTank(s)	from	which	the	thruster	draws
propellant	from.	In	the	script,	an	empty	list,	e.g.,
Thruster1.Tank	=	{},	is	NOT	allowed.	Via	the	script,	if
you	wish	to	indicate	that	no	tank	is	associated	with	a
thruster,	do	not	include	commands	such	as
Thruster1.Tank	=	...	in	your	script.	This	field	cannot
be	modified	in	the	Mission	Sequence.



Data	Type Reference	Array

Allowed	Values User	defined	list	of	tank(s).

Access set

Default	Value N/A

Units N/A

Interfaces GUI,	script

ThrustDirection1
X	component	of	the	spacecraft	thrust	vector	direction.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 1

Units N/A



Interfaces GUI,	script

ThrustDirection2
Y	component	of	the	spacecraft	thrust	vector	direction.

Data	Type Real

Allowed	Values Real	Number

Access set,	get

Default	Value 1

Units N/A

Interfaces GUI,	script

ThrustDirection3
Z	component	of	the	spacecraft	thrust	vector	direction.

Data	Type Real

Allowed	Values Real	Number

Access set,	get



Default	Value 0

Units N/A

Interfaces GUI,	script

ThrustScaleFactor
ThrustScaleFactor	is	a	scale	factor	that	is	multiplied	by
the	thrust	vector,	for	a	given	thruster,	before	the	thrust
vector	is	added	into	the	total	acceleration.	Note	that	the
value	of	this	scale	factor	does	not	affect	the	mass	flow
rate.

Data	Type Real	Number

Allowed	Values Real	>=	0

Access set,	get

Default	Value 1

Units N/A

Interfaces GUI,	script



Interactions

Command	or	Resource Description

BeginFiniteBurn/EndFiniteBurn
command Use	these	commands,	which	require	a

Spacecraft	and	a	FiniteBurn	name	as
input,	to	implement	a	finite	burn.

ChemicalTank	resource
This	resource	contains	the	fuel	used	to
power	the	ChemicalThruster	specified	by
the	FiniteBurn	resource.

FiniteBurn	resource
When	using	the
BeginFiniteBurn/EndFiniteBurn
commands,	you	must	specify	which
FiniteBurn	resource	to	implement.	The
FiniteBurn	resource	specifies	which
ChemicalThruster(s)	to	use	for	the	finite
burn.

Spacecraft	resource
When	using	the
BeginFiniteBurn/EndFiniteBurn
commands,	you	must	specify	which
Spacecraft	to	apply	the	finite	burn	to.

Propagate	command
In	order	to	implement	a	non-zero	finite
burn,	a	Propagate	statement	must	occurr
within	the	BeginFiniteBurn	and
EndFiniteBurn	statements.



GUI
The	ChemicalThruster	dialog	box	allows	you	to	specify	properties	of	a
ChemicalThruster	including	the	Coordinate	System	of	the	thrust	acceleration
direction	vector,	the	thrust	magnitude	and	Isp	coefficients,	and	choice	of
ChemicalTank.	The	layout	of	the	ChemicalThruster	dialog	box	is	shown
below.

When	configuring	the	Coordinate	System	field,	you	can	choose	between
existing	coordinate	systems	or	use	locally	defined	coordinate	systems.	The	Axes
field	is	only	active	if	Coordinate	System	is	set	to	Local.	The	Origin	field	is



only	active	if	Coordinate	System	is	set	to	Local	and	Axes	is	set	to	either	VNB
or	LVLH.

As	shown	below,	if	Decrement	Mass	is	checked,	then	you	can	input	the
gravitational	acceleration	value	used	to	calculate	fuel	use.	The	value	of	the
gravitational	acceleration	input	here	only	affects	fuel	use	and	does	not	affect	the
force	model.

Selecting	the	Edit	Thruster	Coef.	button	brings	up	the	following	dialog	box
where	you	may	input	the	coefficients	for	the	ChemicalThruster	polynomial.



Similarly,	clicking	the	Edit	Impulse	Coef.	button	brings	up	the	following	dialog
box	where	you	may	input	the	coefficients	for	the	specific	impulse	(ISP)
polynomial.





Remarks

Use	of	ChemicalThruster	Resource	in	Conjunction	With
Maneuvers

A	ChemicalThruster	resource	is	used	only	in	association	with	finite	maneuvers.
To	implement	a	finite	maneuver,	you	must	first	create	both	a	ChemicalTank	and
a	FiniteBurn	resource.	You	must	also	associate	a	ChemicalTank	with	the
ChemicalThruster	resource	and	you	must	associate	a	ChemicalThruster	with
the	FiniteBurn	resource.	The	finite	maneuver	is	implemented	using	the
BeginFiniteBurn/EndFiniteBurn	commands.	See	the
BeginFiniteBurn/EndFiniteBurn	command	documentation	for	worked
examples	on	how	the	ChemicalThruster	resource	is	used	in	conjunction	with
finite	maneuvers.

Thrust	and	ISP	Calculation

Unscaled	thrust,	FT,	and	Isp,	as	a	function	of	Pressure,	in	kPa,	and	Temperature,
in	degrees	Celsius,	are	calculated	using	the	following	polynomials.

The	thrust,	T,	output	in	Newtons,	is	scaled	by	the	Duty	Cycle	and	Thrust	Scale
Factor.	The	thrust	acceleration	direction	vector	(the	direction	of	the	actual
acceleration	not	the	thruster	nozzle)	is	given	by	ThrustDirection1-3	and	is
applied	in	the	input	Coordinate	System.	The	Isp	is	output	in	seconds.

The	mass	flow	rate	and	the	thrust	equations	are	shown	below	where	FT	and	Isp
are	defined	above,	fd	is	the	duty	cycle,	fs	is	the	thrust	scale	factor,	RiT	is	the
rotation	matrix	from	the	thrust	coordinate	system	to	the	inertial	system,	and	Td	is
the	unitized	thrust	direction.



Local	Coordinate	Systems

Here,	a	Local	coordinate	system	is	defined	as	one	that	we	configure	"locally"
using	the	ChemicalThruster	resource	interface	as	opposed	to	defining	a
coordinate	system	using	the	Coordinate	Systems	folder	in	the	Resources	Tree.

To	configure	a	local	coordinate	system,	you	must	specify	the	coordinate	system
of	the	input	thrust	acceleration	direction	vector,	ThrustDirection1-3.	If	you
choose	a	local	coordinate	system,	the	four	choices	available,	as	given	by	the
Axes	sub-field,	are	VNB,	LVLH,	MJ2000Eq,	and	SpacecraftBody.	VNB	or
Velocity-Normal-Binormal	is	a	non-inertial	coordinate	system	based	upon	the
motion	of	the	spacecraft	with	respect	to	the	Origin	sub-field.	For	example,	if	the
Origin	is	chosen	as	Earth,	then	the	X-axis	of	this	coordinate	system	is	the	along
the	velocity	of	the	spacecraft	with	respect	to	the	Earth,	the	Y-axis	is	along	the
instantaneous	orbit	normal	(with	respect	to	the	Earth)	of	the	spacecraft,	and	the
Z-axis	completes	the	right-handed	set.

Similarly,	Local	Vertical	Local	Horizontal	or	LVLH	is	also	a	non-inertial
coordinate	system	based	upon	the	motion	of	the	spacecraft	with	respect	to	the
Origin	sub-field.	Again,	if	we	choose	Earth	as	the	origin,	then	the	X-axis	of	this
coordinate	system	is	the	position	of	the	spacecraft	with	respect	to	the	Earth,	the
Z-axis	is	the	instantaneous	orbit	normal	(with	respect	to	the	Earth)	of	the
spacecraft,	and	the	Y-axis	completes	the	right-handed	set.

MJ2000Eq	is	the	J2000-based	Earth-centered	Earth	mean	equator	inertial
coordinate	system.	Note	that	the	Origin	sub-field	is	not	needed	to	define	this
coordinate	system.

SpacecraftBody	is	the	attitude	system	of	the	spacecraft.	Since	the	thrust	is
applied	in	this	system,	GMAT	uses	the	attitude	of	the	spacecraft,	a	spacecraft
attribute,	to	determine	the	inertial	thrust	direction.	Note	that	the	Origin	sub-field
is	not	needed	to	define	this	coordinate	system.



Caution	When	Setting	the	ChemicalTank	Temperature	and
Reference	Temperature

Note	that	both	the	thrust	and	ISP	polynomials	have	terms	that	involve	the	ratio,
(Temperature	/	Reference	Temperature).	For	GMAT,	this	temperature	ratio	is
calculated	in	Celsius	units,	and	thus,	there	is	a	discontinuity	when	the	Reference
Temperature	is	equal	to	zero.	For	this	reason,	GMAT	requires	that	the	absolute
value	of	the	input	Reference	Temperature	is	greater	than	0.01.

Note	also	that	the	form	of	the	Thrust	and	ISP	polynomial	has	some	behavior,
when	the	Reference	Temperature	is	near	0	degrees	Centigrade,	that	you	need	to
be	aware	of.	Because	of	the	previously	mentioned	discontinuity,	the	polynomials
do	not	vary	smoothly	when	the	Reference	Temperature	is	near	zero.	For
example,	consider	the	two	Reference	Temperatures,	-0.011	and	+	0.011	degrees
Centigrade.	These	two	temperatures	are	close	to	each	other	in	value	and	one
might	expect	that	they	have	roughly	similar	thrust	and	ISP	values.	This	may	not
be	the	case,	depending	upon	your	choice	of	thrust/ISP	coefficients,	since	the
temperature	ratios	associated	with	the	two	Reference	Temperatures	have	the
same	magnitude	but	different	signs.	You	may	choose	to	set	the	input	Reference
Temperature	equal	to	the	input	Temperature,	thus	eliminating	any	dependence	of
thrust	and	ISP	with	temperature	when	using	the	currently	implemented
ChemicalTank	model	based	upon	Boyle’s	Law	where	the	fuel	Temperature	does
not	change	as	fuel	is	depleted.



Examples
Create	a	default	ChemicalTank	and	a	ChemicalThruster	that	allows	for	fuel
depletion,	assign	the	ChemicalThruster	the	default	ChemicalTank,	and	attach
both	the	ChemicalThruster	and	ChemicalTank	to	a	Spacecraft.

%		Create	the	ChemicalTank	Resource

Create	ChemicalTank	FuelTank1

FuelTank1.AllowNegativeFuelMass	=	false

FuelTank1.FuelMass	=	756

FuelTank1.Pressure	=	1500

FuelTank1.Temperature	=	20

FuelTank1.RefTemperature	=	20

FuelTank1.Volume	=	0.75

FuelTank1.FuelDensity	=	1260

FuelTank1.PressureModel	=	PressureRegulated

%		Create	a	ChemicalThruster,	that	allows	fuel	depletion,	and	assign	it	a	ChemicalTank

Create	ChemicalThruster	Thruster1

Thruster1.CoordinateSystem	=	Local

Thruster1.Origin	=	Earth

Thruster1.Axes	=	VNB

Thruster1.ThrustDirection1	=	1

Thruster1.ThrustDirection2	=	0

Thruster1.ThrustDirection3	=	0

Thruster1.DutyCycle	=	1

Thruster1.ThrustScaleFactor	=	1

Thruster1.DecrementMass	=	true

Thruster1.Tank	=	{FuelTank1}

Thruster1.GravitationalAccel	=	9.810000000000001

Thruster1.C1	=	10

Thruster1.C2	=	0

Thruster1.C3	=	0

Thruster1.C4	=	0

Thruster1.C5	=	0

Thruster1.C6	=	0

Thruster1.C7	=	0

Thruster1.C8	=	0

Thruster1.C9	=	0

Thruster1.C10	=	0

Thruster1.C11	=	0

Thruster1.C12	=	0

Thruster1.C13	=	0

Thruster1.C14	=	0



Thruster1.C15	=	0

Thruster1.C16	=	0

Thruster1.K1	=	300

Thruster1.K2	=	0

Thruster1.K3	=	0

Thruster1.K4	=	0

Thruster1.K5	=	0

Thruster1.K6	=	0

Thruster1.K7	=	0

Thruster1.K8	=	0

Thruster1.K9	=	0

Thruster1.K10	=	0

Thruster1.K11	=	0

Thruster1.K12	=	0

Thruster1.K13	=	0

Thruster1.K14	=	0

Thruster1.K15	=	0

Thruster1.K16	=	0

%		Add	the	ChemicalThruster	and	the	ChemicalTank	to	a	Spacecraft

Create	Spacecraft	DefaultSC

DefaultSC.Tanks	=	{FuelTank1}

DefaultSC.Thrusters	=	{Thruster1}

BeginMissionSequence

Create	two	ChemicalTanks	(called	aTank1	and	aTank2)	and	a
ChemicalThruster,	attach	both	the	ChemicalThruster	and	ChemicalTanks	to
a	Spacecraft,	and	configure	the	thruster	to	draw	four	times	as	much	fuel	from
aTank1	than	aTank2.

%		Create	the	ChemicalTank	Resource

Create	Spacecraft	aSat

aSat.Tanks	=	{aTank1,aTank2}

aSat.Thrusters	=	{aThruster}

%	Create	two	tanks

Create	ChemicalTank	aTank1	aTank2

%		Configure	thruster	to	draw	four	times	as	much	fuel	

%		from	aTank1	than	aTank2

Create	ChemicalThruster	aThruster

aThruster.Tank	=	{aTank1,aTank2}

aThruster.MixRatio	=	[4	1]

BeginMissionSequence



Variable
Variable	—	A	user-defined	numeric	variable



Description
The	Variable	resource	is	used	to	store	a	single	numeric	value	for	use	by
commands	in	the	Mission	Sequence.	It	can	be	used	in	place	of	a	literal	numeric
value	in	most	commands.	Variable	resources	are	initialized	to	zero	on	creation,
and	can	be	assigned	using	literal	numeric	values	or	(in	the	Mission	Sequence)
Variable	resources,	Array	resource	elements,	resource	parameters	of	numeric
type,	or	Equation	commands	that	evaluate	to	scalar	numeric	values.

See	Also:	Array,	String



Fields
The	Variable	resource	has	no	fields;	instead,	the	resource	itself	is	set	to	the
desired	value.

Field Description
value

The	value	of	the	variable.

Data	Type Real	number

Allowed	Values -∞	<	value	<	∞

Access set,	get

Default	Value 0.0

Units N/A

Interfaces GUI,	script



GUI

The	GMAT	GUI	lets	you	create	multiple	Variable	resources	at	once	without
leaving	the	window.	To	create	a	Variable:

1.	 In	the	Variable	Name	box,	type	the	desired	name	of	the	variable.
2.	 In	the	Variable	Value	box,	type	the	initial	value	of	the	variable.	This	is

required	and	must	be	a	literal	numeric	value.
3.	 Click	the	=>	button	to	create	the	variable	and	add	it	to	the	list	on	the	right.

You	can	create	multiple	Variable	resources	this	way.	To	edit	an	existing	variable
in	this	window,	click	it	in	the	list	on	the	right	and	edit	the	value.	You	must	click
the	=>	button	again	to	save	your	changes.

You	can	also	double-click	an	existing	variable	in	the	resources	tree	in	the	main



GMAT	window.	This	opens	the	Variable	properties	box	above	that	allows	you	to
edit	the	value	of	that	individual	variable.



Remarks
GMAT	Variable	resources	store	a	single	numeric	value.	Internally,	the	value	is
stored	as	a	double-precision	real	number,	regardless	of	whether	or	not	a
fractional	portion	is	present.



Examples
Creating	a	variable	and	assigning	it	a	literal	value:

Create	ReportFile	aReport

Create	Variable	aVar

aVar	=	12

BeginMissionSequence

Report	aReport	aVar

Using	variables	in	Mission	Sequence	commands:

Create	Spacecraft	aSat

Create	ForceModel	anFM

Create	ReportFile	aReport

Create	Propagator	aProp

aProp.FM	=	anFM

Create	Variable	i	step	totalDuration	nSteps

BeginMissionSequence

step	=	60

totalDuration	=	24*60^2					%	one	day

nSteps	=	totalDuration	/	step

%	Report	Keplerian	elements	every	60	seconds	for	one	day

For	i=1:nSteps

			Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	step}

			Report	aReport	aSat.TAIModJulian	aSat.SMA	aSat.ECC	aSat.INC	...

						aSat.RAAN	aSat.AOP	aSat.TA

EndFor



VF13ad
VF13ad	—	The	Sequential	Quadratic	Programming	(SQP)	optimizer,	VF13ad



Description
The	VF13ad	optimizer	is	a	SQP-based	Nonlinear	Programming	solver	available
in	the	Harwell	Subroutine	Library.	VF13ad	performs	nonlinear	constrained
optimization	and	supports	both	linear	and	nonlinear	constraints.	To	use	this
solver,	you	must	configure	the	solver	options	including	convergence	criteria,
maximum	iterations,	and	gradient	computation	method.	In	the	mission	sequence,
you	implement	an	optimizer	such	as	VF13ad	by	using	an
Optimize/EndOptimize	sequence.	Within	this	sequence,	you	define
optimization	variables	by	using	the	Vary	command,	and	define	cost	and
constraints	by	using	the	Minimize	and	NonlinearConstraint	commands
respectively.

This	resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	FminconOptimizer,Optimize,Vary,	NonlinearConstraint,	Minimize



Fields

Field Description

FeasibilityTolerance
Specifies	the	accuracy	to	which	you	want	constraints
to	be	satisfied.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e-3

Units None

Interfaces GUI,	script

MaximumIterations
Specifies	the	maximum	allowable	number	of	nominal
passes	through	the	Solver	Control	Sequence.

Data	Type Integer

Allowed	Values Integer	>	0



Access set

Default	Value 200

Units None

Interfaces GUI,	script

ReportFile
Contains	the	path	and	file	name	of	the	report	file.

Data	Type String

Allowed	Values Any	user-defined	file	name

Access set

Default	Value VF13adVF13ad1.data

Units None

Interfaces GUI,	script

ReportStyle
Determines	the	amount	and	type	of	data	written	to	the
message	window	and	to	the	report	specified	by	field
ReportFile	for	each	iteration	of	the	solver	(When



ShowProgress	is	true).		Currently,	the	Normal,
Debug,	and	Concise	options	contain	the	same
information:	the	values	for	the	control	variables,	the
constraints,	and	the	objective	function.		In	addition	to
this	information,	the	Verbose	option	also	contains
values	of	the	optimizer-scaled	control	variables.	

Data	Type String

Allowed	Values Normal,	Concise,	Verbose,	Debug

Access set

Default	Value Normal

Units None

Interfaces GUI,	script

ShowProgress
Determines	whether	data	pertaining	to	iterations	of	the
solver	is	both	displayed	in	the	message	window	and
written	to	the	report	specified	by	the	ReportFile	field.
When	ShowProgress	is	true,	the	amount	of
information	contained	in	the	message	window	and
written	in	the	report	is	controlled	by	the	ReportStyle
field.

Data	Type Boolean



Allowed	Values true,	false

Access set

Default	Value true

Units None

Interfaces GUI,	script

Tolerance
Specifies	the	measure	the	optimizer	will	use	to
determine	when	an	optimal	solution	has	been	found
based	on	the	value	of	the	goal	set	in	a	Minimize
command.	

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e-5

Units None



Interfaces GUI,	script

UseCentralDifferences
Allows	you	to	choose	whether	or	not	to	use	central
differencing	for	numerically	determining	the
derivative.	For	the	default,	'false'	value	of	this	field,
forward	differencing	is	used	to	calculate	the
derivative.	

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value false

Units None

Interfaces GUI,	script



GUI
The	VF13ad	dialog	box	allows	you	to	specify	properties	of	a	VF13ad	such	as
maximum	iterations,	cost	function	tolerance,	feasibility	tolerance,	choice	of
reporting	options,	and	choice	of	whether	or	not	to	use	the	central	difference
derivative	method.

To	create	a	VF13ad	resource,	navigate	to	the	Resources	tree,	expand	the
Solvers	folder,	highlight	and	then	right-click	on	the	Optimizers	sub-folder,
point	to	Add	and	then	select	VF13ad.	This	will	create	a	new	VF13ad	resource,
VF13ad1.	Double-click	on	VF13ad1	to	bring	up	the	VF13ad	dialog	box	shown
below.



Remarks

VF13ad	Optimizer	Availability

This	optimizer	is	not	included	as	part	of	the	nominal	GMAT	installation	and	is
only	available	if	you	have	created	and	installed	the	VF13ad	plug-in.

Resource	and	Command	Interactions

The	VF13ad	resource	can	only	be	used	in	the	context	of	optimization-type
commands.	Please	see	the	documentation	for	Optimize,	Vary,
NonlinearConstraint,	and	Minimize	for	more	information	and	worked
examples.



Examples
Create	a	VF13ad	resource	named	VF13ad1.

Create	VF13ad	VF13ad1

VF13ad1.ShowProgress	=	true

VF13ad1.ReportStyle	=	Normal

VF13ad1.ReportFile	=	'VF13adVF13ad1.data'

VF13ad1.MaximumIterations	=	200

VF13ad1.Tolerance	=	1e-005

VF13ad1.UseCentralDifferences	=	false

VF13ad1.FeasibilityTolerance	=	1e-003						

For	an	example	of	how	a	VF13ad	resource	can	be	used	within	an	Optimization
sequence,	see	the	Optimize	command	examples.



XYPlot
XYPlot	—	Plots	data	onto	the	X	and	Y	axes	of	a	graph



Description
The	XYPlot	resource	allows	you	to	plot	data	onto	the	X	and	Y	axis	of	the	graph.
You	can	choose	to	plot	any	number	of	parameters	as	a	function	of	a	single
independent	variable.	GMAT	allows	you	to	plot	user-defined	variables,	array
elements,	or	spacecraft	parameters.	You	can	create	multiple	XYPlots	by	using
either	the	GUI	or	script	interface	of	GMAT.	GMAT	also	provides	the	option	of
when	to	plot	and	stop	plotting	data	to	a	XYPlot	through	the	Toggle	On/Off
command.	See	the	Remarks	section	below	for	detailed	discussion	of	the
interaction	between	an	XYPlot	resource	and	the	Toggle	command.	GMAT’s
Spacecraft	and	XYPlot	resources	also	interact	with	each	other	throughout	the
entire	mission	duration.	Discussion	of	the	interaction	between	Spacecraft	and
XYPlot	resources	can	also	be	found	in	the	Remarks	section.

See	Also:	Toggle,	Spacecraft



Fields

Field Description

Maximized
Allows	the	user	to	maximize	the	XYPlot	window.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values true,false

Access set

Default	Value false

Units N/A

Interfaces script

UpperLeft
Allows	the	user	to	pan	the	XYPlot	display	window	in	any
direction.	First	value	in	[0	0]	matrix	helps	to	pan	the
XYPlot	window	horizontally	and	second	value	helps	to
pan	the	window	vertically.	This	field	cannot	be	modified	in
the	Mission	Sequence.

Data	Type Real	array



Allowed	Values Any	Real	number

Access set

Default	Value [0	0]

Units N/A

Interfaces script

RelativeZOrder
Allows	the	user	to	select	which	XYPlot	window	to	display
first	on	the	screen.	The	XYPlot	with	lowest
RelativeZOrder	value	will	be	displayed	last	while	XYPlot
with	highest	RelativeZOrder	value	will	be	displayed	first.
This	field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Integer

Allowed	Values Integer	≥	0

Access set

Default	Value 0

Units N/A



Interfaces script

ShowGrid
When	the	ShowGrid	field	is	set	to	True,	then	a	grid	is
drawn	on	an	xy-plot.	When	the	ShowGrid	field	is	set	to
False,	then	a	grid	is	not	drawn.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data	Type Boolean

Allowed	Values True,False

Access set

Default	Value True

Units N/A

Interfaces GUI,	script

ShowPlot
Allows	the	user	to	turn	off	a	plot	for	a	particular	run,
without	deleting	the	XYPlot	resource,	or	removing	it	from
the	script.	If	you	select	True,	then	the	plot	will	be	shown.
If	you	select	False,	then	the	plot	will	not	be	shown.	This
field	cannot	be	modified	in	the	Mission	Sequence.

Data	Type Boolean



Allowed	Values True,False

Access set

Default	Value True

Units N/A

Interfaces GUI,	script

Size
Allows	the	user	to	control	the	display	size	of	XYPlot
window.	First	value	in	[0	0]	matrix	controls	horizonal	size
and	second	value	controls	vertical	size	of	XYPlot	display
window.	This	field	cannot	be	modified	in	the	Mission
Sequence.

Data	Type Real	array

Allowed	Values Any	Real	number

Access set

Default	Value [	0	0	]

Units N/A



Interfaces script

SolverIterations
This	field	determines	whether	or	not	data	associated	with
perturbed	trajectories	during	a	solver	(Targeter,	Optimize)
sequence	is	displayed	in	the	XYPlot.	When
SolverIterations	is	set	to	All,	all	perturbations/iterations
are	plotted	in	the	XYPlot.	When	SolverIterations	is	set	to
Current,	only	the	current	solution	or	perturbation	is
plotted	in	XYPlot.	When	SolverIterations	is	set	to	None,
only	the	final	nominal	run	is	plotted	on	the	XYPlot.

Data	Type Enumeration

Allowed	Values All,	Current,	None

Access set

Default	Value Current

Units N/A

Interfaces GUI,	script

XVariable
Allows	the	user	to	define	the	independent	variable	for	an
XYPlot.	Only	one	variable	can	be	defined	as	an
independent	variable.	For	example,	the	line
MyXYPlot.XVariable	=	DefaultSC.A1ModJulian	sets	the
independent	variable	to	be	the	epoch	of	DefaultSC	in	the
A1	time	system	and	modified	Julian	format.	This	field



cannot	be	modified	in	the	Mission	Sequence.

Data
Type

Resource	reference

Allowed
Values

Variable,	Array,	array	element,	Spacecraft
parameter	that	evaluates	to	a	real	number

Access get,	set

Default
Value

DefaultSC.A1ModJulian

Units N/A

Interfaces GUI,	script

YVariable
Allows	the	user	to	add	dependent	variables	to	an	xy-plot.
All	dependent	variables	are	plotted	on	the	y-axis	vs	the
independent	variable	defined	by	XVariable	field.	The
dependent	variable(s)	should	always	be	included	in	curly
braces.	For	example,	MyXYPlot.YVariables	=
{DefaultSC.EarthMJ2000Eq.Y,

DefaultSC.EarthMJ2000Eq.Z}.	This	field	cannot	be
modified	in	the	Mission	Sequence.

Data
Type

Reference	array



Allowed
Values

Any	user	variable,	array	element,	or
spacecraft	parameter	that	evaluates	to	a	real
number

Access get,	set

Default
Value

DefaultSC.EarthMJ2000Eq.X

Units N/A

Interfaces GUI,	script



GUI
The	figure	below	shows	the	default	settings	for	the	XYPlot	resource:



Remarks

Behavior	when	using	XYPlot	Resource	&	Toggle	Command

The	XYPlot	resource	plots	data	onto	the	X	and	Y	axis	of	the	graph	at	each
propagation	step	of	the	entire	mission	duration.	If	you	want	to	report	data	to	an
XYPlot	at	specific	points	in	your	mission,	then	a	Toggle	On/Off	command	can
be	inserted	into	the	mission	sequence	to	control	when	the	XYPlot	is	to	plot	data.
When	Toggle	Off	command	is	issued	for	a	XYPlot,	no	data	is	plotted	onto	the	X
and	Y	axis	of	the	graph	until	a	Toggle	On	command	is	issued.	Similarly	when	a
Toggle	On	command	is	used,	data	is	plotted	onto	the	X	and	Y	axis	at	each
integration	step	until	a	Toggle	Off	command	is	used.

Below	is	an	example	script	snippet	that	shows	how	to	use	Toggle	Off	and
Toggle	On	commands	while	using	the	XYPlot	resource.	Spacecraft’s	position
magnitude	and	semi-major-axis	are	plotted	as	a	function	of	time.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aXYPlot

aXYPlot.XVariable	=	aSat.ElapsedDays

aXYPlot.YVariables	=	{aSat.Earth.RMAG,	aSat.Earth.SMA}

BeginMissionSequence

Toggle	aXYPlot	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

Toggle	aXYPlot	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

Behavior	when	using	XYPlot	&	Spacecraft	resources

Spacecraft	resource	contains	information	about	spacecraft’s	orbit,	its	attitude,
physical	parameters	(such	as	mass	and	drag	coefficient)	and	any	attached
hardware,	including	thrusters	and	fuel	tanks.	Spacecraft	resource	interacts	with
XYPlot	throughout	the	entire	mission	duration.	The	data	retrieved	from	the
spacecraft	is	what	gets	plotted	onto	the	X	and	Y	axis	of	the	graph	at	each
propagation	step	of	the	entire	mission	duration.



Behavior	When	Specifying	Empty	Brackets	in	XYPlot's
YVariables	Field

When	using	XYPlot.YVariables	field,	GMAT	does	not	allow	brackets	to	be	left
empty.	The	brackets	must	always	be	populated	with	values	that	you	wish	to	plot
against	a	variable	in	XVariable	field.	If	brackets	are	left	empty,	then	GMAT
throws	in	an	exception.	Below	is	a	sample	script	snippet	that	shows	an	example
of	empty	brackets.	If	you	were	to	run	this	script,	then	GMAT	throws	in	an
execption	reminding	you	that	brackets	for	YVariables	field	cannot	be	left	empty.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aXYPlot

aXYPlot.XVariable	=	aSat.ElapsedDays

aXYPlot.YVariables	=	{}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

Behavior	when	Reporting	Data	in	Iterative	Processes

GMAT	allows	you	to	specify	how	data	is	plotted	onto	a	plot	during	iterative
processes	such	as	differential	correction	or	optimization.	The	SolverIterations
field	of	an	XYPlot	resource	supports	three	options	which	are	described	in	the
table	below:

SolverIterations
options Description

Current
Shows	only	current	iteration/perturbation	in	an	iterative
process	and	plots	current	iteration	to	a	plot.

All
Shows	all	iterations/perturbations	in	an	iterative	process	and
plots	all	iterations/perturbations	to	a	plot.

None
Shows	only	the	final	solution	after	the	end	of	an	iterative



process	and	plots	only	that	final	solution	to	the	plot.



Examples
Propagate	an	orbit	and	plot	the	spacecraft’s	altitude	as	a	function	of	time	at	every
integrator	step:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aXYPlot

aXYPlot.XVariable	=	aSat.ElapsedSecs

aXYPlot.YVariables	=	{aSat.Earth.Altitude}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

Plotting	data	during	an	iterative	process.	Notice	SolverIterations	field	is
selected	as	All.	This	means	all	iterations/perturbations	will	be	plotted.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ImpulsiveBurn	TOI

Create	DifferentialCorrector	aDC

Create	XYPlot	aXYPlot

aXYPlot.SolverIterations	=	All

aXYPlot.XVariable	=	aSat.ElapsedDays

aXYPlot.YVariables	=	{aSat.Earth.RMAG}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.Earth.Periapsis}

Target	aDC

	Vary	aDC(TOI.Element1	=	0.24,	{Perturbation	=	0.001,	Lower	=	0.0,	...

	Upper	=	3.14159,	MaxStep	=	0.5})

	Maneuver	TOI(aSat)

	Propagate	aProp(aSat)	{aSat.Earth.Apoapsis}

	Achieve	aDC(aSat.Earth.RMAG	=	42165)

EndTarget



Yukon
Yukon	—	The	Sequential	Quadratic	Programming	(SQP)	optimizer,	Yukon



Description
The	Yukon	optimizer	is	a	SQP-based	Non-Linear	Programming	solver	that	uses
an	active-set	line	search	algorithm	method	and	a	modified	BFGS	update	to
approximate	the	Hessian	matrix.

Yukon	performs	nonlinear	constrained	optimization	and	supports	both	linear	and
nonlinear	constraints.	To	use	this	solver,	you	must	configure	the	solver	options
including	convergence	criteria,	maximum	iterations,	and	gradient	computation
method.	In	the	mission	sequence,	you	implement	an	optimizer	such	as	Yukon	by
using	an	Optimize/EndOptimize	sequence.	Within	this	sequence,	you	define
optimization	variables	by	using	the	Vary	command,	and	define	cost	and
constraints	by	using	the	Minimize	and	NonlinearConstraint	commands
respectively.

This	resource	cannot	be	modified	in	the	Mission	Sequence.

See	Also:	FminconOptimizer,	VF13ad,	Optimize,Vary,	NonlinearConstraint,
Minimize



Fields

Field Description

FeasibilityTolerance
The	tolerance	on	the	maximum	non-dimensional
constraint	violation	that	must	be	satisfied	for
convergence.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e-4

Units None

Interfaces GUI,	script

FunctionTolerance
The	tolerance	on	the	change	in	the	cost	function
value	to	trigger	convergence.	If	the	change	in	the
cost	function	from	one	iteration	to	the	next	is	less
than	FunctionTolerance,	and	the	maximum	(non-
dimensional)	constraint	violation	is	less	than
OptimalityTolerance,	then	the	algorithm
terminates.



Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e-4

Units None

Interfaces GUI,	script

HessianUpdateMethod
The	method	used	to	approximate	the	Hessian	of	the
Lagrangian.	These	methods	are	based	on	the	BFGS
but	are	more	robust	to	possible	numerical	issues
that	can	occur	using	BFGS	updates	with	finite
precision	arithmetic.

Data	Type String

Allowed
Values

DampedBFGS,
SelfScaledBFGS

Access set

Default	Value SelfScaledBFGS



Units None

Interfaces GUI,	script

MaximumElasticWeight
The	maximum	elastic	weight	allowed	when
attempting	to	minimize	constraint	infeasiblities	if
the	problem	apperas	to	be	infeasible.	When
possible	infeasibility	is	detected,	the	elastic	weight
is	initialized	to	zero,	and	increases	by	a	factor	of	10
for	every	failed	iterations,	until	the
MaximumElasticWeight	setting	is	reached	and	the
algorithm	terminates.

Data	Type Integer

Allowed	Values Integer	>	0

Access set

Default	Value 10000

Units None

Interfaces GUI,	script

MaximumFunctionEvals
Number	of	passes	through	the	control	sequence
before	termination.



Data	Type Integer

Allowed	Values Integer	>	0

Access set

Default	Value 1000

Units None

Interfaces GUI,	script

MaximumIterations
The	maximum	number	of	optimizer	iterations
allowed	before	termination.

Data	Type Integer

Allowed	Values Integer	>	0

Access set

Default	Value 200

Units None



Interfaces GUI,	script

OptimalityTolerance
The	tolerance	on	the	change	in	the	gradient	of	the
Lagrangian	to	trigger	convergence.	If	the	gradient
of	the	Lagrangian	is	less	than	FeasibilityTolerance
and	the	maximum	(non-dimensional)	constraint
violation	is	less	than	Optimality	Tolerance,	then
the	algorithm	terminates.

Data	Type Real

Allowed	Values Real	>	0

Access set

Default	Value 1e-4

Units None

Interfaces GUI,	script

ReportFile
Contains	the	path	and	file	name	of	the	report	file
containing	iteration	adn	convergence	information.

Data	Type String



Allowed	Values Any	user-defined	file	name

Access set

Default	Value VF13adVF13ad1.data

Units None

Interfaces GUI,	script

ReportStyle
Determines	the	amount	and	type	of	data	written	to
the	message	window	and	to	the	report	specified	by
field	ReportFile	for	each	iteration	of	the	solver
(When	ShowProgress	is	true).		Currently,	the
Normal,	Debug,	and	Concise	options	contain	the
same	information:	the	values	for	the	control
variables,	the	constraints,	and	the	objective
function.		In	addition	to	this	information,	the
Verbose	option	also	contains	values	of	the
optimizer-scaled	control	variables	and	the
constraint	Jacobian.	The	constraint	Jacobian	values
are	useful	when	scaling	optimization	problems.	See
the	Remarks	section	for	more	information.

Data	Type String

Allowed
Values

Normal,	Concise,	Verbose,
Debug



Access set

Default	Value Normal

Units None

Interfaces GUI,	script

ShowProgress
Determines	whether	data	pertaining	to	iterations	of
the	solver	is	both	displayed	in	the	message	window
and	written	to	the	report	specified	by	the
ReportFile	field.	When	ShowProgress	is	true,	the
amount	of	information	contained	in	the	message
window	and	written	in	the	report	is	controlled	by
the	ReportStyle	field.

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value true

Units None

Interfaces GUI,	script



UseCentralDifferences
Allows	you	to	choose	whether	or	not	to	use	central
differencing	for	numerically	determining	the
derivative.	For	the	default,	'false'	value	of	this	field,
forward	differencing	is	used	to	calculate	the
derivative.	

Data	Type Boolean

Allowed	Values true,	false

Access set

Default	Value false

Units None

Interfaces GUI,	script



GUI
The	Yukon	dialog	box	allows	you	to	specify	properties	of	a	Yukon	such	as	as
maximum	iterations,	cost	function	tolerance,	feasibility	tolerance,	choice	of
reporting	options,	and	choice	of	whether	or	not	to	use	the	central	difference
derivative	method.

To	create	a	Yukon	resource,	navigate	to	the	Resources	tree,	expand	the	Solvers
folder,	highlight	and	then	right-click	on	the	Optimizers	sub-folder,	point	to	Add
and	then	select	Yukon.	This	will	create	a	new	Yukon	resource,	Yukon1.	Double-
click	on	Yukon1	to	bring	up	the	Yukon	dialog	box	shown	below.



Remarks

Yukon	Optimizer	Availability

This	optimizer	is	distributed	in	the	public	and	internal	distribution.

Resource	and	Command	Interactions

The	Yukon	resource	can	only	be	used	in	the	context	of	optimization-type
commands.	Please	see	the	documentation	for	Optimize,	Vary,
NonlinearConstraint,	and	Minimize	for	more	information	and	worked
examples.



Examples
Create	a	Yukon	resource	named	Yukon1.

Create	Yukon	Yukon1

GMAT	Yukon1.ShowProgress	=	true;

GMAT	Yukon1.ReportStyle	=	Normal;

GMAT	Yukon1.ReportFile	=	'YukonYukon1.data';

GMAT	Yukon1.MaximumIterations	=	200;

GMAT	Yukon1.UseCentralDifferences	=	false;

GMAT	Yukon1.FeasibilityTolerance	=	0.0001;

GMAT	Yukon1.HessianUpdateMethod	=	SelfScaledBFGS;

GMAT	Yukon1.MaximumFunctionEvals	=	1000;

GMAT	Yukon1.OptimalityTolerance	=	0.0001;

GMAT	Yukon1.FunctionTolerance	=	0.0001;

GMAT	Yukon1.MaximumElasticWeight	=	10000;						

Below	is	a	simple	optimization	example	with	a	nonlinear	constraint	configured
to	use	the	Yukon	optimizer.

%------	Create	and	Setup	the	Optimizer

Create	Yukon	NLPSolver;

%------	Arrays,	Variables,	Strings

Create	Variable	X1	X2	J	G;

%------	Mission	Sequence

BeginMissionSequence;

Optimize	NLPSolver	{SolveMode	=	Solve,	ExitMode	=	DiscardAndContinue};

			

			%		Vary	the	independent	variables

			Vary	'Vary	X1'	NLPSolver(X1	=	0,	{Perturbation	=	0.0000001});

			Vary	'Vary	X2'	NLPSolver(X2	=	0,	{Perturbation	=	0.0000001});

			

			%		The	cost	function	and	Minimize	command

			GMAT	'Compute	Cost	(J)'	J	=	(	X1	-	2	)^2	+	(	X2	-	2	)^2;

			Minimize	'Minimize	Cost	(J)'	NLPSolver(J);

			

			%		Calculate	constraint	and	use	NonLinearConstraint	command

			GMAT	'Compute	Constraint	(G)'	G	=	X2	+	X1;

			NonlinearConstraint	'G	=	8'	NLPSolver(G	=8);

EndOptimize;		%	For	optimizer	NLPSolver



				



Commands



Achieve
Achieve	—	Specify	a	goal	for	a	Target	sequence



Script	Syntax
Achieve	SolverName	(Goal	=	Arg1,	[{Tolerance	=	Arg2}])			



Description
The	Achieve	command	is	used	in	conjunction	with	the	Target	command	as	part
of	the	Target	sequence.	The	purpose	of	the	Achieve	command	is	to	define	a	goal
for	the	targeter	(currently,	the	differential	corrector	is	the	only	targeter	available
within	a	Target	sequence)	to	achieve.	To	configure	the	Achieve	command,	you
specify	the	goal	object,	its	corresponding	desired	value,	and	an	optional
tolerance	so	the	differential	corrector	can	find	a	solution.	The	Achieve	command
must	be	accompanied	and	preceded	by	a	Vary	command	in	order	to	assist	in	the
targeting	process.

See	Also:	DifferentialCorrector,	Target,	Vary



Options

Option Description

Arg1
Specifies	the	desired	value	for	the	Goal	after	the
DifferentialCorrector	has	converged.

Accepted	Data
Types

Array,	ArrayElement,	Variable,	String

Allowed	Values Real	Number,	Array	element,	or
Variable

Default	Value 42165

Required yes

Interfaces GUI,	script

Arg2
Convergence	tolerance	for	how	close	Goal	equals	Arg1

Accepted
Data	Types

Real	Number,	Array	element,	Variable,	or	any
user-defined	parameter	>	0

Allowed
Values

Real	Number,	Array	element,	Variable,	or	any
user-defined	parameter	>	0



Default
Value

0.1

Required no

Interfaces GUI,	script

Goal
Allows	you	to	select	any	single	element	user	defined	parameter,
except	a	number,	as	a	targeter	goal.

Accepted
Data
Types

Object	parameter,	ArrayElement,	Variable

Allowed
Values

Spacecraft	parameter,	Array	element,	Variable,	or
any	other	single	element	user	defined	parameter,
excluding	numbers

Default
Value

DefaultSC.Earth.RMAG

Required yes

Interfaces GUI,	script

SolverName
Specifies	the	DifferentialCorrector	being	used	in	the	Target
sequence



Accepted	Data
Types

String

Allowed	Values Any	user	defined
DifferentialCorrector

Default	Value DefaultDC

Required yes

Interfaces GUI,	script



GUI
You	use	an	Achieve	command,	which	is	only	valid	within	a	Target	sequence,	to
define	your	desired	goal.	More	than	one	Achieve	command	may	be	used	within
a	Target	command	sequence.	The	Achieve	command	dialog	box,	which	allows
you	to	specify	the	targeter,	goal	object,	goal	value,	and	convergence	tolerance,	is
shown	below.



Remarks

Command	Interactions

A	Target	sequence	must	contain	at	least	one	Vary	and	one	Achieve	command.

Target
command An	Achieve	command	only	occurs	within	a	Target	sequence

Vary
command Associated	with	any	Achieve	command	is	at	least	one	Vary

command.	The	Vary	command	identifies	the	control	variable	used
by	the	targeter.	The	goal	specified	by	the	Achieve	command	is
obtained	by	varying	the	control	variables.



Examples
As	mentioned	above,	an	Achieve	command	only	occurs	within	a	Target
sequence.	See	the	Target	command	help	for	examples	showing	the	use	of	the
Achieve	command.



Assignment	(=)
Assignment	(=)	—	Set	a	variable	or	resource	field	to	a	value,	possibly	using
mathematical	expressions



Script	Syntax
settable_item	=	expression



Description
The	assignment	command	(in	the	GUI,	the	Equation	command)	allows	you	to
set	a	resource	field	or	parameter	to	a	value,	possibly	using	mathematical
expressions.	GMAT	uses	the	assignment	operator	('=')	to	indicate	an	assignment
command.	The	assignment	operator	uses	the	following	syntax,	where	LHS
denotes	the	left-hand	side	of	the	operator,	and	RHS	denotes	the	right-hand	side
of	the	operator:

LHS	=	RHS

In	this	expression,	the	left-hand	side	(LHS)	is	being	set	to	the	value	of	the	right-
hand	side	(RHS).	The	syntax	of	the	LHS	and	RHS	expressions	vary,	but	both	must
evaluate	to	compatible	data	types	for	the	command	to	succeed.

Left-hand	side

The	left-hand	side	of	the	assignment	command	must	be	a	single	item	of	any	of
the	following	types:

allowed	resource	(e.g.	Spacecraft,	Variable,	Array)

resource	field	for	allowed	resources	(e.g.	Spacecraft.Epoch,
Spacecraft.DateFormat)

settable	resource	parameter	(e.g.	Spacecraft.X,	ReportFile.Precision)

Array	or	Array	element

See	the	documentation	for	a	particular	resource	to	determine	which	fields	and
parameters	can	be	set.

Right-hand	side

The	right-hand	side	of	the	assignment	command	can	consist	of	any	of	the
following:

literal	value



resource	(e.g.	Spacecraft,	Variable,	Array)

resource	field	(e.g.	Spacecraft.Epoch,	Spacecraft.DateFormat)

resource	parameter	(e.g.	Spacecraft.X,	ChemicalThruster.K1)

Array	or	Array	element

mathematical	expression	(see	below)

MATLAB	function	calls	are	considered	distinct	from	the	assignment	command.
See	the	reference	pages	for	more	information.



GUI

The	assignment	command	in	the	script	language	corresponds	to	the	Equation
command	in	the	GUI.	The	Equation	properties	box	allows	you	to	input	both
sides	of	the	expression	into	free-form	text	boxes.	The	default	values	on	each	side
are	“Not_Set”;	these	are	placeholders	only,	and	are	not	valid	during	the	mission
run.	You	can	type	into	each	box	the	same	syntax	described	above	for	the	script
language.	When	you	click	OK	or	Apply,	GMAT	validates	each	side	of	the
expression	and	provides	feedback	for	any	warnings	or	errors.



Remarks

Data	type	compatibility

In	general,	the	data	types	of	the	left-hand	side	and	the	right-hand	side	must
match	after	all	expressions	are	evaluated.	This	means	that	a	Spacecraft	resource
can	only	be	set	to	another	Spacecraft	resource,	numeric	parameters	can	only	be
set	to	numeric	values,	and	String	resources	can	only	be	set	to	string	values.
Additionally,	the	dimension	of	Array	instances	must	match	for	the	command	to
succeed.	For	numeric	quantities,	the	assignment	command	does	not	distinguish
between	integers	and	floating-point	values.

Parameters

Parameters	can	be	used	on	either	side	of	an	assignment	command,	but	there	may
be	certain	restrictions.

On	the	right-hand	side	of	the	command,	any	parameter	can	be	used.	If	a
parameter	accepts	a	dependency	(such	as	Spacecraft.CoordinateSystem.X)	and
the	dependency	is	omitted,	a	default	dependency	value	will	be	used.	For
coordinate-system-dependent	parameters,	the	default	is	EarthMJ2000Eq.	For
central-body-dependent	parameters,	the	default	is	Earth.

On	the	left-hand	side,	only	settable	(writable)	parameters	can	be	used.
Furthermore,	no	dependency	can	be	specified,	except	in	the	special	case	that	the
dependencies	on	both	sides	of	the	assignment	command	are	equivalent.	On	the
left-hand	side,	the	default	values	of	omitted	dependencies	are	automatically
taken	to	be	the	current	values	of	the	CoordinateSystem	field	of	the	referenced
Spacecraft	and	its	origin.

These	examples	show	valid	and	invalid	usage	of	parameters:

Create	Spacecraft	aSat1	aSat2

aSat2.CoordinateSystem	=	'EarthFixed'

Create	Variable	x

BeginMissionSequence

x	=	aSat1.EarthFixed.X							%	Valid:	Parameter	with	dependency	on	RHS

x	=	aSat1.EarthMJ2000Eq.X				%	Valid:	This	and	next	statement	are	equiv.

x	=	aSat1.X																		%	Valid:	Default	dep.	value	is	EarthMJ2000Eq.



x	=	aSat1.Mars.Altitude						%	Valid:	Parameter	with	dependency	on	RHS

x	=	aSat1.Earth.Altitude					%	Valid:	This	and	next	statement	are	equiv.

x	=	aSat1.Altitude											%	Valid:	Default	dependency	value	is	Earth.

aSat2.X	=	1e5																%	Valid:	Default	parameter	value	is	EarthFixed.

aSat2.EarthMJ2000Eq.X	=	1e5		%	INVALID:	Dependencies	not	allowed	on	LHS.

aSat2.EarthFixed.X	=	1e5					%	Valid:	Special	case	because	value	=	default.

aSat2.EarthMJ2000Eq.X	=	aSat1.EarthFixed.X				%	INVALID:	Dependency	on	LHS

aSat2.EarthMJ2000Eq.X	=	aSat1.EarthMJ2000Eq.X	%	INVALID:	Dependency	on	LHS

aSat2.EarthFixed.X	=	aSat1.EarthFixed.X							%	Valid:	Special	case

%	DANGEROUS!	Valid,	but	sets	EarthMJ2000Eq	RHS	values	to	EarthFixed	LHS	param.

aSat2.X	=	aSat1.EarthMJ2000Eq.X

%	DANGEROUS!	RHS	default	is	EarthMJ2000Eq,	LHS	default	is	current	setting	on

%	aSat2	(EarthFixed	in	this	case).

aSat2.X	=	aSat1.X								

Mathematical	Expressions

The	assignment	command	supports	the	use	of	inline	mathematical	expressions
on	the	right-hand	side	of	the	command.	These	expressions	follow	the	general
syntax	rules	of	MATLAB	expressions,	and	can	use	a	variety	of	operators	and
built-in	functions.

Parsing

Mathematical	expressions	are	recognized	by	the	presence	of	any	of	the	operators
or	built-in	functions	described	below.	Before	execution,	all	white	space	(e.g.
spaces	and	tabs)	is	removed	from	the	expression.

Data	Types

Mathematical	expressions	operate	on	numeric	values	(integers	or	floating-point
numbers).	This	includes	the	following:

literal	values

numeric	resources	(Variable,	Array)



gettable	resource	parameters	(e.g.	Spacecraft.X,	ChemicalThruster.K1)

Array	elements

calculation	parameters	(e.g.	Spacecraft.OrbitPeriod)

nested	mathematical	expressions

Several	of	GMAT’s	operators	and	functions	are	vectorized,	so	they	operate	on
full	Array	resources	as	well	as	scalar	numeric	values.

Operators

Vectorized
operators + Addition	or	unary	plus.	X+Y	adds	X	and	Y.	X	and	Y	must	have

the	same	dimensions	unless	either	is	a	scalar.

- Subtraction	or	unary	minus.	-X	is	the	negative	of	X,	where	X
can	be	any	size.	X-Y	subtracts	Y	from	X.	X	and	Y	must	have	the
same	dimensions	unless	either	is	a	scalar.

* Multiplication.	X*Y	is	the	product	of	X	and	Y.	If	both	X	and	Y	are
scalars,	this	is	the	simple	algebraic	product.	If	X	is	a	matrix	or
vector	and	Y	is	a	scalar,	all	elements	of	X	are	multiplied	by	Y
(and	vice	versa).	If	both	X	and	Y	are	non-scalar,	X*Y	performs
matrix	multiplication	and	the	number	of	columns	in	X	must
equal	the	number	of	rows	in	Y.

' Transpose.	X'	is	the	transpose	of	X.	If	X	is	a	scalar,	X'	is	equal
to	X.

Scalar
operators / Division.	X/Y	divides	X	by	Y.	If	both	X	and	Y	are	scalars,	this	is

the	simple	algebraic	quotient.	If	X	is	a	matrix	or	vector,	each



element	is	divided	by	Y.	Y	must	be	a	non-zero	scalar	quantity.

^ Power.	X^Y	raises	X	to	the	Y	power.	X	and	Y	must	be	scalar
quantities.	A	special	case	is	X^(-1),	which	when	applied	to	a
square	matrix	X,	returns	the	inverse	of	X.

When	multiple	expressions	are	combined,	GMAT	uses	the	following	order	of
operations.	Operations	begin	with	those	operators	at	the	top	of	the	list	and	and
continue	downwards.	Within	each	level,	operations	proceed	left-to-right.

1.	 parentheses	()
2.	 transpose	('),	power	(^)
3.	 unary	plus	(+),	unary	minus	(-)
4.	 multiplication	(*),	division	(/)
5.	 addition	(+),	subtraction	(-)

Built-in	Functions

GMAT	supports	the	following	built-in	functions	in	mathematical	expressions.
Supported	functions	include	common	scalar	functions,	meaning	they	accept	a
single	value	only,	such	as	sin	and	cos,	matrix	functions	that	operate	on	an	entire
matrix	or	vector,	and	string	functions.

Scalar
Math
Functions

sin Sine.	In	Y	=	sin(X),	Y	is	the	sine	of	the	angle	X.	X	must
be	in	radians.	Y	will	be	in	the	range	[-1,	1].

cos Cosine.	In	Y	=	cos(X),	Y	is	the	cosine	of	the	angle	X.	X
must	be	in	radians.	Y	will	be	in	the	range	[-1,	1].

tan Tangent.	In	Y	=	tan(X),	Y	is	the	tangent	of	the	angle	X.
X	must	be	in	radians.	The	tangent	function	is	undefined
at	angles	that	normalize	to	p/2	or	-p/2.



asin Arcsine.	In	Y	=	asin(X),	Y	is	the	arcsine	of	X.	X	must
be	in	the	range	[-1,	1],	and	Y	will	be	in	the	range	[-p/2,
p/2].

acos Arccosine.	In	Y	=	acos(X),	Y	is	the	arccosine	of	X.	X
must	be	in	the	range	[-1,	1],	and	Y	will	be	in	the	range
[0,	p].

atan Arctangent.	In	Y	=	atan(X),	Y	is	the	arctangent	of	X.	Y
will	be	in	the	range	(-p/2,	p/2).

atan2 Four-quadrant	arctangent.	In	A	=	atan2(Y,	X),	A	is	the
arctangent	of	Y/X.	A	will	be	in	the	range	(-p,	p].
atan2(Y,	X)	is	equivalent	to	atan(Y/X)	except	for	the
expanded	range.

log Natural	logarithm.	In	Y	=	log(X),	Y	is	the	natural
logarithm	of	X.	X	must	be	non-zero	positive.

log10 Common	logarithm.	In	Y	=	log10(X),	Y	is	the	common
(base-10)	logarithm	of	X.	X	must	be	non-zero	positive.

exp Exponential.	In	Y	=	exp(X),	Y	is	exponential	of	X	(eX).

DegToRad Radian	conversion.	In	Y	=	DegToRad(X),	Y	is	the	angle
X	in	units	of	radians.	X	must	be	an	angle	in	degrees.

RadToDeg Degree	conversion.	In	Y	=	RadToDeg(X),	Y	is	the	angle



X	in	units	of	degrees.	X	must	be	an	angle	in	radians.

abs Absolute	value.	In	Y	=	abs(X),	Y	is	the	absolute	value
of	X.

sqrt Square	root.	In	Y	=	sqrt(X),	Y	is	the	square	root	of	X.	X
must	be	non-negative.

Numeric
Manipulation
Functions

mod Modulus	after	division.	mod(x,y)	returns	x	-	n*y,
where	n	=	floor(x/y)	if	y	~=	0.	By	convention,
mod(x,x)	is	x.

ceil Round	towards	plus	infinity.	ceil(X)	rounds	X	to
the	nearest	integer	towards	plus	infinity.

floor Round	towards	minus	infinity.	floor(X)	rounds	X
to	the	nearest	integer	towards	minus	infinity.

fix Round	towards	zero.	fix(X)	rounds	X	to	the
nearest	integer	towards	zero.

Random
Number
Functions

randn Normally	distributed	pseudorandom	numbers.	R	=
randn(N)	returns	an	N-by-N	matrix	containing
pseudorandom	values	drawn	from	the	standard	normal
distribution.	R	=	randn()	returns	a	single	random
number.

rand Uniformly	distributed	pseudorandom	numbers.	R	=



rand(N)	returns	an	N-by-N	matrix	containing
pseudorandom	values	drawn	from	the	standard	uniform
distribution	on	the	open	interval	(0,1).	R	=	rand()
returns	a	single	random	number.

SetSeed Set	seed	for	random	number	generation.	SetSeed(X)sets
the	seed	for	the	random	number	generator	where	X	must
b	a	postive	real	number.	Note:	SetSeed	calls	through	to
the	C++	11	random	number	generator	seed	algorithm
that	requires	an	unsigned	integer.	Since	the	GMAT	script
language	only	supports	real	numbers,	casting	is
performed	by	the	compiler	which	rounds	the	real
number	down	to	the	nearest	integer.	We	recommend
passing	in	real	numbers	with	zero	mantissa	(i.e	"1.0"	or
"198.0").

Matrix
Functions norm 2-norm.	In	Y	=	norm(X),	Y	is	the	2-norm	of	X,	where	X

must	be	a	vector	(i.e.	one	dimension	must	be	1).	If	X	is	a
scalar,	Y	is	equal	to	X.

det Determinant.	In	Y	=	det(X),	Y	is	tthe	cross	product	of	the
vectors	A	and	B.	If	X	is	a	matrix,	the	number	of	rows	must
equal	the	number	of	columns.	If	X	is	a	scalar,	Y	is	equal	to
X.	For	efficiency,	GMAT’s	implementation	of	the
determinant	is	currently	limited	to	matrices	9×9	or	smaller.

cross Vector	cross	product.	In	C	=	cross(A,B),	C	is	the	vector
cross	product	of	A	and	B	.	A	and	B	must	be	3	element	arrays.

inv Inverse.	In	Y	=	inv(X),	Y	is	the	inverse	of	X.	X	must	be	a
matrix	or	a	scalar.	If	X	is	a	matrix,	the	number	of	rows	must
equal	the	number	of	columns.	X^(-1)	is	an	alternate



syntax.

String
Manipulation
Functions

strcat String	concatenation.	STROUT	=	strcat(S1,
S2,	...,	SN)concatenates	strings.	Inputs	can
be	combinations	of	string	variables	and	string
literals.

strfind String	find.	INDEX	=	strfind(TEXT,PATTERN)
returns	the	starting	index	of	the	first	instance	of
PATTERN	in	TEXT.	If	PATTERN	is	not	found,	INDEX
=	-1.

strrep String	replace.	NEWSTR	=
strrep(OLDSTR,OLDSUBSTR,NEWSUBSTR)

replaces	all	occurrences	of	the	string	OLDSUBSTR
within	string	OLDSTR	with	the	string	NEWSUBSTR.

strcmp String	compare.	FLAG	=	strcmp(S1,S2)
compares	the	strings	S1	and	S2	and	returns
logical	1	(true)	if	they	are	identical,	and	returns
logical	0	(false)	otherwise.

sprintf Write	formatted	data	to	a	string.	STRING	=
sprintf(FORMATSPEC,	A,	...)	formats	data	in
A,...	according	to	FORMATSPEC	which	is	a	C-
style	format	spec.

Note:	The	GMAT	sprintf	function	calls
through	to	the	sprintf	function	in	the	c-library
iostream.	Additionally,	the	GMAT	script
language	does	not	support	an	integer	data	type,
only	doubles.



A	format	spec	follows	this	prototype:

%[flags][width][.precision]

[length]specifier

Specifiers
a Hexadecimal	floating	point,	lowercase.

A Hexadecimal	floating	point,	uppercase

e Scientific	notation	(mantissa/exponent),	lowercase

E Scientific	notation	(mantissa/exponent),	uppercase

f Decimal	floating	point,	lowercase

F Decimal	floating	point,	uppercase

g Use	the	shortest	representation:	%e	or	%f

G Use	the	shortest	representation:	%E	or	%F

o Unsigned	octal

x Unsigned	hexadecimal	integer,	lowercase

X Unsigned	hexadecimal	integer,	uppercase



Flags
+ Forces	to	preceed	the	result	with	a	plus	or	minus	sign	(+

or	-)	even	for	positive	numbers.	By	default,	only	negative
numbers	are	preceded	with	a	-	sign.

- Left-justify	within	the	given	field	width;	Right
justification	is	the	default	(see	width	sub-specifier).

# Used	with	o,	x	or	X	specifiers	the	value	is	preceeded
with	0,	0x	or	0X	respectively	for	values	different	than
zero.	Used	with	a,	A,	e,	E,	f,	F,	g	or	G	it	forces	the
written	output	to	contain	a	decimal	point	even	if	no	more
digits	follow.	By	default,	if	no	digits	follow,	no	decimal
point	is	written.

0 Left-pads	the	number	with	zeroes	(0)	instead	of	spaces
when	padding	is	specified	(see	width	sub-specifier).

(space) If	no	sign	is	going	to	be	written,	a	blank	space	is	inserted
before	the	value.

Width
Minimum	number	of	characters	to	be	printed.	If	the	value	to	be
printed	is	shorter	than	this	number,	the	result	is	padded	with	blank
spaces.	The	value	is	not	truncated	even	if	the	result	is	larger.

Precision
For	a,	A,	e,	E,	f	and	F	specifiers:	this	is	the	number	of	digits	to	be
printed	after	the	decimal	point	(by	default,	this	is	6).

For	g	and	G	specifiers:	This	is	the	maximum	number	of



significant	digits	to	be	printed.

For	s:	this	is	the	maximum	number	of	characters	to	be	printed.	By
default	all	characters	are	printed	until	the	ending	null	character	is
encountered.	If	the	period	is	specified	without	an	explicit	value
for	precision,	0	is	assumed.

Integer	specifiers	are	not	supported	as	GMAT	does	not	have	an
integer	data	type	in	the	script	language.



Examples
Evaluate	a	basic	algebraic	equation:

Create	Variable	A	B	C	x	y

x	=	1

Create	ReportFile	aReport

BeginMissionSequence

A	=	10

B	=	20

C	=	2

y	=	A*x^2	+	B*x	+	C

Report	aReport	y

Matrix	manipulation:

Create	Array	A[2,2]	B[2,2]	C[2,2]	x[2,1]	y[2,1]

Create	ReportFile	aReport

A(1,1)	=	10

A(2,1)	=	5

A(1,2)	=	.10

A(2,2)	=	1

x(1,1)	=	2

x(2,1)	=	3

BeginMissionSequence

B	=	inv(A)

C	=	B'

y	=	C*x

Report	aReport	A	B	C	x	y

Cloning	a	resource:

Create	Spacecraft	Sat1	Sat2

Sat1.Cd	=	1.87

Sat1.DryMass	=	123.456

Create	ReportFile	aReport



BeginMissionSequence

Sat2	=	Sat1

Report	aReport	Sat2.Cd	Sat2.DryMass

Using	built-in	functions:

Create	Variable	pi	x	y1	y2	y3

Create	Array	A[3,3]

Create	Spacecraft	aSat

Create	ReportFile	aReport

BeginMissionSequence

pi	=	acos(-1)

aSat.TA	=	pi/4

x	=	pi/4

A(1,1)	=	pi/4

y1	=	sin(x)

y2	=	sin(aSat.TA)

y3	=	sin(A(1,1))

Report	aReport	y1	y2	y3



BeginFiniteBurn
BeginFiniteBurn	—	Model	finite	thrust	maneuvers



Script	Syntax
BeginFiniteBurn	aFiniteBurn(aSpacecraft)

EndFiniteBurn	aFiniteBurn(aSpacecraft)



Description
When	you	apply	a	BeginFiniteBurn	command,	you	turn	on	the	thruster
configuration	given	in	the	specified	FiniteBurn	model.	Similarly,	when	you
apply	an	EndFiniteBurn	command,	you	turn	off	the	thruster	configuration	in
the	specified	FiniteBurn	model.	After	GMAT	executes	a	BeginFiniteBurn
command,	all	propagation	for	the	spacecraft	affected	by	the	FiniteBurn	object
will	include	the	configured	finite	thrust	in	the	dynamics	until	an	EndFiniteBurn
line	is	executed	for	that	configuration.	In	order	to	apply	a	non-zero	finite	burn	,
there	must	be	a	Propagate	command	between	the	BeginFiniteBurn	and
EndFiniteBurn	commands.

To	apply	the	BeginFiniteBurn	and	EndFiniteBurn	commands,	a	FiniteBurn
object	must	be	configured.	This	object	requires	the	configuration	of
ChemicalTank	and	ChemicalThruster	models.	See	the	Remarks	section	and
the	examples	below	for	a	more	detailed	explanation.

See	Also:	Spacecraft,	ChemicalThruster,	ChemicalTank,	FiniteBurn



Options

Option Description

BeginFiniteBurn	-	Burn
Specifies	the	FiniteBurn	object	activated	by
the	BeginFiniteBurn	command.

Accepted	Data	Types Reference	Array

Allowed	Values FiniteBurn	resource

Default	Value DefaultFB

Required yes

Interfaces GUI,	script

BeginFiniteBurn	-
SpacecraftList Specifies	the	Spacecraft	(currently	only	a

single	Spacecraft	can	be	in	this	list)	acted
upon	by	the	BeginFiniteBurn	command.	The
Spacecraft	listed	in	SpacecraftList	will	have
thrusters	activated	according	to	the
configuration	of	the	FiniteBurn	object	defined
by	the	Burn	field.

Accepted	Data	Types Reference	Array



Allowed	Values Spacecraft	Objects

Default	Value DefaultSC

Required yes

Interfaces GUI,	script

EndFiniteBurn	-	Burn
Specifies	the	FiniteBurn	object	de-activated
by	the	EndFiniteBurn	command.

Accepted	Data	Types Reference	Array

Allowed	Values FiniteBurn	Object

Default	Value DefaultFB

Required yes

Interfaces GUI,	script

EndFiniteBurn	-
SpacecraftList Specifies	the	Spacecraft	(currently	only	a

single	Spacecraft	can	be	in	this	list)	acted
upon	by	the	EndFiniteBurn	command.
Spacecraft	listed	in	SpacecraftList	will	have
thrusters	de-activated	according	to	the
configuration	of	the	FiniteBurn	object	defined



by	the	Burn	field.

Accepted	Data	Types Spacecraft

Allowed	Values Spacecraft	resource

Default	Value DefaultSC

Required yes

Interfaces GUI,	script



GUI
The	BeginFiniteBurn	and	EndFiniteBurn	command	dialog	boxes	allow	you	to
implement	a	finite	burn	by	specifying	which	finite	burn	model	should	be	used
and	which	spacecraft	the	finite	burn	should	be	applied	to.	The	dialog	boxes	for
BeginFiniteBurn	and	EndFiniteBurn	are	shown	below.

Use	the	Burn	menu	to	select	the	FiniteBurn	model	for	the	maneuver.	Use	the
Spacecraft	text	box	to	select	the	spacecraft	for	the	finite	burn.	You	can	either
type	the	spacecraft	name	in	the	Spacecraft	text	box	or	click	the	Edit	button	and
select	the	spacecraft	using	the	ParameterSelectDialog	box.

If	you	add	a	BeginFiniteBurn	command	or	EndFiniteBurn	command	to	the
mission	sequence,	without	first	creating	a	FiniteBurn	object,	GMAT	will	create
a	default	FiniteBurn	object	called	DefaultFB.	However,	you	will	need	to
configure	the	required	ChemicalTank	and	ChemicalThruster	objects	required
for	a	FiniteBurn	object	before	you	can	run	the	mission.	See	the	Remarks	section



for	detailed	instructions.



Remarks

Configuring	a	Finite	Burn

To	use	the	BeginFiniteBurn	and	EndFiniteBurn	commands	in	your	mission
sequence,	you	must	configure	a	FiniteBurn	object	along	with	ChemicalTank
and	ChemicalThruster	objects	as	shown	in	the	examples	below	and	as
described	in	these	steps:

1.	 Create	and	configure	a	ChemicalTank	model.
2.	 Create	a	ChemicalThruster	model:

a.	 Set	the	parameters	(direction,	thrust,	specific	impulse,	etc)	for	the
thruster

b.	 Configure	the	ChemicalThruster	to	use	the	ChemicalTank	created	in
Step	1.

3.	 Add	the	ChemicalTank	and	ChemicalThruster	created	in	the	previous
two	steps	to	the	Spacecraft.

4.	 Create	a	FiniteBurn	model	and	configure	it	to	use	the	ChemicalThruster
created	in	Step	2.

Initial	Thruster	Status

When	you	configure	the	Spacecraft,	ChemicalTank,	ChemicalThruster,	and
FiniteBurn	objects,	GMAT	initializes	these	objects	with	the	thrusters	turned	off,
so	that	no	finite	burns	are	active.	You	must	use	the	BeginFiniteBurn	command
to	turn	on	the	thruster	if	you	want	to	apply	a	finite	burn	during	propagation.

Warning

Caution:	If	GMAT	throws	the	error	message	“Propagator
Exception:	MassFlow	is	not	a	known	propagation	parameter	on
DefaultSC”,	then	you	have	not	configured	all	of	the	required
models	to	perform	a	finite	burn.	See	detailed	instructions	above
and	examples	to	configure	models	required	by	the



EndFiniteBurn/BeginFiniteBurn	commands.

BeginFiniteBurn	and	EndFiniteBurn	commands	are	NOT
branch	commands

The	BeginFiniteBurn	and	EndFiniteBurn	commands	are	NOT	branch
commands,	meaning,	a	BeginFiniteBurn	command	can	exist	without	an
EndFiniteBurn	command	(however,	this	may	result	in	depleting	all	the	fuel	in
the	spacecraft	model).	For	behavior	when	fuel	mass	is	fully	depleted	during	a
finite	burn	see	the	ChemicalTank	object.

Similarly,	since	the	BeginFiniteBurn	and	EndFiniteBurn	commands	are	used
to	turn	on	or	off	the	thrusters,	applying	the	same	command	multiple	times	in	a
script	without	its	inverse	is	the	same	as	applying	it	once.	In	other	words,	if	you
do	this:

BeginFiniteBurn	aFiniteBurn(aSat)

BeginFiniteBurn	aFiniteBurn(aSat)

BeginFiniteBurn	aFiniteBurn(aSat)

The	effect	is	the	same	as	only	applying	the	BeginFiniteBurn	command	one
time.	The	same	holds	true	for	the	EndFiniteBurn	command.



Examples
Perform	a	finite	burn	while	the	spacecraft	is	between	true	anomaly	of	300
degrees	and	60	degrees.

%		Create	objects

Create	Spacecraft	aSat

Create	ChemicalThruster	aThruster

Create	ChemicalTank	aTank

Create	FiniteBurn	aFiniteBurn

Create	Propagator	aPropagator

%		Configure	the	physical	objects

aSat.Thrusters								=	{aThruster}

aThruster.Tank								=	{aTank}

aSat.Tanks												=	{aTank}

aFiniteBurn.Thrusters	=	{aThruster}

BeginMissionSequence

%		Prop	to	TA	=	300	then	maneuver	until	TA	=	60

Propagate	aPropagator(aSat,	{aSat.TA	=	300})

BeginFiniteBurn	aFiniteBurn(aSat)

Propagate	aPropagator(aSat,	{aSat.TA	=	60})

EndFiniteBurn	aFiniteBurn(aSat)			

Perform	a	velocity	direction	maneuver	firing	the	thruster	for	2	minutes.

%		Create	objects

Create	Spacecraft	aSat

Create	ChemicalThruster	aThruster

Create	ChemicalTank	aTank

Create	FiniteBurn	aFiniteBurn

Create	Propagator	aPropagator

%		Configure	the	physical	objects

aThruster.CoordinateSystem	=	Local

aThruster.Origin	=	Earth

aThruster.Axes			=	VNB

aThruster.ThrustDirection1	=	1

aThruster.ThrustDirection2	=	0

aThruster.ThrustDirection3	=	0

%		Configure	the	physical	objects



aSat.Thrusters				=	{aThruster}

aThruster.Tank				=	{aTank}

aSat.Tanks								=	{aTank}

aFiniteBurn.Thrusters	=	{aThruster}

BeginMissionSequence

%		Fire	thruster	for	2	minutes

BeginFiniteBurn	aFiniteBurn(aSat)

Propagate	aPropagator(aSat,	{aSat.ElapsedSecs	=	120})

EndFiniteBurn	aFiniteBurn(aSat)



BeginMissionSequence
BeginMissionSequence	—	Begin	the	mission	sequence	portion	of	a	script



Script	Syntax
BeginMissionSequence



Description
The	BeginMissionSequence	command	indicates	the	end	of	resource
initialization	and	the	beginning	of	the	mission	sequence	portion	of	a	GMAT
script.	It	must	appear	once	as	the	first	command	in	the	script,	and	must	follow	all
resource	creation	lines.

See	Also:	Script	Language



GUI
The	BeginMissionSequence	command	is	managed	automatically	when	building
mission	sequences	using	the	GUI	mission	tree.	However,	when	editing	the
GMAT	script	directly,	either	with	the	GMAT	script	editor	or	with	an	external
editor,	you	must	insert	the	BeginMissionSequence	command	manually.



Remarks
The	BeginMissionSequence	is	a	script-only	command	that	is	not	needed	when
working	from	the	GUI.	It	indicates	to	GMAT	that	the	portion	of	the	script	above
the	command	consists	of	static	resource	initialization	that	can	be	performed	in
any	order,	and	that	the	portion	below	the	command	consists	of	mission	sequence
commands	that	must	be	executed	sequentially.	This	and	other	rules	of	the
scripting	language	are	discussed	in	detail	in	the	script	language	reference.



Examples
A	minimal	GMAT	script	that	propagates	a	spacecraft:

Create	Spacecraft	aSat

Create	Propagator	aProp

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}



BeginScript
BeginScript	—	Execute	free-form	script	commands



Script	Syntax
BeginScript

				[script	statements]

				…

EndScript



Description
The	BeginScript	and	EndScript	commands	(ScriptEvent	in	the	GUI)	allow
you	to	write	free-form	script	statements	in	the	mission	sequence	without	the
statements	being	shown	as	individual	commands	in	the	GMAT	GUI.	This	is
useful	as	a	way	to	group	and	label	a	complex	sequence	of	statements	as	one	unit,
or	to	write	small	sequences	of	script	statements	when	otherwise	using	the	GUI	to
create	the	mission	sequence.	Within	the	script	itself,	there	is	no	difference	in	the
execution	of	statements	within	a	BeginScript/EndScript	block	and	those
outside	of	it.

See	Also:	the	section	called	“Script	Editor”



GUI

The	ScriptEvent	GUI	window	divides	the	command	into	three	parts:	an	initial
comment,	fixed	BeginScript	and	EndScript	commands,	and	the	content	of	the
block	itself.	The	scripting	window	is	a	miniature	version	of	the	main	script
editor,	and	features	line	numbers,	syntax	highlighting,	code	folding,	and	all	of
the	editing	tools	available	in	the	full	editor.	See	the	the	section	called	“Script
Editor”	documentation	for	more	information.	The	ScriptEvent	window
performs	script	syntax	validation	when	changes	are	applied.	Nested
BeginScript/EndScript	blocks	in	the	script	language	are	collapsed	into	a	single
ScriptEvent	when	loaded	into	the	GUI,	and	are	saved	to	a	single
BeginScript/EndScript	block	when	saved	to	a	script.



Examples
Perform	a	calculation	inside	a	BeginScript/EndScript	block.	When	loaded	into
the	GUI,	the	calculations	within	the	BeginScript/EndScript	block	will	be
contained	within	a	single	ScriptEvent	command.

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ImpulsiveBurn	aBurn

Create	Variable	a_init	v_init

Create	Variable	a_transfer	v_transfer_1	v_transfer_2

Create	Variable	a_target	v_final	mu

Create	Variable	dv_1	dv_2

mu	=	398600.4415

a_target	=	42164

BeginMissionSequence

%	calculate	Hohmann	burns

BeginScript

				a_init	=	aSat.SMA

				v_init	=	aSat.VMAG

				a_transfer	=	(a_init	+	a_target)	/	2

				v_transfer_1	=	sqrt(2*mu/a_init	-	mu/a_transfer)

				v_transfer_2	=	sqrt(2*mu/a_target	-	mu/a_transfer)

				v_final	=	sqrt(mu/a_target)

				dv_1	=	v_transfer_1	-	v_init

				dv_2	=	v_final	-	v_transfer_2

EndScript

%	perform	burn	1

aBurn.Element1	=	dv_1

Maneuver	aBurn(aSat)

Propagate	aProp(aSat)	{aSat.Apoapsis}

%	perform	burn	2

aBurn.Element1	=	dv_2

Maneuver	aBurn(aSat)

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	aSat.OrbitPeriod}



CallGmatFunction
CallGmatFunction	—	Call	a	GMAT	function



Script	Syntax
GmatFunction()

GmatFunction(input_argument[,	input_argument]...)

[output_argument[,	output_argument]...]	=	GmatFunction

[output_argument[,	output_argument]...]	=	...

				GmatFunction(input_argument[,	input_argument]...)



Description
GMAT	provides	a	special	command	that	allows	you	to	call	a	GMAT	function
which	is	written	via	GMAT's	GmatFunction	resource.	In	the	GUI,	the	GMAT
function	is	called	through	the	CallGmatFunction	command.

In	the	syntax	description,	GmatFunction	is	a	GmatFunction	resource	that	must
be	declared	during	initialization.	Arguments	can	be	passed	into	the	function	as
inputs	and	returned	from	the	function	as	outputs.	See	Remarks	for	details.
Furthermore,	data	that	is	passed	into	the	function	as	input	or	received	from	the
function	as	output	can	also	be	declared	as	global	by	using	GMAT's	Global
command.	See	the	Global	reference	for	more	details.

See	Also:	GMATFunction,	Global



GUI

The	CallGmatFunction	GUI	provides	two	input	boxes	for	input	and	output
arguments	and	a	list	to	select	a	GMAt	function	to	call.

The	Output	box	lists	all	configured	output	argument	parameters.	These	must	be
selected	by	clicking	Edit,	which	displays	a	ParameterSelectioDialog	window.
See	the	Calculation	Parameters	reference	for	details	on	how	to	select	a
parameter.

The	Input	box	is	identical	in	behavior	to	Output,	but	lists	all	configured	input
arguments	to	the	function.	Arguments	must	be	selected	by	clicking	Edit.	The
Function	list	displays	all	functions	that	have	been	declared	as	GmatFunction
resources	in	the	Resources	tree.	Select	a	function	from	the	list	to	call	it.

When	the	changes	are	accepted,	GMAT	does	not	perform	any	validation	of	input
or	output	arguments.	This	validation	is	performed	when	the	mission	is	actually
run.



Remarks
GMAT	objects	can	be	passed	into	the	GMAT	function	as	input	and	can	also	be
returned	from	the	function	as	output.	If	a	given	GMAT	object	is	not	declared	as
global	in	both	the	main	script	and	inside	the	GMAT	function,	then	all	objects
that	are	passed	into	or	received	as	output	from	the	function	are	considered	to	be
local	to	that	function	and	the	main	script.

Below	is	a	list	of	allowed	arguments	that	can	be	passed	as	input	to	the	function
and	received	as	output	from	the	function.	Also	see	GmatFunction	resource's
Remarks	and	Examples	sections	for	more	details	and	distinct	examples	that
show	how	to	pass	objects	as	inputs	to	the	function,	perform	an	operation	inside
the	function,	then	receive	objects	as	outputs	from	the	function.	Note,	a	GMAT
function	file	must	contain	one	and	only	one	function	definition.

The	input	arguments	(input_argument	values	in	the	syntax	description)	can	be
any	of	the	following	types:

Any	resource	objects	(e.g.	Spacecraft,	Propagator,	DC,	Optimizers,
Impulsive	or	FiniteBurns)

resource	parameter	of	real	number	type	(e.g.	Spacecraft.X)

resource	parameter	of	string	type	(e.g.	Spacecraft.UTCGregorian)

Array,	String,	or	Variable	resource

The	output	arguments	can	be	any	of	the	following	types:

Resource	object	like	Spacecraft

resource	parameter	of	real	number	type	(e.g.	Spacecraft.X)

resource	parameter	of	string	type	(e.g.	Spacecraft.UTCGregorian)

Array,	String,	or	Variable	resource



Examples
Call	two	different	functions.	One	function	performs	a	simple	cross	product	and
the	second	function	performs	a	dot	product.

Create	ReportFile	rf

rf.WriteHeaders	=	false

Create	GmatFunction	cross_product

cross_product.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\cross_product.gmf'

Create	GmatFunction	dot_product

dot_product.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\dot_product.gmf'						

Create	Array	v1[3,1]	v2[3,1]	v3[3,1]	...

v4[3,1]	v5[3,1]

Create	Variable	v6

Create	String	tempstring

BeginMissionSequence

v1(1,1)	=	1

v1(2,1)	=	2

v1(3,1)	=	3

v2(1,1)	=	4

v2(2,1)	=	5

v2(3,1)	=	6

v4(1,1)	=	1

v4(2,1)	=	2

v4(3,1)	=	3

v5(1,1)	=	4

v5(2,1)	=	-5

v5(3,1)	=	6

%	Call	function.	Pass	local	arrays	as	input:

%	Receive	local	array	as	output

[v3]	=	cross_product(v1,	v2)

Report	rf	v3



%	Call	function.	Pass	local	arrays	as	input:

%	Receive	local	variable	as	output

GMAT	[v6]	=	dot_product(v4,	v5)

tempstring	=	'---------'

Report	rf	tempstring

Report	rf	v6

%%%%%%	cross_product	Function	begins	below:

function	[cross]	=	cross_product(vec1,vec2)

Create	Array	cross[3,1]

BeginMissionSequence

cross(1,1)	=	vec1(2,1)*vec2(3,1)	-	vec1(3,1)*vec2(2,1)

cross(2,1)	=	-(vec1(1,1)*vec2(3,1)	-	vec1(3,1)*vec2(1,1))

cross(3,1)	=	vec1(1,1)*vec2(2,1)	-	vec1(2,1)*vec2(1,1)

%%%%%%	dot_product	Function	begins	below:

function	[c]	=	dot_product(a1,b1)

Create	Variable	c

BeginMissionSequence

c	=	a1(1,1)*b1(1,1)	+	a1(2,1)*b1(2,1)	+	a1(3,1)*b1(3,1)

Call	GMAT	function	and	pass	local	spacecraft	as	input,	perform	simple
operation	inside	the	function,	then	send	out	updated,	local	spacecraft	to	the	main
script.	Finally	report	spacecraft	old	and	updated	position	vector	to	the	local
report	file	subscriber:

Create	Spacecraft	aSat

aSat.DateFormat	=	UTCGregorian;

aSat.Epoch	=	'01	Jan	2000	11:59:28.000'

aSat.CoordinateSystem	=	EarthMJ2000Eq

aSat.DisplayStateType	=	Cartesian

aSat.X	=	7100

aSat.Y	=	0

aSat.Z	=	1300



Create	ReportFile	rf

rf.WriteHeaders	=	false

Create	GmatFunction	Spacecraft_In_Out

Spacecraft_In_Out.FunctionPath	=	...

'C:\Users\rqureshi\Desktop\Spacecraft_In_Out.gmf'

BeginMissionSequence

%	Report	initial	S/C	Position	to	local	'rf':

Report	rf	aSat.X	aSat.Y	aSat.Z

%	Call	function.	Pass	local	S/C	as	input:

%	Receive	updated	local	S/C:

[aSat]	=	Spacecraft_In_Out(aSat)

%	Report	updated	S/C	Position	to	local	'rf':

Report	rf	aSat.X	aSat.Y	aSat.Z

%%%%%%%%%%	Function	begins	below:

function	[aSat]	=	Spacecraft_In_Out(aSat)

%	Create	local	S/C:

Create	Spacecraft	aSat

BeginMissionSequence

%	Update	the	S/C	Position	vector:

%	Send	updated	S/C	back	to	main	script:

aSat.X	=	aSat.X	+	1000

aSat.Y	=	aSat.Y	+	2000

aSat.Z	=	aSat.Z	+	3000



CallMatlabFunction
CallMatlabFunction	—	Call	a	MATLAB	function



Script	Syntax
MatlabFunction()

MatlabFunction(input_argument[,	input_argument]...)

[output_argument[,	output_argument]...]	=	MatlabFunction

[output_argument[,	output_argument]...]	=	...

				MatlabFunction(input_argument[,	input_argument]...)



Description
GMAT	provides	a	special	command	that	allows	you	to	call	a	function	written	in
the	MATLAB	language	or	provided	with	the	MATLAB	software.	In	the	GUI,
this	is	the	CallMatlabFunction	command.

In	the	syntax	description,	MatlabFunction	is	a	MatlabFunction	resource	that
must	be	declared	during	initialization.	Arguments	can	be	passed	into	and
returned	from	the	function,	though	some	data-type	limitations	apply.	See
Remarks	for	details.

When	a	MATLAB	function	is	called,	GMAT	opens	a	MATLAB	command-line
window	in	the	background.	This	functionality	requires	that	MATLAB	be
properly	installed	and	configured	on	your	system.

See	Also:	MatlabFunction,	MATLAB	Interface



GUI

The	CallMatlabFunction	GUI	provides	two	input	boxes	for	input	and	output
arguments	and	a	list	to	select	a	function	to	call.

The	Output	box	lists	all	configured	output	argument	parameters.	These	must	be
selected	by	clicking	Edit,	which	displays	a	parameter	selection	window.	See	the
Calculation	Parameters	reference	for	details	on	how	to	select	a	parameter.

The	Input	box	is	identical	in	behavior	to	Output,	but	lists	all	configured	input
arguments	to	the	function.	Arguments	must	be	selected	by	clicking	Edit.	The
Function	list	displays	all	functions	that	have	been	declared	as	MatlabFunction
resources	in	the	Resources	tree.	Select	a	function	from	the	list	to	call	it.

When	the	changes	are	accepted,	GMAT	does	not	perform	any	validation	of	input
or	output	arguments.	This	validation	is	performed	when	the	mission	is	run,	when
MATLAB	has	been	started.



Remarks
The	input	arguments	(input_argument	values	in	the	syntax	description)	can	be
any	of	the	following	types:

resource	parameter	of	real	number	type	(e.g.	Spacecraft.X)

resource	parameter	of	string	type	(e.g.	Spacecraft.UTCGregorian)

Array,	String,	or	Variable	resource

Array	resource	element

The	output	arguments	(output_argument	values	in	the	syntax	description)	can
be	any	of	the	following	types:

resource	parameter	of	real	number	type	(e.g.	Spacecraft.X)

resource	parameter	of	string	type	(e.g.	Spacecraft.UTCGregorian)

Array,	String,	or	Variable	resource

Array	resource	element

Data	type	conversion	is	performed	for	the	following	data	types	when	values	are
passed	between	MATLAB	and	GMAT.	When	data	is	passed	from	GMAT	to
MATLAB	as	input	arguments,	the	following	conversions	occur.

GMAT MATLAB

real	number	(e.g.
Spacecraft.X,	Variable,
Array	element)

double

string	(e.g.
Spacecraft.UTCGregorian,
String	resource)

char	array



Array	resource double	array

When	data	is	passed	from	MATLAB	to	GMAT	as	output	arguments,	the
following	conversions	occur.

MATLAB GMAT

char	array string

double real	number

double
array

Array	resource



Examples
Call	a	simple	built-in	MATLAB	function:

Create	MatlabFunction	sinh

Create	Variable	x	y

BeginMissionSequence

x	=	1

[y]	=	sinh(x)

Call	an	external	custom	MATLAB	function:

Create	Spacecraft	aSat

Create	ImpulsiveBurn	aBurn

Create	Propagator	aProp

Create	MatlabFunction	CalcHohmann

CalcHohmann.FunctionPath	=	'C:\path\to\functions'

Create	Variable	a_target	mu	dv1	dv2

mu	=	398600.4415

BeginMissionSequence

%	calculate	burns	for	circular	Hohmann	transfer	(example)

[dv1,	dv2]	=	CalcHohmann(aSat.SMA,	a_target,	mu)

%	perform	first	maneuver

aBurn.Element1	=	dv1

Maneuver	aBurn(aSat)

%	propagate	to	apoapsis

Propagate	aProp(aSat)	{aSat.Apoapsis}

%	perform	second	burn

aBurn.Element1	=	dv2

Maneuver	aBurn(aSat)

Return	the	MATLAB	search	path	and	working	directory:

Create	MatlabFunction	path	pwd

Create	String	pathStr	pwdStr



Create	ReportFile	aReport

BeginMissionSequence

[pathStr]	=	path

[pwdStr]	=	pwd

Report	aReport	pathStr

Report	aReport	pwdStr



CallPythonFunction
CallPythonFunction	—	Call	a	Python	function



Script	Syntax
Python.PythonModule.PythonFunction()

Python.PythonModule.PythonFunction(input_argument[,	input_argument]...

[output_argument[,	output_argument]...]	=	Python.PythonModule.PythonFunction

[output_argument[,	output_argument]...]	=	Python.PythonModule.PythonFunction



Description
GMAT	provides	a	special	command	that	allows	you	to	call	a	function	written	in
the	Python	language.	In	the	GUI,	this	is	the	CallPythonFunction	command.

In	the	syntax	description,	the	preface	Python	is	a	keyword	used	to	tell	GMAT
that	the	scripting	is	calling	into	the	Python	system.	The	PythonModule
identifies	a	Python	file,	with	the	name	PythonModule.py,	containing	the	function
that	is	to	be	called.	PythonFunction	is	the	function	that	is	called	inside	of	that
file.	Arguments	can	be	passed	into	and	returned	from	the	function,	following	the
guidelines	described	below.	See	Remarks	for	details.

When	a	Python	function	is	called,	GMAT	loads	the	Python	engine	in	the
background.	This	functionality	requires	that	a	compatible	installation	of	Python
be	properly	installed	and	configured	on	your	system.	Once	GMAT	has	loaded	the
engine,	it	remains	in	memory	until	GMAT	is	closed.



GUI

The	CallPythonFunction	GUI	provides	a	single	text	entry	field	used	to	enter	the
Python	function	as	a	line	of	script.

The	syntax	for	the	CallPythonFunction	is	as	described	in	the	Script	Syntax
section	above.	GMAT's	Python	interface	accepts	Variables,	Strings,	numerical
object	parameters,	and	one	dimensional	arrays	as	input	parameters.	It	returns
Variables,	Arrays,	and	Strings,	either	as	a	single	value	or	as	a	collection	of
values.	The	interface	calls	into	Python	scripts,	identified	by	the	PythonModule
field,	that	define	the	function	to	be	accessed.	The	receiving	function	is
responsible	for	validating	the	inputs,	based	on	the	type	conversions	described	in
the	Remarks	below.

When	the	user	accepts	the	entries	on	the	panel,	GMAT	does	not	perform	any
validation	of	input	or	output	arguments.	This	validation	is	performed	when	the
mission	is	run,	after	Python	has	been	started.



Remarks
The	input	arguments	(input_argument	values	in	the	syntax	description)	can	be
any	of	the	following	types:

resource	parameter	of	real	number	type	(e.g.	Spacecraft.X)

resource	parameter	of	string	type	(e.g.	Spacecraft.UTCGregorian)

One	dimensional	Array,	String,	or	Variable	resource

Array	resource	element

The	output	arguments	(output_argument	values	in	the	syntax	description)	can
be	any	of	the	following	types:

Array,	String,	or	Variable	resource

Data	type	conversion	is	performed	for	the	following	data	types	when	values	are
passed	between	Python	and	GMAT.	When	data	is	passed	from	GMAT	to	Python
as	input	arguments,	the	following	conversions	occur.

GMAT Python

real	number	(e.g.
Spacecraft.X,	Variable,
Array	element)

float

string	(e.g.
Spacecraft.UTCGregorian,
String	resource)

str

Array	resource memoryview



When	data	is	passed	from	Python	to	GMAT	as	output	arguments,	the	following
conversions	occur.

Python GMAT

str String

float real	number

float
array

Array	resource



Examples
Call	a	simple	Python	function:

Create	Variable	x	y

BeginMissionSequence

x	=	1

y	=	Python.MyMath.sinh(x)

Call	a	multiple	input	and	output	Python	function:

Create	Spacecraft	aSat

Create	ImpulsiveBurn	aBurn

Create	Propagator	aProp

Create	Variable	a_target	mu	dv1	dv2

mu	=	398600.4415

BeginMissionSequence

%	calculate	burns	for	circular	Hohmann	transfer	(example)

[dv1,	dv2]	=	Python.MyOrbitFunctions.CalcHohmann(aSat.SMA,	a_target,	mu)

%	perform	first	maneuver

aBurn.Element1	=	dv1

Maneuver	aBurn(aSat)

%	propagate	to	apoapsis

Propagate	aProp(aSat)	{aSat.Apoapsis}

%	perform	second	burn

aBurn.Element1	=	dv2

Maneuver	aBurn(aSat)

				



ClearPlot
ClearPlot	—	Allows	you	to	clear	all	data	from	an	XYPlot



Script	Syntax
ClearPlot		OutputNames

OutputNames

		OutputNames	is	the	list	of	subscribers	whose	data	is	to	be	

		cleared.	When	data	of	multiple	subscribers	is	to	be	cleared,	

		then	they	need	to	be	separated	by	a	space.



Description
The	ClearPlot	command	allows	you	to	clear	all	data	from	an	XYPlot	after	it	has
been	plotted.	The	ClearPlot	command	works	only	for	the	XYPlot	resource	and
data	from	multiple	XYPlot	resources	can	be	cleared.	ClearPlot	command	can	be
used	through	GMAT’s	GUI	or	the	script	interface.



Options

Option Description

OutputNames
The	ClearPlot	command	allows	the	user	to	clear	data	from
an	XYPlot	subscriber.	When	more	than	one	subscriber	is
being	used,	the	subscribers	need	to	be	separated	by	a	space.

Accepted	Data	Types Resource	reference

Allowed	Values XYPlot	resource

Default	Value DefaultXYPlot

Required yes

Interfaces GUI,	script



GUI
Figure	below	shows	default	settings	for	ClearPlot	command.



Remarks
GMAT	allows	you	to	insert	ClearPlot	command	into	the	Mission	tree	at	any
location.	This	allows	you	to	clear	data	output	from	an	XYPlot	at	any	point	in
your	mission.	The	XYPlot	subscriber	plots	data	at	each	propagation	step	of	the
entire	mission	duration.	If	you	want	to	report	data	to	an	XYPlot	at	specific
points	in	your	mission,	then	a	ClearPlot	command	can	be	inserted	into	the
mission	sequence	to	control	when	a	subscriber	plots	data.	Refer	to	the	Examples
section	below	to	see	how	ClearPlot	command	can	be	used	in	the	Mission	tree.



Examples
This	example	shows	how	to	use	ClearPlot	command	on	multiple	subscribers.
Data	from	XYPlot	subscribers	is	cleared	after	2	days	of	the	propagation:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot1	aPlot2	aPlot3

aPlot1.XVariable	=	aSat.ElapsedSecs

aPlot1.YVariables	=	{aSat.EarthMJ2000Eq.X}

aPlot2.XVariable	=	aSat.ElapsedSecs

aPlot2.YVariables	=	{aSat.EarthMJ2000Eq.Y}

aPlot3.XVariable	=	aSat.ElapsedSecs

aPlot3.YVariables	=	{aSat.EarthMJ2000Eq.VX,	aSat.EarthMJ2000Eq.VY,	...

aSat.EarthMJ2000Eq.VZ}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

ClearPlot	aPlot1	aPlot2	aPlot3

This	example	shows	how	to	use	ClearPlot	command	on	a	single	subscriber.
Data	from	XYPlot	is	cleared	for	the	first	3	days	of	the	propagation	and	only	the
data	retrieved	from	last	day	of	propagation	is	plotted:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot1

aPlot1.XVariable	=	aSat.ElapsedDays

aPlot1.YVariables	=	{aSat.EarthMJ2000Eq.X,	aSat.EarthMJ2000Eq.Y}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	3}

ClearPlot	aPlot1

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}



CommandEcho
CommandEcho	—	Toggle	the	use	of	the	Echo	command



Script	Syntax
CommandEcho	EchoSetting			



Description
The	EchoCommand	command	is	used	to	toggle	the	use	of	the	Echo	on	and	off
throughout	a	mission	sequence.	This	allows	for	specific	parts	of	a	mission
sequence	to	be	displayed	to	the	message	window	and	the	generated	log	file.	This
command	is	a	part	of	the	ScriptTools	plugin.



Options

Option Description

EchoSetting
Specifies	whether	the	current	EchoSetting	of	the	Echo
command	should	be	on	or	off.

Accepted	Data	Types String

Allowed	Values On,	Off

Default	Value Off

Required yes

Interfaces GUI,	script



GUI
The	CommandEcho	command	to	toggle	the	Echo	on	or	off	at	any	point	in	a
mission	sequence.	Any	number	of	this	command	can	be	placed	throughout	a
mission	sequence.	The	message	box	shown	below	will	appear	when	setting	the
EchoSetting	through	the	GUI.	To	set	the	command	on,	simply	replace	Off	with
On	in	the	text.	Note	that	if	the	command	is	renamed,	the	new	name	will	appear
in	this	GUI	display	with	quotation	marks	surrounding	it.



EndFiniteBurn
EndFiniteBurn	—	Model	finite	thrust	maneuvers	in	the	mission	sequence



Description
To	implement	a	finite	burn,	you	use	a	pair	of	commands,	the	BeginFiniteBurn
command	and	the	EndFiniteBurn	command.	The	use	of	both	of	these
commands	is	described	in	the	BeginFiniteBurn	command	help.



FindEvents
FindEvents	—	Execute	an	event	location	search



Script	Syntax
FindEvents	Locator	[{Append	=	true|false}]



Description
The	FindEvents	command	executes	an	event	location	search	defined	by	either
of	the	event	location	resources,	ContactLocator	or	EclipseLocator.	If
configured,	the	search	will	result	in	a	text-based	event	report.

An	explicit	FindEvents	command	is	not	necessary	for	most	simple	event
location	searches.	If	the	locator	resource	is	configured	with	RunMode	=
'Automatic',	FindEvents	is	executed	automatically	at	the	end	of	the	mission
sequence.	Manual	execution	of	the	command	is	most	useful	to	generate	custom
searches	for	part	of	a	mission,	or	to	change	search	intervals	based	on	mission
data.

The	Append	option	is	used	to	configure	how	the	report	file	is	written.	If
Append	is	true,	the	new	report	will	be	appended	to	the	end	of	the	existing	file.	If
Append	is	false,	it	will	replace	the	old	file.	Note	that	if	Append	is	true,	the
report	may	be	appended	to	a	file	that	existed	prior	to	the	current	GMAT	session.

See	Also:ContactLocator,	EclipseLocator



Options

Option Description
Locator

The	event	locator	to	execute.

Accepted	Data
Types

ContactLocator,	EclipseLocator

Allowed	Values any	valid	ContactLocator	or	EclipseLocator
resource

Default	Value none

Required yes

Interfaces GUI,	script

Append
Append	to	an	existing	event	report	(if	true)	or	replace	it	(if	false).

Accepted	Data	Types Boolean

Allowed	Values true,	false

Default	Value false



Required no

Interfaces GUI,	script



GUI

The	FindEvents	GUI	panel	is	very	simple.	Choose	the	event	locator	to	execute
from	the	Event	Locator	list,	which	is	populated	by	all	existing	EclipseLocator
and	ContactLocator	resources.	To	append	the	report	(if	one	is	generated),
enable	the	Append	box.



Remarks

Using	FindEvents	in	loops

The	FindEvents	command	can	be	used	inside	loops	like	For	and	While,	but	not
inside	solver	sequences,	like	Target	and	Optimize.	To	perform	event	location
based	on	the	result	of	a	solver	sequence,	put	the	FindEvents	command	after	the
sequence.

When	FindEvents	is	used	inside	a	loop,	but	there	are	several	potential	issues	to
be	aware	of.	The	following	snippet	illustrates	several.

Create	EclipseLocator	ec

ec.Spacecraft	=	sat

ec.OccultingBodies	=	{Mercury,	Venus,	Earth,	Luna,	Mars,	Phobos,	Deimos}

ec.Filename	=	'ForLoop.report'

ec.InputEpochFormat	=	TAIGregorian

%	Prevents	automatic	execution	at	end	of	mission

ec.RunMode	=	'Manual'

%	Lets	us	manually	control	search	intervals

ec.UseEntireInterval	=	false

BeginMissionSequence

%	Execute	FindEvents	once	before	loop,	to	clear

%	out	any	existing	file.

ec.InitialEpoch	=	sat.TAIGregorian

Propagate	prop(sat)	{sat.ElapsedSecs	=	2400}

ec.FinalEpoch	=	sat.TAIGregorian

FindEvents	ec	{Append	=	false}

%	Main	loop

For	I	=	1:1:71

				%	Set	initial	epoch	of	search	to	current	epoch

				ec.InitialEpoch	=	sat.TAIGregorian

				%	Propagate

				Propagate	prop(sat)	{sat.ElapsedSecs	=	2400}

				%	Set	final	epoch	of	search	to	new	epoch

				ec.FinalEpoch	=	sat.TAIGregorian

				%	Execute	search,	appending	to	file

				FindEvents	ec	{Append	=	true}



EndFor



Examples
Perform	a	basic	eclipse	search	in	LEO:

SolarSystem.EphemerisSource	=	'DE421'

Create	Spacecraft	sat

sat.DateFormat	=	UTCGregorian

sat.Epoch	=	'15	Sep	2010	16:00:00.000'

sat.CoordinateSystem	=	EarthMJ2000Eq

sat.DisplayStateType	=	Keplerian

sat.SMA	=	6678.14

sat.ECC	=	0.001

sat.INC	=	0

sat.RAAN	=	0

sat.AOP	=	0

sat.TA	=	180

Create	ForceModel	fm

fm.CentralBody	=	Earth

fm.PrimaryBodies	=	{Earth}

fm.GravityField.Earth.PotentialFile	=	'JGM2.cof'

fm.GravityField.Earth.Degree	=	0

fm.GravityField.Earth.Order	=	0

fm.GravityField.Earth.TideModel	=	'None'

fm.Drag.AtmosphereModel	=	None

fm.PointMasses	=	{}

fm.RelativisticCorrection	=	Off

fm.SRP	=	Off

Create	Propagator	prop

prop.FM	=	fm

prop.Type	=	RungeKutta89

Create	EclipseLocator	el

el.Spacecraft	=	sat

el.Filename	=	'Simple.report'

el.OccultingBodies	=	{Earth}

el.EclipseTypes	=	{'Umbra',	'Penumbra',	'Antumbra'}

el.RunMode	=	'Manual'

BeginMissionSequence

Propagate	prop(sat)	{sat.ElapsedSecs	=	10800}



FindEvents	el

Execute	FindEvents	in	a	loop,	appending	each	time:

SolarSystem.EphemerisSource	=	'SPICE'

SolarSystem.SPKFilename	=	'de421.bsp'

Create	Spacecraft	sat

sat.DateFormat	=	UTCGregorian

sat.Epoch	=	'10	May	1984	00:00:00.000'

sat.CoordinateSystem	=	MarsMJ2000Eq

sat.DisplayStateType	=	Keplerian

sat.SMA	=	6792.38

sat.ECC	=	0

sat.INC	=	45

sat.RAAN	=	0

sat.AOP	=	0

sat.TA	=	0

Create	ForceModel	fm

fm.CentralBody	=	Mars

fm.PrimaryBodies	=	{Mars}

fm.GravityField.Mars.PotentialFile	=	'Mars50c.cof'

fm.GravityField.Mars.Degree	=	0

fm.GravityField.Mars.Order	=	0

fm.Drag.AtmosphereModel	=	None

fm.PointMasses	=	{}

fm.RelativisticCorrection	=	Off

fm.SRP	=	Off

Create	Propagator	prop

prop.FM	=	fm

prop.Type	=	RungeKutta89

Create	CoordinateSystem	MarsMJ2000Eq

MarsMJ2000Eq.Origin	=	Mars

MarsMJ2000Eq.Axes	=	MJ2000Eq

Create	Moon	Phobos

Phobos.CentralBody	=	'Mars'

Phobos.PosVelSource	=	'SPICE'

Phobos.NAIFId	=	401

Phobos.OrbitSpiceKernelName	=	{'mar063.bsp'}

Phobos.SpiceFrameId	=	'IAU_PHOBOS'

Phobos.EquatorialRadius	=	13.5

Phobos.Flattening	=	0.3185185185185186



Phobos.Mu	=	7.093399e-004

Create	Moon	Deimos

Deimos.CentralBody	=	'Mars'

Deimos.PosVelSource	=	'SPICE'

Deimos.NAIFId	=	402

Deimos.OrbitSpiceKernelName	=	{'mar063.bsp'}

Deimos.SpiceFrameId	=	'IAU_DEIMOS'

Deimos.EquatorialRadius	=	7.5

Deimos.Flattening	=	0.30666666666666664

Deimos.Mu	=	1.588174e-004

Create	EclipseLocator	ec

ec.Spacecraft	=	sat

ec.OccultingBodies	=	{Mercury,	Venus,	Earth,	Luna,	Mars,	Phobos,	Deimos}

ec.Filename	=	'ForLoop.report'

ec.RunMode	=	'Manual'

ec.UseEntireInterval	=	false

ec.InputEpochFormat	=	TAIGregorian

Create	Variable	I

BeginMissionSequence

ec.InitialEpoch	=	sat.TAIGregorian

Propagate	prop(sat)	{sat.ElapsedSecs	=	2400}

ec.FinalEpoch	=	sat.TAIGregorian

FindEvents	ec	{Append	=	false}

For	I	=	1:1:71

				ec.InitialEpoch	=	sat.TAIGregorian

				Propagate	prop(sat)	{sat.ElapsedSecs	=	2400}

				ec.FinalEpoch	=	sat.TAIGregorian

				FindEvents	ec	{Append	=	true}

EndFor

Execute	FindEvents	in	a	loop,	executing	search	in	stages	but	not	appending:

Create	Spacecraft	sat

sat.DateFormat	=	UTCGregorian

sat.Epoch	=	'1	Mar	2016	12:00:00.000'

sat.CoordinateSystem	=	EarthMJ2000Eq

sat.DisplayStateType	=	Keplerian

sat.SMA	=	42164

sat.ECC	=	0

sat.INC	=	0

sat.RAAN	=	0



sat.AOP	=	0

sat.TA	=	0

Create	ForceModel	fm

fm.CentralBody	=	Earth

fm.PrimaryBodies	=	{Earth}

fm.GravityField.Earth.PotentialFile	=	'JGM2.cof'

fm.GravityField.Earth.Degree	=	0

fm.GravityField.Earth.Order	=	0

fm.GravityField.Earth.TideModel	=	'None'

fm.Drag.AtmosphereModel	=	None

fm.PointMasses	=	{}

fm.RelativisticCorrection	=	Off

fm.SRP	=	Off

Create	Propagator	prop

prop.FM	=	fm

prop.Type	=	RungeKutta89

prop.MaxStep	=	2700

Create	EclipseLocator	ec

ec.Spacecraft	=	sat

ec.OccultingBodies	=	{Mercury,	Venus,	Earth,	Luna}

ec.Filename	=	'WhileLoop.report'

ec.RunMode	=	'Manual'

SolarSystem.EphemerisSource	=	'DE421'

BeginMissionSequence

While	sat.UTCModJulian	<=	27480

				Propagate	prop(sat)	{sat.ElapsedSecs	=	28800}

				FindEvents	ec	{Append	=	false}

EndWhile



For
For	—	Execute	a	series	of	commands	a	specified	number	of	times



Script	Syntax
For	Index	=	Start:[Increment:]End

				[script	statement]

				…

EndFor



Description
The	For	command	is	a	control	logic	statement	that	executes	a	series	of
commands	a	specified	number	of	times.	The	command	argument	must	have	one
of	the	following	forms:

Index	=	Start:End

This	syntex	increments	Index	from	Start	to	End	in	steps	of	1,	repeating	the
script	statements	until	Index	is	greater	than	End.	If	Start	is	greater	than	End,
then	the	script	statements	do	not	execute.

Index	=	Start:Increment:End

This	syntax	increments	Index	from	Start	to	End	in	steps	of	Increment,
repeating	the	script	statements	until	Index	is	greater	than	End	if	Increment	is
positive	and	less	than	End	if	Increment	is	negative.	If	Start	is	less	than	End
and	Increment	is	negative,	or	if	Start	is	greater	than	End	and	Increment	is
positive,	then	the	script	statements	do	not	execute.

See	Also:	If,	While



Options

Option Description

Index
Independent	variable	in	a	for	loop.	Index	is	computed	according	to
the	arithmetic	progression	defined	by	the	values	for	Start,
Increment,	and	End.

Accepted	Data	Types Variable

Allowed	Values -∞	<	Index	<	∞

Default	Value Variable	named	I

Required yes

Interfaces GUI,	script

Start
Initial	value	for	the	Index	parameter

Accepted	Data	Types parameter

Allowed	Values -∞	<	Start	<	∞

Default	Value 1



Required yes

Interfaces GUI,	script

Increment
The	Increment	parameter	is	used	to	compute	the	arithmetic
progression	of	the	loop	Index	such	that	pass	i	through	the	loop	is
Start	+	i*	Increment	if	the	resulting	value	satisfies	the	constraint
defined	by	End.

Accepted	Data	Types parameter

Allowed	Values -∞	<	Increment	<	∞

Default	Value 1

Required no

Interfaces GUI

End
The	End	parameter	is	the	upper	(or	lower	if	Increment	is
negative)	bound	for	the	Index.

Accepted	Data	Types parameter

Allowed	Values -∞	<	End	<	∞



Default	Value 10

Required yes

Interfaces GUI,	script



GUI

The	For	command	GUI	panel	contains	fields	for	all	of	its	parameters:	Index,
Start,	Increment,	and	End.	To	edit	the	values,	click	the	field	value	you	wish	to
change	and	type	the	new	value	(e.g.	5,	anArray(1,5),	or	Spacecraft.X).
Alternately,	you	can	either	right-click	the	field	value	or	click	the	ellipses	(…)
button	to	the	left	of	the	field.	This	displays	the	ParameterSelectDialog	window,
which	allows	you	to	choose	a	parameter	from	a	list.



Remarks
The	values	of	the	Index,	Start,	Increment,	and	End	parameters	can	be	any	of
the	following	types:

Literal	numeric	value	(e.g.	1,	15.2,	-6)

Variable	resource

Array	resource	element

Resource	parameter	of	numeric	type	(e.g.	Spacecraft.X,
ChemicalThruster.K1)

with	the	extra	requirement	that	if	a	Resource	parameter	is	used	for	Index,	the
parameter	must	be	settable.

The	index	specification	cannot	contain	mathematical	operators	or	parentheses.
After	execution	of	the	For	loop,	the	value	of	Index	retains	its	value	from	the	last
loop	iteration.	If	the	loop	does	not	execute,	the	value	of	Index	remains	equal	to
its	value	before	the	loop	was	encountered.

Changes	made	to	the	index	variable	inside	of	a	For	loop	are	overwritten	by	the
For	loop	statement.	For	example,	the	output	from	the	following	snippet:

For	I	=	1:1:3

				I	=	100

				Report	aReport	I

EndFor

is:

100

100

100	

Changes	made	to	the	the	Start,	Increment,	and	End	parameters	made	inside	of
a	loop	do	not	affect	the	behavior	of	the	loop.	For	example,	the	output	from	the
following	snippet:



J	=	2

K	=	2

L	=	8

For	I	=	J:K:L

				J	=	1

				K	=	5

				L	=	100

				Report	aReport	I

EndFor

is:

2

4

6

8			



Examples
Propagate	a	spacecraft	to	apogee	3	times:

Create	Spacecraft	aSat

Create	Propagator	aPropagator

Create	Variable	I

BeginMissionSequence

For	I	=	1:1:3

				Propagate	aPropagator(aSat,	{aSat.Apoapsis})

EndFor

Index	into	an	array:

Create	Variable	I	J

Create	Array	anArray[10,5]

BeginMissionSequence

For	I	=	1:10

				For	J	=	1:5

								anArray(I,J)	=	I*J

				EndFor

EndFor



GetEphemStates()
GetEphemStates()	—	Function	used	to	output	initial	and	final	spacecraft	states
from	an	ephemeris	file



Script	Syntax
[initialEpoch,	initialState,	finalEpoch,	finalState]	=	

						GetEphemStates(ephemType,	sat,	epochFormat,	coordinateSystem)

	 		

Inputs:

		ephemType				:	Ephemeris	type	('STK',	'SPK',	'Code500')	

		sat										:	Spacecraft	with	an	associated	ephemeris	file

		epochFormat		:	String	in	single	quotes	containing	a	valid	epoch

																	format	for	the	resulting	epoch	output

		coordSystem		:	CoordinateSystem	for	the	resulting	state	output

		

Outputs:

		initialEpoch	:	String	of	initial	epoch	on	the	file	in	requested

																	epochFormat	

		initialState	:	6-element	Array	in	the	requested	coordinateSystem	

		finalEpoch			:	String	of	final	epoch	on	the	file	in	requested

																	epochFormat

		finalState			:	6-element	Array	in	the	requested	coordinateSystem



Description
GetEphemStates()	is	a	special	function	that	allows	you	to	output	initial	and
final	spacecraft	ephemeris	states	from	a	generated	spacecraft	ephemeris	file.	The
GetEphemStates()	function	can	query	through	the	following	ephemeris	types:
STK-TimePosVel	(i.e.	STK	.e	ephemeris),	spice	(SPK)	and	Code-500.	You	can
request	the	resulting	initial	epoch,	initial	state,	final	epoch	and	final	state	in	the
epoch	format	and	coordinate	system	of	your	choice.

The	initial	state	output	stored	in	the	initialState	array	corresponds	to	the	state
in	the	ephemeris	file	at	ephemeris	file's	initial	epoch.	Similarly,	the	final	state
output	stored	in	the	finalState	array	corresponds	to	the	final	state	in	the
ephemeris	file	at	ephemeris	file's	final	epoch.	You	can	request	both	the	initial
and	final	epochs	in	any	of	the	epoch	formats	that	GMAT	supports.	Also	both
initial	and	final	states	can	be	requested	in	any	of	GMAT's	default	or	user-defined
coordinate	systems.

See	Also:	EphemerisFile,	CoordinateSystem,	Spacecraft



GUI

The	GetEphemStates()	GUI	is	a	very	simply	one	and	it	simply	reflects	how	you
implement	this	function	in	the	script	mode.	It	is	easiest	to	work	with
GetEphemStates()	function	in	the	script	mode.



Remarks
Before	using	GetEphemStates()	function	to	query	through	either	STK	.e	or
Code-500	ephemeris	files,	you	must	first	set	the	STK	.e	or	Code-500	ephemeris
files	to	Spacecraft	resource's	script-only	field	called	EphemerisName	(i.e.
Spacecraft.EphemerisName).	The	STK	.e	or	Code-500	ephemeris	files	can	be
set	to	this	script-only	EphemerisName	field	either	through	a	relative	or	an
absolute	path.

When	using	GetEphemStates()	function	to	query	through	a	spice	ephemeris,
you	do	not	have	to	use	EphemerisName	field	at	all.	Rather	you	must	set	spice
ephemeris	file	to	a	Spacecraft	resource's	field	called	OrbitSpiceKernelName
(i.e.	Spacecraft.OrbitSpiceKernelName).	The	spice	ephemeris	file	can	be	set
to	OrbitSpiceKernelName	field	either	through	a	relative	or	an	absolute	path.

The	Examples	section	will	show	simple	examples	in	how	to	use
GetEphemStates()	function	to	extract	initial	and	final	spacecraft	states	for	all
three	STK	.e,	Code-500	and	Spice	ephemeris	types.



Examples
First	run	only	'Example	1A'	to	generate	STK-TimePosVel	(i.e.	STK	.e)
ephemeris	file.	Now	run	'Example	1B'	that	shows	you	how	to	read	through	a
generated	STK	.e	ephemeris	file	and	retrieve	spacecraft's	initial/final	states	in	the
desired	epoch	format	and	coordinate	system.	Before	running	Example	1B,	make
sure	that	you	put	'STK_Ephemeris.e'	ephemeris	file	in	the	same	directory	as	your
main	GMAT	script

%%	Example	1A.	Generate	STK	.e	ephemeris	file:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'STK_Ephemeris.e'

anEphmerisFile.FileFormat	=	STK-TimePosVel

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

%%%	Example	1B.	Read	through	.e	ephemeris	file	using	GetEphemStates():

Create	Spacecraft	aSat

aSat.EphemerisName	=	'./STK_Ephemeris.e'

Create	Propagator	aProp

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'STK_Ephemeris.e'

anEphmerisFile.FileFormat	=	STK-TimePosVel

Create	Array	initialState[6,1]	finalState[6,1]	

Create	String	initialEpoch	finalEpoch

Create	ReportFile	rf

BeginMissionSequence



Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

[initialEpoch,	initialState,	finalEpoch,	finalState]	=	...

	GetEphemStates('STK',	aSat,	'UTCGregorian',	EarthMJ2000Eq)

Report	rf	initialEpoch	initialState	finalEpoch	finalState

First	run	only	'Example	2A'	to	generate	a	Code-500	ephemeris	file.	Now	run
'Example	2B'	that	shows	you	how	to	read	through	a	generated	Code-500
ephemeris	file	and	retrieve	spacecraft's	initial/final	states	in	the	desired	epoch
format	and	coordinate	system.	Before	running	Example	2B,	make	sure	that	you
put	'Code500_Ephemeris.eph'	ephemeris	file	in	the	same	directory	as	your	main
GMAT	script

%%	Example	2A.	Generate	Code-500	ephemeris	file:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'Code500_Ephemeris.eph'

anEphmerisFile.FileFormat	=	Code-500

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

%%%	Example	2B.	Read	through	Code-500	ephemeris	file	using	GetEphemStates():

Create	Spacecraft	aSat

aSat.EphemerisName	=	'./Code500_Ephemeris.eph'

Create	Propagator	aProp

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'Code500_Ephemeris.eph'

anEphmerisFile.FileFormat	=	Code-500

Create	Array	initialState[6,1]	finalState[6,1]	

Create	String	initialEpoch	finalEpoch



Create	ReportFile	rf

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

[initialEpoch,	initialState,	finalEpoch,	finalState]	=	...

	GetEphemStates('Code500',	aSat,	'TDBGregorian',	EarthMJ2000Ec)

Report	rf	initialEpoch	initialState	finalEpoch	finalState

First	run	only	'Example	3A'	to	generate	a	Spice	ephemeris	file.	Now	run
'Example	3B'	that	shows	you	how	to	read	through	a	generated	spice	ephemeris
file	and	retrieve	spacecraft's	initial/final	states	in	the	desired	epoch	format	and
coordinate	system.	Before	running	Example	3B,	make	sure	that	you	put
'SPK_Ephemeris.bsp'	ephemeris	file	in	the	same	directory	as	your	main	GMAT
script

%%	Example	3A.	Generate	a	Spice	ephemeris	file:

Create	Spacecraft	aSat

aSat.NAIFId	=	-10025001;

aSat.NAIFIdReferenceFrame	=	-9025001;

Create	Propagator	aProp

Create	ImpulsiveBurn	IB

IB.Element1	=	0.5

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'SPK_Ephemeris.bsp'

anEphmerisFile.FileFormat	=	SPK

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.25}

Maneuver	IB(aSat)

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.25}

%%%	Example	3B.	Read	through	a	Spice	ephemeris	file	using	GetEphemStates():

Create	Spacecraft	aSat

aSat.NAIFId	=	-10025001

aSat.NAIFIdReferenceFrame	=	-9025001



aSat.OrbitSpiceKernelName	=	{'./SPK_Ephemeris.bsp'}

Create	Propagator	aProp

Create	ImpulsiveBurn	IB

IB.Element1	=	0.5

Create	EphemerisFile	anEphmerisFile

anEphmerisFile.Spacecraft	=	aSat

anEphmerisFile.Filename	=	'SPK_Ephemeris.bsp'

anEphmerisFile.FileFormat	=	SPK

Create	Array	initialState[6,1]	finalState[6,1]	

Create	String	initialEpoch	finalEpoch

Create	ReportFile	rf

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.25}

Maneuver	IB(aSat)

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.25}

[initialEpoch,	initialState,	finalEpoch,	finalState]	=	...

	GetEphemStates('SPK',	aSat,	'UTCGregorian',	EarthMJ2000Eq)

Report	rf	initialEpoch	initialState	finalEpoch	finalState



Global
Global	—	Declare	Objects	as	global



Script	Syntax
Global	ObjectList

ObjectList

		ObjectList	List	all	GMAT	objects	that	you	want	to	declare	as	global.



Description
In	GMAT	you	can	use	a	special	command	that	allows	you	to	declare	GMAT
objects	as	global.	By	using	the	Global	command,	you	can	declare	GMAT's
objects	as	global	either	through	the	GUI	or	the	script	mode.

The	syntax	for	declaring	objects	as	global	is	very	simple.	After	using	the	Global
command,	simply	list	the	name	of	the	objects	that	needs	global	declaration.	Once
the	GmatFunction	resource	has	been	declared	during	initialization,	arguments
can	be	passed	to	and	from	the	function	as	input/output	by	using	GMAT's
CallGmatFunction	command.	Data	that	is	passed	into	the	function	as	input	or
received	from	the	function	as	output	can	be	declared	as	global	by	using	the
Global	command.	See	the	Remarks	section	for	more	details	on	the	Global
command.

See	Also:	GMATFunction,	CallGmatFunction



GUI
Figure	below	shows	default	settings	of	the	Global	command.	By	default,	only
Spacecraft	object	is	checked	and	declared	as	global.	As	more	objects	are	created
by	the	user	in	GMAT's	Resources	tree,	the	list	of	objects	that	are	available	to	be
declared	as	global	increases.

Notice	in	the	above	figure	that	GMAT	by	default	already	considers	objects	such
as	the	default	coordinate	systems,	SolarSystemBarycenter,	DefaultProp	and
SolarSystem	as	automatic	global	objects.	Furthermore	whenever	new	coordinate
systems	or	propagators	are	created	in	the	Resources	tree,	GMAT	automatically
declares	the	newly	created	coordinate	systems	and	propagators	as	global	objects.
Since	GMAT	always	declares	default	or	newly	created	coordinate	systems	and
propagators	as	global,	hence	you	do	not	need	to	use	Global	command	on
coordinate	system	and	propagator	objects.



Remarks

Declaration	of	Global	Objects

GMAT	objects	can	be	passed	into	the	GMAT	function	as	input	and	can	also	be
returned	from	the	function	as	output.	Refer	to	both	GmatFunction	resource	and
CallGmatFunction	command's	Remarks	sections	to	learn	more	about	list	of
allowed	objects	that	can	be	passed	as	input	and	output	to	and	from	the	function.
By	default,	in	GMAT	any	objects	that	are	created	inside	the	main	script	are
considered	local	to	the	main	script.	Similarly	any	objects	that	may	be	created
inside	the	GMAT	function	are	considered	local	to	that	function.	In	GMAT,	in
order	to	declare	objects	as	global,	you	must	declare	the	objects	as	global	in	both
your	main	script	and	inside	the	function.	It	is	a	good	practice	to	declare	objects
as	global	right	after	the	BeginMissionSequence	line	in	both	the	main	script	and
inside	the	function.

If	a	given	GMAT	object	is	not	declared	as	global	in	both	the	main	script	and	in
the	function,	then	all	objects	that	are	passed	into	the	function	as	input	and/or
received	as	output	from	the	function	are	considered	to	be	local	to	that	function
and	the	main	script.

Often	times,	you	will	propagate	a	spacecraft,	perform	differential	correction
(DC)	or	optimization	routines	interchangeably	from	both	the	main	script	and
inside	the	function.	Whenever	you	want	to	plot	continuous	set	of	spacecraft
trajectory	data	and	report	parameters	to	same	subscribers	interchangeably	from
both	inside	the	main	script	and	the	function,	then	always	declare	your
Spacecraft	object	and	subscriber	objects	(i.e.	OrbitView,	GroundTrackPlot,
XYPlot,	ReportFile,	EphemerisFile)	as	global	both	in	the	main	script	and
inside	the	function.	Abiding	by	this	rule	draws	plots,	reports	and	ephemeris	files
correctly	and	flow	of	data	will	be	reported	continuously	to	all	the	subscribers.

GMAT	allows	globally	declared	objects	such	as	Spacecraft,	global
variables/arrays/strings	to	be	passed	as	input/output	argument	to	and	from	the
function.	Globally	declared	objects	such	as	Spacecraft,	variables/arrays/strings
can	be	plotted	or	reported	interchangeably	both	from	the	main	script	and	inside
the	function	as	long	as	all	subscribers	are	also	declared	global.

Refer	to	GmatFunction	resource's	Examples	section	that	shows	three	more



examples	of	how	to	declare	spacecraft,	five	subscribers,	arrays/variables/strings
as	global	in	both	the	main	script	and	inside	the	function.



Examples
Declare	spacecraft,	all	subscribers	and	variables	as	global.	Global	variables	are
passed	as	input	and	received	as	global	output	from	the	function.	As	you	run	the
example,	notice	that	data	is	reported	continuously	to	all	5	subscribers.

Create	Spacecraft	aSat

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	ImpulsiveBurn	TOI

Create	ImpulsiveBurn	GOI

Create	DifferentialCorrector	DC

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

Create	GroundTrackPlot	GroundTrackPlot1

GroundTrackPlot1.Add	=	{aSat}

GroundTrackPlot1.CentralBody	=	Earth

Create	XYPlot	XYPlot1

XYPlot1.XVariable	=	aSat.ElapsedDays

XYPlot1.YVariables	=	{aSat.EarthMJ2000Eq.X}

Create	ReportFile	rf

rf.Add	=	{aSat.UTCGregorian,	aSat.EarthMJ2000Eq.X,	...	

aSat.EarthMJ2000Eq.Y,	aSat.EarthMJ2000Eq.Z,	...

aSat.EarthMJ2000Eq.VX,	aSat.EarthMJ2000Eq.VY,	aSat.EarthMJ2000Eq.VZ}

Create	ReportFile	rf2

rf2.WriteHeaders	=	false

Create	EphemerisFile	anEphemerisFile

GMAT	anEphemerisFile.Spacecraft	=	aSat

Create	GmatFunction	Global_Objects

Global_Objects.FunctionPath	=	...



'C:\Users\rqureshi\Desktop\Global_Objects.gmf'

Create	Variable	T	X	Y	Z	VX	VY	VZ

BeginMissionSequence

Global	aSat

Global	aFM	TOI	GOI	DC

Global	anOrbitView	GroundTrackPlot1	XYPlot1	rf	rf2	anEphemerisFile

Global	T	X	Y	Z	VX	VY	VZ	

%	Report	initial	state	to	Global	'rf2':

Report	rf2	aSat.UTCGregorian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1.0}

T	=	aSat.UTCModJulian

X	=	aSat.X

Y	=	aSat.Y

Z	=	aSat.Z

VX	=	aSat.VX

VY	=	aSat.VY

VZ	=	aSat.VZ

%	Call	function.	Pass	Global	Variables	as	input:

%	Receive	updated	global	S/C	state	via	global	variables:

[T,X,Y,Z,VX,VY,VZ]	=	Global_Objects(T,X,Y,Z,VX,VY,VZ)

%	Report	global	variables	to	global	'rf2':

Report	rf2	T	X	Y	Z	VX	VY	VZ

%	Re-report	global	S/C	state:

Report	rf2	aSat.UTCGregorian	aSat.X	aSat.Y	aSat.Z	...

aSat.VX	aSat.VY	aSat.VZ

%%%%%%%%	Function	begins	below:

function	[T,X,Y,Z,VX,VY,VZ]	=	Global_Objects(T,X,Y,Z,VX,VY,VZ)

BeginMissionSequence

Global	aSat

Global	aFM	TOI	GOI	DC



Global	anOrbitView	GroundTrackPlot1	XYPlot1	rf	rf2	anEphemerisFile

Global	T	X	Y	Z	VX	VY	VZ	

%	Report	global	variables	to	global	'rf2':

Report	rf2	T	X	Y	Z	VX	VY	VZ

While	aSat.ElapsedDays	<	5

			Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.5}

EndWhile

%	Send	global	variables	back	to	main	script:

T	=	aSat.UTCModJulian

X	=	aSat.X

Y	=	aSat.Y

Z	=	aSat.Z

VX	=	aSat.VX

VY	=	aSat.VY

VZ	=	aSat.VZ



If
If	—	Conditionally	execute	a	series	of	commands



Script	Syntax
If	logical	expression

				[script	statement]

				…

EndIf

If	logical	expression

				[script	statement]

				…

Else

				[script	statement]

				…

EndIf



Description
The	If	command	is	a	control	logic	statement	that	executes	a	series	of	commands
if	the	value	of	the	provided	logical	expression	is	true.	The	syntax	of	the	logical
expression	is	described	in	the	script	language	reference.

The	If	command	can	optionally	contain	an	Else	clause	that	defines	a	series	of
commands	to	execute	if	the	associated	logical	expression	is	false.

See	Also:	Script	Language,	For,	While



GUI

The	If	command	GUI	panel	features	a	table	in	which	you	can	build	a	complex
logical	expression.	The	rows	of	the	table	correspond	to	individual	relational
expressions	in	a	compound	logical	expression	(up	to	10),	and	the	columns
correspond	to	individual	elements	of	those	expressions.	The	first	line
automatically	contains	a	default	statement:

If	DefaultSC.ElapsedDays	<	1.0

The	first	column	of	the	first	row	contains	a	placeholder	for	the	If	command
name.	This	cannot	be	changed.	The	first	column	of	each	additional	row	contains
the	logical	operator	(&,	|)	that	joins	the	expression	in	that	row	with	the	one
above	it.	To	select	a	logical	operator,	double-click	or	right-click	in	the
appropriate	box	in	the	table	to	display	a	selection	window.	Click	the	correct
operator	and	click	OK	to	select	it.



The	Left	Hand	Side	column	contains	the	left-hand	side	of	each	individual
expression.	Double-click	the	cell	to	type	a	parameter	name.	To	set	this	value
from	a	parameter	selection	list	instead,	either	click	“…”	to	the	left	of	the	cell	you
want	to	set,	or	right-click	the	cell	itself.	A	ParameterSelectDialog	window	will
appear	that	allows	you	to	choose	a	parameter.



The	Condition	column	contains	the	conditional	operator	(==,	~=,	<,	etc.)	that
joins	the	left-hand	and	right-hand	sides	of	the	expression.	To	select	a	relational
operator,	double-click	or	right-click	in	the	appropriate	box	in	the	table,	and	a
selection	window	will	appear.	Click	the	correct	operator	and	click	OK	to	select
it.



Finally,	the	Right	Hand	Side	column	contains	the	right-hand	side	of	the
expression.	This	value	can	be	modified	the	same	way	as	the	Left	Hand	Side
column.

When	you	are	finished,	click	Apply	to	save	your	changes,	or	click	OK	to	save
your	changes	and	close	the	window.	The	command	will	be	validated	when	either
button	is	clicked.



Examples
A	simple	If	statement:

Create	Spacecraft	aSat

Create	ForceModel	aForceModel

Create	Propagator	aProp

aProp.FM	=	aForceModel

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1,	aSat.Altitude	=	300}

If	aSat.Altitude	<	301	&	aSat.Altitude	>	299

				%	propagation	stopped	on	altitude	constraint

Else

				%	propagation	continued	for	1	day

EndIf



Maneuver
Maneuver	—	Perform	an	impulsive	(instantaneous)	maneuver



Script	Syntax
Maneuver	BurnName	(SpacecraftName)				



Description
The	Maneuver	command	applies	a	selected	ImpulsiveBurn	to	a	selected
Spacecraft.	To	perform	an	impulsive	maneuver	using	the	Maneuver	command,
you	must	create	an	ImpulsiveBurn.	If	you	wish	to	model	fuel	depletion,	you
must	associate	a	specific	ChemicalTank	hardware	object	with	this
ImpulsiveBurn	and	attach	the	ChemicalTank	to	the	desired	Spacecraft.	See
the	Remarks	and	example	shown	below	for	more	details.

See	Also:	ChemicalTank,	ImpulsiveBurn,	Spacecraft



Options

Option Description

ImpulsiveBurnName
Allows	the	user	to	select	which	ImpulsiveBurn	to
apply.	As	an	example,	to	maneuver	DefaultSC	using
DefaultIB,	the	script	line	would	appear	as	Maneuver
DefaultIB(DefaultSC).

Accepted	Data
Types

Reference	Array

Allowed	Values Any	ImpulsiveBurn	existing	in	the
resource	treet

Default	Value DefaultIB

Required yes

Interfaces GUI,	script

SpacecraftName
Allows	the	user	to	select	which	Spacecraft	to
maneuver.	The	maneuver	applied	is	specified	by	the
ImpulsiveBurnName	option	above.

Accepted	Data	Types Reference	Array



Allowed	Values Spacecraft	resource

Default	Value DefaultSC

Required yes

Interfaces GUI,	script



GUI
The	Maneuver	command	dialog	box,	as	shown	below,	allows	you	to	select
which	previously	created	ImpulsiveBurn	should	be	applied	to	which
Spacecraft.



Remarks

Fuel	Depletion

To	model	fuel	depletion	associated	with	your	chosen	ImpulsiveBurn,	you	must
configure	the	ImpulsiveBurn	object	as	follows:

Set	the	ImpulsiveBurn	parameter,	Decrement	Mass,	equal	to	true.

Select	a	ChemicalTank	for	the	ImpulsiveBurn	object	and	attach	this
selected	ChemicalTank	to	the	Spacecraft.

Set	values	for	the	ImpulsiveBurn	parameters,	Isp	and	GravitationalAccel,
which	are	used	to	calculate,	via	the	Rocket	Equation,	the	mass	depleted.

Interactions

ImpulsiveBurn
The	Maneuver	command	applies	the	specified
ImpulsiveBurn	to	the	specified	Spacecraft.

ChemicalTank
The	ChemicalTank	specified	by	the	ImpulsiveBurn
object	is	(optionally)	used	to	power	the	ImpulsiveBurn.

Spacecraft
This	is	the	object	that	the	ImpulsiveBurn	is	applied	to.



Examples
Create	a	default	Spacecraft	and	ChemicalTank	and	attach	the	ChemicalTank
to	the	Spacecraft.	Perform	a	100	m/s	impulsive	maneuver	in	the	Earth	VNB-V
direction.

%		Create	default	Spacecraft	and	ChemicalTank	and	attach	the	ChemicalTank	

%		to	the	Spacecraft.

Create	Spacecraft	DefaultSC

Create	ChemicalTank	FuelTank1

DefaultSC.Tanks	=	{FuelTank1}

%		Set	ChemicalTank1	parameters	to	default	values

FuelTank1.AllowNegativeFuelMass	=	false

FuelTank1.FuelMass	=	756

FuelTank1.Pressure	=	1500

FuelTank1.Temperature	=	20

FuelTank1.RefTemperature	=	20

FuelTank1.Volume	=	0.75

FuelTank1.FuelDensity	=	1260

FuelTank1.PressureModel	=	PressureRegulated

%		Create	ImpulsiveBurn	associated	with	the	created	ChemicalTank

Create	ImpulsiveBurn	IB

IB.CoordinateSystem	=	Local

IB.Origin	=	Earth

IB.Axes	=	VNB

IB.Element1	=	0.1

IB.Element2	=	0

IB.Element3	=	0

IB.DecrementMass	=	true

IB.Tank	=	{FuelTank1}

IB.Isp	=	300

IB.GravitationalAccel	=	9.810000000000001

BeginMissionSequence

%		Apply	impulsive	maneuver	to	DefaultSC

Maneuver	IB(DefaultSC)



MarkPoint
MarkPoint	—	Allows	you	to	add	a	special	mark	point	character	on	an	XYPlot



Script	Syntax
MarkPoint		OutputNames

OutputNames

		OutputNames	is	the	list	of	subscribers	and	a	special	mark	point

		will	be	added	to	each	subscriber’s	XYPlot.	When	mark	points	need

		to	be	added	to	multiple	subscribers,	then	the	subscribers	need

		to	be	separated	by	a	space.



Description
The	MarkPoint	command	allows	you	to	add	a	special	mark	point	character	to
highlight	a	single	data	point	on	an	XYPlot.	MarkPoint	command	works	only
for	XYPlot	subscriber.	This	command	also	allows	you	to	add	special	mark
points	on	multiple	XYPlot	resources.	MarkPoint	command	can	be	used	through
GMAT’s	GUI	or	the	script	interface.



Options

Option Description

OutputNames
The	MarkPoint	command	allows	the	user	to	add	a	special
mark	point	character	to	highlight	an	individual	data	point
on	an	XYPlot.

Accepted	Data	Types Resource	reference

Allowed	Values XYPlot	resource

Default	Value DefaultXYPlot

Required yes

Interfaces GUI,	script



GUI
Figure	below	shows	default	settings	for	MarkPoint	command:



Remarks
GMAT	allows	you	to	insert	MarkPoint	command	into	the	Mission	tree	at	any
location.	This	allows	you	to	add	special	mark	points	on	an	XYPlot	at	any	point
in	your	mission.	The	XYPlot	subscriber	plots	data	at	each	propagation	step	of
the	entire	mission	duration.	If	you	to	want	to	place	mark	points	on	an	XYPlot	at
specific	points,	then	a	MarkPoint	command	can	be	inserted	into	the	mission
sequence	to	control	when	mark	points	are	placed	onto	an	XYPlot.	Refer	to	the
Examples	section	below	to	see	how	MarkPoint	command	can	be	used	in	the
Mission	tree.



Examples
This	example	shows	how	to	use	MarkPoint	command	on	multiple	subscribers.
Mark	points	are	added	on	two	XYPlots	after	every	0.2	days	through	an	iterative
loop:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot1	aPlot2

aPlot1.XVariable	=	aSat.A1ModJulian

aPlot1.YVariables	=	{aSat.EarthMJ2000Eq.X}

aPlot2.XVariable	=	aSat.A1ModJulian

aPlot2.YVariables	=	{aSat.EarthMJ2000Eq.VX}

BeginMissionSequence;

While	aSat.ElapsedDays	<	1.0

	MarkPoint	aPlot1	aPlot2

	Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.2}

EndWhile

This	example	shows	how	to	use	MarkPoint	on	a	single	subscriber.	In	this
example,	mark	points	are	placed	on	the	XYPlot	the	moment	spacecraft’s	altitude
goes	below	750	Km.	Note	that	mark	points	are	placed	on	the	XYPlot	at	every
integration	step:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot1

aPlot1.XVariable	=	aSat.A1ModJulian

aPlot1.YVariables	=	{aSat.Earth.Altitude}

BeginMissionSequence

While	aSat.ElapsedDays	<	2

	Propagate	aProp(aSat)

	If	aSat.Earth.Altitude	<	750

	MarkPoint	aPlot1



	EndIf

EndWhile



Minimize
Minimize	—	Define	the	cost	function	to	minimize



Script	Syntax
Minimize	OptimizerName	(ObjectiveFunction)				



Description
The	Minimize	command	is	used	within	an	Optimize/EndOptimize
Optimization	sequence	to	define	the	objective	function	that	you	want	to
minimize.

See	Also:	Vary,	NonlinearConstraint,	Optimize



Options

Option Description

ObjectiveFunction
Specifies	the	objective	function	that	the	optimizer	will	try
to	minimize.

Accepted
Data
Types

String

Allowed
Values

Spacecraft	parameter,	Array	element,
Variable,	or	any	other	single	element	user
defined	parameter,	excluding	numbers

Default
Value

DefaultSC.Earth.RMAG

Required yes

Interfaces GUI,	script

OptimizerName
Specifies	which	optimizer	to	use	to	minimize	the	cost
function

Accepted	Data
Types

Reference	Array



Allowed	Values Any	VF13ad	or	fminconOptimizer
resource

Default	Value DefaultSQP

Required yes

Interfaces GUI,	script



GUI
You	use	a	Minimize	command,	within	an	Optimize/EndOptimize	Optimization
sequence	as	shown	below,	to	define	a	cost	function	that	you	wish	to	minimize.

Double	click	on	Minimize1	to	bring	up	the	Minimize	command	dialog	box
shown	below..

You	must	provide	two	inputs	for	the	Minimize	command	dialog	box	above:

Choice	of	optimizer.

Object	(and	associated	variable)	to	be	minimized.	You	can	input	an	object
directly	or	you	can	click	the	Edit	button	to	the	right	of	this	field	to	select
the	type	of	object	from	three	possible	choices,	Spacecraft,	Variable,	or
Array.



Remarks

Number	of	Vary,	NonlinearConstraint,	and	Minimize
Commands	Within	an	Optimization	Sequence

An	Optimization	sequence	must	contain	one	or	more	Vary	commands.	Vary
commands	must	occur	before	any	Minimize	or	NonlinearConstraint
commands.

At	most,	a	single	Minimize	command	is	allowed	within	an	optimization
sequence.

It	is	possible	for	an	Optimize/EndOptimize	optimization	sequence	to	contain
no	Minimize	commands.	In	this	case,	since	every	optimization	sequence	must
contain	(a)	one	or	more	NonlinearConstraint	commands	and/or	(b)	a	single
Minimize	command,	the	optimization	sequence	must	contain	at	least	one
NonlinearConstraint	command.

Command	Interactions

The	Minimize	command	is	only	used	within	an	Optimize/EndOptimize
Optimization	sequence.	See	the	Optimize	command	documentation	for	a
complete	worked	example	using	the	Minimize	command.

Vary	command
Every	Optimization	sequence	must	contain	at	least	one
Vary	command.	Vary	commands	are	used	to	define	the
control	variables	associated	with	an	Optimization
sequence.

NonlinearConstraint
command NonlinearConstraint	commands	are	used	to	define	the

constraints	(i.e.,	goals)	associated	with	an	Optimization
sequence.	Note	that	multiple	NonlinearConstraint
commands	are	allowed	within	an	Optimization
sequence.



Optimize	command
A	Minimize	command	can	only	occur	within	an
Optimize/EndOptimize	command	sequence.



Examples
%	Minimize	the	eccentricity	of	Sat,	using	SQP1

Minimize	SQP1(Sat.ECC)

%	Minimize	the	Variable	DeltaV,	using	SQP1

Minimize	SQP1(DeltaV)

%	Minimize	the	first	component	of	MyArray,	using	VF13ad1

Minimize	VF13ad1(MyArray(1,1))						

As	mentioned	above,	the	Minimize	command	only	occurs	within	an	Optimize
sequence.	See	the	Optimize	command	help	for	complete	examples	showing	the
use	of	the	Minimize	command.



NonlinearConstraint
NonlinearConstraint	—	Specify	a	constraint	used	during	optimization



Script	Syntax
NonlinearConstraint	OptimizerName	({logical	expression})				



Description
The	NonlinearConstraint	command	is	used	within	an	Optimize/EndOptimize
optimization	sequence	to	apply	a	linear	or	nonlinear	constraint.

See	Also:	Vary,	Optimize,	Minimize



Options

Option Description

LHS
Allows	you	to	select	any	single	element	user	defined
parameter,	except	a	number,	to	define	the	constraint
variable.		The	constraint	function	is	of	the	form	LHS
Operator	RHS

Accepted
Data
Types

String

Allowed
Values

Spacecraft	parameter,	Array	element,
Variable,	or	any	other	single	element	user
defined	parameter,	excluding	numbers

Default
Value

DefaultSC.SMA

Required yes

Interfaces GUI,	script

Operator
logical	operator	used	to	specify	the	constraint	function.	
The	constraint	function	is	of	the	form	LHS	Operator	RHS

Accepted	Data	Types Reference	Array



Allowed	Values >=,		<=,	=

Default	Value =

Required yes

Interfaces GUI,	script

OptimizerName
Specifies	the	solver/optimizer	object	used	to	apply	a
constraint.	

Accepted	Data
Types

Reference	Array

Allowed	Values Any	VF13ad	or	fminconOptimizer
object.

Default	Value DefaultSQP

Required yes

Interfaces GUI,	script

RHS
Allows	you	to	select	any	single	element	user	defined
parameter,	including	a	number,	to	specify	the	desired	value



of	the	constraint	variable.		The	constraint	function	is	of	the
form	LHS	Operator	RHS

Accepted
Data
Types

String

Allowed
Values

Spacecraft	parameter,	Array	element,
Variable,	or	any	other	single	element	user
defined	parameter,	including	numbers

Default
Value

7000

Required yes

Interfaces GUI,	script



GUI
You	use	a	NonlinearConstraint	command,	within	an	Optimize/EndOptimize
sequence	as	shown	below,	to	define	an	equality	or	inequality	constraint	that	you
want	to	be	satisfied	at	the	end	of	the	optimization	process.

Double	click	on	NonlinearConstraint1	to	bring	up	the	NonlinearConstraint
command	dialog	box,	shown	below.

You	must	provide	four	inputs	for	the	NonlinearConstraint	command	dialog	box
above:

Choice	of	Optimizer.

Constraint	Object.	Click	the	Edit	button	to	the	right	of	this	field	to	select
the	type	of	constraint	object	from	three	possible	choices,	Spacecraft,
Variable,	or	Array.

Logical	operator.	Select	one	from	three	choices,	=,	<=,	or	>=.

Constraint	Value.

Note	that	Inputs	2-4	define	a	logical	expression.	In	the	example	above,	we	have:
DefaultSC.SMA	=	7000



Remarks

Number	of	Vary,	NonlinearConstraint,	and	Minimize
Commands	Within	an	Optimization	Sequence

An	Optimization	sequence	must	contain	one	or	more	Vary	commands.	Vary
commands	must	occur	before	any	Minimize	or	NonlinearConstraint
commands.

Multiple	NonlinearConstraint	commands	are	allowed.	There	is	exactly	one
NonlinearConstraint	command	for	every	constraint.

It	is	possible	for	an	Optimize/EndOptimize	optimization	sequence	to	contain
no	NonlinearConstraint	commands.	In	this	case,	since	every	optimization
sequence	must	contain	(a)	one	or	more	NonlinearConstraint	commands	and/or
(b)	a	single	Minimize	command,	the	optimization	sequence	must	contain	a
single	Minimize	command.

Command	Interactions

The	Minimize	command	is	only	used	within	an	Optimize/EndOptimize
Optimization	sequence.	See	the	Optimize	command	documentation	for	a
complete	worked	example	using	the	NonlinearConstraint	command.

Optimize
command NonlinearConstraint	commands	can	only	occur	within	an

Optimize/EndOptimize	command	sequence.

Vary
command Every	Optimization	sequence	must	contain	at	least	one	Vary

command.	Vary	commands	are	used	to	define	the	control	variables
associated	with	an	Optimization	sequence.

Minimize
command A	Minimize	command	is	used	within	an	Optimization	sequence	to

define	the	objective	function	that	will	be	minimized.	Note	that	an
optimization	sequence	is	allowed	to	contain,	at	most,	one	Minimize



command.	(An	Optimization	sequence	is	not	required	to	contain	a
Minimize	command)		



Examples
%	Constrain	SMA	of	Sat	to	be	7000	km,	using	SQP1

NonlinearConstraint	SQP1(	Sat.SMA	=	7000	)

%	Constrain	SMA	of	Sat	to	be	less	than	or	equal	to	7000	km,

%	using	SQP1

NonlinearConstraint	SQP1(	Sat.SMA	<=	7000	)

%	Constrain	the	SMA	of	Sat	to	be	greater	than	or	equal	to	7000	km,

%	using	VF13ad1

NonlinearConstraint	VF13ad1(	Sat.SMA	>=	7000	)						

As	mentioned	above,	the	NonlinearConstraint	command	only	occurs	within	an
Optimize	sequence.	See	the	Optimize	command	help	for	complete	examples
showing	the	use	of	the	NonlinearConstraint	command.



Optimize
Optimize	—	Solve	for	condition(s)	by	varying	one	or	more	parameters



Script	Syntax
Optimize	SolverName	[{[SolveMode	=	value],	[ExitMode	=	value],

																						[ShowProgressWindow	=	value]	}]

						Vary	command	…

						script	statement	…

						NonlinearConstraint	command	…

						Minimize	command	…

EndOptimize				



Description
The	Optimize	command	in	GMAT	allows	you	to	solve	optimization	problems
by	using	a	solver	object.	Currently,	you	can	choose	from	one	of	two	available
solvers,	the	FminconOptimizer	solver	object	available	to	all	GMAT	users	with
access	to	the	Matlab	optimization	toolbox	and	the	VF13ad	solver	object	plug-in
that	you	must	install	yourself.

You	use	the	Optimize	and	EndOptimize	commands	to	define	an	Optimize
sequence	to	determine,	for	example,	the	maneuver	components	required	to	raise
orbit	apogee	to	42164	km	while	simultaneously	minimizing	the	DeltaV	required
to	do	so.	Optimize	sequences	in	GMAT	are	applicable	to	a	wide	variety	of
problems	and	this	is	just	one	example.	Let’s	define	the	quantities	that	you	don’t
know	precisely,	but	need	to	determine,	as	the	Control	Variables.	We	define	the
conditions	that	must	be	satisfied	as	the	Constraints	and	we	define	the	quantity	to
be	minimized	(e.g.,	DeltaV)	as	the	Objective	function.	An	Optimize	sequence
numerically	solves	a	boundary	value	problem	to	determine	the	value	of	the
Control	Variables	required	to	satisfy	the	Constraints	while	simultaneously
minimizing	the	Objective	function.	As	was	the	case	for	the	Target/EndTarget
command	sequence,	you	define	your	control	variables	by	using	Vary	commands.
You	define	the	constraints	that	must	be	satisfied	by	using	the
NonlinearConstraint	command	and	you	define	the	objective	function	to	be
minimized	by	using	the	Minimize	command.	The	Optimize/EndOptimize
sequence	is	an	advanced	command.	The	examples	later	in	this	section	give	a
more	detailed	explanation.

See	Also:	Vary,	NonlinearConstraint,	Minimize,	VF13ad



Options

Option Description

ApplyCorrections
The	ApplyCorrections	GUI	button	replaces	the	initial
guess	values	specified	in	the	Vary	commands	with	those
computed	by	the	optimizer	during	a	run.	If	the
Optimize	sequence	converged,	the	converged	values	are
applied.	If	the	Optimize	sequence	did	not	converge,	the
last	calculated	values	are	applied.	There	is	one	situation
where	the	action	specified	above,	where	the	initial	guess
values	specified	in	the	Vary	commands	are	replaced,
does	not	occur.	This	happens	when	the	initial	guess
value	specified	in	the	Vary	command	is	given	by	a
variable.

Accepted	Data	Types N/A

Allowed	Values N/A

Default	Value N/A

Required no

Interfaces GUI,	script

ExitMode
Controls	the	initial	guess	values	for	Optimize	sequences
nested	in	control	flow.	If	ExitMode	is	set	to
SaveAndContinue,	the	solution	of	an	Optimize



sequence	is	saved	and	used	as	the	initial	guess	for	the
next	time	this	Optimize	sequence	is	run.	The	rest	of	the
mission	sequence	is	then	executed.	If	ExitMode	is	set	to
DiscardAndContinue,	then	the	solution	is	discarded
and	the	initial	guess	values	specified	in	the	Vary
commands	are	used	for	each	Optimize	sequence
execution.	The	rest	of	the	mission	sequence	is	then
executed.	If	ExitMode	is	set	to	Stop,	the	Optimize
sequence	is	executed,	the	solution	is	discarded,	and	the
rest	of	the	mission	sequence	is	not	executed.

Accepted
Data
Types

Reference	Array

Allowed
Values

DiscardAndContinue,SaveAndContinue
Stop

Default
Value

DiscardAndContinue

Required no

Interfaces GUI,	script

ShowProgressWindow
Flag	to	indicate	if	solver	progress	window	should	be
displayed.

Accepted	Data	Types Boolean



Allowed	Values true,false

Default	Value true

Required no

Interfaces GUI,	script

SolveMode
Specifies	how	the	optimization	loop	behaves	during
mission	execution.	When	SolveMode	is	set	to	Solve,	the
optimization	loop	executes	and	attempts	to	solve	the
optimization	problem.	When	SolveMode	is	set	to
RunInitialGuess,	the	Optimizer	does	not	attempt	to
solve	the	optimization	problem	and	the	commands	in
the	Optimize	sequence	execute	using	the	initial	guess
values	defined	in	the	Vary	commands.

Accepted	Data	Types Reference	Array

Allowed	Values Solve,	RunInitialGuess

Default	Value Solve

Required no

Interfaces GUI,	script



SolverName Specifies	the	solver/optimizer	object	used	in	the
Optimize	sequence

Accepted	Data
Types

Reference	Array

Allowed	Values Any	VD13ad	or
FminconOptimizer	resource

Default	Value DefaultSQP

Required yes

Interfaces GUI,	script



GUI
The	Optimize	command	allows	you	to	use	an	optimization	process	to	solve
problems.	To	solve	a	given	problem,	you	need	to	create	a	so-called	Optimize
sequence	which	we	now	define.	When	you	add	an	Optimize	command	to	the
mission	sequence,	an	EndOptimize	command	is	automatically	added	as	shown
below.

In	the	example	above,	the	Optimize	command	sequence	is	defined	as	all	of	the
commands	between	the	Optimize1	and	EndOptimize1	commands,	inclusive.
Although	not	shown	above,	an	Optimize	command	sequence	must	contain	a
Vary	command	which	is	used	to	define	the	control	variables	that	can	be	varied	in
order	to	help	solve	our	problem.	An	Optimize	command	must	also	contain	a
Minimize	command	and/or	one	or	more	NonlinearConstraint	commands.	You
use	a	Minimize	command	to	define	a	cost	function	that	you	wish	to	minimize
and	you	use	the	NonlinearConstraint	command	to	define	either	an	equality	or
inequality	constraint	that	you	want	to	be	satisfied	at	the	end	of	the	optimization
process.

Double	click	on	the	Optimize1	command	above	to	open	the	Optimize	command
dialog	box,	shown	below,	which	allows	you	to	specify	your	choice	of	Solver
(i.e.,	your	choice	of	optimizer),	Solver	Mode,	and	Exit	Mode.	As	described	in
the	Remarks	section,	the	Optimize	command	dialog	box	also	allows	you	to
apply	corrections	to	your	Optimize	command	sequence.



If	you	set	ShowProgressWindow	to	true,	then	a	dynamic	display	is	shown
during	optimization	that	contains	values	of	variables	and	constraints	as	shown
below.



Remarks

Content	of	an	Optimize/EndOptimize	Sequence

An	Optimize/EndOptimize	sequence	must	contain	at	least	one	Vary	command
and	at	least	one	of	the	following	commands:	NonlinearConstraint	and
Minimize.	See	the	Vary,	NonlinearConstraint,	and	Minimize	command
sections	for	details	on	the	syntax	for	those	commands.	The	first	Vary	command
must	occur	before	the	first	NonlinearConstraint	or	Minimize	command.	Each
Optimize	command	field	in	the	curly	braces	is	optional.	You	can	omit	the	entire
list	and	the	curly	braces	and	the	default	values	will	be	used	for	Optimize
configuration	fields	such	as	SolveMode	and	ExitMode.

Relation	to	Target/EndTarget	Command	Sequence

There	are	some	functional	similarities	between	the	Target/EndTarget	and
Optimize/EndOptimize	command	sequences.	In	both	cases,	we	define	Control
Variables	and	Constraints.	For	both	Target	and	Optimize	sequences,	we	use	the
Vary	command	to	define	the	Control	Variables.	For	the	Target	sequence,	we	use
the	Achieve	command	to	define	the	constraints	whereas,	for	an	Optimize
sequence,	we	use	the	NonlinearConstraint	command.	The	big	difference
between	the	Target	and	Optimize	sequences	is	that	the	Optimize	sequence
allows	for	the	minimization	of	an	Objective	function	through	the	use	of	the
Minimize	command.

Command	Interactions

Vary	command
Every	Optimize	sequence	must	contain	at	least	one
Vary	command.	Vary	commands	are	used	to	define	the
control	variables	associated	with	an	Optimize
sequence.

NonlinearConstraint
command NonlinearConstraint	commands	are	used	to	define	the

constraints	associated	with	an	Optimize	sequence.	Note



that	multiple	NonlinearConstraint	commands	are
allowed	within	an	Optimize	sequence.

Minimize	command
A	Minimize	command	is	used	within	an	Optimize
sequence	to	define	the	Objective	function	that	will	be
minimized.	Note	that	an	Optimize	sequence	is	allowed
to	contain,	at	most,	one	Minimize	command.	(An
Optimize	sequence	is	not	required	to	contain	a
Minimize	command)



Examples
Use	an	Optimize	sequence	with	the	fmincon	solver	object	to	find	the	point,	(x,
y),	on	the	unit	circle	with	the	smallest	y	value.	Note	that	the	use	of	the
FminconOptimizer	solver	assumes	you	have	access	to	the	Matlab	optimization
toolbox.

Create	FminconOptimizer	SQP1

SQP1.MaximumIterations	=	50

Create	Variable	x	y	Circle

BeginMissionSequence

Optimize	SQP1

		Vary	SQP1(x	=	1)

		Vary	SQP1(y	=	1)

		Circle	=	x*x	+	y*y

		NonlinearConstraint	SQP1(Circle	=	1)

		Minimize	SQP1(y)

EndOptimize	

Similar	to	the	example	given	in	the	Target	command	Help,	use	an	Optimize
sequence	to	raise	orbit	apogee.	In	the	Target	command	example,	we	had	one
control	variable,	the	velocity	component	of	an	ImpulsiveBurn	object,	and	the
single	constraint	that	the	position	vector	magnitude	at	orbit	apogee	equals	42164.
For	this	example,	we	keep	this	control	variable	and	constraint	but	we	now	add	a
second	control	variable,	the	true	anomaly	of	where	the	burn	occurs.	In	addition,
we	ask	the	optimizer	to	minimize	the	Delta-V	cost	of	the	burn.	As	expected,	the
best	(DV	minimizing)	orbit	location	to	perform	an	apogee	raising	burn	is	near
perigee	(i.e.,	nearTA	=	0).	In	this	example,	since	the	force	model	in	use	in	not
perfectly	two	body	Keplerian,	the	optimal	TA	value	obtained	is	close	to	but	not
exactly	0.	Note	that	the	use	of	the	VF13ad	solver	object	in	this	example	assumes
that	you	have	installed	this	optional	plug-in.	Finally,	report	the	convergence
status	to	a	file.

Create	Spacecraft	aSat

Create	Propagator	aPropagator

Create	ImpulsiveBurn	aBurn

Create	VF13ad	VF13ad1

VF13ad1.Tolerance	=	1e-008

Create	OrbitView	EarthView

EarthView.Add	=	{Earth,	aSat}



EarthView.ViewScaleFactor	=	5

Create	Variable	ApogeeRadius	DVCost

Create	ReportFile	aReport

BeginMissionSequence

Optimize	VF13ad1

		Vary	VF13ad1(aSat.TA	=	100,	{MaxStep	=	10})

		Vary	VF13ad1(aBurn.Element1	=	1,	{MaxStep	=	1})

		Maneuver	aBurn(aSat)

		Propagate	aPropagator(aSat)	{aSat.Apoapsis}

		GMAT	ApogeeRadius	=	aSat.RMAG

		NonlinearConstraint	VF13ad1(ApogeeRadius=42164)

		GMAT	DVCost	=	aBurn.Element1

		Minimize	VF13ad1(DVCost)

EndOptimize	

Report	aReport	VF13ad1.SolverStatus	VF13ad1.SolverState					



PenUpPenDown
PenUpPenDown	—	Allows	you	to	stop	or	begin	drawing	data	on	a	plot



Script	Syntax
PenUp		OutputNames

OutputNames

		OutputNames	is	the	list	of	subscribers	that	

		PenUp	command	operates	on.	When	PenUp	

		command	is	used	on	multiple	subscribers,	then	the	subscribers	

		need	to	be	separated	by	a	space.

PenDown	OutputNames

OutputNames

		OutputNames	is	the	list	of	subscribers	

		that	PenDown	command	operates	on.	

		When	PenDown	command	is	used	on	multiple	subscribers,	then	the	

		subscribers	need	to	be	separated	by	a	space.



Description
The	PenUp	and	PenDown	commands	allow	you	to	stop	or	begin	drawing	data
on	a	plot.	The	PenUp	and	PenDown	commands	operate	on	XYPlot,	OrbitView
and	GroundTrackPlot	subscribers.	GMAT	allows	you	to	insert	PenUp	and
PenDown	commands	into	the	Mission	tree	at	any	location.	This	allows	you	to
stop	or	begin	drawing	data	output	on	a	plot	at	any	point	in	your	mission.	The
PenUp	and	PenDown	commands	can	be	used	through	GMAT’s	GUI	or	the
script	interface.



Options

Option Description

OutputNames
When	a	PenUp	command	is	issued	for	a	plot,	no	data	is
drawn	to	that	plot	until	a	PenDown	command	is	issued	for
that	plot

Accepted	Data
Types

Resource	reference

Allowed	Values XYPlot,	OrbitView	or
GroundTrackPlot	resources

Default	Value DefaultOrbitview

Required yes

Interfaces GUI,	script

OutputNames
When	a	PenDown	command	is	issued	for	a	plot,	data	is
drawn	for	each	integration	step	until	a	PenUp	command	is
issued	for	that	plot.

Accepted	Data
Types

Resource	reference



Allowed	Values XYPlot,	OrbitView	or
GroundTrackPlot	resources

Default	Value DefaultOrbitview

Required yes

Interfaces GUI,	script



GUI
Figures	below	show	default	settings	for	PenUp	and	PenDown	commands:



Remarks
XYPlot,	OrbitView	and	GroundTrackPlot	subscribers	plot	data	at	each
integration	step	of	the	entire	mission	duration.	If	you	want	to	plot	data	at	specific
points	in	your	mission,	then	a	PenUp	and	PenDown	command	can	be	inserted
into	the	mission	sequence	to	control	when	a	subscriber	plots	data.	For	example,
when	a	PenUp	command	is	issued	for	XYPlot,	OrbitView	or
GroundTrackPlot,	no	data	is	drawn	to	that	plot	until	a	PenDown	command	is
issued	for	that	same	plot.	Similarly,	when	a	PenDown	command	is	issued	for
any	of	the	three	subscribers,	then	data	is	drawn	for	each	integration	step	until	a
PenUp	command	is	issued	for	that	specific	subscriber.	Refer	to	the	Examples
section	below	to	see	how	PenUp	and	PenDown	commands	can	be	used	in	the
Mission	tree.



Examples
This	example	shows	how	to	use	PenUp	and	PenDown	commands	on	multiple
subscribers.	PenUp	and	PenDown	commands	are	used	on	XYPlot,	OrbitView
and	GroundTrackPlot.	Data	is	drawn	to	the	plots	for	first	day	of	the
propagation,	turned	off	for	second	day	of	propagation	and	then	data	is	drawn	for
third	day	of	the	propagation:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot

aPlot.XVariable	=	aSat.ElapsedDays

aPlot.YVariables	=	{aSat.Earth.SMA}

Create	OrbitView	anOrbitViewPlot

anOrbitViewPlot.Add	=	{aSat,	Earth}

Create	GroundTrackPlot	aGroundTrackPlot

aGroundTrackPlot.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

PenUp	aGroundTrackPlot	anOrbitViewPlot	aPlot

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

PenDown	aGroundTrackPlot	anOrbitViewPlot	aPlot

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

This	example	shows	how	to	use	PenUp	and	PenDown	commands	on	a	single
XYPlot	subscriber.	Data	is	drawn	to	the	plot	for	one-third	of	the	day,	turned	off
for	second	one-third	of	the	day	and	then	data	is	drawn	again	for	last	one-third	of
the	day:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot1

aPlot1.XVariable	=	aSat.ElapsedDays

aPlot1.YVariables	=	{aSat.Earth.Altitude}

Create	Variable	I

I	=	0



BeginMissionSequence

While	aSat.ElapsedDays	<	1.0

			

	Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	60}

	If	I	==	480

	PenUp	aPlot1

	EndIf

			

	If	I	==	960

	PenDown	aPlot1

	EndIf

			

	GMAT	I	=	I	+1

EndWhile



Propagate
Propagate	—	Propagates	spacecraft	to	a	requested	stopping	condition



Script	Syntax
The	Propagate	command	is	a	complex	command	that	supports	multiple
Propagators,	multiple	Spacecraft,	and	multiple	stopping	conditions.	In	the
syntax	definition	below,	SatList	is	a	comma	separated	list	of	spacecraft	and
StopList	is	a	comma	separated	list	of	stopping	conditions.	The	general	syntax
of	the	Propagate	command	is:

Propagate	[Mode]	[BackProp]	Propagator1Name(SatList1,{StopList1})...

																	Propagator2Name(SatList2,{StopList2}

or

Propagate	[Mode]	[BackProp]	Propagator1Name(SatList1)...

																	Propagator2Name(SatList2){StopList}

				

Most	applications	propagate	a	single	Spacecraft,	forward,	to	a	single	stopping
condition.	In	that	case,	the	syntax	simplifies	to:

Propagate	PropagatorName(SatName,{StopCond});

or

Propagate	PropagatorName(SatName){StopCond};

				

In	GMAT,	syntax	for	setting	orbit	color	on	a	Propagate	command	for	a	single
Spacecraft	propagating	forward	to	a	single	stopping	condition	can	be	done	by
either	identifying	orbit	color	through	ColorName	or	via	RGB	triplet	value:

Propagate	PropagatorName(SatName),{StopCond,	OrbitColor	=	ColorName};

or

Propagate	PropagatorName(SatName),{StopCond,	OrbitColor	=	[RGB	triplet	value]

				



Description
The	Propagate	command	controls	the	time	evolution	of	spacecraft.	GMAT
allows	you	to	propagate	single	Spacecraft,	multiple	non-cooperative
Spacecraft,	and	Formations	in	a	single	Propagate	command.	The	Propagate
command	is	complex	and	controls	the	following	aspects	of	the	temporal
modelling	of	spacecraft:

The	Spacecraft	to	be	propagated

The	model(s)	used	for	the	propagation	(numerical	integration,	ephemeris
interpolation)

The	condition(s)	to	be	satisfied	at	the	termination	of	propagation

The	direction	of	propagation	(forwards	or	backwards	in	time)

The	time	synchronization	of	multiple	Spacecraft

Propagation	of	STM	and	computation	of	state	Jacobian	(A-matrix)

Setting	unique	colors	on	different	Spacecraft	trajectory	segments	through
Propagate	commands

See	Also:	Propagator,	Spacecraft,	Formation,	Color



Options

Option Description

Mode
Optional	flag	to	time-synchronize	propagation	of
Spacecraft	performed	by	multiple	Propagators	in	a	single
Propagate	command.	See	the	section	called	“Remarks”	for
more	details.

Accepted	Data	Types String

Allowed	Values Synchronized

Default	Value Not	used

Required no

Interfaces GUI,	script

BackProp
Optional	flag	to	propagate	all	Spacecraft	in	a	Propagate
command	backwards	in	time.

Accepted	Data	Types String

Allowed	Values BackProp



Default	Value Not	used

Required no

Interfaces GUI,	script

StopList
A	comma	separated	list	of	stopping	conditions.	Stopping
conditions	must	be	parameters	of	propagated	Spacecraft	in
SatList.	See	the	section	called	“Remarks”	for	more	details.

Accepted	Data	Types Reference	array

Allowed	Values Valid	list	of	stopping	conditions

Default	Value ElapsedSecs	=	12000

Required no

Interfaces GUI,	script

SatList
A	comma	separated	list	of	Spacecraft.	For	SPK	type
Propagators,	the	Spacecraft	must	be	configured	with
valid	SPK	kernels.

Accepted	Data
Types

Resource	array



Allowed	Values Valid	list	of	spacecraft	and/or
formations

Default	Value DefaultSC

Required yes

Interfaces GUI,	script

PropagatorName
A	propagator	name.

Accepted	Data	Types Propagator

Allowed	Values Valid	Propagator	name

Default	Value DefaultProp

Required yes

Interfaces GUI,	script

StopTolerance
Tolerance	on	the	stopping	condition	root	location.	See	the
section	called	“Remarks”	for	more	details.

Accepted	Data	Types Real



Allowed	Values Real	number	>	0

Default	Value 0.0000001

Required no

Interfaces GUI,	script

STM
Optional	flag	to	propagate	the	orbit	STM.	STM
propagation	only	occurs	for	numerical	integrator	type
propagators.

Accepted	Data	Types String

Allowed	Values STM

Default	Value Not	used

Required no

Interfaces GUI,	script

AMatrix
The	Jacobian	of	the	orbital	acceleration.	The	partial	of	the
first	order	acceleration	vector	with	respect	to	the	state



vector.

Accepted	Data	Types String

Allowed	Values AMatrix

Default	Value Not	used

Required no

Interfaces GUI,	script

OrbitColor
Sets	orbit	color	on	a	Propagate	command.	Default	color
on	Propagate	segment	is	seeded	from	color	that	is	set	on
Spacecraft.OrbitColor	field.	To	set	unique	colors	on
Propagate	command	in	script	mode:	Enter	ColorName	or
RGB	triplet	value	for	the	color	of	your	choice.	In	GUI
mode,	select	unique	color	of	your	choice	on	the	Propagate
command	by	clicking	on	Orbit	Color	Selectbox.	For
Example:	Setting	yellow	color	on	Propagate	segment	in
script	mode	can	be	done	in	either	of	the	following	two
ways:	Propagate	DefaultProp(DefaultSC)
{DefaultSC.Earth.Apoapsis,	OrbitColor	=	Yellow}	or
Propagate	DefaultProp(DefaultSC)

{DefaultSC.Earth.Apoapsis,	OrbitColor	=	[255	255

0]}.

Accepted
Data
Types

Integer	Array	or	String



Allowed
Values

Any	color	available	from	the	Orbit	Color
Picker	in	GUI.	Valid	predefined	color	name	or
RGB	triplet	value	between	0	and	255.

Default
Value

Default	color	on	Propagate	command	is
color	that	is	first	set	on
Spacecraft.OrbitColor	field.	Default	color
on	Spacecraft.OrbitColor	is	Red.	Therefore
default	color	for	Propagate	command	is	Red.

Required no

Interfaces GUI,	script



GUI

Introduction

The	Propagate	command	GUI	provides	an	interface	to	assign	Spacecraft	to
Propagators	used	for	propagation	and	to	define	a	set	of	conditions	to	terminate
propagation.	The	GUI	also	allows	you	to	define	the	direction	of	propagation,	the
synchronization	mode	for	multiple	spacecraft,	and	whether	or	not	to	propagate
the	STM	and	compute	the	A-Matrix.

To	follow	the	examples	below,	you	can	load	the	following	script	snippet	or
create	a	new	mission	with	three	spacecraft	(named	sat1,	sat2,	and	sat3)	and	two
propagators	(named	prop1	and	prop2).

Create	Spacecraft	sat1	sat2	sat3

Create	Propagator	prop1	prop2

BeginMissionSequencer

Defining	Spacecraft	and	Propagators

To	demonstrate	how	to	define	a	set	of	propagators	and	Spacecraft	for
propagation,	you	will	set	up	a	Propagate	command	to	propagate	a	Spacecraft
named	sat1	using	a	Propagator	named	prop1	and	Spacecraft	named	sat2	and
sat3	using	a	Propagator	named	prop2.	You	will	configure	the	command	to
propagate	for	1	day	or	until	sat2	reaches	periapsis,	whichever	happens	first.	You
will	need	to	configure	GMAT	as	described	in	the	the	section	called
“Introduction”	section	and	add	a	new	Propagate	command	to	your	mission
sequence.	GMAT	auto-populates	the	Propagate	command	GUI	with	the	first
Propagator	in	the	GUI	list	and	the	first	Spacecraft	when	you	add	a	new
Propagate	command	so	you	should	start	from	this	point.



To	add	a	second	Propagator	to	propagate	sat2	and	sat3	using	prop2:

1.	 In	the	Propagator	list,	click	the	ellipsis	button	in	the	second	row	to	open
the	Propagator	Select	Dialog.

2.	 In	the	Available	Propagators	list,	click	on	prop2,	and	click	OK.
3.	 In	the	Spacecraft	List,	click	the	ellipsis	button	in	the	second	row	to	open

the	Space	Object	Select	dialog.



4.	 Click	the	right-arrow	twice	to	add	sat2	and	sat3	to	the	list	of	selected
spacecraft	and	click	Ok.

Stopping	conditions

Continuing	with	the	example	above,	now	you	will	configure	GMAT	to	propagate
for	one	elapsed	day	or	until	sat2	reaches	periapsis.

1.	 In	the	Parameter	list,	click	the	ellipsis	button	in	the	first	row	to	bring	up
the	Parameter	Select	Dialog.

2.	 In	the	ObjectProperties	list,	double	click	ElapsedDays,	and	click	OK.



3.	 In	the	Condition	list,	double	click	the	first	row	containing	12000,	type	1,
and	click	OK.

4.	 In	the	Parameter	list,	click	the	ellipsis	button	in	the	second	row	to	bring	up
the	Parameter	Select	Dialog.

5.	 In	the	Object	list,	click	Sat2.
6.	 In	the	ObjectProperties	list,	double	click	Periapsis	and	click	OK.

The	Propagate1	dialog	should	now	look	like	the	image	below.





Remarks

Introduction

The	Propagate	command	documentation	below	describes	how	to	propagate
single	and	multiple	Spacecraft	to	desired	conditions	forward	and	backwards	in
time.	To	streamline	the	script	examples,	the	objects	numSat,	spkSat,	numProp,
and	spkProp	are	assumed	to	be	configured	as	shown	below.	GMAT	is
distributed	with	the	SPK	kernels	used	in	the	examples.

Create	Spacecraft	spkSat;

spkSat.Epoch.UTCGregorian			=	'02	Jun	2004	12:00:00.000'

spkSat.NAIFId															=	-123456789;

spkSat.OrbitSpiceKernelName	=	{'..\data\vehicle\ephem\spk\GEOSat.bsp'};

Create	Spacecraft	numSat

numSat.Epoch.UTCGregorian	=	'02	Jun	2004	12:00:00.000'

Create	Propagator	spkProp;

spkProp.Type							=	SPK;

spkProp.StartEpoch	=	FromSpacecraft

Create	Propagator	numProp

numProp.Type	=	PrinceDormand78

BeginMissionSequence

How	to	Propagate	a	Single	Spacecraft

Note:	See	the	the	section	called	“Introduction”	section	for	a	script	snippet	to
configure	GMAT	to	execute	the	examples	in	this	section.

The	Propagate	command	provides	a	simple	interface	to	propagate	a	Spacecraft
to	a	stopping	condition	or	to	take	a	single	propagation	step.	To	propagate	a	single
Spacecraft	you	must	specify	the	desired	Propagator,	the	Spacecraft	to
propagate,	and	if	desired,	the	stopping	condition.	The	Propagate	command
supports	numerical	integrator	and	ephemeris	type	propagators.	For	single
Spacecraft	propagation,	the	syntax	is	the	same	regardless	of	propagator	type.
For	example,	to	propagate	a	Spacecraft	using	a	numerical	integrator,	you	can
use	the	following	script	snippet:



Propagate	numProp(numSat){numSat.Periapsis}

%	or

Propagate	numProp(numSat,{numSat.Periapsis})

To	propagate	a	single	Spacecraft	using	a	Propagator	configured	to	use	an	SPK
kernel	use	the	following:

Propagate	spkProp(spkSat){spkSat.TA	=	90}

%	or

Propagate	spkProp(spkSat,{spkSat.TA	=	90})

To	take	a	single	propagation	step,	simply	omit	the	stopping	conditions	as	shown
below.	The	Propagator	will	take	a	step	based	on	its	step	size	control	algorithm.
See	the	Propagator	documentation	for	more	information	on	step	size	control.

Propagate	numProp(numSat)

%	or

Propagate	spkProp(spkSat)	

How	to	Propagate	Multiple	Spacecraft

The	Propagate	command	allows	you	to	propagate	multiple	Spacecraft	by
including	a	list	of	Spacecraft	in	a	single	Propagator,	by	including	a	Formation
in	a	Propagator,	and/or	by	including	multiple	Propagators	in	a	single
command.	For	example	purposes,	here	is	a	script	snippet	that	propagates
multiple	Spacecraft.

Propagate	Synchronized	Prop1(Sat1,Sat2)	Prop2(Sat3,Sat4)...

Prop3(aFormation){Sat1.Earth.Periapsis}

In	the	script	line	above	Sat1	and	Sat2	are	propagated	using	Prop1;	Prop2	is
used	to	propagate	Sat3	and	Sat4;	all	Spacecraft	added	to	aFormation	are
propagated	using	Prop3.	The	Propagate	command	configured	above	propagates
all	Spacecraft	until	Sat1	reaches	Earth	periapsis.

All	Spacecraft	propagated	by	the	same	Propagator	are	time	synchronized
during	propagation.	By	time	synchronization,	we	mean	that	all	Spacecraft	are
propagated	across	the	same	time	step.	The	Synchronized	keyword	tells	GMAT
to	keep	Spacecraft	propagated	by	different	Propagators	synchronized	in	time
during	propagation.	Time	synchronization	among	multiple	Propagators	is
performed	by	taking	a	single	step	for	all	Spacecraft	controlled	by	the	first



Propagator	(Prop1	in	the	above	example),	and	then	stepping	all	other
Propagators	to	that	time.	When	the	Synchronized	keyword	is	omitted,
Spacecraft	propagated	by	different	Propagators	are	not	synchronized	in	time.
In	that	case,	each	Propagator	takes	steps	determined	by	its	step	size	control
algorithm	without	regard	to	the	other	Propagators	in	the	Propagate	command.
Time	synchronization	is	particularly	useful	if	you	need	ephemeris	files	for
multiple	spacecraft	with	consistent	time	tags,	or	if	you	are	visualizing	multiple
spacecraft	in	an	OrbitView.

Warning

Caution:	When	using	a	Propagator	configured	to	use	SPK
kernels,	you	can	only	have	one	Spacecraft	per	Propagator.

This	is	supported:

Propagate	numProp(numSat)	spkProp(spkSat1)

spkProp(spkSat2)

This	is	NOT	supported!

Propagate	numProp(numSat)	spkProp(spkSat1,spkSat2)

Behavior	of	Stopping	Conditions

GMAT	allows	you	to	define	a	set	of	stopping	conditions	when	propagating
Spacecraft	that	define	conditions	that	must	be	satisfied	at	the	termination	of	the
Propagate	command.	For	example,	it	is	often	useful	to	propagate	to	an	orbital
location	such	as	Apogee.	When	no	stopping	condition	is	provided,	the
Propagate	command	takes	a	single	step.	When	given	a	set	of	stopping
conditions,	the	Propagate	command	propagates	the	Spacecraft	to	the	condition
that	occurs	first	in	elapsed	propagation	time	and	terminates	propagation.	There
are	several	ways	to	define	stopping	conditions	via	the	script	interface.	One	is	to
include	a	comma	separated	list	of	stopping	conditions	with	each	Propagator	like
this.

Propagate	Prop1(Sat1,{Sat1.Periapsis})	Prop2(Sat2,{Sat2.Periapsis})	



A	second	approach	is	to	define	a	comma	separated	list	of	stopping	conditions	at
the	end	of	the	Propagate	command	like	this.

Propagate	Prop1(Sat1)	Prop2(Sat2)	{Sat1.Periapsis,Sat2.Periapsis}

Note	that	the	above	two	methods	result	in	the	same	stopping	epoch.	When	you
provide	a	set	of	stopping	conditions,	regardless	of	where	in	the	command	the
stopping	condition	is	defined,	GMAT	builds	a	list	of	all	conditions	and	tracks
them	until	the	first	condition	occurs.

The	Propagate	command	currently	requires	that	the	left	hand	side	of	a	stopping
condition	is	a	valid	Spacecraft	parameter.	For	example,	the	first	line	in	the
following	example	is	supported	and	the	second	line	is	not	supported.

Propagate	Prop1(Sat1)	{Sat1.TA	=	45}		%	Supported

Propagate	Prop1(Sat1)	{45	=	Sat1.TA}		%	Not	supported	

GMAT	supports	special	built-in	stopping	conditions	for	apoapsis	and	periapsis
like	this:

Propagate	Prop1(Sat1)	{Sat1.Apoapsis}

Propagate	Prop1(Sat1)	{Sat1.Mars.Periapsis}	

You	can	define	the	tolerance	on	the	stopping	condition	by	including	the
StopTolerance	keyword	in	the	Propagate	command	as	shown	below.	In	this
example,	GMAT	will	propagate	until	the	true	anomaly	of	Sat1	is	90	degrees	to
within	+/-	1e-5	degrees.

Propagate	Prop1(Sat1)	{Sat1.TA	=	90,	StopTolerance	=	1e-5}

Warning

Caution:	GMAT	currently	propagates	Spacecraft	to	a	time
quantization	of	a	few	microseconds.	Depending	upon	the	rate
of	the	stopping	condition	function,	it	may	not	be	possible	to
locate	the	stopping	condition	to	the	requested	StopTolerance.
In	that	case,	GMAT	throws	a	warning	to	alert	you	that	the
tolerance	was	not	satisfied	and	provides	information	on	the
achieved	stopping	value	and	the	requested	tolerance.



Note:	GMAT	does	not	currently	support	tolerances	on	a	per
stopping	condition	basis.	If	you	include	StopTolerance
multiple	times	in	a	single	Propagate	command,	GMAT	uses
the	last	value	provided.

The	Propagate	command	uses	an	algorithm	called	the	First	Step	Algorithm
(FSA)	when	back-to-back	propagations	occur	and	both	propagations	have	at
least	one	stopping	condition	that	is	the	same	in	both	commands.	For	example:

Propagate	prop1(Sat1)	{Sat1.TA	=	90}

Propagate	prop1(Sat1)	{Sat1.TA	=	90,	StopTolerance	=	1e-4}

The	FSA	determines	the	behavior	of	the	first	step	when	the	last	propagation
performed	on	a	Spacecraft	was	terminated	using	a	stopping	condition	listed	in
the	current	command.	If	the	error	in	the	stopping	condition	at	the	initial	epoch	of
the	second	Propagate	command	is	less	than	SafetyFactor*StopTolerance,	the
propagate	command	will	take	one	integration	step	before	attempting	to	locate	the
stopping	condition	again.	In	the	FSA,	SafetyFactor	=	10,	and	the	StopTolerance
is	from	the	second	Propagate	command.	Continuing	with	the	example	above,	if
abs(TA_Achieved	-	TA_Desired)	<	1e-3	--	where	TA_Achieved	is	the	TA	after
the	first	Propagate	command	and	TA_Desired	is	the	requested	value	of	TA	in
the	second	Propagate	command	--	then	the	Propagate	command	will	take	one
step	before	attempting	to	locate	the	stopping	condition.	The	first	step	algorithm
works	the	same	way	for	forward	propagation,	backwards	propagation,	and
changing	propagation	directions.

Warning

Caution:	It	is	possible	to	specify	a	StopTolerance	that	cannot
be	satisfied	by	the	stopping	condition	root	locators	and	in	that
case,	a	warning	is	thrown.	However,	subsequent	Propagate
commands	using	the	same	stopping	conditions	may	not	behave
as	desired.	For	the	FSA	algorithm	to	work	as	designed,	you
must	provide	StopTolerance	values	that	are	achievable.



How	to	Propagate	Backwards

To	propagate	backwards	using	the	script	interface,	include	the	keyword
BackProp	between	the	Propagate	command	and	the	first	Propagator	in	the
command	as	shown	below.	All	Propagators	in	the	command	will	propagate
backwards.

Propagate	Synchronized	BackProp	Prop1(Sat1,Sat2)	Prop2(Sat3,Sat4)...

											Prop3(aFormation){Sat1.Earth.Periapsis}

Propagate	Backprop	numProp(numSat){numSat.Periapsis}

How	to	Propagate	the	STM	and	Compute	the	Jacobian	(A-
matrix)

GMAT	propagates	the	STM	for	all	Spacecraft	propagated	using	numerical
integrators	by	including	the	STM	keyword	in	a	Propagate	command	as	shown
below.	If	the	STM	keyword	is	included	anywhere	in	a	Propagate	command,	the
STM	is	propagated	for	all	spacecraft	using	numerical	propagators.

Propagate	Backprop	numProp(numSat,’STM’){numSat.Periapsis}

GMAT	does	not	currently	support	propagating	the	STM	when	propagating
Formation	resources	or	when	using	SPK	type	propagators.

Limitations	of	the	Propagate	Command

When	using	an	SPK-type	Propagator,	only	a	single	Spacecraft	can	be
propagated	by	a	given	Propagator.

GMAT	does	not	currently	support	propagating	the	STM	when	propagating
Formation	objects.

When	computing	the	A-matrix	during	propagation,	the	A-matrix	values	are
only	accessible	via	the	C-Interface.

Setting	Colors	on	the	Propagate	Command

GMAT	allows	you	to	assign	unique	colors	to	Spacecraft	trajectory	segments	by



setting	orbital	colors	on	each	Propagate	command.	If	you	do	not	set	unique
colors	on	each	Propagate	command,	then	by	default,	the	color	on	each
propagate	segment	is	seeded	from	color	that	is	set	on	Spacecraft.OrbitColor
field.	See	the	Options	section	for	OrbitColor	option	that	lets	you	set	colors	on
the	Propagate	command.	Also	see	Color	documentation	for	discussion	and
examples	on	how	to	set	unique	colors	on	orbital	trajectory	segments	through
GMAT's	Propagate	command.



Examples
Propagate	a	single	Spacecraft	to	Earth	periapsis

Create	Spacecraft	numSat

numSat.Epoch.UTCGregorian	=	'02	Jun	2004	12:00:00.000'

Create	Propagator	numProp

numProp.Type	=	PrinceDormand78

BeginMissionSequence

Propagate	numProp(numSat)	{numSat.Earth.Periapsis}

Propagate	a	single	Spacecraft	for	one	day.

Create	Spacecraft	numSat

numSat.Epoch.UTCGregorian	=	'02	Jun	2004	12:00:00.000'

Create	Propagator	numProp

numProp.Type	=	PrinceDormand78

BeginMissionSequence

Propagate	numProp(numSat)	{numSat.ElapsedDays	=	1}

Propagate	a	single	Spacecraft	backwards	to	true	anomaly	of	90	degrees.

Create	Spacecraft	numSat

numSat.Epoch.UTCGregorian	=	'02	Jun	2004	12:00:00.000'

Create	Propagator	numProp

numProp.Type	=	PrinceDormand78

BeginMissionSequence

Propagate	BackProp	numProp(numSat)	{numSat.TA	=	90}

Propagate	two	Spacecraft,	each	using	a	different	Propagator,	but	keep	the
Spacecraft	synchronized	in	time.	Propagate	until	either	Spacecraft	reaches	a
mean	anomaly	of	45	degrees.

Create	Spacecraft	aSat1	aSat2



aSat1.Epoch.UTCGregorian	=	'02	Jun	2004	12:00:00.000'

aSat2.Epoch.UTCGregorian	=	'02	Jun	2004	12:00:00.000'

aSat2.TA	=	0;

Create	Propagator	aProp1

aProp1.Type	=	PrinceDormand78

Create	Propagator	aProp2

aProp2.Type	=	PrinceDormand78

BeginMissionSequence

Propagate	Synchronized	aProp1(aSat1)	aProp2(aSat2)	...

																						{aSat1.MA	=	45,aSat2.MA	=	45}	



Report
Report	—	Allows	you	to	write	data	to	a	text	file



Script	Syntax
Report		ReportName		DataList

ReportName

		ReportName	option	allows	you	to	specify	the	

		ReportFile	for	data	output.

DataList

		DataList	option	allows	you	to	output	data	to	the	Filename	

		specified	by	the	ReportName.	Multiple	objects	can	be	written	

		in	the	DataList	when	they	are	separated	by	spaces.



Description
The	Report	command	allows	you	to	report	data	at	specific	points	in	your
mission	sequence.	GMAT	allows	you	to	insert	Report	command	into	the
Mission	tree	at	any	location.	Report	command	can	be	used	through	GMAT’s
GUI	or	via	the	script	interface.	The	parameters	reported	by	Report	command	are
placed	into	a	report	file	that	can	be	accessed	at	the	end	of	the	mission	run.

See	Also:	ReportFile



Options

Option Description

ReportName
The	ReportName	option	allows	the	user	to	specify	the
ReportFile	for	data	output.

Accepted	Data	Types Resource	reference

Allowed	Values ReportFile	resource

Default	Value DefaultReportFile

Required yes

Interfaces GUI,	script

DataList
The	DataList	option	allows	the	user	to	output	data	to	the
file	name	that	is	specified	by	the	ReportName.	Multiple
objects	can	be	in	the	DataList	when	they	are	separated	by
spaces.

Accepted
Data
Types

Reference	array

Allowed Spacecraft,	ImpulsiveBurn	reportable



Values parameters,	Array,	Array	Element,	Variable,
or	a	String.

Default
Value

DefaultSC.A1ModJulian

Required yes

Interfaces GUI,	script



GUI
Figure	below	shows	default	settings	for	Report	command:



Remarks
Report	command	can	be	used	to	report	data	to	a	report	file	at	specific	points	in
your	mission.	If	you	want	data	to	be	reported	at	each	propagation	step	of	the
entire	mission	duration,	then	you	should	not	use	Report	command.	Instead	you
should	use	ReportFile	resource.	See	ReportFile	resource	section	of	the	User's
Guide	to	learn	about	the	syntax	that	allows	you	to	report	data	at	each	raw
integrator	steps.



Examples
Propagate	an	orbit	for	two	days	and	report	epoch	and	selected	orbital	elements	to
a	report	file	using	the	Report	command.

Create	Spacecraft	aSat

Create	ReportFile	aReport

Create	Propagator	aProp

BeginMissionSequence

Report	aReport	aSat.UTCGregorian	aSat.Earth.SMA	aSat.Earth.ECC	...

aSat.EarthMJ2000Eq.RAAN

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

Report	aReport	aSat.UTCGregorian	aSat.Earth.SMA	aSat.Earth.ECC	...

aSat.EarthMJ2000Eq.RAAN

Report	user-defined	parameters	such	as	variables,	array	elements	and	a	string	to
a	report	file	using	the	Report	command.

Create	ReportFile	aReport

Create	Variable	aVar	aVar2

aVar	=	100

aVar2	=	2000

Create	Array	aArray[2,2]

aArray(1,	1)	=	2

aArray(1,	2)	=	3

aArray(2,	1)	=	4

aArray(2,	2)	=	5

Create	String	aString

aString	=	'GMAT	is	awesome'

BeginMissionSequence

Report	aReport	aVar	aVar2	aArray(1,1)	aArray(1,2)	aArray(2,1)	...

aArray(2,2)	aString

While	spacecraft	propagates	for	less	than	a	day,	report	spacecraft's	true	anomaly,
eccentricity	and	altitude	after	every	3600	seconds	using	the	Report	command:



Create	Spacecraft	aSat

Create	ReportFile	aReport

Create	Propagator	aProp	

BeginMissionSequence

While	aSat.ElapsedDays	<	1

	Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	3600	}

	Report	aReport	aSat.Earth.TA	aSat.Earth.ECC	aSat.Earth.Altitude

EndWhile



RunEstimator
RunEstimator	—	Ingests	navigation	measurements	and	generates	an	estimated
state	vector



Script	Syntax
RunEstimator	BatchEstimatorInv_InstanceName	



Description
The	RunEstimator	command	ingests	navigation	measurements	and	generates	an
estimated	state	vector	according	to	the	specifications	of	the	input
BatchEstimatorInv	resource.

See	Also:	BatchEstimatorInv



Remarks

How	GMAT	generates	“Computed	(C)”	DSN	data

As	part	of	the	estimation	process,	GMAT	must	calculate	the	so-called
observation	residual,	“O-C,”	where	“C”	is	the	“Computed”	measurement.	As
discussed	in	the	RunSimulator	help,	GMAT	calculates	the	DSN	range	“C”
measurement	as

C	∫	t	1	t	3	f	T	(	t	)	d	t	,		mod	M													(RU)

where

t	1	,	t	3	=	Transmission	and	Reception	epoch,	respectively
f	T	=	Ground	Station	transmit	frequency
C	=	transmitter	dependent	constant	(221/1498	for	X-band	and	1/2	for	S-Band)
M		=		length	of	the	ranging	code	in	RU

and	GMAT	calculates	the	DSN	Doppler	measurement	as

C	=	−	M	2	(	t	3	e	−	t	3	s	)	∫	t	1	s	t	1	e	f	T	(	t	1	)	d	t	1			=	−	M	2	(	t	1	e	−	t	1	s	)	D	C
I	f	¯	T					(Hz)

where

t	1	s	,	t	1	e	=	start	and	end	of	transmission	interval,	respectively
f	T	=	transmit	frequency
M	2	=	Transponder	turn	around	ratio	(typically,	240/221	for	S-
band	and	880/749	for	X-band)
DCI	=		(	t	3	e	−	t	3	s	)	=		Doppler	Count	Interval
f	¯	T	≡	∫	t	1	s	t	1	e	f	T	(	t	1	)	d	t	1	(	t	1	e	−	t	1	s	)			=	average	transmit	frequency	

The	value	of	C	and	M2	used	to	calculate	the	computed	range	or	Doppler
measurement	depends	upon	the	data	type	and	whether	the	data	being	ingested	is
ramped	or	non-ramped	according	to	the	table	below.	The	value	of	the	transmit
frequency	used	to	calculate	the	computed	measurement	depends	upon	whether	or
not	the	data	being	ingested	is	ramped	or	non-ramped.



Data
Type

Value	of	C	(Range)	or	M2	(Doppler)
used	to	calculate	“Computed”

measurement

Value	of	transmit
frequency	used	to

calculate	“Computed”
measurement

Estimate
Range
without
ramp
table

Set	based	upon	Uplink	Band	in
input	Range	measurement	GMD
file.	C=½	for	S-band	and	221/1498
for	X-band.

Use	frequency	in
input	range	GMD	file

Ground	Station
transmit	frequency	set
via
Transmitter.Frequency
is	not	used

Estimate
Range
with
ramp
table

Set	based	upon	Uplink	Band	in
input	ramp	table.	C=½	for	S-band
and	221/1498	for	X-band.

Value	of	Uplink	Band	in	input
Range	measurement	file	has	no
effect.

Use	frequency	in
ramp	table

Frequency	in	input
GMD	file	is	not	used

Ground	Station
transmit	frequency	set
via
Transmitter.Frequency
is	not	used

Estimate
Doppler
without
ramp
table

M2=Transponder.TurnAroundRatio

Value	of	Uplink	Band	in	input
Range	measurement	file	has	no
effect.

Use	Ground	Station
transmit	frequency	set
via
Transmitter.Frequency
(Note	that	for	Doppler
data,	there	is	no
frequency	data	in	the
GMD	file)

Estimate



Doppler
with
ramp
table

Set	based	upon	Uplink	Band	in
input	ramp	table.	M2=240/221	for
S-band	and	880/749	for	X	band.

Value	of	Uplink	Bank	in	input
Doppler	GMD	measurement	file
has	no	effect.

Use	frequency	in
ramp	table.	(Note	that
for	Doppler	data,
there	is	no	frequency
data	in	the	GMD	file)

Ground	Station
transmit	frequency	set
via
Transmitter.Frequency
is	not	used

Earth	Nutation	Update	Interval

If	you	want	the	estimator	to	calculate	a	Doppler	or	range	rate	type	of
measurement	(e.g.,	DSN_TCP	and	RangeRate)	residual	precisely,	you	will	need
to	set	the	Earth	nutation	update	interval	to	0	as	shown	below.

Earth.NutationUpdateInterval	=	0

It	is	good	general	practice	to	set	the	Earth	nutation	update	interval	to	zero	for	all
measurement	types.



Examples
Run	batch	estimator.

Create	BatchEstimatorInv	myBatchEstimator

BeginMissionSequence

RunEstimator	myBatchEstimator

For	a	comprehensive	example	of	reading	in	measurements	and	running	the
estimator,	see	the	Chapter	14,	Orbit	Estimation	using	DSN	Range	and	Doppler
Data	tutorial.



RunSimulator
RunSimulator	—	Generates	simulated	navigation	measurements



Script	Syntax
RunSimulator	Simulator_InstanceName	



Description
The	RunSimulator	command	generates	the	simulated	measurements	specified
in	the	user-provided	Simulator	resource.	An	output	file,	with	name	specified	in
the	Simulator	resource	is	created.

See	Also:	Simulator



Remarks

Content	of	the	Output	File	for	DSN	data

After	the	RunSimulator	command	has	finished	execution,	one	or	more	output
files,	as	defined	in	the	specified	Simulator	object,	will	be	created.	Each	row	of
data	in	an	output	file	contains	information	about	one	specific	measurement	at	a
given	time.	The	format	for	a	given	row	of	data	is	described	fully	in	the
TrackingFileSet	resource	help.

Currently,	GMAT	supports	two	DSN	data	types,	DSN	TRK-2-34	type	7
(sequential	range)	and	DSN	TRK-2-34	type	17	(Total	count	phase).	As	shown	in
the	TrackingFileSet	resource	help,	for	a	type	7	measurement,	a	row	of	data	has
the	following	GMAT	internal	file	format.

TAIMJD		DSN_SeqRange	9004	[Downlink	Station	ID]	[S/C	ID]	[Range	Observable	(RU)]	[Uplink	Band]	[Uplink	Freq	(Hz)]	[Range	Modulo	(RU)]

where	[Uplink	Band]	species	the	frequency	band	of	the	transmitting	station	as
shown	in	the	table	below.

Uplink	Band
Value Description

0 Unknown	or	not	applicable

1 S-band

2 X-band

3 Ka-band

4 Ku-band

5 L-band

and	where	the	[Range	Observable	(RU)],	is	calculated	according	to

C	∫	t	1	t	3	f	T	(	t	)	d	t	,		mod	M													(RU)

where



t	1	,	t	3	=	Transmission	and	Reception	epoch,	respectively
f	T	=	Ground	Station	transmit	frequency
C	=	transmitter	dependent	constant	(221/1498	for	X-band	and	1/2	for	S-Band)
M		=		length	of	the	ranging	code	in	RU

As	shown	in	the	TrackingFileSet	resource	help,	for	a	DSN	TRK-2-34	type	17
measurement,	a	row	of	data	has	the	following	GMAT	internal	file	format.

#	TAIMJD_t3e	DSN_TCP	9006	[Downlink	Station	ID]	[S/C	ID]	[Uplink	Band]	[DopplerCountInterval_seconds]	[DopplerMeas_Hz]

where	[Uplink	Band]	has	been	previously	described	and	where
DopplerMeas_Hz,	the	Doppler	measurement,	is	calculated	according	to

C	=	−	M	2	(	t	3	e	−	t	3	s	)	∫	t	1	s	t	1	e	f	T	(	t	1	)	d	t	1			=	−	M	2	(	t	1	e	−	t	1	s	)	D	C
I	f	¯	T					(Hz)

where

t	1	s	,	t	1	e	=	start	and	end	of	transmission	interval
f	T	=	transmit	frequency
M	2	=	Transponder	turn	around	ratio	(typically,	240/221	for	S-
band	and	880/749	for	X-band)
DCI	=		(	t	3	e	−	t	3	s	)	=		Doppler	Count	Interval
f	¯	T	≡	∫	t	1	s	t	1	e	f	T	(	t	1	)	d	t	1	(	t	1	e	−	t	1	s	)			=	average	transmit	frequency	

Note	that	(t3e	-	t3s)	is	known	as	the	Doppler	Count	Interval	and	is	an	input	field,
SimDopplerCountInterval,	for	the	TrackingFileSet	resource.

When	you	simulate	DSN	range	or	Doppler,	you	can	choose	whether	or	not	the
frequency	from	the	transmitting	Ground	Station	is	Non-ramped	or	Ramped.	If
you	wish	to	model	ramped	data,	you	must	supply	an	input	ramp	table.	The
format	of	the	input	ramp	table	is	discussed	in	the	TrackingFileSet	resource	help.

The	table	below	shows	how	the	values	of	Uplink	Band,	C,	M2,	and	transmit
frequency	are	calculated.	The	second	column	shows	how	the	Uplink	Band,
which	is	included	in	the	output	file	for	both	range	and	Doppler	measurements,	is
calculated.	For	S-band,	a	“1”	is	output	and	for	X-band,	a	“2”	is	output.

The	output	GMAT	Measurement	Data	(GMD)	file	contains	the	observable	value
which	is	calculated	using	the	equations	shown	above.	The	third	column	shows



how	the	value	of	C	or	M2,	which	is	used	to	calculate	the	observation	value
shown	in	the	GMD	file,	is	calculated.

Finally,	the	fourth	column	shows	how	the	transmit	frequency,	which	shows	up
directly	in	the	GMD	file	(for	DSN	range	but	not	DSN	Doppler)	and	is	also	used
to	calculate	the	observation	value	given	in	the	GMD	file,	is	calculated.

Measurement
Type Uplink	Band Value	of	C	(Range)	or	M2	(Doppler)

used	to	calculate	Observation

Simulate
Range

without	ramp
table

Set	based	upon
transmitter	frequency
set	by	user	on	the
Transmitter.Frequency
field.	If	freq	is	in
[2000-4000]	MHz,
then	Uplink	Band	is
S-band.	If	freq	is	in
[7000-8000]	MHz,
then	Uplink	Band	is
X-band.

Set	based	upon	Uplink	Band	result
shown	in	previous	column.	C=½
for	S-band	and	221/1498	for	X-
band.

Value	of
Transponder.TurnAroundRatio	has
no	effect	on	C

Simulate
Range	with
ramp	table

Uplink	Band	in	ramp
table	takes	precedence
over	both	transmitter
frequency	set	by	user
and	transmit
frequency	in	ramp
table.

Set	based	upon	Uplink	Band	result
shown	in	previous	column.	C=½
for	S-band	and	221/1498	for	X-
band.

Value	of
Transponder.TurnAroundRatio	has
no	effect	on	C

Simulate
Doppler

without	ramp
table

Set	based	upon
transmitter	frequency
set	by	user	on	the
Transmitter.Frequency
field.	If	freq	is	in

M2=Transponder.TurnAroundRatio



[2000-4000]	MHz,
then	Uplink	Band	is
S-band.	If	freq	is	in
[7000-8000]	MHz,
then	Uplink	Band	is
X-band.

Simulate
Doppler	with
ramp	table

Uplink	Band	in	ramp
table	takes	precedence
over	both	transmitter
frequency	set	by	user
and	transmit
frequency	in	ramp
table.

Set	based	upon	Uplink	Band	result
shown	in	previous	column.
M2=240/221	for	S-band	and
880/749	for	X	band.

Value	of
Transponder.TurnAroundRatio	has
no	effect	on	M2

As	discussed	in	the	Transponder	Help,	for	both	ramped	and	non-ramped	data,
the	turn	around	ratio	set	on	the	Transponder	object,
Transponder.TurnAroundRatio,	will	be	used	to	calculate	the	media	corrections
needed	to	determine	the	value	of	the	simulated	range	and	Doppler
measurements.

Earth	Nutation	Update	Interval

If	you	want	to	simulate	a	Doppler	or	range	rate	type	of	measurement	(e.g.,
DSN_TCP	and	RangeRate)	precisely,	you	will	need	to	set	the	Earth	nutation
update	interval	to	0	as	shown	below.

Earth.NutationUpdateInterval	=	0

It	is	good	general	practice	to	set	the	Earth	nutation	update	interval	to	zero	for	all
measurement	types.



Examples
Run	simulation.

%Perform	a	simulation

Create	Simulator	mySim

BeginMissionSequence	

RunSimulator	mySim

For	a	comprehensive	example	of	running	a	simulation,	see	the	Chapter	13,
Simulate	DSN	Range	and	Doppler	Data	tutorial.



Set
Set	—	Configure	a	resource	from	a	data	interface



Script	Syntax
Set	destination	source	(options)



Description
The	Set	command	retrieves	data	from	source	according	to	options	and
populates	destination.	Time	systems,	time	formats,	state	types,	and	coordinate
systems	are	automatically	converted	to	those	required	by	destination.

See	Also:	FileInterface,	Spacecraft



Options

Option Description
destination

The	resource	to	populate	from	the	data	source.

Accepted	Data	Types Spacecraft

Allowed	Values any	Spacecraft	resource

Default	Value (None)

Required yes

Interfaces GUI,	script

source

The	data	source	from	which	to	obtain	data.

Accepted	Data	Types FileInterface

Allowed	Values any	FileInterface	resource

Default	Value (None)

Required yes



Interfaces GUI,	script

options

Options	specific	to	the	chosen	source.	See	the	following	sections
for	details.

The	following	options	are	available	when	source	is	a	FileInterface	and	the
Format	is	“TVHF_ASCII”:

Data={keyword[,	keyword,	...]}

Comma-separated	list	of	values	to	retrieve	from	the	file.	Defaults	to	'All',
which	retrieves	all	available	elements.	The	available	keywords	are
documented	in	the	“TVHF_ASCII”	section	of	the	FileInterface	reference.



GUI

The	Set	GUI	is	a	very	simple	text	box	that	lets	you	type	the	command	directly.
By	default,	it	has	no	arguments,	so	you	must	finish	the	command	yourself.



Examples
Read	a	TVHF	file	and	use	it	to	configure	a	spacecraft.

Create	Spacecraft	aSat

Create	FileInterface	tvhf

tvhf.Filename	=	'statevec.txt'

tvhf.Format	=	'TVHF_ASCII'

BeginMissionSequence

Set	aSat	tvhf

Read	a	TVHF	file	and	use	it	to	set	only	the	epoch	and	the	Cartesian	state.

Create	Spacecraft	aSat

Create	FileInterface	tvhf

tvhf.Filename	=	'statevec.txt'

tvhf.Format	=	'TVHF_ASCII'

BeginMissionSequence

Set	aSat	tvhf	(Data	=	{'Epoch',	'CartesianState'})



Stop
Stop	—	Stop	mission	execution



Description
The	Stop	command	stops	execution	of	the	current	mission	at	the	point	that	the
command	is	encountered	and	returns	control	to	the	GMAT	interface.	The	effect
is	similar	to	that	of	the	Stop	button	on	the	GUI	toolbar.



GUI
The	Stop	command	can	be	inserted	into	and	deleted	from	Mission	tree,	but	the
command	has	no	GUI	panel	of	its	own.



Remarks
The	Stop	command	stops	execution	of	the	current	mission,	not	the	GMAT
application.	All	data	displayed	to	the	point,	at	which	the	script	was	stopped	(e.g.
OrbitView	windows,	GroundTrackPlot	windows),	remain	available	for
manipulation.	Using	the	Stop	command	within	a	loop	or	solver	structure	will
stop	execution	at	the	first	iteration	during	which	the	command	is	encountered.



Examples
Stopping	the	execution	of	a	script	between	commands:

Create	Spacecraft	aSat

Create	ForceModel	aForceModel

Create	Propagator	aProp

aProp.FM	=	aForceModel

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	30};

Stop

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	30};

Stopping	the	execution	of	a	solver	structure	for	further	investigation:

Create	ChemicalTank	aTank

Create	ForceModel	aForceModel

Create	DifferentialCorrector	aDC

Create	Spacecraft	aSat

aSat.Tanks	=	{aTank}

Create	Propagator	aProp

aProp.FM	=	aForceModel

Create	ImpulsiveBurn	anIB

anIB.DecrementMass	=	true

anIB.Tanks	=	{aTank}

BeginMissionSequence

Target	aDC

Vary	aDC(anIB.Element1	=	0.5)

Maneuver	anIB(aSat)

Propagate	aProp(aSat)	{aSat.Periapsis}

If	aSat.aTank.FuelMass	<	10

Stop

EndIf

Achieve	aDC(aSat.Altitude	=	1000)



Target
Target	—	Solve	for	condition(s)	by	varying	one	or	more	parameters



Script	Syntax
Target	SolverName	[{[SolveMode	=	value],	[ExitMode	=	value],

																				[ShowProgressWindow	=	value]}]

						Vary	command	…

						script	statement	…

						Achieve	command	…

EndTarget				

Note

See	the	section	called	“Remarks”	and	the	section	called
“Description”	for	this	complex	command.	Multiple	Vary	and
Achieve	commands	are	permitted.	Script	statements	can	appear
anywhere	in	the	Target	sequence.



Description
The	Target	and	EndTarget	commands	are	used	to	define	a	Target	sequence	to
determine,	for	example,	the	maneuver	components	required	to	raise	the	orbit
apogee	to	42164	km.	Another	common	targeting	example	is	to	determine	the
parking	orbit	orientation	required	to	align	a	lunar	transfer	orbit	with	the	moon.
Target	sequences	in	GMAT	are	general	and	these	are	just	examples.	Let’s	define
the	quantities	whose	values	you	don’t	know	precisely,	but	need	to	determine,	as
the	control	variables.	Define	the	conditions	that	must	be	satisfied	as	the
constraints.	A	Target	sequence	numerically	solves	a	boundary	value	problem	to
determine	the	value	of	the	control	variables	required	to	satisfy	the	constraints.
You	define	your	control	variables	by	using	Vary	commands	and	you	define	the
problems	constraints	using	Achieve	commands.	The	Target/EndTarget
sequence	is	an	advanced	command.	The	examples	later	in	this	section	give
additional	details.

See	also:	DifferentialCorrector,Vary,Achieve,Optimize,



Options

Option Description

ApplyCorrections
This	GUI	button	replaces	the	initial	guess	values
specified	in	the	Vary	commands.	If	the	Target
sequence	converged,	the	converged	values	are
applied.	If	the	Target	sequence	did	not	converge,	the
last	calculated	values	are	applied.	There	is	one
situation	where	the	action	specified	above,	where	the
initial	guess	values	specified	in	the	Vary	commands
are	replaced,	does	not	occur.	This	happens	when	the
initial	guess	value	specified	in	the	Vary	command	is
given	by	a	variable.	See	the	Remarks	section	of	the
help	for	additional	details.

Accepted	Data	Types N/A

Allowed	Values N/A

Default	Value N/A

Required no

Interfaces GUI

ExitMode
Controls	the	initial	guess	values	for	Target	sequences
nested	in	control	flow.	If	ExitMode	is	set	to
SaveAndContinue,	the	solution	of	a	Target	sequence



is	saved	and	used	as	the	initial	guess	for	the	next
Target	sequence	execution.	The	rest	of	the	mission
sequence	is	then	executed.	If	ExitMode	is	set	to
DiscardAndContinue,	then	the	solution	is	discarded
and	the	initial	guess	values	specified	in	the	Vary
commands	are	used	for	each	Target	sequence
execution.	The	rest	of	the	mission	sequence	is	then
executed.	If	ExitMode	is	set	to	Stop,	the	Target
sequence	is	executed,	the	solution	is	discarded,	and
the	rest	of	the	mission	sequence	is	not	executed.

Accepted	Data
Types

Reference	Array

Allowed
Values

DiscardAndContinue,
SaveAndContinue,	Stop

Default	Value DiscardAndContinue

Required no

Interfaces GUI,	script

ShowProgressWindow
Flag	to	indicate	if	solver	progress	window	should	be
displayed.

Accepted	Data	Types Boolean

Allowed	Values true,false



Default	Value true

Required no

Interfaces GUI,	script

SolveMode
Specifies	how	the	Target	sequence	behaves	during
mission	execution.	When	SolveMode	is	set	to	Solve,
the	Target	sequence	executes	and	attempts	to	solve
the	boundary	value	problem	satisfying	the	targeter
constraints	(i.e,	goals).	When	SolveMode	is	set	to
RunInitialGuess,	the	targeter	does	not	attempt	to
solve	the	boundary	value	problem	and	the	commands
in	the	Target	sequence	execute	using	the	initial	guess
values	defined	in	the	Vary	commands.

Accepted	Data	Types Reference	Array

Allowed	Values Solve,	RunInitialGuess

Default	Value Solve

Required no

Interfaces GUI,	script

SolverName



Identifies	the	DifferentialCorrector	used	for	a
Target	sequence.

Accepted	Data
Types

DifferentialCorrector

Allowed
Values

Any	user-defined	or	default
DifferentialCorrector

Default	Value DefaultDC

Required yes

Interfaces GUI,	script



GUI
The	Target	command	allows	you	to	use	a	differential	correction	process	to	solve
problems.	To	solve	a	given	problem,	you	need	to	create	a	so-called	Target
sequence	which	we	now	define.	When	you	add	a	Target	command	to	the
mission	sequence,	an	EndTarget	command	is	automatically	added	as	shown
below.

In	the	example	above,	the	Target	command	sequence	is	defined	as	all	of	the
commands	between	the	Target1	and	End	Target1	commands,	inclusive.
Although	not	shown	above,	a	Target	command	sequence	must	contain	both	a
Vary	command	and	an	Achieve	command.	The	Vary	command	is	used	to	define
the	control	variables	which	can	be	varied	in	order	to	achieve	a	certain	goal.	The
Achieve	command	is	used	to	define	the	desired	goal.	In	order	for	the	Target
aequence	to	be	well	formed,	there	must	be	at	least	one	Vary	command	before
any	Achieve	commands,	so	that	the	variable	defined	in	the	Vary	command	can
affect	the	goal	specified	in	the	subsequent	Achieve	commands.	Double	click	on
Target1	command	above	to	bring	up	the	Target	command	dialog	box,	shown
below,	which	allows	you	to	specify	your	choice	of	Solver	(i.e.,	your	choice	of
DifferentialCorrector),	Solver	Mode,	and	Exit	Mode.	As	described	in	the
Remarks	section,	the	Target	command	dialog	box	also	allows	you	to	apply
corrections	to	your	Target	command	sequence.



If	you	set	ShowProgressWindow	to	true,	then	a	dynamic	display	is	shown
during	targeting	that	contains	values	of	variables	and	constraints	as	shown
below.



Remarks

Content	of	a	Target/EndTarget	Sequence

A	Target/EndTarget	sequence	must	contain	at	least	one	Vary	command	and	at
least	one	Achieve	Command.	See	the	Vary	and	Achieve	command	sections	for
details	on	the	syntax	for	those	commands.	The	First	Vary	command	must	occur
before	the	first	Achieve	command.	Target	commands	must	be	be	coupled	with
one	and	only	one	EndTarget	command.	Each	Target	command	field	in	the	curly
braces	is	optional.	You	can	omit	the	entire	list	and	the	curly	braces	and	the
default	values	will	be	used	for	Target	configuration	fields	such	as	SolveMode
and	ExitMode.

Use	of	a	Target/EndTarget	Sequence

GMAT	Target	sequences	can	solve	square	problems	(the	number	of	Control
Variables	equals	the	number	of	constraints),	over-determined	problems	(the
number	of	Control	Variables	is	less	than	the	number	of	constraints)	and	under-
determined	problems	(the	number	of	Control	Variables	is	greater	than	the
number	of	constraints).	In	any	of	these	cases,	there	may	not	be	a	solution	and	the
type	of	solution	found	depends	on	the	selection	of	the	targeter	(currently,	only
differential	correctors	are	supported).	Assuming	a	solution	to	the	problem	exists
and	assuming	certain	mathematical	conditions	are	satisfied,	there	is	often	one
solution	for	a	square	problem	and	many	solutions	to	an	under-determined
problem.	Problems	with	more	goals	(i.e.,	constraints)	than	variables	may	not
have	a	solution.	If	your	problem	is	under-determined,	consider	using	an
Optimize	sequence	to	find	an	optimal	solution	in	the	space	of	feasible	solutions.

Caution

If	you	configure	a	Target	sequence	and	get	the	error	“Rmatrix
error:	matrix	is	singular”,	then	your	control	variables	defined	in
the	Vary	commands	do	not	affect	the	constraints	defined	in	the
Achieve	commands.	A	common	mistake	in	this	case	is	that	you
forgot	to	apply	a	maneuver.



Note	on	Using	Apply	Corrections

After	the	Target	sequence	has	been	run,	you	may	choose	to	apply	corrections	by
navigating	to	the	Mission	tree,	right-clicking	the	Target	command	to	bring	up
the	Target	window,	and	clicking	the	Apply	Corrections	button.	The	Apply
Corrections	button	replaces	the	initial	guess	values	specified	in	the	Vary
commands	.	If	the	Target	sequence	converged,	the	converged	values	are	applied.
If	the	Target	sequence	did	not	converge,	the	last	calculated	values	are	applied.
Note	that	the	Apply	Corrections	feature	is	only	currently	available	through	the
GUI	interface.

There	is	one	situation	where	the	action	specified	above,	where	the	initial	guess
values	specified	in	the	Vary	commands	are	replaced,	does	not	occur.	This
happens,	as	illustrated	in	the	example	below,	when	the	initial	guess	value
specified	in	the	Vary	command	is	given	by	a	variable.	In	this	situation,	the
Apply	Corrections	button	has	no	affect	since	GMAT	does	not	allow	variables	to
be	overwritten.

Create	Variable	InitialGuess_BurnDuration	BurnDuration

Create	DifferentialCorrector	aDC

BeginMissionSequence

Target	aDC

Vary	aDC(BurnDuration	=	InitialGuess_BurnDuration)

Achieve	aDC(BurnDuration	=	10)	%	atypical	Achieve	command	for

																															%	illustrative	purposes	only

EndTarget					

Command	Interactions

Vary
command Every	Target	sequence	must	contain	at	least	one	Vary	command.

Vary	commands	are	used	to	define	the	control	variables	associated
with	a	Target	sequence.

Achieve
command Every	Target	sequence	must	contain	at	least	one	Achieve

command.	Achieve	commands	are	used	to	define	the	goals
associated	with	a	Target	sequence.





Examples
Use	a	Target	sequence	to	solve	for	a	root	of	an	algebraic	equation.	Here	we
provide	an	initial	guess	of	5	for	the	Control	Variable	(or	independent	variable)	x,
and	solve	for	the	value	of	x	that	satisfies	the	Constraint	y	=	0,	where	y	:=3*x^3	+
2*x^2	-	4*x	+	8.	After	executing	this	example	you	can	look	in	the	message
window	to	see	the	solution	for	the	variable	x.	You	can	easily	check	that	the	value
obtained	does	indeed	satisfy	the	constraint.

Create	Variable	x	y

Create	DifferentialCorrector	aDC

BeginMissionSequence

Target	aDC

		Vary	aDC(x	=	5)

		y	=	3*x^3	+	2*x^2	-	4*x	+	8

		Achieve	aDC(y	=	0,{Tolerance	=	0.0000001})

EndTarget

Use	a	Target	sequence	to	raise	orbit	apogee.	Here	the	control	variable	is	the
velocity	component	of	an	ImpulsiveBurn	object.	The	Constraint	is	that	the
position	vector	magnitude	at	orbit	apogee	is	42164.	Report	the	convergence
status	to	a	file.

Create	Spacecraft	aSat

Create	Propagator	aPropagator

Create	Variable	I

Create	ImpulsiveBurn	aBurn

Create	DifferentialCorrector	aDC

Create	OrbitView	EarthView

EarthView.Add	=	{Earth,aSat}

EarthView.ViewScaleFactor	=	5

Create	ReportFile	aReport

BeginMissionSequence

Target	aDC

			Vary	aDC(aBurn.Element1	=	1.0,	{Upper	=	3})

			Maneuver	aBurn(aSat)

			Propagate	aPropagator(aSat,{aSat.Apoapsis})



			Achieve	aDC(aSat.RMAG	=	42164)

EndTarget

Report	aReport	aDC.SolverStatus	aDC.SolverState

Similar	to	the	previous	example,	we	use	a	Target	sequence	to	raise	orbit	apogee
except	that	this	time	we	use	a	finite	burn.	Here	the	control	variable	is	the
duration	of	the	Velocity	component	of	a	FiniteBurn	object.	The	Constraint	is
that	the	position	vector	magnitude	at	orbit	apogee	is	12000.	Additional	detail	on
the	example	below	can	be	found	in	the	Target	Finite	Burn	to	Raise	Apogee
tutorial.

Create	Spacecraft	DefaultSC

Create	Propagator	DefaultProp

Create	ChemicalThruster	Thruster1

GMAT	Thruster1.C1	=	1000

GMAT	Thruster1.DecrementMass	=	true

Create	ChemicalTank	FuelTank1

GMAT	Thruster1.Tank	=	{FuelTank1}

Create	FiniteBurn	FiniteBurn1

GMAT	FiniteBurn1.Thrusters	=	{Thruster1}

GMAT	DefaultSC.Tanks	=	{FuelTank1}

GMAT	DefaultSC.Thrusters	=	{Thruster1}

Create	Variable	BurnDuration

Create	DifferentialCorrector	DC1

BeginMissionSequence

Propagate	DefaultProp(DefaultSC)	{DefaultSC.Earth.Periapsis}

Target	DC1

		Vary	DC1(BurnDuration	=	200,	{Upper	=	10000})

		BeginFiniteBurn	FiniteBurn1(DefaultSC)

		Propagate	DefaultProp(DefaultSC){DefaultSC.ElapsedSecs=BurnDuration}

		EndFiniteBurn	FiniteBurn1(DefaultSC)

		Propagate	DefaultProp(DefaultSC)	{DefaultSC.Earth.Apoapsis}

		Achieve	DC1(DefaultSC.Earth.RMAG	=	12000)

EndTarget



Toggle
Toggle	—	Allows	you	to	turn	data	output	off	or	on



Script	Syntax
Toggle		OutputNames		Arg

OutputNames

		OutputNames	is	the	list	of	subscribers	that	are	to	be	toggled.	

		When	multiple	subscribers	are	being	toggled	in	the	OutputNames,	

		then	they	need	to	be	separated	by	a	space.

Arg

		Arg	option	allows	you	to	turn	off	or	on	the	data	output	to	

		the	selected	subscribers	listed	in	the	OutputNames.



Description
The	Toggle	command	allows	you	to	turn	data	output	off	or	on	for	the	subscribers
that	you	select	such	as	ReportFile,	XYPlot,	OrbitView,	GroundTrackPlot	and
EphemerisFile.	GMAT	allows	you	to	insert	Toggle	command	into	the	Mission
tree	at	any	location	and	data	output	can	be	turned	off	or	on	at	any	point	in	your
mission.	Toggle	command	can	be	used	through	GMAT’s	GUI	or	the	script
interface.



Options

Option Description

OutputNames
The	Toggle	option	allows	the	user	to	assign	subscribers
such	as	ReportFile,	XYPlot,	OrbitView,
GrounTrackPlot	or	EphemerisFile	to	be	toggled.	When
more	than	one	subscriber	is	being	toggled,	they	need	to	be
separated	by	a	space.

Accepted
Data
Types

Resource	reference

Allowed
Values

ReportFile,	XYPlot,	OrbitView,
GroundTrackPlot	or	EphemerisFile
resources

Default
Value

DefaultOrbitView

Required yes

Interfaces GUI,	script

Arg
The	Arg	option	allows	the	user	to	turn	off	or	on	the	data
output	to	the	selected	subscriber.



Accepted	Data	Types Boolean

Allowed	Values On,	Off

Default	Value On

Required yes

Interfaces GUI,	script



GUI
Figure	below	shows	default	settings	for	Toggle	command:



Remarks
The	subscribers	such	as	ReportFile,	XYPlot,	OrbitView,	GroundTrackPlot
and	EphemerisFile	report	or	plot	data	at	each	propagation	step	of	the	entire
mission	duration.	If	you	want	to	report	data	to	any	of	these	subscribers	at
specific	points	in	your	mission,	then	a	Toggle	On/Off	command	can	be	inserted
into	the	mission	sequence	to	control	when	a	subscriber	reports	or	plots	data.	For
example,	when	a	Toggle	Off	command	is	issued	for	a	XYPlot,	no	data	is	plotted
onto	the	X	and	Y	axis	of	the	graph	until	a	Toggle	On	command	is	issued.
Similarly	when	a	Toggle	On	command	is	used,	data	is	plotted	onto	the	X	and	Y
axis	at	each	integration	step	until	a	Toggle	Off	command	is	used.



Examples
This	example	shows	how	to	use	Toggle	Off	and	Toggle	On	commands	while
using	the	XYPlot	resource.	Spacecraft’s	position	magnitude	and	semi-major-axis
are	plotted	as	a	function	of	time.	XYPlot	is	turned	off	for	the	first	2	days	of	the
propagation:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot

aPlot.XVariable	=	aSat.ElapsedDays

aPlot.YVariables	=	{aSat.Earth.RMAG,	aSat.Earth.SMA}

BeginMissionSequence

Toggle	aPlot	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	2}

Toggle	aPlot	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

This	example	shows	how	to	use	Toggle	Off	and	Toggle	On	commands	while
using	the	ReportFile	resource.	Spacecraft’s	cartesian	position	vector	is	reported
to	the	report	file.	Report	file	is	turned	off	for	the	first	day	of	the	propagation:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ReportFile	aReport

aReport.Filename	=	'ReportFile1.txt'

aReport.Add	=	{aSat.ElapsedDays	aSat.EarthMJ2000Eq.X	...

aSat.EarthMJ2000Eq.Y	aSat.EarthMJ2000Eq.Z}

BeginMissionSequence

Toggle	aReport	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Toggle	aReport	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	4}

This	example	shows	how	to	toggle	multiple	subscribers.	Toggle	Off	and	Toggle
On	commands	are	used	on	multiple	subscribers	like	ReportFile,	XYPlot	and



EphemerisFile.	Subscribers	are	turned	off	for	first	3	days	of	the	propagation:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ReportFile	aReport

aReport.Filename	=	'ReportFile1.txt'

aReport.Add	=	{aSat.ElapsedDays	aSat.EarthMJ2000Eq.X	...

aSat.EarthMJ2000Eq.Y	aSat.EarthMJ2000Eq.Z}

Create	XYPlot	aPlot

aPlot.XVariable	=	aSat.ElapsedDays

aPlot.YVariables	=	{aSat.Earth.RMAG,	aSat.Earth.SMA}

Create	EphemerisFile	aEphemerisFile

aEphemerisFile.Spacecraft	=	aSat

BeginMissionSequence

Toggle	aReport	aPlot	aEphemerisFile	Off

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	3}

Toggle	aReport	aPlot	aEphemerisFile	On

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}



Vary
Vary	—	Specifies	variables	used	by	a	solver



Script	Syntax
Vary	SolverName(<UserSelectedControl>=InitialGuess,

[{[Perturbation=Arg1],	[MaxStep=Arg2],

[Lower=Arg3],	[Upper=Arg4],	

[AdditiveScalefactor=Arg5],	[MultiplicativeScalefactor=Arg6]}])		



Description
The	Vary	command	is	used	in	conjunction	with	either	the	Target	or	the
Optimize	command.	The	Vary	command	defines	the	control	variable	used	by
the	targeter	or	optimizer.	The	Target	or	Optimize	sequence	then	varies	these
control	variables	until	certain	desired	conditions	are	met.	Every	Target	or
Optimize	sequence	must	contain	at	least	one	Vary	command.

See	Also:	DifferentialCorrector,	FminconOptimizer,	VF13ad,	Target,	Optimize



Options

Option Description

AdditiveScaleFactor
Number	used	to	nondimensionalize	the
independent	variable.	The	solver	sees	only	the
nondimensional	form	of	the	variable.	The
nondimensionalization	is	performed	using	the
following	equation:	xn	=	m	(xd	+	a).	(xn	is	the
non-dimensional	parameter.	xd	is	the	dimensional
parameter.	a=	additive	scale	factor.	m=
multiplicative	scale	factor.)		Note	the
nondimensionalization	process	occurs	after	the
perturbation	to	the	control	variable	has	been
applied.		Thus,	xd	represents	a	perturbed	control
variable.

Accepted
Data
Types

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter

Allowed
Values

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter

Default
Value

0

Required no

Interfaces GUI,	script



InitialGuess
Specifies	the	initial	guess	for	the	selected	Variable

Accepted
Data
Types

Real	Number,	Array	element,
Variable,	or	any	user-defined
parameter	that	obeys	the	conditions
for	the	selected	Variable	object

Allowed
Values

Real	Number,	Array	element,
Variable,	or	any	user-defined
parameter	that	obeys	the	conditions
for	the	selected	Variable	object

Default
Value

0.5

Required yes

Interfaces GUI,	script

Lower
The	Lower	option	(only	used	for	the	Differential
Corrector	and	fmincon	solvers)	is	used	to	set
the	lower	bound	of	the	control	Variable.	Lower
must	be	less	than	Upper.	

Accepted
Data
Types

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter



Allowed
Values

Real	Number,	Array	element,
Variable,	or	any	user	defined	para-
meter	(Upper	>	Lower	)

Default
Value

0

Required no

Interfaces GUI,	script

MaxStep
The	MaxStep	option	(only	used	for	the
DifferentialCorrector	and	VF13ad	solvers)	is	the
maximum	allowed	change	in	the	control	variable
during	a	single	iteration	of	the	solver.

Accepted
Data
Types

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter	>	0

Allowed
Values

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter	>	0

Default
Value

0.2

Required no



Interfaces GUI,	script

MultiplicativeScaleFactor
Number	used	to	nondimensionalize	the
independent	variable.	The	solver	sees	only	the
nondimensional	form	of	the	variable.	The
nondimensionalization	is	performed	using	the
following	equation:	xn	=	m	(xd	+	a).	(xn	is	the
non-dimensional	parameter.	xd	is	the	dimensional
parameter.	a=	additive	scale	factor.	m=
multiplicative	scale	factor.)		Note	the
nondimensionalization	process	occurs	after	the
perturbation	to	the	control	variable	has	been
applied.		Thus,	xd	represents	a	perturbed	control
variable.

Accepted
Data
Types

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter

Allowed
Values

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter	>	0

Default
Value

1

Required no

Interfaces GUI,	script



Perturbation The	Perturbation	option	(only	used	for	the
DifferentialCorrector	and	VF13ad	solvers)	is	the
perturbation	step	sized	used	to	calculate	the	finite
difference	derivative

Accepted
Data
Types

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter

Allowed
Values

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter	!=	0

Default
Value

0.0001

Required no

Interfaces GUI,	script

SolverName
Allows	you	to	choose	which	solver	to	assign	to	the
Vary	command.	In	the	context	of	a	Target
sequence,	you	will	choose	a
DifferentialCorrector	object.	In	the	context	of	an
Optimize	sequence,	you	will	choose	either	a
FminconOptimizer	or	VF13ad	object.

Accepted
Data
Types

Solver	(either	an	Optimizer	or	a
Targeter)



Allowed
Values

Any	user	defined	Optimizer	or
Targeter

Default
Value

DefaultDC	in	a	Target	sequence	and
DefaultSQP	in	an	Optimize	sequence

Required yes

Interfaces GUI,	script

Upper
The	Upper	option	(only	used	for	the
DifferentialCorrector	and	FminconOptimizer
solvers)	is	used	to	set	the	upper	bound	of	the
control	Variable.	Lower	must	be	less	than	Upper.

Accepted
Data
Types

Real	Number,	Array	element,
Variable,	or	any	user	defined
parameter

Allowed
Values

Real	Number,	Array	element,
Variable,	or	any	user	defined	para-
meter	(Upper	>	Lower	)

Default
Value

3.14159

Required no



Interfaces GUI,	script

UserSelectedControl
Allows	you	to	select	any	single	element	user-
defined	parameter,	except	a	number,	to	vary.	For
example,	DefaultIB.V,	DefaultIB.N,
DefaultIB.Element1,	DefaultSC.TA,	Array(1,1),
and	Variable	are	all	valid	values.	The	three
element	burn	vector	or	multidimensional	Arrays
are	not	valid	values.

Accepted
Data
Types

Parameter,	Array	element,	Variable,
or	any	other	single	element	user-
defined	parameter,	excluding
numbers.		Note	that	the	variable
chosen	must	be	settable	in	the
Mission	tree.	

Allowed
Values

Spacecraft	parameter,	Array	element,
Variable,	or	any	other	single	element
user-defined	parameter,	excluding
numbers

Default
Value

DefaultIB.Element1

Required yes

Interfaces GUI,	script



GUI
The	Vary	command,	only	valid	within	either	a	Target	or	an	Optimize	sequence,
is	used	to	define	the	control	variables	which	will	be	used	to	solve	a	problem.	The
Vary	command	dialog	box	is	shown	below.

The	Vary	command	dialog	box	allows	you	to	specify

Choice	of	Solver	(a	differential	corrector	if	using	a	Target	sequence	or	an
optimizer	if	using	an	Optimize	sequence).

Control	Variable	object.	To	define	the	control	Variable	used	in	the	Vary
command,	click	the	Edit	button	to	bring	up	the	ParameterSelectDialog	as
shown	below.	Use	the	arrow	to	select	the	desired	object	and	then	click	OK.

Initial	Value	for	the	control	variable	object.

Perturbation	Step	size	used	as	part	of	the	finite	differencing	algorithm.	As
noted	in	the	Remarks	section,	this	field	is	only	used	if	the	solver	chosen	is	a
differential	corrector	or	a	VF13AD	optimizer.

Lower	allowed	limit	for	the	converged	control	variable	object.	As	noted	in
the	Remarks	section,	this	field	is	only	used	if	the	solver	chosen	is	a
differential	corrector	or	a	fmincon	optimizer.



Upper	allowed	limit	for	the	converged	control	variable	object.	As	noted	in
the	Remarks	section,	this	field	is	only	used	if	the	solver	chosen	is	a
differential	corrector	or	a	fmincon	optimizer.

Maximum	step	size	(Max	Step),	per	iteration,	for	the	control	variable
object.	As	noted	in	the	Remarks	section,	this	field	is	only	used	if	the	solver
chosen	is	a	differential	corrector	or	a	VF13AD	optimizer.

Additive	Scale	Factor	used	to	scale	the	control	variable	object.

Multiplicative	Scale	Factor	used	to	scale	the	control	variable	object.



Remarks

Vary	Command	Options

The	Vary	command	is	designed	to	work	with	all	three	of	the	GMAT	targeters
and	optimizers	(Differential	Corrector,	fmincon,	and	VF13AD).	The	solvers,
which	are	developed	by	different	parties,	all	work	slightly	differently	and	thus
have	different	needs.	The	table	below	shows	which	command	options	are
available	for	a	given	solver.

	 Differential
Corrector fmincon VF13AD SNOPT

SolverName
X X X X

Variable
X X X X

InitialGuess
X X X X

AdditiveScaleFactor
X X X X

MultiplicativeScaleFactor
X X X X

Lower
X X X

Upper
X X X

Perturbation
X X



MaxStep
X X

The	Vary	syntax	allows	you	to	specify	the	value	of	an	option	even	if	a	particular
solver	would	not	use	the	information.

Vary	Command	Accepts	Repeated	Parameters

As	shown	in	the	example	below,	the	Vary	command	accepts	repeated
parameters.

Vary	DefaultDC(ImpulsiveBurn1.Element1	=	2,	...

{Perturbation	=	1e99,	Perturbation	=	.001})								

The	accepted	best	practice	is	not	to	repeat	parameters	in	any	given	command.
However,	for	the	Vary	command,	if	you	accidentally	sets	the	same	parameter
multiple	times,	the	last	setting	takes	precedence.	Thus,	in	the	example	above,	the
perturbation	step	size	is	set	to	0.001.

Use	of	Thruster	Parameters	in	a	Vary	Command

If	you	wish	to	use	thruster	parameters,	such	as	thrust	direction,	in	a	Vary
command,	then	you	must	reference	the	cloned	(child)	object	directly.	In	the
example	below,	we	first	show	syntax,	using	the	parent	object	that	does	not	work.
We	then	show	the	correct	syntax	using	the	cloned	(child)	object.

%Referencing	the	parent	object,	thruster1,	does	not	work.

Vary	DC1(thruster1.ThrustDirection1	=	0.4)

Vary	DC1(thruster1.ThrustDirection2	=	0.5)

%Referencing	the	cloned	(child)	object,	Sc.thruster1,	does	work.

Vary	DC1(Sc.thruster1.ThrustDirection1	=	0.4)

Vary	DC1(Sc.thruster1.ThrustDirection2	=	0.5)								

Command	Interactions

Target	command
A	Vary	command	only	occurs	within	a



Target	or	Optimize	sequence.

Optimize	command
A	Vary	command	only	occurs	within	a
Target	or	Optimize	sequence.

Achieve	command
The	Achieve	command,	used	as	part	of	a
Target	sequence,	specifies	the	desired
result	or	goal	(obtained	by	using	the	Vary
command	to	vary	the	control	variables).

NonlinearConstraint	command
The	NonlinearConstraint	command,	used
as	part	of	an	Optimize	sequence,	specifies
the	desired	result	or	goal	(obtained	by
using	the	Vary	command	to	vary	the
control	variables).

Minimize	command
The	Minimize	command,	used	as	part	of
an	Optimize	sequence,	specifies	the
desired	quantity	to	be	minimized	(obtained
by	using	the	Vary	command	to	vary	the
control	variables).



Examples
As	mentioned	above,	the	Vary	command	only	occurs	within	either	a	Target	or
an	Optimize	sequence.	See	the	Target	and	Optimize	command	help	for
examples	showing	the	use	of	the	Vary	command.



While
While	—	Execute	a	series	of	commands	repeatedly	while	a	condition	is	met



Script	Syntax
While	logical	expression

				[script	statement]

				…

EndWhile



Description
The	While	command	is	a	control	logic	statement	that	executes	a	series	of
commands	repeatedly	as	long	as	the	value	of	the	provided	logical	expression	is
true.	The	logical	expression	is	evaluated	before	every	iteration	of	the	loop.	If	the
expression	is	initially	false,	the	loop	is	never	executed.	The	syntax	of	the
expression	is	described	in	the	script	language	reference.

See	Also:	Script	Language,	For,	If



GUI

The	While	command	GUI	panel	features	a	table	in	which	you	can	build	a
complex	logical	expression.	The	rows	of	the	table	correspond	to	individual
relational	expressions	in	a	compound	logical	expression,	and	the	columns
correspond	to	individual	elements	of	those	expressions.	The	first	line
automatically	contains	a	default	statement:

While	DefaultSC.ElapsedDays	<	1.0

The	first	column	of	the	first	row	contains	a	placeholder	for	the	While	command
name.	This	cannot	be	changed.	The	first	column	of	each	additional	row	contains
the	logical	operator	(&,	|)	that	joins	the	expression	in	that	row	with	the	one
above	it.	To	select	a	logical	operator,	double-click	or	right-click	in	the
appropriate	box	in	the	table,	and	a	selection	window	will	appear.	Click	the
correct	operator	and	click	OK	to	select	it.



The	Left	Hand	Side	column	contains	the	left-hand	side	of	each	individual
relational	expression.	Double-click	the	cell	to	type	a	parameter	name.	To	set	this
value	from	a	parameter	selection	list	instead,	either	click	“…”	to	the	left	of	the
cell	you	want	to	set,	or	right-click	the	cell	itself.	A	ParameterSelectDialog
window	will	appear	that	allows	you	to	choose	a	parameter.



The	Condition	column	contains	the	conditional	operator	(==,	~=,	<,	etc.)	that
joins	the	left-hand	and	right-hand	sides	of	the	expression.	To	select	a	relational
operator,	double-click	or	right-click	in	the	appropriate	box	in	the	table,	and	a
selection	window	will	appear.	Click	the	correct	operator	and	click	OK	to	select
it.



Finally,	the	Right	Hand	Side	column	contains	the	right-hand	side	of	the
expression.	This	value	can	be	modified	the	same	way	as	the	Left	Hand	Side
column.

When	you	are	finished,	click	Apply	to	save	your	changes,	or	click	OK	to	save
your	changes	and	close	the	window.	The	command	will	be	validated	when	either
button	is	clicked.



Examples
Propagate	a	spacecraft	until	it	reaches	a	predefined	altitude,	reporting	data	at
each	periapsis	crossing:

Create	Spacecraft	aSat

aSat.SMA	=	6800

aSat.ECC	=	0

Create	ForceModel	aForceModel

aForceModel.Drag.AtmosphereModel	=	MSISE90

Create	Propagator	aProp

aProp.FM	=	aForceModel

Create	ReportFile	aReport

BeginMissionSequence

While	aSat.Altitude	>	300

				Propagate	aProp(aSat)	{aSat.Periapsis}

				Report	aReport	aSat.TAIGregorian	aSat.Altitude

EndWhile



Write
Write	—	Writes	data	to	one	or	more	of	the	following	three	destinations:	the
message	window,	the	log	file,	or	a	ReportFile	resource.



Script	Syntax
Write	ResourceList	[{	MessageWindow	=	true,	LogFile	=	false,		

																				Style	=	Concise,	ReportFile	=	myReport	}]



Description
The	Write	command	allows	you	to	selectively	write	information	to	GMAT
output	destinations	during	execution.	The	Write	command	can	aid	in	automated
QA	by	writing	data	to	the	GMAT	log	file	or	ReportFile	resource	for	an
independent	QA	systems	to	process,	or	to	write	data	to	the	message	window	to
aid	in	troubleshooting	and	debugging	script	configurations.	This	command	can
also	be	used	to	write	information	on	attached	resources	in	order	to	see	how
paramters	change	throughout	a	mission.



Options

Option Description

LogFile
Flag	to	specify	if	output	should	be	written	to	the	log	file

Accepted	Data	Types Boolean

Allowed	Values {True,	False}

Default	Value False

Required no

Interfaces GUI,	script

MessageWindow
Flag	to	specify	if	output	should	be	displayed	in	the
Message	Window

Accepted	Data	Types Boolean

Allowed	Values {True,	False}

Default	Value True



Required no

Interfaces GUI,	script

ReportFile
Name	of	ReportFile	resource	where	output	data	will	be
written	to.	If	this	field	is	not	set,	no	ReportFile	resource
will	be	written	to.	The	user	can	set	formatting	options	on	a
ReportFile	like	Precision	and	ColumnWidth.	When
writing	data	using	the	Write	command,	those	settings	are
not	used.

Accepted	Data
Types

ReportFile	resource

Allowed	Values Any	user-defined	ReportFile
resource

Default	Value None

Required no

Interfaces GUI,	script

ResourceList
A	list	of	one	or	more	GMAT	resources	and/or	resource
fields	whose	values	we	wish	to	output

Accepted	Data
Types

List	of	GMAT	resources	and/or
resource	fields



Allowed	Values Any	GMAT	resource	name	or
resource.field	name

Default	Value None

Required no

Interfaces GUI,	script

Style
Parameter	to	specify	format	of	output.	Concise	means	that,
where	appropriate,	output	will	be	values	only	and	will	not
contain	the	object	name.	The	exception	to	this	is	when	you
output	an	object	with	fields	such	as	a	Spacecraft.	In	this
case,	the	object	and	field	will	be	output.	Verbose	means
that	object	names	and	fields	will	always	be	output.	Script
means	that	script-parseable	(i.e.,	the	output,	when	pasted
into	an	existing	GMAT	script,	will	syntax	check)	output
will	be	generated

Accepted	Data	Types String

Allowed	Values {Concise,	Verbose,	Script}

Default	Value Concise

Required no



Interfaces GUI,	script



GUI
In	the	example	below,	the	value	of	myVar	would	be	written	to	the	message
window	only.



Examples
Below	are	some	sample	scripts	using	the	Write	command	with	the	output	shown
in	bold	font.

Create	ChemicalTank	ChemicalTank1

Create	Spacecraft	Sat

Create	String	myString1	myString2

Create	Variable	myVar

Create	Array	myArray[2,2]

myVar								=	3.1415

myString1				=	'This	is	my	string'

myArray(1,1)	=	1

myArray(2,2)	=	1

BeginMissionSequence

Write	ChemicalTank1	{Style	=		Script}

Create	ChemicalTank	ChemicalTank1;

GMAT	ChemicalTank1.AllowNegativeFuelMass	=	false;

GMAT	ChemicalTank1.FuelMass	=	756;

GMAT	ChemicalTank1.Pressure	=	1500;

GMAT	ChemicalTank1.Temperature	=	20;

GMAT	ChemicalTank1.RefTemperature	=	20;

GMAT	ChemicalTank1.Volume	=	0.75;

GMAT	ChemicalTank1.FuelDensity	=	1260;

GMAT	ChemicalTank1.PressureModel	=	PressureRegulated;

Write	Sat.X	Sat.VZ

7100



1

Write	myVar	myString1

3.1415

'This	is	my	string'

Write	myArray

1	0

0	1

Write	myArray(2,2)

1

myString2	=	sprintf('%10.7f',Sat.X)		

Write	myString2	{Style	=	Script}

Create	String	myString2;

myString2	=	'7100.0000000';

Write	myString2

'7100.0000000'

The	example	below	writes	out	a	report	that	can	be	read	into	a	GMAT	script	using
the	#Include	capability.

Create	Spacecraft	Sat;

Create	ReportFile	rf;

rf.Filename	=	'GMAT.script';

Create	Variable	myVar;

GMAT	myVar	=	11;

BeginMissionSequence;

Write	Sat	{Style	=	Script,	MessageWindow	=	false,	ReportFile	=	rf}

The	example	below	writes	out	parameters	for	the	fuel	tank	which	is	an	attached



resource	to	the	spacecraft	after	a	manuever	is	complete.	The	output	is	shown
below	the	script,	note	the	decrease	in	fuel	mass	was	written	using	the	Write
command	this	way.

Create	Spacecraft	Sat;

Create	ChemicalTank	ChemicalTank1;

GMAT	Sat.Tanks	=	{ChemicalTank1};

BeginMissionSequence;

Maneuver	ImpulsiveBurn1(Sat);

Propagate	DefaultProp(Sat)	{Sat.ElapsedSecs	=	12000};

Write	Sat.ChemicalTank1

ChemicalTank1.AllowNegativeFuelMass	=	true;

ChemicalTank1.FuelMass	=	386.9462121211856;

ChemicalTank1.Pressure	=	1500;

ChemicalTank1.Temperature	=	20;

ChemicalTank1.RefTemperature	=	20;

ChemicalTank1.Volume	=	0.75;

ChemicalTank1.FuelDensity	=	1260;

ChemicalTank1.PressureModel	=	'PressureRegulated';



System



Calculation	Parameters
Calculation	Parameters	—	Resource	properties	available	for	use	by	commands
and	output



Description
Parameters	are	named	resource	properties	that	can	be	used	to	obtain	data	for	use
by	Mission	Sequence	commands	or	by	output	resources.	Some	parameters,	such
as	the	Altitude	parameter	of	Spacecraft,	are	calculated	values	that	can	only	be
used	to	retrieve	data.	They	cannot	be	set	directly.	Others,	such	as	the	Element1
parameter	of	ImpulsiveBurn,	share	the	same	name	as	a	resource	field	and	can
be	used	both	to	set	data	and	retrieve	it.	Parameters	are	distinguished	from
resource	fields	by	their	extra	functionality:	fields	are	static	resource	properties
that	are	usually	set	in	initialization	(or	in	the	GUI	Resources	tree),	while
parameters	can	be	calculated	on	the	fly	and	used	in	plots,	reports,	and
mathematical	expressions.

Parameters	are	classified	as	one	of	four	types:	central-body-dependent
parameters,	coordinate-system-dependent	parameters,	attached-hardware
parameters,	and	standalone	parameters.	Standalone	parameters	are	the	simplest
type,	as	they	have	no	dependencies.	The	ElapsedSecs	parameter	of	Spacecraft
is	an	example	of	this;	it	is	simply	referenced	as	Spacecraft.ElapsedSecs.

Central-body-dependent	parameters,	as	the	name	suggests,	have	a	value	that	is
dependent	on	the	chosen	celestial	body.	The	Altitude	parameter	of	Spacecraft	is
an	example	of	this.	To	reference	this	parameter,	you	must	specify	a	central	body,
such	as	Spacecraft.Mars.Altitude.	Any	built-in	central	body	or	user-defined
Asteroid,	Comet,	Moon,	or	Planet	is	valid	as	a	dependency.

Likewise,	coordinate-system-dependent	parameters	have	a	value	that	is
dependent	on	the	chosen	coordinate	system.	The	DEC	parameter	of	Spacecraft
is	an	example	of	this.	To	reference	this	parameter,	you	must	specify	the	name	of
a	CoordinateSystem	resource,	such	as	Spacecraft.EarthFixed.DEC.	Any
default	or	user-defined	CoordinateSystem	resource	is	valid	as	a	dependency.

If	a	dependency	is	used	when	retrieving	the	value	of	the	parameter,	as	in	the
following	line,	the	value	of	Altitude	is	calculated	at	Mars	before	setting	it	to	the
variable	x.	If	the	dependency	is	omitted,	Earth	and	EarthMJ2000Eq	are
assumed	unless	noted	otherwise.

x	=	DefaultSC.Mars.Altitude



If	a	dependency	is	used	when	setting	the	value	of	a	parameter,	the	value	of	the
parameter	is	first	converted	based	on	the	value	of	the	dependency,	then	the	value
is	set.	For	example,	in	the	following	line,	the	value	of	SMA	is	first	calculated	at
Mars,	then	it	is	set	to	the	value	10000	in	that	context.	If	the	dependency	is
omitted	when	setting	the	value,	the	default	is	assumed	to	be	the	central	body	or
coordinate	system	of	the	parent	resource	(in	this	case,	DefaultSC).

DefaultSC.Mars.SMA	=	10000

Attached-hardware	parameters	have	no	dependencies,	but	are	themselves
dependent	on	being	attached	to	a	Spacecraft.	ChemicalTank	and
ChemicalThruster	parameters	are	examples	of	this.	The	FuelMass	parameter
of	ChemicalTank	cannot	be	referenced	without	first	attaching	the
ChemicalTank	to	a	Spacecraft.	Then,	the	parameter	can	be	referenced	as:
Spacecraft.FuelTank.FuelMass.

The	individual	parameters	are	resource-specific,	and	are	documented	in	the
tables	below.	The	GUI	has	a	parameter	selection	interface	that	is	common	to	all
parameters.	This	interface	is	documented	in	GUI,	below.

See	Also:	Array,	ChemicalTank,	ImpulsiveBurn,	FiniteBurn,	Spacecraft,	String,
ChemicalThruster,	Variable



GUI
Parameters	can	be	used	as	input	in	several	places	throughout	GMAT,	such	as	the
ReportFile	and	XYPlot	resources	and	the	If/Else,	Propagate,	and	Report
commands.	In	the	GUI,	all	of	these	use	a	common	interface	called	the
ParameterSelectDialog	that	allows	for	interactive	parameter	selection.	A	basic
ParameterSelectDialog	window	looks	like	the	following:

The	ParameterSelectDialog	window	is	used	to	build	a	parameter,	along	with
any	dependencies,	for	use	in	a	command	or	resource.	Some	resources	and
commands	have	different	requirements	for	the	types	of	parameters	that	can	be
used,	so	the	ParameterSelectDialog	can	take	slightly	different	forms,	depending
on	where	it's	used.	This	section	will	describe	the	generic	interface,	then	mention
any	resource-	or	command-specific	exceptions.

General	Usage

The	first	step	in	choosing	a	parameter	is	to	select	the	object	(or	resource)	type



from	the	Object	Type	list	in	the	upper	left.	Seven	types	can	appear	in	this	list:
Spacecraft,	SpacePoint,	ImpulsiveBurn,	FiniteBurn,	Variable,	Array,	and
String.

Once	you've	selected	a	type,	The	Object	List	box	is	populated	with	all	existing
resources	of	that	type.	Use	this	list	to	choose	the	specific	resource	you'd	like	to
reference.

If	the	Spacecraft	type	is	selected,	the	Attached	Hardware	List	appears	below
the	Object	List.	This	list	displays	any	hardware	(such	as	ChemicalTank	or
ChemicalThruster	resources)	attached	to	the	selected	Spacecraft.	If	the	Array
type	is	selected,	Row	and	Col	boxes	appear.	Use	these	to	specify	a	row	and
column	to	select	an	individual	array	element,	or	check	Select	Entire	Object	to
choose	the	entire	array.

Once	a	resource	is	selected,	the	Object	Properties	list	is	populated	with	all
available	parameters	provided	by	that	resource.	Some	resources,	such	as
instances	of	Variable	or	Array,	are	themselves	parameters,	so	this	list	remains
empty.

Parameters	with	different	dependency	types	are	commingled	in	the	Object
Properties	list.	When	you	select	one,	the	appropriate	dependency	(if	any)
appears	below	the	list.	For	example,	after	selecting	the	Spacecraft	AOP
parameter,	a	CoordinateSystem	list	appears.	After	selecting	the	Spacecraft
Apoapsis	parameter,	a	Central	Body	list	appears.	And	after	selecting	the
Spacecraft	Cd	parameter,	no	dependency	list	appears.	To	select	a	range	of
parameters	from	the	Object	Properties	list,	hold	down	the	Shift	key	while
selecting	the	second	endpoint	of	the	range.	To	select	multiple	individual
parameters,	hold	down	the	Ctrl	key	while	making	each	selection.

To	select	a	parameter,	select	the	appropriate	Object	Type,	the	specific	resource
from	the	Object	List	or	Attached	Hardware	List,	the	desired	parameter	from
the	Object	Properties	list,	and	the	required	dependency,	and	add	it	to	the
Selected	Value(s)	list	on	the	right.	There	are	six	buttons	available	to	control	this
list:

UP:	Move	the	selected	item	in	the	Selected	Value(s)	list	up	one	position	(if
allowed).

DN:	Move	the	selected	item	in	the	Selected	Value(s)	list	down	one	position



(if	allowed).

->:	Add	the	selected	item	in	the	Object	Properties	list	to	the	Selected
Value(s)	list.

<-:	Remove	the	selected	item	in	the	Selected	Value(s)	list.

=>:	Add	all	items	to	the	Selected	Value(s)	list.

<=:	Remove	all	items	from	the	Selected	Value(s)	list.

When	finished,	the	Selected	Value(s)	list	contains	the	final	selected	parameters.
Click	OK	to	accept	the	selection.

The	ordering	of	the	Selected	Value(s)	list	is	significant	in	certain	circumstances
(such	as	in	the	Add	field	of	ReportFile),	but	not	in	others.	See	the
documentation	for	each	resource	or	command	for	details.

Special	Considerations

Some	resources	and	commands	(such	as	the	Propagate	command	Parameter
argument)	only	accept	a	single	parameter	as	input;	in	this	context	the
ParameterSelectDialog	only	allows	one	parameter	in	the	Selected	Value(s)	list
and	does	not	allow	use	of	the	UP,	DN,	and	=>	buttons.

In	some	instances	(such	as	in	the	Vary	command),	only	parameters	that	are	also
fields	(and	so	can	be	set	in	the	Mission	Sequence)	can	be	used.	In	this	case	only
the	allowed	parameters	will	be	shown	in	the	Object	Properties	list.

In	the	Propagate	command	Parameter	argument,	only	parameters	of
Spacecraft	can	be	used.	In	this	case	only	Spacecraft	will	be	shown	in	the
Object	Type	list.



Parameters

Spacecraft

Parameter Settable Plottable Description

A1Gregorian Y N
Spacecraft	epoch	in	the	A.1	system
and	the	Gregorian	format.

Data	Type String

Dependency (None)

Units (N/A)

A1ModJulian Y Y
Spacecraft	epoch	in	the	A.1	system
and	the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

Acceleration N Y
The	total	acceleration	with	respect	to
the	inertial	system	computed	using
the	ForceModel	selected	for	the



dependency.

Data	Type Real

Dependency ForceModel

Units km/s^2

AccelerationX N Y
The	x-component	of	acceleration	with
respect	to	the	inertial	system
computed	using	the	ForceModel
selected	for	the	dependency.

Data	Type Real

Dependency ForceModel

Units km/s^2

AccelerationY N Y
The	y-component	of	acceleration	with
respect	to	the	inertial	system
computed	using	the	ForceModel
selected	for	the	dependency.

Data	Type Real

Dependency ForceModel



Units km/s^2

AccelerationZ N Y
The	z-component	of	acceleration	with
respect	to	the	inertial	system
computed	using	the	ForceModel
selected	for	the	dependency.

Data	Type String

Dependency ForceModel

Units km/s^2

AltEquinoctialP Y Y
See	Spacecraft.AltEquinoctialP

Data	Type Real

Dependency CoordinateSystem

Units (None)

AltEquinoctialQ Y Y
See	Spacecraft.AltEquinoctialQ

Data	Type Real



Dependency CoordinateSystem

Units (None)

Altitude N Y
Distance	to	the	plane	tangent	to	the
surface	of	the	specified	celestial	body
at	the	sub-satellite	point.	GMAT
assumes	the	body	is	an	ellipsoid.

Data	Type Real

Dependency CelestialBody

Units km

AngularVelocityX Y Y
See	Spacecraft.AngularVelocityX

Data	Type Real

Dependency (None)

Units deg/s

AngularVelocityY Y Y
See	Spacecraft.AngularVelocityY



Data	Type Real

Dependency (None)

Units deg/s

AngularVelocityZ Y Y
See	Spacecraft.AngularVelocityZ

Data	Type Real

Dependency (None)

Units deg/s

AOP Y Y
See	Spacecraft.AOP

Data	Type Real

Dependency CoordinateSystem

Output	Range 0°	≤	AOP	<	360°

Units deg

Apoapsis N Y



A	parameter	that	equals	zero	when
the	spacecraft	is	at	orbit	apoapsis.
This	parameter	can	only	be	used	as	a
stopping	condition	in	the	Propagate
command.

Data	Type Real

Dependency CelestialBody

Units (None)

AtmosDensity N Y
The	atmospheric	density	at	the
current	Spacecraft	epoch	and
location	computed	using	the
ForceModel	selected	for	the
dependency.

Data	Type String

Dependency ForceModel

Units kg/km^3

AZI Y Y
See	Spacecraft.AZI

Data	Type Real



Dependency CoordinateSystem

Output	Range -180°	≤	AZI	≤	180°

Units deg

BdotR N Y
B-plane	B·R	magnitude.

GMAT	computes	the	B-plane
coordinates	in	the	coordinate	system
specified	in	the	dependency.	In	many
implementations,	the	B-plane
coordinates	are	computed	in	a
pseudo-rotating	coordinate	system
where	the	ω×r	term	is	not	applied
when	transforming	velocity	vectors.
GMAT	does	apply	the	ω×r	term	in	the
velocity	transformation.	When
computing	B-plane	coordinates	in
inertial	systems,	this	term	is
identically	zero.	For	rotating	systems
such	as	the	Sun-Earth	body-body
rotating	system,	the	effect	of
including	ω×r	is	small	but	noticeable
when	comparing	results	between
systems.	When	the	rotation	of	the
selected	coordinate	system	is	"fast",
the	values	may	differ	significantly.

Data	Type Real

Dependency CoordinateSystem



Units km

BdotT N Y
B-plane	B·T	magnitude.	See	the
BdotR	parameter	for	notes	on	this
calculation.

Data	Type Real

Dependency CoordinateSystem

Units km

BetaAngle N Y
Beta	angle	(or	phase	angle)	between
the	orbit	normal	vector	and	the	vector
from	the	celestial	body	to	the	sun.

Data	Type Real

Dependency CelestialBody

Output
Range

-90°	≤	BetaAngle	≤
90°

Units deg

BrouwerLongAOP Y Y



See	Spacecraft.BrouwerLongAOP

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤
BrouwerLongAOP	≤
360°

Units deg

BrouwerLongECC Y Y
See	Spacecraft.BrouwerLongECC

Data	Type Real

Dependency CoordinateSystem

Units (None)

BrouwerLongINC Y Y
See	Spacecraft.BrouwerLongINC.

Data	Type Real

Dependency CoordinateSystem



Output
Range

0°	≤
BrouwerLongINC	≤
180°

Units deg

BrouwerLongMA Y Y
See	Spacecraft.BrouwerLongMA.

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤
BrouwerLongMA	≤
360°

Units deg

BrouwerLongRAAN Y Y
See
Spacecraft.BrouwerLongRAAN.

Data	Type Real

Dependency CoordinateSystem

Output 0°	≤



Range BrouwerLongRAAN
≤	360°

Units deg

BrouwerLongSMA Y Y
See	Spacecraft.BrouwerLongSMA

Data	Type Real

Dependency CoordinateSystem

Units km

BrouwerShortAOP Y Y
See	Spacecraft.BrouwerShortAOP

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤
BrouwerShortAOP
≤	360°

Units deg

BrouwerShortECC Y Y



See	Spacecraft.BrouwerShortECC

Data	Type Real

Dependency CoordinateSystem

Units (None)

BrouwerShortINC Y Y
See	Spacecraft.BrouwerShortINC

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤
BrouwerShortINC	≤
180°

Units deg

BrouwerShortMA Y Y
See	Spacecraft.BrouwerShortMA.

Data	Type Real

Dependency CoordinateSystem



Output
Range

0°	≤
BrouwerShortMA	≤
360°

Units deg

BrouwerShortRAAN Y Y
See
Spacecraft.BrouwerShortRAAN.

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤
BrouwerShortRAAN
≤	360°

Units deg

BrouwerShortSMA Y Y
See	Spacecraft.BrouwerShortSMA

Data	Type Real

Dependency CoordinateSystem

Units km



BVectorAngle N Y
B-plane	angle	between	the	B	vector
and	the	T	unit	vector.	See	the	BdotR
parameter	for	notes	on	this
calculation.

Data	Type Real

Dependency CoordinateSystem

Output
Range

-180°	≤
BVectorAngle	≤	180°

Units deg

BVectorMag N Y
B-plane	B	vector	magnitude.	See	the
BdotR	parameter	for	notes	on	this
calculation.

Data	Type Real

Dependency CoordinateSystem

Units km

C3Energy N Y
C3	(characteristic)	energy.



Data	Type Real

Dependency CelestialBody

Units MJ/kg	(km2/s2)

Cd Y Y
See	Spacecraft.Cd

Data	Type Real

Dependency (None)

Units (None)

Cr Y Y
See	Spacecraft.Cr

Data	Type Real

Dependency (None)

Units (None)

CurrA1MJD Y Y
Deprecated.	Spacecraft	epoch	in	the
A.1	system	and	the	Modified	Julian
format.



Data	Type Real

Dependency (None)

Units d

DCM11 Y Y
See	Spacecraft.DCM11

Data	Type Real

Dependency (None)

Units (None)

DCM12 Y Y
See	Spacecraft.DCM12

Data	Type Real

Dependency (None)

Units (None)

DCM13 Y Y
See	Spacecraft.DCM13



Data	Type Real

Dependency (None)

Units (None)

DCM21 Y Y
See	Spacecraft.DCM21

Data	Type Real

Dependency (None)

Units (None)

DCM22 Y Y
See	Spacecraft.DCM22

Data	Type Real

Dependency (None)

Units (None)

DCM23 Y Y
See	Spacecraft.DCM23



Data	Type Real

Dependency (None)

Units (None)

DCM31 Y Y
See	Spacecraft.DCM31

Data	Type Real

Dependency (None)

Units (None)

DCM32 Y Y
See	Spacecraft.DCM32

Data	Type Real

Dependency (None)

Units (None)

DCM33 Y Y
See	Spacecraft.DCM33



Data	Type Real

Dependency (None)

Units (None)

DEC Y Y
See	Spacecraft.DEC

Data	Type Real

Dependency CoordinateSystem

Output	Range -90°	≤	DEC	≤	90°

Units deg

DECV Y Y
See	Spacecraft.DECV

Data	Type Real

Dependency CoordinateSystem

Output	Range -90°	≤	DECV	≤	90°



Units deg

Delaunayg Y Y
See	Spacecraft.Delaunayg.

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	Delaunayg	<
360°

Units deg

DelaunayG Y Y
See	Spacecraft.DelaunayG.

Data	Type Real

Dependency CoordinateSystem

Units km2/s

Delaunayh Y Y
See	Spacecraft.Delaunayh.

Data	Type Real



Dependency CoordinateSystem

Output
Range

0°	≤	Delaunayh	<
360°

Units deg

DelaunayH Y Y
See	Spacecraft.DelaunayH.

Data	Type Real

Dependency CoordinateSystem

Units km2/s

Delaunayl Y Y
See	Spacecraft.Delaunayl.

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	Delaunayl	<
360°

Units deg



DelaunayL Y Y
See	Spacecraft.DelaunayL.

Data	Type Real

Dependency CoordinateSystem

Units km2/s

DLA N Y
Declination	of	the	outgoing
hyperbolic	asymptote.

Data	Type Real

Dependency CoordinateSystem

Output	Range -90°	≤	DLA	≤	90°

Units deg

DragArea Y Y
See	Spacecraft.DragArea

Data	Type Real

Dependency (None)



Units m2

DryMass Y Y
See	Spacecraft.DryMass

Data	Type Real

Dependency (None)

Units kg

EA N Y
Eccentric	anomaly.

Data	Type Real

Dependency CelestialBody

Output	Range 0°	≤	EA	<	360°

Units deg

ECC Y Y
See	Spacecraft.ECC

Data	Type Real



Dependency CelestialBody

Output	Range

Units (None)

ElapsedDays N Y
See	Spacecraft.ElapsedDays

Data	Type Real

Dependency (None)

Units d

ElapsedSecs N Y
See	Spacecraft.ElapsedSecs

Data	Type Real

Dependency (None)

Units s

Energy N Y
Specific	orbital	energy.



Data	Type Real

Dependency CelestialBody

Units MJ/kg	(km2/s2)

EquinoctialH Y Y
See	Spacecraft.EquinoctialH

Data	Type Real

Dependency CoordinateSystem

Units (None)

EquinoctialK Y Y
See	Spacecraft.EquinoctialK

Data	Type Real

Dependency CoordinateSystem

Units (None)

EquinoctialP Y Y
See	Spacecraft.EquinoctialP



Data	Type Real

Dependency CoordinateSystem

Units (None)

EquinoctialQ Y Y
See	Spacecraft.EquinoctialQ

Data	Type Real

Dependency CoordinateSystem

Units (None)

EulerAngle1 Y Y
See	Spacecraft.EulerAngle1

Data	Type Real

Dependency (None)

Output
Range

0°	≤	EulerAngle1	<
360°

Units deg



EulerAngle2 Y Y See	Spacecraft.EulerAngle2

Data	Type Real

Dependency (None)

Output
Range

0°	≤	EulerAngle2	<
360°

Units deg

EulerAngle3 Y Y
See	Spacecraft.EulerAngle3

Data	Type Real

Dependency (None)

Output
Range

0°	≤	EulerAngle3	<
360°

Units deg

EulerAngleRate1 Y Y
See	Spacecraft.EulerAngleRate1

Data	Type Real



Dependency (None)

Units deg/s

EulerAngleRate2 Y Y
See	Spacecraft.EulerAngleRate2

Data	Type Real

Dependency (None)

Units deg/s

EulerAngleRate3 Y Y
See	Spacecraft.EulerAngleRate3

Data	Type Real

Dependency (None)

Units deg/s

FPA Y Y
See	Spacecraft.FPA

Data	Type Real



Dependency CoordinateSystem

Output	Range 0°	≤	FPA	≤	180°

Units deg

HA N Y
Hyperbolic	anomaly.

Data	Type Real

Dependency CelestialBody

Output	Range -∞	<	HA	<	∞

Units deg

HMAG N Y
Magnitude	of	the	angular	momentum
vector.

Data	Type Real

Dependency CelestialBody

Units km2/s



HX N Y
X	component	of	the	angular
momentum	vector.

Data	Type Real

Dependency CoordinateSystem

Units km2/s

HY N Y
Y	component	of	the	angular
momentum	vector.

Data	Type Real

Dependency CoordinateSystem

Units km2/s

HZ N Y
Z	component	of	the	angular
momentum	vector.

Data	Type Real

Dependency CoordinateSystem



Units km2/s

INC Y Y
See	Spacecraft.INC

Data	Type Real

Dependency CoordinateSystem

Output	Range 0°	≤	INC	≤	180°

Units deg

IncomingBVAZI Y Y
See	Spacecraft.IncomingBVAZI

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	IncomingBVAZI
<	360°

Units deg

IncomingC3Energy Y Y
See	Spacecraft.IncomingC3Energy



Data	Type Real

Dependency CelestialBody

Units MJ/kg	(km2/s2)

IncomingDHA Y Y
See	Spacecraft.IncomingDHA

Data	Type Real

Dependency CoordinateSystem

Output
Range

-90°	≤
IncomingDHA	≤	90°

Units deg

IncomingRadPer Y Y
See	Spacecraft.IncomingRadPer

Data	Type Real

Dependency CelestialBody

Units km



IncomingRHA Y Y See	Spacecraft.IncomingRHA

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	IncomingRHA	<
360°

Units deg

Latitude N Y
Planetodetic	latitude.

Data	Type Real

Dependency CelestialBody

Output
Range

-90°	≤	Latitude	≤
90°

Units deg

Longitude N Y
Planetodetic	longitude.

Data	Type Real



Dependency CelestialBody

Output
Range

-180°	≤	Longitude	≤
180°

Units deg

LST N Y
Local	sidereal	time	of	the	spacecraft
from	the	celestial	body's	inertial	x-
axis.

Data	Type Real

Dependency CelestialBody

Output	Range 0°	≤	LST	<	360°

Units deg

MA N Y
Mean	anomaly.

Data	Type Real

Dependency CelestialBody



Output	Range 0°	≤	MA	<	360°

Units deg

MHA N Y
Angle	between	celestial	body's	body-
fixed	and	inertial	axes.	For	Earth,	this
is	the	Greenwich	Hour	Angle.

Data	Type Real

Dependency CelestialBody

Output	Range 0°	≤	MHA	<	360°

Units deg

MLONG Y Y
See	Spacecraft.MLONG

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	MLONG	<
360°



Units deg

MM N Y
Mean	motion.

Data	Type Real

Dependency CelestialBody

Output	Range

Units rad/s

ModEquinoctialF Y Y
See	Spacecraft.ModEquinoctialF

Data	Type Real

Dependency CoordinateSystem

Units (None)

ModEquinoctialG Y Y
See	Spacecraft.ModEquinoctialG

Data	Type Real



Dependency CoordinateSystem

Units (None)

ModEquinoctialH Y Y
See	Spacecraft.ModEquinoctialH

Data	Type Real

Dependency CoordinateSystem

Units (None)

ModEquinoctialK Y Y
See	Spacecraft.ModEquinoctialK

Data	Type Real

Dependency CoordinateSystem

Units (None)

MRP1 Y Y
See	Spacecraft.MRP1

Data	Type Real



Dependency (None)

Units (None)

MRP2 Y Y
See	Spacecraft.MRP2

Data	Type Real

Dependency (None)

Units (None)

MRP3 Y Y
See	Spacecraft.MRP3

Data	Type Real

Dependency (None)

Units (None)

OrbitPeriod N Y
Osculating	orbit	period.

Data	Type Real



Dependency CelestialBody

Units s

OrbitSTM N N
State	transition	matrix	with	respect	to
the	origin-independent	MJ2000Eq
axes.

Data	Type Array	(6×6)

Dependency (None)

Units (None)

OrbitSTMA N N
Upper-left	quadrant	of	the	state
transition	matrix,	with	respect	to	the
origin-independent	MJ2000Eq	axes.

Data	Type Array	(3×3)

Dependency (None)

Units (None)

OrbitSTMB N N
Upper-right	quadrant	of	the	state
transition	matrix,	with	respect	to	the
origin-independent	MJ2000Eq	axes.



Data	Type Array	(3×3)

Dependency (None)

Units (None)

OrbitSTMC N N
Lower-left	quadrant	of	the	state
transition	matrix,	with	respect	to	the
origin-independent	MJ2000Eq	axes.

Data	Type Array	(3×3)

Dependency (None)

Units (None)

OrbitSTMD N N
Lower-right	quadrant	of	the	state
transition	matrix,	with	respect	to	the
origin-independent	MJ2000Eq	axes.

Data	Type Array	(3×3)

Dependency (None)

Units (None)



OutgoingBVAZI Y Y
See	Spacecraft.OutgoingBVAZI

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	OutgoingBVAZI
<	360°

Units deg

OutgoingC3Energy Y Y
See	Spacecraft.OutgoingC3Energy

Data	Type Real

Dependency CelestialBody

Units MJ/kg	(km2/s2)

OutgoingDHA Y Y
See	Spacecraft.OutgoingDHA

Data	Type Real

Dependency CoordinateSystem



Output
Range

-90°	≤	OutgoingRHA
≤	90°

Units deg

OutgoingRadPer Y Y
See	Spacecraft.OutgoingRadPer

Data	Type Real

Dependency CelestialBody

Units km

OutgoingRHA Y Y
See	Spacecraft.OutgoingRHA

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	OutgoingRHA	<
360°

Units deg



Periapsis N Y A	parameter	that	equals	zero	when
the	spacecraft	is	at	orbit	periapsis.
This	parameter	can	only	be	used	as	a
stopping	condition	in	the	Propagate
command.

Data	Type Real

Dependency CelestialBody

Units (None)

PlanetodeticAZI Y Y
See	Spacecraft.PlanetodeticAZI.
This	parameter	must	be	used	with	a
CoordinateSystem	with	BodyFixed
axes.

Data	Type Real

Dependency CoordinateSystem
(with	BodyFixed
axes)

Output
Range

-180°	≤
PlanetodeticAZI	≤
180°

Units deg



PlanetodeticHFPA Y Y
See	Spacecraft.PlanetodeticHFPA
This	parameter	must	be	used	with	a
CoordinateSystem	with	BodyFixed
axes.

Data	Type Real

Dependency CoordinateSystem
(with	BodyFixed
axes)

Output
Range

-90°	≤
PlanetodeticHFPA	≤
90°

Units deg

PlanetodeticLAT Y Y
See	Spacecraft.PlanetodeticLAT.
This	parameter	must	be	used	with	a
CoordinateSystem	with	BodyFixed
axes.

Data	Type Real

Dependency CoordinateSystem
(with	BodyFixed
axes)



Output
Range

-180°	≤
PlanetodeticLAT	≤
180°

Units deg

PlanetodeticLON Y Y
See	Spacecraft.PlanetodeticLON.
This	parameter	must	be	used	with	a
CoordinateSystem	with	BodyFixed
axes.

Data	Type Real

Dependency CoordinateSystem
(with	BodyFixed
axes)

Output
Range

-180°	≤
PlanetodeticLON	≤
180°

Units deg

PlanetodeticRMAG Y Y
See	Spacecraft.PlanetodeticRMAG
This	parameter	must	be	used	with	a
CoordinateSystem	with	BodyFixed
axes.

Data	Type Real



Dependency CoordinateSystem
(with	BodyFixed
axes)

Units km

PlanetodeticVMAG Y Y
See	Spacecraft.PlanetodeticVMAG
This	parameter	must	be	used	with	a
CoordinateSystem	with	BodyFixed
axes.

Data	Type Real

Dependency CoordinateSystem
(with	BodyFixed
axes)

Units km/s

Q1 N Y
See	Spacecraft.Q1

Data	Type Real

Dependency (None)

Units (None)



Q2 N Y
See	Spacecraft.Q2

Data	Type Real

Dependency (None)

Units (None)

Q3 N Y
See	Spacecraft.Q3

Data	Type Real

Dependency (None)

Units (None)

Q4 N Y
See	Spacecraft.Q4

Data	Type Real

Dependency (None)

Units (None)



Quaternion Y N Attitude	quaternion.

Data	Type Array	(1×4)

Dependency (None)

Units (None)

RA Y Y
See	Spacecraft.RA

Data	Type Real

Dependency CoordinateSystem

Output	Range -180°	≤	RA	≤	180°

Units deg

RAAN Y Y
See	Spacecraft.RAAN

Data	Type Real

Dependency CoordinateSystem



Output	Range 0°	≤	RAAN	<	360°

Units deg

RadApo Y Y
See	Spacecraft.RadApo

Data	Type Real

Dependency CelestialBody

Units km

RadPer Y Y
See	Spacecraft.RadPer

Data	Type Real

Dependency CelestialBody

Units km

RAV Y Y
See	Spacecraft.RAV

Data	Type Real



Dependency CoordinateSystem

Output
Range

-180°	≤	RAV	≤
180°

Units deg

RLA N Y
Right	ascension	of	the	outgoing
hyperbolic	asymptote.

Data	Type Real

Dependency CoordinateSystem

Output
Range

-180°	≤	RLA	≤
180°

Units deg

RMAG Y Y
See	Spacecraft.RMAG

Data	Type Real

Dependency CelestialBody

Units km



SemilatusRectum Y Y
See	Spacecraft.SemilatusRectum

Data	Type Real

Dependency CelestialBody

Units km

SemilatusRectum N Y
Semilatus	rectum	of	the	osculating
orbit.

Data	Type Real

Dependency CelestialBody

Units km

SMA Y Y
See	Spacecraft.SMA

Data	Type Real

Dependency CelestialBody

Units km



SRPArea Y Y
See	Spacecraft.SRPArea

Data	Type Real

Dependency (None)

Units m2

TA Y Y
See	Spacecraft.TA.

Data	Type Real

Dependency CelestialBody

Output	Range 0°	≤	TA	<	360°

Units deg

TAIGregorian Y N
Spacecraft	epoch	in	the	TAI	system
and	the	Gregorian	format.

Data	Type String



Dependency (None)

Units (N/A)

TAIModJulian Y Y
Spacecraft	epoch	in	the	TAI	system
and	the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

TDBGregorian Y N
Spacecraft	epoch	in	the	TDB	system
and	the	Gregorian	format.

Data	Type String

Dependency (None)

Units (N/A)

TDBModJulian Y Y
Spacecraft	epoch	in	the	TDB	system
and	the	Modified	Julian	format.

Data	Type Real



Dependency (None)

Units d

TLONG Y Y
See	Spacecraft.TLONG

Data	Type Real

Dependency CoordinateSystem

Output
Range

0°	≤	TLONG	<
360°

Units deg

TotalMass N Y
Total	mass,	including	fuel	mass	from
attached	ChemicalTank	resources.

Data	Type Real

Dependency (None)

Units kg



TTGregorian Y N Spacecraft	epoch	in	the	TT	system
and	the	Gregorian	format.

Data	Type String

Dependency (None)

Units (N/A)

TTModJulian Y Y
Spacecraft	epoch	in	the	TT	system
and	the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

UTCGregorian Y N
Spacecraft	epoch	in	the	UTC	system
and	the	Gregorian	format.

Data	Type String

Dependency (None)



Units (N/A)

UTCModJulian Y Y
Spacecraft	epoch	in	the	UTC	system
and	the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

VelApoapsis N Y
Scalar	velocity	at	apoapsis.

Data	Type Real

Dependency CelestialBody

Units km/s

VelPeriapsis N Y
Scalar	velocity	at	periapsis.

Data	Type Real

Dependency CelestialBody



Units km/s

VMAG Y Y
See	Spacecraft.VMAG

Data	Type Real

Dependency CoordinateSystem

Output	Range

Units km/s

VX Y Y
See	Spacecraft.VX

Data	Type Real

Dependency CoordinateSystem

Units km/s

VY Y Y
See	Spacecraft.VY

Data	Type Real



Dependency CoordinateSystem

Units km/s

VZ Y Y
See	Spacecraft.VZ

Data	Type Real

Dependency CoordinateSystem

Units km/s

X Y Y
See	Spacecraft.X

Data	Type Real

Dependency CoordinateSystem

Units km

Y Y Y
See	Spacecraft.Y

Data	Type Real



Dependency CoordinateSystem

Units km

Z Y Y
See	Spacecraft.Z

Data	Type Real

Dependency CoordinateSystem

Units km

FuelTank

ChemicalTank	parameters	are	accessible	only	after	attaching	the
ChemicalTank	resource	to	a	Spacecraft,	like	so:

Create	FuelTank	aTank

Create	Spacecraft	aSat

aSat.Tanks	=	{aTank}

Then,	ChemicalTank	parameters	are	accessible	by	specifying	the
ChemicalTank	name	as	the	parameter	dependency:

Create	ReportFile	aReport

aReport.Add	=	{aSat.aTank.FuelMass}

Parameter Settable Plottable Description

FuelDensity Y Y
See	ChemicalTank.FuelDensity



Data	Type Real

Dependency (None)

Units kg/m3

FuelMass Y Y
See	ChemicalTank.FuelMass

Data	Type Real

Dependency (None)

Units kg

Pressure Y Y
See	ChemicalTank.Pressure

Data	Type Real

Dependency (None)

Units kPa

RefTemperature Y Y
See	ChemicalTank.RefTemperature



Data	Type Real

Dependency (None)

Units °C

Temperature Y Y
See	ChemicalTank.Temperature

Data	Type Real

Dependency (None)

Units °C

Volume Y Y
See	ChemicalTank.Volume

Data	Type Real

Dependency (None)

Units m3

Space	Point	Parameters

All	Resources	that	have	coordinates	in	space	have	Cartesian	position	and



velocity	parameters,	so	you	can	access	ephemeris	information.	This	includes	all
built-in	solar	system	bodies	and	other	Resources	such	as	CelestialBody,Planet,
Moon,	Asteroid,	Comet,	Barycenter,	LibrationPoint,	and	GroundStation	:

CelestialBody.CoordinateSystem.X

CelestialBody.CoordinateSystem.Y

CelestialBody.CoordinateSystem.Z

CelestialBody.CoordinateSystem.VX

CelestialBody.CoordinateSystem.VY

CelestialBody.CoordinateSystem.VZ

Warning

Note	that	to	use	these	parameters,	you	must	first	set	the	epoch
of	the	Resource	to	the	desired	epoch	at	which	you	want	the
data.	Additionally,	the	epoch	should	be	set	after	the
BeginMissionSequence	Command.	See	the	following
example.

Create	ReportFile	rf

BeginMissionSequence

Luna.Epoch.A1ModJulian	=	21545

Report	rf	Luna.EarthMJ2000Eq.X	Luna.EarthMJ2000Eq.Y	Luna.EarthMJ2000Eq.Z	...

							Luna.EarthMJ2000Eq.VX	Luna.EarthMJ2000Eq.VY	Luna.EarthMJ2000Eq.VZ

Note

Spacecraft	parameters	are	treated	slightly	different	than	Space
Point	parameters	primarly	because	Spacecraft	Cartesian	state
parameters	are	settable,	and	all	other	Space	Point	Cartesian



parameters	are	only	gettable.	When	requesting	state
information	for	Space	Points	other	than	Spacecraft,	the
coordinates	are	computed	based	on	the	model	configured	for
that	Resource.	Additionally,	not	all	epoch	configuration	options
supported	for	Spacecraft	are	supported	for	Space	Points	(i.e.
Epoch	and	DateFormat).

Parameter Settable Plottable Description

A1Gregorian Y N
Resource	epoch	in	the	A.1	system	and
the	Gregorian	format.

Data	Type String

Dependency (None)

Units (N/A)

A1ModJulian Y Y
Resource	epoch	in	the	A.1	system	and
the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

TAIGregorian Y N
Resource	epoch	in	the	TAI	system	and
the	Gregorian	format.



Data	Type String

Dependency (None)

Units (N/A)

TAIModJulian Y Y
Resource	epoch	in	the	TAI	system	and
the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

TDBGregorian Y N
Resource	epoch	in	the	TDB	system
and	the	Gregorian	format.

Data	Type String

Dependency (None)

Units (N/A)

TDBModJulian Y Y



Resource	epoch	in	the	TDB	system
and	the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

TTGregorian Y N
Resource	epoch	in	the	TT	system	and
the	Gregorian	format.

Data	Type String

Dependency (None)

Units (N/A)

TTModJulian Y Y
Resource	epoch	in	the	TT	system	and
the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d



UTCGregorian Y N
Resource	epoch	in	the	UTC	system
and	the	Gregorian	format.

Data	Type String

Dependency (None)

Units (N/A)

UTCModJulian Y Y
Resource	epoch	in	the	UTC	system
and	the	Modified	Julian	format.

Data	Type Real

Dependency (None)

Units d

VX N Y
The	x-component	of	velocity	with
respect	to	the	CoordinateSystem
chosen	as	the	dependency.	When	no
dependency	is	selected,
EarthMJ2000Eq	is	used.

Data	Type Real



Dependency CoordinateSystem

Units km/s

VY N Y
The	y-component	of	velocity	with
respect	to	the	CoordinateSystem
chosen	as	the	dependency.	When	no
dependency	is	selected,
EarthMJ2000Eq	is	used.

Data	Type Real

Dependency CoordinateSystem

Units km/s

VZ N Y
The	z-component	of	velocity	with
respect	to	the	CoordinateSystem
chosen	as	the	dependency.	When	no
dependency	is	selected,
EarthMJ2000Eq	is	used.

Data	Type Real

Dependency CoordinateSystem

Units km/s



X N Y
The	x-component	of	position	with
respect	to	the	CoordinateSystem
chosen	as	the	dependency.	When	no
dependency	is	selected,
EarthMJ2000Eq	is	used.

Data	Type Real

Dependency CoordinateSystem

Units km

Y N Y
The	y-component	of	position	with
respect	to	the	CoordinateSystem
chosen	as	the	dependency.	When	no
dependency	is	selected,
EarthMJ2000Eq	is	used.

Data	Type Real

Dependency CoordinateSystem

Units km

Z N Y
The	z-component	of	position	with
respect	to	the	CoordinateSystem
chosen	as	the	dependency.	When	no
dependency	is	selected,



EarthMJ2000Eq	is	used.

Data	Type Real

Dependency CoordinateSystem

Units km

Thruster

ChemicalThruster	parameters	are	accessible	only	after	attaching	the
ChemicalThruster	resource	to	a	Spacecraft,	like	so:

Create	Thruster	aThruster

Create	Spacecraft	aSat

aSat.Thrusters	=	{aThruster}

Then,	ChemicalThruster	parameters	are	accessible	by	specifying	the
ChemicalThruster	name	as	the	parameter	dependency:

Create	ReportFile	aReport

aReport.Add	=	{aSat.aThruster.DutyCycle}

The	table	below	shows	reportable	thruster	based	parameters:

Parameter Settable Plottable Description

C1 Y Y
See	ChemicalThruster.C1

Data	Type Real

Dependency (None)



Units N

C2 Y Y
See	ChemicalThruster.C2

Data	Type Real

Dependency (None)

Units N/kPa

C3 Y Y
See	ChemicalThruster.C3

Data	Type Real

Dependency (None)

Units N

C4 Y Y
See	ChemicalThruster.C4

Data	Type Real

Dependency (None)



Units N/kPa

C5 Y Y
See	ChemicalThruster.C5

Data	Type Real

Dependency (None)

Units N/kPa2

C6 Y Y
See	ChemicalThruster.C6

Data	Type Real

Dependency (None)

Units N/kPaC7

C7 Y Y
See	ChemicalThruster.C7

Data	Type Real

Dependency (None)



Units (None)

C8 Y Y
See	ChemicalThruster.C8

Data	Type Real

Dependency (None)

Units N/kPaC9

C9 Y Y
See	ChemicalThruster.C9

Data	Type Real

Dependency (None)

Units (None)

C10 Y Y
See	ChemicalThruster.C10

Data	Type Real

Dependency (None)



Units N/kPaC11

C11 Y Y
See	ChemicalThruster.C11

Data	Type Real

Dependency (None)

Units (None)

C12 Y Y
See	ChemicalThruster.C12

Data	Type Real

Dependency (None)

Units N

C13 Y Y
See	ChemicalThruster.C13

Data	Type Real

Dependency (None)



Units (None)

C14 Y Y
See	ChemicalThruster.C14

Data	Type Real

Dependency (None)

Units 1/kPa

C15 Y Y
See	ChemicalThruster.C15

Data	Type Real

Dependency (None)

Units (None)

C16 Y Y
See	ChemicalThruster.C16

Data	Type Real

Dependency (None)



Units 1/kPa

DutyCycle Y Y
See	ChemicalThruster.DutyCycle

Data	Type Real

Dependency (None)

Units (None)

GravitationalAccel Y Y
See
ChemicalThruster.GravitationalAccel

Data	Type Real

Dependency (None)

Units m/s2

Isp Y Y
Specific	impulse	of	an	individual
thruster.	When	thruster(s)	is	not	turned
on,	GMAT	will	report	zeros	to	a	report
file.

Data	Type Real



Dependency (None)

Units s

K1 Y Y
See	ChemicalThruster.K1

Data	Type Real

Dependency (None)

Units s

K2 Y Y
See	ChemicalThruster.K2

Data	Type Real

Dependency (None)

Units s/kPa

K3 Y Y
See	ChemicalThruster.K3

Data	Type Real



Dependency (None)

Units s

K4 Y Y
See	ChemicalThruster.K4

Data	Type Real

Dependency (None)

Units s/kPa

K5 Y Y
See	ChemicalThruster.K5

Data	Type Real

Dependency (None)

Units s/kPa2

K6 Y Y
See	ChemicalThruster.K6

Data	Type Real



Dependency (None)

Units s/kPaC7

K7 Y Y
See	ChemicalThruster.K7

Data	Type Real

Dependency (None)

Units (None)

K8 Y Y
See	ChemicalThruster.K8

Data	Type Real

Dependency (None)

Units s/kPaC9

K9 Y Y
See	ChemicalThruster.K9

Data	Type Real



Dependency (None)

Units (None)

K10 Y Y
See	ChemicalThruster.K10

Data	Type Real

Dependency (None)

Units s/kPaC11

K11 Y Y
See	ChemicalThruster.K11

Data	Type Real

Dependency (None)

Units (None)

K12 Y Y
See	ChemicalThruster.K12

Data	Type Real



Dependency (None)

Units s

K13 Y Y
See	ChemicalThruster.K13

Data	Type Real

Dependency (None)

Units (None)

K14 Y Y
See	ChemicalThruster.K14

Data	Type Real

Dependency (None)

Units 1/kPa

K15 Y Y
See	ChemicalThruster.K15

Data	Type Real



Dependency (None)

Units (None)

K16 Y Y
See	ChemicalThruster.K16

Data	Type Real

Dependency (None)

Units 1/kPa

MassFlowRate N Y
Mass	flow	rate	from	an	individual
thruster.	When	thruster(s)	is	not	turned
on,	GMAT	will	report	zeros	to	a	report
file.

Data	Type Real

Dependency (None)

Units kg/s

ThrustDirection1 Y Y
See
ChemicalThruster.ThrustDirection1



Data	Type Real

Dependency (None)

Units (None)

ThrustDirection2 Y Y
See
ChemicalThruster.ThrustDirection2

Data	Type Real

Dependency (None)

Units (None)

ThrustDirection3 Y Y
See
ChemicalThruster.ThrustDirection3

Data	Type Real

Dependency (None)

Units (None)

ThrustMagnitude Y Y
Magnitude	of	the	thrust	from	an



individual	thruster.	When	thruster(s)	is
not	turned	on,	GMAT	will	report	zeros
to	a	report	file.

Data	Type Real

Dependency (None)

Units Newtons

ThrustScaleFactor Y Y
See
ChemicalThruster.ThrustScaleFactor

Data	Type Real

Dependency (None)

Units (None)

ImpulsiveBurn

To	compute	ImpulsiveBurn	parameters,	GMAT	requires	that	an	ImpulsiveBurn
has	been	executed	using	a	Maneuver	command	like	this:

Maneuver	myImpulsiveBurn(mySat)		

In	the	case	that	an	ImpulsiveBurn	has	not	been	applied,	GMAT	will	output
zeros	for	the	ImpulsiveBurn	components	and	issue	a	warning.

We	recommended	that	you	evaluate	ImpulsiveBurn	parameters	immediately



after	the	ImpulsiveBurn	is	applied	using	the	Maneuver	command	like	this:

Maneuver	myImpulsiveBurn(mySat)	

myVar	=		mySat.MyCoordinateSystem.Element1	

The	above	usage	avoids	issues	that	may	occur	if	the	ImpulsiveBurn	coordinate
system	is	time	varying,	and	the	ImpulsiveBurn	parameters	are	requested	after
further	manipulation	of	the	participants	using	other	commands	(such	as
Propagate).	In	that	case,	it	is	possible	that	the	participants	are	no	longer	at	the
epoch	of	the	maneuver,	and	unexpected	results	can	occur	due	to	epoch
mismatches.

Parameter Settable Plottable Description

B Y Y
See	ImpulsiveBurn.B

Data	Type Real

Dependency (None)

Units (None)

Element1 Y Y
See	ImpulsiveBurn.Element1

Data	Type Real

Dependency CoordinateSystem

Units (None)



Element2 Y Y See	ImpulsiveBurn.Element2

Data	Type Real

Dependency CoordinateSystem

Units (None)

Element3 Y Y
See	ImpulsiveBurn.Element3

Data	Type Real

Dependency CoordinateSystem

Units (None)

N Y Y
See	ImpulsiveBurn.N

Data	Type Real

Dependency (None)

Units (None)

V Y Y



See	ImpulsiveBurn.V

Data	Type Real

Dependency (None)

Units (None)

FiniteBurn

To	compute	FiniteBurn	parameters,	GMAT	requires	that	a	FiniteBurn	has	been
executed	using	a	BeginFiniteBurn	command	like	this:

BeginFiniteBurn	Maneuver	myFiniteBurn(mySat)		

In	the	case	that	a	FiniteBurn	has	not	been	applied,	GMAT	will	output	zeros	for
all	reportable	FiniteBurn	parameters	to	a	report	file.	All	finite	burn	parameters
will	report	zeros	whenever	a	finite	burn	is	not	turned	on.	The	table	below	shows
reportable	finite	burn	parameters:

Parameter Settable Plottable Description

TotalAcceleration1 N Y
First	component	of	the	total
acceleration	from	all	thrusters	in	the
three	coordinate	directions	of	a
J2000	system.	Zero	is	reported
whenever	thruster	is	not	turned	on

Data	Type Real

Dependency (None)



Units Km/s2

TotalAcceleration2 N Y
Second	component	of	the	total
acceleration	from	all	thrusters	in	the
three	coordinate	directions	of	a
J2000	system.	Zero	is	reported
whenever	thruster	is	not	turned	on

Data	Type Real

Dependency (None)

Units Km/s2

TotalAcceleration3 N Y
Third	component	of	the	total
acceleration	from	all	thrusters	in	the
three	coordinate	directions	of	a
J2000	system.	Zero	is	reported
whenever	thruster	is	not	turned	on

Data	Type Real

Dependency (None)

Units Km/s2

TotalMassFlowRate N Y



Total	mass	flow	rate	from	all
thrusters.	Zero	is	reported	whenever
thruster	is	not	turned	on

Data	Type Real

Dependency (None)

Units Kg/s

TotalThrust1 N Y
First	component	of	the	total	thrust
from	all	thrusters	in	the	three
coordinate	directions	of	a	J2000
system.	Zero	is	reported	whenever
thruster	is	not	turned	on

Data	Type Real

Dependency (None)

Units Newtons

TotalThrust2 N Y
Second	component	of	the	total
thrust	from	all	thrusters	in	the	three
coordinate	directions	of	a	J2000
system.	Zero	is	reported	whenever
thruster	is	not	turned	on



Data	Type Real

Dependency (None)

Units Newtons

TotalThrust3 N Y
Third	component	of	the	total	thrust
from	all	thrusters	in	the	three
coordinate	directions	of	a	J2000
system.	Zero	is	reported	whenever
thruster	is	not	turned	on

Data	Type Real

Dependency (None)

Units Newtons

Solver

Solver	parameters	allow	you	to	query	a	Solver	for	its	convergence	state	to
determine	if	the	Solver	converged.	There	are	both	string	and	numeric	parameters
which	are	described	in	further	detail	in	the	table	below	the	following	usage
example	using	solver	parameters	before	and	after	a	Target	sequence.

Create	Spacecraft	aSat

Create	Propagator	aPropagator

Create	ImpulsiveBurn	aBurn

Create	DifferentialCorrector	aDC

Create	OrbitView	EarthView



EarthView.Add	=	{Earth,aSat}

EarthView.ViewScaleFactor	=	5

Create	ReportFile	aReport

BeginMissionSequence

Report	aReport	aDC.SolverStatus	aDC.SolverState

Target	aDC

			Vary	aDC(aBurn.Element1	=	1.0,	{Upper	=	3})

			Maneuver	aBurn(aSat)

			Propagate	aPropagator(aSat,{aSat.Apoapsis})

			Achieve	aDC(aSat.RMAG	=	42164)

EndTarget

Report	aReport	aDC.SolverStatus	aDC.SolverState

Parameter Settable Plottable Description

SolverStatus N N
The	SolverStatus	parameter	contains
the	state	of	a	Solver.	If	the	Solver	has
not	executed,	SolverStatus	is
Initialized.	If	the	Solver	has	executed
and	converged,	SolverStatus	is
Converged.	If	the	Solver	is	iterating,
SolverStatus	is	Running.	If	the
Solver	has	executed	and	reached	the
maximum	number	of	iterations	before
convergence,	SolverStatus	is
ExceededIterations.	If	the	Solver	has
executed	and	failed	to	converge,	but
did	not	exceed	the	maximum
iterations,	SolverStatus	is
DidNotConverge.

Data	Type String

Dependency (None)



Units (None)

SolverState N Y
The	SolverState	parameter	contains
the	state	of	a	Solver.	If	the	solver	has
not	executed,	SolverState	is	0.	If	the
Solver	has	executed	and	converged,
SolverState	is	1.	If	the	Solver	is
iterating,	SolverState	is	0.	If	the
Solver	has	executed	and	reached	the
maximum	number	of	iterations	before
convergence,	SolverState	is	-1.	If	the
Solver	has	executed	and	failed	to
converge,	but	did	not	exceed	the
maximum	iterations,	SolverState	is	-2.

Data	Type Integer

Dependency (None)

Units (None)

Array,	String,	Variable

Array,	String,	and	Variable	resources	are	themselves	parameters,	and	can	be
used	as	any	other	parameter	would.	All	of	these	are	writable	parameters,	though
only	Variable	resources	and	individual	elements	of	Array	resources	can	be
plotted.



Examples
Using	parameters	in	the	Mission	Sequence:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ReportFile	aReport

Create	Variable	i

BeginMissionSequence

%	propagate	for	100	steps

For	i=1:100

Propagate	aProp(aSat)

%	write	four	parameters	(one	standalone,	three	coordinate-system-dependent)	to	a	file

Report	aReport	aSat.TAIGregorian	aSat.EarthFixed.X	aSat.EarthFixed.Y	aSat.EarthFixed.Z

EndFor

Using	parameters	as	plot	data:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	XYPlot	aPlot

aPlot.XVariable	=	aSat.TAIModJulian

aPlot.YVariables	=	{aSat.Earth.Altitude,	aSat.Earth.ECC}

Create	Variable	i

BeginMissionSequence

%	propagate	for	100	steps

For	i=1:100

				Propagate	aProp(aSat)

EndFor

Using	parameters	as	stopping	conditions:

Create	Spacecraft	aSat

aSat.SMA	=	6678

Create	ForceModel	anFM

anFM.Drag.AtmosphereModel	=	MSISE90



Create	Propagator	aProp

aProp.FM	=	anFM

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.Earth.Altitude	=	100,	aSat.ElapsedDays	=	365}



Color
Color	—	Color	support	in	GMAT	resources	and	commands



Description
GMAT	lets	you	assign	different	colors	to	orbital	trajectory	segments	that	are
drawn	by	Spacecraft,	CelestialBody,	LibrationPoint	and	Barycenter
resources.	You	can	also	assign	unique	colors	to	Spacecraft	orbital	trajectory
segments	by	setting	colors	through	the	Propagate	command.	The	orbital
trajectories	of	these	resources	are	drawn	using	the	OrbitView	3D	graphics
resource.	Additionally,	GMAT	allows	you	set	colors	on	GroundStation	facilities
that	are	drawn	on	a	spacecraft’s	ground	track	plot	created	by	GroundTrackPlot
2D	graphics	resource.

In	addition	to	setting	colors	on	orbital	trajectory	segments	of	the	following	five
resources	and	single	command:	Spacecraft,	CelestialBody,	LibrationPoint,
Barycenter,	GroundStation	and	Propagate,	GMAT	also	allows	you	to	assign
colors	to	perturbing	trajectories	that	may	be	drawn	by	the	above	five	resources.
These	perturbing	trajectories	are	drawn	during	iterative	processes	such	as
differential	correction	or	optimization.	The	above	five	resources	and	single
Propagate	command	each	have	a	common	field	called	OrbitColor.	The
OrbitColor	field	is	used	to	set	colors	on	orbital	trajectory	segments	drawn	by
these	resources	and	single	command.	Similarly,	these	five	resources	also	have	a
common	field	called	TargetColor.	The	Propagate	command	does	not	have	a
TargetColor	field.	The	TargetColor	field	of	these	five	resources	can	be	used	to
set	colors	on	perturbing	trajectories	that	may	be	drawn	during	iterative
processes.

You	can	set	colors	on	the	above	five	resources	and	Propagate	command	either
via	the	GUI	or	script	interface	of	GMAT.	Setting	colors	on	these	five	resources
and	single	command	via	the	GUI	mode	is	very	easy:	After	opening	any	of	the
five	resources	or	Propagate	command,	you	can	choose	colors	for	OrbitColor
field	by	clicking	on	any	available	colors	from	Orbit	Color	selectbox.	Similarly,
for	the	five	resources,	you	can	select	colors	for	the	TargetColor	field	by
choosing	any	available	colors	from	the	Target	Color	selectbox.	See	the	GUI
section	below	that	walks	you	through	an	example	of	how	to	select	colors	through
the	GUI	mode.

There	are	two	ways	to	set	colors	on	both	OrbitColor	and	TargetColor	fields	via
GMAT’s	script	mode.	The	available	colors	are	identified	through	a	string	or	a
three	digit	integer	array.	You	can	input	color	of	your	choice	by	either	entering	a



color’s	ColorName	or	its	corresponding	RGB	triplet	value.	The	table	below
shows	a	list	of	75	colors	that	are	available	for	you	to	select	from.	Each	row	of
the	table	lists	an	available	color's	ColorName	and	an	equivalent	RGB	triplet
value.	Refer	to	the	Fields	section	of	the	above	five	resources	and	Propagate
command's	Options	section	to	learn	more	about	OrbitColor	and	TargetColor
fields	and	how	to	set	colors.	Also	see	the	Remarks	section	below	for	additional
script	snippets	that	show	how	to	assign	colors	through	either	ColorName	or	RGB
triplet	value	input	method	for	the	above	five	resources	and	single	command.

ColorName Equivalent	RGB	Triplet	Value

Aqua 0	255	255

AquaMarine 127	55	212

Beige 245	245	220

Black 0	0	0

Blue 0	0	255

BlueViolet 138	43	226

Brown 165	42	42

CadetBlue 95	158	160

Coral 255	127	80



CornflowerBlue 100	149	237

Cyan 0	255	255

DarkBlue 0	0	139

DarkGoldenRod 184	134	11

DarkGray 169	169	169

DarkGreen 0	100	0

DarkOliveGreen 85	107	47

DarkOrchid 153	50	204

DarkSlateBlue 72	61	139

DarkSlateGray 47	79	79

DarkTurquoise 0	206	209

DimGray 105	105	105



FireBrick 178	34	34

ForestGreen 34	139	34

Fuchsia 255	0	255

Gold 255	215	0

GoldenRod 218	165	32

Gray 128	128	128

Green 0	128	0

GreenYellow 173	255	47

IndianRed 205	92	92

Khaki 240	230	140

LightBlue 173	216	230

LightGray 211	211	211



Lime 0	255	0

LimeGreen 50	205	50

LightSteelBlue 176	196	222

Magenta 255	0	255

Maroon 128	0	0

MediumAquaMarine 102	205	170

MediumBlue 0	0	205

MediumOrchid 186	85	211

MediumSeaGreen 60	179	113

MediumSpringGreen 0	250	154

MediumTurquoise 72	209	204

MediumVioletRed 199	21	133



MidnightBlue 25	25	112

Navy 0	0	128

Olive 128	128	0

Orange 255	165	0

OrangeRed 255	69	0

Orchid 218	112	214

PaleGreen 152	251	152

Peru 205	133	63

Pink 255	192	203

Plum 221	160	221

Purple 128	0	128

Red 255	0	0



SaddleBrown 244	164	96

Salmon 250	128	114

SeaGreen 46	139	87

Sienna 160	82	45

Silver 192	192	192

SkyBlue 135	206	235

SlateBlue 106	90	205

SpringGreen 0	255	127

SteekBlue 70	130	180

Tan 210	180	140

Teal 0	128	128

Thistle 216	191	216



Turquoise 64	224	208

Violet 238	130	238

Wheat 245	222	179

White 255	255	255

Yellow 255	255	0

YellowGreen 154	205	50

See	Also:	Spacecraft	Visualization	Properties,	CelestialBody,	LibrationPoint,
Barycenter,	GroundStation,	Propagate



GUI
Setting	colors	on	Spacecraft,	GroundStation,	CelestialBody,	LibrationPoint
and	Barycenter	resources’	OrbitColor	and	TargetColor	fields	via	GMAT’s
GUI	mode	is	very	easy.	Since	the	procedure	for	setting	colors	on	these	five
resources	is	the	same,	hence	only	one	GUI	example	is	given	below	using	the
Spacecraft	resource:

After	opening	the	Spacecraft	resource,	click	on	Visualization	tab.



In	the	Visualization	window,	you	will	see	Orbit	Color	and	Target	Color	Select
boxes.	You	can	choose	colors	for	OrbitColor	and	TargetColor	fields	by
clicking	on	the	Orbit	Color	and	Target	Color	select	boxes	respectively.	For
example,	clicking	either	on	the	Orbit	Color	or	Target	Color	select	box	opens	the
Color	panel	seen	below.	Using	this	Color	panel,	you	can	select	basic	colors,
create	custom	colors	of	your	choice	and	add	custom	colors	to	the	list	of	available
colors.

Selecting	colors	on	Propagate	command’s	OrbitColor	option	through	the	GUI
mode	is	also	very	easy.	Open	any	Propagate	command.	Below	is	screenshot	of
GMAT’s	default	Propagate	command:



In	GMAT,	the	default	orbit	color	on	any	Propagate	command	is	the	color	that	is
set	on	Spacecraft	resource’s	OrbitColor	field	(i.e.	Spacecraft.OrbitColor).
Whenever	you	do	not	set	a	unique	color	on	the	Propagate	command's
OrbitColor	option,	hence	the	color	on	the	Propagate	command	will	always	be
the	color	that	is	set	on	Spacecraft	object's	OrbitColor	field.

To	set	your	own	unique	colors	to	the	Propagate	command,	click	and	check	the
Override	Color	For	This	Segment	box.	This	makes	the	Orbit	Color	select	box
active.	Clicking	on	the	Orbit	Color	select	box	opens	the	Color	panel	shown
below:



Using	this	Color	panel,	you	can	select	basic	colors,	create	custom	colors	of	your
choice	and	add	custom	colors	to	the	list	of	available	colors	and	set	them	on	the
Propagate	command’s	OrbitColor	option.



Remarks

Configuring	Orbit	and	Target	Colors	on	Spacecraft
Resource

You	can	set	unique	colors	of	your	choice	on	orbital	trajectories	of	a	Spacecraft
by	assigning	colors	to	Spacecraft	object’s	OrbitColor	field.	As	long	as	you	do
not	reset	or	reassign	orbit	color	on	the	Propagate	command,	then	all	spacecraft
trajectory	colors	that	GMAT	draws	will	be	the	same	color	that	you	first	set	on
Spacecraft	object’s	OrbitColor	field.	The	default	color	on	Spacecraft	object’s
OrbitColor	field	is	set	to	red.	With	this	default	setting	of	red	color	to
OrbitColor	field,	all	Spacecraft	trajectories	will	be	drawn	in	red	color	as	long
as	you	do	not	reset	orbit	color	on	any	of	the	Propagate	commands.	Now	for
example,	if	you	want	all	Spacecraft	orbital	trajectories	to	be	drawn	in	yellow
color	alone,	the	script	snippet	below	demonstrates	two	acceptable	methods	of
setting	yellow	color	to	Spacecraft	object’s	OrbitColor	field:

Create	Spacecraft	aSat

aSat.OrbitColor	=	Yellow							%	ColorName	method

%	or

aSat.OrbitColor	=	[255	255	0]		%	RGB	triplet	value	method

Similarly,	setting	colors	of	your	choice	on	spacecraft’s	perturbing	trajectories
that	may	be	drawn	during	iterative	processes	such	as	differential	correction	or
optimization	can	be	done	by	assigning	unique	colors	to	Spacecraft	object’s
TargetColor	field.	Setting	colors	on	the	TargetColor	field	is	only	useful	when
you	want	to	assign	colors	on	perturbed	trajectories	generated	during	iterative
processes.	Both	OrbitColor	and	TargetColor	fields	of	Spacecraft	object	can
also	be	used	and	modified	in	the	Mission	Sequence	as	well.	The	example	script
snippet	below	shows	two	acceptable	methods	of	setting	blue	violet	color	to
Spacecraft	resource’s	TargetColor	field:

Create	Spacecraft	aSat

aSat.TargetColor	=	BlueViolet				%	ColorName	method

%	or

aSat.TargetColor	=	[138	43	226]		%	RGB	triplet	value	method

The	list	of	available	colors	that	you	can	set	on	Spacecraft	object's	OrbitColor
and	TargetColor	fields	are	tabulated	in	the	table	in	Description	section.	You	can



assign	colors	either	via	the	ColorName	or	RGB	triplet	value	input	method.	Also
see	the	Examples	section	below	for	complete	sample	scripts	that	show	how	to
use	Spacecraft	object’s	OrbitColor	and	TargetColor	fields.

Setting	Colors	on	Ground	Station	Resource

GMAT	allows	you	to	set	unique	colors	of	your	choice	on	GroundStation
object's	OrbitColor	or	TargetColor	fields.	The	list	of	available	colors	that	you
can	set	are	tabulated	in	the	table	in	Description	section.	You	can	assign	colors
either	via	the	ColorName	or	RGB	triplet	value	method.	The	custom	ground
station	facility	that	you	create	shows	up	on	the	ground	track	plot	of	a	spacecraft
that	is	drawn	on	a	2D	texture	map	of	a	central	body.	The	colors	that	are	assigned
on	GroundStation	object's	TargetColor	field	are	only	used	whenever
GroundStation	object	is	drawn	during	iterative	processes	such	as	differential
correction	or	optimization.	The	script	snippet	below	shows	how	to	set	colors	on
GroundStation's	OrbitColor	and	TargetColor	fields	using	either	the
ColorName	or	RGB	method:

Create	GroundStation	aGroundStation	

aGroundStation.OrbitColor	=	Aqua										%	ColorName	method

%	or

aGroundStation.OrbitColor	=	[0	255	255]			%	RGB	method

Create	GroundStation	aGroundStation	

aGroundStation.TargetColor	=	Black					%	ColorName	method

%	or

aGroundStation.TargetColor	=	[0	0	0]			%	RGB	method

See	the	Examples	section	below	for	complete	sample	script	that	shows	how	to
use	GroundStation	object’s	OrbitColor	field.

Configuring	Orbit	and	Target	Colors	on	Celestial	Body
Resource

GMAT	allows	you	to	set	available	colors	to	orbits	of	built-in	or	custom-defined
celestial	bodies.	GMAT	contains	built-in	models	for	the	Sun,	the	8	planets,
Earth's	moon,	and	Pluto.	You	can	create	a	custom	CelestialBody	resource	to
model	a	planet,	asteroid,	comet,	or	moon.	The	orbit	colors	on	CelestialBody
objects	are	set	through	the	OrbitColor	field.	You	can	also	set	colors	to	a
celestial	body's	perturbing	trajectories	that	are	generated	during	iterative



processes	such	as	differential	correction	or	optimization.	This	is	done	by	setting
colors	to	CelestialBody	object's	TargetColor	field.	Setting	colors	on	the
TargetColor	field	is	only	useful	when	you	want	to	assign	colors	on	perturbed
trajectories	that	are	generated	during	iterative	processes.	The	list	of	available
colors	that	you	can	set	on	OrbitColor	and	TargetColor	fields	are	tabulated	in
the	table	shown	in	the	Description	section.	To	assign	colors,	you	can	either	use
the	ColorName	or	RGB	triplet	value	method.	Both	OrbitColor	and
TargetColor	fields	of	the	CelestialBody	object	can	also	be	used	and	modified	in
the	Mission	Sequence	as	well.	The	script	snippet	below	shows	how	to	set	colors
on	OrbitColor	and	TargetColor	fields	on	a	custom-built	celestial	body	using
either	the	ColorName	or	RGB	method:

Create	CelestialBody	aPlanet	

aPlanet.OrbitColor	=	CornflowerBlue			%	ColorName	method

%	or

aPlanet.OrbitColor	=	[100	149	237]				%	RGB	method

Create	CelestialBody	aPlanet	

aPlanet.TargetColor	=	DarkBlue					%	ColorName	method

%	or

aPlanet.TargetColor	=	[0	0	139]				%	RGB	method

See	the	Examples	section	below	for	complete	sample	scripts	that	show	how	to
use	CelestialBody	object’s	OrbitColor	field

Configuring	Orbit	and	Target	Colors	on	Libration	Point
Resource

GMAT	lets	you	set	available	colors	on	an	orbit	that	is	drawn	by	a	libration	point.
In	order	to	see	orbital	trajectory	that	a	libration	point	draws	in	space,	you	must
draw	the	Lagrange	points	in	an	inertial	space.	The	orbit	colors	on
LibrationPoint	resources	are	set	through	the	OrbitColor	field.	GMAT	also
allows	you	to	set	colors	on	a	libration	point's	perturbing	trajectories	that	are
drawn	during	iterative	processes	such	as	differential	correction	or	optimization.
Setting	colors	on	perturbing	libration	point	trajectories	is	done	via	the
TargetColor	field.	Setting	colors	on	the	TargetColor	field	is	only	useful
whenever	perturbed	libration	point	trajectories	are	generated	during	iterative
processes.	The	available	colors	that	can	be	set	on	OrbitColor	and	TargetColor
fields	are	tabulated	in	the	table	shown	in	the	Description	section.	You	can	either
use	the	ColorName	or	RGB	triplet	value	method	to	assign	colors	on	OrbitColor



and	TargetColor	fields.	These	two	fields	of	LibrationPoint	resource	can	also
be	used	and	modified	to	set	colors	in	the	Mission	Sequence	as	well.	The	script
snippet	below	shows	how	to	set	colors	on	OrbitColor	and	TargetColor	fields
using	either	the	ColorName	or	RGB	method:

Create	LibrationPoint	ESL1	

ESL1.OrbitColor	=	Magenta											%	ColorName	method

%	or

ESL1.OrbitColor	=	[255	0	255]							%	RGB	method

Create	LibrationPoint	ESL1	

ESL1.TargetColor	=	Orchid											%	ColorName	method

%	or

ESL1.TargetColor	=	[218	112	214]				%	RGB	method

See	the	Examples	section	below	for	complete	sample	script	that	shows	how	to
use	LibrationPoint	object’s	OrbitColor	field.

Configuring	Orbit	and	Target	Colors	on	Barycenter
Resource

In	GMAT,	you	can	assign	available	colors	on	an	orbit	that	is	drawn	by	a
barycenter	point.	Since	a	barycenter	is	a	center	of	mass	of	a	set	of	celestial
bodies,	hence	in	order	to	see	its	orbital	trajectory,	the	barycenters	must	be	plotted
in	an	inertial	space.	You	can	set	orbit	colors	on	GMAT’s	both	built-in
SolarSystemBarycenter	resource	or	custom	barycenters	that	you	create	through
the	Barycenter	object.	The	orbit	colors	on	Barycenter	resources	are	set	through
the	OrbitColor	field.	GMAT	also	allows	you	to	set	colors	on	a	barycenter's
perturbing	trajectories	that	are	drawn	during	iterative	processes	such	as
differential	correction	or	optimization.	Setting	colors	on	perturbing	barycenter
trajectories	is	done	via	the	TargetColor	field.	Setting	colors	on	the	TargetColor
field	is	only	useful	whenever	you	want	to	set	different	colors	on	the	perturbing
trajectories.	The	available	colors	that	can	be	set	on	OrbitColor	and	TargetColor
fields	are	tabulated	in	the	table	shown	in	the	Description	section.	You	can	either
use	the	ColorName	or	RGB	triplet	value	color	input	method	to	assign	colors	on
OrbitColor	and	TargetColor	fields.	These	two	fields	of	Barycenter	resource
can	also	be	used	and	modified	in	the	Mission	Sequence	as	well.	The	script
snippet	below	shows	how	to	set	colors	on	OrbitColor	and	TargetColor	fields
using	either	the	ColorName	or	RGB	method:

Create	Barycenter	EarthMoonBarycenter



EarthMoonBarycenter.OrbitColor	=	Violet									%	ColorName	method

%	or

EarthMoonBarycenter.OrbitColor	=	[238	130	238]		%	RGB	method

Create	Barycenter	EarthMoonBarycenter

EarthMoonBarycenter.TargetColor	=	Silver									%	ColorName	method

%	or

EarthMoonBarycenter.TargetColor	=	[192	192	192]		%	RGB	method

See	the	Examples	section	below	for	complete	sample	script	that	shows	how	to
use	Barycenter	object’s	OrbitColor	field.

Configuring	Orbit	Colors	on	Propagate	Command

In	GMAT,	you	can	set	unique	colors	on	different	Spacecraft	trajectory	segments
by	setting	orbital	colors	on	Propagate	commands.	If	you	do	not	select	unique
colors	on	each	Propagate	command,	then	by	default,	the	color	on	all	Propagate
commands	is	seeded	from	color	that	is	set	on	Spacecraft	object's	OrbitColor
field.	You	can	set	orbit	colors	on	each	Propagate	command	through	the
OrbitColor	option.	The	available	colors	that	can	be	set	on	Propagate
command's	OrbitColor	option	are	tabulated	in	the	table	shown	in	the
Description	section.	You	can	either	use	the	ColorName	or	RGB	triplet	value
input	method	to	assign	colors	on	OrbitColor	option.	The	script	snippet	below
shows	how	to	set	colors	on	OrbitColor	option	using	either	the	ColorName	or
RGB	method:

%	ColorName	method:

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	500,	OrbitColor	=	Gold}

%	or	RGB	method:

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	500,	OrbitColor	=	[255	215	0]}

See	the	Examples	section	below	for	complete	sample	scripts	that	show	how	to
use	Propagate	command’s	OrbitColor	option.



Examples
Set	non-default	sky	blue	color	to	Spacecraft	object’s	OrbitColor	field	through
both	ColorName	and	RGB	triplet	value	methods.	Both	methods	draw	spacecraft
orbital	trajectory	in	sky	blue	color.	Note:	Since	orbit	color	was	not	re-set	in	the
Propagate	command,	hence	entire	spacecraft	orbital	trajectory	is	drawn	in	sky
blue	color:

Create	Spacecraft	aSat

aSat.OrbitColor	=	SkyBlue			%	ColorName	method

Create	Propagator	aProp

Create	OrbitView	anOrbitView

GMAT	anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

%	or

Create	Spacecraft	aSat

aSat.OrbitColor	=	[135	206	235]			%	RGB	triplet	value	method

Create	Propagator	aProp

Create	OrbitView	anOrbitView

GMAT	anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	1}

Set	unique	colors	on	Spacecraft	object’s	OrbitColor	field	multiple	times
through	combination	of	both	ColorName	and	RGB	method.	Notice	that
Spacecraft.OrbitColor	is	used	and	modified	in	the	Mission	Sequence	as	well:

Create	Spacecraft	aSat

aSat.OrbitColor	=	Yellow			%	ColorName	method

Create	Propagator	aProp

Create	OrbitView	anOrbitView

GMAT	anOrbitView.Add	=	{aSat,	Earth}



BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000}

aSat.OrbitColor	=	Green			%	ColorName	method

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000}

aSat.OrbitColor	=	[255	165	0	]			%	RGB	value	for	Orange

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	2000}

Set	non-default	yellow	color	on	Spacecraft	object’s	TargetColor	field.	Setting
color	on	the	TargetColor	field	is	only	useful	when	perturbed	trajectories	are
generated	during	iterative	processes	such	as	differential	correction.	Note	yellow
color	was	set	via	the	ColorName	method.	It	could’ve	been	also	set	through	the
RGB	triplet	value	method	as	well.

Create	Spacecraft	aSat

aSat.OrbitColor	=	Red							%	Default	OrbitColor

aSat.TargetColor	=	Yellow		%	ColorName	method

Create	Propagator	aProp

Create	ImpulsiveBurn	TOI

Create	DifferentialCorrector	aDC

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

anOrbitView.SolverIterations	=	All

anOrbitView.ViewScaleFactor	=	2

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.Earth.Periapsis}

Target	aDC;

Vary	aDC(TOI.Element1	=	0.24,	{Perturbation	=	0.001,	Lower	=	0.0,	...

	Upper	=	3.14159,	MaxStep	=	0.5})

	Maneuver	TOI(aSat);

	Propagate	aProp(aSat)	{aSat.Earth.Apoapsis}

	Achieve	aDC(aSat.Earth.RMAG	=	20000)

EndTarget

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.25}

Set	non-default	colors	on	multiple	GroundStation	objects	through	the



OrbitColor	field.	The	colors	are	assigned	through	combination	of	both
ColorName	and	RGB	input	methods:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	GroundStation	aGroundStation	aGroundStation2	aGroundStation3

aGroundStation.StateType	=	Spherical

aGroundStation.Latitude	=	45

aGroundStation.OrbitColor	=	Black

aGroundStation2.StateType	=	Spherical

aGroundStation2.Longitude	=	20

aGroundStation2.OrbitColor	=	[165	42	42]		%	RGB	value	for	Brown

aGroundStation3.StateType	=	Spherical

aGroundStation3.Latitude	=	30

aGroundStation3.Longitude	=	45

aGroundStation3.OrbitColor	=	[255	127	80]		%	RGB	value	for	Coral

Create	GroundTrackPlot	aGroundTrackPlot

aGroundTrackPlot.Add	=	{aSat,	aGroundStation,	aGroundStation2,	...

aGroundStation3	}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.25	}

Set	non-default	colors	on	built-in	celestial	body	orbits.	In	this	example,
CelestialBody	object’s	OrbitColor	field	is	assigned	colors	through	mixture	of
both	ColorName	and	RGB	triplet	value	methods.	By	default,	GMAT	sets
Spacecraft	orbit	color	to	red:

Create	Spacecraft	aSat

aSat.CoordinateSystem	=	SunMJ2000Ec

aSat.DisplayStateType	=	Keplerian

aSat.SMA	=	150000000

Mercury.OrbitColor	=	Orange

Venus.OrbitColor	=	[255	255	0]		%	RGB	value	for	Yellow

Earth.OrbitColor	=	Cyan

Mars.OrbitColor	=	[0	128	0]		%	RGB	value	for	Green

Create	CoordinateSystem	SunMJ2000Ec



SunMJ2000Ec.Origin	=	Sun

SunMJ2000Ec.Axes	=	MJ2000Ec

Create	ForceModel	aFM

aFM.CentralBody	=	Sun

aFM.PointMasses	=	{Sun}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth,	Venus,	Mars,	Mercury}

anOrbitView.CoordinateSystem	=	SunMJ2000Ec

anOrbitView.ViewPointReference	=	Sun

anOrbitView.ViewPointVector	=	[0	0	150000000]

anOrbitView.ViewDirection	=	Sun

anOrbitView.ViewScaleFactor	=	6

anOrbitView.ViewUpCoordinateSystem	=	SunMJ2000Ec

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	150}

Set	unique	non-default	orbit	colors	on	built-in	CelestialBody	object’s
OrbitColor	field	multiple	times	through	combination	of	both	ColorName	and
RGB	triplet	value	methods.	Notice	that	CelestialBody.OrbitColor	is	used	and
modified	in	the	Mission	Sequence	as	well:

Create	Spacecraft	aSat

aSat.CoordinateSystem	=	SunMJ2000Ec

aSat.DisplayStateType	=	Keplerian

aSat.SMA	=	150000000

Mars.OrbitColor	=	Orange

Create	CoordinateSystem	SunMJ2000Ec

SunMJ2000Ec.Origin	=	Sun

SunMJ2000Ec.Axes	=	MJ2000Ec

Create	ForceModel	aFM

aFM.CentralBody	=	Sun

aFM.PointMasses	=	{Sun}

Create	Propagator	aProp

aProp.FM	=	aFM

aProp.MaxStep	=	20000



Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Mars}

anOrbitView.CoordinateSystem	=	SunMJ2000Ec

anOrbitView.ViewPointReference	=	Sun

anOrbitView.ViewPointVector	=	[0	0	150000000]

anOrbitView.ViewDirection	=	Sun

anOrbitView.ViewScaleFactor	=	6

anOrbitView.ViewUpCoordinateSystem	=	SunMJ2000Ec

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	150}

Mars.OrbitColor	=	[255	255	0]		%	RGB	value	for	Yellow

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	150}

Mars.OrbitColor	=	Cyan

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	150}

Mars.OrbitColor	=	[0	128	0]			%	RGB	value	for	Green

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	150}

Set	unique	non-default	orbit	colors	on	Earth-Sun	L1	libration	point	orbit.	ESL1
libration	point	is	plotted	in	an	inertial	space	in	order	to	see	its	orbit	around
sun.The	orbit	colors	on	LibrationPoint	object’s	OrbitColor	field	are	set
multiple	times	through	combination	of	both	ColorName	and	RGB	triplet	value
input	methods.	Notice	that	in	this	example,	LibrationPoint.OrbitColor	is	also
set	in	the	Mission	Sequence	as	well.	By	default,	GMAT	sets	Spacecraft	orbit
color	to	red:

Create	Spacecraft	aSat

aSat.CoordinateSystem	=	SunMJ2000Ec

aSat.DisplayStateType	=	Keplerian

aSat.SMA	=	150000000

Create	LibrationPoint	ESL1

ESL1.OrbitColor	=	Orange

ESL1.Primary	=	Sun

ESL1.Secondary	=	Earth

ESL1.Point	=	L1

Create	CoordinateSystem	SunMJ2000Ec

SunMJ2000Ec.Origin	=	Sun

SunMJ2000Ec.Axes	=	MJ2000Ec

Create	ForceModel	aFM

aFM.CentralBody	=	Sun

aFM.PointMasses	=	{Sun}



Create	Propagator	aProp

aProp.FM	=	aFM

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	ESL1}

anOrbitView.CoordinateSystem	=	SunMJ2000Ec

anOrbitView.ViewPointReference	=	Sun

anOrbitView.ViewPointVector	=	[0	0	150000000]

anOrbitView.ViewDirection	=	Sun

anOrbitView.ViewScaleFactor	=	3

anOrbitView.ViewUpCoordinateSystem	=	SunMJ2000Ec

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

ESL1.OrbitColor	=	[255	255	0]		%	RGB	value	for	Yellow

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

ESL1.OrbitColor	=	Cyan

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

ESL1.OrbitColor	=	[0	128	0]			%	RGB	value	for	Green

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

Set	unique	non-default	orbit	colors	on	Earth-Moon	barycenter.	The	Earth	Moon
barycenter	had	to	be	plotted	in	an	inertial	space	in	order	to	see	its	orbit	around
the	sun.	The	orbit	colors	on	Barycenter	object’s	OrbitColor	field	are	set
multiple	times	through	combination	of	both	ColorName	and	RGB	triplet	value
input	methods.	Notice	that	in	this	example,	Barycenter.OrbitColor	is	also	set	in
the	Mission	Sequence	as	well.	By	default,	GMAT	sets	Spacecraft	orbit	color	to
red:

Create	Spacecraft	aSat

aSat.CoordinateSystem	=	SunMJ2000Ec

aSat.DisplayStateType	=	Keplerian

aSat.SMA	=	150000000

Create	Barycenter	EarthMoonBarycenter

EarthMoonBarycenter.OrbitColor	=	Cyan

EarthMoonBarycenter.BodyNames	=	{Earth,	Luna}

Create	CoordinateSystem	SunMJ2000Ec

SunMJ2000Ec.Origin	=	Sun

SunMJ2000Ec.Axes	=	MJ2000Ec

Create	ForceModel	aFM



aFM.CentralBody	=	Sun

aFM.PointMasses	=	{Sun}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	EarthMoonBarycenter}

anOrbitView.CoordinateSystem	=	SunMJ2000Ec

anOrbitView.ViewPointReference	=	Sun

anOrbitView.ViewPointVector	=	[0	0	150000000]

anOrbitView.ViewDirection	=	Sun

anOrbitView.ViewScaleFactor	=	4

anOrbitView.ViewUpCoordinateSystem	=	SunMJ2000Ec

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

EarthMoonBarycenter.OrbitColor	=	[255	255	0]		%	RGB	value	for	Yellow

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

EarthMoonBarycenter.OrbitColor	=	Orange

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

EarthMoonBarycenter.OrbitColor	=	[250	128	114]			%	RGB	value	for	Salmon

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	75}

Set	unique	colors	on	spacecraft’s	various	trajectory	segments	through	Propagate
command’s	OrbitColor	option.	The	colors	are	set	through	combination	of	both
ColorName	and	RGB	input	methods.	Notice	that	although	by	default,	red	color
is	set	on	aSat.OrbitColor	field,	however	since	orbit	color	has	been	reset	on	all
Propagate	commands,	hence	red	color	is	never	drawn:

Create	Spacecraft	aSat

aSat.OrbitColor	=	Red

aSat.X	=	10000

Create	Propagator	aProp

Create	OrbitView	anOrbitView

GMAT	anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000,	OrbitColor	=	Yellow}

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000,	OrbitColor	=	Cyan}

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000,	OrbitColor	=	[154	205	50]}

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000,	OrbitColor	=	[255	0	255]}



Set	colors	on	spacecraft’s	various	trajectory	segments	through	Propagate
command’s	OrbitColor	option.	This	time,	colors	are	only	set	through
ColorName	input	method.	Default	color	set	on	aSat.OrbitColor	field	is	red.
Notice	that	the	orbit	color	has	been	reset	on	only	the	first	three	Propagate
commands.	However	since	OrbitColor	option	has	not	been	used	on	the	last
Propagate	command,	therefore	the	trajectory	drawn	by	the	last	Propagate
command	is	in	red	color	which	is	the	color	assigned	on	aSat.OrbitColor	field:

Create	Spacecraft	aSat

aSat.OrbitColor	=	Red

aSat.X	=	10000

Create	Propagator	aProp

Create	OrbitView	anOrbitView

GMAT	anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000,	OrbitColor	=	Orange}

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000,	OrbitColor	=	Blue}

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000,	OrbitColor	=	Yellow}

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000}

Set	colors	on	Propagate	commands	when	used	with	Target	resource	and	during
differential	correction	iterative	process.	This	time,	since	colors	have	been	set	on
all	Propagate	commands,	hence	default	color	of	red	which	is	set	on
aSat.OrbitColor	field	is	never	plotted.	Also	notice	that	although
aSat.TargetColor	is	set	to	Yellow,	but	since	anOrbitView.SolverIterations	is
set	to	None,	hence	perturbed	trajectories	that	are	drawn	during	iterative	process
are	not	plotted	and	only	final	solution	is	plotted

Create	Spacecraft	aSat

aSat.OrbitColor	=	Red							

aSat.TargetColor	=	Yellow		

Create	Propagator	aProp

Create	ImpulsiveBurn	TOI

Create	DifferentialCorrector	aDC

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}



anOrbitView.SolverIterations	=	None	%Set	to	'All'	to	see	perturbations

anOrbitView.ViewScaleFactor	=	2

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.Earth.Periapsis,	OrbitColor	=	Salmon}

Target	aDC;

Vary	aDC(TOI.Element1	=	0.24,	{Perturbation	=	0.001,	Lower	=	0.0,	...

	Upper	=	3.14159,	MaxStep	=	0.5})

	Maneuver	TOI(aSat);

	Propagate	aProp(aSat)	{aSat.Earth.Apoapsis,	OrbitColor	=	Blue}

	Achieve	aDC(aSat.Earth.RMAG	=	20000)

EndTarget

Propagate	aProp(aSat)	{aSat.Earth.Periapsis,	OrbitColor	=	Orange}



Command-Line	Usage
Command-Line	Usage	—	Starting	the	GMAT	application	from	the	command	line



Synopsis
GMAT	[option...]	[script_file]

GMATConsole	[option...]	[script_file]



Description
The	GMAT	command	starts	the	GMAT	graphical	interface.	If	run	with	no
arguments,	GMAT	starts	with	the	default	mission	loaded.	If	script_file	is
specified,	and	is	a	valid	path	to	a	GMAT	script,	GMAT	loads	the	script	and
remains	open,	but	does	not	run	it.	The	GMATConsole	command	starts	the	GMAT
console	interface.	See	below	for	options	supported	by	each	interface.



Options
-b,	--batch

Runs	multiple	scripts	listed	in	specified	file.

-h,	--help

Start	GMAT	and	display	command-line	usage	information	in	the	message
window	if	using	the	GUI	version,	or	in	the	terminal	if	using	the	console
interface.

-l	<filename>,	--logfile	<filename>

Specify	the	log	file	(ignored	in	Console	interactive	mode.

-m,	--minimize

Start	GMAT	with	a	minimized	interface.

-ns,	--no_splash

Start	GMAT	without	the	splash	screen	showing.

-r	<filename>,	--run	<filename>

Automatically	run	the	specified	script	after	loading.

--save	<filename>

Saves	current	script	(interactive	mode	only).

--start-server

Starts	GMAT	Server	on	start-up	(ignored	for	Console).

-s	<filename>,	--startup_file	<filename>

Specify	the	startup	file	(ignored	in	Console	interactive	mode).



--summary

Writes	command	summary	(interactive	mode	only).

--verbose

Dump	info	messages	to	screen	during	run	(default	is	on).

-v,	--version

Start	GMAT	and	display	version	information	in	the	message	window.

-x,	--exit

Exit	GMAT	after	running	the	specified	script.	If	specified	with	only	a	script
name	(i.e.	NO	–run	option),	GMAT	simply	opens	and	closes.



Precedence	Rules
Some	file	locations,	the	log	file	for	example,	can	be	set	in	multiple	locations.
The	precedence	rules	are	as	follows.	Command	line	settings	have	the	highest
precedence,	and	those	values	are	always	used	if	set.	The	second	precedence	is
taken	by	script	level	settings,	for	example,	GmatGlobal.LogFile	=
C:\myLog.txt.	Finally,	if	no	other	method	is	set,	the	value	in	the	startup	file	is
used.

There	are	additional	precedence	rules	that	apply	when	the	startup	file	is
configured	to	use	RUN_MODE	=	TESTING.	In	that	case,	the	log	file	name	from	the
startup	file	has	precedence,	and	the	output	path	can	be	overwritten	by	settings
avialalble	in	the	GUI	Set	File	Paths	option	in	the	File	menu,	or	in	the	Run
Scripts	option	avialable	in	the	Scripts	menu	in	the	Resource	Tree.



Examples
Start	GMAT	and	run	the	script	MyScript.script:

GMAT	MyScript.script

Run	a	script	with	the	interface	minimized,	and	exit	afterwards:

GMAT	--minimize	--exit	MyScript.script



#Include	Macro
#Include	Macro	—	Load	or	import	a	script	snippet



Script	Syntax
#Include	'./Define_Path_to_Script_Snippet_File_In_SingleQuotes.txt'				



Description
Using	the	#Include	macro,	GMAT	now	allows	you	to	load	GMAT	resources	and
script	snippets	from	external	files	during	the	script	initialization	and	mission
execution.	This	is	a	powerful	feature	that	allows	you	to	reuse	configurations
across	multiple	users	and/or	scripts.	This	feature	can	be	used	to	simplify
automation	for	operations	and	Monte-Carlo	and	parametric	scanning	that	have
use	cases	with	a	lot	of	common	data	but	some	data	that	changes	from	one
execution	to	the	next.

The	script	snippet	external	files	that	you	can	now	load	using	the	#Include	macro
can	be	defined	with	any	file	extensions,	although	most	common	file	extensions
are	(*.script)	or	(*.txt).	The	#Include	macro	can	be	used	to	load	snippets	from
external	files	either	before	or	after	the	BeginMissionSequence	script	command.
The	#Include	macro	can	only	be	used	through	the	script	mode	and	its	usage	is
not	allowed	via	the	GUI.



GUI
There	are	two	rules	in	regards	to	how	GMAT's	GUI	behaves	whenever	we	use
the	#Include	macro:

1.	 If	any	#Include	macro	is	used	before	BeginMissionSequence,	then
GMAT’s	GUI	is	editable,	runnable	but	you	cannot	save	GMAT	scripts	from
the	GUI's	Save	button.	You	can	of	course	make	changes	to	your	script	in	the
Script	mode	and	save	your	changes	from	the	script	mode.

2.	 If	there	are	no	#Include	macros	before	BeginMissionSequence	and	there
are	any	number	of	#Include	macros	after	BeginMissionSequence,	then
GMAT’s	GUI	is	editable,	runnable	and	savable	(i.e.	you	can	make	changes
to	objects	in	the	GUI	and	then	save	those	changes	to	the	script	from	the
GUI's	Save	button).

Whenever	you	load	and	run	GMAT	scripts	that	may	use	an	#Include	macro
before	BeginMissionSequence	command,	(i.e.	Rule	#	1	defined	above),	then
GMAT’s	Resources,	Mission	and	Output	trees	will	change	color	to	a	light	olive
green	and	a	Non-Savable	GUI	Mode	message	will	show	up	in	red	color	at	the	top
center	of	the	main	GMAT	screen.	This	light	olive	green	color	change	and	Non-
Savable	GUI	Mode	message	is	simply	telling	you	that	GMAT's	GUI	is	editable,
runnable	but	you	cannot	save	changes	to	your	GMAT	script	via	GMAT	GUI's
Save	button.

If	your	GMAT	script	only	contains	#Include	macro(s)	after
BeginMissionSequence	(i.e.	Rule	#	2	defined	above),	then	no	color	changes
occur	in	GMAT's	Resources,	Mission	and	Output	trees	and	you	can	save
changes	to	your	scripts	either	from	GUI	or	script	mode.



Remarks
In	GMAT,	the	default	method	of	defining	the	file	path	of	the	external	file(s)	that
you	want	to	load	using	the	#Include	macro	is:	'./My_Script_Snippet.txt'.
This	is	the	easiest	and	most	convenient	method	of	defining	the	path	of	your
script	snippet	files	as	it	simply	requires	that	both	your	main	script	and	script
snippet	file	be	in	the	same	directory.	You	can	also	define	both	relative
('..\My_Script_Snippet.txt')	and	absolute	paths	to	your	external	script
snippet	files.

The	Examples	section	shows	you	simple	yet	powerful	examples	of	how	to	use
the	#Include	macro	in	simplifying	your	main	GMAT	scripts.



Examples
Initialize	S/C	from	an	external	script	snippet	file	called	'Initialize_Spacecraft.txt'.
Run	this	example	by	creating	a	.txt	file	and	paste	contents	of
'Initialize_Spacecraft.txt'	and	put	this	snippet	script	in	same	directory	as	the	main
GMAT	script.

Create	Spacecraft	aSat

%Initialize	aSat	from	external	file:

#Include	'./Initialize_Spacecraft.txt'

Create	Propagator	aProp

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedDays	=	0.5}

%%%%%%	Contents	of	'Initialize_Spacecraft.txt'	snippet	file	begins	below:

aSat.DateFormat	=	UTCGregorian

aSat.Epoch	=	'02	Jan	2000	11:59:28.000'

aSat.CoordinateSystem	=	EarthMJ2000Eq

aSat.DisplayStateType	=	Cartesian

aSat.X	=	8000

aSat.Y	=	2000

aSat.Z	=	4000

aSat.VX	=	0.5

aSat.VY	=	7.5

aSat.VZ	=	1.5

aSat.DryMass	=	1000

aSat.Cd	=	2.2

aSat.Cr	=	1.8

aSat.DragArea	=	20

aSat.SRPArea	=	1

aSat.NAIFId	=	-10009001

aSat.NAIFIdReferenceFrame	=	-9009001

aSat.OrbitColor	=	Yellow

aSat.TargetColor	=	Teal

aSat.Id	=	'SatId'



aSat.Attitude	=	CoordinateSystemFixed

aSat.SPADSRPScaleFactor	=	1

aSat.ModelFile	=	'aura.3ds'

aSat.ModelOffsetX	=	0

aSat.ModelOffsetY	=	0

aSat.ModelOffsetZ	=	0

aSat.ModelRotationX	=	0

aSat.ModelRotationY	=	0

aSat.ModelRotationZ	=	0

aSat.ModelScale	=	1

aSat.AttitudeDisplayStateType	=	'Quaternion'

aSat.AttitudeRateDisplayStateType	=	'AngularVelocity'

aSat.AttitudeCoordinateSystem	=	EarthMJ2000Eq

aSat.EulerAngleSequence	=	'321'

In	this	example,	we	call	an	external	file	through	#Include	macro	which	is	used
only	after	the	BeginMissionSequence	command.	Perform	a	finite	burn	from	an
external	script	snippet	file	called	'Perform_FiniteBurn.txt'.	Run	this	example	by
creating	a	.txt	file	and	paste	contents	of	'Perform_FiniteBurn.txt'	and	put	this
snippet	script	in	same	directory	as	the	main	GMAT	script.

Create	Spacecraft	aSat

Create	ChemicalTank	aFuelTank

Create	ChemicalThruster	aThruster

aThruster.DecrementMass	=	true

aThruster.Tank	=	{aFuelTank}

aThruster.C1	=	1000	%	Constant	Thrust

aThruster.K1	=	300	%	Constant	Isp

aSat.Thrusters	=	{aThruster}

aSat.Tanks	=	{aFuelTank}

Create	ForceModel	aFM

aFM.CentralBody	=	Earth

aFM.PointMasses	=	{Earth}

Create	Propagator	aProp

aProp.FM	=	aFM

Create	FiniteBurn	aFB

aFB.Thrusters	=	{aThruster}

Create	ReportFile	rf

rf.Add	=	{aSat.UTCGregorian,	aFB.TotalAcceleration1,	...



aFB.TotalAcceleration2,	aFB.TotalAcceleration3,	...

aFB.TotalMassFlowRate,	aFB.TotalThrust1,	...

aFB.TotalThrust2,	aFB.TotalThrust3,	...

aSat.aThruster.MassFlowRate,	...

aSat.aThruster.ThrustMagnitude,	aSat.aThruster.Isp}

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

BeginMissionSequence

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000}

%Perform	a	FiniteBurn	from	an	external	file:

#Include	'./Perform_FiniteBurn.txt'

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1000}

%%%%%%	Contents	of	'Perform_FiniteBurn.txt'	snippet	file	begins	below:

%	Do	a	Finite-Burn	for	1800	Secs

BeginFiniteBurn	aFB(aSat)

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	1800,		OrbitColor	=	Yellow}

EndFiniteBurn	aFB(aSat)

In	this	example,	we	call	external	files	through	#Include	macros	which	are	used
both	before	and	after	the	BeginMissionSequence.	Note	that	all	objects	in	the
Resources	tree	are	imported	and	initialized	from	an	external	script	snippet	file
called	'Entire_Resources_Tree.txt'.	Similarly,	all	commands	in	the	Mission	tree
are	loaded	from	an	external	snippet	file	called	'Entire_Mission_Tree.txt'.	Run
this	example	by	creating	a	.txt	file	and	paste	contents	of
'Entire_Resources_Tree.txt'.	Next	create	another	.txt	file	and	paste	contents	of
'Entire_Mission_Tree.txt'.	Put	both	of	these	snippet	scripts	in	same	directory	as
the	main	GMAT	script	and	then	run	the	main	GMAT	script.

%	Initialize	all	Resources	tree	objects

%	from	an	external	file:

#Include	'./Entire_Resources_Tree.txt'

BeginMissionSequence

%	Execute	all	Mission	tree	commands



%	from	an	external	file:

#Include	'./Entire_Mission_Tree.txt'

%%%%%%	Contents	of	'Entire_Resources_Tree.txt'	snippet	file	begins	below:

Create	Spacecraft	aSat

Create	Propagator	aProp

Create	ImpulsiveBurn	TOI

Create	DifferentialCorrector	aDC

Create	OrbitView	anOrbitView

anOrbitView.Add	=	{aSat,	Earth}

anOrbitView.SolverIterations	=	All

%%%%%%	Contents	of	'Entire_Mission_Tree.txt'	snippet	file	begins	below:

Propagate	aProp(aSat)	{aSat.Earth.Periapsis}

Target	aDC

Vary	aDC(TOI.Element1	=	0.24,	{Perturbation	=	0.001,	...	

Lower	=	0.0,	Upper	=	3.14159,	MaxStep	=	0.5})

Maneuver	TOI(aSat)

Propagate	aProp(aSat)	{aSat.Earth.Apoapsis}

Achieve	aDC(aSat.Earth.RMAG	=	42165)

EndTarget



Keyboard	Shortcuts
Keyboard	Shortcuts	—	Keyboard	shortcuts	in	the	graphical	user	interface



Description
The	GMAT	graphical	user	interface	(GUI)	offers	many	keyboard	shortcuts	for
easy	access	to	common	commands.	See	the	tables	below	for	details.



General	shortcuts
These	keyboard	shortcuts	are	available	any	time	when	using	GMAT.

Key Meaning

Ctrl+Shift+<number> Open	recent	script	<number>	(1–5).

Ctrl+N Create	a	new	mission.

Ctrl+Shift+N Create	a	new	empty	script.

Ctrl+O Open	the	Open	dialog	box.

Ctrl+S Save	the	current	mission.

F1 Open	the	Help	documentation.

Ctrl+F1 Open	the	Welcome	Page.

F5 Run	the	current	mission.

F9 Animate	the	current	graphics	window.

F12 Open	the	Save	As	dialog	box.



Tree	view	shortcuts
These	keyboard	shortcuts	are	available	when	navigating	the	Resources,	Mission,
and	Output	trees.

Key Meaning

Enter Open.

Space Open.

Delete Delete.

Ctrl+Shift+C Clone	(only	available	for	resources).

F2 Rename.

Ctrl+Page	Up View	the	next	tab.

Ctrl+Page	Down View	the	previous	tab.



Dialog	box	shortcuts
These	keyboard	shortcuts	are	available	when	interacting	with	dialog	boxes,	such
as	the	property	windows	for	the	Spacecraft	resource	or	the	Propagate
command.

Key Meaning

Tab Move	to	the	next	item.

Shift+Tab Move	to	the	previous	item.

Ctrl+C Copy.

Ctrl+V Paste.

Ctrl+W Close.

F1 Open	feature-specific
help.

F7 Show	script.



Script	editor	shortcuts
These	keyboard	shortcuts	are	available	when	using	the	script	editor.

Tab
Insert	a	tab	character.

Shift+Tab
Remove	a	tab	character	on	the	current
line.

Ctrl+Tab
Move	to	the	next	editor	button.

Ctrl+Shift+Tab
Move	to	the	previous	editor	button.

Ctrl+A
Select	all.

Ctrl+C
Copy.

Ctrl+F
Open	the	Find	and	Replace	dialog	box.

Ctrl+G
Open	the	Go	To	dialog	box.

Ctrl+H
Open	the	Find	and	Replace	dialog	box.

Ctrl+I
Indent	more.



Ctrl+Shift+I Indent	less.

Ctrl+R
Comment	the	current	line.

Ctrl+Shift+S
Save,Sync.

Ctrl+T
Uncomment	the	current	line.

Ctrl+V
Paste.

Ctrl+W
Close.

Ctrl+X
Cut.

Ctrl+Y
Redo.

Ctrl+Z
Undo.

F3
Find	next	(after	using	Find	and
Replace)..

Ctrl+Shift+F5
Save,Sync,Run.

Ctrl+Shift+F12
Save	As.



Additionally,	the	following	mouse	controls	are	available:

Hold	down	Ctrl	while	rotating	the	wheel	button	to	increase	or	decrease	the
font	size.



MATLAB	Interface
MATLAB	Interface	—	Interface	to	MATLAB	system



Description
The	MATLAB	interface	provides	a	link	to	the	Mathworks	MATLAB
environment,	allowing	GMAT	to	run	MATLAB	functions	as	if	they	were	native
functions	in	the	GMAT	script	language.

The	interface	cannot	be	controlled	directly	through	the	script	language,	though	it
can	be	in	the	GMAT	GUI.	Instead,	GMAT	starts	the	interface	automatically
when	it	calls	a	MATLAB	function.

There	are	two	GMAT	components	that	provide	user	access	to	the	interface.	For
details	on	declaring	a	MATLAB	function,	see	the	MatlabFunction	reference.
For	details	on	calling	a	function	and	passing	data,	see	the	CallMatlabFunction
reference.

See	Also:	CallMatlabFunction,	MatlabFunction



GUI

The	MATLAB	interface	provides	an	icon	in	the	Interfaces	folder	in	the
Resources	tree	that	can	be	used	to	control	the	interface.	Right-clicking	the	icon
shows	two	options:	Open	and	Close.

The	Open	menu	item	causes	GMAT	to	open	a	connection	to	the	MATLAB
Engine,	which	in	turns	displays	a	MATLAB	command	window	in	the
background.	This	connection	is	then	used	for	all	communication	between	GMAT
and	MATLAB	until	the	connection	is	closed.	Only	one	connection	can	be	open
at	a	time.

The	Close	menu	item	causes	GMAT	to	close	any	open	connection	to	the
MATLAB	Engine.	If	no	connection	is	open,	it	has	no	effect.



Remarks

Interface	Setup

The	following	conditions	must	be	true	for	GMAT	to	successfully	initiate
communication	with	MATLAB.	All	conditions	must	be	true	for	the	same
instance	of	MATLAB.

Install	a	compatible,	licensed	version	of	MATLAB	on	the	same	machine	on
which	GMAT	is	running.	GMAT	is	tested	with	the	latest	version	of
MATLAB	at	the	time	of	release,	though	versions	R2006b	and	newer	have
been	known	to	work.

The	architecture	(32-bit	or	64-bit)	of	GMAT	and	the	installed	version	of
MATLAB	must	match.	For	example,	the	32-bit	version	of	GMAT	is
compatible	only	with	the	32-bit	version	of	MATLAB.

On	Windows:

1.	 Add	the	following	path	(where	MATLAB	is	the	path	to	the	installed
version	of	MATLAB)	to	your	Path	environment	variable	(either	your
user	variable,	or	the	system	variable).	If	you	continue	to	have	trouble,
try	putting	this	path	at	the	very	beginning	of	your	system	path.

MATLAB\bin\win32	(or	win64	for	use	with	64-bit	versions	of	GMAT)
2.	 Register	MATLAB	for	use	as	a	COM	server	by	running:

matlab	-regserver

This	is	done	automatically	by	the	MATLAB	installer.	To	do	it
manually,	open	an	elevated	command	window	and	run	the	command
above.	Make	sure	to	run	the	command	in	the	folder	containing	the
executable	you	wish	to	use	(i.e.	MATLAB\bin\win32	or
MATLAB\bin\win64.)

On	Mac	OS	X:

The	MATLABFORGMAT	environment	variable	must	exist	and



contain	the	full	path	to	the	MATLAB	application	bundle	(e.g.
/Applications/MATLAB_R2010a/MATLAB_R2010a.app).

Note	that	64-bit	GMAT	must	be	used	to	interface	with	MATLAB	after
version	R2010a.

Note

Common	troubleshooting	tips	on	Windows:

If	you	are	using	the	officially-released	32-bit	version	of
GMAT,	make	sure	you	have	the	32-bit	version	of
MATLAB	installed.

If	the	path	above	exists	in	your	system	Path	variable,	try
place	it	at	the	front.

Make	sure	the	same	instance	of	MATLAB	is	referenced
both	in	the	Path	variable	and	when	running	matlab	-
regserver.

MATLAB	Engine	Connection

Warning

Caution:	GMAT	does	not	close	the	MATLAB	Command
Window	it	creates	after	a	run	has	completed.	This	allows
manual	inspection	of	the	MATLAB	workspace,	but	it	can	lead
to	confusing	behavior	if	MATLAB	functions	or	paths	are
changed	and	rerun	in	the	same	window.

We	recommend	closing	the	MATLAB	Command	Window	by
right-clicking	Matlab	in	the	Resources	tree	and	clicking	Close
between	each	run	if	you	are	actively	editing	the	script.



When	GMAT	runs	a	mission	that	contains	a	MATLAB	function	call,	it	opens	a
connection	to	the	MATLAB	engine	before	it	makes	the	function	call.	It	then
reuses	this	connection	for	the	rest	of	the	GMAT	session.

The	MATLAB	Engine	can	be	controlled	manually	through	the	Open	and	Close
options	available	by	right-clicking	the	Matlab	item	in	the	Resources	tree.



Examples
See	the	MatlabFunction	reference	for	common	examples.



Python	Interface
Python	Interface	—	Interface	to	the	Python	programming	language



Description
The	Python	interface	provides	a	link	to	the	Python	programming	language,
allowing	GMAT	to	run	Python	functions	as	if	they	were	native	functions	in	the
GMAT	script	language.

The	interface	cannot	be	controlled	directly	through	the	script	language.	Instead,
GMAT	starts	the	Python	interface	automatically	when	it	calls	a	Python	function.

The	Python	interface	is	accessed	using	GMAT's	CallPythonFunction	command.
For	details	on	calling	a	function	and	passing	data,	see	the	CallPythonFunction
reference.

See	Also:	CallPythonFunction



GUI
The	Python	interface	in	GMAT	is	launched	and	driven	internally.	Users	do	not
have	direct	access	to	the	interface	from	the	GMAT	graphical	user	interface.



Remarks

Interface	Setup

The	following	conditions	must	be	true	for	GMAT	to	successfully	initiate
communication	with	Python.	All	conditions	must	be	true	for	the	same	instance
of	Python.

A	compatible	version	of	Python	must	be	installed	on	the	same	machine	on
which	GMAT	is	running.	GMAT	is	built	and	tested	with	the	latest	version
of	64-bit	python	avialable	during	final	GMAT	release	preparation	unless
Python	is	released	during	the	last	few	weeks	of	a	GMAT	release.	The
interface	is	linked	with	the	Python	binary	libraries,	so	the	installed	version
of	Python	on	the	user's	machine	must	match	the	architecture	and	release
used	to	build	GMAT.

The	architecture	(32-bit	or	64-bit)	of	GMAT	and	the	installed	version	of
Python	must	match.	For	example,	the	32-bit	version	of	GMAT	is
compatible	only	with	the	32-bit	version	of	Python.

The	Python	system	accesses	Python	modules	on	the	user's	machine.	This
functionality	is	configured,	including	path	information	used	by	Python,	by
installing	Python	as	a	resource	for	all	users	of	the	machine.

On	Windows:

The	following	path	entries	(where	Python	is	the	path	to	the	installed
version	of	Python)	must	be	present	in	the	Path	environment	variable.

Python

Python/Scripts

The	following	path	(where	Python	is	the	path	to	the	installed	version
of	Python)	must	be	present	in	the	PYTHONPATH	environment	variable.

Python/Lib/site-packages



On	Linux:

The	Python	release	used	in	the	GMAT	build	must	be	the	default
Python	package	(that	is,	Python	3.4)	accessed	from	the	terminal.

Note

Common	troubleshooting	tips	on	Windows:

If	you	are	using	the	officially-released	32-bit	version	of
GMAT,	make	sure	you	have	the	32-bit	version	of	Python
installed.

If	the	path	above	exists	in	your	system	Path	variable,	try
placing	it	at	the	front	of	the	path	specification.

Python	Engine	Connection

Warning

GMAT	does	not	close	the	Python	interface	after	a	run	has
completed.	This	feature	prevents	anomalous	behavior	that	can
occur	when	loading	some	Python	modules	repeatedly	during	a
run,	but	it	can	lead	to	confusing	behavior	if	Python	files	are
changed	and	rerun	in	the	same	GMAT	session.

We	recommend	restarting	GMAT	after	editing	Python	functions
in	order	to	guarantee	that	your	edits	take	effect	when	you	rerun
your	script.

When	GMAT	runs	a	mission	that	contains	a	Python	function	call,	it	loads	Python
into	memory	as	an	embedded	system	in	GMAT	before	it	makes	the	function	call.
It	then	reuses	this	system	for	the	rest	of	the	GMAT	session.



Examples
See	the	CallPythonFunction	reference	for	common	examples.



Script	Language
Script	Language	—	The	GMAT	script	language



Script	Structure
A	GMAT	script	is	a	text	file	consisting	of	valid	script	syntax	elements,	such	as
initialization	statements,	Mission	Sequence	commands,	and	comments.	These
syntax	elements	are	described	later	in	this	specification.

At	the	highest	level,	a	GMAT	script	is	made	up	of	two	sections:	Initialization	and
the	Mission	Sequence.	These	sections	each	contain	statements,	but	they	have
different	rules	about	which	sorts	of	statements	are	valid.	The
BeginMissionSequence	command	defines	the	beginning	of	the	Mission
Sequence	section.

Initialization

The	first	section	in	a	script	file,	referred	to	as	Initialization,	is	responsible	for
creating	resources	and	setting	their	initial	state.	The	Initialization	section	can
contain	the	following	types	of	statements:

resource	creation	statements	(the	Create	statement)

initialization	statements

Only	literal	assignments	are	allowed	in	this	section;	no	execution	of	commands



or	evaluation	of	parameters	is	done.	In	the	GUI,	the	Initialization	section	maps
directly	to	the	Resources	tree.	All	resources	created,	and	all	fields	set,	in	this
section	appear	as	resources	in	the	GUI	when	the	script	is	loaded.

Mission	Sequence

The	Mission	Sequence	section	contains	the	Mission	Sequence,	or	the	list	of
GMAT	commands	that	are	executed	sequentially	when	the	mission	is	run.	The
Mission	Sequence	section	can	contain	the	following	types	of	statements:

command	statements

The	Mission	Sequence	begins	at	the	first	instance	of	the	BeginMissionSequence
command;	therefore,	this	must	be	the	first	command	statement	in	the	script	file.
For	backwards	compatibility,	if	the	BeginMissionSequence	command	is
missing,	the	Mission	Sequence	begins	with	the	first	command	encountered.

In	the	GUI,	the	Mission	Sequence	section	maps	directly	to	the	Mission	tree.
Each	statement	in	the	script	(with	the	exception	of	the	BeginScript/EndScript
compound	command)	is	displayed	as	a	single	element	in	the	tree.



Basic	Syntax

Source	Text

A	GMAT	script	consists	of	a	single	file	containing	characters	from	the	7-bit	US-
ASCII	character	set.	The	script	language	is	case-sensitive,	so	this	line	creates
four	different	Variable	resources:

Create	Variable	x	X	y	Y

The	script	language	is	made	up	of	lines.	A	line	can	be:

empty

a	comment	(see	Comments,	below)

a	statement	(see	Statements)

Statement	lines	can	be	split	over	multiple	physical	lines	with	the	continuation
marker	(“...”).

Line	Termination

Script	lines	are	terminated	by	any	of	the	following	ASCII	character	sequences:

line	feed	(hex:	0A)

carriage	return	(hex:	0D)

carriage	return	followed	by	line	feed	(hex:	0D0A)

White	Space

White	space	can	appear	above	or	below	any	line,	before	or	after	any	statement
within	a	line,	and	many	other	places	in	a	script.	The	following	characters	are
recognized	as	white	space:

space	(hex:	20)



horizontal	tab	(hex:	09)

Horizontal	tab	characters	are	preserved	in	string	literals,	but	are	replaced	by
spaces	in	some	other	contexts	(e.g.	equations,	comments).

Comments

Comments	begin	with	the	percent	symbol	(“%”,	hex:	25)	and	extend	to	the	end	of
the	line.	There	is	no	multi-line	or	embedded	comment	in	the	script	language.

File	Paths

Several	resource	types	have	fields	that	accept	file	paths	as	input.	The	general
syntax	of	such	paths	is	common	to	the	language,	but	some	specific	behavior	is
specified	by	each	resource.

Forward	slashes	and	backslashes	can	be	used	interchangeably	within	GMAT,	and
can	be	mixed	in	a	single	path.	The	following	three	paths	are	considered	identical:

data/planetary_ephem/spk/de421.bsp

data\planetary_ephem\spk\de421.bsp

data\planetary_ephem/spk\de421.bsp

Absolute	paths	are	passed	to	the	underlying	operating	system	as-is,	aside	from
normalizing	the	slashes.

For	input	files,	relative	paths	are	first	considered	relative	to	the	script	file,	then	to
a	location	defined	by	each	resource	type	separately,	and	usually	defined	in	the
GMAT	startup	file.	For	details,	see	the	reference	documentation	for	each
resource	type.

For	output	files,	relative	paths	are	considered	relative	to	the	script	file.	If	only	a
filename	is	specified,	the	file	is	placed	into	the	output	location	defined	in	the
GMAT	startup	file	(usually	GMAT's	output	folder).

File	paths	are	written	as	string	literals	(see	Strings	under	Data	Types).	Quotes	are
mandatory	if	the	path	contains	spaces,	but	are	optional	otherwise.



Data	Types

Literals

Integers

Integers	are	written	as	a	sequence	of	literal	digits,	with	no	decimal.	Preceding
zeros	and	prepended	signs	(+	or	-)	are	allowed.	Scientific	notation	is	not
permitted.

Real	Numbers

Real	numbers	can	be	written	in	any	of	the	following	formats:

12	(whole	number)

12.5	(decimal)

1.25e1	or	1.25e-1	(scientific	notation)

In	all	formats,	the	base	can	contain	preceding	or	trailing	zeros.	In	scientific
notation,	the	exponent	can	be	prepended	by	a	sign	(+	or	-)	and	can	contain
preceding	zeros,	but	cannot	contain	a	decimal.	The	exponent	delimiter	is	case-
insensitive	(e.g.	"e"	or	"E").

Strings

String	literals	are	delimited	by	single-quote	characters	(“'”,	hex:	27).

All	language-supported	characters	are	allowed	in	strings,	with	the	exceptions
below.	There	are	no	escape	characters	or	character	substitute	sequences	(such	as
“\n”	for	line	feed).

In	Initialization,	the	following	characters	are	not	allowed	in	string	literals:

some	non-printable	characters	(NUL,	SUB)	(hex:	00,	1A)



line	termination	characters	(LF,	CR)	(hex:	0A,	0D)

percent	character	(“%”)	(hex:	25)

In	the	Mission	Sequence,	the	following	characters	are	not	allowed	in	string
literals:

some	non-printable	characters	(NUL,	SUB)	(hex:	00,	1A)

line	termination	characters	(LF,	CR)	(hex:	0A,	0D)

percent	character	(“%”)	(hex:	25)

Quotes	are	generally	optional,	but	are	mandatory	in	Initialization	if	the	string
contains	whitespace,	any	script	language	symbols,	or	any	GMAT-recognized
elements	(e.g.	keywords,	resource	names).	They	are	mandatory	in	the	Mission
Sequence	in	the	same	instances,	and	additionally	if	the	string	contains
mathematical	operators	and	certain	non-printable	characters.	We	recommend
quoting	all	string	literals.

Booleans

The	following	boolean	values	are	supported:

true	(alias:	on)

false	(alias:	off)

Boolean	literals	are	case-insensitive.

Enumerated	Values

Many	resource	fields	accept	enumerated	values.	For	example,
Spacecraft.DateFormat	accepts	one	of	10	values	(A1ModJulian,
A1Gregorian,	etc.).	Enumerated	values	are	written	as	string	literals.	Quotes	are
always	optional,	as	none	contain	spaces	or	special	characters.

References



References	to	resources	and	resource	parameters	are	indicated	by	the	name	of
the	resource	or	resource	parameter.	References	are	written	as	string	literals.
Quotes	are	always	optional,	as	resource	names	and	parameters	cannot	contain
spaces	or	special	characters.

Resources

Resource	Types

Resources	in	GMAT	are	instances	of	a	base	resource	type	that	are	given	user-
defined	names	and	store	data	independently	of	other	resources	of	the	same	type.
Resource	types	include	Spacecraft,	GroundStation,	and	Variable.	They	cannot
be	used	directly;	they	must	first	be	instantiated	with	the	Create	statement.	For
example:

Create	Spacecraft	aSat

In	the	example,	Spacecraft	is	the	resource	type	and	aSat	is	the	resource.	This	is
similar	to	the	concept	of	classes	and	objects	in	object-oriented	programming,
where	GMAT’s	resource	types	are	analogous	to	classes	and	its	resources	are
analogous	to	objects.

Naming	Rules

Resources	must	be	named	according	to	these	rules:

Name	must	be	made	up	of	ASCII	letters,	numbers,	or	the	underscore
character	(“_”).	This	corresponds	to	hex	values	30–39,	41–5A,	5F,	and	61–
7A.

Name	must	begin	with	a	letter	(A–Z	or	a–z,	hex:	41–5A	or	61–7A)

Name	cannot	be	a	reserved	keyword	or	command	name

Shadowing

When	the	same	name	is	used	for	multiple	purposes	in	a	script,	the	shadowing
rules	apply	to	determine	how	a	reference	to	the	name	is	interpreted.



Resource	names	must	be	unique	within	a	script.	If	a	script	attempts	to	create
multiple	resources	that	have	the	same	case-sensitive	name,	the	first	Create
statement	in	the	script	with	that	name	is	executed	and	all	subsequent	ones	are
ignored.	The	conflict	is	noted	in	a	warning	message.

Caution

GMAT	does	not	test	to	ensure	that	Resource	names	and
function	names	are	unique.	Care	should	be	taken	to	use	unique
names	for	user-defined	GMAT,	MATLAB,	and	Python
functions	to	avoid	name	clashes.

Command	names	and	keywords	are	reserved.	They	cannot	be	used	as	resource
names.	See	the	Keywords	section	for	a	list	of	keywords.

Built-in	function	names	(like	sin	or	cos)	can	be	used	as	resource	names	with
one	exception:	a	reference	to,	for	example,	“sin(1)”	on	the	right-hand	side	of	an
equal	sign	will	be	interpreted	as	a	call	to	the	sin	built-in	function,	not	element	1
of	an	Array	resource	named	sin.	The	same	is	true	for	the	other	built-in
functions.

Resource	type	names	(like	“Spacecraft”)	can	be	used	as	resource	names.	In	such
an	instance,	the	conflict	is	resolved	by	the	context.	For	example:

Create	Spacecraft	Spacecraft

Create	Spacecraft	aSat

In	the	example,	GMAT	knows	by	context	that	in	the	second	Create	statement,
the	argument	“Spacecraft”	refers	to	the	resource	type,	not	the	resource	instance
created	in	the	first	statement.

Compound	Types

Array	of	Literals

Arrays	of	literals	are	accepted	as	input	by	some	resources.	Arrays	of	booleans,



integers,	and	real	numbers	are	surrounded	by	square	brackets	(“[“	and	“]”,	hex:
5B	and	5D).	Arrays	of	strings	are	surrounded	by	curly	brackets	(“{“	and	“}”,
hex:	7B	and	7D).	In	all	cases,	the	values	are	separated	by	whitespace	or	commas.
Only	one-dimensional	arrays	of	literals	are	supported.	See	the	following
examples.

anOrbitView.DrawObject	=	[true	true]													%	boolean	array

aSat.OrbitColor	=	[255	0	0]																						%	integer	array

anOrbitView.ViewPointVector	=	[3e4,	1.2,	-14]				%	real	array

aSpacecraft.OrbitSpiceKernelName	=	...

				{'file1.bsp',	'file2.bsp'}																			%	string	array

Arrays	of	References

Some	resources	accept	arrays	of	references	to	other	resources	or	resource	fields.
These	reference	arrays	are	surrounded	by	curly	brackets	(“{“	and	“}”,	hex:	7B
and	7D)	and	the	values	are	separated	by	whitespace	or	commas.	Only	one-
dimensional	arrays	of	references	are	supported.	The	values	can	optionally	be
surrounded	by	single	quotes.	See	the	following	example.

aForceModel.PointMasses	=	{'Luna',	Mars}		%	array	of	resource	references

aReport.Add	=	{Sat1.X,	'Sat1.Y',	Sat1.Z}		%	array	of	parameter	references

Conversion

In	contexts	that	accept	a	real	number,	integer	literals	(those	with	no	fractional
value)	are	automatically	converted	to	the	equivalent	floating-point	value	upon
execution.

There	is	no	built-in	conversion	between	string	values	and	numeric	values,
though	such	a	conversion	may	be	implemented	by	individual	commands.

Keywords

The	script	language	recognized	these	reserved	keywords:

Create

GMAT



function

In	addition,	all	command	names	are	reserved,	including	commands	created	by
active	plugins.



Expressions
The	only	types	of	expressions	common	to	multiple	commands	are	logical
expressions,	which	are	used	by	the	If/Else	and	While	commands.	They	are
documented	here	instead	of	in	both	command	references.

Relational	Operators

The	following	relational	operators	are	supported	in	logical	expressions:

<

less	than

<=

less	than	or	equal	to

>

greater	than

>

greater	than	or	equal
to

==

equal	to

~=

not	equal	to

The	relational	operators	are	scalar	operators;	they	do	not	operate	on	Array
resources	(only	individual	elements).

Each	relational	operator	operates	on	the	values	of	its	arguments,	not	on	their
identity.	Consider	the	example:



Create	Variable	x	y

x	=	5

y	=	5

BeginMissionSequence

If	x	==	y

				%	body

EndIf	

Logical	Operators

The	following	logical	operators	are	supported	in	logical	expressions:

&

logical	AND	(short-circuit	operator)

|

logical	OR

The	logical	AND	operator	exhibits	short-circuit	behavior.	That	is,	if	the	left-hand
side	of	the	operator	evaluates	to	false,	the	right-hand	side	is	not	evaluated,
though	it	is	still	parsed	for	syntactic	validity.

Logical	Expressions

Logical	expressions	are	composed	of	relational	expressions	combined	with
logical	operators.

Relational	expressions	must	contain	one	relational	operator	and	two	valid
arguments.	Literal	boolean	values	are	not	supported,	and	numeric	values	are	not
interpreted	as	truth	or	falsehood.	See	the	following	examples:

1	==	5										%	false

1	~=	5										%	true

true												%	error

1															%	error

A															%	where	"A"	is	an	Array	resource;	error

1	==	5	<=	3					%	error



Logical	expressions	must	contain	at	least	one	relational	expression.	Multiple
relational	expressions	are	combined	using	logical	operators.	All	relational
expressions	are	evaluated	first,	from	left	to	right,	then	the	full	logical	expression
is	evaluated	from	left	to	right,	though	the	short-circuit	AND	operator	(“&”)	may
terminate	the	full	evaluation.	Parentheses	are	not	allowed.	See	the	following
examples:

1	==	1																			%	true

2	~=	4	|	3	==	3										%	true

8	>=	3	&	3	<	4											%	true

2	<	4	&	1	>	3	|	5	==	5			%	true

2	<	4	&	(1	>	3	|	5	==	5)	%	error

1	&	1																				%	error

true	|	false													%	error						



Statements

Statement	Structure

Script	statements	consist	of	(in	order):

1.	 Optional	"GMAT	"	prefix
2.	 Valid	statement	syntax	(with	optional	line	continuation)
3.	 Optional	semicolon
4.	 Line	termination	sequence

Any	statement	in	the	script	may	be	prefixed	by	the	characters	“GMAT	“.	This
prefix	is	optional	and	has	no	effect,	but	is	supported	for	backward	compatibility.

A	statement	can	be	split	over	multiple	physical	lines	by	using	the	line
continuation	marker,	three	sequential	period	characters	(“...”,	hex:	2E2E2E),
before	each	line	break	within	the	statement.

Any	statement	may	be	terminated	with	a	semicolon	character	(“;”,	hex:	3B).	The
semicolon	is	optional	and	has	no	effect,	but	is	supported	for	backward
compatibility.	Multiple	statements	cannot	be	combined	on	a	line.

White	space	may	occur	before	or	after	a	statement,	or	between	any	of	the
components	listed	above.	It	is	also	generally	allowed	anywhere	inside	of	a
statement,	and	any	exceptions	are	noted	in	the	documentation	specific	to	that
statement.

The	Create	Statement

The	Create	statement	is	a	special	statement	that	creates	resources	and	assigns
them	names.	It	is	only	valid	in	the	Initialization	section	of	the	script.	It	has	the
following	components:

1.	 Create	keyword
2.	 Resource	type
3.	 Resource	name(s)

The	Create	keyword	indicates	the	start	of	the	statement.	It	is	followed	by	the



resource	type,	which	indicates	the	type	of	resource	to	create.	This	is	followed	by
a	resource	name,	a	user-defined	name	that	is	then	used	to	refer	to	that	particular
resource.	This	name	must	follow	the	resource	naming	rules,	listed	previously.

The	only	exception	to	this	syntax	is	when	creating	an	Array	resource,	in	which
case	the	dimension	of	the	resource	must	also	be	specified

Multiple	resource	names	are	allowed,	in	which	case	multiple	resources	of	the
same	type	will	be	created.	Multiple	names	are	separated	by	white	space	or	by
commas	(“,”,	hex:	2C).

See	the	following	examples:

Create	Spacecraft	aSat		%	creates	a	resource	"aSat"	of	type	Spacecraft

Create	ForceModel	aFM

Create	Propagator	aProp

Create	Variable	x	y					%	creates	two	Variable	resources:	"x"	and	"y"

Create	String	s1,	s2				%	creates	two	String	resources:	"s1"	and	"s2"

Create	Array	A[2,2]					%	creates	a	2x2	Array	resource	named	"A"

Initialization	Statements

Initialization	statements	are	special	statements	that	assign	initial	values	to
resource	fields.	They	are	only	valid	in	the	Initialization	section	of	the	script,	and
generally	take	the	following	form:

resource.field	=	value

Some	fields,	like	those	on	ForceModel	resources,	have	a	multiple-dotted	form:

ForceModel.GravityField.PrimaryBody.Degree	=	value

All	initialization	statements	are	composed	of	the	following	elements:

1.	 Resource	name
2.	 Period	character	(“.”,	hex:	2E)
3.	 Field	name,	potentially	in	multiple-dotted	form
4.	 Equal	character	(“=”,	hex:	3D)
5.	 Initial	field	value

The	resource	name	must	refer	to	a	resource	created	previously	in	same	script.



The	field	name	must	refer	to	a	valid	field	that	exists	for	the	associated	resource
type.	Parameters	cannot	be	set	with	an	initialization	statement,	though	it	is	valid
to	set	a	dual-mode	field	(one	that	can	also	be	a	parameter).	Fields	and	parameters
are	listed	in	the	documentation	for	each	resource	type.

All	values	are	taken	literally;	no	evaluation	is	performed.	Therefore,	numeric
and	string	values	must	be	specified	as	literals,	and	resource	names	and
parameters	are	stored	as	references.	See	the	following	example:

Create	Spacecraft	aSat

Create	XYPlot	aPlot

Create	Variable	x	y	z

x	=	7100																			%	valid

aSat.X	=	7100														%	valid

aSat.X	=	7100	+	2										%	error	(mathematical	expression)

aSat.X	=	x																	%	error	(field	accepts	literal,	and	variable

																											%	evaluation	does	not	occur)

aPlot.XVariable	=	x								%	valid	(field	accepts	reference	to	Variable	x)

aPlot.YVariables	=	{y,	z}		%	valid	(field	accepts	array	of	references	to

																											%	Variables	y	and	z)

For	backwards	compatibility,	there	is	one	exception	to	the	literal-value	rule:
Spacecraft	resources	can	copied	with	an	initialization	statement	like:

Create	Spacecraft	aSat1	aSat2

aSat2	=	aSat1																			%	Valid	only	for	Spacecraft	resources

Fields	that	have	no	assigned	value	in	the	Initialization	section	of	the	script
remain	at	their	default	values,	as	specified	in	the	documentation	for	each
resource	type.

Command	Statements

Command	statements	invoke	GMAT	commands.	They	must	appear	in	the
Mission	Sequence	section	of	the	script.	One	special	command,
BeginMissionSequence,	initiates	the	Mission	Sequence.

Command	statements	are	displayed	by	the	GUI	as	individual	line	items	in	the
Mission	tree.	The	only	exception	is	the	BeginScript/EndScript	compound
command;	this	is	displayed	as	a	single	ScriptEvent	item	by	the	GUI.



Command	statements	are	composed	of	the	following	elements:

1.	 Command	name	(except	assignment	commands)
2.	 Optional	label
3.	 Command	arguments

The	command	name	is	the	name	of	the	command	being	invoked	(e.g.	Propagate
or	BeginFiniteBurn).	The	command	name	is	mandatory	with	one	exception:	the
assignment	command	is	indicated	by	its	structure	(“LHS	=	RHS”)	instead	of	its
name.

A	command	label	is	an	optional	string	literal	that	can	be	added	immediately	after
the	command	name.	This	label	is	used	by	the	GUI	to	“name”	the	statement	in	the
Mission	tree,	and	is	intended	for	a	short	text	description	to	aid	the	user.	It	must
be	single-quoted,	whether	or	not	it	contains	spaces.	The	command	label	may
contain	any	ASCII	character	except	certain	non-printable	characters	(NUL,
SUB),	line	termination	characters	(LF,	CR),	the	percent	sign	(“%”),	and	the	single
quote	(“'“).	If	the	command	label	is	omitted,	the	Mission	tree	statement	is	given
a	default	label	made	up	of	the	command	name	and	an	ID	number.	For	example,
if	the	third	Propagate	command	in	the	script	is	unlabeled,	it	will	be	given	the
default	label	“Propagate3”.

The	command	arguments	control	the	behavior	of	the	command.	The	syntax	of
the	arguments	is	specified	by	each	command	individually,	and	is	documented
separately.	Some	commands,	such	as	Stop,	have	no	arguments.

See	the	following	example:

Propagate	'Prop	to	periapsis'	aProp(aSat)	{aSat.Periapsis}

In	the	example,	“Propagate”	is	the	command	name,	“'Prop	to	periapsis'”	is
the	command	label,	and	“aProp(aSat)	{aSat.Periapsis}”	is	the	argument
string.

Compound	Statements

Compound	statements	are	command	statements	that	control	the	execution	of
other	command	statements.	Compound	statements	are	composed	of	three
elements:



1.	 Begin	statement
2.	 Body
3.	 End	statement

The	begin	statement	carries	the	name	of	the	command	itself,	while	the	end
statement	begins	with	the	string	“End”.	For	example,	the	While	command	is	a
compound	command	composed	of	two	statements:

While	['label']	arguments

				[body]

EndWhile

The	If/Else	compound	command	is	composed	of	three	statements:

If	['label']	arguments

				[body]

Else

				[body]

EndIf	

The	body	of	a	compound	command	may	consist	of	independent	command
statements,	possibly	including	other	compound	statements.	Certain	compound
commands	may	limit	the	commands	that	can	be	present	in	the	body,	while	other
commands	may	only	be	contained	within	certain	compound	commands.	These
limitations	are	documented	separately	for	each	command.



Processing
GMAT	processes	a	script	in	two	phases:	interpretation	and	execution.	This
section	gives	an	overview	of	the	processing	sequence;	low-level	details	are
documented	in	Chapter	17	of	the	GMAT	Architectural	Specification.

Interpretation

GMAT	interprets	a	script	in	two	stages:	a	parsing	stage	and	a	validation	stage.	In
the	parsing	stage,	GMAT	reads	and	interprets	each	line	of	the	script	sequentially.
As	it	interprets	a	line,	it	checks	it	for	syntactic	correctness	and	performs	any
initialization	needed	by	the	line.	For	example,	if	the	line	being	interpreted	is	a
Create	statement,	the	related	resource	is	created.	If	GMAT	encounters	an
initialization	line,	it	assigns	the	appropriate	value	to	the	indicated	resource	field.
And	if	it	encounters	a	command	statement,	it	creates	the	command	structure	and
interprets	its	arguments.	All	language,	resource	initialization,	and	command
syntax	errors	are	caught	during	this	parsing	stage.

In	the	validation	stage,	GMAT	checks	that	all	references	between	resources	are
valid.	For	example,	if	the	script	indicates	that	a	Spacecraft	resource	should	be
defined	in	relation	to	a	specific	CoordinateSystem	resource,	the	reference	is
validated	during	this	stage.	The	validation	checks	that	all	referenced	resources
exist	and	are	of	the	correct	type.

The	two-stage	interpretation	method	affects	the	order	of	statements	in	the	script.
For	example,	Create	statements	must	appear	in	the	script	above	any
initialization	statements	that	reference	the	resource	being	created.	But	because
validation	is	performed	separately,	the	Create	statement	for	a
CoordinateSystem	resource	can	appear	in	the	script	below	an	initialization	line
that	references	this	resource.	See	the	following	examples:

Create	Spacecraft	aSat

%	This	is	valid;	the	aSat	resource	has	been	created	by	the	line	above.

aSat.DateFormat	=	TAIGregorian

%	This	is	invalid;	the	aReport	resource	has	not	yet	been	created.

aReport.Filename	=	'report.txt'

Create	ReportFile	aReport



Create	XYPlot	aPlot

%	This	is	valid;	the	reference	to	aSat	is	validated

%	after	all	resources	are	created.

aPlot.XVariable	=	aSat.A1ModJulian

Create	Spacecraft	aSat

Once	both	stages	have	completed,	the	script	has	been	loaded	into	GMAT.	In	the
GUI,	if	any,	the	Resources	tree	is	populated	with	the	resources	created	in	the
Initialization	section	of	the	script,	and	the	Mission	tree	is	populated	with	the
command	statements	in	the	Mission	Sequence.

The	interpretation	phase	is	also	sometimes	called	the	“build”	phase	or	the	“load”
phase.

Execution

When	a	mission	is	run,	GMAT	first	builds	interconnections	between	resources,
then	performs	command	execution.	In	this	phase,	all	commands	in	the	Mission
Sequence	are	executed	sequentially,	in	the	order	of	definition	in	the	script.	When
a	command	statement	is	executed,	its	arguments	are	fully	processed	by	the
command,	and	any	remaining	errors	are	reported.	Examples	of	execution-phase
errors	include	mismatched	data	types,	out-of-bounds	array	references,	and
divide-by-zero	errors.

Processing	Errors

If	GMAT	encounters	an	error	during	the	interpretation	stage	(parsing	or
validation),	the	mission	is	not	loaded.	Instead,	GMAT	reverts	to	a	minimum
mission	consisting	of:

SolarSystem

Default	CoordinateSystem	resources:	EarthMJ2000Eq,
EarthMJ2000Ec,	EarthFixed,	EarthICRF

If	an	error	is	encountered	during	the	execution	stage	(linking	or	command
execution),	execution	of	the	mission	stops	at	the	point	of	the	error.



Startup	File
Startup	File	—	The	gmat_startup_file.txt	configuration	file



Description
The	GMAT	startup	file	(gmat_startup_file.txt)	contains	basic	configuration
settings	for	the	GMAT	application.	This	includes	the	locations	of	data	files	and
plugins,	search	paths	for	user-defined	functions,	and	various	options	that	control
execution.

The	startup	file	must	be	located	in	the	same	location	as	the	GMAT	executable,
and	must	be	named	gmat_startup_file.txt.	GMAT	loads	the	startup	file	once
during	program	initialization.



File	Format

Basic	Syntax

The	startup	file	is	a	text	file	containing	characters	from	the	7-bit	US-ASCII
character	set.	The	startup	file	is	case-sensitive.

Lines	are	terminated	by	any	of	the	following	ASCII	character	sequences:

line	feed	(hex:	0A)

carriage	return	(hex:	0D)

carriage	return	followed	by	line	feed	(hex:	0D0A)

White	space	can	appear	above	or	below	any	line	and	before	or	after	any	key	or
value.	The	following	characters	are	recognized	as	white	space:

space	(hex:	20)

horizontal	tab	(hex:	09)

Comments	begin	with	the	number	sign	(“#”)	and	must	appear	on	their	own	line.
Inline	comments	are	not	allowed.

Setting	Properties

Properties	are	specified	via	key-value	pairs,	with	the	following	syntax:

PROPERTY	=	VALUE

Properties	are	one	word,	with	no	spaces.	Values	extend	from	the	first	non-
whitespace	character	after	the	equal	sign	to	the	end	of	the	line.	At	least	one
whitespace	character	is	required	on	both	sides	of	the	equal	sign.

Properties	are	named	according	to	the	following	conventions:

Properties	that	accept	directory	paths	end	with	“_PATH”.



Properties	that	accept	file	paths	end	with	“_FILE”.

The	behavior	of	duplicate	property	entries	is	dependent	on	the	individual
property.	In	general:

Multiple	PLUGIN	entries	cause	GMAT	to	load	each	named	plugin.

Multiple	identical	*_FUNCTION_PATH	entries	add	each	path	to	the	search
path,	starting	with	the	first.

Multiple	identical	*_FILE	entries	are	ignored;	the	last	value	is	used.

Accessing	Property	Values

The	value	of	any	property	ending	in	“_PATH”	(including	custom	ones)	can	be
referenced	by	other	values.	To	reference	a	value,	include	the	property	name	as
part	of	the	value.	Repeated	slash	characters	are	collapsed.	For	example:

ROOT_PATH	=	../

OUTPUT_PATH	=	ROOT_PATH/output/

sets	OUTPUT_PATH	to	a	value	of	"../output/".

File	Paths

Forward	slashes	and	backslashes	can	be	used	interchangeably,	and	can	be	mixed
in	a	single	path.	The	following	three	paths	are	considered	identical:

data/planetary_ephem/spk/de421.bsp
data\planetary_ephem\spk\de421.bsp
data\planetary_ephem/spk\de421.bsp

Absolute	paths	are	passed	to	the	underlying	operating	system	as-is,	aside	from
normalizing	the	slashes.

Relative	paths	are	relative	to	the	location	of	the	GMAT	executable.



Properties
The	available	properties	are	shown	here,	with	default	values	where	appropriate.

System

ROOT_PATH=../

Path	to	GMAT	root	directory.

Plugins

PLUGIN

Path	to	plugin	library,	without	extension.	Multiple	PLUGIN	properties	are
allowed,	one	per	plugin.

User	Functions

GMAT_FUNCTION_PATH

Search	path	for	GMAT	function	files	(.gmf	files).	May	occur	multiple	times
to	add	multiple	paths.

MATLAB_FUNCTION_PATH

Search	path	for	MATLAB	function	files	(.m	files).	May	occur	multiple
times	to	add	multiple	paths.

PYTHON_MODULE_PATH

Search	path	for	Python	modules.	May	occur	multiple	times	to	add	multiple
paths.

Output

LOG_FILE=OUTPUT_PATH/GmatLog.txt

Path	of	application	log	file



MEASUREMENT_PATH=OUTPUT_PATH/

Path	of	simulated	measurement	data	files.	Only	used	with	the
libGmatEstimation	plugin.

OUTPUT_PATH=../output/

Output	directory	path	for	ReportFile	resources.

SCREENSHOT_FILE=OUTPUT_PATH/OUTPUT_PATH

Output	path	and	base	filename	for	screenshots.	The	base	filename	is
appended	with	“_###.png”,	where	“###”	is	a	number	sequence	starting	from
001.	If	the	base	filename	is	missing,	it	defaults	to	“SCREEN_SHOT”.

VEHICLE_EPHEM_PATH=OUTPUT_PATH/

Default	output	directory	path	for	EphemerisFile	resources.

Data	Files

Note	this	section	only	discusses	the	paths	that	can	be	set	via	the	startup	file.	See
Configuring	Data	Files	or	a	discussion	of	file	contents	of	data	files	that	are
regularly	updated	and	how	to	maintain	those	files.

CELESTIALBODY_POT_PATH=DATA_PATH/gravity/celestialbody/

Search	path	for	gravity	potential	files	for	CELESTIALBODY.	CELESTIALBODY	is
the	name	of	any	celestial	body	defined	in	a	given	GMAT	mission.	This
property	has	no	default	for	user-defined	celestial	bodies.

ATMOSPHERE_PATH

Path	to	directory	containing	atmosphere	model	data.

BODY_3D_MODEL_PATH

Path	to	directory	containing	CelestialBody	3D	model	files.

CSSI_FLUX_FILE



Path	to	default	CSSI	solar	flux	file.

DATA_PATH=ROOT_PATH/data/

Path	to	directory	containing	data	files.

DE405_FILE=DE_PATH/leDE1941.405

Path	to	DE405	DE-file	ephemeris	file.

DE421_FILE

Path	to	DE421	DE-file	ephemeris	file.

DE424_FILE

Path	to	DE424	DE-file	ephemeris	file.

EGM96_FILE=EARTH_POT_PATH/EGM96.cof

Path	to	EGM-96	Earth	gravity	potential	file.

EOP_FILE

Path	to	IERS	“EOP	08	C04	(IAU1980)”	Earth	orientation	parameters	file.

ICRF_FILE

Path	to	data	required	for	computing	rotation	matrix	from	FK5	to	ICRF
(ICRF_Table.txt).

JGM2_FILE=EARTH_POT_PATH/JGM2.cof

Path	to	JGM-2	Earth	gravity	potential	file.

JGM3_FILE=EARTH_POT_PATH/JGM3.cof

Path	to	JGM-3	Earth	gravity	potential	file.

LEAP_SECS_FILE=TIME_PATH/tai-utc.dat

Path	to	cumulative	leap	seconds	file	from	http://maia.usno.navy.mil.

http://maia.usno.navy.mil


LP165P_FILE=LUNA_POT_PATH/LP165P.cof

Path	to	LP165P	Moon	gravity	potential	file.

LSK_FILE

Path	to	SPICE	leap	second	kernel.

MARINI_TROPO_FILE

Path	to	file	containing	location	specific	atmospheric	data	needed	for	the
Marini	tropospheric	model.

MARS50C_FILE=MARS_POT_PATH/Mars50c.cof

Path	to	Mars50c	Mars	gravity	potential	file.

MGNP180U_FILE=VENUS_POT_PATH/MGNP180U.cof

Path	to	MGNP180U	Venus	gravity	potential	file.

NUTATION_COEFF_FILE=PLANETARY_COEFF_PATH/NUTATION.DAT

Path	to	nutation	series	data	for	FK5	reduction	(NUTATION.DAT).

PLANETARY_COEFF_PATH=DATA_PATH/planetary_coeff/

Path	to	directory	containing	planetary	coefficient	files.

PLANETARY_EPHEM_DE_PATH

Path	to	directory	containing	DE	ephemeris	files.

PLANETARY_EPHEM_SPK_PATH

Path	to	directory	containing	SPICE	planetary	ephemeris	files.

PLANETARY_PCK_FILE

Path	to	SPICE	planetary	constants	kernel	for	default	celestial	bodies.

PLANETARY_SPK_FILE



Path	to	SPICE	ephemeris	kernel	for	default	celestial	bodies.

SCHATTEN_FILE

Path	to	default	Schatten	solar	flux	predict	file.

SPACECRAFT_MODEL_FILE

Default	spacecraft	3D	model	file.

SPAD_PATH

Path	to	directory	containing	SPAD	data	files.

SPAD_SRP_FILE

Path	to	default	SPAD	SRP	model.

TIME_PATH=DATA_PATH/time/

Path	to	directory	containing	leap-second	files.

VEHICLE_EPHEM_CCSDS_PATH

Path	to	directory	containing	spacecraft	CCSDS-OEM	ephemeris	files.

VEHICLE_EPHEM_SPK_PATH

Path	to	directory	containing	spacecraft	SPK	ephemeris	files.

VEHICLE_MODEL_PATH

Path	to	directory	containing	3D	spacecraft	models.

Application	Files

CELESTIALBODY_TEXTURE_FILE=TEXTURE_PATH/DefaultTextureFile.jpg

Path	to	texture	file	for	CELESTIALBODY.	CELESTIALBODY	is	the
name	of	any	of	the	built-in	celestial	bodies	in	GMAT.	DefaultTextureFile	is
the	default	texture	file	defined	for	that	celestial	body.



BORDER_FILE

Path	to	constellation	border	catalog.

CONSTELLATION_FILE=STAR_PATH/inp_Constellation.txt

Path	to	constellation	catalog.

GUI_CONFIG_PATH=DATA_PATH/gui_config/

Path	to	directory	containing	GUI	configuration	files.

HELP_FILE

Path	to	help	file.

ICON_PATH=DATA_PATH/graphics/icons/

Path	to	directory	containing	application	icons.

MAIN_ICON_FILE

Path	to	GUI	icon.

PERSONALIZATION_FILE=DATA_PATH/gui_config/MyGmat.ini

Path	to	GUI	configuration	and	history	file.

SPACECRAFT_MODEL_FILE=MODEL_PATH/aura.3ds

Path	to	default	Spacecraft	3D	model	file.

SPLASH_FILE=SPLASH_PATH/GMATSplashScreen.tif

Path	to	GUI	splash	image.

SPLASH_PATH=DATA_PATH/graphics/splash/

Path	to	directory	containing	splash	file.

STAR_FILE=STAR_PATH/inp_StarCatalog.txt



Path	to	star	catalog.

STAR_PATH=DATA_PATH/graphics/stars/

Path	to	directory	containing	star	and	constellation	catalogs.

TEXTURE_PATH=DATA_PATH/graphics/texture/

Path	to	directory	containing	celestial	body	texture	files.

Program	Settings

MATLAB_APP_PATH

[OS	X	only]	Path	to	MATLAB	app	(.app).

MATLAB_MODE=SHARED

MATLAB	interface	connection	mode.	The	available	options	are:

NO_MATLAB

Disables	the	MATLAB	interface.

SHARED

Each	GMAT	instance	shares	a	single	MATLAB	connection.	Default.

SINGLE

Each	GMAT	instance	uses	its	own	MATLAB	connection.

WRITE_GMAT_KEYWORD=ON

Write	“GMAT	“	prefix	before	assignment	lines	when	saving	a	GMAT	script
file.	Accepted	values	are	ON	and	OFF.

WRITE_PERSONALIZATION_FILE=ON

Write	data	on	window	locations	and	other	local	configuration	settings	to	the
GMAT.ini	file.	Setting	to	OFF	avoids	issues	encountered	when
simultaneous	instances	of	GMAT	try	to	write	to	the	user	config	file	at	the



same	time,	resulting	in	a	system	error.	Accepted	values	are	ON	and	OFF.

Debug	Settings

DEBUG_FILE_PATH=OFF

Debug	file	path	handling.	Accepted	values	are	ON	and	OFF.

DEBUG_MATLAB=OFF

Debug	MATLAB	Interface	connection.	Accepted	values	are	ON	and	OFF.

DEBUG_PARAMETERS=OFF

Write	table	of	available	parameters	to	log	file	on	startup.	Accepted	values
are	ON	and	OFF.

HIDE_SAVEMISSION=TRUE

Hide	the	SaveMission	command	from	the	GUI.	Accepted	values	are	TRUE
and	FALSE.

PLOT_MODE

XYPlot	window	placement	mode.	The	only	accepted	value	is	TILE,	which
will	cause	GMAT	to	ignore	plot	window	placement	fields	and	tile	the
windows.

RUN_MODE

GMAT	execution	mode.	The	available	options	are:

EXIT_AFTER_RUN

When	GMAT	is	called	with	the	-r	or	--run	command-line	argument,
automatically	exit	after	the	run	is	finished.

TESTING

Shows	testing	options	in	the	GUI.

TESTING_NO_PLOTS



Same	as	TESTING,	but	also	disables	all	graphical	output	in	the	GUI.

ECHO_COMMANDS

Write	commands	to	log	file	as	they	are	executed.	Accepted	values	are
TRUE	and	FALSE.

NO_SPLASH

Skip	showing	the	splash	screen	on	GMAT	startup.	Accepted	values	are
TRUE	and	FALSE.



Tracking	Data	Types	for	OD
Tracking	Data	Types	for	Orbit	Determination	—	This	section	describes	tracking
data	types	and	file	formats	for	orbit	determination.



Measurement	Types	Supported
GMAT	supports	the	following	measurement	types	for	orbit	determination.

GMAT
Measurement
Type	Name

Measurement	Description Measurement
Units

DSN_SeqRange DSN	Sequential	Ranging	(TRK-2-34	data
Type	7),	ramped	and	un-ramped

Range	Units

DSN_TCP DSN	Total	Count	Phase	(TRK-2-34	data
Type	17)	measurements,	implemented	as	a
derived	"Doppler"	type	measurement	using
successive	phase	measurements

Hertz

GPS_PosVec Earth-fixed	position	vectors	from	a	spacecraft
on-board	GPS	receiver

Kilometers

Range Two-way	transponder	range.	A	round-trip
range	measurement	which	includes	the
Spacecraft	Transponder.HardwareDelay

Kilometers

RangeRate Two-way	coherent	transponder	range-rate.
This	is	modeled	as	the	difference	between
range	measurements	at	the	end	and	start	of
the	Doppler	count	interval,	divided	by	the
length	of	the	count	interval.	The
measurement	is	time-tagged	at	the	end	of	the
interval.

Kilometers/sec

The	GMAT	measurement	type	names	listed	are	the	string	names	to	be	used	in
instances	of	ErrorModel,	AcceptFilter,	RejectFilter,	and	TrackingFileSet,
and	in	the	GMAT	GMD-format	tracking	data	file	to	identify	each	measurement
type	to	GMAT.



Deprecated	Measurement	Type	Names
This	version	of	GMAT	deprecates	the	DSNRange/Range_RU	and
Doppler/Doppler_HZ	measurement	type	names.	They	are	replaced	by	the	new
consistent	naming	convention	introduced	in	the	previous	section.	The	old	names
will	still	work	in	the	current	version	of	GMAT,	but	users	are	encouraged	to
transition	their	scripts	to	use	of	the	new	type	names.

The	new	data	type	names	employ	the	same	name	in	the	GMD	file,	error	model,
and	tracking	file	set	tracking	configuration,	eliminating	the	need	for	a	mapping
between	the	names	employed	in	each	resource.	For	those	still	using	the
deprecated	data	type	names,	the	following	table	provides	a	guide.

GMD	File	and
TrackingFileSet.AddTrackingConfig

Measurement	Type	Name

ErrorModel	and
StatisticsAccept/RejectFilter
Measurement	Type	Name

DSNRange Range_RU

Doppler Doppler_HZ



GMAT	Tracking	Data	File	Formats
GMAT	uses	a	native	ASCII	tracking	data	file	format	called	a	“GMAT
Measurement	Data	File”,	or	GMD	file.	This	file	format	currently	implements	the
following	observation	measurement	types:

DSN	Sequential	Ranging,	TRK-2-34	data	Type	7

Derived	Doppler	using	successive	DSN	Total	Count	Phase	Doppler	tracking
measurements,	TRK-2-34	data	Type	17

DSN	transmit	frequency	ramp	records,	TRK-2-34	data	Type	9

Earth-fixed	position	vectors	from	a	spacecraft	on-board	GPS	receiver

Two-way	coherent	transponder	range	measurements

Two-way	coherent	transponder	range-rate	measurements

Each	GMD	file	consists	of	a	series	of	space-delimited	ASCII	records.	Details	of
the	GMD	file	format	for	each	observation	type	are	provided	in	the	following
sections.	A	single	GMD	file	may	contain	one	or	more	of	the	record	types
described	below,	but	ramp	records	must	be	in	a	separate	file.	For	further	details
on	the	TRK-2-34	data	formats,	please	consult	the	TRK-2-34	DSN	Tracking
System	Data	Archival	Format,	820-013	Deep	Space	Network	External	Interface
Specification.

DSN	Sequential	Range

DSN	TRK-2-34	Sequential	Ranging	employs	the	DSN_SeqRange	measurement
type.	DSN_SeqRange	is	a	round-trip	range	observation	measured	in	range	units.
The	GMD	record	format	for	DSN_SeqRange	tracking	data	is	shown	in	the	table
below.

Field Description

1 Observation	receive	time	in	TAIModJulian

2 Observation	type	name	-	DSN	TRK-2-34	Type	7	Sequential	Range



=	DSN_SeqRange

3
Observation	type	index	number	-	9004	=	DSN_SeqRange	(TRK-2-
34)

4 Downlink	Ground	station	pad	ID

5 Spacecraft	ID

6 Range	observable	(meas_rng	or	rng_obs	from	TRK-2-34	Sequential
Range	CHDO)

7 Uplink	frequency	band	indicator	-	0	=	unknown,	1	=	S-band,	2	=	X-
band,	3	=	Ka-band,	4	=	Ku-band,	5	=	L-band

8 Uplink	frequency	in	Hz

9 Range	modulo	value	(rng_modulo	from	TRK-2-34	Sequential
Range	CHDO)

The	transmit	frequency	specified	in	the	TRK-2-34	range	data	GMD	file	is	only
used	if	a	frequency	ramp	table	is	not	available.	If	a	transmit	frequency	ramp
record	file	is	provided	on	the	TrackingFileSet.RampTable	field,	the	transmit
frequency	will	be	determined	from	the	ramp	table	and	the	frequency	specified	in
the	range	data	GMD	file	will	be	ignored.	A	sample	of	GMD	data	records	for
TRK-2-34	Sequential	Range	data	is	shown	below.

%				-	1	-									-	2	-						3					4		5								-	6	-											7								-	8	-															-	9	-

27236.157789352	DSN_SeqRange	9004		45	59	+9.810325186004e+005			1	+2.091414432000e+009	+1.048576000000e+006

27236.158240741	DSN_SeqRange	9004		45	59	+5.813243487947e+005			1	+2.091414432000e+009	+1.048576000000e+006

27236.158692130	DSN_SeqRange	9004		45	59	+1.863046908683e+005			1	+2.091414432000e+009	+1.048576000000e+006

27236.159143519	DSN_SeqRange	9004		45	59	+8.450116485521e+005			1	+2.091414432000e+009	+1.048576000000e+006

DSN	Total	Count	Phase

DSN	TRK-2-34	Total	Count	Phase	employs	the	DSN_TCP	measurement	type.
As	shown	below,	the	GMAT	Doppler	measurement	type,	measured	in	Hz,	is
derived	from	successive	Total	Phase	Count	(TCP)	observations.

									Derived	"Doppler"	Observation=	−	[	ϕ	(	t	3	e	)	−	ϕ	(	t	3	s	)	]	t	3	e	−	t	3	s		=	
−	[	ϕ	(	t	3	e	)	−	ϕ	(	t	3	s	)	]	DCI			(Hz)



where

									t	3	s	,	t	3	e	=	start	and	end	of	reception	interval										DCI						=	Doppler
Count	Interval	in	seconds										ϕ										=	Total	Count	Phase	(from	type	17	TRK-
2-34	record)

The	GMD	record	format	for	DSN_TCP	tracking	data	is	shown	in	the	table
below.

Field Description

1 Observation	receive	time	in	TAIModJulian

2 Observation	type	name	-	DSN	TRK-2-34	Type	17	Total	Count
Phase	=	DSN_TCP

3 Observation	type	index	number	-	9006	=	DSN_TCP	(TRK-2-34)

4 Downlink	ground	station	pad	ID

5 Spacecraft	ID

6 Uplink	frequency	band	indicator	-	0	=	unknown,	1	=	S-band,	2	=	X-
band,	3	=	Ka-band,	4	=	Ku-band,	5	=	L-band

7 Doppler	count	interval	in	seconds

8 Observation	value	-	Doppler	observable	derived	from	Total	Count
Phase	(TCP)	TRK-2-34	Type	17	measurements

A	sample	of	GMD	data	records	for	TRK-2-34	Total	Count	Phase	derived
Doppler	data	is	shown	below.

%				-	1	-								-	2	-					3			4			5				6			7												-	8	-

27226.011944444		DSN_TCP		9006	15	6241			1		10		-2.2445668331979342e+09

27226.012060185		DSN_TCP		9006	15	6241			1		10		-2.2445668330920730e+09

27226.012175926		DSN_TCP		9006	15	6241			1		10		-2.2445668329843016e+09

27226.012291667		DSN_TCP		9006	15	6241			1		10		-2.2445668328729177e+09

Transmit	Frequency	Ramp	Records

GMAT	supports	DSN	tracking	utilizing	both	constant	and	ramped	transmit
frequencies.	If	the	transmit	frequency	is	constant,	GMAT	will	use	the	transmit
frequency	specified	on	the	DSN_SeqRange	measurement	records	for	the



computation	of	the	range	observation	and	a	ramp	table	file	is	not	required.	If	the
transmit	frequency	is	ramped,	the	user	must	generate	a	GMD	file	of	ramp
records	from	TRK-2-34	Type	9	raw	data,	and	provide	the	GMD	ramp	table	on
the	TrackingFileSet.RampTable	object	field.	If	a	ramp	table	is	provided,
GMAT	ignores	the	frequency	specified	on	the	DSN_SeqRange	records	and
instead	computes	the	transmit	frequency	from	the	ramp	records.

The	record	format	for	ground-based	range-rate	tracking	data	is	shown	in	the
table	below.

Field Description

1 Observation	receive	time	in	TAIModJulian

2 Ground	station	pad	ID

3 Spacecraft	ID

4 Uplink	frequency	band	indicator	-	0	=	unknown,	1	=	S-band,	2	=	X-
band,	3	=	Ka-band,	4	=	Ku-band,	5	=	L-band

5 Ramp	type	-	0	=	snap,	1	=	start	of	new	ramp,	2	=	medial	report,	3	=
periodic	report,	4	=	end	of	ramps,	5	=	ramping	terminated	by
operator,	6	=	invalid/unknown

6 Ramp	frequency	in	Hz

7 Ramp	rate	in	Hz/sec

A	sample	GMD	ramp	file	is	shown	below.

%					-	1	-						2		3				4			5									-	6	-														-	7	-

27238.640625000	34	234			2			1	+7.186571173393e+09	+6.010599999990e-01

27238.654513889	34	234			2			1	+7.186571894665e+09	+5.822699999990e-01

27238.659664352	34	234			2			3	+7.186572153775e+09	+5.822699999990e-01

27238.668402778	34	234			2			1	+7.186572593389e+09	+5.590199999990e-01

27238.682291667	34	234			2			1	+7.186573264213e+09	+5.315100000000e-01

Earth-fixed	Position	Vectors	from	a	Spacecraft	On-board
GPS	Receiver

GPS-derived	Earth-fixed	position	vectors	employ	the	GPS_PosVec
measurement	type.	The	fixed	frame	assumed	for	the	vector	components	is



GMAT's	EarthFixed	reference	frame	(see	CoordinateSystem).	The	record	format
for	GPS_PosVec	tracking	data	is	shown	in	the	table	below.

Field Description

1 Observation	receive	time	in	TAIModJulian

2 Observation	type	name	-	GPS_PosVec

3 Observation	type	index	number	-	9014	=
GPS_PosVec

4 GPS	receiver	ID

5 Earth-fixed	position	X	component	(km)

6 Earth-fixed	position	Y	component	(km)

7 Earth-fixed	position	Z	component	(km)

The	GMAT	user	should	be	aware	that	the	GPS_PosVec	measurement	is	currently
treated	as	a	vector	quantity.	The	vector	components	are	not	treated	as
independent	observations.	If	any	component	of	a	vector	observation	(X,	Y,	or	Z)
is	edited	from	the	solution	by	the	user	or	by	autonomous	sigma	editing,	the	other
components	associated	with	that	observation	will	also	be	edited	out,	regardless
of	their	quality.

A	sample	GMD	GPS_PosVec	file	is	shown	below.

%					-	1	-											-	2	-					3			4														-	5	-															-	6	-																	-	7	-

26112.586516203704	GPS_PosVec	9014	800									-3575.594419									-5758.828897										1440.891615

26112.587210648147	GPS_PosVec	9014	800									-3257.134099									-5984.420574										1265.579859

26112.587905092594	GPS_PosVec	9014	800									-2926.558570									-6187.149174										1084.793371

26112.588599537037	GPS_PosVec	9014	800									-2585.076391									-6366.230816											899.311591

26112.589293981480	GPS_PosVec	9014	800									-2233.950454									-6520.997704											709.941434

Two-Way	Transponder	Range

Two-way	range	measurements	that	pass	through	a	Spacecraft	transponder	use	the
Range	measurement	type.	Range	is	a	round-trip	range	observation	measured	in
kilometers.	The	measurement	model	in	GMAT	will	include	the	Spacecraft
Transponder.HardwareDelay,	but	the	HardwareDelay	may	be	set	to	zero.	The
GMD	record	format	for	Range	data	is	shown	in	the	table	below.



Field Description

1 Observation	receive	time	in	TAIModJulian

2 Observation	type	name	-	Range

3
Observation	type	index	number	-	9002	=	Range

4 Downlink	ground	station	pad	ID

5 Spacecraft	ID

6 Two-way	(round-trip)	range	observation	in
kilometers

A	sample	of	GMD	data	records	for	Range	data	is	shown	below.

%				-	1	-									-	2	-		3				4			5									-	6	-

27182.022395833334	Range	9002	117	322	+7.447171160686e+04

27182.022511574076	Range	9002	117	322	+7.447456623065e+04

27182.022627314815	Range	9002	117	322	+7.447742325277e+04

27182.022743055557	Range	9002	117	322	+7.448028087448e+04

Two-Way	Range-rate

Two-way	coherent	range-rate	tracking	uses	the	RangeRate	measurement	type.
RangeRate	is	the	difference	of	the	range	observation	at	the	end	of	the	averaging
interval	and	the	start	of	the	averaging	interval,	divided	by	the	averaging	interval
duration.	The	time	tag	is	at	the	end	of	the	averaging	interval.	The	GMD	record
format	for	RangeRate	data	is	shown	in	the	table	below.

Field Description

1 Observation	receive	time	in	TAIModJulian

2 Observation	type	name	-	RangeRate

3
Observation	type	index	number	-	9012	=	RangeRate

4 Downlink	ground	station	pad	ID



5 Spacecraft	ID

6 Uplink	frequency	band	indicator	-	0	=	unknown,	1	=	S-band,	2	=	X-
band,	3	=	Ka-band,	4	=	Ku-band,	5	=	L-band

7 Doppler	averaging	interval	in	seconds

8 Range-rate	observation	in	kilometers/second

A	sample	of	GMD	data	records	for	RangeRate	data	is	shown	below.

%				-	1	-														-	2	-								3						4							5							6					7															-	8	-

23430.503148148146				RangeRate				9012				GDS				LEOSat				1				10												-11.61467029

23430.503842592592				RangeRate				9012				GDS				LEOSat				1				10												-11.45104085

23430.504537037035				RangeRate				9012				GDS				LEOSat				1				10												-11.18499007

23430.505231481478				RangeRate				9012				GDS				LEOSat				1				10												-10.76465017



Release	Notes



GMAT	R2018a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2018a	was	released
March	2018.	This	is	the	first	public	release	since	June,	2017,	and	is	the	12th
release	for	the	project.

Below	is	a	summary	of	key	changes	in	this	release.	Please	see	the	full	R2018a
Release	Notes	on	JIRA	for	a	complete	list.

Milestones	and	Accomplishments

We're	excited	that	GMAT	has	recently	seen	signficant	adoption	for	operational
misssion	support.

GMAT	is	now	used	as	the	primary	system	for	maneuver	planning	and
product	generation	for	the	Solar	Dynamics	Observatory	(SDO).

GMAT	is	now	used	as	the	primary	operational	tool	for	orbit	determination
for	the	Solar	and	Heliospheric	Observatory	(SOHO)	mission.

GMAT	is	now	used	as	the	primary	operational	tool	for	maneuver	planning,
orbit	determination,	and	product	generation	for	the	Advanced	Composition
Explorer	(ACE)	mission.

GMAT	is	now	used	as	the	primary	operational	tool	for	maneuver	planning,
orbit	determination,	and	product	generation	for	the	Wind	mission.

In	April	2018,	the	Transiting	Exoplanet	Survey	Satellite	(TESS)	mission	is
planned	to	launch.	TESS	has	used	GMAT	as	its	primary	tool	for	mission
design	and	maneuver	planning	from	proposal	development	through
operations.

In	April	2018,	the	LRO	project	will	hold	an	operational	readiness	review	to
perform	final	evaluation	of	GMAT	to	replace	GTDS	as	the	primary
operational	orbit	determination	(OD)	tool	for	the	Lunar	Reconnaissance
Orbiter	(LRO).

New	Features

http://bugs.gmatcentral.org/secure/ReleaseNote.jspa?version=11104&styleName=Html&projectId=10000&Create=Create&atl_token=B8F2-GAHA-O7AM-D5JZ%7C78ed3832b129ed9d51b5d382a7c04b0602d918d9%7Clin


Orbit	Determination	Enhancements

The	following	new	features	and	capabilities	have	been	added	to	GMAT's
estimation	system.

The	batch	estimator	now	supports	a	capability	that	freezes	the
measurements	used	for	estimation	after	a	user-specified	number	of
iterations.	This	functionality	avoids	estimator	chatter	that	can	occur	near
solutions	when	some	measurements	are	near	the	sigma	edit	boundary	and
are	repeatedly	removed	during	one	iteration	and	then	added	back	in	the	next
iteration.

Numerics	are	improved	when	calculating	Doppler	and	DSN_TCP
measurement	residuals,	improving	noise	behavior	in	the	residuals.

The	GroundStation	object	supports	a	new	troposphere	model,	the	Marini
model,	matchig	the	implementation	used	in	GTDS.	One	operational
advantage	of	the	Marini	model	is	that	it	doesn’t	require	input	of	weather
data	at	the	Ground	station.	(Models	that	do	accept	weather	data	may	have
more	accuracy.)

Time	is	now	modeled	using	three	data	members,	a	day	number,
seconds	of	day,	and	fraction	of	second.	High	precision	time	is
surgically	implemented	in	appropriate	models	such	as	Earth	rotation,
planetary	ephemerides	and	others.

Range	differences	are	computed	using	a	Taylor	series	and	differenced
Chebyshev	polynomials.

Measurement	simulation	now	accounts	for	central	body	occultation	when
orbiting	bodies	other	than	the	Earth.

Estimation	now	supports	solving	for	the	Keplerian	state	estimation	with	a
priori	constraints.

For	BLS	estimation,	the	user	may	choose	to	perform	measurement	editing
using	either	the	weighted	root-mean-square	(WRMS)	of	residuals,	or	the
predicted	weighted	root-mean-square	(WRMSP)	of	residuals.	Residuals	of
elevation	edited	data	are	now	reported.



The	batch	estimator	report	now	shows	the	name	of	input	files	used	in	the
configuration	and	the	observation	time	span.	Additionally,	spacecraft
hardware	configurations	and	new	measurement	statistics	information	are
included.

GMD	file	improvements

As	shown	by	the	new	features	above,	GMAT’s	orbit	determination	(OD)
capability	has	been	significantly	enhanced.	As	with	all	new	releases,	missions
that	use	GMAT’s	OD	capability	should	perform	a	baseline	set	of
regression/performance	tests	prior	to	using	the	new	version	of	GMAT	OD	for
operational	purposes.

Example	scripts:

See	Ex_R2018a_CompareEphemeris.script	for	a	new	example	on
performing	ephemeris	compares	at	non-Earth	bodies.

See	Ex_R2018a_MergeEphemeris.script	for	an	example	demonstrating
merging	ephemerides.

Built-in	Optimizer

GMAT	now	contains	a	built-in	optimizer	called	Yukon,	developed	by	the	GMAT
team.	The	algorithm	uses	an	SQP	line	search	algorithm	with	an	active	set	QP-
subproblem	algorithm.	Yukon	is	designed	for	small	scale	problems	and	is	not
applicable	to	large,	sparse	optimization	problems.	See	the	Yukon	reference	for
more	information.

Improvements

Tide	modeling	is	improved,	and	GMAT	now	supports	lunar	tides.

STM	propagation	now	includes	variational	terms	from	drag	models.

The	degree	and	order	of	STM	contributions	from	harmonic	gravity	is	now
settable	by	the	user	and	defaults	to	the	maximum	order	on	the	gravity	file	or
100,	whichever	is	lower.



The	buffer	size	that	determines	the	number	of	plot	points	stored	by	the
OrbitView	Resource	is	now	exposed	to	the	user.

Significant	performance	improvements	have	been	made	in	the	IRI2007
ionosphere	model.

The	script	editor	highlights	errors	and	warnings	found	on	the	first	pass	of
parsing.

GMAT	now	supports	body	fixed	and	TOD	coordinate	systems	for	Code	500
Ephemerides	and	supports	all	central	bodies	in	the	Code	500	Ephemeris
format.

The	CommandEcho	command	has	been	added	to	GMAT	to	support	printing
commands	to	the	message	window	and	log	file	as	they	are	executed	in	a
mission	sequence.	This	command	is	particularly	useful	when	debugging
user	scripts.	See	the	CommandEcho	reference	for	more	information.

The	Code500	propagator	type	now	automatically	detects	the	endianness
when	reading	Code500	files.

The	STK	ephemeris	propagator	now	uses	Hermite	interpolation,	and
includes	velocity	information	in	the	position	interpolation	for	segments	that
contain	fewer	than	7	rows	of	data.	Velocity	interpolation	for	segments	with
fewer	than	7	rows	of	data	is	performed	by	forming	the	hermite	interpolating
polynomial	for	position,	and	then	differentiating	the	position	interpolating
polynomial	to	obtain	the	velocity.

You	can	now	set	the	step	size	of	an	ephemeris	propagator	during	mission
execution	(i.e.	after	the	BeginMissionSequence	command).

The	startup	file	now	allows	optional	updating	of	the	user	configuration	file.
This	avoids	issues	encountered	when	simultaneous	instances	of	GMAT	try
to	write	to	the	user	config	file	at	the	same	time,	resulting	in	a	system	error.

The	Python	data	file	utility	now	updates	data	files	used	by	the	IRI2007
model.

The	GMAT	CMake	based	build	system	now	supports	plugin	components
developed	by	external	groups.



GMAT	now	supports	GUI	plugin	components.

Compatibility	Changes

Batch	estimation	now	requires	the	use	of	fixed	step	integration.

The	RotationDataSource	on	CelestialBody	Resources	is	deprecated	and	no
longer	has	an	effect.

The	Spacecraft	EstimationStateType	parameter	is	deprecated.

The	EphemerisFile	OutputFormat	options	‘UNIX’	and	‘PC’	are	deprecated.
‘BigEndian’	and	‘LittleEndian’	should	be	used	instead.

The	EarthTideModel	on	the	ForceModel	Resource	has	been	renamed	to
TideModel

GMAT	now	returns	error	codes	via	the	command	line	interface	to	indicate	if
issues	were	encountered	during	system	execution.

When	using	the	Write	command	to	write	Resource	properties	to	a
ReportFile,	only	scalar,	real	quantities	are	written.	Properties	that	are	either
not	real	or	are	arrays	are	ignored	and	a	warning	is	issued.

Upcoming	Changes	in	R2019a

This	is	the	last	version	of	GMAT	tested	on	Windows	7.

Known	&	Fixed	Issues

Fixed	Issues

Over	112	bugs	were	closed	in	this	release.	See	the	"Critical	Issues	Fixed	in
R2018a"	report	for	a	list	of	critical	bugs	and	resolutions	in	R2018a.	See	the
"Minor	Issues	Fixed	for	R2018a"	report	for	minor	issues	addressed	in	R2018a.

The	STK	ephemeris	propagator	now	correctly	handles	segments	with	fewer
than	5	rows	of	data.

http://bugs.gmatcentral.org/issues/?filter=14102
http://bugs.gmatcentral.org/issues/?filter=14103


STK	ephemeris	files	that	contain	event	boundaries	now	correctly	count	the
number	of	ephemeris	rows	represented	in	the	NumberOfEphemerisPoints
keyword	value	pair.

Comments	describing	the	source	of	ephemeris	discontinuities	in	CCSDS
ephemeris	files	are	now	written	inside	of	meta	data	blocks.

Known	Issues

See	the	"All	Known	Issues	for	R2018a"	report	for	a	list	of	all	known	issues	in
R2018a.

There	are	several	known	issues	in	this	release	that	we	consider	to	be	significant:

ID Description

GMT-5417 Adaptive	step	size	control	behaves	inconsistently	when	used	in
GMAT's	navigation	system.	Fixed	step	integration	is	currently
required	for	simulation	and	estimation.

GMT-6202 Spikes	of	up	to	1	mm/sec	may	be	observed	in	some	cases	in
DSN_TCP	and	Doppler	ionospheric	corrections.	The	IRI2007
model	has	some	jumps	in	the	electron	density	when	moving
through	time.	Spikes	are	caused	when	the	start	and	end	signal
paths	are	located	on	different	sides	of	these	jumps.

GMT-6367 For	Macs	with	a	Touch	Bar	(GUI	issue	only):	there	appears	to	be
an	issue	with	WxWidgets,	the	third	party	GUI	library	used	by
GMAT,	and	the	Mac	Touch	Bar.	Crashes	occur	frequently	and	the
traceback	indicates	that	the	issue	lies	in	Apple	code,	related	to	the
Touch	bar	specifically,	possibly	caused	by	a	NULL	string	pointer.
Our	analysis	suggests	this	issue	cannot	be	addressed	by	the	GMAT
team	or	by	WxWidgets;	however,	we	will	continue	to	investigate.
In	the	meantime,	the	GMAT	Console	version	will	continue	to
work,	and	the	GUI	version	(Beta)	will	work	on	Macs	without	a
Touch	Bar.

http://bugs.gmatcentral.org/issues/?filter=14104


GMAT	R2017a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2017a	was	released	June
2017.	This	is	the	first	public	release	since	Oct.	2016,	and	is	the	11th	release	for
the	project.	This	is	the	first	64	bit	version	of	GMAT	on	Windows	(Mac	and
Linux	are	64	bit	only).

Below	is	a	summary	of	key	changes	in	this	release.	Please	see	the	full	R2017a
Release	Notes	on	JIRA	for	a	complete	list.

New	Features

Orbit	Determination	Enhancements

The	following	new	features	and	capabilities	have	been	added	to	GMAT.

Three	new	data	types	can	now	be	processed	in	GMAT;	GPS	point	solution
(GPS_PosVec),	range	data	(Range),	and	range	rate	(RangeRate)	data.	Note
that	all	of	these	data	types	have	been	through	regression	testing	but	only	the
DSN	range	data	type	has	been	through	substantial	operational	testing.	Thus,
the	DSN	range	data	type	is	the	most	validated	data	type	available	in	GMAT.

A	minimally	tested	and	documented	alpha	version	of	an	extended	Kalman
filter	algorithm	is	now	available	for	experimental	use.	This	plugin	is
available	but	turned	off	by	default.	To	use,	enable	the	"libEKF"	plugin	in
the	startup	file.

A	second-level	data	editing	capability	has	been	added.	This	feature	allows
you	to	choose	observations	that	are	computed	and	reported	but	not	used	in
the	estimation	state	update.

STK	.e	Ephemeris	Propagator

GMAT	now	supports	a	propagator	that	uses	AGI's	.e	ephemeris	file	format.	See
the	Propagator	reference	for	more	information.

File	Manager	Utility

http://bugs.gmatcentral.org/secure/ReleaseNote.jspa?projectId=10000&version=11000


You	can	now	manage	empirical	data	updates	using	a	Python	file	manager.	The
utility	allows	you	to	easily	update	leap	second,	EOP,	space	weather,	and	other
files	and	optionally	archive	old	versions.	See	the	Configuring	GMAT	Data	Files
section	for	more	information.	When	you	run	the	the	utility,	you	will	see	output
like	that	shown	below	(the	data	below	is	only	a	partial	summary	of	the	output).

--------UPDATING	GMAT	LEAP	SECOND	FILE	------------------------------

Process	Began	At	2017-06-01-11:23:55

--------Downloading	tai-utc.dat

tai-utc.dat	downloaded	successfully	

tai-utc.dat	archived	successfully	to	2017-06-01-11h23m55s_tai-utc.dat

tai-utc.dat	updated	successfully

Process	Finished	At	2017-06-01-11:23:55

--------UPDATING	GMAT	EOP	FILE	--------------------------------

Process	Began	At	2017-06-01-11:23:55

--------Downloading	eopc04_08.62-now

eopc04_08.62-now	downloaded	successfully	

eopc04_08.62-now	archived	successfully	to	

																										2017-06-01-11h23m57s_eopc04_08.62-now

eopc04_08.62-now	updated	successfully

---------UPDATING	SPICE	LEAP	SECOND	FILE	-----------------------

Process	Began	At	2017-06-01-11:23:57

--------Downloading	naif0011.tls

SPICELeapSecondKernel.tls	downloaded	successfully

--------Downloading	naif0012.tls

SPICELeapSecondKernel.tls	downloaded	successfully

SPICELeapSecondKernel.tls	archived	successfully	to	

																						2017-06-01-11h24m00s_SPICELeapSecondKernel.tls

SPICELeapSecondKernel.tls	updated	successfully

Process	Finished	At	2017-06-01-11:24:00

Collocation	Stand	Alone	Library	and	Toolkit	(CSALT)

GMAT	now	has	a	stand	alone	C++	library	for	solving	optimal	control	problems
via	collocation	(CSALT).	The	library	is	well	tested	and	available	for
applications,	and	is	currently	undergoing	integration	into	GMAT.	The	CSALT
library	is	not	exposed	via	GMAT	interfaces,	but	users	who	are	familiar	with	C++
programming	can	solve	optimal	control	problems	with	CSALT	now.	The	source
code	will	be	made	available	via	SourceForge.	CSALT	integration	into	GMAT	is
underway	and	planned	for	completion	in	the	next	GMAT	release.	For	more
information	on	the	CSALT	Library	see	the	paper	entitled



CSALT_CollocationBenchmarkingResults.pdf	in	the	docs	folder	of	the	GMAT
distribution.

Preliminary	API	Interface

A	preliminary	API	is	under	development.	The	API	is	not	available	in	the
production	release	and	is	distributed	separately	on	SourceForge	in	packages	with
the	name	"Alpha"	in	the	title.	The	API	employs	SWIG	to	expose	GMAT	to
several	languages.	Preliminary	testing	has	been	performed	on	the	JAVA	interface
called	from	MATLAB.	The	code	snippet	below	illustrates	how	to	call	through
the	JAVA	interface	from	MATLAB	to	compute	orbital	accelerations	on	a
spacecraft.	Some	testing	of	the	Python	binding	as	also	been	performed.

%	Load	GMAT

scriptFileName	=	fullfile(pwd,	'gmat.script');

[myMod,	gmatBinPath,	result]	=	load_gmat(scriptFileName);

%	Get	the	SolarSystem	object	from	GMAT

ss	=	myMod.GetDefaultSolarSystem();

%	Prepare	the	force	model	to	be	used	for	dynamics

fm	=	myMod.GetODEModel('DefaultProp_ForceModel');

state	=	gmat.GmatState(6+6^2);

fm.SetSolarSystem(ss);	%	Set	solar	system	pointer	in	force	model

fm.SetState(state);	%	Provide	force	model	with	the	state	placeholder

%	Create	new	Spacecraft

sat	=	gmat.Spacecraft('Sat');	

%	Create	PropagationStateManager	to	manage	calculation	of	derivatives

propManager	=	gmat.PropagationStateManager();

propManager.SetObject(sat);	%	Add	sat	PropagationStateManager

propManager.SetProperty('AMatrix',	sat);	%	Want	to	calculate	Jacobian

propManager.BuildState();	

%	Tell	force	model	to	use	propmanager

fm.SetPropStateManager(propManager);

fm.UpdateInitialData();	%	Update	model	with	changes

fm.BuildModelFromMap();	%	Sets	up	the	models	in	the	force	model

state	=	gmat.gmat.convertJavaDoubleArray(x(:,tIndex));

%	Compute	the	orbital	accelerations	including	variational	terms

fm.GetDerivatives(state,	t(tIndex),	1);	%	Calculate	derivatives

deriv	=	fm.GetDerivativeArray();	%	Get	calculated	derivatives



derivArray	=	gmat.gmat.convertDoubleArray(deriv,	42);

Improvements

You	can	now	define	the	name	and	location	of	the	gmat	startup	and	log	file
via	the	command	line	interface.	This	is	useful	when	running	multiple
GMAT	sessions	simultaneously	or	when	you	have	complex,	custom	file
configurations.

You	can	now	write	STK	ephem	files	with	units	in	meters	(previously,	only
km	was	supported).

You	can	now	write	STK	ephem	files	without	discrete	event	boundaries.

Compatibility	Changes

GMAT	now	requires	Python	version	3.6.x.

Schatten	files	no	longer	require	the	"PREDICTED	SOLAR	DATA"
keyword	at	the	top	of	the	file.

The	names	and	locations	of	several	data	files	used	by	GMAT	are	no	longer
hard	coded	and	their	names	and	locations	are	set	in	the	file
gmat_startup_file.txt	located	in	the	bin	directory.	If	you	use	custom
startup	files,	you	MUST	add	the	lines	below	to	your	startup	file	before
GMAT	will	start.	Note	that	the	startup	files	distributed	with	GMAT	have
these	lines	added.	This	backwards	compatiblity	issue	only	affects	users	who
customize	their	startup	file.

EARTH_LATEST_PCK_FILE				=	PLANETARY_COEFF_PATH/earth_latest_high_prec.bpc

EARTH_PCK_PREDICTED_FILE	=	PLANETARY_COEFF_PATH/SPICEEarthPredictedKernel.bpc

EARTH_PCK_CURRENT_FILE			=	PLANETARY_COEFF_PATH/SPICEEarthCurrentKernel.bpc

LUNA_PCK_CURRENT_FILE				=	PLANETARY_COEFF_PATH/SPICELunaCurrentKernel.bpc

LUNA_FRAME_KERNEL_FILE			=	PLANETARY_COEFF_PATH/SPICELunaFrameKernel.tf

The	syntax	for	navigation	functionality	has	been	significantly	changed	for
consistency	throughout	the	system.	See	the	Deprecated	Measurement
Type	Names	section	of	the	Tracking	Data	Types	for	OD	Help	for	more
details.



GMAT	Stuff

Don't	forget	you	can	purchase	clothing	and	other	items	with	the	GMAT	logo	via
©Land's	End,	Inc	at	the	GSFC	Store	.	Once,	you've	chosen	an	item,	make	sure	to
select	the	GMAT	logo!

Known	&	Fixed	Issues

Over	70	bugs	were	closed	in	this	release.	See	the	"Critical	Issues	Fixed	in
R2017a"	report	for	a	list	of	critical	bugs	and	resolutions	in	R2017a.	See	the
"Minor	Issues	Fixed	for	R2017a"	report	for	minor	issues	addressed	in	R2017a.

Known	Issues

All	known	issues	that	affect	this	version	of	GMAT	can	be	seen	in	the	"Known
Issues	in	R2017a"	report	in	JIRA.

There	are	several	known	issues	in	this	release	that	we	consider	to	be	significant:

ID Description

GMT-5269 Atmosphere	model	affects	propagation	at	GEO.

GMT-2561 UTC	Epoch	Entry	and	Reporting	During	Leap	Second	is	incorrect.

GMT-3043 Inconsistent	validation	when	creating	variables	that	shadow	built-
in	math	functions

http://ocs.landsend.com/cd/frontdoor?store_name=nasagsfc&store_type=3
http://bugs.gmatcentral.org/issues/?filter=13900
http://bugs.gmatcentral.org/issues/?filter=13901
http://bugs.gmatcentral.org/issues/?filter=13902
http://li64-187.members.linode.com:8080/browse/GMT-5269
http://li64-187.members.linode.com:8080/browse/GMT-2561
http://li64-187.members.linode.com:8080/browse/GMT-3043


GMT-3289 First	step	algorithm	fails	for	backwards	propagation	using	SPK
propagator

GMT-3350 Single-quote	requirements	are	not	consistent	across	objects	and
modes

GMT-3669 Planets	not	drawn	during	optimization	in	OrbitView

GMT-3738 Cannot	set	standalone	FuelTank,	Thruster	fields	in
CallMatlabFunction

GMT-4520 Unrelated	script	line	in	Optimize	changes	results	(causes	crash)

GMT-4398 Coordinate	System	Fixed	attitudes	are	held	constant	in	SPAD	SRP
model	during	a	propagation	step

GMT-5600 Numerical	Issues	when	calculating	the	Observation	Residuals

GMT-6040 Correct	the	code	for	the	RunSimulator	and	RunEstimator
commands	so	that	they	respect	the	scripted	propagator	settings

GMT-5881 Error	in	Ionosphere	modeling

http://li64-187.members.linode.com:8080/browse/GMT-3289
http://li64-187.members.linode.com:8080/browse/GMT-3350
http://li64-187.members.linode.com:8080/browse/GMT-3669
http://li64-187.members.linode.com:8080/browse/GMT-3738
http://bugs.gmatcentral.org/browse/GMT-4520
http://bugs.gmatcentral.org/browse/GMT-4398
http://bugs.gmatcentral.org/browse/GMT-5600
http://bugs.gmatcentral.org/browse/GMT-6040
http://bugs.gmatcentral.org/browse/GMT-5881


GMAT	R2016a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2016a	was	released	Oct.
2016.	This	is	the	first	public	release	since	Nov.	2015,	and	is	the	10th	release	for
the	project.	Note	this	will	be	the	last	32	bit	version	of	GMAT	on	Windows
(Mac	and	Linux	are	64	bit	only).

Below	is	a	summary	of	key	changes	in	this	release.	Please	see	the	full	R2016a
Release	Notes	on	JIRA	for	a	complete	list.

New	Features

Orbit	Determination

GMAT	now	supports	orbit	determination	with	a	focus	on	batch	estimation	of
DSN	data	types	including	range	and	Doppler.	We’ve	been	working	on	navigation
functionality	for	several	releases,	but	this	is	the	first	production	release
containing	navigation	functionality.	Orbit	determination	functionality	has
undergone	a	rigorous	QA	process	including	shadow	testing	in	GSFC’s	Flight
Dynamics	Facility	and	is	extensively	documented	in	tutorials	and	reference
material.	Navigation	components	include	BatchEstimator,	Simulator,
ErrorModel,	StatisticsAcceptFilter,	StatisticsRejectFilter,	TrackingDataSet,	and
the	RunEstimator	and	RunSimulator	Commands.	We	recommend	taking	the
tutorials	first	then	reviewing	the	reference	material	for	orbit	determination
components	to	get	started.

See	the	Simulation	and	Estimation	tutorials	for	more	information.

Code	500	Ephemeris	Propagator

GMAT	now	supports	a	propagator	that	uses	GSFC’s	Code	500	ephemeris	file
format.	The	Code	500	file	format	is	legacy	format	still	used	by	some	systems	at
GSFC.	This	functionality	allows	users	of	GSFC	legacy	systems	to	simulate	and
analyze	trajectories	computed	in	systems	such	as	GTDS.

See	the	Propagator	reference	for	more	information.

http://bugs.gmatcentral.org/secure/ReleaseNote.jspa?version=10600&styleName=Html&projectId=10000


Write	Command

You	can	now	export	GMAT	resources	to	files	during	the	mission	sequence
execution.	This	is	a	powerful	feature	that	allows	you	to	save	configurations	at
any	point	in	a	session	for	use	by	in	later	sessions	or	by	other	users.

See	the	Write	Command	reference	for	more	information.

#Include	Macro

You	can	now	load	GMAT	resources	and	script	snippets	from	external	files	during
the	script	initialization	and	mission	execution.	This	is	a	powerful	feature	that
allows	you	to	reuse	configurations	across	multiple	users	and/or	scripts.	This
feature	can	also	greatly	simplify	automation	for	operations	and	Monte-Carlo	and
parametric	scanning	that	have	use	cases	with	a	lot	of	common	data	but	some	data
that	changes	from	one	execution	to	the	next.

See	the	#Include	reference	for	more	information.

GetEphemStates	Built-in	Function

Using	the	built-in	GetEphemStates	function,	you	can	now	query	SPICE,	Code-
500	and	STK	.e	ephemeris	types	and	for	a	spacecraft’s	initial	epoch,	initial	state,
final	epoch	and	final	state	in	any	GMAT	supported	epoch	formats	and	coordinate
systems.	This	allows	you	to	perform	numerical	propagation	using	states	off	of
ephemiris	files	for	comparison	and	other	analysis.

See	the	GetEphemStates	referece	for	more	information.

Improvements

You	can	now	define	the	EOP	file	location	in	a	script.

The	system	now	supports	finite	burn	parameters	that	report	the	thrust
component	data	for	a	finite	burn.	The	parameters	include	total	thrust	from
all	thrusters	in	the	three	coordinate	directions,	the	total	acceleration	from	all
thrusters	in	the	three	coordinate	directions,	and	the	total	mass	flow	rate.
Furthermore,	you	can	now	also	report	individual	thruster	parameters	such



as	thrust	magnitude,	Isp	and	mass	flow	rate.

GMAT	now	contains	built-in	string	manipulations	functions	sprintf,	strcmp,
strcat,	strfind,	strrep.

Several	new	built	in	math	functions	are	implemented	including	a	built-in
cross	product	function.	For	manipulation	of	numeric	data	we've
implemented	mod,	ceil,	floor,	fix.	For	random	number	generation	we've
implemented	rand,	randn,	and	SetSeed.

You	can	now	model	finite	burns	that	employ	multiple	tanks.	Previous
versions	were	limited	to	a	single	tank.

GMAT	now	supports	generation	of	STK's	“.e”	ephemeris	format	in	addition
those	supported	previously	such	as	CCSDS-OEM,	SPK	and	Code-500
formats.

We've	written	over	130	pages	of	new,	high-quality	user	documentation!

The	behavior	of	the	GUI	when	using	large	fonts	has	been	improved.

Compatibility	Changes

You	can	now	override	the	default	NAIFId	on	a	CelestialBody	to	allow
using	body	centers	or	barycenters	as	the	reference	for	built-in	celestial
bodies.	Previously	this	field	was	read-only.

Development	and	Tools

Developer	Tools	and	Dependencies

We	updated	the	CMake-based	build	system	that	is	used	on	all	platforms.	The
CMake	configuration	is	maintained	by	the	GMAT	team	and	distributed	with	the
source	code.	Thanks	to	CMake,	it	is	much	easier	to	compile	GMAT.	See	the	wiki
documentation	for	details.	Note	that	old	build	files	are	no	longer	supported	and
are	considered	obsolete.

GMAT	Stuff

http://gmatcentral.org/display/GW/Compiling


Don't	forget	you	can	purchase	clothing	and	other	items	with	the	GMAT	logo	via
©Land's	End,	Inc	at	the	GSFC	Store	.	Once,	you've	chosen	an	item,	make	sure	to
select	the	GMAT	logo!

Known	&	Fixed	Issues

Over	100	bugs	were	closed	in	this	release.	See	the	"Critical	Issues	Fixed	in
R2016a"	report	for	a	list	of	critical	bugs	and	resolutions	in	R2016a.	See	the
"Minor	Issues	Fixed	for	R2016a"	report	for	minor	issues	addressed	in	R2016a.

Known	Issues

All	known	issues	that	affect	this	version	of	GMAT	can	be	seen	in	the	"Known
Issues	in	R2016a"	report	in	JIRA.

There	are	several	known	issues	in	this	release	that	we	consider	to	be	significant:

ID Description

GMT-5269 Atmosphere	model	affects	propagation	at	GEO.

GMT-2561 UTC	Epoch	Entry	and	Reporting	During	Leap	Second	is	incorrect.

GMT-3043 Inconsistent	validation	when	creating	variables	that	shadow	built-
in	math	functions

GMT-3289 First	step	algorithm	fails	for	backwards	propagation	using	SPK
propagator

http://ocs.landsend.com/cd/frontdoor?store_name=nasagsfc&store_type=3
http://bugs.gmatcentral.org/issues/?filter=13720
http://bugs.gmatcentral.org/issues/?filter=13721
http://bugs.gmatcentral.org/issues/?filter=13722
http://li64-187.members.linode.com:8080/browse/GMT-5269
http://li64-187.members.linode.com:8080/browse/GMT-2561
http://li64-187.members.linode.com:8080/browse/GMT-3043
http://li64-187.members.linode.com:8080/browse/GMT-3289


GMT-3350 Single-quote	requirements	are	not	consistent	across	objects	and
modes

GMT-3669 Planets	not	drawn	during	optimization	in	OrbitView

GMT-3738 Cannot	set	standalone	FuelTank,	Thruster	fields	in
CallMatlabFunction

GMT-4520 Unrelated	script	line	in	Optimize	changes	results	(causes	crash)

GMT-4520 Coordinate	System	Fixed	attitudes	are	held	constant	in	SPAD	SRP
model	during	a	propagation	step

http://li64-187.members.linode.com:8080/browse/GMT-3350
http://li64-187.members.linode.com:8080/browse/GMT-3669
http://li64-187.members.linode.com:8080/browse/GMT-3738
http://bugs.gmatcentral.org/browse/GMT-4520
http://bugs.gmatcentral.org/browse/GMT-4398


GMAT	R2015a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2015a	was	released	Nov
2015.	This	is	the	first	public	release	since	July	2014,	and	is	the	9th	release	for
the	project.

Below	is	a	summary	of	key	changes	in	this	release.	Please	see	the	full	R2015a
Release	Notes	on	JIRA	for	a	complete	list.

New	Features

GMAT	Functions

You	can	now	write	functions	(sub-routines)	in	the	GMAT	script	language.	This
powerful	feature	greatly	expands	the	practical	capability	of	the	system	and
makes	maintaining	complex	configurations	simpler.	This	feature	also	enables
sharing	GMAT	script	utilities	among	among	projects.	If	you	need	a	new	math
computation,	want	to	isolate	a	complex	section	of	code,	or	re-use	code,	GMAT
functions	are	a	great	solution.

http://bugs.gmatcentral.org/secure/ReleaseNote.jspa?version=10600&styleName=Html&projectId=10000


See	the	Using	GMAT	Functions	tutorial	for	more	information.

Eclipse	Location

GMAT	now	supports	eclipse	location.	Under	the	hood	GMAT	calls	NAIF	SPICE
routines.	Thanks	to	the	NAIF	for	making	this	great	functionality	available.



See	the	Eclipse	Locator	reference	for	more	information.

Station	Contact	Location

GMAT	now	supports	station	contact	location.	Under	the	hood	GMAT	calls	NAIF
SPICE	routines.	Thanks	to	the	NAIF	for	making	this	great	functionality
available.

See	the	Contact	Locator	reference	for	more	information.



Python	Interface

GMAT	now	supports	an	interface	with	Python.	The	power	of	the	Python
ecosystem	can	now	be	used	with	GMAT.

See	the	Python	reference	for	more	information.

Electric	Propulsion

GMAT	now	supports	modelling	of	electric	propulsion	systems.	Below	is	an
examle	showing	GMAT	modelling	a	cube-sat	with	electric	propulsion	in	a	lunar
weak-stablity	orbit.	You	can	model	electric	tanks,	thrusters,	and	power	systems
(both	Solar	and	nuclear).



See	the	Electric	Propulsion	tutorial	for	more	information.

SNOPT	Optimizer

GMAT	now	interfaces	to	Stanford	Business	Software,	Inc.	SNOPT	Optimizer



See	the	SNOPT	reference	for	more	information.

Space	Weather	Modelling

You	can	now	provide	flux	files	for	drag	modelling	including	Schatten	historical
files	and	Center	for	Space	Standards	and	Innovation	(CSSI)	Space	Weather
Files.	This	greatly	improves	long	term	orbital	predictions	and	reconstructions	in
the	Earth's	atmosphere.



See	the	Propagator	reference	for	more	information.

Celestial	Body	3-D	Graphics	Models

You	can	now	use	a	3D	model	for	celestial	bodies	in	3-D	graphics.

See	the	Celestial	Body	reference	for	more	information.

Solver	Status	Window

GMAT	now	displays	a	window	showing	solver	variables	and	constraint	values
during	execution.	This	helps	track	the	progress	of	targeters	and	optimizers	and	is
an	important	aid	in	troubleshooting	convergence	issues.



Improvements

Documentation

We've	written	over	70	pages	of	new,	high-quality	user	documentation!	We've
also	written	two	conference	papers	documenting	our	verification	and	validation
process	and	results,	and	the	flight	qualification	program	and	results	for	the
Advanced	Composition	Explorer	(ACE).	Conference	papers	are	located	in	the
"docs"	folder	of	the	distribution.



Training	Videos

We've	posted	training	videos	on	YouTube	.	You	can	now	take	GMAT	training
even	if	you	are	unable	to	attend	the	live	classes!

Other	Improvements

https://www.youtube.com/channel/UCt-REODJNr2mB3t-xH6kbjg


You	can	now	optionally	apply	an	ImpulsiveBurn	in	the	backwards
direction	which	is	convenient	when	targeting	backwards	in	time.

GMAT	is	distributed	with	beta	plugin	Polyhedral	gravity	model.

The	system	now	looks	in	the	working	directory	for	scripts	run	from	the
command	line

You	can	now	reference	supporting	files	relative	to	the	script	file	location	for
ease	in	sharing	complex	configurations.

You	can	now	define	an	minimum	elevation	angle	for	a	groundstation	used
in	event	location	and	estimation.

The	appearance	of	constellations	in	3-D	graphics	has	been	improved.

The	3-D	model	scaling	sensitivity	in	the	GUI	has	been	improved.

The	behavior	of	the	GUI	when	using	large	fonts	has	been	improved.

Compatibility	Changes

The	ChemicalTank	Resource	has	been	renamed	to	ChemicalTank	to
distinguish	between	chemical	and	electric	systems.

The	ChemicalThruster	Resource	has	been	renamed	to	ChemicalThruster
to	distinguish	between	chemical	and	electric	systems.

The	sensitivity	of	Spacecraft	Resource	settings	such	as	ModelOffsetX,
ModelRotationY,	and	ModelScale	has	changed	in	3-D	graphics.

When	applying	an	ImpulsiveBurn	during	backwards	targeting,	GMAT	now
attempts	to	compute	maneuver	values	that	are	consistent	with	a	forward
targeting	approach.	The	maneuver	values	reference	the	pre-manevuer
velocity	components	instead	of	the	post-maneuver	components.

Development	and	Tools

Developer	Documenation



We've	added	extensive	documentation	describing	how	to	add	new	Resources	and
Commands	to	GMAT.	Resources	and	Commands	are	key	to	GMAT	development
and	application.	This	documentation	is	essential	reading	for	making	fundamental
extensions	to	GMAT.	See	the	wiki	documentation	for	details.

Developer	Tools	and	Dependencies

We	developed	a	new	CMake-based	build	system	that	is	used	on	all	platforms.
The	CMake	configuration	is	maintained	by	the	GMAT	team	and	distributed	with
the	source	code.	Thanks	to	CMake,	it	is	much	easier	to	compile	GMAT.	See	the
wiki	documentation	for	details.

We	updated	SPICE	to	version	N0065	and	updated	WxWidgets	to	version	3.0.2.

GMAT	Stuff

You	can	now	purchase	clothing	and	other	items	with	the	GMAT	logo	via
©Land's	End,	Inc	at	the	GSFC	Store	.	Once,	you've	chosen	an	item,	make	sure	to
select	the	GMAT	logo!

Known	&	Fixed	Issues

Over	215	bugs	were	closed	in	this	release.	See	the	"Critical	Issues	Fixed	in
R2015a"	report	for	a	list	of	critical	bugs	and	resolutions	in	R2015a.	See	the
"Minor	Issues	Fixed	for	R2015a"	report	for	minor	issues	addressed	in	R2015a.

http://gmatcentral.org/display/GW/How+To+Write+New+Components
http://gmatcentral.org/display/GW/Compiling
http://ocs.landsend.com/cd/frontdoor?store_name=nasagsfc&store_type=3
http://li64-187.members.linode.com:8080/issues/?filter=13220
http://li64-187.members.linode.com:8080/issues/?filter=13221


Known	Issues

All	known	issues	that	affect	this	version	of	GMAT	can	be	seen	in	the	"Known
Issues	in	R2015a"	report	in	JIRA.

There	are	several	known	issues	in	this	release	that	we	consider	to	be	significant:

ID Description

GMT-5253 GMAT	stuck	in	script	state	after	bad	script	load.

GMT-5269 Atmosphere	model	affects	propagation	at	GEO.

GMT-2561 UTC	Epoch	Entry	and	Reporting	During	Leap	Second	is	incorrect.

GMT-3043 Inconsistent	validation	when	creating	variables	that	shadow	built-
in	math	functions

GMT-3289 First	step	algorithm	fails	for	backwards	propagation	using	SPK
propagator

GMT-3350 Single-quote	requirements	are	not	consistent	across	objects	and
modes

GMT-3669 Planets	not	drawn	during	optimization	in	OrbitView

GMT-3738 Cannot	set	standalone	FuelTank,	Thruster	fields	in
CallMatlabFunction

GMT-4520 Unrelated	script	line	in	Optimize	changes	results	(causes	crash)

GMT-4408 Failed	to	load	icon	file	and	to	open	DE	file

GMT-4520 Coordinate	System	Fixed	attitudes	are	held	constant	in	SPAD	SRP
model	during	a	propagation	step

http://li64-187.members.linode.com:8080/issues/?filter=13219
http://li64-187.members.linode.com:8080/browse/GMT-5353
http://li64-187.members.linode.com:8080/browse/GMT-5269
http://li64-187.members.linode.com:8080/browse/GMT-2561
http://li64-187.members.linode.com:8080/browse/GMT-3043
http://li64-187.members.linode.com:8080/browse/GMT-3289
http://li64-187.members.linode.com:8080/browse/GMT-3350
http://li64-187.members.linode.com:8080/browse/GMT-3669
http://li64-187.members.linode.com:8080/browse/GMT-3738
http://bugs.gmatcentral.org/browse/GMT-4520
http://bugs.gmatcentral.org/browse/GMT-4408
http://bugs.gmatcentral.org/browse/GMT-4398


GMAT	R2014a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2014a	was	released	May
2014.	This	is	the	first	public	release	since	April	2013,	and	is	the	8th	release	for
the	project.

Below	is	a	summary	of	key	changes	in	this	release.	Please	see	the	full	R2014a
Release	Notes	on	JIRA	for	a	complete	list.

New	Features

Trajectory	Colors	and	Labels

In	GMAT	R2014a,	you	can	now	specify	colors	for	each	segment	of	your
trajectory	independently,	so	you	can	clearly	see	where	a	segment	begins	and
ends.	This	can	help	define	portions	of	a	trajectory,	such	as	before	or	after
maneuvers.	All	color	handling	has	also	been	moved	from	the	graphics	resources
(OrbitView	and	GroundTrackPlot)	to	the	resources	and	commands	controlling
the	trajectory	(e.g.	Spacecraft,	Planet,	Propagate).

On	Spacecraft,	the	color	specification	has	moved	to	the	Visualization	tab.	See
the	circled	area	in	the	screenshot	below.	Colors	for	celestial	bodies	(Planet,
Moon,	Asteroid,	etc.)	are	specified	similarly.

http://bugs.gmatcentral.org/secure/ReleaseNote.jspa?projectId=10000&version=10500


The	trajectory	color	associated	with	a	particular	trajectory	segment	can	be
changed	by	changing	the	color	for	that	particular	Propagate	command.	It	will
override	the	color	for	the	Spacecraft	being	propagated	for	that	segment	only,	and
it	will	return	to	the	default	color	afterwards.

Additionally,	colors	can	now	be	specified	either	by	name	('Blue')	or	by	RGB
value	([0	0	255]).

This	release	also	adds	participant	labels	in	the	graphics	as	well.	As	long	as
OrbitView.ShowLabels	is	enabled,	each	celestial	body	or	Spacecraft	in	the	plot
will	show	its	name	next	to	it.

See	the	following	example:

Create	Spacecraft	aSat

aSat.OrbitColor	=	'Blue'

Create	Propagator	aProp

Create	OrbitView	aView

aView.Add	=	{aSat,	Earth}

aView.XYPlane	=	off

aView.Axes	=	off

aView.EnableConstellations	=	off

aView.ShowLabels	=	on

BeginMissionSequence

%	plots	in	blue

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	900}																					

aSat.OrbitColor	=	'Green'

%	plots	in	green



Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	900}													

	%	plots	in	red								

Propagate	aProp(aSat)	{aSat.ElapsedSecs	=	900,	OrbitColor	=	Red}		

This	example	results	in	the	following	image:

See	the	Color	reference,	as	well	as	the	individual	Spacecraft,	CelestialBody,
Propagate,	and	OrbitView	references,	for	more	information.

New	Orbit	State	Representations

GMAT	now	supports	six	new	common	orbit	state	representations,	developed
with	support	by	the	Korea	Aerospace	Research	Institute	(KARI).	The	new
representations	are:

Long-	and	short-period	Brouwer-Lyddane	mean	elements
(BrouwerMeanLong	and	BrouwerMeanShort)

Incoming	and	outgoing	hyperbolic	asymptote	elements
(IncomingAsymptote	and	OutgoingAsymptote)

Modified	equinoctial	elements	(ModifiedEquinoctial)

Alternate	equinoctial	elements	(AlternateEquinoctial)

Delaunay	elements	(Delaunay)



Planetodetic	elements,	when	using	a	body-fixed	coordinate	system
(Planetodetic)

The	new	representations	are	available	as	options	in	the	Spacecraft	"State	Type"
list,	and	as	options	to	the	Spacecraft.DisplayStateType	field.

See	the	Spacecraft	Orbit	State	reference	for	more	information.

New	Attitude	Models

GMAT	now	supports	three	new	kinematic	attitude	models,	developed	with
support	by	the	Korea	Aerospace	Research	Institute	(KARI).	The	new
representations	are:

Precessing	spinner

Nadir	pointing

CCSDS	Attitude	Ephemeris	Message	(AEM)

The	new	representations	are	available	as	options	in	the	Spacecraft	"Attitude"
list,	and	as	options	to	the	Spacecraft.DisplayStateType	field.



See	the	Spacecraft	Attitude	reference	for	more	information.

Dynamics	and	Model	Improvements

GMAT	now	supports	several	new	dynamics	models	and	a	new	numerical
integrator.

Prince	Dormand	853	integrator.	See	the	Propagator	reference	for	more
information.

Mars-GRAM	density	model.	See	the	Propagator	reference	for	more
information.

High-fidelity,	attitude	dependent	SRP	dynamics	model.	See	the	Propagator
reference,	and	the	Spacecraft	Ballistic	and	Mass	Properties	reference	for
more	information.

Targeting	and	Optimization	Improvements

There	are	new	boundary	value	solver	options	on	DifferentialCorrector
(Broyden,	and	ModifiedBroyden).	Brodyen’s	method	and	modified
Broyden's	method	usually	take	more	iterations	but	fewer	function
evaluations	than	NewtonRaphson	and	so	are	often	faster.	See	the
Differential	Corrector	reference	for	more	information.

There	are	new	parameters	that	check	for	convergence	of	solvers.	See	the



Calculation	Parameters	reference	for	more	information.

Below	is	a	script	example	that	illustrates	the	new	algorithm	and	parameter
options.

Create	Spacecraft	aSat

Create	Propagator	aPropagator

Create	ImpulsiveBurn	aBurn

Create	DifferentialCorrector	aDC

%		This	algorithm	is	often	faster,	as	is	ModifiedBroyden

aDC.Algorithm	=	Broyden		

Create	OrbitView	EarthView

EarthView.Add	=	{Earth,aSat}

EarthView.ViewScaleFactor	=	5

Create	ReportFile	aReport	

BeginMissionSequence

%		Report	targeter	status	here

Report	aReport	aDC.SolverStatus	aDC.SolverState

Target	aDC

				Vary	aDC(aBurn.Element1	=	1.0,	{Upper	=	3,	MaxStep	=	0.4})

				Maneuver	aBurn(aSat)

				Propagate	aPropagator(aSat,{aSat.Apoapsis})

				Achieve	aDC(aSat.RMAG	=	42164)

EndTarget

%		Report	targeter	status	here

Report	aReport	aDC.SolverStatus	aDC.SolverState

Improvements

Dependencies	in	Assignment	Command

You	can	now	define	settable	parameters	by	using	a	dependency	on	the	LHS	of	an
assignment	command:

Create	Spacecraft	aSat

BeginMissionSequence

aSat.EarthFixed.X	=	7000



aSat.EarthMJ2000Eq.VZ	=	1

Other	Improvements

You	can	now	set	true	retrograde	orbits	when	using	the	Keplerian
representation.

You	can	now	use	the	quaternion	Rvector	parameter	on	the	right	hand	side	of
an	assignment	command.

You	can	now	use	a	Spacecraft	body	fixed	coordinate	system	as	the
coordinate	system	for	an	OrbitView.

The	number	of	Spacecraft	that	that	can	be	displayed	in	OrbitView	is	no
longer	limited	to	30.

The	documentation	for	OrbitView	has	been	significantly	expanded.	See	the
Orbit	View	reference	for	details.

You	can	now	save	an	XY	plot	graphics	window	to	an	image	file.

The	supported	set	of	keyboard	shortcuts	has	been	greatly	expanded.	See	the
Keyboard	Shortcuts	reference	for	more	information.

You	can	now	use	many	more	common	ASCII	characters	in	GMAT	strings.

You	can	now	generate	orbit	state	command	summary	reports	using
coordinate	systems	that	have	any	point	type	as	the	origin	of	the	selected
coordinate	system.	Previously	the	origin	had	to	be	a	Celestial	Body.

Compatibility	Changes

Color	settings	for	Resources	displayed	in	graphics	are	now	configured	on
the	Resource	and	via	the	Propagate	command.	OrbitColor	and
TargetColor	fields	on	graphics	resources	are	no	longer	used..	See	the
Spacecraft	Visualization	reference,	and	Propagate	command	reference	for
details.

AtmosDensity	is	now	reported	in	units	of	kg/km^3.	See	the	Calculation



Parameter	reference	for	details.

Known	&	Fixed	Issues

Over	123	bugs	were	closed	in	this	release.	See	the	"Critical	Issues	Fixed	in
R2014a"	report	for	a	list	of	critical	bugs	and	resolutions	in	R2014a.	See	the
"Minor	Issues	Fixed	for	R2014a"	report	for	minor	issues	addressed	in	R2014a.

Known	Issues

All	known	issues	that	affect	this	version	of	GMAT	can	be	seen	in	the	"Known
Issues	in	R2014a"	report	in	JIRA.

There	are	several	known	issues	in	this	release	that	we	consider	to	be	significant:

ID Description

GMT-2561 UTC	Epoch	Entry	and	Reporting	During	Leap	Second	is	incorrect.

GMT-3043 Inconsistent	validation	when	creating	variables	that	shadow	built-
in	math	functions

GMT-3108 OrbitView	with	STM	and	Propagate	Synchronized	does	not	show
spacecraft	in	correct	locations

GMT-3289 First	step	algorithm	fails	for	backwards	propagation	using	SPK
propagator

GMT-3350 Single-quote	requirements	are	not	consistent	across	objects	and
modes

GMT-3556 Unable	to	associate	tank	with	thruster	in	command	mode

GMT-3629 GUI	starts	in	bad	state	when	started	with	--minimize

GMT-3669 Planets	not	drawn	during	optimization	in	OrbitView

GMT-3738 Cannot	set	standalone	FuelTank,	Thruster	fields	in
CallMatlabFunction

GMT-4520 Unrelated	script	line	in	Optimize	changes	results	(causes	crash)

GMT-4408 Failed	to	load	icon	file	and	to	open	DE	file

http://li64-187.members.linode.com:8080/issues/?filter=12406
http://li64-187.members.linode.com:8080/issues/?filter=12408
http://li64-187.members.linode.com:8080/issues/?filter=12407
http://li64-187.members.linode.com:8080/browse/GMT-2561
http://li64-187.members.linode.com:8080/browse/GMT-3043
http://li64-187.members.linode.com:8080/browse/GMT-3108
http://li64-187.members.linode.com:8080/browse/GMT-3289
http://li64-187.members.linode.com:8080/browse/GMT-3350
http://li64-187.members.linode.com:8080/browse/GMT-3556
http://li64-187.members.linode.com:8080/browse/GMT-3629
http://li64-187.members.linode.com:8080/browse/GMT-3669
http://li64-187.members.linode.com:8080/browse/GMT-3738
http://bugs.gmatcentral.org/browse/GMT-4520
http://bugs.gmatcentral.org/browse/GMT-4408


GMT-4520 Coordinate	System	Fixed	attitudes	are	held	constant	in	SPAD	SRP
model	during	a	propagation	step

http://bugs.gmatcentral.org/browse/GMT-4398


GMAT	R2013b	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2013b	was	released	in
August	2013.	This	is	the	first	public	release	since	April,	and	is	the	7th	release	for
the	project.	This	is	an	internal-only	release,	intended	to	support	the	ACE
mission.

Below	is	a	summary	of	key	changes	in	this	release.	Please	see	the	full	R2013b
Release	Notes	on	JIRA	for	a	complete	list.

New	Features

Data	File	Interface

GMAT	now	can	load	Spacecraft	state	and	physical	properties	data	directly	from
a	data	file.	A	new	resource,	FileInterface,	controls	the	interface	to	the	data	file,
and	the	new	Set	command	lets	you	apply	the	data	as	a	part	of	the	Mission
Sequence.

See	the	following	example:

Create	Spacecraft	aSat

Create	FileInterface	tvhf

tvhf.Filename	=	'statevec.txt'

tvhf.Format	=	'TVHF_ASCII'

BeginMissionSequence

http://li64-187.members.linode.com:8080/secure/ReleaseNote.jspa?projectId=10000&version=10400


Set	aSat	tvhf

See	the	FileInterface	and	Set	references	for	more	information.

Code-500	Ephemeris	Format

GMAT's	EphemerisFile	resource	can	now	write	a	Code-500	format	ephemeris
file.	The	Code-500	format	is	a	binary	ephemeris	format	defined	by	the	NASA
Goddard	Space	Flight	Center	Flight	Dynamics	Facility.

Create	Spacecraft	sc

Create	Propagator	prop

Create	EphemerisFile	ephem

ephem.Spacecraft	=	sc

ephem.Filename	=	'ephem.eph'

ephem.FileFormat	=	'Code-500'

ephem.StepSize	=	60

ephem.OutputFormat	=	'PC'

BeginMissionSequence

Propagate	prop(sc)	{sc.ElapsedDays	=	1}

See	the	EphemerisFile	reference	for	more	information	on	this	format.

New	Local	Aligned-Constrained	Coordinate	System

A	local	aligned-constrainted	coordinate	system	is	one	defined	by	an	alignment
vector	(defined	based	on	the	position	of	a	reference	object	with	respect	to	the
origin)	and	two	constraint	vectors.	This	is	a	highly	flexible	coordinate	system



that	can	be	defined	in	many	ways,	depending	on	mission	needs.	To	use	it,	select
the	LocalAlignedConstraned	axes	type	when	creating	a	new
CoordinateSystem.

Create	CoordinateSystem	ACECoordSys

ACECoordSys.Origin	=	Earth

ACECoordSys.Axes	=	LocalAlignedConstrained

ACECoordSys.ReferenceObject	=	ACE

ACECoordSys.AlignmentVectorX	=	0

ACECoordSys.AlignmentVectorY	=	0

ACECoordSys.AlignmentVectorZ	=	1

ACECoordSys.ConstraintVectorX	=	1

ACECoordSys.ConstraintVectorY	=	0

ACECoordSys.ConstraintVectorY	=	0

ACECoordSys.ConstraintCoordinateSystem	=	EarthMJ2000Ec

ACECoordSys.ConstraintReferenceVectorX	=	0

ACECoordSys.ConstraintReferenceVectorY	=	0

ACECoordSys.ConstraintReferenceVectorZ	=	1

See	the	CoordinateSystem	reference	for	more	information.

Improvements

Force	Model	Parameters

You	can	now	access	ForceModel-dependent	parameters,	such	as	Spacecraft
acceleration	and	atmospheric	density.	The	new	parameters	are:

Spacecraft.ForceModel.Acceleration



Spacecraft.ForceModel.AccelerationX

Spacecraft.ForceModel.AccelerationY

Spacecraft.ForceModel.AccelerationZ

Spacecraft.ForceModel.AtmosDensity

Space	Point	Parameters

All	Resources	that	have	coordinates	in	space	now	have	Cartesian	position	and
velocity	parameters,	so	you	can	access	ephemeris	information.	This	includes	all
built-in	solar	system	bodies	and	other	Resources	such	as	CelestialBody,Planet,
Moon,	Asteroid,	Comet,	Barycenter,	LibrationPoint,	and	GroundStation	:

CelestialBody.CoordinateSystem.X

CelestialBody.CoordinateSystem.Y

CelestialBody.CoordinateSystem.Z

CelestialBody.CoordinateSystem.VX

CelestialBody.CoordinateSystem.VY

CelestialBody.CoordinateSystem.VZ

Note	that	to	use	these	parameters,	you	must	first	set	the	epoch	of	the	Resource	to
the	desired	epoch	at	which	you	want	the	data.	See	the	following	example:

Create	ReportFile	rf

BeginMissionSequence

Luna.Epoch.A1ModJulian	=	21545

Report	rf	Luna.EarthMJ2000Eq.X	Luna.EarthMJ2000Eq.Y	Luna.EarthMJ2000Eq.Z	...

							Luna.EarthMJ2000Eq.VX	Luna.EarthMJ2000Eq.VY	Luna.EarthMJ2000Eq.VZ

Compatibility	Changes

EphemerisFile.InitialEpoch	now	cannot	be	later	than



EphemerisFile.FinalEpoch.	See	the	EphemerisFile	reference	for	details.

When	EphemerisFile.FileFormat	is	set	to	'SPK',
EphemerisFile.CoordinateSystem	must	have	MJ2000Eq	as	the	axis	system.
Other	axis	systems	are	no	longer	allowed	with	this	ephemeris	format.	See
the	EphemerisFile	reference	for	details.

The	deprecated	fields	Thruster.Element{1–3}	have	been	removed.	Use
Thruster.ThrustDirection{1–3}	instead.	See	the	Thruster	reference	for
details.

Tab	characters	in	strings	are	now	treated	literally,	instead	of	being	changed
to	spaces.	See	GMT-3336	for	details.

Known	&	Fixed	Issues

Over	50	bugs	were	closed	in	this	release.	See	the	"Critical	Issues	Fixed	in
R2013b"	report	for	a	list	of	critical	bugs	and	resolutions	in	R2013b.	See	the
"Minor	Issues	Fixed	for	R2013b"	report	for	minor	issues	addressed	in	R2013b.

Known	Issues

All	known	issues	that	affect	this	version	of	GMAT	can	be	seen	in	the	"Known
Issues	in	R2013b"	report	in	JIRA.

There	are	several	known	issues	in	this	release	that	we	consider	to	be	significant:

ID Description

GMT-2561 UTC	Epoch	Entry	and	Reporting	During	Leap	Second	is	incorrect.

GMT-3043 Inconsistent	validation	when	creating	variables	that	shadow	built-
in	math	functions

GMT-3108 OrbitView	with	STM	and	Propagate	Synchronized	does	not	show
spacecraft	in	correct	locations

GMT-3289 First	step	algorithm	fails	for	backwards	propagation	using	SPK
propagator

GMT-4097 Ephemeris	File	is	Not	Chunking	File	At	Some	Discontinuty	Types

http://li64-187.members.linode.com:8080/browse/GMT-3336
http://li64-187.members.linode.com:8080/issues/?filter=11911
http://li64-187.members.linode.com:8080/issues/?filter=11912
http://li64-187.members.linode.com:8080/issues/?filter=11913
http://li64-187.members.linode.com:8080/browse/GMT-2561
http://li64-187.members.linode.com:8080/browse/GMT-3043
http://li64-187.members.linode.com:8080/browse/GMT-3108
http://li64-187.members.linode.com:8080/browse/GMT-3289
http://li64-187.members.linode.com:8080/browse/GMT-4097


GMT-3350 Single-quote	requirements	are	not	consistent	across	objects	and
modes

GMT-3556 Unable	to	associate	tank	with	thruster	in	command	mode

GMT-3629 GUI	starts	in	bad	state	when	started	with	--minimize

GMT-3669 Planets	not	drawn	during	optimization	in	OrbitView

GMT-3738 Cannot	set	standalone	FuelTank,	Thruster	fields	in
CallMatlabFunction

GMT-3745 SPICE	ephemeris	stress	tests	are	not	writing	out	ephemeris	for	the
entire	mission	sequence

http://li64-187.members.linode.com:8080/browse/GMT-3350
http://li64-187.members.linode.com:8080/browse/GMT-3556
http://li64-187.members.linode.com:8080/browse/GMT-3629
http://li64-187.members.linode.com:8080/browse/GMT-3669
http://li64-187.members.linode.com:8080/browse/GMT-3738
http://li64-187.members.linode.com:8080/browse/GMT-3745


GMAT	R2013a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2013a	was	released	in
April,	2013.	This	is	the	first	public	release	since	May	23,	2012,	and	is	the	6th
public	release	for	the	project.	R2013a	is	a	major	release	transitioning	GMAT
from	beta	to	production	status.	In	this	release:

End-user	documentation	was	rewritten	and	greatly	expanded.

11,000	script-based	regression	tests	run	nightly.

5,000	GUI-based	regression	tests	run	weekly.

Code	and	documentation	was	contributed	by	11	developers	from	3
organizations.

Licensing

GMAT	is	now	licensed	under	Apache	License,	Version	2.0.	According	to	the
Open	Source	Proliferation	Report,	the	Apache	License	2.0	is	one	of	the	most
widely-used	open	source	licenses,	thereby	making	GMAT	compatible	with	more
existing	software	and	projects.

Major	Improvements

Production	Status

Release	R2013a	is	a	major	release	of	GMAT	that	transitions	from	beta	to
production	status.	Most	of	our	efforts	have	been	devoted	to	improving	the
quality	of	the	software	and	its	documentation.	This	year	we	made	a	complete
sweep	through	the	system,	starting	by	updating	engineering	specifications	for	all
features,	identifying	test	gaps,	writing	new	tests,	addressing	known	and	newly
found	bugs,	and	completing	user	documentation.

Tutorials

The	GMAT	User	Guide	now	contains	5	in-depth	tutorials	that	show	how	to	use

http://www.apache.org/licenses/LICENSE-2.0
http://opensource.org/proliferation-report


GMAT	for	end-to-end	analysis.	The	tutorials	are	designed	to	teach	you	how	to
use	GMAT	in	the	context	of	performing	real-world	analysis	and	are	intended	to
take	between	30	minutes	and	several	hours	to	complete.	Each	tutorial	has	a
difficulty	level	and	an	approximate	duration	listed	with	any	prerequisites	in	its
introduction,	and	is	arranged	in	a	general	order	of	difficulty.	The	simplest
tutorial	shows	you	how	to	enter	orbital	initial	conditions	and	propagate	to	orbit
perigee,	while	more	advanced	tutorials	show	how	to	perform	finite-maneuver
targeting,	Mars	B-plane	targeting,	and	lunar	flyby	optimization.

Reference	Guide

We	have	written	a	complete	reference	manual	for	GMAT	for	R2013a.	The
reference	manual	contains	detailed	information	on	all	GMAT	components.
Whether	you	need	detailed	information	on	syntax	or	application-specific
examples,	go	here.	For	each	GMAT	resource	(e.g.	Spacecraft,
ChemicalThruster,	XYPlot)	and	command	(e.g.	Optimize,	Propagate),	the
following	information	is	documented:

Brief	description	of	the	feature

List	of	related	or	coupled	features

Complete	syntactical	specification	of	the	interface

Tables	with	detailed	options,	variable	ranges	and	data	types,	defaults,	and
expected	behavior

Copy-and-paste-ready	examples

The	guide	also	contains	general	reference	material	about	the	system,	such	as:

Script	language	syntax

External	interfaces

Parameter	listings

Configuration	files

Command	line	interface



Testing

We	have	spent	much	of	our	time	preparing	for	R2013a	on	testing.	Our	script	and
GUI-based	regression	test	systems	doubled	in	size	in	the	last	year.	They	now
contain:

Over	6,000	new	system,	validation,	and	end-to-end	script-based	tests

30	new	end-to-end	GUI	tests

3,000	new	GUI	system	tests

GUI	test	are	performed	using	SmartBear’s	TestComplete	software.	Script	tests
are	performed	using	a	custom	MATLAB-based	automated	test	system.	A
complete	execution	of	the	regression	test	system	now	takes	almost	four	days	of
computer	time.

Minor	Enhancements

While	most	of	our	effort	has	been	focused	on	quality	for	this	release,	we	have
included	some	new	features.

ICRF	is	now	supported	for	input	and	output	of	orbit	state	data:

The	Earth	texture	map	is	improved:



CCSDS	ephemeris	files	are	now	accessible	in	the	output	tab:

Improved	mouse	controls	for	interactive	3-D	graphics.	See	the	OrbitView
reference	for	details.

Improved	3ds	model	support

Improved	error	messages	system-wide

New	BodySpinSun	axis	system	for	asteroid	survey	missions

Improved	system	modularization	by	moving	more	features	to	plugins

Compatibility	Changes



Our	last	release,	R2012a,	was	beta	software.	R2013a	is	mature,	production
software.	We	made	some	changes	that	may	cause	backwards	compatibility	issues
with	scripts	written	in	previous	beta	versions.	Examples	of	changes	in	R2013a
that	affect	backwards	compatibility	with	previous	beta	versions	include:

Fixed	many	poorly-named	fields	and/or	parameters	(i.e.
OrbitView.CelestialPlane	→	OrbitView.EclipticPlane)

Corrected	missed	or	invalid	data	validation	checking

Removed	partially-implemented	functionality	from	previous	releases

Removed	improperly-exposed	internal	fields	and	functions

Disabled	configuration	of	some	resources	in	the	mission	sequence

In	all	cases,	we	modified	GMAT	to	work	correctly	as	specified	in	the
documentation,	but	did	not	always	maintain	backwards	compatibility	with
previous	versions.	This	was	a	one-time,	“pull-of-the-Band-Aid”	approach,	and
future	releases	will	maintain	backwards	compatibility	with	R2013a	or	provide
deprecation	notifications	of	features	that	are	no	longer	supported.

In	addition,	there	were	some	features	that	did	not	meet	quality	expectations	for
this	release	and	have	been	turned	off	in	the	release	package.	Most	of	these
features	can	be	turned	on	for	analysis	purposes,	but	they	are	not	fully	tested	and
should	be	used	with	caution.

Orbit	Designer	(disabled)

GMAT	functions	(libGmatFunctions)

Save	command	(libSaveCommand)

Bulirsh-Stoer	integrator	(libExtraPropagators)

To	turn	on	these	features,	see	the	Startup	File	reference.

Known	&	Fixed	Issues

Over	720	bugs	and	issues	were	closed	in	this	release.	See	the	"Critical	Issues

http://li64-187.members.linode.com:8080/issues/?filter=11803


Fixed	for	R2013a"	report	for	a	list	of	critical	bugs	and	resolutions	for	R2013a.
See	the	"Minor	Issues	Fixed	for	R2013a"	report"	for	minor	issues	addressed	in
R2013a.

Known	Issues

All	known	issues	that	affect	this	version	of	GMAT	can	be	seen	in	the	"Known
issues	in	R2013a"	report	in	JIRA.

There	are	several	known	issues	in	this	release	that	we	consider	to	be	significant:

ID Description

GMT-2561 UTC	Epoch	Entry	and	Reporting	During	Leap	Second	is	incorrect.

GMT-3043 Inconsistent	validation	when	creating	variables	that	shadow	built-
in	math	functions

GMT-3108 OrbitView	with	STM	and	Propagate	Synchronized	does	not	show
spacecraft	in	correct	locations

GMT-3289 First	step	algorithm	fails	for	backwards	propagation	using	SPK
propagator

GMT-3321 MATLAB	uses	stale	version	of	function	if	command	window	isn't
restarted	between	runs

GMT-3350 Single-quote	requirements	are	not	consistent	across	objects	and
modes

GMT-3556 Unable	to	associate	tank	with	thruster	in	command	mode

GMT-3629 GUI	starts	in	bad	state	when	started	with	--minimize

GMT-3669 Planets	not	drawn	during	optimization	in	OrbitView

GMT-3738 Cannot	set	standalone	FuelTank,	Thruster	fields	in
CallMatlabFunction

GMT-3745 SPICE	ephemeris	stress	tests	are	not	writing	out	ephemeris	for	the
entire	mission	sequence

http://li64-187.members.linode.com:8080/issues/?filter=11807
http://li64-187.members.linode.com:8080/issues/?filter=11806
http://li64-187.members.linode.com:8080/browse/GMT-2561
http://li64-187.members.linode.com:8080/browse/GMT-3043
http://li64-187.members.linode.com:8080/browse/GMT-3108
http://li64-187.members.linode.com:8080/browse/GMT-3289
http://li64-187.members.linode.com:8080/browse/GMT-3321
http://li64-187.members.linode.com:8080/browse/GMT-3350
http://li64-187.members.linode.com:8080/browse/GMT-3556
http://li64-187.members.linode.com:8080/browse/GMT-3629
http://li64-187.members.linode.com:8080/browse/GMT-3669
http://li64-187.members.linode.com:8080/browse/GMT-3738
http://li64-187.members.linode.com:8080/browse/GMT-3745


GMAT	R2012a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2012a	was	released	May
23,	2012.	This	is	the	first	public	release	in	over	a	year,	and	is	the	5th	public
release	for	the	project.	In	this	release:

52,000	lines	of	code	were	added

Code	and	documentation	was	contributed	by	9	developers	from	2
organizations

6847	system	tests	were	run	every	weeknight

This	is	a	beta	release.	It	has	undergone	extensive	testing	in	many	areas,	but	is	not
considered	ready	for	production	use.

New	Features

Ground	Track	Plot

GMAT	can	now	show	the	ground	track	of	a	spacecraft	using	the	new
GroundTrackPlot	resource.	This	view	shows	the	orbital	path	of	one	or	more
spacecraft	projected	onto	a	two-dimensional	map	of	a	celestial	body,	and	can	use
any	celestial	body	that	you	have	configured.	Here's	an	example	of	the	plot
created	as	part	of	the	default	mission:

Orbit	Designer

Sometimes	you	need	to	create	a	spacecraft	in	a	particular	orbit	but	don't	exactly



know	the	proper	orbital	element	values.	Before,	you	had	to	make	a	rough
estimate,	or	go	back	to	the	math	to	figure	it	out.	Now,	GMAT	R2012a	comes
with	a	new	Orbit	Designer	that	does	this	math	for	you.

The	Orbit	Designer	helps	you	create	one	of	six	different	Earth-centered	orbit
types,	each	with	a	flexible	array	of	input	options:

sun-synchronous

repeat	sun-synchronous

repeat	ground	track

geostationary

molniya

frozen

Once	you've	created	your	desired	orbit,	it	is	automatically	imported	into	the
Spacecraft	resource	for	later	use.	Here's	an	example	of	a	sun-synchronous	orbit
using	the	Designer.	To	open	the	Orbit	Designer,	click	the	button	on	the
Spacecraft	properties	window.



Eclipse	Locator	[alpha]

We've	done	significant	work	toward	having	a	robust	eclipse	location	tool	in
GMAT,	but	this	work	is	not	complete.	This	release	comes	with	an	alpha-stage
plugin	(disabled	by	default)	called	libEventLocator.	When	enabled,	this	plugin
adds	a	new	EclipseLocator	resource	that	can	be	configured	to	calculate	eclipse
entry	and	exit	times	and	durations	with	respect	to	any	configured	Spacecraft	and
celestial	bodies.	The	eclipse	data	can	be	reported	to	a	text	file	or	plotted
graphically.	Some	known	limitations	include	an	assumption	of	spherical	celestial
bodies	and	a	lack	of	light-time	correction.	This	feature	has	not	been	rigorously
tested,	and	may	be	brittle.	We've	included	it	here	as	a	preview	of	what's	coming
in	future	releases.



C	Interface	[alpha]

Likewise,	we've	included	an	experimental	library	and	plugin	that	exposes	a
plain-C	interface	to	GMAT's	internal	dynamics	model	functionality.	This
interface	is	intended	to	fill	a	very	specific	need:	to	expose	force	model	derivates
from	GMAT	to	external	software,	especially	MATLAB,	for	use	with	an	external
integrator	(though	GMAT	can	do	the	propagation	also,	if	desired).	The	interface
is	documented	by	an	API	reference	for	now.

Improvements

Dynamics	Models

We've	made	lots	of	improvements	to	GMAT's	already	capable	force	model	suite.
Here's	some	highlights:

GMAT	now	models	Earth	ocean	and	pole	tides.	This	is	a	script-only	option
that	can	be	turned	on	alongside	an	Earth	harmonic	gravity	model;	turn	it	on
with	a	line	like	this:

ForceModel.GravityField.Earth.EarthTideModel	=	'SolidAndPole'

You	can	now	apply	relativistic	corrections	using	the	checkbox	on	the
properties	for	Propagator.

http://gmat.sourceforge.net/docs/R2012a/capi/index.html


Solar	System

GMAT	can	now	use	the	DE421	and	DE424	ephemerides	for	the	solar	system.
These	files	are	included	in	the	installer,	but	are	not	activated	by	default.	To	use
either	of	these	ephemerides,	double-click	the	SolarSystem	folder	and	select	it
from	the	Ephemeris	Source	list.	Or	include	the	following	script	line:

SolarSystem.EphemerisSource	=	'DE421'

There's	also	a	new	SolarSystem	resource	called	SolarSystemBarycenter	that
represents	the	barycenter	as	given	by	the	chosen	ephemeris	source	(DE405,
DE421,	SPICE,	etc.).	This	resource	can	be	used	directly	in	reports	or	as	the
origin	of	a	user-defined	coordinate	system.

TDB	Input

You	can	now	input	the	epoch	of	a	Spacecraft	orbit	in	the	TDB	time	system	(in
both	Modified	Julian	and	Gregorian	formats).

Mission	Tree

We've	made	significant	improvements	to	the	mission	tree	to	make	it	more	user-
friendly	to	heavy	users.	The	biggest	improvement	is	that	you	can	now	filter	the
mission	sequence	in	different	ways	to	make	complex	missions	easier	to
understand,	for	example	by	hiding	non-physical	events	or	collapsing	the	tree	to
only	its	top-level	elements.



GMAT	also	now	lets	you	name	your	mission	sequence	commands.	Thus,	instead
of	a	sequence	made	up	of	commands	like	"Optimize1"	and	"Propagate3",	you
can	label	them	"Optimize	LOI"	and	"Prop	to	Periapsis".	This	example	shows	the
Ex_HohmannTransfer.script	sample	with	labeled	commands.

Finally,	we	added	the	ability	to	undock	the	mission	tree	so	you	can	place	it	and
the	resources	tree	side	by	side	and	see	both	at	the	same	time.	To	undock	the	tree,
right-click	the	Mission	tab	and	drag	it	from	its	docked	position.	To	dock	it	again,
just	close	the	new	Mission	window.

Mission	Summary

You	can	now	change	the	coordinate	system	shown	in	the	Mission	Summary	on
the	fly:	just	change	the	Coordinate	System	list	at	the	top	of	the	window	and	the



numbers	will	update.	This	feature	can	use	any	coordinate	system	currently
defined	in	GMAT,	including	user-defined	ones.

There's	also	a	new	Mission	Summary	-	Physics-Based	Commands	that	shows
only	physical	events	(Propagate	commands,	burns,	etc.),	and	further	data	was
added	to	both	Mission	Summary	types.

Window	Persistency

The	locations	of	output	windows	are	now	saved	with	the	mission	in	the	script
file.	This	means	that	when	running	a	mission,	all	the	output	windows	that	were
open	when	the	mission	was	last	saved	will	reappear	in	their	old	positions.

In	addition,	the	locations	of	certain	GMAT	windows,	like	the	mission	tree,	the
script	editor,	and	the	application	window	itself	are	saved	to	the	user	preferences
file	(MyGMAT.ini).

Switch	to	Visual	Studio	on	Windows

With	this	release,	the	official	GMAT	binaries	for	Windows	are	now	compiled
with	Microsoft	Visual	Studio	2010	instead	of	GCC.	The	biggest	benefit	of	this	is
in	performance;	we've	seen	up	to	a	50%	performance	improvement	in	certain
cases	in	unofficial	testing.	It	also	leads	to	more	a	industry-standard	development
process	on	Windows,	as	the	MinGW	suite	is	no	longer	needed.



New	Icons

The	last	release	saw	a	major	overhaul	of	GMAT's	GUI	icons.	This	time	we've
revised	some	and	added	more,	especially	in	the	mission	tree.

Training	Manual

The	non-reference	material	in	the	GMAT	User	Guide	has	been	overhauled,
partially	rewritten,	and	reformatted	to	form	a	new	GMAT	Training	Manual.	This
includes	the	"Getting	Started"	material,	some	short	how-to	articles,	and	some
longer	tutorials.	All	of	this	information	is	included	in	the	GMAT	User	Guide	as
well,	in	addition	to	reference	material	that	is	undergoing	a	similar	rewrite	later
this	year.

Infrastructure

The	GMAT	project	has	implemented	several	infrastructure	improvements	in	the
last	year.	The	biggest	of	these	was	switching	from	our	old	Bugzilla	system	to
JIRA	for	issue	tracking.

This	year	also	saw	the	creation	of	the	GMAT	Blog	and	the	GMAT	Plugins	and
Extensions	Blog	with	a	fair	number	of	posts	each,	plus	reorganizations	for	the
wiki	and	the	forums.	We	reactivated	our	two	mailing	lists,	gmat-developers	and
gmat-users,	but	haven't	seen	much	usage	of	each	yet.	And	finally,	we	created	a
new	mailing	list,	gmat-buildtest,	for	automated	daily	build	and	test	updates.

Compatibility	Changes

Application	Control	Changes

http://li64-187.members.linode.com:8080
http://gmat.sourceforge.net/blog/
http://gmatplugins.sourceforge.net/blog/
http://gmat.ed-pages.com/wiki/tiki-index.php
http://gmat.ed-pages.com/forum/
http://lists.sourceforge.net/mailman/listinfo/gmat-developers
http://lists.sourceforge.net/mailman/listinfo/gmat-users
http://lists.sourceforge.net/mailman/listinfo/gmat-buildtest


The	command-line	arguments	for	the	GMAT	executable	have	changed.	See	the
following	table	for	replacements.

Old New Description
-help --help,	-h Shows	available	options
-date --version,	-v Shows	GMAT	build	date
-ms --start-server Starts	GMAT	server	on

startup
-br	filename --run,	-r	scriptname Builds	and	runs	the	script
-minimize --minimize,	-m Minimizes	GMAT

window
-exit --exit,	-x Exits	GMAT	after	a	script

is	run

Script	Syntax	Changes

Resource Field Replacement
ForceModel Drag Drag.AtmosphereModel

Propagator MinimumTolerance

(BulirschStoer)
(none)

Known	&	Fixed	Issues

Many	bugs	were	closed	in	this	release,	but	a	comprehensive	list	is	difficult	to
create	because	of	the	move	from	Bugzilla	to	JIRA.	See	the	"Bugs	closed	in
R2012a"	report	in	for	a	partial	list.

All	known	issues	that	affect	this	version	of	GMAT	can	be	seen	in	the	"Known
issues	in	R2012a"	report	in	JIRA.

http://li64-187.members.linode.com:8080/issues/?filter=11103
http://li64-187.members.linode.com:8080/secure/IssueNavigator.jspa?mode=hide&requestId=11104


GMAT	R2011a	Release	Notes
The	General	Mission	Analysis	Tool	(GMAT)	version	R2011a	was	released	April
29,	2011	on	the	following	platforms:

Windows	(XP,	Vista,	7) Beta

Mac	OS	X	(10.6) Alpha

Linux Alpha

This	is	the	first	release	since	September	2008,	and	is	the	4th	public	release	for
the	project.	In	this	release:

100,000	lines	of	code	were	added

798	bugs	were	opened	and	733	were	closed

Code	was	contributed	by	9	developers	from	4	organizations

6216	system	tests	were	written	and	run	nightly

New	Features

OrbitView

GMAT's	old	OpenGLPlot	3D	graphics	view	was	completely	revamped	and
renamed	OrbitView.	The	new	OrbitView	plot	supports	all	of	the	features	of
OpenGLPlot,	but	adds	several	new	ones:

Perspective	view	instead	of	orthogonal

Stars	and	constellations	(with	names)

A	new	default	Earth	texture

Accurate	lighting

Support	for	user-supplied	spacecraft	models	in	3ds	and	POV	formats.



All	existing	scripts	will	use	the	new	OrbitView	object	automatically,	with	no
script	changes	needed.	Here's	a	sample	of	what	can	be	done	with	the	new
graphics:

User-Defined	Celestial	Bodies

Users	can	now	define	their	own	celestial	bodies	(Planets,	Moons,	Asteroids,	and
Comets)	through	the	GMAT	interface,	by	right-clicking	on	the	Sun	resource	(for
Planets,	Asteroids,	and	Comets)	or	any	other	Solar	System	resource	(for	Moons).
User-defined	celestial	bodies	can	be	customized	in	many	ways:

Mu	(for	propagation),	radius	and	flattening	(for	calculating	altitude)

User-supplied	texture	file,	for	use	with	OrbitView

Ephemeris	from	two-body	propagation	of	an	initial	Keplerian	state	or	from
a	SPICE	kernel

Orientation	and	spin	state



Ephemeris	Output

GMAT	can	now	output	spacecraft	ephemeris	files	in	CCSDS-OEM	and	SPK
formats	by	using	the	EphemerisFile	resource.	For	each	ephemeris,	you	can
customize:

Coordinate	system

Interpolation	order

Step	size

Epoch	range

SPICE	Integration	for	Spacecraft

Spacecraft	in	GMAT	can	now	be	propagated	using	data	from	a	SPICE	kernel
rather	than	by	numerical	integration.	This	can	be	activated	on	the	SPICE	tab	of
the	Spacecraft	resource,	or	through	the	script.	The	following	SPICE	kernels	are
supported:

SPK/BSP	(orbit)

CK	(attitude)



FK	(frame)

SCLK	(spacecraft	clock)

Plugins

New	features	can	now	be	added	to	GMAT	through	plugins,	rather	than	being
compiled	into	the	GMAT	executable	itself.	The	following	plugins	are	included	in
this	release,	with	their	release	status	indicated:

libMatlabPlugin Beta

libFminconOptimizer	(Windows	only) Beta

libGmatEstimation Alpha	(preview)

Plugins	can	be	enabled	or	disabled	through	the	startup	file
(gmat_startup_file.txt),	located	in	the	GMAT	bin	directory.	All	plugins	are
disabled	by	default.

GUI/Script	Synchronization

For	those	that	work	with	both	the	script	and	the	graphical	interface,	GMAT	now
makes	it	explicitly	clear	if	the	two	are	synchronized,	and	which	script	is	active
(if	you	have	several	loaded).	The	possible	states	are:

Synchronized	(the	interface	and	the	script	have	the	same	data)

GUI	or	Script	Modified	(one	of	them	has	been	modified	with	respect	to	the
other)

Unsynchronized	(different	changes	exist	in	each	place)

The	only	state	in	which	manual	intervention	is	necessary	is	Unsynchronized,
which	must	be	merged	manually	(or	one	set	of	changes	must	be	discarded).	The
following	status	indicators	are	available	on	Windows	and	Linux	(on	Mac,	they
appear	as	single	characters	on	the	GMAT	toolbar).



Estimation	[Alpha]

GMAT	R2011a	includes	significant	new	state	estimation	capabilities	in	the
libGmatEstimation	plugin.	The	included	features	are:

Measurement	models

Geometric

TDRSS	range

USN	two-way	range

Estimators

Batch

Extended	Kalman

Resources

GroundStation

Antenna

Transmitter

Receiver

Transponder

Note

This	functionality	is	alpha	status,	and	is	included	with	this
release	as	a	preview	only.	It	has	not	been	rigorously	tested.



User	Documentation

GMAT’s	user	documentation	has	been	completely	revamped.	In	place	of	the	old
wiki,	our	formal	documentation	is	now	implemented	in	DocBook,	with	HTML,
PDF,	and	Windows	Help	formats	shipped	with	GMAT.	Our	documentation
resources	for	this	release	are:

Help	(shipped	with	GMAT,	accessed	through	the	Help	>	Contents	menu
item)

Online	Help	(updated	frequently,	http://gmat.sourceforge.net/docs/)

Video	Tutorials	(http://gmat.sourceforge.net/docs/videos.html)

Help	Forum	(http://gmat.ed-pages.com/forum/)

Wiki	(for	informal	and	user-contributed	documentation,	samples,	and	tips:
http://gmat.ed-pages.com/wiki/tiki-index.php)

Screenshot	( )

GMAT	can	now	export	a	screenshot	of	the	OrbitView	panel	to	the	output	folder
in	PNG	format.

Improvements

Automatic	MATLAB	Detection

MATLAB	connectivity	is	now	automatically	established	through	the
libMatlabInterface	plugin,	if	enabled	in	your	gmat_startup_file.txt.	We	are	no

http://gmat.sourceforge.net/docs/
http://gmat.sourceforge.net/docs/videos.html
http://gmat.ed-pages.com/forum/
http://gmat.ed-pages.com/wiki/tiki-index.php


longer	shipping	separate	executables	with	and	without	MATLAB	integration.
Most	recent	MATLAB	versions	are	supported,	though	configuration	is
necessary.

Dynamics	Model	Numerics

All	included	dynamics	models	have	been	thoroughly	tested	against	truth
software	(AGI	STK,	and	A.I.	Solutions	FreeFlyer,	primarily),	and	all	known
numeric	issues	have	been	corrected.

Script	Editor	[Windows]

GMAT’s	integrated	script	editor	on	Windows	is	much	improved	in	this	release,
and	now	features:

Syntax	highlighting	for	GMAT	keywords

Line	numbering

Find	&	Replace

Active	script	indicator	and	GUI	synchronization	buttons

Regression	Testing



The	GMAT	project	developed	a	completely	new	testing	system	that	allows	us	to
do	nightly,	automated	tests	across	the	entire	system,	and	on	multiple	platforms.
The	new	system	has	the	following	features:

Focused	on	GMAT	script	testing

Written	in	MATLAB	language

Includes	6216	tests	with	coverage	of	most	of	GMAT’s	functional
requirements

Allows	automatic	regression	testing	on	nightly	builds

Compatible	with	all	supported	platforms

The	project	is	also	regularly	testing	the	GMAT	graphical	interface	on	Windows
using	the	SmartBear	TestComplete	tool.	This	testing	occurs	approximately	twice
a	week,	and	is	focused	on	entering	and	running	complete	missions	through	the
interface	and	checking	that	the	results	match	those	generated	in	script	mode.

Visual	Improvements

This	release	features	numerous	visual	improvements,	including:

A	new	application	icon	and	splash	screen	(shown	below)

Many	new,	professionally-created	icons

A	welcome	page	for	new	users



Compatibility	Changes

Platform	Support

GMAT	supports	the	following	platforms:

Windows	XP

Windows	Vista

Windows	7

Mac	OS	X	Snow	Leopard	(10.6)

Linux	(Intel	64-bit)

With	the	exception	of	the	Linux	version,	GMAT	is	a	32-bit	application,	but	will
run	on	64-bit	platforms	in	32-bit	mode.	The	MATLAB	interface	was	tested	with
32-bit	MATLAB	2010b	on	Windows,	and	is	expected	to	support	32-bit



MATLAB	versions	from	R2006b	through	R2011a.

Mac:	MATLAB	2010a	was	tested,	but	version	coverage	is	expected	to	be
identical	to	Windows.

Linux:	MATLAB	2009b	64-bit	was	tested,	and	64-bit	MATLAB	is	required.
Otherwise,	version	coverage	is	expected	to	be	identical	to	Windows.

Script	Syntax	Changes

The	BeginMissionSequence	command	will	soon	be	required	for	all	scripts.	In
this	release	a	warning	is	generated	if	this	statement	is	missing.

The	following	syntax	elements	are	deprecated,	and	will	be	removed	in	a	future
release:

Resource Field Replacement
DifferentialCorrector TargeterTextFile ReportFile

DifferentialCorrector UseCentralDifferences DerivativeMethod	=

"CentralDifference"

EphemerisFile FileName Filename

FiniteBurn Axes

FiniteBurn BurnScaleFactor

FiniteBurn CoordinateSystem

FiniteBurn Origin

FiniteBurn Tanks

FiniteBurn

ImpulsiveBurn

CoordinateSystem	=

"Inertial"

CoordinateSystem	=

"MJ2000Eq"

FiniteBurn

ImpulsiveBurn

VectorFormat



FiniteBurn

ImpulsiveBurn

V

N

B

Element1

Element2

Element3

FuelTank PressureRegulated PressureModel	=

PressureRegulated

OpenGLPlot OrbitView

OrbitView EarthSunLines SunLine

OrbitView

ViewDirection	=

Vector

ViewDirection	=	[0	0

1]

ViewDirection	=	[0	0

1]

OrbitView ViewPointRef ViewPointReference

OrbitView

ViewPointRef	=	Vector

ViewPointRefVector	=

[0	0	1]

ViewPointReference	=

[0	0	1]

OrbitView

ViewPointVector	=

Vector

ViewPointVectorVector

=	[0	0	1]

ViewPointVector	=	[0

0	1]

SolarSystem Ephemeris EphemerisSource

Spacecraft StateType DisplayStateType

Thruster

X_Direction

Y_Direction

Z_Direction

ThrustDirection1

ThrustDirection2

ThrustDirection3



Element1

Element2

Element3

XYPlot Add YVariable

XYPlot Grid ShowGrid

XYPlot IndVar XVariable

Command Old	Syntax New	Syntax
Propagate Propagate	-

DefaultProp(sc)

Propagate	BackProp

DefaultProp(sc)

Fixed	Issues

733	bugs	were	closed	in	this	release,	including	368	marked	“major”	or	“critical”.
See	the	full	report	for	details.

Known	Issues

There	remain	268	open	bugs	in	the	project’s	Bugzilla	database,	42	of	which	are
marked	“major”	or	“critical”.	These	are	tabulated	below.

Table	24.	Multiple	platforms

407 Multi-Matlab	run	bug

636 MATLAB	Callbacks	on	Linux	and
Mac

648 DOCUMENT	BEHAVIOR	-	Final
orbital	state	does	not	match	for	the	two
report	methods

776 Batch	vs	Individual	Runs	different

1604 Keplerian	Conversion	Errors	for
Hyperbolic	Orbits

1668 Decimal	marker	not	flexible	enough

http://pows003.gsfc.nasa.gov/bugzilla/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&product=GMAT&long_desc_type=substring&long_desc=&bug_file_loc_type=allwordssubstr&bug_file_loc=&keywords_type=allwords&keywords=&bug_status=RESOLVED&bug_status=VERIFIED&bug_status=CLOSED&bug_severity=critical-GMAT&bug_severity=blocker&bug_severity=critical&bug_severity=major&emailassigned_to1=1&emailtype1=substring&email1=&emailassigned_to2=1&emailreporter2=1&emailcc2=1&emailtype2=substring&email2=&bugidtype=include&bug_id=&chfieldfrom=2008-09-30&chfieldto=Now&chfield=bug_status&chfieldvalue=&cmdtype=doit&order=Reuse+same+sort+as+last+time&field0-0-0=noop&type0-0-0=noop&value0-0-0=
http://pows003.gsfc.nasa.gov/bugzilla/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&product=GMAT&long_desc_type=substring&long_desc=&bug_file_loc_type=allwordssubstr&bug_file_loc=&keywords_type=allwords&keywords=&bug_status=UNCONFIRMED&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&bug_status=NEEDS+CLARIFICATION&bug_status=NEEDS+TEST&emailassigned_to1=1&emailtype1=substring&email1=&emailassigned_to2=1&emailreporter2=1&emailcc2=1&emailtype2=substring&email2=&bugidtype=include&bug_id=&chfieldfrom=&chfieldto=Now&chfieldvalue=&cmdtype=doit&order=Reuse+same+sort+as+last+time&field0-0-0=noop&type0-0-0=noop&value0-0-0=
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=407
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=636
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=648
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=776
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1604
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1668


for	international	builds

1684 MMS	script	in	GMAT	takes	300	times
longer	than	similar	run	in	FreeFlyer

1731 Major	Performance	issue	in	GMAT
Functions

1734 Spacecraft	allows	conversion	for
singular	conic	section.

1992 Determinant	of	"large"	disallowed	due
to	poor	algorithm	performance

2058 Can't	set	SRP	Flux	and	Nominal	Sun
via	GUI

2088 EOP	file	reader	uses	Julian	Day

2147 Empty	parentheses	"(	)"	are	not	caught
in	math	validation

2313 Finite	Burn/Thruster	Tests	Have	errors
>	1000	km	but	may	be	due	to	script
differences

2322 DOCUMENT:	MATLAB	interface
requires	manual	configuration	by	user

2344 when	a	propagator	object	is	deleted,	its
associated	force	model	is	not	deleted

2349 Performance	Issue	in	Force	Modelling

2410 Ephemeris	propagator	has	large
numeric	error

2416 STM	Parameters	are	wrong	when
using	Coordinate	System	other	than
EarthMJ2000Eq

Table	25.	Windows

970 Matlab	connection	issue

1012 Quirky	Numerical	Issues	2	in	Batch

http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1684
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1731
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1734
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1992
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2058
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2088
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2147
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2313
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2322
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2344
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2349
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2410
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2416
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=970
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1012


mode

1128 GMAT	incompatible	with	MATLAB
R14	and	earlier

1417 Some	lines	prefixed	by	"function"	are
ingored

1436 Potential	performance	issue	using
many	propagate	commands

1528 GMAT	Function	scripts	unusable
depending	on	file
ownership/permissions

1580 Spacecraft	Attitude	Coordinate	System
Conversion	not	implemented

1592 Atmosphere	Model	Setup	File	Features
Not	Implemented

2056 Reproducibility	of	script	run	not
guaranteed

2065 Difficult	to	read	low	number	in
Spacecraft	Attitude	GUI

2066 SC	Attitude	GUI	won't	accept
0.0:90.0:0.0	as	a	3-2-1	Euler	Angle
input

2067 Apply	Button	Sometimes	Not
Functional	in	SC	Attitude	GUI

2374 Crash	when	GMAT	tries	to	write	to	a
folder	without	write	permissions

2381 TestComplete	does	not	match	user
inputs	to	DefaultSC

2382 Point	Mass	Issue	when	using	Script	vs.
User	Input

Table	26.	Mac	OS	X

http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1128
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1417
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1436
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1528
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1580
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1592
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2056
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2065
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2066
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2067
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2374
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2381
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2382


1216 MATLAB->GMAT	not	working

2081 Texture	Maps	not	showing	on	Mac	for
OrbitView

2092 GMAT	crashes	when	MATLAB	engine
does	not	open

2291 LSK	file	text	ctrl	remains	visible	when
source	set	to	DE405	or	2Body

2311 Resource	Tree	-	text	messed	up	for
objects	in	folders

2383 Crash	running	RoutineTests	with	plots
ON

Table	27.	Linux

1851 On	Linux,	STC	Editor	crashes	GMAT
on	Close

1877 On	Linux,	Ctrl-C	crashes	GMAT	if	no
MDIChildren	are	open

http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1216
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2081
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2092
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2291
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2311
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=2383
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1851
http://pows003.gsfc.nasa.gov/bugzilla/show_bug.cgi?id=1877
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