
FreeBASIC	Manual 	

Welcome	to	FreeBASIC	|	Getting	Help	with	FreeBASIC

Language	Documentation

Keywords	-	Alphabetical
Keywords	-	Functional
Graphics	Keywords
Operators	List

Variables	and	Data	Types
Variable	Declarations
User	Defined	Types
Standard	Data	Types
Standard	Data	Type	Limits
Converting	Between	Data
Types
Operators
Operators
Operator	Precedence
Bitwise	Operators	&	Truth
Tables
Statements
Control	Flow
Procedures
Modularizing
Other
Preprocessor
Escape	Sequences	In	String
Literals
Meta-statements
Intrinsic	Defines
Error	Handling

Tutorials
Programmer's	Guide
Community	Tutorials
Community	Code	Library
External	Libraries	Index

Using	the	FreeBASIC	compiler

Installing	FreeBASIC	|
Requirements
Running	FreeBASIC
Using	the	Command	Line	|
Command	Line	Options

Debugging	with	FreeBASIC

Compiler	Error	Messages
Tools	used	by	fbc

FreeBASIC	dialects	and
QBASIC

FreeBASIC	and	Qbasic	|
Differences	from	QB
FreeBASIC	Dialects

FAQs

Compiler	FAQ
Graphics	Library	FAQ

Inline	Asm

Runtime	Library	Reference

Array	Functions
Bit	Manipulation
Console	Functions
Date	and	Time	Functions
Error	Handling	Functions
File	IO	Functions
Mathematical	Functions
Memory	Functions
Operating	System	Functions
String	Functions
Threading	Support	Functions
User	Input	Functions

Graphics	Library	Reference

2D	Drawing	Functions
User	Input	Functions
Screen	Functions

Supported	graphics	drivers
(backends)
Keyboard	Scan	Codes
Default	Palettes

Runtime	Library	FAQ
Xbox	port	FAQ
DOS	related	FAQ
Windows	related	FAQ
Linux	related	FAQ

Miscellaneous

Obsolete	Keywords
Glossary
Miscellaneous	Keywords
C	Standard	Library	Functions
ASCII	Character	Codes
Runtime	Error	Codes
C/C++	vs.	FreeBASIC	syntax
comparison
C/C++	vs.	FreeBASIC	integer
data	type	comparison

Hacking	on	FreeBASIC

Developer's	Table	of	Contents

	

This	document	last	compiled	:	2016/01/31	14:20:41	from
http://www.freebasic.net/wiki/

Welcome	to	FreeBASIC 	

Welcome	to	our	world!	This	page	is	an	overview	of	our	online	warehouse
of	knowledge.	Enjoy	your	surfing	and	we	hope	this	will	be	the	first	of
many	visits.

Introduction
FreeBASIC	is	a	free	32-bit	compiler	for	the	BASIC	language.	It	is	open
source	and	licensed	under	the	GPL.	It	is	designed	to	be	syntax
compatible	with	QuickBASIC,	while	expanding	on	the	language	and
capabilities.	It	can	create	programs	for	MS-Windows,	DOS	and	Linux,
and	is	being	ported	to	other	platforms.	See	About	FreeBASIC	and	Main
Features.

Latest	Version
FreeBASIC	is	a	beta	release	compiler	and	development	is	ongoing.	With
each	full	update,	many	features	are	added,	and	bugs	from	previous
releases	are	fixed.	To	see	the	latest	version	available,	visit
http://sourceforge.net/projects/fbc	on	SourceForge,	or
http://www.freebasic.net/index.php/download	on	FreeBASIC's
official	website.

Requirements	and	Installation
Minimum	hardware	is	listed	on	the	Requirements	page.	Visit	our
Installation	page	for	setting	up	FreeBASIC	on	your	computer.

Running
FreeBASIC	is	a	compiler	and	as	such	is	not	packaged	with	an	IDE
(Integrated	Development	Editor),	although	there	are	a	few	IDE's
available.	For	information	on	using	FreeBASIC	without	an	IDE,	see
Running.

Compatibility	with	QuickBASIC
FreeBASIC	is	designed	to	be	syntax	compatible	with	QuickBASIC.	For
best	code-compatibility	with	QuickBASIC,	the	QB	dialect	can	be	used
when	compiling	source	code.	See	FreeBASIC	Dialects	and	Differences
from	QB.

http://sourceforge.net/projects/fbc
http://sourceforge.net
http://www.freebasic.net/index.php/download
http://www.freebasic.net

Documentation
All	official	documentation	can	be	found	online	in	the	wiki	at
http://www.freebasic.net/wiki.	The	online	documentation	is	the	most	up-
to-date	resource	available.	In	all	cases	it	can	be	regarded	as	the	correct
version.	The	downloadable	versions	of	the	manual	are	snapshots	of	the
documentation	available	at	a	particular	time	and	should	be	mostly	correct
for	a	specific	released	version	of	the	compiler.	However,	we	do	not
maintain	multiple	versions	of	the	documentation	so	there	may	be	some
discrepancies.

Starting	points	in	the	Manual
Table	of	Contents
Getting	Help	with	FreeBASIC
Programmer's	Guide

Starting	points	on	the	Web
Official	Website	at	http://www.freebasic.net
Official	Forums	at	http://www.freebasic.net/forum
Official	Archive	at	http://www.freebasic.net/arch

Thank	you	for	using	FreeBASIC.	Happy	coding!

http://www.freebasic.net
http://www.freebasic.net/forum
http://www.freebasic.net/arch

Getting	help	with	FreeBASIC 	

There	are	several	options	available	for	getting	help	with	FreeBASIC.

The	Manual
This	huge	user's	manual	is	full	of	information	that	can	help	you	learn	to
write	programs	using	FreeBASIC.	

The	manual	is	available	online	at	http://www.freebasic.net/wiki.	There	is	a
search	box	at	the	bottom	of	every	page	to	help	you	find	what	you're
looking	for.

If	you	are	unfamiliar	with	FreeBASIC	or	the	documentation,	you	may	find
these	pages	a	good	place	to	start:

Table	of	Contents
Programmer's	Guide
Library	Headers	Index
Glossary
Compiler	FAQ
Graphics	Library	FAQ
Runtime	Library	FAQ

A	downloadable	manual	(in	CHM	format)	is	available	from	the
sourceforge	project	page	at	http://sourceforge.net/projects/fbc	which
features	a	full	table	of	contents,	searching	capabilities,	an	index,	plus	all
the	same	content	as	the	online	version.

Searching	the	manual	on	or	offline	is	an	excellent	place	to	start	finding
help	about	how	to	write	and	use	FreeBASIC	programs.

Examples	and	Source	Code
In	the	./examples	directory	located	where	FreeBASIC	was	installed	on
your	system	are	hundreds	of	examples	to	be	compiled	and	run.	Most	of
the	external	library	examples	will	need	additional	libraries	to	be
downloaded	to	allow	them	to	work.	See	Library	Headers	Index	for	a	full
list.

http://sourceforge.net/projects/fbc

FreeBASIC's	official	code	archive	is	located	at
http://www.freebasic.net/arch.	This	archive	hosts	user	contributed
libraries	and	tools	and	has	links	to	source	code	located	on	other
websites.

Tutorials
Community	created	tutorials	about	FreeBASIC	can	be	found	at
CommunityTutorials.	Some	selected	tutorials	are	included	in	this	manual.

FreeBASIC	Forum
An	active	community	forum	can	be	found	at
http://www.freebasic.net/forum	with	several	sub-forums.	The	forum	has
a	search	feature	that	can	help	you	find	answers	to	questions	or	problems
that	may	have	already	been	asked	and	solved.	First	do	a	search	for	your
problem,	if	you	can't	find	the	answer	then	post	a	message	in	one	of	the
sub-forums.

Chat
IRC	or	Internet	Relay	Chat	is	a	great	way	to	chat	with	the	developers	and
other	users,	some	of	whom	are	very	knowledgeable.	There	are	several
ways	to	connect	to	IRC,	if	you	know	what	you're	doing	simply	join
#freebasic	on	FreeNode.

If	you	haven't	the	foggiest	what	IRC	is	and	you	have	Java	installed,	you
can	simply	go	here.

If	you're	trying	to	get	help,	the	most	important	thing	is	to	be	patient.
Sometimes	you	won't	get	a	reply	right	away.	Stick	around	or	check	back
and	the	Community	will	try	and	assist	you.

http://www.freebasic.net/arch
http://www.freebasic.net/forum
http://www.freebasic.net/index.php/chat

Alphabetical	Keywords	List 	

Alphabetical	listing	of	keywords,	macros	and	procedures.

Operators	.	_	#	$	A	B	C	D	E	F	G	H	I	K	L	M	N	O	P	R	S	T	U	V	W	X	Y	Z

Operators
See	Operator	List

.
...

_
__DATE__
__Date_Iso__
__Fb_64Bit__
__FB_ARGC__
__FB_ARGV__
__Fb_Arm__
__Fb_Asm__
__Fb_Backend__
__FB_BIGENDIAN__
__FB_BUILD_DATE__
__FB_CYGWIN__
__FB_DARWIN__
__FB_DEBUG__
__FB_DOS__
__FB_ERR__
__Fb_Fpmode__
__Fb_Fpu__
__FB_FREEBSD__
__Fb_Gcc__
__FB_LANG__

K
Kill

L
LBound
LCase
Left
Len
Let
Lib
Line
Line	Input
Line	Input	#
LoByte
LOC
Local
Locate
Lock
LOF
Log
Long
LongInt
Loop
LoWord
Lpos
LPrint

__FB_LINUX__
__FB_MAIN__	
__FB_MIN_VERSION__	
__FB_MT__
__FB_NETBSD__
__FB_OPENBSD__
__FB_OPTION_BYVAL__
__FB_OPTION_DYNAMIC__
__FB_OPTION_ESCAPE__
__FB_OPTION_EXPLICIT__
__Fb_Option_Gosub__
__FB_OPTION_PRIVATE__
__FB_OUT_DLL__
__FB_OUT_EXE__
__FB_OUT_LIB__
__FB_OUT_OBJ__
__Fb_Pcos__
__FB_SIGNATURE__	
__FB_SSE__
__Fb_Unix__
__Fb_Vectorize__
__FB_VER_MAJOR__
__FB_VER_MINOR__
__FB_VER_PATCH__
__FB_VERSION__
__FB_WIN32__
__FB_XBOX__
__FILE__
__FILE_NQ__
__FUNCTION__
__FUNCTION_NQ__

LSet
LTrim

M
Mid	(Statement)
Mid	(Function)
Minute
MKD
MkDir
MKI
MKL
MKLongInt
MKS
MKShort
Mod
Month
MonthName
MultiKey
MutexCreate
MutexDestroy
MutexLock
MutexUnlock

N
Naked
Name
Namespace
Next
New
New	(Placement)
Next	(Resume)
Not
Now

O

__LINE__
__PATH__
__TIME__

#
#Assert
#define
#else
#elseif
#endif
#endmacro
#error
#if
#ifdef
#ifndef
#inclib
#include
#lang
#libpath
#line
#macro
#pragma
#print
#undef

$
$Dynamic
$Include
$Static
$Lang

A
Abs
Abstract	(Member)
Access

Object
Oct
OffsetOf
On	Error
On...Gosub
On...Goto
Once
Open
Open	Com
Open	Cons
Open	Err
Open	Lpt
Open	Pipe
Open	Scrn
Operator
Option()
Option	Base
Option	ByVal
Option	Dynamic
Option	Escape
Option	Explicit
Option	Gosub
Option	Nogosub
Option	NoKeyword
Option	Private
Option	Static
Or
Or	(Graphics	Put)
OrElse
Out
Output

Acos
Add	(Graphics	Put)
Alias
Allocate
Alpha	(Graphics	Put)
And
AndAlso
And	(Graphics	Put)
Any
Append
As
Assert
AssertWarn
Asc
Asin
Asm
Atan2
Atn

B
Base	(Initialization)
Base	(Member	Access)
Beep
Bin
Binary
Bit
BitReset
BitSet
BLoad
Boolean
BSave
Byref	(Parameters)
Byref	(Function	Results)

Overload
Override

P
Paint
Palette
pascal
PCopy
Peek
PMap
Point
Pointcoord
Pointer
Poke
Pos
Preserve
PReset
Print
?
Print	#
?	#
Print	Using
?	Using
Private
Private:	(Access
Control)
ProcPtr
Property
Protected:	(Access
Control)
Pset	(Statement)
Pset	(Graphics	Put)
Ptr

Byte
ByVal

C
Call
CAllocate
Case
Cast
Cbool
CByte
CDbl
cdecl
Chain
ChDir
Chr
CInt
Circle
Class
Clear
CLng
CLngInt
Close
Cls
Color
Command
Common
CondBroadcast
CondCreate
CondDestroy
CondSignal
CondWait	
Const
Const	(Member)

Public
Public:	(Access
Control)
Put	(Graphics)
Put	#	(File	I/O)

R
Random
Randomize
Read
Read	(File	Access)
Read	Write	(File
Access)
Reallocate
ReDim
Rem
Reset
Restore
Resume
Resume	Next
Return
RGB
RGBA
Right
RmDir
Rnd
RSet
RTrim
Run

S
SAdd
Scope
Screen

Const	(Qualifier)
Constructor
Constructor	(Module)
Continue
Cos
CPtr
CShort
CSign
CSng
CsrLin
CUByte
CUInt
CULng
CULngInt
CUnsg
CurDir
CUShort
Custom	(Graphics	Put)
CVD
CVI
CVL
CVLongInt
CVS
CVShort

D
Data
Date
DateAdd
DateDiff
DatePart
DateSerial
DateValue

Screen	(Console)
ScreenCopy
ScreenControl
ScreenEvent
ScreenInfo
ScreenGLProc
ScreenList
ScreenLock
ScreenPtr
ScreenRes
ScreenSet
ScreenSync
ScreenUnlock
Second
Seek	(Statement)
Seek	(Function)
Select	Case
SetDate
SetEnviron
SetMouse
SetTime
Sgn
Shared
Shell
Shl
Shr
Short
Sin
Single
SizeOf
Sleep

Day
Deallocate
Declare
DefByte
DefDbl
defined
DefInt
DefLng
Deflongint
DefShort
DefSng
DefStr
DefUByte
DefUInt
Defulongint
DefUShort
Delete
Destructor
Destructor	(Module)
Dim
Dir
Do
Do...Loop
Double
Draw
Draw	String
DyLibFree
DyLibLoad
DyLibSymbol

E
Else

Space
Spc
Sqr
Static
Static	(Member)
stdcall
Step
Stick
Stop
Str
Strig
String	(Function)
String
StrPtr
Sub
Sub	(Member)
Swap
System

T
Tab
Tan
Then
This
Threadcall
ThreadCreate
Threaddetach
ThreadWait
Time
TimeSerial
TimeValue
Timer
To

ElseIf
Encoding
End	(Block)
End	(Statement)
End	If
Enum
Environ	Statement
Environ
EOF
Eqv
Erase
Erfn
Erl	
Ermn
Err
Error
Event	(Message	Data	From
Screenevent)
Exec
ExePath
Exit
Exp
Export
Extends
Extern
Extern...End	Extern

F
False
Field
FileAttr
FileCopy
FileDateTime

Trans	(Graphics	Put)
Trim
True
Type	(Alias)
Type	(Temporary)
Type	(Udt)
TypeOf

U
UBound
UByte
UCase
UInteger
Ulong
ULongInt
Union
Unlock
Unsigned
Until
UShort
Using	(Print)
Using	(Namespaces)

V
va_arg
va_first
va_next
Val
ValLng
ValInt
ValUInt
ValULng
Var
VarPtr

FileExists
FileLen
Fix
Flip
For
For...Next
Format
Frac
Fre
FreeFile
Function
Function	(Member)

G
Get	(Graphics)
Get	#	(File	I/O)
GetJoystick
GetKey
GetMouse
GoSub
Goto

H
Hex
HiByte
HiWord
Hour

I
If...Then
IIf
ImageConvertRow
ImageCreate
ImageDestroy
ImageInfo

View	Print
View	(Graphics)
Virtual	(Member)

W
Wait
WBin
WChr
Weekday
WeekdayName
Wend
While
While...Wend
WHex
Width
Window
WindowTitle
WInput
With
WOct
Write
Write	#
Write	(File	Access)	
WSpace
WStr
Wstring	(Data	Type)
Wstring	(Function)

X
Xor
Xor	(Graphics	Put)

Y
Year

Z

Imp
Implements
Import
Inkey
Inp
Input	(Statement)
Input	(File	I/O)
Input	#
Input$
InStr
InStrRev
Int
Integer
Is	(Select	Case)
Is	(Run-Time	Type
Information	Operator)
IsDate
Isredirected

ZString

	

...	(Ellipsis) 	

Used	in	place	of	procedure	parameter	to	pass	a	variable	number	of	arguments,	or	as	the	upper
bound	in	an	array	declaration	to	denote	that	the	number	of	elements	will	be	determined	by	the
initializer.

Syntax
Declare	{	Sub	|	Function	}	proc_name	cdecl	(param_list,	...)	{	|	

Dim	array_symbol	([lbound	To]	...)	[As	datatype]	=>	{	expression_list

#define	identifier([parameters,]	variadic_parameter...)	body

Description
The	ellipsis	(three	dots,	...)	is	used	in	procedure	declarations	and	definitions	to	indicate	a
variable	argument	list.	A	first	argument	(at	least)	must	always	be	specified	and	the	procedure
must	be	called	with	the	C	calling	convention	cdecl.	In	the	procedure	body,	
and	va_next	are	used	to	handle	the	variable	arguments.
Only	numeric	types	and	pointers	are	supported	as	variable	arguments	(all	bytes	and	shorts
passed	on	variable	arguments	are	implicitly	converted	to	integers,	all	singles	passed	on
variable	arguments	are	implicitly	converted	to	doubles).	Strings	can	be	passed,	in	which	case
a	ZString	Ptr	to	the	string	data	is	taken.
A	variadic	procedure	name	can	never	be	overloaded.

Using	an	ellipsis	in	place	of	the	upper	bound	in	an	array	declaration	causes	the	upper	bound
to	be	set	according	to	the	data	that	appears	in	the	expression_list.	When	the	ellipsis	is	used
in	this	manner,	an	initializer	must	appear,	and	cannot	be	Any.

Using	an	ellipsis	behind	the	last	parameter	in	a	#define	or	#macro	declaration	allows	to	create
a	variadic	macro.	This	means	it	is	possible	to	pass	any	number	of	arguments	to	the
variadic_parameter,	which	can	be	used	in	the	body	as	if	it	was	a	normal	macro	parameter.
The	variadic_parameter	will	expand	to	the	full	list	of	arguments	passed	to	it,	including
commas,	and	can	also	be	completely	empty.

Example

Declare	Function	foo	cdecl	(x	As	Integer,	...)	As	

Dim	As	Integer	myarray(0	To	...)	=	{0,	1,	2,	3}

Print	LBound(myarray),	UBound(myarray)			''	0,	3

''	Using	a	variadic	macro	to	wrap	a	variadic	function

#include	"crt.bi"

#define	eprintf(Format,	args...)	fprintf(stderr,	Format,	args)

eprintf(!"Hello	from	printf:	%i	%s	%i\n",	5,	"test"

''	LISP-like	accessors	allowing	to	modify	comma-separated	lists

#define	car(a,	b...)	a

#define	cdr(a,	b...)	b

Differences	from	QB

New	to	FreeBASIC

See	also

cdecl

va_arg

va_first

va_next

Dim

Static

#define

__DATE__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__DATE__

Description
Substitutes	the	compiler	date	in	a	literal	string	("mm-dd-yyyy"	format)
where	used.

Example

Print	"Compile	Date:	"	&	__DATE__

Compile	Date:	09-29-2011

Differences	from	QB

New	to	FreeBASIC

See	also

__Date_Iso__

__TIME__

Date

__Date_Iso__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__DATE_ISO__

Description
Substitutes	the	compiler	date	in	a	literal	string	("yyyy-mm-dd"	format)
where	used.	This	format	is	in	line	with	ISO	8601	and	can	be	used	for
lexicographical	date	comparisons.

Example

Print	"Compile	Date:	"	&	__DATE_ISO__

If	__DATE_ISO__	<	"2011-12-25"	Then

				Print	"Compiled	before	Christmas	day	2011"

Else

				Print	"Compiled	after	Christmas	day	2011"

End	If

Compile	Date:	2011-09-29

Compiled	before	Christmas	day	2011

Differences	from	QB

New	to	FreeBASIC

See	also

__DATE__

__TIME__

Date

__Fb_64Bit__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_64BIT__

Description
Define	created	at	compile	time	if	the	the	compilation	target	is	64bit,
otherwise	undefined.

Example

#ifdef	__FB_64BIT__

		'...instructions	for	64bit	OSes...

#else

		'...instructions	for	other	OSes

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_FREEBSD__

__FB_OPENBSD__

__FB_NETBSD__

__FB_CYGWIN__

__FB_DARWIN__

__Fb_Pcos__

Compiler	Option:	-target

__FB_ARGC__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_ARGC__

Description
Substituted	with	the	number	of	arguments	passed	in	on	the	command	line.

__FB_ARGC__	is	the	name	of	a	parameter	passed	to	the	program's
implicit	main	function,	and	therefore	is	only	defined	in	the	module	level
code	of	the	main	module	for	an	application.

Example

Dim	i	As	Integer

For	i	=	0	To	__FB_ARGC__	-	1

								Print	"arg	";	i;	"	=	'";	Command(i);	"'"

Next	i

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_ARGV__

Command

__FB_ARGV__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_ARGV__

Description
Substituted	with	a	pointer	to	a	list	of	pointers	to	the	zero	terminated
command	line	arguments	passed	in	on	the	command	line.

__FB_ARGV__	is	the	name	of	a	parameter	passed	to	the	program's
implicit	main	function,	and	therefore	is	only	defined	in	the	module	level
code	of	the	main	module	for	an	application.

Example

Declare	Function	main	_

		(_

				ByVal	argc	As	Integer,	_

				ByVal	argv	As	ZString	Ptr	Ptr	_

)	As	Integer

		End	main(__FB_ARGC__,	__FB_ARGV__)

Private	Function	main	_

		(_

				ByVal	argc	As	Integer,	_

				ByVal	argv	As	ZString	Ptr	Ptr	_

)	As	Integer

		Dim	i	As	Integer

		For	i	=	0	To	argc	-	1

								Print	"arg	";	i;	"	=	'";	*argv[i];	"'"

		Next	i

		Return	0

End	Function

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_ARGC__

Command

__Fb_Arm__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_ARM__

Description
Define	created	at	compile	time	if	the	compilation	target	uses	the	ARM
CPU	architecture,	otherwise	undefined.

Example

#ifdef	__FB_ARM__

		'...instructions	for	ARM	OSes...

#else

		'...instructions	for	other	OSes

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_FREEBSD__

__FB_OPENBSD__

__FB_NETBSD__

__FB_CYGWIN__

__FB_DARWIN__

__Fb_Pcos__

Compiler	Option:	-target

__Fb_Asm__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_ASM__

Description
__FB_ASM__	returns	a	string	equal	to	"intel"	or	"att"	depending	on
whether	inline	assembly	blocks	should	use	the	Intel	format	or	the
GCC/AT&T;	format.

Example

Dim	a	As	Long

#if	__FB_ASM__	=	"intel"

				Asm

									inc	dword	Ptr	[a]

				End	Asm

#else

				Asm

								"incl	%0\n"	:	"+m"	(a)	:	:

				End	Asm

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Compiler	Option:	-asm

__Fb_Backend__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_BACKEND__

Description
Defined	to	either	"gas"	or	"gcc",	depending	on	which	backend	was
specified	via	-gen.

Differences	from	QB

Did	not	exist	in	QB

__FB_BIGENDIAN__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_BIGENDIAN__

Description
Define	without	a	value	created	at	compile	time	if	compiling	for	a	big	endian
target.

It	can	be	used	to	compile	parts	of	the	program	only	if	the	target	is	big	endian.

Example

#ifdef	__FB_BIGENDIAN__

			'...instructions	only	for	big	endian	machines

#else

		'...instructions	only	for	little	endian	machines

#endif	

Differences	from	QB

Did	not	exist	in	QB

__FB_BUILD_DATE__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__FB_BUILD_DATE__

Description
Substituted	with	the	quoted	string	containing	the	date	(MM-DD-YYYY)	the	compiler	was	built	on.

Example

				Print	"This	program	compiled	with	a	compiler	built	on	this	date:"

Differences	from	QB

New	to	FreeBASIC

__FB_CYGWIN__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_CYGWIN__

Description
Define	without	a	value	created	at	compile	time	in	the	Cygwin	version	of
the	compiler,	or	when	the	-target	cygwin	command	line	option	is	used.
It	can	be	used	to	compile	parts	of	the	program	only	if	the	target	is
Cygwin.

Example

#ifdef	__FB_CYGWIN__

		'...instructions	only	for	Cygwin...

#else

		'...instructions	not	for	Cygwin...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__Fb_Win32_

__Fb_Unix__

Compiler	Option:	-target

__FB_DARWIN__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_DARWIN__

Description
Define	without	a	value	created	at	compile	time	in	the	Darwin	version	of
the	compiler,	or	when	the	-target	darwin	command	line	option	is	used.
It	can	be	used	to	compile	parts	of	the	program	only	if	the	target	is
Darwin.

Example

#ifdef	__FB_DARWIN__

		'...instructions	only	for	Darwin...

#else

		'...instructions	not	for	Darwin...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_WIN32__

__Fb_Unix__

Compiler	Option:	-target

__FB_DEBUG__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_DEBUG__

Description
__FB_DEBUG__	indicates	if	the	the	generate	debug	information	option	'-g'
was	specified	on	the	command	line	at	the	time	of	compilation.

Returns	non-zero	(-1)	if	the	option	was	specified.	Returns	zero	(0)
otherwise.

Example

#if	__FB_DEBUG__	<>	0

								#print	Debug	mode	

#else	

								#print	Release	mode	

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_ERR__

__FB_MT__

Compiler	Option:	-g

__FB_DOS__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_DOS__

Description
Define	without	a	value	created	at	compile	time	if	compiling	for	the	DOS
target.	Default	in	the	DOS	hosted	version,	or	active	when	the	-target
dos	command	line	option	is	used.	It	can	be	used	to	compile	parts	of
the	program	only	if	the	target	is	DOS.	Note:	the	DOS	hosted	version
cannot	compile	to	other	targets	than	DOS	by	now.

Example

#ifdef	__FB_DOS__

		'	...	instructions	only	for	DOS	...

		'	...	INT	0x31

#else

		'	...	instructions	not	for	DOS	...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_WIN32__

__Fb_Pcos__

DOS	related	FAQ

Compiler	Option:	-target

__FB_ERR__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_ERR__

Description
__FB_ERR__	indicates	if	-e,	-ex,	or	-exx	was	specified	on	the	compiler	command	line	at	the	time	of
compilation	of	a	module.

Returns	one	of	the	following	values:

value description

0 '-e',	'-ex',	'-exx'	not	specified

1 '-e'	was	specified

3 '-ex'	was	specified

7 '-exx'	was	specified

__FB_ERR__	is	always	defined.

Example

'Example	code	to	demonstrate	a	use	of	__FB_ERR__

Dim	err_command_line	As	UByte

err_command_line	=	__FB_ERR__

Select	Case	err_command_line

Case	0

Print	"No	Error	Checking	enabled	on	the	Command	Line!"

Case	1

Print	"Some	Error	Checking	enabled	on	the	Command	Line!"

Case	3

Print	"QBasic	style	Error	Checking	enabled	on	the	Command	Line!"

Case	7

Print	"Extreme	Error	Checking	enabled	on	the	Command	Line!"

Case	Else

Print	"Some	Unknown	Error	level	has	been	set!"

End	Select

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_MT__

__FB_DEBUG__

Compiler	Option:	-e
Compiler	Option:	-ex
Compiler	Option:	-exx
Error	Handling

__Fb_Fpmode__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_FPMODE__

Description
Defined	as	"fast"	if	SSE	fast	arithmetics	is	enabled,	or	"precise"
otherwise.

Example

#if	__FB_FPMODE__	=	"fast"

		'	...	instructions	for	using	fast-

mode	math	...

#else

		'	...	instructions	for	using	normal	math	...

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Compiler	Option:	-fpmode

__Fb_Fpu__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_FPU__

Description
Defined	as	"sse"	if	SSE	floating	point	arithmetics	is	enabled,	or	"x87"
otherwise.

Example

#if	__FB_FPU__	=	"sse"

		'	...	instructions	only	for	SSE	...

#else

		'	...	instructions	not	for	SSE	...

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_SSE__

Compiler	Option:	-fpu

__FB_FREEBSD__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_FREEBSD__

Description
Define	without	a	value	created	at	compile	time	in	the	FreeBSD	version
of	the	compiler,	or	when	the	-target	freebsd	command	line	option	is
used.	It	can	be	used	to	compile	parts	of	the	program	only	if	the	target
is	FreeBSD.

Example

#ifdef	__FB_FREEBSD__

		'...instructions	only	for	FreeBSD...

#else

		'...instructions	not	for	FreeBSD...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_WIN32__

__Fb_Unix__

Compiler	Option:	-target

__Fb_Gcc__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_GCC__

Description
Defined	to	true	(-1)	if	-gen	gcc	is	used,	or	false	(0)	otherwise.

Differences	from	QB

Did	not	exist	in	QB

__FB_LANG__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_LANG__

Description
__FB_LANG__	indicates	which	language	compatibility	option	was	set	at
the	time	of	compilation	of	a	module.	By	default	__FB_LANG__	will	be	set
to	"fb".	The	language	compatibility	option	can	be	changed	using	one
(or	more)	of	the	following	methods:

-lang	command	line	option
-forcelang	command	line	option
#lang	directive
$Lang	metacommand

Returns	a	lower	case	string	with	one	of	the	following	values:

value description

''fb'' FreeBASIC	compatibility	(default)

''qb'' QBASIC	compatibility

''fblite'' FreeBASIC	language	compatibility,	with	a	more	QBASIC-compatible	coding
style

''deprecated'' FBC	version	0.16	compatibility

__FB_LANG__	is	always	defined.

Example

''	Set	option	explicit	always	on

#ifdef	__FB_LANG__

		#if	__FB_LANG__	<>	"fb"

				Option	Explicit

		#endif

#else

		''	Older	version	-	before	lang	fb

		Option	Explicit

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_VERSION__

#lang

Compiler	Option:	-lang
Compiler	Option:	-forcelang
Compiler	Dialects

__FB_LINUX__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_LINUX__

Description
Define	without	a	value	created	at	compile	time	when	compiling	to	the
Linux	target.	Default	in	the	Linux	hosted	version	of	the	compiler,	or
active	when	the	-target	linux	command	line	option	is	used.	It	can	be
used	to	compile	parts	of	the	program	only	if	the	target	is	Linux.

Example

#ifdef	__FB_LINUX__

		'	...	instructions	only	for	Linux	...

		'	...	#libpath	"/usr/X11/lib"	

#else

		'	...	instructions	not	for	Linux	...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_DOS__

__FB_WIN32__

__Fb_Unix__

Compiler	Option:	-target

__FB_MAIN__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_MAIN__

Description
__FB_MAIN__	is	defined	in	the	main	module	and	not	defined	in	other
modules.

The	main	module	is	determined	by	the	compiler	as	either	the	first
source	file	listed	on	the	command	line	or	explicitly	named	using	the	-m
option	on	the	command	line.

Example

#ifdef	__FB_MAIN__

		#print	Compiling	the	main	module

#else

		#print	Compiling	an	additional	module

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Compiler	Option:	-m
#ifdef

#ifndef

__FB_MIN_VERSION__ 	

Macro	function	to	test	minimum	compiler	version

Syntax
#define	__FB_MIN_VERSION__(major,	minor,	patch)	_

((__FB_VER_MAJOR__	>	major)	or	_

((__FB_VER_MAJOR__	=	major)	and	((__FB_VER_MINOR__	>	minor)	or	_

(__FB_VER_MINOR__	=	minor	and	__FB_VER_PATCH__	>=	patch_level))))

Usage
__FB_MIN_VERSION__(major,	minor,	patch)

Parameters
major

minimum	major	version	to	test
minor

minimum	minor	version	to	test
patch

minimum	patch	version	to	test

Return	Value
Returns	zero	(0)	if	the	compiler	version	is	less	than	the	specified	version,	or	non-zero	(-1)	if	the	compiler
version	is	greater	than	or	equal	to	specified	version

Description
__FB_MIN_VERSION__	tests	for	a	minimum	version	of	the	compiler.

Example

#if	Not	__FB_MIN_VERSION__(0,	18,	2)

					#error	fbc	must	be	at	least	version	0.18.2	To	compile	This	module

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

#if

__FB_MT__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_MT__

Description
__FB_MT__	indicates	if	the	the	multithreaded	option	-mt	was	specified
on	the	command	line	at	the	time	of	compilation.

Returns	non-zero	(-1)	if	the	option	was	specified.	Returns	zero	(0)
otherwise.

Example

#if	__FB_MT__	

								#print	Using	multi-threaded	library

#else

								#print	Using	Single-threaded	library

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_DEBUG__

Compiler	Option:	-mt

__FB_NETBSD__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_NETBSD__

Description
Define	without	a	value	created	at	compile	time	in	the	NetBSD	version
of	the	compiler,	or	when	the	-target	netbsd	command	line	option	is
used.	It	can	be	used	to	compile	parts	of	the	program	only	if	the	target
is	NetBSD.

Example

#ifdef	__FB_NETBSD__

		'...instructions	only	for	NetBSD...

#else

		'...instructions	not	for	NetBSD...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_WIN32__

__Fb_Unix__

Compiler	Option:	-target

__FB_OPENBSD__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_OPENBSD__

Description
Define	without	a	value	created	at	compile	time	in	the	OpenBSD	version
of	the	compiler,	or	when	the	-target	openbsd	command	line	option	is
used.	It	can	be	used	to	compile	parts	of	the	program	only	if	the	target
is	OpenBSD.

Example

#ifdef	__FB_OPENBSD__

		'...instructions	only	for	OpenBSD...

#else

		'...instructions	not	for	OpenBSD...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_WIN32__

__Fb_Unix__

Compiler	Option:	-target

__FB_OPTION_BYVAL__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OPTION_BYVAL__

Description
Indicates	if	parameters	to	a	Function	or	Sub	are	passed	by	reference	as	with	
or	by	value	as	with	ByVal	by	default	when	the	by	value	/	by	reference	specifier	is	not
explicitly	stated.

__FB_OPTION_BYVAL__	is	set	to	non-zero	(-1)	if	by	default	parameters	are	passed
value,	and	zero	(0)	if	by	default	parameters	are	passed	by	reference.

The	default	for	passing	parameters	by	reference	or	by	value	is	determined	by	the	
lang	command	line	option	used	during	compilation	or	usage	of	Option	ByVal
source	file.

Example

#if(__FB_OPTION_BYVAL__	<>	0)

		#error	Option	ByVal	must	Not	be	used	With	This	source

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

ByVal

ByRef

Option	ByVal

__FB_OPTION_DYNAMIC__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OPTION_DYNAMIC__

Description
__FB_OPTION_DYNAMIC__	is	defined	as	true	(negative	one	(-1))	if	a	recent
Option	Dynamic	statement	or	'$Dynamic	meta-command	was	issued.
Otherwise,	it	is	defined	as	zero	(0).

Example

#if	__FB_OPTION_DYNAMIC__	<>	0

#error	This	module	must	Not	use	Option	Dynamic

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Option	Dynamic

Option	Static

__FB_OPTION_ESCAPE__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OPTION_ESCAPE__

Description
Indicates	if	by	default,	string	literals	are	processed	for	escape	characters	when	not	explicitly
prefixed	with	the	$	Operator	for	non-escaped	strings,	or	the	!	Operator

The	default	method	for	processing	string	literals	is	set	by	usage	of	the	
option	during	compilation	or	usage	of	Option	Escape	in	the	source	file.

__FB_OPTION_ESCAPE__	returns	zero	(0)	if	the	option	has	not	been	set.	Returns	non-zero	(-1)	if
the	option	has	been	set.

Example

#if(__FB_OPTION_ESCAPE__	<>	0)

		#error	Option	Escape	must	Not	be	used	With	This	include	file

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Option	Escape

__FB_OPTION_EXPLICIT__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OPTION_EXPLICIT__

Description
__FB_OPTION_EXPLICIT__	indicates	if	Option	Explicit	has	been	used	previously
in	the	source.	

Returns	zero	(0)	if	the	option	has	not	been	set.	Returns	non-zero	(-1)	if	the
option	has	been	set.

Example

#if(__FB_OPTION_EXPLICIT__	=	0)

		#error	Option	Explicit	must	used	With	This	module

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Dim

Option	Explicit

__Fb_Option_Gosub__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OPTION_GOSUB__

Description
Indicates	how	GoSub	and	Return	will	be	handled	at	compile	time.	If	the
option	is	set	(-1)	then	GoSub	is	allowed	and	Return	is	recognized	as
return-from-gosub	only.	If	the	option	is	not	set	(0)	then	GoSub	is	not
allowed	and	Return	is	recognized	as	return-from-procedure	only.

This	macro	value	can	be	changed	at	compile	time.	Option	Gosub	will
set	the	option	(enable	gosub	support)	and	Option	Nogosub	will	clear	the
option	(disable	gosub	support).

__FB_OPTION_GOSUB__	returns	zero	(0)	if	the	option	has	not	been	set.
Returns	non-zero	(-1)	if	the	option	has	been	set.

Example

#if(__FB_OPTION_GOSUB__	<>	0)

				''	turn	off	gosub	support

				Option	nogosub

#endif

Dialect	Differences

Defaults	to	-1	in	the	-lang	qb	dialect	and	0	in	all	other	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

Option	Gosub

Option	Nogosub

__FB_OPTION_PRIVATE__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OPTION_PRIVATE__

Description
Indicates	if	by	default	Function's	and	Sub's	have	module	scope	or	global	scope	when
not	explicitly	specified	with	Private	or	Public.

The	default	scope	specifier	for	functions	and	subs	is	set	by	usage	of	the	
command	line	option	during	compilation	or	usage	of	Option	Private	in	the	source	file.

__FB_OPTION_PRIVATE__	returns	zero	(0)	if	the	option	has	not	been	set.	
zero	(-1)	if	the	option	has	been	set.

Example

#if(__FB_OPTION_PRIVATE__	<>	0)

		#error	Option	Private	must	Not	be	used	With	This	module

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Option	Private

Private

Public

__FB_OUT_DLL__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OUT_DLL__

Description
__FB_OUT_DLL__	indicates	that	the	specified	output	file	type	on	the	compiler	command	line	at	the	time	of
compilation	is	a	shared	library.

Returns	non-zero	(-1)	if	the	output	is	a	shared	library.	Returns	zero	(0)	otherwise.

Only	one	of	__FB_OUT_DLL__,	__FB_OUT_EXE__,	__FB_OUT_LIB__,	or	__FB_OUT_OBJ__
(-1).	All	others	will	evaluate	to	zero	(0).

Example

#if	__FB_OUT_DLL__	

								'...	specific	instructions	when	making	a	shared	library	(DLL)

#else

								'...	specific	instructions	when	not	making	a	shared	library	(DLL)

#endif				

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OUT_EXE__

__FB_OUT_LIB__

__FB_OUT_OBJ__

Compiler	Option:	-dll

__FB_OUT_EXE__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OUT_EXE__

Description
__FB_OUT_EXE__	indicates	that	the	specified	output	file	type	on	the	compiler	command	line	at	the
time	of	compilation	is	an	executable.

Returns	non-zero	(-1)	if	the	output	is	an	executable.	Returns	zero	(0)	otherwise.

Only	one	of	__FB_OUT_DLL__,	__FB_OUT_EXE__,	__FB_OUT_LIB__,	or	__FB_OUT_OBJ__
non-zero	(-1).	All	others	will	evaluate	to	zero	(0).

Example

#if	__FB_OUT_EXE__	

								'...	specific	instructions	when	making	an	executable

#else

								'...	specific	instructions	when	not	making	an	executable

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OUT_DLL__

__FB_OUT_LIB__

__FB_OUT_OBJ__

__FB_OUT_LIB__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OUT_LIB__

Description
__FB_OUT_LIB__	indicates	that	the	specified	output	file	type	on	the	compiler	command	line	at	the	time
of	compilation	is	a	static	library.

Returns	non-zero	(-1)	if	the	output	is	a	static	library.	Returns	zero	(0)	otherwise.

Only	one	of	__FB_OUT_DLL__,	__FB_OUT_EXE__,	__FB_OUT_LIB__,	or	__FB_OUT_OBJ__
zero	(-1).	All	others	will	evaluate	to	zero	(0).

Example

#if	__FB_OUT_LIB__	

								'...	specific	instructions	when	making	a	static	library

#else

								'...	specific	instructions	when	not	making	a	static	library

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OUT_EXE__

__FB_OUT_DLL__

__FB_OUT_OBJ__

Compiler	Option:	-lib

__FB_OUT_OBJ__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_OUT_OBJ__

Description
__FB_OUT_OBJ__	indicates	that	the	specified	output	file	type	on	the	compiler	command	line	at	the	time	of
compilation	is	an	object	module.

Returns	non-zero	(-1)	if	the	output	is	an	object	module.	Returns	zero	(0)	otherwise.

Only	one	of	__FB_OUT_DLL__,	__FB_OUT_EXE__,	__FB_OUT_LIB__,	or	__FB_OUT_OBJ__
All	others	will	evaluate	to	zero	(0).

Example

#if	__FB_OUT_OBJ__	

								'...	specific	instructions	when	compiling	to	an	object	file	only

#else

								'...	specific	instructions	when	not	compiling	to	an	object	file	only

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OUT_EXE__

__FB_OUT_DLL__

__FB_OUT_LIB__

__Fb_Pcos__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_PCOS__

Description
Define	created	at	compile	time	if	the	OS	has	filesystem	behavior	styled
like	common	PC	OSes,	e.g.	DOS,	Windows,	OS/2,	Symbian	OS,
possibly	others.	Drive	letters,	backslashes,	that	stuff,	otherwise
undefined.

Example

#ifdef	__FB_PCOS__

		'...instructions	for	PC-ish	OSes...

#else

		'...instructions	for	other	OSes

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_WIN32__

__FB_DOS__

__FB_XBOX__

__Fb_Unix__

Compiler	Option:	-target

__FB_SIGNATURE__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__FB_SIGNATURE__

Description
Substituted	by	a	signature	of	the	compiler	where	used.

Example

Print	__FB_SIGNATURE__

FreeBASIC	0.21.1

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_VERSION__

__FB_WIN32__

__FB_LINUX__

__FB_DOS__

__FB_SSE__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_SSE__

Description
Define	without	a	value	created	at	compile	time	if	SSE	floating	point
arithmetics	is	enabled.

Example

#ifdef	__FB_SSE__

		'	...	instructions	only	for	SSE	...

#else

		'	...	instructions	not	for	SSE	...

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

__Fb_Fpu__

Compiler	Option:	-fpu

__Fb_Unix__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_UNIX__

Description
Define	created	at	compile	time	if	the	OS	is	reasonably	enough	like
UNIX	that	you	can	call	it	UNIX,	otherwise	undefined.

Example

#ifdef	__FB_UNIX__

		'...instructions	for	UNIX-family	OSes...

#else

		'...instructions	for	other	OSes

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_FREEBSD__

__FB_OPENBSD__

__FB_NETBSD__

__FB_CYGWIN__

__FB_DARWIN__

__Fb_Pcos__

Compiler	Option:	-target

__Fb_Vectorize__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_VECTORIZE__

Description
Defined	as	the	vectorisation	level	number	set	by	the	-vec	command-line	option.

Example

#if	__FB_VECTORIZE__	=	2

		'	...	instructions	only	for	vectorization	level	2...

#else

		'	...

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

Compiler	Option:	-vec

__FB_VER_MAJOR__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_VER_MAJOR__

Description
__FB_VER_MAJOR__	will	return	the	major	version	of	FreeBASIC	currently	being	used.	
0.90,	and	will	remain	0	until	FreeBASIC	version	1.0	is	released.

Example

Dim	fbMajorVersion	As	Integer

Dim	fbMinorVersion	As	Integer

Dim	fbPatchVersion	As	Integer

fbMajorVersion	=	__FB_VER_MAJOR__

fbMinorVersion	=	__FB_VER_MINOR__

fbPatchVersion	=	__FB_VER_PATCH__

Print	"Welcome	to	FreeBASIC	"	&	fbMajorVersion	&	"."

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_VER_MINOR__

__FB_VER_PATCH__

__FB_VER_MINOR__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_VER_MINOR__

Description
__FB_VER_MINOR__	will	return	the	minor	version	of	FreeBASIC	currently	being	used.	For	FreeBASIC	version	0.90.1,	for	example,	the
minor	version	number	is	90.

Example

Dim	fbMajorVersion	As	Integer

Dim	fbMinorVersion	As	Integer

Dim	fbPatchVersion	As	Integer

fbMajorVersion	=	__FB_VER_MAJOR__

fbMinorVersion	=	__FB_VER_MINOR__

fbPatchVersion	=	__FB_VER_PATCH__

Print	"Welcome	to	FreeBASIC	"	&	fbMajorVersion	&	"."

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_VER_MAJOR__

__FB_VER_PATCH__

__FB_VER_PATCH__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__FB_VER_PATCH__

Description
__FB_VER_PATCH__	will	return	the	patch/subversion/revision	number	the	version	of	FreeBASIC	currently	being	used.	For	FreeBASIC	0.18,	for
example,	there	were	subversions	1,	2,	3,	4,	5	and	6,	resulting	in	versions	0.18.1	through	0.18.6.

Example

Dim	fbMajorVersion	As	Integer

Dim	fbMinorVersion	As	Integer

Dim	fbPatchVersion	As	Integer

fbMajorVersion	=	__FB_VER_MAJOR__

fbMinorVersion	=	__FB_VER_MINOR__

fbPatchVersion	=	__FB_VER_PATCH__

Print	"Welcome	to	FreeBASIC	"	&	fbMajorVersion	&	"."

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_VER_MAJOR__

__FB_VER_MINOR__

__FB_VERSION__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__FB_VERSION__

Description
Substituted	by	the	version	number	of	the	compiler	where	used.

Example

#if	__FB_VERSION__	<	"0.18"	

#error		Please	compile	With	FB	version	0.18	Or	above	

#endif

This	will	stop	the	compilation	if	the	compiler	version	is	below	0.18

Differences	from	QB

Did	not	exist	in	QB

See	also

__FB_SIGNATURE__

__FB_WIN32__

__FB_LINUX__

__FB_DOS__

__FB_WIN32__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_WIN32__

Description
Define	without	a	value	created	at	compile	time	if	compiling	to	the
Win32	target.	Default	in	Win32	hosted	version,	or	active	if	the	-target
win32	command	line	option	is	used.	It	can	be	used	to	compile	parts	of
the	program	only	if	the	target	is	Win32.

Example

#ifdef	__FB_WIN32__

		'	...	instructions	only	for	Win32	...

		'	...	GetProcAddress	...

#else

		'	...	instructions	not	for	Win32	...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_DOS__

__FB_LINUX__

__Fb_Pcos__

Compiler	Option:	-target

__FB_XBOX__ 	

Intrinsic	define	set	by	the	compiler

Syntax
__FB_XBOX__

Description
Define	without	a	value	created	at	compile	time	when	the	-target	xbox
command	line	option	is	used.	It	can	be	used	to	compile	parts	of	the
program	only	if	the	target	is	Xbox.

Example

#ifdef	__FB_XBOX__

		'...instructions	only	for	Xbox...

#else

		'...instructions	not	for	Xbox...

#endif	

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_LINUX__

__FB_WIN32__

Compiler	Option:	-target

__FILE__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__FILE__

Description
Substituted	with	the	quoted	source	file	name	where	used.

An	example	of	normal	use	is	to	report	wrong	values	in	debugging.

Example

Dim	a	As	Integer

If	a<0	Then

				Print	"Error:	a	=	"	&	a	&	"	in	"	&	__FILE__	&	

End	If

Error:	a	=	-32767	in	test.bas	(MAIN)	line	47

Differences	from	QB

Did	not	exist	in	QB

See	also

__FILE_NQ__

__FUNCTION__

__LINE__

__FILE_NQ__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__FILE_NQ__

Description
Substituted	with	the	non-quoted	source	file	name	where	used.

Example

#print	__FILE_NQ__

Differences	from	QB

New	to	FreeBASIC

See	also

__FILE__

__FUNCTION_NQ__

__LINE__

__FUNCTION__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__FUNCTION__

Description
Substituted	with	the	quoted	name	of	the	current	function	block	where	used.

Its	normal	use	is	to	report	wrong	values	in	debugging.

If	__FUNCTION__	is	used	at	the	module	level,	the	function	name	given	will	be	
"__FB_MODLEVELPROC__"	for	a	different	module.

Example

Dim	a	As	Integer

'...

If	a	<	0	Then	''	this	shouldn't	happen

				Print	"Error:	a	=	"	&	a	&	"	in	"	&	__FILE__	&	

End	If

Error:	a	=	-32767	in	test.bas	(__FB_MAINPROC__)	line	47

Differences	from	QB

Did	not	exist	in	QB

See	also

__FILE__

__FUNCTION_NQ__

__LINE__

__FUNCTION_NQ__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__FUNCTION_NQ__

Description
Substituted	with	the	non-quoted	name	of	the	current	function	block
where	used.

If	__FUNCTION_NQ__	is	used	at	the	module	level,	the	function	name	given
will	be	__FB_MAINPROC__	for	the	main	module,	or	__FB_MODLEVELPROC__	for
a	different	module.	This	is	not	the	actual	function	name	though,	so	it's
not	as	useful	there.

Example

Sub	MySub

		Print	"Address	of	"	+	__FUNCTION__	+	"	is	";

		Print	Hex(@__FUNCTION_NQ__)

End	Sub

MySub

Address	of	MYSUB	is	4012D0

Differences	from	QB

Did	not	exist	in	QB

See	also

__FILE_NQ__

__FUNCTION__

__LINE__

__LINE__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__LINE__

Description
Substituted	with	the	current	line	number	of	the	source	file	where	used.

Its	normal	use	is	to	report	wrong	values	in	debugging.

Example

Dim	a	As	Integer

If	a	<	0	Then	

				Print	"Error:	a	=	"	&	a	&	"	in	"	&	__FILE__	&	

End	If

Error:	a	=	-32767	in	test.bas	(MAIN)	line	47

Differences	from	QB

Did	not	exist	in	QB

See	also

__FILE__

__FUNCTION__

__PATH__ 	

Intrinsic	define	(macro	string)	set	by	the	compiler

Syntax
__PATH__

Description
Set	to	the	quoted	absolute	path	of	the	source	file	at	the	time	of
compilation.

Example

'	Tell	the	compiler	to	seach	the	source	file's

'	directory	for	libraries

#libpath	__PATH__

Differences	from	QB

New	to	FreeBASIC

See	also

__FILE__

__TIME__ 	

Intrinsic	define	(macro	value)	set	by	the	compiler

Syntax
__TIME__

Description
Substitutes	the	compiler	time	in	a	literal	string	(24	clock,	"hh:mm:ss"
format)	where	used.

Example

Print	"Compile	Time:	"	&	__TIME__

Compile	Time:	13:42:57

Differences	from	QB

New	to	FreeBASIC

See	also

__DATE__

__Date_Iso__

Time

#Assert 	

Preprocessor	conditional	directive

Syntax
#assert	condition

Parameters
condition

A	conditional	expression	that	is	assumed	to	be	true

Description
Asserts	the	truth	of	a	conditional	expression	at	compile	time.	If
condition	is	false,	compilation	will	stop	with	an	error.

This	statement	differs	from	the	Assert	macro	in	that	#assert	is
evaluated	at	compile-time	and	Assert	is	evaluated	at	run-time.

Example

Const	MIN	=	5,	MAX	=	10

#assert	MAX	>	MIN	''	cause	a	compile-

time	error	if	MAX	<=	MIN

Differences	from	QB

New	to	FreeBASIC

See	also

Assert

#if

#error

#define 	

Preprocessor	directive	to	define	a	macro

Syntax
#define	identifier	body

#define	identifier([parameters])	body

#define	identifier([parameters,]	Variadic_Parameter...)	body

Description
#define	allows	to	declare	text-based	preprocessor	macros.	Once	the	compiler	has	seen	a
#define,	it	will	start	replacing	further	occurrences	of	identifier	with	body
The	expansion	is	done	recursively,	until	there	is	nothing	more	to	expand	and	the	compiler	can
continue	analyzing	the	resulting	code.	#undef	can	be	used	to	make	the	compiler	forget	about	a
#define.

Parameters	turn	a	define	into	a	function-like	macro,	allowing	text	arguments	to	be	passed	to	the
macro.	Any	occurrences	of	the	parameter	names	in	the	body	will	be	replaced	by	the	given
argument	text	during	expansion.	The	#	Stringize	operator	can	be	used	on	macro	parameters	to
turn	them	into	string	literals,	and	the	##	Concatenate	operator	can	be	used	to	merge	tokens
together.

Note:	In	the	function-like	macro	declaration,	the	identifier	should	be	followed	by	the	opening
parentheses	(()	immediately	without	any	white-space	in	between,	otherwise	the	compiler	will
treat	it	as	part	of	the	body.

Defines	are	scoped;	they	are	only	visible	in	the	scope	they	were	defined	in.	If	defined	at	module
level,	the	define	is	visible	throughout	the	module.	If	the	identifier	is	defined	inside	a	compound
statement	having	scope	(Sub,	For..Next,	While..Wend,	Do..Loop,	Scope..End	Scope
identifier	define	is	only	visible	within	that	scope.	Namespaces	on	the	other	hand	do	not	have
any	effect	on	the	visibility	of	a	define.

Identifiers	can	be	checked	for	with	#ifdef	and	others,	which	can	be	used	to	hide	parts	of	code
from	the	compiler	(conditional	compiling).

The	result	of	macro	expansion	can	be	checked	by	using	the	-pp	compiler	option.

#defines	are	often	used	to	declare	constants.	The	Const	statement	is	a	type-safe	alternative.

Example

''	Definition	and	check

#define	DEBUGGING

#ifdef	DEBUGGING

		'	...	statements

#endif

''	Simple	definition/text	replacement

#define	FALSE	0

#define	TRUE	(Not	FALSE)

''	Function-like	definition

#define	MyRGB(R,G,B)	(((R)Shl	16)		Or	((G)Shl	8)	Or	(B))	

Print	Hex(MyRGB(&hff,	&h00,	&hff))

''	Line	continuation	and	statements	in	a	definition

#define	printval(bar)	_

				Print	#bar;	"	=";	bar

''	#defines	are	visible	only	in	the	scope	where	they	are	defined

Scope

				#define	LOCALDEF	1

End	Scope

#ifndef	LOCALDEF

#				Print	LOCALDEF	Is	Not	defined

#endif

''	namespaces	have	no	effect	on	the	visibility	of	a	define

Namespace	foo

#				define	NSDEF

End	Namespace

#ifdef	NSDEF

#				Print	NSDEF	Is	defined

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

#macro

#	Preprocessor	Stringize

##	Preprocessor	Concatenate

#ifdef

#undef

Const

...

#else 	

Preprocessor	conditional	directive

Syntax
#if	(expression)

'	Conditionally	included	statements	if	expression	is	True

#else

'	Conditionally	included	statements	if	expression	is	False	

#endif

Description
#else	can	be	added	to	an	#if,	#ifdef,	or	#ifndef	block	to	provide	an
alternate	result	to	the	conditional	expression.

Example

#define	MODULE_VERSION	1

Dim	a	As	String

#if	(MODULE_VERSION	>	0)

		a	=	"Release"

#else

		a	=	"Beta"

#endif

Print	"Program	is	";	a

Differences	from	QB

New	to	FreeBASIC

See	also

#define

#macro

#if

#elseif	
#endif	
#ifdef

#ifndef

#undef

defined

#elseif 	

Preprocessor	conditional	directive

Syntax
#if	(expression1)

'	Conditionally	included	statements	if	expression1	is	True

#elseif	(expression2)

'	Conditionally	included	statements	if	expression2	is	True

#else

'	Conditionally	included	statements	if	both

'	expression1	and	expression2	are	False

#endif

Description
#elseif	can	be	added	to	an	#if	block	to	provide	an	additional
conditions.

Example

#define	WORDSIZE	16

#if	(WORDSIZE	=	16)

		'	Do	some	some	16	bit	stuff

#elseif	(WORDSIZE	=	32)

		'	Do	some	some	32	bit	stuff

#else

		#error	WORDSIZE	must	be	set	To	16	Or	32

#endif

Differences	from	QB

New	to	Freebasic

See	also

#define

#macro

#if

#else	
#endif	
#ifdef

#ifndef

#undef

defined

#endif 	

Preprocessor	conditional	directive

Syntax
#endif

Description
Ends	a	group	of	conditional	directives

See	#if,	#ifdef,	or	#ifndef	for	examples	of	usage.

Example

#define	DEBUG_LEVEL	1

#if	(DEBUG_LEVEL	=	1)

		'Conditional	statements

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

#define

#macro

#if

#else	
#elseif	
#ifdef

#ifndef

#undef

defined

#Macro...#Endmacro 	

Preprocessor	directive	to	define	a	multiline	macro

Syntax
#macro	identifier([parameters])

body

#endmacro

#macro	identifier([parameters,]	Variadic_Parameter...)

body

#endmacro

Description
#macro	is	the	multi-line	version	of	#define.

Example

''	macro	as	an	expression	value

#macro	Print1(a,	b)

		a	+	b

#endmacro

Print	Print1("Hello",	"World")

''	Output	:

''	Hello	World!

''	macro	as	multiple	statements

#macro	Print2(a,	b)

				Print	a;

				Print	"	";

				Print	b;

				Print	"!"

#endmacro

Print2("Hello",	"World")

''	Output	:

''	Hello	World!

Differences	from	QB

New	to	FreeBASIC

See	also

#define

#ifdef

#undef

#error 	

Preprocessor	diagnostic	directive

Syntax
#error	error_text

Parameters
error_text

The	display	message

Description
#error	stops	compiling	and	displays	error_text	when	compiler	finds	it.	

This	keyword	must	be	surrounded	by	an	#if	<condition>	...#endif,	so
the	compiler	can	reach	#error	only	if	<condition>	is	met.

Example

#define	c	1

#if	c	=	1

		#error	Bad	value	of	c	

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

#if

#print

#Assert

#if 	

Preprocessor	conditional	directive

Syntax
#if	(expression)

'	Conditionally	included	statements

#endif

Description
Conditionally	includes	statements	at	compile	time.

Statements	contained	within	the	#if	/	#endif	block	are	included	if	expression
True	(non-zero)	and	excluded	(ignored)	if	expression	evaluates	to	False	(

This	conditional	directive	differs	from	the	If	conditional	statement	in	that	
at	compile-time	and	If	is	evaluated	at	run-time.

Example

#define	DEBUG_LEVEL	1

#if	(DEBUG_LEVEL	>=	2)

		'	This	line	is	not	compiled	since	the	expression	is	False

		Print	"Starting	application"

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

#define

#macro

#else	
#elseif	
#endif	
#ifdef

#ifndef

#undef

defined

#Assert	

#ifdef 	

Preprocessor	conditional	directive

Syntax
#ifdef	symbol

'	Conditionally	included	statements

#endif

Description
Conditionally	includes	statements	at	compile	time.

Statements	within	the	#ifdef...#endif	block	are	included	if	symbol	is
defined	and	excluded	(ignored)	if	symbol	is	not	defined.

#ifdef	symbol	is	equivalent	to	#if	defined	(symbol)

Example

#define	_DEBUG

#ifdef	_DEBUG

				'	Special	statements	for	debugging

#endif

Differences	from	QB

New	to	Freebasic

See	also

#define

#macro

#if

#else	

#elseif	
#endif	
#ifndef

#undef

defined

#ifndef 	

Preprocessor	conditional	directive

Syntax
#ifndef	symbol

'	Conditionally	included	statements

#endif

Description
Conditionally	includes	statements	at	compile	time.

Statements	within	the	#ifndef...#endif	block	are	included	if	symbol	is
not	defined	and	excluded	(ignored)	if	symbol	is	defined.

#ifndef	symbol	is	equivalent	to	#if	Not	defined(symbol)

Example

#ifndef	__MYFILE_BI__

#define	__MYFILE_BI__

				'	Declarations	

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

#define

#macro

#if

#else	

#elseif	
#endif	
#ifdef

#undef

defined

#inclib 	

Preprocessor	directive

Syntax
#inclib	"libname"

Description
Includes	a	library	in	the	linking	process	as	if	the	user	specified	-l	libname
command	line.

Example

''	incomplete	code	snippet

''	this	will	include	libmystuff.a	in	the	link	process

#inclib	"mystuff"	

Differences	from	QB

New	to	FreeBASIC

See	also

#include

Compiler	Option:	-l
Compiler	Option:	-p

#include 	

Preprocessor	statement	to	include	contents	of	another	source	file

Syntax
#include	[once]	"file"

Description
#include	inserts	source	code	from	another	file	at	the	point	where	the
#include	directive	appears.	This	has	the	effect	of	compiling	the	source
code	from	the	include	file	as	though	it	were	part	of	the	source	file	that
includes	it.	Once	the	compiler	has	reached	the	end	of	the	include	file,
the	original	source	file	continues	to	be	compiled.

This	is	useful	to	remove	code	from	a	file	and	separate	it	into	more	files.
It	is	useful	to	have	a	single	file	with	declarations	in	a	program	formed
by	several	modules.	You	may	include	files	within	an	include	file,
although	avoid	including	the	original	file	into	itself,	this	will	not	produce
valid	results.	Typically,	include	files	will	have	an	extension	of	.bi	and
are	mainly	used	for	declaring	subs/functions/variables	of	a	library,	but
any	valid	source	code	may	be	present	in	an	include	file.

The	once	specifier	tells	the	compiler	to	include	the	file	only	once	even	if
it	is	included	several	times	by	the	source	code.

$Include	is	an	alternative	form	of	include,	existing	only	for	compatibility
with	QuickBASIC.	It	is	recommended	to	use	#include	instead.

The	compiler	will	automatically	convert	path	separator	characters	('/'
and	'\')	as	needed	to	properly	load	the	file.	The	filename	name	may	be
an	absolute	or	relative	path.	

For	relative	paths,	or	where	no	path	is	given	at	all,	the	include	file	is
search	for	in	the	following	order:

Relative	from	the	directory	of	the	source	file
Relative	from	the	current	working	directory

Relative	from	addition	directories	specified	with	the	-i	command
line	option
The	include	folder	of	the	FreeBASIC	installation	(FreeBASIC\inc
where	FreeBASIC	is	the	folder	where	the	fbc	executable	is
located)

Example

'	header.bi	file

Type	FooType

				Bar	As	Byte

				Barbeque	As	Byte	

End	Type

'	main.bas	file

#include	"header.bi"

Dim	Foo	As	FooType

Foo.Bar	=	1

Foo.Barbeque	=	2

Differences	from	QB

New	to	FreeBASIC

See	also

#define

#inclib

Compiler	Option:	-i
Compiler	Option:	-include

#lang 	

Preprocessor	statement	to	set	the	compiler	dialect.

Syntax
#lang	"lang"

Parameters
"lang"

The	dialect	to	set,	enclosed	in	double	quotes,	and	must	be	one	of	"fb"
"fblite",	"qb",	or	"deprecated".

Description
If	the	-forcelang	option	was	not	given	on	the	command	line,	#lang	can
be	used	to	set	the	dialect	for	the	source	module	in	which	it	appears.	At
most	two	passes	will	be	made	on	the	source	module.	On	the	first	pass,
if	the	specified	dialect	is	anything	other	than	the	default	dialect	(chosen
with	-lang,	or	"fb"	by	default),	the	compiler	will	reset	the	parser	for
another	pass	and	restart	compilation	at	the	beginning	of	the	source
module.	If	this	directive	is	encountered	again	on	the	second	pass,	and
the	specified	dialect	does	not	match	the	new	current	dialect,	a	warning
is	issued	and	compilation	continues.	If	any	errors	were	encountered	on
the	first	pass,	the	compiler	will	not	attempt	a	second	pass."

#lang	may	not	be	used	in	any	compound	statement,	scope,	or
subroutine.	However,	it	may	be	nested	in	module	level	preprocessor
statements	or	used	in	an	include	file.

There	is	currently	no	restriction	on	where	this	directive	may	be	placed
in	a	source	module.	In	future	this	may	change,	therefore	best	practice
would	be	to	use	this	directive	before	the	first	declaration,	definition,	or
executable	statement	in	the	source.

This	directive	overrides	the	-lang	option	if	it	was	given	on	the
command	line.	However,	if	the	-forcelang	option	was	given	on	the
command	line,	this	directive	will	have	no	effect.	A	warning	is	issued,

the	directive	is	ignored,	and	compilation	will	continue.	This	allows	the
user	to	explicitly	override	#lang	directives.

Example

#lang	"fblite"

Differences	from	QB

New	to	FreeBASIC

See	also

$Lang

__FB_LANG__

Compiler	Option:	-lang
Compiler	Option:	-forcelang
FreeBASIC	Dialects

#libpath 	

Preprocessor	statement	to	add	a	search	path	for	libraries

Syntax
#libpath	"path"

Description
Adds	a	library	search	path	to	the	linker's	list	of	search	paths	as	if	it	had
been	specified	on	the	command	line	with	the	'-p'	option.

Paths	are	relative	to	the	working	directory	where	fbc	was	invoked	and	not
relative	to	the	directory	of	the	source	file.

No	error	is	generated	if	the	path	does	not	exist	and	compilation	and	linking
will	continue.

Example

'	search	the	lib	directory	for	external	libraries

#libpath	"lib"

Differences	from	QB

New	to	FreeBASIC

See	also

#inclib

#include

Compiler	Option:	-p

#line 	

Preprocessor	directive	to	set	the	current	line	number	and	file	name

Syntax
#line	number	["name"]

Parameters
number	

new	line	number
"name"

new	file	name	(optional)

Description
Informs	the	compiler	of	a	change	in	line	number	and	file	name	and	updates	the	
__LINE__	macro	values	accordingly.

Both	compile	time	messages	and	run-time	messages	are	affected	by	this	directive.

This	directive	allows	other	programs	to	generate	source	code	for	the	FreeBASIC	compiler	and
have	it	return	warning	and/or	error	messages	that	refer	to	the	original	source	used	by	the	other
program.

Example

#line	155	"outside.src"

Error	1000

''	Output	is:

''	Aborting	due	to	runtime	error	1000	at	line	157	of	outside.src()

Differences	from	QB

New	to	FreeBASIC

See	also

__FILE__

__LINE__

#pragma 	

Preprocessor	directive

Syntax
#pragma	option	[=	value]

Or
#pragma	push	(option	[,	value])

Or
#pragma	pop	(option)

Parameters
Possible	values	for	option	and	related	values:

Option Value Description

msbitfields 0 Use	bitfields	compatible	with	gcc	(default)

	 -1	(or	any	other	non-zero
value) Use	bitfields	compatible	with	those	used	in	Microsoft	C	compilers

once N/A cause	the	source	file	in	which	the	pragma	appears	to	behave	as	though	it	was	included
with	#include	once	...

If	value	is	not	given,	the	compiler	assumes	-1	(TRUE).

Description
Allows	the	setting	of	compiler	options	inside	the	source	code.

Push	saves	the	current	value	of	the	option	onto	a	stack,	then	assigns	the	new	
restores	the	option	to	its	previous	value,	and	removes	it	from	the	stack.	This	mechanism	allows
options	to	be	changed	for	a	certain	part	of	source	code,	regardless	of	the	setting	used	by	the
context,	which	is	especially	useful	inside	#include	header	files.

Example

''	MSVC-

compatible	bitfields:	save	the	current	setting	and	then	enable	them

#pragma	push(msbitfields)

''	do	something	that	requires	MS-compatible	bitfields	here

''	restore	original	setting

#pragma	pop(msbitfields)

Differences	from	QB

New	to	FreeBASIC

See	also

#include

#print 	

Preprocessor	diagnostic	directive

Syntax
#print	text

Description
Causes	compiler	to	output	text	to	screen	during	compilation.

Example

#print	Now	compiling	module	foo

Differences	from	QB

New	to	FreeBASIC

See	also

#error

#undef 	

Preprocessor	directive	to	undefine	a	macro

Syntax
#undef	symbol

Description
Undefines	a	symbol	previously	defined	with	#define.

Can	be	used	to	ensure	that	a	macro	or	symbol	has	a	limited	lifespan
and	does	not	conflict	with	a	similar	macro	definition	that	may	be
defined	later	in	the	source	code.

(Note:	#undef	should	not	be	used	to	undefine	variable	or	function
names	used	in	the	current	function	scope.	The	names	are	needed
internally	by	the	compiler	and	removing	them	can	cause	strange	and
unexpected	results.)

Example

#define	ADD2(a_,	b_)		((a_)	+	(b_))

Print	ADD2(1,	2)

'	Macro	no	longer	needed	so	get	rid	of	it	...

#undef	ADD2

Differences	from	QB

New	to	Freebasic

See	also

#define

#macro

#if

#else	
#elseif	
#endif	
#ifdef

#ifndef

defined

$Dynamic 	

Metacommand	to	change	the	way	arrays	are	allocated

Syntax
'$Dynamic

or

Rem	$Dynamic

Description
'$Dynamic	is	a	metacommand	that	specifies	that	any	following	array
declarations	are	variable-length,	whether	they	are	declared	with
constant	subscript	ranges	or	not.	This	remains	in	effect	for	the	rest	of
the	module	in	which	'$Dynamic	is	used,	and	can	be	overridden	with
'$Static.	It	is	equivalent	to	the	Option	Dynamic	statement.

Example

'	compile	with	-lang	fblite	or	qb

#lang	"fblite"

'$DYNAMIC

Dim	a(100)

'......

ReDim	a(200)

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

When	used	inside	comments	it	must	be	the	first	token

See	also

$Static

Dim

ReDim

Erase

Option	Dynamic

$Include 	

Metacommand	statement	to	include	contents	of	another	source	file

Syntax
'$Include	[once]:	'file'

or

Rem	$Include	[once]:	'file'

Description
$Include	inserts	source	code	from	another	file	at	the	point	where	the
$Include	metacommand	appears.	This	has	the	effect	of	compiling	the
source	code	from	the	include	file	as	though	it	were	part	of	the	source
file	that	includes	it.	Once	the	compiler	has	reached	the	end	of	the
include	file,	the	original	source	file	continues	to	be	compiled.

The	once	specifier	tells	the	compiler	to	include	the	file	only	once	even	if
it	is	included	several	times	by	the	source	code.

'$Include:	exists	for	compatibility	with	QuickBASIC.	It	is
recommended	to	use	#include	instead.

Example

'	header.bi	file

Type	FooType

				Bar	As	Byte

				Barbeque	As	Byte	

End	Type

Dim	Foo	As	FooType

''	compile	with	-lang	fblite	or	qb

#lang	"fblite"

''	main.bas	file

'$INCLUDE:	"header.bi"

Foo.Bar	=	1

Foo.Barbeque	=	2

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

None

See	also

#include

$Static 	

Metacommand	to	change	the	way	arrays	are	allocated

Syntax
'$Static

or

Rem	$Static

Description
'$Static	is	a	metacommand	that	overrides	the	behavior	of	$Dynamic,
that	is,	arrays	declared	with	constant	subscript	ranges	are	fixed-length.
This	remains	in	effect	for	the	rest	of	the	module	in	which	'$Static	is
used,	and	can	be	overridden	with	$Dynamic.	It	is	equivalent	to	the
Option	Static	statement.

Example

'	compile	with	-lang	fblite	or	qb

#lang	"fblite"

'$dynamic

Dim	a(100)			'<<this	array	will	be	variable-

length

'$static

Dim	b(100)			'<<this	array	will	be	fixed-length

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

When	used	inside	comments	it	must	be	the	first	token

See	also

$Dynamic

Dim

Erase

ReDim

Option	Dynamic

Option	Static

$Lang 	

Metacommand	statement	to	set	the	compiler	dialect.

Syntax
'$lang:	"lang"

or

Rem	$lang:	"lang"

Parameters
"lang"

The	dialect	to	set,	enclosed	in	double	quotes,	and	must	be	one	of	"fb"
"fblite",	"qb",	or	"deprecated".

Description
If	the	-forcelang	option	was	not	given	on	the	command	line,	$Lang	can
be	used	to	set	the	dialect	for	the	source	module	in	which	it	appears.	At
most	two	passes	will	be	made	on	the	source	module.	On	the	first	pass,
if	the	specified	dialect	is	anything	other	than	the	default	dialect	(chosen
with	-lang,	or	"fb"	by	default),	the	compiler	will	reset	the	parser	for
another	pass	and	restart	compilation	at	the	beginning	of	the	source
module.	If	this	metacommand	is	encountered	again	on	the	second
pass,	and	the	specified	dialect	does	not	match	the	new	current	dialect,
a	warning	is	issued	and	compilation	continues.	If	any	errors	were
encountered	on	the	first	pass,	the	compiler	will	not	attempt	a	second
pass.

$Lang	may	not	be	used	in	any	compound	statement,	scope,	or
subroutine.	However,	it	may	be	nested	in	module	level	preprocessor
statements	or	used	in	an	include	file.

There	is	currently	no	restriction	on	where	this	directive	may	be	placed
in	a	source	module.	In	future	this	may	change,	therefore	best	practice
would	be	to	use	this	directive	before	the	first	declaration,	definition,	or
executable	statement	in	the	source.

This	directive	overrides	the	-lang	option	if	it	was	given	on	the

command	line.	However,	if	the	-forcelang	option	was	given	on	the
command	line,	this	directive	will	have	no	effect.	A	warning	is	issued,
the	directive	is	ignored,	and	compilation	will	continue.	This	allows	the
user	to	explicitly	override	$Lang	metacommands.

This	metacommand	was	introduced	in	FreeBASIC	version	0.20.0.
Older	versions	of	FB,	and	QuickBASIC,	will	treat	it	as	a	comment	and
silently	ignore	it.

Example

'$lang:	"qb"

Differences	from	QB

New	to	FreeBASIC
QB	handles	'$lang:	as	a	normal	comment

See	also

#lang

__FB_LANG__

Compiler	Option:	-lang
Compiler	Option:	-forcelang
FreeBASIC	Dialects

Abs 	

Calculates	the	absolute	value	of	a	number

Syntax
Declare	Function	Abs	(ByVal	number	As	Long)	As	Long

Declare	Function	Abs	(ByVal	number	As	Ulong)	As	Ulong

Declare	Function	Abs	(ByVal	number	As	LongInt)	As	LongInt

Declare	Function	Abs	(ByVal	number	As	ULongInt)	As	ULongInt

Declare	Function	Abs	(ByVal	number	As	Double)	As	Double

Usage
result	=	Abs(number)

Parameters
number

Value	to	find	the	absolute	value	of.

Return	Value
The	absolute	value	of	number.

Description
The	absolute	value	of	a	number	is	its	positive	magnitude.	If	a	number
is	negative,	its	value	will	be	negated	and	the	positive	result	returned.
For	example,	Abs(-1)	and	Abs(1)	both	return	1.	The	required	number
argument	can	be	any	valid	numeric	expression.
Unsigned	numbers	will	be	treated	as	if	they	were	signed,	i.e.	if	the
highest	bit	is	set	the	number	will	be	treated	as	negative,	and	its	value
negated.
The	value	returned	will	be	greater	than	or	equal	to	0,	with	the	exception
of	signed	integers	containing	the	lowest	possible	negative	value	that
can	be	stored	in	its	type,	in	which	case	negating	it	will	overflow	the
result.

The	Abs	unary	Operator	can	be	overloaded	with	user	defined	types.

Example

Dim	n	As	Integer

Print	Abs(-1)

Print	Abs(-3.1415)

Print	Abs(42)

Print	Abs(n)

n	=	-69

Print	Abs(n)

Output:

1

3.1415

42

0

69

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Sgn

Operator

Abstract 	

Declare	abstract	methods

Syntax
Type	typename	Extends	base_typename

Declare	Abstract	Sub|Function|Property|Operator	...

End	Type

Description
Abstract	is	a	special	form	of	Virtual.	The	difference	is	that	abstract
methods	do	not	have	a	body,	but	just	the	declaration.	Essentially	this
allows	the	declaration	of	an	interface	which	can	be	implemented	by
various	derived	types.

In	order	to	call	an	abstract	method,	it	must	have	been	overridden	and
implemented	by	a	derived	data	type,	or	else	the	program	will	abort.
As	a	result,	only	types	that	implement	all	the	abstract	methods	are
allowed	to	create	objects.	For	the	same	reason,	a	constructor	should
not	call	an	unimplemented	method.

Constructors	cannot	be	abstract,	since	they	cannot	be	virtual.	In
addition,	abstract	Destructors	are	not	supported	either,	because	a
destructor	body	(no	matter	whether	implicit	or	explicit)	is	needed	in
order	to	call	base	and	field	destructors.

Abstracts	are	called	"pure	virtual"	in	C++	(unlike	FreeBASIC,	C++
allows	pure	virtuals	to	have	a	body,	but	accessible	only	statically).

Note:	In	a	multi-level	inheritance,	a	same	named	method	(same
identifier	and	signature)	can	be	declared	Abstract,	Virtual	or	normal
(without	specifier)	at	each	inheritance	hierarchy	level.	When	there	is
mixing	of	specifiers,	the	usual	order	is	abstract	->	virtual	->	normal,
from	top	to	bottom	of	the	inheritance	hierarchy.
The	access	control	(Public/Protected/Private)	of	an	overriding	method
is	not	taken	into	account	by	the	internal	polymorphism	process,	but
only	for	the	initial	call	at	compile-time.

A	derived	static	method	cannot	override	a	base	virtual/abstract
method,	but	can	shadow	any	base	method	(including	virtual/abstract).

Example

Type	Hello	extends	object

				Declare	abstract	Sub	hi()

End	Type

Type	HelloEnglish	extends	Hello

				Declare	Sub	hi()

End	Type

Type	HelloFrench	extends	Hello

				Declare	Sub	hi()

End	Type

Type	HelloGerman	extends	Hello

				Declare	Sub	hi()

End	Type

Sub	HelloEnglish.hi()

				Print	"hello!"

End	Sub

Sub	HelloFrench.hi()

				Print	"Salut!"

End	Sub

Sub	HelloGerman.hi()

				Print	"Hallo!"

End	Sub

				Randomize(Timer())

				Dim	As	Hello	Ptr	h

				For	i	As	Integer	=	0	To	9

								Select	Case(Int(Rnd()	*	3)	+	1)

								Case	1

												h	=	New	HelloFrench

								Case	2

												h	=	New	HelloGerman

								Case	Else

												h	=	New	HelloEnglish

								End	Select

								h->hi()

								Delete	h

				Next

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Virtual

Type

Extends

Object

Access 	

Clause	of	the	Open	statement	to	specify	requested	privileges

Syntax
Open	filename	for	Binary	Access	{Read	|	Write	|	Read	Write}	as	[#]

Usage
open	filename	for	binary	Access	Read	as	#filenum

open	filename	for	binary	Access	Write	as	#filenum

open	filename	for	binary	Access	Read	Write	as	#filenum

Parameters
Read

Open	the	file	with	only	read	privileges.
Write

Open	the	file	with	only	write	privileges.
Read	Write

Open	the	file	with	read	and	write	privileges.

Description
Access	is	used	with	the	Open	statement	to	request	read,	write,	or	read	and	write	privileges.	
Access	clause	is	not	specified,	Read	Write	is	assumed.

Example

This	example	shows	how	to	open	the	file	"data.raw"	with	Read	and	then	"data.out"	with	
access,	in	Binary	mode,	in	an	open	file	number	returned	by	FreeFile.

Dim	As	Integer	o

		''	get	an	open	file	number.

		o	=	FreeFile

		

		''	open	file	for	read-only	access.				

		Open	"data.raw"	For	Binary	Access	Read	As	#o

				

				''	make	a	buffer	in	memory	thats	the	entire	size	of	the	file

				Dim	As	UByte	file_char(LOF(o)	-	1)

						''	get	the	file	into	the	buffer.						

						Get	#o,	,	file_char()

				

		Close

		

		''	get	another	open	file	number.

		o	=	FreeFile

		

		''	open	file	for	write-only	access.				

		Open	"data.out"	For	Binary	Access	Write	As	#o

				''	put	the	buffer	into	the	new	file.						

				Put	#o,	,	file_char()

				

		Close

		Print	"Copied	file	""data.raw""	to	file	""data.out"""

		Sleep

Differences	from	QB

None	known.

See	also

Open

Read

Write

Acos 	

Finds	the	arccosine	of	an	angle

Syntax
Declare	Function	Acos	(ByVal	number	As	Double)	As	Double

Usage
result	=	Acos(number)

Parameters
number

A	cosine	value	in	the	range	[-1..1].

Return	Value
The	arccosine	of	number,	in	radians,	in	the	range	[0..Pi].

Description
Acos	returns	the	arccosine	of	the	argument	number	as	a	Double	within	the	range	of	0	to	
the	inverse	of	the	Cos	function.	The	returned	angle	is	measured	in	radians

Example

Dim	h	As	Double

Dim	a	As	Double

Input	"Please	enter	the	length	of	the	hypotenuse	of	a	triangle:	"

Input	"Please	enter	the	length	of	the	adjacent	side	of	the	triangle:	"

Print	""

Print	"The	angle	between	the	sides	is";	Acos	(a	/

Sleep

The	output	would	look	like:

Please	enter	the	length	of	the	hypotenuse	of	a	triangle:	5

Please	enter	the	length	of	the	adjacent	side	of	the	triangle:	4

The	angle	between	the	sides	is	0.6435011087932843

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Cos

A	Brief	Introduction	To	Trigonometry

Add 	

Parameter	to	the	Put	graphics	statement	which	selects	addition	as	the	blitting	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

,multiplier]

Parameters
Add

Required.
multiplier

Optional	value	between	0	and	255.	The	source	pixels	are	premultiplied	by
(multiplier	/	256)	before	being	added.	If	omitted,	this	value	defaults	to	255.

Description
Add	selects	addition	as	the	method	for	blitting	an	image	buffer.	For	each	source	and
target	pixel,	the	values	of	each	respective	component	are	added	together	to
produce	the	result.
The	addition	is	saturated	-	i.e.	if	the	sum	of	the	two	values	is	256	or	more,	then	it	will
be	cropped	down	to	255.

This	method	will	work	in	all	color	modes.	Mask	colors	(color	0	for	indexed	images,
magenta	(RGB(255,	0,	255))	for	full	color	images)	will	be	skipped,	though	full	color
values	of	0	(RGBA(0,	0,	0,	0))	will	have	also	have	no	effect.

Example

''open	a	graphics	window

ScreenRes	320,	200,	16

''create	a	sprite	containing	a	circle

Const	As	Integer	r	=	32

Dim	c	As	Any	Ptr	=	ImageCreate(r	*	2	+	1,	r	*	2	+	

Circle	c,	(r,	r),	r,	RGB(255,	255,	192),	,	,	1,	f

''put	the	sprite	at	three	different	multipier

''levels,	overlapping	each	other	in	the	middle

Put	(146	-	r,	108	-	r),	c,	add,		64

Put	(174	-	r,	108	-	r),	c,	add,	128

Put	(160	-	r,		84	-	r),	c,	add,	192

''free	the	memory	used	by	the	sprite

ImageDestroy	c

''pause	the	program	before	closing

Sleep

Differences	from	QB

New	to	FreeBASIC

See	also

Trans

Alpha

Custom

Put	(Graphics)

Alias 	

Clause	of	the	Sub	and	Function	statements	that	provides	an	alternate	internal	name

Syntax
[Declare]	{	Sub	|	Function	}	usablename	Alias	"alternatename"	(...)

Usage
declare	sub	usablename	Alias	"alternatename"	(...)

or
declare	function	usablename	Alias	"alternatename"	(...)
or
sub	usablename	Alias	"alternatename"	(...)
...
end	sub
or
function	usablename	Alias	"alternatename"	(...)
...
end	function

Description
Alias	gives	an	alternate	name	to	a	procedure.	This	alternate	name	cannot	be	used	within	the	program	to	call	the	procedure,	but	it	is	visible
(if	the	function	is	not	private)	to	the	linker	when	linking	with	code	written	in	other	languages.

Alias	is	commonly	used	for	procedures	in	libraries	written	in	other	languages	when	such	procedure	names	are	valid	in	the	other	language
but	invalid	in	BASIC.	When	using	Alias	with	Declare,	only	the	alternate	name	is	used	by	the	linker.

Differently	from	normal	procedure	names,	Alias	does	not	change	the	case	of	the	alternate	name,	so	it	is	useful	when	external	code	requires
an	exported	function	with	a	particular	name	or	with	a	particular	case.

Example

If	there	is	a	sub	called	xClearScreen	in	an	external	library	and	you	want	to	reference	it	with	the	name	
to	do	so:

Declare	Sub	ClearVideoScreen	Alias	"xClearScreen"	()

A	procedure	meant	to	be	used	by	external	C	code,	exported	as	MyExportedProc

Function	MultiplyByFive	cdecl	Alias	"MyExportedProc"

		Return	Parameter	*	5

End	Function

Differences	from	QB

In	QB,	Alias	only	worked	with	Declare.

See	also

Declare

Export

Allocate 	

Allocates	a	block	of	memory	from	the	free	store

Syntax
Declare	Function	Allocate	cdecl	(ByVal	count	As	UInteger)	As	Any

Usage
result	=	Allocate(count)

Parameters
count

The	size,	in	bytes,	of	the	block	of	memory	to	allocate.

Return	Value
If	successful,	the	address	of	the	start	of	the	allocated	memory	is	returned.	Otherwise,	if	the	requested	block	size	could	not	be
allocated,	or	if	count	<	0,	then	the	null	pointer	(0)	is	returned.

Description
Attempts	to	allocate,	or	reserve,	count	number	of	bytes	from	the	free	store	(heap).	The	newly	allocated	memory	is	not	initialized.

As	the	initial	value	of	newly	allocated	memory	is	unspecified,	Allocate
string,	because	the	string	descriptor	being	not	cleared	(containing	random	data),	that	may	induce	corrupted	string	or	more	(trying
to	write	to	a	random	place	in	memory	or	trying	to	deallocate	a	random	pointer).	
containing	string)	to	use	CAllocate	(clearing	memory),	or	New	(calling	constructor)	in	case	of	
explicitly	clear	the	descriptor	(setting	to	0)	before	the	first	string	use.

The	pointer	that	is	returned	is	an	Any	Ptr	and	points	to	the	start	of	the	allocated	memory.	This	pointer	is	guaranteed	to	be	unique,
even	if	count	is	zero.

Allocated	memory	must	be	deallocated,	or	returned	back	to	the	free	store,	with	

Example

''	This	program	uses	the	ALLOCATE(...)	function	to	create	a	buffer	of	15	integers	that	is

''	then	filled	with	the	first	15	numbers	of	the	Fibonacci	Sequence,	then	output	to	the

''	screen.	Note	the	call	to	DEALLOCATE(...)	at	the	end	of	the	program.

				Const	integerCount	As	Integer	=	15

				''	Try	allocating	memory	for	a	number	of	integers.

				''

				Dim	buffer	As	Integer	Ptr

				buffer	=	Allocate(integerCount	*	SizeOf(Integer

				If	(0	=	buffer)	Then

								Print	"Error:	unable	to	allocate	memory,	quitting."

								End	-1

				End	If

				''	Prime	and	fill	the	memory	with	the	fibonacci	sequence.

				''

				buffer[0]	=	0

				buffer[1]	=	1

				For	i	As	Integer	=	2	To	integerCount	-	1

								buffer[i]	=	buffer[i	-	1]	+	buffer[i	-	2]

				Next

				''	Display	the	sequence.

				''

				For	i	As	Integer	=	0	To	integerCount	-	1

								Print	buffer[i]	;

				Next

				Deallocate(buffer)

				End	0

Output	is:

0	1	1	2	3	5	8	13	21	34	55	89	144	233	377

	

It	is	important	to	free	allocated	memory	if	it's	not	going	to	be	used	anymore.	Unused	memory	that	isn't	freed	is	simply	wasting
memory,	and	if	the	address	of	that	memory	is	somehow	overwritten	or	forgotten,	that	memory	can	never	be	freed.	This	condition	is
known	as	a	memory	leak,	and	should	be	avoided	at	all	costs.	Note	that	leaked	memory	is	always	completely	freed	when	the
application	terminates,	either	by	an	"ordinary"	exit	or	crash,	so	the	leak	"persists"	only	as	long	as	the	application	runs,
nevertheless	it's	a	good	habit	to	free	any	allocated	memory	inside	your	application.	The	following	example	demonstrates	a
function	with	a	memory	leak,	where	the	address	of	allocated	memory	is	lost	and	isn't	and	can't	be	freed	anymore.	If	such	a
function	is	called	frequently,	the	total	amount	of	memory	wasted	can	add	up	quickly.

''	Bad	example	of	Allocate	usage,	causing	memory	leaks

Sub	BadAllocateExample()

				Dim	p	As	Byte	Ptr

				p	=	Allocate(420)			''	assign	pointer	to	new	memory

				p	=	Allocate(420)			''	reassign	same	pointer	to	different	memory,

																								''	old	address	is	lost	and	that	memory	is	leaked

				Deallocate(p)

End	Sub

				''	Main

				BadAllocateExample()	''	Creates	a	memory	leak	

				Print	"Memory	leak!"

				BadAllocateExample()	''	...	and	another

				Print	"Memory	leak!"

				End

Platform	Differences

This	procedure	is	not	guaranteed	to	be	thread-safe.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

CAllocate

Reallocate

Deallocate

Alpha 	

Parameter	to	the	Put	graphics	statement	which	selects	alpha	blending	as	the	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Parameters
Alpha

Required.
alphaval

Optional	alpha	parameter	in	the	range	[0..255].	Overrides	alpha	values	in	individual	pixels.

Description
Alpha	selects	alpha	blending	as	the	method	for	Putting	an	image.	If	the	
each	pixel,	and	the	mask	color	(magenta)	will	be	treated	as	transparent.	

If	alphaval	is	not	specified,	Alpha	will	only	work	in	32-bit	color	depth,	and	
Pixels	using	the	mask	color	will	be	treated	as	normal,	and	drawn	with	their	given	alpha	value.

Alpha	also	has	another	mode	which	allows	an	8-bit	image	to	be	Put	on	top	of	a	32-bit	image.	
channel	of	the	32-bit	image	with	the	contents	of	the	8-bit	image.

Alpha	values	range	between	0	and	255.	An	alpha	value	of	0	will	not	draw	the	image	at	all.	
to	get	a	range	between	2	and	256,	and	the	result	is	then	divided	by	256	to	get	a	value	between	1/128	and	1,	which	is	used	to	calculate
the	exact	value	of	each	pixel	from	the	source	and	destination	pixels.	Thus,	255	is	practically	equivalent	to	drawing	using	Put	with	Trans
blitting	mode,	0	is	equivalent	to	doing	nothing	at	all,	and	all	the	other	alpha	values	blend	is	expected.

Example
This	example	compares	the	two	different	Alpha	modes,	including	how	they	react	to	the	mask	color

''	Set	up	a	32-bit	screen

ScreenRes	320,	200,	32

''	Draw	checkered	background

For	y	As	Integer	=	0	To	199

				For	x	As	Integer	=	0	To	319

								PSet	(x,	y),	IIf((x	Shr	2	Xor	y	Shr	2)	And

				Next	x

Next	y

''	Make	image	sprite	for	Putting

Dim	img	As	Any	Ptr	=	ImageCreate(32,	32,	RGBA(0,	0

For	y	As	Single	=	-15.5	To	15.5

				For	x	As	Single	=	-15.5	To	15.5

								Dim	As	Integer	r,	g,	b,	a

								If	y	<=	0	Then

												If	x	<=	0	Then

																r	=	255:	g	=	0:	b	=	0			''	red

												Else

																r	=	0:	g	=	0:	b	=	255			''	blue

												End	If

								Else

												If	x	<=	0	Then

																r	=	0:	g	=	255:	b	=	0			''	green

												Else

																r	=	255:	g	=	0:	b	=	255	''	magenta	(transparent	mask	color)

												End	If

								End	If

								a	=	255	-	(x	^	2	+	y	^	2)

								If	a	<	0	Then	a	=	0':	r	=	255:	g	=	0:	b	=	255

								PSet	img,	(15.5	+	x,	15.5	-	y),	RGBA(r,	g,

				Next	x

Next	y

''	Put	with	single	Alpha	value,	Trans	for	comparison

Draw	String	(32,	10),	"Single	alpha"

Put	(80	-	16,		50	-	16),	img,	Alpha,	64

Put	(80	-	16,	100	-	16),	img,	Alpha,	192

Put	(80	-	16,	150	-	16),	img,	Trans

''	Put	with	full	Alpha	channel

Draw	String	(200,	10),	"Full	alpha"

Put	(240	-	16,	100	-	16),	img,	Alpha

''	Free	the	image	memory

ImageDestroy	img

''	Wait	for	a	keypress

Sleep

This	example	shows	the	special	method	for	setting	a	32-bit	alpha	channel	using	an	8-bit	image

Dim	As	Any	Ptr	img8,	img32

Dim	As	Integer	x,	y,	i

''	Set	up	an	8-bit	graphics	screen

ScreenRes	320,	200,	8

For	i	=	0	To	255

				Palette	i,		i,	i,	i

Next	i

Color	255,	0

''	Create	an	8-bit	image

img8	=	ImageCreate(64,	64,	0,		8)

For	y	=	0	To	63

				For	x	=	0	To	63

								Dim	As	Single	x2	=	x	-	31.5,	y2	=	y	-	31.5

								Dim	As	Single	t	=	Sqr(x2	^	2	+	y2	^	2)	/	5

								PSet	img8,	(x,	y),	Sin(t)	^	2	*	255

				Next	x

Next	y

Draw	String	(16,	4),	"8-bit	Alpha	sprite"

Put	(16,	16),	img8

Sleep

''	Set	up	a	32-bit	graphics	screen

ScreenRes	320,	200,	32

For	y	=	0	To	199

				For	x	=	0	To	319

								PSet	(x,	y),	IIf(x	-	y	And	3,	RGB(160,	160

				Next	x

Next	y

''	Create	a	32-bit,	fully	opaque	sprite

img32	=	ImageCreate(64,	64,	0,	32)

For	y	=	0	To	63

				For	x	=	0	To	63

								PSet	img32,	(x,	y),	RGB(x	*	4,	y	*	4,	128)

				Next	x

Next	y

Draw	String	(16,	4),	"Original	Alpha	channel"

Put	(16,	16),	img32,	Alpha

''	Put	a	new	alpha	channel	using	the	8-bit	image

Put	img32,	(0,	0),	img8,	Alpha

Draw	String	(16,	104),	"New	Alpha	channel"

Put	(16,	116),	img32,	Alpha

''Free	the	memory	for	the	two	images

ImageDestroy	img8

ImageDestroy	img32

Sleep

Differences	from	QB

New	to	FreeBASIC

See	also

Put	(Graphics)

Trans

Custom

Operator	And	(Conjunction) 	

Returns	the	bitwise-and	(conjunction)	of	two	numeric	values

Syntax
Declare	Operator	And	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)	As	Ret

Usage
result	=	lhs	And	rhs

Parameters
lhs

The	left-hand	side	expression.
T1

Any	numeric	or	boolean	type.
rhs

The	right-hand	side	expression.
T2

Any	numeric	or	boolean	type.
Ret

A	numeric	or	boolean	type	(varies	with	T1	and	T2).

Return	Value
Returns	the	bitwise-and	(conjunction)	of	the	two	operands.

Description
This	operator	returns	the	bitwise-and	of	its	operands,	a	logical	operation	that	results	in	a	value	with	bits	set	depending	on	the	bits	of	the
operands	(for	conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value	becomes	0	or	-1	integer	value).

The	truth	table	below	demonstrates	all	combinations	of	a	boolean-and	operation:

Lhs	Bit Rhs	Bit Result

0 0 0

1 0 0

0 1 0

1 1 1

No	short-circuiting	is	performed	-	both	expressions	are	always	evaluated.

The	return	type	depends	on	the	types	of	values	passed.	Byte,	UByte	and	floating-point	type	values	are	first	converted	to	
and	right-hand	side	types	differ	only	in	signedness,	then	the	return	type	is	the	same	as	the	left-hand	side	type	(
the	two	types	is	returned.	Only	if	the	left	and	right-hand	side	types	are	both	

This	operator	can	be	overloaded	for	user-defined	types.

Example

'	Using	the	AND	operator	on	two	numeric	values

Dim	As	UByte	numeric_value1,	numeric_value2

numeric_value1	=	15	'00001111

numeric_value2	=	30	'00011110

'Result	=		14		=					00001110

Print	numeric_value1	And	numeric_value2

Sleep

'	Using	the	AND	operator	on	two	conditional	expressions

Dim	As	UByte	numeric_value1,	numeric_value2

numeric_value1	=	15

numeric_value2	=	25

If	numeric_value1	>	10	And	numeric_value1	<	20	Then

If	numeric_value2	>	10	And	numeric_value2	<	20	Then

Sleep

'	This	will	output	"Numeric_Value1	is	between	10	and	20"	because

'	both	conditions	of	the	IF	statement	is	true

'	It	will	not	output	the	result	of	the	second	IF	statement	because	the	first

'	condition	is	true	and	the	second	is	false.

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

AndAlso

Operator	Truth	Tables

Operator	Andalso	(Short	Circuit	Conjunction) 	

Returns	the	short	circuit-and	(conjunction)	of	two	numeric	values

Syntax
Declare	Operator	AndAlso	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)	As

Usage
result	=	lhs	AndAlso	rhs

Parameters
lhs

The	left-hand	side	expression.
T1

Any	numeric	or	boolean	type.
rhs

The	right-hand	side	expression.
T2

Any	numeric	or	boolean	type.
Ret

A	numeric	or	boolean	type	(varies	with	T1	and	T2).

Return	Value
Returns	the	short	circuit-and	(conjunction)	of	the	two	operands.

Description
This	operator	evaluates	the	left	hand	side	expression.	If	the	result	is	zero,	then	zero	is
immediately	returned.	If	the	result	is	nonzero	then	the	right	hand	side	is	evaluated,	and
the	logical	result	from	that	is	returned.
(for	conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value	becomes	0	or	-1
integer	value)	

The	truth	table	below	demonstrates	all	combinations	of	a	short	circuit-and	operation,	the	'-
'	denotes	that	the	operand	is	not	evaluated.

Lhs	Value Rhs	Value Result

0 - 0

nonzero 0 0

nonzero nonzero -1

Short-circuiting	is	performed	-	only	expressions	needed	to	calculate	the	result	are
evaluated.

The	return	type	is	almost	always	an	Integer,	of	the	value	0	or	-1,	denoting	false	and	true
respectively.	Except	if	the	left	and	right-hand	side	types	are	both	Boolean
type	is	also	Boolean.

This	operator	cannot	be	overloaded	for	user-defined	types.

Example

''	Using	the	ANDALSO	operator	to	guard	against	array	access

''	when	the	index	is	out	of	range

Dim	As	Integer	isprime(1	To	10)	=	{	_

				_	'	1		2		3		4		5		6		7		8		9		10

								0,	1,	1,	0,	1,	0,	1,	0,	0,	0	_

				}

Dim	As	Integer	n

Input	"Enter	a	number	between	1	and	10:	",	n

''	isprime()	array	will	only	be	accessed	if	n	is	in	range

If	(n	>=	1	And	n	<=	10)	AndAlso	isprime(n)	Then

				Print	"n	is	prime"

Else

				Print	"n	is	not	prime,	or	out	of	range"

End	If

Differences	from	QB

This	operator	was	not	available	in	QB.

See	also

OrElse

And

Operator	Truth	Tables

And 	

Parameter	to	the	Put	graphics	statement	which	uses	a	bit-wise	And	as	the	blitting	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Parameters
And

Required.

Description
The	And	method	combines	each	source	pixel	with	the	corresponding	destination	pixel,	using	the
bit-wise	And	function.	The	result	of	this	is	output	as	the	destination	pixel.
This	method	works	in	all	graphics	modes.	There	is	no	mask	color,	although	color	values	with	all
bits	set	(255	for	8-bit	palette	modes,	or	RGBA(255,	255,	255,	255)	in	full-color	modes)	will	have
no	effect,	because	of	the	behavior	of	And.

In	full-color	modes,	each	component	(red,	green,	blue	and	alpha)	is	kept	in	a	discrete	set	of	bits,
so	the	operation	can	be	made	to	only	affect	some	of	the	channels,	by	making	sure	the	all	the
values	of	the	other	channels	are	set	to	255.

Example

''open	a	graphics	window

ScreenRes	320,	200,	16

Line	(0,	0)-(319,	199),	RGB(255,	255,	255),	bf

''create	3	sprites	containing	cyan,	magenta	and	yellow	circles

Const	As	Integer	r	=	32

Dim	As	Any	Ptr	cc,	cm,	cy

cc	=	ImageCreate(r	*	2	+	1,	r	*	2	+	1,	RGBA(255,	255

cm	=	ImageCreate(r	*	2	+	1,	r	*	2	+	1,	RGBA(255,	255

cy	=	ImageCreate(r	*	2	+	1,	r	*	2	+	1,	RGBA(255,	255

Circle	cc,	(r,	r),	r,	RGB(0,	255,	255),	,	,	1,	f

Circle	cm,	(r,	r),	r,	RGB(255,	0,	255),	,	,	1,	f

Circle	cy,	(r,	r),	r,	RGB(255,	255,	0),	,	,	1,	f

''put	the	three	sprites,	overlapping	each	other	in	the	middle

Put	(146	-	r,	108	-	r),	cc,	And

Put	(174	-	r,	108	-	r),	cm,	And

Put	(160	-	r,		84	-	r),	cy,	And

''free	the	memory	used	by	the	sprites

ImageDestroy	cc

ImageDestroy	cm

ImageDestroy	cy

''pause	the	program	before	closing

Sleep

Differences	from	QB

None

See	also

And

Put	(Graphics)

Any 	

Any	is	used	as	a	placeholder	for	a	type	or	value	in	various	ways.

Syntax
Dim	identifier	As	Any	Pointer|Ptr

or
Declare	Sub|Function	identifier	(ByRef	identifier	As	Any	[,	...])

or
Dim	identifier(Any	[,	Any...])	As	DataType

or
[Declare]	{	Sub	|	Function	}	proc_name	(param(Any	[,	Any...])	

or
Dim	identifier	As	DataType	=	Any

or
New	DataType	(Any)

or
New(Address)	DataType	[count]	{	Any	}

or
InStr|InStrRev	(string,	Any	substring)

Description

Pointers:
A	special	pointer	type	called	the	Any	Ptr	(or	"Any	Pointer")	allows	pointing	to	any	variable	type.	
as	an	instance	of	DataType.	Pointer	arithmetic	is	allowed	on	an	Any	Ptr

A	pure	Any	Ptr	has	no	type	checking	by	the	compiler.	It	can	be	implicitly	converted	to	and	from	other	pointer	types	through	assignment	or	parameter	passing.

Any	on	its	own	is	not	a	valid	data	type	for	a	variable.	Also,	it	is	illegal	to	dereference	an	

This	should	not	be	confused	with	Variant,	a	Visual	Basic	data	type	which	can	contain	any	type	of	variable.	FreeBASIC	does	not	provide	native	support	for	a	
Byref	parameters:

Any	can	be	used	in	procedure	prototypes	(in	a	Declare	statement)	with	
deprecated	and	it	only	exists	for	compatibility	with	QB.

Array	dimensions:
In	array	declarations,	Any	can	be	specified	in	place	of	the	array	bounds	in	order	to	create	a	dynamic	array	with	a	certain	amount	of	dimensions	that	is	determined	based	on	the	number
of	Anys	specified	(use	the	syntax	with	Any	is	mandatory	when	declaring	a	dynamic	array	member	inside	a	

In	parameter	declarations,	Any	can	be	also	specified	instead	of	empty	parenthesis	in	order	to	fix	the	amount	of	dimensions.
Initialization:

Any	can	be	used	as	a	fake	initializer	to	disable	the	default	initialization	of	variables	to	
program's	responsibility	to	fill	the	variables	with	meaningful	data	before	reading	it.

Comparison	to	C/C++:	This	matches	the	behavior	of	a	variable	declaration	without	initialization	value	in	C/C++.

Similar	to	Any	initializers	for	variables,	Any	can	also	be	used	with	the	New
that	do	not	have	constructors).

Instr/InstrRev:
Any	can	be	used	with	InStr	or	InStrRev	as	a	qualifier	for	the	substring

Example

Declare	Sub	echo(ByVal	x	As	Any	Ptr)	''	echo	will	accept	any	pointer	type

Dim	As	Integer	a(0	To	9)	=	Any	''	this	variable	is	not	initialized

Dim	As	Double		d(0	To	4)

Dim	p	As	Any	Ptr

Dim	pa	As	Integer	Ptr	=	@a(0)

Print	"Not	initialized	";

echo	pa							''	pass	to	echo	a	pointer	to	integer

Dim	pd	As	Double	Ptr	=	@d(0)

Print	"Initialized	";

echo	pd							''	pass	to	echo	a	pointer	to	double

p	=	pa					''	assign	to	p	a	pointer	to	integer

p	=	pd					''	assign	to	p	a	pointer	to	double						

Sleep

Sub	echo	(ByVal	x	As	Any	Ptr)

				Dim	As	Integer	i

				For	i	=	0	To	39

								'echo	interprets	the	data	in	the	pointer	as	bytes

								Print	Cast(UByte	Ptr,	x)[i]	&	"	";

				Next

				Print

End	Sub

'Example	of	ANY	disabling	the	variable	type	checking

Declare	Sub	echo	(ByRef	a	As	Any)	''	ANY	disables	the	checking	for	the	type	of	data	passed	to	the	function

Dim	x	As	Single

x	=	-15

echo	x																		''	Passing	a	single	to	a	function	that	expects	an	integer.	The	compiler	does	not	complain!!													

Sleep

Sub	echo	(ByRef	a	As	Integer)

		Print	Hex(a)									

End	Sub

Dim	a(Any)	As	Integer	'	1-dimensional	dynamic	array

Dim	b(Any,	Any)	As	Integer	'	2-dimensional	dynamic	array

Dim	c(Any,	Any,	Any)	As	Integer	'	3-dimensional	dynamic	array

'	etc.

'	Further	Redims	or	array	accesses	must	have	a	matching	amount	of	dimensions

ReDim	a(0	To	1)	As	Integer

ReDim	b(1	To	10,	2	To	5)	As	Integer

ReDim	c(0	To	9,	0	To	5,	0	To	1)	As	Integer

Dialect	Differences

Not	available	in	the	-lang	qb	dialect.

Differences	from	QB

Pointers	and	initializers	are	new	to	FreeBASIC.

See	also

Dim

Declare

Append 	

Specifies	text	file	to	be	opened	for	append	mode

Syntax
Open	filename	for	Append	[Encoding	encoding_type]	[Lock

lock_type]	as	[#]filenum	

Parameters
filename

file	name	to	open	for	append
encoding_type

indicates	encoding	type	for	the	file
lock_type

locking	to	be	used	while	the	file	is	open
filenum

unused	file	number	to	associate	with	the	open	file

Description
A	file	mode	used	with	Open	to	open	a	text	file	for	writing.

This	mode	is	used	to	add	text	to	an	existing	file	with	Print	#,	or
comma	separated	values	with	Write#.

Text	files	can't	be	simultaneously	read	and	written	in	FreeBASIC,	so	if
both	functions	are	required	on	the	same	file,	it	must	be	opened	twice.

filename	must	be	a	string	expression	resulting	in	a	legal	file	name	in
the	target	OS,	without	wildcards.	The	file	will	be	sought	for	in	the
present	directory,	unless	the	filename	contains	a	path	.	If	the	file	does
not	exist,	it	is	created.	The	pointer	is	set	after	the	last	character	of	the
file.

Encoding_type	indicates	the	Unicode	Encoding	of	the	file,	so	characters
are	correctly	read.	If	omitted,	"ascii"	encoding	is	defaulted.	Only	little
endian	character	encodings	are	supported	at	the	moment.	

"utf8"

"utf16"

"utf32"

"ascii"	(the	default)

Lock_type	indicates	the	way	the	file	is	locked	for	other	processes,	it	is
one	of:

Read	-	the	file	can	be	opened	simultaneously	by	other
processes,	but	not	for	reading
Write	-	the	file	can	be	opened	simultaneously	by	other
processes,	but	not	for	writing
Read	Write	-	the	file	cannot	be	opened	simultaneously	by
other	processes	(the	default)

filenum	Is	a	valid	FreeBASIC	file	number	(in	the	range	1..255)	not
being	used	for	any	other	file	presently	open.	The	file	number	identifies
the	file	for	the	rest	of	file	operations.	A	free	file	number	can	be	found
using	the	FreeFile	function.

Example

Dim	i	As	Integer

For	i	=	1	To	10

				Open	"test.txt"	For	Append	As	#1

				Print	#1,	"extending	test.txt"

				Close	#1

Next

Differences	from	QB

None

See	also

Input	(File	Mode)

Open

Output

(Print	|	?)	#

Write	#

As 	

Optional	part	of	a	declaration	which	specifies	a	data	type,	or	part	of	the	Open
specifies	a	file	handle.

Syntax
symbolname	As	datatype

Open	...	As	#filenumber

Type	...	As	datatype

Description
As	is	used	to	declare	the	type	of	variables,	fields	or	arguments	and	is	also	used	in	the	
statement	to	determine	the	file	handle.	As	is	also	used	with	the	Type	(Alias)
to	C's	typedef	statement.

Example

''	don't	try	to	compile	this	code,	the	examples	are	unrelated

Declare	Sub	mySub	(X	As	Integer,	Y	As	Single,	Z	As

'	...

Dim	X	As	Integer

'	...

Type	myType

		X	As	Integer

		Y	As	Single

		Z	As	String

End	Type

'	...

Type	TheNewType	As	myType

'	...

Open	"test"	For	Input	As	#1

'	...

Differences	from	QB

The	Type	(Alias)	syntax	was	not	supported	in	QB.

See	also

Declare

Dim

Type

Open

Assert 	

Debugging	macro	that	halts	program	execution	if	an	expression	is	evaluated	to	

Syntax
#define	Assert(expression)	If	(expression)	=	0	Then	:	fb_Assert(

#expression)	:	End	If

Usage
Assert(expression)

Parameters
expression

Any	valid	conditional/numeric	expression.	If	expression	evaluates	to	0

Description
The	Assert	macro	is	intended	for	use	in	debugging	and	works	only	if	the	
command	line.	In	this	case	it	prints	an	error	message	and	stops	the	program	execution	if	
evaluates	to	0.

Its	normal	use	is	to	check	the	correct	value	of	the	variables	during	debugging.

If	-g	is	not	passed	to	fbc,	the	macro	does	not	generate	any	code,	and	has	no	effect.

Note:	If	an	Assert	fails	while	the	program	is	in	a	graphics	Screen,	the	error	message	will	not	be	visible	as	it	will
be	printed	to	the	graphics	screen,	which	will	be	closed	immediately	after.

Example

Sub	foo

	Dim	a	As	Integer

	a=0

	Assert(a=1)

End	Sub

foo	

''	If	-

g	is	used	this	code	stops	with:	test.bas(3):	assertion	failed	at	FOO:	a=1	

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

#Assert

AssertWarn

AssertWarn 	

Debugging	macro	that	prints	a	warning	if	an	expression	evaluates	to	0.

Syntax
#define	AssertWarn(expression)	If	(expression)	=	0	Then	:	fb_AssertWarn(

__FUNCTION__,	#expression)	:	End	If

Usage
AssertWarn(expression)

Parameters
expression

Any	valid	expression.	If	expression	evaluates	to	0,	a	warning	message	is	printed	to	stdout	(console).

Description
The	AssertWarn	macro	is	intended	for	use	in	debugging	and	works	only	if	the	
FBC	command	line.	In	this	case	it	prints	a	warning	message	if	expression
the	program	execution	like	Assert	does.

Its	normal	use	is	to	check	the	correct	value	of	the	variables	during	debugging.

If	-g	is	not	passed	to	fbc,	the	macro	does	not	generate	any	code.

Example

Sub	foo

		Dim	a	As	Integer

		a=0

		AssertWarn(a=1)

End	Sub

foo	

''	If	-

g	is	used	this	code	prints:	test.bas(3):	assertion	failed	at	FOO:	a=1	

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Assert

Asc 	

Returns	the	corresponding	ASCII	or	Unicode	integer	representation	of	a
character

Syntax
Declare	Function	Asc	(ByRef	str	As	Const	String,	ByVal	position

Integer	=	1)	As	Ulong

Declare	Function	Asc	(ByVal	str	As	Const	ZString	Ptr,	ByVal

position	As	Integer	=	1)	As	Ulong

Declare	Function	Asc	(ByVal	str	As	Const	WString	Ptr,	ByVal

position	As	Integer	=	1)	As	Ulong

Usage
result	=	Asc(str	[,	position])

Parameters
str

The	source	string.
position

The	position	in	the	string	of	a	character.

Return	Value
The	raw	character	value	stored	at	position	in	str.

Description
If	str	is	a	String	or	a	ZString,	the	UByte	value	at	that	position	is	returned.
This	will	be	a	7-bit	ASCII	code,	or	even	a	8-bit	character	value	from	some
code-page,	depending	on	the	string	data	stored	in	str.

If	str	is	a	WString,	the	UShort	(Windows)	or	Ulong	(Linux)	value	at	that
position	is	returned.	This	will	be	a	16bit	value	on	Windows	(WStrings	use
UTF16	there),	or	a	32bit	value	on	Linux	(WStrings	use	UTF32	there).

The	function	returns	zero	(0)	if	the	string	is	a	zero	length	string,	position
less	than	one	(1),	or	position	is	greater	than	the	number	of	characters	in

str.

Chr	performs	the	opposite	function	for	ASCII	strings,	while	WChr	is	the
opposite	for	Unicode	strings,	returning	a	string	containing	the	character
represented	by	the	code	passed	as	an	argument.

Example

Print	"the	ascii	code	of	'a'	is:";	Asc("a")

Print	"the	ascii	code	of	'b'	is:";	Asc("abc",	2)

will	produce	the	output:

the	ascii	code	of	'a'	is:	97

the	ascii	code	of	'b'	is:	98

Unicode	example	(Note	to	documentation	editors:	don't	put	inside	%%
(qbasic)	markers	or	the	Russian	text	will	disappear!)

	
will	produce	the	output:

dim	a	as	wstring	*	11

a	=	"Привет,	мир"

print	"the	Unicode	of	the	second	char	of	"	&	a	&	"	is:	"	&	asc(a)

	

the	Unicode	of	the	second	char	of	Привет,	мир	is:	1088

Platform	Differences

DOS	does	not	support	the	wide-character	string	version	of	Asc.

Differences	from	QB

The	optional	position	argument	is	new	to	FreeBASIC.

QB	does	not	support	the	wide-character	string	version	of	Asc

See	also

ASCII	Character	Codes
Chr

Str

Val

Asin 	

Finds	the	arcsine	of	a	number

Syntax
Declare	Function	Asin	(ByVal	number	As	Double)	As	Double

Usage
result	=	Asin(number)

Parameters
number

Sine	value	in	the	range	[-1..1].

Return	Value
The	arcsine	of	number,	in	radians,	in	the	range	[-Pi/2..Pi/2].

Description
Asin	returns	the	arcsine	of	the	argument	number	as	a	Double	within	the	range	of	-
the	inverse	of	the	Sin	function.	The	returned	angle	is	measured	in	radians

Example

Dim	h	As	Double

Dim	o	As	Double

Input	"Please	enter	the	length	of	the	hypotenuse	of	a	triangle:	"

Input	"Please	enter	the	length	of	the	opposite	side	of	the	triangle:	"

Print	""

Print	"The	angle	between	the	sides	is";	Asin	(o	/

Sleep

The	output	would	look	like:

Please	enter	the	length	of	the	hypotenuse	of	a	triangle:	5

Please	enter	the	length	of	the	opposite	side	of	the	triangle:	3

The	angle	between	the	sides	is	0.6435011087932844

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Sin

A	Brief	Introduction	To	Trigonometry

Asm 	

Code	block	that	allows	the	use	of	architecture-specific	instructions.

Syntax
Asm

architecture-dependent	instructions

End	Asm

Or

Asm	architecture-dependent	instructions

Description
The	Asm	block	is	used	to	insert	specific	machine-code	instructions	in	a	program	in	order	to	perform
operations	that	cannot	be	carried	out	using	the	features	of	the	language	or	to	hand-optimize
performance-sensitive	sections	of	code.

The	current	FreeBASIC	compiler	currently	only	produces	code	for	Intel	80x86
however,	in	the	future,	the	compiler	might	be	ported	to	a	platform	which	does	not	support	the	same
instruction	set.	Therefore,	Asm	blocks	should	only	be	used	when	necessary,	and	a	FreeBASIC-only
alternative	should	be	provided	if	possible.

The	return	value	of	a	function	may	be	set	by	using	the	Function	keyword	within	brackets	as	shown	in
the	example	below.

Asm	block	comments	have	the	same	syntax	as	usual	FreeBASIC	Comments
comments,	not	"	;	"	as	usual	in	assembly	code.	

x86	Specific:

Syntax
The	syntax	of	the	inline	assembler	is	a	simplified	form	of	Intel	syntax.	Intel	syntax	is	used	by	the
majority	of	x86	assemblers,	such	as	MASM,	TASM,	NASM,	YASM	and	FASM.	In	general,	the
destination	of	an	instruction	is	placed	first,	followed	by	the	source.	Variables	and	functions	defined	by	a
program	may	be	referenced	in	an	Asm	block.	The	assembler	used	by	FreeBASIC	is	GAS,	using	the
.intel_syntax	noprefix	directive,	and	Asm	blocks	are	passed	through	unmodified,	except	for	the
substitution	of	local	variable	names	for	stack	frame	references,	and	commenting	removal.

Instruction	syntax	is	mostly	the	same	as	FASM	uses,	one	important	difference	is	that	GAS	requires	size
settings	to	be	followed	by	the	word	"ptr".

'	Assuming	"n"	is	a	FB	global	or	local	ULONG	variable

mov		eax,	[n]								'	OK:	size	is	apparent	from	eax

inc		[n]													'	Not	OK:	size	is	not	given

inc		dword	[n]							'	Not	OK:	size	given,	but	still	not	accepted	by	GAS

inc		dword	Ptr	[n]			'	OK:	"ptr"	is	needed	by	GAS	here

Register	Preservation
When	an	Asm	block	is	opened,	the	registers	ebx,	esi,	and	edi	are	pushed	to	the	stack,	when	the	block	is
closed,	these	registers	are	popped	back	from	the	stack.	This	is	because	these	registers	are	required	to
be	preserved	by	most	or	all	OS's	using	the	x86	CPU.	You	can	therefore	use	these	registers	without
explicitly	preserving	them	yourself.	You	should	not	change	esp	and	ebp,	since	they	are	usually	used	to
address	local	variables.	

Register	Names
The	names	of	the	registers	for	the	x86	architecture	are	written	as	follows	in	an	

4-byte	integer	registers:	eax,	ebx,	ecx,	edx,	ebp,	esp
2-byte	integer	registers:	ax,	bx,	cx,	dx,	bp,	sp,	di,	si
registers)
1-byte	integer	registers:	al,	ah,	bl,	bh,	cl,	ch,	dl,	dh
registers)
Floating-point	registers:	st(0),	st(1),	st(2),	st(3),	
MMX	registers	(aliased	onto	floating-point	registers):	
mm6,	mm7
SSE	registers:	xmm0,	xmm1,	xmm2,	xmm3,	xmm4,	xmm5,	xmm6

Instruction	Set

See	these	external	references:
Original	Intel	80386	manual	from	1986
Latest	Intel	Pentium	4	manuals
NASM	x86	Instruction	Reference	(Please	note	that	NASM	is	not	the	assembler

http://board.flatassembler.net/download.php?id=3093
http://developer.intel.com/design/Pentium4/documentation.htm
http://home.comcast.net/~fbkotler/nasmdocb.html

used	by	FreeBASIC,	but	this	page	provides	a	good	overview	of	x86	instructions)
Unsafe	instructions
Note	that	the	FreeBASIC	compiler	produces	32-bit	protected-mode	code	for	the	x86	which	usually	runs
in	an	unprivileged	user	level;	therefore,	privileged	and	sensitive	instructions	will	assemble	fine,	but
possibly	won't	work	correctly	or	cause	a	runtime	"General	Protection	Fault",	"Illegal	instruction",	or
SIGILL	error.	The	following	are	the	privileged	and	sensitive	instructions	as	of	the	Intel	Pentium	4	and
Xeon:

cli	*1
clts

hlt

in	*1
ins	*1
int	*1	
into	*1	
invd

invlpg

lgdt

lidt

lldt

lmsw

ltr

mov	to/from	CRn,	DRn,	TRn
out	*1
outs	*1
rdmsr

rdpmc	*2
rdtsc	*2
sti	*1
str

wbinvd

wrmsr

all	SSE2	and	higher	instructions	*2

*1:	sensitive	to	IOPL,	fine	in	DOS	
*2:	sensitive	to	permission	bits	in	CR4,	see	below
The	privileged	instructions	will	work	"correctly"	in	DOS	when	running	on	a	Ring	0	DPMI	kernel,	like	the
(non-default)	Ring	0	version	of	CWSDPMI,	WDOSX	or	D3X,	nevertheless	most	of	them	are	not	really
useful	and	dangerous	when	executed	from	DPMI	code.	RDTSC	(Read	Time	Stamp	Counter)	has	been
shown	to	be	allowed	by	most,	or	all	OS'es.

However	the	usefulness	of	RDTSC	has	been	diminished	with	the	advent	of	multi-core	and	hibernating
CPUs.	SSE2	and	higher	instructions	are	disabled	"by	default"	after	CPU	initialization,	Windows	and
Linux	usually	do	enable	them,	in	DOS	it	is	business	of	the	DPMI	host:	HDPMI32	will	enable	them,
CWSDPMI	won't.	The	INT	instruction	is	usable	in	the	DOS	version/target	only,	note	that	it	works	slightly
differently	from	real	mode	DOS,	see	also	FaqDOS.

The	segment	registers	(cs,	ds,	es,	fs,	gs)	should	not	be	changed	from	an	
cases	with	the	DOS	port	(note	that	they	do	NOT	work	the	same	way	as	in	real-mode	DOS,	see	also
FaqDOS).	The	operating	system	or	DPMI	host	is	responsible	for	memory	management;	the	meaning	of
segments	(selectors)	in	protected	mode	is	very	different	from	real-mode	memory	addressing.

Note	that	those	"unsafe"	instructions	are	not	guaranteed	to	raise	a	"visible"	crash	even	when	ran	with
insufficient	privilege	-	the	OS	or	DPMI	host	can	decide	to	"emulate"	them,	either	functionally	(reading
from	some	CRx	works	under	HDPMI32),	or	"dummy"	(nothing	happens,	instruction	will	pass	silently,	like
a	NOP).

Example

''	This	is	an	example	for	the	x86	architecture.

Function	AddFive(ByVal	num	As	Long)	As	Long

				Asm

								mov	eax,	[num]

								add	eax,	5

								mov	[Function],	eax

				End	Asm

End	Function

Dim	i	As	Long	=	4

Print	"4	+	5	=";	AddFive(i)

4	+	5	=	9

FreeBASIC's	Assembler	is	AS	/	GAS,	the	assembler	of	GCC,	so	an	external	program.	Some	quirks
apply:

The	error	lines	returned	by	FBC	for	Asm	blocks	are	not	related	the	FB	source	file.	As	FBC
simply	displays	the	errors	returned	by	AS	,	the	lines	are	related	to	the	assembly	file.	To
make	FreeBASIC	preserve	them,	the	compiler	must	be	invoked	with	the	
delete	ASM	files").
The	label	names	are	case	sensitive	inside	Asm	blocks.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Function

Naked

Atan2 	

Returns	the	arctangent	of	a	ratio

Syntax
Declare	Function	Atan2	(ByVal	y	As	Double,	ByVal	x	As	Double)	

Usage
result	=	ATan2(y,	x)

Parameters
y

Vertical	component	of	the	ratio.
x

Horizontal	component	of	the	ratio.

Return	Value
The	angle	whose	tangent	is	y/x,	in	radians,	in	the	range	[-Pi..Pi].

Description
ATan2	returns	the	arctangent	of	the	ratio	y/x	as	a	Double	within	the	range	of	-
arctangent	is	the	inverse	of	the	Tan	function.	The	returned	angle	is	measured	in	
degrees).

Example

Print	Atan2	(4,	5)					'this	is	the	same	as	PRINT	ATN	(4	/	5)

The	output	would	be:

0.6747409422235527

Differences	from	QB

New	to	FreeBASIC

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

See	also

Tan

Atn

A	Brief	Introduction	To	Trigonometry

Atn 	

Returns	the	arctangent	of	a	number

Syntax
Declare	Function	Atn	(ByVal	number	As	Double)	As	Double

Usage
result	=	Atn(number)

Parameters
number

A	number.

Return	Value
The	angle,	in	radians,	whose	tangent	is	number,	in	the	range	[-
Pi/2..Pi/2].

Description
Atn	returns	the	arctangent	of	the	argument	number	as	a	Double	within
the	range	of	-Pi/2	to	Pi/2.	The	arctangent	is	the	inverse	of	the	Tan
function.	The	returned	angle	is	measured	in	radians	(not	degrees).

Example

Print	"Pi	=";	Atn	(1.0)	*	4

Print	Atn	(4	/	5)

The	output	would	be:

Pi	=	3.141592653589793

0.6747409422235527

Differences	from	QB

None

See	also

Tan

Atan2

A	Brief	Introduction	To	Trigonometry

Base	(Initializer) 	

Specifies	an	initializer	for	the	base	UDT	in	derived	Udt	constructors

Syntax
Base	(constructor-parameters...)

or:

Base	UDT-initializer

Description
The	Base	initializer	can	be	used	at	the	top	of	constructors	of	derived	UDTs.	It
allows	to	specify	an	explicit	constructor	call	or	UDT	initializer	to	be	used	to
initialize	the	base	object.	It	will	replace	the	implicit	default	initialization,	and
must	appear	above	any	other	statements	in	the	constructor	it	is	used	in.

Note:	Unlike	"Base()",	a	"Base.Constructor()"	statement	does	not	replace
the	implicit	default	initialization	done	by	the	constructor	of	a	derived	UDT,	and
can	usually	not	be	used	legally,	because	it	would	result	in	two	constructor	calls
for	the	base	object.

Example

Type	SimpleParent

				As	Integer	a,	b,	c

End	Type

Type	Child	extends	SimpleParent

				Declare	Constructor()

End	Type

Constructor	Child()

				''	Simple	UDT	initializer

				Base(1,	2,	3)

End	Constructor

Type	ComplexParent

				As	Integer	i

				Declare	Constructor(ByVal	As	Integer	=	0)

End	Type

Constructor	ComplexParent(ByVal	i	As	Integer	=	0	

				this.i	=	i

End	Constructor

Type	Child	extends	ComplexParent

				Declare	Constructor()

				Declare	Constructor(ByRef	As	Child)

End	Type

Constructor	Child()

				''	Base	UDT	constructor	call

				Base(1)

End	Constructor

Constructor	Child(ByRef	rhs	As	Child)

				''	Base	UDT	constructor	call

				Base(rhs.i)

End	Constructor

Dialect	Differences

Methods	are	only	supported	in	the	-lang	fb	dialect,	hence	Base
function	in	other	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

Base	(Member	Access)

This

Type

Extends

Option	Base

Base	(Member	Access) 	

Provides	explicit	access	to	base	type	members	in	non-static	methods	of	a	

Syntax
Base.member

Base	[.Base	...]	.member

Description
Base	provides	a	way	to	explicitly	access	members	of	a	specific	base	type,	in	the	context	of	non-static	methods
of	a	user-defined	type	derived	from	another	type	using	Extends.

By	using	Base	repeatedly,	as	in	base.base.base.member,	it	is	possible	to	access	any	desired	base	type,	in	case
there	are	multiple	levels	of	inheritance.

Base	is	especially	useful	when	a	base	type's	member	is	shadowed	by	a	local	variable	or	member	of	a	derived
type	using	the	same	identifier.	Base	then	allows	unambiguous	access	to	the	base	type.

For	virtual	methods,	base.method()	always	calls	the	base	method	and	never	the	overriding	method.

Example

Type	Parent

				As	Integer	a

				Declare	Constructor(ByVal	As	Integer	=	0)

				Declare	Sub	show()

End	Type

Constructor	Parent(ByVal	a	As	Integer	=	0)

				This.a	=	a

End	Constructor

Sub	Parent.show()

				Print	"parent",	a

End	Sub

Type	Child	extends	Parent

				As	Integer	a

				Declare	Constructor(ByVal	As	Integer	=	0)

				Declare	Sub	show()

End	Type

Constructor	Child(ByVal	a	As	Integer	=	0)

				''	Call	base	type's	constructor

				Base(a	*	3)

				This.a	=	a

End	Constructor

Sub	Child.show()

				''	Call	base	type's	show()	method,	not	ours

				Base.show()

			

				''	Show	both	a	fields,	the	base	type's	and	ours'

				Print	"child",	Base.a,	a

End	Sub

Type	GrandChild	extends	Child

				As	Integer	a

				Declare	Constructor(ByVal	As	Integer	=	0)

				Declare	Sub	show()

End	Type

Constructor	GrandChild(ByVal	a	As	Integer	=	0)

				''	Call	base	type's	constructor

				Base(a	*	2)

				This.a	=	a

End	Constructor

Sub	GrandChild.show()

				''	Call	base	type's	show()	method,	not	ours

				Base.show()

			

				''	Show	both	a	fields,	the	base.base	type's,	the	base	type's	and	ours'

				Print	"grandchild",	Base.Base.a,	Base.a,	a

End	Sub

Dim	As	GrandChild	x	=	GrandChild(3)

x.show()

Dialect	Differences

Methods	are	only	supported	in	the	-lang	fb	dialect,	hence	Base

Differences	from	QB

New	to	FreeBASIC

See	also

Base	(Initializer)

This

Type

Extends

Option	Base

Beep 	

Produces	a	beep	sound.

Syntax
Declare	Sub	Beep	()

Usage
Beep

Description
Beep	tells	the	system	to	sound	a	beep	noise.	Note	that	this	might	not
work	on	some	platforms.	Since	this	command	is	not	reliable	and	there
is	no	way	to	specify	the	frequency	and	duration,	you	might	want	to
avoid	it	in	favor	of	other	/	better	solutions,	for	example:
http://www.freebasic.net/forum/viewtopic.php?p=20441#20441	by
yetifoot.

Example

Beep

Differences	from	QB

In	QB,	this	was	a	single	tone	noise	generated	through	the	PC
speaker.	Now	this	might	not	be	the	case.

See	also

Out	-	producing	sound	using	CPU	ports

Bin 	

Returns	a	binary	(base	2)	string	representation	of	an	integer

Syntax
Declare	Function	Bin	(ByVal	number	As	UByte)	As	String

Declare	Function	Bin	(ByVal	number	As	UShort)	As	String

Declare	Function	Bin	(ByVal	number	As	Ulong)	As	String

Declare	Function	Bin	(ByVal	number	As	ULongInt)	As	String

Declare	Function	Bin	(ByVal	number	As	Const	Any	Ptr)	As	String

Declare	Function	Bin	(ByVal	number	As	UByte,	ByVal	digits	As

Long)	As	String

Declare	Function	Bin	(ByVal	number	As	UShort,	ByVal	digits	As

Long)	As	String

Declare	Function	Bin	(ByVal	number	As	Ulong,	ByVal	digits	As

Long)	As	String

Declare	Function	Bin	(ByVal	number	As	ULongInt,	ByVal	digits	As

Long)	As	String

Declare	Function	Bin	(ByVal	number	As	Const	Any	Ptr,	ByVal

digits	As	Long)	As	String

Usage
result	=	Bin[$](number	[,	digits])

Parameters
number

A	number	or	expression	evaluating	to	a	number.	A	floating-point
number	will	be	converted	to	a	LongInt.
digits

Desired	number	of	digits	in	the	returned	string.

Return	Value
A	string	containing	the	unsigned	binary	representation	of	number.

Description
Returns	a	string	representing	the	unsigned	binary	value	of	the	integer
number.	Binary	digits	range	from	0	to	1.

If	you	specify	digits	>	0,	the	result	string	will	be	exactly	that	length.	It
will	be	truncated	or	padded	with	zeros	on	the	left,	if	necessary.

The	length	of	the	string	will	not	go	longer	than	the	maximum	number	of
digits	required	for	the	type	of	number	(32	for	a	Long,	64	for	a	LongInt).

If	you	want	to	do	the	opposite,	i.e.	convert	an	binary	string	back	into	a
number,	the	easiest	way	to	do	it	is	to	prepend	the	string	with	"&B;",
and	convert	it	to	an	integer	type,	using	a	function	like	CInt,	similarly	to
a	normal	numeric	string.	E.g.	CInt("&B101;")

Example

Print	Bin(54321)

Print	Bin(54321,	5)

Print	Bin(54321,	20)

will	produce	the	output:

1101010000110001

10001

00001101010000110001

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Bin.

Differences	from	QB

New	to	FreeBASIC

See	also

Oct

Hex

ValInt

ValLng

Binary 	

Specifies	file	or	device	to	be	opened	for	binary	mode

Syntax
Open	filename	for	Binary	[Access	access_type]	[Lock	lock_type]	as	[#]

Parameters
filename

file	name	to	open
access_type

indicates	whether	the	file	may	be	read	from,	written	to	or	both
lock_type

locking	to	be	used	while	the	file	is	open
filenum

unused	file	number	to	associate	with	the	open	file

Description
Opens	a	file	or	device	for	reading	and/or	writing	binary	data	in	the	file	
If	the	file	does	not	exist,	a	new	file	will	be	created.	The	file	pointer	is	initialized	by	
Get	#	and	Put	#	file	operations	move	the	file	pointer	according	to	the	size	of	the	data,	the	pointer	can	be	set	to	any
byte	in	the	file.
The	data	existing	in	the	file	is	preserved	by	Open.	
This	file	mode	can	use	any	buffer	variable	to	read/write	data	in	the	file.	
The	data	is	saved	in	binary	mode,	in	the	same	internal	format	FreeBASIC	uses,	by	means	of	

filename	must	be	a	string	expression	resulting	in	a	legal	file	name	in	the	target	OS,	without	wildcards.	The	file	will
be	sought	for	in	the	present	directory,	unless	a	path	is	given.
Access_type	By	default	Binary	mode	allows	to	both	read	and	write	the	file,	unless	an	
be	one	of:	

Read	-	the	file	is	opened	for	input	only
Write	-	the	file	is	opened	for	output	only
Read	Write	-	the	file	is	opened	for	input	and	output	(the	default)

Lock_type	indicates	the	way	the	file	is	locked	for	other	processes	(users	or	threads),	it	is	one	of:
Shared	-	The	file	can	be	freely	accessed	by	other	processes	

Lock	Read	-	The	file	can't	be	opened	simultaneously	for	reading
Lock	Write	-	The	file	can't	be	opened	simultaneously	for	writing
Lock	Read	Write	-	The	file	cannot	be	opened	simultaneously	by	other	processes.

If	no	lock	type	is	stated,	the	file	will	be	Shared	for	other	threads	of	the	program	and	
programs.
Lock	and	Unlock	can	be	used	to	restrict	temporally	access	to	parts	of	a	file.

filenum	is	a	valid	file	number	(in	the	range	1..255)	not	being	used	for	any	other	file	presently	open.	The	file	number
identifies	the	file	for	the	rest	of	file	operations.	A	free	file	number	can	be	found	using	the	

Example

''	Create	a	binary	data	file	with	one	number	in	it

Dim	x	As	Single	=	17.164

Open	"MyFile.Dat"	For	Binary	As	#1

		''	put	without	a	position	setting	will	put	from	the	last	known	file	position

		''	in	this	case,	the	very	beginning	of	the	file.

		Put	#1,	,	x

Close	#1

''	Now	read	the	number	from	the	file

Dim	x	As	Single	=	0

Open	"MyFile.Dat"	For	Binary	As	#1

		Get	#1,	,	x

Close	#1

Print	x

''	Read	entire	contents	of	a	file	to	a	string

Dim	txt	As	String

Open	"myfile.txt"	For	Binary	Access	Read	As	#1

		If	LOF(1)	>	0	Then

				''	our	string	has	as	many	characters	as	the	file	has	in	bytes

				txt	=	String(LOF(1),	0)

				''	size	of	txt	is	known.		entire	string	filled	with	file	data

				Get	#1,	,	txt

		End	If

Close	#1

Print	txt

Differences	from	QB

None

See	also

Open

Put	#

Get	#

Random

Append

Output

Input

Bit 	

Gets	the	state	of	an	individual	bit	in	an	integer	value.

Syntax
#define	Bit(value,	bit_number)	(((value)	And

(Cast(TypeOf(value),	1)	Shl	(bit_number)))	<>	0)

Usage
result	=	Bit(value,	bit_number)

Parameters
value

The	integer	value.
bit_number

The	index	of	the	bit.

Return	Value
Returns	an	Integer	value	of	-1	if	the	bit	is	set,	or	0	if	the	bit	is	cleared.

Description
This	macro	expands	to	an	integer	value	indicating	whether	or	not	the
bit	specified	by	bit_number	is	set	in	the	integer	value.	Behaves	as
`(value	And	1	Shl	bit_number)	<>	0`.

Example

Print	Bit(4,2)

Print	Bit(5,1)

Print	Bit(&H8000000000000000ULL,63)

will	produce	the	output:

-1

0

-1

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Bit.

Differences	from	QB

New	to	FreeBASIC

See	also

BitSet

BitReset

BitReset 	

Gets	the	value	of	an	integer	with	a	specified	bit	cleared.

Syntax
#define	BitReset(value,	bit_number)	((value)	And	Not

(Cast(TypeOf(Value),	1)	Shl	(bit_number)))

Usage
result	=	BitReset(value,	bit_number)

Parameters
value

The	integer	value.
bit_number

The	index	of	the	bit	to	clear.

Return	Value
Returns	the	integer	value	with	the	specified	bit	cleared.

Description
This	macro	expands	to	a	copy	of	the	integer	value	with	the	specified
bit_number	cleared	(to	off,	or	`0`).	Behaves	as	`value	And	Not	(1	Shl
bit_number)`.

The	valid	range	of	values	for	bit_number	depends	on	the	size,	in	bits,
of	`TypeOf(value)`,	which	is	`0`	through	`SizeOf(value)	*	8	-	1`.	See
Standard	Datatype	Limits	for	a	table	of	the	standard	datatypes	and
their	sizes.

Example

Print	BitReset(5,0)

Print	Hex(BitReset(&h8000000000000001,63))

will	produce	the	output:

	4

1

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Bitreset.

Differences	from	QB

New	to	FreeBASIC.

See	also

Bit

BitSet

BitSet 	

Gets	the	value	of	an	integer	with	a	specified	bit	set.

Syntax
#define	BitSet(value,	bit_number)	((value)	Or

(Cast(TypeOf(Value),	1)	Shl	(bit_number)))

Usage
result	=	BitSet(value,	bit_number)

Parameters
value

The	integer	value.
bit_number

The	index	of	the	bit	to	set.

Return	Value
Returns	the	integer	value	with	the	specified	bit	set.

Description
This	macro	expands	to	a	copy	of	the	integer	value	with	the	specified
bit_number	set	(to	on,	or	`1`).	Behaves	as	`value	Or	(1	Shl
bit_number)`.

The	valid	range	of	values	for	bit_number	depends	on	the	size,	in	bits,
of	`TypeOf(value)`,	which	is	`0`	through	`SizeOf(value)	*	8	-	1`.	See
Standard	Datatype	Limits	for	a	table	of	the	standard	datatypes	and
their	sizes.

Example

Print	BitSet(4,	0)

Print	Hex(BitSet(1ull,	63))

will	produce	the	output:

	5

8000000000000001

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Bitset.

Differences	from	QB

New	to	FreeBASIC.

See	also

Bit

BitReset

BLoad 	

Loads	arbitrary	data	from	a	file	created	with	BSave,	or	a	compatible	BMP	image	file.

Syntax
Declare	Function	BLoad	(ByRef	filename	As	Const	String,	ByVal	dest

)	As	Long

Usage
result	=	BLoad(filename	[,	[dest]	[,	pal]])

Parameters
filename

the	name	of	the	file	to	load	the	image	from;	can	include	a	file	path
dest

the	memory	location	to	load	the	image	to,	or	null	(0)	to	copy	the	image	to	the	current	graphics	screen	work	page
pal

the	memory	location	to	load	the	palette	to,	or	null	(0)	to	change	the	current	graphics	screen	palette,	if	it	uses	one

Return	Value
Returns	zero	(0)	if	successful,	or	a	non-zero	error	code	to	indicate	a	failure.	

Description
BLoad	can	be	used	to	load	image	data	or	any	other	data	from	a	file	created	with	
or	paste	it	to	the	screen.	If	dest	is	absent	or	null	(0),	the	image	data	is	pasted	to	the	current	graphics	screen	work
page.	Otherwise	it	is	loaded	as	image	data	to	the	address	given	by	dest

BLoad	can	load	3	different	types	of	files:
Old	QB-like	data	files,	saved	with	BSAVE	from	QB	code,	containing	"raw"	data	preceded	by	a	7-byte
header,	beginning	with	&HFD;,	up	to	64	KiB	in	size
New	FB-like	data	files,	saved	with	BSave	from	FB	code,	containing	"raw"	data	preceded	by	a	5-byte
header,	beginning	with	&HFE;.	There	is	no	64	KiB	limit	with	this	format
BMP	image	files,	supports	a	subset	of	valid	("Windows")	.BMP	files,	beginning	with	
code	with	BSave,	or	created	/	saved	in	a	compatible	format	using	a	graphics	editor	/	converter.

QB-like	data	files	and	BMP	files	are	converted	to	an	FB-compatible	image	format	when	opened.

Image	files	with	8-bit	per	pixel	resolution	or	lower	contain	a	palette	that	describes	the	color	values	used	in	the	images.
If	pal	is	not	null	(0),	the	palette	is	copied	to	memory	starting	at	the	address	specified.	Otherwise,	if	the	current	graphics
screen	uses	a	palette	then	its	palette	is	changed	to	match	that	of	the	image	file.

When	using	one	of	the	2	"non-BMP"	file	formats	to	save	images,	the	image	files	must	have	been	created	with	
the	same	graphics	screen	mode	as	it	is	being	loaded	into.	When	using	the	BMP	file	format,	this	restriction	doesn't
apply.	

When	loading	a	BMP	file	using	BLoad,	the	images	must	be	true-color	(15-,	16-,	24-	or	32-bits	per	pixel)	or
palettized/indexed	(8-bit	or	lower).	The	image	data	will	be	converted	to	the	proper	pixel	format	for	the	current	color
depth,	except	that	true-color	can't	be	reduced	to	a	palettized	image.	BLoad
compression	or	other	image	file	types	(PNG,	JPG,	GIF,	...).	BLoad	will	load	alpha	channel	information,	if	available,	from
32-bit	BMP	files	with	BITMAPV4HEADER	or	BITMAPV5HEADER	file	headers.

Runtime	errors:
BLoad	throws	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
dest	was	not	specified	or	was	null	(0),	and	no	graphics	screen	was	set.
The	Bitmap	uses	an	unsupported	BMP	file	compression	type	(
The	Bitmap	is	true-color	(16,	24,	or	32	bits	per	pixel)	and	the	current	graphics	screen	uses	a	palette	(8
bits	per	pixel	or	lower).

(2)	File	not	found
The	file	filename	could	not	be	found.

(3)	File	I/O	error
The	file	doesn't	have	any	of	the	supported	types	
A	general	read	error	occurred.

Note:	When	you	use	BLoad	to	load	a	BMP	file	into	an	image	buffer,	the	original	dimensions	of	the	image	are	not
changed.	If	you	want	the	image	buffer	to	have	the	same	dimensions	as	the	BMP	file,	you	have	to	find	out	the
dimensions	beforehand,	and	create	an	image	of	the	right	size	yourself.	
how	to	do	this.

Example

'Load	a	graphic	to	current	work	page

Screen	18,	32

Cls

BLoad	"picture.bmp"

Sleep

'Load	a	48x48	bitmap	into	an	image

ScreenRes	320,	200,	32

Dim	myImage	As	Any	Ptr	=	ImageCreate(48,	48)

BLoad	"picture.bmp",	myImage

Put	(10,10),	myImage

ImageDestroy(myImage)

Sleep

ScreenRes	640,	480,	8	''	8-bit	palette	graphics	mode

Dim	pal(0	To	256-1)	As	Integer	''	32-bit	integer	array	with	room	for	256	colors

''	load	bitmap	to	screen,	put	palette	into	pal()	array

BLoad	"picture.bmp",	,	@pal(0)

WindowTitle	"Old	palette"

Sleep

''	set	new	palette	from	pal()	array

Palette	Using	pal(0)

WindowTitle	"New	palette"

Sleep

''	A	function	that	creates	an	image	buffer	with	the	same	

''	dimensions	as	a	BMP	image,	and	loads	a	file	into	it.

Const	NULL	As	Any	Ptr	=	0

Function	bmp_load(ByRef	filename	As	Const	String	

				Dim	As	Long	filenum,	bmpwidth,	bmpheight

				Dim	As	Any	Ptr	img

				''	open	BMP	file

				filenum	=	FreeFile()

				If	Open(filename	For	Binary	Access	Read	As	#filenum

								''	retrieve	BMP	dimensions

								Get	#filenum,	19,	bmpwidth

								Get	#filenum,	23,	bmpheight

				Close	#filenum

				''	create	image	with	BMP	dimensions

				img	=	ImageCreate(bmpwidth,	Abs(bmpheight))

				If	img	=	NULL	Then	Return	NULL

				''	load	BMP	file	into	image	buffer

				If	BLoad(filename,	img)	<>	0	Then	ImageDestroy

				Return	img

End	Function

Dim	As	Any	Ptr	img

ScreenRes	640,	480,	32

img	=	bmp_load("picture.bmp")

If	img	=	NULL	Then

				Print	"bmp_load	failed"

Else

				Put	(10,	10),	img

				ImageDestroy(img)

End	If

Sleep

Differences	from	QB

Support	for	loading	BMP	files	is	new	to	FreeBASIC.
Support	for	retrieving	the	palette	from	BMP	files	is	new	to	FreeBASIC.
FreeBASIC	uses	a	different	file	format	from	QBASIC	internally,	which	doesn't	have	the	64	KiB	limit,	and	is
unsupported	by	QBASIC.

See	also

BSave

Palette

ImageCreate

ImageDestroy

Internal	Graphics	Formats

Boolean 	

Standard	data	type

Syntax
Dim	variable	As	Boolean

Description
Boolean	data	type.	Can	hold	the	values	True	or	False.

Notes	on	definition	of	boolean	data	type:	Ideally,	the	definition	of
the	boolean	data	type	is	that	it	holds	the	value	of	True	or	False,	and
that's	it.	However,	to	make	this	concept	a	reality,	we	need	a	definition
that	uses	real	world	connections.	A	more	realistic	definition	is	that	the
boolean	data	type	is	a	1-bit	integer,	having	the	value	0	to	indicate
False	and	1	to	indicate	True.	For	a	practical	definition,	we	must
consider,	yet	again,	additional	factors.	The	most	significant	factor	is
that	the	hardware	(processor)	on	which	code	is	executed	does	not
directly	support	a	1-bit	data	type;	the	smallest	register	or	memory	size
we	can	work	with	is	8-bits	or	1-byte.	Therefore,	a	practical	definition	of
boolean	data	type	is	an	integer,	8	bits	wide,	having	the	value	0	or	1,
where	all	other	values	are	undefined.	However,	because	of
longstanding	differences	between	C/C++	and	FB	with	respect	to	logical
operations,	the	interpretation	of	the	value	must	also	be	considered.
Assume	"false"	is	0	in	both	C/C++	and	FB.	C/C++	has	logical	'not'
operator	'!'	such	that	'!0'	produces	'1'.	FB	has	a	bitwise	Not	operator
such	that	'not	0'	produces	'-1'.	Therefore	the	definition	for	a	C/C++
boolean	is	an	unsigned	1-bit	integer,	zero	extended	to	fill	larger	integer
types,	and	the	definition	for	a	FB	boolean	is	a	signed	1-bit	integer,	sign
extended	to	fill	larger	integer	types.	However,	the	purpose	and	intent	of
the	boolean	data	type	remains,	that	it	should	only	ever	hold	a	True
value	or	False	value,	regardless	of	the	underlying	details.

Example

Dim	boolvar	As	Boolean

boolvar	=	True

Print	"boolvar	=	",	boolvar

Output:

boolvar	=					true

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Boolean.

Differences	from	QB

New	to	FreeBASIC

See	also

True

False

BSave 	

Saves	an	array	of	arbitrary	data	and	palette	information	to	a	file	on	disk

Syntax
Declare	Function	BSave	(ByRef	filename	As	Const	String,	ByVal

source	As	Any	Ptr,	ByVal	size	As	Ulong	=	0,	ByVal	pal	As	Any	Ptr

=	0,	ByVal	bitsperpixel	As	Long	=	0)	As	Long

Usage
result	=	BSave(filename,	source	[,[size][,[pal][,

bitsperpixel]]])

Parameters
filename

the	name	of	the	file	to	create	for	storing	the	pixel	and	palette	data.
source

the	address	of	the	data	to	store,	or	null	(0)	to	store	pixel	data	from	the
current	screen	work	page.
size

optional,	the	total	number	of	bytes	of	data	to	store.	This	value	is
needed	unless	the	output	is	a	BMP	file.
pal

optional,	the	address	of	a	buffer	holding	256	Palette	colors,	or	null	(0)
for	the	current	screen	palette.
bitsperpixel

optional,	a	requested	bit	depth	for	the	output	BMP	image.

Return	Value
Returns	zero	(0)	if	successful,	or	a	non-zero	error	code	to	indicate	a
failure.	(throws	a	runtime	error)

Description
BSave	is	used	for	saving	arbitrary	data	from	memory	into	a	file,	using	a
file	format	specific	to	FB,	or	saving	images	into	a	standard	BMP	image
file,	replacing	an	existing	file	if	necessary.

BSave	outputs	a	total	of	size	bytes	of	arbitrary	data	located	at	source	to
a	specified	file.	If	source	is	null	(0),	then	BSave	outputs	a	maximum	of
size	bytes	from	the	current	work	page's	pixel	buffer,	which	is	structured
in	the	current	screen	mode's	internal	pixel	format.	(This	data	is	not
compatible	with	the	image	buffer	format	as	it	has	no	header.)	For	8-bit
images,	palette	information	is	obtained	from	pal	if	present	and	non-
null,	or	if	pal	omitted	or	null	(0),	from	the	current	screen	palette.

A	BMP	image	file	can	be	created	if	filename	has	a	file	extension	of
".bmp"	(case	insensitive).	source	is	assumed	to	point	to	a	valid	image
buffer	whose	entire	pixel	data	will	be	stored	in	the	BMP	file.	If	source	is
null	(0),	the	contents	of	the	current	work	page	will	be	stored	instead.
For	8-bit	images,	palette	information	is	obtained	from	pal	if	non-null,	or
if	null	(0),	from	the	current	screen	palette.	The	size	parameter	is
ignored	when	saving	BMP	files.

The	default	bit	depth	for	BMP	files	is	8-bit	for	8-bit	(palette)	images,	24-
bit	for	16-bit	images,	and	32-bit	for	32-bit	images.	The	bitsperpixel
parameter	can	be	used	to	request	24-bit	output	for	8-bit	images,	or	24-
bit	output	for	32-bit	images.

Runtime	errors:
BSave	throws	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
size	is	less	than	zero	(0),	or	size	is	zero	and	source	is
non-null,	or	a	problem	is	detected	with	the	image	buffer.

(2)	File	not	found
The	file	could	not	be	created.

(3)	File	I/O	error
The	file	could	not	be	written	to.

Example

'	Set	gfx	mode

ScreenRes	320,	200,	32

'	Clear	with	black	on	white

Color	RGB(0,	0,	0),	RGB(255,	255,	255)

Cls

Locate	13,	15:	Print	"Hello	world!"

'	Save	as	BMP

BSave	"hello.bmp",	0

Differences	from	QB

Support	for	saving	more	than	64KiB	of	arbitrary	data	is	new	to
FreeBASIC.
Support	for	saving	BMP	files	is	new	to	FreeBASIC.
QB	cannot	use	BLoad	to	load	files	created	with	BSave	in
FreeBASIC,	but	FreeBASIC	can	use	BLoad	to	load	files	created
with	BSave	in	QB

See	also

BLoad

Palette

Byref	(Parameters) 	

Declaration	specifier	to	explicitly	pass	a	parameter	by	reference

Syntax
ByRef	param	As	datatype

Usage
[Declare]	{	Sub	|	Function	}	proc_name	(ByRef	param	As

datatype)

Description
Passes	a	variable	by	reference,	that	is	its	address,	to	a	subroutine	or
function.	When	a	variable	is	passed	by	reference,	the	contents	of	the
variable	can	be	changed	by	the	target	subroutine	or	function.

In	-lang	qb	and	-lang	fblite	dialects,	ByRef	is	the	default	parameter
passing	convention,	unless	Option	ByVal	is	in	effect.

Opposite	of	ByVal.

Example

Dim	MyVar	As	Integer

Sub	ChangeVar(ByRef	AVar	As	Integer)

				AVar	=	AVar	+	1

End	Sub

MyVar	=	1

Print	"MyVar:	";	MyVar	'output	=	1

ChangeVar	MyVar

Print	"MyVar:	";	MyVar	'output	=	2

Sleep

End

Dialect	Differences

In	-lang	fb	dialect,	ByVal	is	the	default	parameter	passing
convention	for	all	built-in	types	except	String	and	user-defined
Type	which	are	passed	ByRef	by	default.
In	-lang	qb	and	-lang	fblite	dialects,	ByRef	is	the	default
parameter	passing	convention.

Differences	from	QB

New	to	FreeBASIC

See	also

Passing	Arguments	to	Procedures
Declare

ByVal

Byref	(Function	Results)

Byref	(Function	Results) 	

Specifies	that	a	function	result	is	returned	by	reference

Syntax
Function	name	(parameter-list)	ByRef	As	datatype

Description
Causes	the	function	result	to	be	returned	by	reference,	rather	than	by	value.	A	function	returning	
returning	by	value.	This	allows	the	caller	of	the	function	to	modify	the	variable	which	the	function	result	points	to.

If	ByRef	is	not	specified,	the	default	is	to	return	the	function	result	by	value.

Functions	with	ByRef	result	should	not	return	local	variables	from	the	function,	because	they	will	be	destroyed	upon	returning	from	the	function,	invalidating	any	pointer	or
reference	to	them.	To	help	with	writing	safe	code,	the	compiler	will	show	an	error	message	when	a	local	variable	is	used	with	
x	statements.

Note:	On	the	left-hand	side	of	an	assignment	expression	using	the	'='	symbol,	the	result	of	the	function	(returned	by	reference)	must	be	enclosed	in	parentheses	when	the
function	calls	one	single	argument,	in	order	to	solve	the	parsing	ambiguity.	From	fbc	version	0.90,	'
allowing	to	avoid	parsing	ambiguity	(without	parentheses).	As	for	the	arguments	list,	it	should	always	be	surrounded	with	parentheses	even	if	empty.

Operators	(member	or	global),	when	used	as	functions,	have	also	the	capability	to	return	results	by	reference,	by	using	the	same	syntax.

Example

Function	min(ByRef	I	As	Integer	,	ByRef	J	As	Integer

				''	The	smallest	integer	will	be	returned	by	reference,	no	copy	will	be	created.

				If	I	<	J	Then

								Return	I

				Else

								Return	J

				End	If

End	Function

Dim	As	Integer	A	=	13,	B	=	7

Print	A,	B

Print	min(A	,	B)

min(A	,	B)	=	0

Print	A,	B

Function	f()	ByRef	As	Const	ZString

				''	This	string	literal	(because	statically	allocated	in	memory)	will	be	returned	by	reference,	no	copy	will	be	created.

				Function	=	"abcd"

End	Function

Print	f()

Dim	Shared	As	String	s

Function	f1()	ByRef	As	String

			''	This	variable-length	string	will	be	returned	by	reference,	no	copy	will	be	created.

			Function	=	s

End	Function

Function	f2(ByRef	_s	As	String)	ByRef	As	String

			''	This	variable-length	string	will	be	returned	by	reference,	no	copy	will	be	created.

			Function	=	_s

End	Function

s	=	"abcd"

Print	s

f1()	&=	"efgh"

Print	s

''	At	time	of	writing,	the	enclosing	parentheses	are	required	here.

(f2(s))	&=	"ijkl"

Print	s

Function	power2(ByRef	_I	As	Integer)	ByRef	As	Integer

			_I	*=	_I

			''	This	integer	will	be	returned	by	reference,	no	copy	will	be	created.

			Function	=	_I

End	Function

Dim	As	Integer	I	=	2

power2(power2(power2(I)))		''	Function	return-byref	cascading	is	equivalent	to	((I*I)*(I*I))*((I*I)*(I*I))	=	I^8

Print	I

Differences	from	QB

New	to	FreeBASIC

See	also

Returning	values
Byref	(Parameters)

Byte 	

Standard	data	type:	8	bit	signed

Syntax
Dim	variable	As	Byte

Description
8-bit	signed	whole-number	data	type.	Can	hold	a	value	in	the	range	of
-128	to	127.

Example

		Dim	bytevar	As	Byte

		bytevar	=	100

		Print	"bytevar=	",	bytevar

Dim	x	As	Byte	=	CByte(&H80)

Dim	y	As	Byte	=	CByte(&H7F)

Print	"Byte	Range	=	";	x;	"	to	";	y

Output:

Byte	Range	=	-128	to		127

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Byte.

Differences	from	QB

New	to	FreeBASIC

See	also

UByte

CByte

ByVal 	

Declaration	specifier	to	explicitly	pass	a	parameter	by	value

Syntax
ByVal	param	As	datatype

Usage
[Declare]	{	Sub	|	Function	}	proc_name	(ByVal	param	As	datatype

Description
ByVal	in	a	parameter	list	of	a	declare	statement	causes	a	copy	of	the	variable	to	be	passed	to	the	procedure	(for	example,	a	sub	or	function)	by
its	value.

This	means	that	if	the	value	of	the	variable	x	is	passed,	then	the	original	variable	
were	passed	ByRef,	the	value	of	the	original	variable	x	could	be	modified	by	the	called	function.

Opposite	of	ByRef.

The	ByVal	keyword	is	also	used	in	the	context	of	Byref	Parameters	and	
reference	semantics	in	order	to	pass	or	assign	a	pointer	as-is	to	a	Byref

Manually	passing	pointers	to	by-reference	parameters
Manually	returning	pointers	as-is	from	Byref	functions

Example

Sub	MySub(ByVal	value	As	Integer)

				value	+=	1

End	Sub

Dim	MyVar	As	Integer

MyVar	=	1

Print	"MyVar:	";	MyVar	'output	=	1

MySub	MyVar

Print	"MyVar:	";	MyVar	'output	=	1,	because	byval	won't	change	the	values	passed	into	it	globally.

Sleep

End

Dialect	Differences

In	the	-lang	fb	dialect,	ByVal	is	the	default	parameter	passing	convention	for	all	built-in	types	except	
are	passed	ByRef	by	default.
In	-lang	qb	and	-lang	fblite	dialects,	ByRef	is	the	default	parameter	passing	convention.

Differences	from	QB

QB	only	used	ByVal	in	declarations	to	non-Basic	subroutines

See	also

Passing	Arguments	to	Procedures
Declare

ByRef

Call 	

Statement	to	invoke	a	subroutine

Syntax
Call	procname	([parameter	list])

Description
Calls	a	Sub	or	Function.

This	keyword	is	a	holdover	from	earlier	dialects	of	BASIC,	and	is	mainly	deprecated.

In	-lang	qb,	it	can	be	used	to	call	Subs	in	code	before	they	are	declared.	
parameters	passed	ByRef	As	Any.
Note:	until	the	function	is	declared,	no	type-checking	is	done	on	the	parameters,	so	it	is	up	to	the	programmer	to	ensure
they	are	of	the	correct	type.

Example

''	Compile	with	-lang	qb	or	-lang	fblite

#lang	"fblite"

Declare	Sub	foobar(ByVal	x	As	Integer,	ByVal	y	As	

Call	foobar(35,	42)

Sub	foobar(ByVal	x	As	Integer,	ByVal	y	As	Integer)

Print	x;	y

End	Sub

''	Compile	with	-lang	qb	or	-lang	fblite

#lang	"fblite"

Function	f	()	As	Integer

f	=	42

End	Function

Call	f	'	execute	function	f,	but	ignore	the	answer

''	Compile	with	-lang	qb

'$lang:	"qb"

Call	mysub(15,	16)	''	call	"mysub"	before	it	has	been	declared,	or	even	mentioned.

Sub	mysub(ByRef	a	As	Integer,	ByRef	b	As	Integer)

				

				Print	a,	b

				

End	Sub

Dialect	Differences

The	use	of	Call	is	not	allowed	in	the	-lang	fb	dialect.
The	-lang	fblite	dialect	does	not	allow	you	to	call	functions	that	have	not	been	previously	declared.

Differences	from	QB

The	procedure	must	have	already	been	declared.
Call	in	QB	will	make	a	copy	of	all	parameters,	so	changes	made	to	the	arguments	inside	the	called	
reflected	in	the	variables	in	the	caller.

See	also

Declare

Sub

CAllocate 	

Allocates	memory	for	a	certain	number	of	elements	from	the	free	store	and	clears	the
contents

Syntax
Declare	Function	CAllocate	cdecl	(ByVal	num_elements	As	UInteger

As	UInteger	=	1)	As	Any	Ptr

Usage
result	=	CAllocate(num_elements	[,	size])

Parameters
num_elements

The	number	of	elements	to	allocate	memory	for.
size

The	size,	in	bytes,	of	each	element.

Return	Value
If	successful,	the	address	of	the	start	of	the	allocated	memory	is	returned.	Otherwise,
the	null	pointer	(0)	is	returned.

Description
CAllocate	initializes	the	allocated	memory	with	zeros.	Consequently,	CAllocate
be	also	directly	used	with	String	or	Udt	containing	string,	because	the	string
descriptor	is	cleared	(set	to	0)	first.

Example

'	Allocate	and	initialize	space	for	10	integer	elements.

Dim	p	As	Integer	Ptr	=	CAllocate(10,	SizeOf(Integer

'	Fill	the	memory	with	integer	values.

For	index	As	Integer	=	0	To	9

				p[index]	=	(index	+	1)	*	10

Next

'	Display	the	integer	values.

For	index	As	Integer	=	0	To	9

				Print	p[index]	;

Next

'	Free	the	memory.

Deallocate(p)

Outputs:

	10	20	30	40	50	60	70	80	90	100

Platform	Differences

This	procedure	is	not	guaranteed	to	be	thread-safe.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Callocate.

Differences	from	QB

New	to	FreeBASIC

See	also

Allocate

Deallocate

Reallocate

Case 	

Control	flow	statement

Syntax
Case	expression

Differences	from	QB

None

See	also

Select	Case

Cast 	

Converts	an	expression	to	a	specified	data	type

Syntax
Cast(datatype,	expression)

Description
Converts	expression	into	a	different	datatype.	Useful	to	be	used	in	macros	when	
converting	to	Type	Alias.

Note:	this	is	a	general	form	of	conversion	operators	such	as	CInt	or	CDbl
used	on	types	that	have	a	Cast	Operator,	but	don't	have	a	built-in	keyword	for	it.	e.g.	
also	suitable	for	use	in	cases	where	the	type	of	a	variable	is	not	fixed	in	the	code	-	for	example,	it	might	be	
earlier,	or	may	be	the	Type	Of	a	different	variable	or	expression.

Note:	If	you	want	to	use	an	operator	specifically	for	converting	to	different	types	of	
instead.

Example

''	will	print	-128	because	the	integer	literal	will	be	converted	to	a	signed	Byte

''	(this	Casting	operation	is	equivalent	to	using	CByte)

Print	Cast(Byte,	&h0080)

''	will	print	3	because	the	floating-point	value	will	be	converted	to	an	Integer

''	(this	Casting	operator	is	equivalent	to	using	CInt)

Print	Cast(Integer,	3.1)

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

CPtr

CInt

TypeOf

Cbool 	

Converts	numeric	or	string	expression	to	a	boolean	(Boolean)

Syntax
Declare	Function	Cbool	(ByVal	expression	As	datatype)	As	Boolean

Type	typename

Declare	Operator	Cast	()	As	Boolean

End	Type

Usage
result	=	Cbool(numeric	expression)

result	=	Cbool(string	expression)

result	=	Cbool(user	defined	type)

Parameters
expression

a	numeric,	string,	or	user	defined	type	to	cast	to	a	Boolean	value
datatype

any	numeric,	string,	or	user	defined	type
typename

a	user	defined	type

Return	Value
A	Boolean	value.

Description
The	Cbool	function	converts	a	zero	value	to	False	and	a	non-zero	value	to	

The	name	can	be	explained	as	'Convert	to	Boolean'.

If	the	argument	is	a	string	expression,	it	is	converted	to	boolean	using	a	case
insensitive	to	the	string	"false"	to	return	a	False	value	or	"true"	to	return	a	
value.

Example

'	Using	the	CBOOL	function	to	convert	a	numeric	value

'Create	an	BOOLEAN	variable

Dim	b	As	BOOLEAN

'Convert	a	numeric	value

b	=	CBOOL(1)

'Print	the	result,	should	return	True

Print	b

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Cbool.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CUByte

CShort

CUShort

CInt

CUInt

CLng

CULng

CLngInt

CULngInt

CSng

CDbl

Str

CByte 	

Converts	numeric	or	string	expression	to	Byte.

Syntax
Declare	Function	CByte	(ByVal	expression	As	datatype)	As	Byte

Type	typename

Declare	Operator	Cast	()	As	Byte

End	Type

Usage
result	=	CByte(numeric	expression)

result	=	CByte(string	expression)

result	=	CByte(user	defined	type)

Parameters
expression

A	numeric,	string,	or	pointer	expression	to	cast	to	a	Byte	value.
datatype

Any	numeric,	string,	or	pointer	data	type.
typename

A	user	defined	type.

Return	Value
A	Byte	value.

Description
The	CByte	function	rounds	off	the	decimal	part	and	returns	a	8-bit	Byte
function	does	not	check	for	an	overflow,	and	results	are	undefined	for	values
which	are	less	than	-128	or	larger	than	127.

The	name	can	be	explained	as	'Convert	to	Byte'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	

Example

'	Using	the	CBYTE	function	to	convert	a	numeric	value

'Create	an	BYTE	variable

Dim	numeric_value	As	Byte

'Convert	a	numeric	value

numeric_value	=	CByte(-66.30)

'Print	the	result,	should	return	-66

Print	numeric_value

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Cbyte.

Differences	from	QB

New	to	FreeBASIC

See	also

CUByte

CShort

CUShort

CInt

CUInt

CLng

CULng

CLngInt

CULngInt

CSng

CDbl

CDbl 	

Converts	numeric	or	string	expression	to	Double	precision	floating	point

Syntax
Declare	Function	CDbl	(ByVal	expression	As	datatype)	As	Double

Type	typename

Declare	Operator	Cast	()	As	Double

End	Type

Usage
result	=	CDbl(numeric	expression)

result	=	CDbl(string	expression)

result	=	CDbl(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	Double	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	Double	precision	value.

Description
The	CDbl	function	returns	a	64-bit	Double	value.	The	function	does	not	check	for
an	overflow,	so	be	sure	not	to	pass	a	value	outside	the	representable	range	of
the	Double	data	type.	The	name	can	be	explained	as	'Convert	to	DouBLe'.

If	the	argument	to	CDbl	is	a	string	expression,	it	is	first	converted	to	numeric	by
using	Val.

Example

'	Using	the	CDBL	function	to	convert	a	numeric	value

'Create	an	DOUBLE	variable

Dim	numeric_value	As	Double

'Convert	a	numeric	value

numeric_value	=	CDbl(-12345678.123)

'Print	the	result,	should	return	-12345678.123

Print	numeric_value

Sleep

Differences	from	QB

The	string	argument	was	not	allowed	in	QB

See	also

CByte

CUByte

CShort

CUShort

CInt

CUInt

CLng

CULng

CLngInt

CULngInt

CSng

cdecl 	

Specifies	a	cdecl-style	calling	convention	in	a	procedure	declaration

Syntax
Sub	name	cdecl	[Overload]	[Alias	"alias"]	(parameters)

Function	name	cdecl	[Overload]	[Alias	"alias"]	(parameters)	As

Description
In	procedure	declarations,	cdecl	specifies	that	a	procedure	will	use	the	
(pushed	onto	the	stack)	in	the	reverse	order	in	which	they	are	listed,	that	is,	from	right	to	left.	The	procedures	need	not	preserve	the	
must	not	clean	up	the	stack	(pop	any	parameters)	before	it	returns	-	that	is	left	to	the	calling	code.

cdecl	is	allowed	to	be	used	with	variadic	procedure	declarations	(those	with	the	last	parameter	listed	as	"

cdecl	is	the	default	calling	convention	on	Linux,	the	*BSDs,	and	DOS,	unless	another	calling	convention	is	explicitly	specified	or	implied	by	one	of	the	
Blocks.	cdecl	is	typically	the	default	calling	convention	for	C	compilers,	and	it's	used	almost	exclusively	on	Unix-like	systems.

Example

'	declaring	'strcpy'	from	the	standard	C	library

Declare	Function	strcpy	cdecl	Alias	"strcpy"	(ByVal

Differences	from	QB

New	to	FreeBASIC

See	also

pascal,	stdcall
Declare

Sub,	Function

Chain 	

Temporarily	transfers	control	to	an	external	program

Syntax
Declare	Function	Chain	(ByRef	program	As	Const	String)	As	Long

Usage
result	=	Chain(program)

Parameters
program

The	file	name	(including	file	path)	of	the	program	(executable)	to
transfer	control	to.

Return	Value
Returns	the	external	program's	exit	code	if	executed	successfully,	or
negative	one	(-1)	otherwise.

Description
Transfers	control	over	to	an	external	program.	When	the	program
exits,	execution	resumes	immediately	after	the	call	to	Chain.

Example

#ifdef	__FB_LINUX__

				Dim	As	String	program	=	"./program"

#else

				Dim	As	String	program	=	"program.exe"

#endif

Print	"Running	"	&	program	&	"..."

If	(Chain(program)	<>	0)	Then

				Print	program	&	"	not	found!"

End	If

Platform	Differences

Linux	requires	the	program	name	case	matches	the	real	name	of
the	file.	Windows	and	DOS	are	case	insensitive.	The	program
chained	may	be	case	sensitive	for	its	command	line
parameters.
Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses
backward	slashes	\	but	it	allows	for	forward	slashes	.	DOS	uses
backward	\	slashes.
Exit	code	is	limited	to	8	bits	in	DOS.

Differences	from	QB

None

See	also

Exec	transfer	temporarily,	with	arguments	
Run	one-way	transfer
Command	pick	arguments

ChDir 	

Changes	the	current	drive	and	directory

Syntax
Declare	Function	ChDir	(ByRef	path	As	Const	String)	As	Long

Usage
result	=	ChDir(path)

Parameters
path

A	String	argument	specifying	the	path	to	change	to.

Return	Value
Returns	zero	(0)	on	success	and	negative	one	(-1)	on	failure.

Description
Changes	the	current	drive	and	directory	to	that	specified.

Example

Dim	pathname	As	String	=	"x:\folder"

Dim	result	As	Integer	=	ChDir(pathname)

If	0	<>	result	Then	Print	"error	changing	current	directory	to	"

Platform	Differences

Linux	requires	the	filename	case	matches	the	real	name	of	the	file.	Windows	and	DOS	are	case	insensitive.	
Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses	backward	slashes	\	but	it	allows	for	forward
slashes	.	DOS	uses	backward	\	slashes.	

Differences	from	QB

In	QB,	the	drive	could	not	be	specified.

See	also

MkDir

RmDir

Chr 	

Returns	a	string	of	characters	from	one	or	more	ASCII	integer	values

Syntax
Declare	Function	Chr	(ByVal	ch	As	Integer	[,	...])	As	String

Usage
result	=	Chr[$](ch0	[,	ch1	...	chN])

Parameters
ch

The	ASCII	integer	value	of	a	character.

Return	Value
Returns	a	string	containing	the	character(s).

Description
Chr	returns	a	string	containing	the	character(s)	represented	by	the
ASCII	values	passed	to	it.

When	Chr	is	used	with	numerical	constants	or	literals,	the	result	is
evaluated	at	compile-time,	so	it	can	be	used	in	variable	initializers.

Asc	performs	the	opposite	function,	returning	the	ASCII	code	of	a
character	represented	by	a	string.

Example

Print	"the	character	represented	by";

Print	"	the	ASCII	code	of	97	is:	";	Chr(97)

Print	Chr(97,	98,	99)	'	prints	abc

'	s	initially	has	the	value	"abc"

Dim	s	As	String	=	Chr(97,	98,	99)

Print	s

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

FreeBASIC	accepts	multiple	integer	values	as	arguments,	QB
accepted	only	one.
FreeBASIC	evaluates	the	CHR	function	at	compile	time	when
used	with	constants	or	literals.

See	also

ASCII	Character	Codes
Asc

Str

Val

CInt 	

Converts	a	numeric	or	string	expression	to	an	Integer	or	an	Integer<bits

Syntax
Declare	Function	CInt	(ByVal	expression	As	datatype)	As	Integer

Declare	Function	CInt<bits>	(ByVal	expression	As	datatype)	As	

Type	typename

Declare	Operator	Cast	()	As	Integer

Declare	Operator	Cast	()	As	Integer<bits>

End	Type

Usage
result	=	CInt(expression)

result	=	CInt(string	expression)

result	=	CInt(user	defined	type)

Parameters
bits

A	numeric	constant	expression	indicating	the	size	in	bits	of	integer	desired.	
allowed	are	8,	16,	32	or	64.
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	Integer	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
An	Integer	or	Integer<bits>	containing	the	converted	value.

Description
If	CInt	is	passed	a	numeric	expression,	it	rounds	it	using	using	the	round-to-even
method	-	i.e.	it	rounds	to	the	closest	integer	value,	choosing	the	closest	even	integer	if
the	number	is	equidistant	from	two	integers	-	and	returns	an	Integer,	or	if	a	
is	supplied,	an	integer	type	of	the	given	size.

http://en.wikipedia.org/wiki/Rounding#Round-to-even_method

The	function	does	not	check	for	an	overflow;	for	example,	for	a	32-bit	
results	are	undefined	for	values	which	are	less	than	-2	147	483	648	or	larger	than
2	147	483	647.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	
ValLng,	depending	on	the	size	of	the	result	type.

The	name	"CINT"	is	derived	from	'Convert	to	INTeger'.

Example

'	Using	the	CINT	function	to	convert	a	numeric	value

'Create	an	INTEGER	variable

Dim	numeric_value	As	Integer

'Convert	a	numeric	value

numeric_value	=	CInt(300.5)

'Print	the	result,	should	return	300,	because	300	is	even

numeric_value	=	CInt(301.5)

'Print	the	result,	should	return	302,	because	301	is	odd

Print	numeric_value

Dialect	Differences

In	the	-lang	qb	dialect,	CInt	will	return	a	16-bit	integer,	like	in	QB.

Differences	from	QB

The	string	argument	was	not	allowed	in	QB
The	<bits>	parameter	was	not	allowed	in	QB

See	also

Cast

CByte

CUByte

CShort

CUShort

CUInt

CLng

CULng

CLngInt

CULngInt

CSng

CDbl

Integer

Circle 	

Graphics	statement	to	draw	an	ellipse	or	a	circle

Syntax
Circle	[target,]	[STEP]	(x,y),	radius[,	[color][,	[start][,	[end][,

[aspect][,	F]]]]]

Parameters
target

optional;	specifies	the	image	buffer	to	draw	on
STEP

indicates	that	coordinates	are	relative
(x,	y)

coordinates	of	the	center	of	the	ellipse
radius

the	radius	of	the	circle	-	or	for	an	ellipse,	the	semi-major	axis	(i.e.	the
longest	radius)
color

the	color	attribute
start

starting	angle
end

ending	angle
aspect

aspect	ratio	of	the	ellipse,	the	ratio	of	the	height	to	the	width
F

fill	mode	indicator

Description
Circle	will	draw	a	circle,	ellipse,	or	arc	based	on	the	parameters	given	to	it.	

target	specifies	a	buffer	to	draw	on.	target	may	be	an	image	created	with
ImageCreate	or	Get	(Graphics).	If	omitted,	target	defaults	to	the	screen's
current	work	page.	(See	ScreenSet)

The	center	of	the	shape	will	be	placed	on	the	destination	surface	at	(x

Radius	denotes	the	radius	of	the	shape.	If	aspect	ratio	is	not	1.0,	the	biggest
radius	must	be	given	here.

Color	denotes	the	color	attribute,	which	is	mode	specific	(see	Color	and
Screen	(Graphics)	for	details).	If	omitted,	the	current	foreground	color	as	set
by	the	Color	statement	is	used.

The	Step	option	specifies	that	x	and	y	are	offsets	relative	to	the	current
graphics	cursor	position.

start	and	end	are	angles	are	in	radians.	These	can	range	-2*PI	to	2*PI
where	PI	is	the	constant	π,	approximately	3.141593;	if	you	specify	a
negative	angle,	its	value	is	changed	sign	and	a	line	is	drawn	from	the	center
up	to	that	point	in	the	arc.	end	angle	can	be	less	than	start.	If	you	do	not
specify	start	and	end,	a	full	circle/ellipse	is	drawn;	if	you	you	specify	start
but	not	end,	end	is	assumed	to	be	2*PI;	if	you	specify	end	but	not	start
start	is	assumed	to	be	0.0.

aspect	is	the	aspect	ratio,	or	the	ratio	of	the	y	radius	over	the	x	radius.	If
omitted,	the	default	for	ScreenRes	modes	is	1.0,	while	for	Screen	modes	the
default	value	is	the	value	required	to	draw	a	perfect	circle	on	the	screen,
keeping	the	pixel	aspect	ratio	in	mind.	This	value	can	be	calculated	as
follows:

ratio	=	(y_radius	/	x_radius)	*	pixel_aspect_ratio

Where	pixel_aspect_ratio	is	the	ratio	of	the	current	mode	width	over	the
current	mode	height,	assuming	a	4:3	standard	monitor.	If	aspect	ratio	is	less
than	1.0,	radius	is	the	x	radius;	if	aspect	is	more	or	equal	to	1.0,	radius	is
the	y	radius.

F	is	the	fill	flag.	If	you	specify	this	flag,	the	circle/ellipse	will	be	filled	with	the
selected	color.	This	only	takes	effect	if	you	are	drawing	a	full	circle/ellipse.

Custom	coordinates	system	set	up	by	Window	and/or	View	(Graphics)	affect
the	drawing	operation;	clipping	set	by	View	also	applies.	When	Circle
finishes	drawing,	the	current	graphics	cursor	position	is	set	to	the	supplied
center.

Example

'	Set	640x480	mode,	256	colors

Screen	18

'	Draws	a	circle	in	the	center

Circle	(320,	240),	200,	15

'	Draws	a	filled	ellipse

Circle	(320,	240),	200,	2,	,	,	0.2,	F

'	Draws	a	small	arc

Circle	(320,	240),	200,	4,	0.83,	1.67,	3

Sleep

Differences	from	QB

target	is	new	to	FreeBASIC
The	FreeBASIC	implementation	uses	a	different	algorithm	for
ellipse/arc	drawing	than	QB,	so	the	result	may	not	be	equal	to
QB	for	every	pixel.
The	F	flag	to	draw	filled	circles/ellipses	is	new	to	FreeBASIC.

See	also

Screen	(Graphics)

Color

Class 	

Declares	a	class	object

Syntax
Class	typename	...

Parameters
typename

name	of	the	Class

Description
We	would	have	put	something	useful	here	(honest)	except	this	feature
isn't	implemented	in	the	compiler	yet.	But	since	it	will	get	added	in
future,	and	there	are	several	other	document	pages	that	need	to	link
here,	we	thought	it	safe	to	include	in	anyway.

Example

''	sample	code

Output:

sample	output

Dialect	Differences

Object-related	features	are	supported	only	in	the	-lang	fb	option

Differences	from	QB

New	to	FreeBASIC

See	also

Enum

Type

Clear 	

Clears	or	initializes	some	memory

Syntax
Declare	Sub	Clear	cdecl	(ByRef	dst	As	Any,	ByVal	value	As	Long	=	0,	

Usage
Clear(dst,	[value],	bytes)

Parameters
dst

starting	address	of	some	memory
value

the	value	to	set	all	bytes	equal	to
bytes

number	of	bytes	to	clear

Description
Clear	sets	one	or	more	bytes	in	memory	to	a	certain	value	(the	default	value	is	zero	(
The	starting	address	is	taken	from	a	reference	to	a	variable	or	array	element.

NOTE:	In	order	to	clear	memory	referenced	by	a	Pointer,	it	must	be	dereferenced	first.	
will	try	to	clear	the	bytes	at	the	pointer	variable's	memory	location.

Example

'create	an	array	with	100	elements

Dim	array(0	To	99)	As	Integer

'clear	the	contents	of	the	array	to	0,	starting	with	the	first	element

Clear	array(0),	,	100	*	SizeOf(Integer)

'allocate	20	bytes	of	memory

Dim	As	Byte	Ptr	p	=	Allocate(20)

'set	each	of	the	first	ten	bytes	to	0

Clear	*p,	0,	10

'set	each	of	the	next	ten	bytes	to	42

Clear	p[10],	42,	10

'check	the	values	of	the	allocated	bytes

For	i	As	Integer	=	0	To	19

				Print	i,	p[i]

Next

'deallocate	memory

Deallocate	p

Differences	from	QB

The	behavior	and	usage	is	new	to	FreeBASIC
The	keyword	CLEAR	was	used	in	QB	to	erase	all	variables,	close	all	files,	and	optionally	change
the	stack	size.	This	use	is	not	supported	in	FreeBASIC.

See	also

Erase

Reset

CLng 	

Converts	numeric	or	string	expression	to	Long

Syntax
Declare	Function	CLng	(ByVal	expression	As	datatype)	As	Long

Type	typename

Declare	Operator	Cast	()	As	Long

End	Type

Usage
result	=	CLng(numeric	expression)

result	=	CLng(string	expression)

result	=	CLng(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	Long	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	Long	value.

Description
The	CLng	function	rounds	off	the	decimal	part	and	returns	a	32-bit	Long
The	function	does	not	check	for	an	overflow,	and	results	are	undefined	for
values	which	are	less	than	-2	147	483	648	or	larger	than	2	147	483	648.

The	name	can	be	explained	as	'Convert	to	LoNG'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using
ValInt.

Example

'	Using	the	CLNG	function	to	convert	a	numeric	value

'Create	an	LONG	variable

Dim	numeric_value	As	Long

'Convert	a	numeric	value

numeric_value	=	CLng(-300.23)

'Print	the	result,	should	return	-300

Print	numeric_value

Sleep

Differences	from	QB

The	string	argument	was	not	allowed	in	QB

See	also

CByte

CUByte

CShort

CUShort

CInt

CUInt

CULng

CLngInt

CULngInt

CSng

CDbl

CLngInt 	

Converts	numeric	or	string	expression	to	64-bit	integer	(LongInt)

Syntax
Declare	Function	CLngInt	(ByVal	expression	As	datatype)	As	LongInt

Type	typename

Declare	Operator	Cast	()	As	LongInt

End	Type

Usage
result	=	CLngInt(numeric	expression)

result	=	CLngInt(string	expression)

result	=	CLngInt(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	LongInt	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	LongInt	value.

Description
The	CLngInt	function	rounds	off	the	decimal	part	and	returns	a	64-bit	LongInt
The	function	does	not	check	for	an	overflow,	and	results	are	undefined	for	values
which	are	less	than	-9	223	372	036	854	775	808	or	larger	than	223	372	036
807#.

The	name	can	be	explained	as	'Convert	to	LoNG	INTeger'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using

ValLng.

Example

'	Using	the	CLNGINT	function	to	convert	a	numeric	value

'Create	an	LONG	INTEGER	variable

Dim	numeric_value	As	LongInt

'Convert	a	numeric	value

numeric_value	=	CLngInt(-12345678.123)

'Print	the	result,	should	return	-12345678

Print	numeric_value

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Clngint.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CUByte

CShort

CUShort

CInt

CUInt

CLng

CULng

CULngInt

CSng

CDbl

Close 	

Stream	I/O	function	to	terminate	access	to	a	device

Syntax
Close	[[#]filenum]	[,	[#]filenum	...]

or	

result	=	Close([#filenum])

Parameters
filenum

List	of	file	numbers	to	close.

Description
Closes	the	files	whose	file	numbers	are	passed	as	arguments.	If	an	unused	file	number	is	passed,	

Close	without	arguments	closes	all	the	files	presently	opened.

Terminating	the	program	using	an	End	statement	will	automatically	close	all	files.

Return	Value
Close	returns	zero	(0)	on	success	and	a	non-zero	error	code	otherwise.

Example

'	Create	a	string	and	fill	it.

Dim	buffer	As	String,	f	As	Integer

buffer	=	"Hello	World	within	a	file."

'	Find	the	first	free	file	number.

f	=	FreeFile

'	Open	the	file	"file.ext"	for	binary	usage,	using	the	number	"f".

Open	"file.ext"	For	Binary	As	#f

		'	Place	our	string	inside	the	file,	using	number	"f".

		Put	#f,	,	buffer

'	Close	the	file.		We	could	also	do	'Close	#f',	but	it's	only	necessary	if	more	than	one	number	is	open.

Close

'	End	of	program.	(Check	the	file	"file.ext"	upon	running	to	see	the	output.)

Differences	from	QB

Close	can	be	called	as	a	function	that	returns	an	error	code.
FB	throws	an	error	on	trying	to	close	an	unused	file	number,	if	compiled	with	error	checking	and	if	not	used	with	the	function-style	syntax

See	also

Open

Put	(File	I/O)	
Get	(File	I/O)

FreeFile

Cls 	

Clears	the	screen	in	both	text	modes	and	graphics	modes

Syntax
Declare	Sub	Cls	(ByVal	mode	As	Long	=	1)

Usage
Cls	mode

Parameters
mode

A	optional	numeric	variable	with	a	value	from	0	to	2.	If	omitted,	it	defaults	to	

Description
An	optional	mode	parameter	may	be	given,

If	omitted,	Cls	clears	either	the	text	or	graphics	viewport.	If	a	graphics	viewport	has	been	defined	using	the	
(Graphics)	statement,	the	graphics	viewport	is	cleared.	Otherwise,	the	text	viewport,	defined	by	
cleared.	(If	there	is	no	explicit	text	viewport	defined,	the	entire	screen	is	cleared.)

If	0,	clears	the	entire	screen

If	1,	clears	the	graphics	viewport	if	defined.	Otherwise,	clears	the	text	viewport

If	2,	clears	the	text	viewport

Example

''	set	the	color	to	light	grey	text	on	a	blue	background

Color	7,	1

''	clear	the	screen	to	the	background	color

Cls

''	print	text	in	the	center	of	the	screen

Locate	12,	33

Print	"Hello	Universe!"

In	graphics	modes,	if	you	want	to	clear	the	entire	screen	to	color	0,	it	can	be	faster	using	
the	screen	memory	than	calling	Cls.

Dim	scrbuf	As	Byte	Ptr,	scrsize	As	Integer

Dim	As	Integer	scrhei,	scrpitch

Dim	As	Integer	r	=	0,	dr	=	1

ScreenRes	640,	480,	8

scrbuf	=	ScreenPtr:	Assert(scrbuf	<>	0)

ScreenInfo(,	scrhei,	,	,	scrpitch)

scrsize	=	scrpitch	*	scrhei

Do

				

				''	lock	the	screen	(must	do	this	while	working	directly	on	screenbuffer)

				ScreenLock

								

								''	clear	the	screen	(could	use	Cls	here):

								Clear	*scrbuf,	0,	scrsize

								

								''	draw	circle

								Circle	(320,	240),	r

								

				ScreenUnlock

				

				''	grow/shrink	circle	radius

				r	+=	dr

				If	r	<=	0	Then	dr	=	1	Else	If	r	>=	100	Then	dr

				

				''	short	pause	in	each	frame	(prevents	hogging	the	CPU)

				Sleep	1,	1

				

				''	run	loop	until	user	presses	a	key

Loop	Until	Len(Inkey)	>	0

Differences	from	QB

None

See	also

Color

Locate

(Print	|	?)

View	(Graphics)

Color 	

Sets	the	display	foreground	/	background	color	that	is	used	with	console	output	and
graphics	output	of	text

Syntax
Declare	Function	Color	(ByVal	foreground	As	Long	,	ByVal	background

)	As	Long

Usage
Color	[foreground]	[,	background]

result	=	Color	[([foreground]	[,	background])]

Parameters
foreground

the	foreground	color	to	set
background

the	background	color	to	set

Return	Value
Returns	a	32-bit	value	containing	the	current	foreground	color	in	the	Low	Word
the	current	background	color	in	the	High	Word.	(In	hi/truecolor	modes,	only	the
foreground	color	is	returned,	taking	up	the	whole	32	bits.)
The	old	color	values	can	be	retrieved	at	the	same	time	as	setting	new	ones.

Description
The	Color	statement	sets	the	current	foreground	and/or	background	colors.	
Draw,	Line	(Graphics),	Cls,	Paint,	Print,	PReset	and	PSet	all	use	the	last	colors	set
by	this	function	when	you	don't	specify	a	color	to	them,	where	applicable.	The	color
values	that	Color	accepts	depend	on	the	current	graphics	mode.

Mode Meaning

1
foreground	is	screen	color	(ranging	0-15).	background	is	the	emulated	CGA	palette	to	be	used:	0
(green,	red,	and	brown),	1	(cyan,	magenta	and	white),	2	(same	as	0,	but	with	bright	colors)	or	3
(same	as	1,	but	with	bright	colors)

foreground	is	a	color	index	in	current	palette	(ranging	0-1).	background	is	a	color	index	in	current

2,	11 palette	(ranging	0-1).

7,	8 foreground	is	a	color	index	in	current	palette	(ranging	0-15).	background	is	screen	color	index	in
current	palette	(ranging	0-15).

9 foreground	is	a	color	index	in	current	palette	(ranging	0-63).	background	is	screen	color	index	in
current	palette	(ranging	0-63).

12 foreground	is	a	color	index	in	current	palette	(ranging	0-15).	background	is	a	color	index	in	current
palette	(ranging	0-15).

13
and
up

foreground	is	a	color	index	in	current	palette	(ranging	0-255).	background	is	a	color	index	in	current
palette	(ranging	0-255).

If	you	are	using	a	color	depth	higher	than	8bpp,	foreground	and	background	are
direct	RGB	color	values	in	the	form	&h;AARRGGBB,	where	AA,	RR,	GG	and	BB
alpha,	red,	green	and	blue	components	ranging	&h00;-&hFF;	(0-255	in	decimal
notation).	While	in	hi/truecolor	modes,	you	can	use	the	RGB	or	RGBA	macro	to	obtain	a
valid	color	value.
A	Default	Palette	is	automatically	set	when	entering	a	Screen	mode.	

Example

'	Sets	320x240	in	32bpp	color	depth

Screen	14,	32

'	Sets	orange	foreground	and	dark	blue	background	color

Color	RGB(255,	128,	0),	RGB(0,	0,	64)

'	Clears	the	screen	to	the	background	color

Cls																					

'	Prints	"Hello	World!"	in	the	middle	of	the	screen

Locate	15,	14

Print	"Hello	World!"

Sleep

Dim	c	As	UInteger

'retrieve	current	color	values

c	=	Color()

'extract	color	values	from	c	using	LOWORD	and	HIWORD

Print	"Console	colors:"

Print	"Foreground:	"	&	LoWord(c)

Print	"Background:	"	&	HiWord(c)

Differences	from	QB

Direct	color	modes	were	not	supported	in	QB.
There	is	no	border	argument.

See	also

RGB

RGBA

LoWord

HiWord

Locate

Palette

Screen

Command 	

Returns	command	line	parameters	used	to	call	the	program

Syntax
Declare	Function	Command	(ByVal	index	As	Long	=	-1)	As	String

Usage
result	=	Command[$]([index])

Parameters
index

Zero-based	index	for	a	particular	command-line	argument.

Return	Value
Returns	the	command-line	arguments(s).

Description
Command	returns	command-line	arguments	passed	to	the	program	upon	execution.

If	index	is	less	than	zero	(<	0),	a	space-separated	list	of	all	command-line	arguments	is	returned,	otherwise,	a	single	argument	is	returned.	A	value
of	zero	(0)	returns	the	name	of	the	executable;	and	values	of	one	(1)	and	greater	return	each	command-line	argument.

If	index	is	greater	than	the	number	of	arguments	passed	to	the	program,	the	null	string	(

When	the	command	line	is	parsed	for	arguments,	everything	between	double	quotes	in	the	parameter	list	will	be	considered	as	a	single	block,	and
is	returned	without	the	double	quotes.

By	default,	filename	globbing	for	arguments	(expansion	of	wildcards	to	filenames)	is	used	on	all	ports	of	FreeBASIC	for	compatibility.	
the	command	line	containing	wildcards	are	typically	not	expanded	if	when	no	file	is	matched	or	if	properly	quoted.	
redirection	are	typically	not	returned	unless	properly	quoted.	Consult	the	documentation	on	the	shell	being	used	for	more	information	on	the	proper
quoting	of	command	line	arguments.

WARNING:	By	nature	of	constructor	precedence	in	FreeBASIC	and	main()	initialization,	calling	
constructor	or	UDT	constructor	called	for	static/shared	object)	is	not	safe	(may	even	induce	a	runtime	error).

Disabling	filename	globbing	under	Win32
Define	the	following	global	variable(s)	somewhere	in	the	source:

''	For	MinGW.org	and	Cygwin	runtimes:

Extern	_CRT_glob	Alias	"_CRT_glob"	As	Long

Dim	Shared	_CRT_glob	As	Long	=	0

''	For	MinGW-w64	runtime:

Extern	_dowildcard	Alias	"_dowildcard"	As	Long

Dim	Shared	_dowildcard	As	Long	=	0

Disabling	filename	globbing	under	Dos
Define	the	following	function	somewhere	in	the	source:

Function	__crt0_glob_function	Alias	"__crt0_glob_function"

		Return	0

End	Function

Disabling	filename	globbing	under	Linux
Filename	globbing	is	handled	by	the	command	shell.	Quote	the	argument	containing	wildcards	or	disable	filename	globbing	in	the	shell	prior	to
executing	the	command.	For	example	in	bash	use	'set	-f'	to	disable	wildcard	expansion

Example

Print	"program	launched	via:	"	&	Command(0)

Dim	As	Integer	i	=	1

Do

				Dim	As	String	arg	=	Command(i)

				If	Len(arg)	=	0	Then

								Exit	Do

				End	If

				Print	"command	line	argument	"	&	i	&	"	=	"""	&

				i	+=	1

Loop

If	i	=	1	Then

				Print	"(no	command	line	arguments)"

End	If

Sleep

Dialect	Differences

The	string	type	suffix	$	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	$	is	optional	in	the	-lang	fblite	and	-lang	fb

Differences	from	QB

The	numeric	argument	was	not	supported	in	QB.
QB	converted	the	parameter	list	to	uppercase	before	returning	it,	FreeBASIC	doesn't.
By	default	arguments	containing	wildcard	characters	are	expanded	(filename	globbing)

See	also

__FB_ARGC__

__FB_ARGV__

Exec

Run

Common 	

Variable	declaration	and	scope	modifier

Syntax
Common	[Shared]	symbolname[()]	[AS	DataType]	[,	...]

Description
Declares	a	variable	which	is	shared	between	code	modules.	A	matching	
must	appear	in	all	other	code	modules	using	the	variable.	

The	Shared	optional	parameter	makes	the	variable	global	so	that	it	can	be	used	inside
Subs	and	Functions,	as	well	as	at	module	level.	Common	arrays	are	always	variable-length,
and	must	be	defined	with	an	empty	parameter	list	(),	and	its	dimensions	set	in	a	later	
or	ReDim	statement.

Example

''	common1.bas

Declare	Sub	initme()

Common	Shared	foo()	As	Double

ReDim	foo(0	To	2)	As	Double

initme()

Print	foo(0),	foo(1),	foo(2)

''	common2.bas

Common	Shared	foo()	As	Double

Sub	initme()

		foo(0)	=	4*Atn(1)

		foo(1)	=	foo(0)/3

		foo(2)	=	foo(1)*2

End	Sub

Output:

	3.141592653589793											1.047197551196598											2.094395102393195

Differences	from	QB

The	arrays	will	be	always	variable-length.
blockname	is	not	needed	and	must	be	removed	because	the	order	of	declaration	no
longer	matters,	only	the	symbol	names.

See	also

Dim

Erase

Extern

LBound

ReDim

Preserve

Shared

Static

UBound

Var

CondBroadcast 	

Restarts	all	threads	CondWaiting	for	the	handle

Syntax
Declare	Sub	CondBroadcast	(ByVal	handle	As	Any	Ptr)

Usage
CondBroadcast	(handle)

Parameters
handle

The	handle	of	a	conditional	variable,	or	the	null	pointer	(0)	on	failure.

Description
Once	the	conditional	is	CondCreate	and	the	threads	are	started,	one	of
more	of	them	(including	the	main	thread	executing	main	program)	can
be	set	to	CondWait	for	the	conditional,	they	will	be	stopped	until	some
other	thread	CondSignals	that	the	waiting	thread	can	restart.
CondBroadcast	can	be	used	to	restart	all	threads	waiting	for	the
conditional.	At	the	end	of	the	program	CondDestroy	must	be	used	to
avoid	leaking	resources	in	the	OS.

Condbroadcast	must	be	used	instead	of	CondSignal	to	restart	all
threads	waiting	on	the	conditional.

Example
See	CondCreate

Platform	Differences

Condbroadcast	is	not	available	with	the	DOS	version	/	target
of	FreeBASIC,	because	multithreading	is	not	supported	by	DOS
kernel	nor	the	used	extender.
In	Linux	the	threads	are	always	started	in	the	order	they	are

created,	this	can't	be	assumed	in	Win32.	It's	an	OS,	not	a
FreeBASIC	issue.	

Dialect	Differences

Threading	is	not	allowed	in	-lang	qb

Differences	from	QB

New	to	FreeBASIC

See	also

CondCreate

CondDestroy

CondSignal

CondWait

ThreadCreate

CondCreate 	

Creates	a	conditional	variable	to	be	used	in	synchronizing	threads

Syntax
Declare	Function	CondCreate	()	As	Any	Ptr

Usage
result	=	CondCreate

Return	Value
A	handle	to	a	newly	created	conditional	variable,	or	the	null	pointer	(0)	on	failure.

Description
Once	the	conditional	is	Condcreated	and	the	threads	are	started,	one	or	more	of	them	(including	the	main	thread	executing	main	program)	can	be
set	to	CondWait	for	the	conditional,	they	will	be	stopped	until	some	other	thread	
used	to	restart	all	threads	waiting	for	the	conditional.	At	the	end	of	the	program	

Example
See	also	CondWait	and	CondSignal

''

''	make	newly-created	threads	wait	until	all	threads	are	ready,	then	start	them	all	at	once

''

Dim	Shared	hcondstart	As	Any	Ptr

Dim	Shared	hmutexstart	As	Any	Ptr

Dim	Shared	start	As	Integer	=	0

Dim	Shared	threadcount	As	Integer

Dim	Shared	hmutexready	As	Any	Ptr

Dim	Shared	hcondready	As	Any	Ptr

Sub	mythread(ByVal	id_ptr	As	Any	Ptr)

				Dim	id	As	Integer	=	Cast(Integer,	id_ptr)

		

				''	signal	that	this	thread	is	ready

				MutexLock	hmutexready

				threadcount	+=	1

				Print	"Thread	#"	&	id	&	"	is	waiting..."

				CondSignal	hcondready

				MutexUnlock	hmutexready

			

				''	wait	for	the	start	signal

				MutexLock	hmutexstart

				Do	While	start	=	0			

								CondWait	hcondstart,	hmutexstart

				Loop

				''	now	this	thread	holds	the	lock	on	hmutexstart

			

				MutexUnlock	hmutexstart

				''	print	out	the	number	of	this	thread

				For	i	As	Integer	=	1	To	40

								Print	id;

				Next	i

End	Sub

Dim	threads(1	To	9)	As	Any	Ptr

hcondstart	=	CondCreate()

hmutexstart	=	MutexCreate()

hcondready	=	CondCreate()

hmutexready	=	MutexCreate()

threadcount	=	0

MutexLock(hmutexready)

For	i	As	Integer	=	1	To	9

				threads(i)	=	ThreadCreate(@mythread,	Cast(Any	

				If	threads(i)	=	0	Then

								Print	"unable	to	create	thread"

				End	If

Next	i

Print	"Waiting	until	all	threads	are	ready..."

Do	Until	threadcount	=	9

				CondWait(hcondready,	hmutexready)

Loop

MutexUnlock(hmutexready)

Print

Print	"Go!"

MutexLock	hmutexstart

start	=	1

CondBroadcast	hcondstart

MutexUnlock	hmutexstart

''	wait	for	all	threads	to	complete

For	i	As	Integer	=	1	To	9

				If	threads(i)	<>	0	Then

								ThreadWait	threads(i)

				End	If

Next	i

MutexDestroy	hmutexready

CondDestroy	hcondready

MutexDestroy	hmutexstart

CondDestroy	hcondstart

'Visual	example	of	mutual	exclusion	+	mutual	synchronization	between	2	threads

'by	using	Mutex	and	CondVar:

'the	"user-defined	thread"	computes	the	points	coordinates	on	a	circle,

'and	the	"main	thread"	plots	the	points.

'

'Principle	of	mutual	exclusion	+	mutual	synchronisation

'										Thread#A																XOR	+	<==>											Thread#B

'.....																																								

'MutexLock(mut)																																MutexLock(mut)

'		While	Thread#A_signal	<>	false																While	Thread#A_signal	<>	true

'				CondWait(cond,	mut)																											CondWait(cond,	mut)

'		Wend																																										Wend

'		Do_something#A_with_exclusion																	Do_something#B_with_exclusion

'		Thread#A_signal	=	true																								Thread#A_signal	=	false

'		CondSignal(cond)																														CondSignal(cond)

'MutexUnlock(mut)																														MutexUnlock(mut)

'.....																																								

'

'Behavior:

'-	Unnecessary	to	pre-calculate	the	first	point.

'-	Each	calculated	point	is	plotted	one	time	only.

'

'If	you	comment	out	the	lines	containing	"MutexLock"	and	"MutexUnlock",

'"CondWait"	and	"CondSignal",	".ready"

'(inside	"user-defined	thread"	or/and	"main	thread"),

'there	will	be	no	longer	mutual	exclusion	nor	mutual	synchronization

'between	computation	of	coordinates	and	plotting	of	points,

'and	many	points	will	not	be	plotted	on	circle	(due	to	non	coherent	coordinates).

'---

Type	ThreadUDT																																			'Generic	user	thread	UDT

				Dim	handle	As	Any	Ptr																								'Any	Ptr	handle	to	user	thread

				Dim	sync	As	Any	Ptr																										'Any	Ptr	handle	to	mutex

				Dim	cond	As	Any	Ptr																										'Any	Ptr	handle	to	conditional

				Dim	ready	As	Byte																												'Boolean	to	coordinates	ready

				Dim	quit	As	Byte																													'Boolean	to	end	user	thread

				Declare	Static	Sub	Thread	(ByVal	As	Any	Ptr)	'Generic	user	thread	procedure

				Dim	procedure	As	Sub	(ByVal	As	Any	Ptr)						'Procedure(Any	Ptr)	to	be	executed	by	user	thread

				Dim	p	As	Any	Ptr																													'Any	Ptr	to	pass	to	procedure	executed	by	user	thread

				Const	false	As	Byte	=	0																						'Constante	"false"

				Const	true	As	Byte	=	Not	false															'Constante	"true"

End	Type

Static	Sub	ThreadUDT.Thread	(ByVal	param	As	Any	Ptr

				Dim	tp	As	ThreadUDT	Ptr	=	param																		

				Do

								Static	As	Integer	I

								MutexLock(tp->sync)																										

								While	tp->ready	<>	false																					

										CondWait(tp->cond,	tp->sync)															

								Wend

								tp->procedure(tp->p)																									

								I	+=	1

								Locate	30,	38

								Print	I;

								tp->ready	=	true																													

								CondSignal(tp->cond)																									

								MutexUnlock(tp->sync)																								

								Sleep	5

				Loop	Until	tp->quit	=	tp->true																			

End	Sub

'---

Type	Point2D

				Dim	x	As	Integer

				Dim	y	As	Integer

End	Type

Const	x0	As	Integer	=	640	/	2

Const	y0	As	Integer	=	480	/	2

Const	r0	As	Integer	=	200

Const	pi	As	Single	=	4	*	Atn(1)

Sub	PointOnCircle	(ByVal	p	As	Any	Ptr)

				Dim	pp	As	Point2D	Ptr	=	p

				Dim	teta	As	Single	=	2	*	pi	*	Rnd

				pp->x	=	x0	+	r0	*	Cos(teta)

				Sleep	5																												'To	increase	possibility	of	uncorrelated	data	occurrence

				pp->y	=	y0	+	r0	*	Sin(teta)

End	Sub

Screen	12

Locate	30,	2

Print	"<any_key>	:	exit";

Locate	30,	27

Print	"calculated:";

Locate	30,	54

Print	"plotted:";

Dim	Pptr	As	Point2D	Ptr	=	New	Point2D

Dim	Tptr	As	ThreadUDT	Ptr	=	New	ThreadUDT

Tptr->sync	=	MutexCreate

Tptr->cond	=	CondCreate

Tptr->procedure	=	@PointOnCircle

Tptr->p	=	Pptr

Tptr->handle	=	ThreadCreate(@ThreadUDT.Thread,	Tptr

Do

				Static	As	Integer	I

				Sleep	5

				MutexLock(Tptr->sync)														'Mutex	(Lock)	for	main	thread

				While	Tptr->ready	<>	Tptr->true				'Process	loop	against	spurious	wakeups

						CondWait(Tptr->cond,	Tptr->sync)	'CondWait	to	receive	signal	from	user-thread

				Wend

				PSet	(Pptr->x,	Pptr->y)												'Plotting	one	point

				I	+=	1

				Locate	30,	62

				Print	I;

				Tptr->ready	=	Tptr->false										'Reset	ready

				CondSignal(Tptr->cond)													'CondSignal	to	send	signal	to	user	thread

				MutexUnlock(Tptr->sync)												'Mutex	(Unlock)	for	main	thread

Loop	Until	Inkey	<>	""

	

MutexLock(Tptr->sync)																		'Mutex	(Lock)	for	main	thread

Tptr->ready	=	Tptr->false														'Reset	ready

Tptr->quit	=	Tptr->true																'Set	quit

CondSignal(Tptr->cond)																	'CondSignal	to	send	signal	to	user	thread

MutexUnlock(Tptr->sync)																'Mutex	(Unlock)	for	main	thread

ThreadWait(Tptr->handle)

MutexDestroy(Tptr->sync)

CondDestroy(Tptr->cond)

Delete	Tptr

Delete	Pptr

Sleep

See	also	the	similar	MutexCreate	example

Platform	Differences

Condcreate	is	not	available	with	the	DOS	version	/	target	of	FreeBASIC,	because	multithreading	is	not	supported	by	DOS	kernel	nor	the
used	extender.

Dialect	Differences

Threading	is	not	allowed	in	-lang	qb

Differences	from	QB

New	to	FreeBASIC

See	also

CondBroadcast

CondDestroy

CondSignal

CondWait

MutexCreate

MutexLock

MutexUnlock

ThreadCreate

CondDestroy 	

Destroys	a	multi-threading	conditional	variable	when	it	is	no	more	needed

Syntax
Declare	Sub	CondDestroy	(ByVal	handle	As	Any	Ptr)

Usage
CondDestroy	(handle)

Parameters
handle

The	handle	of	a	conditional	variable	to	destroy.

Description
Once	the	conditional	is	CondCreated	and	the	threads	are	started,	one	of
more	of	them	(including	the	main	thread	executing	main	program)	can
be	set	to	CondWait	for	the	conditional,	they	will	be	stopped	until	some
other	thread	CondSignals	that	the	waiting	thread	can	restart.
CondBroadcast	can	be	used	to	restart	all	threads	waiting	for	the
conditional.	At	the	end	of	the	program	CondDestroy	must	be	used	to
avoid	leaking	resources	in	the	OS.

Conddestroy	destroys	a	condition	variable,	freeing	the	resources	it
might	hold.	No	threads	must	be	waiting	on	the	condition	variable	on
entrance	to	Conddestroy.

Example
See	CondCreate,	CondWait	and	CondSignal

Platform	Differences

Conddestroy	is	not	available	with	the	DOS	version	/	target	of
FreeBASIC,	because	multithreading	is	not	supported	by	DOS
kernel	nor	the	used	extender.

Dialect	Differences

Threading	is	not	allowed	in	-lang	qb

Differences	from	QB

New	to	FreeBASIC

See	also

CondCreate

CondBroadcast

CondSignal

CondWait

ThreadCreate

CondSignal 	

Restarts	a	thread	suspended	by	a	call	to	CondWait

Syntax
Declare	Sub	CondSignal	(ByVal	handle	As	Any	Ptr)

Usage
CondSignal	(handle)

Parameters
handle

The	handle	of	a	conditional	variable,	or	the	null	pointer	(0)	on	failure.

Description
Once	the	conditional	is	created	with	CondCreate	and	the	threads	are	started,	one	of	more	of	them	(including	the	main	thread	executing	main	program)	can	be	set
to	CondWait	for	the	conditional,	they	will	be	stopped	until	some	other	thread	
all	threads	waiting	for	the	conditional.	At	the	end	of	the	program	CondDestroy

Condsignal	restarts	one	thread	waiting.	It	should	be	called	after	mutex
the	conditional,	nothing	happens;	if	several	are	waiting,	only	one	is	restarted.	The	caller	must	then	unlock	

Example
See	also	CondCreate	and	CondWait

'	This	very	simple	example	code	demonstrates	the	use	of	several	condition	variable	routines.

'	The	main	routine	initializes	a	string	and	creates	one	thread.

'	The	main	routine	waits	until	receive	the	condition	signal	from	the	thread,	then	print	the	complemented	string.

'	The	thread	complements	the	string,	then	sends	a	condition	signal.

'

'Principle	of	mutual	exclusion	+	simple	synchronization

'										Thread#A																XOR	+	==>												Thread#B

'.....																																								

'MutexLock(mut)																																MutexLock(mut)

'		Do_something#A_with_exclusion																	While	Thread#A_signal	<>	true

'		Thread#A_signal	=	true																										CondWait(cond,	mut)

'		CondSignal(cond)																														Wend

'MutexUnlock(mut)																																Do_something#B_with_exclusion

'.....																																											Thread#A_signal	=	false

'																																														MutexUnlock(mut)

'																																													

Dim	Shared	As	Any	Ptr	mutex

Dim	Shared	As	Any	Ptr	cond

Dim	Shared	As	String	txt

Dim	As	Any	Ptr	pt

Dim	Shared	As	Integer	ok	=	0

Sub	thread	(ByVal	p	As	Any	Ptr)

				Print	"thread	is	complementing	the	string"

				MutexLock(mutex)

				Sleep	400

				txt	&=	"	complemented	by	thread"

				ok	=	1

				CondSignal(cond)

				MutexUnlock(mutex)

				Print	"thread	signals	the	processing	completed"

End	Sub

mutex	=	MutexCreate

cond	=	CondCreate

txt	=	"example	of	text"

Print	"main()	initializes	a	string	=	"	&	txt

Print	"main	creates	one	thread"

Print

pt	=	ThreadCreate(@thread)

MutexLock(mutex)

While	ok	<>	1

				CondWait(cond,	mutex)

Wend

Print

Print	"back	in	main(),	the	string	=	"	&	txt

ok	=	0

MutexUnlock(mutex)

ThreadWait(pt)

MutexDestroy(mutex)

CondDestroy(cond)

Dialect	Differences

Threading	is	not	allowed	in	-lang	qb

Platform	Differences

Condsignal	is	not	available	with	the	DOS	version	/	target	of	FreeBASIC,	because	multithreading	is	not	supported	by	DOS	kernel	nor	the	used	extender.
In	Linux	the	threads	are	always	started	in	the	order	they	are	created,	this	can't	be	assumed	in	Win32.	It's	an	OS,	not	a	FreeBASIC	issue.	

Differences	from	QB

New	to	FreeBASIC

See	also

CondCreate

CondDestroy

CondBroadcast

CondWait

ThreadCreate

CondWait 	

Stops	execution	of	current	thread	until	some	condition	becomes	true

Syntax
Declare	Sub	CondWait	(ByVal	handle	As	Any	Ptr,	ByVal	mutex	As	Any

Usage
CondWait	(handle,	mutex)

Parameters
handle

The	handle	of	a	conditional	variable,	or	the	null	pointer	(0)	on	failure.
mutex

The	mutex	associated	with	this	conditional	variable,	which	must	be	locked	when	testing	the	condition	and	calling	

Description
Function	that	stops	the	thread	where	it	is	called	until	some	other	thread	

Once	the	conditional	variable	is	created	with	CondCreate	and	the	threads	are	started,	one	of	more	of	them	(including	the	main	thread	executing	main	program)	can	be
set	to	CondWait	for	the	conditional;	they	will	be	stopped	until	some	other	thread	
threads	waiting	for	the	conditional.	At	the	end	of	the	program	CondDestroy

When	calling	CondWait,	mutex	should	already	be	locked	(using	the	same	
on	the	conditional	variable	will	occur.	The	calling	thread	execution	is	suspended	and	does	not	consume	any	CPU	time	until	the	condition	variable	is	signaled.	When
the	condition	variable	becomes	signaled,	mutex	will	be	locked	again	and	then	execution	will	return	to	the	thread	after	the	
for	unlocking	mutex	when	the	thread	is	finished	with	it.

Note:	It	is	a	good	habit	to	use	CondWait	in	a	protected	way	against	eventual	spurious	wakeups.
For	that,	CondWait	is	put	within	a	loop	for	checking	that	a	Boolean	predicate	is	indeed	true	(set	by	another	thread	just	before	executing	
when	the	thread	has	finished	waiting.
See	example	below	for	detailed	coding.

Example
See	also	CondCreate	and	CondSignal

'	This	simple	example	code	demonstrates	the	use	of	several	condition	variable	routines.

'	The	main	routine	creates	three	threads.

'	Two	of	the	threads	update	a	"count"	variable.

'	The	third	thread	waits	until	the	count	variable	reaches	a	specified	value.

#define	numThread		3

#define	countThreshold	6

Dim	Shared	As	Integer	count	=	0

Dim	Shared	As	Any	Ptr	countMutex

Dim	Shared	As	Any	Ptr	countThresholdCV

Dim	As	Any	Ptr	threadID(0	To	numThread-1)

Dim	Shared	As	Integer	ok	=	0

Sub	threadCount	(ByVal	p	As	Any	Ptr)

				Print	"Starting	threadCount():	thread#"	&	p

				Do

								Print	"threadCount():	thread#"	&	p	&	",	locking	mutex"

								MutexLock(countMutex)

								count	+=	1

								'	Check	the	value	of	count	and	signal	waiting	thread	when	condition	is	reached.

								'	Note	that	this	occurs	while	mutex	is	locked.

								If	count	>=	countThreshold	Then

												If	count	=	countThreshold	Then

																Print	"threadCount():	thread#"	&	p

																ok	=	1

																CondSignal(countThresholdCV)

												Else

																Print	"threadCount():	thread#"	&	p

												End	If

												MutexUnlock(countMutex)

												Exit	Do

								End	If

								Print	"threadCount():	thread#"	&	p	&	",	count	=	"

								MutexUnlock(countMutex)

								Sleep	100

				Loop

End	Sub

Sub	threadWatch	(ByVal	p	As	Any	Ptr)

				Print	"Starting	threadWatch():	thread#"	&	p	&	

				MutexLock(countMutex)

				'	Note	that	the	Condwait	routine	will	automatically	and	atomically	unlock	mutex	while	it	waits.

				While	ok	=	0

								CondWait(countThresholdCV,	countMutex)

				Wend

				Print	"threadWatch():	thread#"	&	p	&	",	condition	signal	received"

				Print	"threadWatch():	thread#"	&	p	&	",	count	now	=	"

				MutexUnlock(countMutex)

End	Sub

'	Create	mutex	and	condition	variable

countMutex	=	MutexCreate

countThresholdCV	=	CondCreate

'	Create	threads

threadID(0)	=	ThreadCreate(@threadWatch,	Cast(Any	

threadID(1)	=	ThreadCreate(@threadCount,	Cast(Any	

threadID(2)	=	ThreadCreate(@threadCount,	Cast(Any	

'	Wait	for	all	threads	to	complete

For	I	As	Integer	=	0	To	numThread-1

				ThreadWait(threadID(I))

				Print	"Main():	Waited	on	thread#"	&	I+1	&	"	Done"

Next	I

MutexDestroy(countMutex)

CondDestroy(countThresholdCV)

Platform	Differences

Condwait	is	not	available	with	the	DOS	version	/	target	of	FreeBASIC,	because	multithreading	is	not	supported	by	DOS	kernel	nor	the	used	extender.
In	Linux	the	threads	are	always	started	in	the	order	they	are	created,	this	can't	be	assumed	in	Win32.	It's	an	OS,	not	a	FreeBASIC	issue.	

Dialect	Differences

Threading	is	not	allowed	in	-lang	qb

Differences	from	QB

New	to	FreeBASIC

See	also

CondCreate

CondDestroy

CondBroadcast

CondSignal

MutexCreate

MutexLock

MutexUnlock

ThreadCreate

Const 	

Non-modifiable	variable	declaration.

Syntax
Const	symbolname1	[AS	DataType]	=	value1	[,	symbolname2	[AS	DataType

=	value2,	...]

or

Const	[AS	DataType]	symbolname1	=	value1	[,	symbolname2	=	value2

Description
Declares	non-modifiable	constant	data	that	can	be	integer	or	decimal
(floating-point)	numbers	or	strings.	The	constant	type	will	be	inferred	if
DataType	isn't	explicitly	given.

Specifying	String	*	Size,	Zstring	*	Size	or	Wstring	*	Size	as	DataType
not	allowed.
Specifying	String	as	DataType	is	tolerated	but	without	effect	because	the
resulting	type	is	always	a	Zstring	*	Size.

Example

Const	Red	=	RGB(252,	2,	4)

Const	Black	As	UInteger	=	RGB(0,	0,	0)

Const	Text	=	"This	is	red	text	on	a	black	bkgnd."

Locate	1,	1

Color	Red,	Black

Print	Text

Sleep

End

Differences	from	QB

QB	does	not	support	the	As	datatype	syntax.

See	also

#define

Const	(Qualifier)

Const	(Member)

Enum

Var

Const	(Member) 	

Specifies	that	a	member	procedure	is	read	only.

Syntax
Type	typename

Declare	Const	Sub|Function|Property|Operator	...

End	Type

Const	Sub|Function|...	typename	...

...

End	Sub|Function|...

Description
Specifies	that	a	method	does	not	change	the	object	it	is	called	on.	The
hidden	This	parameter	will	be	considered	read-only.	The	declaration
can	be	read	as	'invoking	a	const	method	promises	not	to	change	the
object',	and	the	compiler	will	error	if	the	member	procedure	tries	to
change	any	of	the	data	fields,	or	calls	a	non-const	member	procedure.	

Read-only	(Const)	declarations	are	a	measure	of	type	safety	that	can
be	read	as	'promises	not	to	change.'	The	compiler	uses	the	const
declarations	to	check	operations	on	variables	and	parameters	and
generate	an	error	at	compile	time	if	their	data	could	potentially	change.
There	is	no	runtime	overhead	for	using	Const	qualifiers	since	all	of	the
checks	are	made	at	compile	time.

Constructors	and	destructors	cannot	be	Const	(not	useful).
Member	procedures	can	not	be	both	Const	and	Static	since	static
member	procedures	do	not	have	a	hidden	This	parameter.

For	methods	with	Const	in	their	declaration,	Const	can	also	be	specified
on	the	corresponding	method	bodies,	for	improved	code	readability.

Example

''	Const	Member	Procedures

Type	foo

		x	As	Integer

		c	As	Const	Integer	=	0

		Declare	Const	Sub	Inspect1()

		Declare	Const	Sub	Inspect2()

		Declare	Sub	Mutate1()

		Declare	Sub	Mutate2()

End	Type

''

Sub	foo.Mutate1()

		''	we	can	change	non-const	data	fields

		x	=	1

		''	but	we	still	can't	change	const	data

		''	fields,	they	are	promised	not	to	change

		''	c	=	1	''	Compile	error

End	Sub

''

Sub	foo.Mutate2()

		''	we	can	call	const	members

		Inspect1()

		''	and	non-const	members

		Mutate1()

End	Sub

''

Sub	foo.Inspect1()

		''	can	use	data	members

		Dim	y	As	Integer

		y	=	c	+	x

		''	but	not	change	them	because	Inspect1()

		''	is	const	and	promises	not	to	change	foo

		''	x	=	10	''	Compile	error

End	Sub

''

Sub	foo.Inspect2()

		''	we	can	call	const	members

		Inspect1()

		''	but	not	non-const	members

		''	Mutate1()	''	Compile	error

End	Sub

Differences	from	QB

New	to	FreeBASIC

See	also

Const

Const	(Qualifier)

Dim

Type

Const	(Qualifier) 	

Specifies	that	a	data	type	or	pointer	data	type	is	read	only.

Syntax
...	As	[Const]	datatype	[[Const]	Ptr	...]

Parameters
datatype

Name	of	a	standard	or	user	defined	data	type.

Description
Specifies	that	the	datatype	or	Ptr	immediately	to	the	right	of	the	Const
qualifier	is	to	be	considered	as	read	only.	Read-only	(Const)	declarations	are
a	measure	of	type	safety	that	can	be	read	as	'promises	not	to	change.'	
compiler	uses	the	const	declarations	to	check	operations	on	variables	and
parameters	and	generate	an	error	at	compile	time	if	their	data	could
potentially	change.	There	is	no	runtime	overhead	for	using	Const	qualifiers
since	all	of	the	checks	are	made	at	compile	time.

Const	can	be	used	anywhere	data	type	declarations	are	made.	This	includes
variables,	parameters,	function	return	results,	user	defined	type	fields,	type
aliases,	and	casting.	The	datatype	can	be	any	built-in	standard	data	type	or
user	defined	type.

Read-only	variables	must	have	an	initializer	since	modifying	a	read-only
variable	through	an	assignment	will	generate	a	compiler	error.	The	initializer
may	appear	after	the	declaration	of	the	variable.

Both	non-const	and	const	variables	may	be	passed	to	a	procedure	expecting
a	const	parameter.	However,	a	const	variable	may	not	be	passed	to	a
procedure	taking	a	non-const	parameter,	and	will	generate	a	compile	error.

Procedures	can	be	overloaded	based	on	the	const-ness	of	parameters.	
example	a	procedure	can	be	overloaded	where	one	version	of	the	procedure
takes	a	'byref	foo	as	bar'	parameter	and	another	version	of	the	procedure

takes	a	'byref	foo	as	const	bar'	parameter.

With	pointer	declarations,	Const	can	be	used	to	indicate	which	part	of	the
pointer	declaration	is	read-only	(all	other	parts	are	by	default	read-write).	
read-only	portion	of	the	pointer	data	type	could	be	the	pointer	itself	(the
address),	what	the	pointer	points	to	(the	data),	or	both.	In	a	declaration	with
more	than	one	level	of	Ptr	indirection,	the	right	most	Ptr	indicates	the	highest
order	level	of	indirection	and	is	therefore	dereferenced	first.

The	compiler	has	an	internal	hard-limit	of	eight	(8)	levels	of	pointer	indirection
with	respect	to	const	qualifiers	and	the	behavior	of	using	Const	with	Ptr
types	having	greater	than	eight	(8)	levels	of	indirection	is	undefined.

Example

''	Const	Variables

''	procedure	taking	a	const	parameter

Sub	proc1(ByRef	x	As	Const	Integer)

		''	can't	change	x	because	it	is	const

		''	x	=	10	''	compile	error

		''	but	we	can	use	it	in	expressions	and

		''	assign	it	to	other	variables

		Dim	y	As	Integer

		y	=	x

		y	=	y	*	x	+	x

End	Sub

''	procedure	taking	a	non-const	parameter

Sub	proc2(ByRef	x	As	Integer)

		''	we	can	change	the	value

		x	=	10

End	Sub

''	declare	a	non-const	and	const	variable

Dim	a	As	Integer

Dim	b	As	Const	Integer	=	5

''	proc1()	will	accept	a	non-const	or	const

''	argument	because	proc1()	promises	not	to

''	change	the	variable	passed	to	it.

proc1(a)

proc1(b)

''	proc2()	will	accept	a	non-const	argument

proc2(a)

''	but	not	a	const	argument	because	proc2()

''	might	change	the	variable's	data	and	we

''	promised	that	'b'	would	not	change.

''	proc2(b)	''	compile	error

''	Const	Pointers

''	an	integer

Dim	x	As	Integer	=	1

Dim	y	As	Integer	=	2

Dim	z	As	Integer	=	3

''	To	check	that	the	compiler	generates	errors

''	when	attempting	to	reassign	const	variables,

''	uncomment	the	assignments	below.

''

Scope

		''	a	pointer	to	an	integer

		Dim	p	As	Integer	Ptr	=	@x

		p	=	@y							/'	OK	-	pointer	can	be	changed	'/

		*p	=	z							/'	OK	-	data	can	be	changed	'/

End	Scope

''

Scope

		''	a	pointer	to	a	constant	integer

		Dim	p	As	Const	Integer	Ptr	=	@x

		p	=	@y							/'	OK	-	pointer	can	be	changed	'/

		''	*p	=	z				/'	Error	-	data	is	const	'/

End	Scope

''

Scope

		''	a	constant	pointer	to	an	integer

		Dim	p	As	Integer	Const	Ptr	=	@x

		''	p	=	@y				/'	Error	-	pointer	is	const	'/

		*p	=	z							/'	OK	-	data	can	be	changed	'/

End	Scope

''

Scope

		''	a	constant	pointer	to	a	constant	integer

		Dim	p	As	Const	Integer	Const	Ptr	=	@x

		''	p	=	@y				/'	Error	-	pointer	is	const	'/

		''	*p	=	z				/'	Error	-	data	is	const	'/

End	Scope

''	Const	Parameters	in	an	Overloaded	Procedure

''	procedure	with	non-const	parameter

Sub	foo	Overload(ByRef	n	As	Integer)

		Print	"called	'foo(byref	n	as	integer)'"

End	Sub

''	procedure	with	const	parameter

Sub	foo	Overload(ByRef	n	As	Const	Integer)

		Print	"called	'foo(byref	n	as	const	integer)'"

End	Sub

Dim	x	As	Integer	=	1

Dim	y	As	Const	Integer	=	2

foo(x)

foo(y)

''	OUTPUT:

''	called	'foo(byref	n	as	integer)'

''	called	'foo(byref	n	as	const	integer)'

Differences	from	QB

New	to	FreeBASIC

See	also

Const

Const	(Member)

Dim

Type

Constructor 	

Called	automatically	when	a	class	or	user	defined	type	is	created

Syntax
Type	typename

Declare	Constructor	()

Declare	Constructor	([ByRef	|	ByVal]	parameter	As	datatype	[=	

End	Type

Constructor	typename	([parameters])	[Export]

statements

End	Constructor

Parameters
typename	
name	of	the	Type	or	Class

Description
Constructor	methods	are	called	when	a	user	defined	Type	or	Class	variable	is	created.

typename	is	the	name	of	the	type	for	which	the	Constructor	method	is	declared	and	defined.	
typename	follows	the	same	rules	as	procedures	when	used	in	a	Namespace

More	than	one	constructor	may	exist	for	a	type	or	class.	The	exact	constructor	method	called	depends	on	the	
signature	matched	when	the	variable	is	initialized.	More	than	one	parameter
declaration.

A	constructor	method	is	passed	a	hidden	This	parameter	having	the	same	type	as	
access	the	fields	of	the	Type	or	Class	which	is	to	be	initialized	in	the	Constructor

Constructors	are	called	when	declaring	global	or	local	static	instances	of	
dynamically	using	the	New	operator.	See	examples	below	for	different	constructor	syntaxes.

A	copy	Constructor	is	a	special	constructor	that	initializes	a	new	object	from	an	existing	object.	There	are	three	general
cases	where	the	copy	Constructor	is	called:	when	instantiating	one	object	and	initializing	it	with	another	object	(in	one
instruction),	when	passing	an	object	by	value,	when	an	object	is	returned	from	a	function	by	value	(by	using	
statement).

Note:	When	an	object	is	returned	from	a	function	by	value,	but	by	using	
assignment,	the	Constructor	is	called	once	at	first,	and	then	the	Let	(Assign)
A	copy	Constructor	must	be	defined	if	the	shallow	implicit	copy	constructor	is	not	sufficient.	This	happens	in	cases
when	the	object	manages	dynamically	allocated	memory	or	other	resources	which	need	to	be	specially	constructed	or
copied	(for	example	if	a	member	pointer	points	to	dynamically	allocated	memory,	the	implicit	copy	constructor	will
simply	do	an	implicit	pointer	construction	and	a	copy	of	value	instead	of	allocate	memory	and	then	perform	the	copy	of
data).
Note:	Even	if	is	defined	an	explicit	default	Constructor,	it	is	never	called	by	the	implicit	copy	constructor.

Chaining	of	constructors	in	nested	types	is	supported.	Any	fields	that	have	their	own	default	constructor	are	called	first.
The	keyword	Constructor(parameters)	can	be	used	at	the	top	of	a	constructor,	allowing	to	chain	together	constructors
of	same	type.	It	prevents	the	compiler	from	emitting	field	initialization	code	(instead,	it	relies	on	the	chained	constructor
to	initialize	everything).

Constructor	can	be	also	called	directly	from	the	typename	instance	like	the	other	member	methods	(
same	syntax,	i.e.	using	a	member	access	operator,	e.g.	obj.Constructor
this.Constructor(parameters)	is	not	treated	as	chaining	constructor,	and	it	is	allowed	anywhere	(not	only	at	the	top	of
constructors).	In	general	it's	not	safe	to	manually	call	the	constructor	on	an	object,	because	no	
the	old	object	state	-	if	any	-	is	overwritten	without	any	of	its	old	members	being	destroyed,	which	could	cause
memory/resource	leaks.

Example
Simple	constructor	example	for	beginners.

Type	MyObj

		Foo	As	Integer	Ptr

		

				''	Constructor	to	create	our	integer,	and	set	its	value.

		Declare	Constructor(ByVal	DefVal	As	Integer	=	0

				''	Destroy	our	integer	on	object	deletion.

		Declare	Destructor()

End	Type

Constructor	MyObj(ByVal	DefVal	As	Integer	=	0)

		Print	"Creating	a	new	integer	in	MyObj!"

		Print	"The	Integer	will	have	the	value	of:	"	&	DefVal

		Print	""

		

				''	Create	a	pointer,	and	set	its	value	to	the	one	passed	to	the

				''	Constructor.

		This.Foo	=	New	Integer

		*This.Foo	=	DefVal

End	Constructor

Destructor	MyObj()

		Print	"Deleting	our	Integer	in	MyObj!"

		Print	""

		

				''	Delete	the	pointer	we	created	in	MyObj.

		Delete	This.Foo

		This.Foo	=	0

End	Destructor

Scope

				''	Create	a	MyObj	type	object

				''	Send	the	value	of	'10'	to	the	constructor

		Dim	As	MyObj	Bar	=	10

		

				''	See	if	the	integer's	been	created.		Print	its	value.

		Print	"The	Value	of	our	integer	is:	"	&	*Bar.Foo

		Print	""

		

		Sleep

End	Scope

		''	We've	just	gone	out	of	a	scope.		The	Destructor	should	be	called	now

		''	Because	our	objects	are	being	deleted.

Sleep

More	advanced	construction	example,	showing	constructor	overloading	among	other	things.

Type	sample

		_text	As	String

		Declare	Constructor	()

		Declare	Constructor	(a	As	Integer)

		Declare	Constructor	(a	As	Single)	

		Declare	Constructor	(a	As	String,	b	As	Byte)	

		Declare	Operator	Cast	()	As	String

End	Type

Constructor	sample	()

		Print	"constructor	sample	()"

		Print

		this._text	=	"Empty"

End	Constructor

Constructor	sample	(a	As	Integer)

		Print	"constructor	sample	(a	as	integer)"

		Print	"		a	=	";	a

		Print

		this._text	=	Str(a)

End	Constructor

Constructor	sample	(a	As	Single)

		Print	"constructor	sample	(a	as	single)"

		Print	"		a	=	";	a

		Print

		this._text	=	Str(a)

End	Constructor

Constructor	sample	(a	As	String,	b	As	Byte)

		Print	"constructor	sample	(a	as	string,	b	as	byte)"

		Print	"		a	=	";	a

		Print	"		b	=	";	b

		Print

		this._text	=	Str(a)	+	","	+	Str(b)

End	Constructor

Operator	sample.cast	()	As	String

		Return	this._text

End	Operator

Print	"Creating	x1"

Dim	x1	As	sample

Print	"Creating	x2"

Dim	x2	As	sample	=	1

Print	"Creating	x3"

Dim	x3	As	sample	=	99.9

Print	"Creating	x4"

Dim	x4	As	sample	=	sample("aaa",	1)

Print	"Values:"

Print	"		x1	=	";	x1

Print	"		x2	=	";	x2

Print	"		x3	=	";	x3

Print	"		x4	=	";	x4

Example	of	copy	constructor.

Type	UDT

		Dim	As	String	Ptr	p																					''pointer	to	string

		Declare	Constructor	()																		''default	constructor

		Declare	Constructor	(ByRef	rhs	As	UDT)		''copy	constructor

		Declare	Destructor	()																			''destructor

End	Type

Constructor	UDT	()

		This.p	=	CAllocate(1,	SizeOf(String))

End	Constructor

Constructor	UDT	(ByRef	rhs	As	UDT)

		This.p	=	CAllocate(1,	SizeOf(String))

		*This.p	=	*rhs.p

End	Constructor

Destructor	UDT	()

		*This.p	=	""

		Deallocate	This.p

End	Destructor

Dim	As	UDT	u0

*u0.p	=	"copy	constructor	exists"

Dim	As	UDT	u	=	u0

*u0.p	=	""		''to	check	the	independance	of	the	result	copy	with	the	object	copied

Print	*u.p

Sleep

Dialect	Differences

Object-related	features	are	supported	only	in	the	-lang	fb	option

Differences	from	QB

New	to	FreeBASIC

See	also

Class

Constructor	(Module)

New

Destructor

Type

Constructor	(Module) 	

Specifies	execution	of	a	procedure	before	module-level	code

Syntax
[Public	|	Private]	Sub	procedure_name	[Alias	"external_identifier

[priority]	[Static]

{	procedure	body	}

End	Sub

Description
The	Constructor	keyword	is	used	in	Sub	definitions	to	force	execution	of	the	procedure	prior	to	that	of
module-level	code.	Procedures	defined	as	constructors	may	be	used	the	same	way	as	ordinary
procedures,	that	is,	they	may	be	called	from	within	module-level	code,	as	well	as	other	procedures.

The	procedure	must	have	an	empty	parameter	list.	A	compile-time	error	will	be	generated	if	the
Constructor	keyword	is	used	in	a	Sub	definition	having	one	or	more	parameters.	In	a	set	of
overloaded	procedures,	only	one	(1)	constructor	may	be	defined	because	of	the	ambiguity	of	having
multiple	Subs	which	take	no	arguments.

In	a	single	module,	constructors	normally	execute	in	the	reverse	order	in	which	they	are	defined.

The	priority	attribute,	an	integer	between	101	and	65535,	can	be	used	to	force	constructors	to	be
executed	in	a	certain	order.	The	value	of	priority	has	no	specific	meaning,	only	the	relationship	of
the	number	with	other	constructor	priorities.	101	is	the	highest	priority	and	is	executed	first.	
constructors	having	a	priority	attribute	are	executed	before	constructors	with	no	attribute.	
priority	value	of	65535	is	the	same	as	not	assigning	a	priority	value.

A	module	may	define	multiple	constructor	procedures,	and	multiple	modules	may	define	additional
constructors	provided	no	two	Public	constructors	share	the	same	procedure_name

When	linking	with	modules	that	also	define	constructors,	the	order	of	execution	is	not	guaranteed	at
link-time	unless	the	priority	attribute	is	used.	Therefore,	special	care	should	be	taken	when	using
constructors	that	may	call	on	a	secondary	module	also	defining	a	constructor.	
advisable	to	use	a	single	constructor	that	explicitly	calls	initialization	procedures	in	those	modules.

Example

''	ConDesExample.bas	:	An	example	program	that	defines	two	sets	of

''	constructors	and	destructors.	Demonstrates	when	and	in	what	order

''	they	are	called	when	linking	a	single	module.

Sub	Constructor1()	Constructor

				Print	"Constructor1()	called"

End	Sub

Sub	Destructor1()	Destructor

				Print	"Destructor1()	called"

End	Sub

Sub	Constructor2()	Constructor

				Print	"Constructor2()	called"

End	Sub

Sub	Destructor2()	Destructor

				Print	"Destructor2()	called"

End	Sub

				''	----------------------

				Print	"module-level	code"

				End	0

				''	----------------------

Output:

Constructor2()	called

Constructor1()	called

module-level	code

Destructor1()	called

Destructor2()	called

Differences	from	QB

New	to	FreeBASIC

See	also

Constructor	(Class)
Destructor	(Module)
Sub

Continue 	

Control	flow	statement	to	continue	next	iteration	of	a	loop

Syntax
Continue	{Do	|	For	|	While}

Description
Skips	all	code	until	the	end	clause	of	a	loop	structure,	i.e.	Do...Loop,	For...Next
While...Wend	block,	then	executes	the	limit	condition	check.	In	the	case	of	a	
variable	is	incremented	according	to	the	Step	specified.

Where	there	are	multiple	Do	/	For	/	While	blocks	nested,	it	will	continue	on	the	innermost
block	of	that	type,	i.e.	the	last	one	entered.	You	can	continue	an	earlier	block	of	that	type	by
giving	the	word	multiple	times,	separated	by	commas.	e.g.	continue	while,	while

Example

Dim	As	Integer	n

Print	"Here	are	odd	numbers	between	0	and	10!"

Print

For	n	=	0	To	10

		If	(n	Mod	2)	=	0	Then	

				Continue	For

		End	If

		

		Print	n

		

Next	n

	''	simple	prime	number	finder

Print	"Here	are	the	prime	numbers	between	1	and	20!"

Print

Dim	n	As	Integer,	d	As	Integer

For	n	=	2	To	20

				

				For	d	=	2	To	Int(Sqr(n))

								

								If	(n	Mod	d)	=	0	Then	'	d	divides	n

												

												Continue	For,	For	'	n	is	not	prime,	so	try	next	n

												

								End	If

								

				Next	d

				

				Print	n

				

Next	n

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Exit

Cos 	

Returns	the	cosine	of	an	angle

Syntax
Declare	Function	Cos	(ByVal	angle	As	Double)	As	Double

Usage
result	=	Cos(angle)

Parameters
angle

the	angle	(in	radians)

Return	Value
Returns	the	cosine	of	the	argument	angle	as	a	Double	within	the	range	of	

Description
The	argument	number	is	measured	in	radians	(not	degrees).

The	value	returned	by	this	function	is	undefined	for	values	of	angle	with	an	absolute	value
of	2	^	63	or	greater.

Example

Const	PI	As	Double	=	3.1415926535897932

Dim	a	As	Double

Dim	r	As	Double

Input	"Please	enter	an	angle	in	degrees:	",	a

r	=	a	*	PI	/	180				'Convert	the	degrees	to	Radians

Print	""

Print	"The	cosine	of	a"	;	a;	"	degree	angle	is";	Cos

Sleep

Output:

Please	enter	an	angle	in	degrees:	30

The	cosine	of	a	30	degree	angle	Is	0.8660254037844387

Differences	from	QB

None

See	also

Acos

Sin

Tan

A	Brief	Introduction	To	Trigonometry

CPtr 	

Converts	a	pointer	expression	to	a	specified	data	type	pointer

Syntax
CPtr(PointerDataType,	expression)

Description
Converts	expression	to	PointerDataType.

PointerDataType	must	be	a	Pointer	type	(e.g.	a	DataType	Ptr	or	an	Any
expression	may	have	a	different	pointer	type	or	be	an	Integer.

Note:	Currently,	FB	does	not	actually	enforce	that	PointerDataType	must	be	a	pointer.	
versions	though.	Currently,	it	will	display	a	warning	if	you	try	to	convert	to	a	non-pointer,	if	you	compile	with	the	
compiler	switch.

Example

Dim	intval	As	Integer

Dim	intptr	As	Integer	Ptr

intval	=	&h0080

intptr	=	@intval

''	will	print	-128	and	128,	as	the	first	expression	will	be	"seen"	as	an	signed	byte

Print	*CPtr(Byte	Ptr,	intptr),	*intptr

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Ptr

Cast

CByte

CShort

CInt

CLngInt

CSng

CDbl	

CShort 	

Converts	numeric	or	string	expression	to	an	integer	(Short)

Syntax
Declare	Function	CShort	(ByVal	expression	As	datatype)	As	Short

Type	typename

Declare	Operator	Cast	()	As	Short

End	Type

Usage
result	=	CShort(numeric	expression)

result	=	CShort(string	expression)

result	=	CShort(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	Short	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	Short	value.

Description
The	CShort	function	rounds	off	the	decimal	part	and	returns	a	16-bit	Short
The	function	does	not	check	for	an	overflow,	and	results	are	undefined	for	values
which	are	less	than	-32	768	or	larger	than	32	767.

The	name	can	be	explained	as	'Convert	to	Short'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	

Example

'	Using	the	CSHORT	function	to	convert	a	numeric	value

'Create	an	SHORT	variable

Dim	numeric_value	As	Short

'Convert	a	numeric	value

numeric_value	=	CShort(-4500.66)

'Print	the	result,	should	return	-4501

Print	numeric_value

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Cshort.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CUByte

CUShort

CInt

CUInt

CLng

CULng

CLngInt

CULngInt

CSng

CDbl

CSign 	

Converts	an	expression	to	signed

Syntax
CSign	(expression)

Usage
variable	=	CSign	(expression)

Description
Converts	an	unsigned	expression	to	a	signed	one,	useful	to	force
signed	behavior	of	division	or	multiplication	(including	with	Shl	and
Shr).

This	is	the	opposite	of	CUnsg.

Example

Dim	value	As	UShort	=	65535

Print	CSign(value)		''	will	print	-1

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Csign.

Differences	from	QB

New	to	FreeBASIC

See	also

CUnsg

CSng 	

Converts	numeric	or	string	expression	to	Single	precision	floating	point

Syntax
Declare	Function	CSng	(ByVal	expression	As	datatype)	As	Single

Type	typename

Declare	Operator	Cast	()	As	Single

End	Type

Usage
result	=	CSng(numeric	expression)

result	=	CSng(string	expression)

result	=	CSng(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	Single	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	Single	precision	value.

Description
The	CSng	function	returns	a	32-bit	Single	value.	The	function	does	not	check	for
an	overflow,	so	be	sure	not	to	pass	a	value	outside	the	representable	range	of
the	Single	data	type.	The	name	can	be	explained	as	'Convert	to	SiNGle'.

If	the	argument	to	CSng	is	a	string	expression,	it	is	first	converted	to	numeric	by
using	Val.

Example

'	Using	the	CSNG	function	to	convert	a	numeric	value

'Create	an	SINGLE	variable

Dim	numeric_value	As	Single

'Convert	a	numeric	value

numeric_value	=	CSng(-12345.123)

'Print	the	result,	should	return	-12345.123

Print	numeric_value

Sleep

Differences	from	QB

The	string	argument	was	not	allowed	in	QB

See	also

CByte

CUByte

CShort

CUShort

CInt

CUInt

CLng

CULng

CLngInt

CULngInt

CDbl

CsrLin 	

Returns	the	row	position	of	the	cursor

Syntax
Declare	Function	CsrLin	()	As	Integer

Usage
result	=	CsrLin

Return	Value
An	Integer	specifying	the	current	row	of	the	cursor.

Description
Returns	the	current	row	the	cursor	is	on	(i.e.	the	"cursor	line").	The
topmost	row	is	number	1.

Example

Print	"The	cursor	is	on	row:";	CsrLin

Differences	from	QB

None

See	also

Locate

Pos

CUByte 	

Converts	numeric	or	string	expression	to	an	unsigned	byte	(UByte)

Syntax
Declare	Function	CUByte	(ByVal	expression	As	datatype)	As	UByte

Type	typename

Declare	Operator	Cast	()	As	UByte

End	Type

Usage
result	=	CUByte(numeric	expression)

result	=	CUByte(string	expression)

result	=	CUByte(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	UByte	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	UByte	value.

Description
The	CUByte	function	rounds	off	the	decimal	part	and	returns	a	8-bit	UByte
The	function	does	not	check	for	an	overflow,	and	results	are	undefined	for	values
which	are	less	than	0	or	larger	than	255.

The	name	can	be	explained	as	'Convert	to	Unsigned	Byte'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	

Example

'	Using	the	CUBYTE	function	to	convert	a	numeric	value

'Create	an	UNSIGNED	BYTE	variable

Dim	numeric_value	As	UByte

'Convert	a	numeric	value

numeric_value	=	CUByte(123.55)

'Print	the	result,	should	return	124

Print	numeric_value

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Cubyte.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CShort

CUShort

CInt

CUInt

CLng

CULng

CLngInt

CULngInt

CSng

CDbl

CUInt 	

Converts	numeric	or	string	expression	to	a	UInteger	or	UInteger<bits>

Syntax
Declare	Function	CUInt	(ByVal	expression	As	datatype)	As	UInteger

Declare	Function	CUInt<bits>	(ByVal	expression	As	datatype)	As

UInteger<bits>

Type	typename

Declare	Operator	Cast	()	As	UInteger

Declare	Operator	Cast	()	As	UInteger<bits>

End	Type

Usage
result	=	CUInt(numeric	expression)

result	=	CUInt(string	expression)

result	=	CUInt(user	defined	type)

Parameters
bits

A	numeric	constant	expression	indicating	the	size	in	bits	of	unsigned	integer
desired.	The	values	allowed	are	8,	16,	32	or	64.
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	UInteger	or	UInteger
value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	UInteger	or	UInteger<bits>	containing	the	converted	value.

Description
The	CUInt	function	rounds	off	the	decimal	part	and	returns	a	UInteger	value,	or	if
a	bits	value	is	supplied,	an	unsigned	integer	type	of	the	given	size.

The	function	does	not	check	for	an	overflow;	for	example,	for	a	32-bit	
results	are	undefined	for	values	which	are	less	than	0	or	larger	than	4	

The	name	can	be	explained	as	'Convert	to	Unsigned	INTeger'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	
or	ValULng,	depending	on	the	size	of	the	result	type.

Example

'	Using	the	CUINT	function	to	convert	a	numeric	value

'Create	an	UNSIGNED	INTEGER	variable

Dim	numeric_value	As	UInteger

'Convert	a	numeric	value

numeric_value	=	CUInt(300.23)

'Print	the	result	=	300

Print	numeric_value

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Cuint.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CUByte

CShort

CUShort

CInt

CLng

CULng

CLngInt

CULngInt

CSng

CDbl

UInteger

CULng 	

Converts	numeric	or	string	expression	to	Ulong

Syntax
Declare	Function	CULng	(ByVal	expression	As	datatype)	As	Ulong

Type	typename

Declare	Operator	Cast	()	As	Ulong

End	Type

Usage
result	=	CULng(numeric	expression)

result	=	CULng(string	expression)

result	=	CULng(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	Ulong	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	Ulong	value.

Description
The	CULng	function	rounds	off	the	decimal	part	and	returns	a	32	bit	Ulong
The	function	does	not	check	for	an	overflow.	The	name	can	be	explained	as
'Convert	to	Unsigned	LoNG'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	
or	ValULng.

Example

'	Using	the	CULNG	function	to	convert	a	numeric	value

'Create	an	UNSIGNED	LONG	variable

Dim	numeric_value	As	ULONG

'Convert	a	numeric	value

numeric_value	=	CULng(300.23)

'Print	the	result	=	300

Print	numeric_value

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Culng.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CUByte

CShort

CUShort

CInt

CUInt

CLng

CLngInt

CULngInt

CSng

CDbl

CULngInt 	

Converts	numeric	or	string	expression	to	64-bit	unsigned	integer	(ULongInt

Syntax
Declare	Function	CULngInt	(ByVal	expression	As	datatype)	As	ULongInt

Type	typename

Declare	Operator	Cast	()	As	ULongInt

End	Type

Usage
result	=	CULngInt(numeric	expression)

result	=	CULngInt(string	expression)

result	=	CULngInt(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	ULongInt	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	ULongInt	value.

Description
The	CULngInt	function	rounds	off	the	decimal	part	and	returns	a	64-bit	
value.	The	function	does	not	check	for	an	overflow,	and	results	are	undefined	for
values	which	are	less	than	0	or	larger	than	18	446	744	073	709	551	615.	
casts	from	floating-point	expressions	are	currently	not	guaranteed	to	work	for	values
higher	than	2^63	(9	223	372	036	854	775	808).

The	name	can	be	explained	as	'Convert	to	Unsigned	LoNG	INTeger'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	

Example

'	Using	the	CLNGINT	function	to	convert	a	numeric	value

'Create	an	UNSIGNED	LONG	INTEGER	variable

Dim	numeric_value	As	ULongInt

'Convert	a	numeric	value

numeric_value	=	CULngInt(12345678.123)

'Print	the	result,	should	return	12345678

Print	numeric_value

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Culngint.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CUByte

CShort

CUShort

CInt

CUInt

CLng

CULng

CLngInt

CSng

CDbl

CUnsg 	

Converts	an	expression	to	unsigned

Syntax
CUnsg	(expression)

Usage
variable	=	CUnsg	(expression)

Converts	a	signed	expression	to	an	unsigned	one,	useful	to	force
unsigned	behavior	of	division	or	multiplication	(including	with	Shl	and
Shr).

This	is	the	opposite	of	CSign.

Example

Dim	value	As	Short	=	-1

Print	CUnsg(value)		''	will	print	65535

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Cunsg.

Differences	from	QB

New	to	FreeBASIC

See	also

CSign

CurDir 	

Returns	the	current	directory/folder

Syntax
Declare	Function	CurDir	()	As	String

Usage
result	=	CurDir

Return	Value
A	String	which	is	set	to	the	name	of	the	current	directory/folder.

Description
Returns	the	current	directory/folder.

Example

Print	CurDir

output	will	vary.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Curdir.

Differences	from	QB

New	to	FreeBASIC

See	also

Open

Dir

MkDir

RmDir

CUShort 	

Converts	numeric	or	string	expression	to	an	unsigned	integer	(UShort)

Syntax
Declare	Function	CUShort	(ByVal	expression	As	datatype)	As	UShort

Type	typename

Declare	Operator	Cast	()	As	UShort

End	Type

Usage
result	=	CUShort(numeric	expression)

result	=	CUShort(string	expression)

result	=	CUShort(user	defined	type)

Parameters
expression

a	numeric,	string,	or	pointer	expression	to	cast	to	a	UShort	value
datatype

any	numeric,	string,	or	pointer	data	type
typename

a	user	defined	type

Return	Value
A	UShort	value.

Description
The	CUShort	function	rounds	off	the	decimal	part	and	returns	a	16-bit	UShort
The	function	does	not	check	for	an	overflow,	and	results	are	undefined	for	values
which	are	less	than	0	or	larger	than	65	535.

The	name	can	be	explained	as	'Convert	to	Unsigned	Short'.

If	the	argument	is	a	string	expression,	it	is	converted	to	numeric	by	using	

Example

'	Using	the	CUSHORT	function	to	convert	a	numeric	value

'Create	an	USHORT	variable

Dim	numeric_value	As	UShort

'Convert	a	numeric	value

numeric_value	=	CUShort(36000.4)

'Print	the	result,	should	return	36000

Print	numeric_value

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Cushort.

Differences	from	QB

New	to	FreeBASIC

See	also

CByte

CUByte

CShort

CInt

CUInt

CLng

CULng

CLngInt

CULngInt

CSng

CDbl

Custom 	

Parameter	to	the	Put	graphics	statement	which	selects	a	custom	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Parameters
Custom

Required.
custom_function_ptr

name	of	the	custom	user	defined	function.
parameter

optional	Pointer	to	be	passed	to	the	custom	function;	if	omitted,	the	default	value	is	zero	(

Description
Custom	selects	a	custom	user	defined	function	as	the	method	for	blitting	an	image	buffer.

The	Custom	method	uses	a	user-defined	function	to	calculate	the	final	pixel	values	to	be	drawn	to	the	destination	buffer.	This	function	will	be	called	once	for	every	pixel	of	the
source	image,	and	will	receive	the	source	and	destination	pixel	values,	and	a	data	pointer	passed	by	the	
the	destination	buffer.	The	function	has	the	form:

Declare	Function	identifier	(_

ByVal	source_pixel	As	UInteger,	_

ByVal	destination_pixel	As	UInteger,	_

ByVal	parameter	As	Any	Ptr	_

)	As	UInteger

identifier	is	the	name	of	the	function.
source_pixel	is	the	current	pixel	value	of	the	source	image.
destination_pixel	is	the	current	pixel	value	of	the	destination	image.
parameter	is	the	parameter	that	is	passed	by	the	Put	command.	If	it	was	omitted,	its	value	will	be	zero.

Example

Function	dither	(ByVal	source_pixel	As	UInteger,	ByVal

				

				''either	returns	the	source	pixel	or	the	destination	pixel,	depending	on	the	outcome	of	rnd

				

				Dim	threshold	As	Single	=	0.5

				If	parameter	<>	0	Then	threshold	=	*CPtr(Single

				

				If	Rnd()	<	threshold	Then

								Return	source_pixel

				Else

								Return	destination_pixel

				End	If

				

End	Function

Dim	img	As	Any	Ptr,	threshold	As	Single

''	set	up	a	screen

ScreenRes	320,	200,	16,	2

ScreenSet	0,	1

''	create	an	image

img	=	ImageCreate(32,	32)

Line	img,	(0,		0)-(15,		15),	RGB(255,			0,			0),	bf

Line	img,	(16,		0)-(31,		15),	RGB(0,			0,	255),	bf

Line	img,	(0,	16)-(15,		31),	RGB(0,	255,			0),	bf

Line	img,	(16,	16)-(31,		31),	RGB(255,			0,	255),	bf

''	dither	the	image	with	varying	thresholds

Do	Until	Len(Inkey)

				

				Cls

				

				threshold	=	0.2

				Put	(80	-	16,	100	-	16),	img,	Custom,	@dither,

				

				''	default	threshold	=	0.5

				Put	(160	-	16,	100	-	16),	img,	Custom,	@dither

				

				threshold	=	0.8

				Put	(240	-	16,	100	-	16),	img,	Custom,	@dither,

				

				ScreenCopy

				Sleep	25

				

Loop

''	free	the	image	memory

ImageDestroy	img

Dialect	Differences

Not	available	in	the	-lang	qb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Put	(Graphics)

CVD 	

Converts	a	64-bit	integer	or	8-byte	string	to	a	double-precision	value

Syntax
Declare	Function	CVD	(ByVal	l	As	LongInt)	As	Double

Declare	Function	CVD	(ByRef	str	As	Const	String)	As	Double

Usage
result	=	CVD(l)

result	=	CVD(str)

Parameters
l

A	64-bit	LongInt	with	a	binary	copy	of	a	double-precision	variable
stored	in	it.
str

A	String	at	least	8	bytes	in	length	with	a	binary	copy	of	a	double-
precision	variable	stored	in	it.

Return	Value
Returns	a	Double	value	holding	a	binary	copy	of	the	input	value.

Description
Does	a	binary	copy	from	a	64-bit	LongInt	or	8-byte	String	to	a	Double
variable.	A	value	of	zero	(0.0)	is	returned	if	the	string	is	less	than	8
bytes	in	length.	The	result	will	make	sense	only	if	the	parameter
contained	a	IEEE-754	formatted	double-precision	value,	such	as	one
generated	by	CVLongInt	or	MKD.

This	function	is	useful	to	read	numeric	values	from	buffers	without
using	a	Type	definition.

Example

Dim	d	As	Double,	l	As	LongInt

d	=	1.125

l	=	CVLongInt(d)

Print	Using	"l	=	_&H&";	Hex(l)

Print	Using	"cvd(i)	=	&";	CVD(l)

Differences	from	QB

QB	did	not	support	integer	arguments.

See	also

MKD

CVS

CVLongInt

CVI 	

Converts	a	single-precision	floating-point	number	or	string	to	an	integer
variable	using	a	binary	copy

Syntax
Declare	Function	CVI	(ByVal	sng	As	Single)	As	Integer

Declare	Function	CVI	(ByRef	str	As	Const	String)	As	Integer

Declare	Function	CVI<bits>	(expr	As	DataType)	As	Integer<bits>

Usage
result	=	CVI(sng)

result	=	CVI(str)

result	=	CVI<bits>(expr)

Parameters
sng

A	Single	floating-point	number	with	a	binary	copy	of	an	integer	variable
stored	in	it.
str

A	String	with	a	binary	copy	of	an	integer	variable	stored	in	it.
bits

Specifies	a	size	of	integer	type	to	return.	The	types	and	sizes	of	expr
accepted	will	depend	on	the	corresponding	function	called.
expr

An	expression	that	will	be	copied	into	an	Integer<bits>.

Return	Value
An	Integer	or	Integer<bits>	variable	containing	a	binary	copy	of	the
input	expression.

Description
Returns	an	integer	value	using	the	binary	data	contained	in	a	Single,
or	a	String.	A	value	of	zero	(0)	is	returned	if	the	string	contains	fewer
characters	than	the	size	of	the	return	type.

CVI	is	used	to	convert	strings	created	with	MKI.

This	function	can	also	be	used	to	convert	32-bit	integer	values	from	a
memory	or	file	buffer	without	the	need	for	a	Type	structure.	However,
just	as	with	the	type	structure,	special	care	should	be	taken	when
using	CVI	to	convert	strings	that	have	been	read	from	a	buffer.

CVI	supports	an	optional	<bits>	parameter	before	the	argument.	If	bits
is	16,	CVShort	will	be	called	instead;	if	bits	is	32,	CVL	will	be	called;	if
bits	is	64,	CVLongInt	will	be	called.	The	return	type	and	accepted
argument	types	will	depend	on	which	function	is	called.	See	each
function's	page	for	more	information.

Example

Dim	i	As	Integer,	s	As	String

s	=	"ABCD"

i	=	CVI(s)

Print	Using	"s	=	""&""";	s

Print	Using	"i	=	_&H&";	Hex(i)

Dialect	Differences

In	the	-lang	qb	dialect,	CVI	expects	a	2-byte	string,	since	a	QB
integer	is	only	16	bits.	Only	the	first	two	bytes	of	the	string	are
used,	even	if	the	string	happens	to	be	longer	than	two	bytes.
In	the	-lang	qb	dialect,	CVI	will	not	take	a	floating-point
argument,	since	a	QB	integer	is	only	16	bits	and	there	is	no	16-
bit	floating-point	data	type.	Instead,	CVI<32>/CVI<64>	or
CVL/CVLongInt	may	be	used.

Differences	from	QB

In	QB	an	error	occurs	if	the	string	passed	is	fewer	than	two
bytes	in	length.
QB	did	not	support	floating-point	arguments.

QB	did	not	support	a	<bits>	parameter.

See	also

MKI

CVShort

CVL

CVLongInt

Integer

CVL 	

Converts	a	single-precision	floating-point	number	or	four-byte	string	to	an
integer	(Long)	variable

Syntax
Declare	Function	CVL	(ByVal	sng	As	Single)	As	Long

Declare	Function	CVL	(ByRef	str	As	Const	String)	As	Long

Usage
result	=	CVL(sng)

result	=	CVL(str)

Parameters
sng

A	Single	floating-point	number	with	a	binary	copy	of	an	integer	variable
stored	in	it.
str

A	String	at	least	four	bytes	in	length	with	a	binary	copy	of	an	integer
variable	stored	in	it.

Return	Value
A	Long	variable	to	copy	the	binary	copy	of	a	integer	to.

Description
Returns	a	32-bit	Long	integer	value	using	the	binary	data	contained	in	a
Single,	or	a	String	of	at	least	four	bytes	in	length.	A	value	of	zero	(0)	is
returned	if	the	string	is	less	than	four	bytes	in	length.

CVL	is	used	to	convert	4-byte	strings	created	with	MKL.

This	function	can	also	be	used	to	convert	32-bit	integer	values	from	a
memory	or	file	buffer	without	the	need	for	a	Type	structure.	However,
just	as	with	the	type	structure,	special	care	should	be	taken	when
using	CVL	to	convert	strings	that	have	been	read	from	a	buffer.

Example

Dim	l	As	Long,	s	As	String

s	=	"ABCD"

l	=	CVL(s)

Print	Using	"s	=	""&""";	s

Print	Using	"l	=	&";	l

Differences	from	QB

In	QB	an	error	occurs	if	the	string	passed	is	less	than	four	bytes
in	length.
QB	did	not	support	floating-point	arguments.

See	also

MKL

CVShort

CVI

CVLongInt

CVLongInt 	

Converts	a	double-precision	floating-point	number	or	eight-byte	string	to
a	LongInt	variable

Syntax
Declare	Function	CVLongInt	(ByVal	dbl	As	Double)	As	LongInt

Declare	Function	CVLongInt	(ByRef	str	As	Const	String)	As

LongInt

Usage
result	=	CVLongInt(dbl)

result	=	CVLongInt(str)

Parameters
dbl

A	Double	floating-point	number	with	a	binary	copy	of	a	LongInt	variable
stored	in	it.
str

A	String	at	least	eight	bytes	in	length	with	a	binary	copy	of	a	LongInt
variable	stored	in	it.

Return	Value
A	LongInt	variable	holding	a	binary	copy	of	the	input	variable.

Description
Returns	a	64-bit	LongInt	value	using	the	binary	data	contained	in	a
Double,	or	a	String	of	at	least	eight	bytes	in	length.	A	value	of	zero	(0)
is	returned	if	the	string	is	less	than	eight	bytes	in	length.

CVLongInt	is	used	to	convert	8-byte	strings	created	with	MKLongInt.

This	function	can	also	be	used	to	convert	64-bit	integer	values	from	a
memory	or	file	buffer	without	the	need	for	a	Type	structure.	However,
just	as	with	the	type	structure,	special	care	should	be	taken	when
using	CVLongInt	to	convert	strings	that	have	been	read	from	a	buffer.

Example

Dim	ll	As	LongInt,	s	As	String

s	=	"ABCDEFGH"

ll	=	CVLongInt(ll)

Print	Using	"s	=	""&""";	s

Print	Using	"ll	=	_&H&";	Hex(ll)

Differences	from	QB

In	QB	an	error	occurs	if	the	string	passed	is	less	than	eight
bytes	in	length.
QB	did	not	support	floating-point	arguments.

See	also

MKLongInt

CVShort

CVI

CVL

CVS 	

Converts	a	32-bit	integer	or	4-byte	string	to	a	single-precision	variable

Syntax
Declare	Function	CVS	(ByVal	i	As	Integer)	As	Single

Declare	Function	CVS	(ByRef	str	As	Const	String)	As	Single

Usage
result	=	CVS(i)

result	=	CVS(str)

Parameters
i

A	32-bit	Integer	with	a	binary	copy	of	a	single-precision	variable	stored
in	it.
str

A	String	at	least	4	bytes	in	length	with	a	binary	copy	of	a	single-
precision	variable	stored	in	it.

Return	Value
Returns	a	Single	value	holding	a	binary	copy	of	the	input	value.

Description
Does	a	binary	copy	from	a	32-bit	Integer	or	4-byte	String	to	a	Single
variable.	A	value	of	zero	(0.0)	is	returned	if	the	string	is	less	than	4
bytes	in	length.	The	result	will	make	sense	only	if	the	parameter
contained	a	IEEE-754	formatted	single-precision	value,	such	as	one
generated	by	CVI	or	MKS.

This	function	is	useful	to	read	numeric	values	from	buffers	without
using	a	Type	definition.

Example

Dim	f	As	Single,	i	As	Integer

f	=	1.125

i	=	CVI(f)

Print	Using	"i	=	_&H&";	Hex(i)

Print	Using	"cvs(i)	=	&";	CVS(i)

Differences	from	QB

QB	did	not	support	integer	arguments.

See	also

MKS

CVD

CVI

CVShort 	

Converts	a	two-byte	string	to	a	Short	integer	variable

Syntax
Declare	Function	CVShort	(ByRef	str	As	Const	String)	As	Short

Usage
result	=	CVShort(str)

Parameters
str

A	String	at	least	two	bytes	in	length	with	a	binary	copy	of	a	Short
integer	variable	stored	in	it.

Return	Value
Short	variable	holding	the	binary	copy	of	a	Keypgshort.

Description
Returns	a	16-bit	Short	integer	value	using	the	binary	data	contained	in
a	String	of	at	least	two	bytes	in	length.	A	value	of	zero	(0)	is	returned	if
the	string	is	less	than	two	bytes	in	length.

CVShort	is	used	to	convert	2-byte	strings	created	with	MKShort.

This	function	can	also	be	used	to	convert	16-bit	integer	values	from	a
memory	or	file	buffer	without	the	need	for	a	Type	structure.	However,
just	as	with	the	type	structure,	special	care	should	be	taken	when
using	CVShort	to	convert	strings	that	have	been	read	from	a	buffer.

Example

Dim	si	As	Short,	s	As	String

s	=	"AB"

si	=	CVShort(s)

Print	Using	"s	=	""&""";	s

Print	Using	"si	=	_&H&";	Hex(si)

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Cvshort.

Differences	from	QB

In	QB	this	function	is	called	CVI

See	also

MKShort

CVI

CVL

CVLongInt

Data 	

Statement	to	store	data	at	compile	time.

Syntax
Data	constant_expression1	[,constant_expression2]...

Description
Data	stores	a	list	of	constant	numeric	or	alphabetical	expressions	that	are	evaluated	at
compile	time	(except	with	-lang	qb)	and	stored	as	constants	that	can	be	read	into	variables
by	using	Read.

All	the	Data	statements	in	the	program	behave	as	a	single	chained	list;	after	the	last	element
of	one	Data	statement	is	read,	the	first	element	of	the	following	Data	statement	will	be	read.
The	program	should	not	attempt	to	Read	after	the	last	Data	element.	The	results	are	(in	all
dialects)	undefined,	and	the	program	may	crash	(Page	Fault).

Data	statements	are	only	visible	from	within	the	module	in	which	they	are	defined;	they	must
be	only	entered	in	module-level	code.

Data	constants	can	only	be	of	simple	types	(numeric	or	string).	A	numeric	value	can	be	read
as	a	numeric	literal	into	a	string.	A	string	read	into	a	numeric	variable	will	be	evaluated	by	the
Val	function.	Consts	can	be	used	as	items	of	data	except	in	the	-lang	qb
names	are	considered	as	normal	text.

The	"Restore	label"	statement	makes	the	first	Data	item	after	the	label
read,	allowing	the	user	to	choose	specific	sections	of	data	to	read.

Data	is	normally	used	to	initialize	variables.	FreeBASIC	also	allows	the	initialization	of	static
variables	when	they	are	Dimensioned	-	see	Variable	Initializers	for	more	information.

Example

'	Create	an	array	of	5	integers	and	a	string	to	hold	the	data.

Dim	As	Integer	h(4)

Dim	As	String	hs

Dim	As	Integer	readindex

'	Set	up	to	loop	5	times	(for	5	numbers...	check	the	data)

For	readindex	=	0	To	4

		'	Read	in	an	integer.

		Read	h(readindex)

		'	Display	it.

		Print	"Number"	;	readindex	;	"	=	"	;	h(readindex

Next	readindex

'	Spacer.

Print

'	Read	in	a	string.

Read	hs

'	Print	it.

Print		"String	=	"	+	hs

'	Await	a	keypress.

Sleep

'	Exit	program.

End

'	Block	of	data.

Data	3,	234,	435/4,	23+433,	87643,	"Good"	+	"Bye!"

Dialect	Differences

-lang	fb	and	-lang	fblite	considers	data	items	as	constant	expressions	that	are
evaluated	during	compilation	and	its	result	stored	in	the	program.
-lang	qb	considers	unquoted	words,	including	names	of	variables	and	constants,	as
literal	strings,	and	stores	them	without	change,	as	in	QBASIC.	Unquoted	strings	are

delimited	by	commas,	and	a	colon	or	a	line-break	signifies	the	end	of	the	
statement.	Unquoted	strings	are	trimmed	of	whitespace	at	the	beginning	and	end.

Differences	from	QB

Outside	of	the	-lang	qb	dialect,	alphabetic	string	literals	must	be	enclosed	within
quotation	marks,	in	QBASIC	this	was	optional.
In	QBASIC	empty	items	evaluated	to	number	0	or	to	empty	strings,	in	FreeBASIC	they
give	a	compile	error.	In	QBASIC	a	comma	at	the	end	of	the	statement	made	an
additional,	empty	item,	evaluated	to	0	or	an	empty	string.	In	FreeBASIC	they	give	a
compile	error.

See	also

Read

Restore

Date 	

Returns	the	current	system	date	as	a	string

Syntax
Declare	Function	Date	()	As	String

Usage
result	=	Date

Return	Value
Returns	the	current	system	date,	in	the	format	mm-dd-yyyy

Description
None

Example

Print	Date	'	prints	the	current	date

Differences	from	QB

The	QB	DATE	statement	(to	set	the	system	date)	is	now	called
SetDate.

See	also

SetDate

Time

Timer

DateAdd 	

Offset	a	date	with	a	specified	interval

Syntax
Declare	Function	DateAdd	(ByRef	interval	As	Const	String,	ByVal

number	As	Double,	ByVal	date_serial	As	Double)	As	Double

Usage
#include	"vbcompat.bi"

result	=	DateAdd(interval,	number,	date_serial)

Parameters
interval

string	indicating	which	period	of	time	corresponds	to	one	unit	of	number
number

the	number	of	intervals	to	add	to	the	base	date.	The	number	will	be
rounded	to	the	nearest	integer.
date_serial

the	base	date

Return	Value
Returns	a	Date	Serial	corresponding	to	the	received	date_serial	plus
the	number	of	intervals.

Description
Interval	is	specified	as	follows:

value interval

yyyy years

q quarter(three	months)

m months

ww weeks

d,w,y days

h hours

n minutes

s seconds

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or
datetime.bi	is	included.

Example

#include	"vbcompat.bi"

Const	fmt	=	"ddddd	ttttt"

Dim	d	As	Double

d	=	Now()

Print	"1	hour	from	now	is	";

Print	Format(DateAdd("h",	1,	d),	fmt)

Print	"1	day	from	now	is	";

Print	Format(DateAdd("d",	1,	d),	fmt)

Print	"1	week	from	now	is	";

Print	Format(DateAdd("ww",	1,	d),	fmt)

Print	"1	month	from	now	is	";

Print	Format(DateAdd("m",	1,	d),	fmt)

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	Visual	Basic.

See	also

Date	Serials

DateDiff 	

Gets	the	difference	of	two	dates	measured	by	a	specified	interval

Syntax
Declare	Function	DateDiff	(ByRef	interval	As	Const	String,	ByVal

ByVal	serial2	As	Double,	ByVal	firstdayofweek	As	Long	=	fbUseSystem,	

firstdayofyear	As	Long	=	fbUseSystem)	As	Long

Usage
#include	"vbcompat.bi"

result	=	DateDiff(interval,	date_serial1,	date_serial2	[,	firstdayofWeek

firstweekofyear]])

Parameters
interval

the	unit	of	time	(interval)	with	which	to	measure	the	difference
date_serial1

starting	date	serial
date_serial2

end	date	serial
firstdayofweek

first	day	of	the	week
firstdayofyear

first	day	of	the	year

Return	Value
Returns	an	integer	corresponding	to	the	number	of	intervals	found	between	two	

If	date_serial1	>	date_serial2,	the	result	is	negative.

Description

interval	is	specified	as	follows:

value interval

yyyy years

q quarter(three	months)

m months

w seven	day	periods

ww calendar	weeks

d,y days

h hours

n minutes

s seconds

first_dayofweek	Affects	the	counting	when	'ww'	interval	is	used.

value first	day	of	week constant

omitted sunday 	

0 local	settings fbUseSystem

1 sunday fbSunday

2 monday fbMonday

3 tuesday fbTuesday

4 wednesday fbWednesday

5 thursday fbThursday

6 friday fbFriday

7 saturday fbSaturday

first_weekofyear	specifies	which	year	(previous	or	next)	that	the	week	which	spans	the	end	of
one	year	and	the	beginning	of	the	next	should	included	with.

value first	week	of	year constant

0 local	settings fbUseSystem

1 January	1's	week fbFirstJan1

2 first	weeks	having	4	days	in	the	year fbFirstFourDays

3 first	full	week	of	year fbFirstFullWeek

Notice	if	you	do	an	arithmetical	subtraction	of	two	date	serials	you	get	the	difference	in	days.

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or	datetime.bi

Example

#include	"vbcompat.bi"

Dim	s	As	String,	d1	As	Double,	d2	As	Double

Line	Input	"Enter	your	birthday:	",	s

If	IsDate(s)	Then

		d1	=	DateValue(s)

		d2	=	Now()

		Print	"You	are	"	&	DateDiff("yyyy",	d1,	d2)	&	

		Print	"You	are	"	&	DateDiff("d",	d1,	d2)	&	"	days	old."

		Print	"You	are	"	&	DateDiff("s",	d1,	d2)	&	"	seconds	old."

Else

		Print	"Invalid	date"

End	If

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	Visual	Basic.

See	also

Date	Serials

DatePart 	

Gets	an	interval	from	a	date

Syntax
Declare	Function	DatePart	(ByRef	interval	As	Const	String,	ByVal

date_serial	As	Double,	ByVal	firstdayofweek	As	Long	=

fbUseSystem,	ByVal	firstdayofyear	As	Long	=	fbUseSystem)	As	Long

Usage
#include	"vbcompat.bi"

result	=	DatePart(interval,	date_serial,	first_dayofWeek	[,

first_week_of_year])

Parameters
interval

string	indicating	which	part	of	the	date	is	required
date_serial

the	date	serial	to	decode	
firstdayofweek

first	day	of	the	week
firstdayofyear

first	day	of	the	year

Return	Value
Return	an	integer	representing	the	interval	in	the	Date	Serial.

Description

interval	string	indicating	which	part	of	the	date	is	required	is	specified
as	follows:

value interval

yyyy years

q quarter(three	months)

m months

w weekday

ww week	of	the	year

y day	of	the	year

d day	of	the	month

h hours

n minutes

s seconds

first_dayofweek	Affects	the	output	when	'w'	interval	is	required.

value first	day	of	week constant

omitted sunday 	

0 local	settings fbUseSystem

1 sunday fbSunday

2 monday fbMonday

3 tuesday fbTuesday

4 wednesday fbWednesday

5 thursday fbThursday

6 friday fbFriday

7 saturday fbSaturday

first_weekofyear	specifies	which	year	(previous	or	next)	that	the	week
which	spans	the	end	of	one	year	and	the	beginning	of	the	next	should
included	with.	Affects	the	output	when	'ww'	interval	is	required.

value first	week	of	year constant

0 local	settings fbUseSystem

1 January	1's	week fbFirstJan1

2 first	weeks	having	4	days	in	the	year fbFirstFourDays

3 first	full	week	of	year fbFirstFullWeek

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or
datetime.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	d	As	Double

d	=	Now()

Print	"Today	is	day	"	&	DatePart("y",	d);

Print	"	in	week	"	&	DatePart("ww",	d);

Print	"	of	the	year	"	&	DatePart("yyyy",	d)

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	Visual	Basic.

See	also

Date	Serials

DateSerial 	

Creates	a	date	serial

Syntax
Declare	Function	DateSerial	(ByVal	year	As	Long,	ByVal	month	As

Long,	ByVal	day	As	Long)	As	Long

Usage
#include	"vbcompat.bi"

result	=	DateSerial(year,	month,	day)

Parameters
year

the	year
month

the	month	of	the	year
day

the	day	of	the	month

Return	Value
Returns	a	date	serial	containing	the	date	formed	by	the	values	in	the
year,	month	and	day	parameters.The	date	serial	returned	has	no
decimal	part.

Description
The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or
datetime.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	a	As	Double	=	DateSerial(2005,	11,	28)

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss")	

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials
DateSerial

TimeValue

DateValue

DateValue 	

Returns	a	Date	Serial	from	a	string

Syntax
Declare	Function	DateValue	(ByRef	date_string	As	String)	As	Double

Usage
#include	"vbcompat.bi"

result	=	DateValue(date_string)

Parameters
date_string

the	string	to	convert	to	a	date	serial

Return	Value
Returns	a	Date	Serial	from	a	date	string.

Description
The	date	string	must	be	in	the	format	set	in	the	regional	settings	of	the	Operating
System.	

DateValue(Date())	will	work	correctly	only	if	the	regional	settings	specify	the	same
short	date	format	QB	used	(mm-dd-yyyy).	Consider	using	the	Now	function	in	the
expression	Fix(Now())	to	obtain	the	current	date	as	a	date	serial.

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or	datetime.bi
included.

Example

#include	"vbcompat.bi"

Dim	As	Integer	v1,	v2

Dim	As	String		s1,	s2

Print	"Enter	first	date:	";

Line	Input	s1

If	IsDate(s1)	=	0	Then

		Print	"not	a	date"

		End

End	If

Print	"Enter	second	date:	";

Line	Input	s2

If	IsDate(s2)	=	0	Then

		Print	"not	a	date"

		End

End	If

''	convert	the	strings	to	date	serials

v1	=	DateValue(s1)

v2	=	DateValue(s2)

Print	"Number	of	days	between	dates	is	"	&	Abs(v2

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials
DateSerial

TimeValue

Day 	

Gets	the	day	of	the	month	from	a	Date	Serial

Syntax
Declare	Function	Day	(ByVal	date_serial	As	Double)	As	Long

Usage
#include	"vbcompat.bi"

result	=	Day(date_serial)

Parameters
date_serial

the	date

Return	Value
Returns	the	day	of	the	month	from	a	variable	containing	a	date	in	Date
Serial	format.	

Description

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is
included.

Example

#include	"vbcompat.bi"

Dim	ds	As	Double	=	DateSerial(2005,	11,	28)

Print	Format(ds,	"yyyy/mm/dd	");	Day(ds)

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

Deallocate 	

Frees	previously	allocated	memory

Syntax
Declare	Sub	Deallocate	cdecl	(ByVal	pointer	As	Any	Ptr)

Usage
Deallocate(pointer)

Parameters
pointer

the	address	of	the	previously	allocated	buffer.

Description
This	procedure	frees	memory	that	was	previously	allocated	with	Allocate
returns,	pointer	will	be	rendered	invalid	(pointing	to	an	invalid	memory	address),	and	its	use	(dereferencing	or	calling
Deallocate	again)	will	result	in	undefined	behavior.

Calling	Deallocate	on	a	null	pointer	induces	no	action.

Deallocate	is	an	alias	for	the	C	runtime	library's	free,	so	it's	not	guaranteed	to	be	thread	safe	in	all	platforms.

Example
The	following	example	shows	how	to	free	previously	allocated	memory.	Note	that	the	pointer	is	set	to	null	following	the
deallocation:

Sub	DeallocateExample1()

			Dim	As	Integer	Ptr	integerPtr	=	Allocate(Len(

																																																															

			*integerPtr	=	420																																					

			Print	*integerPtr

			Deallocate(integerPtr)																														

			integerPtr	=	0																																								

End	Sub

			DeallocateExample1()

			End	0

Although	in	this	case	it	is	unnecessary	since	the	function	immediately	exits	afterwards,	setting	the	pointer	to	null	is	a	good	habit
to	get	into.	If	the	function	deallocated	memory	from	a	pointer	that	was	passed	in	by	reference,	for	instance,	the	pointer	that	was
used	in	the	function	call	will	be	rendered	invalid,	and	it	is	up	to	the	caller	to	either	reassign	the	pointer	or	set	it	to	null.	Example	3
shows	how	to	correctly	handle	this	kind	of	situation,	and	the	next	example	shows	the	effects	of	deallocating	memory	with
multiple	references.

In	the	following	example,	a	different	pointer	is	used	to	free	previously	allocated	memory.

''	WARNING:	"evil"	example	showing	how	things	should	NOT	be	done

Sub	DeallocateExample2()

			Dim	As	Integer	Ptr	integerPtr	=	Allocate(Len(

			''	initialize	^^^	pointer	to	new	memory

			Dim	As	Integer	Ptr	anotherIntegerPtr	=	integerPtr

			''	initialize	^^^	another	pointer	to	the	same	memory

			*anotherIntegerPtr	=	69																					''	use	other	pointer

			Print	*anotherIntegerPtr

			Deallocate(anotherIntegerPtr)													''	free	memory	back	to	system

			anotherIntegerPtr	=	0																							''	and	zero	other	pointer

''	*integerPtr	=	420																											''	undefined	behavior;	original

																																															''	pointer	is	invalid

End	Sub

			DeallocateExample2()

			End	0

Note	that	after	the	deallocation,	both	pointers	are	rendered	invalid.	This	illustrates	another	one	of	the	ways	that	bugs	can	arise
when	working	with	pointers.	As	a	general	rule,	only	deallocate	memory	previously	allocated	when	you	know	that	there	is	only
one	(1)	pointer	currently	pointing	at	it.

Function	createInteger()	As	Integer	Ptr

			Return	Allocate(Len(Integer))																					

End	Function																																													

Sub	destroyInteger(ByRef	someIntegerPtr	As	Integer

			Deallocate(someIntegerPtr)																										

			someIntegerPtr	=	0																																				

End	Sub

Sub	DeallocateExample3()

			Dim	As	Integer	Ptr	integerPtr	=	createInteger()

																																																									

			*integerPtr	=	420																																					

			Print	*integerPtr

			destroyInteger(integerPtr)																										

			Assert(integerPtr	=	0)																														

End	Sub

			DeallocateExample3()

			End	0

In	the	program	above,	a	reference	pointer	in	a	function	is	set	to	null	after	deallocating	the	memory	it	points	to.	An	
is	used	to	test	if	the	original	pointer	is	in	fact	null	after	the	function	call.	This	example	implies	the	correct	way	to	pass	pointers	to
functions	that	deallocate	the	memory	they	point	to	is	by	reference.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Allocate

Reallocate

Declare 	

Declares	a	module-level	or	member	procedure

Syntax
Declare	Sub	name	[param_list]

Declare	Function	name	[param_list]	As	return_type

Declare	Operator	op_symbol	param_list	[As	return_type]

Type	T

Declare	Constructor	[param_list]

Declare	Destructor

Declare	Sub	name	[param_list]

Declare	Function	name	[param_list]	As	return_type

Declare	Operator	name	[param_list]	[As	return_type]

Declare	Property	name	[([param_list])]	[As	return_type]

End	Type

Parameters
param_list

Parenthesized	comma-separated	list	of	parameters.
return_type

The	return	type	of	a	Function,	Operator,	or	Property	procedure.
name

The	name	or	symbol	of	the	routine.
op_symbol

The	name	or	symbol	of	an	operator.
T

The	name	of	a	new	user-defined	type.

Description
The	Declare	statement	declares	a	Sub,	Function,	Operator,	Constructor
routine.	
The	routine	can	be	referred	to	in	code	without	seeing	its	definition,	although	it	must	be	defined	somewhere.	Essentially,
the	Declare	statement	introduces	a	routine,	and	states	that	its	definition	is	elsewhere.	For	example,	a	function	can	be
declared	at	the	top	of	a	source	module,	called,	then	defined	at	the	bottom	of	the	source	file,	as	shown	below	the
example.

A	routine's	declaration	is	almost	identical	to	the	first	line	of	its	definition,	except	the	declaration	is	preceded	by	the
Declare	keyword	and	has	no	body.	Also,	attributes	such	as	Export	are	left	off	the	declaration.

FreeBASIC,	as	QB,	does	not	require	the	declaration	of	the	functions	unless	they	are	defined	in	a	different	source	file	or
in	the	same	file	past	the	point	where	they	are	called.	This	is	no	longer	true	for	routines	declared	inside	a	
which	must	always	be	declared	first	in	the	Type's	body	before	use.	If	you	do	not	declare	
an	error.

As	every	file	using	a	function	must	have	its	declaration,	declarations	are	usually	kept	in	one	or	more	
usage	of	the	function	by	any	module	that	needs	it	using	the	#include	statement.	

Example
Module-level	Function:

''	declare	the	function	sum	which	takes	two	integers	and	returns	an	integer

Declare	Function	sum(As	Integer,	As	Integer)	As	

			Print	"the	sum	of	420	and	69	is:	"	&	sum(420,	

''	define	the	function	sum	which	takes	two	integers	and	returns	an	integer

Function	sum(a	As	Integer,	b	As	Integer)	As	Integer

			Return	a	+	b

End	Function

Type-level	Sub:

Type	my_type

				my_data	As	Integer

				Declare	Sub	increment_data()

End	Type

Sub	my_type.increment_data()

				my_data	+=	1

End	Sub

Dim	As	my_type	an_instance

an_instance.my_data	=	68

an_instance.increment_data()

Print	an_instance.my_data

Dialect	Differences

In	the	-lang	fb	dialect,	ByVal	is	the	default	parameter	passing	convention.
In	the	-lang	qb	and	-lang	deprecated	dialects,	ByRef	is	the	default	parameter	passing	convention.
Type-level	Sub/Function/Operator/Constructor/Destructor's	are	only	allowed	in	

Differences	from	QB

In	FreeBASIC,	the	parameter	names	are	optional.

See	also

Sub

Function

Operator

Property

Constructor

Destructor

Constructor	(Module)

Destructor	(Module)

Type

Dim

Alias

DefByte 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefByte	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefByte	specifies	that	variables	and	arrays	which	aren't	declared	with	a
data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type	Byte	if
the	first	letter	of	their	names	matches	a	certain	letter	or	lies	within	an
inclusive	range	of	letters.

Example
This	will	make	bNumber	a	Byte	number	since	it's	first	letter	starts	with	b:

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

DefByte	b

Dim	bNumber

Dialect	Differences

Available	in	the	-lang	fblite	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Defbyte.

Differences	from	QB

New	to	FreeBASIC

See	also

Byte

DefInt

DefUByte

Dim

DefDbl 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefDbl	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefDbl	specifies	that	variables	and	arrays	which	aren't	declared	with	a	data	type	-	or	not
declared	at	all	-	are	implicitly	declared	of	type	Double	if	the	first	letter	of	their	names
matches	a	certain	letter	or	lies	within	an	inclusive	range	of	letters.

Example
This	will	make	aNum	a	Double-precision	decimal	number	since	it	is	in	the	range	of	a-d:

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

DefDbl	a-d

Dim	aNum	'implicit:	As	Double

Print	Len(aNum)	'	Prints	8,	the	number	of	bytes	in	a	double.

Dialect	Differences

Only	available	in	the	-lang	qb	and	-lang	fblite	dialects.

Differences	from	QB

None

See	also

DefInt

DefSng

Dim

Double

defined 	

Preprocessor	function	to	test	if	a	symbol	has	been	defined

Syntax
defined	(symbol_name)

Parameters
symbol_name

Name	of	the	symbol	to	test

Return	Value
Returns	non-zero	(-1)	if	the	symbol	has	been	defined,	otherwise	returns	zero	(

Description
Given	the	symbol	name,	the	defined()	preprocessor	function	returns	true	if	the	symbol
has	been	defined	-	or	false	if	the	symbol	is	unknown.

This	is	used	mainly	with	#if.

Similar	to	#ifdef	except	it	allows	more	than	one	check	to	occur	because	of	its
flexibility.

Example

'e.g.	-	which	symbols	are	defined	out	of	a,	b,	c,	and	d	?

Const	a	=	300

#define	b	12

Dim	c	As	Single

#if	defined(a)

	Print	"a	is	defined"

#endif

#if	defined(b)

	Print	"b	is	defined"

#endif

#if	defined(c)

	Print	"c	is	defined"

#endif

#if	defined(d)

	Print	"d	is	defined"

#endif

Differences	from	QB

New	to	FreeBASIC

See	also

#define

#macro

#if

#else	
#elseif	
#endif	
#ifdef

#ifndef

#undef

DefInt 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefInt	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefInt	specifies	that	variables	and	arrays	which	aren't	declared	with	a
data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type
Integer	if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies
within	an	inclusive	range	of	letters.

Example
This	will	make	iNumber	an	Integer	number	since	its	first	letter	starts
with	i.

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

DefInt	i

Dim	iNumber

Dialect	Differences

Only	available	in	the	-lang	qb	and	-lang	fblite	dialects.

Differences	from	QB

None

See	also

DefByte

DefDbl

DefLng

Deflongint

DefShort

DefSng

DefStr

Integer

DefLng 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefLng	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefLng	specifies	that	variables	and	arrays	which	aren't	declared	with	a	data	type	-	or	not
declared	at	all	-	are	implicitly	declared	of	type	Long	if	the	first	letter	of	their	names	matches	a
certain	letter	or	lies	within	an	inclusive	range	of	letters.

Example
This	will	make	lNumber	a	Long	integer	number	since	it	starts	with	l.

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

DefLng	l

Dim	lNumber	'	implicit:	As	Long

Print	Len(lNumber)	'	Displays	4,	the	number	of	bytes	in	a	long.

Dialect	Differences

Only	available	in	the	-lang	qb	and	-lang	fblite	dialects.

Differences	from	QB

None

See	also

DefInt

Defulongint

Dim

LongInt

Deflongint 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
Deflongint	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
Deflongint	specifies	that	variables	and	arrays	which	aren't	declared
with	a	data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type
LongInt	if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies
within	an	inclusive	range	of	letters.

Example
This	will	make	lNumber	a	LongInt	number	since	it's	first	letter	starts	with
l.

''	Compile	with	-lang	fblite

#lang	"fblite"

deflongint	l

Dim	lNumber

Dialect	Differences

Available	in	the	-lang	fblite	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the

alias	__Deflongint.

Differences	from	QB

New	to	FreeBASIC

See	also

DefInt

Defulongint

Dim

LongInt

DefShort 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefShort	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefShort	specifies	that	variables	and	arrays	which	aren't	declared	with
a	data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type	Short
if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies	within	an
inclusive	range	of	letters.

Example
This	will	make	sNumber	a	Short	number	since	its	first	letter	starts	with	s

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

DefShort	s

Dim	sNumber

Dialect	Differences

Available	in	the	-lang	fblite	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Defshort.

Differences	from	QB

New	to	FreeBASIC
In	QBasic,	to	make	variables	default	to	a	2	byte	integer,	DEFINT
is	used.

See	also

DefInt

DefUShort

Dim

Integer

Short

DefSng 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefSng	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefSng	specifies	that	variables	and	arrays	which	aren't	declared	with	a
data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type	Single
if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies	within	an
inclusive	range	of	letters.

Example
This	will	make	sNumber	and	yNumber	a	Single-precision	decimal	number
since	it	is	in	the	range	of	s-z.

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

DefSng	s-z

Dim	sNumber,	yNumber

Dialect	Differences

Only	available	in	the	-lang	qb	and	-lang	fblite	dialects.

Differences	from	QB

None

See	also

DefInt

DefDbl

Single

DefStr 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefStr	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefStr	specifies	that	variables	and	arrays	which	aren't	declared	with	a
data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type	String
if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies	within	an
inclusive	range	of	letters.

Example
This	will	make	sMessage	a	String	since	it	starts	with	s.

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

DefStr	s

Dim	sMessage

Dialect	Differences

Only	available	in	the	-lang	qb	and	-lang	fblite	dialects.

Differences	from	QB

None

See	also

DefInt

DefSng

DefLng

DefDbl

Dim

String

DefUByte 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefUByte	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefUByte	specifies	that	variables	and	arrays	which	aren't	declared	with
a	data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type	UByte
if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies	within	an
inclusive	range	of	letters.

Example
This	will	make	uNumber	a	UByte	number	since	it's	first	letter	starts	with	u.

''	Compile	with	-lang	fblite

#lang	"fblite"

DefUByte	u

Dim	uNumber

Dialect	Differences

Available	in	the	-lang	fblite	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Defubyte.

Differences	from	QB

New	to	FreeBASIC

See	also

DefByte

DefInt

Dim

UByte

DefUInt 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefUInt	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefUInt	specifies	that	variables	and	arrays	which	aren't	declared	with	a
data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type
UInteger	if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies
within	an	inclusive	range	of	letters.

Example
This	will	make	uNumber	a	UInteger	number	since	its	first	letter	starts
with	u.

''	Compile	with	-lang	fblite

#lang	"fblite"

DefInt	u

Dim	uNumber

Dialect	Differences

Available	in	the	-lang	fblite	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the

alias	__Defuint.

Differences	from	QB

New	to	FreeBASIC

See	also

DefInt

Dim

UInteger

Defulongint 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
Defulongint	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
Defulongint	specifies	that	variables	and	arrays	which	aren't	declared
with	a	data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type
ULongInt	if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies
within	an	inclusive	range	of	letters.

Example
This	will	make	lNumber	a	ULongInt	number	since	its	first	letter	starts
with	l.

''	Compile	with	-lang	fblite

#lang	"fblite"

defulongint	l

Dim	lNumber

Dialect	Differences

Available	in	the	-lang	fblite	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the

alias	__Defulongint.

Differences	from	QB

New	to	FreeBASIC

See	also

DefInt

Deflongint

Dim

ULongInt

DefUShort 	

Specifies	a	default	data	type	for	a	range	of	variable	names

Syntax
DefUShort	start_letter[-end_letter][,	...]

Parameters
start_letter

the	first	letter	in	the	range
end_letter

the	last	letter	in	the	range

Description
DefUShort	specifies	that	variables	and	arrays	which	aren't	declared
with	a	data	type	-	or	not	declared	at	all	-	are	implicitly	declared	of	type
UShort	if	the	first	letter	of	their	names	matches	a	certain	letter	or	lies
within	an	inclusive	range	of	letters.

Example
This	will	make	uNumber	a	UShort	number	since	its	first	letter	starts	with
u.

''	Compile	with	-lang	fblite

#lang	"fblite"

DefUShort	u

Dim	uNumber

Dialect	Differences

Available	in	the	-lang	fblite	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the

alias	__Defushort.

Differences	from	QB

New	to	FreeBASIC

See	also

DefInt

DefShort

Dim

UShort

Operator	Delete 	

Operator	to	delete	data	allocated	with	the	New	operator

Syntax
Declare	Operator	Delete	(buf	As	Any	Ptr)

Declare	Operator	delete[]	(buf	As	Any	Ptr)

Usage
Delete	buf

or

Delete[]	buf

Parameters
buf	
A	pointer	to	memory	that	has	been	allocated	by	New	or	New[]	(a	typed	pointer	must	be	provided	in
accordance	to	the	data	type	to	delete).

Description
Delete	is	used	to	destroy	and	free	the	memory	of	an	object	created	with	
destructor	will	be	called.	Delete	should	only	be	used	with	addresses	returned	from	

The	array	version	of	Delete,	Delete[],	is	used	to	destroy	an	array	of	objects	previously	created	with	
Destructors	will	be	called	here	as	well.

Delete	must	be	used	with	addresses	returned	from	New,	and	Delete[]	with	
match	the	different	versions	of	the	operators.

After	the	memory	is	deleted,	the	buf	pointer	will	be	pointing	at	invalid	memory.	Calling	
same	pointer	value	leads	to	undefined	behaviour.	It	may	be	a	good	idea	to	set	the	
order	to	guard	against	later	code	using	it	accidentally,	since	null	pointer	dereferences	are	easier	to	find
and	debug.

Calling	Delete	on	a	null	pointer	induces	no	action.

Example

Type	Rational

				As	Integer	numerator,	denominator

End	Type

'	Create	and	initialize	a	Rational,	and	store	its	address.

Dim	p	As	Rational	Ptr	=	New	Rational(3,	4)

Print	p->numerator	&	"/"	&	p->denominator

'	Destroy	the	rational	and	give	its	memory	back	to	the	system.	

Delete	p

'	Set	the	pointer	to	null	to	guard	against	future	accesses

p	=	0

'	Allocate	memory	for	100	integers,	store	the	address	of	the	first	one.

Dim	p	As	Integer	Ptr	=	New	Integer[100]

'	Assign	some	values	to	the	integers	in	the	array.

For	i	As	Integer	=	0	To	99

				p[i]	=	i

Next

'	Free	the	entire	integer	array.

Delete[]	p

'	Set	the	pointer	to	null	to	guard	against	future	accesses

p	=	0

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

New

Deallocate

Destructor 	

Called	automatically	when	a	class	or	user	defined	type	goes	out	of	scope
or	is	destroyed

Syntax
Type	typename

field	declarations

Declare	Destructor	()

End	Type

Destructor	typename	()	[Export]

statements

End	Destructor

Parameters
typename	
name	of	the	Type	of	Class

Description
The	destructor	method	is	called	when	a	user	defined	Type	or	Class
variable	goes	out	of	scope	or	is	destroyed	explicitly	with	the	Delete
operator.

typename	is	the	name	of	the	type	for	which	the	Destructor	method	is
declared	and	defined.	Name	resolution	for	typename	follows	the	same
rules	as	procedures	when	used	in	a	Namespace.

The	Destructor	method	is	passed	a	hidden	This	parameter	having	the
same	type	as	typename.

The	destructor	in	a	type	is	called	before	the	destructors	on	any	of	its
fields.	Therefore,	all	fields	are	accessible	with	the	hidden	This
parameter	in	the	destructor	body.

Only	one	destructor	may	be	declared	and	defined	per	type.

Since	the	End	statement	does	not	close	any	scope,	object	destructors

will	not	automatically	be	called	if	the	End	statement	is	used	to	terminate
the	program.

Destructor	can	be	also	called	directly	from	the	typename	instance	like
the	other	member	methods	(Sub)	and	with	the	same	syntax,	i.e.	using	a
member	access	operator,	e.g.	obj.Destructor().	The	object,	and	all	its
members,	are	assumed	to	be	constructed	and	in	a	valid	state,
otherwise	its	effects	are	undefined	and	may	cause	crashes.	This	syntax
is	useful	in	cases	where	obj	has	been	constructed	manually,	e.g.	with
obj.Constructor()	or	Placement	New.

Example

Type	T

		value	As	ZString	*	32

		Declare	Constructor	(init_value	As	String)

		Declare	Destructor	()

End	Type

Constructor	T	(init_value	As	String)

		value	=	init_value

		Print	"Creating:	";	value

End	Constructor

Destructor	T	()

		Print	"Destroying:	";	value

End	Destructor

Sub	MySub

		Dim	x	As	T	=	("A.x")

End	Sub

Dim	x	As	T	=	("main.x")

Scope

		Dim	x	As	T	=	("main.scope.x")

End	Scope

MySub

Output:

Creating:	main.x

Creating:	main.scope.x

Destroying:	main.scope.x

Creating:	A.x

Destroying:	A.x

Destroying:	main.x

Dialect	Differences

Object-related	features	are	supported	only	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Class

Constructor

Delete

Destructor	(Module)

Type

Destructor	(Module) 	

Specifies	execution	of	a	procedure	at	program	termination

Syntax
[Public	|	Private]	Sub	identifier	[Alias	"external_identifier"]	[()]	

[Static]

{	procedure	body	}

End	Sub

Description
Defines	a	procedure	to	be	automatically	called	from	a	compiled	program's	end-code.	
generated	by	the	compiler	and	is	executed	when	the	program	terminates	normally.	
defined	as	destructors	may	be	used	the	same	way	as	ordinary	procedures,	that	is,	they	may	be
called	from	within	module-level	code,	as	well	as	other	procedures.	

The	procedure	must	have	an	empty	parameter	list.	A	compile-time	error	will	be	generated	if	the
Destructor	keyword	is	used	in	a	Sub	definition	having	one	or	more	parameters.	In	a	set	of
overloaded	procedures,	only	one	(1)	destructor	may	be	defined	because	of	the	ambiguity	of
having	multiple	Subs	which	take	no	arguments.

In	a	single	module,	destructors	normally	execute	in	the	order	in	which	they	are	defined.

The	priority	attribute,	an	integer	between	101	and	65535,	can	be	used	to	force	destructors	to	be
executed	in	a	certain	order.	The	value	of	priority	has	no	specific	meaning,	only	the	relationship
of	the	number	with	other	destructor	priorities.	101	is	the	lowest	priority	and	is	executed	last.	
destructors	having	a	priority	attribute	are	executed	after	destructors	with	no	attribute.	
priority	value	of	65535	is	the	same	as	not	assigning	a	priority	value.

A	module	may	define	multiple	destructor	procedures.	Destructor	procedures	may	also	appear	in
more	than	one	module.	All	procedures	defined	with	the	syntax	shown	above	will	be	added	to	the
list	of	procedures	to	be	called	during	the	program's	termination.

The	order	in	which	destructors	defined	in	multiple	modules	are	executed	is	known	only	at	link
time.	Therefore,	special	care	should	be	taken	when	using	destructors	that	may	call	on	a
secondary	module	also	defining	a	destructors.	In	such	a	case	it	is	advisable	to	use	a	single
destructor	that	explicit	calls	termination	procedures	in	multiple	modules	to	ensure	a	graceful
termination	of	the	application.

Destructors	will	be	called	if	the	program	terminates	normally	or	if	error-checking	is	enabled	and
the	program	terminates	abnormally.

Example

Sub	pauseonexit	Destructor

				

				''	If	the	program	reaches	the	end,	or	aborts	with	an	error,	

				''	it	will	run	this	destructor	before	closing

				

				Print	"Press	any	key	to	end	the	program..."

				Sleep

				

End	Sub

Dim	array(0	To	10,	0	To	10)	As	Integer

Dim	As	Integer	i	=	0,	j	=	11

''	this	next	line	will	cause	the	program	to	abort	with	an	

''	error	if	you	compile	with	array	bounds	checking	enabled	(fbc	-

exx	...)

Print	array(i,	j)

Differences	from	QB

New	to	FreeBASIC

See	also

Destructor	(Class)

Constructor	(Module)

Sub

Dim 	

Declares	a	variable

Syntax
Dim	[Shared]	name1	As	DataType	[,	name2	As	DataType,	...]

or
Dim	[Shared]	As	DataType	name1	[,	name2,	...]

Arrays:
Dim	name	([lbound	To]	ubound	[,	...])	As	DataType

Dim	name	(Any	[,	Any...])	As	DataType

Dim	name	()	As	DataType

Initializers:
Dim	scalar_symbol	As	DataType	=	expression	|	Any

Dim	array_symbol	(arraybounds)	As	DataType	=	{	expression	[,	...]	}	|	

Dim	udt_symbol	As	DataType	=	(expression	[,	...])	|	Any

Description
Declares	a	variable	by	name	and	reserves	memory	to	accommodate	it.

Variables	must	be	declared	before	they	can	be	used	in	the	-lang	fb	dialect	or	when	using	
other	dialects.	Only	in	the	-lang	qb	and	-lang	fblite	dialects	variables	may	be	used	without	first	declaring	them,
in	such	a	case	they	are	called	implicit	variables.

Dim	can	be	used	to	declare	and	assign	variables	of	any	of	the	supported	data	types,	user	defined	types,	or
enumerations.

Depending	on	where	and	how	a	variable	or	array	is	declared	can	change	how	it	is	allocated	in	memory.	
Storage	Classes.

More	than	one	variable	may	be	declared	in	a	single	Dim	statement	by	separating	each	variable	declaration	with	a
comma.

''	Variable	declaration	examples

''	One	variable	per	DIM	statement

Dim	text	As	String

Dim	x	As	Double

''	More	than	one	variable	declared,	different	data	types

Dim	k	As	Single,	factor	As	Double,	s	As	String

''	More	than	one	variable	declared,	all	same	data	types

Dim	As	Integer	mx,	my,	mz	,mb

''	Variable	having	an	initializer

Dim	px	As	Double	Ptr	=	@x

Explicit	Variables	with	Implicit	Data	Types
In	the	-lang	qb	and	-lang	fblite	dialects,	even	if	the	variable	is	declared	explicitly,	it	will	be	given	a	default	data
type	if	the	data	type	is	not	explicitly	given	either	by	name	or	by	type	suffix.	
lang	qb	dialect	and	Integer	in	the	-lang	fblite	dialect.	The	default	data	type	can	be	changed	throughout	a
source	listing	by	use	of	the	Def###	statements.	(for	example,	DefInt,	DefStr

''	Compile	with	-lang	qb

'$lang:	"qb"

''	All	variables	beginning	with	A	through	N	default	to	the	INTEGER	data	type

''	All	other	variables	will	default	to	the	SINGLE	data	type

DefInt	I-N

''	I	and	J	are	INTEGERs

''	X	and	Y	are	SINGLEs

''	T$	is	STRING

''	D	is	DOUBLE

Dim	I,	J,	X,	Y,	T$,	D	As	Double

Arrays

As	with	most	BASIC	dialects,	FreeBASIC	supports	arrays	with	indexes	ranging	from	a	lower	bound	to	an	upper
bound.	In	the	syntaxes	shown,	lbound	refers	to	the	lower	bound,	or	the	smallest	index.	
bound,	or	the	largest	index.	If	a	lower	bound	is	not	specified,	it	is	assumed	to	be	zero	by	default,	unless	
Base	is	used.

Const	upperbound	=	10

''	Declare	an	array	with	indexes	ranging	from	0	to	upperbound,	

''	for	a	total	of	(upperbound	+	1)	indexes.

Dim	array(upperbound)	As	Single

Multidimensional	arrays	can	be	declared	as	well,	and	are	stored	in	this	definite	order:	values	differing	only	in	the
last	index	are	contiguous	(row-major	order).
The	maximum	number	of	dimensions	of	a	multidimensional	array	is	8.	

''	declare	a	three-dimensional	array	of	single	

''	precision	floating-point	numbers.

Dim	array(1	To	2,	6,	3	To	5)	As	Single

''	The	first	dimension	of	the	declared	array	

''	has	indices	from	1	to	2,	the	second,	0	to	6,	

''	and	the	third,	3	to	5.

For	more	information	on	arrays	see	Arrays	Overview.

If	the	values	used	with	Dim	to	declare	the	dimensions	of	an	array	are	all	constants,	the	array	will	be	created
Static	(unless	Option	Dynamic	is	specified),	while	using	one	or	more	variables	to	declare	the	dimensions	of	an
array	makes	it	variable	length,	even	if	Option	Static	is	in	effect.

Arrays	can	be	declared	as	variable	length	in	several	ways:	Using	Dim	with	an	empty	set	of	indexes	(
using	Dim	with	indexes	that	are	variables	or	using	the	keyword	ReDim,	or	using	
or	declaring	it	past	the	metacommand	$Dynamic.	Variable	length	arrays	can't	use	initializers.

Arrays	declared	with	Dim	having	constant	indexes	and	not	preceeded	by	
resizable	at	runtime)	and	can	use	initializers.

The	upper	bound	can	be	an	ellipsis	(...,	3	dots).	This	will	cause	to	upper	bound	to	be	set	automatically	based
on	the	number	of	elements	found	in	the	initializer.	When	ellipsis	is	used	in	this	manner,	an	initializer	must	be
used,	and	it	may	not	be	Any.	See	the	Ellipsis	page	for	a	short	example.

See	also	Fixed-Length	Arrays	and	Variable-Length	Arrays.

Initializers
Arrays,	variables,	strings,	and	user	defined	types	(UDTs)	are	initialized	to	zero	(or	
strings	by	default	when	they	are	created.

To	avoid	the	overhead	of	default	variable	initialization,	the	Any	initializer	can	be	used	with	
to	only	reserve	the	place	for	the	variable	in	memory	but	not	initialize	it,	so	the	variable	will	contain	garbage.	In
this	case	the	programmer	should	not	make	assumptions	about	the	initial	values.

Fixed-length	arrays,	variables,	zstrings	and	UDTs	may	be	given	a	value	at	the	time	of	their	declaration	by
following	the	variable	declaration	with	an	initializer.	Note	the	difference	between	initializing	different	types.
Arrays,	variables	and	UDTs	are	initialized	as	they	would	in	a	normal	assignment,	using	an	equal	(
=>	sign	can	be	used,	allowing	to	avoid	the	declaration	resembling	an	expression	when	declaring	fixed	length
strings.

Array	values	are	given	in	comma-delimited	values	enclosed	by	curly	brackets,	and	UDT	values	are	given	in
comma	delimited	values	enclosed	by	parenthesis.	These	methods	of	initializing	variables	can	be	nested	within
one	another	for	complex	assignments.	Nesting	allows	for	arrays	of	any	dimension	to	be	initialized.

''	Declare	an	array	of	2	by	5	elements

''	and	initialize

Dim	array(1	To	2,	1	To	5)	As	Integer	=>	{{1,	2,	3,

''	declare	a	simple	UDT

Type	mytype

				var1	As	Double

				var2	As	Integer

End	Type

''	declare	a	3	element	array	and	initialize	the	first

''	2	mytype	elements

Dim	myvar(0	To	2)	As	mytype	=>	{(1.0,	1),	(2.0,	2)}

For	module-level,	fixed-length,	or	global	variables,	initialized	values	must	be	constant	expressions.	
will	report	a	compile-time	error	if	otherwise.

Note:	Initializing	UDT's	with	strings	is	not	supported	at	this	time.	Initializing	UDT	containing	data-field	initializer	or
string	is	not	valid.

Explicit	Variables	with	Type	Suffixes
In	the	-lang	qb	and	-lang	fblite	dialects,	the	data	type	of	a	variable	may	be	indicated	with	a	type	suffix	(
).

''	Compile	with	-lang	qb	or	fblite

'$lang:	"qb"

''	A	string	variable	using	the	$	type	suffix

Dim	strVariable$

''	An	integer	variable	using	the	%	type	suffix

Dim	intVariable%

''	A	long	variable	using	the	&	type	suffix

Dim	lngVariable&

''	A	single	precision	floating	point	variable	using	the	!	type	suffix

Dim	sngVariable!

''	A	double	precision	floating	point	variable	using	the	#	type	suffix

Dim	dblVariable#

Example

Dim	a	As	Byte

Dim	b	As	Short

Dim	c	As	Integer

Dim	d	As	LongInt

Dim	au	As	UByte

Dim	bu	As	UShort

Dim	cu	As	UInteger

Dim	du	As	ULongInt

Dim	e	As	Single

Dim	f	As	Double

Dim	g	As	Integer	Ptr

Dim	h	As	Byte	Ptr

Dim	s1	As	String	*	10			''	fixed	length	string

Dim	s2	As	String								''	variable	length	string

Dim	s3	As	ZString	Ptr			''	zstring

s1	=	"Hello	World!"

s2	=	"Hello	World	from	FreeBASIC!"

s3	=	Allocate(Len(s2)	+	1)

*s3	=	s2

Print	"Byte:	";	Len(a)

Print	"Short:	";	Len(b)

Print	"Integer:	";	Len(c)

Print	"Longint:	";	Len(d)

Print	"UByte:	";	Len(au)

Print	"UShort:	";	Len(bu)

Print	"UInteger:	";	Len(cu)

Print	"ULongint:	";	Len(du)

Print	"Single:	";	Len(e)

Print	"Double:	";	Len(f)

Print	"Integer	Pointer:	";	Len(g)

Print	"Byte	Pointer:	";	Len(h)

Print	"Fixed	String:	";	Len(s1)

Print	"Variable	String:	";	Len(s2)

Print	"ZString:	";	Len(*s3)

Deallocate(s3)

Dialect	Differences

In	the	-lang	qb	and	-lang	fblite	dialects,	variables	have	procedure	scope	if	the	variable	is	defined	inside
a	procedure,	and	for	the	entire	module	if	the	variable	is	defined	with	
In	the	-lang	qb	dialect,	variables	cannot	be	initialised.	In	the	-lang	fblite
with	a	default	value	at	the	start	of	the	procedure/module,	and	assigned	its	initial	value	if/when	the	
statement	is	executed	at	runtime.
In	the	-lang	fb	and	-lang	deprecated	dialects,	variables	defined	inside	compound	block	statements
(For..Next,	While..Wend,	Do..Loop,	If..Then,	Select..End	Select
local	working	scopes,	and	are	visible	only	within	these	blocks.
In	the	-lang	fb	dialect,	Option	statements	(e.g.	Option	Base,	Option	Dynamic
$Static)	and	Def###	statements	(e.g.	DefInt)	are	not	allowed.

Differences	from	QB

Variable	Initializers	are	new	to	FreeBASIC.
The	alternate	syntax	Dim	As	DataType	symbolname,	[...]	is	new	to	FreeBASIC.
Multidimensional	arrays	are	stored	in	this	definite	order:	values	differing	only	in	the	last	index	are
contiguous	(row-major	order),	they	were	stored	in	opposite	order	in	QB	by	default:	values	differing	only	in
the	first	index	were	contiguous	(column-major	order).
Variable	length	arrays	up	to	2	GiB	in	size	are	possible	in	FreeBASIC.	In	QB,	
to	64	KiB	,	or	to	the	DOS	memory	available	(several	100	KiB	at	best)	if	made	
The	ellipsis	form	for	upper	bounds	is	new	to	FreeBASIC.

See	also

Var

Common

Extern

ReDim

Preserve

Shared

Static

Erase

LBound

UBound

...	(Ellipsis)

Any

Dir 	

Searches	for	and	returns	information	about	an	item	in	the	filesystem;	performs	a	directory	search

Syntax
#	Include	"dir.bi"

Declare	Function	Dir	(ByRef	item_spec	As	Const	String,	ByVal	attrib_mask

Declare	Function	Dir	(ByRef	item_spec	As	Const	String,	ByVal	attrib_mask

Declare	Function	Dir	(ByVal	attrib_mask	As	Integer	=	fbNormal,	

Declare	Function	Dir	(ByVal	attrib_mask	As	Integer	=	fbNormal,	

Usage
result	=	Dir(item_spec,	[attrib_mask],	out_attrib])

result	=	Dir(item_spec	[,	[attrib_mask]	[,	p_out_attrib]])

result	=	Dir(out_attrib)

result	=	Dir([p_out_attrib])

Parameters
item_spec

The	pattern	to	match	an	item's	name	against.
attrib_mask

The	bit	mask	to	match	an	item's	attributes	against.
out_attrib

Reference	to	a	bit	mask	that's	assigned	each	of	the	found	item's	attributes,	if	any.
p_out_attrib

Pointer	to	a	bit	mask	that's	assigned	each	of	the	found	item's	attributes,	if	any.

Return	Value
If	no	item	matching	the	name	item_spec	or	the	attribute	mask	attrib_mask
(or	*p_out_attrib)	is	assigned	the	attribute	mask	of	the	item,	and	the	item	name,	without	a	path,	is	returned.

Description
If	item_spec	contains	an	absolute	path,	then	the	first	procedure	searches	the	filesystem	for	an	item	that	matches	the	name	
Otherwise,	it	searches	relative	to	the	current	directory	(see	CurDir).	In	any	case,	if	a	matching	item	is	not	found,	
out_attrib	is	assigned	with	the	attribute	flags	of	the	item,	and	the	name	of	the	item,	without	a	path,	is	returned.

item_spec	may	include	an	asterisk	(*,	for	matching	any	adjacent	characters)	or	one	or	more	question	marks	(
such	item.	If	found,	subsequent	calls	with	item_spec	omitted,	or	set	to	an	empty	string,	will	return	the	next	item	matching	the	name	
omitted	from	these	subsequent	calls,	the	procedure	searches	for	items	with	the	same	attributes	as	in	the	previous	call.

The	second	syntax	behaves	the	same	as	Dir(item_spec,	attrib_mask
The	third	syntax	behaves	the	same	as	Dir("",	,	out_attrib).
The	fourth	syntax	behaves	the	same	as	Dir("",	,	*p_out_attrib).

File	Attributes:
Files	and	directories	and	other	items	can	be	said	to	possess	so-called	file	attributes;	metadata	that	describes	the	item.	The	meaning	of	this	metadata	may	vary	depending	on	the	operating	system
and	the	file	system	it	uses.
The	following	defined	constants	are	used	as	bit-flags	in	attrib_mask	and	in	
metadata	that	the	returned	files	are	allowed	to	have.	For	example,	fbDirectory
will	be	matched.	(fbReadOnly	Or	fbDirectory)	will	allow	read-only	directories	and	files,	and	writable	directories	and	files.
More	powerful	filtering	can	be	done	by	checking	the	returned	out_attrib

#	define	fbReadOnly	&h01;	

The	item	cannot	be	written	to	or	deleted.
DOS	&	Windows:	The	item	has	the	"read-only"	attribute	set.
Linux:The	item	has	no	write	permissions	associated	with	the	current	user	or	group,	nor	is	it	globally	writable.	

#	define	fbHidden	&h02;	

The	item	is	hidden	in	ordinary	directory	listings.
DOS	&	Windows:	The	item	has	the	"hidden"	attribute	set.
Linux:	The	item's	name	has	a	period	(.)	as	the	first	character.

#	define	fbSystem	&h04;	

The	item	is	used	almost	exclusively	by	the	system.
DOS	&	Windows:	The	item	has	the	"system"	attribute	set.
Linux:	The	item	is	either	a	character	device,	block	device,	named	pipe	(FIFO)	or	Unix	socket.

#	define	fbDirectory	&h10;	

The	item	is	a	directory.	Includes	the	current	(.)	and	parent	(..)	directories	as	well.
DOS	&	Windows	&	Linux:	The	item	is	a	directory.

#	define	fbArchive	&h20;	

The	item	may	be	backed	up	after	some	automated	operations.
DOS	&	Windows:	The	item	has	the	"archive"	attribute	set	(automatically	set	after	every	write	access	to	a	file).
Linux:	The	item	is	not	a	directory;	typical	filesystems	do	not	support	this	metadata.

#	define	fbNormal	(fbReadOnly	or	fbArchive)	

The	item	is	read-only	or	"archived".

(If	attrib_mask	does	not	include	fbArchive,	then	Dir	may	widen	the	check	to	include	

Items	found	having	no	attributes	are	always	matched,	regardless	of	the	value	of	
example,	fbArchive	Or	fbDirectory	will	match	against	archived	files,	archived	directories,	non-archived	files	and	non-archived	directories.	

In	general	it	is	not	possible	to	use	attrib_mask	to	include	a	file/folder	with	one	set	of	attributes	while	excluding	a	file/folder	with	a	different	set.	
directories	while	excluding	read-only	files	(unless	the	files	also	have	other	attributes).	

Example

#include	"dir.bi"	'provides	constants	to	use	for	the	attrib_mask	parameter

Sub	list_files	(ByRef	filespec	As	String,	ByVal	attrib

				Dim	As	String	filename	=	Dir(filespec,	attrib)

				Do	While	Len(filename)	>	0	'	If	len(filename)	is	0,	exit	the	loop:	no	more	filenames	are	left	to	be	read.

								Print	filename

								filename	=	Dir()

				Loop

End	Sub

Print	"directories:"

list_files	"*",	fbDirectory

Print

Print	"archive	files:"

list_files	"*",	fbArchive

Example

''	Example	of	using	DIR	function	and	retrieving	attributes

#include	"dir.bi"	''	provides	constants	to	match	the	attributes	against

''	set	input	attribute	mask	to	allow	files	that	are	normal,	hidden,	system	or	directory

Const	attrib_mask	=	fbNormal	Or	fbHidden	Or	fbSystem

Dim	As	UInteger	out_attr	''	unsigned	integer	to	hold	retrieved	attributes

Dim	As	String	fname	''	file/directory	name	returned	with

Dim	As	Integer	filecount,	dircount

fname	=	Dir("*.*",	attrib_mask,	out_attr)	''	Get	first	file	name/attributes,	according	to	supplied	file	spec	and	attribute	mask

Print	"File	listing	in	"	&	CurDir	&	":"

Do	Until	Len(fname)	=	0	''	loop	until	Dir	returns	empty	string

				If	(fname	<>	".")	And	(fname	<>	"..")	Then	''	ignore	current	and	parent	directory	entries

								Print	fname,

								If	(out_attr	And	fbDirectory)	<>	0	Then

												Print	"-	directory";

												dircount	+=	1

								Else

												Print	"-	file";

												filecount	+=	1

								End	If

								If	(out_attr	And	fbReadOnly)	<>	0	Then	Print

								If	(out_attr	And	fbHidden)	<>	0	Then	Print

								If	(out_attr	And	fbSystem)	<>	0	Then	Print

								If	(out_attr	And	fbArchive)	<>	0	Then	Print

								Print

				End	If

				fname	=	Dir(out_attr)	''	find	next	name/attributes

Loop

Print

Print	"Found	"	&	filecount	&	"	files	and	"	&	dircount

Platform	Differences

Linux	requires	the	filename	case	to	match	the	real	name	of	the	file.	Windows	and	DOS	are	case	insensitive.
Path	separators	in	Linux	are	forward	slashes	/.	Windows	uses	backslashes	
In	DOS,	the	attrib	mask	value	of	&h37;	(&h3F;	usually	works	also,	but	
if	current	directory	is	not	the	main	directory.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

Not	found	in	QBasic	but	present	in	Visual	Basic.	The	out_attrib

See	also

Open

CurDir

MkDir

RmDir

Do 	

Control	flow	statement	for	looping.

Syntax
Do	[{	Until	|	While	}	condition]

[statement	block]

Loop

Do

[statement	block]

Loop	[{	Until	|	While	}	condition]

Differences	from	QB

None

See	also

Do...Loop

Do...Loop 	

Control	flow	statement	for	looping

Syntax
Do	[{	Until	|	While	}	condition]

[statement	block]

Loop

or

Do

[statement	block]

Loop	[{	Until	|	While	}	condition]

Description
The	Do	statement	executes	the	statements	in	the	following	statement	block

If	Until	is	used,	the	Do	statement	stops	repetition	of	the	statement	block
loop	if	condition	evaluates	to	false.	If	both	condition	and	either	Until	or	

If	an	Exit	Do	statement	is	encountered	inside	the	statement	block,	the	loop	is	terminated,	and	execution	resumes	immediately	following	the	enclosing	
statement.	If	a	Continue	Do	statement	is	encountered,	the	rest	of	the	statement	block

In	the	first	syntax,	the	condition	is	checked	when	the	Do	statement	is	first	encountered,	and	if	the	
second	syntax,	condition	is	initially	checked	after	the	statement	block
once.

condition	may	be	any	valid	expression	that	evaluates	to	False	(zero)	or	True	(non-zero).

Example
In	this	example,	a	Do	loop	is	used	to	count	the	total	number	of	odd	numbers	from	1	to	10.	It	will	repeat	

Dim	As	Integer	n	=	1																												''	number	to	check

Dim	As	Integer	total_odd	=	0																				''	running	total	of	odd	numbers

Do	Until(n	>	10)

		If((n	Mod	2)	>	0)	Then	total_odd	+=	1				''	add	to	total	if	n	is	odd	(has	remainder	from	division	by	2)

		n	+=	1

Loop

Print	"total	odd	numbers:	"	;	total_odd									''	prints	'5'

End	0

Here,	an	infinite	DO	loop	is	used	to	count	the	total	number	of	evens.	We	place	the	conditional	check	inside	the	loop	via	an	
loop	if	and	when	n	>	10	becomes	true:

			Dim	As	Integer	n	=	1																												

			Dim	As	Integer	total_even	=	0																			

			Do

						If(n	>	10)	Then	Exit	Do																				

			

						If((n	Mod	2)	=	0)	Then	total_even	+=	1			

						n	+=	1

			Loop

			Print	"total	even	numbers:	"	;	total_even							

			End	0

Dialect	Differences

In	the	-lang	qb	and	-lang	fblite	dialects,	variables	declared	inside	a	
In	the	-lang	fb	and	-lang	deprecated	dialects,	variables	declared	inside	a	

Differences	from	QB

None

See	also

Continue

Exit

For...Next

While...Wend

Double 	

Standard	data	type:	64	bit	floating	point

Syntax
Dim	variable	As	Double

Description
Double	is	a	64-bit,	floating-point	data	type	used	to	store	more	precise
decimal	numbers.	They	can	hold	positive	values	in	the	range
4.940656458412465e-324	to	1.797693134862316e+308,	or	negative	values
in	the	range	-4.940656458412465e-324	to	-1.797693134862316e+308,	or
zero	(0).	They	contain	at	most	53	bits	of	precision,	or	about	15	decimal
digits.

Doubles	have	a	greater	range	and	precision	than	Singles,	they	still
have	limited	accuracy	which	can	lead	to	significant	inaccuracies	if	not
used	properly.	They	are	dyadic	numbers	-	i.e.	they	can	only	accurately
hold	multiples	of	powers	of	two,	which	will	lead	to	inaccuracies	in	most
base-10	fractions.

Example

'Example	of	using	a	double	variable.

Dim	a	As	Double

a	=	1.985766472453666

Print	a

Sleep

Differences	from	QB

None

See	also

Single	Less	precise	float	type
CDbl

Table	with	variable	types	overview,	limits	and	suffixes

Draw 	

Statement	for	sequenced	pixel	plotting

Syntax
Draw	[target,]	cmd

Parameters
target

the	buffer	to	draw	on
cmd

a	string	containing	the	sequence	of	commands

Description
Drawing	will	take	place	onto	the	current	work	page	set	via	ScreenSet	or	onto	the
target	Get/Put	buffer	if	specified.
The	Draw	statement	can	be	used	to	issue	several	drawing	commands	all	at	once;
it	is	useful	to	quickly	draw	figures.	The	command	string	accepts	the	following
commands:

Commands	to	plot	pixels:

Command Description

	 Commands	to	plot	pixels:

B Optional	prefix:	move	but	do	not	draw.

N Optional	prefix:	draw	but	do	not	move.

M	x,y Move	to	specified	screen	location.	if	a	'+'	or	'-'	sign	precedes	x,	movement	is	relative	to
current	cursor	position.	x's	sign	has	no	effect	on	the	sign	of	y.

U	[n] Move	n	units	up.	If	n	is	omitted,	1	is	assumed.

D	[n] Move	n	units	down.	If	n	is	omitted,	1	is	assumed.

L	[n] Move	n	units	left.	If	n	is	omitted,	1	is	assumed.

R	[n] Move	n	units	right.	If	n	is	omitted,	1	is	assumed.

E	[n] Move	n	units	up	and	right.	If	n	is	omitted,	1	is	assumed.

F	[n] Move	n	units	down	and	right.	If	n	is	omitted,	1	is	assumed.

G	[n] Move	n	units	down	and	left.	If	n	is	omitted,	1	is	assumed.

H	[n] Move	n	units	up	and	left.	If	n	is	omitted,	1	is	assumed.

	 Commands	to	color:

C	n Changes	current	foreground	color	to	n.

P	p,b PAINTs	(flood	fills)	region	of	border	color	b	with	color	p.

	 Commands	to	scale	and	rotate:

S	n Sets	the	current	unit	length,	default	is	4.	A	unit	length	of	4	is	equal	to	1	pixel.

A	n Rotate	n*90	degrees	(n	ranges	0-3).

TA	n Rotate	n	degrees	(n	ranges	0-359).

	 Extra	commands:

X	p Executes	commands	at	p,	where	p	is	a	STRING	PTR.

Commands	to	set	the	color,	size	and	angle	will	take	affect	all	subsequent	
operations.

Example

Screen	13

'Move	to	(50,50)	without	drawing

Draw	"BM	50,50"

'Set	drawing	color	to	2	(green)

Draw	"C2"

'Draw	a	box

Draw	"R50	D30	L50	U30"

'Move	inside	the	box

Draw	"BM	+1,1"

'Flood	fill	with	color	1	(blue)	up	to	border	color	2	

Draw	"P	1,2"

Sleep

''	Draws	a	flower	on-screen

Dim	As	Integer	i,	a,	c

Dim	As	String	fill,	setangle

''	pattern	for	each	petal

Dim	As	Const	String	petal	=	_

				_

				("X"	&	VarPtr(setangle))	_	''	link	to	angle-

setting	string

				_

				&	"C15"	_							''	set	outline	color	(white)

				&	"M+100,+10"	_	''	draw	outline

				"M	+15,-10"	_

				"M	-15,-10"	_

				"M-100,+10"	_

				_

				&	"BM+100,0"	_														''	move	inside	petal

				&	("X"	&	VarPtr(fill))	_				''	flood-

fill	petal	(by	linking	to	fill	string)

				&	"BM-100,0"																''	move	back	out

''	set	screen

ScreenRes	320,	240,	8

''	move	to	center

Draw	"BM	160,	120"

''	set	initial	angle	and	color	number

a	=	0:	c	=	32

For	i	=	1	To	24

				''	make	angle-setting	and	filling	command	strings

				setangle	=	"TA"	&	a

				fill	=	"P"	&	c	&	",15"

				''	draw	the	petal	pattern,	which	links	to	angle-

setting	and	filling	strings

				Draw	petal

				

				''	short	delay

				Sleep	100

				''	increment	angle	and	color	number

				a	+=	15:	c	+=	1

Next	i

Sleep

Differences	from	QB

target	is	new	to	FreeBASIC
QB	used	the	special	pointer	keyword	VARPTR$	with	the	X	p	command.
FB	does	not	currently	allow	sub-pixel	movements:	all	movements	are
rounded	to	the	nearest	integer	coordinate.

See	also

Draw	String

Screen	(Graphics)

VarPtr

Paint

Draw	String 	

Graphics	statement	to	render	text	to	an	image	or	screen.

Syntax
Draw	String	[buffer,]	[STEP]	(x,	y),	text	[,color	[,	font	[,	method

Usage
Draw	String	[buffer,]	[STEP]	(x,	y),	text	[,	color]

Draw	String	[buffer,]	[STEP]	(x,	y),	text	,	,	font	[,	method	[,	

Draw	String	[buffer,]	[STEP]	(x,	y),	text	,	,	font,	Custom,	blender

Parameters
buffer

the	sprite	to	draw	the	string	on.	If	this	is	not	supplied,	it	will	be	drawn	to	the	screen.
STEP

use	relative	coordinates.	If	STEP	is	added,	the	x	and	y	coordinates	are	translated	relative	to	the	last	drawn	point.
x,	y
the	horizontal	/	vertical	position	to	draw	to,	relative	to	the	top	left	hand	corner	of	the	screen	(unless	
The	top	left	corner	of	the	text	will	be	drawn	at	this	position.
text

the	string	containing	the	text	to	draw
color

if	no	font	is	supplied,	this	allows	you	to	choose	the	color	of	the	text.	If	omitted,	the	default	foreground	
If	a	font	is	supplied,	color	is	ignored,	and	the	font	itself	specifies	the	color	for	each	pixel.
font

an	image	buffer	containing	a	custom	font.	If	no	font	is	supplied,	the	standard	font	for	the	current	text	resolution	is	used,	and
the	following	parameters	are	ignored.
method	|	Custom
specifies	how	the	font	characters	are	drawn	on	top	of	the	target	surface.	The	same	methods	as	found	for	the	
are	allowed,	with	the	only	difference	that	the	default	method	is	Trans	for	this	function.	
fonts.
alpha

alpha	value,	ranging	0-255.	This	parameter	only	applies	to	the	Add	or	Alpha
blender

custom	blender	function	for	the	Custom	drawing	method;	see	Put	(Graphics)
only	applies	to	the	Custom	method.
parameter

optional	Pointer	to	be	passed	to	the	custom	blender	function;	if	omitted,	the	default	value	is	zero	(

Description
This	graphics	keyword	prints	a	string	to	the	screen	with	pixel	positioning,	transparent	background,	and	can	use	an	user-
supplied	font.	Draw	String	does	not	update	any	text	or	graphics	cursor.	
returns	and	other	special	characters	have	no	special	behavior	in	Draw	String

In	graphics	mode,	this	function	provides	a	flexible	alternative	to	Print.	
-	Draw	String	can	print	text	to	any	coordinate	on	the	screen,	while	Print
Locate.
-	Print	will	override	the	background	behind	the	text	with	the	current	background	color.	
the	pixels	in	the	background	untouched.
-	Like	Put,	Draw	String	has	several	different	methods	for	printing	text,	such	as	
-	Draw	String	isn't	limited	to	a	single	character	set:	it	is	possible	to	supply	a	custom	font	to	be	used	instead.

Note:	If	a	custom	font	isn't	supplied,	Draw	String	will	default	to	the	standard	font,	as	used	by	
dictated	by	Width.	method	-	if	passed	-	will	be	ignored,	and	the	text	will	be	drawn	using	the	color	supplied,	with	a	transparent
background.

The	custom	font	format:
The	font	is	stored	in	a	standard	Get/Put	buffer;	the	font	has	to	be	stored	in	a	buffer	using	the	same	depth	as	the	current	color
depth,	otherwise	Draw	String	will	bump	out	with	an	illegal	function	call	runtime	error.

The	first	line	of	pixels	in	the	font	buffer	holds	the	header	of	the	font,	on	a	byte	(
the	font	header	version;	currently	this	must	be	0.	The	second	byte	gives	the	ascii	code	of	the	first	supported	character	in	the
font;	the	third	byte	gives	the	ascii	code	of	the	last	supported	character.	So	if	the	font	supports	the	full	range	0-255,	
will	be	the	contents	of	these	two	bytes.
Next	comes	the	width	of	each	of	the	supported	characters,	each	in	a	byte.	Supposing	the	font	holds	96	characters,	ranging
from	32	to	127	(inclusive),	the	header	would	have	the	first	three	bytes	holding	
widths	of	the	corresponding	chars.

The	font	height	is	obtained	by	subtracting	1	from	the	buffer	height,	that	is,	while	the	first	buffer	line	of	pixels	acts	as	a	font
header,	the	remaining	lines	define	the	glyphs'	layout.	The	buffer	must	be	as	wide	as	necessary	to	hold	all	the	supported
character	sprites	in	the	same	row,	one	after	another.

Example
This	gives	an	example	of	basic	Draw	String	usage:	it	uses	it	to	print	"Hello	world"

Const	w	=	320,	h	=	200	''	screen	dimensions

Dim	x	As	Integer,	y	As	Integer,	s	As	String

''	Open	a	graphics	window

ScreenRes	w,	h

''	Draw	a	string	in	the	centre	of	the	screen:

s	=	"Hello	world"

x	=	(w	-	Len(s)	*	8)	\	2

y	=	(h	-	1	*	8)	\	2

Draw	String	(x,	y),	s

''	Wait	for	a	keypress	before	ending	the	program

Sleep

This	example	shows	you	how	to	create	and	use	your	own	custom	font.	
to	create	the	glyphs.

''	Define	character	range

Const	FIRSTCHAR	=	32,	LASTCHAR	=	127

Const	NUMCHARS	=	(LASTCHAR	-	FIRSTCHAR)	+	1

Dim	As	UByte	Ptr	p,	myFont

Dim	As	Integer	i

''	Open	a	256	color	graphics	screen	(320*200)

ScreenRes	320,	200,	8

''	Create	custom	font	into	PUT	buffer

myFont	=	ImageCreate(NUMCHARS	*	8,	9)

	''	Put	font	header	at	start	of	pixel	data

#ifndef	ImageInfo	''	older	versions	of	FB	don't	have	the	ImageInfo	feature

p	=	myFont	+	IIf(myFont[0]	=	7,	32,	4)

#else

ImageInfo(myFont,	,	,	,	,	p)

#endif

p[0]	=	0

p[1]	=	FIRSTCHAR

p[2]	=	LASTCHAR

	''	PUT	each	character	into	the	font	and	update	width	information

For	i	=	FIRSTCHAR	To	LASTCHAR

				

				''	Here	we	could	define	a	custom	width	for	each	letter,	but	for	simplicity	we	use

				''	a	fixed	width	of	8	since	we	are	reusing	the	default	font	glyphs

				p[3	+	i	-	FIRSTCHAR]	=	8

				

				''	Create	character	onto	custom	font	buffer	by	drawing	using	default	font

				Draw	String	myFont,	((i	-	FIRSTCHAR)	*	8,	1),	

				

Next	i

''	Now	the	font	buffer	is	ready;	we	could	save	it	using	BSAVE	for	later	use

Rem	BSave	"myfont.bmp",	myFont

''	Here	we	draw	a	string	using	the	custom	font

Draw	String	(10,	10),	"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Draw	String	(10,	26),	"abcdefghijklmnopqrstuvwxyz"

Draw	String	(66,	58),	"Hello	world!",	,	myFont

''	Free	the	font	from	memory,	now	we	are	done	with	it

ImageDestroy	myFont

Sleep

Differences	from	QB

New	to	FreeBASIC

See	also

(Print	|	?)

Draw

ImageCreate

ImageDestroy

ImageInfo

Put	(Graphics)

Width

DyLibFree 	

Unloads	a	dynamic	link	library	from	memory

Syntax
Declare	Sub	DyLibFree	(ByVal	library	As	Any	Pointer)

Usage
DyLibFree(library)

Parameters
library

The	handle	of	a	library	to	unload.

Description
DyLibFree	is	used	to	release	at	runtime	libraries	previously	linked	to
your	program	with	DyLibLoad.	The	argument	is	the	handle	to	the	library
returned	by	DyLibLoad.

Example
See	the	dynamic	loading	example	on	the	Shared	Libraries	page.

Platform	Differences

Dynamic	link	libraries	are	not	available	in	DOS,	as	the	OS
doesn't	support	them.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Dylibfree.

Differences	from	QB

New	to	FreeBASIC

See	also

DyLibSymbol

DyLibLoad

Export

DyLibLoad 	

Loads	to	a	Dynamic	Link	Library	(DLL)	into	memory	at	runtime

Syntax
Declare	Function	DyLibLoad	(ByRef	filename	As	String)	As	Any

Pointer

Usage
result	=	DyLibLoad	(filename)

Parameters
filename

A	String	containing	the	filename	of	the	library	to	load.

Return	Value
The	Pointer	handle	of	the	library	loaded.	Zero	on	error

Description
DyLibLoad	is	used	to	link	at	runtime	libraries	to	your	program.	This
function	does	the	link	and	returns	a	handle	that	must	be	used	with
DyLibSymbol	when	calling	a	function	in	the	library	and	with	DyLibFree
when	releasing	the	library.

Example
See	the	dynamic	loading	example	on	the	Shared	Libraries	page.

Platform	Differences

Dynamic	link	libraries	are	not	available	in	DOS,	as	the	OS
doesn't	support	them.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Dylibload.

Differences	from	QB

New	to	FreeBASIC

See	also

DyLibSymbol

DyLibFree

Export

DyLibSymbol 	

Returns	the	address	of	a	function	or	variable	in	a	dll

Syntax
Declare	Function	DyLibSymbol	(ByVal	library	As	Any	Ptr,	ByRef

symbol	As	String)	As	Any	Ptr

Declare	Function	DyLibSymbol	(ByVal	library	As	Any	Ptr,	ByVal

symbol	As	Short)	As	Any	Ptr

Usage
result	=	DyLibSymbol	(library,	symbol)

Parameters
library

The	Any	Ptr	handle	of	a	DLL	returned	by	DyLibLoad
symbol

A	String	containing	name	of	the	function,	or	variable	in	the	library	to
return	the	address	of.	In	Windows	only,	can	also	be	a	Short	containing
the	ordinal	of	the	function/variable.

Return	Value
A	Pointer	to	the	function	or	variable	in	the	library.

If	the	function	fails,	the	return	value	is	0.

Description
DyLibSymbol	returns	a	pointer	to	the	variable	or	function	named	symbol
in	the	dll	pointed	by	libhandle.	libhandle	is	obtained	by	loading	the	dll
with	DyLibLoad.	The	symbol	must	have	been	Exported	in	the	dll.
If	libhandle	is	0,	the	symbol	is	searched	in	the	current	executable	or
dll.

If	using	cdecl	functions,	only	the	name	of	the	procedure	needs	to	be
specified.	If	dynamically	linking	to	a	function	created	using	STDCALL
(default	in	windows),	then	the	function	must	be	decorated.	To	decorate

a	function,	use	its	name,	'@',	then	the	number	of	bytes	passed	as
arguments.	For	instance	if	the	function	FOO	takes	3	integer	arguments,
the	decorated	function	would	be	'FOO@12'.	Remember,	without	an
explicit	Alias,	the	procedure	name	will	be	uppercase.

If	linking	to	a	dll	created	in	Visual	C++(tm),	decoration	need	not	be
used.	For	GCC,	decoration	is	needed.

Note:	The	dylibsymbol,	if	failing,	will	attempt	to	automatically	decorate
the	procedure,	from	@0	to	@256,	in	4	byte	increments.

Example
See	the	dynamic	loading	example	on	the	Shared	Libraries	page.

Platform	Differences

Dynamic	link	libraries	are	not	available	in	DOS	,as	the	OS
doesn't	support	them.
Ordinals	are	not	supported	on	Linux,	0	is	always	returned.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Dylibsymbol.

Differences	from	QB

New	to	FreeBASIC

See	also

DyLibLoad

Export

Else 	

Control	flow	statement	for	conditional	branching

Syntax
If	expression	Then	statement(s)	[Else	statement(s)]

or

If	expression	Then	:	statement(s)	[Else	statement(s)]	:	End	If

or	

If	expression	Then

statement(s)

[ElseIf	expression	Then]

statement(s)

[Else]

statement(s)

End	If

Differences	from	QB

None

See	also

If...Then

ElseIf 	

Control	flow	statement	for	conditional	branching

Syntax
If	expression	Then

statement(s)

[ElseIf	expression	Then]

statement(s)

[Else]

statement(s)

End	If

Differences	from	QB

None

See	also

If...Then

Encoding 	

Specifies	character	format	of	a	text	file

Syntax
Open	filename	for	{Input|Output|Append}	Encoding	"utf-8"|"utf-16

32"|"ascii"	as	[#]filenum	

Parameters
filename	for	{Input|Output|Append}
file	name	to	open	for	Input,	Output,	or	Append
Encoding	"utf-8"|"utf-16"|"utf-32"|"ascii"

indicates	encoding	type	for	the	file
filenum

unused	file	number	to	associate	with	the	open	file

Description
Encoding	specifies	the	format	for	an	Unicode	text	file,	so	Winput	#	and	
correct	encoding.	If	omitted	from	an	Open	statement,	"ascii"	encoding	is	the	default.

Only	little	endian	character	encodings	are	supported	at	the	moment.	
"utf8",	
"utf16"	
"utf32"	
"ascii"	(the	default)

Example

''	This	example	will:

''	1)	Write	a	string	to	a	text	file	with	utf-16	encoding

''	2)	Display	the	byte	contents	of	the	file

''	3)	Read	the	text	back	from	the	file

''

''	WSTRING's	will	work	as	well	but	STRING	has	been

''	used	in	this	example	since	not	all	consoles	support

''	printing	WSTRING's.

''	The	name	of	the	file	to	use	in	this	example

Dim	f	As	String

f	=	"sample.txt"

''

Scope

		Dim	s	As	String

		s	=	"FreeBASIC"

		Print	"Text	to	write	to	"	+	f	+	":"

		Print	s

		Print

		''	open	a	file	for	output	using	utf-16	encoding

		''	and	print	a	short	message

		Open	f	For	Output	Encoding	"utf-16"	As	#1

		''	The	ascii	string	is	converted	to	utf-16

		Print	#1,	s

		Close	#1

End	Scope

''

Scope

		Dim	s	As	String,	n	As	Integer

		''	open	the	same	file	for	binary	and	read	all	the	bytes

		Open	f	For	Binary	As	#1

		n	=	LOF(1)

		s	=	Space(n)

		Get	#1,,s

		Close	#1

		

		Print	"Binary	contents	of	"	+	f	+	":"

		For	i	As	Integer	=	1	To	n

				Print	Hex(Asc(Mid(s,	i,	1)),	2);	"	";

		Next

		Print

		Print

End	Scope

''

Scope

		Dim	s	As	String

		

		''	open	a	file	for	input	using	utf-16	encoding

		''	and	read	back	the	message

		Open	f	For	Input	Encoding	"utf-16"	As	#1

		''	The	ascii	string	is	converted	from	utf-16

		Line	Input	#1,	s

		Close	#1

		''	Display	the	text

		Print	"Text	read	from	"	+	f	+	":"

		Print	s

		Print

End	Scope

Output:

Text	to	write	to	sample.txt:

FreeBASIC

Binary	contents	of	sample.txt:

FF	FE	46	00	72	00	65	00	65	00	42	00	41	00	53	00	49	00	43	00	0D	00	0A	00	

Text	read	from	sample.txt:

FreeBASIC

Platform	Differences

Unicode	(w)strings	are	not	supported	in	the	DOS	port	of	FreeBASIC

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

QB	had	no	support	for	Unicode

See	also

Open

End	(Block) 	

Indicates	the	end	of	a	compound	statement	block.

Syntax
End	{	Sub	|	Function	|	If	|	Select	|	Type	|	Enum	|	Scope	|	With	

Namespace	|	Extern	|	Constructor	|	Destructor	|	Operator	|

Property	}

Description
Used	to	indicate	the	end	of	the	most	recent	code	block.

The	type	of	the	block	must	be	included	in	the	command:	one	of	Sub,
Function,	If,	Select,	Type,	Enum,	Scope,	With,	Namespace,	Extern,
Constructor,	Destructor,	Operator,	or	Property.

Ending	a	Sub,	Function,	If,	Select,	Scope,	Constructor,	Destructor,
Operator,	or	Property	block	also	closes	the	scope	for	variables	defined
inside	that	block.	When	the	scope	is	closed,	variables	defined	inside
the	scope	are	destroyed,	calling	their	destructors	as	needed.

To	end	a	program,	see	End	(Statement).

Example

Declare	Sub	checkvalue(n	As	Integer)

Dim	variable	As	Integer

Input	"Give	me	a	number:	",	variable

If	variable	=	1	Then

Print	"You	gave	me	a	1"

Else

Print	"You	gave	me	a	big	number!"

End	If

checkvalue(variable)

Sub	checkvalue(n	As	Integer)

Print	"Value	is:	"	&	n

End	Sub

Differences	from	QB

none

See	also

Constructor

Destructor

End	(Statement)

Enum

Extern

Function

If...Then

Namespace

Operator

Property

Scope

Select	Case

Sub

Type

With

End	(Statement) 	

Control	flow	statement	to	end	the	program.

Syntax
Declare	Sub	End	(ByVal	retval	As	Long	=	0)

Usage
End	[retval]

Parameters
retval

Error	code	returned	to	system.

Description
Used	to	exit	the	program,	and	return	to	the	operating	system.	An	optional	integer	return	value	can	be
specified	to	indicate	an	error	code	to	the	system.	If	no	return	value	is	given,	a	value	of	
automatically	returned	at	the	end	of	the	program.

Usage	of	this	statement	does	not	cleanly	close	scope.	Local	variables	will	not	have	their	destructors
called	automatically,	because	FreeBASIC	does	not	do	stack	unwinding.	Only	the	destructors	of	global
variables	will	be	called	in	this	case.

For	this	reason,	it	is	discouraged	to	use	End	simply	to	mark	the	end	of	a	program;	the	program	will
come	to	an	end	automatically,	and	in	a	cleaner	fashion,	when	the	last	line	of	module-level	code	has
executed.

Example

''	This	program	requests	a	string	from	the	user,	and	returns	an	error

''	code	to	the	OS	if	the	string	was	empty

Function	main()	As	Integer

				''	assign	input	to	text	string

				Dim	As	String	text

				Line	Input	"Enter	some	text	(try	""abc""):	"

				''	If	string	is	empty,	print	an	error	message	and

				''	return	error	code	1	(failure)

				If(text	=	"")	Then

								Print	"ERROR:	string	was	empty"

								Return	1

				End	If

				''	string	is	not	empty,	so	print	the	string	and

				''	return	error	code	0	(success)

				Print	"You	entered:	"	&	text

				Return	0

End	Function

''	call	main()	and	return	the	error	code	to	the	OS

End	main()

Differences	from	QB

The	END	statement	supports	specifying	a	custom	return	value	to	be	returned	to	the	operating
system.

See	also

End	(Block)

Return

End	If 	

Control	flow	statement	for	conditional	branching.

Syntax
If	expression	Then	:	statement(s)	[Else	statement(s)]	:	End	If

or	

If	expression	Then

statement(s)

End	If

Differences	from	QB

None

See	also

If...Then

Enum 	

Declares	an	enumerated	type.

Syntax
Enum	[typename	[Explicit]]

symbolname	[=	expression]	[,	...]

...

End	Enum

Parameters
typename

Name	of	the	Enum
symbolname

Name	of	the	constant
expression

A	constant	expression
Explicit

Requires	that	symbols	must	be	explicitly	referred	to	by
typename.symbolname

Description
Enum,	short	for	enumeration,	declares	a	list	of	symbol	names	that
correspond	to	discrete	values.	If	no	initial	value	is	given,	the	first	item
will	be	set	to	0.	Each	subsequent	symbol	has	a	value	one	more	than
the	previous	unless	expression	is	given.

Symbols	may	be	each	on	their	own	line,	or	separated	on	a	single	line
by	commas.

An	Enum	is	a	useful	way	of	grouping	together	a	set	of	related	Constants.
A	symbol	can	be	accessed	like	a	constant,	e.g:	a	=	symbolname.	But	if
the	name	clashes	with	another	symbol,	it	must	be	resolved	using
typename.symbolname.	This	resolution	method	is	always	required	if	you
make	the	enum	Explicit.

A	non-Explicit	Enum	declared	inside	an	Extern	...	End	Extern	block
will	add	its	constants	to	the	parent	namespace	directly,	as	in	C,	instead

of	acting	as	a	namespace	on	its	own.	It	disallows	the
typename.symbolname	style	of	access,	and	the	constants	may	conflict
with	other	symbols	from	the	parent	namespace.

An	Enum	can	be	passed	as	a	user	defined	type	to	Overloaded	operator
functions.

Example

Enum	MyEnum

				option1	=	1

				option2

				option3

End	Enum

Dim	MyVar	As	MyEnum

MyVar	=	option1

Select	Case	MyVar

				Case	option1

								Print	"Option	1"

				Case	option2

								Print	"Option	2"

				Case	option3

								Print	"Option	3"

End	Select

Dialect	Differences

Explicit	Enum	not	available	in	the	-lang	qb	dialect	unless
referenced	with	the	alias	__Explicit.

Differences	from	QB

New	to	FreeBASIC

See	also

Const

Operator

SetEnviron 	

Sets	a	system	environment	variable

Syntax
Declare	Function	SetEnviron	(ByRef	varexpression	As	String)	As

Usage
result	=	SetEnviron(varexpression)

Parameters
varexpression

Name	and	setting	of	an	environment	variable	in	the	following	(or	equivalent)	form:	varname=varstring.
(varname	being	the	name	of	the	environment	variable,	and	varstring	being	its	text	value	to	set)

Return	Value
Return	zero	(0)	if	successful,	non-zero	otherwise.

Description
Modifies	system	environment	variables.	There	are	several	variables	available	for	editing	other	than	the
default	ones	on	your	system.	An	example	of	this	would	be	fbgfx,	where	you	can	choose	the	form	of
graphics	driver	the	FreeBASIC	graphics	library	will	use.

Example

'e.g.	to	set	the	system	variable	"path"	to	"c:":

Shell	"set	path"	'shows	the	value	of	path

SetEnviron	"path=c:"

Shell	"set	path"	'shows	the	new	value	of	path

		''	WINDOWS	ONLY	EXAMPLE!	-	We	just	set	the	graphics	method	to	use

		''	GDI	rather	than	DirectX.

		''	You	may	note	a	difference	in	FPS.

SetEnviron("fbgfx=GDI")

		''	Desktop	width/height

Dim	As	Integer	ScrW,	ScrH,	BPP

ScreenInfo	ScrW,	ScrH,	BPP

		''	Create	a	screen	at	the	width/height	of	your	monitor.

		''	Normally	this	would	be	slow,	but	GDI	is	fairly	fast	for	this	kind

		''	of	thing.

ScreenRes	ScrW,	ScrH,	BPP

		''	Start	our	timer/

Dim	As	Double	T	=	Timer

		''	Lock	our	page

ScreenLock

Do

		

				''	Print	time	since	last	frame

		Locate	1,	1

		Print	"FPS:	"	&	1	/	(Timer	-	T)

		T	=	Timer

		

				''	Flip	our	screen

		ScreenUnlock

		ScreenLock

				''	Commit	a	graphical	change	to	our	screen.

		Cls

		

Loop	Until	Len(Inkey)

		''	unlock	our	page.

ScreenUnlock

Differences	from	QB

In	QB,	SetEnviron	was	called	Environ.

See	also

Environ

Shell

Environ 	

Returns	the	value	of	a	system	environment	variable

Syntax
Declare	Function	Environ	(ByRef	varname	As	Const	String)	As

String

Usage
result	=	Environ(varname)

Parameters
varname

The	name	of	an	environment	variable.

Return	Value
Returns	the	text	value	of	the	environmental	variable,	or	the	empty
string	("")	if	the	variable	does	not	exist.

Description
Environ	returns	the	text	value	of	a	system	environment	variable.

Example

'e.g.	to	show	the	system	variable	"path":

Print	Environ("path")

Differences	from	QB

The	Environ	statement	is	now	called	SetEnviron.

See	also

SetEnviron

Shell

EOF 	

Checks	to	see	if	the	end	of	an	open	file	has	been	reached

Syntax
Declare	Function	EOF	(ByVal	filenum	As	Long)	As	Long

Usage
result	=	EOF(filenum)

Parameters
filenum

File	number	of	an	open	file.

Return	Value
Returns	true	(-1)	if	end-of-file	has	been	reached,	zero	(0)	otherwise.

Description
When	reading	from	files	opened	for	Input	(File	Mode),	it	is	useful	to	know	when	the	end	of	the	file	has	been	reached,	thus
avoiding	errors	caused	by	reading	past	the	ends	of	files.	Use	EOF	to	determine	this.	EOF	expects	a	valid	file	number	from	an
already	opened	file.	Use	FreeFile	to	retrieve	an	available	file	file	number.

For	file	numbers	bound	to	files	opened	for	Output,	EOF	always	returns	0.

Example

''	This	code	finds	a	free	file	number	to	use	and	attempts	to	open	the	file

''	"file.ext"	and	if	successful,	binds	our	file	number	to	the	opened	file.	It

''	reads	the	file	line	by	line,	outputting	it	to	the	screen.	We	loop	until	eof()

''	returns	true,	in	this	case	we	ignore	the	loop	if	file	is	empty.

Dim	As	String	file_name

Dim	As	Integer	file_num

file_name	=	"file.ext"

file_num	=	FreeFile()																	''	retrieve	an	available	file	number

''	open	our	file	and	bind	our	file	number	to	it,	exit	on	error

If(Open(file_name	For	Input	As	#file_num))	Then

			Print	"ERROR:	opening	file	"	;	file_name

			End	-1

End	If

Do	Until	EOF(file_num)															''	loop	until	we	have	reached	the	end	of	the	file

			Dim	As	String	text

			Line	Input	#file_num,	text															''	read	a	line	of	text	...

			Print	text																													''	...	and	output	it	to	the	screen

Loop

Close	#file_num																								''	close	file	via	our	file	number

End	0

Because	of	underlying	differences	in	the	libraries	used	by	the	compiler	on	different	platforms,	the	EOF	function	can	be	unreliable
when	reading	text	files	created	in	Linux	(with	LF	line	endings)	in	the	Windows	version	of	the	compiler.	The	DOS	and	Linux
compilers	do	not	have	this	problem.	One	solution	is	to	open	the	file	for	Binary	access	instead	of	for	Input.	Line	Input#	and	EOF
can	still	be	used	as	in	the	above	example,	and	the	EOF	function	will	work	reliably.	This	solution	will	not	detect	the	end	of	file
character,	but	this	is	only	used	to	mark	the	end	of	text	streams	that	are	not	disk	files.

Differences	from	QB

In	QB	the	comm	port	signaled	an	EOF	when	there	were	no	chars	waiting	to	be	read.
In	QB,	for	files	opened	in	RANDOM	or	BINARY	mode,	EOF	returned	non-zero	only	after	a	read	past	the	end	of	file	has
been	attempted.	In	FreeBASIC,	EOF	returns	true	after	the	last	item	is	read.

See	also

LOF

LOC

FreeFile

Operator	Eqv	(Equivalence) 	

Returns	the	bitwise-and	(equivalence)	of	two	numeric	values

Syntax
Declare	Operator	Eqv	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)	As	Ret

Usage
result	=	lhs	Eqv	rhs

Parameters
lhs

The	left-hand	side	expression.
T1

Any	numeric	or	boolean	type.
rhs

The	right-hand	side	expression.
T2

Any	numeric	or	boolean	type.
Ret

A	numeric	or	boolean	type	(varies	with	T1	and	T2).

Return	Value
Returns	the	bitwise-equivalence	of	the	two	operands.

Description
This	operator	returns	the	bitwise-equivalence	of	its	operands,	a	logical
operation	that	results	in	a	value	with	bits	set	depending	on	the	bits	of
the	operands	(for	conversion	of	a	boolean	to	an	integer,	false	or	true
boolean	value	becomes	0	or	-1	integer	value).

The	truth	table	below	demonstrates	all	combinations	of	a	boolean-
equivalence	operation:

Lhs	Bit Rhs	Bit Result

0 0 1

1 0 0

0 1 0

1 1 1

No	short-circuiting	is	performed	-	both	expressions	are	always
evaluated.

The	return	type	depends	on	the	types	of	values	passed.	Byte,	UByte
and	floating-point	type	values	are	first	converted	to	Integer.	If	the	left
and	right-hand	side	types	differ	only	in	signedness,	then	the	return	type
is	the	same	as	the	left-hand	side	type	(T1),	otherwise,	the	larger	of	the
two	types	is	returned.	Only	if	the	left	and	right-hand	side	types	are	both
Boolean,	the	return	type	is	also	Boolean.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	As	UByte	a	=	&b00110011

Dim	As	UByte	b	=	&b01010101,	c

c	=	a	Eqv	b	''	c	=	&b10011001

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Operator	Truth	Tables

Erase 	

Statement	to	erase	arrays

Syntax
Declare	Sub	Erase	(array	As	Any	[,	...])

Usage
Erase(array0	[,	array1	...	arrayN])

Parameters
array

An	array	to	be	erased.

Description
Using	Erase	on	a	fixed-length	array	clears	(re-initializes)	all	elements.

Using	Erase	on	a	variable-length	array	(array	already	sized)	frees	the
memory	used	by	the	element	data	(does	not	allow	to	after	resize	it	with
a	different	number	of	dimensions).

Example

Dim	MyArray1(1	To	10)	As	Integer

ReDim	MyArray2(1	To	10)	As	Integer	

Erase	MyArray1,	MyArray2

Differences	from	QB

None

See	also

Common

Dim

Extern

LBound

ReDim

Static

UBound

Var

Erfn 	

Error	reporting	function

Syntax
Declare	Function	Erfn	()	As	ZString	Ptr

Usage
result	=	Erfn	()	

Return	Value
Returns	a	pointer	to	the	string	identifying	the	function	where	the	error
occurred.

Returns	NULL	if	the	source	is	not	compiled	with	the	-exx	compiler
option.

Description
An	error	reporting	function	returning	a	pointer	to	the	name	of	the
function.

Example

''	test.bas

''	compile	with	fbc	-exx	-lang	fblite	test.bas

#lang	"fblite"

Sub	Generate_Error

		On	Error	Goto	Handler

		Error	1000

		Exit	Sub

Handler:

		Print	"Error	Function:	";	*Erfn()

		Print	"Error	Module		:	";	*Ermn()

		Resume	Next

End	Sub

Generate_Error

Output:

Error	Function:	GENERATE_ERROR

Error	Module		:	test.bas

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Erfn.

Differences	from	QB

New	to	FreeBASIC

See	also

Erl

Ermn

On...Error

Erl 	

Error	handling	function	to	return	the	line	where	the	error	occurred

Syntax
Declare	Function	Erl	()	As	Integer

Usage
result	=	Erl

Return	Value
An	Integer	return	value	containing	the	line	number	where	the	last	error
occurred.

Description
Erl	will	return	the	line	number	where	the	last	error	occurred.	If	no	error
has	occurred,	Erl	will	return	0.

Erl	cannot	always	be	used	effectively	--	QB-like	error	handling	must	be
enabled.

Erl	is	reset	by	RESUME	and	RESUME	NEXT

Example

'	compile	with	-lang	fblite	or	qb

#lang	"fblite"

'	note:	compilation	with	'-

ex'	option	is	required

On	Error	Goto	ErrorHandler

'	Generate	an	explicit	error

Error	100

End

ErrorHandler:

		Dim	num	As	Integer	=	Err

		Print	"Error	";	num;	"	on	line	";	Erl

		Resume	Next

'	Expected	output	is

'	Error		100	on	line		6

Differences	from	QB

FreeBASIC	returns	the	source	code	line	number	and	ignores
the	values	of	all	explicit	line	numbers,	where	as	QB	returns	the
last	encountered	explicit	line	number,	and	will	return	zero	(0)
when	explicit	line	numbers	are	not	used.

See	also

Error	Handling
Err

Ermn 	

Error	reporting	function

Syntax
Declare	Function	Ermn	()	As	ZString	Ptr

Usage
result	=	Ermn	()	

Return	Value
Returns	a	pointer	to	the	string	identifying	the	module	where	the	error
occurred.

Returns	NULL	if	the	source	is	not	compiled	with	the	-exx	compiler
option.

Description
An	error	reporting	function	returning	a	pointer	to	the	name	of	the
module.

Example

''	test.bas

''	compile	with	fbc	-exx	-lang	fblite	test.bas

#lang	"fblite"

Sub	Generate_Error

		On	Error	Goto	Handler

		Error	1000

		Exit	Sub

Handler:

		Print	"Error	Function:	";	*Erfn()

		Print	"Error	Module		:	";	*Ermn()

		Resume	Next

End	Sub

Generate_Error

Output:

Error	Function:	GENERATE_ERROR

Error	Module		:	test.bas

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Ermn.

Differences	from	QB

New	to	FreeBASIC

See	also

Erfn

Erl

On...Error

Err 	

Get	or	set	the	run-time	error	number

Usage
result	=	Err()

or

Err	=	number

Description
The	Err()	function	returns	the	FreeBASIC	run-time	error	number	which	can	be
set	by	the	built-in	statements	and	functions,	or	by	the	program	through	
number	or	Error.	Unlike	Error,	Err	=	number	sets	the	error	number	without
invoking	an	error	handler.

See	Runtime	Error	Codes	for	a	listing	of	the	predefined	runtime	error	numbers
and	their	associated	meaning.	The	program	may	use	additional	custom	error
numbers.

Err	can	always	be	used,	even	if	QB-like	error	handling	is	not	enabled.	
reset	by	Resume	and	Resume	Next.

Note:	Care	should	be	taken	when	calling	an	internal	function	(such	as	
after	an	error	occurred,	because	it	will	reset	the	error	value	with	its	own	error
status.	To	preserve	the	Err	value,	it	is	a	good	idea	to	store	it	in	a	variable	as
soon	as	the	error	handler	is	entered.

Example
An	example	using	QBasic	style	error	handling	(compile	with	-ex	option)

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

On	Error	Goto	Error_Handler

Error	150

End

Error_Handler:

		n	=	Err()

		Print	"Error	#";	n

		Resume	Next

An	example	using	inline	error	handling	(note:	Open	can	also	return	its	own	error
status	when	called	as	a	function)

''	compile	without	-e	switch

Dim	filename	As	String

Do

				Line	Input	"Input	filename:	",	filename

				If	filename	=	""	Then	End

				Open	filename	For	Input	As	#1

Loop	Until	Err()	=	0

Print	Using	"File	'&'	opened	successfully";	filename

Close	#1

Differences	from	QB

Error	numbers	are	not	the	same	as	in	QB.

See	also

On	Error

Error

Error	Handling
Runtime	Error	Codes

Error 	

Error	handling	statement	to	force	an	error	to	be	generated

Syntax
Declare	Sub	Error	(errno	As	Integer)

Usage
Error	number

Parameters
number

The	error	number	to	generate

Description
Error	invokes	the	error	handler	specified	with	On	Error	or,	in	case
there	was	none	set,	aborts	the	program,	printing	an	error	message
similar	to	those	generated	by	the	compiler's	-exx	run-time	error
checking.	It's	possible	to	use	the	built-in	run-time	error	numbers
and/or	other	custom	error	numbers	for	number.	This	can	be	used	to
simulate	custom	error	numbers.

Example
To	send	an	error	alert	of	error	150	(just	some	arbitrary	error	code)	one
would	do	the	following:

Error	150

Differences	from	QB

Error	numbers	are	not	the	same	as	in	QB.

See	also

Err

Error	Handling
Runtime	Error	Codes

Event	(Message	Data	From	Screenevent) 	

Pre-defined	structure	(UDT)	from	fbgfx.bi	used	by	ScreenEvent	to	return
event	data	

Syntax
#include	once	"fbgfx.bi"

using	fb

Dim	variable	As	Event

Description
Here	we	report	the	EVENT	structure	for	clarity:

Type	EVENT	Field	=	1

				Type	As	Long

				Union

								Type

												scancode	As	Long

												ascii	As	Long

								End	Type

								Type

												x	As	Long

												y	As	Long

												dx	As	Long

												dy	As	Long

								End	Type

								button	As	Long

								z	As	Long

								w	As	Long

				End	Union

End	Type

The	Type	field	will	contain	the	event	type	ID,	while	the	remaining	4
integers	will	hold	sensitive	data	to	the	event	type.	

Event	types
The	event	type	is	identified	by	an	ID	number	returned	into	the	first
integer	of	the	event	buffer	(the	.type	field	in	the	EVENT	structure).
Known	event	type	IDs	-	and	their	values	at	time	of	writing	-	are:

EVENT_KEY_PRESS	(1)	A	key	was	pressed	on	the	keyboard.
The	.scancode	field	contains	the	platform	independent
scancode	value	for	the	key;	if	the	key	has	an	ascii
representation,	it	is	held	into	the	.ascii	field,	which
otherwise	has	a	value	of	0.
EVENT_KEY_RELEASE	(2)	A	key	was	released	on	the
keyboard.	The	.scancode	and	.ascii	fields	have	the
same	meaning	as	with	the	EVENT_KEY_PRESS	event.
EVENT_KEY_REPEAT	(3)	A	key	is	being	held	down
repeatedly.	The	.scancode	and	.ascii	fields	have	the
same	meaning	as	with	the	EVENT_KEY_PRESS	event.
EVENT_MOUSE_MOVE	(4)	The	mouse	was	moved	while	it	was
on	the	program	window.	The	.x	and	.y	fields	contain	the
new	mouse	position	relative	to	the	upper-left	corner	of
the	screen,	while	the	.dx	and	.dy	fields	contain	the
motion	deltas.
EVENT_MOUSE_BUTTON_PRESS	(5)	One	of	the	mouse	buttons
was	pressed.	The	.button	field	has	one	bit	set	identifying
the	button	that	was	pressed;	bit	0	identifies	the	left
mouse	button,	bit	1	the	right	mouse	button	and	bit	2	the
middle	mouse	button.
EVENT_MOUSE_BUTTON_RELEASE	(6)	One	of	the	mouse
buttons	was	released.	The	.button	field	has	the	same
meaning	as	with	the	EVENT_MOUSE_BUTTON_PRESS	event.
EVENT_MOUSE_DOUBLE_CLICK	(7)	One	of	the	mouse	buttons
was	double	clicked.	The	.button	field	has	the	same
meaning	as	with	the	EVENT_MOUSE_BUTTON_PRESS	event.
EVENT_MOUSE_WHEEL	(8)	The	mouse	wheel	was	used;	the
new	wheel	position	is	returned	into	the	.z	field.
EVENT_MOUSE_ENTER	(9)	The	mouse	was	moved	into	the
program	window.
EVENT_MOUSE_EXIT	(10)	The	mouse	was	moved	out	of	the

program	window.
EVENT_WINDOW_GOT_FOCUS	(11)	The	program	window	has
got	focus.
EVENT_WINDOW_LOST_FOCUS	(12)	The	program	window	has
lost	focus.
EVENT_WINDOW_CLOSE	(13)	The	user	attempted	to	close	the
program	window.
EVENT_MOUSE_HWHEEL	(14)	The	horizontal	mouse	wheel
was	used;	the	new	horizontal	wheel	position	is	returned
into	the	.w	field.

The	fbgfx.bi	header	file	contains	a	definition	of	the	EVENT	user	data
type,	so	it	is	not	necessary	to	declare	it	manually.

Dialect	Differences

In	lang	fb,	the	structure	and	constants	are	stored	in	the	FB
Namespace.	This	is	not	the	case	in	other	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

ScreenEvent

Exec 	

Temporarily	transfers	execution	to	an	external	program

Syntax
Declare	Function	Exec	(ByRef	program	As	Const	String,	ByRef	arguments

String)	As	Long

Usage
result	=	Exec(program,	arguments)

Parameters
program

The	file	name	(including	file	path)	of	the	program	(executable)	to	transfer	control	to.
arguments

The	command-line	arguments	to	be	passed	to	the	program.

Return	Value
The	exit	status	of	the	program,	or	negative	one	(-1)	if	the	program	could	not	be	executed.

Description
Transfers	control	over	to	an	external	program.	When	the	program	exits,	execution
resumes	immediately	after	the	call	to	Exec.

Example

'A	Windows	based	example	but	the	same	idea	applies	to	Linux

Const	exename	=	"NoSuchProgram.exe"

Const	cmdline	=	"arg1	arg2	arg3"

Dim	result	As	Integer

result	=	Exec(exename,	cmdline)

If	result	=	-1	Then

				Print	"Error	running	";	exename

Else

				Print	"Exit	code:";	result

End	If

Platform	Differences

Linux	requires	the	program	case	matches	the	real	name	of	the	file.	Windows	and
DOS	are	case	insensitive.	The	program	being	executed	may	be	case	sensitive	for
its	command	line	parameters.
Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses	backward	slashes	\
but	it	allows	for	forward	slashes	.	DOS	uses	backward	\	slashes.	
Exit	code	is	limited	to	8	bits	in	DOS.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Chain	transfer	temporarily,	without	arguments
Run	one-way	transfer
Command	pick	arguments

ExePath 	

Returns	the	path	of	the	running	program

Syntax
Declare	Function	ExePath	()	As	String

Usage
result	=	ExePath

Return	Value
A	String	variable	set	to	the	path	of	the	running	program.

Description
Returns	the	path	(the	location)	of	the	calling	program.	This	is	not	necessarily	the
same	as	CurDir.

Example

Dim	pathname	As	String	=	ExePath

Print	"This	program's	initial	directory	is:	"	&	pathname

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Exepath.

Differences	from	QB

New	to	FreeBASIC

See	also

CurDir

Exit 	

Control	flow	statement	to	exit	a	compound	statement	block

Syntax
Exit	{Do	|	For	|	While	|	Select	}

Exit	{Sub	|	Function	|	Operator	|	Property	}

Exit	{Do	[,	Do	[,	...]]	|

For	[,	For	[,	...]]	|	

While	[,	While,	[...]]	|	

Select	[,	Select	[,	...]]	}

Description
Leaves	a	code	block	such	as	a	Sub,	Function,	Do...Loop,	For...Next,	While...Wend
The	execution	skips	the	rest	of	the	block	and	goes	to	the	line	after	its	end.

Where	there	are	multiple	Do	/	For	/	While	/	Select	blocks	nested,	it	will	skip	to	the	end	of	the	innermost	block
of	that	type.	You	can	skip	to	the	end	of	multiple	blocks	of	that	type	by	giving	the	word	multiple	times,
separated	by	commas.
For	example:	Exit	While,	While

Example

'e.g.	the	print	command	will	not	be	seen

Do

				Exit	Do	'	Exit	the	Do...Loop	and	continues	to	run	the	code	after	Loop

				Print	"I	will	never	be	shown"

Loop

Dim	As	Integer	i,	j

For	i	=	1	To	10

				

				For	j	=	1	To	10

								

								Exit	For,	For

								

				Next	j

				

				Print	"I	will	never	be	shown"

				

Next	i

Differences	from	QB

EXIT	WHILE	and	EXIT	SELECT	are	new	to	FreeBASIC.

See	also

Sub

Function

Do...Loop

For...Next

While...Wend

Continue

Exp 	

Returns	e	raised	to	the	power	of	a	given	number

Syntax
Declare	Function	Exp	cdecl	(ByVal	number	As	Double)	As	Double

Usage
result	=	Exp(number)

Parameters
number

The	Double	number	that	e	is	raised	to	the	power	of.

Return	Value
Returns	the	Double	value	of	e	raised	to	power	of	number.

Description
The	mathematical	constant	e,	also	called	Euler's	constant,	is	the	base	of	the	
significant	figures	is:	2.7182818284590452354.	The	required	number	argument	can	be	any	valid	numeric	expression	within	range	of	the	function.	If	
Exp	returns	infinity.	If	number	is	too	small,	Exp	returns	zero	(0.0).	If	number

Example

'Compute	Continuous	Compound	Interest

Dim	r	As	Double

Dim	p	As	Double

Dim	t	As	Double

Dim	a	As	Double

Input	"Please	enter	the	initial	investment	(principal	amount):	"

Input	"Please	enter	the	annual	interest	rate	(as	a	decimal):	"

Input	"Please	enter	the	number	of	years	to	invest:	"

a	=	p	*	Exp	(r	*	t)

Print	""

Print	"After";t;"	years,	at	an	interest	rate	of";	

The	output	would	look	like:

Please	enter	the	initial	investment	(principal	amount):	100

Please	enter	the	annual	interest	rate	(As	a	decimal):	.08

Please	enter	the	number	of	years	To	invest:	20

After	20	years,	at	an	interest	rate	of	8%,	your	initial	investment	of	100	would	be	worth	495.3032424395115

Differences	from	QB

None

See	also

Log

Operator	^	(Exponentiate)

Export 	

Declaration	specifier	to	indicate	that	a	procedure	in	a	DLL	should	be
visible	from	other	programs

Syntax
{	Sub	|	Function	}	proc_name	(argumentlist)	[As	datatype]

Export

Description
If	a	function	is	declared	with	this	clause	in	a	DLL,	it	is	added	to	the
public	export	table,	so	external	programs	can	dynamically	link	to	it
using	DyLibSymbol.

Example
See	the	examples	on	the	Shared	Libraries	page.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Export.

Platform	Differences

Dynamic	link	libraries	are	not	available	in	DOS,	as	the	OS
doesn't	support	them.

Differences	from	QB

New	to	Freebasic

See	also

DyLibLoad

DyLibSymbol

Alias

Extends 	

Specifies	a	base	type	from	which	to	derive	a	new	type

Syntax
Type|Union	typename	Extends	base_typename

...

End	Type|Union

Description
Extends	declares	typename	to	be	derived	from	base_typename.	The	derived	user-defined	type,	
base	type.	typename	objects	may	be	used	in	place	of	base_typename	objects.	Fields	and	methods	inherited	from	
like	regular	members	of	typename.
However,	a	regular	member	will	shadow	an	inherited	member	if	they	have	the	same	identifier.	The	
explicitly	access	members	of	the	base	type	shadowed	by	local	members.

User-defined	types	that	extend	another	type	will	include	the	base	type	structure	at	their	beginning,	and	their	size	as	reported	by	
their	base	type's	size	plus	the	size	needed	for	any	regular	members.	Since	the	inherited	members	make	sure	that	the	structure	is	not	empty,	a	derived
type	is	not	required	to	have	regular	members	of	its	own.

In	typename	(the	derived	user-defined	type),	the	fields	can	share	the	same	memory	space	than	the	
not	matter	whether	base_typename	is	a	Union	or	not.
If	only	base_typename	is	a	Union,	then	it	will	not	be	affected	by	fields	from	
As	a	Union	is	not	allowed	to	have	complex	fields	(i.e.	user-defined	types	with	constructor/destructor,	or	dynamic	strings),	a	derived	
allowed	to	have	(contain)	a	complex	base_typename.

The	Base	(Initializer)	keyword	can	be	used	at	the	top	of	constructor	of	derived	user-defined	type.	It	allows	to	specify	an	initializer	or	constructor	call
for	the	base	type.

Extending	the	built-in	Object	type	allows	a	user-defined	type	to	be	used	with	
Abstract	methods,	and	to	use	the	Override	method	attribute.

Note:	Derived	UDT	pointer	can	only	be	casted	to	"compatible"	pointer	types	(up/down	the	inheritance	hierarchy)	or	
first.

Warning:	Before	fbc	version	0.24,	these	five	keywords	dedicated	to	inheritance	
Operator	Is	were	not	supported.	Three	new	keywords	Virtual,	Abstract

Example

Type	SchoolMember	'Represents	any	school	member'

				Declare	Constructor	()

				Declare	Sub	Init	(ByRef	_name	As	String,	ByVal

				As	String	Name

				As	Integer	age

End	Type

Constructor	SchoolMember	()

				Print	"Initialized	SchoolMember"

End	Constructor

Sub	SchoolMember.Init	(ByRef	_name	As	String,	ByVal

				This.name	=	_name

				This.age	=	_age

				Print	"Name:	";	This.name;	"			Age:";	This.age

End	Sub

Type	Teacher	Extends	SchoolMember	'Represents	a	teacher	derived	from	SchoolMember'

				Declare	Constructor	(ByRef	_name	As	String,	ByVal

				As	Integer	salary

				Declare	Sub	Tell	()

End	Type

Constructor	Teacher	(ByRef	_name	As	String,	ByVal	

				Print	"Initialized	Teacher"

				This.Init(_name,	_age)	'implicit	access	to	base	member	procedure'

				This.salary	=	_salary

End	Constructor

Sub	Teacher.Tell	()

				Print	"Salary:";	This.salary

End	Sub

Type	Student	Extends	SchoolMember	'Represents	a	student	derived	from	SchoolMember'

				Declare	Constructor	(ByRef	_name	As	String,	ByVal

				As	Integer	marks

				Declare	Sub	Tell	()

End	Type

Constructor	Student	(ByRef	_name	As	String,	ByVal	

				Print	"Initialized	Student"

				This.Init(_name,	_age)	'implicit	access	to	base	member	procedure'

				This.marks	=	_marks

End	Constructor

				

Sub	Student.Tell	()

				Print	"Marks:";	This.marks

End	Sub

Dim	As	Teacher	t	=	Teacher("Mrs.	Shrividya",	40,	30000

t.Tell()

Print

Dim	As	Student	s	=	Student("Swaroop",	22,	75)

s.Tell()

'	Example	using	all	eight	keywords	of	inheritance:

'			'Extends',	'Base.',	'Base()',	'Object',	'Is'	operator,	'Virtual',	'Abstract',	'Override'

Type	root	Extends	Object	'	'Extends'	to	activate	RTTI	by	inheritance	of	predefined	Object	type

		Declare	Function	ObjectHierarchy	()	As	String

		Declare	Abstract	Function	ObjectRealType	()	As	String

																																																								

		Dim	Name	As	String

		Declare	Virtual	Destructor	()	'	'Virtual'	declares	destructor	with	body	('Abstract'	forbidden)

Protected:

		Declare	Constructor	()	'	to	avoid	user	construction	from	root

		Declare	Constructor	(ByRef	rhs	As	root)	''	to	avoid	user	copy-construction	from	root

End	Type	'	derived	type	may	be	member	data	empty

Constructor	root	()

End	Constructor

Function	root.ObjectHierarchy	()	As	String

		Return	"Object(forRTTI)	<-	root"

End	Function

Virtual	Destructor	root	()

		Print	"root	destructor"

End	Destructor

Type	animal	Extends	root	'	'Extends'	to	inherit	of	root

		Declare	Constructor	(ByRef	_name	As	String	=	"")

		Declare	Function	ObjectHierarchy	()	As	String

		Declare	Virtual	Function	ObjectRealType	()	As	String

																																																																

																																																																

																																																																

		Declare	virtual	Destructor	()	Override	'	'Virtual'	declares	destructor	with	local	body

																																									'	'Override'	to	check	if	the	destructor	is	well	an	override

End	Type

Constructor	animal	(ByRef	_name	As	String	=	"")

		This.name	=	_name

End	Constructor

Function	animal.ObjectHierarchy	()	As	String

		Return	Base.ObjectHierarchy	&	"	<-	animal"	'	'Base.'	allows	to	access	to	parent	member	function

End	Function

Virtual	Function	animal.ObjectRealType	()	As	String

		Return	"animal"

End	Function

Virtual	Destructor	animal	()

		Print	"		animal	destructor:	"	&	This.name

End	Destructor

Type	dog	Extends	animal	'	'Extends'	to	inherit	of	animal

		Declare	Constructor	(ByRef	_name	As	String	=	"")

		Declare	Function	ObjectHierarchy	()	As	String

		Declare	Function	ObjectRealType	()	As	String	Override

																																																								

		Declare	Destructor	()	Override	'	'Override'	to	check	if	the	destructor	is	well	an	override

End	Type	'	derived	type	may	be	member	data	empty

Constructor	dog	(ByRef	_name	As	String	=	"")

		Base(_name)	'	'Base()'	allows	to	call	parent	constructor

End	Constructor

Function	dog.ObjectHierarchy	()	As	String

		Return	Base.ObjectHierarchy	&	"	<-	dog"	'	'Base.'	allows	to	access	to	parent	member	function

End	Function

Function	dog.ObjectRealType	()	As	String

		Return	"dog"

End	Function

Destructor	dog	()

		Print	"				dog	destructor:	"	&	This.name

End	Destructor

Type	cat	Extends	animal	'	'Extends'	to	inherit	of	animal

		Declare	Constructor	(ByRef	_name	As	String	=	"")

		Declare	Function	ObjectHierarchy	()	As	String

		Declare	Function	ObjectRealType	()	As	String	Override

																																																								

		Declare	Destructor	()	Override	'	'Override'	to	check	if	the	destructor	is	well	an	override

End	Type	'	derived	type	may	be	member	data	empty

Constructor	cat	(ByRef	_name	As	String	=	"")

		Base(_name)	'	'Base()'	allows	to	call	parent	constructor

End	Constructor

Function	cat.ObjectHierarchy	()	As	String

		Return	Base.ObjectHierarchy	&	"	<-	cat"	'	'Base.'	allows	to	access	to	parent	member	function

End	Function

Function	cat.ObjectRealType	()	As	String

		Return	"cat"

End	Function

Destructor	cat	()

		Print	"				cat	destructor:	"	&	This.name

End	Destructor

Sub	PrintInfo	(ByVal	p	As	root	Ptr)	'	must	be	put	after	definition	of	animal	type,	dog	type	and	cat	type

		Print	"		"	&	p->Name,	"		"	&	p->ObjectRealType,	

		If	*p	Is	dog	Then	'	'Is'	allows	to	check	compatibility	with	type	symbol

				Print		Cast(dog	Ptr,	p)->ObjectHierarchy

		ElseIf	*p	Is	cat	Then	'	'Is'	allows	to	check	compatibility	with	type	symbol

				Print	Cast(cat	Ptr,	p)->ObjectHierarchy

		ElseIf	*p	Is	animal	Then	'	'Is'	allows	to	check	compatibility	with	type	symbol

				Print	Cast(animal	Ptr,	p)->ObjectHierarchy

		End	If

End	Sub

Print	"Name:",	"Object	(real):									Hierarchy:"

Dim	a	As	root	Ptr	=	New	animal("Mouse")

PrintInfo(a)

Dim	d	As	root	Ptr	=	New	dog("Buddy")

PrintInfo(d)

Dim	c	As	root	Ptr	=	New	cat("Tiger")

Printinfo(c)

Print

Delete	a

Delete	d

Delete	c

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Type

Union

Base	(Initializer)

Base	(Member	Access)

Object

Operator	Is

Virtual

Abstract

Override

Extern 	

Declares	a	variable,	array	or	object	having	external	linkage

Syntax
Extern	[Import]	symbolname[(subscripts)]	[Alias	"aliasname"

]	As	DataType	[,	...]

Parameters
symbolname

The	name	of	the	variable,	array	or	object.
aliasname

An	alternate	external	name	for	the	variable,	array	or	object.

Description
Declares	symbolname	as	an	external	name,	meaning	it	is	global	to
external	modules.	Extern	only	declares	variables,	arrays	and	objects,
and	does	not	define	them	(different	from	Common	or	Dim).	It	also	has	the
effect	of	making	symbolname	a	shared	name,	meaning	it	is	visible	within
procedures	(see	Shared).	A	symbolname	declared	as	external	name	can
be	(re)defined	(using	Dim	or	Redim)	only	in	a	single	external	module.

If	Alias	is	used,	aliasname	will	be	used	as	the	external	name	rather
than	symbolname,	and	its	case	will	be	preserved.

If	Import	is	used,	the	name	will	be	added	to	the	dynamic	library	import
list	so	its	address	can	be	fixed	at	run-time.

Example

''	extern1.bas

Extern	Foo	Alias	"foo"	As	Integer

Sub	SetFoo

				foo	=	1234

End	Sub

''	extern2.bas

Declare	Sub	SetFoo

Extern	Foo	Alias	"foo"	As	Integer

Dim	foo	As	Integer	=	0

SetFoo

Print	Foo

Output:

	1234

Dialect	Differences

Not	available	in	the	-lang	qb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Extern...End	Extern

Common

Dim

Shared

Extern...End	Extern 	

Statement	block	to	allow	calling	of	functions	compiled	for	specific	languages	or	platforms.

Syntax
Extern	{	"C"	|	"C++"	|	"Windows"	|	"Windows-MS"	}	[Lib	"libname

declarative	statements

End	Extern

Description
Extern	blocks	provide	default	calling	conventions	for	procedures	and	mandate	a	certain	name	decoration.

Extern	"C"	blocks	provide	a	default	cdecl	calling	convention	to	procedures,	and	also	preserve	the	case	of	all	names
declared	within	them.	The	same	effect	can	be	achieved	without	the	EXTERN	block	by	using	
Alias	string	containing	the	exact	procedure	name.

Extern	"C++"	blocks	are	exactly	like	Extern	"C"	blocks	but	they	also	mangle	the	names	declared	within	them	in	a
way	compatible	to	that	of	g++-4.x.

Extern	"Windows"	blocks	provide	a	default	stdcall	calling	convention	to	procedures,	preserve	the	case	of	all	names
declared	within	them,	and	on	the	Windows	platform,	append	an	"@N"	suffix	to	procedure	names,	where	
size	in	bytes	of	any	procedure	parameters.	Similar	to	the	Extern	"C"	block,	the	same	effect	can	be	achieved	by	using
stdcall	and	Alias.

Extern	"Windows-MS"	blocks	are	exactly	like	Extern	"Windows"	blocks	but	do	not	append	the	
names	on	Windows.

Lib	"libname"	can	be	used	to	specify	a	library	which	will	be	linked	in	as	if	
used.	Additionally,	all	procedure	declarations	inside	the	Extern	block	will	use	the	specified	
specified	as	part	of	their	declarations	(but	it	can	still	be	overridden	with	an	explicit	

Example

''	This	procedure	uses	the	default	calling	convention	for	the	system,	which	is

''	STDCALL	on	Win32	and	CDECL	on	Linux/DOS/*BSD,	and	is	seen	externally	as

''	"MYTEST1@4"	on	Win32	and	"MYTEST1"	on	Linux/DOS/*BSD	(following	FB's	default

''	ALL-UPPER-CASE	name	mangling).

Sub	MyTest1	(ByVal	i	As	Integer)

End	Sub

Extern	"C"

				''	This	procedure	uses	the	CDECL	convention	and	is	seen	externally

				''	as	"MyTest2".

				Sub	MyTest2	(ByVal	i	As	Integer)

				End	Sub

End	Extern

Extern	"C++"

				''	This	procedure	uses	the	CDECL	convention	and	its	name	is	mangled

				''	compatible	to	g++-4.x,	specifically:	"_Z7MyTest3i"

				Sub	MyTest3	(ByVal	i	As	Integer)

				End	Sub

End	Extern

Extern	"Windows"

				''	This	procedure	uses	the	STDCALL	convention	and	is	seen	externally

				''	as	"MyTest4@4"	on	Windows,	and	"MyTest4"	on	Linux,	*BSD	and	DOS.

				Sub	MyTest4	(ByVal	i	As	Integer)

				End	Sub

End	Extern

Extern	"Windows-MS"

				''	This	procedure	uses	the	STDCALL	convention	and	is	seen	externally

				''	as	"MyTest5".

				Sub	MyTest5	(ByVal	i	As	Integer)

				End	Sub

End	Extern

MyTest1(0)

MyTest2(0)

MyTest3(0)

MyTest4(0)

Dialect	Differences

Extern	blocks	are	only	available	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

Platform	Differences

On	Linux,	*BSD	and	DOS	platforms,	Extern	"Windows"	blocks	never	append	a	
and	thus	are	equal	to	Extern	"Windows-MS".

See	also

cdecl

stdcall

Extern

False 	

Intrinsic	constant	set	by	the	compiler

Syntax
Const	False	As	Boolean

Description
Gives	the	False	Boolean	value	where	used.

Example

Dim	b	As	Boolean	=	False

If	b	Then

				Print	"b	is	True"

Else

				Print	"b	is	False"

End	If

b	is	False

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__False.

Differences	from	QB

New	to	FreeBASIC

See	also

True

Boolean

Field 	

Specifies	field	alignment.

Syntax
Type|Union	typename	Field	=	{	1	|	2	|	4	}

...

End	Type|Union

Description
Field	can	be	used	to	pack	Types	or	Unions	more	tightly	than	the	default	layout
The	most	commonly	used	value	is	Field	=	1,	which	causes	the	Type	or	
be	packed	as	tightly	as	possible,	without	any	padding	bytes	being	added
between	the	fields	or	at	the	end	of	the	Type.	Field	can	only	be	used	to	decrease
field	alignment,	but	it	cannot	be	used	to	increase	it.	In	order	to	add	padding
bytes,	a	Union	with	appropriate	members	could	be	used	instead.

Example

Type	bitmap_header	Field	=	1

				bfType										As	UShort

				bfsize										As	UInteger

				bfReserved1					As	UShort

				bfReserved2					As	UShort

				bfOffBits							As	UInteger

				biSize										As	UInteger

				biWidth									As	UInteger

				biHeight								As	UInteger

				biPlanes								As	UShort

				biBitCount						As	UShort

				biCompression			As	UInteger

				biSizeImage					As	UInteger

				biXPelsPerMeter	As	UInteger

				biYPelsPerMeter	As	UInteger

				biClrUsed							As	UInteger

				biClrImportant		As	UInteger

End	Type

Dim	bmp_header	As	bitmap_header

'Open	up	bmp.bmp	and	get	its	header	data:

'Note:	Will	not	work	without	a	bmp.bmp	to	load	.	.	.

Open	"bmp.bmp"	For	Binary	As	#1

				Get	#1,	,	bmp_header

				

Close	#1

Print	bmp_header.biWidth,	bmp_header.biHeight

Sleep

Dialect	Differences

In	the	-lang	qb	dialect,	the	compiler	assumes	Field	=	1	by	default,	if	no
other	Field	was	specified,	causing	all	structures	to	be	tightly	packed,
without	added	padding,	as	in	QB.

Differences	from	QB

In	QB	Field	was	used	to	define	fields	in	a	file	buffer	at	run	time.	This
feature	is	not	implemented	in	FB,	so	the	keyword	has	been	redefined.	To
define	fields	in	a	file	buffer,	Types	must	be	used.

See	also

Type

Union

Structure	packing/field	alignment

FileAttr 	

Returns	information	about	an	open	file	number

Syntax
Declare	Function	FileAttr	(ByVal	filenum	As	Long,	ByVal	returntype

Long	=	1)	As	Integer

Usage
#include	"file.bi"

result	=	FileAttr(filenum,	[returntype])

or

#include	"vbcompat.bi"

result	=	FileAttr(filenum,	[returntype])

Parameters
filenum

The	file	number	of	a	file	or	device	opened	with	Open
returntype

An	integer	value	indicating	the	type	of	information	to	return.

Return	Value
A	value	associated	with	the	return	type,	otherwise	0	on	error.

Description
Information	about	the	file	number	is	returned	based	on	the	supplied	returntype

Value Description constant

1 File	Mode fbFileAttrMode

2 File	Handle fbFileAttrHandle

3 Encoding fbFileAttrEncoding

For	File	Mode,	returntype	=	1	(fbFileAttrMode)	the	return	value	is	the	sum	of

one	or	more	of	the	following	values:	

Value File	Mode Constant

1 Input fbFileModeInput

2 Output fbFileModeOutput

4 Random fbFileModeRandom

8 Append fbFileModeAppend

32 Binary fbFileModeBinary

For	File	Handle,	returntype	=	2	(fbFileAttrHandle),	the	return	value	is	the	file
handle	as	supplied	by	the	C	Runtime	for	file-type	devices.	

On	Windows	only:	For	File	Handle,	returntype	=	2	(fbFileAttrHandle),	the	value
returned	for	COM	devices	is	the	handle	returned	by	CreateFile()	when	the
device	was	first	opened.	The	value	returned	for	LPT	devices	is	the	handle
returned	by	OpenPrinter()	when	the	device	was	first	opened.	This	handle	value
can	be	passed	to	other	Windows	API	functions.

On	Linux	only:	For	File	Handle,	returntype	=	2	(fbFileAttrHandle),	the	value
returned	for	COM	devices	is	the	file	descriptor	returned	by	open()	when	the
device	was	first	opened.

For	Encoding,	returntype	=	3	(fbFileAttrEncoding),	the	return	value	is	one	of
the	following	values:

Value Encoding Constant

0 Ascii fbFileEncodASCII

1 UTF-8 fbFileEncodUTF8

2 UTF-16 fbFileEncodUTF16

3 UTF-32 fbFileEncodUTF32

Example

#include	"vbcompat.bi"

#include	"crt.bi"

Dim	f	As	FILE	Ptr,	i	As	Integer

''	Open	a	file	and	write	some	text	to	it

Open	"test.txt"	For	Output	As	#1

f	=	Cast(FILE	Ptr,	FileAttr(1,	fbFileAttrHandle	

For	i	=	1	To	10

		fprintf(f,	!"Line	%i\n",	i)

Next	i

Close	#1

''	re-open	the	file	and	read	the	text	back

Open	"test.txt"	For	Input	As	#1

f	=	Cast(FILE	Ptr,	FileAttr(1,	fbFileAttrHandle	

While	feof(f)	=	0

		i	=	fgetc(f)

		Print	Chr(i);

Wend

Close	#1

Differences	from	QB

None	for	returntype	=	1
QBasic	and	16-bit	Visual	Basic	returned	DOS	file	handle	for	returntype
2
returntype	=	3	is	new	to	FreeBASIC

See	also

Open

FileCopy 	

Copies	a	file

Syntax
Declare	Function	FileCopy	(ByVal	source	As	ZString	Ptr,	ByVal

destination	As	ZString	Ptr)	As	Long

Usage
#include	"file.bi"

FileCopy	source,	destination

or

#include	"file.bi"

result	=	FileCopy(source,	destination)

Parameters
source

A	String	argument	specifying	the	filename	of	the	file	to	copy	from.	This
file	must	exist.
destination

A	String	argument	specifying	the	filename	of	the	file	to	copy	to.	This
file	will	be	overwritten	if	it	exists.	This	file	should	not	be	currently
referenced	by	any	open	file	handles.

Return	Value
Returns	0	on	success,	or	1	if	an	error	occurred.

Description
Copies	the	contents	of	the	source	file	into	the	destination	file,
overwriting	the	destination	file	if	it	already	exists.
It	is	necessary	to	#include	either	"file.bi"	or	"vbcompat.bi"	in	order
to	gain	access	to	this	function.

Example

#include	"file.bi"

FileCopy	"source.txt",	"destination.txt"

Platform	Differences

Linux	requires	the	filename	case	matches	the	real	name	of	the
file.	Windows	and	DOS	are	case	insensitive.	
Path	separators	in	Linux	are	forward	slashes	/.	Windows	uses
backward	slashes	\	but	it	allows	forward	slashes.	DOS	uses
backward	slashes	\.	

Differences	from	QB

New	to	FreeBASIC.	Existed	in	Visual	Basic.

See	also

FileDateTime 	

Returns	the	last	modified	date	and	time	of	a	file	as	Date	Serial	

Syntax
Declare	Function	FileDateTime	(ByVal	filename	As	ZString	Ptr)

As	Double

Usage
#include	"file.bi"

result	=	FileDateTime(filename)

or

#include	"vbcompat.bi"

result	=	FileDateTime(filename)

Parameters
filename

Filename	to	retrieve	date	and	time	for.

Return	Value
Returns	a	Date	Serial.

Description
Returns	the	file's	last	modified	date	and	time	as	Date	Serial.

Example

#include	"vbcompat.bi"

Dim	filename	As	String,	d	As	Double

Print	"Enter	a	filename:	"

Line	Input	filename

If	FileExists(filename)	Then

		Print	"File	last	modified:	";

		d	=	FileDateTime(filename)

		Print	Format(d,	"yyyy-mm-dd	hh:mm	AM/PM")

Else

		Print	"File	not	found"

End	If

Platform	Differences

Linux	requires	the	filename	case	matches	the	real	name	of	the
file.	Windows	and	DOS	are	case	insensitive.	
Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses
backward	slashes	\	but	it	allows	forward	slashes.	DOS	uses
backward	slashes	\.

Differences	from	QB

New	to	FreeBASIC

See	also

Date	Serials

FileExists 	

Tests	the	existence	of	a	file

Syntax
Declare	Function	FileExists	(ByVal	filename	As	ZString	Ptr)	As

Long

Usage
#include	"file.bi"

result	=	FileExists(filename)

or

#include	"vbcompat.bi"

result	=	FileExists(filename)

Parameters
filename

Filename	to	test	for	existence.

Return	Value
Returns	non-zero	(-1)	if	the	file	exists,	otherwise	returns	zero	(0).

Description
FileExists	tests	for	the	existence	of	a	file.
Internally,	it	may	issue	an	Open()	and	a	Close()	function,	which	may
have	consequences	-	eg,	any	existing	Lock(s)	on	the	file	may	be
released.
Depending	on	the	exact	requirements,	alternative	methods	of	checking
for	file	existence	may	be	to	use	the	Dir()	function	(being	careful	of
attributes	and	ensuring	the	path	doesn't	contain	wildcards),	or	to	try
Opening	the	file	and	checking	the	return	value	for	success.

Example

#include	"vbcompat.bi"

Dim	filename	As	String

Print	"Enter	a	filename:	"

Line	Input	filename

If	FileExists(filename)	Then

		Print	"File	found:	"	&	filename

Else

		Print	"File	not	found:	"	&	filename

End	If

Platform	Differences

Linux	requires	the	filename	case	matches	the	real	name	of	the
file.	Windows	and	DOS	are	case	insensitive.	
Path	separators	in	Linux	are	forward	slashes	/.	Windows	uses
backward	slashes	\	but	it	allows	for	forward	slashes.	DOS	uses
backward	\	slashes.	

Differences	from	QB

New	to	FreeBASIC

See	also

Dir

FileLen 	

Finds	the	length	of	a	file	given	its	filename

Syntax
Declare	Function	FileLen	(filename	As	String)	As	LongInt

Usage
#include	"file.bi"

result	=	FileLen(filename)

or

#include	"vbcompat.bi"

result	=	FileLen(filename)

Parameters
filename

A	String	argument	specifying	the	filename	of	the	file	whose	length	to
return.

Description
Returns	the	size	in	bytes	of	the	file	specified	by	filename.

Example

#include	"file.bi"

Dim	length	As	Integer

length	=	FileLen("file.txt")

Platform	Differences

Linux	requires	the	filename	case	matches	the	real	name	of	the
file.	Windows	and	DOS	are	case	insensitive.	

Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses
backward	slashes	\	but	it	allows	for	forward	slashes	.	DOS	uses
backward	\	slashes.	

Differences	from	QB

New	to	FreeBASIC.	Existed	in	Visual	Basic.

See	also

LOF

Fix 	

Returns	the	integer	part	of	a	number,	rounding	towards	zero

Syntax
Declare	Function	Fix	(ByVal	number	As	Single)	As	Single

Declare	Function	Fix	(ByVal	number	As	Double)	As	Double

Declare	Function	Fix	(ByVal	number	As	Integer)	As	Integer

Declare	Function	Fix	(ByVal	number	As	UInteger)	As	UInteger

Declare	Function	Fix	(ByVal	number	As	LongInt)	As	LongInt

Declare	Function	Fix	(ByVal	number	As	ULongInt)	As	ULongInt

Usage
result	=	Fix(number)

Parameters
number

the	floating-point	number	to	truncate

Return	Value
Returns	the	integer	part	of	number,	rounding	towards	zero.

Description
Equivalent	to:	Sgn(number)	*	Int(Abs(number)).	For	example,	Fix(1.3)
will	return	1.0,	and	Fix(-4.9)	will	return	-4.0.	For	integer	types,	the
number	is	returned	unchanged.

Note:	this	function	is	also	equivalent	to	number	-	Frac(number).

The	Fix	unary	Operator	can	be	overloaded	with	user	defined	types.

Example

Print	Fix(1.9)		''	will	print		1

Print	Fix(-1.9)	''	will	print	-1	

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Int

Frac

CInt

Operator

Flip 	

Changes	the	current	video	display	page

Syntax
Declare	Sub	Flip	(ByVal	frompage	As	Long	=	-1,	ByVal	topage	As	

Usage
Flip	[frompage]	[,	topage]

Parameters
frompage

previous	page
topage

new	page	to	display

Description
In	normal	graphics	mode,	Flip	is	an	alias	for	PCopy	and	ScreenCopy.	See	

In	OpenGL	mode,	Flip	does	a	hardware	page	flip	and	displays	the	contents	of	the	backbuffer.	It	is	recommended	that	you	call	
while	in	OpenGL	mode,	otherwise	your	app	may	also	become	unresponsive.

Example

ScreenRes	320,	240,	32,	2				'Sets	up	the	screen	to	be	320x240	in	32-bit	color	with	2	video	pages.

For	n	As	Integer	=	50	To	270

				ScreenSet	1,0					'Sets	the	working	page	to	1	and	the	displayed	page	to	0

				Cls

				Circle	(n,	50),50	,RGB(255,255,0)	'Draws	a	circle	with	a	50	pixel	radius	in	yellow	on	page	1

				Flip	1,0				'Copies	our	circle	from	page	1	to	page	0

				Sleep	25

Next

Print	"Now	wasn't	that	neat!"

Print	"Push	any	key."

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

For 	

Control	flow	statement,	open	statement	clause,	or	operator	depending	on
context.

Syntax
For	iterator	=	startvalue	To	endvalue	[Step	increment]

or

Open	[device]	"filename"	For	filemode	As	#handle

or

declare	operator	For	(byref	stp	as	datatype)

See	also

For...Next

Open

Operator

For...Next 	

Control	flow	statement	for	looping

Syntax
For	iterator	[As	datatype]	=	startvalue	To	endvalue	[Step	stepvalue

[statement	block]

Next	[iterator]

Parameters
iterator

a	variable	identifier	that	is	used	to	iterate	from	an	initial	value	to	an	end	value
datatype

If	specified,	the	variable	iterator	will	automatically	be	declared	with	the	type	
startvalue

an	expression	that	denotes	the	starting	value	of	the	iterator
endvalue

an	expression	used	to	compare	with	the	value	of	the	iterator
stepvalue

an	expression	that	is	added	to	the	iterator	after	every	iteration

Description
A	For...Next	loop	initializes	iterator	to	startvalue,	then	executes	the	
iterator	by	stepvalue	until	it	exceeds	endvalue.	If	stepvalue	is	not	explicitly	given	it	will	set	to	

The	values	of	stepvalue	and	endvalue	are	stored	internally	immediately	following	execution	of	the	
statement	and	thus	neither	can	be	changed	inside	the	For	loop.	Comparison	operators	such	as	<	and	>
will	not	be	effective	as	stepvalue	or	endvalue	because	the	expressions	will	not	be	re-evaluated	while	the
loop	is	running.	(The	results	of	the	expressions	used	to	define	them	may	be	changed,	but	these	changes
will	not	affect	the	execution	of	the	For	loop.)	See	examples.

Note:	In	some	dialects,	the	temporary	variables	holding	stepvalue	and	
end	of	the	loop,	and	their	values	are	not	guaranteed	to	remain	unchanged	once	any	code	following	the
loop	has	been	executed.	For	this	reason,	it	is	recommended	never	to	branch	out	of	a	
(using	Goto	or	similar),	and	then	jump	back	into	the	middle	of	it	later	when	in	the	
deprecated	dialect.

The	iterator	must	be	an	intrinsic	scalar:	only	Static/Shared	variables	and	local	variables	can	be	used;	no

other	kind	can	be	used,	including	array	elements,	UDT	members,	ByRef
dereferenced	address.

The	iterator	may	be	defined	having	the	same	scope	as	the	For	statement	by	using	the	
syntax.	With	this	syntax,	iterator	is	created	and	destroyed	within	the	
differences	below.

If	endvalue	is	less	than	startvalue	then	a	negative	stepvalue	must	be	specified	or	the	
not	execute	at	all,	since	startvalue	compares	greater	than	endvalue.

The	For	statement	causes	the	execution	of	the	statements	in	the	statement	block
greater	than	endvalue	(or	less	than	endvalue	if	stepvalue	<	0).	iterator
of	stepvalue	following	each	execution	of	the	statement	block.	If	an	increment	is	not	given,	
implicitly	incremented	by	1.

If	an	Exit	For	statement	is	encountered	inside	the	statement	block,	the	loop	is	terminated,	and	execution
resumes	immediately	following	the	enclosing	Next	statement.	If	a	Continue
the	rest	of	the	statement	block	is	skipped	until	the	block's	corresponding	
value	is	incremented	and	the	loop	restarted	if	it	is	still	within	the	bounds	given	by	

Note:	for	integer	data	types,	it	is	not	possible	to	loop	up	to	the	highest	possible	value	(or	down	to	the
lowest	possible	value)	that	can	be	stored	in	the	variable	type,	because	the	loop	only	breaks	when	the
incremented	variable	exceeds	endvalue,	which	can	never	happen.	For	example,	if	you	try	to	iterate	an
variable	from	0	to	255,	the	loop	will	only	break	once	the	variable	reaches	
variable	for	the	counter	wouldn't	work,	because	although	it	can	hold	the	numbers	
256.	See	Standard	Data	Type	Limits	to	find	the	upper	and	lower	limits	for	the	standard	data	types.

Like	all	control	flow	statements,	the	For	statement	can	be	nested,	that	is,	it	can	be	used	in	a	statement
block	of	another	For	statement.

For,	Next,	and	Step	are	operators	that	can	be	overloaded	inside	user	defined	types.	See	
Operator	Next,	Operator	Step

Example

Print	"counting	from	3	to	0,	with	a	step	of	-0.5"

For	i	As	Single	=	3	To	0	Step	-0.5

				Print	"i	is	"	&	i

Next	i

Dim	As	Integer	i,	j,	k,	toTemp,	stepTemp

j	=	9:	k	=	1

For	i	=	0	To	j	Step	k

				

				j	=	0:	k	=	0	''	Changing	j	and	k	has	no	effect	on	the	current	loop.

				Print	i;

				

Next	i

Print

'	Internally,	this	is	what	the	above	example	does:

j	=	9:	k	=	1

i	=	0:	toTemp	=	j:	stepTemp	=	k

Do	While	IIf(stepTemp	>=	0,	i	<=	toTemp,	i	>=	toTemp

				

				j	=	0:	k	=	0	''	Changing	j	and	k	has	no	effect	on	the	current	loop.

				Print	i;

				

				i	+=	stepTemp

Loop

Print

Dialect	Differences

In	the	-lang	fb	and	-lang	deprecated	dialects,	variables	declared	inside	a	
visible	only	inside	the	block,	and	cannot	be	accessed	outside	it.
In	the	-lang	qb	and	-lang	fblite	dialects,	variables	declared	inside	a	
counter	if	declared,	and	any	temporary	variables	used	to	hold	endvalue
procedure-wide	scope	as	in	QB

Differences	from	QB

ByRef	arguments	cannot	be	used	as	counters.

See	also

Continue

Do...Loop

Exit

Format 	

Formats	a	number	in	a	specified	format

Syntax
Declare	Function	Format	(ByVal	numerical_expression	As	Double,	

formatting_expression	As	Const	String	=	"")	As	String

Usage
#include	"string.bi"

result	=	Format[$](numerical_expression,	formatting_expression)

Parameters
numerical_expression

number	to	format
formatting_expression

formatting	pattern

Return	Value
Format	returns	a	string	with	the	result	of	the	numerical	expression	formatted	as	indicated	in	the
formatting	expression.
The	formatting	expression	is	a	string	that	can	yield	numeric	or	date-time	values.

Description
To	recover	meaningful	date-time	values	the	numerical	expression	must	be	a	date	serial
obtained	from	the	appropriate	functions.
This	function	is	part	of	FreeBASIC,	however	it	is	not	recognized	by	the	compiler	unless
vbcompat.bi	is	included.

"Numeric	Formats"

Symbol Description

Null
string General	format	(no	formatting)

0

Digit	placeholder:	If	the	number	has	fewer	digits	than	there	are	zeros	(on	either	side	of	the	decimal)	in	the
format	expression,	leading	or	trailing	zeros	are	displayed.	If	there	are	more	digits	to	the	right	of	the	decimal
than	zeros	in	the	format,	the	number	is	rounded.	If	there	are	more	digits	to	the	left	of	the	decimal	than	zeros	in

the	format	the	digits	are	all	displayed

# Digit	placeholder:	Follows	the	same	rules	as	for	the	0	digit	except	the	leading	or	trailing	zeros	are	not	displayed

. Placeholder	for	decimal	point.If	the	format	contains	only	#'s	to	the	left	of	.	then	numbers	smaller	than	1	
begun	with	a	decimal	point.

% Percentage	:The	expression	is	multiplied	by	100	and	the	%	character	is	inserted.

,
Thousands	separator.	Two	adjacent	commas,	or	a	comma	immediately	to	the	left	of	the	decimal	point	location
(whether	there	is	a	decimal	specified	or	not)	means	'Omit	the	three	digits	that	fall	between	these	
between	the	comma	and	the	decimal	point,	rounding	as	needed.'

E-	E+	e-
e+

Scientific	format:	If	a	format	contains	one	digit	placeholder	(0	or	#)	to	the	right	of	an	E-,	E+,	e-,	or	e+,	the
number	is	displayed	in	scientific	format	and	an	E	or	e	is	inserted	between	the	number	and	its	exponent.The
number	of	0's	or	#'s	to	the	right	determines	the	number	of	digits	in	the	exponent.	Use	E-	or	e-	to	place	a	minus
sign	next	to	negative	exponents.	Use	a	E+	or	e+	to	place	a	minus	sign	next	to	negative	exponents	and	a	plus
sign	next	to	positive	exponents.

:	?	+	$	()
space

Display	literal	character	To	display	a	character	other	than	one	of	these,	precede	the	character	with	a	backslash
(\)	or	enclose	the	character(s)	in	double	quotation	marks

\ Display	next	character	in	format	string	as	it	is

text
between
double
quotes

Displays	the	text	inside	the	double	quotes.

: Time	separator	is	used	to	separate	hours,	minutes,	and	seconds	when	time	values	are	formatted.

/ The	date	separator	is	used	to	separate	day,month,	and	year	when	date	values	are	formatted.

"Date-Time	formats:"

Symbol Description

d,	dd Display	the	day	as	a	one-digit/two-digit	number	(1-31/01-31)

ddd Display	the	day	as	an	abbreviation	(Sun-Sat)

dddd Display	the	day	as	a	full	name	(Sunday-Saturday)

ddddd Display	a	serial	date	number	as	a	complete	date	(including	day,	month	and	year)

m,	mm Display	the	month	as	a	one-digit/two-digit	number	(1-12/01-12).	If	immediately	following	h	or	hh,	the
minute	rather	than	the	month	is	displayed

M,	MM Display	the	month	as	a	one-digit/two-digit	number	(1-12/01-12),	even	if	immediately	following	h	or	hh

mmm Display	the	month	as	an	abbreviation	(Jan-Dec)

mmmm Display	the	month	as	a	full	name	(January-December)

y,	yy Display	the	year	as	a	two-digit	number	(00-99)

yyyy Display	the	year	as	a	four-digit	number	(1900-2040)

h,	hh Display	the	hour	as	a	one-digit/two-digit	number	(0-23/00-23)

m,	mm Display	the	minute	as	a	one-digit/two-digit	number	(0-59/00-59).	If	not	immediately	following	h	or	hh,

the	month	rather	than	the	minute	is	displayed

n,	nn Display	the	minute	as	a	one-digit/two-digit	number	(0-59/00-59),	even	if	not	immediately	following	h	or
hh

s,	ss Display	the	second	as	a	one-digit/two-digit	number	(0-59/00-59)

ttttt Display	a	time	serial	number	as	a	complete	time,	including	hour,	minute	and	second

AM/PM	(Default),
am/pm

Use	the	12-hour	clock	displaying	AM	or	am	with	any	hour	before	noon,	PM	or	pm	with	any	hour
between	noon	and	11:59

A/P,	a/p Use	the	12-hour	clock	displaying	A	or	a	with	any	hour	before	noon,	P	or	p	with	any	hour	between	noon
and	11:59

Example

Sample	numeric	formats

Format	(fmt)																		5													-5												.5

	 				

	 				Null	String																			5													-5												0.5

	 				0																													5													-5												1

	 				0.00																										5.00										-5.00									0.50

	 				#,##0																									5													-5												1

	 				#,##0.00																						5.00										-5.00									0.50

	 				0%																												500%										-500%									50%

	 				0.00%																									500.00%							-500.00%						50.00%

	 				0.00E+00																						5.00E+00						-5.00E+00					5.00E-01

	 				0.00E-00																						5.00E00							-5.00E00						5.00E-01

	Sample	Date	And	Time	Formats

The	following	are	examples	of	Date	And	Time	formats:

	 					Format		Expression					Display

	 					m/d/yy																	12/7/58

	 					d-mmmm-yy														7-December-58

	 					d-mmmm																	7-December

	 					mmmm-yy																December-58

	 					h:mm	AM/PM													8:50	PM

	 					h:mm:ss	AM/PM										8:50:35	PM

	 					h:mm																			20:50

	 					h:mm:ss																20:50:35

	 					m/d/yy	h:mm												12/7/58	20:50	

Dialect	Differences
None

Differences	from	QB

Does	not	exist	in	QB	4.5.	This	function	appeared	first	in	PDS	7.1

See	also

(Print	|	?)	Using

Str

Frac 	

Returns	the	decimal	part	of	a	number

Syntax
Declare	Function	Frac	(ByVal	number	As	Double)	As	Double

Declare	Function	Frac	(ByVal	number	As	Integer)	As	Integer

Declare	Function	Frac	(ByVal	number	As	UInteger)	As	UInteger

Declare	Function	Frac	(ByVal	number	As	LongInt)	As	LongInt

Declare	Function	Frac	(ByVal	number	As	ULongInt)	As	ULongInt

Usage
result	=	Frac(number)

Parameters
number

the	number	or	expression	to	get	the	fraction	part	of.

Return	Value
Returns	the	fractional	part	of	a	number	or	expression.

Description
Equivalent	to:	(number	-	Fix(number)).
For	example,	Frac(4.25)	will	return	0.25,	and	Frac(-1.75)	will	return
-0.75.	For	integer	types,	the	value	0	is	always	returned.

The	Frac	unary	Operator	can	be	overloaded	with	user	defined	types.

Example

Print	frac(10.625)		''	will	print		0.625

Print	frac(-10.625)	''	will	print	-0.625	

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Fix

Operator

Fre 	

Returns	the	amount	of	free	memory	available

Syntax
Declare	Function	Fre	(ByVal	value	As	Long	=	0)	As	UInteger

Usage
result	=	Fre([value])

Parameters
value

Unused	dummy	parameter	kept	for	backward	compatibility;	can	be
ignored.

Return	Value
Returns	the	amount	of	free	memory,	in	bytes.

Description
Returns	the	free	memory	(ram)	available,	in	bytes.

Example

Dim	mem	As	Integer	=	Fre

Print	"Free	memory:"

Print

Print	mem;	"	bytes"

Print	mem		\	1024;	"	kilobytes"

Print	mem		\	(1024	*	1024);	"	megabytes"

Differences	from	QB

The	"value"	argument	is	not	checked,	Fre	will	always	return	the
free	physical	memory	available

See	also

Dim

ReDim

Allocate

FreeFile 	

Returns	a	free	file	number

Syntax
Declare	Function	FreeFile	()	As	Long

Usage
result	=	FreeFile

Return	Value
The	next	available	file	number,	if	any,	otherwise	zero	(0).

Description
Returns	the	number	of	the	next	free	file	number	with	valid	values	1	to	
This	value	is	a	required	argument	to	Open	a	file.	FreeFile	is	useful	when	opening	files	in	complex	programs	where
the	programmer	can't	keep	track	of	the	used	file	numbers.
Make	sure	to	always	close	files	when	no	longer	needed,	otherwise	you	will	get	a	file	number	leak,	and	won't	be
able	to	open	any	files	anymore	after	255	filenumbers	are	exhausted	while	your	program	is	running.
FreeFile	will	always	return	the	smallest	free	file	number.	The	file	number	returned	by	
that	file	number	is	Opened,	or	until	a	smaller	file	number	is	Closed.	For	this	reason,	it	is	wise	to	use	
immediately	before	its	corresponding	Open,	to	ensure	that	the	file	number	is	not	returned	and	opened	elsewhere
first.

Example

'	Create	a	string	and	fill	it.

Dim	buffer	As	String,	f	As	Integer

buffer	=	"Hello	World	within	a	file."

'	Find	the	first	free	file	number.

f	=	FreeFile

'	Open	the	file	"file.ext"	for	binary	usage,	using	the	file	number	"f".

Open	"file.ext"	For	Binary	As	#f

'	Place	our	string	inside	the	file,	using	file	number	"f".

Put	#f,	,	buffer

'	Close	the	file.

Close	#f

'	End	the	program.	(Check	the	file	"file.ext"	upon	running	to	see	the	output.)

End

When	using	multiple	FreeFile	statements,	FreeFile	should	be	used	immediately	before	the	

Dim	fr	As	Integer,	fs	As	Integer

'	The	CORRECT	way:

fr	=	FreeFile

Open	"File1"	For	Input	As	#fr

fs	=	FreeFile

Open	"File2"	For	Input	As	#fs

As	opposed	to:

Dim	fr	As	Integer,	fs	As	Integer

'	The	WRONG	way:

fr	=	FreeFile

fs	=	FreeFile	''	fs	has	taken	the	same	file	number	as	fr

Open	"file1"	For	Input	As	#fr

Open	"file2"	For	Input	As	#fs	''	error:	file	number	already	opened

Platform	Differences

On	Windows,	a	file	number	used	in	a	dynamic	link	library	is	not	the	same	as	an	identical	file	number	used	in
the	main	program.	File	numbers	can	not	be	passed	or	returned	and	then	used	between	a	DLL	and	an

executable.
Besides	FreeBASIC's	limit	of	255	files	per	program	opened	at	same	time,	there	is	an	OS	limit	of	total	amount
of	opened	files,	but	usually	you	won't	touch	it	except	in	DOS,	where	the	limit	may	be	as	low	as	15	files	total.

Differences	from	QB

None

See	also

Open

Put	(File	I/O)

Get	(File	I/O)

Function 	

Defines	a	procedure	returning	a	value

Syntax
[Public|Private]	Function	identifier	[cdecl|pascal|stdcall]	[Overload

[([parameter_list])]	[As	return_type]	[Static]	[Export]

statements

...

{	{Return	[return_value]}|{Function	=	return_value}|{identifier	=	

...

End	Function

Parameters
identifier:	the	name	of	the	function
external_identifier:	externally	visible	(to	the	linker)	name	enclosed	in	quotes
parameter_list:	parameter[,	parameter[,	...]]
parameter:	[ByRef|ByVal]	identifier	[As	type]	[=	default_value]
identifier:	the	name	of	the	variable	referenced	in	the	function.	If	the	argument	is	an	array	then	the	identifier	must	be
followed	by	an	empty	parenthesis.	
type:	the	type	of	variable
default_value:	the	value	of	the	argument	if	none	is	specified	in	the	call
return_type:	the	type	of	variable	returned	by	the	function
statements:	one	or	more	statements	that	make	up	the	function	body
return_value:	the	value	returned	from	the	function

Description
A	function	defines	a	block	of	code	which	can	be	executed	with	a	single	statement	(a	function	call),	and	provide	a	value
back	to	the	caller	when	finished	(a	return	value).	There	are	several	reasons	to	use	functions:

Reduces	redundancy	in	your	program
Enables	reuse	of	code	in	many	programs
Improves	readability	of	the	program
Improves	maintainability	of	the	program
Makes	it	easy	to	extend	your	program

Access	Rights	:	The	Public	and	Private	keywords	specify	public	or	private	intra	module-level	access	rights,

respectively.	If	neither	is	given,	the	function	defaults	to	public	access	(

Calling	Convention	:	Calling	convention,	or	the	order	in	which	arguments	are	pushed	and	popped	from	the	stack	during
function	calls,	is	specified	with	the	cdecl,	pascal	and	stdcall	keywords.	If	none	is	given,	the	function	uses	the	standard
convention	by	default	(stdcall).

Passing	Arguments	:	Functions	may	receive	one	or	more	variables,	or	arguments,	when	called.	These	arguments	are
listed	as	parameters	in	the	parameter_list.	The	ByRef	and	ByVal	keywords	specify	whether	the	argument	will	be	passed
by	reference	or	by	value,	respectively.	The	argument's	type	is	given	by	"
in	the	declaration	is	given	a	default	value,	the	parameter	is	optional.	Array	parameters	are	specified	by	following	an
identifier	with	an	empty	parenthesis.	Note	that	array	parameters	are	always	
required	nor	allowed	for	array	parameters.	When	calling	a	function	with	an	array	argument	the	parenthesis	must	be
supplied	there	too;	see	the	examples.

Overloaded	Functions	:	An	overloaded	function	may	share	the	same	name	(
signature.	The	Overload	keyword	specifies	that	a	function	may	be	overloaded.	A	function	must	be	defined	-	or	declared	-
using	the	Overload	keyword	prior	to	any	functions	that	overload	them.

Returning	values	:	return_type	specifies	the	data	type	returned	by	a	function	upon	exit.	If	no	data	type	is	specified,
then	the	function	will	return	the	default	data	type,	which	will	be	Integer	unless	set	to	another	data	type	using	
DefDbl,	DefStr,	etc.	Functions	can	return	values	using	three	methods:	the	
function	immediately,	and	returns	that	value	to	the	caller.	Functions	can	also	return	values	by	assigning	the	Function
keyword	or	the	function's	identifier	to	the	desired	return	value.	The	latter	two	methods	do	not	cause	the	function	to
exit,	however.	Return	keyword	mixed	with	Function=	keyword	or	function's	
same	function	is	unsupported	when	returning	objects	with	constructors.	Since	functions	return	values,	function	calls
evaluate	to	expressions.	Thus,	function	calls	can	be	made	wherever	an	expression	is	expected,	like	in	
If	statements.	Parentheses	surrounding	the	argument	list	are	required	on	function	calls	in	expressions	and	even	highly
recommended	if	there	are	no	arguments.	Functions	can	also	return	references	by	specifying	

Local	Variable	Preservation	:	The	Static	keyword	specifies	that	a	function's	locally	declared	variables	are	preserved
between	function	calls.	Upon	entering	a	function	defined	with	Static,	local	variables	have	the	same	value	as	when	the
function	was	last	called.

Example

''	This	program	demonstrates	the	declaration	of	a	function	

''	and	returning	a	value	using	Return	command

Declare	Function	ReturnTen	()	As	Integer

Print	ReturnTen	()	''	ReturnTen	returns	an	integer	by	default.

Function	ReturnTen()	As	Integer

				Return	10

End	Function

''	This	program	demonstrates	the	declaration	of	a	function	

''	and	returning	a	value	using	assignment	to	function	name

Declare	Function	ReturnTen	()	As	Integer

Print	ReturnTen	()	''	ReturnTen	returns	an	integer	by	default.

Function	ReturnTen()	As	Integer

				ReturnTen	=	10

End	Function

''	This	program	demonstrates	function	overloading.

''	The	overloaded	functions	must	be	FIRST.

Declare	Function	ReturnTen	Overload	(a	As	Single)	

Declare	Function	ReturnTen	Overload	(a	As	String)	

Declare	Function	ReturnTen	(a	As	Integer)	As	Integer

Print	ReturnTen	(10.000!)	''	ReturnTen	will	take	a	single	and	return	an	integer

Print	ReturnTen	(10)						''	ReturnTen	will	take	an	integer	and	return	an	integer

Print	ReturnTen	("10")				''	ReturnTen	will	take	a	string	and	return	an	integer

Function	ReturnTen	Overload	(a	As	Single)	As	Integer

				Return	Int(a)

End	Function

Function	ReturnTen	Overload	(a	As	String)	As	Integer

				Return	Val(a)

End	Function

Function	ReturnTen	(a	As	Integer)	As	Integer

				Return	a

End	Function

''	The	following	example	demonstrates	optional	parameters.

Function	TestFunc(P	As	String	=	"Default")	As	String

				Return	P

End	Function

Print	TestFunc("Testing:")

Print	TestFunc

''	This	example	shows	how	to	declare	and	call	

''	functions	taking	array	arguments.

Function	x(b()	As	Double)	As	Integer

		x	=	UBound(b)-LBound(b)+1

End	Function

Dim	a(1	To	10)	As	Double

Print	x(a())

Dim	c(10	To	20)	As	Double	

Print	x(c())

Dialect	Differences

In	the	-lang	fb	dialect,	ByVal	is	the	default	parameter	passing	convention	for	all	built-in	types	except	
String	and	user-defined	Types	are	passed	ByRef	by	default.
In	the	-lang	qb	and	-lang	fblite	dialects,	ByRef	is	the	default	parameter	passing	convention.
In	the	-lang	qb	dialect,	the	name	of	the	function	must	be	used	in	an	assignment	to	specify	the	return	value.
Using	Function	=	..."	to	specify	the	return	value	may	not	be	used.
In	the	-lang	qb	and	-lang	fblite	dialects,	Return	may	only	be	used	to	return	a	value	when	
lang	qb,	this	must	be	done	explicitly	using	the	Option	Nogosub	statement.

Differences	from	QB

Parameters	can	be	optional	in	FreeBASIC.
In	QBASIC,	the	return	type	could	only	specified	with	a	suffix,	not	with	
return	a	built-in	type.
Return	value	can	now	be	specified	by	a	Return	statement.
Function	Overloading	is	supported	in	FreeBASIC.
The	return	value	of	functions	can	be	ignored	in	the	calling	code.

See	also

Sub

Exit

Return

Declare

Public

Private

Function	(Member) 	

Declares	or	defines	a	member	procedure	returning	a	value.

Syntax
{	Type	|	Class	|	Union	}	typename

Declare	[Static	|	Const]	Function	fieldname	[calling	convention

specifier]	[Alias	external_name]	([parameters])	As	datatype

[Static]

End	{	Type	|	Class	|	Union	}

Function	typename.fieldname	([parameters])	As	datatype	[

Export]

statements

End	Function

Parameters
typename	
name	of	the	Type,	Class,	or	Union
fieldname	
name	of	the	procedure
external_name

name	of	field	as	seen	when	externally	linked
parameters	
the	parameters	to	be	passed	to	the	procedure
calling	convention	specifier	
can	be	one	of:	cdecl,	stdcall	or	pascal

Description
Function	members	are	accessed	with	Operator	.	(Member	Access)	or
Operator	->	(Pointer	To	Member	Access)	to	call	a	member	procedure
that	returns	a	value	(a	reference	can	also	be	returned	by	specifying
Byref	As	return_type).	The	procedure	may	optionally	accept
parameters	either	ByVal	or	ByRef.	typename	be	overloaded	without
explicit	use	of	the	Overload	keyword.

typename	is	the	name	of	the	type	for	which	the	Function	method	is
declared	and	defined.	Name	resolution	for	typename	follows	the	same

rules	as	procedures	when	used	in	a	Namespace.

A	hidden	This	parameter	having	the	same	type	as	typename	is	passed
to	non-static	member	procedures.	This	is	used	to	access	the	fields	of
the	Type,	Class,	or	Union.
To	access	duplicated	symbols	defined	outside	the	Type,	use:
.SomeSymbol	(or	..SomeSymbol	if	inside	a	With..End	With	block).

A	Static	(Member)	may	be	declared	using	the	Static	specifier.	A	Const
(Member)	may	be	declared	using	the	Const	specifier.

As	for	a	normal	Function,	the	return	value	of	a	Function	member	can
be	ignored	in	the	calling	code.

Example

#include	"vbcompat.bi"

Type	Date

		value	As	Double

		Declare	Static	Function	Today()	As	Date

		Declare	Function	Year()	As	Integer

		Declare	Function	Month()	As	Integer

		Declare	Function	Day()	As	Integer

End	Type

Function	Date.Today()	As	Date

		Return	Type(Now())

End	Function

Function	Date.Year()	As	Integer

		Return	..Year(value)

End	Function

Function	Date.Month()	As	Integer

		Return	..Month(value)

End	Function

Function	Date.Day()	As	Integer

		Return	..Day(value)

End	Function

Dim	d	As	Date	=	Date.Today

Print	"Year		=	";	d.Year

Print	"Month	=	";	d.Month

Print	"Day			=	";	d.Day

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

See	also

Class

Function

Sub	(Member)

Type

Get	(Graphics) 	

Gets	a	copy	of	a	portion	of	the	current	work	page	or	an	image	buffer

Syntax
Get	[source,]	[STEP](x1,	y1)	-	[STEP](x2,	y2),	dest

Parameters
source

the	address	of	an	image	buffer.
STEP

indicates	that	the	following	co-ordinates	are	not	absolute	co-ordinates.
[STEP](x1,	y1)

co-ordinates	of	the	upper-left	corner	of	the	sub-image	to	copy.	STEP	indicates	that	
offsets	are	relative	to	the	current	graphics	cursor	position.
[STEP](x2,	y2)

co-ordinates	of	the	lower-right	corner	of	the	sub-image	to	copy.	STEP	indicates	that	
are	relative	to	x1	and	y1,	respectively.
dest

the	address	of	a	previously	allocated	buffer	to	store	the	image	data.

Description
Get	copies	a	rectangular	portion	of	the	current	work	page	specified	by	the	co-ordinates	(
y1)	and	(x2,	y2),	which	represent	the	upper-left	and	lower-right	corners	of	the	rectangle,
respectively.	STEP	specifies	that	the	upper-left	co-ordinates	are	relative	to	the	current
graphics	pen	location,	and/or	that	the	lower-right	co-ordinates	are	relative	to	the	upper-left
co-ordinates.	The	new	image	buffer	is	formatted	to	match	the	current	screen	mode	
format.

dest	can	be	an	address,	an	array,	or	a	reference	to	the	first	element	in	an	
receive	the	new	image	buffer.	This	memory	must	be	sufficiently	allocated	to	hold	the	image
buffer;	the	number	of	bytes	required	varies	with	the	-lang	dialect	used	to	compile	the
program.

source	can	be	an	address,	an	array,	or	a	reference	to	the	first	element	in	an	
an	image	buffer	to	retrieve	a	portion	of.	x1,	y1,	x2,	y2,	Step	and	dest	have	the	same	meaning
in	this	case.

The	co-ordinates	of	the	rectangle	are	affected	by	the	most	recent	Window
(Graphics)	statements,	and	must	both	be	within	the	current	clipping	region	set	by	
(Graphics),	otherwise	an	illegal	function	call	runtime	error	will	be	triggered,	and	the	function
will	have	no	effect.

Runtime	errors:
Get	throws	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
dest	is	an	array,	but	is	not	big	enough	to	hold	the	image	buffer.
The	upper-left	or	lower-right	co-ordinates	of	the	rectangle	are	outside	the
current	clipping	region.	See	View	(Graphics).

Dialect	Differences
There	are	2	types	of	buffers	(details	see	GfxInternalFormats)	depending	from	FB	dialect
used:

In	the	-lang	fb	dialect,	dest	receives	a	new-style	image	buffer,	which	consists	of	a	32-
byte	image	header	followed	by	pixel	data	which	is	row-padded	to	the	next	paragraph
boundary	(16	bytes).	Use	the	following	formula	to	calculate	the	total	size,	in	bytes,
required	to	store	the	image	buffer,	where	w	and	h	are	the	respective	width	and	height
of	the	rectangular	portion	of	the	current	work	page	or	source	image	buffer,	and	
the	number	of	bytes	per	pixel	of	the	current	screen	mode:

size	=	32	+	(((w	*	bpp	+	&hF;)	and	not	&hF;)	*	h)

In	the	-lang	qb	and	-lang	fblite	dialects,	dest	receives	a	QB-style	image	buffer,
which	consists	of	a	4-byte	image	header	followed	by	pixel	data	which	is	not	row-
padded.	Use	the	following	formula	to	calculate	the	total	size,	in	bytes,	required	to
store	the	image	buffer,	where	w	and	h	are	the	respective	width	and	height	of	the
rectangular	portion	of	the	current	work	page	or	source	image	buffer,	and	
number	of	bytes	per	pixel	of	the	current	screen	mode:

size	=	4	+	(w	*	h	*	bpp)

Example

#include	once	"fbgfx.bi"

''	Setup	a	400x300	32bit	screen

ScreenRes	400,	300,	32

''	First	draw	funny	stuff...

Line	(10,10)-(140,30),	RGB(255,255,0),	bf

Draw	String	(30,	20),	"Hello	there!",	RGB(255,0,0)

''	Now	capture	a	150x50	block	from	the	top-

left	of	the	screen	into	an	image

''	buffer	with	GET...

Dim	As	fb.Image	Ptr	image	=	ImageCreate(150,	50)

Get	(0,0)-(150-1,50-1),	image

''	And	duplicate	it	all	over	the	place!

Put	(0,50),	image

Put	(0,100),	image

Put	(0,150),	image

Put	(0,200),	image

Put	(0,250),	image

Put	(150,0),	image

Put	(150,50),	image

Put	(150,100),	image

Put	(150,150),	image

Put	(150,200),	image

Put	(150,250),	image

''	And	a	frame	around	a	whole	screen..

Line	(0,0)-(400-1,300-1),	RGB(255,255,0),	b

''	Now	get	the	whole	screen...

Dim	As	fb.Image	Ptr	big	=	ImageCreate(400,	300)

Get	(0,0)-(400-1,300-1),	big

''	And	display	that	"screenshot"	as	if	it	was	scrolling	by...

Dim	As	Integer	x	=	-350

While	((Inkey()	=	"")	And	(x	<	350))

				ScreenLock

								Cls

								Put	(x,0),	big

				ScreenUnlock

				Sleep	100,	1

				x	+=	10

Wend

See	also

Put	(Graphics)

Get	(File	I/O)

Screen	(Graphics)

Window

View	(Graphics)

Internal	graphics	formats

Get	(File	I/O) 	

Reads	data	from	a	file	to	a	buffer

Syntax
Get	#filenum	As	Long,	[position	As	LongInt],	ByRef	data	As	Any	[,	[

Get	#filenum	As	Long,	[position	As	LongInt],	data	As	String	[,	,	

Get	#filenum	As	Long,	[position	As	LongInt],	data()	As	Any	[,	,	

Usage
Get	#filenum,	position,	data	[,	[amount]	[,	bytesread]]

varres	=	Get	(#filenum,	position,	data	[,	[amount]	[,	bytesread]])

Parameters
filenum

The	value	passed	to	Open	when	the	file	was	opened.
position

The	position	where	the	read	must	start.	If	the	file	was	opened	For	Random
reading	starts	at	the	present	file	pointer	position.	The	position	is	1-based:	i.e.	first	record	or	byte	of	a	file	is	at	position	
If	position	is	omitted	or	zero	(0),	file	reading	will	start	from	the	current	file	position.
data

The	buffer	where	data	is	written.	It	can	be	a	numeric	variable,	a	string,	an	array,	a	user	defined	type	or	a	dereferenced	pointer.	The	read
operation	will	try	to	fill	completely	the	variable,	unless	the	EOF	is	reached.
When	getting	arrays,	data	should	be	followed	by	an	empty	pair	of	brackets:	"
is	not	allowed.
When	getting	Strings,	the	number	of	bytes	read	is	the	same	as	the	number	of	bytes	in	the	string	data.	
Note:	If	you	want	to	read	values	into	a	buffer,	you	should	NOT	pass	a	pointer	to	the	buffer;	instead	you	should	pass	the	first	variable	in
the	buffer.	(This	can	be	done	by	dereferencing	the	pointer	with	Operator	*	(Value	Of)
overwrite	the	pointer	variable,	not	the	memory	it	points	to.
amount

Makes	Get	read	amount	consecutive	variables	from	file	to	memory,	i.e.	it	reads	
memory	starting	at	data's	memory	location.	If	amount	is	omitted	it	defaults	to	
bytesread

An	unsigned	integer	variable	to	accept	the	result	of	the	number	of	bytes	read	successfully	from	the	file.

Return	Value
Zero	(0)	on	success;	non-zero	on	error.	Note:	if	EOF	(end	of	file)	is	reached	while	reading,	

actually	read	can	be	checked	by	passing	a	bytesread	variable.

Description
Reads	binary	data	from	a	file	to	a	buffer	variable

Get	can	be	used	as	a	function,	and	will	return	0	on	success	or	an	error	code	on	failure.	

For	files	opened	in	Random	mode,	the	size	in	bytes	of	the	data	to	read	must	match	the	specified	record	size.

Example

Dim	Shared	f	As	Integer

Sub	get_integer()

				Dim	buffer	As	Integer	'	Integer	variable

				'	Read	an	Integer	(4	bytes)	from	the	file	into	buffer,	using	file	number	"f".

				Get	#f,	,	buffer

				'	print	out	result

				Print	buffer

				Print

End	Sub

Sub	get_array()

				Dim	an_array(0	To	10-1)	As	Integer	'	array	of	Integers

				'	Read	10	Integers	(10	*	4	=	40	bytes)	from	the	file	into	an_array,	using	file	number	"f".

				Get	#f,	,	an_array()

				'	print	out	result

				For	i	As	Integer	=	0	To	10-1

								Print	an_array(i)

				Next

				Print

End	Sub

Sub	get_mem

				Dim	pmem	As	Integer	Ptr

				'	allocate	memory	for	5	Integers

				pmem	=	Allocate(5	*	SizeOf(Integer))

				'	Read	5	integers	(5	*	4	=	20	bytes)	from	the	file	into	allocated	memory

				Get	#f,	,	*pmem,	5	'	Note	pmem	must	be	dereferenced	(*pmem,	or	pmem[0])

				'	print	out	result	using	[]	Pointer	Indexing

				For	i	As	Integer	=	0	To	5-1

								Print	pmem[i]

				Next

				Print

				'	free	pointer	memory	to	prevent	memory	leak

				Deallocate	pmem

End	Sub

'	Find	the	first	free	file	file	number.

f	=	FreeFile

'	Open	the	file	"file.ext"	for	binary	usage,	using	the	file	number	"f".

Open	"file.ext"	For	Binary	As	#f

		get_integer()

		get_array()

		get_mem()

'	Close	the	file.		

Close	#f

'	Load	a	small	text	file	to	a	string

Function	LoadFile(ByRef	filename	As	String)	As	String

				

				Dim	h	As	Integer

				Dim	txt	As	String

				

				h	=	FreeFile

				

				If	Open(filename	For	Binary	Access	Read	As	#h

				

				If	LOF(h)	>	0	Then

								

								txt	=	String(LOF(h),	0)

								If	Get(#h,	,txt)	<>	0	Then	txt	=	""

								

				End	If

				

				Close	#h

				

				Return	txt

				

End	Function

Dim	ExampleStr	As	String

ExampleStr	=	LoadFile("smallfile.txt")

Print	ExampleStr

Differences	from	QB

Get	in	FB	can	read	full	arrays	as	in	VB	or,	alternatively,	read	a	multiple	of	the	data	size	into	the	memory.
Get	can	be	used	as	a	function	in	FB,	to	find	the	success/error	code	returned	without	having	to	use	error	handling	procedures.
FB	allows	the	bytesread	parameter,	to	check	how	many	bytes	have	been	successfully	read	in.

See	also

Get	(Graphics)	different	usage	of	same	keyword	
Put	(File	I/O)

Open

Close

Binary

Random

FreeFile

File	I/O	methods	comparison

GetJoystick 	

Reads	buttons	and	axis	information	from	attached	gaming	devices

Syntax
Declare	Function	GetJoystick	(ByVal	id	As	Long,	ByRef	buttons	As

0,	ByRef	a2	As	Single	=	0,	ByRef	a3	As	Single	=	0,	ByRef	a4	As	Single

ByRef	a6	As	Single	=	0,	ByRef	a7	As	Single	=	0,	ByRef	a8	As	Single

Usage
result	=	GetJoystick(id[,	buttons[,	a1[,	a2[,	a3[,	a4[,	a5[,	a6

Parameters
id

the	device	id	number	(0	-	15)
buttons

the	button	status
a1

first	axis	value
a2

second	axis	value
a3

third	axis	value
a4

fourth	axis	value
a5

fifth	axis	value
a6

sixth	axis	value
a7

seventh	axis	value
a8

eighth	axis	value

Return	Value
0	on	success	or	1	on	failure.	All	of	the	axis	positions	are	returned	in	floating	point	format.

Description

GetJoystick	will	retrieves	the	button	state,	and	the	axis	positions	for	up	to	8	axes,	for	the	joystick	determined
by	id,	a	number	between	0	and	15.	Buttons	are	stored	in	a	similar	manner	to	
buttons	representing	a	button.

A	single	precision	value	between	-1.0	and	1.0	is	returned	for	each	valid	axis.	
controller,	a	value	of	-1000.00	is	returned.

GetJoystick	will	return	0	upon	successful	completion;	It	will	return	1	upon	failure.	Failure	can	be	caused	by
specifying	an	illegal	joystick	number,	specifying	a	joystick	which	doesn't	exist,	or	a	failure	in	the	joystick	API.

Example

Screen	12

Dim	x	As	Single

Dim	y	As	Single

Dim	buttons	As	Integer

Dim	result	As	Integer

Dim	a	As	Integer

Const	JoystickID	=	0

'This	line	checks	to	see	if	the	joystick	is	ok.

If	GetJoystick(JoystickID,buttons,x,y)	Then	

				Print	"Joystick	doesn't	exist	or	joystick	error."

				Print

				Print	"Press	any	key	to	continue."

				Sleep

				End

End	If

Do

				result	=	GetJoystick(JoystickID,buttons,x,y)

				Locate	1,1

				Print	;"result:";result;"	x:"	;x;"	y:";y;"	Buttons:"

				

				'This	tests	to	see	which	buttons	from	1	to	27	are	pressed.	

				For	a	=	0	To	26	

								If	(buttons	And	(1	Shl	a))	Then	

												Print	"Button	";a;"	pressed.				"

								Else	

												Print	"Button	";a;"	not	pressed."

								End	If

				Next	a

Loop

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

SetMouse

GetMouse

MultiKey

GetKey 	

Returns	the	ascii	code	of	the	first	key	in	the	keyboard	buffer

Syntax
Declare	Function	GetKey	()	As	Long

Usage
result	=	GetKey

Return	Value
The	value	of	the	ascii	code	returned.

Description
It	returns	the	ascii	code	of	the	first	key	in	the	keyboard	buffer.	The	key	is
removed	from	the	buffer.	If	no	key	is	present,	GetKey	waits	for	it.	For
extended	keys	(returning	two	characters),	the	extended	code	is	returned	in
the	first	byte,	and	the	regular	code	is	returned	in	the	second	byte.	(see
example	below)

The	key	read	is	not	echoed	to	the	screen.

For	a	keyword	not	stopping	the	program	if	no	key	is	at	the	buffer	see	Inkey
or	MultiKey.

Example

Dim	As	Integer	foo

Do

				foo	=	GetKey

				Print	"total	return:	"	&	foo

				

				If(foo	>	255)	Then

								Print	"extended	code:	"	&	(foo	And	&hff)

								Print	"regular	code:	"	&	(foo	Shr	8)

				Else

								Print	"regular	code:	"	&	(foo)

				End	If

				Print	

Loop	Until	foo	=	27

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Getkey.

Differences	from	QB

New	to	FreeBASIC

See	also

GetMouse

Inkey

Input()

MultiKey

GetMouse 	

Retrieves	the	status	of	the	mouse	pointing	device

Syntax
Declare	Function	GetMouse	(ByRef	x	As	Integer,	ByRef	y	As	Integer

clip	As	Integer	=	0)	As	Long

Usage
result	=	GetMouse	(x,	y	[,	[wheel]	[,	[buttons]	[,	[clip]]]])

Parameters
x

x	coordinate	value
y

y	coordinate	value
wheel

scroll	wheel	value
buttons

button	status
clip

clip	status

Return	Value
0	on	success,	or	1	on	error	(for	example	because	the	mouse	is	outside	the	graphic	window)	or	on	failure.	

Description
GetMouse	retrieves	the	mouse	position	and	buttons	status;	information	is	returned	in	the	variables	passed	to	this	function	by	reference.	If	a	mouse	is
not	available,	all	variables	will	contain	the	-1	value.	

If	in	console	mode,	the	x	and	y	coordinates	are	the	character	cell	coordinates	the	mouse	is	currently	on;	the	upper	left	corner	of	the	screen	is	at
coordinates	0,	0.	If	the	mouse	moves	out	of	the	console	window,	GetMouse
console	mode	and	fullscreen,	the	scroll	wheel	value	is	not	returned.	

If	in	graphics	mode,	x	and	y	will	always	be	returned	in	pixel	coordinates	still	relative	to	the	upper	left	corner	of	the	screen,	which	is	at	0,0	in	this
case;	custom	coordinates	system	set	via	View	or	Window	do	not	affect	the	coordinates	returned	by	

If	the	mouse	runs	off	the	graphic	window,	all	values	are	set	to	-1	and	the	return	value	of	the	function	is	set	to	
for	the	buttons	and	wheel	if	the	return	value	of	the	function	is	not	also	tested.

Wheel	is	the	mouse	wheel	counter;	rotating	the	wheel	away	from	you	makes	the	count	to	increase,	rotating	the	wheel	toward	you	makes	it	to
decrease.	At	program	startup	or	when	a	new	graphics	mode	is	set	via	
mouse	wheels	for	a	given	platform,	in	which	case	0	is	always	returned.

Buttons	stores	the	buttons	status	as	a	bitmask:	bit	0	is	set	if	left	mouse	button	is	down;	bit	1	is	set	if	right	mouse	button	is	down;	bit	2	is	set	if
middle	mouse	button	/	wheel	is	down.

Clip	stores	the	mouse	clipping	status;	if	1,	the	mouse	is	currently	clipped	to	the	graphics	window;	if	

Example

Dim	As	Integer	x,	y,	buttons,	res	

'	Set	video	mode	and	enter	loop

ScreenRes	640,	480,	8

Do

				'	Get	mouse	x,	y	and	buttons.	Discard	wheel	position.

				res	=	GetMouse	(x,	y,	,	buttons)

				Locate	1,	1

				If	res	<>	0	Then	''	Failure

#ifdef	__FB_DOS__

								Print	"Mouse	or	mouse	driver	not	available"

#else

								Print	"Mouse	not	available	or	not	on	window"

#endif

				Else

								Print	Using	"Mouse	position:	###:###		Buttons:	"

								If	buttons	And	1	Then	Print	"L";

								If	buttons	And	2	Then	Print	"R";

								If	buttons	And	4	Then	Print	"M";

								Print	"			"

				End	If

Loop	While	Inkey	=	""

End

'Example	2:	type-union-type	structure

Type	mouse

				As	Integer	res

				As	Integer	x,	y,	wheel,	clip

				Union

								buttons	As	Integer

								Type

												Left:1	As	Integer

												Right:1	As	Integer

												middle:1	As	Integer

								End	Type

				End	Union

End	Type

	

Screen	11

Dim	As	mouse	m

Do

				m.res	=	GetMouse(m.x,	m.y,	m.wheel,	m.buttons

				ScreenLock

				Cls

				Print	Using	"res	=	#";	m.res

				Print	Using	"x	=	###;	y	=	###;	wheel	=	+###;	clip	=	##"

				Print	Using	"buttons	=	##;	left	=	#;	middle	=	#;	right	=	#"

				ScreenUnlock

				Sleep	10,	1

Loop	While	Inkey	=	""

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	
Integer.

Platform	Differences

On	Win32,	scroll	wheel	changes	are	not	guaranteed	to	be	detected	in	full-screen	console	mode.	
In	DOS,	the	"clip"	value	has	no	relevance.	Additionally	the	wheel	and	middle	button	will	not	work	unless	supported	and	enabled	by	the
mouse	driver.	See	also	FaqDOS.

Differences	from	QB

New	to	FreeBASIC

See	also

ScreenRes	setting	graph	mode	by	resolution
Screen	(Graphics)	setting	mode	the	QB-like	way
SetMouse

MultiKey

GetJoystick

GoSub 	

Control	flow	statement	to	use	a	section	of	code	and	return.

Syntax
GoSub	label

Description
Execution	jumps	to	a	subroutine	marked	by	a	line	label.	Always	use
Return	to	exit	a	GoSub,	execution	will	continue	on	next	statement	after
GoSub.	

The	line	label	where	GoSub	jumps	must	be	in	the	same
main/function/sub	block	as	GoSub.	All	the	variables	in	the	subroutine
are	shared	with	the	block,	no	arguments	can	be	used.	For	this	reason
Gosub	is	considered	bad	programming	practice	as	it	can	generate
unreadable	and	untraceable	code.	It	is	better	to	use	Sub	or	Function
instead.

Example

''	Compile	with	-lang	qb

'$lang:	"qb"

GoSub	message

End

message:

Print	"Welcome!"

Return

Dialect	Differences

Only	available	in	the	-lang	qb	and	-lang	fblite	dialects.

GoSub	support	is	disabled	by	default	in	the	-lang	fblite	unless
the	Option	Gosub	statement	is	used.

Differences	from	QB

None	when	using	the	-lang	qb	dialect.

See	also

Goto

Return

Sub

Function

Option	Gosub

Goto 	

Control	flow	statement	to	jump	to	another	part	of	the	program

Syntax
Goto	label

Description
Jumps	code	execution	to	a	line	label.

For	better	source	code	readability,	overuse	of	Goto	should	be	avoided
in	favor	of	more	modern	structures	such	as	Do...Loop,	For...Next,	Sub
and	Function.

Example

				Goto	there

backagain:

				End

there:

				Print	"Welcome!"

				Goto	backagain

''	Compile	with	-lang	qb	or	fblite

'$lang:	"qb"

1	Goto	3

2	End

3	Print	"Welcome!"

4	Goto	2

Dialect	Differences

Line	numbers	are	allowed	only	in	the	-lang	qb	and	-lang
deprecated	dialects.

Differences	from	QB

None

See	also

GoSub

Sub

Function

Hex 	

Returns	the	hexadecimal	of	the	given	number

Syntax
Declare	Function	Hex	(ByVal	number	As	UByte)	As	String

Declare	Function	Hex	(ByVal	number	As	UShort)	As	String

Declare	Function	Hex	(ByVal	number	As	Ulong)	As	String

Declare	Function	Hex	(ByVal	number	As	ULongInt)	As	String

Declare	Function	Hex	(ByVal	number	As	Const	Any	Ptr)	As	String

Declare	Function	Hex	(ByVal	number	As	UByte,	ByVal	digits	As

Long)	As	String

Declare	Function	Hex	(ByVal	number	As	UShort,	ByVal	digits	As

Long)	As	String

Declare	Function	Hex	(ByVal	number	As	Ulong,	ByVal	digits	As

Long)	As	String

Declare	Function	Hex	(ByVal	number	As	ULongInt,	ByVal	digits	As

Long)	As	String

Declare	Function	Hex	(ByVal	number	As	Const	Any	Ptr,	ByVal

digits	As	Long)	As	String

Usage
result	=	Hex[$](number	[,	digits])

Parameters
number

A	number	or	expression	evaluating	to	a	number.	A	floating-point
number	will	be	converted	to	a	LongInt.
digits

Optional	number	of	digits	to	return.

Return	Value
A	String	containing	the	unsigned	hexadecimal	representation	of
number.

Description
Returns	the	unsigned	hexadecimal	string	representation	of	the	integer

number.	Hexadecimal	digits	range	from	0-9,	or	A-F.

If	you	specify	digits	>	0,	the	result	string	will	be	exactly	that	length.	It
will	be	truncated	or	padded	with	zeros	on	the	left,	if	necessary.

The	length	of	the	string	will	not	go	longer	than	the	maximum	number	of
digits	required	for	the	type	of	number	(8	for	a	Long,	16	for	a	LongInt).

If	you	want	to	do	the	opposite,	i.e.	convert	a	hexadecimal	string	back
into	a	number,	the	easiest	way	to	do	it	is	to	prepend	the	string	with
"&H;",	and	convert	it	to	an	integer	type,	using	a	function	like	CInt,
similarly	to	a	normal	numeric	string.	E.g.	CInt("&HFF;")

Example

'54321	is	D431	in	hex

Print	Hex(54321)

Print	Hex(54321,	2)

Print	Hex(54321,	5)

will	produce	the	output:

D431

31

0D431

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

In	QBASIC,	there	was	no	way	to	specify	the	number	of	digits

returned.
The	size	of	the	string	returned	was	limited	to	32	bits,	or	8
hexadecimal	digits.

See	also

Bin

Oct

ValInt

ValLng

HiByte 	

Gets	the	second	byte	of	the	operand.

Syntax
#define	HiByte(expr)	((Cast(UInteger,	expr)	And	&h0000FF00;)	Shr

Usage
result	=	HiByte(expr)

Parameters
expr

A	numeric	expression,	converted	to	an	UInteger	value.

Return	Value
Returns	the	value	of	the	high	byte	of	the	low	16bit	word	of	expr.

Description
This	macro	converts	the	numeric	expression	expr	to	an	UInteger	value,	then	expands	to	an	
representing	the	value	of	its	second	byte	-	that	is	the	most-significant	(high)	byte	of	the	least-
significant	(low)	16bit	word	of	expr.

Example

Dim	N	As	UInteger

'Note	there	are	16	bits

N	=	&b1010101110000001

Print	"N	is																																							"

Print	"The	binary	representation	of	N	is										"

Print	"The	most	significant	byte	(MSB)	of	N	is				"

Print	"The	least	significant	byte	(LSB)	of	N	is			"

Print	"The	binary	representation	of	the	MSB	is				"

Print	"The	binary	representation	of	the	LSB	is				"

Sleep

The	output	would	look	like:

N	Is																																							43905

The	Binary	representation	of	N	Is										1010101110000001

The	most	significant	Byte	(MSB)	of	N	Is				171

The	least	significant	Byte	(LSB)	of	N	Is			129

The	Binary	representation	of	the	MSB	Is				10101011

The	Binary	representation	of	the	LSB	Is				10000001

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

LoByte

LoWord

HiWord

HiWord 	

Gets	the	second	16bit	word	of	the	operand.

Syntax
#define	HiWord(expr)	((Cast(UInteger,	expr)	and	&hFFFF0000;)	Shr

Usage
result	=	HiWord(expr)

Parameters
expr

A	numeric	expression,	converted	to	an	UInteger	value.

Return	Value
Returns	the	value	of	the	high	16bit	word	of	the	low	32bit	dword	of	expr

Description
This	macro	converts	the	numeric	expression	expr	to	an	UInteger	value,	then	expands	to	an	
representing	the	value	of	its	second	16bit	word	-	that	is	the	most-significant	(high)	16bit	word	of	the
least-significant	(low)	32bit	dword	of	expr.

Example

Dim	N	As	UInteger

'Note	there	are	32	bits

N	=	&b10000000000000011111111111111111

Print	"N	is																																							"

Print	"The	binary	representation	of	N	is										"

Print	"The	most	significant	word	(MSW)	of	N	is				"

Print	"The	least	significant	word	(LSW)	of	N	is			"

Print	"The	binary	representation	of	the	MSW	is				"

Print	"The	binary	representation	of	the	LSW	is				"

Sleep

The	output	would	look	like:

N	Is																																							2147614719

The	Binary	representation	of	N	Is										10000000000000011111111111111111

The	most	significant	word	(MSW)	of	N	Is				32769

The	least	significant	word	(LSW)	of	N	Is			65535

The	Binary	representation	of	the	MSW	Is				1000000000000001

The	Binary	representation	of	the	LSW	Is				1111111111111111

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

LoByte

HiByte

LoWord

Hour 	

Gets	the	hour	of	day	from	a	Date	Serial	

Syntax
Declare	Function	Hour	(ByVal	date_serial	As	Double)	As	Long

Usage
#include	"vbcompat.bi"

result	=	Hour(dateserial)

Parameters
date_serial

the	date	serial

Return	Value
Returns	the	hour	from	a	variable	containing	a	date	in	Date	Serial	format.

Description
The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	ds	As	Double	=	DateSerial(2005,	11,	28)	+	TimeSerial

Print	Format(ds,	"yyyy/mm/dd	hh:mm:ss	");	Hour(ds)

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

If...Then 	

Control	flow	statement	for	conditional	branching

Syntax
If	expression	Then	[statement(s)]	[Else	[statement(s)]]	[End	If]

or

If	expression	Then	:	[statement(s)]	[Else	[statement(s)]]	:	End	If

or

If	expression	Then

[statement(s)]

[ElseIf	expression	Then]

[statement(s)]

[Else]

[statement(s)]

End	If

Description
If...Then	is	a	way	to	make	decisions.	It	is	a	mechanism	to	execute	code	only	if	a	condition	is	true,	and	can
provide	alternative	code	to	execute	based	on	more	conditions.

expression	can	be	one	of	several	forms:
a	conditional	expression,	for	example:

x	=	5

multiple	conditions	separated	by	logical	bit-wise	operators,	for	example:
x	>=	5	And	x	<=	10

multiple	conditions	separated	by	logical	short-circuit	operators,	for	example:
y	<>	0	AndAlso	x	\	y	=	1

(in	this	case,	"x	\	y	=	1"	will	only	be	evaluated	if	"y	<>	0"	is	True)
any	numerical	expression,	in	which	case	a	value	of	zero	(
value	represents	True

Both	multi-line	and	single-line	Ifs	can	be	nested.	In	the	latter	case,	the	optional	
control	where	nested	Ifs	begin	and	end.

In	the	-lang	fb	and	-lang	fblite	dialects,	colons	(:)	can	be	used	instead	of	newlines	to	construct	multi-line	
blocks	on	a	single	line.

Example

''	Here	is	a	simple	"guess	the	number"	game	using	if...then	for	a	decision.

Dim	As	Integer	num,	guess

Randomize

num	=	Int(Rnd	*	10)	+	1	'Create	a	random	number	between	1	and	10...

																

Print	"guess	the	number	between	1	and	10"

Do	'Start	a	loop

				Input	"Guess";	guess	'Input	a	number	from	the	user

				If	guess	>	10	OrElse	guess	<	1	Then		'The	user's	guess	is	out	of	range

								Print	"The	number	can't	be	greater	then	10	or	less	than	1!"

				ElseIf	guess	>	num	Then		'The	user's	guess	is	too	high

								Print	"Too	high"

				ElseIf	guess	<	num	Then		'The	user's	guess	is	too	low

								Print	"Too	low"

				ElseIf	guess	=	num	Then		'The	user	guessed	the	right	number!

								Print	"Correct!"

								Exit	Do			'Exit	the	loop

				End	If

Loop	'Go	back	to	the	start	of	the	loop

Dialect	Differences

In	the	-lang	qb	and	-lang	fblite	dialects,	variables	declared	inside	an	
wide	scope	as	in	QB	
In	the	-lang	fb	and	-lang	deprecated	dialects,	variables	declared	inside	an	
only	inside	the	block,	and	cannot	be	accessed	outside	it.
In	the	-lang	qb	dialect,	if	there	is	a	new	line	or	a	single-line	comment	(
will	be	multi-line.	A	colon,	a	Rem	or	any	other	statement	will	result	in	a	single-line	IF.

In	the	-lang	fb	and	-lang	fblite	dialects,	if	there	is	a	new	line,	a	single-line	comment	(
Rem	statement	directly	after	THEN,	then	the	IF	will	be	multi-line.	
single-line	IF.

Differences	from	QB

END	IF	was	not	supported	in	single-line	IFs	in	QBASIC.

See	also

Do...Loop

#if

Select	Case

IIf 	

Conditional	function	that	returns	one	of	two	values.

Syntax
IIf	(condition,	expr_if_true,	expr_if_false)

Parameters
condition

The	condition	to	test.
A	non-zero	value	evaluates	as	true,	while	a	value	of	zero	evaluates	as	false.
expr_if_true

An	expression	to	evaluate	and	return	if	condition	is	true.
It	must	return:

a	numeric	value,	which	can	be	an	integer,	floating	point	number	or	a
pointer,
or	a	string	value,
or	an	UDT	value.

expr_if_false

An	expression	to	evaluate	and	return	if	condition	is	false.
It	must	be	same	type	as	expr_if_true	(either	numeric,	either	string	or	UDT).

Description
IIf	returns	a	different	numeric	or	string	or	UDT	value	depending	of	the	result	of	a
conditional	expression.	Its	typical	use	is	in	the	middle	of	an	expression;	it	avoids	splitting
it	to	put	a	conditional	in	the	middle.

IIf	only	evaluates	the	expression	that	it	needs	to	return.	This	saves	time,	and	can	also
be	useful	to	prevent	evaluating	expressions	that	might	be	invalid	depending	on	the
condition.

Warning:	The	ability	to	accept	mixed	numeric	types,	strings	and	UDTs	is	only	supported
from	the	fbc	version	0.90.

Example

Dim	As	Integer	a,	b,	x,	y,	z

a	=	(x	+	y	+	IIf(b	>	0,	4,	7))	\	z

is	equivalent	to:

Dim	As	Integer	a,	b,	x,	y,	z,	temp

If	b	>	0	Then	temp	=	4	Else	temp	=	7

a	=	(x	+	y	+	temp)	\	z

Dim	As	Integer	I

I	=	-10

Print	I,	IIf(I>0,	"positive",	IIf(I=0,	"null",	"negative"

I	=	0

Print	I,	IIf(I>0,	"positive",	IIf(I=0,	"null",	"negative"

I	=	10

Print	I,	IIf(I>0,	"positive",	IIf(I=0,	"null",	"negative"

Sleep

Type	UDT1

		Dim	As	Integer	I1

End	Type

Type	UDT2	Extends	UDT1

		Dim	As	Integer	I2

End	Type

Dim	As	UDT1	u1,	u10	=	(1)

Dim	As	UDT2	u2,	u20	=	(2,	3)

u1	=	IIf(0,	u10,	u20)

Print	u1.I1

u1	=	IIf(1,	u10,	u20)

Print	u1.I1

u2	=	IIf(0	,	u10,	u20)

Print	u2.I1;	u2.I2

'u2	=	Iif(1,	u10,	u20)	''Invalid	assignment/conversion

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

If...Then

ImageConvertRow 	

Converts	a	row	of	image	data	into	another	color	depth

Syntax
Declare	Sub	ImageConvertRow	(ByVal	src	As	Any	Ptr,	ByVal	src_bpp

ByVal	dst_bpp	As	Long,	ByVal	width	As	Long,	ByVal	isrgb	As	Long	=	1)

Usage
ImageConvertRow(src,	src_bpp,	dst,	dst_bpp,	width	[,	isrgb])

Parameters
src

The	address	of	the	start	of	the	source	row.	The	source	can	either	be	a	full-color	image	with	a	bit	depth	of	24	or
32	bits	per	pixel,	or	a	paletted	image	with	a	bit	depth	of	1-8	bits	per	pixel.	
only	work	properly	if	you	are	in	a	screen	mode	that	is	using	the	correct	palette	for	the	image	when	you	do	the
conversion.
src_bpp

The	number	of	bits	per	pixel	in	the	source	row.	1-8,	24	and	32.
dst

The	address	of	the	start	of	the	destination	row.	The	image	can	be	a	full-color	image	of	16	or	32	bits	per	pixel.
If	the	source	is	a	paletted	image,	the	destination	can	also	be	a	paletted	image	of	1	to	8	bits	per	pixel.
dst_bpp

The	number	of	bits	per	pixel	in	the	destination	row.	Valid	values	for	this	are	1-8,	16	and	32.
width

The	length	of	the	row	in	pixels.
isrgb

A	value	of	zero	indicates	that	the	Red	and	Blue	channels	are	the	other	way	round	in	the	source	image.	
this	switch	if	you	want	the	Red	and	Blue	channels	to	be	swapped	in	the	conversion.

Description
Copies	the	row	of	an	image	from	one	memory	location	to	another,	converting	the	color	information	in	each
pixel	to	match	the	destination	image.

Example

#include	"fbgfx.bi"

#if	__FB_LANG__	=	"fb"

Using	FB

#endif

Const	As	Integer	w	=	64,	h	=	64

Dim	As	IMAGE	Ptr	img8,	img32

Dim	As	Integer	x,	y

''	create	a	32-bit	image,	size	w*h:

ScreenRes	1,	1,	32,	,	GFX_NULL

img32	=	ImageCreate(w,	h)

If	img32	=	0	Then	Print	"Imagecreate	failed	on	img32!"

''	create	an	8-bit	image,	size	w*h:

ScreenRes	1,	1,	8,	,	GFX_NULL

img8	=	ImageCreate(w,	h)

If	img8	=	0	Then	Print	"Imagecreate	failed	on	img8!"

''	fill	8-bit	image	with	a	pattern

For	y	=	0	To	h	-	1

				For	x	=	0	To	w	-	1

								PSet	img8,	(x,	y),	56	+	(x	+	y)	Mod	24

				Next	x

Next	y

''	open	a	graphics	window	in	8-bit	mode,	and	PUT	the	image	into	it:

ScreenRes	320,	200,	8

WindowTitle	"8-bit	color	mode"

Put	(10,	10),	img8

Sleep

''	copy	the	image	data	into	a	32-bit	image

Dim	As	Byte	Ptr	p8,	p32

Dim	As	Integer	pitch8,	pitch32

#ifndef	ImageInfo	''	older	versions	of	FB	don't	have	the	ImageInfo	feature

#define	GETPITCH(img_)	IIf(img_->Type=PUT_HEADER_NEW,img_->pitch,img_-

>old.width*img_->old.bpp)

#define	GETP(img_)	CPtr(Byte	Ptr,img_)+IIf(img_-

>Type=PUT_HEADER_NEW,SizeOf(PUT_HEADER),SizeOf(_OLD_HEADER))

pitch8	=	GETPITCH(img8):	p8	=	GETP(img8)

pitch32	=	GETPITCH(img32):	p32	=	GETP(img32)

#else

ImageInfo(img8,		,	,	,	pitch8,		p8)

ImageInfo(img32,	,	,	,	pitch32,	p32)

#endif

For	y	=	0	To	h	-	1

				ImageConvertRow(@p8	[y	*	pitch8],		8,	_

																				@p32[y	*	pitch32],	32,	_

																				w)

Next	y

''	open	a	graphics	window	in	32-bit	mode	and	PUT	the	image	into	it:

ScreenRes	320,	200,	32

WindowTitle	"32-bit	color	mode"

Put	(10,	10),	img32

Sleep

''	free	the	images	from	memory:

ImageDestroy	img8

ImageDestroy	img32

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

ScreenRes

Get	(Graphics)

Put	(Graphics)

ImageCreate

ImageDestroy

ImageInfo

ImageCreate 	

Allocates	and	initializes	storage	for	an	image

Syntax
Declare	Function	ImageCreate	(ByVal	width	As	Long,	ByVal	height

Ulong	=	transparent_color)	As	Any	Ptr

Declare	Function	ImageCreate	(ByVal	width	As	Long,	ByVal	height

Ulong	=	transparent_color,	ByVal	depth	As	Long)	As	Any	Ptr

Usage
result	=	ImageCreate(width,	height	[,	[color][,	depth]])

Parameters
width

The	desired	width,	in	number	of	pixels.
height

The	desired	height,	in	number	of	pixels.
color

The	pixel	value	to	fill	the	area	of	the	image.
depth

The	desired	color	depth,	in	bits	per	pixel.

Return	Value
If	the	image	could	not	be	created,	NULL	(0)	is	returned,	otherwise,	the	address	of	the	image	is
returned.	ImageCreate	must	be	called	after	graphic	mode	initialization,	else	it	returns	

Consequently,	in	case	of	Shared	variable	declaration,	ImageCreate	cannot	be	used	as	integrated
initializer,	even	inside	an	Udt	(in	member	field	or	constructor),	because	the	initialization	value	(of
shared	variable)	is	set	at	the	start	of	the	program	before	any	user	code	is	run.	The	image
allocation	call	must	be	in	a	separated	executable	instruction,	and	after	the	graphic	mode
initialization.

Description
Both	procedures	attempt	to	allocate	memory	for	an	image	of	the	specified	
successful,	NULL	(0)	is	returned.	Otherwise,	an	image	of	that	size	is	created	and	initialized	by

filling	the	entire	area	of	pixels	with	the	value	color.	If	not	specified,	color
the	transparent	color	for	the	current	graphics	screen,	which	can	be	found	by	calling
ScreenControl.	In	any	case,	the	address	of	the	image	is	returned,	which	is	then	controlled	by	the
user,	and	must	be	destroyed	using	ImageDestroy.

The	first	procedure	creates	an	image	with	a	color	depth	matching	that	of	the	current	graphics
screen,	which	can	be	found	by	calling	ScreenControl.	The	second	procedure	creates	an	image
with	a	color	depth	of	depth,	in	bits	per	pixel.	For	both	procedures,	the	resulting	image	can	be	used
in	drawing	procedures	while	in	any	screen	mode	--	and	across	mode	changes	--	as	long	as	the
color	depth	of	the	image	matches	that	of	the	graphics	screen.

ImageCreate	is	the	recommended	way	to	allocate	memory	for	new	images.	The	memory	layout	--
size,	structure,	etc.	--	while	documented,	may	change	from	version	to	version,	making	manual
calculation	of	the	sizes	involved	error-prone.	However,	ImageInfo	can	be	used	to	retrieve,	among
other	things,	the	size,	in	bytes,	of	an	existing	image,	allowing	memory	to	be	manually	allocated	for
a	copy	of	an	image,	or	to	be	read	from	or	written	to	a	file	or	device.

Get	(Graphics)	can	be	used	to	initialize	an	image	using	pre-allocated	memory.

Example

''	Create	a	graphics	screen.

ScreenRes	320,	200,	32

''	Create	a	64x64	pixel	image	with	a	darkish	green	background.

Dim	image	As	Any	Ptr	=	ImageCreate(64,	64,	RGB(0,

If	image	=	0	Then

				Print	"Failed	to	create	image."

				Sleep

				End	-1

End	If

''	Draw	a	semi-transparent,	red	circle	in	the	center	of	the	image.

Circle	image,	(32,	32),	28,	RGBA(255,	0,	0,	128),,,

''	Draw	the	image	onto	the	screen	using	various	blitting	methods.

Put	(120,	60),	image,	PSet

Put	(140,	80),	image,	Alpha

''	Destroy	the	image.

ImageDestroy	image

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

ImageDestroy

ImageInfo

Get	(Graphics)

Internal	pixel	formats

ImageDestroy 	

Destroys	and	deallocates	storage	for	an	image

Syntax
Declare	Sub	ImageDestroy	(ByVal	image	As	Any	Ptr)

Usage
ImageDestroy(image)

Parameters
image

The	address	of	the	image	to	destroy.

Description
Destroys	the	image	pointed	to	by	image,	which	must	be	an	address
returned	from	a	call	to	ImageCreate.

Calling	ImageDestroy	on	a	null	pointer	induces	no	action.

Example
See	ImageCreate	for	an	example	on	using	ImageDestroy.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Imagedestroy.

Differences	from	QB

New	to	FreeBASIC

See	also

ImageCreate

ImageInfo 	

Retrieves	information	about	an	image

Syntax
Declare	Function	ImageInfo	(ByVal	image	As	Any	Ptr,	ByRef	width

As	Integer	=	0,	ByRef	pitch	As	Integer	=	0,	ByRef	pixdata	As	Any

Usage
result	=	ImageInfo(image	[,	[width]	[,	[height]	[,	[bypp]	[,	[pitch

Parameters
image

The	address	of	the	image.
width

Stores	the	width	of	the	image,	in	pixels.
height

Stores	the	height	of	the	image,	in	pixels.
bypp

Stores	the	bytes	per	pixel	of	the	image	-	i.e.	the	size	of	a	single	pixel,	in	bytes.
pitch

Stores	the	pitch	of	the	image	-	i.e.	the	size	of	each	scanline	(row),	in	bytes.	
because	the	scanlines	may	be	padded	to	allow	them	to	be	aligned	better	in	memory.
pixdata

Stores	the	address	of	the	start	of	the	first	scanline	of	the	image.
size

Stores	the	size	of	the	image	in	memory,	in	bytes.

Return	Value
If	image	doesn't	point	to	a	valid	image,	one	(1)	is	returned.	Otherwise,	
appropriate	values,	and	zero	(0)	is	returned.

Description
ImageInfo	provides	various	information	about	an	image,	such	as	its	dimensions	and	color	depth,	but	also	provides	you	with	the
information	you	need	to	directly	access	all	the	pixel	data	in	the	pixel	buffer.

It	can	also	provide	the	size	of	the	image	in	memory,	which	is	useful	for	allocating	memory	to	copy	the	existing	image,	or	to	write	the
image	to	a	file.

Example

''	pixelptr():	use	imageinfo()	to	find	the	pointer	to	a	pixel	in	the	image

''	returns	null	on	error	or	x,y	out	of	bounds

Function	pixelptr(ByVal	img	As	Any	Ptr,	ByVal	x	As

				Dim	As	Integer	w,	h,	bypp,	pitch

				Dim	As	Any	Ptr	pixdata

				Dim	As	Integer	success

				

				success	=	(ImageInfo(img,	w,	h,	bypp,	pitch,	pixdata

				

				If	success	Then

								If	x	<	0	Or	x	>=	w	Then	Return	0

								If	y	<	0	Or	y	>=	h	Then	Return	0

								Return	pixdata	+	y	*	pitch	+	x	*	bypp

				Else

								Return	0

				End	If

				

End	Function

''	usage	example:

''	320*200	graphics	screen,	8	bits	per	pixel

ScreenRes	320,	200,	8

Dim	As	Any	Ptr	ip	''	image	pointer

Dim	As	Byte	Ptr	pp	''	pixel	pointer	(use	byte	for	8	bits	per	pixel)

ip	=	ImageCreate(32,	32)	''	create	an	image	(32*32,	8	bits	per	pixel)

If	ip	<>	0	Then

				''	draw	a	pattern	on	the	image

				For	y	As	Integer	=	0	To	31

								For	x	As	Integer	=	y	-	5	To	y	+	5	Step	5

												''	find	the	pointer	to	pixel	at	x,y	position

												''	note:	this	is	inefficient	to	do	for	every	pixel!

												pp	=	pixelptr(ip,	x,	y)

												''	if	success,	plot	a	value	at	the	pixel

												If	(pp	<>	0)	Then	*pp	=	15

								Next	x

				Next	y

				''	put	the	image	and	draw	a	border	around	it

				Put	(10,	10),	ip,	PSet

				Line	(9,	9)-Step(33,	33),	4,	b

				''	destroy	the	image	to	reclaim	memory

				ImageDestroy	ip

Else

				Print	"Error	creating	image!"

End	If

Sleep

''	Create	32-bit	graphics	screen	and	image.

ScreenRes	320,	200,	32

Dim	image	As	Any	Ptr	=	ImageCreate(64,	64)

Dim	pitch	As	Integer

Dim	pixels	As	Any	Ptr

''	Get	enough	information	to	iterate	through	the	pixel	data.

If	0	<>	ImageInfo(image,	,,,	pitch,	pixels)	Then

				Print	"unable	to	retrieve	image	information."

				Sleep

				End

End	If

''	Draw	a	pattern	on	the	image	by	directly	manipulating	pixel	memory.

For	y	As	Integer	=	0	To	63

				Dim	row	As	ulong	Ptr	=	pixels	+	y	*	pitch

				

				For	x	As	Integer	=	0	To	63

								row[x]	=	RGB(x	*	4,	y	*	4,	(x	Xor	y)	*	4)

				Next	x

Next	y

''	Draw	the	image	onto	the	screen.

Put	(10,	10),	image

ImageDestroy(image)

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

ImageCreate

ImageDestroy

ImageConvertRow

Get	(Graphics)

Put	(Graphics)

Internal	pixel	formats

Operator	Imp	(Implication) 	

Returns	the	bitwise-and	(implication)	of	two	numeric	values

Syntax
Declare	Operator	Imp	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)	As	Ret

Usage
result	=	lhs	Imp	rhs

Parameters
lhs

The	left-hand	side	expression.
T1

Any	numeric	or	boolean	type.
rhs

The	right-hand	side	expression.
T2

Any	numeric	or	boolean	type.
Ret

A	numeric	or	boolean	type	(varies	with	T1	and	T2).

Return	Value
Returns	the	bitwise-implication	of	the	two	operands.

Description
This	operator	returns	the	bitwise-implication	of	its	operands,	a	logical
operation	that	results	in	a	value	with	bits	set	depending	on	the	bits	of
the	operands	(for	conversion	of	a	boolean	to	an	integer,	false	or	true
boolean	value	becomes	0	or	-1	integer	value).

The	truth	table	below	demonstrates	all	combinations	of	a	boolean-
implication	operation:

Lhs	Bit Rhs	Bit Result

0 0 1

1 0 0

0 1 1

1 1 1

No	short-circuiting	is	performed	-	both	expressions	are	always
evaluated.

The	return	type	depends	on	the	types	of	values	passed.	Byte,	UByte
and	floating-point	type	values	are	first	converted	to	Integer.	If	the	left
and	right-hand	side	types	differ	only	in	signedness,	then	the	return	type
is	the	same	as	the	left-hand	side	type	(T1),	otherwise,	the	larger	of	the
two	types	is	returned.	Only	if	the	left	and	right-hand	side	types	are	both
Boolean,	the	return	type	is	also	Boolean.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	As	UByte	a,	b,	c

a	=	&b00001111

b	=	&b01010101

c	=	a	Imp	b	''	c	=	&b11110101

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Operator	Truth	Tables

Implements 	

Specifies	an	interface	to	be	implemented	by	a	user-defined	type
Note:	Stub	page.	Even	though	this	keyword	is	reserved	already,
interfaces	are	not	implemented	yet.

Syntax
Type	typename	Implements	interface

...

End	Type

Description

Example

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Implements.

Differences	from	QB

New	to	FreeBASIC

See	also

Type

Extends

Import 	

External	linkage	attribute	for	public	data	located	in	DLL's

Syntax
Extern	Import	symbolname[(subscripts)]	[Alias	"aliasname"]	[As

[,	...]

Description
Is	used	only	on	Win32	platforms	with	the	Extern	keyword	and	is	needed	to	access
global	variables	in	DLLs.	This	is	due	to	the	level	of	indirection	on	any	such	access:
an	implicit	pointer	dereference.

Example

/*	mydll.c	:

				compile	With

						gcc	-Shared	-Wl,--strip-all	-o	mydll.dll	mydll.c

*/

__declspec(dllexport)	Int	MyDll_Data	=	0x1234;

/'		import.bas	:

	Compile	with

			fbc	import.bas

'/

#inclib	"mydll"

Extern	Import	MyDll_Data	Alias	"MyDll_Data"	As	Integer

Print	"&h"	+	Hex(MyDll_Data)

'	Output:

'	&h1234

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Import.

Differences	from	QB

New	to	FreeBASIC

See	also

Extern

Inkey 	

Returns	a	string	representing	the	first	key	waiting	in	the	keyboard	buffer

Syntax
Declare	Function	Inkey	()	As	String

Usage
result	=	Inkey[$]

Return	Value
The	first	character	found	in	the	keyboard	buffer,	or	an	empty	string	(""

Description
Peeks	into	the	keyboard	buffer	and	returns	a	String	representation	of	the	first	character,	if	any,	found.	The	key	is	then
removed	from	the	buffer,	and	is	not	echoed	to	the	screen.	If	the	keyboard	buffer	is	empty,	an	empty	string	(
returned	without	waiting	for	keys.

If	the	key	is	in	the	ASCII	character	set,	a	one-character	String	consisting	of	that	character	is	returned.	If	the	key	is	an
"extended"	one	(numeric	pad,	cursors,	functions)	a	two-character	String
character	(See	dialect	differences	below)

The	Shift,	Ctrl,	Alt,	and	AltGr	keys	can't	be	read	independently	by	this	function	as	they	never	enter	the	keyboard	buffer
(although,	perhaps	obviously,	Shift-A	will	be	reported	by	Inkey	differently	than	Control-A	et	cetera;	Alt-A	is	an	extended	key	a	la
the	above).

See	also	Input()	or	GetKey,	or	Sleep	to	wait	for	a	key	press	if	the	keyboard	buffer	is	empty.

Example

Print	"press	q	to	quit"

Do

				Sleep	1,	1

Loop	Until	Inkey	=	"q"

#if	__FB_LANG__	=	"qb"

#define	EXTCHAR	Chr$(0)

#else

#define	EXTCHAR	Chr(255)

#endif

Dim	k	As	String

Print	"Press	a	key,	or	Escape	to	end"

Do

				k	=	Inkey$

				Select	Case	k

								Case	"A"	To	"Z",	"a"	To	"z":	Print	"Letter:	"

								Case	"1"	To	"9":													Print	"Number:	"

								Case	Chr$(32):	Print	"Space"

								Case	Chr$(27):	Print	"Escape"

								Case	Chr$(9):	Print	"Tab"

								Case	Chr$(8):	Print	"Backspace"

								Case	Chr$(32)	To	Chr$(127)

												Print	"Printable	character:	"	&	k

								Case	EXTCHAR	&	"G":	Print	"Up	Left	/	Home"

								Case	EXTCHAR	&	"H":	Print	"Up"

								Case	EXTCHAR	&	"I":	Print	"Up	Right	/	PgUp"

								Case	EXTCHAR	&	"K":	Print	"Left"

								Case	EXTCHAR	&	"L":	Print	"Center"

								Case	EXTCHAR	&	"M":	Print	"Right"

								Case	EXTCHAR	&	"O":	Print	"Down	Left	/	End"

								Case	EXTCHAR	&	"P":	Print	"Down"

								Case	EXTCHAR	&	"Q":	Print	"Down	Right	/	PgDn"

								Case	EXTCHAR	&	"R":	Print	"Insert"

								Case	EXTCHAR	&	"S":	Print	"Delete"

								Case	EXTCHAR	&	"k":	Print	"Close	window	/	Alt-F4"

								Case	EXTCHAR	&	Chr$(59)	To	EXTCHAR	&	Chr$(

												Print	"Function	key:	F"	&	Asc(k,	2)	-	

								Case	EXTCHAR	&	Chr$(133)	To	EXTCHAR	&	Chr$

												Print	"Function	key:	F"	&	Asc(k,	2)	-	

								Case	Else

												If	Len(k)	=	2	Then

																Print	Using	"Extended	character:	chr$(###,	###)"

												ElseIf	Len(k)	=	1	Then

																Print	Using	"Character	chr$(###)";

												End	If

				End	Select

				If	k	=	Chr$(27)	Then	Exit	Do

				Sleep	1,	1

Loop

Dialect	Differences

The	extended	character	is	Chr(255)	in	the	-lang	fb	and	-lang	fblite
In	the	-lang	qb	dialect,	the	extended	character	depends	on	how	the	keyword	is	written.	If	the	QB	form	
used,	the	extended	character	is	Chr(0).	If	it	is	referenced	as	
In	all	other	dialects,	the	extended	char	is	always	Chr(255)

The	string	type	suffix	$	is	optional	in	the	-lang	fblite	and	-lang	fb

Differences	from	QB

None	in	the	-lang	qb	dialect.
QBasic	returned	a	Chr(0)	as	the	first	character	for	an	extended	key,	but	FreeBASIC	returns	
character	in	the	-lang	fb	and	-lang	fblite	dialects.

See	also

Sleep

GetKey

Input()

MultiKey

Inp 	

Returns	a	value	at	a	hardware	port.

Syntax
Declare	Function	Inp	(ByVal	port	As	UShort)	As	Integer

Usage
value	=	Inp(port)

Parameters
port

Port	number	to	read.

Return	Value
The	value	at	the	specified	port.

Description
This	function	retrieves	the	value	at	'port'	and	returns	immediately.

Example

''	Turn	off	PC	speaker

Out	&h61,Inp(&h61)	And	&hfc

Platform	Differences

In	the	Windows	and	Linux	versions	three	port	numbers
(&H3C7;,	&H3C8;,	&H3C9;)	are	hooked	by	the	graphics	library
when	a	graphics	mode	is	in	use	to	emulate	QB's	VGA	palette
handling.	This	use	is	deprecated;	use	Palette	to	retrieve	and
set	palette	colors.

Using	true	port	access	in	the	Windows	version	requires	the
program	to	install	a	device	driver	for	the	present	session.	For
that	reason,	Windows	executables	using	hardware	port	access
should	be	run	with	administrator	permits	each	time	the
computer	is	restarted.	Further	runs	don't	require	admin	rights	as
they	just	use	the	already	installed	driver.	The	driver	is	only	3K	in
size	and	is	embedded	in	the	executable.

See	also

Out

Wait

Palette

Input 	

Reads	a	list	of	values	from	the	keyboard

Syntax
Input	[;]	["prompt"	,|;]	variable_list

Parameters
prompt

an	optional	string	literal	that	is	written	to	the	screen	as	a	prompt.	If	it	is	followed	by	a
semicolon	(;),	a	question	mark	("?	")	will	be	appended	to	the	prompt.	
comma,	nothing	will	be	appended.
variable_list

a	list	of	comma-separated	variables	used	to	hold	the	values	read	from	the	user.

Description
Reads	a	list	values	from	the	keyboard	up	until	the	first	carriage	return.	Numerical	values	are
converted	from	their	string	representation	into	the	corresponding	types	in	the	variable	list.
Characters	are	echoed	to	the	screen	as	they	are	typed.

If	there	is	more	than	one	value	in	the	input	list,	then	the	input	line	will	be	split	up	by	scanning
for	delimiters	-	commas	(,)	after	strings,	or	commas	and	whitespace	after	numbers.
Surrounding	whitespace	will	be	trimmed	from	string	values.	If	an	input	string	has	a	comma	in
it,	it	must	be	wrapped	in	quotes	("...")	to	prevent	it	being	split	up.
For	inputting	to	a	single	string	without	delimiting,	Line	Input	should	be	used	instead.

The	prompt	-	if	any	-	is	written	to	the	screen	at	the	current	cursor	location,	and	characters
read	are	echoed	to	the	screen	immediately	following	the	prompt.	If	no	prompt	is	specified,
characters	are	echoed	at	the	current	cursor	location.

The	optional	leading	semicolon	(;)	after	Input	is	similar	to	the	optional	trailing	semicolon	in	a
Print	statement:	the	cursor	will	remain	on	the	same	line	after	all	of	the	characters	have
been	echoed,	otherwise,	the	cursor	will	move	to	the	beginning	of	the	next	line.

If	more	values	are	read	than	are	listed	in	the	variable	list,	extra	values	will	be	ignored;	if
fewer	values	are	read	(i.e.	the	user	presses	enter	before	inputting	all	values),	the	remaining

variables	will	be	initialized	-	numeric	variables	to	zero	(0),	and	string	variables	to	the	empty
string	("").

Numeric	values	are	converted	using	methods	similar	to	the	procedures	
using	the	most	appropriate	function	for	the	number	format,	converting	as	many	numeric
characters	as	possible.

Input	has	a	limited	edit	capacity:	it	allows	to	erase	characters	using	the	backspace	key.	
better	user	interface	is	needed,	a	custom	input	routine	should	be	used.

Example

Example	#1

Dim	n	As	String,	a	As	Integer

Input	"Enter	[Name,	Age]:	",	n,	a

Print	n

Print	a

Example	#2

Dim	As	Double	a,	b

Dim	As	String	yn

Do

				

				Input			"Please	enter	a	number:	",	a

				Input	;	"And	another:	",	b

				Print	,	"Thank	you"

				Sleep	500

				Print

				Print	"The	total	is	";	a	+	b

				Print

				

				Do

								Input	"Would	you	like	to	enter	some	more	numbers"

								yn	=	LCase(yn)

				Loop	Until	yn	=	"y"	Or	yn	=	"n"

				

Loop	While	LCase(yn)	=	"y"

Differences	from	QB

If	the	user	inputs	the	wrong	number	of	values,	or	if	it	expects	a	number	for	a	value
and	gets	a	string	that	is	not	a	valid	number,	then	QBASIC	issues	the	message	"Redo
from	start",	and	does	not	continue	further	until	it	receives	a	valid	input.
QB	does	not	treat	space	as	a	delimiter	when	inputting	a	number	from	the	console.

See	also

Input	#

Input()

Line	Input

Input	(File	Mode) 	

Specifies	text	file	to	be	opened	for	input	mode

Syntax
Open	filename	for	Input	[Encoding	encoding_type]	[Lock	lock_type

[#]filenum	

Parameters
filename

file	name	to	open	for	input
encoding_type

indicates	encoding	type	for	the	file
lock_type

locking	to	be	used	while	the	file	is	open
filenum

unused	file	number	to	associate	with	the	open	file

Description
A	file	mode	used	with	Open	to	open	a	text	file	for	reading.

This	mode	allows	to	read	sequentially	lines	of	text	with	Line	Input	#,	or	to
read	comma	separated	values	with	Input	#.	

Text	files	can't	be	simultaneously	read	and	written	in	FreeBASIC,	so	if	both
functions	are	required	on	the	same	file,	it	must	be	opened	twice.

filename	must	be	a	string	expression	resulting	in	a	legal	file	name	in	the	target
OS,	without	wildcards.	The	file	will	be	sought	for	in	the	present	directory,
unless	the	filename	contains	a	path	.	If	the	file	does	not	exist,	an	error	is
issued.	The	pointer	is	set	at	the	first	character	of	the	file.

Encoding_type	indicates	the	Unicode	Encoding	of	the	file,	so	characters	are
correctly	read.	If	omitted,	"ascii"	encoding	is	defaulted.	Only	little	endian
character	encodings	are	supported	at	the	moment.	

"utf8",	
"utf16"	

"utf32"	

"ascii"	(the	default)

Lock_type	indicates	the	way	the	file	is	locked	for	other	processes,	it	is	one	of:
Read	-	the	file	can	be	opened	simultaneously	by	other	processes,
but	not	for	reading
Write	-	the	file	can	be	opened	simultaneously	by	other
processes,	but	not	for	writing
Read	Write	-	the	file	cannot	be	opened	simultaneously	by	other
processes	(the	default)

filenum	is	a	valid	FreeBASIC	file	number	(in	the	range	1..255)	not	being	used
for	any	other	file	presently	open.	The	file	number	identifies	the	file	for	the	rest
of	file	operations.	A	free	file	number	can	be	found	using	the	FreeFile	function.

Example

Dim	ff	As	UByte

Dim	randomvar	As	Integer

Dim	name_str	As	String

Dim	age_ubyte	As	UByte

ff	=	FreeFile

Input	"What	is	your	name?	",name_str

Input	"What	is	your	age?	",age_ubyte

Open	"testfile"	For	Output	As	#ff

Write	#ff,	Int(Rnd(0)*42),name_str,age_ubyte

Close	#ff

randomvar=0

name_str=""

age_ubyte=0

Open	"testfile"	For	Input	As	#ff

Input	#ff,	randomvar,name_str,age_ubyte

Close	#ff

Print	"Random	Number	was:	",	randomvar

Print	"Your	name	is:	"	+	name_str

Print	"Your	age	is:	"	+	Str(age_ubyte)

'File	outputted	by	this	sample	will	look	like	this,

'minus	the	comment	of	course:

'23,"Your	Name",19

Differences	from	QB

See	also

Append

Open

Output

Input	# 	

Reads	a	list	of	values	from	a	text	file

Syntax
Input	#	filenum,	variable_list

Parameters
filenum

a	file	number	of	a	file	or	device	opened	for	Input
variable_list

a	list	of	variables	used	to	hold	the	values	read

Description
Reads	from	a	text	file	through	a	bound	file	number	a	delimiter-
separated	set	of	values	and	writes	them	in	reading	order	into	the
variables	in	variable_list.	If	a	variable	is	numeric	the	read	value	is
converted	from	its	string	representation	into	the	corresponding	type.

Numeric	values	are	converted	in	a	similar	way	to	the	procedures	Val
and	ValLng,	using	the	most	appropriate	function	for	the	number	format.

Delimiters	may	be	commas	or	line	breaks.	Whitespace	is	also	treated
as	a	separator	after	numbers.	A	string	including	a	comma	or	a
whitespace	must	be	surrounded	by	double	quotes.	

To	read	an	entire	line	into	a	string,	use	Line	Input	instead.
Write	#	can	be	used	to	create	a	file	readable	with	Input	#.

Example

Dim	a	As	Integer

Dim	b	As	String

Dim	c	As	Single

Open	"myfile.txt"	For	Output	As	#1

Write	#1,	1,	"Hello,	World",	34.5

Close	#1

Open	"myfile.txt"	For	Input	As	#1

Input	#1,	a,	b,	c

Close	#1

Print	a,	b,	c

Differences	from	QB

QB	has	a	bug	in	INPUT	#	that	causes	it	to	read	past	the	end	of
the	line	if	it	does	not	find	a	matching	end-quote	when	reading	a
string.	If	you	are	porting	QB	code	that	relies	upon	this	bug,	you
may	need	to	edit	your	data	files	to	remove	newlines	from	inside
quoted	strings,	or	to	use	a	custom	function	to	piece	back
together	the	multiline	string.

See	also

Input

Line	Input	#

Write	#

Open

Input	(File	Mode)

Input() 	

Reads	a	number	of	characters	from	console	or	file

Syntax
Declare	Function	Input	(n	As	Integer)	As	String

Declare	Function	Input	(n	As	Integer,	filenum	As	Integer)	As

String

Usage
result	=	Input[$](n	[,	[#]filenum])

Parameters
n

Number	of	bytes	to	read.
filenum

File	number	of	a	bound	file	or	device.

Return	Value
Returns	a	String	of	the	characters	read.

Description
Reads	a	number	of	characters	from	the	console,	or	a	bound	file/device
specified	by	filenum.

The	first	version	waits	for	and	reads	n	characters	from	the	keyboard
buffer.	Extended	keys	are	not	read.	The	characters	are	not	echoed	to
the	screen.

The	second	version	waits	for	and	reads	n	characters	from	a	file	or
device.	The	file	position	is	updated.

Example

Print	"Select	a	color	by	number"	

Print	"1.	blue"

Print	"2.	red"

Print	"3.	green"

Dim	choice	As	String

Do

			choice	=	Input(1)

Loop	Until	choice	>=	"1"	And	choice	<=	"3"

Differences	from	QB

None

See	also

Winput()

GetKey

Inkey

InStr 	

Locates	the	first	occurrence	of	a	substring	or	character	within	a	string

Syntax
Declare	Function	InStr	(ByRef	str	As	Const	String,	[Any]	ByRef

Declare	Function	InStr	(ByRef	str	As	Const	WString,	[Any]	ByRef

Declare	Function	InStr	(ByVal	start	As	Integer,	ByRef	str	As	Const

Declare	Function	InStr	(ByVal	start	As	Integer,	ByRef	str	As	Const

Usage
first	=	InStr([start,]	str,	[Any]	substring)

Parameters
str

The	string	to	be	searched.
substring

The	substring	to	find.
start

The	position	in	str	at	which	the	search	will	begin.	The	first	character	starts	at	position	1.

Return	Value
The	position	of	the	first	occurrence	of	substring	in	str.

Description
Locates	the	position	of	the	first	occurrence	of	a	substring	or	character	within	a	string.	In	the	first	form	of	
search	begins	at	the	first	character.

Zero	(0)	is	returned	if:	either	substring	is	not	found,	either	str	or	substring

If	the	Any	keyword	is	specified,	InStr	returns	the	first	occurrence	of	any	character	in	

Example

'	It	will	return	4

Print	InStr("abcdefg",	"de")

'	It	will	return	0

Print	InStr("abcdefg",	"h")

'	It	will	search	for	any	of	the	characters	"f",	"b",	"c",	and	return	2	as	"b"	is	encountered	first

Print	InStr("abcdefg",	Any	"fbc")

Dim	test	As	String

Dim	idx	As	Integer

test	=	"abababab"

idx	=	InStr(test,	"b")

Do	While	idx	>	0	'if	not	found	loop	will	be	skipped

				Print	"""b""	at	"	&	idx

				idx	=	InStr(idx	+	1,	Test,	"b")

Loop

	

'A	Unicode	example:
dim	text	as	wstring*20
text	=	"Привет,	мир!"
print	instr(text,"ет")	'	displays	5

Platform	Differences

The	wide-character	string	version	of	InStr	is	not	supported	for	DOS	target.

Differences	from	QB

QB	returns	start	if	search	is	a	zero	length	string.
QB	does	not	support	Unicode.

See	also

InStrRev

Mid	(Function)

InStrRev 	

Locates	the	last	occurrence	of	a	substring	or	character	within	a	string

Syntax
Declare	Function	InStrRev	(ByRef	str	As	Const	String,	[Any]	ByRef

substring	As	Const	String,	ByVal	start	As	Integer	=	-1)	As	Integer

Declare	Function	InStrRev	(ByRef	str	As	Const	WString,	[Any]	

substring	As	Const	WString,	ByVal	start	As	Integer	=	-1)	As	Integer

Usage
last	=	InStrRev(str,	[Any]	substring	[,	start])

Parameters
str

The	string	to	be	searched.
substring

The	substring	to	find.
start

The	position	in	str	at	which	the	search	will	begin.	The	first	character	starts	at
position	1.

Return	Value
The	position	of	the	last	occurrence	of	substring	in	str.

Description
Locates	the	position	of	the	last	occurrence	of	a	substring	or	character	within	a
string.	If	start	parameter	is	not	given	or	is	-1,	the	search	begins	at	the	last
character.

Zero	(0)	is	returned	if:	either	substring	is	not	found,	or	either	str	or	substring
are	empty	strings,	or	start	is	less	than	1	(except	for	-1),	or	start	is	greater	than
the	length	of	str.

If	the	Any	keyword	is	specified,	InStrRev	returns	the	last	occurrence	of	any
character	in	substring.

Example

'	It	will	return	4

Print	InStrRev("abcdefg",	"de")

'	It	will	return	0

Print	InStrRev("abcdefg",	"h")

Dim	test	As	String

Dim	idx	As	Integer

test	=	"abababab"

idx	=	InStrRev(test,	"b")

Do	While	idx	>	0	'if	not	found	loop	will	be	skipped

				Print	"""b""	at	"	&	idx

				idx	=	InStrRev(Test,	"b",	idx	-	1)

Loop

	

'A	Unicode	example:
dim	text	as	wstring*20
text	=	"Привет,	мир!"
print	instrrev(text,"ет")	'	displays	5

Platform	Differences

The	wide-character	string	version	of	InStrRev	is	not	supported	for	DOS
target.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias

__Instrrev.

Differences	from	QB

New	to	FreeBASIC

See	also

InStr

Mid	(Function)

Int 	

Returns	the	floor	of	a	number

Syntax
Declare	Function	Int	(ByVal	number	As	Single)	As	Single

Declare	Function	Int	(ByVal	number	As	Double)	As	Double

Declare	Function	Int	(ByVal	number	As	Integer)	As	Integer

Declare	Function	Int	(ByVal	number	As	UInteger)	As	UInteger

Declare	Function	Int	(ByVal	number	As	LongInt)	As	LongInt

Declare	Function	Int	(ByVal	number	As	ULongInt)	As	ULongInt

Usage
result	=	Int(number)

Parameters
number

the	floating-point	number	to	round

Return	Value
Returns	the	floor	of	number,	i.e.	the	largest	integer	that	is	less	than	or
equal	to	it.

Description
Int	returns	the	floor	of	number.	For	example,	Int(4.9)	will	return	4.0,
and	Int(-1.3)	will	return	-2.0.	For	integer	types,	the	number	is
returned	unchanged.

The	Int	unary	Operator	can	be	overloaded	with	user	defined	types.

Example

Print	Int(1.9)		''	will	print		1

Print	Int(-1.9)	''	will	print	-2	

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Fix

CInt

Operator

Integer 	

Standard	data	type:	32-bit	or	64-bit	signed,	same	size	as	SizeOf(Any
Ptr)

Syntax
Dim	variable	As	Integer

Dim	variable	As	Integer<bits>

Parameters
bits

A	numeric	constant	expression	indicating	the	size	in	bits	of	integer
desired.	The	values	allowed	are	8,	16,	32	or	64.

Description
32-bit	or	64-bit	signed	whole-number	data	type,	depending	on	the
platform.

Integer	is	the	main	data	type	FreeBASIC	uses	for	integer	math	and
bitwise	operations.	It	is	the	default	type	for	number	literals.

If	an	explicit	bit	size	is	given,	a	data	type	is	provided	that	can	hold
values	from	-1LL	Shl	(bits-1)	up	to	(1LL	Shl	(bits-1))	-	1.

Example

#if	__FB_64BIT__

				Dim	x	As	Integer	=	&H8000000000000000

				Dim	y	As	Integer	=	&H7FFFFFFFFFFFFFFF

				Print	"Integer	Range	=	";	x;	"	to	";	y

#else

				Dim	x	As	Integer	=	&H80000000

				Dim	y	As	Integer	=	&H7FFFFFFF

				Print	"Integer	Range	=	";	x;	"	to	";	y

#endif

Dialect	Differences

In	the	-lang	fb	and	-lang	fblite	dialects,	the	Integer	data	type	is
32-bit.
In	the	-lang	qb	dialect,	the	Integer	data	type	is	16-bit,
regardless	of	platform.

Differences	from	QB

The	ability	to	select	a	bit	size	is	new	to	FreeBASIC
The	INTEGER	type	is	always	16	bits	wide	in	QB.

See	also

Long

LongInt

UInteger

CInt

Is 	

Clause	in	the	Select	Case	statement	block.

Syntax
Case	Is	expression

Description
Is	specifies	that	a	particular	case	inside	a	Select	Case	block	will	be
evaluated	based	on	an	expression	including	the	greater	than	(>)	or
less	than	(<)	operator	and	a	value.	

See	also

Select	Case

Operator	Is

Operator	Is	(Run-Time	Type	Information) 	

Checks	whether	an	object	is	compatible	to	a	type	derived	from	its	compile-time	type

Syntax
result	=	expression	Is	typename

Parameters
expression

The	expression	to	check,	an	object	of	a	type	that	is	directly	or	indirectly	derived	from	
typename

The	child	type	to	check	for.	This	type	must	be	directly	or	indirectly	derived	from	the	type	of
expression	(the	compile-time	type	of	the	object).

Return	Value
Returns	negative	one	(-1)	if	the	expression	is	an	object	of	real-type	typename
base-types	derived	from	the	expression	type,	or	zero	(0)	if	it's	an	object	of	an	incompatible
type.

Description
The	Is	operator	is	a	binary	operator	that	checks	whether	an	object	is	compatible	to	its	derived
types	at	run-time.	Because	Is	relies	on	run-time	type	information,	it	can	only	be	used	with
types	that	are	derived	from	the	built-in	Object	type.	The	compiler	disallows	using	
checks	that	can	be	solved	at	compile-time.

The	Is	operator	is	successful	not	only	for	the	real-type	(the	"lowest"),	but	also	for	its	base-
types,	as	long	as	they	are	still	below	the	type	of	expression	(the	compile-time	type).	In	order
to	determine	the	real-type,	all	possibilities	from	lowest	to	highest	must	be	checked.

Extending	the	built-in	Object	type	allows	to	add	an	extra	hidden	vtable	pointer	field	at	the	top
of	the	Type.	The	vtable	is	used	to	access	information	for	run-time	type	identification	used	by
the	Is	operator.

Example

Type	Vehicle	extends	object

				As	String	Name

End	Type

Type	Car	extends	Vehicle

End	Type

Type	Cabriolet	extends	Car

End	Type

Type	Bike	extends	Vehicle

End	Type

Sub	identify(ByVal	p	As	object	Ptr)

				Print	"Identifying:"

				''	Not	a	Vehicle	object?

				If	Not	(*p	Is	Vehicle)	Then

								Print	,	"unknown	object"

								Return

				End	If

				''	The	cast	is	safe,	because	we	know	it's	a	Vehicle	object

				Print	,	"name:	"	&	CPtr(Vehicle	Ptr,	p)->Name

				If	*p	Is	Car	Then

								Print	,	"It's	a	car"

				End	If

				If	*p	Is	Cabriolet	Then

								Print	,	"It's	a	cabriolet"

				End	If

				If	*p	Is	Bike	Then

								Print	,	"It's	a	bike"

				End	If

End	Sub

Dim	As	Car	ford

ford.name	=	"Ford"

identify(@ford)

Dim	As	Cabriolet	porsche

porsche.name	=	"Porsche"

identify(@porsche)

Dim	As	Bike	mountainbike

mountainbike.name	=	"Mountain	Bike"

identify(@mountainbike)

Dim	As	Vehicle	v

v.name	=	"some	unknown	vehicle"

identify(@v)

Dim	As	Object	o

identify(@o)

Differences	from	QB

New	to	FreeBASIC

See	also

Extends

Object

Is	(Select	Case)

IsDate 	

Tests	if	a	string	can	be	converted	to	a	Date	Serial

Syntax
Declare	Function	IsDate	(ByRef	stringdate	As	Const	String)	As

Long

Usage
#include	"vbcompat.bi"

result	=	IsDate(stringdate)

Parameters
stringdate

the	string	to	test

Return	Value
Returns	non-zero	(-1)	if	the	date	string	can	be	converted	to	a	Date
Serial,	otherwise	returns	zero	(0).

Description
Date	strings	must	be	in	the	format	set	in	the	regional	settings	of	the	OS
to	be	considered	valid	dates.

IsDate(Date)	will	return	non-zero	(-1)	only	if	the	regional	settings
specify	the	same	date	format	that	QB	used.

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or
datetime.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	s	As	String,	d	As	Integer

Do

		Print

		Print	"Enter	a	date:	"

		Line	Input	s

		If	s	=	""	Then	Exit	Do

		If	IsDate(s)	=	0	Then

				Print	"'";	s;	"'	is	not	a	valid	date"

		Else

				d	=	DateValue(s)

				Print	"year		=	";	Year(d)

				Print	"month	=	";	Month(d)

				Print	"day			=	";	Day(d)

		End	If

Loop

Differences	from	QB

New	to	FreeBASIC

See	also

Date	Serials
DateSerial

TimeValue

DateValue

Isredirected 	

Checks	whether	stdin	or	stdout	is	redirected	to	a	file

Syntax
Declare	Function	IsRedirected	(ByVal	is_input	As	Long	=	0)	As	

Usage
#include	"fbio.bi"

result	=	IsRedirected(is_input)

Parameters
is_input

A	Long	indicating	the	type	of	information	to	return.

Return	Value
Returns	non-zero	(-1)	if	stdin	or	stdout	is	redirected,	otherwise	returns	zero	(

Description
IsRedirected	checks	whether	stdin	or	stdout	is	redirected	to	a	file,	instead	of	being	connected	to	the	console/terminal	as	usual.

If	is_input	is	equal	to	non-zero	(-1),	IsRedirected	checks	stdin.
If	is_input	is	equal	to	zero	(0),	IsRedirected	checks	stdout.

Example

''	A	Windows	based	example,	just	for	the	use	principle

''	Self-

sufficient	example,	using	his	own	.exe	file	as	dummy	input	file	for	stdin	redirection

#include	"fbio.bi"

''	Quotation	marks	wrapping	for	compatibility	with	spaces	in	path	name

Dim	As	String	pathExe	=	""""	&	ExePath	&	""""

Dim	As	String	fileExe	=	Mid(Command(0),	InStrRev(Command

Dim	As	String	redirection	=	"	<	"""	&	Command(0)

If	LCase(Right(Command(0),	4))	=	".exe"	Then

		redirection	&=	""""

Else

		redirection	&=	".exe"""

End	If

If	Command()	=	""	Then		''	First	process	without	stdin	redirection

		''	Check	stdin	redirection

		Print	"First	process	without	stdin	redirection:	IsRedirected(-1)	=	"

		''	Creation	of	asynchronous	second	process	with	stdin	redirected	from	file.exe

		Shell("start	/d	"	&	pathExe	&	"	/b	"	&	fileExe	&

		''	Waiting	for	termination	of	asynchronous	second	process

		Sleep

ElseIf	Command()	=	"secondprocess"	Then		''	Second	process	with	stdin	redirection

		''	Check	stdin	redirection

		Print	"Second	process	with	stdin	redirection		:	IsRedirected(-1)	=	"

End	If

Differences	from	QB

New	to	FreeBASIC.

See	also

Reset(Streamno)

Kill 	

Deletes	a	file	from	disk	/	storage	media.

Syntax
Declare	Function	Kill	(ByRef	filename	As	Const	String)	As	Long

Usage
result	=	Kill(filename)

Parameters
filename

The	filename	is	the	name	of	the	disk	file	to	delete.	If	the	file	is	not	in	the	current	directory,	the	path
must	also	be	given	as	path/file.

Return	Value
Returns	zero	(0)	on	success,	or	non-zero	on	error.

Description
Kill	deletes	a	file	from	disk	/	storage	media.

Example

Dim	filename	As	String	=	"file.ext"

Dim	result	As	Integer	=	Kill(filename)

If	result	<>	0	Then	Print	"error	trying	to	kill	"	

Platform	Differences
On	some	platforms,	Kill	may	be	able	to	remove	folders	and	read-only	files.	
fails	here	is	not	currently	defined.	It	may	be	necessary	to	check	the	attributes	of	the	file	you	are
deleting,	and	decide	accordingly	whether	you	want	to	try	Killing	it.

Differences	from	QB

KILL	can	optionally	be	used	as	function	in	FreeBASIC.

See	also

Shell

RmDir

LBound 	

Returns	the	lower	bound	of	an	array's	dimension

Syntax
Declare	Function	LBound	(array()	As	Any,	ByVal	dimension	As	Integer

=	1)	As	Integer

Usage
result	=	LBound(array	[,	dimension])

Parameters
array

an	array	of	any	type
dimension

the	dimension	to	get	lower	bound	of

Return	Value
Returns	the	lower	bound	of	an	array's	dimension.

Description
LBound	returns	the	lowest	value	that	can	be	used	as	an	index	into	a
particular	dimension	of	an	array.

Array	dimensions	are	numbered	from	one	(1)	to	n,	where	n	is	the	total
number	of	dimensions.	If	dimension	is	not	specified,	LBound	will	return	the
lower	bound	of	the	first	dimension.

If	dimension	is	zero	(0),	LBound	returns	1,	corresponding	to	the	lower	bound
of	the	array	dimensions	1..n.	UBound	returns	n,	the	number	of	dimensions,
in	this	case.	This	can	be	used	to	detect	the	array's	number	of	dimensions.

For	any	other	(non-zero)	dimension	values	outside	of	the	valid	range	1
LBound	returns	0.	UBound	returns	-1	in	this	case.	This	can	be	used	to	detect
whether	a	certain	dimension	exists	in	the	array,	and	also	works	when	used

on	an	empty	array	which	does	not	have	any	valid	dimensions.

Thus,	for	empty	dynamic	arrays,	we	get:

Lbound(array)	=	0	and	Ubound(array)	=	-1	(dimension	1
does	not	exist)
Lbound(array,	0)	=	1	and	Ubound(array,	0)	=	0	(zero
dimensions)
@array(Lbound(array))	=	0	(no	data	buffer	allocated)

Example

Dim	array(-10	To	10,	5	To	15,	1	To	2)	As	Integer

Print	LBound(array)	'returns	-10

Print	LBound(array,	2)	'returns	5

Print	LBound(array,	3)	'returns	1

See	also

UBound

Static

Dim

ReDim

LCase 	

Returns	a	lower	case	copy	of	a	string

Syntax
Declare	Function	LCase	(ByRef	str	As	Const	String,	ByVal	mode	As

Long	=	0)	As	String

Declare	Function	LCase	(ByRef	str	As	Const	WString,	ByVal	mode

As	Long	=	0)	As	WString

Usage
result	=	LCase[$](str	[,	mode])

Parameters
str

String	to	convert	to	lowercase.
mode

The	conversion	mode:	0	=	current	locale,	1	=	ASCII	only

Return	Value
Lowercase	copy	of	str.

Description
Returns	a	copy	of	str	with	all	of	the	letters	converted	to	lower	case.

If	str	is	empty,	the	null	string	("")	is	returned.

Example

Print	LCase("AbCdEfG")

Output:

abcdefg

Platform	Differences

The	wide-character	string	version	of	LCase	is	not	supported	for
DOS	target.

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

QB	does	not	support	Unicode.

See	also

UCase

Left 	

Returns	the	leftmost	substring	of	a	string

Syntax
Declare	Function	Left	(ByRef	str	As	Const	String,	ByVal	n	As

Integer)	As	String

Declare	Function	Left	(ByRef	str	As	Const	WString,	ByVal	n	As

Integer)	As	WString

Usage
result	=	Left[$](str,	n)

Parameters
str

The	source	string.
n

The	number	of	characters	to	return	from	the	source	string.

Return	Value
Returns	the	leftmost	substring	from	str.

Description
Returns	the	leftmost	n	characters	starting	from	the	left	(beginning)	of
str.	If	str	is	empty,	then	the	null	string	("")	is	returned.	If	n	<=	0	then
the	null	string	("")	is	returned.	If	n	>	len(str)	then	the	entire	source
string	is	returned.

Example

Dim	text	As	String	=	"hello	world"

Print	Left(text,	5)

will	produce	the	output:

hello

An	Unicode	example:
	

dim	text	as	wstring*20
text	=	"Привет,	мир!"
print	left(text,	6)	'displays	"Привет"

Platform	Differences

DOS	does	not	support	the	wide-character	string	version	of	Left

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

QB	does	not	support	Unicode.

See	also

Right

Mid	(Function)

Len 	

Returns	the	length	of	an	expression	or	data	type

Syntax
Declare	Function	Len	(ByRef	expression	As	String)	As	Integer

Declare	Function	Len	(ByRef	expression	As	ZString)	As	Integer

Declare	Function	Len	(ByRef	expression	As	WString)	As	Integer

Declare	Operator	Len	(ByRef	expression	As	datatype)	As	datatype

Declare	Function	Len	(datatype)	As	Integer	

Usage
result	=	Len(expression)

or
result	=	Len(DataType)

Parameters
expression

An	expression	of	any	type.
datatype

A	DataType.

Return	Value
Returns	the	size	of	an	expression	or	DataType	in	bytes.

Description
Len	returns	the	length	of	an	expression	or	the	size	of	a	DataType,	in
bytes.

In	the	first	form,	if	expression	is	of	type	String,	WString	or	ZString,	the
length	of	the	string	in	characters	will	be	returned.	If	the	expression	is	of
a	user	defined	type,	an	Operator	Len	compatible	with	that	data	type	is
called.	Otherwise,	the	size	of	the	expression's	data	type	in	bytes	is
returned.

In	the	second	form,	if	expression	is	ZString	or	WString,	the	size	in
bytes	of	an	ASCII	or	Unicode	character	is	returned,	respectively.	If
datatype	is	String,	the	size	of	the	string	descriptor	type	is	returned.

If	there	is	both	a	user	defined	type	and	a	variable	visible	with	the	same
name	in	the	current	scope,	the	user	defined	type	takes	precedence
over	the	variable.	To	ensure	that	the	Len	takes	the	variable	instead	of
the	user	defined	type,	wrap	the	argument	to	Len	with	parentheses	to
force	it	to	be	seen	as	an	expression.	For	example	Len((variable)).

The	Len	unary	Operator	can	be	overloaded	with	user	defined	types.

Example

Print	Len("hello	world")	'returns	"11"

Print	Len(Integer)	'	returns	4

Type	xyz

				a	As	Integer

				b	As	Integer

End	Type

Print	Len(xyz)	'	returns	8

Dialect	Differences

Len	only	allows	expressions	in	the	-lang	qb	dialect.	
Can	be	used	with	built-in	types	and	user-defined	types	in	the	-
lang	fb	and	-lang	fblite	dialects.

Differences	from	QB

Can	be	used	with	built-in	types	and	user-defined	types	in	the	-
lang	fb	and	-lang	fblite	dialects.
None	in	the	-lang	qb	dialect.

See	also

SizeOf

Let 	

Indicates	the	assignment	operator.

Syntax
Let	variable	=	value

or

Let(variable1	[,	variable2	[,	...]])	=	udt

or

Operator	typename.Let	([ByRef	|	ByVal]	rhs	As	datatype)

statements

end	operator

Description
Command	intended	to	help	the	programmer	to	distinguish	an
assignment	statement	(e.g.	Let	a	=	1)	from	an	equality	test	(e.g.	If	a
=	1	then	...).	As	the	compiler	does	not	require	it,	it	is	usually	omitted.

Let	can	be	used	as	a	left-hand	side	operator	to	assign	the	members	of
a	user	defined	type	to	multiple	variables.	See	Operator	Let()
(Assignment)

Let	is	used	with	operator	overloading	to	refer	the	assignment	operator.
See	Operator	Let	(Assignment)

Example

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

'	these	two	lines	have	the	same	effect:

Let	x	=	100

x	=	100

Dialect	Differences

The	use	of	Let	to	indicate	an	assignment	statement	(Let
variable	=	expr)	is	not	allowed	in	the	-lang	fb	dialect.
The	UDT	to	multi-variable	Let	assignment	is	only	available	in
the	-lang	fb	dialect.
Overloading	of	operators	is	not	available	in	the	-lang	qb	and	-
lang	fblite	dialects.

Differences	from	QB

None	in	the	-lang	fb	dialect.
The	Let	operator	is	new	to	FreeBASIC.
The	UDT	to	multi-variable	Let	assignment	is	new	to	FreeBASIC.

See	also

Operator	=[>]	(Assignment)

Operator	Let	(Assignment)

Operator	Let()	(Assignment)

Operator

Lib 	

Specifies	the	library	where	a	sub	or	function	can	be	found	as	part	of	a	declaration

Syntax
Declare	{	Sub	|	Function	}	proc_name	Lib	"libname"	[Alias	"symbol_name

]	(arguments	list)	As	return_type

Extern	"mangling"	lib	"libname"

declarative	statements

end	Extern

Type	T

As	Integer	dummy

Declare	Constructor	Lib	"libname"	[Alias	"symbol_name"]	(arguments

list)

end	Type

Description
In	Sub	or	Function	declarations,	and	also	in	class	method	declarations
(including	constructors	and	destructors),	Lib	indicates	the	library	containing
the	function.	Libraries	specified	in	this	way	are	linked	in	as	if	#Inclib
"Libname"	or	-l	libname	had	been	used.

Lib	can	also	be	used	with	Extern	...	End	Extern	Blocks	to	specifiy	a	
all	declarations	inside.

Example

''	mydll.bas

''	compile	with:

''			fbc	-dll	mydll.bas

Public	Function	GetValue()	As	Integer	Export

		Function	=	&h1234

End	Function

Declare	Function	GetValue	Lib	"mydll"	()	As	Integer

Print	"GetValue	=	&h";	Hex(GetValue())

'	Expected	Output	:

'	GetValue	=	&h1234

Differences	from	QB

New	to	FreeBASIC

See	also

Declare

#inclib

Line	(Graphics) 	

Draws	a	line

Syntax
Line	[target,]	[[STEP]	(x1,	y1)]-[STEP]	(x2,	y2)	[,	[color][,	[B|BF][,	

or

Line	-	(x2,	y2)	[,	[color][,	[B|BF][,	style]]]

Parameters
target

specifies	buffer	to	draw	on
STEP

indicates	that	the	starting	coordinates	are	relative
(x1,	y1)

starting	coordinates	of	the	line
STEP

indicates	that	ending	coordinates	are	relative
(x2,	y2)

ending	coordinates	of	the	line
color

the	color	attribute.
B|BF

specifies	box	or	box	filled	mode
style

line	style

Description
Graphics	statement	that	draws	a	straight	line	or	a	box	between	two	points.	The	action	will	take	place	on
the	current	work	page	set	via	ScreenSet,	or	onto	the	buffer	Get/Put	buffer	if	specified.

Line	coordinates	are	affected	by	custom	coordinates	system	set	via	Window
statements,	and	respect	clipping	rectangle	set	by	View	(Graphics).	If	a	pair	of	coordinates	is	preceded
by	the	STEP	keyword,	the	coordinates	are	assumed	to	be	relative	to	the	last	graphics	cursor	position.	If
the	B	flag	is	specified,	a	rectangle	will	be	drawn	instead	of	a	line,	with	
coordinates	of	the	opposite	rectangle	corners.	If	BF	is	specified,	a	filled	rectangle	will	be	drawn.

Color	denotes	the	color	attribute,	which	is	mode	specific	(see	Color	and	

omitted,	the	current	foreground	color	as	set	by	the	Color	statement	is	used.

Style,	if	specified,	allows	styled	line	drawing;	its	value	is	interpreted	as	a	16-bit	bitmask,	and	
use	it	to	skip	pixel	drawing.	Starting	at	(x1,y1),	the	most	significant	bit	of	the	style	mask	is	checked:	if	
the	pixel	is	drawn,	if	0,	it's	skipped.	This	repeats	for	all	the	line	pixels	with	the	other	bits,	with	the	mask
being	reused	when	the	16	bits	are	all	checked.

When	Line	is	used	as	Line	-	(x2,	y2),	a	line	is	drawn	from	the	current	cursor	position	to	the	
coordinates	specified	by	Line.	Alternatively,	Point	can	be	used	to	get	the	current	cursor	position.

Example

''	draws	a	diagonal	red	line	with	a	white	box,	and	waits	for	3	seconds

Screen	13

Line	(20,	20)-(300,	180),	4

Line	(140,	80)-(180,	120),	15,	b

Line	-	(200,	200),	15

Sleep	3000

'	Draws	2	lines	with	2	different	line	styles	in	2	different	colors

ScreenRes	320,	240

Line	(10,	100)-

(309,	140),		4,	B,	&b1010101010101010	'	red	box	with	dashed	border

Line	(20,	115)-(299,	115),		9,		,	&b1111000011111111

Line	(20,	125)-(299,	125),	10,		,	&b0000000011110000

Sleep

Differences	from	QB

target	is	new	to	FreeBASIC

See	also

Circle
Window
View	(Graphics)

Line	Input 	

Reads	one	line	of	input	from	the	keyboard

Syntax
Line	Input	[;]	[promptstring	{;|,}]	stringvariable

Parameters
promptstring

prompt	to	display	before	waiting	for	input
stringvariable

variable	to	receive	the	line	of	text

Description
Reads	a	line	of	text	from	the	keyboard	and	stores	it	in	a	string	variable.

Example

Dim	x	As	String

Line	Input	"Enter	a	line:",	x

Print	"You	entered	'";	x;	"'"

Differences	from	QB

QBASIC	only	allowed	literal	strings	for	the	prompt	text.
FreeBASIC	allows	any	variable	or	constant	string	expression.

See	also

Line	Input	#

Input

Line	Input	# 	

Reads	one	line	of	text	from	a	file

Syntax
Line	Input	#file	number,	string_variable

Parameters
file	number

file	number	of	an	file	opened	for	Input
string_variable

variable	to	receive	the	line	of	text

Description
Reads	a	line	from	an	open	text	file	(opened	for	Input	through	a	bound
file	number)	and	stores	it	in	a	string	variable.	

A	line	of	text	ends	at,	but	does	not	include	the	end	of	line	characters.
An	end	of	line	character	may	be	the	LF	character	(Chr(10))	or	the	CRLF
character	pair	(Chr(13,10)).

Example

Dim	s	As	String

Open	"myfile.txt"	For	Output	As	#1

Print	#1,	"Hello,	World"

Close	#1

Open	"myfile.txt"	For	Input	As	#1

Line	Input	#1,	s

Close	#1

Print	s

Differences	from	QB

None

See	also

Input	#

Open

Input	(File	Mode)

LoByte 	

Gets	the	lowest	byte	of	the	operand.

Syntax
#define	LoByte(expr)	(Cast(UInteger,	expr)	And	&h000000FF;)

Usage
result	=	LoByte(expr)

Parameters
expr

A	numeric	expression,	converted	to	an	UInteger	value.

Return	Value
Returns	the	value	of	the	low	byte	of	expr.

Description
This	macro	converts	the	numeric	expression	expr	to	an	UInteger	value,	then	expands	to	an	
representing	the	value	of	its	least-significant	(low)	byte.

Example

Dim	N	As	UInteger

'Note	there	are	16	bits

N	=	&b1010101110000001

Print	"N	is																																							"

Print	"The	binary	representation	of	N	is										"

Print	"The	most	significant	byte	(MSB)	of	N	is				"

Print	"The	least	significant	byte	(LSB)	of	N	is			"

Print	"The	binary	representation	of	the	MSB	is				"

Print	"The	binary	representation	of	the	LSB	is				"

Sleep

The	output	would	look	like:

N	Is																																							43905

The	Binary	representation	of	N	Is										1010101110000001

The	most	significant	Byte	(MSB)	of	N	Is				171

The	least	significant	Byte	(LSB)	of	N	Is			129

The	Binary	representation	of	the	MSB	Is				10101011

The	Binary	representation	of	the	LSB	Is				10000001

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

HiByte

LoWord

HiWord

LOC 	

Returns	the	file	position	where	the	last	file	read/write	was	performed

Syntax
Declare	Function	LOC	(ByVal	filenum	As	Long)	As	LongInt

Usage
result	=	LOC(filenum)

Parameters
filenum

The	file	number	of	an	open	file.

Return	Value
The	file	position	where	the	last	read/write	was	performed.

Description
Returns	the	position	where	the	last	file	read/write	was	performed.

The	position	is	indicated	in	records:
In	files	opened	FOR	RANDOM	the	record	length	specified	when	file	was	opened	is	used
In	text	files	(FOR	INPUT|OUTPUT|APPEND,	a	record	length	of	128	bytes	is	supposed.
In	files	opened	for	BINARY	a	1	byte	record	length	is	used.

In	FreeBASIC	the	file	position	is	1	based,	the	first	record	of	a	file	is	record	1.

When	used	with	a	serial	device,	LOC	returns	the	number	of	bytes	waiting	to	be	read	from	the	serial
device's	input	buffer.

Example

Dim	b	As	String

If	Open	Com	("com1:9600,n,8,1,cs,rs,ds,bin"	For	Binary

		Print	"unable	to	open	serial	port"

		End

End	If

Print	"Sending	command:	AT"

Print	#1,	"AT"	+	Chr(13,	10);

Sleep	500,1

Print	"Response:"

While(LOC(1)	>	0)

		b	=	Input(LOC(1),	1)

		Print	b;

Wend

Close	#1

Differences	from	QB

!!WRITEME!!	?

See	also

LOF

EOF

Seek	(Function)

Open

Local 	

Error	handling	statement	to	set	the	current	error	handler

Syntax
On	Local	Error	Goto	label

Description
The	Local	clause	in	an	On	Error	construction	allows	to	define	an	error	handler	in	the
same	Sub	or	Function	the	On	Local	Error	is	in.

Remark:	Presently,	the	Local	clause	(authorized	only	inside	Sub/Function)	is	ignored	by
the	compiler,	and	the	error	handler	can	be	either	in	the	scope	of	the	same	procedure	the
On	[Local]	Error	is	in,	or	in	the	main	part	of	the	module	(if	defined	before	the	procedure).
Exception	if	-gen	gcc	is	used:	when	the	On	[Local]	Error	is	inside	a	Sub/Function,	the
error	handler	also	must	always	be	inside	that	same	procedure.

Example

''	compile	with	-lang	fblite	or	qb

#lang	"fblite"

Declare	Sub	foo

foo

Print	"ok"

Sleep

Sub	foo

		Dim	errno	As	Integer

		On	Local	Error	Goto	fail

		Open	"xzxwz.zwz"	For	Input	As	#1

		On	Local	Error	Goto	0

		Exit	Sub

fail:																		'	here	starts	the	error	handler

		errno	=	Err

		Print	"Error	";	errno						'	just	print	the	error	number

		Sleep

End	Sub

Differences	from	QB

The	LOCAL	clause	comes	from	PDS	7.1.	QB	4.5	does	not	allow	local	error
handling.

See	also

On	Error

Locate 	

Sets	the	current	cursor	position

Syntax
Declare	Function	Locate(row	As	Long	=	0,	column	As	Long	=	0,

state	As	Long	=	-1,	start	As	Long	=	0,	stop	As	Long	=	0)	As	Long

Usage
Locate	[row],	[column],	[state]

result	=	Locate([row],	[column],	[state])

new_column	=	LoByte(result)

new_row	=	HiByte(result)

new_state	=	HiWord(result)

Parameters
row

the	1-based	vertical	character	position	in	the	console.
column

the	1-based	horizontal	character	position	in	the	console.
state

the	state	of	the	cursor.	0	is	off,	1	is	on	(console-mode	only).
start

Ignored.	Allowed	for	-lang	qb	dialect	compatibility	only.
stop

Ignored.	Allowed	for	-lang	qb	dialect	compatibility	only.

Return	Value
Returns	a	32	bit	Long	containing	the	current	cursor	position	and	state.
The	Low	Byte	Of	The	Low	Word	contains	the	column,	the	High	Byte
Of	The	Low	Word	contains	the	row,	and	the	High	Word	contains	the
cursor	state.

If	any	of	the	row,	column	or	state	parameters	were	just	set	by	the	call
to	Locate,	then	the	return	value	will	reflect	these	new	values,	not	the
previous	ones.	If	any	of	the	parameters	were	omitted	in	the	call	to
Locate,	then	the	return	value	will	reflect	the	current	values,	which	are

the	same	as	before	the	call	to	Locate.

Description
Sets	the	text	cursor	in	both	graphics	and	console	modes.

Example

Locate	10

Print	"Current	line:";	CsrLin

''	Text	cursor	+	mouse	tracking

Dim	As	Integer	x	=	0,	y	=	0,	dx,	dy

Cls

Locate	,	,	1

While	Inkey	<>	Chr(27)

				GetMouse	dx,	dy

				If(dx	<>	x	Or	dy	<>	y)	Then

								Locate	y+1,	x+1:	Print	"	";

								x	=	dx

								y	=	dy

								Locate	1,	1:	Print	x,	y,	""

								Locate	y+1,	x+1:	Print	"X";

				End	If

Wend

Differences	from	QB

The	start	and	stop	arguments	have	no	effect	in	FreeBASIC.

See	also

CsrLin

Pos

(Print	|	?)

Lock 	

Restricts	read/write	access	to	a	file	or	portion	of	a	file

Syntax
Lock	#filenum,	record

Lock	#filenum,	start	To	end

Parameters
filenum

The	file	number	used	to	Open	the	file.
record

The	record	(Random	files)	to	lock.
start

The	first	byte	position	(Binary	files)	to	lock	from.
end

The	last	byte	position	(Binary	files)	to	lock	to.

Description
Lock	temporarily	restricts	access	by	other	threads	or	programs	to	a	file,	or	portion	of	a	file,
usually	to	allow	safe	writing	to	it.

After	modifying	the	data,	an	Unlock	with	the	same	parameters	as	the	Lock

Note:	This	command	does	not	always	work,	neither	as	documented	nor	as	expected.
It	appears	to	be	broken	at	the	moment.

Example

''	e.g.	locking	a	file,	reading	100	bytes,	and	unlocking	it.	

''	To	run,	make	sure	there	exists	a	file	called	'file.ext'	

''	in	the	current	directory	that	is	at	least	100	bytes.

Dim	array(1	To	100)	As	Integer

Dim	f	As	Integer,	i	As	Integer

f	=	FreeFile

Open	"file.ext"	For	Binary	As	#f

Lock	#f,	1	To	100

For	i	=	1	To	100

				Get	#f,	i,	array(i)

Next

Unlock	#f,	1	To	100

Close	#f

Differences	from	QB

Currently,	FB	cannot	implicitly	lock	the	entire	file
In	Random	mode,	FB	cannot	lock	a	range	of	records

See	also

Open

Unlock

ScreenLock

LOF 	

Returns	the	length	of	an	open	disk	file

Syntax
Declare	Function	LOF	(ByVal	filenum	As	Long)	As	LongInt

Usage
result	=	LOF(filenum)

Parameters
filenum

The	file	number	of	an	open	disk	file.

Return	Value
The	length	in	bytes	of	an	open	disk	file.

Description
Returns	the	length,	in	bytes,	of	a	file	opened	previously	with	Open	using
the	given	filenum.

With	Open	Com	it	returns	the	length	of	the	data	pending	to	be	read	in	the
receive	buffer.

Example

Dim	f	As	Integer

f	=	FreeFile

Open	"file.ext"	For	Binary	As	#f

Print	LOF(f)

Close	#f

Differences	from	QB

None

See	also

LOC

EOF

Open

Log 	

Returns	the	natural	logarithm	of	a	given	number

Syntax
Declare	Function	Log	cdecl	(ByVal	number	As	Double)	As	Double

Usage
result	=	Log(number)

Parameters
number

The	number	to	calculate	the	natural	log.

Return	Value
Returns	the	logarithm	with	the	base	e	(also	know	as	the	natural	logarithm)	of	

Description
There	can	be	some	confusion	with	this	notation	given	that	in	mathematics	the	natural	logarithm	function	is
usually	denoted	LN,	while	the	logarithm	of	base	10	is	often	denoted	as	LOG.	FreeBASIC,	like	most	computer
programming	languages,	uses	LOG	to	denote	the	natural	logarithm.	The	required	
valid	numeric	expression	greater	than	zero.	If	number	is	zero,	FreeBASIC	returns	a	special	value	representing	"-
infinity",	printing	like	"-Inf".	If	number	is	less	than	zero,	Log	returns	a	special	value	representing	"not	defined",
printing	like	"NaN"	or	"IND",	exact	text	is	platform	dependent.	If	number
returned.

Example

'Find	the	logarithm	of	any	base

Function	LogBaseX	(ByVal	Number	As	Double,	ByVal	BaseX

				LogBaseX	=	Log(Number)	/	Log(BaseX)

				'For	reference:			1/log(10)=0.43429448

End	Function

Print	"The	log	base	10	of	20	is:";	LogBaseX	(20	,

Print	"The	log	base	2	of	16	is:";	LogBaseX	(16	,	

Sleep

The	output	would	look	like:

The	log	base	10	of	20	is:	1.301029995663981

The	log	base	2	of	16	is:	4

Differences	from	QB

None

See	also

Exp

Long 	

Standard	data	type:	32-bit	signed	integer

Syntax
Dim	variable	As	Long

Description
32-bit	signed	whole-number	data	type.	Can	hold	values	from
-2147483648	to	2147483647.	Corresponds	to	a	signed	DWORD.

Example

		Dim	x	As	Long	=	&H80000000

		Dim	y	As	Long	=	&H7FFFFFFF

		Print	"Long	Range	=	";	x;	"	to	";	y

Output:

Long	Range	=	-2147483648	to		2147483647

See	also

Integer

LongInt

Ulong

LongInt 	

Standard	data	type:	64	bit	signed

Syntax
Dim	variable	As	LongInt

Description
A	64-bit	signed	whole-number	data	type.	Can	hold	values	from	-9	223	372
036	854	775	808	to	9	223	372	036	854	775	807.	Corresponds	to	a	signed
QWORD.

Example

		Dim	x	As	LongInt	=	&H8000000000000000

		Dim	y	As	LongInt	=	&H7FFFFFFFFFFFFFFF

		Print	"LongInt	Range	=	";	x;	"	to	";	y

Output:

LongInt	Range	=	-9223372036854775808	to		9223372036854775807

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Longint.

Differences	from	QB

New	to	FreeBASIC

See	also

ULongInt

CLngInt

Loop 	

Control	flow	statement	for	looping.

Syntax
Do

[statement	block]

Loop	[{	Until	|	While	}	condition]

See	also

Do...Loop

LoWord 	

Gets	the	lowest	16bit	word	of	the	operand.

Syntax
#define	LoWord(expr)	(Cast(UInteger,	expr)	And	&h0000FFFF;)

Usage
result	=	LoWord(expr)

Parameters
expr

A	numeric	expression,	converted	to	an	UInteger	value.

Return	Value
Returns	the	value	of	the	low	word	of	expr.

Description
This	macro	converts	the	numeric	expression	expr	to	an	UInteger	value,	then	expands	to	an	
representing	the	value	of	its	least-significant	(low)	16bit	word.

Example

Dim	N	As	UInteger

'Note	there	are	32	bits

N	=	&b10000000000000011111111111111111

Print	"N	is																																							"

Print	"The	binary	representation	of	N	is										"

Print	"The	most	significant	word	(MSW)	of	N	is				"

Print	"The	least	significant	word	(LSW)	of	N	is			"

Print	"The	binary	representation	of	the	MSW	is				"

Print	"The	binary	representation	of	the	LSW	is				"

Sleep

The	output	would	look	like:

N	Is																																							2147614719

The	Binary	representation	of	N	Is										10000000000000011111111111111111

The	most	significant	word	(MSW)	of	N	Is				32769

The	least	significant	word	(LSW)	of	N	Is			65535

The	Binary	representation	of	the	MSW	Is				1000000000000001

The	Binary	representation	of	the	LSW	Is				1111111111111111

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

LoByte

HiByte

HiWord

Lpos 	

Returns	the	number	of	characters	sent	to	the	printer	port	in	the	last	LPrint

Syntax
Declare	Function	Lpos	(ByVal	printer	As	Long)	As	Long

Usage
result	=	LPOS(printer)

Parameters
printer

Either	0,	1,	2	or	3.	Represents	the	printer	port	(LPT#)

Return	Value
Returns	the	number	of	characters	sent.

Description
Used	to	determine,	from	the	last	LPrint,	how	many	characters	were	sent	to	the	printer	port.

Example

'	compile	with	-lang	fblite	or	qb

#lang	"fblite"

Dim	test	As	String	=	"LPrint	Example	test"

Print	"Sending	'"	+	test	+	"'	to	LPT1	(default)"

LPrint	test

Print	"LPT1	last	recieved	"	+	Str(LPOS(1))	+	"	characters"

Print	"String	sent	was	"	+	Str(Len(test))	+	"	characters	long"

Sleep

Differences	from	QB

None

See	also

LPrint

LPrint 	

Writes	text	to	the	default	printer.

Syntax
LPrint	[Using	formatstring,]	[expressionlist]	[(,	|	;)]	...

Parameters
formatstring

String	specifying	the	output	format.
expressionlist

List	of	variables	to	output	according	to	the	specified	format.

Description
Prints	expressionlist	to	the	printer	attached	to	the	parallel	port	LPT1,
or	if	it	does	not	exist,	to	the	default	printer.	To	print	to	a	printer	different
from	the	default	one,	use	Open	Lpt.

The	Using	clause	formats	expressionlist	according	to	formatstring.
Except	an	UDT,	any	data	type	can	be	passed	to	LPrint
expressionlist,	expressions	do	not	need	to	be	first	converted	to
strings.

Using	a	comma	(,)	as	separator	or	in	the	end	of	the	expressionlist
will	place	the	cursor	in	the	next	column	(every	14	characters),	using	a
semi-colon	(;)	won't	move	the	cursor.	If	neither	of	them	are	used	in	the
end	of	the	expressionlist,	then	a	new-line	will	be	printed.

Some	printers	will	not	print	at	all	until	a	Chr(12)	(End	of	Page)
character	is	printed.

Internally,	FreeBASIC	uses	the	special	file	number	-1	for	printing	using
LPrint.	This	file	number	may	be	safely	closed	using	Close	-1.	The	next
use	of	LPrint	will	automatically	reopen	it	as	needed.

Example

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

''	new-line

LPrint	"Hello	World!"

''	no	new-line

LPrint	"Hello";	"World";	"!";

LPrint

''	column	separator

LPrint	"Hello!",	"World!"

''	end	of	page

LPrint	Chr$(12)

Differences	from	QB

None

Dialect	Differences

LPrint	is	not	supported	in	the	-lang	fb	dialect.	In	this	dialect	the
printer	must	be	properly	opened	with	Open	Lpt	and	Print	#	must
be	used	to	print.

See	also

Open	Lpt

(Print	|	?)

(Print	|	?)	#

Write

LSet 	

Left-justifies	a	string

Syntax
Declare	Sub	LSet	(ByRef	dst	As	String,	ByRef	src	As	Const	String

)

Declare	Sub	LSet	(ByVal	dst	As	WString	Ptr,	ByVal	src	As	Const

WString	Ptr)

Usage
LSet	dst,	src

LSet	dst_udt,	src_udt

Parameters
dst

String	String	to	receive	the	data.
src

Source	String	to	get	the	data.
dst_udt

User	defined	Type	to	receive	the	data.	
src_udt

User	defined	Type	to	copy	the	data	from.

Description
LSet	left	justifies	text	into	the	string	buffer	dst,	filling	the	left	part	of	the
string	with	src	and	the	right	part	with	spaces.	The	string	buffer	size	is
not	modified.
If	text	is	too	long	for	the	string	buffer	size,	LSet	truncates	characters
from	the	right.

For	compatibility	with	QBasic,	LSet	can	also	copy	a	user	defined	type
variable	into	another	one.	The	copy	is	made	byte	for	byte,	without	any
care	for	fields	or	alignment.	It's	up	to	the	programmer	to	take	care	for
the	validity	of	the	result.

Example

Dim	buffer	As	String

buffer	=	Space(10)

LSet	buffer,	"91.5"

Print	"-["	&	buffer	&	"]-"

Type	mytype1

				x	As	Integer

				y	As	Integer

End	Type

Type	mytype2

				z	As	Integer

End	Type

Dim	a	As	mytype1	,	b	As	mytype2

b.z	=	1234

LSet	a,	b

Print	a.x

Differences	from	QB

In	QB,	the	syntax	was	LSet	dst	=	src.	That	syntax	is	also
supported	by	FB.

See	also

RSet

Space

Put	(File	I/O)

MKD

MKI

MKL

MKS

LTrim 	

Removes	surrounding	substrings	or	characters	on	the	left	side	of	a	string

Syntax
Declare	Function	LTrim	(ByRef	str	As	Const	String,	[Any]	ByRef

trimset	As	Const	String	=	"	")	As	String

Declare	Function	LTrim	(ByRef	str	As	Const	WString,	[Any]

ByRef	trimset	As	Const	WString	=	WStr("	"))	As	WString

Usage
result	=	LTrim[$](str	[,	[Any]	trimset])

Parameters
str

The	source	string.
trimset

The	substring	to	trim.

Return	Value
Returns	the	trimmed	string.

Description
This	procedure	trims	surrounding	characters	from	the	left	(beginning)
of	a	source	string.	Substrings	matching	trimset	will	be	trimmed	if
specified,	otherwise	spaces	(ASCII	code	32)	are	trimmed.

If	the	Any	keyword	is	used,	any	character	matching	a	character	in
trimset	will	be	trimmed.

All	comparisons	are	case-sensitive.

Example

Dim	s1	As	String	=	"		101	Things	to	do."

Print	"'"	+	LTrim(s1)	+	"'"

Print	"'"	+	LTrim(s1,	"	01")	+	"'"

Print	"'"	+	LTrim(s1,	Any	"	01")	+	"'"

Dim	s2	As	String	=	"BaaBaaBAA	Test	Pattern"

Print	"'"	+	LTrim(s2,	"Baa")	+	"'"

Print	"'"	+	LTrim(s2,	Any	"BaA")	+	"'"

will	produce	the	output:

'101	Things	to	do.'

'		101	Things	to	do.'

'Things	to	do.'

'BAA	Test	Pattern'

'	Test	Pattern'

Platform	Differences

DOS	version/target	of	FreeBASIC	does	not	support	the	wide-
character	version	of	LTrim.

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

QB	does	not	support	specifying	a	trimset	string	or	the	ANY
clause.

See	also

RTrim

Trim

Mid	(Statement) 	

Overwrites	a	substring	of	a	string	with	another

Syntax
Declare	Sub	Mid	(ByRef	text	As	String,	ByVal	start	As	Integer,

ByVal	length	As	Integer,	ByRef	expression	As	Const	String)

Declare	Sub	Mid	(ByVal	text	As	WString	Ptr,	ByVal	start	As

Integer,	ByVal	length	As	Integer,	ByVal	expression	As	Const

WString	Ptr)

Usage
Mid(text,	start)	=	expression

Or

Mid(text,	start,	length)	=	expression

Parameters
text

The	string	to	work	with.
start

The	start	position	in	text	of	the	substring	to	overwrite.	The	first
character	starts	at	position	1.
length

The	number	of	characters	to	overwrite.

Description
Copies	a	maximum	of	length	characters	of	expression	into	text,
starting	at	start.

If	length	is	not	specified,	all	of	expression	is	copied.	The	size	of	the
string	text	is	unchanged;	if	expression	is	too	big,	as	much	of	it	is
copied	up	to	the	end	of	text.

Mid	can	also	be	used	as	a	function	to	return	part	of	another	string.	See
Mid	(Function).

Example

Dim	text	As	String

text	=	"abc	123"

Print	text	'displays	"abc	123"

'	replace	part	of	text	with	another	string

Mid(text,	5,	3)	=	"456"	

Print	text	'displays	"abc	456"

Differences	from	QB

None

See	also

Mid	(Function)

Mid	(Function) 	

Returns	a	substring	of	a	string

Syntax
Declare	Function	Mid	(ByRef	str	as	Const	String,	ByVal	start	as

integer)	as	String

Declare	Function	Mid	(ByVal	str	as	Const	WString	Ptr,	ByVal

start	as	integer)	as	WString

Declare	Function	Mid	(ByRef	str	as	Const	String,	ByVal	start	as

integer,	ByVal	n	as	integer)	as	String

Declare	Function	Mid	(ByVal	str	as	Const	WString	Ptr,	ByVal

start	as	integer,	ByVal	n	as	integer)	as	WString

Usage
result	=	Mid[$](str,	start	[,	n])

Parameters
str

The	source	string.
start

The	start	position	in	str	of	the	substring.	The	first	character	starts	at
position	1.
n

The	substring	length,	in	characters.

Description
Returns	a	substring	starting	from	start	in	str.	If	str	is	empty	then	the
null	string	("")	is	returned.	If	start	<=	0	then	the	null	string	("")	is
returned.

In	the	first	form	of	Mid,	all	of	the	remaining	characters	are	returned.	In
the	second	form,	if	n	<	0	or	n	>=	len(str)	then	all	of	the	remaining
characters	are	returned.

Example

Print	Mid("abcdefg",	3,	2)

Print	Mid("abcdefg",	3)

Print	Mid("abcdefg",	2,	1)

will	produce	the	output:

cd

cdefg

b

A	Unicode	example:
Wiki:	code	rendered	this	way	to	allow	display	of	the	Unicode
characters.

	

dim	text	as	wstring	*	20
text	=	"Привет,	мир!"
print	mid(text,	6,	4)	'	displays	"т,	м"

Platform	Differences

DOS	does	not	support	the	wide-character	string	versions	of	Mid

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

QB	does	not	support	Unicode.

See	also

InStr

Mid	(Statement)

Left

Right

Asc

Minute 	

Gets	the	minute	of	the	hour	from	a	Date	Serial	

Syntax
Declare	Function	Minute	(ByVal	date_serial	As	Double)	As	Long

Usage
#include	"vbcompat.bi"

result	=	Minute(date_serial)

Parameters
date_serial

the	date	serial

Return	Value
Returns	the	minute	from	a	variable	containing	a	date	in	Date	Serial	format.

Description

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	ds	As	Double	=	DateSerial(2005,	11,	28)	+	TimeSerial

Print	Format(ds,	"yyyy/mm/dd	hh:mm:ss	");	Minute(ds

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

MKD 	

Does	a	binary	copy	from	a	Double	variable	to	a	String,	setting	its	length
to	8	bytes

Syntax
Declare	Function	MKD	(ByVal	number	As	Double)	As	String

Usage
result	=	MKD[$](number)

Parameters
number

A	Double	variable	to	binary	copy	to	a	String.

Return	Value
Returns	a	String	with	a	binary	copy	of	the	Double.

Description
Does	a	binary	copy	from	a	Double	variable	to	a	String,	setting	its
length	to	8	bytes.	The	resulting	string	can	be	read	back	to	a	Double	by
CVD.

This	function	is	useful	to	write	numeric	values	to	buffers	without	using
a	Type	definition.

Example

Dim	n	As	Double,	e	As	String

n	=	1.2345

e	=	MKD(n)

Print	n,	CVD(e)

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

None

See	also

MKI

MKL

MKS

CVD

CVI

CVL

CVS

MkDir 	

Makes	a	folder/directory	on	the	local	file	system

Syntax
Declare	Function	MkDir	(ByRef	folder	As	Const	String)	As	Long

Usage
result	=	MkDir(folder)

Parameters
folder

The	folder/directory	to	be	created.

Return	Value
Returns	zero	(0)	on	success,	and	negative	one	(-1)	on	failure.

Description
Creates	a	folder	on	the	local	file	system.

Example

Dim	pathname	As	String	=	"foo\bar\baz"

Dim	result	As	Integer	=	MkDir(pathname)

If	0	<>	result	Then	Print	"error:	unable	to	create	folder	"

Platform	Differences

Linux	requires	the	filename	case	matches	the	real	name	of	the	file.	Windows	and	DOS	
Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses	backward	slashes	\	but	it	allows	for	forward	slashes	.	
backward	\	slashes.	

Differences	from	QB

None

See	also

Shell

ChDir

RmDir

MKI 	

Does	a	binary	copy	from	an	integer	variable	to	a	String	of	the	same
length	as	the	size	of	the	input	variable

Syntax
Declare	Function	MKI	(ByVal	number	As	Integer)	As	String

Declare	Function	MKI<bits>	(ByVal	number	As	Integer<bits>)	As

String

Usage
result	=	MKI[$](number)

result	=	MKI[$]<bits>(number)

Parameters
number

A	Integer	or	Integer<bits>	variable	to	binary	copy	to	a	String.

Return	Value
Returns	a	String	containing	a	binary	copy	of	number.

Description
Does	a	binary	copy	from	an	Integer	or	Integer<bits>	variable	to	a
String,	setting	its	length	to	the	number	of	bytes	in	the	type.	The
resulting	string	can	be	read	back	to	an	integer	type	using	CVI	or
CVI<bits>.

This	function	is	useful	to	write	numeric	values	to	buffers	without	using
a	Type	definition.

MKI	supports	an	optional	<bits>	parameter	before	the	argument.	If	bits
is	16,	MKShort	will	be	called	instead;	if	bits	is	32,	MKL	will	be	called;	if
bits	is	64,	MKLongInt	will	be	called.	The	length	of	the	return	value	and
the	required	number	argument	type	will	depend	on	which	function	is
called.	See	each	function's	page	for	more	information.

Example

Dim	a	As	Integer,	b	As	String

a=4534

b=MKI(a)

Print	a,	CVI(b)

Dialect	Differences

In	the	-lang	qb	dialect,	MKI	returns	a	2-byte-string,	since	a	QB
integer	is	only	16	bits.
The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.
QB	did	not	support	a	<bits>	parameter.

See	also

CVI

MKShort

MKL

MKLongInt

Integer

MKL 	

Does	a	binary	copy	from	a	Long	variable	to	a	String,	setting	its	length	to	4
bytes

Syntax
Declare	Function	MKL	(ByVal	number	As	Long)	As	String

Usage
result	=	MKL(number)

Parameters
number

A	Long	variable	to	binary	copy	to	a	String.

Return	Value
Returns	a	String	with	a	binary	copy	of	the	Long.

Description
Does	a	binary	copy	from	a	Long	variable	to	a	String,	setting	its	length
to	4	bytes.	The	resulting	string	can	be	read	back	to	a	Long	by	CVL.

This	function	is	useful	to	write	numeric	values	to	buffers	without	using
a	Type	definition.

Example

Dim	a	As	Long,	b	As	String

a	=	4534

b	=	MKL(a)

Print	a,	CVL(b)

Sleep

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

None

See	also

MKD

MKI

MKS

CVD

CVI

CVL

CVS

MKLongInt 	

Does	a	binary	copy	from	a	LongInt	variable	to	a	String,	setting	its	length
to	8	bytes

Syntax
Declare	Function	MKLongInt	(ByVal	number	As	LongInt)	As	String

Usage
result	=	MKLongInt[$](number)

Parameters
number

A	LongInt	variable	to	binary	copy	to	a	String.

Return	Value
Returns	a	String	with	a	binary	copy	of	the	LongInt.

Description
Does	a	binary	copy	from	a	LongInt	variable	to	a	string,	setting	its
length	to	8	bytes.	The	resulting	string	can	be	read	back	to	a	longint	by
CVLongInt

This	function	is	useful	to	write	numeric	values	to	buffers	without	using
a	Type	definition.

Example

Dim	a	As	LongInt,	b	As	String

a	=	4534

b	=	MKLongInt(a)

Print	a,	CVLongInt(b)

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Mklongint.

Differences	from	QB

New	to	FreeBASIC

See	also

CVLongInt

MKS 	

Does	a	binary	copy	from	a	Single	variable	to	a	String,	setting	its	length
to	4	bytes

Syntax
Declare	Function	MKS	(ByVal	number	As	Single)	As	String

Usage
result	=	MKS[$](number)

Parameters
number

A	Single	variable	to	binary	copy	to	a	String.

Return	Value
Returns	a	String	with	a	binary	copy	of	the	Single.

Description
Does	a	binary	copy	from	a	Single	variable	to	a	String,	setting	its
length	to	4	bytes.	The	resulting	string	can	be	read	back	to	a	Single	by
CVS.

This	function	is	useful	to	write	numeric	values	to	buffers	without	using
a	Type	definition.

Example

Dim	n	As	Single,	e	As	String

n	=	1.2345

e	=	MKS(n)

Print	n,	CVS(e)

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

None

See	also

MKI

MKL

MKS

CVD

CVI

CVL

CVS

MKShort 	

Does	a	binary	copy	from	a	Short	variable	to	a	String,	setting	its	length	to
2	bytes

Syntax
Declare	Function	MKShort	(ByVal	number	As	Short)	As	String

Usage
result	=	MKShort[$](number)

Parameters
number

A	Short	variable	to	binary	copy	to	a	String.

Return	Value
Returns	a	String	with	a	binary	copy	of	the	Short.

Description
Does	a	binary	copy	from	a	SHORT	variable	to	a	string,	setting	its
length	to	2	bytes.	The	resulting	string	can	be	read	back	to	a	Short	by
CVShort

This	function	is	useful	to	write	numeric	values	to	buffers	without	using
a	Type	definition.

Example

Dim	a	As	Short,	b	As	String

a	=	4534

b	=	MKShort(a)

Print	a,	CVShort(b)

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Mkshort.

Differences	from	QB

In	QBasic	this	function	is	called	MKI.

See	also

CVShort

Operator	Mod	(Modulus) 	

Finds	the	remainder	from	a	division	operation

Syntax
Declare	Operator	Mod	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer

)	As	Integer

Usage
result	=	lhs	Mod	rhs

Parameters
lhs

The	left-hand	side	dividend	expression.
rhs

The	right-hand	side	divisor	expression.

Return	Value
Returns	the	remainder	of	a	division	operation.

Description
Operator	Mod	(Modulus)	divides	two	Integer	expressions	and	returns
the	remainder.	Numeric	values	are	converted	to	Integer	by	rounding
up	or	down.

Neither	of	the	operands	are	modified	in	any	way.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Print	47	Mod	7

Print	5.6	Mod	2.1

Print	5.1	Mod	2.8

Output:

5

0

2

This	is	because:	
47	divided	by	7	gives	a	remainder	of	5
5.6	is	rounded	to	6	while	2.1	is	rounded	to	2.	This	makes	the
problem	6	MOD	2	which	means	6	divided	by	2	which	gives	a
remainder	of	0
5.1	is	rounded	to	5	while	2.8	is	rounded	to	3.	This	makes	the
problem	5	MOD	3	which	means	5	divided	by	3	which	gives	a
remainder	of	2

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Mathematical	Functions

Month 	

Gets	the	month	of	the	year	from	a	Date	Serial

Syntax
Declare	Function	Month	(ByVal	date_serial	As	Double)	As	Long

Usage
#include	"vbcompat.bi"

result	=	Month(date_serial)

Parameters
date_serial

the	date

Return	Value
Returns	the	month	number	from	a	variable	containing	a	date	in	Date	Serial

The	month	values	are	in	the	range	1-12	being	1	for	January	and	12	for	December.

Description

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	a	As	Double	=	DateSerial(2005,11,28)	+	TimeSerial

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss	");	Month(a)

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

MonthName 	

Gets	the	name	of	a	month	from	its	integral	representation

Syntax
Declare	Function	MonthName	(ByVal	month	As	Long,	ByVal	abbreviate

Usage
#include	"vbcompat.bi"

result	=	MonthName(month_number	[,	abreviate])

Parameters
month

the	number	of	the	month	of	the	year	-	1:January	through	12:December
abbreviate

flag	to	indicate	that	name	should	be	abbreviated

Return	Value
Returns	the	local	operating	system	language	month	name	from	month	value	1	to	12.

Description

If	abbreviate	is	true,	the	month	name	abbreviation	is	returned.	If	omitted	or	false,	the	whole	name	is
returned.

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or	datetime.bi

Example

#include	"vbcompat.bi"

Dim	ds	As	Double	=	DateSerial(2005,	11,	28)	+	TimeSerial

Print	Format(ds,	"yyyy/mm/dd	hh:mm:ss	");	MonthName

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	Visual	Basic.

See	also

Date	Serials

MultiKey 	

Detects	the	status	of	keys	by	keyboard	scancode.

Syntax
Declare	Function	MultiKey	(ByVal	scancode	As	Long)	As	Long

Usage
result	=	MultiKey(scancode)

Parameters
scancode

The	scan	code	of	the	key	to	check.

Return	Value
Returns	-1	if	the	key	for	the	specified	scan	code	is	pressed,	otherwise	returns	

Description
MultiKey	is	a	function	which	will	detect	the	status	of	any	key,	determined	by	scancode,	at	any	time.	It	will
return	-1	if	the	key	is	pressed,	otherwise	it	will	return	0.	The	keyboard	input	buffer	is	not	disabled	while	you
use	MultiKey;	that	is,	pressed	keys	will	be	stored	and	subsequently	returned	by	your	next	call	to	
means	you	have	to	empty	Inkey	manually	when	you	finish	using	MultiKey
method:

While	Inkey	<>	"":	Wend	''	loop	until	the	Inkey	buffer	is	empty

Keeping	Inkey	to	work	while	you	use	MultiKey	allows	more	flexibility	and	can	be	useful	to	detect
Chr(255)+"k"	combo	returned	on	window	close	button	click,	if	a	windowed	graphics	mode	has	been	set	via
the	Screen	statement.	For	a	list	of	accepted	scancodes,	see	DOS	keyboard	scancodes
guaranteed	to	be	valid	for	all	FreeBASIC	supported	platforms.
MultiKey	should	always	work	in	graphics	mode,	as	long	as	the	screen	is	
depends	on	the	platform	the	program	is	run	on	though,	and	cannot	be	guaranteed.

Example

#include	"fbgfx.bi"

#if	__FB_LANG__	=	"fb"

Using	FB	''	Scan	code	constants	are	stored	in	the	FB	namespace	in	lang	FB

#endif

Dim	As	Integer	x,	y

ScreenRes	640,	480

Color	2,	15

x	=	320:	y	=	240

Do

				'	Check	arrow	keys	and	update	the	(x,	y)	position	accordingly

				If	MultiKey(SC_LEFT)	And	x	>			0	Then	x	=	x	-

				If	MultiKey(SC_RIGHT)	And	x	<	639	Then	x	=	x	+

				If	MultiKey(SC_UP)	And	y	>			0	Then	y	=	y	-

				If	MultiKey(SC_DOWN)	And	y	<	479	Then	y	=	y	+

				

				'	Lock	the	page	while	we	work	on	it

				ScreenLock

								'	Clear	the	screen	and	draw	a	circle	at	the	position	(x,	y)

								Cls

								Circle(x,	y),	30,	,	,	,	,F

				ScreenUnlock

				

				Sleep	15,	1

				

				'	Run	loop	until	user	presses	Escape

Loop	Until	MultiKey(SC_ESCAPE)

'	Clear	Inkey	buffer

While	Inkey	<>	"":	Wend

Print	"Press	CTRL	and	H	to	exit..."

Do

				Sleep	25

				

				''	Stay	in	loop	until	user	holds	down	CTRL	and	H	at	the	same	time

				If	MultiKey(SC_CONTROL)	And	MultiKey(SC_H)	Then

Loop

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Keyboard	scancodes
GetMouse

GetJoystick

Screen	(Graphics)

Inkey

MutexCreate 	

Creates	a	mutex	used	for	synchronizing	the	execution	of	threads

Syntax
Declare	Function	MutexCreate	()	As	Any	Ptr

Usage
result	=	MutexCreate

Return	Value
The	Any	Ptr	handle	of	the	mutex	created,	or	the	null	pointer	(0)	on	failure.

Description
Mutexes,	short	for	"Mutually	Exclusive",	are	a	way	of	synchronizing	shared	data	within	threads.	
(or	a	local	static	variable	used	by	a	single	thread	called	multiple	times),	it	should	be	"locked"	during	its	use	with	a	mutex.	
MutexLock	with	that	mutex	(including	the	main	thread	executing	main	program),	until	it	is	unlocked	with	

Mutexcreate	creates	a	mutex,	returning	a	handle	which	is	to	be	referred	to	when	locking,	unlocking,	or	destroying	the	mutex.	
Mutexcreate	should	be	destroyed	when	no	longer	needed	or	before	the	end	of	the	program	with	

A	mutex	is	a	lock	that	guarantees	three	things:
1.	Atomicity	-	Locking	a	mutex	is	an	atomic	operation,	meaning	that	the	operating	system	(or	threads	library)	assures	you	that	if	you	locked	a	mutex,
no	other	thread	succeeded	in	locking	this	mutex	at	the	same	time.
2.	Singularity	-	If	a	thread	managed	to	lock	a	mutex,	it	is	assured	that	no	other	thread	will	be	able	to	lock	the	thread	until	the	original	thread	releases
the	lock.
3.	Non-Busy	Wait	-	If	a	thread	attempts	to	lock	a	thread	that	was	locked	by	a	second	thread,	the	first	thread	will	be	suspended	(and	will	not	consume
any	CPU	resources)	until	the	lock	is	freed	by	the	second	thread.	At	this	time,	the	first	thread	will	wake	up	and	continue	execution,	having	the	mutex
locked	by	it.	

Example
See	also	the	ThreadCreate	examples.

'Visual	example	of	mutual	exclusion	between	2	threads	by	using	Mutex:

'the	"user-defined	thread"	computes	the	points	coordinates	on	a	circle,

'and	the	"main	thread"	plots	the	points.

'

'Principle	of	mutual	exclusion

'										Thread#A																XOR																		Thread#B

'.....																																								

'MutexLock(mut)																																MutexLock(mut)

'		Do_something#A_with_exclusion																	Do_something#B_with_exclusion

'MutexUnlock(mut)																														MutexUnlock(mut)

'.....																																								

'

'Behavior:

'-	The	first	point	must	be	pre-calculated.

'-	Nothing	prevents	that	a	same	calculated	point	could	be	plotted	several	times

'(depends	on	execution	times	of	the	loops	between	main	thread	and	user	thread).

'-	Nothing	prevents	that	a	calculated	point	could	be	not	plotted

'(same	remark	on	the	loop	times).

'

'If	you	comment	out	the	lines	containing	"MutexLock"	and	"MutexUnlock"

'(inside	"user-defined	thread"	or/and	"main	thread"),

'there	will	be	no	longer	mutual	exclusion	between	computation	of	coordinates	and	plotting	of	points,

'and	many	points	will	not	be	plotted	on	circle	(due	to	non	coherent	coordinates).

'---

Type	ThreadUDT																																			'Generic	user	thread	UDT

				Dim	handle	As	Any	Ptr																								'Any	Ptr	handle	to	user	thread

				Dim	sync	As	Any	Ptr																										'Any	Ptr	handle	to	mutex

				Dim	quit	As	Byte																													'Boolean	to	end	user	thread

				Declare	Static	Sub	Thread	(ByVal	As	Any	Ptr)	'Generic	user	thread	procedure

				Dim	procedure	As	Sub	(ByVal	As	Any	Ptr)						'Procedure(Any	Ptr)	to	be	executed	by	user	thread

				Dim	p	As	Any	Ptr																													'Any	Ptr	to	pass	to	procedure	executed	by	user	thread

				Const	false	As	Byte	=	0																						'Constante	"false"

				Const	true	As	Byte	=	Not	false															'Constante	"true"

End	Type

Static	Sub	ThreadUDT.Thread	(ByVal	param	As	Any	Ptr

				Dim	tp	As	ThreadUDT	Ptr	=	param																		

				Do

								Static	As	Integer	I

								MutexLock(tp->sync)																										

								tp->procedure(tp->p)																									

								I	+=	1

								Locate	30,	38

								Print	I;

								MutexUnlock(tp->sync)																								

								Sleep	5

				Loop	Until	tp->quit	=	tp->true																			

End	Sub

'---

Type	Point2D

				Dim	x	As	Integer

				Dim	y	As	Integer

End	Type

Const	x0	As	Integer	=	640	/	2

Const	y0	As	Integer	=	480	/	2

Const	r0	As	Integer	=	200

Const	pi	As	Single	=	4	*	Atn(1)

Sub	PointOnCircle	(ByVal	p	As	Any	Ptr)

				Dim	pp	As	Point2D	Ptr	=	p

				Dim	teta	As	Single	=	2	*	pi	*	Rnd

				pp->x	=	x0	+	r0	*	Cos(teta)

				Sleep	5																												'To	increase	possibility	of	uncorrelated	data	occurrence

				pp->y	=	y0	+	r0	*	Sin(teta)

End	Sub

Screen	12

Locate	30,	2

Print	"<any_key>	:	exit";

Locate	30,	27

Print	"calculated:";

Locate	30,	54

Print	"plotted:";

Dim	Pptr	As	Point2D	Ptr	=	New	Point2D

PointOnCircle(Pptr)																			'	Computation	for	a	first	point	valid	on	the	circle

Dim	Tptr	As	ThreadUDT	Ptr	=	New	ThreadUDT

Tptr->sync	=	MutexCreate

Tptr->procedure	=	@PointOnCircle

Tptr->p	=	Pptr

Tptr->handle	=	ThreadCreate(@ThreadUDT.Thread,	Tptr

Do

				Static	As	Integer	I

				Sleep	5

				MutexLock(Tptr->sync)			'Mutex	(Lock)	for	main	thread

				PSet	(Pptr->x,	Pptr->y)	'Plotting	one	point

				I	+=	1

				Locate	30,	62

				Print	I;

				MutexUnlock(Tptr->sync)	'Mutex	(Unlock)	for	main	thread

Loop	Until	Inkey	<>	""

	

Tptr->quit	=	Tptr->true

ThreadWait(Tptr->handle)

MutexDestroy(Tptr->sync)

Delete	Tptr

Delete	Pptr

Sleep

See	also	the	similar	CondCreate	example

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

The	DOS	version	of	FreeBASIC	does	not	allow	for	threads,	as	the	OS	does	not	support	them.

In	Linux	the	threads	are	always	started	in	the	order	they	are	created,	this	can't	be	assumed	in	Win32.	It's	an	OS,	not	a	FreeBASIC	issue.	

Differences	from	QB

New	to	FreeBASIC

See	also

MutexDestroy

MutexLock

MutexUnlock

ThreadCreate

ThreadWait

MutexDestroy 	

Destroys	a	mutex

Syntax
Declare	Sub	MutexDestroy	(ByVal	id	As	Any	Ptr)

Usage
MutexDestroy(id)

Parameters
id

The	Any	Ptr	handle	of	the	mutex	to	be	destroyed.

Description
Mutexdestroy	discards	a	mutex	created	by	MutexCreate.	This	call
should	be	executed	after	any	threads	using	the	mutex	are	no	longer	in
use.

See	MutexCreate	for	more	general	information	on	mutexes.

Example
See	the	examples	in	MutexCreate	and	also	ThreadCreate.

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

The	DOS	version	of	FreeBASIC	does	not	allow	for	threads,	as
the	OS	does	not	support	them.
In	Linux	the	threads	are	always	started	in	the	order	they	are
created,	this	can't	be	assumed	in	Win32.	It's	an	OS,	not	a
FreeBASIC	issue.	

Differences	from	QB

New	to	FreeBASIC

See	also

MutexCreate

MutexLock

MutexUnlock

ThreadCreate

ThreadWait

MutexLock 	

Acquires	a	mutex

Syntax
Declare	Sub	MutexLock	(ByVal	id	As	Any	Ptr)

Usage
MutexLock(id)

Parameters
id

The	Any	Ptr	handle	of	the	mutex	to	be	locked.

Description
Mutexlock	halts	any	other	threads	using	a	mutex	"handle",	generated	by	
unlocked	with	MutexUnlock.

See	MutexCreate	for	more	general	information	on	mutexes.

Example
See	also	the	examples	in	MutexCreate	and	also	ThreadCreate.

'Example	of	mutual	exclusion	for	synchronization	between	2	threads

'by	using	2	Mutexes	only	(by	self	lock	and	mutual	unlock):

'The	Producer	works	one	time,	then	the	Consumer	works	one	time.

'

'Principle	of	synchronisation	by	mutual	exclusion

'(initial	condition:	mut#A	and	mut#B	locked)

'

'										Thread#A														XORs														Thread#B

'Do_something#A_with_exclusion										MutexLock(mut#A)

'MutexUnlock(mut#A)																							Do_something#B_with_exclusion

'.....																																		MutexUnlock(mut#B)

'MutexLock(mut#B)																						

'--

Dim	Shared	produced	As	Any	Ptr

Dim	Shared	consumed	As	Any	Ptr

Dim	consumer_id	As	Any	Ptr

Dim	producer_id	As	Any	Ptr

Sub	consumer	(ByVal	param	As	Any	Ptr)

				For	i	As	Integer	=	0	To	9

								MutexLock	produced

								Print	,	",consumer	gets:"	;	i

								MutexUnlock	consumed

								Sleep	5

				Next	i

End	Sub

Sub	producer	(ByVal	param	As	Any	Ptr)

				For	i	As	Integer	=	0	To	9

								Print	"Producer	puts:"	;	i;

								MutexUnlock	produced

								MutexLock	consumed

				Sleep	5

Next	i

End	Sub

produced	=	MutexCreate

consumed	=	MutexCreate

If	(produced	=	0)	Or	(consumed	=	0)	Then

				Print	"Error	creating	mutexes!	Exiting..."

				Sleep

				End

End	If

MutexLock	produced

MutexLock	consumed

consumer_id	=	ThreadCreate	(@	consumer)

producer_id	=	ThreadCreate	(@	producer)

If	(producer_id	=	0)	Or	(consumer_id	=	0)	Then

				Print	"Error	creating	threads!	Exiting..."

				Sleep

				End

End	If

ThreadWait	consumer_id

ThreadWait	producer_id

MutexDestroy	consumed

MutexDestroy	produced

Sleep

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

The	DOS	version	of	FreeBASIC	does	not	allow	for	threads,	as	the	OS	does	not	support	them.
In	Linux	the	threads	are	always	started	in	the	order	they	are	created,	this	can't	be	assumed	in
Win32.	It's	an	OS,	not	a	FreeBASIC	issue.	

Differences	from	QB

New	to	FreeBASIC

See	also

MutexCreate

MutexDestroy

MutexUnlock

ThreadCreate

ThreadWait

MutexUnlock 	

Releases	a	mutex	lock

Syntax
Declare	Sub	MutexUnlock	(ByVal	id	As	Any	Ptr)

Usage
MutexUnlock(id)

Parameters
id

The	Any	Ptr	handle	of	the	mutex	to	be	unlocked.

Description
Mutexunlock	releases	a	mutex	"handle"	created	by	MutexCreate,	and
locked	with	MutexLock.	This	allows	other	threads	sharing	the	mutex	to
continue	execution.

See	MutexCreate	for	more	general	information	on	mutexes.

Example
See	the	examples	in	MutexCreate	and	also	ThreadCreate.

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

The	DOS	version	of	FreeBASIC	does	not	allow	for	threads,	as
the	OS	does	not	support	them.
In	Linux	the	threads	are	always	started	in	the	order	they	are
created,	this	can't	be	assumed	in	Win32.	It's	an	OS,	not	a
FreeBASIC	issue.	

Differences	from	QB

New	to	FreeBASIC

See	also

MutexCreate

MutexDestroy

MutexLock

ThreadCreate

ThreadWait

Naked 	

Write	functions	without	prolog/epilog	code

Syntax
{Sub	|	Function}	identifier	Naked	[calling_convention]	(param_list

asm_statements

End	{Sub	|	Function}

Parameters
identifier	-	name	of	the	procedure.
calling_convention	-	calling	convention	of	the	procedure	-	can	be	cdecl
asm_statements	-	the	code	in	the	procedure	body.	The	code	for	handling	parameters	and	returning	values	must	all	be	done	manually.	
these	can	change,	depending	on	the	calling	convention.
param_list	-	parameters	to	be	passed	to	the	procedure.
data_type	-	the	data	type	of	the	function.

Description
Naked	allows	the	programmer	to	write	procedures	without	the	compiler	generating	any	prolog/epilog	code.	
any	unnecessary	overhead.

Example

''	Naked	cdecl	function

Function	subtract_c	Naked	cdecl	_			''	parameters	pushed	onto	call	stack	in	reverse	order	of	declaration

				(_

								ByVal	a	As	Long,	_

								ByVal	b	As	Long	_								''	parameter	pushed	onto	stack	in	first

)	As	Long

			

				Asm

								mov	eax,	dword	Ptr	[esp+4]		''	eax	=	a

								Sub	eax,	dword	Ptr	[esp+8]		''	eax	-=	b

								ret																									''	return	result	in	eax

				End	Asm

			

End	Function

Print	subtract_c(5,	1)	''	5	-	1

''---

''	Naked	stdcall	function

Function	subtract_s	Naked	stdcall	_	''	parameters	pushed	onto	call	stack	in	reverse	order	of	declaration

																									_										''	called	procedure	responsible	for	removing	parameters	from	stack

																									_										''			(appending	constant	to	RET	instruction	specifying	number	of	bytes	to	release)

				(_

								ByVal	a	As	Long,	_

								ByVal	b	As	Long	_								''	parameter	pushed	onto	stack	in	first

)	As	Long

			

				Asm

								mov	eax,	dword	Ptr	[esp+4]		''	eax	=	a

								Sub	eax,	dword	Ptr	[esp+8]		''	eax	-=	b

								ret	8																							''	return	result	in	eax	and	8	bytes	(2	integers)	to	release

				End	Asm

			

End	Function

Print	subtract_s(5,	1)	''	5	-	1	

''---

''	Naked	pascal	function

Function	subtract_p	Naked	pascal	_		''	parameters	pushed	onto	call	stack	in	same	order	as	declaration

																									_										''	called	procedure	responsible	for	removing	parameters	from	stack

																									_										''			(appending	constant	to	RET	instruction	specifying	number	of	bytes	to	release)

				(_

								ByVal	a	As	Long,	_							''	parameter	pushed	onto	stack	in	first

								ByVal	b	As	Long	_

)	As	Long

			

				Asm

								mov	eax,	dword	Ptr	[esp+8]		''	eax	=	a

								Sub	eax,	dword	Ptr	[esp+4]		''	eax	-=	b

								ret	8																							''	return	result	in	eax	and	8	bytes	(2	longs)	to	release

				End	Asm

			

End	Function

Print	subtract_p(5,	1)	''	5	-	1

''	Naked	cdecl	function

''	plus	ecx	register	preserved	in	asm	block	by	creating	user	stack

Function	subtract_cp	Naked	cdecl	_						''	parameters	pushed	onto	call	stack	in	reverse	order	of	declaration

				(_

								ByVal	a	As	Long,	_

								ByVal	b	As	Long	_												''	parameter	pushed	onto	stack	in	first

)	As	Long

			

				Asm

								push	ebp																								''	push	ebp	onto	stack			=>	esp	-=	4

								mov	ebp,	esp																				''	ebp	=	esp

																																								''				=>	create	user	stack	4	bytes	above	call	stack

								push	ecx																								''	push	ecx	onto	user	stack			=>	esp	-=	4

								mov	eax,	dword	Ptr	[(ebp+4)+4]		''	eax	=	a			(supplementary	offset	of	+4	bytes	only	due	to	'push	ebp')

								mov	ecx,	dword	Ptr	[(ebp+8)+4]		''	ecx	=	b			(supplementary	offset	of	+4	bytes	only	due	to	'push	ebp')

								Sub	eax,	ecx																				''	eax	-=	ecx

								pop	ecx																									''	pop	ecx	from	user	stack			=>	esp	+=	4

								mov	esp,	ebp																				''	esp	=	ebp

								pop	ebp																									''	pop	ebp	from	stack			=>	esp	+=	4

																																								''				=>	discard	user	stack

								ret																													''	return	result	in	eax

				End	Asm

			

End	Function

Print	subtract_cp(5,	1)	''	5	-	1

Platform	Differences

The	default	calling	convention	depends	on	the	target	platform,	thus	it	is	best	to	specify	the	expected	calling	convention	explicitly	when	using	

Differences	from	QB

New	to	FreeBASIC

See	also

Asm

Calling	Conventions

Function

Sub

cdecl

pascal

stdcall

Name 	

Renames	a	file	on	disk

Syntax
Declare	Function	Name(ByRef	oldname	As	Const	String,	ByRef	newname

As	Long

Usage
result	=	Name(oldname,	newname)

Parameters
oldname

Name	of	an	existing	file.
newname

New	name	of	the	file.

Return	Value
Returns	zero	(0)	on	success	and	non-zero	on	failure.

Description
Renames	a	file	or	folder	originally	called	oldname	to	newname.

The	function	is	not	guaranteed	to	succeed	if	a	file/folder	exists	with	the	same	name.	
succeed,	overwriting	the	original,	or	it	may	fail.	For	greater	control,	FileExists
to	test	for	an	existing	file,	and	Kill	could	be	used	to	delete	an	existing	file	beforehand.

Example

Dim	OldName	As	String

Dim	NewName	As	String

Dim	result	As	Integer	

OldName	=	"dsc001.jpg"

NewName	=	"landscape.jpg"

result	=	Name(OldName,	NewName)

If	0	<>	result	Then	

				Print	"error	renaming	"	&	oldname	&	"	to	"	&	newname

End	If

Differences	from	QB

In	QB,	NAME	required	AS	rather	than	a	comma	between	the	old	and	new	names.	
is	because	NAME	was	a	language	keyword	rather	than	a	function.

See	also

Kill

FileExists

Namespace 	

Declares	a	namespace	block

Syntax
Namespace	identifier	[Alias	"aliasname"]

statements

End	Namespace

Parameters
identifier

The	name	of	the	namespace	(including	nested	names	specifier).
aliasname

An	alternate	external	name	for	the	namespace.

Description
Namespaces	allow	to	group	entities	like	objects	(predefined	data-types	and	UDTs	including	Union	and	Enum)	and	procedures	(including	their
declarations)	under	a	name.	This	way	the	global	scope	can	be	divided	in	"sub-scopes",	each	one	with	its	own	name.	

Whether	or	not	explicitly	declared	a	namespace	in	a	source	file,	the	compiler	adds	a	default	namespace.	This	unnamed	namespace,	called	the	global
namespace,	is	present	in	every	file.
Any	identifier	in	the	global	namespace	is	available	for	use	in	a	named	namespace	(even	global	symbols	with	the	same	name	as	keywords	may	be
declared	inside	a	namespace).	

Namespaces	implicitly	have	public	access	and	this	is	not	modifiable.
A	variable	declared	inside	a	namespace	is	always	implicitly	static	and	visible	throughout	the	entire	program	even	if	the	declaration	modifier	
not	specified	(static	and	shared	are	optional,	but	this	may	improve	code	readability).
Namespaces	do	not	have	any	effect	on	the	visibility	of	a	define.
It	is	possible	to	define	a	namespace	in	two	or	more	declarations.

Namespaces	are	commonly	used	in	libraries	where	you	don't	want	all	the	symbols	from	that	library	to	crowd	the	user's	space	(called	the	global
namespace).	
For	example,	if	you	used	the	"Forms"	library,	it	might	define	the	Point	type	for	describing	an	X	and	Y	coordinate,	and	you	might	also	define	it	for	another
purpose.	This	can	be	resolved	by	creating	the	namespace	Forms	for	the	library,	and	then	referring	to	its	Point	type	as	Forms.Point,	and	yours	as	just
Point.	

To	access	duplicated	symbols	defined	in	the	global	namespace,	use:	.SomeSymbol

Example

Namespace	Forms

				Type	Point	''	A	2D	point

								As	Integer	x

								As	Integer	y

				End	Type

				''	Since	we	are	inside	of	the	namespace,	Point	resolves	to	Forms.Point.

				Sub	AdjustPoint(ByRef	pt	As	Point,	ByVal	newx

								pt.x	=	newx

								pt.y	=	newy

				End	Sub

End	Namespace

Type	Point	''	A	3D	point

				As	Integer	x

				As	Integer	y

				As	Integer	z

End	Type

Sub	AdjustPoint(ByRef	pt	As	Point,	ByVal	newx	As	

				pt.x	=	newx

				pt.y	=	newy

				pt.z	=	newz

End	Sub

Dim	pt1	As	Point

AdjustPoint(pt1,	1,	1,	1)

Dim	pt2	As	Forms.Point

Forms.AdjustPoint(pt2,	1,	1)

Namespaces	are	GCC	C++	compatible,	the	following	code	aims	to	test	that.

(cpp)

//	mylib.cpp

//	To	compile:

//	 g++	-c	mylib.cpp	-o	mylib.o

//	 ar	rcs	libmylib.a	mylib.o

#include	

#include	

namespace	mylib

{

	 int	test()	

	 {

	 	 return	123;

	 }

}

''	test.bas

Extern	"c++"	Lib	"mylib"

				Namespace	mylib	Alias	"mylib"

								Declare	Function	test()	As	Integer

				End	Namespace

End	Extern

Print	mylib.test()

Dialect	Differences

Namespaces	are	not	supported	in	the	-lang	qb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Using	(Namespaces)

Next 	

Control	flow	statement	to	mark	the	end	of	a	For...Next	loop.

Syntax
Next	[identifier_list]

Description
Indicates	the	end	of	a	statement	block	associated	with	a	matching	For
statement.	

When	Next	is	used	on	its	own	without	an	identifier_list,	it	closes	the
most	recent	For	statement	block.

identifier_list	is	optional	and	may	be	one	or	more	variable	names
separated	by	commas.	This	form	of	the	Next	statement	is	retained	for
compatibility	with	QB.	identifier_list,	if	given,	must	match	the
identifiers	used	in	the	associated	For	statements	in	reverse	order,	from
inner	to	outer.

Example

For	i	As	Integer	=	1	To	10

				For	j	As	Integer	=	1	To	2

								'	...

				Next

Next

For	i	As	Integer	=	1	To	10

				For	j	As	Integer	=	1	To	2

								'	...

				Next	j

Next	i

For	i	As	Integer	=	1	To	10

For	j	As	Integer	=	1	To	2

				'	...

Next	j,i

Differences	from	QB

ByRef	arguments	cannot	be	used	as	counters.

See	also

For...Next

Operator	New 	

Operator	to	dynamically	allocate	memory	and	construct	data	of	a	specified	type.

Syntax
Declare	Operator	New	(size	As	UInteger)	As	Any	Ptr

Declare	Operator	new[]	(size	As	UInteger)	As	Any	Ptr

Usage
result	=	New	datatype

or

result	=	New	datatype	(initializers,	...)

or

result	=	New	datatype[count]

Parameters
size	
Number	of	bytes	to	allocate.
initializers

Initial	value(s)	for	the	variable.
datatype

Name	of	the	data	type	to	create.
count

Exact	number	of	elements	to	allocate.

Return	Value
A	pointer	of	type	datatype	to	the	newly	allocated	data.

Description
The	New	operator	dynamically	allocates	memory	and	constructs	a	specified	data	type.	For	simple	types,	like
integers,	an	initial	value	can	be	given.	For	types	without	constructors,	initial	values	can	be	specified	for	each	field.
Types	that	have	constructors	can	have	their	constructors	called	by	New
default	values	for	those	types	will	be	set.

New[]	is	the	array-version	of	the	New	operator	and	allocates	enough	memory	for	the	specified	number	of	objects.
The	default	constructor	for	the	type	will	be	used	to	set	the	initial	values	for	each	item.

Objects	created	with	New	must	be	freed	with	Delete.	Memory	allocated	with	
array-version	of	Delete.	You	cannot	mix	and	match	the	different	versions	of	the	operators.

Specifying	an	initial	value	of	Any,	as	in	New	datatype(Any)	will	allocate	memory	for	the	type,	but	not	initialize	the
data.	This	is	only	valid	on	data	types	that	do	not	have	constructors	(otherwise	for	data	types	with	constructors,
syntax	of	simple	memory	allocation	with	pointer	conversion,	like	Cptr(datatype	Ptr,	Allocate(Sizeof(datatype)))
be	substituted	to	the	invalid	use	of	New...Any).

Specifying	an	initial	value	of	Any,	as	in	New	datatype[count]{Any}	will	allocate	memory	for	the	array,	but	not	initialize
the	data.	This	is	only	valid	on	data	types	that	do	not	have	constructors	(otherwise	for	data	types	with	constructors,
syntax	of	simple	memory	allocation	with	pointer	conversion,	like	Cptr(datatype	Ptr,	Allocate(count	*
Sizeof(datatype))),	can	be	substituted	to	the	invalid	use	of	New...Any).

Example

Type	Rational

				As	Integer				numerator,	denominator

End	Type

Scope

				'	Create	and	initialize	a	"rational"	and	store	its	address.

				Dim	p	As	Rational	Ptr	=	New	Rational(3,	4)

				Print	p->numerator	&	"/"	&	p->denominator

				'	Destroy	the	rational	and	give	its	memory	back	to	the	system.	

				Delete	p

End	Scope

Scope

				'	Allocate	memory	for	100	integers	and	store	the	address	of	the	first	one.

				Dim	p	As	Integer	Ptr	=	New	Integer[100]

				'	Assign	some	values	to	the	integers	in	the	array.

				For	i	As	Integer	=	0	To	99

								p[i]	=	i

				Next

				'	Free	the	entire	integer	array.

				Delete[]	p

End	Scope

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Delete

Placement	New

Operator	Placement	New 	

Operator	to	construct	an	object	at	a	specified	memory	address.

Syntax
result	=	New(address)	datatype

or

result	=	New(address)	datatype	(initializers,	...)

or

result	=	New(address)	datatype[count]

Parameters
address	
the	location	in	memory	to	construct.	the	parenthesis	are	not	optional.
initializers

Initial	value(s)	for	the	variable.
datatype

name	of	the	data	type	to	construct.
count

Number	of	elements	to	construct.

Return	Value
A	pointer	of	type	datatype	to	the	newly	constructed	data.

Description
The	Placement	New	operator	constructs	a	specified	data	type	at	the	specified	memory	location.	

For	simple	types,	like	integers,	an	initial	value	can	be	given.	For	types	without	
field.	Types	that	have	constructors	can	have	their	constructors	called	by	
values	for	those	types	will	be	set.

Memory	is	not	allocated	when	using	the	Placement	New	operator.	Instead,	the	memory	at	the	specified	
It	is	incorrect	to	call	Delete	on	the	address.	The	proper	way	is	to	only	call	the	destructor	if	one	exists	(implicitly	or	explicitly),	with
syntax	as	for	a	member	method	by	using	member	access	operator.
See	examples	below	for	proper	placement	new	usage.

Specifying	an	initial	value	of	Any,	as	in	New(address)datatype(Any)	or	New

This	is	only	valid	on	data	types	that	do	not	have	constructors	(otherwise	for	data	types	with	constructors,	syntax	of	simple	pointer
conversion,	like	Cptr(datatype	Ptr,	address),	can	be	substituted	to	the	invalid	use	of	New...Any).

Example

''	"placement	new"	example

Type	Rational

				As	Integer				numerator,	denominator

				Declare	Constructor	(ByVal	n	As	Integer,	ByVal

				As	String	ratio	=	"/"

End	Type

Constructor	Rational	(ByVal	n	As	Integer,	ByVal	d

				This.numerator	=	n

				This.denominator	=	d

End	Constructor

Scope

			

				''	allocate	some	memory	to	construct	as	a	Rational

				Dim	As	Any	Ptr	ap	=	CAllocate(Len(Rational))

			

				''	make	the	placement	new	call

				Dim	As	Rational	Ptr	r	=	New	(ap)	Rational(3,	

			

				''	you	can	see,	the	addresses	are	the	same,	just	having	different	types	in	the	compiler

				Print	ap,	r

			

				''	confirm	all	is	okay

				Print	r->numerator	&	r->ratio	&	r->denominator

				

				''	delete	must	not	be	used	with	placement	new

				''	destroying	must	be	done	explicitly	if	a	destructor	exists	(implicitly	or	explicitly)

				''			(in	this	example,	the	var-string	member	induces	an	implicit	destructor)

				r->Destructor()

				

				''	we	explicitly	allocated,	so	we	explicitly	deallocate

				Deallocate(ap)

				

End	Scope

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Destructor

New

Resume	Next 	

Error	handling	statement	to	resume	execution	after	a	jump	to	an	error	handler

Syntax
Resume	Next

Description
Resume	Next	is	used	in	the	traditional	QB	error	handling	mechanism	within	an	error	handler	(called	by	
the	line	after	the	one	that	caused	the	error.	Usually	this	is	used	to	avoid	executing	the	same	line	and	causing	the	error	again.

Resume	Next	resets	the	Err	value	to	0

Example

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

Dim	As	Single	i,	j

On	Error	Goto	ErrHandler

i	=	0

j	=	5

j	=	1	/	i	'	this	line	causes	a	divide-by-zero	error;	execution	jumps	to	ErrHandler	label

Print	"ending..."

End	'	end	the	program	so	that	execution	does	not	fall	through	to	the	error	handler	again

ErrHandler:

Resume	Next	'	execution	jumps	to	'Print	"ending..."'	line,	but	j	is	now	in	an	undefined	state

Dialect	Differences

RESUME	NEXT	is	not	supported	in	the	-lang	fb	dialect.	Statements	can	be	used	in	its	function	form	to	return	an	error	code

If	Open("text"	For	Input	As	#1)	<>	0	Then

		Print	"Unable	to	open	file"

End	If

Differences	from	QB

Must	compile	with	-ex	option

See	also

Err

Resume

Error	Handling

Operator	Not	(Complement) 	

Returns	the	bitwise-not	(complement)	of	a	numeric	value

Syntax
Declare	Operator	Not	(ByRef	rhs	As	Byte)	As	Integer

Declare	Operator	Not	(ByRef	rhs	As	UByte)	As	Integer

Declare	Operator	Not	(ByRef	rhs	As	Single)	As	Integer

Declare	Operator	Not	(ByRef	rhs	As	Double)	As	Integer

Declare	Operator	Not	(ByRef	rhs	As	T)	As	T

Usage
result	=	Not	rhs

Parameters
rhs

The	right-hand	side	expression.
T

Any	numeric	or	boolean	type.

Return	Value
Returns	the	bitwise-complement	of	its	operand.

Description
This	operator	returns	the	bitwise-complement	of	its	operand,	a	logical	operation	that	results	in	a	value	with
bits	set	depending	on	the	bits	of	the	operand.
(for	a	boolean	type,	'Not	false'	returns	'true'	and	'Not	true'	returns	'false')

The	truth	table	below	demonstrates	all	combinations	of	a	boolean-complement	operation:

Rhs	Bit Result

0 1

1 0

This	operator	can	be	overloaded	for	user-defined	types.

Example

'	Using	the	NOT	operator	on	a	numeric	value

Dim	numeric_value	As	Byte

numeric_value	=	15	'00001111

'Result	=	-16	=					11110000

Print	Not	numeric_value

'	Using	the	NOT	operator	on	conditional	expressions

Dim	As	UByte	numeric_value1,	numeric_value2

numeric_value1	=	15

numeric_value2	=	25

If	Not	numeric_value1	=	10	Then	Print	"Numeric_Value1	is	not	equal	to	10"

If	Not	numeric_value2	=	25	Then	Print	"Numeric_Value2	is	not	equal	to	25"

'	This	will	output	"Numeric_Value1	is	not	equal	to	10"	because

'	the	first	IF	statement	is	false.

'	It	will	not	output	the	result	of	the	second	IF	statement	because	the

'	condition	is	true.	

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Operator	Truth	Tables

Now 	

Gets	the	current	system	time	as	a	Date	Serial	

Syntax
Declare	Function	Now	()	As	Double

Usage
#include	"vbcompat.bi"

result	=	Now

Return	Value
Returns	a	date	serial	containing	the	system's	date	and	time	at
execution	time.

Description
As	the	time	is	the	decimal	part	of	a	date	serial,	if	the	value	of	Now	is
saved	to	an	integer,	the	time	in	it	will	be	reset	to	00:00:00

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is
included.

Example

#include	"vbcompat.bi"

Dim	a	As	Double	=	Now()

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss")	

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

Object 	

Built-in	type	providing	run-time	type	information

Syntax
Type	object

As	fb_BaseVT	Ptr	vtable_ptr

Declare	Constructor()

End	Type

Usage
Type	typename	Extends	object

End	Type

Dim	variable	As	object

Description
Object	is	a	built-in	type	which	provides	run-time	type	information	for	all
types	derived	from	it	using	Extends,	allowing	them	to	be	used	with
Operator	Is,	and	to	support	Virtual	and	Abstract	methods.

Extending	the	built-in	Object	type	allows	to	add	an	extra	hidden	vtable
pointer	field	at	the	top	of	the	Type.	The	vtable	is	used	to	dispatch
Virtual	and	Abstract	methods	and	to	access	information	for	run-time
type	identification	used	by	Operator	Is.

Example
See	the	Operator	Is	page,	the	Virtual	and	Abstract	pages.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Object.

Differences	from	QB

New	to	FreeBASIC

See	also

Extends

Operator	Is

Virtual

Abstract

Oct 	

Converts	a	number	to	octal	representation

Syntax
Declare	Function	Oct	(ByVal	number	As	UByte)	As	String

Declare	Function	Oct	(ByVal	number	As	UShort)	As	String

Declare	Function	Oct	(ByVal	number	As	Ulong)	As	String

Declare	Function	Oct	(ByVal	number	As	ULongInt)	As	String

Declare	Function	Oct	(ByVal	number	As	Const	Any	Ptr)	As	String

Declare	Function	Oct	(ByVal	number	As	UByte,	ByVal	digits	As

Long)	As	String

Declare	Function	Oct	(ByVal	number	As	UShort,	ByVal	digits	As

Long)	As	String

Declare	Function	Oct	(ByVal	number	As	Ulong,	ByVal	digits	As

Long)	As	String

Declare	Function	Oct	(ByVal	number	As	ULongInt,	ByVal	digits	As

Long)	As	String

Declare	Function	Oct	(ByVal	number	As	Const	Any	Ptr,	ByVal

digits	As	Long)	As	String

Usage
result	=	Oct[$](number	[,	digits])

Parameters
number

A	number	or	expression	evaluating	to	a	number.	A	floating-point
number	will	be	converted	to	a	LongInt.
digits

Desired	number	of	digits	in	the	returned	string.

Return	Value
A	string	containing	the	unsigned	octal	representation	of	number.

Description
Returns	the	unsigned	octal	string	representation	of	number.	Octal	digits
range	from	0	to	7.

If	you	specify	digits	>	0,	the	result	string	will	be	exactly	that	length.	It
will	be	truncated	or	padded	with	zeros	on	the	left,	if	necessary.

The	length	of	the	returned	string	will	not	be	longer	than	the	maximum
number	of	digits	required	for	the	type	of	number	(3	characters	for	Byte,
6	for	Short,	11	for	Long,	and	22	for	LongInt)

If	you	want	to	do	the	opposite,	i.e.	convert	an	octal	string	back	into	a
number,	the	easiest	way	to	do	it	is	to	prepend	the	string	with	"&O;",
and	convert	it	to	an	integer	type,	using	a	function	like	CInt,	similarly	to
a	normal	numeric	string.	E.g.	CInt("&O77;")

Example

Print	Oct(54321)

Print	Oct(54321,	4)

Print	Oct(54321,	8)

will	produce	the	output:

152061

2061

00152061

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

In	QBASIC,	there	was	no	way	to	specify	the	number	of	digits
returned.

The	size	of	the	string	returned	was	limited	to	32	bits,	or	11	octal
digits.

See	also

Bin

Hex

ValInt

ValLng

OffsetOf 	

Returns	the	offset	of	a	field	within	a	type.

Syntax
#define	OffsetOf(typename,	fieldname)	CInt(@Cast(typename	Ptr,

0)->fieldname)	

Usage
result	=	OffsetOf(typename,	fieldname)

Parameters
typename

Name	of	the	type	as	defined	using	the	Type...End	Type	statements.
fieldname

Name	of	the	field	as	defined	within	the	type	(or	within	the	base	types
for	a	derived	type).

Description
For	a	non-derived	type,	OffsetOf	will	return	the	location	fieldname	as
offset	in	bytes	from	the	beginning	of	typename.

For	a	derived	type,	OffsetOf	will	return	the	location	fieldname	as	offset
in	bytes	from	the	beginning	of	its	highest	base	type.
Note:	if	a	member	of	the	base	type	is	overridden	by	a	new	member,	the
offset	of	the	old	member	cannot	be	accessed	from	the	derived	type.

Example

Type	MyType

		x	As	Single

		y	As	Single

		Union

				b	As	Byte

				i	As	Integer

		End	Union

End	Type

Print	"OffsetOf	x	=	";	OffsetOf(MyType,	x)

Print	"OffsetOf	y	=	";	OffsetOf(MyType,	y)

Print	"OffsetOf	b	=	";	OffsetOf(MyType,	b)

Print	"OffsetOf	i	=	";	OffsetOf(MyType,	i)

Output

OffsetOf	x	=		0

OffsetOf	y	=		4

OffsetOf	b	=		8

OffsetOf	i	=		8

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Offsetof.

Differences	from	QB

New	to	FreeBASIC

See	also

Type...End	Type

SizeOf

On	Error 	

Error	handling	statement	to	set	the	current	error	handler

Syntax
On	[Local]	Error	Goto	label

Parameters
label

Label	to	jump	to	when	an	error	occurs

Description
On	Error	triggers	a	jump	to	an	error	handler	when	an	error	occurs.	Such	errors	can	be	triggered	by
built-in	statements	such	as	Open,	or	when	the	Error	statement	is	used.

Note:	The	error	checking	for	built-in	statements	is	only	enabled	if	the	program	is	compiled	with	one
of	the	-e,	-ex	or	-exx	options.	On	Error	remains	working	with	Error	even	when	none	of	these
options	are	used.

On	Local	Error	can	be	used	to	specify	a	local	error	handler	inside	a	procedure.	This	allows	for
specialized	per-procedure	error	handling	and	will	override	the	global	error	handler,	if	any.	Without
Local,	the	handler	must	be	in	the	main	part	of	the	module.
Remark:	Presently,	the	Local	clause	is	ignored	by	the	compiler.

On	Error	Goto	0	deactivates	the	current	error	handler.

Example

''	Compile	with	QB	(-lang	qb)	dialect

'$lang:	"qb"

On	Error	Goto	errorhandler

Error	24	''	simulate	an	error

Print	"this	message	will	not	be	seen"

errorhandler:

Print	"Error	#";	Err;	"!"

End

''	compile	as:	fbc	onerror.bas	-ex

#lang	"fblite"

Function	hFileExists(filename	As	String)	As	Integer

				Dim	f	As	Integer

				hFileExists	=	0

				On	Local	Error	Goto	exitfunction

				f	=	FreeFile

				Open	filename	For	Input	As	#f

				

				Close	#f

				hFileExists	=	-1

exitfunction:

				Exit	Function

End	Function

				Print	"File	exists	(0=false):	";	hFileExists(

				On	Error	Goto	errhandler

				Error	1234

				Print	"back	from	resume	next"

				End	0

errhandler:

				Print	"error	number:	"	+	Str(Err)	+	"	at	line:	"

				Resume	Next

Differences	from	QB

QB	has	no	LOCAL	clause	and	requires	the	label	to	be	in	the	main	part	of	the	module.	

See	also

Error

Local

Err

Runtime	Error	Codes
Error	Handling

On...Gosub 	

Calls	a	label	based	on	an	expression

Syntax
On	expression	GoSub	label1[,	...]

Description
Branches	to	different	labels	depending	on	the	value	of	expression.	An
expression	value	of	1	will	branch	to	the	first	label,	a	value	of	2	to	the
second,	etc.	If	the	value	of	expression	is	zero	(0)	or	greater	than	the
number	of	items	in	the	list,	execution	continues	on	the	next	statement
following	the	On...Gosub.

This	statement	behaves	exactly	like	GoSub	and	execution	may	return	to
the	statement	following	the	On...Gosub	using	Return.

It	is	recommended	that	the	structured	Select	Case	conditional
statement	be	used	instead	of	On...Gosub.

Example

''	Compile	with	-lang	qb

'$lang:	"qb"

choice	=	3

On	choice	GoSub	labela,	labelb,	labelc

Print	"Good	bye."

End

labela:

Print	"choice	a"

Return

labelb:

Print	"choice	b"

Return

labelc:

Print	"choice	c"

Return

Dialect	Differences

Only	available	in	the	-lang	qb	and	-lang	fblite	dialects.
On	Gosub	support	is	disabled	by	default	in	the	-lang	fblite	unless
the	Option	Gosub	statement	is	used.

Differences	from	QB

FreeBASIC	does	not	generate	a	run-time	error	if	expression	is
negative	or	greater	than	255.

See	also

Select	Case

On...Goto

GoSub

Return

Option	Gosub

On...Goto 	

Jumps	to	a	label	based	on	an	expression.

Syntax
On	expression	Goto	label1[,	...]

Description
Branches	to	different	labels	depending	on	the	value	of	expression.	An
expression	value	of	1	will	branch	to	the	first	label,	a	value	of	2	to	the
second,	etc.	If	the	value	of	expression	is	zero	(0)	or	greater	than	the
number	of	items	in	the	list,	execution	continues	on	the	next	statement
following	the	On...Goto.

It	is	recommended	that	the	structured	Select	Case	conditional
statement	be	used	instead	of	On...Goto.

Example

Dim	choice	As	Integer

Input	"Enter	a	number:	",	choice

On	choice	Goto	labela,	labelb,	labelc

labela:

Print	"choice	a"

End

labelb:

Print	"choice	b"

End

labelc:

Print	"choice	c"

End

Differences	from	QB

FreeBASIC	does	not	generate	a	run-time	error	if	expression	is
negative	or	greater	than	255.

See	also

Select	Case

On...Gosub

Goto

Open 	

Opens	a	disk	file	for	reading	or	writing	using	file	operations

Syntax
Open	filename	For	Input	[encoding_type]	[lock_type]	As	[#]filenumber

Open	filename	For	Output	[encoding_type]	[lock_type]	As	[#]filenumber

Open	filename	For	Append	[encoding_type]	[lock_type]	As	[#]filenumber

Open	filename	For	Binary	[access_type]	[lock_type]	As	[#]filenumber

Open	filename	For	Random	[access_type]	[lock_type]	As	[#]filenumber

Usage
result	=	Open(filename[,]	For	{Input|Output|Append}[,]	As	filenumber

or
result	=	Open(filename[,]	For	Binary[,]	Access	{Read|Write}[,]	As	filenumber
or
result	=	Open(filename[,]	For	Random[,]	Access	{Read|Write}[,]	As	filenumber
or
Open	filename	For	{Input|Output|Append}	As	filenumber
or
Open	filename	For	Binary	Access	{Read|Write}	As	filenumber
or
Open	filename	For	Random	Access	{Read|Write}	As	filenumber	[Len	=	

Parameters
filename

A	string	value	of	the	name	of	the	disk	file	to	open.	Relative	file	paths	are	relative	to	the	current	directory	(see
CurDir).
encoding_type

The	encoding	to	be	used	when	reading	or	writing	text,	can	be	one	of:
Encoding	"ascii"	(ASCII	encoding	is	used,	default)
Encoding	"utf8"	(8-bit	Unicode	encoding	is	used)
Encoding	"utf16"	(16-bit	Unicode	encoding	is	used)
Encoding	"utf32"	(32-bit	Unicode	encoding	is	used)

access_type

The	type	of	access	requested	by	the	calling	process.
Access	[Read]	[Write]	(both	read	and	write	access	can	be	used,	which	is	the	default)

lock_type

Imposes	restrictions	on	disk	file	access	from	other	processes	(threads	or	programs),	can	be	either:
Shared	(the	file	can	be	freely	accessed	by	other	processes)
Lock	[Read]	[Write]	(both	read	and	write	access	can	be	denied	to	other	processes)

filenum

An	available	file	number	to	bind	to	the	disk	file,	which	can	be	found	with	
record_length

The	size,	in	bytes,	of	each	record	read	from	or	written	to	the	disk	file.	The	default	is	

Return	Value
In	the	first	usage,	Open	returns	zero	(0)	on	success	and	a	non-zero	error	code	otherwise.

Description
Opens	a	disk	file	for	reading	and/or	writing.	The	file	number	file_num	is	bound	to	the	file	on	disk,	for	use	in
subsequent	file	operations,	such	as	Input	#	and	Lock.	The	next	available	file	number	can	be	retrieved	with
FreeFile.

The	Input,	Output	and	Append	file	modes	open	disk	files	for	sequential	text	I/O,	useful	for	reading	or	writing	plain
text	files.
When	the	Input	mode	is	specified,	only	reading	file	operations	can	be	used,	like	
disk	file	does	not	exist	a	runtime	error	will	be	thrown.
The	Append	mode	specifies	that	only	writing	operations	can	be	used,	like	
will	take	place	at	the	end	of	the	disk	file	if	it	exists,	preserving	the	existing	data.
The	Output	mode	is	like	the	Append	mode,	except	that	if	the	file	exists	then	its	contents	are	deleted	and	its	length
reset	to	zero	before	writing.

The	Input,	Output	and	Append	file	modes	also	allow	selection	of	a	character	encoding	to	be	used	when	reading
from	or	writing	text	to	the	disk	file.	ASCII	or	a	Unicode	encoding	may	be	specified	(see	the	description	of	the
encoding_type	parameter	above).

The	Binary	and	Random	file	modes	open	disk	files	for	random-access	reading	or	writing	of	arbitrary	sized	binary
data.	The	Binary	file	mode	allows	reading	and	writing	of	simple	data	type	values,	like	
binary	read	or	write	operations,	like	Get	#.	LOC	and	Seek	are	among	the	procedures	used	for	reading	and	writing
to	arbitrary	locations	in	the	disk	file.	The	Random	file	mode	is	similar	to	Binary
always	use	a	constant	data	size	when	reading	or	writing.

By	default,	the	Binary	and	Random	file	modes	allow	both	reading	and	writing	operations	on	the	opened	disk	file,
but	this	can	be	changed	by	specifying	an	access	type	(see	the	description	for	the	
above).

For	any	file	mode,	access	to	the	opened	disk	file	can	be	restricted	or	granted	to	other	threads	or	programs	by
specifying	a	lock	type	(see	the	description	for	the	lock_type	parameter	above).	If	no	lock	type	is	specified,	other
threads	of	the	current	program	can	freely	open	the	disk	file	(Shared),	while	other	programs	cannot	(
Write).	Lock	and	Unlock	can	be	used	to	temporarily	restrict	access	to	parts	of	a	file.

The	error	code	returned	by	Open	can	be	checked	using	Err	in	the	next	line.	The	function	version	of	
directly	the	error	code	as	an	integer.

Example

'	Create	a	string	and	fill	it.

Dim	buffer	As	String,	f	As	Integer

buffer	=	"Hello	World	within	a	file."

'	Find	the	first	free	file	number.

f	=	FreeFile

'	Open	the	file	"file.ext"	for	binary	usage,	using	the	file	number	"f".

Open	"file.ext"	For	Binary	As	#f

If	Err>0	Then	Print	"Error	opening	the	file":End

'	Place	our	string	inside	the	file,	using	number	"f".

Put	#f,	,	buffer

'	Close	all	open	files.		

Close

'	End	the	program.	(Check	the	file	"file.ext"	upon	running	to	see	the	output.)

End

'OPEN	A	COM	PORT

Open	Com	"COM1:9600,N,8,1"	As	#1

If	Err>0	Then	Print	"The	port	could	not	be	opened."

'COM1,	9600	BAUD,	NO	PARITY	BIT,	EIGHT	DATA	BITS,	ONE	STOP	BIT

'function	version	of	OPEN

If	Open("file.ext"	For	Binary	Access	Read	As	#1)	=	

				Print	"Successfully	opened	file"

				''	...

				Close	#1

Else

				Print	"Error	opening	file"

End	If

Platform	Differences

Linux	requires	the	filename	case	matches	the	real	name	of	the	file.	Windows	and	DOS	are	case
insensitive.
Path	separators	in	Linux	are	forward	slashes	/.	Windows	uses	backward	slashes	
forward	slashes	/.	DOS	uses	backward	slashes	\.
On	Windows,	a	file	number	used	in	a	dynamic	link	library	is	not	the	same	as	an	identical	file	number
used	in	the	main	program.	File	numbers	can	not	be	passed	or	returned	and	then	used	between	a	DLL
and	an	executable.
If	you	try	to	open	a	directory	on	Linux,	the	Open	command	will	succeed.

Differences	from	QB

Using	MS-DOS	device	names	to	open	streams	or	hardware	devices	(
only	in	the	-lang	qb	dialect;	for	other	modes	FreeBASIC's	new	composite	keywords	must	be	used:	see

Open	Com,	Open	Cons,	Open	Err,	Open	Pipe,	Open	Lpt,	Open	Scrn.
Open	can	be	called	as	a	function	that	returns	an	error	code.

Dialect	Differences

The	-lang	qb	dialect	supports	the	old	GW-BASIC-style	syntax	OPEN	mode_string,	#filenum,	filename
[length]	with	mode_string	being	"I"	for	input,	"O"	for	output,	"A"
binary.	

See	also

Err	(and	a	list	of	error	codes)
Close

FreeFile

Open	Cons,	Open	Err,	Open	Pipe,	Open	Lpt,	Open	Com,	Open	Scrn

Open	Com 	

Opens	a	serial	port	for	input	and	output

Syntax
Declare	Function	Open	Com	(byref	options	As	String,	As	filenum

As	Long)	As	Long

Usage
result	=	Open	Com(options[,]	As[#]	filenum)

Parameters
options

A	String	containing	options	used	in	controlling	the	port.
filenum

The	file	number	to	bind	to	the	port.

Return	Value
Returns	zero	(0)	on	success	and	a	non-zero	error	code	otherwise.

Description
This	command	opens	a	serial	port	of	the	PC,	allowing	to	send	and
receive	data	by	using	the	normal	file	commands	as	Print	#,	Input	#,
Get	#,	...

The	main	parameter	is	a	String	that	describes,	at	the	very	least,	which
communications	port	to	open.	It	has	the	format:

"Comn:	[baudrate][,	[parity][,	[data_bits][,	[stop_bits

][,	[extended_options]]]]]"

where,
n

Com	port	to	open.	"1",	"2",	"3",	"4",	etc.	Some	platforms	will	support
more	serial	ports	depending	on	how	the	operating	system	is
configured.	Where	n	is	not	given,	"COM:"	will	map	to	"COM1:",	except	on

Linux	where	"COM:"	maps	to	"/dev/modem"
baudrate

"300"	(default),	"1200",	...,	etc.
parity

"N"	(none),	"E"	(even,	default),	"O"	(odd),	"S"	(space),	"M"	(mark),	"PE"
(QB-quirk:	checked,	even	parity)
data_bits

"5",	"6",	"7"	(default)	or	"8".
stop_bits

"1",	"1.5"	or	"2".	(default	value	depends	on	baud	rate	and	data	bits,
see	table	below)

Condition Default	number	of	stop	bits

baud	rate	<=	110	and	data	bits	=	5 1.5

baud	rate	<=	110	and	data	bits	>=	6 2

baud	rate	>	110 1

extended_options

Miscellaneous	options.	(See	table	below)

Option Action

'CSn' Set	the	CTS	duration	(in	ms)	(n>=0),	0	=	turn	off,	default	=	1000

'DSn' Set	the	DSR	duration	(in	ms)	(n>=0),	0	=	turn	off,	default	=	1000

'CDn' Set	the	Carrier	Detect	duration	(in	ms)	(n>=0),	0	=	turn	off

'OPn' Set	the	'Open	Timeout'	(in	ms)	(n>=0),	0	=	turn	off

'TBn' Set	the	'Transmit	Buffer'	size	(n>=0),	0	=	default,	depends	on	platform

'RBn' Set	the	'Receive	Buffer'	size	(n>=0),	0	=	default,	depends	on	platform

'RS' Suppress	RTS	detection

'LF' Communicate	in	ASCII	mode	(add	LF	to	every	CR)	-	Win32	doesn't	support	this
one

'ASC' same	as	'LF'

'BIN' The	opposite	of	LF	and	it'll	always	work

'PE' Enable	'Parity'	check

'DT' Keep	DTR	enabled	after	CLOSE

'FE' Discard	invalid	character	on	error

'ME' Ignore	all	errors

'IRn' IRQ	number	for	COM	(only	supported	(?)	on	DOS)

All	items	except	for	the	COM	port	are	optional.	The	order	of	baudrate,
parity,	data_bits,	stop_bits	is	fixed.	Any	skipped	fixed	item	(
baudrate,	etc...)	must	be	empty.

Example

Open	Com	"COM1:9600,N,,2"	As	1

Opens	COM1	with	9600	baud,	no	parity,	7	data	bits	and	2	stop	bits.

Open	Com	"COM1:115200"	As	1

Opens	COM1	with	115200	baud,	"even"	parity,	7	data	bits	and	1	stop
bits.	

Platform	Differences

On	the	Windows	platform	"COM:"	maps	to	"COM1:"
On	the	Linux	platform

"COM:"	maps	to	"/dev/modem"
"COM1:"	maps	to	"/dev/ttyS0"
"COM2:"	maps	to	"/dev/ttyS1",	etc	
"/dev/xyz:"	maps	to	"/dev/xyz",	etc

The	DOS	serial	driver	is	experimental	and	can	access	COM
ports	1	to	4	

It	uses	the	following	base	io	and	IRQ's	as	default:	
COM1	-	&h3f8;	-	IRQ4	
COM2	-	&h2f8;	-	IRQ3	
COM3	-	&h3e8;	-	IRQ4	
COM4	-	&h2e8;	-	IRQ3	
Since	fbc-0.18.4,	an	alternate	IRQ	can	be	specified	using	the	the	"IRn
protocol	option	where	n	is	3	through	7.
Currently	not	supported:	IRQ's	on	the	slave	PIC,	alternate	base	I/O

addresses,	Timeouts	and	most	errors	as	detected	in	QB,	hardware
flow	control,	FIFO's.
"COM:"	maps	to	"COM1:"

Dialect	Differences

In	the	-lang	qb	dialect	the	old	syntax	OPEN	"COMx:...	is
supported.	

Differences	from	QB

In	QB	the	syntax	was	OPEN	"COMx:[baudrate]	[,parity,
[data_bits,	[stop_bits,	[extended_options]]]]"	FOR

INPUT|OUTPUT|RANDOM	AS	[#]	n

In	QB,	only	"COM1:"	and	"COM2:"	are	supported.	In	FreeBASIC,
any	correctly	configured	serial	port	may	be	used.

See	also

Open

Open	Cons 	

Opens	the	console's	standard	input	(stdin)	or	output	(stdout)	streams	for
use	in	file	operations.

Syntax
Open	Cons	As	[#]filenumber

Open	Cons	For	Input	As	[#]filenumber

Open	Cons	For	Output	As	[#]filenumber

Usage
result	=	Open	Cons([For	{Input|Output}[,]]	As	filenumber)

(or	using	the	QB-like	syntax,)
Open	Cons	[For	{Input|Output}]	As	filenumber

Parameters
filenumber

An	available	file	number	to	bind	to	the	stdin	or	stdout	stream,	which	can
be	found	with	FreeFile.

Return	Value
In	the	first	usage,	Open	Cons	returns	zero	(0)	on	success	and	a	non-zero
error	code	otherwise.

Description
Open	Cons	opens	the	console's	stdin	or	stdout	streams	for	reading	or
writing.	A	file	number	is	bound	to	the	stream,	which	is	used	in
subsequent	file	operations,	such	as	Input	#.	An	available	file	number
can	be	retrieved	with	FreeFile.

The	Input	file	mode	opens	the	stdin	stream	for	reading	file	operations,
such	as	Line	Input	#,	while	the	Output	file	mode	opens	the	stdout
stream	for	writing	file	operations,	such	as	Print	#.	The	Output	file	mode
is	the	default	if	not	specified.

The	stdin	and	stdout	streams	are	the	ones	used	when	the	calling
process'	input	or	output	is	redirected	(piped)	by	OS	commands,	or	when
it	is	opened	with	Open	Pipe.

To	open	both	the	stdin	and	stdout	streams	for	file	operations,	a	process
must	use	multiple	file	numbers.

Runtime	errors:
Open	Cons	throws	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
filenumber	was	not	free	at	the	time.	use	FreeFile	to
ensure	that	filenumber	is	free.

Example

Dim	a	As	String

Open	Cons	For	Input	As	#1

Open	Cons	For	Output	As	#2

Print	#2,"Please	write	something	and	press	ENTER"

Line	Input	#1,a

Print	#2,	"You	wrote	:	";a

Close

Sleep

Differences	from	QB

In	QB	the	syntax	was	OPEN	"CON:"	FOR	INPUT|OUTPUT	AS	[#]
filenum

See	also

Open

Open	Scrn

Open	Err

FreeFile

Open	Err 	

Opens	both	the	standard	input	(stdin)	and	standard	error	(stderr)	streams	for
file	operations.

Syntax
Open	Err	[for	mode]	As	[#]filenum	As	Long

Usage
Open	Err	[for	mode]	as	[#]filenum

or

result	=	Open	Err([for	mode[,]]	as	[#]filenum)

Parameters
mode

Ignored.
filenum

An	unused	file	number.

Return	Value
Zero	is	returned	if	Open	Err	completed	successfully,	otherwise	a	non-zero
value	is	returned	to	indicate	failure.

Description
This	command	opens	stdin	to	read	from	and	stderr	to	write	to	the	console
allowing	read	and	write	operations	with	normal	file	commands.

stderr	is	an	output	stream	different	from	stdout	allowing	error	messages	to
be	redirected	separately	from	the	main	console	output.

The	normal	console	commands,	such	as	Color	and	Locate,	do	not	work	in
this	mode,	because	they	do	not	accept	a	file	number.

The	[For	Input|Output]	mode	is	allowed	for	compatibility,	but	is	ignored.

Runtime	errors:

Open	Err	throws	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
Filenumber	was	not	free	at	the	time.	use	FreeFile	to	ensure
that	filenumber	is	free.

Example

Dim	a	As	String

Open	Err	For	Input		As	#1

Print	#1,"Please	write	something	and	press	ENTER"

Line	Input	#1,	a	

Print	#1,	"You	wrote";	a

Close

Sleep

Differences	from	QB

New	to	FreeBASIC

See	also

Open

Open	Lpt 	

Open	a	printer	device

Syntax
Open	Lpt	["[LPT[x]:][Printer_Name][,TITLE=Doc_Title][,EMU=TTY]"]	[For	Input|Output]	

Usage
Open	Lpt	"LPT..."	As	[#]filenum

or

result	=	Open	Lpt("LPT..."[,]	As	[#]filenum)

Parameters
x

Specifies	a	port	number.	If	omitted,	output	is	sent	to	the	system	print	spooler.
Printer_Name

Name	of	printer	to	open.	This	parameter	is	ignored	on	DOS.
TITLE=Doc_Title

Title	of	the	print	job	as	seen	by	the	printer	spooler.	This	parameter	is	ignored	on	DOS.
EMU=TTY

Emulation	of	TTY	output	on	a	windows	GDI	printer,	using	driver	text	imaging.	
For	Input|Output

clause	is	allowed	for	compatibility,	but	it	is	ignored.
filenum

An	unused	file	number	to	assign	to	the	device.

Return	Value
0	is	returned	if	Open	Lpt	completed	successfully,	otherwise	a	non-zero	value	is	returned	to	indicate	failure.

Description
Open	Lpt	opens	a	connection	to	a	printer	device.	The	connection	is	treated	like	a	file,	so	data	may	be	written	to	the	printer	using	

Any	printer	attached	to	the	system	may	be	opened	with	Open	Lpt

Open	Lpt	"LPT:"	...	will	try	to	open	the	default	printer	on	Windows	and	Linux,	and	

LPrint	will	automatically	try	to	open	the	default	printer	on	Windows	and	Linux,	and	

Platform	specific	notes:

Windows
The	argument	EMU=TTY	assumes	printable	ASCII	or	Unicode	text,	and	applies	printer	driver	text	imaging	to	the	input.	
TAB,	FF,	etc.,	for	virtual	print-head	movement...even	when	the	printer	is	a	GDI	printer	and	therefore	doesn't	itself	understand	these	special	characters.	
is	omitted,	the	data	must	be	sent	in	the	printer's	language	(ESC/P,	HPGL,	PostScript,	etc...).	

Linux
A	printer	spooler	available	through	lp	must	be	installed	to	access	printers	by	name	or	a	default	printer.	
spoolers	may	work	that	are	invoked	through	lp.	Port	are	zero-based	on	Linux.	

The	data	must	be	sent	in	the	printer's	language	(ESC/P,	HPGL,	PostScript,	etc...).	Emulation	modes	aren't	supported	yet.

DOS
FreeBASIC	does	not	support	print	spoolers	on	DOS.	Printers	must	be	accessible	through	

The	data	must	be	sent	in	the	printer's	language	(ESC/P,	HPGL,	PostScript,	etc...).	

Example

'	Send	some	text	to	the	Windows	printer	on	LPT1:,	using	driver	text	imaging.

Open	Lpt	"LPT1:EMU=TTY"	For	Output		As	#1

Print	#1,	"Testing!"	

Close

'	Sends	contents	of	text	file	test.txt	to	Windows	printer	named	"ReceiptPrinter"

Dim	RptInput	As	String

Dim	PrintFileNum	As	Integer,	RptFileFileNum	As	Integer

RptFileFileNum	=	FreeFile

Open	"test.txt"	For	Input	As	#RptFileFileNum

PrintFileNum	=	FreeFile

Open	Lpt	"LPT:ReceiptPrinter,TITLE=ReceiptWinTitle,EMU=TTY"

				#PrintFilenum

While	(EOF(RptFileFileNum)	=	0)

								Line	Input	#RptFileFileNum,	RptInput

								Print	#PrintFileNum,	RptInput

Wend

Close	#PrintFileNum		'	Interestingly,	does	not	require	CHR(12).		But	if	pagination	is	desired,	CHR(12)	is	the	way.

Close	#RptFileFileNum

Print	"Press	any	key	to	end	program..."

GetKey

End

'This	simple	program	will	print	a	PostScript	file	to	a	PostScript	compatible	printer.

Dim	As	UByte	FFI,	PPO

Dim	As	String	temp

FFI	=	FreeFile()

Open	"sample.ps"	For	Input	Access	Read	As	#FFI

PPO	=	FreeFile()

Open	Lpt	"LPT1:"	For	Output	As	#PPO

While	(EOF(FFI)	=	0)

Line	Input	#FFI,	temp

Print	#PPO,	temp

Wend

Close	#FFI

Close	#PPO

Print	"Printing	Completed!"

Dialect	Differences

In	the	-lang	qb	dialect	the	old	syntax	is	supported	OPEN	"LPT:..."	.	This	syntax	used	in	the	other	dialects	will	open	a	regular	file.

See	also

Open

LPrint

Open	Pipe 	

Opens	an	external	process'	standard	input	(stdin)	or	output	(stdout)	stream	for	file	operations.

Syntax
Open	Pipe	shell_command	For	Input	As	[#]filenumber

Open	Pipe	shell_command	For	Output	As	[#]filenumber

Open	Pipe	shell_command	For	Binary	access_type	[#]filenumber

Usage
result	=	Open	Pipe(command[,]	For	{Input|Output}[,]	As	filenumber

or,
result	=	Open	Pipe(command[,]	For	Binary[,]	access_type[,]	As	filenumber
(or	in	the	QB-like	syntax,)
Open	Pipe	filename	For	{Input|Output}	As	filenumber
(or,)
Open	Pipe	filename	For	Binary	access_type	As	filenumber

Parameters
shell_command

The	external	process	to	execute	in	the	operating	system	command	shell.	Relative	file	paths	are	relative	to	the
current	directory	(see	CurDir).	When	opening	a	pipe	for	a	process	that	requires	double	quotes	in	either	its
executable	path,	or	its	arguments,	the	entire	pipe	string	should	be	nested	inside	of	double	quotes.
access_type

The	type	of	read	or	write	access	requested	by	the	calling	process.
Access	{Read|Write}	(either	the	stdin	or	stdout	stream	of	the	external	process	can	be	opened)

filenumber

An	available	file	number	to	bind	to	the	external	process'	stdin	or	stdout	stream.

Return	Value
In	the	first	usage,	Open	Pipe	returns	zero	(0)	on	success	and	a	non-zero	error	code	otherwise.

Description
Open	Pipe	executes	another	process	in	the	command	shell	and	opens	either	its	
reading	or	writing.	A	file	number	is	bound	to	the	stream,	which	is	used	in	subsequent	file	operations,	such	as

Input	#.	An	available	filenumber	can	be	retrieved	with	FreeFile.	If	the	external	process	does	not	exist,	a	runtime
error	is	thrown.

The	Input	and	Output	file	modes	open	the	external	process'	stdin	and	stdout
text	I/O,	useful	for	reading	or	writing	plain	text.	Characters,	words	or	whole	lines	can	then	be	read	or	written	using
text-mode	file	operations,	such	as	Line	Input	#	and	Print	#.

The	Binary	file	mode	opens	the	external	process'	stdin	or	stdout	streams	-	depending	on	the	
specified	(see	description	of	the	access_type	parameter	above)	-	for	random-access	reading	or	writing	of
arbitrarily	sized	and	interpreted	raw	data.	Simple	data	type	values,	like	Byte
memory	can	be	read	from	or	written	to	the	streams	with	binary-mode	file	operations	like	
Bidirectional	pipes	are	not	supported	by	FB	and	must	be	implemented	using	the	OS'	API	functions.

Runtime	errors:
Open	Pipe	throws	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
filenumber	was	not	free	at	the	time.	use	FreeFile	to	ensure	that	

Example

''	This	example	uses	Open	Pipe	to	run	a	shell	command	and	retrieve	its	output.	

#ifdef	__FB_UNIX__

Const	TEST_COMMAND	=	"ls	*"

#else

Const	TEST_COMMAND	=	"dir	*.*"

#endif

Open	Pipe	TEST_COMMAND	For	Input	As	#1

Dim	As	String	ln

Do	Until	EOF(1)

				Line	Input	#1,	ln

				Print	ln

Loop

Close	#1

Platform	Differences

The	Binary	file	mode	is	not	supported	on	all	platforms;	Open	Pipe
the	external	process'	stdin	or	stdout	streams	in	binary	mode.

Differences	from	QB

New	to	FreeBASIC

See	also

Shell

Open

Open	Cons

Open	Err

FreeFile

Open	Scrn 	

Opens	the	console	directly	for	input	and	output	as	a	file

Syntax
Open	Scrn	[for	mode]	As	[#]filenum	As	Long

Usage
Open	Scrn	[for	mode]	as	[#]filenum

or

result	=	Open	Scrn([for	mode[,]]	as	[#]filenum)

Parameters
mode

Either	Input	or	Output.	If	omitted,	Output	is	assumed.
filenum

An	unused	file	number.

Return	Value
Zero	(0)	is	returned	if	Open	Err	completed	successfully,	otherwise	a	non-
zero	value	is	returned	to	indicate	failure.

Description
This	command	opens	the	console	for	both	input	and	output	as	a	file,
allowing	to	read/write	from/to	it	with	normal	file	commands.

This	command	may	use	direct	access	to	the	console	for	speed	in	some
implementations,	so	it	should	not	be	used	when	the	input	/	output	is
required	to	be	redirected	or	piped	with	OS	commands.	

The	normal	console	commands,	such	as	Color	and	Locate,	do	not	work	in
this	mode,	because	they	do	not	accept	a	file	number.

The	[For	Input|Output]	clause	is	allowed	for	compatibility,	but	is	ignored.

filenum	is	an	unused	file	number.

An	unused	file	number	can	be	found	using	FreeFile.

Runtime	errors:
Open	Cons	throws	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
filenumber	was	not	free	at	the	time.	use	FreeFile	to	ensure
that	filenumber	is	free.

Example

Dim	a	As	String

Open	Scrn	For	Input		As	#1

Print	#1,"Please	write	something	and	press	ENTER"

Line	Input	#1,a

Print	#1,	"You	wrote";a

Close

Sleep

Differences	from	QB

QB	used	OPEN	"SCRN:"	...

See	also

Open

Open	Cons

Operator 	

Declares	or	defines	an	overloaded	operator.

Syntax
{	Type	|	Class	|	Union	|	Enum	}	typename

Declare	Operator	Cast	()	[ByRef]	As	datatype

Declare	Operator	@	()	[ByRef]	As	datatype	Ptr

Declare	Operator	assignment_op	([ByRef	|	ByVal]	rhs	As	datatype

Declare	Operator	[]	(index	As	datatype)	[ByRef]	As	datatype

Declare	Operator	New	(size	As	UInteger)	As	Any	Ptr

Declare	Operator	New[]	(size	As	UInteger)	As	Any	Ptr

Declare	Operator	Delete	(buf	As	Any	Ptr)

Declare	Operator	Delete[]	(buf	As	Any	Ptr)

End	{	Type	|	Class	|	Union	|	Enum	}

{	Type	|	Class	|	Union	}	typename

Declare	Operator	For	()

Declare	Operator	For	([ByRef	|	ByVal]	stp	As	typename)

Declare	Operator	Step	()

Declare	Operator	Step	([ByRef	|	ByVal]	stp	As	typename)

Declare	Operator	Next	([ByRef	|	ByVal]	cond	As	typename)	As	

Declare	Operator	Next	([ByRef	|	ByVal]	cond	As	typename,	[ByRef

End	{	Type	|	Class	|	Union	}

Declare	Operator	unary_op	([ByRef	|	ByVal]	rhs	As	datatype)	

Declare	Operator	binary_op	([ByRef	|	ByVal]	lhs	As	datatype,	[

Operator	typename.Cast	()	[ByRef]	As	datatype	[Export]

Operator	typename.@	()	[ByRef]	As	datatype	Ptr	[Export]

Operator	typename.assignment_op	([ByRef	|	ByVal]	rhs	As	datatype

Operator	[]	(index	As	datatype)	[ByRef]	As	datatype	[Export

Operator	unary_op	([ByRef	|	ByVal]	rhs	As	datatype)	As	datatype

Operator	binary_op	([ByRef	|	ByVal]	lhs	As	datatype,	[ByRef	|	

Operator	typename.New	(size	as	uinteger)	As	Any	Ptr	[Export]

Operator	typename.New[]	(size	As	UInteger)	As	Any	Ptr	[Export

Operator	typename.Delete	(buf	As	Any	Ptr)	[Export]

Operator	typename.Delete[]	(buf	As	Any	Ptr)	[Export]

Parameters
typename	
Name	of	the	Type,	Class,	Union,	or	Enum.
assignment_op	
let	+=	-=	*=	&=	/=	\=	mod=	shl=	shr=	and=	or=	xor=	imp=	eqv=	^=

unary_op

-	not	*	->	abs	sgn	fix	frac	int	exp	log	sin	asin	cos	acos	tan	atn	len

binary_op

+	-	*	&	/	\	mod	shl	shr	and	or	xor	imp	eqv	^	=	<>	<	>	<=	>=

Description
The	built	in	operators	like	=,	+,	and	cast	have	predefined	behaviors	when	used	in	expressions.	
to	do	something	other	than	predefined	operations	when	at	least	one	of	the	arguments	to	the	operator	is	a	
data	type.

Operators	are	just	functions.	The	operator	'+'	has	functionality	like	Function	Plus(A	as	DataType,	B	as	DataType)	as	DataType
See	Operator	Overloading	for	more	information.	Operators	can	be	overloaded	to	accept	different	data	types	as	parameters.	
Cast	Operator	is	the	only	operator	(or	function)	that	can	be	declared	multiple	times	when	only	the	return	type	differs	(for	not	explicit
usage,	the	compiler	may	decide	which	cast	overload	to	call	based	on	how	the	object	is	used).

Non-static	operator	members	are	declared	inside	the	Type	or	Class.	Global	operators	are	declared	outside.	
(procedure	bodies)	must	appear	outside.

Let,	Cast,	and	other	assignment	operators	must	be	declared	inside	the	
have	a	return	data	type	same	as	the	Type	or	Class	they	are	declared	in.

Unary	operators	must	be	declared	outside	the	Type,	Class,	or	Enum	and	have	a	return	data	type	explicitly	declared.	
can	be	overloaded	to	return	any	valid	data	type,	except	for	Operator	->	(Pointer	To	Member	Access)
Class	data	type.

Binary	operators	must	be	declared	outside	the	Type,	Class,	or	Enum	and	have	a	return	data	type	explicitly	declared.	
can	be	overloaded	with	valid	data	types,	except	for	relational	operators,	which	must	return	

Let	refers	to	the	assignment	operator,	as	in	LET	a=b.	The	Let	keyword	is	omitted	in	common	practice,	and	is	not	allowed	in	the	
fb	dialect.	However,	Let()	can	be	used	to	assign	the	fields	of	a	UDT	to	multiple	variables.

See	For,	Step,	and	Next	for	more	information	on	overloading	the	For..Next

New,	New[],	Delete,	and	Delete[]	operator	members	are	always	static,	even	if	not	explicitly	declared	(
but	allowed).

Example

''	operator1.bas

Type	Vector2D

		As	Single	x,	y

		''	Return	a	string	containing	the	vector	data.

		Declare	Operator	Cast()	As	String

		''	Multiply	the	vector	by	a	scalar.

		Declare	Operator	*=	(ByVal	rhs	As	Single)

End	Type

''	Allow	two	vectors	to	be	able	to	be	added	together.

Declare	Operator	+	(ByRef	lhs	As	Vector2D,	ByRef	

''	Return	the	modulus	(single)	of	the	vector	using	the	overloaded	operator	abs().

Declare	Operator	Abs	(ByRef	rhs	As	Vector2D)	As

Operator	Vector2D.cast	()	As	String

		Return	"("	+	Str(x)	+	",	"	+	Str(y)	+	")"

End	Operator

Operator	Vector2D.*=	(ByVal	rhs	As	Single)

		This.x	*=	rhs

		This.y	*=	rhs

End	Operator

Operator	+	(ByRef	lhs	As	Vector2D,	ByRef	rhs	As	Vector2D

		Return	Type<Vector2D>(lhs.x	+	rhs.x,	lhs.y	+	rhs.y

End	Operator

Operator	Abs	(ByRef	rhs	As	Vector2D)	As	Single

		Return	Sqr(rhs.x	*	rhs.x	+	rhs.y	*	rhs.y)

End	Operator

Dim	a	As	Vector2D	=	Type<Vector2D>(1.2,	3.4)

Dim	b	As	Vector2D	=	Type<Vector2D>(8.9,	6.7)

Dim	c	As	Vector2D	=	Type<Vector2D>(4.3,	5.6)

Print	"a	=	";	a,	"abs(a)	=";	Abs(a)

Print	"b	=	";	b,	"abs(b)	=";	Abs(b)

Print	"a	+	b	=	";	a	+	b,	"abs(a+b)	=";	Abs(a	+	b	

Print	"c	=	";	c,	"abs(c)	=";	Abs(c)

Print	"'c	*=	3'"

c	*=	3

Print	"c	=	";	c,	"abs(c)	=";	Abs(c)

Aligned	memory	allocator:
by	using	the	overloaded	member	operators	"New"	and	"Delete",	any	created	User	object	is	aligned	to	a	multiple	of
"ALIGN"	bytes	(256	bytes	in	this	example),
the	real	pointer	of	the	allocated	memory	is	saved	just	above	the	User	pointer,	in	the	padding	block.

''	operator2.bas

Const	ALIGN	=	256

Type	UDT

		Dim	As	Byte	a(0	To	10	*	1024	*	1024	-	1)	''	10	megabyte	fixed	array

		Declare	Operator	New	(ByVal	size	As	UInteger)	As

		Declare	Operator	Delete	(ByVal	buffer	As	Any	Ptr

		Declare	Constructor	()

		Declare	Destructor	()

End	Type

Operator	UDT.New	(ByVal	size	As	UInteger)	As	Any	Ptr

		Print	"		Overloaded	New	operator,	with	parameter	size	=	&h"

		Dim	pOrig	As	Any	Ptr	=	CAllocate(ALIGN-1	+	SizeOf

		Dim	pMin	As	Any	Ptr	=	pOrig	+	SizeOf(UDT	Ptr)	

		Dim	p	As	Any	Ptr	=	pMin	+	ALIGN-1	-	(CULng(pMin	

		Cast(Any	Ptr	Ptr,	p)[-1]	=	pOrig

		Operator	=	p

		Print	"		real	pointer	=	&h"	&	Hex(pOrig),	"return	pointer	=	&h"

End	Operator

Operator	UDT.Delete	(ByVal	buffer	As	Any	Ptr)

		Print	"		Overloaded	Delete	operator,	with	parameter	buffer	=	&h"

		Dim	pOrig	As	Any	Ptr	=	Cast(Any	Ptr	Ptr,	buffer)[-

		Deallocate(pOrig)

		Print	"		real	pointer	=	&h"	&	Hex(pOrig)

End	Operator

Constructor	UDT	()

		Print	"		Constructor,	@This	=	&h"	&	Hex(@This)

End	Constructor

Destructor	UDT	()

		Print	"		Destructor,	@This	=	&h"	&	Hex(@This)

End	Destructor

Print	"'Dim	As	UDT	Ptr	p	=	New	UDT'"

Dim	As	UDT	Ptr	p	=	New	UDT

Print	"		p	=	&h"	&	Hex(p)

Print	"'Delete	p'"

Delete	p

Output	example:

'Dim	As	UDT	Ptr	p	=	New	UDT'

		Overloaded	New	operator,	with	parameter	size	=	&hA00000;

		real	pointer	=	&h420020;			return	pointer	=	&h420100;

		Constructor,	@This	=	&h420100;

		p	=	&h420100;

'Delete	p'

		Destructor,	@This	=	&h420100;

		Overloaded	Delete	operator,	with	parameter	buffer	=	&h420100;

		real	pointer	=	&h420020;

Small	use	case	of	the	operator	"[]":	simplest	smart	pointers	for	byte	buffers.

''	operator3.bas

''	A	smart	pointer	is	an	object	which	behaves	like	a	pointer	but	does	more	than	a	pointer:

''	-	This	object	is	flexible	as	a	pointer	and	has	the	advantage	of	being	an	object,

''			like	constructor	and	destructor	called	automatically.

''	-	Therefore,	the	destructor	of	the	smart	pointer	will	be	automatically	called

''			when	this	object	goes	out	of	scope,	and	it	will	delete	the	user	pointer.

''	Example	of	simplest	smart	pointers	for	byte	buffers:

''	-	Constructor	and	destructor	allow	to	allocate,	deallocate,	and	resize	the	byte	buffer.

''	-	Pointer	index	operator	allows	to	access	buffer	elements.

''	-	Copy-constructor	and	let-operator	are	just	declared	in	private	section,

''			in	order	to	disallow	copy	construction	and	any	assignment.

Type	smartByteBuffer

		Public:

				Declare	Constructor	(ByVal	size	As	UInteger	=	

				Declare	Operator	[]	(ByVal	index	As	UInteger)	

				Declare	Destructor	()

		Private:

				Declare	Constructor	(ByRef	rhs	As	smartByteBuffer

				Declare	Operator	Let	(ByRef	rhs	As	smartByteBuffer

				Dim	As	Byte	Ptr	psbb

End	Type

Constructor	smartByteBuffer	(ByVal	size	As	UInteger

		This.destructor()

		If	size	>	0	Then

				This.psbb	=	New	Byte[size]

				Print	"Byte	buffer	allocated"

		End	If

End	Constructor

Operator	smartByteBuffer.[]	(ByVal	index	As	UInteger

		Return	This.psbb[index]

End	Operator

Destructor	smartByteBuffer	()

		If	This.psbb	>	0	Then

				Delete[]	This.psbb

				This.psbb	=	0

				Print	"Byte	buffer	deallocated"

		End	If

End	Destructor

Scope

		Dim	As	smartByteBuffer	sbb	=	smartByteBuffer(256

		For	I	As	Integer	=	0	To	255

				sbb[I]	=	I	-	128

		Next	I

		Print

		For	I	As	Integer	=	0	To	255

				Print	Using	"#####";	sbb[I];

		Next	I

		Print

End	Scope

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

See	also

Class

Enum

Type

Option() 	

Specifies	additional	attributes	and/or	characteristics	of	symbols.

Syntax
Option("literal-text")

Parameters
literal-text

The	literal	text	specifying	the	option.	See	description.

Description
Option()	allows	the	programmer	to	specify	additional	attributes	or	characteristics.
Enclosing	the	string	into	quotes	and	parentheses	is	required	in	the	syntax.
Unrecognized	options	are	ignored.

Option	can	also	be	used	as	a	statement	to	specify	other	compile	time	options.	
Compiler	Switches.

Individual	options	are	explained	below.

SSE
Option("SSE")	indicates	that	a	floating	point	value	(Single	or	Double)	returned	from	a
function	is	stored	in	the	xmm0	register.	Option("Sse")	is	ignored	unless	the	source	is
compiled	with	the	-fpu	SSE	command	line	option.	This	option	may	be	used
immediately	after	the	return	type	in	a	function	declaration	or	function	definition.	
option	is	an	optimization	only	and	not	required	to	compile	programs	using	the	
SSE	command	line	option.

Declare	Function	ValueInXmm0	()	As	Double	Option("sse"

FPU

Option("FPU")	indicates	that	a	floating	point	value	(Single	or	Double)	returned	from	a
function	is	stored	in	the	st(0)	register.	This	option	may	be	used	immediately	after	the
return	type	in	a	function	declaration	or	function	definition.

Declare	Function	ValueInStZero	()	As	Double	Option

Differences	from	QB

New	to	FreeBASIC

See	also

Compiler	Option:	-fpu
Compiler	Switches

Option	Base 	

Specifies	a	default	lower	bound	for	array	declarations

Syntax
Option	Base	base_subscript

Parameters
base_subscript

an	numeric	literal	value

Description
Option	Base	is	a	statement	that	sets	the	default	lower	bound	for	any	following	array
declarations.	This	default	remains	in	effect	for	the	rest	of	the	module	in	which	
used,	and	can	be	overridden	by	declaring	arrays	with	an	explicit	lower	bound,	or	with	another
Option	Base	statement.

Note:	initially,	the	default	base	is	0.

Example

''	Compile	with	the	"-lang	qb"	or	"-

lang	fblite"	compiler	switches

#lang	"fblite"

Dim	foo(10)	As	Integer						'	declares	an	array	with	indices	0-10

Option	Base	5

Dim	bar(15)	As	Integer						'	declares	an	array	with	indices	5-15

Dim	baz(0	To	4)	As	Integer		'	declares	an	array	with	indices	0-4

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.
In	-lang	fb,	Option	Base	is	not	allowed,	and	the	default	lower	bound	is	always	

Differences	from	QB

QBASIC	only	supported	values	of	0	or	1	for	base_subscript.
In	QBASIC	the	word	Base	was	a	reserved	keyword,	and	couldn't	be	used	as	a	variable
name.
Arrays	must	always	be	explicitly	created	in	FreeBASIC.	QBASIC	would	implicitly	create
an	array	from	base_subscript	to	10	if	one	was	used	in	code	without	being	predefined.

See	also

Dim

ReDim

LBound

Option	ByVal 	

Specifies	parameters	are	to	be	passed	by	value	by	default	in	procedure
declarations

Syntax
Option	ByVal

Description
Option	ByVal	is	a	statement	that	sets	the	default	passing	convention
for	procedure	parameters	to	by	value,	as	if	declared	with	ByVal.	This
default	remains	in	effect	for	the	rest	of	the	module	in	which	Option
ByVal	is	used,	and	can	be	overridden	by	specifying	ByRef	in	parameter
lists.

Example

''	compile	with	the	"-

lang	fblite"	compiler	switch

#lang	"fblite"

Sub	TestDefaultByref(a	As	Integer)

		''	change	the	value

		a	=	a	*	2

End	Sub

Option	ByVal

Sub	TestDefaultByval(a	As	Integer)

		a	=	a	*	2

End	Sub

Dim	a	As	Integer	=	1

Print	"a	=	";	a

TestDefaultByref(a)

Print	"After	TestDefaultByref	:	a	=	";	a

Print

Print	"a	=	";	a

TestDefaultByval(a)

Print	"After	TestDefaultByval	:	a	=	";	a

Print

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OPTION_BYVAL__

Option	Dynamic 	

Specifies	variable-length	array	declarations

Syntax
Option	Dynamic

Description
Option	Dynamic	is	a	statement	that	specifies	that	any	following	array
declarations	are	variable-length,	whether	they	are	declared	with	constant
subscript	ranges	or	not.	This	remains	in	effect	for	the	rest	of	the	module	in
which	Option	Dynamic	is	used,	and	can	be	overridden	with	Option	Static
equivalent	to	the	'$Dynamic	metacommand.

Example

''	Compile	with	"-lang	fblite"	compiler	switch

#lang	"fblite"

Dim	foo(99)	As	Integer						'	declares	a	fixed-

length	array

Option	Dynamic

Dim	bar(99)	As	Integer						'	declares	a	variable-

length	array

'	...

ReDim	bar(199)	As	Integer			'	resize	the	array

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OPTION_DYNAMIC__

'$Dynamic

'$Static

Option	Static

Dim

ReDim

Option	Escape 	

Specifies	that	string	literals	should	be	processed	for	C-like	escape	sequences	by	default

Syntax
Option	Escape

Description
Option	Escape	is	a	statement	that	causes	string	literals	to	be	processed	for	C-like	escape	sequences
by	default.	Normally,	escape	sequences	have	no	effect	in	string	literals	unless	the	string	is	prefixed
with	the	!	Operator	(Escaped	String	Literal).	This	default	remains	in	effect	for	the	rest	of	the
module	in	which	Option	Escape	is	used,	and	can	be	overridden	by	prefixing	string	literals	with	the	
Operator	(Non-Escaped	String	Literal).

See	Literals	in	the	Programmer's	Guide	to	learn	more	about	escape	sequences.

Example

''	Compile	with	the	"-lang	fblite"	compiler	switch

#lang	"fblite"

Option	Escape

Print	"Warning	\a\t	The	path	is:\r\n	c:\\Freebasic\\Examples"

Print	$"This	string	doesn't	have	expanded	escape	sequences:	\r\n\t"

#include	"crt.bi"

Dim	As	Integer	a	=	2,	b	=	3

printf("%d	*	%d	=	%d\r\n",	a,	b,	a	*	b)

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OPTION_ESCAPE__

Operator	!	(Escaped	String	Literal)
Operator	$	(Non-Escaped	String	Literal)
Literals

Option	Explicit 	

Forces	variables,	objects	and	arrays	to	be	declared	before	they	are	used

Syntax
Option	Explicit

Description
Option	Explicit	is	a	statement	that	forces	any	following	variable,	object	or	array	usage	to	be	preceded	by
a	declaration,	with,	for	example,	Dim	or	Static.	This	rule	remains	in	effect	for	the	rest	of	the	module	in
which	Option	Explicit	is	used,	and	cannot	be	overridden.

Example

''	Compile	with	the	"-lang	qb"	or	"-lang	fblite"	compiler	switches

#lang	"fblite"

Option	Explicit

Dim	a	As	Integer												'	'a'	must	be	declared..

a	=	1																							'	..or	this	statement	will	fail	to	compile.

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OPTION_EXPLICIT__

Option	Gosub 	

Enables	support	for	GoSub	and	On	Gosub.

Syntax
Option	Gosub

Description
Option	Gosub	enables	support	for	GoSub	and	Return	(from	gosub).

Because	Return	could	mean	return-from-gosub	or	return-from-
procedure,	Option	Gosub	and	Option	Nogosub	can	be	used	to	enable
and	disable	GoSub	support.	When	GoSub	support	is	disabled,	Return	is
then	recognized	as	return-from-procedure.

Example

''	Compile	with	the	"-

lang	fblite"	compiler	switch

#lang	"fblite"

''	turn	on	gosub	support

Option	GoSub

GoSub	there

backagain:

				Print	"backagain"

				End

there:

				Print	"there"

				Return

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

__Fb_Option_Gosub__

Option	Nogosub

GoSub

Return

Option	Nogosub 	

Disables	support	for	GoSub	and	On	Gosub.

Syntax
Option	Nogosub

Description
Option	Nogosub	disables	support	for	GoSub	and	Return	(from	gosub).

Because	Return	could	mean	return-from-gosub	or	return-from-
procedure,	Option	Gosub	and	Option	Nogosub	can	be	used	to	enable
and	disable	GoSub	support.	When	GoSub	support	is	disabled,	Return	is
then	recognized	as	return-from-procedure.

Example

''	Compile	with	the	"-lang	qb"	compiler	switch

'$lang:	"qb"

''	turn	off	gosub	support

Option	nogosub

Function	foo()	As	Integer

				Return	1234

End	Function

Print	foo

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

__Fb_Option_Gosub__

Option	Gosub

GoSub

Return

Option	NoKeyword 	

"Undefines"	a	reserved	keyword

Syntax
Option	NoKeyword	keyword

Parameters
keyword

the	keyword	to	undefine

Description
Option	NoKeyword	is	a	statement	that	undefines	a	FreeBASIC	reserved	keyword,	meaning	it	can	be	used	as
an	identifier	for	a	variable,	object,	procedure	or	any	other	symbol.	The	keyword	is	undefined	for	the	rest	of
the	module	in	which	Option	NoKeyword	is	used.

Example

''	Compile	with	the	"-lang	fblite"	compiler	switch

#lang	"fblite"

Option	NoKeyword	Int								'	remove	the	keyword	'int'	from	the	internal

																												'	symbol	table

Dim	Int	As	Integer										'	declare	a	variable	with	the	name	'int'

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

#undef

Option	Private 	

Specifies	internal	linkage	by	default	for	procedure	declarations

Syntax
Option	Private

Description
Option	Private	is	a	statement	that	gives	any	following	procedure
declarations	internal	linkage	by	default,	as	if	declared	with	Private.
This	default	remains	in	effect	for	the	rest	of	the	module	in	which	Option
Private	is	used,	and	can	be	overridden	by	declaring	procedures	with
Public.

Example

''	Compile	with	the	"-

lang	fblite"	compiler	switch

#lang	"fblite"

Sub	ProcWithExternalLinkage()

			'	...

End	Sub

Option	Private

Sub	ProcWithInternalLinkage()

			'	...

End	Sub

Public	Sub	AnotherProcWithExternalLinkage()

			'	...

End	Sub

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

__FB_OPTION_PRIVATE__

Private

Public

Option	Static 	

Reverts	to	default	array	declaration	behavior

Syntax
Option	Static

Description
Option	Static	is	a	statement	that	overrides	the	behavior	of	Option	Dynamic
arrays	declared	with	constant	subscript	ranges	are	fixed-length.	This	remains	in	effect
for	the	rest	of	the	module	in	which	Option	Static	is	used,	and	can	be	overridden	with
Option	Dynamic.	It	is	equivalent	to	the	'$Static	metacommand.

Example

''	Compile	with	the	"-lang	fblite"	compiler	switch

#lang	"fblite"

Option	Dynamic

Dim	foo(100)	As	Integer												'	declares	a	variable-

length	array

Option	Static

Dim	bar(100)	As	Integer												'	declares	a	fixed-

length	array

Dialect	Differences

Only	available	in	the	-lang	fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

'$Dynamic

'$Static

Dim

Erase

ReDim

Option	Dynamic

Static

Operator	Or	(Inclusive	Disjunction) 	

Returns	the	bitwise-or	(inclusive	disjunction)	of	two	numeric	values

Syntax
Declare	Operator	Or	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)	As	Ret

Usage
result	=	lhs	Or	rhs

Parameters
lhs

The	left-hand	side	expression.
T1

Any	numeric	or	boolean	type.
rhs

The	right-hand	side	expression.
T2

Any	numeric	or	boolean	type.
Ret

A	numeric	or	boolean	type	(varies	with	T1	and	T2).

Return	Value
Returns	the	bitwise-disjunction	of	the	two	operands.

Description
This	operator	returns	the	bitwise-disjunction	of	its	operands,	a	logical	operation	that	results	in	a	value	with	bits	set
depending	on	the	bits	of	the	operands	(for	conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value	becomes	0	or
-1	integer	value).

The	truth	table	below	demonstrates	all	combinations	of	a	boolean-disjunction	operation:

Lhs	Bit Rhs	Bit Result

0 0 0

1 0 1

0 1 1

1 1 1

No	short-circuiting	is	performed	-	both	expressions	are	always	evaluated.

The	return	type	depends	on	the	types	of	values	passed.	Byte,	UByte	and	floating-point	type	values	are	first	converted	to
Integer.	If	the	left	and	right-hand	side	types	differ	only	in	signedness,	then	the	return	type	is	the	same	as	the	left-hand	side
type	(T1),	otherwise,	the	larger	of	the	two	types	is	returned.	Only	if	the	left	and	right-hand	side	types	are	both	
return	type	is	also	Boolean.

This	operator	can	be	overloaded	for	user-defined	types.

Example

'	Using	the	OR	operator	on	two	numeric	values

Dim	As	UByte	numeric_value1,	numeric_value2

numeric_value1	=	15	'00001111

numeric_value2	=	30	'00011110

'Result	=		31		=					00011111							

Print	numeric_value1	Or	numeric_value2

Sleep

'	Using	the	OR	operator	on	two	conditional	expressions

Dim	As	UByte	numeric_value

numeric_value	=	10

If	numeric_value	=	5	Or	numeric_value	=	10	Then	Print

Sleep

'	This	will	output	"Numeric_Value	equals	5	or	10"	because

'	while	the	first	condition	of	the	first	IF	statement	is	false,	the	second	is	true

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

OrElse

Operator	Truth	Tables

Or 	

Parameter	to	the	Put	graphics	statement	which	uses	a	bit-wise	Or	as	the	blitting	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Parameters
Or

Required.

Description
The	Or	method	combines	each	source	pixel	with	the	corresponding	destination	pixel,
using	the	bit-wise	Or	function.	The	result	of	this	is	output	as	the	destination	pixel.
This	method	works	in	all	graphics	modes.	There	is	no	mask	color,	although	color
values	of	0	(RGBA(0,	0,	0,	0)	in	full-color	modes)	will	have	no	effect,	because	of	the
behavior	of	Or.

In	full-color	modes,	each	component	(red,	green,	blue	and	alpha)	is	kept	in	a	discrete
set	of	bits,	so	the	operation	can	be	made	to	only	affect	some	of	the	channels,	by
making	sure	the	all	the	values	of	the	other	channels	are	set	to	0.

Example

''open	a	graphics	window

ScreenRes	320,	200,	16

''create	3	sprites	containing	red,	green	and	blue	circles

Const	As	Integer	r	=	32

Dim	As	Any	Ptr	cr,	cg,	cb

cr	=	ImageCreate(r	*	2	+	1,	r	*	2	+	1,	RGBA(0,	0,	

cg	=	ImageCreate(r	*	2	+	1,	r	*	2	+	1,	RGBA(0,	0,	

cb	=	ImageCreate(r	*	2	+	1,	r	*	2	+	1,	RGBA(0,	0,	

Circle	cr,	(r,	r),	r,	RGB(255,	0,	0),	,	,	1,	f

Circle	cg,	(r,	r),	r,	RGB(0,	255,	0),	,	,	1,	f

Circle	cb,	(r,	r),	r,	RGB(0,	0,	255),	,	,	1,	f

''put	the	sprite	at	three	different	multipier

''levels,	overlapping	each	other	in	the	middle

Put	(146	-	r,	108	-	r),	cr,	Or

Put	(174	-	r,	108	-	r),	cg,	Or

Put	(160	-	r,		84	-	r),	cb,	Or

''free	the	memory	used	by	the	sprites

ImageDestroy	cr

ImageDestroy	cg

ImageDestroy	cb

''pause	the	program	before	closing

Sleep

Differences	from	QB

None

See	also

Or

Put	(Graphics)

Operator	Orelse	(Short	Circuit	Inclusive	Disjunction) 	

Returns	the	short	circuit-or	(Inclusive	Disjunction)	of	two	numeric	values

Syntax
Declare	Operator	OrElse	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)	As	

Usage
result	=	lhs	OrElse	rhs

Parameters
lhs

The	left-hand	side	expression.
T1

Any	numeric	or	boolean	type.
rhs

The	right-hand	side	expression.
T2

Any	numeric	or	boolean	type.
Ret

A	numeric	or	boolean	type	(varies	with	T1	and	T2).

Return	Value
Returns	the	short	circuit-or	(inclusive	disjunction)	of	the	two	operands.

Description
This	operator	evaluates	the	left	hand	side	expression.	If	the	result	is
nonzero,	then	-1	(true)	is	immediately	returned.	If	the	result	is	zero	then	the
right	hand	side	is	evaluated,	and	the	logical	result	from	that	is	returned,
returning	-1	(true)	for	a	nonzero	value	or	0	(false)	for	zero.
(for	conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value
becomes	0	or	-1	integer	value)

The	truth	table	below	demonstrates	all	combinations	of	a	short	circuit-or
operation,	the	'-'	denotes	that	the	operand	is	not	evaluated.

Lhs	Value Rhs	Value Result

0 0 0

0 nonzero -1

nonzero - -1

Short-circuiting	is	performed	-	only	expressions	needed	to	calculate	the
result	are	evaluated.

The	return	type	is	almost	always	an	Integer,	of	the	value	0	or	-1,	denoting
false	and	true	respectively.	Except	if	the	left	and	right-hand	side	types	are
both	Boolean,	then	the	return	type	is	also	Boolean.

This	operator	cannot	be	overloaded	for	user-defined	types.

Example

'	Using	the	ORELSE	operator	on	two	numeric	values

Dim	As	Integer	numeric_value1,	numeric_value2

numeric_value1	=	15

numeric_value2	=	30

'Result	=	-1

Print	numeric_value1	OrElse	numeric_value2

Sleep

Differences	from	QB

This	operator	was	not	available	in	QB.

See	also

AndAlso

Or

Operator	Truth	Tables

Out 	

Outputs	a	value	to	a	hardware	port.

Syntax
Declare	Function	Out	(ByVal	port	As	UShort	,	ByVal	data	As	UByte

Long

Usage
Out	port,value

Parameters
port

Hardware	port	to	write	to.
data

Data	value	to	write.

Description
This	function	sends	value	to	port	and	returns	immediately.

Example

'speakersound.bas	

Sub	Sound(ByVal	freq	As	UInteger,	dur	As	UInteger)

		Dim	t	As	Double,f1	As	Unsigned	Short

				f1	=	1193181	\	freq

				Out	&h61,Inp(&h61)	Or	3

				Out	&h43,&hb6

				Out	&h42,LoByte(f1)

				Out	&h42,HiByte(f1)

				t=Timer	

				While	((Timer	-	t)	*	1000)	<	dur

						Sleep	0,1

				Wend

				Out	&h61,Inp(&h61)	And	&hfc

End	Sub

Sound(523,	60)		'C5

Sound(587,	60)		'D5

Sound(659,	60)		'E5

Sound(698,	60)		'F5

Sound(784,	60)		'G5

Sound(880,	60)		'A5

Sound(988,	60)		'B5

Sound(1046,	60)	'C6	

Platform	Differences

In	the	Windows	and	Linux	versions	three	port	numbers	(&H3C7;,
&H3C8;,	&H3C9;)	are	hooked	by	the	graphics	library	when	a	graphics
mode	is	in	use	to	emulate	QB's	VGA	palette	handling.	This	use	
deprecated;	use	Palette	to	retrieve	and	set	palette	colors.

Using	true	port	access	in	the	Windows	version	requires	the	program	to
install	a	device	driver	for	the	present	session.	For	that	reason,
Windows	executables	using	hardware	port	access	should	be	run	with
administrator	permits	each	time	the	computer	is	restarted.	Further
runs	don't	require	admin	rights	as	they	just	use	the	already	installed
driver.	The	driver	is	only	3K	in	size	and	is	embedded	in	the
executable.

See	also

Inp

Wait

Palette

Output 	

Specifies	text	file	to	be	opened	for	output	mode

Syntax
Open	filename	for	Output	[Encoding	encoding_type]	[Lock	lock_type

[#]filenum	

Parameters
filename

file	name	to	open	for	output
encoding_type

indicates	encoding	type	for	the	file
lock_type

locking	to	be	used	while	the	file	is	open
filenum

unused	file	number	to	associate	with	the	open	file

Description
A	file	mode	used	with	Open	to	open	a	text	file	for	writing.

This	mode	is	used	to	write	text	with	Print	#,	or	comma	separated	values	with
Write	#.	

Text	files	can't	be	simultaneously	read	and	written	in	FreeBASIC,	so	if	both
functions	are	required	on	the	same	file,	it	must	be	opened	twice.

filename	must	be	a	string	expression	resulting	in	a	legal	file	name	in	the	target
OS,	without	wildcards.	The	file	will	be	sought	for	in	the	present	directory,
unless	the	filename	contains	a	path	.	If	the	file	does	not	exist,	it	is	created.	The
pointer	is	set	at	the	first	character	of	the	file.

Encoding_type	indicates	the	Unicode	Encoding	of	the	file,	so	characters	are
correctly	read.	If	omitted,	"ascii"	encoding	is	defaulted.	Only	little	endian
character	encodings	are	supported	at	the	moment.	

"utf8"

"utf16"

"utf32"	
"ascii"	(the	default)

Lock_type	indicates	the	way	the	file	is	locked	for	other	processes,	it	is	one	of:
Read	-	the	file	can	be	opened	simultaneously	by	other	processes,
but	not	for	reading
Write	-	the	file	can	be	opened	simultaneously	by	other
processes,	but	not	for	writing
Read	Write	-	the	file	cannot	be	opened	simultaneously	by	other
processes	(the	default)

filenum	Is	a	valid	FreeBASIC	file	number	(in	the	range	1..255)	not	being	used
for	any	other	file	presently	open.	The	file	number	identifies	the	file	for	the	rest
of	file	operations.	A	free	file	number	can	be	found	using	the	FreeFile	function.

Example

Dim	ff	As	UByte

Dim	randomvar	As	Integer

Dim	name_str	As	String

Dim	age_ubyte	As	UByte

ff	=	FreeFile

Input	"What	is	your	name?	",name_str

Input	"What	is	your	age?	",age_ubyte

Open	"testfile"	For	Output	As	#ff

Write	#ff,	Int(Rnd(0)*42),name_str,age_ubyte

Close	#ff

randomvar=0

name_str=""

age_ubyte=0

Open	"testfile"	For	Input	As	#ff

Input	#ff,	randomvar,name_str,age_ubyte

Close	#ff

Print	"Random	Number	was:	",	randomvar

Print	"Your	name	is:	"	+	name_str

Print	"Your	age	is:	"	+	Str(age_ubyte)

'File	outputted	by	this	sample	will	look	like	this,

'minus	the	comment	of	course:

'23,"Your	Name",19	

Differences	from	QB

See	also

Append

Input	(File	Mode)

Open

Overload 	

Specifies	that	a	procedure	name	can	be	overloaded

Syntax
Declare	[Static]	Sub	procedure_name	[cdecl|stdcall|pascal]	Overload

[([parameter_list])]	[Constructor	[priority]]	[Static]	[Export]

Declare	[Static]	Function	procedure_name	[cdecl|stdcall|pascal]	

"external_name"]	[([parameter_list])]	As	return_type	[Static]	[Export

[Public|Private]	Sub	procedure_name	[cdecl|stdcall|pascal]	Overload

[([parameter_list])]	[Constructor	[priority]]	[Static]	[Export]

..procedure	body..

End	Sub

[Public|Private]	Function	procedure_name	[cdecl|stdcall|pascal]	

"external_name"]	[([parameter_list])]	As	return_type	[Static]	[Export

..procedure	body..

End	Function

Description
In	procedure	declarations,	Overload	allows	procedure	names	to	be	overloaded,	that	is,	other
procedures	can	then	be	declared	with	the	same	name	if	their	parameter	lists	are	unique.	Two
parameter	lists	are	unique	if	they	contain	a	different	number	of	parameters,	or	have	parameters	of
different	types.	Note	that	this	means	that	two	or	more	procedures	cannot	be	declared	with	the	same
name	if	they	differ	in	return	type	alone.

Once	a	procedure	name	has	been	declared	overloaded,	further	declarations	using	the	name	need	not
specify	Overload,	but	it	is	allowed.

Overload	is	not	necessary	in	member	procedure	declarations,	as	they	are	always	implicitly
overloaded.

When	calling	an	overloaded	procedure,	the	compiler	determines	the	most	appropriate	definition	to	use
among	a	set	of	compatible	candidates,	by	comparing	the	argument	types	used	to	call	the	procedure
with	the	parameter	types	specified	in	the	definitions.	If	no	match	or	an	ambiguous	match	is	found,	the
compiler	generates	an	error	at	compile	time.

Example

Declare	Function	SUM	Overload	(A	As	Integer,B	As	Integer

Declare	Function	SUM	Overload	(A	As	Single,B	As	Single

Function	SUM		(A	As	Integer,B	As	Integer)	As	Integer

			Function=A+B

End	Function			

Function	SUM		(A	As	Single,B	As	Single)	As	Single

			Function=A+B

End	Function			

Dim	As	Integer	A,B

Dim	As	Single	A1,B1

A=2

B=3

A1=2.

b1=3.

Print	SUM(A,B)

Print	SUM	(A1,B1)

Sleep

Differences	from	QB

New	to	FreeBASIC

See	also

Declare

Sub,	Function

Override 	

Method	attribute;	specifies	that	a	method	must	override	a	virtual

Syntax
Type	typename	Extends	basename

...

Declare	Sub|Function|Operator|Property|Destructor	...	(

[parameterlist])	[As	datatype]	Override

...

End	Type

Description
In	method	declarations,	Override	can	be	used	to	indicate	that	this
method	is	expected	to	override	a	Virtual	or	Abstract	method	from	the
base	class.	Then	the	compiler	will	show	an	error	if	the	method	does	not
override	anything	(only	a	non-static	method	can	override	a	virtual	or
abstract	method).

Use	of	Override	is	not	mandatory	to	override	a	virtual	or	abstract
method,	it	is	highly	recommended,	as	it	will	help	prevent	inadvertent
errors	(name/signature	not	matching).

Override	can	only	be	specified	on	the	method	declaration	in	the	UDT
block,	but	not	on	the	method	body,	because	it	is	just	a	compile-time
check	in	the	context	of	the	inheritance	hierarchy,	and	does	not	affect	the
method	in	any	way.

Override	is	only	recognized	as	a	keyword	at	the	end	of	member
procedure	declarations.	It	can	still	be	used	as	identifier	elsewhere.

Example

Type	A	Extends	Object

				Declare	Virtual	Sub	f1()

				Declare	Virtual	Function	f2()	As	Integer

End	Type

Type	B	Extends	A

				Declare	Sub	f1()	Override

				Declare	Function	f2()	As	Integer	Override

End	Type

Sub	A.f1()

End	Sub

Function	A.f2()	As	Integer

				Function	=	0

End	Function

Sub	B.f1()

End	Sub

Function	B.f2()	As	Integer

				Function	=	0

End	Function

Differences	from	QB

New	to	FreeBASIC

See	also

Virtual,	Abstract

Paint 	

Fills	an	area	delimited	by	a	border	of	a	specified	color

Syntax
Paint	[target,]	[STEP]	(x,	y)[,	[paint][,	[border_color]]]

Parameters
target

specifies	buffer	to	draw	on.	
STEP

indicates	that	coordinates	are	relative
(x,	y)

coordinates	of	the	pixel	on	which	to	start	the	flood	fill	(paint)
paint

the	color	attribute	or	fill	pattern
a	numeric	value	indicates	a	color,	while	a	string	indicates	a	fill	pattern
border_color

boundary	color	for	the	fill

Description
Graphics	command	to	fill	an	area	delimited	by	a	border	of	specified	color.	Also	known	as	'flood-fill'	or	'paint	bucket'.

Paint	can	operate	on	the	current	work	page	as	set	by	the	ScreenSet	statement	or	on	the	target	

Filling	starts	at	specified	(x,y)	coordinates;	if	STEP	is	specified,	these	are	relative	to	the	last	graphics	cursor	position.
Coordinates	are	also	affected	by	custom	coordinates	system	set	up	by	
clipping	set	by	View	also	applies.

If	the	paint	argument	is	a	number,	it	is	assumed	a	color	in	the	same	format	used	by	the	
is	flood-filled	using	that	color.	If	paint	is	a	String,	the	region	will	be	filled	using	a	pattern;	the	pattern	is	always	8*8	pixels,
and	the	passed	string	must	hold	pixels	data	in	a	format	dependent	on	the	current	color	depth.	The	string	holds	pattern
pixels	row	by	row,	and	its	size	should	be	as	follows:

For	color	depths	1,	2,	4	and	8:
size	=	8	*	8	=	64

For	color	depths	15	and	16:
size	=	(8	*	8)	*	2	=	128

For	color	depths	24	and	32:
size	=	(8	*	8)	*	4	=	256

If	the	passed	string	is	smaller,	missing	pixels	will	be	0.	If	the	paint	argument	is	omitted,	normal	filling	is	performed	using
the	current	foreground	color	set	by	Color.	Flood-filling	continues	until	pixels	of	the	specified	border	color	are	found;	if
border_color	is	omitted,	the	current	background	color	is	assumed.

Example

'	draws	a	white	circle	painted	blue	inside

Screen	13

Circle	(160,	100),	30,	15

Paint	(160,	100),	1,	15

Sleep

'	draws	a	circle	and	fills	it	with	a	checkered	pattern

''	choose	the	bit	depth	for	the	Screen

''	try	setting	this	to	other	values:	8,	16	or	32

Const	bit_depth	=	8

''	function	for	returning	a	pixel	color,	represented	as	a	string

''	returns	a	the	string	in	the	appropriate	format	for	the	current	bit	depth

Function	paint_pixel(ByVal	c	As	UInteger,	ByVal	bit_depth_

				

				If	bit_depth_	<=	8	Then	''	8-bit:

								Function	=		Chr(CUByte(c))

								

				ElseIf	bit_depth_	<=	16	Then	''	16-bit:

								Function	=	MKShort(c	Shr	3	And	&h1f	Or	_

																												c	Shr	5	And	&h7e0	Or	_

																												c	Shr	8	And	&hf800)

								

				ElseIf	bit_depth_	<=	32	Then	''	32-bit:

								Function	=	MKL(c)

								

				End	If

				

End	Function

''	open	a	graphics	window	at	the	chosen	bit	depth

ScreenRes	320,	200,	bit_depth

''	declare	variables	for	holding	colors

Dim	As	UInteger	c,	c1,	c2,	cb

''	declare	string	variable	for	holding	the	pattern	used	in	Paint

Dim	As	String	paint_pattern	=	""

''	set	colors

If	bit_depth	<=	8	Then

				c1	=	7		''pattern	color	1

				c2	=	8		''pattern	color	2

				cb	=	15	''border	color

Else

				c1	=	RGB(192,	192,	192)	''	pattern	color	1

				c2	=	RGB(128,	128,	128)	''	pattern	color	2

				cb	=	RGB(255,	255,	255)	''	border	color

End	If

''	make	the	pattern	to	be	used	in	Paint

For	y	As	UInteger	=	0	To	7

				For	x	As	UInteger	=	0	To	7

								

								''	choose	the	color	of	the	pixel	(c)

								If	(x	\	4	+	y	\	4)	Mod	2	>	0	Then

												c	=	c1

								Else

												c	=	c2

								End	If

								

								''	add	the	pixel	to	the	pattern

								paint_pattern	=	paint_pattern	+	paint_pixel

								

								''	the	following	line	can	be	used	if	you	want	to	draw	the	

								''	pattern	tile	in	the	top	left	hand	corner	of	the	screen:

								

								'	pset	(x,	y),	c

								

				Next	x

Next	y

''	draw	a	circle	with	the	border	color

Circle	(160,	100),	50,	cb,	,	,	1.0

''	paint	the	circle	region	with	paint_pattern,	stopping	at	the	border	color

Paint	(160,	100),	paint_pattern,	cb

''	pause	before	ending	the	program

Sleep

Differences	from	QB

target	is	new	to	FreeBASIC
In	QB,	the	fill	pattern	was	always	8-bits	wide,	and	the	height	was	the	length	of	the	string	(up	to	64).	In	FreeBASIC,
the	fill	pattern	is	8	pixels	wide,	independent	of	the	color	depth,	and	the	height	is	always	8
The	background	color	parameter	supported	by	QB	is	not	supported	by	the	FreeBASIC	version

See	also

Screen

Palette 	

Customizes	colors	in	modes	with	paletted	colors

Syntax
Palette	[Get]	[index,	color]

Palette	[Get]	[index,	r,	g,	b]

Palette	[Get]	Using	arrayname(idx)

Parameters
Get

indicates	getting	palette	information	rather	than	setting	palette	information
index

palette	index
color

color	attribute
r

red	color	component
g

green	color	component
b

blue	color	component
Using

indicates	using	array	of	color	values
arrayname(idx)

array	and	index	to	get/set	color	attributes

Description
The	Palette	statement	is	used	to	retrieve	or	customize	the	current	palette
for	graphics	modes	with	a	color	depth	of	up	to	8bpp;	using	Palette	while	in
a	mode	with	a	higher	color	depth	will	have	no	effect.	Calling	Palette	with	no
argument	restores	the	default	palette	for	current	graphics	mode,	as	set	by
the	Screen	(Graphics)	statement.
The	GfxLib	sets	a	default	palette	when	a	Screen	mode	is	initialized.

First	form
If	you	specify	index	and	color,	these	are	dependent	on	the	current	mode:

Screen	mode index	range color	range

1 0-3 0-15

2 0-1 0-15

7,8 0-15 0-15

9 0-15 0-63

11 0-1 see	below

12 0-15 see	below

13	to	21 0-255 see	below

In	screen	modes	1,	2,	7,	8	and	9	you	can	assign	to	each	color	index	one	of
the	colors	in	the	available	range.	In	other	screen	modes,	the	color	must	be
specified	in	the	form	&h;BBGGRR,	where	BB,	GG	and	RR	are	the	blue,	green	and
red	components	ranging	&h0;-&h3F;	in	hexadecimal	(0-63	in	decimal).	If	you
don't	like	hexadecimal	form,	you	can	use	the	following	formula	to	compute
the	integer	value	to	pass	to	this	parameter:
color	=	red	Or	(green	Shl	8)	Or	(blue	Shl	16)

Where	red,	green	and	blue	must	range	0-63.	Please	note	that	color	values
accepted	by	Palette	are	not	the	in	the	same	form	as	returned	by	the	RGB
macro	(the	red	and	blue	fields	are	inverted,	and	the	range	is	different);	this
is	for	backward	compatibility	with	QB.

Second	form
In	the	second	form,	you	specify	the	red,	green	and	blue	components	for	a
palette	entry	directly,	by	calling	Palette	with	4	parameters.	In	this	case	
and	b	must	be	in	the	range	0-255.
Third	form
Calling	Palette	Using	allows	to	set	a	list	of	color	values	all	at	once;	you
should	pass	an	array	holding	enough	elements	as	the	color	indices
available	for	your	current	graphics	mode	color	depth	(2	for	1bpp,	4	for	2bpp,
16	for	4bpp	or	256	for	8bpp).	The	array	elements	must	be	integer	color
values	in	the	form	described	above.	The	colors	stored	into	arrayname
starting	with	given	idx	index	are	then	assigned	to	each	palette	index,
starting	with	index	0.
Form	1	and	3	are	for	backward	compatibility	with	QB;	form	2	is	meant	to
ease	palette	handling.	Any	change	to	the	palette	is	immediately	visible	on
screen.

If	the	Get	option	is	specified,	Palette	retrieves	instead	of	setting	color	values
for	the	current	palette.	The	parameters	have	the	same	meaning	as	specified

for	the	form	being	used,	but	in	this	case	color,	r,	g	and	b	must	be	variables
passed	by	reference	that	will	hold	the	color	RGB	values	on	function	exit.

Example

'	Setting	a	single	color,	form	1.

Screen	15

Locate	1,1:	Color	15

Print	"Press	any	key	to	change	my	color!"

Sleep

'	Now	change	color	15	hues	to	bright	red

Palette	15,	&h00003F

Sleep

'	Getting	a	single	color,	form	2.

Dim	As	Integer	r,	g,	b

Screen	13

Palette	Get	32,	r,	g,	b

Print	"Color	32	hues:"

Print	Using	"Red:###	Green:###	Blue:###";	r;	g;	b

Sleep

'	Getting	whole	palette,	form	3.

Dim	pal(0	To	255)	As	Integer

Screen	13

Palette	Get	Using	pal

For	i	As	Integer	=	0	To	15

				Print	Using	"Color	##	=	&";	i;	Hex(pal(i),	6)

Next	i

Sleep

Differences	from	QB

QBasic	did	not	support	PALETTE	GET	to	retrieve	a	palette.
QBasic	did	not	allow	passing	individual	red/green/blue	values.

See	also

Screen	(Graphics)

Color

Using

Internal	Pixel	Formats

pascal 	

Specifies	a	Pascal-style	calling	convention	in	a	procedure	declaration

Syntax
Sub	name	pascal	[Overload]	[Alias	"alias"]	(parameters)

Function	name	pascal	[Overload]	[Alias	"alias"]	(parameters)	As

Description
In	procedure	declarations,	pascal	specifies	that	a	procedure	will	use	the	
calling	convention,	any	parameters	are	to	be	passed	(pushed	onto	the	stack)	in	the	same	order	in	which	they	are
listed,	that	is,	from	left	to	right.	The	procedures	need	not	preserve	the	
up	the	stack	(pop	any	parameters)	before	it	returns.

pascal	is	not	allowed	to	be	used	with	variadic	procedure	declarations	(those	with	the	last	parameter	listed	as
"...").

pascal	is	the	default	calling	convention	for	procedures	in	Microsoft	QuickBASIC,	and	is	the	standard	convention
used	in	the	Windows	3.1	API.

Example

Declare	Function	MyFunc	pascal	Alias	"MyFunc"	(MyParm

Differences	from	QB

New	to	FreeBASIC

See	also

cdecl,	stdcall
Declare

Sub,	Function

PCopy 	

Copies	one	graphical	or	text	page	onto	another

Syntax
Declare	Function	PCopy	(ByVal	source	As	Long	=	-1,	ByVal	destination

Usage
PCopy	[source]	[,	destination]

Parameters
source

page	to	copy	from
destination

page	to	copy	to

Description
Copies	one	graphical	or	text	video	page	to	another.	Useful	for	drawing	all	graphics	on	one	invisible	page	and	copying	it
to	the	active	visible	page	-	creating	smooth	graphics	and	animation.	Known	as	'double	buffering'	or	'page	flipping'.

source	and	destination	refer	to	page	numbers.	The	'source'	page	is	copied	over	the	'destination'	page	when	pcopy	is
called.

If	the	source	argument	is	omitted,	the	current	working	page	is	assumed.	
visible	page	is	assumed.

PCopy	is	inactive	if	the	destination	page	is	locked.

Example

'Sets	up	the	screen	to	be	320x200	in	8-bit	color	with	2	video	pages.

ScreenRes	320,	200,	8,	2

'Sets	the	working	page	to	1	and	the	displayed	page	to	0

ScreenSet	1,	0

'Draws	a	circle	moving	across	the	top	of	the	screen

For	x	As	Integer	=	50	To	269

				Cls																				'Clears	the	screen	so	we	can	start	fresh

				Circle	(x,	50),	50,	14	'Draws	a	yellow	circle	with	a	50	pixel	radius	on	page	1

				PCopy	1,	0													'Copies	our	image	from	page	1	to	page	0

				Sleep	25															'Waits	for	25	milliseconds.

Next	x

'Wait	for	a	keypress	before	the	screen	closes

Sleep

''	Console	mode	example:

''	Set	the	working	page	number	to	0,	and	the	visible	page	number	to	1

#if	__FB_LANG__	=	"QB"

Screen	,,	0,	1

#else

Screen	,	0,	1

#endif

Dim	As	Integer	i,	frames,	fps

Dim	As	Double	t

t	=	Timer

Do

				''	Fill	working	page	with	a	certain	color	and	character

				Cls

				Locate	1,	1

				Color	(i	And	15),	0

				Print	String$(80	*	25,	Hex$(i,	1));

				i	+=	1

				''	Show	frames	per	second

				Color	15,	0

				Locate	1,	1

				Print	"fps:	"	&	fps,

				If	Int(t)	<>	Int(Timer)	Then

								t	=	Timer

								fps	=	frames

								frames	=	0

				End	If

				frames	+=	1

				''	Copy	working	page	to	visible	page

				PCopy

				''	Sleep	50ms	per	frame	to	free	up	cpu	time

				Sleep	50,	1

				''	Run	loop	until	the	user	presses	a	key

Loop	Until	Len(Inkey$)

Platform	Differences

Maximum	number	of	text	pages	in	Windows	is	4.
Maximum	number	of	text	pages	in	DOS	is	8.
Maximum	number	of	text	pages	in	all	other	targets	is	1.
Maximum	number	of	graphics	pages	depends	on	what	was	specified	when	the	
called.

Differences	from	QB

None

See	also

ScreenCopy

Flip

Screen

Peek 	

Gets	the	value	of	an	arbitrary	type	at	an	address	in	memory

Syntax
Declare	Function	Peek	(ByVal	address	As	Any	Ptr)	ByRef	As	UByte

Declare	Function	Peek	(datatype,	ByVal	address	As	Any	Ptr)

ByRef	As	datatype

Usage
Peek([datatype,]	address)

Parameters
address

The	address	in	memory	to	get	the	value	from.
datatype

The	type	of	value	to	get.	If	omitted,	it	defaults	to	the	type	of	the	pointer
passed;	or	to	UByte,	if	the	address	is	an	Integer	or	an	Any	Ptr.

Description
This	procedure	returns	a	reference	to	the	value	in	memory	given	by	a
memory	address,	and	is	equivalent	to

*cast(ubyte	ptr,	address)

or
*cast(datatype	ptr,	address)

Example

Dim	i	As	Integer,	p	As	Integer	Ptr

p	=	@i

Poke	Integer,	p,	420

Print	Peek(Integer,	p)

will	produce	the	output:

420

Differences	from	QB

Peek	did	not	support	the	datatype	parameter	in	QB,	and	could
only	return	individual	bytes.
Peek	returns	a	reference	in	FB,	so	can	be	used	to	set	the
memory	contents	of	the	address,	like	with	Operator	*	(Value
Of).
DEF	SEG	isn't	needed	anymore	because	the	address	space	is
32-bit	flat	in	FreeBASIC.

See	also

Poke

Operator	*	(Value	Of)

PMap 	

Maps	coordinates	between	view	and	physical	mapping.

Syntax
Declare	Function	PMap	(ByVal	coord	As	Single,	ByVal	func	As	Long

Usage
result	=	PMap(coord,	func)

Parameters
coord

An	expression	indicating	the	coordinate	to	be	mapped.
func

The	mapping	function	number	to	be	applied	to	given	coordinate.

Return	Value
The	mapped	coordinate	value.

Description
This	function	converts	a	coordinate	between	view	(as	defined	by	the	Window
statement)	and	physical	(as	set	by	the	View	(Graphics)	statement)	mappings.
Depending	on	the	value	of	func,	expr	is	used	to	compute	a	different	mapping	to	be
returned	by	PMap:

func	value: return	value:

0 Treats	expr	as	x	view	coordinate	and	returns	corresponding	x	physical	coordinate.

1 Treats	expr	as	y	view	coordinate	and	returns	corresponding	y	physical	coordinate.

2 Treats	expr	as	x	physical	coordinate	and	returns	corresponding	x	view	coordinate.

3 Treats	expr	as	y	physical	coordinate	and	returns	corresponding	y	view	coordinate.

Example

Screen	12

Window	Screen	(0,	0)-(100,	100)

Print	"Logical	x=50,	Physical	x=";	PMap(50,	0)			''	320

Print	"Logical	y=50,	Physical	y=";	PMap(50,	1)			''	240

Print	"Physical	x=160,	Logical	x=";	PMap(160,	2)	''	25

Print	"Physical	y=60,	Logical	y=";	PMap(60,	3)			''	12.5

Sleep

Differences	from	QB

None

See	also

Window

View	(Graphics)

Point 	

Returns	the	color	attribute	of	a	specified	pixel	coordinate

Syntax
result	=	Point(coord_x,	coord_y	[,buffer])

or	

result	=	Point(function_index)

Usage
coord_x

x	coordinate	of	the	pixel
coord_y

y	coordinate	of	the	pixel
buffer

the	image	buffer	to	read	from
function_index

the	type	of	screen	coordinate	to	return:	one	of	the	values	0,	1,	2,	3

Return	Value
If	the	x,	y	coordinates	of	a	pixel	are	provided	Point	returns	the	color	attribute	at	the	specified
coordinates,	as	an	8-bit	palette	index	in	8	bpp	indexed	modes,	a	24-bit	RGB	value	in	16	bpp
modes	(upper	8	bits	of	the	integer	unused,	limited	precision	of	R,G,B),	and	a	32-bit	RGB	or	RGBA
value	in	32	bpp	modes	(upper	8	bits	unused	or	holding	Alpha).	Note	that	it	does	NOT	return	a	16-
bit	value	(5	bits	R	+	6	bits	G	+	5	bits	B).

If	the	argument	is	a	function	index,	Point	returns	one	of	the	graphics	cursor	coordinates	set	by	the
last	graphics	command.

Argument Value	Returned

0 The	current	physical	x	coordinate.

1 The	current	physical	y	coordinate.

2 The	current	view	x	coordinate.	This	returns	the	same	value	as	the	POINT(0)	function	if	the	WINDOW	statement
has	not	been	used.

3 The	current	view	y	coordinate.	This	returns	the	same	value	as	the	POINT(1)	function	if	the	WINDOW	statement
has	not	been	used.

Description
GfxLib	Function	with	two	different	uses.	
If	supplied	with	two	coordinates	it	reads	the	color	of	the	pixel	at	the	coordinate	
the	screen,	or	of	the	buffer,	if	supplied.	
The	value	return	is	a	color	index	in	a	256	or	less	color	Screen,	and	an	
modes.	If	the	coordinates	are	off-screen	or	off-buffer,	-1	is	returned

If	supplied	with	a	single	value	it	returns	the	one	of	the	coordinates	of	the	graphics	cursor	as	set	by
the	last	graphics	command	executed.	If	the	last	command	was	executed	in	a	buffer,	the	values
returned	will	be	coordinates	in	the	buffer.	Arguments	out	of	the	range	0

The	function	Point	does	not	work	in	text	modes.

Speed	note:	while	Point	provides	valid	results,	it	is	quite	slow	to	call	repeatedly	due	to	the
overhead	of	additional	calculations	and	checks.	Much	better	performance	can	be	achieved	by
using	direct	memory	access	using	the	results	obtained	from	ImageInfo

Example

'	Set	an	appropriate	screen	mode	-	320	x	240	x	8bpp	indexed	color

ScreenRes	320,	240,	8

'	Draw	a	line	using	color	12	(light	red)

Line	(20,20)-(100,100),	12

'	Print	the	color	of	a	point	on	the	line

Print	Point(20,20)

'	Sleep	before	the	program	closes

Sleep

Output:

12

Differences	from	QB

buffer	is	new	to	FreeBASIC
In	16	bpp	and	32	bpp	modes,	a	32-bit	value	is	returned	instead	of	an	8-bit	palette	index

See	also

PSet	-	write	pixels
PMap

Color

View	(Graphics)

Window

Internal	pixel	formats

Pointcoord 	

Queries	Draw's	pen	position	in	graphics	mode

Syntax
Declare	Function	PointCoord(ByVal	func	As	Long)	As	Single

result	=	PointCoord(func)

Description
The	PointCoord	function	can	be	used	to	query	x	and	y	position	of	the	Draw
graphics	mode.	The	result	value	depends	on	the	passed	func	value:

func	value: return	value:

0 x	physical	coordinate,	same	as	PMap(PointCoord(2),	0)

1 y	physical	coordinate,	same	as	PMap(PointCoord(3),	1)

2 x	view	coordinate

3 y	view	coordinate

Example

Screen	12

Print	"---	Default	window	coordinate	mapping	---"

Print	"DRAW	pen	position,	at	the	default	(0,0):"

Print	"Physical:",	PointCoord(0),	PointCoord(1	

Print	"View:",	PointCoord(2),	PointCoord(3)

Draw	"BM	50,50"

Print	"DRAW	pen	position,	after	being	moved	to	(50,50):"

Print	"Physical:",	PointCoord(0),	PointCoord(1	

Print	"View:",	PointCoord(2),	PointCoord(3)

Print	"---	Changing	window	coordinate	mapping	---"

Window	Screen	(-100,	-100)	-	(100,	100)

Draw	"BM	0,0"

Print	"DRAW	pen	position,	after	being	moved	to	(0,0):"

Print	"Physical:",	PointCoord(0),	PointCoord(1	

Print	"View:",	PointCoord(2),	PointCoord(3)

Draw	"BM	50,50"

Print	"DRAW	pen	position,	after	being	moved	to	(50,50):"

Print	"Physical:",	PointCoord(0),	PointCoord(1	

Print	"View:",	PointCoord(2),	PointCoord(3)

Sleep

Differences	from	QB

New	to	FreeBASIC

See	also

PMap

Window

Pointer 	

A	variable	declaration	type	modifier

Syntax
Dim	symbolname	As	DataType	{Pointer	|	Ptr}

Description
Declares	a	pointer	variable.	The	same	as	Ptr.

Example

Dim	p	As	ZString	Pointer

Dim	text	As	String

text	=	"Hello	World!"

p	=	StrPtr(text)	+	6

Print	text

Print	*p

''	Output:

''	Hello	World!

''	World!

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Pointer.

Differences	from	QB

New	to	FreeBASIC

See	also

Ptr

Poke 	

Assigns	a	value	to	a	location	in	memory.

Syntax
Declare	Sub	Poke	(ByVal	address	As	Any	Ptr,	ByRef	value	As	UByte

)

Declare	Sub	Poke	(datatype,	ByVal	address	As	Any	Ptr,	ByRef

value	As	datatype)

Usage
Poke	[datatype,]	address,	value

Parameters
datatype

The	type	of	data	at	the	specified	address.
address

The	location	in	memory	to	assign	to.
value

The	value	to	assign.

Description
Poke	assigns	a	value	to	a	location	in	memory.	It	is	equivalent	to

*cast(ubyte	ptr,	address)	=	value

or
*cast(datatype	ptr,	address)	=	value

When	datatype	is	a	user-defined	type,	Poke	assigns	value	using	the
type's	Operator	Let.

Example

Dim	i	As	Integer,	p	As	Integer	Ptr

p	=	@i

Poke	Integer,	p,	420

Print	Peek(Integer,	p)

Will	produce	the	output:

420

Differences	from	QB

Only	the	byte	form	were	supported	in	QB.
DEF	SEG	isn't	needed	anymore	because	the	address	space	is
32-bit	flat	in	FreeBASIC.

See	also

Peek

Pos 	

Returns	the	horizontal	(left	to	right)	position	of	the	text	cursor

Syntax
Declare	Function	Pos	()	As	Long

Declare	Function	Pos	(ByVal	dummy	As	Long)	As	Long

Usage
result	=	Pos[(dummy)]

Parameters
dummy

An	unused	parameter	retained	for	backward	compatibility	with
QBASIC.

Return	Value
Returns	the	horizontal	position	of	the	text	cursor.

Description
Returns	the	horizontal	(left	to	right)	position	of	the	text	cursor.	The
leftmost	column	is	number	1.

Example

Dim	As	Integer	p

''	print	starting	column	position

p	=	Pos()

Print	"position:	";	p

''	print	a	string,	without	a	new-line

Print	"ABCDEF";

''	print	new	column	position:

p	=	Pos()

Print:	Print	"position:	";	p

Print

''position	changes	after	each	Print:

Print	"Column	numbers:	"

Print	Pos(),	Pos(),	Pos(),	Pos(),	Pos()

Differences	from	QB

The	dummy	parameter	was	not	optional	in	QBASIC.

See	also

CsrLin

Tab

Locate

Preserve 	

Used	with	ReDim	to	preserve	contents	will	resizing	an	array

Syntax
ReDim	Preserve	array(...)	[As	datatype]

Description
Used	with	ReDim	so	that	when	an	array	is	resized,	data	is	not	reset	but
is	preserved.	This	means	when	the	array	is	enlarged	that	only	new
data	is	reset,	while	the	old	data	remains	the	same.

NOTE:	ReDim	Preserve	may	not	work	as	expected	in	all	cases:
Preserve's	current	behavior	is	to	keep	the	original	data	contiguous	in
memory,	and	only	expand	or	truncate	the	size	of	the	memory.
Its	behavior	is	only	well-defined	when	the	upper	bound	is	changed.	If
the	lower	bound	is	changed,	the	current	result	is	that	the	data	is	in
effect	shifted	to	start	at	the	new	lower	bound.
If	there	are	multiple	dimensions,	only	the	upper	bound	of	the	first
dimension	may	be	changed	safely.	If	lower-order	dimensions	are
resized	at	all,	the	effects	can	be	hard	to	predict.

Example

ReDim	array(1	To	3)	As	Integer

Dim	i	As	Integer

array(1)	=	10

array(2)	=	5

array(3)	=	8

ReDim	Preserve	array(1	To	10)

For	i	=	1	To	10

				Print	"array(";	i;	")	=	";	array(i)

Next

Differences	from	QB

Preserve	wasn't	supported	until	PDS	7.1

See	also

Dim

LBound

ReDim

UBound

PReset 	

Plots	a	single	pixel

Syntax
PReset	[target	,]	[STEP]	(x,	y)	[,color]

Parameters
target

specifies	buffer	to	draw	on.	
STEP

indicates	that	coordinates	are	relative
(x,	y)

coordinates	of	the	pixel.
color

the	color	attribute.

Description

target	specifies	buffer	to	draw	on.	target	may	be	an	image	created	with	
omitted,	target	defaults	to	the	screen's	current	work	page.

(x,	y)	are	the	coordinates	of	the	pixel.	STEP	if	present,	indicates	that	
graphics	cursor	position.	If	omitted,	(x,	y)	are	relative	to	the	upper	left-hand	corner	of	
coordinates	are	affected	by	the	last	call	to	the	View	(Graphics)	and	Window
clipping	region	as	set	by	the	View	(Graphics)	statement.

color	specifies	the	color	attribute.	If	omitted,	color	defaults	to	the	current	background	color.	
graphics	mode	specific,	see	Color	and	Screen	(Graphics)	for	details.

Example

Screen	13

'Set	background	color	to	15

Color	,	15

'Draw	a	pixel	with	the	background	color	at	10,	10

PReset	(10,10)

'Draw	a	pixel	with	the	background	color	at	Last	x	cord	+10,	Last	y	cord	+10

PReset	Step	(10,10)

Sleep

Differences	from	QB

target	is	new	to	FreeBASIC

See	also

PSet

(Print	|	?) 	

Writes	text	to	the	screen

Syntax
(Print	|	?)	[expressionlist]	[,	|	;]

Parameters
expressionlist

list	of	items	to	print

Description
Print	outputs	a	list	of	values	to	the	screen.	Numeric	values	are	converted	to	their
string	representation,	with	left	padding	for	the	sign.	Objects	of	user-defined	types
must	overload	Operator	Cast	()	As	String.

Consecutive	values	in	the	expression	list	are	separated	either	by	a	comma	(
semicolon	(;).	A	comma	indicates	printing	should	take	place	at	the	next	14	column
boundary,	while	a	semicolon	indicates	values	are	printed	with	no	space	between
them.	This	has	a	similar	effect	to	concatenating	expressions	using	+	or	

Print	also	supports	the	special	expressions,	Spc()	and	Tab().	These	can	be	used	to
space	out	expressions,	or	to	align	the	printing	to	a	specific	column.

A	new-line	character	is	printed	after	the	values	in	the	expression	list	unless	the
expression	list	is	followed	by	a	comma	or	semicolon.	A	Print	without	any
expressions	or	separators	following	it	will	just	print	a	new-line.

NOTE:	Print	resets	the	Err	value	after	each	expression	is	printed.

NOTE:	In	graphics	mode,	Draw	String	provides	a	flexible	alternative	to	
prints	a	string	to	the	screen	with	pixel	positioning,	transparent	background,	and	can
use	a	user-supplied	font.

Example

''	print	"Hello	World!",	and	a	new-line

Print	"Hello	World!"

''	print	several	strings	on	one	line,	then	print	a	new-

line

Print	"Hello";

Print	"World";	"!";

Print

''	column	separator

Print	"Hello!",	"World!"

''	printing	variables/expressions

Dim	As	Double	pi	=	Atn(1)	*	4

Dim	As	String	s	=	"FreeBASIC"

Print	"3	*	4	=";	3	*	4

Print	"Pi	is	approximately";	pi

Print	s;	"	is	great!"

Dialect	Differences

In	the	-lang	qb	dialect,	an	extra	space	is	printed	after	numbers.

Differences	from	QB

None,	when	using	QBASIC's	variable	types	in	-lang	qb.
Unsigned	numbers	are	printed	without	a	space	before	them.
QB	did	not	support	casting	for	UDTs,	so	didn't	allow	them	to	be	

See	also

Spc

Tab

(Print	|	?)	#

(Print	|	?)	Using

Write

Draw	String

Input

(Print	|	?)	# 	

Writes	a	list	of	values	to	a	file	or	device

Syntax
(Print	|	?)	#	filenum,	[expressionlist]	[,	|	;]

Parameters
filenum

The	file	number	of	a	file	or	device	opened	for	Output	or	Append.
expressionlist

List	of	values	to	write.

Description
Print	#	outputs	a	list	of	values	to	a	text	file	or	device.	Numeric	values
are	converted	to	their	string	representation,	with	left	padding	for	the
sign.	Objects	of	user-defined	types	must	overload	Operator	Cast	()	As
String.

Consecutive	values	in	the	expression	list	are	separated	either	by	a
comma	(,)	or	semicolon	(;).	A	comma	indicates	printing	should	take
place	at	the	next	14	column	boundary,	while	a	semicolon	indicates
values	are	printed	with	no	space	between	them.

A	new-line	character	is	printed	after	the	values	in	the	expression	list
unless	the	expression	list	is	followed	by	a	comma	or	semicolon.

Note	that	the	comma	(,)	immediately	following	the	file	number	is	still
necessary,	even	the	expression	list	is	empty.	In	this	case	a	new-line	is
printed,	just	as	with	a	normal	expression	list	that	doesn't	have	a
comma	or	semicolon	at	the	end.

Example

Open	"bleh.dat"		For	Output	As	#1

				

				Print	#1,	"abc	def"

				Print	#1,	1234,	5678.901,	"xyz	zzz"

				

				Close	#1

Dialect	Differences

In	the	-lang	qb	dialect,	an	extra	space	is	printed	after	numbers.

Differences	from	QB

None,	when	using	QBASIC's	variable	types	in	-lang	qb.
Unsigned	numbers	are	printed	without	a	space	before	them.
QB	did	not	support	casting	for	UDTs,	so	didn't	allow	them	to	be
Printed.

See	also

(Print	|	?)	Using

(Print	|	?)

Write	#

Open

(Print	|	?)	Using 	

Outputs	formatted	text	to	the	screen	or	output	device

Syntax
(Print	|	?)	[#	filenum	,]	[printexpressionlist	{,|;}]	Using	formatstring

;]]

Parameters
filenum

The	file	number	of	a	file	or	device	opened	for	Output	or	Append.	(Alternatively	
where	appropriate,	instead	of	Print	#)
printexpressionlist

Optional	preceding	list	of	items	to	print,	separated	by	commas	(,)	or	semi-colons	(
more	details).
formatstring

Format	string	to	use.
expressionlist

List	of	items	to	format,	separated	by	semi-colons	(;).

Description
Print	to	screen	various	expressions	using	a	format	determined	by	the	
Internally,	Print	Using	uses	a	buffer	size	of	2048	bytes:	while	it	is	highly	unlikely	that	this	buffer	would
be	filled,	it	should	be	noted	that	output	would	be	truncated	should	this	limit	be	reached.

If	no	expression	list	is	given,	the	format	string	will	be	printed	up	to	the	first	special	marker.	
semi-colon	after	formatstring	is	still	necessary,	even	if	no	expression	list	is	given.

The	format	string	dictates	how	the	expressions	are	to	be	formatted	when	output	to	the	screen,
indicated	by	the	use	of	special	marker	characters.	There	are	markers	for	formatting	both	string	and
numeric	output:

String	formatting

Marker Formatting

! prints	the	first	character	of	a	string

\	\ prints	as	many	characters	of	a	string	as	occupied	between	the	pair	\	\

& prints	the	entire	string

Numeric	formatting

Marker Formatting

# placeholder	for	either	an	integer	digit,	or	a	decimal	digit	if	a	decimal	point	precedes	it

, placed	after	integer	digit	indicates	groups	of	3	digits	should	be	separated	by	commas	in	fixed-point	notation

. placed	near	#	indicates	place	for	the	decimal	point

^^^^ uses	exponential	notation	(E+/-###)	when	placed	after	the	digit	characters

+ placed	before/after	the	format	string,	controls	whether	the	sign	of	a	number	is	prepended/appended,	and	causes	an	explicit
'+'	sign	to	be	printed	for	positive	numbers

- placed	after	the	format	string,	causes	the	sign	of	the	number	to	be	appended	rather	than	prepended,	appending	a
space/negative	sign	for	positive/negative	numbers

$$ placed	at	the	start	of	integer	digits,	causes	a	dollar	sign	to	be	prepended	to	the	number	(after	the	sign	if	one	is	prepended)

** placed	at	the	start	of	integer	digits,	causes	any	padding	on	the	left	to	be	changed	from	spaces	to	asterisks

**$ placed	at	the	start	of	integer	digits,	pads	on	the	left	with	asterisks,	and	prepends	a	dollar	sign	after	the	asterisks

& prints	a	number	intelligently,	using	the	exact	number	of	digits	required	(new	to	version	0.21.0b)

All	of	the	special	marker	characters	can	be	escaped	by	preceding	them	with	the	underscore	character
"_",	allowing	them	to	be	printed	directly.	For	example,	"_!"	is	printed	as	

If	a	numerical	value	cannot	fit	in	the	number	of	digits	indicated	by	the	format	string,	the	formatting	is
adapted	to	fit	the	number,	possibly	switching	to	scientific	notation,	and	the	number	is	printed	preceded
by	the	percent	"%"	character.	E.g.,	the	number	1234	with	a	formatstring
"%1234.00".

All	other	characters	within	the	format	string	are	printed	as	they	appear.

A	new-line	character	is	printed	after	the	values	in	the	expression	list	unless	the	expression	list	is
followed	by	a	semicolon	(;).

Example

Print	Using	"The	value	is	#.##	seconds";	1.019

Print	Using	"The	ASCII	code	for	the	pound	sign	(_#)	is	###"

Print	Using	"The	last	day	in	the	year	is	&	\	\";	31

will	produce	the	output:

The	value	is	1.02	seconds

The	ASCII	code	for	the	pound	sign	(#)	is		35

The	last	day	in	the	year	is	31	Dec

Differences	from	QB

QB	didn't	allow	"&"	to	be	used	for	printing	numbers.

See	also

(Print	|	?)

(Print	|	?)	#

Format

Using

Palette	Using

Private 	

Specifies	a	procedure	having	internal	linkage

Syntax
Private	Sub	procedure_name	[cdecl|stdcall|pascal]	[Overload]

[Alias	"external_name"]	[([parameter_list])]	[Constructor

[priority]]	[Static]	[Export]

..procedure	body..

End	Sub

Private	Function	procedure_name	[cdecl|stdcall|pascal]	[Overload

[Alias	"external_name"]	[([parameter_list])]	As	return_type

[Static]	[Export]

..procedure	body..

End	Function

Description
In	procedure	definitions,	Private	specifies	that	a	procedure	has
internal	linkage,	meaning	its	name	is	not	visible	to	external	modules.

The	Option	Private	statement	allows	procedures	to	be	defined	with
internal	linkage	by	default.

Example

'e.g.

Private	Sub	i_am_private

End	Sub

Sub	i_am_public

End	Sub

Differences	from	QB

New	to	FreeBASIC

See	also

Private:	(Access	Control)
Public

Option	Private

Sub

Function

Private:	(Access	Control) 	

Specifies	private	member	access	control	in	a	Type	or	Class

Syntax
Type	typename

Private:

member	declarations

End	Type

Parameters
typename

name	of	the	Type	or	Class
member	declarations

declarations	for	fields,	functions,	or	enumerations

Description
Private:	indicates	that	member	declarations	following	it	have	private	access.	
function	for	the	Type	or	Class.

member	declarations	following	Private:	are	private	until	a	different	access	control	specifier	is	given,	like	

Members	in	a	Type	declaration	are	Public:	by	default	if	no	member	access	control	specifier	is	given.

Example

Type	testing

		number	As	Integer

		Private:

				nome	As	String

		Declare	Sub	setNome(ByRef	newnome	As	String)

End	Type

Sub	testing.setnome(ByRef	newnome	As	String)

		''	This	is	OK.	We're	inside	a	member	function	for	the	type

		this.nome	=	newnome

End	Sub

Dim	As	testing	myVariable

''	This	is	OK,	number	is	public

myVariable.number	=	69

''	this	would	generate	a	compile	error	

''	-	nome	is	private	and	we're	trying	to	access	it	outside	any	of	this	TYPE's	member	functions	

''	myVariable.nome	=	"FreeBASIC"

Dialect	Differences

Available	only	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Private

Public:	(Access	Control)
Protected:	(Access	Control)
Type

Operator	Procptr	(Procedure	Pointer) 	

Returns	the	address	of	a	procedure

Syntax
Declare	Operator	ProcPtr	(ByRef	lhs	As	T)	As	T	Ptr

Usage
result	=	ProcPtr	(lhs)

Parameters
lhs

A	procedure.
T

The	type	of	procedure.

Return	Value
Returns	the	address	of	the	procedure.

Description
This	operator	returns	the	address	of	a	Sub	or	Function	procedure.

Operator	@	(Address	Of),	when	used	with	procedures,	has	identical	behavior.

Example

'	This	example	uses	ProcPtr	to	demonstrate	function	pointers

Declare	Function	Subtract(x	As	Integer,	y	As	Integer

Declare	Function	Add(x	As	Integer,	y	As	Integer)	

Dim	myFunction	As	Function(x	As	Integer,	y	As	Integer

'	myFunction	will	now	be	assigned	to	Add

myFunction	=	ProcPtr(Add)

Print	myFunction(2,	3)

'	myFunction	will	now	be	assigned	to	Subtract.		Notice	the	different	output.

myFunction	=	ProcPtr(Subtract)

Print	myFunction(2,	3)

Function	Add(x	As	Integer,	y	As	Integer)	As	Integer

				Return	x	+	y

End	Function

Function	Subtract(x	As	Integer,	y	As	Integer)	As	

				Return	x	-	y

End	Function

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Sub

VarPtr

StrPtr

Pointers

Property 	

Declares	or	defines	a	property	in	a	type	or	class

Syntax
{	Type	|	Class	}	typename

Declare	Property	fieldname	()	As	datatype

Declare	Property	fieldname	([ByRef	|	ByVal]	new_value	As	datatype

Declare	Property	fieldname	([ByRef	|	ByVal]	index	As	datatype

Declare	Property	fieldname	([ByRef	|	ByVal]	index	As	datatype

datatype)

End	{	Type	|	Class	}

Property	typename.fieldname	()	As	datatype	[Export]

statements

End	Property

Property	typename.fieldname	([ByRef	|	ByVal]	new_value	As	datatype

statements

End	Property

Property	typename.fieldname	([ByRef	|	ByVal]	index	As	datatype

statements

End	Property

Property	typename.fieldname	([ByRef	|	ByVal]	index	As	datatype

datatype)	[Export]

statements

End	Property

Parameters
typename	
name	of	the	Type	or	Class
fieldname	
name	of	the	property
new_value	
the	value	passed	to	property	to	be	assigned
index	
the	property	index	value

Description

Property	fields	are	used	to	get	and	set	values	of	a	Type	or	Class	in	the	same	way	as	other	data	fields
except	instead	of	a	simple	assignment	to	a	field	or	a	value	retrieved	from	field,	a	procedure	is	executed.

typename	is	the	name	of	the	type	for	which	the	Property	method	is	declared	and	defined.	
for	typename	follows	the	same	rules	as	procedures	when	used	in	a	Namespace

A	Property	may	optionally	have	one	index	parameter.	When	indexed,	properties	are	accessed	as
fieldname(Index)	=	Value.

A	hidden	This	parameter	having	the	same	type	as	typename	is	passed	to	the	property	procedure.	
used	to	access	the	fields	of	the	Type	or	Class.

Note:	A	standard	Property	(get	&	set)	does	not	work	with	combination	operators	(as	"+=").	But	a	result
byref	get-Property	(as	more	generally	any	result	byref	function)	works	with	combination	operators.

Example

Type	Vector2D

		As	Single	x,	y

		Declare	Operator	Cast()	As	String

		Declare	Property	Length()	As	Single

		Declare	Property	Length(ByVal	new_length	As	Single

End	Type

Operator	Vector2D.cast	()	As	String

		Return	"("	+	Str(x)	+	",	"	+	Str(y)	+	")"

End	Operator

Property	Vector2D.Length()	As	Single

		Length	=	Sqr(x	*	x	+	y	*	y)

End	Property

Property	Vector2D.Length(ByVal	new_length	As	Single

		Dim	m	As	Single	=	Length

		If	m	<>	0	Then

				''	new	vector	=	old	/	length	*	new_length

				x	*=	new_length	/	m

				y	*=	new_length	/	m

		End	If

End	Property

Dim	a	As	Vector2D	=	(3,	4)

Print	"a	=	";	a

Print	"a.length	=	";	a.length

Print

a.length	=	10

Print	"a	=	";	a

Print	"a.length	=	";	a.length

Output:

a	=	(3,	4)

a.length	=		5

a	=	(6,	8)

a.length	=		10

Property	Indexing:

		''	True/False

Namespace	BOOL

		Const	FALSE	=	0

		Const	TRUE	=	Not	FALSE

End	Namespace

Type	BitNum

		Num	As	UInteger

		

				''	Get/Set	Properties	each	with	an	Index.

		Declare	Property	NumBit(ByVal	Index	As	Integer	

		Declare	Property	NumBit(ByVal	Index	As	Integer,

End	Type

		''	Get	a	bit	by	it's	index.

Property	BitNum.NumBit(ByVal	Index	As	Integer)	As

		Return	Bit(This.Num,	Index)

End	Property

		''	Set	a	bit	by	it's	index.

Property	BitNum.NumBit(ByVal	Index	As	Integer,	ByVal

				''	Make	sure	index	is	in	Integer	range.

		If	Index	>=	(SizeOf(This.Num)	*	8)	Then

				Print	"Out	of	uInteger	Range!"

				Exit	Property

		Else

				If	Index	<	0	Then	Exit	Property

		End	If

		

		If	Value	=	BOOL.FALSE	Then

				This.Num	=	BitReset(This.Num,	Index)

		End	If

		

		If	Value	=	BOOL.TRUE	Then

				This.Num	=	BitSet(This.Num,	Index)

		End	If

		

End	Property

Dim	As	BitNum	Foo

Print	"Testing	property	indexing	with	data	types:"

Print	"FOO	Number's	Value:	"	&	Foo.Num

		''	Set	the	bit	in	the	number	as	true.

Foo.NumBit(31)	=	BOOL.TRUE

Print	"Set	the	31st	bit	of	FOO"

		''	Print	to	see	if	our	bit	has	been	changed.

Print	"FOO	Number's	Value:	"	&	Foo.Num

Print	"FOO	31st	Bit	Set?	"	&	Foo.NumBit(31)

Sleep

Print	""

Output:

Testing	property	indexing	with	data	types:

FOO	Number's	Value:	0

Set	the	31st	bit	of	FOO

FOO	Number's	Value:	2147483648

FOO	31st	Bit	Set?	-1

See	also

Class

Type

Protected:	(Access	Control) 	

Specifies	protected	member	access	control	in	a	Type	or	Class

Syntax
Type	typename

Protected:

member	declarations

End	Type

Parameters
typename

name	of	the	Type	or	Class
member	declarations

declarations	for	fields,	functions,	or	enumerations

Description
Protected:	indicates	that	member	declarations	following	it	have
protected	access.	Protected	members	are	accessible	only	from	inside
a	member	function	for	the	Type	or	Class,	and	classes	which	are	derived
from	the	Type	or	Class.

member	declarations	following	Protected:	are	protected	until	a	different
access	control	specifier	is	given,	like	Private:	or	Public:.

Members	in	a	Type	declaration	are	Public:	by	default	if	no	member
access	control	specifier	is	given.

NOTE:	This	keyword	is	useful	only	since	fbc	version	0.24	because
inheritance	is	then	supported.

Example

		''	Example	pending	classes	feature	...

Dialect	Differences

Available	only	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Class

Private:	(Access	Control)
Public:	(Access	Control)
Type

PSet 	

Plots	a	single	pixel

Syntax
PSet	[target	,]	[STEP]	(x,	y)	[,color]

Parameters
target

specifies	buffer	to	draw	on.	
STEP

indicates	that	coordinates	are	relative
(x,	y)

coordinates	of	the	pixel.
color

the	color	attribute.

Description

target	specifies	buffer	to	draw	on.	target	may	be	an	image	created	with	
target	defaults	to	the	screen's	current	work	page.

(x,	y)	are	the	coordinates	of	the	pixel.	STEP	if	present,	indicates	that	(
cursor	position.	If	omitted,	(x,	y)	are	relative	to	the	upper	left-hand	corner	of	
affected	by	the	last	call	to	the	View	(Graphics)	and	Window	statements,	and	respect	the	current	clipping	region	as	set
by	the	View	(Graphics)	statement.

color	specifies	the	color	attribute,	as	an	8-bit	palette	index	in	8	bpp	indexed	modes,	a	24-bit	RGB	value	in	16	bpp
modes	(upper	8	bits	of	the	integer	unused,	limited	precision	of	R,G,B),	and	a	32-bit	RGB	or	RGBA	value	in	32	bpp
modes	(upper	8	bits	unused	or	holding	Alpha).	Note	that	it	does	NOT	accept	a	16-bit	value	(5	bits	R	+	6	bits	G	+	5	bits
B).	If	omitted,	color	defaults	to	the	current	foreground	color.

Speed	note:	while	PSet	provides	valid	results,	it	is	quite	slow	to	call	repeatedly	due	to	the	overhead	of	additional
calculations	and	checks.	Much	better	performance	can	be	achieved	by	using	direct	memory	access	using	the	results
obtained	from	ImageInfo	and	ScreenInfo/ScreenPtr.

Example

'	Set	an	appropriate	screen	mode	-	320	x	240	x	8bpp	indexed	color

ScreenRes	320,	240,	8

'	Plot	a	pixel	at	the	coordinates	100,	100,	Color	15.	(white)

PSet	(100,	100),	15

'	Confirm	the	operation.

Locate	1:	Print	"Pixel	plotted	at	100,	100"

'	Wait	for	a	keypress.

Sleep

	

'	Plot	another	pixel	at	the	coordinates	150,	150,	Color	4.	(red)	

PSet	(150,	150),	4

'	Confirm	the	operation.

Locate	1:	Print	"Pixel	plotted	at	150,	150"

'	Wait	for	a	keypress.

Sleep

	

'	Plot	a	third	pixel	relative	to	the	second,	Color	15.	(white)

'	This	pixel	is	given	the	coordinates	60,	60.	It	will	be	placed

'	at	60,	60	plus	the	previous	coordinates	(150,	150),	thus	plotting	at	210,	210.

PSet	Step	(60,	60),	15

'	Confirm	the	operation.

Locate	1:	Print	"Pixel	plotted	at	150	+	60,	150	+	60"

'	Wait	for	a	keypress

Sleep

'	Explicit	end	of	program

End

Differences	from	QB

target	is	new	to	FreeBASIC
In	16	bpp	and	32	bpp	modes,	a	32-bit	value	is	required	instead	of	an	8-bit	palette	index

See	also

Point	-	read	out	pixels
PReset

View	(Graphics)

Window

Internal	pixel	formats

PSet 	

Parameter	to	the	Put	graphics	statement	which	selects	PSet	as	the	blitting	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Parameters
PSet

Required.

Description
The	PSet	method	copies	the	source	pixel	values	onto	the	destination	pixels.

This	is	the	simplest	Put	method.	The	pixels	in	the	destination	buffer	are	directly	overwritten
with	the	pixels	in	the	source	buffer.	No	additional	operations	are	done,	and	there	are	no
color	values	that	are	treated	as	transparent.	It	has	the	same	effect	as	
individually.

Example

''	set	up	a	screen:	320	*	200,	16	bits	per	pixel

ScreenRes	320,	200,	16

Line	(0,	0)-(319,	199),	RGB(0,	128,	255),	bf

''	set	up	an	image	with	the	mask	color	as	the	background.

Dim	img	As	Any	Ptr	=	ImageCreate(33,	33,	RGB(255,

Circle	img,	(16,	16),	15,	RGB(255,	255,	0),					,					

Circle	img,	(10,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(23,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(16,	18),	10,	RGB(0,			0,	0),	3.14,	

Dim	As	Integer	x	=	160	-	16,	y	=	100	-	16

''	Put	the	image	with	PSET

Put	(x,	y),	img,	PSet

''	free	the	image	memory

ImageDestroy	img

''	wait	for	a	keypress

Sleep

Differences	from	QB

None

See	also

PSet

Put	(Graphics)

Ptr 	

A	variable	declaration	type	modifier

Syntax
Dim	symbolname	As	DataType	{Ptr	|	Pointer}

Description
Declares	a	pointer	variable.	The	same	as	Pointer.

Operator	@	(Address	Of)	operator	or	VarPtr	are	used	to	take	the	address	of	a	variable.	The
Operator	*	(Value	Of)	operator	is	used	to	dereference	the	pointer,	that	is,	access	the	actual	value
stored	in	the	memory	location	the	pointer	is	pointing	at.

Example

'	Create	the	pointer.

Dim	p	As	Integer	Ptr

'	Create	an	integer	value	that	we	will	point	to	using	pointer	"p"

Dim	num	As	Integer	=	98845

'	Point	p	towards	the	memory	address	that	variable	"num"	occupies.

p	=	@num

'	Print	the	value	stored	in	memory	pointed	to	by	pointer	"p"

Print	"Pointer	'p'	=";	*p

Print	

'	Print	the	actual	location	in	memory	that	pointer	"p"	points	at.

Print	"Pointer	'p'	points	to	memory	location:"

Print	p

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Pointer

Allocate

Public 	

Specifies	a	procedure	having	external	linkage.

Syntax
Public	Sub	procedure_name	[cdecl|stdcall|pascal]	[Overload]

[Alias	"external_name"]	[([parameter_list])]	[Constructor

[priority]]	[Static]	[Export]

..procedure	body..

End	Sub

Public	Function	procedure_name	[cdecl|stdcall|pascal]	[Overload]

[Alias	"external_name"]	[([parameter_list])]	As	return_type

[Static]	[Export]

..procedure	body..

End	Function

Description
In	procedure	definitions,	Public	specifies	that	a	procedure	has	external
linkage,	meaning	its	name	is	visible	to	external	modules.	If	Public	or
Private	is	not	specified,	a	procedure	is	defined	as	if	Public	was
specified.

Example

Private	Sub	i_am_private

End	Sub

Public	Sub	i_am_public

End	Sub

Differences	from	QB

New	to	FreeBASIC

See	also

Public:	(Access	Control)
Private

Option	Private

Sub

Function

Public:	(Access	Control) 	

Specifies	public	member	access	control	in	a	Type	or	Class

Syntax
Type	typename

Public:

member	declarations

End	Type

Parameters
typename

name	of	the	Type	or	Class
member	declarations

declarations	for	fields,	functions,	or	enumerations

Description
Public:	indicates	that	member	declarations	following	it	have	public	access.
Public	members	are	accessible	with	any	usage	of	the	Type	or	Class.

member	declarations	following	Public:	are	public	until	a	different	access
control	specifier	is	given,	like	Private:	or	Protected:

Members	in	a	Type	declaration	are	Public:	by	default	if	no	member	access
control	specifier	is	given.

Example

Type	testing

		Private:

				nome	As	String

		Public:

				number	As	Integer

		Declare	Sub	setNome(ByRef	newnome	As	String)

End	Type

Sub	testing.setnome(ByRef	newnome	As	String)

		this.nome	=	newnome	

End	Sub

Dim	As	testing	myVariable

''	We	can	access	these	members	anywhere	since

''	they're	public

myVariable.number	=	69	''

myVariable.setNome("FreeBASIC")

Dialect	Differences

Available	only	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Class

Private:	(Access	Control)
Protected:	(Access	Control)
Public

Type

Put	(Graphics) 	

Copies	an	image	on	to	another	image	or	screen

Syntax
Put	[target,]	[[STEP](x,	y),	source	[,	(x1,	y1)-[STEP](x2,	y2)]	[,	

Parameters
target

is	the	address	of	the	buffer	where	the	image	is	to	be	drawn.	If	it's	omitted,	the	image	gets	blitted	to	screen.	See	below.
[STEP](x,	y)

specify	offsets	from	the	upper-left	corner	of	the	destination	buffer,	or	screen,	that	the	image	gets	drawn	to.	
graphics	cursor	position.
source

is	the	address	of	the	buffer	of	the	image	to	be	drawn.	See	below.
(x1,	y1)-[STEP](x2,	y2)

specify	a	rectangular	area	in	the	source	buffer	to	draw.	If	omitted,	the	entire	buffer	is	drawn.	
method

specifies	the	method	used	to	draw	the	image	to	the	destination	buffer,	and	can	be	any	one	of	the	following	(the	default	method	is	

Background-independent	methods
PSet	:	Source	pixel	values	are	copied	without	modification.
PRESET	:	Source	pixel	values	are	1's-complement	negated	before	being	copied.
Trans	:	Source	pixel	values	are	copied	without	modification.	Does	not	draw	source	pixels	of	mask	color.	See	below.
Background-dependent	methods
And	:	Destination	pixels	are	bitwise	Anded	with	source	pixels.	See	below.
Or	:	Destination	pixels	are	bitwise	Ored	with	source	pixels.	See	below.
Xor	:	Destination	pixels	are	bitwise	Xored	with	source	pixels.	See	below.
Alpha	:	Source	is	blended	with	a	transparency	factor	specified	either	in	the	
Add:	Source	is	multiplied	by	a	value	and	added	with	saturation	to	the	destination.	See	below.
Custom	:	Uses	a	user-defined	function	to	perform	blending	the	source	with	the	destination.	See	below.

value

is	a	0..255	value	specifying	the	transparency	value	for	an	ADD	or	ALPHA
blender	
specifies	the	address	of	a	user-defined	function	to	be	called	in	a	CUSTOM
param	
specifies	a	parameter	to	pass	to	the	custom	blender.

Description
The	Put	statement	can	be	used	to	draw	an	image	onto	another	image.	The	
plotted	image	respects	the	current	clipping	region	set	by	last	call	to	the	

Valid	Image	Buffers
The	source	and	target	image	buffers	must	be	valid	image	buffers.	Valid	image	buffers	are	created	using	the	
specified	in	a	Put	statement	using	an	array	name	with	optional	index,	or	a	pointer	with	optional	index.

Drawing	methods
Depending	on	the	method	used,	the	existing	pixel	values	in	the	destination	buffer	are	used	to	calculate	the	pixel	values	that	are	actually	drawn.	The	
TRANS	methods	do	not	use	the	destination	buffer	for	calculating	final	pixel	values,	while	the	
latter	methods	will	look	differently	depending	on	the	content	of	the	destination	buffer.

Different	pixel	formats
The	pixel	format	of	an	image	buffer	must	be	compatible	with	the	current	graphics	mode	color	depth;	that	is,	if	you	acquire	an	image	using	
screen	mode	via	the	Screen	statement,	the	image	data	may	not	be	valid	in	the	new	graphics	mode,	and	you	may	not	be	able	to	draw	it	on	the	screen.	You	should	note
however	that	you	will	always	be	able	to	draw	image	buffers	onto	other	image	buffers	via	

The	AND,	OR	and	XOR	methods	produce	different	results	depending	on	the	current	color	depth,	as	pixels	are	stored	in	different	formats;	see	
details.	

Mask	Color
The	TRANS,	ALPHA	and	ADD	methods	do	not	draw	pixels	in	the	source	image	that	use	the	mask	color.	The	mask	color	depends	on	target	(being	it	an	image	buffer	or	the
screen)	depth:	in	depths	up	to	8	bpp	(paletted	modes)	it	is	equal	to	color	index	
255).	Note	that	in	32	bpp	modes	the	alpha	value	of	a	color	does	not	affect	the	identification	of	the	transparent	color;	only	the	lower	24	bits	are	used	to	identify	it.	See
Internal	pixel	formats	for	details.	

Alpha	drawing
The	ALPHA	method	can	be	used	in	two	modes.	If	the	value	parameter	is	specified,	this	is	used	to	specify	the	level	of	transparency	for	the	whole	image	to	be	drawn;	a
value	of	0	will	draw	a	completely	transparent	image,	whereas	a	value	of	255	will	draw	a	completely	solid	one.	This	mode	works	only	when	drawing	onto	hi/truecolor
targets	(16	and	32	bpp).
If	the	value	parameter	is	omitted,	the	ALPHA	method	will	take	the	alpha	level	value	on	a	per-pixel	basis,	allowing	to	draw	images	with	an	alpha	channel	(certain	parts	of
the	image	can	be	made	more	or	less	transparent	than	others).	This	mode	works	only	with	32	bpp	image	buffers,	as	this	is	the	only	color	depth	that	allows	for	an
embedded	alpha	value	in	each	pixel.

Dealing	with	the	alpha	channel
Normally	Put	only	allows	to	draw	image	buffers	onto	targets	with	the	same	depth,	but	there	is	an	exception.	When	drawing	an	8	bpp	image	buffer	onto	a	32	bpp	target

and	the	ALPHA	method	is	used,	the	8	bpp	source	image	is	drawn	into	the	alpha	channel	of	the	32	bpp	target.	This	allows	to	easily	set	the	whole	alpha	channel	of	an
image	without	having	to	deal	with	low	level	access	of	its	pixel	data.

Custom	Blend	Function
The	CUSTOM	method	uses	a	user-defined	function	to	calculate	the	final	pixel	values	to	be	drawn	to	the	destination	buffer.	This	function	will	be	called	once	for	every	pixel	of
the	source	image,	and	will	receive	the	source	and	destination	pixel	values,	and	a	data	pointer	passed	by	the	
to	draw	to	the	destination	buffer.	The	function	has	the	form:

Declare	Function	identifier	(ByVal	source_pixel	As	UInteger,	ByVal

identifier	is	the	name	of	the	function.	Can	be	anything.
source_pixel	is	the	current	pixel	value	of	the	source	image.
destination_pixel	is	the	current	pixel	value	of	the	destination	image.
parameter	is	the	parameter	that	is	passed	by	the	Put	command.	It	should	be	a	data	

Example
The	following	program	gives	a	simple	example	of	how	to	Put	an	image	to	the	screen,	including	setting	up	an	image	buffer,	and	freeing	its	memory	after.

''	set	up	the	screen	and	fill	the	background	with	a	color

ScreenRes	320,	200,	32

Paint	(0,	0),	RGB(64,	128,	255)

''	set	up	an	image	and	draw	something	in	it

Dim	img	As	Any	Ptr	=	ImageCreate(32,	32,	RGB(255,

Circle	img,	(16,	16),	15,	RGB(255,	255,	0),					,					

Circle	img,	(10,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(23,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(16,	18),	10,	RGB(0,			0,	0),	3.14,	

''	PUT	the	image	in	the	center	of	the	screen

Put	(160	-	16,	100	-	16),	img,	Trans

''	free	the	image	memory

ImageDestroy	img

''	wait	for	a	keypress

Sleep

The	following	example	shows	how	to	allocate	memory	for	an	image,	draw	that	image	using	various	methods,	including	a	custom	blender,	and	free	the	memory	for	the
image:

Declare	Function	checkered_blend(ByVal	src	As	UInteger

			Screen	14,	32																																			

			

			Dim	As	Any	Ptr	sprite

			Dim	As	Integer	counter	=	0

			

			sprite	=	ImageCreate(32,	32)																		

			

			Line	sprite,	(0,	0)-(31,	31),	RGBA(255,	0,	

			Line	sprite,	(4,	4)-(27,	27),	RGBA(255,	0,	

			Line	sprite,	(0,	0)-(31,	31),	RGB(0,	255,	0

			Line	sprite,	(8,	8)-(23,	23),	RGBA(255,	0,	

			Line	sprite,	(1,	1)-(30,	30),	RGBA(0,	0,	255

			Line	sprite,	(30,	1)-(1,	30),	RGBA(0,	0,	255

			

			Cls

			Dim	As	Integer	i	:	For	i	=	0	To	63														

						Line(i,0)-(i,240),	RGB(i	*	4,	i	*	4,	i	

			Next	i

			

			''	demonstrate	all	drawing	methods	...

			Put(8,14),	sprite,	PSet

			Put	Step(16,20),	sprite,	PReset

			Put	Step(-16,20),	sprite,	And

			Put	Step(16,20),	sprite,	Or

			Put	Step(-16,20),	sprite,	Xor

			Put	Step(16,20),	sprite,	Trans

			Put	Step(-16,20),	sprite,	Alpha,	96

			Put	Step(16,20),	sprite,	Alpha

			Put	Step(-16,20),	sprite,	add,	192

			Put	Step(16,20),	sprite,	Custom,	@checkered_blend

			

			''	print	a	description	near	each	demo

			Draw	String	(100,	26),	"<-	pset"

			Draw	String	Step	(0,	20),	"<-	preset"

			Draw	String	Step	(0,	20),	"<-	and"

			Draw	String	Step	(0,	20),	"<-	or"

			Draw	String	Step	(0,	20),	"<-	xor"

			Draw	String	Step	(0,	20),	"<-	trans"

			Draw	String	Step	(0,	20),	"<-	alpha	(uniform)"

			Draw	String	Step	(0,	20),	"<-	alpha	(per	pixel)"

			Draw	String	Step	(0,	20),	"<-	add"

			Draw	String	Step	(0,	20),	"<-	custom"

			

			ImageDestroy(sprite)																										

			Sleep	:	End	0

''	custom	blender	function:	chequered	put

Function	checkered_blend(ByVal	src	As	UInteger,	ByVal

			Dim	As	Integer	Ptr	counter

			Dim	As	UInteger	pixel

			

			counter	=	Cast(Integer	Ptr,	param)

			pixel	=	IIf(((*counter	And	4)	Shr	2)	Xor	((*counter

			*counter	+=	1

			Return	pixel

End	Function

Differences	from	QB

target	is	new	to	FreeBASIC
The	TRANS,	ALPHA,	ADD	and	CUSTOM	methods	are	new	to	FreeBASIC
FB	uses	a	different	image	format	internally,	which	is	unsupported	by	QB

QB	throws	a	run-time	error	instead	of	clipping	out-of-bounds	images
In	QB,	only	arrays	can	be	specified	as	source	images

See	also

Put	(File	I/O)

Get	(Graphics)

ImageCreate

Alpha

Internal	pixel	formats

Put	(File	I/O) 	

Writes	data	from	a	buffer	to	a	file

Syntax
Put	#filenum	As	Long,	[position	As	LongInt],	data	As	Any	[,	amount

Put	#filenum	As	Long,	[position	As	LongInt],	data	As	String

Put	#filenum	As	Long,	[position	As	LongInt],	data()	As	Any

Usage
Put	#filenum,	position,	data	[,	amount]

varres	=	Put	(#filenum,	position,	data	[,	amount])

Parameters
filenum

The	value	passed	to	Open	when	the	file	was	opened.
position

Is	the	position	where	Put	must	start	in	the	file.	If	the	file	was	opened	For	Random
given	in	bytes.	If	omitted,	writing	starts	at	the	present	file	pointer	position.	
or	byte	of	a	file	is	at	position	1.
If	position	is	omitted	or	zero	(0),	file	writing	will	start	from	the	current	file	position.
data

Is	the	buffer	where	data	is	written	from.	It	can	be	a	numeric	variable,	a	string,	an	array	or	a	user-defined	type.	The
operation	will	try	to	transfer	to	disk	the	complete	variable,	unless	amount
When	putting	arrays,	data	should	be	followed	by	an	empty	pair	of	brackets:	'
array.	amount	is	not	allowed.
When	putting	Strings,	the	number	of	bytes	written	is	the	same	as	the	number	of	bytes	in	the	string	data.	
not	allowed.
Note:	If	you	want	to	write	values	from	a	buffer,	you	should	NOT	pass	a	pointer	to	the	buffer;	instead	you	should	pass
the	first	variable	in	the	buffer.	(This	can	be	done	by	dereferencing	the	pointer	with	
pass	a	pointer	directly,	then	Put	will	put	the	memory	from	the	pointer	variable,	not	the	memory	it	points	to.
amount

Makes	Put	write	to	file	amount	consecutive	variables	to	the	file	-	i.e.	it	writes	
starting	at	data's	location	in	memory,	into	the	file.	If	amount	is	omitted	it	defaults	to	
single	variable.

Return	Value

0	on	success;	nonzero	on	error.	"disk	full"	is	considered	as	an	error,	and	results	in	return	code	
of	data	written	before	is	not	available,	and	wouldn't	be	really	useful	anyway.	

Description
Writes	binary	data	from	a	buffer	variable	to	a	file	opened	in	Binary	or	Random

Put	can	be	used	as	a	function,	and	will	return	0	on	success	or	an	error	code	on	failure.	

For	files	opened	in	Random	mode,	the	size	in	bytes	of	the	data	to	write	must	match	the	specified	record	size.

Example

'	Create	variables	for	the	file	number,	and	the	number	to	put

Dim	As	Integer	f

Dim	As	Long	value

'	Find	the	first	free	file	number

f	=	FreeFile()

'	Open	the	file	"file.ext"	for	binary	usage,	using	the	file	number	"f"

Open	"file.ext"	For	Binary	As	#f

		value=	10

		'	Write	the	bytes	of	the	integer	'value'	into	the	file,	using	file	number	"f"

		'	starting	at	the	beginning	of	the	file	(position	1)

		Put	#f,	1,	value

'	Close	the	file

Close	#f

'	Create	an	integer	array

Dim	buffer(1	To	10)	As	Integer

For	i	As	Integer	=	1	To	10

				buffer(i)	=	i

Next

'	Find	the	first	free	file	file	number

Dim	f	As	Integer

f	=	FreeFile()

'	Open	the	file	"file.ext"	for	binary	usage,	using	the	file	number	"f"

Open	"file.ext"	For	Binary	As	#f

'	Write	the	array	into	the	file,	using	file	number	"f"

'	starting	at	the	beginning	of	the	file	(position	1)

Put	#f,	1,	buffer()

'	Close	the	file

Close	#f

Example

Dim	As	Byte	Ptr	lpBuffer

Dim	As	Integer	hFile,	Counter,	Size

Size	=	256

lpBuffer	=	Allocate(Size)

For	Counter	=	0	To	Size-1

		lpBuffer[Counter]	=	(Counter	And	&HFF)

Next

'	Get	free	file	file	number

hFile	=	FreeFile()

'	Open	the	file	"test.bin"	in	binary	writing	mode

Open	"test.bin"	For	Binary	Access	Write	As	#hFile

		'	Write	256	bytes	from	the	memory	pointed	to	by	lpBuffer

		Put	#hFile,	,	lpBuffer[0],	Size

'	Close	the	file

Close	#hFile

'	Free	the	allocated	memory

Deallocate	lpBuffer

Differences	from	QB

Put	can	write	full	arrays	as	in	VB	or,	alternatively,	write	a	multiple	of	the	data	size	from	
location.
Put	can	be	used	as	a	function	in	FB,	to	find	the	success/error	code	returned	without	having	to	use	error
handling	procedures.

See	also

Put	(Graphics)	different	usage	of	same	keyword	
Get	(File	I/O)

Open

Close

Random

Binary

FreeFile

Random 	

Specifies	file	or	device	to	be	opened	for	binary	mode

Syntax
Open	filename	for	Random	[Access	access_type]	[Lock	lock_type]	as	[#]

Parameters
filename

file	name	to	open
access_type

indicates	whether	the	file	may	be	read	from,	written	to	or	both
lock_type

locking	to	be	used	while	the	file	is	open
filenum

unused	file	number	to	associate	with	the	open	file
record_length

the	size	of	the	record	used	for	the	file

Description
Opens	a	file	or	device	for	reading	and/or	writing	binary	data	in	the	given	file	
record_length.
If	the	file	does	not	exist,	a	new	file	will	be	created,	otherwise	any	data	existing	in	the	file	is	preserved	by	
The	file	pointer	is	initialized	by	Open	at	the	start	of	the	file,	at	record	number	
position	in	steps	of	record_length	bytes.
This	file	mode	uses	an	user-defined	Type	buffer	variable	to	read/write	full	records	in	a	file.	The	buffer	variable
uses	to	include	several	fields.
The	data	is	saved	in	binary	mode,	in	the	same	internal	format	FreeBASIC	uses,	by	means	of	

filename	must	be	string	expression	resulting	in	a	legal	file	name	in	the	target	OS,	without	wildcards.	The	file	will
be	sought	for	in	the	present	directory,	unless	a	path	is	given.
Access_type	-	By	default	Random	mode	allows	to	both	read	and	write	the	file,	unless	an	
must	be	one	of:

Read	-	the	file	is	opened	for	input	only
Write	-	the	file	is	opened	for	output	only
Read	Write	-	the	file	is	opened	for	input	and	output	(the	default)

Lock_type	indicates	the	way	the	file	is	locked	for	other	processes	(users	or	threads),	it	is	one	of:
Shared	-	The	file	can	be	freely	accessed	by	other	processes	
Lock	Read	-	The	file	can't	be	opened	simultaneously	for	reading
Lock	Write	-	The	file	can't	be	opened	simultaneously	for	writing
Lock	Read	Write	-	The	file	cannot	be	opened	simultaneously	by	other	processes.

If	no	lock	type	is	stated,	the	file	will	be	Shared	for	other	threads	of	the	program	and	
programs.
Lock	and	Unlock	can	be	used	to	restrict	temporally	access	to	parts	of	a	file.

filenum	is	a	valid	FreeBASIC	file	number	(in	the	range	1..255)	not	being	used	for	any	other	file	presently	open.
This	number	identifies	the	file	for	the	rest	of	file	operations.	A	free	file	number	can	be	found	using	the	
function.

record_length	is	the	amount	of	bytes	the	file	pointer	will	move	for	each	individual	
size	of	the	buffer	variable	used	when	Getting	and	Putting	data.	If	omitted,	it	defaults	to	

Example

''	This	example	generates	a	test	file	and	then	lets	you	view	random	records

''	that	are	read	live	from	the	file.

Type	Entry

				slen	As	Byte

				sdata	As	String	*	10

End	Type

Dim	u	As	Entry

Dim	s	As	String

Open	"testfile"	For	Random	As	#1	Len	=	SizeOf(Entry

''	Write	out	9	records	with	predefined	data

For	i	As	Integer	=	1	To	9

				Read	s

				u	=	Type(Len(s),	s)

				Put	#1,	i,	u

Next

Data	".,-?!'@:",	"abc",						"def"

Data	"ghi",						"jkl",						"mno"

Data	"pqrs",					"tuv",						"wxyz"

''	Let	the	user	view	records	by	specifying	their	index	number

Do

				Dim	i	As	Integer

				Input	"Record	number:	",	i

				If	i	<	1	Or	i	>	9	Then	Exit	Do

				Get	#1,	i,	u

				Print	i	&	":	"	&	Left(u.sdata,	u.slen)

				Print

Loop

Close	#1

Type	ScoreEntry	Field	=	1

				As	String	*	20	Name

				As	Single	score

End	Type

Dim	As	ScoreEntry	entry

''	Generate	a	fake	boring	highscore	file

Open	"scores.dat"	For	Random	Access	Write	As	#1	Len

For	i	As	Integer	=	1	To	10

				entry.name	=	"Player	"	&	i

				entry.score	=	i

				Put	#1,	i,	entry

Next

Close	#1

''	Read	out	and	display	the	entries

Open	"scores.dat"	For	Random	Access	Read	As	#1	Len

For	i	As	Integer	=	1	To	10

				Get	#1,	i,	entry

				Print	i	&	":",	entry.name,	Str(entry.score),	entry.score

Next

Close	#1

Differences	from	QB

Care	must	be	taken	with	dynamic	or	fixed	length	strings	inside	user	defined	types	(UDT),	see	the
warning	at	KeyPgType.
The	keyword	Field	can	only	be	used	with	Type	to	specify	the	packing	of	the	UDT.	

See	also

Open

Binary

Get	#

Put	#

Randomize 	

Seeds	the	random	number	generator

Syntax
Declare	Sub	Randomize	(ByVal	seed	As	Double	=	-1.0,	ByVal

algorithm	As	Long	=	0)

Usage
Randomize	[seed][,	algorithm]

Parameters
seed

A	Double	seed	value	for	the	random	number	generator.	If	omitted,	a
value	based	on	Timer	will	be	used	instead.
algorithm

An	integer	value	to	select	the	algorithm.	If	omitted,	the	default	algorithm
for	the	current	language	dialect	is	used.

Description
Sets	the	random	seed	that	helps	Rnd	generate	random	numbers,	and
selects	the	algorithm	to	use.	Valid	values	for	algorithm	are:

0	-	Default	for	current	language	dialect.	This	is	algorithm	3	in	the	-lang
fb	dialect,	4	in	the	-lang	qb	dialect	and	1	in	the	-lang	fblite	dialect.
1	-	Uses	the	C	runtime	library's	rand()	function.	This	will	give	different
results	depending	on	the	platform.
2	-	Uses	a	fast	implementation.	This	should	be	stable	across	all
platforms,	and	provides	32-bit	granularity,	reasonable	degree	of
randomness.
3	-	Uses	the	Mersenne	Twister.	This	should	be	stable	across	all
platforms,	provides	32-bit	granularity,	and	gives	a	high	degree	of
randomness.
4	-	Uses	a	function	that	is	designed	to	give	the	same	random	number
sequences	as	QBASIC.	This	should	be	stable	across	all	platforms,	and
provides	24-bit	precision,	with	a	low	degree	of	randomness.

5	-	Available	on	Win32	and	Linux,	using	system	features	(Win32	Crypto
API,	Linux	/dev/urandom)	to	provide	cryptographically	random	numbers.
If	those	system	APIs	are	unavailable,	algorithm	3	will	be	used	instead.

For	any	given	seed,	each	algorithm	will	produce	a	specific,	deterministic
sequence	of	numbers	for	that	seed.	If	you	want	each	call	to	Randomize
to	produce	a	different	sequence	of	numbers,	a	seed	that	is	not	quite
predictable	should	be	used	-	for	example,	the	value	returned	from
Timer.	Omitting	the	seed	parameter	will	use	a	value	based	on	this.
Note:	using	the	Timer	value	directly	as	a	parameter	will	produce	the
same	seed	if	used	more	than	once	in	the	same	second.	However,	it	is
generally	not	worth	calling	Randomize	twice	with	unpredictable	seeds
anyway,	because	the	second	sequence	will	be	no	more	random	than
the	first.	In	most	cases,	the	Mersenne	twister	should	provide	a
sufficiently	random	sequence	of	numbers,	without	requiring	reseeding
between	Rnd	calls.

When	you	call	Randomize	with	the	QB	compatible	algorithm,	part	of	the
old	seed	is	retained.	This	means	that	if	you	call	Randomize	several	times
with	the	same	seed,	you	will	not	get	the	same	sequence	each	time.	To
get	a	specific	sequence	in	QB	compatible	mode,	set	the	seed	by	calling
Rnd	with	a	negative	parameter.

Example

''	Seed	the	RNG	to	the	method	using	C's	rand()

Randomize	,	1

''	Print	a	sequence	of	random	numbers

For	i	As	Integer	=	1	To	10

				Print	Rnd

Next

Dialect	Differences

The	default	algorithm	used	depends	on	the	current	dialect	in	use:
With	the	-lang	fb	dialect,	a	32	bit	Mersenne	Twister
function	with	a	granularity	of	32	bits	is	used.
With	the	-lang	qb	dialect,	a	function	giving	the	same
output	as	Rnd	in	QB	is	used.	The	granularity	is	24	bits.
With	the	-lang	deprecated	and	-lang	fblite	dialects,	the
function	in	the	C	runtime	available	in	the	system	is	used.
The	function	has	a	granularity	of	15	bits	in	Win32,	and	32
bits	in	Linux	and	DOS.

Differences	from	QB

The	algorithm	parameter	is	new	to	FreeBASIC.
QBASIC	only	had	one	algorithm	(replicated	in	FB	in	algorithm
number	4,	and	set	as	the	default	in	the	-lang	qb	dialect).

See	also

Rnd

Language	dialects

Read 	

Reads	values	stored	with	the	Data	statement.

Syntax
Read	variable_list

Description
Reads	data	stored	in	the	application	with	the	Data	command.	

The	elements	of	the	variable_list	must	be	of	basic	types,	numeric,	strings	or	elements	of
arrays	and	user	defined	types.

All	the	Data	statements	in	the	program	behave	as	a	single	list,	after	the	last	element	of	one
Data	statement	is	read,	the	first	element	of	the	following	Data	statement	will	be	read.
The	program	should	not	attempt	to	Read	after	the	last	Data	element.	The	results	are	(in	all
dialects)	undefined,	and	the	program	may	crash	(Page	Fault).

Data	constants	can	only	be	of	simple	types	(numeric	or	string).	A	string	read	into	a	numeric
variable	will	be	evaluated	by	the	Val	function.

The	"Restore	label"	statement	makes	the	first	Data	item	after	label	the	next	item	to	be	read,
allowing	the	user	to	choose	specific	sections	of	data	to	be	read.

Example

'	Create	an	array	of	5	integers	and	a	string	to	hold	the	data.

Dim	As	Integer	h(4)

Dim	As	String	hs

Dim	As	Integer	readindex

'	Set	up	to	loop	5	times	(for	5	numbers...	check	the	data)

For	readindex	=	0	To	4

		'	Read	in	an	integer.

		Read	h(readindex)

		'	Display	it.

		Print	"Number"	;	readindex	;	"	=	"	;	h(readindex

Next	readindex

'	Spacer.

Print

'	Read	in	a	string.

Read	hs

'	Print	it.

Print		"String	=	"	+	hs

'	Await	a	keypress.

Sleep

'	Exit	program.

End

'	Block	of	data.

Data	3,	234,	4354,	23433,	87643,	"Bye!"

Dialect	Differences

None	in	syntax	and	usage	of	Read
See	the	Data	page	for	more	information	on	differences	in	storing	the	data

Differences	from	QB

None	in	syntax	and	usage	of	Read
See	the	Data	page	for	more	information	on	differences	in	storing	the	data

See	also

Data

Restore

Read	(File	Access) 	

File	access	specifier

Syntax
Open	filename	As	String	For	Binary	Access	Read	As	#filenum	As

Integer

Description
Specifier	for	the	Access	clause	in	the	Open	statement.	Read	specifies
that	the	file	is	accessible	for	input.

Example
See	example	at	Access

Differences	from	QB

None	known.

See	also

Access

Open

Read	Write	(File	Access) 	

File	access	specifier

Syntax
Open	filename	As	String	For	Binary	Access	Read	Write	As	#filenum

As	Integer

Description
Specifier	for	the	Access	clause	in	the	Open	statement.	Read	Write
specifies	that	the	file	is	accessible	for	both	input	and	output.

Example
See	example	at	Access

Differences	from	QB

None	known.

See	also

Access

Open

Reallocate 	

Reallocates	storage	for	an	existing	reserved	block	of	memory

Syntax
Declare	Function	Reallocate	cdecl	(ByVal	pointer	As	Any	Ptr,	ByVal

Usage
result	=	Reallocate(pointer,	count)

Parameters
pointer

The	address	of	allocated	memory	to	be	reallocated.
count

The	number	of	bytes,	in	total,	to	be	reallocated.

Return	Value
The	address	of	the	reallocated	memory.	A	null	(0)	pointer	is	returned	if	reallocation	was	unsuccessful,	and	the	original	memory
pointed	to	by	pointer	remains	unchanged.

Description
Attempts	to	reallocate,	or	resize,	memory	previously	allocated	with	Allocate
preserved,	although	if	count	is	less	than	the	original	size	of	the	memory	block,	the	buffer	will	be	truncated.	
the	added	memory	range	is	not	initialized	to	anything.

When	using	Reallocate,	the	result	pointer	must	be	saved	to	prevent	a	potential	memory	leak,	because	the	original	
no	longer	be	valid	after	reallocation.	The	value	of	the	new	pointer	should	be	checked	-	if	it	is	
original	pointer	remains	valid,	and	the	amount	of	memory	allocated	to	it	has	not	changed.

Reallocated	memory	must	be	freed	with	Deallocate	when	no	longer	needed.

If	pointer	is	null	(0),	then	ReAllocate	behaves	identically	to	Allocate.	If	
behaves	similar	to	Deallocate	and	a	null	(0)	pointer	is	returned.

If	the	memory	has	previously	been	deallocated	by	a	call	to	Deallocate

When	manually	allocating	memory	for	String	descriptors	(or	Udts	that	contain	one),	if	
memory	block,	the	new	extra	memory	range	must	be	explicitly	cleared	to	zeroes	before	the	first	string	use	(for	example,	using
Clear).	Otherwise	accessing	the	string	will	cause	undefined	results	(trying	to	write	or	read	at	a	random	place	in	memory,	or	trying
to	deallocate	a	random	pointer).

This	function	is	not	part	of	the	FreeBASIC	runtime	library,	it	is	an	alias	for	the	C	runtime	library's	
be	thread	safe	in	all	platforms.

NOTE:	Reallocating	a	pointer	inside	an	object	function,	when	that	pointer	contains	the	parent	object	of	the	function,	is	undefined,
and	will	likely	result	in	horrible	crashes.

Example

Dim	a	As	Integer	Ptr,	b	As	Integer	Ptr,	i	As	Integer

a	=	Allocate(5	*	SizeOf(Integer))			'	Allocate	memory	for	5	integers

If	a	=	0	Then	Print	"Error	Allocating	a":	End

For	i	=	0	To	4

		a[i]	=	(i	+	1)	*	2			'	Assign	integers	to	the	buffer

Next	i

b	=	Reallocate(a,	10	*	SizeOf(Integer))			'	Reallocate	memory	for	5	additional	integers

If	b	<>	0	Then

				a	=	b			'	Discard	the	old	pointer	and	use	the	new	one

				For	i	=	5	To	9

						a[i]	=	(i	+	1)	*	2			'	Assign	more	integers	to	the	buffer

				Next	i

				For	i	=	0	To	9			'	Print	the	integers

						Print	i,	a[i]

				Next	i

				Print

Else	''	Reallocate	failed,	memory	unchanged

				Print	"Error	Reallocating	a"

				For	i	=	0	To	4			'	Print	the	integers

						Print	i,	a[i]

				Next	i

				Print

End	If

Deallocate	a			'	Clean	up

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Allocate

CAllocate

Deallocate

ReDim 	

Defines	or	resizes	a	variable-length	array

Syntax
Declaring	a	Dynamic	Array:
ReDim	[Shared]	symbolname([subscript	[,	...]])	As	datatype	[,	...]

ReDim	[Shared]	As	datatype	symbolname([subscript	[,	...]])	[,	...]

Resizing	a	Dynamic	Array:
ReDim	[Preserve]	symbolname([subscript	[,	...]])	[,	...]

Parameters
Shared

Specifies	shared	(file-scope)	access	to	the	array	throughout	the	module.
Preserve

When	used	with	an	existing	array,	the	contents	of	the	array	will	be	preserved	during	the	resize.	Note	that	in	some	cases
Preserve	will	not	preserve	data	at	its	original	index,	see	below.
symbolname

A	new	or	existing	array	id.
subscript:	[lowerbound	To]	upperbound
The	lower	and	upper	bound	range	for	a	dimension	of	the	array.	Lower	bound	defaults	to	zero	(
specified.
datatype

The	type	of	elements	contained	in	the	array.

Description
ReDim	can	be	used	to	define	new	variable-length	arrays,	or	resize	existing	variable-length	arrays	while	keeping	the	same
number	of	dimensions.	ReDim	always	produces	variable-length	arrays,	so,	unlike	
with	constant	subscripts.

When	defining	a	new	variable-length	array,	its	elements	are	default	constructed.	For	simple	data	types	like	
Double,	the	elements	are	initialized	to	zero	(0).	For	user-defined	types	with	a	default	constructor,	that	will	be	called.

NOTES:	
ReDim	Preserve	may	not	work	as	expected	in	all	cases:

Preserve's	current	behavior	is	to	keep	the	original	data	contiguous	in	memory,	and	only	expand	or	truncate	the	size	of	the

memory.
Its	behavior	(with	a	single	dimension)	is	well-defined	only	when	the	upper	bound	is	changed.	
the	current	result	is	that	the	data	is	in	effect	shifted	to	start	at	the	new	lower	bound.
With	multiple	dimensions,	only	the	upper	bound	of	only	the	first	dimension	may	be	safely	increased.	
reduced,	the	existing	mappable	data	may	be	lost.	If	lower-order	dimensions	are	resized	at	all,	the	effects	can	be	hard	to
predict.

ReDim	cannot	be	used	on	fixed-size	arrays	-	i.e.	arrays	with	constant	bounds	made	with	
fixed-size	arrays	contained	in	UDTs	(user-defined	Types).	
parameters	in	a	function.	FreeBASIC	cannot	prevent	you	trying	this	at	compile-time,	but	the	results	at	run-
time	will	be	undefined.
Using	ReDim	within	a	member	procedure	with	an	array	that	contains	an	instance	of	the	object	class	is
undefined,	and	will	[hopefully]	result	in	horrible	crashes.
For	use	of	ReDim	(resizing)	with	a	complex	expression,	(especially	if	the	array	expression	itself	contains
parentheses),	the	array	expression	must	be	enclosed	in	parentheses	in	order	to	solve	the	parsing	ambiguity.

Example

''	Define	a	variable-length	array	with	5	elements

''

ReDim	array(0	To	4)	As	Integer

For	index	As	Integer	=	LBound(array)	To	UBound(array

				array(index)	=	index

Next

''	Resize	a	variable-length	array	with	10	elements	

''	(the	lower	bound	should	be	kept	the	same)

ReDim	Preserve	array(0	To	9)	As	Integer

Print	"index",	"value"

For	index	As	Integer	=	LBound(array)	To	UBound(array

				Print	index,	array(index)

Next

This	program	will	produce	the	following	output:

index									value

	0													0

	1													1

	2													2

	3													3

	4													4

	5													0

	6													0

	7													0

	8													0

	9													0

''	Define	a	variable-length	array

Dim	array()	As	Integer

''	ReDim	array	to	have	3*4	elements

ReDim	array(1	To	3,	1	To	4)

Dim	As	Integer	n	=	1,	i,	j

Print	"3	*	4:"

Print

For	i	=	LBound(array,	1)	To	UBound(array,	1)

				For	j	=	LBound(array,	2)	To	UBound(array,	2)

								array(i,	j)	=	n

								Print	Using	"##		";	array(i,	j);

								n	+=	1

				Next

				Print

Next

Print

''	ReDim	Preserve	array	to	have	4*4	elements,	preserving	the	contents

''	(only	the	first	upper	bound	should	be	changed)

ReDim	Preserve	array(1	To	4,	1	To	4)	As	Integer

Print	"4	*	4:"

Print

For	i	=	LBound(array,	1)	To	UBound(array,	1)

				For	j	=	LBound(array,	2)	To	UBound(array,	2)

								Print	Using	"##		";	array(i,	j);

				Next

				Print

Next

Print

''	ReDim	Preserve	array	to	have	2*4	elements,	preserving	but	trancating	the	contents

''	(only	the	first	upper	bound	should	be	changed)

ReDim	Preserve	array(1	To	2,	1	To	4)	As	Integer

Print	"2	*	4:"

Print

For	i	=	LBound(array,	1)	To	UBound(array,	1)

				For	j	=	LBound(array,	2)	To	UBound(array,	2)

								Print	Using	"##		";	array(i,	j);

				Next

				Print

Next

Print

This	program	will	produce	the	following	output:

3	*	4:

	1			2			3			4

	5			6			7			8

	9		10		11		12

4	*	4:

	1			2			3			4

	5			6			7			8

	9		10		11		12

	0			0			0			0

2	*	4:

	1			2			3			4

	5			6			7			8

Differences	from	QB

Preserve	was	in	Visual	Basic,	but	not	in	QBASIC.
Multi-dimensional	arrays	in	FreeBASIC	are	in	row-major	order,	rather	than	column-major	order.

See	also

Common

Dim

Erase

Extern

LBound

Preserve

Shared

Static

UBound

Var

Rem 	

Indicates	comments	in	the	source	code.

Syntax
Rem	comment

'	Comment

/'	Multi-line

comment	'/

Description
A	source	code	line	beginning	with	Rem	indicates	that	the	line	is	a	comment
and	will	not	be	compiled.	

The	single	quote	character	(')	may	also	be	used	to	indicate	a	comment	and
may	appear	after	other	keywords	on	a	source	line.

Multi-line	comments	are	marked	with	the	tokens	/'	and	'/.	All	text	between
the	two	markers	is	considered	comment	text	and	is	not	compiled.

Example

/'	this	is	a	multi	line	

comment	as	a	header	of

this	example	'/

Rem	This	Is	a	Single	Line	comment

'	this	is	a	single	line	comment

?	"Hello"	:	Rem	comment	following	a	statement

Dim	a	As	Integer	'	comment	following	a	statement

?	"FreeBASIC"	:	'	also	acceptable	

Dim	b	As	/'	can	comment	in	here	also	'/				Integer

#if	0

				This	way	of	commenting	Out	code	was

				required	before	version	0.16

#endif

Differences	from	QB

Multiline	comments	are	new	to	FreeBASIC

See	also

#if

Reset 	

Closes	all	open	files,	or	resets	standard	I/O	handles.

Syntax
Declare	Sub	Reset	()

Declare	Sub	Reset	(ByVal	streamno	As	Long)

Usage
Reset

or

Reset(streamno)

Parameters
streamno

The	stream	number	to	reset,	0	for	stdin	or	1	for	stdout.

Description
Reset,	when	called	with	no	arguments,	closes	all	disk	files.

Reset,	when	called	with	the	streamno	argument,	will	reset	the	redirected
or	piped	streams	associated	with	stdin	(0),	or	stdout	(1).

Runtime	errors:
Reset(streamno)	can	set	one	of	the	following	runtime	errors:

(1)	Illegal	function	call
streamno	was	neither	0	nor	1

(3)	File	I/O	error
Resetting	of	stdin	or	stdout	failed

Example

Open	"test.txt"	For	Output	As	#1

Print	#1,	"testing	123"

Reset

Dim	x	As	String

''	Read	from	STDIN	from	piped	input

Open	Cons	For	Input	As	#1

While	EOF(1)	=	0

		Input	#1,	x

		Print	"""";	x;	""""

Wend

Close	#1

''	Reset	to	read	from	the	keyboard

Reset(0)

Print	"Enter	some	text:"

Input	x

''	Read	from	STDIN	(now	from	keyboard)

Open	Cons	For	Input	As	#1

While	EOF(1)	=	0

		Input	#1,	x

		Print	"""";	x;	""""

Wend

Close	#1

Note:	Under	Windows,	to	specify	to	the	program	that	data	entry	is
completed	(transfer	EOF),	you	can	press	CTRL+Z	then	press	ENTER.

Differences	from	QB

None	for	Reset().
The	Reset(streamno)	usage	is	new	to	FreeBASIC.

See	also

Close

Open

Open	Cons

Isredirected

Restore 	

Changes	the	next	read	location	for	values	stored	with	the	Data	statement.

Syntax
Restore	label

Description
Sets	the	next-data-to-read	pointer	to	the	first	element	of	the	first	Data	statement	after	the	label.	
label	must	be	contained	in	the	same	module	as	the	currently-executing	code.	
normal	top	to	bottom	order	in	which	Data	are	Read.	It	allows	re-reading	some	
sets	of	Data	in	a	single	module.	

Example

'	Create	an	2	arrays	of	integers	and	a	2	strings	to	hold	the	data.

Dim	h(4)	As	Integer

Dim	h2(4)	As	Integer

Dim	hs	As	String

Dim	hs2	As	String

Dim	read_data1	As	Integer

Dim	read_data2	As	Integer

'	Set	the	data	read	to	the	label	'dat2:'

Restore	dat2

'	Set	up	to	loop	5	times	(for	5	numbers...	check	the	data)

For	read_data1	=	0	To	4

		'	Read	in	an	integer.

		Read	h(read_data1)

		'	Display	it.

		Print	"Bloc	1,	number";	read_data1;"	=	";	h(read_data1

Next

'	Spacer.

Print

'	Read	in	a	string.

Read	hs

'	Print	it.

Print		"Bloc	1	string	=	"	+	hs

'	Spacers.

Print

Print

'	Set	the	data	read	to	the	label	'dat1:'

Restore	dat1

'	Set	up	to	loop	5	times	(for	5	numbers...	check	the	data)

For	read_data2	=	0	To	4

		'	Read	in	an	integer.

		Read	h2(read_data2)

		'	Display	it.

		Print	"Bloc	2,	number";	read_data2;"	=	";	h2(read_data2

Next

'	Spacer.

Print

'	Read	in	a	string.

Read	hs2

'	Print	it.

Print		"Bloc	2	string	=	"	+	hs2

'	Await	a	keypress.

Sleep

'	Exit	program.

End

'	First	block	of	data.

dat1:

Data	3,	234,	4354,	23433,	87643,	"Bye!"

'	Second	block	of	data.

dat2:

Data	546,	7894,	4589,	64657,	34554,	"Hi!"

Differences	from	QB

None

See	also

Data

Read

Resume 	

Error	handling	statement	to	resume	execution	after	a	jump	to	an	error	handler

Syntax
Resume

Description
Resume	is	used	in	the	traditional	QB	error	handling	mechanism	within	an	error	handler	(called	by	
line	that	caused	the	error.	Usually	this	is	used	after	the	error	has	been	handled	gracefully	in	order	to	try	the	previously	erroneous
operation	again	with	corrected	data.

Resume	resets	the	Err	value	to	0

Example

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

Dim	As	Single	i,	j

On	Error	Goto	ErrHandler

i	=	0

j	=	1	/	i	'	this	line	causes	a	divide-by-

zero	error	on	the	first	try;	execution	jumps	to	ErrHandler	label

Print	j	'	after	the	value	of	i	is	corrected,	prints	0.5

End	'	end	the	program	so	that	execution	does	not	fall	through	to	the	error	handler	again

ErrHandler:

i	=	2

Resume	'	execution	jumps	back	to	'j	=	1	/	i'	line,	which	does	not	cause	an	error	this	time

Dialect	Differences

RESUME	is	not	supported	in	the	-lang	fb	dialect.	Statements	can	be	used	in	its	function	form	to	return	an	error	code

If	Open("text"	For	Input	As	#1)	<>	0	Then

		Print	"Unable	to	open	file"

End	If

Differences	from	QB

Does	not	accept	line	numbers	or	labels
Must	compile	with	-ex	option

See	also

Err

Resume	Next

Error	Handling

Return 	

Control	flow	statement	to	return	from	a	procedure	or	GoSub.

Syntax
Return	[expression]

or

Return	[label]

Description
Return	is	used	to	return	from	a	procedure	or	return	from	a	gosub	GoSub

Because	Return	could	mean	return-from-gosub	or	return-from-procedure,	
can	be	used	to	enable	and	disable	GoSub	support.	When	GoSub	support	is	disabled,	
recognized	as	return-from-procedure.	When	GoSub	support	is	enabled,	
from-gosub.

Return	(from	procedure)	is	used	inside	a	procedure	to	exit	the	procedure	possibly	with	a	return	value.	A	
cannot	specify	a	return	return	value.	In	a	Function,	Return	must	specify	its	return	value.	
is	roughly	equivalent	to	the	Function	=	expression	:	Exit	Function	idiom.

Return	(from	gosub)	is	used	to	return	control	back	to	the	statement	immediately	following	a	previous	
call.	When	used	in	combination	with	GoSub,	no	return	value	can	be	specified.	
specified,	execution	continues	at	the	specified	label.	If	no	GoSub	was	made,	a	runtime	error	is	generated,
and	execution	continues	immediately	after	Return.

A	GoSub	should	always	have	a	matching	Return	statement.	However,	if	
no	GoSub	was	made,	a	run-time	error	is	generated.

Example

''	GOSUB	&	RETURN	example,	compile	with	"-lang	qb"	or	use	"$lang"	as	below

'$lang:	"qb"

Print	"Let's	Gosub!"

GoSub	MyGosub

Print	"Back	from	Gosub!"

Sleep

End

MyGosub:

Print	"In	Gosub!"

Return

''	Return	from	function

Type	rational														''	simple	rational	number	type

				numerator	As	Integer

				denominator	As	Integer

End	Type

''	multiplies	two	rational	types

Function	rational_multiply(r1	As	rational,	r2	As	

				Dim	r	As	rational

				''	multiply	the	divisors	...

				r.numerator			=	r1.numerator			*	r2.numerator

				r.denominator	=	r1.denominator	*	r2.denominator

				''	...	and	return	the	result

				Return	r

End	Function

Dim	As	rational	r1	=	(6,	105)			''	define	some	rationals	r1	and	r2

Dim	As	rational	r2	=	(70,	4)

Dim	As	rational	r3

r3	=	rational_multiply(r1,	r2)		''	multiply	and	store	the	result	in	r3

''	display	the	expression

Print	r1.numerator	&	"/"	&	r1.denominator;	"	*	";

Print	r2.numerator	&	"/"	&	r2.denominator;	"	=	";

Print	r3.numerator	&	"/"	&	r3.denominator

Dialect	Differences

In	the	-lang	fb	dialect	Return	always	means	return-from-procedure.
In	the	-lang	qb	dialect,	Return	means	return-from-gosub	by	default	unless	changed	with	
Nogosub,	in	which	case	the	compiler	will	recognize	Return	as	return-from-procedure.
In	the	-lang	fblite	dialect,	Return	means	return-from-procedure	by	default	unless	changed	with
Option	Gosub,	in	which	case	the	compiler	will	recognize	Return	as	return-from-gosub.

Differences	from	QB

None	when	using	the	-lang	qb	dialect.

See	also

Sub

Function

GoSub

Option	Gosub

Option	Nogosub

RGB 	

Computes	a	valid	color	value	for	hi/truecolor	modes

Syntax
#define	RGB(r,g,b)	((CUInt(r)	Shl	16)	Or	(CUInt(g)	Shl	8)	Or	CUInt

Usage
result	=	RGB(red,	green,	blue)

Parameters
red

red	color	component	value
green

green	color	component	value
blue

blue	color	component	value

Return	Value
The	combined	color.

Description
red,	green	and	blue	are	components	ranging	0-255.

The	RGB	function	can	be	used	to	compute	a	valid	color	value	for	use	while	in	hi/truecolor	modes.	It	returns	an	unsigned
integer	in	the	format	&h;AARRGGBB,	where	RR,	GG	and	BB	equal	the	values	passed	to	this	function,	in	hexadecimal	format.
AA	is	the	implicit	alpha	value	and	is	automatically	set	to	&hFF;	(opaque).
It	is	possible	to	retrieve	the	red,	green,	blue	and	alpha	values	from	a	color	value,	by	using	a	combination	of	
Shr.	The	second	example	below	shows	how	to	#define	and	use	macros	to	do	this.

Note	for	Windows	API	programmers:	The	macro	named	RGB	in	the	Windows	references	has	been	renamed	
the	FB	headers	for	Windows	to	avoid	collisions.	

Example

See	Put	(Graphics)	example	in	addition.

ScreenRes	640,480,32		'32	bit	color

Line(0,0)-

(319,479),	RGB(255,0,0)	'draws	a	bright	red	box	on	the	left	side	of	the	window

Line(639,0)-

(320,479),	RGB(0,0,255)	'draws	a	bright	blue	box	on	the	right	side	of	the	window

Sleep	'wait	before	exiting

''	setting	and	retrieving	Red,	Green,	Blue	and	Alpha	values

#define	RGBA_R(c)	(CUInt(c)	Shr	16	And	255)

#define	RGBA_G(c)	(CUInt(c)	Shr		8	And	255)

#define	RGBA_B(c)	(CUInt(c)								And	255)

#define	RGBA_A(c)	(CUInt(c)	Shr	24)

Dim	As	UInteger	r,	g,	b,	a

Dim	As	UInteger	col	=	RGB(128,	192,	64)

Print	Using	"Color:	_&H\						\";	Hex(col,	8)

r	=	RGBA_R(col)

g	=	RGBA_G(col)

b	=	RGBA_B(col)

a	=	RGBA_A(col)

Print

Print	Using	"Red:									_&H\\	=	###";	Hex(r,	2);

Print	Using	"Green:							_&H\\	=	###";	Hex(g,	2);

Print	Using	"Blue:								_&H\\	=	###";	Hex(b,	2);

Print	Using	"Alpha:							_&H\\	=	###";	Hex(a,	2);

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

RGBA

Color

#define

RGBA 	

Computes	a	valid	color	value	including	alpha	(transparency)	for	hi/truecolor	modes

Syntax
#define	RGBA(r,g,b,a)	((CUInt(r)	Shl	16)	Or	(CUInt(g)	Shl	8)	Or	

24))

Usage
result	=	RGBA(red,	green,	blue,	alpha)

Parameters
red

red	color	component	value
green

green	color	component	value
blue

blue	color	component	value
alpha

alpha	component	value

Return	Value
the	combined	color

Description
red,	green,	blue	and	alpha	are	components	ranging	0-255.

The	RGBA	function	can	be	used	to	compute	a	valid	color	value	including	an	alpha	channel	for	use	while
in	hi/truecolor	modes.	It	returns	an	unsigned	integer	in	the	format	&h;AARRGGBB
equal	the	values	passed	to	this	function,	in	hexadecimal	format.
It	is	possible	to	retrieve	the	red,	green,	blue	and	alpha	values	from	a	color	value,	by	using	a
combination	of	And	and	Shr.	The	second	example	below	shows	how	to	
this.

Example

'open	a	graphics	screen	(320	*	240,	32-bit)

ScreenRes	320,	240,	32

Dim	As	Any	Ptr	img

Dim	As	Integer	x,	y

'make	an	image	that	varies	in	transparency	and	color

img	=	ImageCreate(64,	64)

For	x	=	0	To	63

		For	y	=	0	To	63

				PSet	img,	(x,	y),	RGBA(x	*	4,	0,	y	*	4,	(x	+	y

		Next	y

Next	x

Circle	img,	(31,	31),	25,						RGBA(0,	127,	192,	192

transparent	blue	circle

Line			img,	(26,	20)-

(38,	44),	RGBA(255,	255,	255,	0),				BF	'transparent	white	rectangle

'draw	a	background	(diagonal	white	lines)

For	x	=	-240	To	319	Step	10

		Line	(x,	0)-Step(240,	240),	RGB(255,	255,	255)

Next

Line	(10,		10)-(310,		37),	RGB(127,	0,	0),	BF	'red	box	for	text

Line	(10,	146)-

(310,	229),	RGB(0,	127,	0),	BF	'green	box	for	Putting	onto

'draw	the	image	and	some	text	with	PSET

Draw	String(64,	20),	"PSet"

Put(48,		48),	img,	PSet

Put(48,	156),	img,	PSet

'draw	the	image	and	some	text	with	ALPHA

Draw	String	(220,	20),	"Alpha"

Put(208,		48),	img,	Alpha

Put(208,	156),	img,	Alpha

'Free	the	image	memory

ImageDestroy	img

'Keep	the	window	open	until	the	user	presses	a	key

Sleep

''	setting	and	retrieving	Red,	Green,	Blue	and	Alpha	values

#define	RGBA_R(c)	(CUInt(c)	Shr	16	And	255)

#define	RGBA_G(c)	(CUInt(c)	Shr		8	And	255)

#define	RGBA_B(c)	(CUInt(c)								And	255)

#define	RGBA_A(c)	(CUInt(c)	Shr	24)

Dim	As	UInteger	r,	g,	b,	a

Dim	As	UInteger	col	=	RGBA(255,	192,	64,	128)

Print	Using	"Color:	_&H\						\";	Hex(col,	8)

r	=	RGBA_R(col)

g	=	RGBA_G(col)

b	=	RGBA_B(col)

a	=	RGBA_A(col)

Print

Print	Using	"Red:									_&H\\	=	###";	Hex(r,	2);

Print	Using	"Green:							_&H\\	=	###";	Hex(g,	2);

Print	Using	"Blue:								_&H\\	=	###";	Hex(b,	2);

Print	Using	"Alpha:							_&H\\	=	###";	Hex(a,	2);

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

RGB

Color

#define

Right 	

Returns	the	rightmost	substring	of	a	string

Syntax
Declare	Function	Right	(ByRef	str	As	Const	String,	ByVal	n	As

Integer)	As	String

Declare	Function	Right	(ByRef	str	As	Const	WString,	ByVal	n	As

Integer)	As	WString

Usage
result	=	Right[$](str,	n)

Parameters
str

The	source	string.
n

The	substring	length,	in	characters.

Return	Value
Returns	the	rightmost	substring	from	str.

Description
Returns	the	rightmost	n	characters	starting	from	the	right	(end)	of	str.
If	str	is	empty,	then	the	null	string	("")	is	returned.	If	n	<=	0	then	the
null	string	("")	is	returned.	If	n	>	len(str)	then	the	entire	source	string
is	returned.

Example

Dim	text	As	String	=	"hello	world"

Print	Right(text,	5)

will	produce	the	output:

world

An	Unicode	example:
	

dim	text	as	wstring*20
text	=	"Привет,	мир!"
print	right(text,	5)	'displays	"	мир!"

Platform	Differences

DOS	does	not	support	the	wide-character	string	version	of
Right.

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

QB	does	not	support	Unicode.

See	also

Left

Mid	(Function)

RmDir 	

Removes	a	folder/directory	from	the	file	system

Syntax
Declare	Function	RmDir	(ByRef	folder	As	Const	String)	As	Long

Usage
result	=	RmDir(folder)

Parameters
folder

The	folder/directory	to	be	removed.

Return	Value
Returns	zero	(0)	on	success,	and	negative	one	(-1)	on	failure.

Description
Removes	a	folder	from	the	file	system.	The	function	will	fail	if	the	folder	is	not	empty.

Example

Dim	pathname	As	String	=	"foo\bar\baz"

Dim	result	As	Integer	=	RmDir(pathname)

If	0	<>	result	Then	Print	"error:	unable	to	remove	folder	"

Platform	Differences

Linux	requires	the	folder	case	matches	the	real	name	of	the	file.	Windows	and	DOS	are	case	insensitive.	
Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses	backward	slashes	\	but	it	allows	for	forward	slashes	.	
backward	\	slashes.	

Differences	from	QB

None

See	also

Shell

ChDir

MkDir

Rnd 	

Returns	a	random	Double	precision	number	in	the	range	[0,	1)

Syntax
Declare	Function	Rnd	(ByVal	seed	As	Single	=	1.0)	As	Double

Usage
result	=	Rnd(seed)

Parameters
seed

Optional	Single	argument.	If	seed	has	a	value	of	zero	(0.0),	the	last	random	number	generated	is	repeate.	
number	a	new	random	number	is	returned.	With	the	QB-compatible	algorithm,	a	negative	number	fully	reseeds	the
generator.	The	default	for	no	argument	is	to	return	a	new	random	number.

Return	Value
Returns	the	random	number	generated.

Description
Returns	a	number	of	type	Double	in	the	range	[0,	1)	(i.e.	0	<=	Rnd	<	1

Rnd	can	use	a	variety	of	different	algorithms	-	see	Randomize	for	details	of	the	default	and	selectable	algorithms.

Rnd	will	return	the	same	sequence	of	numbers	every	time	a	program	is	run.	
the	generator.

Example

''	Function	to	a	random	number	in	the	range	[first,	last),	or	{first	<=	x	<	last}.

Function	rnd_range	(first	As	Double,	last	As	Double

				Function	=	Rnd	*	(last	-	first)	+	first

End	Function

''	seed	the	random	number	generator,	so	the	sequence	is	not	the	same	each	time

Randomize

''	prints	a	random	number	in	the	range	[0,	1),	or	{0	<=	x	<	1}.

Print	Rnd

''	prints	a	random	number	in	the	range	[0,	10),	or		{0	<=	x	<	10}.

Print	Rnd	*	10

''	prints	a	random	integral	number	in	the	range	[1,	11),	or		{1	<=	x	<	11}.

''	with	integers,	this	is	equivalent	to	[1,	10],	or	{1	<=	n	<=	10}.

Print	Int(Rnd	*	10)	+	1

''	prints	a	random	integral	number	in	the	range	[69,	421),	or	{69	<=	x	<	421}.

''	this	is	equivalent	to	[69,	420],	or	{69	<=	n	<=	420}.

Print	Int(rnd_range(69,	421))

Dialect	Differences
The	default	algorithm	used	depends	on	the	current	dialect	in	use:

With	the	-lang	fb	dialect,	a	32	bit	Mersenne	Twister	function	with	a	granularity	of	32	bits	is	used.
With	the	-lang	qb	dialect,	a	function	giving	the	same	output	as	
With	the	-lang	deprecated	and	-lang	fblite	dialects,	the	function	in	the	C	runtime	available	in	the	system	is
used.	The	function	available	in	Win32	has	a	granularity	of	15	bits,	and	32	bits	in	Linux	and	DOS.

Differences	from	QB

None,	if	compiled	in	the	-lang	qb	dialect.	Other	dialects	can	also	use	the	same	seeding	and	generating	algorithms
by	calling	Randomize	with	the	appropriate	parameter.
For	the	non-QB-compatible	algorithms,	if	the	optional	argument	is	less	than	0,	it	has	the	same	meaning	as
passing	an	argument	of	1.

See	also

Randomize

Timer

Int

RSet 	

Right	justifies	a	string	in	a	string	buffer

Syntax
Declare	Sub	RSet	(ByRef	dst	As	String,	ByRef	src	As	Const	String

)

Declare	Sub	RSet	(ByVal	dst	As	WString	Ptr,	ByVal	src	As	Const

WString	Ptr)

Usage
RSet	dst,	src

Parameters
dst

A	String	or	WString	buffer	to	copy	the	text	into.
src

The	source	String	or	WString	to	be	right	justified.

Description
RSet	right	justifies	text	into	the	string	buffer	dst,	filling	the	right	part	of
the	string	with	src	and	the	left	part	with	spaces.	The	string	buffer	size
is	not	modified.
If	text	is	too	long	for	the	string	buffer	size,	RSet	truncates	characters
from	the	right.

Example

Dim	buffer	As	String

buffer	=	Space(10)

RSet	buffer,	"91.5"

Print	"-["	&	buffer	&	"]-"

Differences	from	QB

In	QBasic	the	syntax	was	RSet	dst	=	src.	That	syntax	is	also
supported	by	FB.

See	also

LSet

Space

Put	(File	I/O)

MKD

MKI

MKL

MKS

RTrim 	

Removes	surrounding	substrings	or	characters	on	the	right	side	of	a
string

Syntax
Declare	Function	RTrim	(ByRef	str	As	Const	String,	[Any]	ByRef

trimset	As	Const	String	=	"	")	As	String

Declare	Function	RTrim	(ByRef	str	As	Const	WString,	[Any]

ByRef	trimset	As	Const	WString	=	WStr("	"))	As	WString

Usage
result	=	RTrim[$](str	[,	[Any]	trimset])

Parameters
str

The	source	string.
trimset

The	substring	to	trim.

Return	Value
Returns	the	trimmed	string.

Description
This	procedure	trims	surrounding	characters	from	the	right	(end)	of	a
source	string.	Substrings	matching	trimset	will	be	trimmed	if	specified,
otherwise	spaces	(ASCII	code	32)	are	trimmed.

If	the	Any	keyword	is	used,	any	character	matching	a	character	in
trimset	will	be	trimmed.

All	comparisons	are	case-sensitive.

Example

Dim	s1	As	String	=	"Article	101		"

Print	"'"	+	RTrim(s1)	+	"'"

Print	"'"	+	RTrim(s1,	"	01")	+	"'"

Print	"'"	+	RTrim(s1,	Any	"	10")	+	"'"

Dim	s2	As	String	=	"Test	Pattern	aaBBaaBaa"

Print	"'"	+	RTrim(s2,	"Baa")	+	"'"

Print	"'"	+	RTrim(s2,	Any	"Ba")	+	"'"

will	produce	the	output:

'Article	101'

'Article	101		'

'Article'

'Test	Pattern	aaB'

'Test	Pattern	'

Platform	Differences

DOS	version/target	of	FreeBASIC	does	not	support	the	wide-
character	version	of	RTrim.

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

QB	does	not	support	specifying	a	trimset	string	or	the	ANY
clause.

See	also

LTrim

Trim

Run 	

Transfers	execution	to	an	external	program

Syntax
Declare	Function	Run	(ByRef	program	As	Const	String,	ByRef	arguments

Usage
result	=	Run(program	[,	arguments])

Parameters
program

The	file	name	(including	file	path)	of	the	program	(executable)	to	transfer	control	to.
arguments

The	command-line	arguments	to	be	passed	to	the	program.

Return	Value
Returns	negative	one	(-1)	if	the	program	could	not	be	executed.

Description
Transfers	control	over	to	an	external	program.	When	the	program	exits,	execution	will	return	to	the	system.

Example

''	Attempt	to	transfer	control	to	"program.exe"	in	the	current	directory.

Dim	result	As	Integer	=	Run("program.exe")

''	at	this	point,	"program.exe"	has	failed	to	execute,	and

''	result	will	be	set	to	-1.

Platform	Differences

Linux	requires	the	program	case	matches	the	real	name	of	the	file.	Windows	and	DOS	

insensitive.	The	program	being	run	may	be	case	sensitive	for	its	command	line	parameters.
Path	separators	in	Linux	are	forward	slashes	("/").	Windows	uses	backward	slashes	("
some	versions	of	Windows	allow	forward	slashes.	DOS	uses	backward	slashes.	

Differences	from	QB

Run	needs	the	full	executable	name,	including	extension	(.exe)	on	platforms	that	have	one	(Win32,
DOS).
Returning	an	error	code	is	new	to	FreeBASIC.

See	also

Exec	transfer	temporarily,	with	arguments	
Chain	transfer	temporarily,	without	arguments
Command	pick	arguments

SAdd 	

Returns	a	pointer	to	a	string	variable's	data

Syntax
Declare	Function	SAdd	(ByRef	str	As	String)	As	ZString	Ptr

Declare	Function	SAdd	(ByRef	str	As	WString)	As	ZString	Ptr

Declare	Function	SAdd	(ByRef	str	As	ZString)	As	ZString	Ptr

Usage
result	=	SAdd(str)

Parameters
str

the	string	expression	or	variable	to	get	the	address	of

Return	Value
A	pointer	to	the	data	associated	with	str.

Description
Returns	the	memory	offset	of	the	string	data	in	the	string	variable.

Example

Dim	s	As	String

Print	SAdd(s)

s	=	"hello"

Print	SAdd(s)

s	=	"abcdefg,	1234567,	54321"

Print	SAdd(s)

Differences	from	QB

QB	returned	an	integer	instead	of	a	pointer.

See	also

StrPtr

VarPtr

ProcPtr

Scope...End	Scope 	

Statement	to	begin	a	new	scope	block

Syntax
Scope

[statements]

End	Scope

Description
The	Scope	block	allows	variables	to	be	(re)defined	and	used	locally	in
a	program.

When	a	variable	is	(re)defined	with	Dim	within	a	scope	structure,	this
local	working	variable	can	be	used	from	its	(re)definition	until	the	end
of	the	scope.	During	this	time,	any	variables	outside	the	scope	that
have	the	same	name	will	be	ignored,	and	will	not	be	accessible	by	that
name.	Any	statements	in	the	Scope	block	before	the	variable	is
redefined	will	use	the	variable	as	defined	outside	the	Scope.

Scope..End	Scope	is	not	permitted	when	compiling	with	in	the	-lang	qb
dialect.

Example

Dim	As	Integer	x	=	5,	y	=	2

Print	"x	=";	x;	",	";	"y	=";	y

Scope

				Dim	x	As	Integer	=	3

				Print	"x	=";	x;	",	";	"y	=";	y

				Scope

								Dim	y	As	Integer	=	4

								Print	"x	=";	x;	",	";	"y	=";	y

				End	Scope

End	Scope

Print	"x	=";	x;	",	";	"y	=";	y

Dialect	Differences

Explicit	Scope..End	Scope	blocks	are	available	only	in	the	-lang
fb	and	-lang	deprecated	dialects.
Explicit	Scope..End	Scope	blocks	are	not	available	in	the	-lang
fblite	and	-lang	qb	dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

Dim

ReDim

Static

Var

Screen	(Graphics) 	

Initializes	a	graphics	mode	using	QB-like	mode	numbers

Syntax

-lang	fb|fblite	dialects:
Screen	mode	[,	[depth]	[,	[num_pages]	[,	[flags]	[,	[refresh_rate

Screen	,	[active_page]	[,	[visible_page]]

-lang	qb	dialect:
Screen	[mode]	[,	[colormode]	[,	[active_page]	[,	[visible_page

Parameters
mode	
is	a	QB	style	graphics	screen	mode	number	(see	below).	If	mode	is	0,	then	any	currently	set	graphics	mode	is	closed,	and	all	functions	resume	their
normal	console-mode	functionality.	See	below	for	available	modes.
depth

is	the	color	depth	in	bits	per	pixel.	This	only	has	an	effect	for	modes	14
aliases	for	16	and	32,	respectively.	If	omitted,	it	defaults	to	8.
num_pages

is	the	number	of	video	pages	you	want,	see	below.	If	omitted,	it	defaults	to	
flags

Are	used	to	select	several	things	as	graphics	driver,	fullscreen	mode.	There	are	constants	predefined	in	the	
ScreenRes	for	available	flags.
refresh_rate

requests	a	refresh	rate.	If	it	is	not	available	in	the	present	card	or	the	parameter	is	omitted,	FreeBASIC	chooses	the	rate	automatically.
active_page

Used	to	set	the	active	page,	where	printing/drawing	commands	take	effect
visible_page

Used	to	set	the	visible	page,	which	is	shown	to	the	user
colormode

Unused	-	allowed	for	compatibility	with	the	QB	syntax

Description
Screen	tells	the	compiler	to	link	the	GfxLib	and	initializes	a	QB-only,	QB-on-GUI	or	OpenGL	graphics	mode,	depending	on	the	

In	QB-only	modes	a	dumb	window	or	fullscreen	resolution	is	set,	one	or	more	buffers	in	standard	memory	are	created,	console	commands	are
redirected	to	their	graphic	versions,	a	default	palette	is	set	and	an	automatic	screen	refresh	thread	is	started.	

statements	can	be	used.

In	QB-on-GUI	modes	one	or	more	buffers	in	standard	memory	are	created,	console	commands	are	redirected	to	their	graphic	versions	and	a	
palette	is	set.	QB-like	graphics	and	console	statements	can	be	used.	
graphics	buffers.

In	OpenGL	modes	a	dumb	window	or	fullscreen	resolution	is	set,	one	or	more	buffers	in	standard	memory	are	created,	and	the	OS's	OpenGL	library	is
initialized.	From	here	only	OpenGL	commands	can	be	used;	QB-like	and	console	commands	are	forbidden.	
portable	way;	you	can	then	also	use	ScreenControl	to	properly	customize	the	GL	pixel	format	to	be	used	before	
supported	OpenGL	extensions	after	a	mode	has	been	set,	and	ScreenGLProc

Any	buffer	that	is	created	in	standard	memory	uses	one	of	three	supported	internal	pixel	formats,	depending	on	the	desired	color	depth;	see	
pixel	formats	for	details.

If	Screen	fails	to	set	the	required	mode,	an	"Illegal	function	call"	error	is	issued	and	the	screen	pointer	is	set	to	
using	standard	On	Error	processing	or	retrieving	the	screen	pointer	with	

Before	setting	a	fullscreen	mode	the	program	should	check	if	that	mode	is	available	in	the	graphics	card	using	

mode	details
Available	modes	list:
QB	compatibility	modes:

Mode	nr Resolution Emulation Text char	size colors	on	screen

1 320x200 CGA 40X25 8x8 16	background,	1	of	four	sets	foreground

2 640x200 CGA 80x25 8x8 16	colors	to	2	attributes

7 320x200 EGA 40x25 8x8 16	colors	to	16	attributes

8 640x200 EGA 80x25 8x8 16	colors	to	16	attributes

9 640x350 EGA 80x25	0r	80x43 8x14	or	8x8 16	colors	to	16	attributes

11 640x480 VGA 80x30	or	80x60 8x16	or	8x8 256K	colors	to	2	attributes

12 640x480 VGA 80x30	or	80x60 8x16	or	8x8 256K	colors	to	16	attributes

13 320x200 MCGA 40X25 8X8 256K	colors	to	256	attributes

New	FreeBASIC	modes:

Mode	nr Resolution Emulation Text char	size colors	on	screen

14 320x240 	 40x30 8x8 256K	colors	to	256	attributes	or	direct	color

15 400x300 	 50x37 8x8 256K	colors	to	256	attributes	or	direct	color

16 512x384 	 64x24	or	64x48 8x16	or	8x8 256K	colors	to	256	attributes	or	direct	color

17 640x400 	 80x25	or	80x50 8x16	or	8x8 256K	colors	to	256	attributes	or	direct	color

18 640x480 	 80x30	or	80x60 8x16	or	8x8 256K	colors	to	256	attributes	or	direct	color

19 800x600 	 100x37	or	100x75 8x16	or	8x8 256K	colors	to	256	attributes	or	direct	color

20 1024x768 	 128x48	or	128x96 8x16	or	8x8 256K	colors	to	256	attributes	or	direct	color

21 1280x1024 	 160x64	or	160x128 8x16	or	8x8 256K	colors	to	256	attributes	or	direct	color

depth	details
For	modes	14	and	up,	the	depth	parameter	changes	the	color	depth	to	the	specified	new	one;	if	depth	is	not	specified,	these	modes	run	in	8bpp.	
modes	13	and	below,	depth	has	no	effect.

num_pages	details
You	can	request	any	number	of	pages	for	any	video	mode;	if	you	omit	the	parameter,	only	the	visible	page	(number	
the	visible	screen	or	an	offscreen	buffer,	you	can	show	a	page	while	working	on	another	one;	see	the	
created	in	standard	memory,	the	video	card	memory	is	never	used	for	video	buffering.

flags	details:
(documented	at	the	page	ScreenRes)

Other	details
While	in	windowed	mode,	clicking	on	the	window	close	button	will	add	a	keypress	of	
window	button	will	switch	to	fullscreen	mode	if	possible.	A	successful	
resets	the	palette	to	the	specified	mode	one	(see	Default	palettes),	resets	the	clipping	region	to	the	size	of	the	screen,	disables	custom	coordinates
mappings,	moves	the	graphics	cursor	to	the	center	of	the	screen,	moves	the	text	cursor	to	the	top-left	corner	of	the	screen	and	sets	foreground	and
background	colors	to	bright	white	and	black	respectively.

Example

'	Sets	screen	mode	13	(320*200,	8bpp)

Screen	13

Print	"Screen	mode	13	set"

Sleep

#include	"fbgfx.bi"

#if	__FB_LANG__	=	"fb"

Using	FB	''	Screen	mode	flags	are	in	the	FB	namespace	in	lang	FB

#endif

'	Sets	screen	mode	18	(640*480)	with	32bpp	color	depth	and	4	pages,	in	windowed	mode;	switching	disabled

Screen	18,	32,	4,	(GFX_WINDOWED	Or	GFX_NO_SWITCH)

'	Check	to	make	sure	Screen	was	opened	successfully

If	ScreenPtr	=	0	Then

				Print	"Error	setting	video	mode!"

				End

End	If

Print	"Successfully	set	video	mode"

Sleep

Platform	Differences

In	DOS,	Windowing	and	OpenGL	related	switches	are	not	available,	and	other	issues,	see	

Dialect	Differences

In	the	-lang	fb	and	-lang	fblite	dialects,	the	usage	is:
Screen	mode	[,	[depth]	[,	[num_pages]	[,	[flags]	[,	[refresh_rate

or:
Screen	,	[active_page]	[,	[visible_page]]]

In	the	-lang	qb	dialect,	the	usage	is:
Screen	[mode]	[,	[colormode]	[,	[active_page]	[,	[visible_page]]]]

Differences	from	QB

None	in	the	-lang	qb	dialect.
In	QB	the	syntax	was	Screen	mode,colormode,active_page,visible_page
the	rest.	The	use	of	Screen	,	,	apage,vpage	to	swap	screen	pages	is	only	available	in	the	

ScreenSet	should	be	used	in	the	-lang	fb	and	-lang	fblite	dialects.

See	also

Screen	(Console)

ScreenRes	More	flexible	alternative	to	Screen
ScreenList	Check	display	modes	available	for	FB	GfxLib	to	use
ScreenControl	Select	driver	and	more	
ScreenLock

ScreenUnlock

ScreenPtr	Semi-low	level	access
ScreenSet

ScreenCopy

ScreenInfo

ScreenGLProc

Internal	pixel	formats

Screen	(Console) 	

Gets	the	character	or	color	attribute	at	a	given	location

Syntax
Declare	Function	Screen	(ByVal	row	As	Long,	ByVal	column	As	Long

colorflag	As	Long	=	0)	As	Long

Usage
result	=	Screen(row,	column	[,	colorflag])

Parameters
row

1-based	offset	from	the	top	left	corner	of	the	console.
column

1-based	offset	from	the	top	left	corner	of	the	console.
colorflag

If	equal	to	0,	the	ASCII	code	is	returned,	otherwise	the	color	attribute	is	returned.	
omitted,	it	defaults	to	0.

Return	Value
The	ASCII	or	color	attribute	of	the	character.

Description
Screen	returns	the	character	or	the	color	attribute	found	at	a	given	position	of	a	console
output.	It	works	in	console	mode	and	in	graphics	mode.

The	format	of	the	color	attribute	depends	on	the	current	color	depth:

If	the	color	type	is	a	palette	type	with	up	to	4	bits	per	pixel	(such	as	the	Win32	console),
then	the	color	attribute	is	an	8-bit	value,	where	the	higher	four	bits	hold	the	cell
background	color	and	the	lower	four	bits	hold	the	foreground	(character)	color.

If	the	color	type	is	an	8-bit	palette,	then	the	color	attribute	is	a	16-bit	value,	where	the
high	byte	holds	the	background	color	and	the	low	byte	holds	the	foreground	color.

If	the	color	type	is	full	color,	then	the	color	attribute	is	a	32-bit	integer,	holding	a	single
color	value.	If	colorflag	is	equal	to	1,	then	the	foreground	color	is	returned;	if	
is	equal	to	2,	then	the	background	color	is	returned.

The	color	values	for	the	standard	16	color	palette	are:

Value Color Value Color

0 Black 8 Gray

1 Blue 9 Bright	Blue

2 Green 10 Bright	Green

3 Cyan 11 Bright	Cyan

4 Red 12 Bright	Red

5 Magenta 13 Pink

6 Brown 14 Yellow

7 White 15 Bright	White

Example

Dim	character_ascii_value	As	Integer

Dim	attribute	As	Integer

Dim	background	As	Integer

Dim	cell_color	As	Integer

Dim	row	As	Integer,	col	As	Integer

character_ascii_value	=	Screen(row,	col)

attribute	=	Screen(row,	col,	1)

background	=	attribute	Shr	4

cell_color	=	attribute	And	&hf

''	open	a	graphics	screen	with	4	bits	per	pixel

''	(alternatively,	omit	this	line	to	use	the	console)

ScreenRes	320,	200,	4

''	print	a	character

Color	7,	1

Print	"A"

Dim	As	UInteger	char,	col,	fg,	bg

''	get	the	ASCII	value	of	the	character	we've	just	printed

char	=	Screen(1,	1,	0)

''get	the	color	attributes

col	=	Screen(1,	1,	1)

fg	=	col	And	&HF

bg	=	(col	Shr	4)	And	&HF

Print	Using	"ASCII	value:	###	(""!"")";	char;	Chr(

Print	Using	"Foreground	color:	##";	fg

Print	Using	"Background	color:	##";	bg

Sleep

''	open	a	graphics	screen	with	8	bits	per	pixel

ScreenRes	320,	200,	8

''	print	a	character

Color	30,	16

Print	"Z"

Dim	As	UInteger	char,	col,	fg,	bg

''	get	the	ASCII	value	of	the	character	we've	just	printed

char	=	Screen(1,	1,	0)

''get	the	color	attributes

col	=	Screen(1,	1,	1)

fg	=	col	And	&HFF

bg	=	(col	Shr	8)	And	&HFF

Print	Using	"ASCII	value:	###	(""!"")";	char;	Chr(

Print	Using	"Foreground	color:	###";	fg

Print	Using	"Background	color:	###";	bg

Sleep

''	open	a	full-color	graphics	screen

ScreenRes	320,	200,	32

''	print	a	character

Color	RGB(255,	255,	0),	RGB(0,	0,	255)	'yellow	on	blue

Print	"M"

Dim	As	Integer	char,	fg,	bg

''	get	the	ASCII	value	of	the	character	we've	just	printed

char	=	Screen(1,	1,	0)

''get	the	color	attributes

fg	=	Screen(1,	1,	1)

bg	=	Screen(1,	1,	2)

Print	Using	"ASCII	value:	###	(""!"")";	char;	Chr(

Print	Using	"Foreground	color:	&";	Hex(fg,	8)

Print	Using	"Background	color:	&";	Hex(bg,	8)

Sleep

Platform	Differences

On	the	Linux	version,	the	value	returned	can	differ	from	the	character	shown	on
the	console.	For	example,	unprintable	control	codes	-	such	as	the	
(10)	that	implicitly	occurs	after	the	end	of	Printed	text	-	may	be	picked	up	instead
of	the	untouched	character	in	its	place.

Differences	from	QB

In	QB	Screen	triggered	an	error	if	the	coordinates	were	out	of	screen.

See	also

Screen	(Graphics)

Color

ScreenCopy 	

Copies	the	contents	of	a	graphical	page	into	another	graphical	page

Syntax
Declare	Function	ScreenCopy	(ByVal	from_page	As	Long	=	-1,	ByVal

to_page	As	Long	=	-1)	As	Long

Usage
ScreenCopy	[from_page]	[,	to_page]

Parameters
from_page

page	to	copy	from
to_page

page	to	copy	to

Description
from_page	is	the	page	to	copy	from.	If	this	argument	is	omitted,	the	current
work	page	is	assumed.	to_page	is	the	page	to	copy	to.	If	this	argument	is
omitted,	the	currently	visible	page	is	assumed.	Page	numbers	range	from
0	to	num_pages	-	1,	where	num_pages	is	the	number	of	pages	specified
when	setting	the	graphics	mode	with	ScreenRes	or	Screen.

You	can	use	this	function	to	add	a	double	buffer	to	your	graphics.	Any
graphics	screen	mode	with	multiple	pages	supports	this	function.

ScreenCopy	is	inactive	if	the	destination	page	is	locked.

There	are	two	other	functions	similar	to	this:	Flip	and	PCopy.	Flip	is
designed	to	work	in	OpenGL	modes,	while	PCopy	supports	console	pages
on	some	platforms.	Both	do	the	same	thing	as	ScreenCopy	in	normal
graphics	modes.

Example

See	also	ScreenSet	example.

''	320x200x8,	with	3	pages

Screen	13,,3

''	image	for	working	page	#1	(visible	page	#0)

ScreenSet	1,	0

Cls

Circle(160,	100),	90,	1	,,,,	f

Circle(160,	100),	90,	15

Print	"Press	2	to	copy	page	#2	to	visible	page"

Print	"Press	escape	to	exit"

''	image	for	working	page	#2	(visible	page	#0)

ScreenSet	2,	0

Cls

Line(50,	50)-(270,	150),	2,	bf

Line(50,	50)-(270,	150),	15,	b

Print	"Press	1	to	copy	page	#1	to	visible	page"

Print	"Press	escape	to	exit"

''	page	#0	is	the	working	page	(visible	page	#0)

ScreenSet	0,	0

Cls

Print	"Press	1	to	copy	page	#1	to	visible	page"

Print	"Press	2	to	copy	page	#2	to	visible	page"

Print	"Press	escape	to	exit"

Dim	k	As	String

Do

		k	=	Inkey

		Select	Case	k

		Case	Chr(27)

				Exit	Do

		Case	"1"

				ScreenCopy	1,	0

		Case	"2"

				ScreenCopy	2,	0

		End	Select

		Sleep	25

Loop

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Screencopy.

Differences	from	QB

New	to	FreeBASIC.	It	is	a	graphics-only	version	of	PCopy	-	which
works	in	both	text	and	graphics	modes.

See	also

PCopy

Screen	(Graphics)

ScreenRes

ScreenSet

ScreenControl 	

Sets	or	gets	internal	graphics	library	settings

Syntax
Declare	Sub	ScreenControl	(ByVal	what	As	Long,	ByRef	param1	As	

=	0,	ByRef	param3	As	Integer	=	0,	ByRef	param4	As	Integer	=	0)

Declare	Sub	ScreenControl	(ByVal	what	As	Long,	ByRef	param	As	String

Usage
ScreenControl(what	[,	[param1][,	[param2][,	[param3][,	[

or,
ScreenControl(what	[,	param])

Parameters
what

specifies	the	function	to	perform
param1

optional	first	integer	parameter,	contains	value	to	be	set	on	entry	or	value	got	on	exit
param2

optional	second	integer	parameter,	contains	value	to	be	set	on	entry	or	value	got	on	exit
param3

optional	third	integer	parameter,	contains	value	to	be	set	on	entry	or	value	got	on	exit
param4

optional	fourth	integer	parameter,	contains	value	to	be	set	on	entry	or	value	got	on	exit
param

optional	string	parameter,	contains	text	to	be	set	on	entry	or	text	got	on	exit

Description

This	function	can	be	used	to	set	or	get	internal	GfxLib	states.	The	what	parameter	specifies	which	operation	to
perform.	On	operations	that	set	states,	the	param*	parameters	must	contain	the	values	to	be	set.	On
operations	that	get	states,	param*	will	hold	the	values	returned	by	GfxLib	when	the	function	returns.
The	meaning	of	the	param*	parameters	depend	on	the	what	parameter,	whose	possible	values	are	defined	as
constants	in	fbgfx.bi.	In	lang	fb,	they	are	set	to	be	stored	in	the	FB	Namespace
Below	is	a	list	of	the	supported	what	constants	-	and	their	values	as	defined	at	time	of	writing	-	along	with	the
parameters	associated	with	them.

Supported	operations
Note:	*	denotes	operations	that	are	allowed	while	a	graphics	mode	has	not	yet	been	set	via	
(Graphics)	or	ScreenRes.	For	all	other	operations,	return	values	are	zero(
operation	has	no	effect	if	a	graphics	mode	is	not	available	at	call	time.

Get	operations
GET_WINDOW_POS	(0)	Returns	the	current	window	position,	in	desktop	coordinates.

[OUT]	param1	x
[OUT]	param2	y

*	GET_WINDOW_TITLE	(1)	Returns	the	title	of	the	program	window.
[OUT]	param	title

GET_WINDOW_HANDLE	(2)	Returns	a	handle	to	the	program	window.
[OUT]	param1	handle;	this	is	a	HWND	in	Windows,	a	"Window"	XID	in	X11

*	GET_DESKTOP_SIZE	(3)	Returns	the	desktop	size,	in	pixels.
[OUT]	param1	width
[OUT]	param2	height

GET_SCREEN_SIZE	(4)	Returns	the	current	screen	size	in	pixels.
[OUT]	param1	width
[OUT]	param2	height

GET_SCREEN_DEPTH	(5)	Returns	current	graphics	mode	screen	depth.
[OUT]	param1	bits	per	pixel

GET_SCREEN_BPP	(6)	Returns	current	graphics	mode	BPP.
[OUT]	param1	bytes	per	pixel

GET_SCREEN_PITCH	(7)	Returns	the	current	graphics	mode	framebuffer	pitch,	in	bytes.
[OUT]	param1	pitch

GET_SCREEN_REFRESH	(8)	Returns	the	current	graphics	mode	refresh	rate,	in	hertz.
[OUT]	param1	rate

GET_DRIVER_NAME	(9)	Returns	the	current	graphics	mode	driver	name.
[OUT]	param	name

GET_TRANSPARENT_COLOR	(10)	Returns	the	transparent	color	value	for	the	current	graphics	mode	depth.
[OUT]	param1	value

GET_VIEWPORT	(11)	Returns	the	current	viewport	as	set	by	the	View	(Graphics)
coordinates.

[OUT]	param1	x1
[OUT]	param2	y1

[OUT]	param3	x2
[OUT]	param4	y2

GET_PEN_POS	(12)	Returns	the	last	graphical	pen	position,	in	screen	coordinates.	This	position	is	used	in
graphics	functions	supporting	relative	coordinates	using	the	Step

[OUT]	param1	x
[OUT]	param2	y

GET_COLOR	(13)	Returns	the	current	graphics	mode	color.
[OUT]	param1	foreground
[OUT]	param2	background

GET_ALPHA_PRIMITIVES	(14)	Returns	if	primitives	drawing	support	for	alpha	channel	is	enabled.
[OUT]	param1	TRUE	(-1)	if	alpha	primitives	is	enabled,	FALSE	(0)	otherwise

GET_GL_EXTENSIONS	(15)	Returns	a	string	holding	all	supported	GL	extensions,	or	the	empty	string	if	not
in	OpenGL	mode.

[OUT]	param	supported	GL	extensions
GET_HIGH_PRIORITY	(16)	Returns	if	GFX_HIGH_PRIORITY	was	specified	in	the	flags	passed	to	
ScreenRes.

[OUT]	param1	higher	priority	graphics	processing	enabled

Set	operations
SET_WINDOW_POS	(100)	Sets	the	current	program	window	position,	in	desktop	coordinates.

[IN]	param1	x
[IN]	param2	y

*	SET_WINDOW_TITLE	(101)	Sets	the	current	program	window	title.	This	is	equivalent	to	calling
WindowTitle(param).

[IN]	param	title
SET_PEN_POS	(102)	Sets	the	current	graphical	pen	position,	in	screen	coordinates.	This	position	is	used	in
graphics	functions	supporting	relative	coordinates	using	the	Step

[IN]	param1	x
[IN]	param2	y

*	SET_DRIVER_NAME	(103)	Sets	the	name	of	the	internal	graphics	driver	to	be	used	in	subsequent	calls	to
Screen	or	ScreenRes.

[IN]	param	driver	name
SET_ALPHA_PRIMITIVES	(104)	Sets	if	primitives	drawing	should	honor	alpha	channel.

[IN]	param1	enabled
*	SET_GL_COLOR_BITS	(105)	Sets	the	number	of	bits	dedicated	to	the	OpenGL	color	buffer

[IN]	param1	bits

*	SET_GL_COLOR_RED_BITS	(106)	Sets	the	number	of	bits	dedicated	to	the	red	component	of	the	OpenGL
color	buffer

[IN]	param1	bits
*	SET_GL_COLOR_GREEN_BITS	(107)	Sets	the	number	of	bits	dedicated	to	the	green	component	of	the
OpenGL	color	buffer

[IN]	param1	bits
*	SET_GL_COLOR_BLUE_BITS	(108)	Sets	the	number	of	bits	dedicated	to	the	blue	component	of	the	OpenGL
color	buffer

[IN]	param1	bits
*	SET_GL_COLOR_ALPHA_BITS	(109)	Sets	the	number	of	bits	dedicated	to	the	alpha	component	of	the
OpenGL	color	buffer

[IN]	param1	bits
*	SET_GL_DEPTH_BITS	(110)	Sets	the	number	of	bits	dedicated	to	the	OpenGL	depth	buffer

[IN]	param1	bits
*	SET_GL_STENCIL_BITS	(111)	Sets	the	number	of	bits	dedicated	to	the	OpenGL	stencil	buffer

[IN]	param1	bits
*	SET_GL_ACCUM_BITS	(112)	Sets	the	number	of	bits	dedicated	to	the	OpenGL	accumulation	buffer

[IN]	param1	bits
*	SET_GL_ACCUM_RED_BITS	(113)	Sets	the	number	of	bits	dedicated	to	the	red	component	of	the	OpenGL
accumulation	buffer

[IN]	param1	bits
*	SET_GL_ACCUM_GREEN_BITS	(114)	Sets	the	number	of	bits	dedicated	to	the	green	component	of	the
OpenGL	accumulation	buffer

[IN]	param1	bits
*	SET_GL_ACCUM_BLUE_BITS	(115)	Sets	the	number	of	bits	dedicated	to	the	blue	component	of	the	OpenGL
accumulation	buffer

[IN]	param1	bits
*	SET_GL_ACCUM_ALPHA_BITS	(116)	Sets	the	number	of	bits	dedicated	to	the	alpha	component	of	the
OpenGL	accumulation	buffer

[IN]	param1	bits
*	SET_GL_NUM_SAMPLES	(117)	Sets	the	number	of	samples	to	be	used	for	OpenGL	multisampling

[IN]	param1	samples

Other	operations
POLL_EVENTS	(200)	Cause	the	library	to	poll	all	events,	ie	to	check	the	system	event	queue,	specifically
used	for	retrieving	keyboard	and	mouse	events.	This	is	most	useful	for	OpenGL	code	where	

used,	as	normally	Flip	will	cause	these	events	to	be	polled.

Example

''	include	fbgfx.bi	for	some	useful	definitions

#include	"fbgfx.bi"

''	use	FB	namespace	for	easy	access	to	types/constants

Using	FB

Dim	e	As	EVENT

Dim	As	Integer	x0,	y0,	x,	y

Dim	As	Integer	shakes	=	0

Dim	As	Any	Ptr	img

ScreenRes	320,	200,	32

Print	"Click	to	shake	window"

''	find	window	coordinates

ScreenControl	GET_WINDOW_POS,	x0,	y0

Do

				If	(shakes	>	0)	Then

								

								''	do	a	shake	of	the	window

								If	(shakes	>	1)	Then

												''	move	window	to	a	random	position	near	its	original	coordinates

												x	=	x0	+	Int(32	*	(Rnd()	-	0.5))

												y	=	y0	+	Int(32	*	(Rnd()	-	0.5))

												ScreenControl	SET_WINDOW_POS,	x,	y

								Else

												''	move	window	back	to	its	original	coordinates

												ScreenControl	SET_WINDOW_POS,	x0,	y0

								End	If

								shakes	-=	1

				End	If

				If	(ScreenEvent(@e))	Then

								Select	Case	e.type

								

								''	user	pressed	the	mouse	button

								Case	EVENT_MOUSE_BUTTON_PRESS

												If	(shakes	=	0)	Then

																''	set	to	do	20	shakes

																shakes	=	20

																''	find	current	window	coordinates	to	shake	around

																ScreenControl	GET_WINDOW_POS,	x0,	y0

												End	If

								''	user	closed	the	window	or	pressed	a	key

								Case	EVENT_WINDOW_CLOSE,	EVENT_KEY_PRESS

												''	exit	to	end	of	program

												Exit	Do

								End	Select

				End	If

				''	free	up	CPU	for	other	programs

				Sleep	5

Loop

''	include	fbgfx.bi	for	some	useful	definitions

#include	"fbgfx.bi"

Dim	As	String	driver

#ifdef	__FB_WIN32__

''	set	graphics	driver	to	GDI	(Win32	only),	before	calling	ScreenRes

ScreenControl	FB.SET_DRIVER_NAME,	"GDI"

#endif

ScreenRes	640,	480

''	fetch	graphics	driver	name	and	display	it	to	user

ScreenControl	FB.GET_DRIVER_NAME,	driver

Print	"Graphics	driver	name:	"	&	driver

''	wait	for	a	keypress	before	closing	the	window

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

ScreenEvent

ScreenInfo

WindowTitle

View	(Graphics)

ScreenEvent 	

Queries	for	and	retrieves	system	events.

Syntax
Declare	Function	ScreenEvent	(ByVal	event	As	Any	Ptr	=	0)	As	Long

Usage
result	=	ScreenEvent([event])

Parameters
event

Specifies	the	buffer	where	the	function	should	store	the	event	data.

Return	Value
Returns	-1	if	there	are	pending	events	to	be	retrieved,	0	otherwise.

Description
This	function	returns	the	latest	available	system	event	from	the	internal	GfxLib	events	queue.	By	"event"	we	mean	any	mouse	or
keyboard	activity,	for	example.

The	event	data	(if	available)	will	be	copied	into	the	buffer	pointed	That	should	be	declared	as	an	

Querying	for	events
The	function	returns	-1	if	there	are	pending	events	to	be	retrieved,	0	otherwise.	If	the	
ScreenEvent	will	not	be	able	to	copy	the	event	data	and	it	will	not	dequeue	it	from	the	internal	events	queue.	Calling	the	function	this
way	can	be	useful	to	check	if	there	are	pending	events	without	actually	fetching	them.

Note
If	you	receive	a	KEY_PRESS,	KEY_RELEASE	or	KEY_REPEAT	event,	it	does	not	clear	the	keyboard	buffer.	
be	clear	after	you	receive	the	event,	you	will	need	to	clear	it	manually.	

Example

''	include	fbgfx.bi	for	some	useful	definitions

#include	"fbgfx.bi"

#if	__FB_LANG__	=	"fb"

Using	fb	''	constants	and	structures	are	stored	in	the	FB	namespace	in	lang	fb

#endif

Dim	e	As	EVENT

ScreenRes	640,	480

Do

				If	(ScreenEvent(@e))	Then

								Select	Case	e.type

								Case	EVENT_KEY_PRESS

												If	(e.scancode	=	SC_ESCAPE)	Then

																End

												End	If

												If	(e.ascii	>	0)	Then

																Print	"'"	&	e.ascii	&	"'";

												Else

																Print	"unknown	key";

												End	If

												Print	"	was	pressed	(scancode	"	&	e.scancode

								Case	EVENT_KEY_RELEASE

												If	(e.ascii	>	0)	Then

																Print	"'"	&	e.ascii	&	"'";

												Else

																Print	"unknown	key";

												End	If

												Print	"	was	released	(scancode	"	&	e.scancode

								Case	EVENT_KEY_REPEAT

												If	(e.ascii	>	0)	Then

																Print	"'"	&	e.ascii	&	"'";

												Else

																Print	"unknown	key";

												End	If

												Print	"	is	being	repeated	(scancode	"	

								Case	EVENT_MOUSE_MOVE

												Print	"mouse	moved	to	"	&	e.x	&	","	&	

								Case	EVENT_MOUSE_BUTTON_PRESS

												If	(e.button	=	BUTTON_LEFT)	Then

																Print	"left";

												ElseIf	(e.button	=	BUTTON_RIGHT)	Then

																Print	"right";

												Else

																Print	"middle";

												End	If

												Print	"	button	pressed"

								Case	EVENT_MOUSE_BUTTON_RELEASE

												If	(e.button	=	BUTTON_LEFT)	Then

																Print	"left";

												ElseIf	(e.button	=	BUTTON_RIGHT)	Then

																Print	"right";

												Else

																Print	"middle";

												End	If

												Print	"	button	released"

								Case	EVENT_MOUSE_DOUBLE_CLICK

												If	(e.button	=	BUTTON_LEFT)	Then

																Print	"left";

												ElseIf	(e.button	=	BUTTON_RIGHT)	Then

																Print	"right";

												Else

																Print	"middle";

												End	If

												Print	"	button	double	clicked"

								Case	EVENT_MOUSE_WHEEL

												Print	"mouse	wheel	moved	to	position	"

								Case	EVENT_MOUSE_ENTER

												Print	"mouse	moved	into	program	window"

								Case	EVENT_MOUSE_EXIT

												Print	"mouse	moved	out	of	program	window"

								Case	EVENT_WINDOW_GOT_FOCUS

												Print	"program	window	got	focus"

								Case	EVENT_WINDOW_LOST_FOCUS

												Print	"program	window	lost	focus"

								Case	EVENT_WINDOW_CLOSE

												End

								Case	EVENT_MOUSE_HWHEEL

												Print	"horizontal	mouse	wheel	moved	to	position	"

								End	Select

				End	If

				Sleep	1

Loop

Platform	Differences

ScreenEvent	does	not	return	window	related	events	in	the	DOS	version,	but	does	return	input	events.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Event

Screen	(Graphics)

Inkey

MultiKey

GetMouse

ScreenInfo 	

Retrieves	information	about	current	video	mode	or	the	desktop.

Syntax
Declare	Sub	ScreenInfo	(ByRef	w	As	Integer	=	0,	ByRef	h	As	Integer

0,	ByRef	bpp	As	Integer	=	0,	ByRef	pitch	As	Integer	=	0,	ByRef	rate

As	String	=	"")

Usage
ScreenInfo	[w]	[,	[h]	[,	[depth]	[,	[bpp]	[,	[pitch]	[,	[

Parameters
w

Width.
h

Height.
depth

Color	depth	in	bits.
bpp

Bytes	per	pixel.
pitch

Bytes	per	scan	line.
rate

Refresh	rate.
driver

Driver	name.

Description
This	function	can	be	useful	to	get	current	mode	informations	like	graphics	driver	name,	color	depth,	screen
size	and	more.

If	ScreenInfo	is	called	when	no	graphics	mode	is	set,	it	returns	the	information	about	the	desktop.

Here's	a	description	of	available	fields:

w Width	of	the	screen	in	pixels

h Height	of	the	screen	in	pixels

depth Current	pixel	format	bits	per	pixel:	this	can	be	1,	2,	4,	8,	16,	or	32

pitch Size	of	a	framebuffer	row	in	bytes

rate Current	refresh	rate,	or	0	if	unknown

driver Name	of	current	graphics	driver	in	use,	like	DirectX	or	X11

Example

Dim	w	As	Integer,	h	As	Integer

Dim	depth	As	Integer

Dim	driver_name	As	String

Screen	15,	32	

'	Obtain	info	about	current	mode	

ScreenInfo	w,	h,	depth,,,,driver_name

Print	Str(w)	+	"x"	+	Str(h)	+	"x"	+	Str(depth);	

Print	"	using	"	+	driver_name	+	"	driver"	

Sleep	

'	Quit	graphics	mode	and	obtain	info	about	desktop	

Screen	0	

ScreenInfo	w,	h,	depth	

Print	"Desktop	running	at	"	+	Str(w)	+	"x"	+	Str(h

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

ScreenGLProc 	

Gets	the	address	of	an	OpenGL	procedure

Syntax
Declare	Function	ScreenGLProc	(ByRef	procname	As	Const	String)	

Parameters
procname

name	of	the	procedure	to	retrieve	the	address	of

Description
This	function	can	be	used	to	get	the	address	of	any	OpenGL	procedure,	to	be	used	to	retrieve	the	pointers	to	new
functions	associated	with	OpenGL	extensions.	If	given	procedure	named	
will	return	NULL	(0).

Example

''	include	fbgfx.bi	for	some	useful	definitions

#include	"fbgfx.bi"

Dim	SwapInterval	As	Function(ByVal	interval	As	Integer

Dim	extensions	As	String

''	Setup	OpenGL	and	retrieve	supported	extensions

ScreenRes	640,	480,	32,,	FB.GFX_OPENGL

ScreenControl	FB.GET_GL_EXTENSIONS,	extensions

If	(InStr(extensions,	"WGL_EXT_swap_control")	<>	0

				''	extension	supported,	retrieve	proc	address

				SwapInterval	=	ScreenGLProc("wglSwapIntervalEXT"

				If	(SwapInterval	<>	0)	Then

								''	Ok,	we	got	it.	Set	OpenGL	to	wait	for	vertical	sync	on	buffer	swaps

								SwapInterval(1)

				End	If

End	If

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Platform	Differences

Not	available	for	DOS	target.

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

ScreenControl

ScreenList 	

Finds	available	fullscreen	video	modes

Syntax
Declare	Function	ScreenList	(ByVal	depth	As	Long	=	0)	As	Long

Usage
result	=	ScreenList([depth])

Parameters
depth

the	color	depth	for	which	the	list	of	modes	is	requested	(supported	depths	are
8,	15,	16,	24	and	32)

Return	Value
returns	0,	when	there	are	no	more	resolutions	to	read.

Description
It	works	like	the	Dir	function:	the	first	call	to	the	function	requires	the	depth
parameter	to	be	specified,	it	returns	the	lowest	supported	resolution	for	the
requested	depth.	Further	calls	to	ScreenList	without	arguments	returns	the
next	resolutions.	When	no	more	resolutions	are	available,	ScreenList	returns
0.

The	result	of	ScreenList	is	encoded	as	a	32	bit	value,	with	the	screen	width
as	the	High	Word	and	the	height	as	the	Low	Word.

Resolutions	are	returned	from	lowest	to	highest	supported	ones.	

It	is	safe	to	call	this	function	before	any	graphics	mode	has	been	set.

Dim	As	Integer	mode,	w,	h

Print	"Resolutions	supported	at	8	bits	per	pixel:"

mode	=	ScreenList(8)

While	(mode	<>	0)

				w	=	HiWord(mode)

				h	=	LoWord(mode)

				Print	w	&	"x"	&	h

				mode	=	ScreenList()

Wend

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Screenlist.

Differences	from	QB

New	to	FreeBASIC

See	also

Screen

ScreenRes

ScreenLock 	

Locks	the	working	page's	frame	buffer

Syntax
Declare	Sub	ScreenLock	()

Usage
ScreenLock

Description

All	of	FreeBASIC's	Graphics	Library	functions	draw	to	a	frame	buffer	and
an	automatic	routine	copies	the	frame	buffer	to	the	actual	screen	memory
at	each	draw.	If	the	user	program	does	a	lot	of	drawing,	the	automatic
refreshes	may	take	a	significant	amount	of	time.

The	ScreenLock	function	locks	the	automatic	refresh,	so	several	drawing
operations	may	be	done	before	the	screen	refresh	is	performed,	thus
increasing	the	speed	of	execution,	and	preventing	the	user	from	seeing
partial	results.	

Frame	buffer	memory	may	be	freely	accessed	by	using	pointers	(see
ScreenPtr)	ONLY	while	the	screen	is	locked.	Primitive	graphics
statements	(Line,	PSet,	Draw	String,	...)	may	be	used	at	any	time.

The	screen	refresh	remains	locked	until	the	use	of	ScreenUnlock
statement,	which	resumes	it.	

Calls	to	ScreenLock	must	be	paired	with	a	matching	call	to	ScreenUnlock
The	graphics	driver	keeps	track	of	how	many	times	ScreenLock	has	been
called	using	a	counter.	Only	the	first	call	to	ScreenLock	actually	performs
a	locking	operation.	Subsequent	calls	to	ScreenLock	only	increment	the
counter.	Conversely,	ScreenUnlock	only	decrements	the	lock	counter	until
it	reaches	zero	at	which	time	the	actual	unlock	operation	will	be
performed.	Using	Screen	or	ScreenRes	will	release	all	locks	and	set	the

lock	counter	back	to	zero	before	changing	screen	modes.

It	is	strongly	recommended	that	the	lock	on	a	page	be	held	for	as	short	a
time	as	possible.	Only	screen	drawing	should	occur	while	the	screen	is
locked,	input/output	and	waiting	must	be	avoided.	In	Win32	and	Linux	the
screen	is	locked	by	stopping	the	thread	that	processes	also	the	OS'
events.	If	the	screen	is	kept	locked	for	a	long	time	the	event	queue	could
overflow	and	make	the	system	unstable.	When	the	induced	lock	time
becomes	too	long,	use	preferably	the	method	of	double	buffering	(with
ScreenCopy).

The	automatic	refresh	takes	place	only	in	the	visible	page	of	the	frame
buffer.	ScreenLock	has	no	effect	when	drawing	to	pages	other	than	the
visible	one.	

Example

''	Draws	a	circle	on-screen	at	the	mouse	cursor

Dim	As	Integer	mx,	my

Dim	As	String	key

ScreenRes	640,	480,	32

Do

		'process

		GetMouse(mx,	my)

		key	=	Inkey()

		'draw

		ScreenLock()

		Cls()

		Circle	(mx,	my),	8,	RGB(255,	255,	255)

		ScreenUnlock()

		'free	up	CPU	time

		Sleep(18,	1)

		

Loop	Until	key	=	Chr(27)	Or	key	=	Chr(255,	107)

Platform	Differences

In	DOS,	the	mouse	arrow	does	not	react	to	mouse	movements
while	the	screen	is	locked

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Screenlock.

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)	-	Setting	mode
ScreenRes	-	Setting	mode
ScreenUnlock

ScreenPtr

ScreenPtr 	

Returns	a	pointer	to	the	current	work	page's	frame	buffer

Syntax
Declare	Function	ScreenPtr	()	As	Any	Ptr

Usage
result	=	ScreenPtr

Return	Value
a	pointer	to	the	current	work	page	frame	buffer	memory,	or	NULL	(0)	if	no	graphics	mode	is	set.

Description
ScreenPtr	provides	a	way	to	directly	read/write	the	working	page's	frame	buffer.	
any	read	or	writes	are	attempted.	The	pointer	returned	is	valid	up	until	any	subsequent	call	to	
which	invalidates	it.

ScreenPtr	can	also	be	used	to	test	if	a	call	to	Screen	or	ScreenRes	was	successful,	indicated	by	a	non-NULL	(
return	value.

In	order	to	access	a	pixel	in	the	screen	buffer,	you	will	need	to	know	the	screen's	bytes	per	pixel	and	pitch	(bytes	per
row),	and	also	the	width	and	height	to	avoid	going	out	of	bounds.	This	information	can	be	found	out	using
ScreenInfo.
Each	row	in	the	frame	buffer	is	pitch	bytes	long.	The	frame	buffer	consists	of	
position	on	the	screen,	running	from	top	to	bottom,	left	to	right.

Because	of	the	design	of	FreeBASIC	graphics	library,	ScreenPtr	(if	non-NULL)	will	always	point	to	the	backbuffer,
and	never	to	actual	video	RAM.

Example

Const	SCREEN_WIDTH	=	640,	SCREEN_HEIGHT	=	480

Dim	As	Integer	w,	h,	bypp,	pitch

''	Make	8-bit	screen.

ScreenRes	SCREEN_WIDTH,	SCREEN_HEIGHT,	8

''	Get	screen	info	(w	and	h	should	match	the	constants	above,	bypp	should	be	1)

ScreenInfo	w,	h,	,	bypp,	pitch

''	Get	the	address	of	the	frame	buffer.	An	Any	Ptr	

''	is	used	here	to	allow	simple	pointer	arithmetic

Dim	buffer	As	Any	Ptr	=	ScreenPtr()

If	(buffer	=	0)	Then

				Print	"Error:	graphics	screen	not	initialized."

				Sleep

				End	-1

End	If

''	Lock	the	screen	to	allow	direct	frame	buffer	access

ScreenLock()

				

				''	Find	the	address	of	the	pixel	in	the	centre	of	the	screen

				''	It's	an	8-bit	pixel,	so	use	a	UByte	Ptr.

				Dim	As	Integer	x	=	w	\	2,	y	=	h	\	2

				Dim	As	UByte	Ptr	pixel	=	buffer	+	(y	*	pitch)	

				

				

				''	Set	the	pixel	color	to	10	(light	green).

				*pixel	=	10

''	Unlock	the	screen.

ScreenUnlock()

''	Wait	for	the	user	to	press	a	key	before	closing	the	program

Sleep

Const	SCREEN_WIDTH	=	256,	SCREEN_HEIGHT	=	256

Dim	As	Integer	w,	h,	bypp,	pitch

''	Make	32-bit	screen.

ScreenRes	SCREEN_WIDTH,	SCREEN_HEIGHT,	32

''	Get	screen	info	(w	and	h	should	match	the	constants	above,	bypp	should	be	4)

ScreenInfo	w,	h,	,	bypp,	pitch

''	Get	the	address	of	the	frame	buffer.	An	Any	Ptr	

''	is	used	here	to	allow	simple	pointer	arithmetic

Dim	buffer	As	Any	Ptr	=	ScreenPtr()

If	(buffer	=	0)	Then

				Print	"Error:	graphics	screen	not	initialized."

				Sleep

				End	-1

End	If

''	Lock	the	screen	to	allow	direct	frame	buffer	access

ScreenLock()

				

				''	Set	row	address	to	the	start	of	the	buffer

				Dim	As	Any	Ptr	row	=	buffer

				

				''	Iterate	over	all	the	pixels	in	the	screen:

				

				For	y	As	Integer	=	0	To	h	-	1

								

								''	Set	pixel	address	to	the	start	of	the	row

								''	It's	a	32-bit	pixel,	so	use	a	ULong	Ptr

								Dim	As	ULong	Ptr	pixel	=	row

								

								For	x	As	Integer	=	0	To	w	-	1

												

												''	Set	the	pixel	value

												*pixel	=	RGB(x,	x	Xor	y,	y)	

												

												''	Get	the	next	pixel	address	

												''	(ULong	Ptr	will	increment	by	4	bytes)

												pixel	+=	1

												

								Next	x

								

								''	Go	to	the	next	row

								row	+=	pitch

								

				Next	y

''	Unlock	the	screen.

ScreenUnlock()

''	Wait	for	the	user	to	press	a	key	before	closing	the	program

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

ScreenRes

ScreenInfo

ScreenLock

ScreenUnlock

ScreenRes 	

Initializes	a	graphics	mode	by	specifying	horizontal	and	vertical	resolution

Syntax
Declare	Function	ScreenRes	(ByVal	width	As	Long,	ByVal	height	As

ByVal	num_pages	As	Long	=	1,	ByVal	flags	As	Long	=	0,	ByVal	refresh_rate

Usage
ScreenRes	width,	height	[,	[depth]	[,	[num_pages]	[,	[flags]	[,	

result	=	ScreenRes(width,	height	[,	[depth]	[,	[num_pages]	[,	[

Parameters
width,	height
The	display	width	and	height,	respectively.	For	fullscreen	mode,	the	user	should	check	the	availability	of	the
resolution	using	ScreenList.
depth

The	color	depth	in	bits	per	pixel.	Valid	color	depths	are:	1,	2,	4,	8,	16	and	
allowed	as	aliases	for	16	and	32,	respectively.	If	omitted,	the	default	is	8	bits	per	pixel.	
give	a	palette	image.	The	default	palette	will	be	the	first	2	^	depth	colors	of	the	256-color	palette	used	in
Screen	13.
num_pages

The	number	of	video	pages	to	create,	defaults	to	1.	(see	below)
flags

Used	to	set	various	properties	of	the	screen,	including	fullscreen	mode	and	the	graphics	driver	used.	(see
below	or	the	standard	header	"fbgfx.bi"	for	available	flags)
refresh_rate

The	desired	refresh	rate	of	the	screen,	only	has	an	effect	for	fullscreen	modes,	and	some	systems	and	drivers
only.	Defaults	to	an	appropriate	value,	invalid	refresh	rates	will	be	ignored.

Return	Value
Returns	zero	(0)	if	successful,	or	a	non-zero	error	code	to	indicate	a	failure.	

Description

ScreenRes	tells	the	compiler	to	link	the	GfxLib	and	initializes	a	QB-only,	QB-on-GUI	or	OpenGL	graphics	mode,
depending	on	the	flags	setting

ScreenRes	clears	the	created	window	or	the	full	screen.	In	non-fullscreen	modes,	the	resolution	does	not	have
to	match	any	resolution	of	the	graphics	card.	Resolutions	like	555x111	are	possible,	GfxLib	will	create	a
window	of	such	size.	See	the	page	GfxLib	overview	for	DOS	issues.

The	font	size	in	ScreenRes	modes	is	set	to	8x8	by	default.	This	can	be	changed	by	setting	the	number	of	text
rows/columns,	using	the	Width	function.

In	QB-only	modes	a	dumb	window	or	fullscreen	resolution	is	set,	one	or	more	buffers	in	standard	memory	are
created,	console	commands	are	redirected	to	their	graphic	versions,	a	
screen	refresh	thread	is	started.	QB-like	graphics	and	console	statements	can	be	used.	

In	QB-on-GUI	modes	one	or	more	buffers	in	standard	memory	are	created,	
to	their	graphic	versions	and	a	default	palette	is	set.	QB-like	graphics	and	console	statements	can	be	used.	
is	up	to	the	user	to	create	a	window	and	to	refresh	it	with	the	contents	of	the	graphics	buffers.

In	OpenGL	modes	a	dumb	window	or	fullscreen	resolution	is	set,	one	or	more	buffers	in	standard	memory	are
created,	and	the	system's	OpenGL	library	is	initialized.	From	here	only	OpenGL	commands	can	be	used	to
write	to	the	graphics	buffer.	QB-like	and	console	commands	are	forbidden.	This	mode	allows	to	initialize
OpenGL	in	a	portable	way.

flags	details:

If	flags	are	omitted,	FreeBASIC	uses	QB-compatible	graphics	in	windowed	(except	in	DOS)	mode.	
constants	are	defined	in	fbgfx.bi.	In	the	-lang	fb	dialect,	these	constants	are	part	of	the	
values	can	be	combined	to	form	a	mask	using	Operator	Or.	Note	that	most	of	the	flags	are	not	supported	in
DOS.

Available	flags:

graphic	mode	flags
GFX_NULL:	Starts	a	QB-on-GUI	graphics	mode.	It	creates	a	graphics	buffer	but	not	a	window.	
implement	the	window,	the	events	manager	and	refresh	the	screen	as	needed.	
FreeBASIC	drawing	functions	with	API-driven	windows.	Alternatively,	it	allows	to	process	graphics	(for
example	files)	without	making	it	visible	on	the	screen,	even	in	a	purely	console	application.	
all	other	mode	flags.	See	an	Example	of	GFX_NULL	in	Windows.
GFX_OPENGL:	Initializes	OpenGL	to	draw	in	a	dumb	window.	FreeBASIC	graphic	functions	can't	be	used.	

screen	is	not	automatically	updated,	Flip	must	be	used.	This	option	provides	a	portable	way	to	initialize	the
OpenGL	Library.
If	none	of	the	above	options	is	specified,	FreeBASIC	enters	the	QB-only	graphics	mode:	it	creates	a	buffer
and	a	dumb	window	and	sets	a	thread	that	automatically	updates	the	screen	and	manages	keyboard	and
mouse.	The	FreeBASIC	drawing	functions	can	be	used.

window	mode	flags
Window	mode	flags	are	meaningless	if	GFX_NULL	mode	is	used
GFX_WINDOWED:	If	windowed	mode	is	supported,	FreeBASIC	opens	a	window	of	the	requested	size	in	the
present	desktop
GFX_FULLSCREEN:	The	graphics	card	switch	mode	is	switched	to	the	requested	mode	and	color	depth	and	OS
fullscreen	mode	is	used.	If	the	mode	is	not	available	in	the	present	card	FreeBASIC	switches	to	windowed
mode.
If	GFX_FULLSCREEN	is	not	specified,	the	behavior	for	GFX_WINDOWED	is	assumed.
GFX_NO_SWITCH:	Prevents	the	user	from	changing	to	fullscreen	or	to	windowed	mode	by	pressing	Alt-Enter.
GFX_NO_FRAME:	Creates	a	window	without	a	border.
GFX_SHAPED_WINDOW:	Creates	transparent	regions	wherever	RGBA(255,	0,	255,	0)	is	drawn	on	the	screen.
GFX_ALWAYS_ON_TOP:	Creates	a	window	that	stays	always	on	top.

option	flags
Flags	working	in	any	mode,	they	activate	special	behaviors
GFX_ALPHA_PRIMITIVES:	Tells	the	graphics	library	to	enable	alpha	channel	support	for	all	drawing	primitives.
This	means	the	alpha	specified	in	a	color	value	(via	either	the	RGBA	macro	or	direct	color	in	the	form
&h;AARRGGBB)	will	always	be	used	by	all	primitives.
GFX_HIGH_PRIORITY:	Tells	the	graphics	library	to	enable	a	higher	priority	for	graphics	processing.	
effect	on	gdi	and	DirectX	drivers	on	Win32	platform.

OpenGL	Buffer	flags
These	flags	work	only	in	OpenGL	graphics	mode,	must	be	combined	with	GFX_OPENGL
GFX_STENCIL_BUFFER:	Forces	OpenGL	to	use	Stencil	buffer	
GFX_ACCUMULATION_BUFFER:	Forces	OpenGL	to	use	Accumulation	buffer
GFX_MULTISAMPLE:	Requests	fullscreen	anti-aliasing	through	the	ARB_multisample	extension

Depending	on	whether	the	GFX_FULLSCREEN	parameter	is	present	or	not,	
video	mode	in	fullscreen	or	windowed	mode,	respectively.	If	fullscreen	mode	is	set	and	the	system	cannot	set
specified	mode	in	fullscreen,	it	will	try	in	windowed	mode.	If	windowed	mode	is	set	and	the	system	fails	to
open	a	window	for	specified	mode,	it	will	try	fullscreen.	If	everything	fails,	
execution	will	resume	from	the	statement	following	the	Screen	call.	You	should	take	care	of	checking	if	a
graphics	mode	has	been	set	or	not,	and	behave	accordingly;	a	way	to	check	if	

the	return	value	of	the	ScreenPtr	function;	see	its	page	for	details.

Graphics	mode	console
Console	commands	(Locate,	Print),	input	can	be	used	both	with	standard	QB	
extended	ones	too,	provided	the	standard	color	depth	is	not	modified	by	using	the	second	argument	of	
Where	the	table	says	more	than	one	text	resolution	is	available	for	the	text	mode,	the	required	text	resolution
can	be	requested	by	using	Width.	Any	characters	Printed	will	erase	the	background	around	them;	it	does	not
use	a	transparent	background.

Example

'	Set	the	screen	mode	to	320*200,	with	8	bits	per	pixel

ScreenRes	320,	200,	8

'	Draw	color	bands	in	a	diagonal	pattern	over	the	whole	screen

For	y	As	Integer	=	0	To	200-1

				For	x	As	Integer	=	0	To	320-1

								PSet	(x,y),(x	+	y)	And	255

				Next	x

Next	y

'	Display	the	text	"Hello	World!!"	over	the	lines	we've	drawn,	in	the	top-

left	hand	corner

Print	"Hello	world!!"

'	Keep	the	window	open	until	the	user	presses	a	key

Sleep

Platform	Differences

In	DOS,	Windowing	and	OpenGL	related	switches	are	not	available,	and	other	issues,	see	
overview

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	The	QB-like	way	to	set	graphics	mode
ScreenList	Check	display	modes	available	for	FB	GfxLib	to	use
ScreenControl	Select	driver	and	more	
ScreenLock

ScreenUnlock

ScreenPtr	Semi-low	level	access
ScreenSet

ScreenCopy

ScreenInfo

ScreenGLProc

Internal	pixel	formats

FaqPggfxlib2

ScreenSet 	

Sets	current	work	and	visible	pages

Syntax
Declare	Sub	ScreenSet	(ByVal	work_page	As	Long	=	-1,	ByVal	visible_page

Usage
ScreenSet	[work_page]	[,	visible_page]

Parameters
work_page

index	to	working	page
visible_page

index	to	visible	page

Description
ScreenSet	allows	to	set	the	current	working	page	and	the	current	visible	page.	Page	numbers	range	from	
the	number	of	pages	specified	when	setting	the	graphics	mode	with	ScreenRes
double-buffering.

If	you	provide	visible_page	but	omit	work_page,	only	the	visible	page	is	changed.	If	you	provide	
page	is	changed.	If	you	omit	both	arguments,	both	work	page	and	visible	page	are	reset	to	page	0.

ScreenSet	provides	one	method	of	writing	to	the	screen	without	instantly	displaying	changes	to	the	user.	
an	alternative	method	of	doing	this.

Example

'	Open	graphics	screen	(320*200,	8bpp)	with	2	pages

ScreenRes	320,	200,	8,	2

'	Work	on	page	1	while	displaying	page	0

ScreenSet	1,	0

Dim	As	Integer	x	=	-40

Do

				''	Clear	the	screen,	draw	a	box,	update	x

				Cls

				Line	(x,	80)-Step(39,	39),	4,	BF

				x	+=	1:	If	(x	>	319)	Then	x	=	-40

				

				'	Wait	for	vertical	sync:	only	used	to	control	refresh	rate,	can	be	put	anywhere	in	the	Do	loop

				ScreenSync

				

				'	Copy	work	page	to	visible	page

				ScreenCopy

				

Loop	While	Inkey	=	""

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

ScreenRes

ScreenCopy

ScreenLock

ScreenUnlock

ScreenSync 	

Synchronizes	display	updates	with	hardware

Syntax
Declare	Function	ScreenSync	()	As	Long

Usage
result	=	ScreenSync

Return	Value
Zero	if	successful,	or	non-zero	if	a	graphics	mode	was	not	previously
set.

Description
This	GfxLib	statement	stops	the	execution	of	the	program	until	the
graphics	card	signals	it	has	ended	tracing	a	frame	and	is	going	to	start
the	new	one.

If	the	program	uses	this	small	interval	of	time	between	frames	to
redraw	the	image,	the	flickering	is	greatly	reduced.	In	that	use,
Screensync	is	a	reminiscence	of	QB	where	there	was	only	that
equivalent	method	(Wait	&H3DA;,	8)	to	improve	the	flickering.	It	is	an
empirical	method	because	it	only	allows	to	synchronize	the	beginning
of	the	drawing	with	the	fixed	dead	time	between	two	frames.	To	be
used	occasionally	to	avoid	flickering	when	only	very	short	time	of
drawing.

Except	the	purpose	to	reduce	the	flickering,	Screensync	can	be	also
used	simply	as	a	method	of	synchronization	of	graphic	drawing	with
the	screen	frame	tracing	(similarly	to	statement	Sleep).

The	use	of	the	QB-compatible	form	Wait	&H3DA;,	8	is	deprecated.

Example

'main	loop

Do

		

		'	do	user	input

		'	calculate_a_frame

			

		ScreenSync

		

		'	draw_	a_	frame		

		

Loop	Until	Inkey	<>	""

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Screensync.

Differences	from	QB

New	to	FreeBASIC.	
QBasic	used	Wait	&H3DA;,	8	for	this	purpose.

See	also

Wait

ScreenUnlock 	

Unlocks	work	page's	framebuffer

Syntax
Declare	Sub	ScreenUnlock	(ByVal	startline	As	Long	=	-1,	ByVal

endline	As	Long	=	-1)

Usage
ScreenUnlock	[start_line]	[,	end_line]

Parameters
startline

optional	argument	specifying	first	screen	line	to	be	updated.	If	omitted,
top	screen	line	is	assumed.
endline

optional	argument	specifying	last	screen	line	to	be	updated.	If	omitted,
bottom	screen	line	is	assumed.

Description
ScreenUnlock	unlocks	the	current	work	page	assuming	it	was
previously	locked	by	calling	ScreenLock	and	lets	the	system	restart
updating	the	screen	regularly.	When	called	with	start_line	and
end_line	,	only	the	screen	area	between	those	lines	is	assumed	to
have	changed,	and	will	be	updated.	

An	internal	counter	exists	that	remembers	the	screen	lock	state,	thus
ScreenUnlock	has	an	effect	only	on	a	screen	that	is	locked.	A	screen
that	has	not	been	locked	with	ScreenLock	cannot	get	unlocked,
however	ScreenUnlock	still	will	force	an	update	of	given	area	or	full
screen.	

Calls	to	ScreenUnlock	must	be	paired	with	matching	calls	to	ScreenLock
Only	the	first	call	to	ScreenLock	actually	performs	a	locking	operation.
Subsequent	calls	to	ScreenLock	only	increment	the	lock	counter.
Conversely,	ScreenUnlock	only	decrements	the	lock	counter	until	it

reaches	zero	at	which	time	the	actual	unlock	operation	will	be
performed.	Using	Screen	or	ScreenRes	will	release	all	locks	and	set	the
lock	counter	back	to	zero	before	changing	screen	modes.

All	graphic	statements	automatically	lock	the	screen	before	the
function	call,	and	unlock	the	screen	afterwards,	so	you	do	not	need	to
do	this	explicitly	using	ScreenLock	and	ScreenUnlock.	You	only	need	to
lock	the	screen	when	you	wish	to	access	the	screen	(framebuffer)
directly	using	ScreenPtr	or	when	you	wish	to	group	several	graphic
statements	together	so	their	effects	appear	simultaneously	on	screen,
thus	avoiding	potential	screen	flicker	during	screen	updates.

Warning	(Win32,	Linux)	:	The	screen	is	locked	by	stopping	the	thread
that	processes	also	the	OS'	events.	This	means	the	screen	should	be
locked	only	for	the	short	time	required	to	redraw	it,	and	no	user	input
will	be	received	while	the	screen	is	locked.	When	the	induced	lock	time
becomes	too	long,	use	preferably	the	method	of	double	buffering	(with
ScreenCopy).

Example
See	ScreenPtr	example.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Screenunlock.

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

ScreenLock

ScreenPtr

Second 	

Gets	the	seconds	from	a	Date	Serial	

Syntax
Declare	Function	Second	(ByVal	date_serial	As	Double)	As	Long

Usage
#include	"vbcompat.bi"

result	=	Second(date_serial)

Parameters
date_serial

the	date	serial

Return	Value
Returns	the	seconds	from	a	variable	containing	a	date	in	Date	Serial	

Description

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	ds	As	Double	=	DateSerial(2005,	11,	28)	+	TimeSerial

Print	Format(ds,	"yyyy/mm/dd	hh:mm:ss	");	Second(ds

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

Seek	(Statement) 	

Sets	the	position	of	the	next	read/write	operation	on	a	file

Syntax
Seek	[#]filenum,	position

Parameters
filenum

file	number	of	an	opened	a	file
position

the	new	position	for	i/o	operations

Description
Sets	the	position	at	which	the	next	read	or	write	operation	on	a	file	will	occur.

The	position	is	given	in	records	if	the	file	was	opened	in	Random	access	mode,	in	bytes	in	any	other	case.	The
position	is	1	based	--	the	first	record	of	a	file	is	at	position	1.

The	Seek	function	is	used	to	get	the	position	of	the	next	read	or	write	operation.

Example

'	e.g.	if	you	want	to	skip	to	the	100th	byte	in	the	file	for	reading/writing:

Dim	f	As	Integer

f	=	FreeFile

Open	"file.ext"	For	Binary	As	#f

Seek	f,	100

Close	#f

Differences	from	QB

None

See	also

Seek	(Function)

Open

Seek	(Function) 	

Gets	the	position	of	the	next	read/write	operation	for	a	file	or	device

Syntax
Declare	Function	Seek	(ByVal	filenum	As	Long)	As	LongInt

Parameters
filenum

file	number	of	an	open	file

Return	Value
The	file	position	where	the	next	read	or	write	operation	will	take	place.

Description
The	position	is	given	in	records	if	the	file	was	opened	in	Random	access
mode,	in	bytes	in	any	other	case.	The	file	position	returned	is	1-based,
so	the	first	record	of	a	file	is	1.

The	Seek	statement	is	used	to	set	the	position	of	the	next	read	or	write
operation.

Example

Dim	f	As	Integer,	position	As	Integer

f	=	FreeFile

Open	"file.ext"	For	Binary	As	#f

position	=	Seek(f)

Close	#f

Differences	from	QB

None

See	also

Seek	(Statement)

LOC

Open

Select	Case 	

Conditional	statement	block

Syntax
Select	Case	expression

[Case	expressionlist]	

[statements]

[Case	Else]

[statements]

End	Select

or

Select	Case	As	Const	integer_expression

[Case	constant	|	enumeration]

[statements]

[Case	Else]

[statements]

End	Select

Description

Select	Case	executes	specific	code	depending	on	the	value	of	an	expression.	The	expression
is	evaluated	once,	and	compared	against	each	Case,	in	order,	until	a	matching	expression	is
found.	The	code	inside	the	matching	Case	branch	is	executed,	and	the	program	skips	down	to
the	end	of	the	Select	Case	block.	Case	Else	matches	any	case	not	already	matched,	so	if	there
is	a	Case	Else,	at	least	one	Case	is	guaranteed	to	be	executed.	If	no	Case
Select	Case	block	will	be	skipped.

End	Select	is	used	to	close	the	Select	Case...End	Select	block.

Note	for	C	users:	In	FreeBASIC,	Select	Case	works	like	a	switch	block	where	all	cases	have	a
break	at	the	end.	As	there	is	no	fall-through,	multiple	options	must	be	put	in	an	expression	list
in	a	single	Case.

Besides	integer	types,	floating	point	and	string	expressions	are	also	supported	with	the	first
syntax.	

Syntax	of	an	expression	list:
{	expression	|	expression	To	expression	|	Is	relational	operator

expr:	evaluates	expr,	and	compares	for	equality	with	the	original	expression.	
equal,	then	a	match	has	been	found.	This	could	be	considered	as	a	shorthand	for	"
expr"	(see	below).
expr1	To	expr2:	evaluates	expr1	and	checks	to	see	if	it	is	less	than	or	equal	to	the
original	expression.	If	so,	it	evaluates	expr2,	and	checks	to	see	if	it	is	greater	than	or
equal	to	the	original	expression.	If	so,	then	a	match	has	been	found.
Is	relational_operator	expr:	evaluates	expr,	and	compares	the	original	operation
against	it,	using	the	supplied	relational_operator	(=,	>,	<,	<>,	<=
is	true,	then	a	match	has	been	found.

Multiple	checks	can	be	made	in	each	Case,	by	separating	them	by	a	comma	(
is	found,	the	program	finishes	its	checks,	and	goes	on	to	execute	the	code	statements	for	that
Case	block.	No	further	expressions	are	evaluated	or	checked.

example	of	expression	lists:

Case	1 constant

Case	5.4	To	10.1 range

Case	Is	>	3 bigger	than-smaller	than

Case	1,	3,	5,	7	to	9 match	against	a	set	of	values

Case	x value	of	a	variable

If	As	Const	is	used,	only	integer	constants	(all	numeric	constants	excluding	the	two	floating-
point	constants:	single	and	double)	can	be	evaluated	and	the	expression	list	supports	simple
constants	and	enumerations	only.	"To"	ranges	are	supported,	but	"Is"	relational	operators	are
not.

With	As	Const,	a	jump	table	is	created	to	contain	the	full	range	of	integer	
allows	Select	Case	As	Const	to	be	faster	than	Select	Case.	However,	the	size	of	the	range	of
values	is	limited,	and	the	largest	value	in	the	range	may	be	no	higher	than	the	smallest	value	+
8191.

Example

Dim	choice	As	Integer

Input	"Choose	a	number	between	1	and	10:	";	choice

Select	Case	As	Const	choice

Case	1

				Print	"number	is	1"

Case	2

				Print	"number	is	2"

Case	3,	4

				Print	"number	is	3	or	4"

Case	5	To	10

				Print	"number	is	in	the	range	of	5	to	10"

Case	Else

				Print	"number	is	outside	the	1-10	range"

End	Select

''	SELECT	CASE	vs.	SELECT	CASE	AS	CONST	speed	test

Const	N	=	50000000

Dim	As	Integer	dummy	=	0

Dim	As	Double	t	=	Timer()

For	i	As	Integer	=	1	To	N

				Select	Case	i

				Case	1,	3,	5,	7,	9

								dummy	+=	1

				Case	2,	4,	6,	8,	10

								dummy	+=	1

				Case	11	To	20

								dummy	+=	1

				Case	21	To	30

								dummy	+=	1

				Case	31

								dummy	+=	1

				Case	32

								dummy	+=	1

				Case	33

								dummy	+=	1

				Case	Is	>=	34

								dummy	+=	1

				Case	Else

								Print	"can't	happen"

				End	Select

Next

Print	Using	"SELECT	CASE:	##.###	seconds";	Timer()

t	=	Timer()

For	i	As	Integer	=	1	To	N

				Select	Case	As	Const	i

				Case	1,	3,	5,	7,	9

								dummy	+=	1

				Case	2,	4,	6,	8,	10

								dummy	+=	1

				Case	11	To	20

								dummy	+=	1

				Case	21	To	30

								dummy	+=	1

				Case	31

								dummy	+=	1

				Case	32

								dummy	+=	1

				Case	33

								dummy	+=	1

				Case	Else

								If(i	>=	34)	Then

												dummy	+=	1

								Else

												Print	"can't	happen"

								End	If

				End	Select

Next

Print	Using	"SELECT	CASE	AS	CONST:	##.###	seconds"

Sleep

Differences	from	QB

Select	Case	As	Const	did	not	exist	in	QB
in	an	"expr1	TO	expr2"	case,	QB	would	always	evaluate	both	expressions,	even	if	
was	higher	than	the	original	expression.

See	also

If...Then

SetDate 	

Sets	the	current	system	date

Syntax
Declare	Function	SetDate	(ByRef	newdate	As	Const	String)	As

Long

Usage
result	=	SetDate(newdate)

Parameters
newdate

the	new	date	to	set

Return	Value
Returns	zero	on	success	or	non-zero	on	failure	on	all	ports	except
DOS.

Description
To	set	the	date	you	just	format	newdate	and	send	to	SetDate	in	a	valid
format	following	one	of	the	following:	"mm-dd-yy",	"mm-dd-yyyy",
"mm/dd/yy",	or	"mm/dd/yyyy"	(mm	is	the	month,	dd	is	the	day,	yy	or	yyyy	is
the	year.

Example

Dim	m	As	String,	d	As	String,	y	As	String

m	=	"03"	'march

d	=	"13"	'the	13th

y	=	"1994"	'good	ol'	days

SetDate	m	+	"/"	+	d	+	"/"	+	y

Differences	from	QB

The	DATE	statement	was	used	in	QB	and	the	syntax	was
"DATE	=	string"

See	also

Date

SetTime

SetMouse 	

Sets	the	position	and	visibility	of	the	mouse	cursor

Syntax
Declare	Function	SetMouse	(ByVal	x	As	Long	=	-1,	ByVal	y	As	Long

Long	=	-1,	ByVal	clip	As	Long	=	-1)	As	Long

Usage
result	=	SetMouse([x]	[,	[y]	[,	[visibility]	[,	[clip]]]])

Parameters
(For	each	parameter,	-1	is	a	special	value	indicating	"no	changes.")
x

optional	-	set	x	coordinate
y

optional	-	set	y	coordinate
visibility

optional	-	set	visibility:	1	indicates	visible,	0	indicates	hidden
clip

optional	-	set	clipping:	1	indicates	mouse	is	clipped	to	graphics	window,	

Return	Value
Zero	(0)	on	success,	non-zero	to	indicate	failure.

Description
SetMouse	will	set	the	(x,	y)	coordinates	of	the	mouse	pointer,	as	well	as	setting	its	visibility.	
position	is	set	using	the	x	and	y	parameters.	The	mouse	will	be	visible	if	visibility	is	set	to	
invisible	if	visibility	is	set	to	0.	SetMouse	is	intended	for	graphics	modes	initiated	using	the	
(Graphics)	statement	only.

Example

Dim	As	Integer	x,	y,	buttons

'	create	a	screen	640*480

ScreenRes	640,	480

Print	"Click	the	mouse	button	to	center	the	mouse"

Do

				'	get	mouse	x,	y	and	button	state	(wait	until	mouse	is	onscreen)

				Do:	Sleep	1:	Loop	While	GetMouse(x,	y	,	,	buttons

				If	buttons	And	1	Then

								'	on	left	mouse	click,	center	mouse

								SetMouse	320,	240

				End	If

				'	run	loop	until	a	key	is	pressed	or	the	window	is	closed

Loop	While	Inkey	=	""

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

GetMouse

Screen

MultiKey

GetKey

SetTime 	

Sets	the	current	system	time

Syntax
Declare	Function	SetTime	(ByRef	newtime	As	Const	String)	As

Long

Usage
result	=	SetTime(newtime)

Parameters
newtime

the	new	time	to	set

Return	Value
Returns	zero	on	success	or	non-zero	on	failure	on	all	ports	except
DOS.

Description
To	set	the	time,	format	the	date	and	send	to	Settime	in	one	of	the
following	formats:	"hh:mm:ss",	"hh:mm",	or	"hh"	(hh	is	the	hour,	mm	is	the
minute,	and	ss	is	the	second).

Example

SetTime	"1:20:30"

Differences	from	QB

The	Time	statement	was	used	QB	and	the	syntax	was	TIME	=
newtime.

See	also

Time

SetDate

Sgn 	

Returns	the	sign	part	of	a	number

Syntax
Declare	Function	Sgn	(ByVal	number	As	Integer)	As	Integer

Declare	Function	Sgn	(ByVal	number	As	LongInt)	As	LongInt

Declare	Function	Sgn	(ByVal	number	As	Double)	As	Double

Usage
result	=	Sgn(number)

Parameters
number

the	number	to	find	the	sign	of

Return	Value
Returns	the	sign	part	of	number.

If	number	is	greater	than	zero,	then	Sgn	returns	1.
If	number	is	equal	to	zero,	then	Sgn	returns	0.
If	number	is	less	than	zero,	then	Sgn	returns	-1.

Description
The	required	number	argument	can	be	any	valid	numeric	expression.
Unsigned	numbers	will	be	treated	as	if	they	were	signed,	i.e.	if	the
highest	bit	is	set	the	number	will	be	treated	as	negative,	and	-1	will	be
returned.

The	Sgn	unary	Operator	can	be	overloaded	with	user	defined	types.

Example

Dim	N	As	Integer	=	0

Print	Sgn	(-1.87)

Print	Sgn	(0)

Print	Sgn	(42.658)

Print	Sgn	(N)

The	output	would	look	like:

-1

0

1

0

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Abs

Operator

Shared 	

Variable	declaration	modifier	specifying	visibility	throughout	a	module

Syntax
Dim	Shared	...

ReDim	Shared	...

Common	Shared	...

Static	Shared	...

Description
Shared	makes	module-level	variables	visible	inside	Subs	and	Functions.
If	Shared	is	not	used	on	a	module-level	variable's	declaration,	the	variable	is	only	visible	to	the	module-
level	code	in	that	file	(furthermore,	only	a	variable	declared	with	Dim	without	
inside	a	Namespace	block,	is	stored	on	the	stack).

NOTES	(for	Shared	variables	excluding	Common	variables):
Generally	a	Shared	variable	may	only	be	initialized	with	a	constant	value	(its	starting
value	is	set	at	the	start	of	the	program	in	the	.data	section	before	any	code	is	run,	and	so
it	cannot	depend	on	any	variables	or	functions	in	it).
A	first	exception	is	a	Shared	variable	of	var-len	string	type,	that	never	can	be	initialized,
even	with	a	constant	string	(because	of	its	structure	with	a	descriptor	in	the	.data	section,
but	to	point	to	a	dynamic	memory	block).
A	second	exception	is	a	Shared	variable	of	user-defined	type	having	a	constructor	even
implicit,	that	can	be	initialized	with	a	non-constant	value	(because	it's	the	constructor
code,	called	when	the	program	starts,	which	writes	the	"initial"	values	into	the	.data
section).

Example

''	Compile	with	-lang	qb	or	fblite

'$lang:	"qb"

Declare	Sub	MySub

Dim	Shared	x	As	Integer

Dim	y	As	Integer

x	=	10

y	=	5

MySub

Sub	MySub

				Print	"x	is	";	x	'this	will	report	10	as	it	is	shared

				Print	"y	is	";	y	'this	will	not	report	5	because	it	is	not	shared

End	Sub

Differences	from	QB

The	Shared	statement	inside	scope	blocks	--	functions,	subs,	if/thens,	and	loops	--	is	not
supported.	Use	Dim|Redim|Common|Static	Shared	in	the	main	program	instead.	
a	scope	block	and	Redimming	a	variable	or	array	previously	set	up	with	
without	Shared;	it	will	work	fine	and	won't	ruin	anything.

See	also

Common

Dim

Erase

Extern

LBound

ReDim

Preserve

Static

UBound

Var

Shell 	

Sends	a	command	to	the	system	command	interpreter

Syntax
Declare	Function	Shell	(ByRef	command	As	Const	String)	As	Long

Usage
result	=	Shell(command)

Parameters
command

A	string	specifying	the	command	to	send	to	the	command	interpreter.

Return	Value
If	the	command	could	not	be	executed,	-1	is	returned.	Otherwise,	the
command	is	executed	and	its	exit	code	is	returned.

Description
Program	execution	will	be	suspended	until	the	command	interpreter
exits.

Example

'e.g.	for	windows:

Shell	"dir	c:*.*"

'e.g.	for	linux:

Shell	"ls"

Platform	Differences

Linux	requires	the	command	case	matches	the	real	name	of	the

command.	Windows	and	DOS	are	case	insensitive.	The
program	being	shelled	may	be	case	sensitive	for	its	command
line	parameters.	
Path	separators	in	Linux	are	forward	slashes	/	.	Windows	uses
backward	slashes	\	but	it	allows	for	forward	slashes.	DOS	uses
backward	\	slashes.
If	an	empty	command	string	is	passed,	DOS	will	open	an
interactive	command	prompt.	On	Windows,	an	error	may	be
returned.

Differences	from	QB

QB	allowed	SHELL	on	its	own	without	a	"command"	argument
which	caused	a	default	command	shell	to	be	started.	Execution
in	the	main	program	would	suspend	until	exit	from	the
command	shell.	The	behaviour	in	FB	is	platform-dependent.

See	also

Exec

Run

Operator	Shl	(Shift	Left) 	

Shifts	the	bits	of	a	numeric	expression	to	the	left

Syntax
Declare	Operator	Shl	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer

)	As	Integer

Declare	Operator	Shl	(ByRef	lhs	As	UInteger,	ByRef	rhs	As

UInteger)	As	UInteger

Declare	Operator	Shl	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt

)	As	LongInt

Declare	Operator	Shl	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As

ULongInt)	As	ULongInt

Usage
result	=	lhs	Shl	rhs

Parameters
lhs

The	left-hand	side	expression.
rhs

The	right-hand	side	shift	expression.

Return	Value
Returns	the	result	of	lhs	being	shifted	left	rhs	number	of	times.

Description
Operator	Shl	(Shift	left)	shifts	all	of	the	bits	in	the	left-hand	side
expression	(lhs)	left	a	number	of	times	specified	by	the	right-hand	side
expression	(rhs).	Numerically,	the	result	is	the	same	as	"CInt(lhs	*	2
^	rhs)".	For	example,	"&b0101;	Shl	1"	returns	the	binary	number
&b01010;,	and	"5	Shl	1"	returns	10.

Neither	of	the	operands	are	modified	in	any	way.

If	the	result	is	too	large	to	fit	inside	the	result's	data	type,	the	leftmost
bits	are	discarded	("shifted	out").

The	results	of	this	operation	are	undefined	for	values	of	rhs	less	than
zero,	or	greater	than	or	equal	to	the	number	of	bits	in	the	result's	data
type.

This	operator	can	be	overloaded	for	user-defined	types.

Example

'Double	a	number

For	i	As	Integer	=	0	To	10

				

				Print	5	Shl	i,	Bin(5	Shl	i,	16)

				

Next	i

Output:

	5												0000000000000101

	10											0000000000001010

	20											0000000000010100

	40											0000000000101000

	80											0000000001010000

	160										0000000010100000

	320										0000000101000000

	640										0000001010000000

	1280									0000010100000000

	2560									0000101000000000

	5120									0001010000000000

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Shl.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	Shl=	(Shift	Left	And	Assign)

Operator	Shr	(Shift	Right)

Bin

Mathematical	Functions

Operator	Shr	(Shift	Right) 	

Shifts	the	bits	of	a	numeric	expression	to	the	right

Syntax
Declare	Operator	Shr	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer

)	As	Integer

Declare	Operator	Shr	(ByRef	lhs	As	UInteger,	ByRef	rhs	As

UInteger)	As	UInteger

Declare	Operator	Shr	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt

)	As	LongInt

Declare	Operator	Shr	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As

ULongInt)	As	ULongInt

Usage
result	=	lhs	Shr	rhs

Parameters
lhs

The	left-hand	side	expression.
rhs

The	right-hand	side	shift	expression.

Return	Value
Returns	the	result	of	lhs	being	shifted	right	rhs	number	of	times.

Description
Operator	Shr	(Shift	right)	shifts	all	of	the	bits	in	the	left-hand	side
expression	(lhs)	right	a	number	of	times	specified	by	the	right-hand
side	expression	(rhs).	Numerically,	the	result	is	the	same	as	"Int(lhs	
2	^	rhs)".	For	example,	"&b0101;	Shr	1"	returns	the	binary	number
&b010;,	and	"5	Shr	1"	returns	2.

If	the	left-hand	side	expression	is	signed	and	negative,	the	sign	bit	is
copied	in	the	newly	created	bits	on	the	left	after	the	shift.	For	example,
"-5	Shr	2"	returns	-2.

Neither	of	the	operands	are	modified	in	any	way.

The	results	of	this	operation	are	undefined	for	values	of	rhs	less	than
zero,	or	greater	than	or	equal	to	the	number	of	bits	in	the	result's	data
type.

This	operator	can	be	overloaded	for	user-defined	types.

Example

'Halve	a	number

For	i	As	Integer	=	0	To	10

				

				Print	1000	Shr	i,	Bin(1000	Shr	i,	16)

				

Next	i

Output:

	1000									0000001111101000

	500										0000000111110100

	250										0000000011111010

	125										0000000001111101

	62											0000000000111110

	31											0000000000011111

	15											0000000000001111

	7												0000000000000111

	3												0000000000000011

	1												0000000000000001

	0												0000000000000000

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Shr.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	Shr=	(Shift	Right	And	Assign)

Operator	Shl	(Shift	Left)

Bin

Mathematical	Functions

Short 	

Standard	data	type:	16	bit	signed

Syntax
Dim	variable	As	Short

Description
16-bit	signed	whole-number	data	type.	Can	hold	values	from	-32768	to
32767.

Example

		Dim	x	As	Short	=	CShort(&H8000)

		Dim	y	As	Short	=	CShort(&H7FFF)

		Print	"Short	Range	=	";	x;	"	to	";	y

Output:

Short	Range	=	-32768	to		32767

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Short.

Differences	from	QB

The	name	"short"	is	new	to	FreeBASIC,	however	they	are	the
same	as	integers	in	QB

See	also

UShort

CShort

Sin 	

Returns	the	sine	of	an	angle

Syntax
Declare	Function	Sin	(ByVal	angle	As	Double)	As	Double

Usage
result	=	Sin(angle)

Parameters
angle

the	angle	(in	radians)

Return	Value
Returns	the	sine	of	the	argument	angle	as	a	Double	within	the	range	of	

Description
The	argument	angle	is	measured	in	radians	(not	degrees).

The	value	returned	by	this	function	is	undefined	for	values	of	angle	with	an	absolute
value	of	2	^	63	or	greater.

Example

Const	PI	As	Double	=	3.1415926535897932

Dim	a	As	Double

Dim	r	As	Double

Input	"Please	enter	an	angle	in	degrees:	",	a

r	=	a	*	PI	/	180				'Convert	the	degrees	to	Radians

Print	""

Print	"The	sine	of	a"	;	a;	"	degree	angle	is";	Sin

Sleep

The	output	would	look	like:

Please	enter	an	angle	in	degrees:	30

The	sine	of	a	30	degree	angle	Is	0.5

Differences	from	QB

None

See	also

Asin

Cos

Tan

A	Brief	Introduction	To	Trigonometry

Single 	

Standard	data	type:	32	bit	floating	point

Syntax
Dim	variable	As	Single

Description
Single	is	a	32-bit,	floating	point	data	type	used	to	store	decimal
numbers.	They	can	hold	positive	values	in	the	range	1.401298e-45	to
3.402823e+38,	or	negative	values	in	the	range	-1.401298e-45	to
-3.402823e+38,	or	zero	(0).	They	contain	at	most	24	bits	of	precision,	or
about	6	decimal	digits.

They	are	similar	to	Double	data	types,	but	less	precise.	

Example

'Example	of	using	a	single	variable.

Dim	a	As	Single

a	=	1.9857665

Print	a

Sleep

Differences	from	QB

None

See	also

Double	More	precise	float	type
CSng

Table	with	variable	types	overview,	limits	and	suffixes

SizeOf 	

Returns	the	size	of	a	variable	or	type	in	bytes.

Syntax
SizeOf	(variable	|	DataType)

Description
The	SizeOf	operator	returns	the	number	of	bytes	taken	up	by	a
variable	or	DataType.

Different	from	Len,	when	used	with	fixed-length	strings	(including	fixed-
length	ZStrings	and	WStrings)	it	will	return	the	number	of	bytes	they
use,	and	when	used	with	variable-length	strings,	it	will	return	the	size
of	the	string	descriptor.

If	there	is	both	a	user	defined	type	and	a	variable	visible	with	the	same
name	in	the	current	scope,	the	user	defined	type	takes	precedence
over	the	variable.	To	ensure	that	the	SizeOf	takes	the	variable	instead
of	the	user	defined	type,	wrap	the	argument	to	SizeOf	with	parentheses
to	force	it	to	be	seen	as	an	expression.	For	example
Sizeof((variable)).

Note:	When	used	with	arrays,	SizeOf	returns	the	size	of	a	single
element	of	the	array.	This	differs	from	its	behavior	in	C,	where	arrays
could	only	be	a	fixed	size,	and	sizeof()	would	return	the	number	of	it
used.
For	clarity,	it	is	recommended	that	you	avoid	this	potential	confusion,
and	use	SizeOf	directly	on	an	array	element,	rather	than	the	whole
array.

Remark:	When	used	with	a	dereferenced	z/wstring	pointer,	SizeOf
always	returns	the	number	of	bytes	taken	up	by	one	z/wstring
character	(instead	of	0	before	fbc	version	0.90).

Example

Print	SizeOf(Byte)	'	returns	1

Type	bar

				a	As	Integer

				b	As	Double

End	Type

Dim	foo	As	bar

Print	SizeOf(foo)

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Sizeof.

Differences	from	QB

New	to	FreeBASIC

See	also

Len

Sleep 	

Waits	until	a	specified	time	has	elapsed,	or	a	key	is	pressed.

Syntax
Declare	Sub	Sleep	(ByVal	amount	As	Long	=	-1)

Declare	Function	Sleep	(ByVal	amount	As	Long	,	ByVal	keyflag	As

Long)	As	Long

Usage
Sleep	[amount	[,	keyflag]]

result	=	Sleep	(amount,	keyflag)

Parameters
amount

Optional	number	of	milliseconds	to	wait	(default	is	to	wait	for	a	key
press).
keyflag

Optional	flag;	give	it	a	value	of	0	for	a	normal	sleep,	or	1	to	specify	that
the	wait	cannot	be	interrupted	by	a	key	press.

Return	Value
Returns	1	if	keyflag	was	not	a	valid	value	(i.e.	something	other	than	0
or	1)	to	indicate	failure,	or	0	otherwise.

Description
Sleep	will	wait	until	amount	milliseconds	(can	be	seconds	in	-lang	qb,
see	below)	given	elapsed	(if	any	value	was	passed)	or	until	the	user
presses	a	key.	If	amount	is	below	100	ms	then	Sleep	will	always	wait	the
full	requested	amount	(key	presses	are	ignored).

Include	the	second	parameter,	1,	for	a	"deep"	sleep,	which	cannot	be
interrupted	by	pressing	a	key.

The	accuracy	of	Sleep	is	variable	depending	on	the	OS	cycle	time
(Windows	NT/2K/XP:	15	ms,	9x/Me:	50	ms,	Linux	10ms,	DOS	55	ms).

Call	Sleep	with	25ms	or	less	to	release	time-slice	when	waiting	for	user
input	or	looping	inside	a	thread.	This	will	prevent	the	program	from
unnecessarily	hogging	the	CPU.

Sleep	does	not	clear	the	keyboard	buffer	and	any	keys	pressed	during
a	call	to	Sleep	are	retained	and	can	be	read	using	Inkey.	In	order	to
wait	for	a	key	press,	and	remove	the	key	from	the	buffer,	GetKey	can	be
used	instead.

Example

Print	"press	a	key"

Sleep

GetKey	'clear	the	keyboard	buffer

Print	"waiting	half	second"

Sleep	500

Dialect	Differences

In	the	-lang	fb	and	-lang	fblite	dialects,	the	amount	value	is	in
milliseconds.
In	the	-lang	qb	dialect,	the	amount	value	is	in	seconds	as	in	QB.
If	the	second	parameter	keyflag	is	given,	or	the	keyword	is
written	as	__Sleep	the	value	is	expected	to	be	in	milliseconds.

Differences	from	QB

None	in	the	-lang	qb	dialect.
In	QB,	the	delay	was	given	in	whole	seconds	only	and	did	not
support	the	keyflag	parameter.

See	also

Timer

Inkey

Space 	

Creates	a	string	of	a	given	length	filled	with	spaces	("	")

Syntax
Declare	Function	Space(ByVal	count	As	Integer)	As	String

Usage
result	=	Space[$](count)

Parameters
count

An	integer	type	specifying	the	length	of	the	string	to	be	created.

Return	Value
The	created	string.	An	empty	string	will	be	returned	if	count	<=	0.

Description
Space	creates	a	string	with	the	specified	number	of	spaces.

Example

Dim	a	As	String

a	=	"x"	+	Space(3)	+	"x"

Print	a	'	prints:	x			x

Dialect	Differences

The	string	type	suffix	$	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	$	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

None

See	also

WSpace

Spc

String	(Function)

Spc 	

Output	function	to	skip	spaces	when	writing	to	screen	or	file

Syntax
Spc(columns)

Usage
Print	Spc(spaces)	[(,	|	;)]	...

Parameters
spaces

number	of	spaces	to	skip

Description
Spc	skips	over	the	given	number	of	spaces	when	Printing	to	screen	or
to	a	file.	The	character	cells	skipped	over	are	left	unchanged.

Example

Print	"foo";	Spc(5);	"bar"

Print	"hello";	Spc(4);	"world"

''	Uses	Spc	to	justify	text	instead	of	Tab

Dim	As	String	A1,	B1,	A2,	B2

A1	=	"Jane"

B1	=	"Doe"

A2	=	"Bob"

B2	=	"Smith"

Print	"FIRST	NAME";	Spc(35	-	10);	"LAST	NAME"

Print	"----------";	Spc(35	-	10);	"----------"

Print	A1;	Spc(35	-	Len(A1));	B1

Print	A2;	Spc(35	-	Len(A2));	B2

The	output	would	look	like:

FIRST	NAME																									LAST	NAME

----------																									----------

Jane																															Doe

Bob																																Smith

Differences	from	QB

In	QBASIC,	spaces	were	printed	in	the	gap,	while	in
FreeBASIC,	the	characters	are	just	skipped	over	and	left
untouched.	The	Space	function	can	still	be	used	to	achieve	this
effect.

See	also

Tab

Space

(Print	|	?)

Sqr 	

Returns	a	square	root	of	a	number

Syntax
Declare	Function	Sqr	(ByVal	number	As	Double)	As	Double

Usage
result	=	Sqr(number)

Parameters
number

the	number	(greater	than	or	equal	to	zero)

Return	Value
Returns	the	square	root	of	the	argument	number.

If	number	equals	zero,	Sqr	returns	zero	(0.0).

If	number	is	less	than	zero,	Sqr	returns	a	special	value	representing	"not	defined",	printing	like
"NaN"	or	"IND",	exact	text	is	platform	dependent.

Description
This	is	the	same	as	raising	the	argument	number	to	the	one-half	power:	
required	number	argument	can	be	any	valid	numeric	expression	greater	than	or	equal	zero.

If	a	LongInt	or	ULongInt	is	passed	to	Sqr,	it	may	be	converted	to	Double
numbers	over	2^52,	this	will	cause	a	very	small	loss	of	precision.	Without	making	any
assumptions	about	the	rounding	method,	the	maximum	error	due	to	this	will	be	
Sqr(2^64-2^12),	which	is	about	4.8e-7.	However	this	may	cause	erroneous	results	if	the	floor	or
ceiling	of	this	value	is	taken,	and	the	result	of	this	may	be	out	by	1,	particularly	for	square
numbers	and	numbers	that	are	close	by.

Example

''	Example	of	Sqr	function:	Pythagorean	theorem	

Dim	As	Single	a,	b

Print	"Pythagorean	theorem,	right-angled	triangle"

Print

Input	"Please	enter	one	leg	side	length:	",	a

Input	"Please	enter	the	other	leg	side	length:	",	

Print	

Print	"The	hypotenuse	has	a	length	of:	"	&	Sqr(a	

The	output	would	look	like:

Pythagorean	theorem,	right-angled	triangle

Please	enter	one	leg	side	length:	1.5

Please	enter	the	other	leg	side	length:	2

The	hypotenuse	has	a	length	of:	2.5

Differences	from	QB

None

See	also

Operator	^	(Exponentiate)

Arithmetic	Operators

Static 	

Defines	variables,	objects	and	arrays	having	static	storage

Syntax
Static	symbol1	[(array-dimensions)]	As	DataType	[=	expression

[(array-dimensions)]	As	DataType	[=	expression],	...]

or

Static	As	DataType	symbol1	[(array-dimensions)]	[=	expression

[(array-dimensions)]	[=	expression],	...]

or

Sub|Function	procedurename	(parameters)	[As	DataType]	Static

...

End	Sub|Function

Parameters
symbol

variable	or	array	symbol	name.
array-dimensions

lower-bound	To	upper-bound	[,	...]

or
Any	[,	Any...]

or	empty.
expression

An	constant	expression,	or	an	array	of	constant	expressions

Description
Specifies	static	storage	for	variables,	objects	and	arrays;	they	are	allocated	at
program	startup	and	deallocated	upon	exit.	Objects	are	constructed	once	when	they
are	defined,	and	destructed	upon	program	exit.

When	declaring	static	arrays,	only	numeric	literals,	Constants	or	Enumerations
may	be	used	as	subscript	range	values.	Static	variable-length	arrays	must	be
declared	empty	(no	subscript	range	list)	and	resized	using	ReDim	before	used.

In	both	iterative	and	recursive	blocks,	like	looping	control	flow	statements
procedures,	static	variables,	objects	and	arrays	local	to	the	block	are	guaranteed	to

occupy	the	same	storage	across	all	instantiations	of	the	block.	For	example,
procedures	that	call	themselves	-	either	directly	or	indirectly	-	share	the	same
instances	of	their	local	static	variables.

A	static	variable	may	only	be	initialised	with	a	constant	value:	its	starting	value	is	set
at	the	start	of	the	program	before	any	code	is	run,	and	so	it	cannot	depend	on	any
variables	or	functions	in	it.

When	used	with	module-level	and	member	procedure	declarations,	Static
static	storage	for	all	local	variables,	objects	and	arrays.

At	module-level	variable	declaration	only,	the	modifier	Shared	may	be	used	with	the
keyword	Static	to	make	module-level	static	variables	visible	inside	procedures.

When	used	with	in	a	user-defined	type,	Static	creates	Static	Member	Procedures
Or	Variables.

Example

Sub	f

				''	times	called	is	initially	0

				Static	timesCalled	As	Integer	=	0

				timesCalled	+=	1

				Print	"Number	of	times	called:	"	&	timesCalled

End	Sub

''	the	static	variable	in	f()	retains	its	value	between

''	multiple	procedure	calls.

f()

f()

Will	output:

Number	of	times	called:	1

Number	of	times	called:	2

Dialect	Differences

Variables	cannot	be	initialised	in	the	-lang	qb	dialect.

Differences	from	QB

QuickBASIC	allows	variables	and	arrays	to	be	declared	using	the	
keyword	within	procedures	and	DEF	FN	routines	only.
Static	forces	local	visibility	of	variables	and	arrays	in	QuickBASIC	
routines.	FreeBASIC	supports	neither	DEF	FN	routines	nor	this	usage	of
Static.

See	also

Static	(Member)

Dim,	ReDim
Shared

Sub	(Module),	Function	(Module)
Sub	(Member),	Function	(Member)
Option	Static

Storage	Classes

Static	(Member) 	

Declare	a	static	member	procedure	or	variable

Syntax
Type	typename

Static	variablename	As	DataType	[,	...]

Declare	Static	Sub|Function	procedurename	...

...

End	Type

Dim	typename.variablename	As	DataType	[=	initializer]	[,	...]

[Static]	Sub|Function	typename.procedurename	...

...

End	Sub|Function

Description

Static	member	procedures
Static	methods	do	not	have	an	implicit	This	instance	argument	passed	to	them.	This	allows	them	to	be	used	like	normal	non-
member	procedures	(for	example	with	callback	procedure	pointers).	An	advantage	of	
encapsulated	in	the	typename	namespace,	and	therefore	have	the	ability	to	access	the	
of	instances	of	typename.

Static	methods	can	be	called	directly	anywhere	in	code,	like	normal	non-member	procedures,	or	on	objects	of	type	
similar	to	non-static	methods,	however	either	way	there	is	no	implicit	or	explicit	
a	static	method.

For	member	procedures	with	a	Static	declaration,	Static	may	also	be	specified	on	the	corresponding	procedure	bodies,	for
improved	code	readability.

Static	member	variables
Static	member	variables	are	created	and	initialized	only	once	independently	of	any	object	construction,	in	contrast	to	non-static
("instance")	member	variables	which	are	created	again	and	again	for	each	separate	object.	
even	if	Shared	was	not	specified	in	the	declaration.	Thus,	Static	member	variables	are	similar	to	global	variables,	except	that
they	are	declared	in	a	Type	namespace.

Each	Static	member	variable	declared	in	a	Type	must	be	explicitly	allocated	somewhere	outside	the	type	by	using	a	
statement.	The	declaration	inside	the	Type	is	the	prototype	that	is	visible	to	every	module	seeing	the	Type	declaration.	The

definition	outside	the	Type	allocates	and	optionally	initializes	the	Static
Static	member	variable:	it	can	only	be	allocated	in	a	single	module,	not	in	multiple	ones.	This	is	the	same	as	for	
variables.

A	Static	member	variable	is	subject	to	member	access	control	except	for	its	definition	outside	the	Type.	If	a	private	
member	variable	is	to	be	explicitly	initialized	outside	the	Type's	member	procedures,	an	initializer	must	be	provided	with	the
definition.

Example

''	Example	showing	how	the	actual	procedure	invoked	by	a	member	can	be	set	at	runtime.

''	using	static	member	procedures.

Type	_Object

		Enum	handlertype

				ht_default

				ht_A

				ht_B

		End	Enum

		Declare	Constructor(ByVal	ht	As	handlertype	=	ht_default

		Declare	Sub	handler()

Private:

		Declare	Static	Sub	handler_default(ByRef	obj	As

		Declare	Static	Sub	handler_A(ByRef	obj	As	_Object

		Declare	Static	Sub	handler_B(ByRef	obj	As	_Object

		handler_func	As	Sub(ByRef	obj	As	_Object)

End	Type

Constructor	_Object(ByVal	ht	As	handlertype)

		Select	Case	ht

		Case	ht_A

				handler_func	=	@_Object.handler_A

		Case	ht_B

				handler_func	=	@_Object.handler_B

		Case	Else

				handler_func	=	@_Object.handler_default

		End	Select

End	Constructor

Sub	_Object.handler()

		handler_func(This)

End	Sub

Sub	_Object.handler_default(ByRef	obj	As	_Object	

		Print	"Handling	using	default	method"

End	Sub

Sub	_Object.handler_A(ByRef	obj	As	_Object)

		Print	"Handling	using	method	A"

End	Sub

Sub	_Object.handler_B(ByRef	obj	As	_Object)

		Print	"Handling	using	method	B"

End	Sub

Dim	objects(1	To	4)	As	_Object	=>	_

		{	_

				_Object.handlertype.ht_B,	_

				_Object.handlertype.ht_default,	_

				_Object.handlertype.ht_A	_

		}

		''	4th	array	item	will	be	_Object.handlertype.ht_default

For	i	As	Integer	=	1	To	4

		Print	i,

		objects(i).handler()

Next	i

''	Assign	an	unique	ID	to	every	instance	of	a	Type	(ID	incremented	in	order	of	creation)

Type	UDT

		Public:

				Declare	Property	getID	()	As	Integer

				Declare	Constructor	()

		Private:

				Dim	As	Integer	ID

				Static	As	Integer	countID

End	Type

Dim	As	Integer	UDT.countID	=	0

Property	UDT.getID	()	As	Integer

		Property	=	This.ID

End	Property

Constructor	UDT	()

		This.ID	=	UDT.countID

		UDT.countID	+=	1

End	Constructor

Dim	As	UDT	uFirst

Dim	As	UDT	uSecond

Dim	As	UDT	uThird

Print	uFirst.getID

Print	uSecond.getID

Print	uThird.getID

Differences	from	QB

New	to	FreeBASIC

See	also

Class

Declare

Type

Static

stdcall 	

Specifies	a	stdcall-style	calling	convention	in	a	procedure	declaration

Syntax
Sub	name	stdcall	[Overload]	[Alias	"alias"]	(parameters)

Function	name	stdcall	[Overload]	[Alias	"alias"]	(parameters)	

Description
In	procedure	declarations,	stdcall	specifies	that	a	procedure	will	use	the	
are	to	be	passed	(pushed	onto	the	stack)	in	the	reverse	order	in	which	they	are	listed,	that	is,	from	right	to	left.	The	procedures	need	not	preserve	the
EAX,	ECX	or	EDX	registers,	and	must	clean	up	the	stack	(pop	any	parameters)	before	it	returns.

stdcall	is	not	allowed	to	be	used	with	variadic	procedure	declarations	(those	with	the	last	parameter	listed	as	"

stdcall	is	the	default	calling	convention	on	Windows,	unless	another	calling	convention	is	explicitly	specified	or	implied	by	one	of	the	
stdcall	is	also	the	standard	(or	most	common)	calling	convention	used	in	BASIC	languages,	and	the	Windows	API.

Example

Declare	Function	Example	stdcall	(param1	As	Integer

Declare	Function	Example2	cdecl	(param1	As	Integer

Function	Example	stdcall	(param1	As	Integer,	param2

				'	This	is	an	STDCALL	function,	the	first	parameter	on	the	stack	is	param2,	since	it	was	pushed	last.

				Print	param1,	param2

				Return	param1	Mod	param2

End	Function

Function	Example2	cdecl	(param1	As	Integer,	param2

				'	This	is	a	CDECL	function,	the	first	parameter	on	the	stack	is	param1,	since	it	was	pushed	last.

				Print	param1,	param2

				Return	param1	Mod	param2

End	Function

Platform	Differences

On	Windows	systems,	stdcall	procedures	have	an	"@N"	decoration	added	to	their	internal/external	name,	where	
list,	in	bytes.

Differences	from	QB

New	to	FreeBASIC

See	also

pascal,	cdecl
Declare

Sub,	Function

Step 	

Statement	modifier.

Syntax
For	iterator	=	initial_value	To	end_value	Step	increment

Line	[buffer,]	Step	(x1,	y1)	-	Step	(x2,	y2)	[,	[color][,

[B|BF][,	style]]]

Circle	[target,]	Step	(x,	y),	radius	[,	[color][,	[start]

[,	[end][,	[aspect][,	F]]]]]

Paint	[target,]	STEP	(x,	y)	[,	[paint][,	[border_color]]

]

Description
In	a	For	statement,	Step	specifies	the	increment	of	the	loop	iterator	with
each	loop.

In	a	Line,	Circle	or	Paint	statement,	Step	indicates	that	the	following
coordinate	has	values	relative	to	the	graphics	cursor.

Example

Dim	i	As	Integer

For	I=10	To	1	Step	-1

Next

Line	-Step(10,10),13

See	also

For...Next

Line

Circle

Paint

Stick 	

Reads	axis	position	from	attached	gaming	devices

Syntax
Declare	Function	Stick	(ByVal	axis	As	Long)	As	Long

Usage
result	=	Stick(axis)

Parameters
axis

the	axis	number	to	query	for	position

Return	Value
Returns	a	number	between	1	and	200	for	specified	axis,	otherwise	zero	(0),	if
the	device	is	not	attached.

Description
Stick	will	retrieve	the	axis	position	for	the	first	and	second	axes	on	the	first	and
second	gaming	devices.	axis	must	be	a	number	between	0	and	3	having	the
following	meaning:

Axis Returns

0 X	position	of	gaming	device	A

1 Y	position	of	gaming	device	A	when	STICK(0)	was	called

2 X	position	of	gaming	device	B	when	STICK(0)	was	called

3 Y	position	of	gaming	device	B	when	STICK(0)	was	called

Stick(0)	must	first	be	called	to	obtain	the	positions	for	the	other	axes.

Example

''	Compile	with	-lang	qb

'$lang:	"qb"

Screen	12

Do

				Locate	1,	1

				Print	"Joystick	A-X	position	:	";	Stick(0);	"			"

				Print	"Joystick	A-Y	position	:	";	Stick(1);	"			"

				Print	"Joystick	B-X	position	:	";	Stick(2);	"			"

				Print	"Joystick	B-Y	position	:	";	Stick(3);	"			"

				Print

				Print	"Button	A1	was	pressed	:	";	Strig(0);	"		"

				Print	"Button	A1	is	pressed		:	";	Strig(1);	"		"

				Print	"Button	B1	was	pressed	:	";	Strig(2);	"		"

				Print	"Button	B1	is	pressed		:	";	Strig(3);	"		"

				Print	"Button	A2	was	pressed	:	";	Strig(4);	"		"

				Print	"Button	A2	is	pressed		:	";	Strig(5);	"		"

				Print	"Button	B2	was	pressed	:	";	Strig(6);	"		"

				Print	"Button	B2	is	pressed		:	";	Strig(7);	"		"

				Print

				Print	"Press	ESC	to	Quit"

				If	Inkey$	=	Chr$(27)	Then

								Exit	Do

				End	If

				Sleep	1

Loop

Dialect	Differences

Only	available	in	the	-lang	qb	dialect.

Differences	from	QB

None

See	also

GetJoystick

Strig

Stop 	

Halts	program	execution,	and	waits	for	a	key	press	before	ending	the
program.

Syntax
Declare	Sub	Stop	(ByVal	retval	As	Long	=	0)

Usage
Stop

Parameters
retval

Error	code	returned	to	system.

Description
Halts	the	execution	of	the	program	and	stands	by.	It's	provided	as	a
help	to	debugging,	as	it	preserves	the	memory	and	doesn't	close	files.
For	normal	program	termination	the	End	keyword	should	be	used.	An
optional	return	value,	an	integer,	can	be	specified	to	return	an	error
code	to	the	system.	If	no	return	value	is	given,	a	value	of	0	is
automatically	returned.

Note:	STOP	is	not	implemented	properly	yet;	currently	it	is	the	same	as
System.

Example

Print	"this	text	is	shown"

Sleep

Stop

Print	"this	text	will	never	be	shown"

Differences	from	QB

None

See	also

End

Str 	

Returns	a	string	representation	of	a	number,	boolean	or	Unicode
character	string

Syntax
Declare	Function	Str	(ByVal	n	As	Byte)	As	String

Declare	Function	Str	(ByVal	n	As	UByte)	As	String

Declare	Function	Str	(ByVal	n	As	Short)	As	String

Declare	Function	Str	(ByVal	n	As	UShort)	As	String

Declare	Function	Str	(ByVal	n	As	Long)	As	String

Declare	Function	Str	(ByVal	n	As	Ulong)	As	String

Declare	Function	Str	(ByVal	n	As	LongInt)	As	String

Declare	Function	Str	(ByVal	n	As	ULongInt)	As	String

Declare	Function	Str	(ByVal	n	As	Single)	As	String

Declare	Function	Str	(ByVal	n	As	Double)	As	String

Declare	Function	Str	(ByVal	b	As	Boolean)	As	String

Declare	Function	Str	(ByRef	str	As	Const	String)	As	String

Declare	Function	Str	(ByVal	str	As	Const	WString)	As	String

Usage
result	=	Str[$](number)

or

result	=	Str(string)

Parameters
number

Numeric	expression	to	convert	to	a	string.
string

String	expression	to	convert	to	a	string.

Description
Str	converts	numeric	variables	to	their	string	representation.	Used	this
way	it	is	the	String	equivalent	to	WStr	applied	to	numeric	variables,
and	the	opposite	of	the	Val	function,	which	converts	a	string	into	a
number.

Str	converts	boolean	variables	to	their	string	representation	"false"	/
"true".

Str	also	converts	Unicode	character	strings	to	ASCII	character	strings.
Used	this	way	it	does	the	opposite	of	WStr.	If	an	ASCII	character	string
is	given,	that	string	is	returned	unmodified.

Example

Dim	a	As	Integer

Dim	b	As	String

a	=	8421

b	=	Str(a)

Print	a,	b

Dialect	Differences

In	the	-lang	qb	dialect,	Str	will	left	pad	a	positive	number	with	a
space.
The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Platform	Differences

DOS	version/target	of	FreeBASIC	does	not	support	the	wide-
character	string	version	of	Str.

Differences	from	QB

QB	does	not	support	the	wide-character	string	version	of	Str.

See	also

Val

Cbool

Chr

Asc

Strig 	

Reads	button	state	from	attached	gaming	devices

Syntax
Declare	Function	Strig	(ByVal	button	As	Long)	As	Long

Usage
result	=	Strig(button)

Parameters
button

the	button	to	query	for	state

Return	Value
Returns	-1	(pressed)	or	0	(not-pressed)	to	indicate	the	state	of	the	button
requested.

Description
Strig	will	retrieve	the	button	state	for	the	first	and	second	buttons	on	the	first
and	second	gaming	devices.	button	must	be	a	number	between	0	and	7	and
has	the	following	meaning:

Button State	to	return

0 First	button	on	gaming	device	A	pressed	since	STICK(0)	was	called

1 First	button	on	gaming	device	A	is	pressed

2 First	button	on	gaming	device	B	pressed	since	STICK(0)	was	called

3 First	button	on	gaming	device	B	is	pressed

4 Second	button	on	gaming	device	A	pressed	since	STICK(0)	was	called

5 Second	button	on	gaming	device	A	is	pressed

6 Second	button	on	gaming	device	B	pressed	since	STICK(0)	was	called

7 Second	button	on	gaming	device	B	is	pressed

Calling	Stick(0)	will	reset	the	state	returned	where	button	is	equal	to	0,	2,	4,	or
6.

Example

''	Compile	with	-lang	qb

'$lang:	"qb"

Screen	12

Do

				Locate	1,	1

				Print	"Joystick	A-X	position	:	";	Stick(0);	"			"

				Print	"Joystick	A-Y	position	:	";	Stick(1);	"			"

				Print	"Joystick	B-X	position	:	";	Stick(2);	"			"

				Print	"Joystick	B-Y	position	:	";	Stick(3);	"			"

				Print

				Print	"Button	A1	was	pressed	:	";	Strig(0);	"		"

				Print	"Button	A1	is	pressed		:	";	Strig(1);	"		"

				Print	"Button	B1	was	pressed	:	";	Strig(2);	"		"

				Print	"Button	B1	is	pressed		:	";	Strig(3);	"		"

				Print	"Button	A2	was	pressed	:	";	Strig(4);	"		"

				Print	"Button	A2	is	pressed		:	";	Strig(5);	"		"

				Print	"Button	B2	was	pressed	:	";	Strig(6);	"		"

				Print	"Button	B2	is	pressed		:	";	Strig(7);	"		"

				Print

				Print	"Press	ESC	to	Quit"

				If	Inkey$	=	Chr$(27)	Then

								Exit	Do

				End	If

				Sleep	1

Loop

Dialect	Differences

Only	available	in	the	-lang	qb	dialect.

Differences	from	QB

None

See	also

GetJoystick

Stick

String	(Function) 	

Creates	and	fills	a	string	of	a	certain	length	with	a	certain	character

Syntax
Declare	Function	String	(ByVal	count	As	Integer,	ByVal	ch_code

As	Long)	As	String

Declare	Function	String	(ByVal	count	As	Integer,	ByRef	ch	As

Const	String)	As	String

Usage
result	=	String[$](count,	ch_code)

or
result	=	String[$](count,	ch)

Parameters
count

An	integer	specifying	the	length	of	the	string	to	be	created.
ch_code

A	long	specifying	the	ASCII	character	code	to	be	used	to	fill	the	string.
ch

A	string	whose	first	character	is	to	be	used	to	fill	the	string.

Return	Value
The	created	string.	An	empty	string	will	be	returned	if	either	ch	is	an
empty	string,	or	count	<=	0.

Description
A	list	of	ASCII	character	codes.

Example

Print	String(4,	69)									''	prints	"EEEE"

Print	String(5,	"Indeed")			''	prints	"IIIII"

End	0

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

None	

See	also

String	(data	type)

Space

String 	

Standard	data	type:	8	bit	character	string

Syntax
Dim	variable	As	String	[*	size]

Description
A	String	is	an	array	of	characters.

A	String	declared	without	the	size	parameter	is	dynamically	resized	depending	on	the	length	of	the	string.	The	length	can	range	from	0
bytes	to	2	gigabytes.	A	descriptor	contains	a	pointer	to	the	actual	string,	the	length	of	the	string,	and	the	amount	of	space	allocated	for	it.
VarPtr	will	return	a	pointer	to	the	descriptor,	while	StrPtr	will	point	to	the	actual	string.

Because	of	the	hidden	descriptor	with	a	String,	manual	allocation	of	space,	for	example	using	the	memory	allocation	function	
(preferentially),	for	a	String	is	not	encouraged.	The	common	way	to	ensure	a	certain	amount	of	space	is	reserved	for	a	
unnecessary	allocations	inside	a	loop	for	instance,	is	to	use	the	Space	or	

Nevertheless	if	necessary,	dynamic	allocation	may	be	carefully	used	by	means	of	the	memory	allocation	functions	
Reallocate	(see	precautions	for	use)	and	string	pointer	(which	is	a	pointer	to	a	string	descriptor,	not	string	data).	When	memory	is	allocated
to	hold	string	descriptors,	the	string	must	always	be	destroyed	(setting	to	
the	memory	taken	up	by	the	string	data),	otherwise,	it	is	not	possible	to	deallocate	it	later,	and	it	may	induce	memory	leak	in	the	program
continuation.	

Despite	the	use	of	the	descriptor,	an	implicit	NULL	character	(Chr(0))	is	added	to	the	end	of	the	string,	to	allow	passing	them	to	functions	in
external	libraries	without	making	slow	copies.	FreeBASIC's	internal	functions	will	ignore	this	character,	and	not	treat	it	as	part	of	the	string.

A	String	declared	with	a	fixed	size	is	a	QB-style	fixed	length	string,	with	the	exception	that	unused	characters	are	set	to	0,	regardless	of
what	"-lang"	compiler	option	is	used.	It	has	no	descriptor	and	it	is	not	resized	to	fit	its	contents.	As	in	QB,	if	data	overflows	the	size	of	the
string,	it	is	truncated	on	the	right	side.
Fixed	length	strings	are	also	terminated	with	a	NULL	character,	and	so	they	use	
removed	in	future,	to	prevent	the	redundant	character	complicating	data	layout	in	user-defined	

String	variable	names	need	not	end	in	a	dollar	sign	$	as	in	other	dialects	of	BASIC.	
disallowed	entirely.

Example

''	Variable	length

Dim	a	As	String

a	=	"Hello"

Print	a

a	+=	",	world!"

Print	a

Var	b	=	"Welcome	to	FreeBASIC"

Print	b	+	"!	"	+	a

''	QB-like	$	suffixes

#lang	"qb"

''	DIM	based	on	$	suffix

Dim	a$

a$	=	"Hello"

''	Implicit	declaration	based	on	$	suffix

b$	=	",	world!"

Print	a$	+	b$

''	Variable-length	strings	as	buffers

''	Reserving	space	for	a	string,

''	using	Space()	to	produce	lots	of	space	characters	(ASCII	32)

Var	mybigstring	=	Space(1024)

Print	"buffer	address:	&h"	&	Hex(StrPtr(mybigstring

''	Explicitly	destroying	a	string

mybigstring	=	""

Print	"buffer	address:	&h"	&	Hex(StrPtr(mybigstring

''	Variable-length	string	as	Const	parameter

''	Const	qualifier	preventing	string	from	being	modified

Sub	silly_print(ByRef	printme	As	Const	String)

				Print	".o0("	&	printme	&	")0o."

				'next	line	will	cause	error	if	uncommented

				'printme	=	"silly	printed"

End	Sub

Var	status	=	"OK"

silly_print("Hello	FreeBASIC!")

silly_print("Status:	"	+	status)

Differences	from	QB

In	QB	the	strings	were	limited	to	32767	characters.
In	QB,	the	unused	characters	of	a	fixed-length	string	were	initialized	with	32	(space,	or	"	",	in	ASCII).
In	QB	static	or	fixed-size	strings	were	often	used	in	records	to	represent	a	number	of	bytes	of	data;	
to	represent	1	byte	in	a	UDT	read	from	a	file.	This	is	not	possible	in	FreeBASIC	since	strings	always	have	an	
following.	When	converting	QBasic	code	that	reads	UDTs	from	files,	make	sure	all	instances	of	"
uByte	(0	to	n	-	1)"	or	your	files	will	be	incompatible.

See	also

String	(Function)

Space

ZString

WString

Str

StrPtr

VarPtr

Operator	Strptr	(String	Pointer) 	

Returns	the	address	of	a	string's	character	data.

Syntax
Declare	Operator	StrPtr	(ByRef	lhs	As	String)	As	ZString	Ptr

Declare	Operator	StrPtr	(ByRef	lhs	As	WString)	As	ZString	Ptr

Usage
result	=	StrPtr	(lhs)

Parameters
lhs

A	string.

Return	Value
Returns	a	ZString	Ptr	to	a	string's	character	data.

Description
This	operator	returns	a	ZString	Ptr	that	points	to	the	beginning	of	a	string's	character	data.	
Strptr	is	the	proper	method	for	acquiring	the	address	of	a	string's	character	data.

Note	that	when	passed	a	WString,	Operator	Strptr	still	returns	a	ZString
desired	result.

The	related	Operator	Varptr	(Variable	Pointer)	and	Operator	@	(Address	Of)
return	the	address	of	the	internal	string	descriptor.

Example

''	This	example	uses	Strptr	to	demonstrate	using	pointers	with	strings

Dim	myString	As	String

Dim	toMyStringDesc	As	Any	Ptr

Dim	toMyString	As	ZString	Ptr

''	Note	that	using	standard	VARPTR	notation	will	return	a	pointer	to	the

''	descriptor,	not	the	string	data	itself

myString	=	"Improper	method	for	Strings"

toMyStringDesc	=	@myString

Print	myString

Print	Hex(toMyStringDesc)

Print

''	However,	using	Strptr	returns	the	proper	pointer

myString	=	"Hello	World	Examples	Are	Silly"

toMyString	=	StrPtr(myString)

Print	myString

Print	*toMyString

Print

''	And	the	pointer	acts	like	pointers	to	other	types

myString	=	"MyString	has	now	changed"

Print	myString

Print	*toMyString

Print

Differences	from	QB

New	to	FreeBASIC,	but	does	exactly	the	same	thing	as	SAdd

See	also

SAdd

VarPtr

ProcPtr

Pointers

Sub 	

Defines	a	procedure

Syntax
[Public|Private]	Sub	identifier	[cdecl|pascal|stdcall]	[Overload

[([parameter_list])]	[Static]	[Export]

statements

...

[Return]

...

End	Sub

[Public]	Sub	identifier	[cdecl|pascal|stdcall]	[Overload]	[Alias

[Constructor|Destructor]	[Static]

statements

...

[Return]

...

End	Sub

Parameters
identifier:	the	name	of	the	subroutine
external_identifier:	externally	visible	(to	the	linker)	name	enclosed	in	quotes
parameter_list:	parameter[,	parameter[,	...]]
parameter:	[ByRef|ByVal]	identifier	[As	type]	[=	default_value]
identifier:	the	name	of	the	variable	referenced	in	the	subroutine
type:	the	type	of	variable
default_value:	the	value	of	the	argument	if	none	is	specified	in	the	call
statements:	one	or	more	statements	that	make	up	the	subroutine	body

Description
A	subroutine	is	a	block	of	code	which	may	be	called	at	any	time	from	a	program.	
to	be	executed	multiple	times,	and	subroutines	provide	an	invaluable	means	to	simplify	code	by
replacing	these	blocks	of	code	with	a	single	subroutine	call.	A	subroutine	also	serves	to	allow	a	user	to
extend	the	FreeBASIC	language	to	provide	custom	commands.	Many	of	the	functions	built	into
FreeBASIC	are	merely	subroutines	part	of	a	"runtime	library"	linked	to	by	default.

The	Sub	keyword	marks	the	beginning	of	a	subroutine,	and	its	end	is	marked	by	

parameter	is	the	name	by	which	this	subroutine	is	called.	For	instance,	if	the	declaration	is	"
Sub",	the	user	can	execute	the	code	in	between	"Sub	foo"	and	"End	Sub
This	code	is	executed	separate	from	the	code	which	calls	the	subroutine,	so	any	variable	names,
unless	they	are	shared,	are	not	available	to	the	subroutine.	Values	can,	however,	be	passed	using
parameters.

Parameters	are	the	arguments	passed	to	any	statement.	For	instance,	if	a	user	executes	a	statement
as	"Print	4",	the	value	"4"	is	passed	to	the	function	"Print".	Parameters	that	need	to	be	passed	to	a
subroutine	are	supplied	by	one	or	more	parameter	arguments	in	the	"Sub
subroutine	with	"Sub	mysub(foo,	bar)...End	Sub",	allows	the	code	in	between	"
refer	to	the	first	passed	argument	as	"foo"	and	the	second	passed	argument	as	"bar".	
given	a	default	value,	that	parameter	is	optional.

In	the	default	dialect	-lang	fb,	parameters	must	also	have	a	supplied	type,	in	the	form	"
type".	Type	suffixes	are	not	allowed.

In	the	-lang	qb	and	-lang	fblite	dialects	only,	it	will	be	given	a	default	type	if	the	type	is	not	explicitly
given	either	by	name	or	by	type	suffix.	The	default	type	is	Single	in	the	
the	-lang	fblite	dialect.

A	subroutine	can	also	specify	how	parameters	are	passed,	either	as	"ByRef
syntax	definition.	If	a	parameter	is	"ByRef",	the	parameter	name	literally	becomes	a	reference	to	the
original	variable	passed	to	the	subroutine.	Any	changes	made	to	that	variable	will	be	reflected	outside
of	the	subroutine.	If	a	parameter	is	passed	"ByVal",	however,	the	value	of	any	passed	variable	is	copied
into	a	new	variable,	and	any	changes	made	to	it	will	not	affect	the	original.	
currently	apply	to	Strings,	and	"ByVal"	should	be	avoided	with	them	for	the	time	being.)

The	Static	specifier	indicates	that	the	values	of	all	local	variables	defined	in	the	sub	should	be
preserved	between	calls.	To	specify	individual	local	variables	as	static	see	the	

Sub	is	the	same	as	Function,	except	it	does	not	allow	a	value	to	be	returned.

The	second	syntax	defines	either	a	constructor	or	destructor	using	the	
keywords,	respectively.	Constructor	subroutines	are	executed	before	the	first	line	of	code	in	the
module,	while	destructors	execute	on	module	exit.	Note	the	public	access	specifier	and	empty
parameter	list	for	both	constructors	and	destructors.

Example

''	Example	of	writing	colored	text	using	a	sub:

Sub	PrintColoredText(ByVal	colour	As	Integer,	ByRef

			Color	colour

			Print	text

End	Sub

			PrintColoredText(1,	"blue")								''	a	few	colors

			PrintColoredText(2,	"green")

			PrintColoredText(4,	"red")

			Print

			

			Dim	i	As	Integer

			For	i	=	0	To	15																								''	all	16	colors

						PrintColoredText(i,	("color	"	&	i))

			Next	i

'	The	following	demonstrates	optional	parameters.

Sub	TestSub(P	As	String	=	"Default")

				Print	P

End	Sub

TestSub	"Testing:"

TestSub

Dialect	Differences

The	-lang	qb	and	-lang	fblite	dialects	keep	the	QB	convention:	parameters	are	
default.
In	the	-lang	fb	dialect,	numeric	parameters	are	passed	ByVal	by	default.	
passed	ByRef	by	default.

Differences	from	QB

Public	and	Private	access	specifiers	are	new	to	FreeBASIC.
Constructor	subroutines	are	new	to	FreeBASIC.

See	also

Declare

Function

Exit

Public

Private

Static

Sub	(Member) 	

Declares	or	defines	a	member	procedure.

Syntax
{	Type	|	Class	|	Union	}	typename

Declare	[Static	|	Const]	Sub	fieldname	[calling	convention

specifier]	[Alias	external_name]	([parameters])	[Static]	

End	{	Type	|	Class	|	Union	}

Sub	typename.fieldname	([parameters])	[Export]

statements

End	Sub

Parameters
typename	
name	of	the	Type,	Class,	or	Union
fieldname	
name	of	the	procedure
external_name

name	of	field	as	seen	when	externally	linked
parameters	
the	parameters	to	be	passed	to	the	procedure
calling	convention	specifier	
can	be	one	of:	cdecl,	stdcall	or	pascal

Description
Sub	members	are	accessed	with	Operator	.	(Member	Access)	or
Operator	->	(Pointer	To	Member	Access)	to	call	a	member	procedure
and	may	optionally	accept	parameters	either	ByVal	or	ByRef.	typename
be	overloaded	without	explicit	use	of	the	Overload	keyword.

typename	is	the	name	of	the	type	for	which	the	Sub	method	is	declared
and	defined.	Name	resolution	for	typename	follows	the	same	rules	as
procedures	when	used	in	a	Namespace.

A	hidden	This	parameter	having	the	same	type	as	typename	is	passed
to	non-static	member	procedures.	This	is	used	to	access	the	fields	of

the	Type,	Class,	or	Union.
To	access	duplicated	symbols	defined	outside	the	Type,	use:
.SomeSymbol	(or	..SomeSymbol	if	inside	a	With..End	With	block).

A	Static	(Member)	may	be	declared	using	the	Static	specifier.	A	Const
(Member)	may	be	declared	using	the	Const	specifier.

Example

Type	Statistics

		count	As	Single

		sum	As	Single

		Declare	Sub	AddValue(ByVal	x	As	Single)

		Declare	Sub	ShowResults()

End	Type

Sub	Statistics.AddValue(ByVal	x	As	Single)

		count	+=	1

		sum	+=	x

End	Sub

Sub	Statistics.ShowResults()

		Print	"Number	of	Values	=	";	count

		Print	"Average										=	";

		If(count	>	0)	Then

				Print	sum	/	count

		Else

				Print	"N/A"

		End	If

End	Sub

Dim	stats	As	Statistics

stats.AddValue	17.5

stats.AddValue	20.1

stats.AddValue	22.3

stats.AddValue	16.9

stats.ShowResults

Output:

Number	of	Values	=		4

Average										=		19.2

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

See	also

Class

Function	(Member)

Sub

Type

Swap 	

Exchanges	the	values	of	two	variables

Syntax
Declare	Sub	Swap	(ByRef	a	As	Any,	ByRef	b	As	Any)

Parameters
a

A	variable	to	swap.
b

A	variable	to	swap.

Description
Swaps	the	value	of	two	variables.

Example

'	using	swap	to	order	2	numbers:

Dim	a	As	Integer,	b	As	Integer

Input	"input	a	number:	";	a

Input	"input	another	number:	";	b

If	a	>	b	Then	Swap	a,	b

Print	"the	numbers,	in	ascending	order	are:"

Print	a,	b

Differences	from	QB

None

See	also

Operator	=	(Assignment)

System 	

Closes	all	open	files	and	ends	the	program

Syntax
Declare	Sub	System	(ByVal	retval	As	Long	=	0)

Usage
System([retval])

Parameters
retval

Error	code	returned	to	system.

Description
Closes	all	open	files,	exits	the	program,	and	returns	to	the	operating
system.	An	optional	return	value,	an	integer,	can	be	specified	to	return
an	error	code	to	the	system.	If	no	return	value	is	given,	a	value	of	0	is
automatically	returned.	This	is	the	same	as	End	and	is	here	for
compatibility	between	older	BASIC	dialects.	It	is	recommended	to	use
End	instead.

Usage	of	this	statement	does	not	cleanly	close	scope.	Local	variables
will	not	have	their	destructors	called	automatically,	because
FreeBASIC	does	not	do	stack	unwinding.	Only	the	destructors	of
global	variables	will	be	called	in	this	case.

For	this	reason,	it	is	discouraged	to	use	System	simply	to	mark	the	end
of	a	program;	the	program	will	come	to	an	end	automatically,	and	in	a
cleaner	fashion,	when	the	last	line	of	module-level	code	has	executed.

Example

Print	"this	text	is	shown"

System

Print	"this	text	will	never	be	shown"

Differences	from	QB

None

See	also

End

Tab 	

Sets	the	column	when	writing	to	screen	or	file

Syntax
Tab(col_num)

Usage
Print	Tab(column)	[(,	|	;)]	...

Parameters
column

1-based	column	number	to	move	to

Description
Tab	will	move	the	cursor	to	given	column	number	when	Printing	to	screen	or
to	a	file.	Character	cells	skipped	over	between	the	old	and	new	cursor
positions	are	left	unchanged.
If	the	current	column	is	greater	than	column,	then	Tab	will	move	the	cursor	to
the	requested	column	number	on	the	next	line.	If	the	current	column	is	equal
to	column,	then	the	cursor	will	not	move	anywhere.

Example

''	Using	Print	with	Tab	to	justify	text	in	a	table

Dim	As	String	A1,	B1,	A2,	B2

A1	=	"Jane"

B1	=	"Doe"

A2	=	"Bob"

B2	=	"Smith"

Print	"FIRST	NAME";	Tab(35);	"LAST	NAME"

Print	"----------";	Tab(35);	"----------"

Print	A1;	Tab(35);	B1

Print	A2;	Tab(35);	B2

The	output	would	look	like:

FIRST	NAME																									LAST	NAME

----------																									----------

Jane																															Doe

Bob																																Smith

Differences	from	QB

In	QBASIC,	spaces	were	printed	in	the	gap,	while	in	FreeBASIC,	the
characters	are	just	skipped	over	and	left	untouched.

See	also

Spc

Locate

Pos

(Print	|	?)

Tan 	

Returns	the	tangent	of	an	angle

Syntax
Declare	Function	Tan	(ByVal	angle	As	Double)	As	Double

Usage
result	=	Tan(angle)

Parameters
angle

the	angle	(in	radians)

Return	Value
Returns	the	tangent	of	the	argument	angle	as	a	Double	within	the	range	of	-infinity	to
infinity.

Description
The	argument	angle	is	measured	in	radians	(not	degrees).

The	value	returned	by	this	function	is	undefined	for	values	of	angle	with	an	absolute	value
of	2	^	63	or	greater.

Example

Const	PI	As	Double	=	3.1415926535897932

Dim	a	As	Double

Dim	r	As	Double

Input	"Please	enter	an	angle	in	degrees:	",	a

r	=	a	*	PI	/	180				'Convert	the	degrees	to	Radians

Print	""

Print	"The	tangent	of	a"	;	a;	"	degree	angle	is";	

Sleep

The	output	would	look	like:

Please	enter	an	angle	in	degrees:	75

The	tangent	of	a	75	degree	angle	Is	3.732050807568878

Differences	from	QB

None

See	also

Atn

Atan2

Sin

Cos

A	Brief	Introduction	To	Trigonometry

Then 	

Control	flow	statement	for	conditional	branching.

Syntax
If	expression	Then	statement(s)	[Else	statement(s)]

or

If	expression	Then	:	statement(s)	[Else	statement(s)]	:	End	If

or	

If	expression	Then

statement(s)

[ElseIf	expression	Then]

statement(s)

[Else]

statement(s)

End	If

Differences	from	QB

None

See	also

If...Then

This 	

Hidden	instance	parameter	passed	to	non-static	member	functions	in	a
Type	or	Class

Syntax
This.fieldname

or

With	This

.fieldname

End	With

Description
This	is	a	reference	to	an	instance	of	a	Type	or	Class	that	is	passed	as	a
hidden	argument	to	all	non-static	member	functions	of	that	type	or
class.	Non-static	member	functions	are	procedures	declared	inside	the
body	of	a	Type	or	Class	and	include	Sub,	Function,	Constructor,
Destructor,	assignment	or	cast	Operator,	and	Property	procedures.

The	This	additional	parameter	has	the	same	data	type	as	the	Type	or
Class	in	which	the	procedure	is	declared.

The	This	parameter	can	be	used	just	like	any	other	variable,	ie.,	pass	it
to	procedures	taking	an	object	of	the	same	type,	call	other	member
procedures	and	access	member	data	using	Operator	.	(Member
Access),	etc.

Most	of	the	time,	using	This	explicitly	for	member	access	is
unnecessary;	member	procedures	can	refer	to	other	members	of	the
instance	which	they	are	passed	directly	by	name,	without	having	to
qualify	it	with	This	and	Operator	.	(Member	Access).	The	only	times
when	you	need	to	qualify	member	names	with	This	is	when	the
member	name	is	hidden,	for	example,	by	a	local	variable	or	parameter.
In	these	situations,	qualifying	the	member	name	is	the	only	way	to
refer	to	these	hidden	member	names.

Example

Type	sometype

				Declare	Sub	MyCall()

				value	As	Integer

End	Type

Dim	example	As	sometype

''	Set	element	test	to	0

example.value	=	0

Print	example.value

example.MyCall()

''	Output	should	now	be	10

Print	example.value

End	0

Sub	sometype.MyCall()

				This.value	=	10

End	Sub

Differences	from	QB

New	to	FreeBASIC

See	also

Base

Class

Type

Threadcall 	

Starts	a	user-defined	procedure	with	parameters	in	a	separate	execution	thread

Threadcall	uses	LibFFI	internally:	people	who	write	programs	using	this	functionality	should	be
careful	to	follow	LibFFI's	license,	which	can	be	found	at
http://github.com/atgreen/libffi/blob/master/LICENSE.

Syntax
Function	Threadcall	subname([paramlist])	As	Any	Ptr

Usage
threadid	=	Threadcall	subname([paramlist])

Parameters
subname

The	name	of	a	subroutine
paramlist

A	list	of	parameters	to	pass	to	the	subroutine,	as	with	a	normal	sub	call.	

Return	Value
Threadcall	returns	an	Any	Ptr	handle	to	the	thread	created,	or	the	null	pointer	(

Description
Like	ThreadCreate,	Threadcall	creates	a	thread	which	runs	at	the	same	time	as	the	code
calling	it.	By	placing	"Threadcall"	before	almost	any	normal	call	to	sub,	the	sub	is	called
inside	of	a	new	thread	and	returns	a	pointer	to	that	thread.

Using	Threadcall	is	simpler	method	of	creating	threads,	and	allows	data	to	be	passed	to	the
thread	without	global	variables	or	pointers	which	are	not	type	safe.	However,	
more	efficient	and	should	be	used	for	programs	creating	a	large	number	of	threads.

While	most	subroutines	are	supported,	the	following	types	of	subroutines	may	not	be	called:
Subroutines	using	Variable	Arguments
Subroutines	with	unions	which	are	passed	ByVal

Subroutines	with	user	types	containing	unions,	arrays,	strings,	or	bitfields	which
are	passed	ByVal

When	using	Threadcall,	parenthesis	around	the	parameter	list	are	required	unless	the
subroutine	has	no	parameters.

WARNING:	Presently	when	Threadcall	involves	to	pass	parameters	to	the	thread,	there	is	no
guarentee	that	the	corresponding	data	are	still	maintained	after	the	end	of	the	
statement	and	this	until	the	thread	is	launched.	That	can	cause	bad	behavior.

Example

''	Threading	using	"ThreadCall"

Sub	thread(id	As	String,	tlock	As	Any	Ptr,	count	

				For	i	As	Integer	=	1	To	count

								MutexLock	tlock

								Print	"thread	"	&	id;

								Locate	,	20

								Print	i	&	"/"	&	count

								MutexUnlock	tlock

				Next

End	Sub

Dim	tlock	As	Any	Ptr	=	MutexCreate()

Dim	a	As	Any	Ptr	=	ThreadCall	thread("A",	tlock,	6

Dim	b	As	Any	Ptr	=	ThreadCall	thread("B",	tlock,	4

ThreadWait	a

ThreadWait	b

MutexDestroy	tlock

Print	"All	done	(and	without	Dim	Shared!)"

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

Threadcall	is	not	available	with	the	DOS	version	/	target	of	FreeBASIC,	because
multithreading	is	not	supported	by	DOS	kernel	nor	the	used	extender.
In	Linux	the	threads	are	always	started	in	the	order	they	are	created,	this	can't	be
assumed	in	Win32.	It's	an	OS,	not	a	FreeBASIC	issue.	
In	Linux,	the	stdcall	and	pascal	calling	conventions	are	not	supported
In	Windows,	the	pascal	calling	convention	is	not	supported.

Differences	from	QB

New	to	FreeBASIC

See	also

ThreadCreate

ThreadWait

MutexCreate

MutexLock

MutexUnlock

MutexDestroy

ThreadCreate 	

Starts	a	user-defined	procedure	in	a	separate	execution	thread

Syntax
Declare	Function	ThreadCreate	_

(_

ByVal	procptr	As	Sub	(ByVal	userdata	As	Any	Ptr),	_

ByVal	param	As	Any	Ptr	=	0,	_

ByVal	stack_size	As	Integer	=	0	_

)	As	Any	Ptr

Usage
result	=	ThreadCreate	(procptr	[,	[param]	[,	stack_size]])

Parameters
procptr

A	pointer	to	the	Sub	intended	to	work	as	a	thread.	The	sub	must	have	the	following	signature	(same	parameters,
same	calling	convention)	to	be	compatible	to	procptr:
Declare	Sub	myThread	(ByVal	userdata	As	Any	Ptr)

userdata

The	Any	Ptr	parameter	of	the	Sub	intended	to	work	as	a	thread.	FreeBASIC	expects	this	parameter	to	be	present,	it
must	not	be	omitted!	
param

Any	Ptr	argument	that	will	be	passed	to	the	thread	Sub	pointed	to	by	procptr
example,	this	can	be	a	pointer	to	a	structure	or	an	array	containing	various	information	for	the	thread	sub	to	work
with.	If	param	is	not	given,	0	(zero)	will	be	passed	to	the	thread	sub's	userdata
stack_size

Optional	number	of	bytes	to	reserve	for	this	thread's	stack.

Return	Value
ThreadCreate	returns	an	Any	Ptr	handle	to	the	thread	created,	or	a	null	pointer	(

Description
The	sub	pointed	to	by	procptr	is	started	as	a	thread.	It	will	be	passed	the	content	of	
specified,	in	its	userdata	parameter.

The	sub	that	was	started	as	a	thread	will	execute	in	parallel	with	the	main	part	of	the	program.	The	OS	achieves	this
by	assigning	it	to	a	different	processor	if	it	exists,	or	by	alternating	between	execution	threads	on	a	single	processor.
There	is	no	guarantee	about	the	order	in	which	different	threads	execute,	and	no	assumptions	can	be	made	about
the	order	in	which	multiple	create	threads	actually	start	executing.

Before	closing,	programs	should	wait	for	the	termination	of	all	launched	threads	by	using	
it's	not	necessary	to	safely	wait	for	a	thread	to	finish	execution,	Threaddetach
exits	while	some	threads	are	still	active,	those	threads	will	be	aborted	by	the	system.	For	every	thread	created,
programs	should	call	either	ThreadWait	or	Threaddetach	to	ensure	that	the	system	resources	associated	with	the
thread	handles	are	released.	Otherwise,	there	may	be	memory	or	system	resource	leaks.

Due	to	the	nature	of	threads,	no	assumptions	about	execution	order	can	be	made.	In	order	to	exchange	data
between	multiple	threads,	including	a	thread	and	the	main	part	of	the	program,	mutexes	must	be	used.	These	mutual
exclusion	locks	can	be	"owned"	by	a	single	thread	while	doing	critical	work,	causing	other	threads	to	wait	for	their
turn.	See	MutexCreate,	MutexLock,	MutexUnlock,	MutexDestroy.

stack_size	can	be	used	to	change	the	thread's	stack	size	from	the	system's	default.	This	can	be	useful	when	the
program	requires	a	big	stack,	for	example	due	to	lots	of	procedure	recursion	or	when	allocating	huge	strings/arrays
on	the	stack.	On	some	systems	(Linux),	the	stack	automatically	grows	beyond	
on	others	(Win32),	this	is	the	fixed	maximum	allowed.	Behavior	is	undefined	when	more	stack	is	used	than	the
reserved	size	on	systems	where	stacks	are	not	able	to	grow.

Example

''	Threading	synchronization	using	Mutexes

''	If	you	comment	out	the	lines	containing	"MutexLock"	and	"MutexUnlock",

''	the	threads	will	not	be	in	sync	and	some	of	the	data	may	be	printed

''	out	of	place.

Const	MAX_THREADS	=	10

Dim	Shared	As	Any	Ptr	ttylock

''	Teletype	unfurls	some	text	across	the	screen	at	a	given	location

Sub	teletype(ByRef	text	As	String,	ByVal	x	As	Integer

				''

				''	This	MutexLock	makes	simultaneously	running	threads	wait	for	each

				''	other,	so	only	one	at	a	time	can	continue	and	print	output.

				''	Otherwise,	their	Locates	would	interfere,	since	there	is	only	one

				''	cursor.

				''

				''	It's	impossible	to	predict	the	order	in	which	threads	will	arrive

				''	here	and	which	one	will	be	the	first	to	acquire	the	lock	thus

				''	causing	the	rest	to	wait.

				''

				MutexLock	ttylock

				For	i	As	Integer	=	0	To	(Len(text)	-	1)

								Locate	x,	y	+	i

								Print	Chr(text[i])

								Sleep	25

				Next

				''	MutexUnlock	releases	the	lock	and	lets	other	threads	acquire	it.

				MutexUnlock	ttylock

End	Sub

Sub	thread(ByVal	userdata	As	Any	Ptr)

				Dim	As	Integer	id	=	CInt(userdata)

				teletype	"Thread	("	&	id	&	").........",	1	+	id

End	Sub

				''	Create	a	mutex	to	syncronize	the	threads

				ttylock	=	MutexCreate()

				''	Create	child	threads

				Dim	As	Any	Ptr	handles(0	To	MAX_THREADS-1)

				For	i	As	Integer	=	0	To	MAX_THREADS-1

								handles(i)	=	ThreadCreate(@thread,	CPtr(Any

								If	handles(i)	=	0	Then

												Print	"Error	creating	thread:";	i

												Exit	For

								End	If

				Next

				''	This	is	the	main	thread.	Now	wait	until	all	child	threads	have	finished.

				For	i	As	Integer	=	0	To	MAX_THREADS-1

								If	handles(i)	<>	0	Then

												ThreadWait(handles(i))

								End	If

				Next

				''	Clean	up	when	finished

				MutexDestroy(ttylock)

Sub	print_dots(ByRef	char	As	String)

				For	i	As	Integer	=	0	To	29

								Print	char;

								Sleep	CInt(Rnd()	*	100),	1

				Next

End	Sub

Sub	mythread(param	As	Any	Ptr)

				''	Work	(other	thread)

				print_dots("*")

End	Sub

				Randomize(Timer())

				Print	"	main	thread:	."

				Print	"other	thread:	*"

				''	Launch	another	thread

				Dim	As	Any	Ptr	thread	=	ThreadCreate(@mythread

				''	Work	(main	thread)

				print_dots(".")

				''	Wait	until	other	thread	has	finished,	if	needed

				ThreadWait(thread)

				Print

				Sleep

''	Threaded	consumer/producer	example	using	mutexes

Dim	Shared	As	Any	Ptr	produced,	consumed	

Sub	consumer(ByVal	param	As	Any	Ptr)

				For	i	As	Integer	=	0	To	9

								MutexLock	produced

								Print	",	consumer	gets:",	i

								Sleep	500

								MutexUnlock	consumed

				Next

End	Sub

Sub	producer(ByVal	param	As	Any	Ptr)

				For	i	As	Integer	=	0	To	9

								Print	"Producer	puts:",	i;

								Sleep	500

								MutexUnlock	produced

								MutexLock	consumed

				Next	i

End	Sub

				Dim	As	Any	Ptr	consumer_id,	producer_id

				produced	=	MutexCreate

				consumed	=	MutexCreate

				If((produced	=	0)	Or	(consumed	=	0))	Then

								Print	"Error	creating	mutexes!	Exiting..."

								End	1

				End	If

				MutexLock	produced

				MutexLock	consumed

				consumer_id	=	ThreadCreate(@consumer)

				producer_id	=	ThreadCreate(@producer)

				If((producer_id	=	0)	Or	(consumer_id	=	0)

								Print	"Error	creating	threads!	Exiting..."

								End	1

				End	If

				ThreadWait	consumer_id

				ThreadWait	producer_id

				MutexDestroy	consumed

				MutexDestroy	produced

				Sleep

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

Threadcreate	is	not	available	with	the	DOS	version	/	target	of	FreeBASIC,	because	multithreading	is	not
supported	by	DOS	kernel	nor	the	used	extender.
In	Linux	the	threads	are	always	started	in	the	order	they	are	created,	this	can't	be	assumed	in	Win32.	It's	an
OS,	not	a	FreeBASIC	issue.	

Differences	from	QB

New	to	FreeBASIC

See	also

ThreadWait

Threaddetach

MutexCreate

MutexLock

MutexUnlock

MutexDestroy

Threaddetach 	

Releases	a	thread	handle	without	waiting	for	the	thread	to	finish

Syntax
Declare	Sub	ThreadDetach	(ByVal	id	As	Any	Ptr)

Usage
#include	"fbthread.bi"

ThreadDetach(id)

Parameters
id

Any	Ptr	handle	of	a	thread	created	by	ThreadCreate	or	Threadcall

Description
ThreadDetach	releases	resources	associated	with	a	thread	handle
returned	by	ThreadCreate	or	Threadcall.	The	thread	handle	will	be
destroyed	by	ThreadDetach	and	cannot	be	used	anymore.
Unlike	ThreadWait,	ThreadDetach	does	not	wait	for	the	thread	to	finish
and	thread	execution	continues	independently.	Any	allocated
resources	will	be	freed	once	the	thread	exits.

Example

#include	"fbthread.bi"

Sub	mythread(ByVal	param	As	Any	Ptr)

				Print	"hi!"

End	Sub

Var	thread	=	ThreadCreate(@mythread)

threaddetach(thread)

threaddetach(ThreadCreate(@mythread))

Sleep

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

ThreadDetach	is	not	available	with	the	DOS	version	of
FreeBASIC,	because	multithreading	is	not	supported	by	DOS
kernel	nor	the	used	extender.

Differences	from	QB

New	to	FreeBASIC

See	also

ThreadWait

ThreadCreate

ThreadWait 	

Waits	for	a	thread	to	finish	execution	and	releases	the	thread	handle

Syntax
Declare	Sub	ThreadWait	(ByVal	id	As	Any	Ptr)

Usage
ThreadWait(id)

Parameters
id

Any	Ptr	handle	of	a	thread	created	by	ThreadCreate	or	Threadcall

Description
ThreadWait	waits	for	a	thread	created	by	ThreadCreate	or	Threadcall
to	finish	execution,	and	then	releases	the	resources	associated	with
the	thread	handle.	ThreadWait	does	not	return	until	the	thread
designated	by	id	ends.	

In	order	to	release	a	thread	handle	without	waiting	for	the	thread	to
finish,	use	Threaddetach.

ThreadWait	does	not	force	the	thread	to	end;	if	a	thread	requires	a
signal	to	force	its	end,	a	mechanism	such	as	shared	variables	and
mutexes	must	be	used.

Example
See	the	ThreadCreate	examples.

Dialect	Differences

Threading	is	not	allowed	in	the	-lang	qb	dialect.

Platform	Differences

ThreadWait	is	not	available	with	the	DOS	version	of
FreeBASIC,	because	multithreading	is	not	supported	by	DOS
kernel	nor	the	used	extender.

Differences	from	QB

New	to	FreeBASIC

See	also

ThreadCreate

Threaddetach

Time 	

Returns	the	current	system	time	as	a	string

Syntax
Declare	Function	Time	()	As	String

Usage
result	=	Time

Return	Value
Returns	the	current	system.

Description
Returns	the	current	system	time	in	the	format	hh:mm:ss.

Example

Print	"the	current	time	is:	";	Time

Differences	from	QB

The	QB	TIME	statement	(to	set	the	system	time)	is	now	called
SetTime.

See	also

Date

Timer

TimeSerial 	

Gets	a	Date	Serial	for	the	specified	hours,	minutes,	and	seconds

Syntax
Declare	Function	TimeSerial	(ByVal	hour	As	Long,	ByVal	minute	As

)	As	Double

Usage
#include	"vbcompat.bi"

result	=	TimeSerial(hours,	minutes,	seconds)

Parameters
hour

number	of	hours,	in	the	range	0-23
minute

number	of	minutes
second

number	of	seconds

Return	Value
Returns	a	date	serial	containing	the	time	formed	by	the	values	in	the	
parameters.The	date	serial	returned	has	no	integer	part.

Description

hours	must	be	specified	in	the	range	0-23

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or	datetime.bi

Example

#include	"vbcompat.bi"

Dim	ds	As	Double	=	DateSerial(2005,	11,	28)	+	TimeSerial

Print	Format(ds,	"yyyy/mm/dd	hh:mm:ss")

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials
DateSerial

TimeValue

DateValue

TimeValue 	

Gets	a	Date	Serial	from	a	time	string

Syntax
Declare	Function	TimeValue	(ByRef	timestring	As	String)	As

Double

Usage
#include	"vbcompat.bi"

result	=	TimeValue(timestring)

Parameters
timestring

the	string	to	convert

Return	Value
Returns	a	Date	Serial	from	a	time	string.

Description

The	time	string	must	be	in	the	format	"23:59:59"	or	"11:59:59PM"

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or
datetime.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	ds	As	Double	=	TimeValue("07:12:28AM")

Print	Format(ds,	"hh:mm:ss")

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials
DateSerial

TimeValue

DateValue

Timer 	

Returns	the	amount	of	time	that	has	passed	since	a	static	reference	point.

Syntax
Declare	Function	Timer	()	As	Double

Usage
result	=	Timer

Return	Value
Returns	a	Double	precision	result	with	the	time,	in	seconds,	since	a	static
reference	point.

Description

The	Timer	function	is	useful	for	finding	out	how	long	a	section	of	code	takes
to	run,	or	for	control	the	timing	of	your	code.	To	find	out	how	much	time	has
passed	between	two	points	in	your	program,	you	can	record	the	value	of
Timer	at	the	start	and	end	points,	and	then	subtract	the	start	value	from	the
end	value.

On	some	platforms,	the	value	of	Timer	resets	to	zero	at	midnight	(see	below),
so	if	the	start	and	end	time	are	on	either	side	of	the	reset	point,	the	difference
will	be	negative.	This	could	cause	unexpected	behavior	in	some	programs.	
those	cases,	adding	86400	(the	number	of	seconds	in	24	hours)	to	the
difference	should	return	the	correct	result.	If	the	time	taken	is	longer	than	a
day,	then	it	will	be	also	be	necessary	to	check	the	number	of	days	that	have
elapsed.

The	value	returned	by	Timer	is	NOT	affected	by	the	automatic	changing	of
the	system	clock,	in	Spring	and	Autumn,	for	DST	(Daylight	Savings	Time).

Example

''	Example	of	using	TIMER	function	

''	Note:	see	text	about	correct	waiting	strategies

Dim	Start	As	Double

Print	"Wait	2.5	seconds."

Start	=	Timer

Do

				Sleep	1,	1

Loop	Until	(Timer	-	Start)	>	2.5

Print	"Done."

Platform	Differences

On	Win32	and	Linux,	if	the	program	must	wait	for	periods	of	0.1
seconds	or	more,	Sleep	should	be	used,	this	allows	other	programs	to
run	during	the	waiting	period.	For	shorter	delays,	a	loop	using	TIMER
can	be	more	precise.
The	reference	point	chosen	varies,	depending	on	the	platform.	
Windows,	the	time	is	measured	relative	to	the	point	the	computer	was
booted	up.	On	DOS,	the	time	is	measured	relative	to	Jan	1	1970.

Note	for	DOS	users:	today,	the	number	of	seconds	since	1970	is	in	excess	of
10^9,	and	is	therefore	unsuitable	for	storing	in	Single-precision	variables,	also
it	shouldn't	be	multiplied	(to	get	1/10	seconds	or	so)	and	stored	in	32-bit
integer	variables	then

The	precision	of	TIMER	varies,	depending	on	the	computer	used.	
the	processor	has	a	precision	timer	(as	the	Performance	Counter
Pentium	processors	from	Intel	have)	and	the	OS	uses	it,	the	precision
is	linked	to	the	processor	clock	and	microseconds	can	be	expected.
With	older	processors	(386,	486),	and	always	in	DOS,	the	resolution	is
1/18	second.

Usage	of	TIMER	can	cause	disk	accesses	in	DOS,	see	forum	for
analysis	and	solutions

http://www.freebasic.net/forum/viewtopic.php?t=12985

Differences	from	QB

In	QB,	TIMER	returned	the	number	of	seconds	from	last	midnight,	and
its	accuracy	was	1/18	secs

See	also

Time

Sleep

To 	

Statement	modifier	to	specify	a	range.

Syntax
For	iterator	intial_value	To	ending_value

statement(s).

Next	[iterator]

or

Select	Case	case_comparison_value

Case	lower_bound	To	upper_bound

statement(s).

End	Select

or

Dim	variable_identifier(lower_bound	To	upper_bound)	As	type_specifier

Description
The	To	keyword	is	used	to	define	a	certain	numerical	range.	This	keyword	is	valid	only	if	used	with	

In	the	first	syntax,	the	To	keyword	defines	the	initial	and	ending	values	of	the	iterator	in	a	

In	the	second	syntax,	the	To	keyword	defines	lower	and	upper	bounds	for	

In	the	third	syntax,	the	To	keyword	defines	the	array	bounds	in	a	Dim	statement

For	more	information,	see	For...Next,	Dim	and	Select	Case.

Example

''	this	program	uses	bound	variables	along	with	the	TO	keyword	to	create	an	array,	store	random

''	temperatures	inside	the	array,	and	to	determine	output	based	upon	the	value	of	the	temperatures

Randomize	Timer

''	define	minimum	and	maximum	number	of	temperatures	we	will	create

Const	minimum_temp_count	As	Integer	=	1

Const	maximum_temp_count	As	Integer	=	10

''	define	the	range	of	temperatures	zones	in	which	bacteria	breed	rapidly	(in	degrees)

Const	min_low_danger	As	Integer	=	40

Const	max_low_danger	As	Integer	=	69

Const	min_medium_danger	As	Integer	=	70

Const	max_medium_danger	As	Integer	=	99

Const	min_high_danger	As	Integer	=	100

Const	max_high_danger	As	Integer	=	130

''	define	array	to	hold	temperatures	using	our	min/max	temp	count	bounds

Dim	As	Integer	array(minimum_temp_count	To	maximum_temp_count

''	declare	a	for	loop	that	iterates	from	minimum	to	maximum	temp	count

Dim	As	Integer	it

For	it	=	minimum_temp_count	To	maximum_temp_count

			array(it)	=	Int(Rnd(1)	*	200)	+	1

			''	display	a	message	based	on	temperature	using	our	min/max	danger	zone	bounds

			Select	Case	array(it)

						Case	min_low_danger	To	max_low_danger

									Color	11

									Print	"Temperature"	;	it	;	"	is	in	the	low	danger	zone	at"

						Case	min_medium_danger	To	max_medium_danger

									Color	14

									Print	"Temperature"	;	it	;	"	is	in	the	medium	danger	zone	at"

						Case	min_high_danger	To	max_high_danger

									Color	12

									Print	"Temperature"	;	it	;	"	is	in	the	high	danger	zone	at"

						Case	Else

									Color	3

									Print	"Temperature"	;	it	;	"	is	safe	at"	

			End	Select

Next	it

Sleep

Differences	from	QB

none

See	also

For...Next

Dim

Select	Case

Trans 	

Parameter	to	the	Put	graphics	statement	which	selects	transparent	background	as	the	blitting	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Parameters
Trans

Required.

Description
Trans	selects	transparent	background	as	the	method	for	blitting	an	image	buffer.	
For	8-bit	color	images,	the	mask	color	is	palette	index	0.	For	16/32-bit	color	images,	the	mask	color	is	Magenta,	which	is	
for	the	mask	color	in	32-bit	images.

Note:	for	32-bit	images,	the	alpha	value	of	pixels	may	be	changed	to	0.	
example	below.

Example

''	set	up	a	screen:	320	*	200,	16	bits	per	pixel

ScreenRes	320,	200,	16

''	set	up	an	image	with	the	mask	color	as	the	background.

Dim	img	As	Any	Ptr	=	ImageCreate(32,	32,	RGB(255,

Circle	img,	(16,	16),	15,	RGB(255,	255,	0),					,					

Circle	img,	(10,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(23,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(16,	18),	10,	RGB(0,			0,	0),	3.14,	

''	Put	the	image	with	PSET	(gives	the	exact	contents	of	the	image	buffer)

Draw	String	(110,	50	-	4),	"Image	put	with	PSET"

Put	(60	-	16,	50	-	16),	img,	PSet

''	Put	the	image	with	TRANS

Draw	String	(110,	150	-	4),	"Image	put	with	TRANS"

Put	(60	-	16,	150	-	16),	img,	Trans

''	free	the	image	memory

ImageDestroy	img

''	wait	for	a	keypress

Sleep

Function	trans32	(ByVal	source_pixel	As	UInteger,

				''	returns	the	source	pixel

				''	unless	it	is	&hff00ff	(magenta),	then	return	the	destination	pixel

				If	(source_pixel	And	&hffffff)	<>	&hff00ff	Then

								Return	source_pixel

				Else

								Return	destination_pixel

				End	If

End	Function

''	set	up	a	screen:	320	*	200,	16	bits	per	pixel

ScreenRes	320,	200,	32

''	set	up	an	image	with	the	mask	color	as	the	background.

Dim	img	As	Any	Ptr	=	ImageCreate(32,	32,	RGB(255,

Circle	img,	(16,	16),	15,	RGB(255,	255,	0),					,					

Circle	img,	(10,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(23,	10),	3,		RGB(0,			0,	0),					,					

Circle	img,	(16,	18),	10,	RGB(0,			0,	0),	3.14,	

''	Put	the	image	with	PSET	(gives	the	exact	contents	of	the	image	buffer)

Draw	String	(110,	50	-	4),	"Image	put	with	PSET"

Put	(60	-	16,	50	-	16),	img,	PSet

''	Put	the	image	with	TRANS

Draw	String	(110,	100	-	4),	"Image	put	with	TRANS"

Put	(60	-	16,	100	-	16),	img,	Trans

''	Put	the	image	with	TRANS

Draw	String	(110,	150	-	4),	"Image	put	with	trans32"

Put	(60	-	16,	150	-	16),	img,	Custom,	@trans32

''	free	the	image	memory

ImageDestroy	img

''	wait	for	a	keypress

Sleep

Differences	from	QB

New	to	FreeBASIC

See	also

Put	(Graphics)

Custom

Trim 	

Removes	surrounding	substrings	or	characters	on	the	left	and	right	side	of	a
string

Syntax
Declare	Function	Trim	(ByRef	str	As	Const	String,	[Any]	ByRef

trimset	As	Const	String	=	"	")	As	String

Declare	Function	Trim	(ByRef	str	As	Const	WString,	[Any]	ByRef

trimset	As	Const	WString	=	WStr("	"))	As	WString

Usage
result	=	Trim[$](str	[,	[Any]	trimset])

Parameters
str

The	source	string.
trimset

The	substring	to	trim.

Return	Value
Returns	the	trimmed	string.

Description
This	procedure	trims	surrounding	characters	from	the	left	(beginning)	and
right	(end)	of	a	source	string.	Substrings	matching	trimset	will	be	trimmed	if
specified,	otherwise	spaces	(ASCII	code	32)	are	trimmed.

If	the	Any	keyword	is	used,	any	character	matching	a	character	in	trimset
be	trimmed.

All	comparisons	are	case-sensitive.

Example

Dim	s1	As	String	=	"	...	Stuck	in	the	middle	...	"

Print	"'"	+	Trim(s1)	+	"'"

Print	"'"	+	Trim(s1,	Any	"	.")	+	"'"

Dim	s2	As	String	=	"BaaBaaaaB	With	You	aaBBaaBaa"

Print	"'"	+	Trim(s2,	"Baa")	+	"'"

Print	"'"	+	Trim(s2,	Any	"Ba")	+	"'"

will	produce	the	output:

'...	Stuck	in	the	middle	...'

'Stuck	in	the	middle'

'aaB	With	You	aaB'

'	With	You	'	 	

Platform	Differences

DOS	version/target	of	FreeBASIC	does	not	support	the	wide-character
version	of	Trim.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__Trim.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang	fb
dialects.

Differences	from	QB

New	to	FreeBASIC

See	also

LTrim	
RTrim

True 	

Intrinsic	constant	set	by	the	compiler

Syntax
Const	True	As	Boolean

Description
Gives	the	True	Boolean	value	where	used.

Example

Dim	b	As	Boolean	=	True

If	b	Then

				Print	"b	is	True"

Else

				Print	"b	is	False"

End	If

b	is	True

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__True.

Differences	from	QB

New	to	FreeBASIC

See	also

False

Boolean

Type	(Alias) 	

Declares	an	alternative	name	for	a	type

Syntax
Type	typename	As	symbol

Parameters
typename	
new	alternative	name.
symbol	
symbol	or	data	type	declaration	to	associate	with	typename.	

Description
symbol	may	refer	to	any	declared	data	type	including	a	built-in	data
type,	Sub	or	Function	pointer,	Type	declaration,	Union	declaration,	or
Enum	declaration.

A	type	alias	can	be	used	to	allow	forward	declarations	of	parameters	in
procedure	declarations,	but	only	used	with	pointers	or	parameters
passed	by	reference	(excluding	arrays).
A	type	alias	can	also	be	used	to	allow	forward	declarations	of	data
fields	in	User	Defined	Types,	but	only	used	with	pointers.

Example

Type	ParentFwd	As	Parent

Type	Child

				Name	As	ZString	*	32

				ParentRef	As	ParentFwd	Ptr

				''...

End	Type

Type	Parent

				Name	As	ZString	*	32

				ChildList(0	To	9)	As	Child

				''...

End	Type

Dim	p	As	Parent

p.Name	=	"Foo"

With	p.ChildList(0)

				.Name	=	"Jr."

				.ParentRef	=	@p

				''	...

End	With				

With	p.ChildList(0)

				Print	.Name;	"	is	child	of	";	.parentRef-

>Name

End	With

Differences	from	QB

New	to	FreeBASIC

See	also

Type...End	Type

Type	(Temporary)

Temporary	Types 	

Creates	a	temporary	copy	of	a	user	defined	type

Syntax
result	=	Type(initializers,	...)

or

result	=	Type<typename>(initializers,	...)

Parameters
initializers

Initial	values	for	the	type
typename

The	name	of	the	Type	or	Union

Return	Value
A	temporary	copy	of	the	type.

Description
Used	to	create	a	temporary	type.	If	typename	is	not	explicitly	given,	it	will	be	inferred	from	its	usage	if	possible.
Usage	of	the	temporary	copy	may	include	assigning	it	to	a	variable,	passing	it	as	a	parameter	to	a	procedure,
or	returning	it	as	a	value	from	a	procedure.

For	a	type	without	constructor,	the	temporary	type	syntax	is	allowed	if	all	type	data-fields	are	numeric
primitives	only	and	without	any	default	initializers,	but	the	compiler	does	a	direct	assignment	instead	of	using
a	temporary	copy	if	at	same	time	the	type	is	without	destructor.

The	Constructor	for	the	type,	if	there	is	one,	will	be	called	when	the	temporary	copy	is	created,	and	the
Destructor	for	the	type,	if	there	is	one,	will	be	called	immediately	after	its	use.	But	when	there	is	a	constructor,
the	temporary	type	expression	may	be	simply	replaced	by	typename(initializers

It	can	create	not	only	a	temporary	copy	of	an	user	defined	type,	but	also	a	temporary	copy	of	predefined	data-
type	as	a	variable-length	string	or	any	numeric	data-type	(all	standard	data-types	excluding	fixed-length
strings).

It	can	also	be	used	as	an	even	shorter	shortcut	than	With	(see	below)	if	you	are	changing	all	the	records.

Example

Type	Example

				As	Integer	field1

				As	Integer	field2

End	Type

Dim	ex	As	Example

''	Filling	the	type	by	setting	each	field

ex.field1	=	1

ex.field2	=	2

''	Filling	the	type	by	setting	each	field	using	WITH

With	ex

				.field1	=	1

				.field2	=	2

End	With

''	Fill	the	variable's	fields	with	a		temporary	type

ex	=	Type(1,	2)

''	Passing	a	user-defined	types	to	a	procedure	using	a	temporary	type

''	where	the	type	can	be	inferred.

Type	S

		As	Single	x,	y

End	Type

Sub	test	(v	As	S)

		Print	"S",	v.x,	v.y

End	Sub

test(Type(1,	2))

''	Passing	a	user-defined	type	to	a	procedure	using	temporary	types

''	where	the	type	is	ambiguous	and	the	name	of	the	type	must	be	specified.

Type	S

		As	Single	x,	y

End	Type

Type	T

		As	Integer	x,	y

End	Type

Union	U

		As	Integer	x,	y

End	Union

''	Overloaded	procedure	test()

Sub	test	Overload	(v	As	S)

		Print	"S",	v.x,	v.y

End	Sub

Sub	test	(v	As	T)

		Print	"T",	v.x,	v.y

End	Sub

Sub	test	(v	As	U)

		Print	"U",	v.x,	v.y

End	Sub

''	Won't	work:	ambiguous

''	test(type(1,	2))

''	Specify	name	of	type	instead

test(Type<S>(1,	2))

test(Type<T>(1,	2))

test(Type<U>(1))

Differences	from	QB

New	to	FreeBASIC

See	also

Type...End	Type

Type	(Alias)

Type 	

Declares	a	user-defined	type.

Syntax
Type	typename

fieldname1	As	DataType

fieldname2	As	DataType

As	DataType	fieldname3,	fieldname4

...

End	Type

Type	typename	[Extends	base_typename]	[Field	=	alignment]

[Private:|Public:|Protected:]

Declare	Sub|Function|Constructor|Destructor|Property|Operator	...

Static	variablename	As	DataType

fieldname	As	DataType	[=	initializer]

fieldname(array	dimensions)	As	DataType	[=	initializer]

fieldname(Any	[,	Any...])	As	DataType

fieldname	:	bits	As	DataType	[=	initializer]

As	DataType	fieldname	[=	initializer],	...

As	DataType	fieldname(array	dimensions)	[=	initializer],	...

As	DataType	fieldname(Any	[,	Any...])

As	DataType	fieldname	:	bits	[=	initializer],	...

Union

fieldname	As	DataType

Type

fieldname	As	DataType

...

End	Type

...

End	Union

...

End	Type

Description
Type	is	used	to	declare	custom	data	types	containing	one	or	more	data	fields,	including	integer	types,	floating	point	types,	fixed-size	or
variable-length	(dynamic)	arrays,	fixed-size	or	variable-length	strings,	bitfields,	or	other	user-defined	types.

Types	support	various	functionality	related	to	object-oriented	programming:
Inheritance	through	the	use	of	the	Extends	keyword
Member	procedures	such	as	Subs	or	Functions,	including	
Member	procedures	with	special	semantic	meaning	such	as	
Static	member	variables
Member	visibility	specifiers:	Public:,	Private:,	Protected:

Types	may	also	contain	nested	types	or	unions,	allowing	data	members	to	be	grouped	as	desired.	Nested	types/unions	are	not	allowed	to
contain	member	procedures	or	static	member	variables	(same	restriction	for	local	types/unions).

Memory	layout
Types	lay	out	their	fields	consecutively	in	memory,	following	the	native	alignment	and	padding	rules	(described	on	the	
care	must	be	taken	when	using	Types	for	file	I/O	or	interacting	with	other	programs	or	programming	languages,	in	case	the	alignment	and
padding	rules	are	different.	The	optional	Field	=	number	specifier	can	be	used	to	change	the	behavior	on	the	FreeBASIC	side.

Variable-length	data
In	FreeBASIC,	Type	data	structures	must	ultimately	be	fixed-size,	such	that	the	compiler	knows	how	much	memory	to	allocate	for	objects	of
that	Type.	Nevertheless,	Types	may	contain	variable-length	(dynamic)	string	or	array	data	members.	However,	the	string's/array's	data	will
not	be	embedded	in	the	Type	directly.	Instead,	the	Type	will	only	contain	a	
the	scenes	to	manage	the	variable-length	string/array	data.	For	sizing	the	structure	of	the	array	descriptor	in	the	Type,	a	variable-length
(dynamic)	array	data	member	must	be	always	declared	by	using	Any(S)
dimensions	based	on	the	number	of	Anys	specified.

Because	of	that,	saving	such	a	Type	into	a	file	will	write	out	the	descriptor,	not	the	actual	string/array	data.	In	order	to	embed	strings/arrays
into	Types	directly,	fixed-length	strings/arrays	must	be	used.

Similarly,	when	maintaining	dynamic	data	manually	through	the	use	of	pointers	within	a	Type,	it	does	usually	not	make	sense	to	save	the
Type	to	a	file,	because	the	address	stored	in	the	pointer	field	will	be	written	to	file,	not	the	actual	memory	it	points	to.	Addresses	are
meaningful	to	a	specific	process	only	though,	and	cannot	be	shared	that	way.

Special	note	on	fixed-length	strings
Currently,	fixed-length	string	fields	of	String	*	N	type	have	an	extra	null	terminator	at	their	end,	for	compatibility	with	C	strings,	making	them
incompatible	with	QB	strings	inside	Types,	because	they	actually	use	up	
declare	the	field	As	String	*	(N-1),	though	this	will	not	work	in	future	releases	if	the	null	terminator	is	removed.	
a	Byte	or	UByte	array	with	the	proper	size.

Example

This	is	an	example	of	a	QB-style	type,	not	including	procedure	definitions

Type	clr

				red	As	UByte

				green	As	UByte

				blue	As	UByte

End	Type

Dim	c	As	clr

c.red	=	255

c.green	=	128

c.blue	=	64

And	this	is	an	example	of	a	type	working	as	an	object:

''	Example	showing	the	problems	with	fixed	length	string	fields	in	UDTs

''	Suppose	we	have	read	a	GIF	header	from	a	file

''																								signature									width								height

Dim	As	ZString*(10+1)	z	=>	"GIF89a"	+	MKShort(10)	

Print	"Using	fixed-length	string"

Type	hdr1	Field	=	1

			As	String*(6-1)	sig	/'	We	have	to	dimension	the	string	with	1	char

																					'		less	to	avoid	misalignments	'/

			As	UShort	wid,	hei

End	Type

Dim	As	hdr1	Ptr	h1	=	CPtr(hdr1	Ptr,	@z)

Print	h1->sig,	h1->wid,	h1->hei	''	Prints	GIF89	(misses	a	char!)		10		11

''	We	can	do	comparisons	only	with	the	5	visible	chars	and	creating	a	temporary	string	with	LEFT

If	Left(h1->sig,	5)	=	"GIF89"	Then	Print	"ok"	Else

''	Using	a	ubyte	array,	we	need	an	auxiliary	function	to	convert	it	to	a	string

Function	ub2str(ub()	As	UByte)	As	String

				Dim	As	String	res	=	Space(UBound(ub)	-	LBound(

				For	i	As	Integer	=	LBound(ub)	To	UBound(ub)

								res[i	-	LBound(ub)]	=	ub(i)

				Next

				Function	=	res

End	Function

Print

Print	"Using	an	array	of	ubytes"

Type	hdr2	Field	=	1

			sig(0	To	6-1)	As	UByte	''	Dimension	6

			As	UShort	wid,	hei

End	Type

Dim	As	hdr2	Ptr	h2	=	CPtr(hdr2	Ptr,	@z)

''	Viewing	and	comparing	is	correct	but	a	conversion	to	string	is	required

Print	ub2str(h2->sig()),	h2->wid,	h2->hei	''	Prints	GIF89a		10		11	(ok)

If	ub2str(h2->sig())	=	"GIF89a"	Then	Print	"ok"	Else

Platform	Differences

The	default	Field	alignment	parameter	is	4	bytes	for	DOS	and	Linux	targets.
The	default	Field	alignment	parameter	is	8	bytes	for	Windows	targets	(this	difference	with	regard	to	4	bytes	applies	only	to	Longint
and	Double	members).

Dialect	Differences

Object-related	features	such	as	functions	declared	inside	Type	blocks	are	supported	only	with	the	
In	the	-lang	fb	and	-lang	fblite	dialects,	the	default	Field	alignment	parameter	depends	on	the	target	platform.
With	the	-lang	qb	dialect	the	fields	are	aligned	to	byte	boundaries	by	default,	unless	otherwise	specified.
To	force	byte	alignment	use	FIELD=1.

Differences	from	QB

At	present,	fixed-length	strings	have	an	extra,	redundant	character	on	the	end,	which	means	they	take	up	one	more	byte	than	they
do	in	QB.	For	this	reason,	UDTs	that	use	them	are	not	compatible	with	QB	when	used	for	file	I/O.

See	also

Type	(Alias)

Type	(Temporary)

Union

Enum

TypeOf

OffsetOf

Field

Extends

With

TypeOf 	

Returns	the	type	of	a	variable.

Syntax
TypeOf	(variable	|	datatype)

Parameters
variable

A	variable	of	any	type.
datatype

A	DataType.

Description
TypeOf	is	a	compiler	intrinsic	that	replaces	itself	with	the	type	of	the	variable	passed	to	it.	It	can	either	be	used
in	a	variable	declaration	(Example	1)	or	it	can	be	used	in	the	preprocessor	for	comparison,	printing.	(Example
2)

TypeOf	also	supports	passing	any	intrinsic	data	type,	or	user-defined	type,	not	only	variables	defined	as	those
types.	Also	supported	are	expressions,	the	type	is	inferred	from	the	expression	(much	like	

If	there	is	both	a	user	defined	type	and	a	variable	visible	with	the	same	name	in	the	current	scope,	the	user
defined	type	takes	precedence	over	the	variable.	To	ensure	that	the	TypeOf
user	defined	type,	wrap	the	argument	to	TypeOf	with	parentheses	to	force	it	to	be	seen	as	an	expression.	
example	Typeof((variable)).

Example
Example	1:

Dim	As	Integer	foo

Dim	As	TypeOf(67.2)	bar	''	'67.2'	is	a	literal	double

Dim	As	TypeOf(foo	+	bar)	teh_double	''	double	+	integer	results	in	double

Print	SizeOf(teh_double)

Example	2:

Dim	As	String	foo

#print	TypeOf(foo)

#if	TypeOf(foo)	=	TypeOf(Integer)

		#print	"Never	happened!"

#endif

#if	TypeOf(foo)	=	TypeOf(String)

		#print	"It's	a	String!"

#endif

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

SizeOf

Var

Type	(Alias)

Type...End	Type

UBound 	

Returns	the	upper	bound	of	an	array's	dimension

Syntax
Declare	Function	UBound	(array()	As	Any,	ByVal	dimension	As	Integer

Usage
result	=	UBound(array	[,	dimension])

Parameters
array

an	array	of	any	type
dimension

the	dimension	to	get	upper	bound	of

Return	Value
Returns	the	upper	bound	of	an	array's	dimension.

Description
UBound	returns	the	largest	value	that	can	be	used	as	an	index	into	a	particular	dimension	of	an	array.

Array	dimensions	are	numbered	from	one	(1)	to	n,	where	n	is	the	total	number	of	dimensions.	If	
will	return	the	upper	bound	of	the	first	dimension.

If	dimension	is	zero	(0),	UBound	returns	n,	the	number	of	dimensions	in	the	array.	For	any	other	
valid	range	1..n,	the	result	is	-1.	This	can	be	used	to	detect	the	number	of	dimensions	of	variable-length	arrays,	and	in
combination	with	the	result	of	Lbound()	for	such	cases,	whether	a	given	dimension	exists,	or	whether	the	array	is	empty	(zero
dimensions).	See	the	LBound	page	for	more	information.

Example

Dim	array(-10	To	10,	5	To	15,	1	To	2)	As	Integer

Print	UBound(array)	'returns	10

Print	UBound(array,	2)	'returns	15

Print	UBound(array,	3)	'returns	2

''	determining	the	size	of	an	array

Dim	As	Short	array(0	To	9)

Dim	As	Integer	arraylen,	arraysize

arraylen	=	UBound(array)	-	LBound(array)	+	1

arraysize	=	arraylen	*	SizeOf(Short)

Print	"Number	of	elements	in	array:",	arraylen				

Print	"Number	of	bytes	used	in	array:",	arraysize	

''	determining	the	size	of	a	multi-dimensional	array

Dim	As	Long	array4D(1	To	2,	1	To	3,	1	To	4,	1	To	5

Dim	As	Integer	arraylen,	arraysize

arraylen	=	(UBound(array4D,	4)	-	LBound(array4D,	4

									*	(UBound(array4D,	3)	-	LBound(array4D,	3

									*	(UBound(array4D,	2)	-	LBound(array4D,	2

									*	(UBound(array4D,	1)	-	LBound(array4D,	1

arraysize	=	arraylen	*	SizeOf(Long)

Print	"Number	of	elements	in	array:",	arraylen				

Print	"Number	of	bytes	used	in	array:",	arraysize	

''	determining	whether	an	array	is	empty

Dim	array()	As	Integer

Print	"lbound:	";	LBound(array),	"ubound:	";	UBound

If	LBound(array)	>	UBound(array)	Then

				Print	"array	is	empty"

Else

				Print	"array	is	not	empty"

End	If

Sub	printArrayDimensions(array()	As	Integer)

				Print	"dimensions:	"	&	UBound(array,	0)

				''	For	each	dimension...

				For	d	As	Integer	=	LBound(array,	0)	To	UBound

								Print	"dimension	"	&	d	&	":	"	&	LBound(array

				Next

End	Sub

Dim	array()	As	Integer

printArrayDimensions(array())

Print	"---"

ReDim	array(10	To	11,	20	To	22)

printArrayDimensions(array())

See	also

LBound

Static

Dim

ReDim

SizeOf

UByte 	

Standard	data	type:	8	bit	unsigned

Syntax
Dim	variable	As	UByte

Description
8-bit	unsigned	whole-number	data	type.	Can	hold	a	value	in	the	range
of	0	to	255.

Example

Dim	ubytevar	As	UByte

ubytevar	=	200

Print	"ubytevar=	",	ubytevar

Example

		Dim	x	As	UByte	=	0

		Dim	y	As	UByte	=	&HFF

		Print	"UByte	Range	=	";	x;	"	to	";	y

Output:

UByte	Range	=	0	to	255

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Ubyte.

Differences	from	QB

New	to	FreeBASIC

See	also

Byte

CUByte

UCase 	

Returns	an	upper	case	copy	of	a	string

Syntax
Declare	Function	UCase	(ByRef	str	As	Const	String,	ByVal	mode	As

Long	=	0)	As	String

Declare	Function	UCase	(ByRef	str	As	Const	WString,	ByVal	mode

As	Long	=	0)	As	WString

Usage
result	=	UCase[$](str	[,	mode])

Parameters
str

String	to	convert	to	uppercase.
mode

The	conversion	mode:	0	=	current	locale,	1	=	ASCII	only

Return	Value
Uppercase	copy	of	str.

Description
Returns	a	copy	of	str	with	all	of	the	letters	converted	to	upper	case.

If	str	is	empty,	the	null	string	("")	is	returned.

Example

Print	UCase("AbCdEfG")

will	produce	the	output:

ABCDEFG

Platform	Differences

The	wide-character	string	version	of	UCase	is	not	supported	for
DOS	target.

Dialect	Differences

The	string	type	suffix	"$"	is	obligatory	in	the	-lang	qb	dialect.
The	string	type	suffix	"$"	is	optional	in	the	-lang	fblite	and	-lang
fb	dialects.

Differences	from	QB

QB	does	not	support	Unicode.

See	also

LCase

UInteger 	

Standard	data	type:	32-bit	or	64-bit	unsigned,	same	size	as	SizeOf(Any
Ptr)

Syntax
Dim	variable	As	UInteger

Dim	variable	As	UInteger<bits>

Parameters
bits

A	numeric	constant	expression	indicating	the	size	in	bits	of	unsigned
integer	desired.	The	values	allowed	are	8,	16,	32	or	64.

Description
32-bit	or	64-bit	unsigned	whole-number	data	type,	depending	on	the
platform.

If	an	explicit	bit	size	is	given,	a	data	type	is	provided	that	can	hold
values	from	0	up	to	(1ULL	Shl	(bits))	-	1.

Example

#if	__FB_64BIT__

				Dim	x	As	UInteger	=	0

				Dim	y	As	UInteger	=	&HFFFFFFFFFFFFFFFF

				Print	"UInteger	Range	=	";	x;	"	to	";	y

#else

				Dim	x	As	UInteger	=	0

				Dim	y	As	UInteger	=	&HFFFFFFFF

				Print	"UInteger	Range	=	";	x;	"	to	";	y

#endif

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Uinteger.

Differences	from	QB

New	to	FreeBASIC

See	also

Integer

Unsigned

CUInt

Ulong 	

Standard	data	type:	32-bit	unsigned	integer

Syntax
Dim	variable	As	Ulong

Description
32-bit	unsigned	whole-number	data	type.	Can	hold	values	from	0	to
4294967295.	Corresponds	to	an	unsigned	DWORD.

Example

		Dim	x	As	ULong	=	0

		Dim	y	As	ULong	=	&HFFFFFFFF

		Print	"ULong	Range	=	";	x;	"	to	";	y

Output:

ULong	Range	=	0	to	4294967295

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Ulong.

Differences	from	QB

New	to	FreeBASIC

See	also

Long

UInteger

ULongInt

ULongInt 	

Standard	data	type:	64	bit	unsigned

Syntax
Dim	variable	As	ULongInt

Description
A	64-bit	unsigned	whole-number	data	type.	Can	hold	values	from	0	to
18	446	744	073	709	551	615.	Corresponds	to	an	unsigned	QWORD.

Example

Dim	x	As	ULongInt	=	0

Dim	y	As	ULongInt	=	&HFFFFFFFFFFFFFFFFull

Print	"ULongInt	Range	=	";	x;	"	to	";	y

Output:

ULongInt	Range	=	0	to	18446744073709551615

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Ulongint.

Differences	from	QB

New	to	FreeBASIC

See	also

LongInt

CULngInt

Union 	

Declares	a	union	user	defined	type.

Syntax
Union	typename

fieldname	as	datatype

Declare	member	function	declaration	...

...

End	Union

Parameters
typename

Name	of	the	Union
fieldname

Name	of	a	data	field	member
member	function	declaration

Any	of	the	supported	member	functions

Description
Unions	are	similar	to	a	Type	structure,	except	that	the	elements	of	a	union	occupy	the	same
space	in	memory.
Like	Type,	Union	can	use	the	optional	Field	=	number	specifier	and	supports	also	inheritance
through	the	use	of	the	Extends	keyword.
Unlike	Type,	Union	can	not	contain	variable-length	strings,	and	more	generally	fields	(or	can
not	have	bases)	with	constructors	or	destructors.
The	size	of	the	Union	is	the	size	of	the	largest	data	item.	A	data	item	can	be	an	unnamed	
Since	they	occupy	the	same	space,	only	a	single	element	can	be	used.

Unions	support	member	functions	including	Constructor,	Destructor,	Function
Property	and	Sub.	All	members	of	a	union	are	public	and	access	control	is	not	supported.	

Nested	unnamed	type	or	union	cannot	have	procedure	members	or	static	data	members
(same	restriction	for	local	named	type/union).

A	Union	can	be	passed	as	a	user	defined	type	to	overloaded	operator	functions.

Example

'	Example	1:	bitfields.

Type	unitType

	Union

		Dim	attributeMask	As	UInteger

		Type				'	32-bit	uintegers	can	support	up	to	32	attributes.

			isMilitary									:	1	As	UInteger

			isMerchant									:	1	As	UInteger

		End	Type

	End	Union

End	Type

Dim	myunit	As	unitType

myunit.isMilitary	=	1

myunit.isMerchant	=	1

Print	myunit.isMilitary				'	Result:	1.

Print	myunit.isMerchant				'	Result:	1.

Print	myunit.attributeMask	'	Result:	3.

Sleep

'	Example	2.

'	Define	our	union.

Union	AUnion

				a	As	UByte

				b	As	Integer

End	Union

'	Define	a	composite	type.

Type	CompType

				s	As	String	*	20

				ui	As	Byte	'Flag	to	tell	us	what	to	use	in	union.

				Union	

								au	As	UByte

								bu	As	Integer

				End	Union

End	Type

'	Flags	to	let	us	know	what	to	use	in	union.

'	You	can	only	use	a	single	element	of	a	union.

Const	IsInteger	=	1

Const	IsUByte	=	2

Dim	MyUnion	As	AUnion

Dim	MyComposite	As	CompType

'	Can	only	set	one	value	in	union.

MyUnion.a	=	128

MyComposite.s	=	"Type	+	Union"

MyComposite.ui	=	IsInteger	'	Tells	us	this	is	an	integer	union.

MyComposite.bu	=	1500

Print	"Union:	";MyUnion.a

Print	"Composite:	";

If	MyComposite.ui	=	IsInteger	Then

				Print	MyComposite.bu

ElseIf	MyComposite.ui	=	IsUByte	Then

				Print	MyComposite.au

Else

				Print	"Unknown	type."

End	If

Sleep

Dialect	Differences

Object-related	features	as	functions	defined	inside	the	Union	block	are	supported	only	in
the	-lang	fb	dialect.
Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Type

Unlock 	

Removes	a	previous	access	restriction	(lock)	on	a	file

Syntax
Unlock	#filenum,	record

Unlock	#filenum,	start	To	end

Parameters
filenum

The	file	number	used	to	Open	the	file.
record

The	record	(Random	files)	to	unlock.
start

The	first	byte	position	(Binary	files)	in	a	range	to	unlock.
end

The	last	byte	position	(Binary	files)	in	a	range	to	unlock.

Description
Unlock	removes	the	temporary	access	restriction	set	by	Lock.

It	is	strongly	recommended	to	use	the	same	arguments	used	in	the
previous	Lock.

Note:	This	command	does	not	always	work,	neither	as
documented	nor	as	expected.	It	appears	to	be	broken	at	the
moment.

Example
For	an	example	see	Lock.

Differences	from	QB

Currently,	FB	cannot	implicitly	unlock	the	entire	file
In	Random	mode,	FB	cannot	unlock	a	range	of	records

See	also

Lock

Open

ScreenUnlock

Unsigned 	

Integer	data	type	modifier

Syntax
Dim	variable	As	Unsigned	{integer-based	data	type}

Description
Forces	an	integer-based	data	type	to	be	unsigned	(cannot	contain
negative	numbers,	but	has	its	maximum	value	doubled).

Example

'e.g.	notice	what	is	displayed:

Dim	x	As	Unsigned	Integer

x	=	-1

Print	x	

'output	is	4294967295

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Unsigned.

Differences	from	QB

New	to	FreeBASIC

See	also

UInteger

Until 	

Conditional	clause	used	in	Do..Loop	statements.

Syntax
Do	Until	condition

or

Loop	Until	condition

Description
Until	is	used	with	the	Do...Loop	structure.

Example

Dim	a	As	Integer

a	=	1

Do

				Print	"hello"

a	=	a	+	1

Loop	Until	a	>	10

'This	will	continue	to	print	"hello"	on	the	screen	until	the	condition	(a	>	10)	is	met.	

Differences	from	QB

None

See	also

Do...Loop

UShort 	

Standard	data	type:	16	bit	unsigned

Syntax
Dim	variable	As	UShort

Description
16-bit	unsigned	whole-number	data	type.	Can	hold	values	from	0	to
65535.

Example

		Dim	x	As	UShort	=	0

		Dim	y	As	UShort	=	&HFFFF

		Print	"UShort	Range	=	";	x;	"	to	";	y

Output:

UShort	Range	=	0	to	65535

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Ushort.

Differences	from	QB

New	to	FreeBASIC

See	also

Short

CUShort

Using	(Namespaces) 	

Brings	namespace	symbols	into	the	current	scope

Syntax
Using	identifier	[,	identifier	[,	...]]

Parameters
identifier:	The	name	of	the	Namespace	that	you	want	to	use.

Description
The	Using	command	allows	all	symbols	from	a	given	namespace	to	be
accessed	without	the	namespace's	name	prefix.	Unlike	C++	but	like	C#,	the
Namespace	keyword	is	not	needed	after	Using,	because	individual	symbols
cannot	be	inherited	from	a	namespace.	Inheriting	a	whole	namespace	can
save	typing,	but	sometimes	some	meaning	of	the	code	can	be	lost,	and
conflicts	with	other	symbols	could	be	created.

Example

Namespace	Sample

				Type	T

								x	As	Integer

				End	Type

End	Namespace

''	Just	using	the	name	T	would	not	find	the	symbol,

''	because	it	is	inside	a	namespace.

Dim	SomeVariable	As	Sample.T

''	Now	the	whole	namespace	has	been	inherited	into

''	the	global	namespace.

Using	Sample

''	This	statement	is	valid	now,	since	T	exists

''	without	the	"Sample."	prefix.

Dim	OtherVariable	As	T	

Differences	from	QB

QB	had	the	Using	keyword,	but	for	other	purposes.	Namespaces	did	not
exist	in	QB.

See	also

(Print	|	?)	Using

Palette	Using

Namespace

va_arg 	

Returns	the	current	argument	from	a	variable	argument	list.

Syntax
variable	=	va_arg	(argument_list,	datatype)

Description
The	va_arg	macro	allows	the	use	of	a	variable	number	of	arguments
within	a	function.	va_arg	returns	the	current	argument	in	the	list,
argument_list,	with	an	expected	data	type	of	datatype.	Before	va_arg
can	be	used,	it	must	be	Initialized	with	the	command	va_first.	Unlike
the	C	macro	with	the	same	name,	va_arg	does	not	automatically
increment	argument_list	to	the	next	argument	within	the	list.	Instead
va_next	must	be	used	to	find	the	next	argument.

Example
See	the	Va_First()	examples.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__va_arg.

Differences	from	QB

New	to	FreeBASIC

See	also

...	(Ellipsis)

va_first

va_next

va_first 	

Returns	a	pointer	to	the	first	argument	in	a	variable	argument	list

Syntax
pointer_variable	=	va_first()

Description
The	va_first	function	provides	an	untyped	pointer	value	that	points	to	the	first	variable	argument	passed	to	a	function.

Example

Function	average	cdecl(count	As	Integer,	...)	As	

				Dim	arg	As	Any	Ptr

				Dim	sum	As	Double	=	0

				Dim	i	As	Integer

				

				arg	=	va_first()

				For	i	=	1	To	count

								sum	+=	va_arg(arg,	Double)

								arg	=	va_next(arg,	Double)

				Next

				

				Return	sum	/	count

End	Function

Print	average(4,	3.4,5.0,3.2,4.1)

Print	average(2,	65.2,454.65481)

Sleep

The	output	would	look	like:

3.925

259.927405

''	Example	of	a	simple	custom	printf

Sub	myprintf	cdecl(ByRef	formatstring	As	String,	...)

				''	Get	the	pointer	to	the	first	var-arg

				Dim	As	Any	Ptr	arg	=	va_first()

				''	For	each	char	in	format	string...

				Dim	As	UByte	Ptr	p	=	StrPtr(formatstring)

				Dim	As	Integer	todo	=	Len(formatstring)

				While	(todo	>	0)

								Dim	As	Integer	char	=	*p

								p	+=	1

								todo	-=	1

								''	Is	it	a	format	char?

								If	(char	=	Asc("%"))	Then

												If	(todo	=	0)	Then

																''	%	at	the	end

																Print	"%";

																Exit	While

												End	If

												''	The	next	char	should	tell	the	type

												char	=	*p

												p	+=	1

												todo	-=	1

												''	Print	var-arg,	depending	on	the	type

												Select	Case	char

												''	integer?

												Case	Asc("i")

																Print	Str(va_arg(arg,	Integer));

																''	Note,	different	from	C:	va_next()	must	be

																''	used	as	va_arg()	won't	update	the	pointer.

																arg	=	va_next(arg,	Integer)

												''	long	integer?	(64-bit)

												Case	Asc("l")

																Print	Str(va_arg(arg,	LongInt));

																arg	=	va_next(arg,	LongInt)

												''	single	or	double?

												''	Note:	because	the	C	ABI,	all	singles	passed	on

												''	var-args	are	converted	to	doubles.

												Case	Asc("f"),	Asc("d")

																Print	Str(va_arg(arg,	Double));

																arg	=	va_next(arg,	Double)

												''	string?

												Case	Asc("s")

																''	Strings	are	passed	byval,	so	the	length	is	unknown

																Print	*va_arg(arg,	ZString	Ptr);

																arg	=	va_next(arg,	ZString	Ptr)

												End	Select

								''	Ordinary	char,	just	print	as-is

								Else

												Print	Chr(char);

								End	If

				Wend

End	Sub

				Dim	As	String	s	=	"bar"

				myprintf(!"integer=%i,	longint=%l	single=%f,	double=%d,	string=%s,	string=%s\n"

													1,	1ll	Shl	32,	2.2,	3.3,	"foo",	s)

				Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

...	(Ellipsis)
va_arg

va_next

va_next 	

Returns	a	pointer	to	the	next	argument	in	a	variable	argument	list

Syntax
Argument_Pointer	=	va_next	(Argument_List,	datatype)

Description
The	va_next	macro	points	to	the	next	argument	within	the	list
Argument_List,	datatype	being	the	type	of	the	current	argument	being
stepped	over.

Example
See	the	Va_First()	examples.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Va_next.

Differences	from	QB

New	to	FreeBASIC

See	also

...	(Ellipsis)
va_arg

va_first

Val 	

Converts	a	string	to	a	floating	point	number

Syntax
Declare	Function	Val	(ByRef	str	As	Const	String)	As	Double

Declare	Function	Val	(ByRef	str	As	Const	WString)	As	Double

Usage
result	=	Val(strnum)

Parameters
strnum

the	string	containing	a	number	to	convert

Return	Value
Returns	a	converted	Double	precision	number

If	the	first	character	of	the	string	is	invalid,	Val	will	return	0.

Description
Val("10")	will	return	10.0,	and	Val("10.10")	will	return	10.1.	The
function	parses	the	string	from	the	left,	skipping	any	white	space,	and
returns	the	longest	number	it	can	read,	stopping	at	the	first	non-
suitable	character	it	finds.	Scientific	notation	is	recognized,	with	"D"	or
"E"	used	to	specify	the	exponent.

Val	can	be	used	to	convert	integer	numbers	in	binary	/	octal	/
hexadecimal	format,	if	they	have	the	relevant	identifier	("&B;"	/	"&O;"	/
"&H;")	prefixed,	for	example:	Val("&HFF;")	returns	255.

Note:
If	you	want	to	get	an	integer	value	from	a	string,	consider	using	ValInt
or	ValLng	instead.	They	are	faster,	since	they	don't	use	floating-point
numbers,	and	only	ValLng	provides	full	64-bit	precision	for	LongInt

types.

If	you	want	to	convert	a	number	into	string	format,	use	the	Str	function.

Example

Dim	a	As	String,	b	As	Double

a	=	"2.1E+30xa211"

b	=	Val(a)

Print	a,	b

2.1E+30xa211			2.1e+030

Differences	from	QB

None

See	also

CDbl

ValInt

ValUInt

ValLng

ValULng

Str

Chr

Asc

ValLng 	

Converts	a	string	to	a	64bit	integer

Syntax
Declare	Function	ValLng	(ByRef	strnum	As	Const	String)	As

LongInt

Declare	Function	ValLng	(ByRef	strnum	As	Const	WString)	As

LongInt

Usage
result	=	ValLng	(strnum)

Parameters
strnum

the	string	to	convert

Return	Value
Returns	a	LongInt	of	the	converted	string

If	the	first	character	of	the	string	is	invalid,	ValLng	will	return	0.

Description
For	example,	ValLng("10")	will	return	10,	and	ValLng("10.60")	will
return	10	as	well.	The	function	parses	the	string	from	the	left,	skipping
any	white	space,	and	returns	the	longest	number	it	can	read,	stopping
at	the	first	non-suitable	character	it	finds.	Any	non-numeric	characters,
including	decimal	points	and	exponent	specifiers,	are	considered	non-
suitable,	for	example,	ValLng("23.1E+6")	will	just	return	23.

ValLng	can	be	used	to	convert	integer	numbers	in	Binary	/	Octal	/
Hexadecimal	format,	if	they	have	the	relevant	identifier	("&B;"	/	"&O;"
"&H;")	prefixed,	for	example:	ValLng("&HFF;")	returns	255.

If	you	want	to	convert	a	number	into	string	format,	use	the	Str	function.

Example

Dim	a	As	String,	b	As	LongInt

a	=	"20xa211"

b	=	ValLng(a)

Print	a,	b

20xa211			20

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Vallng.

Differences	from	QB

New	to	FreeBASIC

See	also

CLngInt

Val

ValInt

ValULng

Str

Chr

Asc

ValInt 	

Converts	a	string	to	a	32bit	integer

Syntax
Declare	Function	ValInt	(ByRef	strnum	As	Const	String)	As	Long

Declare	Function	ValInt	(ByRef	strnum	As	Const	WString)	As	Long

Usage
result	=	ValInt	(strnum)

Parameters
strnum

the	string	to	convert

Return	Value
Returns	a	Long	value	of	the	converted	string

If	the	first	character	of	the	string	is	invalid,	ValInt	will	return	0.

Description
For	example,	ValInt("10")	will	return	10,	and	ValInt("10.60")	will
return	10	as	well.	The	function	parses	the	string	from	the	left,	skipping
any	white	space,	and	returns	the	longest	number	it	can	read,	stopping
at	the	first	non-suitable	character	it	finds.	Any	non-numeric	characters,
including	decimal	points	and	exponent	specifiers,	are	considered	non-
suitable,	for	example,	ValInt("23.1E+6")	will	just	return	23.

ValInt	can	be	used	to	convert	integer	numbers	in	Binary	/	Octal	/
Hexadecimal	format,	if	they	have	the	relevant	identifier	("&B;"	/	"&O;"
"&H;")	prefixed,	for	example:	ValInt("&HFF;")	returns	255.

If	you	want	to	convert	a	number	into	string	format,	use	the	Str	function.

Example

Dim	a	As	String,	b	As	Integer

a	=	"20xa211"

b	=	ValInt(a)

Print	a,	b

20xa211			20

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Valint.

Differences	from	QB

New	to	FreeBASIC

See	also

CLng

Val

ValUInt

ValLng

Str

Chr

Asc

ValUInt 	

Converts	a	string	to	an	unsigned	32bit	integer

Syntax
Declare	Function	ValUInt	(ByRef	strnum	As	Const	String)	As

Ulong

Declare	Function	ValUInt	(ByRef	strnum	As	Const	WString)	As

Ulong

Usage
result	=	ValUInt	(strnum)

Parameters
strnum

the	string	to	convert

Return	Value
Returns	a	Ulong	value	of	the	converted	string

If	the	first	character	of	the	string	is	invalid,	ValUInt	will	return	0.

Description
For	example,	ValUInt("10")	will	return	10,	and	ValUInt("10.60")	will
return	10	as	well.	The	function	parses	the	string	from	the	left,	skipping
any	white	space,	and	returns	the	longest	number	it	can	read,	stopping
at	the	first	non-suitable	character	it	finds.	Any	non-numeric	characters,
including	decimal	points	and	exponent	specifiers,	are	considered	non-
suitable,	for	example,	ValUInt("23.1E+6")	will	just	return	23.

ValUInt	can	be	used	to	convert	integer	numbers	in	Binary	/	Octal	/
Hexadecimal	format,	if	they	have	the	relevant	identifier	("&B;"	/	"&O;"
"&H;")	prefixed,	for	example:	ValUInt("&HFF;")	returns	255.

If	you	want	to	convert	a	number	into	string	format,	use	the	Str	function.

Example

Dim	a	As	String,	b	As	UInteger

a	=	"20xa211"

b	=	ValUInt(a)

Print	a,	b

20xa211			20

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Valuint.

Differences	from	QB

New	to	FreeBASIC

See	also

Val

ValInt

ValULng

CULng

Str

Chr

Asc

ValULng 	

Converts	a	string	to	a	unsigned	64bit	integer

Syntax
Declare	Function	ValULng	(ByRef	strnum	As	Const	String)	As

ULongInt

Declare	Function	ValULng	(ByRef	strnum	As	Const	WString)	As

ULongInt

Usage
result	=	ValULng	(strnum)

Parameters
strnum

the	string	to	convert

Return	Value
Returns	a	ULongInt	of	the	converted	string

If	the	first	character	of	the	string	is	invalid,	ValULng	will	return	0.

Description
For	example,	ValULng("10")	will	return	10,	and	ValULng("10.60")	will
return	10	as	well.	The	function	parses	the	string	from	the	left,	skipping
any	white	space,	and	returns	the	longest	number	it	can	read,	stopping
at	the	first	non-suitable	character	it	finds.	Any	non-numeric	characters,
including	decimal	points	and	exponent	specifiers,	are	considered	non-
suitable,	for	example,	ValULng("23.1E+6")	will	just	return	23.

ValULng	can	be	used	to	convert	integer	numbers	in	Binary	/	Octal	/
Hexadecimal	format,	if	they	have	the	relevant	identifier	("&B;"	/	"&O;"
"&H;")	prefixed,	for	example:	ValULng("&HFF;")	returns	255.

If	you	want	to	convert	a	number	into	string	format,	use	the	Str	function.

Example

Dim	a	As	String,	b	As	ULongInt

a	=	"20xa211"

b	=	ValULng(a)

Print	a,	b

20xa211			20

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Valulng.

Differences	from	QB

New	to	FreeBASIC

See	also

CULngInt

Val

ValUInt

ValLng

Str

Chr

Asc

Var 	

Declares	a	variable	whose	type	is	implied	from	the	initializer	expression

Syntax
Var	[Shared]	symbolname	=	expression[,	symbolname	=	expression]

Description
Var	declares	a	variable	whose	type	is	implied	from	the	initializer
expression.	It	is	illegal	to	specify	an	explicit	type	in	a	Var	declaration.
The	initializer	expression	can	be	either	a	constant	or	any	variable	of
any	type.

Note:	WString	is	not	supported	with	Var,	due	to	the	fact	that	there	is	no
var-len	WString	type.	This	isn't	likely	to	change,	due	to	the	complexities
involved	with	handling	Unicode.

Since	the	type	of	the	variable	is	inferred	from	what	you	assign	into	it,
it's	helpful	to	know	how	literals	work.	Any	literal	number	without	a
decimal	point	defaults	to	Integer.	A	literal	number	with	a	decimal	point
defaults	to	Double.	See	ProPgLiterals	for	further	information.

All	ZString	expressions,	including	string	literals	and	dereferenced
ZString	Ptrs,	will	be	given	the	String	variable	type.

Explicit	suffixes	may	be	used	on	literal	variables,	to	change/clarify	their
type.	See	Literals	and	Variable	Types	for	some	more	information
about	suffixes	that	can	be	used	on	literals.

Note:	Suffixes	must	appear	on	the	initializer,	not	on	the	variable.	Trying
to	use	Var	with	a	variable	that	has	a	suffix	will	throw	a	compile	error.

Example

Var	a		=	Cast(Byte,	0)

Var	b		=	Cast(Short,	0)

Var	c		=	Cast(Integer,	0)

Var	d		=	Cast(LongInt,	0)

Var	au	=	Cast(UByte,	0)			

Var	bu	=	Cast(UShort,	0)		

Var	cu	=	Cast(UInteger,	0)

Var	du	=	Cast(ULongInt,	0)

Var	e		=	Cast(Single,	0.0)

Var	f		=	Cast(Double,	0.0)

Var	g		=	@c						''	integer	ptr

Var	h		=	@a						''	byte	ptr

Var	s2	=	"hello"	''	var-len	string

Var	ii	=	6728			''	implicit	integer

Var	id	=	6728.0	''	implicit	double

Print	"Byte:	";Len(a)

Print	"Short:	";Len(b)

Print	"Integer:	";Len(c)

Print	"Longint:	";Len(d)

Print	"UByte:	";Len(au)

Print	"UShort:	";Len(bu)

Print	"UInteger:	";Len(cu)

Print	"ULongint:	";Len(du)

Print	"Single:	";Len(e)

Print	"Double:	";Len(f)

Print	"Integer	Pointer:	";Len(g)

Print	"Byte	Pointer:	";Len(h)

Print	"Variable	String:	";Len(s2)

Print

Print	"Integer:	";Len(ii)

Print	"Double:	";Len(id)

Sleep

Differences	from	QB

New	to	FreeBASIC	0.17

Dialect	Differences

Only	valid	in	the	-lang	fb	dialect.

See	also

Common

Dim

Erase

Extern

LBound

ReDim

Preserve

Shared

Static

UBound

Operator	Varptr	(Variable	Pointer) 	

Returns	the	address	of	a	variable	or	object

Syntax
Declare	Operator	VarPtr	(ByRef	lhs	As	T)	As	T	Ptr

Syntax
result	=	VarPtr	(lhs)

Parameters
lhs

A	variable	or	object.
T

Any	data	type.

Return	Value
Returns	the	address	of	a	variable	or	object.

Description
This	operator	returns	the	address	of	its	operand.

When	the	operand	is	of	type	String,	the	address	of	the	internal	string	descriptor	is	returned.	Use	
Strptr	(String	Pointer)	to	retrieve	the	address	of	the	string	data.

The	operand	cannot	be	an	array,	but	may	be	an	array	element.	For	example,	
address	of	"myarray(0)".

Example

Dim	a	As	Integer,	addr	As	Integer

a	=	10

''	place	the	address	of	a	in	addr

addr	=	CInt(VarPtr(a))

''	change	all	4	bytes	(size	of	INTEGER)	of	a

Poke	Integer,	addr,	-1000	

Print	a

''	place	the	address	of	a	in	addr	(same	as	above)

addr	=	CInt(@a)

''	print	the	least	or	most	significant	byte,	depending	on	the	CPU	endianess

Print	Peek(addr)	

Differences	from	QB

None

See	also

Pointers
Peek

Poke

View	Print 	

Sets	the	printable	area	of	the	screen

Syntax
View	Print	[firstrow	To	lastrow]

Parameters
firstrow

first	row	of	print	area
lastrow

last	row	of	print	area

Description
Sets	the	boundaries	of	the	console	screen	text	area	to	the	lines	starting	at	first	up	to	and
including	last.	Lines	are	counted	starting	with	1.	The	text	cursor	is	moved	to	the
beginning	of	the	first	line	specified.
If	the	row	numbers	are	omitted,	the	entire	screen	is	used	as	the	text	area.

Example

Cls

View	Print	5	To	6

Color	,	1	

''	clear	only	View	Print	area

Cls	

View	Print	can	be	used	in	graphics	mode	to	avoid	the	text	output	overwriting	graphics:

Screen	12

Dim	As	Integer	R,Y,x,y1

Dim	As	Single	y2

View	Print	20	To	27

Line	(0,0)-(639,300),1,BF

Line	(100,50)-(540,200),0,BF

Do

	r	=	(r	+	1)	And	15

	For	y	=	1	To	99

			y1	=	((1190	\	y	+	r)	And	15)

			y2	=	6	/	y

			For	x	=	100	To	540

				PSet	(x,	y	+	100),	CInt((319	-	x)	*	y2)	And	15

		Next	x,y

	If	r=0	Then	Color	Int(Rnd*16):	Print	"blah"

Loop	Until	Len(Inkey)

Differences	from	QB

None.

See	also

Cls

(Print	|	?)

Color

View	(Graphics) 	

Sets	new	physical	coordinate	mapping	and	clipping	region

Syntax
View

View	(x1,	y1)-(x2,	y2)	[[,	fill_color]	[,	border_color]]

View	Screen	(x1,	y1)-(x2,	y2)	[[,	fill_color]	[,

border_color]]

Parameters
x1	As	Integer,	y1	As	Integer
The	horizontal	and	vertical	offsets,	in	pixels,	of	one	corner	of	the
viewport	relative	to	the	top-left	corner	of	the	screen.
x2	As	Integer,	y2	As	Integer
The	horizontal	and	vertical	offsets,	in	pixels,	of	the	opposite	corner	of
the	viewport	relative	to	the	top-left	corner	of	the	screen.
fill_color	As	UInteger
The	color	to	fill	the	new	viewport.
border_color	As	UInteger
The	color	of	the	border	to	draw	around	the	new	viewport.

Description
The	viewport,	or	clipping	region,	is	a	rectangular	area	of	the	graphics
screen,	outside	of	which	no	drawing	will	be	done.	That	is,	only	drawing
done	within	this	area	will	be	shown.	A	graphics	screen	must	be	created
with	Screen	or	ScreenRes	before	calling	View	or	View	Screen.

The	first	statement	sets	the	viewport	to	encompass	the	entire	screen,
which	is	the	default	viewport	for	a	new	graphics	screen.

The	second	and	third	statements	both	allow	a	new	viewport	to	be
defined.	The	corners	of	the	viewport	are	specified	by	the	x1,	y1,	x2	and
y2	parameters.	fill_color	and	border_color	are	both	in	the	format
accepted	by	Color.	The	indicated	effects	for	each	parameter	only	occur
if	that	parameter	is	specified.

The	second	statement	modifies	the	coordinate	mapping	of	the	graphics
screen	such	that	coordinates	specified	for	drawing	statements	and
procedures	are	relative	to	the	top-left	corner	of	the	viewport.

The	third	statement	modifies	the	coordinate	mapping	of	the	graphics
screen	such	that	coordinates	specified	for	drawing	statements	and
procedures	are	relative	to	the	top-left	corner	of	the	screen.

Example

Screen	12

Dim	ip	As	Any	Ptr

Dim	As	Integer	x,	y

'simple	sprite

ip	=	ImageCreate(64,64)

For	y	=	0	To	63

		For	x	=	0	To	63

				PSet	ip,	(x,	y),	(x\4)	Xor	(y\4)

		Next	x

Next	y

'viewport	with	blue	border

Line	(215,135)-(425,345),	1,	bf

View	(220,140)-(420,340)

'move	sprite	around	the	viewport

Do

		x	=	100*Sin(Timer*2.0)+50

		y	=	100*Sin(Timer*2.7)+50

		

		ScreenSync

		ScreenLock

		

		'clear	viewport	and	put	image

		Cls	1

		Put	(x,	y),	ip,	PSet

				

		ScreenUnlock

Loop	While	Inkey	=	""

ImageDestroy(ip)

Differences	from	QB

QBASIC	preserves	the	WINDOW	coordinate	mapping	after
subsequent	calls	to	VIEW.
FreeBASIC's	current	behavior	is	to	preserve	the	WINDOW
coordinates	after	calls	to	VIEW,	or	when	working	on	images,
meaning	that	the	coordinate	mapping	may	undergo
scaling/translations	if	the	viewport	changes.	(If	a	WINDOW	hasn't
been	set,	there	is	no	coordinate	mapping,	and	so	it	doesn't
change	after	calls	to	VIEW.)	The	behavior	may	change	in	future,
but	consistent	behavior	can	be	assured	over	inconstent
viewport	coordinates	by	re-calling	WINDOW	whenever	you	change
the	VIEW.

See	also

View	Print

Screen	(Graphics)

Window

PMap

Virtual 	

Declare	virtual	methods

Syntax
Type	typename	Extends	base_typename

Declare	Virtual	Sub|Function|Property|Operator|Destructor	...

End	Type

Description
Virtual	methods	are	methods	that	can	be	overridden	by	data	types
derived	from	the	type	they	were	declared	in,	allowing	for
polymorphism.	In	contrast	to	Abstract	methods,	virtual	methods	must
have	an	implementation,	which	is	used	when	the	virtual	is	not
overridden.

A	derived	type	can	override	virtual	methods	declared	in	its	base	type
by	declaring	a	method	with	the	same	identifier	and	signature,	meaning
same	number	and	type	of	parameters,	same	return	type	(if	any)	and
same	calling	convention:

if	that	differs	only	in	parameter	passing	mode	or	calling
convention	or	return	type,	then	an	overriding	error	is
returned	at	compile	time,
otherwise	shadowing	only	is	permitted	for	any	other
signature	difference,	corresponding	to	case	where	both
methods	would	be	overloadable.

The	property	of	being	a	virtual	method	is	not	implicitly	inherited	by	the
overriding	method	in	the	derived	type.

When	calling	virtual	methods,	the	compiler	may	need	to	do	a	vtable
lookup	in	order	to	find	out	which	method	must	be	called	for	a	given
object.	This	requires	an	extra	hidden	vtable	pointer	field	to	be	added	at
the	top	of	each	type	with	virtual	methods.	This	hidden	vptr	is	provided
by	the	built-in	Object	type.	Because	of	that,	virtual	methods	can	only
be	declared	in	a	type	that	directly	or	indirectly	Extends	Object.

Constructors	cannot	be	virtual	because	they	create	objects,	while

virtual	methods	require	an	already-existing	object	with	a	specific	type.
The	type	of	the	constructor	to	call	is	determined	at	compile-time	from
the	code.
In	addition,	when	calling	a	virtual	method	inside	a	constructor,	only	the
version	of	the	method	corresponding	to	an	object	of	type	of	this
constructor	is	used.	That	is	because	the	vptr	has	not	yet	been	set	up
by	the	derived	type	constructor,	but	only	by	the	local	type	constructor.

Destructors	often	must	be	virtual	when	deleting	an	object	manipulated
through	a	pointer	to	its	base	type,	so	that	the	destruction	starts	at	the
most	derived	type	and	works	its	way	down	to	the	base	type.	To	do	this,
it	may	be	necessary	to	add	virtual	destructors	with	an	empty	body
anywhere	an	explicit	destruction	was	not	yet	required,	in	order	to
supersede	each	non-virtual	implicit	destructor	induced	by	the
destructor	in	its	base.
On	the	other	hand,	when	calling	a	virtual	(or	abstract)	method	inside	a
destructor	(virtual	or	not),	only	the	version	of	the	method	corresponding
to	an	object	of	type	of	this	destructor	is	used	because	the	vptr	is	reset
at	the	top	of	the	destructor	according	to	its	own	type's	vtable.	This
avoids	to	access	child	methods	and	so	to	refer	to	child	members
previously	destroyed	by	the	child	destructor	execution.

For	member	methods	with	Virtual	in	their	declaration,	Virtual	can
also	be	specified	on	the	corresponding	method	bodies,	for	improved
code	readability.

Note:	In	a	multi-level	inheritance,	a	same	named	method	(same
identifier	and	signature)	can	be	declared	Abstract,	Virtual	or	normal
(without	specifier)	at	each	inheritance	hierarchy	level.	When	there	is
mixing	of	specifiers,	the	usual	order	is	abstract	->	virtual	->	normal,
from	top	to	bottom	of	the	inheritance	hierarchy.
The	access	control	(Public/Protected/Private)	of	an	overriding	method
is	not	taken	into	account	by	the	internal	polymorphism	process,	but
only	for	the	initial	call	at	compile-time.
Base.method()	calls	always	the	base's	own	method,	never	the
overriding	method.
A	derived	static	method	cannot	override	a	base	virtual/abstract
method,	but	can	shadow	any	base	method	(including	virtual/abstract).

Example

Type	Hello	extends	object

				Declare	virtual	Sub	hi()

End	Type

Type	HelloEnglish	extends	Hello

				Declare	Sub	hi()

End	Type

Type	HelloFrench	extends	Hello

				Declare	Sub	hi()

End	Type

Type	HelloGerman	extends	Hello

				Declare	Sub	hi()

End	Type

Sub	Hello.hi()

				Print	"hi!"

End	Sub

Sub	HelloEnglish.hi()

				Print	"hello!"

End	Sub

Sub	HelloFrench.hi()

				Print	"Salut!"

End	Sub

Sub	HelloGerman.hi()

				Print	"Hallo!"

End	Sub

				Randomize(Timer())

				Dim	As	Hello	Ptr	h

				For	i	As	Integer	=	0	To	9

								Select	Case(Int(Rnd()	*	4)	+	1)

								Case	1

												h	=	New	HelloEnglish

								Case	2

												h	=	New	HelloFrench

								Case	3

												h	=	New	HelloGerman

								Case	Else

												h	=	New	Hello

								End	Select

								h->hi()

								Delete	h

				Next

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Type

Object

Extends

Abstract

Wait 	

Reads	from	a	hardware	port	with	a	mask.

Syntax
Declare	Function	Wait	(ByVal	port	As	UShort,	ByVal	and_mask	As	

Long	=	0)	As	Long

Usage
Wait	port,	and_value	[,	xor_value]

Parameters
port

Port	to	read.
and_mask

Mask	value	to	And	the	port	value	with.
xor_mask

Mask	value	to	Xor	the	port	value	with.

Return	Value
0	if	successful,	-1	on	failure.

Description
Wait	keeps	reading	port	until	the	reading	ANDed	with	and_mask	and	optionally	XORed	with
xor_mask	gives	a	non-zero	result.

Example

Wait	&h3da,	&h8	'Old	Qbasic	way	of	waiting	for	the	monitor's	vsync

ScreenSync	'FreeBASIC	way	of	accomplishing	the	same	thing

Platform	Differences

In	the	Windows	and	Linux	versions	three	port	numbers	(&H3C7;,	&H3C8;,	&H3C9;)	are
hooked	by	the	graphics	library	when	a	graphics	mode	is	in	use	to	emulate	VGA	palette
handling	as	in	QB.	This	use	is	deprecated;	use	Palette	to	retrieve	and	set	palette	colors.

Using	true	port	access	in	the	Windows	version	requires	the	program	to	install	a	device	driver
for	the	present	session.	For	that	reason,	Windows	executables	using	hardware	port	access
should	be	run	with	administrator	permits	each	time	the	computer	is	restarted.	Further	runs
don't	require	admin	rights	as	they	just	use	the	already	installed	driver.	The	driver	is	only	3K
in	size	and	is	embedded	in	the	executable.

See	also

Inp

Out

WBin 	

Returns	the	binary	WString	(Unicode)	representation	of	a	number

Syntax
Declare	Function	WBin	(ByVal	number	As	UByte)	As	WString

Declare	Function	WBin	(ByVal	number	As	UShort)	As	WString

Declare	Function	WBin	(ByVal	number	As	Ulong)	As	WString

Declare	Function	WBin	(ByVal	number	As	ULongInt)	As	WString

Declare	Function	WBin	(ByVal	number	As	Const	Any	Ptr)	As

WString

Declare	Function	WBin	(ByVal	number	As	UByte,	ByVal	digits	As

Long)	As	WString

Declare	Function	WBin	(ByVal	number	As	UShort,	ByVal	digits	As

Long)	As	WString

Declare	Function	WBin	(ByVal	number	As	Ulong,	ByVal	digits	As

Long)	As	WString

Declare	Function	WBin	(ByVal	number	As	ULongInt,	ByVal	digits	As

Long)	As	WString

Declare	Function	WBin	(ByVal	number	As	Const	Any	Ptr,	ByVal

digits	As	Long)	As	WString

Usage
result	=	WBin(number	[,	digits])

Parameters
number

A	whole	number	or	expression	evaluating	to	a	whole	number.
digits

Optional	number	of	digits	to	return.

Return	Value
Returns	a	binary	WString	representation	of	number,	truncated	or	padded
with	zeros	("0")	to	fit	the	number	of	digits,	if	specified.

Description
Returns	a	WString	(Unicode)	representing	the	binary	value	of	the
integer	number.	Binary	digits	range	from	0	to	1.

If	you	specify	digits	>	0,	the	result	wstring	will	be	exactly	that	length.	It
will	be	truncated	or	padded	with	zeros	on	the	left,	if	necessary.

The	length	of	the	returned	string	will	not	be	longer	than	the	maximum
number	of	digits	required	for	the	type	of	expression	(32	for	a	Long,	64
for	floating	point	or	LongInt)

Example

Print	WBin(54321)

Print	WBin(54321,	5)

Print	WBin(54321,	20)

will	produce	the	output:

1101010000110001

10001

00001101010000110001

Platform	Differences

Unicode	strings	are	not	supported	in	the	DOS	port	of
FreeBASIC.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Wbin.

Differences	from	QB

New	to	FreeBASIC

See	also

Bin

WHex

WOct

WChr 	

Returns	a	wide-character	string	containing	one	or	more	Unicode	characters

Syntax
Declare	Function	Wchr	(ByVal	ch	As	Integer	[,	...])	As	WString

Usage
result	=	WChr(ch0	[,	ch1	...	chN])

Parameters
ch

The	Unicode	integer	value	of	a	character.

Return	Value
Returns	a	wide-character	string.

Description
WChr	returns	a	wide-character	string	containing	the	character(s)	represented	by	the	Unicode	values	passed	to	it.

When	WChr	is	used	with	numerical	constants	or	literals,	the	result	is	evaluated	at	compile-time,	so	it	can	be	used
in	variable	initializers.

Not	all	Unicode	characters	can	be	displayed	on	any	machine,	the	characters	available	depend	on	the	font
presently	in	use	in	the	console.	Graphics	modes	can't	display	Unicode	characters,	as	the	GfxLib	built-in	font	is
not	Unicode.

Example

Print	"The	character	represented	by	the	UNICODE	code	of	934	is:	"

Print	"Multiple	UNICODE	characters:	";	WChr(933,	934

will	produce	the	output:

	

The	character	represented	by	the	UNICODE	code	of	934	is:	Φ
Multiple	UNICODE	characters:	ΥΦΧ

Platform	Differences

DOS	does	not	support	WChr.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Chr

WStr

Weekday 	

Gets	the	number	of	day	of	the	week	from	a	Date	Serial

Syntax
Declare	Function	Weekday	(ByVal	serial	As	Double	,	ByVal	firstdayofweek

fbusesystem)	As	Long

Usage
#include	"vbcompat.bi"

result	=	Weekday(date_serial	[,	firstdayofweek])

Parameters
date_serial

the	date
firstdayofweek

the	first	day	of	the	week

Return	Value
Returns	the	week	day	number	from	a	variable	containing	a	date	in	Date	Serial

Description

The	week	day	values	must	be	in	the	range	1-7,	its	meaning	depends	on	the	
parameter

firstdayofweek	is	optional.

value first	day	of	week constant

omitted sunday 	

0 local	settings fbUseSystem

1 sunday fbSunday

2 monday fbMonday

3 tuesday fbTuesday

4 wednesday fbWednesday

5 thursday fbThursday

6 friday fbFriday

7 saturday fbSaturday

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	a	As	Double	=	DateSerial	(2005,	11,	28)	+	TimeSerial

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss	");	Weekday(a

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

WeekdayName 	

Gets	the	name	of	a	week	day	from	its	integral	representation

Syntax
Declare	Function	WeekdayName	(ByVal	weekday	As	,	ByVal	abbreviate

firstdayofweek	As	Long	=	fbUseSystem)	As	String

Usage
#include	"vbcompat.bi"

result	=	WeekdayName(weekday	[,	abbreviate	[,	firstdayofweek]])

Parameters
weekday

the	number	of	the	day	of	the	week
abbreviate

flag	to	indicate	that	name	should	be	abbreviated
firstdayofweek

first	day	of	the	week

Return	Value
Returns	the	local	operating	system	language	day	of	week	name	from	the	

Description
How	weekday	is	interpreted	depends	on	the	firstdayofweek	parameter.

If	abbreviate	is	true,	a	3	letter	abbreviation	is	returned,	if	false	or	omitted,	the	whole	name	is
returned.

firstdayofweek	is	an	optional	parameter	specified	as	follows:

value first	day	of	week constant

omitted sunday 	

0 local	settings fbUseSystem

1 sunday fbSunday

2 monday fbMonday

3 tuesday fbTuesday

4 wednesday fbWednesday

5 thursday fbThursday

6 friday fbFriday

7 saturday fbSaturday

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	or	datetime.bi

Example

#include	"vbcompat.bi"

Dim	a	As	Double	=	DateSerial(2005,	11,	28)	+	TimeSerial

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss	");	WeekdayName

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	Visual	Basic.

See	also

Date	Serials

Wend 	

Control	flow	statement.

Syntax
While	[condition]

[statement	block]

Wend

Description
Wend	specifies	the	end	of	a	While...Wend	loop	block.

Differences	from	QB

None

See	also

While...Wend

While 	

Control	flow	statement.

Syntax
Do	While	condition

[statement	block]

Loop

or

Do

[statement	block]

Loop	While	condition

or

While	[condition]

[statement	block]

Wend

Description
While	specifies	that	a	loop	block	will	continue	if	the	condition	following
it	evaluates	as	true.	This	condition	is	checked	during	each	loop
iteration.

Differences	from	QB

None

See	also

Do...Loop

While...Wend

While...Wend 	

Control	flow	statement	for	looping

Syntax
While	[condition]

[statement	block]

Wend

Description
The	While	statement	will	cause	the	following	set	of	statements	in	the	statement	block
while	the	expression	condition	evaluates	to	true.

If	condition	evaluates	to	false	when	the	While	statement	is	first	executed,	then	the	
execution	resumes	immediately	following	the	enclosing	Wend	statement.

If	an	Exit	While	statement	is	encountered	inside	the	statement	block,	the	loop	is	terminated,	and	execution	resumes
immediately	following	the	enclosing	Wend	statement.	If	a	Continue	While
statement	block	is	skipped	and	execution	resumes	at	the	While	statement.

Like	all	control	flow	statements,	the	While	statement	can	be	nested,	that	is,	it	can	be	used	in	a	statement	block	of
another	While	statement.

note:	the	While	keyword	is	also	used	in	the	Do...Loop	statement	to	indicate	the	type	of	comparison.	Used	in	this	way,
the	Do	statement	becomes	functionally	equivalent	to	the	While	statement,	so	do	not	confuse	their	enclosing	keywords
Loop	and	Wend,	respectively.

Example
In	this	example,	a	While	loop	is	used	to	reverse	a	string	by	iterating	through	it	backward.	The	loop	stops	if	index	is	less
than	0	(0	being	the	first	index	in	the	string).

Dim	As	String	sentence																										''	string	to	reverse

sentence	=	"The	quick	brown	fox	jumps	over	the	lazy	dog."

Dim	As	String	ecnetnes

Dim	As	Integer	index

index	=	Len(sentence)	-	1																					''	point	to	last	character

While(index	>=	0)																													''	stop	after	first	character

		ecnetnes	+=	Chr(sentence[index])											''	append	character	to	new	string

		index	-=	1

Wend

Print	"original:	"""	;	sentence	;	""""

Print	"reversed:	"""	;	ecnetnes	;	""""

End	0

Dialect	Differences

In	the	-lang	qb	and	-lang	fblite	dialects,	variables	declared	inside	a	
scope	as	in	QB	
In	the	-lang	fb	and	-lang	deprecated	dialects,	variables	declared	inside	a	
inside	the	block,	and	can't	be	accessed	outside	it.

Differences	from	QB

None

See	also

Exit

Continue

Do...Loop

WHex 	

Returns	the	hexadecimal	WString	(Unicode)	representation	of	a	number

Syntax
Declare	Function	WHex	(ByVal	number	As	UByte)	As	WString

Declare	Function	WHex	(ByVal	number	As	UShort)	As	WString

Declare	Function	WHex	(ByVal	number	As	Ulong)	As	WString

Declare	Function	WHex	(ByVal	number	As	ULongInt)	As	WString

Declare	Function	WHex	(ByVal	number	As	Const	Any	Ptr)	As

WString

Declare	Function	WHex	(ByVal	number	As	UByte,	ByVal	digits	As

Long)	As	WString

Declare	Function	WHex	(ByVal	number	As	UShort,	ByVal	digits	As

Long)	As	WString

Declare	Function	WHex	(ByVal	number	As	Ulong,	ByVal	digits	As

Long)	As	WString

Declare	Function	WHex	(ByVal	number	As	ULongInt,	ByVal	digits	As

Long)	As	WString

Declare	Function	WHex	(ByVal	number	As	Const	Any	Ptr,	ByVal

digits	As	Long)	As	WString

Usage
result	=	WHex(number	[,	digits])

Parameters
number

A	whole	number	or	expression	evaluating	to	a	whole	number.
digits

Optional	number	of	digits	to	return.

Return	Value
Returns	a	hexadecimal	WString	representation	of	number,	truncated	or
padded	with	zeros	("0")	to	fit	the	number	of	digits,	if	specified.

Description
Hexadecimal	digits	range	from	0-9,	or	A-F.

If	you	specify	digits	>	0,	the	resulting	WString	will	be	exactly	that
length.	It	will	be	truncated	or	padded	with	zeros	on	the	left,	if
necessary.

The	length	of	the	wstring	will	not	go	longer	than	the	maximum	number
of	digits	required	for	the	type	of	expression	(8	for	a	Long,	16	for	floating
point	or	LongInt)

Example

Print	Hex(54321)

Print	Hex(54321,	2)

Print	Hex(54321,	5)

will	produce	the	output:

D431

31

0D431

Platform	Differences

Unicode	strings	are	not	supported	in	the	DOS	port	of
FreeBASIC.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Whex.

Differences	from	QB

New	to	FreeBASIC.

See	also

Hex

WBin

WOct

Width 	

Sets	or	gets	the	number	of	rows	and	columns	of	the	display

Syntax
Width	[columns]	[,	rows]

Width	LPrint	columns

Width	{	#filenum	|	devicename	},	columns

result	=	Width()

Parameters
columns

columns	(in	characters)	for	output
rows

rows	(in	characters)	for	output
filenum

file	number	to	apply	to
devicename

device	name	to	apply	to

Return	Value
Returns	a	32	bit	Long	where	the	High	Word	is	the	number	of	rows	and
the	Low	Word	is	the	number	of	columns	currently	set.

Description
Sets	the	maximum	number	of	columns	of	characters	of	an	output
device	(console,	printer	or	text	file).	If	text	sent	to	the	device	reaches
the	width	an	automatic	carriage	return	is	generated.

Using	Width	as	a	function	returns	the	current	console	width	in	the	low
word	and	the	current	height	in	the	high	word.

If	a	device	is	not	given	then	Width	takes	effect	on	the	active
console/graphics	screen,	and	a	second	argument	specifying	maximum
number	of	rows	is	allowed.

In	graphics	modes	Width	is	used	to	indirectly	select	the	font	size	by

setting	one	of	the	character	height	*	width	pairs	allowed	(See	Screen
(Graphics)).	If	rows	/	cols	is	an	invalid	combination,	no	changes	are
made	to	the	screen	display.

Valid	font	heights	are	8	pixels,	14	pixels	and	16	pixels.	The	fonts	all
have	a	fixed	width	of	8	pixels.

Using	the	Width	command	in	graphic	mode	also	forces	a	screen	clear
(Cls).

Example

Dim	As	Integer	w

w	=	Width

Print	"rows:	"	&	HiWord(w)

Print	"cols:	"	&	LoWord(w)

''Set	up	a	graphics	screen

Const	W	=	320,	H	=	200

ScreenRes	W,	H

Dim	As	Integer	twid,	tw,	th

''	Fetch	and	print	current	text	width/height:

twid	=	Width()

tw	=	LoWord(twid):	th	=	HiWord(twid)

Print	"Default	for	current	screen	(8*8)"

Print	"Width:		"	&	tw

Print	"Height:	"	&	th

Sleep

Width	W\8,	H\16	''	Use	8*16	font

twid	=	Width()

tw	=	LoWord(twid):	th	=	HiWord(twid)

Print	"Set	to	8*16	font"

Print	"Width:		"	&	tw

Print	"Height:	"	&	th

Sleep

Width	W\8,	H\14	''	Use	8*14	font

twid	=	Width()

tw	=	LoWord(twid):	th	=	HiWord(twid)

Print	"Set	to	8*14	font"

Print	"Width:		"	&	tw

Print	"Height:	"	&	th

Sleep

Width	W\8,	H\8	''	Use	8*8	font

twid	=	Width()

tw	=	LoWord(twid):	th	=	HiWord(twid)

Print	"Set	to	8*8	font"

Print	"Width:		"	&	tw

Print	"Height:	"	&	th

Sleep

Platform	Differences

In	a	Windows	console	any	values	>	0	can	be	used	in	windowed
mode.
On	a	DOS	or	Windows	full-screen	console,	the	valid	dimensions
depend	on	the	capabilities	of	the	hardware.
Linux	doesn't	allow	applications	to	change	the	console	size.

Differences	from	QB

columns	was	limited	to	40	or	80,	while	rows	could	be	25,	30,	43,	50
or	60,	depending	on	the	graphics	hardware	and	screen	mode
being	used.

See	also

LoWord

HiWord

CsrLin

Pos

Window 	

Sets	new	view	coordinates	mapping	for	current	viewport

Syntax
Window	[[Screen]	(x1,	y1)-(x2,	y2)]

Parameters
Screen

Optional	argument	specifying	y	coordinates	increase	from	top	to	bottom.
(x1,	y1)-(x2,	y2)

New	floating	point	values	corresponding	to	the	opposite	corners	of	the	current	viewport.	

Description
Window	is	used	to	define	a	new	coordinates	system.	(x1,	y1)	and	(x2,	
affected	by	this	new	mapping.	If	Screen	is	omitted,	the	new	coordinates	system	will	be	Cartesian,	that	is,	with	y	coordinates	increasing	from	bottom	to	top.	Call	

FreeBASIC's	current	behavior	is	to	keep	track	of	the	corners	of	the	Window
The	Window	corners	are	also	currently	taken	into	account	when	working	on	image	buffers,	so	when	a	

When	there	is	no	Window	in	effect,	there	is	no	coordinate	mapping	in	effect,	so	the	effective	coordinate	system	is	constant,	independent	of	image	buffer	sizes	or	

Example

''	The	program	shows	how	changing	the	view	coordinates	mapping	for	the	current	viewport	changes	the	size	of	a	figure	drawn	on	the	screen.

''	The	effect	is	one	of	zooming	in	and	out:

''			-	As	the	viewport	coordinates	get	smaller,	the	figure	appears	larger	on	the	screen,	until	parts	of	it	are	finally	clipped	because	they	lie	outside	the	window.

''			-	As	the	viewport	coordinates	get	larger,	the	figure	appears	smaller	on	the	screen.

Declare	Sub	Zoom	(ByVal	X	As	Integer)

Dim	As	Integer	X	=	500,	Xdelta	=	50

Screen	12

Do

		Do	While	X	<	525	And	X	>	50

				X	+=	Xdelta																						''	Change	window	size.

				Zoom(X)

				If	Inkey	<>	""	Then	Exit	Do,	Do		''	Stop	if	key	pressed.

				Sleep	100

		Loop

		X	-=	Xdelta

		Xdelta	*=	-1																							''	Reverse	size	change.

Loop

Sub	Zoom	(ByVal	X	As	Integer)

		Window	(-X,-X)-(X,X)															''	Define	new	window.

		ScreenLock

		Cls

		Circle	(0,0),	60,	11,	,	,	0.5,	F			''	Draw	ellipse	with	x-radius	60.

		ScreenUnlock

End	Sub

Screen	13

''	define	clipping	area

View	(10,	10)	-	(310,	150),	1,	15				

''	set	view	coordinates

Window	(-1,	-1)	-	(1,	1)													

''	Draw	X	axis

Line	(-1,0)-(1,0),7

Draw	String	(0.8,	-0.1),	"X"

''	Draw	Y	axis

Line	(0,-1)-(0,1),7

Draw	String	(0.1,	0.8),	"Y"

Dim	As	Single	x,	y,	s

''	compute	step	size

s	=	2	/	PMap(1,	0)

''	plot	the	function

For	x	=	-1	To	1	Step	s

		y	=	x	^	3

		PSet(x,	y),	14

Next	x

''	revert	to	screen	coordinates

Window

''	remove	the	clipping	area

View

''	draw	title

Draw	String	(120,	160),	"Y	=	X	^	3"

Sleep

Differences	from	QB

QBASIC	preserves	the	coordinate	mapping	after	subsequent	calls	to	VIEW.
FreeBASIC's	current	behavior	is	to	preserve	the	WINDOW	coordinates	after	calls	to	VIEW,	or	when	working	on	images,	meaning	that	the	coordinate	mapping	may	undergo	scaling/translations.	(If	a	WINDOW	hasn't	been	set,
there	is	no	coordinate	mapping,	and	so	it	doesn't	change	after	calls	to	VIEW.)	
you	change	the	VIEW.

See	also

Screen	(Graphics)

View	(Graphics)

PMap

WindowTitle 	

Sets	the	program	window	title

Syntax
Declare	Sub	WindowTitle	(ByRef	title	As	Const	String)

Usage
WindowTitle	title

Parameters
title

the	string	to	be	assigned	as	new	window	title.

Description
This	statement	is	useful	to	change	the	program	window	title.	The	new
title	set	will	become	active	immediately	if	the	program	already	runs	in
windowed	mode,	otherwise	will	become	the	new	title	for	any	window
produced	by	subsequent	calls	to	the	Screen	(Graphics)	statement.	If
this	function	is	not	called	before	setting	a	new	windowed	mode	via
Screen	(Graphics),	the	program	window	will	use	the	executable	file
name	(without	the	extension)	as	title	by	default.
This	command	has	no	effect	in	consoles.

Example

'Set	screen	mode	

Screen	13

'Set	the	window	title

WindowTitle	"FreeBASIC	example	program"

Sleep

Platform	Differences

Not	present	in	DOS	version	/	target	of	FreeBASIC

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Windowtitle.

Differences	from	QB

New	to	FreeBASIC

See	also

Screen	(Graphics)

Winput() 	

Reads	a	number	of	wide-characters	from	console	or	file

Syntax
Declare	Function	WInput(ByVal	num	As	Integer)	As	WString

Declare	Function	WInput(ByVal	num	As	Integer,	ByVal	filenum	As	

Usage
result	=	WInput(num	[,	[#]filenum	})

Parameters
num

Number	of	characters	to	read.
filenum

File	number	of	bound	file	or	device.

Return	Value
Returns	a	WString	of	the	characters	read.

Description
Reads	a	number	of	wide-characters	from	the	console,	or	a	bound	file/device	specified	by	

The	first	version	waits	for	and	reads	n	wide	characters	from	the	keyboard	buffer.	Extended	keys	are	not	read.	The
characters	are	not	echoed	to	the	screen.

The	second	version	waits	for	and	reads	n	wide	characters	from	a	file	or	device.	The	file	position	is	updated.

Note:	FreeBASIC	does	not	currently	support	reading	wide-characters	from	the	console.

Example

Dim	char	As	WString	*	2

Dim	filename	As	String,	enc	As	String

Dim	f	As	Integer

Line	Input	"Please	enter	a	file	name:	",	filename

Line	Input	"Please	enter	an	encoding	type	(optional):	"

If	enc	=	""	Then	enc	=	"ascii"

f	=	FreeFile

If	Open(filename	For	Input	Encoding	enc	As	#f)	=	0

				

				Print	"Press	space	to	read	a	character	from	the	file,	or	escape	to	exit."

				

				Do

								

								Select	Case	Input(1)

								

								Case	"	"	'Space

												

												If	EOF(f)	Then

																

																Print	"You	have	reached	the	end	of	the	file."

																Exit	Do

																

												End	If

												

												char	=	WInput(1,	f)

												Print	char	&	"	(char	no	"	&	Asc(char)	

												

								Case	Chr(27)	'Escape

												

												Exit	Do

												

								End	Select

								

				Loop

				

				Close	#f

				

Else

				

				Print	"There	was	an	error	opening	the	file."

				

End	If

Dialect	Differences

Not	available	in	the	-lang	qb	dialect.

Differences	from	QB

QB	does	not	support	Unicode

See	also

Input()

Open

With 	

Statement	block	to	allow	implicit	access	to	fields	in	a	user	defined	type
variable

Syntax
With	user_defined_var

statements

End	With

Description
The	With...End	With	block	allows	the	omission	of	the	name	of	a	variable	of
a	user-defined	Type	when	referring	to	its	fields.	The	fields	may	then	be
accessed	with	just	a	single	period	(.)	before	them,	e.g.	if	the	Type	contains
an	field	element	called	"element",	then	it	could	be	accessed	within	the	
block	as	".element".

It	can	be	used	as	a	shorthand	to	save	typing	and	avoid	cluttering	the
source.	With	can	also	be	used	with	dereferenced	pointers,	as	the	second
example	shows.

With	blocks	may	be	nested.	In	this	case,	only	the	innermost	With	block	is
active,	and	any	outer	ones	are	ignored	until	the	inner	one	is	closed	again.
See	the	third	example	for	an	illustration	of	this.

Internally,	a	reference	to	the	variable	is	taken	at	the	start	of	the	With	block,
and	then	is	used	to	calculate	any	element	accesses	within	the	block.	Note
that	this	means	that	Goto	should	not	be	used	to	jump	into	a	With	block,
otherwise	the	reference	will	not	have	been	set,	and	the	results	of	trying	to
access	it	will	be	undefined.

Note	for	With	block	used	inside	member	procedure:
To	access	duplicated	symbols	defined	outside	the	Type,	use	"..SomeSymbol

Example

Type	rect_type

				x	As	Single

				y	As	Single

End	Type

Dim	the_rectangle	As	rect_type

Dim	As	Integer	temp,	t

With	the_rectangle

				temp	=	.x

				.x	=	234	*	t	+	48	+	.y

				.y	=	321	*	t	+	2

End	With

Type	rect_type

				x	As	Single

				y	As	Single

End	Type

Dim	the_rectangle	As	rect_type	Ptr

the_rectangle	=	CAllocate(5	*	Len(rect_type))

Dim	As	Integer	loopvar,	temp,	t

For	loopvar	=	0	To	4

		With	the_rectangle[loopvar]

				temp	=	.x

				.x	=	234	*	t	+	48	+	.y

				.y	=	321	*	t	+	2

		End	With

Next

Type	rect_type

				x	As	Single

				y	As	Single

End	Type

Dim	As	rect_type	rect1,	rect2

''	Nested	With	blocks

With	rect1

				.x	=	1

				.y	=	2

				With	rect2

								.x	=	3

								.y	=	4

				End	With

End	With

Print	rect1.x,	rect1.y	''	1,		2

Print	rect2.x,	rect2.y	''	3,		4

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias
__With.

Differences	from	QB

New	to	FreeBASIC

See	also

Type

WOct 	

Converts	a	number	to	a	Unicode	octal	representation

Syntax
Declare	Function	WOct	(ByVal	number	As	UByte)	As	WString

Declare	Function	WOct	(ByVal	number	As	UShort)	As	WString

Declare	Function	WOct	(ByVal	number	As	Ulong)	As	WString

Declare	Function	WOct	(ByVal	number	As	ULongInt)	As	WString

Declare	Function	WOct	(ByVal	number	As	Const	Any	Ptr)	As

WString

Declare	Function	WOct	(ByVal	number	As	UByte,	ByVal	digits	As

Long)	As	WString

Declare	Function	WOct	(ByVal	number	As	UShort,	ByVal	digits	As

Long)	As	WString

Declare	Function	WOct	(ByVal	number	As	Ulong,	ByVal	digits	As

Long)	As	WString

Declare	Function	WOct	(ByVal	number	As	ULongInt,	ByVal	digits	As

Long)	As	WString

Declare	Function	WOct	(ByVal	number	As	Const	Any	Ptr,	ByVal

digits	As	Long)	As	WString

Usage
result	=	WOct(number	[,	digits])

Parameters
number

Number	to	convert	to	octal	representation.
digits

Desired	number	of	digits	in	the	returned	string.

Return	Value
The	Unicode	octal	representation	of	the	number,	truncated	or	padded
with	zeros	("0")	to	fit	the	number	of	digits,	if	specified.

Description
Returns	the	octal	WString	(Unicode)	representation	of	number.	Octal
digits	range	from	0	to	7.

If	you	specify	digits	>	0,	the	result	string	will	be	exactly	that	length.	It
will	be	truncated	or	padded	with	zeros	on	the	left,	if	necessary.

The	length	of	the	returned	string	will	not	be	longer	than	the	maximum
number	of	digits	required	for	the	type	of	number	(3	characters	for	Byte,
6	for	Short,	11	for	Long,	and	22	for	LongInt)

Example

Print	WOct(54321)

Print	WOct(54321,	4)

Print	WOct(54321,	8)

will	produce	the	output:

152061

2061

00152061

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Woct.

Platform	Differences

Unicode	strings	are	not	supported	in	the	DOS	port	of
FreeBASIC.

Differences	from	QB

In	QBASIC	Unicode	was	not	supported.

See	also

WBin

WHex

Write 	

Outputs	a	comma-separated	list	of	values	to	the	screen

Syntax
Write	[expressionlist]

Parameters
expressionlist

Comma-separated	list	of	items	to	print

Description
Outputs	the	values	in	expressionlist	to	the	screen.	The	values	are
separated	with	commas,	and	strings	are	enclosed	in	double	quotes.
Numeric	values	with	an	absolute	value	of	less	than	one	are	prefixed
with	a	zero	(0)	if	none	is	given	(e.g.	0.5,	-0.123).	Floating-point
numbers	with	absolute	values	greater	than	or	equal	to	10^16,	or	with
absolute	values	greater	than	0	and	less	than	10^-5	are	printed	in
scientific	notation	(e.g.	1.8e+019,	3e-005)

If	no	expression	list	is	given,	Write	outputs	a	carriage	return.

Example

Dim	i	As	Integer	=	10

Dim	d	As	Double	=	123.456

Dim	s	As	String	=	"text"

Write	123,	"text",	-.45600

Write

Write	i,	d,	s

will	produce	the	output:

123,"text",-0.456

10,123.456,"text"

Differences	from	QB

QBASIC	might	print	format	floating-point	values	in	slightly
different	ways.

See	also

Write	#

(Print	|	?)

Write	# 	

Outputs	a	comma-separated	list	of	values	to	a	text	file	or	device

Syntax
Write	#	filenum	,	[expressionlist]

Parameters
filenum

File	number	of	an	open	file	or	device	opened	for	Output	or	Append.
expressionlist

Comma-separated	list	of	items	to	print

Description
Outputs	the	values	in	expressionlist	to	the	text	file	or	device	bound	to	
The	values	are	separated	with	commas,	and	strings	are	enclosed	in	double
quotes.	Numeric	values	greater	than	zero	(0)	and	less	than	one	(1)	are	prefixed
with	a	zero	(0)	if	none	is	given	(e.g.,	a	value	of	-.123	will	be	output	as	
Extra	zeroes	are	truncated.

If	no	expression	list	is	given,	Write	#	outputs	a	carriage	return	(note	that	the
comma	after	filenum	is	still	necessary,	even	if	no	expression	list	is	given).
The	purpose	of	Write	#	is	to	create	a	file	that	can	be	read	back	by	using	

Example

Const	filename	As	String	=	"file.txt"

Dim	filenum	As	Integer	=	FreeFile()

If	0	<>	Open(filename,	For	Output,	As	filenum)	Then

				Print	"error	opening	"	&	filename	&	"	for	output."

				End	-1

End	If

Dim	i	As	Integer	=	10

Dim	d	As	Double	=	123.456

Dim	s	As	String	=	"text"

Write	#filenum,	123,	"text",	-.45600

Write	#filenum,

Write	#filenum,	i,	d,	s

will	produce	the	file:

123,"text",-0.456

10,123.456,"text"

Differences	from	QB

None

See	also

Write

(Print	|	?)	#

Input	#

Write	(File	Access) 	

File	access	specifier

Syntax
Open	filename	As	String	For	Binary	Access	Write	As	#filenum	As

Integer

Description
Specifier	for	the	Access	clause	in	the	Open	statement.	Write	specifies
that	the	file	is	accessible	for	output.

Example
See	example	at	Access

Differences	from	QB

None	known.

See	also

Access

Open

WSpace 	

Creates	a	WString	of	a	given	length	filled	with	spaces	("	")

Syntax
Declare	Function	WSpace(ByVal	count	As	Integer)	As	WString

Usage
result	=	WSpace(count)

Parameters
count

An	integer	type	specifying	the	length	of	the	string	to	be	created.

Return	Value
The	created	WString.	An	empty	string	will	be	returned	if	count	<=	0.

Description
WSpace	creates	a	wstring	(wide	character	string-	Unicode)	with	the
specified	number	of	spaces.

Example

Dim	a	As	WString	*	10

a	=	"x"	+	WSpace(3)	+	"x"

Print	a	'	prints:	x			x

Platform	Differences

Unicode	strings	are	not	supported	in	the	DOS	port	of
FreeBASIC.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Wspace.

Differences	from	QB

New	to	FreeBASIC

See	also

Space

WString

WStr 	

Returns	a	wide-character	string	representation	of	a	number	or	ASCII	character	string

Syntax
Declare	Function	WStr	(ByVal	n	As	Byte)	As	WString

Declare	Function	WStr	(ByVal	n	As	UByte)	As	WString

Declare	Function	WStr	(ByVal	n	As	Short)	As	WString

Declare	Function	WStr	(ByVal	n	As	UShort)	As	WString

Declare	Function	WStr	(ByVal	n	As	Long)	As	WString

Declare	Function	WStr	(ByVal	n	As	Ulong)	As	WString

Declare	Function	WStr	(ByVal	n	As	LongInt)	As	WString

Declare	Function	WStr	(ByVal	n	As	ULongInt)	As	WString

Declare	Function	WStr	(ByVal	n	As	Single)	As	WString

Declare	Function	WStr	(ByVal	n	As	Double)	As	WString

Declare	Function	WStr	(ByRef	str	As	Const	String)	As	WString

Declare	Function	WStr	(ByVal	str	As	Const	WString	Ptr)	As	WString

Usage
result	=	WStr(number)

or

result	=	WStr(string)

Parameters
number

Numeric	expression	to	convert	to	a	wide-character	string.
string

String	expression	to	convert	to	a	wide-character	string.

Return	Value
Returns	the	wide-character	representation	of	the	numeric	or	string	expression.

Description
WStr	converts	numeric	variables	to	their	wide-character	string	representation.	It	is	the	wide-character	equivalent	to	

WStr	also	converts	ASCII	character	strings	to	Unicode	character	strings.	If	a	wide-character	string	is	given,	that	string
is	returned	unmodified.

Example

#if	defined(__FB_WIN32__)

#include	"windows.bi"

#endif

Dim	zs	As	ZString	*	20

Dim	ws	As	WString	*	20

zs	=	"Hello	World"

ws	=	WStr(zs)

#if	defined(__FB_WIN32__)

MessageBox(null,	ws,	WStr("Unicode	'Hello	World'"),

#else

Print	ws

Print	WStr("Unicode	'Hello	World'")

#endif

Platform	Differences

DOS	does	not	support	WStr.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

Str

WString

WString 	

Standard	data	type:	wide	character	string

Syntax
Dim	variable	As	WString	*	size

Dim	variable	As	WString	Ptr

Description
A	WString	is	a	fixed-size	array	of	wide-chars	that	never	overflows	if	the	size	is	known	at	compile-time.	It	has	no	descriptor,	and	does
never	resize	unless	it's	a	pointer	and	Allocate/Reallocate/Deallocate	are	used	directly.	When	the	variable	has	a	fixed	
FreeBASIC	avoids	any	overflow	that	could	occur	on	assignment,	by	truncating	the	contents	to	a	length	of	

The	end	of	the	string	is	marked	by	the	character	0	automatically	added	by	the	FreeBASIC	string	handling	functions,	so	that
character	must	never	be	part	of	a	WString	or	the	content	will	be	truncated.	The	character	0	will	be	appended	when	the	string	is
created,	and	the	length	will	be	calculated	by	scanning	the	string	for	the	first	null	character.

In	a	WString,	Len	returns	the	size	of	the	contained	string	and	SizeOf	returns	the	space	allocated	to	the	
the	size	is	known	by	the	compiler,	i.e.	a	fixed-size	WString	variable	is	passed	directly,	not	as	a	dereferenced	pointer	or	a	
function	argument.

This	type	is	provided	for	support	non-Latin	based	alphabets.	Any	intrinsic	string	function	like	
any	string	operator.

When	processing	source	files,	FreeBASIC	can	parse	ASCII	files	with	Unicode	escape	sequences	(\u),	
16BE,	UTF-32LE	and	UTF-32BE.

The	FreeBASIC	text	file	functions	can	read	and	write	Unicode	files	in	different	encodings,	provided	the	
the	file	is	opened.	The	text	is	automatically	converted	to	the	internal	encoding	at	read	and	converted	back	to	the	file	encoding	at
write.

SizeOf(WString)	returns	the	number	of	bytes	used	by	a	WString	character	in	the	current	platform.

Example

Dim	As	WString	*	13	str1	=>	"hello,	world"

Print	str1

Print	Len(str1)				'returns	12,	the	length	of	the	string	it	contains	

Print	SizeOf(str1)	'returns	13	*	sizeof(wstring),	the	number	of	bytes	used	by	the	variable

Dim	As	WString	Ptr	str2

str2	=	Allocate(13	*	Len(WString))

*str2	=	"hello,	world"

Print	*str2

Print	Len(*str2)						'returns	12,	the	length	of	the	string	it	points	to

Platform	Differences
Support	for	wstrings	relies	in	the	C	runtime	library	available	in	the	platform	and	the	internal	format	may	vary.

Unicode	is	not	supported	in	the	DOS	port	of	FreeBASIC.	In	this	port	a	character	takes	up	always	1	byte	and	
will	behave	as	standard	ASCII	Zstrings
On	Win32	wstrings	are	encoded	in	UCS-2	and	a	character	takes	up	always	2	bytes.	This	is	actually	not	UTF-16	LE,
as	FreeBASIC	doesn't	bother	with	surrogates	introduced	in	Win	XP.	This	further	means	that	what	FreeBASIC
understands	with	a	character	may	not	represent	a	full	codepoint.
On	Linux	wstrings	are	encoded	in	UCS-4	and	a	character	takes	up	4	bytes.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

String	(data	type)
ZString	(data	type)
WString	(data	type)
String	(function)

WString	(function)
WSpace

WStr

WChr

WBin

WHex

WOct

Winput()

Wstring	(Function) 	

Fills	a	WString	with	a	certain	length	of	a	certain	wide	character

Syntax
Declare	Function	WString	(ByVal	count	As	Integer,	ByVal	ch_code

As	Long)	As	WString

Declare	Function	WString	(ByVal	count	As	Integer,	ByRef	ch	As

Const	WString)	As	WString

Usage
result	=	WString(count,	ch_code)

or

result	=	WString(count,	ch)

Parameters
count

An	Integer	specifying	the	length	of	the	string	to	be	created.
ch_code

A	Long	specifying	the	Unicode	char	to	be	used	to	fill	the	string.
ch

A	WString	whose	first	character	is	to	be	used	to	fill	the	string.

Return	Value
The	created	WString.	An	empty	string	will	be	returned	if	either	ch	is	an
empty	string,	or	count	<=	0.

Description
WString	generates	a	temporary	WString	filled	with	count	copies	of	a
Unicode	character.	This	string	can	be	printed	or	assigned	to	a
previously	Dimed	WString.

Example

Print	WString(4,	934)									

Print	WString(5,	WStr("Indeed"))			

End	0

	

ΦΦΦΦ
IIIII

Platform	Differences

Unicode	strings	are	not	supported	in	the	DOS	port	of
FreeBASIC.

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Wstring.

Differences	from	QB

QBasic	does	not	support	Unicode

See	also

String	(data	type)

WSpace

WString	(data	type)

Operator	Xor	(Exclusive	Disjunction) 	

Returns	the	bitwise-xor	(exclusive	disjunction)	of	two	numeric	values

Syntax
Declare	Operator	Xor	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)	As	Ret

Usage
result	=	lhs	Xor	rhs

Parameters
lhs

The	left-hand	side	expression.
T1

Any	numeric	or	boolean	type.
rhs

The	right-hand	side	expression.
T2

Any	numeric	or	boolean	type.
Ret

A	numeric	or	boolean	type	(varies	with	T1	and	T2).

Return	Value
Returns	the	bitwise-xor	of	the	two	operands.

Description
This	operator	returns	the	bitwise-exclusion	of	its	operands,	a	logical	operation	that	results	in	a	value	with	bits	set	depending	on	the	bits	of	the	operands	(for
conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value	becomes	0	or	-1	integer	value).

The	truth	table	below	demonstrates	all	combinations	of	a	boolean-exclusion	operation:

Lhs	Bit Rhs	Bit Result

0 0 0

1 0 1

0 1 1

1 1 0

No	short-circuiting	is	performed	-	both	expressions	are	always	evaluated.

The	return	type	depends	on	the	types	of	values	passed.	Byte,	UByte	and	floating-point	type	values	are	first	converted	to	
types	differ	only	in	signedness,	then	the	return	type	is	the	same	as	the	left-hand	side	type	(
and	right-hand	side	types	are	both	Boolean,	the	return	type	is	also	Boolean

This	operator	can	be	overloaded	for	user-defined	types.

Example

'	Using	the	XOR	operator	on	two	numeric	values

Dim	As	UByte	numeric_value1,	numeric_value2

numeric_value1	=	15	'00001111

numeric_value2	=	30	'00011110

'Result	=		17		=					00010001

Print	numeric_value1	Xor	numeric_value2

Sleep

'	Using	the	XOR	operator	on	two	conditional	expressions

Dim	As	UByte	numeric_value1,	numeric_value2

numeric_value1	=	10

numeric_value2	=	15

If	numeric_value1	=	10	Xor	numeric_value2	=	20	Then

Sleep

'	This	will	output	"Numeric_Value1	equals	10	or	Numeric_Value2	equals	20"

'	because	only	the	first	condition	of	the	IF	statement	is	true

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Operator	Truth	Tables

Xor 	

Parameter	to	the	Put	graphics	statement	which	uses	a	bit-wise	Xor	as	the	blitting	method

Syntax
Put	[target,]	[STEP]	(x,y),	source	[,(x1,y1)-(x2,y2)],	

Parameters
Xor

Required.

Description
The	Xor	method	combines	each	source	pixel	with	the	corresponding	destination	pixel,	using
the	bit-wise	Xor	function.	The	result	of	this	is	output	as	the	destination	pixel.
This	method	works	in	all	graphics	modes.	There	is	no	mask	color,	although	color	values	of	
(RGBA(0,	0,	0,	0)	in	full-color	modes)	will	have	no	effect,	because	of	the	behavior	of	

In	full-color	modes,	each	component	(red,	green,	blue	and	alpha)	is	kept	in	a	discrete	set	of
bits,	so	the	operation	can	be	made	to	only	affect	some	of	the	channels,	by	making	sure	the
all	the	values	of	the	other	channels	are	set	to	0.

Example

''open	a	graphics	window

ScreenRes	320,	200,	16

''create	a	sprite	containing	a	circle

Const	As	Integer	r	=	32

Dim	c	As	Any	Ptr	=	ImageCreate(r	*	2	+	1,	r	*	2	+	

Circle	c,	(r,	r),	r,	RGBA(255,	255,	255,	0),	,	,	1

''put	the	three	sprites,	overlapping	each	other	in	the	middle

Put	(146	-	r,	108	-	r),	c,	Xor

Put	(174	-	r,	108	-	r),	c,	Xor

Put	(160	-	r,		84	-	r),	c,	Xor

''free	the	memory	used	by	the	sprite

ImageDestroy	c

''pause	the	program	before	closing

Sleep

Differences	from	QB

None

See	also

Xor

Put	(Graphics)

Year 	

Gets	the	year	from	a	Date	Serial

Syntax
Declare	Function	Year	(ByVal	date_serial	As	Double)	As	Long

Usage
#include	"vbcompat.bi"

result	=	Year(date_serial)

Parameters
date_serial

the	date

Return	Value
Returns	the	year	from	a	variable	containing	a	date	in	Date	Serial	format.	

Description

The	compiler	will	not	recognize	this	function	unless	vbcompat.bi	is	included.

Example

#include	"vbcompat.bi"

Dim	a	As	Double	=	DateSerial	(2005,	11,	28)	+	TimeSerial

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss	");	Year(a)

Differences	from	QB

Did	not	exist	in	QB.	This	function	appeared	in	PDS	and	VBDOS

See	also

Date	Serials

ZString 	

Standard	data	type:	8	bit	character	string

Syntax
Dim	variable	As	ZString	*	size

Dim	variable	As	ZString	Ptr

Description
A	ZString	is	a	C-style	fixed-size	array	of	chars.	It	has	no	descriptor	so	its	length	is	calculated	faster	to
pass	it	as	an	argument	to	functions.	When	the	variable	has	a	fixed	size
overflow	that	could	occur	on	assignment,	by	truncating	the	contents	to	a	length	of	

A	ZString	Ptr	can	point	to	a	standard	ZString,	also	can	be	used	to	implement	an	"user-managed"
ZString,	in	this	case	Allocate/Reallocate/Deallocate	must	be	used	to	size-resize-dispose	it	and	is	up	
the	user	to	avoid	overflows	.	

The	end	of	the	string	is	marked	by	a	null	character	(0	ASCII).	This	is	automatically	added	by	the
FreeBASIC	string	handling	functions.	A	null	character	will	be	appended	when	the	string	is	created,	and
the	length	will	be	calculated	by	scanning	the	string	for	the	first	null	character.	A	null	character	(e.g.
Chr(0))	may	never	be	contained	in	the	text	of	a	ZString	or	the	rest	of	the	string	will	be	truncated.

In	a	ZString,	Len	returns	the	size	of	the	contained	string	and	SizeOf	returns	the	space	allocated	to	the
ZString.	SizeOf	only	works	if	the	size	is	known	by	the	compiler,	i.e.	a	fixed-size	
passed	directly,	not	as	a	dereferenced	pointer	or	a	ByRef	function	argument.

This	type	is	provided	for	easy	interfacing	with	C	libraries	and	to	also	replace	the	fixed-length	strings,
that	can't	be	managed	through	pointers.	Any	intrinsic	string	functions	like	
too,	plus	any	string	operator.

Example

Dim	As	ZString	*	13	str1	=>	"hello,	world"

Print	str1

Print	Len(str1)					'returns	12,	the	size	of	the	string	it	contains	

Print	SizeOf(str1)		'returns	13,	the	size	of	the	variable

Dim	As	ZString	Ptr	str2

str2	=	Allocate(13)

*str2	=	"hello,	world"

Print	*str2

Print	Len(*str2)					'returns	12,	the	size	of	the	string	it	contains	

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the	alias	

Differences	from	QB

New	to	FreeBASIC

See	also

String

WString

Functional	Keyword	List 	

List	of	FreeBASIC	keywords	sorted	by	the	function	they	perform.

Arrays
Erase
LBound
ReDim
Preserve
UBound

Bit	manipulation
Bit
BitReset
BitSet
HiByte
HiWord
LoByte
LoWord

Compiler	switches
DefByte
DefDbl
DefInt
DefLng
Deflongint
DefShort
DefSng
DefStr
DefUByte
DefUInt
Defulongint

Miscellaneous
Asm
Data
End	(Block)
Is	(Run-Time	Type
Information	Operator)
Let
OffsetOf
Option()
To
Read
Rem
Restore
SizeOf
Swap
TypeOf

Modularizing
Common
DyLibFree
DyLibLoad
DyLibSymbol
Export
Extern
Extern...End	Extern
Import
Namespace
Private

DefUShort
Option	Base
Option	ByVal
Option	Dynamic
Option	Escape
Option	Explicit
Option	Gosub
Option	Nogosub
Option	NoKeyword
Option	Private
Option	Static

Console
Beep
Cls
Color
CsrLin
Locate
Open	Cons
Open	Err
Open	Pipe
Open	Scrn
Pos
Print
?
Print	Using
?	Using
Screen	(Console)
Spc
Tab
View	(Console)
Width

Public
Using	(Namespaces)

Multithreading
CondBroadcast
CondCreate
CondDestroy
CondSignal
CondWait
MutexCreate
MutexDestroy
MutexLock
MutexUnlock
Threadcall
ThreadCreate
Threaddetach
ThreadWait

OS	/	shell
Chain
ChDir
Command
CurDir
Dir
End	(Statement)
Environ
Exec
ExePath
FileAttr
FileCopy
FileDateTime
FileExists

Write

Data	types	and	declarations
Boolean
Byte
As
Dim
Const
Const	(Qualifier)
Double
Enum
Extends
Integer
Long
LongInt
Object
Scope
Shared
Short
String
Single
Static
Type
Type	(Alias)
Type	(Temporary)
UByte
UInteger
Ulong
ULongInt
Union
Unsigned
UShort

FileLen
Isredirected
Kill
MkDir
Name
RmDir
Run
SetEnviron
Shell
System
WindowTitle

Pointers
Pointer
ProcPtr
Ptr
SAdd
StrPtr
VarPtr

Predefined	symbols
__DATE__	
__Date_Iso__	
__Fb_64Bit__
__FB_ARGC__
__FB_ARGV__
__Fb_Arm__
__FB_BIGENDIAN__
__FB_BUILD_DATE__
__FB_CYGWIN__
__FB_DARWIN__
__FB_DEBUG__

Var
With
WString
ZString

Date	and	time
Date
DateAdd
DateDiff
DatePart
DateSerial
DateValue
Day
Hour
IsDate
Minute
Month
MonthName
Now
Second
SetDate
SetTime
Time
TimeSerial
TimeValue
Timer
Year
Weekday
WeekdayName

Debug	support
Assert

__FB_DOS__
__FB_ERR__
__FB_FREEBSD__
__FB_LANG__
__FB_LINUX__
__FB_MAIN__
__FB_MIN_VERSION__
__FB_NETBSD__
__FB_OPENBSD__
__FB_OPTION_BYVAL__
__FB_OPTION_DYNAMIC__
__FB_OPTION_ESCAPE__
__FB_OPTION_EXPLICIT__
__Fb_Option_Gosub__
__FB_OPTION_PRIVATE__
__FB_OUT_DLL__
__FB_OUT_EXE__
__FB_OUT_LIB__
__FB_OUT_OBJ__
__FB_SIGNATURE__	
__FB_SSE__
__FB_VERSION__
__FB_VER_MAJOR__
__FB_VER_MINOR__
__FB_VER_PATCH__
__FB_WIN32__
__FB_XBOX__
__FILE__
__FILE_NQ__
__FUNCTION__
__FUNCTION_NQ__

AssertWarn
Stop

Error	handling
Erfn
Erl	
Ermn
Err
Error
Local
On	Error
Resume
Resume	Next

Files
Access
Append
Binary
BLoad
BSave
Close
Encoding
EOF
FreeFile
Get	#	(File	I/O)
Input	(File	I/O)
Input	#
Line	Input	#
LOC
Lock
LOF
Open

__FB_MT__
__LINE__
__PATH__
__TIME__
False
True

Preprocessor
#Assert
#define
#else
#elseif
#endif
#endmacro
#error
#if
#ifdef
#ifndef
#inclib
#include
#libpath
#lang
#line
#macro
#pragma
#print
#undef
defined
Once

Procedures
...

Output
Print	#
?	#
Put	#	(File	I/O)
Random
Read	(File	Access)	
Read	Write	(File
Access)	
Reset	
Seek	(Statement)
Seek	(Function)
Unlock
Write	#
Write	(File	Access)	

Graphics
Add	(Graphics	Put)
Alpha	(Graphics	Put)
And	(Graphics	Put)
Circle
Cls
Color
Custom	(Graphics
Put)
Draw
Draw	String
Event	(Message	Data
From	Screenevent)
Flip
Get	(Graphics)
ImageConvertRow
ImageCreate

Abstract	(Member)
Alias
Any
Base	(Initialization)
Base	(Member	Access)
Byref	(Parameters)
Byref	(Function	Results)
ByVal
Call
cdecl
Const	(Member)
Constructor
Constructor	(Module)
Destructor
Destructor	(Module)
Declare
Function
Function	(Member)
Lib
Naked
Operator
Overload
Override
pascal
Private	(Member)
Protected	(Member)
Property
Public	(Member)
Static	(Member)
Sub
Sub	(Member)

ImageDestroy
ImageInfo
Line
Or	(Graphics	Put)
Paint
Palette
PCopy
PMap
Point
Pointcoord
PReset
PSet
Pset	(Graphics	Put)
Put	(Graphics)
RGB
RGBA
Screen
ScreenControl
ScreenCopy
ScreenEvent
ScreenInfo
ScreenGLProc
ScreenList
ScreenLock
ScreenPtr
ScreenRes
ScreenSet
ScreenSync
ScreenUnlock
Trans	(Graphics	Put)
View	(Graphics)

stdcall
This
va_arg
va_first
va_next
Virtual	(Member)

Program	flow
Continue
Case
Do
Do...Loop
Else
ElseIf
End	If
Exit
GoSub
Goto
If...Then
IIf
Is	(Select	Case)
For
For...Next
Loop
Next
On...Gosub
On...Goto
Return
Select	Case
Sleep
Step
Then

Window
Xor	(Graphics	Put)

Hardware	access
Inp
Out
Wait
Open	Com
Open	Lpt
Lpt
Lpos
LPrint

Assignment	Operators
=[>]	(Assignment)
&=	(Concatenate	And
Assign)
+=	(Add	And	Assign)
-=	(Subtract	And
Assign)
*=	(Multiply	And
Assign)
/=	(Divide	And
Assign)
\=	(Integer	Divide	And
Assign)
^=	(Exponentiate	And
Assign)
Mod=	(Modulus	And
Assign)
And=	(Conjunction
And	Assign)
Eqv=	(Equivalence
And	Assign)

Until
Wend
While
While...Wend

String	functions
InStr
InStrRev
LCase
Left
Len
LSet
LTrim
Mid	(Statement)
Mid	(Function)
Right
RSet
RTrim
Space
String	(Function)
Trim
UCase
WSpace
Wstring	(Function)

String	and	number	conversion
Asc
Bin
Chr
CVD
CVI
CVL

Imp=	(Implication	And
Assign)
Or=	(Inclusive
Disjunction	And
Assign)
Xor=	(Exclusive
Disjunction	And
Assign)
Shl=	(Shift	Left	And
Assign)
Shr=	(Shift	Right	And
Assign)
Let	(Assignment)
Let()	(Assignment)

Arithmetic	Operators
+	(Add)
-	(Subtract)
*	(Multiply)
/	(Divide)
\	(Integer	Divide)
^	(Exponentiate)
Mod	(Modulus)
-	(Negate)
Shl	(Shift	Left)
Shr	(Shift	Right)

Bitwise	operators
And
Eqv
Imp
Or
Not

CVLongInt
CVS
CVShort
Format
Hex
MKD
MKI
MKL
MKLongInt
MKS
MKShort
Oct
Str
Val
ValLng
ValInt
ValUInt
ValULng
WBin
WChr
WHex
WOct
WStr

Type	casting/conversion
Cast
Cbool
CByte
CDbl
CInt
CLng
CLngInt

Xor

Short	Circuit	operators
AndAlso
OrElse

Math
Abs
Acos
Asin
Atan2
Atn
Cos
Exp
Fix
Frac
Int
Log
Randomize
Rnd
Sgn
Sin
Sqr
Tan

Memory
Allocate
CAllocate
Clear
Deallocate
Field
Fre
Peek

CPtr
CShort
CSign
CSng
CUByte
CUInt
CULng
CULngInt
CUnsg
CUShort

User	input
GetJoystick
GetKey
GetMouse
Inkey
Input
Input	(Statement)
Line	Input
MultiKey
SetMouse
Stick
Strig
WInput

Poke
Reallocate

Meta	Commands
$Dynamic
$Static
$Include
$Lang

	

Operator	=[>]	(Assign) 	

Assigns	a	value	to	a	variable

Syntax
Declare	Operator	Let	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	=	rhs

or
lhs	=>	rhs	(from	fbc	version	0.90)

or,	in	the	QB	dialect,

[Let]	lhs	=	rhs
or
[Let]	lhs	=>	rhs	(from	fbc	version	0.90)

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric,	boolean,	string	or	pointer	type.
rhs

The	value	to	assign	to	lhs.
T2

Any	type	convertible	to	T2.

Description
This	operator	assigns	the	value	of	its	right-hand	side	operand	(rhs)	to
its	left-hand	side	operand	(lhs).	The	right-hand	side	operand	must	be
implicitly	convertible	to	the	left-hand	side	type	(T1)	(for	conversion	of	a
boolean	to	an	integer,	false	or	true	boolean	value	becomes	0	or	-1
integer	value).	For	example,	you	cannot	assign	a	numeric	value	to	a
string	type;	to	do	that,	first	convert	the	numeric	value	to	a	string	using
Str	or	WStr.

Assignment	between	arrays	is	not	supported	presently.

Avoid	confusion	with	Operator	=	(Equal),	which	also	uses	the	'='
symbol.
For	this	purpose	and	for	solving	some	cases	of	ambiguity	of	the	parser
(see	Byref	(Function	Results)),	the	alternative	symbol	'=>'	can	be
used	for	assignments	(in	place	of	'=')	from	fbc	version	0.90	(same	as
already	for	the	initializers).
Note:	the	'=>'	symbol	has	been	chosen	against	'<='	(already	the
operator	'Less	Than	Or	Equal')	and	':='	(':'	used	as	statement
separator).

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	i	As	Integer

i	=	420				'	<-	this	is	the	assignment	operator

If		i	=	69	Then			'<-

this	is	the	equivalence	operator	

		Print	"ERROR:	i	should	equal	420"

		End	-1

End	If

Print	"All	is	good."

End	0

'	compile	with	-lang	fblite	or	qb

#lang	"fblite"

Dim	i	As	Integer

Let	i	=	300	'	<-alternate	syntax

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.
In	the	-lang	qb	dialect,	an	assignment	expression	can	be
preceded	by	the	Let	keyword.

Differences	from	QB

None

See	also

Operator	=	(Equal)

Operator	Let	(Assignment)

Swap

Operator	&=	(Concatenate	And	Assign) 	

Appends	and	assigns	a	string	onto	another	string

Syntax
Declare	Operator	&=	(ByRef	lhs	As	String,	ByRef	rhs	As	T2)

Declare	Operator	&=	(ByRef	lhs	As	WString,	ByRef	rhs	As	T2)

Usage
lhs	&=	rhs

Parameters
lhs

The	string	to	assign	to.
rhs

The	value	to	append	to	lhs.
T2

Any	numeric,	string	or	user-defined	type	that	can	be	converted	to	a
string.

Description
This	operator	appends	one	string	onto	another.	The	right-hand	side
expression	(rhs)	is	converted	to	a	string	before	concatenation.	It	is
functionally	equivalent	to,

lhs	=	lhs	&	rhs

where	the	result	is	assigned	back	to	the	left-hand	side	string.

This	operator	can	be	overloaded	for	user-defined	types.

Note:	This	operator	exists	in	C/C++	with	a	different	meaning	-	there	it
performs	a	bitwise	And=.

Example

Dim	s	As	String	=	"Hello,	"

s	&=	"	world!"

Print	s

will	produce	the	output:

Hello,	world!

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	&	(String	Concatenation	With	Conversion)

Operator	+=	(Add	And	Assign)

Operator	+=	(Add	And	Assign) 	

Adds	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	+=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Declare	Operator	+=	(ByRef	lhs	As	T	Ptr,	ByRef	rhs	As	Integer)

Declare	Operator	+=	(ByRef	lhs	As	String,	ByRef	rhs	As	String)

Declare	Operator	+=	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString

)

Usage
lhs	+=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	type.
rhs

The	value	to	add	to	lhs.
T2

Any	numeric	type.
T

Any	data	type.

Description
This	operator	adds	and	assigns	a	value	to	a	variable.	It	is	functionally
equivalent	to:

lhs	=	lhs	+	rhs

For	numeric	types,	the	right-hand	side	expression	(rhs)	will	be
converted	to	the	left-hand	side	type	(T1).

For	string	types,	this	operator	is	functionally	equivalent	to	Operator	&=

(Concatenate	And	Assign).

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	Double

n	=	6

n	+=	1

Print	n

Sleep

Output:

7

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	+	(Add)

Mathematical	Functions

Operator	-=	(Subtract	And	Assign) 	

Subtracts	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	-=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Declare	Operator	-=	(ByRef	lhs	As	T	Ptr,	ByRef	rhs	As	Integer)

Usage
lhs	-=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	type.
rhs

The	value	to	subtract	from	lhs.
T2

Any	numeric	type.
T

Any	data	type.

Description
This	operator	subtracts	and	assigns	a	value	to	a	variable.	It	is
functionally	equivalent	to:

lhs	=	lhs	-	rhs

For	numeric	types,	the	right-hand	side	expression	(rhs)	will	be
converted	to	the	left-hand	side	type	(T1).

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	Double

n	=	6

n	-=	2.2

Print	n

Sleep

Output:

3.8

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	-	(Subtract)

Mathematical	Functions

Operator	*=	(Multiply	And	Assign) 	

Multiplies	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	*=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	*=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	type.
rhs

The	value	to	multiply	lhs	by.
T2

Any	numeric	type.

Description
This	operator	multiplies	and	assigns	a	value	to	a	variable.	It	is
functionally	equivalent	to:

lhs	=	lhs	*	rhs

The	right-hand	side	expression	(rhs)	will	be	converted	to	the	left-hand
side	type	(T1).

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	Double

n	=	6

n	*=	2

Print	n

Sleep

Output:

12

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	*	(Multiply)

Mathematical	Functions

Operator	/=	(Divide	And	Assign) 	

Divides	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	/=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	/=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	type.
rhs

The	value	to	divide	lhs	by.
T2

Any	numeric	type.

Description
This	operator	divides	and	assigns	a	value	to	a	variable.	It	is
functionally	equivalent	to:

lhs	=	lhs	/	rhs

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	Double

n	=	6

n	/=	2.2

Print	n

Sleep

Output:

2.727272727272727

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	/	(Divide)

Mathematical	Functions

Operator	\=	(Integer	Divide	And	Assign) 	

Integer	divides	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	\=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	\=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	type.
rhs

The	value	to	divide	lhs	by.
T2

Any	numeric	type.

Description
This	operator	multiplies	and	assigns	a	value	to	a	variable.	It	is
functionally	equivalent	to:

lhs	=	lhs	\	rhs

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	Double

n	=	6

n	\=	2.2

Print	n

Sleep

Output:

3

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	\	(Integer	Divide)

Mathematical	Functions

Operator	^=	(Exponentiate	And	Assign) 	

Exponentiates	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	^=	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)

Usage
lhs	^=	rhs

Parameters
lhs

The	variable	to	assign	to.
rhs

The	value	to	exponentiate	lhs	by.

Description
This	operator	exponentiates	and	assigns	a	value	to	a	variable.	It	is
functionally	equivalent	to:

lhs	=	lhs	^	rhs

This	operator	can	be	overloaded	for	user-defined	types.

Note:	This	operator	exists	in	C/C++	with	a	different	meaning	-	there	it
performs	a	Bitwise	Xor=.

Example

Dim	n	As	Double

n	=	6

n	^=	2

Print	n

Sleep

Output:

36

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	^	(Exponentiate)

Mathematical	Functions

Operator	Mod=	(Modulus	And	Assign) 	

Divides	a	value	and	assigns	the	remainder	to	a	variable

Syntax
Declare	Operator	Mod=	(ByRef	lhs	As	Integer,	ByRef	rhs	As

Integer)

Usage
lhs	Mod=	rhs

Parameters
lhs

The	variable	to	assign	to.
rhs

The	value	to	divide	lhs	by.

Description
This	operator	divides	two	values	of	Integer	type	and	assigns	the
remainder	to	its	left-hand	side	(lhs)	variable.	It	is	functionally
equivalent	to:

lhs	=	lhs	Mod	rhs

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	Integer

n	=	11

n	Mod=	3

''	The	result	is	2

Print	n

Sleep

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	+	(Modulus)

Mathematical	Functions

Operator	And=	(Conjunction	And	Assign) 	

Performs	a	bitwise-and	(conjunction)	and	assigns	the	result	to	a	variable

Syntax
Declare	Operator	And=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	And=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	or	boolean	type.
rhs

The	value	to	perform	a	bitwise-and	(conjunction)	with	lhs.
T2

Any	numeric	or	boolean	type.

Description
This	operator	performs	a	bitwise-and	and	assigns	the	result	to	a	variable
(for	conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value
becomes	0	or	-1	integer	value).	It	is	functionally	equivalent	to:

lhs	=	lhs	And	rhs

And=	compares	each	bit	of	its	operands,	lhs	and	rhs,	and	if	both	bits	are
1,	then	the	corresponding	bit	in	the	first	operand,	lhs,	is	set	to	1,
otherwise	it	is	set	to	0.

And=	cannot	be	used	in	conditional	expressions.

This	operator	can	be	overloaded	for	user-defined	types.

Example

'	Using	the	AND=	operator	on	two	numeric	values

Dim	As	UByte	numeric_value1,	numeric_value2

numeric_value1	=	15	''	00001111

numeric_value2	=	30	''	00011110

numeric_value1	And=	numeric_value2

''	Result	=		14		=					00001110

Print	numeric_value1

Sleep

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

And

Operator	Eqv=	(Equivalence	And	Assign) 	

Performs	a	bitwise-eqv	(equivalence)	and	assigns	the	result	to	a	variable

Syntax
Declare	Operator	Eqv=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	Eqv=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	or	boolean	type.
rhs

The	value	to	perform	a	bitwise-eqv	(equivalence)	with	lhs.
T2

Any	numeric	or	boolean	type.

Description
This	operator	performs	a	bitwise-eqv	and	assigns	the	result	to	a
variable	(for	conversion	of	a	boolean	to	an	integer,	false	or	true
boolean	value	becomes	0	or	-1	integer	value).	It	is	functionally
equivalent	to:

lhs	=	lhs	Eqv	rhs

Eqv=	compares	each	bit	of	its	operands,	lhs	and	rhs,	and	if	both	bits
are	the	same	(either	both	0	or	both	1),	then	the	corresponding	bit	in	the
first	operand,	lhs,	is	set	to	1,	otherwise	it	is	set	to	0.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	As	UByte	a	=	&b00110011

Dim	As	UByte	b	=	&b01010101

a	Eqv=	b

''	Result				a	=	&b10011001

Print	Bin(a)

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Eqv

Operator	Imp=	(Implication	And	Assign) 	

Performs	a	bitwise-imp	(implication)	and	assigns	the	result	to	a	variable

Syntax
Declare	Operator	Imp=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	Imp=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	or	boolean	type.
rhs

The	value	to	perform	a	bitwise-imp	(implication)	with	lhs.
T2

Any	numeric	or	boolean	type.

Description
This	operator	performs	a	bitwise-imp	and	assigns	the	result	to	a
variable	(for	conversion	of	a	boolean	to	an	integer,	false	or	true
boolean	value	becomes	0	or	-1	integer	value).	It	is	functionally
equivalent	to:

lhs	=	lhs	Imp	rhs

Imp	is	a	bitwise	operator	which	is	the	same	as	(Not	lhs)	Or	rhs.	Imp=
compares	each	bit	of	its	operands,	lhs	and	rhs,	and	if	the	bit	in	lhs	is	0
or	the	bit	in	rhs	is	1,	then	the	corresponding	bit	in	the	first	operand,	lhs
is	set	to	1,	otherwise	it	is	set	to	0.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	As	UByte	a	=	&b00110011

Dim	As	UByte	b	=	&b01010101

a	Imp=	b

''	Result				a	=	&b11011101

Print	Bin(a)

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Imp

Assignment	Operators

Operator	Or=	(Inclusive	Disjunction	And	Assign) 	

Performs	a	bitwise-or	(inclusive	disjunction)	and	assigns	the	result	to	a
variable

Syntax
Declare	Operator	Or=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	Or=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	or	boolean	type.
rhs

The	value	to	perform	a	bitwise-or	(inclusive	disjunction)	with	lhs.
T2

Any	numeric	or	boolean	type.

Description
This	operator	performs	a	bitwise-or	and	assigns	the	result	to	a	variable
(for	conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value
becomes	0	or	-1	integer	value).	It	is	functionally	equivalent	to:

lhs	=	lhs	Or	rhs

Or=	compares	each	bit	of	its	operands,	lhs	and	rhs,	and	if	either	bits
are	1,	then	the	corresponding	bit	in	the	first	operand,	lhs,	is	set	to	1,
otherwise	it	is	set	to	0.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	As	UByte	a	=	&b00110011

Dim	As	UByte	b	=	&b01010101

a	Or=	b

''	Result				a	=	&b01110111

Print	Bin(a)

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Or

Operator	Xor=	(Exclusive	Disjunction	And	Assign) 	

Performs	a	bitwise-xor	(exclusive	disjunction)	and	assigns	the	result	to	a
variable

Syntax
Declare	Operator	Xor=	(ByRef	lhs	As	T1,	ByRef	rhs	As	T2)

Usage
lhs	Xor=	rhs

Parameters
lhs

The	variable	to	assign	to.
T1

Any	numeric	or	boolean	type.
rhs

The	value	to	perform	a	bitwise-xor	(exclusive	or)	with	lhs.
T2

Any	numeric	or	boolean	type.

Description
This	operator	performs	a	bitwise-or	and	assigns	the	result	to	a	variable
(for	conversion	of	a	boolean	to	an	integer,	false	or	true	boolean	value
becomes	0	or	-1	integer	value).	It	is	functionally	equivalent	to:

lhs	=	lhs	Xor	rhs

Xor=	compares	each	bit	of	its	operands,	lhs	and	rhs,	and	if	both	bits
are	the	same	(both	1	or	both	0),	then	the	corresponding	bit	in	the	first
operand,	lhs,	is	set	to	0,	otherwise	it	is	set	to	1.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	As	UByte	a	=	&b00110011

Dim	As	UByte	b	=	&b01010101

a	Xor=	b

''	Result				a	=	&b01100110

Print	Bin(a)

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Xor

Operator	Shl=	(Shift	Left	And	Assign) 	

Shifts	left	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	Shl=	(ByRef	lhs	As	Integer,	ByRef	rhs	As

Integer)

Declare	Operator	Shl=	(ByRef	lhs	As	UInteger,	ByRef	rhs	As

UInteger)

Declare	Operator	Shl=	(ByRef	lhs	As	LongInt,	ByRef	rhs	As

LongInt)

Declare	Operator	Shl=	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As

ULongInt)

Usage
lhs	shl=	rhs

Parameters
lhs

The	variable	to	assign	to.
rhs

The	value	to	shift	lhs	left	by.

Description
This	operator	shifts	the	bits	in	its	left-hand	side	(lhs)	parameter	a
number	of	times	specified	by	its	right-hand	side	(rhs)	parameter,	and
assigns	the	result	to	lhs.	It	is	functionally	equivalent	to:

lhs	=	lhs	Shl	rhs

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	i	As	Integer

i	=	&b00000011			''	=	3

i	Shl=	3									''	=	i*2^3

''	Result:	11000										24												24

Print	Bin(i),	i,	3*2^3

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Shl=.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	Shl	(Shift	Left)

Operator	Shr=	(Shift	Right	And	Assign)

Mathematical	Functions

Operator	Shr=	(Shift	Right	And	Assign) 	

Shifts	right	and	assigns	a	value	to	a	variable

Syntax
Declare	Operator	Shr=	(ByRef	lhs	As	Integer,	ByRef	rhs	As

Integer)

Declare	Operator	Shr=	(ByRef	lhs	As	UInteger,	ByRef	rhs	As

UInteger)

Declare	Operator	Shr=	(ByRef	lhs	As	LongInt,	ByRef	rhs	As

LongInt)

Declare	Operator	Shr=	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As

ULongInt)

Usage
lhs	shr=	rhs

Parameters
lhs

The	variable	to	assign	to.
rhs

The	value	to	shift	lhs	right	by.

Description
This	operator	shifts	the	bits	in	its	left-hand	side	(lhs)	parameter	a
number	of	times	specified	by	its	right-hand	side	(rhs)	parameter,	and
assigns	the	result	to	lhs.	It	is	functionally	equivalent	to:

lhs	=	lhs	Shr	rhs

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	i	As	Integer

i	=	&b00011000			''	=	24

i	Shr=	3									''	=	i\2^3

''	Result:	11										3												3

Print	Bin(i),	i,	24\2^3

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect	unless	referenced	with	the
alias	__Shr=.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	Shr	(Shift	Right)

Operator	Shl=	(Shift	Left	And	Assign)

Mathematical	Functions

Operator	Let	(Assign) 	

Indicates	the	assignment	operator	when	overloading	Operator	=	(Assignment)

Syntax
{	Type	|	Class	|	Union	|	Enum	}	typename

Declare	Operator	Let	([ByRef	|	ByVal]	rhs	As	datatype)

End	{	Type	|	Class	|	Union	}

Operator	typename.Let	([ByRef	|	ByVal]	rhs	As	datatype)

Usage
lhs	=	rhs

or
lhs	=>	rhs	(from	fbc	version	0.90)

Parameters
typename	
name	of	the	Type,	Class,	Union,	or	Enum
lhs

The	variable	to	assign	to.
rhs

The	value	to	assign.

Description
Let	is	used	to	overload	the	Operator	=[>]	(Assignment)	operator	and	to	distinguish	it	from	the	comparison	operator	

lhs	=[>]	rhs	will	assign	the	rhs	to	lhs	by	invoking	the	Let	operator	procedure	defined	in	
This	includes	the	case	of	an	object	returned	from	a	function	by	value,	by	using	
assignment.
Assigning	one	array	is	not	supported	presently.

An	operator	Let	(assign)	must	be	defined	if	the	shallow	implicit	copy	is	not	sufficient.	This	happens	in	cases	when	the	object	manages
dynamically	allocated	memory	or	other	resources	which	need	to	be	specially	copied	(for	example	if	a	member	pointer	points	to
dynamically	allocated	memory,	the	implicit	assignment	operator	will	simply	copy	the	pointer	value	instead	of	allocate	memory	and	then
perform	the	copy	of	data).
Note:	It	is	safe	to	do	a	check	for	self-assignment	at	the	top	of	the	Let	body	(by	comparing	the	address	of	implicit	'this'	instance	with	the

address	of	'rhs'	parameter)	to	avoid	object	destruction	if	previously	allocated	memory	is	first	deallocated	(see	example	below).

Example

Type	UDT

		Public:

				Declare	Constructor	(ByVal	zp	As	Const	ZString	

				Declare	Operator	Let	(ByRef	rhs	As	UDT)														

				Declare	Function	getString	()	As	String														

				Declare	Destructor	()																																

		Private:									

				Dim	zp	As	ZString	Ptr																																

End	Type

Constructor	UDT	(ByVal	zp	As	Const	ZString	Ptr)

		This.zp	=	CAllocate(Len(*zp)	+	1)

		*This.zp	=	*zp

End	Constructor

Operator	UDT.Let	(ByRef	rhs	As	UDT)

		If	@This	<>	@rhs	Then		''	check	for	self-assignment	to	avoid	object	destruction

				Deallocate(This.zp)

				This.zp	=	CAllocate(Len(*rhs.zp)	+	1)

				*This.zp	=	*rhs.zp

		End	If

End	Operator

Function	UDT.getString	()	As	String

		Return	*This.zp

End	Function

Destructor	UDT	()

		Deallocate(This.zp)

End	Destructor

Dim	u	As	UDT	=	UDT("")

u	=	Type<UDT>("Thanks	to	the	overloading	operator	Let	(assign)"

Print	u.getString

Sleep

Output:

Thanks	to	the	overloading	operator	Let	(assign)

Dialect	Differences

In	the	-lang	qb	and	-lang	fblite	dialects,	this	operator	cannot	be	overloaded.
In	the	-lang	qb	and	-lang	fblite	dialects,	an	assignment	expression	can	be	preceded	by	the	

Differences	from	QB

None

See	also

Let

Operator	Let()	(Assignment)

Operator	=[>]	(Assignment)

Operator	=	(Equal)

Operator	Let()	(Assignment) 	

Assigns	fields	of	a	user	defined	type	to	a	list	of	variables

Syntax
Let(variable1	[,	variable2	[,	...]])	=	UDT_var

or
Let(variable1	[,	variable2	[,	...]])	=>	UDT_var	(from	fbc	version	0.90)

Parameters
variable1	[,	variable2	[,	...]]

Comma	separated	list	of	variables	to	receive	the	values	of	the	UDT
variable's	fields.
UDT_var

A	user	defined	type	variable.

Description
Assigns	the	values	from	the	UDT_var	variable's	fields	to	the	list	of
variables.
Union	is	not	supported.

Example

Type	Vector3D

				x	As	Double

				y	As	Double

				z	As	Double

End	Type

Dim	a	As	Vector3D	=	(5,	7,	9)

Dim	x	As	Double,	y	As	Double

''	Get	the	first	two	fields	only

Let(x,	y)	=	a

Print	"x	=	";	x

Print	"y	=	";	y

Output:

x	=		5

y	=		7

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Let

Operator	=[>]	(Assignment)

Operator	Let	(Assignment)

Operator	+	(Addition) 	

Sums	two	expressions

Syntax
Declare	Operator	+	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer)

As	Integer

Declare	Operator	+	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

)	As	UInteger

Declare	Operator	+	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt)

As	LongInt

Declare	Operator	+	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

)	As	ULongInt

Declare	Operator	+	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)

As	Single

Declare	Operator	+	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)

As	Double

Declare	Operator	+	(ByRef	lhs	As	T	Pointer,	ByRef	rhs	As	Integer

)	As	T	Pointer

Declare	Operator	+	(ByRef	rhs	As	Integer,	ByRef	lhs	As	T	Pointer

)	As	T	Pointer

Declare	Operator	+	(ByRef	lhs	As	T,	ByRef	rhs	As	Integer)	As	T

Declare	Operator	+	(ByRef	lhs	As	Integer,	ByRef	rhs	As	T)	As	T

Usage
result	=	lhs	+	rhs

Parameters
lhs

The	left-hand	side	expression	to	sum.
rhs

The	right-hand	side	expression	to	sum.
T

Any	pointer	type.

Return	Value
Returns	the	sum	of	two	expressions.

Description
When	the	left	and	right-hand	side	expressions	are	numeric	values,
Operator	+	(Add)	returns	the	sum	of	the	two	values.

When	the	left	and	right-hand	side	expressions	are	string	values,
Operator	+	(Add)	concatenates	the	two	strings	and	returns	the	result.

If	an	integral	value	n	is	added	to	a	T	Pointer	type,	the	operator
performs	pointer	arithmetic	on	the	address,	returning	the	memory
position	of	a	T	value,	n	indices	away	(assuming	n	is	within	bounds	of	a
contiguous	array	of	T	values).	This	behaves	differently	from	numeric
addition,	because	the	Integer	value	is	scaled	by	SizeOf(T).

Neither	operand	is	modified	in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types.

Example

Dim	n	As	Single

n	=	4.75	+	5.25

Print	n

will	produce	the	output:

10

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Operator	+	(String	Concatenation)
Mathematical	Functions

Operator	-	(Subtract) 	

Subtracts	two	expressions

Syntax
Declare	Operator	-	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer)

As	Integer

Declare	Operator	-	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

)	As	UInteger

Declare	Operator	-	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt)

As	LongInt

Declare	Operator	-	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

)	As	ULongInt

Declare	Operator	-	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)

As	Single

Declare	Operator	-	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)

As	Double

Declare	Operator	-	(ByRef	lhs	As	T	Pointer,	ByRef	rhs	As	T

Pointer)	As	Integer

Declare	Operator	-	(ByRef	lhs	As	T	Pointer,	ByRef	rhs	As	Integer

)	As	T	Pointer

Declare	Operator	-	(ByRef	lhs	As	T,	ByRef	rhs	As	T)	As	Integer

Declare	Operator	-	(ByRef	lhs	As	T,	ByRef	rhs	As	Integer)	As	T

Declare	Operator	-	(ByRef	lhs	As	Integer,	ByRef	rhs	As	T)	As	T

Usage
result	=	lhs	-	rhs

Parameters
lhs

The	left-hand	side	expression	to	subtract	from.
rhs

The	right-hand	side	expression	to	subtract.
T

Any	pointer	type.

Return	Value
Returns	the	subtraction	of	two	expressions.

Description
When	the	left	and	right-hand	side	expressions	are	numeric	values,
Operator	-	(Subtract)	returns	the	subtraction	of	the	two	values.

If	the	left	and	right-hand	side	expressions	are	both	of	the	T	Pointer
type,	for	some	type	T,	the	operator	performs	pointer	subtraction	on	the
address,	returning	the	result.	This	is	different	from	numeric	subtraction
because	the	difference	is	divided	by	SizeOf(T).

If	an	integral	value	n	is	subtracted	from	a	T	Pointer	type,	the	operator
performs	pointer	arithmetic	on	the	address,	returning	the	memory
position	of	a	T	value,	n	indices	before	(assuming	(-n)	is	within	bounds
of	a	contiguous	array	of	T	values).	This	behaves	differently	from
numeric	subtraction,	because	the	Integer	value	is	scaled	by	SizeOf(T
).

Neither	operand	is	modified	in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types.

Example

Dim	n	As	Single

n	=	4	-	5

Print	n

will	produce	the	output:

-1

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Mathematical	Functions

Operator	*	(Multiply) 	

Multiplies	two	numeric	expressions

Syntax
Declare	Operator	*	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer)

As	Integer

Declare	Operator	*	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

)	As	UInteger

Declare	Operator	*	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt)

As	LongInt

Declare	Operator	*	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

)	As	ULongInt

Declare	Operator	*	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)

As	Single

Declare	Operator	*	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)

As	Double

Usage
result	=	lhs	*	rhs

Parameters
lhs

The	left-hand	side	multiplicand	expression.
rhs

The	right-hand	side	multiplicand	expression.

Return	Value
Returns	the	product	of	two	multiplicands.

Description
Operator	*	(Multiply)	returns	the	product	of	two	multiplicands.

Neither	operand	is	modified	in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types.

Example

Dim	n	As	Double

n	=	4	*	5

Print	n

Sleep

Output:

20

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Mathematical	Functions

Operator	/	(Divide) 	

Divides	two	numeric	expressions

Syntax
Declare	Operator	/	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)

As	Single

Declare	Operator	/	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)

As	Double

Usage
result	=	lhs	/	rhs

Parameters
lhs

The	left-hand	side	dividend	expression.
rhs

The	right-hand	side	divisor	expression.

Return	Value
Returns	the	quotient	of	a	dividend	and	divisor.

Description
Operator	/	(Divide)	returns	the	quotient	of	a	dividend	and	divisor.

Neither	operand	is	modified	in	any	way.	Unlike	with	integer	division,
float	division	by	zero	is	safe	to	perform,	the	quotient	will	hold	a	special
value	representing	infinity,	converting	it	to	a	string	returns	something
like	"Inf"	or	"INF",	exact	text	is	platform	specific.	

This	operator	can	be	overloaded	to	accept	user-defined	types.

Example

Dim	n	As	Double

Print	n	/	5

n	=	6	/	2.3

Print	n

Sleep

Output:

0

2.608695652173913

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Operator	\	(Integer	Divide)
Mathematical	Functions

Operator	\	(Integer	Divide) 	

Divides	two	Integer	expressions

Syntax
Declare	Operator	\	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer)

As	Integer

Declare	Operator	\	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

)	As	UInteger

Declare	Operator	\	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt)

As	LongInt

Declare	Operator	\	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

)	As	ULongInt

Usage
result	=	lhs	\	rhs

Parameters
lhs

The	left-hand	side	dividend	expression.
rhs

The	right-hand	side	divisor	expression.

Return	Value
Returns	the	quotient	of	an	Integer	dividend	and	divisor.

Description
Operator	\	(Integer	division)	divides	two	Integer	expressions	and
returns	the	result.	Float	numeric	values	are	converted	to	Integer	by
rounding	up	or	down,	and	the	fractional	part	of	the	resulting	quotient	is
truncated.

If	the	divisor	(rhs)	is	zero	(0),	a	division	by	zero	error	(crash)	will	be
raised.

Neither	of	the	operands	are	modified	in	any	way.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	Double

Print	n	\	5

n	=	7	\	2.6		''	=>	7	\	3		=>	2.33333		=>	2

Print	n

n	=	7	\	2.4		''	=>	7	\	2	=>	3.5	=>	3

Print	n

Sleep

Output:

0

2

3

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Operator	/	(Floating-Point	Divide)
Operator	Mod	(Modulus)
Mathematical	Functions

Operator	^	(Exponentiate) 	

Raises	a	numeric	expression	to	some	power

Syntax
Declare	Operator	^	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)

As	Double

Usage
result	=	lhs	^	rhs

Parameters
lhs

The	left-hand	side	base	expression.
rhs

The	right-hand	side	exponent	expression.

Return	Value
Returns	the	exponentiation	of	a	base	expression	raised	to	some
exponent.

Description
Operator	^	(Exponentiate)	returns	the	result	of	a	base	expression
(lhs)	raised	to	some	exponent	expression	(rhs).	^	works	with	double
float	numbers	only,	operands	of	other	types	will	be	converted	into
double	before	performing	the	exponentiation.	Exponent	of	a	fractional
value	(1/n)	is	the	same	as	taking	nth	root	from	the	base,	for	example,	
^	(1/3)	is	the	cube	root	of	2.

Neither	of	the	operands	are	modified	in	any	way.

Note:	this	operation	is	not	guaranteed	to	be	fully	accurate,	and	there
may	be	some	inaccuracy	in	the	least	significant	bits	of	the	number.
This	is	particularly	noticeable	when	the	result	is	expected	to	be	an
exact	number:	in	these	cases,	you	may	find	the	result	is	out	by	a	very

small	amount.	For	this	reason,	you	should	never	assume	that	an
exponentiation	expression	will	be	exactly	equal	to	the	value	you
expect.
This	also	means	that	you	should	be	wary	of	using	rounding	methods
such	as	Int	and	Fix	on	the	result:	if	you	expect	the	result	to	be	an
integer	value,	then	there's	a	chance	that	it	might	be	slightly	lower,	and
will	round	down	to	a	value	that	is	one	less	than	you	would	expect.

This	operator	can	be	overloaded	for	user-defined	types.

Note:	This	operator	exists	in	C/C++	with	a	different	meaning	-	there	it
performs	a	Bitwise	Xor.

Example

Dim	As	Double	n

Input	"Please	enter	a	positive	number:	",	n

Print	

Print	n;"	squared	is	";	n	^	2

Print	"The	fifth	root	of	";	n;"	is	";	n	^	0.2

Sleep

Output:

Please	enter	a	positive	number:	3.4

	3.4	squared	is	11.56

The	fifth	root	of	3.4	is	1.27730844458754

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Mathematical	Functions

Operator	-	(Negate) 	

Changes	the	sign	of	a	numeric	expression

Syntax
Declare	Operator	-	(ByRef	rhs	As	Integer)	As	Integer

Declare	Operator	-	(ByRef	rhs	As	Single)	As	Single

Declare	Operator	-	(ByRef	rhs	As	Double)	As	Double

Usage
result	=	-	rhs

Parameters
rhs

The	right-hand	side	numeric	expression	to	negate.

Return	Value
Returns	the	negative	of	the	expression.

Description
Operator	-	(Negate)	is	a	unary	operator	that	negates	the	value	of	its
operand.

The	operand	is	not	modified	in	any	way.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Dim	n	As	LongInt

Print	-5

n	=	65432568459

n	=	-	n

Print	n

Sleep

Output:

-5

-65432568459

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

None

See	also

Mathematical	Functions

Graphics	Keyword	List 	

A	list	of	the	keywords	and	procedures	of	FreeBASIC's	graphics	library.

Add
Alpha
And	(Graphics	Put)
BLoad
BSave
Circle
Color
Custom
Draw
Draw	String
Event	(Message	Data
From	Screenevent)
Flip
ImageConvertRow
ImageCreate
ImageDestroy
ImageInfo
Get	(Graphics)
GetJoystick
GetMouse
Inp
Line	(Graphics)
MultiKey
Out
Or	(Graphics	Put)
Paint
Palette

PReset
PSet
Pset	(Graphics	Put)
Put	(Graphics)
RGB
RGBA
Screen	(Graphics)
ScreenControl
ScreenCopy
ScreenEvent
ScreenGLProc
ScreenInfo
ScreenList
ScreenLock
ScreenPtr
ScreenRes
ScreenSet
ScreenSync
ScreenUnlock
SetMouse
Trans
View	(Graphics)
Wait
Window
WindowTitle
Xor	(Graphics	Put)

PCopy
PMap
Point
Pointcoord

	

Operators	List 	

List	of	operators	used	in	FreeBASIC.

Assignment	Operators
=[>]	(Assignment)
&=	(Concatenate	And
Assign)
+=	(Add	And	Assign)
-=	(Subtract	And	Assign)
*=	(Multiply	And	Assign)
/=	(Divide	And	Assign)
\=	(Integer	Divide	And
Assign)
^=	(Exponentiate	And
Assign)
Mod=	(Modulus	And
Assign)
And=	(Conjunction	And
Assign)
Eqv=	(Equivalence	And
Assign)
Imp=	(Implication	And
Assign)
Or=	(Inclusive
Disjunction	And	Assign)
Xor=	(Exclusive
Disjunction	And	Assign)
Shl=	(Shift	Left	And
Assign)
Shr=	(Shift	Right	And
Assign)
Let	(Assignment)

Relational	Operators
=	(Equal)
<>	(Not	Equal)
<	(Less	Than)
<=	(Less	Than	Or	Equal)
>=	(Greater	Than	Or
Equal)
>	(Greater	Than)

Bitwise	Operators
And	(Conjunction)
Eqv	(Equivalence)
Imp	(Implication)
Not	(Complement)
Or	(Inclusive
Disjunction)
Xor	(Exclusive
Disjunction)

Short	Circuit	Operators
Andalso	(Short	Circuit
Conjunction)
Orelse	(Short	Circuit
Inclusive	Disjunction)

Preprocessor	Operators
#	(Argument	Stringize)
##	(Argument
Concatenation)

Let()	(Assignment)

Type	Cast	Operators
Cast
CPtr

Arithmetic	Operators
+	(Add)
-	(Subtract)
*	(Multiply)
/	(Divide)
\	(Integer	Divide)
^	(Exponentiate)
Mod	(Modulus)
-	(Negate)
Shl	(Shift	Left)
Shr	(Shift	Right)

Indexing	Operators
()	(Array	Index)
[]	(String	Index)
[]	(Pointer	Index)

String	Operators
+	(String	Concatenation)
&	(String	Concatenation
With	Conversion)
Strptr	(String	Pointer)

!	(Escaped	String	Literal)
$	(Non-Escaped	String
Literal)

Pointer	Operators
@	(Address	Of)
*	(Value	Of)
Varptr	(Variable	Pointer)
Procptr	(Procedure
Pointer)

Type	or	Class	Operators
.	(Member	Access)
->	(Pointer	To	Member
Access)
Is	(Run-Time	Type
Information	Operator)

Memory	Operators
New
Placement	New
Delete

Iteration	Operators
For,	Next,	and	Step

	

Operator	()	(Array	Index) 	

Returns	a	reference	to	an	element	in	an	array

Syntax
Declare	Operator	()	(lhs()	As	T,	ByRef	rhs	As	Integer,	...)	ByRef

As	T

Usage
result	=	lhs	(rhs	[,	...])

Parameters
lhs

An	array.
rhs

An	index	of	an	element	in	the	array.
T

Any	data	type.

Description
This	operator	returns	a	reference	to	an	element	in	an	array.	For
multidimensional	arrays,	multiple	indexes	must	be	specified	(up	to	the	total
number	of	dimensions	of	the	array).

For	any	dimension	d	in	array	a,	any	index	less	than	LBound(a,	d)	or
greater	than	UBound(a,	d)	will	result	in	a	runtime	error.

Example

Dim	array(0	To	4)	As	Integer	=	{	0,	1,	2,	3,	4	}

For	index	As	Integer	=	0	To	4

				Print	array(index);

Next

Print

will	produce	the	output:

	0	1	2	3	4

Differences	from	QB

None

See	also

Operator	[]	(Pointer	Index)

Operator	[]	(String	Index) 	

Returns	a	reference	to	a	character	in	a	string

Syntax
Declare	Operator	[]	(ByRef	lhs	As	String,	ByRef	rhs	As	Integer)

ByRef	As	UByte

Declare	Operator	[]	(ByRef	lhs	As	ZString,	ByRef	rhs	As	Integer

)	ByRef	As	UByte

Declare	Operator	[]	(ByRef	lhs	As	WString,	ByRef	rhs	As	Integer

)	ByRef	As	T

Usage
result	=	lhs	[rhs]

Parameters
lhs

The	string	(a	string	reference,	not	a	string	returned	as	local	copy).
rhs

A	zero-based	offset	from	the	first	character.
T

The	wide-character	type	(varies	per	platform).

Description
This	operator	returns	a	reference	to	a	specific	character	in	a	string:

This	operator	must	not	be	used	in	case	of	empty	string
because	reference	is	undefined	(inducing	runtime	error).
Otherwise,	the	user	must	ensure	that	the	index	does	not
exceed	the	range	"[0,	Len(lhs)	-	1]".	Outside	this	range,
results	are	undefined.

Example

Dim	a	As	String	=	"Hello,	world!"

Dim	i	As	Integer

For	i	=	0	To	Len(a)	-	1

				Print	Chr(a[i])	&	"	";

Next	i

Print

Will	print

H	e	l	l	o	,			w	o	r	l	d	!	

Differences	from	QB

New	to	FreeBASIC

See	also

String	Operators

Operator	[]	(Pointer	Index) 	

Returns	a	reference	to	memory	offset	from	an	address

Syntax
Declare	Operator	[]	(ByRef	lhs	As	T	Pointer,	ByRef	rhs	As	Integer

ByRef	As	T

Usage
result	=	lhs	[rhs]

Parameters
lhs

The	base	address.
rhs

A	signed	offset	from	lhs.
T

Any	data	type.

Description
This	operator	returns	a	reference	to	a	value	some	distance	in	memory
from	a	base	address.	It	is	essentially	shorthand	for	"*(lhs	+	rhs)";	both	do
exactly	the	same	thing.	Like	pointer	arithmetic,	any	type	of	Pointer	can	be
indexed	except	for	an	Any	Pointer.	Also,	like	pointer	arithmetic,	it	is	up	to
the	user	to	make	sure	meaningful	data	is	being	accessed.

When	indexing	a	'2-dimensional'	pointer	(i.e.	a	T	Ptr	Ptr),	the	first
(leftmost)	index	is	applied	before	the	second:	For	example,	Pt[I1][I2]
(Pt[I1]	+	I2)	=	*(*(Pt	+	I1)	+	I2)
In	general,	when	using	an	'n-dimensional'	pointer:	Pt[I1][I2].....[In
the	index	order	(from	left	to	right)	corresponds	to	the	dereferencing	order.

This	operator	can	be	overloaded	for	user-defined	types.

Example

''	initialize	a	5-element	array

Dim	array(4)	As	Integer	=	{	0,	1,	2,	3,	4	}

''	point	to	the	first	element

Dim	p	As	Integer	Ptr	=	@array(0)

''	use	pointer	indexing	to	output	array	elements

For	index	As	Integer	=	0	To	4

				Print	p[index];

Next

Print

Will	give	the	output,

	0	1	2	3	4

Differences	from	QB

New	to	FreeBASIC

See	also

Pointer	Arithmetic
Operator	*	(Value	Of)

Operator	[]	(String	Index)

Operator	()	(Array	Index)

Operator	+	(Add)

Operator	-	(Subtract)

Pointer	Operators

Operator	+	(String	Concatenation) 	

Concatenates	two	strings

Syntax
Declare	Operator	+	(ByRef	lhs	As	String,	ByRef	rhs	As	String)

As	String

Declare	Operator	+	(ByRef	lhs	As	ZString,	ByRef	rhs	As	ZString)

As	ZString

Declare	Operator	+	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString)

As	WString

Usage
result	=	lhs	+	rhs

Parameters
lhs

The	left-hand	side	string	to	concatenate.
rhs

The	right-hand	side	string	to	concatenate.

Description
This	operator	concatenates	two	strings.	Unlike	Operator	&	(String
Concatenation	With	Conversion)	both	expressions	must	be	strings,
and	may	not	be	converted	(in	fact,	any	attempt	to	concatenate	a	string
with	a	non-string	or	two	non-strings	will	result	in	a	type	mismatch	error,
with	the	exception	of	when	operator	overloading	is	used	in	a	UDT).

Example

Dim	As	String	a	=	"Hello,	",	b	=	"World!"

Dim	As	String	c

c	=	a	+	b

Print	c

Output:

Hello,	World!

Differences	from	QB

None

See	also

Operator	+	(Add)
Operator	&	(String	Concatenation	With	Conversion)
Str

Operator	&	(String	Concatenation	With	Conversion) 	

Concatenates	two	strings,	converting	non-strings	to	strings	as	needed

Syntax
Declare	Operator	&	(ByRef	lhs	As	T,	ByRef	rhs	As	U)	As	V

Usage
result	=	lhs	&	rhs

Parameters
lhs

The	left-hand	side	expression	to	concatenate.
T

Any	standard	data	type	or	user-defined	type	that	can	be	converted	to	a
standard	data	type.
rhs

The	right-hand	side	expression	to	concatenate.
U

Any	standard	data	type	or	user-defined	type	that	can	be	converted	to	a
standard	data	type.
V

The	resultant	string	type	(varies	with	operands).

Description
This	operator	concatenates	two	expressions.	If	either	of	the
expressions	is	not	a	string	type,	it	is	converted	to	String	with	Str.

If	either	of	the	expressions	is	a	WString,	a	WString	is	returned,
otherwise	a	String	is	returned.

Note:	This	operator	exists	in	C/C++	with	a	different	meaning	-	there	it
performs	a	bitwise	And.

Example

Dim	As	String	A,C

Dim	As	Single	B

A="The	result	is:	"

B=124.3

C=A	&	B

Print	C

Sleep

Output:

The	result	is:	124.3

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	+	(String	Concatenation)
Str

Operator	=	(Equal) 	

Compares	two	expressions	for	equality

Syntax
Declare	Operator	=	(ByRef	lhs	As	Byte,	ByRef	rhs	As	Byte)	As	Integer

Declare	Operator	=	(ByRef	lhs	As	UByte,	ByRef	rhs	As	UByte)	As

Declare	Operator	=	(ByRef	lhs	As	Short,	ByRef	rhs	As	Short)	As

Declare	Operator	=	(ByRef	lhs	As	UShort,	ByRef	rhs	As	UShort)	

Declare	Operator	=	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer)	

Declare	Operator	=	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

Declare	Operator	=	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt)	

Declare	Operator	=	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

Declare	Operator	=	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)	

Declare	Operator	=	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)	

Declare	Operator	=	(ByRef	lhs	As	String,	ByRef	rhs	As	String)	

Declare	Operator	=	(ByRef	lhs	As	ZString,	ByRef	rhs	As	ZString)	

Declare	Operator	=	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString)	

Declare	Operator	=	(ByRef	lhs	As	T,	ByRef	rhs	As	T)	As	Integer

Declare	Operator	=	(ByRef	lhs	As	Boolean,	ByRef	rhs	As	Boolean)	

Usage
result	=	lhs	=	rhs

Parameters
lhs

The	left-hand	side	expression	to	compare	to.
rhs

The	right-hand	side	expression	to	compare	to.
T

Any	pointer	type.

Return	Value
Returns	negative	one	(-1)	if	expressions	are	equal,	or	zero	(0)	if	unequal.

Description

Operator	=	(Equality)	is	a	binary	operator	that	compares	two	expressions	for	equality	and	returns	the	result	-	a	boolean
value	mainly	in	the	form	of	an	Integer:	negative	one	(-1)	for	true	and	zero	(0)	for	false.	Only	if	the	left	and	right-hand	side
types	are	both	Boolean,	the	return	type	is	also	Boolean.	The	arguments	are	not	modified	in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types	as	well.

Operator	=	(Equality)	should	not	be	confused	with	initializations	or	assignments,	both	of	which	also	use	the	"

Example

Dim	i	As	Integer	=	0				''	initialization:	initialise	i	with	a	value	of	0

i	=	420																	''	assignment:	assign	to	i	the	value	of	420

If	(i	=	69)	Then								''	equation:	compare	the	equality	of	the	value	of	i	and	69

				Print	"serious	error:	i	should	equal	420"

				End	-1

End	If

Operator	<>	(Inequality)	is	complement	to	Operator	=	(Equality),	and	is	functionally	identical	when	combined	with
Operator	Not	(Bit-wise	Complement).

			If	(420	=	420)	Then	Print	"(420	=	420)	is	true."

			If	Not	(69	<>	69)	Then	Print	"not	(69	<>	69)	is	true."

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

none

See	also

Operator	<>	(Inequality)
Operator	=[>]	(Assignment)

Operator	<>	(Not	Equal) 	

Compares	two	expressions	for	inequality

Syntax
Declare	Operator	<>	(ByRef	lhs	As	Byte,	ByRef	rhs	As	Byte)	As	

Declare	Operator	<>	(ByRef	lhs	As	UByte,	ByRef	rhs	As	UByte)	As

Declare	Operator	<>	(ByRef	lhs	As	Short,	ByRef	rhs	As	Short)	As

Declare	Operator	<>	(ByRef	lhs	As	UShort,	ByRef	rhs	As	UShort)	

Declare	Operator	<>	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer

Declare	Operator	<>	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

Declare	Operator	<>	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt

Declare	Operator	<>	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

Declare	Operator	<>	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)	

Declare	Operator	<>	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)	

Declare	Operator	<>	(ByRef	lhs	As	String,	ByRef	rhs	As	String)	

Declare	Operator	<>	(ByRef	lhs	As	ZString,	ByRef	rhs	As	ZString

Declare	Operator	<>	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString

Declare	Operator	<>	(ByRef	lhs	As	T,	ByRef	rhs	As	T)	As	Integer

Declare	Operator	<>	(ByRef	lhs	As	Boolean,	ByRef	rhs	As	Boolean

Usage
result	=	lhs	<>	rhs

Parameters
lhs

The	left-hand	side	expression	to	compare	to.
rhs

The	right-hand	side	expression	to	compare	to.
T

Any	pointer	type.

Return	Value
Returns	negative	one	(-1)	if	expressions	are	not	equal,	or	zero	(0)	if	equal.

Description

Operator	<>	(Not	equal)	is	a	binary	operator	that	compares	two	expressions	for
inequality	and	returns	the	result	-	a	boolean	value	mainly	in	the	form	of	an	
negative	one	(-1)	for	true	and	zero	(0)	for	false.	Only	if	the	left	and	right-hand	side
types	are	both	Boolean,	the	return	type	is	also	Boolean.	The	arguments	are	not	modified
in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types	as	well.

Example

Dim	As	String	a	=	"hello",	b	=	"world"

Dim	As	Integer	i	=	10,	j	=	i

If	(a	<>	b)	Then

		Print	a	&	"	does	not	equal	"	&	b

End	If

If	(i	<>	j)	Then

		Print	"error:	"	&	i	&	"	does	not	equal	"	&	j

End	If

Operator	=	(Equal)	is	complement	to	Operator	<>	(Not	equal),	and	is	functionally
identical	when	combined	with	Operator	Not	(Bit-wise	Complement).

			If	(69	<>	420)	Then	Print	"(69	<>	420)	is	true."

			If	Not	(69	=	420)	Then	Print	"not	(69	=	420)	is	true."

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

none

See	also

Operator	=	(Equal)

Operator	<	(Less	Than) 	

Compares	an	expression	less	than	another	expression

Syntax
Declare	Operator	<	(ByRef	lhs	As	Byte,	ByRef	rhs	As	Byte)	As	Integer

Declare	Operator	<	(ByRef	lhs	As	UByte,	ByRef	rhs	As	UByte)	As

Declare	Operator	<	(ByRef	lhs	As	Short,	ByRef	rhs	As	Short)	As

Declare	Operator	<	(ByRef	lhs	As	UShort,	ByRef	rhs	As	UShort)	

Declare	Operator	<	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer)	

Declare	Operator	<	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

Declare	Operator	<	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt)	

Declare	Operator	<	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

Declare	Operator	<	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)	

Declare	Operator	<	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)	

Declare	Operator	<	(ByRef	lhs	As	String,	ByRef	rhs	As	String)	

Declare	Operator	<	(ByRef	lhs	As	ZString,	ByRef	rhs	As	ZString)	

Declare	Operator	<	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString)	

Declare	Operator	<	(ByRef	lhs	As	T,	ByRef	rhs	As	T)	As	Integer

Usage
result	=	lhs	<	rhs

Parameters
lhs

The	left-hand	side	expression	to	compare	to.
rhs

The	right-hand	side	expression	to	compare	to.
T

Any	pointer	type.

Return	Value
Returns	negative	one	(-1)	if	the	left-hand	side	expression	is	less	than	the	right-hand	side
expression,	or	zero	(0)	if	greater	than	or	equal.

Description

Operator	<	(Less	than)	is	a	binary	operator	that	compares	two	expressions	for	inequality
and	returns	the	result	-	a	boolean	value	in	the	form	of	an	Integer:	negative	one	(-1)	for
true	and	zero	(0)	for	false.	The	arguments	are	not	modified	in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types	as	well.

Example

Const	size	As	Integer	=	4

Dim	array(size	-	1)	As	Integer	=	{	1,	2,	3,	4	}

Dim	index	As	Integer	=	0

While	(index	<	size)

			Print	array(index)

			index	+=	1

Wend

Operator	>=	(Greater	than	or	equal)	is	complement	to	Operator	<	(Less	than)
functionally	identical	when	combined	with	Operator	Not	(Bit-wise	Complement).

			If	(69	<	420)	Then	Print	"(69	<	420)	is	true."

			If	Not	(69	>=	420)	Then	Print	"not	(69	>=	420)	is	true."

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

none

See	also

Operator	>=	(Greater	than	or	equal)

Operator	<=	(Less	Than	Or	Equal) 	

Compares	an	expression	less	than	or	equal	to	another	expression

Syntax
Declare	Operator	<=	(ByRef	lhs	As	Byte,	ByRef	rhs	As	Byte)	As	

Declare	Operator	<=	(ByRef	lhs	As	UByte,	ByRef	rhs	As	UByte)	As

Declare	Operator	<=	(ByRef	lhs	As	Short,	ByRef	rhs	As	Short)	As

Declare	Operator	<=	(ByRef	lhs	As	UShort,	ByRef	rhs	As	UShort)	

Declare	Operator	<=	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer

Declare	Operator	<=	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

Declare	Operator	<=	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt

Declare	Operator	<=	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

Declare	Operator	<=	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)	

Declare	Operator	<=	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)	

Declare	Operator	<=	(ByRef	lhs	As	String,	ByRef	rhs	As	String)	

Declare	Operator	<=	(ByRef	lhs	As	ZString,	ByRef	rhs	As	ZString

Declare	Operator	<=	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString

Declare	Operator	<=	(ByRef	lhs	As	T,	ByRef	rhs	As	T)	As	Integer

Usage
result	=	lhs	<=	rhs

Parameters
lhs

The	left-hand	side	expression	to	compare	to.
rhs

The	right-hand	side	expression	to	compare	to.
T

Any	pointer	type.

Return	Value
Returns	negative	one	(-1)	if	the	left-hand	side	expression	is	less	than	or	equal	to	the
right-hand	side	expression,	or	zero	(0)	if	greater	than.

Description

Operator	<=	(Less	than	or	Equal)	is	a	binary	operator	that	compares	an	expression
less	than	or	equal	to	another	expression	and	returns	the	result	-	a	boolean	value	in	the
form	of	an	Integer:	negative	one	(-1)	for	true	and	zero	(0)	for	false.	The	arguments	are
not	modified	in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types	as	well.

Example
Operator	>	(Greater	than)	is	complement	to	Operator	<=	(Less	than	or	Equal)
functionally	identical	when	combined	with	Operator	Not	(Bit-wise	Complement).

			If	(69	<=	420)	Then	Print	"(69	<=	420)	is	true."

			If	Not	(60	>	420)	Then	Print	"not	(420	>	69)	is	true."

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

none

See	also

Operator	>	(Greater	than)

Operator	>=	(Greater	Than	Or	Equal) 	

Compares	an	expression	greater	than	or	equal	to	another	expression

Syntax
Declare	Operator	>=	(ByRef	lhs	As	Byte,	ByRef	rhs	As	Byte)	As	

Declare	Operator	>=	(ByRef	lhs	As	UByte,	ByRef	rhs	As	UByte)	As

Declare	Operator	>=	(ByRef	lhs	As	Short,	ByRef	rhs	As	Short)	As

Declare	Operator	>=	(ByRef	lhs	As	UShort,	ByRef	rhs	As	UShort)	

Declare	Operator	>=	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer

Declare	Operator	>=	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

Declare	Operator	>=	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt

Declare	Operator	>=	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

Declare	Operator	>=	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)	

Declare	Operator	>=	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)	

Declare	Operator	>=	(ByRef	lhs	As	String,	ByRef	rhs	As	String)	

Declare	Operator	>=	(ByRef	lhs	As	ZString,	ByRef	rhs	As	ZString

Declare	Operator	>=	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString

Declare	Operator	>=	(ByRef	lhs	As	T,	ByRef	rhs	As	T)	As	Integer

Usage
result	=	lhs	>=	rhs

Parameters
lhs

The	left-hand	side	expression	to	compare	to.
rhs

The	right-hand	side	expression	to	compare	to.
T

Any	pointer	type.

Return	Value
Returns	negative	one	(-1)	if	the	left-hand	side	expression	is	greater	than	or	equal	to
the	right-hand	side	expression,	or	zero	(0)	if	less	than.

Description

Operator	>=	(Greater	than	or	Equal)	is	a	binary	operator	that	compares	an	expression
greater	than	or	equal	to	another	expression	and	returns	the	result	-	a	boolean	value	in
the	form	of	an	Integer:	negative	one	(-1)	for	true	and	zero	(0)	for	false.	The	arguments
are	not	modified	in	any	way.

This	operator	can	be	overloaded	to	accept	user-defined	types	as	well.

Example
Operator	<	(Less	than)	is	complement	to	Operator	>=	(Greater	than	or	Equal)
functionally	identical	when	combined	with	Operator	Not	(Bit-wise	Complement).

			If	(420	>=	69)	Then	Print	"(420	>=	69)	is	true."

			If	Not	(420	<	69)	Then	Print	"not	(420	<	69)	is	true."

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

none

See	also

Operator	<	(Less	than)

Operator	>	(Greater	Than) 	

Compares	an	expression	greater	than	another	expression

Syntax
Declare	Operator	>	(ByRef	lhs	As	Byte,	ByRef	rhs	As	Byte)	As	Integer

Declare	Operator	>	(ByRef	lhs	As	UByte,	ByRef	rhs	As	UByte)	As

Declare	Operator	>	(ByRef	lhs	As	Short,	ByRef	rhs	As	Short)	As

Declare	Operator	>	(ByRef	lhs	As	UShort,	ByRef	rhs	As	UShort)	

Declare	Operator	>	(ByRef	lhs	As	Integer,	ByRef	rhs	As	Integer)	

Declare	Operator	>	(ByRef	lhs	As	UInteger,	ByRef	rhs	As	UInteger

Declare	Operator	>	(ByRef	lhs	As	LongInt,	ByRef	rhs	As	LongInt)	

Declare	Operator	>	(ByRef	lhs	As	ULongInt,	ByRef	rhs	As	ULongInt

Declare	Operator	>	(ByRef	lhs	As	Single,	ByRef	rhs	As	Single)	

Declare	Operator	>	(ByRef	lhs	As	Double,	ByRef	rhs	As	Double)	

Declare	Operator	>	(ByRef	lhs	As	String,	ByRef	rhs	As	String)	

Declare	Operator	>	(ByRef	lhs	As	ZString,	ByRef	rhs	As	ZString)	

Declare	Operator	>	(ByRef	lhs	As	WString,	ByRef	rhs	As	WString)	

Declare	Operator	>	(ByRef	lhs	As	T,	ByRef	rhs	As	T)	As	Integer

Usage
result	=	lhs	>	rhs

Parameters
lhs

The	left-hand	side	expression	to	compare	to.
rhs

The	right-hand	side	expression	to	compare	to.
T

Any	pointer	type.

Return	Value
Returns	negative	one	(-1)	if	the	left-hand	side	expression	is	greater	than	the	right-hand
side	expression,	or	zero	(0)	if	less	than	or	equal.

Description

Operator	>	(Greater	than)	is	a	binary	operator	that	compares	an	expression	greater	than
another	expression	and	returns	the	result	-	a	boolean	value	in	the	form	of	an	
negative	one	(-1)	for	true	and	zero	(0)	for	false.	The	arguments	are	not	modified	in	any
way.

This	operator	can	be	overloaded	to	accept	user-defined	types	as	well.

Example
Operator	<=	(Less	than	or	equal)	is	complement	to	Operator	>	(Greater	than)
functionally	identical	when	combined	with	Operator	Not	(Bit-wise	Complement).

			If	(420	>	69)	Then	Print	"(420	>	69)	is	true."

			If	Not	(420	<=	69)	Then	Print	"not	(420	<=	69)	is	true."

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

none

See	also

Operator	<=	(Less	than	or	equal)

Operator	#	(Preprocessor	Stringize) 	

Preprocessor	operator	to	convert	macro	arguments	to	strings

Syntax
#macro_argument

Description
This	operator	converts	the	macro_argument	into	a	string	whose	value	is
the	name	of	the	argument.	This	substitution	is	made	during	the	macro
expansion,	previous	to	compilation.

Note:	because	of	this	feature,	care	should	be	taken	when	using	file-
handling	statements	in	a	macro.	Because	of	potential	ambiguity	with	file-
handling	statements	that	take	a	"#filenum"	parameter,	if	filenum	is	one	of
the	macro	parameters,	it	may	be	necessary	to	wrap	the	filenum
expression	in	parenthesis	(e.g.	"#(filenum)"),	to	separate	it	from	the	#
sign.	Otherwise,	filenum	will	be	stringized	in	the	macro.

Example

#define	SEE(x)	Print	#x	;"	=	";	x

Dim	variable	As	Integer,	another_one	As	Integer

variable=1

another_one=2

SEE(variable)

SEE(another_one)

Output:

variable	=	1

another_one	=	2

Differences	from	QB

New	to	FreeBASIC

See	also

Preprocessor

Operator	##	(Preprocessor	Concatenate) 	

Preprocessor	operator	to	concatenate	strings

Syntax
text##text

Description
This	operator	creates	a	new	token	by	concatenating	the	texts	at	both
sides	of	it.	This	text	can	be	recognized	by	other	macros	and	further
expanded.	One	use,	is	to	create	a	macro	that	expands	to	different
macro	names,	variable	names,	and	function	names	depending	on	the
arguments	received.

Example

#define	Concat(t,n)	t##n

Print	concat	(12,34)

Dim	Concat	(hello,world)	As	Integer

Concat	(hello,world)=99

Print	helloworld

Output:

1234

99

Differences	from	QB

New	to	FreeBASIC

See	also

Preprocessor

Operator	!	(Escaped	String	Literal) 	

Explicitly	indicates	that	a	string	literal	should	be	processed	for	escape
sequences.

Syntax
!"text"

Parameters
!

The	preprocessor	escaped	string	operator
"text"	
The	string	literal	containing	escape	characters

Description
This	operator	explicitly	indicates	that	the	string	literal	following	it
(wrapped	in	double	quotes)	should	be	processed	for	escape
sequences.	This	a	preprocessor	operator	and	can	only	be	used	with
string	literals	at	compile	time.

The	default	behavior	for	string	literals	is	that	they	not	be	processed	for
escape	sequences.	Option	Escape	can	be	used	in	the	-lang	fblite
dialect	to	override	this	default	behaviour	causing	all	strings	to	be
processed	for	escape	sequences.

Use	the	$	Operator	(Non-Escaped	String	Literal)	operator	to
explicitly	indicate	that	a	string	should	not	be	processed	for	escape
sequences.

Example

Print	"Some	escape	sequence	examples:"

Print	!"1.\tsingle	quote	(\\\')	:	\'"

Print	!"2.\tdouble	quote	(\\\")	:	\""

Print	!"3.\tbackslash				(\\\\)	:	\\"

Print	!"4.\tascii	char			(\\65):	\65"

''	OUTPUT:

''

''	Some	escape	sequence	examples:

''	1.	single	quote	(\')	:	'

''	2.	double	quote	(\")	:	"

''	3.	backslash				(\\)	:	\

''	4.	ascii	char			(\65):	A

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	$	(Non-Escaped	String	Literal)
Option	Escape

Preprocessor
Literals
Escape	Sequences

Operator	$	(Non-Escaped	String	Literal) 	

Explicitly	indicates	that	a	string	literal	should	not	be	processed	for	escape
sequences.

Syntax
$"text"

Parameters
$

The	preprocessor	non-escaped	operator
"text"	
The	string	literal

Description
This	operator	explicitly	indicates	that	the	string	literal	following	it
(wrapped	in	double	quotes)	should	not	be	processed	for	escape
sequences.	This	a	preprocessor	operator	and	can	only	be	used	with
string	literals	at	compile	time.

The	default	behavior	for	string	literals	is	that	they	not	be	processed	for
escape	sequences.	However,	Option	Escape	in	the	-lang	fblite	dialect
can	be	used	to	override	this	default	behaviour	causing	all	strings	to	be
processed	for	escape	sequences.

Use	the	!	Operator	(Escaped	String	Literal)	to	explicitly	indicate	that
a	string	should	be	processed	for	escape	sequences.

Example

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

Print	"Default"

Print	"Backslash		:	\\"

Print	!"Backslash	!:	\\"

Print	$"Backslash	$:	\\"

Print

Option	Escape

Print	"Option	Escape"

Print	"Backslash		:	\\"

Print	!"Backslash	!:	\\"

Print	$"Backslash	$:	\\"

Print

''	OUTPUT:

''	Default

''	Backslash		:	\\

''	Backslash	!:	\

''	Backslash	$:	\\

''	Option	Escape

''	Backslash		:	\

''	Backslash	!:	\

''	Backslash	$:	\\

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	!	(Escaped	String	Literal)
Option	Escape

Preprocessor
Literals
Escape	Sequences

Operator	@	(Address	Of) 	

Returns	the	address	of	a	string	literal,	variable,	object	or	procedure

Syntax
Declare	Operator	@	(ByRef	rhs	As	T)	As	T	Pointer

Usage
result	=	@	rhs

Parameters
rhs

The	string	literal,	variable,	object	or	procedure	to	retrieve	the	address	of.
T

Any	standard,	user-defined	or	procedure	type.

Return	Value
Returns	the	address	of	the	right-hand	side	(rhs)	operand.

Description
Operator	@	(Address	of)	returns	the	memory	address	of	its	operand.

When	the	operand	is	of	type	String,	the	address	of	the	internal	string	descriptor	is	returned.	Use	
pointer)	to	retrieve	the	address	of	the	string	data.

The	operand	cannot	be	an	array,	but	may	be	an	array	element.	For	example,	
"myarray(0)".

This	operator	can	be	overloaded	for	user-defined	types.

Example

'This	program	demonstrates	the	use	of	the	@	operator.

Dim	a	As	Integer

Dim	b	As	Integer

Dim	addr	As	Integer	Ptr

a	=	5			'Here	we	place	the	values	5	and	10	into	a	and	b,	respectively.

b	=	10

'Here,	we	print	the	value	of	the	variables,	then	where	in	memory	they	are	stored.

Print	"The	value	in	A	is	";a;"	but	the	pointer	to	a	is	"

Print	"The	value	in	B	is	";b;"	but	the	pointer	to	b	is	"

'Now,	we	will	take	the	integer	ptr	above,	and	use	@	to	place	a	value	into	it.

'Note	that	the	*	will	check	the	value	in	the	ptr,	just	as	@	checked	the	ptr	

'for	a	normal	variable.

addr	=	@a

Print	"The	pointer	addr	is	now	pointing	at	the	memory	address	to	a,	value:	"

addr	=	@b

Print	"The	pointer	addr	is	now	pointing	at	the	memory	address	to	b,	value:	"

'This	program	demonstrates	how	the	@	symbol	can	be	used

'to	create	pointers	to	subroutines.

Declare	Sub	mySubroutine	()

Dim	say_Hello	As	Sub()	

say_Hello	=	@mySubroutine			'We	tell	say_Hello	to	point	to	mySubroutine.

																												'The	sub()	datatype	acts	as	a	pointer	here.

say_Hello()	'Now	we	can	run	say_Hello	just	like	mySubroutine.

Sub	mySubroutine

				Print	"hi"

End	Sub

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	*	(Value	Of)

Pointers

Operator	*	(Value	Of) 	

Dereferences	a	pointer

Syntax
Declare	Operator	*	(ByRef	rhs	As	T	Pointer)	ByRef	As	T

Usage
result	=	*	rhs

Parameters
rhs

The	address	to	dereference.
T

Any	standard,	user-defined	or	procedure	type.

Return	Value
Returns	a	reference	to	the	value	stored	at	the	address	rhs.

Description
Operator	*	(Value	of)	returns	a	reference	to	the	value	stored	at	an	address,	and	is	often	called	the	dereference	operator.
The	operand	is	not	modified	in	any	way.

As	a	reference,	the	result	of	this	operator	can	be	used	on	the	left-hand	side	of	assignments.

This	operator	can	be	overloaded	for	user-defined	types.

Example

'This	program	demonstrates	the	use	of	*	to	utilize	the	value	a	pointer	points	to.

Dim	a	As	Integer

Dim	pa	As	Integer	Ptr

pa=@a	'Here,	we	use	the	@	operator	to	point	our	integer	ptr	at	'a'.

'	'a'	is,	in	this	case,	a	standard	integer	variable.

a=9					'Here	we	give	'a'	a	value	of	9.

Print	"The	value	of	'a'	is";*pa	'Here,	we	display	the	value	of	'a'	using	a	pointer.	

*pa	=	1	'Here	we	use	our	pointer	to	change	the	value	of	'a'

Print	"The	new	value	of	'a'	is";a	'Here	we	display	the	new	value	of	'a'.

Output:

The	value	of	'a'	is	9

The	new	value	of	'a'	is	1

Dialect	Differences

In	the	-lang	qb	dialect,	this	operator	cannot	be	overloaded.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	@	(Address	Of)

Operator	[]	(Pointer	Index)

Pointers

Operator	.	(Member	Access) 	

Returns	a	reference	to	a	member	from	a	reference	to	an	object

Syntax
Declare	Operator	.	(ByRef	lhs	As	T)	ByRef	As	U

Usage
result	=	lhs	.	rhs

Parameters
lhs

An	object.
T

A	user-defined	type.
rhs

The	name	of	a	member	to	access.
U

The	type	that	rhs	refers	to.

Return	Value
Returns	a	reference	to	the	member	specified	by	rhs.

Description
Operator	.	(Member	access)	returns	a	reference	to	a	member	of	an
object.

Operator	.	(Member	access)	can	also	be	used	to	access	members	of
an	implicit	object	inside	a	With..End	With	block.

This	operator	cannot	be	overloaded.

Example

Type	T

				As	Integer	a,	b

End	Type

Dim	x	As	T

''	Access	the	member	'a'	of	x.

x.a	=	10

''	Access	the	member	'b'	of	x.

With	x

				.b	=	20

End	With

Dialect	Differences

None

Differences	from	QB

None

See	also

Operator	->	(Pointer	To	Member	Access)

Operator	@	(Address	Of)

Operator	*	(Value	Of)

With..End	With

Operator	->	(Pointer	To	Member	Access) 	

Returns	a	reference	to	a	member	from	a	pointer	to	an	object

Syntax
Declare	Operator	->	(ByRef	lhs	As	T	Ptr)	ByRef	As	U

Usage
result	=	lhs	->	rhs

Parameters
lhs

The	address	of	an	object.
T

A	user-defined	type.
rhs

The	name	of	a	member	to	access.
U

The	type	that	rhs	refers	to.

Return	Value
Returns	a	reference	to	the	member	specified	by	rhs.

Description
Operator	->	(Pointer	to	member	access)	returns	a	reference	to	a
member	of	an	object	through	a	pointer	to	that	object.	It	has	the	effect	of
dereferencing	a	pointer	to	an	object,	then	using	Operator	.	(Member
Access).	For	example,	"p->member"	is	equivalent	to	"x.member",	if	x	is
an	object	of	user-defined	type	and	p	is	a	pointer	to	an	object	of	the
same	type.

This	operator	can	be	overloaded	for	user-defined	types.

Example

Type	rect

				x	As	Integer

				y	As	Integer

End	Type

Dim	r	As	rect

Dim	rp	As	rect	Pointer	=	@r

rp->x	=	4

rp->y	=	2

Print	"x	=	"	&	rp->x	&	",	y	=	"	&	rp->y

Sleep

Dialect	Differences

Not	available	in	the	-lang	qb	dialect.

Differences	from	QB

New	to	FreeBASIC

See	also

Operator	.	(Member	Access)

Operator	@	(Address	Of)

Operator	*	(Value	Of)

Operator	For	(Iteration) 	

Declares	or	defines	operators	used	by	a	For...Next	loop	with	user
defined	type	variables

Syntax
{	Type	|	Class	|	Union	}	typename

Declare	Operator	For	()

Declare	Operator	For	([ByRef	|	ByVal]	stp	As	typename)

...

End	{	Type	|	Class	|	Union	}

Usage
For	iterator	[As	typename]	=	start_value	To	end_value	[Step

step_value]

[...statements...]

Next

Parameters
typename

name	of	the	Type,	Class,	or	Union
stp,	step_value
a	typename	object	used	as	an	incremental	value
iterator

a	typename	object	used	as	an	iterator
end_value

a	typename	object	used	as	a	loop-terminating	value
start_value

a	typename	object	used	to	copy	construct	or	assign	to	the	iterator
initially

Description
Operator	For,	Operator	Next	and	Operator	Step	can	be	overloaded	in
user-defined	type	definitions	to	allow	objects	of	that	type	to	be	used	as
iterators	and	step	values	in	For...Next	loops.

Operator	For	is	called	immediately	after	copy	constructing	or	assigning
to	the	iterator	object,	and	allows	the	object	to	perform	any	additional

initialization	needed	in	preparation	for	the	loop.

The	first	version	of	Operator	For	is	used	if	no	step	value	is	given	in	the
For...Next	statement.	If	a	step	value	is	given,	the	second	version	is
used	and	is	passed	the	step	value.

Example
See	the	Operator	Step	examples.

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

See	also

Operator	Next

Operator	Step

For...Next

Variable	Declarations 	

Statements	to	declare	and	allocate	space	for	variables.

Dim
Declares	a	variable	at	the	current
scope.
Const
Declares	a	non-modifiable
variable.
Scope
Begins	a	new	scope	block.

Static
Declares	variables	in	a	procedure
that	retain	their	value	between
calls.
Shared
Used	with	Dim	allows	variables	to
be	visible	throughout	a	module.
Var
Declares	variables	where	the
data	type	is	implied	from	an
initializer.

	

User	Defined	Types 	

Declaration
Enum...End	Enum
Type...End	Type
Union...End	Union

Extends
Field
Object

Referencing
Temporary	Types
This
Base	(Member	Access)
Type	Alias
With

Member	Procedures
Base	(Initialization)
Constructor
Destructor
Function
Operator
Override
Property
Sub
Static	(Member)
Virtual
Abstract
Const	(Member)

Member	Access	Control
Public:	(Access	Control)
Private:	(Access	Control)
Protected:	(Access
Control)

	

Standard	Data	Types 	

Built-in	data	types

Integer	types
Types	that	store	integer	values,	whose	range	is	determined	by	the	size	of
the	data	type	and	its	signedness.
Floating-point	types
Types	that	store	real	number	values,	whose	range	and	precision	is
determined	by	the	size	of	the	data	type.
Boolean	types
Types	that	store	boolean	values.
Data	Type	Modifiers
Specifies	additional	characteristics	of	a	standard	or	user-defined	data
type.
String	types
Types	that	store	or	point	to	an	array	of	characters.
Class	types
Types	that	provide	special	capabilities	to	be	used	directly	or	to	be
extended	by	user-defined	types

Integer	types
Byte	and	UByte
8-bit	wide	data	types	that	store
integer	values.
Short	and	UShort
16-bit	wide	data	types	that	store
integer	values.
Long	and	Ulong
32-bit	wide	data	types	that	store
integer	values.
Integer	and	UInteger
32-bit	or	64-bit	wide	data	types
that	store	integer	values.
LongInt	and	ULongInt
64-bit	wide	data	types	that	store
integer	values.

Data	Type	Modifiers
Const
Specifies	a	read	only	type.
Pointer	and	Ptr
Modifies	types	to	be	pointer
types.
Unsigned
Specifies	an	unsigned	integer
type.

String	types
String
Fixed-length	and	variable-length
strings	with	built-in	memory
management.
ZString

Floating-point	types
Single
32-bit	wide	data	types	that	store
real	number	values.
Double
64-bit	wide	data	types	that	store
real	number	values.

Boolean	types
Boolean
1-bit	wide	data	types	that	store
boolean	values.

Fixed-length	and	variable-length
null-terminated	strings.
WString
Fixed-length	and	variable-length
null-terminated	strings	of	wide
characters.

Class	types
Object
Super	class	providing	run-time
type	information

	

See	also

Variable	types	and	limits

Standard	Data	Type	Limits 	

Standard	variable	types	and	limits.

Numeric	Types

Type Size
in	bits Format Minimum	Value Maximum	Value

BYTE 8 signed
integer -128 +127

UBYTE 8 unsigned
integer 0 +255

SHORT 16 signed
integer -32768 +32767

USHORT 16 unsigned
integer 0 65535

LONG 32 signed
integer -2147483648 +2147483647

ULONG 32 unsigned
integer 0 +4294967295

INTEGER 32/64
[*]

signed
integer

[*]32bit:	-2147483648,	64bit:
-9223372036854775808

[*]32bit:	+2147483647,	64bit:
+9223372036854775807

UINTEGER 32/64
[*]

unsigned
integer 0 [*]32bit:	+4294967295,	64bit:

+18446744073709551615

LONGINT 64 signed
integer -9223372036854775808 +9223372036854775807

ULONGINT 64 unsigned
integer 0 +18446744073709551615

SINGLE 32 floating
point [**]+/-1.401	298	E-45 [**]+/-3.402	823	E+38

DOUBLE 64 floating
point

[**]+/-4.940	656	458	412	465	E-
324

[**]+/-1.797	693	134	862	316
E+308

enums 32/64
[*]

signed
integer

[*]32bit:	-2147483648,	64bit:
-9223372036854775808

[*]32bit:	+2147483647,	64bit:
+9223372036854775807

[*]	Integer	and	UInteger	data	types	vary	with	platform,	matching	the	size	of	pointers.
[**]	The	minimum	and	maximum	values	for	the	floating-point	types	Single
respectively,	the	values	closest	to	zero	and	the	values	closest	to	positive	and	negative

infinity.

String	Types

Type Character	Size	(in
bytes)

Minimum	Size	(in
characters) Maximum	Size	(in	characters)

String 1 0 [**]32bit:	+2147483647,	64bit:
+9223372036854775807

Zstring 1 0 [**]32bit:	+2147483647,	64bit:
+9223372036854775807

Wstring [*] [*]0 [*,**]32bit:	+2147483647,	64bit:
+9223372036854775807

[*]	Unicode,	or	"wide",	characters	vary	in	both	size	and	availability	with	platform.
[**]	All	runtime	library	string	procedures	take	and	produce	Integer	values	for	sizes	and
positions.	The	actual	maximum	size	will	vary	(smaller)	with	storage	location	and/or	platform.

Arrays

Platform Maximum	Subscript	Range Maximum	Elements	per
Dimension

Minimum/Maximum
Dimensions Maximum	Size	(in	bytes)

32bit [*][-2147483648,
+2147483647] [*]+2147483647 1/9 [*]+2147483647

64bit [*][-9223372036854775808,
+9223372036854775807] [*]+9223372036854775807 1/9 [*]+9223372036854775807

[*]	All	runtime	library	array	procedures	take	and	produce	Integer	values	for	subscripts	and
indexes.	The	actual	limits	will	vary	(smaller)	with	the	number	of	dimensions,	element	size,
storage	location	and/or	platform.

See	also
ProPgIdentifierRules	usage	of	suffixes	for	variables
ProPgLiterals	usage	of	suffixes	for	literals	/	numbers

Converting	Data	Types 	

Operators	and	procedures	that	convert	between	different	types.

Generic	conversions
Operators	to	convert	between	arbitrary	types.
Conversions	to	integral	types
Operators	to	convert	to	integral	types.
Conversions	to	floating-point	types
Operators	to	convert	to	floating-point	types.
Conversions	to/from	string	types
Operators	to	convert	top	an	from	string	types.
Conversion	to	boolean	types
Operators	to	convert	to	boolean	types.

Generic	conversions
Cast	and	CPtr
Converts	expressions	between
different	types.

Conversions	to	integral	types
CByte	and	CUByte
Converts	numeric	expressions	to
8-bit	values.
CShort	and	CUShort
Converts	numeric	expressions	to
16-bit	values.
CLng	and	CULng
Converts	numeric	expressions	to
32-bit	values.
CInt	and	CUInt
Converts	numeric	expressions	to
32-bit	or	64-bit	values.
CLngInt	and	CULngInt
Converts	numeric	expressions	to
64-bit	values.
CSign

Conversions	to	floating-point
types
CSng	and	CDbl
Converts	a	numeric	or	string
expression	to	floating-point
values.

Conversions	to/from	string
types
Str	and	WStr
Converts	numeric	expressions	or
booleans	to	their	string
representation.
Val
Converts	a	numeric	string
expression	to	a	floating-point
value.
ValInt	and	ValUInt
Converts	numeric	string
expressions	to	integer	values.
ValLng	and	ValULng
Converts	numeric	string

Converts	a	numeric	expression	to
a	signed-type	value.
CUnsg
Converts	a	numeric	expression	to
an	unsigned-type	value.

expressions	to	long	values.

Conversion	to	boolean	types
Cbool
Converts	a	numeric	or	string
expression	to	a	boolean	value.

	

Operators 	

Procedures	that	operate	on	one	or	more	operands.

FreeBASIC	has	numerous	operators	that	perform	a	certain	function	with
their	operands.	Many	operators	use	a	"operand	operator	operand"
syntax,	like	Operator	=	(Assignment)	or	Operator	+,	while	others	are
called	like	normal	procedures,	like	Operator	Strptr.

Assignment	operators
Operators	which	assign	the	value
of	one	operand	to	the	other.
Arithmetic	operators
Operators	that	perform
mathematical	computations	on
their	operands	and	return	the
result.
Conditional	operators
Operators	that	compare	the
relationship	between	their
operands.
Logical	operators
Operators	that	perform	bitwise
computations	with	their	operands
and	return	the	result.
Short	circuit	operators
Operators	that	perform	short
circuit	evaluations	with	their
operands	and	return	the	result.
Indexing	operators
Operators	that	return	references
to	variables	or	objects	based	on
an	index	value.

String	operators
Operators	overloaded	to	work
with	strings.
Preprocessor	operators
Operators	that	control
preprocessor	behavior.
Pointer	operators
Operators	that	work	with	pointers
and	addresses.
Type	or	Class	operators
Operators	that	provide	access	to
Type	or	Class	members.
Memory	operators
Operators	that	allocate	memory
for	and	construct	objects.
Iterating	operators
Operators	that	use	iterator
objects	in	For...Next	statements.

	

Assignment	Operators 	

Operators	that	assign	values	to	operands

The	assignment	operators	perform	an	assignment	to	the	first,	or	left-hand
side,	operand	based	on	the	value	of	the	second,	or	right-hand	side,
operand.	Most	of	the	assignment	operators	are	combination	operators,	in
that	they	first	perform	a	mathematical	or	bitwise	operation	on	the	two
operands,	then	assign	the	result	to	the	left-hand	side	operand.

Operator	=[>]	(Assignment)
Assigns	the	value	of	one	operand
to	the	other.
Operator	&=	(Concatenate	And
Assign)
Assigns	the	value	of	a
concatenation	between	two
operands.
Operator	+=	(Add	And	Assign)
Assigns	the	value	of	an	addition
between	two	operands.
Operator	-=	(Subtract	And
Assign)
Assigns	the	value	of	a	subtraction
between	two	operands.
Operator	*=	(Multiply	And
Assign)
Assigns	the	value	of	a
multiplication	between	two
operands.
Operator	/=	(Divide	And
Assign)
Assigns	the	value	of	a	division
between	two	operands.
Operator	\=	(Integer	Divide	And
Assign)
Assigns	the	value	of	an	integer

Operator	Mod=	(Modulus	And
Assign)
Assigns	the	value	of	a	modulus
between	two	operands.
Operator	And=	(Conjunction
And	Assign)
Assigns	the	value	of	a	bitwise
conjunction	between	two
operands.
Operator	Eqv=	(Equivalence
And	Assign)
Assigns	the	value	of	a	bitwise
equivalence	between	two
operands.
Operator	Imp=	(Implication	And
Assign)
Assigns	the	value	of	a	bitwise
implication	between	two
operands.
Operator	Or=	(Inclusive
Disjunction	And	Assign)
Assigns	the	value	of	a	bitwise
inclusive	or	between	two
operands.
Operator	Xor=	(Exclusive
Disjunction	And	Assign)
Assigns	the	value	of	a	bitwise

divide	between	two	operands.
Operator	^=	(Exponentiate	And
Assign)
Assigns	the	value	of	a
exponentiation	between	two
operands.
Operator	Let	(Assignment)
Assigns	the	value	of	one	user
defined	type	to	another.
Operator	Let()	(Assignment)
Assigns	the	fields	of	a	user
defined	type	to	a	list	of	variables.

exclusive	or	between	two
operands.
Operator	Shl=	(Shift	Left	And
Assign)
Assigns	the	value	of	a	bitwise
shift	left	of	an	operand.
Operator	Shr=	(Shift	Right	And
Assign)
Assigns	the	value	of	a	bitwise
shift	right	of	an	operand.

	

Arithmetic	Operators 	

Operators	that	can	be	used	in	mathematical	expressions

The	mathematical	operators	perform	mathematical	operations	with	the
values	of	their	operands	and	return	the	results.

Operator	+	(Add)
Returns	the	result	of	an	addition
of	two	operands.
Operator	-	(Subtract)
Returns	the	result	of	a	subtraction
of	two	operands.
Operator	*	(Multiply)
Returns	the	result	of	a
multiplication	of	two	operands.
Operator	/	(Divide)
Returns	the	result	of	a	division	of
two	operands.
Operator	\	(Integer	Divide)
Returns	the	result	of	an	integer
divide	of	two	operands.

Operator	^	(Exponentiate)
Returns	the	result	of	an
exponentiation	of	two	operands.
Operator	Mod	(Modulus)
Returns	the	result	of	a	modulus	of
two	operands.
Operator	-	(Negate)
Returns	the	result	of	a	negation	of
an	operand.
Operator	Shl	(Shift	Left)
Returns	the	result	of	a	bitwise
shift	left	of	an	operand.
Operator	Shr	(Shift	Right)
Returns	the	result	of	a	bitwise
shift	right	of	an	operand.

	

Relational	Operators 	

Operators	that	compare	relationships

The	relational	operators	perform	comparisons	between	the	values	of	two
operands.	Each	operator	returns	a	boolean	result	that	is	true	(-1)	if	the
relationship	holds	true,	or	false	(0)	if	not.

Operator	=	(Equal)
Compares	the	equal	relation	of
two	operands.
Operator	<>	(Not	Equal)
Compares	the	inequality	relation
of	two	operands.
Operator	<	(Less	Than)
Compares	the	less	than	relation
of	two	operands.
Operator	<=	(Less	Than	Or
Equal)
Compares	the	less	than	or	equal
relation	of	two	operands.
Operator	>=	(Greater	Than	Or
Equal)
Compares	the	greater	than	or
equal	relation	of	two	operands.
Operator	>	(Greater	Than)
Compares	the	greater	than
relation	of	two	operands.

Operator	Is	(Run-Time	Type
Information)
Checks	whether	an	object	is	of	a
certain	type.

	

Logical	Operators 	

Operators	that	perform	bitwise	logic

The	logical	operators	perform	logical	operations	on	the	values	of	their
operands,	and	return	the	results.	These	operators	are	bitwise	operators,
in	that	the	results	are	found	by	performing	logical	operations	on	each	bit
of	their	operands.

Operator	And	(Conjunction)
Returns	the	result	of	a	bitwise
conjunction	of	two	operands.
Operator	Eqv	(Equivalence)
Returns	the	result	of	a	bitwise
equivalence	of	two	operands.
Operator	Imp	(Implication)
Returns	the	result	of	a	bitwise
implication	of	two	operands.

Operator	Not	(Complement)
Returns	the	result	of	a	bitwise
complement	of	an	operand.
Operator	Or	(Inclusive
Disjunction)
Returns	the	result	of	a	bitwise
inclusive	or	of	two	operands.
Operator	Xor	(Exclusive
Disjunction)
Returns	the	result	of	a	bitwise
exclusive	or	of	two	operands.

	

Short	Circuit	Operators 	

Operators	that	perform	a	short	circuit	logical	evaluation.

The	short	circuit	operators	perform	a	evaluation	on	the	left	hand	operand,
and	depending	on	the	result,	may	go	on	to	evaluate	the	right	hand	side.
The	evaluations	take	place	logically,	in	a	comparison	to	zero.

Operator	Andalso	(Short
Circuit	Conjunction)
Returns	the	result	of	a	short
circuit	conjunction	of	two
operands.

Operator	Orelse	(Short	Circuit
Inclusive	Disjunction)
Returns	the	result	of	a	short
circuit	inclusive	or	of	two
operands.

Indexing	Operators 	

Operators	that	return	references	based	on	an	index

The	indexing	operators	return	references	to	some	memory	based	on	the
value	of	their	second,	or	right-hand	side,	operand.	This	operand	is	used
as	an	index,	or	offset,	from	the	beginning	of	some	memory	represented
by	the	first,	or	left-hand	side,	operand.

Operator	()	(Array	Index)
Returns	a	reference	to	an
element	in	an	array.
Operator	[]	(String	Index)
Returns	a	reference	to	a
character	in	a	string.

Operator	[]	(Pointer	Index)
Returns	a	reference	to	memory
offset	from	a	base	address.

	

String	Operators 	

Operators	that	work	with	strings

These	operators	provide	conversion	to	string,	concatenation	and	retrieval
of	character	data.

Operator	+	(String
Concatenation)
Concatenates	two	strings.
Operator	&	(String
Concatenation	With
Conversion)
Concatenates	two	values
converted	to	strings.

Operator	Strptr	(String	Pointer)
Returns	the	address	of	a	string's
character	data.

	

Preprocessor	Operators 	

Operators	that	are	executed	by	the	preprocessor

These	operators	control	how	text	is	interpreted	by	the	preprocessor.

Operator	#	(Stringize)
Returns	a	text	operand	converted
to	a	String	literal.
Operator	##	(Concatenation)
Concatenates	two	text	operands.

Operator	!	(Escaped	String
Literal)
Indicates	string	literal	immediately
following	must	be	processed	for
escape	sequences.
Operator	$	(Non-Escaped
String	Literal)
Indicates	string	literal	immediately
following	must	not	be	processed
for	escape	sequences.

	

Pointer	Operators 	

Operators	that	work	with	pointers

The	pointer	operators	provide	the	ability	to	retrieve	the	addresses	in
memory	of	their	operands,	and	to	use,	or	dereference,	that	memory.

Operator	Varptr	(Variable
Pointer)
Returns	the	memory	address	of	a
variable.
Operator	Strptr	(String	Pointer)
Returns	the	memory	address	of	a
string's	character	data.
Operator	Procptr	(Procedure
Pointer)
Returns	the	memory	address	of	a
procedure.

Operator	@	(Address	Of)
Returns	the	memory	address	of	a
variable,	object	or	procedure.
Operator	*	(Value	Of)
Returns	a	reference	to	a	variable
or	object	at	some	memory
address.

	

Type	or	Class	Operators 	

Operators	that	work	with	objects

These	operators	return	references	to	members	of	objects,	given	an
object	or	its	memory	address.

Operator	.	(Member	Access)
Returns	a	reference	to	a	member.
Operator	->	(Pointer	To	Member
Access)
Returns	a	reference	to	a	member
from	a	pointer.

Operator	Is	(Run-Time	Type
Information)
Checks	whether	an	object	is
compatible	to	a	type	derived	from
its	runtime-type.

	

Memory	Operators 	

Operators	that	work	with	memory

The	memory	operators	provide	a	way	to	dynamically	allocate	and
deallocate	variables	and	objects.

Operator	New
Allocates	memory	for	and
constructs	objects.
Operator	Placement	New
Constructs	objects	at	a	specified
memory	location.

Operator	Delete
Destroys	and	deallocates
memory	for	objects.

	

Iterating	Operators 	

Operators	that	work	with	iterator	objects

These	operators	allow	objects	of	user-defined	types	to	be	used	as
iterators	and	step	values	in	For...Next	statements.

Operator	For
Allows	an	iterator	a	chance	to
prepare	for	the	loop.
Operator	Step
Increments	an	iterator	object.

Operator	Next
Determines	if	the	loop	should
terminate	or	continue	iterating.

	

Operator	Step	(Iteration) 	

Increments	the	iterator	of	a	For...Next	loop

Syntax
{	Type	|	Class	|	Union	}	typename

Declare	Operator	Step	()

Declare	Operator	Step	([ByRef	|	ByVal]	stp	As	typename)

...

End	{	Type	|	Class	|	Union	}

Usage
For	iterator	[As	typename]	=	start_value	To	end_value	[Step	step_value

[...statements...]

Next

Parameters
typename

name	of	the	Type,	Class,	or	Union
stp,	step_value
a	typename	object	used	as	an	incremental	value
iterator

a	typename	object	used	as	an	iterator
end_value

a	typename	object	used	as	a	loop-terminating	value
start_value

a	typename	object	used	to	copy	construct	or	assign	to	the	iterator	initially

Description
Operator	For,	Operator	Next	and	Operator	Step	can	be	overloaded	in	user-defined	type	definitions	to	allow	objects	of	that	type	to	be	used	as	iterators
and	step	values	in	For...Next	loops.

Operator	Step	is	called	to	increment	the	iterator	immediately	after	all	statements	in	the	

The	first	version	of	Operator	Step	is	used	if	no	step	value	is	given	in	the	
and	is	passed	the	step	value.

Example

''	Example	Type

Type	T

		''	value	is	set	by	the	constructor

		value	As	Double

		Declare	Constructor(ByVal	x	As	Double	=	0)

		Declare	Operator	For(ByRef	stp	As	T)

		Declare	Operator	Step(ByRef	stp	As	T)

		Declare	Operator	Next(ByRef	cond	As	T,	ByRef	stp

End	Type

Constructor	T	(ByVal	x	As	Double)

		Print	"T	iterator	constructed	with	value	"	&	x

		value	=	x

End	Constructor

Operator	T.for(ByRef	stp	As	T)

End	Operator

Operator	T.step(ByRef	stp	As	T)

		Print	"	incremented	by	"	&	stp.value	&	"	in	step."

		value	+=	stp.value

End	Operator

Operator	T.next(ByRef	cond	As	T,	ByRef	stp	As	T)

		''	iterator's	moving	from	a	high	value	to	a	low	value	(step	>=	0)

		If(stp.value	<	0)	Then

				Return(value	>=	cond.value)

		Else

		''	iterator's	moving	from	a	low	value	to	a	high	value	(step	<	0)

				Return(value	<=	cond.value)

		End	If

End	Operator

''	Example	Usage.	It	looks	like	we	are	working	with	numbers,	but	the	iterators

''	have	overloaded	constructors.	The	10,	1,	and	-1	are	all	of	type	T.

For	i	As	T	=	10	To	1	Step	-1

		Print	i.value;

Next	i

A	more	practical	example	demonstrating	file	iteration	based	on	cha0s'	file	iteration	class

''	a	class	which	iterates	through	files

Type	FileIter

				As	String	pathName,	fileName

				Declare	Constructor(ByRef	pathName	As	String	

				Declare	Operator	For()

				Declare	Operator	Step()

				Declare	Operator	Next(ByRef	endCond	As	FileIter

End	Type

Constructor	FileIter(ByRef	pathName	As	String)			

				this.pathName	=	pathName

End	Constructor

Operator	FileIter.for()			

				fileName	=	Dir(pathName	&	"/*.*")			

End	Operator

Operator	FileIter.step()			

				fileName	=	Dir("")

End	Operator

Operator	FileIter.next(ByRef	endCond	As	FileIter	

				Return(fileName	<>	endCond.pathName)			

				''	the	c'tor	sets	the	path	name	and	so	we	check	against	that

End	Operator

''	example	code

''	change	it	to	any	directory

For	i	As	FileIter	=	"./"	To	""

				Print	i.fileName

Next

http://www.freebasic.net/forum/viewtopic.php?p=83564

Another	example	working	with	strings:

Type	CharIterator

				''	used	to	build	a	step	var

				Declare	Constructor(ByVal	r	As	ZString	Ptr)

				

				''	implicit	step	versions

				Declare	Operator	For	()

				Declare	Operator	Step()

				Declare	Operator	Next(ByRef	end_cond	As	CharIterator

				

				''	explicit	step	versions

				Declare	Operator	For	(ByRef	step_var	As	CharIterator

				Declare	Operator	Step(ByRef	step_var	As	CharIterator

				Declare	Operator	Next(ByRef	end_cond	As	CharIterator

				

				''	give	the	current	"value"				

				Declare	Operator	Cast()	As	String

				

				Private:				

								''	data

								value	As	String

								

								''	This	member	isn't	necessary	-	we	could	use

								''	the	step	variable	on	each	iteration	-	

								''	but	we	choose	this	method,	since	we	have

								''	to	compare	strings	otherwise.	See	below.

								is_up	As	Integer

End	Type

Constructor	CharIterator(ByVal	r	As	ZString	Ptr)

				value	=	*r

End	Constructor

Operator	CharIterator.cast()	As	String

				Operator	=	value

End	Operator

''	implicit	step	versions

''	

''	In	this	example,	we	interpret	implicit	step

''	to	always	mean	'up'

Operator	CharIterator.for()

				Print	"implicit	step"

End	Operator

Operator	CharIterator.step()

				value[0]	+=	1

End	Operator	

Operator	CharIterator.next(ByRef	end_cond	As	CharIterator

				Return	this.value	<=	end_cond.value

End	Operator

''	explicit	step	versions

''	

''	In	this	example,	we	calculate	the	direction

''	at	FOR,	but	since	the	step	var	is	passed	to

''	each	operator,	we	have	the	choice	to	also	calculate

''	it	"on-the-fly".	For	strings	such	as	this,	repeated	comparison

''	may	penalize,	but	if	you're	working	with	simpler	types,

''	then	you	may	prefer	to	avoid	the	overhead	of	

''	an	'is_up'	variable.

Operator	CharIterator.for(ByRef	step_var	As	CharIterator

				Print	"explicit	step"

				is_up	=	(step_var.value	=	"up")

End	Operator

Operator	CharIterator.step(ByRef	step_var	As	CharIterator

				If(is_up)	Then

								value[0]	+=	1

				Else

								value[0]	-=	1

				End	If

End	Operator	

Operator	CharIterator.next(ByRef	end_cond	As	CharIterator

				If(this.is_up)	Then

								Return	this.value	<=	end_cond.value

				Else

								Return	this.value	>=	end_cond.value

				End	If

End	Operator

For	i	As	CharIterator	=	"a"	To	"z"

				Print	i;	"	";

Next

Print	"done"

For	i	As	CharIterator	=	"a"	To	"z"	Step	"up"

				Print	i;	"	";

Next

Print	"done"

For	i	As	CharIterator	=	"z"	To	"a"	Step	"down"

				Print	i;	"	";

Next

Print	"done"

For	i	As	CharIterator	=	"z"	To	"a"	Step	"up"

				Print	i;	"	";

Next

Print	"done"

Iterating	with	fractions:

Type	fraction

				''	Used	to	build	a	step	var

				Declare	Constructor(ByVal	n	As	Integer,	ByVal

				''	Implicit	step	versions

				Declare	Operator	For	()

				Declare	Operator	Step()

				Declare	Operator	Next(ByRef	end_cond	As	fraction

				''	Explicit	step	versions

				Declare	Operator	For	(ByRef	step_var	As	fraction

				Declare	Operator	Step(ByRef	step_var	As	fraction

				Declare	Operator	Next(ByRef	end_cond	As	fraction

				''	Give	the	current	"value"				

				Declare	Operator	Cast()	As	Double

				Declare	Operator	Cast()	As	String

				Private:

								As	Integer	num,	den

End	Type

Constructor	fraction(ByVal	n	As	Integer,	ByVal	d	

				this.num	=	n	:	this.den	=	d

End	Constructor

Operator	fraction.cast()	As	Double

				Operator	=	num	/	den

End	Operator

Operator	fraction.cast()	As	String

				Operator	=	num	&	"/"	&	den

End	Operator

''	Some	fraction	functions

Function	gcd(ByVal	n	As	Integer,	ByVal	m	As	Integer

				Dim	As	Integer	t

								While	m	<>	0

												t	=	m

												m	=	n	Mod	m

												n	=	t

								Wend

				Return	n

End	Function

Function	lcd(ByVal	n	As	Integer,	ByVal	m	As	Integer

				Return	(n	*	m)	/	gcd(n,	m)

End	Function

''

''	Implicit	step	versions

''	

''	In	this	example,	we	interpret	implicit	step

''	to	mean	1

''

Operator	fraction.for()

				Print	"implicit	step"

End	Operator

Operator	fraction.step()

				Var	lowest	=	lcd(this.den,	1)

				Var	mult_factor	=	this.den	/	lowest

				Dim	As	fraction	step_temp	=	fraction(1,	1)

				

				this.num	*=	mult_factor

				this.den	*=	mult_factor

				

				step_temp.num	*=	lowest

				step_temp.den	*=	lowest

				

				this.num	+=	step_temp.num

End	Operator	

Operator	fraction.next(ByRef	end_cond	As	fraction

				Return	This	<=	end_cond

End	Operator

''

''	Explicit	step	versions

''	

Operator	fraction.for(ByRef	step_var	As	fraction	

				Print	"explicit	step"

End	Operator

Operator	fraction.step(ByRef	step_var	As	fraction

				Var	lowest	=	lcd(this.den,	step_var.den)

				Var	mult_factor	=	this.den	/	lowest

				Dim	As	fraction	step_temp	=	step_var

				this.num	*=	mult_factor

				this.den	*=	mult_factor

				mult_factor	=	step_temp.den	/	lowest

				step_temp.num	*=	mult_factor

				step_temp.den	*=	mult_factor

				this.num	+=	step_temp.num

End	Operator	

Operator	fraction.next(ByRef	end_cond	As	fraction

				If((step_var.num	<	0)	Or	(step_var.den	<	0	

								Return	This	>=	end_cond

				Else

								Return	This	<=	end_cond

				End	If

End	Operator

For	i	As	fraction	=	fraction(1,1)	To	fraction(4,1)

				Print	i;	"	";

Next

Print	"done"

For	i	As	fraction	=	fraction(1,4)	To	fraction(1,1)

				Print	i;	"	";

Next

Print	"done"

For	i	As	fraction	=	fraction(4,4)	To	fraction(1,4)

				Print	i;	"	";

Next

Print	"done"

For	i	As	fraction	=	fraction(4,4)	To	fraction(1,4)

				Print	i;	"	";

Next

Print	"done"

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

See	also

Operator	For

Operator	Next

For...Next

Operator	Next	(Iteration) 	

Determines	if	a	For...Next	loop	should	be	terminated

Syntax
{	Type	|	Class	|	Union	}	typename

Declare	Operator	Next	([ByRef	|	ByVal]	cond	As	typename)	As

Integer

Declare	Operator	Next	([ByRef	|	ByVal]	cond	As	typename,	[

ByRef	|	ByVal]	stp	As	typename)	As	Integer

...

End	{	Type	|	Class	|	Union	}

Usage
For	iterator	[As	typename]	=	start_value	To	end_value	[Step

step_value]

[...statements...]

Next

Parameters
typename

name	of	the	Type,	Class,	or	Union
cond,	end_value
a	typename	object	used	as	a	loop-terminating	value
stp,	step_value
a	typename	object	used	as	an	incremental	value
iterator

a	typename	object	used	as	an	iterator
start_value

a	typename	object	used	to	copy	construct	or	assign	to	the	iterator
initially

Description
Operator	For,	Operator	Next	and	Operator	Step	can	be	overloaded	in
user-defined	type	definitions	to	allow	objects	of	that	type	to	be	used	as
iterators	and	step	values	in	For...Next	loops.

Operator	Next	is	called	every	time	the	iterator	needs	to	be	checked

against	the	end	value.	This	happens	immediately	after	the	call	to	its
Operator	For,	and	immediately	after	any	calls	to	its	Operator	Step.
Operator	Next	should	return	zero	(0)	if	the	loop	should	be	terminated,
or	non-zero	if	the	loop	should	continue	iterating.	The	first	time	Operator
Next	is	called,	no	statements	in	the	For...Next	body,	if	any,	have	been
executed	yet.

The	first	version	of	Operator	Next	is	used	if	no	step	value	is	given	in
the	For...Next	statement.	If	a	step	value	is	given,	the	second	version
is	used	and	is	passed	the	step	value.

Example
See	the	Operator	Step	examples.

Dialect	Differences

Only	available	in	the	-lang	fb	dialect.

See	also

Operator	For

Operator	Step

For...Next

Operator	Precedence 	

When	several	operations	occur	in	a	single	expression,	each	operation	is
evaluated	and	resolved	in	a	predetermined	order.	This	is	called	the	order
of	operation	or	operator	precedence.	

If	an	operator	in	an	expression	has	a	higher	precedence,	it	is	evaluated
before	an	operator	of	lower	precedence.	

If	operators	have	equal	precedence,	they	then	are	evaluated	in	the	order
in	of	their	associativity.	The	associativity	may	be	Left-to-Right	or	Right-to-
Left	order.

As	a	rule,	binary	operators	(such	as	+,	^)	and	unary	postfix	operators
(such	as	(),	->)	are	evaluated	Left-to-Right,	and	unary	prefix	operators
(such	as	Not,	@)	are	evaluated	Right-to-Left.

Operators	that	have	an	associativity	of	"N/A"	indicate	that	there	is	no
expression	in	which	the	operator	can	be	used	where	its	order	of
operation	would	need	to	be	checked,	either	by	precedence	or	by
associativity.	Function-like	operators	such	as	Cast	are	always	the	first	to
be	evaluated	due	to	the	parentheses	required	in	their	syntax.	And
assignment	operators	are	always	the	last	to	be	evaluated.

Parentheses	can	be	used	to	override	operator	precedence.	Operations
within	parentheses	are	performed	before	other	operations.	Within	the
parentheses	normal	operator	precedence	is	used.

The	following	table	lists	operator	precedence	from	highest	to	lowest.
Breaks	in	the	table	mark	the	groups	of	operators	having	equal
precedence.

Highest	Precedence

Operator Description Associativity

	 	 	

CAST Type	Conversion N/A

PROCPTR Procedure	pointer N/A

STRPTR String	pointer N/A

VARPTR Variable	pointer N/A

	 	 	

[] String	index Left-to-Right

[] Pointer	index Left-to-Right

() Array	index Left-to-Right

() Function	Call Left-to-Right

. Member	access Left-to-Right

-> Pointer	to	member	access Left-to-Right

	 	 	

@ Address	of Right-to-Left

* Value	of Right-to-Left

New Allocate	Memory Right-to-Left

Delete Deallocate	Memory Right-to-Left

	 	 	

^ Exponentiate Left-to-Right

	 	 	

- Negate Right-to-Left

	 	 	

* Multiply Left-to-Right

/ Divide Left-to-Right

	 	 	

\ Integer	divide Left-to-Right

	 	 	

MOD Modulus Left-to-Right

	 	 	

SHL Shift	left Left-to-Right

SHR Shift	right Left-to-Right

	 	 	

+ Add Left-to-Right

- Subtract Left-to-Right

	 	 	

& String	concatenation Left-to-Right

	 	 	

Is Run-time	type	information	check N/A

	 	 	

= Equal Left-to-Right

<> Not	equal Left-to-Right

< Less	than Left-to-Right

<= Less	than	or	equal Left-to-Right

>= Greater	than	or	equal Left-to-Right

> Greater	than Left-to-Right

	 	 	

NOT Complement Right-to-Left

	 	 	

AND Conjunction Left-to-Right

	 	 	

OR Inclusive	Disjunction Left-to-Right

	 	 	

EQV Equivalence Left-to-Right

IMP Implication Left-to-Right

XOR Exclusive	Disjunction Left-to-Right

	 	 	

ANDALSO Short	Circuit	Conjunction Left-to-Right

ORELSE Short	Circuit	Inclusive	Disjunction Left-to-Right

	 	 	

=[>] Assignment N/A

&= Concatenate	and	Assign N/A

+= Add	and	Assign N/A

-= Subtract	and	Assign N/A

*= Multiply	and	Assign N/A

/= Divide	and	Assign N/A

\= Integer	Divide	and	Assign N/A

^= Exponentiate	and	Assign N/A

MOD= Modulus	and	Assign N/A

AND= Conjunction	and	Assign N/A

EQV= Equivalence	and	Assign N/A

IMP= Implication	and	Assign N/A

OR= Inclusive	Disjunction	and	Assign N/A

XOR= Exclusive	Disjunction	and	Assign N/A

SHL= Shift	Left	and	Assign N/A

SHR= Shift	Right	and	Assign N/A

LET Assignment N/A

	 	 	

LET() Assignment N/A

In	some	cases,	the	order	of	precedence	can	cause	confusing	or	counter-
intuitive	results.	Here	are	some	examples:

''	trying	to	raise	a	negated	number	to	a	power

-2	^	2

Desired	result:	(-2)	^	2	=	4

Actual	result:			-(2	^	2)	=	-4

''	trying	to	test	a	bit	in	a	number

n	And	1		<>		0

Desired	result:	(n	And	1)	<>	0

Actual	result:			n	And	(1	<>	0)

''	trying	to	shift	a	number	by	n+1	bits

a	Shl	n+1

Desired	result:	a	Shl	(n	+	1)

Actual	result:	(a	Shl	n)	+	1

For	expressions	where	the	operator	precedence	may	be	ambiguous,	it	is
recommended	to	wrap	parts	of	the	expression	in	parentheses,	in	order
both	to	minimise	the	possibility	of	error	and	to	aid	comprehension	for
people	reading	the	code.

See	also

Operators

Bitwise	Operators	Truth	Tables 	

Computed	values	for	the	bitwise	logical	operators.

Binary	operators
Operators	that	take	two	operands.
Unary	operator
Operator	that	take	a	single	operand.

These	logical	operators	return	a	value	based	on	the	value	of	their
operand(s).	For	the	binary	operators,	each	bit	in	the	left-hand	side	value
is	applied	logically	to	the	corresponding	bit	in	the	right-hand	side	value.
The	result	of	this	operation	is	returned.	For	the	unary	operator,	(Operator
Not),	the	logic	is	applied	to	its	right-hand	side	operand	only.

Binary	operators

Operator	And	(Conjunction)
Bits	in	the	result	are	set	if	and
only	if	both	of	the	corresponding
bits	in	the	left	and	right-hand	side
operands	are	set.

Lhs 0 0 1 1

Rhs 0 1 0 1

Result 0 0 0 1

Operator	Eqv	(Equivalence)
Bits	in	the	result	are	set	if	and
only	if	both	of	the	corresponding
bits	in	the	left	and	right-hand	side
operands	are	both	either	set	or
unset.

Operator	Xor	(Exclusive
Disjunction)
Bits	in	the	result	are	set	if	and
only	if	one	of	the	corresponding
bits	in	the	left	and	right-hand	side
operands	is	set.

Lhs 0 0 1 1

Rhs 0 1 0 1

Result 0 1 1 0

Unary	operators

Operator	Not	(Complement)
Bits	in	the	result	are	set	if	the
corresponding	bits	in	the	right-
hand	side	operand	are	unset,	and
unset	if	they	are	set.

Lhs 0 0 1 1

Rhs 0 1 0 1

Result 1 0 0 1

Operator	Imp	(Implication)
Bits	in	the	result	are	set	if	and
only	if	the	corresponding	bit	in	the
left-hand	side	operand	implies	the
bit	in	the	right-hand	side	operand.

Lhs 0 0 1 1

Rhs 0 1 0 1

Result 1 1 0 1

Operator	Or	(Inclusive
Disjunction)
Bits	in	the	result	are	set	if	either
of	the	corresponding	bits	in	the
left	and	right-hand	side	operands
are	set.

Lhs 0 0 1 1

Rhs 0 1 0 1

Result 0 1 1 1

Rhs 0 1

Result 1 0

	

Control	Flow	Statements 	

Statements	that	direct	the	flow	of	program	execution.

Transferring	Statements
Statements	that	transfer	control	to	another	part	of	a	program.
Branching	Statements
Statements	that	execute	one	of	a	number	of	code	branches.
Looping	Statements
Statements	that	execute	code	repeatedly.

Transferring	Statements
Goto
Transfers	execution	to	another
point	in	code	defined	by	a	text
label.
GoSub
Temporarily	transfers	execution	to
another	point	in	code,	defined	by
a	text	label.
On	Goto
Transfers	execution	to	one	of	a
number	of	points	in	code	defined
by	text	labels,	based	on	the	value
of	an	expression.
On	Gosub
Temporarily	transfers	execution	to
one	of	a	number	of	points	in	code
defined	by	text	labels,	based	on
the	value	of	an	expression.
Return
Returns	from	a	call	using	GoSub
or	from	a	procedure	returning	a
value.

Branching	Statements
If..End	If

Looping	Statements
While..Wend
Executes	a	block	of	statements
while	a	condition	is	met.
For..Next
Executes	a	block	of	statements
while	an	iterator	is	less	than	or
greater	than	an	expression.
Do..Loop
Executes	a	block	of	statements
while	or	until	a	condition	is	met.

Intra-loop	control
Continue	While,	Continue	For
and	Continue	Do
Prematurely	re-enters	a	loop.
Exit	While,	Exit	For	and	Exit	Do
Prematurely	breaks	out	of	a	loop.

Executes	a	block	of	statements	if
a	condition	is	met.
..Else	If..
Executes	a	block	of	code	if	a
condition	is	met	and	all	previous
conditions	weren't	met.
..Else..
Executes	a	block	of	code	if	all
previous	conditions	weren't	met.
Select..End	Select
Executes	one	of	a	number	of
statement	blocks	using	a	set	of
conditions.
..Case..
Executes	a	block	of	code	if	a
condition	is	met.
..Case	Else..
Executes	a	block	of	code	if	all
previous	conditions	weren't	met.

Intra-branch	control
Exit	Select
Prematurely	breaks	out	of	a
Select..End	Select	statement.

	

Procedures 	

Keywords	that	work	with	procedures.

Description
These	keywords	control	the	declaration	and	definition	of	both	module-
level	procedures	and	member	procedures,	how	they	are	called,	how
arguments	are	passed	and	how	their	names	are	seen	externally	to
other	modules.	Procedures	can	also	be	declared	to	be	executed
automatically	before	any	module-level	code	is	executed.

Declaration
Keywords	that	declare	and	define	procedures.
Linkage
Keywords	that	specify	how	procedure	names	are	seen	by	external
modules.
Calling	conventions
Keywords	that	specify	how	arguments	are	used	when	calling
procedures.
Parameter	passing	conventions
Keywords	that	specify	how	arguments	are	passed	to	procedures.
Variadic	Procedures
Macros	that	allow	for	an	arbitrary	number	of	arguments	to	be	passed	to
a	procedure.
Automatic	execution
Keywords	that	specify	automatic	execution	of	procedures.
Miscellaneous
Miscellaneous	keywords.

Declaration
Declare
Declares	a	module-level	or
member	procedure.
Sub
Specifies	a	procedure	that	does
not	return	an	argument.

Parameter	passing
conventions
ByRef
Specifies	passing	an	argument
by	reference.
ByVal
Specifies	passing	an	argument

Function
Specifies	a	procedure	that
returns	an	argument.
Overload
Specifies	that	the	procedure
name	can	be	used	in	other
procedure	declarations.
Static
Specifies	static	storage	for	all
variables	and	objects	in	the
procedure	body.
Const	(Member)
Specifies	a	const	member
procedure	in	user-defined	type
definitions.
Static	(Member)
Specifies	a	static	member
procedure	in	user-defined	type
definitions.

Linkage
Public
Specifies	external	linkage	for	a
procedure.
Private
Specifies	internal	linkage	for	a
procedure.
Alias
Specifies	an	alternate	external
name	for	a	procedure.
Export
Specifies	a	procedure	is	to	be
exported	from	a	shared	library.
Lib
Specifies	automatic	loading	of	a
library.

Calling	conventions
stdcall

by	value.
Any
Disables	type-checking	on
arguments.

Variadic	Procedures
...	(Ellipsis)
Indicates	a	variadic	procedure	in
a	declaration.
va_first
Macro	to	obtain	the	argument
list	in	a	variadic	procedure.
va_arg
Macro	to	obtain	the	current
argument	in	a	variadic
procedure.
va_next
Macro	to	move	to	the	next
argument	in	a	variadic
procedure.

Automatic	execution
Constructor	(Module)
Indicates	a	procedure	is	to	be
executed	before	module-level
code.
Destructor	(Module)
Indicates	a	procedure	is	to	be
executed	after	module-level
code.

Miscellaneous
Byref	(Function	Results)
Specifies	that	a	function	returns
by	reference	rather	than	by
value.
Call
Invokes	a	procedure.
Naked

Specifies	the	standard	calling
convention	for	BASIC
languages,	including
FreeBASIC.
cdecl
Specifies	the	standard	calling
convention	in	the	C	and	C++
languages.
pascal
Specifies	the	standard	calling
convention	in	the	Fortran,
Pascal	and	Microsoft
QuickBASIC/QBasic	languages.

Specifies	that	a	function	body	is
not	to	be	given	any	prolog/epilog
code

	

Modularizing 	

Keywords	helpful	when	writing	modular	programs.

Common
DyLibFree
DyLibLoad
DyLibSymbol
Export
Extern

Extern...End	Extern
Import
Namespace
Private
Public
Using	(Namespaces)

	

Preprocessor 	

Commands	that	control	the	preprocessor.

Description
Preprocessor	commands	are	sent	to	the	compiler	to	control	what	gets
compiled	and	how.	They	can	be	used	to	choose	to	compile	one	block
of	code	rather	than	another	for	cross-platform	compatibility,	include
headers	or	other	source	files,	define	small	inline	functions	called
macros,	or	alter	how	the	compiler	handles	variables.

Conditional	Compilation
Commands	that	allow	for	branches	in	compilation	based	on	conditions.
Text	Replacement
Commands	that	create	text-replacement	macros.
File	Directives
Commands	that	indicate	to	the	compiler	how	other	files	relate	to	the
source	file.
Control	Directives
Commands	that	set	compile	options,	control	compilation,	and	report
compile	time	information.
Metacommands
Commands	that	are	kept	for	backward	compatibility.

Conditional	Compilation
#if
Compiles	the	following	code
block	based	on	a	condition.
#ifdef
Compiles	the	following	code
block	if	a	symbol	is	defined.
#ifndef
Compiles	the	following	code
block	if	a	symbol	is	not	defined.
#elseif
Compiles	the	following	code

File	Directives
#include
Inserts	text	from	a	file.
#inclib
Includes	a	library	in	the	linking
processes.
#libpath
Includes	a	path	to	search	for
libraries	in	the	linking	process.

Control	Directives
#pragma

block	if	a	condition	is	true	and
the	previous	conditions	was
false.
#else
Compiles	the	following	code
block	if	previous	conditions	were
false.
#endif
Signifies	the	end	of	a	code
block.
defined
Returns	"-1"	if	a	symbol	is
defined,	otherwise	"0".

Text	Replacement
#define
Creates	a	single-line	text-
replacement	macro.
#macro	and	#endmacro
Creates	a	multi-line	text-
replacement	macro.
#undef
Undefines	a	symbol.
#	Preprocessor	Stringize
Converts	text	into	a	string	literal.
##	Preprocessor	Concatenate
Concatenates	two	pieces	of	text.
!	Escaped	String	Literal
Indicates	string	literal
immediately	following	must	be
processed	for	escape
sequences.
$	Non-Escaped	String	Literal
Indicates	string	literal
immediately	following	must	not
be	processed	for	escape
sequences.

Sets	compiling	options.
#lang
Sets	dialect	from	source.
#print
Outputs	a	messages	to	standard
output	while	compiling.
#error
Outputs	a	messages	to	standard
output	and	stops	compilation.
#Assert
Stops	compilation	with	an	error
message	if	a	given	condition	is
false.
#line
Sets	the	current	line	number	and
file	name.

Metacommands
'$Include
Alternate	form	of	the	#include
directive.
'$Dynamic
Alternate	form	of	the	Option
Dynamic	statement.
'$Static
Alternate	form	of	the	Option
Static	statement.
'$Lang
Alternate	form	of	the	#lang
directive.

	

Escape	Sequences 	

Escape	sequences	can	be	used	in	string	literals	by	using	the	operator	!	.

Usage
result	=	!"text"

Description
The	accepted	escape	sequences	in	text	are:

\a beep

\b backspace

\f formfeed

\l	or	\n newline

\r carriage	return

\t tab

\unnnn unicode	char	in	hex

\v vertical	tab

\nnn ascii	char	in	decimal

\&hnn ascii	char	in	hex

\&onnn ascii	char	in	octal

\&bnnnnnnnn ascii	char	in	binary

\\ backslash

\(double	quote) double	quote

\' single	quote

Note:	The	zero-character	(\000	=	\&h00;	=	\&o000;	=	\&b00000000;)	is
the	null	terminator.	Only	characters	before	the	first	null	terminator	can
be	seen	when	the	literal	is	used	as	a	String.	To	get	a	zero	character	in
a	string	use	Chr(0)	instead.

See	also

Operator	!	(Escaped	String)

Operator	$	(Non-Escaped	String)
Option	Escape

String

Chr

Literals

Compiler	Switches 	

Statements	that	affect	how	code	is	compiled.

Description
These	statements	affect	how	the	compiler	declares	variables,	arrays
and	procedures,	parses	string	literals,	passes	procedure	parameters
and	more.

Metacommands
'$Dynamic
'$Include
'$Static
'$Lang

Compiler	Options
Option	Base
Option	ByVal
Option	Dynamic
Option	Escape
Option	Explicit
Option	Gosub
Option	Nogosub
Option	NoKeyword
Option	Private
Option	Static

Set	Default	Datatypes
DefByte
DefDbl
DefInt
DefLng
Deflongint
DefShort
DefSng
DefStr
DefUByte
DefUInt
Defulongint
DefUShort

	

Dialect	Differences

Deflongint	and	Defulongint	available	only	in	the	-lang	fblite
dialect.

OPTION	statements	are	available	only	in	the	-lang	fblite	and	-
lang	qb	dialects	only.

See	also

Preprocessor

Intrinsic	Defines 	

Preprocessor	symbols	defined	by	the	compiler.

Description
Intrinsic	defines	are	set	by	the	compiler	and	may	be	used	as	any	other
defined	symbol.	Intrinsic	defines	often	convey	information	about	the
state	of	the	compiler,	either	in	general	or	at	a	specific	point	in	the
compilation	process.	Most	intrinsic	defines	are	associated	with	a	value.

Platform	Information
Defines	that	provide	information	on	the	system.
Version	Information
Defines	that	provide	information	on	the	fbc	compiler	version	being
used.
Command-line	switches
Defines	that	provide	information	with	the	command-line	switches	used
with	fbc.
Environment	Information
Defines	that	provide	information	about	the	operating	system
environment.
Context-specific	Information
Defines	that	provide	context	information	about	the	compilation	process.

Platform	Information
__FB_WIN32__
Defined	if	compiling	for
Windows.
__FB_LINUX__
Defined	if	compiling	for	Linux.
__FB_DOS__
Defined	if	compiling	for	DOS.
__FB_CYGWIN__
Defined	if	compiling	for	Cygwin.
__FB_FREEBSD__
Defined	if	compiling	for

Environment	Information
__FB_ARGC__
Defined	as	an	integer	literal	of
the	number	of	command-line
arguments	passed	to	the
program.
__FB_ARGV__
Defined	as	a	ZString	Ptr	Ptr	to
the	command	line	arguments
passed	to	the	program.
__DATE__
Defined	as	a	string	literal	of	the

FreeBSD.
__FB_NETBSD__
Defined	if	compiling	for	NetBSD.
__FB_OPENBSD__
Defined	if	compiling	for
OpenBSD.
__FB_DARWIN__
Defined	if	compiling	for	Darwin.
__FB_XBOX__
Defined	if	compiling	for	Xbox.
__FB_BIGENDIAN__
Defined	if	compiling	on	a
system	using	big-endian	byte-
order.
__Fb_Pcos__
Defined	if	compiling	for	a
common	PC	OS	(e.g.	DOS,
Windows,	OS/2).
__Fb_Unix__
Defined	if	compiling	for	a	Unix-
like	OS.
__Fb_64Bit__
Defined	if	compiling	for	a	64bit
target.
__Fb_Arm__
Defined	if	compiling	for	the	ARM
architecture.

Version	Information
__FB_VERSION__
Defined	as	a	string	literal	of	the
compiler	version.
__FB_VER_MAJOR__
Defined	as	an	integral	literal	of
the	compiler	major	version
number.
__FB_VER_MINOR__
Defined	as	an	integral	literal	of
the	compiler	minor	version

compilation	date	in	"mm-dd-
yyyy"	format.
__Date_Iso__
Defined	as	a	string	literal	of	the
compilation	date	in	"yyyy-mm-
dd"	format.
__TIME__
Defined	as	a	string	literal	of	the
compilation	time.
__PATH__
Defined	as	a	string	literal	of	the
absolute	path	of	the	module.

Context-specific	Information
__FILE__	and	__FILE_NQ__
Defined	as	the	name	of	the
module.
__FUNCTION__	and
__FUNCTION_NQ__
Defined	as	the	name	of	the
procedure	where	it's	used.
__LINE__
Defined	as	an	integer	literal	of
the	line	of	the	module	where	it's
used.
__FB_OPTION_BYVAL__
True	(-1)	if	parameters	are
declared	by	value	by	default,
zero	(0)	otherwise.
__FB_OPTION_DYNAMIC__
True	(-1)	if	all	arrays	are
variable-length,	zero	(0)
otherwise.
__FB_OPTION_ESCAPE__
True	(-1)	if	string	literals	are
processed	for	escape
sequences,	zero	(0)	otherwise.
__Fb_Option_Gosub__
True	(-1)	if	gosub	support	is

number.
__FB_VER_PATCH__
Defined	as	an	integral	literal	of
the	compiler	patch	number.
__FB_MIN_VERSION__
Macro	to	check	for	a	minimum
compiler	version.
__FB_BUILD_DATE__
Defined	as	a	string	literal	of	the
compiler	build	date.
__FB_SIGNATURE__	
Defined	as	a	string	literal	of	the
compiler	signature.

Command-line	switches
__Fb_Asm__
Defined	to	either	"intel"	or
"att"	depending	on	-asm.
__Fb_Backend__
Defined	to	either	"gas"	or	"gcc"
depending	on	-gen.
__Fb_Gcc__
True	(-1)	if	-gen	gcc	is	used,
false	(0)	otherwise.
__FB_MAIN__
Defined	if	compiling	a	module
with	an	entry	point.
__FB_DEBUG__
True	(-1)	if	the	"-g"	switch	was
used,	false	(0)	otherwise.
__FB_ERR__
Zero	(0)	if	neither	the	"-e",	"-
ex"	or	"-exx"	switches	were
used.
__Fb_Fpmode__
Defined	as	"fast"	if	compiling
for	fast	SSE	math,	"precise"
otherwise.
__Fb_Fpu__

enabled,	zero	(0)	otherwise.
__FB_OPTION_EXPLICIT__
True	(-1)	if	variables	and	objects
need	to	be	explicitly	declared,
zero	(0)	otherwise.
__FB_OPTION_PRIVATE__
True	(-1)	if	all	procedures	are
private	by	default,	zero	(0)
otherwise.

Defined	as	"sse"	if	compiling	for
SSE	floating	point	unit,	or	"x87"
for	normal	x87	floating-point
unit.
__FB_LANG__
Defined	to	a	string	literal	of	the
"-lang"	dialect	used.
__FB_MT__
True	(-1)	if	the	"-mt"	switch	was
used,	false	(0)	otherwise.
__FB_OUT_DLL__
True	(-1)	in	a	module	being
compiled	and	linked	into	a
shared	library,	false	(0)
otherwise.
__FB_OUT_EXE__
True	(-1)	in	a	module	being
compiled	and	linked	into	an
executable,	false	(0)	otherwise.
__FB_OUT_LIB__
True	(-1)	in	a	module	being
compiled	and	linked	into	a	static
library,	zero	(0)	otherwise.
__FB_OUT_OBJ__
True	(-1)	in	a	module	being
compiled	only,	zero	(0)
otherwise.
__FB_SSE__
Defined	if	compiling	for	SSE
floating	point	unit.
__Fb_Vectorize__
Defined	as	the	level	of
automatic	vectorization	(0	to	2)

	

Error	Handling 	

Handling	runtime	errors.

FreeBASIC	can	handle	the	errors	in	the	following	ways:
By	default	the	program	does	nothing	with	the	errors	-	they	are	silently	ignored	and
code	continues.	In	this	case	code	should	process	possible	errors	in	the	next	line
by	using	the	Err	function.
If	compiled	with	-e	or	-ex	options,	FreeBASIC	uses	QB-like	error	handling.
Future	OOP	versions	of	FreeBASIC	may	have	a	java-like	TRY..CATCH...FINALLY
exception	handler	implemented.

NOTE:	The	following	information	is	valid	unless	the	error	produces	an	OS	General
Protection	Fault	(for	example	if	the	program	writes	outside	the	process	memory	area).	In
these	cases	the	OS	will	immediately	stop	the	program	and	issue	an	error:	nothing	can
avoid	it	from	inside	FreeBASIC.

Default	error	handling

The	default	FreeBASIC	behavior	is	to	set	the	ERR	variable	and	continue.	

Dim	As	Integer	e

Open	"xzxwz.zwz"	For	Input	As	#1

e	=	Err

Print	e

Sleep

(The	example	program	supposes	there	is	no	xzxwz.zwz	file).	The	program	does	not
stop;	it	sets	the	ERR	variable	and	continues.	The	error	can	be	processed	in	the	next
line.

Some	IO	functions	such	as	Open	and	Put	#...	can	be	used	in	function	form,	returning	an
error	number	or	zero	if	successful.

Print	Open	("xzxwz.zwz"	For	Input	As	#1)

Sleep

QuickBASIC-like	error	handling

If	the	-e	or	-ex	switch	is	used	at	compile	time,	the	program	is	expected	to	have	a	QB-
like	error	handler	enabled.	If	no	handler	processes	the	error,	the	program	stops	with	an
error.

Notice:	if	QB-Like	error	handling	is	used,	the	programmer	should	be	prepared	to
handle	all	error	conditions.

''	Compile	with	QB	(-lang	qb)	dialect

'$lang:	"qb"

On	Error	Goto	FAILED

Open	"xzxwz.zwz"	For	Input	As	#1

On	Error	Goto	0

Sleep

End

FAILED:

Dim	e	As	Integer

e	=	Err

Print	e

Sleep

End

On	Error	sets	an	error	handling	routine	which	the	program	will	jump	to	when	an	error	is
found.	On	Error	Goto	0	disables	the	error	handling.

If	an	error	handling	routine	is	not	set	when	an	error	occurs,	the	program	will	stop	and
send	the	console	an	error	message.

Aborting	program	due	to	runtime	error	2	(file	not	found)

	
The	error	handler	routine	can	be	at	the	end	of	the	program,	as	in	QB.	The	
Error	statement	allows	the	setting	of	a	local	error	handler	routine	at	the	end	of	the
same	Sub	or	Function	in	which	the	error	occurs.

''	Compile	with	-e

''	The	-

e	command	line	option	is	needed	to	enable	error	handling.

Declare	Sub	foo

		foo

Sleep

Sub	foo

				

				Dim	filename	As	String

				Dim	errmsg	As	String

				filename	=	""

				On	Local	Error	Goto	fail

		Open	filename	For	Input	Access	Read	As	#1

				Print	"No	error"

				On	Local	Error	Goto	0

				Exit	Sub

				

		fail:

		errmsg	=	"Error	"	&	Err	&	_

											"	in	function	"	&	*Erfn	&	_

											"	on	line	"	&	Erl

		Print	errmsg

				

End	Sub

If	the	-e	switch	is	used	(whatever	the	-lang	dialect),	the	error	handler	must	terminate

the	program.	
With	-ex	and	-lang	qb	dialect	only,	the	error	routine	can	end	by	using	
the	statement	that	caused	the	error)	or	Resume	Next	(continues	at	the	next	instruction)	.

Error	codes

See	Runtime	Error	Codes	for	a	listing	of	runtime	error	numbers	and	their	associated
meaning.

No	user	error	code	range	is	defined.	If	Error	is	used	to	set	an	error	code	it	is	wise	to
use	high	values	to	avoid	collisions	with	the	list	of	built-in	error	codes.	(This	built-in	list
may	be	expanded	later.)

See	also

Error	Handling	Functions
Runtime	Error	Codes

Array	Functions 	

Statements	and	procedures	for	working	with	arrays.

Defining	Arrays
Statements	that	create	arrays.
Clearing	Array	Data
Procedures	that	work	with	array	memory.
Retrieving	Array	Size
Procedures	that	return	bounds	of	an	array's	dimension.

Defining	Arrays
Option	Dynamic
Forces	arrays	to	be	defined	as
variable-length	arrays.
'$Dynamic
Alternate	form	of	the	Option
Dynamic	statement.
Option	Static
Reverts	a	previous	Option
Dynamic	command.
'$Static
Alternate	form	of	the	Option
Static	statement.
ReDim
Defines	and	resizes	variable-
length	arrays.
Preserve
Preserves	array	contents	when
used	with	ReDim.

Clearing	Array	Data
Erase
Destroys	variable-length	array
elements	and	initializes	fixed-
length	array	elements.

Retrieving	Array	Size
LBound
Returns	the	lower	bound	of	an
array's	dimension.
UBound
Returns	the	upper	bound	of	an
array's	dimension.

	

Bit	Manipulation 	

Macros	that	work	with	the	bits	and	bytes	of	numbers.

Description
The	macros	documented	here	provide	access	to	the	individual	bits,
bytes	and	words	of	integer	values.

Byte	Manipulation	Macros
Gets	the	value	of	individual	bytes	or	words	of	UInteger	values.
Bit	Manipulation	Macros
Gets	the	state	of	individual	bits	of	numeric	values.

Byte	Manipulation	Macros
LoByte
Gets	the	least	significant	byte
(LSB,	or	lo-byte)	value	of	an
UInteger	value.
HiByte
Gets	the	most	significant	byte
(MSB,	or	hi-byte)	value	of	the
least	significant	word	(LSW,	or
lo-word)	of	an	UInteger	value.
LoWord
Gets	the	least	significant	word
(LSW,	or	lo-word)	value	of	an
UInteger	value.
HiWord
Gets	the	most	significant	word
(LSW,	or	hi-word)	value	of	an
UInteger	value.

Bit	Manipulation	Macros
Bit
Gets	the	state	of	an	individual	bit
in	an	integer	value.
BitReset
Gets	the	value	of	an	integer	with
a	specified	bit	cleared.
BitSet
Gets	the	value	of	an	integer	with
a	specified	bit	set.

	

Console	Functions 	

Procedures	that	work	with	the	console.

Description
These	procedures	provide	ways	to	output	text	to	the	console,	as	well
as	control	where	and	how	text	is	output.

Configuring	the	Console
Statements	that	affect	how	text	is	displayed.
Cursor	Color	and	Positioning
Procedures	that	move	the	cursor	and	change	its	color.
Writing	Text	to	the	Console
Procedures	that	output	text	to	the	console.

Configuring	the	Console
Cls
Clears	the	entire	screen	or	text
viewport.
Width
Sets	or	returns	the	number	of
rows	and	columns	of	the
console	display.
View	Print
Sets	the	printable	area	of	the
console	screen.

Cursor	Color	and	Positioning
Color
Changes	the	foreground	and
background	color	of	text	to	be
written.
CsrLin
Returns	the	row	position	of	the
cursor.
Pos

Writing	Text	to	the	Console
Print
?
Writes	text	to	the	console.
Print	Using
?	Using
Writes	formatted	text	to	the
console.
Write
Writes	a	list	of	items	to	the
console.
Spc
Skips	a	number	of	spaces	when
writing	text.
Tab
Skips	to	a	certain	column	when
writing	text.

Returns	the	column	position	of
the	cursor.
Locate
Sets	the	row	and	column
position	of	the	cursor	and	its
visibility.
Screen	(Console)
Gets	the	character	or	color
attribute	at	a	given	location.

	

Date	and	Time	Functions 	

Procedures	that	work	with	dates	and	time.

Description
These	procedures	provide	ways	to	deal	with	date	and	time	intervals	in
a	consistent	way.	Additional	procedures	are	provided	to	set	and	get	the
current	system	date	and	time,	and	to	retrieve	a	time	stamp	for	sensitive
timing	algorithms.

VisualBasic	compatible	procedures
Procedures	for	working	with	so-called	date	serials,	similar	to	those
used	in	Visual	Basic(r).
Date	and	time	procedures
Procedures	for	working	with	the	system	date	and	time.

VisualBasic	compatible
procedures
Now
Gets	a	date	serial	of	the	current
date	and	time.

Creating	Date	serials
DateSerial
Gets	the	date	serial
representation	of	a	date.
TimeSerial
Gets	the	date	serial
representation	of	a	time.
DateValue
Gets	the	date	serial
representation	of	a	date
expressed	as	a	String.
TimeValue
Gets	the	date	serial
representation	of	a	time

Date	and	time	procedures
Date
Gets	the	String	representation
of	the	current	system	date.
Time
Gets	the	String	representation
of	the	current	system	time.
SetDate
Sets	the	current	system	date.
SetTime
Sets	the	current	system	time.
Timer
Gets	a	counter	expressed	in
seconds.

expressed	as	a	String.

Extracting	information	from
Date	serials
Second
Gets	the	seconds	of	the	hour
from	a	date	serial.
Minute
Gets	the	minutes	of	the	hour
from	a	date	serial.
Hour
Gets	the	hour	of	the	day	from	a
date	serial.
Day
Gets	the	day	of	the	month	from
a	date	serial.
Weekday
Gets	the	day	of	the	week	from	a
date	serial.
Month
Gets	the	month	of	the	year	from
a	date	serial.
Year
Gets	the	year	from	a	date
serial.
DatePart
Gets	a	time	interval	from	a	date
serial.

Extracting	information	from
Date	serials
DateAdd
Gets	the	result	of	a	time	interval
added	to	a	date	serial.
DateDiff
Gets	a	time	interval	between	two
date	serials.

Miscellaneous

IsDate
Tests	if	a	String	can	be
converted	to	a	date	serial.
MonthName
Gets	the	month	name	of	its
integer	representation.
WeekdayName
Gets	the	weekday	name	of	its
integer	representation.

	

Error	Handling	Functions 	

Statements	and	procedures	that	provide	runtime	error-handling
capabilities.

Description
These	statements	and	procedures	provide	ways	of	dealing	with
runtime	errors.	Specific	modules,	procedures	and	source	code	lines
can	be	retrieved,	and	error	handlers	can	be	set	up.

Determining	Errors
Procedures	that	retrieve	information	about	an	error.
Handling	Errors
Statements	that	allow	handling	of	errors.

Determining	Errors
Erl
Gets	the	line	in	source	code
where	the	error	occurred.
Erfn
Gets	the	name	of	the	function
where	the	error	occurred.
Ermn
Gets	the	name	of	the	source	file
where	the	error	occurred.
Err
Gets	the	error	number	of	the	last
error	that	occurred.
Error
Generates	an	error	using	an
error	number.

Handling	Errors
On	Error
Sets	a	global	error	handler	using
a	label.
On	Local	Error
Sets	a	local	error	handler	using
a	label.
Resume
Resumes	execution	at	the	line
where	the	error	occurred.
Resume	Next
Resumes	execution	at	the	line
after	where	the	error	occurred.

	

See	also

Error	Handling
Runtime	Error	Codes

File	I/O	Functions 	

Statements	and	procedures	for	working	with	files	and	devices.

Description
These	statements	and	procedures	provide	file	and	device	i/o
capabilities.	So	called	file	numbers	can	be	bound	to	files	or	devices,
which	can	be	read	or	written	to	using	formatted	(text	mode)	or
unformatted	(binary	mode)	data.	In	binary	mode,	files	and	devices	can
be	read	from	or	written	to	in	arbitrary	locations.	For	multithreaded
applications,	files	and	devices	can	also	be	locked.

Opening	Files	or	Devices
Procedures	and	other	keywords	that	provide	read	or	write	access	to	a
file	or	device.
Reading	from	and	Writing	to	Files	or	Devices
Procedures	that	read	and	write	data	to	an	opened	file	or	device.
File	Position	and	other	Info
Procedures	that	determine	where	reading	and	writing	will	take	place
within	an	opened	file.

Opening	Files	or	Devices
FreeFile
Gets	an	available	file	number
that	can	be	used	to	read	or	write
from	files	or	devices.
Open
Binds	a	file	number	to	a	physical
file	to	provide	reading	and
writing	capabilities.
Open	Com
Binds	a	file	number	to	a
communications	port.
Open	Cons
Binds	a	file	number	to	the
standard	input	and	output

Reading	from	and	Writing	to
Files	or	Devices
Input	#
Reads	a	list	of	values	from	a	file
or	device.
Write	#
Writes	a	list	of	values	to	a	file	or
device.
Input()
Reads	a	number	of	characters
from	a	file	or	device.
Winput()
Reads	a	number	of	wide
characters	from	a	file	or	device.
Line	Input	#

streams.
Open	Err
Binds	a	file	number	to	the
standard	input	and	error
streams.
Open	Lpt
Binds	a	file	number	to	a	printer
device.
Open	Pipe
Binds	a	file	number	to	the	input
and	output	streams	of	a
process.
Open	Scrn
Binds	a	file	number	directly	to
the	console.
Close
Unbinds	a	file	number	from	a	file
or	device.
Reset
Unbinds	all	active	file	numbers.

File	I/O	modes
Input	(File	Mode)
Text	data	can	be	read	from	the
file.
Output
Text	data	can	be	written	to	the
file.
Append
Text	data	is	added	to	the	end	of
a	file	when	output.
Binary
Arbitrary	data	can	be	read	from
or	written	to	the	file.
Random
Blocks	of	data	of	certain	size
can	be	read	from	and	written	to
the	file.

Reads	a	line	of	text	from	a	file	or
device.
Print	#
?	#
Writes	text	data	to	a	file	or
device.
Put	#
Writes	arbitrary	data	to	a	file	or
device.
Get	#
Reads	arbitrary	data	from	a	file
or	device.

File	Position	and	other	Info
LOF
Gets	the	length	(in	bytes)	of	a
file.
LOC
Gets	the	file	position	of	the	last
read	or	write	operation.
EOF
Returns	true	if	all	of	the	data	has
been	read	from	a	file.
Seek	(Statement)
Sets	the	file	position	of	the	next
read	or	write	operation.
Seek	(Function)
Gets	the	file	position	of	the	next
read	or	write	operation.
Lock
Restricts	read	or	write	access	to
a	file	or	portion	of	a	file.
Unlock
Remove	read	or	write
restrictions	from	a	previous
Lock	command.

File	access	privileges
Access
An	overview	of	file	access
privileges.
Read	(File	Access)
Binary	data	can	only	be	read
from	the	file.
Write	(File	Access)
Binary	data	can	only	be	written
to	the	file.
Read	Write(File	Access)
Binary	data	can	be	read	from
and	written	to	the	file.

Character	encoding
Encoding
Specifies	the	character	encoding
of	a	file.

	

Mathematical	Functions 	

Procedures	that	work	with	numbers	mathematically.

Description
This	set	of	procedures	provide	basic	algebraic	and	trigonometric
function.	Random	numbers	can	also	be	retrieved,	using	a	variety	of
random	number	generators.

Algebraic	Procedures
Absolute	values,	logarithms,	square	roots	and	more.
Trigonometry	Procedures
Sine,	Cosine	and	other	trigonometry-related	procedures.
Miscellaneous	Procedures
Miscellaneous	procedures.

Algebraic	Procedures
Abs
Returns	the	absolute	value	of	a
number.
Exp
Returns	e	raised	to	some	power.
Log
Returns	the	natural	logarithm	of
a	number.
Sqr
Returns	the	square	root	of	a
number.
Fix
Returns	the	integer	part	of	a
number.
Frac
Returns	the	fractional	part	of	a
number.
Int
Returns	the	largest	integer	less

Trigonometric	Procedures
Sin
Returns	the	sine	of	an	angle.
Asin
Returns	the	arcsine	of	a	number.
Cos
Returns	the	cosine	of	an	angle.
Acos
Returns	the	arccosine	of	a
number.
Tan
Returns	the	tangent	of	an	angle.
Atn
Returns	the	arctangent	of	a
number.
Atan2
Returns	the	arctangent	of	the
ratio	between	two	numbers.

Miscellaneous	Procedures

than	or	equal	to	a	number.
Sgn
Returns	the	sign	of	a	number.

Randomize
Seeds	the	random	number
generator	used	by	Rnd.
Rnd
Returns	a	random	Double	in	the
range	[0,	1).

	

Memory	Functions 	

Procedures	that	work	with	static	and	dynamic	memory.

Description
These	procedures	provide	access	to	the	free	store,	or	heap.	Memory
from	the	free	store	can	be	reserved	and	freed,	and	procedures	are
provided	to	read	and	write	directly	to	that	memory.

Working	with	Dynamic	Memory
Procedures	that	reserve,	resize	or	free	dynamic	memory.
Miscellaneous	Procedures
Procedures	that	read	or	write	values	to	and	from	addresses	in	memory.

Working	with	Dynamic
Memory
Allocate
Reserves	a	number	of	bytes	of
uninitialized	memory	and	returns
the	address.
CAllocate
Reserves	a	number	of	bytes	of
initialized	(zeroed)	memory	and
returns	the	address.
Reallocate
Changes	the	size	of	reserved
memory.
Deallocate
Returns	reserved	memory	back
to	the	system.

Miscellaneous	Procedures
Peek
Reads	some	type	of	value	from
an	address.
Poke
Writes	some	type	of	value	to	an
address.
Clear
Clears	data	in	an	array	with	a
specified	value.
Swap
Exchange	the	contents	of	two
variables.
SAdd
Returns	the	address	for	the	data
in	a	string	variable.

	

Operating	System	Functions 	

Statements	and	procedures	for	working	with	files,	directories	and	the
system.

Description
The	statements	and	procedures	listed	here	provide	access	to	the
operating	system	environment.	They	transfer	execution	to	external
programs,	get	information	about	files	and	directories,	manipulate	the
file	system	and	send	commands	to	the	command	shell.

Working	with	Files
Procedures	that	deal	with	files.
Working	with	Directories
Various	directory	management	procedures.
File	Properties
Get	information	about	files.
System	Procedures
Procedures	for	working	with	the	environment.

Working	with	Files
Exec	and	Chain
Temporarily	transfers	control	to
another	program.
Run
Transfers	control	to	another
program.
Kill
Deletes	an	existing	file.
Name
Renames	an	existing	file.

Working	with	Directories
CurDir
Gets	the	current	working
directory.

File	Properties
FileAttr
Gets	information	about	a	file
bound	to	a	file	number.
FileCopy
Copies	a	file.
FileDateTime
Gets	the	last	modified	date	and
time	of	a	file.
FileExists
Tests	for	the	existence	of	a	file.
FileLen
Gets	the	length	(in	bytes)	of	a
file.

System	Procedures

ChDir
Sets	the	current	working
directory.
Dir
Gets	the	names	of	files	or
directories	matching	certain
attributes.
ExePath
Gets	the	directory	of	the	current
running	program.
MkDir
Creates	a	new	directory.
RmDir
Deletes	an	existing	directory.

Fre
Gets	the	amount	of	free	memory
(in	bytes)	available.
Command
Gets	the	command-line
parameters	passed	to	the
program.
Environ
Gets	the	value	of	an
environment	variable.
Isredirected
Checks	whether	stdin	or	stdout
is	redirected	to	a	file	or	not.
SetEnviron
Sets	the	value	of	an
environment	variable.
Shell
Sends	a	command	to	the
system	command	interpreter.
System
Closes	all	open	files	and	exits
the	program.

	

String	Functions 	

Statements	and	Procedures	that	work	with	strings.

Description
These	statements	and	procedures	provide	many	ways	to	create	and
manipulate	strings	and	substrings.	Numbers	can	be	converted	to
strings	and	vice-versa.	Procedures	are	also	provided	to	aid	in
serialization	of	numeric	data,	perhaps	for	persistent	storage.

Creating	Strings
String	data	types	and	procedures	that	create	new	strings.
Character	Conversions
Procedures	that	convert	from	character	codes	to	strings	and	back.
Numeric/Boolean	to	String	Conversions
Procedures	that	convert	numeric	values	to	strings.
String	to	Numeric	Conversions
Procedures	that	convert	strings	to	numeric	values.
Numeric	Serializations
Procedures	that	convert	raw	numeric	data	to	and	from	strings	suitable
for	storage.
Working	with	Substrings
Procedures	that	return	subsets	of	strings,	or	that	modify	subsets	of
strings.

Creating	Strings
String
Standard	data	type:	8	bit
character	string.
String	(Function)
Returns	a	String	of	multiple
characters.
ZString
Standard	data	type:	null
terminated	8	bit	character	string.
WString

Numeric	Serialization
MKD
Returns	an	eight	character
String	representation	of	a
Double.
MKI
Returns	a	four	character	String
representation	of	a	Integer.
MKL
Returns	a	four	character	String
representation	of	a	Long.

Standard	data	type:	wide
character	string.
Wstring	(Function)
Returns	a	WString	of	multiple
characters.
Space
Returns	a	String	consisting	of
spaces.
WSpace
Returns	a	WString	consisting	of
spaces.
Len
Returns	the	length	of	a	string	in
characters.

Character	Conversion
Asc
Returns	an	Integer
representation	of	an	character.
Chr
Returns	a	string	of	one	or	more
characters	from	their	ASCII
Integer	representation.
WChr
Returns	a	WString	of	one	or
more	characters	from	their
Unicode	Integer	representation.

Numeric/Boolean	to	String
Conversions
Bin
Returns	a	binary	String
representation	of	an	integral
value.
WBin
Returns	a	binary	WString
representation	of	an	integral
value.
Hex

MKLongInt
Returns	an	eight	character
String	representation	of	a
LongInt.
MKS
Returns	a	four	character	String
representation	of	a	Single.
MKShort
Returns	a	two	character	String
representation	of	a	Short.
CVD
Returns	a	Double
representation	of	an	eight
character	String.
CVI
Returns	an	Integer
representation	of	a	four
character	String.
CVL
Returns	a	Long	representation
of	a	four	character	String.
CVLongInt
Returns	a	LongInt
representation	of	an	eight
character	String.
CVS
Returns	a	Single	representation
of	a	four	character	String.
CVShort
Returns	a	Short	representation
of	a	two	character	String.

Working	with	Substrings
Left
Returns	a	substring	of	the
leftmost	characters	in	a	string.
Mid	(Function)
Returns	a	substring	of	a	string.
Right

Returns	a	hexadecimal	String
representation	of	an	integral
value.
WHex
Returns	a	hexadecimal	WString
representation	of	an	integral
value.
Oct
Returns	an	octal	String
representation	of	an	integral
value.
WOct
Returns	an	octal	WString
representation	of	an	integral
value.
Str
Returns	the	String
representation	of	numeric	value
or	boolean.
WStr
Returns	the	WString
representation	of	numeric	value.
Format
Returns	a	formatted	String
representation	of	a	Double.

String	to	Numeric
Conversions
Val
Returns	the	Double	conversion
of	a	numeric	string.
ValInt
Returns	the	Integer	conversion
of	a	numeric	string.
ValLng
Returns	the	Long	conversion	of
a	numeric	string.
ValUInt
Returns	the	UInteger

Returns	a	substring	of	the
rightmost	characters	in	a	string.
LCase
Returns	a	copy	of	a	string
converted	to	lowercase	alpha
characters.
UCase
Returns	a	copy	of	a	string
converted	to	uppercase	alpha
characters.
LTrim
Removes	surrounding
substrings	or	characters	on	the
left	side	of	a	string.
RTrim
Removes	surrounding
substrings	or	characters	on	the
right	side	of	a	string.
Trim
Removes	surrounding
substrings	or	characters	on	the
left	and	right	side	of	a	string.
InStr
Returns	the	first	occurrence	of	a
substring	or	character	within	a
string.
InStrRev
Returns	the	last	occurrence	of	a
substring	or	character	within	a
string.
Mid	(Statement)
Copies	a	substring	to	a
substring	of	a	string.
LSet
Left-justifies	a	string.
RSet
Right-justifies	a	string.

conversion	of	a	numeric	string.
ValULng
Returns	the	Ulong	conversion	of
a	numeric	string.

	

Threading	Support	Functions 	

Procedures	for	working	with	multithreaded	applications.

Description
These	procedures	allow	for	multithreaded	programming.	Threads	and
conditional	variables	can	be	created	and	destroyed,	and	so-called
mutexes	can	be	obtained	to	protect	thread-sensitive	data.

Threads
Procedures	that	start	and	wait	for	threaded	procedures.
Conditional	Varables
Procedures	that	create	and	signal	conditional	variables.
Mutexes
Procedures	that	deal	with	mutexes.

Threads
Threadcall
Starts	a	procedure	with
parameters	in	a	separate	thread
of	execution.
ThreadCreate
Starts	a	procedure	in	a	separate
thread	of	execution.
Threaddetach
Releases	a	thread	handle
without	waiting	for	the	thread	to
finish.
ThreadWait
Waits	for	a	thread	to	finish	and
releases	the	thread	handle.

Conditional	Variables
CondCreate
Creates	a	conditional	variable.
CondWait

Mutexes
MutexCreate
Creates	a	mutex.
MutexLock
Acquires	a	lock	on	a	mutex.
MutexUnlock
Releases	a	lock	on	a	mutex.
MutexDestroy
Destroys	a	mutex	that	is	no
longer	needed.

Pauses	execution	of	a	threaded
procedure.
CondSignal
Resumes	execution	of	a
threaded	procedure	waiting	for	a
conditional.
CondBroadcast
Resumes	all	threaded
procedures	waiting	for	a
conditional.
CondDestroy
Destroys	a	conditional	variable
that	is	no	longer	needed.

	

Platform	Differences

These	procedures	are	not	supported	in	DOS.

User	Input 	

Statements	and	procedures	that	get	input	from	the	user.

Description
These	statements	and	procedures	allow	access	to	the	keyboard	buffer,
and	provide	ways	of	getting	input	from	the	user.

Reading	keys	from	the	keyboard	buffer
Procedures	that	read	individual	keys	from	the	keyboard	buffer.
Reading	values	from	the	keyboard	buffer
Procedures	that	read	characters	and	values	from	the	keyboard	buffer.

Reading	values	from	the
keyboard	buffer
Input
Reads	values	from	the	keyboard
buffer.
Line	Input
Reads	a	line	of	text	from	the
keyboard	buffer.
Input()
Reads	a	number	of	characters
from	the	keyboard	buffer,	file	or
device.
Winput()
Reads	a	number	of	wide
characters	from	the	keyboard
buffer,	file	or	device.

Reading	keys	from	the
keyboard	buffer
Inkey
Gets	the	first	key,	if	any,	waiting
in	the	keyboard	buffer.
GetKey
Gets	and	waits	for	the	first	key	in
the	keyboard	buffer.

	

2D	Drawing	Functions 	

Statements	and	procedures	for	working	with	2D	graphics.

Description
The	statements	and	procedures	listed	here	provide	ways	of	drawing	to
the	screen.	Image	buffers	can	be	created	and	blitted	to	the	screen
using	a	variety	of	blending	methods.	Palette	colors	can	be	retrieved	or
set	in	graphics	modes	that	support	them.

Working	with	Color
Procedures	that	control	the	color	used	by	other	drawing	procedures.
Drawing	to	Image	Buffers
Procedures	that	draw	shapes	and	text	onto	image	buffers	or	to	the
screen.
Image	Buffer	Creation
Procedures	that	create,	free	and	save	image	buffers.
Blitting	Image	Buffers
Procedures	that	draw	image	buffers	onto	other	image	buffers	or	to	the
screen.

Working	with	Color
Color
Sets	the	foreground	and
background	color	to	use	with	the
drawing	procedures.
Palette
Gets	or	sets	color	table
information	in	paletted	modes.
RGB
Returns	a	color	value	for
hi/truecolor	modes.
RGBA
Returns	a	color	value	including
alpha	(transparency)	for
hi/truecolor	modes.

Blitting	Image	Buffers
Put	(Graphics)
Blits	an	image	buffer	to	another
image	buffer	or	screen.

Blending	Methods
Add
Saturated	addition	of	the	source
and	target	components.
Alpha
Blend	using	a	uniform
transparency	or	the	image
buffer's	alpha	channel.
And
Combine	the	source	and	target

Point
Gets	a	pixel	value	from	an
image	buffer	or	screen.

Drawing	to	Image	Buffers
PSet	and	PReset
Plots	a	single	pixel	on	an	image
buffer	or	screen.
Line	(Graphics)
Plots	a	line	of	pixels	on	an
image	buffer	or	screen.
Circle
Plots	circles	and	ellipses	on	an
image	buffer	or	screen.
Draw
Draws	in	a	sequence	of
commands	on	an	image	buffer
or	screen.
Draw	String
Writes	text	to	an	image	buffer	or
screen.
Paint
Fills	an	area	with	color	on	an
image	buffer	or	screen.

Image	Buffer	Creation
Get	(Graphics)
Creates	an	image	buffer	from	a
portion	of	another	image	buffer
or	screen.
ImageCreate
Creates	an	image	buffer	of	a
certain	size	and	pixel	depth.
ImageDestroy
Frees	an	image	buffer	resource.
ImageConvertRow
Converts	a	row	of	pixels	in	an
image	buffer	to	a	different	color
depth.

components	using	a	bitwise	And
Or
Combine	the	source	and	target
components	using	a	bitwise	Or
PSet
Directly	copy	pixel	colors	from
the	source	to	the	destination.
Trans
Pixels	matching	the	transparent
mask	color	are	not	blitted.
Custom
Allows	a	custom	blending
procedure	to	be	used.
Xor
Combine	the	source	and	target
components	using	a	bitwise	Xor

ImageInfo
Retrieves	useful	information
about	an	image	buffer
BLoad
Creates	an	image	buffer	from	a
file.
BSave
Saves	an	image	buffer	to	a	file.

	

User	Input	Functions 	

Procedures	for	working	with	mice,	gaming	devices	and	keyboards.

Description
These	procedures	provide	access	to	external	devices	such	as
keyboards,	mice	and	gamepads.

Mouse	and	Joystick	Input
Procedures	that	provide	state	information	of	the	mouse	or	joystick.
Keyboard	Input
Procedures	that	provide	keyboard	state	information.

Mouse	and	Joystick	Input
GetMouse
Gets	button	and	axis	information
for	the	mouse.
SetMouse
Sets	position	and	visibility	of	the
mouse	cursor.
GetJoystick
Gets	button	and	axis	information
for	gaming	devices.
Stick
Gets	axis	position	for	gaming
devices.
Strig
Gets	button	state	for	gaming
devices.

Keyboard	Input
MultiKey
Gets	key	information	for	the
keyboard.

	

Screen	Functions 	

Statements	and	procedures	that	work	with	the	graphics	display.

Description
These	statements	and	procedures	control	the	graphics	capabilities	of
the	FreeBASIC	graphics	library.	Screen	modes	can	be	set	with	varying
resolutions	and	color	depths,	window	events	can	be	handled,	and
specific	OpenGL	procedures	can	be	retrieved.

Working	with	screen	modes
Procedures	for	setting	and	retrieving	information	about	screen	modes.
Working	with	pages
Procedures	that	manipulate	screen	pages.
Working	video	memory
Procedures	that	provide	direct	access	to	framebuffer	memory.
Screen	Metrics
Procedures	that	control	the	way	coordinates	are	interpreted.

Working	with	screen	modes
ScreenList
Gets	the	available	fullscreen
resolutions.
Screen	and	ScreenRes
Sets	a	new	graphics	display
mode.
ScreenInfo
Gets	information	about	the
system	desktop	or	current
display	mode.
ScreenControl
Gets	or	sets	internal	graphics
library	settings.
ScreenEvent
Gets	system	events.
ScreenGLProc

Working	video	memory
ScreenPtr
Gets	the	address	of	the	working
page's	framebuffer.
ScreenLock
Locks	the	current	working
page's	framebuffer	for	direct
access.
ScreenUnlock
Reverts	a	previous	ScreenLock
command.

Screen	Metrics
View	(Graphics)
Sets	a	clipping	region	for	all
drawing	and	blitting	procedures.
Window

Returns	the	address	of	an
OpenGL	procedure.
WindowTitle
Sets	the	running	program's
window	caption.

Working	with	pages
Cls
Clears	the	entire	screen	or
viewport.
ScreenSet
Sets	the	current	work	and	visible
pages.
ScreenCopy	and	PCopy	and
Flip
Copies	pixel	data	from	one	page
to	another.
ScreenSync
Waits	for	the	vertical	refresh	of
the	monitor.

Sets	a	new	coordinate	mapping
for	the	current	viewport.
PMap
Converts	coordinates	between
physical	and	view	mappings.
Pointcoord
Queries	Draw's	pen	position.

	

GfxLib	-	FreeBASIC	graphics	library	overview 	

GfxLib	is	the	built-in	graphics	library	included	in	FreeBASIC.	As	well	as
re-creating	every	QuickBASIC	graphics	command,	GfxLib	has	built-in
commands	to	handle	input	from	the	keyboard	and	mouse.	Major
contributors	of	the	library	are	Lillo,	CoderJeff	and	DrV.

The	library	supports	various	drivers	depending	on	the	platform:	

All:
Null	Does	nothing,	allows	to	use	graphics	functions	on	in-
memory	buffers	and	such,	without	anything	being	displayed
in	a	graphics	window.	(gfxlib2/gfx_driver_null.c)

Win32:
DirectX	The	default	selection	of	FB	GfxLib.	May	not	be
available	on	old	Windows	installations.
(gfxlib2/win32/gfx_driver_ddraw.c)
GDI	The	"safest"	one,	available	in	all	Win32	versions.	Bug
note:	broken	in	FB	versions	0.20	to	0.24	(crash),	and	minor
problems	0.18.5,	and	0.90.x	and	1.xx	("banding	effects",	try
extra	SCREENUNLOCK),	(forum	discussion:	p=106600)
(gfxlib2/win32/gfx_driver_gdi.c)
OpenGL	(gfxlib2/win32/gfx_driver_opengl.c)

Linux	&	others:
X11	The	default	on	Unix	systems
(gfxlib2/unix/gfx_driver_x11.c)
OpenGL	(on	top	of	X11)
(gfxlib2/unix/gfx_driver_opengl_x11.c)
FBDev	Linux	framebuffer	device	--	fallback	in	case	X11	is
disabled	(gfxlib2/linux/gfx_driver_fbdev.c)

DOS:
BIOS	(gfxlib2/dos/gfx_driver_bios.c)

http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/gfx_driver_null.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/win32/gfx_driver_ddraw.c
http://www.freebasic.net/forum/viewtopic.php?p=106600#106600
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/win32/gfx_driver_gdi.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/win32/gfx_driver_opengl.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/unix/gfx_driver_x11.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/unix/gfx_driver_opengl_x11.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/linux/gfx_driver_fbdev.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/dos/gfx_driver_bios.c

ModeX	"tuned"	320x240x8bpp	VGA	mode
(gfxlib2/dos/gfx_driver_modex.c)
VESA	banked	compatible	with	very	old	VESA	1.x
implementations	(gfxlib2/dos/gfx_driver_vesa_bnk.c)
VESA	linear	needs	VESA	version	at	least	2.0,	usually	faster
than	banked	VESA	(gfxlib2/dos/gfx_driver_vesa_lin.c)
VGA	(gfxlib2/dos/gfx_driver_vga.c)
Bug	note:	Palette	doesn't	work	well	(forum	discussion:
t=12691	2008)	(forum	discussion:	t=19980	2012)

ScreenControl	can	be	used	(SET_DRIVER_NAME	103)	to	override	the
default	driver	preferences.

Platform	Differences

In	DOS,	GfxLib	will	create	and	"manage"	a	mouse	arrow	if	a
mouse	driver	is	detected.	There	is	no	"official"	way	to	disable
this.	Also	note	that	the	arrow	doesn't	react	to	mouse
movements	while	the	screen	is	locked.
In	DOS,	Windowing	and	OpenGL	related	commands	and
switches	are	not	available	(they	exist	but	do	nothing,	or	return
some	values	with	no	meaning)
In	DOS,	the	refresh	rate	setting	is	not	available	(some	VESA
cards	do	support	it,	but	FreeBASIC	for	now	doesn't)
In	DOS,	the	resolution	must	match	one	supported	by	the
graphics	card.	GfxLib	will	try	to	find	an	appropriate	mode	from
VGA	modes,	ModeX	or	VESA,	preferring	VESA	LFB	interface	if
available,	or	banked	VESA	otherwise.	Unsupported	resolutions
may	currently	crash	the	program	(if	you	fail	to	check
SCREENPTR	for	ZERO	before	using	it),	though	in	future	GfxLib
may	try	to	find	a	close	match	instead.	For	optimal	compatibility,
you	should	support	"safe"	resolutions	like	640x480	and
800x600,	and	maybe	1024x768.	There	are	various	additional
modes	like	768x576	around,	but	they	are	vendor	specific	and
lacking	on	many	other	cards.	Also	modes	1024x768	and	above
are	not	available	on	older	cards	and	laptops.
It	has	been	observed	that	SCREEN	and	SCREENRES	may	fail

http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/dos/gfx_driver_modex.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/dos/gfx_driver_vesa_bnk.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/dos/gfx_driver_vesa_lin.c
http://sourceforge.net/p/fbc/code/ci/master/tree/src/gfxlib2/dos/gfx_driver_vga.c
http://freebasic.net/forum/viewtopic.php?t=12691
http://freebasic.net/forum/viewtopic.php?t=19980

to	clear	the	screen	in	DOS,	actually	this	is	probably	a	BIOS	bug
that	GfxLib	currently	doesn't	workaround.

Differences	from	QB

Graphics	support	was	internally	redesigned.	QB	used	VGA
graphics	modes,	and	wrote	directly	into	the	VGA	RAM.	Multiple
pages	were	available	as	long	as	the	card	supported	them.	FB
uses	backbuffers,	one	per	defined	page,	and	copies	them	to	the
video	RAM	(VGA	(DOS),	VESA	(DOS),	DirectX	(Win32),	...)	in
the	background.	Graphics	commands	do	work	as	they	used	to
in	QB,	but	a	few	notable	differences	are	present:

The	background	screen	updating	eats	a	considerable
amount	of	CPU	performance.
There	is	a	thread	(Win32	and	Linux)	or	ISR	(DOS,	uses
the	PIT)	active	for	this.
Mixing	FB's	graphics	support	with	low-level	screen
accesses	(VGA)	is	not	supported,	even	in	DOS.
However	direct	screen	memory	access	is	possible	using
Screenptr	and	Screenlock	and	is	fully	portable.	In	DOS
VGA	and	VESA	are	still	available,	but	can't	be	mixed	with
FB's	graphics	support.

See	also

GFX	Functions	Index
Screen	The	QB-like	way	to	set	graphics	mode
ScreenRes	More	flexible	alternative	to	Screen
ScreenList	Check	display	modes	available	for	FB	GfxLib	to	use
ScreenControl	Select	driver	and	more	
ScreenLock

ScreenUnlock

ScreenPtr	Semi-low	level	access
ScreenSet

ScreenCopy

ScreenInfo

ScreenGLProc

Internal	pixel	formats

DOS	Keyboard	Scancodes 	

Listing	of	keyboard	scancodes.

Description
Here	follows	a	list	of	hardware	keyboard	scancodes	accepted	by	the	MultiKey
function.	These	are	equal	to	DOS	scancodes,	and	are	guaranteed	to	be	always
recognized	on	all	platforms.

These	constants	are	also	defined	in	the	fbgfx.bi	include	file	you	can	use	in
your	programs.	If	you	are	using	the	lang	fb	dialect	then	everything	inside
fbgfx.bi	is	enclosed	in	the	FB	Namespace.	To	use	these	constants	in	lang	fb
either	prepend	"FB."	to	the	constant	name,	or	put	"Using	FB"	after	the	#include
line.
The	hexadecimal	code	is	not	required	and	provided	only	for	reference.

SC_ESCAPE							&h01

SC_1												&h02

SC_2												&h03

SC_3												&h04

SC_4												&h05

SC_5												&h06

SC_6												&h07

SC_7												&h08

SC_8												&h09

SC_9												&h0A

SC_0												&h0B

SC_MINUS								&h0C

SC_EQUALS							&h0D

SC_BACKSPACE				&h0E

SC_TAB										&h0F

SC_Q												&h10

SC_W												&h11

SC_E												&h12

SC_R												&h13

SC_T												&h14

SC_Y												&h15

SC_U												&h16

SC_I												&h17

SC_O												&h18

SC_P												&h19

SC_LEFTBRACKET		&h1A

SC_RIGHTBRACKET	&h1B

SC_ENTER								&h1C

SC_CONTROL						&h1D

SC_A												&h1E

SC_S												&h1F

SC_D												&h20

SC_F												&h21

SC_G												&h22

SC_H												&h23

SC_J												&h24

SC_K												&h25

SC_L												&h26

SC_SEMICOLON				&h27

SC_QUOTE								&h28

SC_TILDE								&h29

SC_LSHIFT							&h2A

SC_BACKSLASH				&h2B

SC_Z												&h2C

SC_X												&h2D

SC_C												&h2E

SC_V												&h2F

SC_B												&h30

SC_N												&h31

SC_M												&h32

SC_COMMA								&h33

SC_PERIOD							&h34

SC_SLASH								&h35

SC_RSHIFT							&h36

SC_MULTIPLY					&h37

SC_ALT										&h38

SC_SPACE								&h39

SC_CAPSLOCK					&h3A

SC_F1											&h3B

SC_F2											&h3C

SC_F3											&h3D

SC_F4											&h3E

SC_F5											&h3F

SC_F6											&h40

SC_F7											&h41

SC_F8											&h42

SC_F9											&h43

SC_F10										&h44

SC_NUMLOCK						&h45

SC_SCROLLLOCK			&h46

SC_HOME									&h47

SC_UP											&h48

SC_PAGEUP							&h49

SC_LEFT									&h4B

SC_RIGHT								&h4D

SC_PLUS									&h4E

SC_END										&h4F

SC_DOWN									&h50

SC_PAGEDOWN					&h51

SC_INSERT							&h52

SC_DELETE							&h53

SC_F11										&h57

SC_F12										&h58

''	Extra	scancodes	not	compatible	with	DOS	scancodes

SC_LWIN									&h7D

SC_RWIN									&h7E

SC_MENU									&h7F

See	also

MultiKey

Default	Palettes 	

Default	color	values	for	FreeBASIC	graphics	and	text	screen	modes.

FreeBASIC	initializes	the	palette	indexes	with	the	colors	in	the	tables	below.	The	colors	are	the	same	as	in	QB.	Colors
in	graphics	mode	can	be	changed	using	the	Palette	statement.	There	is	no	portable	way	of	changing	the	palette	in
console	mode.

Screen	mode	1
4	colors:	Black	and	white,	and	two	others
Screen	modes	2,	10	and	11
Monochromatic:	black	and	white.
Screen	modes	7,	8,	9,	12,	and	Console
Two	sets	of	8	colors:	normal	and	intense	(bright)
Screen	13	and	8-bit	modes
Multiple	color	and	grayscale	bands

Screen	mode	1

Value Name

0 black

1 cyan

2 magenta

3 white

Screen	modes	2,	10	and	11

Value Name

Screen	13	and	8-bit	modes

Screen	12	color	band

Colors	0	through	15	are	the	same	as	screen	12	mode.

Grayscale	band
Colors	16	through	31	are	grayscale	from	black	to	white.

Brightness/saturation	bands
3	bands	of	decreasing	brightness,	each	containing	3	bands	of
decreasing	saturation,	each	containing	24	hues	of	color	starting
and	ending	at	blue.

Name HB/HS HB/MS

blue 32 56

0 black

1 white

Screen	modes	7,	8,	9,	12,	and	Console

Normal
Value

Normal
Name

Intense
Value

Intense	Name

0 black 8 dark	grey

1 blue 9 bright	blue

2 green 10 bright	green

3 cyan 11 bright	cyan

4 red 12 bright	red

5 pink 13 bright	pink

6 yellow 14 bright	yellow

7 grey 15 white

magenta 36 60

red 40 64

yellow 44 58

green 48 72

cyan 52 76

Black	band
Colors	248	through	255	are	black.

	

Programmer's	Guide 	

FreeBASIC	programmer's	guide.

Work	in	Progress:	New	pages	created	for	this	guide	should	use	the
ProPg*	prefix.

Getting	Started
Hello	World
FreeBASIC	Primer	#1

Source	Files
Source	Files	(.bas)
Header	Files	(.bi)
Using	Prebuilt	Libraries

Lexical	Conventions
Comments
Identifier	Rules
Literals
Labels
Line	continuation

Variables	and	Datatypes
Constants	and	Enumerations
Numeric	Types
Strings	(string,	zstring,	and
wstring)
Coercion	and	Conversion
Constants
Variables

Arrays
Overview
Fixed-length	Arrays
Variable-length	Arrays
Array	Indexing

Statements	and	Expressions
Assignments
Operators	List
Operator	Precedence
Control	Flow	Statements

Procedures
Procedures	Overview
Passing	Arguments	to
Procedures
Returning	a	Value
Procedure	Scopes
Calling	Conventions
Recursion
Constructors	and	Destructors
Pointers	to	Procedures
Variable	Arguments

Making	Binaries
Executables
Static	Libraries
Shared	Libraries	(DLLs)
Profiling

Preprocessor
Overview
Conditional	Compilation
Macros

Other	Topics

Passing	Arrays	to	Procedures

Pointers
Overview
Pointer	Arithmetic

Declarations
Implicit	Declarations
Initialization
Storage	Classes
Variable	Lifetime
Variable	Scope
Namespaces
Variable	and	Procedure
Linkage

User	Defined	Types
Overview
Type	Aliases
Temporary	Types
Constructors	and	Destructors
Member	Procedures
Properties
Member	Access	Rights
Operator	Overloading
Iterators
New	and	Delete
Types	as	Objects

(And	topics	that	need	to	get
placed	elsewhere)
ASCII
Date	Serials
Radians
FreeBASIC	GfxLib	overview
Internal	Graphics	Formats
External	Graphics	File	Formats
Inline	Asm
Error	Handling
Intrinsic	Defines
C	Standard	Library	Functions
File	I/O	in	FreeBASIC

NOTE:	Existing	CatPg	pages
should	be	recreated	as	ProPg
pages	providing	a	general
overview	to	the	grouping	of
keywords.

	

Hello	World 	

This	example	is	a	classic	in	any	programming	language.

More	as	a	sanity	check	than	anything	else,	a	good	place	to	start	with	any
programming	language	is	to	try	a	very	simple	program	to	test	that	the
compiler	is	installed	correctly	and	that	a	valid	executable	can	be	made.

Open	up	any	editor	capable	of	saving	text	files	and	type	in	the	following
source	code:

Print	"Hello	World"

Save	the	file	with	a	'.bas'	extension.	For	example	'hello.bas'

From	a	command	prompt	or	shell	in	the	directory	where	'hello.bas'	was
saved,	type	the	following	command:

fbc	hello.bas

Depending	on	the	operating	system,	this	should	create	an	executable	file
in	the	same	directory	as	'hello.bas'.	It	might	be	named	'hello.exe'	or
'./hello',	for	example.

Run	the	executable,	and	we	should	have	the	following	output:

Hello	World

See	also

Freebasic	FAQ
Main	Features
Requirements
Installing
Running

FreeBASIC	Primer	#1 	

This	primer	is	intended	for	beginning	beginners,	for	those	who	are	just	starting	to	learn	how	to
program	and	using	FreeBASIC	do	to	it.

Learning	the	language
Learning	a	programming	language	means	learning	the	words	to	write	it	and	knowing	what
they	mean	when	they	are	written.	We	don't	need	to	learn	them	all	at	once.	
few	important	words	that	do	something	will	help	us	get	started.	Here	we	are	just	going	to
concentrate	on	these	keywords:

Dim

Print

Input

For...Next

If...Then

Do...Loop

Hello	World!
No	beginners	reference	is	complete	without	this	example.

Print	"Hello	World!"

The	text	between	the	pair	of	double	quotes	is	a	literal	string.	The	Print
output	text	to	the	display.	If	you	can	edit,	compile,	and	execute	this	example,	you	are	on
your	way.

Using	a	Variable	to	Store	Data
Sometimes	in	a	program	we	will	want	to	store	some	information	somewhere,	in	memory,
and	then	use	it	later.	To	store	something	in	memory	we	use	a	variable.	
FreeBASIC	are	of	some	specific	type,	like	a	number	or	a	string.	We	use	the	
declare	a	variable	name	and	specify	what	type	of	information	we	want	to	store	in	it.

Dim	text	As	String

text	=	"Hello	World!"

Print	text

We	are	using	Dim	to	let	the	compiler	know	that	we	want	to	use	a	variable	named	
program	and	that	we	will	be	putting	String	data	in	it.	We	then	assign	(copy)	
in	to	the	variable.	Finally,	we	use	Print	to	output	it	to	the	display.

Using	a	Variable	in	an	Expression
An	expression	is	a	generic	term	for	describing	a	part	of	the	source	code	that	can	be
evaluated.	After	an	expression	is	evaluated,	we	can	then	do	something	with	it,	like	assign
(copy)	it	to	a	variable.

Dim	a	As	String,	b	As	String,	text	As	String

a	=	"Hello"

b	=	"World"

text	=	a	+	"	"	+	b	+	"!"

Print	text

We	are	assigning	the	variables	a	and	b	with	some	data.	We	are	then	using	the	variables	
and	b	in	an	expression	which	is	then	assigned	to	text.	Finally,	we	output	the	result	to	the
display.

Getting	Input	from	the	User
Often,	we	have	no	idea	what	data	is	needed	for	a	program	unless	the	user	gives	it	to	us.	
can't	put	it	in	our	source	code	since	we	won't	know	what	it	is	until	the	user	runs	the	program
and	tells	us	what	it	is.

Dim	answer	As	String

Input	"Type	something	and	press	enter:",	answer

Print	"You	typed:	'";	answer;	"'"

Here	the	Input	statement	will	first,	output	some	information	to	the	display,	and	then	wait	for
the	user	to	give	the	program	some	data.	In	this	example,	we	just	output	back	to	the	display,
exactly	what	the	user	typed	in.

Doing	Some	Math
Variables	and	expressions	are	not	just	limited	to	strings.	Most	early	languages	didn't	handle
strings	very	well	if	at	all.	Writing	mathematical	expressions	is	similar	to	how	they	might	be
written	with	pencil	and	paper.

Dim	a	As	Integer,	b	As	Integer,	c	As	Integer

a	=	5

b	=	7

c	=	a	+	b

Print	"a	=	";	a

Print	"a	=	";	b

Print	"a	+	b	=	";	c

We	are	assigning	values	to	the	variables	a,	b	and	c.	We	are	using	Integer
data	type.	An	integer	can	be	positive	or	negative,	but	not	have	any	fractions.

Doing	Some	Math	with	Input
This	is	similar	to	the	previous	example,	except	we	will	let	the	user	choose	the	numbers	we
are	going	to	add	together.

Dim	a	As	Integer,	b	As	Integer,	r	As	Integer

Input	"Enter	a	number:",	a

Input	"Enter	another	number:",	b

r	=	a	+	b

Print	"The	sum	of	the	numbers	is	";	r

Dim	lets	the	compiler	know	which	variable	names	we	want	to	use	and	that	they	are	going	to
hold	Integer	data.	We	are	using	Input	to	get	the	numbers	from	the	user,	and	
display	the	results.

Doing	More	Math	with	Input
Numeric	variables	are	not	limited	to	just	integers.	We	can	also	use	Single
precision	data	types	which	can	represent	fractions.	In	this	example	we	will	take	some	input
from	the	user	to	convert	a	weight	in	pounds	to	kilograms.

Dim	lb	As	Single,	kg	As	Single

Input	"Enter	a	weight	in	pounds:",	lb

kg	=	lb	*	0.454

Print	lb;	"	lb.	is	equal	to	";	kg;	"	kg"

Repeating	Statements
Using	For...Next	statement	we	can	tell	the	program	to	do	something	repeatedly	a	set
number	of	times.	For	example	lets	say	we	wanted	to	add	up	all	the	numbers	from	1	to	100.

Dim	total	As	Integer

Dim	number	As	Integer

total	=	0

For	number	=	1	To	100

		total	=	total	+	number

Next

Print	"The	sum	of	number	from	1	to	100	is	";	total

Making	a	Decision
A	program	can	choose	which	statements	to	execute	using	a	conditional	statement	like

If...Then.	We	can	use	the	value	of	a	variable	or	the	result	of	an	expression	to	decide	if	we
should,	or	should	not,	execute	one	or	more	statements.

Dim	number	As	Integer

Input	"Enter	a	number	:	",	number

Print	"Your	number	is	";

If	number	<	0	Then

		Print	"negative"

ElseIf	number	>	0	Then

		Print	"positive"

Else

		Print	"zero"

End	If

After	getting	a	number	from	the	user,	we	are	going	to	output	a	word	(positive,	negative,	or
zero)	based	on	which	condition	matches	the	statement.

Repeating	Statements	(Again)
Here	we	will	use	another	looping	structure	Do...Loop	to	repeat	some	statements.	
the	program	know	to	stop	repeating	the	statements?	We	will	use	If...Then
decision	when	to	get	out	of	the	loop.

Dim	total	As	Single,	count	As	Single,	number	As	Single

Dim	text	As	String

Print	"This	program	will	calculate	the	sum	and	average	for	a"

Print	"list	of	numbers.		Enter	an	empty	value	to	end."

Print

Do

		Input	"Enter	a	number	:	",	text

		If	text	=	""	Then

				Exit	Do

		End	If

		count	=	count	+	1

		total	=	total	+	Val(text)

Loop

Print

Print	"You	entered	";	count;	"	numbers"

Print	"The	sum	is	";	total

If	count	<>	0	Then

		Print	"The	average	is	";	total	/	count

End	If

See	also

Dim

(Print	|	?)

Input

For...Next

If...Then

Do...Loop

Source	Files	(.bas) 	

Text	files	read	by	FreeBASIC	and	compiled	into	executable	code.

A	source	file	is	a	text	file	that	contains	FreeBASIC	language	statements.	
just	one	source	file	or	possibly	hundreds.	Source	files	are	read	by	the	compiler	and	compiled	into	object
code.	Object	code	is	then	linked	to	create	an	executable	or	can	be	stored	for	later	use	as	a	library.

FreeBASIC	by	default,	automatically	takes	care	of	compiling	sources	and	linking	object	modules	in	to
executables,	so	normally	it	is	possible	to	make	an	executable	program	by	just	passing	the	names	of	the
source	files	on	the	fbc	command	line.	For	example,	assuming	we	had	three	source	files	that	together
made	a	program,	we	could	create	an	executable	for	the	program	by	running	
on	a	command	line	as	follows:

fbc	myprog.bas	tools.bas	funcs.bas

Unicode	support

Besides	ASCII	files	with	Unicode	escape	sequences	(\u),	FreeBASIC	can	parse	UTF-8,	UTF-
16LE,	UTF-16BE,	UTF-32LE	and	UTF-32BE	source	(.bas)	or	header	(.bi)	files,	they	can	be	freely
mixed	with	other	sources/headers	in	the	same	project	(also	with	other	ASCII	files).

Literal	strings	can	be	typed	in	the	original	non-Latin	alphabet,	just	use	a	text-editor	that	supports
one	of	the	Unicode	formats	listed	above.

Implicit	main()
Some	languages	require	a	special	main()	procedure	be	defined	as	an	entry	point	to	the	program	which
define	the	first	statements	that	will	be	executed	when	the	program	starts.	
statements	in	module	level	code	and	normally	the	first	source	file	passed	to	fbc	on	the	command	line	will
be	used	as	the	"main"	module.	The	main	module	can	be	explicitly	names	by	passing	
command	line,	where	filename	is	the	name	of	the	main	module	without	the	.bas	extension.

				''	sample.bas

				Declare	Sub	ShowHelp()

				''	This	next	line	is	the	first	executable	statement	in	the	program

				If	Command(1)	=	""	Then

								ShowHelp

								End	0

				End	If				

				Sub	ShowHelp()

								Print	"no	options	specified."				

				End	Sub

Header	Files
A	header	file	is	a	special	kind	of	source	file	that	typically	only	contains	declarations	and	has	a	
extension.	See	Header	Files	(.bi).

See	also

fbc	command-line
Header	Files	(.bi)

Header	Files	(.bi) 	

Provides	an	interface	for	a	module.

A	header	file	is	a	special	kind	of	source	file	that	typically	only	contains	preprocessor
statements,	defines,	declarations,	prototypes,	constants,	enumerations,	or	similar	types	of
statements,	however,	a	header	file	can	contain	any	valid	source	code	if	the	purpose	suits.
What	makes	them	different	from	other	module	(.bas)	source	files,	is	instead	of	being	compiled
directly,	they	are	included	by	another	source	file	(module	or	header)	using	the	
preprocessor	directive.	All	compiled	libraries	typically	have	one	or	more	header	files	that	can
be	included	in	another	source	file	and	will	introduce	to	the	compiler	all	the	names	of	the
procedures	usable	in	a	particular	library.

FreeBASIC	Header	Files
Some	of	the	keywords,	constants,	and	procedures	documented	in	this	manual	are	not
normally	available	when	compiling	a	source	code	unless	a	specific	header	file	is	included	in
the	source	first.

datetime.bi

dir.bi

fbgfx.bi

file.bi

string.bi

vbcompat.bi

Case	Sensitivity
Although	the	FreeBASIC	language	itself	is	not	case-sensitive,	the	file	system	on	which	it	is
running	might	be.	If	a	header	file	can	not	be	found,	check	that	FreeBASIC	is	searching	for	it
the	correct	location	and	ensure	that	name	of	both	the	directory	and	filename	of	the	header
file	specified	in	the	#include	statement	is	using	the	correct	upper	and	lower	case	letters.

Path	Separators
FreeBASIC	will	automatically	switch	backslash	(\)	and	forward	slash	(/)	characters	as
needed	for	a	given	platform.	This	allows	source	code	to	be	easily	cross	compatible.

Including	a	header	only	once
It	is	common	that	header	files	need	to	#include	other	header	files	to	compile	correctly.
FreeBASIC	offers	three	methods	for	guarding	against	including	a	header	file	more	than
once.

#ifndef	guards	in	the	header	file
#include	once	where	the	file	is	included
#pragma	once	in	the	header	file	itself

#ifndef	guards	in	the	header	file
The	use	of	#ifndef	and	#define	is	a	common	practice	in	nearly	any	language	that	supports
preprocessing.	The	first	time	a	file	is	included,	a	unique	symbol	is	defined.	
same	header	file	is	included,	the	definition	of	the	symbol	is	checked,	and	if	it	is	already
defined,	the	contents	of	the	header	file	are	skipped.

''	header.bi

#ifndef	__HEADER_BI__

#define	__HEADER_BI__

#print	These	statements	will	only	be	included	once,

#print	even	though	header.bi	might	be	included	more	

#print	than	once	in	the	same	source	file.

#endif

#include	once
At	the	point	in	the	source	code	where	the	header	file	is	included,	the	optional	
specifier	of	the	#include	directive	can	tell	the	compiler	to	only	include	the	source	file	one
time.

''	header.bi

#include	once	"fbgfx.bi"

''	module.bas

#include	once	"fbgfx.bi"

#include	once	"header.bi"

#pragma	once
#pragma	once	can	be	used	in	a	header	file	to	indicate	that	the	header	file	should	only	be
included	once.	

''	header.bi

#pragma	once

#print	This	header	will	only	ever	be	included	once	per	module

See	also

Source	Files	(.bas)
Header	Files	Index

Using	Prebuilt	Libraries 	

FreeBASIC	is	distributed	with	many	headers	for	common	or	popular	libraries.	
headers	allow	a	programmer	to	use	functions	available	in	these	existing	static	or
shared	libraries	(DLLs).	

The	libraries	themselves	are	not	distributed	with	FreeBASIC,	but	most	can	be
downloaded	from	the	web	and	readily	installed.	Some	other	libraries	may	need	to
be	first	compiled	from	sources	to	be	used.	Please	see	the	documentation	for	the
specific	library	on	how	to	configure,	install,	and	use	them.

Some	static	or	shared	libraries	(DLLs)	may	be	already	present	on	the	system	since
they	might	be	part	of	FreeBASIC	itself	or	the	operating	system.

Although	many	headers	can	be	used	on	any	of	the	platforms	supported	by
FreeBASIC,	some	headers	are	platform	specific	and	will	not	be	usable	on	other
platforms.

FreeBASIC	headers
There	are	a	few	headers	that	are	specific	to	FreeBASIC	and	expose	some
functions	that	are	otherwise	not	available:

datetime.bi	-	Declarations	for	DateSerial,	DateValue,	IsDate,	Year
Day,	Weekday,	TimeSerial,	TimeValue,	Hour,	Minute,	Second,	Now,	DateAdd
DatePart,	DateDiff,	MonthName,	WeekdayName
dir.bi	-	Constants	to	be	used	with	Dir
fbgfx.bi	-	Additional	constants	and	structures	to	be	used	with	graphics
commands	such	as	MultiKey,	ScreenControl,	and	ScreenEvent,
ImageCreate.
file.bi	-	Declarations	for	FileCopy,	FileAttr,	FileLen,	FileExists
FileDateTime

string.bi	-	Declarations	for	Format
vbcompat.bi	-	Includes	datetime.bi,	dir.bi,	file.bi,	and	string.bi	plus
additional	constants	compatible	with	Microsoft	Visual	Basic.

C	Runtime	(CRT)

Where	possible	cross-platform	compatible	headers	have	been	provided	for	the	C
runtime	(CRT).	For	example,

#include	once	"crt.bi"

printf(!"Hello	World\n")

To	include	a	specific	CRT	header,	prefix	the	name	of	the	header	file	with	
For	example:

#include	once	"crt/stdio.bi"

Dim	f	As	FILE	Ptr

f	=	fopen("somefile.txt",	"w")

fprintf(f,	"Hello	File\n")

fclose(f)

Windows	API
Many	(many)	headers	for	the	Windows	API	are	available	for	inclusion	in
FreeBASIC	source	code.	In	most	cases	the	only	include	file	needed	is
"windows.bi".	For	example,

#include	once	"windows.bi"

MessageBox(null,	"Hello	World",	"FreeBASIC",	MB_OK

To	include	a	specific	Windows	API	header,	prefix	the	name	of	the	header	with
"win/"	for	example:

#include	once	"win/ddraw.bi"

Browse	the	"inc/win/"	directory	where	FreeBASIC	was	installed	to	see	all	of	the
available	Windows	API	headers.

Other	Headers	Provided
Browse	the	"inc/"	directory	located	where	FreeBASIC	was	installed	to	find	other
headers.	It	is	possible	that	headers	might	be	available	for	a	library	you	need	to

use.	Some	headers	are	located	in	"inc/"	and	others	might	be	located	in	a	sub-
directory.	To	include	headers	located	in	a	subdirectory	of	"inc/",	prefix	the	name	of
the	header	with	the	name	of	the	directory	where	it	is	located.	For	example:

''	located	at	inc/curl.bi

#include	once	"curl.bi"

''	located	at	inc/GL/gl.bi

#include	once	"GL/gl.bi"

Requirements	for	Using	Prebuilt	Static	Libraries

The	source	code	must	include	the	appropriate	headers	using	#include
The	static	library	must	be	linked	at	compile	time	by	using	either	
the	source	code	or	by	using	the	-l	option	on	the	command	line	to	specify
the	name	of	the	library.

Requirements	for	Using	Prebuilt	Shared	Libraries

The	source	code	must	include	the	appropriate	headers	using	#include
The	shared	library	(.DLL)	must	be	present	on	the	host	computer	where	the
compiled	program	will	run.

Comments 	

Comments	are	regions	of	text	that	the	compiler	will	ignore	but	may	contain	information
that	is	useful	to	the	programmer.	One	exception	are	metacommands	which	may
appear	in	certain	types	of	comments.

Single	Line	comments
The	single	quote	character	(')	may	be	used	to	indicate	a	comment	and	may	appear
after	other	keywords	on	a	source	line.	The	rest	of	the	statement	will	be	treated	as	a
comment.

'	comment	text

The	comment	statement:	Rem
A	source	code	statement	beginning	with	Rem	indicates	that	the	rest	of	the	line	is
comment	and	will	not	be	compiled.	Rem	behavior	is	the	same	as	above,	except	it
must	be	the	first	keyword	in	the	statement.

Rem	comment

Multi-line	comments
Multi-line	comments	are	marked	with	the	tokens	/'	and	'/.	All	text	between	the	two
markers	is	considered	comment	text	and	is	not	compiled.

Multi-line	comments	can	span	several	lines,	and	can	also	be	used	in	the	middle	of
statements.	After	the	end	of	the	comment,	the	statement	will	continue	to	be	parsed
as	normal	(even	if	the	comment	crosses	line	breaks).

/'	Multi-line

			comment	'/

Print	"Hello"	/'	embedded	comment'/	"	world"

Note:	If	FreeBASIC	encounters	a	close-comment	marker	while	it's	not	in	a	multi-line
comment,	it	will	treat	it	as	a	normal	single-line	comment	due	to	the	single	quote.

Nested	Comments
A	multi-line	comment	can	contain	other	multi-line	comments	inside	it.	Each	inner
comment	has	its	own	open-	and	close-comment	markers.

/'

	This	is	a	comment.

	/'

		This	is	a	comment	inside	a	comment

	'/

				This	Is	a	comment.

'/

A	multi-line	comment	can	contain	unlimited	levels	of	nested	comments.	
will	continue	to	parse	the	multi-line	comment	for	more	markers	until	the	number	of
close-comment	markers	reaches	the	number	of	open-comment	markers,	i.e.	when	it
has	closed	all	the	comments	it	has	opened.

Comments	after	line	continuation
A	single-line	comment	may	appear	after	the	line	continuation	character	(
multi-line	statement.	FreeBASIC	does	not	parse	the	text	after	the	line	continuation
character,	though,	so	you	can't	open	multi-line	comments	after	them.

Print	_	'	line

				"This	is	part	of	the	previous	line's	statement"

Metacommands
Metacommands,	such	as	$Static	and	$Include,	can	be	placed	in	single-line
comments.	The	$	sign	and	the	keyword	must	be	the	first	two	things	in	the	statement,

not	including	white	space.

Rem	compile	With	-lang	fblite	Or	qb

#lang	"fblite"

Rem	$Static

'	$include:	'vbcompat.bi'

Single-line	comment	parsing
When	you	make	a	single-line	comment,	FreeBASIC	will	parse	the	comment,	to
check	for	a	metacommand.	If	it	finds	a	multi-line	comment,	it	will	treat	it	as	usual,
and	continue	parsing	the	single-line	comment	after	the	close-comment	marker.

If	you	want	to	prevent	FreeBASIC	parsing	the	single-line	comment,	put	another
single	quote	('),	at	the	start	of	the	comment.	FreeBASIC	will	treat	the	rest	of	the
line,	including	multi-line	comment	markers	and	metacommands,	as	ordinary	text,
and	will	ignore	it.	Other	words	encountered	in	a	comment	will	also	stop	the	parsing.

Note:	As	of	version	0.21.0,	this	will	not	longer	apply	in	the	
dialect,	and	multi-line	comment	markers	will	be	completely	ignored
inside	single-line	comments

''	$static	<--	will	not	get	parsed

''	this	multiline	comment	marker	("/'")	will	be	ignored

Print	"This	line	is	not	a	comment."

Example

/'	this	is	a	multi	line	

comment	as	a	header	of

this	example	'/

Rem	This	Is	a	Single	Line	comment

'this	is	a	single	line	comment

Dim	a	As	Integer			'comment	following	a	statement

Dim	b	As	/'	can	comment	in	here	also	'/				Integer

#if	0

				before	version	0.16,	This	was	the

				only	way	of	commenting	Out	sections

				With	multiple	lines	of	code.

#endif

See	also

Rem

Identifier	Rules 	

Naming	conventions	for	FreeBASIC	symbols.

Description
An	identifier	is	a	symbolic	name	which	uniquely	identifies	a	variable,
Type,	Union,	Enum,	Function,	Sub,	or	Property,	within	its	scope	or
Namespace.

Identifiers	may	contain	only	uppercase	and	lowercase	Latin	characters
a-z	and	A-Z),	digits	(0-9),	and	the	underscore	character	(_).	The	first
character	of	an	identifier	must	be	a	letter	or	underscore,	not	a	digit.

Identifiers	are	case-insensitive:	FOO	and	foo	(and	all	other	permutations
of	uppercase	and	lowercase)	refer	to	the	same	symbol.

In	the	-lang	qb	and	-lang	fblite	dialects,	identifiers	may	have	a	type
suffix	at	the	end	indicating	one	of	the	standard	data	types:

%	for	Integer
&	for	Long
!	for	Single
#	for	Double
$	for	String

The	use	of	these	symbols	is	generally	discouraged	in	and	is	not
allowed	in	the	-lang	fb	dialect	(the	default).

The	alternative	is	to	be	explicit	-	for	example,	Dim	As	Integer	foo	or
Dim	foo	As	Integer	instead	of	Dim	foo%.

In	the	-lang	qb	and	-lang	fblite	dialects,	identifiers	may	contain	one	or
more	periods	(.).

Dialect	Differences

Periods	in	symbol	names	are	only	supported	in	the	-lang	qb
and	-lang	fblite	dialects.

Differences	from	QB

Support	for	the	underscore	character	(_)	in	symbol	names	is
new	to	FreeBASIC.

See	also

Variables

Literals 	

Non-variable	compile-time	string,	numeric	values	and	boolean	values.

Literals	are	numbers,	strings	of	characters	or	boolean	truths	specified	directly	in
the	source	code.	Literal	values	may	be	used	by	assigning	them	to	a	variable	or
constant,	passing	them	to	a	procedure,	or	using	them	in	an	expression.

Numeric	literals	come	in	two	forms	-	integer	and	floating-point.	

Integer	Literals

Decimal
Decimal	digits	(0	1	2	3	4	5	6	7	8	9).
Note:	to	get	negative	values,	a	"-"	sign	(Operator	-	(Negate))	can	be	placed
before	a	numeric	literal

Dim	x	As	Integer	=	123456

Dim	b	As	Byte	=	-128

Hexadecimal
"&H;",	followed	by	hexadecimal	digits	(0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

Dim	x	As	Integer	=	&h1E240

Dim	b	As	Byte	=	&H80

Octal
"&O;"	(O	as	in	"Octal"),	followed	by	octal	digits	(0	1	2	3	4	5	6	7)

Dim	x	As	Integer	=	&O361100

Dim	b	As	Byte	=	&O200

Binary
"&B;",	followed	by	binary	digits	(0	1)

Dim	x	As	Integer	=	&B11110001001000000

Dim	b	As	Byte	=	&B10000000

Integer	size	suffixes
If	an	integer	literal	suffix	is	not	given,	the	number	field	size	required	to	hold	the
literal	is	automatically	calculated.	Specifying	a	size	suffix	guarantees	that	the
compiler	will	consider	a	number	as	a	specific	integer	size.

Integer	literals	ending	with:
"%",	are	considered	as	signed	32/64	(depending	on	platform)	bit	integers.
(Integer)
"L",	"&",	are	considered	as	signed	32	bit	long	integers.	(Long)
"U",	are	considered	as	unsigned	32/64	(depending	on	platform)	bit
integers.	(UInteger)
"UL",	are	considered	as	unsigned	32	bit	integers.	(Ulong)
"LL",	are	considered	as	signed	64	bit	integers.	(LongInt)
"ULL",	are	considered	as	unsigned	64	bit	integers.	(ULongInt)

The	prefixes,	suffixes,	and	hexadecimal	letter	digits	are	all	case-insensitive.

Dim	a	As	Long	=	123L

Dim	b	As	UInteger	=	&h1234u

Dim	c	As	LongInt	=	76543LL

Dim	d	As	ULongInt	=	&b1010101ULL

Floating	Point	Literals
Floating	point	numbers	are	specified	in	decimal	digits,	may	be	positive	or
negative,	have	a	fractional	portion,	and	optionally	an	exponent.	The	format	of	a

floating	point	literal	is	as	follows:

number[.[fraction]][((D|E)	[+|-]	exponent)|(D|E)|][suffix]

or
.fraction[((D|E)	[+|-]	exponent)|(D|E)|][suffix]

By	default,	floating	point	numbers	that	do	not	have	either	an	exponent	or	a	suffix
are	considered	as	a	double	precision	floating	point	value,	except	in	the	
dialect,	where	numbers	of	7	digits	or	fewer	are	considered	to	be	single
precision.

Dim	a	As	Double	=	123.456

Dim	b	As	Double	=	-123.0

The	letter	"D"	or	"E",	placed	after	the	number/fraction	part,	allows	the	number	to
be	given	an	exponent.	The	exponent	may	be	specified	as	either	positive	or
negative	with	a	plus	("+")	or	minus	("-")	sign.	Exponents	that	do	not	have	a	sign
are	positive.
An	exponent	is	not	required	after	the	letter,	so	the	letter	can	be	used	on	its	own
just	to	specify	the	type.	"D"	specifies	a	double-precision	floating-point	number.
"E"	specifies	a	floating-point	number	using	the	default	precision.	When	the	letter
is	used	on	its	own	in	combination	with	a	suffix	(see	below)	the	type	denoted	by
the	suffix	overrules	the	type	specified	by	the	letter.

Dim	a	As	Double	=	-123.0d

Dim	b	As	Double	=	-123e

Dim	c	As	Double	=	743.1e+13

Dim	d	As	Double	=	743.1D-13

Dim	e	As	Double	=	743.1E13

Dim	f	As	Single	=	743D!	

A	suffix	of	"!"	or	"F"	on	a	number	specifies	a	single	precision	(32	bit	total)
floating	point	value.	A	suffix	of	"#"	specifies	a	double	precision	float.
Note	that	the	letter	suffixes	and	exponent	specifiers	are	all	case-insensitive.

Dim	a	As	Single	=	3.1!

Dim	b	As	Single	=	-123.456e-7f

Dim	c	As	Double	=	0#

Dim	d	As	Double	=	3.141592653589e3#

String	Literals
String	literals	are	a	sequence	of	characters	contained	between	two	double
quotes.	The	sequence	of	characters	escaped	or	non-escaped.

Double	quotes	can	be	specified	in	the	string	literal	by	using	two	double	quotes
together.

Print	"Hello	World!"

Print	"That's	right!"

Print	"See	the	""word""	contained	in	double	quotes."

String	literals	can	contain	escape	sequences	if	the	string	literal	is	prefixed	by	the
!	Operator	(Escaped	String	Literal).	See	Escape	Sequences	for	a	list	of
accepted	escape	sequences.

Print	!"Hello\nWorld!"

By	default,	string	literals	are	non-escaped	unless	Option	Escape	was	used	in	the
source	in	which	case	all	string	literals	following	are	by	default	escaped.

A	string	may	be	explicitly	specified	as	non-escaped	when	prefixed	by	the	
Operator	(Non-Escaped	String	Literal).

Print	$"C:\temp"

Besides	ASCII	files	with	Unicode	escape	sequences	(\u),	FreeBASIC	can	parse

UTF-8,	UTF-16LE,	UTF-16BE,	UTF-32LE	and	UTF-32BE	source	files	allowing
unicode	characters	directly	in	the	string	literal.

Boolean	Literals
The	boolean	type	has	two	values,	represented	by	literals	True	and	False

Dim	a	As	Boolean	=	False

Dim	b	As	Boolean	=	True

See	also

TypeOf

#define

Const	
Standard	Data	Types

Table	with	variable	types	overview,	limits	and	suffixes

Labels 	

Defines	a	location	in	a	program.

Syntax
symbolname	:

or

literalnumber

Description
Defines	a	place	in	a	program	where	Goto	or	GoSub	can	jump	to.

A	label	can	be	a	positive	integer	line	number	or	a	symbolname.	In	both	cases,	the	label	must	start	at	the	first	column	of	line.	A	
label	must	end	with	a	colon	(:)	character.

Example

''	Compile	with	-lang	fblite	or	qb

#lang	"fblite"

beginning:

3	Print	"Hello	World!"

Goto	beginning

''	compile	with	-lang	qb

'$lang:	"qb"

''	Labels	can	be	used	to	"bookmark"	DATA	blocks,	allowing	RESTORE	to	alter	the	READ	sequence.

Read	a,b,c

Restore	here

Read	d,e

Print	a,b,c,d,e	

Data	1,2,3,4,5

here:

Data	6,7,8

Output:

1,2,3,6,7

Dialect	Differences

Line	numbers	with	decimals	is	available	only	in	the	-lang	qb	dialect.

Differences	from	QB

None	if	compiled	in	the	-lang	qb	dialect.

See	also

GoSub

Goto

Line	continuation 	

A	single	_	(underscore)	character	at	the	end	of	a	line	of	code	tells	the	compiler	that	the	line	continues	in	the	next	line.	This	allows	a	single	statement	(line	of
code)	to	be	spread	across	multiple	lines	in	the	input	file,	which	can	be	a	nice	formatting	help.

''	This	Dim	statement	is	spread	across	multiple	lines,	using	the	'_'	character

Dim	myvariable	_

As	Integer

This	is	often	used	to	make	very	long	lines	of	code	easier	to	read,	for	example	procedure	declarations	with	a	lot	of	parameters:

''	Here's	an	example:

Declare	Sub	drawRectangle(ByVal	x	As	Integer,	ByVal

''	which	can	also	be	written	as:

Declare	Sub	drawRectangle(ByVal	x	As	Integer,	ByVal

																											ByVal	w	As	Integer,	ByVal

''	or:

Declare	Sub	drawRectangle	_

				(_

								ByVal	x	As	Integer,	_

								ByVal	y	As	Integer,	_

								ByVal	w	As	Integer,	_

								ByVal	h	As	Integer	_

)

''	(or	any	other	formatting	you	like)

The	_	line	continuation	character	can	be	inserted	at	pretty	much	any	point	in	a	line	of	code.	It	does	not	work	inside	comments	though.

Be	careful	when	adding	the	_	line	continuation	character	right	behind	an	identifier	or	keyword.	It	should	be	separated	with	at	least	one	space	character,
otherwise	it	would	be	treated	as	part	of	the	identifier	or	keyword.

''	Declare	variable	"a_"

''	(no	line	continuation	happening,	because	the	'_'	character	is	part	of

''	the	"a_"	identifier)

Dim	As	Integer	a_

''	Declare	variable	"a"	and	initialize	to	value	5

''	(line	continuation	happening,	because	the	'_'	character

''	was	separated	from	the	identifier	"a"	with	a	space	character)

Dim	As	Integer	a	_

=	5

Warning:	When	an	erroneous	code	line	is	spread	over	a	multiple	lines	block	by	using	the	_	line	continuation	character,	the	error	message	refers	only	to	the
last	line	of	the	block.

Coercion	and	Conversion 	

Coercion	of	Numeric	Data	Types	in	Expressions.

When	two	different	data	types	are	used	in	a	binary	operation,	like	+
(Addition)	or	=	(Assignment),	the	smaller	data	type	is	automatically
promoted	to	the	larger	data	type	regardless	of	the	order	in	which	the
arguments	are	given.	

Promotions	are	as	follows:
where	both	arguments	are	each	one	of	byte,	ubyte,	short,	ushort,
or	integer:	the	smaller	sized	argument	is	promoted	to	have	the
same	size	as	the	larger	sized	argument.
where	one	of	the	arguments	is	longint	or	ulongint,	and	the	other
argument	is	of	any	integer	type,	the	smaller	sized	argument	is
promoted	to	have	the	same	size	as	the	larger	sized	argument.
where	one	of	the	arguments	is	a	single	or	a	double,	both
arguments	are	converted	and/or	promoted	to	double

All	unsigned	integer	types	are	handling	like	signed	integer	types	for	the
purpose	of	promotion,	and	the	most	significant	bit	is	extended	(sign
extension).

Conversion	of	Numeric	Data	Types

A	type	conversion	will	occur	implicitly	when	an	expression	or	variable	is
assigned,	passed	as	a	parameter	to	a	procedure,	or	returned	as	a	result
from	a	procedure.	Conversions	may	also	be	explicit	when	using	CAST	or
one	of	the	built-in	conversion	functions.

Integer	To	Integer,	any	combination	of	Signed	and	Unsigned
Any	integer	type	to	a	smaller	integer	type:	least	significant	bits	are
retained
Any	integer	type	to	a	larger	integer	type:	sign	extended	to	fill	most
significant	bits

Integer	to	Single	or	Double

Possible	loss	of	precision

Double	to	Single
Possible	loss	of	precision
If	the	value	of	the	Double	exceeds	the	range	of	a	Single	result	is
+/-	INF

Double	or	Single	to	Integer
Possible	loss	of	precision
If	the	value	of	the	floating	point	number	exceeds	the	range	of	the
target	type	are	results	are	undefined.	A	run-time	error	is	not
raised.

See	also

Standard	Data	Types
Variable	Types
Casting	and	Conversion	Functions

Constants 	

Description
Constants	are	numbers	which	cannot	be	changed	after	they	are	defined.	For	example,	5	will	always
mean	the	same	number.

In	FreeBASIC,	a	constant	definition	differs	from	a	variable	definition	by	usage	of	the	

Such	constants	are	then	available	globally,	meaning	that	once	defined,	you	can	use	the	word	to	refer
to	a	constant	anywhere	in	your	program.	

After	being	defined	with	the	Const	command,	constants	cannot	be	altered.	If	code	tries	to	alter	a
constant,	an	error	message	will	result	upon	code	compilation.

Example

Declare	Sub	PrintConstants	()

Const	FirstNumber	=	1

Const	SecondNumber	=	2

Const	FirstString	=	"First	string."

Print	FirstNumber,	SecondNumber	'This	will	print	1						2

Print	FirstString	'This	will	print	First	string.

PrintConstants	()

Sub	PrintConstants	()

				Print	FirstNumber,	SecondNumber	'This	will	also	print	1								2

				Print	FirstString	'This	will	also	print	First	string.

End	Sub

See	also

Const

Enum

Variables 	

Symbols	representing	data	in	memory.

Description
Variables	are	name	symbols	which	can	be	manipulated.	They	are	declared	and	referenced	using	names
composed	of	letters,	numbers,	and	character	"_".	These	reference	names	cannot	contain	most	other
symbols	because	such	symbols	are	part	of	the	FreeBASIC	programming	language.	They	also	cannot
contain	spaces.	See	Indentifier	Rules.

In	FreeBASIC,	variables	can	be	defined	using	the	Dim	statement.	

Variables	are	available	for	later	access	depending	on	where	and	how	the	
is	given.	Depending	on	the	scope	of	a	variable,	a	defined	variable	can	be	available	within	the	main	area
of	a	program,	within	a	procedure,	through	an	entire	module,	or	through	out	an	entire	program.	
Variable	Scope.

Variables	are	also	made	available	when	they	are	passed	as	parameters	to	a	procedure	such	as	
or	Sub.

After	a	variable	is	declared	with	the	Dim	statement,	they	can	be	assigned,	passed	to	procedures,	and	used
in	expressions	wherever	their	Standard	Data	Type	is	similar.	Sometimes	variables	are	automatically
converted	to	other	data	types	before	being	used	in	expressions,	or	passed	as	parameters	to	procedures.
See	Coercion	and	Conversion.

Example

'	compile	with	-lang	qb	or	fblite

'$lang:	"qb"

Declare	Sub	PrintConstants()

Dim	FirstNumber	As	Integer

Dim	Shared	SecondNumber	As	Integer

FirstNumber	=	1

SecondNumber	=	2

PrintConstants	()

Print	FirstNumber,	SecondNumber,	ThirdNumber	'This	will	print	1	2	0

Sub	PrintConstants	()

				Dim	ThirdNumber	As	Integer

				ThirdNumber	=	3

				Print	FirstNumber,	SecondNumber,	ThirdNumber	'This	will	print	0	2	3

End	Sub

See	also

Coercion	and	Conversion
Dim

Identifier	Rules
Variable	Scope

Arrays 	

Multi-dimensional	container	types.

Overview
Arrays	are	special	kinds	of	variables	which	act	as	containers	for	a	number	of	values,	or
elements.	An	array	can	store	elements	of	any	type,	and	all	of	its	elements	share	the	same	type.
For	example,	an	array	can	store	Integer	elements	or	Single	elements,	but	not	both.	These
elements	are	accessed--read	from	or	written	to--through	an	Integer	value	representing	their
position	in	the	array.	Arrays	have	lengths,	or	sizes,	which	are	equal	to	the	number	of	elements
they	are	storing	at	any	given	time.	Fixed-length	arrays	have	constant	sizes	throughout	their
lifetimes,	while	the	sizes	of	variable-length	arrays	can	change	dynamically.

Elements	and	positions
The	values	that	an	array	stores	are	its	elements.	Each	element	of	an	array	has	a	corresponding
position,	which	is	an	Integer	value	ranging	from	the	array's	lower	bound
inclusive.	These	positions	are	used	to	access	individual	elements	in	the	array	using	
which	takes	a	position	and	returns	a	reference	to	the	element	at	that	position.	A	valid	position	in
an	array	is	greater	than	or	equal	to	its	lower	bound,	and	less	than	or	equal	to	its	upper	bound.

'	Create	an	array	of	3	elements	all	having	the	value	zero	(0.0f).

Dim	array(1	To	3)	As	Single

'	Assign	a	value	to	the	first	element.

array(1)	=	1.2

'	Output	the	values	of	all	the	elements	("1.2	0	0").

For	position	As	Integer	=	1	To	3

				Print	array(position)

Next

Sizes	and	bounds
The	size	of	an	array	is	equal	to	the	number	of	elements	it	stores	at	any	given	time.	An	array	can

have	a	size	of	zero	(0),	meaning	it's	not	storing	any	values	at	the	moment--it's	
size	is	greater	than	zero,	that	many	elements	are	being	stored.	An	array's	size	is	equal	to	one
more	than	the	difference	between	its	upper	and	lower	bounds,	or	UBound
+	1.

The	lower	and	upper	bounds	not	only	determine	the	size	of	an	array,	but	also	the	valid	positions
of	individual	elements.	For	example,	an	array	with	lower	and	upper	bounds	of	zero	(0)	and	four
(4)	stores	five	(5)	elements,	the	first	element	being	at	position	0,	the	last	at	position	5.	These
bounds	may	be	specified	when	the	array	is	declared,	or,	for	some	arrays,	changed	by	resizing	the
array.	An	array's	lower	and	upper	bounds	can	be	retrieved	using	LBound

When	creating	or	resizing	an	array,	if	a	lower	bound	is	not	specified	it	defaults	to	zero	(0).

'	Declares	and	initializes	an	array	of	four	integer	elements.

Dim	array(3)	As	Integer	=	{	10,	20,	30,	40	}

'	Outputs	all	of	the	element	values	("	10	20	30	40").

For	position	As	Integer	=	LBound(array)	To	UBound(

				Print	array(position)	;

Next

Fixed-length	and	variable-length
There	are	two	fundamental	kinds	of	arrays:	fixed-length	and	variable-length
difference	between	the	two	is	that	the	bounds	of	fixed-length	arrays	can	never	change,	that	is,
they	always	store	the	same	number	of	elements	in	the	same	positions.	Variable-length	array
bounds	can	be	changed,	affecting	the	number	of	elements	stored	and/or	the	positions	of	the
elements.

Since	fixed-length	arrays	never	change	size,	the	compiler	chooses	to	make	room	for--or,	
-the	memory	for	the	array	elements	either	in	static	storage	or	on	the	program	stack,	depending	on
the	array's	storage	class.	This	can	be	an	advantage,	since	the	cost	of	creating	these	kinds	of
arrays	doesn't	include	any	adverse	run-time	penalty.	Fixed-length	arrays	are	declared	using
Extern,	Static	and	Dim.	At	least	an	upper	bound	must	be	specified,	and	all	bounds	must	be
compile-time	constant	values,	such	as	numeric	literals,	Const	variables	or	

Variable-length	arrays	can	change	in	size,	so	the	compiler	chooses	to	allocate	the	memory	for	the
array	elements	at	run-time,	in	the	free	store.	The	advantage	here	of	course	is	being	able	to
dynamically	resize	the	arrays,	however,	run-time	performance	could	vary	when	they	are	created,
resized	or	destroyed.	Variable-length	arrays	are	declared	using	Extern
When	using	Extern,	Static	or	Dim,	the	lower	and	upper	bounds	can	be	left	unspecified--resulting
in	an	empty	array--or	either	one	must	have	a	variable	value,	such	as	an	
Function	result.	ReDim	can	be	used	to	resize	an	existing	variable-length	array,	by	giving	it	different
lower	and/or	upper	bounds.

'	Creates	a	fixed-length	array	that	holds	5	single	elements.

Const	totalSingles	=	5

Dim	flarray(1	To	totalSingles)	As	Single

'	Creates	an	empty	variable-length	array	that	holds	integer	values.

Dim	vlarray()	As	Integer

'	Resizes	the	array	to	10	elements.

ReDim	vlarray(1	To	10)	As	Integer

Multi-dimensional	arrays
The	arrays	discussed	so	far	have	been	one-dimensional,	that	is,	the	elements	are	accessed
through	a	single	position.	One-dimensional	arrays	can	be	thought	of	as	a	simple	row	of	elements.
Arrays	can	also	have	more	than	one	dimension;	an	individual	element	of	the	array	is	accessed
using	two	or	more	positions.	Two-dimensional	arrays	use	two	positions--a	row	and	a	column
position--to	refer	to	individual	elements,	like	a	grid	or	table.	Three-dimensional	arrays	use	three
positions--a	row,	column	and	perhaps	depth	position--to	refer	to	individual	elements,	like	a	cube.
Four-dimensional	arrays	can	be	thought	of	as	one	or	more	three-dimensional	arrays,	and	so	on.
Multi-dimensional	arrays	are	declared	just	like	one-dimensional	arrays,	except	that	more	than	one
lower	and	upper	bound	range	is	specified.

'	Take	Care	while	initializing	multi-dimensional	array

Dim	As	Integer	multidim(1	To	2,1	To	5)	=	{{0,0,0,0

See	also

Fixed-length	Arrays
Variable-length	Arrays
Variable	Scope

Fixed-length	Arrays 	

Fixed-size	homogeneous	data	structures.

Overview
Fixed-length	arrays	are	arrays	that	have	a	fixed	constant	size	throughout	the	execution	of	a	program.
The	memory	used	by	a	fixed-length	array	to	store	its	elements	is	allocated	at	compile-time,	either	on
the	stack	or	in	the	.BSS	or	.DATA	sections	of	the	executable,	depending	on	whether	
define	it.	This	may	allow	for	quicker	program	execution	since	the	memory	for	the	array	is	already
allocated,	unlike	variable-length	arrays,	whose	element	memory	isn't	allocated	until	runtime.

Fixed-length	arrays	with	automatic	storage,	have	their	elements	allocated	on	the	program	stack,	and
pointers	to	these	elements	remain	valid	only	while	the	array	is	in	scope.	The	elements	of	fixed-length
arrays	with	static	storage	are	allocated	in	the	.DATA	or	.BSS	sections	of	the	executable,	depending	on
whether	or	not	they	are	initialized	when	defined,	so	pointers	to	these	elements	remain	valid	for	the
entire	execution	of	the	program.	Fixed-length	arrays	of	any	storage	class	cannot	be	resized	during
program	execution,	only	variable-length	arrays	can.

Fixed-length	arrays	may	also	be	used	as	data	members	inside	user-defined	types
array	is	directly	allocated	as	part	of	the	user-defined	type	structure.

Declaration
A	fixed-length	array	is	declared	with	either	the	Dim	or	Static	keywords,	followed	by	a	variable	identifier,
a	parenthesized	list	of	boundaries	and	an	element	data	type.

''	Defines	a	one-dimensional	fixed-

length	array	of	type	INTEGER	having	automatic	storage.

Dim	arrayOfIntegers(69)	As	Integer

''	Defines	a	one-dimensional	fixed-

length	array	of	type	SHORT	having	static	storage.

Static	arrayOfShorts(420)	As	Short

There	are	various	ways	to	specify	an	array's	amount	of	elements.	Each	array	can	have	between	1	or	8

dimensions.	Each	dimension	has	a	lower	bound	and	an	upper	bound.

Dim	a(1)	As	Integer		''	1-dimensional,	2	elements	(0	and	1)

Dim	b(0	To	1)	As	Integer		''	1-dimensional,	2	elements	(0	and	1)

Dim	c(5	To	10)	As	Integer		''	1-

dimensional,	5	elements	(5,	6,	7,	8,	9	and	10)

Dim	d(1	To	2,	1	To	2)	As	Integer		''	2-

dimensional,	4	elements:	(1,1),	(1,2),	(2,1),	(2,2)

Dim	e(255,	255,	255,	255)	As	Integer	''	4-

dimensional,	256	*	256	*	256	*	256	elements

For	an	array	to	be	declared	fixed-length,	the	boundaries	must	be	specified	using	only	number	literals	or
Const	values	or	Enum	constants.

Const	myLowerBound	=	-5

Const	myUpperBound	=	10

''	Declares	a	one-dimensional	fixed-

length	array,	holding	myUpperBound	-	myLowerBound	+	1	String	objects.

Dim	arrayOfStrings(myLowerBound	To	myUpperBound)	As

''	Declares	a	one-dimensional	fixed-length	array	of	bytes,

''	big	enough	to	hold	an	INTEGER.

Dim	arrayOfBytes(0	To	SizeOf(Integer)	-	1)	As	Byte

Variable-length	Arrays 	

Resizable	homogeneous	data	structures.	Also	known	as	"dynamic	arrays".

Overview
Variable-length	arrays	are	arrays	that	can,	during	program	execution,	either	be	resized	to	hold	more	or	less	elements,	or
have	their	dimension[s]	use	a	different	subscript	range.	The	memory	used	by	a	variable-length	array	to	store	its	elements	is
allocated	at	runtime	in	the	heap,	as	opposed	to	fixed-length	arrays	whose	data	is	either	allocated	on	the	program	stack	or	in
the	.BSS	or	.DATA	sections	of	the	executable,	depending	on	whether	they	were	defined	with	

Variable-length	arrays	may	also	be	used	as	data	members	inside	user-defined	types
though,	the	array	is	not	allocated	as	part	of	the	user-defined	type	structure,	because	user-defined	types	cannot	be	variable-
length.	Instead,	the	user-defined	type	only	contains	the	array	descriptor	that	is	used	to	hold	and	access	the	variable-length
array	behind	the	scenes,	and	the	array	is	still	allocated	on	the	heap,	as	with	variable-length	array	variables.

Variable-length	arrays	are	often	called	"dynamic	arrays"	because	their	size	can	change	dynamically	at	runtime,	instead	of
being	fixed-size.

Declaration
A	variable-length	array	is	declared	with	either	the	Dim	or	ReDim	keywords,	followed	by	a	variable	identifier,	a	parenthesized	list
of	boundaries	and	an	element	data	type.	For	an	array	to	be	declared	variable-length,	it	must	be	declared	with	unknown
boundaries,	or	with	variable	(non-constant)	boundaries.	ReDim	always	defines	variable-length	arrays,	whether	the	specified
boundaries	are	constant	or	not.

''	Declares	a	one-dimensional	variable-

length	array	of	integers,	with	initially	2	elements	(0	and	1)

ReDim	a(0	To	1)	As	Integer

''	Declares	a	1-dimensional	variable-length	array	without	initial	bounds.

''	It	must	be	resized	using	Redim	before	it	can	be	used	for	the	first	time.

Dim	b(Any)	As	Integer

''	Same,	but	2-dimensional

Dim	c(Any,	Any)	As	Integer

Dim	myLowerBound	As	Integer	=	-5

Dim	myUpperBound	As	Integer	=	10

''	Declares	a	1-dimensional	variable-length	array	by	specifying	variable	(non-

constant)	boundaries.

''	The	array	will	have	myUpperBound	-	myLowerBound	+	1	elements.

Dim	d(myLowerBound	To	myUpperBound)	As	Integer

''	Declares	a	variable-length	array	whose	amount	of	dimensions	will	be	determined

''	by	the	first	Redim	or	array	access	found.	The	array	has	no	initial	bounds	and	must

''	be	resized	using	Redim	before	it	can	be	used	for	the	first	time.

Dim	e()	As	Integer

Resizing
Resizing	a	variable-length	array	refers	to	"redefining"	the	array	with	different	boundaries,	allowing	the	array	to	grow	or	shrink.
Elements	outside	the	new	subscript	range[s]	are	erased;	object	elements	will	be	destroyed.	If	the	array	is	resized	to	a	larger
size,	new	elements	are	added	initialized	with	a	zero	or	null	value;	object	elements	are	default-constructed.	Variable-length
arrays	are	resized	using	the	ReDim	keyword	following	the	same	form	as	definition.	In	this	case	the	element	data	type	may	be
omitted	from	the	ReDim	statement.

''	Define	an	empty	1-dimensional	variable-length	array	of	SINGLE	elements...

Dim	array(Any)	As	Single

''	Resize	the	array	to	hold	10	SINGLE	elements...

ReDim	array(0	To	9)	As	Single

''	The	data	type	may	be	omitted	when	resizing:

ReDim	array(10	To	19)

Resizing	an	array	cannot	change	its	amount	of	dimensions,	but	only	the	boundaries	of	each	dimension.

By	default,	element	values	of	a	variable-length	array	are	lost	when	resized.	To	retain	the	previous	element	values	during	a
resize,	use	the	Preserve	keyword.

Array	Index 	

An	array	index	is	the	number	used	to	access	an	Array	of	Variables	created	using	the	

Description
The	following	examples	illustrate	the	use	of	array	elements.

If	we	have	an	array	myArray	with	elements	of	1	to	10,	filled	with	random	data:

Index								Data

1														5

2														2

3														6

4														5

5														9

6														1

7														0

8														4

9														5

10													7

One	can	access	each	piece	of	data	separately	by	pointing	to	the	Index	of	the	array	element:

				Print	myArray(5)

				

Printing	the	data	contained	in	the	fifth	element	of	myArray	results	in	an	output	of:

	 9

	

To	change	the	contents	of	an	array,	use	it	like	any	other	Variable:

				myArray(3)	=	0

				

To	print	the	contents	of	myArray(3),	use	the	command:

				Print	myArray(3)

				

Which	results	in	an	output	of:

	 0

	

Array	elements	can	be	indexed	using	another	Variable.	In	this	example	we	set	all	elements	in	our	array	to	zero:

				Dim	a	As	Integer

				For	a	=	1	To	10

						myArray(a)	=	0

				Next	a

				

To	change	a	random	array	element	to	a	random	value:

				Dim	Index	As	Integer

				Dim	Value	As	Integer

				index	=	Int(Rnd(1)	*	10)	+	1	'This	line	will	simply	return	a	random	value	between	1	and	10

				Value	=	Int(Rnd(1)	*	10)	+	1	'This	line	will	do	the	same

				myArray(index)	=	Value

				

Example

Declare	Sub	PrintArray()

Dim	Numbers(1	To	10)	As	Integer

Dim	Shared	OtherNumbers(1	To	10)	As	Integer

Dim	a	As	Integer

Numbers(1)	=	1

Numbers(2)	=	2

OtherNumbers(1)	=	3

OtherNumbers(2)	=	4

PrintArray	()

For	a	=	1	To	10

	Print	Numbers(a)

Next	a

Print	OtherNumbers(1)

Print	OtherNumbers(2)

Print	OtherNumbers(3)

Print	OtherNumbers(4)

Print	OtherNumbers(5)

Print	OtherNumbers(6)

Print	OtherNumbers(7)

Print	OtherNumbers(8)

Print	OtherNumbers(9)

Print	OtherNumbers(10)

Sub	PrintArray	()

	Dim	a	As	Integer

	For	a	=	1	To	10

			Print	otherNumbers(a)

	Next	a

End	Sub

See	also

Arrays
Dim

Function

Sub

Variables	
Variable	Scope

Pointers 	

Data	types	whose	values	are	addresses	in	memory.

Declaration
Pointers	are	Variables	whose	values	are	addresses	in	memory,	and	they	are	said	to	'point'	to	this
memory.	The	type	of	data	that	is	pointed	to	depends	on	the	type	of	pointer	(an	
points	to	Integer	data).	Pointers	are	declared	like	any	other	variable,	with	the	suffix	"
"ptr"	following	the	type	name.

Accessing	pointed	to	data
The	data	pointed	to	by	a	pointer	can	be	accessed	with	Operator	*	(Value	of).	This	operator
returns	a	reference	to	the	data	that	its	operand	points	to.	The	following,

Dim	myInteger	As	Integer	=	10

Dim	myPointer	As	Integer	Pointer	=	@myInteger

*myPointer	=	20

Print	myInteger

defines	an	Integer	variable	called	myInteger	and	an	Integer	pointer	called	
to	the	location	in	memory	where	myInteger	is	stored.	Operator	@	(Address	of)	is	used	to	retrieve
the	address	of	myInteger.	The	value	of	20	is	assigned	to	the	location	at	which	
the	address	of	myInteger,	or	@myInteger.	Changes	to	*myPointer	directly	affect	the	value	of
myInteger	(the	expression	"*myPointer"	is	the	same	thing	as	"myInteger

Pointers	to	user-defined	types
Pointers	to	user-defined	types	are	defined	and	used	like	all	other	pointers.	Accessing	a	member
of	a	Type	or	Class	requires	one	of	the	following	two	methods:

Type	myType

				a	As	Integer

				b	As	Double

End	Type

Dim	x	As	myType

Dim	p	As	myType	Pointer	=	@x

''	1)	dereference	the	pointer	and	use	the	member	access	operator:

(*p).a	=	10

(*p).b	=	12.34

''	2)	use	the	shorthand	form	of	the	member	access	operator:

Print	p->a

Print	p->b

The	first	method	uses	Operator	.	(Member	Access).	This	operator	accesses	members	from
references,	so	the	pointer	is	dereferenced	first.	The	member	access	operator	has	higher	priority
over	the	dereference	operator,	so	parenthesis	are	needed	to	dereference	the	pointer	before	using
it	with	the	member	access	operator.

The	second	method	uses	Operator	->	(Pointer	To	Member	Access).	This	operator	accesses
members	from	pointers,	which	are	automatically	dereferenced.	This	can	make	code	a	little
clearer,	although	both	forms	produce	identical	results.

See	also

Operator	@	(Address	Of)

Operator	*	(Value	Of)

Operator	.	(Member	Access)

Operator	->	(Pointer	To	Member	Access)

VarPtr

StrPtr

ProcPtr

Pointer	Arithmetic 	

Manipulating	address	values	mathematically.

Overview
Adding	and	subtracting	from	pointers
Incrementing	and	decrementing	pointers
Distance	between	two	pointers

Overview

It	is	often	useful	to	iterate	through	memory,	from	one	address	to	another.
Pointers	are	used	to	accomplish	this.	While	the	type	of	a	pointer	determines
the	type	of	variable	or	object	retrieved	when	the	pointer	is	dereferenced	(using
Operator	*	(Value	Of)),	it	also	determines	the	distance,	in	bytes,	its	particular
type	takes	up	in	memory.	For	example,	a	Short	takes	up	two	(2)	bytes	in
memory,	while	a	Single	needs	four	(4)	bytes.

Adding	and	subtracting	from	pointers

Pointers	can	be	added	to	and	subtracted	from	just	like	a	numeric	type.	The
result	of	this	addition	or	subtraction	is	an	address,	and	the	type	of	pointer
determines	the	distance	from	the	original	pointer.

For	example,	the	following,

Dim	p	As	Integer	Ptr	=	New	Integer[2]

*p	=	1

*(p	+	1)	=	2

will	assign	the	values	"1"	and	"2"	to	each	integer	in	the	array	pointer	to	by	
Since	p	is	an	Integer	Pointer,	the	expression	"*(p	+	1)"	is	saying	to
dereference	an	Integer	four	(4)	bytes	from	p;	the	"1"	indicates	a	distance	of	"
*	the	size	of	an	Integer",	or	four	(4)	bytes.

Subtraction	follows	the	exact	same	principle.	Remember,	a	-	b	=	a	+	-b

Incrementing	and	decrementing	pointers

Sometimes	it	is	more	convenient	to	modify	the	pointer	itself,	in	which	case	the
combination	addition	and	subtraction	operators	will	work	just	like	above.	For
example,	the	following,

Dim	array(5)	As	Short	=	{	32,	43,	66,	348,	112,	0	

Dim	p	As	Short	Ptr	=	@array(0)

While	(*p	<>	0)

				If	(*p	=	66)	Then	Print	"found	66"

				p	+=	1

Wend

iterates	through	an	array	until	it	finds	an	element	with	the	value	of	"0".	If	it	finds
an	element	with	the	value	"66"	it	displays	a	nice	message.

Distance	between	two	pointers

The	distance	between	two	pointers	is	retrieved	with	Operator	-	(Subtract)
and	is	measured	in	values,	not	bytes.	For	example,	the	following,

Type	T	As	Single

Dim	array(5)	As	T	=	{	32,	43,	66,	348,	112,	0	}

Dim	p	As	T	Ptr	=	@array(0)

While	(*p	<>	0)

				p	+=	1

Wend

Print	p	-	@array(0)

will	output	"5"	regardless	of	what	type	T	is.	This	is	because	there	is	a	five	(5)
element	difference	between	the	first	element	of	array	(32)	and	the	element
pointed	to	by	p	(0).

Specifically,	if	a	and	b	are	both	pointers	of	type	T,	the	distance	between	them
is	the	number	of	bytes	between	them,	divided	by	the	size,	in	bytes,	of	

Abs(cast(byte	ptr,	a)	-	cast(byte	ptr,	b))	/	SizeOf(T)

See	also

Operator	+	(Add)

Operator	-	(Subtract)

Operator	@	(Address	Of)

Operator	*	(Value	Of)

Pointer	Operators

Implicit	Declarations 	

Lazy	declaration	of	variables.

The	qb	and	fblite	FreeBASIC	language	dialects	allow	variable	names	to
be	used	without	declaring	them	first.	This	is	called	implicit	or	lazy
declaration	since	the	actual	declaration	is	inferred	from	how	the	name	is
first	used.

Variable	Type

When	a	variable	is	implicitly	declared,	its	type	depends	on	one	of	two
things:	the	most	recent	default	implicit	type	directive,	if	any,	or	the
variable	type	suffix	symbol	used,	if	any.

Default	type

In	the	qb	dialect,	implicitly	declared	variables	default	to	Single	type,
while	in	the	fblite	dialect	they	default	to	Integer	type.

Default	implicit	type	directives
"DEFxxx"	directives	dictate	the	new	default	type	for	any	following	implicit
variable	declarations.	These	directives	are:	DefByte,	DefUByte,
DefShort,	DefUShort,	DefInt,	DefUInt,	DefLng,	DefSng,	DefDbl	and
DefStr.

Variable	type	suffix	symbols

Variable	names	suffixed	with	one	of	a	certain	set	of	symbols	will	be
implicitly	declared	of	a	certain	type.	These	symbols	are:	'%'	for
Integer,	'&'	for	Long,	'!'	for	Single,	'#'	for	Double	and	'$'	for	String.
These	symbols	override	previous	"DEFxxx"	directives,	if	any.

Implicit	Array	Declaration

Currently,	FreeBASIC	does	not	support	implicit	declaration	of	arrays.

Debugging

For	full	debugging	support,	all	variables	must	be	explicitly	declared	and
suffixes	should	not	be	used.	The	use	of	Option	Explicit	is
recommended	to	turn	of	support	for	implicit	declarations,	so	that
mistyped	variable	names	are	caught	at	compile	time	by	the	compiler.

See	also

Option	Explicit

FreeBASIC	Language	Dialects

Variable	Initializers 	

Variable	initializers	are	supported	for	initializing	Arrays,	variables	and	UDTs.

Syntax
Dim	scalar_symbol	[AS	DataType]	=	expression

Dim	array_symbol	([lbound	TO]	ubound)	[AS	DataType]	=>	{	expression

Dim	udt_symbol	AS	DataType	=	(expression	[,	...])

Description
Arrays,	variables	and	UDTs	may	be	given	a	value	at	the	time	of	their	declaration	using	
shown	above.	Please	note	the	important	differences	between	initializing	different	types.	
initialized	as	they	would	in	a	normal	assignment,	using	an	equals	sign.	
equal	sign	followed	by	a	greater	than	symbol	(=>).	Array	values	are	given	in	comma	delimited	values
enclosed	by	curly	brackets,	and	UDT	values	are	given	in	comma	delimited	values	enclosed	by	parenthesis.

These	methods	of	initializing	variables	can	be	nested	within	one	another	for	complex	assignments.	
instance,	to	initialize	a	multidimensional	array:

Dim	array(1	To	2,	1	To	5)	As	Integer	=>	{{1,	2,	3,

In	this	declaration,	the	values	for	the	left-most	dimension	are	given	as	5-index	arrays.	
arrays	of	any	dimension	to	be	initialized.

UDTs	and	arrays	can	be	nested	within	each	other	as	well.	For	instance,	the	following	code	declares	and
initializes	an	array	of	UDTs.

Type	mytype

				var1	As	Double

				var2	As	Integer

				var3	As	ZString	Ptr

End	Type

Dim	MyVar(2)	As	mytype	=>	_

				{	_

								(1.0,	1,	@"Hello"),	_

								(2.0,	2,	@"GoodBye")	_

				}

For	module-level,	static,	or	global	variables,	initialized	values	must	be	constant	expressions.	
report	a	compile-time	error	if	otherwise.

Differences	from	QB

Variable	Initializers	are	new	to	FreeBASIC

See	also

Dim

Storage	Classes 	

Visibility	and	lifetime	of	variables,	objects	and	arrays

A	variable,	object	or	array's	storage	class	determines	when	and	where
memory	is	allocated	for	it	and	when	that	memory	is	destroyed.	There	are
2	storage	classes	in	FreeBASIC:	automatic	and	static.

Automatic

Automatic	variable,	object	and	array	lifetimes	begin	at	the	point	of
declaration	and	end	when	leaving	the	scope	they	are	declared	in.

Automatic	entities	are	guaranteed	to	have	unique	storage	for	each
instance	of	the	block	in	which	they	are	declared.	For	example,	the
automatic	variables	declared	within	a	procedure	will	be	allocated	at
different	addresses	and	have	unique	state	(value)	for	each	call	to	the
procedure.

Automatic	variables,	objects	and	arrays	are	defined	using	the	Dim,
ReDim	and	Var	keywords	without	the	Shared	specifier.

The	memory	for	automatic	variables,	objects	and	arrays	is	allocated	on
the	program	stack.

Automatic	variables,	objects	and	arrays	have	no	linkage.

Static

Static	variable,	object	and	array	lifetimes	begin	at	program	creation
and	end	with	program	termination.

Static	entities	are	guaranteed	to	have	the	same	storage	for	each
instance	of	the	block	in	which	they	are	declared.	For	example,	the
static	variables	declared	within	a	procedure	will	be	allocated	at	the
same	address,	and	retain	their	state	(value)	across	each	call	to	the
procedure.

Static	variables,	objects	and	arrays	are	declared	using	the	Static
keyword.	Entities	declared	using	the	Shared	specifier	are	implicitly
static.	All	entities	declared	within	a	procedure	that	is	declared	using	the
Static	specifier	are	also	implicitly	static.

The	memory	for	static	variables,	objects	and	arrays	is	allocated	in	the
.BSS	section	of	the	executable,	or	in	the	.DATA	section	if	they	are
initialized	when	defined.	Static	variable-length	arrays	must	be	declared
empty,	with	an	empty	subscript	range	list;	their	element	data	is	still
allocated	in	the	free	store	(when	they	are	resized),	but	the	internal
array	data	is	allocated	in	the	.DATA	section	of	the	executable	to	allow
the	element	data	to	persist	throughout	program	execution.

Static	variables,	objects	and	arrays	have	internal	linkage	by	default,
unless	previously	declared	using	the	Extern	or	Common	keywords.

Platform	Differences

In	DOS	and	Windows	platforms,	the	size	of	the	program	stack
can	be	adjusted	at	compile-time	using	the	-t	command-line
switch.	In	Linux	platforms,	the	size	of	the	program	stack	can	be
adjusted	at	load-time	by	modifying	/etc/security/limits.conf,
or	on	a	per-thread	basis	using	the	shell	builtin	ulimit.

Differences	from	QB

QuickBASIC	allows	static	entities	to	be	declared	within
procedures	and	DEF	FN	routines	only.

See	also

Extern,	Common
Dim,	ReDim,	Var,	Shared
Static

Linkage

Variable	Scope 	

Visibility	and	access	rules	for	variables	and	objects

A	variable's	scope	refers	to	its	visibility	in	a	program.	A	variable	is	not	visible	(cannot	be	accessed)	outside	the	scope	in	which	it
was	declared.	Where	and	how	a	variable	is	declared	determines	its	scope.

In	FreeBASIC,	there	are	4	categories	of	scope:	local,	shared,	common
different	visibility	rules,	which	are	detailed	below.

Local	Scope

Variables	declared	in	the	local	scope	are	visible	only	in	the	most	local	instance	of	the	IF,	FOR,	SCOPE,	function,	or	module
block	in	which	they	are	declared.

Sub,	Function,	the	main	body,	and	each	compound	statement	implicitly	define	a	new	local	scope	block.	
Explicitly	declared	variables	using	Dim	or	ReDim	take	the	scope	of	the	local	most	block	in	which	they	are	declared.	
Implicit	variables	take	the	scope	of	the	the	local	most	Scope...End	Scope
take	the	scope	of	the	Sub,	Function,	or	main	body	in	which	they	are	used.	

In	the	local	scope,	there	is	no	visibility	between	module-level	code	and	function	level	code.	Furthermore,	variables	dimensioned
within	a	block	decision	or	loop	statement	will	only	be	visible	within	the	block	in	which	they	are	dimensioned.	Variables	declared
in	the	local	scope	of	a	module	are	not	visible	in	any	of	the	functions	within	that	module.	Similarly,	local	variables	declared	inside
functions	are	not	visible	in	the	module-level	code,	nor	any	other	function	within	the	module.

Variables	declared	inside	Scope	blocks	may	only	be	declared	of	local	scope,	and	are	not	visible	outside	the	block.	
however,	inherit	the	surrounding	scope,	so	local	variables	declared	outside	the	
program).

You	can	declare	a	variable	to	be	of	local	scope	explicitly	by	using	the	Dim
variable	(see	Implicit	Declarations).	The	example	program	local.bas

local.bas

''	visible	only	in	this	module

Dim	As	Integer	local_moduleLevel1

''	OK.

Print	local_moduleLevel1

Scope

		''	OK;	SCOPE	Blocks	inherit	outer	scope

		Print	local_moduleLevel1

		

		''	visible	only	in	this	SCOPE	Block

		Dim	As	Integer	local_moduleLevel2

		''	OK.

		Print	local_moduleLevel2

End	Scope

''	Error;	can't	see	inner-SCOPE	vars

''	print	local_moduleLevel2

Function	some_function()	As	Integer

		''	visible	only	in	this	function

		Dim	As	Integer	local_functionLevel

		''	OK.

		Print	local_functionLevel

		''	Error;	can't	see	local	module-level	vars		

		''	print	local_moduleLevel1

		''	Error;	can't	see	local	module-level	vars

		''	print	local_moduleLevel2

		Function	=	0

End	Function

''	print	local_functionLevel																				''	Error;	can't	see	function_level	vars

End	0

Shared	Scope

Variables	declared	in	the	shared	scope	of	a	module	are	visible	to	both	the	module	and	all	functions	of	that	module.

Unlike	the	local	scope,	the	shared	scope	makes	module-level	variables	visible	to	functions	of	that	module.	In	other	words,	the
module	shares	its	declarations	with	its	functions.

Variables	can	only	be	declared	to	be	of	shared	scope	at	the	module-level.	Ie.,	only	modules	can	share	variables.	Neither
functions	nor	Scope	blocks	can	declare	variables	in	the	shared	scope,	thus	variables	declared	there	can	only	be	local	to	that
function	or	block.

You	can	declare	a	variable	to	be	of	shared	scope	by	using	the	DIM	statement	with	the	
shared_scope.bas	demonstrates	visibility	rules	for	the	shared	scope.

shared.bas

''	visible	throughout	this	module

Dim	Shared	As	Integer	shared_moduleLevel1

''	OK.

Print	shared_moduleLevel1

Scope

		''	OK;	can	see	outer-scope	vars

		Print	shared_moduleLevel1

		

		''	Error;	SCOPE-level	vars	cannot	be	shared

		''	dim	shared	as	integer	shared_ModuleLevel2

End	Scope

End	0

Function	some_function()	As	Integer

		''	OK;	can	see	shared	module-level	vars

		Print	shared_moduleLevel1

		''	Error;	function-level	vars	cannot	be	shared		

		''	dim	shared	as	integer	sharedFunctionLevel

		Function	=	0

End	Function

Common	Scope

Variables	declared	in	the	common	scope	are	visible	to	all	modules.

Variables	declared	with	Common	are	visible	to	other	modules	with	a	matching	
declared	must	match	from	between	modules.

module1.bas

''	compile	with:

''				fbc	-lang	qb	module1.bas	module2.bas

'$lang:	"qb"

Declare	Sub	Print_Values()

Common	m1	As	Integer

Common	m2	As	Integer

																						'	This	is	executed	after	all	other	modules

m1	=	1

Print	"Module1"							

Print	"m1	=	";	m1					'	m1	=	1	as	set	in	this	module

Print	"m2	=	";	m2					'	m2	=	2	as	set	in	module2

Print_Values

module2.bas

Common	m1	As	Integer

Common	m2	As	Integer

m2	=	2

Print	"Module2"							'	This	is	executed	first

Print	"m1	=	";	m1					'	m1	=	0	(by	default)

Print	"m2	=	";	m2					'	m2	=	2

Sub	Print_Values()

		Print	"Module2.Print_Values"

		Print	"m1	=	";	m1			'	Implicit	variable	=	0				

		Print	"m2	=	";	m2			'	Implicit	variable	=	0		

End	Sub

Output:

		Module2

		m1	=	0

		m2	=	2

		Module1

		m1	=	1

		m2	=	2

		Module2.Print_Values

		m1	=	0

		m2	=	0

Common	Shared	Scope

Variables	declared	in	the	common	shared	scope	are	visible	to	all	modules	and	all	functions	of	those	modules.

Variables	declared	with	Common	are	visible	to	other	modules	with	a	matching	
declared	must	match	from	between	modules.	Within	a	module	the	Shared
and	makes	the	variable	visible	to	all	subs	and	functions.

module3.bas

''	compile	with:

''				fbc	module3.bas	module4.bas

Declare	Sub	Print_Values()

Common	m1	As	Integer

Common	m2	As	Integer

''	This	is	executed	after	all	other	modules

m1	=	1

Print	"Module3"							

Print	"m1	=	";	m1					''	m1	=	1	as	set	in	this	module

Print	"m2	=	";	m2					''	m2	=	2	as	set	in	module2

Print_Values

module4.bas

Common	Shared	m1	As	Integer

Common	Shared	m2	As	Integer

m2	=	2

Print	"Module4"							''	This	is	executed	first

Print	"m1	=	";	m1					''	m1	=	0	(by	default)

Print	"m2	=	";	m2					''	m2	=	2

Sub	Print_Values()

		Print	"Module4.Print_Values"

		Print	"m1	=	";	m1			''	m1	=	1				

		Print	"m2	=	";	m2			''	m2	=	2

End	Sub

Output:

		Module4

		m1	=	0

		m2	=	2

		Module3

		m1	=	1

		m2	=	2

		Module4.Print_Values

		m1	=	1

		m2	=	2

Example
See	examples	above.

See	also

Scope

Dim

Common

Shared

Variables
Implicit	Declarations

Variable	and	Procedure	Linkage 	

Name	visibility	within	and	between	modules

Linkage	refers	to	the	visibility	of	the	name	of	a	variable,	object	or
procedure	between	one	or	more	modules	of	a	program.	In	other	words,	a
linkage	dictates	how	a	name	is	shared	between	modules.	There	are	two
main	types	of	linkage	a	name	can	have:	internal	and	external.

Internal	linkage

Names	with	internal	linkage	only	refer	to	variables,	objects	or
procedures	defined	within	their	own	module;	they	are	not	outwardly
visible	to	other	modules.	This	means	that	two	or	more	modules	can
refer	to	different	things	using	the	same	name.	Note	that	linkage	only
refers	to	visibility	of	a	name,	and	depending	on	storage	class	and
lifetime,	a	variable,	object	or	procedure	with	internal	linkage	may	be
shared	between	modules	using	its	address.

Module-scope	declarations

Variable	and	object	names	declared	at	module-scope	have	internal
linkage	unless	otherwise	declared	with	Extern	or	Common.	For	example,
variable	names	first	introduced	with	Dim	or	Static	have	internal	linkage,
and	those	variables	can	only	be	referred	to	by	name	within	the	module
in	which	they	are	defined.	Note	that	using	Shared	only	allows	name
visibility	within	the	module's	procedures,	and	does	not	contribute	to	the
name's	linkage.

Procedure	names	declared	with	Private	have	internal	linkage.

Local-scope	declarations

All	variable	and	object	names	declared	at	local-scope	(in	a	Do	loop,	or
procedure	body,	for	instance)	have	internal	linkage.

External	linkage

Names	with	external	linkage	may	refer	to	variables,	objects	or
procedures	defined	within	their	module	or	in	another	module.	Having
external	linkage	means	that	a	name	is	outwardly	visible	to	other
modules,	and	all	modules	that	use	that	same	external	name	all	refer	to
the	same	variable,	object	or	procedure.	Thus,	only	one	module	may
define	an	external	name	(the	compiler	will	complain	about	a	duplicated
definition	if	it	finds	an	additional	definition	of	a	name	with	external
linkage).

Module-scope	declarations

Variable	and	object	names	declared	at	module-scope	are	declared	to
have	external	linkage	with	Extern	or	Common.	

Extern	declares	the	variable	having	external	linkage,	but	does	not
define	it.	This	external	declaration	must	come	before	any	definition	of
the	same	name	(a	declaration	without	Extern	specifies	internal	linkage,
and	currently,	any	further	external	declarations	of	that	name	signify	a
duplicated	definition).	Variable	and	object	names	with	external	linkage
declared	using	Extern	are	always	in	the	shared	scope,	and	so	can	be
referred	to	within	procedure	bodies.

Common	declares	the	variable	having	external	linkage	as	well	as	defining
the	variable.	But,	it	is	different	from	Extern	in	that	the	Common	definition
of	the	variable	may	appear	in	more	than	one	module.	When	used	with
arrays,	only	variable-length	arrays	without	subscripts	may	be	declared,
and	the	array	must	be	sized	at	run-time	using	Dim	or	ReDim	before	it	can
be	used.	Variable	and	object	names	with	external	linkage	declared
using	Common	are	only	in	the	shared	scope	if	the	Shared	scope	specifier
is	also	given.	Shared	variables	can	be	referred	to	within	procedure
bodies.

When	both	Extern	and	Common	are	both	used	to	declare	and	define	a
variable,	the	effect	is	that	the	meaning	of	Common	statement	is	altered	to
behave	as	though	it	were	a	Dim	declaration.	So	it	is	generally,	not

recommended	to	mix	Extern	and	Common	on	the	same	variable	in	the
same	module.	However,	variables	may	be	declared	and	defined	with
Common	in	one	module	and	then	referenced	with	Extern	in	another
module	without	confusion.

Procedure	names	are	declared	to	have	external	linkage	by	default.
Declarations	using	Public	explicitly	specify	external	linkage.

Local-scope	declarations

Currently,	names	declared	at	local-scope	cannot	have	external	linkage.

User	Defined	Types 	

Custom	types.

Overview
User-Defined	Types	are	special	kinds	of	variables	which	can	be	created	by	the	programmer.	
Defined	Type	(UDT)	is	really	just	a	container	that	contains	a	bunch	of	other	variables,	like	an	
unlike	arrays	UDTs	can	hold	different	variable	types	(whereas	arrays	always	hold	many	variables	of	the
same	type).	In	fact,	UDTs	can	even	have	procedures	inside	of	them!

Members
The	different	variables	and/or	procedures	stored	inside	a	UDT	are	called	"members",	or	more	generally,
items.	Members	can	be	variables	of	just	about	any	type,	including	numerical	types,	strings,	
Enums,	and	even	arrays.	Variables	are	created	in	UDTs	much	the	same	way	variables	are	created
normally,	except	that	the	Dim	keyword	is	optional.	UDT	members	are	accessed	via	the	
example	if	you	created	a	variable	called	someVar	in	a	UDT	you	would	access	it	with	the	name	of	the
UDT	variable	followed	by	".someVar".	Here	is	an	example:

'Define	a	UDT	called	myType,	with	an	Integer	member	named	someVar

Type	myType

		As	Integer	someVar

End	Type

'Create	a	variable	of	that	type

Dim	myUDT	As	myType

'Set	the	member	someVar	to	23,	then	display	its	contents	on	the	screen

myUDT.someVar	=	23

Print	myUDT.someVar

Notice	that	the	Type...End	Type	does	not	actually	create	a	variable	of	that	type,	it	only	defines	what
variables	of	that	type	contain.	You	must	create	a	variable	of	that	type	to	actually	use	it!

UDT	Pointers

UDT	Pointers	are,	as	the	name	implies,	pointers	to	UDTs.	They	are	created	like	regular	pointers,	but
there	is	a	special	way	to	use	them.	To	access	the	member	of	a	UDT	pointed	to	by	a	pointer,	you	use	the
->	Operator.	For	example,	if	myUDTPtr	is	a	pointer	to	a	UDT	which	has	a	member	someVar,	you	would
access	the	member	as	myUDTPtr->someVar,	which	is	a	much	cleaner	shorthand	for	the	equally	valid	*
(myUDTPtr).someVar.

Type	rect

				x	As	Integer

				y	As	Integer

End	Type

Dim	r	As	rect

Dim	rp	As	rect	Pointer	=	@r

rp->x	=	4

rp->y	=	2

Print	"x	=	"	&	rp->x	&	",	y	=	"	&	rp->y

Sleep

See	also

Type	Aliases
Temporary	Types
Constructors	and	Destructors
Member	Procedures
Member	Access	Rights
Operator	Overloading

Type	Aliases 	

Additional	names	for	variable	or	object	types

Overview
Declaration
Overload	resolution
Pointers	to	procedure	pointers
Type	forwarding
Incomplete	types

Overview
Type	aliases	are	alternative	names	for	a	type.	They	can	be	used	to	facilitate	a	mass	change	from
one	type	to	another,	save	typing,	or	make	circular	dependency	possible.

Declaration
Type	aliases	are	declared	using	the	Type	keyword	much	like	declaring	variables	or	objects	with
Extern	or	Dim.

The	following	example	declares	a	type	alias	to	Single	called	"float",	a	procedure,	and	defines	and
initializes	two	variables	of	that	type:

Type	float	As	Single

Declare	Function	add	(a	As	float,	b	As	float)	As	float

Dim	foo	As	float	=	1.23

Dim	bar	As	float	=	-4.56

								

Procedure	pointer	type	aliases	are	declared	in	the	same	fashion,	as	shown	in	the	following	example:

Declare	Function	f	(ByRef	As	String)	As	Integer

Type	func_t	As	Function	(ByRef	As	String)	As	Integer

Dim	func	As	func_t	=	@f

								

Function	f	(ByRef	arg	As	String)	As	Integer

				Function	=	CInt(arg)

End	Function

Overload	resolution
Type	aliases	are	just	that	-	aliases.	For	all	intents	and	purposes,	a	type	alias	
as	far	as	procedure	overload	resolution	is	concerned,	a	procedure	declared	with	a	parameter	of	type
"alias_to_T"	is	the	same	as	a	procedure	declared	with	a	parameter	of	type	"
overloading	member	procedures	as	well).

In	other	words,	it	is	an	error	-	duplicated	definition	-	to	declare	a	procedure	where	parameters	differ
only	in	a	type	and	its	alias,	as	the	following	example	shows:

Type	float	As	Single

Declare	Sub	f	Overload	(a	As	Single)

''	If	uncommented,	this	will	generate	a	duplicated	definition	error

''	Declare	Sub	f	(a	As	float)

Pointers	to	procedure	pointers
Pointers	to	procedure	pointers	are	just	like	any	other	pointer	type,	except	they	point	to	procedure
pointers.	Because	the	syntax	for	declaring	procedure	pointers	doesn't	allow	directly	creating	a
pointer	to	procedure	pointer	when	the	procedure	is	a	function	(because	ptr	applies	on	return	type
and	not	on	procedure),	a	type	alias	is	used.

The	following	example	declares	a	pointer	to	a	procedure	returning	an	integer	pointer,	and	then	a
pointer	to	a	pointer	to	a	procedure	returning	an	integer:

Dim	pf	As	Function()	As	Integer	Ptr

Type	pf_t	As	Function()	As	Integer

Dim	ppf	As	pf_t	Ptr

				

Type	forwarding
Type	aliases	can	be	forward	referencing:	an	alias	can	refer	to	some	other	type	not	yet	fully	defined.

Type	foo	As	bar

Type	sometype

		f			As	foo	Ptr

End	Type

Type	bar

		st		As	sometype

		a			As	Integer

End	Type

				

Using	a	type	alias	and	forward	referencing	allows	circular	dependencies	between	types.

Type	list	As	list_

Type	listnode

		parent	As	list	Ptr

		text	As	String

End	Type

Type	list_

		first	As	listnode	Ptr

		count	As	Integer

End	Type

				

Incomplete	types
A	type	is	considered	incomplete	until	the	size	of	it,	that	is	the	number	of	bytes	it	would	need	to
occupy	in	memory	is	known,	and	the	offsets	of	all	of	its	fields	are	known.	
space	for	an	incomplete	type.	It	is	not	possible	to	declare	a	variable	having	the	data	type	of	an
incomplete	type,	pass	an	incomplete	type	as	a	parameter,	or	access	the	members	of	an	incomplete
type.

However,	pointers	to	incomplete	types	may	be	allocated,	declared	as	members	in	other	types,	or
passed	as	parameters	to	a	procedures	since	the	size	of	a	pointer	is	known.

Type	sometype	As	sometype_

''	Not	allowed	since	size	of	sometype	is	unknown

''	TYPE	incomplete

''			a	AS	sometype

''	END	TYPE

''	Allowed	since	size	of	a	pointer	is	known

Type	complete

		a	As	sometype	Ptr

End	Type

Dim	x	As	complete

''	Not	allowed	since	size	of	sometype	is	still	unknown

''	DIM	size_sometype	AS	INTEGER	=	SIZEOF(sometype)

''	Complete	the	type

Type	sometype_

		value	As	Integer

End	Type

''	Allowed	since	the	types	are	now	completed

Dim	size_sometype	As	Integer	=	SizeOf(sometype)

Type	completed

		a	As	sometype

End	Type

Dim	size_completed	As	Integer	=	SizeOf(completed	

				

Constructors	and	Destructors 	

In	charge	of	the	creation	and	destruction	of	objects.

Overview
Declaration
Default	constructors
Copy	constructors
Calling	constructors

Overview
Constructors	and	destructors	are	responsible	for	creating	and	destroying	objects,	respectively.	In	general,
constructors	give	objects	their	initial	state,	that	is,	they	give	meaningful	values	to	their	objects'	member
data.	Destructors	perform	the	opposite	function;	they	make	sure	any	resources	owned	by	their	objects	are
properly	freed.

Simply,	constructors	are	special	member	procedures	that	are	called	when	an	object	is	created,	and
destructors	are	special	member	procedures	called	when	an	object	is	destroyed.	Both	constructors	and
destructors	are	called	automatically	by	the	compiler	whenever	an	object	is	created	or	destroyed,	whether
explicitly	with	the	use	of	the	Dim	or	New	keywords,	or	implicitly	by	passing	an	object	to	a	procedure	by
value	or	through	an	object	going	out	of	scope.

Declaration
Constructors	and	destructors	are	declared	like	member	procedures	but	with	the	
instead	of	Sub	or	Function,	and	without	a	name.	Similarly,	they	are	defined	with	only	the	name	of	the	
or	Class	they	are	declared	in.

A	Type	or	Class	can	have	multiple	constructors,	but	only	one	destructor.

Default	constructors
Default	constructors	are	constructors	that	either	have	no	parameters,	or	all	of	their	parameters	have	a
default	value.	They	are	called	when	an	object	is	defined	but	not	initialized,	or	is	created	as	part	of	an
array,	with	the	Dim,	ReDim	or	New[]	keywords.	The	first	constructor	declared	in	the	example	below	is	a
default	constructor.

Copy	constructors
Copy	constructors	are	constructors	called	when	an	object	is	created,	or	cloned,	from	another	object	of	the
same	type	(or	an	object	that	can	be	converted	to	that	type).	This	happens	explicitly	when	initializing	an
object	with	another	object,	or	implicitly	by	passing	an	object	to	a	procedure	by	value.	Copy	constructors
are	declared	having	one	parameter:	an	object	of	the	same	type	passed	by	reference.

Copy	constructors	are	only	called	when	creating	and	initializing	object	instances.	Assignment	to	objects	is
handled	by	the	Member	Operator	Let.

Calling	constructors
Unlike	other	member	procedures,	constructors	are	generally	not	called	directly	from	an	object	instance.
Instead,	a	constructor	is	specified	in	a	Dim	statement	either	with	an	initializer	or	without	one,	or	in	a	
statement	with	or	without	arguments.

When	specifying	an	initializer	for	an	object,	the	name	of	the	type	followed	by	any	arguments	it	requires	is
used.

Type	foo

				''	Declare	a	default	ctor,	copy	ctor	and	normal	ctor

				Declare	Constructor

				Declare	Constructor	(ByRef	As	foo)

				Declare	Constructor	(As	Integer)

				''	Declare	a	destructor

				Declare	Destructor

				ints	As	Integer	Ptr

				numints	As	Integer

End	Type

''	Define	a	constructor	that	creates	100	integers

Constructor	foo

				ints	=	New	Integer(100)

				numints	=	100

End	Constructor

''	Define	a	constructor	that	copies	the	integers	from	another	object

Constructor	foo	(ByRef	x	As	foo)

				ints	=	New	Integer(x.numints)

				numints	=	x.numints

End	Constructor

''	Define	a	constructor	that	creates	some	integers	based	on	a	parameter

Constructor	foo	(n	As	Integer)

				ints	=	New	Integer(n)

				numints	=	n

End	Constructor

''	Define	a	destructor	that	destroys	those	integers

Destructor	foo

				Delete[]	ints

End	Destructor

Scope

				''	calls	foo's	default	ctor

				Dim	a	As	foo

				Dim	x	As	foo	Ptr	=	New	foo

				''	calls	foo's	copy	ctor

				Dim	b	As	foo	=	a

				Dim	y	As	foo	Ptr	=	New	foo(*x)

				''	calls	foo's	normal	ctor

				Dim	c	As	foo	=	foo(20)

				Dim	z	As	foo	Ptr	=	New	foo(20)

				''	calls	foo's	dtor

				Delete	x

				Delete	y

				Delete	z

End	Scope	''	<-	a,	b	and	c	are	destroyed	here	as	well

Compiler-provided	constructors	and	destructors
If	no	copy	constructor	is	declared	for	a	Type	or	Class,	the	compiler	provides	one.	If	no	constructor	has
been	declared,	the	compiler	also	provides	a	default	constructor.

The	compiler-provided	default	constructor	initializes	member	data	to	default	values,	that	is,	numeric	and
pointer	members	are	set	to	zero	(0),	and	object	members	are	default-constructed.	The	copy	constructor
that	the	compiler	declares	shallow-copies	all	member	data	from	one	type	to	another:	numeric	and	pointer
types	are	initialized	with	the	corresponding	data	members	in	the	object	that	is	copied,	and	object
members	are	copy-constructed	from	their	corresponding	object	members.	This	means	that	dynamic
resources,	such	as	memory	pointed	to	by	a	pointer	data	member,	is	not	copied;	only	the	address	is
copied.	So	if	an	object	owns	a	resource,	meaning	it	is	responsible	for	its	creation	and	destruction,	then	the
compiler-generated	copy	constructor	will	not	be	sufficient.

If	a	destructor	is	not	declared,	the	compiler	generates	one.	This	destructor	calls	object	members'
destructors	and	does	nothing	for	numeric	and	pointer	types.	Again,	if	an	object	owns	a	dynamic	resource,
then	the	compiler-generated	destructor	will	not	be	sufficient,	as	the	resource	will	not	be	freed	when	the
object	is	destroyed.

This	is	commonly	referred	to	as	the	"Rule	of	3":	If	an	object	needs	a	custom	copy	constructor,	assignment
operator	or	destructor,	chances	are	it	needs	all	three.

Member	Procedures 	

Procedures	with	full	access	to	members	of	a	Type	or	Class.

Declaration	and	definition
Declaring	and	defining	member	procedures.
Usage
Calling	member	procedures.
The	hidden	parameter,	This
Implicit	access	to	the	instance	with	which	non-static	member	procedures	are	called.
Access	rights
Referring	to	other	members	in	member	procedures.
Overloading
Declaring	two	or	more	member	procedures	with	the	same	name.
Static	member	procedures
Differences	from	non-static	member	procedures.

The	term	'member	procedure'	refers	to	both	static	and	non-static	member	procedures,	unless	otherwise	noted.

Declaration	and	definition
Member	procedures	are	declared	much	like	normal	module-level	procedures	except	that	they	are	declared
within,	and	defined	outside,	a	Type	or	Class	definition	[1].

When	defining	member	procedures,	the	procedure	name	is	prefixed	with	the	name	of	the	
the	member	access	operator	(Operator	.	(Member	Access)).	It	is	an	error	to	define	a	member	procedure
without	a	matching	declaration	in	the	Type	or	Class	definition.

The	following	example	declares	and	defines	a	Sub	and	Function	member	procedure:

''	foo1.bi

Type	foo

				Declare	Sub	f	(As	Integer)

				Declare	Function	g	As	Integer

				i	As	Integer

End	Type

Sub	foo.f	(n	As	Integer)

				Print	n

End	Sub

Function	foo.g	As	Integer

				Return	420

End	Function

Usage
Member	procedures	are	referred	to	just	like	member	data,	that	is,	their	name	is	prefixed	with	the	name	of	an
object	instance	and	the	member	access	operator	(Operator	.	(Member	Access)

The	following	example,	using	the	code	from	the	last	example,	calls	Sub

''	...	foo	with	non-static	members	as	before	...

#include	once	"foo1.bi"

Dim	bar	As	foo

bar.f(bar.g())

The	hidden	parameter,	This
Member	procedures	actually	have	an	additional	parameter	than	what	they	are	declared	with	
are	called,	using	the	name	of	an	instance	and	Operator	.	(Member	Access)
passed	along	with	any	other	arguments	in	the	call,	allowing	the	member	procedure	direct	access	to	the
instance.

The	additional	parameter	added	by	the	compiler	is	called	This,	and	since	it's	a	reference,	any	modifications	to
This	are	actually	modifications	to	the	instance	that	was	passed	to	the	member	procedure	when	it	was	called.
You	can	use	This	just	like	any	other	variable,	ie.,	pass	it	to	procedures	taking	a	object	of	the	same	type,	call
other	member	procedures	and	access	member	data	using	Operator	.	(Member	Access)

Most	of	the	time,	however,	using	This	explicitly	is	unnecessary;	member	procedures	can	refer	to	other
members	of	the	instance	which	they	are	passed	directly	by	name,	without	having	to	qualify	it	with	
Operator	.	(Member	Access).	The	only	times	when	you	need	to	qualify	member	names	with	
member	name	is	hidden,	for	example,	by	a	parameter	or	local	variable.	In	these	situations,	qualifying	the
member	name	is	the	only	way	to	refer	to	these	hidden	member	names.

Note:

To	access	duplicated	symbols	defined	outside	the	Type,	use:	.SomeSymbol
inside	a	With..End	With	block).

The	following	example	uses	the	This	keyword	to	refer	to	member	data	whose	name	is	hidden	by	a	parameter
and	local	variable:

Type	foo

				Declare	Sub	f	(i	As	Integer)

				Declare	Sub	g	()

				i	As	Integer	=	420

End	Type

Sub	foo.f	(i	As	Integer)

				''	A	parameter	hides	T.i,	so	it	needs	to	be	qualified	to	be	used:

				Print	this.i

End	Sub

Sub	foo.g	()

				''	A	local	variable	hides	T.i,	so	it	needs	to	be	qualified	to	be	used:

				Dim	i	As	Integer

				Print	this.i

End	Sub

Access	rights
Unlike	normal	module-level	procedures,	member	procedures	have	full	access	rights	to	the	members	of	the
Type	or	Class	they	are	declared	in;	they	can	refer	to	the	public,	protected	and	private	members	of	a	
Class.

Overloading
A	member	procedure	can	be	declared	to	have	the	same	name	as	another	member	procedure,	provided	the
parameters	are	different,	either	in	number	or	in	type.	This	is	referred	to	as	overloading.

Only	the	parameters	are	used	to	determine	if	a	procedure	declaration	is	a	valid	overload.	For	example,	a	
or	Class	could	have	static	and	non-static	member	procedures	with	the	same	name,	or	
member	procedures	with	the	same	name

Unlike	a	module-level	procedure,	which	needs	to	specify	the	Overload
overloading	it,	a	member	procedure	is	overloadable	by	default,	and	does	not	need	the	

Type	T

				Declare	Sub	f

				

				''	Different	number	of	parameters:

				Declare	Sub	f	(As	Integer)

				

				''	Different	type	of	parameters:

				Declare	Sub	f	(ByRef	As	String)

				

				''	Again,	parameters	are	different:

				Declare	Function	f	(As	UByte)	As	Integer

				

				''	following	three	members	would	cause	an	error,

				''	number	of	parameters	and/or	types	do	not	differ:

				''	Declare	Function	f	As	Integer

				''	Declare	Function	f	(As	UByte)	As	String

				''	Declare	Static	Function	f	(As	UByte)	As	Integer

				''	...

				somedata	As	Any	Ptr

End	Type

Static	member	procedures

Static	member	procedures	are	declared	and	defined	much	in	the	same	way	as	non-static	member
procedures,	with	the	Static	keyword	preceding	the	declaration	and	definition.

Member	procedures	defined	using	the	Static	keyword	must	be	declared	with	the	
or	Class	definition,	or	a	compiler	error	will	occur.	Like	non-static	member	procedures,	it	is	an	error	to	define	a
static	member	procedure	without	a	matching	declaration	in	the	Type	or	

Do	not	confuse	this	with	procedure	definitions	that	specify	static	storage	for	their	variables	and	objects	by
appending	the	Static	keyword	to	the	procedure	header.	The	Static	keyword	can	be	used	in	both	contexts,
however;	static	member	procedures	can	be	defined	with	static	variable	and	object	storage.

The	following	example	declares	two	static	member	procedures,	the	first	of	which	also	has	static	variable	and
object	storage.	Note	that	the	Static	keyword	is	optional	in	the	member	procedure	definition:

''	foo2.bi

Type	foo

				Declare	Static	Sub	f	(As	Integer)

				Declare	Static	Function	g	As	Integer

				i	As	Integer

End	Type

Static	Sub	foo.f	(n	As	Integer)	Static

				Print	n

End	Sub

				

Function	foo.g	As	Integer

				Return	420

End	Function

Static	member	procedures	can	be	called	like	non-static	member	procedures,	qualifying	the	name	of	the
procedure	with	the	name	of	an	instance	and	the	member	access	operator	(

They	can	also	be	called	by	qualifying	the	procedure	name	with	the	name	of	the	
declared	in	and	the	member	access	operator	(Operator	.	(Member	Access)

required	in	order	to	call	static-member	procedures.

The	following	example,	using	the	code	from	the	last	example,	uses	both	ways	to	call	static	member
procedures:

''	...	foo	with	static	members	as	before	...

#include	once	"foo2.bi"

Dim	bar	As	foo

bar.f(foo.g())

Unlike	non-static	member	procedures,	which	are	declared	with	an	extra	
procedures	do	not	get	passed	an	instance	when	called.	Because	of	this,	static	member	procedures	can	only
refer	to	constants,	enumerations,	other	static	members	(data	or	procedures),	etc.,	without	qualifying	their
names.	Static	member	procedures	can	still	refer	to	non-static	members	when	qualified	with	an	instance,	for
example:	a	parameter	or	local	variable.

The	following	example	refers	to	a	non-static	member	from	a	static	procedure:

Type	foo

				Declare	Static	Sub	f	(ByRef	As	foo)

				i	As	Integer

End	Type

Sub	foo.f	(ByRef	self	As	foo)

				''	Ok,	self	is	an	instance	of	foo:

				Print	self.i

				''	would	cause	error

				''	cannot	access	non-static	members,	no	foo	instance:

				''	Print	i

End	Sub

[1]	In	the	future,	member	procedures	may	be	able	to	be	defined	within	the	
[2]	Static	member	procedures	do	not	require	an	object	instance	in	order	to	be	called.
[3]	Static	member	procedures	do	not	have	this	extra	parameter	added	by	the	compiler,	and	so	cannot	access
the	object	instance	from	which	it	was	called	with.

Properties 	

Properties	are	a	special	mix	of	member	variable	and	member	procedure.	They	provide	a	way	to
set	or	retrieve	values	of	an	object,	through	normal	looking	assignments	or	member	accesses,	but
also	let	the	object	perform	actions	if	it	needs	to	update	itself.

Basic	properties
Declaring	and	using	setter	and	getter	properties.
Indexed	properties
Properties	with	an	additional	parameter.

Basic	properties

A	property	is	declared	similar	to	a	member	procedure,	except	that	the	
used	instead	of	Sub	or	Function.	For	example,	let's	consider	a	window	class	for	a	windowing
system	or	GUI	library.

Type	Window

Private:

				As	String	title_

End	Type

Dim	As	Window	w

In	order	to	set	the	window's	title,	a	setter	property	can	be	added:

Type	Window

				Declare	Property	title(ByRef	s	As	String)

Private:

				As	String	title_

End	Type

Property	Window.title(ByRef	s	As	String)

				this.title_	=	s

End	Property

Dim	As	Window	w

w.title	=	"My	Window"

It	is	very	similar	to	a	member	Sub,	as	it	takes	a	parameter	and	updates	the	object	to	the	new
state	based	on	the	parameter.	However,	the	syntax	for	sending	this	parameter	is	a	basic
assignment,	not	a	function	call.	By	assigning	the	new	value	to	the	title
procedure	will	automatically	be	called	with	the	given	new	value,	and	can	update	the	window	to
reflect	the	change.	It	is	up	to	the	object	how	to	represent	the	property	state	internally.

By	design,	properties	can	only	be	assigned	one	value	at	a	time,	and	as	a	result	the	property
procedure	can	not	have	more	than	one	parameter.

After	setting	the	window	title,	it	should	also	be	possible	to	retrieve	it.	Here	is	how	to	add	a	
property:

Type	Window

				''	setter

				Declare	Property	title(ByRef	s	As	String)

				''	getter

				Declare	Property	title()	As	String

Private:

				As	String	title_

End	Type

''	setter

Property	Window.title(ByRef	s	As	String)

				this.title_	=	s

End	Property

''	getter

Property	Window.title()	As	String

				Return	this.title_

End	Property

Dim	As	Window	w

w.title	=	"My	Window"

Print	w.title

The	getter	is	very	similar	to	a	Function.	It	is	supposed	to	return	the	current	value	of	the
property,	and	it	allows	the	current	value	to	be	calculated	from	other	internal	values,	if	needed.
Note	that	both	setter	and	getter	use	the	same	identifier,	indicating	they	handle	the	same
property.

Just	like	method	overloading,	it	is	possible	to	specify	multiple	setters,	provided	they	have
different	parameter	types:

Type	Window

				Declare	Property	title(ByRef	s	As	String)

				Declare	Property	title(ByVal	i	As	Integer)

				Declare	Property	title()	As	String

Private:

				As	String	title_

End	Type

Property	Window.title(ByRef	s	As	String)

				this.title_	=	s

End	Property

Property	Window.title(ByVal	i	As	Integer)

				this.title_	=	"Number:	"	&	i

End	Property

Property	Window.title()	As	String

				Return	this.title_

End	Property

Dim	As	Window	w

w.title	=	"My	Window"

Print	w.title

w.title	=	5

Print	w.title

In	comparison	to	this	example	of	properties,	here	is	similar	code	that	does	not	use	properties:

Type	Window

				Declare	Sub	set_title(ByRef	s	As	String)

				Declare	Sub	set_title(ByVal	i	As	Integer)

				Declare	Function	get_title()	As	String

Private:

				As	String	title

End	Type

Sub	Window.set_title(ByRef	s	As	String)

				this.title	=	s

End	Sub

Sub	Window.set_title(ByVal	i	As	Integer)

				this.title	=	"Number:	"	&	i

End	Sub

Function	Window.get_title()	As	String

				Return	this.title

End	Function

Dim	As	Window	w

w.set_title("My	Window")

Print	w.get_title()

w.set_title(5)

Print	w.get_title()

The	code	is	basically	the	same,	only	the	syntax	is	different.	Properties	are	specifically	designed
to	combine	the	setter/getter	concept	and	the	language's	normal	way	of	literally	
accessing	values	to	a	class'	member	variables.	It	is	up	to	the	programmers	to	decide	which	way
they	prefer.

Here	is	an	example	demonstrating	a	text	user	interface	window	class	allowing	to	set	position
and	title	using	properties:

Namespace	tui

				Type	Point

								Dim	As	Integer	x,	y

				End	Type

				Type	char

								Dim	As	UByte	value

								Dim	As	UByte	Color

				End	Type

				Type	Window

								''	public

								Declare	Constructor	_

												(_

																x	As	Integer	=	1,	y	As	Integer	=	1

																w	As	Integer	=	20,	h	As	Integer	=	

																title	As	ZString	Ptr	=	0	_

)

								

								Declare	Destructor

								Declare	Sub	show

								''	title	property

								Declare	Property	title	As	String

								Declare	Property	title(new_title	As	String

								''	position	properties

								Declare	Property	x	As	Integer

								Declare	Property	x(new_x	As	Integer)

								Declare	Property	y	As	Integer

								Declare	Property	y(new_y	As	Integer)

				Private:

								Declare	Sub	redraw

								Declare	Sub	remove

								Declare	Sub	drawtitle

								Dim	As	String	p_title

								Dim	As	Point	Pos

								Dim	As	Point	siz

				End	Type

				Constructor	Window	_

								(_

												x_	As	Integer,	y_	As	Integer,	_

												w_	As	Integer,	h_	As	Integer,	_

												title_	As	ZString	Ptr	_

)

								pos.x	=	x_

								pos.y	=	y_

								siz.x	=	w_

								siz.y	=	h_

								If(title_	=	0)	Then

												title_	=	@"untitled"

								End	If

								p_title	=	*title_

				End	Constructor

				Destructor	Window

								Color	7,	0

								Cls

				End	Destructor

				Property	window.title	As	String

								title	=	p_title

				End	Property

				Property	window.title(new_title	As	String)

								p_title	=	new_title

								drawtitle

				End	Property

				Property	window.x	As	Integer

								Return	pos.x

				End	Property

				Property	window.x(new_x	As	Integer)

								remove

								pos.x	=	new_x

								redraw

				End	Property

				Property	window.y	As	Integer

								Property	=	pos.y

				End	Property

				Property	window.y(new_y	As	Integer)

								remove

								pos.y	=	new_y

								redraw

				End	Property

				Sub	window.show

								redraw

				End	Sub

				Sub	window.drawtitle

								Locate	pos.y,	pos.x

								Color	15,	1

								Print	Space(siz.x);

								Locate	pos.y,	pos.x	+	(siz.x	\	2)	-	(Len(

								Print	p_title;

				End	Sub

				Sub	window.remove

								Color	0,	0

								Var	sp	=	Space(siz.x)

								For	i	As	Integer	=	pos.y	To	pos.y	+	siz.y	

												Locate	i,	pos.x

												Print	sp;

								Next

				End	Sub

				Sub	window.redraw

								drawtitle

								Color	8,	7

								Var	sp	=	Space(siz.x)

								For	i	As	Integer	=	pos.y	+	1	To	pos.y	+	siz.y

												Locate	i,	pos.x

												Print	sp;

								Next

				End	Sub

End	Namespace

Dim	win	As	tui.window	=	tui.window(3,	5,	50,	15)

win.show

Sleep	500

win.title	=	"Window	1"

Sleep	250

win.x	=	win.x	+	10

Sleep	250

win.title	=	"Window	2"

Sleep	250

win.y	=	win.y	-	2

Sleep	250

Locate	25,	1

Color	7,	0

Print	"Press	any	key...";

Sleep

Note	how	updating	the	window's	position	or	title	automatically	causes	the	window	to	be	redrawn.

Indexed	properties

Properties	can	have	an	additional	parameter	that	is	called	an	index	(currently	only	one	additional
parameter	is	allowed).	The	index	is	specified	in	parentheses	behind	the	property's	name,	as	if
the	property	was	an	array	(with	only	one	dimension).	For	example:

Type	IntArray

				''	setters

				Declare	Property	value(index	As	Integer,	v	As	

				Declare	Property	value(index	As	String,	v	As	Integer

				Declare	Property	value(index	As	Integer,	v	As	

				Declare	Property	value(index	As	String,	v	As	String

				''	getters

				Declare	Property	value(index	As	Integer)	As	Integer

				Declare	Property	value(index	As	String)	As	Integer

Private:

				Dim	As	Integer	data_(0	To	9)

End	Type

Property	IntArray.value(index	As	Integer)	As	Integer

				Return	This.data_(index)

End	Property

Property	IntArray.value(index	As	String)	As	Integer

				Return	This.data_(CInt(index))

End	Property

Property	IntArray.value(index	As	Integer,	v	As	Integer

				This.data_(index)	=	v

End	Property

Property	IntArray.value(index	As	String,	v	As	Integer

				This.data_(CInt(index))	=	v

End	Property

Property	IntArray.value(index	As	Integer,	v	As	String

				This.data_(index)	=	CInt(v)

End	Property

Property	IntArray.value(index	As	String,	v	As	String

				This.data_(CInt(index))	=	CInt(v)

End	Property

Dim	a	As	IntArray

a.value(0)	=	1234

a.value("1")	=	5678

a.value(2)	=	"-1234"

a.value("3")	=	"-5678"

Print	a.value(0)

Print	a.value("1")

Print	a.value(2)

Print	a.value("3")

Sleep

This	simulates	an	integer	array	that	can	be	assigned	strings,	and	even	be	indexed	with	strings.
See	KeyPgProperty	for	another	example.

Member	Access	Rights 	

Restricting	member	access	to	certain	parts	of	code.

Overview
Public	members
Protected	members
Private	members
Constructors	and	destructors
Inherited	members

Overview
All	members	of	a	Type	or	Class	-	including	member	data,	procedures,
constants,	etc.	-	belong	in	one	of	three	different	classifications,	each
with	its	own	rules	dictating	where	in	code	they	may	be	accessed,	or
referred	to.	These	rules	are	called	access	rights.	There	are	public,
protected	and	private	members,	and	they	are	declared	in	a	Type	or
Class	definition	following	a	Public,	Protected	or	Private	label,
respectively.

By	default,	that	is,	without	an	access	classification	label,	members	of	a
Type	are	public,	and	members	of	a	Class	are	private.

Public	members
Public	members	can	be	referred	to	from	anywhere;	they	are	accessible
from,	for	example,	member	procedures	or	module-level	code	or
procedures.

Protected	members
Protected	members	can	only	be	accessed	from	member	procedures	of
the	Type	or	Class	they	are	declared	in,	or	member	procedures	of	a
derived	Type	or	Class.	They	are	not	accessible	to	outside	code.

Private	members
Private	members	can	only	be	accessed	from	member	procedures	of

the	Type	or	Class	they	are	declared	in.	They	are	not	accessible	to
outside	code	or	member	procedures	from	a	derived	Type	or	Class.

Constructors	and	destructors
Constructors	and	destructors	follow	the	same	rules	as	any	other
member.	When	public,	objects	can	be	instantiated	and	destroyed	from
anywhere	in	code.	When	protected,	objects	can	be	instantiated	and
destroyed	only	from	member	procedures	of	their	Type	or	Class	or	a
derived	Type	or	Class.	Private	constructors	and	destructors	restrict
object	instantiation	solely	to	member	procedures	of	their	Type	or	Class

Inherited	members
...

Operator	Overloading 	

Changing	the	way	user	defined	types	work	with	built-in	operators.

Overview
Global	Operators
Member	Operators

Overview
Simply,	operators	are	procedures,	and	their	arguments	are	called	operands
operand	(Operator	Not)	are	called	unary	operators,	operators	that	take	two	operands	(
called	binary	operators	and	operators	taking	three	operands	(Operator	Iif
operators.

Most	operators	are	not	called	like	procedures.	Instead,	their	operator	symbol	is	placed	next	to	their
operands.	For	unary	operators,	their	sole	operand	is	placed	to	the	right	of	the	symbol.	For	binary
operators,	their	operands	-	referred	to	as	the	left	and	right-hand	side	operands	-	are	placed	to	the	left
and	right	of	the	operator	symbol.	FreeBASIC	has	one	ternary	operator,	
like	a	procedure,	with	its	operands	comma-separated	surrounded	by	parenthesis.	For	example,	the
following	code	calls	Operator	Iif	to	determine	if	a	pointer	is	valid.	If	it	is,	
called	to	dereference	the	pointer,	and	if	not,	Operator	/	(Divide)	is	called	to	find	the	value	of	twenty
divided	by	four.

Dim	i	As	Integer	=	420

Dim	p	As	Integer	Ptr	=	@i

Dim	result	As	Integer	=	IIf(p,	*p,	CInt(20	/	4)

Notice	the	call	to	Operator	Iif	is	similar	to	a	procedure	call,	while	the	calls	to	
and	Operator	/	(Divide)	are	not.	In	the	example,	p	is	the	operand	to	Operator	*	(Value	Of)
and	4	are	the	left	and	right-hand	side	operands	of	Operator	/	(Divide)

All	operators	in	FreeBASIC	are	predefined	to	take	operands	of	standard	data	types,	like	
Single,	but	they	may	also	be	overloaded	for	user-defined	types;	that	is,	they	can	be	defined	to	accept
operands	that	are	objects	as	well.	There	are	two	types	of	operators	that	can	be	overloaded,	
operators	and	member	operators.

Global	Operators
Global	operators	are	those	that	are	declared	in	module-level	scope	(globally).	These	are	the	operators
-	(Negate),	Not	(Bitwise	Not),	->	(Pointer	To	Member	Access),	*	(Value	Of)
(Multiply),	/	(Divide),	\	(Integer	Divide),	&	(Concatenate),	Mod	(Modulus)
(Shift	Right),	And	(Bitwise	And),	Or	(Bitwise	Or),	Xor	(Bitwise	Xor)
(Bitwise	Eqv),	^	(Exponentiate),	=	(Equal),	<>	(Not	Equal),	<	(Less	Than)
(Less	Than	Or	Equal)	and	>=	(Greater	Than	Or	Equal).

Declaring	a	custom	global	operator	is	similar	to	declaring	a	procedure.	The	
with	the	Operator	keyword.	The	operator	symbol	is	placed	next	followed	by	the	comma-separated	list	of
parameters	surrounded	in	parenthesis	that	will	represent	the	operands	passed	to	the	operator.	Unlike
procedures,	operators	can	be	overloaded	by	default,	so	the	Overload	keyword	is	not	necessary	when
declaring	custom	operators.	At	least	one	of	the	operator's	parameters	must	be	of	user-defined	type
(after	all,	operators	with	built-in	type	parameters	are	already	defined).

The	following	example	declares	the	global	operators	-	(Negate)	and	+	(Multiply)
of	a	user-defined	type.

Type	Rational

				As	Integer	numerator,	denominator

End	Type

Operator	-	(ByRef	rhs	As	Rational)	As	Rational

				Return	Type(-rhs.numerator,	rhs.denominator)

End	Operator

Operator	*	(ByRef	lhs	As	Rational,	ByRef	rhs	As	Rational

				Return	Type(lhs.numerator	*	rhs.numerator,	_

								lhs.denominator	*	rhs.denominator)

End	Operator

Dim	As	Rational	r1	=	(2,	3),	r2	=	(3,	4)

Dim	As	Rational	r3	=	-(r1	*	r2)

Print	r3.numerator	&	"/"	&	r3.denominator

Here	the	global	operators	are	defined	for	type	Rational,	and	are	used	in	the	initialization	expression	for
r3.	The	output	is	-6/12.

Member	Operators
Member	operators	are	declared	inside	a	Type	or	Class	definition,	like	member	procedures,	and	they	are
the	cast	and	assignment	operators	Let	(Assign),	Cast	(Cast),	+=	(Add	And	Assign)
Assign),	*=	(Multiply	And	Assign),	/=	(Divide	And	Assign),	\=	(Integer	Divide	And	Assign)
(Exponentiate	And	Assign),	&=	(Concat	And	Assign),	Mod=	(Modulus	And	Assign)
And	Assign),	Shr=	(Shift	Right	And	Assign),	And=	(Conjunction	And	Assign)
Disjunction	And	Assign),	Xor=	(Exclusive	Disjunction	And	Assign),	
and	Eqv=	(Equivalence	And	Assign).

When	declaring	member	operators,	the	Declare	and	Operator	keywords	are	used	followed	by	the
operator	symbol	and	its	parameter	list.	Like	member	procedures,	member	operators	are	defined
outside	the	Type	or	Class	definition,	and	the	symbol	name	is	prefixed	with	the	name	of	the	
name.

The	following	example	overloads	the	member	operators	Cast	(Cast)	and	
objects	of	a	user-defined	type.

Type	Rational

				As	Integer	numerator,	denominator

				

				Declare	Operator	Cast	()	As	Double

				Declare	Operator	Cast	()	As	String

				Declare	Operator	*=	(ByRef	rhs	As	Rational)

End	Type

Operator	Rational.cast	()	As	Double

				Return	numerator	/	denominator

End	Operator

Operator	Rational.cast	()	As	String

				Return	numerator	&	"/"	&	denominator

End	Operator

Operator	Rational.*=	(ByRef	rhs	As	Rational)

				numerator	*=	rhs.numerator

				denominator	*=	rhs.denominator

End	Operator

Dim	As	Rational	r1	=	(2,	3),	r2	=	(3,	4)

r1	*=	r2

Dim	As	Double	d	=	r1

Print	r1,	d

Notice	that	the	member	operator	Cast	(Cast)	is	declared	twice,	once	for	the	conversion	to	
once	for	the	conversion	to	String.	This	is	the	only	operator	(or	procedure)	that	can	be	declared	multiple
times	when	only	the	return	type	differs.	The	compiler	decides	which	cast	overload	to	call	based	on	how
the	object	is	used	(in	the	initialization	of	the	Double	d,	Rational.Cast	as	double
Print	statement,	Rational.Cast	as	string	is	used	instead).

Types	as	Objects 	

An	example	of	the	overloadable	operators	and	member	procedures

Description
!!!	WRITEME	!!!

''	Sample	Type	showing	available	methods	and	operators

''	Practically	this	is	a	pointless	example,	as	the	only

''	data	member	is	an	Integer.		It	serves	only	as	a

''	demonstration	and	guide.

''

''	There	are	many	other	combinations	that	can	be

''	used	in	pass	parameters.		For	simplicity

''	This	example	only	uses	byref	and	type	T

''	where	ever	possible.

''	The	type	'DataType'	is	included	to	show	where

''	any	data	type	might	be	used

Type	DataType	As	Integer

''	The	type	'UDT'	is	included	to	show	where	only	

''	a	UDT	data	type	can	be	used

Type	UDT

		value	As	DataType

End	Type

''	Our	main	type

Type	T

		value	As	DataType

		value_array(0)	As	DataType

		''	let,	cast,	combined	assignment	operators,

		''	constructors,	and	the	destructor,	must	be

		''	declared	inside	the	type.

		''

		''	Parameters	can	be	passed	Byval	or	Byref

		''	in	most	(All?	-	verify	this).

		''

		''	All	procs	can	be	overloaded	with	different

		''	types	as	parameters.		In	many	cases	this	is	not

		''	necessary	as	the	TYPE	can	be	coerced	and

		''	converted	depending	on	the	CAST	methods

		''	it	exposes.		The	compiler	will	to	its	best

		''	to	evaluate	statements	and	expressions	if

		''	there	is	enough	information	to	complete

		''	the	operation.

		''

		''	For	example,

		''	Even	though	operator	+=	may	not	be	overloaded

		''	but	operator	let	and	operator	+	are,	the

		''	compiler	will	convert	the	T	+=	datatype

		''	to	T	=	T	+	datatype.

		''	Nonstatic	members	must	be	declared	inside	the

		''	type.

		''

		''	All	Nonstatic	members	are	implicitly

		''	passed	a	hidden	**this**	parameter	having

		''	the	same	type	as	the	TYPE	in	which	they	are

		''	declared.

		''

		''	Nonstatic	member	overloaded	operators	do	not

		''	return	a	type.		All	operations	are	done	on	the

		''	hidden	this	parameter.

		''

		''	Properties:	Can	be	value	properties	or	single

		''	indexed	value	properties

		''	GET/SET	methods	must	be	each	delcared	if	used.

		''	Nonstatic	Member	Declarations:

		''	Assignment

		Declare	Operator	Let	(ByRef	rhs	As	T)

		Declare	Operator	Let	(ByRef	rhs	As	DataType)

		''	Cast	can	be	overloaded	to	return	multiple	types

		Declare	Operator	Cast	()	As	String

		Declare	Operator	Cast	()	As	DataType

		''	Combined	assignment

		Declare	Operator	+=	(ByRef	rhs	As	T)

		Declare	Operator	+=	(ByRef	rhs	As	DataType)

		Declare	Operator	-=	(ByRef	rhs	As	DataType)

		Declare	Operator	*=	(ByRef	rhs	As	DataType)

		Declare	Operator	/=	(ByRef	rhs	As	DataType)

		Declare	Operator	\=	(ByRef	rhs	As	DataType)

		Declare	Operator	Mod=	(ByRef	rhs	As	DataType)

		Declare	Operator	Shl=	(ByRef	rhs	As	DataType)

		Declare	Operator	Shr=	(ByRef	rhs	As	DataType)

		Declare	Operator	And=	(ByRef	rhs	As	DataType)

		Declare	Operator	Or=	(ByRef	rhs	As	DataType)

		Declare	Operator	Xor=	(ByRef	rhs	As	DataType)

		Declare	Operator	Imp=	(ByRef	rhs	As	DataType)

		Declare	Operator	Eqv=	(ByRef	rhs	As	DataType)

		Declare	Operator	^=	(ByRef	rhs	As	DataType)

		''	Address	of

		Declare	Operator	@	()	As	DataType	Ptr

		''	Constructors	can	be	overloaded

		Declare	Constructor()

		Declare	Constructor(ByRef	rhs	As	T)

		Declare	Constructor(ByRef	rhs	As	DataType)

		''	There	can	be	only	one	destructor

		Declare	Destructor()

		''	Nonstatic	member	functions	and	subs

		''	overloaded	procs	must	have	different	parameters

		Declare	Function	f()	As	DataType

		Declare	Function	f(ByRef	arg1	As	DataType)	As	

		Declare	Sub	s()

		Declare	Sub	s(ByRef	arg1	As	T)

		Declare	Sub	s(ByRef	arg1	As	DataType)

		''	Properties

		Declare	Property	p	()	As	DataType

		Declare	Property	p	(ByRef	new_value	As	DataType

		Declare	Property	pidx	(ByVal	index	As	DataType	

		Declare	Property	pidx	(ByVal	index	As	DataType,

End	Type

''	These	must	be	global	procedures

''	Globals	are	not	prefixed	with	the	the	TYPE	name

''	At	least	one	parameter	must	be	of	Type	'T'

''	For	simplicity,	type	'T'	is	always	given	first	for	binary	ops

''	in	this	example

Declare	Operator	-	(ByRef	rhs	As	T)	As	DataType

Declare	Operator	Not	(ByRef	rhs	As	T)	As	DataType

Declare	Operator	->	(ByRef	rhs	As	T)	As	UDT

Declare	Operator	*	(ByRef	rhs	As	T)	As	DataType

Declare	Operator	+	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	-	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	*	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	/	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	\	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	Mod	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	Shl	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	Shr	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	And	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	Or	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	Xor	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	Imp	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	Eqv	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	^	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	=	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	<>	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	<	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	>	(ByRef	lhs	As	T,	ByRef	rhs	As	

Declare	Operator	<=	(ByRef	lhs	As	T,	ByRef	rhs	As

Declare	Operator	>=	(ByRef	lhs	As	T,	ByRef	rhs	As

''	Global	procedures	(subs	and	funcs)	can	also	accept	the	TYPE

''	as	a	parameter	or	return	it	as	a	value,	as	could	be	done

''	in	previous	versions	of	FreeBASIC.

''	No	example	given.	See	function	or	sub	in	the	manual.

''	All	TYPE	members	are	defined	outside	the	TYPE

''	Nonstatic	members	must	be	prefixed	with	type	name

''	in	this	case	'T'

''	Name	resolution	in	a	NAMESPACE	is	same	as	other

''	subs/funcs.		Use	USING	or	prefix	the	namespace	name

Operator	T.let	(ByRef	rhs	As	T)

		value	=	rhs.value		

End	Operator

Operator	T.let	(ByRef	rhs	As	DataType)

		value	=	rhs		

End	Operator

Operator	T.cast	()	As	String

		Return	Str(value)

End	Operator

Operator	T.cast	()	As	DataType

		Return	value

End	Operator

Operator	T.+=	(ByRef	rhs	As	T)

		value	+=	rhs.value

End	Operator

Operator	T.+=	(ByRef	rhs	As	DataType)

		value	+=	rhs

End	Operator

Operator	T.-=	(ByRef	rhs	As	DataType)

		value	-=	rhs

End	Operator

Operator	T.*=	(ByRef	rhs	As	DataType)

		value	*=	rhs

End	Operator

Operator	T./=	(ByRef	rhs	As	DataType)

		value	/=	rhs

End	Operator

Operator	T.\=	(ByRef	rhs	As	DataType)

		value	\=	rhs

End	Operator

Operator	T.mod=	(ByRef	rhs	As	DataType)

		value	Mod=	rhs

End	Operator

Operator	T.shl=	(ByRef	rhs	As	DataType)

		value	Shl=	rhs

End	Operator

Operator	T.shr=	(ByRef	rhs	As	DataType)

		value	Shr=	rhs

End	Operator

Operator	T.and=	(ByRef	rhs	As	DataType)

		value	And=	rhs

End	Operator

Operator	T.or=	(ByRef	rhs	As	DataType)

		value	Or=	rhs

End	Operator

Operator	T.xor=	(ByRef	rhs	As	DataType)

		value	Xor=	rhs

End	Operator

Operator	T.imp=	(ByRef	rhs	As	DataType)

		value	Imp=	rhs

End	Operator

Operator	T.eqv=	(ByRef	rhs	As	DataType)

		value	Eqv=	rhs

End	Operator

Operator	T.^=	(ByRef	rhs	As	DataType)

		value	^=	rhs

End	Operator

Operator	T.@	()	As	DataType	Ptr

		Return(Cast(DataType	Ptr,	@This))

End	Operator

''	Constructors:

Constructor	T()

		value	=	0

End	Constructor

Constructor	T(ByRef	rhs	As	T)

		value	=	rhs.value

End	Constructor

Constructor	T(ByRef	rhs	As	DataType)

		value	=	rhs

End	Constructor

''	There	can	be	only	one	destructor

Destructor	T()

		''	clean-up,	none	in	this	example

End	Destructor

''	Globals	must	specify	all	arguments	and	return	type

Operator	-	(ByRef	rhs	As	T)	As	DataType

		Return	(-rhs.value)

End	Operator

Operator	Not	(ByRef	rhs	As	T)	As	DataType

		Return	(Not	rhs.value)

End	Operator

Operator	->	(ByRef	rhs	As	T)	As	UDT

		Return	Type(4)

End	Operator

Operator	*	(ByRef	rhs	As	T)	As	DataType

		Return	5

End	Operator

Operator	+	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	+	rhs)

End	Operator

Operator	-	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	-	rhs)

End	Operator

Operator	*	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	*	rhs)

End	Operator

Operator	/	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	/	rhs)

End	Operator

Operator	\	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	\	rhs)

End	Operator

Operator	Mod	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	Mod	rhs)

End	Operator

Operator	Shl	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	Shl	rhs)

End	Operator

Operator	Shr	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	Shr	rhs)

End	Operator

Operator	And	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	And	rhs)

End	Operator

Operator	Or	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	Or	rhs)

End	Operator

Operator	Xor	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	Xor	rhs)

End	Operator

Operator	Imp	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	Imp	rhs)

End	Operator

Operator	Eqv	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	Eqv	rhs)

End	Operator

Operator	^	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	^	rhs)

End	Operator

Operator	=	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	=	rhs)

End	Operator

Operator	<>	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	<>	rhs)

End	Operator

Operator	<	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	<	rhs)

End	Operator

Operator	>	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	>	rhs)

End	Operator

Operator	<=	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	<=	rhs)

End	Operator

Operator	>=	(ByRef	lhs	As	T,	ByRef	rhs	As	DataType

		Return	(lhs.value	>=	rhs)

End	Operator

''	Nonstatic	member	methods

Function	T.f()	As	DataType

		Dim	x	As	DataType

		Return	x

End	Function

Function	T.f(ByRef	arg1	As	DataType)	As	DataType

		arg1	=	this.value

		Return	value

End	Function

Sub	T.s()

		''	refer	to	the	type	using

		

		''	with	block

		With	This

				.value	=	1

		End	With

		

		''	field	access

		this.value	=	2

		

		''	directly

		value	=	3

End	Sub

Sub	T.s(ByRef	arg1	As	T)

		value	=	arg1.value

End	Sub

Sub	T.s(ByRef	arg1	As	DataType)

		value	=	arg1

End	Sub

Property	T.p	()	As	DataType

		''	GET	property

		Return	value

End	Property

Property	T.p	(ByRef	new_value	As	DataType)

		''	SET	property

		value	=	new_value

End	Property

Property	T.pidx	(ByVal	index	As	DataType)	As	DataType

		''	GET	indexed	property

		Return	value_array(index)

End	Property

Property	T.pidx	(ByVal	index	As	DataType,	ByRef	new_value

		''	SET	indexed	property

		value_array(index)	=	new_value

End	Property

''	new,	delete,	delete[]

''	Allocate	object

Dim	X	As	T	Ptr	=	New	T

''	Deallocate	object

Delete	X

''	Allocate	object	vector

Dim	Xlist	As	T	Ptr	=	New	T[10]

''	Deallocate	object	vector

Delete[]	Xlist

See	also

Type

Control	Flow	Statements 	

Statements	that	direct	the	flow	of	execution.

Description
Control	flow	statements	control	program	execution	from	one	statement
to	the	next;	they	determine	what	statements	get	executed	and	when,
based	on	some	kind	of	condition.	The	condition	is	always	some
expression	that	evaluates	to	true	or	false.	Most	control	flow	statements
check	for	some	kind	of	condition,	and	direct	code	flow	accordingly,	that
is,	they	do	or	do	not	execute	a	block	of	code	(except	for	the
transferring	control	flow	statements	and	Do..Loop,	which	has	an
optional	condition).	Additionally,	all	control	flow	statements	can	be
nested,	that	is,	they	can	have	other	control	flow	statements	within	the
statement	block.

Control	flow	statements	come	in	three	flavors:	transferring,	branching
and	looping.	Transferring	control	flow	statements	transfer	execution	to
different	parts	of	code.	Branching	control	flow	statements	execute
certain	statements	blocks	based	on	a	condition,	while	looping	control
flow	statements	execute	code	repeatedly	while	or	until	a	condition	is
met.

Transferring	Statements
These	statements	are	used	for	either	unconditional	or	conditional,
temporary	or	permanent	transfer	of	execution.	The	"ON"	variants
conditionally	select	a	point	of	transfer	from	a	list	of	text	labels.
Execution	may	be	transferred	between	different	scopes	provided	that
the	branching	does	not	cross	any	local	array,	variable	length	string	or
object	definition.

Goto
Unconditionally	transfers	execution	to	another	point	in	code	defined	by
a	text	label.	Execution	resumes	with	the	first	statement	after	the	label.

GoSub
Unconditionally	and	temporarily	transfers	execution	to	another	point	in

code,	defined	by	a	text	label.	Execution	resumes	with	the	first
statement	after	the	label.	Execution	is	then	brought	back	to	its	original
location	with	the	Return	keyword.	Yes,	GoSub	statements	can	be
nested,	that	is,	multiple	GoSub	statements	can	be	executed	before	the
first	corresponding	Return,	but	there	must	always	be	a	corresponding
Return	throughout	the	course	of	an	application.

On	Goto
Transfers	execution	to	one	of	a	number	of	points	in	code	defined	by
text	labels,	based	on	the	value	of	an	expression.

On	Gosub
Temporarily	transfers	execution	to	one	of	a	number	of	points	in	code
defined	by	text	labels,	based	on	the	value	of	an	expression.

Branching	Statements
These	statements	are	used	for	executing	one	of	a	number	of	statement
blocks.

If..End	If
Executes	a	block	of	statements	if	an	expression	evaluates	to	true	(the
condition).	If	and	only	if	the	expression	evaluates	to	false,	another
statement	block	can	be	executed	if	yet	another	expression	evaluates	to
true	using	the	ElseIf	keyword.	If	and	only	if	all	of	those	expressions
evaluate	to	false,	a	statement	block	can	be	execute	using	the	Else
keyword.

Select..End	Select
Executes	one	of	a	number	of	statement	blocks.	This	branching
statement	tries	to	meet	a	condition	of	an	expression	and	one	of	a
number	of	case	expressions.	The	case	expressions	are	checked	in	the
order	in	which	they	are	given,	and	the	first	case	expression	that	is	met
has	its	associated	statement	block	executed.	Like	If..End	If,	a	default
case	can	be	defined	when	no	other	case	expression	meets	the
condition,	and,	as	with	the	looping	control	flow	statements,	a	case's
statement	block	can	be	prematurely	broken	out	of	with	the	Exit
keyword.

Looping	Statements
These	statements	are	used	for	executing	a	block	of	statements
repeatedly.	Within	a	statement	block,	the	loop	can	be	prematurely	re-
executed	using	the	Continue	keyword,	or	broken	out	of	using	the	Exit
keyword.	Whether	the	loop	is	terminated	by	the	condition	or	with	the
Exit	keyword,	execution	always	begins	at	the	first	statement	after	the
block.

While..Wend
Executes	a	block	of	statements	while	some	expression	evaluates	to
true	(the	condition).	The	expression	is	evaluated	and	checked	before
the	block	of	statements	is	executed.

For..Next
Like	While..Wend,	but	more	suited	to	loop	a	certain	number	of	times.
This	loop	initializes	a	so-called	iterator	with	an	initial	value	that	is
checked	against	a	test	expression.	If	the	iterator	compares	less	than	or
equal	to	the	test	expression	(the	condition),	the	block	of	statements	is
executed	and	the	iterator	gets	incremented.	The	loop	can	also	be
setup	so	that	the	iterator	gets	decremented	after	every	loop,	in	which
case	it	is	compared	greater	than	or	equal	to	the	test	expression.
Iterators	can	be	numeric	data	types	like	Integer	or	Double,	or	user-
defined	types.	User-defined	types	must	implement	Operator	For.
Do..Loop
The	most	versatile	of	the	looping	control	flow	statements,	this	loop	can
execute	a	block	of	statements	while	or	until	an	expression	evaluates	to
true	(the	condition).	It	can	also	delay	the	checking	of	the	expression
until	after	the	block	has	executed	the	first	time,	useful	when	a	block	of
statements	needs	to	be	executed	at	least	once.	Finally,	this	loop	can
have	no	condition	at	all,	and	merely	loop	indefinitely.

Procedures	Overview 	

Overview	of	the	different	FB	procedure	types.

Procedures	are	blocks	of	code	that	can	be	executed,	or	called,	from	anywhere	in	a	program,	any
number	of	times.	The	code	that	is	executed	is	called	the	procedure	body.	There	are	two	types	of
procedures	in	FreeBASIC:	procedures	that	don't	return	a	value	and	procedures	that	do.

Subs
Subs	are	procedures	that	don't	return	values.	They	are	declared	using	the	
defined	using	the	Sub	keyword.	Declaring	a	procedure	introduces	its	name	so	that	it	can	be	called,
and	a	procedure	definition	lists	the	statements	of	code	that	will	be	executed	when	called.	A	
called	simply	by	using	its	name	somewhere	in	the	program.

'	introduces	the	sub	'MyProcedure'

Declare	Sub	MyProcedure

'	calls	the	procedure	'MyProcedure'

MyProcedure

'	defines	the	procedure	body	for	'MyProcedure'

Sub	MyProcedure

				Print	"the	body	of	MyProcedure"

End	Sub

will	produce	the	output:

the	body	of	MyProcedure

Notice	that	only	the	declaration	is	needed	to	call	the	procedure.	The	procedure	can	be	defined	later
in	code,	or	even	in	a	different	source	file	altogether.

Functions

Functions	are	procedures	that	return	a	value	back	to	the	point	in	code	in	which	they	are	called.	You
can	think	of	a	function	call	as	evaluating	to	some	expression,	just	like	a	variable	or	object.	They	are
declared	using	the	Declare	keyword,	and	defined	using	the	Function	keyword.	The	type	of	value
that	functions	return	is	specified	at	the	end	of	the	declaration.

'	introduces	and	defines	a	procedure	that	returns	an	integer	value

Function	MyProcedure	As	Integer

				Return	10

End	Function

'	calls	the	procedure,	and	stores	its	return	value	in	a	variable

Dim	i	As	Integer	=	MyProcedure

Print	i

will	produce	the	output:

10

Since	a	definition	is	a	declaration,	a	procedure	can	be	called	after	it	has	been	defined,	as	well.

It	is	a	common	convention	when	calling	a	procedure	to	place	parenthesis	
name,	to	signify	a	procedure	call.	FreeBASIC	does	not	require	this,	however.

See	also

Passing	Arguments	to	Procedures
Returning	a	Value
Declare

Sub

Function

Passing	Arguments	to	Procedures 	

Passing	information	to	procedures.

Declaring	parameters
Procedures	can	get	passed	information	in	the	form	of	variables	and	objects	when	they	are
called.	In	the	context	of	a	procedure	call,	these	variables	and	objects	are	called	arguments.
These	arguments	are	then	represented	as	so-called	parameters	inside	the	procedure	body.
Parameters	can	be	used	just	like	any	other	variable	or	object.

To	specify	that	a	procedure	should	get	passed	arguments	when	called,	declare	the	procedure
with	a	parameter	list.	A	parameter	list	is	a	list	of	one	or	more	names	and	types	that	the
procedure	will	use	when	referring	to	the	arguments	that	are	passed	to	it.	Parameter	lists	are
surrounded	by	parenthesis.

Sub	Procedure	(s	As	String,	n	As	Integer)

				Print	"The	parameters	have	the	values:	"	&	s	&

End	Sub

Procedure	"abc",	123

will	produce	the	following	output:

The	parameters	have	the	values:	abc	and	123

There	are	two	ways	to	pass	arguments	to	procedures:	by	value	and	by	reference.	By	default,
arguments	are	passed	by	value	unless	otherwise	specified.

Passing	arguments	by	value
Arguments	that	are	passed	by	value	are	not	actually	passed	to	procedures;	a	copy	of	the
argument	is	made	and	passed	instead.	This	allows	the	procedure	to	modify	the	copy,	and	the
original	variable	or	object	remains	unchanged.

When	passing	objects	to	procedures	by	value,	the	copy	is	made	by	calling	the	copy

constructor	of	the	Type	or	Class.

To	specify	that	an	argument	should	be	passed	by	value,	precede	the	parameter	name	in	the
procedure	declaration	with	the	ByVal	keyword:

Sub	Procedure	(ByVal	param	As	Integer)

				param	*=	2

				Print	"The	parameter	'param'	=	"	&	param

End	Sub

Dim	arg	As	Integer	=	10

Print	"The	variable	'arg'	before	the	call	=	"	&	arg

Procedure(arg)

Print	"The	variable	'arg'	after	the	call	=	"	&	arg

will	produce	the	following	output:

The	variable	'arg'	before	the	call	=	10

The	parameter	'param'	=	20

The	variable	'arg'	after	the	call	=	10

Notice	how	parenthesis	surround	the	arguments	-	in	this	case	only	one,	
call.	These	parenthesis	are	optional,	but	are	a	common	convention	to	signify	a	procedure	call.

Passing	arguments	by	reference
Unlike	arguments	that	are	passed	by	value,	arguments	that	are	passed	to	procedures	by
reference	really	do	get	passed;	no	copy	is	made.	This	allows	the	procedure	to	modify	the
original	variable	or	object	that	was	passed	to	it.

A	reference	is	like	an	alias	for	a	variable	or	object.	Whenever	you	refer	to	a	reference,	you're
referring	to	the	actual	variable	or	object	that	it	aliases.	In	other	words,	you	can	think	of	a
reference	parameter	of	a	procedure	as	the	argument	that	is	passed	to	it;	any	changes	made
to	the	reference	parameter	are	actually	changes	to	the	argument	it	represents.

To	specify	that	an	argument	should	be	passed	by	reference,	precede	the	parameter	name	in
the	procedure	declaration	with	the	ByRef	keyword:

Sub	Procedure	(ByRef	param	As	Integer)

				param	*=	2

				Print	"The	parameter	'param'	=	"	&	param

End	Sub

Dim	arg	As	Integer	=	10

Print	"The	variable	'arg'	before	the	call	=	"	&	arg

Procedure(arg)

Print	"The	variable	'arg'	after	the	call	=	"	&	arg

will	produce	the	following	output:

The	variable	'arg'	before	the	call	=	10

The	parameter	'param'	=	20

The	variable	'arg'	after	the	call	=	20

Manually	passing	pointers	to	by-reference	parameters
By	specifying	the	Byval	keyword	in	front	of	an	argument	to	a	ByRef	parameter,	an	address
(usually	stored	in	a	pointer)	can	be	passed	directly	as-is,	forcing	the	Byref
reference	the	same	memory	location	which	the	address	pointed	to.

Sub	f(ByRef	i	As	Integer)

				i	=	456

End	Sub

Dim	i	As	Integer	=	123

Dim	pi	As	Integer	Ptr	=	@i

Print	i

f(ByVal	pi)

Print	i

See	also

Procedures	Overview
Returning	a	Value
Declare

Sub

Function

ByVal

ByRef

Returning	Values 	

Returning	Values

...	refers	to	the	ability	of	a	Function	procedure	to	have	a	value	when	the	function	finishes	such	that	the	value	can	be	used	in	an
expression	or	assigned	to	a	variable.

The	value	of	a	function	can	be	returned	in	three	ways:

''	Using	the	name	of	the	function	to	set	the	return	value	and	continue	executing	the	function:

Function	myfunc1()	As	Integer

			myfunc1	=	1

End	Function

''	Using	the	keyword	'Function'	to	set	the	return	value	and	continue	executing	the	function:

Function	myfunc2()	As	Integer

			Function	=	2

End	Function

''	Using	the	keyword	'Return'	to	set	the	return	value	and	immediately	exit	the	function:

Function	myfunc3()	As	Integer

			Return	3

End	Function

''	This	program	demonstrates	a	function	returning	a	value.

Declare	Function	myFunction	()	As	Integer

Dim	a	As	Integer

'Here	we	take	what	myFunction	returns	and	add	10.

a	=	myFunction()	+	10

'knowing	that	myFunction	returns	10,	we	get	10+10=20	and	will	print	20.

Print	a	

Function	myFunction	()	As	Integer

		'Here	we	tell	myFunction	to	return	10.

		Function	=	10	

End	Function

Returning	References
Function	results	can	also	be	returned	by	reference,	rather	than	by	value.	The	semantics	are	quite	different.

When	assigning	a	Byref	function	result	through	a	Function	=	variable
return	the	variable's	value.	Instead,	it	returns	a	reference	to	that	variable.	The	caller	of	the	function	can	modify	the	variable	through	the
reference	returned	from	the	function,	without	having	to	use	pointers	manually.	This	is	very	much	like	

For	more	information,	refer	to:	Byref	(Function	Results)

Manually	returning	pointers	as-is	from	Byref	functions
By	specifying	the	Byval	keyword	in	front	of	the	result	variable	in	the	Function	=	variable
(usually	stored	in	a	pointer)	can	be	passed	directly	as-is,	forcing	the	Byref
the	address	pointed	to.	For	example:

Dim	Shared	i	As	Integer	=	123

Function	f()	ByRef	As	Integer

				Dim	pi	As	Integer	Ptr	=	@i

				Function	=	ByVal	pi

				''	or,	with	RETURN	it	would	look	like	this:

				Return	ByVal	pi

End	Function

Print	i,	f()

See	also

Function

Byref	(Function	Results)

Calling	Conventions 	

Specifying	how	procedures	are	called.

Calling	conventions	determine	how	calling	code	interacts	with	procedures
when	called.	They	specify	rules	about	how	parameters	are	pushed	onto
the	call	stack,	how	values	are	returned	and	when	the	call	stack	is	cleaned
up.	This	information	is	useful	when	interacting	with	code	written	in	other
languages,	particularly	assembly	language.	In	some	cases,	calling
conventions	also	apply	some	kind	of	name	decoration	to	procedure
names.

FreeBASIC	supports	3	calling	conventions:	stdcall,	cdecl	and	pascal,
specified	with	stdcall,	cdecl	and	pascal,	respectively.	Calling	convention
can	be	specified	in	either	a	procedure	declaration	or	definition
immediately	following	the	procedure	name.	The	declaration	of	a
procedure	must	have	the	same	calling	convention	as	the	definition.

In	all	calling	conventions,	integral	procedure	return	values	are	returned	in
the	EAX(,	EDX)	register(s),	and	floating-point	return	values	are	stored	in	the
ST(0)	register	(the	top	of	the	floating-point	stack).	User-defined	type
(UDT)	values	are	returned	in	the	EAX(,	EDX)	register(s)	if	eight	(8)	bytes	or
smaller,	otherwise	they	are	returned	in	memory	by	having	their	address
pushed	onto	the	call	stack	after	any	parameters.

stdcall
In	the	stdcall	convention,	procedure	parameters	are	pushed	onto	the
call	stack	prior	to	the	procedure	call	(which	will	push	the	return	address
just	above	parameters)	in	the	reverse	order	they	are	declared,	that	is,
from	right	to	left.	The	procedure	is	in	charge	of	popping	any
parameters	from	the	call	stack	(commonly	by	appending	a	constant	to
the	RET	instruction,	signifying	the	number	of	bytes	to	release).

stdcall	is	the	default	calling	convention	on	Windows,	and	for
procedures	within	Extern	"Windows"	and	Extern	"Windows-Ms"	blocks.	It
is	also	the	default	convention	used	in	the	Windows	API.

Platform	Differences

In	DOS	and	Windows	platforms,	the	procedure	name	is
decorated	with	an	"@N"	suffix,	where	N	is	the	total	size,	in	bytes,
of	any	parameters	passed.

cdecl
In	the	cdecl	convention,	procedure	parameters	are	pushed	onto	the
call	stack	prior	to	the	procedure	call,	in	the	reverse	order	they	are
declared,	that	is,	from	right	to	left.	The	calling	code	is	in	charge	of
popping	parameters	from	the	call	stack.

cdecl	is	the	default	calling	convention	on	Linux,	the	*BSDs,	and	DOS,
and	for	procedures	within	Extern	"C"	and	Extern	"C++"	blocks.	It	is
also	the	default	convention	used	by	most	C	and	C++	compilers.

pascal
In	the	pascal	convention,	procedure	parameters	are	pushed	onto	the
call	stack,	in	the	order	they	are	declared,	that	is,	from	left	to	right.	The
procedure	is	in	charge	of	popping	any	parameters	from	the	call	stack.

pascal	is	the	default	convention	used	by	Pascal	and	the	Microsoft
QuickBASIC	series	of	compilers.

The	following	table	summarizes	the	differences	between	the	various
calling	conventions:

Calling
convention

Parameters	are	pushed	onto	the	call
stack	from

Parameters	are	popped	off	the	call
stack	by

stdcall right	to	left the	procedure

cdecl right	to	left the	calling	code

pascal left	to	right the	procedure

Platform	Differences

In	DOS	and	Windows	platforms,	all	calling	conventions
decorate	procedure	names	with	an	underscore	("_")	prefix.
The	default	calling	convention	changes	depending	on	the
platform.	For	Windows	it	is	stdcall;	while	on	Linux,	the	*BSDs,
and	DOS,	it	is	cdecl.

See	also

Declare,	Sub,	Function
stdcall,	cdecl,	pascal
Extern..End	Extern

Pointers	to	Procedures 	

Pointers	that	point	to	procedures

Just	as	pointers	can	be	made	to	point	to	an	Integer	or	Single	type,	pointers	can	also	point	to	procedures,	that	is,	they	can	store	the	address	of	a	procedure.

Declaration
To	declare	a	pointer	to	procedure,	use	the	Sub	or	Function	keywords,	followed	by	any	parameters	and	return	value	type:

'	declares	a	pointer	to	sub	procedure	that	takes	no	arguments

Dim	pointerToProcedure	As	Sub

Procedure	pointers	store	procedure	addresses,	which	are	retrieved	using	

''	pfunc.bi

Function	Add	(a	As	Integer,	b	As	Integer)	As	Integer

				Return	a	+	b

End	Function

Dim	pFunc	As	Function	(As	Integer,	As	Integer)	As	

Calling	a	procedure	pointer
The	interesting	thing	about	procedure	pointers	is	that	they	can	be	called	just	like	a	procedure:

''	..	Add	and	pFunc	as	before	..

#include	once	"pfunc.bi"

Print	"3	+	4	=	"	&	pFunc(3,	4)

For	a	calling	example	of	subroutine	pointer,	see	the	Operator	@	(Address	Of)

Passing	procedure	pointers	to	procedures
Passing	procedure	pointers	to	other	procedures	is	similar	as	well:

''	..	Add	and	pFunc	as	before	..

#include	once	"pfunc.bi"

Function	DoOperation	(a	As	Integer,	b	As	Integer,	

				Return	operation(a,	b)

End	Function

Print	"3	+	4	=	"	&	DoOperation(3,	4,	@Add)

Because	procedure	pointer	declarations	can	be	lengthy,	it	often	helps	to	create	a	type	alias	for	the	procedure	pointer,	in	an	effort	to	make	clearer	code:

''	..	Add	and	pFunc	as	before	..

#include	once	"pfunc.bi"

Type	operation	As	Function	(As	Integer,	As	Integer

Function	DoOperation	(a	As	Integer,	b	As	Integer,	

				Return	op(a,	b)

End	Function

Print	"3	+	4	=	"	&	DoOperation(3,	4,	@Add)

Pointers	to	procedure	pointers
Because	the	syntax	of	a	procedure	pointer	does	not	allow	declaration	of	a	pointer	to	procedure	pointer	when	the	procedure	is	a	function	(because	ptr	applies	on	return	type
and	not	on	procedure),	a	type	alias	is	used.	Notice	how	it	is	necessary	to	surround	a	dereferenced	pointer	to	procedure	pointer	by	parenthesis	when	calling	the	procedure.
This	is	because	the	function-call	operator	'()'	has	higher	precedence	than	

Function	Halve	(ByVal	i	As	Integer)	As	Integer

				Return	i	/	2

End	Function

Function	Triple	(ByVal	i	As	Integer)	As	Integer

				Return	i	*	3

End	Function

Type	operation	As	Function	(ByVal	As	Integer)	As	Integer

'	an	array	of	procedure	pointers,	NULL	indicates	the

'	end	of	the	array

Dim	operations(20)	As	operation	=	_

{	@Halve,	@Triple,	0	}

Dim	i	As	Integer	=	280

'	apply	all	of	the	operations	to	a	variable	by	iterating	through	the	array

'	with	a	pointer	to	procedure	pointer

Dim	op	As	operation	Ptr	=	@operations(0)

While	(*op	<>	0)

				'	call	the	procedure	that	is	pointed	to,	note	the	extra	parenthesis

				i	=	(*op)(i)

				op	+=	1

Wend

Print	"Value	of	'i'	after	all	operations	performed:	"

Pointers	to	member	procedures
Method	pointers	are	not	implemented	yet,	but	it	is	possible	to	work-around	that	by	using	a	static	wrapper:

/''

	'	This	example	shows	how	you	can	simulate	getting	a	class	method	pointer,	

	'	until	support	is	properly	implemented	in	the	compiler.

	'

	'	When	this	is	supported,	you	will	only	need	to	remove	the	static	wrapper

	'	function	presented	here,	to	maintain	compatibility.	

	'/

Type	T

				Declare	Function	test(ByVal	number	As	Integer)

				Declare	Static	Function	test(ByRef	This	As	T,	

				Dim	As	Integer	i	=	420

End	Type

Function	T.test(ByVal	number	As	Integer)	As	Integer

				Return	i	+	number

End	Function

Function	T.test(ByRef	This	As	T,	ByVal	number	As	Integer

				Return	this.test(number)

End	Function

Dim	p	As	Function(ByRef	As	T,	ByVal	As	Integer)	As

p	=	@T.test

Dim	As	T	obj

Print	p(obj,	69)	''	prints	489

See	also

Sub

Function

Pointer

Operator	@	(Address	Of)

Procptr	Operator

Variable	Arguments 	

...	(Ellipsis)
va_first

va_arg
va_next

	

Static	Libraries 	

A	static	library	is	compiled	code	that	can	be	later	used	when	building	an	executable.

When	the	compiler	makes	an	executable,	the	basic	source	files	are	first	turned	in	to	object	files.	
files	are	then	linked	together	to	make	an	executable.	When	we	compile	source	code,	we	don't	necessarily
have	to	make	an	executable.	We	could	instead	group	all	of	the	object	files	(made	from	sources)	in	to	a	single
file	called	a	static	library.

The	library	is	referred	to	as	static,	because	when	the	object	files	which	it	contains	are	later	linked	in	to	an
executable,	a	copy	of	all	the	needed	code	in	the	library	is	added	to	the	executable.

Once	the	library	is	made,	we	can	then	use	the	code	that	it	contains	just	as	if	we	were	compiling	the	source
directly	with	our	program.

Following	is	a	simple	example	of	creating	a	static	library	using	these	three	files:
mylib.bas	-	the	source	for	the	library
mylib.bi	-	the	header	for	the	library
mytest.bas	-	a	test	program

Our	library	will	be	a	single	module	providing	a	single	function:

''	mylib.bas

''	compile	with:	fbc	-lib	mylib.bas

''	Add	two	numbers	together	and	return	the	result

Public	Function	Add2(ByVal	x	As	Integer,	ByVal	y	As

		Return(x	+	y)

End	Function

Compile	the	library	with:
fbc	-lib	mylib.bas

The	-lib	option	tells	the	compiler	to	take	the	source	code,	mylib.bas,	and	turn	it	in	to	an	object	file	
then	store	the	object	file	in	to	a	library	file,	also	called	an	archive,	libmylib.a
modules	(source	files)	each	with	many	functions,	but	for	this	simple	example,	it	is	just	one	each.

To	make	use	of	the	library	in	some	other	source	code,	we	need	some	way	of	telling	the	compiler	what	exactly
is	in	the	library.	A	good	way	to	do	this	is	to	put	the	declarations	(also	called	an	interface,	or	API)	for	the
library	in	to	a	header	file.

''	mylib.bi

#inclib	"mylib"

Declare	Function	Add2(ByVal	x	As	Integer,	ByVal	y	As

There	is	no	need	to	compile	the	header.	We	want	this	in	its	source	form	so	it	can	be	included	with	other
source	files.	The	#inclib	statement	will	tell	the	compiler	the	name	of	a	static	library	that	we	need	to	link	with
when	eventually	making	an	executable.

With	our	library	(.a	file)	and	a	header	(.bi	file)	we	can	try	them	out	in	a	test	program:

''	mytest.bas

''	compile	with:	fbc	mytest.bas

#include	once	"mylib.bi"

Print	Add2(1,2)

The	#include	statement	tells	the	compiler	to	include	the	source	code	from	
to	the	original	source.	With	the	way	we	have	written	our	include	file,	it	tells	the	compiler	everything	it	needs	to
know	about	the	library.

We	compile	this	with:
fbc	mytest.bas

Then	when	we	run	the	mytest	executable,	we	should	get	the	result	of:
3

More	than	one	source	module	can	be	used	when	making	a	library.	And	basic	programs	can	use	more	than
one	library	by	including	each	needed	header.	Some	libraries	are	so	large	that	they	might	use	several	headers.
On	very	large	projects,	making	libraries	out	of	some	code	modules	that	seldom	change	can	improve	compile
times	dramatically.

Libraries	can	optionally	contain	debugging	information	specified	with	the	

Object	files,	and	therefore	libraries,	are	platform	specific	and	in	some	cases	specific	to	a	particular	version	of
the	compiler	and	FreeBASIC	runtime	library.

See	also

Shared	Libraries
#inclib

#include

Compiler	Option:	-lib

Shared	Libraries 	

A	shared	library	is	compiled	code	that	can	be	loaded	and	used	later	when	running	an	executable.

When	the	compiler	makes	an	executable,	the	basic	source	files	are	first	turned	in	to	object	files.	
A	shared	library	is	much	like	a	static	library	in	that	it	contains	object	files.	
executable	is	running.	

The	library	is	referred	to	as	shared,	because	the	code	in	the	library	is	loaded	by	an	executable	at	runtime	and	can	be	loaded	by	more	than	one	executable,	even
though	there	might	only	be	one	copy	of	the	shared	library.

Once	the	library	is	made,	we	can	then	use	the	code	that	it	contains	just	as	if	we	were	compiling	the	source	directly	with	our	program.

Shared	Library	Example
Using	Shared	Libraries	on	Windows
Using	Shared	Libraries	on	Linux
Executables	that	export	symbols
Loading	Shared	Libraries	Dynamically

Shared	Library	Example

Following	is	a	simple	example	of	creating	a	shared	library	using	these	three	files:

mylib.bas	-	the	source	for	the	library
mylib.bi	-	the	header	for	the	library
mytest.bas	-	a	test	program

Our	library	will	be	a	single	module	providing	a	single	function:

''	mylib.bas

''	compile	with:	fbc	-dll	mylib.bas

''	Add	two	numbers	together	and	return	the	result

Public	Function	Add2(ByVal	x	As	Integer,	ByVal	y	

		Return(x	+	y)

End	Function

Compile	the	library	with:
fbc	-dll	mylib.bas

The	-dll	option	tells	the	compiler	to	take	the	source	code,	mylib.bas,	and	turn	it	in	to	an	object	file	
name	of	the	shared	library	will	have	a	.so	extension	or	.dll	extension	depending	on	if	the	platform	is	the	linux	or	windows	version.	A	library	might	contain
many	modules	(source	files)	each	with	many	functions,	but	for	this	simple	example,	it	is	just	one	each.

Making	a	shared	library	is	almost	identical	to	making	a	static	library	except	for	the	addition	of	
function	visible	to	other	executables	loading	the	shared	library.

To	make	use	of	the	library	in	some	other	source	code,	we	need	some	way	of	telling	the	compiler	what	exactly	is	in	the	library.	
declarations	(also	called	an	interface,	or	API)	for	the	library	in	to	a	header	file.

''	mylib.bi

#inclib	"mylib"

Declare	Function	Add2(ByVal	x	As	Integer,	ByVal	y

There	is	no	need	to	compile	the	header.	We	want	this	in	its	source	form	so	it	can	be	included	with	other	source	files.	
compiler	the	name	of	a	shared	library	that	we	need	to	link	with	at	runtime	running	an	executable	that	needs	it.

With	our	library	(.dll	/	.so	file)	and	a	header	(.bi	file)	we	can	try	them	out	in	a	test	program:

''	mytest.bas

''	compile	with:	fbc	mytest.bas

#include	once	"mylib.bi"

Print	Add2(1,2)

The	#include	statement	tells	the	compiler	to	include	the	source	code	from	
written	our	include	file,	it	tells	the	compiler	everything	it	needs	to	know	about	the	library.

We	compile	this	with:
fbc	mytest.bas

Then	when	we	run	the	mytest	executable,	we	should	get	the	result	of:
3

More	than	one	source	module	can	be	used	when	making	a	library.	And	basic	programs	can	use	more	than	one	library	by	including	each	needed	header.	
libraries	are	so	large	that	they	might	use	several	headers.	On	very	large	projects,	making	shared	libraries	out	of	some	code	modules	that	seldom	change	can
improve	compile	times	and	link	times	dramatically.

Shared	libraries	can	optionally	contain	debugging	information	specified	with	the	

Object	files,	and	therefore	shared	libraries,	are	platform	specific	and	in	some	cases	specific	to	a	particular	version	of	the	compiler	and	FreeBASIC	runtime
library.

Using	Shared	Libraries	on	Windows

On	Windows,	the	shared	library	must	be	stored	in	a	location	where	it	can	be	found	by	the	executable	that	needs	it	a	run-time.	

The	operating	system	may	search	the	following	directories:

The	directory	from	which	the	executable	was	loaded.
The	current	directory.
The	Windows	and	Windows	system	folder.
Directories	list	in	the	PATH	environment	variable.

The	order	in	which	directories	are	searched	may	depend	on	the	Windows	version	in	use,	and	on	what	settings	that	the	operating	system	is	configured	with.

Using	Shared	Libraries	on	Linux

By	default,	Linux	will	not	normally	search	the	current	directory	or	the	directory	from	which	the	executable	was	loaded.	

copy	the	.so	file	to	a	directory	that	has	shared	libraries	(e.g.	/usr/lib
modify	the	environment	variable	LD_LIBRARY_PATH	to	search	the	current	directory	or	a	specific	directory	for	the	newly	created	shared	library.

To	run	the	executable	./mytest/	and	temporarily	tell	linux	to	search	the	current	directory,	use	the	following	shell	command:

LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH	./mytest

Executables	that	export	symbols

If	an	executable	has	symbols	that	must	be	available	to	other	shared	libraries	when	those	shared	libraries	are	loaded,	use	the	
specifier,	and	the	-export	command	line	option	when	making	(linking)	the	executable.

The	-export	option	has	no	extra	effect	when	used	with	the	-dylib	or	-dll

Loading	Shared	Libraries	Dynamically

Shared	libraries	can	be	loaded	and	used	at	run	time	by	dynamically	loading	the	library	and	its	symbols	at	runtime.

DyLibLoad	can	be	used	to	load	and	obtain	a	handle	to	a	shared	library.
DyLibSymbol	is	used	to	obtain	the	address	of	a	symbol	in	a	loaded	shared	library.
DyLibFree	is	used	to	unload	a	shared	library	when	it	is	no	longer	needed.

Procedures	in	the	shared	library	must	use	the	Export	specifier	to	ensure	that	the	symbols	name	is	placed	in	the	shared	library's	export	table.

''	mydll.bas

''	compile	as:	fbc	-dll	mydll.bas

''	This	will	create	mydll.dll	(and	libmydll.dll.a	import	library)	on	Windows,

''	and	libmydll.so	on	Linux.

''

''	Note:	libmydll.dll.a	is	an	import	library,	it's	only	needed	when	creating	

''	an	executable	that	calls	any	of	mydll's	functions,	only	distribute	

''	the	DLL	files	with	your	apps,	do	not	include	the	import	libraries,	

''	they	are	useless	to	end-users.

''	Simple	exported	function;	the	<alias	"...">	disables	FB's	default

''	all-upper-case	name	mangling,	so	the	DLL	will	export	AddNumbers()	instead	of

''	ADDNUMBERS().

Function	AddNumbers	Alias	"AddNumbers"(ByVal	a	As

				Function	=	a	+	b

End	Function

''	load.bas:	Loads	mydll.dll	(or	libmydll.so)	at	runtime,	calls	one	of	mydll's

''	functions	and	prints	the	result.	mydll	is	not	needed	at	compile	time.

''	compile	as:	fbc	test.bas

''

''	Note:	The	compiled	mydll.dll	(or	libmydll.so)	dynamic	library	is	expected

''	to	be	available	in	the	current	directory.

''	Note	we	specify	just	"mydll"	as	library	file	name;	this	is	to	ensure

''	compatibility	between	Windows	and	Linux,	where	a	dynamic	library

''	has	different	file	name	and	extension.

Dim	As	Any	Ptr	library	=	DyLibLoad("mydll")

If(library	=	0)	Then

				Print	"Failed	to	load	the	mydll	dynamic	library,	aborting	program..."

				End	1

End	If

''	This	function	pointer	will	be	used	to	call	the	function	from	mydll,	after

''	the	address	has	been	found.	Note:	It	must	have	the	same	calling

''	convention	and	parameters.

Dim	AddNumbers	As	Function(ByVal	As	Integer,	ByVal

AddNumbers	=	DyLibSymbol(library,	"AddNumbers")

If(AddNumbers	=	0)	Then

				Print	"Could	not	retrieve	the	AddNumbers()	function's	address	from	the	mydll	library,	aborting	program..."

				End	1

End	If

Randomize	Timer

Dim	As	Integer	x	=	Rnd	*	10

Dim	As	Integer	y	=	Rnd	*	10

Print	x;	"	+";	y;	"	=";	AddNumbers(x,	y)

''	Done	with	the	library;	the	OS	will	automatically	unload	libraries	loaded

''	by	a	process	when	it	terminates,	but	we	can	also	force	unloading	during

''	our	program	execution	to	save	resources;	this	is	what	the	next	line	does.

''	Remember	that	once	you	unload	a	previously	loaded	library,	all	the	symbols

''	you	got	from	it	via	dylibsymbol	will	become	invalid,	and	accessing	them

''	will	cause	the	application	to	crash.

DyLibFree(library)

See	also

Static	Libraries
#inclib

#include

Compiler	Option:	-dll
Compiler	Option:	-export
Compiler	Option:	-dylib

Profiling 	

Profiling	can	be	used	to	analyze	the	performance	of	an	application.

The	performance	of	an	application	might	be	measured	by	how	many
times	functions	are	called,	how	much	time	is	spent	executing	those
functions,	and	which	functions	are	calling	other	functions.	This	can	help
to	identify	functions	that	might	be	taking	too	long	to	execute	or	executed
too	many	times	and	that	might	be	worth	reviewing	for	optimization.

FreeBASIC	uses	GPROF	for	analyzing	the	execution	of	an	application.
The	profiler	information	is	collected	while	the	program	is	running,	and
GPROF	is	used	to	report	on	the	collected	data	afterward.

The	three	basic	steps	to	profiling	a	program	are:
1)	Prepare	the	program	for	profiling	by	compiling	source	with	the	
profile	option.
2)	Run	the	program	to	collection	information	(stored	in	gmon.out).
3)	Analyze	the	information	collected	using	GPROF.

Full	documentation	on	GPROF	is	available	here:
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html.
If	the	documentation	has	moved	from	that	location,	simply	search	the
web	for	"GNU	GPROF"	and	a	relevant	link	should	be	returned.

FreeBASIC	supports	function	profiling;	not	basic-block	or	line-by-line
profiling.

Preparing	a	Program	for	Profiling
Only	code	that	is	compiled	with	the	-profile	command	line	option	can
be	profiled.	Pass	the	-profile	option	to	the	FreeBASIC	compiler	to
prepare	the	program	to	be	profiled.	This	will	tell	the	compiler	to	insert
special	startup	code	at	the	beginning	of	the	application	as	well	as	at
the	beginning	of	each	function.

fbc	program.bas	-profile

http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html

Profiling	the	Program
The	information	needed	to	analyze	execution	of	the	program	is
gathered	while	the	program	is	running.	Run	the	program	to	begin
collecting	the	function	call	information.	This	information	is	automatically
stored	in	a	file	named	gmon.out	in	the	same	directory	as	the	program.

Analyzing	the	Program's	Output
Use	GPROF	to	analyze	the	output.	The	default	report	for	GPROF
includes	descriptions	on	what	each	of	the	columns	of	values	mean.	If
you	are	new	to	using	GPROF,	you	may	want	to	first	run	the	default
report	and	read	through	the	descriptions.	The	output	from	GPROF	can
be	saved	to	a	file	by	redirection.

Save	output	from	GPROF	to	profile.txt:

gprof	program[.exe]	>	profile.txt

Show	just	the	flat	report	with	no	descriptions:

gprof	program[.exe]	--brief	--flat-profile	>	profile.txt

Combining	the	Results	of	More	than	One	Session
GPROF	also	has	a	'--sum'	option	for	conveniently	combining	results
from	multiple	execution	sessions.	Here	is	an	example	of	usable:

Run	your	program	once.	This	will	create	gmon.out.
Use	the	command	:

mv	gmon.out	gmon.sum	
or	
rename	gmon.out	gmon.sum.

Run	your	program	again.	This	will	create	new	data	in	gmon.out.
Merge	the	new	data	in	gmon.out	into	gmon.sum	using	the
command:	

gprof	--sum	program[.exe]	gmon.out	gmon.sum

Repeat	the	last	two	steps	as	often	as	needed.	
Analyze	the	summary	data	using	the	command:	

gprof	program[.exe]	gmon.sum	>	profile.txt

FreeBASIC	Profiling	Internals
When	the	'-profile'	option	is	enabled,	one	or	more	bits	of	code	are
added	to	the	program.

Call	to	"_monstartup()"	at	the	beginning	of	the	implicit	main	to
initialize	the	profiling	library.
Call	to	"mcount()"	at	the	beginning	of	each	procedure.	This	is
how	the	profiling	library	keeps	track	of	what	function	is	being
and	by	which	other	function.
Linking	of	additional	program	startup	object	code.	(e.g.	gcrt?.o

The	profiling	library	itself	may	be	in	a	separate	library	or	part	of	the	C
runtime	library.

mingw	will	require	gcrt2.o	and	libgmon.a	
cygwin	will	require	gcrt0.o	and	libgmon.a
dos	will	require	gcrt0.o	(profiler	code	is	in	libc.a)	
linux	will	require	gcrt1.o	(profiler	code	is	in	libc.a)	

The	details	may	vary	from	one	port	of	FreeBASIC	to	the	next,	but
source	code	built	for	profiling	with	FreeBASIC	should	be	compatible
with	other	languages	also	supporting	GPROF.

Table	of	ASCII	Characters 	

FreeBASIC	graphics	programs	support	in	all	versions	the	same	"ASCII
extended"	USA	character	set	the	old	DOS	(and	QBasic)	supported.	It	is
also	called	CP437	or	Code	page	437.	Each	character	is	represented	with
one	(1)	byte	of	data.	Here	is	a	table.	Each	entry	has	decimal	code,	hex
code,	and	printed	representation.

00000	 03220sp 06440@ 09660` 12880Ç 160A0á 192C0

└	224E0α	00101☺	03321!	06541A	09761a	12981ü	161A1í	193C1┴
225E1ß	00202☻	03422"	06642B	09862b	13082é	162A2ó	194C2┬	226E2
00303♥	03523#	06743C	09963c	13183â	163A3ú	195C3├	227E3π	00404
03624$	06844D	10064d	13284ä	164A4ñ	196C4─	228E4Σ	00505♣
03725%	06945E	10165e	13385à	165A5Ñ	197C5┼	229E5σ	00606♠
03826&	07046F	10266f	13486å	166A6ª	198C6╞	230E6µ	00707•	03927'
07147G	10367g	13587ç	167A7º	199C7╟	231E7τ	00808◘	04028(07248H
10468h	13688ê	168A8¿	200C8╚	232E8Φ	00909○	04129)	07349I	10569i
13789ë	169A9⌐	201C9╔	233E9Θ	0100A◙	0422A*	0744AJ	1066Aj	1388Aè
170AA¬	202CA╩	234EAΩ	0110B♂	0432B+	0754BK	1076Bk	1398Bï
171AB½	203CB╦	235EBδ	0120C♀	0442C,	0764CL	1086Cl	1408Cî
172AC¼	204CC╠	236EC∞	0130D♪	0452D-	0774DM	1096Dm	1418Dì
173AD¡	205CD═	237EDφ	0140E♫	0462E.	0784EN	1106En	1428EÄ
174AE«	206CE╬	238EEε	0150F☼	0472F/	0794FO	1116Fo	1438FÅ
175AF»	207CF╧	239EF∩	01610►	048300	08050P	11270p	14490É
176B0░	208D0╨	240F0≡	01711◄	049311	08151Q	11371q	14591æ
177B1▒	209D1╤	241F1±	01812↕	050322	08252R	11472r	14692Æ
178B2▓	210D2╥	242F2≥	01913‼	051333	08353S	11573s	14793ô	179B3
211D3╙	243F3≤	02014¶	052344	08454T	11674t	14894ö	180B4┤	212D4╘
244F4⌠	02115§	053355	08555U	11775u	14995ò	181B5╡	213D5╒	245F5
02216▬	054366	08656V	11876v	15096û	182B6╢	214D6╓	246F6÷	02317
055377	08757W	11977w	15197ù	183B7╖	215D7╫	247F7≈	02418↑
056388	08858X	12078x	15298ÿ	184B8╕	216D8╪	248F8°	02519↓	057399
08959Y	12179y	15399Ö	185B9╣	217D9┘	249F9∙	0261A→	0583A:
0905AZ	1227Az	1549AÜ	186BA║	218DA┌	250FA•	0271B←	0593B;
0915B[1237B{	1559B¢	187BB╗	219DB█	251FB√	0281C∟	0603C<
0925C\	1247C|	1569C£	188BC╝	220DC▄	252FCⁿ	0291D↔	0613D=
0935D]	1257D}	1579D¥	189BD╜	221DD▌	253FD²	0301E▲	0623E>

0945E^	1267E~	1589E₧	190BE╛	222DE▐	254FE■	0311F▼	0633F?
0955F_	1277F⌂	1599Fƒ	191BF┐	223DF▀	255FF		

Many	of	the	standard	ASCII	characters	cannot	be	Printed	in	FreeBASIC,
because	the	console	interprets	some	characters	as	controls:	7	is	bell,	8	is
backspace,	9	is	tab,	10	is	line	feed,	13	is	carriage	return,	and	others.
There	are	symbols	associated	with	these	characters	also,	but	there	is	no
way	in	FreeBASIC	to	output	them	to	the	screen.	

The	acronym	ASCII	stands	for	American	Standard	Code	for	Information
Interchange.	For	more	information,	see	http://en.wikipedia.org/wiki/Ascii.
The	symbols	for	codes	32	through	127	are	the	same	as	the	standard
Latin	ISO-8859-1	char	set	most	Windows	fonts	use.	Others	are	often
very	different.

In	console	mode	(i.e.	Screen	0/	non-graphics	mode)	the	characters	less
than	32	or	greater	than	127	may	display	using	different	characters,
depending	on	the	operating	system	and	code	page	of	the	screen	/
console	in	use.
UNICODE	is	a	newer	standard	of	character	sets	involving	two	or	more
bytes	per	character,	and	may	be	used	to	print	other	characters	to	a
Unicode-enabled	console.

In	graphics	modes,	Draw	String	does	not	give	special	meaning	to	control
characters	allowing	an	alternative	to	display	all	characters	in	the	set.	

http://en.wikipedia.org/wiki/ISO_8859-1

Date	Serials 	

Description
A	date	serial	is	a	number	that	holds	a	date	and	time	value	in	the	same	format
used	by	PDS	or	VBDOS.	The	value	is	a	count	of	the	days	from	0:00	AM	of
December	30,1899;	it's	mainly	used	for	easy	counting	of	the	time	between	two
dates.

The	date	serial	unit	is	one	day	and	the	fractional	part	represents	the	time	of	the
day.	If	a	date	serial	is	written	into	an	integer,	the	time	is	lost.	FreeBASIC	date
serials	are	not	limited	to	dates	between	1753	and	2078	as	in	VBDOS.
FreeBASIC	date	serial	handling	functions	use	Double	arguments.

FreeBASIC	date	serial	handling	functions	require	the	inclusion	of	vbcompat.bi
datetime.bi	in	the	source.

A	date	serial	can	be	created	by	the	functions	Now,	TimeSerial+DateSerial
DateValue+TimeValue.

The	functions	Year,	Month,	Weekday,	Day,	Hour,	Minute,	Second	allow	to	recover	the
different	components	of	a	date	serial.

The	Format	function	has	formatting	expressions	to	print	date	serials	in	a	human
readable	way.

Example

#include	"vbcompat.bi"

Dim	a	As	Double,	b	As	Double

a	=	0

Print	"The	origin	of	the	date	serials	is:"

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss")

Print

a	=	Now

Print	"The	time	now	is:	"

Print	Format(a,	"yyyy/mm/dd	hh:mm:ss")

Print

b	=	DateSerial(2000,1,1)

Print	Int(a-b)	&	"	days	have	passed	since	2000/01/01"

Radian	system	of	measuring	angles 	

All	of	the	built-in	trigonometric	functions	in	FreeBASIC	express	angles	in
radians.

A	full	circle	is	divided	into	2	*	pi	radians	or	360	degrees,	which	leads	to
the	following	conversions:

radians	=	degrees	*	pi	/	180

degrees	=	radians	*	180	/	pi

Pi	is	a	constant	equal	to	the	ratio	of	the	circumference	of	a	circle	to	its
diameter.	It	can	be	calculated	programmatically	by	multiplying	the
arctangent	of	1	by	4:

pi	=	atn(1)	*	4

Internal	graphics	formats 	

Pixel	formats

When	a	graphics	mode	is	set	via	the	Screen	or	ScreenRes	functions,
GfxLib	creates	also	a	framebuffer	in	standard	system	memory	and	sets
an	appropriate	internal	pixel	format	for	the	mode.	There	are	basically
three	internal	pixel	formats,	selected	depending	on	the	screen	depth,	as
described	in	the	following	table:

Screen
depth

Internal	bytes
per	pixel

Range
bitmask Pixel	format

1bpp 1 &h1 palette	color	index

2bpp 1 &h3 palette	color	index

4bpp 1 &hF palette	color	index

8bpp 1 &hFF palette	color	index

15/16bpp 2 &hFFFF RRRRRGGGGGGBBBBB

24/32bpp 4 &hFFFFFFFF AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

All	drawing	operations	work	on	this	RAM	framebuffer;	when	the	actual
display	needs	to	be	updated,	GfxLib	copies	the	contents	of	the
framebuffer	to	the	real	display	memory,	automatically	converting	in	the
process	from	the	current	internal	pixel	format	to	whatever	pixel	format	the
real	display	uses.	By	limiting	the	internal	pixel	formats	to	3,	the	library
prevents	you	having	to	deal	with	the	plethora	of	real	display	formats.

Color	values

When	calling	a	graphics	primitive	that	accepts	a	color,	this	can	be
specified	in	two	ways.	In	8bpp	or	less	modes,	the	color	value	must	be	a
direct	8	bits	color	index	in	the	current	palette,	and	this	matches	the
internal	pixel	format	for	those	modes.	In	higher	color	depths,	the	color
value	should	always	have	the	form	&hAARRGGBB;;	this	is	what	the	RGB	and
RGBA	macros	return,	and	is	equivalent	to	the	24/32bpp	internal	pixel
format	representation.	If	the	current	color	depth	is	24	or	32bpp,	this
means	the	color	value	passes	in	unaltered.	If	a	15/16bpp	mode	is	in	use,

internally	each	primitive	automatically	converts	the	color	from	the
&hAARRGGBB;	form	into	the	RRRRRGGGGGGBBBBB	internal	pixel	format	(note
that	in	this	process	the	alpha	channel	is	lost,	as	15/16bpp	modes	do	not
support	it).	Once	the	color	value	is	in	one	of	the	three	pixel	formats,	the
primitive	limits	its	range	to	the	range	supported	by	the	current	color
depth,	by	using	a	bitwise	And	operation	with	a	range	bitmask.	So	if	in
8bpp,	the	color	value	passed	is	Anded	by	&hFF;	for	example.

Notes	on	transparency

For	8bpp	or	less	modes,	color	index	0	is	always	treated	as	the
transparent	color	for	the	Put	modes	that	support	transparency.	For	higher
depths,	RGB(255,	0,	255)	always	represents	the	transparent	color.	In
15/16bpp	modes,	this	translates	to	the	internal	value	&hF81F;,	whereas	in
24/32bpp	modes	it	becomes	&hFFFF00FF;.	Note	that	in	24/32bpp	modes,
Put	identifies	the	transparent	color	by	looking	just	at	the	red,	green	and
blue	components	of	the	color	value,	while	the	alpha	value	can	assume
any	value.	This	means	that	in	24/32bpp	modes,	&h00FF00FF;,
&h10FF00FF;,	&hABFF00FF;	and	&hFFFF00FF;	for	example	all	represent	the
transparent	color,	since	the	lower	24	bits	are	always	&hFF00FF;.

Buffer	formats

In	FreeBASIC,	images	can	be	used	as	arrays	(as	in	QB)	or	as	pointers.
Either	way,	the	image	data	is	contained	in	one	continuous	chunk.	The
chunk	consists	of	an	header	followed	by	the	image	data.	The	header	can
be	of	two	types	(old-style	and	new-style)	and	determines	the	format	of
the	following	image	data.

Old-style	chunk	header	consists	of	4	bytes	(32	bits,	or	4	bytes).	The	first
3	bits	contain	the	image	color	depth	in	bytes	per	pixel	(8-bit	color	depth	-
>	1;	16-bit	color	depth	->	2;	32-bit	color	depth	->	4).	The	next	13	bits
contain	the	image	width.	The	last	16	bits	contain	the	image's	height.
Please	note	the	intrinsic	nature	of	the	header	allows	only	for	sizes	up	to
8191	*	65535	pixels.	The	actual	pixel	data	follows	the	header,	and	is
compacted	one	row	of	pixels	after	another;	no	data	alignment	is
assumed.	The	final	size	of	the	chunk	can	then	be	computed	using	the
formula:

size	=	4	+	(width	*	height	*	bytes_per_pixel)

New-style	chunk	header	consists	of	32	bytes.	The	first	dword	(32	bits)
must	be	equal	to	the	value	7,	allowing	GfxLib	to	identify	the	new	type	of
chunk.	The	second	dword	contains	the	image	color	depth	in	bytes	per
pixel.	The	third	and	fourth	dwords	contain	the	image	width	and	height
respectively,	effectively	removing	the	image	size	limit	enforced	by	the	old-
style	image	chunks.	The	fifth	dword	contains	the	pixel	row	pitch	in	bytes;
this	tells	how	many	bytes	a	row	of	pixels	in	the	image	takes	up.	The	pitch
in	new-style	chunks	is	always	padded	to	a	multiple	of	16,	to	allow	pixels'
row	data	to	be	aligned	on	the	paragraph	boundary.	The	remaining	3
dwords	(total	12	bytes)	of	the	header	are	currently	unused	and	reserved
for	future	use.	The	final	size	of	the	image	is:

size	=	32	+	((((width	*	bytes_per_pixel)	+	&hF;)	and	not	&hF;

)	*	height)

The	format	of	images	created	by	ImageCreate	and	Get	depend	on	the
dialect	used.	In	the	-lang	fb	dialect,	images	will	be	created	with	the	new-
style	header.	In	the	-lang	fblite	and	-lang	qb	dialects,	the	old-style	image
header	is	created.

All	graphics	primitives	can	work	with	both	old-style	and	new-style	image
chunks.	For	easy	access	to	image	information,	ImageInfo	can	be	used	to
obtain	useful	properties	of	an	image	buffer	-	such	as	its	dimensions,	color
depth,	pitch,	and	a	pointer	to	the	pixel	data	-	whichever	format	is	used.
It	is	also	possible	to	access	the	image	header	directly	to	access	this
information.	For	more	information	on	acessing	the	header	structure,
please	refer	to	this	example.

See	also

Screen	(Graphics)

ScreenRes

Get	(Graphics)

Put	(Graphics)

ImageCreate

ImageInfo

Trans

Alpha

C	Standard	Library	Functions 	

This	is	a	list	of	function	prototypes	in	the	standard	C	library	in
alphabetical	order	and	a	list	of	prototypes	grouped	by	functionality.	

Alphabetical	List
Buffer	Manipulation
Character	Classification	and	Conversion
Data	Conversion
Directory	Manipulation
File	Manipulation
Stream	I/O
Low	level	I/O
Mathematics
Memory	Allocation
Process	Control
Searching	and	Sorting
String	Manipulation
Time

Description
The	Comments	column	contains	a	very	brief	description	of	the	use	of
the	function.	The	list	is	not	complete,	however	it	provides	information
on	the	major	functions	in	the	C	Runtime	Library.	It	should,	at	the	very
least,	indicate	what	functions	are	available	in	the	standard	C	library
allow	you	to	do	more	investigation	on	your	own.	Some	of	the	C	library
functions	documented	elsewhere	may	not	be	available	in	FreeBASIC.
Check	the	appropriate	include	file	for	more	information.	

Note:	The	following	prototypes	are	not	the	official	FreeBASIC
prototypes	(see	the	include	files),	however,	they	will	give	you	enough
information	to	properly	use	the	functions.	

The	Include	File	column	contains	the	name	of	the	file	which	you	must
include,	using	the	#include	directive	at	the	beginning	of	your	program.
If	you	don't	include	the	appropriate	include	file,	the	program	either	will
not	compile,	or	it	will	compile	apparently	correctly	but	give	incorrect

results	when	run.	All	of	the	C	Runtime	headers	are	located	in	the	crt
directory;	for	example,	if	the	specified	header	is	math.bi,	use	#include
"crt/math.bi"	or	#include	"crt\math.bi",	our	just	#include	"crt.bi"
including	all	the	others.

The	Prototype	column	contains	the	following	information:	
The	name	of	the	function;	
The	parameters	required	for	the	function	in	parenthesis,
together	with	the	data-type	of	the	parameters;	
The	data-type	of	the	value	returned	by	the	function.	

For	example	atoi(a	as	zstring	ptr)	as	integer	means	that	the
function	atoi	returns	a	value	of	type	integer	and	requires	a	character
zstring	ptr	as	its	argument.	

Note:	In	order	to	make	calling	the	C	runtime	functions	very	easy,	any
string	type	argument	may	be	directly	passed	to	a	procedure	referring	to
a	parameter	declared	as	'zstring	ptr'.	The	compiler	performs	itself	an
automatic	conversion	(without	warning	message)	between	string	and
'zstring	ptr'.

Alphabetical	List

Name Prototype	(with
parameters)

Include
File Comments

abs_ abs_(n	as	integer)
as	integer stdlib.bi Returns	the	absolute	value	(i.e.	positive	value)

acos_ acos_(a	as	double)
as	double math.bi Returns	the	inverse	cosine	(angle	in	radians)

asin_ asin_(a	as	double)
as	double math.bi Returns	the	inverse	sine	(angle	in	radians)

atan_ atan_(a	as	double)
as	double math.bi Returns	the	inverse	tan	(angle	in	radians)

atan2_
atan2_(y	as
double,	x	as
double)	as	double

math.bi Returns	the	inverse	tan	(pass	the	opposite	as	y
and	the	adjacent	as	x)

atoi atoi(s	as	zstring
ptr)	as	integer stdlib.bi Converts	a	character	zstring	of	digits	to	a	number

of	type	integer.

atof atof(s	as	zstring
ptr)	as	double

stdlib.bi Converts	a	character	zstring	of	digits	to	a	number
of	type	double.

calloc
calloc(NumElts	as
integer,	EltSiz	as
integer)	as	any	ptr

stdlib.bi
Allocates	memory.	Returns	a	pointer	to	a	buffer	for
an	array	having	NumElts	elements,	each	of	size
EltSiz	bytes.

ceil ceil(d	as	double)	as
double math.bi Returns	the	nearest	whole	number	above	the

value	passed.

clearerr clearerr(s	as	FILE
ptr) stdio.bi Clears	the	error	indicators	on	a	file	stream	(read	or

write).

cos_ cos_(ar	as	double)
as	double math.bi Returns	the	cosine	of	an	angle	measured	in

radians.

cosh cosh(x	as	double)
as	double math.bi Returns	the	hyperbolic	cosine	of	an	angle

measured	in	radians.

div
div(num	as	integer,
denom	as	integer)
as	div_t

stdlib.bi Returns	the	quotient	and	remainder	of	a	division
as	a	structure	of	type	div_t.

ecvt ecvt(x	as	double)
as	zstring	ptr math.bi Converts	a	number	to	a	zstring.

exit_ exit_(status	as
integer) stdlib.bi

Exits	a	program.	It	will	flush	file	buffers	and	closes
all	opened	files,	and	run	any	functions	called	by
atexit().

exp_ exp_(a	as	double)
as	double math.bi Returns	the	value	of	e	raised	to	the	power	of	the

argument	(Inverse	to	natural	logarithm).

fabs fabs(d	as	double)
as	double math.bi Returns	the	absolute	value	(i.e.	positive	value)	of

type	double.

fclose fclose(s	as	FILE
ptr)	as	FILE	ptr stdio.bi Closes	a	file.	Returns	0	if	successful	otherwise

EOF.

feof feof(s	as	FILE	ptr)
as	integer stdio.bi

Returns	value	of	end-of-file	indicator	.	(0	if	not	eof).
Indicator	will	clear	itself	but	can	be	reset	by
clearerr().

ferror ferror(s	as	FILE
ptr)	as	integer stdio.bi Returns	error	indicator	for	a	stream	(0	if	no	error).

Error	indicator	is	reset	by	clearerr()	or	rewind().

fflush fflush(s	as	FILE
ptr)	as	integer stdio.bi

Flushes	(i.e.	deletes)	a	stream	(use	stdin	to	flush
the	stream	from	the	keyboard).	Returns	0	if
successful.

fgetc fgetc(s	as	FILE	ptr)
as	integer stdio.bi Single	character	input	(in	ASCII)	from	passed

stream	(stdin	for	keyboard).

fgetpos
fgetpos(s	as	FILE
ptr,	c	as	fpos_t	ptr)
as	integer

stdio.bi Saves	the	position	of	the	file	pointer	on	stream	s	at
the	location	pointed	to	by	c.

fgets

fgets(b	as	zstring
ptr,	n	as	integer,	s
as	FILE	ptr)	as
zstring	ptr

stdio.bi From	the	stream	s	reads	up	to	n-1	characters	to
buffer	b.

floor floor(d	as	double)
as	double

math.bi Returns	the	nearest	whole	number	below	the	value
passed.

fmod
fmod(x	as	double,
y	as	double)	as
double

math.bi Calculates	the	remainder	of	x	divided	by	y.

fopen

fopen(file	as	zstring
ptr,	mode	as
zstring	ptr)	as	FILE
ptr

stdio.bi

Opens	a	file.	Pass	the	DOS	name	of	the	file	and	a
code	to	indicate	whether	for	reading,	writing,	or
appending.	Codes	are	r	for	read,	w	for	write,	+	for
read	and	write,	a	for	append	and	b	to	indicate
binary.

fprintf
fprintf(s	as	FILE
ptr,	fmt	as	zstring
ptr,	...)	as	integer

stdio.bi
Prints	on	stream	s	as	many	items	as	there	are
single	%	signs	in	fmt	that	have	matching
arguments	in	the	list.

fputc
fputc(c	as	integer,	s
as	FILE	ptr)	as
integer

stdio.bi Outputs	the	single	character	c	to	the	stream	s.

fputs
fputs(b	as	zstring
ptr,	s	as	FILE	ptr)
as	integer

stdio.bi Sends	the	character	stream	in	b	to	stream	s,
returns	0	if	the	operation	fails.

fread

fread(buf	as	any
ptr,	b	as	size_t,	c
as	size_t,	s	as
FILE	ptr)	as	integer

stdio.bi
Reads	the	number	c	items	of	data	of	size	b	bytes
from	file	s	to	the	buffer	buf.	Returns	the	number	of
data	items	actually	read.

free free(p	as	any	ptr) stdlib.bi Frees	the	memory	allocation	for	a	pointer	p	to
enable	this	memory	to	be	used.

freopen

freopen(file	as
zstring	ptr,	mode
as	zstring	ptr,	s	as
FILE	ptr)	as	FILE
ptr

stdio.bi
Opens	a	file	for	redirecting	a	stream.	e.g.
freopen("myfile",	"w",	stdout)	will	redirect	the
standard	output	to	the	opened	"myfile".

frexp
frexp(x	as	double,
p	as	integer	ptr)	as
double

math.bi Calculates	a	value	m	so	that	x	equals	m	times	2	to
some	power.	p	is	a	pointer	to	m.

fscanf
fscanf(s	as	FILE
ptr,	fmt	as	zstring
ptr,	...)	as	integer

stdio.bi Reads	from	stream	s	as	many	items	as	there	are
%	signs	in	fmt	with	corresponding	listed	pointers.

fseek

fseek(s	as	FILE	ptr,
offset	as	integer,
origin	as	integer)
as	integer

stdio.bi
Locates	a	file	pointer.	With	origin	0,	1	or	2	for	the
beginning,	offset	bytes	into	and	at	the	end	of	the
stream.

fsetpos
fsetpos(s	as	FILE
ptr,	p	as	fpos_t	ptr)
as	integer

stdio.bi Sets	the	file	pointer	for	the	stream	s	to	the	value
pointed	to	by	p.

ftell ftell(s	as	FILE	ptr)
as	long stdio.bi Locates	the	position	of	the	file	pointer	for	the

stream	s.

fwrite(buf	as	any

fwrite ptr,	b	as	integer,	c
as	integer,	s	as
FILE	ptr)	as	integer

stdio.bi Writes	the	number	c	items	of	data	of	size	b	bytes
from	the	buffer	buf	to	the	file	s.	Returns	the
number	of	data	items	actually	written.

getc getc(s	as	FILE	ptr)
as	integer stdio.bi Macro	for	single	character	input	(in	ASCII)	from

passed	stream.	(stdin	for	keyboard)

getchar getchar()	as	integer stdio.bi Single	character	input	from	the	standard	input

gets gets(b	as	zstring
ptr)	as	zstring	ptr stdio.bi Reads	a	stream	of	characters	from	the	standard

input	until	it	meets	\n	or	EOF.

hypot
hypot(x	as	double,
y	as	double)	as
double

math.bi Calculates	the	hypotenuse	from	the	sides	x	and	y.

isalnum isalnum(c	as
integer)	as	integer ctype.bi Returns	a	non	zero	value	if	character	c	is

alphabetic	or	a	digit.

isalpha isalpha(c	as
integer)	as	integer ctype.bi Returns	a	non	zero	value	if	character	c	is

alphabetic.

iscntrl iscntrl(c	as	integer)
as	integer ctype.bi Returns	a	non	zero	value	if	character	c	is	a	control

character.

isdigit isdigit(c	as	integer)
as	integer ctype.bi Returns	a	non	zero	value	if	character	c	is	a	digit.

isgraph isgraph(c	as
integer)	as	integer ctype.bi Returns	a	non	zero	value	if	character	c	is

alphabetic.

islower islower(c	as
integer)	as	integer ctype.bi Returns	a	non-zero	value	if	character	c	is	a	lower

case	character.

isprint isprint(c	as	integer)
as	integer ctype.bi Returns	a	non	zero	value	if	character	c	is	printable.

ispunct ispunct(c	as
integer)	as	integer ctype.bi Returns	a	non	zero	value	if	character	c	is	a

punctuation	character.

isspace isspace(c	as
integer)	as	integer ctype.bi Returns	a	non	zero	value	if	character	c	denotes	a

space.

isupper isupper(c	as
integer)	as	integer ctype.bi Returns	a	non-zero	value	if	character	c	is	an	upper

case	character.

isxdigit isxdigit(c	as
integer)	as	integer ctype.bi Returns	a	non-zero	value	if	character	c	is	a	hex

digit	(0	to	F	or	f).

ldexp
ldexp(x	as	double,
n	as	integer)	as
double

math.bi Returns	the	product	of	x	and	2	to	the	power	n.

ldiv
ldiv(num	as	long,
denom	as	long)	as
ldiv_t

stdlib.bi Returns	the	quotient	and	remainder	of	a	division
as	a	structure	of	type	ldiv_t.

log_ log_(a	as	double)
as	double math.bi Returns	the	natural	logarithm	of	the	argument.

log10
log10(a	as	double)
as	double math.bi

Returns	the	logarithm	to	the	base	10	of	the
argument.

malloc malloc(bytes	as
integer)	as	any	ptr stdlib.bi Allocates	memory.	Returns	a	pointer	to	a	buffer

comprising	storage	for	the	specified	size.

modf
modf(d	as	double,
p	as	double	ptr)	as
double

math.bi
Returns	the	fractional	part	of	a	floating	point
number	d.	p	points	to	the	integral	part	expressed
as	a	float.

perror perror(mess	as
zstring	ptr) stdio.bi Prints	on	the	stream	stderr	a	message	passed	as

the	argument.

pow
pow(x	as	double,	y
as	double)	as
double

math.bi Returns	x	to	the	power	y.

pow10 pow10(x	as
double)	as	double math.bi Returns	10	to	the	power	x	(inverse	function	to

log10()).

printf printf(fmt	as	zstring
ptr,	...)	as	integer stdio.bi

Prints	on	standard	output	as	many	items	as	there
are	single	%	signs	in	fmt	with	matching	arguments
in	the	list.

putc
putc(c	as	integer,	s
as	FILE	ptr)	as
integer

stdio.bi Macro	to	output	the	single	character	c	to	the
stream	s.

putchar putchar(c	as
integer)	as	integer stdio.bi Macro	to	output	the	single	character	c	to	the

standard	output.

puts puts(b	as	zstring
ptr)	as	integer stdio.bi Sends	the	character	stream	in	b	to	the	standard

output,	returns	0	if	operation	fails.

rand rand()	as	integer stdlib.bi Returns	a	pseudo	random	number.	A	seed	is
required.	The	seed	is	set	with	srand.

realloc
realloc(p	as	any
ptr,	newsize	as
size_t)	as	any	ptr

stdlib.bi Allocates	memory.	Returns	a	pointer	to	a	buffer	for
a	change	in	size	of	object	pointed	to	by	p.

rewind rewind(s	as	FILE
ptr) stdio.bi Clears	the	error	indicators	on	a	file	stream	(read	or

write).	Necessary	before	reading	an	amended	file.

scanf scanf(fmt	as	zstring
ptr,	...)	as	integer stdio.bi

Reads	from	standard	input	as	many	items	as	there
are	%	signs	in	fmt	with	corresponding	listed
pointers.

sin_ sin_(ar	as	double)
as	double math.bi Returns	the	sine	of	an	angle	measured	in	radians.

sinh sinh(x	as	double)
as	double math.bi Returns	the	hyperbolic	sine	of	an	angle	measured

in	radians.

sprintf
sprintf(p	as	zstring
ptr,	fmt	as	zstring
ptr,	...)	as	integer

stdio.bi
Prints	on	zstring	p	as	many	items	as	there	are
single	%	signs	in	fmt	that	have	matching
arguments	in	the	list.

sqrt sqrt(a	as	double)
as	double math.bi Returns	the	square	root	of	the	value	passed.

Domain	error	if	value	is	negative.

srand
srand(seed	as
uinteger) stdlib.bi

Sets	the	seed	for	a	random	number.	A	possible
seed	is	the	current	time.

sscanf
sscanf(b	as	zstring
ptr,	fmt	as	zstring
ptr,	...)	as	integer

stdio.bi Reads	from	buffer	b	as	many	items	as	there	are	%
signs	in	fmt	with	corresponding	listed	pointers.

strcat
strcat(s1	as	zstring
ptr,	s2	as	zstring
ptr)	as	zstring	ptr

string.bi Concatenates	(appends)	zstring	s2	to	s1.

strchr
strchr(s	as	zstring
ptr,	c	as	integer)	as
zstring	ptr

string.bi Returns	a	pointer	to	the	first	occurrence	of	c	in	s	orNULL	if	it	fails	to	find	one.

strcmp

strcmp(s1	as
zstring	ptr,	s2	as
zstring	ptr)	as
integer

string.bi
Compares	zstring	s2	to	s1.	Returns	0	or	signed
difference	in	ASCII	values	of	first	non	matching
character.

strcpy
strcpy(s1	as	zstring
ptr,	s2	as	zstring
ptr)	as	zstring	ptr

string.bi Copies	s2	into	s1.

strcspn

strcspn(s1	as
zstring	ptr,	s2	as
zstring	ptr)	as
integer

string.bi
Returns	the	number	of	characters	in	s1
encountered	before	meeting	any	of	the	characters
in	s2.

strerror
strerror(n	as
integer)	as	zstring
ptr

string.bi Returns	a	pointer	to	a	system	error	messagecorresponding	to	the	passed	error	number.

strlen strlen(s	as	zstring
ptr)	as	integer string.bi Returns	the	number	of	bytes	in	the	null	terminatedzstring	pointed	to	by	s	(does	not	count	null).

strncat

strncat(s1	as
zstring	ptr,	s2	as
zstring	ptr,	n	as
integer)	as	zstring
ptr

string.bi Concatenates	(appends)	n	bytes	from	zstring	s2	tos1.

strncmp

strncmp(s1	as
zstring	ptr,	s2	as
any	ptr,	n	as
integer)	as	integer

string.bi
Compares	n	bytes	of	zstring	s2	to	the	same	of	s1.
Returns	0	or	signed	difference	in	ASCII	values	of
first	non	matching	character.

strncpy

strncpy(s1	as
zstring	ptr,	s2	as
zstring	ptr,	n	as
integer)	as	zstring
ptr

string.bi Copies	n	bytes	from	s2	into	s1.

strpbrk

strpbrk(s1	as
zstring	ptr,	s2	as
zstring	ptr)	as
zstring	ptr

string.bi Returns	a	pointer	to	the	first	characterencountered	in	s1	that	is	also	in	s2.

strrchr
strrchr(s	as	zstring
ptr,	c	as	integer)	as
zstring	ptr

string.bi
Returns	a	pointer	to	the	last	occurrence	of	c	in	s	or
NULL	if	it	fails	to	find	one.

strspn
strspn(s1	as	zstring
ptr,	s2	as	zstring
ptr)	as	integer

string.bi
Returns	the	number	of	characters	in	s1
encountered	before	meeting	a	character	which	is
not	in	s2.

strstr
strstr(s1	as	zstring
ptr,	s2	as	zstring
ptr)	as	zstring	ptr

string.bi Finds	the	location	of	the	zstring	s2	in	s1	andreturns	a	pointer	to	its	leading	character.

strtod
strtod(s	as	zstring
ptr,	p	as	zstring	ptr)
as	double

stdlib.bi Converts	a	zstring	to	double,	provided	the	zstring
is	written	in	the	form	of	a	number.

strtok
strtok(s1	as	zstring
ptr,	s2	as	zstring
ptr)	as	zstring	ptr

string.bi
Returns	pointers	to	successive	tokens	utilizing	the
zstring	s1.	Tokens	regarded	as	separators	are
listed	in	s2.

system
system(command
as	zstring	ptr)	as
integer

stdlib.bi

Executes,	from	within	a	program,	a	command
addressed	to	the	operating	system	written	as	a
zstring	(e.g.	DIR	on	Windows	and	DOS	and	LS	on
Linux).

tan_ tan_(ar	as	double)
as	double math.bi Returns	the	tangent	of	an	angle	measured	in

radians.

tanh tanh(x	as	double)
as	double math.bi Returns	the	hyperbolic	tangent	of	an	angle

measured	in	radians.

tolower tolower(c	as
integer)	as	integer ctype.bi Converts	a	character	from	upper	case	to	lower

case	(uses	ASCII	code).

toupper toupper(c	as
integer)	as	integer ctype.bi Converts	a	character	from	lower	case	to	upper

case	(uses	ASCII	code).

ungetc
ungetc(c	as
integer,	s	as	FILE
ptr)	as	integer

stdio.bi
Pushes	a	character	c	back	into	the	stream	s,
returns	EOF	if	unsuccessful.	Do	not	push	more
than	one	character.

Buffer	Manipulation

#include	"crt/string.bi"

Prototype	(with	parameters) Comments

memchr(s	as	any	ptr,	c	as	integer,	n	as	size_t)	as
any	ptr Search	for	a	character	in	a	buffer.

memcmp(s1	as	any	ptr,	s2	as	any	ptr,	n	as
size_t)	as	integer Compare	two	buffers.

memcpy(dest	as	any	ptr,	src	as	any	ptr,	n	as
size_t)	as	any	ptr Copy	one	buffer	into	another	.

memmove(dest	as	any	ptr,	src	as	any	ptr,	n	as Move	a	number	of	bytes	from	one

size_t)	as	any	ptr buffer	lo	another.

memset(s	as	any	ptr,	c	as	integer,	n	as	size_t)	as
any	ptr

Set	all	bytes	of	a	buffer	to	a	given
character.

Character	Classification	and	Conversion

#include	"crt/ctype.bi"

Prototype	(with	parameters) Comments

isalnum(c	as	integer)	as	integer True	if	c	is	alphanumeric.

isalpha(c	as	integer)	as	integer True	if	c	is	a	letter.

isascii(c	as	integer)	as	integer True	if	c	is	ASCII	.

iscntrl(c	as	integer)	as	integer True	if	c	is	a	control	character.

isdigit(c	as	integer)	as	integer True	if	c	is	a	decimal	digit.

isgraph(c	as	integer)	as	integer True	if	c	is	a	graphical	character.

islower(c	as	integer)	as	integer True	if	c	is	a	lowercase	letter.

isprint(c	as	integer)	as	integer True	if	c	is	a	printable	character.

ispunct(c	as	integer)	as	integer True	if	c	is	a	punctuation	character.

isspace(c	as	integer)	as	integer True	if	c	is	a	space	character.

isupper(c	as	integer)	as	integer True	if	c	is	an	uppercase	letter.

isxdigit(c	as	integer)	as	integer True	if	c	is	a	hexadecimal	digit.

toascii(c	as	integer)	as	integer Convert	c	to	ASCII	.

tolower(c	as	integer)	as	integer Convert	c	to	lowercase.

toupper(c	as	integer)	as	integer Convert	c	to	uppercase.

Data	Conversion

#include	"crt/stdlib.bi"

Prototype	(with	parameters) Comments

atof(string1	as	zstring	ptr)	as	double Convert	zstring	to	floating	point
value.

atoi(string1	as	zstring	ptr)	as	integer Convert	zstring	to	an	integer	value.

atol(string1	as	zstring	ptr)	as	integer Convert	zstring	to	a	long	integer
value.

itoa(value	as	integer,	zstring	as	zstring	ptr,	radix	as
integer)	as	zstring	ptr

Convert	an	integer	value	to	a	zstring
using	given	radix.

ltoa(value	as	long,	zstring	as	zstring	ptr,	radix	as
integer)	as	zstring	ptr

Convert	long	integer	to	zstring	in	a
given	radix.

strtod(string1	as	zstring	ptr,	endptr	as	zstring	ptr)	as
double

Convert	zstring	to	a	floating	point
value.

strtol(string1	as	zstring	ptr,	endptr	as	zstring	ptr,
radix	as	integer)	as	long

Convert	zstring	to	a	long	integer
using	a	given	radix.

strtoul(string1	as	zstring	ptr,	endptr	as	zstring	ptr,
radix	as	integer)	as	ulong Convert	zstring	to	unsigned	long.

Directory	Manipulation

#include	"crt/io.bi"

Prototype	(with	parameters) Comments

_chdir(path	as	zstring	ptr)	as	integer Change	current	directory	to	given
path.

_getcwd(path	as	zstring	ptr,	numchars	as	integer)	as
zstring	ptr

Returns	name	of	current	working
directory.

_mkdir(path	as	zstring	ptr)	as	integer Create	a	directory	using	given	path
name.

_rmdir(path	as	zstring	ptr)	as	integer Delete	a	specified	directory.

File	Manipulation

#include	"crt/sys/stat.bi"

#include	"crt/io.bi"

Prototype	(with	parameters) Comments

chmod(path	as	zstring	ptr,	pmode	as	integer)	as	integer Change	permission	settings	of	a
file.

fstat(handle	as	integer,	buffer	as	type	stat	ptr)	as	integer Get	file	status	information.

remove(path	as	zstring	ptr)	as	integer Delete	a	named	file.

rename_(oldname	as	zstring	ptr,	newname	as	zstring
ptr)	as	integer rename	a	file.

stat(path	as	zstring	ptr,	buffer	as	type	stat	ptr)	as	integer Get	file	status	information	of
named	file.

umask(pmode	as	uinteger)	as	uinteger Set	file	permission	mask.

Stream	I/O

#include	"crt/stdio.bi"

Prototype	(with	parameters) Comments

clearerr(file_pointer	as	FILE	ptr) Clear	error	indicator	of	stream,

fclose(file_pointer	as	FILE	ptr)	as	integer Close	a	file,

feof(file_pointer	as	FILE	ptr)	as	integer Check	if	end	of	file	occurred	on	a
stream.

ferror(file_pointer	as	FILE	ptr)	as	integer Check	if	any	error	occurred	during
file	I/0.

fflush(file_pointer	as	FILE	ptr)	as	integer Write	out	(flush)	buffer	to	file.

fgetc(file_pointer	as	FILE	ptr)	as	integer Get	a	character	from	a	stream.

fgetpos(file_pointer	as	FILE	ptr,	fpos_t	current_pos)	as
integer

Get	the	current	position	in	a
stream.

fgets(string1	as	zstring	ptr,	maxchar	as	integer,
file_pointer	as	FILE	ptr)	as	zstring	ptr Read	a	zstring	from	a	file.

fopen(filename	as	zstring	ptr,	access_mode	as	zstring
ptr)	as	FILE	ptr Open	a	file	for	buffered	I/0.

fprintf(file_pointer	as	FILE	ptr,	format_string	as	zstring
ptr,	args)	as	integer Write	formatted	output	to	a	file,

fputc(c	as	integer,	file_pointer	as	FILE	ptr)	as	integer Write	a	character	to	a	stream.

fputchar(c	as	integer)	as	integer Write	a	character	to	stdout.

fputs(string1	as	zstring	ptr,	file_pointer	as	FILE	ptr)	as
integer Write	a	zstring	to	a	stream.

fread(buffer	as	zstring	ptr,	size	as	size_t	count	as
size_t,	file_pointer	as	FILE	ptr)	as	size_t

Read	unformatted	data	from	a
stream	into	a	buffer.

freopen(filename	as	zstring	ptr,	access	as	zstring	ptr
mode,	file_pointer	as	FILE	ptr)	as	FILE	ptr

Reassign	a	file	pointer	to	a
different	file.

fscanf(file_pointer	as	FILE	ptr,	format	as	zstring	ptr
zstring,	args)	as	integer

Read	formatted	input	from	a
stream.

fseek(file_pointer	as	FILE	ptr,	offset	as	long,	origin	as
integer)	as	integer

Set	current	position	in	file	to	a	new
location.

fsetpos(file_pointer	as	FILE	ptr,	current_pos	as	fpos_t)
as	integer

Set	current	position	in	file	to	a	new
location.

ftell(file_pointer	as	FILE	ptr)	as	long Get	current	location	in	file.

fwrite(buffer	as	zstring	ptr,	size	as	size_t,	count	as
size_t	file_pointer	as	FILE	ptr)	as	size_t

Write	unformatted	data	from	a
buffer	to	a	stream.

getc(file_pointer	as	FILE	ptr)	as	integer Read	a	character	from	a	stream.

getchar()	as	integer Read	a	character	from	stdin.

gets(buffer	as	zstring	ptr)	as	zstring	ptr Read	a	line	from	stdin	into	a
buffer.

printf(format	as	zstring	ptr	_string,	args)	as	integer Write	formatted	output	to	stdout.

putc(c	as	integer,	file_pointer	as	FILE	ptr)	as	integer Write	a	character	to	a	stream.

putchar(c	as	integer)	as	integer Write	a	character	to	stdout.

puts(string1	as	zstring	ptr)	as	integer Write	a	zstring	to	stdout.

rewind(file_pointer	as	FILE	ptr) Rewind	a	file.

scanf(format_string	as	zstring	ptr,	args)	as	integer Read	formatted	input	from	stdin.

setbuf(file_pointer	as	FILE	ptr,	buffer	as	zstring	ptr) Set	up	a	new	buffer	for	the
stream.

setvbuf(file_pointer	as	FILE	ptr,	buffer	as	zstring	ptr,
buf_type	as	integer,	buf	as	size_t	size)	as	integer

Set	up	new	buffer	and	control	the
level	of	buffering	on	a	stream.

sprintf(string1	as	zstring	ptr,	format_string	as	zstring
ptr,	args)	as	integer

Write	formatted	output	to	a
zstring.

sscanf(buffer	as	zstring	ptr,	format_string	as	zstring
ptr,	args)	as	integer

Read	formatted	input	from	a
zstring.

tmpfile()	as	FILE	ptr Open	a	temporary	file.

tmpnam(file_name	as	zstring	ptr)	as	zstring	ptr Get	temporary	file	name.

ungetc(c	as	integer,	file_pointer	as	FILE	ptr)	as	integer Push	back	character	into	stream'
s	buffer

Low	level	I/O

#include	"crt/io.bi"

So	far	Win32	only,	connects	to	MSVCRT.DLL	(headers	missing	for

other	platforms)

Prototype	(with	parameters) Comments

_close(handle	as	integer)	as	integer Close	a	file	opened	for	unbuffered
I/O.

_creat(filename	as	zstring	ptr,	pmode	as	integer)	as
integer

Create	a	new	file	with	specified
permission	setting.

_eof(handle	as	integer)	as	integer Check	for	end	of	file.

_lseek(handle	as	integer,	offset	as	long,	origin	as
integer)	as	long Go	to	a	specific	position	in	a	file.

_open(filename	as	zstring	ptr,	oflag	as	integer,	pmode
as	uinteger)	as	integer Open	a	file	for	low-level	I/O.

_read(handle	as	integer,	buffer	as	zstring	ptr,	length
as	uinteger)	as	integer

Read	binary	data	from	a	file	into	a
buffer.

_write(handle	as	integer,	buffer	as	zstring	ptr,	count
as	uinteger)	as	integer

Write	binary	data	from	a	buffer	to	a
file.

Mathematics

#include	"crt/math.bi"

Prototype	(with	parameters) Comments

abs_(n	as	integer)	as	integer Get	absolute	value	of	an	integer.

acos_(x	as	double)	as	double Compute	arc	cosine	of	x.

asin_(x	as	double)	as	double Compute	arc	sine	of	x.

atan_(x	as	double)	as	double Compute	arc	tangent	of	x.

atan2_(y	as	double,	x	as	double)	as
double Compute	arc	tangent	of	y/x.

ceil(x	as	double)	as	double Get	smallest	integral	value	that	exceeds	x.

cos_(x	as	double)	as	double Compute	cosine	of	angle	in	radians.

cosh(x	as	double)	as	double Compute	the	hyperbolic	cosine	of	x.

div(number	as	integer,	denom	as	integer)
as	div_t Divide	one	integer	by	another.

exp_(x	as	double)	as	double Compute	exponential	of	x.

fabs(x	as	double)	as	double Compute	absolute	value	of	x.

floor(x	as	double)	as	double Get	largest	integral	value	less	than	x.

fmod(x	as	double,	y	as	double)	as	double Divide	x	by	y	with	integral	quotient	and	return
remainder.

frexp(x	as	double,	expptr	as	integer	ptr)
as	double

Breaks	down	x	into	mantissa	and	exponent	of
no.

labs(n	as	long)	as	long Find	absolute	value	of	long	integer	n.

ldexp(x	as	double,	exp	as	integer)	as
double

Reconstructs	x	out	of	mantissa	and	exponent
of	two.

ldiv(number	as	long,	denom	as	long)	as
ldiv_t Divide	one	long	integer	by	another.

log_(x	as	double)	as	double Compute	log(x).

log10(x	as	double)	as	double Compute	log	to	the	base	10	of	x.

modf(x	as	double,	intptr	as	double	ptr)	as
double Breaks	x	into	fractional	and	integer	parts.

pow(x	as	double,	y	as	double)	as	double Compute	x	raised	to	the	power	y.

rand()	as	integer Get	a	random	integer	between	0	and	32767.

random(max_num	as	integer)	as	integer Get	a	random	integer	between	0	and
max_num.

randomize() Set	a	random	seed	for	the	random	number
generator.

sin_(x	as	double)	as	double Compute	sine	of	angle	in	radians.

sinh(x	as	double)	as	double Compute	the	hyperbolic	sine	of	x.

sqrt(x	as	double)	as	double Compute	the	square	root	of	x.

srand(seed	as	uinteger) Set	a	new	seed	for	the	random	number
generator	(rand).

tan_(x	as	double)	as	double Compute	tangent	of	angle	in	radians.

tanh(x	as	double)	as	double Compute	the	hyperbolic	tangent	of	x.

Memory	Allocation

#include	"crt/stdlib.bi"

Prototype	(with	parameters) Comments

calloc(num	as	size_t	elems,	elem_size	as	size_t)
as	any	ptr

Allocate	an	array	and	initialise	all
elements	to	zero	.

free(mem_address	as	any	ptr) Free	a	block	of	memory.

malloc(num	as	size_t	bytes)	as	any	ptr Allocate	a	block	of	memory.

realloc(mem_address	as	any	ptr,	newsize	as Reallocate	(adjust	size)	a	block	of

size_t)	as	any	ptr memory.

Process	Control

#include	"crt/stdlib.bi"

Prototype	(with	parameters) Comments

abort() Abort	a	process.

execl(path	as	zstring	ptr,	arg0	as	zstring	ptr,	arg1	as
zstring	ptr,...,	NULL)	as	integer

Launch	a	child	process	(pass
command	line).

execlp(path	as	zstring	ptr,	arg0	as	zstring	ptr,	arg1	as
zstring	ptr,...,	NULL)	as	integer

Launch	child	(use	PATH,	pass
command	line).

execv(path	as	zstring	ptr,	argv	as	zstring	ptr)	as
integer

Launch	child	(pass	argument
vector).

execvp(path	as	zstring	ptr,	argv	as	zstring	ptr)	as
integer

Launch	child	(use	PATH,	pass
argument	vector).

exit_(status	as	integer) Terminate	process	after	flushing	all
buffers.

getenv(varname	as	zstring	ptr)	as	zstring	ptr Get	definition	of	environment
variable,

perror(string1	as	zstring	ptr) Print	error	message	corresponding
to	last	system	error.

putenv(envstring	as	zstring	ptr)	as	integer Insert	new	definition	into
environment	table.

raise(signum	as	integer)	as	integer Generate	a	C	signal	(exception).

system_(string1	as	zstring	ptr)	as	integer Execute	a	resident	operating
system	command.

Searching	and	Sorting

#include	"crt/stdlib.bi"

Note:	The	compare	callback	function	required	by	bsearch	and	qsort
must	be	declared	as	cdecl.	It	must	return	a	value	<0	if	its	first
argument	should	be	located	before	the	second	one	in	the	sorted	array,
>0	if	the	first	argument	should	be	located	after	the	second	one,	and

zero	if	their	relative	positions	are	indifferent	(equal	values).	

Prototype	(with	parameters) Comments

bsearch(key	as	any	ptr,	base	as	any	ptr,	num	as	size_t,	width	as
size_t,	compare	as	function(elem1	as	any	ptr,	elem2	as	any	ptr)	as
integer)	as	any	ptr

Perform	binary
search.

qsort(base	as	any	ptr,	num	as	size_t,	width	as	size_t,	compare	as
function(elem1	as	any	ptr,	elem2	as	any	ptr)	as	integer)

Use	the	quicksort
algorithm	to	sort	an
array.

String	Manipulation

#include	"crt/string.bi"

Prototype	(with	parameters) Comments

stpcpy(dest	as	zstring	ptr,	src	as	zstring	ptr)	as
zstring	ptr Copy	one	zstring	into	another.

strcmp(string1	as	zstring	ptr,	string2	as	zstring
ptr)	as	integer

Compare	string1	and	string2	to
determine	alphabetic	order.

strcpy(string1	as	zstring	ptr,	string2	as	zstring	ptr)
as	zstring	ptr Copy	string2	to	string1.

strerror(errnum	as	integer)	as	zstring	ptr Get	error	message	corresponding	to
specified	error	number.

strlen(string1	as	zstring	ptr)	as	integer Determine	the	length	of	a	zstring.

strncat(string1	as	zstring	ptr,	string2	as	zstring	ptr,
n	as	size_t)	as	zstring	ptr

Append	n	characters	from	string2	to
string1.

strncmp(string1	as	zstring	ptr,	string2	as	zstring
ptr,	n	as	size_t)	as	integer

Compare	first	n	characters	of	two
strings.

strncpy(string1	as	zstring	ptr,	string2	as	zstring
ptr,	n	as	size_t)	as	zstring	ptr

Copy	first	n	characters	of	string2	to
string1.

strnset(string1	as	zstring	ptr,	c	as	integer,	size	_t
n)	as	zstring	ptr Set	first	n	characters	of	zstring	to	c.

strrchr(string1	as	zstring	ptr,	c	as	integer)	as
zstring	ptr

Find	last	occurrence	of	character	c	in
zstring.

Time

#include	"crt/time.bi"

Prototype	(with	parameters) Comments

asctime(time	as	type	tm	ptr)	as
zstring	ptr Convert	time	from	type	tm	to	zstring.

clock()	as	clock_t Get	elapsed	processor	time	in	clock	ticks.

ctime(time	as	time_t	ptr)	as	zstring
ptr Convert	binary	time	to	zstring.

difftime(time_t	time2,	time_t	time1)
as	double

Compute	the	difference	between	two	times	in
seconds.

gmtime(time	as	time_t	ptr)	as	type
tm	ptr Get	Greenwich	Mean	Time	(GMT)	in	a	tm	structure.

localtime(time	as	time_t	ptr)	as	type
tm	ptr Get	the	local	time	in	a	tm	structure.

time_(timeptr	as	time_t	ptr)	as	time_t Get	current	time	as	seconds	elapsed	since	0	hoursGMT	1/1/70.

See	also

#include

File	I/O	with	FreeBASIC 	

In	FreeBASIC,	there	are	4	possible	ways	to	perform	file	I/O:

1.	Using	the	built-in	BASIC	commands	like	Open	,	Get,	Put,	and	Close.	This	way	is	mostly	portable	across	all
platforms	supported	by	FreeBASIC.	Open	files	are	identified	by	"file	numbers",	that	are	specific	to	FreeBASIC	and
can't	be	passed	into	functions	from	below.

2.	Using	the	C	stream	I/O	functions	like	fopen,	fread,	ftell,	fclose	(see	Stream	I/O	in	
of	the	C	library	FreeBASIC	relies	on.	This	is	slightly	faster	than	and	adds	a	few	features	beyond	method	above,	and
still	well	portable.	Open	files	are	identified	by	file	pointers,	as	in	the	C	language,	again	unique	to	this	access	method.
The	FileAttr	function	can	be	used	to	return	a	stream	I/O	pointer	from	a	file	number	as	in	1.	above.

3.	Using	the	C	low-level	I/O	functions	like	_open,	_read,	_write,	_close	(see	Low	Level	I/O	in	
Functions).	Those	functions	should	be	portable,	but	so	far	headers	are	available	for	Win32	only,	so	code	using
them	will	not	compile	to	any	other	platform	by	now.

4.	Talk	directly	to	the	OS	kernel	(DOS:	use	DOS	and	DPMI	INT's	,	Win32:	use	API	calls	like	CreateFile,	WriteFile).
This	is	no	longer	portable.	Files	are	identified	by	handles	generated	by	and	specific	to	the	OS	kernel.

This	example	shows	and	compares	methods	1.	and	2.	described	above,	and	reports	the	values	returned	by	the
functions	used.	It	expects	2	commandline	arguments,	providing	names	of	2	
compare	the	reading	performance	(make	sure	the	file	cache	is	empty	before	starting	test)	:

Example

Data	"	File	I/O	example	&	test	GET	vs	FREAD	|	(CL)	2008-10-12	Public	Domain	"

Data	"	http://www.freebasic.net/wiki/wikka.php?wakka=ProPgFileIO	"

Rem

Rem	Compile	With	FB	0.20	Or	newer

Rem

Rem	In	the	commandline	supply	preferably	2	different

Rem	Default	Is	"BLAH"	For	both	(bad)

Rem	In	both	loops	(Get	And	FREAD)	the	last	Read	can

#include	"crt\stdio.bi"	''	Otherwise	the	"C"-stuff	won't	work

Dim	As	FILE		Ptr			QQ			''	This	is	the	C-like	file	access	pointer

Dim	As	UByte	Ptr			BUF		''	Buffer	used	for	both	FB-like	and	C-like	read

Dim	As	UInteger				FILN	''	FB-like	"filenumber"

Dim	As	UInteger				AA,	BB,	CC,	DD,	EE

Dim	As	ULongInt				II64	''	We	do	try	to	support	files	>=	4	GiB

Dim	As	String						VGSTEMP,	VGSFILE1,	VGSFILE2

?	:	Read	VGSTEMP	:	?	VGSTEMP	:	Read	VGSTEMP	:	?	VGSTEMP

VGSTEMP=Command$(1)	:	VGSFILE1="BLAH"

If	(VGSTEMP<>"")	Then	VGSFILE1=VGSTEMP

VGSTEMP=Command$(2)	:	VGSFILE2=VGSFILE1

If	(VGSTEMP<>"")	Then	VGSFILE2=VGSTEMP

BUF	=	Allocate(32768)	''	32	KiB	-	hoping	it	won't	fail,	BUF	could	be	0	...

?	:	?	"FB	-	OPEN	-	GET	,	"""+VGSFILE1+"""":	Sleep	

FILN	=	FreeFile	:	AA=0	:	II64=0	''	AA	counts	blocks	per	32	KiB	already	read

BB=Open	(VGSFILE1	For	Binary	Access	Read	As	#FILN)

''	Result	0	is	OK	here,	<>0	is	evil

''	"ACCESS	READ"	should	prevent	file	creation	if	it	doesn't	exist

?	"OPEN	result		:	"	;	BB

If	(BB=0)	Then	''	BB	will	be	"reused"	for	timer	below

		BB=Cast(UInteger,(Timer*100))	''	No	UINTEGER	TIMER	in	FB,	make	units	10	ms

		CC=Get	(#FILN,,*BUF,32768,DD)

		''	CC	has	the	success	status,	0	is	OK,	<>0	is	bad

		''	DD	is	the	amount	of	data	read

		''	EOF	is	__NOT__	considered	as	error	here

		?	"0th	GET						:	";CC;"	";DD

		?	"2	bytes	read	:	";BUF[0];"	";BUF[1]

		Do

				AA=AA+1	:	II64=II64+Cast(ULongInt,DD)

				If	(DD<32768)	Or	(CC<>0)	Then	Exit	Do	''	Give	up

				CC=Get	(#FILN,,*BUF,32768,DD)

		Loop

		EE=Cast(UInteger,(Timer*100))-BB

		?	"Time									:	";(EE+1)*10;"	ms"

		If	(AA>1)	Then	?	"Last	GET					:	";CC;"	";DD

		?	"Got	__EXACTLY__	";II64;"	bytes	in	";AA;"	calls"

		Close	#FILN

ENDIF

?	:	?	"C	-	FOPEN	-	FREAD	,	"""+VGSFILE2+""""	:	Sleep

AA=0	:	II64=0	''	AA	counts	blocks	per	32	KiB	already	read

QQ=FOPEN(VGSFILE2,"rb")

''	Here	0	is	evil	and	<>0	good,	opposite	from	above	!!!

''	File	will	not	be	created	if	it	doesn't	exist	(good)

''	"rb"	is	case	sensitive	and	must	be	lowercase,	STRPTR	seems	not	necessary

?	"FOPEN	result	:	"	;	QQ

If	(QQ<>0)	Then

		BB=Cast(UInteger,(Timer*100))	''	No	UINTEGER	TIMER	in	FB,	make	units	10	ms

		DD=FREAD(BUF,1,32768,QQ)	''	1	is	size	of	byte	-	can't	live	without	:-D

		''	Returns	size	of	data	read,	<32768	on	EOF,	0	after	EOF,	or	"-1"	on	error

		?	"0th	FREAD				:	";DD

		?	"2	bytes	read	:	";BUF[0];"	";BUF[1]

		Do

				AA=AA+1

				If	(DD<=32768)	Then	II64=II64+Cast(ULongInt,DD

				If	(DD<>32768)	Then	Exit	Do	''	ERR	or	EOF

				DD=FREAD(BUF,1,32768,QQ)

		Loop

		EE=Cast(UInteger,(Timer*100))-BB

		?	"Time									:	";(EE+1)*10;"	ms"

		If	(AA>1)	Then	?	"Last	FREAD			:	";DD

		?	"Got	__EXACTLY__	";II64;"	bytes	in	";AA;"	calls"

		FCLOSE(QQ)

ENDIF

Deallocate(BUF):	Sleep	1000	''	Crucial

End

See	also

File	I/O	Functions
C	Standard	Library	Functions
Get	(File	I/O	Command)

Community	Tutorials 	

Tutorials	submitted	by	the	FreeBASIC	community:

Getting	Started
Getting	Started	with
FreeBASIC	by	SJ	Zero
Using	libraries	in
FreeBASIC	by	SJ	Zero
Using	the	Mouse	in
FreeBASIC	by
MystikShadows
Get	Information	into
your	program	by	TekRat
Using	Dynamic	Arrays	in
FreeBASIC	by
SephKnows
Beginners	Guide	to
Types	as	Objects	(Part	1)
by	YetiFoot
Beginners	Guide	to
Types	as	Objects	(Part	2)
by	YetiFoot
Introduction	to	Variable
Scope	by	rdc
Introduction	to	Arrays	by
rdc
Introduction	to	the	Type

Intermediate	Techniques
Introduction	to	Function
Overloading	in
FreeBASIC	by	:stylin:

Mathematics
Different	ways	angles
are	measured	by
RandyKeeling
A	Brief	Introduction	To
Trigonometry	by
RandyKeeling

Windows	API
Introduction	to	Message-
Based	Programming	by
rdc

Libraries
Interfacing	with	C	by
UtenNavn
SDL_NET	by	Paragon
Using	FreeBASIC	Built
Libraries	with	GCC	by

Def	by	rdc
New	To	Programming?
by	The	FB	Community
Compiling	a	BIG	QB
program	by	Antoni

Game	Programming
How	to	Program	a	Game:
Lesson	1	by	Lachie
Dazdarian
Managing	A	High	Score
Table	by	Lachie	Dazdarian

Flow	Control	Statements
The	IF	Statement	by	rdc
The	Select	Case
Statement	by	rdc

Pre	Processor
Conditional	Compilation
And	You	by	AetherFox

Memory	Management
Introduction	to	Pointers
by	rdc
Pointers,	Data	Types	and
Memory	by	rdc
The	Pointer	Data	Type	by
rdc
Using	Linked	Lists	by
Parker
Dynamic	Arrays	in	Types
by	rdc

Jeff	Marshall

Object	Oriented	Programming
Introduction	to	the
Extended	Type	by	rdc
Simulating
Polymorphism	by	rdc
OOP	in	non-OOP
languages	by
KevinWhitefoot
Const	Qualifiers	and	You
by	notthecheatr

FBgfx
Creating	and
Understanding	Your
FBgfx	Img	and	Font
Buffer	by	The	FB
Community

	

Community	Code	Library 	

FreeBASIC	Code,	Games,	and	Libraries.	Written	in	FreeBASIC,	by
FreeBASIC	Community	Members.

Code	Editors	&	IDEs	
FBEdit,	an	IDE	for	FB	by	KetilO
(Win32)
JellyFish	Pro,	an	IDE	for	FB	by
Paul	Squires	(Win32)
VISG	GUI	Builder	(WIN)	by
mrhx
EzeeGui	GUI	builder	(WIN)	by
Jerry	Fielden	

Graphics	Code
Demos
The	FreeBASIC	GFX	Demo
Central	by	Adigun	A.Polack
Animated	Clouds	by	Zamaster
Island	Generation	by	rdc
Plasma	Generation	by
Zamaster

Graphics	Functions	and
Primitives
AntiAliased	Bezier	Curves	by
Acetoline
Antialiased	Circles	by
Acetoline
Ellipse	Renderer	by	Pritchard
Catmull-rom	Splines	by	relsoft
Bezier	vs	Catmull-rom	by
relsoft
Accurate	Image	Scaler	by
KristopherWindsor
Spline	Curve	by	Zamaster

FreeBASIC	Games
FreeBASIC	Games	Directory	by
Lachie	Dazdarian

Featured	Games:
Cute	Short	Game	Project	by
redcrab
Kingdoms	by	Piptol
Lynn's	Legacy	by	cha0s	and
Josiah	Tobin
Relativity	by	Lithium
Star	Cage	by	Lachie	Dazdarian
100	Line	Tetris	by	Deleter
Any	PNG	or	JPEG	as	a	Jigsaw
Puzzle	by	Mysoft

GUI	Code
In	Game	GUI	by	coderJeff
Zine	GUI	by	VonGodric
WX	GUI	example	by	ciw1973
KwikGUI	(WIN/LIN/DOS)	by
Vincent	DeCampo
FB_GUI	by	BasicScience

Networking-	Web	Code
FB	Web	Server	(Win)	by
parakeet
FB	Server	side	scripting	(uses
the	server	above)	by	fishhf
ChiSock	portable	sockets
library	by	cha0s

http://www.freebasic.net/forum/viewtopic.php?t=13932
http://www.planetsquires.com/jellyfishpro_freebasic.htm
http://www.freebasic.net/forum/viewtopic.php?t=9035
http://www.freewebs.com/fielden/
http://aapproj.phatcode.net/fbgfx/index.html
http://www.freebasic.net/forum/viewtopic.php?t=6938
http://www.freebasic.net/forum/viewtopic.php?t=7936
http://www.freebasic.net/forum/viewtopic.php?t=8758
http://www.freebasic.net/forum/viewtopic.php?t=7111
http://www.freebasic.net/forum/viewtopic.php?t=7067
http://www.freebasic.net/forum/viewtopic.php?t=9572
http://www.freebasic.net/forum/viewtopic.php?t=7546
http://www.freebasic.net/forum/viewtopic.php?t=7545
http://www.freebasic.net/forum/viewtopic.php?t=9588
http://www.freebasic.net/forum/viewtopic.php?t=6676
http://games.freebasic.net/
http://csgp.suret.net/
http://www.freebasic.net/forum/viewtopic.php?t=3931
http://www.freebasic.net/forum/viewtopic.php?t=5068
http://cs.smu.ca/~c_adams1/relativity/
http://lachie.phatcode.net/starcage.php
http://www.freebasic.net/forum/viewtopic.php?t=9065
http://www.freebasic.net/forum/viewtopic.php?t=9738
http://www.execulink.com/~coder/freebasic/jmgui.html
http://sourceforge.net/projects/zine/
http://www.freebasic.net/forum/viewtopic.php?p=76965#76965
http://sourceforge.net/projects/kwikgui/
http://sites.google.com/site/freebasicgui/Home
http://www.freebasic.net/forum/viewtopic.php?t=4199
http://www.freebasic.net/forum/viewtopic.php?t=7913
http://www.freebasic.net/forum/viewtopic.php?t=8454

Rotozoom	by	Dr_D

Colors	and	Palettes
24bit	to	16bit	color	width	by
Eternal_Pain
HSV	Color	Space	by	Antoni

Formats
fbpng	library	by	yetifoot
JPEG	image	loader	by	Antoni

3D
Tree	Generation	by	Zamaster
Quadtree-Based	Renderer	by
relsoft

Animation
ASCII	Animation	Example	by
Pritchard
Chain-Like	Animation	Tutorial
by	Lachie	Dazdarian

Sound	Code
Mic	Input	using	FMod	by
mambazo
Using	the	PC	Speaker	by
several
Wave	synthesizer	by	Zamaster

Math	Code
FBMath	by	jdebord
A*	Pathfinding	by	dumbledore
Fraction	Library	by	Zamaster
Big	Number	Wrapper	by
Yetifoot
BCD	arithmetics	by	srvaldez
10Byte	extended	float	by
srvaldez,	included	in	FB
examples

I/O	Code
Text	Input	by	Pritchard	&
sir_mud
ConLib	Console	library	with
PCopy	by	cha0s
Lock	Mouse	to	Grid	Positions
by	Pritchard

Serial	Port
Drive	a	Parallax	servo
controller	by	phishguy
Modbus	device	finder	by
Antoni
Serial	port	terminal	program	by
Antoni

OS	Specific	Code
Windows
ServiceFB	(Win)	by	zerospeed
FBWinPrint	1.0	by	vdecampo
In	memory	dialogs	by
MichaelW
Talking	program	usin	Win
Voice	API,	by	coder	guy	
Using	GfxLib	in	Windows	API
by	MichaelW	
Print	a	bitmap	file	by	MichaelW
ShellExecute	wrapper	by
RayBritton
FBWiki	to	chm	format
converter	by	coderjeff
FB	ODBC	library	by	KaraK
Get	a	file	from	an	URL	by
Sisophon

Linux
Printing	on	Linux	by	coderJeff
Using	GfxLib	on	Gtk	by	caseih

http://www.freebasic.net/forum/viewtopic.php?t=13251
http://www.freebasic.net/forum/viewtopic.php?t=9441
http://www.freebasic.net/forum/viewtopic.php?t=8764
http://www.freebasic.net/forum/viewtopic.php?t=8024
http://www.freebasic.net/___old_site/arch/category.php?id=6
http://www.freebasic.net/forum/viewtopic.php?t=8724
http://www.freebasic.net/forum/viewtopic.php?t=7931
http://www.freebasic.net/forum/viewtopic.php?t=7340
http://lachie.phatcode.net/articles.php
http://www.freebasic.net/forum/viewtopic.php?t=2294
http://www.freebasic.net/forum/viewtopic.php?p=20477
http://www.freebasic.net/forum/viewtopic.php?t=9226
http://sourceforge.net/projects/fbmath/
http://www.freebasic.net/forum/viewtopic.php?t=386
http://www.freebasic.net/forum/viewtopic.php?t=7525
http://www.freebasic.net/forum/viewtopic.php?t=7173
http://www.freebasic.net/forum/viewtopic.php?p=75713
http://www.freebasic.net/forum/viewtopic.php?p=49695
http://www.freebasic.net/forum/viewtopic.php?t=6574
http://www.freebasic.net/forum/viewtopic.php?t=6847
http://www.freebasic.net/forum/viewtopic.php?t=7744
http://www.freebasic.net/forum/viewtopic.php?p=66616
http://www.freebasic.net/forum/viewtopic.php?p=34643
http://www.freebasic.net/forum/viewtopic.php?p=31325#p31325
http://www.freebasic.net/forum/viewtopic.php?t=5942
http://www.freebasic.net/forum/viewtopic.php?t=9498
http://www.freebasic.net/forum/viewtopic.php?p=47539
http://www.freebasic.net/forum/viewtopic.php?t=9495
http://www.freebasic.net/forum/viewtopic.php?p=76442
http://www.freebasic.net/forum/viewtopic.php?p=69681
http://www.freebasic.net/forum/viewtopic.php?p=70771
http://www.execulink.com/~coder/freebasic/fbwiki.html
http://www.freebasic.net/forum/viewtopic.php?p=75625
http://www.freebasic.net/forum/viewtopic.php?p=119557
http://www.freebasic.net/forum/viewtopic.php?t=8040
http://www.freebasic.net/forum/viewtopic.php?t=7611

CRC	Calculation	by
Fragmeister

Physics	simulation
Atom	smash	simulation	by
coderjeff
2d	rigid	body	library	by
coderjeff
Irrlicht	wrapper	+	Newton
Intergrated	by	SiskinEDGE

Text/Parser	Code
Cross	Platform	INI	library	by
SirMud
Expression	Parser	by	yetifoot
Turing	Machine	by	Zamaster
Roman	Numeral	to	Integer
Conversion	by	stylin
Unicode	console	calender,	by
zippy	and	voodooattack
FB	source	to	highlighted	HTML
by	Kristopher	Windsor
Portable	help	(not	.chm)	viewer
by	coderjeff
Lisp	interpreter	by	coderjeff

Cryptography
MARS	encryption	by	Zamaster
AES	Encryption/Decryption	by
Zamaster
DES/LUCIFER
Encryption/Decryption	by
Zamaster
MD5	Calculator	by	DOS386
Tiger	Hash	by	Mindless

DOS
Detect	system	codepage	by
DrV
Calling	an	Interrupt	requiring	a
pointer	by	DrV
Access	BTRIEVE	files	by	mjs
"GetDiskFreeSpaceEx"	Check
for	disk	total/free	space	on
FAT32	by	DOS386
DPMI	host	detection
version/capabilities	by	DrV

Data	structures	and	special-
purpose	UDTs
Boolean	Type	by	Imortis
Safe	FBstring	Type	by	stylin
FreeBASIC	Memory	Leak
Detector	by	DrV	&	Others
Auto-deallocating	'Smart'
Pointers	by	stylin
UDTs	for	Properties	by
Pritchard

Miscellaneous	Code
FreeBASIC	Extended	Library
FB	CAD	by	owen
FBstd	C++	Lib	Port	(W.I.P.)	by
stylin
Testly	by	zerospeed
Portable	way	to	add	a	resource
to	a	program	by	voodooattack
CPU	Identification	by	MichaelW
Cpu	Cycle	counter	for
benchmarking	of	code	by
MichaelW
Use	of	the	FBGfx	built-in	LZW
routines	by	Lillo
Using	FB	dll's	in	RapidQ
programs	by	JohnK

http://www.freebasic.net/forum/viewtopic.php?p=26794
http://www.freebasic.net/forum/viewtopic.php?t=3167
http://www.freebasic.net/forum/viewtopic.php?t=3428
http://www.freebasic.net/forum/viewtopic.php?t=14579
http://www.freebasic.net/___old_site/arch/file.php?id=8
http://www.freebasic.net/forum/viewtopic.php?t=5693
http://www.freebasic.net/forum/viewtopic.php?t=8680
http://www.freebasic.net/forum/viewtopic.php?t=7321
http://www.freebasic.net/forum/viewtopic.php?p=35589
http://www.freebasic.net/forum/viewtopic.php?t=8636
http://www.execulink.com/~coder/freebasic/docs.html
http://www.execulink.com/~coder/freebasic/lisp.html
http://www.freebasic.net/forum/viewtopic.php?t=7379
http://www.freebasic.net/forum/viewtopic.php?t=7667
http://www.freebasic.net/forum/viewtopic.php?t=7273
http://www.freebasic.net/forum/viewtopic.php?t=5288
http://www.freebasic.net/forum/viewtopic.php?t=9496
http://www.freebasic.net/forum/viewtopic.php?p=70185
http://www.freebasic.net/forum/viewtopic.php?p=5993
http://www.freebasic.net/forum/viewtopic.php?p=2766
http://www.freebasic.net/forum/viewtopic.php?t=8981
http://www.freebasic.net/forum/viewtopic.php?t=4899
http://www.freebasic.net/forum/viewtopic.php?t=8935
http://www.freebasic.net/forum/viewtopic.php?t=8823
http://www.freebasic.net/forum/viewtopic.php?t=3545
http://www.freebasic.net/forum/viewtopic.php?t=6576
http://www.freebasic.net/forum/viewtopic.php?t=9463
http://code.google.com/p/fb-extended-lib/
http://www.freebasic.net/forum/viewtopic.php?t=7441
http://fbstd.sourceforge.net/
http://www.freebasic.net/forum/viewtopic.php?t=6859
http://www.freebasic.net/forum/viewtopic.php?t=8504
http://www.freebasic.net/forum/viewtopic.php?t=4613
http://www.freebasic.net/forum/viewtopic.php?t=4221
http://www.freebasic.net/forum/viewtopic.php?p=84902#p84902
http://rapidq.phatcode.net/tutorial/Freebasic_DLL_tutorial.html

Community	Websites/Links
External	Library
Documentation
Sourceforge
FreeBASIC	Games	Directory

	
This	is	a	place	to	post	worthy
projects/code	snippets	for
FreeBASIC,	in	their	relative
categories.	To	add	a	page,	link
to	either	its	wiki	page,	website,
or	thread	on	the	FreeBASIC
Forums.	State	the	project
name	and	who	it's	by.	Sections
may	be	broken	down	into	their
own	separate	pages	some
time	in	the	future.	Note:	Due	to
FB	being	in	Beta	stage	of
development,	earlier	coded
projects	may	need	to	be
reconfigured	or	recompiled	to
work	on	later	versions	of
FreeBASIC.

http://www.sourceforge.net/
http://games.freebasic.net/

External	Libraries	Index 	

This	is	the	list	of	external	library	bindings	currently	included	in
FreeBASIC.	Visit	the	link	shown	for	each	individual	library	below	to	see
more	information.	To	obtain	a	needed	external	library	or	DLL,	please	visit
the	library's	homepage.	If	you	translated	additional	headers,	or	updated
existing	ones,	please	post	them	on	the	FreeBASIC	forum	or	submit
them	to	the	fbc	project's	patch	tracker!

Graphical/test-based	user	interfaces
CGUI	-	Library	for	making	GUIs	in	a	simple	way.
Curses	-	Standardized	console	user	interface	library.
GTK+	-	Cross-platform	Graphical	User	Interface	Library.
IUP	-	Portable	toolkit	for	building	graphical	user	interfaces.
wxC	-	Cross-platform	Graphical	User	Interface	Library.
Windows	API	-	Windows	GUIs	and	more
X11	-	Windowing	system	commonly	used	on	Linux	systems

Graphics
Allegro	-	Game	programming	library.
DUGL	-	Game	and	graphics	library	for	DOS.
caca	-	A	colour	ASCII	art	library.	
Cairo	-	2D	graphics	library	with	support	for	multiple	output	devices.
DISLIN	-	Library	of	subroutines	and	functions	that	display	data
graphically.
freeglut	-	A	free	alternative	to	GLUT,	an	OpenGL	library	for	window
creation	and	callback-based	input	handling
FreeImage	-	Open	Source	library	to	support	popular	graphics	image
formats.
Freetype2	-	A	Free,	High-Quality,	and	Portable	Font	Engine.
GD	-	Open	source	code	library	for	the	dynamic	creation	of	images	by
programmers.
GIFLIB	-	Portable	tools	and	library	routines	for	working	with	GIF	images.
GLUT	-	the	original	(but	now	inactive)	OpenGL	Utility	Toolkit
GLFW	-	An	OpenGL	library	for	creating	an	OpenGL	window	and	handling
input	from	the	user's	main	loop
GRX	-	2D	graphics	library.
IL	(DevIL)	-	A	full	featured	cross-platform	image	library.

http://www.freebasic.net/forum/
http://sourceforge.net/projects/fbc/

japi	-	Open	source	free	software	GUI	toolkit	using	Java's	AWT	Toolkit.
jpeglib	-	Cross-platform	library	for	reading/writing	jpeg	images.
JPGalleg	-	A	small	add-on	for	Allegro	that	adds	JPG	images	handling
capabilities	to	the	library.
libpng	-	Allows	reading	and	writing	PNG	images.
OpenGL	-	Cross-platform	3D	Graphics	library.
PDFlib	-	Portable	library	for	dynamically	generating	PDF	documents.
SDL	-	Cross-platform	multimedia	library.
TinyPTC	-	A	small	and	easy	to	use	framebuffer	graphics	library.

Music/Sound,	Audio/Video
BASS	-	Audio	library	for	use	in	Windows	with	a	beta	for	Linux.
BASSMOD	-	BASSMOD	is	a	MOD	only	(XM,	IT,	S3M,	MOD,	MTM,	UMX)
version	of	BASS
Flite	-	Run	time	speech	synthesis	engine
FMOD	-	Audio	library	supporting	just	about	any	format.
MediaInfo	-	Library	to	read	out	technical	and	tag	information	from	many
media	file	formats
mpg123	-	MPEG	(including	MP3)	decoder	library
Ogg	-	Ogg	multimedia	container	format	creation/decoder	library
OpenAL	-	Cross-platform	3D	audio	API.
PortAudio	-	Cross-platform	audio	I/O	library
sndfile	-	Library	to	read/write/convert	audio	files	in	various	formats
VLC	-	Audio/video	playback
Vorbis	-	Ogg	Vorbis	audio	compression	library

Database
GDBM	-	Database	functions	using	extensible	hashing,	primarily	for
storing	key/data	pairs	to	data	files
MySQL	-	High-Quality,	widely	used	database	engine.
PostgreSQL	-	Free	software	object-relational	database	management
system	
SQLite	-	Small	C	library	that	implements	a	self-contained,	embeddable,
zero-configuration	SQL	database	engine.

Development	Helpers
CUnit	-	Lightweight	system	for	writing,	administering,	and	running	unit
tests	in	C.
GDSL	-	The	Generic	Data	Structures	Library	is	a	collection	of	routines	for

generic	data	structures.
gettext	(includes	libintl)	-	Internationalization	mechanism
GNU	ASpell	-	Free	and	Open	Source	spell	checker.
libbfd	-	Allows	applications	to	use	the	same	routines	to	operate	on	object
files	whatever	the	object	file	format.

Embeddable	Languages
JNI	-	Standard	programming	interface	for	writing	Java	native	methods
and	embedding	the	Java	virtual	machine	into	native	applications.
json-c	-	A	JSON	implementation	in	C
libffi	-	Foreign	function	interface	and	closure	library
libjit	-	Runtime	(just	in	time)	compilation	library
Lua	-	Lightweight,	embeddable	scripting	engine	using	the	Lua	language.
SpiderMonkey	-	Embeddable	javascript	engine.

Cryptography
cryptlib	-	A	powerful	security	toolkit	which	allows	even	inexperienced
crypto	programmers	to	easily	add	encryption	and	authentication	services
to	their	software.
UUID	-	Universally	Unique	Identifier	generation	and	parsing	library

Mathematics
big_int	-	Library	for	using	arbitrarily	large	integers.
Chipmunk	-	2D	rigid	body	physics	library
GMP	-	Free	library	for	arbitrary	precision	arithmetic,	operating	on	signed
integers,	rational	numbers,	and	floating	point	numbers.
GSL	-	Provides	a	wide	range	of	mathematical	routines	such	as	random
number	generators,	special	functions	and	least-squares	fitting.
Newton	-	Integrated	solution	for	real	time	simulation	of	physics
environments.	
ODE	-	Open	source,	high	performance	library	for	simulating	rigid	body
dynamics.	

Networking
cgi-util	-	Small	C	library	for	creating	CGI	programs	for	Websites.
curl	-	Free	and	easy-to-use	client-side	URL	transfer	library	supporting
almost	every	protocol.
FastCGI	-	Open	extension	to	CGI	that	provides	high	performance	without
the	limitations	of	server	specific	APIs.

ZeroMQ	-	High-performance	asynchronous	messaging	library

eXtensible	Markup	Language	(XML)
Expat	-	Stream	oriented	XML	parser	library	with	several	useful	features.
libxml	-	De-facto	standard	library	for	accessing	xml	files.
libxslt	-	XSLT	itself	is	a	an	XML	language	to	define	transformation	for
XML.
Mini-XML	-	Small	XML	parsing	library	that	you	can	use	to	read	XML	and
XML-like	data	files	in	your	application.

Regular	Expressions
PCRE	-	Regular	expression	pattern	matching	using	the	same	syntax	as
Perl.
TRE	-	Lightweight,	robust,	and	efficient	POSIX	compliant	regexp
matching	library.

Compression
bzip2	-	For	reading/writing	.bz2	files	or	in-memory	(de)compression	using
the	bzip2	algorithms
libzip	-	Easy-to-use	library	for	creating	and	unpacking	.zip	files
liblzma	-	Strong	LZMA-based	compression	library	used	for	.lzma	and	.xz
file	formats
LZO	-	Offers	fast	compression	and	very	fast	decompression.
QuickLZ	-	Very	fast	Compression	Library
zlib	-	Lossless	data	compression	library	unencumbered	by	patents.

System	APIs
C	Runtime	Library
DOS	API
disphelper	-	Helper	library	to	use	COM	objects	from	plain	C
GLib	-	GNOME's	universal	cross-platform	software	utility	library
Windows	API
X11	-	Windowing	system	commonly	used	on	Linux	systems

User	Contributed	Libraries
Visit	http://www.freebasic.net/___old_site/arch/	for	other	libraries.

CGUI 	

Library	for	making	GUIs	in	a	simple	way.

Website:	http://cgui.sourceforge.net/index.html,
http://www.allegro.cc/resource/Libraries/GUI/CGUI
Platforms	supported:	Win32,	Linux
Headers	to	include:	cgui.bi
Header	version:	2.0.4
Example	Usage:	yes,	in	examples/GUI/CGUI/

Curses 	

Standardized	console	user	interface	library

Website:	http://pdcurses.sourceforge.net/	and	http://www.gnu.org/software/ncurses/
Platforms	supported:	DOS,	Win32,	Linux
Headers	to	include:	curses.bi
Header	versions:	pdcurses	3.4,	ncurses	5.9
Note:	On	Win32	systems	pdcurses	is	used,	on	Linux	it	uses	the	standard	ncurses	library.
Examples:	yes,	in	examples/console/curses/

Example

#include	once	"curses.bi"

initscr()

cbreak()

noecho()

start_color()

''	The	default	pair	0	will	have	the	console's	default	colors

''	Set	pair	1	to	be	white/blue

init_pair(1,	COLOR_WHITE,	COLOR_BLUE)

''	Select	pair	1,	so	from	now	on	output	will	be	white	text	on	blue	background

attrset(COLOR_PAIR(1))

printw(!"Hello,	world!\n")

''	Reset	to	pair	0

attrset(COLOR_PAIR(0))

''	Sleep

printw(!"Waiting	for	keypress...\n")

getch()

endwin()

GTK+,	The	GIMP	ToolKit 	

Cross-platform	Graphical	User	Interface	library

Website:	http://www.gtk.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	gtk/gtk.bi
Example	Usage:	yes,	in	examples/GUI/GTK+/
Header	version:	2.24.27,	3.14.10

By	default,	gtk/gtk.bi	will	use	the	GTK+	2	API.
Define	__USE_GTK3__	before	including	gtk/gtk.bi	to	use	GTK+	3.

Example

#include	once	"gtk/gtk.bi"

Dim	Shared	As	GtkWidget	Ptr	win

Private	Sub	on_clicked	cdecl(ByVal	button	As	GtkButton

				Static	As	Integer	clickcount	=	0

				clickcount	+=	1

				gtk_window_set_title(GTK_WINDOW(win),	"clicked	"

End	Sub

gtk_init(NULL,	NULL)

win	=	gtk_window_new(GTK_WINDOW_TOPLEVEL)

gtk_window_set_title(GTK_WINDOW(win),	"A	small	GTK+	example"

gtk_window_set_default_size(GTK_WINDOW(win),	300,	

gtk_container_set_border_width(GTK_CONTAINER(win),

g_signal_connect(G_OBJECT(win),	"destroy",	G_CALLBACK

Dim	As	GtkWidget	Ptr	button	=	gtk_button_new_with_label

gtk_container_add(GTK_CONTAINER(win),	button)

g_signal_connect(G_OBJECT(button),	"clicked",	G_CALLBACK

gtk_widget_show_all(win)

gtk_main()

IUP 	

Portable	toolkit	for	building	graphical	user	interfaces.

Website:	http://www.tecgraf.puc-rio.br/iup/
Platforms	supported:	Win32,	Linux
Headers	to	include:	IUP/iup.bi
Header	version:	3.13
Example	Usage:	yes,	in	examples/GUI/IUP/

wx-c,	C	Interface	for	WxWidgets 	

Cross-platform	Graphical	User	Interface	library

Website:	http://wxnet.sourceforge.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	wx-c/wx.bi
Header	version:	0.9.0.2
Example	Usage:	yes,	in	examples/GUI/wx-c/

Windows	API 	

Standard	API	for	all	Windows	Systems,	used	for	example	for	creating
Windows	GUIs	(forms	and	controls),	socket	programming,	inter-process
communication,	and	so	much	more.

Website:	http://msdn.microsoft.com/en-us/library/ee663300.aspx
Platforms	supported:	Win32,	Linux	(using	WINE)
Headers	to	include:	windows.bi
Examples:	yes,	in	examples/win32/

X11 	

The	X	Windowing	System	is	widely	used	on	Linux	as	the	layer	that
coordinates	drawing	to	the	screen	by	providing	windows.	It	also	delivers
events	such	as	mouse	and	keyboard	input	from	the	kernel	to
applications.	It	is	designed	to	run	as	a	server	that	can	be	contacted
through	a	specific	protocol.	The	client's	side	of	the	protocol	is
implemented	by	libraries	such	as	the	old	Xlib	or	the	more	modern	XCB.
Applications	can	use	these	to	create	windows	and	draw	to	them.
However,	typically	most	developers	will	choose	to	use	a	GUI	library
such	as	GTK+	(which	has	an	X11	backend)	instead.

Website:	http://www.x.org/,	http://xcb.freedesktop.org/
Platforms	supported:	Linux
Headers	to	include:	X11/*.bi

Allegro 	

Game	programming	library

Website:	http://alleg.sourceforge.net/index.html
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	allegro.bi	(Allegro	4)	or	allegro5/allegro.bi	(Allegro
5)
Header	version:	4.4.2,	5.0.11
Example	Usage:	yes,	in	examples/graphics/Allegro/

DUGL 	

Graphics	and	game	programming	library

Website:	http://dugl.50webs.com
Platforms	supported:	DOS
Headers	to	include:	DUGL.BI	(not	yet	included	with	FB,	see	link	below)
Example	of	usage:	see	link	below
Note:	use	DUGL	1.13	or	newer	(see	link	below),	older	version	have	a
bug	and	do	crash	when	used	with	FB

See	forum	thread:	http://www.freebasic.net/forum/viewtopic.php?
t=11046

caca 	

A	colour	ASCII	art	library.

Website:	http://libcaca.zoy.org/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	caca.bi	(new	API)	or	caca0.bi	(old	API)
Header	version:	libcaca-0.99.beta19
Example	Usage:	yes,	in	examples/console/caca/

Cairo 	

2D	graphics	library	with	support	for	multiple	output	devices.	It	can	be	used	to	draw	on	multiple	different	surfaces,	such	as	the	FB	graphics	window,	in-memory	pixel	buffers,	a	GTK+	widget	or
a	Win32	window	or	device	context.

Website:	http://www.cairographics.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	cairo/cairo.bi
Header	version:	1.14.2
Examples:	yes,	in	examples/graphics/cairo/

Example

''	Example	showing	cairo	being	used	to	draw	into	the	FB	graphics	window

#include	once	"cairo/cairo.bi"

Const	SCREEN_W	=	400

Const	SCREEN_H	=	300

ScreenRes	SCREEN_W,	SCREEN_H,	32

''	Create	a	cairo	drawing	context,	using	the	FB	screen	as	surface.

Var	surface	=	cairo_image_surface_create_for_data(

Var	c	=	cairo_create(surface)

ScreenLock()

''	Draw	the	entire	context	white.

cairo_set_source_rgba(c,	1,	1,	1,	1)

cairo_paint(c)

''	Draw	a	red	line

cairo_set_line_width(c,	1)

cairo_set_source_rgba(c,	1,	0,	0,	1)

cairo_move_to(c,	0,	0)

cairo_line_to(c,	SCREEN_W	-	1,	SCREEN_H	-	1)

cairo_stroke(c)

ScreenUnlock()

Sleep

''	Clean	up	the	cairo	context

cairo_destroy(c)

DisLin 	

Library	of	subroutines	and	functions	that	display	data	graphically.

Website:	http://www.mps.mpg.de/dislin/
Platforms	supported:	Win32,	Linux
Headers	to	include:	dislin.bi
Header	version:	from	2005

Free	alternative	to	the	OpenGL	Utility	Toolkit 	

Just	like	GLUT,	freeglut	is	a	helper	library	that	can	be	used	to	create
OpenGL	applications.	It	allows	easy	creation	of	windows	with	OpenGL
drawing	contexts	and	callback-based	input	event	handling.

Website:	http://freeglut.sourceforge.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	GL/freeglut.bi
Header	version:	3.0.0

FreeImage 	

FreeImage	is	an	Open	Source	library	project	for	developers	who	would	like	to	support	popular	graphics	image	formats
like	PNG,	BMP,	JPEG,	TIFF	and	others	as	needed	by	today's	multimedia	applications.	FreeImage	is	easy	to	use,	fast,
multithreading	safe,	compatible	with	all	32-bit	versions	of	Windows,	and	cross-platform	(works	both	with	Linux	and	Mac
OS	X).

Website:	http://freeimage.sourceforge.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	FreeImage.bi
Header	version:	3.15.1
Example	included:	yes,	in	examples/files/FreeImage

Example
Here	follows	an	example	of	using	FreeImage	in	FreeBASIC.	If	using	Windows	you	will	require	freeimage.dll	which	is
available	from	the	FreeImage	site.

''	Code	example	for	loading	all	common	image	types	using	FreeImage.

''	The	example	loads	an	image	passed	as	a	command	line	argument.

''	The	function	FI_Load	returns	a	null	pointer	(0)	if	there	was	an	error	during

''	loading.		Otherwise	it	returns	a	32-bit	PUT	compatible	buffer.

#include	"FreeImage.bi"

#include	"crt.bi"

#include	"fbgfx.bi"

Function	FI_Load(filename	As	String)	As	Any	Ptr

				If	Len(filename)	=	0	Then

								Return	NULL

				End	If

				''	Find	out	the	image	format

				Dim	As	FREE_IMAGE_FORMAT	form	=	FreeImage_GetFileType

				If	form	=	FIF_UNKNOWN	Then

								form	=	FreeImage_GetFIFFromFilename(StrPtr

				End	If

http://freeimage.sourceforge.net/

				''	Exit	if	unknown

				If	form	=	FIF_UNKNOWN	Then

								Return	NULL

				End	If

				''	Always	load	jpegs	accurately

				Dim	As	UInteger	flags	=	0

				If	form	=	FIF_JPEG	Then

								flags	=	JPEG_ACCURATE

				End	If

				''	Load	the	image	into	memory

				Dim	As	FIBITMAP	Ptr	image	=	FreeImage_Load(form

				If	image	=	NULL	Then

								''	FreeImage	failed	to	read	in	the	image

								Return	NULL

				End	If

				''	Flip	the	image	so	it	matches	FB's	coordinate	system

				FreeImage_FlipVertical(image)

				''	Convert	to	32	bits	per	pixel

				Dim	As	FIBITMAP	Ptr	image32	=	FreeImage_ConvertTo32Bits

				''	Get	the	image's	size

				Dim	As	UInteger	w	=	FreeImage_GetWidth(image)

				Dim	As	UInteger	h	=	FreeImage_GetHeight(image)

				''	Create	an	FB	image	of	the	same	size

				Dim	As	fb.Image	Ptr	sprite	=	ImageCreate(w,	h)

				Dim	As	Byte	Ptr	target	=	CPtr(Byte	Ptr,	sprite

				Dim	As	Integer	target_pitch	=	sprite->pitch

				Dim	As	Any	Ptr	source	=	FreeImage_GetBits(image32

				Dim	As	Integer	source_pitch	=	FreeImage_GetPitch

				''	And	copy	over	the	pixels,	row	by	row

				For	y	As	Integer	=	0	To	(h	-	1)

								memcpy(target	+	(y	*	target_pitch),	_

															source	+	(y	*	source_pitch),	_

															w	*	4)

				Next

				FreeImage_Unload(image32)

				FreeImage_Unload(image)

				Return	sprite

End	Function

ScreenRes	640,	480,	32

Dim	As	String	filename	=	Command(1)

Dim	As	Any	Ptr	image	=	FI_Load(filename)

If	image	<>	0	Then

				Put	(0,	0),	image

Else

				Print	"Problem	while	loading	file	:	"	&	filename

End	If

Sleep

Freetype2 	

A	Free,	High-Quality,	and	Portable	Font	Engine

Website:	http://www.freetype.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	freetype2/freetype.bi
Header	version:	2.5.5
Examples:	yes,	in	examples/graphics/FreeType/

Example

''	Example	of	rendering	a	char	using	freetype

#include	"freetype2/freetype.bi"

#ifdef	__FB_LINUX__

Const	TTF_FONT	=	"/usr/share/fonts/truetype/ttf-dejavu/DejaVuSans.ttf"

#else

Const	TTF_FONT	=	"Vera.ttf"

#endif

Dim	As	FT_Library	library

If	(FT_Init_FreeType(@library)	<>	0)	Then

				Print	"FT_Init_FreeType()	failed"	:	Sleep	:	End

End	If

''

''	Load	a	font	and	render	an	'@'	character	on	to	a	bitmap

''

Dim	As	FT_Face	face

If	(FT_New_Face(library,	TTF_FONT,	0,	@face)	<>	0)

				Print	"FT_New_Face()	failed	(font	file	'"	&	TTF_FONT

End	If

If	(FT_Set_Pixel_Sizes(face,	0,	200)	<>	0)	Then

				Print	"FT_Set_Pixel_Sizes()	failed"	:	Sleep	:	

End	If

If	(FT_Load_Char(face,	Asc("@"),	FT_LOAD_DEFAULT)	

				Print	"FT_Load_Char()	failed"	:	Sleep	:	End	1

End	If

If	(FT_Render_Glyph(face->glyph,	FT_RENDER_MODE_NORMAL

				Print	"FT_Render_Glyph()	failed"	:	Sleep	:	End

End	If

''

''	Draw	the	rendered	bitmap

''

ScreenRes	320,	200,	32

Dim	As	FT_Bitmap	Ptr	bitmap	=	@face->glyph->bitmap

For	y	As	Integer	=	0	To	(bitmap->rows	-	1)

				For	x	As	Integer	=	0	To	(bitmap->Width	-	1)

								Dim	As	Integer	col	=	bitmap->buffer[y	*	bitmap

								PSet(x,	y),	RGB(col,	col,	col)

				Next

Next

Sleep

GD 	

Open	source	code	library	for	the	dynamic	creation	of	images	by
programmers.

Website:	http://www.libgd.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	gd.bi
Header	version:	2.1.0	development	version
Examples:	yes,	in	examples/files/GD/

GIFLIB 	

GIFLIB	is	a	package	of	portable	tools	and	library	routines	for	working
with	GIF	images

Website:	http://giflib.sourceforge.net/intro.html
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	gif_lib.bi
Header	version:	4.2.1,	5.0.4	(#define	__GIFLIB_VER__	to	4	or	5	if
needed;	default	=	5)
Examples:	yes,	in	examples/files/GIFLIB/

GLUT,	the	OpenGL	Utility	Toolkit 	

GLUT	is	a	helper	library	that	can	be	used	to	create	OpenGL
applications.	It	allows	easy	creation	of	a	window	with	an	OpenGL
drawing	context	and	also	handles	events	such	as	mouse	and	keyboard
input	or	timers.	GLUT	appears	to	be	no	longer	maintained,	however
there	is	an	active	alternative:	freeglut.

Website:	http://www.opengl.org/resources/libraries/glut/
Platforms	supported:	Win32
Headers	to	include:	GL/glut.bi
Header	version:	3.7
Examples:	in	examples/graphics/OpenGL/

GLFW,	an	OpenGL	library 	

GLFW	is	a	helper	library	that	can	be	used	to	create	OpenGL
applications.	It	allows	the	creation	of	a	window	with	an	OpenGL	drawing
context	and	input	handling	while	still	allowing	the	program	to	have	its
own	main	loop.

Website:	http://www.glfw.org/
Platforms	supported:	Win32,	Linux
Headers	to	include:	GL/glfw.bi,	GLFW/glfw3.bi
Header	version:	2.7.9,	3.1.1
Examples:	in	examples/graphics/OpenGL/

GRX 	

2D	graphics	library

Website:	http://grx.gnu.de/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	grx/grx20.bi
Header	version:	2.4.6
Examples:	in	examples/graphics/grx/

DevIL 	

A	full	featured	cross-platform	image	library.

Website:	http://openil.sourceforge.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	IL/il.bi,	IL/ilu.bi,	IL/ilut.bi
Header	version:	1.7.8
Examples:	in	examples/files/DevIL/

Example

''	DevIL	example

#include	once	"IL/il.bi"

''	Version	check

If	(ilGetInteger(IL_VERSION_NUM)	<	IL_VERSION)	Then

				Print	"DevIL	version	is	different"

				End	1

End	If

''	Good	practice	to	explicitely	initialize	it

ilInit()

''	Load	a	bitmap

Dim	As	ILuint	fblogo

ilGenImages(1,	@fblogo)

ilBindImage(fblogo)

Print	"Loading	fblogo.bmp..."

ilLoadImage("fblogo.bmp")

''	Save	a	copy

Print	"Saving	a	copy,	fblogo-copy.bmp..."

ilEnable(IL_FILE_OVERWRITE)

ilSaveImage("fblogo-copy.bmp")

''	Clean	up

ilDeleteImages(1,	@fblogo)

Java	Application	Programming	Interface 	

Open	source	free	software	GUI	toolkit	using	Java's	AWT	Toolkit

Website:	http://www.japi.de/
Platforms	supported:	Win32,	Linux
Headers	to	include:	japi.bi
Header	version:	from	2005

jpeglib 	

Cross-platform	library	for	reading/writing	jpeg	images

Website:	http://ijg.org/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	jpeglib.bi
Header	version:	6.2,	7.0,	8.4,	9.0	(#define	__JPEGLIB_VER__	to	one	of
6,7,8,9	if	needed;	default	=	9)
Example	Usage:	yes,	in	examples/files/jpeglib

JPGAlleg 	

JPGalleg	is	a	small	addon	for	Allegro	that	adds	JPG	images	handling
capabilities	to	the	library

Website:	http://www.ecplusplus.com/index.php?page=projects&pid;=1
Platforms	supported:	Win32,	Linux
Headers	to	include:	jpgalleg.bi
Header	version:	2.5

libPNG 	

Allows	reading	and	writing	PNG	images.

Website:	http://www.libpng.org/pub/png/libpng.html
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	png.bi
Header	versions:	1.2.53,	1.4.16,	1.5.21,	1.6.16
Examples:	in	examples/files/libpng/

When	#including	png.bi,	you	can	#define	__LIBPNG_VERSION	to	one	of
12,	14,	15,	16	in	order	to	select	the	desired	libpng	version.	The	default	is
the	latest	version.

Overriding	the	default	allows	you	to	match	the	exact	libpng	version	on
your	system	(interesting	for	Linux	distros	which,	for	example,	use	the
libpng	1.2	series	instead	of	the	latest	version).

OpenGL,	The	Open	Graphics	Language 	

OpenGL	is	a	standardized	and	widely	used	cross-platform	3D	graphics
library.

Usually	OpenGL	support	comes	as	part	of	the	system	and	the	graphics
drivers.	There	are	many	different	projects	providing	a	library	that
implements	the	main	OpenGL	API,	and	which	one	is	used	depends	on
the	platform	and	system	setup.	For	example,	on	Windows,	the	client
API	is	implemented	in	Microsoft's	opengl32.dll,	while	on	Linux,	there	is
for	example	the	free	Mesa3D	project,	which	provides	a	libGL
implementation.	It	depends	on	the	used	library	or	system	setup	which
way	the	OpenGL	API	does	its	rendering,	typically	it	uses	OpenGL
hardware	drivers	and	is	hardware-accelerated,	but	there	also	is
software-rendered	OpenGL	(e.g.	standalone	Mesa3D).	The	system's
graphics	hardware	drivers	may	provide	additional	OpenGL	extensions,
access	to	which	is	again	system	dependant.

Besides	plain	OpenGL,	there	are	several	utility,	helper	and	wrapper
libraries,	such	as	GLUT,	freeglut	and	GLFW,	and	even	FreeBASIC's
built-in	graphics	library	has	an	OpenGL	mode,	see	Screen	And
Fb.Gfx_Opengl.

Websites:
OpenGL	standard:	http://www.opengl.org
Mesa3D:	http://mesa3d.org/
Windows	OpenGL:	http://msdn.microsoft.com/en-
us/library/dd374278.aspx

Platforms	supported:	Win32,	Linux
Headers	to	include:	GL/gl.bi
Header	version:	Mesa-3D	10.5.1,	MinGW-w64	3.3.0
Examples:	yes,	in	examples/graphics/OpenGL/

PDFlib 	

Portable	library	for	dynamically	generating	PDF	documents

Website:	http://www.pdflib.com
Platforms	supported:	Win32,	Linux
Headers	to	include:	pdflib.bi
Header	version:	4.0.2
Examples:	in	examples/files/pdflib/

SDL,	the	Simple	DirectMedia	Layer 	

Cross-platform	mulitmedia	library

Website:	http://www.libsdl.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	SDL/SDL.bi	or	SDL2/SDL.bi
Header	version:	SDL	1.2.15,	SDL2	2.0.3
Examples:	yes,	in	examples/graphics/SDL/

TinyPTC 	

A	small	and	easy	to	use	framebuffer	graphics	library.

Website:	http://sourceforge.net/projects/tinyptc/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	tinyptc.bi
Examples:	in	examples/graphics/tinyptc/

BASS 	

Audio	library	for	use	in	Windows	with	a	Beta	Version	for	Linux.

Website:	http://www.un4seen.com/bass.html
Platforms	supported:	Win32,	Linux	(beta)
Headers	to	include:	bass.bi
Header	version:	2.4.8
Examples:	in	examples/sound/BASS/

Example

#include	once	"bass.bi"

Const	SOUND_FILE	=	"test.mod"

If	(BASS_GetVersion()	<	MAKELONG(2,2))	Then

				Print	"BASS	version	2.2	or	above	required!"

				End	1

End	If

If	(BASS_Init(-1,	44100,	0,	0,	0)	=	0)	Then

				Print	"Could	not	initialize	BASS"

				End	1

End	If

Dim	As	HMUSIC	test	=	BASS_MusicLoad(FALSE,	@SOUND_FILE

If	(test	=	0)	Then

				Print	"BASS	could	not	load	'"	&	SOUND_FILE	&	"'"

				BASS_Free()

				End	1

End	If

BASS_ChannelPlay(test,	FALSE)

Print	"Sound	playing;	waiting	to	keypress	to	stop	and	exit..."

Sleep

BASS_ChannelStop(test)

BASS_MusicFree(test)

BASS_Stop()

BASS_Free()

BASSMOD 	

BASSMOD	is	a	MOD	only	(XM,	IT,	S3M,	MOD,	MTM,	UMX)	version	of	BASS	-	useful	for	demos,	or	anything
else	where	you	want	to	play	some	MOD	music.

Website:	http://www.un4seen.com/bassmod.html
Platforms	supported:	Win32,	Linux
Headers	to	include:	bassmod.bi
Header	version:	2.0
Examples:	in	examples/sound/BASS/

Example

#include	once	"bassmod.bi"

Const	SOUND_FILE	=	"test.mod"

If	(BASSMOD_GetVersion()	<	2)	Then

				Print	"BASSMOD	version	2	or	above	required!"

				End	1

End	If

If	(BASSMOD_Init(-1,	44100,	0)	=	0)	Then

				Print	"Could	not	initialize	BASSMOD"

				End	1

End	If

If	(BASSMOD_MusicLoad(FALSE,	SOUND_FILE,	0,	0,	BASS_MUSIC_LOOP

				Print	"BASSMOD	could	not	load	'"	&	SOUND_FILE	

				BASSMOD_Free()

				End	1

End	If

BASSMOD_MusicPlay()

Print	"Sound	playing;	waiting	for	keypress	to	stop	and	exit..."

Sleep

BASSMOD_MusicStop()

BASSMOD_MusicFree()

BASSMOD_Free()

Flite 	

Flite	is	a	run-time	speech	synthesis	engine.

Website:	http://www.speech.cs.cmu.edu/flite/
Platforms	supported:	Win32,	Linux
Headers	to	include:	flite/flite.bi
Header	version:	1.4,	machine-translated	only

FMOD 	

Audio	library	supporting	just	about	any	format.

Website:	http://www.fmod.org/index.php/products#FMOD3ProgrammersAPI
Platforms	supported:	Win32,	Linux
Headers	to	include:	fmod.bi
Header	version:	3.75
Examples:	in	examples/sound/FMOD/

Example

#include	once	"fmod.bi"

Const	SOUND_FILE	=	"test.mod"

If	(FSOUND_GetVersion()	<	FMOD_VERSION)	Then

				Print	"FMOD	version	mismatch"

				End	1

End	If

If	(FSOUND_Init(44100,	32,	0)	=	0)	Then

				Print	"Could	not	initialize	FMOD"

				End	1

End	If

Dim	As	FMUSIC_MODULE	Ptr	song	=	FMUSIC_LoadSong(SOUND_FILE

If	(song	=	0)	Then

				Print	"FMOD	could	not	load	'"	&	SOUND_FILE	&	"'"

				FSOUND_Close()

				End	1

End	If

FMUSIC_PlaySong(song)

Print	"Sound	playing;	waiting	for	keypress	to	stop	and	exit..."

Sleep

FMUSIC_FreeSong(song)

FSOUND_Close()

''	mp3	player	based	on	FMOD

#include	once	"fmod.bi"

Const	SOUND_FILE	=	"test.mp3"

Sub	print_all_tags(ByVal	stream	As	FSOUND_STREAM	Ptr

				Dim	As	Integer	count	=	0

				FSOUND_Stream_GetNumTagFields(stream,	@count)

				For	i	As	Integer	=	0	To	(count	-	1)

								Dim	As	Integer	tagtype,	taglen

								Dim	As	ZString	Ptr	tagname,	tagvalue

								FSOUND_Stream_GetTagField(stream,	i,	@tagtype

								Print	Left(*tagname,	taglen)

				Next

End	Sub

Function	get_tag	_

				(_

								ByVal	stream	As	FSOUND_STREAM	Ptr,	_

								ByVal	tagv1	As	ZString	Ptr,	_

								ByVal	tagv2	As	ZString	Ptr	_

)	As	String

				Dim	tagname	As	ZString	Ptr,	taglen	As	Integer

				FSOUND_Stream_FindTagField(stream,	FSOUND_TAGFIELD_ID3V1

				If	(taglen	=	0)	Then	

								FSOUND_Stream_FindTagField(stream,	FSOUND_TAGFIELD_ID3V2

				End	If

				Return	Left(*tagname,	taglen)

End	Function

				If	(FSOUND_GetVersion	<	FMOD_VERSION)	Then

								Print	"FMOD	version	"	+	Str(FMOD_VERSION)	

								End	1

				End	If	

				If	(FSOUND_Init(44100,	4,	0)	=	0)	Then

								Print	"Could	not	initialize	FMOD"

								End	1

				End	If

				FSOUND_Stream_SetBufferSize(50)

				Dim	As	FSOUND_STREAM	Ptr	stream	=	FSOUND_Stream_Open

				If	(stream	=	0)	Then	

								Print	"FMOD	could	not	load	'"	&	SOUND_FILE

								FSOUND_Close()

								End	1

				End	If

				''	Read	out	mp3	tags	to	show	some	meta	information

				Print	"Title:",	get_tag(stream,	"TITLE",	"TIT2"

				Print	"Album:",	get_tag(stream,	"ALBUM",	"TALB"

				Print	"Artist:",	get_tag(stream,	"ARTIST",	"TPE1"

				''print_all_tags(stream)

				Print	"Playing	mp3,	press	a	key	to	exit..."

				FSOUND_Stream_Play(FSOUND_FREE,	stream)

				While	(Inkey()	=	"")

								If	(FSOUND_Stream_GetPosition(stream)	>=	FSOUND_Stream_GetLength

												Exit	While

								End	If

								Sleep	50,	1

				Wend

			

				FSOUND_Stream_Stop(stream)

				FSOUND_Stream_Close(stream)

				FSOUND_Close()

MediaInfo 	

MediaInfo	is	a	cross-platform	library	allowing	you	to	read	out	technical
and	tag	information	from	audio	and	video	files	in	various	formats.

Website:	http://mediainfo.sourceforge.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	MediaInfo.bi
Header	version:	from	October	2011

mpg123 	

libmpg123	is	the	decoder	library	used	by	the	mpg123	MPEG	player.

Website:	http://mpg123.org/
Platforms	supported:	Win32,	Linux
Headers	to	include:	mpg123.bi
Header	version:	from	2010,	machine-translated	only

libogg 	

Ogg	multimedia	container	format	creation/decoder	library

Website:	http://www.xiph.org/ogg/
Platforms	supported:	Win32,	Linux
Headers	to	include:	ogg/ogg.bi
Header	version:	from	2007

OpenAL 	

OpenAL	is	a	cross-platform	3D	audio	API	appropriate	for	use	with
gaming	applications	and	many	other	types	of	audio	applications.	ALUT
is	the	OpenAL	utility	toolkit,	a	library	providing	additional	functions	to
work	with	OpenAL.

Website:	http://www.openal.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	AL/al.bi,	AL/alut.bi
Header	version:	openal-soft-1.16.0,	freealut	1.1.0
Examples:	in	examples/sound/OpenAL/

PortAudio 	

PortAudio	is	a	cross-platform	audio	I/O	library	that	allows	programs	to
access	the	system's	audio	devices	to	record	or	play	sounds.

Website:	http://www.portaudio.com/
Platforms	supported:	Win32,	Linux
Headers	to	include:	portaudio.bi
Header	version:	from	2010,	machine-translated	only

libsndfile 	

libsndfile	is	a	library	allowing	programs	to	access	or	modify	audio	files	in
various	formats,	for	example	.wav	files,	and	also	convert	between	them.

Website:	http://www.mega-nerd.com/libsndfile/
Platforms	supported:	Win32,	Linux
Headers	to	include:	sndfile.bi
Header	version:	1.0.X

libVLC 	

Audio/video	playback	library	from	the	VLC	media	player.

Website:	http://www.videolan.org/,	http://wiki.videolan.org/Libvlc
Platforms	supported:	Win32,	Linux
Headers	to	include:	vlc/*.bi
Header	version:	1.1.x

libvorbis 	

Ogg	Vorbis	audio	compression	library

Website:	http://xiph.org/vorbis/
Platforms	supported:	Win32,	Linux
Headers	to	include:	vorbis/vorbisenc.bi,	vorbis/vorbisfile.bi
Header	version:	from	2007

GDBM,	the	GNU	Database	manager 	

Provides	database	functions	using	extensible	hashing,	primarily	for
storing	key/data	pairs	to	data	files

Website:	http://www.gnu.org.ua/software/gdbm/
Platforms	supported:	Win32,	Linux
Headers	to	include:	gdbm.bi
Header	version:	from	2010

MySQL 	

High-Quality,	widely	used	database	engine.

Website:	http://www.mysql.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	mysql/mysql.bi
Header	version:	4.0.17
Examples:	in	examples/database/

PostgreSQL 	

Free	software	object-relational	database	management	system	

Website:	http://www.postgresql.org/
Platforms	supported:	Win32,	Linux
Headers	to	include:	postgresql/postgres_ext.bi
Header	version:	from	2006
Example	Usage:	yes,	in	examples/database/

SQLite 	

Small	C	library	that	implements	a	self-contained,	embeddable,	zero-
configuration	SQL	database	engine.

Website:	http://sqlite.org
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	sqlite2.bi	or	sqlite3.bi
Header	versions:	2.8.17,	3.7.8
Examples:	in	examples/database/

CUnit 	

Lightweight	system	for	writing,	administering,	and	running	unit	tests	in
C.

Website:	http://cunit.sourceforge.net/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	CUnit/CUnit.bi
Header	version:	2.1-3
Examples:	in	examples/misc/CUnit/

GDSL,	The	Generic	Data	Structures	Library 	

The	Generic	Data	Structures	Library	is	a	collection	of	routines	for
generic	data	structures.

Website:	http://home.gna.org/gdsl/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	gdsl/gdsl.bi
Header	version:	from	2005
Examples:	in	examples/misc/gdsl/

gettext 	

An	internationalization	library/toolchain

Website:	http://www.gnu.org/software/gettext/gettext.html
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	libintl.bi,	gettext-po.bi
Header	version:	from	2010,	0.17

GNU	Aspell 	

Free	and	Open	Source	spell	checker.

Website:	http://aspell.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	aspell.bi
Header	version:	0.60.6.1

Example

''	GNU-ASspell	example,	converted	from	http://aspell.net/win32/

#include	once	"aspell.bi"

Dim	As	AspellConfig	Ptr	spell_config	=	new_aspell_config

''	Change	this	to	suit	the	installed	dictionary	language	if	desired

aspell_config_replace(spell_config,	"lang",	"en_CA"

''	Create	speller	object

Dim	As	AspellCanHaveError	Ptr	possible_err	=	new_aspell_speller

If	(aspell_error_number(possible_err)	<>	0)	Then

				Print	*aspell_error_message(possible_err)

				End	1

End	If

Dim	As	AspellSpeller	Ptr	speller	=	to_aspell_speller

Dim	As	String	word

Do

				Print	

				Input	"Enter	a	word	(blank	to	quit):	",	word

				If	(Len(word)	=	0)	Then

								Exit	Do

				End	If

				If	(aspell_speller_check(speller,	StrPtr(word),

								Print	"Word	is	Correct"

				Else

								Print	"Suggestions:"

								Dim	As	AspellStringEnumeration	Ptr	elements

												aspell_word_list_elements(aspell_speller_suggest

								Do

												Dim	As	ZString	Ptr	w	=	aspell_string_enumeration_next

												If	(w	=	0)	Then

																Exit	Do

												End	If

												Print	"			";	*w

								Loop

								delete_aspell_string_enumeration(elements)

				End	If

				'	-	Report	the	replacement

				'aspell_speller_store_repl(speller,	misspelled_word,	size,

				'																										correctly_spelled_word,	size);

				'	-	Add	to	session	or	personal	dictionary

				'aspell_speller_add_to_session|personal(speller,	word,	size)

Loop

delete_aspell_speller(speller)

BFD,	the	Binary	File	Descriptor	Library 	

Provides	an	API	to	read	and	write	object	files	in	many	different	object	file
formats.	libbfd	is	the	core	of	the	GNU	binutils.

Website:	http://sourceware.org/binutils/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	bfd.bi
Header	version:	binutils	versions	from	2.16	to	2.25

Define	__BFD_VER__	to	216,	217,	218,	...,	225	to	include	the	bfd	header	for
the	corresponding	binutils	version.

Example

#define	__BFD_VER__	217

#include	"bfd.bi"

JNI,	The	Java	Native	Interface 	

Standard	programming	interface	for	writing	Java	native	methods	and	embedding	the	Java	virtual	machine	into	native	applications.

Website:	http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html,	http://java.sun.com/docs/books/jni/
Platforms	supported:	Win32,	Linux
Headers	to	include:	jni.bi
Header	version:	from	2006
Examples:	in	examples/other-languages/Java/

Example

Three	files:

mylib.bas	-	A	DLL	writting	in	FreeBASIC

#include	"jni.bi"

				

''	Note:	The	mangling	must	be	"windows-ms"	or	the	JRE	won't	find	any	function

Extern	"windows-ms"

				Function	Java_MyLib_add(env	As	JNIEnv	Ptr,	obj

								Return	l	+	r

				End	Function

End	Extern

Mylib.java	-	The	Java	class	that	represents	the	interface	to	the	FreeBASIC	code	and	ensures	the	FreeBASIC	DLL	is	loaded

(cpp)

class	MyLib	{

	 public	native	int	add(int	l,	int	r);

	 static	{

	 	 System.loadLibrary("mylib");

	 }

}

Test.java	-	The	Java	main()	that	uses	the	Mylib	class

(cpp)

class	Test	{

	 public	static	void	main(String[]	args)	{

	 	 MyLib	lib	=	new	MyLib();

	 	 System.out.println("2+2="	+	lib.add(2,	2));	

	 }

}

Steps	to	test	it:

Compile	the	FreeBASIC	DLL:	fbc	mylib.bas	-dll
Compile	the	two	Java	classes:	javac	Mylib.java	Test.java
Run	the	Test	class:	java	Test

json-c 	

A	JSON	implementation	in	C

Website:	http://oss.metaparadigm.com/json-c/
Platforms	supported:	Win32,	Linux
Headers	to	include:	json-c/json.bi
Header	version:	0.9	(not	sure)

libffi 	

LibFFI	is	a	foreign	function	interface	library	allowing	programs	to	arbitrarily	call	native	function	without	pointers	and	to	bind	function	pointers	to	generic	functions	which
take	variable	arguments	via	closures.	It	is	used	to	bind	native	code	in	modern	scripting	languages.

Website:	http://sourceware.org/libffi/
Platforms	supported:	Windows,	Linux,	DOS
Headers	to	include:	ffi.bi
Header	version:	3.1

Example
Hello	world:

#include	"ffi.bi"

'	Simple	"puts"	equivalent	function

Function	printer	cdecl	(ByVal	s	As	ZString	Ptr)	As

				Print	*s

				Return	42

End	Function

'	Initialize	the	argument	info	vectors

Dim	s	As	ZString	Ptr

Dim	args(0	To	0)	As	ffi_type	Ptr	=	{@ffi_type_pointer

Dim	values(0	To	0)	As	Any	Ptr	=	{@s}

'	Initialize	the	cif

Dim	cif	As	ffi_cif

Dim	result	As	ffi_status

result	=	ffi_prep_cif(_

				@cif,														_	'	call	interface	object

				FFI_DEFAULT_ABI,			_	'	binary	interface	type

				1,																	_	'	number	of	arguments

				@ffi_type_uint,				_	'	return	type

				@args(0)											_	'	arguments

)

'	Call	function

Dim	return_value	As	Integer

If	result	=	FFI_OK	Then

				s	=	@"Hello	world"

				ffi_call(@cif,	FFI_FN(@printer),	@return_value

				'	values	holds	a	pointer	to	the	function's	arg,	so	to

				'	call	puts()	again	all	we	need	to	do	is	change	the

				'	value	of	s	*/

				s	=	@"This	is	cool!"

				ffi_call(@cif,	FFI_FN(@printer),	@return_value

				Print	Using	"Function	returned	&";	return_value

End	If

Closures:

#include	"ffi.bi"

'	Acts	like	puts	with	the	file	given	at	time	of	enclosure.	

Sub	Printer	cdecl(ByVal	cif	As	ffi_cif	Ptr,	ByVal	

				Write	#*CPtr(Integer	Ptr,	file),	**CPtr(ZString

				*CPtr(UInteger	Ptr,	ret)	=	42

End	Sub

'	Allocate	the	closure	and	function	binding

Dim	PrinterBinding	As	Function(ByVal	s	As	ZString	

Dim	closure	As	ffi_closure	Ptr	

closure	=	ffi_closure_alloc(SizeOf(ffi_closure),	@

If	closure	<>	0	Then

				'	Initialize	the	argument	info	vector

				Dim	args(0	To	0)	As	ffi_type	Ptr	=	{@ffi_type_pointer

				

				'	Initialize	the	call	interface

				Dim	cif	As	ffi_cif

				Dim	prep_result	As	ffi_status	=	ffi_prep_cif(

								@cif,												_	'	call	interface	object

								FFI_DEFAULT_ABI,	_	'	binary	interface	type

								1,															_	'	number	of	arguments

								@ffi_type_uint,		_	'	return	type

								@args(0)									_	'	arguments

)	

				If	prep_result	=	FFI_OK	Then

								'	Open	console	file	to	send	to	PrinterBinding	as	user	data

								Dim	ConsoleFile	As	Integer	=	FreeFile()

								Open	Cons	For	Output	As	ConsoleFile

								

								'	Initialize	the	closure,	setting	user	data	to	the	console	file

								prep_result	=	ffi_prep_closure_loc(_

												closure,									_	'	closure	object

												@cif,												_	'	call	interface	object

												@Printer,								_	'	actual	closure	function

												@ConsoleFile,				_	'	user	data,	our	console	file	#

												PrinterBinding			_	'	pointer	to	binding

)

								If	prep_result	=	FFI_OK	Then

												'	Call	binding	as	a	natural	function	call

												Dim	Result	As	Integer

												Result	=	PrinterBinding("Hello	World!"

												Print	Using	"Returned	&";	Result

								End	If

								

								Close	ConsoleFile

				End	If

End	If

'	Clean	up

ffi_closure_free(closure)

libjit 	

LibJIT	is	a	fairly	straightforward,	lightweight	library	for	runtime	compilation	with	a	simple	and	stable	ABI.

Website:	http://www.gnu.org/software/libjit/
Platforms	supported:	Windows,	Linux,	DOS
Headers	to	include:	jit.bi
Header	version:	git	a8293e141b79c28734a3633a81a43f92f29fc2d7

Example

''	Simple	mul/add	example

#include	"jit.bi"

'	initialize	libjit

Dim	context	As	jit_context_t	=	jit_context_create()

jit_context_build_start(context)

'	define	function	mul_add(x,	y,	z)

Dim	params(0	To	2)	As	jit_type_t	=	{jit_type_int,	

Dim	signature	As	jit_type_t	=	jit_type_create_signature

				jit_abi_cdecl,		_	'	C-style	function

				jit_type_int,			_	'	Return	type

				@params(0),					_	'	Parameter	array

				3,														_	'	Number	of	components

				1															_	'	Count	references?

)

Dim	mul_add	As	jit_function_t	=	jit_function_create

'	build	function	(result	=	(x*y)+z)

Dim	As	jit_value_t	x,	y,	z,	temp1,	temp2

x	=	jit_value_get_param(mul_add,	0)

y	=	jit_value_get_param(mul_add,	1)

temp1	=	jit_insn_mul(mul_add,	x,	y)

z	=	jit_value_get_param(mul_add,	2)

temp2	=	jit_insn_add(mul_add,	temp1,	z)

jit_insn_return(mul_add,	temp2)

'	compile	function	function

jit_function_compile(mul_add)

jit_context_build_end(context)

'	call	function

Dim	As	Integer	a=3,	b=5,	c=2,	result

Dim	args(0	To	2)	As	Integer	Ptr	=	{@a,	@b,	@c}

jit_function_apply(mul_add,	@args(0),	@result)

Print	Using	"mul__add(&,	&,	&)	=	&";	a;	b;	c;	result

'	clean	up	libjit

jit_context_destroy(context)

''	GCD	calculation	example

#include	"jit.bi"

'	initialize	libjit

Dim	context	As	jit_context_t	=	jit_context_create()

jit_context_build_start(context)

'	define	function	gcd(x	as	uinteger,	y	as	uinteger)	as	uinteger

Dim	params(0	To	1)	As	jit_type_t	=	{jit_type_uint,

Dim	signature	As	jit_type_t	=	jit_type_create_signature

				jit_abi_cdecl,		_	'	C-style	function

				jit_type_uint,		_	'	Return	type

				@params(0),					_	'	Parameter	array

				2,														_	'	Number	of	components

				1															_	'	Count	references?

)

Dim	gcd	As	jit_function_t	=	jit_function_create(context

'	build	function

'	check	x	=	y

Dim	As	jit_value_t	x,	y,	x_eq_y

x	=	jit_value_get_param(gcd,	0)

y	=	jit_value_get_param(gcd,	1)

x_eq_y	=	jit_insn_eq(gcd,	x,	y)

'	if	x	=	y,	return	x

Dim	label_x_ne_y	As	jit_label_t	=	jit_label_undefined

jit_insn_branch_if_not(gcd,	x_eq_y,	@label_x_ne_y)

jit_insn_return(gcd,	x)

'	else	if...

jit_insn_label(gcd,	@label_x_ne_y)

'	check	x	<	y

Dim	As	jit_value_t	x_lt_y

Dim	label_x_gte_y	As	jit_label_t	=	jit_label_undefined

x_lt_y	=	jit_insn_lt(gcd,	x,	y)

jit_insn_branch_if_not(gcd,	x_lt_y,	@label_x_gte_y

'	if	x	<	y,	return	gcd(x,	y-x)

Dim	As	jit_value_t	gcd_args(0	To	2),	gcd_result

gcd_args(0)	=	x

gcd_args(1)	=	jit_insn_sub(gcd,	y,	x)

gcd_result	=	jit_insn_call(_

				gcd,										_	'	where	we	are	calling	from

				"gcd",								_	'	function	name

				gcd,										_	'	function	reference

				0,												_	'	signature	=	auto

				@gcd_args(0),	_	'	arguments

				2,												_	'	argument	count

				0													_	'	flags	=	nothing	special

)

jit_insn_return(gcd,	gcd_result)

'	else...

jit_insn_label(gcd,	@label_x_gte_y)

'	return	gcd(x-y,	y)

gcd_args(0)	=	jit_insn_sub(gcd,	x,	y)

gcd_args(1)	=	y

gcd_result	=	jit_insn_call(_

				gcd,										_	'	where	we	are	calling	from

				"gcd",								_	'	function	name

				gcd,										_	'	function	reference

				0,												_	'	signature	=	auto

				@gcd_args(0),	_	'	arguments

				2,												_	'	argument	count

				0													_	'	flags	=	nothing	special

)

jit_insn_return(gcd,	gcd_result)

'	compile	function

jit_function_compile(gcd)

jit_context_build_end(context)

'	call	function

Dim	As	jit_uint	a=21,	b=14,	result

Dim	As	jit_uint	Ptr	args(0	To	1)	=	{@a,	@b}

jit_function_apply(gcd,	@args(0),	@result)

Print	Using	"gcd(&,	&)	=	&";	a;	b;	result

'	clean	up	libjit

jit_context_destroy(context)

Lua 	

Lightweight,	embeddable	scripting	engine	using	the	Lua	language.

Website:	http://www.lua.org/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	Lua/lua.bi
Header	version:	5.2.3
Examples:	in	examples/other-languages/Lua/

SpiderMonkey 	

Embeddable	javascript	engine.

Website:	http://www.mozilla.org/js/spidermonkey/
Platforms	supported:	Win32,	Linux
Headers	to	include:	spidermonkey/jsapi.bi
Header	version:	from	2006

Example

''	Evaluating	javascript	code

#include	once	"spidermonkey/jsapi.bi"

Dim	Shared	As	JSClass	global_class	=	_

(_

				@"global",	0,	_

				@JS_PropertyStub,	@JS_PropertyStub,	@JS_PropertyStub

				@JS_EnumerateStub,	@JS_ResolveStub,	@JS_ConvertStub

)

Dim	As	JSRuntime	Ptr	rt	=	JS_NewRuntime(1048576	/'memory	limit'/

Dim	As	JSContext	Ptr	cx	=	JS_NewContext(rt,	4096	/'stack	size'/

Dim	As	JSObject	Ptr	global	=	JS_NewObject(cx,	@global_class

JS_InitStandardClasses(cx,	global)

''	This	string	could	also	be	read	in	from	a	file	or	as	part	of	HTTP	data	etc.

Const	TEST_SCRIPT	=	_

				!"function	fact(n)											\n"	+	_

				!"{																										\n"	+	_

				!"				if	(n	<=	1)												\n"	+	_

				!"								return	1;										\n"	+	_

				!"																											\n"	+	_

				!"				return	n	*	fact(n	-	1);\n"	+	_

				!"}																										\n"	+	_

				!"																											\n"	+	_

				!"				fact(5)																\n"

Dim	As	jsval	rval

If	(JS_EvaluateScript(cx,	global,	TEST_SCRIPT,	Len

				Print	"JS_EvaluateScript	failed"

				Sleep

				End	1

End	If

Print	"result:	"	&	*JS_GetStringBytes(JS_ValueToString

JS_DestroyContext(cx)

JS_DestroyRuntime(rt)

''	Callback	example:	Functions	that	are	used	by	the	Javascript	code,

''	but	are	implemented	in	FB.

#include	once	"spidermonkey/jsapi.bi"

Dim	Shared	As	JSClass	global_class	=	_

(_

				@"global",	0,	_

				@JS_PropertyStub,	@JS_PropertyStub,	@JS_PropertyStub

				@JS_EnumerateStub,	@JS_ResolveStub,	@JS_ConvertStub

)

Private	Function	print_callback	cdecl	_

				(_

								ByVal	cx	As	JSContext	Ptr,	_

								ByVal	obj	As	JSObject	Ptr,	_

								ByVal	argc	As	uintN,	_

								ByVal	argv	As	jsval	Ptr,	_

								ByVal	rval	As	jsval	Ptr	_

)	As	JSBool

				If	(argc	<	1)	Then

								Return	0

				End	If

				Print	*JS_GetStringBytes(JS_ValueToString(cx,	

				Return	1

End	Function

Private	Function	ucase_callback	cdecl	_

				(_

								ByVal	cx	As	JSContext	Ptr,	_

								ByVal	obj	As	JSObject	Ptr,	_

								ByVal	argc	As	uintN,	_

								ByVal	argv	As	jsval	Ptr,	_

								ByVal	rval	As	jsval	Ptr	_

)	As	JSBool

				

				If	(argc	<	1)	Then

								Return	0

				End	If

				

				''	Get	the	first	argument

				Dim	As	ZString	Ptr	arg1	=	JS_GetStringBytes(JS_ValueToString

			

				''	Get	a	buffer	for	the	result	string

				Dim	As	ZString	Ptr	result	=	JS_malloc(cx,	Len(*

				''	Do	the	work

				*result	=	UCase(*arg1)

				''	Return	it	in	rval

				*rval	=	STRING_TO_JSVAL(JS_NewString(cx,	result

				Return	1

End	Function

				Dim	As	JSRuntime	Ptr	rt	=	JS_NewRuntime(1048576

				Dim	As	JSContext	Ptr	cx	=	JS_NewContext(rt,	4096

				Dim	As	JSObject	Ptr	global	=	JS_NewObject(cx,	

				JS_InitStandardClasses(cx,	global)

				JS_DefineFunction(cx,	global,	"print",	@print_callback

				JS_DefineFunction(cx,	global,	"ucase",	@ucase_callback

				Const	TEST_SCRIPT	=	"print(ucase('hello'));"	

				Dim	As	jsval	rval

				If	(JS_EvaluateScript(cx,	global,	TEST_SCRIPT,

								Print	"JS_EvaluateScript	failed"

								Sleep

								End	1

				End	If

				JS_DestroyContext(cx)

				JS_DestroyRuntime(rt)

cryptlib 	

A	powerful	security	toolkit	which	allows	even	inexperienced	crypto	programmers	to	easily	add	encryption	and	authentication
services	to	their	software.

Website:	http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
Platforms	supported:	Win32,	Linux
Headers	to	include:	cryptlib.bi
Header	version:	from	2005
Examples:	in	examples/math/cryptlib/

Example

#include	once	"cryptlib.bi"

Function	calc_hash(ByVal	filename	As	String,	ByVal

				Const	BUFFER_SIZE	=	8192

				Dim	As	Byte	buffer(0	To	BUFFER_SIZE-1)

				''	create	a	new	context	using	the	wanted	algorithm

				Dim	As	CRYPT_CONTEXT	ctx

				cryptCreateContext(@ctx,	CRYPT_UNUSED,	algo)

				''	open	input	file	in	binary	mode

				Dim	As	Integer	f	=	FreeFile()

				If(Open(filename	For	Binary	Access	Read	As	#

								Return	""

				End	If

				''	read	until	end-of-file

				Do	Until(EOF(f))

								Dim	As	Integer	oldpos	=	Seek(f)

								Get	#f,	,	buffer()

								Dim	As	Integer	readlength	=	Seek(f)	-	oldpos

								''	encrypt

								cryptEncrypt(ctx,	@buffer(0),	readlength	

				Loop

				''	close	input	file

				Close	#f

				''	finalize

				cryptEncrypt(ctx,	0,	0)

				''	get	the	hash	result

				Dim	As	Integer	buffersize	=	BUFFER_SIZE

				cryptGetAttributeString(ctx,	CRYPT_CTXINFO_HASHVALUE

				''	convert	to	hexadecimal

				Dim	As	String	result	=	""

				For	i	As	Integer	=	0	To	buffersize-1

								result	+=	Hex(buffer(i))

				Next

				

				''	free	the	context

				cryptDestroyContext(ctx)

				Return	result

End	Function

				Dim	As	String	filename	=	Trim(Command(1))

				If(Len(filename)	=	0)	Then

								Print	"Usage:	hash.exe	filename"

								End	-1

				End	If

				''	init	cryptlib

				cryptInit()

				''	calculate	hashes

				Print	"md5:	";	calc_hash(filename,	CRYPT_ALGO_MD5

				Print	"sha:	";	calc_hash(filename,	CRYPT_ALGO_SHA

				''	shutdown	cryptlib

				cryptEnd()

				Sleep

UUID	library 	

The	UUID	library	can	be	used	to	generate	universally	unique	identifiers.
It's	part	of	the	e2fsprogs	utilities.

Website:	http://e2fsprogs.sourceforge.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	uuid.bi
Header	version:	from	2010

big_int 	

Library	for	using	arbitrarily	large	integers.	Note:	This	library	seems	to	be	dead,	a
possible	alternative	is	gmp.

Website:	http://valyala.narod.ru/big_int/	(Russian)	[the	site	apparently	is	gone]
Platforms	supported:	Win32,	Linux
Headers	to	include:	big_int/big_int.bi
Header	version:	from	2005
Examples:	in	examples/math/big_int/

Example

#include	once	"big_int/big_int_full.bi"

Sub	print_num(ByVal	num	As	big_int	Ptr)

				Dim	As	big_int_str	Ptr	s	=	big_int_str_create(

				If	(s	=	0)	Then

								Exit	Sub

				End	If

				If	(big_int_to_str(num,	10,	s)	<>	0)	Then

								Exit	Sub

				End	If

				Print	*s->Str;

				big_int_str_destroy(s)

End	Sub

				Dim	As	big_int	Ptr	bignum	=	big_int_create(1)

				big_int_from_int(2,	bignum)

				big_int_pow(bignum,	65536,	bignum)

				Print	"2^65536	=	";

				print_num(bignum)

				Print

				big_int_destroy(bignum)

Chipmunk	Physics 	

Chipmunk	is	a	physics	library	designed	specifically	for	2D	games.

Website:	http://chipmunk-physics.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	chipmunk/chipmunk.bi
Header	version:	4.1.0

gmp,	The	GNU	Multiple	Precision	Arithmetic	Library 	

Free	library	for	arbitrary	precision	arithmetic,	operating	on	signed	integers,	rational
numbers,	and	floating	point	numbers.

Website:	http://www.gmplib.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	gmp.bi
Header	version:	4.1.4

Example

#include	once	"gmp.bi"

Dim	As	mpz_ptr	bignum	=	Allocate(SizeOf(__mpz_struct

mpz_init_set_si(bignum,	2)

mpz_pow_ui(bignum,	bignum,	65536)

Print	"2^65536	=	";

Dim	As	ZString	Ptr	s	=	mpz_get_str(0,	10,	bignum)

Print	*s;

Deallocate(s)

Print

mpz_clear(bignum)

Deallocate(bignum)

gsl,	The	GNU	Scientific	Library 	

Provides	a	wide	range	of	mathematical	routines	such	as	random	number	generators,	special	functions	and	least-squares	fitting.

Website:	http://www.gnu.org/software/gsl/,	Windows	port:	http://gnuwin32.sourceforge.net/packages/gsl.htm	
Platforms	supported:	Win32,	Linux
Headers	to	include:	gsl/*.bi
Header	version:	1.6
Examples:	in	examples/math/GSL/

Example

''	Elementary	math	example

#include	"gsl/gsl_math.bi"

''	Raise	the	value	of	3.141	to	the	fourth	power

?	"3.141	^	4	=	";	gsl_pow_4(3.141)

?

''	Find	the	hypotenuse	of	a	right	triangle	with	sides	3	and	4	

?	"The	hypotenuse	of	a	right	triangle	with	sides	of	length	3	and	4	is"

?

Sleep

''	Matrix	example

#include	"gsl/gsl_matrix.bi"

''	gsl	uses	the	c-style	row	major	order,	unlike	VB	or	Fortran	

?	"A	3x3	matrix"	

Dim	As	gsl_matrix	Ptr	m	=	gsl_matrix_alloc(3,	3)

For	i	As	Integer	=	0	To	2

				For	j	As	Integer	=	0	To	2

								gsl_matrix_set	(m,	i,	j,	0.23	+	100*i	+	j)

				Next

Next

For	i	As	Integer	=	0	To	2

				For	j	As	Integer	=	0	To	2

								Print	"m(";i;",";j;")	=	";	gsl_matrix_get	

				Next

Next

?

gsl_matrix_transpose(m)

?	"And	its	transpose"

For	i	As	Integer	=	0	To	2

				For	j	As	Integer	=	0	To	2

								Print	"m(";i;",";j;")	=	";	gsl_matrix_get	

				Next

Next

Sleep

Newton 	

The	Newton	Physics	Engine	is	an	integrated	solution	for	real	time
simulation	of	physics	environments.	

Website:	http://newtondynamics.com/
Platforms	supported:	Win32,	Linux
Headers	to	include:	Newton.bi
Header	version:	from	2005
Examples:	in	examples/math/Newton/

ODE,	the	Open	Dynamics	Engine 	

Open	source,	high	performance	library	for	simulating	rigid	body
dynamics.

Website:	http://www.ode.org/
Platforms	supported:	Win32,	Linux
Headers	to	include:	ode/ode.bi
Header	version:	0.11.1
Examples:	in	examples/math/ODE/

cgi-util 	

Small	C	library	for	creating	CGI	programs	for	Websites.

Website:	http://www.newbreedsoftware.com/cgi-util/
Platforms	supported:	Win32,	Linux
Headers	to	include:	cgi-util.bi

curl 	

Free	and	easy-to-use	client-side	URL	transfer	library	supporting	almost	every	protocol.

Website:	http://curl.haxx.se/libcurl/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	curl.bi
Header	version:	7.39.0
Examples:	in	examples/network/curl/

Example

''	Curl	HTTP	Get	example

#include	once	"curl.bi"

#include	once	"crt/string.bi"

''	this	callback	will	be	called	when	any	data	is	received

Private	Function	write_callback	cdecl	_

				(_

								ByVal	buffer	As	Byte	Ptr,	_

								ByVal	size	As	Integer,	_

								ByVal	nitems	As	Integer,	_

								ByVal	outstream	As	Any	Ptr	_

)	As	Integer

				Static	As	ZString	Ptr	zstr	=	0

				Static	As	Integer	maxbytes	=	0

				Dim	As	Integer	bytes	=	size	*	nitems

				''	current	zstring	buffer	too	small?

				If(maxbytes	<	bytes)	Then

								zstr	=	Reallocate(zstr,	bytes	+	1)

								maxbytes	=	bytes

				End	If

				''	"buffer"	is	not	null-

terminated,	so	we	must	dup	it	and	add	the	null-term

				memcpy(zstr,	buffer,	bytes)

				zstr[bytes]	=	0

				''	just	print	it..

				Print	*zstr

				Return	bytes

End	Function

				''	init

				Dim	As	CURL	Ptr	curl	=	curl_easy_init()

				If(curl	=	0)	Then

								End	1

				End	If

				''	set	url	and	callback

				curl_easy_setopt(curl,	CURLOPT_URL,	"freebasic.net"

				curl_easy_setopt(curl,	CURLOPT_WRITEFUNCTION,

				''	execute..

				curl_easy_perform(curl)

				''	shutdown

				curl_easy_cleanup(curl)

FastCGI 	

Open	extension	to	CGI	that	provides	high	performance	without	the	limitations	of	server
specific	APIs.

Website:	http://www.fastcgi.com
Platforms	supported:	Win32,	Linux
Headers	to	include:	fastcgi/fastcgi.bi,	fastcgi/fcgiapp.bi,	fastcgi/fcgi_stdio.bi
Header	version:	2.4.1-SNAP-0311112127

Example

#include	"fastcgi/fcgi_stdio.bi"

Dim	As	Integer	count	=	0

While	(FCGI_Accept()	>=	0)

				count	+=	1

				Print	!"Content-type:	text/html\r\n"

				Print	!"\r\n"

				Print	"<title>FastCGI	Hello!</title>"

				Print	"<h1>FastCGI	Hello!</h1>"

				Print	Using	"Request	number	###	running	on	host	<i>&

</i>";	count;	*getenv("SERVER_NAME");

Wend

ZeroMQ 	

High-performance	asynchronous	messaging	library

Website:	http://www.zeromq.org/
Platforms	supported:	Win32,	Linux
Headers	to	include:	zmq/zmq.bi
Header	version:	2.1.10

Expat 	

Stream	oriented	XML	parser	library	with	several	useful	features.

Website:	http://expat.sourceforge.net/
Platforms	supported:	Win32,	Linux
Headers	to	include:	expat.bi
Header	version:	1.95.8
Examples:	in	examples/xml/

Example

''	XML	file	parser	command	line	tool	based	on	libexpat

''	Can	use	zstring	or	wstring	(libexpat	or	libexpatw):

'#define	XML_UNICODE

#include	once	"expat.bi"

#define	FALSE	0

#define	NULL	0

Const	BUFFER_SIZE	=	1024

Type	Context

				As	Integer	nesting

				As	XML_char	*	(BUFFER_SIZE+1)	text

				As	Integer	textlength

End	Type

Dim	Shared	As	Context	ctx

''	Callback	called	by	libexpat	when	begin	of	XML	tag	is	found

Sub	elementBegin	cdecl	_

				(_

								ByVal	userdata	As	Any	Ptr,	_

								ByVal	element	As	XML_char	Ptr,	_

								ByVal	attributes	As	XML_char	Ptr	Ptr	_

)

				''	Show	its	name

				Print	Space(ctx.nesting);*element;

				''	and	its	attributes	(attributes	are	given	as	an	array	of	XML_char	pointers

				''	much	like	argv,	for	each	attribute	there	will	apparently	be	the	one

				''	element	representing	the	name	and	a	second	element	representing	the

				''	specified	value)

				While	(*attributes)

								Print	"	";**attributes;

								attributes	+=	1

								Print	"='";**attributes;"'";

								attributes	+=	1

				Wend

				Print

				ctx.nesting	+=	1

				ctx.text[0]	=	0

				ctx.textlength	=	0

End	Sub

''	Callback	called	by	libexpat	when	end	of	XML	tag	is	found

Sub	elementEnd	cdecl(ByVal	userdata	As	Any	Ptr,	ByVal

				''	Show	text	collected	in	charData()	callback	below

				Print	Space(ctx.nesting);ctx.text

				ctx.text[0]	=	0

				ctx.textlength	=	0

				ctx.nesting	-=	1

End	Sub

Sub	charData	cdecl	_

				(_

								ByVal	userdata	As	Any	Ptr,	_

								ByVal	chars	As	XML_char	Ptr,	_		''	Note:	not	null-terminated

								ByVal	length	As	Integer	_

)

				''	This	callback	will	apparently	recieve	every	data	between	xml	tags

				''	(really?),	including	newlines	and	space.

				''	Append	to	our	buffer,	if	there	still	is	free	room,	so	we	can	print	it	out	later

				If	(length	<=	(BUFFER_SIZE	-	ctx.textlength))	

								fb_MemCopy(ctx.text[ctx.textlength],	chars

								ctx.textlength	+=	length

								ctx.text[ctx.textlength]	=	0

				End	If

End	Sub

''

''	Main

''

				Dim	As	String	filename	=	Command(1)

				If	(Len(filename)	=	0)	Then

								Print	"Usage:	expat	<xmlfilename>"

								End	1

				End	If

				Dim	As	XML_Parser	parser	=	XML_ParserCreate(NULL

				If	(parser	=	NULL)	Then

								Print	"XML_ParserCreate	failed"

								End	1

				End	If

				''XML_SetUserData(parser,	userdata_pointer)

				XML_SetElementHandler(parser,	@elementBegin,	@

				XML_SetCharacterDataHandler(parser,	@charData)

				If	(Open(filename,	For	Input,	As	#1))	Then

								Print	"Could	not	open	file:	'";filename;"'"

								End	1

				End	If

				Static	As	UByte	buffer(0	To	(BUFFER_SIZE-1))

				Dim	As	Integer	reached_eof	=	FALSE

				Do

								Dim	As	Integer	size	=	BUFFER_SIZE

								Dim	As	Integer	result	=	Get(#1,	,	buffer(0

								If	(result	Or	(size	<=	0))	Then

												Print	"File	input	error"

												End	1

								End	If

								reached_eof	=	(EOF(1)	<>	FALSE)

								If	(XML_Parse(parser,	@buffer(0),	size,	reached_eof

												Print	filename	&	"

("	&	XML_GetCurrentLineNumber(parser)	&	"):	Error	from	XML	parser:	"

												Print	*XML_ErrorString(XML_GetErrorCode

												End	1

								End	If

				Loop	While	(reached_eof	=	FALSE)

				XML_ParserFree(parser)

libxml2 	

De-facto	standard	library	for	accessing	xml	files.

Website:	http://xmlsoft.org/
Platforms	supported:	Win32,	Linux
Headers	to	include:	libxml/*.bi
Header	version:	2.6.17
Examples:	in	examples/xml/

Example

#include	once	"libxml/xmlreader.bi"

#define	NULL	0

Dim	As	String	filename	=	Command(1)

If(Len(filename)	=	0)	Then

				Print	"Usage:	libxml	filename"

				End	1

End	If

Dim	As	xmlTextReaderPtr	reader	=	xmlReaderForFile(

If	(reader	=	NULL)	Then

				Print	"Unable	to	open	";	filename

				End	1

End	If

Dim	As	Integer	ret	=	xmlTextReaderRead(reader)

Do	While(ret	=	1)

				Dim	As	ZString	Ptr	constname	=	xmlTextReaderConstName

				Dim	As	ZString	Ptr	value	=	xmlTextReaderConstValue

				Print	xmlTextReaderDepth(reader);	_

								xmlTextReaderNodeType(reader);	_

								"	";	*constname;	_

								xmlTextReaderIsEmptyElement(reader);	_

								xmlTextReaderHasValue(reader);	_

								*value

				ret	=	xmlTextReaderRead(reader)

Loop

xmlFreeTextReader(reader)

If(ret	<>	0)	Then

				Print	"failed	to	parse:	";	filename

End	If

xmlCleanupParser()

xmlMemoryDump()

libxslt 	

XSLT	itself	is	a	an	XML	language	to	define	transformation	for	XML.

Website:	http://xmlsoft.org/XSLT/
Platforms	supported:	Win32,	Linux
Headers	to	include:	libxslt/libxslt.bi
Header	version:	1.1.13

mxml,	Mini-XML 	

Mini-XML	is	a	small	XML	parsing	library	that	you	can	use	to	read	XML
and	XML-like	data	files	in	your	application	without	requiring	large	non-
standard	libraries.

Website:	http://www.minixml.org/
Platforms	supported:	Win32,	Linux
Headers	to	include:	mxml.bi
Header	version:	2.7

PCRE,	Perl	Compatible	Regular	Expressions 	

Consists	of	a	set	of	functions	that	implement	regular	expression	pattern
matching	using	the	same	syntax	and	semantics	as	Perl	5.

Website:	http://www.pcre.org
Platforms	supported:	Win32,	Linux
Headers	to	include:	pcre.bi,	pcre16.bi,	prceposix.bi
Version:	8.31
Examples:	in	examples/regex/PCRE/

TRE	(regex	matching	library) 	

Lightweight,	robust,	and	efficient	POSIX	compliant	regexp	matching
library

Website:	http://laurikari.net/tre/
Platforms	supported:	Win32,	Linux
Headers	to	include:	tre/tre.bi,	tre/regex.bi
Header	version:	0.8.0
Examples:	in	examples/regex/TRE/

libbzip2 	

libbzip2	is	the	library	implementing	.bz2	file	or	in-memory	compression
and	extraction,	with	interfaces	similar	to	zlib.

Website:	http://bzip.org/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	bzlib.bi
Header	version:	1.0.6
Examples:	in	examples/compression/

libzip 	

Easy-to-use	library	for	creating,	reading	out	or	modifying	.zip	archives.

Website:	http://www.nih.at/libzip/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	zip.bi
Header	version:	0.11.2
Examples:	in	examples/compression/

Example

''	.zip	unpacking	using	libzip

#include	once	"zip.bi"

Sub	create_parent_dirs(ByVal	file	As	ZString	Ptr)

				''	Given	a	path	like	this:

				''	foo/bar/baz/file.ext

				''	Do	these	mkdir()'s:

				''	foo

				''	foo/bar

				''	foo/bar/baz

				Dim	As	UByte	Ptr	p	=	file

				Do

								Select	Case	(*p)

								Case	Asc("/")

												*p	=	0

												MkDir(*file)

												*p	=	Asc("/")

								Case	0

												Exit	Do

								End	Select

								p	+=	1

				Loop

End	Sub

''	Asks	libzip	for	information	on	file	number	'i'	in	the	.zip	file,

''	and	then	extracts	it,	while	creating	directories	as	needed.

Private	Sub	unpack_zip_file(ByVal	zip	As	zip	Ptr,	

				#define	BUFFER_SIZE	(1024	*	512)

				Static	As	UByte	chunk(0	To	(BUFFER_SIZE	-	1))

				#define	buffer	(@chunk(0))

				''	Retrieve	the	filename.

				Dim	As	String	filename	=	*zip_get_name(zip,	i,

				Print	"file:	"	&	filename	&	",	";

				''	Retrieve	the	file	size	via	a	zip_stat().

				Dim	As	zip_stat	stat

				If	(zip_stat_index(zip,	i,	0,	@stat))	Then

								Print	"zip_stat()	failed"

								Return

				End	If

				If	((stat.valid	And	ZIP_STAT_SIZE)	=	0)	Then

								Print	"could	not	retrieve	file	size	from	zip_stat()"

								Return

				End	If

				Print	stat.size	&	"	bytes"

				''	Create	directories	if	needed

				create_parent_dirs(filename)

				''	Write	out	the	file

				Dim	As	Integer	fo	=	FreeFile()

				If	(Open(filename,	For	Binary,	Access	Write,	As

								Print	"could	not	open	output	file"

								Return

				End	If

				''	Input	for	the	file	comes	from	libzip

				Dim	As	zip_file	Ptr	fi	=	zip_fopen_index(zip,	

				Do

								''	Write	out	the	file	content	as	returned	by	zip_fread(),	which

								''	also	does	the	decoding	and	everything.

								''	zip_fread()	fills	our	buffer

								Dim	As	Integer	bytes	=	_

												zip_fread(fi,	buffer,	BUFFER_SIZE)

								If	(bytes	<	0)	Then

												Print	"zip_fread()	failed"

												Exit	Do

								End	If

								''	EOF?

								If	(bytes	=	0)	Then

												Exit	Do

								End	If

								''	Write	<bytes>	amount	of	bytes	of	the	file

								If	(Put(#fo,	,	*buffer,	bytes))	Then

												Print	"file	output	failed"

												Exit	Do

								End	If

				Loop

				''	Done

				zip_fclose(fi)

				Close	#fo

End	Sub

Sub	unpack_zip(ByRef	archive	As	String)

				Dim	As	zip	Ptr	zip	=	zip_open(archive,	ZIP_CHECKCONS

				If	(zip	=	NULL)	Then

								Print	"could	not	open	input	file	"	&	archive

								Return

				End	If

				''	For	each	file	in	the	.zip...	(really	nice	API,	thanks	libzip)

				For	i	As	Integer	=	0	To	(zip_get_num_entries(zip

								unpack_zip_file(zip,	i)

				Next

				zip_close(zip)

End	Sub

				unpack_zip("test.zip")

liblzma 	

Configurable	compression	library	based	around	the	LZMA	algorithm
with	zlib-like	API.	liblzma	is	the	heart	of	the	xz-utils	used	to	handle	the
.lzma	and	.xz	file	formats.	It	is	based	on	7-Zip's	LZMA	SDK.

Website:	http://tukaani.org/xz/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	lzma.bi
Header	version:	5.0.2
Examples:	in	examples/compression/

LZO 	

LZO	is	a	compression	library	offering	fast	compression	and	very	fast	decompression.

Website:	http://www.oberhumer.com/opensource/lzo/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	lzo/lzo.bi
Header	version:	2.02

Example

#include	"lzo/lzo1x.bi"

Dim	inbuf	As	ZString	Ptr	=	@"string	to	compress	(or	not,	since	it's	so	short)"

Dim	inlen	As	Integer	=	Len(*inbuf)	+	1

Dim	complen	As	lzo_uint	=	100

Dim	compbuf	As	ZString	Ptr	=	Allocate(complen)

Dim	decomplen	As	lzo_uint	=	100

Dim	decompbuf	As	ZString	Ptr	=	Allocate(decomplen)

Dim	workmem	As	Any	Ptr

Print	"initializing	LZO:	";

If	lzo_init()	=	0	Then

				Print	"ok"

Else

				Print	"failed!"

				End	1

End	If

Print	"compressing	'"	&	*inbuf	&	"':	";

workmem	=	Allocate(LZO1X_1_15_MEM_COMPRESS)

If	lzo1x_1_15_compress(inbuf,	inlen,	compbuf,	@complen

				Print	"ok	("	&	inlen	&	"	bytes	in,	"	&	complen

Else

				Print	"failed!"

				End	1

End	If

Deallocate(workmem)

Print	"decompressing:	";

workmem	=	Allocate(LZO1X_MEM_DECOMPRESS)

If	lzo1x_decompress(compbuf,	complen,	decompbuf,	@

				Print	"ok:	'"	&	*decompbuf	&	"'	("	&	complen	&

Else

				Print	"failed!"

				End	1

End	If

Deallocate(workmem)

QuickLZ 	

Cross-platform	fast	compression	library

Website:	http://www.quicklz.com
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	quicklz.bi
Header	version:	1.5.0
Example:	examples/compression/QuickLZ.bas

zlib 	

Loss-less	data	compression	library	using	the	Deflate	algorithm	unencumbered	by	patents.

Website:	http://www.zlib.net
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	zlib.bi
Header	version:	1.2.8
Examples:	in	examples/compression/

Example
zlib-based	PNG	save	&	load	code:	http://www.freebasic.net/forum/viewtopic.php?t=3936

In-memory	compression	example:

''	Zlib	compress/decompress	example,	by	yetifoot

#include	once	"zlib.bi"

Dim	As	Integer	errlev

''	This	is	the	size	of	our	test	data	in	bytes.

Dim	As	Integer	src_len	=	100000

Print	"ZLib	test	-	Version	"	&	*zlibVersion()

Print

Print	"Test	data	size						:	"	&	src_len	&	"	bytes."

''	The	size	of	the	destination	buffer	for	the	compressed	data	is	calculated	by

''	the	compressBound	function.

Dim	As	Integer	dest_len	=	compressBound(src_len)

''	Allocate	our	needed	memory.

Dim	As	UByte	Ptr	src	=	Allocate(src_len)

Dim	As	UByte	Ptr	dest	=	Allocate(dest_len)

''	Fill	the	src	buffer	with	random,	yet	still	compressable	data.

For	i	As	Integer	=	0	To	src_len	-	1

				src[i]	=	Rnd	*	4

Next

''	Store	the	crc32	checksum	of	the	input	data,	so	we	can	check	if	the	

''	uncompression	has	worked.

Dim	As	UInteger	crc	=	crc32(0,	src,	src_len)

''	Perform	the	compression.		dest_len	is	passed	as	its	address,	because	when

''	the	function	returns	it	will	contain	the	size	of	the	compressed	data.

errlev	=	compress(dest,	@dest_len,	src,	src_len)

If	errlev	<>	0	Then

				''	If	the	function	returns	a	value	other	than	0	then	an	error	occured.

				Print	"****	Error	during	compress	-	code	"	&	errlev

End	If

Print	"Compressed	to							:	"	&	dest_len	&	"	bytes."

''	NOTE:	in	normal	use	in	a	program,	you	would	store	the	src_len,	in	order	to

''	be	able	to	tell	uncompress	the	output	size.		However	in	this	example	we	can

''	just	leave	it	in	src_len.		The	same	goes	for	dest_len,	which	is	the	compressed

''	datas	size.

''	Wipe	the	src	buffer	before	we	uncompress	to	it,	so	that	we	can	check	if	the	

''	decompression	has	worked.

For	i	As	Integer	=	0	To	src_len	-	1

				src[i]	=	0

Next

''	Perform	a	decompression.		This	time	we	uncompress	the	data	back	to	src.		

''	src_len	is	passed	as	its	address,	because	when

''	the	function	returns	it	will	contain	the	size	of	the	uncompressed	data.

errlev	=	uncompress(src,	@src_len,	dest,	dest_len)

If	errlev	<>	0	Then

				''	If	the	function	returns	a	value	other	than	0	then	an	error	occured.

				Print	"****	Error	during	uncompress	-	code	"	&

End	If

Print	"Uncompressed	to					:	"	&	src_len	&	"	bytes."

''	Make	sure	the	checksum	of	the	uncompressed	data	matches	our	original	data.

If	crc	<>	crc32(0,	src,	src_len)	Then

				Print	"crc32	checksum						:	FAILED"

Else

				Print	"crc32	checksum						:	PASSED"

End	If

''	Free	the	buffers	used	in	the	test.

Deallocate(src)

Deallocate(dest)

Print

Print	"Press	any	key	to	end	.	.	.	"

Sleep

CRT,	the	C	Runtime	Library 	

Standard	C	language	functions.	On	Windows,	this	is	implemented	in
msvcrt.dll	(however,	there	also	are	version-specific	msvcrXX.dlls,	the
Microsoft	Visual	C++	runtimes).	On	Linux,	the	C	runtime	is	typically
implemented	by	glibc.	For	DOS,	FreeBASIC	uses	DJGPP,	which
provides	a	libc	library.

Websites:	http://msdn.microsoft.com/en-us/library/59ey50w6.aspx,
http://www.gnu.org/software/libc/,	http://www.delorie.com/djgpp/
Platforms	supported:	Win32,	Linux,	DOS
Headers	to	include:	crt.bi
Function	reference:	C	Runtime	Functions
MSDN	function	reference:	http://msdn.microsoft.com/en-
us/library/634ca0c2.aspx

DOS	API 	

Provides	access	to	low-level	BIOS	and	DOS	calls.

Website:	http://freedos.org
Platforms	supported:	DOS
Headers	to	include:	dos/dos.bi
Examples:	in	examples/DOS/

disphelper 	

Disphelper	is	a	COM	helper	library	that	can	be	used	in	plain	C.	No	MFC	or	ATL	is	required.	It	allows	you	to	call	COM	objects	with	an	easy	printf	style	syntax.

Website:	http://disphelper.sourceforge.net/
Platforms	supported:	Win32,	Linux	(using	WINE)
Headers	to	include:	disphelper/disphelper.bi
Header	version:	from	2005

Example

''	HTTP	GET	example,	using	MSXML2

#define	UNICODE

#include	"disphelper/disphelper.bi"

DISPATCH_OBJ(objHTTP)

dhInitialize(TRUE)

dhToggleExceptions(TRUE)

dhCreateObject("MSXML2.XMLHTTP.4.0",	NULL,	@objHTTP

dhCallMethod(objHTTP,	".Open(%s,	%s,	%b)",	"GET",	

dhCallMethod(objHTTP,	".Send")

Dim	As	ZString	Ptr	szResponse

dhGetValue("%s",	@szResponse,	objHTTP,	".ResponseText"

Print	"Response:	";	*szResponse

dhFreeString(szResponse)

SAFE_RELEASE(objHTTP)

dhUninitialize(TRUE)

''	IExplorer	example

#define	UNICODE

#include	"disphelper/disphelper.bi"

Sub	navigate(ByRef	url	As	String)

				DISPATCH_OBJ(ieApp)

				dhInitialize(TRUE)

				dhToggleExceptions(TRUE)

				dhCreateObject("InternetExplorer.Application",

				dhPutValue(ieApp,	"Visible	=	%b",	TRUE)

				dhCallMethod(ieApp,	".Navigate(%s)",	url)

				SAFE_RELEASE(ieApp)

				dhUninitialize(TRUE)

End	Sub

				navigate("www.freebasic.net")

''	VB	Script	example

#define	UNICODE

#include	"disphelper/disphelper.bi"

''	This	function	runs	a	script	using	the	MSScriptControl.

''	Optionally	returns	a	result.

Sub	RunScript	_

				(_

								ByVal	result_identifier	As	LPWSTR,	_

								ByVal	result	As	LPVOID,	_

								ByVal	script	As	LPWSTR,	_

								ByVal	language	As	LPWSTR	_

)

				DISPATCH_OBJ(control)

				If	(SUCCEEDED(dhCreateObject("MSScriptControl.ScriptControl"

								If	(SUCCEEDED(dhPutValue(control,	".Language	=	%T"

												dhPutValue(control,	".AllowUI	=	%b",	TRUE

												dhPutValue(control,	".UseSafeSubset	=	%b"

												If	(result)	Then

																dhGetValue(result_identifier,	result

												Else

																dhCallMethod(control,	".Eval(%T)",

												End	If

								End	If

				End	If

				SAFE_RELEASE(control)

End	Sub

				dhInitialize(TRUE)

				dhToggleExceptions(TRUE)

				''	VBScript	sample

				RunScript(NULL,	NULL,	!"MsgBox(\"This	Is	a	VBScript

				''	JScript	sample

				Dim	As	Integer	result

				RunScript("%d",	@result,	"Math.round(Math.pow(5,	2)	*	Math.PI)"

				Print	"Result	=";	result

				Print	"Press	any	key	to	exit..."

				Sleep

				dhUninitialize(TRUE)

GLib 	

Universal	utility	library	most	commonly	used	with	GTK+	and	GNOME.
Provides	a	main	loop	implementation	for	event-based	programming,
portable	multi-threading,	portable	file/pipe	I/O,	many	utilities	such	as
command	line	parsing,	timers,	XML	parsing,	regular	expressions,
Unicode	manipulation,	and	also	general-purpose	data	structures.

Website:	http://developer.gnome.org/glib/
Platforms	supported:	Linux,	Win32
Headers	to	include:	glib.bi
Version:	2.42.2
Examples:	in	examples/misc/glib/

Installing 	

Installing	FreeBASIC,	any	additionally	needed	packages,	and	perhaps	a
text	editor	or	IDE.

Windows	32bit

Download	the	latest	FreeBASIC-x.xx.x-win32.exe	installer
Run	it	and	click	through	it.	The	installer	will	install	FreeBASIC	at
C:\%ProgramFiles%\FreeBASIC,	or	if	you	chose	a	different
installation	directory,	in	your	chosen	directory.	Start	Menu
shortcuts	to	the	website	will	be	installed	as	well.
Unless	you	already	have	a	source	code	editor	or	IDE,	you	should
install	one	too,	as	FreeBASIC	itself	does	not	include	one.	An	IDE
can	be	used	to	write	and	save	.bas	files	and	to	launch	the
FreeBASIC	Compiler	to	compile	them.	The	following	IDEs	are
known	to	explicitly	support	FreeBASIC:

FBIDE
FBEdit

To	uninstall	FreeBASIC,	remove	it	from	the	system's	list	of	installed
software	(Add/remove	programs,	Uninstall	or	change	a	program).

Windows	x64

Download	the	latest	FreeBASIC-x.xx.x-win64.zip	package
Extract	it	where	you	like,	for	example	at
C:\%ProgramFiles%\FreeBASIC	(no	further	installation	required	to
use	fbc).
You	may	want	to	install	a	source	code	editor	or	IDE;	also	see	the
Windows	32bit	section.

To	uninstall	FreeBASIC,	simply	deleted	the	directory	where	you	extracted
it.

Linux

https://sourceforge.net/projects/fbc/files/Binaries%20-%20Windows/
http://fbide.freebasic.net/
http://radasm.cherrytree.at/fbedit/
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/win_addprog_window_component.mspx
http://windows.microsoft.com/en-US/windows-vista/Uninstall-or-change-a-program
https://sourceforge.net/projects/fbc/files/Binaries%20-%20Windows/

Download	the	latest	FreeBASIC-x.xx.x-linux-x86.tar.gz	(32bit)
or	FreeBASIC-x.xx.x-linux-x86_64.tar.gz	(64bit)	package
Extract	the	archive,	for	example	by	doing	right-click	->	Extract
Here,	or	manually	in	a	terminal:

$	cd	Downloads

$	tar	xzf	FreeBASIC-x.xx.x-linux-x86.tar.gz

The	FreeBASIC	compiler	can	be	used	from	where	it	was
extracted.	Usually	it	is	installed	into	the	/usr/local	system
directory	though,	so	that	the	fbc	program	is	available	through-out
the	whole	system.	To	do	that,	run	the	included	installation	script:

$	cd	FreeBASIC-x.xx.x-linux-x86

$	sudo	./install.sh	-i

The	install.sh	script	can	also	be	given	a	path	as	in	./install.sh	-i
/usr	if	you	prefer	to	install	into	a	directory	other	than	the	default
/usr/local.	This	default	is	a	good	choice	though,	as	it	avoids	mixing	with
the	content	of	/usr	which	is	usually	managed	by	the	distribution's
packaging	tool.

FreeBASIC	requires	several	additional	packages	to	be	installed
before	it	can	be	used	to	compile	executables.	In	general,	these
are:

binutils
libc	development	files	(installing	gcc	will	typically
install	these	too)
gcc
libncurses	development	files
X11	development	files	(for	FB	graphics	programs)
libffi	development	files	(for	the	Threadcall	keyword)
gpm	(general	purpose	mouse)	daemon	and	libgpm

https://sourceforge.net/projects/fbc/files/Binaries%20-%20Linux/

(only	needed	for	GetMouse	support	in	the	Linux
console)

The	actual	package	names	to	install	vary	depending	on	the	GNU/Linux
distribution.

For	native	development	(32bit	FB	on	32bit	system,	or	64bit	FB	on	64bit
system):

Debian/Ubuntu:
gcc
libncurses5-dev
libffi-dev
libgl1-mesa-dev
libx11-dev	libxext-dev	libxrender-dev
libxrandr-dev	libxpm-dev

Fedora:
gcc
ncurses-devel
libffi-devel
mesa-libGL-devel
libX11-devel	libXext-devel	libXrender-devel
libXrandr-devel	libXpm-devel

OpenSUSE:
gcc
ncurses-devel
libffi46-devel
xorg-x11-devel

For	32bit	development	on	a	64bit	system:
Debian/Ubuntu:

gcc-multilib
lib32ncurses5-dev
libx11-dev:i386	libxext-dev:i386	libxrender-
dev:i386	libxrandr-dev:i386	libxpm-dev:i386
(See	comment	below	re	Ubuntu	10.04	LTS)

OpenSUSE:
gcc-32bit
ncurses-devel-32bit
xorg-x11-devel-32bit
xorg-x11-libX11-devel-32bit
xorg-x11-libXext-devel-32bit
xorg-x11-libXrender-devel-32bit
xorg-x11-libXpm-devel-32bit
libffi46-devel-32bit

Unless	you	already	have	a	text	editor	or	IDE,	you	should	install
one	too,	as	FreeBASIC	itself	does	not	include	one.	An	IDE	can	be
used	to	write	and	save	.bas	files	and	to	launch	the	FreeBASIC
Compiler	to	compile	them.	The	following	IDEs	are	known	to
explicitly	support	FreeBASIC:

Geany
To	uninstall	FreeBASIC	from	/usr/local,	you	can	run	the	install.sh	script
again,	but	with	the	-u	option:	sudo	./install.sh	-u

DOS

Download	the	latest	FreeBASIC-x.xx.x-dos.zip	archive
Find	a	place	for	FreeBASIC	with	at	least	13	MiB	free	space.
Unpack	the	ZIP	archive,	making	sure	that	the	directory	structure
as	used	inside	the	archive	is	preserved	("PKUNZIP	-d"	for
example).	
The	top-level	directory	is	named	FreeBASIC-x.xx.x-dos	(will	be
truncated	to	"FREEBASI"	in	DOS	without	full	LFN	support),	so	you
might	want	to	rename	it	then	to	a	convenient	DOS-compliant
name	not	longer	than	8	characters	and	containing	no	white-
spaces,	like	"FB".
All	the	important	files	used	by	the	compiler	(includes,	libs)	inside
the	archive	do	have	DOS-compliant	names,	therefore	DOSLFN	is
not	required	to	use	FreeBASIC,	however,	some	examples	and
texts	do	have	longer	names	and	will	be	truncated	when	extracted
without	full	LFN	support.	

http://www.geany.org/
https://sourceforge.net/projects/fbc/files/Binaries%20-%20DOS/

(Note:	you	can	install	the	DOS	version	"over"	the	Windows	one	or	vice-
versa,	or	"merge"	those	installations	later,	but	rename	the	FBC.EXE	file
of	the	previous	installation	to	FBCW.EXE	,	FBCD.EXE	or	such,	or	it	will
be	overwritten	by	the	new	one.	Other	platform	specific	files	are	placed	in
subdirectories	making	sure	that	they	won't	conflict.)

Compiling	under	Ubuntu	10.04	LTS,	64-bit:
This	comment	applies	to	FB	1.01.0,	and	may	apply	to	other	builds	also.
Install	all	of	the	Libraries	listed	above;	some	of	the	entries	ending	in
“:i386”	may	throw	“not	found”	errors.
To	verify	that	you’re	using	a	64-bit	build,	use:	“uname	-a”	or	“uname	-m”
(it’ll	show	x86_64	for	64-bit,	i386	for	32-bit).
Then,	when	running	FBC,	an	error	may	appear:	“error	while	loading
shared	libraries:	libtinfo.so.5:	cannot	open	shared	object	file:	No	such	file
or	directory”.

“libtinfo.so.5”	is	available	as	a	separate	library	in	Ubuntu	11.10+,	but	it	is
built	into	“ncurses.so.5”	in	10.04	LTS.	So,	we	need	to	re-direct	the	libtinfo
references	into	the	ncurses.so.5	libraries:

Issue:	find	/	-name	'libtinfo.so.5'	-	just	to	verify	that	there	are	no
confusing	references	to	these	libraries	anywhere.	Any	references
should	be	checked,	and	probably	deleted?
Change	to	the	folder	containing	the	FBC	executable	(perhaps
“/usr/local/bin/”).
Issue:	ldd	fbc	-	it	will	list	the	various	library	folder(s)	being
searched	(probably	“/lib32”	in	most	cases).
Issue:	sudo	ln	-s	/lib32/libncurses.so.5	/lib32/libtinfo.so.5
(assuming	“/lib32”	was	emitted	in	the	previous	step).
Issue:	sudo	ln	-s	/lib32/libtinfo.so.5	/lib32/libtinfo.so	(assuming
“/lib32”...)
Retry!
[Unrelated	point:	if	"private"	Libraries	are	needed	for	compiles,
they	were	expected	to	be	in	/usr/local/lib/freebasic/.	Now,	they
may	have	to	be	in	/usr/local/lib/freebasic/linux-x86/].
[Mike	Kennedy,	Jan,	2015.	(This	note	was	not	acceptable	as	a
standard	"comment"	-	I	don't	know	why?)].

See	also

Invoking	the	Compiler
Compiler	Command	Line	Options

Requirements 	

Windows	version
The	FreeBASIC	compiler	(fbc.exe)	and	the	executables	generated
by	it,	need	at	least	Windows	98	to	run.
The	msvcrt.dll	(the	Microsoft's	C	runtime	library)	must	be	present
(note:	it	wasn't	shipped	with	Windows	95,	but	it's	installed	by	many
applications	and	can	be	also	downloaded	at:	Microsoft).
The	gfx	routines	will	use	DirectX	5.0	or	later	if	found	on	the	host
system,	otherwise	they'll	fall	back	on	standard	Win32	GDI	which
will	work	on	any	Windows	system.
Unicode	wide	strings	(WSTRING's)	only	work	in	Windows
NT/2000/XP/2003/Vista	or	above.	Applications	that	depend	on
wide-strings	will	run	in	Windows	98/Me,	but	no	input/output	will
work	if	the	character	set	isn't	Latin-based,	because	those
platforms	don't	support	Unicode	strings.	Windows	95	has	most
Unicode	API	functions	missing;	applications	using	wide	strings
won't	even	be	loaded	by	this	specific	OS.

Linux	version
The	FreeBASIC	compiler	(fbc)	and	the	executable	generated	by	it
depend	on	libc,	libm,	libpthread,	libdl	and	libncurses.	These	are	all
standard	Linux	libraries	and	should	be	available	by	default	on	all
modern	distros.
When	using	the	gfx	routines,	the	dependencies	will	increase.
FreeBASIC	gfx	programs	will	also	need	libX11,	libXext,	libXpm,
libXrender	and	libXrandr	to	be	installed	on	the	host	system	to	be
executed.	This	is	usually	not	a	problem	as	long	as	there's	a	recent
X11	server	installed	in	the	system	(at	least	XFree86	4.3.0	or	any
X.org	version).
If	having	a	working	X11	installation	is	enough	to	run	FreeBASIC
gfx	programs,	it	may	be	not	enough	to	compile	them;	you	may
need	to	install	the	X11	development	libraries	from	your	Linux
packages	repository.
Unicode	wide-strings	(WSTRING's)	with	non-ASCII	character	sets
can	only	be	displayed	in	console	if	the	locale	is	set	to	an	UTF-8

http://support.microsoft.com/default.aspx?scid=kb;en-us;259403

version	-	most	modern	distros	come	with	support	that	and	char
sets	other	than	latin	may	work	only	in	xterm.

DOS	version
Official	requirement:	A	DPMI	(DOS	Protected-Mode	Interface)
server	must	be	present	to	run	fbc.exe	and	any	executable
generated	by	it.	This	is	not	as	bad	as	it	looks.	It	simply	means,	that
the	"CWSDPMI.EXE"	file	(cca	20	KiB)	must	be	present	in	the
same	directory	or	a	place	where	the	PATH	environment	variable
points	to.	CWSDPMI	package:	homer.rice.edu...cwsdpmi	(note:
FreeDOS	comes	with	it	already	installed).	Further,	there	is	a
possibility	to	bypass	this	problem,	and	to	use	alternatively	HDPMI,
for	details	see	DOS	related	FAQ	.
You	need	a	80386	or	newer	CPU	and	cca	4	MiB	of	RAM.	For
compiling	of	large	programs	or	libraries,	you	will	need	more.
Similar	applies	to	executables	generated	by	FBC,	those	using
FB's	graphics	library	however	will	need	a	better/faster	CPU	(200
MHz	(?),	work	in	progress,	code	not	yet	fully	optimized,	and	exact
minimum	not	known	by	now).	FBC	and	executables	generated	by
it	need	an	FPU	(80387,	80487,	always	built-in	since	Pentium).
This	requirement	can	by	bypassed	using	"EMU387"	(auto-loaded
if	needed,	but	not	included	in	FB	packages,	see
delorie.com/djgpp/...),	or	by	avoiding	floats	and	(non-trivial)
removing	float-related	startup	code.
The	DOS	version	should	run	in	any	DOS,	like	FreeDOS,
[Enhanced-]DR-DOS	(do	not	use	the	DR-EMM386's	included
DPMI,	use	CWSDPMI	or	HDPMI),	or	MS-DOS.	It	also	works
properly	under	a	number	of	"DOS	box"	environments	that	emulate
a	DOS	system,	such	as	the	Windows	NTVDM;	however,	some	of
these	environments	are	not	implemented	faithfully	and	contain
bugs,	so	caution	should	be	exercised.
Long	filenames	are	supported	under	systems	that	supply	the	long
filename	API	defined	by	Windows	95,	including	DOS	with	an	LFN
TSR	(for	example	DOSLFN	(1)	(2)).	Long	filename	support	is	not
required	to	use	the	compiler;	however,	care	must	be	taken	in
unpacking	the	distribution,	for	example,	with	a	Windows	program
which	creates	short	names	with	numeric	tails	(FREEBA~1)	instead
of	truncating	to	8	characters	(FREEBASI).	The	filenames	of	all

http://homer.rice.edu/~sandmann/cwsdpmi/
http://www.delorie.com/djgpp/v2faq/faq11_1.html
http://www.freedos.org/software/?prog=doslfn
http://adoxa.altervista.org/doslfn/

files	in	the	distribution	should	be	truncated	to	8.3	if	the	compiler	is
to	be	used	without	long	filename	support.
There	are	a	few	limitations,	see	DOS	related	FAQ	.

See	also

Installing	FreeBASIC
Compiler	Command	Line	Options

and
Compiler	FAQ
Win32	related	FAQ
DOS	related	FAQ
LINUX	related	FAQ

Running 	

Invoking	the	compiler	after	installation.

Windows
The	compiler	can	be	manually	invoked	from	the	command-line,	or
automatically	by	your	IDE/Code	Editor.	If	you're	using	an	IDE,	you	will
usually	have	to	tell	it	where	the	compiler	was	installed,	so	it	can	find	it.
How	exactly	to	do	that	depends	on	the	IDE.	

To	compile	manually,	you	should	append	the	FreeBASIC	installation
directory	to	your	PATH	environment	variable,	separating	it	from	previous
entries	using	a	semi-colon.	Now	you	can	simply	use	"fbc"	from	the
command	prompt,	instead	of	always	having	to	type	in	the	full	path	(e.g.
"C:\FreeBASIC\fbc.exe").

Then,	open	a	console/command	prompt/MS	DOS	prompt,	in	the	same
directory	as	your	program.	To	compile	your	program,	you	can	use:

C:\mystuff\myprogram\>	fbc	myprogram.bas

and	myprogram.exe	will	be	created	in	the	same	directory.

A	console	can	be	launched	in	a	specific	directory	from	Explorer	by	using
Microsoft's	"Open	Command	Window	Here"	PowerToy	on	Windows	XP.
On	Windows	Vista	&	above	you	can	SHIFT+RightClick	on	a	folder	in
Explorer	to	see	the	'Open	Command	Window	Here'	option.	As	a	last
resort,	you	can	also	select	Start	->	Run,	type	"cmd"	and	hit	Enter,	and
use	the	"cd"	command	to	change	the	current	directory.

Note:	You	can	in	fact	invoke	the	compiler	from	any	directory	you	like,	but
you	have	to	specifiy	the	correct	path	to	your	program,	so	the	compiler
can	find	it,	for	example:

C:\>	fbc	mystuff\myprogram\myprogram.bas

The	resulting	executable	will	still	be	put	in	the	same	directory	as	the

program.

Linux
If	the	install.sh	script	was	successfully	executed	with	enough	priviledges,
the	compiler	binary	should	have	been	copied	/usr/local/bin/fbc,
allowing	any	user	access	to	the	compiler	from	any	directory.

From	the	prompt,	type,

fbc

to	see	a	list	of	options.	To	compile	the	"Hello,	world!"	example	program,
navigate	to	the	directory	where	the	FreeBASIC	examples	were	installed
(/usr/local/share/freebasic),	and	type,

fbc	examples/misc/hello.bas

and	a	./hello	executable	file	will	be	created	in	the	examples/misc
directory.

Linux	(standalone)
If	the	install	script	install-standalone.sh	was	successfully	executed	with
enough	privileges,	a	link	to	the	compiler	binary	should	have	been	created
at	/usr/bin/fbc,	allowing	any	user	access	to	the	compiler	from	any
directory.	If	it	was	not	possible	to	create	the	link,	you	may	want	to	alter
your	PATH	environmental	variable	to	be	able	to	invoke	the	compiler	from
any	directory.	Navigate	to	the	directory	where	FreeBASIC	was	installed.

From	the	prompt,	type,

fbc

to	see	a	list	of	options.	To	compile	the	"Hello,	world!"	example	program
type,

fbc	examples/misc/hello.bas

and	a	./hello	executable	file	will	be	created	in	the	examples/misc
directory.

DOS
Navigate	to	the	directory	where	FreeBASIC	was	installed.	For	example,	if
FreeBASIC	is	installed	in	the	directory	C:\FB,	type,

C:

CD	FB

Some	DOSes	accept	"CDD	C:\FB"	as	well.	You	can	also	add	the
FreeBASIC	directory	to	your	PATH	environment	variable	(usually
something	like	"SET	PATH=C:\FB\;%PATH%")	so	you	can	invoke	the	compiler
from	any	directory.

At	the	prompt,	type,

fbc

to	see	a	list	of	options.	To	compile	the	"Hello,	world!"	example	program
type,

fbc	examples\misc\hello.bas

and	a	hello.exe	executable	file	will	be	created	in	the	examples\misc
directory.

See	also

Installing	FreeBASIC
Compiler	Command	Line	Options
Compiler	FAQ

fbc	command-line 	

Using	the	fbc	command-line.

The	official	FreeBASIC	distribution	comes	with	fbc,	FreeBASIC's	flagship
compiler.	fbc	is	a	command	line	compiler,	and	can	be	launched	from	the
console	-	from	DOS,	the	Windows	command	prompt	or	a	Linux	shell.
Running	fbc	from	the	console	without	any	arguments	displays	a	list	of
available	options,	or	command-line	switches,	that	can	be	used	to	adjust
the	behavior	of	the	compiler.

At	its	simplest,	fbc	takes	a	source	file	as	a	command-line	argument	and
produces	an	executable	file.	It	does	this	by	compiling	the	source	file
(.bas)	into	an	assembly	(.asm)	file,	then	compiling	this	into	an	object	file
(.o)	using	GAS	and	finally	linking	using	LD	this	object	file	to	other	object
files	and	libraries	it	needs	to	run,	producing	the	final	executable	file.	The
assembly	and	compiled	object	files	are	deleted	at	this	point	by	default.
For	example,	the	following	command,

fbc	foo.bas

produces	the	executable	foo.exe	in	DOS	and	Windows,	and	./foo	in
Linux.	fbc	can	accept	multiple	source	files	at	once,	compile	and	link	them
all	into	one	executable.	For	example,	the	following	command,

fbc	foo.bas	bar.bas	baz.bas

produces	the	executable	foo.exe	in	DOS	and	Windows,	and	./foo	in
Linux.	Since	foo.bas	was	listed	first,	it	will	be	the	main	entry	point	into	the
executable,	and	also	provide	its	name.	To	specify	a	different	entry	point
or	executable	name,	use	the	"-m"	and	"-x"	switches,	respectively.	To
have,	for	example,	baz.bas	provide	the	main	entry	point	into	an
executable	called	foobar.exe,	you	would	use

fbc	-x	foobar.exe	-m	baz	foo.bas	bar.bas	baz.bas

The	"-x"	switch	names	the	executable	verbatim,	so	in	Linux,	the
executable	produced	from	the	above	command	would	be	called
./foobar.exe.

Syntax
fbc	[options]	[input_list]

Where	input_list	is	a	list	of	filenames.	Accepted	files	are:

File	extension Description

.bas FreeBASIC	source	file

.a Library

.o Object	file

.rc Resource	script	(Windows	only)

.res Compiled	resource	(Windows	only)

.xpm X	icon	pixmap	(Linux	only)

Source	code
-b	<	name	>
Add	a	source	file	to	compilation
-i	<	name	>
Add	a	path	to	search	for	include
files
-include	<	name	>
Include	a	header	file	on	each
source	compiled
-d	<	name=val	>
Add	a	preprocessor's	define
-lang	<	name	>
Select	language	mode:	fb,
fblite,	qb,	deprecated
-forcelang	<	name	>
Select	language	mode:	fb,
fblite,	qb,	deprecated	(overides
statements	in	code)

Code	generation
-target	<	platform	>

Linking
-a	<	name	>
Add	an	object	file	to	linker's	list
-l	<	name	>
Add	a	library	file	to	linker's	list
-p	<	name	>
Add	a	path	to	search	for	libraries
-mt
Link	with	thread-safe	runtime
library
-nodeflibs
Do	not	include	the	default
libraries
-static
Prefer	static	libraries	over
dynamic	ones	when	linking
-map	<	name	>
Save	the	linking	map	to	file
name
-Wl	<	opt	>
Pass	options	to	LD	(separated

Set	the	target	platform	for	cross
compilation
-gen	<	backend	>
Sets	the	compiler	backend
(default	is	'gas').
-asm	<	format	>
Sets	the	assembler	format	for
Asm	block.
-arch	<	type	>
Set	target	architecture	(default:
486)
-O	<	level	>
Set	the	optimization	level	(-gen
gcc).
-vec	<	level	>
Set	level	of	vector	optimizations
enabled	by	the	compiler	(default:
0)
-fpu	<	type	>
Set	the	floating	point	arithmetics
unit	(default:	FPU)
-fpmode	<	type	>
Select	between	fast	and
accurate	floating-point
operations	(default:	PRECISE)
-z	<	value	>
Sets	miscellaneous	or
experimental	options.

Compilation
-m	<	name	>
Main	file	without	extension,	the
entry	point	(default	is	the	first
.bas	file	on	the	command	line)
-g
Add	debug	info
-profile
Enable	function	profiling
-e

by	commas)
-export
Export	symbols	for	dynamic
linkage
-lib
Create	a	static	library
-dylib
Create	a	DLL,	including	the
import	library
-dll
Create	a	DLL,	including	the
import	library.	(Same	as	-dylib)
-x	<	name	>
Set	executable/library
path/name

Behaviour
-prefix	<	path	>
Set	the	compiler	prefix	path
-version
Show	compiler	version	on	the
command	line,	do	not	compile	or
link.
-v
Be	verbose
-print	<	option	>
Display	certain	information
(host,	target,	etc.)
-pp
Emit	the	preprocessed	input	file
only,	do	not	compile
-r
Compile	into	intermediate	file(s)
only,	do	not	assemble	or	link
-rr
Compile	into	asm	file(s)	only,	do
not	assemble	or	link
-c
Compile	and	assemble	source

Add	error	checking
-ex
Add	error	checking	with
RESUME	support
-exx
Same	as	-ex	plus	array	bounds
and	null-pointer	checking
-Wa	<	opt	>
Pass	options	to	GAS	(separated
by	commas)
-Wc	<	opt	>
Pass	options	to	GCC	(separated
by	commas)
-o	<	name	>
Set	object	file	path/name	(must
be	passed	after	the	.bas	file)

file	only,	do	not	link
-R
Do	not	delete	the	intermediate
file(s)
-RR
Do	not	delete	the	asm	file(s)
-C
Do	not	delete	the	object	file(s)
-w	<	value	>
Set	min	warning	level:	all,
pedantic,	next	or	a	value
-maxerr	<	val	>
Only	stop	parsing	if	<val>	errors
occurred
-noerrline
Do	not	show	source	line	where
error	occurred

Target	specific
-s	<	name	>
Set	subsystem	(gui,	console)
-t	<	value	>
Set	stack	size	in	kbytes	(default:
1M)

Meta
@<	file	>
Read	(additional)	command-line
options	from	a	file

	

Example
fbc	myfile.bas

(With	DOS	version	of	FBC,	compile	and	link	a	DOS	executable
MYFILE.EXE.)

fbc	-s	gui	myfile.bas

(With	Windows	version	of	FBC,	compile	and	link	a	Windows
executable	myfile.exe.	Running	the	program	will	not	show	the	console
window	("MS-DOS	Prompt"))

fbc	-lib	module1.bas	module2.bas	module3.bas	-x	libmylib.a

(Compile	and	link	a	static	library	libmylib.a	from	the	three	source	files)

fbc	-m	main_module	-c	main_module.bas

(Compile	an	object	file	main_module.o	and	mark	it	as	an	entry	point)
fbc	-c	sub_module.bas

(Compile	an	object	file	sub_module.o)
fbc	-x	application.exe	main_module.o	sub_module.o

(Link	an	executable	application.exe)

Note:	How	to	include	an	icon	in	a	FB	executable	program
There	is	a	simple	command	line	option	to	compile	a	FB	program	into
an	executable	with	an	Icon:

Create	a	*.rc	file,	for	example	appicon.rc,	with	this	info:
FB_PROGRAM_ICON	ICON	"appicon.ico"
(where	appicon.ico	is	the	name	of	icon)

Then	when	compiling	program,	add	appicon.rc	in	the	list
of	files	to	compile.

See	also

Compiler	Options
Installing	FreeBASIC
Invoking	the	FreeBASIC	compiler

Compiler	Options 	

Command	line	compiler	options	for	the	fbc	compiler:

@<	file	>
Read	(additional)	command-line	options	from	the	file

-a	<	name	>
Add	an	object	file	to	linker's	list

-arch	<	type	>
Set	target	architecture	(default:	486)

-asm	<	format	>
Sets	the	assembler	format	for	Asm	block

-b	<	name	>
Add	a	source	file	to	compilation

-c
Compile	only,	do	not	link

-C
Do	not	delete	the	object	file(s)

-d	<	name=val	>
Add	a	preprocessor's	define

-dll
Create	a	DLL,	including	the	import	library.	(Same	as	-
dylib)

-dylib
Create	a	DLL,	including	the	import	library

-e
Add	error	checking

-ex
Add	error	checking	with	RESUME	support

-exx
Same	as	-ex	plus	array	bounds	and	null-pointer	checking

-export
Export	symbols	for	dynamic	linkage

-forcelang	<name>
Select	language	compatibility,	overriding	#lang/$lang	in

code
-fpmode	<	type	>

Select	between	fast	and	accurate	floating-point	operations
(default:	PRECISE)

-fpu	<	type	>
Set	the	floating	point	arithmetics	unit	(default:	FPU)

-g
Add	debug	info

-gen	<	backend	>
Sets	the	compiler	backend	(default	is	'gas')

-i	<	name	>
Add	a	path	to	search	for	include	files

-include	<	name	>
Include	a	header	file	on	each	source	compiled

-l	<	name	>
Add	a	library	file	to	linker's	list

-lang	<	name	>
Select	language	compatibility:	fb,	fblite,	qb,	deprecated

-lib
Create	a	static	library

-m	<	name	>
Main	file	without	extension,	the	entry	point	(default	is	the
first	.bas	file	on	the	command	line)

-map	<	name	>
Save	the	linking	map	to	file	name

-maxerr	<	val	>
Only	stop	parsing	if	<val>	errors	occurred

-mt
Link	with	thread-safe	runtime	library

-nodeflibs
Do	not	include	the	default	libraries

-noerrline
Do	not	show	source	line	where	error	occurred

-o	<	name	>
Set	object	file	path/name	(must	be	passed	after	the	.bas

file)
-O	<	level	>

Set	the	optimization	level	(-gen	gcc)
-p	<	name	>

Add	a	path	to	search	for	libraries
-pic

Generate	position-indepedent	code	(non-x86	Unix	shared
libs)

-pp
Emit	the	preprocessed	input	file	only,	do	not	compile

-prefix	<	path	>
Set	the	compiler	prefix	path

-print	<	option	>
Let	the	compiler	display	certain	information	(host,	target,	x

-profile
Enable	function	profiling

-r
Compile	into	*.asm/*.c/*.ll	file(s)	only,	do	not	assemble	or
link

-R
Preserve	intermediate	*.asm/*.c/*.ll	file(s)	generated	by
compilation

-rr
Compile	into	*.asm	file(s)	only,	do	not	assemble	or	link

-RR
Preserve	intermediate	*.asm	files	generated	by	compilation

-s	<	name	>
Set	subsystem	(gui,	console)

-showincludes
Display	a	tree	of	file	names	of	#included	files

-static
Prefer	static	libraries	over	dynamic	ones	when	linking

-target	<	platform	>
Set	the	target	platform	for	cross	compilation

-t	<	value	>

Set	stack	size	in	kbytes	(default:	1M)
-v

Be	verbose
-vec	<	level	>

Set	level	of	vector	optimizations	enabled	by	the	compiler
(default:	0)

-version
Show	compiler	version

-w	<	value	>
Set	min	warning	level:	all,	pedantic	or	a	value

-Wa	<	opt	>
Pass	options	to	GAS	(separated	by	commas)

-Wc	<	opt	>
Pass	options	to	GCC	(separated	by	commas)

-Wl	<	opt	>
Pass	options	to	LD	(separated	by	commas)

-x	<	name	>
Set	executable/library	path/name

-z	<	value	>
Sets	miscellaneous	or	experimental	options

See	also

Using	the	Command	Line

Compiler	Option:	@file 	

Read	(additional)	command-line	options	from	the	file

Syntax
@file

Parameters
file

Name	of	a	text	file	containing	command	line	options.	It's	possible	to
use	multiple	lines	in	the	file.	The	options	may	be	separated	by	spaces
or	line	breaks,	and	support	double-quoted	strings	to	allow	spaces	in
parameters	(like	the	real	command	line).	This	file	can	itself	contain
additional	@file	options.

Description
The	@file	compiler	option	tells	the	compiler	to	parse	the	specified	file
to	find	more	command	line	options.	The	options	found	in	the	file	are
treated	as	if	they	were	found	on	the	command	line.	This	can	be	useful
to	pass	very	long	command	lines	to	the	compiler,	for	example	on	DOS,
where	command	lines	are	limited	in	length.

Example
options.txt:

-d	TEST=123

opts.bas:

Print	"TEST="	&	TEST

Compile	with:

fbc	@options.txt	opts.bas

Output:

TEST=123

See	also

Using	the	Command	Line

Compiler	Option:	-a 	

Add	an	object	file	to	the	linker's	list

Syntax
[-a]	<	object	file	>

Parameters
object	file

Name	of	the	object	file	with	extension.

Description
The	-a	compiler	option	adds	a	compiled	object	file	to	the	linker's	list.
The	"-a"	is	optional	if	the	object	file	name	has	a	".o"	file	extension.

See	also

Compiler	Option:	-b
Using	the	Command	Line

Compiler	Option:	-arch 	

Set	target	architecture	for	improved/restricted	code	generation	or	cross-
compiling

Syntax
-arch	<	architecture	>

Parameters
architecture

The	target	architecture.	Recognized	values:

Related	to	32bit	x86:
386

486	(default	for	x86)
586

686

athlon

athlon-xp

athlon-fx

k8-sse3

pentium-mmx

pentium2

pentium3

pentium4

pentium4-sse3

Related	to	64bit	x86_64:
x86_64,	x86-64,	amd64

Related	to	32bit	ARM:
armv6

armv7-a	(default	for	ARM)
Related	to	64bit	ARM	(AArch64):

aarch64

Others:
native:	For	compiling	to	the	architecture
which	the	compiler	is	running	on.
32,	64:	For	quick	cross-compiling	to	the
32bit	or	64bit	version	of	the	default
architecture.

Description
The	-arch	compiler	option	sets	the	target	CPU	architecture.	This	can
be	used	for	multiple	purposes:

Improving	code	generation;	for	example:	You	can	use	-
arch	686	to	override	the	default	-arch	486,	and	the
compiler	will	generate	faster	code	in	some	cases,	by
using	certain	instructions	which	were	not	available	on
i486	(or	other	CPUs	older	than	i686).
Restricting	code	generation;	for	example:	You	can	use	-
arch	386	to	limit	the	compiler	to	using	only	i386-
compatible	instructions.
Cross-compiling;	for	example:	You	can	use	-arch	x86_64
on	32bit	x86	systems	to	cross-compile	to	64bit	x86_64.

The	exact	impact	which	the	-arch	setting	has	on	code	generation
depends	on	the	code	generation	backend	that	is	being	used.	The
x86	ASM	backend	(-gen	gas)	handles	the	-arch	setting	and	adjusts
code	generation	accordingly	in	some	cases.	When	using	the	GCC
backend	(-gen	gcc),	the	specified	architecture	will	be	passed	on	to	gcc
via	gcc	-march=<...>,	causing	gcc	to	generate	code	for	the	specified
architecture.

However,	-arch	only	affects	newly	generated	code,	but	not	pre-
compiled	code	such	as	the	FreeBASIC	runtime	libraries,	or	any	other
library	from	the	lib/	directory.	For	example,	using	-arch	386	is	not
necessarily	enough	to	get	a	pure	i386	executable	--	it	also	depends	on
how	all	the	libraries	that	will	be	linked	in	were	compiled.

The	-arch	32	and	-arch	64	shortcuts	are	similar	to	gcc's	-m32/-m64

options.	On	32bit	architectures,	-arch	64	is	an	abbreviation	for	cross-
compiling	to	the	default	64bit	version	of	the	architecture	(e.g.	from
32bit	x86	to	64bit	x86_64,	or	32bit	ARM	to	64bit	AArch64),	and	-arch
32	does	nothing.	On	64bit	systems,	it	is	the	other	way	round:	-arch	32
cross-compiles	to	the	default	32bit	architecture,	while	-arch	64	does
nothing.

The	-arch	native	shortcut	is	similar	to	gcc's	-march=native	option.	On
x86,	it	causes	fbc	to	try	and	detect	the	host	CPU	automatically	based
on	the	cpuid	instruction	and	its	availability	or	results.	On	other
architectures,	this	will	currently	simply	use	the	architecture	which	the
compiler	itself	was	built	for.	Under	-gen	gcc	this	will	use	gcc	-
march=native.

Specifying	an	-arch	setting	incompatible	to	the	native	architecture	will
trigger	cross-compilation,	just	like	the	-target	option,	except	that
only	the	target	architecture,	but	not	the	target	operating	system,	is
changed.

See	also

Using	the	Command	Line
-target
FB	and	cross-compiling

Compiler	Option:	-asm 	

Set	assembler	format	for	inline	assembly	under	-gen	gcc

Syntax
-asm	<	format	>

Parameters
format

The	assembler	format:	intel	or	att

Description
The	-asm	compiler	option	sets	the	assembler	format	for	inline	Asm
blocks	when	using	-gen	gcc.

-gen	gcc	-asm	intel:	FB	inline	assembly	blocks	must
use	FB's	usual	Intel	syntax	format.	Under	-gen	gcc,	fbc
will	try	to	translate	it	to	gcc's	format	automatically.	For
example:

Dim	a	As	Long	=	1

Print	a

Asm

				inc	dword	Ptr	[a]

End	Asm

Print	a

-gen	gcc	-asm	att:	FB	inline	assembly	blocks	must	use
gcc's	format.	For	example:

Dim	a	As	Long	=	1

Print	a

Asm

				"incl	%0\n"	:	"+m"	(a)	:	:

End	Asm

https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html

Print	a

The	x86	ASM	backend	(-gen	gas)	currently	only	supports	-asm	intel
and	using	-asm	att	results	in	an	error.

See	also

__Fb_Asm__
Using	the	Command	Line

Compiler	Option:	-b 	

Add	a	source	file	to	compilation

Syntax
[-b]	<	source	file	>

Parameters
source	file

The	name	with	extension,	and	optionally	a	path,	of	the	basic	source
file.

Description
The	-b	option	adds	a	source	file	to	the	compilation	list.	In	general,	this
option	is	redundant	since	source	files	with	a	.bas	extension	can	be
specified	without	it,	but	is	useful	if	a	source	file	does	not	have	a	.bas
extension,	or	if	exists	in	an	other	directory.

To	compile	and	link	the	source	files	file1.bas,	file2.bas	and	file3.fb	into
an	executable	(file1.exe	in	DOS/Windows,	file1	in	Linux),	type,

fbc	-b	file1.bas	file2.bas	-b	file3.fb

Note	that	the	-b	option	was	not	needed	for	file1.bas	or	file2.bas.

See	also

Compiler	Option:	-a
Using	the	Command	Line

Compiler	Option:	-c 	

Compile	and	assemble	source	file	only,	do	not	link

Syntax
-c

Description
The	-c	option	specifies	that	any	source	files	listed	are	to	be	compiled
and	assembled	into	object	files,	and	not	linked	into	an	executable	(the
default	behavior).	When	using	the	"-c"	switch,	"-m"	must	be	specified
when	compiling	a	main	source	file.

See	also

Compiler	Option:	-C
Compiler	Option:	-r
Compiler	Option:	-m
Compiler	Option:	-o
Using	the	Command	Line

Compiler	Option:	-C 	

Do	not	delete	the	object	file(s)

Syntax
-C

Description
The	-C	compiler	option	causes	the	object	file(s)	that	are	generated
during	the	compile	process	to	not	be	deleted.

See	also

Compiler	Option:	-c
Compiler	Option:	-R
Using	the	Command	Line

Compiler	Option:	-d 	

Add	a	preprocessor	definition

Syntax
-d	<	name=value	>

-d	<	name	>

Parameters
name

Name	of	the	preprocessor	macro	to	define.	No	parameters	are
allowed.
value

Value	to	give	to	the	macro.	If	omitted,	it	will	be	defined	as	1

Description
The	-d	compiler	option	adds	a	preprocessor	macro	to	all	source	files.
The	same	as	using	the	preprocessor	directive	#define	or	#macro.

See	also

#define
#macro
Intrinsic	Defines
Using	the	Command	Line

Compiler	Option:	-dll 	

Create	a	DLL	and	import	library

Syntax
-dll

Description
The	-dll	compiler	option	creates	a	dynamic	link	library.	This	creates	a
DLL	under	Windows	(including	the	import	library),	and	creates	a	.so
under	Linux.

The	intrinsic	macro	__FB_OUT_DLL__	is	set	to	non-zero	(-1)	if	the	-dll
option	was	specified,	and	set	to	zero	(0)	otherwise.

Platform	Differences

Not	supported	on	the	DOS	platform.

See	also

__FB_OUT_DLL__

Shared	Libraries
Using	the	Command	Line

Compiler	Option:	-dylib 	

Create	a	DLL	and	import	library

Syntax
-dylib

Description
The	-dylib	compiler	option	creates	a	dynamic	link	library.	This	creates
a	DLL	under	Windows	(including	the	import	library),	and	creates	a	.so
under	Linux.

The	intrinsic	macro	__FB_OUT_DLL__	is	set	to	non-zero	(-1)	if	the	-dll
option	was	specified,	and	set	to	zero	(0)	otherwise.

Platform	Differences

Not	supported	on	the	DOS	platform.

See	also

__FB_OUT_DLL__

Shared	Libraries
Using	the	Command	Line

Compiler	Option:	-e 	

Add	error	checking

Syntax
-e

Description
Adds	QuickBASIC-like	error	checking.

See	also

__FB_ERR__

Compiler	Option:	-ex
Compiler	Option:	-exx
Error	Handling
Using	the	Command	Line

Compiler	Option:	-ex 	

Add	error	checking	with	Resume	support

Syntax
-ex

Description
The	-ex	compiler	option	adds	error	handling	as	with	the	-e	option	plus
support	for	Resume.

See	also

__FB_ERR__

Compiler	Option:	-e
Compiler	Option:	-exx
Error	Handling
Using	the	Command	Line

Compiler	Option:	-exx 	

Add	error	checking	with	Resume	support	and	array	bounds	and	null-pointer
checking

Syntax
-exx

Description
The	-exx	compiler	option	adds	error	checking	with	Resume	support	plus
array	bounds	and	null-pointer	checking	(including	the	procedure
pointers).

See	also

__FB_ERR__

Compiler	Option:	-e
Compiler	Option:	-ex
Error	Handling
Using	the	Command	Line

Compiler	Option:	-export 	

Export	symbols	for	dynamic	linkage

Syntax
-export

Description
The	-export	compiler	option	exports	symbols	for	dynamic	linkage.

See	also

Export

Shared	Libraries
Using	the	Command	Line

Compiler	Option:	-forcelang 	

Provides	QuickBASIC	or	backward	compatibility

Syntax
-forcelang	dialect

Parameters
dialect

The	dialect	to	use	in	compilation,	one	of	fb	(default),	fblite,	qb	or
deprecated.

Description
The	-forcelang	compiler	option	changes	the	way	source	code	is
interpreted,	and	is	meant	as	a	tool	to	users	wanting	traditional
QuickBASIC-like	behavior,	or	behavior	deprecated	from	previous
versions	of	FreeBASIC.	It	overrides	any	#lang	statements	within	the
code.

The	intrinsic	macro	__FB_LANG__	is	set	to	the	string	name	of	the	dialect
specified	on	the	command	line,	or	"fb"	by	default.

To	learn	more	about	the	differences	between	each	of	these	language
dialects,	see	Compiler	Dialects.

fb

This	is	the	default	dialect,	and	allows	compilation	of	source	code
adhering	to	the	most	recent	version	of	the	FreeBASIC	language.

fblite

This	dialect	provides	support	for	FreeBASIC	syntax	and	functionality,
but	with	a	more	traditional	QuickBASIC	programming	style.

qb

This	dialect	provides	the	best	support	for	older	QuickBASIC	code.

deprecated

This	dialect	is	for	backward	compatibility	with	some	previous	versions
of	FreeBASIC,	however,	this	dialect	may	not	exist	in	future	versions.
Programmers	should	consider	using	the	"fblite"	dialect	instead.

See	also

#lang

__FB_LANG__

Compiler	Option:	-lang
Compiler	Dialects
Using	the	Command	Line

Compiler	Option:	-fpmode 	

Selects	faster,	less	accurate	or	slower,	more	precise	floating-point	math.

Syntax
-fpmode	<	mode	>

Parameters
mode

The	floating	point	mode:	FAST	|	PRECISE.

Description
The	-fpmode	compiler	option	specifies	whether	speed	or	precision	is
more	important	for	floating	point	math.	If	this	option	is	not	specified,	the
default	is	-fpmode	PRECISE.

-fpmode	FAST	will	generate	faster,	less	accurate	instructions	for	certain
floating	point	operations.

-fpmode	PRECISE	will	generate	standard	floating	point	instructions	that
operate	at	the	default	speed	and	accuracy	of	the	selected	floating	point
unit.

Currently,	the	only	floating	point	operations	that	behave	differently
when	using	-fpmode	FAST	are:	Sin(),	Cos(),	reciprocal,	and	reciprocal
Square	Root,	all	of	which	must	operate	on	Single	precision	values.

Using	-fpmode	PRECISE	is	dependent	on	the	-fpu	SSE	command	line
option.	Using	-fpmode	PRECISE	without	using	-fpu	SSE	will	generate	an
error.

See	also

Using	the	Command	Line
Compiler	Option:	-fpu
__Fb_Fpmode__

Compiler	Option:	-fpu 	

Sets	the	math	unit	to	be	used	for	floating	point	arithmetics.

Syntax
-fpu	<	type	>

Parameters
type

The	floating	point	unit:	X87	|	SSE.

Description
The	-fpu	compiler	option	sets	the	math	unit	to	be	used	for	floating
point	arithmetics.	If	this	option	is	not	specified,	the	default	is	-fpu	X87.

-fpu	X87	will	generate	floating	point	instructions	for	the	387.

-fpu	SSE	will	generate	floating	point	instructions	for	SSE	and	SSE2
with	some	math	support	still	done	by	the	387.

Functions	normally	return	a	floating	point	value	(Single	or	Double)	in
the	st(0)	register.	Sometimes,	this	may	be	optimized	by	returning	the
value	in	the	xmm0	register	instead.	This	can	be	specified	with
Option("Sse")	after	the	return	type	in	a	function's	declaration	or
definition.	Option("Sse")	is	ignored	unless	the	source	is	compiled	with
the	-fpu	SSE	command	line	option.

See	also

Using	the	Command	Line
Option()

__Fb_Fpu__

Compiler	Option:	-g 	

Add	debug	information

Syntax
-g

Description
The	-g	compiler	option	inserts	debugging	symbols	into	output	files,	to
use	with	GDB-compatible	debuggers.

The	intrinsic	macro	__FB_DEBUG__	is	set	to	non-zero	(-1)	if	the	option
was	specified,	and	set	to	zero	(0)	otherwise.

See	also

__FB_DEBUG__

Debugging
Using	the	Command	Line

Compiler	Option:	-gen 	

Sets	the	backend	code	emitter.

Syntax
-gen	<	backend	>

Parameters
backend

gas	for	x86	GAS	assembly,	gcc	for	GNU	C,	llvm	for	LLVM	IR.

Description
The	-gen	compiler	option	sets	the	backend	code	emitter	and
assembler.

-gen	gas
The	compiler	will	emit	GAS	assembler	code	to	a	.asm	file	which	will
then	be	compiled	to	an	object	file	using	'as'.	This	is	fbc's	original	x86
code	generation	backend.
-gen	gcc
The	compiler	will	emit	C	code	to	a	.c	file	which	will	then	be	compiled	to
an	.asm	file	using	'gcc'	as	a	high	level	assembler.	The	C	backend	is
intended	to	make	FB	portable	to	more	platforms	than	just	x86.	This
requires	gcc	to	be	installed	so	that	fbc	can	invoke	it	to	compile	the	C
code,	also	see	Installing	gcc	for	-gen	gcc.
-gen	llvm
The	compiler	will	emit	LLVM	IR	code	to	a	.ll	file	which	will	then	be
compiled	to	an	.asm	file	using	'llc'.	The	LLVM	backend	is	still	a	work	in
progress.	It	is	intended	for	the	same	purpose	as	the	C	backend,	and
could	theoretically	solve	some	of	the	C	backend's	problems,	such	as
debugging	meta	data	support.

See	also

Tools	used	by	fbc
Using	the	Command	Line

Compiler	Option:	-i 	

Add	a	path	to	search	for	include	files

Syntax
-i	<	include	path	>

Parameters
include	path

The	directory	path,	relative	or	absolute,	of	where	to	search	for	include
files.

Description
The	-i	option	allows	an	additional	directory	to	be	used	when	searching
for	header	files.	By	default,	fbc	searches	in	the	current	directory,	and
prefix/inc--in	that	order--where,	prefix	is	the	location	where	FreeBASIC
is	installed.	A	directory	specified	with	the	-i	option	will	be	searched
before	these	default	directories,	and	when	the	-i	option	is	used
multiple	times,	fbc	will	search	the	directories	in	the	order	they	are	listed
on	the	command-line.

To	search	in	the	subdirectory	includes	first	for	header	files	while
compiling	the	source	file	file.bas,	type,

fbc	-i	includes	file.bas	

See	also

#include

Compiler	Option:	-include
Header	Files
Using	the	Command	Line

Compiler	Option:	-include 	

Include	a	header	file	on	each	source	compiled

Syntax
-include	<	include	file	>

Parameters
include	file

The	header	file	name	with	extension,	and	optionally	a	path,	to	include.

Description
The	-include	option	has	the	effect	of	adding	an	#include	preprocessor
directive	to	the	very	beginning	of	each	source	file	before	processing	it.
When	used	multiple	times,	the	files	will	be	included	in	the	order	they
are	listed	on	the	command-line.

To	include	the	file	header.bi	when	processing	file1.bas	and	file2.bas,
type,

fbc	-include	header.bi	file1.bas	file2.bas

See	also

#include

Compiler	Option:	-i
Header	Files
Using	the	Command	Line

Compiler	Option:	-l 	

Add	a	library	file	to	the	linker's	list.

Syntax
-l	<	libname	>

Parameters
libname

Name	of	the	library	to	link	in.	The	library	file	name's	extension	should
not	be	included.	For	example,	when	using	-l	something,	the	linker	will
look	for	the	files:

Libsomething.a

Libsomething.dll.a	(Windows)
something.dll	(Windows)
Libsomething.so	(Linux)

Description
The	-l	compiler	option	adds	a	library	file	to	the	linker's	list,	to	be	linked
into	the	final	executable	or	library	if	needed	to	satisfy	dependencies.

See	also

#inclib

Compiler	Option:	-p
Using	the	Command	Line

Compiler	Option:	-lang 	

Provides	QuickBASIC	or	backward	compatibility

Syntax
-lang	dialect

Parameters
dialect

The	dialect	to	use	in	compilation,	one	of	fb	(default),	fblite,	qb	or
deprecated.

Description
The	-lang	compiler	option	changes	the	way	source	code	is	interpreted,
and	is	meant	as	a	tool	to	users	wanting	traditional	QuickBASIC-like
behavior,	or	behavior	deprecated	from	previous	versions	of
FreeBASIC.

The	intrinsic	macro	__FB_LANG__	is	set	to	the	string	name	of	the	dialect
specified	on	the	command	line,	or	"fb"	by	default.

To	learn	more	about	the	differences	between	each	of	these	language
dialects,	see	Compiler	Dialects.

fb

This	is	the	default	dialect,	and	allows	compilation	of	source	code
adhering	to	the	most	recent	version	of	the	FreeBASIC	language.

fblite

This	dialect	provides	support	for	FreeBASIC	syntax	and	functionality,
but	with	a	more	traditional	QuickBASIC	programming	style.

qb

This	dialect	provides	the	best	support	for	older	QuickBASIC	code.

deprecated

This	dialect	is	for	backward	compatibility	with	some	previous	versions
of	FreeBASIC,	however,	this	dialect	may	not	exist	in	future	versions.
Programmers	should	consider	using	the	"fblite"	dialect	instead.

Note:	this	command-line	option	can	be	overridden	by	any	#lang
statements	used	in	the	code.

See	also

#lang

__FB_LANG__

Compiler	Option:	-forcelang
Compiler	Dialects
Using	the	Command	Line

Compiler	Option:	-lib 	

Create	a	static	library

Syntax
-lib

Description
The	-lib	compiler	option	creates	a	static	library.

The	intrinsic	macro	__FB_OUT_LIB__	is	set	to	non-zero	(-1)	if	the	-lib
option	was	specified,	and	set	to	zero	(0)	otherwise.

See	also

__FB_OUT_LIB__

Static	Libraries
Using	the	Command	Line

Compiler	Option:	-m 	

Main	file	without	extension	to	indicate	the	main	module

Syntax
-m	<	source	file	>

Parameters
source	file

The	name	without	extension	of	the	main	module	source	file

Description
The	-m	compiler	option	specifies	a	main	entry	point	for	a	source	file;
the	argument	is	the	name	of	a	source	file	minus	its	extension.	If	"-m"	is
not	specified,	the	first	source	file	listed	is	given	a	main	entry	point.
When	using	the	"-c"	or	"-r"	switch,	"-m"	must	be	specified	when
compiling	a	main	source	file.

The	intrinsic	macro	__FB_MAIN__	is	defined	in	the	main	module	and	not
defined	in	other	modules.

See	also

__FB_MAIN__

Compiler	Option:	-c
Compiler	Option:	-r
Using	the	Command	Line

Compiler	Option:	-map 	

Save	the	linking	map	to	file	name

Syntax
-map	<	map	file	>

Parameters
map	file

Name	of	the	map	file	to	save	generated	during	linking.

Description
The	-map	compiler	option	saves	the	a	map	file	of	the	executable	made.

See	also

Using	the	Command	Line

Compiler	Option:	-maxerr 	

Set	maximum	number	of	errors	to	report	before	aborting	compilation

Syntax
-maxerr	<	value	|	"inf"	>

Parameters
value	|	"inf"

Specifies	the	maximum	number	of	errors	or	no	maximum	if	"inf"	is
given	instead	of	a	value.

Description
The	-maxerr	compiler	option	sets	the	maximum	number	of	errors	the
compiler	must	find	before	stopping.	The	default	is	10.	If	inf,	for	infinite,
is	specified	the	compiler	continues	until	it	finds	the	end	of	the	source.
Useful	if	an	IDE	is	parsing	the	error	messages.

See	also

Using	the	Command	Line

Compiler	Option:	-mt 	

Link	with	thread-safe	runtime	library

Syntax
-mt

Description
The	-mt	compiler	option	forces	linking	with	thread-safe	runtime	library
for	multithreaded	applications.	The	thread-safe	version	is	always	used
automatically	if	the	FreeBASIC	built-in	threading	functions	are	used,	so
you	only	need	to	specify	this	option	if	using	your	own	threading
routines.

The	intrinsic	macro	__FB_MT__	is	set	to	non-zero	(-1)	if	the	-mt	option
was	specified,	and	set	to	zero	(0)	otherwise.

See	also

__FB_MT__

Using	the	Command	Line

Compiler	Option:	-nodeflibs 	

Do	not	include	the	default	libraries

Syntax
-nodeflibs

Description
The	-nodeflibs	compiler	option	causes	default	libraries	not	to	be	used
when	linking.	The	libraries	which	are	normally	linked	by	default	can	still
be	used,	but	only	if	they	are	explicitly	specified.

See	also

Using	the	Command	Line

Compiler	Option:	-noerrline 	

Do	not	show	source	line	where	error	occurred

Syntax
-noerrline

Description
The	-noerrline	compiler	option	causes	reported	errors	to	not	show	the
place	in	source	where	error	occurred.	Useful	if	an	IDE	is	parsing	the
error	messages.

See	also

Using	the	Command	Line

Compiler	Option:	-o 	

Set	object	file	path/name

Syntax
-o	<	output	file	>

Parameters
output	file

The	name,	with	optional	path,	of	the	object	file	to	create.

Description
The	-o	option	can	be	used	to	specify	the	file	name	for	the	object	file
created	while	compiling	an	input	file.	By	default,	the	name	for	the
object	file	(and	other	temporaries	like	assembly	files)	is	based	on	the
name	of	the	corresponding	input	file,	but	with	an	.o	extension.	This
option	is	useful	for	example	in	combination	with	-c,	or	to	force	the
compiler	to	create	temporary	object	files	in	other	directories	(if,	for
example,	the	source	code	directory	is	or	should	be	treated	as	read-
only).

Given	-o	options	are	only	assigned	to	input	files	that	need	to	be
compiled,	namely	*.bas,	*.rc,	*.res	and	*.xpm.

Note:	-o	options	can	appear	in	front	of	or	behind	the	input	file	they
correspond	to,	but	there	cannot	be	multiple	-o	options	for	one	input	file.
For	example,	these	are	all	accepted:
fbc	1.bas	-o	1.o

fbc	-o	1.o	1.bas

fbc	1.bas	-o	1.o	2.bas	-o	2.o

fbc	1.bas	-o	1.o	-o	2.o	2.bas

However,	this	is	an	error:
fbc	1.bas	2.bas	-o	1.o	-o	2.o

The	-v	option	makes	the	compiler	show	the	actual	file	names	that	it
uses.

See	also

Compiler	Option:	-b
Compiler	Option:	-c
Using	the	Command	Line

Compiler	Option:	-O 	

Set	the	optimization	level	for	GCC

Syntax
-O	<	level	>

Parameters
level

The	optimization	level:	0,	1,	2,	3	or	max	(3).

Description
Specifies	the	optimization	level	to	be	passed	to	GCC	when	using	-gen
gcc.

See	also

Compiler	Option:	-gen	gcc
Using	the	Command	Line

Compiler	Option:	-p 	

Add	a	path	to	search	for	libraries

Syntax
-p	<	library	path	>

Parameters
library	path

The	directory	path,	relative	or	absolute,	of	where	to	search	for	library
files.

Description
The	-p	compiler	option	adds	a	path	to	search	for	libraries.	By	default,
libraries	are	looked	for	in	the	system	FreeBASIC	libraries	directory	and
in	the	current	directory.

See	also

#libpath

Using	the	Command	Line

Compiler	Option:	-pic 	

Generate	position-indepedent	code	(non-x86	Unix	shared	libs)

Syntax
-pic

Description
The	-pic	compiler	option	tells	the	compiler	to	generate	position-
indepedent	code.	This	is	needed	for	creating	shared	libraries	on
x86_64	or	ARM	Linux/BSD	platforms	except	Win64	(and	also	not	on
32bit	x86).	This	option	should	not	be	used	when	creating	executables
(as	opposed	to	shared	libraries)	though.

By	default,	-pic	is	enabled	when	using	-dll	or	-dylib,	and	disabled
for	all	other	compilation	modes.	Usually	you	only	have	to	specify	-pic	if
you	are	using	-c	or	-lib	and	want	to	link	them	into	shared	libraries
later.

-pic	is	implemented	by	passing	-fPIC	to	gcc	(when	using	the	-gen	gcc
backend).	The	-gen	gas	backend	does	not	support	position-indepedent
code	since	it	only	supports	32bit	x86	and	there	is	no	special	position-
indepedent	code	needed	for	shared	libraries	on	32bit	x86.

See	also

Using	the	Command	Line

Compiler	Option:	-pp 	

Emit	the	preprocessed	input	file	only,	do	not	compile

Syntax
-pp

Description
The	-pp	compiler	option	enables	the	preprocessor-only	mode.	The
code	is	parsed	&	checked	as	usual,	but	is	not	compiled.	A	pre-
processed	version	of	every	input	source.bas	is	generated,	named
source.pp.bas.	

See	also

Using	the	Command	Line

Compiler	Option:	-prefix 	

Set	the	compiler	prefix	path

Syntax
-prefix	<	path	>

Parameters
path

The	directory,	relative	or	absolute	to	where	fbc	is	located.

Description
The	-prefix	compiler	option	sets	the	compiler	prefix	(where	the
compiler	finds	the	bin,	lib,	and	inc	directories);	and	defaults	to	the	path
where	fbc	resides,	if	this	can	be	determined.

See	also

Using	the	Command	Line

Compiler	Option:	-print 	

Print	out	information

Syntax
-print	option

Description
The	-print	option	can	be	used	to	query	the	compiler	for	certain
information	which	may	be	useful	especially	for	build	scripts.	It	does	not
prevent	compilation	of	input	files	given	besides	the	-print	option,	but
the	compiler	also	can	be	invoked	with	only	a	-print	option	and	no
input	files,	in	which	case	it	will	not	compile	anything	but	only	respond	to
the	-print	option.

Currently,	the	following	-print	options	are	recognized:

option effect

host Prints	the	host	system	on	which	fbc	is	running

target Prints	the	target	system	for	which	fbc	is	compiling	(can	be	affected	by	the	-target
option)

x Prints	the	file	name	of	the	output	executable	or	library	that	fbc	will	or	would
generate	(named	after	the	-x	option),	depending	on	other	command	line	options

Example
A	makefile	could	use	target	:=	$(shell	$(FBC)	-print	target)	to	find
out	the	compilation	target,	which	would	even	work	when	cross-
compiling,	with	FBC	set	to	something	like	fbc	-target	foo.

fbc	-print	x	alone	will	print	out	the	executable	file	extension	for	the
target	system.
fbc	-print	x	-dll	on	the	other	hand	will	print	out	the	dynamic	library
file	name	format.
fbc	-print	x	-m	foo	will	print	out	the	executable	file	name	that	would

http://en.wikipedia.org/wiki/Make_(software)

be	used	when	compiling	a	module	called	foo.bas.
fbc	1.bas	2.bas	-lib	-print	x	will	compile	1.bas	and	2.bas	into	a
library,	whose	file	name	will	be	displayed.

See	also

-x
-target
Using	the	Command	Line

Compiler	Option:	-profile 	

Enable	function	profiling

Syntax
-profile

Description
The	-profile	compiler	option	enables	function	profiling.	After	running
an	executable	compiled	with	this	option,	a	gmon.out	file	will	be	created
in	the	program	directory,	allowing	use	of	GPROF	for	analysis	of	the
program's	execution.

See	also

Profiling
Using	the	Command	Line

Compiler	Option:	-r 	

Compile	into	*.asm/*.c/*.ll	file(s)	only,	do	not	assemble	or	link

Syntax
-r

Description
The	-r	option	specifies	that	any	source	files	listed	are	to	be	compiled
to	*.asm/*.c/*.ll	files,	depending	on	the	used	code	generation
backend,	and	not	compiled	or	linked	into	an	executable.

When	using	the	-r	option,	-m	must	be	specified	when	compiling	the
main	module.

Use	the	-R	option	to	preserve	intermediate	files	without	affecting
compilation/assembling/linking.
Use	the	-rr	option	to	compile	input	source	files	to	*.asm	regardless	of
the	code	generation	backend.

See	also

Compiler	Option:	-c
Compiler	Option:	-R
Compiler	Option:	-m
Compiler	Option:	-gen
Compiler	Option:	-rr
Using	the	Command	Line

Compiler	Option:	-R 	

Preserve	intermediate	*.asm/*.c/*.ll	file(s)	generated	by	compilation

Syntax
-R

Description
The	-R	compiler	option	causes	the	intermediate	*.asm/*.c/*.ll	file(s)
that	are	generated	during	the	compile	process	to	be	preserved.	Other
than	that,	compilation	is	performed	as	usual.	Which	files	are	generated
exactly	depends	on	the	used	code	generation	backend	and
compilation	target.

When	compiling	a	Windows	DLL,	-R	also	preserves	the	intermediate
*.def	file	used	for	generating	the	import	library	for	the	DLL.

See	also

Compiler	Option:	-C
Compiler	Option:	-r
Compiler	Option:	-gen
Using	the	Command	Line

Compiler	Option:	-rr 	

Compile	into	*.asm	file(s)	only,	do	not	assemble	or	link

Syntax
-rr

Description
The	-rr	option	specifies	that	any	source	files	listed	are	to	be	compiled
to	*.asm	files,	and	not	compiled	or	linked	into	an	executable.	Unlike
with	the	-r	option,	this	works	regardless	of	the	used	code	generation
backend.

When	using	the	-rr	option,	-m	must	be	specified	when	compiling	a
main	source	file.

Use	the	-RR	option	to	preserve	the	generated	*.asm	files	without
affecting	compilation/assembling/linking.

See	also

Compiler	Option:	-c
Compiler	Option:	-r
Compiler	Option:	-RR
Compiler	Option:	-m
Compiler	Option:	-gen
Using	the	Command	Line

Compiler	Option:	-RR 	

Preserve	intermediate	*.asm	files	generated	by	compilation

Syntax
-RR

Description
The	-RR	compiler	option	causes	the	intermediate	*.asm	file(s)	that	are
generated	during	the	compile	process	to	be	preserved.	Other	than	that,
compilation	is	performed	as	usual.

See	also

Compiler	Option:	-C
Compiler	Option:	-rr
Compiler	Option:	-R
Using	the	Command	Line

Compiler	Option:	-s 	

Sets	the	executable	subsystem

Syntax
-s	<	subsystem	>

Parameters
subsystem

The	executable	subsystem:	gui	or	console.

Description
The	-s	compiler	option	specifies	the	executable	subsystem.	Allowed
subsystems	are	gui	and	console	(by	default,	console	is	used).
Specifying	a	gui	subsystem	prevents	the	console	window	from
appearing	behind	the	program	window.

Platform	Differences

Supported	on	Windows	and	Cygwin	only.

See	also

Using	the	Command	Line

Compiler	Option:	-showincludes 	

Display	a	tree	of	file	names	of	#included	files	

Syntax
-showincludes

Description
Tells	the	compiler	to	display	the	file	names	of	loaded	source	code	files,
in	form	of	a	tree.	This	includes	the	*.bas	files	at	the	toplevel,	aswell	as
the	names	of	#included	files	as	they	are	being	#included.	This	is
intended	to	be	used	for	debugging	#include	dependencies,	etc.

See	also

Using	the	Command	Line

Compiler	Option:	-static 	

Prefer	static	libraries	over	dynamic	ones	when	linking

Syntax
-static

Description
When	creating	an	executable	or	a	shared	library/DLL,	the	-static
compiler	option	can	be	used	to	tell	the	compiler	to	prefer	linking
against	static	libraries	rather	than	shared	libraries/DLLs.	That	way,	if
the	linker	finds	both	static	and	shared	versions	of	a	library,	it	will	use
the	static	version,	rather	than	defaulting	to	the	shared	version.

Installing	the	proper	static	libraries	and	then	using	-static	can	be	used
to	avoid	some	or	all	dependencies	on	shared	libraries.

Platform	Differences

On	Linux	&	co	it	is	possible	to	create	purely	statically	linked
executables,	because	static	versions	of	the	system	libraries
used	by	FreeBASIC	are	available.
On	Windows,	there	are	no	static	versions	of	the	system
libraries,	but	-static	can	still	be	useful	to	decide	between	static
library	or	DLL	versions	of	other	libraries,	if	both	are	installed.

See	also

Using	the	Command	Line

Compiler	Option:	-target 	

Set	the	target	platform	for	cross	compilation

Syntax
-target	<	platform	>

Parameters
platform

The	target	platform.	Recognized	values:

dos

win32

win64

xbox

<os>-<arch>

<os>	can	be	one	of:
linux

cygwin

darwin

freebsd

netbsd

openbsd

<arch>	can	be	one	of:
x86

x86_64

arm

aarch64

Examples:
linux-x86

linux-x86_64

linux-arm

linux-aarch64

freebsd-x86

freebsd-x86_64

...

For	backwards	compatibility,	the	following	values
are	recognized.	They	will	select	the	corresponding
operating	system,	together	with	the	compiler's
default	architecture	(same	as	the	host),	because
these	values	do	not	specify	an	architecture
explicitly.

linux

cygwin

darwin

freebsd

netbsd

openbsd

The	Normal	fbc	(e.g.	FB-linux	release)
additionally	recognizes	GNU	triplets,	for	example:

i686-w64-mingw32

x86_64-w64-mingw32

i686-pc-linux-gnu

arm-linux-gnueabihf

...

Description
The	-target	compiler	option	can	be	used	to	create	an	executable	for	a
platform	which	is	different	from	the	host	on	which	the	source	code	is
being	compiled	and	linked.	Appropriate	libraries	and	cross	compilation
tools	(assembler,	linker)	must	be	installed	for	cross	compilation	to	work
(also	see	FB	and	cross-compiling).	

If	-target	<platform>	is	given,	the	compiler	will	compile	programs
more	or	less	as	if	they	were	compiled	on	the	given	platform.	This
affects	which	__FB_*__	operating-system-specific	symbol	will	be	pre-
defined,	the	default	calling	convention,	the	object	and	executable	file

format	(e.g.	ELF/COFF),	the	available	runtime	libraries	and	functions,
etc.

With	a	standalone	FB	setup	such	as	the	FB-dos	or	FB-win32	releases:

Specifying	-target	<platform>	causes	the	compiler	to
use	the	compiler	tools	in	the	bin/<platform>/	directory,
and	target-specific	libraries	in	the	lib/<platform>/
directory.	For	example,	-target	win32	causes	the
compiler	to	compile	for	Win32	and	use	tools	from
bin/win32/	and	libraries	from	lib/win32/.
It	is	unnecessary	(but	safe)	to	specify	a	-target	option
that	matches	the	host	(for	example	-target	win32	on
win32).	It	does	not	make	a	difference	to	the	compilation
process.
If	-target	is	not	specified,	the	compiler	defaults	to
compiling	for	the	native	system.	It	will	then	use	the
compiler	tools	and	libraries	from	the	bin/	and	lib/
directories	corresponding	to	the	native	system.

With	a	normal	FB	setup	such	as	the	FB-linux	release:

Specifying	-target	<platform>	causes	the	compiler	to
prefix	the	<platform>-	string	to	the	executable	names	of
binutils	and	gcc.	For	example,	specifying	-target	i686-
w64-mingw32	causes	the	compiler	to	invoke	i686-w64-
mingw32-ld	instead	of	ld	(same	for	other	tools	besides
the	linker).	This	allows	fbc	to	integrate	with	binutils/gcc
cross-compiler	toolchains	and	matches	how	cross-
compiling	tools	are	typically	installed	on	Linux
distributions.
Note	that	specifying	something	like	-target	win32	does
not	usually	make	sense	here.	It	causes	the	compiler	to
try	to	use	win32-ld	which	usually	does	not	exist,	because
binutils/gcc	toolchains	for	cross-compilation	to	Windows
typically	have	names	such	as	i686-pc-mingw32,	not	just
win32.	Thus,	it	is	necessary	to	specify	something	like	-
target	i686-pc-mingw32	instead	of	-target	win32.

For	backwards	compatibility,	if	the	given	platform	string
describes	the	host	and	is	an	FB	target	name	(the	values
accepted	by	the	-target	option	with	a	standalone	FB
setup)	instead	of	a	GNU	triplet,	then	the	-target	option
will	be	ignored,	and	the	<platform>-	string	will	not	be
prefixed	to	compiler	tools.	For	example,	this	allows	-
target	linux	to	work	with	the	FB-linux	release.	It	will	be
ignored	instead	of	causing	the	compiler	to	try	to	use
linux-ld	instead	of	ld.
If	-target	is	not	specified,	the	compiler	defaults	to
compiling	for	the	native	system,	and	it	will	invoke
binutils/gcc	without	a	target-specific	prefix.	This	allows
fbc	to	integrate	with	usual	Linux	(and	similar)	systems
where	binutils/gcc	for	native	compilation	are	installed
without	any	target-specific	prefix.
Libraries	besides	FB's	own	runtime	libraries	are	located
by	running	gcc	-print-file-name=...	(or	<platform>-gcc
-print-file-name=...).	This	allows	fbc	to	use	the	system
and	gcc	libraries	installed	on	Linux	and	similar	systems
without	knowing	the	exact	installation	directories.

See	also

Using	the	Command	Line
FB	and	cross-compiling

Compiler	Option:	-t 	

Set	stack	size	in	kilobytes

Syntax
-t	<	stack	size	>

Parameters
stack	size

Stack	size	in	kilobytes.

Description
The	-t	compiler	option	sets	the	stack	size	in	kilobytes	(defaults	to	1024
KBytes).	The	local	arrays	are	created	in	the	stack,	so	1MB	of	stack	is
not	always	enough.

Platform	Differences

Supported	on	Windows,	Cygwin	and	DOS	only.

See	also

Using	the	Command	Line

Compiler	Option:	-v 	

Be	verbose

Syntax
-v

Description
The	-v	compiler	option	activates	verbose	mode.	In	this	mode	the
compiler	shows	its	actions	step	by	step

See	also

Using	the	Command	Line

Compiler	Option:	-vec 	

Enables	vector	optimizations	by	the	compiler.

Syntax
-vec	<	level	>

Parameters
level

The	level	of	vectorization:	(0	|	NONE)	|	1	|	2.

Description
The	-vec	compiler	option	enables	multiple	levels	of	optimizations	by
searching	for	multiple	scalar	expressions	that	can	be	merged	into	a
single	vector	expression.	If	this	option	is	not	specified,	the	default	is	-
vec	0.

-vec	0	|	none	will	disable	vector	optimizations.

-vec	1	will	enable	complete	expression	merging	vectorization.

-vec	2	includes	-vec	1	but	also	enables	intra-expression	vectorization.

This	option	is	dependent	on	the	-fpu	SSE	command	line	option.
Attempting	to	enable	vector	optimizations	without	using	-fpu	SSE	will
generate	an	error.

See	also

Using	the	Command	Line
Compiler	option	-fpu

Compiler	Option:	-version 	

Show	compiler	version

Syntax
-version

Description
The	-version	compiler	option	makes	FBC	show	the	compiler	version
and	exit.	Any	other	command-line	options	are	ignored,	and	no
compilation	will	be	performed.

See	also

Using	the	Command	Line

Compiler	Option:	-w 	

Set	minimum	warning	level.

Syntax
-w	level	|	all	|	param	|	Escape	|	pedantic	|	Next

Parameters
level

Warning	messages	only	with	a	level	equal	or	greater	to	this	value	will
be	output.
all

Equivalent	to	specifying	a	level	of	zero	(0).
param

Warn	when	procedure	parameters	aren't	specified	with	either	ByVal	or
ByRef.
Escape

Warn	when	string	literals	contain	any	number	of	escape	characters	(\).
pedantic

Equivalent	to	specifying	the	param	and	Escape	arguments.
Next

Warn	when	Next	is	followed	by	an	identifier.

Description
The	-w	compiler	option	determines	which	compiler	warnings,	if	any,	are
output.	Each	possible	warning	is	associated	with	a	warning	level,
starting	from	zero	(0)	and	increasing	with	the	potential	problems	that
may	occur.	A	significantly	high	level	value	will	have	the	effect	of
suppressing	all	warning	messages.

Note	that	the	param,	Escape,	pedantic	and	Next	arguments	provide
additional	warnings	not	ordinarily	output,	even	by	default.

If	the	-w	option	is	not	specified,	it's	as	if	-w	0	was	used.	The	-w	option
can	be	specified	multiple	times.

See	also

Using	the	Command	Line

Compiler	Option:	-Wa 	

Pass	options	to	the	assembler	when	using	the	assembly	emitter	(-gen
gas),	the	default.

Syntax
-Wa	<	options	>

Parameters
options

Additional	options	to	pass	to	the	assembler.

Description
The	-Wa	compiler	option	passes	additional	options	to	GAS,	the
assembler.	Options	must	be	separated	by	commas	only.
For	example:
fbc	-Wa	-o,output.o,--verbose

See	also

Compiler	Option:	-gen
Compiler	Option:	-Wc
Compiler	Option:	-Wl
Using	the	Command	Line

Compiler	Option:	-Wc 	

Pass	options	to	the	C	compiler	when	using	the	C	emitter	(-gen	gcc).

Syntax
-Wc	<	options	>

Parameters
options

Additional	options	to	pass	to	the	C	compiler.

Description
The	-Wc	compiler	option	passes	additional	options	to	GCC,	the	C
compiler.	Options	must	be	separated	by	commas	only.
For	example:
fbc	-gen	gcc	-Wc	-m32,--verbose,-include,some-header.h

See	also

Compiler	Option:	-gen
Compiler	Option:	-Wa
Compiler	Option:	-Wl
Using	the	Command	Line

Compiler	Option:	-Wl 	

Pass	options	to	linker

Syntax
-Wl	<	options	>

Parameters
options

Additional	options	to	pass	to	the	linker.

Description
The	-Wl	compiler	option	passes	additional	options	to	LD,	the	linker.
Options	must	be	separated	by	commas	only.

See	also

Compiler	Option:	-Wa
Using	the	Command	Line

Compiler	Option:	-x 	

Set	executable/library	path/name

Syntax
-x	<	name	>

Parameters
name

Name	of	the	executable	or	library	file.

Description
The	-x	compiler	option	set	the	executable	or	library	name,	with
extension.	Defaults	to	the	name	of	the	first	source	file	passed	on	the
command	line.	When	compiling	libraries,	be	sure	to	add	the	"lib"	prefix
to	the	file	name,	otherwise	the	linker	will	not	be	able	to	find	it.	If
compiling	and	linking	separately,	this	option	must	be	set	only	in	the
linker.

See	also

Using	the	Command	Line

Compiler	Option:	-z 	

Sets	miscellaneous	or	experimental	compiler	options.

Syntax
-z	<	value	>

Parameters
value

Miscellaneous	compiler	option.

Description
The	-z	compiler	option	sets	miscellaneous,	obscure,	temporary,	or
experimental	options	used	by	the	developers.	There	is	no	guarantee
that	these	options	will	be	supported	in	future	versions	of	the	compiler.

-z	gosub-setjmp
Specifies	that	the	setjmp/longjmp	implementation	of	GoSub	should	be
used	even	when	the	GAS	backend	is	used.	By	default,	GoSub	will	be
supported	in	-gen	gas	using	CALL/RET	assembly	instructions	and	in	-
gen	gcc	using	setjmp/longjmp	C	runtime	functions.

See	also

Using	the	Command	Line

Debugging 	

The	debugger	is	in	the	bin\win32	or	bin\dos	directories	(the	GDB.EXE
file),	for	the	Windows	and	DOS	versions	respectively.	It	usually	comes
already	installed	in	most	Linux	distros.

(Note:	all	commands	should	be	typed	without	quotes	and	then	[return]
must	be	pressed.)

Compile	the	sources	using	the	-g	cmd-line	option	to	add
debugging	support.
Load	it	in	GDB	using:	"gdb	myapplicationname.exe"
Set	the	arguments	to	the	application	been	debugged	using:	"set
args	arg1	arg2	argn".	You	can	also	run	GDB	and	pass	the
arguments	directly	to	the	application	been	debugged:	"gdb	--args
myapp.exe	arg1	arg2	arg3".
If	the	executable	isn't	in	the	same	directory	of	the	source	files
where	it	was	compiled,	type:	"dir
path/to/my/application/sources".
Place	a	breakpoint	in	the	first	line	using:	"b	main".	To	place	a
breakpoint	in	a	function	called	"abc"	use:	"b	ABC"	(note:	all	in
uppercase,	GDB	is	case	sensitive	by	default,	but	you	can	use	the
"set	language	pascal"	command	to	change	GDB	to	case-
insensitive	mode).
Type	"r"	to	start	the	application.
Type	"n"	to	step	over	function	calls.	Keep	pressing	[return]	to	skip
to	the	next	line.
Type	"s"	to	step	into	function	calls.	Same	as	above.
Type	"c"	to	continue	execution	until	the	next	breakpoint.
Use	"print	ABC"	to	show	the	contents	of	the	variable	called	"abc".
GDB	supports	pointer/pointer	field	dereferencing,	indexing	and
arithmetics	too,	so	"print	*MYPOINTER"	will	also	work.	(note:
undeclared	variables	or	the	ones	with	suffixes	like	%	&	!	#	$	can't
be	printed).
Use	"disp	ABC"	to	display	the	contents	of	a	variable	called	"abc".

Use	"watch	ABC"	to	stop	each	time	a	variable	called	"abc"	is
changed.
Use	"r"	again	to	restart	the	application	when	finished.
Type	"q"	to	quit.
Type	"help"	to	see	a	list	of	commands,	there	are	many	others.

Compiler	Error	Messages 	

During	the	program	compilation	three	types	of	errors	can	arise:

Compiler	Warnings:
The	warnings	don't	stop	the	compilation,	just	alert	the	user	some	non-
recommended	and	error-prone	operation	is	attempted	in	the	code.	
Sometimes	one	of	these	operations	is	coded	deliberately	to	achieve	a
result,	in	this	case	the	warnings	can	be	disabled	by	setting	the	-w	1
option	at	the	command	line.

1	Passing	scalar	as	pointer
2	Passing	pointer	to	scalar
3	Passing	different	pointer	types
4	Suspicious	pointer	assignment
5	Implicit	conversion
6	Cannot	export	symbol	without	-export	option
7	Identifier's	name	too	big,	truncated
8	Literal	number	too	big,	truncated
9	Literal	string	too	big,	truncated
10	UDT	with	pointer	or	var-len	string	fields
11	Implicit	variable	allocation
12	Missing	closing	quote	in	literal	string
13	Function	result	was	not	explicitly	set
14	Branch	crossing	local	variable	definition
15	No	explicit	BYREF	or	BYVAL
16	Possible	escape	sequence	found	in
17	The	type	length	is	too	large,	consider	passing	BYREF
18	The	length	of	the	parameters	list	is	too	large,	consider	passing
UDT's	BYREF
19	The	ANY	initializer	has	no	effect	on	UDT's	with	default
constructors
20	Object	files	or	libraries	with	mixed	multithreading	(-mt)	options

21	Object	files	or	libraries	with	mixed	language	(-lang)	options
22	Deleting	ANY	pointers	is	undefined
23	Array	too	large	for	stack,	consider	making	it	var-len	or
SHARED
24	Variable	too	large	for	stack,	consider	making	it	SHARED
25	Overflow	in	constant	conversion
26	Variable	following	NEXT	is	meaningless
27	Cast	to	non-pointer
28	Return	method	mismatch
29	Passing	Pointer
30	Command	line	option	overrides	directive
31	Directive	ignored	after	first	pass
32	'IF'	statement	found	directly	after	multi-line	'ELSE'
33	Shift	value	greater	than	or	equal	to	number	of	bits	in	data	type
34	'='	parsed	as	equality	operator	in	function	argument,	not
assignment	to	BYREF	function	result
35	Mixing	signed/unsigned	operands
36	Mismatching	parameter	initializer
37	
38	Mixing	operand	data	types	may	have	undefined	results
39	Redefinition	of	intrinsic

Compiler	Error	messages:
The	error	messages	stop	the	compilation	after	10	errors	(see	the	-maxerr
command-line	option	to	change	that	default	value)	or	a	fatal	error
occurred,	and	require	a	correction	by	the	user	before	the	compilation	can
be	continued.	The	compiler	signals	the	lines	where	the	errors	have	been
found,	so	the	correction	can	be	done	quickly.	In	a	few	cases	the	place
pointed	at	by	the	error	messages	is	not	where	the	errors	can	be	found,
it's	the	place	where	the	compiler	has	given	up	in	waiting	for	something
that	should	be	somewhere.

1	Argument	count	mismatch
2	Expected	End-of-File

3	Expected	End-of-Line
4	Duplicated	definition
5	Expected	'AS'
6	Expected	'('
7	Expected	')'
8	Undefined	symbol
9	Expected	expression
10	Expected	'='
11	Expected	constant
12	Expected	'TO'
13	Expected	'NEXT'
14	Expected	identifier
15	Expected	'-'
16	Expected	','
17	Syntax	error
18	Element	not	defined
19	Expected	'END	TYPE'	or	'END	UNION'
20	Type	mismatch
21	Internal!
22	Parameter	type	mismatch
23	File	not	found
24	Invalid	data	types
25	Invalid	character
26	File	access	error
27	Recursion	level	too	deep
28	Expected	pointer
29	Expected	'LOOP'
30	Expected	'WEND'
31	Expected	'THEN'
32	Expected	'END	IF'
33	Illegal	'END'

34	Expected	'CASE'
35	Expected	'END	SELECT'
36	Wrong	number	of	dimensions
37	Array	boundaries	do	not	match	the	original	EXTERN
declaration
38	'SUB'	or	'FUNCTION'	without	'END	SUB'	or	'END	FUNCTION'
39	Expected	'END	SUB'	or	'END	FUNCTION'
40	Illegal	parameter	specification
41	Variable	not	declared
42	Variable	required
43	Illegal	outside	a	compound	statement
44	Expected	'END	ASM'
45	Function	not	declared
46	Expected	';'
47	Undefined	label
48	Too	many	array	dimensions
49	Array	too	big
50	User	Defined	Type	too	big
51	Expected	scalar	counter
52	Illegal	outside	a	CONSTRUCTOR,	DESTRUCTOR,
FUNCTION,	OPERATOR,	PROPERTY	or	SUB	block
53	Expected	var-len	array
54	Fixed-len	strings	cannot	be	returned	from	functions
55	Array	already	dimensioned
56	Illegal	without	the	-ex	option
57	Type	mismatch
58	Illegal	specification
59	Expected	'END	WITH'
60	Illegal	inside	functions
61	Statement	in	between	SELECT	and	first	CASE
62	Expected	array
63	Expected	'{'

64	Expected	'}'
65	Expected	']'
66	Too	many	expressions
67	Expected	explicit	result	type
68	Range	too	large
69	Forward	references	not	allowed
70	Incomplete	type
71	Array	not	dimensioned
72	Array	access,	index	expected
73	Expected	'END	ENUM'
74	Var-len	arrays	cannot	be	initialized
75	'...'	ellipsis	upper	bound	given	for	dynamic	array	(this	is	not
supported)
76	'...'	ellipsis	upper	bound	given	for	array	field	(this	is	not
supported)
77	Invalid	bitfield
78	Too	many	parameters
79	Macro	text	too	long
80	Invalid	command-line	option
81	Selected	non-x86	CPU	when	compiling	for	DOS
82	Selected	-gen	gas	ASM	backend	for	non-x86	CPU
83	-asm	att	used	for	-gen	gas,	but	-gen	gas	only	supports	-asm
intel
84	-pic	used	when	making	executable	(only	works	when	making	a
shared	library)
85	-pic	used,	but	not	supported	by	target	system	(only	works	for
non-x86	Unixes)
86	Var-len	strings	cannot	be	initialized
87	Recursive	TYPE	or	UNION	not	allowed
88	Recursive	DEFINE	not	allowed
89	Identifier	cannot	include	periods
90	Executable	not	found

91	Array	out-of-bounds
92	Missing	command-line	option	for
93	Expected	'ANY'
94	Expected	'END	SCOPE'
95	Illegal	inside	a	compound	statement	or	scoped	block
96	UDT	function	results	cannot	be	passed	by	reference
97	Ambiguous	call	to	overloaded	function
98	No	matching	overloaded	function
99	Division	by	zero
100	Cannot	pop	stack,	underflow
101	UDT's	containing	var-len	string	fields	cannot	be	initialized
102	Branching	to	scope	block	containing	local	variables
103	Branching	to	other	functions	or	to	module-level
104	Branch	crossing	local	array,	var-len	string	or	object	definition
105	LOOP	without	DO
106	NEXT	without	FOR
107	WEND	without	WHILE
108	END	WITH	without	WITH
109	END	IF	without	IF
110	END	SELECT	without	SELECT
111	END	SUB	or	FUNCTION	without	SUB	or	FUNCTION
112	END	SCOPE	without	SCOPE
113	END	NAMESPACE	without	NAMESPACE
114	END	EXTERN	without	EXTERN
115	ELSEIF	without	IF
116	ELSE	without	IF
117	CASE	without	SELECT
118	Cannot	modify	a	constant
119	Expected	period	('.')
120	Expected	'END	NAMESPACE'
121	Illegal	inside	a	NAMESPACE	block

122	Symbols	defined	inside	namespaces	cannot	be	removed
123	Expected	'END	EXTERN'
124	Expected	'END	SUB'
125	Expected	'END	FUNCTION'
126	Expected	'END	CONSTRUCTOR'
127	Expected	'END	DESTRUCTOR'
128	Expected	'END	OPERATOR'
129	Expected	'END	PROPERTY'
130	Declaration	outside	the	original	namespace
131	No	end	of	multi-line	comment,	expected	"'/"
132	Too	many	errors,	exiting
133	Expected	'ENDMACRO'
134	EXTERN	or	COMMON	variables	cannot	be	initialized
135	EXTERN	or	COMMON	dynamic	arrays	cannot	have	initial
bounds
136	At	least	one	parameter	must	be	a	user-defined	type
137	Parameter	or	result	must	be	a	user-defined	type
138	Both	parameters	can't	be	of	the	same	type
139	Parameter	and	result	can't	be	of	the	same	type
140	Invalid	result	type	for	this	operator
141	Invalid	parameter	type,	it	must	be	the	same	as	the	parent
TYPE/CLASS
142	Vararg	parameters	are	not	allowed	in	overloaded	functions
143	Illegal	outside	an	OPERATOR	block
144	Parameter	cannot	be	optional
145	Only	valid	in	-lang
146	Default	types	or	suffixes	are	only	valid	in	-lang
147	Suffixes	are	only	valid	in	-lang
148	Implicit	variables	are	only	valid	in	-lang
149	Auto	variables	are	only	valid	in	-lang
150	Invalid	array	index
151	Operator	must	be	a	member	function

152	Operator	cannot	be	a	member	function
153	Method	declared	in	anonymous	UDT
154	Constant	declared	in	anonymous	UDT
155	Static	variable	declared	in	anonymous	UDT
156	Expected	operator
157	Declaration	outside	the	original	namespace	or	class
158	A	destructor	should	not	have	any	parameters
159	Expected	class	or	UDT	identifier
160	Var-len	strings	cannot	be	part	of	UNION's	or	nested	TYPE's
161	Dynamic	arrays	cannot	be	part	of	UNION's	or	nested	TYPE's
162	Fields	with	constructors	cannot	be	part	of	UNION's	or	nested
TYPE's
163	Fields	with	destructors	cannot	be	part	of	UNION's	or	nested
TYPE's
164	Illegal	outside	a	CONSTRUCTOR	block
165	Illegal	outside	a	DESTRUCTOR	block
166	UDT's	with	methods	must	have	unique	names
167	Parent	is	not	a	class	or	UDT
168	CONSTRUCTOR()	chain	call	not	at	top	of	constructor
169	BASE()	initializer	not	at	top	of	constructor
170	REDIM	on	UDT	with	non-CDECL	constructor
171	REDIM	on	UDT	with	non-CDECL	destructor
172	REDIM	on	UDT	with	non-parameterless	default	constructor
173	ERASE	on	UDT	with	non-CDECL	constructor
174	ERASE	on	UDT	with	non-CDECL	destructor
175	ERASE	on	UDT	with	non-parameterless	default	constructor
176	This	symbol	cannot	be	undefined
177	RETURN	mixed	with	'FUNCTION	='	or	EXIT	FUNCTION
(using	both	styles	together	is	unsupported	when	returning	objects
with	constructors)
178	'FUNCTION	='	or	EXIT	FUNCTION	mixed	with	RETURN
(using	both	styles	together	is	unsupported	when	returning	objects
with	constructors)

179	Missing	RETURN	to	copy-construct	function	result
180	Invalid	assignment/conversion
181	Invalid	array	subscript
182	TYPE	or	CLASS	has	no	default	constructor
183	Function	result	TYPE	has	no	default	constructor
184	Missing	BASE()	initializer	(base	UDT	without	default
constructor	requires	manual	initialization)
185	Missing	default	constructor	implementation	(base	UDT	without
default	constructor	requires	manual	initialization)
186	Missing	UDT.constructor(byref	as	UDT)	implementation	(base
UDT	without	default	constructor	requires	manual	initialization)
187	Missing	UDT.constructor(byref	as	const	UDT)	implementation
(base	UDT	without	default	constructor	requires	manual
initialization)
188	Invalid	priority	attribute
189	PROPERTY	GET	should	have	no	parameter,	or	just	one	if
indexed
190	PROPERTY	SET	should	have	one	parameter,	or	just	two	if
indexed
191	Expected	'PROPERTY'
192	Illegal	outside	a	PROPERTY	block
193	PROPERTY	has	no	GET	method/accessor
194	PROPERTY	has	no	SET	method/accessor
195	PROPERTY	has	no	indexed	GET	method/accessor
196	PROPERTY	has	no	indexed	SET	method/accessor
197	Missing	overloaded	operator:	
198	The	NEW[]	operator	does	not	allow	explicit	calls	to
constructors
199	The	NEW[]	operator	only	supports	the	{	ANY	}	initialization
200	The	NEW	operator	cannot	be	used	with	fixed-length	strings
201	Illegal	member	access
202	Expected	':'
203	The	default	constructor	has	no	public	access

204	Constructor	has	no	public	access
205	Destructor	has	no	public	access
206	Accessing	base	UDT's	private	default	constructor
207	Accessing	base	UDT's	private	destructor
208	Illegal	non-static	member	access
209	Constructor	declared	ABSTRACT
210	Constructor	declared	VIRTUAL
211	Destructor	declared	ABSTRACT
212	Member	cannot	be	static
213	Member	isn't	static
214	Only	static	members	can	be	accessed	from	static	functions
215	The	PRIVATE	and	PUBLIC	attributes	are	not	allowed	with
REDIM,	COMMON	or	EXTERN
216	STATIC	used	here,	but	not	the	in	the	DECLARE	statement
217	CONST	used	here,	but	not	the	in	the	DECLARE	statement
218	VIRTUAL	used	here,	but	not	the	in	the	DECLARE	statement
219	ABSTRACT	used	here,	but	not	the	in	the	DECLARE
statement
220	Method	declared	VIRTUAL,	but	UDT	does	not	extend
OBJECT
221	Method	declared	ABSTRACT,	but	UDT	does	not	extend
OBJECT
222	Not	overriding	any	virtual	method
223	Implemented	body	for	an	ABSTRACT	method
224	Override	has	different	return	type	than	overridden	method
225	Override	has	different	calling	convention	than	overridden
method
226	Implicit	destructor	override	would	have	different	calling
convention
227	Implicit	LET	operator	override	would	have	different	calling
convention
228	Override	is	not	a	CONST	member	like	the	overridden	method
229	Override	is	a	CONST	member,	but	the	overridden	method	is

not
230	Override	has	different	parameters	than	overridden	method
231	This	operator	cannot	be	STATIC
232	This	operator	is	implicitly	STATIC	and	cannot	be	VIRTUAL	or
ABSTRACT
233	This	operator	is	implicitly	STATIC	and	cannot	be	CONST
234	Parameter	must	be	an	integer
235	Parameter	must	be	a	pointer
236	Expected	initializer
237	Fields	cannot	be	named	as	keywords	in	TYPE's	that	contain
member	functions	or	in	CLASS'es
238	Illegal	outside	a	FOR	compound	statement
239	Illegal	outside	a	DO	compound	statement
240	Illegal	outside	a	WHILE	compound	statement
241	Illegal	outside	a	SELECT	compound	statement
242	Expected	'FOR'
243	Expected	'DO'
244	Expected	'WHILE'
245	Expected	'SELECT'
246	No	outer	FOR	compound	statement	found
247	No	outer	DO	compound	statement	found
248	No	outer	WHILE	compound	statement	found
249	No	outer	SELECT	compound	statement	found
250	Expected	'CONSTRUCTOR',	'DESTRUCTOR',	'DO',	'FOR',
'FUNCTION',	'OPERATOR',	'PROPERTY',	'SELECT',	'SUB'	or
'WHILE'
251	Expected	'DO',	'FOR'	or	'WHILE'
252	Illegal	outside	a	SUB	block
253	Illegal	outside	a	FUNCTION	block
254	Ambiguous	symbol	access,	explicit	scope	resolution	required
255	An	ENUM,	TYPE	or	UNION	cannot	be	empty
256	ENUM's	declared	inside	EXTERN	..	END	EXTERN	blocks

don't	open	new	scopes
257	STATIC	used	on	non-member	procedure
258	CONST	used	on	non-member	procedure
259	ABSTRACT	used	on	non-member	procedure
260	VIRTUAL	used	on	non-member	procedure
261	Invalid	initializer
262	Objects	with	default	[con|de]structors	or	methods	are	only
allowed	in	the	module	level
263	Static	member	variable	in	nested	UDT	(only	allowed	in
toplevel	UDTs)
264	Symbol	not	a	CLASS,	ENUM,	TYPE	or	UNION	type
265	Too	many	elements
266	Only	data	members	supported
267	UNIONs	are	not	allowed
268	Arrays	are	not	allowed
269	COMMON	variables	cannot	be	object	instances	of
CLASS/TYPE's	with	cons/destructors
270	Cloning	operators	(LET,	Copy	constructors)	can't	take	a	byval
arg	of	the	parent's	type
271	Local	symbols	can't	be	referenced
272	Expected	'PTR'	or	'POINTER'
273	Too	many	levels	of	pointer	indirection
274	Dynamic	arrays	can't	be	const
275	Const	UDT	cannot	invoke	non-const	method
276	Elements	must	be	empty	for	strings	and	arrays
277	GOSUB	disabled,	use	'OPTION	GOSUB'	to	enable
278	Invalid	-lang
279	Can't	use	ANY	as	initializer	in	array	with	ellipsis	bound
280	Must	have	initializer	with	array	with	ellipsis	bound
281	Can't	use	...	as	lower	bound
282	FOR/NEXT	variable	name	mismatch
283	Selected	option	requires	an	SSE	FPU	mode

284	Expected	relational	operator	(=,	>,	<,	<>,	<=,	>=)
285	Unsupported	statement	in	-gen	gcc	mode
286	Too	many	labels
287	Unsupported	function
288	Expected	sub
289	Expected	'#ENDIF'
290	Resource	file	given	for	target	system	that	does	not	support
them
291	-o	<file>	option	without	corresponding	input	file
292	Not	extending	a	TYPE/UNION	(a	TYPE/UNION	can	only
extend	other	TYPEs/UNIONs)
293	Illegal	outside	a	CLASS,	TYPE	or	UNION	method
294	CLASS,	TYPE	or	UNION	not	derived
295	CLASS,	TYPE	or	UNION	has	no	constructor
296	Symbol	type	has	no	Run-Time	Type	Info	(RTTI)
297	Types	have	no	hierarchical	relation
298	Expected	a	CLASS,	TYPE	or	UNION	symbol	type
299	Casting	derived	UDT	pointer	from	incompatible	pointer	type
300	Casting	derived	UDT	pointer	from	unrelated	UDT	pointer	type
301	Casting	derived	UDT	pointer	to	incompatible	pointer	type
302	Casting	derived	UDT	pointer	to	unrelated	UDT	pointer	type
303	ALIAS	name	string	is	empty
304	LIB	name	string	is	empty
305	UDT	has	unimplemented	abstract	methods
306	Non-virtual	call	to	ABSTRACT	method
307	#ASSERT	condition	failed
308	Expected	'>'
309	Invalid	size
310	ALIAS	name	here	is	different	from	ALIAS	given	in	DECLARE
prototype
311	vararg	parameters	are	only	allowed	in	CDECL	procedures
312	the	first	parameter	in	a	procedure	may	not	be	vararg

313	CONST	used	on	constructor	(not	needed)
314	CONST	used	on	destructor	(not	needed)
315	Byref	function	result	not	set
316	Function	result	assignment	outside	of	the	function
317	Type	mismatch	in	byref	function	result	assignment
318	-asm	att|intel	option	given,	but	not	supported	for	this	target
(only	x86	or	x86_64)
319	Reference	not	initialized
320	Incompatible	reference	initializer
321	Array	of	references	-	not	supported	yet
322	Invalid	CASE	range,	start	value	is	greater	than	the	end	value
323	Fixed-length	string	combined	with	BYREF	(not	supported)

Third	party	programs	errors
These	errors	occur	after	the	source	has	been	compiled	into	assembler,
they	come	from	the	auxiliary	programs	FB	requires	to	compile	a	source
into	an	executable:	the	linker,	the	assembler	and	(for	Windows	programs)
the	resource	compiler.

If	an	IDE	or	a	make	utility	are	been	used,	additional	errors	can	arise.
These	errors	are	outside	the	scope	of	this	help.

Tools	used	by	fbc 	

External	tools	the	FreeBASIC	compiler	(fbc)	may	invoke	during	the
compilation	process.

Description
FreeBASIC	uses	several	tools	for	compiling	source	code	in	addition	to
the	fbc	compiler.	The	exact	tools	used	by	fbc	and	how	they	are
invoked	depends	on	how	fbc	was	configured,	the	host	platform	(where
fbc	is	running),	the	target	platform	(where	the	produced	executable	will
be	run),	and	other	options	(like	environment	variables	and	command
line	options).

FreeBASIC	(fbc)	may	have	been	configured	in	one	of	two	ways:	either
as	standalone	or	prefixed.	The	standalone	version	searches	directories
relative	to	where	the	executable	is	located.	The	prefixed	version	has	a
hardcoded	path	configured	in	to	the	compiler	indicating	where	it
expects	to	find	additional	tools	and	libraries.	For	more	information	on
configuring	FreeBASIC,	see	the	INSTALL	text	file	located	in	the
src/compiler	directory	of	the	FreeBASIC	sources.

You	can	check	if	your	installed	version	of	fbc	is	"standalone"	or
"prefixed"	by	invoking	fbc	with	the	-version	command	line	option.

Standalone
If	fbc	was	configured	as	"standalone",	it	will	search	for	files	relative	to
where	the	fbc	executable	is	located.	fbc	is	at	the	"top"	of	the	directory
tree	and	searches	sub-directories	below	it.	The	"top"	directory	(which
defaults	to	the	location	where	fbc	is	located)	can	be	overridden	with
the	-prefix	command	line	option.	"topdir"	shown	in	the	directories
below	represents	the	directory	where	the	fbc	executable	is	located,	or
the	directory	specified	with	the	-prefix	command	line	option	(if	it	was
given).	"<target>"	refers	to	the	target	platform	having	the	same	name
as	specified	by	the	-target	option.

If	not	cross	compiling,	fbc	looks	in	these	locations:	
/topdir/inc

/topdir/lib/<target>

/topdir/bin/<target>

gcc	is	queried	for	missing	libraries	(currently	on
linux/freebsd	only)	

If	cross	compiling,	fbc	looks	in	the	these	locations:	
/topdir/inc

/topdir/lib/<target>

/topdir/bin/<target>

gcc	is	not	queried	(only	target	library	directory	is	used)

Prefixed
If	fbc	was	configured	as	"prefixed",	it	will	search	for	files	relative	to	the
configured	prefix	(hardcoded	in	the	fbc	executable).	"prefix"	shown	in
the	directories	below	represents	the	configured	prefix,	or	the	directory
specified	with	the	-prefix	command	line	option	(if	it	was	given).	"
<target>"	refers	to	the	target	platform	having	the	same	name	as
specified	by	the	-target	option.

If	not	cross	compiling,	fbc	looks	in	these	locations:	
/prefix/include/freebasic

/prefix/lib/freebasic/<target>

/prefix/bin/freebasic/<target>

gcc	is	queried	for	missing	libraries	(currently	on
linux/freebsd	only)	

If	cross	compiling,	fbc	looks	in	the	these	locations:	
/prefix/include/freebasic

/prefix/lib/freebasic/<target>

/prefix/bin/freebasic/<target>

gcc	is	not	queried	(only	target	library	directory	is	used)

GCC	Queries
If	fbc	is	unable	to	locate	a	file,	it	may	invoke	gcc	-print-file-name=
<file>	to	query	the	location	of	the	file.	The	following	are	files	that	may

be	located	using	gcc:
crt1.o

crtbegin.o

crtend.o

crti.o

crtn.o

gcrt1.o

libgcc.a

libsupc++.a

libc.so	(Linux	only)

Finding	Binaries
fbc	will	invoke	additional	tools	(binary	executables)	as	part	of	the
compiling	and	linking	process.	The	following	is	a	list	of	tools
(executables)	that	may	be	invoked	by	fbc	depending	on	the	host
platform,	target,	or	type	of	executable	or	library	to	be	produced:

as

ar

ld

gcc

GoRC

dlltool

pexports

cxbe

fbc	will	search	for	these	tools	in	the	following	manner:
If	an	environment	variable	(having	same	name	as	the
tool	without	any	extension,	all	in	uppercase)	has	been
set,	it	explicitly	indicates	the	path	and	name	of	the
executable	to	be	invoked.
If	the	file	(or	a	symlink)	exists	in
prefix/bin/freebasic/<target>,	or	./bin/<target>	for
the	standalone	version,	then	use	it.
On	Linux,	if	the	tool	could	not	be	found	in

prefix/bin/freebasic/<target>,	or	./bin/<target>	for
the	standalone	version,	fbc	tries	to	invoke	it	anyway	as	it
may	be	installed	on	the	system	and	located	on	the	PATH.

"<target>"	refers	to	the	target	platform	having	the	same	name	as
specified	by	the	-target	option.

See	also

Running	FreeBASIC
Compiler	Command	Line	Options
Compiler	FAQ

FreeBASIC	and	QBasic 	

FreeBASIC	the	Successor
FreeBASIC	is	designed	as	an	official	successor	of	sorts	to	a	high	level
compiler	for	MS-DOS	titled	"QuickBASIC",	which	compiled	BASIC	code,
an	easy-to-read	programming	language	created	in	1964	by	John	Kemeny
and	Thomas	Kurtz.	"QB"	was	packaged	with	a	user-friendly	IDE	and
interpreter	that	made	it	very	easy	to	write	custom	applications.	This	line
of	products	is	officially	continued	today	in	the	form	of	"Visual	Basic",	part
of	Microsoft's	Visual	Studio	.NET	programming	suite.

Microsoft	and	BASIC	Products
Microsoft	and	BASIC	extend	far	prior	to	QuickBASIC.	In	fact,	Microsoft's
first	product	was	a	small	BASIC	interpreter	for	Altair	computers	released
in	1975,	and	until	the	early	1980s	Microsoft	was	known	only	as	a
language	vendor.	They	ported	their	BASIC	software	to	several	different
personal	computers	at	the	time	and	made	decent	business	doing	it.

In	August	of	1981	Microsoft	released	the	next	major	step	in	its	BASIC
line,	"Advanced	BASIC",	as	part	of	a	commission	for	IBM's	PC-DOS,	and
is	more	often	called	by	its	executable	name,	BASICA.EXE.	For
Microsoft's	new	MS-DOS,	they	released	GW-BASIC,	which	was,	for	the
most	part,	a	port	of	BASICA	that	did	not	require	IBM's	Basic	ROM
included	with	its	systems.

BASICA	and	GW-BASIC	are	interpreters.	Interpreters	read	source	code
and	"interpret"	it	into	computer	code	as	it	is	read.	This	is	useful,	but	slow.
Microsoft,	in	1983,	released	BASCOM	for	MS-DOS.	BASCOM	compiled
BASIC	code	into	native	machine	code,	which	ran	much	faster	than
interpreted	code.	This	was	repackaged	with	an	IDE	and	released	as
QuickBASIC	in	1985.

QuickBASIC
From	1985	to	1992,	QuickBASIC	was	the	primary	BASIC	product,
released	by	Microsoft	and	using	BASCOM,	and	later	the	Microsoft	BASIC
Compiler.	In	1991,	a	slimmed	down	interpreter	often	thought	to	be	the

missing	"QuickBASIC	5.0"	was	packaged	with	MS-DOS	5.0	and	released
as	"QBasic	1.1".

QuickBASIC	as	a	BASIC	dialect	provides	a	loose	standard	for	modern
BASIC	compilers.	It	abolishes	the	need	for	line	numbers	as	a	used	in
previous	BASIC	interpreters,	is	case	sensitive	and	has	keywords	that	are
in	plain	English.	QuickBASIC	also	featured	a	runtime	library,	a	library
compiled	by	default	and	usable	in	source	code,	with	many	useful
commands.

In	1991,	Microsoft	combined	a	drag-and-drop	GUI	designer	made	in	1988
called	'Ruby'	with	QuickBASIC.	This	product	was	called	"Visual	Basic",
and	marks	the	beginning	of	the	end	of	QuickBASIC.	Microsoft	released
one	last	version	of	QuickBASIC	called	"Visual	Basic	for	DOS"	in	1992,
and	discontinued	the	product	forever.

The	Internet	and	QBasic's	Second	Wind
Because	the	"QBasic	1.1"	interpreter	was	packaged	with	MS-DOS,	it	was
released	with	every	copy	of	DOS	until	its	dying	days,	Windows	3.1,	and
even	Windows	95,	98	and	ME.	With	the	wild	success	of	Windows,
QBasic	became	the	most	widely	available	programming	tool	available	for
Microsoft	operating	systems.	

When	the	World	Wide	Web	became	popular	in	the	mid-90s,	many
hobbyist	programmers	made	websites	dedicated	to	QuickBASIC	not	as
an	application	tool,	but	as	a	platform	for	their	demos	and	games.	Many
assembly	libraries	were	created	for	it	after	Microsoft	dropped	support,
and	as	these	demos	and	games	became	more	elaborate,	so	did	the	"QB
Community".	From	the	mid-90s,	through	the	new	millennium	to	today,
QuickBASIC	has	enjoyed	a	small	but	present	cult	following.	

Andre	Victor,	FreeBASIC's	creator,	was	first	known	over	the	internet	as
the	author	of	several	extensions	to	QuickBASIC	in	the	form	of	libraries.
He	created	routines	to	improve	the	speed	of	floating	point	operations,
access	the	internet,	use	SVGA	graphics,	and	provide	powerful	QBasic
language	programming	features.	In	the	late	summer	of	2004,	he	began
work	on	a	32-bit	compiler	using	Visual	Basic	for	DOS.

FreeBASIC	is	Born
FreeBASIC	was	first	programmed	in	VB-DOS,	with	the	goal	of	compiling
itself.	Because	of	this,	both	its	syntax	and	runtime	library	are	designed	to
emulate	QB's	syntax	and	runtime	as	far	as	it	is	practical	in	a	32-bit
Windows	environment.	For	the	most	part,	the	two	dialects	are	extremely
similar,	and	most	code	can	be	ported	with	little	or	no	modification,	though
in	some	cases	routines	reliant	on	16-bit	DOS	must	be	rewritten.	The
resulting	compiler	shares	a	greater	similarity	to	QB	than	any	compiler	on
the	market,	including	Visual	Basic.

Because	of	its	open	source,	its	well-written	code	and	its	similarity	to	QB,
FreeBASIC	has	become	popular	among	the	"QB	Community"	and	its
boundaries	continue	to	grow	as	it	receives	more	attention	and	gathers
more	features	that	promise	to	move	BASIC	into	the	future.

Differences	from	QB 	

Since	version	0.17,	FreeBASIC	introduced	a	-lang	command-line	option,
that	is	used	to	change	the	language	compatibility	mode.	Use	the	-lang	qb
option	when	compiling	to	select	the	most	QB	compatible	parser.	All
differences	listed	below	assume	that	-lang	qb	was	used.

Architecture/Platform	incompatibilities
FreeBASIC	is	written	for	32-bit	operating	systems	and	a	32	bit
DOS	extender,	and	cannot	utilize	code	which	depends	on	16-bit
DOS,	16	bit	assembly	or	memory	model	(segment	&	offset,
XMS/EMS,	...).	
DEF	SEG	is	no	longer	necessary	and	will	not	work	-	any	code	which
POKEs	to	video	memory	this	way	will	no	longer	function,	however,
for	DOS	it	can	be	easily	rewritten	using	DPMI	features.	
CALL	INTERRUPT	no	longer	functions,	as	it	relies	on	16-bit	DOS.
DOS	interrupts	can	be	called	in	the	DOS32	version	by	using	the
DPMI	library,	but	they	might	work	slowly	because	of	the	32bit-
16bit-32bit	mode	changes	the	processor	will	have	to	perform.	

Changed	due	to	ambiguity
A	scalar	variable	and	an	array	with	the	same	name	and	suffix	can
no	longer	share	the	same	name.
SHARED	can't	be	used	inside	a	SUB	or	FUNCTION	as	it	resulted	in
shared	variables	not	defined	in	the	main	program.	A	proper	DIM
SHARED	in	the	main	program	must	be	used.
COMMON	declarations	do	not	depend	on	the	order	they	are	made,
variables	are	matched	by	name	and	for	that	reason	named
COMMON	is	no	longer	supported.	All	COMMON	arrays	are
variable-length	arrays	in	FB.
If	a	single	line	If	has	an	(unnecessary)	colon	directly	after	the
THEN,	it	has	to	be	terminated	by	an	End	If	in	FB.	If	that	unneeded
colon	is	removed,	FB	will	behave	as	QB.

Design	differences
Graphics	support	was	internally	redesigned,	see	GfxLib	overview

CLEAR	is	no	longer	used	to	reset	all	variables	and	set	the	stack.
Variables	must	be	reset	one	by	one,	and	stack	size	can	be
changed	in	the	compiler	command	line.	The	keyword	CLEAR	is
used	to	do	memory	fills	in	FB.
String	DATA	items	must	be	enclosed	in	quotes	in	FB,	in	QB	this
was	optional
All	functions	must	have	been	declared,	even	with	a	CALL	in
FreeBASIC.	With	CALL	it	was	possible	to	invoke	prototype-less
functions	in	QuickBASIC.	(to	be	supported	in	future	with	-lang	qb)
In	FreeBASIC	all	arrays	must	be	explicitly	declared.	(Interpreted
QuickBASIC	arrays	are	automatically	created	with	up	to	10
indices.)
Strings	use	a	null	(char	0)	terminator	to	be	compatible	with	C
libraries	and	the	Windows	API,	fixed-length	strings	can't	contain
chr$(0)	chars	for	now.
When	INKEY[$]	reads	an	extended	key	(Num	Pad,	Arrows...)	it
returns	a	two	character	string.	In	FB	the	first	character	is	CHR[$]
(255),	while	in	QB	this	first	char	is	CHR$(0).	
With	fixed	length	strings	FreeBASIC	gives	the	real	length	as	Len
plus	one	(null-char),	even	on	Type	fields.
In	FreeBASIC,	unused	characters	of	fixed-length	strings	are	set	to
0,	regardless	of	what	"-lang"	compiler	option	is	used.	In	QB,
unused	characters	are	set	to	32	(space,	or	"	",	in	ASCII).
When	a	fixed-length	string	is	declared,	but	still	not	initialized,	all
characters	are	set	to	0,	both	in	FreeBASIC	and	QB.
The	arrays	are	stored	in	row-major	order	in	FB,	they	were	stored
in	column-major	order	in	QB	by	default.	Row	major	order:	data
with	the	same	last	index	are	contiguous.	Column-major	order:	data
with	the	same	first	index	are	contiguous.	For	example,	if	you	have
DIM	A(1	TO	3,	1	TO	8),	in	row-major	order	the	elements	are
stored	such	that	A(3,5)	is	followed	in	memory	by	A(3,6);	in
column-major	order	A(3,5)	is	followed	in	memory	by	A(4,5).
Programs	don't	stop	anymore	on	runtime	errors	unless	-e	or	-ex
option	is	used	in	the	command	line.	Using	these	options	allow	the
use	of	QB	style	error	handling	(ON	ERROR,	RESUME...).
Octal	numbers	are	written	&o...;,	whereas	in	QB	they	could	be

written	as	&o...;	or	&....
In	FB	FOR	loops	in	subs/functions	do	not	accept	arguments
received	byref	as	counters.	A	local	variable	must	be	used.	
FB's	Locate	does	not	respect	the	fourth	and	fifth	arguments	for
cursor	shape.
FB's	Screen	does	not	allow	switching	the	visible	or	the	work-page.
Use	ScreenSet	instead.
FB's	Color	does	not	allow	a	third	argument	for	border	color.
FB's	Timer	returns	the	number	of	seconds	since	the	computer
started,	while	QB's	TIMER	returns	the	number	of	seconds	since
midnight.	(Win32	and	Linux	only:	No	more	wrapping	at	midnight!
:))
In	QB	a	chr$(13)	inside	a	string	did	a	CR+LF	when	PRINTed.	In	FB
the	CHR(13)	prints	just	at	what	it	is,	a	CR.
EOF	can	no	longer	be	used	to	detect	an	empty	comms	buffer.
Empty	buffer	should	be	tested	comparing	LOC	with	0	in	FB.	Also,
for	files	opened	in	RANDOM	or	BINARY	mode,	EOF	returns	non-zero
already	after	reading	exactly	the	file	size,	see	EOF.
Integer	variables	do	not	signal	overflow	errors	in	FB,	even	with	the
-ex	option	on.	Any	QB	code	relying	in	catching	integer	overflow
errors	will	not	work	in	FB.	

Archaic	commands
BSAVE	and	BLOAD	can	be	used	in	FB	only	to	save	and	retrieve
screens	or	graphic	buffers.	They	will	work	only	if	gfxlib	is	linked,
this	is,	if	a	graphics	screen	mode	is	requested	somewhere	in	the
program.	The	console	can't	be	saved	with	BSAVE	or	retrieved	with
BLOAD.	The	other	use	of	BSAVE-BLOAD,	saving	and	loading	full	arrays,
can	be	achieved	easily	with	GET	and	PUT.
FIELD	statement	(for	record	definition	at	runtime)	has	been	left
aside.	The	keyword	FIELD	is	used	in	FB	to	specify	field	alignment
in	Type	variables.
PC	Speaker	commands	no	longer	function:	Any	references	to
SOUND	or	PLAY	statements	will	result	in	an	error	message.	There	is
a	third	party	library	available	to	emulate	this	functionality,	but	it's
not	included	with	FreeBASIC.

Fake	event-driven	programming	(ON	KEY,	ON	PEN,	ON	STRIG,	ON
TIMER)	no	longer	works.	They	could	be	emulated	by	a	separate
library.
MKSMBF$	and	all	the	MKxMBF$	commands	supporting	the	pre-QB4.0
Microsoft	proprietary	floating	point	format	(MBF)	are	not
implemented.
The	use	of	parenthesis	in	the	arguments	passed	to	a	function	to
emulate	by-value	passing	is	not	permitted.	The	CALL	quirk	resulting
in	all	arguments	being	passed	by	value,	no	longer	works.	The
proper	ByVal	and	ByRef	keywords	must	be	used.
FILES	is	not	implemented.	Instead,	PDS	7.1-compatible	Dir[$]	can
be	used.
IOCTL,	ERRDEV	and	ERRDEV$,	low	level	functions	to	access	hardware
are	not	implemented	as	they	were	OS-dependent.	
CALL	ABSOLUTE	to	run	inline	machine	code	is	no	longer	supported.
Instead	you	can	use	Asm...END	ASM	blocks	to	insert	inline
assembler	commands.	Or	use	the	ASM	...	one	line	command.

FreeBASIC	Dialects 	

FreeBASIC	version	0.17b	introduces	a	-lang	command-line	option,	used
to	change	the	language	compatibility	mode	for	different	dialects	of	the
basic	language.

Starting	with	version	0.18.3b	the	-lang	qb	dialect	has	been	further
restricted	to	only	allow	what	would	have	been	allowed	in	QuickBASIC.

In	version	0.18.4b	the	-lang	fblite	dialect	was	added,	intended	to	replace
-lang	deprecated	in	future.

In	version	0.20.0b	the	#lang	directive	and	$Lang	metacommand	were
added	to	specify	a	dialect	from	source.

-lang	option description

fb FreeBASIC	compatibility	(default)

qb qbasic	compatibility

fblite FreeBASIC	language	compatibility,	with	a	more	QBASIC-compatible	coding	style

deprecated compatibility	with	FB	0.16

The	-lang	option	was	needed	to	allow	FreeBASIC	to	support	object-
orientation	and	other	features	in	the	future,	without	crippling	the
QuickBASIC	support	or	breaking	compatibility	with	old	FreeBASIC
sources,	and	without	making	FreeBASIC	difficult	to	maintain	with	many
different	versions	of	very	similar	packages.	The	QuickBASIC	support	can
continue	to	be	improved,	if	needed,	without	breaking	the	sources	written
specifically	for	FreeBASIC.

To	compile	old	GW-BASIC	or	QuickBASIC/QBasic	sources	without	too
many	changes,	use	the	-lang	qb	option	on	the	command-line	when
running	fbc.	This	option	will	evolve	into	a	better	compatibility	with
QuickBASIC/QBasic	code.

To	compile	FreeBASIC	sources	from	0.16b,	use	the	-lang	deprecated
option.	This	option	is	maintained	for	compatibility	and	will	not	evolve	in

the	future,	and	it's	likely	to	disappear	when	FreeBASIC	reaches	a	non-
beta	release.

For	programmers	who	want	to	access	some	of	FreeBASIC's	newer
features,	but	want	to	retain	a	more	QBASIC-friendly	programming	style,
use	the	-lang	fblite	option.	This	dialect	will	not	undergo	significant
changes	in	the	future,	but	will	continue	to	be	maintained	and	supported.
This	option	is	also	the	most	compatible	with	sources	that	were	made
using	older	versions	of	FreeBASIC.

It	is	recommended	to	use	-lang	fb	for	new	projects,	as	new	features
(object	classes,	inheritance..)	will	be	added	exclusively	to	this	dialect.

-lang	fb	(the	default	mode)
Not	supported:

1)	implicit	variable	declaration
All	variables	must	be	explicitly	declared,	using	Dim,	ReDim,
Var,	Const,	Extern	or	Common.

2)	type	suffixes	(!,	#,	$,	%,	&)
They	are	only	allowed	for	numeric	literals,	but	it's
recommended	to	use	Cast	or	the	f	(single),	d	(double),	ll
(longint),	ul	(ulong),	ull	(ulongint)	numeric	literal	suffixes
to	resolve	overloading.

3)	DefByte,	DefUByte,	DefShort,	DefUShort,	DefInt,	DefUInt,	DefLng,
Deflongint,	Defulongint,	DefSng,	DefDbl,	DefStr

An	explicit	type	("As	T")	is	needed	when	declaring	variables
using	Dim,	ReDim,	Extern	or	Common.	Variables	declared	using
Var	or	Const	have	their	types	inferred	from	an	initialization
value	(an	explicit	type	is	optional	using	Const).

4)	all	parameters	passed	by	reference	by	default
By	default,	all	intrinsic	scalar	types	-	numeric	and	pointer
types	-	are	passed	by	value	(ByVal).	Any	other	type	-	String
or	user-defined	type	-	is	passed	by	reference	(ByRef).

Use	the	-w	pedantic	command-line	option	to	have
parameters	without	explicit	ByVal	or	ByRef	reported.

5)	OPTIONs	of	any	kind	(no	context-sensitivity)
Instead	of	Option	NoKeyword,	use	#undef.
Instead	of	Option	Escape,	use:	!"some	esc	seq	\n\r"
(notice	the	'!'	char)	and	pass	-w	pedantic	to	check	for
possible	escape	sequences.
Option	Explicit	isn't	needed,	see	item	1.
Instead	of	Option	Dynamic,	declare	variable-length	arrays
using	ReDim.	Dim	can	also	be	used	to	declare	variable-
length	arrays	using	variable	or	no	subscripts.
Instead	of	Option	Base,	use	explicit	lower-bound	subscripts
in	arrays	declarations.
Instead	of	Option	Private,	use	Private	to	declare
procedures	with	internal	linkage.
Instead	of	Option	Gosub	and	Option	Nogosub,	use
procedures	with	Sub	or	Function.

6)	periods	in	symbol	names	
Use	namespaces	instead.

7)	GoSub	or	Return	(From	Gosub)
Nested	procedures	may	be	allowed	in	future.

8)	On	Gosub	or	On	Goto
Use	Select	Case	As	Const	expr	for	the	latter.

9)	Resume
Most	runtime	and	graphics	library	procedures	now	return
an	error	code,	like:	IF	OPEN("text"	FOR	INPUT	AS	#1)	<>
0	THEN	error...	

10)	'$DYNAMIC,	'$STATIC,	'$INCLUDE	meta-commands	embedded	in
comments

See	item	5	about	Option	Dynamic.

Use	#include	"filename"	instead	of	'$include.

11)	Call	or	Let
Just	remove	them.

12)	numeric	labels
Named	labels	can	be	used	instead,	e.g.	label_name:	/	Goto
label_name.

13)	global	symbols	with	the	same	name	as	keywords	
Declare	them	inside	a	namespace.	

-lang	deprecated

Supported:	Anything	allowed	in	version	0.16b,	but:

1)	GOSUB/RETURN	and	ON	...	GOSUB	(even	at	module-level)
so	the	GOSUB	implementation	could	be	thread-unsafe	in	the
-lang	qb	mode,	allowing	fast	execution	(-lang	qb	doesn't
support	multi-threading,	while	-lang	deprecated	does).

Not	supported:

1)	Classes
Periods	allowed	in	symbol	names	make	it	too	difficult
and/or	ambiguous.

2)	Operator	overloading
Periods	allowed	in	symbol	names	make	it	too	difficult
and/or	ambiguous.

3)	Constructors,	destructors	and	methods	in	TYPEs.
Periods	allowed	in	symbol	names	make	it	too	difficult
and/or	ambiguous.

-lang	fblite

Supported:	Anything	allowed	in	the	-lang	deprecated	dialect,	plus..

1)	GOSUB/RETURN
-	Use	Option	Gosub	to	enable.	This	will	disable	RETURN	from	exiting	a
procedure,	due	to	ambiguity.

Not	supported:

1)	Scope	blocks
All	variables	are	given	procedure	scope.	Explicit	Scope
blocks	may	be	added	later.

-lang	qb
Supported:	Everything	not	supported/allowed	in	the	-lang	fb	dialect,
plus..

1)	Call	can	be	used	with	forward-referenced	functions.

2)	Shared	can	be	used	inside	functions.	(W.I.P.)

3)	All	variables,	implicitly	or	explicitly	declared,	are	always	allocated	in
the	procedure	scope,	like	in	QuickBASIC.

4)	The	Data	statement	won't	look	up	symbols,	every	token	is	assumed	to
be	a	literal	string	even	without	quotes,	like	in	QuickBASIC.

Not	supported:

1)	Multi-threading
None	of	the	threading	procedures	may	be	used.

2)	Classes	and	Namespaces

3)	Procedure	and	operator	overloading

4)	Constructors,	destructors	and	other	member	procedures	in	Type
definitions.

5)	Scope	blocks

6)	Extern	blocks

7)	Variable	initialization
All	variables	are	moved	to	the	procedure	scope	(like	in
QuickBASIC),	making	initializing	local	variables	too	difficult
to	support.

Frequently	Asked	Questions 	

FreeBASIC	questions:

-	What	is	FreeBASIC?
-	Who	is	responsible	for	FreeBASIC?
-	Why	should	I	use	FreeBASIC	rather	than	QBasic?
-	Why	should	I	use	FreeBASIC	rather	than	some	other	newer	BASIC
?
-	How	fast	is	FreeBASIC?
-	How	compatible	is	FreeBASIC	with	QuickBASIC?
-	How	compatible	is	FreeBASIC	with	Windows?	DOS?	Linux?
-	Does	FreeBASIC	support	Object	Oriented	Programming?
-	What	are	the	future	plans	with	FB	/	ToDo	list	?
-	Can	I	program	GUI	applications	in	FB	?
-	Is	FB	suitable	for	complex	/	big	applications?
-	Can	I	use	a	non-latin	charset	in	my	FreeBASIC	applications?
-	Can	I	use	Serial/COM	and	Hardware/CPU	ports	in	FB?

Getting	Started	with	FreeBASIC	questions
-	Where	can	I	find	more	information	about	FreeBASIC?
-	Why	doesn't	the	QB	GUI	open	when	I	start	FreeBASIC?
-	Can	I	have	an	offline	version	of	the	documentation?
-	What's	the	idea	behind	the	FB	dialects?
-	Why	does	my	program	crash	when	I	define	an	array	larger	than
xx?
-	Why	does	my	program	fail	to	compile	with	the	message	'cannot
find	-llibname'

Advanced	FreeBASIC

-	How	do	I	link	to	C	libraries?
-	Can	I	use	a	debugger?
-	What's	the	goal	of	the	AR.EXE,	AS.EXE	and	LD.EXE	files	included
with	FB	?
-	Is	there	a	limit	on	how	big	my	source	files	can	be?
-	Can	I	write	an	OS	in	FreeBASIC	?

-	I'm	developing	an	OS,	can	FreeBASIC	be	ported	to	my	OS	?
-	Does	FreeBASIC	support	returning	reference	from	Functions,	like
in	C++?

See	also

FreeBASIC	questions

What	is	FreeBASIC?
FreeBASIC	is	a	free,	32-bit	BASIC	compiler	for	Windows	(32-bit),	32	bit
protected-mode	DOS	(COFF	executables,	like	DJGPP),	and	Linux	(x86).
It	began	as	an	attempt	to	create	a	code-compatible,	free	alternative	to
Microsoft	QuickBASIC,	but	has	quickly	grown	into	a	powerful
development	tool,	already	including	support	for	libraries	such	as	Allegro,
SDL,	OpenGL,	and	many	others	with	its	default	installation.

Aside	from	having	a	syntax	mostly	compatible	with	QuickBASIC,
FreeBASIC	introduces	several	new	features	to	the	aged	language,
including	pointers	to	variables	and	functions,	and	unsigned	data	types.

FreeBASIC	compiler	is	self-hosting	-	written	in	FreeBASIC,	the	libraries
however	are	written	in	C.

Back	to	top

Who	is	responsible	for	FreeBASIC?
The	first	versions	of	FreeBASIC	were	developed	exclusively	by	V1ctor.
Later	versions	gained	contributions	from	many	people,	including	Lillo,
who	developed	the	Linux	port	and	the	graphics	library,	and	DrV,	who
developed	the	DOS	port.	

See	the	FreeBASIC	Credits	page.

Back	to	top

Why	should	I	use	FreeBASIC	rather	than	QBasic?
FreeBASIC	has	innumerable	advantages	over	QBasic,	QuickBASIC,
PDS,	and	Visual	Basic	for	DOS.	

It	supports	32-bit	processors,	where	QBasic	is	designed	for
16-bit	CPU's.
It	supports	modern	OSes.	It	has	ports	to	Windows,	Linux,
and	32-bit	DOS.
It	supports	modern	APIs	such	as	SDL,	DirectX,	Win32,	and
OpenGL.
It	is	distributed	under	the	GPL,	meaning	it's	free	and	legal
to	use,	unlike	most	copies	of	QuickBASIC	/	other	BASICs.
The	library	is	distributed	under	the	LGPL	with	additional
exception,	meaning	you	may	do	whatever	you	want	with
your	compiled	programs,	including	selling	them.
FreeBASIC	is	many	times	faster	than	QuickBASIC	/	other
BASICs.
FreeBASIC	supports	many	features,	such	as	pointers	and
inline	Assembly,	which	are	not	available	in	QuickBASIC	/
other	BASICs.
QuickBASIC	only	supports	DOS.	Windows	support	for	DOS
emulation	(and	thus	QuickBASIC)	is	becoming	thinner	with
every	new	version.	Vista	does	not	support	graphics	or
fullscreen	text	for	DOS	applications.

Back	to	top

Why	should	I	use	FreeBASIC	rather	than	some	other	newer	BASIC	?
FreeBASIC	has	many	traits	which	make	it	more	desirable	than	most
other	BASIC	language	implementations:

FreeBASIC	adheres	closely	to	the	standard	BASIC	syntax,
making	it	easier	to	use.
FreeBASIC	is	compiled	to	actual	programs	(executables),
not	bytecode.
FreeBASIC	has	a	large,	dedicated	community	which	has
actively	participated	in	the	development	of	FreeBASIC.
FreeBASIC	utilizes	standard	methods	of	accessing

common	C	libraries.	SDL,	for	example,	is	standard	C	SDL,
not	a	new	set	of	intrinsic	commands.
FreeBASIC	has	ports	to	Windows,	Linux,	and	32-bit	DOS.
It	retains	consistent	syntax	between	the	three	ports.

Back	to	top

How	fast	is	FreeBASIC?
Most	tests	run	by	the	community	have	shown	FreeBASIC	is	significantly
faster	than	QuickBASIC,	faster	than	most	other	GPL	or	commercial
BASICs,	and	often	approaching	GCC	in	terms	of	speed.
The	Computer	Languages	Benchmark	Game,	an	independent	test
team,	give	FreeBASIC	for	Linux	a	speed	1.8	times	slower	than	GNU	g++.
Tests	are	about	calculation,	memory	and	disk	access	speed	in	console
programs,	no	graphics	capabilities	were	tested.	This	is	not	a	bad	result
considering	FreeBASIC	is	not	yet	an	optimizing	compiler.
One	area	where	there	is	a	notable	speed	deficiency	is	in	32-bit	console
modes.	While	FreeBASIC	is	consistently	on-par	with	other	32-bit	console
mode	applications,	32-bit	console	mode	operations	are	significantly
slower	than	16-bit	console	operations,	as	seen	in	QuickBASIC.	In	DOS
version,	some	I/O	operations	can	slow	down	after	porting	from	a	16-bit
BASIC	to	FB	-	optimizing	the	code	brings	the	speed	back.

Back	to	top

How	compatible	is	FreeBASIC	with	QuickBASIC?
The	FreeBASIC	built	in	graphics	library	emulates	the	most	used	QB
graphics	modes	(modes	7,12,13)	and	implements	all	the	drawing
primitives	featured	in	QB.	
Most	compatibility	problems	arise	from	the	use	of	8086-DOS-hardware
specific	low-level	techniques	in	the	old	QB	programs.	VGA	port
programming,	DOS	interrupts,	memory	segment	switching,	poking	to	the
screen	memory	or	music	playing	using	the	PC	speaker	are	not	directly
supported,	even	if	they	can	be	supported/emulated	by	external	libraries.	
Other	issues	in	porting	old	QB	programs,	like	variable	name	clashes	with
new	FB	keywords,	variables	with	the	name	of	a	QB	keyword	plus	a	type
suffix,	default	integer	size	being	32	bits	in	FB,	are	addressed	by	running
FreeBASIC	with	the	commandline	switch	-lang	qb	.

http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=all

See	Differences	between	FreeBASIC	and	QuickBASIC.

Back	to	top

How	compatible	is	FreeBASIC	with	Windows?	DOS?	Linux?	
FreeBASIC	is	fully	compatible	with	Windows,	MS-DOS,	FreeDOS	and
Linux.	When	planning	to	create	a	program	for	all	three	platforms,
however,	keep	API	availability	in	mind	--	code	utilizing	OpenGL	will	work
in	Windows	and	Linux,	for	example,	but	won't	in	DOS,	because	OpenGL
is	not	available	for	DOS.

Back	to	top

Does	FreeBASIC	support	Object	Oriented	Programming?
FreeBASIC	(since	version	0.90)	supports	classes	(user-defined	types)
with	member	functions	(methods),	static	methods,	static	member
variables,	constructors,	destructors,	properties,	operator	overloading,
single	inheritance,	virtual	and	abstract	methods	(polymorphism)	and	run-
time	type	information.	Future	plans	regarding	OOP	functionality	include
adding	support	for	multiple	inheritance	and/or	interfaces.	For	more
information	see:	A	Beginners	Guide	to	Types	as	Objects.

Back	to	top

What	are	the	future	plans	with	FB	/	ToDo	list	?

You	can	find	out	what's	planned	for	the	future	releases	by	directly	looking
at	fbc's	todo.txt.

Back	to	top

Can	I	program	GUI	applications	in	FB	?
Yes,	you	can.	Headers	allowing	you	to	call	the	GUI	API	of	Windows	and
Linux	are	supplied	with	the	respective	versions,	but	the	programs	made
this	way	are	not	portable.
There	are	some	API	wrappers	and	experimental	RAD	applications	that
create	non-portable	GUI	code	for	Windows.
For	portable	programming	a	multiplatform	GUI	wrapper	library	as	GTK	or

http://sourceforge.net/p/fbc/code/ci/master/tree/todo.txt

wx-Widgets	may	be	used.	GTK	headers	are	provided	with	FB,	but	the
OOP	functionality	currently	available	in	FB	prevents	the	use	of	wx-
Widgets.	The	programs	created	with	these	libraries	may	require	the	user
to	install	the	wrapper	libraries	in	their	systems.
For	games	and	small	graphics	applications	there	are	some	FB-specific
libraries	that	draw	and	manage	simple	controls	as	buttons	and	edit	boxes
inside	the	graphics	screen,	programs	made	with	those	libs	are	entirely
portable.	

Back	to	top

Is	FB	suitable	for	complex	/	big	applications?
The	FB	compiler	is	self-hosting,	it	is	programmed	itself	in	FB.	That	means
more	than	120	000	lines	of	code	at	the	moment,	a	fairly	complex
application.

Back	to	top

Can	I	use	a	non-latin	charset	in	my	FreeBASIC	applications?

FreeBASIC	has	the	Unicode	support	provided	by	the	C	runtime	library	for
the	given	platform.	This	means	FB	DOS	won't	help	you	with	Unicode.	On
other	platforms	you	can	use	Wstrings	to	support	any	charset	you	need.
The	File	OPEN	keyword	has	an	additional	Encoding	parameter	allowing
for	different	encodings.	As	FreeBASIC	is	coded	itself	in	FB,	this	means
you	can	code	your	source	in	an	Unicode	editor	so	the	comments	and
string	literals	can	be	in	any	character	set	(keywords,	labels	and	names
for	variables	and	procedures	must	be	kept	inside	the	ASCII	set..).
For	the	output	to	screen	the	support	is	different	from	console	to	graphics.
In	console	mode	wstring	printing	in	non	latin	charsets	is	supported	if	the
console	font	supports	them.	Graphics	mode	uses	an	internal	CP437
charset	(the	old	DOS	charset)	font	so	non-latin	output	requires	a	custom
made	raster	font	and	the	use	of	the	Draw	String	keyword.	Third	party
tools	exist	to	grab	an	external	font	and	convert	it	to	the	DRAW	STRING
format.

Back	to	top

Can	I	use	Serial/COM	and	Hardware/CPU	ports	in	FB?

Yes,	FB	has	built	in	functions	to	access	the	serial/COM	port	and
hardware/CPU	ports	with	no	need	of	external	libraries.	See	the	OS
specific	FAQ's	for	details	for	your	OS,	and	Open	Com,	Inp	and	Out	.

Back	to	top

Getting	Started	with	FreeBASIC	questions

Where	can	I	find	more	information	about	FreeBASIC?
The	FreeBASIC	Wiki	is	the	most	up-to-date	manual	for	using	FreeBASIC,
available	here.

Active	FreeBASIC	related	forums,	besides	the	official	one,	can	be	found
at	qbasicnews,	Pete's	QB	Site	,	the	FB	Games	directory	or	freebasic-
portal.de	(in	German).

Active	magazines	which	regularly	have	FreeBASIC	related	articles	are
QB	Express	and	QBXL	Magazine.	These	magazines	are	always	looking
for	new	articles,	so	if	you	think	you've	got	a	good	idea	for	an	article	about
FreeBASIC,	submit	it!

Back	to	top

Why	doesn't	the	QB	GUI	open	when	I	start	FreeBASIC?
QB	had	an	Integrated	Development	Environment	(IDE).	FreeBASIC	does
not.
FreeBASIC	is	only	a	compiler,	not	a	complete	QuickBASIC	clone.	It	is	a
console	mode	application.	It	will	accept	a	BAS	file	on	the	command	line,
and	spit	out	an	EXE	file.
You	can	create	the	BAS	file	with	the	simplest	plain	text	editor	in	your	OS
(Notepad,	EDIT,	nano,...),	then	run	the	compiler.	
If	you	can't	live	without	syntax	coloring,	error	highlighting,	multiple	file
managing,	integrated	debugger,	context	help	or	other	features,	you	need
an	IDE.	See	the	OS	specific	FAQ's	for	the	IDE's	and	editors	available.

Back	to	top

Can	I	have	an	offline	version	of	the	documentation?

http://www.freebasic.net/wiki/
http://www.freebasic.net/forum
http://www.qbasicnews.com/
http://www.petesqbsite.com/phpBB3/
http://games.freebasic.net/forum/index.php
http://www.freebasic-portal.de
http://www.petesqbsite.com/sections/express/express.shtml
http://www.qbxl.net/

This	online	Wiki	is	the	official	documentation	for	FB.	Usually	it	is	up-to-
date	with	the	latest	improvements	found	in	the	development	version	of
FB.
Offline	versions	of	this	wiki	(in	CHM,	HTML	and	other	formats)	are
available	from	the	Documentation	directory	at	fbc's	downloads	site
on	SourceForge.

Back	to	top

What's	the	idea	behind	the	FB	dialects?
The	idea	is	to	allow	improvements	in	the	language	while	maintaining
backwards	compatibility	with	QB	code.	The	quirks	of	the	QB	syntax	are
not	compatible	with	the	more	rigid	style	required	by	OOP.	The	new	FB
keywords	often	clashed	with	variable	names	in	old	QB	programs.	QB
allowed	to	use	freely	dots	in	variable	names	and	procedures	not	being
UDT's.
The	three	dialects	(-lang	fb,	-lang	qb,	-lang	fblite)	allow	to	combine	the
best	of	two	worlds.	

lang	fb	provides	the	framework	required	for	OOP	programming	.
Other	dialects	don't	give	access	to	OOP.
lang	qb	will	allow	the	developers	to	keep	increasing	the
compatibility	with	qb	programs.	Newer	keywords	in	FB	can	be
used	by	preceding	them	with	two	underscores.	For	example,
Getmouse	can	be	called	by	using	__Getmouse
lang	fblite	offers	FreeBASIC	language	compatibility,	with	a	more
QBASIC-compatible	coding	style.

See	Compiler	Dialects	for	details.

Back	to	top

Why	does	my	program	crash	when	I	define	an	array	larger	than	xx	?

This	generally	happens	because	you	made	an	automatic	fixed-length
array	too	large,	and	it	is	corrupting	the	program	stack.	You	have	a	couple
of	options:

if	possible,	reduce	the	size	of	the	automatic	array

http://sourceforge.net/projects/fbc/files/Documentation/

create	a	variable-length	array,	by
defining	the	array	with	an	empty	subscript	list	(using	Dim),
or
defining	the	array	with	variable	subscripts	instead	of
numeric	literals,	Constants	or	Enums	(using	Dim),	or
defining	the	array	with	ReDim

reserve	more	memory	for	the	program	stack	by	using	the	-t
command-line	option	when	compiling.	The	default	is	-t	1024
(kilobytes).	Note:	it's	a	bad	idea	to	use	very	large	values	here.
create	a	static	array	by	defining	the	array	with	Static	rather	than
Dim	(only	locally	visible,	but	globally	preserved)
define	the	array	with	Shared	access	using	Dim	(this	makes	the
array	fully	global)
use	Pointers	and	Memory	Functions	like	Allocate	and
Deallocate	to	manage	memory	yourself	-	this	is	the	preferred	way
for	storing	big	buffers,	but	not	for	beginners.

Static	and	variable-length	arrays	don't	use	the	program	stack	for	their
element	data,	so	do	not	have	the	problem	associated	with	automatic
fixed-length	arrays.	See	Storage	Classes	for	more	information.	Note	that
storing	huge	buffers	as	static	or	increasing	the	stack	size	far	above	the
default	is	not	a	very	good	idea,	since	it	increases	the	fixed	amount	of
memory	needed	to	load	and	start	you	program,	even	if	most	of	it	is	not
used	later,	and	can	result	in	performance	degrade,	or	even	refusing	your
program	to	load	at	all.	

Why	does	my	program	fail	to	compile	with	the	message	'cannot	find
-llibname'"?
This	is	an	error	raised	by	the	linker.	The	program	is	supposed	to	link	to
an	external	library,	designated	in	the	program	code	with	#inclib	or	on	the
compiler	command	line	with	-l.	However,	the	linker	has	been	unable	to
find	a	matching	file	in	any	of	the	library	paths.	Check	the	homepage	of
the	library	you	want	to	compile	with	to	find	out	how	to	download	it,	or
check	ExtLibTOC	to	see	if	information	about	the	library	can	be	found
there.

Back	to	top

Advanced	FreeBASIC

How	do	I	link	to	C	libraries?
C	libraries	are	set	up	in	much	the	same	way	in	FreeBASIC	as	they	are	in
C.	Every	library	included	with	FreeBASIC	has	a	basic	include	file	named
"library	name.bi"	which	uses	the	#inclib	metacommand	to	include	the
library,	and	the	Declare	Statement	to	declare	the	functions	within	the
library.	FreeBASIC	includes	hundreds	of	BI	files,	see	full	list	of	library
headers	here.

Back	to	top

Can	I	use	a	debugger?
FreeBASIC	can	use	preferably	a	debugger	compatible	with	GNU	GDB.	

Win32:	Insight	is	an	user	friendly	wrapper	for	GDB,	see
Win32	related	FAQ.	
DOS:	Be	warned	that	DOS	also	has	product	named
"Insight",	but	it's	a	real	mode	debugger	not	usable	with
FreeBASIC,	use	GDB	or	some	DPMI32	debugger	at	least.
Linux:	use	GDB.

See	the	OS	specific	FAQ's	for	details	for	your	OS.

Back	to	top

What's	the	goal	of	the	AR.EXE,	AS.EXE	and	LD.EXE	files	included
with	FB	?
AS.EXE	is	GAS,	the	"GNU	assembler".	It	is	always	involved	in
compilation.	LD.EXE	is	the	"GNU	linker",	involved	in	creation	of
executables.	AR.EXE	is	the	"GNU	archiver",	in	fact	a	librarian,	creating	.A
libraries.	

Back	to	top

Is	there	a	limit	on	how	big	my	source	files	can	be?

Yes,	since	FreeBASIC	is	a	fully	32-bit	compiler	it	may	operate	on	source
files	up	to	theoretically	4GB	or	4294967296	bytes,	however	your	RAM
capacity	should	be	significantly	above	the	size	of	your	source,	otherwise
the	compilation	won't	finish	or	will	be	very	slow	at	least.	

Back	to	top

Can	I	write	an	OS	in	FreeBASIC	?

YES	and	NO.	If	you	really	insist	to	write	an	OS	and	involve	FB,	the
answer	is	YES.	If	the	question	is,	whether	it	is	a	good	idea	that	you,	even
more	if	a	beginner,	should	start	coding	an	OS	using	FB	now,	the	answer
is	NO.	Several	pitfalls	apply:

OS	development	is	hard,	see
http://www.osdev.org/wiki/Getting_Started	.
FB	won't	help	you	to	bypass	the	need	to	deal	with
assembly,	also	C	might	be	almost	impossible	to	avoid.
You	won't	be	able	to	use	most	of	the	trusted	FB	features,
like	graphics,	file	I/O,	threads,	memory	management,	even
console	I/O	...	just	control	flow,	math	and	logic.	If	you	need
those	library	functions,	you	will	have	to	reimplement	them.

FreeBASIC	relies	on	GCC,	and	available	informations	about	developing
an	OS	in	C	apply	to	FreeBASIC	as	well.	FB	will	help	you	neither	more	nor
less	than	GCC.

Back	to	top

I'm	developing	an	OS,	can	FreeBASIC	be	ported	to	my	OS	?

Depends.	If	your	OS	at	least	egalizes	the	functionality	of	DOS	with
DPMI32	(console	I/O	(seeking,	multiple	files	open,	...),	file	I/O,	memory
management)	and	has	a	port	of	GCC,	then	the	answer	is	YES.	If	you
have	at	least	an	other	somewhat	compliant	C	compiler	with	libraries,	it
might	be	possible.	You	can't	reasonably	port	FB	for	example	to	an	OS
allowing	to	load	or	save	a	file	in	one	block	only,	or	a	16-bit	OS.	

Back	to	top

Does	FreeBASIC	support	returning	references	from	Functions,	like
in	C++?

Yes,	this	functionality	exists	since	version	0.90.0.	Procedures	can	now
return	references	using	ByRef	as	datatype	for	the	return	type.

Back	to	top

See	also

Win32	related	FAQ
DOS	related	FAQ
Linux	related	FAQ

and
FB	Runtime	Library	FAQ
Frequently	Asked	FreeBASIC	Graphics	Library	Questions

Frequently	Asked	FreeBASIC	Graphics	Library
Questions

	

FreeBASIC	Graphics	Library	questions:
-	How	can	I	link/use	Gfxlib?
-	What	about	the	fbgfx.bi	header	file?
-	How	are	Get/Put	arrays	managed?
-	Why	is	Bsave/Bload	crashing?
-	How	can	I	get	the	red,	green,	blue,	or	alpha	component	of	a	colour?
-	How	can	I	make	the	'x'	button	in	the	window	header	close	my	application?
-	Can't	run	programs	using	Screen	13	or	14	in	fullscreen	!
-	Why	does	Imagecreate	return	a	NULL	pointer?

FreeBASIC	Graphics	Library	questions

How	can	I	link/use	Gfxlib?
Gfxlib	is	"built	in"	into	the	language,	it	is	not	necessary	to	include	any	.bi	file	or	to	link	any
library	explicitly.	FreeBASIC	detects	you	want	to	use	Gfxlib	when	you	use	the	
ScreenRes	statements.	So	to	use	Gfxlib,	just	start	a	graphics	screen	mode	and	use	the
graphics	commands.

Back	to	top

What	about	the	fbgfx.bi	header	file?
The	fbgfx.bi	header	file	is	available	for	inclusion	by	your	program,	and	contains	constant
and	type	definitions	that	may	be	helpful	to	the	programmer	when	using	Gfxlib.	You	do	not
have	to	explicitly	include	this	file	to	use	Gfxlib	however;	the	header	is	only	available	as	an
aid.	It	contains	the	constants	for	the	mode	flags	that	can	be	passed	to	Screen
ScreenRes,	and	also	definitions	of	Keyboard	scancodes	and	the	fb.Image	buffer
structure.

Back	to	top

How	are	Get/Put	arrays	managed?
In	FreeBASIC,	images	can	be	used	as	arrays	(as	in	QB)	or	as	pointers.	Either	way,	the
image	data	is	contained	in	one	continuous	chunk.	The	chunk	consists	of	an	header	followed
by	the	image	data.	The	header	can	be	of	two	types	(old-style	and	new-style)	and	determines
the	format	of	the	following	image	data,	for	details	see	GfxInternalFormats	.

Back	to	top

Why	is	Bsave/Bload	crashing?
Bsave/Bload	can	only	be	used	to	load	and	save	graphics	screens	in	FreeBASIC.	It	can't	be
used	to	save	a	text	mode	screen.	To	load	and	save	an	array	check	this	snippet	using	file
Get/Put	.

Back	to	top

How	can	I	get	the	red,	green,	blue,	or	alpha	component	of	a	color?

Each	byte	in	a	color	attribute	corresponds	with	the	red,	green,	blue,	and	alpha	components.
The	following	example	shows	how	to	extract	the	component	values	from	a	16,	24,	or	32	bit
color	attribute.

#define	rgb_a(x)	((x)	Shr	24)

#define	rgb_r(x)	((x)	Shr	16	And	255)

#define	rgb_g(x)	((x)	Shr	8	And	255)

#define	rgb_b(x)	((x)	And	255)

Dim	As	UInteger	c

Dim	As	Integer	x,	y

Dim	As	UByte	red,	green,	blue,	Alpha

''	Assume	a	16,	24,	or	32	bit	screen	mode	has	been	set

c	=	Point(x,	y)

red	=	rgb_r(c)

green	=	rgb_g(c)

blue	=	rgb_b(c)

Alpha	=	rgb_a(c)

Back	to	top

How	can	I	make	the	'x'	button	in	the	window	header	close	my	application?
In	windowed	graphics	mode	you	can	test	for	the	press	of	the	window's	X	(close)	button	with
Inkey,	checking	for	the	value	Chr(255)	+	"k"	(which	is	also	the	code	returned	for	Alt+F4).
This	applies	to	Win32	and	Linux,	in	DOS	there	is	no	"X"	button.

Here	is	a	small	example:

''	"X"	close	button	example	,	Win32	and	Linux	only

Dim	As	String	key

Screen	13

Do

		Print	"Click	the	'x'	to	close	this	app."

		Sleep

		key	=	Inkey

Loop	Until	key	=	Chr(27)	Or	key	=	Chr(255,	107)	'escape	or	x-

button

Back	to	top

Can't	run	programs	using	Screen	13	or	14	in	full-screen!
It's	a	hardware/driver	limitation	(Win32	and	Linux	only?).	Video	cards	don't	implement	those
low	resolution	graphic	modes	nowadays.	If	full-screen	is	required	you	should	rewrite	it	using
at	least	Screen	17	or	18,	or	a	resolution	of	640x480	or	higher	to	be	sure	modern	hardware
can	handle	it.

Back	to	top

Why	does	Imagecreate	return	a	NULL	pointer?
ImageCreate	needs	to	create	an	image	buffer	that	fits	the	current	screen's	pixel	format,	and
it	cannot	do	so	if	there	is	no	screen	mode	setup	yet,	so	it	returns	NULL,	very	likely	resulting
in	a	NULL	pointer	access	later	on	that	crashes	the	program.

This	is	known	to	happen	when	Imagecreate	is	called	before	the	graphics	library	was
initialized	with	a	call	to	Screen	or	ScreenRes,	as	may	happen	when	Imagecreate	is	called
in	a	global	constructor	that	is	invoked	before	the	Screen	or	Screenres	call	in	the	main	part	of
the	program.	In	such	a	case	it	is	necessary	to	move	the	screen	initialization	into	a
constructor	too,	and	have	it	execute	before	the	image-creating	constructors.

Back	to	top

See	also

Compiler	FAQ
FB	Runtime	Library	FAQ
Frequently	Asked	FreeBASIC	Graphics	Library	Questions

Frequently	Asked	FB	Runtime	Library	Questions 	

FreeBASIC	Runtime	Library	questions:

-	How	do	I	play	sound?
-	How	do	I	access	the	serial	ports?
-	How	do	I	print?
-	How	do	I	access	the	hardware	ports?

FreeBASIC	Runtime	Library	questions

How	do	I	play	sound?
Of	the	QB's	sound	keywords	only	BEEP	is	implemented	in	FB.	
If	PC	speaker	sound	is	required,	it	should	be	programmed	using	IN	and
OUT.	See	the	example	in	the	OUT	keyword	for	a	replacement	of	SOUND.
There	is	a	library	called	QBSound	that	allows	to	emulate	qb's	ability	to
PLAY	in	the	background	tunes	encoded	in	strings,	it	uses	the
soundcard's	synthesizer.
If	what's	required	is	to	play	.wav	or	.mp3	files	thru	a	soundcard,	external
libraries	as	FMOD	or	BASS	can	be	used	in	Linux	and	Windows.	For	DOS
see	the	DOS	FAQ	section.

Back	to	top

How	do	I	access	the	serial	ports?

DOS
See	DOS	FAQ	section.

Windows	and	Linux
See	Open	Com.

Back	to	top

How	do	I	print?
Since	version	0.15	FB	supports	character	output	to	printer.
To	print	graphics	two	approaches	are	possible:

Preprocess	the	graphics	data,	program	the	printer,	and	send	the
data	to	it	(see	wikipedia.org/wiki/ESC/P).	This	is	OS-portable	but
depends	on	the	printer	model.	The	only	way	for	DOS,	see	also
DOS	FAQ	section.
In	Windows	and	Linux	there	are	specific	API	calls.	This	is	not	OS-
portable	but	the	OS's	printer	driver	makes	it	printer-independent.

Back	to	top

How	do	I	access	the	hardware	ports?

INP,	OUT	and	WAIT	known	from	QB	are	implemented	since	version	0.15
of	FB.
The	GfxLib	intercepts	the	calls	to	some	VGA	ports	to	emulate	the	widely
used	QB's	palette	manipulation	and	vsync	methods.	So	ports	&H3DA;,
&H3C7;,	&H3C8;	and	&H3C9;	can't	be	accessed	it	GfxLib	is	used.	All
other	ports	are	accessible.
No	further	tricks	are	required	to	use	INP	and	OUT	in	Linux	or	DOS.	For
the	Windows	version	the	required	device	driver	is	installed	each	first	time
the	program	is	run	in	a	windows	session;	this	requires	Administrator
rights	for	this	first	run	or	the	program	will	end	with	an	error.	Note	that
accessing	hardware	ports	by	applications	is	not	common	practice	in
Windows	and	Linux.

Back	to	top

See	also

Compiler	FAQ
Frequently	Asked	FreeBASIC	Graphics	Library	Questions

and
Win32	related	FAQ
DOS	related	FAQ

http://en.wikipedia.org/wiki/ESC/P

Frequently	Asked	Questions 	

FreeBASIC	on	Xbox	general	questions
-	Can	FreeBASIC	really	make	Xbox	games?
-	How	was	the	FreeBASIC	Xbox	port	made?
-	How	about	a	port	for	Xbox	360?
-	How	about	a	port	for	PlayStation	or	another	console?
-	Why	don't	you	use	an	emulator	until	a	developer	gets	a	modded
Xbox?
-	Why	don't	you	use	the	Microsoft	XDK?
-	Why	don't	you	use	the	Microsoft	debugger	to	fix	it?
-	Isn't	this	illegal?	Can't	Microsoft	sue	you?

Getting	Started	with	FreeBASIC	on	Xbox	questions
-	What	do	I	need	to	compile	Xbox	games	with	FreeBASIC?
-	How	would	you	get	input?
-	Does	it	only	run	on	certain	Xboxes?
-	Is	another	language	(eg	C	or	ASM)	needed	for	the	job?
-	Do	you	need	a	special	lib?
-	Can	you	use	premade	functions	(inkey,	line	etc)?
-	What	else	should	I	know?

FreeBASIC	on	Xbox	general	questions

Can	FreeBASIC	really	make	Xbox	games?

In	theory,	yes.	A	copy	of	FreeBASIC	0.13	was	ported	to	the	Xbox	in	July
2005,	and	produced	working	executables.	However,	changes	to	the
compiler	for	the	0.14	release	broke	compatiblity.	

The	Xbox	port	is	currently	in	zombie	mode;	nobody	in	the	project	team
has	the	console	at	the	moment	-	the	original	port	was	done	by	SJ	Zero,
but	it	got	broken	with	the	runtime	library	modifications	done	in	v0.14.

The	port	is	on	hold	until	the	GCC	backend	port	is	complete,	because	it	is
believed	that	this	port	will	fix	the	Xbox	port.

How	was	the	FreeBASIC	Xbox	port	made?

FreeBASIC	for	Xbox	is	possible	because	of	the	efforts	of	Open	Source
developers	who	created	OpenXDK,	the	legal	software	development	kit	for
Xbox.	OpenXDK	is	created	for	a	unixish	environment,	which	is	quite
compatible	with	the	FreeBASIC	source.

The	port	was	created	by	forcing	the	FreeBASIC	runtime	library	to	use	the
OpenXDK	version	of	Glibc	instead	of	the	mingw32	version.	When
compiled	with	the	correct	flags,	this	creates	what	looks	like	a	standard
EXE	file.	CXBE	then	strips	the	Windows	PE	header	on	this	executable
file	and	replaces	it	with	an	Xbox	header.

In	effect,	all	the	port	really	does	is	change	the	runtime	library	and	link	in	a
certain	way	to	allow	the	CXBE	utility	to	create	an	Xbox	executable.

How	about	a	port	for	Xbox	360?

The	Xbox	is	an	Intel	Pentium	3	running	a	derivative	of	the	NVIDIA	nForce
chipset,	with	an	NVIDIA	video	chip	and	an	NVIDIA	SoundStorm	sound
card.	This	is	why	the	Xbox	port	was	possible	and	relatively
straightforward	to	do.	

The	Xbox	360,	on	the	other	hand,	uses	an	alien	CPU,	and	similarly	alien
hardware.	FreeBASIC	cannot	presently	be	made	to	produce	executables
for	the	Xbox	360.	

Another	problem	is	the	lack	of	an	equivilent	to	OpenXDK	for	the	Xbox
360.	This	would	force	any	port	to	use	the	Xbox	360	XDK,	a	copyrighted
piece	of	software	created	by	Microsoft.	This	would	be	illegal,	immoral,
and	would	put	FreeBASIC	in	legal	jeparody.	

Therefore,	a	port	to	the	Xbox	360	is	to	be	considered	impossible	at	this
time.

How	about	a	port	for	PlayStation	or	another	console?

The	Xbox	is	an	Intel	Pentium	3	running	a	derivative	of	the	NVIDIA	nForce
chipset,	with	an	NVIDIA	video	chip	and	an	NVIDIA	SoundStorm	sound
card.	This	is	why	the	Xbox	port	was	possible	and	relatively
straightforward	to	do.	

The	PlayStation,	on	the	other	hand,	uses	a	RISC	chip,	which	FreeBASIC
cannot	currently	produce	code	for.	Almost	all	consoles	utilize	non	x86
processors,	stopping	development	using	FreeBASIC	from	being	possible.

Another	problem	is	the	lack	of	an	equivilent	to	OpenXDK	for	many
consoles.	This	would	force	any	port	to	use	the	commercial	software
development	kit,	a	copyrighted	piece	of	software	created	by	the	console
manufacturer.	This	would	be	illegal,	immoral,	and	would	put	FreeBASIC
in	legal	jeparody.	

Therefore,	a	port	to	other	consoles	are	to	be	considered	impossible	at
this	time.	However,	many	ports	to	consoles	and	other	platforms	with
legally	available	development	kits	will	be	possible	when	the	GCC
backend	port	is	complete.
Why	don't	you	use	an	emulator	until	a	developer	gets	a	modded
Xbox?

No	known	Xbox	emulator	is	capable	of	running	FreeBASIC	code.	A
legitimate	hardware	console	is	required	to	run	the	programs	made.	This
makes	an	emulator	completely	useless	for	development.	
Why	don't	you	use	the	Microsoft	XDK?

There	are	two	main	reasons	not	to	use	the	Microsoft	XDK.

1)	Microsoft's	XDK	is	a	piece	of	copyrighted	software,	and	utilizing	it
would	be	illegal	and	immoral,	putting	FreeBASIC	at	risk	of	legal	action.
Furthermore,	no	member	of	the	FreeBASIC	team	has	ever	had	any
access	to	the	Microsoft	XDK,	to	prevent	"tainting"	FreeBASIC	legally.

2)	OpenXDK	is	developed	around	gcc	and	UNIX-style	systems	such	as
MinGW	or	Cygwin.	This	means	that	it	can	be	integrated	into	FreeBASIC

with	very	little	effort.	Microsoft's	XDK,	on	the	other	hand,	is	developed
around	Microsoft	based	compilers,	and	thus	would	not	easily	integate	into
the	source	code	of	FreeBASIC.

NOTE:	PROTECTION	OF	MICROSOFT'S	COPYRIGHT,	AND	BY
PROXY	OF	FREEBASIC,	IS	OF	PRIMARY	IMPORTANCE	IN	THIS
PROJECT.	WE	DO	NOT	WANT	HELP	FROM	ANYONE	WITH	THE	XDK,
NOR	DO	WE	WANT	HELP	FROM	ANYONE	WITH	A	DEBUGGER
XBOX.	ANY	ATTEMPT	TO	OFFER	THE	XDK	OR	XDK	RELATED	HELP
SHALL	BE	FORWARDED	TO	THE	PROPER	LAW	ENFORCEMENT
AGENCIES.

Why	don't	you	use	the	Microsoft	debugger	to	fix	it?

There	are	two	very	good	reasons	not	to	use	the	Microsoft	debugger.	

1)	Microsoft's	XDK	is	a	piece	of	copyrighted	software,	and	utilizing	it
would	be	illegal	and	immoral,	putting	FreeBASIC	at	risk	of	legal	action.
Furthermore,	no	member	of	the	FreeBASIC	team	has	ever	had	any
access	to	the	Microsoft	XDK,	to	prevent	"tainting"	FreeBASIC	legally.

2)	Microsoft's	debugger	requires	a	specially	modified	Xbox	which	neither
SJ	Zero	nor	any	development	team	member	has,	and	frankly,	nobody
who	has	worked	on	the	port	believes	the	debugger	would	work	with
FreeBASIC	executables	--	just	as	Microsoft's	debugger	can't	read
FreeBASIC	debugger	files,	we	doubt	the	Xbox	debugger	could	read
FreeBASIC	debugger	files.	Regardless,	point	#1	trumps	any	attempt.

NOTE:	PROTECTION	OF	MICROSOFT'S	COPYRIGHT,	AND	BY
PROXY	OF	FREEBASIC,	IS	OF	PRIMARY	IMPORTANCE	IN	THIS
PROJECT.	WE	DO	NOT	WANT	HELP	FROM	ANYONE	WITH	THE	XDK,
NOR	DO	WE	WANT	HELP	FROM	ANYONE	WITH	A	DEBUGGER
XBOX.	ANY	ATTEMPT	TO	OFFER	THE	XDK	OR	XDK	RELATED	HELP
SHALL	BE	FORWARDED	TO	THE	PROPER	LAW	ENFORCEMENT
AGENCIES.

Isn't	this	illegal?	Can't	Microsoft	sue	you?

Copyright	is	important	for	the	protection	of	both	commercial	firms	like
Microsoft,	and	for	small	projects	such	as	FreeBASIC.	Without	copyright,
neither	could	enforce	any	rights	over	the	code	(In	our	case,	such	as	the
GPL).	Generally	speaking,	it	is	copyright	issues	which	are	most	often	the
cause	of	problems	for	open	source	projects	attempting	to	do	things	like
this.

Because	the	FreeBASIC	Xbox	port	is	created	using	software	tools	whose
legality	has	already	been	established,	themselves	often	derived	from
other	sources	whose	legality	has	been	established,	FreeBASIC	for	Xbox
is	not	illegal.	Careful	care	has	been	taken	to	protect	FreeBASIC	from
using	any	Microsoft	copyrighted	code,	and	diligence	is	and	will	be
followed	to	prevent	access	to	copyrighted	code.

Getting	Started	with	FreeBASIC	on	Xbox	questions

What	do	I	need	to	compile	Xbox	games	with	FreeBASIC?

The	port	isn't	currently	working,	but	when	it	is	ready,	you	will	only	need	a
copy	of	FreeBASIC	for	Xbox.

How	would	you	get	input?

Initially,	input	will	be	acquired	through	SDL,	as	a	gfxlib	port	is	not	yet
complete.	One	of	the	developers	is	working	on	a	generic	SDL	version	of
gfxlib,	however,	and	it	will	provide	full	gfxlib	functionality	to	the	Xbox	port.

Does	it	only	run	on	certain	Xboxes?

FreeBASIC	for	Xbox	executables	will	only	run	on	modded	Xboxes.
However,	modding	an	Xbox	is	often	as	simple	as	loading	a	savegame	in
a	certain	game.	More	information	is	available	on	the	Xbox-Linux
website.

http://www.xbox-linux.org/wiki/Main_Page

Is	another	language	(eg	C	or	ASM)	needed	for	the	job?

No.	FreeBASIC	for	Xbox	is	the	only	thing	needed.

Do	you	need	a	special	lib?

No.	FreeBASIC	for	Xbox	will	come	with	all	supported	libraries.

Can	you	use	premade	functions	(inkey,	line	etc)?

Currently,	input	and	output	commands	such	as	inkey	and	line	aren't
available,	but	all	other	functions,	including	file	I/O,	are.	One	of	the
developers	is	working	on	a	generic	SDL	version	of	gfxlib,	however,	and	if
it	functions,	it	will	provide	full	gfxlib	functionality	to	the	xbox	port.

What	else	should	I	know?

Executables	created	by	FreeBASIC	for	Xbox	are	free	of	copyrighted
Microsoft	code,	making	them	legal	for	distribution.

Windows	and	Linux	source	files	which	are	designed	to	use	SDL	and	rtlib
will	be	capable	of	compiling	for	Xbox	out	of	the	box.	While	the	Xbox	does
have	keyboard	support	through	the	gamepad	ports	(proprietary	USB
connection),	the	input	scheme	will	have	to	be	altered	to	account	for	a
gamepad.

DOS	related	FAQ 	

DOS

The	FreeBASIC	port	to	DOS	is	based	on	the	DJGPP	port	of	the	GNU	toolchain	to	32-bit	protected-
mode	DOS.

The	current	maintainer	of	this	port	is	DrV.

To	be	written:	platform-specific	information,	differences	from	Win32/Linux,	differences	from	QB?,
tutorials,	etc.	

WANTED	TESTERS

The	DOS	version/target	of	FreeBASIC	needs	more	testers.	If	you	are	interested	in	using	FreeBASIC
on	DOS,	please	don't	wait	for	future	releases,	give	it	a	try	now.	Tests	from	running	in	DOS	on	both	old
and	new	PC's	are	welcome	(graphics,	file	I/O,	serial	port,	...).	If	something	doesn't	work,	please	place
a	detailed	bug	report	into	the	forum	or	bug	Tracker.	If	all	works	well,	you	can	write	about	your	success
as	well.	Make	sure	to	test	a	recent	version	of	FB	(reports	from	FB	older	than	0.90	will	be	probably
considered	as	obsolete	and	useless),	and	check	this	document	before	complaining	about	anything.

Limitations

The	DOS	target	is	fairly	well	working	and	supported	by	FreeBASIC,	and	up-to-date.	A	few	differences
compared	to	other	platforms	exist,	however.	The	features	missing	are	mostly	those	not	supported	by
the	operating	system	or	DOS	extender	or	C	runtime:

Cross-compiling	to	an	other	target
Multithreading	(see	FAQ	23)
Graphics	in	windowed	mode	or	using	OpenGL
Setting	ScreenRes	to	a	size	not	matching	any	resolution	supported	by	the	graphics	card	
Unicode	isn't	supported	in	DOS,	WString	will	be	the	same	as	ZString
latin	aren't	supported.	(do	it	yourself)
Shared	libraries	(DLL's)	can't	be	created/used	(at	least	not	"easily"),	amount	of	available	static
external	libraries	usable	with	DOS	is	limited

FreeBASIC	DOS	related	questions:

http://www.delorie.com/djgpp/

-	1.	FB	is	a	32-bit	compiler	-	do	I	need	a	32-bit	DOS?
-	2.	What	about	FreeDOS-32?	Does/will	FB	work,	is/will	there	be	a	version?
-	3.	When	running	FreeBASIC	in	DOS,	I	get	a	'Error:	No	DPMI'	message!
-	4.	Is	there	a	possibility	how	to	get	rid	of	this	CWSDPMI.EXE	and	CWSDPMI.SWP?
-	5.	Can	I	use	other	DOS	extenders,	like	DOS/4GW,	Causeway,	DOS/32A?
-	6.	Where	is	the	nice	blue	screen	with	all	the	...	/	where	is	the	IDE?
-	7.	How	can	I	view	the	documentation	in	CHM	or	PDF	format	in	DOS?
-	8.	How	can	I	write/edit	my	source	code?
-	9.	How	can	I	play	sound	in	DOS?
-	10.	How	can	I	use	USB	in	DOS?
-	11.	How	can	I	use	graphics	in	DOS?
-	12.	DEF	SEG	is	missing	in	FB!	How	can	I	workaround	this	in	my	code?
-	13.	How	can	I	rewrite	QB's	CALL	INTERRUPT	/	access	the	DOS	and	BIOS	interrupts?
-	14.	How	can	I	rewrite	QB's	XMS/EMS	handling?
-	15.	FBC	gives	me	a	'cannot	find	lsupcxx'	error!
-	16.	How	can	I	use	the	serial	or	parallel	port?
-	17.	How	can	I	use	a	printer?
-	18.	How	can	I	make	a	screenshot	of	a	FreeBASIC	program	running	in	DOS?
-	19.	Graphics	mode	doesn't	work	(freeze	/	black	screen	/	garbage	output)!
-	20.	Mouse	trouble!	Mouse	doesn't	work	at	all	in	DOS	/	arrow	'jumps'	/	etc.	...
-	21.	What	about	the	64	KiB	and	640	KiB	problems	/	how	much	memory	is	supported	by	FB	in
DOS?
-	22.	My	program	crashes	when	I	try	to	use	more	than	cca	1	MiB	RAM!	Is	this	a	bug	in
FreeBASIC?
-	23.	Threading	functions	are	disallowed	in	DOS?	Help!
-	24.	Executables	made	with	FB	DOS	are	bloated!
-	25.	Compilation	is	very	slow	with	FB!
-	26.	SLEEP	doesn't	work!	How	can	I	cause	a	delay?
-	27.	The	performance	is	very	bad	in	DOS!
-	28.	Can	I	access	disk	sectors	with	FB?
-	29.	Can	I	use	inline	ASM	with	advanced	instructions	like	SSE	in	DOS	?

See	also

FreeBASIC	DOS	related	questions

1.	FB	is	a	32-bit	compiler	-	do	I	need	a	32-bit	DOS?
No,	the	DOS	version	of	FreeBASIC	uses	a	DOS	extender,	allowing	you	to	execute	32-bit	code	on	top
of	a	16	bit	DOS	kernel.	You	can	use	FreeDOS	(16-bit),	Enhanced-Dr-DOS,	old	closed	Dr-DOS,	or
even	MS-DOS	down	to	version	cca	4.	You	need	at	least	80386	CPU,	see	also	

2.	What	about	FreeDOS-32?	Does/will	FB	work,	is/will	there	be	a	version?
FreeDOS-32	is	experimental	at	time	of	writing,	but	it	should	execute	FreeBASIC	and	applications
generated	by	it	with	no	change.	While	FB	DOS	support	already	works	on	FreeDOS	(16),	it	should	be
ready	for	FreeDOS-32	as	well.	

3.	When	running	FreeBASIC	in	DOS,	I	get	a	'Error:	No	DPMI'	message!
You	need	a	DPMI	host	(DPMI	kernel,	DPMI	server),	means	the	file	"CWSDPMI.EXE"	(cca	20	KiB)	or
HDPMI32.EXE	(cca	34	KiB).	See	requirements,	and	FAQ	4	for	more	details.

4.	Is	there	a	possibility	how	to	get	rid	of	this	CWSDPMI.EXE	and	CWSDPMI.SWP?
Yes,	2	possibilities.	To	get	rid	of	CWSDPMI.EXE	and	create	a	standalone	DOS	executable
embedding	CWSDPMI,	you	need	the	CWSDPMI	package	and	the	"EXE2COFF.EXE"	file.	Using
EXE2COFF,	you	remove	the	CWSDPMI.EXE	loader	(file	loses	2	KiB	of	size,	resulting	in	a	"COFF"	file
without	extension),	and	then	glue	the	file	"CWSDSTUB.EXE"	before	this	COFF.	The	new	executable
is	cca	21	KiB	bigger	than	the	original	one,	but	it	is	standalone,	no	additional	files	are	needed.	To	get
rid	of	CWSDPMI.SWP,	you	can	then	edit	your	executable	with	CWSPARAM.EXE,	and	disable	the
swapping	(occasionally	also	-	incorrectly	-	referred	as	paging).	Note,	however,	that	this	will	limit	the
memory	that	can	be	allocated	to	the	amount	of	physical	memory	that	is	installed	in	a	system.	This
work	can	be	done	both	with	the	FBC.EXE	file	and	all	executables	created	by	FBC.	The	method	is	also
described	in	the	CWSDPMI	docs	in	the	package.	Alternatively,	you	can	use	the	
extender.	They	don't	swap	and	create	standalone	executables.	Since	they	run	your	executable	in
Ring	0,	the	crash	handling	of	them	is	not	very	good	and	can	cause	freezers	or	reboots	on	bugs	where
other	hosts	exit	the	"civil"	way	with	a	register	dump.	Also,	spawning	might	not	work	well	/	at	all	with
WDOSX	or	D3X.	Finally,	you	can	use	HDPMI	.	Download	the	"HXRT.ZIP"	file	(here:
japheth.de/HX.html),	extract	"HDPMI32.EXE"	(cca	34	KiB)	and	"HDPMI.TXT"	(not	required	by	the
code,	just	for	your	information),	and	include	it	to	your	DOS	startup	("HDPMI32	-r").	This	will	make
HDPMI	resident	and	prevent	all	FreeBASIC	(also	FreePASCAL	and	DJGPP)	programs	from	both
crying	about	missing	DPMI	and	swapping.	HDPMI	can	not	(easily	/	yet)	be	included	into	your
executables.	Running	an	executable	containing	D3X,	CWSDPMI	or	some	DPMI	host	inside	under
HDPMI	or	other	external	host	is	fine	-	the	built-in	host	will	be	simply	skipped.	Using	DPMI	is	definitely
required	for	FreeBASIC,	since	it	can't	generate	16-bit	real	mode	code,	and	there	is	no	other	good	way
to	execute	32-bit	code	in	DOS.

5.	Can	I	use	other	DOS	extenders,	like	DOS/4GW,	Causeway,	DOS/32A?

http://japheth.de/HX.html

Not	any	extender	around.	So-called	WATCOM-like	extenders	can't	be	used	because	of	important
differences	in	memory	management	and	executable	structure.	WDOSX	and	D3X	do	work,	since	they
are	a	multi-standard	extenders,	not	only	WATCOM-like.	You	also	can	use	PMODE/DJ	(not	"original"
Tran's	PMODE,	nor	PMODE/W	(!),	saves	cca	5	KiB	compared	to	CWSDPMI,	can	be	included	into	the
EXE,	but	might	affect	stability	or	performance)	or,	as	aforementioned,	HDPMI.

6.	Where	is	the	nice	blue	screen	with	all	the	...	/	where	is	the	IDE?
The	FreeBASIC	project	focuses	on	the	compiler,	generating	the	executables	from	your	BAS	sources.
It	looks	unspectacular,	but	is	most	important	for	the	quality	of	software	developed	by	you.	The	project
does	not	include	an	IDE.	There	are	several	external	IDEs	for	FreeBASIC,	but	probably	none	does
have	a	DOS	version	by	now.	If	you	really	need	one,	you	could	try	Rhide,	but	note	that	it	is	complicated
and	buggy,	so	use	it	at	your	own	risk.	See	also	FAQ	7	and	8.

7.	How	can	I	view	the	documentation	in	CHM	or	PDF	format	in	DOS?
There	is	no	good	way	to	view	CHM	or	PDF	files	in	DOS	by	now.	But	you	can	view	the	FreeBASIC
documentation	nevertheless.	One	of	the	FreeBASIC	developers,	coderJeff	provides	a	FreeBASIC
documentation	viewer	with	the	docs	included	in	a	special	format,	and	having	also	a	DOS	version.	It
looks	similar	the	QB's	built-in	help	viewer,	but	does	not	contain	an	editor	or	IDE.	Download	here:
http://www.execulink.com/~coder/FreeBASIC/docs.html

8.	How	can	I	write/edit	my	source	code?
There	are	many	editors	for	DOS	around,	but	only	few	of	them	are	good	-	some	possibilities	are
FreeDOS	EDIT	(use	version	0.7d	(!!)	or	0.9,	64	KiB	limit,	suboptimal	stability	(save	your	work
regularly)),	SETEDIT,	INFOPAD	(comes	with	CC386	compiler,	can	edit	big	texts	also,	has	syntax
highlighting	for	C	and	ASM,	but	not	for	BASIC).

9.	How	can	I	play	sound	in	DOS?
There	are	2	ways	how	to	play	sound	in	DOS:	either	the	("archaic")	PC	speaker,	famous	for	beeping	if
something	goes	wrong,	or	a	soundcard.	The	speaker	is	easy	to	control,	allows	more	than	one	might
think,	even	to	play	audio	files	(WAV,	with	decompression	code	also	OGG	Vorbis,	MP3	etc.),	you	can
re-use	most	of	existing	QB	code	easily	(example:	o-bizz.de/qb...speaker.zip
ASM,	but	provides	one	channel	and	6	bits	only,	and	of	course	significantly	worse	quality	than	a
soundcard,	and,	on	some	newest	(P4)	PC's	the	speaker	quality	is	very	bad	or	there	is	no	speaker	at
all.	For	old	ISA	soundcards,	there	is	much	example	code	around,	a	newer	PCI	soundcard	can	be
accessed	(supposing	bare	DOS	in	this	category)	either	using	a	("emulation"	SB16	compatible)	driver,
if	it	is	available	for	your	card	(unfortunately,	this	is	becoming	more	and	more	a	problem,	the	DOS
drivers	are	poor	or	even	inexistent),	or	access	the	card	directly	(this	is	low-level	programming,
hardware-related,	assembler	is	also	needed,	and	you	need	technical	docs	about	the	card).	There	are
a	few	sources	of	inspiration	like	the	DOS	audio	player	MPXPLAY	(written	in	C	with	some	ASM),

http://www.o-bizz.de/qbdown/qbsound/speaker.zip

supporting	both	methods	(native	+	"emu"	drivers),	see	an	up-to-date	list	here:
drdos.org/...wiki...SoundCardChip.	Support	of	sound	in	DOS	is	not	business	FB	DOS	port,	actually
FB	doesn't	"support"	sound	on	Win32	and	Linux	either	-	the	games	"connect	to	the	API"	rather	than
use	FreeBASIC	commands	or	libraries.	To	play	compressed	files	(MP3,	OGG	Vorbis,	FLAC,	...)	,	you
additionally	need	the	decompressing	code,	existing	DJGPP	ports	of	those	libraries	should	be	usable
for	this.	

10.	How	can	I	use	USB	in	DOS?
Again,	not	business	of	FB,	you	need	a	driver,	FB	doesn't	"support"	USB	on	Win32	or	Linux	either,	see
other	Wiki:	drdos.org/...wiki...USB	about	possibilities	of	USB	usage	in	DOS.

11.	How	can	I	use	graphics	in	DOS?
GUI	or	graphics	in	DOS	is	definitely	possible,	there	are	several	approaches:	

Use	the	FB	graphics	library.	It	uses	VESA	(preferably	linear,	but	also	supports	banked)
to	access	the	video	card	and	supports	any	resolution	reported	by	the	card's	VESA	VBE
driver,	in	addition	to	standard	VGA	modes.

Note:	use	preferably	FB	version	0.20	or	newer,	the	FB	DOS	graphics	works	not	as	good	on	
does	not	work	at	all	in	previous	releases.

VGA	mode	320x200x8bpp:	very	simple,	maximum	reliability	and	compatibility,	but	low
resolution	and	256	colours	only,	see	example.
VGA	"ModeX"	320x240x8bpp:	similar	to	above,	less	easy,	good	reliability	and
compatibility,	but	low	resolution	and	256	colours	only,	see	example.
VGA	"planed"	mode	640x480x4bpp:	difficult	to	set	pixels,	maximum	reliability	and
compatibility,	but	low	resolution	and	16	colours	only,	no	public	example	yet	(?).
Some	other	"odd"	VGA	"ModeX"	modes	(like	360x240x8bpp):	possible,	but	for	freaks
only	;-)
Write	your	own	VESA	code:	More	difficult,	good	compatibility,	high-res	and	true	color
possible,	there	might	be	reliability	problems	if	not	implemented	carefully.
Use	an	external	library	(DUGL,	Allegro,	MGL,	WxWidgets):	Allows	to	create	"expensive"
graphics	&	GUI's,	bloats	EXE	size,	need	to	respect	library	license,	potential	loss	of
reliability.

Note	that	some	graphic	cards	report	limited	features	through	VESA,	most	notably	less	memory	(for
example	8	MiB	instead	of	64	MiB)	or	less	modes	(for	example	only	24	bpp	modes	visible	while	32	bpp
hidden,	only	lower	resolutions	visible	(up	to	cca	1280x1024)	while	higher	hidden,	only	"4:3"	modes
visible	while	"wide"	modes	hidden).	This	is	a	problem	of	the	card,	not	of	DOS	or	FreeBASIC.	You	will
see	the	additional	features	in	systems	other	than	DOS,	or	in	DOS	only	using	hardware	detection	tools
going	to	the	lowest	level	bypassing	VESA.

http://www.unet.univie.ac.at/~a0503736/php/drdoswiki/index.php?n=Main.SoundCardChip
http://www.xaver.me/drdoswiki/index.php?n=Main.USB

12.	DEF	SEG	is	missing	in	FB!	How	can	I	workaround	this	in	my	code?
DEF	SEG	is	related	to	16-bit	RM	addressing	and	was	removed	because	of	this.	"direct"	access	to
VGA	or	other	low	memory	areas	is	not	possible,	because	FreeBASIC's	memory	model	(same	as
DJGPP's)	is	not	zero-based.	For	accessing	low	DOS	memory,	use	DOSMEMGET	and	DOSMEMPUT
,	see	"vga13h.bas"	example,	or	"_dos_ds"	selector	for	inline	ASM,	see	example:

''	DOS	only	example	of	inline	ASM	accessing	low	memory	

''	Run	in	text	mode	80x25	only

''	Including	dos/go32.bi	will	define	"_dos_ds"

''	"pointing"	into	GO32	block

#include	"dos/go32.bi"	

Dim	As	UInteger	DDS

DDS=_dos_ds

?	:	?	"Hello	world	!"

?	"_dos_ds=$";Hex$(DDS)	

?	"This	is	just	a	tEst	-	abcd	ABCD	XYZ	xyz	@[`{	-	press	any	key	..."

Do

		Sleep	1000

		If	Inkey$<>""	Then	Exit	Do

		Asm

				mov		eax,[DDS]	''	Directly	using	"_dos_ds"	won't	work	here	!!!

				push	eax

				pop		gs								''	Just	to	get	sure,	it	is	usually	set	anyway

				Xor		ebx,ebx

				aa3:

				mov		al,[gs:0xB8000+2*ebx]

				cmp		al,65		''	"a"

				jb			aa1

				cmp		al,122	''	"z"

				ja			aa1			

				cmp		al,90		''	"Z"

				jbe		aa2

				cmp		al,97		''	"a"				

				jb			aa1	

				aa2:	

				Xor		al,32		''	Swap	case

				aa1:

				mov		[gs:0xB8000+2*ebx],al

				inc		ebx

				cmp		ebx,2000

				jne		aa3

		End	Asm		

Loop

?	:	?	"Bye"

End

13.	How	can	I	rewrite	QB's	CALL	INTERRUPT	/	access	the	DOS	and	BIOS	interrupts?
Those	interrupts	can	be	accessed	only	using	the	DOS	version/target	of	FB.

The	access	to	interrupts	is	slower	than	in	QB:	with	FB	the	DPMI	host	will	have	to	do	2	context
switches,	going	to	real-mode	and	coming	back.	All	of	that	will	eat	hundreds	of	clocks	in	raw	DOS	and
thousands	of	clocks	if	emm386	is	loaded	or	if	inside	a	Windows'	DOS	box.	The	slow	down	might	be
negligible	or	relevant,	it	depends.	You	should	try	to	minimize	the	number	of	such	calls,	and	process
more	data	per	call	-	at	least	several	KiB,	not	just	one	byte	or	a	few	bytes.

Use	DJGPP's	DPMI	wrapper:

#include	"dos/dpmi.bi"

Type	RegTypeX	As	__dpmi_regs

#define	INTERRUPTX(v,r)	__dpmi_int(v,	@r)

Alternatively	you	can	call	INT's	via	inline	ASM,	2	important	things	you	have	to	care	about	are	the	fact
that	FB's	memory	model	is	not	zero-based	(see	also	FAQ	12,	"DEF	SEG"	issues),	and	additionally

"direct"	passing	of	addresses	(like	DS:[E]DX)	to	an	INT	will	not	work	except	you	have	a	DPMI	host
with	"DOS	API	translation".	

14.	How	can	I	rewrite	QB's	XMS/EMS	handling?
Depends	why	original	code	uses	it.	If	it's	just	to	bypass	low	memory	limits,	simply	remove	it	and	use
"ordinary"	FB's	data	types	/	memory	handling	features	instead.	If	it	is	used	for	(sound)	DMA,	you	are
out	of	luck	and	have	to	redesign	the	code	completely,	about	sound	see	FAQ	9.	For	DMA	use
preferably	the	low	memory	(should	be	no	big	problem,	since	the	application	code	and	most	buffers
are	in	DPMI	memory	instead),	DMA	in	DPMI	memory	is	possible	but	more	difficult.	

15.	FBC	gives	me	a	'cannot	find	lsupcxx'	error!
The	source	of	this	problem	is	the	libsupcxx.a	file	in	LIB\DOS\	directory,	having	9	characters	in	the
name.	Your	fault	is	to	have	extracted	the	ZIP	with	long	file	names	enabled,	usually	in	Windows,	and
then	using	FB	in	DOS	with	no	LFN	support,	resulting	in	this	file	looks	LIBSUP~1.A
found.	Rename	the	file	in	LIBSUPCX.A	(one	X	only)	or	extract	the	ZIP	again	in	DOS.	Note:	changes
in	FB	0.18,	retest	needed.	

16.	How	can	I	use	the	serial	or	parallel	port?
The	DOS	INT14	is	not	very	useful/efficient	as	it	sends/reads	a	single	char	in	each	call.	So	it's	better	to
use	an	external	DOS32	comms	library.	/*	does	someone	know	a	good	one	?	*/	FB	up	to	0.18.2
doesn't	support	OPEN	COM	on	DOS	target,	coderJeff	has	an	experimental	library/driver	available,
included	with	FB	since	0.18.3.	

17.	How	can	I	use	a	printer?
DOS	kernel	won't	help	you	here,	so	you	have	to	prepare	the	text	(trivial)	or	pixel	data	(acceptably
easy	for	printers	compatible	with	the	"ESC/P"	standard)	yourself	and	send	in	to	the	printer	via	the
parallel	port	or	USB	using	an	additional	driver	(see	FAQ	10).	So-called	"GDI"	or	"Windows"	printers
can't	be	made	working	in	DOS	with	reasonable	effort.

18.	How	can	I	make	a	screenshot	of	a	FreeBASIC	program	running	in	DOS?
Ideally	include	this	feature	into	your	own	code.	DOS	TSR	based	screenshooters	like	SNARF	mostly
will	work	with	text	based	screens,	but	probably	none	of	them	with	FreeBASIC's	GFX	library.	It's	not
really	a	bug	on	one	or	other	side,	it's	a	problem	"by	design".

19.	Graphics	mode	doesn't	work	(freeze	/	black	screen	/	garbage	output)!
Place	a	bug	report	into	the	forum.	To	make	it	as	useful	and	productive	as	possible,	please	beware	of
the	following,	proceed	given	steps	and	provide	all	related	information:

Check	the	limitations	listed	on	the	page	GfxLib

The	graphics	might	not	work	well	/	at	all	on	very	old	PC's.	If	your	CPU	has	less	than	cca
500	MHz,	provide	exact	info	about	it,	if	you	don't	know,	use	RayeR's	CPUID	or	similar
program	to	test.
Exact	info	about	your	graphics	card	is	needed.	Test	on	DOS	using	
(reports	info	only)	and	RayeR's	VESATEST	(also	tries	to	set	mode,	allows	visual
inspection	of	the	result).	Find	out	what	"useful"	modes	(640x480,	800x600)	are
supported	and	with	what	bitdepths	(8,	16,	24,	32	bpp),	and	whether	they	can	be	set	and
look	correctly.
Find	out	and	describe	exactly	what's	wrong	("mode	works	with	VESATEST	but	not	with
FB",	"no	graphics	but	no	error	either",	"black	screen	and	freezer",	"graphics	is
messy/incomplete",	...).
If	some	sophisticated	program	doesn't	work,	try	also	a	minimal	test	like	placing	a	circle
in	middle	of	the	screen.
Try	without	a	mouse	driver	(this	reduces	the	CPU	"cost").
Find	out	what	modes	are	affected.	If	a	mode	doesn't	work,	reduce	the	resolution	or
bitdeph,	make	sure	to	test	the	"cheapest"/safest	modes	640x480	with	32/24/16/8	bpp,
640x480	with	4	bpp,	and	320x200	with	8bpp.
For	some	old	cards	there	are	VESA	drivers	available	(S3VBE/UVIVBE).	Test	both	with
and	without,	and	include	this	info	into	your	report.
Remove	potentially	problematic	content	(memory	managers,	drivers)	from	DOS	startup
files.	Nothing	of	such	is	required	for	FB,	except	a	DPMI	host	(see	also	FAQ	4.).
Post	info	about	your	graphics	card,	CPU	(if	old),	DOS	type	and	version,	bug	symptoms,
and	a	simple	example	code.

RayeR's	VESATEST	and	CPUID	can	be	downloaded	here:	rayer.ic.cz/programm/programe.htm
VBEDIAG	here	drv.nu/vbediag/.

20.	Mouse	trouble!	Mouse	doesn't	work	at	all	in	DOS	/	arrow	'jumps'	/	etc.	...
To	use	a	mouse	in	DOS,	you	need	a	compatible	driver,	recognizing	your	mouse,	and	recognized	by
FreeBASIC	library.	For	optimal	results,	you	need	a	good	driver	and	a	suitable

Mouse:	the	optimal	choice,	and	pretty	well	available	nowadays,	is	a	PS/2	mouse.	The	old	type	would
be	a	serial	mouse,	also	this	one	should	work.	The	newest	is	USB	mouse	-	but	is	not	very	suitable	for
use	in	DOS,	since	it	would	need	a	compatible	(INT33)	high	quality	native	USB	mouse	driver	(none
available	by	now,	only	some	experimental),	or	rely	on	BIOS	emulation	(not	always	available,	or
"unprecise").

Driver:	the	preferred	choice	is	CTMOUSE	from	FreeDOS	project.	There	are	versions	1.9a1,	2.0a4,

http://rayer.ic.cz/programm/programe.htm
http://drv.nu/vbediag/

and	2.1b4	from	2008-July	available.	It	is	included	with	(but	not	limited	to)	FreeDOS,	or	download	a
version	from	here:	ibiblio.org/pub/...mouse	.	None	of	them	is	perfect,	but	still	they	are	well	usable
and	better	than	most	competitors.	1.9xx	and	2.1xx	will	cooperate	with	BIOS,	allowing	USB	emulation,
2.0xx	bypasses	BIOS	and	thus	USB	emulation	will	NOT	work.	Also	Logitech	mouse	drivers	usually	do
a	good	job,	download	from	here:	uwe-sieber.de/util_e.html	-	version	6.50	is	a	good	start.	Known	for
problems	are	DRMOUSE	and	some	(old	?)	versions	of	MSMOUSE.

If	the	mouse	does	not	work	at	all,	then	most	likely	the	driver	is	not	loaded,	doesn't	recognize	the
mouse	(see	driver	messages),	or	is	not	compatible	with	the	INT33	"standard".	For	USB	mouse,
activating	the	"USB	mouse	emulation"	in	BIOS	settings	can	help.	

If	the	mouse	control	is	"unprecise",	the	arrow	"jumps"	,	then	you	either	have	a	bad	driver	-	use	a
better	one,	or	the	BIOS	emulation	is	bad	-	the	solution	is	to	buy	a	PS/2	mouse	then.

21.	What	about	the	64	KiB	and	640	KiB	problems	/	how	much	memory	is	supported	by	FB	in
DOS?
Memory	management	is	business	of	the	DPMI	host,	rather	than	the	compiler.	FreeBASIC	and
executables	generated	by	it	do	not	suffer	from	this	problem,	since	they	use	32-bit	DPMI	code,	rather
than	real	mode.	You	can	use	almost	all	the	memory	of	your	PC,	with	some	limitations,	but	they	are	
above	64	or	640	KiB.	CWSDPMI	r5	is	verified	to	work	well	up	to	512	MiB	only,	additional	memory
does	not	crash	it	(unlike	some	older	versions),	but	is	silently	ignored.	HDPMI	is	supposed	to	support
more:	up	to	4	GiB	(the	limit	of	32-bit	addressing),	but	there	was	not	much	testing	on	such	huge
machines	-	verified	up	to	cca	1.5	GiB.	FreeBASIC	and	code	generated	by	it	do	
DOS	based	memory	managers	(HIMEM/XMS	and	EMM386/EMS),	but	are	supposed	to	coexist	with
them	if	they	are	present.	All	this	of	course	applies	to	true	DOS	only,	things	like	"Dos	Box"	will	keep	the
control	over	the	memory	management	and	provide	only	a	small	piece	of	memory	(depends,	up	to	cca
64	MiB)	to	your	DOS	code.	

22.	My	program	crashes	when	I	try	to	use	more	than	cca	1	MiB	RAM!	Is	this	a	bug	in
FreeBASIC?
No,	it's	not	a	bug	in	FreeBASIC	and	it's	not	really	DOS	specific,	see	also	
beginner,	the	easy	solution	is	to	use	Shared	for	arrays.	More	advanced	users	could	consider	using
memory	management	functions	like	Allocate.	This	is	even	more	important	in	DOS,	since	it	allows	the
application	to	run	on	(old)	PCs	with	little	memory	(and	still	edit	at	least	small	texts	for	example),	as
well	as	to	use	all	huge	RAM	if	available	(and	edit	huge	texts	for	example).

23.	Threading	functions	are	disallowed	in	DOS?	Help!
The	Threading	Support	Functions	are	not	supported	for	DOS	target,	and	most	likely	won't	be
soon/ever.	The	reason	is	simple:	neither	the	DOS	kernel,	nor	the	DPMI	host/standard,	nor	"GO32"

http://www.ibiblio.org/pub/micro/pc-stuff/freedos/files/dos/mouse/
http://www.uwe-sieber.de/util_e.html

DOS	Extender	support	threading,	unlike	the	Win32	or	Linux	kernel.	However	nothing	is	impossible	in
DOS:	you	can	set	up	your	threading	on	the	top	of	DPMI.	There	are	multiple	possibilities,	two	of	which
are:

Set	up	an	ISR,	see	"ISR_TIMER.BAS"	example.	This	is	not	a	"full"	replacement,	but
sufficient	in	some	cases.
There	is	a	pthreads	library	for	DJGPP	allowing	to	"emulate"	Linux-like	threading	to
some	degree.	It	works	acceptably	for	[P]7-ZIP	DJGPP	port	(written	in	C++),	no	tests
with	FB	yet.
See	forum	t=21274

24.	Executables	made	with	FB	DOS	are	bloated!
This	is	true	but	there	is	no	easy/fast	way	to	fix.	FB	is	a	32-bit	HLL	compiler,	and	most	of	the	size	is
imported	from	DJGPP.	!writeme!	(see	forum:	t=11757)

25.	Compilation	is	very	slow	with	FB!
Problem:	"FBC	takes	10	seconds	to	compile	a	"Hello	world"	program	!	TurboBASIC	/	QBASIC	/
VBDOS	/	PowerBASIC	do	take	<	1	second	for	the	same	job	..."

True,	but	this	is	"by	design":	FB	compiles	your	sources	in	3	steps,	saving	the	intermediate	files,	as
described	in	CompilerCmdLine,	while	many	older	compilers	do	just	1	pass	in	memory.	This	is	related
mostly	to	file	I/O	performance,	see	FAQ	27	below	about	possibilities	of	improvements,	additionally	a
small	improvement	can	be	achieved	here	by	making	the	DPMI	host	resident	(
CWSDPMI	-p	,	see	FAQ	4	above).	Note	that	the	delay	is	mostly	"additive"	,	so	it	won't	hurt	too	much
with	bigger	projects.

26.	SLEEP	doesn't	work!	How	can	I	cause	a	delay?
Sleep	does	work	...	but	has	a	resolution	of	cca	55ms	=	1/18s	only,	thus	"SLEEP	500"	is	fine,	while	for
example	using	"SLEEP	2"	for	2	milliseconds	won't	work.	!writeme!	/	!fixme!	

PIT	/	BIOS	timer	(runs	at	18.2	Hz	by	default),	peek	the	BIOS	timer	or	set	your	own,	see
"ISR_TIMER.BAS"	example,	raise	PIT	frequency	(use	with	care)
Poll	the	BIOS	timer	+	PIT	counter,	method	from	TIMERHLP.ASM	from	DKRNL32,
allows	to	enhance	precision	of	above	without	raising	the	PIT	frequency	
RDTSC	instruction	(Pentium	and	newer)
RTC	clock
Delay	loops

27.	The	performance	is	very	bad	in	DOS!

http://www.freebasic.net/forum/viewtopic.php?t=21274
http://freebasic.net/forum/viewtopic.php?t=11757

Problem:	"The	performance	in	DOS	is	poor	compared	to	Win32	/	Linux	binary	compiled	from	the	very
same	source	!"	or	"Even	worse,	the	very	same	DOS	binary	runs	much	faster	in	NTVDM	than	in	DOS
!"

Both	indeed	can	happen,	nevertheless,	DOS	is	no	way	predestined	to	be	slow,	the	inefficiencies	can
be	fixed.	First	you	have	to	identify	the	area	where	you	code	looses	performance.	

File	I/O:	DOS	by	default	uses	very	little	memory	for	its	buffers,	while	other	systems	use	much	more
and	are	"aggressive"	with	file	caching.	When	dealing	with	many	small	files,	this	results	in	serious
performance	degrade.	The	solution	is	to	install	a	filecache,	for	example	LBACache
a	RAMDISK	(a	good	one:	SRDISK)	and	copy	the	"offending"	files	(for	example	FreeBASIC
installation)	there	in	and	work	there	(make	sure	to	backup	your	work	to	a	more	durable	media
regularly).	Both	will	need	an	XMS	host	(use	HIMEMX).	Also	DOS	by	default	uses	BIOS	to	access	the
hard	drives,	while	other	systems	try	hard	to	find	and	use	DMA.	Test	util:	IDECHECK	by	Japheth
(Download:	japheth.de/Download/IDECheck.zip)	-	run	it	in	"I13"	and	"DMA"	modes	and	compare
results.	If	"DMA"	is	much	faster	(can	be	1...10	times,	depends	from	PC	model),	then	installing	a	DOS
DMA	driver	(for	example	XDMA	3.1	is	worth	to	try)	can	bring	a	big	speedup	on	large	files.	Also	make
sure	to	read	and	write	data	in	large	pieces	(16	KiB	at	least),	not	just	single	bytes.	Other	OSes	are
more	forgiving	here,	but	on	DOS	every	single	file	I/O	call	causes	a	small	"additive"	delay,	thus	an
efficient	code	design	with	good	buffering	is	crucial.

Graphics:	Pentium	2	and	newer	CPU's	have	a	cache	related	feature	called	"MTRR"	to	speed	up
writes	to	video	RAM.	Drivers	of	other	OSes	usually	do	enable	it.	DOS	doesn't	(since	it	doesn't	deal
with	graphics	at	all),	neither	does	FB	GFX.	Use	"VESAMTRR"	tool	by	Japheth	(contained	in
"HXGUI.ZIP"	package),	it	will	enable	the	speedup,	surviving	also	mode	switches	and	most	"non-fatal"
application	crashes,	up	to	a	reboot.	The	possible	speedup	factor	varies	much	depending	from	the	PC
model,	up	to	cca	20	times.	Also	the	mouse	handling	eats	some	(too	much)	CPU	performance	on
DOS,	this	is	a	known	weak	point	(the	design	of	DOS	FB	GFX	is	not	"very	bad",	it's	just	the	common
"standard"	-	which	is	not	very	good),	fixing	is	theoretically	possible	but	not	easy,	you	just	can	try
several	mouse	drivers	(see	FAQ	20).

28.	Can	I	access	disk	sectors	with	FB?
You	can	...	but	FreeBASIC	won't	help	you	too	much	here:	no	"portable"	solution,	use	OS	specific	low
level	way.	For	DOS	3	methods	are	possible	

Use	logical	disk	access	features	of	DOS	for	sector	access	bypassing	the	filesystem,
see	example	in	the	forum:	freebasic.net/forum/viewtopic.php?t=11830
Use	physical	disk	BIOS	INT	13,	bypassing	DOS
Use	CPU	ports,	lowest	level,	bypassing	both	DOS	and	BIOS,	see	forum

http://www.japheth.de/Download/IDECheck.zip
http://freebasic.net/forum/viewtopic.php?t=11830

freebasic.net/forum/viewtopic.php?t=16196,	source	of	IDECHECK	from	FAQ	27
above,	FASM	forum	or	some	OS	development	resources

Note	that	such	experiments	are	a	bit	"dangerous"	-	you	can	easily	lose	data	or	make	your	PC
unbootable	if	something	goes	wrong.

29.	Can	I	use	inline	ASM	with	advanced	instructions	like	SSE	in	DOS	?
You	can	...	but	SSE2	and	above	need	to	get	enabled	before.	This	is	usually	considered	as	business	of
the	DPMI	host,	HDPMI32	and	CWSDPMI	7	will	do	that,	most	other	hosts	won't.	Make	sure	to	properly
CPUID	for	such	instructions	before	using	them.	It's	a	good	idea	to	provide	a	code	branch	compatible
with	older	CPU's	(early	Pentium,	80386)	besides	supporting	latest	instructions,	and	to	avoid	CMOV	in
those	too.

See	also

Compiler	FAQ.
FB	Runtime	Library	FAQ.
Frequently	Asked	FreeBASIC	Graphics	Library	Questions

http://www.freebasic.net/forum/viewtopic.php?t=16196

Windows	Related	FAQ 	

Windows:

-	Which	IDEs	are	available	for	Windows?
-	Can	I	get	rid	of	the	console	/	'DOS'	screen	in	a	graphics
application?
-	My	GUI	program	does	nothing	when	run	/	The	program	compiles
but	I	get	a	permission	denied	error	in	the	linker
-	How	can	I	debug	my	program?
-	Why	Windows	refuses	to	run	my	code	using	OUT	and/or	INP?
-	I	get	the	error	'Cannot	start	blah.exe	because	xxxx.dll	was	not
found.'	or	similar.	What	is	missing?
-	Does	FreeBASIC	work	with	Windows	Vista/7?
-	Where	can	I	find	some	tutorials	on	programming	the	Windows
GUI?
-	Are	there	Windows	GUI	code	builders	for	FB?	

FreeBASIC	Windows	questions

Which	IDEs	are	available	for	Windows?

At	the	moment	three	full	featured	IDEs	have	been	developed	specifically
for	FB:	FBIde	(not	being	updated,	avoid	using	of	old	versions	of	FBC
bundled	with	it),	FbEdit	and	JellyFishPro.	These	IDEs	require	a
minimum	configuration	-as	path	to	the	compiler-	to	work.	
You	can	also	download	FBIde	and	FbEdit	as	bundles	(Editor	+	Compiler)
that	install	in	a	single	operation.	But	the	bundled	version	of	the	compiler
may	be	out	of	date.
Commercial	"general	use"	IDEs	can	be	used	with	FreeBASIC	but	may
require	an	extensive	setup.	They	are	handy	for	multi	language
programming,	as	they	provide	a	unified	user	interface.
Instructions	for	installing	FB	JFish	Pro,	FBIde,	and	FbEdit	can	be	found

http://fbide.freebasic.net/
http://fbedit.freebasic.net/
http://www.planetsquires.com/jellyfishpro_freebasic.htm
http://fbide.freebasic.net/
http://fbedit.freebasic.net/

here:
-	IDE	Installation	guide	for	Windows

Back	to	top	

Can	I	get	rid	of	the	console	/	'DOS'	screen	in	a	graphics	application?
Yes.	You	have	to	give	FreeBASIC	the	right	command	for	it	when	you
compile	your	program.

If	you	compile	from	a	command	prompt,	simply	add	"-s	gui"	to
the	end,	like	"fbc	myprg.bas	-s	gui"
If	you	compile	in	a	specific	IDE,	you	have	to	edit	the	"Compiler
Defaults".	

In	Jelly-Fish	Pro,	its	"Compiler->Set	Compiler	Defaults-
>Compiler	Options".	Add	"-s	gui"	(NO	QUOTES)	in	that
box.
In	FbEdit	select	Windows	GUI	in	the	targets	dropdown	list
in	the	right	of	the	tool	bar.

Back	to	top

My	GUI	program	does	nothing	when	run	/	The	program	compiles	but
I	get	a	permission	denied	error	in	the	linker
The	problem	may	be	related	with	the	previous	question.	If	a	program	tries
to	PRINT	and	it	was	compiled	with	"-s	gui"	it	will	freeze	because	no
console	is	available.	If	the	PRINT	is	issued	before	the	first	window	is
registered/opened,	nothing	will	show	in	the	screen	or	in	the	taskbar.	The
running	program	can	only	be	seen	in	(and	killed	from)	the	task	manager's
processes	tab.	If	a	new	compilation	is	tried	before	killing	the	process	it
will	give	a	"Permission	denied"	error	when	the	compiler	tries	to	modify	a
still	running	.exe.
In	Windows	GUI	programs	do	not	use	console	commands.	Use
MessageBox	or	print	to	a	log	file	to	issue	any	error	message	to	the	user.
Be	sure	any	PRINT	to	console	you	used	for	debugging	is	not	compiled	in
the	final	version.	

Back	to	top

How	can	I	debug	my	program?

http://www.freebasic.net/forum/viewtopic.php?t=10350

FreeBASIC	can	use	any	debugger	compatible	with	GNU	GDB.	Insight
Win32	debugger	is	an	user	friendly	wrapper	for	GDB.	

Get	Insight	from	Dev-C++
Rename	the	file	to	Insight.tar.bz2,	and	decompress	it	to	an	empty
folder
Compile	your	program	with	the	-g	switch
Run	<Your_Insight_Dir>\bin\usr\bin\Insight.exe
Do	File>Open	to	load	your	program	into	Insight
From	there	you	can	watch,	set	breakpoints,	step,	examine
memory	and	registers.	Check	Insight's	help

Back	to	top

Why	Windows	refuses	to	run	my	code	using	OUT	and/or	INP?
Windows	requires	a	driver	to	be	installed	to	access	the	hardware	ports.
FB-Win32	programs	using	INP	and	OUT	include	a	built-in	driver	that
installs	temporarily	for	a	session.	Windows	allows	only	users	with	Admin
rights	to	run	driver	installations.	This	means	if	you	usually	run	your
windows	sessions	without	Admin	rights,	you	will	have	to	use	the	windows
command	line	command	RUNAS	to	run	your	program	for	the	first	time	in
each	session	so	Windows	allows	it	to	install	the	driver.
If	this	behavior	is	not	acceptable	you	can	use	an	external	library	as
PortIO32	that	installs	a	permanent	port	driver.

Back	to	top

I	get	the	error	'Cannot	start	blah.exe	because	xxxx.dll	was	not
found.'	or	similar.	What	is	missing?
You	are	trying	to	run	a	program	using	a	third	party	library	that	resides	in	a
dll	not	installed	in	your	system.
FreeBASIC	comes	with	headers	and	wrappers	required	to	code	for	a	lot
of	third	party	libraries	but	does	not	provide	the	actual	runtime	dll	files.
You	have	to	download	and	install	these	from	their	home	page.	Find	in	the
Links	thread	in	the	Libraries	subforum	the	URL's	of	the	home	pages
of	the	libraries	provided.	You	need	the	binaries	for	Win32	of	the	libraries.
If	you	want	to	develop	programs	with	the	libs	you	will	need	the
documentation	too.

http://prdownloads.sourceforge.net/dev-cpp/Insight_Binary.DevPak?download
http://www.winfordeng.com/products/portio32/
http://www.freebasic.net/forum/viewtopic.php?t=788

When	releasing	compiled	code	it	is	good	etiquette	to	provide	the	third
party	dll's	required	to	run	it.

Back	to	top

Does	FreeBASIC	work	with	Windows	Vista/7?
Yes.	(Write	me!!!)

Back	to	top

Where	can	I	find	some	tutorials	on	programming	the	Windows	GUI?
See	the	answers	to	this	question	in	this	thread	in	the	forum
More	advanced	use	requires	a	frequent	consultation	of	the	reference	at
the	Microsoft	Developers	Network.	A	local	install	of	the	API	reference
is	possible,	search	Microsoft	for	the	Platform	SDK	(a	huge	download)	and
install	just	the	documentation.

Back	to	top

Are	there	Windows	GUI	code	builders	for	FB?	
Yes	there	are	some	3rd	party	developments	generating	Windows	API
code	from	a	windows	designer	à	la	Visual	Basic:
Jerry	Fielden'	Ezeegui	(freeware)	uses	a	"graphical"	textmode	interface
to	let	you	build	your	code.
mrhx	Software's	VISG	(GPL)	has	a	more	classical	user	interface.
Less	helpful	may	be	the	graphical	resource	editors	generating	scripts	for
the	resource	compiler.	Any	editor	generating	scripts	compatible	with
GoRC	can	be	used,	as	the	one	included	with	FbEdit.	Graphical	resource
editors	are	a	great	help	in	designing	dialogs	and	menus,	but	they	leave	to
you	the	task	of	writing	the	window	procedures	required	to	make	them
active.

Back	to	top

See	also
Compiler	FAQ
FB	Runtime	Library	FAQ

http://www.freebasic.net/forum/viewtopic.php?p=89225
http://msdn2.microsoft.com/en-us/library/aa139672.aspx
http://www.freewebs.com/fielden/
http://codege.org/projects/visg/
http://fbedit.freebasic.net/index.php

Linux	Related	FAQ 	

FreeBASIC	Linux	questions:

-	FreeBASIC	gives	me	an	error	'ld:	can't	find	-lX11'	or	something
similar!
-	How	do	I	install	FreeBASIC	in	Ubuntu?

FreeBASIC	Linux	questions

FreeBASIC	gives	me	an	error	'ld:	can't	find	-lX11'	or	something
similar!
FreeBASIC	uses	ld	to	link	its	files	under	linux.	This	program	requires	that
any	libraries	you	use	have	the	'-dev'	versions	installed.	For	example,	for
the	above	error	message,	you'd	want	to	install	xlib-dev	for	your
distribution.	Other	common	errors	are	for	glibc,	which	requires	glibc-dev,
and	sdl,	which	requires	sdl-dev.	Most	distributions	make	these	easily
available	on	your	install	media.

Back	to	top

How	do	I	install	FreeBASIC	in	Ubuntu?"
See	This	thread	in	the	FB	forums	

Back	to	top

See	also
Compiler	FAQ
FB	Runtime	Library	FAQ

http://www.freebasic.net/forum/viewtopic.php?t=3991&postdays=0&postorder=asc&highlight=install+ubuntu&start=0

Obsolete	Keywords 	

Along	the	way	FB	has	had	a	few	keywords	changed.	Here	is	the	list	of
those	no	longer	supported.	Old	code	must	be	updated	if	recompiled.

OPEN	"CON:"	
Use	Open	Cons	
OPEN	"ERR:"	
Use	Open	Err	
OPEN	"PIPE:"	
Use	Open	Pipe	
POKEI	
Use	Poke	(Integer,Address,N)	
POKES	
Use	Poke	(Short,Address,N)	
SCREENINFO	(Function	returning	a	pointer	to	a	structure)	
Use	Screeninfo,	Sub	Returning	Values	In	Its	Arguments
VAL64	
Use	Vallng()	
GOSUB
Do	not	use	GoSub	in	SUBs	or	FUNCTIONs	anymore;	allowed	in	-lang
qb	mode.

Glossary 	

Brief	definitions	and	explanations	for	words	and	phrases	used	in	the
FreeBASIC	manual.

Index:	A	-	B	-	C	-	D	-	E	-	F	-	G	-	H	-	I	-	J	-	K	-	L	-	M	-	N	-	O	-	P	-	Q	-	R	-	S
-	T	-	U	-	V	-	W	-	X	-	Y	-	Z

A

access	rights
The	level	of	access	associated	with	Type	or	Class	members.	Public
members	are	accessible	to	any	code;	protected	members	are	accessible
to	member	functions	and	any	derived	Type	or	Class	member	functions;
private	members	are	accessible	only	to	member	functions	of	that	Type	or
Class.	By	default,	Type	members	have	public	access	rights,	while	Class
members	are	private.

any	pointer
A	variable	or	expression	that	points	to	a	memory	address	where	it	is	not
known,	at	least	from	the	compiler's	point	of	view,	what	type	of	data	is
stored	at	that	address.	In	C	this	would	be	the	same	as	a	void	pointer	or
(void	*).	See	Ptr.

archive
An	archive	is	a	group	or	files	or	a	single	file	packed	into	a	container
format	and	usually	compressed	before	or	afterward.	Typical	container
formats	are	GNU	Tar	and	Zip.	Typical	compression	formats	are	Gzip	and
Zip.

argument
Data	that	is	passed	to	a	procedure.	The	procedure	refers	to	this	data
using	the	parameter(s)	in	its	parameter	list.

argument	passing	convention
The	method	in	which	arguments	are	passed	to	procedures,	being	either
By	Reference	or	By	Value.	See	Passing	Arguments	to	Procedures.

array	(container)
A	collection	of	data	whose	elements	are	stored	contiguously	in	memory
(one	after	the	other,	in	increasing	order).	Because	of	this,	an	array	offers
random-access	to	its	elements	(any	element	can	be	accessed	at	any
time).	Insertion	or	removal	of	elements	anywhere	but	at	the	back	of	the
container	requires	that	those	elements	that	follow	be	relocated,	so	a
linked-list	is	typically	preferred	when	insertion	or	removal	needs	to	be
efficient.

assembler
A	component	in	the	tool	chain	for	translating	source	code	in	to	executable
programs.	The	assembler	converts	the	low	level	assembly	instruction
mnemonics	emitted	by	the	compiler	to	object	code.

assignment
Assignment	is	one	of	the	fundamental	operations	of	computing.	All	it
means	is	copying	a	value	into	the	memory	location	pointed	at	by	a
variable.	The	value	might	be	a	literal,	another	variable,	or	the	result	of
some	expression.	For	an	instance	of	a	Type	or	Class,	this	involves	calling
one	of	its	assignment	operators.	Not	to	be	confused	with	initialization.

automatic	storage
Refers	to	storage	on	the	call	stack.	Local	procedure	variables,	objects
and	arrays	with	automatic	storage	are	allocated	when	the	procedure	is
called,	initialized	when	defined,	destroyed	(in	the	case	of	objects)	when
leaving	the	scope	they're	declared	in	and	deallocated	when	returning
from	the	procedure.

automatic	variable/object/array
A	variable,	object	or	array	with	automatic	storage.

Back	to	top

B

byref

ByRef	specifies	passing	arguments	to	procedures	by	reference.
Arguments	passed	by	reference	can	be	modified	by	the	procedure	and
the	changes	seen	by	the	caller.

byval
ByVal	specifies	passing	arguments	to	procedures	by	value.	Procedures
receive	a	copy	of	the	argument	passed.	With	Type	or	Class	instances,	this
involves	instantiating	temporary	objects	by	calling	their	copy	constructor.
These	temporaries	are	destroyed	upon	procedure	exit.

binaries
Binaries	are	the	end	result	of	source	code.	Binaries	include	executable
files	(.exe	on	windows),	static	library	files	(.a),	dynamic	library	files	(.dll	on
windows,	.so	on	Linux),	and	relocatable	object	files.	(.o)

.BSS	section
The	part	of	the	executable	program	that	will	contain	zero	bytes	only	when
the	program	starts.	Since	all	of	the	bytes	are	zero,	the	final	size	of	the
executable	can	often	be	reduced	by	placing	uninitialized	data,	or	zero
initialized	data	in	this	section.

buffer
A	region	of	memory	that	allows	data	to	be	saved	or	manipulated	before
being	copied	somewhere	else.	In	a	communications	device	this	may	hold
incoming	or	outgoing	data	yet	to	be	processed.	In	graphics,	a	buffer	may
contain	an	image	before	being	copied	to	the	screen.

Back	to	top

C

call	back
A	control	mechanism	where	a	caller	lets	a	procedure	call	another
procedure	(the	call	back)	provided	by	the	caller	typically	through	a
function	pointer.

call	stack

A	chunk	of	memory	reserved	for	a	process	or	thread	that	is	used	as	a
stack	for	storing	various	information	needed	by	procedures	when	they
are	called.	Among	the	information	stored	on	the	call	stack	are	all	of	the
local	automatic	variables,	objects	and	array	data	and	usually	whatever
parameters	are	passed	to	the	procedure.	These	items	are	allocated
(pushed	onto	the	call	stack)	when	the	procedure	is	called	and
deallocated	(popped	from	the	call	stack)	when	the	procedure	returns,
either	by	the	caller	or	the	callee,	depending	on	the	calling	convention
used.	The	initial	and	maximum	sizes	of	this	reserved	memory	vary	by
platform.

caller
A	misnomer	used	to	refer	to	the	point	in	code	in	which	a	procedure	is
called.

cast
A	cast	operation	changes	one	data	type	to	another	using	specified	rules.
A	Type	structure	can	implement	a	custom	Cast	for	any	intrinsic	data	type,
and/or	other	TYPEs,	See	Cast.

code	block
Several	lines	of	source	code	grouped	together	all	sharing	at	least	one
common	scope.	For	example	a	procedure's	code	block	will	be	all	the
lines	of	code	between	Sub	and	End	Sub.

com	port
A	short	name	for	serial	communications	port.	A	program	can
communicate	with	an	external	device,	such	as	modem	or	another
computer	through	a	com	port	(nowadays	the	good	old	com	ports	are
deprecated	in	favor	of	USB).	See	Open	Com.

compiler
A	compiler	is	a	computer	program	which	takes	source	code	and
transforms	it	into	machine	or	object	code.

compiler	directives
These	are	instructions	included	in	the	text	of	the	program	that	affect	the
way	the	compiler	behaves.	For	instance	the	compiler	might	be	directed	to
include	one	section	of	code	or	another	of	depending	on	the	target

operating	system.

compound	statement
A	statement	composed	one	or	more	additional	statements.	Typically,	a
compound	statement	has	a	beginning	(opening	statement),	a	middle	(a
statement	block)	and	an	end	(closing	or	ending	statement),	while	some
have	additional	parts.	Examples	of	compound	statements	would	be	If
and	Function.

constant
A	symbol	that	retains	a	consistent	value	throughout	the	execution	of	the
program.	See	Const.

constructor	(module)
A	special	type	of	module-level	procedure	that	is	automatically	called	prior
to	the	module-level	code	flow.	See	Constructor	(Module).

constructor	(TYPE	or	CLASS)
A	special	member	function	of	a	Type	or	Class	that	is	called	when	an
object	is	instantiated.

CVS
Concurrent	Versions	System.	The	file	manager	implemented	at
Sourceforge	where	sources	are	stored,	it	keeps	the	history	of	the
changes	introduced	by	the	developers.	Used	by	FB	in	the	past.	(see	also
SVN	and	GIT)

Back	to	top

D

.DATA	section
The	part	of	the	executable	program	that	will	data	that	can	be	changed
while	to	program	is	running.

debugger

A	program	that	allows	controlled	execution	of	compiled	code.	The	values
of	variables	can	be	tracked,	execution	can	be	paused,	stepped	or
accelerated,	etc.	A	debugger	is	typically	used	to	help	find	the	source	of
programmer	errors	in	source	code,	called	'bugs'.

declaration
A	source	code	statement	that	introduces	a	symbol,	constant,	variable,
procedure,	data	type,	or	similar,	to	the	compiler	but	not	necessarily
allocate	any	space	for	it.	See	Dim,	Declare,	Extern,	Type.

definition
A	source	code	statement	(or	statements)	that	allocates	space	for	data	or
code.	For	example,	Sub	defines	a	procedure	by	allocating	space	for	the
program	code	it	will	contain.	Some	statements	can	be	both	a	declaration
and	a	definition.	For	example,	Dim	both	declares	and	defines	a	variable.

dereference
The	act	of	obtaining	a	value	from	memory	at	a	given	address.	See
Operator	*	(Valueof),	Pointers.

descriptor
Refers	to	the	internal	data	structure	used	by	the	compiler	and	runtime
library	for	managing	variable	length	strings	and	arrays.

destroy	(TYPE	or	CLASS)
The	act	of	deconstructing	and	deallocating	memory	for	an	object
instance.	When	an	object	is	destroyed,	its	destructor	is	called.	This
happens	automatically	when	an	object	goes	out	of	scope,	or	when	Delete
is	called	with	a	pointer	to	an	object.

destructor	(module)
A	special	type	of	module-level	procedure	that	is	automatically	called	at
program	termination.	See	Destructor	(Module).

destructor	(TYPE	or	CLASS)
A	special	member	function	of	a	Type	or	Class	that	is	called	when	an
object	is	destroyed.

dll

Shorthand	for	dynamically	linked	library.

DPMI
A	method	/	standard	allowing	to	execute	protected	mode	code	(mostly
also	32-bit)	on	a	16-bit	real	mode	DOS	kernel.	Affects	only	DOS	version
of	FreeBASIC.	See	also	DOS	related	FAQ	

DJGPP
A	complete	32-bit	C/C++	development	system	for	Intel	80386	(and
higher)	PCs	running	DOS	and	includes	ports	of	many	GNU	development
utilities.

dynamically	linked	library
A	file	containing	executable	code	that	is	loaded	by	another	application
when	it	is	started.	Also	referred	to	as	a	dll	or	shared	library.	See	Shared
Libraries	(DLLs).

Back	to	top

E

enum
A	data	type	restricted	to	a	sequence	of	named	values	given	in	a	particular
order.	See	Enum.

executable
A	binary	file	that	can	be	run.	It	consists	of	libraries	and	object	files	bound
together	by	the	linker.

exit	sub/function
When	called	inside	a	procedure,	leaves	the	procedure	and	returns	control
to	the	calling	program.

expression
An	instruction	to	execute	a	statement	that	will	evaluate/return	a	value.

Back	to	top

F

field
Commonly	refers	to	a	data	member	in	a	Type	or	Class.

file	number
An	integer	associated	with	an	open	file	or	device	as	given	in	Open.	All
subsequent	operations	on	the	opened	file	or	device	must	use	the	same
file	number.

format	string
A	sequence	of	characters	that	controls	how	data	should	be	presented.
See	Format,	Print	Using.

function
A	procedure	defined	using	Function,	optionally	taking	parameters	and
returning	a	value.

function	pointer
A	variable	containing	the	address	of	a	function.	The	address	(function)	to
which	the	variable	points	can	be	changed	while	the	program	is	running
allowing	for	dynamic	program	flow,	such	as	call	back	functions.

Back	to	top

G

get/put	buffer
See:	Image	Buffer.	An	image	buffer	in	FreeBASIC's	native	format.

GIT
The	file	manager	implemented	at	Sourceforge	where	sources	are	stored,
it	keeps	the	history	of	the	changes	introduced	by	the	developers.	Used	by
FB	now.	(see	also	CVS	,	SVN	and	Git).

global	variable
A	variable	that	is	visible	to	all	procedures	within	a	module,	across	multiple
modules,	or	both.	See	Common	and	Extern.

GNU
A	mass	collaboration	project	with	the	primary	goal	to	provide	a	free	and
non-proprietary	Unix-like	operating	system.

GPL
Short	hand	for	GNU	General	Public	License:	a	license	for	software	and
other	kinds	of	works.	Open	source,	obligates	the	user	to	keep	the	project
open	source	and	under	the	GPL.

graphics	primitive
A	graphics	primitive	is	another	term	for	common	shapes	like	circles	and
rectangles.

Back	to	top

H

hash	table
A	data	structure	that	associates	keys	with	values	allowing	for	efficient
look-up	of	values	based	on	a	given	key.

header
When	talking	about	a	collection	of	data,	this	is	generally	the	first	part	of
that	data	that	describes	the	rest.	When	talking	about	(header)	files,	this
refers	to	an	include	file.	In	FreeBASIC	the	file	extension	'.bi'	is	usually
used.

heap
The	area	of	memory	(free	store)	provided	by	the	runtime	library	(and
operating	system)	from	which	the	program	can	dynamically	allocate
memory.	See	Allocate.

Back	to	top

I

image	buffer
A	collection	of	data	used	to	describe	an	image,	containing	such
information	as	width,	height,	color	depth	and	pixel	data.

include	file
A	kind	of	source	file	that	typically	contains	type	definitions	and
declarations	for	variables	and	procedures	that	one	or	more	other	source
files	refer	to.	In	general,	these	files	provide	a	public	interface	to	some
module	or	modules,	although	a	file	that	is	#included	can	contain	any	text
whatsoever.

initialization
The	act	of	giving	a	variable	a	value	at	the	point	of	its	creation.	For	object
instances,	this	involves	calling	one	of	its	constructors.	Not	to	be	confused
with	assignment,	which	gives	an	already	existing	variable	another	value.

instance
An	instantiated	object	of	a	Type	or	Class.

instantiate
The	act	of	creating	an	object	of	a	Type	or	Class,	either	directly	with	Dim,	or
indirectly	by,	for	example,	passing	an	object	to	a	procedure	by	value.

Back	to	top

J

Back	to	top

K

Back	to	top

L

library
Compiled	code	stored	in	a	single	file	that	can	be	used	when	making	other
programs.	A	library	typically	has	one	or	more	headers	(or	include	files)	to
provide	all	the	needed	declarations	for	using	the	library.

linked	list	(container)
A	collection	of	data	whose	elements	are	typically	stored	on	the	heap.	The
linked	list's	elements	store	the	addresses	of	their	adjacent	elements,	and
so	only	sequential	access	(an	element	is	accessed	by	following	the	links
from	adjacent	elements)	is	possible.	This	scheme	does	provide	constant-
time	insertion	of	elements	anywhere	into	the	container,	however,	and
because	of	this	is	often	preferred	over	the	array.

linker
A	program	which	combines	multiple	modules	and	libraries	into	a	single
executable	which	can	be	loaded	into	the	computer's	memory	and
followed	by	the	computer.	FreeBASIC	uses	the	LD	linker.	Linkers	are	the
most	common,	but	not	the	only	way	to	produce	executables.

LGPL
Shorthand	for	GNU	Lesser	General	Public	License.	Like	the	GNU	GPL,
but	more	permissive	allowing	non-(L)GPL'd	works	to	be	statically	linked
to	the	LGPL'd	work,	provided	that	the	new	work	can	have	the	LGPL'd
portion	relinked	or	replaced.

local	variable
A	variable	that	is	visible	only	within	the	scope	in	which	it	is	declared,	and
that	is	destroyed	when	program	execution	leaves	that	scope.

lock
A	synchronization	mechanism	such	that	only	one	thread	or	process	can
have	access	to	a	shared	object,	for	example	a	global	variable,	a	device,

or	a	file.

Back	to	top

M

member
A	data	field,	procedure,	enumeration,	type	alias	or	anything	else	declared
within	a	Type	or	Class	definition.

member	data
Variables	associated	with	a	Type	or	Class.	Member	data	can	be	static	or
non-static.

member	function
A	procedure	associated	with	a	Type	or	Class.	Member	functions	have	full
access	rights	to	the	members	of	its	type	or	class,	and	can	be	static	or
non-static.

method
See	member	function.

module
A	source	file	in	its	entirety,	including	any	include	files	that	may	be
present	as	well.	Typically,	a	module	is	a	logical	unit	of	code,	containing
parts	of	a	program	that	relate	to	one	another.	For	example,	if	making	a
game,	one	may	separate	the	procedures	needed	for	error	logging	from
the	procedures	that	control	graphics	into	their	own	modules.

Back	to	top

N

non-static	member	data
Member	data	that	each	instance	of	a	Type	or	Class	gets	their	own	copy

of.

non-static	member	function
A	member	function	that	has	an	implicit	This	reference	as	an	argument.

null
A	constant	usually	associated	with	pointers	denoting	a	'nothing'	value.
This	value	is	typically	an	integer	'0'	(zero)	-	the	'NULL	terminator'
appended	to	zstrings	is	chr(0),	or	asc(!"\0")	-	but	can	also	be	defined	as	a
pointer	type,	like	Cast(any	ptr,	0).

Back	to	top

O

object	code
Code	in	machine-readable	form	that	can	be	executed	by	your	computer's
CPU	and	operating	system,	usually	linked	with	libraries	to	create	an
executable	file.

operand
One	of	the	arguments	passed	to	an	operator.	For	example,	in	the
expression	a	=	b	+	c,	the	operands	are	a,	b	and	c,	while	the	operators
are	=	and	+.

operator
A	function	taking	one	or	more	operands	(arguments)	and	returning	a
value.	Operators	can	work	on	built-in	data	types,	or	can	be	overloaded	to
work	on	user	defined	types.	See	Operators.

overload
To	declare	a	procedure	having	the	same	name	as	another,	but	with
different	parameters.	Free	functions,	or	module-level	functions,	can	be
overloaded	using	the	Overload	keyword.	Type	or	Class	member	functions
can	be	overloaded	by	default.

Back	to	top

P

page	buffer
A	buffer	used	for	holding	the	contents	of	the	screen	before	being
displayed	on	screen.	Where	multiple	page	buffers	are	allowed,	one	page
will	be	visible	to	the	users	while	all	others	are	hidden.	Also	the	active
page	(the	one	to	which	changes	are	made)	need	not	be	the	visible	one
allowing	changes	to	one	page	while	showing	another.

parameter
The	name	used	by	a	procedure	that	corresponds	to	the	argument	that	is
passed	to	it.

parameter	list
The	parenthesized	comma-separated	list	of	parameters	in	a	procedure
declaration	or	definition.

PDS
Professional	Development	System.	Sometimes	referred	to	as	QB7.1.

pitch
The	number	of	bytes	per	row,	in	an	image	or	screen	buffer.	If	there	is	no
padding	between	rows,	then	this	can	be	calculated	by	width	*
bytes_per_pixel,	but	this	is	not	necessarily	safe	to	assume.	The	screen's
pitch	can	be	found	using	ScreenInfo,	and	an	image	buffer's	pitch	can	be
found	by	checking	the	pitch	value	in	the	image's	header.

pointer
A	data	type	used	to	hold	addresses.	The	kind	of	pointer	determines	how
the	data	at	the	address	is	interpreted	when	the	pointer	is	dereferenced,
or	when	used	with	Operator	->	(Pointer	To	Member	Access).	See
Pointers.

preprocessor
The	FreeBASIC	preprocessor	is	responsible	for	expanding	Macros	and
replacing	Defined	values	with	their	values.

procedure
A	generic	name	for	any	block	of	code	that	can	be	called	from	somewhere
else	in	a	program.	See	Sub,	Function.

property
A	property	is	a	special	sort	of	type/class	members,	intermediate	between
a	field	(or	data	member)	and	a	method.	See	Property.

ptr
Shorthand	for	pointer.	See	pointer.

Back	to	top

Q

queue	(container)
A	collection	of	data	that	offers	first-in	first-out	(FIFO)	storage	and
retrieval.	Typically,	elements	can	only	be	inserted	at	the	back	and
removed	from	the	front	but	can	be	accessed	from	either	end.

Back	to	top

R

ragged	array	(container)
A	ragged	array	is	an	array	having	rows	of	differing	lengths.

real	number
Any	positive	or	negative	number	including	fractions,	irrational	and
transcendental	numbers	(like	pi	or	e)	and	zero.	Variables	containing	a
real	number	have	a	limited	range	and	precision	depending	on	the	number
of	bits	used	to	represent	the	number.	See:	Single	and	Double.

registers

Places	inside	the	CPU	for	data	storage.	80386	and	compatible	32-bit
models	have	EAX,	EBX,	ECX,	EDX,	ESI,	EDI,	EBP	and	ESP,	plus	some
special	(control/test/debug)	registers.	NOT	related	to	"Windows	registry".

Back	to	top

S

scope
Refers	to	the	life-time	and	visibility	of	some	component	of	the	program,
like	a	variable	or	a	procedure.	For	example,	a	variable	defined	inside	a
procedure	would	have	procedure	scope:	it	is	visible	throughout	the
procedure,	but	not	outside	the	procedure's	code	block.	When	the
procedure	ends,	the	variable	goes	out	of	scope	and	no	longer	exists.

scope	block
A	code	block	where	all	the	lines	of	source	have	the	same	scope.	An
explicit	scope	block	can	be	indicated	with	the	Scope	statement.	Scope
blocks	may	also	be	implicit	with	the	usage	of	If..Then,	For..Next,	and
other	compound	statements.

shared	library
A	library	that	exists	once	on	a	system	that	multiple	executables	can	link
to	at	runtime.	See	Shared	Libraries	(DLLs).

source	code
Code	written	by	the	programmer,	in	a	human-readable	form,	not	yet
compiled.

stack	(container)
A	collection	of	data	that	offers	last-in	first-out	(LIFO)	storage	and	retrieval.
Typically,	elements	can	only	be	inserted,	accessed	and	removed	from	the
top	of	the	stack.

statement	block
One	or	more	lines	of	code	bookended	by	a	compound	statement.

static	library
A	library	that	is	linked	into	a	program	at	link	time.	There	is	one	copy	of	the
library	for	each	executable	that	links	to	it.	All	data	is	executable	specific.
See	Static	Libraries.

static	member	data
Member	data	that	each	instance	of	a	Type	or	Class	shares.	This	data	is
defined	outside	of	any	Type	or	Class,	and	takes	up	no	space	in	the
resulting	object	instance.

static	member	function
A	member	function	without	an	implicit	this	reference	as	an	argument.
Static	member	functions	can	be	called	normally	through	a	variable,	or
directly	using	the	type's	name	and	the	scope	resolution	operator	See
Static	(Member).

static	storage
Refers	to	storage	in	the	.BSS	or	.DATA	sections	of	an	executable.
Variables,	objects	and	arrays	with	static	storage	are	allocated	and
initialized	at	compile-time	and	destroyed	(in	the	case	of	objects)	and
deallocated	at	program-termination.	Explicitly	initialized	variables,	objects
and	arrays	are	allocated	in	the	.DATA	section.

static	variable/object/array
A	variable,	object	or	array	with	static	storage.

sub
A	procedure	defined	using	Sub,	optionally	taking	parameters	and	not
returning	a	value.

SVN
Subversion.	A	version	control	system	that	allows	users	to	keep	track	of
changes	made	to	sources	and	documents.	Used	by	FB	in	the	past.	(see
also	CVS	and	GIT)

SWIG
A	tool	that	automatically	translates	C	headers	to	FreeBASIC	(although
not	always	perfectly).

symbol
Used	to	refer	to	variables,	labels,	functions,	methods,	procedures,	or
other	programmatic	constructs	in	a	program.

Back	to	top

T

.TEXT	section
The	part	of	the	executable	program	that	will	contain	program	instructions
and	constant	data.

this	reference
A	reference	to	an	instance	of	a	Type	or	Class	that	is	passed	as	a	hidden
argument	to	non-static	member	functions	of	that	type	or	class.
Throughout	the	member	function,	this	instance	is	referred	to	using	the
this	keyword,	See	This.

thread
A	thread	of	execution	within	a	process	(running	program)	that	shares
execution	time	with	other	threads	in	the	same	process.	See	Threading.

trace
To	follow	the	execution	of	a	program	step-by-step	either	manually	by
examining	the	source	code,	or	more	practically	with	a	debugger.

Back	to	top

U

union
A	structure	that	can	be	used	to	store	different	types	of	variables,	such	as
integers,	doubles	and	fixed-length	strings	in	the	same	location,	but	only
one	at	a	time.	See	Union.

user	defined	data	type
A	Type,	Union,	Enum,	or	Class	data	type.

Back	to	top

V

variable
A	symbol	representing	data	in	memory.

VBDOS
Visual	BASIC	for	DOS,	a	historical	BASIC	compiler	by	M$	from	1992,
following	after	QBASIC.	DOS	platform	dropped	very	soon,	VBDOS	never
became	popular.

vector
A	series	of	data	items	in	memory	that	can	be	accessed	by	an	index
number.	Similar	to	an	array	except	that	vector	elements	are	not
necessarily	all	contained	within	a	single	block	of	memory.

Back	to	top

W

warning
A	message	displayed	by	the	compiler	during	compilation	that	suggests
there	may	be	potential	problems	with	the	current	code.

wiki
An	on-line	system	that	provides	a	set	of	pages	containing	information	that
can	be	viewed	and	modified	by	the	public.	In	this	context,	it	is	typically
used	to	refer	to	the	FreeBASIC	on	line	documentation.

Back	to	top

X

x86
Refers	to	the	instruction	set	compatible	with	the	8086	(and	later)	CPU
architecture,	FreeBASIC	only	supports	80386	and	later.

Back	to	top

Y

Back	to	top

Z

zstring
A	zstring	is	in	essence	a	standard	C	style	string	terminated	by	a	null
character.	This	data	type	is	provided	for	greater	compatibility	with	C
libraries.

Back	to	top

Miscellaneous	Keywords 	

Data
Data
Read
Restore

Debugging
Assert
AssertWarn
Stop

Hardware	Access
Inp
LPrint
Lpos
Out
Wait

Operating	System
Beep
Sleep
End	(Statement)

Stub	Pages
As
For
To
Is
Step

Control	Flow
Do
End	If
IIf
Loop
Next
Then
Until
Wend
While

Uncategorized
End	(Block)
OffsetOf
SizeOf
TypeOf
Let
Rem
Option()

	

Runtime	Error	Codes 	

Runtime	error	codes	and	messages	used	by	the	runtime	library.

Description
Freebasic	returns	the	following	runtime	error	codes:

0 No	error

1 Illegal	function	call

2 File	not	found	signal

3 File	I/O	error

4 Out	of	memory

5 Illegal	resume

6 Out	of	bounds	array	access

7 Null	Pointer	Access

8 No	privileges

9 interrupted	signal

10 illegal	instruction	signal

11 floating	point	error	signal

12 segmentation	violation	signal

13 Termination	request	signal

14 abnormal	termination	signal

15 quit	request	signal

16 return	without	gosub

17 end	of	file

No	user	error	code	range	is	defined.	If	Error	is	used	to	set	an	error
code	it	is	wise	to	use	high	values	to	avoid	collisions	with	the	list	of	built-
in	error	codes.	(This	built-in	list	may	be	expanded	later.)

See	also

Err

Error

On	Error

Error	Handling

Comparison	of	C/C++	and	FreeBASIC 	

C/C++
FreeBASIC
variable	declaration

int	a;

int	a,	b,	c;

dim	a	as	integer

dim	as	integer	a,	b,	c

uninitialized	variable

int	a;

dim	a	as	integer	=	any

zero-initialized	variable

int	a	=	0;

dim	a	as	integer

initialized	variable

int	a	=	123;

dim	a	as	integer	=	123

array

int	a[4];

a[0]	=	1;

dim	a(0	to	3)	as	integer

a(0)	=	1

pointer

int	a;

int	*p;

p	=	&a;

*p	=	123;

dim	a	as	integer
dim	p	as	integer	ptr
p	=	@a

*p	=	123
structure,	user-defined	type

struct	UDT	{

int	myfield;

}

type	UDT

myfield	as	integer

end	type

typedef,	type	alias

typedef	int	myint;

type	myint	as	integer

struct	pointer

struct	UDT	x;

struct	UDT	*p;

p	=	&x;

p->myfield	=	123;

dim	x	as	UDT

dim	p	as	UDT	ptr

p	=	@x

p->myfield	=	123

function	declaration

int	foo(void);

declare	function	foo()	as	integer

function	body

int	foo(void)	{

return	123;

}

function	foo()	as	integer

return	123

end	function

sub	declaration

void	foo(void);

declare	sub	foo()

sub	body

void	foo(void)	{

}

sub	foo()

end	sub

byval	parameters

void	foo(int	param);

foo(a);

declare	sub	foo(byval	param	as	integer)

foo(a);

byref	parameters

void	foo(int	*param);

foo(&a;);

void	foo(int&	param);

foo(a);

declare	sub	foo(byref	param	as	integer)

foo(a)

statement	separator

;

:

end-of-line
for	loop

for	(int	i	=	0;	i	<	10;	i++)	{

...

}

for	i	as	integer	=	0	to	9

...

next

while	loop

while	(condition)	{

...

}

while	condition

...

wend

do-while	loop

do	{

...

}	while	(condition);

do

...

loop	while	condition

if	block

if	(condition)	{

...

}	else	if	(condition)	{

...

}	else	{

...

}

if	condition	then

...

elseif	condition	then

...

else

...

end	if

switch,	select

switch	(a)	{

case	1:

...

break;

case	2:

case	3:

...

break;

default:

...

break;

}

select	case	a

case	1

...

case	2,	3

...

case	else

...

end	select

string	literals,	zstrings

char	*s	=	"Hello!";

char	s[]	=	"Hello!";

dim	s	as	zstring	ptr	=	@"Hello!"

dim	s	as	zstring	*	6+1	=	"Hello!"

hello	world

#include	<stdio.h>

int	main()	{

printf("Hello!\n");

return	0;

}

print	"Hello!"

comments

//	foo

/*	foo	*/

'	foo

/'	foo	'/

compile-time	checks

#if	a

#elif	b

#else

#endif

#if	a

#elseif	b

#else

#endif

compile-time	target	system	checks

#ifdef	_WIN32

#ifdef	__FB_WIN32__

module/header	file	names

foo.c,	foo.h

foo.bas,	foo.bi

typical	compiler	command	to	create	an	executable

gcc	foo.c	-o	foo

fbc	foo.bas

Comparison	of	integer	data	types:	FreeBASIC	vs.
C/C++	(using	GCC)

	

C	int C	long	long	[int] C	long	[int] FB	Long FB	LongInt FB	Integer

32bit	win32 32 64 32	(ILP32) 32 64 32

32bit	linux-x86 32 64 32	(ILP32) 32 64 32

64bit	win64 32 64 32	(LLP64) 32 64 64

64bit	linux-x86_64 32 64 64	(LP64) 32 64 64

See	also

Creating	FB	bindings	for	C	libraries	-	How	to	translate	C	data
types	to	FB

Information	for	hacking	on	FreeBASIC 	

This	area	of	the	Wiki	is	for	documenting	everything	about	the	compiler
and	the	runtime	libraries.	It	is,	however,	incomplete.	If	you	find	that
information	provided	here	does	not	match	what	the	source	is	doing	then
please	update	the	relevant	pages	here.	New	pages	and	articles	may	be
added	freely,	provided	they	help	understanding	what's	going	on	inside
FB.

Developing	FreeBASIC	Itself

Compiling	a	Development	Version	of	FreeBASIC
Getting	the	source	code
Compiling	FB	for	DOS
Compiling	FB	on	Linux
Compiling	FB	on	Windows
Getting	source	code	updates	and	recompiling	FB
Debugging	FB
FB	build	configuration	options
Known	problems	when	compiling	FB
GCC	toolchain	choice

Running	the	FreeBASIC	test	suite
Normal	vs.	Standalone
Glossary
Notes	on	the	creation	of	FB	releases
FB	and	cross-compiling
Bootstrapping/cross-compiling	fbc

Creating	FB	bindings	for	C	libraries
C	Header	Translation	Tutorial
Header	Style	Guidelines
External	Libraries	Index	(header	status)

Compiler	internals

Quick	overview	of	all	modules

The	objinfo	feature
Memory	management
Lexer	&	preprocessor
Parser	&	compiler	(fb,	parser,	symb,	rtl)
Purpose
Top	level	parsing	process
Symbols
Representation	of	data	types
SELECT	CASE
Profiling	FB	programs
Structure	packing/field	alignment

Run-time	(rtlib)	and	Graphics	(gfxlib2)	Libraries

Keyboard	input:	inkey(),	multikey(),	etc.
Overview	of	drivers	(backends)
Pixel	formats

	

Licenses 	

Compiler
The	FreeBASIC	compiler	(fbc)	is	released	under	the	GPL	license.

Libraries
With	the	exception	of	LibFFI	(which	is	used	for	Threadcall),	the	runtime	library	(libfb)	is
released	under	the	LGPL	license,	for	both	the	single-threaded	and	multi-threaded
versions,	with	this	extension	to	allow	linking	to	it	statically:

"As	a	special	exception,	the	copyright	holders	of	this	library	give	you	permission	to	link
this	library	with	independent	modules	to	produce	an	executable,	regardless	of	the
license	terms	of	these	independent	modules,	and	to	copy	and	distribute	the	resulting
executable	under	terms	of	your	choice,	provided	that	you	also	meet,	for	each	linked
independent	module,	the	terms	and	conditions	of	the	license	of	that	module.	An
independent	module	is	a	module	which	is	not	derived	from	or	based	on	this	library.	If
you	modify	this	library,	you	may	extend	this	exception	to	your	version	of	the	library,	but
you	are	not	obligated	to	do	so.	If	you	do	not	wish	to	do	so,	delete	this	exception
statement	from	your	version."

The	Gfx	library	(libfbgfx)	is	released	under	the	LGPL	license.

LibFFI	is	released	under	the	following	license,	found	at
http://github.com/atgreen/libffi/blob/master/LICENSE:

libffi	-	Copyright	(c)	1996-2011	Anthony	Green,	Red	Hat,	Inc	and	others.

See	source	files	for	details.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining

a	copy	of	this	software	and	associated	documentation	files	(the

``Software''),	to	deal	in	the	Software	without	restriction,	including

without	limitation	the	rights	to	use,	copy,	modify,	merge,	publish,

distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to

permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to

the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be

included	in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	``AS	IS'',	WITHOUT	WARRANTY	OF	ANY	KIND,

EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF

MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.

IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY

CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE

SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

Documentation
The	documentation	is	released	under	the	GFDL	license.

About 	

About	the	FreeBASIC	project.

The	FreeBASIC	project	is	a	set	of	cross-platform	development	tools
initially	created	by	Andre	Victor,	consisting	of	a	compiler,	GNU-based
assembler,	linker	and	archiver,	and	supporting	runtime	libraries,	including
a	software-based	graphics	library.	The	compiler,	fbc,	currently	supports
building	for	i386-based	architectures	on	the	DOS,	Linux,	Windows	and
Xbox	platforms.	The	project	also	contains	thin	bindings	(header	files)	to
some	popular	3rd	party	libraries	such	as	the	C	runtime	library,	Allegro
SDL,	OpenGL,	GTK+,	the	Windows	API	and	many	others,	as	well	as
example	programs	for	many	of	these	libraries.

FreeBASIC	is	a	high-level	programming	language	supporting	procedural,
object-orientated	and	meta-programming	paradigms,	with	a	syntax
compatible	to	Microsoft	QuickBASIC.	In	fact,	the	FreeBASIC	project
originally	began	as	an	attempt	to	create	a	code-compatible,	free
alternative	to	QuickBASIC,	but	it	has	since	grown	into	a	powerful
development	tool.	FreeBASIC	can	be	seen	to	extend	the	capabilities	of
QuickBASIC	in	a	number	of	ways,	supporting	more	data	types,	language
constructs,	programming	styles,	and	modern	platforms	and	APIs.

http://www.talula.demon.co.uk/allegro/

Most	Important	Features 	

BASIC	compatibility
FreeBASIC	is	not	a	"new"	BASIC	language.	You	don't	need	to
learn	much	new	if	you	are	familiar	with	any	Microsoft-BASIC
variant.	You	can	use	either	"-lang	qb"	for	compatibility,	or	(default)
"-lang	fb"	for	some	of	the	new	features,	but	it	also	brings	some
restrictions	and	some	similarity	with	the	"C"	programming
language.	See	also	CompilerDialects.
FreeBASIC	is	case-insensitive;	explicit	"main"	procedure	is	not
required;	most	of	the	graphic	and	console	statements	and
procedures	found	in	Microsoft	QuickBASIC	are	implemented,	et
cetera.
Only	with	"-lang	qb":	scalar	variables	don't	need	to	be
dimensioned	and	suffixes	can	be	used;	line	numbers	are
supported;	GoSub	supported.

Clean	syntax
Only	a	small	number	of	keywords	have	been	added.	All
procedures	are	implemented	as	libraries,	so	for	the	most	part,
there	are	no	new	intrinsic	routines,	and	therefore	there	is	a	low
chance	of	having	name	duplication	with	old	code.

Thin	bindings	(header	files)	to	existing	C	libraries	and	APIs
No	wrappers	or	helpers	are	necessary,	just	a	ported	header	file,
making	usage	of	external	C	libraries	very	easy
The	official	distribution	comes	with	several	bindings	to	existing	C
libraries	already,	see	External	Libraries	TOC	for	a	complete	up-
to-date	list

Multi-platform
FreeBASIC	currently	runs	on	32-bit	Windows,	Linux,	and	DOS	(a
16-bit	DOS	is	good	enough,	although	FreeBASIC	itself	and
compiler	output	are	32-bit)	and	also	creates	applications	for	the
Xbox	console.	More	platforms	to	come.
The	runtime	library	was	written	with	portability	in	mind.	All	third-

party	tools	used	exist	on	most	operating	systems	already	as	they
are	from	the	GNU	binutils.	The	compiler	is	written	in	100%
FreeBASIC	code	(that	is,	FreeBASIC	compiles	itself.),	which
makes	it	simple	to	be	bootstrapped	as	it	doesn't	depend	on	non-
portable	tools.

Unicode	support
Besides	ASCII	files	with	Unicode	escape	sequences	(\u),
FreeBASIC	can	parse	UTF-8,	UTF-16LE,	UTF-16BE,	UTF-32LE
and	UTF-32BE	source	(.bas)	or	header	(.bi)	files,	they	can	be
freely	mixed	with	other	sources/headers	in	the	same	project	(also
with	other	ASCII	files).
Literal	strings	can	be	typed	in	the	original	non-Latin	alphabet,	just
use	a	text-editor	that	supports	some	of	the	Unicode	formats	listed
above.
The	WString	type	holds	wide-characters,	all	string	procedures	(like
Left,	Trim,	etc)	will	work	with	wide-strings	too.
Open	was	extended	to	support	UTF-8,	UTF-16LE	and	UTF-32LE
files	with	the	Encoding	specifier.	Input	#	and	Line	Input	#,	as	well
as	Print	#	and	Write	#	can	be	used	normally,	and	any	conversion
between	Unicode	to	ASCII	is	done	automatically	if	necessary.
Print	also	supports	Unicode	output	(see	Requirements).

A	large	number	of	built-in	data	types
Integer:	Byte,	UByte,	Short,	UShort,	Integer,	UInteger,	Long,	Ulong
LongInt,	ULongInt
Floating-point:	Single,	Double
String:	fixed,	variable-length	or	null-terminated	(ZString),	up	to
2GB	long
Unicode	strings	(WString),	like	ZString,	but	with	support	for	wide
characters.	Use	the	Windows	Unicode	API	procedures	directly,
etc.

User-defined	types	(UDTs)
Unlimited	nesting.
BASIC's	Type	statement	is	supported,	along	with	the	new	Union

statement	(including	anonymous	nested	unions).
Array	fields	utilizing	up	to	eight	dimensions	can	be	used.
Procedure	pointer	fields.
Bit	fields.

Enumerations	(enums)
Easily	declare	a	list	of	constants	with	sequential	values	with	Enum.

Arrays
Fixed-	and	variable-	length	arrays	are	supported,	up	to	2	GB	in
size.
Up	to	eight	dimensions,	including	arrays	with	unknown
dimensions.
Any	lower	and	upper	boundaries.
Element	data	can	be	preserved	during	a	re-size	of	variable-length
arrays	with	ReDim	using	the	new	Preserve	specifier.

Pointers
Pointers	to	any	of	the	data	types	listed	above,	including	string
characters,	array	elements	and	UDT's.
Uses	the	same	syntax	as	C.
Unlimited	indirection	levels	(e.g.,	pointer	to	pointer	to	...).
Procedure	pointers.
Indexing	[]'s	(including	string	indexing).
Type	casting.

Variable,	object	and	array	initialization
For	static,	module-level	or	local	variables,	arrays	and	UDT's.

Default	procedure	parameter	values
For	numeric,	string	and	UDT	parameter	types.

Procedure	overloading
Including	procedures	with	default	parameter	values.

In-line	assembly
Intel	syntax.
Reference	variables	directly	by	name;	no	"trick	code"	needed.

Traditional	preprocessor	support
Same	syntax	as	in	C.
Single-line	macros	supported	with	the	#define	command,
including	parameters.
Multi-line	macros	supported	with	the	#macro	command.

Type	aliases
Supporting	forward	referencing	as	in	C,	including	UDT	and
procedure	pointer	types.

C-like	escape	sequences	for	string	literals
Same	as	in	C	(except	numbers	are	interpreted	as	decimal,	not
octal).

Debugging	support
Full	debugging	support	with	GDB	(the	GNU	debugger)	or	Insight
(a	GDB	GUI	frontend).
Array	bounds	checking	(only	enabled	by	the	-exx	command-line
option).
Null	pointer	checking	(same	as	above).

Create	OBJ's,	LIB's,	DLL's,	and	console	or	GUI	EXE's
You	are	in	no	way	locked	to	an	IDE	or	editor	of	any	kind.
You	can	create	static	and	dynamic/shared	libraries	adding	just	one
command-line	option	(-lib	or	-dylib/-dll).

As	a	32-bit	application
FreeBASIC	can	compile	source	code	files	up	to	2	GB	in	size.
The	number	of	symbols	(variables,	constants,	et	cetera)	is	only
limited	by	the	total	memory	available	during	compile	time.	(You
can,	for	example,	include	OpenGL,	GTK/SDL,	BASS,
simultaneously	in	your	source	code.)

Optimized	code	generation
While	FreeBASIC	is	not	an	optimizing	compiler,	it	does	many
kinds	of	general	optimizations	to	generate	the	fastest	possible
code	on	x86	CPU's,	not	losing	to	other	BASIC	alternatives,
including	the	commercial	ones.

Completely	free
All	third-party	tools	are	also	free.	No	piece	of	abandoned	or
copyrighted	software	is	used	(except	GoRC	on	Win32).	The
assembler,	linker,	librarian/archiver,	and	other	command-line
applications	come	from	the	GNU	binutils	programming	tools.

Data	Types 	

Standard	Data	Types
User	Defined	Types

	

Different	ways	angles	are	measured 	

Written	by	RandyKeeling	
This	very	simple	tutorial	assumes	that	you	know	what	an	angle	is.

There	are	three	commonly	used	ways	to	measure	the	size	of	an	angle:

Degrees	(deg)
Radians	(rad)
Gradients	(grad)

Degrees

Most	people	are	familiar	with	angles	measured	in	degrees.	A	full	circle	measures	360?.	Parts	of	a	degree	are	often	measured
two	different	ways,	degrees	decimal	and	DMS	(degree,	minute,	second).

We	can	always	show	a	degree	as	we	would	any	decimal	number	by	showing	its	whole	units	followed	by	its	fractional	portion.	For
example,	75.23?	means	that	we	have	75	degrees	and	twenty-three	hundredths	of	a	degree.

In	the	DMS	system,	each	degree	is	made	up	of	60	minutes	(or	arcminutes)	and	is	marked	with	a	`	.	Each	minute	is	made	up	of
60	seconds	(or	arcseconds)	and	is	marked	with	a	``	.	So	a	degree	measure	might	look	like	this	36?	14`	52``.	This	is	read	as	36
degrees,	14	minutes,	52	seconds.	

To	convert	DMS	to	decimal	degrees	you	can	use	the	following	code.

Dim	D	As	Integer

Dim	M	As	Integer

Dim	S	As	Integer

Dim	DD	As	Single

''	Convert	to	degree	decimal

DD	=	D	+	M	/	60	+	S	/	3600				''	3600	comes	from	1/60	*	1/60

Radians

Radians	are	more	common	in	computer	programming	and	mathematics.	To	understand	radians,	you	must	understand	the
constant	Pi	(often	given	the	symbol	of	the	lowercase	Greek	letter	pi).	Pi	is	an	irrational	and	transcendental	number	(its	decimal
notation	never	ends)	and	is	the	circumference	of	any	circle	divided	by	that	circle's	diameter.	An	approximate	value	(to	20	decimal
places)	is	Pi	=	3.1415926535897932385.	The	value	of	Pi	can	also	be	found	using	this	code.

Pi	=	4	*	Atn	(1)

With	the	radian	system,	a	full	circle	has	2*Pi	(6.2831853071795864770)	radians.	Unlike	degrees,	radians	are	not	marked	with
any	form	of	a	symbol.	FreeBASIC,	like	most	programming	languages,	accepts	angle	measurements	in	radians	and	not	degrees.

To	convert	between	radians	and	degrees	(decimal)	you	can	use	the	following	code.

Const	PI	As	Double	=	3.1415926535897932

Dim	D	As	Double

Dim	R	As	Double

R	=	D	*	PI	/	180				''	A	full	circle	has	360	degrees,	and	a	full	circle	has	2*PI	Radians

D	=	R	*	180	/	PI

The	value	of	PI	is	used	so	often,	it	is	not	uncommon	to	find	it	defined	in	libraries	and	commonly	used	routines.	The	following	are
useful	constants.

Const	PI	As	Double	=	3.1415926535897932

Const	TWO_PI	As	Double	=	6.283185307179586

Const	HALF_PI	As	Double	=	1.570796326794896

Const	DegToRAD	As	Double	=	0.01745329251994330				''	PI/180

Const	RADToDeg	As	Double	=	57.29577951308233						''	180/PI

Gradients

Gradients	are	used	mainly	in	some	forms	of	engineering.	Within	the	gradient	system	a	circle	has	400	grads.

A	Brief	Introduction	To	Trigonometry 	

Written	by	RandyKeeling	
This	tutorial	includes:

Right	Triangles
Pythagoras'	Theorem
Trigonometric	Functions
Applying	Trigonometric	functions
Inverse	Trigonometric	functions
Other	Trigonometric	functions
Law	of	Sines,	Law	of	Cosines,	and	other	relationships

Trigonometry	can	be	thought	of	as	the	study	of	triangles.	There	is	more	to
it	than	that,	but	this	will	suffice	for	this	tutorial.	While	this	may	seem	to	be
of	limited	use,	many	problems	in	both	the	real	and	virtual	worlds	can	be
solved	by	creative	application	of	triangles.

A	triangle	has	three	sides	and	in	'normal'	(i.e.	Euclidean)	space	has	three
angles	whose	measurements	add	to	be	exactly	180	degrees	(or	Pi
radians).	For	this	tutorial	we	will	deal	only	with	'normal'	triangles	(for
those	interested	in	other	spaces,	search	for	non-Euclidean	triangles	or
non-Euclidean	geometry).

Right	Triangles
To	begin	with,	we	will	deal	with	a	special	class	of	triangles	known	as	right
triangles.	A	right	triangle	has	one	angle	that	measures	90	degrees.
Because	the	angles	of	a	triangles	must	be	exactly	180	degrees,	there
can	be	only	one	90	degree	angle	in	a	triangle	(and	it	is	the	largest	angle
in	a	right	triangle).	Below	is	FreeBASIC	code	to	draw	an	image	of	a	right
triangle.	(This	image	will	be	referred	to	throughout	the	tutorial.)	In	this
image,	uppercase	letters	denote	sides,	and	their	corresponding
lowercase	letters	denote	the	angle	opposite	of	the	side.	For	example,
angle	y	is	the	angle	opposite	side	Y.

ScreenRes	640,480,8

'Triangle

Color	7

Line	(220,140)	-	(220,340)

Line	(220,140)	-	(420,340)

Line	(220,340)	-	(420,340)

'right	angle

Color	12

Line	(220,320)	-	(240,320)

Line	(240,320)	-	(240,340)

'angles

Color	13

Locate	20,29

Print	"x"

Locate	42,50

Print	"y"

'Sides

Color	14

Locate	31,43

Print	"Z"

Locate	31,	26

Print	"Y"

Locate	45,	40

Print	"X"

Sleep

The	box	in	the	lower	right	hand	corner	means	that	it	is	a	right	angle
(measures	90	degrees).	The	side	opposite	of	that	angle	(side	Z)	is	called
the	hypotenuse	and	is	the	longest	side	in	a	right	triangle.	

Pythagoras'	Theorem

Perhaps	the	first	bit	of	trigonometry	that	most	people	learn	is	the
relationship	commonly	known	as	Pythagoras'	Theorem.	It	simply	states
that	the	square	of	the	hypotenuse	of	a	right	triangle	is	equal	to	the	sum	of
the	square	of	the	other	two	sides.	It	is	easier	to	understand	in	equation
form.

Z^2	=	X^2	+	Y^2

A	trivial	example	application	of	this	law	might	be	the	following.

If	player	one	is	100	meters	due	east	of	a	marked	location	(the	origin)	and
player	two	is	150	meters	due	north	of	the	same	location,	how	far	apart
are	they?

D	=	SQR(100^2	+	150^2)

Trigonometric	Functions

Long	ago	people	discovered	that	regardless	of	the	size	of	the	triangle,
certain	ratios	were	always	the	same.	For	example,	in	the	image	of	the
triangle	above,	if	the	measure	of	angle	y	is	45	degrees,	then	regardless
of	the	size	of	the	triangle,	the	ratio	Y/X	will	always	be	the	same.
Collections	of	these	ratios	are	trigonometric	functions.	

The	three	primary	functions	are	Sine	(Sin),	Cosine	(Cos),	and	Tangent
(TAN).	There	are	many	different	ways	to	define	these	three	functions.
One	way	is	with	relationships	between	sides	of	a	right	triangle.

Sine	(Sin)	is	the	ratio	of	the	side	opposite	the	angle	in	question	to
the	hypotenuse.	In	the	above	triangle,	the	sine	of	the	angle	y
(written	as	SIN(y))	is	the	length	of	side	Y	divided	by	the	length	of
side	Z.
Cosine	(Cos)	is	the	ratio	of	the	side	adjacent	to	the	angle	in
question	to	the	hypotenuse.	In	the	above	triangle,	the	cosine	of
angle	y	(written	COS(y))	is	the	length	of	Side	X	divided	by	the
length	of	side	Z.
Tangent	(Tan)	is	the	ratio	of	the	side	opposite	to	the	angle	in
question	to	the	side	adjacent	to	the	angle	in	question.	In	the	above

triangle,	the	tangent	of	angle	y	(written	as	Tan(y))	is	the	length	of
side	Y	divided	by	the	length	of	side	X.

Many	people	remember	these	relationships	with	the	mnemonic	device
SOHCAHTOA	(pronounced	Sow	Cah	Toe-a)	which	is	of	course	Sin	=
opposite/hypotenuse,	Cos	=	adjacent/hypotenuse,	and	Tan	=
opposite/adjacent.	

FreeBASIC	has	functions	for	these	trigonometric	functions	and	others.	

Applying	Trigonometric	functions

Referring	again	to	the	triangle	image	above,	let's	say	that	player	one	is
on	the	ground	at	the	point	near	angle	y	and	player	two	is	at	the	point	near
angle	x	(off	of	the	ground).	If	player	one	knows	how	far	he	or	she	is	from
the	side	Y	(let's	say	25.2	meters)	and	can	measure	the	value	of	angle	y
(let's	say	31.5	degrees)	how	far	off	the	ground	is	player	two?	How	far
away	is	player	one	from	player	two?

To	solve	this	we	look	at	what	pieces	of	information	we	know.	We	know
the	adjacent	side	to	angle	y	(25.2	meters)	and	the	measure	of	angle	y
(31.5	degrees).	This	is	enough	information	to	use	the	tangent	function.
Tan	(y)	=	Opposite/adjacent,	or	TAN(31.5	degrees)	=	Opposite/25.2
meters.	Using	a	little	algebra	to	rearrange	this	we	get	opposite	=
Tan(31.5	degrees)	*	25.2	meters.	To	find	the	distance	between	the
players	we	could	use	Pythagoras's	Theorem	now	that	we	know	the	two
non-hypotenuse	sides	of	the	triangle	or	we	could	use	the	cosine.	Using
cosine	would	give	Cos	(y)	=	adjacent/hypotenuse.	With	some	algebra
we	get,	hypotenuse	=	25.2/Cos(31.5	degrees).

Before	we	can	write	a	program	to	solve	this,	we	must	remember	that
FreeBASIC,	like	most	programming	languages,	works	with	radians,	not
degrees	(see	Angles).

In	FreeBASIC	we	could	get	the	answer	with	this	code.

Const	PI	As	Double	=	3.1415926535897932

Dim	Opposite	As	Double

Dim	Hypotenuse	As	Double

Dim	Angle	As	Double

Angle	=	31.5	*	Pi	/	180

Opposite	=	Tan	(Angle)	*	25.2

Hypotenuse	=	25.2	/	Cos	(Angle)

Print	Opposite

Print	Hypotenuse

Sleep

The	above	code	tells	us	that	player	two	is	about	15.4	meters	off	the
ground	and	around	29.5	meters	away	(along	the	hypotenuse).

Inverse	Trigonometric	functions

But	what	if	you	know	the	sides	of	a	triangle	and	need	to	find	the	angle?
You	would	then	use	the	inverse	trigonometric	functions.	

ArcSine	(or	Inverse	Sine)
ArcCosine	(or	Inverse	Cosine)
ArcTangent	(or	Inverse	Tangent)

For	example,	using	the	above	set-up,	if	player	two	was	30	meters	off	the
ground	and	50	meters	away	from	player	one	(along	the	hypotenuse)	what
is	the	measure	of	angle	y?	Looking	at	our	trigonometric	functions	it	looks
like	we	have	need	of	the	sine	function	(an	opposite	and	a	hypotenuse).
Sin	(y)	=	opposite/hypotenuse,	ArcSine	(opposite/hypotenuse)	=	y.

Print	Asin	(30/50)

This	gives	an	angle	of	about	0.6435	radians,	or	around	36.9	degrees.
The	FreeBASIC	command	for	each	of	these	inverse	functions	are:

Asin	(arcsine)
Acos	(arccosine)
Atn	(arctan,	there	is	also	Atan2	which	takes	the	opposite	and
adjacent	sides	of	the	triangle,	not	their	ratio)

Other	Trigonometric	functions

There	are	other	trigonometric	functions	that	are	defined	in	terms	of	the
above	functions.	Although	none	of	the	below	are	defined	in	FreeBASIC.

Secant	(sec(y))	is	1/Cos(y)
Cosecant	(csc(y))	is	1/Sin(y)
Cotangent	(cot(y))	is	1/Tan(y)

Each	of	these	has	an	inverse	(or	arc)	functions	as	well.	

Law	of	Sines,	Law	of	Cosines,	and	other	relationships
All	of	the	above	has	assumed	a	right	triangle,	but	this	was	an	aid	in
explaining	the	basic	trigonometric	functions.	The	following	does	not	rely
on	right	triangles;	these	identities	are	valid	for	any	triangle.

Law	of	Sines
Sin	(y)/Y	=	Sin	(x)/X	=	Sin	(z)/Z

Law	of	Cosines
Z^2	=	X^2	+	Y^2	-	2*X*Y*Cos(z)

Other	Identities

Sin^2(y)	+	Cos^2(y)	=	1
This	means	the	same	as	Sin(y)*Sin(y)	+	Cos(y)*Cos(y)	=	1

Tan(y)	=	Sin((y)/Cos(y)

There	are	several	more	useful	identities	out	there.	Search	for
trigonometric	identities	or	consult	any	higher	mathematical	reference.

x86	Microprocessor	Architecture 	

x86	or	80x86	is	the	generic	name	of	a	microprocessor	architecture	first
developed	and	manufactured	by	Intel.
More	information	can	be	obtained	by	reading	this	Wikipedia	article.

http://en.wikipedia.org/wiki/X86_architecture

Structure	packing/field	alignment 	

The	default	layout	of	Type	and	Union	structures	in	FreeBASIC	is
compatible	to	that	of	GCC,	following	the	SysV	(Linux/BSD)	and	Microsoft
(Windows)	ABIs.	This	allows	for	binary	compatibility	with	GCC	and	other
compilers.

By	default,	fields	are	aligned	to	their	natural	boundaries,	which	are:	
A	multiple	of	1	for	1-byte	data	types
A	multiple	of	2	for	2-byte	data	types
A	multiple	of	4	for	4-byte	data	types
A	multiple	of	4	for	8-byte	data	types	(32bit	x86
DOS(DJGPP)/Linux/BSD)
A	multiple	of	8	for	8-byte	data	types	(Win32/Win64,	32bit	ARM
Linux,	64bit	x86_64/AArch64	Linux/BSD)
The	largest	natural	boundary	of	the	fields	of	Type/Union	data	types
Dynamic	string	descriptors	are	handled	as	Type	structures	with	the
data	pointer	field	being	the	one	with	the	largest	natural	alignment.
Fixed-length	strings	are	aligned	according	to	the	alignment
required	for	the	character	size.
Static	arrays	are	aligned	according	to	the	alignment	required	for
the	element	data	type.

The	compiler	aligns	fields	by	inserting	padding	bytes	in	front	of	them	in
order	to	move	them	to	an	offset	that	corresponds	to	their	natural
boundary,	or	to	a	multiple	of	the	value	given	with	Field	=	N,	if	it	is	smaller
than	the	field's	natural	alignment.	On	the	x86	architecture,	such	proper
alignment	is	not	required	but	can	result	in	better	performance	when
accessing	the	fields.	Other	architectures	might	actually	require	proper
alignment.

In	addition	to	field	alignment,	the	whole	structure's	size	is	rounded	up	to	a
multiple	of	the	largest	natural	alignment	of	its	fields,	by	adding	padding
bytes	at	the	end	of	the	structure.	This	ensures	that	in	an	array	of	such
structures,	each	individual	one	is	properly	aligned	as	required	by	the
fields.

GFX_NULL 	

Using	the	GFX_NULL	driver	in	Windows

The	client	area	of	the	window	is	updated	using	GfxLib.	Menus,	toolbars	or	dialogs	can	be	added	to	the	window	using	normal	Win	API	calls.

''	Example	of	use	of	the	GFX_NULL	driver	in	windows

''	The	GfxLib	is	set	up	in	the	ON_Create	sub

''	The	GFXLib	buffer	is	drawn		to	screen	in	th	On_Paint	Sub

''	The	GfXLib	is	updated	in	the	event	loop

#include	"fbgfx.bi"

#include	once	"windows.bi"

Using	fb

Dim	Shared	bmi	As	bitmapv4header

Dim	Shared	mywin	As	rect

''

''--

Function	on_paint(ByVal	hwnd	As	HWND,ByVal	wparam	As

				Dim	rct	As	RECT

				Dim	pnt	As	PAINTSTRUCT

				Dim	hDC	As	HDC

				'draw	the	gfx	buffer	to	screen

				hDC	=	BeginPaint(hWnd,	@pnt)

				GetClientRect(hWnd,	@rct)

				With	rct

								StretchDIBits	hDC,	0,	0,.Right-.Left+1,.bottom

												.bottom-.top+1,ScreenPtr,CPtr(bitmapinfo

				End	With

				EndPaint	hWnd,	@pnt

				Function	=	0

End	Function					

''

''---

Function	on_Create(ByVal	hwnd	As	HWND,ByVal	wparam	As

				Dim	rct	As	RECT

				'set	a	gfxscreen	of	the	size	of	the	client	area

				GetClientRect(hWnd,	@mywin)

				ScreenRes	mywin.right+1,mywin.bottom+1,	32,	1,	GFX_NULL

				'and	create	a	bmp	header,required	to	paint	it	yo	screen

				With	bmi

						.bV4Size	=	Len(BITMAPV4HEADER)

						.bv4width=mywin.right+1

						.bv4height=-(mywin.bottom+1)			'negative	value=>top	to	bottom	bmp

						'(standard	BMP's	are	bottom	to	top)

						.bv4planes=		1

						.bv4bitcount=32

						.bv4v4compression=0

						.bv4sizeimage=mywin.right+1*mywin.bottom+1*4

						.bV4RedMask	=	&h0F00

						.bV4GreenMask	=	&h00F0

						.bV4BlueMask	=	&h000F

						.bV4AlphaMask	=	&hF000

				End	With

				Function	=	0

End	Function

''

''---

Function	on_Destroy(ByVal	hwnd	As	HWND,ByVal	wparam	

				'clear	arrays....

				PostQuitMessage(0)

				Function	=	0

End	Function

''

''--

Function	WndProc	(ByVal	hWnd	As	HWND,ByVal	message	

																			ByVal	wParam	As	WPARAM,ByVal	lParam

			

				Function	=	0

				Select	Case	As	Const		message

				Case	WM_CREATE

								Function	=	On_create(hwnd,wparam,lparam)

				Case	WM_PAINT

								Function	=	On_paint(hwnd,wparam,lparam)

				Case	WM_DESTROY

								Function	=	On_destroy(hwnd,wparam,lparam)

				Case	Else

								Function	=	DefWindowProc(hWnd,	message,	wParam

				End	Select

End	Function

''

''--

''main	program	create	window	+	event	loop

				Dim	wMsg	As	MSG

				Dim	wcls	As	WNDCLASS					

				Dim	szAppName	As	ZString	*	30	=>	"Random	Rectangles"

				Dim	hWnd	As	HWND

				Dim	i	As	Integer

				With	wcls

								.style									=	CS_HREDRAW	Or	CS_VREDRAW

								.lpfnWndProc			=	@WndProc

								.cbClsExtra				=	0

								.cbWndExtra				=	0

								.hInstance					=	GetModuleHandle(null)

								.hIcon									=	LoadIcon(NULL,	IDI_APPLICATION

								.hCursor							=	LoadCursor(NULL,	IDC_ARROW

								.hbrBackground	=	GetStockObject(WHITE_BRUSH	

								.lpszMenuName		=	NULL

								.lpszClassName	=	@szAppName

				End	With

				If(RegisterClass(@wcls)	=	FALSE)	Then	

								End

				End	If

				'make	a	non-resizable	screen

				hWnd	=	CreateWindowEx(0,szAppName,"Example	of	GFX_NULL"

								WS_OVERLAPPEDWINDOW	And	Not	(WS_sizebox	Or	ws_maximizebox

								CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,	CW_USEDEFAULT

								NULL,NULL,	wcls.hinstance,NULL)

				ShowWindow(hWnd,	SW_NORMAL)

				UpdateWindow(hWnd)

				While	1

								If	PeekMessage(@wMsg,	NULL,	0,0,	PM_Remove)

												If	wmsg.message=WM_QUIT	Then	

																Exit	While

												End	If

												TranslateMessage(@wMsg)

												DispatchMessage(@wMsg)

								Else

												'update	the	gfx	buffer

												Line	(Rnd*mywin.right,Rnd*mywin.bottom)-(

												RGB(Rnd*255,Rnd*255,Rnd*255),bf

												redrawwindow	(hwnd,0,0,rdw_invalidate)

								End	If

				Wend

				End	wMsg.wparam	

Unicode 	

A	worldwide	standard	for	storing,	categorizing	and	interpreting
characters

Unicode	is	an	industry	standard	designed	to	allow	text	and	symbols
from	all	of	the	writing	systems	of	the	world	to	be	consistently
represented	and	manipulated	by	computers.	Developed	in	tandem	with
the	Universal	Character	Set	standard	and	published	in	book	form	as
The	Unicode	Standard,	Unicode	consists	of	a	character	repertoire,	an
encoding	methodology	and	set	of	standard	character	encodings,	a	set
of	code	charts	for	visual	reference,	an	enumeration	of	character
properties	such	as	upper	and	lower	case,	a	set	of	reference	data
computer	files,	and	rules	for	normalization,	decomposition,	collation	and
rendering.

The	Unicode	Consortium,	the	non-profit	organization	that	coordinates
Unicode's	development,	has	the	ambitious	goal	of	eventually	replacing
existing	character	encoding	schemes	with	Unicode	and	its	standard
Unicode	Transformation	Format	(UTF)	schemes,	as	many	of	the
existing	schemes	are	limited	in	size	and	scope,	and	are	incompatible
with	multilingual	environments.	Unicode's	success	at	unifying	character
sets	has	led	to	its	widespread	and	predominant	use	in	the
internationalization	and	localization	of	computer	software.	The	standard
has	been	implemented	in	many	recent	technologies,	including	XML,	the
Java	programming	language,	and	modern	operating	systems.

Common	Unicode	formats	include:
-	UTF-8
-	UTF-16
-	UTF-32

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-32

GET/PUT	image	header	example 	

Example	showing	the	two	different	headers	used	for	image	buffers.
Note:	ImageInfo	is	provided	as	a	simpler	alternative	to	reading	the	image	structures	directly.

''	fbgfx.bi	contains	the	necessary	structures	and	constants	for	working

''	directly	with	image	headers

#include	"fbgfx.bi"

''	in	lang	fb,	structures	and	constants	are	contained	in	the	FB	namespace

#if	__FB_LANG__	=	"fb"

Using	FB

#endif

''	function	to	show	info	on	an	image

Sub	show_image_info(ByVal	image	As	Any	Ptr)

				Dim	As	PUT_HEADER	Ptr	header

				Dim	As	Integer	w,	h,	bpp,	pitch

				header	=	image

				If(header->Type	=	PUT_HEADER_NEW)	Then

								Print	"New	style	header"

								w	=	header->Width

								h	=	header->height

								bpp	=	header->bpp

								pitch	=	header->pitch

				Else

								Print	"Old	style	header"

								w	=	header->old.width

								h	=	header->old.height

								bpp	=	header->old.bpp

								pitch	=	w	*	bpp

				End	If

				Print	"Image	dimensions	are	"	&	w	&	"*"	&	h

				Print	"Image	uses	"	&	bpp	&	"	bytes	for	each	pixel"

				Print	"A	row	of	image	pixels	takes	"	&	pitch	&	"	bytes"

End	Sub

Dim	As	Any	Ptr	picture

ScreenRes	320,	200,	32

picture	=	ImageCreate(10,	10,	RGB(128,	192,	255))

Put(40,	40),	picture,	PSet

show_image_info(picture)

ImageDestroy	picture

Sleep

NOTE:	To	use	this	code	with	an	array,	pass	your	array	to	the	function,	like	this:

show_image_info(VarPtr(myarray(L)))

where	L	is	the	lower	bound	of	myarray().

Getting	Started 	

This	is	a	good	introduction	to	FB	for	QBasic	programmers,	based	on	SJ	Zero's	tutorial.

Getting	started	with	the	software

You	can	download	FreeBASIC	here:	http://www.freebasic.net/index.php/download
And	FBIDE	here:	http://fbide.sourceforge.net/

When	installing	FBIDE,	select	"FBIDE	only,"	to	not	install	the	old	version	of	FB	included	in	that
package.
When	running	FBIDE	the	first	time,	you	will	have	to	browse	to	find	the	FB	compiler	on	your
computer.

Hello	World!

Open	up	FBIDE	and	type	the	following:

	PRINT	"Hello	World!"

	SLEEP

Now	press	F5.	Congratulations,	you've	just	seen	how	much	like	QB	FreeBASIC	really	is.	Now	you
can	use	most	console	commands	for	QB	just	like	you	remember.	For	example:	

	LOCATE	10,10

	PRINT	"I'm	the	center	of	the	universe!"

	SLEEP

The	Amazing	Screen	13

Now,	put	"SCREEN	13"	before	your	code,	to	see	how	easy	it	is	to	use	graphics	modes:

	SCREEN	13

	PRINT	"Hello	World!"

	SLEEP

From	there,	all	of	the	standard	QB	graphics	commands	work	as	you	remember,	as	you	can	see	in
this	example:

	SCREEN	13

	LINE	(1,1)-(100,100),1,bf

	PRINT	"Hello	World!"

	CIRCLE	(10,10),10,2

	PSET	(30,15),3

	SLEEP

FreeBASIC	also	has	new	graphics	features.	For	example,	QB	has	never	had	a	screen	14	or
greater.	Try	running	this	program:

	SCREEN	15

	LINE	(1,1)-(100,100),1,bf

	PRINT	"Hello	World!"

	CIRCLE	(10,10),10,2

	PSET	(30,15),3

	SLEEP

After	opening	a	graphics	window	via	the	SCREEN	command,	you	can	also	hit	ALT-ENTER	to
change	between	windowed	and	fullscreen	modes.

Another	nice	feature	of	the	graphics	library	in	FreeBASIC	is	that	you	can	do	page	flipping	in	any
video	mode.	The	following	code	demonstrates	this.	

	DIM	as	integer	page

	DIM	as	integer	notpage

	DIM	as	integer	a,	b

	screen	12,	,	2	'This	sets	the	screen	for	2	pages

	notpage	=	1			'This	sets	the	backpage

	DO

		IF	page	=	0	THEN	page	=	1	ELSE	page	=	0			'These	two	lines	flip	the	page	and	the

		IF	notpage	=	1	THEN	notpage	=	0	ELSE	notpage	=	1	'backpage

	

		SCREENSET	page,	notpage	'This	flips	the	page

	

		CLS		'First	we	clear	the	screen

		b	=	b	+	1	

		IF	b	>	100	THEN	b	=	0

		FOR	a	=	1	TO	128

			PSET	(b,a),a	'Then	we	draw	a	line.	It	moves	without	flickering.

		NEXT	a

		

	LOOP	UNTIL	INKEY	=	CHR(27)

This	works	for	any	mode,	so	you	can	use	the	high	resolution	modes	for	your	programs	with	page
flipping,	using	standard	QB	graphics	commands!	

Why	ASM	is	No	Longer	Required

I	wouldn't	be	saying	this	if	it	wasn't	true.	Using	ASM	in	BASIC	to	increase	the	functionality	of	your
program	is	no	longer	necessary.	Ignoring	SDL,	Allegro,	DirectX,	OpenGL,	et.	al.	for	a	minute,
you've	got	the	above	page	flipping	and	advanced	graphics	modes	at	your	disposal,	as	well	as
Inkey,	which	we've	all	grown	to	love	or	hate,	but	there	are	also	two	new	input	commands	which	do
things	QBers	have	had	to	resort	to	assembly	code	to	do	since	the	dawn	of	time:

	DIM	as	integer	x,	y,	buttons

	CONST	as	integer	escapeKey	=	1

	SCREEN	12

	WHILE	NOT	MULTIKEY(escapeKey)	'this	checks	the	escape	key	every	frame

		GETMOUSE	x,	y,	,	buttons	'This	gets	the	mouse	state	

		PRINT	x,y,buttons			

	WEND

With	this	knowlege,	you	should	be	able	to	begin	programming	in	FreeBASIC,	with	all	the	perks
that	it	entails;	Speed,	power,	and	portability!

SJ	Zero 	

Jason	K.	Firth,	SJ	Zero
http://www.qbxl.net

Who	I	Am
I	am	a	hobbyist	software	developer	whose	tool	of	choice	is	FreeBASIC.
I	have	Quest	for	a	King,	Nietzsche,	Star	Phalanx,	and	Rambo	vs.	Kitty
Cat	under	my	belt.

What	I	Do
I'm	an	instrumentation	engineering	technologist,	not	a	programmer.

Contact	Me
Don't.

Using	Libraries 	

This	is	an	excerpt	from	an	article	published	in	QBXL	Magazine,	with	permission	by	SJ	Zero,	the	author.

FreeBASIC's	greatest	strength	is	it's	ability	to	seamlessly	integrate	with	a	number	of	standard	C	libraries
while	maintaining	the	ease	of	use	that	is	QB.	Even	before	FB	had	a	built-in	graphics	library,	intrepid	coders
were	using	SDL	to	get	graphics	and	sound	routines	working.	Before	the	current	version	included	a	SDL_net
and	Winsock,	a	number	of	coders,	myself	included,	fought	with	the	headers	to	get	network	support	into
FreeBASIC.	Today,	I'm	just	going	to	cover	how	to	get	started	with	three	advanced	libraries:	SDL,	fmod,	and
tinyPTC.	After	understanding	the	fundamentals,	you'll	see	that	using	C	libraries	is	simple	enough	that	with
few	exceptions,	C	libraries	are	no	more	difficult	to	use	in	FreeBASIC	than	QB	libraries	were	to	use.

What	are	these	Libraries,	Anyway?	

These	libraries	are	particularly	useful	because	they	tend	to	provide	functions	for	games.	

SDL	is	a	library	with	graphics	and	input	support	built	in,	and	a	bunch	of	sub-libraries	for	
font	support,	and	audio.	It	can	be	used	with	OpenGL,	but	I	won't	be	covering	that	today.

TinyPTC	is	primarily	a	graphics	library,	the	simplest	one	available.	It	does	little	more	than	give	you	a	pointer
to	the	graphics	reigon	to	draw	to.

FMod	is	a	3d	sound	and	music	library.	Though	its	license	is	strange,	it	works	acceptably	for	playing	sounds,
and	it	nicely	encapsulates	3D	sound.

Including	the	Library	

The	first	step	in	getting	any	of	these	libraries	to	work	is	including	their	header	files	in	your	project.
For	SDL,	it's	simply

	'$INCLUDE:	"SDL\SDL.bi"

For	FMOD,	it's	

	'$Include:	'fmod.bi'

http://SDL_ttf
http://SDL_mixer

and	for	tinyPTC,	you'll	want

	'$INCLUDE:	'tinyptc.bi'

'2.	Initilizing	the	library,	loading	a	file'

Obviously,	you	can't	just	include	the	lib	and	fire	away	if	it's	got	to	do	stuff	first.	
To	initilize	SDL	and	load	a	bitmap	into	memory,	you	must:

CONST	SCR_WIDTH	=	640

CONST	SCR_HEIGHT	=	480

DIM	MenuScreen	AS	SDL_Surface	ptr	'our	bitmap

DIM	Shared	video	AS	SDL_Surface	ptr	'our	screen	surface

SDL_Init	(SDL_INIT_VIDEO)

video	=	SDL_SetVideoMode(SCR_WIDTH,	SCR_HEIGHT,	32,	0)	'sets	the	video	mode	for	640x480x32

MenuScreen	=	SDL_LoadBMP("bitmap.bmp")

To	initilize	FMOD	and	load	a	sound	into	memory,	you	must:	

DIM	sound	AS	INTEGER	'it's	just	a	handle,	so	it's	an	int!

IF	FSOUND_GetVersion	<=	FMOD_VERSION	THEN

ErrorQuit	"FMOD	version	"	+	STR$(FMOD_VERSION)	+	"	or	greater	required"

End	If

If	FSOUND_Init(44100,	32,	0)	=	FALSE	Then

ErrorQuit	"Can't	initialize	FMOD"

End	If

sound	=	FSOUND_Sample_Load(FSOUND_FREE,"sound.wav",	FSOUND_HW3D,	0,	0)

Finally,	there's	no	data	formats	to	load	with	tinyPTC	because	it's	so	simple,	but	you	initilize	it	by	going:

const	SCR_WIDTH	=	320

const	SCR_HEIGHT	=	200

const	SCR_SIZE	=	SCR_WIDTH*SCR_HEIGHT

if(ptc_open("tinyPTC	test",	SCR_WIDTH,	SCR_HEIGHT)	=	0)	then

end	-1

end	if

http://SDL_net

Blitting,	Playing,	or	Plotting	

The	most	important	step,	obviously,	is	to	get	whatever	you	want	to	do	to	the	screen	or	speakers.	This	part	is
relatively	easy,	and	can	be	encapsulated	further	into	a	wrapper	function.	For	SDL,	sending	an	image	to	the
screen	means	going:

SUB	BlitImage(x	as	integer,y	as	integer,image	as	sdl_surface	ptr,	dest	as	sdl_surface	ptr)	

DIM	Rectangle	as	SDL_Rect	

DIM	Rectangle2	as	SDL_Rect	

Rectangle.X	=	0	

Rectangle.Y	=	0	

rectangle.w	=	image->w	

rectangle.h	=	image->h	

Rectangle2.x	=	x	

Rectangle2.y	=	y	

SDL_BlitSurface	image,	@rectangle,	dest,	@rectangle2

END	SUB

For	FMOD,	the	steps	to	play	a	sound	aren't	that	difficult	either:

FUNCTION	fModPlayWave(samp1	as	integer)	AS	INTEGER	

'where	samp1	is	the	number	returned	by	FSOUND_SampleLoad

DIM	position(0	to	2)'	as	FSound_Vector

DIM	vel(0	to	2)'	FSound_Vector

fModPlayWave	=	FSOUND_PlaySoundEx(FSOUND_FREE,	samp1,	NULL,	TRUE)

END	FUNCTION

And	TinyPTC,	which	is	again,	not	a	high	level	library	like	the	other	two,	can	plot	pixels	using	the	following
code:

SUB	putd(BYREF	buffer(),	BYVAL	x	AS	INTEGER,	BYVAL	y	AS	INTEGER,	BYVAL	colr	as	INTEGER)

	 				buffer((y	*	SCR_WIDTH)	+	x)	=	colr

	 	 ptc_update	@buffer(0)	'This	is	a	pageFlip

END	SUB

Shutting	Down	
So	you	don't	have	to	manage	memory	and	do	all	the	boring	mundane	tasks,	you	must	remember	to	shut
down	the	library	before	your	program	exits.	Luckily,	all	three	programs	allow	this	with	one	line.	If	you	can't
shut	it	down,	the	library	no	longer	cares.	It's	beautiful.

SDL:	SDL_Quit	()

fmod:	FSOUND_Close	()

tinyPTC:	PTC_Close	()

That's	all	there	is	to	quitting!
As	you	can	see,	there	is	nothing	inherently	more	difficult	in	using	libraries	in	FreeBASIC	compared	to
QuickBASIC.	In	fact,	because	coders	don't	need	to	jump	through	hoops	to	get	to	memory,	it's	actually	much
easier,	even	with	the	more	modern	OS	and	hardware.

Using	the	Mouse	in	FreeBASIC 	

After	doing	some	searches,	I	quickly	noticed	that	there	simply	wasn't	an	official	tutorial	or	technique	for	manipulating	the
mouse	in	a	windows	console	application	in	FreeBasic.	Therefore,	I	decided	to	write	this	technique	in	order	to	give	such	an
example	to	the	FreeBasic	Community.	As	you	know	A	Windows	Console	is	already	mouse	aware	by	ways	of	the	fact	that	it
is	a	windows	console,	which	means	it's	created	with	the	use	of	the	Windows	API,	which	means	that	the	mouse	can	be
accessed	from	the	Console	Window.	So	There's	no	need	to	turn	the	mouse	on	or	off	in	your	code.	All	you	need	to	do	is	Get
or	Set	the	X	and	Y	coordinates	and	get	the	states	of	the	mouse	buttons.	We	will	be	covering	the	following	subjects	in	this
tutorial.

Getting	Mouse	Coordinates:
The	mouse	cursor,	when	the	mouse	is	moved,	continuously	updates	its	position.	You	can	get	these	values	to	determine
where	the	pointer	currently	is	on	the	screen.

Setting	Mouse	Coordinates:
For	some	reason	there	may	be	a	need	to	position	the	mouse	pointer	at	a	different	location	than	where	the	pointer	currently
is.

Getting	The	Mouse	Button	Statuses:
Quite	simply,	when	the	user	presses	a	button	on	the	mouse,	it	returns	a	value	that	says	that	a	button	is	pressed,	and	which
buttons	are	pressed,	too.	From	these	values	you	can	decide	what	part	of	your	code	gets	executed.

As	with	most	tutorials,	this	one	too	can	be	better	explained	with	the	use	of	an	example	program.	We	will	be	creating	a	very
simple	program	that	acts	upon	the	user's	interaction	with	the	mouse	and	certain	areas	of	the	screen.	It	should	provide	the
bases	of	code	needed	to	efficiently	operate	and	control	the	mouse	in	your	own	programming	projects.

IMPORTANT:	It	is	mandatory	that	you	set	yourself	in	a	graphic	mode	in	order	to	use	the	mouse.	the	mouse	commands	will
always	return	-1	for	a	value	if	the	graphic	mode	is	not	set.

THE	SAMPLE	PROGRAM	DESCRIPTION

For	the	sake	of	a	demonstration	program,	things	will	be	quite	simple	and	as	straightforward	as	it	possibly	can.	The	program
will	show	3	items	at	the	top	of	the	screen	and	depending	on	which	one	you	click	a	different	message	will	be	displayed	on
the	screen.	This	should	give	you	enough	information	to	know	how	to	work	with	the	mouse	in	FreeBasic.

In	FreeBasic,	there's	basically	2	commands	that	you	need	to	worry	about	when	trying	to	handle	the	mouse	in	your	projects.
Here	they	are	with	their	syntax	explained	as	per	the	documentation.

--

Syntax
GETMOUSE	x,	y[,	[wheel][,	[buttons]]]

Description
GETMOUSE	retrieves	the	mouse	position	and	button	status.	

Mouse	position	is	stored	in	X	and	Y	when	the	function	is	called.	If	the	mouse	is	not	in	the	program	window,	X	and	Y	will
be	-1.

'wheel'	is	the	mouse	wheel	counter.	Rotating	the	wheel	away	from	you	makes	the	count	to	increase,	rotating	towards	you
makes	it	to	decrease.	If	mouse	is	not	present	or	out	of	the	program	window,	wheel	will	hold	-1.

'buttons'	stores	the	button	status.	On	function	termination,	this	will	return	a	bitmask	holding	buttons	status.	Bit	0	is	set	if
left	mouse	button	is	down;	bit	1	is	set	if	right	mouse	button	is	down;	bit	2	is	set	if	middle	mouse	button	is	down.

GETMOUSE	is	for	use	in	graphics	modes,	set	using	the	SCREEEN	command	ONLY.

Syntax
SETMOUSE	x,	y,	visibility

Description
SETMOUSE	will	set	the	X,Y	coordinates	of	the	mouse	pointer,	as	well	as	setting	it's	visibility.	

Mouse	position	is	set	using	the	X	and	Y	parameters.	

The	mouse	will	be	visible	if	visibility	is	set	to	1,	and	invisible	if	visibility	is	set	to	0.

SETMOUSE	is	intended	for	graphics	modes	initiated	using	the	SCREEN	statement	only.

--	

THE	CODING	BEGINS

Here	are	a	set	of	constants	that	I	declare	at	the	beginning	of	the	module.	This	is	simply	to	gain	a	bit	of	clarity	of	code	in
the	rest	of	the	programming	example.

				Const	LEFTBUTTON	=	1	

				Const	MIDDLEBUTTON	=	4	

				Const	RIGHTBUTTON	=	2	

				Const	SHOWMOUSE	=	1

				Const	HIDEMOUSE	=	0	

As	a	first	step	in	this	example,	we	will	be	declaring	variables	that	we	will	be	using	throughout	the	example	program.	Of
course	you	don't	have	to	declare	your	variables,	but	me	I	like	to	do	so	because	when	you	do	so	you	know	exactly	why
you're	declaring	your	variables.	To	me	that's	good	practice.

				Dim	CurrentX	As	Integer	

				Dim	CurrentY	As	Integer

				Dim	MouseButtons	As	Integer

				Dim	CanExit	As	Integer

				Dim	As	String	A,B,C

The	idea	here	is	to	do	everything	within	a	loop	so	that	we	can	also	control	how	the	program	exits.	So	we'll	create	a	loop
that	will	exit	when	the	"CanExit"	variable	is	equal	to	0.	In	the	loop	we'll	Interrogate	the	mouse	and	print	some	basic
values.	(This	part	is	extracted	from	the	example	provided	in	the	GETMOUSE	syntax	explanation	in	the	gfxlib.txt	file).
Don't	forget	to	set	your	graphics	mode	as	it	is	a	must	to	get	valid	return	values	from	the	mouse	commands.	We'll	use
Screen	12	for	our	example.

Screen	12	

CanExit	=	1

	

Do	While	CanExit	<>	0	

				GetMouse	CurrentX,	CurrentY,	,	MouseButtons	

				If	CurrentX	<	0	Then

					Print	"Mouse	is	out	of	context."	

				Else

				If	MouseButtons	And	LEFTBUTTON	Then	A="L"

				If	MouseButtons	And	MIDDLEBUTTON	Then	B="M"

				If	MouseButtons	And	RIGHTBUTTON	Then	C="R"

					Print	Using	"Mouse	position:	###:###	Buttons:	&&&"

					A="":B="":C=""					

				End	If	

Loop

This	sample	will	basically	continuously	display	information	about	Where	the	mouse	is,	if	it's	on	the	program	window	and
which	mouse	button	is	pressed	if	any.	The	GETMOUSE	statement	basically	puts	the	current	X	and	Y	coordinates	in	our
CurrentX	and	CurrentY	variables	and	the	status	of	the	mouse	buttons	in	our	MouseButtons	variable.	The	Three	If
Statements	will	print	L	if	the	left	button	was	pressed,	M	if	the	middle	button	(or	the	wheel)	was	pressed	and	R	if	the	Right
button	was	pressed.

For	the	next	step,	since	we	want	to	control	a	bit	what's	happening	with	the	mouse,	will	display	a	few	extra	things	at	the
beginning	of	the	program	and	control	what	happens	with	them	afterwards,	in	the	loop.	This	is	regular	text	being
displayed,	this	could	be	replaced	by	a	series	of	line	commands	or	something	to	draw	a	button	for	the	different	options.
But	that	is	outside	the	scope	of	this	tutorial.	So	far,	by	getting	rid	of	the	unwanted	print	statements	from	the	code	above,
the	loop	should	now	look	like	this:

				Screen	12	

				SetMouse	1,	1,	1

				CanExit	=	1

				Locate	1,1

				Print	"	|	FIRST	|	SECOND	|	THIRD	|	EXIT	|	"

				Do	While	CanExit	<>	0

					Locate	1,1

					GetMouse	CurrentX,	CurrentY,	,	MouseButtons

				Loop	

Basically	we	print	the	line	that	has	"	|	FIRST	|	SECOND	|	THIRD	|	EXIT	|	"	at	the	top	of	the	screen.	And	we	go	into	the
loop	that	interrogates	the	mouse.	Of	course,	right	now	nothing	will	happen	if	you	press	a	button	because	there	is	no	code
for	it.	In	our	example,	we'll	add	code	that	simple	prints	which	option	was	selected.	If	the	user	selects	the	EXIT	option,
we'll	print	the	Option	and	we'll	exit	the	loop.	We'll	also	add	a	print	statement	outside	the	loop	with	a	sleep	to	tell	the	use
that	we	are	truely	outside	the	loop	and	therefore	the	program	is	ended.	With	all	this,	the	code	should	now	look	like	this.	I
am	putting	the	whole	source	file	here	so	you	can	cut	and	paste	it	easily.

Const	LEFTBUTTON			=	1

Const	MIDDLEBUTTON	=	4			'	UNUSED	IN	THIS	DEMO

Const	RIGHTBUTTON		=	2			'	UNUSED	IN	THIS	DEMO

Const	SHOWMOUSE				=	1

Const	HIDEMOUSE				=	0

Dim	CurrentX					As	Integer

Dim	CurrentY					As	Integer

Dim	MouseButtons	As	Integer

Dim	CanExit						As	Integer

Screen	12

SetMouse	1,	1,	SHOWMOUSE

CanExit	=	1

Locate	1,1

Print	"	|	FIRST	|	SECOND	|	THIRD	|	EXIT	|	"

Do

			GetMouse	CurrentX,	CurrentY,	,	MouseButtons

			If	MouseButtons	And	LEFTBUTTON	Then

						If	CurrentY	<=	12	Then

									If	CurrentX	>=	0	And	CurrentX	<=75	Then

												Locate	12,	1

												Print	"First	Option	Selected	";

									ElseIf	CurrentX	>=	76	And	CurrentX	<=	147

												Locate	12,	1

												Print	"Second	Option	Selected";

									ElseIf	CurrentX	>=	148	And	CurrentX	<=212

												Locate	12,	1

												Print	"Third	Option	Selected	";

									ElseIf	CurrentX	>=	213	And	CurrentX	<=268

												Locate	12,	1

												Print	"Last	Option	Selected		";

												Exit	Do

									End	If

						End	If

			End	If

Loop	While	Inkey$	=	""

SetMouse	1,	1,	HIDEMOUSE

Print

Print	"AND	NOW	WE'RE	OUT	OF	THE	LOOP"

Sleep

You	can	see	the	many	IF	statements	in	this	last	piece	of	code.	The	numbers	that	are	there	have	been	measured	as	per
SCREEN	12	returned	coordinates.	They	should	work	in	all	graphics	mode	however	because	a	pixel	is	a	pixel	in	a
Console	Graphics	Window.	Each	if	represents	where	the	different	options	are	written	on	the	screen.	If	you	would	have
used	a	graphics	button	routine	you	could	simply	use	the	same	width	and	height	as	you	did	to	draw	the	button	in	these	if
statements	to	know	which	button	was	clicked.

IN	CONCLUSION

As	you	can	see,	using	the	mouse	has	been	made	very	simple	in	FreeBasic.	You	can	use	simple	statement	like	the	print
command	to	draw	your	screens	or	you	can	use	graphics	command	like	LINE	to	draw	your	screens	graphically.	No	matter
which	way	you	choose	to	draw	your	screens	with,	the	SETMOUSE	and	GETMOUSE	statement	will	work	the	same	way
and	return	the	very	same	values.	All	you	have	to	do	is	get	that	information	and	make	your	programs	do	what	you	want
them	to	do	if	they	press	a	button,	select	an	option,	or	even	in	the	case	of	a	game,	you	could	easily	make	the	main
character	move	towards	the	location	where	you	clicked	on	the	screen	as	well.	The	choice	is	up	to	you.

As	always,	if	you	have	any	questions	regarding	this	tutorial	or	any	other	I've	written,	feel	free	to	email	me	and	we'll	see
what	we	can	do	about	solving	your	particular	problem.

MystikShadows
Stéphane	Richard
srichard@adaworld.com

Basic	Input 	

Get	Information	into	your	Program.

Input	is	the	life	of	any	program.	If	you	can't	get	something	into	your	program,	how	are	you	going	to	get
anything	out	of	it?	What	you	will	find	here	is	the	basics	of	how	to	get	information	into	your	FreeBASIC
program.

Here's	a	very	basic	program	that	will	ask	for	your	name:

'Create	a	place	to	put	the	user's	name

Dim	As	String	strMyName

'	Ask	for	the	user's	name	and	store	it	in	the	string	'strMyName'

Input	"What	is	your	name?	",	strMyName

'	Wait	half	a	second

Sleep	500

'	Show	them	their	name

Print

Print	"I	now	know	your	name	is	";	strMyName

Print

'	Wait	until	someone	presses	a	button	before	you	exit

Print	"Press	any	button	to	exit"

Sleep

INPUT	is	the	easiest	way	to	get	information	from	someone.	They	just	type	in	some	text	and	press	Enter
when	they	are	done.	

What	if	you	you	only	want	one	keystroke?	The	easiest	way	is	to	use	the	
you	the	ASCII	value	of	a	key	that	was	pressed.

'	Ask	the	user	for	input

Print	"Press	your	favorite	key:"

'	Set	a	place	to	keep	the	ASCII	value	of	the	key

Dim	As	Integer	strKeyPress

'	Keep	going	until	a	key	is	pressed

Do

				strKeyPress	=	GetKey				

Loop	Until	strKeyPress	<>	0				

'	Show	the	key	the	user	pressed

Print

Print	"Your	favorite	key	is:	";	Chr(strKeyPress)																								

																								

'	Wait	until	someone	presses	a	button	before	you	exit

Print

Print	"Press	any	button	to	exit"

Sleep

For	more	information	check	out	the	User	Input	Section.

TekRat 	

TekRat

Contact	me	at:	tekrat@2d.com

Dynamic	Arrays 	

Hello,	this	page	explains	the	proper	use	of	dynamic	arrays	in	FreeBASIC.	While	it	isn't	a	very	long	tutorial,	many	people	have	had	some	troubles	with	this	and	I	felt	it	was	worth
putting	into	the	"Getting	Started"	tutorial	page.

Arrays	are	neat;	they	can	be	used	and	resized	throughout	a	program,	with	little	difficulties.	Firstly,	we	should	discuss	both	ways	a	dynamic	array	can	be	created.	In	the	same	code,	I
will	explain	how	to	redimension	a	Dynamic	Shared	Array	within	a	sub	or	function.	Read	the	comments	within	the	code	to	understand	it	better.

Declare	Sub	mySub	()

'	as	of	0.17,	OPTION	DYNAMIC	and	'$DYNAMIC	are	unecessary.	you	must	define	an	array	to	be	dynamic	each	time

'	as	you	can	see,	both	following	ways	are	successful	at	creating	a	dynamic	array

Dim	Shared	myArray1()	As	UByte

ReDim	Shared	myArray2(0)	As	UByte

mySub

'	because	we	shared	the	arrays,	they	are	accessable	from	anywhere	within	the	module

Print	myArray1(5)	'	will	print	2

Print	myArray2(6)	'	will	print	3

Sub	mySub	()

				'	do	NOT	use	"redim	shared"	within	a	sub	or	function!	even	if	it	is	shared,	you	must	omit	the	word	"shared"	for	it	to	work

				ReDim	myArray1(0	To	9)	As	UByte

				ReDim	myArray2(0	To	9)	As	UByte

				myArray1(5)	=	2

				myArray2(6)	=	3

End	Sub

Now,	you	may	be	wondering	how	you	can	redimension	an	array	while	using	the	PRESERVE	keyword.	Normally,	you	simply	add	PRESERVE	as	the	syntax	for	REDIM	will	state.	Yet
in	fact,	this	only	works	if	the	first	array	dimension	is	the	only	one	changing!	For	example,	the	following	program	would	not	work	properly:

'	declare	the	dynamic	array	the	cleaner	way

ReDim	Shared	myArray(0	To	9,	0	To	9)	As	UByte

Dim	As	UByte	x,	y,	i

'	fill	the	array	with	values

For	y	=	0	To	9

				For	x	=	0	To	9

								i	+=	1

								myArray(x,	y)	=	i

				Next	x

Next	y

'	proves	the	values	are	good	originally:

For	y	=	0	To	9

				For	x	=	0	To	9

								Print	Using	"##,";	myArray(x,	y);

				Next	x

				Print

Next	y

Print

Print	"Press	a	key..."

Sleep

Cls

'	redimension	the	arrays

ReDim	Preserve	myArray(0	To	18,	0	To	12)	As	UByte

'	the	values	have	not	been	preserved	properly!

For	y	=	0	To	9

				For	x	=	0	To	9

								Print	Using	"##,";	myArray(x,	y);

				Next	x

				Print

Next	y

Sleep

End

Try	it	out!	You	can	see	that	it	does	not	work	properly.	This	is	because	only	the	first	dimension	in	an	array	may	change	sizes,	while	the	rest	remain	the	same	size,	in	order	for
PRESERVE	to	work	properly.

There	is	a	workaround,	which	I	will	post	later,	after	I	edit	it	in	order	to	make	sense	to	any	program,	not	just	mine,	and	make	some	revisions	so	it	does	not	go	out	of	bounds.	For	the
moment,	get	creative	;)

Beginners	Guide	to	Types	as	Objects 	

Introduction

This	tutorial	is	aimed	at	people	who	want	to	know	more	about	the	new	features	added	to	
being	referred	to	as	'types	as	objects',	and	'that	OOP	stuff'.	It	aims	to	walk	you	through	these	new	features,	so
is	aimed	at	people	who	don't	really	understand	it	yet,	but	want	to	learn.	A	
data	type,	like	a	struct	in	C,	or	a	record	in	Pascal.	Here's	just	a	short	sample	of	typical	

Type	person_info

		first_name	As	String

		last_name	As	String

		house_number	As	Integer

		street_name	As	String

		town	As	String

End	Type

In	this	usage	it's	used	as	a	kind	of	container	for	related	data;	in	this	example	it	could	be	as	an	entry	in	an
address	book.	With	the	new	features,	however,	it	can	be	used	more	like	the	class	in	C++,	in	that	it	can	do
much	more	than	contain	just	simple	fields	of	data.	It	becomes	a	way	to	express	an	idea	of	an	object,	and	this
makes	object	oriented	programming	much	simpler.	We	will	now	look	at	these	new	features.

Property

We'll	start	by	looking	at	property.	When	you	add	a	property	to	a	Type,	you	access	it	as	if	it	were	an	ordinary
member,	but	what	happens,	is	instead	of	just	getting	or	setting	a	variable	as	normal,	it	calls	a	function	instead.
Take	a	look	at	this	example:

Type	bar

		Declare	Property	x()	As	Integer

		Declare	Property	x(ByVal	n	As	Integer)

		p_x	As	Integer

End	Type

Property	bar.x()	As	Integer

		Print	"bar.x()"

		Property	=	p_x

End	Property

Property	bar.x(ByVal	n	As	Integer)

		Print	"bar.x(ByVal	n	As	Integer)"

		p_x	=	n

End	Property

'---

Dim	foo	As	bar

foo.x	=	5

Print	foo.x

We	include	in	our	Type	some	declarations	for	a	Property;	they	are	very	similar	to	ordinary	function
declarations.	The	first	one	declares	a	getter,	the	second	a	setter.	The	p_x
member.

Next	we	write	the	code	for	the	properties;	again,	the	syntax	is	very	similar	to	that	of	normal	functions.	
way	we	return	a	value:	instead	of	Function	=	value,	we	do	Property	=	value
well.	Also	note	that	you	can	refer	to	the	member	directly	as	p_x;	you	can	also	use	the	keyword	
example	this.p_x	=	n;	using	this	isn't	usually	needed,	but	it	can	help	in	some	ambiguous	circumstances.

Then	follows	some	testing	code;	this	shows	how	we	can	use	the	property	as	if	it	were	any	ordinary	member.
When	you	run	the	program	it	will	also	print	to	screen	to	show	that	the	property	get/set	code	has	been	called.

Now	this	code	is	fairly	trivial,	but	as	you	get	used	to	the	idea	you'll	see	it	can	be	put	to	some	good	uses.
Imagine	as	an	example	you	are	writing	a	GUI,	and	the	TYPE	represents	a	button	on	the	screen,	you	could	do
button.text	=	"Hello	World!",	and	make	the	property	code	update	the	screen	to	show	the	changes.	
maybe	you	are	using	the	Type	to	maintain	some	kind	of	list;	you	could	do	
code	in	your	property	to	make	the	list	larger.

Constructor/Destructor

Constructors	are	functions	that	are	called	when	the	Type	gets	created	-	when	you	use	

Destructor	is	a	function	that	gets	called	when	the	Type	goes	out	of	scope;	this	could	be	when	the	program
ends,	for	a	Type	in	the	main	code,	or	when	a	function	ends,	for	a	local	Type
expanded	from	the	last.

Type	bar

		Declare	Constructor()

		Declare	Destructor()

		Declare	Property	x()	As	Integer

		Declare	Property	x(ByVal	n	As	Integer)

		p_x	As	Integer	Ptr

End	Type

Constructor	bar()

		Print	"Constructor	bar()"

		p_x	=	Allocate(SizeOf(Integer))

		*p_x	=	10

End	Constructor

Destructor	bar()

		Print	"Destructor	bar()"

		Deallocate(p_x)

End	Destructor

Property	bar.x()	As	Integer

		Print	"bar.x()"

		Property	=	*p_x

End	Property

Property	bar.x(ByVal	n	As	Integer)

		Print	"bar.x(ByVal	n	As	Integer)"

		*p_x	=	n

End	Property

'---

Dim	foo	As	bar

Print	foo.x

foo.x	=	5

Print	foo.x

Again	the	syntax	is	somewhat	similar	to	normal	functions.	Note	that	this	time	I	changed	
ptr.	The	constructor	then	Allocates	the	memory	for	this	when	foo	is	created,	and	gives	it	a	default	value;	then
it	De-Allocates	this	memory	once	it	is	destroyed.	So	you	can	use	Constructor
up	for	you,	then	clean	up	once	its	finished	with.	Again	a	trivial	example,	but	bring	back	the	example	of	some
kind	of	list,	and	having	it	set	the	list	up	for	you,	and	clean	it	up	when	it's	finished	with	can	be	quite	handy.

Methods

You	can	also	have	regular	Subs	and	Functions	inside	your	Type;	in	some	terminology,	these	are	referred	to	as
methods.	We'll	carry	on	our	example:

Type	bar

		Declare	Constructor()

		Declare	Destructor()

		Declare	Property	x()	As	Integer

		Declare	Property	x(ByVal	n	As	Integer)

		Declare	Sub	Mul5()

		Declare	Function	Addr()	As	Integer	Ptr

		p_x	As	Integer	Ptr

End	Type

Constructor	bar()

		Print	"Constructor	bar()"

		p_x	=	Allocate(SizeOf(Integer))

		*p_x	=	10

End	Constructor

Destructor	bar()

		Print	"Destructor	bar()"

		Deallocate(p_x)

End	Destructor

Property	bar.x()	As	Integer

		Print	"bar.x()"

		Property	=	*p_x

End	Property

Property	bar.x(ByVal	n	As	Integer)

		Print	"bar.x(ByVal	n	As	Integer)"

		*p_x	=	n

End	Property

Sub	bar.mul5()

		*p_x	*=	5

End	Sub

Function	bar.Addr()	As	Integer	Ptr

		Function	=	p_x

End	Function

'---

Dim	foo	As	bar

Print	foo.x

foo.x	=	5

Print	foo.x

foo.mul5()

Print	foo.x

Print	"address	p_x	points	to",	foo.Addr()

So	this	time	we	added	a	Sub,	that	multiplies	the	integer	pointed	to	by	p_x
memory	address	that	the	pointer	holds.

Private/Public

By	default	all	of	the	members	of	the	bar	type	are	public;	that	means	that	we	can	read/write	or	call	them.
However,	sometimes	you	might	want	to	make	them	private.	Take	for	example	our	member	
currently	do	Print	*foo.p_x,	and	it	will	allow	us	to	print	the	value	it	points	to.	
so	that	only	the	members	of	the	bar	type	(the	constructor,	destructor,	property,	and	methods)	can	access	it.

That	way	we	can	make	sure	we	only	deal	with	p_x	by	the	ways	we	choose.	
'DeAllocate(foo.p_x)'	in	our	main	code,	then	when	the	destructor	runs,	it	would	try	to	free	it	again,	known	as	a
'double	free'.	Change	the	Type	declaration	as	follows:

Type	bar

		Declare	Constructor()

		Declare	Destructor()

		Declare	Property	x()	As	Integer

		Declare	Property	x(ByVal	n	As	Integer)

		Declare	Sub	Mul5()

		Declare	Function	Addr()	As	Integer	Ptr

Private:

		p_x	As	Integer	Ptr

End	Type

Now	try	adding	Print	*foo.p_x	to	the	main	code	and	compile	it.	You'll	get	a	message	from	fbc	"
Illegal	member	access,	found	'p_x'	in	'Print	*foo.p_x'",	showing	that	indeed	the	compiler	is	now
enforcing	the	fact	we	made	p_x	private.	When	you	use	private:	or	public:
statement	follow	the	rule.	Here's	a	rather	pointless	example	just	to	show	the	syntax:

Type	bar

Private:

		a	As	Integer

		b	As	Integer

Public:

		c	As	Integer

		d	As	Integer

Private:

		e	As	Integer

End	Type

In	the	above	type,	the	members	a,	b,	and	e	are	private;	c	and	d	are	public.

Operator	overloading

Operator	overloading	is	a	way	of	telling	the	compiler	what	to	do	in	the	case	where	we	want	to	perform	some
kind	of	operation	involving	our	Type.	Take	this	example:

Type	bar

		n	As	Integer

End	Type

Dim	As	bar	x,	y,	z

z	=	x	+	y

Now	normally	the	compiler	will	throw	an	error	when	it	sees	this,	as	it	has	no	idea	how	to	add	together	two
Types,	but	we	can	define	what	we	want	to	happen.	Here's	how:

Type	bar

		n	As	Integer

End	Type

Operator	+(ByRef	lhs	As	bar,	ByRef	rhs	As	bar)	As	bar

		Operator	=	Type(lhs.n	+	rhs.n)

End	Operator

Dim	As	bar	x,	y,	z

x.n	=	5

y.n	=	10

z	=	x	+	y

Print	z.n

In	this	code,	I	use	lhs	and	rhs	to	refer	to	the	left	and	right	hand	side	operands	of	the	operator.	
expression	type(lhs.n	+	rhs.n);	this	builds	the	Type	that	will	be	returned.	

Type	bar

		x	As	Integer

		y	As	Integer

		z	As	Integer

End	Type

Then	you	would	build	it	like	type(xpart,	ypart,	zpart).

Most	or	all	operators	can	be	overloaded,	and	most	of	them	are	binary	ops,	meaning	they	have	two	operands
like	the	+	example	above.	Some	are	unary	ops	having	only	a	right	hand	side,	like	
would	be	done	like	'Operator	Not(ByRef	rhs	As	bar)	As	bar'.

There	are	some	special	cases	where	they	have	to	be	declared	inside	the	
operators	and	casts.

Assignment	operators	are	things	like	+=	-=	mod=	etc,	and	also	Let.	Let	is	used	when	you	do	an	assignment
like:

Dim	As	bar	foo

Dim	As	Integer	x

foo	=	x

And	casts	are	kind	of	the	reverse;	they	are	used	when	you	cast	to	another	datatype	like:

Dim	As	bar	foo

Dim	As	Integer	x

x	=	foo

Heres	a	short	example	using	Let	and	Cast:

Type	bar

		n	As	Integer

		Declare	Operator	Let(ByRef	rhs	As	Integer)

		Declare	Operator	Let(ByRef	rhs	As	String)

		Declare	Operator	Cast()	As	String

End	Type

Operator	bar.Let(ByRef	rhs	As	Integer)

		n	=	rhs

End	Operator

Operator	bar.Let(ByRef	rhs	As	String)

		n	=	Val(rhs)

End	Operator

Operator	bar.Cast()	As	String

		Operator	=	Str(n)

End	Operator

Operator	+(ByRef	lhs	As	bar,	ByRef	rhs	As	bar)	As	bar

		Operator	=	Type(lhs.n	+	rhs.n)

End	Operator

Dim	As	bar	x,	y,	z

x	=	5

y	=	"10"

z	=	x	+	y

Print	z

You	need	to	have	separate	lets	and	casts	for	each	data	type	you	want	to	support.	The	operators	that	need
declaring	within	the	type	are	known	as	non-static,	and	the	ones	that	don't	are	known	as	global.	
technical	reason	for	this;	the	non-static	ones	need	to	know	which	instance	(in	the	technical	jargon,	in	our
example	above,	we	would	say	that	x	is	an	instance	of	bar)	of	the	Type	they	are	referring	to,	and	this	is
accomplished	by	a	hidden	'this'	reference.	This	hidden	'this'	reference	is	how	the	other	members	like
operators	and	methods	know	which	instance	of	the	Type	the	call	refers	to.	

here's	a	list	of	the	ones	that	currently	can	be:

Assignment	ops:
let,	+=,	-=,	*=,	/=,	\=,	mod=,	shl=,	shr=,	and=,	or=,	xor=,	imp=,	eqv=,	^=
Unary	ops:
-,	not,	@,	*,	->
Binary	ops:
+,	-,	*,	/,	\,	mod,	shl,	shr,	and,	or,	xor,	imp,	eqv,	^,	=,	<>,	<,	>,	<=,	>=

Overloaded	Constructors/Methods

As	with	normal	functions,	our	Type's	constructor	and	methods	can	be	overloaded.	
provides	a	way	to	specify	details	on	how	the	instance	should	be	constructed.	

Type	bar

		Declare	Constructor()

		Declare	Constructor(ByVal	initial_val	As	Integer)

		x	As	Integer

End	Type

Constructor	bar()

		x	=	10

End	Constructor

Constructor	bar(ByVal	initial_val	As	Integer)

		x	=	initial_val

End	Constructor

Dim	foo	As	bar

Print	foo.x

Dim	baz	As	bar	=	bar(25)

Print	baz.x

The	first	Constructor,	that	had	no	arguments,	is	known	as	the	default	constructor.	
initial	value	of	10.	However,	we	have	also	specified	another	constructor	that	will	accept	an	initial	value.	

the	way	we	ask	for	this	to	be	called	Dim	baz	As	bar	=	bar(25).	You	can	also	leave	out	the	default	constructor,
and	then	you	will	always	have	to	specify	the	initial	value	using	the	constructor	that	takes	an	argument.	You
can't	have	an	overloaded	destructor,	because	there's	no	way	to	manually	choose	which	one	would	be	called.

Overloaded	methods	are	very	similar:

Type	bar

		Declare	Sub	foo()

		Declare	Sub	foo(ByVal	some_value	As	Integer)

		Declare	Sub	foo(ByRef	some_value	As	String,	ByVal	

		x	As	Integer

End	Type

They	work	just	they	same	as	normal	overloaded	functions.

Closing

I	hope	this	tutorial	has	been	useful	for	you,	although	there	are	still	a	few	things	left	to	learn;	if	you've	got	this
far,	it	shouldn't	be	too	hard	for	you	to	pick	them	up.	There	is	some	more	information	available	in	the	wiki	and
on	the	forums,	and	also	in	part	2	of	this	tutorial,	available	here	-	Beginners	Guide	to	Types	as	Objects	(Part
2)

More	reading

Property

Constructor

Destructor

Operator

This

Type

Types	as	Objects
Public:

Private:

Protected:

Beginners	Guide	to	Types	as	Objects	(Part	2) 	

Introduction.

Welcome	to	the	second	part	of	the	tutorial,	In	this	part	I	assume	that	you	have	read	through	Part	1,	tried
the	examples,	and	experimented	with	some	tests	of	your	own.	I'll	now	cover	some	topics	that	I	didn't
include	in	Part	1.

Indexed	property.

An	indexed	property	is	a	property	that	behaves	like	an	array,	except	that	like	in	the	case	of	a	regular
property,	a	function	gets	called	when	you	access	it.	I'll	start	with	a	very	short	example	just	to	show	the
syntax.

Type	foo

		Declare	Property	bar(ByVal	index	As	Integer,	ByVal

		Declare	Property	bar(ByVal	index	As	Integer)	As	Integer

		dummy	As	Integer

End	Type	

Property	foo.bar(ByVal	index	As	Integer,	ByVal	value

		Print	"Property	set,	index="	&	index	&	",	value="	

End	Property

Property	foo.bar(ByVal	index	As	Integer)	As	Integer

		Print	"Property	get,	index="	&	index

		Property	=	0

End	Property

Dim	baz	As	foo

baz.bar(0)	=	42

Print	baz.bar(0)

As	you	can	see,	the	declaration	for	our	indexed	property	is	very	similar	to	a	regular	one,	except	this	time
we	add	an	argument	for	the	index.	I	include	a	dummy	integer	member,	because	a	type	must	have	at

least	one	data	member.	As	you	can	see,	the	property	is	then	used	with	(0),	to	denote	we	want	to	get/set
the	zeroth	index,	just	the	same	as	we	would	for	an	ordinary	array.	Now	I'll	show	you	a	slightly	more
useful	example,	and	I	will	describe	it:

Type	foo

		Declare	Constructor(ByVal	num_elements	As	Integer)

		Declare	Destructor()

		Declare	Property	bar(ByVal	index	As	Integer,	ByVal

		Declare	Property	bar(ByVal	index	As	Integer)	As	Integer

Private:

		x	As	Integer	Ptr

		size	As	Integer

End	Type	

Constructor	foo(ByVal	num_elements	As	Integer)

		x	=	CAllocate(num_elements	*	SizeOf(Integer))

		size	=	num_elements

End	Constructor

Destructor	foo()

		Deallocate(x)

End	Destructor

Property	foo.bar(ByVal	index	As	Integer,	ByVal	value

		If	(index	>=	0)	And	(index	<	size)	Then

				x[index]	=	value

		Else

				Error	6

		End	If

End	Property

Property	foo.bar(ByVal	index	As	Integer)	As	Integer

		If	(index	>=	0)	And	(index	<	size)	Then

				Property	=	x[index]

		Else

				Error	6

		End	If

End	Property

Dim	baz	As	foo	=	foo(10)

baz.bar(1)	=	42

Print	baz.bar(1)

This	time,	I've	added	a	constructor	and	destructor,	which	will	allocate	and	deallocate	a	dynamic	memory
array,	x,	with	the	number	of	elements	specified	in	the	constructor.	Then	when	the	property	functions	are
invoked,	I	check	if	the	index	is	within	the	bounds	of	the	array,	if	it	is	then	I	perform	the	requested	get	or
set.	If	the	index	specified	is	out	of	bounds,	then	'Error	6'	occurs,	which	is	a	way	to	abort	the	program	with
FB's	'out	of	bounds	error',	you	could	replace	this	with	your	own	error	handling	routines.	
changing	the	code	'baz.bar(1)	=	42'	to	'baz.bar(10)	=	42',	and	you'll	see	it	in	action,	as	we	specified	only
10	elements	(index	0-9)

Copy	constructor.

A	copy	constructor	is	a	special	type	of	constructor,	that	is	used	to	make	a	copy	from	an	existing	object.
When	you	write	code	like	this:

Type	foo

...

End	Type

Dim	As	foo	a

Dim	As	foo	b	=	a

What	happens	is	FreeBASIC	automatically	generates	hidden	code	to	construct	b,	by	making	a	copy	of	a,
this	is	the	default	copy	constructor,	and	simply	copies	the	data	fields	(members)	across.	
our	own	copy	constructor,	here's	just	a	brief	snippet	to	show	how	we	declare	it.

Type	foo

		Declare	Constructor(ByRef	obj	As	foo)

		...

End	Type

This	will	come	in	very	useful	for	a	reason	I	will	now	explain.

Deep/Shallow	copy.

In	that	previous	example,	where	we	did	the	code	'Dim	As	foo	b	=	a',	that	was	what	is	known	a	shallow
copy,	it	just	simply	copied	the	data	fields	across,	however	sometimes	this	is	not	desirable,	imagine	that
one	of	the	members	is	a	pointer,	what	will	happen	is	that	the	address	that	pointer	points	to	will	be	copied
across,	so	both	objects	will	point	to	the	same	memory.	An	example	of	this	follows:

Type	foo

		x	As	Integer	Ptr

End	Type

Dim	As	foo	a

a.x	=	Allocate(SizeOf(Integer))

*a.x	=	42

Dim	As	foo	b	=	a

Print	*a.x,	*b.x

*a.x	=	420

Print	*a.x,	*b.x

Deallocate(a.x)

As	you	see,	because	they	both	point	to	the	same	memory,	changing	one	affects	the	other.	
in	the	previous	section	on	the	copy	constructor,	FreeBASIC	creates	the	code	to	do	shallow	copies	by
default.	This	is	also	true	if	we	do	an	assignment	like:

Dim	As	foo	a,	b

b	=	a

In	this	case	also,	FreeBASIC	creates	a	default	assignment	operator	(Let)	to	perform	a	shallow	copy.	
order	to	do	deep	copies,	we	need	to	define	a	copy	constructor,	and	an	assignment	operator,	that	is
overloaded	to	accept	our	type.	Here's	an	example	using	them.

Type	foo

		Declare	Constructor()

		Declare	Constructor(ByRef	obj	As	foo)

		Declare	Destructor()

		Declare	Operator	Let(ByRef	obj	As	foo)

		x	As	Integer	Ptr

End	Type

Constructor	foo()

		Print	"Default	ctor"

		x	=	CAllocate(SizeOf(Integer))

End	Constructor

Constructor	foo(ByRef	obj	As	foo)

		Print	"Copy	ctor"

		x	=	CAllocate(SizeOf(Integer))

		*x	=	*obj.x

End	Constructor

Destructor	foo()

		Print	"dtor"

		Deallocate(x)

End	Destructor

Operator	foo.Let(ByRef	obj	As	foo)

		Print	"Let"

		*x	=	*obj.x

End	Operator

Dim	As	foo	a

*a.x	=	42

Dim	As	foo	b	=	a	'Uses	the	copy	constructor

Print	*a.x,	*b.x

*a.x	=	420

Print	*a.x,	*b.x

As	you	can	see,	the	copy	constructor	gets	called	on	the	line	'Dim	As	foo	b	=	a'	and	this	time,	we	allocate
some	memory,	and	copy	the	data	in	the	new	copy	constructor,	so	that	we	can	adjust	x	in	one	object
without	it	affecting	the	other.	If	we	change	the	main	code	as	follows:

Dim	As	foo	a,	b

*a.x	=	42

b	=	a				'The	assignment	operator	(Let)	gets	used	this	time.

Print	*a.x,	*b.x

*a.x	=	420

Print	*a.x,	*b.x

Then	this	time	the	assignment	operator	is	used.	Note	that	in	the	assignment	operator	code,	we	don't
need	to	allocate	any	memory	because	it	has	already	been	allocated	in	the	default	constructor,	we	just
need	to	copy	the	data	across.	The	line	'*x	=	*obj.x'	performs	this	copy.	If	we	had	something	more
advanced,	like	a	dynamic	memory	array,	then	we	would	need	to	reallocate	the	memory	to	be	the	correct
size	to	fit	the	data	being	copied.	Here's	a	more	advanced	version	just	to	show	that.

Type	foo

		Declare	Constructor(ByVal	num_elements	As	Integer)

		Declare	Constructor(ByRef	obj	As	foo)

		Declare	Destructor()

		Declare	Operator	Let(ByRef	obj	As	foo)

		x	As	Integer	Ptr

		size	As	Integer

End	Type

Constructor	foo(ByVal	num_elements	As	Integer)

		Print	"Default	ctor"

		x	=	CAllocate(SizeOf(Integer)	*	num_elements)

		size	=	num_elements

End	Constructor

Constructor	foo(ByRef	obj	As	foo)

		Print	"Copy	ctor"

		x	=	CAllocate(SizeOf(Integer)	*	obj.size)

		size	=	obj.size

		For	i	As	Integer	=	0	To	size	-	1

				x[i]	=	obj.x[i]

		Next	i

End	Constructor

Destructor	foo()

		Print	"dtor"

		Deallocate(x)

End	Destructor

Operator	foo.Let(ByRef	obj	As	foo)

		Print	"Let"

		x	=	Reallocate(x,	SizeOf(Integer)	*	obj.size)

		size	=	obj.size

		For	i	As	Integer	=	0	To	size	-	1

				x[i]	=	obj.x[i]

		Next	i

End	Operator

Dim	As	foo	a	=	foo(5)

a.x[0]	=	42

a.x[1]	=	420

Dim	As	foo	b	=	a	'Uses	the	copy	constructor

Print	a.x[0],	a.x[1],	b.x[0],	b.x[1]

b.x[0]	=	10

b.x[1]	=	20

Print	a.x[0],	a.x[1],	b.x[0],	b.x[1]

b	=	a	'	Now	using	the	assignment	operator

Print	a.x[0],	a.x[1],	b.x[0],	b.x[1]

This	may	seem	quite	complex	at	first,	it's	worth	just	reading	through	it	again,	and	experimenting	with	the
examples,	it's	not	too	tricky	once	you're	used	to	it.

Passing	objects	to	functions	ByVal

The	idea	of	deep	and	shallow	copies	also	applies	to	passing	an	object	to	a	function	by	value.	
pass	a	reference	to	an	object	(ByRef),	you	can	modify	the	object,	and	these	modifications	will	persist,
however	you	can	also	pass	by	value,	which	will	mean	you	can	modify	it	without	the	changes	persisting
outside	of	the	function.	When	an	object	is	passed	by	value	to	a	function,	a	new	copy	is	created,	and	if
that	object	has	a	copy	constructor,	then	this	is	invoked,	if	it	doesn't,	then	the	hidden	shallow	copy	is
performed.	Once	the	function	ends,	the	objects	destructor	is	called.

New/Delete

New	and	delete	are	special	operators	for	dynamically	allocating	memory,	then	destroying	it.	
used	with	dynamic	memory,	it	is	used	with	pointers.	In	all	the	examples	up	until	now,	we	just	used	Dim	to
create	our	objects,	this	will	create	them	on	the	stack,	but	by	using	new	we	can	create	them	dynamically,
which	can	allow	more	flexibility,	just	like	using	Allocate/DeAllocate	with	normal	memory.	
important	thing	about	new,	is	that	you	don't	need	to	check	if	the	pointer	is	NULL	after	new,	like	you	would
if	you	did	allocate.	If	new	fails,	it	causes	an	exception,	which	will	end	the	program.	
FreeBASIC,	it	is	likely	that	some	kind	of	try..catch	mechanism	will	be	created	to	allow	better	exception

handling,	but	as	of	the	time	of	writing,	this	is	not	yet	implemented.	

There	are	two	different	varieties	of	the	new/delete.	The	first	type,	creates	just	a	single	element	or	object,
for	example:

Dim	As	Integer	Ptr	foo	=	New	Integer

*foo	=	1

Print	*foo

Delete	foo

This	will	create	a	new	Integer,	then	destroy	it	when	we	call	delete.	Remember	I	used	ptr,	because	it	is
dynamic	memory.	For	simple	data	types	you	can	also	specify	a	default	value,	by	placing	it	in	parenthesis
after	the	data	type,	ie:

Dim	As	Integer	Ptr	foo	=	New	Integer(42)

Print	*foo

Delete	foo

This	also	works	for	UDT's	with	just	simple	data	fields:

Type	foo

		x	As	Integer

		y	As	Integer

End	Type

Dim	As	foo	Ptr	bar	=	New	foo(1,	2)

		

Print	bar->x,	bar->y

Delete	bar

This	initialization	won't	work	for	more	complex	types	involving	constructors/destructors	etc.,	however	a
useful	feature	is	that	when	using	new/delete	with	objects,	it	also	calls	the	constructor	and	destructor,	try
the	following	example:

Type	foo

		Declare	Constructor()

		Declare	Destructor()

		x	As	Integer

		y	As	Integer

End	Type

Constructor	foo()

		Print	"ctor"

End	Constructor

Destructor	foo()

		Print	"dtor"

End	Destructor

Dim	As	foo	Ptr	bar	=	New	foo

Delete	bar

You	will	see	that	the	constructor	and	destructor	for	the	object	are	called.

The	second	type	of	new/delete	is	for	creating	arrays,	this	time	the	number	of	elements	is	placed	after	the
dataype	in	square	brackets	'[]'.	When	using	the	array	version,	you	must	also	use	'delete[]'	instead	of
'delete',	so	that	FreeBASIC	knows	you	are	deleting	an	array,	here	is	a	simple	example	using	the	Integer
type:

Dim	As	Integer	Ptr	foo	=	New	Integer[20]

foo[1]	=	1

Print	foo[1]

Delete[]	foo

This	will	create	a	dynamic	array,	with	20	Integer	elements.	It	should	be	noted	this	is	different	from
Allocate,	which	takes	the	number	of	bytes	as	its	argument;	using	new,	you	should	specify	the	number	of
elements.	The	array	method	works	just	the	same	for	objects:

Type	foo

		Declare	Constructor()

		Declare	Destructor()

		x	As	Integer

		y	As	Integer

End	Type

Constructor	foo()

		Print	"ctor"

End	Constructor

Destructor	foo()

		Print	"dtor"

End	Destructor

Dim	As	foo	Ptr	bar	=	New	foo[3]

Delete[]	bar

When	you	run	this	code,	you	will	see	that	three	constructor/destructor	pairs	are	called,	because	we
created	an	array	of	three	instances	of	foo.

You	must	remember	to	call	Delete,	or	Delete[]	for	any	memory	allocated	with	New,	or	you	will	cause	a
memory	leak,	just	like	the	way	you	must	rememeber	to	call	DeAllocate	for	any	memory	you	allocate	with
the	Allocate	function.

Name	Mangling

Name	mangling,	also	known	as	name	decoration,	is	something	that	happens	behind	the	scenes,	at	a
lower	level,	and	as	such	is	not	essential	to	know	about.	The	reason	for	name	mangling	is	to	resolve
problems	that	are	involved	with	more	than	one	function	sharing	the	same	name,	which	happens	when
functions	are	overloaded,	or	are	part	of	a	type.	Take	for	example	the	overloaded	subs	shown	below:

Sub	foo	Overload	()

End	Sub

Sub	foo(ByVal	i	As	Integer)

End	Sub

If	we	didn't	have	name	mangling,	then	both	might	be	known	at	a	lower	level	as	FOO,	which	would	cause
a	name	clash,	so	they	have	to	be	decorated	in	order	to	know	which	one	should	be	called	when	they	are
used.	For	the	first	sub,	the	compiler	actually	creates	a	sub	called	_Z3FOOv,	and	for	the	second	it	creates
a	sub	called	_Z3FOOi.	The	compiler	then	remembers	these,	and	chooses	the	appropriate	sub	to	call,
depending	on	how	you	call	it,	for	example	'foo()'	will	actually	call	_Z3FOOv,	and	'foo(1)'	will	actually	call
_Z3FOOi.	We	can	spot	something	from	this,	that	the	'v'	stands	for	void	(no	argument),	and	'i'	stands	for
integer.	The	full	details	of	name	mangling	are	quite	complex,	and	vary	between	compilers,	the	Microsoft
compilers	use	a	different	name	mangling	scheme	to	GNU	compilers,	and	other	compilers	may	use
different	schemes	as	well.	The	main	thing	we	need	to	know,	is	that	FreeBASIC	follows	the	GCC	3.x	ABI
(Application	binary	interface),	meaning	that	any	overloaded	functions,	or	complex	types	will	only	be
compatible	with	other	compilers	using	the	same	scheme.	This	is	an	unfortunate	limitation,	but	it	is	not
really	a	FreeBASIC	problem,	it	is	common	of	all	the	compilers	that	use	advanced	features,	and	even	if
all	the	compiler	authors	agreed	on	a	common	name	mangling	scheme,	there	are	still	other	issues	that
would	cause	incompatability.

Implicit	this

This	again	is	not	necessary	to	know	about	mostly,	its	something	that	happens	behind	the	scenes	at	a
lower	level.	When	you	call	a	member	function	of	an	object,	what	actually	happens	is	a	hidden	first
parameter	is	passed,	so	that	the	function	knows	which	instance	of	the	object	is	being	refered	to.	

also	true	for	the	property/constructor/destructor/operator	members.	If	we	look	at	a	very	simple	example:

Type	foo

		Declare	Sub	bar(ByVal	n	As	Integer)

		x	As	Integer

End	Type

Sub	foo.bar(ByVal	n	As	Integer)

		x	=	n

End	Sub

Dim	baz	As	foo

baz.bar(5)

What	actually	happens	behind	the	scenes	is	something	essentially	equivalent	to	this:

Type	foo

		x	As	Integer

End	Type

Sub	foo_bar(ByRef	_this	As	foo,	ByVal	n	As	Integer)

		_this.x	=	n

End	Sub

Dim	baz	As	foo

foo_bar(baz,	5)

This	method	using	an	explicit	'this'	is	often	used	in	languages	that	do	not	have	facilities	to	make	it	easier.
OOP	is	really	just	a	set	of	concepts,	that	can	be	mostly	coded	in	almost	any	language,	some	things	are
more	difficult	to	implement,	such	as	constructors,	you	would	have	to	explicitly	call	a	'create',	or	'init'
function.	For	some	things	such	as	private/public	distinction,	it	is	even	more	difficult	or	impossible
because	the	compiler	does	not	know	to	enforce	them.	The	reason	for	adding	OOP	features	to	a
language	is	to	hide	a	lot	of	this,	and	add	syntactic	sugar	to	make	it	simpler	to	do,	or	more	transparent	in
use,	such	as	the	way	we	can	use	properties	as	if	they	were	ordinary	data	members,	rather	than

functions,	which	is	what	they	really	are.

Hints	for	debugging/profiling

When	using	GDB	or	other	debuggers,	and	the	gprof	profiling	tool,	the	information	shown	is	in	the	C++
syntax,	and	all	your	variable	names	and	other	symbols	are	shown	in	upper	case,	here	is	just	a	very	short
overview	to	help	you	understand	how	these	are	shown:

Here's	an	example	type:

Type	bar

		Declare	Constructor()

		Declare	Constructor(ByRef	obj	As	bar)

		Declare	Constructor(ByVal	n	As	Integer)

		Declare	Destructor()

		Declare	Operator	Cast()	As	Any	Ptr

		Declare	Operator	Let(ByVal	n	As	Integer)

		Declare	Property	foo(ByVal	n	As	Integer)

		Declare	Property	foo()	As	Integer

		member	As	Any	Ptr

End	Type

When	using	GDB,	these	will	be	shown	as	follows	(note	in	C++	they	use	::	where	we	would	use	.	(dot),	'::'
is	known	as	the	scope	resolution	operator):

BAR::BAR()	-	The	default	constructor
BAR::BAR(BAR&)	-	The	copy	constructor	(&	in	C++	means	a	reference,	like	byref)
BAR::BAR(int)	-	The	constructor	taking	an	integer	argument	(note	there	is	no	special	symbol	to	denote
ByVal,	as	this	is	the	default	passing	method	in	C/C++)
BAR::~BAR()	-	The	destructor
BAR::operator	void*()	-	A	cast	to	Any	ptr	(void	is	similar	to	Any,	*	means	pointer)
BAR::operator=(int)	-	The	assignment	operator	(Let),	dentoted	by	'=',	in	C/C++	'='	is	assignment,	'=='	is
equality	testing.
BAR::FOO(int)	-	Property	foo	setter,	taking	an	integer	argument
BAR::FOO()	-	Property	foo	getter

Member	sub/functions	are	shown	in	the	same	way	as	properties,	indexed	properties	are	shown	the
same	also,	just	with	the	extra	argument	for	the	index.

Here	is	how	the	FB	data	types	will	be	shown:

Any	ptr	-	void	*
ZString	ptr	-	char	*
String	-	FBSTRING
byte	-	signed	char
ubyte	-	bool
short	-	short
ushort	-	unsigned	short
integer	-	int
uinteger	-	unsigned	int
longint	-	long	long
ulongint	-	unsigned	long	long

I	hope	that	helps	you	get	started	with	understanding	how	things	are	displayed	in	GDB/gprof,	a	little
experimentation	will	always	help.

More	reading

http://www.freebasic.net/wiki/wikka.php?wakka=KeyPgOpNew
http://www.freebasic.net/wiki/wikka.php?wakka=KeyPgOpDelete
http://en.wikipedia.org/wiki/Copy_constructor
http://en.wikipedia.org/wiki/Object_copy
http://en.wikipedia.org/wiki/Name_mangling

Introduction	to	Variable	Scope 	

Written	by	rdc	
Variable	Scope

Scope	refers	to	the	visibility	of	a	variable,	where	you	can	access	a	variable	within	a
program.	Before	you	can	understand	the	different	levels	of	scope,	you	need	to
understand	the	structure	of	a	program	in	FreeBasic.

Program	Structure	

A	complete	program	is	composed	of	one	or	more	.bas	files,	called	modules.	Each
module	can	contain	both	module	level	code,	and	code	contained	within	subroutines
and	functions.	Module	level	code	is	code	that	is	not	contained	within	a	subroutine	or
function.	The	following	snippet	illustrates	the	various	parts	of	a	module.

Dim	aInt	As	Integer	'Variable	declared	at	module	level

Sub	DoSomething

				Dim	aInt	As	Integer	'Variable	declared	at	sub	level

				

				...	'This	code	is	local	to	sub

End	Sub

Function	DoSomethingElse()	As	Integer

				Dim	aInt	As	Integer	'Variable	declared	at	func	level

				

				...	'This	code	is	local	to	func

End	Function

'Module	level	code

aInt	=	5

DoSomething

aInt	=	DoSomethingElse()

Local	Variables	

If	you	define	a	variable	at	the	module	level	(and	not	using	Shared),	the	variable	is	said
to	have	local	module	level	scope.	It	is	visible	to	the	module	level	code,	but	not	to	any
subroutine	or	function	within	the	module.	In	the	example	above	the	module	variable
aInt	is	only	visible	to	the	module	level	code.	

Variables	defined	within	a	subroutine	or	function	are	local	to	the	subroutine	or
function	and	are	not	visible	to	module	level	code	or	any	other	subroutine	or	function.

Variables	Defined	Within	Control	Structures	

Variables	that	are	defined	within	If,	For-Next,	While-Wend	and	Do-Loop	constructs
are	local	to	the	control	structure	block	code.	That	is,	they	are	not	visible	outside	the
bounds	of	the	begin	and	end	of	the	control	block,	just	like	a	variable	declared	within	a
subroutine	or	function.	

Shared	Variables	

In	the	example,	if	you	wanted	aInt	to	be	visible	within	the	subroutine	or	function,	you
would	need	to	declare	the	variable	as	Shared	and	then	not	declare	a	variable	with	the
same	name	within	any	subroutine,	function	or	control	block.	Shared	variables	are
visible	to	module	level	code,	subroutine	or	function	level	code	and	within	control
structure	blocks.

Scope	Conflicts	

In	the	code	snippet	above,	if	aInt	were	declared	as	Shared,	and	each	subroutine	and
function	declared	aInt,	there	would	be	a	scope	conflict,	since	there	is	one	variable
name	used	for	different	levels	of	scope.

The	compiler	resolves	this	by	taking	the	current	scope	into	account	and	mapping	the
variable	within	that	scope.	Since	subroutines	and	functions	have	a	lower	level	of
scope	than	the	module,	aInt	would	refer	to	the	variable	declared	within	the	sub	or
func,	and	not	the	one	declared	at	the	module	level,	even	though	it	is	declared	as	a
shared	variable.

Multiple	Modules	

Scope	is	limited	to	a	single	module,	that	is	a	single	.bas	file.	However,	it	is	sometimes
necessary	to	extend	the	scope	from	one	module	to	another.	You	would	use	the
Common	statement	when	you	declare	a	variable	that	needs	to	be	shared	among
modules.

Each	module	must	have	the	same	Common	declaration	in	order	for	the	compiler	to
match	up	the	common	variables.	If	you	declare	a	variable	in	module1	as	
as	Integer	then	module2	must	also	have	Common	aInt	as	Integer.	Without	the
common	declaration	aInt	would	not	be	visible	within	module2.

You	can	add	the	Shared	attribute	to	Common,	that	is	Common	Shared	to	not	only	extend
scope	to	multiple	modules,	but	to	extend	scope	within	a	module.	Common	Shared
operates	the	same	as	Shared	within	a	single	module.	As	with	Common,	you	need	to
have	matching	declarations	in	each	module	that	needs	access	to	the	variable.

Scope...End	Scope

You	can	create	a	temporary	scope	block	by	using	the	Scope,	End	Scope	keywords.	The
scope	block	is	very	useful	when	creating	multi-line	macros	where	you	may	need	to
create	some	temporary	working	variables	but	do	not	want	to	introduce	name	conflicts
in	the	program.	The	following	snippet	illustrates	how	to	create	a	scope	block.

Scope

				Dim	tmp	As	Integer

				...	'Some	code

End	Scope

The	scope	of	any	variable	created	within	a	scope	block	is	limited	to	the	block	itself.
However,	the	scope	block	inherits	the	visibility	of	the	surrounding	scope	so	that
variables	created	at	the	same	scope	as	the	scope	block	are	visible	within	the	block.

For	example,	if	you	have	aInt	which	is	at	module	level	scope,	and	the	scope	block	is
at	module	level	scope,	then	aInt	would	be	visible	inside	the	scope	block.	Unless	of
course	there	is	a	scope	conflict,	in	which	case	the	variable	inside	the	scope	block
would	override	the	variable	with	the	same	name	outside	the	scope	block.

Variable	Lifetime

Not	only	does	scope	set	the	visibility	of	a	variable,	it	also	determines	the	lifetime	of	a
variable.	A	variable	goes	through	several	stages	in	its	lifetime;	creation,	initialization,
access	and	destruction.	When	this	occurs	depends	on	the	scope	of	a	variable,	that	is,
where	the	variable	has	been	defined	within	the	program.

Module	Level	Variables	

Module	level	variables	exist	for	the	life	of	a	program,	since	they	are	declared	within
the	main	body	of	the	program.	Module	level	code	is	the	main	executing	code	of	the
program,	and	terminates	when	the	program	ends.

Subroutine	and	Function	Level	Variables	

Variables	declared	within	a	subroutine	and	function	exist	as	long	as	the	program	is
within	the	body	of	the	subroutine	and	function.	On	entering	the	sub/func,	the	variable
is	created,	initialized	and	can	be	accessed	within	the	sub/func.	Once	the	subroutine
or	function	exits,	the	variable	is	destroyed.

Static	Variables	

One	exception	to	the	declared	sub/func	variable	is	the	Static	variable.	Static
variables	maintain	their	value	between	calls	to	the	subroutine	or	function	and	so	have
a	module	level	lifespan.	

Control	Block	Variables	

Variables	declared	within	a	control	block,	such	as	a	For-Next,	exist	as	long	as	the
control	block	is	executing.	Upon	leaving	the	control	block,	the	variables	are
destroyed.

Scope...End	Scope	Variables	

Variables	declared	within	a	scope	block	exist	as	long	as	the	the	scope	block	exists.
Once	the	program	leaves	the	scope	block,	any	variables	created	within	the	scope
block	are	destroyed.

rdc 	

Rick	Clark	aka	rdc
rickclark58@yahoo.com
http://rickclark58.bravehost.com/

Introduction	To	Arrays 	

Written	by	rdc	
Arrays	are	probably	the	single	most	useful	programming	construct	that	is	available	to	you	in	FreeBasic.	Many	problems	that	you	will	try	to	solve
with	a	programming	solution	involve	data	arranged	in	tabular	format,	and	arrays	are	perfect	for	managing	this	type	of	data.	Understanding	arrays
is	a	crucial	skill	in	becoming	a	competent	programmer.

Arrays	are	contiguous	memory	segments	of	a	single	or	composite	data	type.	You	can	think	of	an	array	as	a	table,	with	rows	and	columns	of	data.
An	array	can	have	one	or	more	rows,	and	each	row	can	have	one	or	more	columns.	The	number	of	rows	and	columns	define	the	dimensions	of
the	array.	FreeBasic	uses	the	row-major	scheme	for	arrays,	which	means	that	the	first	dimension	references	the	row	in	an	array	that	has	more
than	one	dimension.	FreeBasic	supports	up	to	eight	dimensions	in	an	array.

One-Dimensional	Arrays

An	array	with	a	single	row	is	called	a	one-dimensional	array.	If	an	array	is	a	single-dimensional	array,	then	the	row	is	not	defined	in	the
declaration,	only	the	number	of	columns	in	the	row.	Since	an	array	requires	a	minimum	of	one	row,	the	row	is	understood	to	exist	in	this	case.
The	following	code	snippets	create	a	single-dimension	integer	array	using	the	different	array	definition	schemes	available	in	FreeBasic.

Dim	myArray(10)	As	Integer

Dim	myArray(1	To	10)	As	Integer

The	first	method	will	define	an	array	with	a	single	row	and	11	columns,	with	column	indexes	(numbers)	ranging	from	0	to	10.	The	second	method
defines	the	lower	and	upper	bounds	using	the	To	keyword.	Here	the	indexes	will	range	from	1	to	10.

One-Dimensional	Array	Indexes

You	access	each	element	of	an	array	using	an	index	value.	In	the	case	of	a	single-dimension	array,	the	index	would	refer	to	a	column	number	in
the	default	row.	The	format	is	to	use	the	array	variable,	with	the	index	surrounded	by	parenthesis.

myArray(5)	=	7

This	would	set	column	5	in	the	array	to	7.

myInt	=	myArray(5)

This	will	set	the	value	of	myInt	to	the	current	value	of	column	5	in	myArray

Two-Dimensional	Arrays

A	two-dimensional	array	is	an	array	that	has	more	than	one	row,	along	with	the	defined	columns.	A	two-dimensional	array	is	like	a	table,	with	a
defined	number	of	rows,	where	each	row	has	a	defined	number	of	columns.	The	following	code	snippet	defines	an	array	using	the	default
method.

Dim	myArray(2,	10)	As	Integer

The	first	dimension	defines	the	number	of	rows	in	the	array,	while	the	second	dimension	defines	the	number	of	columns	in	each	row.	In	this
example,	the	array	has	3	rows,	numbered	0	to	2,	and	each	row	has	11	columns,	numbered	0	to	10.

You	can	also	define	the	lower	and	upper	bounds	of	the	array.

Dim	myArray(1	To	2,	1	To	10)	As	Integer

This	definition	would	set	the	number	of	rows	to	2,	numbered	1	to	2	and	the	number	of	columns	to	10,	numbered	1	to	10.

Two-Dimensional	Array	Indexes

To	access	the	array	elements	of	a	two-dimensional	array,	you	would	use	two	indexes.	The	first	index	selects	the	row,	and	the	second	index
selects	a	column	within	that	row.

myArray(1,	5)	=	7

This	code	would	set	column	5	in	row	1	to	7.

myInt	=	myArray(1,	5)

This	code	would	set	myInt	to	the	current	value	contained	within	column	5	of	row	1	of	the	array.

Multi-Dimensional	Arrays

For	arrays	of	three	or	more	dimensions,	you	would	use	the	same	format	as	listed	above,	taking	into	account	the	progression	of	the	array
dimensions.	For	a	three-dimensional	array,	the	first	dimension	would	be	the	row,	the	second	the	column,	the	third	would	be	the	z-order,	or	depth,
of	each	column.	

For	example,	to	define	a	cube	in	space,	you	would	use	the	y,x,z	format,	where	y	defines	the	vertical	axis,	x	defines	the	horizontal	axis	and	z
defines	the	depth	axis.	To	create	an	array	in	this	format	you	could	define	the	array	as:	

Dim	myCube(y,	x,	z)	As	Integer.	

MyCube(10,	10,	10)	would	create	a	cube	with	11	vertical	units,	0	to	10,	11	horizontal	units,	0	to	10	and	10	depth	units,	0	to	10.	To	access	the
center	of	the	cube,	you	would	use	iCenter	=	myCube(5,	5,	5).	

You	will	probably	never	need	to	use	arrays	of	more	than	three	dimensions,	unless	you	are	doing	some	advanced	mathematical	calculations.
However,	if	you	need	to	use	higher-dimensional	arrays,	the	same	principles	apply.

Dynamic	Arrays

The	arrays	described	above	are	static	arrays;	the	array	size	cannot	change	during	program	execution.	You	can	also	create	dynamic	arrays	that
can	change	size	during	execution.	Dynamic	arrays	are	useful	for	creating	data	structures	such	as	stacks	or	queues.

Static	arrays,	the	arrays	described	above,	are	kept	on	the	heap,	but	dynamic	arrays	are	allocated	from	the	computer's	pool	of	memory.	The
compiler	dynamically	allocates	memory	for	the	array	based	on	the	requested	dimensions	of	the	array.

You	specify	a	dynamic	array	by	using	the	ReDim	keyword.

ReDim	myArray(1	To	5,	1	To	5)	As	Integer

If	you	don't	know	the	needed	array	bounds	at	the	start	of	the	program	execution,	you	can	define	an	array	with	empty	indexes.

Dim	myArray()	As	Integer

In	this	case	the	compiler	sets	a	default	value	of	0	for	the	array	size.	You	can	then	use	the	
bounds.

ReDim	and	ReDim	Preserve

Dynamic	arrays	can	change	sizes	during	execution.	ReDim	will	clear	the	contents	of	the	array	to	the	default	data	type	values,	while	
will	keep	intact	the	existing	contents,	unless	the	array	size	is	smaller	than	the	previous	size.

Array	Functions

There	are	a	number	of	functions	that	you	can	use	with	arrays.

Arrays	of	Composite	Types

Type	definitions	allow	you	to	group	related	data	into	a	single	entity,	and	often	you	will	need	more	than	one	instance	of	a	type	to	fully	express	the
data.	Arrays	of	types	allow	you	create	multiple	instances	of	a	type	definition	that	can	be	easily	managed	using	the	arrays	functions.	An	example
of	this	usage	may	be	an	inventory	system	for	your	RPG,	a	series	of	document	descriptions	within	an	editor,	and	a	set	of	employee	records	from	a
random	access	database.

You	create	arrays	of	types	just	as	you	would	with	any	of	the	intrinsic	data	types.	The	following	code	snippet	

Type	myPoint

				row	As	Integer

				col	As	Integer

End	Type

Type	myLine

				p1	As	myPoint

				p2	As	myPoint

				char	As	String	*	1

End	Type

Dim	myLineSet	(1	To	3)	As	myLine

The	code	defines	a	set	of	3	lines,	with	endpoints	p1	and	p2,	where	each	endpoint	is	located	at	row	and	col.	You	access	the	array	elements	by
using	a	combination	of	array	index	and	dot	operator.

myLineSet(1).p1.row	=	1

myLineSet(1).p1.col	=	1

myLineSet(1).p2.row	=	10

myLineSet(1).p2.col	=	10

myLineSet(1).char	=	Chr(219)

Arrays	in	Types

Not	only	can	you	create	an	array	of	a	composite	type,	you	can	have	an	array	as	a	field	in	a	composite	type.	The	above	example	can	be	written
more	efficiently	by	replacing	p1	and	p2	with	an	array.

Type	myPoint

				row	As	Integer

				col	As	Integer

End	Type

Type	myLine

				pts(1	To	2)	As	myPoint

				char	As	String	*	1

End	Type

Dim	myLineSet	(1	To	3)	As	myLine

Here	pts	is	an	array	of	myPoint.	To	access	this	structure	you	would	use	a	combination	of	indexes	and	dot	operators.

myLineSet(1).pts(1).row	=	1

myLineSet(1).pts(1).col	=	1

myLineSet(1).pts(2).row	=	10

myLineSet(1).pts(2).col	=	10

myLineSet(1).char	=	Chr(219)

myLineSet	is	an	array,	so	you	use	an	index	value.	pts	is	an	element	of	the	type,	so	you	need	to	qualify	it	with	the	dot	operator.	However,	
also	an	array,	so	you	use	an	index	to	select	each	pts	array	element.	Row	and	
operator.

Using	an	array	for	the	endpoints	enables	you	to	easily	extend	the	line	definition	to	support	not	only	lines,	but	triangles	and	squares.	The	following
code	snippet	shows	one	possible	definition.

Type	myObj

				objid	As	Integer

				Union

												myLine(1	To	2)	As	myPoint

								myTriangle(1	To	3)	As	myPoint

								mySquare(1	To	4)	As	myPoint

				End	Union

				char	As	String	*	1

End	Type

The	objid	field	would	indicate	which	type	of	object	is	contained	within	the	union	definition.	That	is,	a	1	may	indicate	a	line,	a	2	may	indicate	a
triangle	and	a	3	may	indicate	a	square.	Since	the	definition	defines	a	single	object,	a	

memory	usage.	

To	print	the	object	to	the	screen,	you	would	examine	the	objid	and	then	use	the	Lbound	and	Ubound	on	the	appropriate	endpoint	array	definition,
printing	the	number	of	lines	that	correspond	to	the	type	of	object.	

One	further	enhancement	you	can	make	to	this	program	is	to	add	a	function	pointer	to	the	type	definition,	and	then	write	print	routines	that
correspond	to	the	type	of	object	being	printed.	Using	this	technique	will	enable	you	to	further	extend	the	usefulness	of	the	code	by	simplifying	the
process	of	adding	new	objects	to	the	type	definition.	

For	example,	if	you	needed	to	be	able	to	describe	a	cube,	you	would	simply	add	an	new	array	to	the	union,	add	a	cube	print	function,	and	the
type	definition	would	be	able	to	print	a	cube	by	simply	adding	a	few	lines	of	code,	while	keeping	the	original	functionality	intact.

Array	Initialization

You	can	initialize	an	array	with	values	when	using	the	Dim	statement	in	a	manner	similar	to	initializing	any	of	the	other	intrinsic	data	types,	and
type	definitions.	The	following	code	snippet	illustrates	the	syntax	using	a	one	dimensional	array.

Dim	aArray(1	To	5)	As	Integer	=>	{1,	2,	3,	4,	5}

This	code	snippet	dimensions	an	integer	array	with	5	elements,	then	sets	the	elements	to	the	list	contained	within	the	curly	brackets.	The	arrow
operator,	=>	tells	the	compiler	that	the	list	following	the	Dim	statement	should	be	used	to	initialize	the	array.	

You	can	also	dimension	multidimensional	arrays	in	the	same	manner,	by	specifying	blocks	of	data	enclosed	within	curly	braces	as	the	following
code	snippet	illustrates.

Dim	bArray(1	To	2,	1	To	5)	As	Integer	=>	{{1,	2,	3,	

In	this	example,	the	first	block,	{1,	2,	3,	4,	5},	corresponds	to	row	1,	and	the	second	block,	
Remember	that	FreeBasic	arrays	are	row-major,	so	the	row	is	specified	before	the	column.	When	you	initialize	an	array	in	this	manner,	you	must
be	sure	that	the	number	of	elements	defined	will	fit	into	the	array.

Type	Array	Initialization

Not	only	can	you	initialize	an	array	of	simple	data	types,	you	can	also	initialize	an	array	with	composite	types.	The	following	code	snippet
illustrates	a	type	array	that	contains	an	array	as	an	element	of	the	type.

Type	aType

				a	As	Integer

				b	As	Byte

				c(1	To	2)	As	String	*	10

End	Type

Dim	As	aType	myType(1	To	2)	=>	{	(1234,	12,	{"Hello"

The	curly	brackets	signify	that	this	is	an	array	initialization,	while	the	parenthesis	indicate	the	type	initialization.	Since	the	type	has	an	embedded
array,	you	use	the	curly	brackets	to	load	the	data	into	the	embedded	array,	just	as	you	would	a	stand-alone	array.	If	the	embedded	array	was	a
multidimensional	array,	then	you	would	need	to	wrap	each	row	in	{	and	}	just	as	you	would	a	stand-alone	array.	

Using	the	-exx	Compiler	Switch

The	-exx	compiler	switch	will	enable	error	and	bounds	checking	within	your	program.	If	you	go	outside	the	bounds	of	an	array	within	your
program,	the	compiler	will	generate	an	"out	of	bounds"	error	while	the	program	is	running.	

This	is	a	great	help	in	debugging	your	program,	and	finding	problems	associated	with	arrays.	-exx	will	also	
assignments,	so	it	is	quite	useful	when	working	with	pointers	as	well.	

Using	-exx	does	add	quite	of	bit	of	additional	code	to	your	program,	so	once	your	program	is	functioning	correctly,	you	will	want	to	compile	the
program	without	the	-exx	switch.

Introduction	to	the	Type	Def 	

Written	by	rdc	
There	are	times	when	creating	a	program	that	you	may	want	to	define	an	aggregate	structure
such	as	a	personnel	record,	or	an	enemy	in	a	game.	While	you	can	do	this	using	individual
data	types,	it	is	hard	to	manage	within	a	program.	Composite	data	types	allow	you	to	group
together	related	data	items	into	a	single	structure	that	can	be	manipulated	as	a	single	entity.
FreeBASIC	offers	two	composite	data	types,	the	Type	and	Union.

Types

FreeBASIC	allows	you	to	group	several	data	types	into	a	unified	structure	called	a	Type
definition	which	you	can	use	to	describe	these	aggregate	data	structures.

The	basic	structure	of	a	type	definition	is:

Type	typename

				Var	definition

				Var	definition

				...

End	Type

The	Type-End	Type	block	defines	the	scope	of	the	definition.	You	define	the	elements	of	the
type	structure	in	the	same	manner	as	using	the	Dim	keyword,	without	using	
code	snippet	shows	how	to	build	an	employee	type.

Type	EmployeeType

				fname	As	String	*	10

				lname	As	String	*	10

				empid	As	Integer

				dept	As	Integer

End	Type				

You	can	use	any	of	the	supported	data	types	as	data	elements,	including	pointers	and	other
type	definitions.	When	you	create	the	type	definition,	such	as	in	the	example	above,	you	are
just	creating	a	template	for	the	compiler.	In	order	to	use	the	type	definition,	you	need	to	create
a	variable	of	the	type,	as	the	following	code	snippet	illustrates.

Dim	Employee	As	EmployeeType

Once	you	have	created	a	variable	of	the	type,	you	can	access	each	element	within	the	type
using	the	dot	notation	var_name.field_name.	

Using	the	above	example,	to	access	the	fname	field	you	would	use:	

Employee.fname	=	"Susan"

Using	With

To	access	multiple	fields	at	a	time,	you	can	use	the	With-End	With	block.	The	following	code
snippet	shows	how	to	use	the	With	block	with	the	above	example.

With	Employee

				.fname	=	"Susan"

				.lname	=	"Jones"

				.empid	=	1001

								.dept	=	24

End	With				

The	compiler	will	automatically	bind	the	variable	Employee	to	the	individual	data	elements
within	the	With	block.	Not	only	does	mean	that	you	don't	have	as	much	typing,	but	the
structure	is	optimized	and	is	a	bit	faster	than	using	the	full	dot	notation.

Passing	Types	to	Subroutines	and	Functions

One	advantage	to	using	types	in	your	program	is	that	you	can	pass	the	structure	to	a
subroutine	or	function	and	operate	on	the	structure	as	a	whole.	The	following	code	fragment
shows	a	partial	subroutine	definition.

Sub	UpdateEmployeeDept(ByRef	Emp	As	EmployeeType)

				.

				.

				.

End	Sub

Notice	that	the	parameter	is	qualified	with	Byref.	This	is	important	since	you	want	to	update
the	type	within	the	subroutine.	There	are	two	parameter	passing	modes	in	FreeBASIC:	
and	Byval.

ByRef	and	ByVal:	A	Quick	Introduction	

Byref	and	Byval	tell	the	compiler	how	to	pass	a	reference	to	the	subroutine	or	function.	When
you	use	Byref,	or	By	Reference,	you	are	passing	a	pointer	reference	to	the	parameter,	and
any	changes	you	make	to	the	parameter	inside	the	sub	or	func	will	be	reflected	in	the	actual
variable	that	was	passed.	In	other	words,	the	Byref	parameter	points	to	the	actual	variable	in
memory.

Byval,	or	By	Value,	on	the	other	hand	makes	a	copy	of	the	parameter,	and	any	changes	you
make	inside	the	sub	or	func	are	local	and	will	not	be	reflected	in	the	actual	variable	that	was
passed.	The	Byval	parameter	points	to	a	copy	of	the	variable	not	the	actual	variable	itself.

The	default	for	FreeBASIC	.17	is	to	pass	parameters	using	Byval.	In	order	to	change	a
passed	parameter,	you	need	to	specify	the	Byref	qualifier.	In	this	example,	the	subroutine
updates	the	the	department	id	of	the	employee	type,	so	the	parameter	is	qualified	as	
that	the	subroutine	can	update	the	dept	field	of	the	type	variable.

On	the	other	hand	you	may	not	need	to	update	the	type	as	in	the	following	code	fragment.

Sub	PrintEmployeeRecord(Emp	As	EmployeeType)

				.

				.

				.

End	Sub

In	this	sub	you	are	just	printing	the	employee	record	to	the	screen	or	a	printer	and	do	not
need	to	change	anything	in	the	type	variable.	Here	the	default	Byval	is	used	which	passes	a
copy	of	the	employee	record	to	the	sub	rather	than	a	reference	to	the	variable.	By	using	
in	this	case,	you	won't	accidentally	change	something	in	the	type	variable	that	you	didn't
intend	to	change.

You	should	only	use	Byref	if	you	intend	to	change	the	parameter	data.	It	is	much	safer	to	use
Byval	in	cases	where	you	need	to	have	the	parameter	data,	but	want	to	prevent	accidental
changes	to	the	data.	These	accidental	changes	generate	hard-to-find	bugs	in	your	program.

Types	Within	Types

In	addition	to	the	intrinsic	data	types,	type	fields	can	also	be	based	on	a	type	definition.	Why
would	you	want	to	do	this?	One	reason	is	data	abstraction.	The	more	general	your	data
structures,	the	more	you	can	reuse	the	code	in	other	parts	of	your	program.	The	less	code
you	have	to	write,	the	less	chance	of	errors	finding	their	way	into	your	program.	

Using	the	Employee	example,	suppose	for	a	moment	that	you	needed	to	track	more	dept
information	than	just	the	department	id.	You	might	need	to	keep	track	of	the	department
manager,	the	location	of	the	department,	such	as	the	floor	or	the	building,	or	the	main
telephone	number	of	the	department.	By	putting	this	information	into	a	separate	type
definition,	you	could	use	this	information	by	itself,	or	as	part	of	another	type	definition	such	as
the	Employee	type.	By	generalizing	your	data	structures,	your	program	will	be	smaller,	and
much	more	robust.

Using	a	type	within	a	type	is	the	same	as	using	one	of	the	intrinsic	data	types.	The	following
code	snippets	illustrates	an	expanded	department	type	and	an	updated	employee	type.

Type	DepartmentType

				id	As	Integer

				managerid	As	Integer

				floor	As	Integer

End	Type								

Type	EmployeeType

				fname	As	String	*	10

							lname	As	String	*	10

								empid	As	Integer

								dept	As	DepartmentType

End	Type

Dim	Employee	As	EmployeeType

Notice	that	in	the	Employee	definition	the	dept	field	is	defined	as	DepartmentType
as	one	of	the	intrinsic	data	types.	To	access	the	department	information	within	the	
type,	you	use	the	compound	dot	notation	to	access	the	dept	fields.

Employee.dept.id	=	24

Employee.dept.managerid	=	1012

Employee.dept.floor	=	13

The	top	level	of	the	type	definition	is	Employee,	so	that	reference	comes	first.	Since	dept	is
now	a	type	definition	as	well,	you	need	to	use	the	dept	identifier	to	access	the	individual	fields
within	the	DepartmentType.	Employee	refers	to	the	employee	type,	dept	refers	to	the	department
type	and	id,	managerid	and	floor	are	fields	within	the	department	type.

You	can	even	carry	this	further,	by	including	a	type	within	a	type	within	a	type.	You	would
simply	use	the	dot	notation	of	the	additional	type	level	as	needed.	While	there	is	no	limit	on
the	levels	of	nested	type	definitions,	it	gets	to	be	a	bit	unwieldy	when	used	with	several	levels.

With	and	Nested	Types

You	can	also	use	the	With-End	With	block	with	nested	types,	by	nesting	the	

illustrated	in	the	following	code	snippet.

With	Employee

							.fname	=	"Susan"

								.lname	=	"Jones"

								.empid	=	1001

								With	.dept

												.id	=	24

												.managerid	=	1012

												.floor	=	13

								End	With

End	With

Notice	that	the	second	With	uses	the	dot	notation,	.dept,	to	specify	the	next	level	of	type
definitions.	When	using	nested	With	blocks,	be	sure	that	you	match	all	the	
statements	with	their	correct	With	statements	to	avoid	a	compile	error.

Type	Assignments

Extending	the	idea	of	data	abstraction	further,	it	would	be	nice	to	be	able	to	separate	the
initialization	of	the	department	type	from	the	initialization	of	the	employee	type.	By	separating
the	two	functions,	you	can	easily	add	additional	department	information	as	needed.	This	is
where	you	can	use	type	assignments.

Just	as	you	can	assign	one	intrinsic	data	type	to	another,	you	can	assign	one	type	variable	to
another	type	variable,	providing	they	share	the	same	type	definition.

The	following	code	snippet	abstracts	the	department	initialization	function	and	assigns	the
result	to	the	department	type	within	the	Employee	type.

'This	function	will	init	the	dept	type	and	return	it	to	caller

Function	InitDept(deptid	As	Integer)	As	DepartmentType

				Dim	tmpDpt	As	DepartmentType

				Select	Case	deptid

								Case	24	'dept	24

								With	tmpDpt

																				.id	=	deptid

																				.managerid	=	1012

																				.floor	=	13

												End	With

								Case	48	'dept	48

													With	tmpDpt

																				.id	=	deptid

																				.managerid	=	1024

																				.floor		=	12

																End	With

								Case	Else	'In	case	a	bad	department	id	was	passed

																With	tmpDpt

																				.id	=	0

																				.managerid		=	0

																				.floor		=	0

																End	With

				End	Select

				'Return	the	dept	info

				Return	tmpDpt

End	Function

'Create	an	instance	of	the	type

Dim	Employee	As	EmployeeType

'Initialize	the	Employee	type

With	Employee

				.fname	=	"Susan"

				.lname	=	"Jones"

				.empid	=	1001

				.dept	=	InitDept(24)	'get	dept	info

End	With

As	you	can	see	in	the	snippet,	the	dept	field	of	the	employee	type	is	initialized	with	a	function
call.	The	InitDept	function	returns	a	DepartmentType	and	the	compiler	will	assign	that	type	to

the	dept	field	of	the	Employee	record.

By	just	adding	a	simple	function	to	the	program,	you	have	made	the	program	easier	to
maintain.	If	a	new	department	is	created,	you	can	simply	update	the	InitDept
the	new	department	information,	recompile	and	the	program	is	ready	to	go.

Bit	Fields

There	is	yet	another	data	type	that	can	be	used	in	type	definitions,	the	bit	field.	Bit	fields	are
defined	as	variable_name:	bits	As	DataType.	The	variable	name	must	be	followed	with	a
colon,	the	number	of	bits,	followed	by	the	data	type.	Only	integer	types	(all	numeric	types
excluding	the	two	floating-point	types	'single'	and	'double'	and	excluding	also	the	64-bit	types)
are	allowed	within	a	bit	field.	Bit	fields	are	useful	when	you	need	to	keep	track	of	boolean	type
information.	A	bit	can	be	either	0	or	1,	which	may	represent	Yes	or	No,	On	or	Off	or	even
Black	and	White.

The	following	code	snippet	illustrates	a	bit	field	definition.

Type	BitType

				b1:	1	As	Integer

				b2:	4	As	Integer

End	Type

b1	is	defined	as	a	single	bit,	and	b2	is	defined	as	four	bits.	You	initialize	the	bitfields	by
passing	the	individual	bits	to	the	type	fields.

myBitType.b1	=	1

myBitType.b2	=	1101

The	data	type	of	the	bit	field	determines	how	many	bits	you	can	declare	in	a	bit	field.	Since	an
integer	is	32	bits	long,	you	could	declare	up	to	32	bits	in	the	field.	However,	in	most	cases
you	would	declare	a	single	bit	for	each	field,	and	use	a	number	of	fields	to	define	the	bit
masking	that	you	wish	to	use.	Using	a	single	bit	simplifies	the	coding	you	need	to	do	to

determine	if	a	bit	is	set	or	cleared	and	allows	you	to	easily	identify	what	a	bit	means	within	the
type	definition.

The	Field	Property

When	you	create	a	variable	of	a	type	definition,	the	type	is	padded	in	memory.	The	padding
allows	for	faster	access	of	the	type	members	since	the	type	fields	are	aligned	on	a	4	byte	or
Word	boundary.	However,	this	can	cause	problems	when	trying	to	read	a	type	record	from	a
file	that	is	not	padded.	You	can	use	the	use	field	property	to	change	the	padding	of	a	type
definition.

The	field	keyword	is	used	right	after	the	type	name	and	can	have	the	values	
alignment	(no	padding),	2	for	2	byte	alignment	and	4	for	4	byte	alignment.	To	define	a	type
with	no	padding	you	would	use	the	following	syntax.

Type	myType	Field	=	1

					v1	As	Integer

				v2	As	Byte

End	Type

For	2	byte	alignment	you	would	use	field	=	2.	If	no	field	=	property	is	assigned,	then	the
padding	will	be	4	bytes.	If	you	are	reading	a	type	definition	created	by	FreeBASIC	using	the
default	alignment,	then	you	do	not	need	to	use	the	field	property.

Quick	Basic

Type	Initialization

You	can	initialize	a	type	definition	when	you	dimension	the	type	just	as	you	can	any	of	the
intrinsic	variables.	The	following	code	snippet	illustrates	the	syntax.

Type	aType

								a	As	Integer

								b	As	Byte

								c	As	String	*	10

End	Type

Dim	myType	As	aType	=>	(12345,	12,	"Hello")

In	the	Dim	statement,	the	arrow	operator	=>	is	used	to	tell	the	compiler	that	you	are	initializing
the	type	variable.	The	type	element	values	must	be	enclosed	in	parenthesis,	and	separated
by	commas.	The	order	of	the	value	list	corresponds	to	the	order	of	the	type	elements,	where	
will	be	set	to	12345,	b	to	12	and	c	to	"Hello".

You	cannot	initialize	a	dynamic	string	within	a	type	definition	using	this	method.	The	string	must	be	fixed	length.

Initializing	a	type	definition	in	a	Dim	statement	is	useful	when	you	need	to	have	a	set	of	initial
values	for	a	type,	or	values	that	will	not	change	during	program	execution.	Since	the	values
are	known	at	compile	time,	the	compiler	can	doesn't	have	to	spend	cycles	loading	the	values
during	runtime.

Unions

Unions	look	similar	to	Types	in	their	definition.

Union	aUnion

				b	As	Byte

				s	As	Short

				i	As	Integer

End	Union

If	this	were	a	Type,	you	could	access	each	field	within	the	definition.	For	a	
can	only	access	one	field	at	any	given	time;	all	the	fields	within	a	Union	occupy	the	same
memory	segment,	and	the	size	of	the	Union	is	the	size	of	the	largest	member.

In	this	case,	the	Union	would	occupy	four	bytes,	the	size	of	an	Integer,	with	the	

occupying	1	byte,	the	s	field	occupying	2	bytes,	and	the	i	occupying	the	full	4	bytes.	Each
field	starts	at	the	first	byte,	so	the	s	field	would	include	the	b	field,	and	the	
include	both	the	b	and	s	fields.

Types	in	Unions

A	good	example	of	using	a	type	definition	in	a	union	is	the	Large_Integer
winnt.bi.	The	Large_Integer	data	type	is	used	in	a	number	of	Windows	functions	within	the	C
Runtime	Library.	The	following	code	snippet	shows	the	Large_Integer	definition.

Union	LARGE_INTEGER

				Type

								LowPart	As	DWORD

								HighPart	As	Long

				End	Type

				QuadPart	As	LONGLONG

End	Union

The	Dword	data	type	is	defined	in	windef.bi	as	a	FreeBASIC	Uinteger,	and	the	
is	defined	as	a	Longint.	A	Long	is	just	an	alias	for	the	integer	data	type.	Remember	that	a
type	occupies	contiguous	memory	locations,	so	the	HighPart	field	follows	the	
field	in	memory.	Since	this	is	a	union,	the	type	occupies	the	same	memory	segment	as	the
QuadPart	field.

When	you	set	QuardPart	to	a	large	integer	value,	you	are	also	setting	the	values	of	the	type
fields,	which	you	can	then	extract	as	the	LowPartand	HighPart.	You	can	also	do	the	reverse;
that	is	by	setting	the	LowPart	and	HighPart	of	the	type,	you	are	setting	the	value	of	the
QuadPart	field.

As	you	can	see,	using	a	type	within	a	union	is	an	easy	way	to	set	or	retrieve	individual	values
of	a	component	data	type	without	resorting	to	a	lot	of	conversion	code.	The	layout	of	the
memory	segments	does	the	conversion	for	you,	providing	that	the	memory	segments	make
sense	within	the	context	of	the	component	type.

In	the	Large_Integer	case,	the	LowPart	and	HighPart	have	been	defined	to	return	the
appropriate	component	values.	Using	values	other	than	Dword	and	Long	would	not	return

correct	values	for	LowPart	and	HighPart.	You	need	to	make	sure	when	defining	a	type	within	a
union,	you	are	segmenting	the	union	memory	segment	correctly	within	the	type	definition.

Unions	in	Types

A	union	within	a	type	definition	is	an	efficient	way	to	manage	data	when	one	field	within	a	type
can	only	one	of	several	values.	The	most	common	example	of	this	is	the	Variant	data	type
found	in	other	programing	languages.

FreeBASIC	does	not	have	a	native	Variant	data	type	at	this	time.	However,	by	using	the	extended	Type	syntax,	you
could	create	a	Variant	data	type	for	use	in	your	program.

When	using	a	Union	within	a	type	it	is	common	practice	to	create	an	id	field	within	the	type
that	indicates	what	the	union	contains	at	any	given	moment.	The	following	code	snippet
illustrates	this	concept.

'Union	field	ids

#define	vInteger	0

#define	vDouble	1

'Define	type	def	with	variable	data	fields

Type	vType

				vt_id	As	Integer

				Union

								d	As	Double

								i	As	Integer

				End	Union

End	Type

The	union	definition	here	is	called	an	anonymous	union	since	it	isn't	defined	with	a	name.	The
vt_id	field	of	the	type	definition	indicates	the	value	of	the	union.	To	initialize	the	type	you
would	use	code	like	the	following.

Dim	myVarianti	As	vType

Dim	myVariantd	As	vType

myVarianti.vt_id	=	vInteger

myVarianti.i	=	300

myVariantd.vt_id	=	vDouble

myVariantd.d	=	356.56

myVarianti	contains	an	integer	value	so	the	id	is	set	to	vInteger.	myVariantd
double	so	the	id	is	set	to	vDouble.	If	you	were	to	create	a	subroutine	that	had	a	
parameter,	you	could	examine	the	vt_type	field	to	determine	whether	an	
had	been	passed	to	the	subroutine.

You	cannot	use	dynamic	strings	within	a	union.

Using	a	combination	of	unions	and	types	within	a	program	allows	you	to	design	custom	data
types	that	have	a	lot	of	flexibility,	but	care	must	be	taken	to	ensure	that	you	are	using	the	data
constructs	correctly.	Improper	use	of	these	data	types	can	lead	to	hard-to-find	bugs.	The
benefits	however,	out-weigh	the	risks	and	once	mastered,	are	a	powerful	programming	tool.

New	to	Programming? 	

If	you're	new	to	programming	in	general,	you	should	probably	learn	what	some	basic	concepts	are:

How	Your	Program	Is	Run
What	a	Compiler	Is
Syntax
Program	Flow

Variables
Basic	DataTypes

Input/Output	(IO)

The	above	being	the	most	important	programming	concepts	for	an	absolute	beginner	to	programming	to	learn.	
in	FreeBASIC.	It	is	also	important	to	learn	how	to	use	the	manual,	located	at	www.freebasic.net/wiki	
have	manuals	with	both	descriptions	and	demonstrations.	ALWAYS	refer	to	the	manual	before	looking	elsewhere.	
want	is	in	the	manual,	and	if	it's	not,	it	can	be	added.

This	tutorial's	on	Version	1.0.	Don't	care	for	the	revision	number	^^;;

How	Your	Program	is	Run

What	a	Compiler	Is

FreeBASIC	is	a	compiled	programming	language,	rather	than	interpreted.	
"PRINT"	or	"SLEEP"	and	translates	that	directly	into	Assembly	or	Machine	Code.	
In	general,	you	will	never	code	in	Machine	Code,	no	matter	how	"low	level"	(how	close	you	are	to	programming	machine	code)	you	go.

FreeBASIC	is	a	High	Level	programming	language.	FreeBASIC	makes	it	so	the	programmer	has	to	do	less	work	to	get	more	done.	
programming,	you	don't	have	to	worry	about	the	more	complex	areas	of	programming.	
lower	level,	the	programmer	has	the	advantage	of	manipulating	the	computer	on	a	more	precise	and	less	human	level,	with	the	disadvantage	of	having
to	know	more	about	internals.

Your	compiler	of	choice	will	depend	on	your	situation.	If	you	want	complete	control	over	every	action	being	taken	by	your	computer,	you	may	wish	to
code	in	ASM	or	C.	However,	as	computers	and	compilers	have	progressed,	you	no	longer	have	to	worry	as	much	about	the	speed	and	lower	level
details	of	your	code.	In	many	ways,	the	entire	purpose	of	higher	level	programming	is	to	make	sure	you	don't	have	to	worry	about	those	things.
FreeBASIC	handles	many	optimizations	and	improvements	that	you	would	normally	have	to	do	by	hand	for	you,	while	still	allowing	you	to	access	lower

level	areas	of	control	if	you	wish.	One	problem	with	this,	however,	which	is	a	common	problem	in	most	higher	level	forms	of	programming,	is	the	high
levels	of	implicit	actions	being	taken	by	the	compiler.	If	you	want	to	work	with	lower	level	code	in	a	higher	level	language,	you	need	to	know	how	to
explicitly	control	certain	aspects	of	your	code.

Syntax

Syntax	is	how	words	and	commands	are	grouped	together	in	programming.	
consistent,	will	lay	down	rules	as	to	how	you	will	structure	your	program.

For	example,	in	programming,	you	will	come	across	the	task	of	calling	commands,	and	giving	those	commands	something	to	do.	
tell	you	how	you	can	call	this	command,	and	what	is	or	isn't	allowed.	They	will	help	you	call	the	command	intelligently,	and	help	prevent	possible	errors
that	could	occur	in	a	more	"syntax	free"	(what	is	essentially	impossible	in	most	forms	of	programming)	environment.

The	syntax	for	FreeBASIC	generally	goes	as	follows:	CommandName	[Argument,]	[Another	Argument]

While	the	above	may	look	confusing	at	first,	it's	actually	very	simple.	All	that	says	is	that	you	give	the	compiler	a	command,	and	then	give	your
arguments	after	the	command.	The	comma	is	what	separates	the	arguments	from	one	another.	
can	assume	that	Draw	will	draw	something,	Circle	will	be	the	shape	that	it	draws,	and	10	will	be	the	radius	of	the	circle	being	drawn.	
syntax	rules	for	that	command	may	look	something	like	this:	Draw	[Shape,]	[Size]

FreeBASIC	is	*not*	case	sensitive.	Calling	a	command	'DRaW'	is	the	same	as	calling	the	command	'draw'.

Program	Flow

FreeBASIC's	code	is	read	from	the	TOP	of	the	code,	to	the	BOTTOM,	one	line	at	a	time.	
code	for	that	line	is	read	by	the	computer,	the	command	that's	on	the	line	will	be	executed	(it	will	be	ran,	it	will	happen,	your	computer	will	do	what	the
code	tells	it	to).	Example	code	can	be:

Print	"HI"

Sleep

Since	the	code	PRINT	is	on	the	line	above	SLEEP,	PRINT	will	be	run	first.	
executing.

Comments	can	be	made	in	FreeBASIC,	which	are	ignored,	and	will	not	become	a	part	of	your	program.	
them	with	',	or	can	be	multiple	line	comments	if	you	begin	them	with	/'	and	end	them	with	'/.	

the	code	or	characters	within	the	comments	are	even	noticed	by	the	compiler.

'		ABLASHD

'	PRINT	"HI!"	'	This	line	of	code	will	never	even	be	printed,	because	it's	commented.

Print	"This	is	not	a	comment.		This	event	will	occur."

Sleep	'	pause	the	program	until	the	user	hits	a	key.

Variables

What	are	variables?	They're	the	most	important	part	of	programming,	that's	what.	
store	information	in	variables.

Do	you	recall	doing	algebra	or	using	letters	in	math,	in	school?	An	example	might	be	something	like:	
are	exactly	that.	They	are	words	or	letters	that	hold	values	in	programming.	
your	main	character	in	your	video	game	has,	or	even	something	as	simple	as	the	color	of	one	pixel.	
storing	the	data	it	holds	small	piece	of	the	computer's	memory.	In	FreeBASIC,	and	most	programming	languages,	you	will	work	with	variables	a	lot.

To	create	variables	in	FreeBASIC,	we	use	the	DIM	command.	What	does	DIM	stand	for?	
programmers	would	define	the	"size"	of	their	variable.	DIM	is	used	to	tell	FreeBASIC	that	we're	creating	a	new	variable	in	our	program.	
is	described	in	high	detail	on	This	Page,	but	we're	going	to	explain	it	in	less	detail	here.

The	most	simple	syntax	for	DIM	is:	DIM	[VariableName]	AS	[DataType]	[="[Value]]

What	this	does,	is	it	tells	FreeBASIC:
-	We're	making	a	variable,	because	we	typed	in	the	command	DIM
-	We're	naming	the	variable	[VariableName]	(Where	VariableName	is	the	name	of	the	variable	you	want	to	make.	
AlexPritchard,	BLahblh,	Foo,	etc.)
-	We're	specifying	the	type	of	variable,	because	we	typed	in	AS	after	VariableName
-	We're	making	the	variable	of	the	type	[DataType]	(Datatype	can	be	something	that	holds	numbers,	letters,	or	a	whole	bunch	of	stuff!)
-	We	can	also	assign	the	value	of	the	variable	by	putting	EQUALS	(=)	after	our	variable	creation.

Example:

Dim	foo	As	Integer	=	5

Print	foo

Sleep

In	our	program,	we	created	foo.	FOO	was	created	as	an	INTEGER	(A	datatype
command	PRINT,	which	PRINTS	information	on	our	screen.	We	PRINT	foo,	so	the	number	5	should	be	PRINTed	on	the	screen.	
which	pauses	our	program	until	we	hit	a	key.

Basic	DataTypes

Variables	are	a	tough	subject,	I	think,	to	begin	with	in	programming.	There's	a	lot	of	different	types	of	variables!	
'The	kind	of	data	that's	held	in	this	type	of	variable',	and	you	wondered	why	they	shortened	it	to	datatype?	
these	types	of	variables:

Integer	-	Hold	numbers	WITHOUT	DECIMAL	PLACES.	Will	generally	be	the	size	of	your	computer's	registry,	which	is	not	a	topic	I	will	be	going	over.
Double	-	Holds	numbers	WITH	DECIMAL	PLACES.	Holds	very	large	and	small	numbers,	with	high	levels	of	precision	(how	close	to	any	value	you	give
the	variable	it's	actual	value	will	be)
String	-	A	nice	feature	in	FreeBASIC.	STRING	is	a	datatype	which	holds	letters	and	numbers	for	you.	
and	cool	information	to	put	on	the	screen,	such	as	cooking	directions.

Remember,	follow	the	proper	DIM	syntax.	DIM	variablename	as	INTEGER	will	make	an	INTEGER	called	variablename,	which	you	can	use	in	your
program.	You	can	replace	INTEGER	with	DOUBLE,	or	STRING.	BE	CAREFUL!	
not	give	a	STRING	the	value	of	5!	You	can	however,	give	it	the	value	of	"5"	(quotes	specify	string	characters	in	FB).	
double	equal	"5",	as	"5"	is	a	string,	and	not	a	number.

Here	is	a	really	cool	example,	which	demonstrates	how	you	can	use	variables	to	store	your	name.

''	Create	the	variable	MyName.		Assign	it's	value	to	be	'Alex'

Dim	As	String	MyName	=	"Alex"

''	Print	The	MyName	variable

Print	MyName

''	pause	the	program	until	the	user	hits	a	key.

Sleep

Input/Output

Input	is	the	receiving	of	information.	When	your	get	input	on	something,	someone	or	something	else	is	giving	it	to	you.	
(GETTING	SOMETHING,	Retrieving	Something)

Output	is	the	sending	of	information.	When	you	ouput	to	something,	you're	the	one	giving	input	to	them.	

Input	and	Output	are	often	put	together,	and	are	shortened	as	I/O,	or	IO.

FreeBASIC	has	MANY	methods	of	input	and	output.	For	a	beginner,	most	of	these	could	end	up	confusing	you,	because	they	generally	require	better
knowledge	of	variables	and	more	complex	forms	of	programming.	We're	going	to	study	the	very	basics	of	I/O.

You	remember	the	command	PRINT	in	the	above	examples?	That's	OUTPUT.	
of	output,	and	it's	easy	to	learn,	too!	You	just	call	the	command	PRINT,	then	tell	it	what	you	want	it	to	print.	
enclosed	in	Double-Quotes.	If	you	want	to	print	variables,	you	just	give	PRINT	the	name	of	the	variable	you	want	to	print.

Print	[WhatToPrint]
Example:

''	Print	the	words,	HI!	to	the	screen

Print	"HI!"

''	create	a	new	integer	and	name	it	foo.		Give	it	the	value	of	10.

Dim	As	Integer	foo	=	10

''	Print	the	value	of	foo.

Print	foo

Sleep

INPUT	isn't	much	harder,	either.	However,	whenever	you	input,	you	have	to	get	that	input	and	put	it	into	something.	
output,	we	have	to	give	the	PRINT	command	something	to	output.	We	already	know	variables,	right?	
the	user	inputs.

1)	We	need	a	variable	to	store	that	information	in.
2)	We	need	to	call	a	command	to	get	input.
3)	We	need	to	print	the	input	to	make	sure	we	stored	the	information	correctly.

I	know	how	to	do	1	and	3,	but	what	about	2?	We're	going	to	learn	a	new	command	for	this.	
we	will	use	the	command,	INPUT.

Input's	syntax	is	as	follows:	INPUT	[VariableToInputTo]

You	can	also	use	input	like	so:	INPUT	[Output	String	To	Tell	User	What	to	Input,]	[VariableToInputTo]

The	first	version	of	INPUT	will	let	you	get	input,	and	put	it	right	into	the	variable.	
asking	for	input.	This	way,	the	user	will	know	what	to	input!	Alternatively,	you	can	just	use	the	PRINT	command	before	INPUT	to	send	the	user	a
message,	but	sometimes	being	able	to	put	related	code	on	one	line	is	a	convenience.

Example:

''	Create	a	string.		We	will	hold	the	user's	name	in	the	string!

Dim	As	String	MyName

''	Get	the	user's	name!

''	The	message	Please	Enter	Your	Name	is	posted	on	the	screen,

''	and	then	the	user	has	a	chance	to	enter	in	their	name!

Input	"Please	enter	your	name!",	MyName

''	Print	the	user's	name	that	we	just	got.

''	Just	like	input,	we	can	print	several	messages	or

''	execute	different	types	of	commands	by	separating	them	by	commas.

Print	"Your	Name	Is:	",	MyName

''	pause	the	program	until	the	user	hits	a	key

Sleep

That	demonstrates	both	INPUT	and	OUTPUT!	Both	are	essential	in	programming,	or	at	least	graphical	programming.	
things,	as	well	as	INPUT.	You	might	be	getting	input	from	a	robotic	arm's	sensors	rather	than	from	the	user's	keyboard.	
power	drill	rather	than	a	monitor.	It	really	depends	on	the	hardware	and	the	purpose	of	your	program.

At	the	time,	and	in	most	cases,	you	don't	have	to	worry	so	much	about	where	the	input	comes	from,	or	where	it's	going	to	when	dealing	with	your
standard	I/O	functions.	More	advanced	methods	of	I/O	let	you	decide	where	it's	coming	from	(which	input	to	get)	and	where	it's	going	to	(where	to	send

output	to).

Programming	Definitions

Argument:	See	Parameter

ASM:	The	lowest	level	code	that	a	human	will	want	to	read.	This	can	be	compiled	directly	into	machine	code.

Compiling:	The	process	of	turning	text	in	one	language	to	another.	Ex:	BASIC	in	FreeBASIC	compiles	into	ASM.	
code.

Machine	Code:	0's	and	1's.	This	is	*the*	code	that	your	computer	will	understand.

Parameter:	Data	that	you	pass	to	a	command	you	call	in	programming.	Parameters	being	passed	allow	commands	to	be	directed	as	to	HOW	they	will
do	something,	or	what	they	will	do.	Passing	a	parameter	'Rectangle'	to	a	command	'Draw',	it	would	make	sense	if	that	drew	a	rectangle	onto	your
screen.

Pixel:	One	'dot'	on	your	monitor.	Monitors	are	made	up	of	thousands	of	tiny	dots	which	are	lit	up	of	different	colors.	
the	pixel	variable	that	the	monitor	receives.	Believe	it	or	not,	even	your	hardware	will	use	variables,	in	many	ways.

Syntax:	How	words	are	grouped	together.	Your	syntax	in	programming	are	sets	of	rules	that	tell	you	what	code	can	be	placed	where.	
that	only	logical	code	is	allowed.	Ex:	Print	"Hi".	PRINT	is	the	COMMAND,	"Hi"	is	what	the	command	will	PRINT.	

Variable:	A	word	that	holds	data	in	programming.	You	assign	these	words	values,	and	with	those	values,	you	can	save	information	on	your	program.

Compiling	a	Big	QB	program	in	FB 	

Let's	try	to	compile	a	big	(4000+	lines)	graphical	QB	program	in
FreeBasic,	to	see	how	compatible	FB	is	with	QB.
As	an	example	I	will	use	Jark's	TCRay	a	great	raytracer	with	quadric,
cubic	and	quadratic	shapes,	perlin	noise	programmed	in	2004.	You	can
get	TCRay.zip	from
http://www.mandelbrot-dazibao.com/Programs/Programs.htm

Notice	TCRay	is	a	QB4.5	interpreted	program,	Jark	never	had	the
patience	to	compile	his	work,
he	just	tested	it	interpreted	and	went	on	adding	features.

The	program	is	made	of	has	3	files:

TcRay21C.bas	-	The	Main	file.
TcLib17L.bas	-	The	SVGA	graphics	library.
Tclib17.bi	-	The	include	file	for	the	library.

Porting	TCLib17.bas

In	TCLib17.bas
It	is	a	"pure	QB"	SVGA	library.	Most	of	its	functions	are	obsoleted	by	FB
as	they	are	implemented	as	QB-style	keywords.	I	had	my	share	in
developing	that	lib	so	you	can	trust	me	for	this	part	;)

Comment	out	the	contents	of	the	ClearScreen	sub	and	add	this
CLS

Comment	out	the	contents	of	the	Point24	sub	and	add	this:
a&	=	Point(x%,y%)

red%	=	a&	Shr	16

green%	=	(a&	Shr	8)	And	255

blue%	=	a&	And	255	

Comment	out	the	contents	of	the	Pset24	sub	and	add	this:
PSet	(x%,y%),	red%	Shl	16	Or	green	Shl	8	Or	blue

Comment	out	the	contents	of	the	Screenshot	sub	and	add	this:
BSave	Name$+".bmp"

Comment	out	the	contents	of	the	SelectVga	sub,	we	will	work	with	a	fixed
size	most	pc's	will	support.	Comment	out	the	contents	of	the	SetText	sub,
we	are	able	to	output	text	in	HiRes	graphics	so	mode	switching	is	not
required.

Comment	out	the	contents	of	the	SetVGA	Sub	excluding	the	Powers	of
two	calculation	at	the	end	and	add	these	four	lines:
Screen	20,32	'1024x768,	32	bits

scrheight=768

scrwidth=1024

Fullscreen

In	TCRay17.bas
Add	a	SetSVGA	as	the	first	line	in	the	Menu	sub	(we	are	not	switching
modes	so	mode	must	be	set	before	outputting	text),

Compiling
Ok,	stop	trusting	me,	now	you	can	start	trying	to	compile.	You'll	receive
some	errors.

Compile	with:	fbc	-s	gui	-w	1	-lang	qb	TcRay21C.bas	TcLib17L.bas

I	warn	you	all	changes	required	except	two	come	from	a	couple	of	(wise)
limitations	in	the	FB	syntax:

A	variable	name	can't	be	a	keyword	plus	a	type	suffix
A	simple	variable	can't	have	the	same	name	as	an	array

In	TCLib17.bi
ERROR:	Duplicated	definition,	found	'RGB'	(RGB	is	a	keyword	in	FB)
Add:
#undefine	RGB

Before	the	line	giving	the	error.

ERROR:	Duplicated	definition,	found	'ScreenRes'	(ScreenRes	is	a
keyword	in	FB)

Add:
#undefine	ScreenRes

Before	the	line	giving	the	error.

ERROR:	Duplicated	definition,	found	'Name'	(Name	is	a	keyword	in	QB)
Add
#undefine	Name

Before	the	line	giving	the	error.

In	TCRay17.bas
ERROR:	Duplicated	definition,	found	'Acos'	(Acos	is	a	keyword	in	QB)
Add
#undefine	Acos

Before	the	line	giving	the	error.

ERROR:	Argument	count	mismatch	Clear	(Clear	is	not	required	in	FB,
the	keyword	has	been	reused	(not	a	clever	decision?))
'comment	out	CLEAR

ERROR:	Illegal	specification,	at	parameter	2	(Type)	of	Init.Cubic()	(Type
is	a	keyword	in	QB)
We	can	undefine	it	so	search	and	replace	type$	to	_type$

ERROR:	Expected	'END	IF',	found	'END'	END	FUNCTION
This	is	an	error	caused	by	a	quirk	introduced	in	FB.	Single	line	If's	having
a	colon	after	THEN	require	an	ENDIF,	it	has	to	do	with	macros...	What
reason	had	Jark	to	put	colons	past	his	THEN's	escapes	me.	QB	does	not
require	them	at	all	and	FB	behaves	as	expected	without	them.	Remove
all	colons	after	THEN	keywords.	Search	and	Replace	THEN	:	to	THEN

ERROR:	Array	access,	index	expected,	before	'='	xn	=	x	*	x	-	y	*	y	+	zx0
We	have	an	array	names	xn,	and	a	variable	named	xn.	Substitute	xn	with
_xn	in	the	lines	which	error	when	you	try	to	compile.

The	same	error	with	x0,	we	have	an	array	called	x0.
Substitute	xo	with	_xo	in	the	lines	which	error	when	you	try	to	compile.

ERROR:	Array	access,	index	expected,	before	'*'	dadY	=	Amplitude	*
dAdR	*	drdY.	Same	problem	with	Amplitude.

Substitute	Amplitude	with	_Amplitude	in	the	lines	which	error	when	you
try	to	compile.

Ok.	At	this	point	all	modules	compile.	We're	now	going	to	fix	a	few	linker
errors.

Linker	Errors
After	compiling	the	linker	ties	together	all	the	modules	with	a	runtime
library,	finds	the	final	addresses	of	every	sub/function	and	substitutes	the
labels	in	the	calls	with	these	addresses.	If	a	sub/function	is	called	in	the
code	and	its	nowhere	to	be	found,	the	linker	complains	and	gives	us	the
name	of	the	offending	function.	It	can't	give	us	the	line	numbers	(the
linker	doesn't	work	with	the	source)	so	we	will	have	to	do	a	text	search	to
find	where	the	problem	occurs.	Notice	the	linker	gives	us	"mangled"
function	names	(an	ampersand	and	the	size	of	the	parameters	passed	is
added	to	the	end),	just	ignore	the	ampersand	and	what's	after.

TcRay21C.o:fake:(.text+0x174d):	undefined	reference	to	`LINE24@20'
A	call	to	an	undefined	Line24	sub	is	made	in	the	program,	you	can	find
this	call	inside	Draw.Axis,	in	TCRay21.bas,	a	sub	that's	it's	never	called
(you	can	do	a	search	to	confirrm	it)
Probably	the	QB4.5	compiler	would	complain	too	about	this.	(Remember:
this	program	never	compiled	in	QB4.5)	Just	comment	out	the	contents	of
the	sub	Draw.Axis	

TcRay21C.o:fake:(.text+0x181b3):	undefined	reference	to	`FFIX@0'
Ffix	was	that	useful	v1ctor's	floating	point	patch	for	QB	4.5.	It's	not
needed	in	FreeBASIC.	Just	comment	out	the	line	calling	it	just	after	the
declarations	in	tcray21c.bas

And	that's	all,	the	program	compiles	and	works.	Not	a	lot	of	changes	for
4000+	lines...
Enjoy!

Antoni 	

antonigual	[at]	eic	[dot]	ictnet	[dot]	es

How	to	Program	a	Game:	Lesson	1 	

Introduction	by	Lachie	Dazdarian
The	objective	of	this	series	of	lessons	is	to	help	newbies	who	know	very	little	of	BASIC	to	learn	the	basics	of
programming	in	FreeBASIC	necessary	to	create	any	computer	game.	Some	elementary	BASIC	knowledge	would	help
a	lot,	though	I	believe	that	people	who	don't	know	BASIC	at	all	should	comprehend	these	lessons	too.	I'm	using	here
the	word	(well,	it's	an	acronym)	"BASIC"	and	not	FreeBASIC,	because	if	you	know	the	basics	of	QuickBASIC,	Visual
BASIC	or	any	other	variant	of	BASIC,	these	lessons	should	be	easy	to	comprehend.

I'm	starting	this	series	because	I	feel	that	tutorials	of	this	kind	were	always	something	what	our	community	was
lacking,	even	before	FreeBASIC.	I've	corresponded	during	my	programming	lifetime	with	quite	few	programming
newbies,	and	they	all	had	almost	identical	problems	when	trying	to	program	a	game.	So	I	think	I'm	able	to	detect	what
beginners	need	quite	well	and	on	what	way	the	stuff	needs	to	be	explained	to	them.	I	also	remember	my	beginnings
and	the	problems	I	had	with	using	separated	routines	that	were	never	meant	to	be	combined	and	used	to	create	a
game.	The	breaking	point	for	me	was	the	moment	when	I	discovered	RelLib	(a	QuickBASIC	graphics	library	by
R.E.Lope)	and	the	scrolling	engine	that	was	created	with	it.	That	scrolling	engine	motivated	me	to	explore	its
mechanics	and	expand	on	it	(with	some	help	from	R.E.Lope).	In	one	single	moment	I	acquired	the	ability	to	program
most	of	the	stuff	(necessary	to	complete	a	game)	by	myself.	It's	like	driving	a	bike.	The	moment	when	you	acquire	the
actual	skill	lasts	for	one	second.

So	that's	my	goal	with	this	series.	To	learn	you	enough	so	you	would	be	self-sufficient	in	90%	of	cases.	And	the	best
way	to	learn	new	things	is	to	see	them	applied.	Many	tutorials	fail	in	this	by	being	too	generic.	You	will	always	need
help	from	more	expert	programmers,	but	the	point	is	that	you	don't	need	it	on	every	step.	Have	in	mind	that	this
depends	on	the	type	of	game	you	are	developing	and	the	graphics	library	/	tools	you	are	using.

The	example	programs	and	mini-games	we'll	create	will	be	coded	in	GFXlib	(the	FreeBASIC's	built-in	graphics
library).	Lynn's	Legacy,	ArKade,	Mighty	Line	and	Poxie	were	coded	in	it	(among	many	others),	and	I	think	those
games	are	good	references.	But	don't	worry.	Switching	from	one	graphics	library	to	another	is	relatively	easy	when
you	know	how	to	code	in	at	least	one.

This	tutorial	will	not	deal	with	raycasting	engines	(3D	programming)	or	something	"advance"	like	that.	If	you	want	that
but	are	a	beginner,	you	NEED	the	following	lessons	FIRST.

Since	we	are	going	to	code	in	FreeBASIC	you	need	to	get	FreeBASIC	first	(if	you	don't	have	it	yet)	from
http://www.freebasic.net	(the	examples	were	compiled	with	version	0.18b),	and	one	of	the	FreeBASIC	IDEs	available.
I	recommend	FBIDE	or	FBEdit.

Example	#1:	A	simple	program	-	The	circle	moves!

We'll	start	with	some	elementary	stuff.	The	first	program	we'll	code	will	not	feature	external	graphics,	because	loading
graphics	from	external	files	(usually	BMP	images)	is	always	a	dirty	business	and	will	confuse	you	at	this	point.	Trust
me	on	this.	Be	patient.

The	program	we'll	create	will	allow	you	to	move	a	circle	around	the	screen.	A	very	simple	program,	but	through
making	it	we'll	learn	important	facts	and	a	lot	of	elementary	statements	and	methods	necessary	to	create	any	game
with	GFXlib.

As	we	are	using	GFXlib	you	need	to	be	aware	of	the	gfxlib.txt	file(GFXlib's	documentation)	placed	in	the
/FreeBASIC/docs	directory.	That's	our	Bible	and	very	useful	with	these	lessons	since	I	will	not	explain	every	parameter
of	every	statement	used	in	the	example	programs	(most	likely).	This	document	is	somewhat	outdated	as	FreeBASIC
moved	on	with	new	versions,	so	be	sure	to	refer	to	this	online	FreeBASIC	manual	too	(part	of	the	FreeBASIC	Wiki).

Open	a	new	program	in	FBIDE.	First	thing	we'll	do	is	set	the	graphic	mode.	What's	setting	a	graphic	mode?	Choosing
the	program's	graphic	resolution	and	color	depth	in	bits	(8-bit,	16-bit,	...).	For	example,	8-bit	color	depth	is	the
standard	256	colors	mode	(8	bits	per	pixel).	The	graphic	mode	is	set	with	the	SCREEN	statement	like	this:

				Screen	13,8,2,0

13	means	320*200	graphic	resolution,	8	means	8-bit	graphics,	2	means	two	work	pages,	and	0	means	window	mode
(input	1	for	full	screen	mode).	Minimum	of	2	work	pages	is	recommended	for	any	graphics	dependant	program.	These
things	will	become	clearer	a	little	bit	later.	For	more	details	about	the	SCREEN	statement	refer	to	GFXlib's
documentation	or	FreeBASIC	Wiki	(a	more	"advanced"	version	of	the	SCREEN	statement	is	SCREENRES).

The	next	thing	we'll	do	is	set	a	loop	that	plays	until	the	user	pushes	the	letter	Q	on	the	keyboard.	Loops	are	foundation
of	any	program,	not	just	a	computer	game.	Coding	a	program	on	a	way	it	would	stop/halt	every	now	and	then	and	wait
for	the	user	to	type	something	in	is	a	BAD	and	WRONG	way	to	program	anything	you	want	for	other	people	to	play.
We'll	use	loops	as	places	where	the	program	waits	for	the	user	to	do	something	(clicks	with	mouse	or	pushes	a	key)
and	where	the	program	executes	some	routine	according	to	user's	action.	It	will	also	be	used	as	a	place	where	objects
not	controlled	by	the	player	(enemies)	are	managed/moved.	Loops	are	a	must	have.

If	you	are	aware	of	all	these	things,	you	can	skip	to	the	end	of	this	section	and	download	the	completed	example	(with
comments).	If	there	is	something	in	it	you	don't	understand,	then	get	back	here.

We	can	set	a	loop	on	more	ways	(with	WHILE:WEND	statements,	using	the	GOTO	statement	-	Noooo!),	but	the	best
way	is	to	use	DO...LOOP.	This	type	of	loop	simply	repeats	a	block	of	statements	in	it	until	the	condition	is	met.	You	set
the	condition(s)	after	LOOP	with	UNTIL.	Check	the	following	code:

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				Do

				'	We'll	put	our	statements	here	later

				Loop	Until	Inkey$	=	"Q"	Or	Inkey$	=	"q"

If	you	compile	this	code	and	run	it,	you'll	get	a	small	black	empty	320*200	window	which	you	can	turn	off	by	pushing
the	letter	Q	(you	might	need	to	hold	it).	The	program	simply	loops	until	you	press	"Q	or	"q".	I	used	both	upper	and
lower	case	"Q"	symbol	in	case	Caps	Lock	is	turned	on	on	your	keyboard.	INKEY$	is	a	statement	that	returns	the	last
key	pushed	on	the	keyboard.	I	will	explain	later	why	it	shouldn't	be	used	with	games	and	what's	a	better	substitute.

To	draw	a	circle	we'll	use	the	CIRCLE	statement	(refer	to	GFXlib's	documentation).	Check	the	following	code:

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				Do

				Circle	(150,	90),	10,	15	

				Loop	Until	Inkey$	=	"Q"	Or	Inkey$	=	"q"

The	last	code	draws	a	small	circle	on	coordinates	150,	90	with	a	radius	of	10	and	color	15	(plain	white)	in	a	loop,
which	you	can	check	if	you	compile	the	code.	So	how	to	move	that	circle?	We	need	to	connect	its	coordinates	with
VARIABLES.	For	this	we'll	use	two	variables	named	circlex	and	circley.	Check	the	following	code:

				Dim	Shared	As	Single	circlex,	circley

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				circlex	=	150	'	Initial	circle	position

				circley	=	90

				Do

				Circle	(circlex,	circlex),	10,	15	

				Loop	Until	Inkey$	=	"Q"	Or	Inkey$	=	"q"

This	makes	no	change	in	the	result	of	our	program,	but	it's	a	step	to	what	we	want	to	accomplish.	You	can	change	the
amounts	to	which	circlex	and	circley	equal	to	change	the	circle's	initial	position,	but	that's	not	what	we	really	want.	In
order	to	move	the	circle	we	need	to	connect	circlex	and	circley	variables	with	keyboard	statements.

We	declared	first	two	variables	in	our	program.	Since	FreeBASIC	ver.0.17	all	variables	in	FreeBASIC	programs	MUST
be	declared,	although	if	you	use	-lang	qb	command	line	during	compiling	you	can	compile	using	old	QBasic
compatibility	dialect	(I	don't	recommend	it	as	it	will	keep	you	deprived	of	possible	advances	and	extensions	which
default	FB	compatibility	already	provides	and	will	provide).	For	more	info	on	this	check	the	appropriate	page	of	the
FreeBASIC	wiki	-	Using	the	command	line.	Variables	are	declared	(dimensioned)	on	this	way:

				Dim	variable_name	[As	type_of_variable]	

Or...

				Dim	[As	type_of_variable]	variable1,	variable2,	

The	data	inside	[]	is	optional	and	the	brackets	are	not	used.	Types	of	variables	available	in	FreeBASIC	are	BYTE,
SHORT,	INTEGER,	STRING,	SINGLE,	DOUBLE	and	few	others,	but	I	don't	find	details	about	them	important	on	this
level.	What	you	need	to	know	now	is	that	you	should	declare	variables	or	arrays	AS	INTEGER	when	they	hold
graphics	data	(memory	buffers	holding	graphics)	or	when	they	represent	data	which	doesn't	need	decimal	precision
(number	of	lives,	points,	etc.).	Variables	that	need	decimal	precision	are	declared	AS	SINGLE	or	DOUBLE.	Those	are
usually	variables	used	in	games	which	rely	on	physics	formulae	like	arcade	car	driving	games	or	jump	'n	run	games
(gravity	effect).	Simply,	the	difference	between	the	speed	of	two	pixels	per	cycle	and	the	speed	of	one	pixel	per	cycle
is	most	often	too	large,	and	in	those	limits	you	can't	emulate	effects	like	fluid	movement	on	the	most	satisfactory	way.

Also,	behind	DIM	you	should	put	SHARED	which	makes	that	the	specific	variable	readable	in	the	entire	program	(all
subroutines).	Don't	use	SHARED	only	with	variables	declared	inside	subroutines	(I	do	it	very	rarely).	If	you	are	going
to	declare	ARRAYS	inside	a	subroutine,	I	advise	you	to	replace	DIM	with	REDIM.	Strings	are	used	to	hold	text	data.
Like	YourName	=	"Dodo",	but	you	need	to	declare	YourName	AS	STRING	first.

Now	I	will	introduce	a	new	statement	instead	of	INKEY$	which	can	detect	multiple	keypresses	and	is	much	more
responsive	(perfect	response)	than	INKEY$.	The	flaw	of	INKEY$,	as	well	as	being	very	non-responsive	(which	you
probably	were	able	to	detect	when	trying	to	shut	down	the	previously	compiled	examples),	is	that	it	can	detect	only
one	keypress	at	any	given	moment	which	renders	it	completely	unusable	in	games.

The	substitute	we'll	use	is	MULTIKEY	(a	GFXlib	statement)	which	features	only	one	parameter,	and	that's	the	DOS
scancode	of	the	key	you	want	to	query.	You	might	be	lost	now.	DOS	scancode	is	nothing	but	a	code	referred	by	the
computer	to	a	certain	keyboard	key.	If	you	check	Appendix	A	of	the	GFXlib's	documentation,	you	will	see	what	each
code	stands	for.	For	example,	MULTIKEY(&h1C;)	queries	if	you	pushed	ENTER.	GFXlib	allows	you	to	replace	these
scancodes	with	"easy	to	read"	constants	like	it's	explained	in	Appendix	A.	To	use	GFXlib	you	need	to	include	its	.bi	file
(fbgfx.bi)	into	your	source.	What's	a	.bi	file?	Well,	it	can	be	any	kind	of	module	you	would	attach	to	your	source	code
and	which	can	feature	various	subroutines	(if	you	don't	know	what	a	subroutine	is,	we'll	get	on	that	later)	and
declarations	used	in	your	main	module.	The	code	you	need	to	add	are	these	two	lines	as	it	follows:

				#include	"fbgfx.bi"	

				Using	FB

It's	best	to	put	these	two	lines	somewhere	on	the	beginning	of	your	program	(before	or	after	the	sub	declarations).	You
don't	need	to	set	a	path	to	fbgfx.bi	since	it's	placed	in	the	/FreeBASIC/inc	directory.	You	only	need	to	set	a	path	to	a	.bi
file	if	it's	not	in	that	directory	or	not	in	the	directory	where	the	source	code	is.	Using	FB	tells	the	program	that	we	will
be	accessing	GFXlib	symbols	without	namespace,	meaning,	without	having	to	put	'FB.'	in	front	of	every	GFXlib
symbol.	Refer	to	FreeBASIC	Wiki	on	USING.

Now	the	fun	starts.

We	will	add	a	new	variable	named	circlespeed	which	flags	(sets)	how	many	pixels	the	circle	will	move	in	one	cycle
(loop).	The	movement	will	be	done	with	the	arrows	key.	Every	time	the	user	pushes	a	certain	arrow	key	we	will	tell	the
program	to	change	either	circlex	or	circley	(depends	on	the	pushed	key)	by	the	amount	of	circlespeed.	Check	the
following	code:

				#include	"fbgfx.bi"

				Using	FB

				Dim	Shared	As	Single	circlex,	circley,	circlespeed

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				circlex	=	150			'	Initial	circle	position

				circley	=	90

				circlespeed	=	1	'	Circle's	speed	=>	1	pixel	per	loop

				Do

				Circle	(circlex,	circley),	10,	15

				'	According	to	pushed	key	we	change	the	circle's	coordinates.

				If	MultiKey(SC_RIGHT)	Then	circlex	=	circlex	+	circlespeed

				If	MultiKey(SC_LEFT)	Then	circlex	=	circlex	-	circlespeed

				If	MultiKey(SC_DOWN)	Then	circley	=	circley	+	circlespeed

				If	MultiKey(SC_UP)	Then	circley	=	circley	-	circlespeed

				Loop	Until	MultiKey(SC_Q)	Or	MultiKey(SC_ESCAPE)

As	you	see	we	also	changed	the	condition	after	UNTIL	since	we	are	using	MULTIKEY	now.	Now	you	can	exit	the
program	by	pressing	ESCAPE	too	(I	added	one	more	condition).

If	you	compile	the	last	version	of	the	code,	two	things	we	don't	want	to	happen	will	happen.	The	program	will	run	so
fast	you	won't	even	notice	the	movement	of	the	circle,	and	the	circle	will	"smear"	the	screen	(the	circles	drawn	on
different	coordinates	in	previous	cycles	will	remain	on	the	screen).	To	avoid	smearing	you	need	to	have	the	CLS
statement	(clears	the	screen)	in	the	loop	so	that	in	every	new	cycle	the	old	circle	from	the	previous	cycle	is	erased
before	the	new	is	drawn.

To	reduce	the	speed	of	the	program	the	quickest	fix	is	the	SLEEP	command.	What	it	does?	It	waits	until	the	specified
amount	of	time	has	elapsed	(in	milliseconds)	or	a	key	is	pressed.	To	escape	the	key	press	option	use	SLEEP
milliseconds,	1.	This	statement	is	also	an	efficient	solution	for	the	100	%	CPU	usage	problem.	You	see,	if	you	don't
use	that	statement	any	kind	of	FreeBASIC	program	with	a	loop	(even	the	simplest	one)	will	hold	up	all	the	computer

cycles	and	make	all	the	other	Windows	tasks	you	might	be	running	to	crawl.	It	also	makes	difficult	for	you	to	operate
with	other	tasks	while	that	kind	of	FreeBASIC	program	is	running.	Err...this	is	not	a	huge	problem	and	a	fair	amount	of
programmers	that	have	released	FreeBASIC	games	so	far	did	not	bother	to	fix	it.

Copy	and	paste	the	following	code	and	compile	it:

				#include	"fbgfx.bi"

				Using	FB

				Dim	Shared	As	Single	circlex,	circley,	circlespeed

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				circlex	=	150			'	Initial	circle	position

				circley	=	90

				circlespeed	=	1	'	Circle's	speed	=>	1	pixel	per	loop

				Do

				Cls

				Circle	(circlex,	circley),	10,	15

				'	According	to	pushed	key	we	change	the	circle's	coordinates.

				If	MultiKey(SC_RIGHT)	Then	circlex	=	circlex	+	circlespeed

				If	MultiKey(SC_LEFT)	Then	circlex	=	circlex	-	circlespeed

				If	MultiKey(SC_DOWN)	Then	circley	=	circley	+	circlespeed

				If	MultiKey(SC_UP)	Then	circley	=	circley	-	circlespeed

				Sleep	10,	1

				Loop	Until	MultiKey(SC_Q)	Or	MultiKey(SC_ESCAPE)

Viola!	Our	circle	is	moving	and	"slow	enough".

The	last	version	of	the	code	does	not	represent	the	desirable	way	of	coding,	but	I	had	to	simplify	the	code	in	order	to
make	this	lesson	easy	to	understand.	What	we	need	to	do	next	is	declare	our	variables	on	the	way	they	should	be

declared	in	any	"serious"	program,	and	show	why	we	are	having	two	work	pages	and	what	we	can	do	with	them.

The	way	variables	are	declared	in	the	above	code	is	not	the	most	convenient	in	larger	projects	where	we	have	huge
amount	of	variables	usually	associated	to	several	objects	(an	object	can	be	the	player,	enemy	or	anything	that	is
defined	with	MORE	THAN	ONE	variable).

So	first	we'll	define	a	user	defined	data	type	with	the	statement	TYPE	that	can	contain	more	variables/arrays	(stay
with	me).	We'll	name	this	user	data	type	ObjectType.	The	code:

				Type	ObjectType

									x	As	Single

									y	As	Single

									speed	As	Single

				End	Type

After	this	we	declare	our	circle	as	an	object:

				Dim	Shared	CircleM	As	ObjectType

				'	We	can't	declare	this	variable	with	"Circle"

				'	since	then	FB	can't	differ	it	from	

				'	the	statement	CIRCLE,	thus	"CircleM".

How	is	this	method	beneficial?	It	allows	us	to	manage	the	program	variables	on	a	more	efficient	and	cleaner	way.
Instead	of	(in	this	example)	having	to	declare	each	circle's	characteristic	(it's	position,	speed,	etc.)	separately,	we'll
simply	use	a	type:def	that	includes	all	these	variables	and	associate	a	variable	or	an	array	to	it	(in	this	case	that's
CircleM).	So	now	the	circle's	x	position	is	flagged	with	CircleM.X,	circle's	y	position	with	CircleM.Y	and	circle's	speed
with	CircleM.speed.	I	hope	you	see	now	why	this	is	better.	One	user	defined	type	can	be	connected	with	more
variables	or	arrays.	In	this	example	you	can	add	another	object	with	something	like	DIM	SHARED	EnemyCircle(8)	AS
ObjectType	which	would	allow	us	to	manage	8	"evil"	circles	with	a	specific	set	of	routines	(an	AI	of	some	sort)	using
the	variables	from	the	ObjectType	type:def	(x,	y,	speed),	and	these	circles	could	"attack"	the	user's	circle	on	some
way.	In	the	next	lesson	all	this	will	become	more	clear.	Have	in	mind	that	not	ALL	variables	need	to	be	declared	using
a	type:def.	This	is	only	for	"objects"	in	your	game	that	are	defined	(characterized)	with	more	variables	(like	a	hero
determined	by	health,	money,	score,	strength,	etc.).

After	the	change	the	final	version	of	the	code	looks	like	this:

				#include	"fbgfx.bi"

				Using	FB	

				'	Our	user	defined	type.

				Type	ObjectType

									x	As	Single

									y	As	Single

									speed	As	Single

				End	Type

				Dim	Shared	CircleM	As	ObjectType

				'	We	can't	declare	this	variable	with	"Circle"

				'	since	then	FB	can't	differ	it	from	

				'	the	statement	CIRCLE,	thus	"CircleM".

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				SetMouse	0,0,0	'	Hides	the	mouse	cursor

				CircleM.x	=	150			'	Initial	circle's	position

				CircleM.y	=	90

				CircleM.speed	=	1	'	Circle's	speed	=>	1	pixel	per	loop

				Do

				Cls

				Circle	(CircleM.x,	CircleM.y),	10,	15

				'	According	to	pushed	key	we	change	the	circle's	coordinates.

				If	MultiKey(SC_RIGHT)	Then	CircleM.x	=	CircleM.x

				If	MultiKey(SC_LEFT)	Then	CircleM.x	=	CircleM.x	

				If	MultiKey(SC_DOWN)	Then	CircleM.y	=	CircleM.y	

				If	MultiKey(SC_UP)	Then	CircleM.y	=	CircleM.y	-	

				Sleep	10,	1	'	Wait	for	10	milliseconds.

				Loop	Until	MultiKey(SC_Q)	Or	MultiKey(SC_ESCAPE)

You	will	notice	I	added	one	more	statement	in	the	code.	The	SETMOUSE	statement	positions	the	system	mouse
cursor	(first	two	parameters)	and	shows	or	hides	it	(third	parameter;	0	hides	it).	You	should	input	this	statement	with
these	parameters	in	every	program	AFTER	the	SCREEN	statement	(IMPORTANT!)	by	default,	because	even	if	your
program	is	going	to	feature	a	mouse	controllable	interface,	you	will	most	likely	draw	your	own	cursor.	Trust	me	on	this.
Uh,	I	using	that	line	way	too	often.

Download	the	completed	example	with	extra	comments	inside	the	source:	move_circle.zip

Phew,	we	are	done	with	the	first	example.	Some	of	you	might	think	I	went	into	too	many	details,	but	I	feel	all	this
dance	was	needed	to	make	the	next	examples	and	lessons	a	more	enjoyable	adventure.

Nevertheless,	this	example	is	far	from	what	we	want,	right?	So	the	next	chapter	will	learn	you	how	to	load	graphics
from	external	files	among	other	things.	

Example	2:	A	warrior	running	around	a	green	field

In	the	next	example	we	will	be	applying	all	the	knowledge	from	the	first	example,	so	don't	expect	for	this	example	to
go	into	every	statement	again.	I	will	explain	every	new	statement	and	just	brush	off	the	old	ones.

In	this	section	we'll	start	to	code	our	mini-game	which	won't	be	completed	in	this	lesson.	In	this	lesson	we'll	just	create
a	program	where	a	warrior	runs	around	a	green	field	(single	screen).

First	I'll	show	you	what	graphics	we'll	be	using.	We	are	going	to	work	in	8-bit	color	depth	mode,	so	the	images	that	we
are	going	to	use	need	to	be	saved	in	that	mode	(256	colors	mode).	For	warrior	sprites	I'll	use	the	sprites	of	the	main
character	from	my	first	game	Dark	Quest.

http://hmcsoft.org/fb/htpagl1-sprites.png

As	you	see	this	image	features	12	sprites	of	our	warrior,	each	20*20	pixels	large.	Two	for	each	direction	(walk
animation)	and	one	sprite	for	each	direction	when	the	warrior	is	swinging	with	his	sword.	Sword	swinging	won't	be
implemented	in	the	first	lesson	but	will	become	necessary	later.

Second	image	is	the	background	image	which	you	can	check/download	if	you	click	here	(320*200	pixels	large,	8-bit
BMP	image).

Download	both	images	and	place	them	where	you	will	place	the	source,	or	just	download	the	completed	example	at

the	end	of	this	section.

On	the	beginning	of	our	program	we	should	include	fbgfx.bi,	same	as	in	the	first	example,	and	then	set	the	same
graphic	mode.	The	code:

				#include	"fbgfx.bi"	

				Using	FB

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				SetMouse	0,0,0		'	Hides	the	mouse	cursor

Now	we	will	declare	two	memory	pointers	that	will	point	to	memory	buffers	where	our	graphics	will	be	stored	(one	for
the	sprites	and	one	for	the	background).

The	first	pointer	we'll	name	background1	and	declare	it	with	the	following	line:

				Dim	Shared	background1	As	Any	Ptr

ANY	PTR	tells	us	that	background1	will	actually	be	a	memory	pointer.	A	pointer	defined	as	an	ANY	PTR	disables	the
compiler	checking	for	the	type	of	data	it	points	to.	It	is	useful	as	it	can	point	to	different	types	of	data.	We'll	use
pointers	because	we	will	allocate	memory	for	our	graphics	using	the	IMAGECREATE	statement.	IMAGECREATE
allocates	the	right	amount	of	memory	for	a	piece	of	graphics	(sprite/image)	if	we	input	its	height	and	width.	Otherwise
we	would	have	to	do	it	manually,	meaning,	calculate	the	needed	amount	of	memory	as	the	result	of	the	sprite	size,	bit-
depth	and	variable	size.	IMAGECREATE	does	this	for	use.	As	IMAGECREATE	results	with	a	pointer,	we	need	to	refer
a	pointer	to	it	and	not	a	variable.	Don't	worry	if	you	don't	know	anything	about	pointers.	You	don't	need	to	(to
comprehend	this	tutorial).

The	next	pointer	we'll	declare	will	point	to	the	memory	buffer	that	holds	the	12	warrior	sprites.	We	will	dimension	this
pointer	as	a	single	dimension	array,	each	element	in	the	array	representing	one	sprite.

				Dim	Shared	WarriorSprite(12)	As	Any	Ptr

Both	these	lines	should	be	put	in	the	code	before	the	SCREEN	statement.	That's	the	way	you'll	write	every	program.
Subroutine	declarations,	then	variable	declarations,	then	extra	subroutine	declarations	if	needed,	and	then	the	real
code.	The	beginning	of	our	program	should	now	look	like	this:

				#include	"fbgfx.bi"	

				Using	FB

				Dim	Shared	background1	As	Any	Ptr	'	A	pointer	that	points	to	a	memory

																																						'	buffer	holding	the	background	graphics

				Dim	Shared	WarriorSprite(12)	As	Any	Ptr	'	A	pointer	that	points	to	a	memory

																																												'	buffer	holding	the	warrior	sprites

				Screen	13,8,2,0	'	Sets	the	graphic	mode

				SetMouse	0,0,0		'	Hides	the	mouse	cursor

After	the	screen	resolution,	color	depth	and	number	of	work	pages	are	set,	we	will	hide	our	work	page	before	loading
graphics	onto	it	since	we	don't	want	for	the	user	to	see	all	of	the	program's	graphics	every	time	he	or	she	starts	our
program.	To	accomplish	that	we'll	use	the	SCREENSET	statement.	What	it	does?	It	sets	the	work	page	(first
parameter)	and	the	visible	page	(second	parameter).	In	our	case	we	will	set	page	1	as	the	work	page	and	page	0	as
the	visible	page.	After	using	'SCREENSET	1,	0'	every	time	we	draw	or	load	something	on	the	screen	it	will	be
loaded/drawn	on	the	work	page	and	won't	be	visible	to	the	user	until	we	use	the	statement	SCREENCOPY	or
SCREENSET	with	different	parameters	(SCREENSET	1,	1).	This	allows	us	to	load	graphics	onto	the	screen	we	don't
want	for	the	user	to	see	and	delete	it	before	coping	the	content	on	the	work	page	to	the	visible	page.	This	page
flipping	is	also	useful	in	loops	with	"graphics	demanding"	programs	to	avoid	flicker	or	some	other	unwanted
occurrence.

So	Biff	wants	to	have	a	high	score	table	in	his	game 	

Written	by	Lachie	Dazdarian	(September,	2007)

Introduction

On	more	than	one	occasion	I	was	inquired	by	a	programming	newbie	about	a	set	of	routines	that	load	a	high	score	table	from	an	external	file,	input	a
new	high	score	properly,	and	then	save	the	modified	high	scores	table.
Using	the	same	set	of	routines	for	high	scores	since	the	days	of	Ball	Blazing	Fantasy,	I	decided	to	write	a	tutorial	on	them	and	implement	some	lacking
flexibility	(plus	few	fixes)	there,	something	that	was	long	needed	to	be	done	but	wasn't	due	the	fact	the	routines	did	their	job	perfectly.
The	tutorial	will	also	point	you	out	to	some	useful	(for	high	scores	table	managing)	additional	routines,	like	the	name	inputting	and	file	encryption	ones,
not	written	by	me.

Let's	do	it!

It's	fairly	obvious	we'll	need	two	separate	subroutines,	one	for	loading/reading	our	high	score	table,	and	one	for	writing/modifying	it.
We'll	start	with	loading/reading	of	a	high	score	table,	as	that	part	is	easier	and	a	logical	start.
The	subroutine	for	reading	a	high	score	table	should	work	relatively	simple.	It	will	open	a	file	which	contains	name	and	score	entries,	storing	them	in
appropriate	variables	and	then	printing	them	on	the	screen,	this	part	being	most	dependent	on	the	developer's	wishes	and	needs	(the	method	of
printing,	position	of	the	high	score	table,	its	formatting,	etc.).
First,	we	should	create	a	text	file	containing	our	name	and	score	entries.	Create	a	file	named	'high_scores.dat',	open	it	with	Notepad	and	input	this:

FRED

10000

BILL

9000

SARAH

8000

BOB

7000

RED

6000

SUE

5000

DAVID

4000

GREG

3000

TIM

2000

GEORGE

1000

It	contains	10	high	score	entries,	formatted	with	name	followed	by	the	accompanying	score.	I	find	this	formatting	the	most	suitable	for	editing,	although
you	can	pick	one	where	all	the	names	all	listed	first,	and	then	followed	by	all	the	scores.	Still,	no	important	benefits	from	any	type	of	these	two
formattings,	so	we'll	work	with	the	one	I	stared	with.

This	file	will	be	used	with	the	following	'ReadHighScore'	subroutine.

Let's	start	our	main	program	with	some	needed	initiation	statements:

#include	"fbgfx.bi"

Using	FB

Const	num_of_entries	=	10

'num_of_entries'	will	flag	the	number	of	score	entries	(names	or	scores	in	the	high	score	table),	and	should	correspond	with	the	number	of	entries	in
the	'high_score.dat'	file	(not	lines,	but	high	score	ENTRIES!).

We	should	now	declare	our	subroutine	with:

Declare	Sub	ReadHighScore	(highscore_file	As	String)

The	'highscore_file'	variable	will	flag	the	file	you	want	for	the	'ReadHighScore'	subroutine	to	open.	Not	necessary	to	declare	the	subroutine	like	this,	but
this	adds	some	flexibility	to	it.

After	this,	we	should	declare	the	following	variables:

Dim	Shared	workpage	As	Integer

Dim	Shared	hname(num_of_entries)	As	String

Dim	Shared	hscore(num_of_entries)	As	String

'workpage'	variable	is	not	related	to	this	tutorial	and	will	be	used	to	swap	screen	work	pages	inside	the	loop	where	the	high	score	table	will	be	drawn.
'hname'	array	will	hold	the	name	entries,	while	'hscore'	array	will	hold	the	score	entries	from	the	high	score	table.

Finally,	let's	initialize	our	screen	and	work/visible	pages	with:

ScreenRes	640,	480,	32,	2,	GFX_ALPHA_PRIMITIVES+GFX_WINDOWED

ScreenSet	1,	0

Following	this	code	we	should	place	this:

ReadHighScore	"high_scores.dat"

End

Sub	ReadHighScore	(highscore_file	As	String)

End	Sub

You	can	compile	this	code,	but	nothing	will	happen	as	the	'ReadHighScore'	subroutine	is	empty.	Let's	fill	it	up!
We	need	to	start	it	by	opening	the	'high_scores.dat'	file	and	reading	the	needed	data	from	it.	Please	refer	to	FreeBASIC's	OPEN	statement	for	info	on
file	opening	in	FreeBASIC	if	not	familiar	with	it.

As	we	want	to	open	the	file	using	a	FREE	file	handle,	we	need	to	dimension	a	variable	that	will	hold	this	information	and	pass	it	into	it.	Use	this	code:

Dim	free_filehandle	As	Integer

free_filehandle	=	FreeFile

We	should	now	open	the	high	score	file	with:

Open	highscore_file	For	Input	As	#free_filehandle

After	the	file	is	opened	for	reading	(FOR	INPUT),	let's	use	a	for	loop	to	retrieve	all	the	data	from	it	and	store	it	in	our	'hname'	and	'hscore'	variables:

For	count_entry	As	Integer	=	1	To	num_of_entries

Input	#free_filehandle,	hname(count_entry)

Input	#free_filehandle,	hscore(count_entry)

'	If	the	end	of	file	is	reached,	exit	the	FOR	loop.

If	EOF(free_filehandle)	Then	Exit	For

Next	count_entry

Note	how	the	'count_entry'	variable	is	used	and	how	for	each	entry	the	name	is	stored	FOLLOWED	by	the	accompanying	score.	'hname(1)'	will	flag
the	name	with	the	top	score,	while	'hscore(1)'	the	top	score.	'hname(num_of_entries)'	will	flag	the	name	with	the	lowest	score,	while
'hscore(num_of_entries)'	the	lowest	score	in	the	high	score	table.

Don't	forget	now	to	close	the	file	with:

Close	#free_filehandle	

All	we	need	now	is	a	loop	that	will	display	all	these	names	and	scores,	nicely	arranged	in	a	table.

Do

ScreenLock

ScreenSet	workpage,	workpage	Xor	1

Line	(0,0)-(639,479),	RGBA(0,	0,	0,	255),	BF

Draw	String	(285,	120),	"TOP	SCORES",	RGBA(255,255,	

For	count_entry	As	Integer	=	1	To	num_of_entries

Draw	String	(270,	140	+	count_entry	*	12),	hname(count_entry

Draw	String	(340,	140	+	(count_entry)	*	12),	hscore(

Next	count_entry

Draw	String	(245,	400),	"Press	ESCAPE	to	exit",	RGBA

workpage	Xor	=	1

ScreenUnlock

Sleep	10

Loop	Until	MultiKey(SC_ESCAPE)

A	simple	DO...LOOP	that	ends	when	the	user	pushes	ESCAPE.
I	used	Draw	String	to	print	the	names	and	the	scores.	Another	FOR	loop	is	used	to	loop	through	the	name	and	score	entries,	and	to	display	them	lower
score	under	the	next	higher	one	(note	how	the	Y	position	of	the	text	to	display	is	connected	with	the	'count_entry'	variable	-	increase	12	to	get	more
space	between	scores	vertically).	I	also	used	a	small	trick	to	display	each	next	score	with	lower	translucency	(last	parameter	in	the	RGBA	function).

After	placing	all	this	code	in	the	'ReadHighScore'	subroutine,	you	can	compile	it	and	the	desired	result	will	appear	on	the	screen.

Now	when	we	are	done	with	the	easy	part	of	the	problem,	let's	move	onto	writing	new	entries	into	our	high	score	table.

I	constructed	the	'WriteHighScore'	subroutine	like	this:

Sub	WriteHighScore	(highscore_file	As	String,	users_score

Which	means	it	will	be	called	with	a	high	scores	table	file	and	a	score	we	want	to	input.	If	this	score	evaluates	to	be	lower	that	the	lowest	in	the	high
score	table,	no	code	will	be	executed.

This	subroutine	should	start	with	the	following	code:

Dim	free_filehandle	As	Integer

Dim	startwrite	As	Integer

free_filehandle	=	FreeFile

Open	highscore_file	For	Input	As	#free_filehandle

For	count_entry	As	Integer	=	1	To	num_of_entries

Input	#free_filehandle,	hname(count_entry)

Input	#free_filehandle,	hscore(count_entry)

'	If	the	end	of	file	is	reached,	exit	the	FOR	loop.

If	EOF(free_filehandle)	Then	Exit	For

Next	count_entry

Close	#free_filehandle

As	you	see	it	starts	as	the	'ReadHighScore'	subroutine.	In	order	to	evaluate	the	user's	score	and	alter	the	very	high	score	table	we	need	to	open	the
file	containing	our	high	score	entries	and	store	them	in	appropriated	variables.	'startwrite'	variable	will	flag	where	the	new	entry	is	to	be	placed	inside
the	high	score	table	(on	which	position).
The	code	that	follows	should	be	opened	with	an	IF	clause	that	will	execute	the	code	inside	it	only	if	the	user's	score	is	higher	than	the	lowest	score	in
the	high	score	table	(naturally):

If	users_score	>	hscore(num_of_entries)	Then

For	check_score	As	Integer	=	1	To	num_of_entries

If	users_score	>	hscore(check_score)	Then

InputName

'	Record	the	position	where	the	new	score	is

'	to	placed	and	exit	FOR	loop.

startwrite	=	check_score

Exit	For

End	If

Next	check_score

The	FOR	loop	'goes'	through	the	high	score	entries	from	the	highest	to	the	lowest,	and	when	an	entry	with	a	lower	score	is	found	this	is	the	place
(flagged	with	'startwrite'	and	'check_score')	where	our	new	entry	will	be	recorded.	For	example,	in	the	first	loop	the	program	checks	for	'hscore(1)'	-	the
top	score	in	the	high	score	table.	If	the	user's	score	ends	up	being	higher	than	it,	it's	obvious	the	user's	score	is	the	new	top	score	and	'startwrite'
needs	to	be	1.	'InputName'	is	a	subroutine	we'll	create	later,	and	inside	it	the	user	will	be...inputting	his	name.	:P

What	follows	is	the	'nexus'	of	our	routine,	the	code	that	places	the	new	high	score	entry	on	the	proper	position,	and	bumps	all	the	lower	ones	one
position	down.

Check	the	following	code:

If	startwrite	=	num_of_entries	Then

hscore(startwrite)	=	users_score

hname(startwrite)	=	playername

Else

	

For	write_pos	As	Integer	=	(num_of_entries	-	1)	To	startwrite

hscore(write_pos	+	1)	=	hscore(write_pos)

hname(write_pos	+	1)	=	hname(write_pos)

Next	write_pos

hscore(startwrite)	=	users_score

hname(startwrite)	=	playername

End	If

First	condition	checks	if	the	new	entry	is	the	lowest	(last)	in	the	high	score	table.	If	this	is	the	case,	we	don't	need	to	bump	down	any	entries	with	a
lower	score	as	there	are	none,	but	only	replace	the	lowest	score	entry	with	the	new	one.
If	this	is	NOT	the	case,	a	FOR	loop	is	executed	which	loops	from	the	lowest	high	score	entry	to	the	new	high	score	entry	(flagged	with	'startwrite'),
meaning,	from	bottom	to	top.

For	example,	if	our	high	score	table	has	10	entries	and	the	new	entry	needs	to	be	placed	on	position	5,	the	loop	goes	from	9	to	5.	When	"write_pos"	is
9,	values	from	'hscore(9)'	and	'hname(9)'	are	passed	to	'hscore(9+1)'	and	'hname(9+1)'.	When	'write_pos'	is	8,	values	from	'hscore(8)'	and	'hname(8)'

are	passed	to	'hscore(8+1)'	and	'hname(8+1)'.	And	so	on.

After	the	FOR	loop	we	need	to	input	the	new	entry	on	its	appropriate	position	(flagged	with	'startwrite'),	new	entry	being	set	with	'users_score'	and
'playername',	where	'playername'	will	be	inputted	inside	the	'InputName'	sub.

The	last	thing	in	the	'WriteHighScore'	sub	we	need	to	do	is	to	store	the	new	high	score	entries	back	to	file:

free_filehandle	=	FreeFile

Open	highscore_file	For	Output	As	free_filehandle

For	count_entry	As	Integer	=	1	To	num_of_entries

Print	#free_filehandle,	hname(count_entry)

Print	#free_filehandle,	hscore(count_entry)

Next	count_entry

Close	free_filehandle

Note	how	FOR	OUTPUT	is	used	and	PRINT	for	writing	data	into	external	files.
After	this	I	placed	a	'ReadHighScore'	call	and	closed	with	END	IF	as	I	find	it	good	that	a	new	high	score	table	should	display	after	a	new	entry	has
been	inputted	in	it.
All	we	need	now	is	to	create	the	'InputName'	sub	like	this:

Sub	InputName

ScreenSet	workpage,	workpage	Xor	1

ScreenSet	0,0

Line	(0,0)-(639,479),	RGBA(0,	0,	0,	255),	BF

Locate	12,	17

Input	;	"Please	input	your	name:	",	playername

End	Sub

Of	course,	this	will	look	totally	different	in	your	game.	Perhaps	you'll	ask	the	player	to	input	his/her	name	on	a	different	place	in	the	game	(like	when
he/she	starts	a	new	game).	Just	have	in	mind	you	need	one.

To	test	the	routines	just	place...

ReadHighScore	"high_scores.dat"

WriteHighScore	"high_scores.dat",	4500

End

...after	first	SCREENSET	(outside	subroutines).	Change	the	second	parameter	with	'WriteHighScore'	call	to	input	different	scores	on	different	locations
in	the	high	score	table.	I'm	sure	you	are	aware	that	when	calling	'WriteHighScore'	the	second	parameter	mustn't	be	hard-coded	with	a	static	number,
but	with	a	variable	in	which	you'll	store	player's	score,	whatever	that	may	be	in	your	case	(ie.	'Player.Score').

What's	next?

The	only	other	things	I	wish	to	share	regarding	this	issue	is	related	to	high	score	encryption	and	better	name	inputting	routine.	As	both	routines	I'm
using	are	not	by	me,	I	will	only	brush	off	them	and	provide	them	in	an	example	program	you	can	easily	use	for	your	own	needs.
Encryption	is	done	using	two	functions,	'neoENCpass'	and	'neodeENCpass'.	One	for	encryption	and	one	for	decryption.	They	are	called	with	a	string
(high	score	entry	string	in	our	case)	and	password,	password	being	any	string	you	choose	and	the	same	must	be	used	for	encrypting	and	decrypting
(of	course).
Just	after	you	retrieve	an	string	entry	from	a	file	you	decrypt	it	like	this:

Input	#free_filehandle,	hname(count_entry)

neoENCdepass	SAdd(hname(count_entry)),	Len(hname(count_entry

With	'hscore'	variables,	being	INTEGER,	we	need	to	use	a	temporary	STRING	variable	which	has	to	be	decrypted	and	then	pass	its	value	to	'hscore'.
The	only	annoying	feature	of	this	method	is	the	fact	you	need	a	separate	source	code	to	encrypt/decrypt	your	high	score	files,	as	the	routines	inside	a
project	will	work	only	if	the	high	score	file	is	previously	encrypted.	I	provided	a	small	program	which	does	this	encrypting	for	you.	It	is	recommended
you	keep	a	backup	of	your	high	score	file	in	a	separate	folder	(I	also	provided	this	in	the	zip	downloads),	even	if	not	encrypting	it.
Instead	of	encryption	you	can	use	BINARY	files,	which	I	don't	know	how	to	use	at	this	moment	(don't	have	time	to	learn;	I'm	submitting	the	tutorial	in
the	nick	of	time),	and	which	also	AREN'T	the	same	as	ENCRYPTION.	Encrypted	files	using	these	routines	
password	(well,	most	people),	while	BINARIES	can	be	read	by	anyone	having	your	source.	Ah	yes,	when	providing	your	source	code	to	public	be	sure
to	change	the	encryption	passwords	inside	it.
Anyway,	you	might	not	need	or	prefer	encryption	at	all.	But	I	personally	like	having	my	high	score/script	files	encrypted	so	than	not	every	Dick	and	Tom
can	change/read	them	with	Notepad.	Unencrypted	high	scores	might	kill	the	challenge	to	beat	them	with	some	players.
Name	inputting	routine	I	won't	go	describing	as	that's	irrelevant.	You	have	to	code,	read	it.	It's	much	better	than	plain	INPUT	(you	can	use	it	with
custom	font	printing	libraries)	and	allows	you	to	limit	the	number	of	characters	in	the	name.	The	routine	was	done	by	'Ryan	Szrama',	and	all	thanks	go

to	him.
Download	the	extended	example	(with	encryption	and	better	name	inputting):
http://lachie.phatcode.net/Downloads/Managing_A_High_Score_Table.zip

And	that's	it	for	this	tutorial.
Until	next	time,	have	fun!

A	tutorial	written	by	Lachie	D.	(mailto	CHR$(58)	lachie13	CHR$(64)	yahoo	CHR$(46)	com	;	http://lachie.phatcode.net	-	The	Maker	Of	Stuff)

The	IF	Statement 	

Written	by	rdc	
You	can	think	of	the	If	statement	block	as	a	question	that	requires	a	True	or	False	answer.	The	answer	determines	which
section	of	code	your	program	will	execute.	Since	computers	only	work	with	numbers,	you	frame	the	question	as	a	conditional
equation	that	will	result	in	either	0	for	False	or	non-zero	for	True.	

The	If	statement	has	the	following	formats.

If	<expression>	Then	Do	something[:Do	something]

The	<expression>	is	the	question	that	requires	a	True	or	False	answer.	If	the	answer	is	True,	i.e.	not	False,	then	the	code
following	the	Then	is	executed.	If	the	answer	is	False	then	the	next	line	of	code	is	executed.

You	can	execute	more	than	one	statement	after	the	Then	if	you	separate	the	statements	with	a	colon.	All	of	the	statements
must	be	on	the	same	line.	An	easier	format	is	to	use	the	IF	code	block,	as	shown	below.

If	<expression>	Then

				Do	something	1

				Do	something	2

				...

End	If

In	this	format	if	the	answer	is	True	then	the	code	block	following	the	Then	is	executed,	starting	with	statement	1	and	executing
all	statements	until	the	End	If	is	reached.	The	program	will	then	start	executing	code	after	the	End	If.	If	the	answer	is	False,
the	code	in	the	code	block	is	skipped	and	the	code	following	the	End	If	is	executed.

If	<expression>	Then

				Do	something

				...

Else

				Do	something	Else

				...

End	If

In	this	format	if	<expression>	is	True	then	the	code	following	the	Then	is	executed.	If	the	answer	is	False	then	the	code
following	the	Else	is	executed.	In	this	format	you	can	address	both	the	True	and	False	answers	of	the	<expression>.	

If	<expression>	Then

				Do	something

ElseIf	<expression>	Then

				Do	something

End	If

In	this	format	if	<expression>	is	True	then	the	code	following	the	Then	is	executed.	If	the	answer	is	False	then	the	ElseIf	is
executed.	If	the	ElseIf	is	True,	the	code	following	the	Then	(of	the	ElseIf)	is	executed,	otherwise	the	code	following	the	End	If
is	executed.	You	can	have	as	many	ElseIf	statements	as	you	need	to	fully	cover	the	range	of	questions	you	need	to	ask.

If	<expression>	Then

				Do	something

ElseIf	<expression>	Then

				Do	something

Else

				Do	something	Else

End	If

This	format	is	a	combination	of	all	the	other	formats.	If	<expression>	is	True	then	the	code	following	the	Then	is	executed.	If
the	answer	is	False	then	the	ElseIf	is	executed.	If	the	ElseIf	is	True,	the	code	following	the	Then	(of	the	ElseIf)	is	executed,
otherwise	the	code	following	the	Else	is	executed.

This	format	enables	you	to	ask	a	series	of	questions	and	if	the	answer	is	False	to	all	the	questions,	you	can	take	a	default
course	of	action	based	on	the	Else	block.

As	you	can	see	you	can	frame	the	question	in	a	number	of	ways	and	then	execute	the	code	based	on	a	number	of	answer

combinations.	This	gives	you	a	lot	of	flexibility	in	how	to	both	frame	a	question	and	what	to	do	based	on	the	answers.

The	<expression>	is	the	question	that	needs	an	answer	and	you	frame	the	question	using	

You	can	mix	arithmetic	and	logical	operators,	as	well	as	parenthesis,	within	an	If	statement.	The	compiler	evaluates	the
conditional	statements	from	left	to	right,	taking	into	account	the	precedence	of	the	operators.	
code	snippets	are	legal	If	statement	constructs.

If	var1	=	5	Then

If	(var1	=	5)	And	(var2	<	3)	Then

If	(var1	+	6)	>	10	Then

You	will	notice	that	parenthesis	are	used	to	group	the	different	parts	of	the	expressions.	You	should	use	parenthesis	to	make
sure	that	you	are	executing	logical	portions	of	the	expressions.	The	expression	must	ultimately	resolve	to	either	True	or	False,
even	if	you	are	using	arithmetic	operators	within	the	expression.

Using	Bitwise	Operators	in	an	If	Statement

Remember	that	the	operators	And,	Or	and	Not	are	bitwise	operators.	That	is,	they	return	a	value	based	on	the	bitwise
operation	that	they	perform.	You	should	take	care	when	using	bitwise	operators	within	an	If	statement	to	make	sure	that	the
result	will	evaluate	correctly.	

Take	the	second	code	snippet	listed	above.	

If	(var1	=	5)	And	(var2	<	3)	Then

If	var1	equals	5,	the	compiler	will	return	True,	or	-1	for	the	expression.	If	var2	is	less	than	3	then	the	compiler	will	return	True
or	-1	for	this	expression.	The	compiler	will	then	evaluate	the	And	operator	with	-1	And	-1	returning	-1.	Since	-1	is	non-zero,	or
True,	the	code	following	the	Then	will	be	executed.	

If	either	of	the	statements	within	the	parenthesis	evaluate	to	0,	then	And	will	return	0,	which	is	False,	and	the	code	following
the	Then	clause	will	be	skipped.	When	using	bitwise	operators	you	should	frame	the	conditional	expressions	on	either	side	of
the	bitwise	operator	so	that	they	return	either	True	or	False.	This	will	give	you	consistent	results	in	your	evaluations.

The	Not	Problem

The	Not	bitwise	operator	can	be	a	problem	in	an	If	statement.	You	may	be	used	to	writing	
a	logical,	rather	than	a	bitwise	operation.	In	FreeBasic	Not	performs	a	bitwise	operation,	not	a	logical	operation.	

If	var	were	to	contain	the	value	of	3,	then	Not	3	is	-4,	which	will	be	regarded	as	a	True	result	and	the	code	following	the	Then
will	be	executed,	which	is	probably	not	what	you	wanted.	Instead	of	writing	

Overlapping	Conditions

When	using	compound	conditions	care	must	be	taken	to	ensure	that	the	conditions	do	not	overlap.	In	most	cases	overlapping
conditions	will	produce	unpredictable	results.	Each	condition	must	produce	a	unique	result,	and	the	combination	of	the
individual	results,	must	itself	express	a	unique	result.	This	is	very	important	in	If-ElseIf	constructs;	an	overlapping	condition
within	an	If-ElseIf	block	may	execute	the	wrong	code	at	the	wrong	time.

Nested	If	Statements

At	times	it	may	become	necessary	to	nest	If	statements	in	order	to	better	describe	the	decision	making	process	of	the
evaluation.	While	the	If	statement	can	handle	multiple	arguments	within	an	expression,	there	are	times	when	
incrementally	check	for	certain	ranges	of	values	which	you	can	do	using	a	nested	If	block.

If	<expression>	Then	

				<statement>

				...

				If	<expression>	Then

								<statement>

								<statement>

								...

				End	If

End	If

It	is	important	to	close	each	block	properly	with	an	End	If	when	opened	by	an	If	to	avoid	compiler	or	logical	errors.	Compiler
errors	are	fairly	easy	to	fix,	while	logical	errors	can	be	tricky	to	track	down	and	correct.	The	best	way	to	make	sure	you	are

closing	the	blocks	properly	is	to	indent	the	nested	If	statements	and	then	indent	the	matching	End	If	statements	at	the	same
level	as	the	If.	In	the	example	above,	the	indentation	tells	you	at	a	glance	which	End	If	goes	with	which	If.	

The	IIF	Function

The	Iif,	or	"immediate	If"	function	returns	one	of	two	numeric	values	based	on	an	expression.	You	can	think	if	the	Iif	function	as
an	in-line	If	statement	that	acts	as	a	function	call.

Value	=	IIf(<expression>,	numeric_value_if_true,	numeric_value_if_false

Iif	can	be	used	as	a	standalone	function	or	inside	other	expressions	where	you	do	not	want	to	split	the	expression	to	insert	an
If	statement.	The	numeric	values	can	be	literal	values,	variables	or	numeric	function	calls.	The	limitation	of	the	function	is	that
it	will	only	return	a	numeric	value,	not	a	string	value,	however	you	can	work	around	this	limitation	by	using	pointers.

The	Iif	statement	will	evaluate	both	the	True	and	False	conditions	so	you	need	to	take	care	that	you	do	not	perform	an	illegal	operation	such	as	divide	by	zero	in	a
condition,	even	if	that	condition	is	not	returned	from	the	function.

Framing	the	Question

The	If	statement	is	a	powerful	tool,	but	you	need	to	make	sure	that	you	are	framing	the	question,	that	is	the	expression,
correctly.	Each	expression	must	resolve	to	True	or	False,	with	True	always	executing	the	code	following	the	Then.

When	writing	an	If	statement	you	must	ask	yourself,	does	this	expression	resolve	to	True	or	False?	This	is	especially	true	for
compound	expressions	that	have	a	number	of	terms	within	the	expression.	Each	term	must	resolve	to	True	or	False	and	the
sum	of	the	terms	must	resolve	to	True	or	False.	If	there	is	any	doubt	that	a	compound	expression	is	evaluating	correctly,	break
it	into	nested	If	statements.

Checking	For	Range	Values

Often	times	you	will	need	to	check	for	a	range	of	values	within	an	If	statement,	and	in	order	for	the	compiler	to	evaluate	the
range	condition	correctly,	you	must	frame	the	expressions	correctly.	There	are	basically	two	type	of	range	expressions:
exclusive	and	inclusive	ranges.	Exclusive	range	expressions	exclude	a	range	of	values.	Inclusive	range	expressions	include	a

range	of	values.	Each	has	a	particular	format	that	must	be	followed	for	proper	evaluation.

Excluding	a	Range	of	Values	

Suppose	that	you	have	a	range	of	values	and	you	want	to	do	something	special	if	the	value	is	less	than	or	equal	to	1	or	the
value	is	greater	than	or	equal	to	10.	To	put	this	another	way,	you	want	to	exclude	the	numbers	2	through	9	from	the	special
action.	

You	can	frame	this	as	a	question	that	can	then	be	translated	into	code.

Is	the	value	a	number	less	than	Or	equal	To	1	Or	a	number

If	Yes,	Then	Do	special	action.

If	No,	Then	Do	standard	action.

The	key	here	is	the	OR.	If	the	lower	bound	of	the	value	is	equal	to	or	less	than	1	OR	the	upper	bound	of	the	value	is	equal	to
or	greater	than	10	then	do	the	special	action.

If	(value	<=	1)	Or	(value	>=	10)	Then

				do_special

Else

				do_standard

End	If

Remember	that	OR	will	return	True	if	either	condition	is	True.	If	the	value	is	1	or	less,	or	the	value	is	10	or	more,	then	the
expression	will	return	True	and	the	special	action	will	be	performed.

Including	a	Range	of	Values	

Inclusion	is	the	opposite	of	exclusion.	As	you	might	guess,	the	format	is	similar	you	but	you	use	the	And	operator	which	is	the
opposite	of	the	OR	operator.

Suppose	you	want	to	do	something	special	if	the	value	is	a	5,	6	or	7.	That	is	you	want	to	include	these	numbers	within	your
range	expression.	Again,	you	can	start	by	asking	a	question.

Is	the	value	a	number	between	5	And	7	(inclusive)?

If	Yes,	Then	Do	special	action

If	No,	Then	Do	standard	action

Here	you	want	to	include	the	numbers	5,	6,	7	for	consideration.	That	is	if	the	value	is	5	or	greater	AND	the	value	is	7	or	less
then	do	something	special.	This	translates	to	the	following	code	snippet.

If	(value	>=	5)	And	(value	<=	7)	Then

				do_special

Else

				do_standard

End	If

Remember	that	the	And	operator	will	only	return	True	if	both	operands	return	True.	If	value	is	6,	6	is	greater	than	5	and	6	is
also	less	than	7,	so	both	statements	are	True	and	the	expression	evaluates	to	True.

The	Select	Case	Statement 	

Written	by	rdc	
The	Select	Case	block	can	be	viewed	as	an	optimized	If-ElseIf	ladder,	and	works	in
much	the	same	way.	The	standard	Select	Case	can	use	any	of	the	standard	data	types
for	<expression>	and	the	specialized	Select	Case	As	Const	format	is	optimized	for
integer	values.

This	code	snippet	shows	the	syntax	of	the	standard	select	case.	Expression	is	usually
a	variable	which	can	be	of	any	of	the	standard	data	types,	or	individual	elements	of	a
Type	or	array.	

Select	Case	<expression>

				Case	<list>

								<statement>	

								<statement>

								...

				Case	Else

								<statement>

								<statement>

								...

End	Select

The	<list>	clause	of	the	Case	statement	can	be	any	of	the	following	formats.

Case	<value>:	Value	is	one	of	the	supported	data	types	or	an	enumeration.	
Case	<value>	To	<value>:	Specifies	a	range	of	values.
Case	Is	<operator>	<value>:	Operator	is	any	of	the	logical	operators.
Case	<value>,	<value>,	...:	List	of	values	separated	with	commas.
Case	<variable>:	A	variable	that	contains	a	value.

The	following	snippet	illustrates	how	these	different	formats	may	be	used	in	a	program.

Case	47

Case	47	To	59

Case	Is	>	60

Case	47,	48,	53

Case	keycode

The	Select	Case	As	Const	is	a	faster	version	of	the	Select	statement	designed	to	work
with	integer	expressions	in	the	range	of	0	to	4097.

Select	Case	As	Const	<integer_expression>

				Case	<list>

								<statement>	

								<statement>

								...

				Case	Else

								<statement>

								<statement>

								...

End	Select

The	<list>	statement	formats	for	the	Select	Case	As	Const	are	limited	to	values	or
enumerations	of	values.	That	is,	the	operator	expressions	are	not	allowed	within	a
Case	As	Const.

When	a	Case	block	is	executed,	the	statements	following	the	Case	keyword	up	to	the
next	Case	keyword	(or	End	Select)	will	be	executed.	Only	one	block	of	statements
within	a	Case	will	execute	at	any	one	time.	If	a	Case	Else	is	present,	then	the
statements	within	the	Else	block	will	execute	if	no	Case	matches	the	<expression>
portion	of	the	Select	statement.	The	following	program	illustrates	using	the	Select
Case	statement	block.

'Ascii	code	of	key	press

Dim	As	Integer	keycode

'Loop	until	esc	key	is	pressed

Do

				keycode	=	Asc(Inkey)

				Select	Case	As	Const	keycode

								Case	48	To	57

												Print	"You	pressed	a	number	key."

								Case	65	To	90

												Print	"You	pressed	an	upper	case	letter	key."

								Case	97	To	122

												Print	"You	pressed	a	lower	case	key."

								End	Select

								Sleep	1

Loop	Until	keycode	=	27	'27	is	the	ascii	code	for	Escape

End

In	the	program,	when	you	press	a	key,	the	value	is	translated	to	a	number	using	the
Asc	function.	Since	this	will	always	be	an	integer	value	that	is	less	than	4097	(since
ascii	character	codes	range	from	0	to	255),	the	Select	Case	as	Const	format	is	used.

The	compiler	will	check	the	value	of	keycode	against	the	Case	ranges	to	see	if	the
block	should	execute.	If	keycode	falls	within	a	particular	range,	the	Print	statement	will
execute,	and	then	the	flow	of	the	program	will	continue	with	the	next	line	following	the
End	Select.	If	keycode	doesn't	match	any	Case	range,	then	the	program	will	continue
with	the	next	line	following	the	End	Select.

A	Select	Case	can	usually	be	translated	from	an	If-Elseif	ladder.	To	illustrate	this,	the
previous	program	is	shown	below	as	an	If-ElseIf	ladder.

'Ascii	code	of	key	press

Dim	As	Integer	keycode

'Loop	until	esc	key	is	pressed

Do

				keycode	=	Asc(Inkey)

				If	(keycode	>=	48)	And	(keycode	<=	57)	Then

								Print	"You	pressed	a	number	key."

				ElseIf	(keycode	>=	65)	And	(keycode	<=	90)	Then

								Print	"You	pressed	an	upper	case	letter	key."

				ElseIf	(keycode	>=	97)	And	(keycode	<=	122)	Then

								Print	"You	pressed	a	lower	case	key."

				End	If

				Sleep	1

Loop	Until	keycode	=	27	'27	is	the	ascii	code	for	Escape

End

If	you	compare	the	two	programs,	you	can	see	that	the	logic	is	quite	similar,	however
the	Select	Case	is	much	more	readable	and	understandable	than	the	If-ElseIf	ladder.

Conditional	Compilation	And	You 	

Written	by	aetherFox	for	QB	Express	Issue	#9

Conditional	Compilation	is	one	of	those	parts	of	programming	that	sit	in
the	dusty	corners	of	the	knowledge	banks	of	programmers	world-over,
yet	is	one	of	the	most	ingenious	additions	to	any	language.	Usually
something	that	was	reserved	for	C	programmers,	with	the	power	of
freeBASIC's	new	preprocessor,	you	can	now	use	conditional	compilation
to	help	your	program.	

The	preprocessor	allows	you	flexibility	in	changing	the	way	code	is
generated	through	the	use	of	conditional	compilation.	Take	this	scenario:
you	are	debugging	the	code	in	your	program,	and	you	want	to	add	some
extra	code	to	output	a	few	variables,	but	remove	them	in	the	final	version.
The	code	would	be	something	like	this:	

				#define	DEBUG

				

				#ifdef	DEBUG

								Print	"Debug	Value"

				#endif	'DEBUG

Note	you	do	not	need	the	comment	after	the	#endif,	but	is	it	good
practice.

Basically,	the	above	code	checks	to	see	whether	DEBUG	has	been	defined,
and	if	it	has,	then	the	code	between	the	#ifdef...#endif	will	be
executed.	While	this	may	seem	silly,	the	uses	this	has	are	amazing.	If
you	simply	remove	one	line	at	the	top	of	your	program	(#define	DEBUG),
then	all	the	'debug	code'	that	you've	added	won't	be	sent	to	the	compiler	-
-	the	preprocessor	removes	it,	reducing	the	bloat	of	the	final	executable.

				'Turn	on	debugging

http://petesqbsite.com/sections/express/issue9/index.html#compilation

				#define	DEBUG

				

				'Turn	off	debugging	

				#undef	DEBUG

The	#undef	directive	is	a	way	of	'undefining'	something,	in	this	case
DEBUG.	While	it	is	strictly	not	needed	(just	commenting	out	the	line	'#define
DEBUG'	is	enough),	it	makes	the	code	much	clearer,	and	has	other	uses:

				#ifndef	DEBUG

								Print	"Production	Version"

				#endif	'DEBUG

While	not	the	most	useful	example,	this	demonstrates	the	use	of	another
directive:	#ifndef.	This	directive	will	cause	the	code	to	be	compiled	if	the
symbol	is	not	defined.	

Much	like	a	normal	programming	language,	the	sense	of	the	conditional
can	be	reversed	using	a	variant	of	else,	#else:

				#ifdef	DEBUG

								Print	"Test	Version"

				#else

								Print	"Production	Version"

				#endif	'DEBUG	

Of	course,	there	are	many	applications	to	this.	Who	says	you	need	to	do
this	on	debug	code	only?	You	could	actually	check	the	effect	of	a	new
piece	of	code,	or	some	test	routines	by	simply	defining	a	name	like

TESTCODE	and	using	the	preprocessor	directives	to	encompass	your	code
for	conditional	compilation:

				#define	TESTCODE

				

				#ifdef	TESTCODE

								BulletRoutine()

								TestFireRoutine()

				#endif	

The	scope	of	this	tutorial	is	a	limited	one,	but	this	method	is	used	by
professionals.	It	makes	life	easy	when	programming.	I	have	used	this
method	in	my	own	code.	To	see	this	code	in	action,	view	the	source	here

Avinash	'aetherFox'	Vora	
avinashvora	[at]	gmail	[dot]	com.
http://avinash.apeshell.net

http://avinash.apeshell.net/stuff/ship/flyaround.bas

Introduction	to	Pointers 	

Written	by	rdc	
What	is	a	Pointer?

A	pointer	is	a	4-byte	data	type	that	holds	an	address	to	a	memory	location.	A	pointer	doesn't
contain	data,	it	points	to	data	once	it	has	been	initialized.	An	uninitialized	pointer	points	to
nothing	and	is	undefined.

To	understand	pointers,	think	of	an	egg	carton	that	has	numbers	1	through	12	printed	on	the
bottom	of	each	"hole"	(where	you	put	the	eggs).	These	holes	are	like	memory	locations	in	a
computer;	each	hole,	or	memory	location,	has	an	address,	in	this	example,	1	through	12.	If
an	egg	represents	a	data	item,	then	an	egg	in	hole	1	has	an	address	of	1.

Normally,	you	would	access	the	data	directly	through	the	use	of	variables.	When	you
DIMension	a	variable	of	a	particular	type,	you	are	setting	aside	storage	space	for	the	data.
You	do	not	need	to	know,	or	care,	where	the	data	resides	since	you	can	access	the	data
directly	through	the	variable.	This	is	like	reaching	out	and	picking	up	the	egg	in	hole	1
(reading	the	data)	or	putting	an	egg	in	hole	1	(setting	the	data)	without	looking	at	the
numbers	written	on	the	bottom	of	the	hole.

Using	pointers	is	a	bit	different.	Imagine	you	have	a	little	scrap	of	paper	that	will	represent
our	pointer.	Right	now	it	is	blank	and	doesn't	point	to	anything.	This	undefined	pointer	can't
be	used	until	it	is	initialized.	To	initialize	the	pointer,	write	a	1	on	it.	Now	our	pointer	is
"pointing"	to	hole	1	in	our	egg	carton.	To	put	data	(an	egg)	in	hole	1,	we	look	at	our	scrap	of
paper,	match	it	to	hole	1	and	place	the	egg	in	the	hole.	To	retrieve	the	egg	we	do	just	the
opposite.	We	match	our	slip	of	paper	to	hole	1	and	then	grab	the	egg.	All	the	putting	and
getting	of	the	egg	has	to	be	done	through	the	slip	of	paper	and	is	called	dereferencing	the
pointer.	That	is,	we	get	to	the	data	through	the	reference	contained	in	the	pointer,	the
number	1.	The	pointer	doesn't	contain	the	data;	it	contains	a	reference	to	the	data.

In	FreeBasic	we	define	a	pointer	using	the	Dim	and	Ptr	statements:

Dim	aptr	As	Integer	Ptr

This	statement	corresponds	to	our	blank	piece	of	paper	in	the	above	example.	The	pointer
doesn't	point	to	anything	and	is	undefined.	If	we	tried	to	use	the	pointer	right	now,	more	than
likely	the	program	would	crash.

In	order	for	a	pointer	to	be	useful,	it	must	be	initialized:

Dim	aptr	As	Integer	Ptr

aptr	=	Allocate(SizeOf(Integer))

Here	we	are	using	Allocate	to	set	aside	enough	space	in	memory	for	an	
loading	the	address	of	that	space	into	aptr.	The	SizeOf	macro	returns	the	size	in	bytes	of
the	passed	data	type.	You	could	use	len	instead	of	SizeOf	(since	.13b)	if	you	prefer.

Once	we	have	initialized	the	pointer,	we	can	now	use	it:

*aptr	=	5

Print	"aptr:	";	*aptr

Notice	the	*	prefix	on	aptr.	The	*	is	the	reference	operator.	This	is	like	matching	the	number
on	the	slip	of	paper	to	the	number	on	the	hole	in	the	egg	carton.	By	using	the	*	operator,	we
are	able	to	get	at	the	data	(egg)	contained	in	the	hole	pointed	at	by	aptr.

Here	is	a	complete	example	program:

Option	Explicit

Dim	aptr	As	Integer	Ptr

aptr	=	Allocate(SizeOf(Integer))

*aptr	=	5

Print	"aptr:	";	*aptr

Deallocate	aptr

Sleep

The	Deallocate	function	frees	the	memory	pointed	at	by	aptr,	and	makes	aptr	undefined
once	again.	This	is	like	erasing	the	number	on	our	slip	of	paper.	If	we	were	to	use	aptr	after
deallocating	it,	the	program	would	crash.

What	Good	are	Pointers?

A	major	reason	for	adding	pointers	to	FreeBasic	is	that	many	external	libraries	require
pointers	to	type	structures	and	pointers	to	strings.	For	example,	the	Win32	API	has	many
structures	that	must	be	filled	out	and	then	passed	to	a	function	through	a	pointer.

Another	use	of	a	pointer	is	in	a	Type	definition.	Type	defs	in	FreeBasic	can	only	contain
fixed	length	strings,	but	what	if	you	don't	know	the	length	of	a	string	until	the	program	is
running?	A	pointer	can	serve	this	purpose.

(It	should	be	stated	that	the	Type	definitions	can	now	support	variable	length	strings.)

Option	Explicit

Type	mytptr

				sptr	As	ZString	Ptr

End	Type

'This	function	will	allocate	space	for	the	passed	string

'and	load	it	into	a	memory	location,	returning	the

'pointer	to	the	string.

Declare	Function	pSetString(ByVal	s	As	String)	As	ZString

'type	var

Dim	mytype	As	mytptr

'Set	a	variable	string	into	the	type	def

mytype.sptr	=	pSetString("Hello	World	From	FreeBasic!"

Print	"aptr:	";	*mytype.sptr

Deallocate(mytype.sptr)

Sleep

End

Function	pSetString(ByVal	s	As	String)	As	ZString	Ptr

				Dim	sz	As	ZString	Ptr

			

				'allocate	some	space	+	1	for	the	chr(0)

				sz	=	Allocate(Len(s)	+	1)

				'load	the	string	into	the	memory	location

				*sz	=	s

				'return	the	pointer

				Return	sz

End	Function

Here	we	define	our	type	with	a	field	sptr	as	ZString	Ptr.	Zstrings	are	null	terminated	strings
and	are	used	by	many	external	libraries	and	are	designed	for	dynamic	allocations.	Once	we
define	our	type	we	create	an	instance	of	it	with	the	Dim	statement:

Dim	mytype	As	mytptr

We	then	call	our	function	pSetString	to	get	the	address	of	the	variable	length	string	we	want
in	our	Type	def.

mytype.sptr	=	pSetString("Hello	World	From	FreeBasic!"

Remember	sptr	is	defined	as	a	pointer,	not	a	string	variable,	so	pSetString	is	returning	a
pointer	(memory	address)	to	the	string	not	the	string	itself.	In	other	words,	if	the	string	is	in

hole	#1,	pSetString	returns	1.

The	function	pSetString	uses	a	temporary	ZString	sz,	to	Allocate	space	for	the	passed
string	parameter	s.	Because	a	ZString	is	a	null	terminated	string,	we	must	add	1	to	the
length	of	s	for	the	null	terminator	in	the	Allocate	function.

'allocate	some	space	+	1	for	the	chr(0)

sz	=	Allocate(Len(s)	+	1)

Once	we	have	allocated	space	for	the	string,	we	use	the	reference	operator	*	to	load	the
data	into	the	memory	location.

'load	the	string	into	the	memory	location

*sz	=	s

We	then	return	a	pointer	(the	address	of	the	string)	back	to	our	type,	which	is	saved	in
mytype.sptr.

'return	the	pointer

Return	sz

We	can	now	reference	the	string	in	our	type	using	the	reference	operator.

Print	"aptr:	";	*mytype.sptr

Pointers	can	be	confusing	for	the	uninitiated,	however	they	need	not	be	if	it	is	kept	in	mind
that	the	pointer	doesn't	contain	data,	it	simply	points	to	some	data.	The	pointer	is	a	memory
address,	and	you	manipulate	that	data	through	the	reference	operator	*.	It	really	isn't	much
different	than	a	normal	variable.

Pointers,	Data	Types	and	Memory 	

Written	by	rdc	
If	you	read	the	article	Introduction	to	Pointers	you	know	that	pointers
contain	memory	location	addresses.	You	can	manipulate	the	data	in
these	memory	locations	using	the	reference	operator	*.	Using	pointers
with	single	data	item	isn?t	a	problem,	but	what	if	you	need	to	store
multiple	data	items	together	and	manipulate	them	using	a	pointer?	It	can
get	a	bit	tricky	unless	you	understand	how	data	is	stored	in	memory.

A	single	memory	location	in	a	computer	is	1	byte	long.	Big	enough	to	hold
a	single	ANSI	character	(as	opposed	to	Unicode	characters,	which	are
wide	characters	and	are	two	bytes.	We	won?t	be	discussing	Unicode
characters	in	this	article.)	However,	all	data	types	are	not	a	single	byte	in
width.	Here	is	a	simple	program	that	displays	the	length	in	bytes	of	each
data	type.

Dim	a	As	Byte

Dim	b	As	Short

Dim	c	As	Integer

Dim	d	As	LongInt

Dim	au	As	UByte

Dim	bu	As	UShort

Dim	cu	As	UInteger

Dim	du	As	ULongInt

Dim	e	As	Single

Dim	f	As	Double

Dim	g	As	Integer	Ptr

Dim	h	As	Byte	Ptr

Dim	s1	As	String	*	10	'fixed	string

Dim	s2	As	String						'variable	length	string

Dim	s3	As	ZString	Ptr	'zstring

s1	=	"Hello	World!"

s2	=	"Hello	World	from	FreeBasic!"

s3	=	Allocate(Len(s2)	+	1)

*s3	=	s2

Print	"Byte:	";Len(a)

Print	"Short:	";Len(b)

Print	"Integer:	";Len(c)

Print	"Longint:	";Len(d)

Print	"UByte:	";Len(au)

Print	"UShort:	";Len(bu)

Print	"UInteger:	";Len(cu)

Print	"ULongint:	";Len(du)

Print	"Single:	";Len(e)

Print	"Double:	";Len(f)

Print	"Integer	Pointer:	";Len(g)

Print	"Byte	Pointer:	";Len(h)

Print	"Fixed	String:	";Len(s1)

Print	"Variable	String:	";Len(s2)

Print	"ZString:	";Len(*s3)

Deallocate	s3

Sleep

The	output	is:

Byte:		1

Short:		2

Integer:		4

LongInt:		8

UByte:		1

UShort:		2

UInteger:		4

ULongInt:		8

Single:		4

Double:		8

Integer	Pointer:		4

Byte	Pointer:		4

Fixed	String:		10

Variable	String:		27

ZString:		27

Notice	that	the	length	of	a	pointer	is	always	4	bytes	long	(the	same	as	an
integer),	regardless	of	the	data	being	pointed	to,	since	a	pointer	contains
a	memory	address	and	not	data.

Looking	at	the	length	of	the	different	data	types,	you	can	see	that	if	you
were	to	Allocate	enough	space	for	10	integers,	it	would	take	40	bytes	of
memory.	Each	integer	takes	up	4	bytes.	So	the	question	is,	how	do	you
access	each	integer	value	from	the	memory	buffer?	The	answer,	pointer
math.	Take	a	look	at	the	following	program.

Option	Explicit

Dim	a	As	Integer

Dim	aptr	As	Integer	Ptr

'Allocate	enough	space	for	2	integers

aptr	=	Allocate(Len(a)	*	2)

'Load	our	first	integer

*aptr	=	1

Print	"Int	#1:	";*aptr

'Move	the	pointer	to	the	next	integer	position

'aptr	+	4

*(aptr	+	4)	=	2

Print	"Int	#2:	";*(aptr	+	4)

Deallocate	aptr

Sleep

End

In	this	program	we	dimension	two	variables,	an	Integer	and	an	Integer
Pointer,	aptr.	Aptr	will	point	to	our	memory	buffer	that	will	contain	two
integers.	The	Allocate	function	requires	the	size	of	the	buffer	we	need,
so	we	multiply	the	size	of	an	Integer	by	2	to	reserve	8	bytes	of	memory
(each	integer	will	take	4	bytes	of	space).	

After	the	allocation	process,	aptr	contains	the	address	of	the	first	byte	of
our	memory	buffer.	Storing	the	first	integer	is	simply	a	matter	of	using	the
reference	operator	and	setting	the	value	to	1.	To	print	out	the	value,	we
again	just	use	*aptr.

Now,	le	me	ask	you	a	question:	How	does	the	compiler	know	that	the
value	1	requires	4	bytes	and	not	1	or	2	bytes?	Because	we	dimensioned
aptr	as	an	integer	ptr.	The	compiler	knows	that	an	integer	takes	4	bytes
and	so	loads	the	data	into	four	bytes	of	memory.	This	is	why	when	we
print	out	the	value	we	get	1	and	not	some	strange	number.

To	load	the	second	value	into	our	buffer,	we	use:

*(aptr	+	4)	=	2

This	may	look	a	little	strange	at	first	glance.	Aptr	points	to	the	first	byte	in
our	memory	buffer.	An	integer	is	4	bytes	long,	so	to	get	to	the	next
integer	byte	position,	we	must	add	4	to	aptr.	We	need	the	parenthesis
around	the	add	operation	because	the	reference	operator	*	has	a	higher
precedence	than	+.	The	parenthesis	ensure	that	we	perform	the	add
operation	first,	and	then	apply	the	indirection	operator.

Notice	that	we	didn?t	increment	aptr	directly.	If	we	did,	aptr	would	no
longer	point	to	the	start	of	the	memory	buffer	and	the	program	would
crash	when	we	deallocated	the	buffer	since	it	would	Deallocate	memory
outside	the	memory	buffer.	If	the	need	arises	to	directly	increment	a
pointer,	then	create	a	temporary	pointer	variable	and	increment	that,

rather	than	the	pointer	used	in	the	original	allocation.	

Memory	buffers	and	pointers	are	a	powerful	way	to	store	and	manipulate
data	in	memory.	Care	must	be	taken	though	to	ensure	that	you	are
accessing	the	data	correctly	according	to	the	type	of	data	being	stored	in
the	buffer.

The	Pointer	Data	Type 	

Written	by	rdc	
The	pointer	data	type	is	unique	among	the	FreeBasic	numeric	data	types.	Instead	of	containing	data,	like	the	other	numeric	types,	a	pointer	contains	the	memory	address	of	data.

On	a	32-bit	system,	the	pointer	data	type	is	4	bytes.	FreeBasic	uses	pointers	for	a	number	of	functions	such	as	ImageCreate,	and	pointers	are	used	heavily	in	external	libraries	such	as	the	Windows	API.	Pointers	are	also	quite
fast,	since	the	compiler	can	directly	access	the	memory	location	that	a	pointer	points	to.	A	proper	understanding	of	pointers	is	essential	to	effective	programming	in	FreeBasic.

For	many	beginning	programmers,	pointers	seem	like	a	strange	and	mysterious	beast.	However,	if	you	keep	one	rule	in	mind,	you	should	not	have	any	problems	using	pointers	in	your	program.	The	rule	is	very	simple:	a	pointer
contains	an	address,	not	data.	If	you	keep	this	simple	rule	in	mind,	you	should	have	no	problems	using	pointers.

Pointers	and	Memory

You	can	think	of	the	memory	in	your	computer	as	a	set	of	post	office	boxes	(P.O.	Box)	at	your	local	post	office.	When	you	go	in	to	rent	a	P.O.	Box,	the	clerk	will	give	you	a	number,	such	as	100.	This	is	the	address	of	your	P.O.	Box.
You	decide	to	write	the	number	down	an	a	slip	of	paper	and	put	it	in	your	wallet.	The	next	day	you	go	to	the	post	office	and	pull	out	the	slip	of	paper.	You	locate	box	100	and	look	inside	the	box	and	find	a	nice	stack	of	junk	mail.	Of
course,	you	want	to	toss	the	junk	mail,	but	there	isn't	a	trash	can	handy,	so	you	decide	to	just	put	the	mail	back	in	the	box	and	toss	it	later.	Working	with	pointers	in	FreeBasic	is	very	similar	to	using	a	P.O.	Box.

When	you	declare	a	pointer,	it	isn't	pointing	to	anything	which	is	analogous	to	the	blank	slip	of	paper.	In	order	to	use	a	pointer,	it	must	be	initialized	to	a	memory	address,	which	is	the	same	as	writing	down	the	number	100	on	the
slip	of	paper.	Once	you	have	the	address,	find	the	right	P.O.	Box,	you	can	dereference	the	pointer,	open	the	mail	box,	to	add	or	retrieve	data	from	the	pointed-to	memory	location.	As	you	can	see	there	are	three	basic	steps	to	using
pointers.

Declare	a	pointer	variable.
Initialize	the	pointer	to	a	memory	address.
Dereference	the	pointer	to	manipulate	the	data	at	the	pointed-to	memory	location.

This	isn't	really	any	different	than	using	a	standard	variable,	and	you	use	pointers	in	much	the	same	way	as	standard	variables.	The	only	real	difference	between	the	two	is	that	in	a	standard	variable,	you	can	access	the	data
directly,	and	with	a	pointer	you	must	dereference	the	pointer	to	interact	with	the	data.

Typed	and	Untyped	Pointers

FreeBasic	has	two	types	of	pointers,	typed	and	untyped.	A	typed	pointer	is	declared	with	an	asscoaited	data	type.

Dim	myPointer	As	Integer	Ptr

This	tells	the	compiler	that	this	pointer	will	be	used	for	integer	data.	Using	typed	pointers	allows	the	compiler	to	do	type	checking	to	make	sure	that	you	are	not	using	the	wrong	type	of	data	with	the	pointer,	and	simplifies	pointer
arithmetic.

Untyped	pointers	are	declared	using	the	Any	keyword.

Dim	myPointer	As	Any	Ptr

Untyped	pointers	have	no	type	checking	and	default	to	size	of	byte.	Untyped	pointers	are	used	in	the	C	Runtime	Library	and	many	third	party	libraries,	such	as	the	Win32	API,	to	accommodate	the	void	pointer	type	in	C.	Unless	you
specifically	need	an	untyped	pointer,	you	should	use	typed	pointers	so	that	the	compiler	can	check	the	pointer	assignments.

Pointer	Operators

FreeBasic	has	the	following	pointer	operators.

You	will	notice	that	the	addressof	operator	not	only	returns	the	memory	address	of	a	variable,	but	it	can	also	return	the	address	of	a	subroutine	or	function.	You	would	use	the	address	of	a	subroutine	or	function	to	create	a	callback
function	such	as	used	in	the	CRT	QSort	function.

Memory	Functions

FreeBasic	also	has	a	number	of	memory	functions	that	are	used	with	pointers.

These	functions	are	useful	for	creating	a	number	of	dynamic	structures	such	as	linked	lists,	ragged	or	dynamic	arrays	and	buffers	used	with	third	party	libraries.

When	using	the	Allocate	function	you	must	specify	the	storage	size	based	on	the	data	type	using	the	equation	number_of_elements	*	Sizeof(datatype).	To	allocate	space	for	10	integers	your	code	would	look	like	this:	myPointer	=
Allocate(10	*	Sizeof(Integer)).	An	integer	is	4	bytes	so	allocating	10	integers	will	set	aside	40	bytes	of	memory.	Allocate	does	not	clear	the	memory	segment,	so	any	data	in	the	segment	will	be	random,	meaningless	data	until	it	is
initialized.

Callocate	works	in	the	same	fashion,	except	that	the	calculation	is	done	internally.	To	allocate	the	same	10	integers	using	Callocate	your	code	would	look	like	this:	myPointer	=	Callocate(10,	Sizeof(Integer)).	Unlike	Allocate,
Callocate	will	clear	the	memory	segment.

Reallocate	will	change	the	size	of	an	existing	memory	segment,	making	it	larger	or	smaller	as	needed.	If	the	new	segment	is	larger	than	the	existing	segment,	then	the	data	in	the	existing	segment	will	be	preserved.	If	the	new
segment	is	smaller	than	the	existing	segment,	the	data	in	the	existing	segment	will	be	truncated.	Reallocate	does	not	clear	the	added	memory	or	change	any	existing	data.

All	of	these	functions	will	return	a	memory	address	if	successful.	If	the	functions	cannot	allocate	the	memory	segment,	then	a	NULL	pointer	(0)	is	returned.	You	should	check	the	return	value	each	time	you	use	these	functions	to	be
sure	that	the	memory	segment	was	successfully	created.	Trying	to	use	a	bad	pointer	will	result	in	undesirable	behavior	or	system	crashes.

There	is	no	intrinsic	method	for	determining	the	size	of	an	allocation.	You	must	keep	track	of	this	information	yourself.

Be	careful	not	to	use	the	same	pointer	variable	to	allocate	two	or	more	memory	segments.	Reusing	a	pointer	without	first	deallocating	the	segment	it	points	to	will	result	in	the	memory	segment	being	lost	causing	a	memory	leak.

Pointer	Arithmetic	and	Pointer	Indexing

When	you	create	a	memory	segment	using	the	allocation	functions,	you	will	need	a	way	to	access	the	data	contained	within	the	segment.	In	FreeBasic	there	are	two	methods	for	accessing	data	in	the	segment;	using	the	indirection
operator	with	pointer	arithmetic,	and	pointer	indexing.

Pointer	arithmetic,	as	the	name	suggests,	adds	and	subtracts	values	to	a	pointer	to	access	individual	elements	within	a	memory	segment.	When	you	create	a	typed	pointer	such	as	Dim	myPointer	as	Integer	ptr,	the	compiler	knows
that	the	data	being	used	with	this	pointer	is	of	size	Integer	or	4	bytes.	The	pointer,	when	initialized,	points	to	the	first	element	of	the	segment.	You	can	express	this	as	*(myPtr	+	0).	To	access	the	second	element,	you	need	to	add	1
to	the	pointer,	which	can	be	expressed	as	*(myPtr	+	1).

Since	the	compiler	knows	that	the	pointer	is	an	Integer	pointer,	adding	1	to	the	pointer	reference	will	actually	increment	the	address	contained	in	myPtr	by	4,	the	size	of	an	Integer.	This	is	why	using	typed	pointers	is	preferable	over
untyped	pointers.	The	compiler	does	much	of	the	work	for	you	in	accessing	the	data	in	the	memory	segment.

Notice	that	the	construct	is	*(myPtr	+	1)	and	not	*myPtr	+	1.	The	*	operator	has	higher	precedence	than	+,	so	*myPtr	+	1	will	actually	increment	the	contents	myPtr	points	to,	and	not	the	pointer	address.

myPtr	will	be	evaluated	first,	which	returns	the	contents	of	the	memory	location	and	then	+1	will	be	evaluated,	adding	1	to	the	memory	location.	By	wrapping	myPtr	+	1	within	parenthesis,	you	force	the	compiler	to	evaluate	myPtr	+
1	first,	which	increments	the	pointer	address,	and	then	the	*	is	applied	to	return	the	contents	of	the	new	address.

Pointer	indexing	works	the	same	way	as	pointer	arithmetic,	but	the	details	are	handled	by	the	compiler.	*(myPtr	+	1)	is	equivalent	to	myPtr[1].	Again,	since	the	compiler	knows	that	myPtr	is	an	integer	pointer,	it	can	calculate	the
correct	memory	offsets	to	return	the	proper	values	using	the	index.	Which	format	you	use	if	up	to	you,	but	the	index	method	resembles	the	standard	array	access	method	and	visually	is	easier	to	understand	than	the	indirection
operator.

Pointer	Functions

Freebasic	has	a	set	of	pointer	functions	to	complement	the	pointer	operators.

CPtr	Converts	expression	to	a	data_type	pointer.	Expression	can	be	another	pointer	or	an	integer.
Peek	Returns	the	contents	of	memory	location	pointer	to	by	pointer.	Data_type	specifies	the	type	of	expected	data.
Poke	Puts	the	value	of	expression	into	the	memory	location	pointed	to	by	pointer.	The	data_type	specifies	the	type	of	data	being	placed	into	the	memory	location.

SAdd	Returns	the	location	in	memory	where	the	string	data	in	a	dynamic	string	is	located.
StrPtr	The	same	as	Sadd.
ProcPtr	Returns	the	address	of	a	function.	This	works	the	same	way	as	the	addressof	operator	@.
VarPtr	This	function	works	the	same	way	as	the	addressof	operator	@.

The	Sadd	and	Strptr	functions	work	with	the	string	data	types	to	return	the	address	of	the	string	data.	The	Peek	and	Poke	functions	have	been	added	for	the	purposes	of	supporting	legacy	code.	Procptr	and	Varptr	both	work	just
like	the	address	of	operator	@,	but	Proptr	only	works	on	subroutines	and	functions	and	Varptr	only	works	on	variables.	Cptr	is	useful	for	casting	an	untyped	pointer	to	a	typed	pointer,	such	as	a	return	value	from	a	third	party	library.

Subroutine	and	Function	Pointers

Subroutines	and	functions,	like	variables,	reside	in	memory	and	have	an	address	associated	with	their	entry	point.	You	can	use	these	addresses	to	create	events	in	your	programs,	to	create	pseudo-objects	and	are	used	in	callback
functions.	You	create	a	sub	or	function	pointer	just	like	any	other	pointer	except	you	declare	your	variable	as	a	pointer	to	a	subroutine	or	function	rather	than	as	a	pointer	to	a	data	type.

Before	using	a	function	pointer,	it	must	be	initialized	to	the	address	of	a	subroutine	or	function	using	Procptr	or	@.	Once	initialized,	you	use	the	pointer	in	the	same	manner	as	calling	the	original	subroutine	or	function.

You	declare	a	function	pointer	using	the	anonymous	declaration	syntax.

Dim	FuncPtr	As	Function(x	As	Integer,	y	As	Integer)	

You	then	need	to	asscoate	this	function	pointer	with	an	actual	subroutine	or	function	within	your	code.

Function	Power(number	As	Integer,	pwr	As	Integer)	As

Return	number^pwr

End	Function

FuncPtr	=	@Power

You	can	then	call	the	function	pointer	much	like	you	would	call	the	real	function.

FuncPtr(2,	4)

While	this	may	not	be	useful	at	first	glance,	you	can	use	this	technique	to	implement	polymorphic	functions	where	a	single	variable	instance	can	point	to	one	of	several	different	subroutine	or	functions.

For	example,	suppose	you	have	a	dog	and	cat	object.	Both	objects	need	a	Speak	method.	By	defining	Speak	as	a	function	pointer	and	associate	Speak	with	a	Bark	subroutine	for	a	dog	and	a	Meow	subroutine	for	a	cat,	you	can
make	Speak	either	issue	a	"Woof!"	or	"Meow!"	depending	on	the	object	type.

Creating	a	Callback	Function

One	of	the	primary	uses	for	function	pointers	is	to	create	callback	functions.	A	callback	function	is	a	function	that	you	have	created	in	your	program	that	is	called	by	another	function	or	subroutine	either	in	your	own	code	space	or	in
an	external	library.	Windows	uses	callback	functions	to	enumerate	through	Window	objects	like	fonts,	printers	and	forms.

The	qsort,	function	contained	within	the	C	Runtime	Library	sorts	the	elements	of	an	array	using	a	callback	function	to	determine	the	sort	order.	The	prototype	for	the	qsort	function	is	contained	in	stdlib.bi:

Declare	Sub	qsort	cdecl	Alias	"qsort"	(ByVal	As	Any	

The	following	lists	the	parameter	information	for	the	qsort	subroutine.

The	first	parameter	is	the	address	to	the	first	element	of	the	array.	The	easiest	way	to	pass	this	information	to	qsort	is	to	append	the	address	of	operator	to	the	first	element	index:	@myArray(0).
The	second	parameter	is	the	number	of	elements	in	the	array,	that	is	the	array	count.
The	third	parameter	is	the	size	of	each	element	in	bytes.	For	an	array	of	integers,	the	element	size	would	be	4	bytes.
The	fourth	parameter	is	a	function	pointer	to	the	user	created	compare	function.	The	function	must	be	declared	using	the	Cdecl	passing	model,	as	shown	in	this	parameter.

Using	this	information,	you	can	see	how	qsort	works.	By	passing	the	address	of	the	first	element	along	with	the	count	of	elements,	and	the	size	of	each	element,	qsort	can	iterate	through	the	array	using	pointer	arithmetic.

Qsort	will	take	two	array	elements,	pass	them	to	your	user	defined	compare	function	and	use	the	compare	function's	return	value	to	sort	the	array	elements.	It	does	this	repeatedly	until	each	array	element	is	in	sorted	order.

You	need	to	declare	the	function	prototype	as	Cdecl	which	ensures	that	the	parameters	are	passed	in	the	correct	order.

Declare	Function	QCompare	cdecl	(ByVal	e1	As	Any	Ptr

You	would	then	define	the	function	like	the	following.

'The	qsort	function	expects	three	numbers

'from	the	compare	function:

'-1:	if	e1	is	less	than	e2

'0:	if	e1	is	equal	to	e2

'1:	if	e1	is	greater	than	e2

Function	QCompare	cdecl	(ByVal	e1	As	Any	Ptr,	_

ByVal	e2	As	Any	Ptr)	As	Integer

Dim	As	Integer	el1,	el2

Static	cnt	As	Integer

'Get	the	call	count	and	items	passed

cnt	+=	1

'Get	the	values,	must	cast	to	integer	ptr

el1	=	*(CPtr(Integer	Ptr,	e1))

el2	=	*(CPtr(Integer	Ptr,	e2))

Print	"Qsort	called";cnt;"	time(s)	with";el1;"	and";

'Compare	the	values

If	el1	<	el2	Then

Return	-1

ElseIf	el1	>	el2	Then

Return	1

Else

								Return	0

End	If

End	Function

You	would	then	call	the	QSort	function	passing	the	address	of	the	callback	function.

qsort	@myArray(0),	10,	SizeOf(Integer),	@QCompare

Pointer	to	Pointer

In	FreeBasic	you	can	create	a	pointer	to	any	of	the	supported	data	types,	including	the	pointer	data	type.	A	pointer	to	a	pointer	is	useful	in	situations	where	you	need	to	return	a	pointer	to	a	function	or	in	creating	specialized	data
structures	such	as	linked-lists	and	ragged	arrays.	A	pointer	to	a	pointer	is	called	multi-level	indirection.

One	application	of	a	pointer	to	pointer	is	the	creation	of	a	memory	segment	that	behaves	just	like	an	array.	For	example,	suppose	you	want	to	create	a	memory	segment	to	hold	an	unknown	number	of	integers.	You	can	create	a
dynamic	memory	segment	that	you	can	resize	as	needed	during	runtime	to	handle	as	many	integers	as	you	need.	You	would	start	by	creating	a	pointer-to-pointer	variable.

Dim	myMemArray	As	Integer	Ptr	Ptr

You	would	then	initialize	the	pointer	reference	by	using	Allocate	or	Callocate.

'Create	10	rows	of	integer	pointers

myMemArray	=	CAllocate(10,	SizeOf(Integer	Ptr))

Notice	that	the	variable	is	initialized	to	an	Integer	Ptr	since	this	list	is	going	to	point	to	another	list;	this	is	the	pointer	that	points	to	another	pointer.	You	can	then	initialize	the	individual	pointer	references	just	created	to	point	to	the
needed	memory	segments.

'Add	10	columns	of	integers	to	each	row

For	i	=	0	To	9

myMemArray[i]	=	CAllocate(10,	SizeOf(Integer))

Next

In	this	code	snippet,	the	individual	pointers	in	the	list	are	initialized	to	10	memory	segments	that	will	contain	the	actual	integer	data.

'Add	some	data	to	the	memory	segment

For	i	=	0	To	9

For	j	=	0	To	9

myMemArray[i][j]	=	Int(Rnd	*	10)

Next

Next

This	code	snippet	uses	the	index	method	to	load	the	actual	data	into	the	memory	segments.	Notice	that	this	looks	and	acts	just	like	a	two-dimensional	array.	While	this	may	not	seem	useful	within	this	context,	you	could	use	this

code	to	create	a	dynamic	array	within	a	type	definition.	Since	you	cannot	have	a	standard	dynamic	array	within	a	type,	this	allows	you	get	the	same	functionality.

One	thing	you	need	to	be	aware	of	is	how	to	deallocate	a	structure	such	as	this.	The	rule	is	to	just	do	the	reverse	of	the	allocation	operations.	Since	the	last	allocate	operation	initialized	the	data	memory	segments,	you	deallocate
these	memory	segments	first	and	then	you	can	deallocate	the	base	pointer.

'Free	memory	segment

For	i	=	0	To	9

Deallocate	myMemArray[i]

Next

'Free	the	pointer	to	pointer

Deallocate	myMemArray

You	need	to	be	sure	that	you	deallocate	in	the	right	order,	otherwise	you	will	end	up	with	memory	segments	that	are	not	freed,	but	inaccessible.	These	are	memory	leaks	and	can	cause	a	whole	host	of	problems	in	your	program.

Linked	Lists 	

A	linked	list	is	a	structure	that	is	easily	expandable	by	using	a	single	function,	and	it	comes	in	very	useful	when	you	need	an	array
of	something	but	you	have	no	idea	how	many.	The	concept	behind	a	linked	list	is	that	each	node	structure	has	a	pointer	to	the	next
and	previous	node	structure.	This	is	called	a	double	linked	list,	as	it	links	to	two	different	nodes.	By	using	a	pointer	to	a	structure,
you	can	specify	a	null	pointer	if	there	is	no	next	or	previous	node,	and	since	the	pointer	stores	a	memory	address,	the	amount	of
nodes	you	can	store	is	limited	only	by	memory.

The	only	downside	to	using	a	linked	list	is	that	in	order	to	store	say	an	integer,	you	have	to	allocate	space	not	only	for	that	integer,
but	also	a	structure	that	contains	a	pointer	to	the	integer	and	a	pointer	to	the	surrounding	nodes.	This	doesn't	make	much	of	a
difference	on	today's	computers	however,	unless	you	are	storing	millions	of	nodes.

The	basic	structure	of	the	linked	list	is	the	node.	The	declaration	is	this:

Type	listnode

				As	Any	Ptr	pData

				As	listnode	Ptr	pNext

				As	listnode	Ptr	pPrev

End	Type

As	a	side	note,	if	whoever	has	access	to	these	scripts	would	like	to	update	it	so	it	contains	the	keywords	new	to	FreeBASIC	(such
as	ptr),	feel	free	to	:)	Also,	LIST	doesn't	appear	to	be	an	FB	keyword	(correct	me	if	I'm	wrong).

This	structure	contains	three	pointers.	The	first	is	a	pointer	to	anything	(Any	Ptr),	that	means	that	you	can	store	strings,	integers,
characters,	even	user	defined	types	and	unions.	But	it	also	means	that	you	must	pass	a	pointer.	You	can	obtain	a	pointer	by	using
the	Allocate	(or	CAllocate)	function.
The	next	two	pointers	are	pointers	to	listnodes,	that	is,	you	are	technically	allowed	to	do	this:
Print	node->pNext->pNext->pNext->pNext->pNext...
since	each	node	contains	a	pointer	to	another	node.	The	problem	with	the	above	syntax	is	that	you	are	limited	to	how	many	nodes
you	can	access	and	the	code	gets	hard	to	understand.	You	can	use	the	ListGetNext	function	for	this	purpose,	and	loop	with	a
While	loop.

Before	we	go	any	further,	let's	see	all	the	declarations	for	using	linked	lists.	Note	that	every	function	has	a	prefix	of	"List".

Declare	Function	ListCreate()	As	listnode	Ptr

Declare	Function	ListAdd(list	As	listnode	Ptr,	item	

Declare	Function	ListAddHead(list	As	listnode	Ptr,	item

Declare	Function	ListGetFirst(list	As	listnode	Ptr)	

Declare	Function	ListGetLast(list	As	listnode	Ptr)	As

Declare	Function	ListGetNext(list	As	listnode	Ptr)	As

Declare	Function	ListGetPrev(list	As	listnode	Ptr)	As

Declare	Function	ListGetData(list	As	listnode	Ptr)	As

Declare	Function	ListRemove(list	As	listnode	Ptr,	bDelete

Declare	Sub	ListRemoveAll(list	As	listnode	Ptr,	bDelete

Edit:	Hmm,	it	doesn't	seem	to	like	my	use	of	"Rem"	in	a	function.	It	compiles	fine	though.

You	can	see	that	there	is	a	function	to	create	a	linked	list,	to	add	an	item,	to	get	various	nodes,	get	data,	and	to	remove	nodes.
Currently	we'll	focus	on	the	ListCreate	function.	It	takes	no	parameters	and	returns	a	listnode	pointer.	The	structure	that	it	creates
has	no	data	filled	out.	The	whole	structure	is	null,	but	it	is	still	a	structure.	If	you	add	a	node,	the	pNext	member	will	change	and
point	to	the	new	item,	so	it	won't	stay	as	a	null	node,	since	there	would	be	no	purpose	of	that.	However,	the	value	returned	by
ListCreate	won't	have	any	data	stored	in	it	and	it	won't	have	a	previous	node.

The	function	ListCreate	looks	like	this:

'	CREATE

Function	ListCreate()	As	listnode	Ptr

				Dim	As	listnode	Ptr	pTemp

				pTemp	=	CAllocate(Len(listnode))

				'	CAllocate	automatically	zeroes	memory.

				Return	pTemp

End	Function

I	prefer	to	use	the	Return	instruction	to	return	a	value	from	a	function,	but	FUNCTION	=	pTemp	and	ListCreate	=	pTemp	are	also
allowed,	although	they	don't	immediately	exit	the	function.

The	point	of	this	function	is	easy	to	see,	a	node	is	allocated	and	returned.	The	comment	says	that	the	CAllocate	function
automatically	zeroes	memory.	If	you	used	the	Allocate	function,	the	memory	would	not	be	zeroed	automatically	and	you	would
have	to	do	that	on	your	own.

The	next	functions,	ListAdd	and	ListAddHead,	add	a	node	to	the	list.	ListAdd	appends	a	node	to	the	end	of	the	list	(the	tail),	while
ListAddHead	puts	a	node	at	the	very	top	(the	head).

'	ADD,	ADDHEAD

Function	ListAdd(list	As	listnode	Ptr,	item	As	Any	Ptr

				Dim	As	listnode	Ptr	pTemp

				If	(list	=	0)	Then	Return	item

				pTemp	=	ListGetLast(list)

				pTemp->pNext	=	CAllocate(Len(listnode))

				pTemp->pNext->pPrev	=	pTemp

				pTemp->pNext->pData	=	item

				Return	item

End	Function

Function	ListAddHead(list	As	listnode	Ptr,	item	As	Any

				Dim	As	listnode	Ptr	pTemp

				If	(list	=	0)	Then	Return	item

				pTemp	=	list->pNext

				list->pNext	=	CAllocate(Len(listnode))

				list->pNext->pPrev	=	list

				list->pNext->pData	=	item

				list->pNext->pNext	=	pTemp

				If	(pTemp	<>	0)	Then

								pTemp->pPrev	=	list->pNext

				End	If

				Return	item

End	Function

You	can	see	that	ListAdd	makes	a	reference	to	a	function	not	shown	yet,	ListGetLast.	For	now	all	you	have	to	know	is	that	it
returns	a	pointer	to	the	last	node	in	the	list.	It	will	be	covered	later.

ListAdd	retrieves	the	last	node	and	sets	its	pNext	pointer	to	a	new	listnode	structure.	This	won't	cause	memory	loss	since	the	last
node	has	a	null	pNext	value	because	nothing	comes	after	it.	Once	our	node	is	added,	we	can	access	it	using	the	->	operator.	The
line
pTemp->pNext->pPrev	=	pTemp
is	the	whole	basis	of	linked	lists,	the	linking	part.	What	this	says	is	that	we	have	a	reference	to	a	node.	That	node	knows	where	the
next	node	is,	and	now	we're	telling	the	node	after	that	next	one	where	the	previous	one	is.	It	may	look	a	little	redundant	at	first,	but
the	compiler	doesn't	know	where	the	nodes	are	until	you	set	them.	Once	you've	done	this,	you	can	step	through	the	linked	list.

The	ListAddHead	function	is	a	little	more	complicated,	since	we're	actually	inserting	a	node	between	the	current	first	node	and	the
null	node	from	ListCreate.	What	it	does	basically	is	allocates	space	to	hold	the	current	first	node,	creates	a	new	node	there,	and
links	them	all	together.	If	you	study	it	a	little,	it	should	seem	a	lot	clearer.	The	If	statement	at	the	end	just	makes	sure	that	we're	not
trying	to	access	memory	that	doesn't	exist	(NULL->pPrev).	If	pTemp	does	not	in	fact	equal	zero,	then	its	pPrev	member	will	be
assigned.	Otherwise,	there	is	no	reason	to	worry	about	it.

The	next	functions	are	ListGetFirst	and	ListGetLast.	I	implemented	them	next	because	ListGetLast	was	referenced	in	an	above
function.

'	GETFIRST,	GETLAST

Function	ListGetFirst(list	As	listnode	Ptr)	As	listnode

				If	(list	=	0)	Then	Return	0

				Return	list->pNext

End	Function

Function	ListGetLast(list	As	listnode	Ptr)	As	listnode

				Dim	As	listnode	Ptr	pTemp

				If	(list	=	0)	Then	Return	0

				pTemp	=	list

				While	(pTemp->pNext	<>	0)

								pTemp	=	pTemp->pNext

				Wend

				Return	pTemp

End	Function

The	first	function	is	probably	the	shortest	and	easiest	function	to	understand,	although	it	relies	on	the	fact	that	you	are	holding	a
pointer	to	the	node	returned	by	ListCreate.	If	you	don't	do	this,	it	could	return	any	random	node.	All	it	does	is	return	a	pointer	to	the
first	node,	or	the	node	that	comes	right	after	the	null	node.

The	second	function,	ListGetLast,	loops	through	the	list	until	it	finds	a	null	node.	The	reason	I	check	if	pTemp->pNext	=	0	instead
of	pTemp	=	0	is	that	I	don't	want	to	return	zero.	I	want	to	return	the	last	node,	which	is	the	node	that	has	its	pNext	value	set	to
zero.	Once	that	node	is	found,	ListGetLast	returns	it.

The	next	3	functions	are	just	helper	functions,	and	could	be	easily	accomplished	with	one	line	of	code.	They	really	exist	because
the	original	implementation	not	written	by	me	had	a	ListGetNext	function.

'	GETNEXT,	GETPREV

Function	ListGetNext(list	As	listnode	Ptr)	As	listnode

				If	(list	=	0)	Then	Return	0

				Return	list->pNext

End	Function

Function	ListGetPrev(list	As	listnode	Ptr)	As	listnode

				'	can't	do	anything	to	a	null	list

				If	(list	=	0)	Then	Return	0

				'	this	is	needed	for	below

				If	(list->pPrev	=	0)	Then	Return	0

				'	since	the	list	starts	with	a	null	node	(pPrev	and	pData	=	0),

				'	the	first	should	be	the	one	right	after	the	real	first.

				If	(list->pPrev->pPrev	=	0)	Then	Return	0

				Return	list->pPrev

End	Function

'	GETDATA

Function	ListGetData(list	As	listnode	Ptr)	As	Any	Ptr

				If	(list	=	0)	Then	Return	0

				Return	list->pData

End	Function

The	first	function,	ListGetNext,	is	the	exact	same	as	ListGetFirst,	but	the	difference	is	in	your	point	of	view.	Although	you	could	use
ListGetFirst	on	a	node	value	in	this	implementation,	it	isn't	a	smart	idea	because	some	other	implementations	may	loop	to	the
beginning	of	the	list	in	order	to	find	the	first	node,	in	which	case	you'd	be	stuck	in	an	infinite	loop.

The	ListGetPrev	function	is	a	little	more	complicated,	since	I	don't	want	to	return	the	null	node.	The	first	and	third	line	of	code	(not
comments)	are	the	ones	that	are	actually	needed,	but	the	second	one	ensures	that	we're	not	accessing	null	memory.	The	third	line
says	that	if	two	nodes	up	is	null,	we	should	return	zero.	That	means	that	if	you	are	at	the	top	node	(not	the	null	node),	there	is	no
previous	node	that	you	can	do	anything	with,	although	there	does	exist	a	previous	node,	and	it	should	return	zero.	The	last	line
handles	the	default	case,	where	there	is	in	fact	a	previous	node,	and	it	should	be	returned.

The	ListGetData	function	is	as	easy	and	brief	as	the	ListGetFirst	and	ListGetNext	functions.	It	just	returns	a	pointer	to	the	node's
data.

The	final	two	functions	remove	nodes	from	the	list.

'	REMOVE,	REMOVEALL

Function	ListRemove(list	As	listnode	Ptr,	bDelete	As

				Dim	As	listnode	Ptr	pPrev

				Dim	As	listnode	Ptr	pNext

				If	(list	=	0)	Then	Return	0

				pPrev	=	list->pPrev

				pNext	=	list->pNext

				If	((list->pData	<>	0)	And	(bDelete	<>	0))	Then	

				Deallocate	list

				If	(pPrev	<>	0)	Then

								pPrev->pNext	=	pNext

				End	If

				If	(pNext	<>	0)	Then

								pNext->pPrev	=	pPrev

				End	If

				Return	pNext

End	Function

Sub	ListRemoveAll(list	As	listnode	Ptr,	bDelete	As	Integer

				Dim	As	listnode	Ptr	node

				node	=	list

				If	(list	=	0)	Then	Return

				While	(node	<>	0)

								If	((node->pData	<>	0)	And	(bDelete	<>	0))	Then

								node	=	ListRemove(node)

				Wend

End	Sub

The	ListRemove	function	has	two	jobs:	To	remove	the	node	you	specified,	and	to	link	the	two	surrounding	nodes	together.	You	can
see	that	it	stores	a	previous	and	next	pointer	to	do	this.	The	optional	parameter,	bDelete,	specifies	if	the	data	item	should	be
deleted.	If	you	are	just	storing	integers,	or	even	structures	with	no	pointers	in	them,	you	can	pass	1	for	this	parameter	and	the	item
will	be	deleted	for	you.	But	if	you	have	a	structure	with	pointers	in	it,	the	best	idea	is	to	delete	all	the	data	yourself	and	have
ListRemove	only	handle	the	list	part	to	ensure	that	there	is	no	memory	loss.	The	listnode	pointer	is	deallocated	regardless	of
whether	or	not	you	told	it	to	delete	the	data.

ListRemoveAll	relies	on	the	ListRemove	function	to	delete	the	nodes.	It	simply	loops	through	the	list	using	a	While	loop	and
deletes	every	node.	The	original	code	used	a	For	loop,	but	FB	doesn't	seem	to	like	my	doing
For	node	=	list	To	0	Step	ListRemove(node)
so	it	has	been	changed.

That's	it,	here's	the	whole	file	that	includes	a	sample	at	the	top	of	how	to	use	them.	This	is	my	first	time	writing	a	tutorial,	so	feel
free	to	leave	comments	on	ways	I	could	improve.	Also,	if	you	catch	a	bug	in	my	code	(I	found	a	couple	while	writing	this),	please
let	me	know.	Feel	free	to	edit	the	bug	out	also,	but	I'd	like	to	know	about	it	too.

Type	listnode

				As	Any	Ptr	pData

				As	listnode	Ptr	pNext

				As	listnode	Ptr	pPrev

End	Type

Declare	Function	ListCreate()	As	listnode	Ptr

Declare	Function	ListAdd(list	As	listnode	Ptr,	item	

Declare	Function	ListAddHead(list	As	listnode	Ptr,	item

Declare	Function	ListGetFirst(list	As	listnode	Ptr)	

Declare	Function	ListGetLast(list	As	listnode	Ptr)	As

Declare	Function	ListGetNext(list	As	listnode	Ptr)	As

Declare	Function	ListGetPrev(list	As	listnode	Ptr)	As

Declare	Function	ListGetData(list	As	listnode	Ptr)	As

Declare	Function	ListRemove(list	As	listnode	Ptr,	bDelete

Declare	Sub	ListRemoveAll(list	As	listnode	Ptr,	bDelete

Dim	As	listnode	Ptr	list,	node

Dim	As	Integer	Ptr	item

list	=	ListCreate()

item	=	ListAdd(list,	CAllocate(Len(Integer)))

*item	=	4

item	=	ListAdd(list,	CAllocate(Len(Integer)))

*item	=	44

item	=	0	'	just	to	show	it	works

node	=	ListGetFirst(list)

While	node	<>	0

				Print	"found	item"

				item	=	ListGetData(node)

				Print	*item

				node	=	ListRemove(node,1)

Wend

While	Inkey$	=	""	:	Wend

'	CREATE

Function	ListCreate()	As	listnode	Ptr

				Dim	As	listnode	Ptr	pTemp

				pTemp	=	CAllocate(Len(listnode))

				'	CAllocate	automatically	zeroes	memory.

				Return	pTemp

End	Function

'	ADD,	ADDHEAD

Function	ListAdd(list	As	listnode	Ptr,	item	As	Any	Ptr

				Dim	As	listnode	Ptr	pTemp

				If	(list	=	0)	Then	Return	item

				pTemp	=	ListGetLast(list)

				pTemp->pNext	=	CAllocate(Len(listnode))

				pTemp->pNext->pPrev	=	pTemp

				pTemp->pNext->pData	=	item

				Return	item

End	Function

Function	ListAddHead(list	As	listnode	Ptr,	item	As	Any

				Dim	As	listnode	Ptr	pTemp

				If	(list	=	0)	Then	Return	item

				pTemp	=	list->pNext

				list->pNext	=	CAllocate(Len(listnode))

				list->pNext->pPrev	=	list

				list->pNext->pData	=	item

				list->pNext->pNext	=	pTemp

				If	(pTemp	<>	0)	Then

								pTemp->pPrev	=	list->pNext

				End	If

				Return	item

End	Function

'	GETFIRST,	GETLAST

Function	ListGetFirst(list	As	listnode	Ptr)	As	listnode

				If	(list	=	0)	Then	Return	0

				Return	list->pNext

End	Function

Function	ListGetLast(list	As	listnode	Ptr)	As	listnode

				Dim	As	listnode	Ptr	pTemp

				If	(list	=	0)	Then	Return	0

				pTemp	=	list

				While	(pTemp->pNext	<>	0)

								pTemp	=	pTemp->pNext

				Wend

				Return	pTemp

End	Function

'	GETNEXT,	GETPREV

Function	ListGetNext(list	As	listnode	Ptr)	As	listnode

				If	(list	=	0)	Then	Return	0

				Return	list->pNext

End	Function

Function	ListGetPrev(list	As	listnode	Ptr)	As	listnode

				'	can't	do	anything	to	a	null	list

				If	(list	=	0)	Then	Return	0

				'	this	is	needed	for	below

				If	(list->pPrev	=	0)	Then	Return	0

				'	since	the	list	starts	with	a	null	node	(pPrev	and	pData	=	0),

				'	the	first	should	be	the	one	right	after	the	real	first.

				If	(list->pPrev->pPrev	=	0)	Then	Return	0

				Return	list->pPrev

End	Function

'	GETDATA

Function	ListGetData(list	As	listnode	Ptr)	As	Any	Ptr

				If	(list	=	0)	Then	Return	0

				Return	list->pData

End	Function

'	REMOVE,	REMOVEALL

Function	ListRemove(list	As	listnode	Ptr,	bDelete	As

				Dim	As	listnode	Ptr	pPrev

				Dim	As	listnode	Ptr	pNext

				If	(list	=	0)	Then	Return	0

				pPrev	=	list->pPrev

				pNext	=	list->pNext

				If	((list->pData	<>	0)	And	(bDelete	<>	0))	Then	

				Deallocate	list

				If	(pPrev	<>	0)	Then

								pPrev->pNext	=	pNext

				End	If

				If	(pNext	<>	0)	Then

								pNext->pPrev	=	pPrev

				End	If

				Return	pNext

End	Function

Sub	ListRemoveAll(list	As	listnode	Ptr,	bDelete	As	Integer

				Dim	As	listnode	Ptr	node

				node	=	list

				If	(list	=	0)	Then	Return

				While	(node	<>	0)

								If	((node->pData	<>	0)	And	(bDelete	<>	0))	Then

								node	=	ListRemove(node)

				Wend

End	Sub

If	you	haven't	noticed	already,	ListAdd	and	ListAddHead	return	a	pointer	to	the	data	you	inputted.	The	sample	code	(see	above)
shows	how	to	use	this	functionality.	ListRemove	returns	a	pointer	to	next	node.	That's	how	ListRemoveAll	removes	the	nodes.
ListRemoveAll	is	the	only	function	that	doesn't	return	anything.	There	is	no	need,	since	the	whole	list	will	be	empty	after	you	have
called	it.

Dynamic	Arrays	in	Types 	

Written	by	rdc	
Introduction

A	dynamic	array	in	a	type	definition	is	a	very	useful	feature,	but
FreeBasic	doesn't	support	it	before	version	1.00.0.	Or	rather,	it	doesn't
support	it	directly	before	that	version.	However,	you	can	create	dynamic
arrays	by	using	pointers	and	the	associated	memory	functions.

An	array	is	simply	a	contiguous	block	of	memory	that	holds	a	certain	data
type.	Arrays	in	FreeBasic	use	an	array	descriptor	to	describe	the	data
contained	within	the	array,	and	you	can	use	this	same	technique	to	build
a	dynamic	array	within	a	type.	The	two	elements	you	need	within	your
type-def	are	a	pointer	to	a	particular	data	type,	and	a	size	indicator.	

You	can	then	use	the	ptr	field	to	allocate	a	block	of	memory	to	the
needed	size,	and	save	that	size	in	the	size	indicator	field.	The	size	field	is
used	to	tell	you	how	many	elements	are	currently	in	the	array.	Once	the
array	has	been	initialized,	you	can	then	use	pointer	indexing	to	access
each	element	in	the	array.

Getting	the	Point(er)	in	Code

The	following	program	illustrates	the	steps	in	creating,	initializing	and
resizing	a	dynamic	type-def	array.

'Define	type:

'size	is	current	size	of	array

'darray	will	contain	array	data

Type	DType

				size	As	Integer

				darray	As	Integer	Ptr

End	Type

'Create	an	instance	of	type

Dim	myType	As	DType

Dim	As	Integer	i,	tmp

'Create	enough	space	for	elements

myType.darray	=	CAllocate(5,	SizeOf(Integer))

'Set	the	length	of	the	array

'in	the	array	size	indicator

myType.size	=	5

'Load	data	into	array

For	i	=	0	To	myType.Size	-	1	

				myType.darray[i]	=	i

Next

'Print	data

For	i	=	0	To	myType.Size	-	1

				Print	"darray[";i;"]:";myType.darray[i]

Next

Print	"Press	any	key..."

Sleep

Print

'Save	the	current	array	size

tmp	=	myType.size

'Now	resize	the	array

myType.darray	=	Reallocate(myType.darray,	10)

'Set	the	length	indicator

myType.size	=	10

'Load	in	data	into	new	allocation

For	i	=	tmp	To	myType.Size	-	1

				myType.darray[i]	=	i

Next

'Print	out	contents

For	i	=	0	To	myType.Size	-	1

				Print	"darray[";i;"]:";myType.darray[i]

Next

Print	"Press	any	key..."

Sleep

'Free	allocated	space

Deallocate	myType.darray

End

How	it	Works

The	first	step	is,	of	course,	to	define	the	type-def:

Type	DType

				size	As	Integer

				darray	As	Integer	Ptr

End	Type

Since	this	is	just	an	example	there	are	only	two	elements	within	the	type,
a	size	indicator	and	the	array	pointer.	Notice	that	the	array	pointer	is
defined	as	an	Integer	ptr.	When	you	define	a	pointer	to	a	particular	type,
you	are	creating	a	"typed"	pointer.	The	compiler	can	use	this	type
information	to	check	to	make	sure	the	values	being	placed	into	the	array
are	valid,	and	will	also	use	this	information	for	pointer	arithmetic.

The	next	step	is	to	define	the	working	variables.

Dim	myType	As	DType

Dim	As	Integer	i,	tmp

Here	an	instance	of	the	type	is	created,	as	well	as	some	working
variables	that	are	used	in	the	following	code.	WARNING:	You	must
initialize	the	array	pointer	before	you	can	use	it;	using	an	uninitialized	ptr
can	cause	program	crashes,	system	lockups	and	all	sorts	of	bad	things.	

myType.darray	=	CAllocate(5,	SizeOf(Integer))

myType.size	=	5

These	two	lines	of	code	initialize	the	array	pointer	to	hold	5	integers.
Callocate	is	used	to	allocate	the	memory	segment,	since	Callocate	will
initialize	the	segment	to	zeros.

The	size	field	stores	the	current	length	of	the	array.	Now,	of	course,	you
could	calculate	the	size	of	the	array	by	simply	dividing	the	number	of
bytes	in	the	allocation	by	the	size	of	an	integer,	but	using	a	size	indicator
within	the	type	is	much	cleaner	and	saves	you	a	calculation	in	your
program.

For	i	=	0	To	myType.Size	-	1	

				myType.darray[i]	=	i

Next

This	section	of	code	loads	the	array	with	some	values.	You	can	see	why
saving	the	size	of	the	array	simplifies	the	coding	process.	Since	the	array
is	a	typed	pointer,	you	can	access	the	array	using	the	pointer	indexing
method,	which	is	almost	like	accessing	a	predefined	array.

For	i	=	0	To	myType.Size	-	1

				Print	"darray[";i;"]:";myType.darray[i]

Next

This	section	simply	prints	out	the	values	using	the	same	method	that	was
used	to	load	the	array.

Of	course,	this	should	be	a	dynamic	array,	so	you	should	be	able	to
resize	the	array,	and	this	is	exactly	what	the	next	section	of	code	will	do.

tmp	=	myType.size

myType.darray	=	Reallocate(myType.darray,	10)

myType.size	=	10

The	first	line	of	code	saves	the	current	size	of	the	array	so	that	the	new
memory	segment	can	be	initialized	while	not	overwriting	any	existing

data.	You	will	see	this	in	a	moment.

The	second	line	uses	the	Reallocate	function	to	resize	the	memory
segment,	that	is,	resize	the	array.	In	this	case,	the	array	is	being	made
larger;	you	could	of	course	make	the	array	smaller.	If	you	were	to	make
the	array	smaller,	any	data	not	in	the	new	segment	would	be	lost,	as	you
would	expect.

The	last	line	of	code	above	saves	the	new	array	size	in	the	size	indicator.

For	i	=	tmp	To	myType.Size	-	1

				myType.darray[i]	=	i

Next

Here,	you	can	see	why	the	old	array	size	was	saved.	In	the	For
statement,	the	initialization	procedure	iterates	through	the	newly	added
indexes,	storing	data	within	the	memory	segment.	This	is	like	using	the
Redim	Preserve	statement	on	a	normal	array.

For	i	=	0	To	myType.Size	-	1

				Print	"darray[";i;"]:";myType.darray[i]

Next

This	code	section	simply	prints	out	the	new	values.

Deallocate	myType.darray

This	is	vitally	important.	You	should	always	deallocate	any	allocated
memory	that	you	have	created	in	your	program	to	prevent	memory	leaks.

When	you	run	the	program	you	should	see	the	following	output:

darray[0]:	0

darray[1]:	1

darray[2]:	2

darray[3]:	3

darray[4]:	4

Press	Any	key...

darray[0]:	0

darray[1]:	1

darray[2]:	2

darray[3]:	3

darray[4]:	4

darray[5]:	5

darray[6]:	6

darray[7]:	7

darray[8]:	8

darray[9]:	9

Press	Any	key...

The	first	print	out	shows	the	original	array.	The	second	print	out	shows
the	newly	resized	array.

From	fbc	version	1.00.0,	dynamic	arrays	fields	as	non-static
members	are	supported	inside	UDT

Previous	example	transposed	for	fbc	version	1.00.0	or	greater,	by	using	a
dynamic	array	field	as	non-static	member	inside	the	UDT	(feature	now
supported):

'Define	type	(for	fbc	version	>=	1.00.0):

'darray	will	contain	array	data

Type	DType

				darray(Any)	As	Integer

End	Type

'Create	an	instance	of	type

Dim	myType	As	DType

Dim	As	Integer	i,	tmp

'Create	enough	space	for	elements

ReDim	myType.darray(4)

'Load	data	into	array

For	i	=	0	To	UBound(myType.darray)

				myType.darray(i)	=	i

Next

'Print	data

For	i	=	0	To	UBound(myType.darray)

				Print	"darray(";i;"):";	myType.darray(i)

Next

Print	"Press	any	key..."

Sleep

Print

'Save	the	current	array	upper	bound

tmp	=	UBound(myType.darray)

'Now	resize	the	array

ReDim	Preserve	myType.darray(10)

'Load	in	data	into	new	allocation

For	i	=	tmp	+	1	To	UBound(myType.darray)

				myType.darray(i)	=	i

Next

'Print	out	contents

For	i	=	0	To	UBound(myType.darray)

				Print	"darray(";i;"):";myType.darray(i)

Next

Print	"Press	any	key..."

Sleep

Function	Overloading 	

written	by	:stylin:	

What	is	It?

Function	overloading	is	as	close	as	you	can	come	to	generic	programming	without	having	templates.	In	functional	(or	modular)
programming,	the	emphasis	is	on	value,	while	in	generic	programming,	the	emphasis	is	on	
the	type	of	the	argument	passed.	Function	overloading	is	a	side-step	into	generic	programming,	allowing	a	function	identifier	to	be
associated	with	a	variety	of	functions	that	work	with	a	variety	of	different	types	-	and	making	it	all	transparent	to	the	client	(you).

Simply	put,	function	overloading	involves	defining	functions	that	have	the	same	name,	but	different	
a	combination	of	all	the	information	needed	to	correctly	reference	the	function,	and	includes	the	function's	parameter	list	and	return
type.	These	are	what	we	redefine,	or	overload.	Let's	start	off	with	a	small	example.	Say	we	need	functions	that	output	the	string
respresentation	of	a	number.	We	simply	write:

Option	Explicit						''	force	explicit	declaration	of	variables

Option	ByVal									''	default	passing	convention	as	by	value

''	to	declare	functions	with	similar	functionality	but	that	accept	different	argument	types,

''	we	'simply'	create	new	function	names	:(

Declare	Function	print_byte(As	Byte)						''	outputs	a	stringified	byte

Declare	Function	print_short(As	Short)				''	outputs	a	stringified	short

Dim	As	Byte	b	=	102

Dim	As	Short	s	=	10240

print_byte(b)

print_short(s)

Sleep	:	End	0

''	function	definitions	squished	for	brevity	-	don't	do	this	outside	a	space-

constrained		tutorial	;}

Function	print_byte(n	As	Byte)	:	Print	Str(n)	:	

Function	print_short(n	As	Short)	:	Print	Str(n)	

What	Does	It	Do	For	Me?

The	problem	here	is	that	not	only	do	we	have	two	different	function	signatures,	but	we	have	two	different	function	
we	-	not	the	compiler	-	have	to	remember	both	in	order	to	call	the	right	function.	As	you	may	be	able	to	imagine,	this	can	be	pretty
confusing	if	you	decide	you	want	to	support	INTEGERs,	SINGLEs	and	DOUBLEs	as	well.	Plus,	for	completeness,	you	may	want	to
have	functions	that	accept	both	the	signed	and	unsigned	versions	of	each	of	these.	Clearly,	you're	going	to	have	some	kind	of	naming-
scheme	setup	to	make	this	easier	on	yourself.	And,	of	course	you'll	want	to	support	your	own	TYPEs	as	well,	and	-	oh	wait,	we	forgot
about	pointers.	OK,	now	you'll	need	to	double	the	list	of	function	names	you	not	only	need	to	come	up	with,	but	also	try	and	remember
when	you're	actually	writing	code	that	uses	these	functions.	Since,	after	all,	you	do	have	implicit	conversions	available	to/forced	upon
you,	and	the	compiler	will	happily	let	you	slip	a	DOUBLE	in	to	your	print_integer	function	-	woops!	Bug-city,	here	we	come!	Surely
there	must	be	a	better	way?

There	is,	and	don't	call	me	Shirley.	I	mentioned	before	that	the	compiler	uses	two	primary	components	to	establish	a	function
signature:	the	parameter	list	and	the	return	type.	I	also	mentioned	that	through	overloading,	we	can	define	multiple	functions	with
different	signatures,	and	still	keep	the	same	function	name	for	all	of	them.	You	may	be	thinking	this	is	our	way	out	of	our	dilema,
convoluted	name	space	and	all.	Well,	you're	right	-	check	this	out:

Option	Explicit						''	force	explicit	declaration	of	variables

Option	ByVal									''	default	passing	convention	as	by	value

''	to	overload	function	print_numeric	that	we	can	redefine	to	accept	different	argument

''	types	while	keeping	the	name	intact,	we	use	the	OVERLOAD	keyword	on	our	intial	function:

Declare	Function	print_numeric	Overload(As	Byte)						

Declare	Function	print_numeric(As	Short)														

Declare	Function	print_numeric(As	Integer)												

Declare	Function	print_numeric(As	LongInt)												

''	define	some	variables

Dim	As	Byte	b	=	102

Dim	As	Short	s	=	10240

Dim	As	Integer	i	=	1024000000

Dim	As	LongInt	li	=	1024000000000000000

''	enter	the	wonderful	world	of	function	overloading	:)

print_numeric(b)

print_numeric(s)

print_numeric(i)

print_numeric(li)

Sleep	:	End	0

''	define	our	function	overloads

Function	print_numeric(n	As	Byte)	:	Print	Str(n)

Function	print_numeric(n	As	Short)	:	Print	Str(n	

Function	print_numeric(n	As	Integer)	:	Print	Str(

Function	print_numeric(n	As	LongInt)	:	Print	Str(

What	does	It	Mean?

One	thing	that	should	stand	out	right	away	is	how	incredibly	easy	it	is	to	do	this.	That	might	seem	strange	considering	the	freedom,
flexibility	and	type-safety	if	offers	you,	but	then	again	most	higher-level	constructs	are	like	that.	In	a	nutshell,	using	methods	like	this
will	not	only	make	your	life	a	whole	lot	easier,	but	you'll	be	spending	less	time	debugging,	and	that's	a	good	thing	no	matter	what	kind
of	code	you	write.

It	means	flexibility.	Function	overloading	offers	the	ability	to	add	more	features	(print_numeric(f	as	fraction))	while	still	keeping	your
current	code	intact.	Your	code	doesn't	break	because	you	want	to	support	printing	the	numeric	representation	of	a	handkerchief,	or
armor,	or	whatever	else.	You	may	now	be	thinking	that	the	above	code	is	not	so	trivial	anymore,	and	that	what	seems	really	simple	-
because	it	is	-	is	really	the	foundation	of	writing	better	code.	You'd	be	right.

It	means	maintainability:	So	you've	got	your	80	functions	of
print_some_long_name_you_need_to_look_up_everytime_you_want_to_use_it	written	and	debugged.	Everything's	great	in	your	little
torturous,	self-loathing	world.	What	happens	when	something	needs	to	change?	Even	if	only	1	of	those	functions	needs	to	change,
BAM!	A	maintenence	nightmare.	You're	going	to	have	to	search	the	entire	code-base	to	be	

function	here	or	there;	sad	way	to	spend	a	Saturday	night,	my	friend.

It	means	safety:	You	may	notice	that	I	utilize	two	OPTIONs	in	these	examples:	
and	I'm	even	bigger	on	having	the	compiler	watch	my	back	for	me.	I	use	these	because	it	is	safer	to,	and	I'll	take	all	the	safety	I	can
get.	Function	overloading	also	affords	you	safety	-	safety	against	evil	(read:	accidental)	implicit	conversions.	Consider	if	we	were
actually	returning	a	value	from	these	functions	that	was	dependent	on	the	argument	we	passed	to	it.	As	above,	if	a	double	were
allowed	to	get	truncated	without	our	knowledge,	that	spells	many	pills	of	excedrin	trying	to	make	that	debugging	headache	go	away.
It's	all	about	the	type-safety,	something	which	cause	many	to	scoff	at	Cpp

Wrapping	Up

I	hope	you	have	learned	at	least	the	basics	of	function	overloading	(since	that's	all	I	covered).	And	I	hope	you	start	thinking	about	the
themes	I've	brought	up,	if	you	haven't	before.	Next	time	I'll	discuss	overloading	functions	with	different	numbers	of	parameters,
different	return	types,	as	well	as	the	joys	and	pitfalls	of	both.	Stay	tuned.

Laanan	Fisher 	

(a.k.a.	stylin)	
FreeBASIC
I	regularly	use	and	recommend	FreeBASIC	to	anyone	needing	a
language	that	provides	ease-of-use,	low	development	times,	portability
and	support	for	a	variety	of	programming	paradigms.	I	log	on
occasionally	at	the	official	FreeBASIC	site	[www.freebasic.net]	and	read
about	what's	new	with	FreeBASIC	and	its	great	community	at	the	forums
there	[www.freebasic.net/forum].

contact
Reach	me	via	email	at	gmail.com	with	a	username	of	"laananfisher".

Introduction	to	Message-Based	Programming 	

Written	by	rdc	
Historically,	programming	languages	have	been	categorized	as	procedural	and	message-based.	For	example,
QuickBasic	could	be	categorized	as	a	procedural	language	and	Visual	Basic	could	be	categorized	as	a	message-
based	(or	event-driven)	language.	In	a	procedural	language	you	generally	start	at	the	top,	do	some	things	and	exit
in	a	somewhat	linear	manner.	In	a	message-based	language,	you	generally	initialize	the	system	and	then	the
program	sits	in	an	idle	loop	and	waits	for	something	to	happen.	When	something	happens,	you	handle	it	and	then
the	program	returns	to	the	idle	loop,	eventually	exiting	the	loop	when	the	user	closes	the	program.

In	a	procedural	language	you	have	full	control	over	what	the	user	sees	and	does.	In	a	message-based	system,	you
work	in	cooperation	with	the	operating	system	and	user,	handling	only	those	messages	that	you	are	interested	in,
and	letting	the	operating	system	handle	the	rest.	The	real	stumbling	block	for	programmers	that	come	to	a
message-based	language	from	a	procedural	language	is	the	concept	of	responding	only	to	messages.	However,
we	are	really	talking	about	shades	of	gray,	rather	than	black	and	white.	In	most	languages,	including	procedural,
messages	play	an	important	role.

If	you	have	ever	used	a	language	that	supports	subroutine	and	function	calls,	then	you	have	used	message-based
programming.	For	example,	say	you	have	written	a	game	in	QuickBasic	that	sits	in	a	loop	waiting	for	one	of	the
arrow	keys	to	be	pressed.	If	the	up	arrow	key	is	pressed,	you	call	a	subroutine	that	updates	the	position	of	a	sprite
on	the	screen.	If	the	A	key	is	pressed,	you	ignore	it,	since	you	don't	care	about	the	A	key.	This	is	message-based
programming.	The	message	is	the	key	press	and	the	sprite	update	subroutine	is	the	message	handler.	

Any	structured	programming	language	could	be	categorized	as	a	message-based	programming	language.
Message-based	programming	is	a	concept,	a	way	to	handle	user	input	and	react	to	that	input.	It	is	more
methodology	than	it	is	a	type	of	language.	It	became	the	dominant	feature	of	some	programming	languages	when
operating	systems	evolved	from	the	command	line	to	graphical	user	interfaces	(GUIs).	

In	a	GUI	based	operating	system,	such	as	Windows,	the	OS	manages	all	the	graphical	elements	internally.	Since
the	programmer	isn't	building	a	text	edit	field	from	scratch,	he/she	is	just	using	the	edit	field	built	into	the	graphical
shell,	there	had	to	be	a	way	to	notify	the	programmer	that	the	user	wants	to	update	the	edit	field.	The	most	natural
method	is	to	send	a	message	to	the	program	indicating	that	the	edit	field	has	been	updated.	Under	Windows,	this
borrowing	of	GUI	elements	and	receiving	of	messages	has	been	formalized	into	what	is	called	the	Windows
Software	Development	Kit,	or	more	commonly,	the	Windows	SDK.

The	Windows	SDK	is	a	collection	of	application	programming	interfaces	(APIs)	in	a	set	of	dynamic	link	libraries
(DLLs)	that	form	the	majority	of	the	operating	system.	Any	GUI	based	program	running	under	Windows	uses	the
SDK,	even	if	it	isn't	readily	apparent.	In	Rapid	Application	Development	(RAD)	languages	such	as	Delphi,	Visual

Basic	or	Real	Basic,	the	languages	hide	the	details	of	the	SDK	by	using	properties	and	events,	but	under	the	hood
they	are	using	the	SDK.

While	RAD	languages	enable	the	programmer	to	quickly	build	GUI-based	programs,	it	also	means	that	the	finer
details	of	the	SDK	are	not	accessible.	For	example,	it	is	quite	difficult	to	subclass	a	control	using	VB,	but	is	quite
straightforward	using	the	SDK.	However,	the	SDK	is	huge,	and	the	shear	size	of	the	API	is	enough	to	make	many
programmers	give	up	on	the	idea	of	SDK	programming.	The	common	thought	is	that	it	is	too	complicated	and	hard
to	use,	but	the	opposite	is	true.	Because	the	operating	system	handles	all	the	graphical	elements	for	the	program,
the	programmer	can	concentrate	on	the	most	important	aspect	of	program	design,	user	interaction.	After	all,	a	GUI
program	is	all	about	user	interaction.

FreeBasic	doesn't	have	a	RAD	system	for	Windows	programming.	To	create	a	Windows	program	in	FreeBasic,	you
will	have	to	use	the	SDK,	as	this	is	the	only	option.	While	the	SDK	is	massive,	and	would	probably	take	a	lifetime	to
fully	understand,	for	99%	of	all	Windows	programs,	only	a	small	subset	of	the	SDK	needs	to	be	used.	The	reality	is
that	Windows	SDK	programming	is	no	harder	than	any	other	type	of	programming,	and	for	GUI-based	programs,	is
actually	easier	than	a	language	where	you	would	have	to	create	all	the	GUI	elements	yourself.

Putting	aside	all	the	gritty	details	of	the	Windows	API	for	the	moment,	it	is	important	to	understand	the	mechanism
of	messages	in	an	SDK	program.	This	is	best	accomplished	by	looking	at	our	old	friend,	the	Hello	World	program.
In	the	examples\Windows\gui	folder	of	the	FreeBasic	.15b	distribution	(which	is	required	for	the	code	in	this	article),
there	is	a	nice	Hello	World	program	that	I	am	going	to	steal--I	mean	borrow,	as	the	base	for	this	example.

Option	Explicit

Option	Private

#include	once	"windows.bi"

Declare	Function								WinMain					(ByVal	hInstance

																																						ByVal	hPrevInstance

																																						szCmdLine	As	String

																																						ByVal	iCmdShow

																																		

																																		

				''

				''	Entry	point				

				''

				End	WinMain(GetModuleHandle(null),	null,	Command$

''	::::::::

''	name:	WndProc

''	desc:	Processes	windows	messages

''

''	::::::::

Function	WndProc	(ByVal	hWnd	As	HWND,	_

																			ByVal	message	As	UINT,	_

																			ByVal	wParam	As	WPARAM,	_

																			ByVal	lParam	As	LPARAM)	As	LRESULT

				

				Function	=	0

				

				''

				''	Process	messages

				''

				Select	Case(message)

								''

								''	Window	was	created

								''								

								Case	WM_CREATE												

												Exit	Function

								

								''	User	clicked	the	form

								Case	WM_LBUTTONUP

												MessageBox	NULL,	"Hello	world	from	FreeBasic"

								''

								''	Windows	is	being	repainted

								''

								Case	WM_PAINT

												Dim	rct	As	RECT

												Dim	pnt	As	PAINTSTRUCT

												Dim	hDC	As	HDC

										

												hDC	=	BeginPaint(hWnd,	@pnt)

												GetClientRect(hWnd,	@rct)

												

												DrawText(hDC,	_

																						"Hello	Windows	from	FreeBasic!"

																						-1,	_

																						@rct,	_

																						DT_SINGLELINE	Or	DT_CENTER	Or	

												

												EndPaint(hWnd,	@pnt)

												

												Exit	Function												

								

								''

								''	Key	pressed

								''

								Case	WM_KEYDOWN

												'Close	if	esc	key	pressed

												If(LoByte(wParam)	=	27)	Then

																PostMessage(hWnd,	WM_CLOSE,	0,	0)

												End	If

								''

								''	Window	was	closed

								''

								Case	WM_DESTROY

												PostQuitMessage(0)

												Exit	Function

				End	Select

				

				''

				''	Message	doesn't	concern	us,	send	it	to	the	default	handler

				''	and	get	result

				''

				Function	=	DefWindowProc(hWnd,	message,	wParam,

				

End	Function

''	::::::::

''	name:	WinMain

''	desc:	A	win2	gui	program	entry	point

''

''	::::::::

Function	WinMain	(ByVal	hInstance	As	HINSTANCE,	_

																			ByVal	hPrevInstance	As	HINSTANCE,

																			szCmdLine	As	String,	_

																			ByVal	iCmdShow	As	Integer)	As	Integer

					

				Dim	wMsg	As	MSG

				Dim	wcls	As	WNDCLASS					

				Dim	szAppName	As	String

				Dim	hWnd	As	HWND

					

				Function	=	0

					

				''

				''	Setup	window	class

				''

				szAppName	=	"HelloWin"

					

				With	wcls

								.style									=	CS_HREDRAW	Or	CS_VREDRAW

								.lpfnWndProc			=	@WndProc

								.cbClsExtra				=	0

								.cbWndExtra				=	0

								.hInstance					=	hInstance

								.hIcon									=	LoadIcon(NULL,	IDI_APPLICATION

								.hCursor							=	LoadCursor(NULL,	IDC_ARROW

								.hbrBackground	=	GetStockObject(WHITE_BRUSH

								.lpszMenuName		=	NULL

								.lpszClassName	=	StrPtr(szAppName)

				End	With

										

				''

				''	Register	the	window	class					

				''					

				If(RegisterClass(@wcls)	=	FALSE)	Then

							MessageBox(null,	"Failed	to	register	wcls!",

							Exit	Function

				End	If

				

				''

				''	Create	the	window	and	show	it

				''

				hWnd	=	CreateWindowEx(0,	_

																												szAppName,	_

																											"The	Hello	Program",	_

																											WS_OVERLAPPEDWINDOW,	_

																											CW_USEDEFAULT,	_

																											CW_USEDEFAULT,	_

																											CW_USEDEFAULT,	_

																											CW_USEDEFAULT,	_

																											NULL,	_

																											NULL,	_

																											hInstance,	_

																											NULL)

																										

				ShowWindow(hWnd,	iCmdShow)

				UpdateWindow(hWnd)

					

				''

				''	Process	windows	messages

				''

				While(GetMessage(@wMsg,	NULL,	0,	0)	<>	FALSE	

								TranslateMessage(@wMsg)

								DispatchMessage(@wMsg)

				Wend

				

				

				''

				''	Program	has	ended

				''

				Function	=	wMsg.wParam

End	Function

If	you	have	successfully	compiled	and	run	the	program,	you	will	see	a	standard	window	with	a	message	printed	on
the	form.	If	you	click	the	form,	a	message	box	will	be	displayed,	and	if	you	press	the	Escape	key,	the	program	will
close.	

Take	a	moment	to	examine	the	window.	You	will	see	that	the	form	has	the	max,	min	and	restore	buttons,	a	system
menu	and	can	be	resized.	Now	look	at	the	code	above.	There	isn't	any	code	needed	to	handle	the	mentioned
window	properties,	the	OS	handles	all	that	for	you.	It	also	only	takes	a	single	line	of	code	to	display	the
messagebox,	which	in	itself,	is	a	rather	complex	object.	The	ratio	of	result	to	amount	of	code,	is	quite	remarkable.	If
you	were	to	try	and	recreate	this	simple	program	using	FreeBasic's	standard	graphical	commands,	the	program
would	be	a	hundred	times	larger.	

The	first	thing	you	should	notice	about	the	code	listed	above	is	the	format.	This	is	the	basic	format	of	any	FreeBasic
Windows	program.	Every	Windows	program,	no	matter	how	simple	or	complex,	will	follow	this	same	basic	format.
The	two	key	ingredients	of	this	program	are	the	WinMain	and	WinProc	procedures.

The	WinMain	procedure	is	the	procedure	Windows	calls	when	a	program	is	started.	It	is	the	entry	point	of	a
Windows	program.	In	WinMain,	you	build	and	register	the	main	program	window	and	then	enter	into	the	message
loop	to	process	messages.	Once	the	program	enters	the	message	loop,	it	will	start	processing	messages	with	the
WinProc	procedure.	Since	this	article	is	about	the	message	model	in	a	Windows	program,	we	will	only	discuss	the
message	loop	in	WinMain	and	the	WinProc	procedure.

When	the	Windows	operating	system	is	running,	there	are	messages	being	generated	all	the	time.	When	a
Windows	program	is	running,	the	OS	will	send	messages	to	the	program,	when	something	happens	that	the	OS
thinks	the	program	should	know	about.	Some	of	these	program	specific	messages	are	sent	directly	to	the	WinProc
(or	similar)	procedure,	and	others,	primarily	user-generated	messages,	are	placed	into	a	message	queue.	Since
most	of	a	program	is	concerned	with	user	interaction,	it	is	important	to	understand	the	message	queue.

A	queue	is	a	data	structure	where	data	in	added	to	the	"back"	of	the	queue	and	removed	from	the	"front".	This	is
called	a	First-In-First-Out,	or	FIFO	stack.	If	you	have	ever	stood	in	line	to	buy	movie	tickets,	you	have	experienced
a	queue.

For	a	program,	the	message	queue	will	hold	one	or	more	messages,	lined	up	like	the	folks	in	a	movie	ticket	line.
The	idle	loop	of	a	Windows	program	sits	and	waits	for	messages	to	arrive	and	then	translates	and	dispatches	the
messages	to	the	program.	This	message	loop	is	contained	within	the	following	code	excerpt	from	WinMain.

				''

				''	Process	windows	messages

				''

				While(GetMessage(@wMsg,	NULL,	0,	0)	<>	FALSE	

								TranslateMessage(@wMsg)

								DispatchMessage(@wMsg)

				Wend

The	GetMessage	procedure	retrieves	a	message	from	the	queue	via	the	
a	MSG	type-def	that	contains	the	necessary	information	related	to	a	particular	message.	Here	is	the	definition	of
the	MSG	type-def.

Type	MSG

hwnd	As	HWND

				message	As	UINT

				wParam	As	WPARAM

				lParam	As	LPARAM

				Time	As	DWORD

				pt	As	Point

End	Type

hwnd	is	the	handle	of	the	window	that	needs	to	process	the	message.	This	message	will	be	processed	by	that
window's	WinProc	procedure.

Message	is	the	message	identifier.	This	could	be,	for	example,	WM_CREATE,	which	signals	that	a	window	has
been	created,	but	not	yet	shown.

wParam	and	lParam	both	specify	additional	information	based	on	the	message	type.	For	example,	when	a	key	is
pressed,	you	can	retrieve	the	key	code	by	using	the	lobyte	of	wParam.

time	specifies	the	time	that	the	message	was	posted	and	pt	is	a	structure	that	contains	the	position	of	the	cursor
when	the	message	was	posted.

TranslateMessage	converts	virtual	key	messages	to	character	messages,	and	then	puts	them	back	into	the	queue
so	that	the	key	can	processed	if	desired.	Any	program	that	uses	the	keyboard	will	need	this	procedure.	The
DispatchMethod	then	sends	a	message	to	the	windows	WinProc	(or	similar)	procedure	associated	with	the
window	identified	by	the	hWnd	parameter.

To	summarize	the	actions	here,	a	user	generated	message	will	be	placed	into	the	"back"	of	the	message	queue.
GetMessage	retrieves	the	first	waiting	message,	passes	it	to	TranslateMessage	which	converts	the	message	if
necessary,	and	puts	it	back	into	the	queue.	The	message	is	then	passed	onto	DispatchMessage,	which	examines
the	message	to	see	which	window	should	get	the	message,	and	then	passes	the	message	onto	the	windows
handler	procedure,	which	in	our	example,	is	WinProc.

Before	we	discuss	the	WinProc	procedure	however,	we	need	to	ask	a	question:	What	happens	if	there	is	more	than
one	window	in	a	program?	How	does	WinMain	know	what	procedure	to	use?	The	answer	is	contained	within	the
WNDCLASS	structure.	In	our	example,	wcls	is	defined	as	WNDCLASS	in	the	WinMain	procedure.

				With	wcls

								.style									=	CS_HREDRAW	Or	CS_VREDRAW

								.lpfnWndProc			=	@WndProc

								.cbClsExtra				=	0

								.cbWndExtra				=	0

								.hInstance					=	hInstance

								.hIcon									=	LoadIcon(NULL,	IDI_APPLICATION

								.hCursor							=	LoadCursor(NULL,	IDC_ARROW

								.hbrBackground	=	GetStockObject(WHITE_BRUSH

								.lpszMenuName		=	NULL

								.lpszClassName	=	StrPtr(szAppName)

				End	With

As	you	can	see,	the	WNDCLASS	structure	holds	all	of	the	information	pertaining	to	a	particular	window.	In	relation
to	messages,	the	important	item	is	the	.lpfnWndProc	field.	This	field	holds	the	address	of	our	message	handler	for
this	window.	The	@	operator	in	FreeBasic	returns	the	address	of	an	object,	in	this	case	the	address	of	our	WinProc
procedure.	Once	this	window	is	registered	using	the	RegisterClass	method,	Windows	will	know	what	procedure	to
use	to	process	messages.

As	you	can	see,	there	is	no	special	significance	to	the	name	WinProc.	WinProc	could	be	called	MyWinProc,	or
WinHandler.	The	actual	SDK	name	is	WindowProc,	which	is	just	a	placeholder	for	the	user	defined	message
handler	name.	The	important	piece	of	information	is	that	whatever	you	call	it,	the	message	handler	has	to	have	the
same	parameters	as	we	have	defined	in	our	WinProc,	and	the	address	of	that	procedure	has	to	be	stored	in
.lpfnWndProc.

All	messages,	whether	user	generated	or	system	generated	pass	through	the	defined	message	handler,	which	in
our	example,	is	WinProc.	Looking	at	the	parameter	list	of	WinProc	we	see	that	we	have	most	of	the	components	of
the	message	structure	retrieved	by	GetMessage.	The	hwnd	is	the	windows	handle,	message	is	the	message	id	and
wParam	and	lParam	hold	additional	message	information.	Once	a	message	has	been	passed	to	WinProc,	we	then
must	decide	if	we	are	interested	in	the	message.

This	is	usually	done	with	a	select	case	where	we	examine	the	message	parameter	to	see	if	we	want	to	handle	the
message.	For	example,	if	the	message	were	WM_PAINT,	then	we	would	put	our	drawing	code	under	the
WM_PAINT	message	so	that	our	window	would	be	updated	each	time	all	or	part	of	the	window	is	redrawn.	If	we
don't	care	about	a	message,	then	we	simply	pass	the	message	on	to	the	
by	the	default	message	handler.

The	action	here	is	quite	straightforward.	WinMain	or	Windows	sends	us	messages,	and	we	respond	to	those
messages	of	interest.	As	messages	come	into	the	message	queue,	they	are	processed	and	sent	to	WinProc,	where
they	may	be	further	processed,	and	then	passed	along	to	DefWindowProc	to	be	processed	by	the	operating
system.	This	loop	continues	for	the	life	of	program,	until	the	WM_QUIT	message	is	received,	at	which	point	the
window	is	destroyed	and	the	program	is	terminated.

In	our	example,	program	we	are	only	concerned	with	the	three	messages,	WM_LBUTTONUP,	WM_PAINT	and
WM_KEYDOWN.	The	WM_CREATE	and	WM_DESTROY	are	basically	boilerplate	that	you	would	find	any
windows	program.	Since	we	are	only	interested	in	these	three	messages,	we	only	need	to	write	code	for	these
three	messages.	The	rest	of	the	messages	we	might	receive	do	not	concern	us,	so	we	don't	even	bother	looking	for
them.

In	a	message-based	language,	you	are	writing	code	to	handle	an	event	that	has	occurred.	We	know	that	an	event
has	taken	place	because	we	received	a	message	describing	the	event.	If	we	are	interested	in	that	event,	then	we
write	code	to	respond	to	it.	Instead	of	writing	huge	amounts	of	code	to	handle	every	aspect	of	the	program	like	we
must	do	in	a	procedural	language,	we	only	need	to	write	code	for	certain	events,	and	we	let	the	operating	system
handle	everything	else.

Now	of	course,	you	have	to	write	code	to	create	a	window	and	controls,	but	this	is	mostly	boilerplate	type	of	code.
You	simply	follow	the	API	and	pass	along	the	appropriate	parameters	to	the	CreateWindow	function.	Once	you
understand	the	boilerplate,	it	is	simply	a	matter	of	plugging	that	code	into	your	program	when	needed.	The	real
action	occurs	in	the	WinProc	function	when	you	interact	with	the	window	or	controls.

Message-based	programming	requires	a	different	mind-set	than	procedural	programming.	In	a	procedural
language,	the	user	must	respond	to	the	program;	the	programmer	is	in	charge.	In	a	GUI	program,	the	program
must	respond	to	the	user	and	the	user	is	in	charge.	To	write	effective	GUI	programs,	the	programmer	has	to
relinquish	control	over	the	program,	and	work	in	cooperation	with	the	operating	system	and	the	user.

When	you	design	a	GUI	program,	you	have	to	ask	yourself,	"How	do	I	want	my	program	to	respond	to	the	user?"
For	example,	when	the	application	is	minimized,	should	the	program	ignore	the	event,	or	should	it	do	something
like	put	itself	in	the	system	tray?	This	is	the	essence	of	message-based	programming.	Defining	what	events	are
important,	and	then	writing	individual	routines	that	handle	each	event.	A	message-based	program	is	simply	a
collection	of	specific	routines	written	in	response	to	specific	messages.	

Despite	the	reputation	of	the	SDK,	the	basic	concept	of	message-based	programming	is	quite	simple.	You	are
writing	a	collection	of	routines	to	handle	messages.	This	is	the	core	task.	All	the	other	stuff	like	creating	a	window,
or	when	to	repaint	the	window	is	done	by	the	operating	system.	It	is	the	scope	of	the	SDK	that	gets	to	most	people.
There	is	a	lot	in	there.	However,	like	the	cliché	says,	the	best	way	to	eat	an	elephant	is	one	bite	and	a	time.	The
best	way	to	master	the	SDK	is	to	simply	understand	the	concept	of	message-based	programming	and	learn	the
boilerplate	code.	Once	that	is	done,	creating	sophisticated	Windows	programs	isn't	all	that	hard.

Interfacing	with	C 	

NOTE!	Have	to	do	some	spell	checking,	verify	text,	code	and	filenames.

Foreword
This	is	a	tiny	basic	tutorial	on	how	to	write	a	simple	library	in	C	and	then	use	it	in	FreeBASIC.	The	tutorial	should	be	possible	to	follow	without	to	much
knowledge	of	C	or	FreeBASIC.	After	doing	this	tutorial	you	should	be	able	to	compile	a	static	and	a	dynamically	linked	C	library.	Translate	the	necessary
header	files	to	FreeBASIC	header	files	and	understand	how	to	use	the	libraries	in	a	FreeBASIC	project.

What	is	a	library

Prerequisite
This	tutorial	was	written	and	tested	with	FreeBASIC	0.16b	and	the	latest	Current	release	of	MinGW32	at	the	time.	As	a	note	Dev-cpp	uses	MinGW32	as	it's
compiler	tool	chain.	You	also	get	code::blocks	with	a	mingw32	bundle.

Formal	description	of	the	task	at	hand
To	demonstrate	usage	of	a	C	library	in	FreeBASIC	we	need	to	create	the	simplest	possible	library	with	a	few	functions.	A	test	file	in	C	to	demonstrate	that	our
library	works	as	intended.	Then	we	have	to	translate	the	library	header	file	to	a	FreeBASIC	header	file	(*.bi)	and	finally	create	a	test	project	in	FreeBASIC	using
the	library.

Creating	the	files
So	our	file	list	will	look	like	this:
myClib.c:	C	file	implementing	our	library.
myClib.h:	C	header	file	describing	the	libraries	interface.
myClibCTest.c:	C	file	implementing	our	test	program	in	C.
myClib.bi:	FreeBASIC	header	file.	A	translation	of	myClib.h.
myClibFBTest.bas:	FreeBASIC
make.cmd:	A	sample	shell	script	compiling	the	library	and	test	files.

The	C	file	to	become	a	static	library.	myClib.c	

(C)

/*	A	function	adding	two	integers	and	returning	the	result	*/

#include	"myClib.h"

int	SampleAddInt(int	i1,	int	i2)

{

	 return	i1	+	i2;

}

/*	A	function	doing	nothing	;)	*/

void	SampleFunction1()

{

	 /*	insert	code	here	*/

}

/*	A	function	always	returning	zero	*/

int	SampleFunction2()

{

	 /*	insert	code	here	*/

	 return	10;

}

The	header	file	myClib.h

(C)

int		SampleAddInt(int	i1,	int	i2);

void	SampleFunction1();

int		SampleFunction2();

A	C	test	project	to	verify	that	the	static	lib	is	C	compatible.	myClibCTest.c:

(C)

#include	

#include	

#include	"myClib.h"

int	main(int	argc,	char	*argv[])

{

		printf("SampleAddInt(5,	5):=%d\n",	SampleAddInt(5,	5));

		system("PAUSE");	

		return	0;

}

Translating	the	C	header	file	to	a	FreeBASIC	header	file
myClib.bi:	To	interface	the	static	library	and	automatically	include	it	(#inclib	"myClib")	i	have	this	file.

''include	file	for	libmyClib.a

#ifndef	__myClib_bi__

#define	__myClib_bi__

#inclib	"myClib"

Declare	Function	SampleAddInt	cdecl	Alias	"SampleAddInt"

Declare	Sub	SampleFunction1	cdecl	Alias	"SampleFunction1"

Declare	Function	SampleFunction2	cdecl	Alias	"SampleFunction2"

#endif

And	finally	the	FreeBASIC	file	using	the	library
myClibFBTest.bas:

''Testing	functions	in	myClib.bi

#include	"myClib.bi"

''

Print	"SampleAddInt(10,	10):=",	SampleAddInt(10,	10)

''	Just	a	dumy	call

SampleFunction1()

''

Print	"SampleFunction2():=",	SampleFunction2()

The	make	file:	make.cmd
I	have	created	a	batch	file	to	compile	all	the	files.	Including	a	sample	in	C	using	the	static	library.	Note	the	config	lines	at	the	top	which	has	to	be	modified	to
suite	your	setup.

(cmd)

@REM	TODO:	Set	PATH's	for	this	session.

SET	PATH=C:\mingw32\bin;c:\mingw32\mingw32\bin

SET	MINGW_INCLUDE="C:/MinGW32/include"

SET	MINGW_LIB="C:/MinGW32/lib"

@REM

@REM	fbc	testing	SET	fbc="C:\portableapps\FreeBASIC\fbc.exe"

SET	fbc="C:\FreeBasic16b\fbc.exe"

@echo	***	Verify	pat's	to	compilers

@pause

@echo	off

@REM

@REM	Remove	old	files

DEL	/F	*.o		*.a	myClibFBTest.exe

@REM

@REM	Create	static	lib	from	c	source

gcc.exe	-c	myClib.c	-o	myClib.o	-I%MINGW_INCLUDE%

@REM

@REM	ar:	creating	libstatictest.a

ar	r	libmyClib.a	myClib.o	

@REM

@REM	No	nead	for	ranlib	anymore?	ar	is	supposed	to	take	care	of	it	

ranlib	libmyClib.a

@REM

@REM	Create	a	test	with	a	C	file

gcc.exe	-c	myClibCTest.c	-o	myClibCTest.o	-I%MINGW_INCLUDE%

gcc.exe	myClibCTest.o	-o	"myClibCTest.exe"	-L%MINGW_LIB%	libmyClib.a

echo	=====================================

echo	RUnning	C	sample

echo	=====================================

myClibCTest.exe

echo	=====================================

echo	Creating	FreeBASIC	sample

echo	=====================================

REM	I	thought	this	explicit	reference	is	unnecessary	as	I	use	#inclib

SET	fbcop=	-I	myClib

SET	fbcfl="myClibFBTest.bas"	

%fbc%	%fbcop%	%fbcfl%

echo	=====================================

echo	RUnning	FreeBASIC	sample

echo	=====================================

myClibFBTest.exe

@pause

Encountered	error	messages	and	their	solutions
undefined	reference	to
Trying	to	link	against	the	static	C	library	without	using	the	cdecl	alias	"functionname"	in	the	FreeBASIC	header	file	results	in	errors	like	this.

(cmd)

C:\code>"C:\FreeBasic16b\fbc.exe"					"myClibFBTest.bas"

myClibFBTest.o:fake:(.text+0x3d):	undefined	reference	to	`SAMPLEADDINT@8'

myClibFBTest.o:fake:(.text+0x4a):	undefined	reference	to	`SAMPLEFUNCTION1@0'

myClibFBTest.o:fake:(.text+0x67):	undefined	reference	to	`SAMPLEFUNCTION2@0'

Press	any	key	to	continue	.	.	.

To	resolve	this	you	will	have	to	locate	function	declarations	in	a	*.bi	file	that	look	like	this:

Declare	Function	SampleAddInt(ByVal	i1	As	Integer,	ByVal

And	change	it	to	something	like	this:

Declare	Function	SampleAddInt	cdecl	Alias	"SampleAddInt"

Appendix	A:	links
The	basis	for	this	tutorial	is	several	threads	in	the	forum.
When	it	evolves	and	can	stand	alone	the	links	to	the	threads	might	be	removed.
Some	interesting	links	containing	information	on	interfacing	libraries	created	in	FreeBASIC	and	used	by	other	languages	or	visa	versa.

How	do	I	compile	a	C	project	as	a	static	lib	for	inclusion..

http://www.freebasic.net/forum/viewtopic.php?t=6515

SDL_Net:	Getting	Started 	

A	compleate	Step	by	step	guide	of	getting	your	program	from	hello	world
to	hello	world	over	a	TCP/IP	connection,	using	the	SDL_Net	SDL	library.
This	tutorial	will	list	all	componets	required	and	where	to	download	them
at	the	time	of	writing	followed	by	how	to	get	each	componet	in	the	proper
place	to	perform	the	proper	functions	and	finally	how	to	write	the	actuall
code.	I	will	assume	you	have	zero	previous	knowledge	and	because	of
that	some	readers	may	want	to	skip	the	first	few	bits	of	the	tutorial.
Written	by	GregF	(Paragon)

Step	1:	What	you	need.
Ok,	lets	pretend	that	you	just	sat	down	and	installed	the	compiler	and	an
IDE.	This	list	takes	it	from	there.

SDL_Net.bi	-	Installed	with	the	compiller.
SDL_Net.dll	Binary	-http://www.libsdl.org/projects/SDL_net/
SDL.dll	runtime	library	-	http://www.libsdl.org/download-
1.2.php	

Step	2:	Where	you	put	it.
The	.bi	file	can	be	put	pretty	much	where	ever	you	want	to	put	it,	you	will
tell	the	compiler	where	to	find	it	in	the	'$Include	command.	The	.dll
however	need	to	be	placed	in	specific	places.	The	easiest	way	to	make
sure	that	the	program	will	be	able	to	use	these	files	is	to	have	the	.dll	in
the	same	folder	as	the	compiled	executable.	You	can	also	put	them	in
any	folder	that	is	listed	in	your	Enviroment	variable,	but	I	don't
recommend	that	because	it	will	be	easier	to	find	and	remeber	that	you
need	the	.dlls	if	you	just	put	them	in	the	same	folder	as	the	executable,
which	will	proably	be	the	same	folder	as	your	.bas	file	for	the	main
program.

Tutorial	in	progress...

Using	FreeBASIC	Built	Libraries	with	GCC 	

by	Jeff	Marshall	
Shows	how	to	create	a	static	library	with	FreeBASIC	and	then	call	it	from	a	C	program	using	GCC	as	the	compiler.

Minimum	fbc	version	tested	is	v0.18.2b

This	article	shows	Windows	usage	throughout,	but	application	to	FreeBASIC	on	other	platforms	is	similar.

In	this	tutorial:
A	Simple	Test
FreeBASIC	Library	With	Dependencies
Using	FreeBASIC	as	a	Smart	Linker

A	Simple	Test

For	this	simple	test	we	are	going	to	create	a	FreeBASIC	static	library,	one	without	any	dependencies.	
around,	and	will	allow	us	to	check	that	the	basics	are	working:

First	we	need	a	library,	and	for	for	this	it	will	be	just	a	single	trivial	function	that	will	add	two	integers	together	and	return	the	result.	
the	use	of	cdecl	and	Alias	in	our	procedure	definition.	By	default,	C	uses	the	
declaration	makes	matching	case	sensitivity	between	FreeBASIC	and	C	easier.	

''	mylib1.bas

Function	Add2Numbers	cdecl	Alias	"Add2Numbers"	_

				(_

								ByVal	x	As	Integer,	_

								ByVal	y	As	Integer	_

)	As	Integer

				Return	x	+	y

End	Function

Create	a	file	called	mylib1.bas	as	above	and	compile	it	with:

fbc	-lib	mylib1.bas.	

This	will	create	our	static	library	libmylib1.a.	Next	we	need	a	C	program	that	is	going	to	call	the	library	we	just	made.	
prototype	that	exactly	matches	the	function	we	have	in	the	FreeBASIC	library.	
couple	of	variables	to	call	Add2Numbers(),	and	print	the	results.

/*	test1.c	*/

#include	<stdio.h>

/*	Prototype	from	libmylib.a	*/

Int	Add2Numbers(Int	x,	Int	y);

Int	main	()

{

				Int	a	=	5;

				Int	b	=	7;

				Int	c	=	Add2Numbers(a,	b);

				printf("a	=	%d\n",	a);

				printf("c	=	%d\n",	b);

				printf("a	+	b	=	%d\n",	c);

				Return	0;

}

To	compile	this	C	program	using	the	FreeBASIC	library	we	just	made	we	need	to	compile	
which	libraries	are	needed.	In	our	case,	it	is	libmylib1.a.

gcc	test1.c	-L	.	-l	mylib1	-o	test1.exe

The	'-L	.'	option	tells	the	linker	to	search	in	the	current	directory	for	libraries,	and	the	'-l	mylib1'	indicates	that	we	want	to	link	with	the
library	we	just	created.	This	is	the	simplest	case	becase	the	libmylib1.a	library	has	no	dependencies.	

for	example	the	FreeBASIC	run-time	library	libfb.a,	we	would	need	to	specify	that	as	well	to	gcc.

FreeBASIC	Library	With	Dependencies

Here	we	create	a	FreeBASIC	library	that	uses	some	features	from	the	FreeBASIC	runtime	and	graphics	library.	
to	specify	any	additional	needed	libraries	to	GCC.

''	mylib2.bas

Sub	TestGfx	cdecl	Alias	"TestGfx"	()

				Screen	12

				Line	(0,0)-(100,100),15

				Sleep

End	Sub

Create	a	file	called	mylib2.bas	with	the	listing	above	and	compile	it	with:

fbc	-lib	mylib2.bas.

This	will	create	our	static	library	libmylib2.a.	Next	we	need	a	C	program	that	is	going	to	call	the	library	we	just	made.	
prototype	that	exactly	matches	the	function	we	have	in	the	FreeBASIC	library.	
TestGfx()	before	terminating.

/*	test2.c	*/

void	TestGfx();

Int	main()

{

				TestGfx();

				Return	0;

}

To	compile	and	link	test2.c	directly	with	gcc,	not	only	do	we	need	to	tell	
library	that	libmylib2.a	needs.

gcc	test2.c	-L.	-lmylib2	-L"C:\FreeBASIC\lib\win32"	"C:\FreeBASIC\lib\win32\fbrt0.o"	-lfbgfx	-lfb	-lgdi32	-o	test2.exe

Depending	on	what	our	FreeBASIC	library	uses,	it	we	may	use	several	additional	libraries,	we	must	specify	all	the	names	of	the	libraries
on	the	gcc	command	line.	In	this	example,	FreeBASIC	is	located	in	"C:\FreeBASIC",	but	you	should	specify	whatever	directory	you
installed	FreeBASIC	to.	"C:\"FreeBASIC\lib\win32\fbrt0.o"	is	a	special	startup	file	that	will	initialize	the	FreeBASIC	runtime	library.	
specifically,	it	is	initialized	after	the	C	runtime	library,	but	before	any	of	our	program	code	is	called.	
are	the	additional	libraries	needed	to	complete	linking.	The	actual	libraries	will	vary	depending	on	which	FreeBASIC	runtime	functions	are
used,	and	which	platform,	for	DOS	or	Linux,	the	program	is	being	compiled	for.

Using	FreeBASIC	as	a	Smart	Linker

FreeBASIC	has	a	neat	built-in	feature	that	stores	a	little	bit	of	extra	information	in	the	library	indicating	what	compile	time	options	were
used,	and	which	dependent	libraries	are	needed.	This	is	a	FreeBASIC	only	feature,	so	this	kind	of	capability	won't	be	found	when	using
gcc	as	the	main	compiler	and	linker.

If	we	reuse	the	examples	from	the	previous	section,	mylib2.bas	and	test2.c
can	save	ourselves	a	bunch	of	typing.	Plus	we	usually	won't	have	to	know	or	remember	what	our	FreeBASIC	built	library's	dependencies
are.	Compile	mylib2.bas	as	before	in	to	a	static	library.

fbc	-lib	mytest2.bas

Next	we	compile	our	C	test	program.	Notice	the	'-c'	option	for	the	gcc	command	line.	
source,	but	not	link	it	yet.	test2.o	will	still	have	the	entry	point,	but	we	are	going	to	put	it	in	an	object	file	instead	of	trying	to	create	an
executable	right	away.

gcc	-c	test2.c	-o	test2.o

Lastly,	we	use	fbc	to	perform	the	link	step.	We	are	not	compiling	any	basic	source	files	here,	but	we	are	going	to	use	the	smart	linking
capabilities	of	FreeBASIC	such	that	the	command	line	is	fairly	simple:

fbc	test2.o	-l	mylib2

This	will	create	an	executable	named	test2.exe	because	test2.o	was	specified	first	on	the	command	line.	
information	stored	in	libmylib2.a	and	automatically	know	which	additional	libraries	to	link	with.	
especially	when	many	extra	FreeBASIC	built	libraries	are	needed.

See	also

Static	Libraries

Introduction	to	the	Extended	Type 	

Written	by	rdc	
Introduction

FreeBASIC	is	moving	towards	implementing	Object	Oriented	programming.	While	classes	have	not	yet	been
added	to	the	language,	the	Type	definition	has	been	extended	to	include	some	Object	Oriented	constructs	as	a
first	step	towards	full	class	support.	This	article	introduces	some	of	the	concepts	of	Object	Oriented	design	and
explains	some	of	the	extended	type	constructs.

Object	Oriented	Programming

Object	Oriented	Programming,	usually	shortened	to	OOP,	is	a	methodology	that	enables	the	programmer	to
build	code	units	called	objects.	An	object	is	a	thing;	it	is	a	unit	of	code	that	represents	something	that	needs	to
be	manipulated	in	a	program.	You	can	think	of	an	object	as	a	noun:	a	person,	place	or	thing.	An	object	could	be
a	sprite,	a	drawing	primitive	or	something	more	elaborate	like	a	tank	in	a	game.	Any	concrete	entity	that	has	a
set	of	characteristics	and	actions	can	be	represented	as	an	object.

An	object	contains	both	the	data	needed	by	the	object,	and	the	methods	(subroutines	and	functions)	that	act	on
the	data.	This	grouping	of	data	and	methods	into	a	single	entity	is	called	encapsulation.	Encapsulation	allows
you	to	create	modular	units	that	can	be	reused	in	multiple	programs.	This	idea	of	code	reuse	was	the	main
motivation	in	the	creation	of	the	OOP	paradigm.

Another	beneficial	consequence	of	encapsulation	is	information	hiding.	The	data	inside	the	object	is	shielded
from	the	outside	world	so	that	unwanted	changes	to	the	data	cannot	occur.	Instead	of	accessing	a	variable
directly,	the	object	has	a	public	interface	that	the	external	program	should	use	to	access	and	change	data
members.	By	using	an	interface,	you	can	control	how	the	object	behaves	and	ensure	that	its	operation	is
consistent	across	many	programs.	

The	interface	also	allows	you	to	make	internal	changes	to	the	code,	without	changing	the	way	the	object	is
accessed.	As	long	as	you	don't	change	the	published	interface,	that	is	change	any	existing	public	methods,	you
can	improve	the	object	without	breaking	any	existing	code	that	relies	on	the	object.	In	the	cases	where	a
program	my	need	an	improved	method,	you	can	leave	the	old	method	in	place	to	maintain	compatibility,	and
just	add	a	new	method	with	the	improved	functionality.	New	programs	can	use	the	new	method,	while	old
programs	can	still	use	the	old	method.

Another	advantage	of	using	a	public	interface	is	so	that	other	programmers	can	use	your	object	without

worrying	about	the	internal	details	of	the	object.	As	long	as	the	published	interface	is	stable	and	well
documented,	anyone	should	be	able	to	use	your	object,	even	beginners.

The	Published	Contract

As	already	stated,	OOP	was	designed	to	enable	code	reuse	among	programmers.	In	order	for	code	reuse	to	be
helpful,	the	published	interface	must	remain	stable.	That	is,	once	an	object	has	been	released	and	is	being
used	in	programs,	the	published	interface	should	not	change	so	that	programs	that	use	the	object	continue	to
work	correctly.	There	is	an	implicit	contract	between	you	as	the	author	of	the	object	and	the	end-user	of	your
object	that	you	will	maintain	the	published	interface	across	changes	that	may	need	to	be	made	to	the	object.
This	implicit	contract	between	author	and	user	is	the	main	strength	of	the	OOP	paradigm,	and	is	the	main
reason	that	OOP	has	become	such	a	powerful	programming	methodology.

The	Characteristics	of	an	Object

As	already	mentioned,	an	object	contains	both	data	and	methods.	The	data	describes	the	properties	of	an
object,	while	the	methods	describe	what	the	object	can	do.	A	simple,	and	not-really-useful	example	will
illustrate	this	concept.	

Suppose	you	want	to	create	an	object	that	draws	a	rectangle	on	the	screen.	A	rectangle	can	have	several
properties	that	would	be	contained	within	the	data	members	of	the	object.	A	rectangle	has	an	origin	on	the
screen,	normally	the	top	left	corner,	which	can	be	represented	by	x	and	y	data	members.	A	rectangle	has	a
width	and	a	height,	so	the	object	would	have	width	and	height	data	members.	A	rectangle	can	either	be
outlined	or	filled,	so	a	filled	flag	data	member	can	be	added	to	the	object.	Of	course,	if	you	are	going	to	draw	a
rectangle,	you	will	want	to	draw	it	in	a	particular	color,	so	the	object	will	need	to	have	a	color	data	member,	and
to	have	the	object	be	a	bit	more	flexible,	you	can	add	a	color	member	for	the	outline	and	a	different	color
member	for	the	fill.	Of	course	you	will	need	a	method	to	actually	draw	the	rectangle	on	the	screen,	so	you	can
add	a	draw	routine	to	the	object	definition.

So	our	rectangle	object	has	the	following	preliminary	properties	and	methods:

Property:	x	and	y	origin
Property:	width
Property:	height
Property:	filled
Property:	outline	color
Property:	fill	color

Method:	DrawRect

This	list	is	called	the	object	definition.	In	FreeBASIC	you	define	an	object	using	the	extended	Type	definition.
The	extended	Type	is	similar	to	the	standard	Type,	with	some	added	language	constructs	that	implements	a
subset	of	OOP	features.

A	Rectangle	Type	Definition

The	following	code	snippet	is	a	partial	rectangle	definition:

Type	myRect

		Private:

				X_	As	Integer

				Y_	As	Integer

				Width_	As	Integer

				Height_	As	Integer

				Filled_	As	Integer

				Otlncolor_	As	Integer

				Fillcolor_	As	Integer

				Public:

				Declare	Sub	DrawRect()

End	Type

As	you	can	see,	the	extended	Type	looks	much	like	a	standard	Type	except	for	the	Private:	and	Public:
keywords	and	the	sub	declaration.	The	Private:	keyword	tells	the	compiler	that	the	data	members	that	follow
are	private	to	the	type,	that	is	cannot	be	accessed	outside	of	the	type.	The	private	state	extends	to	all	object
members	until	a	new	qualifier	is	encountered,	which	in	this	case	is	the	Public:	qualifier	just	above	the	Sub
declaration.	All	of	the	data	members	are	hidden	from	the	outside	world	and	cannot	be	changed	from	outside
the	scope	of	the	Type,	a	process	called	information	hiding.	The	underscore	appended	to	the	private	variables	is
the	common	way	to	define	private	variables.

Information	hiding	is	a	way	to	maintain	the	integrity	of	the	object.	You	should	never	allow	an	outside	process	to
directly	access	a	data	member.	All	data	access	should	be	through	the	use	of	Property	members	so	that	you
can	control	what	is	being	passed	to	your	object.	Strict	control	over	your	object's	data	will	help	prevent	many
errors	that	may	occur	when	a	programmer	uses	your	object.

Type	myRect

		Private:

				X_	As	Integer

				Y_	As	Integer

				Width_	As	Integer

				Height_	As	Integer

				Filled_	As	Integer

				Otlncolor_	As	Integer

				Fillcolor_	As	Integer

				Public:

				Declare	Sub	DrawRect()

				Declare	Property	X(ByVal	xx_	As	Integer)

				Declare	Property	X()	As	Integer

				Declare	Property	Y(ByVal	yy_	As	Integer)

				Declare	Property	Y()	As	Integer

				Declare	Property	Width(ByVal	w_	As	Integer)

				Declare	Property	Width()	As	Integer

				Declare	Property	Height(ByVal	h_	As	Integer)

				Declare	Property	Height()	As	Integer

				Declare	Property	Filled(ByVal	f_	As	Integer)

				Declare	Property	Filled()	As	Integer

				Declare	Property	Otlncolor(ByVal	oc_	As	Integer)

				Declare	Property	Otlncolor()	As	Integer

				Declare	Property	FillColor(ByVal	fc_	As	Integer)

				Declare	Property	FillColor()	As	Integer

End	Type

The	Declare	statements	following	the	Public:	qualifier	comprises	the	public	interface	to	your	object.	Since	the
variables	of	the	type	are	defined	with	the	Private:	keyword,	the	only	way	to	access	the	variables	is	through	the
Property	members	maintaining	the	integrity	of	the	object.	Since	you	define	the	code	in	each	Property	member,
you	have	full	control	over	what	is	being	put	into	your	object.	A	common	example	of	this	is	to	put	range	checking
code	in	your	property	members	so	that	the	object	does	not	contain	invalid	data.

In	this	example,	the	variables	can	be	both	written	and	read.	The	compiler	distinguishes	between	a	read
Property	and	a	write	Property	by	the	type	of	the	method.	A	subroutine-formatted	Property	is	a	write	property
since	you	are	passing	a	value	that	will	be	saved	in	a	private	variable.	A	function-formatted	Property	is	a	read
property	since	a	private	variable	will	be	returned	to	the	caller.	You	can	create	read-only	Properties	by	adding
just	a	function-formatted	Property	or	write-only	Properties	by	just	adding	a	subroutine-formatted	Property.

Creating	Well-Behaved	Objects

The	definition	looks	complete	at	this	point,	but	there	is	a	problem.	What	would	happen	if	some	or	all	of	the
variables	were	not	initialized?	The	object	would	not	perform	correctly	and	potentially	generate	a	runtime	error.	It
would	be	better	to	have	a	set	of	default	values	for	the	object	variables	just	in	case	one	or	more	variables	did	not
get	initialized.	You	can	initialize	the	object	at	the	moment	of	creation	by	using	a	Constructor.

A	Constructor	is	a	subroutine	that	is	called	when	the	object	is	created	using	the	Dim	(or	New)	statement.
Constructors	are	useful	for	initializing	an	object,	either	with	default	values,	or	values	you	pass	to	the
Constructor.	The	updated	type	definition	now	looks	like	the	following:

Type	myRect

		Private:

				X_	As	Integer

				Y_	As	Integer

				Width_	As	Integer

				Height_	As	Integer

				Filled_	As	Integer

				Otlncolor_	As	Integer

				Fillcolor_	As	Integer

				Public:

				Declare	Sub	DrawRect()

				Declare	Property	X(ByVal	xx_	As	Integer)

				Declare	Property	X()	As	Integer

				Declare	Property	Y(ByVal	yy_	As	Integer)

				Declare	Property	Y()	As	Integer

				Declare	Property	Width(ByVal	w_	As	Integer)

				Declare	Property	Width()	As	Integer

				Declare	Property	Height(ByVal	h_	As	Integer)

				Declare	Property	Height()	As	Integer

				Declare	Property	Filled(ByVal	f_	As	Integer)

				Declare	Property	Filled()	As	Integer

				Declare	Property	Otlncolor(ByVal	oc_	As	Integer)

				Declare	Property	Otlncolor()	As	Integer

				Declare	Property	FillColor(ByVal	fc_	As	Integer)

				Declare	Property	FillColor()	As	Integer

				Declare	Constructor()

				Declare	Constructor(xx_	As	Integer,	yy_	As	Integer

																								h_	As	Integer,	f_	As	Integer

																								fc_	As	Integer)

																								

End	Type

You	will	notice	in	the	definition	that	we	have	two	Constructors,	one	that	takes	a	set	of	parameters	and	one	that
doesn't.	This	is	called	overloading	and	can	be	used	not	only	with	Constructors	but	also	with	other	subroutines
and	functions.	Overloading	is	useful	for	situations	where	you	need	to	handle	different	parameter	types	with	a
single	method	call.	The	compiler	will	determine	which	method	to	call	based	on	the	parameters	passed	to	the
method.	You	can	overload	as	many	methods	as	you	want,	as	long	as	the	number	and	type	of	parameters	for
each	method	is	unique.

In	this	instance,	if	the	Constructor	is	not	passed	any	parameter	values,	it	will	initialize	the	variables	to	a	set	of
default	values.	If	the	Constructor	is	called	with	parameters,	then	it	will	use	the	passed	values	to	initialize	the
object's	variables.

There	is	also	a	Destructor	method	that	is	called	when	the	object	is	destroyed.	You	can	use	the	Destructor	to
perform	any	cleanup	tasks	that	must	be	carried	out	before	the	object	is	released	from	memory.	If	the	object
created	any	pointer	references,	or	opened	any	files,	then	you	would	clean	up	those	references	in	the
Destructor.	Since	the	Rectangle	object	doesn't	create	any	outside	references,	a	Destructor	is	not	needed.

Filling	in	the	Object	Methods

The	type	definition	is	a	template	for	the	object	type	and	tells	the	compiler	how	to	set	up	the	object	in	memory.
However,	in	order	to	actually	use	the	object,	you	need	to	create	the	actual	method	calls,	which	is	shown	in	the
next	listing.

Type	myRect

		Private:

				X_	As	Integer

				Y_	As	Integer

				Width_	As	Integer

				Height_	As	Integer

				Filled_	As	Integer

				Otlncolor_	As	Integer

				Fillcolor_	As	Integer

				Public:

				Declare	Sub	DrawRect()

				Declare	Property	X(ByVal	xx_	As	Integer)

				Declare	Property	X()	As	Integer

				Declare	Property	Y(ByVal	yy_	As	Integer)

				Declare	Property	Y()	As	Integer

				Declare	Property	Width(ByVal	w_	As	Integer)

				Declare	Property	Width()	As	Integer

				Declare	Property	Height(ByVal	h_	As	Integer)

				Declare	Property	Height()	As	Integer

				Declare	Property	Filled(ByVal	f_	As	Integer)

				Declare	Property	Filled()	As	Integer

				Declare	Property	Otlncolor(ByVal	oc_	As	Integer)

				Declare	Property	Otlncolor()	As	Integer

				Declare	Property	FillColor(ByVal	fc_	As	Integer)

				Declare	Property	FillColor()	As	Integer

				Declare	Constructor()

				Declare	Constructor(xx_	As	Integer,	yy_	As	Integer

																								h_	As	Integer,	f_	As	Integer

																								fc_	As	Integer)

End	Type

Sub	myRect.DrawRect()

				Line	(this.x_,	this.y_)-

(this.x_	+	Width	-	1,	this.y_	+	this.height_	-	1),	this.Otlncolor_

				If	this.Filled_	<>	0	Then

								Paint	(this.x_	+	1,	this.y_	+	1),	this.Fillcolor_

				End	If			

End	Sub

Property	myRect.x(ByVal	xx_	As	Integer)

				this.X_	=	xx_

End	Property

Property	myRect.x()	As	Integer

				Return	this.X_

End	Property

Property	myRect.y(ByVal	yy_	As	Integer)

				this.Y_	=	yy_

End	Property

Property	myRect.y()	As	Integer

					Return	this.y_

End	Property

Property	myRect.Width(ByVal	w_	As	Integer)

				this.Width_	=	w_

End	Property

Property	myRect.Width()	As	Integer

				Return	this.Width_

End	Property

Property	myRect.Height(ByVal	h_	As	Integer)

				this.Height_	=	h_

End	Property

Property	myRect.Height()	As	Integer

				Return	this.Height_

End	Property

Property	myRect.Filled(ByVal	f_	As	Integer)

				this.Filled_	=	f_

End	Property

Property	myRect.Filled()	As	Integer

				Return	this.Filled_

End	Property

Property	myRect.Otlncolor(ByVal	oc_	As	Integer)

				this.Otlncolor_	=	oc_

End	Property

Property	myRect.Otlncolor()	As	Integer

				Return	this.Otlncolor_

End	Property

Property	myRect.FillColor(ByVal	fc_	As	Integer)

				this.Fillcolor_	=	fc_

End	Property

Property	myRect.FillColor()	As	Integer

				Return	this.Fillcolor_

End	Property

Constructor	myRect

				this.X_	=	0

				this.Y_	=	0

				this.Width_	=	10

				this.Height_	=	10

				this.Filled_	=	0		

				this.Otlncolor_	=	15

				this.Fillcolor_	=	7

End	Constructor

Constructor	MyRect	(xx_	As	Integer,	yy_	As	Integer,	

																								h_	As	Integer,	f_	As	Integer

																								fc_	As	Integer)

				this.X_	=	xx_

				this.Y_	=	yy_

				this.Width_	=	w_

				this.Height_	=	h_

				this.Filled_	=	f_		

				this.Otlncolor_	=	oc_

				this.Fillcolor_	=	fc_

End	Constructor

The	Methods	and	Properties	are	defined	using	the	Sub/Function/Property	methodname.TypeName	syntax.
This	tells	the	compiler	how	to	match	up	methods	with	the	proper	type	definition.	The	Constructors	are	defined
with	the	type	name	for	the	same	reason.	The	this	identifier	is	a	hidden	parameter	that	is	passed	to	the	methods
that	refers	to	the	defined	type.	You	use	the	this	identifier	to	specify	that	you	want	to	access	the	type	constructs.

Using	Your	Object

The	object	is	now	complete	can	be	used	in	a	program	which	is	listed	below.

Type	myRect

		Private:

				X_	As	Integer

				Y_	As	Integer

				Width_	As	Integer

				Height_	As	Integer

				Filled_	As	Integer

				Otlncolor_	As	Integer

				Fillcolor_	As	Integer

				Public:

				Declare	Sub	DrawRect()

				Declare	Property	X(ByVal	xx_	As	Integer)

				Declare	Property	X()	As	Integer

				Declare	Property	Y(ByVal	yy_	As	Integer)

				Declare	Property	Y()	As	Integer

				Declare	Property	Width(ByVal	w_	As	Integer)

				Declare	Property	Width()	As	Integer

				Declare	Property	Height(ByVal	h_	As	Integer)

				Declare	Property	Height()	As	Integer

				Declare	Property	Filled(ByVal	f_	As	Integer)

				Declare	Property	Filled()	As	Integer

				Declare	Property	Otlncolor(ByVal	oc_	As	Integer)

				Declare	Property	Otlncolor()	As	Integer

				Declare	Property	FillColor(ByVal	fc_	As	Integer)

				Declare	Property	FillColor()	As	Integer

				Declare	Constructor()

				Declare	Constructor(xx_	As	Integer,	yy_	As	Integer

																								h_	As	Integer,	f_	As	Integer

																								fc_	As	Integer)

End	Type

Sub	myRect.DrawRect()

				Line	(this.x_,	this.y_)-

(this.x_	+	this.Width_	-	1,	this.y_	+	this.height_	-

				If	this.Filled_	<>	0	Then

								Paint	(this.x_	+	1,	this.y_	+	1),	this.Fillcolor_

				End	If			

End	Sub

Property	myRect.x(ByVal	xx_	As	Integer)

				this.X_	=	xx_

End	Property

Property	myRect.x()	As	Integer

				Return	this.X_

End	Property

Property	myRect.y(ByVal	yy_	As	Integer)

				this.Y_	=	yy_

End	Property

Property	myRect.y()	As	Integer

					Return	this.y_

End	Property

Property	myRect.Width(ByVal	w_	As	Integer)

				this.Width_	=	w_

End	Property

Property	myRect.Width()	As	Integer

				Return	this.Width_

End	Property

Property	myRect.Height(ByVal	h_	As	Integer)

				this.Height_	=	h_

End	Property

Property	myRect.Height()	As	Integer

				Return	this.Height_

End	Property

Property	myRect.Filled(ByVal	f_	As	Integer)

				this.Filled_	=	f_

End	Property

Property	myRect.Filled()	As	Integer

				Return	this.Filled_

End	Property

Property	myRect.Otlncolor(ByVal	oc_	As	Integer)

				this.Otlncolor_	=	oc_

End	Property

Property	myRect.Otlncolor()	As	Integer

				Return	this.Otlncolor_

End	Property

Property	myRect.FillColor(ByVal	fc_	As	Integer)

				this.Fillcolor_	=	fc_

End	Property

Property	myRect.FillColor()	As	Integer

				Return	this.Fillcolor_

End	Property

Constructor	myRect

				this.X_	=	0

				this.Y_	=	0

				this.Width_	=	10

				this.Height_	=	10

				this.Filled_	=	0		

				this.Otlncolor_	=	15

				this.Fillcolor_	=	7

End	Constructor

Constructor	MyRect	(xx_	As	Integer,	yy_	As	Integer,	

																								h_	As	Integer,	f_	As	Integer

																								fc_	As	Integer)

				this.X_	=	xx_

				this.Y_	=	yy_

				this.Width_	=	w_

				this.Height_	=	h_

				this.Filled_	=	f_		

				this.Otlncolor_	=	oc_

				this.Fillcolor_	=	fc_

End	Constructor

'Create	a	graphic	screen

Screen	18

'Create	an	object	using	the	default	constrcutor

Dim	aRect	As	myRect

'Create	an	object	by	explicitly	setting	the	constructor	values

Dim	bRect	As	myRect	=	myRect(200,	200,	200,	100,	1,	

'Draw	the	rectangles	on	the	screen

aRect.DrawRect

bRect.DrawRect

'Update	aRect	properties

aRect.X	=	90

aRect.Y	=	20

aRect.Filled	=	1

aRect.FillColor	=	15

'Draw	new	rect

aRect.DrawRect

Sleep

End

To	initialize	the	object	using	the	default	Constructor,	you	simply	Dim	the	extended	Type	just	as	you	would	the
standard	type.	If	the	Constructor	only	takes	a	single	value	then	you	can	use	the	Dim	var	as	Typename	=	value
syntax.	To	initialize	the	object	with	a	set	of	values,	you	Dim	the	type	and	then	use	the	=	typename(par1m
parm1...)	syntax.	You	can	see	that	accessing	the	members	of	the	object	is	just	like	accessing	the	member	of	a
standard	type.

Thanks	to	cha0s	at	the	FreeBASIC	forums	for	the	information	regarding	Properties.

Simulating	Polymorphism 	

Written	by	rdc	
Introduction

Polymorphism	is	a	powerful	tool	in	object-oriented	program.	A	polymorphic	method	(Sub	or
Function)	behaves	differently	depending	on	the	definition	of	the	object.	For	example,	an
animal	object	may	have	a	speak	method	that	will	issue	a	bark	for	a	dog	and	a	meow	for	a	cat.
FreeBasic	doesn't	support	true	polymorphism	before	version	0.90.0.	However,	you	can
simulate	polymorphic	methods	using	method	pointers.

Polymorphism

Polymorphic	methods	are	subroutines	or	functions	that	have	the	same	type	and	parameter
list,	but	behave	differently	when	bound	to	different	objects.	An	animal	object	may	have	a
Speak	method	that	will	issue	a	bark	for	a	dog	and	a	meow	for	a	cat.	Since	FreeBasic	doesn't
yet	have	classes,	you	cannot	implement	true	polymorphic	methods,	but	you	can	simulate	the
behavior	by	using	method	pointers.

The	following	listing	shows	a	couple	of	defines	and	an	extended	type	declaration:

#define	isdog	1

#define	iscat	2

Type	animal

				Public:

				speak	As	Sub()

				Declare	Constructor	(anid	As	Integer)				

End	Type

The	#defines	are	passed	to	the	Constructor	to	signal	what	type	of	object	is	being	created.	The
speak	As	Sub()	definition	defines	the	method	pointer.	As	you	will	see,	the	address	of	two
different	subroutines	will	be	passed	to	the	speak	method	pointer.	The	following	listing	shows
the	different	speak	subroutines	and	the	Constructor	method:

'Speak	method	for	dog	object

Sub	Bark()

				Print	"Woof!"

End	Sub

'Speak	method	for	cat	object

Sub	Meow()

				Print	"Meow!"

End	Sub

'Set	the	proper	method	pointer	based	on	animal	id

Constructor	animal(anid	As	Integer)

				If	anid	=	isdog	Then

								this.speak	=	@Bark

				ElseIf	anid	=	iscat	Then

								this.speak	=	@Meow

				End	If

End	Constructor

The	Bark	subroutine	will	be	called	if	the	object	is	a	dog	and	the	Meow	subroutine	will	be
called	if	the	object	is	a	cat.	You	may	be	wondering	why	you	can't	just	overload	the	method?
For	overloaded	methods,	the	type	and	parameter	list	must	be	unique,	where	in	a	polymorphic
method,	the	type	and	parameter	list	must	be	the	same.	Since	Bark	and	Meow	have	the	same
parameter	list,	that	is	no	parameters,	you	cannot	overload	the	method.

The	Constructor	code	is	where	the	program	decides	what	method	call	to	use.	If	anid	is	equal
to	isdog,	then	the	Speak	method	pointer	will	be	set	to	the	address	of	the	Bark	subroutine.	If
anid	is	equal	to	iscat	then	Speak	will	be	set	to	the	address	of	the	Meow	subroutine.	The
addressof	operator	@	is	used	to	pass	the	address	of	Bark	and	Meow	to	the	Speak	pointer.	

The	this	object	reference	is	a	hidden	parameter	that	is	passed	to	the	Constructor	that
references	the	type,	which	in	this	case	is	animal.	You	can	use	this	to	reference	the	internal
variables	within	the	type.

The	only	thing	left	to	do	is	to	create	and	initialize	the	object:

'Create	a	dog	and	cat	object

Dim	myDog	As	animal	=	isdog

Dim	mycat	As	animal	=	iscat

Here	myDog	and	myCat	are	created	with	the	appropriate	flags	passed	to	the	Constructor	so
that	the	proper	references	can	be	set	up.	Once	the	object	are	created	you	can	call	the	speak
method	of	each	object.

'Have	the	animals	speak

Print	"My	dog	says	";

myDog.speak()

Print	"My	cat	says	";

myCat.speak()

Notice	that	you	are	calling	the	same	speak	method,	yet	the	output	is	different:

My	dog	says	Woof!

My	cat	says	Meow!

This	is	the	essence	of	polymorphic	methods.	

Here	is	the	complete	program	listing:

'Simulated	Polymorphism	Using	Method	Pointers

'Richard	D.	Clark

'Requires	the	CVS	version	of	FreeBasic

'**

#define	isdog	1

#define	iscat	2

Type	animal

				Public:

				speak	As	Sub()

				Declare	Constructor	(anid	As	Integer)				

End	Type

'Speak	method	for	dog	object

Sub	Bark()

				Print	"Woof!"

End	Sub

'Speak	mehod	for	cat	object

Sub	Meow()

				Print	"Meow!"

End	Sub

'Set	the	proper	method	pointer	based	on	animal	id

Constructor	animal(anid	As	Integer)

				If	anid	=	isdog	Then

								this.speak	=	@Bark

				ElseIf	anid	=	iscat	Then

								this.speak	=	@Meow

				End	If

End	Constructor

'Create	a	dog	and	cat	object

Dim	myDog	As	animal	=	isdog

Dim	mycat	As	animal	=	iscat

'Have	the	animals	speak

Print	"My	dog	says	";

myDog.speak()

Print	"My	cat	says	";

myCat.speak()

Sleep

End

From	fbc	version	0.90.0,	polymorphism	through	inheritance	and	virtuality	is	supported

Previous	example	transposed	for	fbc	version	0.90.0	or	greater,	by	using	polymorphism
through	inheritance	with	abstract/virtual	methods	(feature	now	supported):

'Requires	FreeBasic	version	>=	0.90.0

'Base-type	animal

Type	animal	Extends	Object

				Declare	Abstract	Sub	speak	()

End	Type

'Derived-type	dog

Type	dog	Extends	animal

				Declare	Virtual	Sub	speak	()	Override

End	Type

'Speak	method	for	dog	object

Virtual	Sub	dog.speak	()

				Print	"Woof!"

End	Sub

'Derived-type	cat

Type	cat	Extends	animal

				Declare	Virtual	Sub	speak	()	Override

End	Type

'Speak	mehod	for	cat	object

Virtual	Sub	cat.speak	()

				Print	"Meow!"

End	Sub

'Create	a	dog	and	cat	as	dynamic	object	through	animal	pointer

Dim	myDog	As	animal	Ptr	=	New	dog

Dim	mycat	As	animal	Ptr	=	New	cat

'Have	the	animals	speak

Print	"My	dog	says	";

myDog->speak()

Print	"My	cat	says	";

myCat->speak()

Sleep

'Delete	the	dynamic	objects

Delete	myDog

Delete	myCat

OOP	In	Non-OOP	Languages 	

Contrary	to	popular	belief	object	oriented	programming	does	not	require	an	OO	language.

What	you	get	with	an	OO	language	is	a	set	of	built	in	constructs	that	assist	you	in	writing	OO	programs	but	in	many
cases	they	are	unnecessary	and	sometimes	they	are	counterproductive.

Anyway,	this	isn't	a	rant	against	OO	languages	but	rather	a	rant	against	the	unquestioning	acceptance	of	the	idea	that
a	specifically	OO	language	is	necessary	to	write	object	oriented	programs.

In	order	to	demonstrate	that	it	is	not	necessary	to	have	an	OO	language	this	example	presents	a	technique	that	is
usually	presented	as	an	example	of	class	based	programming;	and	so	it	is	but	you	won't	find	the	word	class	in	this
example.

The	code	was	tested	using	FB	0.16	for	win32.

If	you	have	to	concatenate	a	lot	of	strings	in	most	Basics	you	usually	find	that	it	is	a	time	consuming	process.	
FreeBasic	string	operations	are	remarkably	quick	but	you	can	still	do	better	using	a	string	builder.

A	string	builder	is	simply	a	class	that	maintains	a	string	buffer	in	such	a	way	as	to	avoid	repeated	calls	to	the	memory
allocation	function	because	this	is	a	relatively	expensive	operation.	The	methods	of	the	class	provide	ways	of
manipulating	the	buffer	and	converting	between	it	and	the	native	string	type.

The	trick	that	makes	it	faster	than	the	built	type	for	large	strings	and	large	numbers	of	appends	is	that	the	string	is	held
in	a	heap	allocated	buffer	that	is	always	larger	than	the	actual	length	of	the	string.	
end	of	the	string	usually	simply	means	copying	the	contents	of	the	new	string	to	the	memory	location	following	the	last
character	of	the	current	string.	In	this	implementation	the	buffer	is	a	ZString	so	it	is	easy	to	convert	it	to	an	ordinary
dynamic	string.

The	FreeBasic	module	encapsulates	a	type	definition	for	a	struct.	Instances	of	this	struct	hold	the	attributes	of	the
object.	The	methods	are	simply	normal	FreeBasic	public	functions	and	subs	defined	in	the	same	module.	
want	to	call	a	method	you	use	the	normal	FreeBasic	syntax:

	s	=	StringB_ToString(AStringBInstance)

By	convention	all	methods	names	begin	with	the	name	of	the	class	and	an	underscore	and	the	first	argument	is
always	the	instance	of	the	type.	This	argument	should	always	be	passed	by	reference	to	ensure	that	changes	to	the

state	are	permanent	and	also	to	avoid	unnecessary,	time-consuming,	copying.

To	add	a	new	method	you	simply	add	a	new	function	or	sub	following	those	rules.

You	can	easily	implement	composition	of	objects	but	inheritance	in	the	usually	expected	ways	can't	be	done.	
extend	classes	simply	by	defining	new	functions	elsewhere	that	take	arguments	of	the	class	type.	
defines	all	of	its	methods	as	overloaded	you	can	even	create	new	methods	of	the	same	name	so	long	as	they	have
different	signatures.

Here	is	the	example	code:

'---

'	Classes	without	built	in	oop.

'	Define	a	struct	for	the	properties	and	a	sub	or	function	for	each

'	method.		Pass	the	struct	as	the	first	argument	in	all	calls.

'	By	convention	the	argument	will	be	Me	as	in	VB	Classic

'	Strings	in	FB	are	so	fast	that	a	string	builder	class	is	

'	not	needed	most	of	the	time	but	if	you	are	concatenating	

'	thousands	of	strings	to	build	web	pages	for	instance	this	might	be	useful.

'	And	please	don't	start	complaining	about	the	lack	of	inheritance;	that

'	is	not	a	requirement	for	the	use	of	objects.		There	is	no	legal	definition	of	

'	Object	Oriented	Programming	but	the	most	important	part	of	any	definition	

'	is	the	close	association	between	the	data	and	the	code	that	manipulates	it.

'You	can	easily	extend	this	class	to	provide	more	methods.

'---

Type	StringB

		Len	As	Integer	'	used	length

		allocated	As	Integer

		s	As	ZString	Ptr			'	buffer	of	at	least	len	characters

End	Type

'---

'	Create	a	new	StringB	by	calling	one	of	these	constructors.

'---

Public	Function	StringB_New	Overload	(ByVal	InitialSize

		Dim	sb	As	StringB

		sb.allocated	=	InitialSize

		sb.s	=	Allocate(InitialSize)

		*sb.s	=	""

		StringB_New	=	sb

End	Function

Public	Function	StringB_New(ByRef	InitialValue	As	String

		Dim	sb	As	StringB

		sb	=	StringB_New(Len(InitialValue))

		*sb.s	=	InitialValue

		sb.len	=	Len(InitialValue)

		StringB_New	=	sb

End	Function

Public	Sub	StringB_Dispose(ByRef	Me	As	StringB)

		Deallocate	Me.s

End	Sub

		

Public	Function	StringB_ToString(ByRef	Me	As	StringB

		StringB_ToString	=	*Me.s

End	Function

Sub	StringB_Append	Overload(ByRef	Me	As	StringB,	ByRef

		Dim	i	As	Integer	=	Me.len

		Me.len	+=	Len(s)

		If	Me.len	>=	Me.allocated	Then

				Me.allocated	=	2*Me.len

				Dim	As	ZString	Ptr	p	=	Reallocate(Me.s,	Me.allocated

				If	p=0	Then

						'	failed	to	reallocate

						Print	"StringB_Append	failed	to	reallocate",	Me.allocated

						Return	

				End	If

				Me.s	=	p

		End	If

		*(Me.s	+	i)	=	s

		

End	Sub

Sub	StringB_Append(ByRef	Me	As	StringB,	ByRef	other	

		StringB_Append	Me,	StringB_ToString(other)

End	Sub

Const	Qualifiers	and	You 	

Note:	As	with	all	things	regarding	scope,	Const	qualifiers	may	be	a	bit	difficult	to	understand.	
attempting	to	understand	Const	qualfiers.

Also	note	my	cliche	title,	which	I	chose	because	of	it's	clicheness.

What	the	heck	are	Const	qualifiers?	Const	qualifiers	are	a	feature	recently	added	to	the	language	(fbc	0.18.3);	
FreeBasic	too.	Const	qualifiers	are	yet	another	form	of	protection	-	they	allow	some	"variables"	to	act	like	constants	to	certain	parts	of	your	program,	in	other	words
some	parts	of	the	program	are	allowed	to	access	(read)	them	but	not	modify	them.	
they	are	very	useful	in	OO	situations,	but	you	can	probably	benefit	from	them	to	some	degree	even	if	you	aren't	interested	in	OOP.

The	Const	qualifier	in	FreeBasic	is	essentially	an	extension	to	data	type	declarations,	and	they	may	be	used	with	Dim,	UDT	members,	and	procedure	parameters.
Generally	you	put	it	right	after	the	"As"	part	of	the	variables's	data	type	declaration:

Dim	As	Const	Integer	my_const_int	=	5

(By	the	way,	throughout	this	tutorial	I	use	only	Integers	and	Integer	Ptrs	as	examples	-	however,	Const	qualifiers	
types,	including	Types,	Enums,	and	anything	else	that	declares	something.	

Note	in	this	case	we	are	allowed	to	change	it	once	-	when	we	create	it.	But	after	that,	you	may	not	change	it	any	more.	
give	an	error	if	you	don't	(interestingly,	you	are	allowed	to	set	it	equal	to	"Any",	in	which	the	contents	are	not	guaranteed	and	could	be	anything).	
anything	that	modifies	it	after	that.	It	will	actually	give	you	an	error	if,	for	example,	you	try	to	do	something	like	this:

my_const_int	=	3

Yet,	since	this	doesn't	change	the	variable	any,	you	can	do

Print	my_const_int

Now	this	is	all	very	good,	but	it	doesn't	seem	much	different	from	the	normal	usage	of	Const.	

purposes,	the	same	thing:

Dim	As	Const	Integer	my_const_int	=	5

Const	my_int	As	Integer	=	5

Do	they?	Not	quite.	You	see,	the	Const	qualifier	allows	you	to	create	consts	that	act	as	variables	except	that	they	can't	be	modified.	
inside	Types	and	other	places.	What's	more,	you	can	put	them	inside	Sub/Function	declarations	-	and	this	is	a	very	key	reason	for	their	existence:

Sub	my_sub	(some_num	As	Integer)

End	Sub

Normally	functions	are	allowed	to	modify	the	variables	you	send	to	them.	
depends	on	whether	you	use	ByVal	or	ByRef	(and	of	course	pointers	is	a	whole	different	things	altogether),	but	they	normally	are	allowed	to	modify	a	variable.	
may	be	undesirable,	for	whatever	reason,	and	the	Const	qualifier	exists	to	prevent	that.	
Normally	it	would	only	be	a	local	copy	that	is	modified,	which	is	fine,	since	it	won't	affect	the	original	Const	Integer,	but	what	if	we	declare	the	function	like	this?

Sub	my_sub	(ByRef	some_num	As	Integer)

End	Sub

Now	my_sub	has	direct	access	to	whatever	variable	you	pass	to	it,	and	for	that	reason	you	are	not	allowed	to	do	this	sort	of	thing

my_sub(my_const_int)

Why?	Simply	because	the	function	may	modify	the	variable.	We	don't	know	for	sure	that	it	will,	of	course,	but	it	might,	so	we	can't	do	that.	
you	try	to	compile	that	is	"Invalid	assignment/conversion."	It's	almost	as	if	the	Const	Integer	is	a	different	variable	type,	but	only	when	it's	ByRef.	
act	like	trying	to	pass	a	string	to	an	integer	argument	(or	vice-versa).	Yet	if	it's	not	passed	ByRef,	we	don't	have	a	problem,	since	there's	no	way	the	function	can
possibly	modify	the	variable!

And	of	course,	if	we	did	something	like	this:

Sub	my_sub	(ByRef	some_num	As	Const	Integer)

End	Sub

Then	it	compiles	just	fine,	but	if	you	try	to	do	the	following	within	the	function,	you	get	an	error:

some_num	=	3

Why?	Once	again,	the	original	variable	has	been	passed	ByRef	to	the	sub.	
modify	the	original,	which	cannot	be	done.	Once	again,	it's	entirely	possible	to	create	a	copy	of	the	variable	and	modify	it	all	you	want:

Dim	As	Integer	copy_of_some_num	=	some_num

copy_of_some_num	=	3

But	you	can't	modify	some_num	itself!

Now	we	come	to	pointers.	What	about	them?	For	pointers	it's	a	bit	more	complicated;	
-	or	even	BOTH!	So	all	of	the	following	are	valid:

Declare	Sub	my_sub_a	(ByRef	ptr_A	As	Const	Byte	Ptr)

Declare	Sub	my_sub_b	(ByRef	ptr_B	As	Byte	Const	Ptr)

Declare	Sub	my_sub_c	(ByRef	ptr_C	As	Const	Byte	Const

The	first	one	makes	it	so	you	can	change	the	pointer	itself	all	you	want,	but	not	the	data	that	the	pointer	points	to	(even	if	you	change	*what*	the	pointer	points	to).
The	second	allows	you	to	change	what	the	pointer	points	to,	but	you	can't	make	it	point	to	anything	else.	
the	pointer	itself!	In	all	cases	you	can	make	a	copy	of	the	pointer	-	but	it	must	be	a	Const	Integer	Ptr	or	a	Const	Integer	Const	Ptr	since	otherwise	you	would	be	able
to	change	the	contents	of	whatever	the	original	pointer	points	to!	This	is	great	protection	against	anything	being	modified!

In	case	the	behaviour	of	the	Const	qualifier	seems	a	bit	strange	to	you,	I'll	explain	exactly	how	it	decides	what's	safe	to	allow	and	what	isn't.	
summed	up	pretty	quickly:	The	Const	qualifier	aims	to	protect	the	original	data.	
you	to	be	able	to	change	the	original	data.	Remembering	this	will	help	you	a	great	deal.	
there's	pointers	involved	there	are	so	many	different	places	to	put	the	Const	qualifier	(and	you	can	even	put	it	in	twice	-	or	more,	depending	on	how	many	pointers
there	are!)	So	long	as	you	remember	what	the	Const	qualifier	is	for,	you'll	never	have	any	difficulty	figuring	out	where	to	put	it	-	or	even	if	you	need	it	at	all	(or	if	you
need	to	not	use	it).

You	can	also	use	the	Const	qualifier	in	UDTs.	In	fact,	it's	actually	a	very	important	thing	to	OOP	(in	a	similar	fashion	to	Namespaces,	which	while	not	a	direct	part	of
OOP	nevertheless	are	very	much	related)	-	but	even	if	you	don't	use	OOP	you	can	still	use	Const	qualifiers	in	your	Types.	
example,	as	it's	pretty	obvious	by	now	how	it	works,	but	here's	an	example	for	you:

Type	my_type

		As	Const	Integer	t_int=	5

End	Type

Dim	As	my_type	t

t.t_int	=	3

And	obviously	this	won't	compile,	since	the	member	t_int	is	Const.	Furthermore,	you	can	also	declare	the	variable	of	that	type	(in	this	case,	t)	with	the	Const	qualifier.
The	following	will	not	compile	either,	since	ALL	members	of	t	are	Const:

Type	my_type

		As	Integer	t_int=	5

End	Type

Dim	As	Const	my_type	t

t.t_int	=	3

As	for	the	OOP	side	of	things	(and	if	you	aren't	interested	in	OOP	you	can	skip	this	part)	-	you	may	be	wondering	about	methods.	
ByRef	as	this	when	called.	Is	there	a	way	to	create	constant	objects?	Of	course!	
won't.	Is	there	a	distinction?	The	answer	is	yes.	As	of	November	23,	2007,	we	now	have	Const	procs.	

Type	my_object

		Public:

				Declare	Sub	modifier_sub	()

				

				'Subs	that	do	not	modify	the	object	are	declared	Const...

				Declare	Const	Sub	non_modifier_sub	()

		Private:

				some_num	As	Integer	=	3

End	Type

Sub	my_object.modifier_sub	()

		this.some_num	=	3

End	Sub

Sub	my_object.non_modifier_sub()

		Print	this.some_num

End	Sub

'Note	that	only	Const	objects	must	be	initialized	(though	in	this	case	the	non-Const	object	will	also	be),

'just	like	variables.		Thus,	you	must	either	have	a	Constructor	for	the	object,	or	else	you	must	give	all	variables

'default	initial	values	(as	I	did	here),	in	which	case	the	compiler	makes	a	default	constructor	for	you.

Dim	As	Const	my_object	t	=	my_object

Dim	As	my_object	u

'Both	of	these	will	compile:

t.non_modifier_sub()

u.non_modifier_sub()

'...but	the	first	of	these	will	not	compile,	since	non-Const	methods	of	Const	objects	may	not	be	called!

t.modifier_sub()

u.modifier_sub()

'Sleep	so	we	can	see	the	results

Sleep

Once	again,	the	way	this	works	is	based	on	the	simple	rule.	Since	the	implicitly	passed	copy	of	this	is	passed	ByRef,	any	method	is	normally	able	to	modify	the
contents	of	the	object	-	and	if	the	object	is	declared	As	Const,	that's	not	supposed	to	happen!	
given	names	in	the	C++	documentation	page	(listed	below	in	the	references):	
Thus,	for	objects	declared	As	Const,	only	the	inspector	methods	for	those	objects	may	be	used	-	while	all	methods	may	be	called	for	non-Const	objects.	
inspector	methods	are,	of	course,	the	ones	declared	as	Const	methods.	

This	is	all	very	good,	but	some	of	you	may	be	asking	-	Why	do	I	need	this?	
do	we	need	scope	at	all?	The	reason	for	Const	qualifiers	(and	the	future	Const	methods)	is	the	same	as	the	reason	for	scope	within	procedures	and	modules,	and	the
same	reason	for	hiding	of	variables	in	objects:	because	we	want	to	be	certain	that	something	won't	unexpectedly	change	in	the	middle	of	the	program,	when	we	least
expect	it.	Sometimes	we	want	things	to	change,	and	that's	when	we	don't
qualifier,	and	you	can	be	certain	it	will	not	change	(and	the	compiler	won't	compile	the	code	if	there	is	danger	of	it	happening!)	
works,	and	it's	the	reason	you	use	it!	And	in	general,	it's	the	reason	you	use	

Some	final	notes
If	you	use	Const	qualifiers,	remember	that	it	is	a	relatively	new	feature.	There	is	very	little	documentation	to	tell	us	what	is	"wrong"	or	"right",	so	generally	it	will	take
some	experimenting.	If	you	feel	that	it	does	something	it	shouldn't	do	(or	doesn't	do	something	it	should),	by	all	means	report	it	on	the	forum!	
by	anyone	else,	submit	a	bug	report.	In	general,	however,	it	should	work	exactly	as	I've	said	and	all	the	examples	given	should	do	as	I	say	they	will	(compile	if	I	say
they	will,	not	compile	if	I	say	they	won't).	One	very	important	thing	to	remember,	of	course,	is	that	they	aren't	in	the	latest	official	release	-	you	must	have	the	latest
SVN	release	for	them	to	work	(if	the	compiler	gives	an	error	about	one	of	the	examples	given	here	that	I	told	you	will	compile,	then	you'll	know	you	need	a	newer
version).

If	you	have	any	other	difficulties	with	Const	qualifiers,	remember	that	even	though	there's	no	documentation	for	them	there	are	plenty	of	people	on	the	forum	who
know	about	and	understand	them,	and	can	help	you	with	any	questions	you	may	have.

If	you	still	don't	understand	Const	qualifiers,	you	probably	are	a	newbie	who	doesn't	know	much	about	scope	yet	anyways	-	and	that's	fine,	you'll	learn	as	you	go.
Eventually	some	decent	documentation	for	this	feature	will	be	created,	but	until	then	this	is	all	you	have.	
probably	won't	need	them.	I	for	one	have	written	fine	programs	long	before	they	were	around,	and	I'll	probably	continue	to	do	so	without	using	them	anywhere	they
aren't	needed.	There	are	specific	instances	when	they're	useful,	and	if	you	understand	those	instances	then	you	may	as	well	use	them	when	those	instances	arise.
But	if	you	don't	understand,	that's	fine!

Finally,	here	are	some	links	that	should	be	helpful.	The	first	is	a	C++	documentation	page	about	Const	qualifiers	in	C++	-	of	course,	it	only	makes	sense	if	you
understand	C++,	and	they	also	talk	about	things	we	don't	have	yet	(i.e.,	Const	methods).	
you	like.	There	is	also	a	link	to	a	forum	topic	in	which	I	asked	about	FreeBasic	development	(and	learned	about	Const	qualifiers),	and	a	link	to	the	original
SourceForge	Feature	Request	page	in	which	Const	qualifiers	were	originally	requested	as	a	feature:

http://www.parashift.com/c++-faq-lite/const-correctness.html
http://www.freebasic.net/forum/viewtopic.php?t=9975&postdays;=0&postorder;=asc&start;=0

http://sourceforge.net/tracker/index.php?func=detail&aid;=1480621&group;_id=122342&atid;=693199

FBgfx	Image	and	Font	Buffers 	

Creating	and	understanding	your	FBgfx	image	and	font	buffers

The	FBgfx	Image	Buffer
Creating	Buffers
Buffer	Format
Getting	Pixels
The	FBgfx	Font	Header
Header	Details
Creating	a	Font	Buffer
Assigning	Font	Characters
Tips	&	Tricks
Coloring	your	Custom	Fonts
ScrPtr	vs	ImgBuf

Download	Accompanying	Tutorial	Files:	FreeBASIC	Font	Tutorial.7z

The	FBgfx	Image	Buffer

FBgfx	has	a	new	data	type	in	.17	and	above.	This	type	is	called	IMAGE.	You	can	use	it	by	including	the	FBgfx	Header	in	your	program
(#include	"fbgfx.bi")	and	then	accessing	the	namespace	for	FBgfx,	via	
going	to	be	using	the	fb.Image	Ptr	type.	A	pointer,	because	it's	dynamic	memory	which	we	can	resize.

To	use	an	image	in	the	FBgfx	Library,	you	have	to	create	it	via	image	buffer.	
made	available)	for	your	image.	You	have	to	deallocate	(free,	make	available	to	other	programs)	the	buffer	when	you	are	done	using
it	at	the	end	of	your	program.	FBgfx	has	its	own	internal	pixel	format,	as	well	as	an	image	header	at	the	beginning	of	every	buffer
created.	The	image	header	contains	information	about	your	image.	Things	like	its	width,	height,	bit	depth,	etc.,	while	the	pixel	Buffer
contains	the	actual	colors	for	each	individual	pixel	in	RGB	(red,	blue,	green)	format.

Creating	Buffers

The	size	of	the	buffer	you	create	will	vary	depending	on	screen	depth.	Your	bytes-per-pixel	are	the	number	of	bytes	needed	to	store
individual	pixels.	Thus,	a	32-bit	pixel	depth	screen	will	need	4	bytes	per	pixel	(8	bits	in	a	byte).	
however,	as	using	the	fb.Image	Ptr	setup	to	create	your	buffer	makes	it	very	easy	to	get	the	information	we	need	from	our	buffers.
You	only	need	to	know	this	information	to	understand	how	much	size	a	buffer	may	take	up	total,	for	memory	usage	information.

http://pritchard.hmcsoft.org/files/fb%20font%20tut.7z

Actually	creating	the	buffer	is	very	simple.	It's	just	a	simple	creation	of	an	

#include	"fbgfx.bi"

		''	Our	image	width/height

Const	ImgW	=	64

Const	ImgH	=	64

		''	Screens	have	to	be	created	before	a	call	to	imagecreate

ScreenRes	640,	480,	32

		''	Create	our	buffer

Dim	As	FB.Image	Ptr	myBuf	=	ImageCreate(ImgW,	ImgH)

		''	Print	the	address	of	our	buffer.

Print	"Buffer	created	at:	"	&	myBuf

Sleep

		''	Destroy	our	buffer.		Always	DESTROY	buffers	you	CREATE

ImageDestroy(myBuf)

Print	"Our	buffer	was	destroyed."

Sleep

Code	Dissection

#include	"fbgfx.bi"

This	includes	the	header	file	which	contains	the	definition	for	the	fb.Image

		''	Our	image	width/height

Const	ImgW	=	64

Const	ImgH	=	64

This	creates	constants	which	will	be	used	to	decide	the	size	of	our	image.	
to	ImageCreate	when	we	use	it.

		''	Screens	have	to	be	created	before	a	call	to	imagecreate

ScreenRes	640,	480,	32

This	creates	our	FBgfx	screen.	ImageCreate	needs	to	know	our	bit	depth	beforehand.	
parameter	allowing	you	to	set	the	depth	yourself.

		''	Create	our	buffer

Dim	As	FB.Image	Ptr	myBuf	=	ImageCreate(ImgW,	ImgH)

This	first	of	all	creates	a	pointer	that	is	of	the	fb.Image	type.	It's	just	a	location	of	memory.	
fact,	right	now	it	equals	zero,	and	could	not	be	used.	That's	considered	to	be	null.

The	ImageCreate	call	returns	the	address	of	an	area	in	memory	of	a	newly	created	
size	of	this	buffer	depends	on	the	bit	depth,	but	the	width/height	of	the	image	contained	in	the	buffer	is	going	to	be	the	ones	we	set
earlier.	ImageCreate	can	also	take	a	fill	color	and	depth	as	the	third	and	fourth	arguments,	respectively;	if	not	specified,	the	image	will
be	created	filled	with	the	transparent	color	and	match	the	current	screen	color	depth.

We	now	have	allocated	a	space	in	memory.	It's	enough	space	to	hold	an	ImgWxImgH	image,	along	with	the	data	FBgfx	holds	within
its	fb.Image	type.	We'll	need	to	destroy	it	later	for	proper	memory	management.

		''	Print	the	address	of	our	buffer.

Print	"Buffer	created	at:	"	&	myBuf

Sleep

This	is	just	there	to	let	you	know	what	we've	done.	We	print	the	address	of	
worked.

		''	Destroy	our	buffer.		Always	DESTROY	buffers	you	CREATE

ImageDestroy(myBuf)

Print	"Our	buffer	was	destroyed."

Sleep

Here	we	destroy	our	buffer	with	a	call	to	ImageDestroy.	We	don't	have	to	use	
it	for	consistency	and	clarity.

Buffer	Format

Now	that	we	know	how	to	create	buffers,	we	might	want	to	know	more	information	about	what's	being	held	inside	of	them.	
open	up	the	fbgfx.bi	header	file	and	find	the	fb.Image	type,	and	you	can	see	all	of	this	cool	stuff	inside	of	it.

We	actually	don't	need	to	know	much	about	the	format	itself.	The	reason	for	this	is,	we	used	an	
Buf	+	SizeOf(fb.Image)	in	memory	belongs	to	pixels.	Everything	before	that	is	the	header.	
because	we	used	the	fb.Image	Ptr.	All	you	have	to	know	is	what	you	want	to	look	for.

FB.IMAGE	Data	Type

		''	Image	buffer	header,	new	style	(incorporates	old	header)

Type	IMAGE	Field	=	1

				Union

								old	As	_OLD_HEADER

								Type	As	UInteger

				End	Union

				bpp	As	Integer

				Width	As	UInteger

				height	As	UInteger

				pitch	As	UInteger

				_reserved(1	To	12)	As	UByte

End	Type

This	same	information	can	be	found	in	fbgfx.bi.	As	you	can	see,	this	data	type	saves	a	*lot*	of	neat	information	about	your	buffer.

The	Width,	Height,	Pitch	(bytes	per	row),	and	Bit	Depth	(bytes	per	pixel)	are	all	contained.	
and	the	old	header	itself	within	the	same	space.	The	new	header	format	is	indicated	by	a	type	value	of	
not	used	in	the	default	dialect	in	the	newer	versions	of	FB,	so	we're	not	going	to	cover	it	here.

How	do	we	access	that	information	within	the	header?	If	you're	familiar	with	pointers	(which	you	should	be,	we	used	a	pointer	for	our
buffer	in	the	first	example),	then	all	you	have	to	do	is	access	your	buffer	like	a	pointer,	and	directly	access	the	data	within.	
leave	you	to	believe	that	all	that's	contained	in	your	buffer	is	the	fb.Image
allows	the	compiler	to	think	that's	what's	contained	in	the	buffer,	even	though	only	the	first	part	does	so.

Getting	Pixels

The	first	section	of	our	buffer	which	FreeBASIC	helps	us	out	with	contains	the	header	information.	
address,	and	the	rest	of	our	buffer	contains	pixels	(Example2.bas).

		''	We	have	to	include	this	to	use	our	FB.IMAGE	datatype,	remember.

#include	"fbgfx.bi"

Remember	to	include	our	fb.Image	data	type!

		''	This	one	is	very	important.

		''	We	cast	to	a	ubyte	ptr	first	off,	to	get	the	exact	byte	our	pixels	begin.

		''	We	then	cast	to	a	uLong	ptr,	simply	to	avoid	"suspicious	assignment"

		''	warnings.

Dim	As	uLong	Ptr	myPix	=	Cast(uLong	Ptr,	(Cast(UByte

Phew.	Alright.	We	have	to	make	sure	we	get	the	exact	address	of	our	pixels.	
RGB,	and	the	extra	is	generally	used	for	alpha	when	you	need	it	(some	people	are	very	resourceful	and	will	use	the	alpha	byte	-	or
channel	-	to	store	all	kinds	of	data).	If	we're	even	ONE	BYTE	off,	your	Red	can	become	your	Green,	and	your	Blue	into	your	Red!	
we	have	to	cast	to	a	UByte	Ptr	first.

You	probably	also	noticed	that	we	simply	added	sizeof(fb.Image)	to	our	address.	
its	size	to	the	start	of	the	buffer,	we	have	just	skipped	all	the	memory	addresses	relating	to	the	header	and	are	now	at	our	pixels.

Finally,	we	cast	it	all	to	a	Ulong	Ptr,	mainly	for	safety.	We're	in	32	bit	depth	mode,	so	we	need	4	bytes	per	pixels.	

Here's	a	small	line	if	you	still	don't	understand	how	this	works.	Here	is	our	buffer:	

If	what's	contained	in	the	first	section	of	our	buffer	is	the	fb.Image	Header,	it's	obviously	going	to	be	that	big	in	size.	
our	address	for	the	pixels,	simply	by	adding	the	size	of	the	fb.Image	datatype	onto	our	original	address.

One	problem	though!	If	we	add	that	size	to	our	buffer	address,	to	try	and	get	a	new	one,	we	end	up	with	strange	results.	
because	our	datatype	isn't	one	byte	long.	We	have	to	cast	to	a	UByte	Ptr
we'll	get	the	exact	byte	we	need	in	memory	to	work	with.

Finally,	we're	in	32-bits.	We	just	casted	to	a	UByte	Ptr.	Although	we	*can*	just	assign	the	uLong	ptr	the	address	of	the	
practice	to	cast	it	to	a	Ulong	Ptr	first.	We	finally	have	the	address	of	our	pixels,	in	the	right	datatype	(one	per	pixel!).	
manipulate	those	pixels	directly	now,	if	we'd	like.

		''	Print	information	stored	in	our	buffer.

Print	"Image	Width:	"	&	myBuf->Width

Print	"Image	Height:	"	&	myBuf->Height

Print	"Image	Bit	Depth:	"	&	myBuf->BPP

Print	"Image	Pitch:	"	&	myBuf->Pitch

Print	""

This	is	what	I	was	talking	about	earlier.	FB	will	treat	your	pointer	as	if	it's	an	
directly.	Since	we	have	the	size	of	the	image	as	well	as	its	pixels	address	now,	we	could	edit	and	manipulate	them	as	if	they	were	a
pointer	to	our	screen	buffer!	See	ScrPtr	vs	ImgBuf.bas	for	an	example	on	this.

FBGfx	Font	Header

Header	Details

The	first	row	of	an	image	buffer	that	will	be	used	as	a	font	contains	the	header	information	for	your	font,	on	a	byte	by	byte	basis
(remember	that	the	first	row	of	pixels	are	going	to	be	the	first	byes	since	it's	stored	in	row->column).

The	very	first	byte	tells	us	what	version	of	the	header	we're	using.	Currently,	only	0	is	supported,	as	only	one	header	version	has
been	released.	The	second	byte	tells	us	the	first	character	supported	in	our	font,	and	the	third	byte	tells	us	the	last.

0;	Byte;	Header	Version
1;	Byte;	First	Character	Supported
2;	Byte;	Last	Character	Supported
3	to	(3	+	LastChar	-	FirstChar);	Byte;	Width	of	each	Character	in	our	font.

Creating	a	Font	Buffer

If	you	had	a	font	that	supported	character	37	as	the	first,	and	character	200	as	the	last,	your	bytes	would	contain:

0	for	the	header	version.	It's	the	current	only	version	supported.
37	for	the	first	character	supported.
200	for	the	last	character	supported.
94	bytes	containing	the	widths	of	each	character.

Since	the	first	row	is	taken	up	for	header	data,	the	font	buffer	will	be	an	image	buffer	whose	height	is	the	font	height	plus	one.	
if	you	have	a	font	height	of	8,	you	need	a	buffer	height	of	9.	You'll	be	putting	the	font	in	the	second	row	of	your	buffer,	rather	than	the
first	as	you	usually	would.

Here's	an	example	(Example3.bas),	which	creates	a	font	buffer.	It	only	creates	it	and	assigns	header	data	right	now,	not	the	actual
font:

		''	The	first	supported	character

Const	FirstChar	=	32

		''	Last	supported	character

Const	LastChar	=	190

		''	Number	of	characters	total.

Const	NumChar	=	(LastChar	-	FirstChar)	+	1

These	constants	help	us.	It	makes	the	code	cleaner	and	faster.

		''	Create	a	font	buffer	large	enough	to	hold	96	characters,	with	widths	of	8.

		''	Remember	to	make	our	buffer	one	height	larger	than	the	font	itself.

Dim	As	FB.Image	Ptr	myFont	=	ImageCreate((NumChar	

Create	our	font	buffer.	Remember,	we	need	to	add	horizontal	space	for	each	character	in	the	font	(8	pixels	wide).	
add	an	extra	row	for	our	font	header	information.

		''	Our	font	header	information.

		''	Cast	to	uByte	ptr	for	safety	and	consistency,	remember.

Dim	As	UByte	Ptr	myHeader	=	Cast(UByte	Ptr,	myFont)

Get	the	exact,	casted,	and	having	no	warnings	address	of	our	font	buffer.	
on	this	with	an	fb.Image	type.

		''	Assign	font	buffer	header.

		''	Header	version

myHeader[0]	=	0

		''	First	supported	character

myHeader[1]	=	FirstChar

		''	Last	supported	character

myHeader[2]	=	LastChar

Assign	the	header	information	described	above,	into	the	first	three	bytes.	
last	supported	character.

		''	Assign	the	widths	of	each	character	in	the	font.

For	DoVar	As	Integer	=	0	To	NumChar	-	1

				''	Skip	the	header,	if	you	recall

		myHeader[3	+	DoVar]	=	8		

Next

Each	character	in	our	font	can	have	its	own	width,	so	we	have	to	assign	these.	
starts	at	0,	so	the	first	time	it	runs	through	that	code,	we'll	be	at	index	3.	

		''	Remember	to	destroy	our	image	buffer.

ImageDestroy(myFont)

Just	reminding	you	:D

Assigning	Font	Characters

This	is	fairly	simple.	We'll	use	FreeBASIC's	default	font	to	draw	onto	our	buffer.	
column	0,	as	the	very	first	column	is	reserved	for	header	data.	Start	the	character	you're	drawing	at	your	first	supported	character,
and	give	it	the	color	you	want.	Be	warned,	you	can't	have	custom	colors	when	drawing	your	font.	
buffer,	it's	stuck	the	color	you	draw	it	as!	See	the	tips	&	tricks	section	on	how	to	get	around	this,	however.

Here's	the	modified	code	(Example4.bas),	where	we'll	add	the	font	drawing	via	FreeBASIC's	default	font	onto	our	buffer.

		''	NEW!!!

		''	Our	current	font	character.

Dim	As	UByte	CurChar

Just	to	have	a	quick	index	of	the	current	ASCII	character	we're	drawing	onto	our	font.

Draw	String	myFont,	(DoVar	*	8,	1),	Chr(CurChar),	

Skip	the	first	row	of	our	image	buffer,	as	that	contains	font	buffer	information.	
it	with	a	random	color.	You	should	note	that	we're	drawing	right	into	our	buffer,	with	"

Print	Chr(CurChar);

Just	for	clarity,	so	you	can	see	the	characters	we're	drawing	into	the	buffer.

		''	Use	our	font	buffer	to	draw	some	text!

Draw	String	(0,	80),	"Hello!",	,	myFont

Draw	String	(0,	88),	"HOW	ARE	ya	DOIN	Today?!		YA	DOIN	FINE?!"

Sleep

Test	out	our	new	font.	Of	course,	it's	the	same	one	we're	used	to.	You	could	have	created	your	own	from	your	own	custom	font	buffer
somewhere.

Tips	&	Tricks

Coloring	Your	Custom	Fonts

Alright,	so	by	now	you	have	realized	that	once	you	color	a	custom	font,	you	can't	use	
we	can	get	around	that	(CustFontCol.bas).	It	might	be	a	bit	slow,	however.

We	can	create	a	font	object,	which	has	a	function	to	return	a	font	buffer.	
we	change	color,	and	returns	the	font	buffer	stored	in	the	object.	This	*could*	in	theory	be	sped	up	if	we	knew	the	range	of	characters
to	redraw,	so	we	could	only	redraw	from	the	lowest	to	the	highest.	Figuring	out	that	range	in	itself,	could	also	be	slow.

#include	"fbgfx.bi"

Type	Font

				''	Our	font	buffer.

		Buf					As	FB.Image	Ptr

				''	Font	header.

		Hdr					As	UByte	Ptr

		

				''	Current	font	color.

		Col					As	UInteger

		

				''	Make	our	font	buffer.

		Declare	Sub	Make(ByVal	_Col_	As	UInteger	=	RGB(255

				''	Change	the	font	color	and	edit	the	font	buffer.

				''	Return	the	new	font.

		Declare	Function	myFont(ByVal	_Col_	As	UInteger	=

		

				''	Create/Destroy	our	font.

						''	Set	a	default	color	to	it	if	you	like.

		Declare	Constructor(ByVal	_Col_	As	UInteger	=	RGB

		Declare	Destructor()

End	Type

		''	Create	our	font's	buffer.

Constructor	Font(ByVal	_Col_	As	UInteger	=	RGB(255,

		This.Make(_Col_)

End	Constructor

		''	Destroy	font	buffer.

Destructor	Font()

		ImageDestroy(Buf)

End	Destructor

		''	Assign	the	FBgfx	font	into	our	font	buffer.

Sub	Font.Make(ByVal	_Col_	As	UInteger	=	RGB(255,	255

				''	No	image	buffer	data.		Create	it.

		If	This.Buf	=	0	Then

		

						''	No	screen	created	yet.

				If	ScreenPtr	=	0	Then	Exit	Sub

				

						''	Support	256	characters,	8	in	width.

						''	Add	the	extra	row	for	the	font	header.

				This.Buf	=	ImageCreate(256	*	8,	9)

				

						''	Get	the	address	of	the	font	header,

						''	which	is	the	same	as	getting	our	pixel	address

						''	Except	that	we	always	will	use	a	ubyte.

				This.Hdr	=	Cast(UByte	Ptr,	This.Buf)	+	SizeOf(FB.Image

				

						''	Assign	header	information.

				This.Hdr[0]	=	0

						''	First	supported	character

				This.Hdr[1]	=	0

						''	Last	supported	character

				This.Hdr[2]	=	255

		Else

				If	This.Col	=	_Col_	Then	Exit	Sub

				

		End	If

		

				''	Draw	our	font.

		For	DoVar	As	Integer	=	0	To	255

						''	Set	font	width	information.

				This.Hdr[3	+	DoVar]	=	8

				

				Draw	String	This.Buf,	(DoVar	*	8,	1),	Chr(DoVar),

		Next

		

				''	Remember	our	font	color.

		This.Col	=	_Col_

End	Sub

		''	Get	the	buffer	for	our	font.

		''	Remake	the	font	if	the	color's	different.

Function	Font.myFont(ByVal	_Col_	As	UInteger	=	RGB(

				''	If	our	colors	match,	just	return	the	current	buffer.

		If	_Col_	=	Col	Then

				Return	Buf

		End	If

		

				''	Make	the	font	with	a	new	color.

		This.Make(_Col_)

				''	Return	out	buffer.

		Return	This.Buf

End	Function

		''	MAIN	CODE	HERE!

ScreenRes	640,	480,	32

		''	Create	our	font.

Dim	As	Font	myFont	=	RGB(255,	255,	255)

		''	Draw	a	string	using	our	custom	font.

Draw	String	(0,0),	"Hello.		I	am	the	custom	font.",,

		''	Gasp.		A	new	color!

Draw	String	(0,8),	"Hello.		I	am	the	custom	font.",,

Sleep

		''	Speed	test.		Turns	out	it's	quite	slow.

Scope

		Randomize	Timer

				''	Our	timer.

		Dim	As	Double	T	=	Timer

		

				''	Time	how	long	it	takes	to	make	a	new	font	this	way.

		For	DoVar	As	Integer	=	0	To	499

				myFont.Make(RGB(Rnd	*	255,	Rnd	*	255,	Rnd	*	255

		Next

		

				''	And	we're	all	done.		Print	important	data.

		Locate	3,	1

		Print	"Time	to	Re-Draw	font	499	times:	"	&	(Timer

		Print	"Time	per	Re-Draw:	"	&	(Timer	-	T)	/	500

		Sleep

End	Scope

ScrPtr	vs	ImgBuf

Comparison	of	how	to	draw	onto	image	buffer	pixels,	versus	how	to	draw	on	the	screen's	buffer	(ScrPtr	vs	ImgBuf.bas):

#include	"fbgfx.bi"

ScreenRes	640,	480,	32

		''	Create	a	buffer	the	size	of	our	screen.

Dim	As	FB.IMAGE	Ptr	myBuf	=	ImageCreate(640,	480)

		''	Get	the	address	of	our	screen's	buffer.

Dim	As	uLong	Ptr	myScrPix	=	ScreenPtr

		''	Get	the	address	of	our	pixel's	buffer.

Dim	As	uLong	Ptr	myBufPix	=	Cast(uLong	Ptr,	Cast(UByte

		''	Lock	our	page.		Fill	the	entire	page	with	white.

ScreenLock

		''	Alternatively,	if	the	screen	resolution's	unknown,	use	ScreenInfo	to

		''	make	this	more	secure

		

		''	Note:	this	code	assumes	no	padding	between	rows.		To	prevent	this,

		''	you	need	to	use	ScreenInfo	to	get	the	screen's	pitch,	and	calculate

		''	row	offsets	using	that	instead.

		For	xVar	As	Integer	=	0	To	639

				For	yVar	As	Integer	=	0	To	479

						myScrPix[(yVar	*	640)	+	xVar]	=	RGB(255,	255

				Next

		Next

ScreenUnlock

Sleep

		''	Draw	onto	our	image	buffer	all	red.

For	xVar	As	Integer	=	0	To	myBuf->Width	-	1

		For	yVar	As	Integer	=	0	To	myBuf->Height	-	1

				myBufPix[(yVar	*	(myBuf->Pitch	\	SizeOf(*myBufPix

		Next

Next

		''	Put	the	red	buffer	on	the	screen.

Put	(0,0),	myBuf,	PSet

Sleep

/'

		ScreenPtr:

	1)	Get	address	of	screen	buffer

				(remember	that	FBgfx	uses	a	dummy	buffer	that	it	flips	automatically)

	2)	Lock	page

	3)	Draw	onto	screen	address

	4)	Unlock	page	to	show	buffer

		

		Image	Buffer:

	1)	Create	an	image	buffer

	2)	Get	the	address	of	image	pixels

	3)	Draw	onto	image	pixels

				(you	can	use	neat	stuff	like	the	buffer	information	to	help	you	here)

	4)	Put	down	Image	where	you	please

				(another	big	plus!)

				

		About	Drawing:

	cast(ubyte	ptr,	mybuff)	+	Y	*	Pitch	+	X	*	Bpp

	

	Every	Y	contains	PITCH	number	of	bytes.		In	order	to	reach	your	new	Y,	you	

	have	to	skip	an	entire	row.

	

	It	should	be	safe	to	do	the	pointer	arithmetic	in	cases	where	the	pointer's	data

	type	is	not	one	byte	long,	so	you	may	find	it	easier	to	use	a	pointer	type	to

	match	your	bit	depth.

	In	these	cases	you	should	divide	the	Pitch	and	BPP	by	the	size	of	the	pointer	type.

	Conveniently,	in	this	case	the	Pitch	should	always	be	divisible	by	the	pixel's	type	

	size.	And,	obviously,	so	will	the	BPP,	which	will	just	cancel	to	1	:D

	

'/

FB	and	cross-compiling 	

Each	fbc	supports	all	targets

Since	fbc	version	0.24,	the	FreeBASIC	compiler	always	supports	all
compilation	targets.	There	no	longer	is	any	configuration	necessary	to	enable
support	for	additional	targets	at	fbc	compile-time,	like	it	used	to	exist	in	older
fbc	versions.	This	means	you	only	need	to	install	one	fbc	per	host	system,
and	it	can	be	used	to	compile	native	programs	aswell	as	non-native
programs.

default:	compile	for	native	system
-target	and	-arch	compiler	options	allow	cross-compiling

Requirements	for	cross-compiling

The	official	FB	release	packages	include	an	fbc	capable	of	cross-compiling,
but	fbc	alone	is	not	enough.

1.	Besides	fbc,	FreeBASIC	consists	of	the	FB	runtime	library	(rtlib/libfb)	and
the	FB	graphics	library	(gfxlib2/libfbgfx).	Additionally,	FreeBASIC	uses
libraries	from	the	MinGW,	DJGPP	or	Linux	GCC	toolchains.	All	these	libraries
are	precompiled	for	a	certain	target.	You	need	a	copy	of	the	proper	libraries
for	every	compilation	target	you	want	to	use.

2.	FreeBASIC	uses	the	assembler	and	linker	(and	sometimes	even	more
tools)	from	the	GNU	binutils	project	to	create	binaries,	and	these	may	only
support	one	target	at	a	time.	Depending	on	how	they	were	built,	they	can	also
support	multiple	targets.	Either	way,	you	need	the	proper	binutils	for	every
compilation	target	you	want	to	use.

To	keep	the	official	FB	release	packages	small,	they	only	include	the	libraries
and	tools	needed	for	native	development,	but	not	for	cross-compiling.	

Example:	Cross-compiling	from	Ubuntu	GNU/Linux	to	Win32

Ubuntu	offers	official	MinGW	cross-compiling	packages,	which	we	can	also
use	for	FreeBASIC.	The	following	describes	the	steps	needed	to	set	this	up.

1.	gcc/binutils	cross-compiler	toolchain

Install	the	gcc-mingw-w64	package	and	its	dependencies.	The	exact	package
name	could	be	different	for	different	versions	of	Ubuntu.	This	should	give	you
the	gcc	cross-compiler	toolchain	for	targetting	Win32	(and	Win64	--	you	can
install	the	exact	packages	manually	if	you	prefer	to	avoid	installing	the	whole
gcc-mingw-w64	and	all	of	its	dependencies.).

That	includes	the	binutils	and	MinGW	libraries,	both	of	which	fbc	definitely
needs	for	cross-compiling.	It	also	includes	the	cross-compiling	gcc,	which	fbc
uses	to	look	up	the	installation	locations	of	the	MinGW	libraries.	Besides	that,
gcc	is	obviously	also	needed	if	you	want	to	use	-gen	gcc	(such	as	when
targetting	64bit	which	is	currently	only	supported	via	-gen	gcc).

The	installed	tools	are	called	i686-w64-mingw32-as	(MinGW	cross	assembler),
i686-w64-mingw32-ld	(MinGW	cross	linker),	i686-w64-mingw32-gcc	(MinGW
cross	gcc),	etc.	You	can	use	them	with	fbc	by	specifying	the	common	target
prefix	to	the	fbc	-target	option:

fbc	foo.bas	-target	i686-w64-mingw32

This	tells	fbc	to	cross-compile	using	the	system's	i686-w64-mingw32
gcc/binutils	toolchain	and	libraries.

2.	Win32	FB	libraries

Install	Win32	FB	libraries	such	that	fbc	can	find	them.	For	the	-target	i686-
w64-mingw32	example	from	above,	the	directory	where	the	Win32	FB	libraries
need	to	be	is	/usr/local/lib/freebasic/win32/,	assuming	fbc	is	installed	at
/usr/local/bin/fbc.	You	have	two	options	to	get	them.

a)	Copy	the	libraries	from	the	official	Win32	FB	release	package	(or	some
other	existing	Win32	build	of	FB).	Create	the
/usr/local/lib/freebasic/win32/	directory	and	copy	the	libraries	into	it.	This
should	be	safe	as	long	as	the	Win32	FB	libraries	are	from	the	same	FB

version	as	the	FB-linux	setup	you	have	installed.	However,	if	the	Win32
libraries	were	created	with	a	MinGW	toolchain	that	is	incompatible	with	the
one	from	Ubuntu,	then	there	can	be	errors.

b)	Compile	the	Win32	FB	libraries	manually	using	Ubuntu's	toolchain.
Assuming	you	have	the	FB	source	code	in	fbc/,	you	can	do:

cd	fbc

make	rtlib	gfxlib2	TARGET=i686-w64-mingw32

sudo	make	install-rtlib	install-gfxlib2	TARGET=i686-w64-mingw32

This	should	cross-compile	the	Win32	FB	libraries	using	the	i686-w64-mingw32
toolchain	and	install	them	into	the	proper	directory	in	/usr/local.	Again,	here
it	is	important	to	ensure	that	the	used	source	code	matches	the	version	of	the
installed	FB-linux	setup.

To	be	completely	safe	and	avoid	FB	version	incompatibilities,	you	can	build
an	entire	FB	setup	from	sources,	including	the	Win32	cross-compiling
libraries:

cd	fbc

make

make	rtlib	gfxlib2	TARGET=i686-w64-mingw32

sudo	make	install

sudo	make	install-rtlib	install-gfxlib2	TARGET=i686-w64-mingw32

Installing	gcc	for	-gen	gcc 	

Windows	32bit

If	you	are	using	the	FreeBASIC-x.xx.x-win32	package,	you	can	use	our
pre-made	gcc	package.	Download	gcc-x.x.x-for-FB-win32-gengcc.zip
from	the	Binaries	-	Windows/More/	directory	at	the	fbc	downloads	area,
and	extract	it	into	the	FreeBASIC	installation	directory	(where	fbc.exe	is),
such	that	gcc.exe	and	cc1.exe	will	be	placed	in	these	locations:

bin\win32\gcc.exe

bin\libexec\gcc\i686-w64-mingw32\x.x.x\cc1.exe

You	can	also	download	Win32	versions	of	gcc	directly	from	the
MinGW.org	or	MinGW-w64	projects.

Windows	64bit

The	FreeBASIC-x.xx.x-win64	package	already	comes	with	gcc	included,
and	uses	-gen	gcc	by	default	(because	-gen	gas	does	not	support	64bit).

DOS

It	requires	a	(minimal)	DJGPP	installation.	DJGPP	can	be	downloaded
from	the	DJGPP	website.	At	least	the	djdev*.zip	and	gcc*b.zip	are
needed.	In	order	to	run	the	DJGPP	gcc,	the	DJGPP	environment	variable
must	be	set	to	point	to	the	djgpp.env	file.

To	use	the	DJGPP	gcc	with	the	FreeBASIC-x.xx.x-dos	package,	copy
gcc.exe	and	cc1.exe	into	the	FreeBASIC	installation	directory,	such	that
they	will	be	placed	in	these	locations:

bin\dos\gcc.exe

bin\libexec\gcc\djgpp\x.xx\cc1.exe

Linux

http://sourceforge.net/projects/fbc/files/Binaries%20-%20Windows/More/
http://www.delorie.com/djgpp/

Typically	the	gcc	package	is	already	installed,	or	it	can	be	installed	by
doing	something	like:
sudo	apt-get	install	gcc

(the	exact	command	depends	on	your	GNU/Linux	distribution)

Non-standalone	fbc	installed	into	DJGPP/MinGW	toolchains

If	you	are	using	a	non-standalone	version	of	fbc	(e.g.	from	one	of	the
fbc-x.xx.x-win32	packages),	and	have	it	installed	inside	a	DJGPP	or
MinGW	toolchain,	then	-gen	gcc	should	already	work,	as	the	DJGPP	or
MinGW	toolchains	provide	gcc.

As	long	as	gcc.exe	is	in	the	same	directory	as	fbc.exe	(typically
C:\DJGPP\bin\	or	C:\MinGW\bin\),	or	available	in	the	PATH	environment
variable,	fbc.exe	should	be	able	to	find	and	use	it.

See	also

-gen	<backend>

Normal	vs.	Standalone	FreeBASIC 	

When	built	from	source,	FreeBASIC	can	be	configured	for	and	installed	in
one	of	these	two	different	setups:

Normal	build	(default) Standalone	build
	

Normal	directory	layout:
bin/

fbc.exe
[<target>-]ld.exe
other	tools	for
native/cross
compilation...

include/
freebasic/

fbgfx.bi
other	headers...

lib/
freebasic/

<target>/
libfb.a
other
libraries...

Standalone	directory	layout:
bin/

<target>/
ld.exe
other	tools...

inc/
fbgfx.bi
other	headers...

lib/
<target>/

libfb.a
other
libraries...

fbc.exe

	

Differences	to	the	standalone	build:

fbc	is	located	in	bin/,	like
other	programs
looks	for	includes	in
include/freebasic/,	instead

Differences	to	the	normal	build:

the	fbc	binary	is	located	at
the	toplevel,	not	inside	bin/
looks	for	tools	inside
bin/<target>/,	i.e.	it	uses

of	inc/,	to	cleanly	separate
FB	headers	from	system
headers
looks	for	its	own	libraries	in
lib/freebasic/	instead	of
lib/,	to	cleanly	separate	FB
libraries	from	system
libraries
looks	for	binutils/gcc	1)	in
bin/	and	2)	by	relying	on
PATH

looks	for	crt/gcc	libraries	1)
in	lib/freebasic/	and	2)	by
running	"gcc	-print-file-
name=..."
-target	option	accepts
system	triplets	such	as
"i686-pc-linux-gnu"	or
"x86_64-w64-mingw32"
the	target	name	given	to	the
-target	option	is	prepended
to	the	gcc/binutils	program
names	when	cross-
compiling
compatible	with	the	standard
/usr	or	/usr/local
directories
typically	used	for	the	FB-
linux	release
uses	windres	from	binutils	to
compile	win32	resource
scripts

This	makes	the	normal	FB	build
integrate	with	GNU/Linux
distributions	and	other	Unix-like
systems	pretty	well,	allows	fbc	to	be

bin/<target>/ld.exe	instead
of	bin/[<target>-]ld.exe
looks	for	FB	includes	in	inc/
not	in	include/freebasic/
looks	for	libraries	in	lib/,	not
in	lib/freebasic/
does	not	try	to	rely	on	PATH
and	use	system	tools
does	not	try	to	query	gcc	to
find	files
-target	only	accepts	simple
FB	target	names,	no	system
triplets
typically	used	for	the	FB-dos
and	FB-win32	releases
uses	GoRC	to	compile	win32
resource	scripts

The	standalone	build	is	intended	to
be	used	for	self-contained
installations	such	as	the	traditional
FB-win32	and	FB-dos	releases.	It
also	allows	adding	fbc	to	the	PATH,
without	having	to	add	the	whole
bin/	directory.

installed	into	MinGW	or	DJGPP
trees	next	to	gcc,	and	allows	fbc	to
work	with	binutils/gcc	cross-
compiling	toolchains.

	

Microsoft	QuickBASIC 	

A	BASIC	compiler,	interpreter	and	IDE

QuickBASIC	is	a	twenty	year	old	interpreter/compiler	upon	which
FreeBASIC	is	modeled.	It	runs	in	16-bit	MS-DOS.

More	information	from	Wikipedia:

Microsoft	QuickBASIC	(often	shortened,	correctly,	to	QB,	or	incorrectly,	to
"QBasic",	which	is	a	different	system)	is	a	descendant	of	the	BASIC
programming	language	that	was	developed	by	the	Microsoft	Corporation
for	use	with	the	MS-DOS	Operating	System.	It	was	loosely	based	on
GW-BASIC	but	in	addition	provided	user-defined	types,	improved
programming	structures,	better	graphics	and	disk	support	and	a	compiler
in	addition	to	the	interpreter.	Microsoft	sold	QuickBASIC	as	a	commercial
development	suite.

Microsoft	released	the	first	version	of	QuickBASIC	on	August	18,	1985
stored	on	a	single	5.25"	floppy	disk.	QuickBASIC	came	with	a	markedly
different	Integrated	Design	Environment	(IDE)	from	the	one	supplied	with
previous	versions	of	BASIC.	Line	numbers	were	no	longer	needed	since
users	could	insert	and	remove	lines	directly	via	an	onscreen	text	editor.	

Microsoft's	"PC	BASIC	Compiler"	was	included	which	could	be	used	to
compile	programs	into	DOS	executables.	The	editor	also	had	an
interpreter	built	in	which	would	run	the	program	without	leaving	the	editor
at	all,	and	could	be	used	to	debug	the	program	before	creating	an
executable	file.	Unfortunately	there	were	some	small,	subtle	differences
between	the	interpreter	and	the	compiler,	so	that	sometimes	programs
running	perfectly	well	in	the	interpreter	would	fail	after	compilation,	or
even	not	compile	at	all.

The	last	version	of	QuickBASIC	was	4.5	(1988)	although	there	was
continued	development	of	the	Microsoft	Basic	Professional	Development
System	(PDS),	the	last	release	of	which	was	version	7.1	(June	1990).
The	PDS	version	of	the	IDE	was	called	QuickBASIC	Extended	(QBX).
The	successor	to	QuickBASIC	and	PDS	was	Visual	Basic	for	MSDOS

http://en.wikipedia.org

1.0	provided	in	Standard	and	Professional	versions.	Later	versions	of
Visual	Basic	did	not	include	DOS	versions	as	Microsoft	wanted
developers	to	concentrate	on	Windows	applications.

A	replacement	for	GW-BASIC,	based	on	QuickBASIC	4.5	was	included
with	MS-DOS	5	and	later	versions.	This	is	called	QBASIC.	Compared	to
QuickBASIC,	it	is	limited	as	it	lacks	a	few	functions,	can	only	handle
programs	of	a	limited	size,	lacks	support	for	separate	modules,	and	is	an
interpreter	only.	It	cannot	be	used	to	produce	executable	files	directly
although	programs	developed	using	it	can	still	be	compiled	by	a
QuickBASIC	4.5,	PDS	7.1	or	VBDOS	1.0	compiler,	if	one	is	available.

To	learn	more	about	the	language,	history,	and	community	of
QuickBASIC	and	its	free	interpreter-only	counterpart,	you	should	see	also
en.wikipedia.org/wiki/QBasic.	There	are	more	links,	and	more
information,	including	a	barebones	tutorial	for	Quick/QBasic
programming.

External	links
Pete's	QB	Site.	One	of	the	oldest	remaining	QB	sites	(since	Oct	1998).
QQN/QBN:	QBasic/QuickBasic	News.
QQN's	Newbies	Section	which	includes	a	link	for	downloading	QBasic.

http://www.petesqbsite.com/
http://www.qbasicnews.com/
http://www.qbasicnews.com/sections.php?id=4

Credits	(in	alphabetical	order) 	

Project	Members

Andre	Victor	T.	Vicentini	(av1ctor[at]yahoo.com.br):
Founder,	main	compiler	developer,	author	of	many	parts	of	the	runtime,
FB	headers	(FBSWIG)

Angelo	Mottola	(a.mottola[at]libero.it):
Author	of	the	FB	graphics	library,	built-in	threads,	thread-safe,	runtime,
ports	I/O,	dynamic	library	loading,	Linux	port.

Bryan	Stoeberl	(b_stoeberl[at]yahoo.com):
SSE/SSE2	floating	point	math,	AST	vectorization.

Daniel	C.	Klauer	(daniel.c.klauer[at]web.de):
FB	releases	since	0.21,	C	&	LLVM	backends,	64bit	port,	dynamic	arrays
in	UDTs,	virtual	methods,	preprocessor-only	mode,	miscellaneous	fixes
and	improvements.

Daniel	R.	Verkamp	(i_am_drv[at]yahoo.com):
DOS,	XBox,	Darwin,	*BSD	ports,	DLL	and	static	library	automation,	VB-
compatible	runtime	functions,	compiler	optimizations,	miscellaneous	fixes
and	improvements.

Ebben	Feagan	(sir_mud[at]users.sourceforge.net):
FB	headers,	C	emitter

Jeff	Marshall	(coder[at]execulink.com):
FB	releases	since	0.17,	FB	documentation	(wiki	maintenance,	fbdocs,
offline-docs	generator),	Gosub/Return,	profiling	support,	dialect,
specifics,	DOS	serial	driver,	miscellaneous	fixes	and	improvements.

Mark	Junker	(mjscod[at]gmx.de):
Author	of	huge	parts	of	the	runtime	(printing	support,	date/time,	functions,
SCR/LPTx/COM/console/keyboard	I/O),	Cygwin	port,	first	FB	installer
scripts.

Matthew	Fearnley	(matthew.w.fearnley[at]gmail.com):
Print	Using	&	Co,	ImageInfo,	and	others,	dialect	specifics,	optimization
improvements	in	the	compiler,	many	fixes	and	improvements.

Ruben	Rodriguez	(rubentbstk[at]gmail.com):
Var	keyword,	const	specifier,	placement	new,	operator	overloading	and,
other	OOP-related	work,	C	BFD	wrapper,	many	fixes	and	improvements.

Simon	Nash:
AndAlso/OrElse	operators,	ellipsis	for	array	initializers,	miscellaneous
fixes	and	improvements.

Contributors

1000101:
gfxlib2	patches,	e.g.	image	buffer	alignment

Abdullah	Ali	(voodooattack[at]hotmail.com):
Windows	NT	DDK	headers	&	examples

AGS:
gdbm,	zlib,	Mini-XML,	PCRE	headers

Claudio	Tinivella	(tinycla[at]yahoo.it):
Gtk	tutorials

Chris	Davies	(c.g.davies[at]gmail.com):
OpenAL	headers	&	examples

Dinosaur:
CGUI	headers

D.J.Peters:
ARM	port,	ODE	headers	&	examples,	Win32	API	header	fixes

Dumbledore:
wx-c	headers	&	examples

dr0p	(dr0p[at]perfectbg.com):
PostgreSQL	headers	&	examples

Edmond	Leung	(leung.edmond[at]gmail.com):
SDL	headers	&	examples

Eric	Lope	(vic_viperph[at]yahoo.com):
OpenGL	&	GLU	headers	&	examples,	examples/gfx/rel-*.bas	demos

Florent	Heyworth	(florent.heyworth[at]swissonline.ch):
Win32	API	sql/obdc	headers

fsw	(fsw.fb[at]comcast.net):
Win32	API	headers,	Gtk/Glade/wx-c	examples

Garvan	O'Keeffe	(sisophon2001[at]yahoo.com):
FB	ports	of	many	NeHe	OpenGL	lessons,	PDFlib	examples

Hans	L.	Nemeschkal	(Hans.Leo.Nemeschkal[at]univie.ac.at):

DISLIN	headers
Jofers	(spam[at]betterwebber.com):

ThreadCall	keyword,	libffi/libjit	headers,	FreeType	examples
Jose	Manuel	Postigo	(postigo[at]uma.es):

Linux	serial	devices	support
Laanan	Fisher	(laananfisher[at]gmail.com):

FB	test	suite	using	CUnit
Matthew	Riley	(pestery):

OpenGL,	GLFW,	glext,	FreeGLUT,	cryptlib	headers
Matthias	Faust	(matthias_faust[at]web.de):

SDL_ttf	headers	&	examples
Marzec:

SDL	headers,	SDL_bassgl,	SDL_opengl	and	SDL_key	examples,	First
file	routines	for	FB's	rtlib

MJK:
big_int	header	fixes

MOD:
wx-c,	BASS	headers;	-lang	qb	support	for	built-in	macros,	"real"	Rnd()
algorithm

Nek	(dave[at]nodtveidt.net):
Win32	API	headers

Plasma:
FMOD	and	BASS	headers	&	examples

Randy	Keeling	(randy[at]keeling.com):
GSL	matrix	example

Saga	Musix	(Jojo):
BASS	examples	with	sounds

Sisophon2001:
gfxlib2	fixes,	Nehe	OpenGL	lesson	ports

Sterling	Christensen	(sterling[at]engineer.com):
Ex-project-member,	author	of	FB's	initial	QB-like	graphics	library

TeeEmCee:
gfxlib2	fixes

TJF	(Thomas.Freiherr[at]gmx.net):
ARM	port,	GTK+,	glib,	Cairo,	Pango	headers	&	examples,

SQLiteExtensions	headers
zydon:

Win32	API	examples

Greetings

Plasma:
Owner	of	the	freebasic.net	domain	and	main	site	hoster,	many	thanks	to,
him.

VonGodric:
Author	of	the	first	FreeBASIC	IDE:	FBIDE.

Everybody	that	helped	writing	the	documentation	(and	in
special	Nexinarus	who	started	it):

http://www.freebasic.net/wiki/wikka.php?wakka=ContributorList
All	users	that	reported	bugs,	requested	features	and	as	such
helped	improving	the	compiler,	language	and	run-time	libraries.

BLOAD/BSAVE	text	mode	work-around 	

These	functions	allow	you	to	use	BSAVE	and	BLOAD	in	a	text	mode.

Sub	_bsave(file	As	String,	p	As	Any	Ptr,	sz	As	Integer

		Dim	As	Integer	ff	

		ff	=	FreeFile	

		

		Open	file	For	Binary	As	ff	

				fb_fileput(ff,	0,	ByVal	p,	sz)	

				

		Close	

		

End	Sub	

Sub	_bload(file	As	String,	p	As	Any	Ptr)	

		Dim	As	Integer	ff	

		ff	=	FreeFile	

		

		Open	file	For	Binary	As	ff	

				fb_fileget(ff,	0,	ByVal	p,	LOF(ff))	

				

		Close	

		

End	Sub

DrV 	

Daniel	Verkamp	(DrV)
i_am_drv	[at]	yahoo	[dot]	com
i_am_drv	[at]	users	[dot]	sf	[dot]	net
http://drv.nu/
Part	of	the	FreeBASIC	Development	team;	DOS	port	maintainer

Creating	FB	bindings	for	C	libraries 	

This	page	aims	to	document	the	problems	and	solutions	commonly	encountered	when	creating	FB	bindings	for	C	libraries.

In	general,	FB	and	C/C++	are	very	similar.	FB	follows	the	same	ABI	as	GCC	where	applicable,	in	order	to	be	binary-compatible	as	much
as	possible.	The	language	syntax	is	also	similar	to	C/C++.	As	a	result,	a	lot	of	type	and	procedure	declarations	can	be	translated	directly
1:1	between	C	and	FB.	However,	there	also	are	constructs	which	cannot	be	translated	directly,	for	example:	typedefs	declaring	function
types.	FB	has	function	pointer	types,	but	not	plain	function	types.

The	good	news:	We	have	tools	(fbfrog	and	h_2_bi)	which	can	do	most	of	the	translation	automatically.
The	bad	news:	There	always	are	some	problems	which	cannot	be	solved	automatically	and	thus	need	to	be	fixed	manually.

Data	types

C/C++	type Size	in	bytes	(GCC	on	Linux/Windows) Corresponding	FreeBASIC	type

char 1 Byte

short	[int] 2 Short

int 4 Long

enum	(underlying	type	int) 4 Long

long	long	[int] 8 LongInt

float 4 Single

double 8 Double

long	double 12	on	32bit,	16	on	64bit CLongDouble	from	crt/longdouble.bi

_Bool/bool 1 Byte	/	Boolean	(from	fbc	version	1.04)

*	(pointer) 4	on	32bit,	8	on	64bit Ptr/Pointer

ssize_t,	intptr_t 4	on	32bit,	8	on	64bit Integer

size_t,	uintptr_t 4	on	32bit,	8	on	64bit UInteger

long	[int] 4	on	32bit	systems	and	Win64	(!),	8	on	64bit	Linux/BSD CLong	from	crt/long.bi

Caveat:	int/long	is	not	Integer/Long.	In	FB,	Integer	corresponds	to	
systems).	Long	stays	32bit	everywhere.	In	C,	int	stays	32bit	everywhere,	and	
systems,	but	not	on	Win64,	where	long	is	still	32bit.	On	Win64,	long	long
nor	C's	long	are	compatible	to	FB's	Integer.
Caveat:	long	int	is	not	LongInt.	FB's	LongInt	corresponds	to	C's	

http://www.freebasic.net/forum/viewtopic.php?f=8&t=18712
http://www.freebasic.net/forum/viewtopic.php?f=8&t=15364

int	can	be	translated	to	Long,	as	both	are	32bit	consistently.
ssize_t	or	intptr_t	can	be	translated	to	Integer	because	they	typically	have	the	same	size	as	pointers.
long	cannot	be	translated	directly,	but	we	have	crt/long.bi	which	provides	the	target-specific	
long	double	cannot	be	translated	directly,	but	we	have	crt/longdouble.bi
enum	is	a	special	case.	Typically	their	underlying	type	is	int	(32bit),	but	in	FB	
changing	that.	Thus	enums	(used	as	data	type	in	declarations)	cannot	be	translated	as	

For	example:

Enum	MyEnum	{

				A,

				B

}

has	to	be	translated	as:

Type	MyEnum	As	Long

Enum

				A

				B

End	Enum

BOOL	from	windows.h	is	just	a	typedef	for	int,	and	should	not	be	confused	with	the	C	

Symbol	name	conflicts

C/C++	is	case-sensitive,	with	~50	keywords
FreeBASIC	is	case-insensitive,	with	~400	keywords
C	code	sometimes	uses	FB	keywords	as	symbol	identifiers,	for	example	
C	code	often	contains	identifiers	which	differ	only	in	case,	for	example	
of	the	symbols	must	be	renamed.
In	C,	a	macro	can	have	the	same	identifier	as	a	function.	This	is	not	allowed	in	FB;	one	of	the	symbols	must	be	renamed.

Examples

C	code	using	FB	keywords	as	identifiers:

typedef	Int	Int;

void	Open(void);

Type	INT_	As	Long

Declare	Sub	open_	cdecl	Alias	"open"()

C	code	relying	on	case-sensitivity:

void	foo(void);

void	Foo(void);

void	FOO(void);

''	Wrong	translation:

Extern	"C"

				Declare	Sub	foo()

				Declare	Sub	Foo()		''	error:	duplicate	definition

				Declare	Sub	FOO()		''	error:	duplicate	definition

End	Extern

''	Correct	translation:

Extern	"C"

				Declare	Sub	foo()

				Declare	Sub	Foo_	Alias	"Foo"()

				Declare	Sub	FOO__	Alias	"FOO"()

End	Extern

Another	classic	example	where	this	kind	of	conflict	happens:

#define	GET_VERSION_NUMBER	123

Int	get_version_number(void);

Extern	"C"

				#define	GET_VERSION_NUMBER_	123		''	renamed	to	avoid	conflict

				Declare	Function	get_version_number()	As	Long

End	Extern

Conflict	between	procedure	and	macro:

void	f(Int);

#define	f(i)	f(i	+	1)

Extern	"C"

				Declare	Sub	f(ByVal	As	Long)

				#define	f_(i)	f(i	+	1)		''	renamed	to	avoid	conflict

End	Extern

Solutions

Symbols	should	be	renamed	by	appending	_	underscores.	This	way	we	solve	the	conflicts	and	still	stay	close	to	the	original
API.
Renaming	a	symbol	should	not	cause	further	renames	(for	example,	if	
foo	should	be	renamed	to	foo__	instead)
A	list	of	renamed	symbols	should	be	available	in	the	binding	or	in	the	binding's	documentation	such	that	users	can	identify
such	differences	to	the	original	API.
Fields	inside	structures	do	not	need	to	be	renamed	just	because	they	match	an	FB	keyword.	By	using	the	"
Name"	syntax	they	can	be	use	FB	keywords	as	identifiers.	This	only	works	as	long	as	it	is	a	simple	structure	(plain	old	data),
not	a	class.

Type	UdtWithKeywordFields

				As	ZString	Ptr	String		''	Field	"String"	of	type	ZString	Ptr

				As	Long	Type		''	Field	"Type"	of	type	"Long"

				As	Long	As		''	Field	"As"	of	type	"Long"

End	Type

Function	types

In	C	it's	possible	to	have	typedefs	with	function	types.	Dereferencing	a	function	pointer	type	results	in	a	function	type.	FB	only	has
function	pointer	types,	but	not	function	types.

//	A	Function	typedef	(Function	result	=	void,	no	parameters

typedef	void	F(void);

//	Using	it	To	Declare	a	Function	called	f1

F	f1;

//	Usually	f1	would	be	declared	like	This	(use	of	Function

void	f1(void);

//	A	more	Common	use	For	Function	typedefs	Is	To	Declare

Extern	F	*pf1;

Since	FB	does	not	have	function	types,	such	typedefs	have	to	be	solved	out,	or	turned	into	a	function	pointer:

Extern	"C"

Type	F	As	Sub()		''	Function	pointer	type

''	Declaring	procedures	is	only	possible	with	Declare	in	FB

Declare	Sub	f1()

''	But	at	least	FB	has	function	pointer	types.

''	Since	F	already	is	the	function	pointer	in	the	FB	translation,	there	is	no	extra	PTR	here

Extern	pf1	As	F

End	Extern

Compiling	a	Development	Version	of	FreeBASIC 	

The	source	code	of	FreeBASIC	is	maintained	on	Sourceforge	using	the
Git	version	control	system,	which	allows	different	developers	to	work	on
the	source	code	at	the	same	time	and	later	combine	their	work.	It	is
possible	for	users	to	download	the	FreeBASIC	source	code	using
anonymous	read	access	and	compile	it	using	GNU	development	tools.

Compiling	the	development	version	is	not	recommended	for	most	users.
FreeBASIC	is	a	self-hosting	compiler,	still	in	active	development,	so	there
will	be	times	when	the	current	development	version	cannot	be	compiled
by	the	last	official	release.	Note	also	that	the	procedures	for	building	the
compiler	described	here	may	change	with	future	versions	of	FreeBASIC.

Essentially,	FreeBASIC	consists	of	two	parts:
The	FreeBASIC	compiler,	written	in	FreeBASIC	(self-hosting).
Compiling	this	requires	a	working	FreeBASIC	installation.
The	FreeBASIC	runtime	libraries,	written	in	C.	Compiling	this
requires	a	C	compiler	such	as	gcc,	the	GNU	C	compiler	(Native
gcc	on	Linux,	MinGW	on	Windows,	DJGPP	for	DOS).

Generally,	when	compiling	FB,	care	should	be	taken	to	never	mix
compiler	and	rtlib	of	different	versions,	because	they	will	not	necessarily
be	compatible.	fbc's	code	generation	expects	a	specific	libfb	version.
Thus,	an	FB	setup	should	always	have	the	proper	libfb	version	in	its	lib/
directory,	matching	the	version	of	the	fbc.exe.	When	building	a	new
compiler,	just	like	any	other	FB	program,	it	will	be	compiled	by	an	existing
fbc	and	thus	it	must	also	be	linked	against	the	existing	fbc's	libfb,	not
against	the	new	libfb.	The	new	libfb	belongs	into	the	new	compiler's	lib/
directory,	not	in	that	of	the	existing	fbc.	Typically	this	means	that	the
compiler	should	be	built	first,	before	rtlib/gfxlib2,	which	is	also	how	the	FB
makefile	works	by	default.

There	are	two	ways	to	build	FB:	normal	or	standalone.	The	normal
version	is	intended	for	integration	with	an	existing	gcc	toolchain,	while	the
standalone	version	makes	fbc	act	more	like	a	self-contained	tool.	Most
importantly,	the	two	use	slightly	different	directory	layouts.	For	example,
in	the	normal	version	the	fbc	program	is	located	at	bin/fbc[.exe],	while

in	the	standalone	version,	fbc[.exe]	is	put	into	the	toplevel	directory,
instead	of	the	bin/	directory.	Furthermore,	the	directory	layout	for	include
files	and	libraries	differs.	Traditionally,	the	FB-linux	release	is	a	normal
build,	while	the	FB-win32	and	FB-dos	builds	are	standalone	versions.

Getting	the	source	code
Compiling	FB	for	DOS
Compiling	FB	on	Linux
Compiling	FB	on	Windows
Getting	source	code	updates	and	recompiling	FB
Debugging	FB
FB	build	configuration	options
Known	problems	when	compiling	FB
GCC	toolchain	choice

Getting	the	source	code 	

From	Git

The	FreeBASIC	source	code	is	maintained	using	the	Git	version	control	system
code	is	available	from	these	Git	repositories:

Main	repository	at	SourceForge:
Git	clone	URL:	git://git.code.sf.net/p/fbc/code
Web	view:	http://sourceforge.net/p/fbc/code/

Mirror	repository	at	GitHub:
Git	clone	URL:	https://github.com/freebasic/fbc.git
Web	view:	https://github.com/freebasic/fbc

In	order	to	access	a	Git	repository,	you	first	need	to	install	a	Git	client.

Linux:
The	standard	Git	command	line	client	is	available	in	form	of	packages	for	many	GNU/Linux
distributions.	For	example,	on	Debian/Ubuntu,	you	can	install	the	
apt-get	install	git	git-gui.
File	explorer	integration:	Some	tools	such	as	RabbitVCS	act	as	graphical	frontend	for	the	Git
command	line	client.	It	can	integrate	into	the	Nautilus	file	explorer	much	like	TortoiseSVN	on
Windows.	Install	the	rabbitvcs-nautilus	package	on	Debian/Ubuntu	to	get	it.

Windows:
The	standard	Git	command	line	client	is	made	available	for	Windows	by	the	
download	the	latest	installer	from	their	website,	and	install	it.	The	recommended	setting	for
core.autocrlf	is	true,	so	that	the	FB	source	code	in	the	working	tree	will	have	CRLF	line	endings.	By
default	MsysGit	will	add	some	useful	context-menu	(right-click	menu)	entries	for	directories	in	the
Windows	Explorer.
There	are	other	Git	clients	available,	for	example	TortoiseGit

Check	out	http://git-scm.com/downloads	for	more	information.

After	installing	a	Git	client,	you	can	download	("clone")	the	fbc	repository.

Using	the	Git	command	line	in	a	terminal	on	Linux:

http://git-scm.com/
http://rabbitvcs.org/
https://code.google.com/p/tortoisegit/

#	Clone	fbc's	SourceForge	repository	into	a	new	fbc/	directory

git	clone	git://git.code.sf.net/p/fbc/code	fbc

#	Open	graphical	commit	history	browser:

gitk	--all	&

#	Open	graphical	commit	tool:

git	gui	&

Using	the	Git	command	line	in	the	Git	Bash	terminal	that	comes	with	MsysGit	on	Windows:

#	The	Git	Bash	is	an	MSYS	shell	providing	a	Linux-like	command	line	environment.

#	It	should	have	mapped	the	~	home	directory	to	your	C:\Documents	and	Settings\username	or

#	C:\Users\name	directory.	It	is	ok	to	work	there,	but	if	you	want	to	change	directories	and	clone

#	the	fbc	repository	to	somewhere	else,	you	can	do	so	as	follows:

#	Change	directory	to	C:\foo\bar

cd	/c/foo/bar

#	Clone	fbc's	SourceForge	repository	into	a	new	fbc	directory

git	clone	git://git.code.sf.net/p/fbc/code	fbc

#	Open	graphical	commit	history	browser:

gitk	--all	&

#	Open	graphical	commit	tool:

git	gui	&

Using	MsysGit's	graphical	user	interface	on	Windows:	Right	click	on	your	Desktop	or	somewhere	else	in	the
Explorer	and	select	"Git	Gui"	to	bring	up	the	Git	Clone	window.	Here	you	can	enter	the	Git	clone	URL	of	the
fbc	repository	and	the	directory	into	which	the	clone	should	go.	Note:	Right-clicking	and	selecting	
directories	that	already	are	Git	repositories	will	bring	up	the	git-gui	commit	tool.

Other:	Please	check	out	your	Git	client's	documentation.	No	matter	what	Git	client	you	are	using,	you
probably	have	to	enter	the	Git	clone	URL	somewhere.	Then	it	should	download	the	fbc	repository	to
somewhere	on	your	system.

As	a	result	you	should	have	an	fbc/	directory	containing	the	FreeBASIC	source	code	(and	a	

https://msysgit.github.io/
http://www.sourcetreeapp.com/

repository	metadata).

You	can	regularly	update	it	to	the	latest	version	by	synchronizing	it	to	the	fbc	repository	which	you	originally	cloned:
Go	into	your	fbc/	directory	and	run	a	Git	Pull.	When	using	the	Git	command	line,	this	should	do	the	trick:

cd	fbc/

git	pull

From	Git	but	without	using	a	Git	client

Both	SourceForge	and	GitHub	allow	you	to	download	snapshots	of	the	source	code	stored	in	the	fbc	Git	repository.
This	way	you	can	download	the	latest	fbc	source	code	without	having	to	use	a	Git	client.	Using	a	Git	client	is
generally	more	efficient	though.

SourceForge:	Visit	http://sourceforge.net/p/fbc/code/	in	a	web	browser	and	click	Download	Snapshot.
GitHub:	Visit	https://github.com/freebasic/fbc	in	a	web	browser	and	click	Download	ZIP.

Source	code	for	releases

Besides	the	source	code	in	Git	which	corresponds	to	the	development	version	of	FreeBASIC,	you	can	also
download	the	source	code	for	the	latest	official	stable	release	of	FreeBASIC	(or	previous	releases)	by	visiting	the
fbc	downloads	area	on	SourceForge:

http://sourceforge.net/projects/fbc/files/

The	Source	Code	directory	will	always	contain	downloads	for	the	source	code	of	the	latest	FreeBASIC	release.	The
source	code	of	previous	releases	can	be	found	in	the	Older	versions	directory.

Compiling	FB	for	DOS 	

The	DOS	version	of	FB	is	typically	compiled	on	a	32bit	Windows	system
with	DJGPP	and	a	DOS	version	of	FB	installed.

Preparations

Getting	the	FB	source	code

To	compile	a	new	version	of	FB,	you	first	need	to	get	the	FB	source
code.	The	following	assumes	that	you	have	a	directory	called	fbcdos,
containing	the	latest	FB	source	code.	Naming	it	fbcdos	is	convenient	as	it
avoids	conflicts	in	case	you	also	have	an	fbc	directory	for	building	the
Windows	version	of	FB.

Installing	DJGPP

To	install	DJGPP,	we	need	to	download	several	packages	which	can	be
found	on	the	DJGPP	homepage.	FB	needs	djdev204.zip	from	the
beta/v2/	directory,	and	several	others	from	the	beta/v2gnu/	directory.	If
anything	is	missing	from	there,	you	can	also	look	into	the	current/v2gnu/
directory.	The	following	packages	are	needed:

binutils	(bnu*b.zip)
bash	(bsh*.zip)
djdev	(djdev*.zip)	-	pick	up	djdev204.zip	or	later	from	the	beta/
directory
fileutils	(fil*.zip)
gcc	(gcc*b.zip)
g++	(gpp*b.zip)
make	(mak*b.zip)
shellutils	(shl*b.zip)
textutils	(txt*b.zip)

Setup	DJGPP	by	extracting	everything	into	C:\DJGPP	and	adding	an
environment	variable	named	"DJGPP",	set	to	C:\DJGPP\djgpp.env.

http://www.delorie.com/djgpp/getting.html
http://www.delorie.com/pub/djgpp/beta/v2/
http://www.delorie.com/pub/djgpp/beta/v2gnu/
http://www.delorie.com/pub/djgpp/current/v2gnu/

It	can	be	useful	(especially	when	working	in	parallel	with	MinGW)	to	use
a	batch	script	to	launch	a	terminal	with	the	DJGPP	tools	in	its	PATH
environment	variable,	instead	of	modifying	the	system's	global	PATH
environment	variable:

set	DJGPP=C:\DJGPP\djgpp.env

set	PATH=C:\DJGPP\bin;%PATH%

cd	C:\

cmd

In	the	end,	you	should	be	able	to	open	a	command	prompt	with
C:\DJGPP\bin	in	its	PATH,	such	that	running	the	gcc	command	runs	the
DJGPP's	gcc	(and	not	MinGW's	gcc).

Standalone	build	(self-contained	FB)

Getting	an	existing	FB	setup	for	bootstrapping

We	will	need	a	working	FB-dos	installation	to	bootstrap	the	new	FB
compiler.	If	you	do	not	have	FB-dos	installed	yet,	download	the	latest
FreeBASIC-X.XX.X-dos	release	from	FB's	download	site.	It	should	be
extracted	somewhere	like	C:\FreeBASIC-X.XX.X-dos.

Building	the	new	FB	setup

If	you	want	to	create	a	traditional	standalone	FB-dos	setup	like	the	one
from	the	FreeBASIC-X.XX.X-dos	release	package,	you	need	to	tell	FB's
makefile	by	setting	the	ENABLE_STANDALONE	variable.	Assuming	the
FB	sources	are	located	at	C:\fbcdos,	create	a	C:\fbcdos\config.mk	file
containing	the	following:

ENABLE_STANDALONE	=	1

Then,	open	a	command	prompt	with	C:\DJGPP\bin	in	its	PATH,	go	to	the

http://sourceforge.net/projects/fbc/files/Binaries%20-%20DOS/

directory	with	the	FB	source	code,	run	"make"	with	the	FBC=...	variable
set	to	point	to	the	existing	fbc.exe	to	use	for	bootstrapping,	and	let	it
compile:

>	cd	C:\fbcdos

>	make	FBC=C:/FreeBASIC-X.XX.X-dos/fbc.exe

This	should	have	produced	the	fbc.exe	compiler	and	the	libraries	in
lib\dos\.	To	complete	this	new	FB	setup,	you	need	to	add	the	binutils
(as.exe,	ar.exe,	ld.exe)	into	bin\dos\	and	copy	in	some	DJGPP	libraries
into	lib\dos\.

Copy	these	files	to	C:\fbcdos\bin\dos:
C:\DJGPP\bin\{ar,as,ld}.exe

Copy	these	files	to	C:\fbcdos\lib\dos:
C:\DJGPP\lib\{crt0,gcrt0}.o

C:\DJGPP\lib\lib{emu,m}.a

C:\DJGPP\lib\gcc\djgpp\[version]\libgcc.a

You	can	copy	more	libraries	if	you	need	them,	for	example	the
C:\DJGPP\lib\gcc\djgpp\[version]\libsupcxx.a	C++	support	library,	or
others	from	the	C:\DJGPP\lib\	directory.

A	note	on	libc.a:	FB	needs	a	modified	version	of	DJGPP's	libc.a
because	DJGPP's	libc.a	contains	a	bug	(see	contrib/djgpp/readme.txt
from	the	fbc	source	code	for	more	information).	The	FB	makefile	should
have	taken	care	of	this	and	produced	the	modified	version	of	libc.a	at
lib\dos\libc.a.	This	should	not	be	overwritten	with	DJGPP's	original
libc.a.

Now,	the	new	FB	setup	should	be	ready	for	use.	You	can	use	it	right	from
the	source	tree	or	copy	it	somewhere	else.	The	following	are	the	relevant
files	and	directories:

fbc.exe

bin/dos/

inc/

lib/dos/

If	you	rebuild	it	in	the	future	(e.g.	after	updates	to	the	FB	source	code
from	Git),	you	can	let	it	rebuild	itself	by	just	running	"make"	without
specifying	an	external	FBC.	It	will	then	use	the	default,	FBC=fbc,	which	in
this	case	corresponds	to	the	fbc.exe	in	the	same	directory.

>	cd	C:\fbcdos

>	make

Normal	build	(like	Linux)

Getting	an	existing	FB	setup	for	bootstrapping

We	will	need	a	working	fbc	installation	to	bootstrap	the	new	FB	compiler.
If	you	do	not	have	fbc	installed	yet,	download	the	latest	fbcXXXXb
package	from	FB's	download	site,	and	extract	it	into	the	DJGPP
directory	(C:\DJGPP)	like	a	DJGPP	package.	This	will	add	a	working	fbc	to
your	DJGPP	installation.

Building	the	new	FB	setup

In	order	to	create	a	normal	(non-standalone)	build	like	the	one	from	the
fbcXXXXb	release	package,	just	compile	FB	without	specifying
ENABLE_STANDALONE.	Open	a	command	prompt	with	C:\DJGPP\bin	in	its
PATH,	go	to	the	directory	with	the	FB	source	code,	run	"make"	and	let	it
compile.

>	cd	C:\fbcdos

>	make

This	should	have	produced	the	bin/fbc.exe	compiler	and	the	libraries	in

http://sourceforge.net/projects/fbc/files/Binaries%20-%20DOS/

lib\freebas\dos\.

Optionally,	you	can	copy	this	setup	into	the	C:\DJGPP	tree	by	running
"make	install":

>	make	install	prefix=C:/DJGPP

It	can	be	useful	to	store	the	prefix	variable	in	config.mk,	so	you	can	run
make	install	in	the	future	without	having	to	set	it	manually	again:

#	config.mk:

prefix	=	C:/DJGPP

Installing	fbc	into	the	DJGPP	tree	this	way	means	that	it	acts	as	if	it	was	a
part	of	DJGPP.	However,	it	is	also	possible	to	use	fbc	from	the	source
tree,	without	installing	it	elsewhere.	It	will	invoke	gcc	-print-file-
name=...	in	order	to	locate	the	DJGPP	binutils	and	libraries.

Compiling	FB	on	Linux 	

Building	FB	on	Linux	is	fairly	easy	because	usually	the	GNU/Linux
distributions	provide	all	the	needed	development	packages	and	they	can
be	installed	easily,	at	least	for	native	builds.	Since	64bit	support	was
added	to	FB,	a	native	build	should	always	be	possible,	no	matter	whether
you	have	a	32bit	x86	or	64bit	x86_64	system.	Cross-compiling	the	32bit
x86	version	of	FB	on	a	64bit	x86_64	system	(or	vice-versa)	and	building
for	other	architectures	such	as	ARM	is	also	possible.

Generally,	compiling	FB-linux	requires	the	following	packages:

an	existing,	working	FreeBASIC	setup	for	bootstrapping	the	new
compiler
gcc
make
ncurses	development	headers	&	libraries	(actually	only	its	libtinfo
part)
gpm	development	headers	&	libraries	(general	purpose	mouse)
X11	development	headers	&	libraries	(including	X11,	Xext,	Xpm,
Xrandr,	Xrender)
OpenGL	development	headers	&	libraries	(typically	from	the	Mesa
project)
libffi	development	headers	&	libraries

Native	build

Getting	the	FB	source	code

To	compile	a	new	version	of	FB,	you	first	need	to	get	the	FB	source
code.	The	following	assumes	that	you	have	a	directory	called	fbc,
containing	the	latest	FB	source	code.

Getting	an	existing	FB-linux	setup	for	bootstrapping

We	will	need	a	working	FB-linux	installation	to	bootstrap	the	new	FB

compiler.	If	you	do	not	have	a	native	version	of	FB	installed	yet,
download	the	latest	FreeBASIC-X.XX.X-linux	release	for	your	system
(32bit	x86,	64bit	x86_64,	ARM,	etc.)	from	FB's	download	site,	then
extract	and	install	it:

$	tar	xf	FreeBASIC-X.XX.X-linux.tar.gz

$	cd	FreeBASIC-X.XX.X-linux

$	sudo	./install.sh	-i

It	is	possible	that	you	can	get	working	FB	setups	from	other	sources
besides	the	fbc	project.	For	example,	some	distros	may	provide
freebasic	packages	out-of-the-box.

Installing	development	packages

The	following	lists	show	the	packages	you	have	to	install	for	some
common	GNU/Linux	distributions.	The	exact	package	names	can	be
different	depending	on	which	distro	(or	which	version	of	it)	you	use.

Debian-based	systems	(including	Ubuntu,	Mint	etc.):
gcc

make

libncurses5-dev

libgpm-dev

libx11-dev

libxext-dev

libxpm-dev

libxrandr-dev

libxrender-dev

libgl1-mesa-dev

libffi-dev

OpenSUSE:
gcc

http://sourceforge.net/projects/fbc/files/Binaries%20-%20Linux/

make

ncurses-devel

gpm-devel

libX11-devel

libXext-devel

libXpm-devel

libXrandr-devel

libXrender-devel

Mesa-libGL-devel

libffi48-devel

Fedora:
gcc

make

ncurses-devel

gpm-devel

libX11-devel

libXext-devel

libXpm-devel

libXrandr-devel

libXrender-devel

mesa-libGL-devel

libffi-devel

Compiling	FB

Compiling	FB	natively	is	as	simple	as	running	"make"	in	the	fbc	source
code	directory.	This	will	build	a	native	FB	setup	matching	the	system
architecture,	assuming	that	the	existing	fbc	installed	on	the	system
produces	native	programs.

$	cd	fbc

$	make

This	should	have	produced	the	bin/fbc	compiler	and	the	libraries	in
lib\freebasic\linux-[architecture]\.

Afterwards,	you	can	install	the	new	fbc	build	into	/usr/local	by	running
"make	install",	and	overwrite	the	old	FB	installation:

$	sudo	make	install

Compiling	32bit	FB	on	a	64bit	system	with	existing	32bit	FB

Besides	native	builds,	you	can	also	make	non-native	builds,	such	as
compiling	the	32bit	version	of	FB	on	a	64bit	system,	using	an	existing
32bit	FB	build	to	bootstrap.	This	was	very	common	before	64bit	support
was	added	to	FB.	It	requires	a	slightly	different	procedure	than	a	native
build.

Get	the	FB	source	code.
Install	a	32bit	version	of	FB	for	bootstrapping	(instead	of	a	native
64bit	version).
Install	32bit	development	packages	(not	just	the	native	64bit
ones).

64bit	Debian/Ubuntu	example:
gcc-multilib

make

lib32ncurses5-dev

libx11-dev:i386

libxext-dev:i386

libxpm-dev:i386

libxrandr-dev:i386

libxrender-dev:i386

libgl1-mesa-dev

libgpm-dev

lib32ffi-dev

64bit	OpenSUSE	example:
gcc-32bit

make

ncurses-devel-32bit

gpm-devel

libX11-devel-32bit

libXext-devel-32bit

libXpm-devel-32bit

libXrandr-devel-32bit

libXrender-devel-32bit

Mesa-libGL-devel-32bit

libffi48-devel-32bit

Add	the	following	config.mk	file	to	the	fbc	source	tree	(next	to	the
FB	makefile):

CC	=	gcc	-m32

TARGET_ARCH	=	x86

This	tells	the	FB	makefile	to	build	for	32bit	instead	of	the	64bit	default.

Setting	CC	to	gcc	-m32	instead	of	gcc	causes	all	C	code	to	be	compiled
for	32bit	rather	than	the	default	64bit.

Assuming	that	the	existing	installed	fbc	is	a	32bit	one,	it	will	already
default	to	compiling	to	32bit,	so	setting	FBC	to	fbc	-arch	32	instead	of
fbc	is	not	needed	(and	older	32bit-only	fbc	versions	did	not	even	have
the	-arch	32	option	anyways).

Setting	the	TARGET_ARCH	to	x86	is	necessary	to	override	the	FB
makefile's	uname	-m	check	(because	that	returns	x86_64	on	64bit).	This
allows	the	FB	makefile	to	select	the	proper	x86	rtlib/gfxlib2	modules	and
to	use	the	correct	directory	layout	for	x86.

Run	"make"	and	let	it	compile	FB:

$	cd	~/fbc

$	make

Optionally,	install	the	newly	built	32bit	FB	setup	into	/usr/local:

$	sudo	make	install

Compiling	FB	on	Windows 	

Preparations

Getting	the	FB	source	code

To	compile	a	new	version	of	FB,	you	first	need	to	get	the	FB	source	code
assumes	that	you	have	a	directory	called	fbc,	containing	the	latest	FB	source	code.

Installing	a	MinGW-w64	toolchain

In	this	guide	we	will	use	a	32bit	or	64bit	MinGW-w64	toolchain	to	build	the	32bit	or	64bit
version	of	FB,	respectively.	Visit	http://sourceforge.net/projects/mingw-w64/files/	and	enter	the
Toolchains	targetting	Win64	or	Toolchains	targetting	Win32	directory,	depending	on
whether	you	want	to	compile	a	32bit	or	64bit	version	of	FB.	Enter	the	Personal	Builds/mingw-
builds/	subdirectory,	choose	the	latest	gcc	version,	then	enter	the	threads-win32/sjlj/
subdirectory	and	download	the	toolchain	package	from	there.

Extract	the	toolchain	into	a	new	C:\MinGW-w64	directory,	such	that	you	end	up	with	
w64\bin\gcc.exe.	

If	you	know	what	you	are	doing,	you	can	also	use	a	different	MinGW-w64	toolchain,	or	even
one	from	different	projects	such	as	MinGW.org	or	TDM-GCC.	We	have	some	more	information
on	the	MinGW	toolchain	choices	on	the	DevGccToolchainChoice	page.

Installing	MSYS

MSYS	(originally	a	Cygwin	fork)	brings	a	Unix-like	shell	environment	to	Windows,	including
GNU	make,	the	bash	shell	and	Unix	command	line	tools	such	as	cp	and	
to	run	the	FB	makefile	and	the	FB	test	suite.

The	needed	MSYS	packages	can	be	downloaded	and	extracted	by	using	the	latest	version	of
the	mingw-get	setup	from	the	MinGW.org	project.

Run	the	installer	and	choose	C:\MinGW	as	installation	directory.	This	way	it	will	be	separate	from
C:\MinGW-w64,	avoiding	potential	conflicts.	The	MinGW	Installation	Manager
(C:\MinGW\bin\mingw-get.exe)	should	be	opened	automatically	afterwards.	Use	it	to	install	the
mingw-developer-toolkit	package	from	the	Basic	Setup	section	by	clicking	the	box	left	to	the

http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/
http://sourceforge.net/projects/mingw/files/Installer/

package	name	and	selecting	"Mark	for	Installation",	then	selecting	Installation	->	Apply
Changes	from	the	application's	menu.

This	should	install	the	commonly	needed	MSYS	components.	We	do	not	want	to	install	the
mingw32-base	or	mingw32-gcc-*	packages	here,	because	we	are	using	an	external	MinGW-w64
toolchain	instead	of	the	MinGW.org	one.	If	you	do	not	wish	to	use	the	MinGW.org	installer,	you
can	also	download	the	MinGW/MSYS	packages	manually	from	the	MinGW	project's
download	site.

Ultimately,	MSYS	should	be	installed	at	C:\MinGW\msys\1.0\.	Now	there	are	three	important
directories:	C:\MinGW-w64\bin\,	C:\MinGW\bin\	and	C:\MinGW\msys\1.0\bin\
added	to	the	PATH	environment	variable	(in	the	given	order),	so	that	the	programs	they	include
will	be	found	when	invoked	from	a	command	prompt	or	from	the	FB	makefile.

In	order	to	avoid	modifying	the	system-wide	PATH,	you	can	use	a	open-msys.bat
following	to	open	an	MSYS	bash	with	the	needed	PATH	settings,	everytime	you	need	it:

set	PATH=C:\MinGW\msys\1.0\bin;%PATH%

set	PATH=C:\MinGW\bin;%PATH%

set	PATH=C:\MinGW-w64\bin;%PATH%

C:\MinGW\msys\1.0\msys.bat

Getting	libffi

The	FB	rtlib	source	code	depends	on	libffi	headers	(ffi.h	and	ffitarget.h
the	gcc	toolchains	include	directory	(C:\MinGW-w64\i686-w64-mingw32\include
w64	and	C:\MinGW-w64\x86_64-w64-mingw32\include	for	64bit	MinGW-w64).	Furthermore,	the
libffi.a	library	will	be	needed	later	when	compiling	FB	programs	that	use	

Prebuilt	versions	of	libffi	are	available	from	the	fbc	downloads	area.

If	you	do	not	want	to	use	a	prebuilt	version,	but	prefer	to	compile	libffi	manually	instead,	it	is
fairly	simple.	libffi	uses	the	autotools	(autoconf,	automake,	libtool)	build	system,	so	the
corresponding	packages	have	to	be	installed	for	MinGW/MSYS.	Open	the	MSYS	bash	(with	the
proper	PATH	settings).

32bit:

http://sourceforge.net/projects/mingw/files/
http://sourceware.org/libffi/
http://sourceforge.net/projects/fbc/files/Binaries%20-%20Windows/Libraries/

$./configure

$	make

64bit:	This	requires	working	around	MSYS'	uname	which	still	returns	32bit	even	on	64bit:

$./configure	--build=x86_64-w64-mingw32	--host=x86_64-w64-mingw32

$	make

This	should	produce	the	libffi	headers	in	an	include/	subdirectory	and	the	compiled	library	in	a
.libs/	subdirectory.	You	can	then	copy	them	into	the	corresponding	directories	of	the	MinGW-
w64	toolchain	such	that	gcc	will	find	them.

Standalone	build	(self-contained	FB)

Getting	an	existing	FB	setup	for	bootstrapping

We	will	need	a	working	FB-win32	installation	to	bootstrap	the	new	FB	compiler.	If	you	do	not
have	FB-win32	installed	yet,	download	the	latest	FreeBASIC-X.XX.X-win32
download	site.	It	should	be	extracted	somewhere	like	C:\FreeBASIC-X.XX.X-win32

Building	the	new	FB	setup

If	you	want	to	create	a	traditional	standalone	FB-win32	setup	like	the	one	from	the	
X.XX.X-win32	release	package,	you	need	to	tell	FB's	makefile	by	setting	the
ENABLE_STANDALONE	variable.	Furthermore,	in	order	to	compile	for	64bit	it	is	necessary	to
set	the	TARGET_ARCH	variable	manually,	because	MSYS'	uname	-m	command	does	not	support
64bit	and	thus	the	FB	makefile	would	mis-detect	the	system	as	32bit.	Assuming	the	FB	sources
are	located	at	C:\fbc,	create	a	C:\fbc\config.mk	file	containing	the	following:

32bit:

ENABLE_STANDALONE	=	1

64bit:

ENABLE_STANDALONE	=	1

http://sourceforge.net/projects/fbc/files/Binaries%20-%20Windows/

#	Manually	set	TARGET_ARCH	to	override	uname	check	for	64bit

TARGET_ARCH	=	x86_64

Then,	open	the	MSYS	bash	using	the	.bat	script	mentioned	above	(with	the	proper	PATH
settings),	go	to	the	directory	with	the	FB	source	code,	run	"make"	with	the	
to	point	to	the	existing	fbc.exe	to	use	for	bootstrapping,	and	let	it	compile:

$	cd	/c/fbc

$	make	FBC=C:/FreeBASIC-X.XX.X-win32/fbc.exe

This	should	have	produced	the	fbc.exe	compiler	and	the	libraries	in	lib\win32\
respectively.	To	complete	this	new	FB	setup,	you	need	to	add	the	binutils	(as.exe,	ar.exe,
ld.exe,	dlltool.exe)	into	bin\win32\	and	copy	in	some	MinGW	libraries	into	

Copy	to	C:\fbc\bin\win32	(32bit)	or	C:\fbc\bin\win64	(64bit):
C:\MinGW-w64\bin\{ar,as,ld,dlltool}.exe

GoRC.exe	from	http://www.godevtool.com/
For	64bit,	or	for	using	-gen	gcc	on	32bit,	gcc.exe	and	cc1.exe	are	needed	too.

Copy	C:\MinGW-w64\bin\gcc.exe	to	C:\fbc\bin\win{32|64}
Copy	C:\MinGW-w64\libexec\gcc\[target]\[version]\cc1.exe
C:\fbc\bin\libexec\gcc\[target]\[version]\cc1.exe

Copy	to	C:\fbc\lib\win32	(32bit)	or	C:\fbc\lib\win64	(64bit):
C:\MinGW-w64\[target]\lib\{crt2,dllcrt2,gcrt2}.o

C:\MinGW-w64\[target]\lib\lib{gmon,mingw32,mingwex,moldname}.a

C:\MinGW-w64\

[target]\lib\lib{advapi32,gdi32,kernel32,msvcrt,user32,winmm,winspool}.a

(rename	to	lib*.dll.a	if	wanted)
C:\MinGW-w64\lib\gcc\[target]\[version]\{crtbegin,crtend}.o

C:\MinGW-w64\lib\gcc\[target]\[version]\libgcc.a

libffi.a	(from	the	prebuilt	libffi	package	or	your	own	build)
([target]	refers	to	i686-w64-mingw32	for	32bit	MinGW-w64	or	x86_64-w64-mingw32
MinGW-w64,	and	[version]	is	the	gcc	version	number)

You	can	copy	more	libraries	if	you	need	them,	for	example	the	C:\MinGW-w64\lib\gcc\[target]\
[version]\libsupc++.a	C++	support	library,	or	other	Win32	API	DLL	import	libraries	from	the
C:\MinGW-w64\[target]\lib\	directory.

Now,	the	new	FB	setup	should	be	ready	for	use.	You	can	use	it	right	from	the	source	tree	or
copy	it	somewhere	else.	The	following	are	the	relevant	files	and	directories:

fbc.exe

bin/win32/	(32bit)	or	bin/win64/	(64bit)
inc/

lib/win32/	(32bit)	or	lib/win64/	(64bit)

Normal	build	(like	Linux)

Getting	an	existing	FB	setup	for	bootstrapping

We	will	need	a	working	fbc	installation	to	bootstrap	the	new	FB	compiler.	If	you	do	not	have	fbc
installed	yet,	download	the	latest	fbc-X.XX.X-mingw-w64-i686	(32bit)	or	fbc-X.XX.X-mingw-
w64-x86_64	(64bit)	package	from	FB's	download	site,	and	extract	it	into	the	MinGW-w64
directory	(C:\MinGW-w64)	like	a	MinGW	package.	This	will	add	a	working	fbc	to	your	MinGW-w64
installation.

Building	the	new	FB	setup

In	order	to	create	a	normal	(non-standalone)	build,	just	compile	FB	without	specifying
ENABLE_STANDALONE.	However,	in	order	to	compile	for	64bit	it	is	necessary	to	set	the	
variable	manually,	because	MSYS'	uname	-m	command	does	not	support	64bit	and	thus	the	FB
makefile	would	mis-detect	the	system	as	32bit.

32bit:	no	config.mk	needed.
64bit:	Create	a	config.mk	containing	the	following:

#	Manually	set	TARGET_ARCH	to	override	uname	check	for	64bit

TARGET_ARCH	=	x86_64

Then,	open	the	MSYS	bash	using	the	.bat	script	mentioned	above	(with	the	proper	PATH

http://sourceforge.net/projects/fbc/files/Binaries%20-%20Windows/

settings),	go	to	the	directory	with	the	FB	source	code,	run	"make"	and	let	it	compile:

$	cd	/c/fbc

$	make

This	should	have	produced	the	bin/fbc.exe	compiler	and	the	libraries	in	
or	lib\freebasic\win64\	respectively.

Optionally,	you	can	copy	this	setup	into	the	C:\MinGW-w64	tree	by	running	"make	install":

$	make	install	prefix=C:/MinGW-w64

It	can	be	useful	to	store	the	prefix	variable	in	config.mk,	so	you	can	run	make	install
future	without	having	to	worry	about	it:

#	config.mk:

prefix	=	C:/MinGW-w64

Installing	fbc	into	the	MinGW	tree	this	way	means	that	it	acts	as	if	it	was	a	part	of	MinGW.
However,	it	is	also	possible	to	use	fbc	from	the	source	tree,	without	installing	it	elsewhere.	It	will
invoke	gcc	-print-file-name=...	in	order	to	locate	the	MinGW	binutils	and	libraries.

Getting	source	code	updates	and	recompiling	FB 	

To	download	updates	made	available	in	the	fbc	Git	repository,	you	can	do	a	pull,	either	using	your	preferred
graphical	Git	tool,	or	in	a	terminal:

git	pull

To	take	a	look	at	incoming	changes	before	applying	them,	do	this:

#	Update	remote	branches

git	fetch

#	Take	a	look

gitk	--all

#	Everything	looks	ok?	Then	merge	the	remote	branch	into	the	current	branch	to	apply	the	update.

git	merge	origin/master

Rebuilding	is,	most	of	the	time,	as	easy	as	as	running	"make"	again.	Of	course,	if	you	used	compilation	options
(like	ENABLE_STANDALONE)	for	the	build,	you	have	to	specify	them	again	this	time,	unless	they	are	(still)	set	in
config.mk.

make

#	or	if	needed:

make	ENABLE_STANDALONE=1

As	a	special	exception,	for	the	DOS	build	it	is	necessary	to	run	make	clean
source	modules	have	been	renamed	or	deleted.	The	reason	for	this	is	that	under	DOS/DJGPP	the	makefile	uses
*.o	wildcards	to	link	fbc	and	archive	libfb.a	etc.,	instead	of	passing	the	explicit	.o	file	names,	because	it	has	to
obey	the	command	line	length	limitation.	If	make	clean	is	not	run,	it	may	use	old	left-over	object	files	from	a
previous	build.	Luckily,	we	do	not	rename	or	delete	source	files	often.

Debugging	FB 	

For	debugging	and	development	it's	a	good	idea	to	build	the	compiler
with	-g	and	-exx	to	enable	assertions	and	NULL	pointer/array	boundary
checks.	For	the	rtlib/gfxlib2	code,	-DDEBUG	enables	the	assertions.	Just
update	config.mk	and	(re)build.	Example	config.mk	settings:

FBFLAGS	:=	-g	-exx

CFLAGS	:=	-g	-O0	-DDEBUG

Running	fbc	inside	gdb	typically	looks	like	this:

gdb	--args	fbc	foo.bas

Running	fbc	inside	valgrind	typically	looks	like	this:

valgrind	fbc	foo.bas

Also	note	that	fbc	can	be	tested	right	from	inside	the	build	tree,	without
having	to	be	"installed"	somewhere	else,	which	also	is	a	great	debugging
and	development	help.

FB	build	configuration	options 	

The	FB	makefile	aswell	as	the	compiler/rtlib/gfxlib2	source	code	offers
some	configuration	options.	If	you	build	FB	by	using	the	FB	makefile,
then	it	makes	sense	to	use	the	FB	makefile's	configuration	options.	If	you
build	FB	by	compiling	the	sources	manually	(without	using	the	FB
makefile),	then	of	course	you	can	only	use	the	source	code	configuration
options,	and	you	are	responsible	for	putting	the	FB	setup	together
properly	yourself.

The	compiler	and	rtlib/gfxlib2	source	code	both	handle	some	#defines
which	allow	for	some	configuration.	For	example,	#defining
ENABLE_STANDALONE	when	building	the	compiler	(by	specifying	-d
ENABLE_STANDALONE	on	the	fbc	command	line)	will	adjust	the	compiler	for	a
standalone	setup.	As	another	example,	#defining	DISABLE_FFI	when
building	the	rtlib	(by	specifying	-DDISABLE_FFI	on	the	gcc	command	line)
will	cause	the	rtlib	to	be	built	without	using	the	libffi	headers	(ffi.h).	This
disables	Threadcall	support	in	the	rtlib,	but	can	be	useful	if	you	do	not
have	libffi.

When	using	the	FB	makefile,	you	can	set	some	variables	on	the	make
command	line	or	inside	config.mk	that	affect	how	the	makefile	will	invoke
the	fbc/gcc	compilers	and	what	directory	layout	it	will	use	for	the	FB
setup.	This	includes	cases	where	the	makefile	will	automatically	pass	the
configuration	options	on	to	the	compiler/rtlib/gfxlib2	source	code.	For
example,	specifying	ENABLE_STANDALONE=1	to	the	FB	makefile
causes	it	to	use	-d	ENABLE_STANDALONE	when	building	the	new	compiler	(to
make	it	standalone)	and	to	put	the	newly	built	compiler	and	libraries	into
the	standalone	directory	layout.

FB	makefile	commands

none	or	all
The	default	-	builds	everything	that	needs	to	be	built

compiler,	rtlib,	gfxlib2
Used	to	build	a	specific	component	only.	For	example,	this	can	be	used
to	build	an	rtlib	for	a	specific	target,	in	order	to	be	able	to	cross-compile
FB	programs	(such	as	the	compiler)	for	that	target.

clean[-component]

Used	to	remove	built	files.	make	clean	removes	all	built	files,	while	for
example	make	clean-compiler	removes	only	the	files	built	for	the
compiler,	allowing	the	compiler	to	be	recompiled	more	quickly,	without	the
need	to	rebuild	the	whole	rtlib/gfxlib2	code.

install[-component],	uninstall[-component]
Used	to	copy	the	built	files	into	the	directory	specified	by	the	prefix
variable,	or	remove	them	from	there.	This	is	most	useful	to	install	the
normal	build	into	/usr/local	on	Linux/BSD	systems.	For	the	standalone
build,	make	install	will	also	work	and	copy	over	or	remove	the	files.
However,	the	standalone	build	uses	an	incompatible	directory	layout	and
should	not	be	installed	into	/usr/local	or	similar	directories	because	of
this.

Note	that	it	is	fine	to	run	the	newly	built	FB	setup	right	from	the	directory
where	it	was	compiled;	make	install	is	not	necessary	to	make	it	work
(unless	the	prefix	path	was	hard-coded	into	the	compiler	via
ENABLE_PREFIX).

Additionally	there	are	install-includes	and	uninstall-includes
commands,	which	copy/remove	just	the	FB	includes	(header	files).	Note
that	there	is	no	make	includes	or	similar	command,	as	the	includes	do	not
need	to	be	built.

FB	makefile	configuration

The	following	variables	are	intended	to	be	set	on	the	make	command	line
or	inside	a	file	called	config.mk	next	to	the	FB	makefile	which	is	read	in
by	the	FB	makefile.	config.mk	is	useful	for	setting	variables	in	a
permanent	way	such	that	you	do	not	have	to	specify	them	manually
everytime	when	invoking	make.

Make	command	line	example:

$	make	CFLAGS='-O2	-g'

config.mk	example:

CFLAGS	=	-O2	-g

FBFLAGS,	FBCFLAGS,	FBLFLAGS
Extra	fbc	flags	to	be	used	when	compiling	and/or	linking	the	compiler.
The	default	is	-maxerr	1	(check	the	FB	makefile	for	more	details).
Typically	this	is	used	to	add	options	such	as	-g	-exx	to	build	a	debug
version	the	compiler.

CFLAGS

Extra	gcc	flags	to	be	used	when	compiling	rtlib	and	gfxlib2.	The	default	is
-O2	(check	the	FB	makefile	for	more	details).	Typically	this	is	overridden
for	debugging	purposes	by	doing	CFLAGS=-g.

prefix

The	FB	installation	path.	The	default	is	/usr/local.	Note:	MSYS	maps
/usr/local	to	C:\msys\1.0\local.

This	is	only	used...
by	the	makefile's	install	and	uninstall	commands,	
in	the	compiler	(hard-coded)	if	ENABLE_PREFIX
was	used

Note	that	in	combination	with	bash	on	Win32	(e.g.	from	DJGPP	or	MSYS)
it's	necessary	to	use	forward	slashes	instead	of	backslashes	in	directory
paths,	for	example:	prefix=C:/MinGW

TARGET

This	variable	can	be	set	to	a	gcc	toolchain	triplet	such	as	i686-pc-linux-
gnu	or	x86_64-w64-mingw32	in	order	to	cross-compile	using	that	GCC
cross-compiler	toolchain.	The	makefile	will	use	fbc	-target	$(TARGET)
instead	of	fbc,	and	$(TARGET)-gcc	instead	of	gcc.

For	example,	on	a	Debian	GNU/Linux	system	with	the	i686-w64-mingw32
GCC	cross-compiler	installed,	you	can	build	the	win32	rtlib	like	this:

#	Build	the	win32	rtlib/gfxlib2

make	rtlib	gfxlib2	TARGET=i686-w64-mingw32

#	Install	it	into	/usr/local/lib/i686-w64-mingw32-freebasic

make	install-rtlib	install-gfxlib2	TARGET=i686-w64-mingw32

It	will	supplement	the	existing	fbc	installation	in	/usr/local,	like	a	plugin,
and	from	now	on	you	can	cross-compile	FB	programs	for	win32	by	doing:

fbc	-target	i686-w64-mingw32	...

FBC,	CC,	AR
These	variables	specify	the	fbc,	gcc	and	ar	programs	used	during	the
build.	You	can	specify	them	to	override	the	defaults,	for	example:

make	FBC=~/FreeBASIC-0.90.1-linux/fbc	CC="gcc	-

m32"

FBC	affects	the	compiler	source	code	only,	while	CC	and	AR	are	used	for
rtlib	and	gfxlib2.

V=1

V	for	verbose.	By	default,	the	makefile	does	not	display	the	full	command
lines	used	during	compilation,	but	just	prints	out	the	latest	tool	and	file
name	combination	to	give	a	better	visual	indication	of	the	build	progress.
It	also	makes	warnings	and	errors	stand	out	more	in	the	console	window.
If	the	variable	V	is	set,	the	echoing	tricks	are	disabled	and	full	command
lines	will	be	shown,	as	GNU	make	normally	does.

ENABLE_STANDALONE=1

Build	a	standalone	FB	setup	instead	of	the	normal	Unix-style	setup,	see
also:	the	standalone	vs.	normal	comparison.	This	causes	the	makefile
to	use	the	standalone	directory	layout	and	to	use	-d	ENABLE_STANDALONE
when	building	the	compiler.

ENABLE_PREFIX=1

This	causes	the	makefile	to	use	-d	ENABLE_PREFIX=$(prefix)	when
building	the	compiler.

ENABLE_SUFFIX=foo

This	causes	the	makefile	to	use	-d	ENABLE_SUFFIX=$(ENABLE_SUFFIX)
when	building	the	compiler,	and	to	append	the	given	suffix	string	to	the
fbc	executable's	and	lib/	directories'	names.

For	example,	using	ENABLE_PREFIX=-0.24	will	give	you	bin/fbc-0.24.exe
and	a	lib/freebasic-0.24/	directory,	instead	of	the	default	bin/fbc.exe
and	lib/freebasic/.	This	allows	installing	multiple	versions	of	compiler
and	runtime	in	parallel.

Note:	The	include/freebasic/	directory	name	is	not	affected,	and	the	FB
headers	are	always	shared	by	all	installed	FB	versions	(FB's	headers	and
their	directory	layouts	are	designed	to	be	able	to	do	that).

This	is	only	supported	for	the	normal	(non-standalone)	build.	It	is	not
needed	for	the	standalone	build,	because	everyone	of	those	can	be	in	a
separate	installation	directory	anyways,	while	normal	(non-standalone)
builds	may	have	to	share	a	common	installation	directory	such	as
/usr/local	or	C:\MinGW.

ENABLE_LIB64=1

This	causes	the	makefile	to	use	-d	ENABLE_LIB64	when	building	the
compiler.	64bit	libraries	are	placed	into	lib64/freebasic/	instead	of
lib/freebasic/.

Compiler	source	code	configuration	(FBFLAGS)

-d	ENABLE_STANDALONE

This	makes	the	compiler	behave	as	a	standalone	tool	that	cannot	rely	on
the	system	to	have	certain	programs	or	libraries.	See	the	normal	vs.
standalone	comparison	for	more	information.

-d	ENABLE_SUFFIX=foo

This	makes	the	compiler	append	the	given	suffix	to	the	lib/freebasic/
directory	name	when	searching	for	its	own	lib/freebasic/	directory.	For
example,	-d	ENABLE_SUFFIX=-0.24	causes	it	to	look	for	lib/freebasic-
0.24/	instead	of	lib/freebasic/.	Corresponding	the
ENABLE_SUFFIX=foo	makefile	option,	this	adjust	the	compiler	to	work	in
the	new	directory	layout.

-d	ENABLE_PREFIX=/some/path

This	causes	the	given	prefix	path	to	be	hard-coded	into	the	compiler,
disabling	the	use	of	Exepath().	Thus	it	will	no	longer	be	relocatable.	This
is	useful	if	its	known	that	the	compiler	does	not	need	to	be	relocatable,	or
if	exepath()	does	not	work	properly	(for	example,	in	FB	0.90.1,	this	is	the

case	for	FreeBSD).
-d	ENABLE_LIB64

This	makes	the	compiler	search	64bit	libraries	in	lib64/freebasic/
instead	of	lib/freebasic/.	This	only	affects	the	normal	(non-standalone)
build.	32bit	libraries	are	still	searched	in	lib/freebasic/.

rtlib	and	gfxlib2	source	code	configuration	(CFLAGS)

-DDISABLE_X11

With	this,	the	Unix	rtlib/gfxlib2	will	not	use	X11	headers,	disabling
gfxlib2's	X11	graphics	driver	and	some	of	the	rtlib's	Linux	console
functionality	(affects	multikey()	and	console	mouse	handling).

-DDISABLE_GPM

With	this,	the	Linux	rtlib	will	not	use	General	Purpose	Mouse	headers
(gpm.h),	disabling	the	Linux	GetMouse	functionality.

-DDISABLE_FFI

With	this,	the	rtlib	will	not	use	libffi	headers	(ffi.h),	disabling	the
Threadcall	functionality.

-DDISABLE_OPENGL

With	this,	the	gfxlib2	will	not	use	OpenGL	headers,	disabling	the	OpenGL
graphics	drivers.

Known	problems	when	compiling	FB 	

Win32	rtlib	compilation	error:	wchar.h:	unknown	type	name	'dev_t'

http://sourceforge.net/p/mingw/bugs/2039/

The	wchar.h	header	file	from	MinGW.org	contains	a	struct	_stat64	declaration	that	does	not	compile	when	_NO_OLDNAMES	is	defined,
because	it	uses	dev_t,	ino_t,	mode_t	which	are	only	available	with	an	_	underscore	prefix	(_dev_t	etc.)	under	_NO_OLDNAMES.	For	the
FB	rtlib	we	#define	_NO_OLDNAMES	when	compiling.

To	work	around	this	issue,	adjust	wchar.h	and	add	_	underscore	prefixes	to	those	typedef	names	in	the	

Win32	rtlib	compilation	error:	_controlfp,	_PC_64	undeclared

CC	src/rtlib/obj/hinit.o

src/rtlib/win32/hinit.c:	In	function	'fb_hInit':

src/rtlib/win32/hinit.c:21:5:	warning:	implicit	declaration	of	function	'_controlfp'	[-Wimplicit-function-declaration]

src/rtlib/win32/hinit.c:21:17:	error:	'_PC_64'	undeclared	(first	use	in	this	function)

Both	the	MinGW.org	runtime	and	GCC	have	a	float.h	header,	and	in	some	setups	the	GCC	one	is	found	before	the	MinGW	one,	causing
the	above	errors.

Easiest	temporary	fix:	Append	#include_next	<float.h>	to	gcc's	float.h

See	also:
The	comments	at	the	top	of	C:\MinGW\include\float.h
http://sourceforge.net/p/mingw/bugs/1580/
http://sourceforge.net/p/mingw/bugs/1809/
http://gcc.gnu.org/ml/gcc-patches/2010-01/msg01034.html

MinGW	binutils	ld	versions	2.18	to	2.21

fbc	triggers	a	bug	(binutils	ld	bug	12614)	in	the	mentioned	linker	versions	causing	it	to	produce	broken	binaries	in	some	cases.	It's	fixed
in	binutils	2.21.1	and	up.

MinGW.org	runtime's	globbing	code	changes	case	of	command	line	arguments

https://sourceware.org/bugzilla/show_bug.cgi?id=12614

http://sourceforge.net/p/mingw/bugs/2062/

MinGW.org's	runtime	(mingwrt-4.0.3)	changed	the	case	of	command	line	arguments	given	to	the	program.	If	the	argument	matched	an
existing	file/directory	name	and	only	differed	in	case,	it	was	adjusted	to	match	the	exact	spelling.	This	can	cause	problems	with	programs
whose	command	line	parsing	is	not	case-insensitive.	For	example,	gui	became	
fbc.exe's	-s	gui	option,	making	it	impossible	to	use,	as	fbc.exe	refused	to	accept	

-lXpm	not	found	on	Debian	x86_64

The	ia32-libs-dev	package	(for	example	on	Debian	6)	for	some	reason	does	not	contain	a	
does	contain	those	for	the	other	X11	development	libraries.	This	apparently	can	be	fixed	by	creating	the	symlink	manually:

ln	-s	/usr/lib32/libXpm.so.4	/usr/lib32/libXpm.so

DJGPP:	Too	many	open	files

If	a	DJGPP	program	fails	with	a	too	many	open	files	error	on	Windows,	try	the	following	to	increase	the	number	of	available	file	handles:

Use	msconfig	to	add	PerVMFiles=255	to	the	[386Enh]	section	of	
Edit	the	files=	setting	in	C:\WINDOWS\system32\CONFIG.NT:	files=255
Also	see	http://www.delorie.com/djgpp/v2faq/faq9_7.html

GCC	toolchain	choice 	

FB	is	based	on	GCC	toolchains	and	corresponding	libraries.	However,	there	is
not	a	single	GCC	toolchain	per	platform,	but	often	multiple	slightly	different	ones.
FB	can	generally	work	with	all	of	them,	but	still	there	can	be	differences
depending	on	the	toolchain	chosen	to	build	and	use	FB.	Here	we	document
some	of	the	issues	to	consider	when	building	FB	and/or	making	FB	releases.

Windows	(MinGW)

MinGW	toolchains:

MinGW.org	-	also	provides	MSYS,	besides	a	MinGW	GCC	toolchain.	No
Win64	support	(yet).
MinGW-w64	-	32bit	and	64bit.	Different	runtime	libraries	than	MinGW.org.
TDM-GCC	-	32bit	based	on	MinGW.org,	64bit	based	on	MinGW-w64,	with
modifications.
MinGW	cross-compilers	on	various	GNU/Linux	distributions	-	for	example
MinGW-w64	on	Debian/Ubuntu	and	Fedora	(i686-w64-mingw32,	x86_64-
w64-mingw32)

Notes:

GCC	exception	handling	mechanism:	SJLJ	setjump/longjump	(slow	but
safe),	DWARF-2	(fast	but	does	not	always	work).	The	MinGW.org
toolchain	uses	DWARF2,	while	for	MinGW-w64,	both	types	are	available.

FB	does	not	support	exceptions	anyways,	so	in	theory	the	exception	handling
mechanism	used	by	the	underlying	GCC	toolchain	does	not	matter.

In	practice	though,	DWARF-2	GCC	generates	static	data	for	stack	unwinding
which	is	put	into	.eh_frame	sections.	The	problem	is	that	.eh_frame	data	is
generated	also	for	C	code	(not	just	C++	code)	like	all	the	FB/GCC/MinGW
runtime	libraries,	and	it	increases	.exe	size	noticably.	This	can	be	avoided	in
multiple	ways:

Use	gcc	flags	to	disable	the	generation	of	the	.eh_frame
data.	FB	is	using	this	in	its	makefile	and	for	-gen	gcc

http://mingw.org/
http://mingw-w64.sourceforge.net/
http://tdm-gcc.tdragon.net/

however	obviously	it	does	not	affect	the	prebuilt
MinGW/GCC	libraries	(unless	the	entire	toolchain	is	rebuilt).

-fno-exceptions	-fno-unwind-tables	-fno-asynchronous-unwind-tables

Discard/strip	the	.eh_frame	section	when	linking	(by	using	a
custom	ldscript)
Use	an	SJLJ	toolchain	(i.e.	MinGW-w64	built	for	SJLJ,
instead	of	MinGW.org)

Furthermore,	the	exception	handling	method	may	be	an	important	detail	afterall
(even	if	you	do	not	care	about	.exe	size)	if	you	want	to	use	C++	libraries	from	FB,
in	case	the	C++	library	uses	exceptions.

GCC	threading	model:	Win32	threads	(native),	POSIX	threads	(based	on
winpthreads	library).	The	MinGW.org	toolchain	uses	Win32	threads,	while
for	MinGW-w64,	both	types	are	available.

GCC	needs	POSIX	threads	to	implement	certain	new	C++	features,	which	is	not
possible	with	native	Win32	threading	functions.	Thus,	MinGW-w64	uses	the
winpthreads	library	which	provides	POSIX	threading	functions	for	Windows.
However,	winpthreads	is	not	part	of	the	main	MinGW-w64	runtime,	and	it	has	a
different	license,	which	may	have	to	be	considered.

Since	FB	does	not	care	about	these	C++	features,	we	can	just	use	MinGW
toolchains	with	Win32	threads,	and	avoid	winpthreads.

Globbing	(command	line	wildcard	expansion	etc.)	behaviour	is	different
between	MinGW.org	and	MinGW-w64	because	they	have	different
runtime	libraries/startup	code	impementations.

Globbing	is	enabled	by	default	in	the	MinGW.org	runtime,	but	the
MinGW-w64	runtime	turns	globbing	off	by	default	and	has	a	
enable-wildcard	configure	option.	Thus,	whether	globbing	is	on	or
off	by	default,	depends	on	how	MinGW-w64	was	built.
The	way	to	disable	globbing	is	different:

MinGW.org:

Extern	_CRT_glob	Alias	"_CRT_glob"	As	Long

Dim	Shared	_CRT_glob	As	Long	=	0

MinGW-w64:

Extern	_dowildcard	Alias	"_dowildcard"	As	Long

Dim	Shared	_dowildcard	As	Long	=	0

MinGW-w64	includes	DirectX	headers	needed	to	compile	FB's	graphics
library.	MinGW.org	does	not	contain	them;	they	have	to	be	added
manually.
MinGW.org	provides	a	common	installer	for	their	MinGW	toolchain	and
the	MSYS	shell	environment.	This	makes	installing	easier	than	with	other
toolchains,	if	MSYS	is	needed	too.

DOS	(DJGPP)

FB	needs	the	DJGPP	2.04	beta	runtime	(does	DJGPP	2.03	not	work?).	Either
way,	this	version	of	DJGPP	is	extremely	old.	On	the	other	hand,	there	have	not
been	any	more	recent	DJGPP	releases,	and	updates	can	only	be	found	in
DJGPP's	CVS.	The	recommendation	is	to	only	use	DJGPP	CVS	if	really	needed
though.

Linux

GNU/Linux	distros	usually	provide	native	gcc	+	glibc	toolchains	out-of-the-box,
and	FB	is	intended	to	work	with	them	out-of-the-box.

Executables	(such	as	fbc	itself)	produced	on	one	GNU/Linux	distro	are	not
necessarily	portable	to	other	GNU/Linux	distros,	due	to	differences	in	system
libraries	and/or	versions,	such	as	glibc	version	differences,	or	ncurses/libtinfo
differences.	The	most	common	problem	with	fbc	is	mismatching	glibc	versions,
i.e.	the	fbc	binary	is	run	on	a	system	with	older	glibc	than	the	one	it	was	built	on,
and	some	form	of	"glibc	too	old"	error	is	encountered.	The	ncurses	library	is	not
always	exactly	the	same	either,	as	shown	by	the	"`ospeed'	has	different	size,
consider	re-linking"	warnings	when	running	fbc.	Also,	some	distros	have
separated	libncurses	and	libtinfo,	some	just	have	libncurses,	which	can	cause
errors	due	to	the	libtinfo	shared	library	not	being	found.

In	theory,	it	is	possible	to	use	static	linking	to	avoid	the	problems	with	shared
libraries:

The	fbc	-static	command	line	option	tells	the	linker	to	prefer	static
libraries	instead	of	shared	ones.	This	can	(in	theory)	also	be	used	when
building	fbc	itself.	It	relies	on	the	Linux	distro	to	provide	static	versions	of
the	system	libraries.	Linking	statically	on	GNU/Linux	is	typically
discouraged	though,	in	particular	with	glibc	(some	of	its	components	are
not	designed	for	static	linking),	but	also	in	general	(shared	libraries	are
preferred	to	avoid	redundancy.
FB	can	(in	theory)	also	be	used	with	a	different	libc	(instead	of	glibc),	one
that	explicitly	supports	static	linking,	for	example	musl-libc.

In	this	context,	you	will	typically	use	a	custom	gcc	toolchain,	which	also	requires
FB	to	be	built	specifically	for	that	toolchain.	This	approach	in	general	works	quite
well,	but	it	can	be	a	lot	of	work.

Besides	that,	other	libc's	may	not	be	ABI-compatible	with	glibc,	which	can	cause
problems	for	FB	programs	if	they	are	written	for	glibc.	Most	noticably,	the	FB
Linux	CRT	headers	are	based	on	glibc.	An	example	of	an	ABI	difference
between	musl-libc	(0.9)	and	glibc	was	the	jmp_buf	structure	size	(used	with	the
setjmp()/longjmp()	functions).	As	the	FB	CRT	headers	defined	the	glibc	
they	were	incompatible	to	musl-libc	which	used	a	smaller	jmp_buf	structure.

Another	headache	when	using	a	different	libc	than	the	Linux	distro	default	is	that
you	also	need	to	build	a	lot	of	libraries	such	as	ncurses,	X11	and	Mesa/OpenGL
in	order	to	satisfy	FB's	dependencies,	not	to	mention	any	other	third-party
libraries	you	want	to	use	in	your	program.	Existing	libraries	precompiled	for	glibc
can	probably	not	be	used	(at	least	not	safely)	due	to	the	two	libc's	being	ABI-
incompatible.

See	also

Known	problems	when	compiling	FB

http://www.musl-libc.org/

Compiling	the	test	suite 	

The	FreeBASIC	project	has	a	suite	of	tests	which	ensure	that	bugs	stay
dead	and	that	new	bugs	have	a	harder	time	of	gaining	a	foothold.	The
test	suite	is	written	with	the	FreeBASIC	port	of	the	CUnit	library	(Thanks,
stylin!).

Invocation

The	tests	are	located	in	the	tests	subdirectory	within	the	main	FreeBASIC
directory.	Invoking	with	make	will	present	the	following	help	text:

$	make

usage:	make	target	[options]

Targets:	(using	cunit):

cunit-tests

log-tests

failed-tests

check

mostlyclean

clean

Targets:	(bypassing	cunit)

log-tests	ALLOW_CUNIT=1

failed-tests	ALLOW_CUNIT=1

mostlyclean	ALLOW_CUNIT=1

clean	ALLOW_CUNIT=1

Options:

FBC=/path/fbc

FB_LANG=fb	|	fblite	|	qb	|	deprecated

DEBUG=1

EXTRAERR=1

ARCH=arch	(default	is	486)

OS=DOS

FPU=fpu	|	sse

Targets:	Configuration	and	Checks

check

Example:	make	all	available	tests

make	cunit-tests

make	log-tests

Example:	make	obj	-lang	qb	tests

make	log-tests	FB_LANG=qb

When	you	make	an	invocation,	such	as:

make	cunit-tests	&&	make	log-tests

Some	initial	generation	of	index	files	will	take	place,	followed	by	the
compilation	of	hundreds	of	tests.	Be	patient,	it	can	take	a	while	to	run	all
of	the	tests...

If	you	get	an	error	message	like:	FreeBASIC/bin/linux/ld:	cannot	find	-
lcunit

This	means	you	need	to	install	the	cunit	library.	On	Ubuntu	this	looks	like:

$	sudo	apt-get	install	libcunit1-dev

Known	Failures

As	of	the	writing	of	this	document,	the	following	tests	are	expected	to	fail
on	some	platforms:

Suite	fbc_tests.string_.format_,	Test	number	format	test	had

failures:

1.	string/format.bas:168	-	CU_ASSERT_EQUAL(sWanted,sResult)

2.	string/format.bas:168	-	CU_ASSERT_EQUAL(sWanted,sResult)

3.	string/format.bas:168	-	CU_ASSERT_EQUAL(sWanted,sResult)

4.	string/format.bas:168	-	CU_ASSERT_EQUAL(sWanted,sResult)

So	if	you	get	these	failures,	everything	is	normal.	No	other	tests	should
ever	fail,	including	log	tests.

Thank	you	for	running	the	tests	and	contributing	to	make	FreeBASIC	a
healthy	compiler!	Please	report	any	other	failures	to
http://www.freebasic.net/forum	so	we	can	investigate.

Glossary	-	common	terms	used	in	fbc	development 	

arg,	argument
An	expression	passed	to	a	parameter	in	a	procedure	call.

cast
A	type	cast	changes	the	compile-time	data	type	of	an	expression	and
either	causes	a	conversion	(e.g.	float	<->	int)	or	a	reinterpretation	of	the
expression	value's	bit	representation	(e.g.	integer	<->	uinteger).

comp,	compound
Compound	blocks	in	the	language:	Any	code	block	that	allows
nested	code	such	as	IF	blocks,	SCOPE	blocks,	NAMESPACE
blocks,	etc.	is	called	a	compound.
Compound	symbols:	UDTs,	sometimes	also	namespaces,
because	both	may	contain	nested	(namespaced)	symbols	and
they	share	some	common	code.

conv,	conversion
A	conversion	is	an	operation	that	translates	between	two	different
representations	of	the	same	value	(e.g.	float	<->	int,	or	32bit	<->	64bit).

cast	and	conv	are	often	used	interchangeably	in	the	compiler	sources.
For	example,	the	AST's	CONV	nodes	represent	type	casts,	no	matter
whether	they	perform	conversions	or	not.

Some	(but	not	all)	casts	require	run-time	conversions,	for	example:
short	<->	integer
single	<->	integer
single	<->	double

Simple	casts	between	types	of	equal	class	and	size	do	not	require	a	run-
time	conversion,	because	the	bit	representation	wouldn't	change
anyways.	For	example:
short	<->	ushort
integer	<->	uinteger
These	are	also	called	noconv	casts.

ctor,	constructor
UDT	constructor
module	constructor

ctx,	context
UDTs/"classes"	in	the	fbc	sources	for	holding	global	information	shared
amongst	multiple	procedures	or	modules.

desc,	descriptor
Dynamic	string	descriptor
Dynamic	array	descriptor

dtor,	destructor
UDT	destructor
module	destructor

fbc
The	FreeBASIC	compiler	project	as	a	whole,	the	Git	repository,
the	project	registered	on	Sourceforge
The	compiler	program	binary/executable	(fbc	or	fbc.exe),	as	built
from	the	compiler	sources
The	compiler's	main	module/frontend/driver

fbctinf
FB	compile-time	information,	also	see	objinfo.

fbgfx
FB	graphics,	usually	referring	to	the	use	of	FB's	built-in	graphics
keywords,	implemented	in	gfxlib2

frontend	stage	1
Compilation	of	the	.bas	input	files	into	the	next	intermediate	format:	.asm
(-gen	gas),	.c	(-gen	gcc)	or	.ll	(-gen	llvm)

frontend	stage	2
Compilation	of	the	.c	(-gen	gcc)	or	.ll	(-gen	llvm)	intermediate	files	into
.asm	files.	(doesn't	apply	to	-gen	gas	because	there	the	FB	compiler

generates	.asm	itself	directly)

function
A	procedure	with	result	value;	sometimes	also	used	in	place	of
procedure,	as	in	C.

gfxlib2
The	FB	graphics	runtime	library	implementation	from	the	fbc	project.

hashtb
A	hash	table,	often	used	together	with	a	symbol	table	to	allow	fast	lookup
of	the	symbols	in	that	symbol	table.

libfb,	libfbmt,	libfbgfx,	libfbgfxmt
Names	of	the	libraries	built	from	the	rtlib/gfxlib2	sources.	Libraries	named
lib*mt	are	the	thread-safe	versions	of	their	lib*	counterparts.	They	are
built	with	the	ENABLE_MT	#define.

local
Sometimes:	A	variable	allocated	on	stack
Any	symbol	in	a	nested	scope,	not	the	global/toplevel	namespace.
Scoped	static	variables	also	have	the	FB_SYMBATTRIB_LOCAL
attribute,	even	though	they	are	not	allocated	on	stack.

method
A	member-procedure	with	THIS	parameter.	Static	member-
procedures	(those	without	the	THIS	parameter)	do	not	have
FB_SYMBATTRIB_METHOD.
Sometimes:	Any	member-procedure,	with	or	without	THIS
parameter

noconv	cast
A	cast	that	does	not	require	a	conversion.

normal	build
Described	here:	Normal	vs.	Standalone

objinfo

See	DevObjinfo

param,	parameter
Procedure	parameters	as	declared	in	procedure	DECLARE	statements
or	bodies.

paramvar
For	each	parameter,	the	compiler	will	create	a	corresponding	local
variable	in	the	procedure's	scope,	allowing	the	parameters	to	be
accessed	by	user	code.

proc,	procedure
Any	sub	or	function,	including	constructors/destructors,	operator
overloads,	property	setters/getters.

standalone	build
Described	here:	Normal	vs.	Standalone

static
static	variable	allocation:	on	the	heap	instead	of	the	stack,	but	still
scoped	--	also	see	local.
static	member	variables:	are	actually	externs.
static	member	procedures:	member-procedures	without	a	THIS
parameter,	also	see	method.
"static	array"	is	often	used	in	place	of	"fixed-size	array"	(QB
language)

struct,	structure
TYPE	or	UNION,	also	known	as	struct/union	in	C.

sub
A	procedure	without	result	(with	VOID	result).

symtb
A	symbol	table:	owns	a	linked	list	of	FBSYMBOL	in	a	specific	scope.	This	is
where	FBSYMBOLs	live.

rtlib

The	FB	runtime	library	implementation	from	the	fbc	project

UDT,	user-defined	type
TYPEs/UNIONs/ENUMs,	sometimes	just	TYPEs/UNIONs.

vreg
Virtual	registers	are	used	when	emitting	the	AST.	The	AST	creates	a	vreg
for	the	operands	and	results	of	all	operations	that	make	up	the	input
program.	Each	backend	emits	them	differently:

The	ASM	backend	actually	maps	the	vregs	to	real	registers
and	also	re-uses	them	as	they	become	free	again.	The
vregs	then	also	let	the	x86	code	emitter	know	which	exact
registers	are	used.
The	C	backend	sometimes	emits	vregs	as	temporary
variables,	sometimes	simply	inserts	the	expression	whose
result	is	represented	by	a	vreg	in	place	of	that	vreg's	first
use.
The	LLVM	backend	simply	emits	each	vreg	as	a	numbered
intermediate	value.

Since	the	C/LLVM	backends	don't	re-use	vregs,	the	vregs	are	almost	in
static-single-assignment	form;	although	not	quite	because	there	still	are
self-operations	etc.	produced	by	the	AST	which	don't	take	SSA	form	into
account.

Notes	on	making	FB	releases 	

In	general
Packaging	and	Manifests
Toolchain/build	environment
Release	making	script
FB	manual/documentation
Summary:	currently	the	easiest	way	to	build	a	release

In	general

Making	an	FB	release	means:
Ensuring	that	the	development	version	is	in	reasonable/usable
state.
Updating	the	documentation	(Wiki	and	man	page)	for
language/compiler	changes	and	new	features,	if	not	yet	done.
Choosing	and	preparing	gcc	toolchains/build	environments	for
DOS,	Linux	x86,	Linux	x86_64,	Win32,	Win64.
Compiling	the	development	version	of	FB	for	all	of	them.
Building	the	Win32	installer	(contrib/nsis-installer/).
Testing	the	builds	to	ensure	they	are	basically	working.
Synchronizing	the	online	Wiki	with	the	Wiki	files	in	the	fbc	Git
repository.
Regenerating	the	PrintToc	and	CompilerErrMsg	pages.
Regenerating	the	examples/manual/	directory	(code	examples
from	the	Wiki).
Compiling	the	offline	documentation	(CHM,	HTML,	text).
Creating	the	release	packages	(source	code,	binary	builds,
documentation).
Uploading	them	and	source	code	of	dependencies	(binutils,	gcc,
MinGW,	DJGPP,	...)	to	fbc's	download	site	on	SourceForge.
Announcing	the	new	release	on	freebasic.net,	in
freebasic.net/forum	News,	and	in	SourceForge	fbc	project	News.

The	new	release	should	be	compilable	with	the	previous	version,	so

others	can	bootstrap	it	if	wanted.	Ideally	it	is	compilable	with	even	older
versions.

FB	releases	in	form	of	prebuilt	binaries	should	be	made	at	least	for	DOS,
Linux,	and	Win32.	The	DOS	and	Win32	packages	traditionally	are
standalone	builds	coming	with	prebuilt	binutils	and	MinGW/DJGPP
libraries.	The	Linux	package	traditionally	is	a	normal	build	intended	to	be
installed	into	/usr	or	/usr/local	and	uses	the	system's	binutils/libraries.

All	the	binary	packages	must	effectively	be	built	from	the	same	source
revision.	All	the	to-be-released	fbc	binaries	should	be	built	with	the	same
date,	preferably	on	the	same	day	the	release	is	published.	It's	confusing
to	have	multiple	fbcs	each	with	the	same	version	number	but	different
dates;	are	they	the	same	version	or	not?

The	sources	must	be	packaged	and	uploaded	in	parallel	to	the	binary
packages.	That	includes	sources	for	third-party	binaries	included	in	the
FB	binary	packages,	e.g.	binutils,	gdb,	gcc,	DJGPP/MinGW	libs,	etc.

To	test	the	releases,	it	can	be	useful	to
run	the	test	suite	(for	every	target	system)
test	all	compilation	modes	(exe,	dll,	profiling,	...)
run	every	.exe	(binutils	etc.)	included	in	the	packages	to	ensure
that	no	DLLs	are	missing
check	that	globbing	works	ok	for	Windows	builds	(all	included
.exe's	and	new	generated	ones	too),	because	it	might	depend	on
the	configuration	of	the	MinGW-w64	runtime.

Linux	packages	must	be	.tar.gz,	Windows/DOS	packages	must	be	.zip
Other	formats	such	as	.tar.xz	or	.7z	should	be	offered	additionally,	but
note	that	there	are	people	with	e.g.	older	GNU/Linux	systems	that	don't
know	.tar.lzma	or	.tar.xz,	or	with	Windows	systems	that	don't	have	7-
zip	installed.

Packaging	and	Manifests

The	FB	makefile	offers	the	gitdist	command	for	packaging	the	source
code	via	git	archive,	and	the	bindist	command	for	packaging

previously	built	binaries.	Example	workflow:

#	Go	to	fbc	Git	clone

cd	fbc

#	Compile	FB

make

#	Package	the	source	code

make	gitdist

#	Package	the	binaries,	regenerate	the	manifest

make	bindist

#	Check	the	manifest

git	diff

gitdist	creates	source	tarballs	in	multiple	formats.	It	assumes	that	all
changes	to	the	fbc	source	code	used	for	building	the	release	have	been
committed	to	Git.

bindist	creates	the	needed	binary	archive(s),	potentially	in	multiple
formats,	with	the	proper	package	name	and	directory	layout	depending
on	the	target	platform	and	whether	it's	a	normal	or	standalone	build,	and
it	(re)generates	the	corresponding	manifest	(list	of	all	files	included	in	the
archive)	in	the	contrib/manifest/	directory	in	the	fbc	source	tree.

By	checking	the	manifest	differences	via	Git	(git	diff,	git	gui,	etc.)	you	can
check	whether	any	files	are	missing	in	comparison	to	the	previous
release,	or	whether	files	were	added	that	should	not	be	included.	Should
there	be	any	such	issues,	they	may	need	to	be	fixed	manually	(possible
the	makefile's	bindist	implementation	needs	updating,	or	you	simply
need	to	copy	in	missing	files),	after	which	make	bindist	can	be	run	again
to	recreate	the	package	and	update	the	manifest	again.

bindist	configuration	options:

TARGET_OS/TARGET_ARCH	makefile	variables:	You	can	set	TARGET_OS
and/or	TARGET_ARCH	on	the	make	command	line	to	override	the

makefile's	default	uname	check.	This	is	useful	if	you	want	to
package	for	a	different	system	than	what	the	uname	command
returns.	For	example,	packaging	the	FB-dos	release	from	a
MinGW/MSYS	shell	(with	MSYS	tools	instead	of	DJGPP	tools):

make	bindist	TARGET_OS=dos

FBPACKAGE	makefile	variable:	Package/archive	file	name	without
path	or	extension.	Defaults:

Linux/BSD	normal,	Windows/DOS	standalone:	FreeBASIC-
x.xx.x-target

Linux/BSD	standalone:	FreeBASIC-x.xx.x-target-
standalone

Windows/DOS	normal	(MinGW/DJGPP-style	packages):
fbc-x.xx.x-target

FBPACKSUFFIX	makefile	variable:	Suffix	string	that	will	be	appended
to	the	package	name	(and	the	toplevel	directory	in	the	archive).
FBMANIFEST	makefile	variable:	Manifest	file	name	without	path	or
extension.	The	defaults	are	the	same	as	for	FBPACKAGE,	except
without	the	-x.xx.x	version	number	part.
FBVERSION	makefile	variable:	Is	already	set	in	the	makefile,	but	you
can	override	it	if	you	want	to	(e.g.	when	making	testing	releases
instead	of	"official"	releases).	For	example:	FBVERSION=0.90.1	or
FBVERSION=0.90.1rc1

DISABLE_DOCS=1	makefile	variable:	If	this	variable	is	set,	bindist	will
exclude	documentation	(readme,	changelog,	man	page)	and
examples	from	the	package.	This	is	useful	when	creating	small
binary-only	fbc	packages	such	as	those	for	installation	into
DJGPP/MinGW	trees.

Toolchain/build	environment

When	making	an	FB	release,	the	GCC	toolchain	used	to	build	FB	has	a
huge	impact,	because	FB	itself	will	basically	become	a
modified/extended	version	of	that	toolchain.	The	FB-dos	and	FB-win32
releases	include	libraries	from	the	used	DJGPP/MinGW	toolchains,	and

they	will	be	used	for	any	FB	programs	made	with	those	FB	builds.	Even
the	FB-linux	release	will	depend	on	the	gcc/glibc	version	it	was	built	with,
because	of	the	precompiled	rtlib/gfxlib2	libraries,	and	because	of	fbc
which	will	have	been	linked	against	shared	libraries	that	may	not	exist	on
other	systems.

Additionally,	different	GCC	toolchains	and	runtime	libraries	(e.g.
MinGW.org	vs.	MinGW-w64,	or	DJGPP	2.03	vs.	2.04	vs.	CVS)	can	be
more	or	less	different	in	terms	of	ABI	compatibility	or	runtime	behaviour.
As	such	any	FB	program	can	behave	differently	depending	on	the	GCC
toolchain,	including	fbc	itself.

More	information:
Known	problems	when	compiling	FB
GCC	toolchain	choice

Release	making	script

The	FB	sources	contain	a	release-making	script	at
contrib/release/build.sh.

This	script	downloads	&	extracts	DJGPP/MinGW.org/MinGW-w64
toolchains,	FB	packages	for	bootstrapping,	fbc	sources,	etc.,	then	builds
normal	and	standalone	versions	of	fbc,	and	finally	creates	the	complete
packages	ready	to	be	released.

Downloaded	archives	are	cached	in	the	contrib/release/input/
dir
Output	packages	&	manifests	are	put	in	the
contrib/release/output/	dir
Toolchain	source	packages	are	downloaded	too
fbc	sources	are	retrieved	from	Git;	you	can	specify	the	exact
commit	to	build,	the	default	is	"master".

Usage:

cd	contrib/release

./build.sh		

<target>	can	be	one	of:
dos:	DOS	build:	must	run	on	Win32.	Uses	Win32	MSYS,	but
switches	to	DJGPP	for	building	FB.
linux-x86,	linux-x86_64:	native	builds	on	GNU/Linux	x86/x64_64	-
relying	on	the	host	toolchains;	no	gcc	toolchain	is	downloaded;	no
standalone	version	of	FB	is	built.
win32:	32bit	MinGW-w64	build:	must	run	on	Win32.	Uses	MSYS.
win32-mingworg:	32bit	MinGW.org	build:	must	run	on	Win32.	Uses
MSYS.
win64:	64bit	MinGW-w64	build:	must	run	on	Win64.	Uses	Win32
MSYS,	but	overrides	the	FB	makefile's	uname	check	in	order	to
build	for	64bit	instead	of	32bit.

Requirements:
MSYS	environment	on	Windows	with:	bash,	wget/curl,	zip,	unzip,
patch,	make,	findutils	(win32/win64	builds	need	to	be	able	to	run
./configure	scripts,	to	build	libffi)
7z	(7-zip)	in	the	PATH	(win32/win64)
makensis	(NSIS)	in	the	PATH	(FB-win32	installer)
git	in	the	PATH
internet	access	for	downloading	input	packages	and	fbc	via	git

Some	of	the	ideas	behind	this	script:
Automating	the	build	process	for	FB	releases	=>	less	room	for
mistakes
Starting	from	scratch	everytime	=>	clean	builds
Specifying	the	exact	DJGPP/MinGW	packages	to	use	=>
reproducible	builds
Only	work	locally,	e.g.	don't	touch	existing	DJGPP/MinGW	setups
on	the	host

FB	manual/documentation

See	also	doc/fbchkdoc/readme.txt	and	doc/manual/readme.txt

Get	MySQL,	libcurl,	libaspell,	libpcre
Build	the	wiki	tools:

cd	doc/libfbdoc

make

cd	../fbdoc

make

cd	../fbchkdoc

make

cd	../makefbhelp

make

Update	the	wiki	cache	(the	offline	copy	of	the	*.wakka	files)
cd	doc/manual

rm	-f	cache/*

make	refresh

Regenerate	the	PrintToc	page:
cd	doc/fbchkdoc

./mkprntoc	-web

Regenerate	the	CompilerErrMsg	page:
cd	doc/fbchkdoc

./mkerrlst

fbc	mkerrtxt.bas	-exx

./mkerrtxt	>	errors.wakka

Then	copy	the	error	list	from	errors.wakka	into
doc/manual/cache/CompilerErrMsg.wakka,	and	update	the	online	wiki
too.

Update	the	wiki	samples	in	examples/manual/	(may	want	to	clear
out	the	old	ones	first,	to	delete	those	removed	from	the	wiki)

cd	doc/fbchkdoc

./getindex	-web

./samps	extract	@PageIndex.txt

Summary:	currently	the	easiest	way	to	build	a	release

Update	the	wiki	snapshot	in	the	fbc	sources
Regenerate	PrintToc	and	CompilerErrMsg
If	needed,	update	wiki	samples	in	examples/manual/
Build	documentation	packages	(CHM	on	Windows,	rest	can	be
done	on	Linux)

Check	whether	toolchains	used	in	the	contrib/release/build.sh
script	need	updating

Have	target	systems	ready	(installations	of	Linux	and	Windows,
32bit	and	64bit	--	virtual	machines	are	useful	for	this)
For	each	system,	update	fbc	sources	(to	have	the	latest	version	of
the	release	script)
On	win32:

cd	contrib/release

./build.sh	win32	

./build.sh	win32-mingworg	

./build.sh	dos	

On	win64:

cd	contrib/release

./build.sh	win64	

On	linux-x86:

cd	contrib/release

./build.sh	linux-x86	

On	linux-x86_64:

cd	contrib/release

./build.sh	linux-x86_64	

Collect	all	the	archives	and	manifests	from	the
contrib/release/input	and	contrib/release/output	directories

Review	the	manifests	to	check	for	missing	files	etc.
If	ok,	commit	the	new	manifests

Create	the	release	tag
Upload	the	packages
Post	announcements

Bootstrapping	fbc	on	a	new	system 	

fbc	is	written	in	FB	itself,	so	you	need	a	working	fbc	to	build	a	new	fbc.	How	to	do	this	on	a	system	where	no	working	fbc	exists	yet?	There	are	two	options:	pre-compiling	(by	cross-compiling)	the	fbc	sources	on	a	system	where	you	have	a	working	fbc	and	then	taking	the	results
to	the	target	system,	or	full	cross-compiling	using	a	gcc	cross-compiler	toolchain.

Bootstrapping	using	the	FreeBASIC-x.xx.x-source-bootstrap	package	(if	available)

The	FreeBASIC-x.xx.x-source-bootstrap	package	contains	the	FB	sources	plus	precompiled	compiler	sources,	for	multiple	targets.	After	extracting,	this	can	be	built	without	requiring	an	existing	fbc:

make	bootstrap

(as	long	as	the	package	contains	the	precompiled	sources	for	the	target	system)

This	package	can	be	created	by	running:

make	bootstrap-dist

Doing	make	bootstrap-dist,	taking	the	package	to	the	target	system,	and	then	doing	

Bootstrapping	by	precompiling	the	compiler	sources

On	Linux	or	Win32	(or	another	system	where	you	have	a	working	fbc),	use	the	existing	fbc	to	cross-compile	

fbc	-e	-m	fbc	src/compiler/*.bas	-r	-target		-arch	

	 	

Some	random	examples:

x86	Win32	->	x86	OpenBSD:	-target	openbsd	[-arch	486]

x86	Win32	->	x86_64	FreeBSD:	-target	freebsd	-arch	x86_64

x86	Linux	->	ARM	Linux:	-target	arm-linux-gnueabihf,	or	just	-arch	armv6

On	the	target	system,	compile	FB's	rtlib/gfxlib2	using	the	native	C	compiler	as	usual:

make	rtlib	gfxlib2

Take	the	.asm	or	.c	files	(produced	in	the	first	step)	to	the	target	system,	and	use	the	target	system's	native	tools	to	build	the	final	fbc	executable:

If	you	produced	.asm	files,	take	them	to	the	target	system,	and	assemble	them	into	

for	i	in	src/compiler/*.asm;	do

as	$i	-o	`echo	$i	|	sed	-e	's/asm$/o/g'`

done

gcc	-o	fbc	lib/freebasic//fbrt0.o	src/compiler/*.o	-Llib/freebasic/

If	you	produced	.c	files,	take	them	to	the	target	system,	and	compile	them	into	a	new	fbc	executable:

gcc	-o	fbc	-nostdinc	-Wall	-Wno-unused-label	-Wno-unused-function	-Wno-unused-variable	-Wno-unused-but-set-variable	-Wno-main	-fno-strict-aliasing	-frounding-math	lib/freebasic/

Additional	notes	&	tips
The	new	fbc	and	the	new	rtlib/gfxlib2	must	be	built	from	the	same	version	of	FB	source	code,	otherwise	there	can	be	incompatibility	issues.	The	compiler	version	should	always	match	the	version	of	rtlib/gfxlib2	in	its	
When	linking	fbc	for	a	Unix-like	system,	you	need	to	link	it	against	libncurses	or	libtinfo,	and	also	libpthread,	because	fbc	uses	the	FB	runtime	which	depends	on	those	libraries	and	gcc	does	not	link	them	by	default.	When	linking	fbc	for	Win32/Win64	that's	not	needed.
An	alternative	to	linking	with	gcc	is	to	invoke	ld	manually,	like	fbc	itself	would	normally	do	it.	You	can	look	at	fbc	-v	output	to	see	what	it	does.	However	this	is	more	complicated.

Bootstrapping	by	cross-compiling	everything

If	you're	on	Linux	or	Win32	or	another	system	where	you	already	have	a	working	fbc,	and	you	have	a	gcc	cross-compiler	toolchain	for	the	target	system,	and	the	libraries	needed	to	link	an	fbc	for	the	target	system	(libc,	libpthread,	etc.	and	libncurses/libtinfo),	then	you	can	directly
cross-compile	an	FB	setup	like	so:

Build	a	native	FB	setup	with	additional	libraries	for	cross-compiling	to	the	target	system:

#	Get	a	directory	with	the	fbc	sources,	e.g.	"fbc"

cd	fbc

make

make	rtlib	gfxlib2	TARGET=

#	Optionally,	you	can	install	everything	into	/usr/local:

make	install

make	install-rtlib	install-gfxlib2	TARGET=

Use	the	native	FB	setup	built	above	to	cross-compile	the	new	FB	setup	for	the	target	system:

cd	..

mkdir	crosscompiled-fbc	&&	cd	crosscompiled-fbc

make	-f	../fbc/makefile	FBC='../fbc/bin/fbc	-i	../fbc/inc'	TARGET=

#	(Specifying	FBC=...	is	only	needed	if	you	did	not	install	it	globally)

Cross-compiling	the	64bit	version	on	a	32bit	system	with	gcc	-m64

If	you	have	a	gcc	multilib	toolchain	with	-m64	support	on	a	32bit	system,	you	can	use	it	to	cross-compile	the	64bit	version	of	FB.	For	example,	on	32bit	Ubuntu	(GNU/Linux),	you	can	install	the	
the	MinGW-w64	project	also	have	support	for	cross-compiling	to	64bit	via	

#	Get	FB	sources	into	fbc/	(must	be	0.91+	because	earlier	versions	didn't	support	multilib/64bit	at	all),

#	and	build	a	native	(32bit)	FB	first

cd	fbc

make

#	Then	add	the	64bit	rtlib/gfxlib2	to	that.	Specifying	MULTILIB=64	tells	the	FB	makefile	to	use	gcc	-m64.

make	rtlib	gfxlib2	MULTILIB=64

#	Now	we	have	a	new	32bit	FB	with	64bit	libraries	for	cross-compiling.

#	This	can	now	be	used	to	build	a	full	64bit	FB:

cd	..

mkdir	fbc64

cd	fbc64

make	-f	../fbc/makefile	MULTILIB=64	FBC='../fbc/bin/fbc	-i	../fbc/inc'

This	does	not	only	work	with	gcc	-m64	on	32bit,	but	also	with	gcc	-m32	on	64bit.	For	cross-compiling	the	32bit	FB	on	a	64bit	system,	just	exchange	32	and	64	in	the	example	above.	For	example,	you	have	to	specify	

C	Header	Translation	Tutorial 	

Under	Construction

C	Header	Style	Guide 	

About	This	Guide
This	guide	is	not	a	C	tutorial	or	a	step	by	step	guide	for	converting
headers.	This	is	a	style	guide	which	represents	the	ideal	header	we
would	like	to	maintain.	Currently	not	all	of	the	headers	under	our	control
conform	to	this	guide	100%,	but	work	is	in	progress	to	do	this	and	all	new
contributions	should	attempt	to	use	these	standards.	

General

Translations	should	be	very	close	to	the	original,	so	they	look
familiar	and	can	be	updated	easily.
Identifiers	(including	any	#defines)	should	not	be	changed	unless
absolutely	necessary.
Smaller	files	may	be	combined	into	one	bigger	header,	if	they
would	be	#included	anyways	and	all	belong	to	the	same	library.
Original	license	should	be	retained.	

Coding	style

Headers	need	to	work	with	the	latest	FreeBASIC	version.
Naming	conflicts	between	multiple	identifiers	(due	to	FreeBASIC's
case	insensitivity)	or	an	identifier	and	a	FreeBASIC	keyword
should	be	resolved	by	appending	an	underscore	to	one	identifier.
extern	"c"	blocks	should	be	used	instead	of	cdecl	alias	"..."	for
function	declarations	or	function	pointer	types.
Preprocessor	directives	(including	#defines)	should	be	preserved.
Exception:	Remove	if	they	serve	only	to	select	options	for	different
C	compilers,	i.e.	extern	differences,	then	these	can	be	removed
unless	they	provide	support	for	further	code.	When	choosing
compilers	the	choice	should	favor	GNU	C.	
FreeBASIC	keywords	should	be	lower-case.	

http://www.cprogramming.com/tutorial.html#ctutorial

Dealing	with	constructs	not	supported	by	FreeBASIC

Inline	functions	should	be	converted	to	a	macro	if	appropriate.
Preprocessor	directives	inside	structure	declarations,	function
bodies,	or	similar	may	need	to	be	moved	outside	because	in
FreeBASIC	they'd	be	scoped.
Declarations	spread	across	multiple	lines	with	preprocessor
directives	in	between	them	(for	example	function	declarations,	or
array	initializers)	will	need	to	be	manually	rewritten

Quick	overview	of	all	modules 	

(Only	somewhat	sorted)
fbc
Frontend:	main	module,	entry	point,	command-line	handling,
assembling/linking/etc.

objinfo
Object/library	information	section	reader/writer,	used	by	fbc.	Includes
tiny	ELF/COFF	object	file	format	readers.

fb
FB	parser	interface,	starts	the	parser	for	every	input/include	file.

parser
Recursive	parser,	asks	lex	for	tokens,	builds	up	the	ast.

lex,	pp
Lexer/tokenizer	and	preprocessor	directive	parsing.

error
Error	reporting	functions,	used	by	many	parts	of	fbc,	mostly	the	parser
though.

rtl
Helper	functions	to	build	up	the	ast	nodes	for	rtlib/gfxlib	function	calls.
Declarations	must	match	the	actual	functions	in	the	rtlib/gfxlib2	source
code.

symb
Symbols	lookup	and	storage	(information	on	variables/functions),
scope/namespace	handling,	name	mangling;	used	by	parser/ast/emitters.

ast
Abstract	syntax	tree:	per-function	code-flow	+	expressions.
astNew*():	Node	creation/tree	building,	used	by	the	parser.
astLoad*():	First	step	in	emitting,	calls	ir,	called	after	each	function	is
parsed.

ir,	ir-hlc,	ir-llvm,	ir-tac
Intermediate	representation	interface	(using	virtual	registers)	used	to	emit
the	ast.
hlc:	High	level	C	emitter	(high	level	in	comparison	to	the	ASM	backend
anyways)
llvm:	LLVM	IR	emitter
tac:	Three-address-codes	module	(asm	backend),	calls	emit.	Reponsible
for	register	allocation,	reusing,	spilling.

reg
Register	allocator	for	ir-tac.

emit,	emit_SSE,	emit_x86
Assembler	emitter	abstraction	and	SSE/x86	emitters.

edbg_stab
Stabs	debug	format	emitting	for	emit_x86.

dstr
Dynamic	z/wstrings,	used	mostly	by	lex.

hash
Generic	hash	table,	used	by	symb/fbc.

hlp,	hlp-str
Helper	functions	for	all	parts	of	the	compiler,	plus	another	implementation
of	dynamic	z/wstrings.

list
Generic	linked	list	with	built-in	memory	pool,	used	a	lot.	This	is	often	used
as	pure	pooled	allocator,	for	example	for	AST	nodes	or	symbols.

flist
list-based	without	deletions.

pool
list-based	allocator	using	multiple	lists	with	node	sizes	ranging	from	small
to	large,	allowing	it	to	store	away	strings	into	the	next	best	fitting	chunk	to

waste	as	less	memory	as	possible.	Used	to	store	away	symbol
identifiers.

stack
Generic	list-based	stack.

objinfo 	

fbc	stores	extra	information	into	the	object	files	(.o)	it	generates,	in	order
to	read	it	out	again	at	link-time.	The	information	that	is	stored	currently
consists	of	the	-lang/-mt	settings	and	all	libraries/search	paths	(-l,
#inclib,	-p,	#libpath)	that	were	specified	when	compiling	that	object	file.
This	way	fbc	can	show	a	warning	when	mixing	object	files	that	were
compiled	with	different	options,	because	they	may	be	incompatible,	and
fbc	can	automatically	link	in	libraries	that	were	specified	via	#inclib,
even	if	the	user	compiles	and	links	in	separate	steps.

This	is	accomplished	by	emitting	an	extra	section	called	"fbctinf"
(FreeBASIC	compile	time	information?)	when	compiling,	and	reading	it
back	in	at	link-time.	Furthermore,	when	building	a	static	library,	fbc
creates	an	extra	object	file	(called	__fb_ct.inf)	containing	just	that	extra
information	and	adds	it	to	the	library.	At	link-time	fbc	looks	at	each
library	to	figure	out	whether	it	has	such	an	__fb_ct.inf	file	or	not.

In	order	to	do	this	fbc	has	a	custom	COFF,	ELF32	and	also	archive	file
format	readers	that	can	extract	the	.fbctinf	section	content.	Previously,
fbc	used	libbfd	from	binutils	to	do	this,	however	depending	on	libbfd	is
problematic	especially	because	of	its	highly	unstable	ABI.

Memory	management 	

fbc	tries	to	avoid	memory	allocations	as	much	as	possible,	since	they	are
pretty	slow	generally.	The	linked	list	implemented	in	list.bas	comes	with	a
builtin	memory	pool,	so	pretty	much	every	list	is	pooled.	The	memory
pool	pre-allocates	large	chunks	and	can	then	quickly	hand	out	many
small	nodes.	Those	lists	are	used	for	simple	things	like	the	list	of	libraries
to	link	into	an	executable,	but	also	for	heavier	things	like	AST	nodes.	The
memory	pool	is	supposed	to	speed	things	up	(no	idea	if	this	was	ever
verified	though).

In	many	places	the	compiler	simply	uses	global/static	variables,	for
example	fixed-length	strings,	in	order	to	avoid	memory	allocations.
Tokens	are	a	nice	example:	lex.bas	parses	input	characters	into	tokens,
and	stores	the	token	text	in	static	buffers.	Token	text,	that	could	be:
variable	names,	string	literals,	and	so	on.	All	tokens	are	stored	here
though,	so	the	preprocessor	can	correctly	record	macros.	Now	take	into
account	the	huge	number	of	tokens	the	parser	has	to	deal	with:	For
example,	FB's	current	Windows	headers	result	in	~100k	tokens.
Dynamically	allocating	a	buffer	for	every	token	would	quickly	become
inefficient.

Of	course	the	token	length	is	limited	by	using	a	static	buffer,	but	fbc's
default	of	1024	bytes	should	be	enough	for	everyone.	Similar	length
limitations	apply	to	many	things	in	the	compiler	because	of	the	use	of
fixed-length	buffers.	In	most	situations,	the	buffers	in	the	compiler	are	not
used	to	their	full	potential,	i.e.	they	are	bigger	than	they	need	to	be.

All	that	does	not	mean	the	compiler	does	not	use	dynamic	memory
allocations	at	all.	It	does,	in	situations	when	allocating	is	easier	than
using	a	list/pool	and	speed	is	not	critical.	FB's	builtin	string	type	is	used	in
many	places	too.	As	long	as	the	string's	are	kept	allocated,	they	are	very
efficient.	Expansion	of	macro	parameter	stringifying	in	the	pre-processor
uses	a	strReplace()	based	on	string's,	and	it	is	fast	(enough).	Besides
that,	dynamic	strings,	which	are	basically	the	same	as	string's,	are	used
everywhere	in	the	pre-processor,	from	macro	recording	to	macro
expansion.

Out-of-memory	situations/allocation	failures	are	not	seriously	handled.
There	are	NULL	checks	in	some	places	where	allocate()	is	called,	but
these	checks	are	pointless,	since	the	rest	of	fbc	does	not	check	for
NULL.	NULL	is	sometimes	used	to	indicate	an	error,	for	example	by
some	astNew*()	functions.	Also,	the	compiler	does	not	deallocate()
everything,	but	lets	the	OS	do	the	cleanup.	

Lexer	&	preprocessor 	

lex*.bas:	File	input,	tokenization,	macro	expansion	buffer,	token	queue,	#include	contexts.
pp*.bas:	Preprocessor	directive	parsing,	macro	expansion	text	construction.

The	lexer	reads	the	source	code	from	the	.bas	files	and	translates	it	into	a	series	of	tokens,	so	the	FB	parser
sees	this:

dim	as	integer	i	=	5

print	i

as:

(Top-level	parser	retrieves	the	first	token:)

DIM					keyword									(Go	to	variable	declaration	parser)

AS						keyword									(Go	to	datatype	parser)

INTEGER	keyword									(Data	type)

"i"					symbol										(Back	to	variable	declaration,	variable	identifier)

"="					operator								(Go	to	initializer	parser)

"5"					number	literal		(Expression)

EOL					statement	end			(Variable	declaration	parser	is	done,	

	 																									the	variable	is	added	to	the	AST,	

	 																									back	to	toplevel	parser)

(Next	line,	next	statement)

PRINT			keyword									(Go	to	QB	print	quirk	function	call	parser)

"i"					symbol										(Expression,	lookup	"i"	symbol,	it's	an	integer	variable,

	 																						create	a	CALL	to	fb_PrintInt(),	the	expression	is	the	argument)

EOL																					(Print	parser	is	done,	back	to	toplevel)

EOF																					(Top-level	parser	is	done)

The	lexer	is	an	abstraction	hiding	the	ugly	details	of	user	input	(indentation,	comments,	keyword	capitalization,
#includes)	from	the	parser.	Additionally	it	does	preprocessing,	consisting	of	macro	expansion	and
preprocessor	directive	parsing.	The	general	idea	is	to	handle	all	preprocessing	in	the	lexer,	so	the	parser	does
not	get	to	see	it.	The	parser	never	calls	preprocessor	functions,	the	lexer	functions	do	that.

Tokens
Macro	storage	and	expansion

Preprocessor	directive	parsing
File	contexts
Quick	overview	of	the	call	graph

Purpose 	

fb.bas:	Main	module	for	the	compiler,	parent	module	for
parser/lexer/AST/IR/emitters,	toplevel	file	&	include	file	handling
parser*.bas:	Parsing/compilation	functions:	lexer	tokens	->	AST	nodes.
symb*.bas:	Symbol	tables	and	lookup,	namespace/scope	handling.
rtl*.bas:	Helpers	to	build	AST	calls	to	rtlib/gfxlib	functions.

The	structure	of	the	parser	has	a	very	close	relation	to	the	FreeBASIC
grammar.	Basically	there	is	a	parsing	function	for	every	element	of	the
grammar.

The	parser	retrieves	tokens	from	the	lexer	and	validates	the	input	source
code.	Most	error	messages	(besides	command	line	and	file	access
errors)	come	from	here.	Additionally	the	parser	functions	build	up	the
corresponding	AST.	This	is	the	heart	of	the	compilation	process.

Many	of	the	parser's	(or	rather	compiler's)	functions	(prefixed	with	a	'c')
parse	and	skip	the	grammar	element	they	represent,	or	show	an	error	if
they	don't	find	it.	The	parser	is	fairly	recursive,	mostly	because	of	the
expression	parser	and	the	#include	parsing.

From	parsing	to	emitting

When	parsing	code	a	corresponding	AST	is	built	up	to	represent	the
program.	The	AST	is	used	to	represent	executable	code,	but	also	to	hold
temporary	expressions,	for	example	the	values	of	constants	or	the
initializers	found	while	parsing	type	or	procedure	declarations.	The	AST
does	not	contain	nodes	for	code	flow	constructs	like	IF,	DO/LOOP,
GOTO,	RETURN,	EXIT	DO,	etc.,	but	it	contains	labels	and	branches.
Likewise,	several	operations	(like	IIF(),	ANDALSO,	ORELSE,	field
dereference,	member	access)	are	replaced	by	the	corresponding	set	of
lower-level	operations	in	the	AST.

After	parsing	a	function,	the	AST	for	this	function	is	optimized,	and	then
emitted	recursively	via	astLoad*()	calls	on	each	node,	from	the	top	down.
Note	that	each	AST	node	has	its	own	implementation	of	astLoad().

Top	level	parsing	process 	

fb.bas:fbCompile()	is	called	from	the	fbc	frontend	for	every	input	file.
Parsing	(and	compiling)	of	the	file	begins	here.

fb.bas:fbCompile()

Open	the	input	.bas
Start	the	emitter	(ir)	(Open	the	output	.asm)
fbMainBegin()	(Build	the	AST	for	the	implicit	main()	or	static
constructor	for	module-level	code)
fbPreIncludes()

fbIncludeFile()	for	every	preinclude	(found	on	the	fbc
command	line)

cProgram()
fbMainEnd()	(Close	the	implicit	main())
Finish	emitting	(ir)	(Finish	generating	the	.asm	and	close	it)
Close	the	input	.bas

fb.bas:fbIncludeFile()

Include	file	search
lexPush()	(Push	a	new	lexer	context	to	parse	this	#include	file
without	disturbing	the	lexer's	state	in	the	parent	file)
Open	the	include	file
cProgram()
Close	the	include	file
lexPop()	(Restore	the	lexer	state	to	the	parent	file)

parser-toplevel.bas:cProgram()	is	the	root	of	the	FB	grammar,	and
parses	a	file.	Here's	a	short	&	quick	run	down	of	what	is	done:

cLine()	repeatedly	until	EOF
cLabel()
cStatement()

Declarations
UDT	declarations,	typedefs

Variables	(DIM,	VAR,	...)
Procedure	declarations	(DECLARE)
Procedure	bodies	(SUB,	FUNCTION,	...)

(Procs	temporarily	replace	the	implicit	module	level	procedure,	so	any
AST	nodes	go	into	them	instead	of	the	implicit	main())

Compounds	statements	(IF/ELSE,	DO/LOOP,
EXIT/CONTINUE	DO,	...)
Procedure	calls
Function	result	assignments
Quirk	statements	(special	QB	rtlib/gfxlib	statements)
ASM	blocks
Assignments
Procedure	pointer	calls

and	most	of	them	use	cExpression()	at	some	point.

Symbols 	

In	order	to	be	able	to	make	the	transition	from	tokens	to	AST,	the	parser
needs	to	be	able	to	recognize	functions,	variables,	types,	etc.	The	symb
module	keeps	track	of	all	these	symbols	and	their	namespaces	and
scopes.	The	parser	can	do	lookups	in	the	current	scope,	or	in	just
specific	namespaces.	Many	AST	nodes	have	a	corresponding	symbol
(e.g.	variables	and	functions).	

Representation	of	data	types 	

Almost	all	parts	of	the	compiler	deal	with	data	types	in	one	way	or	another.	Symbols	worry	about	data
types	the	most,	this	is	what	most	of	the	compile-time	type	checks	are	based	on.	AST	nodes	also	have
data	types,	that	takes	care	of	expressions	(including	casting/conversions).

A	data	type	is	represented	as	a	combination	of:

dtype	integer
5	bits:	raw	type:

void	(unknown	type,	e.g.:	any	ptr,	type	t	as	t)
byte,	ubyte
char	(zstring	pointers	and	their	deref	expressions)
short,	ushort
wchar	(wstring	pointers	and	their	deref	expressions)
integer,	uinteger
enum	(integer)
long,	ulong
longint,	ulongint
single,	double
string	(variable	length)
fixstr	(fixed	length	strings,	string	*	N,	N	is	the	type's	length)
struct	(UDT,	->	subtype	is	used)
namespace	(used	during	name	mangling?)
function	(used	for	function	pointers,	->	subtype	contains	full	function
declaration)
forward	reference	(will	be	changed	to	actual	raw	type	when	known,	->
subtype	is	used)
pointer	(this	value	is	only	used	temporarily	as	a	result	of	the	typeGet()
macro)
xmmword	(used	by	SSE	emitter)

4	bits:	PTR	count
How	many	PTR's	there	are	on	the	type,	maximum	8.	If	>	0,	then	the	data	type	is	a	pointer.

9	bits:	CONST	mask	(8	PTR's	+	1	"base")

				Example																					CONST	mask

const	integer																			000000001											(first	CONST	bit	set)

integer	const	ptr															000000001											(ditto)

const	integer	ptr															000000010											(pointer	to	const)

const	integer	ptr	const	ptr					000000101											(const	pointer	to	pointer	to	const)

subtype,	which	for	some	types	points	to	symbol:
For	UDTs	types	(structs/classes,	enums)	this	points	to	the	corresponding	UDT
symbol
For	forward-referencing	typedefs	this	points	to	a	special	forward	reference	symbol
which	will	eventually	be	replaced	by	the	actual	subtype	symbol,	when	it's	known.
For	procedure	pointers,	this	points	to	an	anonymous	symbol	further	defining	the
calling	convention	etc.	and	most	importantly	the	types	of	result	and	parameters.

length	integer
This	is	used	in	places	that	have	to	calculate	sizes	(e.g.	structure	size	calculations,	pointer	arithmetic,
stack	offsets).

Select	Case 	

Basic	implementation

dim	i	as	integer	 	 dim	i	as	integer

	 	 	 	 scope

select	case	i	+	123	 	 	 dim	temp	as	integer	=	any

	 	 	 	 	 temp	=	i	+	123

case	1	 	 	 	 	 if(temp	

	1)	then	goto	cmplabel1

	 	 	 	 	 scope

	 print	"1"	 	 	 	 print	"1"

	 	 	 	 	 end	scope

	 	 	 	 	 goto	endlabel

case	2	 	 	 	 	 cmplabel1:

	 	 	 	 	 if(temp	

	2)	then	goto	cmplabel2

	 	 	 	 	 scope

	 print	"2"	 	 	 	 print	"2"

	 	 	 	 	 end	scope

	 	 	 	 	 goto	endlabel

case	else	 	 	 	 cmplabel2:

	 	 	 	 	 scope

	 print	"else"	 	 	 	 print	"else"

	 	 	 	 	 end	scope

end	select	 	 	 	 cmplabel3:				''	unused	only	because	in	this	example	the	last	CASE	is	not	conditional

	 	 	 	 	 endlabel:

	 	 	 	 end	scope

SELECT	CASE
opens	the	implicit	outer	scope
declares	the	temp	var

when	inside	a	procedure	with	STATIC,	the	temp	var	will	be	made	STATIC
the	FB_SYMBATTRIB_TEMP	is	removed	from	the	temp	var,	because	it	lives	longer	than	just	one	statement

emits	the	assignment
declares	the	end	label

each	CASE
if	there	was	a	previous	CASE

closes	the	previous	CASE's	scope
emits	a	jump	to	the	end	label

emits	the	label	for	this	CASE
emits	a	conditional	branch	that	jumps	to	the	next	CASE	if	the	CASE	condition	is	not	met
opens	the	CASE's	scope
CASE	ELSE	does	not	emit	a	conditional	branch
once	CASE	ELSE	was	used,	no	further	CASE	blocks	are	allowed

END	SELECT
closes	the	previous	CASE's	scope
emits	an	extra	CASE	label	at	the	end	(There	is	no	CASE	coming	anymore,	but	this	allows	the	last	CASE	to	jump	to	the	end,	if
it	is	a	conditional	CASE.	The	last	CASE	could	jump	to	the	SELECT's	end	label	instead,	but	that	would	require	some	special
case	handling	code.)
emits	the	end	label

any	EXIT	SELECTs	jump	immediately	to	the	end	label

SELECT	CASE	on	strings/zstrings/fixstrs

dim	s	as	string		 	 dim	s	as	string

	 	 	 	 scope

select	case	s	+	"1"	 	 	 dim	temp	as	string

	 	 	 	 	 fb_StrAssign(temp,	s)

	 	 	 	 	 fb_StrConcatAssign(temp,	"1")

case	"1"	 	 	 	 if(fb_StrCompare(temp,	"1")	

	0)	then	goto	cmplabel1

	 	 	 	 	 scope

	 print	"1"	 	 	 	 print	"1"

	 	 	 	 	 end	scope

	 	 	 	 	 goto	endlabel

	 	 	 	 	 cmplabel1:

end	select	 	 	 	 endlabel:

	 	 	 	 	 fb_StrDelete(temp)				''	destroying	the	temp	var	at	scope	end

	 	 	 	 end	scope

	 	 	 	 fb_StrDelete(s)

SELECT	CASE	on	string/zstring/fixstr	expressions	uses	a	string	temp	var
probably	because	that's	easiest
knowing	the	string	length	will	potentially	speed	up	the	following	comparisons
the	dynamic	memory	allocation	can	be	a	slow	down	too

the	string	temp	var	is	destroyed	at	scope	end	or	scope	breaks	(e.g.	reaching	END	SELECT,	or	EXIT	FUNCTION	from	within	a	CASE
block)

SELECT	CASE	on	wstrings

dim	w	as	wstring	*	10	 	 	 dim	w	as	wstring	*	10

	 	 	 	 	 scope

select	case	w	+	wstr("1")	 	 	 dim	temp	as	wstring	ptr

	 	 	 	 	 	 dim	tempexpr	as	wstring	ptr	=	w	+	wstr("1")

	 	 	 	 	 	 temp	=	fb_WstrAlloc(fb_WstrLen(tempexpr))

	 	 	 	 	 	 fb_WstrAssign(temp,	tempexpr)

case	wstr("1")	 	 	 	 if(fb_WstrCompare(temp,	wstr("1"))	

	0)	then	goto	cmplabel1

	 	 	 	 	 	 scope

	 print	"1"	 	 	 	 	 print	"1"

	 	 	 	 	 	 end	scope

	 	 	 	 	 	 goto	endlabel

	 	 	 	 	 	 cmplabel1:

end	select	 	 	 	 	 endlabel:

	 	 	 	 	 	 fb_WstrDelete(temp)				''	destroying	the	temp	var	at	scope	end

	 	 	 	 	 end	scope

similar	to	SELECT	CASE	on	zstrings,	for	wstring	expressions	a	wstring	is	dynamically	allocated
the	temp	wstring	is	treated	much	like	a	dynamic	wstring	object	would	be

it	is	a	VAR	symbol	with	type	WCHAR	PTR
marked	with	FB_SYMBSTATS_WSTRING
this	allows	ctor/dtor	checks	to	recognize	it	and	give	it	the	needed	treatment

this	way,	the	temp	wstring	is	destroyed	at	scope	end	or	scope	breaks

SELECT	CASE	without	temp	var

When	the	expression	given	to	the	select	statement	is	just	a	simple	variable	access,	then	no	temporary	variable	needs	to	be	created.	In	this
case,	the	given	variable	itself	will	be	used	in	the	comparisons	at	each	case

dim	i	as	integer	 	 dim	i	as	integer

	 	 	 	 scope

select	case	i

case	1	 	 	 	 	 if(i	

	1)	then	goto	cmplabel1

	 	 	 	 	 scope

	 print	"1"	 	 	 	 print	"1"

	 	 	 	 	 end	scope

	 	 	 	 	 goto	endlabel

end	select	 	 	 	 cmplabel1:

	 	 	 	 	 endlabel:

	 	 	 	 end	scope

Keyboard	Input 	

Basics

Using	FB's	built-in	functionality,	there	are	four	ways	of	getting	keyboard
input:

Inkey()	returns	a	string	containing	an	ASCII	char
corresponding	to	the	key	pressed	by	the	user,	or	a	2-byte
FB	extended	keycode	for	some	special	keys,	such	as	the
Arrow	keys	or	Page	Up/Down.	It	works	pretty	much	like	it
did	in	QB.
Getkey()	returns	the	same	information	as	inkey(),	but	in
form	of	an	integer	instead	of	a	string.	inkey()	and	getkey()
belong	together:	They	use	the	same	code	and	they	are
located	in	the	same	modules.
Multikey()	takes	an	FB	scancode	(SC_*)	and	checks
whether	that	key	is	pressed	at	this	moment.
Screenevent()	returns	key	presses	in	form	of
EVENT_KEY_PRESS	events	(and	others	for	key	release
or	repeat).	It	returns	the	FB	scancode	in	the
Event.Scancode	Field,	and	the	ASCII	char	value	or	0	in
the	EVENT.ascii	field.	EVENT.ascii	does	not	use	FB
extended	keycodes;	the	EVENT.scancode	field	can	be
checked	instead	in	order	to	handle	extended	keys.

"scancode"	refers	to	the	SC_*	#defines	which	are	more	or	less	matching
the	DOS	keyboard	scancodes.	The	values	are	not	made	up,	they
themselves	correspond	to	certain	ASCII	chars,	for	example:	SC_HOME	=
asc("G")	=	&h47.;	They're	also	the	same	values	that	you	get	under
DOS/DJGPP	or	from	the	Linux	kernel	as	part	of	extended	key	code
sequences.	Besides	their	use	in	multikey()	or	screenevent(),	scancodes
are	used	in	various	places	internally,	for	example	when	translating
between	different	kinds	of	key	codes,	as	an	easy-to-use	and	portable
representation	of	keycodes.

"key"	refers	to	an	ASCII	char,	or	a	2-byte	extended	keycode	string	for
other	keys	as	returned	by	inkey().	The	rtlib	has	several	KEY_*	#defines

for	the	available	2-byte	extended	keycodes,	in	form	of	integers.	These
are	used	internally	and	also	match	the	values	returned	by	getkey().

FB's	2-byte	extended	keycodes	consist	of	a	&hFF;	byte	followed	by	a
byte	containing	the	SC_*	scancode	value	corresponding	to	the	keypress.
Checking	for	SC_HOME	returned	by	inkey()	could	look	like:
if(inkey()	=	chr(255)	+	"G")	then	...

Checking	for	SC_HOME	returned	by	getkey():
if(getkey()	=	&h47FF;)	then	...

if(getkey()	=	((SC_HOME	shl	8)	or	&hFF;))	then	...

inkey(),	getkey()	and	multikey()	use	wrapper	functions	that	call	...
the	console-mode	versions	fb_ConsoleInkey(),
fb_ConsoleGetkey(),	fb_ConsoleMultikey()	by	default,
or	the	gfxlib	versions	fb_GfxInkey(),	fb_GfxGetkey(),
fb_GfxMultikey()	if	a	graphics	SCREEN	is	active,

by	using	function	pointer	hooks.

rtlib

The	rtlib	has	separate	console-mode	implementations	of	the	above
functions,	for	each	platform:

DOS
fb_ConsoleInkey()	and	fb_ConsoleGetkey()	use	DJGPP's	getch()
function	to	retrieve	input	characters	anytime	they're	called.	getch()
returns	ASCII	chars,	but	also	2-byte	sequences	for	special	keys,	which
are	easy	to	handle	because	they	match	the	SC_*	scancodes.
fb_ConsoleMultikey()	installs	an	interrupt	handler	that	uses	port	I/O	to
read	keyboard	information	and	updates	a	key	state	table	which	is
checked	by	multikey().

Win32
fb_ConsoleInkey()	and	fb_ConsoleGetkey()	(indirectly)	use	the	Win32	API
functions	PeekConsoleInput()	and	ReadConsoleInput()	to	get	queued	key
press/release	events	whenever	needed.	All	currently	pending	events	are
handled	during	a	call,	and	after	very	complex	internal	translation	involving
MapVirtualKey(),	the	keys	are	put	into	a	buffer,	from	where
fb_ConsoleInkey()	and	fb_ConsoleGetkey()	read	the	keys	they	return.

SetConsoleCtrlHandler()	is	used	to	listen	for	console	close/system
shutdown	events	to	provide	SC_CLOSE	events	for	console-mode	(the	win32
port	of	the	rtlib	might	be	the	only	one	going	this	far).

fb_ConsoleMultikey()	uses	a	FindWindow()/GetForegroundWindow()	hack
to	determine	whether	the	console	window	is	focused,	and	if	yes,	simply
uses	GetAsyncKeyState().

Linux,	*BSD
The	Unix	port	of	the	rtlib	runs	a	console	keyboard	handler	(and	a	console
mouse	handler)	in	a	background	thread,	in	order	to	provide	input	for
multikey()	(and	getmouse()).

fb_ConsoleInkey()	and	fb_ConsoleGetkey()	read	input	bytes	through	the
__fb_con.keyboard_getch()	hook.	By	default,	__fb_con.keyboard_getch()
points	to	a	simple	function	that	just	uses	fgetc()	on	/dev/tty	(indirectly;
the	Unix	rtlib	initialization	code	opens	the	handle,	and	changes	I/O
settings	etc.,	not	only	for	the	purpose	of	keyboard	input,	but	mostly).

The	terminal	returns	ASCII	chars	for	simple	key	presses,	and	special
escape	sequences	for	extended	keys.	On	the	first	call,	various	termcap
lookups	(via	tgetstr())	are	done	to	determine	these	terminal-specific
escape	sequences	for	certain	key	press	events,	and	they	are	put	into	a
lookup	tree	to	allow	easy	&	fast	translation	to	the	corresponding	FB
extended	keycodes.	By	doing	the	termcap	query	the	Unix	rtlib	can
support	all	the	different	terminals	(e.g.	xterm	vs.	linux)	quite	well,
although	there	still	are	some	keys	not	working	here	and	there.

Only	one	"event"	(ASCII	char	or	escape	sequence)	is	read	at	a	time,	the
resulting	key	is	added	to	a	key	buffer,	from	where	fb_ConsoleInkey()	and
fb_ConsoleGetkey()	can	read	it.

fb_ConsoleMultikey()	is	currently	implemented	for	the	Linux	port	only,	not
under	*BSD	though.	In	console-input	mode	(used	under	'console'/'linux'
terminals),	it	dup()licates	the	rtlib's	/dev/tty	handle,	and	switches	it	over
into	medium	raw	mode.	Then	it	overrides	the	background	thread's
__fb_con.keyboard_handler()	hook	to	a	function	that	read()s	kernel	key
codes	from	the	duplicated	/dev/tty	handle.
Called	from	the	background	thread,	it	reads	a	fixed	amount	of	input	at

once,	whenever	it	arrives.	After	somewhat	complex	translation,	a	key
state	table	is	updated	to	reflect	the	state	of	pressed/released	keys,	to	be
checked	by	fb_ConsoleMultikey()	at	any	time,	and	the	keys	are	added	to
a	key	buffer	from	where	an	overridden	__fb_con.keyboard_getch()	reads
them,	whenever	called	by	fb_ConsoleInkey()	or	fb_ConsoleGetkey()	[why
is	this	done?].	Furthermore,	the	keys	are	sent	to	the	Linux	fbdev	gfxlib2
driver,	if	it's	active.
In	X11	mode	(used	under	'xterm'	terminal),	fb_ConsoleMultikey()	sets	the
background	thread's	__fb_con.keyboard_handler()	to	a	function	that
checks	whether	the	xterm	has	input	focus	(XGetInputFocus())	and	if	yes,
simply	uses	XQueryKeymap()	to	update	the	key	state	table	for
fb_ConsoleMultikey().

gfxlib2

In	the	gfxlib,	fb_GfxInkey()	and	fb_GfxGetkey()	use	one	key	buffer	(same
code	on	all	platforms),	to	which	the	different/platform-specific	gfx	drivers
post	keys	to.	Similar	to	that,	there	is	a	single	key	state	table	for
fb_GfxMultikey(),	and	it	is	also	updated	by	the	gfx	drivers.	Whether	or
not	the	gfx	drivers	actually	do	post	keys	or	update	key	states	is	up	to
them	though.

DOS
The	DOS	gfxlib2	port	(for	all	DOS	gfx	drivers)	sets	a	hook/callback	that's
called	by	the	same	keyboard	interrupt	handler	used	by	the	DOS
fb_ConsoleMultikey().

Win32	driver
The	gfx	window	thread	listens	to	WM_KEYDOWN,	WM_CHAR	and	WM_CLOSE,
translates	the	keys,	and	then	updates	the	key	state	table,	posts	them	to
the	fb_GfxInkey()/fb_GfxGetkey()	buffer,	and	fills	in	&	posts	the
corresponding	EVENT	for	screenevent().

X11	driver
The	gfx	window	thread	listens	to	KeyPress	and	other	XEvent's,	translates
the	keys,	then	posts	them	etc.,	just	like	the	Win32	driver.

Linux	fbdev	driver
As	mentioned	above,	the	fbdev	driver	gets	its	input	from	the	same
keyboard	handler	code	that's	used	by	the	Linux	fb_ConsoleMultikey().

GNU	GENERAL	PUBLIC	LICENSE 	

Version	2,	June	1991

Copyright	(C)	1989,	1991	Free	Software	Foundation,	Inc.	
51	Franklin	Street,	Fifth	Floor,	Boston,	MA	02110-1301,	USA

Everyone	is	permitted	to	copy	and	distribute	verbatim	copies
of	this	license	document,	but	changing	it	is	not	allowed.

Preamble

The	licenses	for	most	software	are	designed	to	take	away	your	freedom
to	share	and	change	it.	By	contrast,	the	GNU	General	Public	License	is
intended	to	guarantee	your	freedom	to	share	and	change	free	software--
to	make	sure	the	software	is	free	for	all	its	users.	This	General	Public
License	applies	to	most	of	the	Free	Software	Foundation's	software	and
to	any	other	program	whose	authors	commit	to	using	it.	(Some	other	Free
Software	Foundation	software	is	covered	by	the	GNU	Library	General
Public	License	instead.)	You	can	apply	it	to	your	programs,	too.

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.
Our	General	Public	Licenses	are	designed	to	make	sure	that	you	have
the	freedom	to	distribute	copies	of	free	software	(and	charge	for	this
service	if	you	wish),	that	you	receive	source	code	or	can	get	it	if	you	want
it,	that	you	can	change	the	software	or	use	pieces	of	it	in	new	free
programs;	and	that	you	know	you	can	do	these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	anyone	to
deny	you	these	rights	or	to	ask	you	to	surrender	the	rights.	These
restrictions	translate	to	certain	responsibilities	for	you	if	you	distribute
copies	of	the	software,	or	if	you	modify	it.

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or
for	a	fee,	you	must	give	the	recipients	all	the	rights	that	you	have.	You
must	make	sure	that	they,	too,	receive	or	can	get	the	source	code.	And
you	must	show	them	these	terms	so	they	know	their	rights.

We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and	(2)
offer	you	this	license	which	gives	you	legal	permission	to	copy,	distribute
and/or	modify	the	software.

Also,	for	each	author's	protection	and	ours,	we	want	to	make	certain	that
everyone	understands	that	there	is	no	warranty	for	this	free	software.	If
the	software	is	modified	by	someone	else	and	passed	on,	we	want	its
recipients	to	know	that	what	they	have	is	not	the	original,	so	that	any
problems	introduced	by	others	will	not	reflect	on	the	original	authors'
reputations.

Finally,	any	free	program	is	threatened	constantly	by	software	patents.
We	wish	to	avoid	the	danger	that	redistributors	of	a	free	program	will
individually	obtain	patent	licenses,	in	effect	making	the	program
proprietary.	To	prevent	this,	we	have	made	it	clear	that	any	patent	must
be	licensed	for	everyone's	free	use	or	not	licensed	at	all.

The	precise	terms	and	conditions	for	copying,	distribution	and
modification	follow.
TERMS	AND	CONDITIONS	FOR	COPYING,	DISTRIBUTION	AND
MODIFICATION

0.	This	License	applies	to	any	program	or	other	work	which	contains	a
notice	placed	by	the	copyright	holder	saying	it	may	be	distributed	under
the	terms	of	this	General	Public	License.	The	"Program",	below,	refers	to
any	such	program	or	work,	and	a	"work	based	on	the	Program"	means
either	the	Program	or	any	derivative	work	under	copyright	law:	that	is	to
say,	a	work	containing	the	Program	or	a	portion	of	it,	either	verbatim	or
with	modifications	and/or	translated	into	another	language.	(Hereinafter,
translation	is	included	without	limitation	in	the	term	"modification".)	Each
licensee	is	addressed	as	"you".

Activities	other	than	copying,	distribution	and	modification	are	not
covered	by	this	License;	they	are	outside	its	scope.	The	act	of	running
the	Program	is	not	restricted,	and	the	output	from	the	Program	is	covered
only	if	its	contents	constitute	a	work	based	on	the	Program	(independent
of	having	been	made	by	running	the	Program).	Whether	that	is	true
depends	on	what	the	Program	does.

1.	You	may	copy	and	distribute	verbatim	copies	of	the	Program's	source
code	as	you	receive	it,	in	any	medium,	provided	that	you	conspicuously
and	appropriately	publish	on	each	copy	an	appropriate	copyright	notice
and	disclaimer	of	warranty;	keep	intact	all	the	notices	that	refer	to	this
License	and	to	the	absence	of	any	warranty;	and	give	any	other
recipients	of	the	Program	a	copy	of	this	License	along	with	the	Program.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you
may	at	your	option	offer	warranty	protection	in	exchange	for	a	fee.

2.	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion	of
it,	thus	forming	a	work	based	on	the	Program,	and	copy	and	distribute
such	modifications	or	work	under	the	terms	of	Section	1	above,	provided
that	you	also	meet	all	of	these	conditions:

You	must	cause	the	modified	files	to	carry	prominent	notices
stating	that	you	changed	the	files	and	the	date	of	any	change.	

You	must	cause	any	work	that	you	distribute	or	publish,	that	in
whole	or	in	part	contains	or	is	derived	from	the	Program	or	any
part	thereof,	to	be	licensed	as	a	whole	at	no	charge	to	all	third
parties	under	the	terms	of	this	License.	

If	the	modified	program	normally	reads	commands	interactively
when	run,	you	must	cause	it,	when	started	running	for	such
interactive	use	in	the	most	ordinary	way,	to	print	or	display	an
announcement	including	an	appropriate	copyright	notice	and	a
notice	that	there	is	no	warranty	(or	else,	saying	that	you	provide	a
warranty)	and	that	users	may	redistribute	the	program	under	these
conditions,	and	telling	the	user	how	to	view	a	copy	of	this	License.
(Exception:	if	the	Program	itself	is	interactive	but	does	not
normally	print	such	an	announcement,	your	work	based	on	the
Program	is	not	required	to	print	an	announcement.)	

These	requirements	apply	to	the	modified	work	as	a	whole.	If	identifiable
sections	of	that	work	are	not	derived	from	the	Program,	and	can	be
reasonably	considered	independent	and	separate	works	in	themselves,
then	this	License,	and	its	terms,	do	not	apply	to	those	sections	when	you

distribute	them	as	separate	works.	But	when	you	distribute	the	same
sections	as	part	of	a	whole	which	is	a	work	based	on	the	Program,	the
distribution	of	the	whole	must	be	on	the	terms	of	this	License,	whose
permissions	for	other	licensees	extend	to	the	entire	whole,	and	thus	to
each	and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your
rights	to	work	written	entirely	by	you;	rather,	the	intent	is	to	exercise	the
right	to	control	the	distribution	of	derivative	or	collective	works	based	on
the	Program.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program
with	the	Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of	a
storage	or	distribution	medium	does	not	bring	the	other	work	under	the
scope	of	this	License.

3.	You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,	under
Section	2)	in	object	code	or	executable	form	under	the	terms	of	Sections
1	and	2	above	provided	that	you	also	do	one	of	the	following:

Accompany	it	with	the	complete	corresponding	machine-readable
source	code,	which	must	be	distributed	under	the	terms	of
Sections	1	and	2	above	on	a	medium	customarily	used	for
software	interchange;	or,	

Accompany	it	with	a	written	offer,	valid	for	at	least	three	years,	to
give	any	third	party,	for	a	charge	no	more	than	your	cost	of
physically	performing	source	distribution,	a	complete	machine-
readable	copy	of	the	corresponding	source	code,	to	be	distributed
under	the	terms	of	Sections	1	and	2	above	on	a	medium
customarily	used	for	software	interchange;	or,	

Accompany	it	with	the	information	you	received	as	to	the	offer	to
distribute	corresponding	source	code.	(This	alternative	is	allowed
only	for	noncommercial	distribution	and	only	if	you	received	the
program	in	object	code	or	executable	form	with	such	an	offer,	in
accord	with	Subsection	b	above.)	

The	source	code	for	a	work	means	the	preferred	form	of	the	work	for
making	modifications	to	it.	For	an	executable	work,	complete	source	code
means	all	the	source	code	for	all	modules	it	contains,	plus	any
associated	interface	definition	files,	plus	the	scripts	used	to	control
compilation	and	installation	of	the	executable.	However,	as	a	special
exception,	the	source	code	distributed	need	not	include	anything	that	is
normally	distributed	(in	either	source	or	binary	form)	with	the	major
components	(compiler,	kernel,	and	so	on)	of	the	operating	system	on
which	the	executable	runs,	unless	that	component	itself	accompanies	the
executable.

If	distribution	of	executable	or	object	code	is	made	by	offering	access	to
copy	from	a	designated	place,	then	offering	equivalent	access	to	copy
the	source	code	from	the	same	place	counts	as	distribution	of	the	source
code,	even	though	third	parties	are	not	compelled	to	copy	the	source
along	with	the	object	code.

4.	You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program	except
as	expressly	provided	under	this	License.	Any	attempt	otherwise	to	copy,
modify,	sublicense	or	distribute	the	Program	is	void,	and	will
automatically	terminate	your	rights	under	this	License.	However,	parties
who	have	received	copies,	or	rights,	from	you	under	this	License	will	not
have	their	licenses	terminated	so	long	as	such	parties	remain	in	full
compliance.

5.	You	are	not	required	to	accept	this	License,	since	you	have	not	signed
it.	However,	nothing	else	grants	you	permission	to	modify	or	distribute	the
Program	or	its	derivative	works.	These	actions	are	prohibited	by	law	if
you	do	not	accept	this	License.	Therefore,	by	modifying	or	distributing	the
Program	(or	any	work	based	on	the	Program),	you	indicate	your
acceptance	of	this	License	to	do	so,	and	all	its	terms	and	conditions	for
copying,	distributing	or	modifying	the	Program	or	works	based	on	it.

6.	Each	time	you	redistribute	the	Program	(or	any	work	based	on	the
Program),	the	recipient	automatically	receives	a	license	from	the	original
licensor	to	copy,	distribute	or	modify	the	Program	subject	to	these	terms
and	conditions.	You	may	not	impose	any	further	restrictions	on	the
recipients'	exercise	of	the	rights	granted	herein.	You	are	not	responsible
for	enforcing	compliance	by	third	parties	to	this	License.

7.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent
infringement	or	for	any	other	reason	(not	limited	to	patent	issues),
conditions	are	imposed	on	you	(whether	by	court	order,	agreement	or
otherwise)	that	contradict	the	conditions	of	this	License,	they	do	not
excuse	you	from	the	conditions	of	this	License.	If	you	cannot	distribute	so
as	to	satisfy	simultaneously	your	obligations	under	this	License	and	any
other	pertinent	obligations,	then	as	a	consequence	you	may	not	distribute
the	Program	at	all.	For	example,	if	a	patent	license	would	not	permit
royalty-free	redistribution	of	the	Program	by	all	those	who	receive	copies
directly	or	indirectly	through	you,	then	the	only	way	you	could	satisfy	both
it	and	this	License	would	be	to	refrain	entirely	from	distribution	of	the
Program.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any
particular	circumstance,	the	balance	of	the	section	is	intended	to	apply
and	the	section	as	a	whole	is	intended	to	apply	in	other	circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents
or	other	property	right	claims	or	to	contest	validity	of	any	such	claims;	this
section	has	the	sole	purpose	of	protecting	the	integrity	of	the	free
software	distribution	system,	which	is	implemented	by	public	license
practices.	Many	people	have	made	generous	contributions	to	the	wide
range	of	software	distributed	through	that	system	in	reliance	on
consistent	application	of	that	system;	it	is	up	to	the	author/donor	to
decide	if	he	or	she	is	willing	to	distribute	software	through	any	other
system	and	a	licensee	cannot	impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

8.	If	the	distribution	and/or	use	of	the	Program	is	restricted	in	certain
countries	either	by	patents	or	by	copyrighted	interfaces,	the	original
copyright	holder	who	places	the	Program	under	this	License	may	add	an
explicit	geographical	distribution	limitation	excluding	those	countries,	so
that	distribution	is	permitted	only	in	or	among	countries	not	thus
excluded.	In	such	case,	this	License	incorporates	the	limitation	as	if
written	in	the	body	of	this	License.

9.	The	Free	Software	Foundation	may	publish	revised	and/or	new
versions	of	the	General	Public	License	from	time	to	time.	Such	new
versions	will	be	similar	in	spirit	to	the	present	version,	but	may	differ	in
detail	to	address	new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Program
specifies	a	version	number	of	this	License	which	applies	to	it	and	"any
later	version",	you	have	the	option	of	following	the	terms	and	conditions
either	of	that	version	or	of	any	later	version	published	by	the	Free
Software	Foundation.	If	the	Program	does	not	specify	a	version	number
of	this	License,	you	may	choose	any	version	ever	published	by	the	Free
Software	Foundation.

10.	If	you	wish	to	incorporate	parts	of	the	Program	into	other	free
programs	whose	distribution	conditions	are	different,	write	to	the	author
to	ask	for	permission.	For	software	which	is	copyrighted	by	the	Free
Software	Foundation,	write	to	the	Free	Software	Foundation;	we
sometimes	make	exceptions	for	this.	Our	decision	will	be	guided	by	the
two	goals	of	preserving	the	free	status	of	all	derivatives	of	our	free
software	and	of	promoting	the	sharing	and	reuse	of	software	generally.

NO	WARRANTY

11.	BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,
THERE	IS	NO	WARRANTY	FOR	THE	PROGRAM,	TO	THE	EXTENT
PERMITTED	BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE
STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER
PARTIES	PROVIDE	THE	PROGRAM	"AS	IS"	WITHOUT	WARRANTY
OF	ANY	KIND,	EITHER	EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT
NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.
THE	ENTIRE	RISK	AS	TO	THE	QUALITY	AND	PERFORMANCE	OF
THE	PROGRAM	IS	WITH	YOU.	SHOULD	THE	PROGRAM	PROVE
DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL	NECESSARY
SERVICING,	REPAIR	OR	CORRECTION.

12.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY
OTHER	PARTY	WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE	THE

PROGRAM	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR
DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR
CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OR
INABILITY	TO	USE	THE	PROGRAM	(INCLUDING	BUT	NOT	LIMITED
TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE	OR
LOSSES	SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF
THE	PROGRAM	TO	OPERATE	WITH	ANY	OTHER	PROGRAMS),
EVEN	IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS	BEEN	ADVISED	OF
THE	POSSIBILITY	OF	SUCH	DAMAGES.

GNU	LESSER	GENERAL	PUBLIC	LICENSE 	

Version	2.1,	February	1999

Copyright	(C)	1991,	1999	Free	Software	Foundation,	Inc.	59	Temple
Place,	Suite	330,	Boston,	MA	02111-1307	USA

Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this
license	document,	but	changing	it	is	not	allowed.

[This	is	the	first	released	version	of	the	Lesser	GPL.	It	also	counts	as	the
successor	of	the	GNU	Library	Public	License,	version	2,	hence	the
version	number	2.1.]

Preamble

The	licenses	for	most	software	are	designed	to	take	away	your	freedom
to	share	and	change	it.	By	contrast,	the	GNU	General	Public	Licenses
are	intended	to	guarantee	your	freedom	to	share	and	change	free
software--to	make	sure	the	software	is	free	for	all	its	users.

This	license,	the	Lesser	General	Public	License,	applies	to	some
specially	designated	software	packages--typically	libraries--of	the	Free
Software	Foundation	and	other	authors	who	decide	to	use	it.	You	can	use
it	too,	but	we	suggest	you	first	think	carefully	about	whether	this	license
or	the	ordinary	General	Public	License	is	the	better	strategy	to	use	in	any
particular	case,	based	on	the	explanations	below.

When	we	speak	of	free	software,	we	are	referring	to	freedom	of	use,	not
price.	Our	General	Public	Licenses	are	designed	to	make	sure	that	you
have	the	freedom	to	distribute	copies	of	free	software	(and	charge	for	this
service	if	you	wish);	that	you	receive	source	code	or	can	get	it	if	you	want
it;	that	you	can	change	the	software	and	use	pieces	of	it	in	new	free
programs;	and	that	you	are	informed	that	you	can	do	these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	distributors
to	deny	you	these	rights	or	to	ask	you	to	surrender	these	rights.	These
restrictions	translate	to	certain	responsibilities	for	you	if	you	distribute

copies	of	the	library	or	if	you	modify	it.

For	example,	if	you	distribute	copies	of	the	library,	whether	gratis	or	for	a
fee,	you	must	give	the	recipients	all	the	rights	that	we	gave	you.	You
must	make	sure	that	they,	too,	receive	or	can	get	the	source	code.	If	you
link	other	code	with	the	library,	you	must	provide	complete	object	files	to
the	recipients,	so	that	they	can	relink	them	with	the	library	after	making
changes	to	the	library	and	recompiling	it.	And	you	must	show	them	these
terms	so	they	know	their	rights.

We	protect	your	rights	with	a	two-step	method:	(1)	we	copyright	the
library,	and	(2)	we	offer	you	this	license,	which	gives	you	legal	permission
to	copy,	distribute	and/or	modify	the	library.

To	protect	each	distributor,	we	want	to	make	it	very	clear	that	there	is	no
warranty	for	the	free	library.	Also,	if	the	library	is	modified	by	someone
else	and	passed	on,	the	recipients	should	know	that	what	they	have	is
not	the	original	version,	so	that	the	original	author's	reputation	will	not	be
affected	by	problems	that	might	be	introduced	by	others.

Finally,	software	patents	pose	a	constant	threat	to	the	existence	of	any
free	program.	We	wish	to	make	sure	that	a	company	cannot	effectively
restrict	the	users	of	a	free	program	by	obtaining	a	restrictive	license	from
a	patent	holder.	Therefore,	we	insist	that	any	patent	license	obtained	for
a	version	of	the	library	must	be	consistent	with	the	full	freedom	of	use
specified	in	this	license.

Most	GNU	software,	including	some	libraries,	is	covered	by	the	ordinary
GNU	General	Public	License.	This	license,	the	GNU	Lesser	General
Public	License,	applies	to	certain	designated	libraries,	and	is	quite
different	from	the	ordinary	General	Public	License.	We	use	this	license
for	certain	libraries	in	order	to	permit	linking	those	libraries	into	non-free
programs.

When	a	program	is	linked	with	a	library,	whether	statically	or	using	a
shared	library,	the	combination	of	the	two	is	legally	speaking	a	combined
work,	a	derivative	of	the	original	library.	The	ordinary	General	Public
License	therefore	permits	such	linking	only	if	the	entire	combination	fits
its	criteria	of	freedom.	The	Lesser	General	Public	License	permits	more

lax	criteria	for	linking	other	code	with	the	library.

We	call	this	license	the	"Lesser"	General	Public	License	because	it	does
Less	to	protect	the	user's	freedom	than	the	ordinary	General	Public
License.	It	also	provides	other	free	software	developers	Less	of	an
advantage	over	competing	non-free	programs.	These	disadvantages	are
the	reason	we	use	the	ordinary	General	Public	License	for	many	libraries.
However,	the	Lesser	license	provides	advantages	in	certain	special
circumstances.

For	example,	on	rare	occasions,	there	may	be	a	special	need	to
encourage	the	widest	possible	use	of	a	certain	library,	so	that	it	becomes
a	de-facto	standard.	To	achieve	this,	non-free	programs	must	be	allowed
to	use	the	library.	A	more	frequent	case	is	that	a	free	library	does	the
same	job	as	widely	used	non-free	libraries.	In	this	case,	there	is	little	to
gain	by	limiting	the	free	library	to	free	software	only,	so	we	use	the	Lesser
General	Public	License.

In	other	cases,	permission	to	use	a	particular	library	in	non-free	programs
enables	a	greater	number	of	people	to	use	a	large	body	of	free	software.
For	example,	permission	to	use	the	GNU	C	Library	in	non-free	programs
enables	many	more	people	to	use	the	whole	GNU	operating	system,	as
well	as	its	variant,	the	GNU/Linux	operating	system.

Although	the	Lesser	General	Public	License	is	Less	protective	of	the
users'	freedom,	it	does	ensure	that	the	user	of	a	program	that	is	linked
with	the	Library	has	the	freedom	and	the	wherewithal	to	run	that	program
using	a	modified	version	of	the	Library.

The	precise	terms	and	conditions	for	copying,	distribution	and
modification	follow.	Pay	close	attention	to	the	difference	between	a	"work
based	on	the	library"	and	a	"work	that	uses	the	library".	The	former
contains	code	derived	from	the	library,	whereas	the	latter	must	be
combined	with	the	library	in	order	to	run.

GNU	LESSER	GENERAL	PUBLIC	LICENSE
TERMS	AND	CONDITIONS	FOR	COPYING,	DISTRIBUTION	AND
MODIFICATION

0.	This	License	Agreement	applies	to	any	software	library	or	other
program	which	contains	a	notice	placed	by	the	copyright	holder	or	other
authorized	party	saying	it	may	be	distributed	under	the	terms	of	this
Lesser	General	Public	License	(also	called	"this	License").	Each	licensee
is	addressed	as	"you".

A	"library"	means	a	collection	of	software	functions	and/or	data	prepared
so	as	to	be	conveniently	linked	with	application	programs	(which	use
some	of	those	functions	and	data)	to	form	executables.

The	"Library",	below,	refers	to	any	such	software	library	or	work	which
has	been	distributed	under	these	terms.	A	"work	based	on	the	Library"
means	either	the	Library	or	any	derivative	work	under	copyright	law:	that
is	to	say,	a	work	containing	the	Library	or	a	portion	of	it,	either	verbatim	or
with	modifications	and/or	translated	straightforwardly	into	another
language.	(Hereinafter,	translation	is	included	without	limitation	in	the
term	"modification".)

"Source	code"	for	a	work	means	the	preferred	form	of	the	work	for
making	modifications	to	it.	For	a	library,	complete	source	code	means	all
the	source	code	for	all	modules	it	contains,	plus	any	associated	interface
definition	files,	plus	the	scripts	used	to	control	compilation	and	installation
of	the	library.

Activities	other	than	copying,	distribution	and	modification	are	not
covered	by	this	License;	they	are	outside	its	scope.	The	act	of	running	a
program	using	the	Library	is	not	restricted,	and	output	from	such	a
program	is	covered	only	if	its	contents	constitute	a	work	based	on	the
Library	(independent	of	the	use	of	the	Library	in	a	tool	for	writing	it).
Whether	that	is	true	depends	on	what	the	Library	does	and	what	the
program	that	uses	the	Library	does.

1.	You	may	copy	and	distribute	verbatim	copies	of	the	Library's	complete
source	code	as	you	receive	it,	in	any	medium,	provided	that	you
conspicuously	and	appropriately	publish	on	each	copy	an	appropriate
copyright	notice	and	disclaimer	of	warranty;	keep	intact	all	the	notices
that	refer	to	this	License	and	to	the	absence	of	any	warranty;	and
distribute	a	copy	of	this	License	along	with	the	Library.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you
may	at	your	option	offer	warranty	protection	in	exchange	for	a	fee.

2.	You	may	modify	your	copy	or	copies	of	the	Library	or	any	portion	of	it,
thus	forming	a	work	based	on	the	Library,	and	copy	and	distribute	such
modifications	or	work	under	the	terms	of	Section	1	above,	provided	that
you	also	meet	all	of	these	conditions:

a)	The	modified	work	must	itself	be	a	software	library.

b)	You	must	cause	the	files	modified	to	carry	prominent	notices	stating
that	you	changed	the	files	and	the	date	of	any	change.

c)	You	must	cause	the	whole	of	the	work	to	be	licensed	at	no	charge	to
all	third	parties	under	the	terms	of	this	License.

d)	If	a	facility	in	the	modified	Library	refers	to	a	function	or	a	table	of	data
to	be	supplied	by	an	application	program	that	uses	the	facility,	other	than
as	an	argument	passed	when	the	facility	is	invoked,	then	you	must	make
a	good	faith	effort	to	ensure	that,	in	the	event	an	application	does	not
supply	such	function	or	table,	the	facility	still	operates,	and	performs
whatever	part	of	its	purpose	remains	meaningful.

(For	example,	a	function	in	a	library	to	compute	square	roots	has	a
purpose	that	is	entirely	well-defined	independent	of	the	application.
Therefore,	Subsection	2d	requires	that	any	application-supplied	function
or	table	used	by	this	function	must	be	optional:	if	the	application	does	not
supply	it,	the	square	root	function	must	still	compute	square	roots.)

These	requirements	apply	to	the	modified	work	as	a	whole.	If	identifiable
sections	of	that	work	are	not	derived	from	the	Library,	and	can	be
reasonably	considered	independent	and	separate	works	in	themselves,
then	this	License,	and	its	terms,	do	not	apply	to	those	sections	when	you
distribute	them	as	separate	works.	But	when	you	distribute	the	same
sections	as	part	of	a	whole	which	is	a	work	based	on	the	Library,	the
distribution	of	the	whole	must	be	on	the	terms	of	this	License,	whose
permissions	for	other	licensees	extend	to	the	entire	whole,	and	thus	to
each	and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your
rights	to	work	written	entirely	by	you;	rather,	the	intent	is	to	exercise	the
right	to	control	the	distribution	of	derivative	or	collective	works	based	on
the	Library.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Library
with	the	Library	(or	with	a	work	based	on	the	Library)	on	a	volume	of	a
storage	or	distribution	medium	does	not	bring	the	other	work	under	the
scope	of	this	License.

3.	You	may	opt	to	apply	the	terms	of	the	ordinary	GNU	General	Public
License	instead	of	this	License	to	a	given	copy	of	the	Library.	To	do	this,
you	must	alter	all	the	notices	that	refer	to	this	License,	so	that	they	refer
to	the	ordinary	GNU	General	Public	License,	version	2,	instead	of	to	this
License.	(If	a	newer	version	than	version	2	of	the	ordinary	GNU	General
Public	License	has	appeared,	then	you	can	specify	that	version	instead	if
you	wish.)	Do	not	make	any	other	change	in	these	notices.

Once	this	change	is	made	in	a	given	copy,	it	is	irreversible	for	that	copy,
so	the	ordinary	GNU	General	Public	License	applies	to	all	subsequent
copies	and	derivative	works	made	from	that	copy.

This	option	is	useful	when	you	wish	to	copy	part	of	the	code	of	the	Library
into	a	program	that	is	not	a	library.

4.	You	may	copy	and	distribute	the	Library	(or	a	portion	or	derivative	of	it,
under	Section	2)	in	object	code	or	executable	form	under	the	terms	of
Sections	1	and	2	above	provided	that	you	accompany	it	with	the
complete	corresponding	machine-readable	source	code,	which	must	be
distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium
customarily	used	for	software	interchange.

If	distribution	of	object	code	is	made	by	offering	access	to	copy	from	a
designated	place,	then	offering	equivalent	access	to	copy	the	source
code	from	the	same	place	satisfies	the	requirement	to	distribute	the
source	code,	even	though	third	parties	are	not	compelled	to	copy	the
source	along	with	the	object	code.

5.	A	program	that	contains	no	derivative	of	any	portion	of	the	Library,	but

is	designed	to	work	with	the	Library	by	being	compiled	or	linked	with	it,	is
called	a	"work	that	uses	the	Library".	Such	a	work,	in	isolation,	is	not	a
derivative	work	of	the	Library,	and	therefore	falls	outside	the	scope	of	this
License.

However,	linking	a	"work	that	uses	the	Library"	with	the	Library	creates
an	executable	that	is	a	derivative	of	the	Library	(because	it	contains
portions	of	the	Library),	rather	than	a	"work	that	uses	the	library".	The
executable	is	therefore	covered	by	this	License.	Section	6	states	terms
for	distribution	of	such	executables.

When	a	"work	that	uses	the	Library"	uses	material	from	a	header	file	that
is	part	of	the	Library,	the	object	code	for	the	work	may	be	a	derivative
work	of	the	Library	even	though	the	source	code	is	not.	Whether	this	is
true	is	especially	significant	if	the	work	can	be	linked	without	the	Library,
or	if	the	work	is	itself	a	library.	The	threshold	for	this	to	be	true	is	not
precisely	defined	by	law.

If	such	an	object	file	uses	only	numerical	parameters,	data	structure
layouts	and	accessors,	and	small	macros	and	small	inline	functions	(ten
lines	or	less	in	length),	then	the	use	of	the	object	file	is	unrestricted,
regardless	of	whether	it	is	legally	a	derivative	work.	(Executables
containing	this	object	code	plus	portions	of	the	Library	will	still	fall	under
Section	6.)

Otherwise,	if	the	work	is	a	derivative	of	the	Library,	you	may	distribute	the
object	code	for	the	work	under	the	terms	of	Section	6.	Any	executables
containing	that	work	also	fall	under	Section	6,	whether	or	not	they	are
linked	directly	with	the	Library	itself.

6.	As	an	exception	to	the	Sections	above,	you	may	also	combine	or	link	a
"work	that	uses	the	Library"	with	the	Library	to	produce	a	work	containing
portions	of	the	Library,	and	distribute	that	work	under	terms	of	your
choice,	provided	that	the	terms	permit	modification	of	the	work	for	the
customer's	own	use	and	reverse	engineering	for	debugging	such
modifications.

You	must	give	prominent	notice	with	each	copy	of	the	work	that	the
Library	is	used	in	it	and	that	the	Library	and	its	use	are	covered	by	this

License.	You	must	supply	a	copy	of	this	License.	If	the	work	during
execution	displays	copyright	notices,	you	must	include	the	copyright
notice	for	the	Library	among	them,	as	well	as	a	reference	directing	the
user	to	the	copy	of	this	License.	Also,	you	must	do	one	of	these	things:

a)	Accompany	the	work	with	the	complete	corresponding	machine-
readable	source	code	for	the	Library	including	whatever	changes	were
used	in	the	work	(which	must	be	distributed	under	Sections	1	and	2
above);	and,	if	the	work	is	an	executable	linked	with	the	Library,	with	the
complete	machine-readable	"work	that	uses	the	Library",	as	object	code
and/or	source	code,	so	that	the	user	can	modify	the	Library	and	then
relink	to	produce	a	modified	executable	containing	the	modified	Library.
(It	is	understood	that	the	user	who	changes	the	contents	of	definitions
files	in	the	Library	will	not	necessarily	be	able	to	recompile	the	application
to	use	the	modified	definitions.)

b)	Use	a	suitable	shared	library	mechanism	for	linking	with	the	Library.	A
suitable	mechanism	is	one	that	(1)	uses	at	run	time	a	copy	of	the	library
already	present	on	the	user's	computer	system,	rather	than	copying
library	functions	into	the	executable,	and	(2)	will	operate	properly	with	a
modified	version	of	the	library,	if	the	user	installs	one,	as	long	as	the
modified	version	is	interface-compatible	with	the	version	that	the	work
was	made	with.

c)	Accompany	the	work	with	a	written	offer,	valid	for	at	least	three	years,
to	give	the	same	user	the	materials	specified	in	Subsection	6a,	above,	for
a	charge	no	more	than	the	cost	of	performing	this	distribution.

d)	If	distribution	of	the	work	is	made	by	offering	access	to	copy	from	a
designated	place,	offer	equivalent	access	to	copy	the	above	specified
materials	from	the	same	place.

e)	Verify	that	the	user	has	already	received	a	copy	of	these	materials	or
that	you	have	already	sent	this	user	a	copy.

For	an	executable,	the	required	form	of	the	"work	that	uses	the	Library"
must	include	any	data	and	utility	programs	needed	for	reproducing	the
executable	from	it.	However,	as	a	special	exception,	the	materials	to	be
distributed	need	not	include	anything	that	is	normally	distributed	(in	either

source	or	binary	form)	with	the	major	components	(compiler,	kernel,	and
so	on)	of	the	operating	system	on	which	the	executable	runs,	unless	that
component	itself	accompanies	the	executable.

It	may	happen	that	this	requirement	contradicts	the	license	restrictions	of
other	proprietary	libraries	that	do	not	normally	accompany	the	operating
system.	Such	a	contradiction	means	you	cannot	use	both	them	and	the
Library	together	in	an	executable	that	you	distribute.

7.	You	may	place	library	facilities	that	are	a	work	based	on	the	Library
side-by-side	in	a	single	library	together	with	other	library	facilities	not
covered	by	this	License,	and	distribute	such	a	combined	library,	provided
that	the	separate	distribution	of	the	work	based	on	the	Library	and	of	the
other	library	facilities	is	otherwise	permitted,	and	provided	that	you	do
these	two	things:

a)	Accompany	the	combined	library	with	a	copy	of	the	same	work	based
on	the	Library,	uncombined	with	any	other	library	facilities.	This	must	be
distributed	under	the	terms	of	the	Sections	above.

b)	Give	prominent	notice	with	the	combined	library	of	the	fact	that	part	of
it	is	a	work	based	on	the	Library,	and	explaining	where	to	find	the
accompanying	uncombined	form	of	the	same	work.

8.	You	may	not	copy,	modify,	sublicense,	link	with,	or	distribute	the
Library	except	as	expressly	provided	under	this	License.	Any	attempt
otherwise	to	copy,	modify,	sublicense,	link	with,	or	distribute	the	Library	is
void,	and	will	automatically	terminate	your	rights	under	this	License.
However,	parties	who	have	received	copies,	or	rights,	from	you	under	this
License	will	not	have	their	licenses	terminated	so	long	as	such	parties
remain	in	full	compliance.

9.	You	are	not	required	to	accept	this	License,	since	you	have	not	signed
it.	However,	nothing	else	grants	you	permission	to	modify	or	distribute	the
Library	or	its	derivative	works.	These	actions	are	prohibited	by	law	if	you
do	not	accept	this	License.	Therefore,	by	modifying	or	distributing	the
Library	(or	any	work	based	on	the	Library),	you	indicate	your	acceptance
of	this	License	to	do	so,	and	all	its	terms	and	conditions	for	copying,
distributing	or	modifying	the	Library	or	works	based	on	it.

10.	Each	time	you	redistribute	the	Library	(or	any	work	based	on	the
Library),	the	recipient	automatically	receives	a	license	from	the	original
licensor	to	copy,	distribute,	link	with	or	modify	the	Library	subject	to	these
terms	and	conditions.	You	may	not	impose	any	further	restrictions	on	the
recipients'	exercise	of	the	rights	granted	herein.	You	are	not	responsible
for	enforcing	compliance	by	third	parties	with	this	License.

11.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent
infringement	or	for	any	other	reason	(not	limited	to	patent	issues),
conditions	are	imposed	on	you	(whether	by	court	order,	agreement	or
otherwise)	that	contradict	the	conditions	of	this	License,	they	do	not
excuse	you	from	the	conditions	of	this	License.	If	you	cannot	distribute	so
as	to	satisfy	simultaneously	your	obligations	under	this	License	and	any
other	pertinent	obligations,	then	as	a	consequence	you	may	not	distribute
the	Library	at	all.	For	example,	if	a	patent	license	would	not	permit
royalty-free	redistribution	of	the	Library	by	all	those	who	receive	copies
directly	or	indirectly	through	you,	then	the	only	way	you	could	satisfy	both
it	and	this	License	would	be	to	refrain	entirely	from	distribution	of	the
Library.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any
particular	circumstance,	the	balance	of	the	section	is	intended	to	apply,
and	the	section	as	a	whole	is	intended	to	apply	in	other	circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents
or	other	property	right	claims	or	to	contest	validity	of	any	such	claims;	this
section	has	the	sole	purpose	of	protecting	the	integrity	of	the	free
software	distribution	system	which	is	implemented	by	public	license
practices.	Many	people	have	made	generous	contributions	to	the	wide
range	of	software	distributed	through	that	system	in	reliance	on
consistent	application	of	that	system;	it	is	up	to	the	author/donor	to
decide	if	he	or	she	is	willing	to	distribute	software	through	any	other
system	and	a	licensee	cannot	impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

12.	If	the	distribution	and/or	use	of	the	Library	is	restricted	in	certain

countries	either	by	patents	or	by	copyrighted	interfaces,	the	original
copyright	holder	who	places	the	Library	under	this	License	may	add	an
explicit	geographical	distribution	limitation	excluding	those	countries,	so
that	distribution	is	permitted	only	in	or	among	countries	not	thus
excluded.	In	such	case,	this	License	incorporates	the	limitation	as	if
written	in	the	body	of	this	License.

13.	The	Free	Software	Foundation	may	publish	revised	and/or	new
versions	of	the	Lesser	General	Public	License	from	time	to	time.	Such
new	versions	will	be	similar	in	spirit	to	the	present	version,	but	may	differ
in	detail	to	address	new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Library
specifies	a	version	number	of	this	License	which	applies	to	it	and	"any
later	version",	you	have	the	option	of	following	the	terms	and	conditions
either	of	that	version	or	of	any	later	version	published	by	the	Free
Software	Foundation.	If	the	Library	does	not	specify	a	license	version
number,	you	may	choose	any	version	ever	published	by	the	Free
Software	Foundation.

14.	If	you	wish	to	incorporate	parts	of	the	Library	into	other	free	programs
whose	distribution	conditions	are	incompatible	with	these,	write	to	the
author	to	ask	for	permission.	For	software	which	is	copyrighted	by	the
Free	Software	Foundation,	write	to	the	Free	Software	Foundation;	we
sometimes	make	exceptions	for	this.	Our	decision	will	be	guided	by	the
two	goals	of	preserving	the	free	status	of	all	derivatives	of	our	free
software	and	of	promoting	the	sharing	and	reuse	of	software	generally.

NO	WARRANTY

15.	BECAUSE	THE	LIBRARY	IS	LICENSED	FREE	OF	CHARGE,
THERE	IS	NO	WARRANTY	FOR	THE	LIBRARY,	TO	THE	EXTENT
PERMITTED	BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE
STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER
PARTIES	PROVIDE	THE	LIBRARY	"AS	IS"	WITHOUT	WARRANTY	OF
ANY	KIND,	EITHER	EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT	NOT
LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY
AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	ENTIRE	RISK	AS
TO	THE	QUALITY	AND	PERFORMANCE	OF	THE	LIBRARY	IS	WITH

YOU.	SHOULD	THE	LIBRARY	PROVE	DEFECTIVE,	YOU	ASSUME
THE	COST	OF	ALL	NECESSARY	SERVICING,	REPAIR	OR
CORRECTION.

16.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY
OTHER	PARTY	WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE	THE
LIBRARY	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR
DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR
CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OR
INABILITY	TO	USE	THE	LIBRARY	(INCLUDING	BUT	NOT	LIMITED	TO
LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE	OR
LOSSES	SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF
THE	LIBRARY	TO	OPERATE	WITH	ANY	OTHER	SOFTWARE),	EVEN
IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS	BEEN	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGES.

END	OF	TERMS	AND	CONDITIONS

How	to	Apply	These	Terms	to	Your	New	Libraries

If	you	develop	a	new	library,	and	you	want	it	to	be	of	the	greatest	possible
use	to	the	public,	we	recommend	making	it	free	software	that	everyone
can	redistribute	and	change.	You	can	do	so	by	permitting	redistribution
under	these	terms	(or,	alternatively,	under	the	terms	of	the	ordinary
General	Public	License).

To	apply	these	terms,	attach	the	following	notices	to	the	library.	It	is
safest	to	attach	them	to	the	start	of	each	source	file	to	most	effectively
convey	the	exclusion	of	warranty;	and	each	file	should	have	at	least	the
"copyright"	line	and	a	pointer	to	where	the	full	notice	is	found.

<one	line	to	give	the	library's	name	and	a	brief	idea	of	what	it	does.>
Copyright	(C)	<year>	<name	of	author>

This	library	is	free	software;	you	can	redistribute	it	and/or	modify	it	under
the	terms	of	the	GNU	Lesser	General	Public	License	as	published	by	the
Free	Software	Foundation;	either	version	2.1	of	the	License,	or	(at	your
option)	any	later	version.

This	library	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT
ANY	WARRANTY;	without	even	the	implied	warranty	of
MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See
the	GNU	Lesser	General	Public	License	for	more	details.

You	should	have	received	a	copy	of	the	GNU	Lesser	General	Public
License	along	with	this	library;	if	not,	write	to	the	Free	Software
Foundation,	Inc.,	59	Temple	Place,	Suite	330,	Boston,	MA	02111-1307
USA

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	your
school,	if	any,	to	sign	a	"copyright	disclaimer"	for	the	library,	if	necessary.
Here	is	a	sample;	alter	the	names:

Yoyodyne,	Inc.,	hereby	disclaims	all	copyright	interest	in	the	library	`Frob'
(a	library	for	tweaking	knobs)	written	by	James	Random	Hacker.

<signature	of	Ty	Coon>,	1	April	1990
Ty	Coon,	President	of	Vice

That's	all	there	is	to	it!

GNU	Free	Documentation	License 	

Version	1.2,	November	2002

Copyright	(C)	2000,2001,2002	Free	Software	Foundation,	Inc.
51	Franklin	St,	Fifth	Floor,	Boston,	MA	02110-1301	USA
Everyone	is	permitted	to	copy	and	distribute	verbatim	copies
of	this	license	document,	but	changing	it	is	not	allowed.

0.	PREAMBLE

The	purpose	of	this	License	is	to	make	a	manual,	textbook,	or	other
functional	and	useful	document	"free"	in	the	sense	of	freedom:	to	assure
everyone	the	effective	freedom	to	copy	and	redistribute	it,	with	or	without
modifying	it,	either	commercially	or	noncommercially.	Secondarily,	this
License	preserves	for	the	author	and	publisher	a	way	to	get	credit	for
their	work,	while	not	being	considered	responsible	for	modifications	made
by	others.

This	License	is	a	kind	of	"copyleft",	which	means	that	derivative	works	of
the	document	must	themselves	be	free	in	the	same	sense.	It
complements	the	GNU	General	Public	License,	which	is	a	copyleft
license	designed	for	free	software.

We	have	designed	this	License	in	order	to	use	it	for	manuals	for	free
software,	because	free	software	needs	free	documentation:	a	free
program	should	come	with	manuals	providing	the	same	freedoms	that
the	software	does.	But	this	License	is	not	limited	to	software	manuals;	it
can	be	used	for	any	textual	work,	regardless	of	subject	matter	or	whether
it	is	published	as	a	printed	book.	We	recommend	this	License	principally
for	works	whose	purpose	is	instruction	or	reference.

1.	APPLICABILITY	AND	DEFINITIONS

This	License	applies	to	any	manual	or	other	work,	in	any	medium,	that
contains	a	notice	placed	by	the	copyright	holder	saying	it	can	be
distributed	under	the	terms	of	this	License.	Such	a	notice	grants	a	world-
wide,	royalty-free	license,	unlimited	in	duration,	to	use	that	work	under

the	conditions	stated	herein.	The	"Document",	below,	refers	to	any	such
manual	or	work.	Any	member	of	the	public	is	a	licensee,	and	is
addressed	as	"you".	You	accept	the	license	if	you	copy,	modify	or
distribute	the	work	in	a	way	requiring	permission	under	copyright	law.

A	"Modified	Version"	of	the	Document	means	any	work	containing	the
Document	or	a	portion	of	it,	either	copied	verbatim,	or	with	modifications
and/or	translated	into	another	language.

A	"Secondary	Section"	is	a	named	appendix	or	a	front-matter	section	of
the	Document	that	deals	exclusively	with	the	relationship	of	the
publishers	or	authors	of	the	Document	to	the	Document's	overall	subject
(or	to	related	matters)	and	contains	nothing	that	could	fall	directly	within
that	overall	subject.	(Thus,	if	the	Document	is	in	part	a	textbook	of
mathematics,	a	Secondary	Section	may	not	explain	any	mathematics.)
The	relationship	could	be	a	matter	of	historical	connection	with	the
subject	or	with	related	matters,	or	of	legal,	commercial,	philosophical,
ethical	or	political	position	regarding	them.

The	"Invariant	Sections"	are	certain	Secondary	Sections	whose	titles	are
designated,	as	being	those	of	Invariant	Sections,	in	the	notice	that	says
that	the	Document	is	released	under	this	License.	If	a	section	does	not	fit
the	above	definition	of	Secondary	then	it	is	not	allowed	to	be	designated
as	Invariant.	The	Document	may	contain	zero	Invariant	Sections.	If	the
Document	does	not	identify	any	Invariant	Sections	then	there	are	none.

The	"Cover	Texts"	are	certain	short	passages	of	text	that	are	listed,	as
Front-Cover	Texts	or	Back-Cover	Texts,	in	the	notice	that	says	that	the
Document	is	released	under	this	License.	A	Front-Cover	Text	may	be	at
most	5	words,	and	a	Back-Cover	Text	may	be	at	most	25	words.

A	"Transparent"	copy	of	the	Document	means	a	machine-readable	copy,
represented	in	a	format	whose	specification	is	available	to	the	general
public,	that	is	suitable	for	revising	the	document	straightforwardly	with
generic	text	editors	or	(for	images	composed	of	pixels)	generic	paint
programs	or	(for	drawings)	some	widely	available	drawing	editor,	and	that
is	suitable	for	input	to	text	formatters	or	for	automatic	translation	to	a
variety	of	formats	suitable	for	input	to	text	formatters.	A	copy	made	in	an
otherwise	Transparent	file	format	whose	markup,	or	absence	of	markup,

has	been	arranged	to	thwart	or	discourage	subsequent	modification	by
readers	is	not	Transparent.	An	image	format	is	not	Transparent	if	used
for	any	substantial	amount	of	text.	A	copy	that	is	not	"Transparent"	is
called	"Opaque".

Examples	of	suitable	formats	for	Transparent	copies	include	plain	ASCII
without	markup,	Texinfo	input	format,	LaTeX	input	format,	SGML	or	XML
using	a	publicly	available	DTD,	and	standard-conforming	simple	HTML,
PostScript	or	PDF	designed	for	human	modification.	Examples	of
transparent	image	formats	include	PNG,	XCF	and	JPG.	Opaque	formats
include	proprietary	formats	that	can	be	read	and	edited	only	by
proprietary	word	processors,	SGML	or	XML	for	which	the	DTD	and/or
processing	tools	are	not	generally	available,	and	the	machine-generated
HTML,	PostScript	or	PDF	produced	by	some	word	processors	for	output
purposes	only.

The	"Title	Page"	means,	for	a	printed	book,	the	title	page	itself,	plus	such
following	pages	as	are	needed	to	hold,	legibly,	the	material	this	License
requires	to	appear	in	the	title	page.	For	works	in	formats	which	do	not
have	any	title	page	as	such,	"Title	Page"	means	the	text	near	the	most
prominent	appearance	of	the	work's	title,	preceding	the	beginning	of	the
body	of	the	text.

A	section	"Entitled	XYZ"	means	a	named	subunit	of	the	Document	whose
title	either	is	precisely	XYZ	or	contains	XYZ	in	parentheses	following	text
that	translates	XYZ	in	another	language.	(Here	XYZ	stands	for	a	specific
section	name	mentioned	below,	such	as	"Acknowledgements",
"Dedications",	"Endorsements",	or	"History".)	To	"Preserve	the	Title"	of
such	a	section	when	you	modify	the	Document	means	that	it	remains	a
section	"Entitled	XYZ"	according	to	this	definition.

The	Document	may	include	Warranty	Disclaimers	next	to	the	notice
which	states	that	this	License	applies	to	the	Document.	These	Warranty
Disclaimers	are	considered	to	be	included	by	reference	in	this	License,
but	only	as	regards	disclaiming	warranties:	any	other	implication	that
these	Warranty	Disclaimers	may	have	is	void	and	has	no	effect	on	the
meaning	of	this	License.

2.	VERBATIM	COPYING

You	may	copy	and	distribute	the	Document	in	any	medium,	either
commercially	or	noncommercially,	provided	that	this	License,	the
copyright	notices,	and	the	license	notice	saying	this	License	applies	to
the	Document	are	reproduced	in	all	copies,	and	that	you	add	no	other
conditions	whatsoever	to	those	of	this	License.	You	may	not	use
technical	measures	to	obstruct	or	control	the	reading	or	further	copying	of
the	copies	you	make	or	distribute.	However,	you	may	accept
compensation	in	exchange	for	copies.	If	you	distribute	a	large	enough
number	of	copies	you	must	also	follow	the	conditions	in	section	3.

You	may	also	lend	copies,	under	the	same	conditions	stated	above,	and
you	may	publicly	display	copies.

3.	COPYING	IN	QUANTITY

If	you	publish	printed	copies	(or	copies	in	media	that	commonly	have
printed	covers)	of	the	Document,	numbering	more	than	100,	and	the
Document's	license	notice	requires	Cover	Texts,	you	must	enclose	the
copies	in	covers	that	carry,	clearly	and	legibly,	all	these	Cover	Texts:
Front-Cover	Texts	on	the	front	cover,	and	Back-Cover	Texts	on	the	back
cover.	Both	covers	must	also	clearly	and	legibly	identify	you	as	the
publisher	of	these	copies.	The	front	cover	must	present	the	full	title	with
all	words	of	the	title	equally	prominent	and	visible.	You	may	add	other
material	on	the	covers	in	addition.	Copying	with	changes	limited	to	the
covers,	as	long	as	they	preserve	the	title	of	the	Document	and	satisfy
these	conditions,	can	be	treated	as	verbatim	copying	in	other	respects.

If	the	required	texts	for	either	cover	are	too	voluminous	to	fit	legibly,	you
should	put	the	first	ones	listed	(as	many	as	fit	reasonably)	on	the	actual
cover,	and	continue	the	rest	onto	adjacent	pages.

If	you	publish	or	distribute	Opaque	copies	of	the	Document	numbering
more	than	100,	you	must	either	include	a	machine-readable	Transparent
copy	along	with	each	Opaque	copy,	or	state	in	or	with	each	Opaque	copy
a	computer-network	location	from	which	the	general	network-using	public
has	access	to	download	using	public-standard	network	protocols	a
complete	Transparent	copy	of	the	Document,	free	of	added	material.	If
you	use	the	latter	option,	you	must	take	reasonably	prudent	steps,	when

you	begin	distribution	of	Opaque	copies	in	quantity,	to	ensure	that	this
Transparent	copy	will	remain	thus	accessible	at	the	stated	location	until
at	least	one	year	after	the	last	time	you	distribute	an	Opaque	copy
(directly	or	through	your	agents	or	retailers)	of	that	edition	to	the	public.

It	is	requested,	but	not	required,	that	you	contact	the	authors	of	the
Document	well	before	redistributing	any	large	number	of	copies,	to	give
them	a	chance	to	provide	you	with	an	updated	version	of	the	Document.

4.	MODIFICATIONS

You	may	copy	and	distribute	a	Modified	Version	of	the	Document	under
the	conditions	of	sections	2	and	3	above,	provided	that	you	release	the
Modified	Version	under	precisely	this	License,	with	the	Modified	Version
filling	the	role	of	the	Document,	thus	licensing	distribution	and
modification	of	the	Modified	Version	to	whoever	possesses	a	copy	of	it.	In
addition,	you	must	do	these	things	in	the	Modified	Version:

*	A.	Use	in	the	Title	Page	(and	on	the	covers,	if	any)	a	title	distinct	from
that	of	the	Document,	and	from	those	of	previous	versions	(which	should,
if	there	were	any,	be	listed	in	the	History	section	of	the	Document).	You
may	use	the	same	title	as	a	previous	version	if	the	original	publisher	of
that	version	gives	permission.
*	B.	List	on	the	Title	Page,	as	authors,	one	or	more	persons	or	entities
responsible	for	authorship	of	the	modifications	in	the	Modified	Version,
together	with	at	least	five	of	the	principal	authors	of	the	Document	(all	of
its	principal	authors,	if	it	has	fewer	than	five),	unless	they	release	you
from	this	requirement.
*	C.	State	on	the	Title	page	the	name	of	the	publisher	of	the	Modified
Version,	as	the	publisher.
*	D.	Preserve	all	the	copyright	notices	of	the	Document.
*	E.	Add	an	appropriate	copyright	notice	for	your	modifications	adjacent
to	the	other	copyright	notices.
*	F.	Include,	immediately	after	the	copyright	notices,	a	license	notice
giving	the	public	permission	to	use	the	Modified	Version	under	the	terms
of	this	License,	in	the	form	shown	in	the	Addendum	below.
*	G.	Preserve	in	that	license	notice	the	full	lists	of	Invariant	Sections	and
required	Cover	Texts	given	in	the	Document's	license	notice.
*	H.	Include	an	unaltered	copy	of	this	License.

*	I.	Preserve	the	section	Entitled	"History",	Preserve	its	Title,	and	add	to	it
an	item	stating	at	least	the	title,	year,	new	authors,	and	publisher	of	the
Modified	Version	as	given	on	the	Title	Page.	If	there	is	no	section	Entitled
"History"	in	the	Document,	create	one	stating	the	title,	year,	authors,	and
publisher	of	the	Document	as	given	on	its	Title	Page,	then	add	an	item
describing	the	Modified	Version	as	stated	in	the	previous	sentence.
*	J.	Preserve	the	network	location,	if	any,	given	in	the	Document	for
public	access	to	a	Transparent	copy	of	the	Document,	and	likewise	the
network	locations	given	in	the	Document	for	previous	versions	it	was
based	on.	These	may	be	placed	in	the	"History"	section.	You	may	omit	a
network	location	for	a	work	that	was	published	at	least	four	years	before
the	Document	itself,	or	if	the	original	publisher	of	the	version	it	refers	to
gives	permission.
*	K.	For	any	section	Entitled	"Acknowledgements"	or	"Dedications",
Preserve	the	Title	of	the	section,	and	preserve	in	the	section	all	the
substance	and	tone	of	each	of	the	contributor	acknowledgements	and/or
dedications	given	therein.
*	L.	Preserve	all	the	Invariant	Sections	of	the	Document,	unaltered	in
their	text	and	in	their	titles.	Section	numbers	or	the	equivalent	are	not
considered	part	of	the	section	titles.
*	M.	Delete	any	section	Entitled	"Endorsements".	Such	a	section	may	not
be	included	in	the	Modified	Version.
*	N.	Do	not	retitle	any	existing	section	to	be	Entitled	"Endorsements"	or	to
conflict	in	title	with	any	Invariant	Section.
*	O.	Preserve	any	Warranty	Disclaimers.	

If	the	Modified	Version	includes	new	front-matter	sections	or	appendices
that	qualify	as	Secondary	Sections	and	contain	no	material	copied	from
the	Document,	you	may	at	your	option	designate	some	or	all	of	these
sections	as	invariant.	To	do	this,	add	their	titles	to	the	list	of	Invariant
Sections	in	the	Modified	Version's	license	notice.	These	titles	must	be
distinct	from	any	other	section	titles.

You	may	add	a	section	Entitled	"Endorsements",	provided	it	contains
nothing	but	endorsements	of	your	Modified	Version	by	various	parties--for
example,	statements	of	peer	review	or	that	the	text	has	been	approved
by	an	organization	as	the	authoritative	definition	of	a	standard.

You	may	add	a	passage	of	up	to	five	words	as	a	Front-Cover	Text,	and	a

passage	of	up	to	25	words	as	a	Back-Cover	Text,	to	the	end	of	the	list	of
Cover	Texts	in	the	Modified	Version.	Only	one	passage	of	Front-Cover
Text	and	one	of	Back-Cover	Text	may	be	added	by	(or	through
arrangements	made	by)	any	one	entity.	If	the	Document	already	includes
a	cover	text	for	the	same	cover,	previously	added	by	you	or	by
arrangement	made	by	the	same	entity	you	are	acting	on	behalf	of,	you
may	not	add	another;	but	you	may	replace	the	old	one,	on	explicit
permission	from	the	previous	publisher	that	added	the	old	one.

The	author(s)	and	publisher(s)	of	the	Document	do	not	by	this	License
give	permission	to	use	their	names	for	publicity	for	or	to	assert	or	imply
endorsement	of	any	Modified	Version.

5.	COMBINING	DOCUMENTS

You	may	combine	the	Document	with	other	documents	released	under
this	License,	under	the	terms	defined	in	section	4	above	for	modified
versions,	provided	that	you	include	in	the	combination	all	of	the	Invariant
Sections	of	all	of	the	original	documents,	unmodified,	and	list	them	all	as
Invariant	Sections	of	your	combined	work	in	its	license	notice,	and	that
you	preserve	all	their	Warranty	Disclaimers.

The	combined	work	need	only	contain	one	copy	of	this	License,	and
multiple	identical	Invariant	Sections	may	be	replaced	with	a	single	copy.	If
there	are	multiple	Invariant	Sections	with	the	same	name	but	different
contents,	make	the	title	of	each	such	section	unique	by	adding	at	the	end
of	it,	in	parentheses,	the	name	of	the	original	author	or	publisher	of	that
section	if	known,	or	else	a	unique	number.	Make	the	same	adjustment	to
the	section	titles	in	the	list	of	Invariant	Sections	in	the	license	notice	of
the	combined	work.

In	the	combination,	you	must	combine	any	sections	Entitled	"History"	in
the	various	original	documents,	forming	one	section	Entitled	"History";
likewise	combine	any	sections	Entitled	"Acknowledgements",	and	any
sections	Entitled	"Dedications".	You	must	delete	all	sections	Entitled
"Endorsements."

6.	COLLECTIONS	OF	DOCUMENTS

You	may	make	a	collection	consisting	of	the	Document	and	other
documents	released	under	this	License,	and	replace	the	individual	copies
of	this	License	in	the	various	documents	with	a	single	copy	that	is
included	in	the	collection,	provided	that	you	follow	the	rules	of	this
License	for	verbatim	copying	of	each	of	the	documents	in	all	other
respects.

You	may	extract	a	single	document	from	such	a	collection,	and	distribute
it	individually	under	this	License,	provided	you	insert	a	copy	of	this
License	into	the	extracted	document,	and	follow	this	License	in	all	other
respects	regarding	verbatim	copying	of	that	document.

7.	AGGREGATION	WITH	INDEPENDENT	WORKS

A	compilation	of	the	Document	or	its	derivatives	with	other	separate	and
independent	documents	or	works,	in	or	on	a	volume	of	a	storage	or
distribution	medium,	is	called	an	"aggregate"	if	the	copyright	resulting
from	the	compilation	is	not	used	to	limit	the	legal	rights	of	the
compilation's	users	beyond	what	the	individual	works	permit.	When	the
Document	is	included	in	an	aggregate,	this	License	does	not	apply	to	the
other	works	in	the	aggregate	which	are	not	themselves	derivative	works
of	the	Document.

If	the	Cover	Text	requirement	of	section	3	is	applicable	to	these	copies	of
the	Document,	then	if	the	Document	is	less	than	one	half	of	the	entire
aggregate,	the	Document's	Cover	Texts	may	be	placed	on	covers	that
bracket	the	Document	within	the	aggregate,	or	the	electronic	equivalent
of	covers	if	the	Document	is	in	electronic	form.	Otherwise	they	must
appear	on	printed	covers	that	bracket	the	whole	aggregate.

8.	TRANSLATION

Translation	is	considered	a	kind	of	modification,	so	you	may	distribute
translations	of	the	Document	under	the	terms	of	section	4.	Replacing
Invariant	Sections	with	translations	requires	special	permission	from	their
copyright	holders,	but	you	may	include	translations	of	some	or	all
Invariant	Sections	in	addition	to	the	original	versions	of	these	Invariant
Sections.	You	may	include	a	translation	of	this	License,	and	all	the
license	notices	in	the	Document,	and	any	Warranty	Disclaimers,	provided

that	you	also	include	the	original	English	version	of	this	License	and	the
original	versions	of	those	notices	and	disclaimers.	In	case	of	a
disagreement	between	the	translation	and	the	original	version	of	this
License	or	a	notice	or	disclaimer,	the	original	version	will	prevail.

If	a	section	in	the	Document	is	Entitled	"Acknowledgements",
"Dedications",	or	"History",	the	requirement	(section	4)	to	Preserve	its
Title	(section	1)	will	typically	require	changing	the	actual	title.

9.	TERMINATION

You	may	not	copy,	modify,	sublicense,	or	distribute	the	Document	except
as	expressly	provided	for	under	this	License.	Any	other	attempt	to	copy,
modify,	sublicense	or	distribute	the	Document	is	void,	and	will
automatically	terminate	your	rights	under	this	License.	However,	parties
who	have	received	copies,	or	rights,	from	you	under	this	License	will	not
have	their	licenses	terminated	so	long	as	such	parties	remain	in	full
compliance.

10.	FUTURE	REVISIONS	OF	THIS	LICENSE

The	Free	Software	Foundation	may	publish	new,	revised	versions	of	the
GNU	Free	Documentation	License	from	time	to	time.	Such	new	versions
will	be	similar	in	spirit	to	the	present	version,	but	may	differ	in	detail	to
address	new	problems	or	concerns.	See	http://www.gnu.org/copyleft/.

Each	version	of	the	License	is	given	a	distinguishing	version	number.	If
the	Document	specifies	that	a	particular	numbered	version	of	this	License
"or	any	later	version"	applies	to	it,	you	have	the	option	of	following	the
terms	and	conditions	either	of	that	specified	version	or	of	any	later
version	that	has	been	published	(not	as	a	draft)	by	the	Free	Software
Foundation.	If	the	Document	does	not	specify	a	version	number	of	this
License,	you	may	choose	any	version	ever	published	(not	as	a	draft)	by
the	Free	Software	Foundation.

Tokens 	

Interface

The	basic	public	interface	of	the	lexer	is	from	lex.bas:
lexGetToken():	Retrieve	current	token's	id,	an	FB_TK_*
value.
lexGetLookAhead(N):	Look	ahead	N	tokens
lexSkipToken():	Go	to	next	token
lexGetText():	Returns	a	zstring	ptr	to	the	text	of	the	current
token,	e.g.	string/number	literals	(their	values	are	retrieved
like	this),	or	the	text	representation	of	other	tokens	(e.g.
operators).
some	more	lexGet*()	accessors	to	data	of	the	current
token
lexPeekLine():	Used	by	error	reporting	to	retrieve	the
current	line	of	code.

Current	token	+	look	ahead	tokens

Tokens	are	a	pretty	short-living	thing.	There	only	is	the	current	token	and
a	few	look	ahead	tokens	in	the	token	queue.	That's	all	the	parser	needs
to	decipher	FB	code.	The	usual	pattern	is	to	check	the	current	token,
decide	what	to	do	next	based	on	what	it	is,	then	skip	it	and	move	on.
Backward	movement	is	not	possible.	The	file	name,	line	number	and
token	position	shown	during	error	reporting	also	comes	from	the	current
lexer	state.	

The	token	queue	is	a	static	array	of	tokens,	containing	space	for	the
current	token	plus	the	few	look	ahead	tokens.	The	token	structures
contain	fairly	huge	(static)	buffers	for	token	text.	Each	token	has	a	pointer
to	the	next	one,	so	they	form	a	circular	list.	This	is	a	cheap	way	to	move
forward	and	skip	tokens,	without	having	to	take	care	of	an	array	index.
Copying	around	the	tokens	themselves	is	out	of	question,	because	of	the
huge	text	buffers.	The	"head"	points	to	the	current	token;	the	next	"k"
tokens	are	look	ahead	tokens;	the	rest	is	unused.	When	skipping	we
simply	do	"head	=	head->next".	Unless	the	new	head	already	contains	a

token	(from	some	look	ahead	done	before),	we	load	a	new	token	into	the
new	current	token	struct	(via	lexNextToken()).	Look	ahead	works	by
loading	the	following	tokens	in	the	queue	(but	without	skipping	the	current
one).

Tokenization
lex.bas:lexNextToken()

The	lexer	breaks	down	the	file	input	into	tokens.	A	token	conceptually	is
an	identifier,	a	keyword,	a	string	literal,	a	number	literal,	an	operator,	EOL
or	EOF,	or	other	characters	like	parentheses	and	commas.	Each	token	as
an	unique	value	assigned	to	it	that	the	parser	will	use	to	identify	it,
instead	of	doing	string	comparisons	(which	would	be	too	slow).

lexNextToken()	uses	the	current	char,	and	if	needed	also	the	look	ahead
char,	to	parse	the	input.	Number	and	string	literals	are	handled	here	too.
Alphanumeric	identifiers	are	looked	up	in	the	symb	hash	table,	which	will
tell	whether	it's	a	keyword,	a	macro,	or	another	FB	symbol	(type,
procedure,	variable,	...).	

Identifiers	containing	dots	(QB	compatibility)	and	identifier	type	suffixes
(as	in	stringvar$)	are	handled	here	too	(but	not	namespace/structure
member	access).	Tokens	can	have	a	data	type	associated	with	them.
That	is	also	used	with	number	literals,	which	can	have	type	suffixes	(as	in
&hFFFFFFFFFFFFFFFFull;).

Side	note	on	single-line	comments

Quite	unusual,	single-line	comments	are	handled	by	the	parser	instead	of
being	skipped	in	the	lexer.	This	is	done	so	that	usage	of	REM	can	easily	be
restricted	as	in	QB,	afterall	REM	is	more	like	a	statement	than	a
comment.	Besides	that,	comments	can	contain	QB	meta	statements,	so
comments	cannot	just	be	ignored.	Note	that	the	parser	will	still	skip	the
rest	of	a	comment	(without	tokenizing	it),	if	it	does	not	find	a	QB	meta
statement.

(Multi-line	comments	are	completely	handled	during	tokenization	though.)

File	input

lex.bas:hReadChar()

The	input	file	is	opened	in	fb.bas:fbCompile();	the	file	number	is	stored
in	the	global	env	context	(similar	for	#includes	in
fb.bas:fbIncludeFile()).	The	lexer	uses	the	file	number	from	the	env
context	to	read	input	from.	It	has	a	static	zstring	buffer	that	is	used	to
stream	the	file	contents	(instead	of	reading	character	per	character),	and
for	Unicode	input,	the	lexer	uses	a	wstring	buffer	and	decodes	UTF32	or
UTF8	to	UTF16.	The	lexer	advances	through	the	chars	in	the	buffer	and
then	reads	in	the	next	chunk	from	the	file.	EOF	is	represented	by
returning	a	NULL	character.

Macros 	

Some	terms	used	in	the	source	code	(Note	the	double	meanings):
macro:	The	#defined/#macroed	object	that	will	be	expanded	to	its
replacement	text
macro:	a	function-like	macro,	e.g.	#define	m(a,	b)
define:	an	object-like	macro,	e.g.	#define	simple
argless	define	(should	be	called	parameter-less):	a	function-like
macro	without	parameters,	e.g.	#define	f()

How	macros	are	stored

Macros	are	basically	stored	as	raw	text,	not	as	token	runs	(as	in	GCC's
libcpp	for	example).	The	body	of	simple	#defines	without	parameters	is
stored	as	one	string.	Macros	with	parameters	are	stored	as	sequence	of
"macro	tokens".	There	are	three	types	of	macro	tokens:

text("<text>")

Raw	text,	but	spaces	and	empty	lines	trimmed	(like	in	a	#define	without
parameters)

textw("<wstring	text>")

Same	as	above,	just	for	Unicode	input.
parameter(index)

A	macro	parameter	was	used	here	in	the	declaration.	The	index	specifies
which	one.	During	expansion,	the	text	of	argument(index)	is	inserted
where	the	parameter	was	in	the	declaration.

stringify_parameter(index)

Same	as	above,	except	the	argument	will	be	stringified	during	expansion.
Note:	macro	tokens	are	actually	symb.bi:FB_DEFTOK	structures,	and	they
contain	an	id	field	holding	on	of	the	FB_DEFTOK_TYPE_*	values	to	tell	what
they	contain.

For	example:

	 #define	add(x,	y)	x	+	y

becomes:

	 parameter(0),	text("	+	"),	parameter(1)

And	the	expansion	text	will	be:

	 argument(0)	+	"	+	"	+	argument(1)

Storing	macros	as	text	is	a	fairly	easy	implementation,	but	it	requires	to
re-parse	the	macro	body	over	and	over	again.	For	example,	since	GCC
works	with	preprocessing	tokens	and	tokenruns,	macros	are	stored	as
tokens,	making	expansion	very	fast,	because	there	is	no	need	to	tokenize
the	macro	body	again	and	again.	fbc's	implementation	is	not	as	flexible
and	maybe	not	as	efficient,	but	is	less	complex	(regarding	code	and
memory	management)	and	has	an	upside	too:	Implementation	of	##	(PP
token	merge)	is	trivial.	##	simply	is	omitted	while	recording	the	macro's
body,	where	as	in	token	runs	the	tokens	need	to	be	merged	explicitly.

When	are	macros	expanded?

Because	of	token	look	ahead,	macros	must	be	expanded	during
tokenization,	otherwise	the	wrong	tokens	might	be	loaded	into	the	token
queue.	Afterall	the	parser	should	only	get	to	see	the	final	tokens,	even
during	look	ahead.

In	lexNextToken(),	each	alphanumeric	identifier	is	looked	up	in	the	symb
module	to	check	whether	it	is	a	keyword	or	a	macro.	Macros	and
keywords	are	kept	in	the	same	hash	table.	Note	that	macros	cannot	have
the	name	of	keywords;	"#define	integer"	causes	an	error.	If	a	macro	is
detected,	it	is	immediately	expanded,	a	process	also	called	"loading"	the
macro	(pp-define.bas:ppDefineLoad()).

Macro	call	parsing

If	the	macro	takes	arguments,	the	macro	"call"	must	be	parsed,	much	like
a	function	call,	syntax-wise.	Since	macro	expansion	already	happens	in
lexNextToken(),	the	source	of	tokens,	the	parsing	here	is	a	little	tricky.
Forward	movement	is	only	possible	by	replacing	(and	losing)	the	current
token.	The	token	queue	and	token	look	ahead	cannot	be	relied	upon.
Instead	it	can	only	replace	the	current	token	to	move	forward	while
parsing	the	macro's	arguments.

Since	lexNextToken()	is	used	to	parse	the	arguments,	macros	in	the
arguments	themselves	are	recursively	macro-expanded	while	the
arguments	are	being	parsed	and	recorded	in	text	form.	The	argument
texts	are	stored	for	use	during	the	expansion.

So,	a	macro's	arguments	are	expanded	before	that	macro	itself	is
expanded,	which	could	be	seen	as	both	good	and	bad	feature:

#define	stringify(s)	#s

stringify(__LINE__)

results	in	2	in	FB,	but	__LINE__	in	C,	because	in	C,	macro	parameters	are
not	expanded	when	used	with	#	or	##.	In	C,	two	macros	have	to	be	used
to	get	the	2:

#define	stringize(s)	#s

#define	stringify(s)	stringize(s)

stringify(__LINE__)

Putting	together	the	macro	expansion	text

The	expansion	text	is	a	string	build	up	from	the	macro's	body	tokens.	For
macro	parameters,	the	argument	text	is	retrieved	from	the	argument
array	created	by	the	macro	call	parser,	using	the	indices	stored	in	the
parameter	tokens.	Parameter	stringification	is	done	here.

There	is	a	specialty	for	the	builtin	defines	(__LINE__,	__FUNCTION__,
__FB_DEBUG__,	etc.):
A	callback	is	used	to	retrieve	their	"value".	For	example:	__LINE__'s
callback	simply	returns	a	string	containing	the	lexer's	current	line	number.

Expansion

The	macro	expansion	text	(deftext)	is	stored	by	the	lexer,	and	now	it	will
read	characters	from	there	for	a	while,	instead	of	reading	from	the	file

input	buffer.	Skipping	chars	in	the	macro	text	is	like	skipping	chars	in	the
file	input:	Once	skipped	it's	lost,	there	is	no	going	back.	So,	there	never	is
"old"	(parsed)	macro	text,	only	the	current	char	and	to-be-parsed	text.
New	macro	text	is	prepended	to	the	front	of	existing	macro	text.	That	way
macros	inside	macros	are	expanded.	

This	implementation	does	not	(easily)	allow	to	detect	macro	recursion.	It
would	be	hard	to	keep	track	of	which	characters	in	the	macro	text	buffer
belong	to	which	macro,	but	that	would	be	needed	to	be	able	to	push	and
pop	macros	properly.	It	could	be	done	more	easily	with	a	token	run
implementation	as	seen	in	GCC's	libcpp.	However	C	doesn't	allow
recursive	macros	in	the	first	place:	In	C,	a	macro's	identifier	is	undefined
(does	not	trigger	expansion)	inside	that	macro's	body.	That	is	not	the
case	in	fbc,	because	(again)	a	way	to	detect	when	a	macro	body	ends	is
not	implemented.

Currently	fbc	only	keeps	track	of	the	first	(toplevel)	macro	expanded,
because	it's	easy	to	detect	when	that	specific	macro's	end	is	reached:	as
soon	as	there	is	no	more	macro	text.

That's	why	the	recursion	is	detected	here:

#define	a	a

a

and	here	too:

#define	a	b

#define	b	a

a

but	not	here:	(Note	that	fbc	will	run	an	infinite	loop)

#define	a	a

#define	m	a

m

Directive	parsing 	

Preprocessor	directives	(#if,	#define,	#include,	etc.)	are	parsed	during	lex.bas:lexSkipToken()
pp.bas:ppCheck().	After	moving	to	the	next	token	(or	loading	a	new	token),	
current	token	is	a	'#'.	If	so	it	will	also	check	whether	the	previous	token	was	an	
begin,	and	directly	parses	the	PP	directive,	using	the	same	lexGetToken()
parser.	This	is	necessary	because	some	PP	directives	result	in	parser	functions	being	called,	for	example	
identifier.bas:cIdentifier()	is	used	by	the	#ifdef	parser,	to	recognize	variables	etc.:

dim	as	integer	i

#ifdef	i

#print	yes,	the	variable	will	be	recognized

#endif

So,	lexSkipToken()	is	recursive	because	of	the	PP.	ppCheck()	will	only	call	
lexSkipToken(),	but	not	if	it	was	called	recursively	from	the	PP.	This	lets	the	PP	parse	multi-line	directives	like
#macro	...	#endmacro	or	skip	#if	...	#endif	blocks	without	"executing"	the	directives	those	structures	may	contain.
Note	that	unlike	C,	FB	allows	macros	to	contain	PP	directives.

As	a	result,	every	time	the	FB	parser	skips	an	EOL,	lexSkipToken()	might	detect	a	
then	call	the	PP	to	let	it	parse	that	directive.	It	may	"silently"	parse	more	lines,	and	the	parser	stays	fully	unaware
that	the	PP	directives	are	even	there.	The	PP	parsing	launched	from	lexSkipToken()
#include	and	call	fb.bas:fbIncludeFile()	to	parse	it	immediately,	recursively	starting	a	
toplevel.bas:cProgram()	for	that	#include	file.	The	parser	has	to	be	able	to	handle	the	recursion	that	might
happen	during	every	lexSkipToken()	at	EOL,	but	luckily	that	is	not	a	big	deal.	The	parser	needs	a	stack	to	keep
track	of	compound	statements	anyways.

Note	that	PP	directives	are	not	handled	during	token	look	ahead	(lex.bas:lexGetLookAhead()
to	look	ahead	across	EOL,	it	could	very	well	see	a	PP	directive.	Luckily	though	looking	ahead	across	lines	is	never
necessary.

Macro	expansion	in	PP	directives

The	beginning	of	directives,	the	keyword	following	the	'#',	is	parsed	without	macro	expansion.	This	means
redefining	PP	keywords	(intentionally)	has	no	effect	on	the	PP	directives.	For	example:	

#define	define	foo

#define	bar	baz

will	not	intermediately	be	seen	as:

#foo	bar	baz

Directives	like	#if	&	co.	make	use	of	the	PP	expression	parser,	which	does	expand	macros.	Afterall	that's	the
point	of	PP	expressions.	For	example:

#define	foo	1

#if	foo	=	1

#endif

The	#define	and	#macro	directives	don't	do	macro	expansion	at	all.	A	macro's	body	is	recorded	as-is.

#define/#macro	parsing

pp.bas:ppDefine()	first	parses	the	macro's	identifier.	If	there	is	a	'('	following,	without	space	in	between,	then	the
parameter	list	is	parsed	too.	

Then	the	macro	body	is	parsed.	For	each	token,	its	text	representation	is	retrieved	via	
appended	to	the	macro	body	text.	Space	is	preserved	(but	trimmed);	comments	are	left	out;	in	multi-line	#macros
empty	lines	are	removed.

If	the	macro	has	parameters,	the	macro	tokens	will	be	created	(as	discussed	in	Macro	Expansion).	To	do	that,	the
macro	parameters	are	added	to	a	temporary	hash	table,	which	associates	the	parameter	names	to	their	indices.
Then,	identifiers	in	the	macro	body	are	looked	up,	and	when	a	parameter	is	recognized,	a	parameter(index)
macro	token	is	created,	instead	of	appending	the	token	to	the	previous	text()	macro	token	(or	creating	a	new
text()	for	it).	After	that	parameter(index),	if	there	is	other	text	again,	a	new	text()	macro	token	is	created.

Using	#	on	a	parameter	results	in	the	creation	of	a	stringify_parameter(index)	macro	token.	The	PP	merge
operator	##	is	simply	ommitted	from	the	macro	body,	so	a##b	becomes	ab
before/after/between	parameters	goes	into	text()	macro	tokens.

For	example:

#define	add(x,	y)	foo	bar	x	+	y

And	the	actions	of	the	#define/#macro	parser	will	be:

'add'				-	The	macro's	name

'('	following	the	name,	without	space	in	between:	Parse	the	parameter	list.

	 'x'				-	Parameter	0.

	 ','				-	Next	parameter.

	 'y'				-	Parameter	1.

	 ')'				-	End	of	parameter	list.

Create	the	macro	body	in	form	of	macro	tokens.

'	'				-	Create	new	text("	").

'foo'		-	Append	"foo".

'	'				-	Append	"	".

'bar'		-	Append	"bar".

'	'				-	Append	"	".

'x'				-	Is	parameter	0,	create	new	param(0).

'	'				-	Create	new	text("	").

'+'				-	Append	"+".

'	'				-	Append	"	".

'y'				-	Is	parameter	1,	create	new	param(1).

EOL				-	End	of	macro	body.

Resulting	in	this	macro	body:

text("	foo	bar	"),	param(0),	text("	+	"),	param(1)

The	#define	parser	allows	macros	to	be	redefined,	if	the	body	is	the	same.	For	example:	

#define	a	1

#define	a	1

does	not	result	in	a	duplicated	definition.	However	this	would:

#define	a	1

#define	a	2

Since	those	are	pure	text	#defines,	the	comparison	is	the	bodies	is	a	simple	string	comparison.	This	feature	is	not
implemented	for	macros	with	parameters	currently.

PP	expressions

The	preprocessor	has	its	own	(but	fairly	small	and	simple)	expression	parser	(
works	much	like	parser-expression.bas:cExpression(),	except	instead	of	creating	AST	nodes,	
immediately	evaluates	the	expressions.

PP	skipping

The	preprocessor	uses	a	simple	stack	to	manage	#if/#endif	blocks.	Those	can	be	nested,	and	there	may	be
#includes	in	them,	but	they	cannot	go	across	files.	False	blocks	(#if	0,	or	the	#else	of	an	#if	1)	are	immediately
skipped	when	parsing	the	#if	0	or	the	#else	(pp-cond.bas:ppSkip()),	before	returning	to	

For	example:

#if	1											(push	to	stack:	is_true	=	TRUE,	#else	not	visited	yet,	return	to	lexSkipToken())

...					(will	be	parsed)

#else											1)	Set	the	#else	visited	flag	for	the	current	stack	node,

	 							so	further	#else's	are	not	allowed.

	 				2)	Since	the	current	stack	node	has	is_true	=	TRUE,

	 							that	means	the	#else	block	must	be	skipped,	->	call	ppSkip().

...					(skipped	in	ppSkip())

#endif										(parsed	from	ppSkip(),	skipping	ends,	ppSkip()	returns	to	#else	parser,

	 					which	returns	to	lexSkipToken())

Note	that	there	are	a	few	tricky	bits	about	PP	skipping.	Since	macros	are	allowed	to	contain	PP	directives,	macro
expansion	must	be	done	even	during	PP	skipping,	because	an	#else	or	#endif	could	be	inside	a	multi-line	macro.
Also,	multi-line	#macro	declarations	are	not	handled	during	PP	skipping.	

#if	0

#macro	test()

#endif

#endmacro

will	be	seen	as:

#if	0

	#macro	test()

#endif

#endmacro

Resulting	in	an	error	(#endmacro	without	#macro).

So,	this:

#if	0

#macro	test()

	 #endif

#endmacro

#endif

will	not	work	as	suggested	by	the	indentation.

File	contexts 	

Because	#includes	can	occur	in	the	middle	of	input	files,	the	lexer	needs
to	push	file	contexts	to	a	stack.	File	input	buffer,	macro	expansion	buffer
and	the	token	queue	form	a	so-called	"context".	It	is	file	specific	and	thus
it	must	be	pushed	onto	a	stack,	so	that	the	lexer	can	return	to	the	parent
(after	parsing	an	#include),	without	losing	any	tokens	or	macro	text.	Note
that	macros	can	contain	#includes	too.	

fb.bas:fbIncludeFile()	basically	just	consists	of:
lexPush()

cProgram()

lexPop()

Quick	overview	of	the	call	graph 	

Showing	the	recursion	between	the	FB	parser,	the	PP	parser,	and	the	lexer:

	 																				+------------------>	lexGetLookAhead()	--------+

	 																				|																																														|

	 																				|																																														v

	 	(begin)								(FB	parsing)																(PP	parsing)									(lexing)

	 fbCompile()		->		cProgram()		------------>		lexSkipToken()		->		lexNextToken()

	 				|															^		|																							|					^														|				^

	 				v															|		|																							v					|														v				|

	 			fbPreIncludes()		|		|('$include)							ppCheck()		|											ppDefineLoad()

	 														|					|		|																							|					|										(macro	expansion)

	 														v					|		v																							v					|

	 													fbIncludeFile()		<--------------		ppParse()

	 																																(#include)				(directives)

FreeBASIC	grammar 	

Grammar	Notation	
Format	of	a	production
left	hand	side:	right	hand	side;

:	should	be	read	as	'is	defined	as'.	

The	right	hand	side	of	a	production	is	terminated	by	a	;.

A	word	in	italics	represent	the	name	of	a	production	(the	left
hand	side	of	the	production).

Few	operators	are	used	to	describe	the	FreeBASIC	grammar.

operator meaning

. any	character

* 0	or	more	(repetition)

+ 1	or	more	(repetition)

? optional	(choice)

() grouping

| separator	(separates	alternatives)

semicolon end	of	production

Any	symbol	that	appears	on	the	right	hand	side	of	a	production
that	is	not	an	operator	and	does	not	appear	in	italics
represents	itself	and	appears	bold.
A	symbol	at	the	right	hand	side	of	a	rule	can	refer	to	a	production.	
Such	references	are	in	italics.	

For	navigational	purposes	a	reference	is	a	link	to	the	production	
being	referenced.

When	reading	the	grammar	be	aware	that	FreeBASIC	is	a	case	insensitive
language.

The	grammar	presented	is	not	an	exact	statement	of	the	FreeBASIC	language.

Go	straight	to:	
program
expression

Tokens

white:	\t	|	
any_char:			any	valid	character;
eol:				\n|\r|\n\r;
statement_separator:	(:	|	eol)+;
dot:									.;
sign:								+|-;
alpha:						a|b|c|d|e|f|g|h|i|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z;
digit:							0|1|2|3|4|5|6|7|8|9;
hexdigit:			a|b|c|d|e|f|digit;
octdigit:			0|1|2|3|4|5|6|7;
bindigit:			0|1;
alphadigit:		alpha|	digit;
integer_suffix:					%|&|l|u|ul|ll|ull;
floating_point_suffix:					!|#|f;
suffix:						integer_suffix|floating_point_suffix|$;
expchar:		d|e;
operator
:	=	|	<	|	>	|<>	|+	|	-	|	*	|	@
&	|	->	|	/	|	\	|	^	|	andalso
orelse	|	and	|	or	|	xor	|	eqv	|	imp	
+=	|	-=	|	*=	|	/=	|	\=	|	^=	|	&=	|
and=	|	or=	|	xor=	|	eqv=	|	imp=
new	|	delete	|	delete[]	|	cast	|	procptr
varptr	|	strptr	|	sizeof	|	[]	|	()
;

binary_operator
:	=	|	<	|	>	|<>	|+	|	-	|
&	|	->	|	/	|	\	|	^	
+=	|	-=	|	*=	|	/=	|	\=	|	^=	|	&=	|

and=	|	or=	|	xor=	|	eqv=	|	imp=
andalso	|	orelse
;

identifier
:		(alpha)(alphadigit|_)*
nbsp	_(alphadigit|_)+
;

literal
:	sign	integer_literal	integer_suffix
nbspsign	floating_literal	floating_point_suffix
nbspstring_literal
;

integer_literal
:	decimal_integer
hexadecimal_integer
octal_integer
binary_integer
;

decimal_integer:	digit+;
hexadecimal	integer:	&hhexdigit+;
octal_integer:	&ooctdigit+;
binary_integer:	&bbindigit+;

floating_literal
:	digit+(dot(digit+)?)?(exp_char?(sign?digit+)?)?suffix?
nbsp(dot(digit+)?)?(exp_char?(sign?digit+)?)?suffix?
;

string_literal
:	(!|$)?"(escape_sequence|""|any_char)*"	(white*string_literal)*
;

escape_sequence
:	simple_escape_sequence
unicode_escape_sequence

decimal_escape_sequence
hexadecimal_escape_sequence
octal_escape_sequence
binary_escape_sequence
;

simple_escape_sequence
:	\a|\b|\f|\l|\n|\r|\t|\v|\\|\'|\"
;

unicode_escape_sequence
:	\uhexdigit	hexdigit	hexdigit	hexdigit
;

decimal_escape_sequence
:	\digit	digit	digit
;

hexadecimal_escape_sequence
:	\&h;hexdigit	hexdigit
;

octal_escape_sequence
:	\&o;octdigit	octdigit	octdigit
;

binary_escape_sequence
:	\&b;bindigit	bindigit	bindigit	bindigit	bindigit	bindigit	bindigit	bindigit
;

Comment

comment
:	('	|	rem)	(($directive)	|	(any_char_but_eol*))
;
multiline_nested_comment
:	/'	(.	|	multiline_nested_comment)*	'/;

Toplevel

program
:	line*	EOF?
;
line
:	label	(statement|namespace_statement)?	comment?	eol
;

label
:	identifier	:
;

statement
:	statement_separator?
(declaration	|	procedure_call_or_assign	|	compound_statement	|	quirk_statement
assignment)?
(statement_separator	statement)*
;

declaration
:(public|private)?	
(
(static	
(function_definition
sub_definition	
operator_definition	
constructor_definition	
destructor_definition	
property_definition
variable_declaration
)
)
function_definition
sub_definition
destructor_definition	
property_definition
constructor_definition
operator_definition

const_declaration
type_or_union_declaration
variable_declaration
enumeration_declaration
auto_variable_declaration
)
declare	procedure_declaration
;

procedure_call_or_assign
:	call	identifier	((procedure_parameter_list))?
identifier	procedure_parameter_list?
(identifier	|	function	|	operator	|	property)	=	expression
;

compound_statement
:	namespace_statement
scope_statement
if_statement
for_statement
do_statement
while_statement
select_statement
;

namespace_statement
:	namespace	identifier	(alias	string_literal)?	(declaration	|	namespace_statement
;

scope_statement:	scope	statement_separator	statement*	end	scope
;

if_statement
:	short_if_statement	|	long_if_statement
;

short_if_statement
:	if	expression	then	statement_separator	statement

else	statement_separator	statement*
(eol|	end	if	|	endif)
;

long_if_statement
:	if	expression	then	statement_separator	
statement*	
elseif_block*	
(else	statement_separator	statement*)?
(end	if|endif)
;

elseif_block
:	elseif	expression	then	statement_separator	statement*
;

for_statement
:	for	identifier	(as	scalar)?	=	expression	to	expression	(step	expression
(statement|exit	for(,	for)*	|	continue	for	(,	for)*)*	next	identifier	(,	identifier
;

do_statement
:	do	(until|while)	expression	(statement|exit	do	(,	do)*	|	continue	do	(
do	(statement|exit	do	(,	do)*	|	continue	do	(,	do)*)*	loop	(until|while)	
;	

while_statement
:	while	expression	statement_separator
(statement	|	exit	while	(,	while)*	|	continue	while	(,	while)*)*
wend
;

select_statement
:	select	case	(as	const)	expression	case_statement*	case	else	statement_separator
;
case_statement
:	case	case_expression	(,	case_expression)*
;
case_expression

:	expression	|	expression	to	expression	|	is	(>	|	<	|	>=	|	<=	|	=	|	<>)	expression

assembler_block
:	asm	comment?	(asm_code	comment?	eol)+	end	asm
;

assignment
:	let?	variable	binary_operator	=	expression
variable	(procedure_parameter_list)
;

variable
:	highest_precedence_expression;	

const_declaration
:	const	(as	symbol_type)?	const_assign	(,	const_assign)*
;

type_or_union_declaration
:	type_declaration	|	union_declaration
;

type_declaration
:	type	identifier	(alias	string_literal)?	(field	=	expression)?	(comment
type_member_declaration+
end	type
;

union_declaration
:	union	identifier	(alias	string_literal)?	(field	=	expression)?	(comment
union_member_declaration+
end	union
;

type_member_declaration
:	((union|type)	comment?	statement_separator	element_declaration
end	(union|type)
)
element_declaration

as	as_element_declaration	
;

variable_declaration
:	(redim	preserve?|dim|common)	shared?	symbol_type
extern	import?	symbol_type	alias	string_literal
static	symbol_type
;

symbol_type
:	const?	unsigned?	
(
scalar
string	(*	integer_literal)?
wstring	(*	integer_literal)?
user_defined_type
function	((parameters))	(as	symbol_type)
sub	((parameters))
)(const?	(ptr|pointer))*
;

scalar
:	byte
ubyte
short
ushort
integer
uinteger
longint
ulongint
long
ulong
single
double
;

parameters
:	parameter	(,	parameter)*

;

parameter
:	(byval|byref)?	(identifier	(())?)?	as	symbol_type	(=	literal)?
;

user_defined_type
:	identifier
;

procedure_declaration
:	static?
(sub_declaration|function_declaration|constructor_declaration|destructor_declaration
;

procedure_parameter_list
:	procedure_parameter	(,	procedure_parameter)*
;

procedure_parameter
:	byval?	(identifier(())?	|	expression)
;

expressions

expression
:	boolean_expression
;

boolean_expression
:	logical_expression((andalso	|	orelse)	logical_expression)*
;

logical_expression

:	logical_or_expression	((xor	|	eqv	|	imp)	logical_or_expression)*
;

logical_or_expression
:	logical_and_expression(or	logical_and_expression)*
;

logical_and_expression
:	relational_expression	(and	relational_expression)*
;

relational_expression
:	concatenation_expression	((=|>|<|<>|<=|>=)	concatenation_expression
;

concatenation_expression
:	add_expression(&	add_expression)*
;

add_expression
:
shift_expression((+	|	-)	shift_expression)*
;

shift_expression
:
mod_expression	((shl	|	shr)	mod_expression)*
;

mod_expression
:	=
integer_division_expression(mod	integer_division_expression)*
;

integer_division_expression
:	multiplication_expression	(\	multiplication_expression)*
;

multiplication_expression
:	exponentiation_expression	((*	|	/)	exponentiaton_expression)*
;

exponentiation_expression
:	prefix_expression	(^	prefix_expression)*
;

prefix_expression
:	(-|+)	exponentiation_expression
not	relational_expression
highest_precedence_expression
;

highest_precedence_expression
:	address_of_expression
(dereference_expression	|	casting_expression	|
pointer_type_casting_expression	|	parenthesised_expression)	
anonymous_udt
atom
;

address_of_expression
:	varptr	(highest_precedence_expression)
procptr	(identifier	(())?)
@	(identifier	(())?	|	highest_precedence_expression)
sadd|strptr	(expression)
;

dereference_expression
:	*+	highest_precedence_expression
;

casting_expression
:	cast	(symbol_type	,	expression)
;

quirk_function

:	quirk_function_name	procedure_parameter_list
;

quirk_function_name
:	mkd	|	mki	|	mkl	|	mklongint	|	mkshort
cvd	|	cvi	|	cvl	|	cvlongint	|	cvs	|	cvshort
asc	|	chr	|	instr	|	instrev	|	lcase	|	left	|	len	|	lset	|	ltrim	|	mid	|	right	|
rset	|	rtrim	|	space	|	string	|	ucase	|	wchr	|	wstr	|	wstring	
abs	|	sgn	|	fix	|	frac	|	len	|	sizeof,sin	|	asin	|	cos	|	acos	|	tan	|	atn	|	sqr
|	log	|	exp	|	atan2	|	int
peek
lbound	|	ubound
seek	|	input	|	open	|	close	|	get	|	put	|	name
err
iif
va_first
cbyte	|	cshort	|	cint	|	clng	|	clngint	|	cubyte	|	cushort	|	cuint	|	culng	|
culngint	|	csng	|	cdbl	|	csign	|	cunsg
type
view	|	width	|	color	|	screen
;

quirk_statement
:	jump_statement
print_statement
data_statement
array_statement
line_input_statement
input_statement
poke_statement
file_statement
write_statement
error_statement
on_statement
view_statement
mid_statement
lrset_statement

width_statement
color_statement
gfx_statement
;

jump_statement
:	goto	identifier
;

print_statement
:	(print	|	?)	(#	expression	,)?	(using	expression	;)?	(expression?	;	|	,
)*;	

data_statement
:	restore	identifier
read	variable	(,	variable)*
data	literal	(,	literal)*
;

array_statement
:	erase	variable	(,	variable)*
swap	variable	,	variable	
;

line_input_statement
:	line	input	;?	(#	expression|	expression?)	(,	|	;)?	variable?
;

input_statement
:	input	;?	((#	expression|	string_literal)	(,	|	;))?	variable	(,	variable)*
;

poke_statement
:	poke	expression	,	expression
;

file_statement
:	close	(#?	expression)	(,	#?	expression)*
seek	#?	expression	,	expression

put	#	expression	,	expression?	,	expression
get	#	expression	,	expression?	,	variable
(lock|unlock)	#?	expression	,	expression	(to	expression)?
name	expression	as	expression
;

write_statement
:	write	(#	expression)?	(expression?	,)*
;

error_statement
:	error	expression
err	=	expression
;

on_statement
:	on	local?	(error	|	expression)	goto	identifier
;

view_statement
:	view	(print	(expression	to	expression)?)
;

mid_statement
:	mid	(expression	,	expression	(,	expression)	=	expression
;

lrset_statement
:	lset|rset	highest_precedence_expression	,
highest_precedence_expression
;

width_statement
:	width	expression	,	expression	
width	lprint	expression
width	(#	expression|	expression),	expression
;

color_statement

:	color	expression	,	expression
;

gfx_statement
:	pset	(expression	,)?	step?	(expression	,	expression)	(,
expression)?
line	(expression	,)?	step?	((expression	,	expression))?	-	step?	(
expression	,	expression)	(,	expression?	(,	string_literal?	(,
expression)?)?)?	
circle	(expression	,)?	step?	(expression	,	expression)	,	expression
((,	expression?	(,	expression?	(,	expression?	(,	expression	(,
expression)?)?)?)?)?)?
paint	(expression	,)?	step?	(expression	,	expression)	(,
expression?	(,	expression?))
draw	(expression	,)?	expression
view	(screen?	(expression	,	expression)	-	(expression	,	expression
)	(,	expression?	(,	expression)?)?)?
palette	get?	((using	variable)	|	(expression	,	expression	(,
expression	,	expression)?)?)
put	(expression	,)?	step?	(expression	,	expression)	,	((
expression	,	expression)	-	(expression	,	expression)	,)?	variable	(,
expression	(,	expression)?)?
get	(expression	,)?	step?	(expression	,	expression)	-	step?	(
expression	,	expression)	,	variable
screen	(integer_literal	|	((expression	(((,	expression)?	,	expression)?
expression)?	,	expression))
screenres	expression	,	expression	(((,	expression)?	,	expression)?	,
expression)?
;

	Table of Contents
	Welcome to FreeBASIC
	Getting Help with FreeBASIC

