FreeBASIC Manual

BASIC

free y

BASIC

Welcome to FreeBASIC | Getting Help with FreeBASIC

Language Documentation

Keywords - Alphabetical
Keywords - Functional
Graphics Keywords
Operators List

Variables and Data Types
Variable Declarations
User Defined Types
Standard Data Types
Standard Data Type Limits
Converting Between Data
Types

Operators

Operators

Operator Precedence
Bitwise Operators & Truth
Tables

Statements

Control Flow

Procedures

Modularizing

Other

Preprocessor

Escape Sequences In String
Literals

Meta-statements

Intrinsic Defines

Error Handling

Tutorials

Programmer's Guide
Community Tutorials
Community Code Library
External Libraries Index

Using the FreeBASIC compiler

Installing FreeBASIC |
Requirements

Running FreeBASIC
Using the Command Line |
Command Line Options

Debugging with FreeBASIC

Compiler Error Messages
Tools used by fhc

FreeBASIC dialects and
QBASIC

FreeBASIC and Qbasic |
Differences from QB
FreeBASIC Dialects

FAQs

Compiler FAQ
Graphics Library FAQ

Inline Asm

Runtime Library Reference

Array Functions

Bit Manipulation

Console Functions

Date and Time Functions
Error Handling Functions
File IO Functions
Mathematical Functions
Memory Functions
Operating System Functions
String Functions

Threading Support Functions
User Input Functions

Graphics Library Reference

2D Drawing Functions
User Input Functions
Screen Functions

Supported graphics drivers
(backends)

Keyboard Scan Codes
Default Palettes

Runtime Library FAQ
Xbox port FAQ

DOS related FAQ
Windows related FAQ
Linux related FAQ

Miscellaneous

Obsolete Keywords

Glossary

Miscellaneous Keywords

C Standard Library Functions
ASCII Character Codes
Runtime Error Codes

CIC++ vs. FreeBASIC syntax
comparison

CIC++ vs. FreeBASIC integer
data type comparison

Hacking on FreeBASIC

Developer's Table of Contents

This document last compiled : 2016/01/31 14:20:41 from

http://www.freebasic.net/wiki/

Welcome to FreeBASIC

Welcome to our world! This page is an overview of our online warehoust
of knowledge. Enjoy your surfing and we hope this will be the first of
many Visits.

Introduction

FreeBASIC is a free 32-bit compiler for the BASIC language. It is open
source and licensed under the GPL. It is designed to be syntax
compatible with QuickBASIC, while expanding on the language and
capabilities. It can create programs for MS-Windows, DOS and Linux,
and is being ported to other platforms. See About FreeBASIC and Mair
Features.

Latest Version

FreeBASIC is a beta release compiler and development is ongoing. Witl
each full update, many features are added, and bugs from previous
releases are fixed. To see the latest version available, visit
http:/lsourceforge.netlprojects/fbc on SourceForge, or
http:/lwww.freebasic.net/index.php/download on FreeBASIC's
official website.

Requirements and Installation
Minimum hardware is listed on the Requirements page. Visit our
Installation page for setting up FreeBASIC on your computer.

Running
FreeBASIC is a compiler and as such is not packaged with an IDE

(Integrated Development Editor), although there are a few IDE's
available. For information on using FreeBASIC without an IDE, see
Running.

Compatibility with QuickBASIC
FreeBASIC is designed to be syntax compatible with QuickBASIC. For

best code-compatibility with QuickBASIC, the QB dialect can be used
when compiling source code. See FreeBASIC Dialects and Difference.
from QB.

http://sourceforge.net/projects/fbc
http://sourceforge.net
http://www.freebasic.net/index.php/download
http://www.freebasic.net

Documentation

All official documentation can be found online in the wiki at
http://www.freebasic.net/wiki. The online documentation is the most up-
to-date resource available. In all cases it can be regarded as the correct
version. The downloadable versions of the manual are snapshots of the
documentation available at a particular time and should be mostly corres
for a specific released version of the compiler. However, we do not
maintain multiple versions of the documentation so there may be some
discrepancies.

Starting points in the Manual
= Table of Contents

= Getting Help with FreeBASIC
= Programmer's Guide

Starting points on the Web
= Official Website at http://lwww.freebasic.net

= Official Forums at http://lwww.freebasic.net/forum
= Official Archive at http:/lwww.freebasic.net/arch

Thank you for using FreeBASIC. Happy coding!

http://www.freebasic.net
http://www.freebasic.net/forum
http://www.freebasic.net/arch

Getting help with FreeBASIC
There are several options available for getting help with FreeBASIC.
The Manual

This huge user's manual is full of information that can help you learn to
write programs using FreeBASIC.

The manual is available online at http://www.freebasic.net/wiki. There is
search box at the bottom of every page to help you find what you're
looking for.

If you are unfamiliar with FreeBASIC or the documentation, you may fin
these pages a good place to start:

= Table of Contents

= Programmer's Guide
= Library Headers Index
m Glossary

s Compiler FAQ

s Graphics Library FAQ
= Runtime Library FAQ

A downloadable manual (in CHM format) is available from the
sourceforge project page at http://sourceforge.net/projects/fbc which
features a full table of contents, searching capabilities, an index, plus all
the same content as the online version.

Searching the manual on or offline is an excellent place to start finding
help about how to write and use FreeBASIC programs.

Examples and Source Code

In the ./examples directory located where FreeBASIC was installed on
your system are hundreds of examples to be compiled and run. Most of
the external library examples will need additional libraries to be
downloaded to allow them to work. See Library Headers Index for a ful
list.

http://sourceforge.net/projects/fbc

FreeBASIC's official code archive is located at
http:/lwww.freebasic.net/arch. This archive hosts user contributed
libraries and tools and has links to source code located on other
websites.

Tutorials
Community created tutorials about FreeBASIC can be found at
CommunityTutorials. Some selected tutorials are included in this manua

FreeBASIC Forum

An active community forum can be found at
http:/lwww.freebasic.net/forum with several sub-forums. The forum he
a search feature that can help you find answers to questions or problem
that may have already been asked and solved. First do a search for you
problem, if you can't find the answer then post a message in one of the
sub-forums.

Chat

IRC or Internet Relay Chat is a great way to chat with the developers an
other users, some of whom are very knowledgeable. There are several
ways to connect to IRC, if you know what you're doing simply join
#freebasic on FreeNode.

If you haven't the foggiest what IRC is and you have Java installed, you
can simply go here.

If you're trying to get help, the most important thing is to be patient.
Sometimes you won't get a reply right away. Stick around or check back
and the Community will try and assist you.

http://www.freebasic.net/arch
http://www.freebasic.net/forum
http://www.freebasic.net/index.php/chat

Alphabetical Keywords List

Alphabetical listing of keywords, macros and procedures.

Operators. _ # $ABCDEFGHIKLMNOPRSTUVWXY?Z
Operators K
= See Operator List = Kill
. L
. = LBound
_ = LCase
= DATE = Left
= Date_Iso_ = Len
= _Fb _64Bit = Let
= FB ARGC = Lib
= FB ARGV » Line
= Fb_Arm__ = Line Input
= Fb Asm__ = Line Input #
= _ Fb_Backend__ = LoByte
= _ FB_BIGENDIAN_ = LOC
= FB BUILD DATE = Local
m _ FB_CYGWIN_ = Locate
= _ FB_DARWIN__ = Lock
= FB DEBUG = LOF
= _ FB _DOS__ = Log
= FB ERR = Long
= _Fb_Fpmode = Longint
= _ Fb_Fpu__ = Loop
= _FB_FREEBSD_ = LoWord
= _ Fb_Gcc__ = Lpos
= FB LANG = LPrint

_ FB_LINUX_

__FB _MAIN__
__FB_MIN_VERSION_
__FB MT__

__ FB_NETBSD

__ FB_OPENBSD

__FB _OPTION BYVAL_
__FB_OPTION_DYNAMIC
_ FB _OPTION_ESCAPE_
__ FB_OPTION_EXPLICIT_
__Fb_Option_Gosub___
__FB_OPTION_PRIVATE
__ FB OUT DLL__

__ FB OUT EXE__
__FB_ OUT LIB__
__FB_OUT 0OBJ__

_ _Fb_Pcos___
__FB_SIGNATURE_
__FB SSE___

__Fb_Unix__
__Fb_Vectorize

__ FB_VER_MAJOR_
__FB_VER_MINOR___

_ FB_VER PATCH_

_ FB VERSION_

_ FB_WIN32_

_ FB_ XBOX_

_ FILE__

__FILE_NQ

_ FUNCTION_

_ FUNCTION_NQ__

=

2

(o]

LSet
LTrim

Mid (Statement)
Mid (Function)
Minute

MKD

MKDir

MKI

MKL
MKLongint
MKS

MKShort

Mod

Month
MonthName
MultiKey
MutexCreate
MutexDestroy
MutexLock
MutexUnlock

Naked
Name
Namespace
Next

New

New (Placement)

Next (Resume)
Not
Now

¥

>

__LINE__
__PATH__
__TIME__

#Assert
#define
#else
#elseif
#endif
#endmacro
#error
#if

#ifdef
#ifndef
#inclib
#include
#lang
#libpath
#line
#macro
#pragma
#print
#undef

$Dynamic
$include
$Static
$Lang

Abs
Abstract (Member)
Access

Object

Oct

OffsetOf

On Error
On...Gosub
On...Goto

Once

Open

Open Com
Open Cons
Open Err

Open Lpt

Open Pipe
Open Scrn
Operator
Option()

Option Base
Option ByVal
Option Dynamic
Option Escape
Option Explicit
Option Gosub
Option Nogosub
Option NoKeyword
Option Private
Option Static
Or

Or (Graphics Put)
OrElse

Out

Output

00

Acos

Add (Graphics Put)
Alias

Allocate

Alpha (Graphics Put)
And

AndAlso

And (Graphics Put)
Any

Append

As

Assert

AssertWarn

Asc

Asin

Asm

Atan2

Atn

Base (Initialization)
Base (Member Access)
Beep

Bin

Binary

Bit

BitReset

BitSet

BLoad

Boolean

BSave

Byref (Parameters)

Byref (Function Results)

(v

Overload
Override

Paint
Palette
pascal
PCopy
Peek
PMap
Point
Pointcoord
Pointer
Poke

Pos
Preserve
PReset
Print

?

Print #

?2#

Print Using
? Using
Private

Private: (Access
Control)

ProcPtr
Property

Protected: (Access
Control)

Pset (Statement)
Pset (Graphics Put)
Ptr

(@]

Byte
ByVal

Call
CAllocate
Case

Cast

Cbool

CByte

CDbl

cdecl

Chain

ChDir

Chr

Cint

Circle

Class

Clear

CLng
CLngint
Close

Cls

Color
Command
Common
CondBroadcast
CondCreate
CondDestroy
CondSignal
CondWait
Const

Const (Member)

0

In

Public

Public: (Access
Control)

Put (Graphics)
Put # (File 1/0)

Random
Randomize

Read

Read (File Access)

Read Write (File
Access)

Reallocate
ReDim
Rem
Reset
Restore
Resume
Resume Next
Return
RGB
RGBA
Right
RmDir
Rnd

RSet
RTrim

Run

SAdd
Scope
Screen

lw

Const (Qualifier)
Constructor
Constructor (Module)
Continue

Cos

CPtr

CShort

CSign

CSng

CsrLin

CUByte

CUInt

CULng
CULngint
CUnsg

CurDir

CUShort
Custom (Graphics Put)
CVvD

CVvI

CVL

CVLongint

CVS

CVShort

Data

Date
DateAdd
DateDiff
DatePart
DateSerial
DateValue

Screen (Console)
ScreenCopy
ScreenControl
ScreenEvent
Screenlinfo
ScreenGLProc
ScreenList
ScreenLock
ScreenPtr
ScreenRes
ScreenSet
ScreenSync
ScreenUnlock
Second

Seek (Statement)
Seek (Function)
Select Case
SetDate
SetEnviron
SetMouse
SetTime

Sgn

Shared

Shell

Shli

Shr

Short

Sin

Single

SizeOf

Sleep

Irm

Day
Deallocate
Declare
DefByte
DefDbl
defined
Defint
DefLng
Deflongint
DefShort
DefSng
DefStr
DefUByte
DefUInt
Defulongint
DefUShort
Delete
Destructor
Destructor (Module)
Dim

Dir

Do
Do...Loop
Double
Draw

Draw String
DyLibFree
DyLibLoad
DyLibSymbol

Else

Space

Spc

Sqr

Static

Static (Member)
stdcall

Step

Stick

Stop

Str

Strig

String (Function)
String

StrPtr

Sub

Sub (Member)
Swap

System

Tab

Tan

Then

This
Threadcall
ThreadCreate
Threaddetach
ThreadWait
Time
TimeSerial
TimeValue
Timer

To

M

Elself

Encoding

End (Block)
End (Statement)
End If

Enum

Environ Statement
Environ

EOF

Eqv

Erase

Erfn

Erl

Ermn

Err

Error

Event (Message Data From
Screenevent)

Exec

ExePath

Exit

Exp

Export

Extends

Extern

Extern...End Extern

False

Field

FileAttr
FileCopy
FileDateTime

Ic

<

Trans (Graphics Put)
Trim

True

Type (Alias)

Type (Temporary)
Type (Udt)

TypeOf

UBound
UByte
UCase
Ulnteger
Ulong
ULongint
Union
Unlock
Unsigned
Until

UShort
Using (Print)
Using (Namespaces)

va_arg
va_first
va_next
Val
ValLng
Valint
ValUint
ValULng
Var
VarPtr

(o)

I

FileExists
FileLen
Fix

Flip

For
For...Next
Format
Frac

Fre
FreeFile
Function
Function (Member)

Get (Graphics)
Get # (File 1/10)
GetJoystick
GetKey
GetMouse
GoSub

Goto

Hex
HiByte
Hiword
Hour

If...Then

lif
ImageConvertRow
ImageCreate
ImageDestroy
Imageinfo

=

X

>

IN

View Print
View (Graphics)
Virtual (Member)

Wait

WBin

WChr

Weekday
WeekdayName
Wend

While
While...Wend
WHex

Width

Window
WindowTitle
Winput

With

WOct

Write

Write #

Write (File Access)
WSpace

WStr

Wstring (Data Type)
Wstring (Function)

Xor
Xor (Graphics Put)

Year

Imp

Implements
Import

Inkey

Inp

Input (Statement)
Input (File 1/0)
Input #

Input$

InStr

InStrRev

Int

Integer

Is (Select Case)

Is (Run-Time Type
Information Operator)
IsDate
Isredirected

m ZString

... (Ellipsis)

Used in place of procedure parameter to pass a variable number of argt
bound in an array declaration to denote that the number of elements will
initializer.

Syntax
Declare { Sub | Function } proc_name cdecl (param_list, ...) {
Dim array_symbol ([lbound To] ...) [As datatype] => { expression
#define identifier([parameters,] variadic_parameter...) body
Description

The ellipsis (three dots, ...) is used in procedure declarations and de
variable argument list. A first argument (at least) must always be spec
must be called with the C calling convention cdec1l. In the procedure b
and va_next are used to handle the variable arguments.

Only numeric types and pointers are supported as variable arguments
passed on variable arguments are implicitly converted to integers, all -
variable arguments are implicitly converted to doubles). strings can k
a zstring Ptr to the string data is taken.

A variadic procedure name can never be overloaded.

Using an ellipsis in place of the upper bound in an array declaration c:
to be set according to the data that appears in the expression_list. W\
in this manner, an initializer must appear, and cannot be Any.

Using an ellipsis behind the last parameter in a #define Or #macro decl
a variadic macro. This means it is possible to pass any number of arg
variadic_parameter, which can be used in the body as if it was a norn
The variadic_parameter will expand to the full list of arguments passe
commas, and can also be completely empty.

Example

Declare Function foo cdecl (x As Integer, ...) As

Dim As Integer myarray(®@ To ...) = {0, 1, 2, 3}
Print LBound(myarray), UBound(myarray) ''"'09, 3

"' Using a variadic macro to wrap a variadic funct
#include "crt.bi"

#define eprintf(Format, args...) fprintf(stderr, F
eprintf(!"Hello from printf: %i %s %i\n", 5, "test

"' LISP-1like accessors allowing to modify comma-se
#define car(a, b...) a
#define cdr(a, b...) b

Differences from QB
= New to FreeBASIC

See also

m cdecl

® va_arg

m va first
® va_next
® Dim

B Static

m #define

__DATE__

Intrinsic define (macro value) set by the compiler

Syntax
_ DATE___

Description

Substitutes the compiler date in a literal string ("mm-dd-yyyy" format)
where used.

Example

Print "Compile Date: " & __ DATE_

Compile Date: 09-29-2011

Differences from QB
= New to FreeBASIC

See also

B Date_Iso_
m_ TIME

m Date

__Date Iso

Intrinsic define (macro value) set by the compiler

Syntax
__DATE_ISO

Description

Substitutes the compiler date in a literal string ("yyyy-mm-dd" format)
where used. This format is in line with ISO 8601 and can be used for
lexicographical date comparisons.

Example

Print "Compile Date: " & __DATE_ISO__

If _ DATE_ISO__ < "2011-12-25" Then

Print "Compiled before Christmas day 2011"
Else

Print "Compiled after Christmas day 2011"
End If

Compile Date: 2011-09-29
Compiled before Christmas day 2011

Differences from QB
= New to FreeBASIC

See also

B DATE__

m _ TIME

® Date

__Fb_64Bit__ e

Intrinsic define set by the compiler

Syntax
__FB_64BIT__

Description

Define created at compile time if the the compilation target is 64bit,
otherwise undefined.

Example

#ifdef _ FB_64BIT___

'...1lnstructions for 64bit OSes...
#else

'...1lnstructions for other 0Ses
#endif

Differences from QB
= New to FreeBASIC

See also

B FB LINUX _

® FB_FREEBSD_
_ _FB_OPENBSD___
m _ FB NETBSD_

" _ FB_CYGWIN _
® FB_DARWIN _
__Fb_Pcos___

Compiler Option: -target

__FB_ARGC__ wAsic

Intrinsic define (macro value) set by the compiler

Syntax
_ FB_ARGC___

Description

Substituted with the number of arguments passed in on the command

_ FB_ARGC___ is the name of a parameter passed to the program's
implicit main function, and therefore is only defined in the module leve
code of the main module for an application.

Example
Dim i As Integer
For 1 = 0 To _ FB_ARGC__ - 1
Print "arg "; i; " = '"; Command(i); "'"
Next i

Differences from QB
= New to FreeBASIC

See also

®m _ FB _ARGV__

® Command

__FB_ARGV__

BASIC

Intrinsic define (macro value) set by the compiler

Syntax
_ FB_ARGV___

Description

Substituted with a pointer to a list of pointers to the zero terminated
command line arguments passed in on the command line.

__FB_ARGV__ is the name of a parameter passed to the program's
implicit main function, and therefore is only defined in the module leve
code of the main module for an application.

Example

Declare Function main _
(_
ByVal argc As Integer,

ByVal argv As ZString Ptr Ptr _
) As Integer

End main(_ FB_ARGC__, _ FB_ARGV__)

Private Function main _
(_
ByVal argc As Integer,

ByVal argv As ZString Ptr Ptr _
) As Integer

Dim i As Integer
For i = 0 To argc - 1

Prlnt llarg Il; l; 1" - Ill; *argV[l]; miviun
Next i

Return 0

End Function

Differences from QB
= New to FreeBASIC

See also

m _ FB_ARGC___

m Command

__ Fb Arm___

Intrinsic define set by the compiler

Syntax
__ FB_ARM___

Description

Define created at compile time if the compilation target uses the ARM
CPU architecture, otherwise undefined.

Example

#ifdef _ FB_ARM_

'...1lnstructions for ARM O0Ses...
#else

'...1lnstructions for other 0Ses
#endif

Differences from QB
= New to FreeBASIC

See also

B FB LINUX _

® FB_FREEBSD_
_ _FB_OPENBSD___
m _ FB NETBSD_

" _ FB_CYGWIN _
® FB_DARWIN _
__Fb_Pcos___

Compiler Option: -target

~__ Fb Asm_

Intrinsic define set by the compiler

Syntax
__FB_ASM___

Description

__FB_ASM__ returns a string equal to "intel" or "att" depending on
whether inline assembly blocks should use the Intel format or the
GCC/AT&T; format.

Example
Dim a As Long
#if _ FB_ASM__ = "intel"
Asm
inc dword Ptr [a]
End Asm
#else
Asm
"incl %0\n" : "+m" (a)
End Asm
#endif

Differences from QB
= New to FreeBASIC

See also

s Compiler Option: -asm

__Fb Backend

Intrinsic define set by the compiler

Syntax
___FB_BACKEND___

Description

Defined to either "gas" or "gcc", depending on which backend was
specified via -gen.

Differences from QB
= Did not exist in QB

__FB_BIGENDIAN__ sAsic

Intrinsic define set by the compiler

Syntax
__FB_BIGENDIAN_

Description

Define without a value created at compile time if compiling for a big et
target.

It can be used to compile parts of the program only if the target is big

Example

#ifdef _ FB_BIGENDIAN_ _

'...1lnstructions only for big endian machines
#else

'...1lnstructions only for little endian machines

#endif

Differences from QB
= Did not exist in QB

__FB_BUILD_DATE___ sAsic

Intrinsic define (macro string) set by the compiler

Syntax
__FB_BUILD DATE__

Description

Substituted with the quoted string containing the date (MM-DD-YYYY) the

Example

Print "This program compiled with a compiler kt

Differences from QB
= New to FreeBASIC

__FB_CYGWIN__ sAsic

Intrinsic define set by the compiler

Syntax
__FB_CYGWIN _

Description

Define without a value created at compile time in the Cygwin version «
the compiler, or when the -target cygwin command line option is use
It can be used to compile parts of the program only if the target is
Cygwin.

Example

#ifdef _ FB_CYGWIN_ _

'...1lnstructions only for Cygwin...
#else

'...1lnstructions not for Cygwin...
#endif

Differences from QB
= New to FreeBASIC

See also

" FB_LINUX _
" Fb_Win32_
® _ Fb Unix__
= Compiler Option: -target

__FB_DARWIN__ sAsic

Intrinsic define set by the compiler

Syntax
___FB_DARWIN

Description

Define without a value created at compile time in the Darwin version ¢
the compiler, or when the -target darwin command line option is use
It can be used to compile parts of the program only if the target is
Darwin.

Example

#ifdef _ FB_DARWIN_

'...lnstructions only for Darwin...
#else

'...1lnstructions not for Darwin...
#endif

Differences from QB
= New to FreeBASIC

See also

" FB_LINUX _
" FB_WIN32 _
__Fb_Unix__
Compiler Option: -target

__FB_DEBUG___ sasic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_DEBUG___

Description

__FB_DEBUG__ indicates if the the generate debug information option '~
was specified on the command line at the time of compilation.

Returns non-zero (-1) if the option was specified. Returns zero (0)
otherwise.

Example

#if _ FB_DEBUG__ <> 0
#print Debug mode
#else
#print Release mode
#endif

Differences from QB
= New to FreeBASIC

See also
"= FB_ERR__
" FB_MT__

= Compiler Option: -g

_FB_DOS_ l;l’l’f

Intrinsic define set by the compiler

Syntax
__FB_DOS__

Description

Define without a value created at compile time if compiling for the DO
target. Default in the DOS hosted version, or active when the -target
dos command line option is used. It can be used to compile parts of
the program only if the target is DOS. Note: the DOS hosted version
cannot compile to other targets than DOS by now.

Example

#ifdef _ FB_DOS_
' ... 1instructions only for DOS
' ... INT 0x31
#else
' ... 1nstructions not for DOS
#endif

Differences from QB
= New to FreeBASIC

See also

= _ FB_LINUX _
= FB_WIN32 _
__Fb_Pcos__

DOS related FAQ
Compiler Option: -target

__FB_ERR__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__ FB_ERR__

Description

__FB_ERR__indicates if -e, -ex, or -exx was specified on the compiler ¢
compilation of a module.

Returns one of the following values:

|value || description |

0 |[-e, -ex, -exx' not specified |
|1 ||'-e' was specified |
|3 ||'-ex' was specified |
7 |-exx was specified |

__FB_ERR__is always defined.

Example
'"Example code to demonstrate a use of _ FB_ERR_
Dim err_command_line As UByte
err_command_line = _ FB_ERR__
Select Case err_command_line
Case 0
Print "No Error Checking enabled on the Command Li
Case 1
Print "Some Error Checking enabled on the Command
Case 3
Print "QBasic style Error Checking enabled on the
Case 7
Print "Extreme Error Checking enabled on the Comme

Case Else
Print "Some Unknown Error level has been set!"
End Select

Differences from QB
= New to FreeBASIC

See also

" FB_MT__
__FB_DEBUG___

Compiler Option: -e
Compiler Option: -ex
Compiler Option: -exx
Error Handling

__Fb_Fpmode__

Intrinsic define set by the compiler

Syntax
__FB_FPMODE___

Description

Defined as "fast" if SSE fast arithmetics is enabled, or "precise"
otherwise.

Example
#if _ FB_FPMODE__ = '"fast"
' ... 1nstructions for using fast-
mode math
#else
' ... instructions for using normal math
#endif

Differences from QB
= New to FreeBASIC

See also

s Compiler Option: -fpmode

__Fb_Fpu__

Intrinsic define set by the compiler

Syntax
__ FB_FPU__

Description

Defined as "sse" if SSE floating point arithmetics is enabled, or "xs7"
otherwise.

Example
#if _ FB_FPU__ = '"sse"
' ... 1instructions only for SSE
#else
' ... 1nstructions not for SSE
#endif

Differences from QB
= New to FreeBASIC

See also

m _FB SSE__
= Compiler Option: -fpu

__FB_FREEBSD___ sAsic

Intrinsic define set by the compiler

Syntax
__FB_FREEBSD___

Description

Define without a value created at compile time in the FreeBSD versiol
of the compiler, or when the -target freebsd command line option is
used. It can be used to compile parts of the program only if the target
is FreeBSD.

Example

#ifdef _ FB_FREEBSD_

'...1lnstructions only for FreeBSD...
#else

'...1nstructions not for FreeBSD...
#endif

Differences from QB
= New to FreeBASIC

See also

" FB_LINUX _
" FB_WIN32 _

® _ Fb Unix__

= Compiler Option: -target

__Fb_Gecc__

Intrinsic define set by the compiler

Syntax
__FB_GCC__

Description

Defined to true (-1) if -gen gcc is used, or false (o) otherwise.

Differences from QB
= Did not exist in QB

__FB_LANG__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
_ FB_LANG___

Description

__FB_LANG__ indicates which language compatibility option was set at
the time of compilation of a module. By default __Fe_LANG__ will be set
to "fb". The language compatibility option can be changed using one
(or more) of the following methods:

m -Jang command line option

m -forcelang command line option
m #lang directive

m $Lang metacommand

Returns a lower case string with one of the following values:

|va|ue ||description |
|"fb" ||FreeBASIC compatibility (default) |
b | QBASIC compatibility |
“fhlite” ;ryelgBASIC language compatibility, with a more QBASIC-compatible coding

|"deprecated" ||FBC version 0.16 compatibility |

__FB_LANG__is always defined.

Example

"' Set option explicit always on

#ifdef _ FB_LANG_
#1f _ FB_LANG__ <> "fb"

Option Explicit
#endif
#else
"' Older version - before lang fb
Option Explicit
#endif

Differences from QB
= New to FreeBASIC

See also

m _ FB_VERSION_ _

® #lang

Compiler Option: -lang
Compiler Option: -forcelang
Compiler Dialects

__FB_LINUX__ sAsic

Intrinsic define set by the compiler

Syntax
__FB_LINUX_

Description

Define without a value created at compile time when compiling to the
Linux target. Default in the Linux hosted version of the compiler, or
active when the -target linux command line option is used. It can be
used to compile parts of the program only if the target is Linux.

Example

#ifdef _ FB_LINUX_

' ... 1nstructions only for Linux

" ... #libpath "/usr/X11/1ib"
#else

' ... instructions not for Linux
#endif

Differences from QB
= New to FreeBASIC

See also

= _ FB_DOS
" FB_WIN32 _

® _ Fb_Unix___

= Compiler Option: -target

__FB_MAIN__ sAsic

Intrinsic define set by the compiler

Syntax
_ FB_MAIN

Description

__FB_MAIN__ is defined in the main module and not defined in other
modules.

The main module is determined by the compiler as either the first

source file listed on the command line or explicitly named using the -n
option on the command line.

Example

#ifdef _ FB_MAIN_

#print Compiling the main module
#else

#print Compiling an additional module
#endif

Differences from QB
= New to FreeBASIC

See also

= Compiler Option: -m
m #ifdef
m #ifndef

__FB_MIN_VERSION___ sAsic

Macro function to test minimum compiler version

Syntax
#define __ FB_MIN_VERSION__ (major, minor, patch) _
((__FB_VER_MAJOR__ > major) or _

((__FB_VER_MAJOR _ = major) and ((__FB_VER MINOR_ _ > minor) or _
(__FB_VER _MINOR__ = minor and _ FB VER PATCH__ >= patch_level)))
Usage

__FB_MIN_VERSION__(major, minor, patch)

Parameters

major
minimum major version to test
minor

minimum minor version to test
patch

minimum patch version to test

Return Value

Returns zero (0) if the compiler version is less than the specified versi
version is greater than or equal to specified version

Description

__FB_MIN_VERSION__ tests for a minimum version of the compiler.

Example

#if Not _ FB_MIN_VERSION__ (0, 18, 2)
#error fbc must be at least version 0.18.2 Tc
#endif

Differences from QB
= New to FreeBASIC

See also
n #if

_F B_MT_ l; 5ic

Intrinsic define (macro value) set by the compiler

Syntax
_ FB_MT__

Description

__rB_MT__ indicates if the the multithreaded option -mt was specified
on the command line at the time of compilation.

Returns non-zero (-1) if the option was specified. Returns zero (0)
otherwise.

Example
#if _ FB_MT_
#print Using multi-threaded library
#else
#print Using Single-threaded library
#endif

Differences from QB
= New to FreeBASIC

See also

= _ FB DEBUG__
» Compiler Option: -mt

__FB_NETBSD___ sAsic

Intrinsic define set by the compiler

Syntax
__FB_NETBSD___

Description

Define without a value created at compile time in the NetBSD version
of the compiler, or when the -target netbsd command line option is
used. It can be used to compile parts of the program only if the target
is NetBSD.

Example

#ifdef _ FB_NETBSD_
'...1lnstructions only for NetBSD...

#else
'...1lnstructions not for NetBSD...

#endif

Differences from QB
= New to FreeBASIC

See also

" FB_LINUX _
" FB_WIN32 _

® _ Fb Unix__

= Compiler Option: -target

__FB_OPENBSD___ sAsic

Intrinsic define set by the compiler

Syntax
__FB_OPENBSD___

Description

Define without a value created at compile time in the OpenBSD versic
of the compiler, or when the -target openbsd command line option is
used. It can be used to compile parts of the program only if the target
is OpenBSD.

Example

#ifdef _ FB_OPENBSD___

'...1lnstructions only for OpenBSD...
#else

'...lnstructions not for OpenBSD...
#endif

Differences from QB
= New to FreeBASIC

See also

" FB_LINUX _
" FB_WIN32 _

® _ Fb Unix__

= Compiler Option: -target

__FB_OPTION_BYVAL__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OPTION_BYVAL_

Description

Indicates if parameters to a Function Or sub are passed by reference ¢
or by value as with Byval by default when the by value / by reference :
explicitly stated.

__FB_OPTION_BYVAL__is set to non-zero (-1) if by default parameters ar
value, and zero (0) if by default parameters are passed by reference.

The default for passing parameters by reference or by value is deterrnr

lang command line option used during compilation or usage of optior
source file.

Example

#if(__FB_OPTION_BYVAL__ <> 0)
#error Option ByVal must Not be used With This ¢
#endif

Differences from QB
= New to FreeBASIC

See also
® Byval
® ByRef
® Option ByVval

__FB_OPTION_DYNAMIC___ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OPTION_DYNAMIC

Description

__FB_OPTION_DYNAMIC__is defined as true (negative one (-1)) if a recer
Option Dynamic Statement or '$bynamic meta-command was issued.
Otherwise, it is defined as zero (0).

Example

#if _ FB_OPTION_DYNAMIC__ <> 0
#error This module must Not use Option Dynamic
#endif

Differences from QB
= New to FreeBASIC

See also

® Option Dynamic

® QOption Static

__FB_OPTION_ESCAPE___ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OPTION_ESCAPE___

Description

Indicates if by default, string literals are processed for escape charact
prefixed with the $ Operator for non-escaped strings, or the ! Operat:

The default method for processing string literals is set by usage of the
option during compilation or usage of option Escape in the source file.

__FB_OPTION_ESCAPE__ returns zero (0) if the option has not been set. F
the option has been set.

Example

#if(__FB_OPTION_ESCAPE__ <> 0)
#error Option Escape must Not be used With This

#endif

Differences from QB
= New to FreeBASIC

See also

® Option Escape

__FB_OPTION_EXPLICIT__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OPTION_EXPLICIT

Description

__FB_OPTION_EXPLICIT__indicates if option Explicit has been used p
in the source.

Returns zero (0) if the option has not been set. Returns non-zero (-1)
option has been set.

Example
#if(__FB_OPTION_EXPLICIT_ = 0)
#error Option Explicit must used With This modul
#endif

Differences from QB
= New to FreeBASIC

See also
B Dim

B Option Explicit

__Fb_Option_Gosub___

Intrinsic define (macro value) set by the compiler

Syntax
__ FB_OPTION _GOSUB_

Description

Indicates how Gosub and return will be handled at compile time. If the
option is set (-1) then Gosub is allowed and rReturn is recognized as
return-from-gosub only. If the option is not set (0) then Gosub is not
allowed and return is recognized as return-from-procedure only.

This macro value can be changed at compile time. option Gosub will
set the option (enable gosub support) and option Nogosub will clear th
option (disable gosub support).

__FB_OPTION_GOSuB__ returns zero (0) if the option has not been set.
Returns non-zero (-1) if the option has been set.

Example

#1f(_ _FB_OPTION_GOSUB__ <> 0)
"' turn off gosub support
Option nogosub

#endif

Dialect Differences

» Defaults to -1 in the -lang gb dialect and o in all other dialects.

Differences from QB
= New to FreeBASIC

See also

m Option Gosub

® Option Nogosub

__FB_OPTION_PRIVATE__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OPTION_PRIVATE_

Description

Indicates if by default Function's and sub's have module scope or glok
not explicitly specified with private oOr public.

The default scope specifier for functions and subs is set by usage of t
command line option during compilation or usage of option Private ir

__FB_OPTION_PRIVATE__ returns zero (0) if the option has not been set.
zero (-1) if the option has been set.

Example

#if(__FB_OPTION_PRIVATE__ <> 0)
#error Option Private must Not be used With This
#endif

Differences from QB
= New to FreeBASIC

See also

® Option Private
® Private

® Public

__FB_OUT _DLL__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OUT_DLL___

Description

__FB_OUT_DLL__ indicates that the specified output file type on the com

compilation is a shared library.

Returns non-zero (-1) if the output is a shared library. Returns zero (O

Only one of _ FB_OUT_DLL__,
(-1). All others will evaluate to zero (0).

Example

__FB_OUT_EXE_ ,_ FB OUT_LIB_ ,Or _ FB_

#if _ FB_OUT_DLL_
' specific instructions when making a
#else

#endif

c

-~

specific instructions when not makinc

Differences from QB
= New to FreeBASIC

See also

" _ FB OUT_EXE__
" FB OUT_LIB _
= _FB OUT_OBJ_ _
Compiler Option: -dll

__FB_OUT_EXE__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OUT_EXE___

Description

__FB_OUT_EXE__ indicates that the specified output file type on the com
time of compilation is an executable.

Returns non-zero (-1) if the output is an executable. Returns zero (0)

Onlyone of _FB OUT DLL , FB_OUT_EXE_ , FB OUT LIB_ ,Of FB_
non-zero (-1). All others will evaluate to zero (0).

Example

#1f _ FB_OUT_EXE__

' specific instructions when making an
#else

specific instructions when not makinc
#endif

Differences from QB

= New to FreeBASIC

See also

m _ FB OUT_DLL
B FB OUT_LIB
m _ FB OUT_OBJ_

__FB_OUT_LIB__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OUT_LIB__

Description

__FB_OUT_LIB__ indicates that the specified output file type on the com

of compilation is a static library.

Returns non-zero (-1) if the output is a static library. Returns zero (0) «

Only one of __FB OUT DLL , FB OUT_EXE
zero (-1). All others will evaluate to zero (0).

Example

_ FB_OUT_LIB__, Or __FB_

#if _ FB_OUT_LIB_
'... specific instructions when making a
#else

#endif

c

-~

'... specific instructions when not makinc

Differences from QB
= New to FreeBASIC

See also

" _ FB OUT_EXE__
" FB OUT_DLL_ _
= _FB OUT_OBJ_ _
Compiler Option: -lib

__FB_OUT_OBJ__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_OUT_OBJ__

Description

__FB_0UT_oBJ__ indicates that the specified output file type on the com
compilation is an object module.

Returns non-zero (-1) if the output is an object module. Returns zero |

Onlyone of _FB OUT DLL , FB OUT EXE_, FB OUT LIB ,Of _FB_
All others will evaluate to zero (0).

Example

#if _ _FB_OUT_OBJ___
' specific instructions when compiling
#else

specific instructions when not compil
#endif

Differences from QB
= New to FreeBASIC

See also

B FB OUT_EXE__
& _ FB OUT_DLL
m_ FB OUT_LIB

~_Fb Pcos

Intrinsic define set by the compiler

Syntax
__FB_PCOS___

Description

Define created at compile time if the OS has filesystem behavior style
like common PC OSes, e.g. DOS, Windows, OS/2, Symbian OS,
possibly others. Drive letters, backslashes, that stuff, otherwise
undefined.

Example

#ifdef _ FB_PCOS___

'...1nstructions for PC-ish OSes...
#else

'...1lnstructions for other 0Ses
#endif

Differences from QB
= New to FreeBASIC

See also

B FB WIN32_

®E FB DOS
B FB XBOX_
® Fb Unix_

Compiler Option: -target

__FB_SIGNATURE___ sAsic

Intrinsic define (macro string) set by the compiler

Syntax
___FB_SIGNATURE___

Description

Substituted by a signature of the compiler where used.

Example

Print _ FB_SIGNATURE___

FreeBASIC 0.21.1

Differences from QB
= New to FreeBASIC

See also

B FB _VERSION_
B FB WIN32_

B FB LINUX _

B FB DOS__

_FB_SSE_ l;"l’f

Intrinsic define set by the compiler

Syntax
__ FB_SSE__

Description

Define without a value created at compile time if SSE floating point
arithmetics is enabled.

Example

#ifdef _ FB_SSE_

' ... 1instructions only for SSE
#else

' ... 1nstructions not for SSE
#endif

Differences from QB
= New to FreeBASIC

See also

® _ Fb_Fpu__
= Compiler Option: -fpu

~_Fb Unix_

Intrinsic define set by the compiler

Syntax
_ FB_UNIX

Description

Define created at compile time if the OS is reasonably enough like
UNIX that you can call it UNIX, otherwise undefined.

Example

#ifdef _ FB_UNIX_

'...1lnstructions for UNIX-family OSes...
#else

'...1lnstructions for other 0Ses
#endif

Differences from QB
= New to FreeBASIC

See also

B FB LINUX _

® FB_FREEBSD_
_ _FB_OPENBSD___
m _ FB NETBSD_

" _ FB_CYGWIN _
® FB_DARWIN _
__Fb_Pcos___

Compiler Option: -target

__Fb _Vectorize

Intrinsic define set by the compiler

Syntax
__FB_VECTORIZE

Description
Defined as the vectorisation level number set by the -vec command-li

Example
#if _ FB_VECTORIZE__ = 2
' ... 1instructions only for vectorization level
#else
#endif

Differences from QB
= New to FreeBASIC

See also

= Compiler Option: -vec

__FB_VER_MAJOR__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_VER_MAJOR___

Description

__FB_VER_MAJOR__ Will return the major version of FreeBASIC currently
0.90, and will remain O until FreeBASIC version 1.0 is released.

Example

Dim fbMajorVersion As Integer
Dim fbMinorVersion As Integer
Dim fbPatchVersion As Integer

fbMajorVersion = __FB_VER_MAJOR___
fbMinorVersion = __ _FB_VER_MINOR_
fbPatchVersion = _ FB_VER_PATCH_

Print "Welcome to FreeBASIC " & fbMajorVersion & "

Differences from QB
= New to FreeBASIC

See also

® _ FB VER_MINOR_ _
® _ FB _VER _PATCH__

__FB_VER_MINOR__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_VER_MINOR_ _

Description

__FB_VER_MINOR__ Will return the minor version of FreeBASIC currently
minor version number is 90.

Example

Dim fbMajorVersion As Integer
Dim fbMinorVersion As Integer
Dim fbPatchVersion As Integer

fbMajorVersion = __FB_VER_MAJOR___
fbMinorVersion = __ _FB_VER_MINOR_
fbPatchVersion = _ FB_VER_PATCH_

Print "Welcome to FreeBASIC " & fbMajorVersion & "

Differences from QB
= New to FreeBASIC

See also

® _ FB VER _MAJOR_ _
® _ FB _VER _PATCH__

__FB_VER_PATCH__ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
__FB_VER_PATCH___

Description

__FB_VER_PATCH__ will return the patch/subversion/revision number the
example, there were subversions 1, 2, 3, 4, 5 and 6, resulting in versit

Example

Dim fbMajorVersion As Integer
Dim fbMinorVersion As Integer
Dim fbPatchVersion As Integer

fbMajorVersion = __FB_VER_MAJOR___
fbMinorVersion = __ _FB_VER_MINOR_
fbPatchVersion = _ FB_VER_PATCH_

Print "Welcome to FreeBASIC " & fbMajorVersion & "

Differences from QB
= New to FreeBASIC

See also

® _ FB VER _MAJOR_ _
® _ FB_VER _MINOR_ _

__FB_VERSION___ sAsic

Intrinsic define (macro string) set by the compiler

Syntax
__FB_VERSION_

Description

Substituted by the version number of the compiler where used.

Example

#if _ FB_VERSION__ < "0.18"
#error Please compile wWith FB version 0.18 Or abc
#endif

This will stop the compilation if the compiler version is below 0.18

Differences from QB
= Did not exist in QB

See also

®m _ FB SIGNATURE_
B FB WIN32_ _

B FB LINUX _

" FB DOS_

__FB_WIN32__ shsic

Intrinsic define set by the compiler

Syntax
__FB_WIN32 _

Description

Define without a value created at compile time if compiling to the
Win32 target. Default in Win32 hosted version, or active if the -target
win32 command line option is used. It can be used to compile parts o
the program only if the target is Win32.

Example

#ifdef _ FB_WIN32_
' ... 1instructions only for Win32
' ... GetProcAddress
#else
' ... 1nstructions not for Win32
#endif

Differences from QB
= New to FreeBASIC

See also

= _ FB_DOS
" FB_LINUX _

® _ Fb_Pcos__

= Compiler Option: -target

__FB_XBOX__ sAsic

Intrinsic define set by the compiler

Syntax
_ FB_XBOX___

Description

Define without a value created at compile time when the -target xbox
command line option is used. It can be used to compile parts of the
program only if the target is Xbox.

Example

#ifdef _ FB_XBOX___

'...1lnstructions only for Xbox...
#else

'...1lnstructions not for Xbox...
#endif

Differences from QB
= New to FreeBASIC

See also

" FB_LINUX _
" FB WIN32 _
= Compiler Option: -target

__FILE__

Intrinsic define (macro string) set by the compiler

Syntax
_ FILE

Description

Substituted with the quoted source file name where used.

An example of normal use is to report wrong values in debugging.

Example

Dim a As Integer
If a<@ Then

Print "Error: a =" & a & " in " & _ FILE_ &
End If

Error: a = -32767 in test.bas (MAIN) line 47

Differences from QB
= Did not exist in QB

See also

= _ FILE_NQ _
m _ FUNCTION__
m _ LINE

_FILE_NQ_ BASic

Intrinsic define (macro string) set by the compiler

Syntax
__FILE_NQ _

Description

Substituted with the non-quoted source file name where used.

Example

#print _ FILE_NQ_

Differences from QB
= New to FreeBASIC

See also

m_ FILE
B FUNCTION_NQ
m_ LINE

__FUNCTION__ wAsic

Intrinsic define (macro string) set by the compiler

Syntax
_ _FUNCTION

Description
Substituted with the quoted name of the current function block where

Its normal use is to report wrong values in debugging.

If __FuncTION__is used at the module level, the function name given w
"__FB_MODLEVELPROC__" for a different module.

Example
Dim a As Integer

If a < @ Then '' this shouldn't happen
Print "Error: a =" & a & " in " & __FILE__ &
End If

Error: a = -32767 in test.bas (__FB_MAINPROC__) line 47

Differences from QB
= Did not exist in QB

See also

" FILE
® _ FUNCTION_NQ
B LINE

__FUNCTION_NQ__ sAsic

Intrinsic define (macro string) set by the compiler

Syntax
__FUNCTION_NQ

Description

Substituted with the non-quoted name of the current function block
where used.

If __FuncTION_NQ is used at the module level, the function name give
will be __FB_mAINPROC__ for the main module, or _ FB_MODLEVELPROC__ 1
a different module. This is not the actual function name though, so it's
not as useful there.

Example
Sub MySub
Print "Address of " + _ FUNCTION__ + " is ";
Print Hex(@__FUNCTION_NQ__)
End Sub

MySub

Address of MYSUB is 4012D0

Differences from QB
= Did not exist in QB

See also

m _ FILE_NQ _
m _ FUNCTION__
m _ LINE__

__LINE___ sAsic

Intrinsic define (macro value) set by the compiler

Syntax
_ LINE__

Description
Substituted with the current line number of the source file where used

Its normal use is to report wrong values in debugging.

Example
Dim a As Integer
If a < 0 Then

Print "Error: a =" & a & " in " & _ FILE &
End If

Error: a = -32767 in test.bas (MAIN) line 47

Differences from QB
= Did not exist in QB

See also

= FILE_
B FUNCTION_

PATH l;"l’f

Intrinsic define (macro string) set by the compiler

Syntax
_ PATH__

Description

Set to the quoted absolute path of the source file at the time of
compilation.

Example

' Tell the compiler to seach the source file's
' directory for libraries

#1libpath _ PATH_

Differences from QB
= New to FreeBASIC

See also

m_ FILE

__TIME__

Intrinsic define (macro value) set by the compiler

Syntax
_ TIME

Description

Substitutes the compiler time in a literal string (24 clock, "hh:mm:ss"
format) where used.

Example

Print "Compile Time: " & __ TIME_

Compile Time: 13:42:57

Differences from QB
= New to FreeBASIC

See also

B DATE__
® _ Date_Iso_

m Time

#Assert Basic

Preprocessor conditional directive

Syntax

#assert condition

Parameters

condition
A conditional expression that is assumed to be true

Description

Asserts the truth of a conditional expression at compile time. If
condition is false, compilation will stop with an error.

This statement differs from the Assert macro in that #assert is
evaluated at compile-time and Assert is evaluated at run-time.

Example

Const MIN = 5, MAX = 10
#assert MAX > MIN '' cause a compile-
time error 1f MAX <= MIN

Differences from QB
= New to FreeBASIC

See also

® Assert
m #if

B #error

#define

Preprocessor directive to define a macro

Syntax

#define identifier body
#define identifier([parameters]) body
#define identifier([parameters,]| Variadic Parameter...) body

Description

#define allows to declare text-based preprocessor macros. Once the
#define, it will start replacing further occurrences of identifier with b
The expansion is done recursively, until there is nothing more to expa
continue analyzing the resulting code. #undef can be used to make th
#define.

parameters turn a define into a function-like macro, allowing text argur
macro. Any occurrences of the parameter names in the body will be re
argument text during expansion. The # stringize operator can be use
turn them into string literals, and the ## concatenate operator can be t
together.

Note: In the function-like macro declaration, the identifier should be
parentheses (() immediately without any white-space in between, oth
treat it as part of the body.

Defines are scoped,; they are only visible in the scope they were defin
level, the define is visible throughout the module. If the identifier is (
statement having scope (Sub, For. .Next, while. .Wend, Do..Loop, Scope
identifier define is only visible within that scope. Namespaces on thi
any effect on the visibility of a define.

Identifiers can be checked for with #ifdef and others, which can be
from the compiler (conditional compiling).

The result of macro expansion can be checked by using the -pp comy

#defines are often used to declare constants. The const statement is

Example

'"" Definition and check
#define DEBUGGING
#ifdef DEBUGGING

' ... statements
#endif

"' Simple definition/text replacement
#define FALSE 0
#define TRUE (Not FALSE)

"' Function-like definition
#define MyRGB(R,G,B) (((R)Shl 16) Or ((G)Shl 8) C
Print Hex(MyRGB(&hff, &h0O, &hff))

'"'" Line continuation and statements 1n a definitic
#define printval(bar) _
Print #bar; " ="; bar

"' #defines are visible only in the scope where tfF
Scope

#define LOCALDEF 1
End Scope

#ifndef LOCALDEF
i Print LOCALDEF Is Not defined
#endif

"' namespaces have no effect on the visibility of
Namespace foo

define NSDEF

End Namespace

#ifdef NSDEF
Print NSDEF Is defined

#endif

Differences from QB
= New to FreeBASIC

See also

E #macro

®m # Preprocessor Stringize

= ## Preprocessor Concatenate
m #ifdef

® #undef

B Const

#else

Preprocessor conditional directive

Syntax
#1f (expression)
' Conditionally included statements if expression is True
#else

' Conditionally included statements if expression is False
#endif

Description

#else can be added to an #if, #ifdef, or #ifndef block to provide an
alternate result to the conditional expression.

Example

#define MODULE_VERSION 1
Dim a As String
#if (MODULE_VERSION > 0)

a = "Release"
#else

a = "Beta"
#endif

Print "Program is "; a

Differences from QB
= New to FreeBASIC

See also

m #define
B #macro
m #if

#elseif
#endif
#ifdef
#ifndef
#undef

defined

#elseif

Preprocessor conditional directive

Syntax
#1f (expressionl)
' Conditionally included statements if expressionl is True
#telseif (expression2)
' Conditionally included statements if expression2 is True
#else
' Conditionally included statements if both
' expressionl and expression2 are False
#endif

Description

#elseif can be added to an #if block to provide an additional
conditions.

Example

#define WORDSIZE 16
#if (WORDSIZE = 16)
' Do some some 16 bit stuff
#elseif (WORDSIZE = 32)
' Do some some 32 bit stuff
#else
#error WORDSIZE must be set To 16 Or 32
#endif

Differences from QB

® New to Freebasic

See also

m #define

#macro
#if
#else
#endif
#ifdef
#ifndef
#undef

defined

#endif

BASIC

Preprocessor conditional directive

Syntax
#endif

Description
Ends a group of conditional directives

See #if, #ifdef, Or #ifndef for examples of usage.

Example

#define DEBUG_LEVEL 1

#if (DEBUG_LEVEL = 1)
'"Conditional statements

#endif

Differences from QB
= New to FreeBASIC

See also

® #define
= #macro
m #if

B #else

B #elseif
m #ifdef
m #ifndef
® #undef

m defined

#Macro...#Endmacro

BASIC

Preprocessor directive to define a multiline macro

Syntax
#macro identifier([parameters])
body
#endmacro

#macro identifier([parameters,] Variadic_Parameter. ..

body
#endmacro

Description
#macro is the multi-line version of #define.

Example

)

"' macro as an expression value
#macro Printl(a, b)

a-+b
#endmacro

Print Printli("Hello", "World")

"' Qutput :
'"'" Hello World!

"' macro as multiple statements
#macro Print2(a, b)

Print a;

Print " ";

Print b;

Print "!I"
#endmacro

Print2("Hello", "World")

"' Qutput :
'"" Hello World!

Differences from QB
= New to FreeBASIC

See also

m #define
m #ifdef
B #undef

#error

Preprocessor diagnostic directive

Syntax

#error error_text

Parameters

error_text
The display message

Description

#error stops compiling and displays error_text when compiler finds i

This keyword must be surrounded by an #if <condition> ...#endif, SC
the compiler can reach #error only if <condition> is met.

Example
#define c 1
#1f ¢ = 1

#error Bad value of c
#endif

Differences from QB
= New to FreeBASIC

See also
moHif
B #print

m #Assert

##if BASIc

Preprocessor conditional directive

Syntax
#if (expression)
' Conditionally included statements
#endif

Description

Conditionally includes statements at compile time.

Statements contained within the #if / #endif block are included if exp:
True (non-zero) and excluded (ignored) if expression evaluates to Fal

This conditional directive differs from the 1f conditional statement in tl
at compile-time and 1f is evaluated at run-time.

Example

#define DEBUG_LEVEL 1

#if (DEBUG_LEVEL >= 2)
' This line 1s not compiled since the expressior
Print "Starting application"

#endif

Differences from QB
= New to FreeBASIC

See also

m #define

B #macro

#else
#elseif
#endif
#ifdef
#ifndef
#undef
defined

#Assert

#Hifdef asic

Preprocessor conditional directive

Syntax
#ifdef symbol
' Conditionally included statements
#endif

Description

Conditionally includes statements at compile time.

Statements within the #ifdef. . .#endif block are included if symbol is
defined and excluded (ignored) if symbol is not defined.

#ifdef symbol IS equivalent to #if defined (symbol)

Example

#define _DEBUG
#ifdef _DEBUG

' Special statements for debugging
#endif

Differences from QB

® New to Freebasic

See also

m #define
B #macro
m #if

B #else

#elseif
#endif
#ifndef
#undef

defined

#ifndef

Preprocessor conditional directive

Syntax
#ifndef symbol
' Conditionally included statements
#endif

Description

Conditionally includes statements at compile time.

Statements within the #ifndef. . .#endif block are included if symbol is
not defined and excluded (ignored) if symbol is defined.

#ifndef symbol iS equivalent to #if Not defined(symbol)

Example

#ifndef _ MYFILE_BI
#define _ MYFILE_BI
' Declarations

#endif

Differences from QB
= New to FreeBASIC

See also

m #define
B #macro
m #if

B #else

#elseif
#endif
#ifdef
#undef

defined

#inclib

Preprocessor directive

Syntax

#inclib "libname"

Description

Includes a library in the linking process as if the user specified -1 1ibi
command line.

Example

"' 1incomplete code snippet

this will include libmystuff.a in the 1link proc
#inclib "mystuff"

Differences from QB
= New to FreeBASIC

See also
® #include
= Compiler Option: -l
s Compiler Option: -p

#include

Preprocessor statement to include contents of another source file

Syntax

#include [once] "file"

Description

#include inserts source code from another file at the point where the
#include directive appears. This has the effect of compiling the source
code from the include file as though it were part of the source file that
includes it. Once the compiler has reached the end of the include file,
the original source file continues to be compiled.

This is useful to remove code from a file and separate it into more file:
It is useful to have a single file with declarations in a program formed
by several modules. You may include files within an include file,
although avoid including the original file into itself, this will not produce
valid results. Typically, include files will have an extension of .bi and
are mainly used for declaring subs/functions/variables of a library, but
any valid source code may be present in an include file.

The once specifier tells the compiler to include the file only once even
it is included several times by the source code.

$Include iS an alternative form of include, existing only for compatibili
with QuickBASIC. It is recommended to use #include instead.

The compiler will automatically convert path separator characters ('/
and '\') as needed to properly load the file. The flename name may t
an absolute or relative path.

For relative paths, or where no path is given at all, the include file is
search for in the following order:

= Relative from the directory of the source file
= Relative from the current working directory

= Relative from addition directories specified with the -i comman
line option

= The include folder of the FreeBASIC installation (FreeBASIC\in
where FreeBAsIC is the folder where the fbc executable is
located)

Example

' header.bi file
Type FooType
Bar As Byte
Barbeque As Byte
End Type

' main.bas file
#include "header.bi"

Dim Foo As FooType

Foo.Bar = 1
Foo.Barbeque = 2

Differences from QB
= New to FreeBASIC

See also

m #define

® #inclib

= Compiler Option: -i

= Compiler Option: -include

#lang

Preprocessor statement to set the compiler dialect.

Syntax
#lang "lang"

Parameters

Illangll
The dialect to set, enclosed in double quotes, and must be one of "fb
"fplite", "gb", OF "deprecated".

Description

If the -forcelang option was not given on the command line, #1ang cal
be used to set the dialect for the source module in which it appears. A
most two passes will be made on the source module. On the first pas:
if the specified dialect is anything other than the default dialect (chose
with -lang, or "fb" by default), the compiler will reset the parser for
another pass and restart compilation at the beginning of the source
module. If this directive is encountered again on the second pass, anc
the specified dialect does not match the new current dialect, a warnini
is issued and compilation continues. If any errors were encountered o
the first pass, the compiler will not attempt a second pass."

#lang may not be used in any compound statement, scope, or
subroutine. However, it may be nested in module level preprocessor
statements or used in an include file.

There is currently no restriction on where this directive may be placed
in a source module. In future this may change, therefore best practice
would be to use this directive before the first declaration, definition, or
executable statement in the source.

This directive overrides the -lang option if it was given on the
command line. However, if the -forcelang option was given on the
command line, this directive will have no effect. A warning is issued,

the directive is ignored, and compilation will continue. This allows the
user to explicitly override #lang directives.

Example

#lang "fblite"

Differences from QB
= New to FreeBASIC

See also
® $SLang
" FB_LANG__

= Compiler Option: -lang
= Compiler Option: -forcelang
= FreeBASIC Dialects

#libpath

BASIC

Preprocessor statement to add a search path for libraries

Syntax
#libpath "path"

Description

Adds a library search path to the linker's list of search paths as if it ha
been specified on the command line with the '-p' option.

Paths are relative to the working directory where fbc was invoked and
relative to the directory of the source file.

No error is generated if the path does not exist and compilation and lii
will continue.

Example

search the 1lib directory for external libraries
#1libpath "1ib"

Differences from QB

= New to FreeBASIC

See also

® #inclib
B #include
s Compiler Option: -p

#line

Preprocessor directive to set the current line number and file name

Syntax

#line number ["name"]

Parameters

number

new line number
"name"

new file name (optional)

Description

Informs the compiler of a change in line number and file name and up
__LINE__ macro values accordingly.

Both compile time messages and run-time messages are affected by
This directive allows other programs to generate source code for the |

have it return warning and/or error messages that refer to the original
program.

Example
#1ine 155 "outside.src"
Error 1000

"' Qutput 1is:
"' Aborting due to runtime error 1000 at line 157

Differences from QB

= New to FreeBASIC

See also

B FILE _
m_ LINE

#pragma

Preprocessor directive

Syntax
#pragma option [= value]
Or
#pragma push (option [, value])
Or
#pragma pop (option)

Parameters

Possible values for option and related values:

Option Value Description
msbitfields | 0 Use bitfields compatible with gcc (default)
;/gl(l?é)any other non-zero || qo pifields compatible with those used in Microsoft

once N/A cause the source file in which the pragma appears tc
with #include once ...

If value is not given, the compiler assumes -1 (TRUE).

Description

Allows the setting of compiler options inside the source code.
Push saves the current value of the option onto a stack, then assigns
restores the option to its previous value, and removes it from the stacl

options to be changed for a certain part of source code, regardless of
context, which is especially useful inside #include header files.

Example

"' MSVC-

compatible bitfields: save the current setting anc
#pragma push(msbitfields)

"' do something that requires MS-compatible bitfie

"' restore original setting
#pragma pop(msbitfields)

Differences from QB
= New to FreeBASIC

See also

B #include

#print

Preprocessor diagnostic directive

Syntax
#print text

Description

Causes compiler to output text to screen during compilation.

Example

#print Now compiling module foo

Differences from QB
= New to FreeBASIC

See also

m #error

#undef

Preprocessor directive to undefine a macro

Syntax
#undef symbol

Description

Undefines a symbol previously defined with #define.

Can be used to ensure that a macro or symbol has a limited lifespan
and does not conflict with a similar macro definition that may be
defined later in the source code.

(Note: #undef should not be used to undefine variable or function
names used in the current function scope. The names are needed
internally by the compiler and removing them can cause strange and
unexpected results.)

Example

#define ADD2(a_, b_) ((a_) + (b_))

Print ADD2(1, 2)

' Macro no longer needed so get rid of it
#undef ADD2

Differences from QB

= New to Freebasic

See also

m #define

® #macro

#if
#else
#elseif
#endif
#ifdef
#ifndef

defined

$Dynamic

Metacommand to change the way arrays are allocated

Syntax
'$Dynamic
or
Rem $Dynamic

Description

'$Dynamic is a metacommand that specifies that any following array
declarations are variable-length, whether they are declared with
constant subscript ranges or not. This remains in effect for the rest of
the module in which '$Dynamic is used, and can be overridden with
'$static. It is equivalent to the option Dynamic Statement.

Example
' compile with -lang fblite or gb
#lang "fblite"

"$DYNAMIC
Dim a(100)

ReDim a(200)

Dialect Differences

= Only available in the -lang fblite and -lang qb dialects.

Differences from QB

= When used inside comments it must be the first token

See also

m $Static
® Dim

® ReDim

m Erase

® Option Dynamic

$Iinclude

Metacommand statement to include contents of another source file

Syntax
'$Include [once]: 'file'
or
Rem $Include [once]: 'file'

Description

$Include inserts source code from another file at the point where the
$Include metacommand appears. This has the effect of compiling the
source code from the include file as though it were part of the source
file that includes it. Once the compiler has reached the end of the
include file, the original source file continues to be compiled.

The once specifier tells the compiler to include the file only once even
it is included several times by the source code.

'$Include: exists for compatibility with QuickBASIC. It is
recommended to use #include instead.

Example
' header.bi file
Type FooType
Bar As Byte
Barbeque As Byte
End Type
Dim Foo As FooType

"' compile with -lang fblite or qgb

#lang "fblite"

"' mailn.bas file
'"'$INCLUDE: "header.bi"

Foo.Bar = 1
Foo.Barbeque = 2

Dialect Differences
= Only available in the -lang fblite and -lang qb dialects.

Differences from QB

= None

See also

® #include

$Static

Metacommand to change the way arrays are allocated

Syntax
'$Static
or
Rem $Static

Description

'$static IS a metacommand that overrides the behavior of $bynamic,
that is, arrays declared with constant subscript ranges are fixed-lengtt
This remains in effect for the rest of the module in which '$static is
used, and can be overridden with $pynamic. It is equivalent to the
Option Static Statement.

Example

' compile with -lang fblite or gb
#lang "fblite"

'$dynamic

Dim a(100) '<<this array will be variable-
length

'$static

Dim b(100) '<<this array will be fixed-length

Dialect Differences

= Only available in the -lang fblite and -lang qb dialects.

Differences from QB

= \When used inside comments it must be the first token

See also

® $Dynamic

® Dim

® Erase

m ReDim

® Option Dynamic

® QOption Static

$Lang

Metacommand statement to set the compiler dialect.

Syntax

'$lang: "lang"
or
Rem $lang: '"lang"

Parameters

Illangll
The dialect to set, enclosed in double quotes, and must be one of "fb
"fplite", "gb", Or "deprecated".

Description

If the -forcelang option was not given on the command line, $Lang cal
be used to set the dialect for the source module in which it appears. A
most two passes will be made on the source module. On the first pas:
if the specified dialect is anything other than the default dialect (chose
with -lang, or "fb" by default), the compiler will reset the parser for
another pass and restart compilation at the beginning of the source
module. If this metacommand is encountered again on the second
pass, and the specified dialect does not match the new current dialeci
a warning is issued and compilation continues. If any errors were
encountered on the first pass, the compiler will not attempt a second
pass.

$Lang may not be used in any compound statement, scope, or
subroutine. However, it may be nested in module level preprocessor
statements or used in an include file.

There is currently no restriction on where this directive may be placed
in a source module. In future this may change, therefore best practice
would be to use this directive before the first declaration, definition, or
executable statement in the source.

This directive overrides the -lang option if it was given on the

command line. However, if the -forcelang option was given on the
command line, this directive will have no effect. A warning is issued,
the directive is ignored, and compilation will continue. This allows the
user to explicitly override $Lang metacommands.

This metacommand was introduced in FreeBASIC version 0.20.0.

Older versions of FB, and QuickBASIC, will treat it as a comment and
silently ignore it.

Example

'$lang: "qgb"

Differences from QB

= New to FreeBASIC
» QB handles '$lang: as a nhormal comment

See also
B #lang
m __ FB_LANG___

Compiler Option: -lang
Compiler Option: -forcelang
FreeBASIC Dialects

AbS BASIc

Calculates the absolute value of a number

Syntax

Declare Function Abs
Declare Function Abs
Declare Function Abs
Declare Function Abs
Declare Function Abs

ByVal number As Long) As Long

ByVal number As Ulong) As Ulong

ByVal number As LongInt) As LongInt
ByVal number As ULongInt) As ULongInt
ByVal number As Double) As Double

NN AN NN

Usage

result = Abs(number)

Parameters

number
Value to find the absolute value of.

Return Value

The absolute value of number.

Description

The absolute value of a number is its positive magnitude. If a number
IS negative, its value will be negated and the positive result returned.
For example, Abs(-1) and Abs(1) both return 1. The required number
argument can be any valid numeric expression.

Unsigned numbers will be treated as if they were signed, i.e. if the
highest bit is set the number will be treated as negative, and its value
negated.
The value returned will be greater than or equal to e, with the exceptic
of signed integers containing the lowest possible negative value that
can be stored in its type, in which case negating it will overflow the
result.

The Abs unary operator can be overloaded with user defined types.

Example

Dim n As Integer
Print Abs(-1)
Print Abs(-3.1415)
Print Abs(42)
Print Abs(n)

n = -69

Print Abs(n)

Output:

1
3.1415
42

0

69

Dialect Differences

= |n the -lang gb dialect, this operator cannot be overloaded.

Differences from QB

= None

See also

= Sgn

® QOperator

Abstract

Declare abstract methods

Syntax

Type typename Extends base_typename
Declare Abstract Sub|Function|Property|Operator ...
End Type

Description

Abstract is a special form of virtual. The difference is that abstract
methods do not have a body, but just the declaration. Essentially this
allows the declaration of an interface which can be implemented by
various derived types.

In order to call an abstract method, it must have been overridden and
implemented by a derived data type, or else the program will abort.
As a result, only types that implement all the abstract methods are
allowed to create objects. For the same reason, a constructor should
not call an unimplemented method.

Constructors cannot be abstract, since they cannot be virtual. In
addition, abstract Destructors are not supported either, because a
destructor body (no matter whether implicit or explicit) is needed in
order to call base and field destructors.

Abstracts are called "pure virtual" in C++ (unlike FreeBASIC, C++
allows pure virtuals to have a body, but accessible only statically).

Note: In a multi-level inheritance, a same named method (same
identifier and signature) can be declared Abstract, virtual or normal
(without specifier) at each inheritance hierarchy level. When there is
mixing of specifiers, the usual order is abstract -> virtual -> normal,
from top to bottom of the inheritance hierarchy.

The access control (public/Protected/Private) of an overriding metho
IS not taken into account by the internal polymorphism process, but
only for the initial call at compile-time.

A derived static method cannot override a base virtual/abstract
method, but can shadow any base method (including virtual/abstract).

Example

Type Hello extends object
Declare abstract Sub hi()
End Type

Type HelloEnglish extends Hello
Declare Sub hi()
End Type

Type HelloFrench extends Hello
Declare Sub hi()
End Type

Type HelloGerman extends Hello
Declare Sub hi()
End Type

Sub HelloEnglish.hi()
Print "hello!"
End Sub

Sub HelloFrench.hi()
Print "Salut!"

End Sub

Sub HelloGerman.hi()

Print "Hallo!"
End Sub

Randomize(Timer())

Dim As Hello Ptr h

For i As Integer = 0 To 9
Select Case(Int(Rnd() * 3) + 1)
Case 1
h = New HelloFrench
Case 2
h = New HelloGerman
Case Else
h = New HelloEnglish
End Select

h->hi()

Delete h
Next

Dialect Differences

= Only available in the -lang fb dialect.

Differences from QB
= New to FreeBASIC

See also

® Virtual
® Type
®m Extends

B Object

Access

Clause of the open statement to specify requested privileges

Syntax

Open filename for Binary Access {Read | Write | Read Write} as [

Usage

open filename for binary Access Read as #filenum
open filename for binary Access Write as #filenum
open filename for binary Access Read Write as #filenum

Parameters

Read

Open the file with only read privileges.
Write

Open the file with only write privileges.
Read Write

Open the file with read and write privileges.

Description

Access IS used with the open statement to request read, write, or read
Access clause is not specified, Read write is assumed.

Example

This example shows how to open the file "data.raw" with read and the
access, in Binary mode, in an open file number returned by FreeFile.

Dim As Integer o

"' get an open file number.
o = FreeFile

"' open file for read-only access.
Open "data.raw" For Binary Access Read As #o

"' make a buffer in memory thats the entire si
Dim As UByte file_char(LOF(o) - 1)

"' get the file into the buffer.
Get #o0, , file_char()

Close

"' get another open file number.
0 = FreeFile

"' open file for write-only access.
Open "data.out" For Binary Access Write As #o

"' put the buffer into the new file.
Put #o, , file_char()

Close
Print "Copied file ""data.raw"" to file ""data.c

Sleep

Differences from QB

= None known.

See also

® Open
m Read

® Write

Acos

BASIC

Finds the arccosine of an angle

Syntax

Declare F

Usage

unction Acos (ByVal number As Double) As Double

result = Acos(number)

Parameters

number

A cosine value in the range [-1..1].

Return Value

The arcco

Description

sine of number, in radians, in the range [0..PIi].

Acos returns the arccosine of the argument number as a bouble within t
the inverse of the cos function. The returned angle is measured in rad

Example
Dim h As Double
Dim a As Double
Input "Please enter the length of the hypotenuse c
Input "Please enter the length of the adjacent sic
Print ""
Print "The angle between the sides is"; Acos (a /
Sleep
The output would look like:

Please enter the length of the hypotenuse of a triangle: 5

Please enter the length of the adjacent side of the triangle:

The angle between the sides is 0.6435011087932843

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also

® Cos

= A Brief Introduction To Trigonometry

Add BASIc

Parameter to the put graphics statement which selects addition as the b

Syntax

Put [target,] [STEP] (x,y), source [,(x1,y1)-(x2,y2)
;multiplier]

Parameters

Add

Required.
multiplier

Optional value between 0 and 255. The source pixels are premultiplie
(multiplier / 256) before being added. If omitted, this value defaults

Description

Add selects addition as the method for blitting an image buffer. For eac
target pixel, the values of each respective component are added toge
produce the result.

The addition is saturated - i.e. if the sum of the two values is 256 or m
be cropped down to 255.

This method will work in all color modes. Mask colors (color O for inde
magenta (rReB (255, 0, 255)) for full color images) will be skipped, thol
values of O (reBA(0, 0, 0, 0)) will have also have no effect.

Example

"'open a graphics window
ScreenRes 320, 200, 16

'"'create a sprite containing a circle

Const As Integer r = 32

Dim ¢ As Any Ptr = ImageCreate(r * 2 + 1, r * 2 +
Circle ¢, (r, r), r, RGB(255, 255, 192), , , 1, f

"'put the sprite at three different multipier
''levels, overlapping each other in the middle
Put (146 - r, 108 - r), c, add, 64

Put (174 - r, 108 - r), c, add, 128

Put (160 - r, 84 - r), c, add, 192

'"'free the memory used by the sprite
ImageDestroy c

''pause the program before closing
Sleep

Differences from QB

= New to FreeBASIC

See also

® Trans
m Alpha
® Custom

® Put (Graphics)

Alias

Clause of the sub and Function statements that provides an alternate int

Syntax

[Declare] { Sub | Function } usablename Alias "alternatename" (.

Usage

declare sub usablename Alias "alternatename" (...)
or

declare function usablename Alias "alternatename" (...)
or

sub usablename Alias "alternatename” (...)

end sub

or

function usablename Alias "alternatename” (...)

end function

Description

Alias gives an alternate name to a procedure. This alternate name can
(if the function is not private) to the linker when linking with code written

Alias is commonly used for procedures in libraries written in other langt
but invalid in BASIC. When using Alias with peclare, only the alternate

Differently from normal procedure names, Alias does not change the ce
an exported function with a particular name or with a particular case.

Example

If there is a sub called xclearscreen in an external library and you want
to do so:

Declare Sub ClearVideoScreen Alias "xClearScreen'" (

A procedure meant to be used by external C code, exported as MyExpor

Function MultiplyByFive cdecl Alias "MyExportedProc
Return Parameter * 5
End Function

Differences from QB

= |[n QB, Alias only worked with peclare.

See also

® Declare

m Export

Allocate

Allocates a block of memory from the free store

Syntax
Declare Function Allocate cdecl (ByVal count As UInteger) As A

Usage

result = Allocate(count)

Parameters

count
The size, in bytes, of the block of memory to allocate.

Return Value

If successful, the address of the start of the allocated memory is returi
allocated, or if count < o, then the null pointer (o) is returned.

Description
Attempts to allocate, or reserve, count number of bytes from the free ¢
As the initial value of newly allocated memory is unspecified, Allocate
string, because the string descriptor being not cleared (containing ran
to write to a random place in memory or trying to deallocate a random

containing string) to use cAllocate (Clearing memory), or New (calling ¢
explicitly clear the descriptor (setting to 0) before the first string use.

The pointer that is returned is an Any Ptr and points to the start of the
even if count is zero.

Allocated memory must be deallocated, or returned back to the free s

Example

"' This program uses the ALLOCATE(...) function tc
"' then filled with the first 15 numbers of the Fi
"' screen. Note the call to DEALLOCATE(...) at the

Const integerCount As Integer = 15

"' Try allocating memory for a number of intec
Dim buffer As Integer Ptr
buffer = Allocate(integerCount * SizeOf(Intege

If (0 = buffer) Then
Print "Error: unable to allocate memory, c
End -1

End If

"' Prime and fill the memory with the fibonacc

buffer[0] = 0

buffer[1] = 1

For i1 As Integer = 2 To integerCount - 1
buffer[i] = buffer[1 - 1] + buffer[1 - 2]

Next

"' Display the sequence.

For 1 As Integer = 0 To integerCount - 1
Print buffer[i] ;
Next

Deallocate(buffer)
End ©

Output is:

@112 358 13 21 34 55 89 144 233 377

It is important to free allocated memory if it's not going to be used any
memory, and if the address of that memory is somehow overwritten ol
known as a memory leak, and should be avoided at all costs. Note th¢
application terminates, either by an "ordinary" exit or crash, so the lea
nevertheless it's a good habit to free any allocated memory inside yot
function with a memory leak, where the address of allocated memory
function is called frequently, the total amount of memory wasted can ¢

"' Bad example of Allocate usage, causing memory 1
Sub BadAllocateExample()

Dim p As Byte Ptr

p = Allocate(420) "' assign pointer to new n
p = Allocate(420) "' reassign same pointer t
"' 0ld address is lost anc

Deallocate(p)

End Sub
"' Main
BadAllocateExample() '' Creates a memory leak
Print "Memory leak!"
BadAllocateExample() '' ... and another
Print "Memory leak!"
End

Platform Differences

m This procedure is not guaranteed to be thread-safe.

Dialect Differences

= Not available in the -lang qgb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also

m CAllocate
® Reallocate

® Deallocate

Alpha

Parameter to the put graphics statement which selects alpha blending a

Syntax
Put [target,] [STEP] (x,y), source [,(x1,y1)-(x2,y2)
Put [target,] [STEP] (x,y), source [,(x1,y1)-(x2,y2)

Parameters

Alpha

Required.
alphaval

Optional alpha parameter in the range [0..255]. Overrides alpha value

Description

Alpha selects alpha blending as the method for putting an image. If thi
each pixel, and the mask color (magenta) will be treated as transpare

If alphaval is not specified, Alpha will only work in 32-bit color depth, €
Pixels using the mask color will be treated as normal, and drawn with

Alpha also has another mode which allows an 8-bit image to be put or
channel of the 32-bit image with the contents of the 8-bit image.

Alpha values range between 0 and 255. An alpha value of O will not d
to get a range between 2 and 256, and the result is then divided by 2t
the exact value of each pixel from the source and destination pixels. T
blitting mode, 0 is equivalent to doing nothing at all, and all the other ¢

Example
This example compares the two different Alpha modes, including how

"' Set up a 32-bit screen
ScreenRes 320, 200, 32

"' Draw checkered background

For y As Integer = 0 To 199
For x As Integer = 0@ To 319
PSet (x, y), IIf((x Shr 2 Xor y Shr 2) Anc
Next X
Next vy

"' Make image sprite for Putting
Dim img As Any Ptr = ImageCreate(32, 32, RGBA(0O, C
For y As Single = -15.5 To 15.5
For x As Single = -15.5 To 15.5
Dim As Integer r, g, b, a
If y <= 0 Then
If Xx <= 0 Then

rr=255: g=0:b=20 "' red
Else
r=0: g=0: b =255 "' blue
End If
Else
If x <= 0 Then
r=0: g=255: b=20 "' green
Else
r = 255: g =0: b =255 "" magente
End If
End If

a =255 - (x"N2+yNr2)
If a <0 Thena=0": r = 255: g =0: b =
PSet img, (15.5 + x, 15.5 - y), RGBA(r, g,
Next X
Next vy

"' Put with single Alpha value, Trans for comparis
Draw String (32, 10), "Single alpha"

Put (80 - 16, 50 - 16), img, Alpha, 64

Put (80 - 16, 100 - 16), img, Alpha, 192

Put (80 - 16, 150 - 16), img, Trans

"' Put with full Alpha channel
Draw String (200, 10), "Full alpha"
Put (240 - 16, 100 - 16), img, Alpha

"' Free the image memory
ImageDestroy img

"' Wait for a keypress
Sleep

This example shows the special method for setting a 32-bit alpha cha

Dim As Any Ptr img8, 1img32
Dim As Integer X, vy, 1

"' Set up an 8-bit graphics screen
ScreenRes 320, 200, 8
For i = 0 To 255
Palette 1, 1, i, 1
Next i
Color 255, 0

"' Create an 8-bit image
img8 = ImageCreate(64, 64, 0, 8)
For y = 0 To 63
For x = 0 To 63
Dim As Single x2 = x - 31.5, y2 =y - 31.
Dim As Single t = Sqr(x2 A 2 + y2 N 2) /
PSet img8, (X, y), Sin(t) A 2 * 255
Next X
Next vy

(r (N

Draw String (16, 4), "8-bit Alpha sprite"
Put (16, 16), img8
Sleep

"' Set up a 32-bit graphics screen
ScreenRes 320, 200, 32
For y = 0 To 199
For x = 0 To 319
PSet (x, y), IIf(x - y And 3, RGB(160, 16¢
Next x
Next vy

"' Create a 32-bit, fully opaque sprite
img32 = ImageCreate(64, 64, 0, 32)
For y = 0 To 63
For x = 0 To 63
PSet img32, (X, y), RGB(x * 4, y * 4, 128)
Next x
Next vy

Draw String (16, 4), "Original Alpha channel"
Put (16, 16), img32, Alpha

"' Put a new alpha channel using the 8-bit image
Put img32, (0, 0), img8, Alpha

Draw String (16, 104), "New Alpha channel"
Put (16, 116), img32, Alpha

'"'"Free the memory for the two images
ImageDestroy img8
ImageDestroy img32

Sleep

Differences from QB
= New to FreeBASIC

See also

B Put (Graphics)
® Trans

® Custom

Operator And (Conjunction)

Returns the bitwise-and (conjunction) of two numeric values

Syntax
Declare Operator And (ByRef lhs As T1, ByRef rhs As T2) As Ret

Usage
result = 1hs And rhs

Parameters

lhs

The left-hand side expression.
T1

Any numeric or boolean type.
rhs

The right-hand side expression.
T2

Any numeric or boolean type.
Ret

A numeric or boolean type (varies with 72 and 12).

Return Value

Returns the bitwise-and (conjunction) of the two operands.

Description

This operator returns the bitwise-and of its operands, a logical operati
operands (for conversion of a boolean to an integer, false or true bool

The truth table below demonstrates all combinations of a boolean-anc

Lhs Bit| Rhs Bit | Result
0 0 0
1 0 0
0 1 0

No short-circuiting is performed - both expressions are always evalua
The return type depends on the types of values passed. Byte, UByte a
and right-hand side types differ only in signedness, then the return tyf
the two types is returned. Only if the left and right-hand side types are

This operator can be overloaded for user-defined types.

Example

' Using the AND operator on two numeric values
Dim As UByte numeric_valuel, numeric_value2
numeric_valuel 15 '00001111

numeric_value2 30 '00011110

'Result = 14 = 00001110
Print numeric_valuel And numeric_value2
Sleep

' Using the AND operator on two conditional expres
Dim As UByte numeric_valuel, numeric_value2
numeric_valuel = 15

numeric_value2 25

If numeric_valuel > 10 And numeric_valuel < 20 The
If numeric_value2 > 10 And numeric_value2 < 20 The
Sleep

' This will output "Numeric_Valuel is between 10
both conditions of the IF statement is true

" It will not output the result of the second IF
' condition 1is true and the second 1s false.

Q)

tn

Dialect Differences

» |n the -lang gb dialect, this operator cannot be overloaded.

Differences from QB

= None

See also

® AndAlso
= Operator Truth Tables

Operator Andalso (Short Circuit Conjunction)

Returns the short circuit-and (conjunction) of two numeric values

Syntax
Declare Operator AndAlso (ByRef 1lhs As T1, ByRef rhs As T2) As

Usage
result = 1hs AndAlso rhs

Parameters

lhs

The left-hand side expression.
T1

Any numeric or boolean type.
rhs

The right-hand side expression.
T2

Any numeric or boolean type.
Ret

A numeric or boolean type (varies with 72 and 12).

Return Value

Returns the short circuit-and (conjunction) of the two operands.

Description

This operator evaluates the left hand side expression. If the result is z
immediately returned. If the result is nonzero then the right hand side
the logical result from that is returned.

(for conversion of a boolean to an integer, false or true boolean value
integer value)

The truth table below demonstrates all combinations of a short circuit-
' denotes that the operand is not evaluated.

Lhs Value |Rhs Value | Result |
0 |- o
|nonzero ||0 ||0 |

|nonzero ”I’]OI’]ZGI'O ”-1 |

Short-circuiting is performed - only expressions needed to calculate tt
evaluated.

The return type is almost always an Integer, of the value o or -1, dent
respectively. Except if the left and right-hand side types are both Bool:
type is also Boolean.

This operator cannot be overloaded for user-defined types.

Example

"' Using the ANDALSO operator to guard against arr
"' when the index 1is out of range

Dim As Integer isprime(l To 10) =
"1 2 3 4 5 6 7 8 9
©, 1, 1, o, 1, 0, 1, 0, 0,

}

Dim As Integer n
Input "Enter a number between 1 and 10: ", n

{ _
0

1
0]

"' 1isprime() array will only be accessed if n 1is 1
If (n >= 1 And n <= 10) AndAlso isprime(n) Then
Print "n is prime"
Else
Print "n is not prime, or out of range"
End If

Differences from QB

» This operator was not available in QB.

See also

B OrElse
® And
= Operator Truth Tables

And BASIc

Parameter to the put graphics statement which uses a bit-wise And as th

Syntax
Put [target,] [STEP] (x,y), source [,(x1,y1)-(x2,y2)

Parameters

And
Required.

Description

The and method combines each source pixel with the corresponding c
bit-wise And function. The result of this is output as the destination pix:
This method works in all graphics modes. There is no mask color, altr
bits set (255 for 8-bit palette modes, or RGBA(255, 255, 255, 255) in fL
no effect, because of the behavior of And.

In full-color modes, each component (red, green, blue and alpha) is ke
so the operation can be made to only affect some of the channels, by
values of the other channels are set to 255.

Example

"'open a graphics window
ScreenRes 320, 200, 16
Line (0, 0)-(319, 199), RGB(255, 255, 255), bf

''create 3 sprites containing cyan, magenta and ye
Const As Integer r = 32
Dim As Any Ptr cc, cm, cy

>(.

cc = ImageCreate(r 2+ 1, r * 2 + 1, RGBA(255, 2
cm = ImageCreate(r * 2 + 1, r * 2 + 1, RGBA(255, z
cy = ImageCreate(r * 2 + 1, r * 2 + 1, RGBA(255, z
Circle cc, (r, r), r, RGB(O, 255, 255), , , 1, f
Circle cm, (r, r), r, RGB(255, 0, 255), , , 1, f

Circle cy, (r, r), r, RGB(255, 255, 0), , , 1, f

"'put the three sprites, overlapping each other ir
Put (146 - r, 108 - r), cc, And
Put (174 - r, 108 - r), cm, And
Put (160 - r, 84 - r), cy, And

"'free the memory used by the sprites
ImageDestroy cc
ImageDestroy cm
ImageDestroy cy

''pause the program before closing
Sleep

Differences from QB

x None

See also

= And
® Put (Graphics)

Any BASIc

Any IS used as a placeholder for a type or value in various ways.

Syntax
Dim identifier As Any Pointer |Ptr

or
Declare Sub|Function identifier (ByRef identifier As Any [,

or

Dim identifier(Any [, Any...]) As DataType

or

[Declare] { Sub | Function } proc_name (param(Any [, Any...])
or

Dim identifier As DataType = Any

or

New DataType (Any)

or
New(Address) DataType [count] { Any }

or
InStr|InStrRev (string, Any substring)

Description

= Pointers:

A special pointer type called the Any ptr (or "Any Pointer") allows poit
as an instance of patatype. Pointer arithmetic is allowed on an Any Pt

A pure Any ptr has no type checking by the compiler. It can be implici
Any 0On its own is not a valid data type for a variable. Also, it is illegal tc

This should not be confused with variant, a Visual Basic data type wt
= Byref parameters:
Any can be used in procedure prototypes (in a peclare statement) witk
deprecated and it only exists for compatibility with QB.
= Array dimensions:

In array declarations, Any can be specified in place of the array bound
of Anys specified (use the syntax with Any is mandatory when declarini

In parameter declarations, Any can be also specified instead of empty
= |nitialization

Any can be used as a fake initializer to disable the default initialization

program's responsibility to fill the variables with meaningful data befor

Comparison to C/C++: This matches the behavior of a variable declar

Similar to Any initializers for variables, Any can also be used with the n
that do not have constructors).

= |nstr/InstrRev:
Any can be used with Instr or Instrrev as a qualifier for the substring

Example

Declare Sub echo(Byval x As Any Ptr) '' echo will

Dim As Integer a(® To 9) = Any '' this variable 1ic
Dim As Double d(0 To 4)

Dim p As Any Ptr
Dim pa As Integer Ptr = @a(0)
Print "Not initialized ";

echo pa "' pass to echo a pointer to integer

Dim pd As Double Ptr = @d(0)
Print "Initialized ";

echo pd '' pass to echo a pointer to double
p = pa "' assign to p a pointer to integer

p = pd "' assign to p a pointer to double
Sleep

Sub echo (Byval x As Any Ptr)
Dim As Integer i
For 1 = 0 To 39

'echo interprets the data in the pointer ¢
Print Cast(UByte Ptr, x)[1] & " ";
Next
Print
End Sub

"Example of ANY disabling the variable type checki
Declare Sub echo (ByRef a As Any) '' ANY disables

Dim x As Single

X = -15

echo X "' Passing a single to a f
Sleep

Sub echo (ByRef a As Integer)
Print Hex(a)
End Sub

Dim a(Any) As Integer ' 1-dimensional dynamic arre
Dim b(Any, Any) As Integer ' 2-dimensional dynamic
Dim c(Any, Any, Any) As Integer ' 3-dimensional dy
' etc.

" Further Redims or array accesses must have a mat
ReDim a(® To 1) As Integer

ReDim b(1 To 10, 2 To 5) As Integer

ReDim c(0® To 9, 0 To 5, 0@ To 1) As Integer

Dialect Differences

= Not available in the -lang gb dialect.

Differences from QB

m Pointers and initializers are new to FreeBASIC.

See also
®E Dim

® Declare

Append

Specifies text file to be opened for append mode

Syntax

Open filename for Append [Encoding encoding type] [Lock
lock_type] as [#]filenum

Parameters

filename

file name to open for append
encoding_type

indicates encoding type for the file
lock_type

locking to be used while the file is open
filenum

unused file number to associate with the open file

Description

A file mode used with open to open a text file for writing.

This mode is used to add text to an existing file with print #, or
comma separated values with write#.

Text files can't be simultaneously read and written in FreeBASIC, so i
both functions are required on the same file, it must be opened twice.

filename must be a string expression resulting in a legal file name in
the target OS, without wildcards. The file will be sought for in the

present directory, unless the filename contains a path . If the file does
not exist, it is created. The pointer is set after the last character of the
file.

Encoding_type indicates the Unicode Encoding of the file, so character:
are correctly read. If omitted, "ascii" encoding is defaulted. Only little
endian character encodings are supported at the moment.

= "yutfg"

m "utfie"
m "utf32"
m "ascii" (the default)

Lock_type indicates the way the file is locked for other processes, it is
one of:
= Read - the file can be opened simultaneously by other
processes, but not for reading

= write - the file can be opened simultaneously by other
processes, but not for writing

m Read Write - the file cannot be opened simultaneously b
other processes (the default)

filenum IS a valid FreeBASIC file number (in the range 1. .255) not
being used for any other file presently open. The file number identifies
the file for the rest of file operations. A free file number can be found
using the Freefrile function.

Example

Dim i As Integer

For i = 1 To 10
Open "test.txt" For Append As #1
Print #1, "extending test.txt"
Close #1

Next

Differences from QB

= None

See also

® Input (File Mode)

= Open

B OQutput
® (Print | ?) #
B Write #

AS I;ltf

Optional part of a declaration which specifies a data type, or part of the (
specifies a file handle.

Syntax
symbolname As datatype
Open ... As #filenumber
Type ... As datatype
Description

As is used to declare the type of variables, fields or arguments and is
statement to determine the file handle. As is also used with the Type (
to C's typedef statement.

Example

'"'"'don't try to compile this code, the examples ar
Declare Sub mySub (X As Integer, Y As Single, Z Acs

Dim X As Integer

Type myType
X As Integer
Y As Single
Z As String
End Type

Type TheNewType As myType

Open "test" For Input As #1

Differences from QB

= The Type (Alias) syntax was not supported in QB.

See also

® Declare
® Dim
® Type

= Open

Assert

Debugging macro that halts program execution if an expression is evalu

Syntax

#define Assert(expression) If (expression) = 0 Then : fb_Assert(
#expression) : End If

Usage

Assert(expression)

Parameters

expression
Any valid conditional/numeric expression. If expression evaluates to o

Description

The Assert macro is intended for use in debugging and works only if t
command line. In this case it prints an error message and stops the pi
evaluates to o.

Its normal use is to check the correct value of the variables during del
If -g is not passed to fbc, the macro does not generate any code, and

Note: If an Assert fails while the program is in a graphics screen, the €
be printed to the graphics screen, which will be closed immediately af

Example

Sub foo

Dim a As Integer
a=0

Assert(a=1)

End Sub

foo

'YIf -
g 1s used this code stops with: test.bas(3): asser

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also

B #Assert

m AssertWarn

AssertWarn

Debugging macro that prints a warning if an expression evaluates to O.

Syntax

#define AssertWarn(expression) If (expression) = 0 Then : fb_Ass
_ _FUNCTION_, #expression) : End If

Usage

AssertWarn(expression)

Parameters

expression
Any valid expression. If expression evaluates to e, a warning message

Description

The Assertwarn macro is intended for use in debugging and works onl
FBC command line. In this case it prints a warning message if expres:
the program execution like Assert does.

Its normal use is to check the correct value of the variables during del

If -g is not passed to fbc, the macro does not generate any code.

Example

Sub foo
Dim a As Integer
a=0
AssertWarn(a=1)
End Sub

foo

'OIf -

g 1s used this code prints: test.bas(3): assertior

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also

B Assert

Asc

Returns the corresponding ASCII or Unicode integer representation of a
character

Syntax

Declare Function Asc (ByRef str As Const String, ByVal position
Integer = 1) As Ulong

Declare Function Asc (ByVal str As Const ZString Ptr, ByVal
position As Integer = 1) As Ulong

Declare Function Asc (ByVal str As Const WString Ptr, ByVal
position As Integer = 1) As Ulong

Usage

result = Asc(str [, position])

Parameters

str

The source string.

position

The position in the string of a character.

Return Value

The raw character value stored at position in str.

Description

If stris a string Or a zstring, the uByte value at that position IS retur
This will be a 7-bit ASCII code, or even a 8-bit character value from s«
code-page, depending on the string data stored in str.

If stris awstring, the ushort (Windows) or ulong (Linux) value at that
position is returned. This will be a 16bit value on Windows (WStrings
UTF16 there), or a 32bit value on Linux (WStrings use UTF32 there).

The function returns zero (o) if the string is a zero length string, posit:
less than one (1), or position is greater than the number of character:

str.

chr performs the opposite function for ASCII strings, while wchr is the
opposite for Unicode strings, returning a string containing the charact
represented by the code passed as an argument.

Example
Print "the ascii code of 'a' is:"; Asc("a"
Print "the ascii code of 'b' is:"; Asc("abc", 2)

will produce the output:

the ascii code of 'a' is: 97
the ascii code of 'b' is: 98

Unicode example (Note to documentation editors: don't put inside %%
(gbasic) markers or the Russian text will disappear!)

will produce the output:

dim a as wstring * 11
a = "NpuseTt, mup"
print "the Unicode of the second char of " & a & " is: " & asc(

the Unicode of the second char of MNpuBeT, mMup is: 1088

Platform Differences

m DOS does not support the wide-character string version of Asc.

Differences from QB

= The optional position argument is new to FreeBASIC.

= QB does not support the wide-character string version of Asc

See also

ASCII Character Codes
m Chr
m Str

® Val

Asin

Finds the arcsine of a number

Syntax

Declare Function Asin (ByVal number As Double) As Double

Usage

result = Asin(number)

Parameters

number
Sine value in the range [-1..1].

Return Value

The arcsine of number, in radians, in the range [-Pi/2..Pi/2].

Description

Asin returns the arcsine of the argument number as a pouble within the
the inverse of the sin function. The returned angle is measured in rad

Example

Dim h As Double

Dim o As Double

Input "Please enter the length of the hypotenuse c
Input "Please enter the length of the opposite sic
Print ""

Print "The angle between the sides is"; Asin (o0 /
Sleep

The output would look like:

Please enter the length of the hypotenuse of a triangle: 5
Please enter the length of the opposite side of the triangle:
The angle between the sides is 0.6435011087932844

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also
m Sin

= A Brief Introduction To Trigonometry

Asm

Code block that allows the use of architecture-specific instructions.

Syntax

Asm
architecture-dependent instructions
End Asm

Or

Asm architecture-dependent instructions

Description

The asm block is used to insert specific machine-code instructions in a p
operations that cannot be carried out using the features of the language
performance-sensitive sections of code.

The current FreeBASIC compiler currently only produces code for Intel
however, in the future, the compiler might be ported to a platform which
instruction set. Therefore, Asm blocks should only be used when necess
alternative should be provided if possible.

The return value of a function may be set by using the Function keywor
the example below.

Asm block comments have the same syntax as usual FreeBASIC Commr
comments, not " ; " as usual in assembly code.

x86 Specific:

Syntax

The syntax of the inline assembler is a simplified form of Intel syntax. In
majority of x86 assemblers, such as MASM, TASM, NASM, YASM and
destination of an instruction is placed first, followed by the source. Varia
program may be referenced in an Asm block. The assembler used by Fre
.intel_syntax noprefix directive, and Asm blocks are passed through ul
substitution of local variable names for stack frame references, and con

Instruction syntax is mostly the same as FASM uses, one important diffe
settings to be followed by the word "ptr".

' Assuming "n" 1s a FB global or local ULONG variab

mov eax, [n] ' OK: size 1s apparent from ea
inc [n] ' Not OK: size 1s not given

inc dword [n] ' Not OK: size given, but stil
inc dword Ptr [n] " OK: "ptr" 1is needed by GAS h

Register Preservation
When an Asm block is opened, the registers ebx, esi, and edi are pushe:
closed, these registers are popped back from the stack. This is because
be preserved by most or all OS's using the x86 CPU. You can therefore
explicitly preserving them yourself. You should not change esp and ebp,
address local variables.

Register Names
The names of the registers for the x86 architecture are written as follow

= 4-byte integer registers: eax, ebx, ecx, edx, ebp, esg

m 2-byte integer registers: ax, bx, cx, dx, bp, sp, di, si
registers)

m 1-byte integer registers: al, ah, bl, bh, c1, ch, d1, dh
registers)

m Floating-point registers: st(0), st(1), st(2), st(3),

» MMX registers (aliased onto floating-point registers
mm6, mm7

m SSE registers: xmmo, xmm1, xmm2, xmm3, xmm4, xmm5, Xn
Instruction Set

See these external references:
= Original Intel 80386 manual from 1986

= Latest Intel Pentium 4 manuals
= NASM x86 Instruction Reference (Please note tt

http://board.flatassembler.net/download.php?id=3093
http://developer.intel.com/design/Pentium4/documentation.htm
http://home.comcast.net/~fbkotler/nasmdocb.html

used by FreeBASIC, but this page provides a gooc

Unsafe instructions

Note that the FreeBASIC compiler produces 32-bit protected-mode cod
in an unprivileged user level; therefore, privileged and sensitive instruct
possibly won't work correctly or cause a runtime "General Protection Fa
SIGILL error. The following are the privileged and sensitive instructions
Xeon:

" cli*l

B clts

m hlt

" in*1l

m ins *1

m int *1

" into *1
® invd

® invlpg
m lgdt

B]idt

m 11dt

® Imsw

B Jtr

= mov to/from crn, DRN, TRN
= out *1

® outs *1
®m rdmsr

= rdpmc *2
® rdtsc *2
m osti*l

m str

® wbinvd
®owrmsr

= all SSE2 and higher instructions *2

*1: sensitive to IOPL, fine in DOS

*2: sensitive to permission bits in CR4, see below

The privileged instructions will work "correctly” in DOS when running on
(non-default) Ring 0 version of CWSDPMI, WDOSX or D3X, neverthele
useful and dangerous when executed from DPMI code. RDTSC (Read"
shown to be allowed by most, or all OS'es.

However the usefulness of RDTSC has been diminished with the adver
CPUs. SSE2 and higher instructions are disabled "by default" after CPU
Linux usually do enable them, in DOS it is business of the DPMI host: F
CWSDPMI won't. The INT instruction is usable in the DOS version/targe
differently from real mode DOS, see also FagDOS.

The segment registers (cs, ds, es, fs, gs) should not be changed from a
cases with the DOS port (note that they do NOT work the same way as
FaqDOS). The operating system or DPMI host is responsible for memo
segments (selectors) in protected mode is very different from real-mode

Note that those "unsafe" instructions are not guaranteed to raise a "visil
insufficient privilege - the OS or DPMI host can decide to "emulate” ther
from some CRx works under HDPMI32), or "dummy" (nothing happens,
a NOP).

Example

"' This 1s an example for the x86 architecture.
Function AddFive(ByVal num As Long) As Long
Asm
mov eax, [num]
add eax, 5
mov [Function], eax
End Asm
End Function

Dim i As Long = 4

Print "4 + 5 ="; AddFive(1i)

FreeBASIC's Assembler is AS / GAS, the assembler of GCC, so an ext
apply:
= The error lines returned by FBC for Asm blocks are not rel:
simply displays the errors returned by AS , the lines are r¢
make FreeBASIC preserve them, the compiler must be in
delete ASM files").

» The label names are case sensitive inside Asm blocks.

Dialect Differences

= Not available in the -lang qb dialect unless referenced with the ¢

Differences from QB
= New to FreeBASIC

See also

® Function

® Naked

Atan2

Returns the arctangent of a ratio

Syntax
Declare Function Atan2 (ByVal y As Double, ByVal x As Double)

Usage
result = ATan2(y, x)

Parameters

y
Vertical component of the ratio.
X

Horizontal component of the ratio.

Return Value

The angle whose tangent is y/x, in radians, in the range [-Pi..PIi].

Description

ATan2 returns the arctangent of the ratio y/x as a pouble within the ran
arctangent is the inverse of the Tan function. The returned angle is me
degrees).

Example

Print Atan2 (4, 5) 'this 1s the same as PRIN

The output would be:

0.6747409422235527

Differences from QB
= New to FreeBASIC

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the

See also

® Tan
= Atn
= A Brief Introduction To Trigonometry

Atn BASIc

Returns the arctangent of a number

Syntax
Declare Function Atn (ByVal number As Double) As Double

Usage

result = Atn(number)

Parameters

number
A number.

Return Value

The angle, in radians, whose tangent is number, in the range [-
Pi/2..Pi/2].

Description

Atn returns the arctangent of the argument number as a pouble within
the range of -Pi/2 to Pi/2. The arctangent is the inverse of the Tan
function. The returned angle is measured in radians (not degrees).

Example

Print "P1i ="; Atn (1.0) * 4
Print Atn (4 / 5)

The output would be:

Pi = 3.141592653589793
0.6747409422235527

Differences from QB

= None

See also

®E Tan
= Atan2
= A Brief Introduction To Trigonometry

Base (Initializer)

Specifies an initializer for the base UDT in derived Udt constructors

Syntax

Base (constructor-parameters...)
or:
Base UDT-initializer

Description

The Base initializer can be used at the top of constructors of derived U
allows to specify an explicit constructor call or UDT initializer to be use
initialize the base object. It will replace the implicit default initialization
must appear above any other statements in the constructor it is used

Note: Unlike "Base()", a "Base.Constructor()" statement does not re
the implicit default initialization done by the constructor of a derived U
can usually not be used legally, because it would result in two constru
for the base object.

Example

Type SimpleParent
As Integer a, b, c
End Type

Type Child extends SimpleParent
Declare Constructor()
End Type

Constructor Child()
"' Simple UDT initializer
Base(1, 2, 3)

End Constructor

Type ComplexParent

As Integer 1

Declare Constructor(ByVal As Integer = 0)
End Type

Constructor ComplexParent(ByVal i As Integer = 0
this.i = 1
End Constructor

Type Child extends ComplexParent

Declare Constructor()

Declare Constructor(ByRef As Child)
End Type

Constructor Child()
''" Base UDT constructor call
Base(1)

End Constructor

Constructor Child(ByRef rhs As Child)
''" Base UDT constructor call
Base(rhs.i)

End Constructor

Dialect Differences

= Methods are only supported in the -lang fb dialect, hence Base
function in other dialects.

Differences from QB
= New to FreeBASIC

See also

m Base (Member Access)

® This

= Type
®m Extends

® Option Base

Base (Member Access)

Provides explicit access to base type members in non-static methods of

Syntax

Base.member
Base [.Base ...] .member

Description

Base provides a way to explicitly access members of a specific base ty
of a user-defined type derived from another type using Extends.

By using Base repeatedly, as in base.base.base.member, it iS possible t
there are multiple levels of inheritance.

Base IS especially useful when a base type's member is shadowed by
type using the same identifier. Base then allows unambiguous access

For virtual methods, base.method() always calls the base method anc

Example

Type Parent
As Integer a
Declare Constructor(ByvVal As Integer = 0)
Declare Sub show()

End Type

Constructor Parent(ByVal a As Integer = 0)
This.a = a
End Constructor

Sub Parent.show()
Print "parent", a
End Sub

Type Child extends Parent

As Integer a
Declare Constructor(ByvVal As Integer = 0)
Declare Sub show()

End Type

Constructor Child(Byval a As Integer = 0)
"' Call base type's constructor
Base(a * 3)

This.a = a

End Constructor

Sub Child.show()
"' Call base type's show() method, not ours
Base.show()

"' Show both a fields, the base type's and our

Print "child", Base.a, a
End Sub

Type GrandChild extends Child
As Integer a
Declare Constructor(ByvVal As Integer = 0)
Declare Sub show()

End Type

Constructor GrandChild(ByvVal a As Integer = 0)
"' Call base type's constructor
Base(a * 2)
This.a = a

End Constructor

Sub GrandChild.show()
"' Call base type's show() method, not ours
Base.show()

"' Show both a fields, the base.base type's,
Print "grandchild", Base.Base.a, Base.a, a
End Sub

t

Dim As GrandChild x = GrandChild(3)
X.show()

Dialect Differences

= Methods are only supported in the -lang fb dialect, hence Base

Differences from QB
= New to FreeBASIC

See also

B Base (Initializer)
B This

= Type

m Extends

m Option Base

Beep

Produces a beep sound.

Syntax
Declare Sub Beep ()

Usage
Beep

Description

Beep tells the system to sound a beep noise. Note that this might not
work on some platforms. Since this command is not reliable and there
is no way to specify the frequency and duration, you might want to
avoid it in favor of other / better solutions, for example:
http://www.freebasic.net/forum/viewtopic.php?p=20441#20441 by
yetifoot.

Example

Beep

Differences from QB

= |n QB, this was a single tone noise generated through the PC
speaker. Now this might not be the case.

See also

® out - producing sound using CPU ports

Bl n BASIc

Returns a binary (base 2) string representation of an integer

Syntax

Declare Function Bin
Declare Function Bin
Declare Function Bin
Declare Function Bin
Declare Function Bin

ByVal number As UByte) As String

ByVal number As UShort) As String

ByVal number As Ulong) As String

ByVal number As ULongInt) As String
ByVal number As Const Any Ptr) As String

NN AN NN

Declare Function Bin (ByVal number As UByte, ByVal digits As
Long) As String

Declare Function Bin (ByVal number As UShort, ByVal digits As
Long) As String

Declare Function Bin (ByVal number As Ulong, ByVal digits As
Long) As String

Declare Function Bin (ByVal number As ULongInt, ByVal digits As
Long) As String

Declare Function Bin (ByVal number As Const Any Ptr, ByVal
digits As Long) As String

Usage
result = Bin[$](number [, digits])

Parameters

number

A number or expression evaluating to a number. A floating-point
number will be converted to a LongInt.

digits

Desired number of digits in the returned string.

Return Value

A string containing the unsigned binary representation of number.

Description

Returns a string representing the unsigned binary value of the integer
number. Binary digits range from O to 1.

If you specify digits > 0, the result string will be exactly that length. It
will be truncated or padded with zeros on the left, if necessary.

The length of the string will not go longer than the maximum number
digits required for the type of number (32 for a Long, 64 for a LongInt).

If you want to do the opposite, i.e. convert an binary string back into a
number, the easiest way to do it is to prepend the string with "&B; ",
and convert it to an integer type, using a function like cInt, similarly tc
a normal numeric string. E.g. cInt("&B101;")

Example
Print Bin(54321)

Print Bin(54321, 5)
Print Bin(54321, 20)

will produce the output:

1101010000110001
10001
0000110160106000110001

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
alias __Bin.

Differences from QB
= New to FreeBASIC

See also

m Oct

® Hex
® ValInt
® Vallng

Binary

Specifies file or device to be opened for binary mode

Syntax

Open filename for Binary [Access access_type] [Lock lock_type] a

Parameters

filename

file name to open

access_type

indicates whether the file may be read from, written to or both
lock_type

locking to be used while the file is open

filenum

unused file number to associate with the open file

Description

Opens a file or device for reading and/or writing binary data in the file
If the file does not exist, a new file will be created. The file pointer is ir
cet # and put # file operations move the file pointer according to the ¢
byte in the file.

The data existing in the file is preserved by open.

This file mode can use any buffer variable to read/write data in the file
The data is saved in binary mode, in the same internal format FreeBA

filename must be a string expression resulting in a legal file name in t
be sought for in the present directory, unless a path is given.
Access_type By default Binary mode allows to both read and write the
be one of:

m Read - the file is opened for input only
m write - the file is opened for output only
= Read Write - the file is opened for input and output (the

Lock_type indicates the way the file is locked for other processes (use
= shared - The file can be freely accessed by other proces

m Lock Read - The file can't be opened simultaneously for
= Lock Write - The file can't be opened simultaneously for

= Lock Read Write - The file cannot be opened simultanec

If no lock type is stated, the file will be shared for other threads of the |
programs.
Lock and unlock can be used to restrict temporally access to parts of ¢

filenum is a valid file number (in the range 1. .255) not being used for
identifies the file for the rest of file operations. A free file number can t

Example

"' Create a binary data file with one number in it
Dim x As Single = 17.164

Open "MyFile.Dat" For Binary As #1
"' put without a position setting will put from
"' in this case, the very beginning of the file.
Put #1, , X

Close #1

'"'" Now read the number from the file
Dim x As Single = 0

Open "MyFile.Dat" For Binary As #1
Get #1, , X
Close #1

Print Xx

"' Read entire contents of a file to a string
Dim txt As String

Open "myfile.txt" For Binary Access Read As #1
If LOF(1) > 0@ Then
"' our string has as many characters as the fi
txt = String(LOF(1), 0)
"' size of txt is known. entire string fillec
Get #1, , txt
End If
Close #1

Print txt

Differences from QB

= None

See also

= Open

m Put #
B Get #
® Random
® Append
®E Qutput
® Input

Blt BASIc

Gets the state of an individual bit in an integer value.

Syntax

#define Bit(value, bit_number) (((value) And
(Cast(TypeOf(value), 1) Shl (bit_number))) <> 0)

Usage

result = Bit(value, bit_number)

Parameters

value

The integer value.
bit_number

The index of the bit.

Return Value

Returns an Integer value of -1 if the bit is set, or ¢ if the bit is cleared.

Description

This macro expands to an integer value indicating whether or not the
bit specified by bit_number is set in the integer value. Behaves as
“(value And 1 Shl bit_number) <> 0.

Example
Print Bit(4,2)

Print Bit(5,1)
Print Bit(&H8000000000000OOOULL,63)

will produce the output:

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
alias __Bit.

Differences from QB
= New to FreeBASIC

See also

m BitSet
® BitReset

BitReset

Gets the value of an integer with a specified bit cleared.

Syntax

#define BitReset(value, bit_number) ((value) And Not
(Cast(TypeOf(Value), 1) Shl (bit_number)))

Usage

result = BitReset(value, bit_number)

Parameters

value

The integer value.
bit_number

The index of the bit to clear.

Return Value

Returns the integer value with the specified bit cleared.

Description

This macro expands to a copy of the integer value with the specified
bit_number cleared (to off, or "0"). Behaves as 'value And Not (1 Shl
bit_number) .

The valid range of values for bit_number depends on the size, in bits,
of "Typeof(value)’, which is "e" through "sizeof(value) * 8 - 1. See
Standard Datatype Limits for a table of the standard datatypes and
their sizes.

Example

Print BitReset(5,0)
Print Hex(BitReset (&h8000000OO0O00001,63))

will produce the output:

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
alias __Bitreset.

Differences from QB
= New to FreeBASIC.

See also
m Bit
m BitSet

Bitset l;ltf

Gets the value of an integer with a specified bit set.

Syntax

#define BitSet(value, bit_number) ((value) Or
(Cast(TypeOf(Value), 1) Shl (bit_number)))

Usage

result = BitSet(value, bit_number)

Parameters

value

The integer value.
bit_number

The index of the hit to set.

Return Value

Returns the integer value with the specified bit set.

Description

This macro expands to a copy of the integer value with the specified
bit_number set (to on, or "1°). Behaves as 'value or (1 shl
bit_number) .

The valid range of values for bit_number depends on the size, in bits,
of "Typeof(value)’, which is "e" through "sizeof(value) * 8 - 1. See
Standard Datatype Limits for a table of the standard datatypes and
their sizes.

Example

Print BitSet(4, 0)
Print Hex(BitSet(1ull, 63))

will produce the output:

5
8000000000000001

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
alias __Bitset.

Differences from QB
= New to FreeBASIC.

See also
m Bit

® BitReset

BLoad

Loads arbitrary data from a file created with Bsave, or a compatible BMP

Syntax

Declare Function BLoad (ByRef filename As Const String, ByVal d
) As Long

Usage
result = BLoad(filename [, [dest] [, pal]])

Parameters

filename

the name of the file to load the image from; can include a file path
dest

the memory location to load the image to, or null (o) to copy the image
pal

the memory location to load the palette to, or null (e) to change the cu

Return Value

Returns zero (o) if successful, or a non-zero error code to indicate a fe

Description

BLoad can be used to load image data or any other data from a file cre
or paste it to the screen. If dest is absent or null (e), the image data is
page. Otherwise it is loaded as image data to the address given by de

BLoad can load 3 different types of files:
= Old QB-like data files, saved with Bsave from QB code, «
header, beginning with &HFD;, up to 64 KiB in size
= New FB-like data files, saved with Bsave from FB code,
header, beginning with &HFE;. There is no 64 KiB limit w
= BMP image files, supports a subset of valid ("Windows"
code with Bsave, or created / saved in a compatible forn
QB-like data files and BMP files are converted to an FB-compatible inr

Image files with 8-bit per pixel resolution or lower contain a palette the
If pal is not null (e), the palette is copied to memory starting at the adc
screen uses a palette then its palette is changed to match that of the |

When using one of the 2 "non-BMP" file formats to save images, the i
the same graphics screen mode as it is being loaded into. When using

apply.

When loading a BMP file using BLoad, the images must be true-color (
palettized/indexed (8-bit or lower). The image data will be converted t
depth, except that true-color can't be reduced to a palettized image. B
compression or other image file types (PNG, JPG, GIF, ...). BLoad will
32-bit BMP files with BITMAPV4HEADER Or BITMAPV5SHEADER file headers.

Runtime errors:
BLoad throws one of the following runtime errors:

(1) lllegal function call
= dest was not specified or was null (e), and no graphics ¢

= The Bitmap uses an unsupported BMP file compression

= The Bitmap is true-color (16, 24, or 32 bits per pixel) an
bits per pixel or lower).
(2) File not found
» The file filename could not be found.
(3) File I/O error
= The file doesn't have any of the supported types

= A general read error occurred.

Note: When you use BLoad to load a BMP file into an image buffer, the
changed. If you want the image buffer to have the same dimensions &
dimensions beforehand, and create an image of the right size yoursel
how to do this.

Example

'Load a graphic to current work page

Screen 18, 32

Cls

BLoad "picture.bmp"
Sleep

'"Load a 48x48 bitmap into an image

ScreenRes 320, 200, 32

Dim myImage As Any Ptr = ImageCreate(48, 48)
BLoad "picture.bmp", myImage

Put (10,10), myImage

ImageDestroy(myImage)

Sleep

ScreenRes 640, 480, 8 '' 8-bit palette graphics mc
Dim pal(0® To 256-1) As Integer '' 32-bit integer ¢

"' load bitmap to screen, put palette into pal() &
BLoad "picture.bmp", , @pal(0)

WindowTitle "Old palette"
Sleep

"' set new palette from pal() array
Palette Using pal(0)

WindowTitle "New palette"
Sleep

"' A function that creates an image buffer with tf
"' dimensions as a BMP image, and loads a file int

Const NULL As Any Ptr = 0
Function bmp_load(ByRef filename As Const String

Dim As Long filenum, bmpwidth, bmpheight
Dim As Any Ptr img

"' open BMP file

filenum = FreeFile()

If Open(filename For Binary Access Read As #f
"' retrieve BMP dimensions
Get #filenum, 19, bmpwidth
Get #filenum, 23, bmpheight

Close #filenum

"' create image with BMP dimensions
img = ImageCreate(bmpwidth, Abs(bmpheight))

If img = NULL Then Return NULL

"' load BMP file into image buffer
If BLoad(filename, img) <> 0 Then ImageDestr

Return img

End Function

Dim As Any Ptr img
ScreenRes 640, 480, 32
img = bmp_load("picture.bmp")

If img = NULL Then

Print "bmp_load failed"
Else
Put (10, 10), img
ImageDestroy(img)
End If

Sleep

Differences from QB

= Support for loading BMP files is new to FreeBASIC.
= Support for retrieving the palette from BMP files is new to Free

= FreeBASIC uses a different file format from QBASIC internally,
unsupported by QBASIC.

See also

B BSave

m Palette

u ImageCreate

® ImageDestroy

= Internal Graphics Formats

Boolean

Standard data type

Syntax

Dim variable As Boolean

Description

Boolean data type. Can hold the values True or False.

Notes on definition of boolean data type: Ideally, the definition of
the boolean data type is that it holds the value of True or False, and
that's it. However, to make this concept a reality, we need a definition
that uses real world connections. A more realistic definition is that the
boolean data type is a 1-bit integer, having the value O to indicate
False and 1 to indicate True. For a practical definition, we must
consider, yet again, additional factors. The most significant factor is
that the hardware (processor) on which code is executed does not
directly support a 1-bit data type; the smallest register or memory size
we can work with is 8-bits or 1-byte. Therefore, a practical definition o
boolean data type is an integer, 8 bits wide, having the value 0 or 1,
where all other values are undefined. However, because of
longstanding differences between C/C++ and FB with respect to logic
operations, the interpretation of the value must also be considered.
Assume "false" is 0 in both C/C++ and FB. C/C++ has logical ‘'not’
operator 'I" such that 10" produces '1'. FB has a bitwise not operator
such that 'not 0" produces '-1'. Therefore the definition for a C/C++
boolean is an unsigned 1-bit integer, zero extended to fill larger intege
types, and the definition for a FB boolean is a signed 1-bit integer, sig.
extended to fill larger integer types. However, the purpose and intent «
the boolean data type remains, that it should only ever hold a True
value or False value, regardless of the underlying details.

Example

Dim boolvar As Boolean

boolvar = True

Print "boolvar = ", boolvar
Output:
boolvar = true

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
alias __Boolean.

Differences from QB
= New to FreeBASIC

See also

® True

m False

BSave

Saves an array of arbitrary data and palette information to a file on disk

Syntax

Declare Function BSave (ByRef filename As Const String, ByVal
source As Any Ptr, ByVal size As Ulong = 0, ByVal pal As Any Ptr
= 0, Byval bitsperpixel As Long = 0) As Long

Usage

result = BSave(filename, source [,[size][,[pal 1[,
bitsperpixel 1]])

Parameters

filename

the name of the file to create for storing the pixel and palette data.
source

the address of the data to store, or null (e) to store pixel data from the
current screen work page.

size

optional, the total number of bytes of data to store. This value is

needed unless the output is a BMP file.

pal

optional, the address of a buffer holding 256 palette colors, or null (e)
for the current screen palette.

bitsperpixel

optional, a requested bit depth for the output BMP image.

Return Value

Returns zero (o) if successful, or a non-zero error code to indicate a
failure. (throws a runtime error)

Description

Bsave IS used for saving arbitrary data from memory into a file, using &
file format specific to FB, or saving images into a standard BMP imag
file, replacing an existing file if necessary.

BSave outputs a total of size bytes of arbitrary data located at source ti
a specified file. If source is null (o), then Bsave outputs a maximum of
size bytes from the current work page's pixel buffer, which is structure
in the current screen mode's internal pixel format. (This data is not
compatible with the image buffer format as it has no header.) For 8-bi
images, palette information is obtained from pal if present and non-
null, or if pal omitted or null (o), from the current screen palette.

A BMP image file can be created if filename has a file extension of
".bmp" (case insensitive). source is assumed to point to a valid image
buffer whose entire pixel data will be stored in the BMP file. If source i
null (e), the contents of the current work page will be stored instead.
For 8-bit images, palette information is obtained from pa1l if non-null, c
if null (e), from the current screen palette. The size parameter is
ignored when saving BMP files.

The default bit depth for BMP files is 8-bit for 8-bit (palette) images, 2:
bit for 16-bit images, and 32-bit for 32-bit images. The bitsperpixel
parameter can be used to request 24-bit output for 8-bit images, or 24
bit output for 32-bit images.

Runtime errors:
Bsave throws one of the following runtime errors:

(1) lllegal function call

m size is less than zero (o), or size is zero and source IS
non-null, or a problem is detected with the image buffer.

(2) File not found

= The file could not be created.
(3) File I/O error

= The file could not be written to.

Example

' Set gfx mode
ScreenRes 320, 200, 32

Clear with black on white

Color RGB(®, 0, 0), RGB(255, 255, 255)
Cls

Locate 13, 15: Print "Hello world!'"

Save as BMP
BSave "hello.bmp", ©

Differences from QB

= Support for saving more than 64KiB of arbitrary data is new to
FreeBASIC.

m Support for saving BMP files is new to FreeBASIC.

= QB cannot use BLoad to load files created with Bsave in
FreeBASIC, but FreeBASIC can use BLoad to load files createc
with Bsave in QB

See also

® BLoad
m Palette

Byref (Parameters)

Declaration specifier to explicitly pass a parameter by reference

Syntax
ByRef param As datatype

Usage

[Declare] { Sub | Function } proc_name (ByRef param As
datatype)

Description

Passes a variable by reference, that is its address, to a subroutine or
function. When a variable is passed by reference, the contents of the
variable can be changed by the target subroutine or function.

In -lang qb and -lang fblite dialects, ByRref is the default parameter
passing convention, unless option Byval is in effect.

Opposite of Byval.

Example

Dim MyVar As Integer

Sub ChangeVar (ByRef AVar As Integer)
AVar = Avar + 1

End Sub

MyVar = 1

Print "MyVar: "; Myvar 'output = 1
ChangevVar MyVar

Print "MyVar: "; MyVar 'output = 2

Sleep
End

Dialect Differences

= |n -lang fb dialect, Byval is the default parameter passing
convention for all built-in types except string and user-defined
Type Which are passed Byref by default.

» |n -lang gb and -lang fblite dialects, ByRref is the default
parameter passing convention.

Differences from QB
= New to FreeBASIC

See also

Passing Arguments to Procedures

Declare

® Byval

Byref (Function Results)

Byref (Function Results)

Specifies that a function result is returned by reference

Syntax

Function name (parameter-1list) ByRef As datatype

Description

Causes the function result to be returned by reference, rather than by
returning by value. This allows the caller of the function to modify the

If ByRef IS not specified, the default is to return the function result by v

Functions with ByRref result should not return local variables from the f
reference to them. To help with writing safe code, the compiler will shc
x Statements.

Note: On the left-hand side of an assignment expression using the '='
function calls one single argument, in order to solve the parsing ambig
allowing to avoid parsing ambiguity (without parentheses). As for the

Operators (member or global), when used as functions, have also the

Example

Function min(ByRef I As Integer , ByRef J As Inte
"' The smallest integer will be returned by re
If I < J Then
Return I
Else
Return J
End If
End Function

Dim As Integer A = 13, B = 7
Print A, B

Print min(
min(A , B
Print A, B

A, B)
) 0]

14

Function f() ByRef As Const ZString
"' This string literal (because statically all
Function = "abcd"

End Function

Print f()

Dim Shared As String s

Function f1() ByRef As String
"' This variable-length string will be returnec
Function = s

End Function

Function f2(ByRef _s As String) ByRef As String
"' This variable-length string will be returnec
Function = _s

End Function

s = "abcd"
Print s

fi() &= "efgh"
Print s

"' At time of writing, the enclosing parentheses ¢
(f2(s)) &= "ijkl"
Print s

Function power2(ByRef _I As Integer) ByRef As Ir

I *= _I

' This integer will be returned by reference,
Function = _1I

End Function

Dim As Integer I = 2
power2(power2(power2(I))) "' Function retur
Print I

Differences from QB
= New to FreeBASIC

See also

= Returning values

m Byref (Parameters)

Byte

Standard data type: 8 bit signed

Syntax

Dim variable As Byte

Description

8-bit signed whole-number data type. Can hold a value in the range o
-128 to 127.

Example

Dim bytevar As Byte
bytevar = 100
Print "bytevar= ", bytevar

Dim x As Byte = CByte(&H80)
Dim y As Byte = CByte(&H7F)
Print "Byte Range = "; x; " to "; vy

Output:

Byte Range = -128 to 127

Dialect Differences

= Not available in the -lang qb dialect unless referenced with the
alias __Byte.

Differences from QB

= New to FreeBASIC

See also

B UByte
m CByte

ByVal

Declaration specifier to explicitly pass a parameter by value

Syntax
ByVal param As datatype

Usage
[Declare] { Sub | Function } proc_name (ByVal param As dataty

Description

ByVval in a parameter list of a declare statement causes a copy of the
its value.

This means that if the value of the variable x is passed, then the origir
were passed ByRref, the value of the original variable x could be modifi

Opposite of ByRef.

The Byval keyword is also used in the context of Byref Parameters al
reference semantics in order to pass or assign a pointer as-is to a Byr

= Manually passing pointers to by-reference paramete
= Manually returning pointers as-is from Byref functic

Example

Sub MySub(ByVal value As Integer)
value += 1
End Sub

Dim MyVar As Integer
MyVar = 1

Print "MyVar: "; Myvar 'output = 1
MySub MyVar

Print "Myvar: "; MyVvar 'output = 1, because byval
Sleep
End

Dialect Differences

= |n the -lang fb dialect, Byval is the default parameter passing ¢
are passed Byref by default.

» |n -lang gb and -lang fblite dialects, ByRref is the default paran

Differences from QB

= QB only used Byval in declarations to non-Basic subroutines

See also

= Passing Arguments to Procedures
m Declare

B ByRef

Call l;l’l’f

Statement to invoke a subroutine

Syntax

Call procname ([parameter 1list])

Description

Calls a sub or Function.

This keyword is a holdover from earlier dialects of BASIC, and is mair
In -lang qb, it can be used to call subs in code before they are declare
parameters passed ByRef As Any.

Note: until the function is declared, no type-checking is done on the p:
they are of the correct type.

Example

"' Compile with -lang qb or -lang fblite
#lang "fblite"

Declare Sub foobar(ByvVal x As Integer, ByvVal y As
Call foobar (35, 42)

Sub foobar(ByVal x As Integer, ByVal y As Integer)
Print x; vy
End Sub

"' Compile with -lang gqb or -lang fblite

#lang "fblite"

Function f () As Integer
f =42
End Function

Call f ' execute function f, but ignore the answer

"' Compile with -lang gb

'$lang: "gb"

Call mysub(15, 16) '' call "mysub" before it has t

Sub mysub(ByRef a As Integer, ByRef b As Integer)
Print a, b

End Sub

Dialect Differences

= The use of call is not allowed in the -lang fb dialect.
= The -lang fblite dialect does not allow you to call functions tha

Differences from QB

m The procedure must have already been declared.

® call in QB will make a copy of all parameters, so changes ma
reflected in the variables in the caller.

See also

m Declare

® Sub

CAllocate

Allocates memory for a certain number of elements from the free store ¢
contents

Syntax

Declare Function CAllocate cdecl (ByVal num_elements As UIntege
As UInteger = 1) As Any Ptr

Usage

result = CAllocate(num_elements [, size])

Parameters

num_elements

The number of elements to allocate memory for.
size

The size, in bytes, of each element.

Return Value

If successful, the address of the start of the allocated memory is returi
the null pointer (o) is returned.

Description

CAllocate initializes the allocated memory with zeros. Consequently, ¢
be also directly used with string or udt containing string, because the
descriptor is cleared (set to 0) first.

Example

' Allocate and initialize space for 10 integer ele
Dim p As Integer Ptr = CAllocate(10, SizeOf(Intege

' F1ll the memory with integer values.
For index As Integer = 0 To 9
p[index] = (index + 1) * 10

Next

' Display the integer values.

For index As Integer = 0 To 9
Print p[index] ;

Next

' Free the memory.
Deallocate(p)

Outputs:

10 20 30 40 50 60 70 80 90 100

Platform Differences

= This procedure is not guaranteed to be thread-safe.

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Callocate.

Differences from QB
= New to FreeBASIC

See also

B Allocate
m Deallocate

m Reallocate

Case

Control flow statement

Syntax

Case expression

Differences from QB

= None

See also

B Select Case

Cast

Converts an expression to a specified data type

Syntax

Cast(datatype, expression)

Description

Converts expression into a different datatype. Useful to be used in me
converting to Type Alias.

Note: this is a general form of conversion operators such as cint or ci
used on types that have a cast operator, but don't have a built-in key
also suitable for use in cases where the type of a variable is not fixed
earlier, or may be the Type of a different variable or expression.

Note: If you want to use an operator specifically for converting to diffe
instead.

Example

"' 'will print -128 because the integer literal wil
"' (this Casting operation 1is equivalent to using
Print Cast(Byte, &h0080)

"' 'will print 3 because the floating-point value w
"' (this Casting operator is equivalent to using C
Print Cast(Integer, 3.1)

Dialect Differences

= Not available in the -lang qgb dialect unless referenced with the

Differences from QB

= New to FreeBASIC

See also

m CPtr
m CInt
B TypeOf

Cbool

Converts numeric or string expression to a boolean (Boolean)
Syntax
Declare Function Cbool (ByVal expression As datatype) As Boole

Type typename
Declare Operator Cast () As Boolean

End Type
Usage
result = Cbool(numeric expression)
result = Cbool(string expression)
result = Cbool(user defined type)
Parameters
expression

a numeric, string, or user defined type to cast to a Boolean value
datatype

any numeric, string, or user defined type
typename

a user defined type

Return Value

A Boolean value.

Description

The cbool function converts a zero value to False and a hon-zero valt
The name can be explained as 'Convert to Boolean'.
If the argument is a string expression, it is converted to boolean using

insensitive to the string "false" to return a False value or "true” to retur
value.

Example

' Using the CBOOL function to convert a numeric ve

'Create an BOOLEAN variable
Dim b As BOOLEAN

'"Convert a numeric value
b = CBOOL(1)

'"Print the result, should return True
Print b
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Cbool.

Differences from QB
= New to FreeBASIC

See also

m CByte
m CUByte
m CShort
®m CUShort
®E CInt

®E CUInt

m CLng

= CULng

® CLngInt

CULngInt
cSng
cpbbl

Str

CByte I;ltf

Converts numeric or string expression to Byte.

Syntax
Declare Function CByte (ByVal expression As datatype) As Byte

Type typename
Declare Operator Cast () As Byte
End Type

Usage

result
result
result

CByte(numeric expression)
CByte(string expression)
CByte(user defined type)

Parameters

expression

A numeric, string, or pointer expression to cast to a Byte value.
datatype

Any numeric, string, or pointer data type.

typename

A user defined type.

Return Value

A Byte value.

Description
The cByte function rounds off the decimal part and returns a 8-bit Byte
function does not check for an overflow, and results are undefined for
which are less than -128 or larger than 127.
The name can be explained as 'Convert to Byte'.

If the argument is a string expression, it is converted to numeric by us

Example

' Using the CBYTE function to convert a numeric ve

'"Create an BYTE variable
Dim numeric_value As Byte

'"Convert a numeric value
numeric_value = CByte(-66.30)

'"Print the result, should return -66
Print numeric_value
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Chyte.

Differences from QB
= New to FreeBASIC

See also

® CUByte
m CShort

m CUShort
B CInt

®E CUInt

® CLng

= CULng

= CLngInt
® CULngInt

m CSng
= CDbl

CDbI I;ltf

Converts numeric or string expression to bouble precision floating point
Syntax
Declare Function CDbl (ByVal expression As datatype) As Double

Type typename
Declare Operator Cast () As Double

End Type
Usage
result = CDbl(numeric expression)
result = CDbl(string expression)
result = CDbl(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a pouble value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A pouble precision value.

Description

The cpbl function returns a 64-bit pouble value. The function does not
an overflow, so be sure not to pass a value outside the representable
the pouble data type. The name can be explained as ‘Convert to Dout

If the argument to cobl is a string expression, it is first converted to nu
using val.

Example

' Using the CDBL function to convert a numeric val

'Create an DOUBLE variable
Dim numeric_value As Double

"Convert a numeric value
numeric_value = CDbl(-12345678.123)

'"Print the result, should return -12345678.123
Print numeric_value
Sleep

Differences from QB

» The string argument was not allowed in QB

See also

m CByte
m CUByte

m CShort

m CUShort
®E CInt

B CUInt

= CLng

= CULng

® CLngInt
® CULngInt
® CSng

cdecl

Specifies a cdecl-style calling convention in a procedure declaration

Syntax

Sub name cdecl [Overload] [Alias "alias"] (parameters)
Function name cdecl [Overload] [Alias "alias"] (parameters) As

Description

In procedure declarations, cdecl specifies that a procedure will use th
(pushed onto the stack) in the reverse order in which they are listed, t
must not clean up the stack (pop any parameters) before it returns - tt
cdecl is allowed to be used with variadic procedure declarations (thos

cdecl is the default calling convention on Linux, the *BSDs, and DOS,
Blocks. cdecl is typically the default calling convention for C compilers

Example

' declaring 'strcpy' from the standard C library
Declare Function strcpy cdecl Alias "strcpy" (ByVe

Differences from QB
= New to FreeBASIC

See also

® pascal, stdcall
® Declare

m Sub, Function

Chain

Temporarily transfers control to an external program

Syntax

Declare Function Chain (ByRef program As Const String) As Long

Usage

result = Chain(program)

Parameters

program
The file name (including file path) of the program (executable) to
transfer control to.

Return Value

Returns the external program's exit code if executed successfully, or
negative one (-1) otherwise.

Description

Transfers control over to an external program. When the program
exits, execution resumes immediately after the call to chain.

Example
#ifdef _ FB_LINUX_
Dim As String program = "./program"
#else
Dim As String program = "program.exe"
#endif

Print "Running " & program & "..."
If (Chain(program) <> 0) Then
Print program & " not found!"

End If

Platform Differences

» Linux requires the program name case matches the real name «
the file. Windows and DOS are case insensitive. The program
chained may be case sensitive for its command line
parameters.

» Path separators in Linux are forward slashes /. Windows uses
backward slashes \ but it allows for forward slashes . DOS use
backward \ slashes.

m EXxit code is limited to 8 bits in DOS.

Differences from QB

= None

See also

m Exec transfer temporarily, with arguments
= Run One-way transfer
= command pick arguments

ChDir l;ltf

Changes the current drive and directory

Syntax
Declare Function ChDir (ByRef path As Const String) As Long

Usage
result = ChDir(path)

Parameters

path
A string argument specifying the path to change to.

Return Value

Returns zero (0) on success and negative one (-1) on failure.

Description

Changes the current drive and directory to that specified.

Example

Dim pathname As String = "x:\folder"
Dim result As Integer = ChDir(pathname)

If 0 <> result Then Print "error changing current

Platform Differences

= Linux requires the filename case matches the real name of the

m Path separators in Linux are forward slashes / . Windows uses
slashes . DOS uses backward \ slashes.

Differences from QB

= |n QB, the drive could not be specified.

See also

® MkDir

® RmDir

Chl‘ BASIc

Returns a string of characters from one or more ASCII integer values

Syntax
Declare Function Chr (ByvVal ch As Integer [, ...]) As String

Usage
result = Chr[$](cho [, chi ... chN])

Parameters

ch
The ASCII integer value of a character.

Return Value

Returns a string containing the character(s).

Description

Chr returns a string containing the character(s) represented by the
ASCII values passed to it.

When chr is used with numerical constants or literals, the result is
evaluated at compile-time, so it can be used in variable initializers.

Asc performs the opposite function, returning the ASCII code of a
character represented by a string.

Example

Print "the character represented by";
Print " the ASCII code of 97 is: "; Chr(97)

Print Chr(97, 98, 99) ' prints abc

' s 1nitially has the value "abc"
Dim s As String = Chr (97, 98, 99)

Print s

Dialect Differences

= The string type suffix "$" is obligatory in the -lang gb dialect.

= The string type suffix "$" is optional in the -lang fblite and -lan
fb dialects.

Differences from QB

m FreeBASIC accepts multiple integer values as arguments, QB
accepted only one.

» FreeBASIC evaluates the CHR function at compile time when
used with constants or literals.

See also
m ASCII Character Codes

B Asc
m Str
® Val

Clnt I;ll’f

Converts a numeric or string expression to an Integer Or an Integer<bit

Syntax

Declare Function CInt (ByVal expression As datatype) As Intege
Declare Function CInt<bits> (ByVal expression As datatype) As

Type typename

Declare Operator Cast () As Integer
Declare Operator Cast () As Integer<bits>
End Type

Usage

result
result
result

CInt(expression)
CInt(string expression)
CInt(user defined type)

Parameters
bits
A numeric constant expression indicating the size in bits of integer de:

allowed are 8, 16, 32 Or 64.

expression

a numeric, string, or pointer expression to cast to a Integer value
datatype

any numeric, string, or pointer data type

typename

a user defined type

Return Value

An Integer Or Integer<bits> containing the converted value.

Description

If cInt is passed a numeric expression, it rounds it using using the rot
method - i.e. it rounds to the closest integer value, choosing the close
the number is equidistant from two integers - and returns an Integer,
is supplied, an integer type of the given size.

http://en.wikipedia.org/wiki/Rounding#Round-to-even_method

The function does not check for an overflow; for example, for a 32-bit
results are undefined for values which are less than -2 147 483 648 or
2 147 483 647.

If the argument is a string expression, it is converted to numeric by us
vallng, depending on the size of the result type.

The name "CINT" is derived from 'Convert to INTeger'.

Example

' Using the CINT function to convert a numeric val

'"Create an INTEGER variable
Dim numeric_value As Integer

'"Convert a numeric value
numeric_value = CInt(300.5)

'"Print the result, should return 300, because 300
numeric_value = CInt(301.5)

'"Print the result, should return 302, because 301
Print numeric_value

Dialect Differences

» |n the -lang gb dialect, cInt will return a 16-bit integer, like in C

Differences from QB

m The string argument was not allowed in QB
= The <bits> parameter was not allowed in QB

See also

B Cast

m CByte

m CUByte
m CShort
® CUShort
B CUInt

m CLng

m CULng

= CLngInt
® CULngInt
® CSng

® CDbl

= Integer

Circle

Graphics statement to draw an ellipse or a circle

Syntax
Circle [target,] [STEP] (x,y), radius[, [color][, [start][, [end
[aspect][, F]1]111]

Parameters

target

optional; specifies the image buffer to draw on

STEP

indicates that coordinates are relative

(X, y)

coordinates of the center of the ellipse

radius

the radius of the circle - or for an ellipse, the semi-major axis (i.e. the
longest radius)

color

the color attribute
Start

starting angle
end

ending angle
aspect

aspect ratio of the ellipse, the ratio of the height to the width
F

fill mode indicator

Description

circle will draw a circle, ellipse, or arc based on the parameters giver
target specifies a buffer to draw on. target may be an image created
ImageCreate Or Get (Graphics). If omitted, target defaults to the scree
current work page. (See screenset)

The center of the shape will be placed on the destination surface at (»

Radius denotes the radius of the shape. If aspect ratio is not 1.0, the
radius must be given here.

color denotes the color attribute, which is mode specific (see color ar
Screen (Graphics) for details). If omitted, the current foreground color
by the color statement is used.

The step option specifies that x and y are offsets relative to the curren
graphics cursor position.

start and end are angles are in radians. These can range -2*PI to 2*
where P1I is the constant 11, approximately 3.141593; if you specify a
negative angle, its value is changed sign and a line is drawn from the
up to that point in the arc. end angle can be less than start. If you do
specify start and end, a full circle/ellipse is drawn; if you you specify s
but not end, end is assumed to be 2*P1; if you specify end but not start
start IS assumed to be o.o0.

aspect is the aspect ratio, or the ratio of the y radius over the x radius.
omitted, the default for screenres modes is 1.0, while for screen mode
default value is the value required to draw a perfect circle on the scres
keeping the pixel aspect ratio in mind. This value can be calculated as
follows:

ratio = (y_radius / x_radius) * pixel_aspect_ratio

Where pixel_aspect_ratio IS the ratio of the current mode width over
current mode height, assuming a 4:3 standard monitor. If aspect ratio
than 1.0, radius is the x radius; if aspect is more or equal to 1.0, radiu
the y radius.

F is the fill flag. If you specify this flag, the circle/ellipse will be filled wi
selected color. This only takes effect if you are drawing a full circle/elli

Custom coordinates system set up by window and/or view (Graphics)
the drawing operation; clipping set by view also applies. When circle
finishes drawing, the current graphics cursor position is set to the sup
center.

Example

' Set 640x480 mode, 256 colors
Screen 18

' Draws a circle in the center
Circle (320, 240), 200, 15

" Draws a filled ellipse
Circle (320, 240), 200, 2, , , 0.2, F

' Draws a small arc
Circle (320, 240), 200, 4, 0.83, 1.67, 3

Sleep

Differences from QB

m target IS new to FreeBASIC

= The FreeBASIC implementation uses a different algorithm for
ellipse/arc drawing than QB, so the result may not be equal to

QB for every pixel.
m The F flag to draw filled circles/ellipses is new to FreeBASIC.

See also

B Screen (Graphics)

® Color

Class

Declares a class object

Syntax

Class typename ...

Parameters

typename
name of the class

Description

We would have put something useful here (honest) except this feature
isn't implemented in the compiler yet. But since it will get added in
future, and there are several other document pages that need to link
here, we thought it safe to include in anyway.

Example

"' sample code

Output:

sample output

Dialect Differences

m Object-related features are supported only in the -lang b optic

Differences from QB
= New to FreeBASIC

See also

® Enum

® Type

Clear

Clears or initializes some memory

Syntax
Declare Sub Clear cdecl (ByRef dst As Any, ByVal value As Long

Usage
Clear(dst, [value], bytes)

Parameters

dst

starting address of some memory
value

the value to set all bytes equal to
bytes

number of bytes to clear

Description

Clear sets one or more bytes in memory to a certain value (the defaul
The starting address is taken from a reference to a variable or array e

NOTE: In order to clear memory referenced by a pointer, it must be c
will try to clear the bytes at the pointer variable's memory location.

Example

'create an array with 100 elements
Dim array(0 To 99) As Integer

'clear the contents of the array to 0, starting wi

Clear array(0), , 100 * SizeOf(Integer)

'allocate 20 bytes of memory
Dim As Byte Ptr p = Allocate(20)

'set each of the first ten bytes to 0
Clear *p, 0, 10

'set each of the next ten bytes to 42
Clear p[10], 42, 10

'check the values of the allocated bytes
For i As Integer = 0 To 19

Print i, p[1]
Next

'deallocate memory
Deallocate p

Differences from QB

= The behavior and usage is new to FreeBASIC

= The keyword cLEAR was used in QB to erase all variables, clos
the stack size. This use is not supported in FreeBASIC.

See also

® Erase

B Reset

CLng

Converts numeric or string expression to Long
Syntax
Declare Function CLng (ByVal expression As datatype) As Long

Type typename
Declare Operator Cast () As Long

End Type
Usage
result = CLng(numeric expression)
result = CLng(string expression)
result = CLng(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a Long value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A Long value.

Description

The cLng function rounds off the decimal part and returns a 32-bit Lonc
The function does not check for an overflow, and results are undefines
values which are less than -2 147 483 648 or larger than 2 147 483 648.

The name can be explained as 'Convert to LONG'.

If the argument is a string expression, it is converted to numeric by us
VallInt.

Example

' Using the CLNG function to convert a numeric val

'"Create an LONG variable
Dim numeric_value As Long

'"Convert a numeric value
numeric_value = CLng(-300.23)

'"Print the result, should return -300
Print numeric_value
Sleep

Differences from QB

= The string argument was not allowed in QB

See also

m CByte
= CUByte

m CShort

m CUShort
m CInt

B CUInt

m CULng

® CLngInt
® CULngInt
= CSng

= CDbl

CLngint

Converts numeric or string expression to 64-bit integer (LongInt)
Syntax
Declare Function CLngInt (ByVal expression As datatype) As Lon

Type typename
Declare Operator Cast () As LongInt

End Type
Usage
result = CLngInt(numeric expression)
result = CLngInt(string expression)
result = CLngInt(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a LongInt value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A LongInt value.

Description

The cLngInt function rounds off the decimal part and returns a 64-bit |
The function does not check for an overflow, and results are undefine:

which are less than -9 223 372 036 854 775 868 Or larger than 223 372 o:
807#.

The name can be explained as 'Convert to LoNG INTeger'.

If the argument is a string expression, it is converted to numer

ValLng.

Example

' Using the CLNGINT function to convert a numeric

'Create an LONG INTEGER variable
Dim numeric_value As LongInt

'"Convert a numeric value
numeric_value = CLngInt(-12345678.123)

'"Print the result, should return -12345678
Print numeric_value
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Clngint.

Differences from QB
= New to FreeBASIC

See also

m CByte
m CUByte

m CShort

®m CUShort
®E CInt

®E CUInt

m CLng

= CULng

® CULngInt

m CSng
= CDbl

Close

Stream 1I/O function to terminate access to a device

Syntax
Close [[#]filenum] [, [#]filenum ...]
or
result = Close([#filenum])

Parameters

filenum
List of file numbers to close.

Description

Closes the files whose file numbers are passed as arguments. If an u
close without arguments closes all the files presently opened.

Terminating the program using an end statement will automatically clo:

Return Value

Close returns zero (6) on success and a non-zero error code otherwisi

Example

' Create a string and fill it.
Dim buffer As String, f As Integer

buffer = "Hello World within a file."

' Find the first free file number.
f = FreeFile

' Open the file "file.ext" for binary usage, usincg
Open "file.ext" For Binary As #f

' Place our string inside the file, using number
Put #f, , buffer

' Close the file. We could also do 'Close #f', bt
Close

' End of program. (Check the file "file.ext" upon

Differences from QB

= Close can be called as a function that returns an error code.
m FB throws an error on trying to close an unused file number, if

See also

= Open
® put (File I/0)
m Get (File I/O0)

B FreeFile

CIS BASIc

Clears the screen in both text modes and graphics modes

Syntax
Declare Sub Cls (Byval mode As Long = 1)

Usage
Cls mode

Parameters

mode
A optional numeric variable with a value from o to 2. If omitted, it defat

Description

An optional mode parameter may be given,

If omitted, c1s clears either the text or graphics viewport. If a graphics
(6raphics) statement, the graphics viewport is cleared. Otherwise, the
cleared. (If there is no explicit text viewport defined, the entire screen
If 0, clears the entire screen

If 1, clears the graphics viewport if defined. Otherwise, clears the text

If 2, clears the text viewport

Example

set the color to light grey text on a blue back
Color 7, 1

"' clear the screen to the background color
Cls

"' print text in the center of the screen
Locate 12, 33
Print "Hello Universe!"

In graphics modes, if you want to clear the entire screen to color o, it ¢
the screen memory than calling c1s.

Dim scrbuf As Byte Ptr, scrsize As Integer
Dim As Integer scrhei, scrpitch

Dim As Integer r = 0, dr = 1

ScreenRes 640, 480, 8

scrbuf = ScreenPtr: Assert(scrbuf <> 0)

ScreenInfo(, scrhei, , , scrpitch)
scrsize = scrpitch * scrhei

Do

"' lock the screen (must do this while workincg
ScreenLock

"' clear the screen (could use Cls here):
Clear *scrbuf, 0, scrsize

'"' draw circle
Circle (320, 240), r

ScreenUnlock
"' grow/shrink circle radius
r += dr

IfT r <= 0 Then dr = 1 Else If r >= 100 Then dr

"' short pause in each frame (prevents hogginc

Sleep 1, 1

run loop until user presses a key
Loop Until Len(Inkey) > 0

Differences from QB

= None

See also

® Color
E Locate
® (Print | ?)

® View (Graphics)

Color

Sets the display foreground / background color that is used with console
graphics output of text

Syntax

Declare Function Color (ByVal foreground As Long , ByVal backgr
) As Long

Usage

Color [foreground] [, background]
result = Color [([foreground] [, background])]

Parameters

foreground

the foreground color to set
background

the background color to set

Return Value

Returns a 32-bit value containing the current foreground color in the L
the current background color in the High Word. (In hi/truecolor mode:
foreground color is returned, taking up the whole 32 bits.)

The old color values can be retrieved at the same time as setting new

Description

The color statement sets the current foreground and/or background c
Draw, Line (Graphics), Cls, Paint, Print, PReset and pset all use the l:
by this function when you don't specify a color to them, where applica
values that color accepts depend on the current graphics mode.

Mode || Meaning

foreground is screen color (ranging 0-15). background is the emulated CGA palette tc
1 (green, red, and brown), 1 (cyan, magenta and white), 2 (same as 0, but with bright c
(same as 1, but with bright colors)

foreground is a color index in current palette (ranging 0-1). background is a color inde

2,11 ||palette (ranging 0-1).
78 foreground is a color index in current palette (ranging 0-15). background is screen co
' current palette (ranging 0-15).

9 foreground is a color index in current palette (ranging 0-63). background is screen co
current palette (ranging 0-63).

12 foreground is a color index in current palette (ranging 0-15). background is a color inc
palette (ranging 0-15).

;ﬁd foreground is a color index in current palette (ranging 0-255). background is a color ir

up palette (ranging 0-255).

If you are using a color depth higher than 8bpp, foreground and backg
direct reB color values in the form &h; AARRGGBB, where AA, RR, 66 and B
alpha, red, green and blue components ranging &heo; -&hFF; (6-255 in
notation). While in hi/truecolor modes, you can use the RGB Or RGBA M&
valid color value.

A Default Palette is automatically set when entering a screen mode.

Example

' Sets 320x240 in 32bpp color depth
Screen 14, 32

' Sets orange foreground and dark blue background
Color RGB(255, 128, 0), RGB(0, 0, 64)

' Clears the screen to the background color
Cls

' Prints "Hello World!" in the middle of the scree

Locate 15, 14
Print "Hello World!"

Sleep

Dim ¢ As Ulnteger

'retrieve current color values
c = Color()

'extract color values from c using LOWORD and HIWC
Print "Console colors:"

Print "Foreground: " & LoWord(c)

Print "Background: " & HiWord(c)

Differences from QB

= Direct color modes were not supported in QB.
= There is no border argument.

See also

® RGB

E RGBA

= LowWord
= HiwWord
® Locate
B Palette

E Screen

Command

Returns command line parameters used to call the program

Syntax

Declare Function Command (ByVal index As Long = -1) As String

Usage

result = Command[$]([index])

Parameters

index
Zero-based index for a particular command-line argument.

Return Value

Returns the command-line arguments(s).

Description

command returns command-line arguments passed to the program upol

If index is less than zero (< 0), a space-separated list of all command-
of zero (e) returns the name of the executable; and values of one (1) ¢

If index is greater than the number of arguments passed to the progra

When the command line is parsed for arguments, everything between
is returned without the double quotes.

By default, filename globbing for arguments (expansion of wildcards t
the command line containing wildcards are typically not expanded if w
redirection are typically not returned unless properly quoted. Consult 1
guoting of command line arguments.

WARNING: By nature of constructor precedence in FreeBASIC and n
constructor or UDT constructor called for static/shared object) is not s

Disabling filename globbing under Win32
Define the following global variable(s) somewhere in the source:

For MinGW.org and Cygwin runtimes:
Extern _CRT_glob Alias "_CRT_glob" As Long
Dim Shared _CRT_glob As Long = 0

"' For MinGW-w64 runtime:

Extern _dowildcard Alias "_dowildcard" As Long
Dim Shared _dowildcard As Long = 0

Disabling filename globbing under Dos
Define the following function somewhere in the source:

Function __crt@_glob_function Alias "_crt0_glob_f
Return 0
End Function

Disabling filename globbing under Linux
Filename globbing is handled by the command shell. Quote the argun
executing the command. For example in bash use 'set -f' to disable wi

Example

Print "program launched via: " & Command(0O)

Dim As Integer i = 1
Do
Dim As String arg = Command(1)
If Len(arg) = 0 Then
Exit Do
End If

Print "command line argument " & i & " = """ &
i+=1

Loop
If 1 = 1 Then

Print "(no command line arguments)"
End If

Sleep

Dialect Differences

m The string type suffix $ is obligatory in the -lang gb dialect.
m The string type suffix $ is optional in the -lang fblite and -lang

Differences from QB

= The numeric argument was not supported in QB.
= QB converted the parameter list to uppercase before returning
» By default arguments containing wildcard characters are expar

See also
" FB_ARGC__
m __ FB_ARGV__
m EXxec

® Run

Common

Variable declaration and scope modifier

Syntax
Common [Shared] symbolname[()] [AS DataType] [, ...]

Description

Declares a variable which is shared between code modules. A matchi
must appear in all other code modules using the variable.

The shared optional parameter makes the variable global so that it cau
subs and Functions, as well as at module level. common arrays are alwze

and must be defined with an empty parameter list (), and its dimensic
or ReDim Statement.

Example

"' commonl.bas

Declare Sub initme()

Common Shared foo() As Double
ReDim foo(O® To 2) As Double
initme()

Print foo(©), foo(1), foo(2)

"' common2.bas

Common Shared foo() As Double

Sub initme()
foo(0) = 4*Atn(1)
foo(1) = foo(0)/3
foo(2) = foo(1l)*2
End Sub

Output:

3.141592653589793 1.047197551196598 2.094

Differences from QB

= The arrays will be always variable-length.

m blockname IS not needed and must be removed because the ori
longer matters, only the symbol names.

See also

® Dim

® Erase

® Extern

® LBound

B ReDim

®m Preserve
m Shared

®m Static

® UBound

® Var

CondBroadcast

Restarts all threads condwaiting for the handle

Syntax
Declare Sub CondBroadcast (ByVal handle As Any Ptr)

Usage
CondBroadcast (handle)

Parameters

handle
The handle of a conditional variable, or the null pointer (0) on failure.

Description

Once the conditional is condcreate and the threads are started, one of
more of them (including the main thread executing main program) car
be set to condwait for the conditional, they will be stopped until some
other thread condsignals that the waiting thread can restart.
condBroadcast can be used to restart all threads waiting for the
conditional. At the end of the program condpestroy must be used to
avoid leaking resources in the OS.

Condbroadcast must be used instead of condsignal to restart all
threads waiting on the conditional.

Example
See condCreate

Platform Differences

= Condbroadcast is not available with the DOS version / target
of FreeBASIC, because multithreading is not supported by DO
kernel nor the used extender.

= |n Linux the threads are always started in the order they are

created, this can't be assumed in Win32. It's an OS, not a
FreeBASIC issue.

Dialect Differences

m Threading is not allowed in -lang qb

Differences from QB
= New to FreeBASIC

See also

m CondCreate
® CondDestroy
® CondSignal
® CondWait

® ThreadCreate

CondCreate

Creates a conditional variable to be used in synchronizing threads

Syntax

Declare Function CondCreate () As Any Ptr

Usage

result = CondCreate

Return Value

A handle to a newly created conditional variable, or the null pointer (O

Description

Once the conditional is Condcreated and the threads are started, one
set to condwait for the conditional, they will be stopped until some oth
used to restart all threads waiting for the conditional. At the end of the

Example
See also condwait and condsignal

"' make newly-created threads wait until all three

Dim Shared hcondstart As Any Ptr
Dim Shared hmutexstart As Any Ptr
Dim Shared start As Integer = 0

Dim Shared threadcount As Integer
Dim Shared hmutexready As Any Ptr
Dim Shared hcondready As Any Ptr

Sub mythread(Byval id_ptr As Any Ptr)

Dim id As Integer = Cast(Integer, id_ptr)

'' signal that this thread is ready
MutexLock hmutexready

threadcount += 1

Print "Thread #" & id & " is waiting...
CondSignal hcondready

MutexUnlock hmutexready

"' wait for the start signal
MutexLock hmutexstart
Do While start = 0

CondwWait hcondstart, hmutexstart
Loop

"' now this thread holds the lock on hmutexste
MutexUnlock hmutexstart

"' print out the number of this thread
For i As Integer = 1 To 40
Print 1id;
Next 1
End Sub

Dim threads(1l To 9) As Any Ptr

hcondstart = CondCreate()
hmutexstart = MutexCreate()

hcondready = CondCreate()
hmutexready = MutexCreate()

threadcount = 0

MutexLock(hmutexready)

For i As Integer = 1 To 9
threads(i) = ThreadCreate(@mythread, Cast(Any
If threads(i) = 0 Then

Print "unable to create thread"
End If
Next 1

Print "waiting until all threads are ready...

Do Until threadcount = 9

Condwait (hcondready, hmutexready)
Loop
MutexUnlock(hmutexready)

Print
Print "Go!"

MutexLock hmutexstart
start = 1

CondBroadcast hcondstart
MutexUnlock hmutexstart

"' wait for all threads to complete
For i As Integer = 1 To 9
If threads(i) <> 0 Then
Threadwait threads(1i)
End If
Next 1

MutexDestroy hmutexready
CondDestroy hcondready

MutexDestroy hmutexstart
CondDestroy hcondstart

'Visual example of mutual exclusion + mutual synct
'"by using Mutex and CondVar:

"the "user-defined thread" computes the points coc
'and the "main thread" plots the points.

'Pr1nc1ple of mutual exclusion + mutual synchronis

Thread#A XOR + <==>
"MutexLock(mut) Mut
' While Thread#A_signal <> false W

Condwait(cond, mut)

' Wend

' Do_something#A_with_exclusion

' Thread#A_signal = true

' CondSignal(cond)

"MutexUnlock(mut) Mu

—~ N - s

Behavior:

- Unnecessary to pre-calculate the first point.

- Each calculated point 1is plotted one time only.
'If you comment out the lines containing "MutexLoc
""Condwait" and "CondSignal", ".ready"

"(inside "user-defined thread" or/and "main threac
"there will be no longer mutual exclusion nor muttL
"between computation of coordinates and plotting c
'and many points will not be plotted on circle (du

Type ThreaduDT
Dim handle As Any Ptr
Dim sync As Any Ptr
Dim cond As Any Ptr
Dim ready As Byte
Dim quit As Byte
Declare Static Sub Thread (ByvVal As Any Ptr)
Dim procedure As Sub (Byval As Any Ptr)
Dim p As Any Ptr
Const false As Byte = 0
Const true As Byte = Not false
End Type

Static Sub ThreadUDT.Thread (ByVal param As Any Pt

Dim
Do

Loop
End Sub

tp As ThreadUDT Ptr = param

Static As Integer I
MutexLock(tp->sync)
While tp->ready <> false
Condwait(tp->cond, tp->sync)
Wend
tp->procedure(tp->p)
I += 1
Locate 30, 38
Print I;
tp->ready = true
CondSignal(tp->cond)
MutexUnlock(tp->sync)
Sleep 5
Until tp->quit = tp->true

Type Poi
Dim
Dim
End Type

const x0O
const yoO
const ro
Cconst pi

Sub PointOnCircle (ByVal p As Any Ptr)

Dim
Dim
pp-=>
Slee

pPp->y

End Sub

nt2D
X As Integer
y As Integer

As Integer = 640 / 2
As Integer = 480 / 2
As Integer = 200

As Single = 4 * Atn(1)

pp As Point2D Ptr = p

teta As Single = 2 * pi * Rnd
X = X0 + r0@ * Cos(teta)

Y

I ol

yo0 + r@ * Sin(teta)

'"To increas

Screen 12

Locate 30, 2

Print "<any_key> : exit";
Locate 30, 27

Print "calculated:";
Locate 30, 54

Print "plotted:";

Dim Pptr As Point2D Ptr = New Point2D

Dim Tptr As ThreadUDT Ptr = New ThreaduDT

Tptr->sync = MutexCreate
Tptr->cond = CondCreate
Tptr->procedure = @PointOnCircle
Tptr->p = Pptr

Tptr->handle = ThreadCreate(@ThreadUDT.Thread, Tpt

Do
Static As Integer I
Sleep 5
MutexLock(Tptr->sync)
While Tptr->ready <> Tptr->true
Condwait(Tptr->cond, Tptr->sync)
Wend
PSet (Pptr->x, Pptr->y)
I += 1
Locate 30, 62
Print I;
Tptr->ready = Tptr->false
CondSignal(Tptr->cond)
MutexUnlock(Tptr->sync)
Loop Until Inkey <> ""

MutexLock(Tptr->sync)
Tptr->ready = Tptr->false
Tptr->quit = Tptr->true
CondSignal(Tptr->cond)

"Mutex (Loc
'"Process 1c
"Condwait t

"Plotting c

'Reset reac
"CondSignal
"Mutex (Unl

"Mutex (Loc
'Reset reac
'Set quit

"CondSignal

MutexUnlock(Tptr->sync) "Mutex (Unl

Threadwait (Tptr->handle)
MutexDestroy(Tptr->sync)
CondDestroy(Tptr->cond)
Delete Tptr
Delete Pptr

Sleep

See also the similar mutexcreate example

Platform Differences

= Condcreate is not available with the DOS version / target of Fi
used extender.

Dialect Differences

= Threading is not allowed in -lang gb

Differences from QB
= New to FreeBASIC

See also

® CondBroadcast
= CondDestroy

® CondSignal

B Condwait

B MutexCreate

® MutexLock

B MutexUnlock

m ThreadCreate

CondDestroy

Destroys a multi-threading conditional variable when it is no more neede

Syntax
Declare Sub CondDestroy (ByVal handle As Any Ptr)

Usage
CondDestroy (handle)

Parameters

handle
The handle of a conditional variable to destroy.

Description

Once the conditional is condcreated and the threads are started, one «
more of them (including the main thread executing main program) car
be set to condwait for the conditional, they will be stopped until some
other thread condsignals that the waiting thread can restart.
condBroadcast can be used to restart all threads waiting for the
conditional. At the end of the program condpestroy must be used to
avoid leaking resources in the OS.

Conddestroy destroys a condition variable, freeing the resources it

might hold. No threads must be waiting on the condition variable on
entrance to Conddestroy.

Example
See condCreate, Condwait and condsSignal

Platform Differences

= Conddestroy is not available with the DOS version / target of
FreeBASIC, because multithreading is not supported by DOS
kernel nor the used extender.

Dialect Differences

= Threading is not allowed in -lang b

Differences from QB
= New to FreeBASIC

See also

m CondCreate

® CondBroadcast
B CondSignal

B CondWait

B ThreadCreate

CondSignal

Restarts a thread suspended by a call to condwait

Syntax
Declare Sub CondSignal (ByVal handle As Any Ptr)

Usage
CondSignal (handle)

Parameters

handle
The handle of a conditional variable, or the null pointer (0) on failure.

Description

Once the conditional is created with condcreate and the threads are s
to condwait for the conditional, they will be stopped until some other tt
all threads waiting for the conditional. At the end of the program condp

Condsignal restarts one thread waiting. It should be called after mute.
the conditional, nothing happens; if several are waiting, only one is re:

Example
See also condcreate and condwait

' This very simple example code demonstrates the L
' The main routine initializes a string and create
' The main routine waits until receive the conditi
' The thread complements the string, then sends a

'"Principle of mutual exclusion + simple synchroniz
' Thread#A XOR + ==>

"MutexLock(mut) Mut

' Do_something#A_with_exclusion W
' Thread#A_signal = true
' CondSignal(cond)

"MutexUnlock(mut)

—~ - s

Dim Shared As Any Ptr mutex
Dim Shared As Any Ptr cond
Dim Shared As String txt

Dim As Any Ptr pt

Dim Shared As Integer ok = 0

Sub thread (Byval p As Any Ptr)

Print "thread is complementing the string"

MutexLock(mutex)

Sleep 400

txt &= " complemented by thread"

ok = 1

CondSignal(cond)

MutexUnlock(mutex)

Print "thread signals the processing completec
End Sub

mutex = MutexCreate
cond = CondCreate

txt = "example of text"

Print "main() initializes a string = " & txt
Print "main creates one thread"

Print

pt = ThreadCreate(@thread)

MutexLock(mutex)

While ok <> 1
Condwait(cond, mutex)
wWend
Print
Print "back in main(), the string = " & txt

ok = 0
MutexUnlock(mutex)

Threadwait(pt)

MutexDestroy(mutex)
CondDestroy(cond)

Dialect Differences

m Threading is not allowed in -lang b

Platform Differences

= Condsignal is not available with the DOS version / target of Fi
= |n Linux the threads are always started in the order they are cr

Differences from QB
= New to FreeBASIC

See also

® CondCreate

® CondDestroy

®m CondBroadcast
B CondWait

® ThreadCreate

CondWait

Stops execution of current thread until some condition becomes true

Syntax
Declare Sub CondWait (ByVal handle As Any Ptr, ByVal mutex As A

Usage
CondwWait (handle, mutex)

Parameters

handle

The handle of a conditional variable, or the null pointer (0) on failure.
mutex

The mutex associated with this conditional variable, which must be lo«

Description

Function that stops the thread where it is called until some other three

Once the conditional variable is created with condcreate and the threa
set to condwait for the conditional; they will be stopped until some oth
threads waiting for the conditional. At the end of the program condpest

When calling condwait, mutex should already be locked (using the san
on the conditional variable will occur. The calling thread execution is s
the condition variable becomes signaled, mutex will be locked again al
for unlocking mutex when the thread is finished with it.

Note: It is a good habit to use condwait in a protected way against evt
For that, condwait is put within a loop for checking that a Boolean prec
when the thread has finished waiting.

See example below for detailed coding.

Example
See also condcreate and condsignal

This simple example code demonstrates the use of
The main routine creates three threads.

Two of the threads update a "count" variable.
The third thread waits until the count variable

#define numThread 3
#define countThreshold 6

Dim Shared As Integer count = 0

Dim Shared As Any Ptr countMutex

Dim Shared As Any Ptr countThresholdCV
Dim As Any Ptr threadID(©®@ To numThread-1)
Dim Shared As Integer ok = 0

Sub threadCount (ByVal p As Any Ptr)
Print "Starting threadCount(): thread#" & p
Do
Print "threadCount(): thread#" & p & ", lc
MutexLock(countMutex)
count += 1
' Check the value of count and signal wait
' Note that this occurs while mutex 1s loc
If count >= countThreshold Then
If count = countThreshold Then
Print "threadCount(): thread#" &
ok = 1
CondSignal(countThresholdCV)
Else
Print "threadCount(): thread#" &
End If
MutexUnlock(countMutex)
Exit Do
End If
Print "threadCount(): thread#" & p & ", cc
MutexUnlock(countMutex)
Sleep 100
Loop

End Sub

Sub threadwatch (ByVal p As Any Ptr)
Print "Starting threadwatch(): thread#" & p &
MutexLock(countMutex)
' Note that the Condwait routine will automati
While ok = 0

Condwait(countThresholdCV, countMutex)

Wend
Print "threadwatch(): thread#" & p & ", condit
Print "threadwatch(): thread#" & p & ", count
MutexUnlock(countMutex)

End Sub

' Create mutex and condition variable
countMutex = MutexCreate
countThresholdCV = CondCreate

' Create threads

threadID(0) = ThreadCreate(@threadwatch, Cast(Any
threadID(1) = ThreadCreate(@threadCount, Cast(Any
threadID(2) = ThreadCreate(@threadCount, Cast(Any

' Wait for all threads to complete
For I As Integer = 0 To numThread-1
Threadwait(threadID(I))
Print "Main(): Waited on thread#" & I+1 & " Dc
Next I
MutexDestroy(countMutex)
CondDestroy(countThresholdCV)

Platform Differences

= Condwait is not available with the DOS version / target of Free
» |n Linux the threads are always started in the order they are cr

Dialect Differences

= Threading is not allowed in -lang gb

Differences from QB
= New to FreeBASIC

See also

® CondCreate

® CondDestroy

®m CondBroadcast
® CondSignal

B MutexCreate

m MutexLock

® MutexUnlock

® ThreadCreate

Const

Non-modifiable variable declaration.

Syntax
Const symbolnamel [AS DataType] = valuel [, symbolname2 [AS Data
= valuez, ...]
or

Const [AS DataType] symbolnamel valuel [, symbolname2 = value2

Description

Declares non-modifiable constant data that can be integer or decimal
(floating-point) numbers or strings. The constant type will be inferred i
DataType isn't explicitly given.

Specifying string * Size, Zstring * Size Of Wstring * Size as DataT
not allowed.

Specifying string as pataType is tolerated but without effect because |
resulting type is always a zstring * Size.

Example

Const Red = RGB(252, 2, 4)
Const Black As UInteger = RGB(0, 0, 0)
Const Text = "This 1is red text on a black bkgnd."

Locate 1, 1
Color Red, Black
Print Text

Sleep

End

Differences from QB

= QB does not support the As datatype syntax.

See also

#define

Const (Qualifier)

Const (Member)
® Enum

® Var

Const (Member)

Specifies that a member procedure is read only.

Syntax
Type typename

Declare Const Sub|Function|Property|Operator ...
End Type
Const Sub|Function|... typename ...

End Sub|Function]...

Description

Specifies that a method does not change the object it is called on. The
hidden This parameter will be considered read-only. The declaration
can be read as 'invoking a const method promises not to change the
object’, and the compiler will error if the member procedure tries to
change any of the data fields, or calls a non-const member procedure

Read-only (const) declarations are a measure of type safety that can
be read as 'promises not to change.' The compiler uses the const
declarations to check operations on variables and parameters and
generate an error at compile time if their data could potentially change
There is no runtime overhead for using const qualifiers since all of the
checks are made at compile time.

Constructors and destructors cannot be const (not useful).
Member procedures can not be both const and static since static
member procedures do not have a hidden This parameter.

For methods with const in their declaration, const can also be specifie
on the corresponding method bodies, for improved code readability.

Example

"' Const Member Procedures

Type foo
x As Integer
c As Const Integer = 0O
Declare Const Sub Inspectl()
Declare Const Sub Inspect2()
Declare Sub Mutatel()
Declare Sub Mutate2()

End Type

Sub foo.Mutatel()
"' we can change non-const data fields
X =1

"' but we still can't change const data
"' fields, they are promised not to change
'"'¢c =1 "'"'" Compile error

End Sub

Sub foo.Mutate2()
'"" we can call const members
Inspectl()
''" and non-const members
Mutatel()

End Sub

Sub foo.Inspectl()
"' can use data members
Dim y As Integer
y =c + X

"' but not change them because Inspectl()
"' 1s const and promises not to change foo
"' x =10 '' Compile error

End Sub

Sub foo.Inspect2()
'"" we can call const members

Inspectl()

"' but not non-const members

"' Mutatel() '' Compile error
End Sub

Differences from QB
= New to FreeBASIC

See also

®m Const
m Const (Qualifier)
® Dim

= Type

Const (Qualifier)

Specifies that a data type or pointer data type is read only.

Syntax
. As [Const] datatype [[Const] Ptr ...]

Parameters

datatype
Name of a standard or user defined data type.

Description

Specifies that the datatype or ptr immediately to the right of the const
gualifier is to be considered as read only. Read-only (const) declaratic
a measure of type safety that can be read as ‘promises not to change
compiler uses the const declarations to check operations on variables
parameters and generate an error at compile time if their data could
potentially change. There is no runtime overhead for using const qual
since all of the checks are made at compile time.

const can be used anywhere data type declarations are made. This in
variables, parameters, function return results, user defined type fields
aliases, and casting. The datatype can be any built-in standard data t
user defined type.

Read-only variables must have an initializer since modifying a read-or
variable through an assignment will generate a compiler error. The ini
may appear after the declaration of the variable.

Both non-const and const variables may be passed to a procedure ex
a const parameter. However, a const variable may not be passed to a
procedure taking a non-const parameter, and will generate a compile

Procedures can be overloaded based on the const-ness of parameter
example a procedure can be overloaded where one version of the prc
takes a 'byref foo as bar' parameter and another version of the pro

takes a 'byref foo as const bar' parameter.

With pointer declarations, const can be used to indicate which part of
pointer declaration is read-only (all other parts are by default read-wrif
read-only portion of the pointer data type could be the pointer itself (tr
address), what the pointer points to (the data), or both. In a declaratio
more than one level of ptr indirection, the right most ptr indicates the
order level of indirection and is therefore dereferenced first.

The compiler has an internal hard-limit of eight (8) levels of pointer inc

with respect to const qualifiers and the behavior of using const with pt
types having greater than eight (8) levels of indirection is undefined.

Example

"' Const Variables

"' procedure taking a const parameter
Sub procl(ByRef x As Const Integer)

"' can't change x because it 1s const
"' x =10 '' compile error

"' but we can use it in expressions and
"' assign it to other variables
Dim y As Integer

y = X
y =y * x+X
End Sub

"' procedure taking a non-const parameter
Sub proc2(ByRef x As Integer)

"' we can change the value

x = 10
End Sub

'' declare a non-const and const variable

Dim a As Integer
Dim b As Const Integer =5

"' procl() will accept a non-const or const
"' argument because procl() promises not to
"' change the variable passed to it.

procl(a)
procl(b)

"' proc2() will accept a non-const argument

proc2(a)

but not a const argument because proc2()
might change the variable's data and we
promised that 'b' would not change.

proc2(b)

"' compile error

"' an integer

Dim x As Integer
Dim y As Integer
Dim z As Integer

Const Pointers

1
2
3

To check that the compiler generates errors
"' when attempting to reassign const variables,
"' uncomment the assignments below.

Scope
"' a pointer to an integer
Dim p As Integer Ptr = @x

p = @y
*pzz

/' OK - pointer can be changed '/
/' OK - data can be changed '/

End Scope

Scope
"' a pointer to a constant integer
Dim p As Const Integer Ptr = @x

p = @y /' OK - pointer can be changed '/
' *p = z /' Error - data is const '/

End Scope

Scope

'' a constant pointer to an integer
Dim p As Integer Const Ptr = @x

'"'p = @y /' Error - pointer is const '/
p =z /' OK - data can be changed '/
End Scope
Scope

"' a constant pointer to a constant integer
Dim p As Const Integer Const Ptr = @x

'"'p = @y /' Error - pointer is const '/
' *p = z /' Error - data is const '/

End Scope

"' Const Parameters in an Overloaded Procedure

"' procedure with non-const parameter
Sub foo Overload(ByRef n As Integer)

Print "called 'foo(byref n as integer)'"
End Sub

"' procedure with const parameter
Sub foo Overload(ByRef n As Const Integer)

Print "called 'foo(byref n as const integer)'"
End Sub

Dim x As Integer = 1
Dim y As Const Integer = 2

foo(x)
foo(vy)

"' OUTPUT:
"' called 'foo(byref n as integer)'
"' called 'foo(byref n as const integer)'

Differences from QB
= New to FreeBASIC

See also

® Const
® Const (Member)
® Dim

= Type

Constructor

Called automatically when a class or user defined type is created

Syntax
Type typename
Declare Constructor ()
Declare Constructor ([ByRef | ByVal]| parameter As datatype [
End Type

Constructor typename ([parameters]) [Export]

Statements
End Constructor

Parameters

typename
name of the Type oOr class

Description

constructor methods are called when a user defined Type or class va

typename is the name of the type for which the constructor method is
typename follows the same rules as procedures when used in a Namesp

More than one constructor may exist for a type or class. The exact co
signature matched when the variable is initialized. More than one par:
declaration.

A constructor method is passed a hidden This parameter having the s
access the fields of the Type or class which is to be initialized in the cc

Constructors are called when declaring global or local static instances
dynamically using the new operator. See examples below for different

A copy constructor is a special constructor that initializes a new objec
cases where the copy constructor is called: when instantiating one ol
instruction), when passing an object by value, when an object is returi
statement).

Note: When an object is returned from a function by value, but by usir
assignment, the constructor is called once at first, and then the Let (
A copy constructor must be defined if the shallow implicit copy constr
when the object manages dynamically allocated memory or other resc
copied (for example if a member pointer points to dynamically allocate
simply do an implicit pointer construction and a copy of value instead
data).

Note: Even if is defined an explicit default constructor, it is never calle

Chaining of constructors in nested types is supported. Any fields that
The keyword constructor (parameters) can be used at the top of a col
of same type. It prevents the compiler from emitting field initialization «
to initialize everything).

Constructor can be also called directly from the typename instance like
same syntax, i.e. using a member access operator, e.g. obj.Construc
this.Constructor(parameters) is not treated as chaining constructor,
constructors). In general it's not safe to manually call the constructor ¢
the old object state - if any - is overwritten without any of its old memt
memory/resource leaks.

Example
Simple constructor example for beginners.

Type MyObj
Foo As Integer Ptr

"' Constructor to create our integer, and set
Declare Constructor(ByVal DefVal As Integer = ¢
"' Destroy our integer on object deletion.
Declare Destructor()
End Type

Constructor MyObj(ByVal DefVal As Integer = 0)
Print "Creating a new integer in MyObj!'"
Print "The Integer will have the value of: " & L
Print ""

"' Create a pointer, and set its value to the
"' Constructor.
This.Foo = New Integer
*This.Foo = DefVval
End Constructor

Destructor MyObj()
Print "Deleting our Integer in MyObj!"
Print ""

"' Delete the pointer we created in MyObj.
Delete This.Foo
This.Foo = 0
End Destructor

Scope
"' Create a MyObj type object
"' Send the value of '10' to the constructor
Dim As MyObj Bar = 10

'' See 1f the integer's been created. Print i
Print "The Value of our integer is: " & *Bar.Foc
Print ""

Sleep

End Scope
"' We've just gone out of a scope. The Destruct
"' Because our objects are being deleted.

Sleep

More advanced construction example, showing constructor overloadir

Type sample
_text As String

Declare Constructor ()

Declare Constructor (a As Integer)
Declare Constructor (a As Single)
Declare Constructor (a As String, b As Byte)

Declare Operator Cast () As String
End Type

Constructor sample ()
Print "constructor sample ()"
Print
this._text = "Empty"

End Constructor

Constructor sample (a As Integer)
Print "constructor sample (a as integer)"
Print " a ="; a
Print
this._text = Str(a)
End Constructor

Constructor sample (a As Single)
Print "constructor sample (a as single)"
Print " a ="; a
Print
this._text = Str(a)
End Constructor

Constructor sample (a As String, b As Byte)
Print "constructor sample (a as string, b as by
Print " a ", a
Print " b ": b
Print
this._text = Str(a) + "," + Str(b)

End Constructor

Operator sample.cast () As String
Return this._text
End Operator

Print "Creating x1"
Dim x1 As sample

Print "Creating x2"
Dim x2 As sample = 1

Print "Creating x3"
Dim x3 As sample = 99.9

Print "Creating x4"
Dim x4 As sample = sample("aaa", 1)

Print "Values:"

Print " x1 = "; x1
Print " x2 = "; x2
Print " x3 = "; x3
Print " x4 = "; x4

Example of copy constructor.

Type UDT
Dim As String Ptr p "'polinte
Declare Constructor () ''defaul
Declare Constructor (ByRef rhs As UDT) ''copy c
Declare Destructor () "'destri

End Type

Constructor UDT ()
This.p = CAllocate(1, SizeOf(String))
End Constructor

Constructor UDT (ByRef rhs As UDT)
This.p = CAllocate(1, SizeOf(String))
*This.p = *rhs.p

End Constructor

Destructor UDT ()

*This.p = ""
Deallocate This.p
End Destructor

Dim As UDT u®

*ud.p = "copy constructor exists"

Dim As UDT u = u@

*ue.p = "" '"'to check the independance of the res
Print *u.p

Sleep

Dialect Differences

» Object-related features are supported only in the -lang b optic

Differences from QB
= New to FreeBASIC

See also

B Class

® Constructor (Module)
B New

® Destructor

® Type

Constructor (Module)

Specifies execution of a procedure before module-level code

Syntax

[Public | Private] Sub procedure_name [Alias "external identifie
[priority] [Static]

{ procedure body }

End Sub

Description

The constructor keyword is used in sub definitions to force execution
module-level code. Procedures defined as constructors may be used
procedures, that is, they may be called from within module-level code

The procedure must have an empty parameter list. A compile-time err
constructor keyword is used in a Sub definition having one or more p
overloaded procedures, only one (1) constructor may be defined bece
multiple Subs which take no arguments.

In a single module, constructors normally execute in the reverse ordel

The priority attribute, an integer between 101 and 65535, can be us
executed in a certain order. The value of priority has no specific me:
the number with other constructor priorities. 101 is the highest priority
constructors having a priority attribute are executed before construc
priority value of 65535 is the same as not assigning a priority value.

A module may define multiple constructor procedures, and multiple m
constructors provided no two public constructors share the same pro

When linking with modules that also define constructors, the order of
link-time unless the priority attribute is used. Therefore, special care
constructors that may call on a secondary module also defining a con
advisable to use a single constructor that explicitly calls initialization p

Example

"' ConDesExample.bas : An example program that def
"' constructors and destructors. Demonstrates wher
"' they are called when linking a single module.
Sub Constructorl() Constructor
Print "Constructorl() called"
End Sub
Sub Destructorl() Destructor
Print "Destructorl() called"
End Sub
Sub Constructor2() Constructor
Print "Constructor2() called"
End Sub
Sub Destructor2() Destructor
Print "Destructor2() called"
End Sub
Print "module-level code"
End ©
Output:

Constructor2() called
Constructorl() called
module-level code

Destructori1() called
Destructor2() called

Differences from QB

= New to FreeBASIC

See also

= Constructor (Class)
= Destructor (Module)
= Sub

Continue

Control flow statement to continue next iteration of a loop

Syntax
Continue {Do | For | While}

Description

Skips all code until the end clause of a loop structure, i.e. po. . .Loop, F
while...wend block, then executes the limit condition check. In the cas
variable is incremented according to the step specified.

Where there are multiple po / For / while blocks nested, it will continue

block of that type, i.e. the last one entered. You can continue an earlie
giving the word multiple times, separated by commas. e.g. continue w

Example

Dim As Integer n
Print "Here are odd numbers between 0 and 10!"
Print
For n = 0 To 10
If (n Mod 2) = 0 Then
Continue For
End If

Print n

Next n

"' simple prime number finder

Print "Here are the prime numbers between 1 and 2C
Print

Dim n As Integer, d As Integer
For n = 2 To 20
For d = 2 To Int(Sqr(n))
If (n Mod d) = 0 Then ' d divides n
Continue For, For ' n 1s not prime, sc
End If
Next d
Print n

Next n

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also

B Exit

Cos

Returns the cosine of an angle

Syntax
Declare Function Cos (ByVal angle As Double) As Double

Usage

result = Cos(angle)

Parameters

angle
the angle (in radians)

Return Value

Returns the cosine of the argument angle as a bouble within the range

Description

The argument number is measured in radians (not degrees).

The value returned by this function is undefined for values of angle wi
of 2 A 63 or greater.

Example

Const PI As Double = 3.1415926535897932

Dim a As Double

Dim r As Double

Input "Please enter an angle in degrees: ", a

r =a* PI / 180 "Convert the degrees to Radiar
Print ""

Print "The cosine of a" ; a; " degree angle is"; C
Sleep

Output:

Please enter an angle in degrees: 30
The cosine of a 30 degree angle Is 0.8660254037844387

Differences from QB

= None

See also

® Acos

®m Sin

® Tan

A Brief Introduction To Trigonometry

Cptr l;ltf

Converts a pointer expression to a specified data type pointer

Syntax

CPtr(PointerDataType, expression)

Description

Converts expression t0 PointerDataType.

PointerDataType must be a pointer type (e.g. a DataType ptr or an Ar
expression may have a different pointer type or be an 1nteger.

Note: Currently, FB does not actually enforce that PointerDataType m
versions though. Currently, it will display a warning if you try to conver
compiler switch.

Example

Dim intval As Integer

Dim intptr As Integer Ptr

intval = &h0080

intptr = @intval

"' 'will print -128 and 128, as the first expressic
Print *CPtr(Byte Ptr, intptr), *intptr

Dialect Differences

= Not available in the -lang qb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also

m Ptr

m Cast

m CByte

m CShort
® CInt

= CLngInt
m CSng

= CDbl

CShort w2

Converts numeric or string expression to an integer (short)
Syntax
Declare Function CShort (ByVal expression As datatype) As Shor

Type typename
Declare Operator Cast () As Short

End Type
Usage
result = CShort(numeric expression)
result = CShort(string expression)
result = CShort(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a short value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A short value.

Description
The cshort function rounds off the decimal part and returns a 16-bit st
The function does not check for an overflow, and results are undefines
which are less than -32 768 or larger than 32 767.
The name can be explained as ‘Convert to Short'.

If the argument is a string expression, it is converted to numeric by us

Example

' Using the CSHORT function to convert a numeric \

'Create an SHORT variable
Dim numeric_value As Short

'"Convert a numeric value
numeric_value = CShort(-4500.66)

'"Print the result, should return -4501
Print numeric_value
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Cshort.

Differences from QB
= New to FreeBASIC

See also

m CByte
m CUByte

m CUShort
B CInt

®E CUInt

® CLng

= CULng

= CLngInt
® CULngInt

m CSng
= CDbl

CSign

Converts an expression to signed

Syntax

CSign (expression)

Usage

variable = CSign (expression)

Description

Converts an unsigned expression to a signed one, useful to force
signed behavior of division or multiplication (including with sh1 and
shr).

This is the opposite of cunsg.

Example

Dim value As UShort = 65535
Print CSign(value) '' will print -1

Dialect Differences

= Not available in the -lang qb dialect unless referenced with the
alias __csign.

Differences from QB
= New to FreeBASIC

See also

® CUnsg

CSng shsie

Converts numeric or string expression to single precision floating point
Syntax
Declare Function CSng (ByVal expression As datatype) As Single

Type typename
Declare Operator Cast () As Single

End Type
Usage
result = CSng(numeric expression)
result = €CSng(string expression)
result = CSng(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a single value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A single precision value.

Description

The csng function returns a 32-bit single value. The function does not
an overflow, so be sure not to pass a value outside the representable
the single data type. The name can be explained as '‘Convert to SINC

If the argument to csng is a string expression, it is first converted to nu
using val.

Example

' Using the CSNG function to convert a numeric val

'Create an SINGLE variable
Dim numeric_value As Single

'"Convert a numeric value
numeric_value = CSng(-12345.123)

'"Print the result, should return -12345.123
Print numeric_value
Sleep

Differences from QB

» The string argument was not allowed in QB

See also

m CByte
m CUByte

m CShort

m CUShort
®E CInt

B CUInt

= CLng

= CULng

® CLngInt
® CULngInt
= CDbl

CsrLin

Returns the row position of the cursor

Syntax

Declare Function CsrLin () As Integer

Usage

result = CsrLin

Return Value

An Integer specifying the current row of the cursor.

Description

Returns the current row the cursor is on (i.e. the "cursor line"). The
topmost row is number 1.

Example

Print "The cursor is on row:'"; CsrlLin

Differences from QB

= None

See also

m Locate

®m Pos

CU Byte I;ltf

Converts numeric or string expression to an unsigned byte (uyte)
Syntax
Declare Function CUByte (ByVal expression As datatype) As UByt

Type typename
Declare Operator Cast () As UByte

End Type
Usage
result = CUByte(numeric expression)
result = CUByte(string expression)
result = CUByte(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a usyte value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A uByte value.

Description
The cuByte function rounds off the decimal part and returns a 8-bit uy
The function does not check for an overflow, and results are undefines
which are less than o or larger than 25s.
The name can be explained as 'Convert to Unsigned Byte'.

If the argument is a string expression, it is converted to numeric by us

Example

' Using the CUBYTE function to convert a numeric \

'Create an UNSIGNED BYTE variable
Dim numeric_value As UByte

'"Convert a numeric value
numeric_value = CUByte(123.55)

'"Print the result, should return 124
Print numeric_value
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Cubyte.

Differences from QB
= New to FreeBASIC

See also

m CByte
m CShort

m CUShort
B CInt

®E CUInt

® CLng

= CULng

= CLngInt
® CULngInt

m CSng
= CDbl

CUInt I;ll’f

Converts numeric or string expression to a UInteger Or UInteger<bits>

Syntax

Declare Function CUInt (ByVal expression As datatype) As Ulnte
Declare Function CUInt<bits> (ByVal expression As datatype) As
UInteger<bits>

Type typename

Declare Operator Cast () As UInteger
Declare Operator Cast () As UInteger<bits>
End Type

Usage

result
result
result

CUInt(numeric expression)
CUInt(string expression)
CUInt(user defined type)

Parameters
bits
A numeric constant expression indicating the size in bits of unsigned i

desired. The values allowed are 8, 16, 32 or 64.

expression

a numeric, string, or pointer expression to cast to a UInteger Or UIntec
value

datatype

any numeric, string, or pointer data type

typename

a user defined type

Return Value

A uInteger OF UInteger<bits> containing the converted value.

Description

The cuznt function rounds off the decimal part and returns a vinteger
a bits value is supplied, an unsigned integer type of the given size.

The function does not check for an overflow; for example, for a 32-bit
results are undefined for values which are less than o or larger than 4

The name can be explained as 'Convert to Unsigned INTeger".

If the argument is a string expression, it is converted to numeric by us
or valuLng, depending on the size of the result type.

Example

' Using the CUINT function to convert a numeric ve

'"Create an UNSIGNED INTEGER variable
Dim numeric_value As Ulnteger

'"Convert a numeric value
numeric_value = CUINnt(300.23)

'"Print the result = 300
Print numeric_value

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Cuint.

Differences from QB

= New to FreeBASIC

See also

m CByte
m CUByte
® CShort

CUShort
CInt
CLng
CULng
CLngInt
CuULngInt
cSng
CDbl
UInteger

CULng

Converts numeric or string expression to ulong
Syntax
Declare Function CULng (ByVal expression As datatype) As Ulong

Type typename
Declare Operator Cast () As Ulong

End Type
Usage
result = CULng(numeric expression)
result = CULng(string expression)
result = CULng(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a ulong value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A ulong value.

Description

The cuLng function rounds off the decimal part and returns a 32 bit vic
The function does not check for an overflow. The name can be explai
‘Convert to Unsigned LONG'.

If the argument is a string expression, it is converted to numeric by us
Or valuLng.

Example

' Using the CULNG function to convert a numeric veé

'"Create an UNSIGNED LONG variable
Dim numeric_value As ULONG

"Convert a numeric value
numeric_value = CULNg(300.23)

'"Print the result = 300
Print numeric_value
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Culng.

Differences from QB
= New to FreeBASIC

See also

m CByte
m CUByte

B CShort

B CUShort
m CInt

® CUInt

® CLng

® CLngInt
® CULngInt
® CSng

= CDbl

CULngInt

Converts numeric or string expression to 64-bit unsigned integer (uLongl
Syntax
Declare Function CULngInt (ByVal expression As datatype) As UL

Type typename
Declare Operator Cast () As ULongInt

End Type
Usage
result = CULngInt(numeric expression)
result = CULngInt(string expression)
result = CULngInt(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a uLongInt value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A uLongInt value.

Description

The cuLngint function rounds off the decimal part and returns a 64-bit
value. The function does not check for an overflow, and results are un
values which are less than e or larger than 18 446 744 073 709 551 615.
casts from floating-point expressions are currently not guaranteed to \
higher than 2163 (9 223 372 036 854 775 808).

The name can be explained as 'Convert to Unsigned LONG INTeger'.

If the argument is a string expression, it is converted to numeric by us

Example

' Using the CLNGINT function to convert a numeric

"Create an UNSIGNED LONG INTEGER variable
Dim numeric_value As ULongInt

"Convert a numeric value
numeric_value = CULngInt(12345678.123)

"Print the result, should return 12345678
Print numeric_value
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Culngint.

Differences from QB
= New to FreeBASIC

See also

m CByte
m CUByte
®m CShort
m CUShort
®E CInt

B CUInt

® CLng

CULng
CLngInt
cSng
cpbl

CUnsg

Converts an expression to unsigned

Syntax

CUnsg (expression)

Usage

variable = CUnsg (expression)

Converts a signed expression to an unsigned one, useful to force
unsigned behavior of division or multiplication (including with sh1 and
shr).

This is the opposite of csign.

Example

Dim value As Short = -1
Print CUnsg(value) '' will print 65535

Dialect Differences

= Not available in the -lang qb dialect unless referenced with the
alias __cunsg.

Differences from QB
= New to FreeBASIC

See also

m CSign

CurDir

Returns the current directory/folder

Syntax

Declare Function CurDir () As String

Usage

result = CurDir

Return Value

A string which is set to the name of the current directory/folder.

Description

Returns the current directory/folder.

Example

Print CurDir

output will vary.

Dialect Differences

= Not available in the -lang qgb dialect unless referenced with the
alias __curdir.

Differences from QB
= New to FreeBASIC

See also

® QOpen

m Dir
m MkDir

® RmDir

CUShort

Converts numeric or string expression to an unsigned integer (ushort)
Syntax
Declare Function CUShort (ByVal expression As datatype) As USh

Type typename
Declare Operator Cast () As UShort

End Type
Usage
result = CUShort(numeric expression)
result = CUShort(string expression)
result = CUShort(user defined type)
Parameters
expression

a numeric, string, or pointer expression to cast to a ushort value
datatype

any numeric, string, or pointer data type
typename

a user defined type

Return Value

A ushort value.

Description

The cushort function rounds off the decimal part and returns a 16-bit 1
The function does not check for an overflow, and results are undefines
which are less than e or larger than 65 535.

The name can be explained as 'Convert to Unsigned Short'.

If the argument is a string expression, it is converted to numeric by us

Example

' Using the CUSHORT function to convert a numeric

'Create an USHORT variable
Dim numeric_value As UShort

'"Convert a numeric value
numeric_value = CUShort(36000.4)

'"Print the result, should return 36000
Print numeric_value
Sleep

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
__Cushort.

Differences from QB
= New to FreeBASIC

See also

m CByte
= CUByte

m CShort

B CInt

®E CUInt

m CLng

= CULng

® CLngInt
m CULngInt
® CSng

m CDbl

Custom

Parameter to the put graphics statement which selects a custom methoc

Syntax
Put [target,] [STEP] (x,y), source [,(x1,y1)-(x2,y2)

Parameters

Custom

Required.

custom_function_ptr

name of the custom user defined function.
parameter

optional pointer to be passed to the custom function; if omitted, the d

Description

custom Selects a custom user defined function as the method for blittir

The custom method uses a user-defined function to calculate the final
source image, and will receive the source and destination pixel values
the destination buffer. The function has the form:

Declare Function identifier (_

ByvVal source _pixel As UInteger, _
ByVal destination_pixel As UInteger, _
ByVal parameter As Any Ptr _

) As UInteger

identifier IS the name of the function.

source_pixel is the current pixel value of the source image.
destination_pixel IS the current pixel value of the destination image.
parameter IS the parameter that is passed by the put command. If it was

Example

Function dither (ByVal source_pixel As UInteger, B

''either returns the source pixel or the destin

Dim threshold As Sing

le =

0.5

If parameter <> 0 Then threshold = *CPtr(Single

If Rnd() < threshold Then

Return source_pix
Else

el

Return destination_pixel

End If

End Function

Dim img As Any Ptr, threshold

set up a screen
ScreenRes 320, 200, 16, 2
ScreenSet 0, 1

"' create an image

img = ImageCreate(32, 32)
Line img, (0, 0)-(15,
Line img, (16, 0)-(31,
Line img, (O, 16)-(15,
Line img, (16, 16)-(31,

"' dither the image with
Do Until Len(Inkey)

Cls

threshold = 0.2
Put (80 - 16, 100 -

''" default threshold
Put (160 - 16, 100 -

15),
15),
31),
31),

As Single

RGB(255, O,
RGB(0, O,
RGB(0, 255,
RGB(255, O,

varying thresholds

0),
255),
0),
255),

O T TT

16), img, Custom, @dither,

= 0.5
16), img, Custom, @dither

threshold = 0.8
Put (240 - 16, 100 - 16), img, Custom, @dither,

ScreenCopy
Sleep 25

Loop

"' free the image memory
ImageDestroy img

Dialect Differences

= Not available in the -lang gb dialect.

Differences from QB
= New to FreeBASIC

See also

® Put (Graphics)

CVD BASIc

Converts a 64-bit integer or 8-byte string to a double-precision value

Syntax
Declare Function CVD (ByvVal 1 As LongInt) As Double
Declare Function CVD (ByRef str As Const String) As Double

Usage

result
result

CvD(1)
CVD(str)

Parameters

1
A 64-bit LongInt with a binary copy of a double-precision variable

stored in it.
str

A string at least 8 bytes in length with a binary copy of a double-
precision variable stored in it.

Return Value

Returns a pouble value holding a binary copy of the input value.

Description

Does a binary copy from a 64-bit LongInt or 8-byte string to a bouble
variable. A value of zero (e.0) is returned if the string is less than 8
bytes in length. The result will make sense only if the parameter
contained a IEEE-754 formatted double-precision value, such as one
generated by cvLongInt Or MKD.

This function is useful to read numeric values from buffers without
using a Type definition.

Example

Dim d As Double, 1 As LongInt
d 1.125
1 = CVLongInt(d)

Print Using "1 = _&H&"; Hex(1l)
Print Using '"cvd(i) = &"; CVD(1l)

Differences from QB

= QB did not support integer arguments.

See also

= MKD
= CVS
= CVLongInt

CVI BASIc

Converts a single-precision floating-point number or string to an integer
variable using a binary copy

Syntax
Declare Function CVI (ByVal sng As Single) As Integer
Declare Function CVI (ByRef str As Const String) As Integer
Declare Function CVI<bits> (expr As DataType) As Integer<bits>

Usage
result = CVI(sng)
result = CVI(str)
result = CVI<bits>(expr)
Parameters
sng
A single floating-point number with a binary copy of an integer variabl
stored in it.
str

A string with a binary copy of an integer variable stored in it.

bits

Specifies a size of integer type to return. The types and sizes of expr
accepted will depend on the corresponding function called.

expr

An expression that will be copied into an Integer<bits>.

Return Value

An Integer Or Integer<bits> variable containing a binary copy of the
input expression.

Description

Returns an integer value using the binary data contained in a single,
or a string. A value of zero (o) is returned if the string contains fewer
characters than the size of the return type.

cvI is used to convert strings created with mMKI.

This function can also be used to convert 32-bit integer values from a
memory or file buffer without the need for a Type structure. However,
just as with the type structure, special care should be taken when
using cvI to convert strings that have been read from a buffer.

CVI supports an optional <bits> parameter before the argument. If bit
IS 16, cvshort Will be called instead; if bits is 32, cvL will be called; if
bits is 64, cvLongInt Will be called. The return type and accepted
argument types will depend on which function is called. See each
function's page for more information.

Example

Dim i As Integer, s As String
s = "ABCD"
1 = CVI(s)
Print Using "s
Print Using "i

llll&llllll; S
_&H&"; Hex(1)

Dialect Differences

= |n the -lang gb dialect, cvi expects a 2-byte string, since a QB
integer is only 16 bits. Only the first two bytes of the string are
used, even if the string happens to be longer than two bytes.

» |n the -lang gb dialect, cvi will not take a floating-point
argument, since a QB integer is only 16 bits and there is no 16
bit floating-point data type. Instead, cvi<32>/cvi<64> or
cvL/cvLongInt may be used.

Differences from QB

= |[n QB an error occurs if the string passed is fewer than two
bytes in length.

= QB did not support floating-point arguments.

= QB did not support a <bits> parameter.

See also

® MKI

m CVShort

= CVL

® CVLongInt

= Integer

CVL BASIc

Converts a single-precision floating-point number or four-byte string to a
integer (Long) variable

Syntax

Declare Function CVL (ByVal sng As Single) As Long
Declare Function CVL (ByRef str As Const String) As Long

Usage

result
result

CVL(sng)
CVL(str)

Parameters
sng
A single floating-point number with a binary copy of an integer variabl

stored in it.
str

A string at least four bytes in length with a binary copy of an integer
variable stored in it.

Return Value

A Long variable to copy the binary copy of a integer to.

Description

Returns a 32-bit Long integer value using the binary data contained in
Single, Or a string Of at least four bytes in length. A value of zero (o) i
returned if the string is less than four bytes in length.

cvL is used to convert 4-byte strings created with mkL.

This function can also be used to convert 32-bit integer values from a
memory or file buffer without the need for a Type structure. However,
just as with the type structure, special care should be taken when
using cvL to convert strings that have been read from a buffer.

Example

Dim 1 As Long, s As String

s = "ABCD"

1 = CVL(s)

Print Using "s = ""&"""; s
Print Using "1 = &"; 1

Differences from QB
= |[n QB an error occurs if the string passed is less than four byte
in length.
= QB did not support floating-point arguments.

See also

B MKL

m CVShort

m CVI

= CVLongInt

CVLongint

Converts a double-precision floating-point number or eight-byte string to
a LongInt variable

Syntax
Declare Function CVLongInt (ByVal dbl As Double) As LongInt
Declare Function CVLongInt (ByRef str As Const String) As
LongInt

Usage

result
result

CVLongInt(dbl)
CVLongInt(str)

Parameters

dbl
A pouble floating-point number with a binary copy of a LongInt variabl

stored in it.
str

A string at least eight bytes in length with a binary copy of a LongInt
variable stored in it.

Return Value

A LongInt variable holding a binary copy of the input variable.

Description

Returns a 64-bit LongInt value using the binary data contained in a
Double, Or a string Of at least eight bytes in length. A value of zero (o)
is returned if the string is less than eight bytes in length.

cvLongInt is used to convert 8-byte strings created with MKLongInt.

This function can also be used to convert 64-bit integer values from a
memory or file buffer without the need for a Type structure. However,
just as with the type structure, special care should be taken when
using cvLongInt to convert strings that have been read from a buffer.

Example

Dim 11 As LongInt, s As String

s = "ABCDEFGH"

11 = CVLongInt(1ll)

Print Using "s = ""&"""; s

Print Using "11 = _&H&"; Hex(1ll)

Differences from QB

= |n QB an error occurs if the string passed is less than eight
bytes in length.

= QB did not support floating-point arguments.

See also

® MKLongInt
m CVShort

m CVI

B CVL

CVS BASIc

Converts a 32-bit integer or 4-byte string to a single-precision variable

Syntax

Declare Function CVS (Byval i As Integer) As Single
Declare Function CVS (ByRef str As Const String) As Single

Usage
result = CVS(1)
result = CVS(str)
Parameters

i

A 32-bit 1nteger with a binary copy of a single-precision variable store
in it.

str

A string at least 4 bytes in length with a binary copy of a single-
precision variable stored in it.

Return Value

Returns a single value holding a binary copy of the input value.

Description

Does a binary copy from a 32-bit Integer or 4-byte string to a Single
variable. A value of zero (0.0) is returned if the string is less than 4
bytes in length. The result will make sense only if the parameter
contained a IEEE-754 formatted single-precision value, such as one
generated by cvI or mks.

This function is useful to read numeric values from buffers without
using a Type definition.

Example

Dim f As Single, i As Integer
1.125
CVI(T)

Print Using "1 = _&H&"; Hex(1)
Print Using "cvs(i) = &"; CVS(1)

Differences from QB

= QB did not support integer arguments.

See also

m MKS
m CVD
m CVI

CVShort w2

Converts a two-byte string to a short integer variable

Syntax
Declare Function CVShort (ByRef str As Const String) As Short

Usage
result = CVShort(str)

Parameters

str
A string at least two bytes in length with a binary copy of a short
integer variable stored in it.

Return Value

short variable holding the binary copy of a keypgshort.

Description

Returns a 16-bit short integer value using the binary data contained it
a string of at least two bytes in length. A value of zero (o) is returned
the string is less than two bytes in length.

cvshort is used to convert 2-byte strings created with Mkshort.
This function can also be used to convert 16-bit integer values from a
memory or file buffer without the need for a Type structure. However,

just as with the type structure, special care should be taken when
using cvshort to convert strings that have been read from a buffer.

Example

Dim si As Short, s As String
S — IIABII

si = CVShort(s)
Print Using "s = ""&"""; s
Print Using "si = _&H&"; Hex(si)

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the
alias __cvshort.

Differences from QB
m |n QB this function is called CVI

See also

®m MKShort

m CVI

® CVL

® CVLongInt

Data

Statement to store data at compile time.

Syntax

Data constant_expressionl [,constant_expression2]...

Description

Data Stores a list of constant numeric or alphabetical expressions that
compile time (except with -lang gb) and stored as constants that can
by using Rread.

All the pata statements in the program behave as a single chained list
of one pata statement is read, the first element of the following pata sl
The program should not attempt to read after the last pata element. Tl
dialects) undefined, and the program may crash (Page Fault).

Data statements are only visible from within the module in which they
be only entered in module-level code.

pata constants can only be of simple types (numeric or string). A num
as a numeric literal into a string. A string read into a numeric variable
val function. consts can be used as items of data except in the -lang
names are considered as normal text.

The "rRestore label" statement makes the first pata item after the 1abe
read, allowing the user to choose specific sections of data to read.

pata is normally used to initialize variables. FreeBASIC also allows th
variables when they are pimensioned - see Variable Initializers for m

Example

' Create an array of 5 integers and a string to hc
Dim As Integer h(4)
Dim As String hs

Dim As Integer readindex

' Set up to loop 5 times (for 5 numbers... check t
For readindex = 0 To 4

' Read in an integer.
Read h(readindex)
' Display it.
Print "Number" ; readindex ; " = " ; h(readindex

Next readindex
' Spacer.
Print

' Read in a string.
Read hs

' Print 1it.
Print "String = " + hs

' Await a keypress.
Sleep

' Exit program.
End

' Block of data.
Data 3, 234, 435/4, 23+433, 87643, "Good" + "Bye!"

Dialect Differences

» -lang fb and -lang fblite considers data items as constant exp
evaluated during compilation and its result stored in the progra

m -Jang gb considers unquoted words, including names of variak
literal strings, and stores them without change, as in QBASIC.

delimited by commas, and a colon or a line-break signifies the
statement. Unquoted strings are trimmed of whitespace at the

Differences from QB

m Qutside of the -lang gb dialect, alphabetic string literals must t
guotation marks, in QBASIC this was optional.

= |n QBASIC empty items evaluated to number o or to empty stri
give a compile error. In QBASIC a comma at the end of the sta
additional, empty item, evaluated to @ or an empty string. In Fre
compile error.

See also

m Read

m Restore

Date

Returns the current system date as a string

Syntax

Declare Function Date () As String

Usage

result = Date

Return Value

Returns the current system date, in the format mm-dd-yyyy

Description

None

Example

Print Date ' prints the current date

Differences from QB

= The QB DATE statement (to set the system date) is now called
SetDate.

See also
m SetDate
® Time

® Timer

DateAdd

Offset a date with a specified interval

Syntax

Declare Function DateAdd (ByRef interval As Const String, ByVal
number As Double, ByVal date serial As Double) As Double

Usage

#include "vbcompat.bi"
result = DateAdd(interval, number, date_serial)

Parameters

interval

string indicating which period of time corresponds to one unit of numbe
number

the number of intervals to add to the base date. The number will be

rounded to the nearest integer.
date_serial

the base date

Return Value

Returns a Date Serial corresponding to the received date_serial plus
the number of intervals.

Description

Interval is specified as follows:

|va|ue || interval

|yyyy ”years
|q ||quarter(three months)

|ww ||weeks

|d,w,y ||days
|h ||hours

|
|
|
|m || months |
|
|
|

n |minutes |

|s ”seconds |

The compiler will not recognize this function unless vbcompat.bi or
datetime.bi is included.

Example

#include "vbcompat.bi"

Const fmt = "ddddd ttttt"
Dim d As Double
d = Now()

Print "1 hour from now is ";
Print Format(DateAdd("h", 1, d), fmt)

Print "1 day from now is ";
Print Format(DateAdd("d", 1, d), fmt)

Print "1 week from now is ";
Print Format(DateAdd("ww", 1, d), fmt)

Print "1 month from now is ";
Print Format(DateAdd("m", 1, d), fmt)

Differences from QB

» Did not exist in QB. This function appeared in Visual Basic.

See also

= Date Serials

DateDiff I;ltf

Gets the difference of two dates measured by a specified interval

Syntax

Declare Function DateDiff (ByRef interval As Const String, ByVa
ByvVal serial? As Double, ByVal firstdayofweek As Long = fbUseSys
firstdayofyear As Long = fbUseSystem) As Long

Usage

#include "vbcompat.bi"
result = DateDiff(interval, date_seriall, date_serial2 [, first
firstweekofyear]])

Parameters

interval

the unit of time (interval) with which to measure the difference
date_serialil

starting date serial

date_serial?

end date serial

firstdayofweek

first day of the week

firstdayofyear

first day of the year

Return Value

Returns an integer corresponding to the number of intervals found b

If date_seriali > date_serial2, the result is negative.

Description

interval is specified as follows:

value ||interval

lyyyy |years
|q ||quarter(three months)

|m || months

|w ||seven day periods

|
|
|
|
|ww ||calendar weeks |
|
|
|
|

dy | days
|h ||hours
|n ||minutes
|s ||seconds

first_dayofweek Affects the counting when 'ww' interval is used.

|value ||first day of week ||constant |
|omitted ||sunday || |

0		local settings		beseSystem
1		sunday		beunday
2		monday		fbMonday
3		tuesday		beuesday
4		Wednesday		beednesday
5		thursday		behursday
6	friday	foFriday		
7		saturday		beaturday

first_weekofyear specifies which year (previous or next) that the wee
one year and the beginning of the next should included with.

value		first week of year		constant	
0		Ioca	settings		beseSystem
1		January 1's week		beirstJan1	

|2 ||first weeks having 4 days in the year ||beirstFourDays|
|3 ||first full week of year ||beirstFuIIWeek |

Notice if you do an arithmetical subtraction of two date serials you get

The compiler will not recognize this function unless vbcompat .bi Or daf

Example

Dim s As String,

d2 Now ()

Print "You are
Print "You are
Print "You are

Else
Print "Invalid

End If

#include "vbcompat.bi"

d1l As Double, d2 As Double

Line Input "Enter your birthday: ", s

If IsDate(s) Then
di = DateValue(s)

" & DateDiff("yyyy", di, d2) &
" & DateDiff("d", di, d2) & " ¢
" & DateDiff("s", di1, d2) & " ¢

date"

Differences from QB

= Did not exist in QB. This function appeared in Visual Basic.

See also

= Date Serials

DatePart

Gets an interval from a date

Syntax

Declare Function DatePart (ByRef interval As Const String, ByVa
date_serial As Double, ByVal firstdayofweek As Long =
fbUseSystem, ByVal firstdayofyear As Long = fbUseSystem) As Lon

Usage

#include "vbcompat.bi"
result = DatePart(interval, date_serial, first_dayofWeek [,
first_week_of_year])

Parameters

interval

string indicating which part of the date is required
date_serial

the date serial to decode

firstdayofweek

first day of the week

firstdayofyear

first day of the year

Return Value

Return an integer representing the interval in the Date Serial.

Description

interval string indicating which part of the date is required is specifie
as follows:

|va|ue || interval

|
|yyyy ”years |
|
|

|q ”quarter(three months)

|m || months

|w ||weekday

|ww ||week of the year

|y ||day of the year
|d ||day of the month

|h ||hours
|n ||minutes
|s ||seconds

first_dayofweek Affects the output when 'w' interval is required.

|value ||first day of week ||constant |
|omitted ||sunday || |

0		local settings		beseSystem
1		sunday		beunday
2		monday		fbMonday
3		tuesday		beuesday
4		Wednesday		beednesday
5		thursday		behursday
6	friday	foFriday		
7		saturday		beaturday

first_weekofyear specifies which year (previous or next) that the wee
which spans the end of one year and the beginning of the next should
included with. Affects the output when 'ww' interval is required.

value		first week of year		constant	
0		Ioca	settings		beseSystem
1		January 1's week		beirstJan1	

|2 ||first weeks having 4 days in the year ||beirstFourDays|
|3 ||first full week of year ||beirstFuIIWeek |

The compiler will not recognize this function unless vbcompat.bi or
datetime.bi is included.

Example

#include "vbcompat.bi"

Dim d As Double

d = Now()

Print "Today is day " & DatePart("y", d);

Print " in week " & DatePart("ww", d);
Print " of the year " & DatePart("yyyy", d)

Differences from QB

= Did not exist in QB. This function appeared in Visual Basic.

See also

= Date Serials

DateSerial

Creates a date serial

Syntax

Declare Function DateSerial (ByVal year As Long, ByVal month As
Long, ByVal day As Long) As Long

Usage

#include "vbcompat.bi"
result = DateSerial(year, month, day)

Parameters

year

the year
month

the month of the year
day

the day of the month

Return Value

Returns a date serial containing the date formed by the values in the
year, month and day parameters.The date serial returned has no
decimal part.

Description

The compiler will not recognize this function unless vbcompat .bi or
datetime.bi is included.

Example

#include "vbcompat.bi"

Dim a As Double = DateSerial(2005, 11, 28)

Print Format(a, "yyyy/mm/dd hh:mm:ss")

Differences from QB
= Did not exist in QB. This function appeared in PDS and VBDO.

See also

= Date Serials
m DateSerial
® TimeValue

m DateValue

DateValue

Returns a Date Serial from a string

Syntax
Declare Function DateValue (ByRef date string As String) As Do

Usage

#include "vbcompat.bi"
result = DateValue(date _string)

Parameters

date_string
the string to convert to a date serial

Return Value

Returns a Date Serial from a date string.

Description

The date string must be in the format set in the regional settings of the
System.

patevalue(Date()) will work correctly only if the regional settings sp
short date format QB used (mm-dd-yyyy). Consider using the now functi
expression Fix(Now()) to obtain the current date as a date serial.

The compiler will not recognize this function unless vbcompat .bi Or daf
included.

Example
#include "vbcompat.bi"

Dim As Integer v1, v2
Dim As String s1, s2

Print "Enter first date: ";
Line Input s1

If IsDate(s1) = 0 Then
Print "not a date"
End
End If
Print "Enter second date: ";
Line Input s2

If IsDate(s2) = 0 Then
Print "not a date"
End

End If

"' convert the strings to date serials
vl DateValue(s1)
v2 DateValue(s2)

Print "Number of days between dates is " & Abs(vz

Differences from QB
= Did not exist in QB. This function appeared in PDS and VBDO:.

See also

= Date Serials
m DateSerial

® TimeValue

Day

Gets the day of the month from a Date Serial

Syntax
Declare Function Day (ByVal date serial As Double) As Long

Usage

#include "vbcompat.bi"
result = Day(date_serial)

Parameters

date serial
the date

Return Value

Returns the day of the month from a variable containing a date in Dat
Serial format.

Description

The compiler will not recognize this function unless vbcompat.bi is
included.

Example

#include "vbcompat.bi"
Dim ds As Double = DateSerial(2005, 11, 28)

Print Format(ds, "yyyy/mm/dd "); Day(ds)

Differences from QB
= Did not exist in QB. This function appeared in PDS and VBDO:.

See also

= Date Serials

Deallocate

Frees previously allocated memory

Syntax
Declare Sub Deallocate cdecl (ByVal pointer As Any Ptr)

Usage

Deallocate(pointer)

Parameters

pointer
the address of the previously allocated buffer.

Description

This procedure frees memory that was previously allocated with Alloc
returns, pointer will be rendered invalid (pointing to an invalid memor
Deallocate again) will result in undefined behavior.

Calling peallocate on a null pointer induces no action.

Deallocate iS an alias for the C runtime library's free, S0 it's not guara

Example

The following example shows how to free previously allocated memor
deallocation:

Sub DeallocateExamplel()
Dim As Integer Ptr integerPtr = Allocate(Len(

*integerPtr = 420
Print *integerPtr

Deallocate(integerPtr)
integerPtr = 0
End Sub

DeallocateExamplel()
End ©

Although in this case it is unnecessary since the function immediately
to get into. If the function deallocated memory from a pointer that was
used in the function call will be rendered invalid, and it is up to the cal
shows how to correctly handle this kind of situation, and the next exar
multiple references.

In the following example, a different pointer is used to free previously

"' WARNING: "evil" example showing how things shotl
Sub DeallocateExample2()
Dim As Integer Ptr integerPtr = Allocate(Len(
"' initialize AAN pointer to new memory

Dim As Integer Ptr anotherIntegerPtr = integertF
"' initialize AAN another pointer to the same n

*anotherIntegerPtr = 69 v
Print *anotherIntegerPtr

Deallocate(anotherIntegerPtr) Y
anotherIntegerPtr = 0 v

"' *integerPtr = 420 b
End Sub

DeallocateExample2()
End O

Note that after the deallocation, both pointers are rendered invalid. Th
when working with pointers. As a general rule, only deallocate memor
one (1) pointer currently pointing at it.

Function createInteger() As Integer Ptr
Return Allocate(Len(Integer))
End Function

Sub destroyInteger(ByRef someIntegerPtr As Intege
Deallocate(someIntegerPtr)
someIntegerPtr = 0

End Sub

Sub DeallocateExample3()
Dim As Integer Ptr integerPtr = createlnteger()

*integerPtr = 420
Print *integerPtr

destroyInteger(integerPtr)
Assert(integerPtr = 0)
End Sub

DeallocateExample3()
End ©

In the program above, a reference pointer in a function is set to null ai
is used to test if the original pointer is in fact null after the function call
functions that deallocate the memory they point to is by reference.

Dialect Differences

= Not available in the -lang gb dialect unless referenced with the

Differences from QB
= New to FreeBASIC

See also

® Allocate

® Reallocate

Declare

Declares a module-level or member procedure

Syntax
Declare Sub name [param_list]
Declare Function name [param_list] As return_type
Declare Operator op_symbol param_list [As return_type]

Type T

Declare Constructor [param_list]

Declare Destructor

Declare Sub name [para