FT Multiple Test软件,中文名为敦泰科技综合测试软件,是<u>敦泰科技</u> <u>(FocalTech)</u>开发的,运行于Windows操作系统的,专用于测试电容式 触摸屏模组(CTPM)的软件。

综合测试软件,致力于满足不同客户的不同测试方案需求,集成多种测试 方案于一体,包括一拖一和一拖多测试方案。详细测试方案与操作内容可 查看<u>软件测试模块</u>。

综合测试软件支持的内容大致包括:

- 1. 烧录更新固件
- 2. 测试开路短路
- 3. 测试数据一致性
- 4. 测试画线效果。

不同的芯片系列,有不同的测试内容,详细测试内容可查看<u>软件配置模</u> <u>块</u>。

本帮助文档将详细介绍如何使用FT Multiple Test软件以及其相关测试配套 平台。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

综合测试软件,是Windows应用软件,仅运行于使用Windows系统的计算机。对环境的基本要求如下:

- 操作系统: Microsoft Windows XP SP2及以上系统(推荐WIN7)
- CPU:无特别要求,功能越强越好。
- 内存:128M及以上。本软件会占用大于15M的内存。
- 测试版:V6.3版本及以上的SIU板,或者V7.3版本及以上的SIU板(± 加电流测试)。
- USB数据线:USB2.0

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

本章节将介绍与软件配套使用的硬件平台,介绍硬件FW功能以及如何烧录,介绍硬件平台如何搭建。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

针对不同的测试情况,FocalTech推出不同的测试板,根据功能划分可以 分成三种类型,包括SIU测试板、微短路测试板及Sensor开短路测试板。

一、SIU测试版

SIU测试板主要用于烧录FW及检测Sensor、半成品及成品段样品通道的 开路及短路的情况;包括V6.3和V7.3两种类型,其中SIU V7.3是在V6.3的 基础上增加电流检测的功能,因价格会比较高暂时没有大量推广,目前 SIU V6.3是量产测试中主要使用的测试板。

名称:SIU板 V6.3版本,使用状态:在售。

名称:SIU板 V7.3版本,使用状态:在售。

二、微短路测试板

主要检测Sensor通道短路及微短路的情况,采用FPGA和模拟开关方案。 二合一板采用FPGA,模拟开关的5436i方案,支持14TX-24RX Sensor。

(图片暂缺)

使用状态:未推广。

三、Sensor开短路测试板

Sensor开短路测试子板配合SIU测试板可以用来检测Sensor段样品通道 的 开路、短路及微短路的情况,目前更新到V3.0,与V2.0(16TX-27RX Sensor)版本相比检测的通道数更加多,为35TX-28RX Sensor。

名称:Sensor开短路测试子板 V3.0版本,使用状态:在售。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Þ

一、FW版本历史

SIU板是最常用的测试板。SIU板在提供给用户之前,都会下载一份当时量新的FW程序。下面将对重要FW版本历史做出解释:

- 1. V2.7版本。包含此版本的之前所有版本,SIU板FW以HEX文件形式提供,需要通过仿真器烧录。不能通过应用程序更新到其他版本。
- V2.9版本。从这一版本开始,SIU板FW以bin文件形式提供。可以通过应用程序反复升级。
- 3. V3.3版本。从这一版本开始,提供操作GPIO电平信号输入输出功能。V3.0到V6.9版本空间,留给SIU板硬件V6.3版本
- 4. V7.3版本。从这一版本开始,提供电流测试功能,对应SIU板硬件 V7.3版本。

二、SIU板FW的烧录

在SIU板出厂时,需要依靠仿真器下载FW程序(HEX文件)。

在已烧录过FW程序的SIU板,可以通过应用程序来更新,支持烧录SIU板 FW的程序包括:FT Touch Studio、TP Development Kit和TP Factory Test。

三、SIU板编号

SIU板外形相似,难以识别。为了测试时方便用户将测试结果与接入SIU标的TP一一对应,SIU板使用专用FW,以便对SIU板进行设备编号。此专用FW会跟软件一起打包发布,打开软件的SIUFW文件夹,会见到每一个版本FW都有四个FW文件,如下:

名称	修改日期	类型	大小
SIU_FW_V3.3_For_GeneralTest_#1.BIN	2012/12/12 11:17	BIN 文件	9 KB
SIU_FW_V3.3_For_GeneralTest_#2.BIN	2012/12/12 11:21	BIN 文件	9 KB
SIU_FW_V3.3_For_GeneralTest_#3.BIN	2012/12/12 11:25	BIN 文件	9 KB
SIU_FW_V3.3_For_GeneralTest_#4.BIN	2012/12/12 11:29	BIN 文件	9 KB
SIU_FW_V7.4_For_CurrentTest_#1.BIN	2014/6/26 17:46	BIN 文件	10 KB
SIU_FW_V7.4_For_CurrentTest_#2.BIN	2014/6/26 18:06	BIN 文件	10 KB
SIU_FW_V7.4_For_CurrentTest_#3.BIN	2014/6/26 18:07	BIN 文件	10 KB
SIU_FW_V7.4_For_CurrentTest_#4.BIN	2014/6/26 18:08	BIN 文件	10 KB
🗐 SIU板版本说明.docx	2014/6/27 14:27	Microsoft Office	191 KB

FW文件名以"_#1"、"_#2"、"_#3"和"_#4"来区分不同的SIU板。软件上的设备号以#1、#2、#3和#4等四个号码与FW相对应。

使用工厂测试软件升级SIU板FW,升级完成后,使用标签在SIU板贴上相 应的设备标识。比如,选择升级的FW文件是

SIU_FW_V3.3_For_GeneralTest_#1.BIN,那么就在SIU板贴上"#1"的标识。

如果一台PC机连接多个相同设备号的SIU板,软件只识别其中一个设备, 所以必须保证连接到PC的SIU板设备号是唯一的。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

一、平台搭建

综合测试软件,理论上可以同一时间测试多达256块触摸屏。考虑到实际测试情况,软件只支持至多同时测试4块触摸屏。 软件在PC机运行,触摸屏需要通过转接板(SIU板)连接到PC机。SIU板 在PC和TP间起数据转换的桥梁作用。下图是完整的一拖四测试平台连接 示意图:

上图显示完整测试平台需要的硬件环境,包括:触摸屏(TP)、SIU板、 PC机、USB线和若干数据线。

SIU_#1的意思是SIU板采用了专用FW,此FW使得SIU板设备编号为#1。 使用了此FW之后,SIU板被软件识别为#1的HID设备,方便用户识别接入 SIU板的TP的测试情况。

二、脚位连接

若CTPM为I2C接口:则连接至SIU板的J14对应的引针上包括I2C总线、 INT脚,如需SIU板给CTPM供电,则包括VDD(3.3v)、GND脚(共5根 线),具体连接见下表:

CTPM为I2C接口则连至SIU板J14对应的引脚如下							
名称	SDA	SCL INT VDD GNI					
				(3.3v)			
J14引脚号	3	7	9	15	16		

J14引脚号见SIU板J14上下的数字。

若CTPM为SPI接口:则连接至SIU板的J7对应的引针上包括SPI总线、IN 脚,如需SIU板给CTPM供电,则包括VDD(3.3v)、GND脚(共7根 线),具体连接见下表:

CTPM为SPI接口则连至SIU板J7对应的引脚如下							
名称	MISO	MOSI	SCK	SSEL	INT	VDD3.3v	GND
J14引 脚号	4	8	2	10	9	15	16

J14引脚号见SIU板J14上下的数字。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

综合测试软件,支持敦泰的多个系列芯片,为了满足不同芯片的不同测试 方案,软件分成两大模块,包括配置模块与测试模块。

- 配置模块,是提供给用户针对不同芯片不同方案配置出测试参数,最 后将这些参数生成供测试使用的配置文件(INI文件)。
- 测试模块,采用配置模块生成的配置文件对待测屏体进行测试。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

配置模块,是提供给用户针对不同芯片不同方案配置出测试参数,最后将 这些参数生成配置文件(INI文件)。主要包括以下模块:

- 1. Interface 接口配置
- 2. Common Config 公共配置
- 3. Data Test Items 数据测试项
- 4. Graph Test Items 图形测试项
- 5. Other Test Items 其他测试项
- 6. Save File 保存文件

软件以树形结构加嵌入子对话框的方式,作为配置模块的框架。切换不同 模块的操作,用户可以点击树形结构的节点,也可以点击"上一步 (Previous)"和"下一步(Next)"按钮。其布局如下图所示:

Setting		×
I. Interface Other Config Other Config Other Config Other Config Other Config Other Theshold Other Threshold Other Test Items Other Test Items G. Save File	Init Setting: 1. Load Configuration: Load Conf 2. Set default Configuration: Default IC: IC Type: FT5X36	
	Comm: Interface: I2C Freq: 200k Slave Addr: 0x70 Freq: 200k TP: max points: 5 Coordinate: © top left C top right C bottom left C bottom right Tx, Rx is reversed?	
	Custom screen size: X Maximum pixel: 480 Y Maximum pixel: 800 Previous Next Cancel	Ŧ

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

Interface,接口配置。是配置模块的第一页,主要提供的功能包括:初始 化配置、IC类型、通信接口和TP参数等。其界面如下:

Setting	Tech	×
I. Interface I. Common Config Other Config S. Data Test Items Basic Threshold Detail Threshold Graph Test Items S. Other Test Items G. Save File	Init Setting: 1. Load Configuration: Load Conf 2. Set default Configuration: Default IC: IC Type: FT5X46 Normalize Type: Auto Equalization	
	Comm: Interface: I2C Freq: 200k Slave Addr: 0x70 Phase/Pola: TP: max points: 5 Coordinate: 6 top left 6 top right 6 bottom left 6 bottom right Tx, Rx is reversed? Custom screen size: X Maximum pixel: 1080 Y Maximum pixel: 1920	
	Previous Next Cancel	-

下面将解释上述功能:

一、初始化配置

初始化配置,是进行配置的第一步,可以选择两种不同的方式:

1. Load Configuration,加载配置文件。其功能是,将旧配置文件加载进来,供用户做部分调整修改。

2.Set Default Configuration,重置默认配置。点击重置按钮,将删除当前配置,回到默认状态。

二、IC类型

IC类型必须要与待测屏体的芯片相一致,否则无法有效测试。Data Test Items模块与IC类型挂钩,选择不同的IC系列,就出现不同的Data Test Items模块。

当选择5X46、5X46i、5526、3X17、5346、3427这几个IC时,会出现一 个下拉框,用来设定选择归一类型。其中,NULL:默认为自动归一; Auto Equalization:自动归一;Overall Equalization:整体归一。而其他 芯片没有这个设置。

三、通信接口

在这里,选择与TP匹配的通信接口,主要有以下参数:

- Interface,通信接口,包括IIC、SPI和USB等接口。
- Slave Addr, IIC的从属地址。
- Freq, IIC和SPI的通信速率。
- Phase/Pola, SPI的相位与波特率。

四、TP参数

在这里,设置与TP FW相一致的参数,以便软件与FW交互,包括:

- Max Points,最大支持触摸点数。
- Coordinate, 原点坐标。
- Custom Screen Size, TP分辨率,包括X坐标和Y坐标。

Common Config,公共配置。顾名思义,这是适用于所有芯片的配置。

 1. Interface 2. Common Config Other Config Terminal Config 	Run Mode: Only Test Only Download Test	Check FW + Download + Test	^
⊡ 3. Data Test Items Basic Threshold	C Only Upgrade C Upgrade + Test	Check FW + Upgrade + Test	
Detail Threshold	C Only Write Config Vrite Config + Test	Check FW + Write Config + Test	
 Graph Test Items Other Test Items 	C Only Write Pram C Write Pram + Test	Check FW + Write Pram + Test	
6. Save File	C Download Another Bin After Test	Upgrade Another Bin After Test	
	ReadBytes: 256	WriteBytes: 128	
	Set the way to start Testing: All(button/Shor	tcut key/SN/Pulse	
	Set SN to Start Testing: Set SN to Start Testing: 18 bytes Set Shortcut Key to Start Testing: Enter Auto Test after TP Connected Duration: Remind to Replace TP after Test Duration: Always Display Replace TP Delay:	Image: Auto Test Image: Auto Test	
	Set SN to Start Testing: Set Shortcut Key to Start Testing: Auto Test after TP Connected Remind to Replace TP after Test Always Display Replace TP Store Test Result:	Image: Auto Test always >	

公共配置,主要包括运行模式、开始测试和存储测试结果三方面。下面分 别介绍。

一、运行模式 (Run Mode)

软件支持用户通过配置执行不同的运行模式,运行模式有以下方式:

- Only Test, 仅做测试。
- Only Download, 仅烧录FW文件, 对应FW文件是*_all.bin文件, 其序 容包括bootloader和App两部分。
- Only Upgrade,仅更新FW的App部分,对应FW文件是*_app.bin文件,其内容仅包括App部分。

- Only Write Config,仅更新FW中App的一部分,对应FW文件是 *_config.bin文件,其内容仅包括App部分。
- only Write Pram,仅烧录FW文件,对应的FW文件是 IC_Pramboot_VXX_Data.bin文件,其内容包括bootloader和App两音 分。
- Download + Test 模式, 先烧录Firmware, 后测试。
- Upgrade + Test模式, 先升级更新Firmware, 后测试。
- Write Config + Test模式, 先更新Firmware的App, 后测试。
- Write Pram + Test模式, 先烧录Firmware, 后测试
- Check FW + Upgrade + Test模式,先检查TP当前FW版本,若FW版本与要更新的版本不一致,则进行Upgrade,再进行测试;若FW版²与要更新的版本是一致的,则跳过Upgrade这一步,直接进行测试。
- Check FW + Download + Test模式,先检查TP当前FW版本,若FW 版本与要更新的版本不一致,则进行Download,再进行测试;若FV 版本与要更新的版本是一致的,则跳过Download 这一步,直接进行 测试。
- Check FW + Write Config + Test模式,先检查TP当前FW版本,若 FW版本与要更新的版本不一致,则进行Write Config,再进行测试; 若FW版本与要更新的版本是一致的,则跳过Write Config这一步,直 接进行测试。
- Check FW + Write Pram + Test模式,先检查TP当前FW版本,若FW版本与要更新的版本不一致,则进行Write Pram,再进行测试;若FW版本与要更新的版本是一致的,则跳过Write Pram这一步,直接进行测试。
- Only Compare FW模式,用于检测屏体已烧录FW是否与所选FW文作 内容相一致。
- Download another bin after test,测试结束后,重新烧录一个新的FW 的*_all.bin文件。
- Upgrade another bin after test,测试结束后,重新更新一个新的FW的 *_app.bin文件。
- ReadBytes,WriteBytes,每次读入/写入flash文件的字节数。
- 二、开始测试 (Start Testing)

在这里设置与执行测试相关的操作,包括以下方式:

• Set the way to start testing,执行开始测试的方式。执行开始测试的 方式有三种,包括"Start"按钮、快捷键和SN。在这里可以选择执行升 始测试的方式是全部还是仅一种。当选择的测试方式涉及到SN,可读 择在测试完成的SN处理,包括的选项是:Clear SN(清除SN)、 Retain SN(保留SN不变)、SN + 1(SN自动加1,默认Auto Test复 选框失效)。

- Set SN to start testing,设置与SN相关的操作。设置SN的长度,根据 具体的系列号长度来设置。当在测试员模式的SN编辑框输入与设置 SN长度对应的字符长度,就会自动进行测试,测试完成后,以SN为 文件名保存测试结果。Auto Test复选框的作用是,如果选中此复选 框,当用户在Tester Mode模式的AutoTest页面的SN编辑框输入符合 长度的字符,就自动开始测试;不勾选的话,则不自动测试。
- Set Shortcut Key to start testing,设置执行自动测试的快捷键,默认 是"Enter"键。
- Auto Test after TP Connected,即插即测,当TP连接时,自动开始测试。适用于单TP测试与多TP独立测试两种模式。
- Remind to Replace TP after Test,测试完成后,提示更换TP。适用于所有的测试模式。
- Always Display Replace TP,测试完成后,右侧提示更换TP。适用 于所有的测试模式。
- 三、存储测试结果 (Store Test Result)

是否保存测试结果的数据。如果需要保存,先勾选Auto Store Result复选框,再设置其他参数,如下:

- Type: 如果要保存, 分有三种结果类型:全部保存(All Result)、仅 Pass时保存(Only Pass)、仅Fail时保存(Only Fail)。
- Format:不同的存储格式,包括:1. Standard,默认的标准存储格式。前10行存储相关测试项测试情况,之后依次接上第二行相关测试项的具体数据。2. Format-GD,选择该项之后会在TestResult目录下自动保存一个.bat文件,用来存储测试NG的测试项。其他的与Standard相同。
- User-defined Path:保存测试结果的路径,可以自己定义。点击Userdefined Path复选框,将弹出对话框要求用户选择路径。若不选自定 义路径,或选了自定义复选框却没选路径,则使用默认保存路径,保 存在与软件所在文件夹同一目录的TestResult文件夹。
- Use IC ID as the Name of Saved file,使用IC的ID作为存储文件的文件名,便于追踪相关屏体是否已测试。
- Replace Old Log After Retest,重新测试,存储数据是否覆盖之前已

保存过的数据。

- Save Test Message(*.txt),以*.txt文件格式保存详细测试信息。
- Simple Directory,保存的LOG File直接放置在根目录下(不要区分日期、名称、Passlog/Faillog等),此外,保存的LOG File中还有有总结性的Pass or NG标致

Other Config,公共扩展配置。顾名思义,这是适用于所有芯片的配置。

Setting Earca	Tech	-				X
	Use GPIO:					-
Other Config	Output level signal as Te	st Result				
3. Data Test Items Basic Threshold	C Low level = PASS	\mathbf{C} High level = PASS	Output Port:	C P1.1 C P1.4	€ P1.5	
Detail Threshold	Cutput level signal as NG	alarm				
- 4. Graph Test Items	C Low level = NG	\mathbf{C} High level = NG	Output Port:	C P1.1 € P1.4	C P1.5	
6. Save File	Input level signal to star	t testing				
	C Low level to Start	C High level to start	Input Port:	© P1.1 C P1.4	C P1.5	
	Limited Time To Reverse:	Never 👻				
	Others:					2
	Use other returned va	lue of calibration				
	Switch Hid_Over_IIC P	rotocol to IIC_Standard Prot	ocol			
	Count Test Result	Clear Old Data 💌				
	Full Screen In Graph Te	est				
			Previous	Next	Cancel	

扩展配置,主要包括GPIO设置、协议切换三方面。下面分别介绍。

一、GPIO设置

GPIO引脚指SIU板的P1.1、P1.4、P1.5端口:

- OutPut Level Signal as TestResult,测试结束后,对应的GPIO引脚 电平变化情况。Low Level=PASS,测试结束后,PASS,则对应的 GPIO引脚输出低电平,NG,对应的GPIO引脚输出高电平;High Level = PASS与前者相反。
- OutPut Level Signal as NG alaram,测试结束后,对应的GPIO引脚 电平变化情况。Low Level=NG,测试结束后,NG,则对应的GPIO 引脚输出低电平,PASS,对应的GPIO引脚输出高电平;Low Level= PASS与前者相反。
- Download + Test 模式, 先烧录Firmware, 后测试。

• Input Level Signal to start testing,设置开启测试的触发电压。设置此 项后,对应端口输入触发电压时,软件自动开启测试

二、其他设置 (Others)

- Switch Hid_Over_IIC Protocal to IIC_Standard Protocol,用于Win8协议的单TP测试,通过此项,使得HID设备使用标准IIC进行通讯
- Count Test Result,用于选择是否选择测试结果计数测试项,若选择 Keep Old Data:从上次保存的数据继续计数,选择Clear Old Data: 清除上次保存的结果,从新计数。
- Full Screen In Graph Test,若选择了该项,则测试画图相关的操作时,就会全屏显示,按下esc按键可以退出全屏。

Data Test Items,数据测试项。

与芯片系列一一对应,不同芯片系列有不同的数据测试项配置页。

先在Interface配置页的IC_Type选择需要的芯片系列,选择Data Test Items配置页时就有与其芯片测试项内容。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

FT5X36、FT5X36i、FT3X16、FT3X26在综合测试软件中使用相同的UI。 先在Interface配置页的IC_Type选择需要以下芯片之一:

- FT5X36
- FT5X36i
- FT3X16
- FT3X26

选择Data Test Items配置页时,就会显示以下测试项内容:

 1. Interface 2. Common Config Other Config Terminal Config 3. Data Test Items Basic Threshold Detail Threshold 4. Graph Test Items 	Check Item: Project Code Test FW Version Test Factory ID Test IC Version Test	Code: ▲ ASCII Conversion lain Version: 0xff ID_Number: 0xff IC_Version: C	
5. Other Test Items 6. Save File	Required Test Item: ✓ RawData Test ✓ Rx Short-circuit Test ✓ SCap RawData Test	 Panel Differ Test Tx Short-circuit Test Scap CB Test 	
		Reset Pin Test	
	Rx Crosstalk Test SCap Differ Test RawData Uniformity test DifferData Rx Linearity Test	 Noise Test SCap CLB Test DifferData Uniformity test DifferData Tx Linearity Test 	
	RawData Rx Deviation test Stress Test Weak Short-Circuit Test	Tx Short Advance Test SITO Uniformity Test Rx Short Advance Test	

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如 下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设的 相一致。ASCII Conversion是否进行ascii码转换;勾选输出其ASCII 码值,不勾选输出相应的字符值。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- IC Version Test: IC版本检测,避免IC版本混乱。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

RawData Test	RawData_Min: 7000 🖵	RawData_Max: 10000 👻

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路。 在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果测试 时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反之, 为Pass。

此系列芯片,测试了开防水与关防水两种状态下的RawData。

Panel_Differ Test测试项

Panel Differ Test	Panel_Differ_Min(abs): 150	Ŧ	Panel_Differ_Max(abs): 1000 💌
□ BC_EN	Change Vol Level: 4	-	Change Offset Level: 4
Set Start Vol and End Vol	Start Vol: 0	Ŧ	End Vol: 2

虚拟触摸测试,此测试项判断待测屏的开路短路。在 Panel_Differ_Min(abs)组合框和Panel_Differ_Max(abs)组合框设置最小线 对值阈值和最大绝对值阈值,如果测试时,读取到的Differ Data的绝对值 在测试阈值之外,则此测试项为Fail,反之,为Pass。

Change Vol Level: 改变电压档数,根据当前芯片电压档改变电压档数。

 BC_EN: 没选中时, enable, 读取的Rawdata为RawData减去电容 Base的Rawdata;若选中,则为Disable,直接读取Rawdata。默认 值为不选。 Set Start Vol and End Vol: 在这里可以设置开始时的电压档和改变后的电压档,此项有效,则改变电压档数(Change Vol Level)不在测试时使用。

Change Offset Level: 改变Offset档数。

Rx Short-Circuit Test测试项

Rx Short-Circuit Test	Min Threshold: 1000	Max Threshold: 32800 💌
Rx短路测试。可以测i	式Rx之间的短路。	
SCap CB Test测试项		
SCap CB Test	Min Threshold:	Max Threshold: 240
自电容部分的CB测试	, 检测CB是否饱和。	
Scan RawData Test	则试项	
Scup Numbulu Test		
SCap RawData Test		
SCap RawData Test	Min Threshold: 5000 -	Max Threshold: 16500 💌

自电容部分的RawData测试,包括开防水(Waterproof On)与关防水 (Waterproof Off)下的RawData测试。

Tx Short-Circuit Test测试项

Tx Short-Circuit Test	Min Threshold(abs):	160	•	Max Threshold(abs):	3000	-
	·					

TX短路测试。可以测试Tx之间的短路。

Channel Num Test测试项

Channel Num Test Tx Channels: 10 Rx Channels: 16	Channel Num Test	Tx Channels: 10 -	Rx Channels: 16
--	------------------	-------------------	-----------------

通道数测试。此测试项检测读取出来的Tx和Rx数量是否与FW里设定的数量一致。一致则Pass,有出入则Fail。

Rx Crosstalk Test测试项

Rx Crosstalk Test	Min Threshold: 7000	Max Threshold: 10000 💌

Rx串扰测试。此串扰测试的测试方法与别的芯片不同,以RawData值来判断Rx之间的短路。

Int Pin Test测试项

Int Pin Test	Reg Addr: 0x4f	
INT测试项,检测中断功能。		
Reset Pin Test测试项		
Reset Pin Test	Reg Addr: 0x88	

Reset测试项,检测Reset功能,Reset脚位与Wake脚位共用一个脚位。

Noise Test测试项

Noise Test	sample by frame:	Select Frames: 32 💌
	C sample by time:	Select Time:
tip before test	Noise_Mode: Avg 💌	Noise_Max: 20 💌

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。Select Frames是i 择参与噪声测试的RawData帧数,Select Time是选择参与噪声测试的采标 时间。Tip Before Test选择是否在Noise测试之前提示。Noise_Mode是噪 声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声 值。Noise_Max是噪声测试的最大阈值,有节点的噪声值大于此阈值则 NG,否则为PASS。

SCape Differ Test测试项

SCap Differ Test	Change CB Level: 2	
	Min Threshold: 100 💌	Max Threshold: 10000 💌
····		

SCape CLB Test测试项

SCap CLB Test	Interval Frames: 3	-	Max Threshold: 1000 💌

RawData Rx Deviation Test测试项

Rx均匀度测试,此测试项检查RawData Test测试项读取到的每一列Raw Data的均匀度,大于Rawdata_Deviation_Max设置的阈值,则此测试项为 Fail,反之,为Pass。

ta Rx Deviation Test Max Threshold: 500 💌

RawData Uniformity Test测试项

RawData均匀度测试,此测试项检查RawData Test测试项读取到的Raw Data的均匀度。Percent_(min/max)是一帧Raw Data的最小值与最大值的 百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

DifferData Rx Linearity Test测试项

DifferData Rx Linearity Test

Max Threshold(abs): 50 👻

Rx线性度测试,此测试项检测Panel Differ Test读取到的每一列Differ值的 线性度。Max Threshold是同一列相邻Tx的Differ值的偏差值。相邻Tx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Tx Linearity Test测试项

DifferData Tx Linearity Test

Max Threshold(abs): 50 🗸

Tx线性度测试,此测试项检测Panel Differ Test读取到的每一行Differ值的 线性度。Max Threshold是同一列相邻Rx的Differ值的偏差值。相邻Rx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Uniformity Test测试项

DifferData Uniformity test

Percent_(min/max): 80% -

DifferData均匀度测试,此测试项 检查Panel Differ Test测试项读取到的 DifferData的均匀度。Percent_(min/max)是一帧DifferData的最小值与最; 值的百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

Tx Short Advance Test测试项

Gain Value:	1 🔹	Rx Cap: 0
Max Threshold:	1000 -	

-

RawData变化量测试,检查打开斜率寄存器与设置Gain与Rx Cap前后的 RawData变化情况,Gain Value为设置Gain的值,Rx Cap为设置的Cap 值,Max Threshold为设置的参考阈值

Calibration Test测试项

Calibration Test

Tx Short Advance Test

Store CLB Result

校准测试,用于纯互容的情况,Store CLB Result用于保存校准的结果

Uniformity Test测试项

Uniformity Test	
Tx Linearity	Threshold: 20
Rx Linearity	Threshold: 20 💌
Min-Max	Threshold: 70 -

该测试项分为三个小的测试项,且均基于Pannel Differ数据进行计算。

1. TX Uniformity:计算的TX Uniformity数据小于设定的阈值,则测试 OK,否则测试NG

2. RX Uniformity:计算的RX Uniformity数据小于设定的阈值,则测试 OK,否则测试NG

3. Max-Min:计算的Max/Min数据大于设定的阈值,则测试OK,否则测证 NG

SITO Uniformity Test测试项

SITO Uniformity Test	
✓ Tx Linearity	Threshold: 10
Rx Linearity	Threshold: 10 👻

该测试项分为二个小的测试项,且均基于Pannel Differ数据进行计算。

1. TX Uniformity:计算的TX Uniformity数据小于设定的阈值,则测试 OK,否则测试NG

2. RX Uniformity:计算的RX Uniformity数据小于设定的阈值,则测试 OK,否则测试NG

RX Short Advance Test测试项

RX Short Advance Test		
₩ Waterproof On	Delta CB: 50 💌	Scap Differ: 500

根据给的CB值进行修改,获取不同CB下的RawData差值,并减去相应的 Base,将得到的Differ数据与Threshold做比较,超出范围则认为NG。 Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0		5	0	7	0	0	
ompt:		Tx\Rx	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0:无效节点,不	测试	TX3	1	1				1		1	1	1
1: 有效节点,需	测试 雄语罢	1x4	1	1	1	1	1	1	1			1
- 1XME 1788 / 19	AL 10 TH	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
-		Tx7	1			1						
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1	1	1	1	1	1	1	1	1	1
Rx Num:		Tx10	1	1	1	1	1	1	1	1	1	1
10	-	Tx11	1									
Type: MCap	•	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Node												1
		Invalid No	ode:		22							
		(Tx15, R) Key Node	x1), ::		(Tx1	5, Rx2),	(T	x15,	Rx4)	'	(Tx:
		(Tx15, R)	x3),		(Tx1	5, Rx6),	(T	x15,	Rx9)		
		•										

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

DowDotoToot Max	Tv\Pv	1	2	3	1	5	6	7	8	9	10	 	
RawDataTest Min	Tv1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	 	
XCrosstalkTest Max	-	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
RxCrosstalkTest_Min	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
PanelDifferTest_Max	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
anelDifferTest_Min	Tx4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
RXLinearityTest_Max	Tx5	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
TxShortTest_Max	Typ	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
TxShortTest_Min	T.7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
SCapRawDataTest_ON_Max	1x/	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
SCapRawDataTest_ON_Min	Tx8	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
SCapRawDataTest_OFF_Min	Tx9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
SCapCbTest_Max	Tx10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
SCapCbTest_Min	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
4 III	Tv12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
Value:	1 1 1 2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	1x13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx14	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
: 1 🕶 10 💌	Tx15	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
e: Modify													
Tx Num: 15													
Rx Num: 10 -													
,													
Auto Cat Threshold													

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。
- 6. 对于SITO RX Linearity Base和SITO TX Linearity Base而言,步骤4 不起作用。采用另外一套方法计算阈值。

Auto Set Detail Threshold		23
Data Source:		
Data Directory:		
Test Item:	Threshold:	
RawData Test Panel Differ Test	Min Threshold: Change Rate: 25% Change Value:	
C Rx Linearity Test	Max Threshold: Change Rate: 25% Change Value:	
Tx Linearity Test		
Tx Short Advance Test	Data Analyze Set Threshold	
SCap RawData Test_ON		
SCap RawData Test_OFF		*
SCap CB Test_OFF		
C SITO Rx Linearity Base		
SITO Tx Linearity Base		
		Ŧ

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E
先在Interface配置页的IC_Type选择需要以下芯片:

• FT5X16

选择Data Test Items配置页时,就会显示以下测试项内容:

1. Interface	Minister in Frank	and Multiple Test Suffrage	
□ 2. Common Config	Check Item:		1 6
Other Config	Project Code Test	Code:	
3. Data Test Items	FW Version Test	Main Version: Oxff	
Basic Threshold	Eactory ID Test	ID Number:	
- 4. Graph Test Items		IC Version:	
	TC VEISION TESC		
····· 6. Save File	- Required Test Item:		_
		Densel Differe Task	
	RawData Test		
	Channel Number Test	Calibration Test	
	Option Test Item:		
	INT Pin Test	Reset Pin Test	
	Rx Crosstalk Test	Noise Test	
	RawData Uniformity test	DifferData Uniformity test	
	DifferData Rx Linearity Test	DifferData Tx Linearity Test	
	RawData Rx Deviation test	CLB Noise Test	
			-
	200		
		Previous Next Cancel	

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

• Project Code Test:项目版本检测。设置的项目代码,须跟FW预设的

相一致。

- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

RawData Test	RawData_Min: 7000 💌	RawData_Max: 10000 -
Modify RawData	Set Offset Value of Key: 0	

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路。 在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果测试 时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反之, 为Pass。

勾选Modify RawData复选框,能使得每一列RawData更加均匀。

Panel_Differ Test测试项

Panel Differ Test	Panel_Differ_Min(abs):	Panel_Differ_Max(abs): 1000 💌
	Change Vol Level: 2	
Set Start Vol and End Vol	Start Vol: 0	End Vol: 2

虚拟触摸测试,此测试项判断待测屏的开路短路。在 Panel_Differ_Min(abs)组合框和Panel_Differ_Max(abs)组合框设置最小维 对值阈值和最大绝对值阈值,如果测试时,读取到的Differ Data的绝对值 在测试阈值之外,则此测试项为Fail,反之,为Pass。

Change Vol Level: 改变电压档数,根据当前芯片电压档改变电压档数。

• Set Start Vol and End Vol: 在这里可以设置开始时的电压档和改变后

的电压档,此项有效,则改变电压档数(Change Vol Level)不在测试时使用。

Change Offset Level: 改变Offset档数。

Channel Num Test测试项

tip before test

Channel Num Test	Tx Channels: 13	Rx Channels: 24
通道数测试。此测试项检测读即量一致。一致则Pass,有出入!	取出来的Tx和Rx数量 则Fail。	是否与FW里设定的数
Int Pin Test测试项		
Int Pin Test	Reg Addr: 0x4f 💌	
INT测试项,检测中断功能。 Reset Pin Test测试项		
Reset Pin Test	Reg Addr: 0x88 💌	
Reset测试项,检测Reset功能 Noise Test 测试项	,Reset脚位与Wake剧	却位共用一个脚位。
Noise Test	sample by frame	Select Frames: 32
	Sample by une:	15

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。Select Frames是ì

Noise_Mode: Avg

•

Noise_Max: 20

-

择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采标时间。Tip Before Test选择是否在Noise测试之前提示。Noise_Mode是噪声判断类型, Avg是以均值噪声为噪声值, Max是以最大的噪声为噪声值。Noise_Max是噪声测试的最大阈值, 有节点的噪声值大于此阈值则NG, 否则为PASS。

Rx Crosstalk Test测试项

Rx Crosstalk Test Min Threshold: _300 Max Threshold: 1000 -

Rx串扰测试。此串扰测试的测试方法与别的芯片不同,以RawData值来判断Rx之间的短路。

RawData Rx Deviation Test测试项

RawData Rx Deviation Test

Max Threshold: 500 👻

Rx均匀度测试,此测试项 检查RawData Test测试项读取到的每一列Raw Data的均匀度,大于Rawdata_Deviation_Max设置的阈值,则此测试项为 Fail,反之,为Pass。

RawData Uniformity Test测试项

vData Uniformity test Percent_(min/max): 90% 🗸
--

RawData均匀度测试,此测试项检查RawData Test测试项读取到的Raw Data的均匀度。Percent_(min/max)是一帧Raw Data的最小值与最大值的 百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

DifferData Rx Linearity Test测试项

Max Threshold(abs): 50 👻

Rx线性度测试,此测试项检测Panel Differ Test读取到的每一列Differ值的 线性度。Max Threshold是同一列相邻Tx的Differ值的偏差值。相邻Tx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Tx Linearity Test测试项

DifferData Tx Linearity Test

Max Threshold(abs): 50 🗸

Tx线性度测试,此测试项检测Panel Differ Test读取到的每一行Differ值的 线性度。Max Threshold是同一列相邻Rx的Differ值的偏差值。相邻Rx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Uniformity Test测试项

DifferData Uniformity test

Percent_(min/max): 80% -

DifferData均匀度测试,此测试项检查Panel Differ Test测试项读取到的 DifferData的均匀度。Percent_(min/max)是一帧DifferData的最小值与最; 值的百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

Calibration Test测试项

Calibration Test

Store CLB Result

CalibrationTest测试,若选中,则自动保存CLB结果。

CLB Noise Test测试项

CLB Noise Test

RawData Frames: 5

-

Deviation Threshold: 50 🗸

CLB Noise测试, RawData frames用来设置读取的帧数, Deviation Threshold为设置的最大Deviation,若计算出的Deviation超出设置的最大 Deviation值,则测试NG。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0			0	7	0	0	
ompt:		Tx\Rx	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0: 无效节点,7	下测试	TX3	1	1				1	1	1	1	1
1: 有效节点,需	통测试 ≢难设罢	1x4	1	1	1	1	1	1	1	1	1	1
2. 1XME P.R. 1	<u>а ж кхтт</u>	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
		Tx7	1		1							1
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1									1
Dx Num		Tx10	1	1	1	1	1	1	1	1	1	1
KX Num: 10	-	Tx11	1	1	1	1	1	1	1	1	1	1
Type: MC	ap 💌	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Nod	e											II
		Invalid No	ode:									
		Invalid No (Tx15, R)	ode: x1),		(Tx15	5, Rx2),	(1	x15,	Rx4),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: x1), :: x3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	רז (ד	x15, x15,	Rx4), Rx9),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: k1), :: k3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	(1 (1	x15, x15,	Rx4), Rx9),		(Tx15

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Tx1 100 Tx2 100 Tx3 100 Tx4 100 Tx5 100 Tx6 100 Tx7 100 Tx8 100 Tx9 100 Tx10 100	000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000	10000 10000 10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000
Tx2 100 Tx3 100 Tx4 100 Tx5 100 Tx6 100 Tx7 100 Tx8 100 Tx9 100 Tx10 100	000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000	10000 10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000
Tx3 100 Tx4 100 Tx5 100 Tx6 100 Tx7 100 Tx8 100 Tx9 100 Tx10 100	000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000	10000 10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000
Tx4 100 Tx5 100 Tx6 100 Tx7 100 Tx8 100 Tx9 100 Tx10 100	000 10000 000 10000 000 10000 000 10000 000 10000 000 10000 000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000
Tx5 100 Tx6 100 Tx7 100 Tx8 100 Tx9 100 Tx10 100	000 10000 000 10000 000 10000 000 10000 000 10000 000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000	10000 10000	10000 10000	10000 10000	10000 10000	10000 10000	10000	10000
Tx6 100 Tx7 100 Tx8 100 Tx9 100 Tx10 100	000 10000 000 10000 000 10000 000 10000 000 10000	10000 10000 10000	10000 10000 10000	10000 10000 10000	10000 10000	10000 10000	10000 10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx7 100 Tx8 100 Tx9 100 Tx10 100	000100000001000000010000	10000 10000 10000	10000 10000	10000	10000	10000	10000	10000							10000
Tx8 100 Tx9 100 Tx10 100	000 10000 000 10000	10000	10000	10000				10000	10000	10000	10000	10000	10000	10000	10000
Tx9 100 Tx10 100	000 10000	10000		10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx10 100		10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	000 10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx11 100	000 10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx12 100	000 10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx13 100	000 10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	Tx12 100 Tx13 100	Tx12 10000 10000 Tx13 10000 10000	Tx12 10000 10000 10000 Tx13 10000 10000 10000	Tx12 10000 10000 10000 10000 Tx13 10000 10000 10000 10000	Tx12 10000 10000 10000 10000 Tx13 10000 10000 10000 10000 10000	Tx12 10000 10000 10000 10000 10000 Tx13 10000 10000 10000 10000 10000 10000	Tx12 10000 10000 10000 10000 10000 10000 Tx13 10000 10000 10000 10000 10000 10000 10000	Tx12 10000 10000 10000 10000 10000 10000 10000 Tx13 10000 10000 10000 10000 10000 10000 10000 10000 4	Tx12 10000 10000 10000 10000 10000 10000 10000 Tx13 10000 10000 10000 10000 10000 10000 10000 10000 x 10000 10000 10000 10000 10000 10000 10000 10000 x 10000 10000 10000 10000 10000 10000 10000	Tx12 10000 10000 10000 10000 10000 10000 10000 Tx13 10000 10000 10000 10000 10000 10000 10000 10000 x 10000 10000 10000 10000 10000 10000 10000 10000 x 10000 10000 10000 10000 10000 10000 10000 x 10000 10000 10000 10000 10000 10000 10000	Tx12 10000	Tx12 10000	Tx12 10000	Tx12 10000	Tx12 10000

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。

to Set Detail Threshold Data Source:	4 5 5 7 5 5 5	
Data Directory:		
Test Item: RawData Test Panel Differ Test Rx Linearity Test Tx Linearity Test	Threshold: Min Threshold: Change Rate: 25% C Change Value: Max Threshold: Change Rate: 25% C Change Value: Set Threshold	
		*

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Þ

FT5X46、FT5X46i、FT5526、FT3X17、FT5346、FT3427、FT5526l、 FT5416、FT5426、FT5435、FT7681、FT7661、FT7511、FT7421等芯 片(具体如下)在综合测试软件中使用相同的UI。

先在Interface配置页的IC_Type选择以下芯片:

- FT5X46
- FT5X46i
- FT5526
- FT3X17
- FT5436
- FT3X27
- FT5526I
- FT5416
- FT5426
- FT5435
- FT7681
- FT7661
- FT7511
- FT7421

在这些芯片选择了整体归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

Setting					x
I. Interface 2. Common Config Other Config Terminal Config Basic Threshold Detail Threshold Graph Test Items 5. Other Test Items 6. Save File	Check Item: Project Code Test FW Version Test Factory ID Test LCM ID Test Panel ID	Code: Main Version: ID_Number: LCM ID: Panel ID:	0xff _▼ 0xff _▼ 0x01 _▼ 0xff _▼	ASCII Conversion	
	 Required Test Item: ✓ RawData Test ✓ SCap RawData Test ✓ Channel Number Test ✓ RawData Uniformity Test 	য হ হ	Weak Short-Circuit Test SCap CB Test Rawdata Margin Test CM Test		
	Option Test Item: INT Pin Test Noise Test SITO RawData Uniformity test GPIO Test Pattern test FPC Open Test		Reset Pin Test Adc Detect Test TE Test LCD Noise Test		
			Previous	ext Cancel	+

在这些芯片选择了自动归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

Common Config Other Config Terminal Config FW Version Solar Test Items Check Item: FW Version Factory ID T Detail Threshold LCM ID Test Solar Test Items Fy Version LCM ID Test Panel ID	e Test Code: Fest Main Version: est ID_Number: LCM ID: Panel ID:	0xff 0xff 0xff 0xff 0xff
6. Save File Required Test Iten	n: st [jta Test] iber Test] iformity Test] Test	Weak Short-Circuit Test SCap CB Test Rawdata Margin Test CM Test
Option Test Item: INT Pin Test Noise Test SITO RawDa GPIO Test Pattern test FPC Open Te	 ta Uniformity test 	Reset Pin Test Adc Detect Test TE Test LCD Noise Test Panel Differ Uniformity Test

无论选择哪种方式测试项内容均分三部分,包括检测项、必选测试项和备 选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如 下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设的相一致。ASCII Conversion是否进行ascii码转换;勾选输出其ASCII 码值,不勾选输出相应的字符值。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- LCM ID Test:用于区分LCD不同的供应商。
- Panel ID:用于区分不同的面板厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

整体归一的RawData测试项

RawData Test		
Cow Frequency	RawData_Min: 7000 👻	RawData_Max: 10000 -
High Frequency	RawData_Min: 7000	RawData_Max: 10000 -
自动归一和默认的Raw	Data测试项	

RawData Test	RawData_Min: 7000 💌	RawData_Max: 11000 -

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

整体归一测试原始数据测试包括两部分: 低频状态下的原始数据与高频状态下的原始数据测试,两者综合结果决定RawData Test是否PASS

自动归一和默认测试原始数据测试只有测试低频状态下的原始数据

Adc Detect Test测试项

Adc Detect Test

Max Theshold: 50 -

ADC饱和度测试, Max Threshold为写入Adc寄存器最大值, 如果没有溢出, 则测试结果PASS, 否则NG

SCap CB Test测试项

ocup co rest		
Waterproof Off	Min Threshold:	Max Threshold: 240
Waterproof On	Min Threshold:	Max Threshold: 240 -

自电容部分的CB测试,检测CB是否饱和。

ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

Scap RawData Test测试项

Con CP Toot

SCap RawData Test		
✓ Waterproof Off	Min Threshold: 5000 💌	Max Threshold: 8500 👻
Waterproof On	Min Threshold: 5000 👻	Max Threshold: 8500 👻

自电容部分的RawData测试,包括开防水(Waterproof On)与关防水 (Waterproof Off)下的RawData测试,两者综合结果决定Scap RawData Test是否PASS

Channel Num Test测试项

Channel Num Test		
🗹 mapping	Tx Channels: 13	Rx Channels: 24
no mapping	Tx Channels: 13	Rx Channels: 24 💌

通道数测试。分为mapping和no mapping,检测读取出来的Tx和Rx数量是 否与FW中的设置mapping和 no mapping时设定的数量一致。一致则 Pass,有出入则Fail。

Int Pin Test测试项		
Int Pin Test	Reg Addr: 0x08	INT
测试项,检测中断功能。		

Reset Pin Test测试项

Reset Pin Test Reg Addr: 0x88 -

Reset测试项,检测Reset功能,Reset脚位与Wake脚位共用一个脚位。

Noise Test测试项

Noise Test		🖲 sam	ple by frame	: Select Frames:	32	•
Tip before test		C sam	ple by time:	Select Time:	1s	-
	Noise_Mode:	Ave	-	Noise_Coefficient:	50	-
Glove Mode	Rawdata_Min:	5000	Glov	ve Noise Coefficient:	100	-
Noise Threshold Choose	Set_Frequency:	0	-	Noise_Max:	50	-
TP Tool Process	Min NG Frame:	Defaul	t 👻			

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Glove Mode是是否选择手套模式。若选中则Rawdata_Min有效,否则无效

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,X(n)-X(n+1)以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Rawdata_Min是在FIR=1,默认频率下,获取一帧Rawdata值取其中最小的一个Rawdata值,若该值大于等于设定的Rawdata_Min阈值时则 PASS,小于该阈值时则NG。

Noise Threshold Choose是选择设置阈值的方式,默认为选择 Noise_Coefficient的方式,勾选选择Noise_Max的方式。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

Noise_Max是直接设置的噪声的阈值,噪声值大于该阈值则测试NG,否则 Pass。

TP Tool Process用来选择是使用工具来收集噪声值,还是使用FW来收集噪声值。

Min NG Frame最大允许NG的帧数。

Gloce Noise Coefficient是读取用于计算手套模式的噪声阈值的噪声测试的系数,有节点的噪声值大于此计算出阈值则NG,否则为PASS。

Weak Short-circuit Test测试项

Weak Short-Circuit Test	CG_Min: 4000 -	CC_Min: 2000 -

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Uniformity Test测试项

Uniformity Test	
Tx Linearity	Threshold: 20 👻
Rx Linearity	Threshold: 20 👻
Min/Max	Threshold: 70 💌
均匀度测试,均匀度测试又分为3 Tx Lineary: 检查Tx线性度, 大	三小项: 于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Uniformity测试才通过,可以单独对其中一部分进行设置

CM Test测试项

CM Test

Min CM

Threshold: 0.5
Threshold: 5

CM值检查测试,分为两部分:

Min CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)小,则NG

Max CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)大,则NG

两者是相与的关系,只有两项都通过,整个CM测试才算通过,可以单独 对其中一部分进行设置

Rawdata Margin Test测试项

Rawdata Margin Test	Ratio Max: 1	Ratio Min: 10 -

Ratio Max: 最低频点计算出原始RawData,若RawData < 计算出的值,则测试OK,否则测试NG

Ratio Min: 最高频点计算出原始RawData,若RawData > 计算出的值,则测试OK,否则测试NG

Panel Differ Test测试项

Panel	Differ_Min:	150	-	PanelDiffer_Max:	1000	-
	_	100	_	_	1000	_

Panel Differ Test

PanelDiffer_Min: 设置的panel Differ阈值的最小值 PanelDiffer Max: 设置的panel Differ阈值的最大值

Panel Differ Uniformity Test测试项

Panel Differ Uniformity Test

Tx Linearity	Threshold: 20
Rx Linearity	Threshold: 20 💌
Min/Max	Threshold: 70 💌

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Panel Differ Uniformity测试才通过,可以单独对其中一部分进行设置

SITO Rawdata Uniformity Test测试项

SITO RawData Uniformity Test	
🔽 Tx Linearity	Threshold: 10 💌
Rx Linearity	Threshold: 10 💌

SITO rawdata均匀度测试,均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

二则是相与的关系,只有二则都测试通过,整个SITO Rawdata Uniformity 测试才通过,可以单独对其中一部分进行设置

LCD Noise Test测试项

LCD Noise Test Sample Frames: 200 LCD Noise Conficient: 35 -• Noise Max: 15 Noise Mode: 1 -• Set_Frequency: 0 Frame Max Num: 5 • • Noise_Coefficient: 50 Set Max Mode Noise_Max: 50

ICD Noise测试,先将设置的前五个值写入相应的寄存器,然后读取Noise的数据,然后与设定阈值相比较,若超出阈值,则测试NG。此外,若设置完参数后从新获取FrameNum与设定的Frame Max Num相比较,若大于设定值,则测试亦NG。

Pattern Test测试项

Pattern Test		
Pattern 00	Pattern FF	
Pattern 55	Pattern AA	
Pattern Bin		

Pattern Test测试,若勾选前四个的任意个,则先擦除1K的flash,之后写入1K相应的勾选的值,如pattern 00,则这1k的flash中全部写0x00,其他类似,之后读出flash中的值,比较读写是否成功。若勾选pattern Bin则写入相应的app.bin,然后检查读写是否成功。

FPC Open Test测试项

FPC Open Test

Min Threshold: 32736 💌

先设置最小的Scap Rawdata数据,若测试中获取的scap rawdata数据小于 设定的最小值,则测试NG。

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0			0	7	0	0	
ompt:		Tx\RX	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0: 无效节点,7	下测试	TX3	1	1				1	1	1	1	1
1: 有效节点,需	통测试 ≢难设罢	1x4	1	1	1	1	1	1	1	1	1	1
2. 1XME P.R. 1	<u>а ж кхтт</u>	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
		Tx7	1		1							1
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1									1
Dx Num		Tx10	1	1	1	1	1	1	1	1	1	1
KX Num: 10	-	Tx11	1	1	1	1	1	1	1	1	1	1
Type: MC	ap 💌	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Nod	e											II
		Invalid No	ode:									
		Invalid No (Tx15, R)	ode: x1),		(Tx15	5, Rx2),	(1	x15,	Rx4),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: x1), :: x3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	רז (ד	x15, x15,	Rx4), Rx9),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: k1), :: k3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	(1 (1	x15, x15,	Rx4), Rx9),		(Tx15

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

t Special Threshold	-	1.00															
	Tx\Rx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RawDataTest_HIGH_Min	Tx1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
RawDataTest_LOW_Max	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_M	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_Mi	Tx4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	Tx5	10000	12000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Max	Tx6	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Min SCapCbTest_OFF_Max	Tx7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_OFF_Min	Tx8	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Max	Tx9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
RxLinearityTest_Max	Tx10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
III ■ 1	Tx12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Set Value: Start: End:	Tx13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx: 1 💌 13 💌																	
Rx: 1 💌 24 💌																	
alue: Modify																	
Tx Num: 13 V																	
Du Numi																	
KX Num: 24 ▼																	
Auto Set Threshold	•											1					+
Export Min & Max	, If you mod 石山主米叶星	lify the da	ta in the li	st, it will b	e saved a	utomatica 白 z h / 足 左	ally.									G	ancel
Export Full & Flax	73428X10	DXISSIXHI	, isvX/al	10112282	141541	日 9 月 末 15											

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 4. 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Data Analyze"按钮,则会自动打开数据分析工具,可以在数据 分析工具里面查看数据分析情况。
- 6. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。
- 7. 对于RX Linearity Test和TX Linearity Test而言,步骤4不起作用。采用另外一套方法计算阈值。

整体归一及默认情况时:

ata Source:		
Data Directory:		
est Item:	Threshold:	
RawData Test High	Min Threshold: Change Rate: 25% Change Value:	
C RawData Test Low	Max Threshold: Change Rate: 25% Change Value:	
Rx Linearity Test		
Tx Linearity Test	Data Analyze Set Threshold	
		-
		-

自动归一时:

Threshold:	
Min Threshold: Change Rate: Change Value Change Value	2:
Max Threshold: Change Rate: 25% Change Value	2:
Data Analyze Set Threshold	
	*
	-
	Threshold: Min Threshold: Change Rate: 25% Change Value Max Threshold: Data Analyze Set Threshold

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

先在Interface配置页的IC_Type选择需要以下芯片:

- FT5506
- FT5606
- FT5816

选择Data Test Items配置页时,就会显示以下测试项内容:

Setting	- Check Item:	and the state law to be stated	×
⊡ 2. Common Config	FW Version Test	Main Version: 0xff	
Basic Threshold	Factory ID Test	ID_Number: 0xff	
Detail Threshold 4. Graph Test Items	Required Test Item:		
5. Other Test Items 6. Save File	🔽 RawData Test	✓ Panel Differ Test	
	Channel Number Test	Calibration Test	
	Option Test Item:		
	INT Pin Test	Reset Pin Test	
	Rx Crosstalk Test	Noise Test	
	RawData Uniformity test	DifferData Uniformity test	
	DifferData Rx Linearity Test	DifferData Tx Linearity Test	
	RawData Rx Deviation test		
			-
	2 <u>/</u>		
		Previous Next Cancel	

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如 下:

- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- 二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

RawData Test	RawData_Min: 7000 💌	RawData_Max: 10000 👻
Modify RawData	Set Offset Value of Key: 0	

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

Panel_Differ Test测试项

Panel Differ Test	Panel_Differ_Min(abs): 150 💌	Panel_Differ_Max(abs): 1000 -
	Change Vol Level: 4	
Set Start Vol and End Vol	Start Vol: 0	End Vol: 2

虚拟触摸测试,此测试项判断待测屏的开路短路。在 Panel_Differ_Min(abs)组合框和Panel_Differ_Max(abs)组合框设置最小维 对值阈值和最大绝对值阈值,如果测试时,读取到的Differ Data的绝对值 在测试阈值之外,则此测试项为Fail,反之,为Pass。

Change Vol Level: 改变电压档数,根据当前芯片电压档改变电压档数。

Set Start Vol and End Vol: 在这里可以设置开始时的电压档和改变后的电压档,此项有效,则改变电压档数(Change Vol Level)不在测试时使用。

Change Offset Level: 改变Offset档数。

Channel Num Test测试项

Channel Num Test	Tx Channels: 13	Rx Channels: 24	•
通道数测试。此测试项检测读 量一致。一致则Pass,有出入	取出来的Tx和R 则Fail。	x数量是否与FW里	设定的数
Rx Crosstalk Test测试项			
Rx Crosstalk Test	Min Threshold: -300	Max Threshold: 10	• 000
Rx串扰测试。此串扰测试的测量断Rx之间的短路。	试方法与别的芯	际不同,以RawD	ata值来¥
Int Pin Test测试项			
Int Pin Test	Reg Addr: 0x4f	·	INT
测试项,检测中断功能。			
Reset Pin Test测试项			
Reset Pin Test	Reg Addr: 0x88	•	
Reset测试项,检测Reset功能	, Reset脚位与	Wake脚位共用一个	卜脚位。

Noise Test测试项

Noise Test	Sample by frame:	Select Frames:	32	-
	C sample by time:	Select Time:	1s	-
tip before test	Noise_Mode: Ave 👻	Noise_Max:	20	-

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。Select Frames是让择参与噪声测试的RawData帧数,Select Time是选择参与噪声测试的采标时间。Tip Before Test选择是否在Noise测试之前提示。Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值。Noise_Max是噪声测试的最大阈值,有节点的噪声值大于此阈值则NG,否则为PASS。

RawData Rx Deviation Test测试项

RawData Rx Deviation Test

Max Threshold: 500 -

Rx均匀度测试,此测试项检查RawData Test测试项读取到的每一列Raw Data的均匀度,大于Rawdata_Deviation_Max设置的阈值,则此测试项为 Fail,反之,为Pass。

RawData Uniformity Test测试项

RawData Uniformity test

Percent_(min/max): 90% -

RawData均匀度测试,此测试项检查RawData Test测试项读取到的Raw Data的均匀度。Percent_(min/max)是一帧Raw Data的最小值与最大值的 百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

DifferData Rx Linearity Test测试项

DifferData Rx Linearity Test

Max Threshold(abs): 50 -

Rx线性度测试,此测试项检测Panel Differ Test读取到的每一列Differ值的 线性度。Max Threshold是同一列相邻Tx的Differ值的偏差值。相邻Tx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Tx Linearity Test测试项

DifferData Tx Linearity Test

Max Threshold(abs): 50 👻

Tx线性度测试,此测试项检测Panel Differ Test读取到的每一行Differ值的 线性度。Max Threshold是同一列相邻Rx的Differ值的偏差值。相邻Rx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Uniformity Test测试项

DifferData Uniformity test

Percent_(min/max): 80% -

DifferData均匀度测试,此测试项检查Panel Differ Test测试项读取到的 DifferData的均匀度。Percent_(min/max)是一帧DifferData的最小值与最; 值的百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

Calibration Test测试项

Calibration Test

Store CLB Result

校准测试,勾选Store CLB Result,测试完成对校准结果进行保存

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0		5	0	7	0	0	
ompt:		Tx\Rx	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0:无效节点,不	测试	TX3	1	1				1	1	1	1	1
1: 有效节点,需	测试 雄语罢	1x4	1	1	1	1	1	1	1			1
- 1XME 1788 / 19	AL 10 TH	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
-		Tx7	1			1						
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1	1	1	1	1	1	1	1	1	1
Rx Num:		Tx10	1	1	1	1	1	1	1	1	1	1
10	-	Tx11	1									
Type: MCap	•	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Node												1
		Invalid No	ode:		22							
		(Tx15, R) Key Node	x1), ::		(Tx1	5, Rx2),	(T	x15,	Rx4)	'	(Tx:
		(Tx15, R)	x3),		(Tx1	5, Rx6),	(T	x15,	Rx9)		
		•										

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold			_					_	-	-	_		100	
	Current No	de: RawD	ataTest_I	Max										
RawDataTest_Max	Tx\Rx	1	2	3	4	5	6	7	8	9	10			
RawDataTest_Min	Tx1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
RxCrosstalkTest_Max RxCrosstalkTest_Min	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
PanelDifferTest_Max	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
PanelDifferTest_Min	Tx4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
TxLinearityTest_Max	Tx5	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
	Tx6	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
	Tx7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
	Tx8	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
	Tx9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
	Tx10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
	Tx12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
Set Value: Start: End:	Tx13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
Tx: 1 • 15 •	Tx14	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
Rx: 1 • 10 •	Tx15	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000			
alue: Modify														
Tx Num: 15 💌														
Rx Num: 10 🔻														
Auto Set Threshold														
Export Min & Max	If you modif 列夫對报報	fy the dat 都能改时,	a in the lis 修改后的	st, it will b 的有效断	e saved a 据将会袖	utomatica 白动保存	lly.							Cancel
ange to an array in	/ INCREMENT	A ISPEARS I	1247/14	1111/122		N								

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。
| Auto Set Detail Threshold | | x |
|---|--|---|
| Data Source: | | |
| Test Item:
RawData Test
Panel Differ Test
Rx Linearity Test
Tx Linearity Test | Threshold:
Min Threshold: Change Rate: 25% Change Value:
Max Threshold: Change Rate: 25% Change Value:
Set Threshold | |

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Þ

先在Interface配置页的IC_Type选择需要以下芯片:

- FT6X36
- FT3X07
- FT6416
- FT6426
- FT7401
- FT3407U

选择Data Test Items配置页时,就会显示以下测试项内容:

Setting . I. Interface . 2. Common Config . Other Config . Terminal Config . Terminal Config . 3. Data Test Items . Basic Threshold . Detail Threshold . 4. Graph Test Items . 5. Other Test Items . 5. Other Test Items	Check Item: Project Code Test FW Version Test Factory ID Test FoolProof Test	Code: Main Version: ID_Number: CEI Serial Num:	0xff ▼ 0xff ▼	
	 Required Test Item: ✓ CB Test ✓ Channels Deviation Test ✓ RawData Test ✓ Channel Short Test 	য হ হ	Delta CB Test Two Sides Deviation Test Channel Number Test	
	Option Test Item: INT Pin Test Noise Test FPCBA Open Test TE Test Differ Test Differ Test2 LCD Noise Test		Reset Pin Test FPCBA Short Test Sref Open Test CB Deviation Test Weak Short Test K1 Differ Test Report Test	
	L		Previous Next Cancel	

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设的相一致。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- FoolProof Test:检测CEI是否一致。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Channel Num:	22	-	Key Num:	0	-
		144			0	

通道数测试。此测试项检测读取出来的通道和按键数量是否与FW里设定的数量一致。一致则Pass,有出入则Fail。

CB Test测试项

CB Test	CB_Min: 3	CB_Max: 1000 -
---------	-----------	----------------

补偿电容测试。CB是为获取均匀RawData而采取的补偿电容。此测试项根 据补偿电容的变化来判断待测屏的开路短路。在CB_Min和CB_Max设置最 小和最大的测试阈值,如果测试时,读取到的CB Data有在测试阈值之外 的,则此测试项为Fail,反之,为Pass。

Delta CB Test测试项

Delta CB Test	Base:	0	-	Differ_Max:	50	-
	Deviation_Max_Sort1:	12	-	Deviation_Max_Sort2:	12	-
	Deviation_Max_Sort3:	12	-	Deviation_Max_Sort4:	12	-
	Deviation_Max_Sort5:	12	-	Deviation_Max_Sort6:	12	-
🔽 Include Key Test	Key_Differ_Max:	10	-			
Set Critical Value	Critical_Sort1:	20	-	Critical_Sort2:	20	-
	Critical_Sort3:	20	-	Critical_Sort4:	20	-
	Critical_Sort5:	20	-	Critical_Sort6:	20	-

补偿电容增量测试。这是通过一定的算法获取到的补偿电容增量(简称 ΔCB)。ΔCB用于辅助判断待测屏的开路短路。下面是参数说明:

- Base是ΔCB的基准值,此阈值是多个良品的ΔCB的平均值。
- Differ_Max是一帧Delta_CB_Differ的最大值,大于此阈值即NG。
 Delta_CB_Differ是当前待测屏的ΔCB减去Base得到的差值。

- Deviation_Max_Sort是同一类Delta_CB_Differ的最大值与最小值的偏差,超过此类的阈值即NG。为了兼顾不同的屏体,允许对通道进行分类,最多可分成6类(如何分类,将在Detail Threshold页说明),下面会介绍如何分类。默认情况下,所有通道都属于第1类。
- 上述Deviation_Max_Sort的判断是针对VA区通道,若要增加按键区判断,须勾选Include Key Test复选框,并设置其最大阈值 Key_Differ_Max。
- Critical_Sort是比Deviation_Max_Sort更大的临界条件值。设置临界条件是为了判断要不要画线。如果测试过来的值落在 Deviation_Max_Sort与Critical_Sort之间,则要画线复判屏体是否为良品。大于Critical_Sort则直接NG。

Chanels Deviation Test测试项

Channels Deviation Test	Deviation_Max_Sort1: 8	Deviation_Max_Sort2: 8
	Deviation_Max_Sort3: 8	Deviation_Max_Sort4: 8
	Deviation_Max_Sort5: 8	Deviation_Max_Sort6: 8
Set Critical Value	Critical_Sort1: 13 -	Critical_Sort2: 13 -
	Critical_Sort3: 13 💌	Critical_Sort4: 13 -
	Critical_Sort5: 13 -	Critical_Sort6: 13 🚽

相邻通道差值测试。此测试项是Delta CB Test测试项进一步细分判断,判断同一类相邻通道的Delta_CB_Differ偏差。同样支持最多分成6类来判断 (如何分类,将在Detail Threshold页说明)。

Deviation_Max_Sort是同一类相邻通道的最大偏差阈值,Critical_Sort是比 Deviation_Max_Sort更大的临界条件值。

设置临界条件是为了判断要不要画线。如果测试过来的值落在 Deviation_Max_Sort与Critical_Sort之间,则要画线复判屏体是否为良品。 大于Critical_Sort则直接NG。

Two Sides Deviation Test测试项

Two Sides Deviation Test	Deviation_Max_Sort1: 5	-	Deviation_Max_Sort2:	5	-
	Deviation_Max_Sort3: 5	•	Deviation_Max_Sort4:	5	-
	Deviation_Max_Sort5: 5	-	Deviation_Max_Sort6:	5	-
Set Critical Value	Critical_Sort1: 10	-	Critical_Sort2:	10	-
	Critical_Sort3: 10	-	Critical_Sort4:	10	-
	Critical_Sort5: 10	-	Critical_Sort6:	10	-

相对通道差值测试。此测试项是Delta CB Test测试项进一步细分判断,判断同一类相对通道的Delta_CB_Differ偏差。同样支持最多分成6类来判断(如何分类,将在Detail Threshold页说明)。

Deviation_Max_Sort是同一类相邻通道的最大偏差阈值,Critical_Sort是比 Deviation_Max_Sort更大的临界条件值。

设置临界条件是为了判断要不要画线。如果测试过来的值落在 Deviation_Max_Sort与Critical_Sort之间,则要画线复判屏体是否为良品。 大于Critical_Sort则直接NG。

RawData Test测试项

RawData Test	RawData_Min: 13000 -	RawData_Max: 17000 -
--------------	----------------------	----------------------

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路,以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反之,为Pass。

Channel Short Test测试项

Channel Short Test	K1 Value: 255 💌	K2 Value: 255 💌
	CB Max: 1000 -	

在此设置K1、K2的值,并设置最大的CB值,若超出设置的CB值,则测试 NG。

Int Pin Test测试项

Int Pin Test

Reg Addr: Oxaf 🔻

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 -

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加后不影响其他功能。

Noise Test测试项

Noise Test	sample by frame:	Select Frames:	32	-
	C sample by time:	Select Time:	1s	-
tip before test	Noise_Mode: Ave	Noise_Max:	20	-

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。Select Frames是选择参与噪声测试的RawData帧数,Select Time是选择参与噪声测试的采样时间。Tip Before Test选择是否在Noise测试之前提示。Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min是以最大最小值的差值作为噪声,Differ以前后两帧的差值作为噪声,Noise_Max是噪声测试的最大阈值,有节点的噪声值大于此阈值则NG,否则为PASS。

FPC Short测试项

FPCBA Short Test	Min Cb: 5	-	Max Cb: 1015 🗸
	Min RawData: 5000	-	Max RawData: 50000 👻

FPC短路测试,在一定条件下获取Ci与RawData值,与设置值相比较,看 是否超出范围,Min Cb与Max Cb分别表示Ci阈值最小与最大值,Min RawData与Max RawData分别标志RawData阈值最小与最大值

FPC Open测试项

FPCBA Open Test	Min Cb:	5	-	Max Cb:	1015	-
	Min RawData:	5000	-	Max RawData:	50000	•

FPC开路测试,在一定条件下获取Ci与RawData值,与设置值相比较,看 是否超出范围,Min Cb与Max Cb分别表示Ci阈值最小与最大值,Min RawData与Max RawData分别标志RawData阈值最小与最大值

Sref Open Test测试项

Sref Open Test	Threshold: 50	Base1: 0 💌
		Base2: 0

Sref Open测试,计算出两种不同模式下的CB的差值然后分别减去相应设置的Base1、Base2的值最后计算出相应的结果,将该结果与设定的阈值Threshold相比较,若超出范围则测试NG。

CB Deviation Test测试项

CB Deviation Test	Threshold: 50 -
-------------------	-----------------

CB Deviation测试,获取正常模式下的CB值,然后将获取的CB值的数组 对半相减,将相减结果与设定的阈值Threshold相比较,若超出范围则测试 NG。

Differ Test测试项

Differ Test	Ave Threshold: 500	Max Threshold: 500 💌
-------------	--------------------	----------------------

Differ测试,获取不同CB下的RawData差值,并减去相应的Base,将结果与Threshold做比较,超出范围则认为NG。

Weak Short Test测试项

Weak Short Test	Gnd Threshold: 300 👻	Ref Threshold: 900 👻

weak short测试,根据计算得到短路值,将结果与Threshold做比较,超出 范围则认为NG。

Differ Test2测试项

Differ Test2		
🗹 Data_H	Min: 20000 -	Max: 24000 👻
🗹 Data_M	Min: 7100 -	Max: 7300 💌
🔽 Data_L	Min: 14000 🔽	Max: 16000 💌

Differ test2测试,获取不同CB下的RawData差值,并减去相应的Base,将结果与Threshold做比较,超出范围则认为NG。

K1 Differ Test测试项

K1 Differ Test	Start K1: 5	End K1: 25 👻
	Min Threshold2: 0	Max Threshold 2: 5
	Min Threshold4: 0	Max Threshold4: 5
	Deviation2: 3	Deviation4: 3

K1 Differ test测试,先设置不同的K1值获取两组不同的CB值,之后再计算 出DeltaDiffer的数据,根据一定的条件将DeltaDiffer中的值与设定阈值比 较,若不在范围内则测试NG,并求出两组不同阈值下的最大、最小、平均 值。再根据分组计算出一组新的值,并根据不同的条件与设定的不同的 Deviation进行比较,若超出范围,则测试NG。

LCD Noise Test测试项

LCD Noise Test		
tip before test	Select Frames: 32	Noise_Max: 20 💌

LCD Noise test测试,在FW中设置设定帧数的differ数据,获取其最大值与 设定的阈值Noise_Max做比较,超出范围则认为NG。

Report Test测试项

Report Test

Limited Time: 3 👻

Report test测试,在工作模式下,在设定的时间内(单位:s)若没有触摸,则测试NG。

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置通道分类。
- 2. 设置详细阈值。

如下图所示:

Setting		J
I. Interface 2. Common Config Other Config Other Config Other Test Items Detail Threshold Other Test Items S. Other Test Items	Mutual-Capacitance: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items: Detail	
····· 6. Save File	Self-Capacitance:	
	1. Set Sort for Some Test Items: Setting	
	2. Set Detail Threshold for some Test Items: Detail	
	Previous Next Cancel	

一、设置通道分类

配合Delta Ci Test等功能测试项,我们需要对通道分类。之所以需要对通 道进行分类,是因为有的屏体不同通道之间有较大差异。所有通道一起判断,不利于判断屏体是否属于良品,通道细分开来,则更能灵活适应测试 较为特殊的屏体。

点击"Set Sort.."按钮,弹出分类对话框,如下:

et Sort D	ialog														X
				CH	4和CH5;	是相邻道	通道,CH	5和Ch7	不是相邻	3通道					
Sort	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CH	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7	Ch8	Ch9	Ch10	Ch11	Ch12	Ch13	Ch14	Ch15
Sort	1	1	1	2	2	1	2	3	3	4	4	5	5	6	6
CH	Ch17	Ch18	Ch19	Ch20	Ch21	Ch22	Ch23	Ch24	Ch25	Ch26	Ch27	Ch28	Ch29	Ch30	Ch31
Sort	1	1	1	2	2	1	2	3	3	4	4	5	5	6	6
Key	Key1	Key2	Key3	+						1					
Sort	1	1	1	1											
•	1			1			III								•
				CH4和	CH20是相	目对通道	İ								
Channel N 32 Key Num:	lum:	Sort	1: Ch Ch 2: Ch	_1 Cl _19 Cl	1_2 C 1_22 C	h_3 h_32 h_7	Ch_6 Key_1 Ch_20	Ch_16 Key_2 Ch_21	Ch_17 Key_3 Ch_23	Ch_18					
3	•	Sort Sort Sort	3: Ch 4: Ch 5:	_8 Cł _10 Cł	n_9 C n_11 C	h_24 h_26	Ch_25 Ch_27								
			Ch	_12 Cł	n_13 C	h_28	Ch_29								

默认所有通道都属于第一类(Sort1)。需要增加其他类,直接修改通道》 应的类值即可。软件自动把相同数字的通道分成同一类,比如下图的 Ch8、Ch9、Ch24和Ch25分成第3类,使用Sort3的阈值。

二、设置详细阈值

Basic Threshold所设置的测试阈值是针对所有的通道,实际应用上,有的通道需要根据实际情况特殊处理。

针对这种特殊情况,我们的解决办法是允许针对每一个通道赋予特殊的测试范围,只要每一个通道的测试阈值满足最大阈值大于最小阈值就可以。因此,我们提供了一个可以详细设置每一个节点测试阈值的功能

点击set Detail Threshold for same Items的"Detail.."按钮,即弹出"SCap Detail Setting"对话框,如下图所示:

SCap Detail Setting	Set Thres	hold: -										
RawDataTest_Max												
⊡ · Cb Test CbTest Min	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	C 9	C10	C11	
CbTest_Max	0	0	0	0	0	0	0	0	0	0	0	
⊡ Delta Cb Test DeltaCbTest_Base	C12	C13	C14	C15	C16	C1/	C18	C19	C20	C21	C22	
- Noise Test	0	U	U	U	U	U	U	U	U	U	U	
···· NoiseTest_Max	-											
DifferTest_Base												
Channel Num: 22 🔽	If you m 列表数: - Auto Set Data Dire Change	nodify tf 据被修 Thresho ctory: Rate: Item:	ne data 改时, jold: 0%	in the l 修改后	ist, it w 的有效	ill be sa 数据将	ved au 子会被自	tomatic: 运力保存	ally. 7.			Select
Key Num: 0 🔽						()	Analyze	Data				Auto Set Threshold

1.手动修改阈值

点击左边树形控件的测试项的阈值项,右边的Set Threshold列表就会显示 其当前阈值。将每一个通道的当前阈值修改成所需阈值,就完成其阈值设 置,软件会自动将修改后的阈值保存到配置文件。

2.自动修改阈值

手动填写上述阈值,难免出现错误。增加自动设置阈值的功能,是为了使 得设置阈值更规范更方便。

自动设置阈值的操作步骤:

- 加载测试数据。点击Data Directory后面的"Select..."按钮,选择以软件认定的标准格式保存下来的测试数据的目录。软件会加载此目录下的数据,但不包括子目录下的数据。
- 选择测试项。点击左边树形控件的测试项的阈值项,即选择了测试 项。
- 3. 选择AnalyzeData, 弹出数据分析界面, 选择删除文件, 过滤不需要的数据
- 4. 选择阈值规格。阈值规格是指对测试数据的平均值进行改变的标准, Change Rate是指对所选择的有效数据的平均值增减的比率。

 开始设置阈值。点击"Auto Set Threshold"按钮,软件就会开始统计计算阈值。如果成功设置了阈值,会弹出对话框提示"成功设置测试项 (******)的阈值",并将计算得到的阈值显示到阈值列表里;如果打不到有效数据,则提示"无效数据"。

数据分析使用说明:

- 1. IC_Type显示芯片型号, Directory显示带分析文件路径
- 2. Offset表示偏移值,输入10,则每个通道分布最多的数值+10,-10↓ 外的数据都被删除

• 选定图形类型可以显示所选数据的波动图与分布图

Copyright 2010-2015 FocalTech-Systems Co., Ltd. All rights reserved

E

先在Interface配置页的IC_Type选择需要以下芯片:

- FT6X06
- FT3X06

选择Data Test Items配置页时,就会显示以下测试项内容:

. Common Config	Check Item:			
Other Config	Project Code Test	Code:		
. Data Test Items	FW Version Test	Main Version:	0xff 🗨	
Basic Threshold	Factory ID Test	ID_Number:	0xff 🗨	
Detail Threshold Graph Test Items	IC Version Test	IC_Version:	C 👻	
. Other Test Items . Save File	Required Test Item:			
	Ci Test		Delta Ci Test	
	Channels Deviation Test		Two Sides Deviation Test	
	RawData Test	•	Channel Number Test	
	Option Test Item:			
	INT Pin Test	П	Reset Pin Test	
	Noise Test	Г	FPCBA Short Test	
	FPCBA Open Test	Г	Sref Open Test	
	Ci Deviation Test			

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如

下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设能相一致。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

- 备选测试项,针对不同项目使用,视不同情况选择。
- 在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Channel	Num: 22	•	Key Num: 0	•
通道数测试。 的数量一致。	此测试项检测读取出来的 一致则Pass,有出入则	的通道和 Fail。]按键数量是	皆与FW里	≧设定
Ci Test 测试I	页				
Ci Test	Ci	_Min: 5	•	Ci_Max: 250	•

补偿电容测试。Ci是为获取均匀RawData而采取的补偿电容。此测试项框 据补偿电容的变化来判断待测屏的开路短路。在Ci_Min和Ci_Max设置最/ 和最大的测试阈值,如果测试时,读取到的Ci Data有在测试阈值之外的 则此测试项为Fail,反之,为Pass。

Delta Ci Test测试项

Delta Ci Test	Base: 0 ✓ Differ_Max: 60 ✓ Deviation_Max_Sort1: 15 ✓ Deviation_Max_Sort2: 15 ✓ Deviation_Max_Sort3: 15 ✓ Deviation_Max_Sort4: 15 ✓ Deviation_Max_Sort5: 15 ✓ Deviation_Max_Sort6: 15 ✓ Deviation_Max_Sort1: 20 ✓ Critical_Sort2: 20 ✓ Critical_Sort1: 20 ✓ Critical_Sort2: 20 ✓ Critical_Sort3: 20 ✓ Critical_Sort4: 20 ✓ Critical_Sort5: 20 ✓ Critical_Sort6: 20 ✓	•				
	Deviation_Max_Sort1:	15	-	Deviation_Max_Sort2:	15	-
	Deviation_Max_Sort3:	15	-	Deviation_Max_Sort4:	15	-
	Deviation_Max_Sort5:	15	-	Deviation_Max_Sort6:	15	-
Include Key Test	Key_Differ_Max:	60	-			
Set Critical Value	Critical_Sort1:	20	-	Critical_Sort2:	20	-
	Critical_Sort3:	20	-	Critical_Sort4:	20	-
	Critical_Sort5:	20	-	Critical_Sort6:	20	-
Set CS			_			

补偿电容增量测试。这是通过一定的算法获取到的补偿电容增量(简称 ΔCi)。ΔCi用于辅助判断待测屏的开路短路。下面是参数说明:

- Base是ΔCi的基准值,此阈值是多个良品的ΔCi的平均值。
- Differ_Max是一帧Delta_Ci_Differ的最大值,大于此阈值即NG。
 Delta_Ci_Differ是当前待测屏的∆Ci减去Base得到的差值。
- Deviation_Max_Sort是同一类Delta_Ci_Differ的最大值与最小值的偏差,超过此类的阈值即NG。为了兼顾不同的屏体,允许对通道进行;类,最多可分成6类(如何分类,将在Detail Threshold页说明),下面会介绍如何分类。默认情况下,所有通道都属于第1类。
- 上述Deviation_Max_Sort的判断是针对VA区通道,若要增加按键区判断,须勾选Include Key Test复选框,并设置其最大阈值 Key_Differ_Max。
- Critical_Sort是比Deviation_Max_Sort更大的临界条件值。设置临界第 件是为了判断要不要画线。如果测试过来的值落在 Deviation_Max_Sort与Critical_Sort之间,则要画线复判屏体是否为 品。大于Critical_Sort则直接NG。
- CS是为了调整Ci而设置的寄存器,关于CS的设置,将在后面详解。

Chanels Deviation Test测试项

Channels Deviation Test	Deviation_Max_Sort1: 10 💌	Deviation_Max_Sort2: 10 -
	Deviation_Max_Sort3: 10 💌	Deviation_Max_Sort4: 10 -
	Deviation_Max_Sort5: 10 💌	Deviation_Max_Sort6: 10 -
Set Critical Value	Critical_Sort1: 15 💌	Critical_Sort2: 15 -
	Critical_Sort3: 15 🚽	Critical_Sort4: 15 -
	Critical_Sort5: 15 🚽	Critical_Sort6: 15 🚽

相邻通道差值测试。此测试项是Delta Ci Test测试项进一步细分判断,判断同一类相邻通道的Delta_Ci_Differ偏差。同样支持最多分成6类来判断 (如何分类,将在Detail Threshold页说明)。

Deviation_Max_Sort是同一类相邻通道的最大偏差阈值,Critical_Sort是 Deviation_Max_Sort更大的临界条件值。

设置临界条件是为了判断要不要画线。如果测试过来的值落在 Deviation_Max_Sort与Critical_Sort之间,则要画线复判屏体是否为良品。 大于Critical_Sort则直接NG。

Two Sides Deviation Test测试项

Two Sides Deviation Test	Deviation_Max_Sort1: 6	Deviation_Max_Sort2: 6
	Deviation_Max_Sort3: 6	Deviation_Max_Sort4: 6
	Deviation_Max_Sort5: 6	Deviation_Max_Sort6: 6
Set Critical Value	Critical_Sort1: 15	Critical_Sort2: 15 -
	Critical_Sort3: 15	Critical_Sort4: 15 -
	Critical_Sort5: 15	Critical_Sort6: 15 🚽

相对通道差值测试。此测试项是Delta Ci Test测试项进一步细分判断,判断同一类相对通道的Delta_Ci_Differ偏差。同样支持最多分成6类来判断 (如何分类,将在Detail Threshold页说明)。

Deviation_Max_Sort是同一类相邻通道的最大偏差阈值,Critical_Sort是 Deviation_Max_Sort更大的临界条件值。

设置临界条件是为了判断要不要画线。如果测试过来的值落在 Deviation_Max_Sort与Critical_Sort之间,则要画线复判屏体是否为良品。 大于Critical_Sort则直接NG。

RawData Test测试项

RawData Test	RawData_Min: 12500 👻	RawData_Max: 16500 👻
--------------	----------------------	----------------------

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路 以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测 试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测i 项为Fail,反之,为Pass。

Int Pin Test测试项

locg dual 10x4f

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 💌

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加/ 不影响其他功能。

Noise Test测试项

Noise Test	Sample by frame:	Select Frames:	32	-
	C sample by time:	Select Time:	1s	-
tip before test	Noise_Mode: Avg	Noise_Max:	20	•

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。Select Frames是i 择参与噪声测试的RawData帧数,Select Time是选择参与噪声测试的采标 时间。Tip Before Test选择是否在Noise测试之前提示。Noise_Mode是噪 声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声 值,Max-Min是以最大最小值的差值作为噪声,Differ以前后两帧的差值作 为噪声。Noise_Max是噪声测试的最大阈值,有节点的噪声值大于此阈值 则NG,否则为PASS。

FPC Short测试项

FPCBA Short Test	Min Ci: 5	-	Max Ci:	245	-
	Min RawData: 5000		Max RawData:	50000	-

FPC短路测试,在一定条件下获取Ci与RawData值,与设置值相比较,看 是否超出范围,Min Ci与Max Ci分别表示Ci阈值最小与最大值,Min RawData与Max RawData分别标志RawData阈值最小与最大值

FPC Open测试项

FPCBA Open Test	Min Ci: 5	-	Max Ci:	245	•	
	Min RawData: 5000	-	Max RawData:	50000	-	

FPC开路测试,在一定条件下获取Ci与RawData值,与设置值相比较,看 是否超出范围,Min Ci与Max Ci分别表示Ci阈值最小与最大值,Min RawData与Max RawData分别标志RawData阈值最小与最大值

Sref Open Test测试项

Sref Open Test	Threshold: 50 🗸	Base1: 0
		Base2: 0

Sref Open测试,计算出两种不同模式下的CB的差值然后分别减去相应设置的Base1、Base2的值最后计算出相应的结果,将该结果与设定的阈值Threshold相比较,若超出范围则测试NG。

Ci Deviation Test测试项

Ci Deviation Test	Threshold: 50 💌	Max: 50 -

Ci Deviation测试,先获取正常模式下的Ci值,然后减去相应的Ci的base 值,计算得到值的最大值记为max1,若max1大于设定的max值,测试 NG;再将得到的值前后两部分分别相减,将得到的值与设定的Thresholc 相比较若超出该值,测试亦NG。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置通道分类。
- 2. 设置详细阈值。

如下图所示:

Setting	
□ 2. Common Config □ 2. Common Config □ Other Config □ 3. Data Test Items	Mutual-Capacitance: 1. Set invalid node for all Test Items: Setting,,
Basic Threshold Detail Threshold 4. Graph Test Items 5. Other Test Items	2. Set Detail Threshold for some Test Items: Detail
····· 6. Save File	Self-Capacitance:
	1. Set Sort for Some Test Items: Setting
	2. Set Detail Threshold for some Test Items: Detail
	Previous Next Cancel

一、设置通道分类

配合Delta Ci Test等功能测试项,我们需要对通道分类。之所以需要对通 道进行分类,是因为有的屏体不同通道之间有较大差异。所有通道一起判 断,不利于判断屏体是否属于良品,通道细分开来,则更能灵活适应测试 较为特殊的屏体。

点击"Set Sort.."按钮,弹出分类对话框,如下:

				CI	H4和CH5	是相邻ì	通道,CH	15和Ch7	不是相邻	3通道					
Sort	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Н	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7	Ch8	Ch9	Ch10	Ch11	Ch12	Ch13	Ch14	Ch1
Sort	1	1	1	2	2	1	2	3	3	4	4	5	5	6	6
H	Ch17	Ch18	Ch19	Ch20	Ch21	Ch22	Ch23	Ch24	Ch25	Ch26	Ch27	Ch28	Ch29	Ch30	Ch3
Sort	1	1	1	2	2	1	2	3	3	4	4	5	5	6	6
(ev	Key1	Key2	Key3												
Sort	1	1	1	μ			3			J					
				1											
				「 CH4和	ICH20是	相对通道	ĕ								
annel M	Num:	Sort	t1:												
32	-		Ch	_1 0	h_2 0	h_3	Ch_6	Ch_16	Ch_17	Ch_18					ſ
		Sort	t2:	_19 0	n_22 C	.n_32	Key_1	Key_2	Key_5						
V Num:			Ch	_4 0	h_5 C	h_7	Ch_20	Ch_21	Ch_23						
3	-	Sort	Ch	8 C	h 9 0	h 24	Ch 25								
		Sort	t4:	_		_	-								
		Sort	Ch	_10 C	h_11 C	h_26	Ch_27								
			Ch	12 0	h 13 C	h 28	Ch 29								

默认所有通道都属于第一类(Sort1)。需要增加其他类,直接修改通道对 应的类值即可。软件自动把相同数字的通道分成同一类,比如下图的 Ch8、Ch9、Ch24和Ch25分成第3类,使用Sort3的阈值。

二、设置详细阈值

Basic Threshold所设置的测试阈值是针对所有的通道,实际应用上,有的通道需要根据实际情况特殊处理。

针对这种特殊情况,我们的解决办法是允许针对每一个通道赋予特殊的测 试范围,只要每一个通道的测试阈值满足最大阈值大于最小阈值就可以。 因此,我们提供了一个可以详细设置每一个节点测试阈值的功能

点击set Detail Threshold for same Items的"Detail.."按钮,即弹出"SCap Detail Setting"对话框,如下图所示:

⊡ RawData Test	Set Thres	hold: -										
RawDataTest_Max	01	C 2	0.3	C 4	0.5	0.6	0.7	C 8	C 9	C10	C11	
CiTest_Min	0	0	0	0	0	0	0	0	0	0	0	
Delta Ci Test DeltaCiTest_Base DeltaCiTest_Assebut	C12 0	C13 0	C14 0	C15 0	C16 0	C17 0	C18 0	C19 0	C20 0	C21 0	C22 0	
DeltaCiTest_AnotherBase												
4 [111] }	列表数 - Auto Set Data Dire	据被修i Thresho ectory:	改时, old: —	修改后	前有效	数据将	法	动保有	ŗ.			Select
· · · · · · · · · · · · · · · · · · ·	Change	Rate:	0%		•							
Channel Num: 22		Item:										
,						A	Analyze	Data				Auto Set Threshold

1.手动修改阈值

点击左边树形控件的测试项的阈值项,右边的Set Threshold列表就会显示 其当前阈值。将每一个通道的当前阈值修改成所需阈值,就完成其阈值设 置,软件会自动将修改后的阈值保存到配置文件。

2.自动修改阈值

手动填写上述阈值,难免出现错误。增加自动设置阈值的功能,是为了使 得设置阈值更规范更方便。

自动设置阈值的操作步骤:

- 1. 加载测试数据。点击Data Directory后面的"Select…"按钮,选择以软件认定的标准格式保存下来的测试数据的目录。软件会加载此目录下的数据,但不包括子目录下的数据。
- 2. 选择测试项。点击左边树形控件的测试项的阈值项,即选择了测试 项。
- 3. 选择AnalyzeData, 弹出数据分析界面, 选择删除文件, 过滤不需要的数据

- 4. 选择阈值规格。阈值规格是指对测试数据的平均值进行改变的标准, Change Rate是指对所选择的有效数据的平均值增减的比率。
- 开始设置阈值。点击"Auto Set Threshold"按钮,软件就会开始统计计 算阈值。如果成功设置了阈值,会弹出对话框提示"成功设置测试项 (******)的阈值",并将计算得到的阈值显示到阈值列表里;如果找 不到有效数据,则提示"无效数据"。

数据分析使用说明:

C_Type: FT6X06 💌	Please Selec	t Directory									
et graphics coordinates: Set Coordinates	-Set Channe	els First:	S	et Channels							
et Data Group:	– Set Graph	Г <mark>у</mark> ре	Fluctu Ci Tes	iation Graph st	•						
Del File	10000				·						
ap Yield/Mcap Ratio	9000				· - {						
Scap Yield Statistics:	8000 — - · 7000 — - ·		 ,		· -	+ - + - +				 	
art:	6000	¦		-	· - i	+					
d:	5000							¦		!	
m:	4000			 	 	 		 		 	
iio:	3000 —					+					
	2000										
Cal Ratio							1.5				

- IC_Type显示芯片型号,Directory显示带分析文件路径
 Offset表示偏移值,输入10,则每个通道分布最多的数值+10,-10之 外的数据都被删除
- 3. 选定图形类型可以显示所选数据的波动图与分布图

FT5822、FT5626、FT5726、FT5826B、FT3617、FT3717、FT7811、 FT5826S 在综合测试软件中使用相同的UI。

先在Interface配置页的IC_Type选择需要以下芯片:

- FT5822
- FT5626
- FT5726
- FT5826B
- FT3617
- FT3717
- FT7811
- FT5826S

在这些芯片选择了整体归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

Setting	action of the local division of the local di		-		×
1. Interface 2. Common Config Other Config Terminal Config 3. Data Test Items Basic Threshold Detail Threshold 4. Graph Test Items 5. Other Test Items	Check Item: Project Code Test FW Version Test Factory ID Test Required Test Item:	Code: Main Version: ID_Number:	Dxff	ASCII Conversion	
····6. Save File	 RawData Test SCap RawData Test RawData Uniformity Test Channel Number Test 	ज ज ज	Ý Weak Short-Circuit Test Ý SCap CB Test Ý CM Test		
	Option Test Item: INT Pin Test Scap Noise Test Noise Test	r r	Reset Pin Test LCD Noise Test		
					Ŧ
			Previous Ne	ext Cancel	

在这些芯片选择了自动归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

Interface Common Config Other Config Terminal Config Data Test Items Basic Threshold	Check Item: Project Code Test FW Version Test Factory ID Test	Code: Main Version: ID_Number:	0xff _▼ 0xff _▼	ASCII Conversion
4. Graph Test Items 5. Other Test Items 6. Save File	Required Test Item:	v i	Weak Short-Circuit Test	
	SCap RawData Test	V	SCap CB Test	
	RawData Uniformity Test	V	CM Test	
	Channel Number Test	Г	Panel Differ Test	
	Option Test Item:			
	TINT Pin Test	Г	Reset Pin Test	
	Scap Noise Test	Г	LCD Noise Test	
	Noise Test	Γ	Panel Differ Uniformity Test	

无论选择哪种方式测试项内容均分三部分,包括检测项、必选测试项和备 选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如 下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设的相一致。ASCII Conversion是否进行ascii码转换;勾选输出其ASCII 码值,不勾选输出相应的字符值。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- 二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

整体归一的RawData测试项

RawData Test		
V Low Frequency	RawData_Min: 7000 👻	RawData_Max: 10000 -
High Frequency	RawData_Min: 7000 👻	RawData_Max: 10000 -
自动归一测试项		
RawData Test	RawData_Min: 7000 💌	RawData_Max: 11000 💌

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

整体归一测试原始数据测试包括两部分: 低频状态下的原始数据与高频制态下的原始数据测试,两者综合结果决定RawData Test是否PASS

自动归一测试原始数据测试只有测试低频状态下的原始数据

SCap CB Test测试项

SCap CB Test		
Waterproof Off	Min Threshold: 0	Max Threshold: 240 💌
Waterproof On	Min Threshold:	Max Threshold: 240 💌

自电容部分的CB测试,检测CB是否饱和。

ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

Scap RawData Test测试项

SCap RawData Test		
✓ Waterproof Off	Min Threshold: 5000 -	Max Threshold: 8500 👻
Waterproof On	Min Threshold: 5000 -	Max Threshold: 8500 🚽

自电容部分的RawData测试,包括开防水(Waterproof On)与关防水 (Waterproof Off)下的RawData测试,两者综合结果决定Scap RawData Test是否PASS

Channel Num Test测试项

Channel Num Test		
🔽 mapping	Tx Channels: 13	Rx Channels: 24 💌
no mapping	Tx Channels: 13 💌	Rx Channels: 24 👻

通道数测试。分为mapping和no mapping,检测读取出来的Tx和Rx数量是 否与FW中的设置mapping和 no mapping时设定的数量一致。一致则 Pass,有出入则Fail。

Int Pin Test测试项		
Int Pin Test	Reg Addr: 0x08 💌	INT
测试项,检测中断功能。		
Reset Pin Test测试项		
Reset Pin Test	Reg Addr: 0x88 💌	

Reset测试项,检测Reset功能,Reset脚位与Wake脚位共用一个脚位。

Noise Test测试项

Noise Test		🖲 sam	ple by	frame:	Select Frames:	32	•
T tip before test		C sam	ple by	time:	Select Time:	1s	Ŧ
	Noise_Mode:	Ave	-	N	oise_Coefficient:	50	-
Glove Mode	Rawdata_Min:	5000	-	Glove N	loise Coefficient:	100	Ŧ
Noise Threshold Choose	Set_Frequency:	0	-		Noise_Max:	50	Ŧ
TP Tool Process	Min NG Frame:	Defaul	t 🔻				

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Glove Mode是是否选择手套模式。若选中则Rawdata_Min有效,否则无刻

Rawdata_Min是在FIR=1,默认频率下,获取一帧Rawdata值取其中最小的一个Rawdata值,若该值大于等于设定的Rawdata_Min阈值时则 PASS,小于该阈值时则NG。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,X(n)-X(n+1以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的 噪声值大于此计算出阈值则NG,否则为PASS。

Gloce Noise Coefficient是读取用于计算手套模式的噪声阈值的噪声测试的系数,有节点的噪声值大于此计算出阈值则NG,否则为PASS。

Weak Short-circuit Test测试项

CG_Min:	4000	-
---------	------	---

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Uniformity Test测试项

Uniform	nity Test			
V	Tx Linearity	Threshold:	20	-
~	Rx Linearity	Threshold:	20	-
~	Min/Max	Threshold:	70	-

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Uniformity测试才通过,可以单独对其中一部分进行设置

CM Test测试项

CM Test	
Min CM	Threshold: 0.5
Max CM	Threshold: 5

CM值检查测试,分为两部分:

Min CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)小,则NG

Max CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值

比设置阈值(Threshold)大,则NG

两者是相与的关系,只有两项都通过,整个CM测试才算通过,可以单独 对其中一部分进行设置

Panel Differ Test测试项

Panel Differ Test	PanelDiffer_Min: 150	PanelDiffer_Max: 1000 💌			
PanelDiffer_Min: 设	置的panel Differ阈值的最小值				
PanelDiffer_Max: 设置的panel Differ阈值的最大值					
Panel Differ Uniformity Test测试项					
Panel Differ Uniformity Test					

Tx Linearity	Threshold: 20
Rx Linearity	Threshold: 20 V
Min/Max	Threshold: 70 V

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Panel Differ Uniformity测试才通过,可以单独对其中一部分进行设置

Scap Noise Test测试项

Scap Noise Test		
	Select Frames: 32	Noise_Mode: Max 💌
Waterproof Off	Min Threshold: 50 💌	
Waterproof On	Min Threshold: 50 💌	

自电容部分的Noise测试,包括开防水(Waterproof On)与关防水
(Waterproof Off)下的noise测试,两者综合结果决定Scap noise Test是否 PASS.

LCD Noise Test测试项

LCD Noise Test		
	Sample Frames: 200	✓ LCD Noise Confficient: 35 ▼
	Noise Max 15	▼ Noise_Mode: 1 ▼
	Set_Frequency: 0	
☑ Set Threshold Mode	Noise_Coefficient: 50	▼ Noise_Threshold: 50 ▼

ICD Noise测试,先将设置的前五个值写入相应的寄存器,然后读取Noise的数据,然后与设定阈值相比较,若超出阈值,则测试NG。此外,若设 完参数后从新获取FrameNum与设定的Frame Max Num相比较,若大于ì 定值,则测试亦NG。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0			0	7	0	0	
ompt:		Tx\RX	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0: 无效节点,7	下测试	TX3	1	1				1	1	1	1	1
1: 有效节点,需	통测试 ≢难设罢	1x4	1	1	1	1	1	1	1	1	1	1
2. 1XME P.R. 1	<u>а ж кхтт</u>	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
		Tx7	1		1							1
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1									1
Dx Num		Tx10	1	1	1	1	1	1	1	1	1	1
KX Num: 10	-	Tx11	1	1	1	1	1	1	1	1	1	1
Type: MC	ap 💌	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Nod	e											II
		Invalid No	ode:									
		Invalid No (Tx15, R)	ode: x1),		(Tx15	5, Rx2),	(1	x15,	Rx4),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: x1), :: x3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	רז (ד	x15, x15,	Rx4), Rx9),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: k1), :: k3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	(1 (1	x15, x15,	Rx4), Rx9),		(Tx15

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

t Special Threshold																	
	Tx\Rx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RawDataTest_HIGH_Min	Tx1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
PanelDifferTest_Max	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest ON Max	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_Min	Tx4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
···· SCapRawDataTest_OFF_Max ···· SCapRawDataTest_OFF_Min	Tx5	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Max	Tx6	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Min	Ty7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_OFF_Max SCapCbTest_OFF_Min	Typ	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Max	T.0	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Min	T	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	1x10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
• III •	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Set Value:	Tx12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Start: End:	Tx13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx: 1 🔽 13 💌																	
Rx: 1 🔻 24 💌																	
alue: Modify																	
Tx Num: 13																	
Rx Num: 24																	
Auto Set Threshold	•					!!!											+
Export Min & Max	If you mod 제素粉据	If you modify the data in the list, it will be saved automatically. 利益素狀實驗後於時日,後分上的台方物計測這合為自合为任何在一個															
Laporer ar driukin	73478X14																

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 4. 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Data Analyze"按钮,则会自动打开数据分析工具,可以在数据 分析工具里面查看数据分析情况。
- 6. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。

整体归一及默认时:

Auto Set Detail Threshold

Data Directory:		
est Item:	Threshold:	
RawData Test High	Min Threshold: Change Rate: 25% Change Value:	
C RawData Test Low	Max Threshold: Change Rate: 25% Change Value:	
	Data Analyze Set Threshold	
		-

23

自动归一时:

Auto Set Detail Threshold		23
Data Source:		
Test Item: RawData Test High Panel Differ Test	Threshold: Min Threshold: Change Rate: 25% Change Value: Max Threshold: Change Rate: 25% Change Value: Data Analyze Set Threshold	*

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

先在Interface配置页的IC_Type选择需要以下芯片:

- FT5306
- FT5406

选择Data Test Items配置页时,就会显示以下测试项内容:

Setting	allech	and the second se	X
Setting - 1. Interface - 2. Common Config - Other Config - 3. Data Test Items - Basic Threshold - Detail Threshold - 4. Graph Test Items - 5. Other Test Items - 6. Save File	Check Item: Project Code Test FW Version Test Factory ID Test Required Test Item: RawData Test Channel Number Test Option Test Item: INT Pin Test Rx Crosstalk Test RawData Uniformity test	Code: Main Version: Dxff ID_Number: Dxff Panel Differ Test Calibration Test Reset Pin Test Noise Test DifferData Uniformity test	
	DifferData Rx Linearity Test RawData Rx Deviation test	DifferData Tx Linearity Test Previous Next Cancel	•

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- 二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

RawData Test	RawData_Min: 7000 💌	RawData_Max: 10000 👻
Modify RawData	Set Offset Value of Key: 0	

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

Panel_Differ Test测试项

Panel Differ Test	Panel_Differ_Min(abs): 150 💌	Panel_Differ_Max(abs): 1000 -
	Change Vol Level: 4	
Set Start Vol and End Vol	Start Vol: 0	End Vol: 2

虚拟触摸测试,此测试项判断待测屏的开路短路。在 Panel_Differ_Min(abs)组合框和Panel_Differ_Max(abs)组合框设置最小维 对值阈值和最大绝对值阈值,如果测试时,读取到的Differ Data的绝对值 在测试阈值之外,则此测试项为Fail,反之,为Pass。

Change Vol Level: 改变电压档数,根据当前芯片电压档改变电压档数。

Set Start Vol and End Vol: 在这里可以设置开始时的电压档和改变后的电压档,此项有效,则改变电压档数(Change Vol Level)不在测试时使用。

Change Offset Level: 改变Offset档数。

Channel Num Test测试项

Channel Num Test	Tx Channels: 13	Rx Channels: 24	•
通道数测试。此测试项检测读 量一致。一致则Pass,有出入	取出来的Tx和R 则Fail。	x数量是否与FW里	设定的数
Rx Crosstalk Test测试项			
Rx Crosstalk Test	Min Threshold: -300	Max Threshold: 10	• 000
Rx串扰测试。此串扰测试的测量断Rx之间的短路。	试方法与别的芯	际不同,以RawD	ata值来¥
Int Pin Test测试项			
Int Pin Test	Reg Addr: 0x4f	·	INT
测试项,检测中断功能。			
Reset Pin Test测试项			
Reset Pin Test	Reg Addr: 0x88	•	
Reset测试项,检测Reset功能	, Reset脚位与	Wake脚位共用一个	卜脚位。

Noise Test测试项

Noise Test	Sample by frame:	Select Frames:	32	-
	C sample by time:	Select Time:	1s	-
tip before test	Noise_Mode: Ave 👻	Noise_Max:	20	-

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。Select Frames是让择参与噪声测试的RawData帧数,Select Time是选择参与噪声测试的采标时间。Tip Before Test选择是否在Noise测试之前提示。Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值。Noise_Max是噪声测试的最大阈值,有节点的噪声值大于此阈值则NG,否则为PASS。

RawData Rx Deviation Test测试项

RawData Rx Deviation Test

Max Threshold: 500 -

Rx均匀度测试,此测试项检查RawData Test测试项读取到的每一列Raw Data的均匀度,大于Rawdata_Deviation_Max设置的阈值,则此测试项为 Fail,反之,为Pass。

RawData Uniformity Test测试项

RawData Uniformity test

Percent_(min/max): 90% -

RawData均匀度测试,此测试项检查RawData Test测试项读取到的Raw Data的均匀度。Percent_(min/max)是一帧Raw Data的最小值与最大值的 百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

DifferData Rx Linearity Test测试项

DifferData Rx Linearity Test

Max Threshold(abs): 50 -

Rx线性度测试,此测试项检测Panel Differ Test读取到的每一列Differ值的 线性度。Max Threshold是同一列相邻Tx的Differ值的偏差值。相邻Tx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Tx Linearity Test测试项

Tx线性度测试,此测试项检测Panel Differ Test读取到的每一行Differ值的 线性度。Max Threshold是同一列相邻Rx的Differ值的偏差值。相邻Rx的 Differ值相差,小于此阈值,则此测试项为Fail,整一帧无小于此阈值,则 为Pass。

DifferData Uniformity Test测试项

DifferData	Uniformity test
------------	-----------------

Percent_(min/max): 80% -

DifferData均匀度测试,此测试项检查Panel Differ Test测试项读取到的 DifferData的均匀度。Percent_(min/max)是一帧DifferData的最小值与最; 值的百分比,小于此阈值,则此测试项为Fail,反之,为Pass。

Calibration Test测试项

Store CLB Result

校准测试,勾选Store CLB Result,测试完成对校准结果进行保存

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0			0	7	0	0	
ompt:		Tx\RX	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0: 无效节点,7	下测试	TX3	1	1				1	1	1	1	1
1: 有效节点,需	통测试 ≢难设罢	1x4	1	1	1	1	1	1	1	1	1	1
2. 1XME P.R. 1	<u>а ж кхтт</u>	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
		Tx7	1		1							1
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1									1
Dx Num		Tx10	1	1	1	1	1	1	1	1	1	1
KX Num: 10	-	Tx11	1	1	1	1	1	1	1	1	1	1
Type: MC	ap 💌	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Nod	e											II
		Invalid No	ode:									
		Invalid No (Tx15, R)	ode: x1),		(Tx15	5, Rx2),	(1	x15,	Rx4),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: x1), :: x3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	רז (ד	x15, x15,	Rx4), Rx9),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: k1), :: k3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	(1 (1	x15, x15,	Rx4), Rx9),		(Tx15

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold			_	-				_	-		_		
	Current No	de: RawD	ataTest_	Max									
RawDataTest_Max	Tx\Rx	1	2	3	4	5	6	7	8	9	10		
RawDataTest_Min	Tx1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
RxCrosstalkTest_Max RxCrosstalkTest_Min	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
PanelDifferTest_Max	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
- PanelDifferTest_Min	Tx4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
TxLinearityTest_Max	Tx5	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx6	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx8	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
	Tx12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
Set Value: Start: End:	Tx13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
Tx: 1 • 15 •	Tx14	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
Rx: 1 • 10 •	Tx15	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		
/alue: Modify													
TX Num: 15													
Rx Num: 10 🗸													
Auto Set Threshold													
Export Min & Max	If you modi 列表数据社	ify the dat rg 伦改时,	ta in the li 修改后i	st, it will b 的有效数	e saved a 据将会袖	utomatica 自动保存	lly.						Cancel
Export Mill & Max	>リスを多見が育ち	双眼的双目子。	istx/al	17612080	加切云视	日4川木1子	·					 	

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。

Auto Set Detail Threshold		x
Data Source:		
Test Item: RawData Test Panel Differ Test Rx Linearity Test Tx Linearity Test	Threshold: Min Threshold: Change Rate: 25% Change Value: Max Threshold: Change Rate: 25% Change Value: Set Threshold	

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Þ

先在Interface配置页的IC_Type选择以下芯片:

• FT8606

选择Data Test Items配置页时,就会显示以下测试项内容:

Setting		Contraction of the second seco	23
I. Interface Common Config Other Config Terminal Config Sotata Test Items Basic Threshold Detail Threshold Graph Test Items	Check Item: Project Code Test FW Version Test Factory ID Test	Code: Main Version: 0xff ID_Number: 0xff	
5. Other Test Items 6. Save File	Required Test Item:	✓ Channel Number Test✓ Short Circuit Test	
	Option Test Item:	C Reset Pin Test C OSC 60MHz Test VSN Test	
	Special Setting:		
		Previous Next Cancel	-

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

• FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW

Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。

• Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Ch_X:	15	•	Ch_Y:	24	-
	Key Num:	0	•			

数据通道测试,包括X方向的通道,Y方向的通道以及按键通道,当所有训 道数据都与设置一致时,测试PASS,否则NG

CB Test测试项

CB Test

CB_Min: 3 🗨

CB_Max: 100 -

补偿电容测试。CB是为获取均匀RawData而采取的补偿电容。此测试项标 据补偿电容的变化来判断待测屏的开路短路。在CB_Min和CB_Max设置 小和最大的测试阈值,如果测试时,读取到的CB Data有在测试阈值之外 的,则此测试项为Fail,反之,为Pass。

RawData Test测试项

RawData Test	RawData_Min: 5000 👻	RawData_Max: 11000 -
Compate rest	Kuwbada_nini 5000 ▼	

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路 以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测 试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测ì 项为Fail,反之,为Pass。

Short Circuit Test测试项

Short Circuit Test	CB_Max: 120 -	K2 Value: 150 👻

通道短路测试,CB_Max为短路测试的测试阈值,K2 Value控制电容充放 电时间,间接控制校准时间,如果测试时,读取到的CB Max在测试阈值 之外时,此测试项为Fail,反之Pass

Int Pin Test测试项

Int Pin Test

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 👻

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加/ 不影响其他功能。

Noise Test测试项

Noise Test	sample by frame:	Select Frames: 32 💌
	○ sample by time:	Select Time: 1
T tip before test	Noise_Mode: Ave 💌	Noise_Coefficient: 50 💌

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择 参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,Differ以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

OSC 60MHz Test测试项

OSC60MHz Test OSC60MHz_Min:	12 🔻	OSC60MHz_Max:	17	-

固定小坑数之后,读取OSC数据与设定的阈值相比较,若超出范围,则测试NG。

OSC TRM Test测试项

OSC Trm Test	OSCDetect_Min: 15	-	OSCDetect_Max:	17	-
	OSCTrm_Min: 15	-	OSCTrm_Max:	17	•

固定小坑数之后,读取OSC数据与设定的阈值相比较,若未超出范围,则测试OK,测试结束;否则,根据配置重新设定高低level值,之后读取osc的校准状态,若为0x55,则测试NG,测试结束,否则,重新固定小坑数,并读取OSC数据与设定阈值相比较,若未超出范围则测试OK,否则NG。

LCD Noise Test测试项

LCD Noise Test	Frame_Num: 50 -	Noise_Coefficient: 50 💌

Frame Num是设定读取的帧数, Noise coefficient是用来计算阈值的。

LCD Noise Test是通过FW计算噪声,工具来进行判断的方式。先设定帧 等相关参数,然后读取Differ数据,获取最大的噪声值为相应的Noise值, 之后与计算的阈值进行比较,若超出范围,测试NG.

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

Set Invalid Node	-																									×
Prompt:	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
0: invalid node	Chx1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1: valid node	Chx2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: Key hode	Chx3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
0: 无效节点,不测试 1: 有效节点,需测试	Chx4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: 按键节点,特殊设置	Chx5	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Operate:	Chx8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chx Num: 16	Chx9	1	1	1		1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chy Num: 24 👤	Chx11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Key Num: 6 💌	Chx12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Export Node	Chx16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Key	2	2	2	0	0	0																			
	Invalid No	ode:																								*

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold	1.00	-	_	1.00													
RawDataTest_Max	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RawDataTest_Min	Chx1	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBTest_Max CBTest_Min	Chx2	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHxLinearity	Chx3	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHyLinearity	Chx4	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
- Differ2Uniformity_CHyLinearit	Chx5	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx6	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx7	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx8	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx9	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx10	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx11	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
↓ Welver	Chx12	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
et value: Start: End:	Chx13	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chx: 1 💌 15 💌	Chx14	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chy: 1 💌 24 💌	Chx15	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
alue: Modify	Key	11000	11000	11000	11000	11000	11000										
Chy Num: 15																	
Chu Numu																	
Chy Num: 24 _▼																	
Key Num: 6																	
Data Analyze	If you mod	lify the da	ta in the li	et it will b	e saved a	utomatica	, llv	_	_	_		J					,
Export Min & Max	?誹砆	·服s? 腥	э T 募	?誹??砆	?玂 .	atomadua										Ca	ancel

自动设置阈值

Þ

上图的"Auto Set Threshold"按钮,暂不对外开放

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

FT3C47U在综合测试软件中使用的UI如下:

先在Interface配置页的IC_Type选择需要以下芯片:

• FT3C47U

在这些芯片选择了整体归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

1. Interface	Check Item:		
- 2. Common Config Other Config Torreignal Config	Project Code Test	Code:	ASCII Conversion
- 3. Data Test Items	FW Version Test	Main Version: 0xff	
Basic Threshold	LCM ID Test	LCM ID: 0x01	
Graph Test Items S. Other Test Items G. Save File	TP Required Test Item:		
	🔽 RawData Test	Veak Short-Circuit Test	
	SCap RawData Test	SCap CB Test	
	Channel Number Test	Rawdata Margin Test	
	RawData Uniformity Test	CM Test	
	TP Option Test Item:		
	🖵 INT Pin Test	Reset Pin Test	
	☐ Noise Test	Adc Detect Test	
	🗍 SITO RawData Uniformity test	TE Test	
	GPIO Test	LCD Noise Test	
	FPC Open Test		
	- Force Touch Required Test Item:		
		—	

在这些芯片选择了自动归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

I. Interface Common Config Other Config Terminal Config Sota Test Items Basic Threshold Detail Threshold	Check Item: Project Code Test FW Version Test Factory ID Test LCM ID Test	Code: Main Version: 0xff ID_Number: 0xff LCM ID: 0x01 ↓	ASCII Conversion
5. Other Test Items 6. Save File	TP Required Test Item: RawData Test SCap RawData Test Channel Number Test RawData Uniformity Test Panel Differ Test	 Weak Short-Circuit Test SCap CB Test Rawdata Margin Test CM Test 	
	TP Option Test Item: INT Pin Test Noise Test SITO RawData Uniformity test GPIO Test FPC Open Test	 Reset Pin Test Adc Detect Test TE Test LCD Noise Test Panel Differ Uniformity Test 	
	T		

无论选择哪种方式测试项内容均分三部分,包括检测项、必选测试项和备 选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如 下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设能相一致。ASCII Conversion是否进行ascii码转换;勾选输出其ASCII 码值,不勾选输出相应的字符值。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- LCM ID Test:用于区分LCD不同的供应商。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

整体归一的RawData测试项

RawData Test		
Cow Frequency	RawData_Min: 7000 👻	RawData_Max: 10000 -
High Frequency	RawData_Min: 7000	RawData_Max: 10000 -
自动归一和默认的Raw	Data测试项	

RawData Test	RawData_Min: 7000 💌	RawData_Max: 11000 -

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

整体归一测试原始数据测试包括两部分: 低频状态下的原始数据与高频状态下的原始数据测试,两者综合结果决定RawData Test是否PASS

自动归一和默认测试原始数据测试只有测试低频状态下的原始数据

Adc Detect Test测试项

Adc Detect Test

Max Theshold: 50 -

ADC饱和度测试, Max Threshold为写入Adc寄存器最大值, 如果没有溢出, 则测试结果PASS, 否则NG

SCap CB Test测试项

ocup co rest		
Waterproof Off	Min Threshold:	Max Threshold: 240 💌
Waterproof On	Min Threshold:	Max Threshold: 240 -

自电容部分的CB测试,检测CB是否饱和。

ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

Scap RawData Test测试项

Con CP Toot

SCap RawData Test		
✓ Waterproof Off	Min Threshold: 5000 💌	Max Threshold: 8500 👻
Waterproof On	Min Threshold: 5000 -	Max Threshold: 8500 👻

自电容部分的RawData测试,包括开防水(Waterproof On)与关防水 (Waterproof Off)下的RawData测试,两者综合结果决定Scap RawData Test是否PASS

Channel Num Test测试项

Channel Num Test		
🗹 mapping	Tx Channels: 13	Rx Channels: 24
no mapping	Tx Channels: 13 🚽	Rx Channels: 24 💌

通道数测试。分为mapping和no mapping,检测读取出来的Tx和Rx数量是 否与FW中的设置mapping和 no mapping时设定的数量一致。一致则 Pass,有出入则Fail。

Int Pin Test测试项		
Int Pin Test	Reg Addr: 0x08	INT
测试项,检测中断功能。		

Reset Pin Test测试项

Reset Pin Test Reg Addr: 0x88 -

Reset测试项,检测Reset功能,Reset脚位与Wake脚位共用一个脚位。

Noise Test测试项

Noise Test		🖲 sam	ple by frame	: Select Frames:	32	•
Tip before test		C sam	ple by time:	Select Time:	1s	-
	Noise_Mode:	Ave	-	Noise_Coefficient:	50	-
Glove Mode	Rawdata_Min:	5000	Glov	ve Noise Coefficient:	100	-
Noise Threshold Choose	Set_Frequency:	0	-	Noise_Max:	50	-
TP Tool Process	Min NG Frame:	Defaul	t 👻			

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Glove Mode是是否选择手套模式。若选中则Rawdata_Min有效,否则无效

Rawdata_Min是在FIR=1,默认频率下,获取一帧Rawdata值取其中最小的一个Rawdata值,若该值大于等于设定的Rawdata_Min阈值时则 PASS,小于该阈值时则NG。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,X(n)-X(n+1)以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的 噪声值大于此计算出阈值则NG,否则为PASS。

Gloce Noise Coefficient是读取用于计算手套模式的噪声阈值的噪声测试的

系数,有节点的噪声值大于此计算出阈值则NG,否则为PASS。

Weak Short-circuit Test测试项

Weak Short-Circuit Test	CG_Min: 4000 -	CC_Min: 2000 -
	·	

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Uniformity Test测试项

Uniformity Test

Tx Linearity	Threshold: 20 💌
Rx Linearity	Threshold: 20 💌
Min/Max	Threshold: 70 💌

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Uniformity测试才通过,可 以单独对其中一部分进行设置

CM Test测试项

Cha Tarak

CMTest		
Min CM	Threshold: 0.5	
Max CM	Threshold: 5	

CM值检查测试,分为两部分:

Min CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)小,则NG

Max CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)大,则NG

两者是相与的关系,只有两项都通过,整个CM测试才算通过,可以单独 对其中一部分进行设置

Rawdata Margin Test测试项

Dawidata Margin Test	Datio Max:	Patio Min:
rawada Hargin resc		10 -

Ratio Max: 最低频点计算出原始RawData,若RawData < 计算出的值,则测试OK,否则测试NG

Ratio Min: 最高频点计算出原始RawData,若RawData > 计算出的值,则测试OK,否则测试NG

Panel Differ Test测试项

Panel Differ Test	PanelDiffer_Min: 150	▼ PanelDiffer_Max: 1000 ▼
-------------------	----------------------	---------------------------

PanelDiffer_Min: 设置的panel Differ阈值的最小值

PanelDiffer_Max: 设置的panel Differ阈值的最大值

Panel Differ Uniformity Test测试项

Panel Differ Uniformity Test	
🔽 Tx Linearity	Threshold: 20 👻
Rx Linearity	Threshold: 20 💌
Min/Max	Threshold: 70 -

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Panel Differ Uniformity测试才通过,可以单独对其中一部分进行设置

SITO Rawdata Uniformity Test测试项

SITO RawData Uniformity Test	
🔽 Tx Linearity	Threshold: 10 💌
Rx Linearity	Threshold: 10 💌

SITO rawdata均匀度测试,均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

二则是相与的关系,只有二则都测试通过,整个SITO Rawdata Uniformity 测试才通过,可以单独对其中一部分进行设置

LCD Noise Test测试项

LCD Noise Test				
	Sample Frames:	200 👻	LCD Noise Conficient:	35 💌
	Noise Max:	15 👻	Noise Mode:	1 🔻
	Set_Frequency:	0 🔻	Frame Max Num:	5 👻
Set Max Mode	Noise_Coefficient:	50 👻	Noise_Max:	50 💌

ICD Noise测试,先将设置的前四个值写入相应的寄存器,然后读取 rawdata数据,最后从新获取FrameNum与设定的Frame Max Num相比 较,若大于设定值,则测试NG。

Pattern Test测试项

Pattern Test		
Pattern 00	Pattern FF	
Pattern 55	Pattern AA	
Pattern Bin		

Pattern Test测试,若勾选前四个的任意个,则先擦除1K的flash,之后写入1K相应的勾选的值,如pattern 00,则这1k的flash中全部写0x00,其他类似,之后读出flash中的值,比较读写是否成功。若勾选pattern Bin则写入相应的app.bin,然后检查读写是否成功。

FPC Open Test测试项

FPC Open Test

Min Threshold: 32736 -

FPC Open Test测试,读取防水模式下的rawdata数据与设定的阈值相比较,若超出范围,则测试NG。

Force Touch Test :

Channel Num Test测试项

Channel Num Test

FS Channels: 10 -

Force Touch通道数测试。检测从FW中读取出来的Force touch Channels num数量是否与设置设定的FS Channels的数量一致。一致则Pass,有出入则Fail。

SCap CB Test测试项

SCap CB Test		
Waterproof Off	Min Threshold: 0	Max Threshold: 240 💌
Waterproof On	Min Threshold: 0	Max Threshold: 240

Force Touch的自电容部分的CB测试,检测CB是否饱和。

Force Touch的ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

RawData Test测试项

RawData Test		
Waterproof Off	Min Threshold: 3000	Max Threshold: 15000 💌
Waterproof On	Min Threshold: 3000 👻	Max Threshold: 15000 👻

Force Touch的自电容部分的RawData测试,包括开防水(Waterproof On) 与关防水(Waterproof Off)下的RawData测试,两者综合结果决定Force Touch的Scap RawData Test是否PASS

Weak Short-circuit Test测试项

Weak Short-Circuit Test	CG_Min: 1200 👻	CC_Min: 1200 💌
	Cap short test	

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Flatness Test测试项

Flatness Test	
Calibration	Flatness Coefficent: 1
Differ Threshold Check	Differ Threshold: 0
Differ Coefficient Check	Differ Coefficient 0

Calibration自动计算平整度系数

Flatness Coefficient直接设定平整度系数

Differ Threshold是max-min的最大阈值

Differ Coefficient是min/max的最小阈值

Flatness测试,先扫描一帧的force touch数据rawdata1,盖上盖板,重新扫描一帧的force touch数据rawdata2,根据两帧的rawdata数据,计算 differData,将计算的differData乘以之前自动计算或者设置的系数得到新 的NewDifferData,并计算新的differdata数据的最大最小值(max,min), 并通过对max,min的操作来与设定的阈值进行比较,超出阈值,测试NG。
Detail Threshold详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			X
I. Interface 2. Common Config Other Config Terminal Config 3. Data Test Items Basic Threshold Detail Threshold	Mutual-Capacitance: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items:	Setting Detail	
5. Other Test Items 6. Save File	Self-Capacitance: 1. Set Sort for Some Test Items: 2. Set Detail Threshold for some Test Items:	Setting., Detail.,	
	In-Cell: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items:	Setting,, Detail.,	
			Ŧ
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0			0	7	0	0	
ompt:		Tx\RX	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0: 无效节点,7	下测试	TX3	1	1				1	1	1	1	1
1: 有效节点,需	통测试 ≢难设罢	1x4	1	1	1	1	1	1	1	1	1	1
2. 1XME P.R. 1	<u>а ж кхтт</u>	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
		Tx7	1		1							1
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1									1
Dx Num		Tx10	1	1	1	1	1	1	1	1	1	1
KX Num: 10	-	Tx11	1	1	1	1	1	1	1	1	1	1
Type: MC	ap 💌	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Nod	e											II
		Invalid No	ode:									
		Invalid No (Tx15, R)	ode: x1),		(Tx15	5, Rx2),	(1	x15,	Rx4),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: x1), :: x3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	רז (ד	x15, x15,	Rx4), Rx9),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: k1), :: k3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	(1 (1	x15, x15,	Rx4), Rx9),		(Tx15

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold			_		-									(Base)	-		
	Tx\Rx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SCapRawDataTest_OFF_N	Tx1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_OFF_N	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Max	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_OFF_Max	Ty4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_OFF_Min	Typ	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Max =		10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
RxLinearityTest_Max	1X6	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
TxLinearityTest_Max	Tx7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Noist_Test_Coefficient	Tx8	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SITO_RX_Linearity_Base	Tx9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
ForceTouchRawDataTest_	Tx10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
ForceTouchRawDataTest_ +	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
4 III	Tx12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
t Value: Start: End:	Ty13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
c 1 V 13 V	1213	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
c 1 ▼ 24 ▼																	
ue: Modify																	
Tx Num: 13 💌																	
Rx Num: 24																	
Auto Set Threshold	•]					Þ
Export Min & Max	If you mod 列表数据	lify the da 被修改时	ta in the lis ,修改后的	st, it will b 的有效数:	e saved a 据将会被	utomatica 自动保存	lly.									C	ancel

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选排测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 4. 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Data Analyze"按钮,则会自动打开数据分析工具,可以在数据 分析工具里面查看数据分析情况。
- 6. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。
- 7. 对于RX Linearity Test和TX Linearity Test而言,步骤4不起作用。采用另外一套方法计算阈值。

整体归一及默认情况时:

Data Source:		
est Item: RawData Test High RawData Test Low SITO Rx Linearity Test SITO Tx Linearity Test FT ScapCB On Test	Threshold: Min Threshold: Change Rate: 25% Change Va Max Threshold: Change Rate: 25% Change Va Data Analyze Set Threshold	alue:
C FT ScapCB Off Test		*
		Ŧ

自动归一时:

Data Directory:					
est Item:	Threshold:				
RawData Test High	Min Threshold:	Change Rate:	25% 💌	Change Value:	
Panel Differ Test	Max Threshold:	Change Rate:	25% 💌	Change Value:	
SITO Rx Linearity Test		1		1	
SITO Tx Linearity Test	Data	Analyze	Set Ti	hreshold	
FT ScapCB On Test					
FT ScapCB Off Test					^

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

先在Interface配置页的IC_Type选择需要以下芯片:

• FT8716

选择Data Test Items配置页时,就会显示以下测试项内容:

L. Interface	Check Item:			
Other Config	Project Code Test	Code:		
Terminal Config	FW Version Test	Main Version:	0xff 👻	
Basic Threshold	Factory ID Test	ID_Number:	0xff	
Other Test Items	- Deguized Test Itom			
- ouver ne	Required rest ttem:			
	I CB Test		Channel Number Test	
	RawData Test	V	Short Circuit Test	
	Option Test Item:			
	INT Pin Test	Г	Reset Pin Test	
	Noise Test		Open Test	
	CB Uniformity Test	Г	Differ2 Uniformity Test	
	LCD Noise Test	Г	GPIO Test	
	IC Type Test	Г	Reset Detection Test	
	-Special Setting:			

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

• Project Code Test:项目版本检测。设置的项目代码,须跟FW预设图

相一致。

- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Ch_X:	15	•	Ch_Y:	24	-
	Key Num:	0	•			

数据通道测试,包括X方向的通道,Y方向的通道以及按键通道,当所有训 道数据都与设置一致时,测试PASS,否则NG

CB Test测试项

CB Test

CB_Min: 3 🗨

CB_Max: 100 -

补偿电容测试。CB是为获取均匀RawData而采取的补偿电容。此测试项标 据补偿电容的变化来判断待测屏的开路短路。在CB_Min和CB_Max设置 小和最大的测试阈值,如果测试时,读取到的CB Data有在测试阈值之外 的,则此测试项为Fail,反之,为Pass。

RawData Test测试项

RawData Test	RawData_Min: 5000 👻	RawData_Max: 11000 -
Compate rest	Kuwbata_nini 5000 ▼	

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路 以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测 试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测ì 项为Fail,反之,为Pass。

Short Circuit Test测试项

Short Circuit Test	CB_Max: 120 -	K2 Value: 150 👻

通道短路测试,CB_Max为短路测试的测试阈值,K2 Value控制电容充放 电时间,间接控制校准时间,如果测试时,读取到的CB Max在测试阈值 之外时,此测试项为Fail,反之Pass

Int Pin Test测试项

Int Pin Test

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 👻

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加/ 不影响其他功能。

Noise Test测试项

Noise Test	sample by frame:	Select Frames: 32 💌
	○ sample by time:	Select Time: 1
T tip before test	Noise_Mode: Ave 💌	Noise_Coefficient: 50 💌

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择 参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,Differ以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

Open Test测试项

-	-	-		
On	en 1	lest		

CB_Min: 60 🗸

获取一定条件下的CB值与设定的CB_Min相比较,若大于设定的CB_Min 值,则测试OK,否则NG。

CB Uniformity Test测试项

CB Uniformity Test	
Min/Max	Threshold: 20 💌
CHX linearity	Threshold: 70 💌
CHY linearity	Threshold: 70 👻

CB值的均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个CB Uniformity测试才通过,可以单独对其中一部分进行设置

Differ2 Uniformity Test测试项

Differ 2 Uniformity Test	
CHX linearity	Threshold: 15
CHY linearity	Threshold: 15 💌
	Differ Min: 1000 💌

Differ2的均匀度测试,

Differ Min: 检测Differ数据是否在一定范围内

Differ2均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Differ2 Uniformity测试才通过,可以单独对其中一部分进行设置

LCD Noise Test测试项

LCD Noise Test	Frame_Num:	200	Ŧ	LCD Noise Coefficient: 60 💌	I
	Noise_Mode:	Max	-		

Frame_Num设定读取的帧数

LCD Noise Coefficient计算阈值的参数

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最 的噪声为噪声值

设定帧数等相关参数,然后读取Differ数据,根据选择的Noise_Mode模式,计算相应的Noise值,之后与计算的阈值进行比较,若超出范围,测试NG.

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

-

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting Setting	Wednesday to Force/Tech. Multiple Text Suffrage	X
I. Interface 2. Common Config Other Config Terminal Config Jata Test Items Basic Threshold Detail Threshold	Mutual-Capacitance: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items: Detail.,	
4. Graph Test Items 5. Save File	Self-Capacitance: 1. Set Sort for Some Test Items: Setting 2. Set Detail Threshold for some Test Items:	
	In-Cell: 1. Set invalid node for all Test Items: Setting 2. Set Detail Threshold for some Test Items: Detail	
	Previous Next Cancel	

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

- 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。
- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

Set Invalid Node	-																									x
Prompt:	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
0: invalid node	Chx1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1: valid node	Chx2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: key node	Chx3	1	1	1		1	1	1			1		1		1		1	1		1	1	1	1	1	1	
0: 无效节点,不测试 1: 有效节点,需测试	Chx4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: 按键节点,特殊设置	Chx5	1		1		1	1	1	1		1		1		1		1	1		1	1	1		1	1	
	Chx6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Operate:	Chx8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chx Num: 16	Chx9	1		1		1	1	1	1		1		1	1	1	1	1	1		1	1	1	1	1	1	
	Chx10	1		1		1	1	1				1	1		1	1	1	1		1	1	1	1	1	1	
Chy Num: 24 –	Chx11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Key Num: 6 💌	Chx12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx15	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	
Export Node	Chx16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Key	2	2	2	0	0	0																			
	Invalid No.	ode:																								•
	•																									+

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold	61		-				-	-	-	-						28	
		4	0	2		r	0	7	0	0	10	44	40	40	44	45	40
RawDataTest_Max	Chx	1	2	3	4	5	5	11000	ð 11000	9	10	11000	12	13	14	15	1000
		11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBTest_Min	Chx2	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHxLinearity	Chx3	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx4	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx5	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx6	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx7	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx8	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx9	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx10	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx11	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
۰ III ا	Chx12	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Set Value: Start: End:	Chx13	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chx: 1 - 15 -	Chy14	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chy15	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	CIXIS	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
/alue: Modify	Key	11000	11000	11000	11000	11000	11000										
Chx Num: 15 💌																	
Chy Num: 24 👻																	
Key Num: 6																	
	•]					F.
Auto Set Inreshold	If you mod	ify the da	ta in the li	st, it will b	e saved a	utomatica	lly.									~	ancol
Export Min & Max	刘表数据	顾修改时:	,修改后	的有效数	据将会被	目动保存											ancei

自动设置阈值

上图的"Auto Set Threshold"按钮,暂不对外开放

先在Interface配置页的IC_Type选择以下芯片:

• FT8607

选择Data Test Items配置页时,就会显示以下测试项内容:

I. Interface 2. Common Config Other Config Terminal Config S. Data Test Items Basic Threshold Detail Threshold Cranb Test Temp	- Check Item:	Code: Main Version: ID_Number:	0xff _▼ 0xff _▼	
	⊂Required Test Item: ▼ CB Test ▼ RawData Test	۲ ۲	Channel Number Test Short Circuit Test	
	Option Test Item: INT Pin Test OSC 60MHz Test Noise Test Differ Test LPWG CB Test Differ2 Test Differ2 Test		Reset Pin Test OSC Trm Test SNR Test Differ Uniformity Test LPWG RawData Test LCD Noise Test	
	- Special Setting:			

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

• FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW

Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。

• Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Ch_X:	15	•	Ch_Y:	24	-
	Key Num:	0	•			

数据通道测试,包括X方向的通道,Y方向的通道以及按键通道,当所有训 道数据都与设置一致时,测试PASS,否则NG

CB Test测试项

CB Test

CB_Min: 3 🗨

CB_Max: 100 -

补偿电容测试。CB是为获取均匀RawData而采取的补偿电容。此测试项标 据补偿电容的变化来判断待测屏的开路短路。在CB_Min和CB_Max设置 小和最大的测试阈值,如果测试时,读取到的CB Data有在测试阈值之外 的,则此测试项为Fail,反之,为Pass。

RawData Test测试项

RawData Test	RawData_Min: 5000 👻	RawData_Max: 11000 -
Compate rest	Kuwbata_nini 5000 ▼	

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路 以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测 试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测ì 项为Fail,反之,为Pass。

Short Circuit Test测试项

Short Circuit Test	CB_Max: 120 -	K2 Value: 150 👻

通道短路测试,CB_Max为短路测试的测试阈值,K2 Value控制电容充放 电时间,间接控制校准时间,如果测试时,读取到的CB Max在测试阈值 之外时,此测试项为Fail,反之Pass

Int Pin Test测试项

Int Pin Test

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 👻

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加/ 不影响其他功能。

Noise Test测试项

Noise Test	sample by frame:	Select Frames: 32 💌
	○ sample by time:	Select Time: 1
T tip before test	Noise_Mode: Ave 💌	Noise_Coefficient: 50 💌

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择 参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,Differ以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

OSC 60MHz Test测试项

OSC60MHz Test	OSC60MHz Min:	10		OSC60MHz Max:	17		
	000001112_11111	12	T	000001112_1102.	1/	-	

固定小坑数之后,读取OSC数据与设定的阈值相比较,若超出范围,则测试NG。

OSC TRM Test测试项

OSC Trm Test	OSCDetect_Min: 15	-	OSCDetect_Max:	17	-	1
	OSCTrm_Min: 15	-	OSCTrm_Max:	17	•	Î.

固定小坑数之后,读取OSC数据与设定的阈值相比较,若未超出范围,则测试OK,测试结束;否则,根据配置重新设定高低level值,之后读取osc的校准状态,若为0x55,则测试NG,测试结束,否则,重新固定小坑数,并读取OSC数据与设定阈值相比较,若未超出范围则测试OK,否则NG。

SNRTest测试项

	SNR Test	Frame_Num: 32	SNR_Min: 10
--	----------	---------------	-------------

Frame_Num是设定读取的帧数,SNR_Min是最小阈值。

SNR Test测试流程为先计算Frame_Num帧的differ数据每个节点的平均 值,再求Frame_Num帧的differ数据与均值的均方根,之后按压测试工 具,重新获取一帧differ数据,并将每个节点除以Frame_Num,再将获取 的数据与之前计算的均方根数据进行一系列的计算,求得SNR的值,将诊 值与设定阈值相比较,若超出范围,测试NG.

Differ Test测试项

Differ Test	Frame_Num: 32	•
	Differ_Max: 100	▼ Differ_Min: 10 ▼

Frame_Num: 设置读取的帧数

Differ_Min: 设置的Differ阈值的最小值

Differ_Max: 设置的Differ阈值的最大值

Differ Uniformity Test测试项

Differ Uniformity Test	
Min/Max	Threshold: 20 💌
CHX linearity	Threshold: 70 💌
CHY linearity	Threshold: 70 💌

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Differ Uniformity测试才通过,可以单独对其中一部分进行设置

LPWG Rawdata Test测试项

LPWG RawData Test	RawData_Min: 5000 -	RawData_Max: 11000									
RawData_Min: 设置的Raw	wData阈值的最小值										
RawData_Max:设置的RawData阈值的最大值											
LPWG CB Test测试项											
LPWG CB Test											
VA VA	CB_Min: 3	CB_Max: 60 👻									
🔽 Key	CB_Min: 3	CB_Max: 100 -									

CB_Min: 设置的CB阈值的最小值

CB_Max: 设置的CB阈值的最大值

VA:VA⊠

Key:按键区

获取一定条件下的CB值与设定的阈值相比较,超出阈值,测试NG。

LPWG Noise Test测试项

LPWG Noise Test	sample by frame:	Select Frames:	32	-
✓ Is Differ	Sample by time:	Select Time:	1	-
Tip before test	Noise_Mode: Ave 💌	Noise_Coefficient:	50	•

LPWG Noise测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,Differ以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的 噪声值大于此计算出阈值则NG,否则为PASS。

LCD Noise Test测试项

LCD Noise Test Frame_Num: 50 Voise_Coefficient: 50	•
--	---

Frame Num是设定读取的帧数, Noise coefficient是用来计算阈值的。

LCD Noise Test是通过FW计算噪声,工具来进行判断的方式。先设定帧 等相关参数,然后读取Differ数据,获取最大的噪声值为相应的Noise值, 之后与计算的阈值进行比较,若超出范围,测试NG.

Differ2 Test测试项

Differ2 Test测试,先向相应的寄存器中写入设定的最大、最小值;之后8 写1后,读取其值,若为0x55则测试NG,之后读取一系列的Byte数据,副 位在前,低位在后,与设定阈值比较,若超出阈值,测试NG。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

Set Invalid Node	-																									×
Prompt:	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
0: invalid node	Chx1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1: valid node	Chx2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: Key hode	Chx3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
0: 无效节点,不测试 1: 有效节点,需测试	Chx4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: 按键节点,特殊设置	Chx5	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Operate:	Chx8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chx Num: 16	Chx9	1	1	1		1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chy Num: 24 –	Chx11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Key Num: 6 💌	Chx12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Export Node	Chx16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Key	2	2	2	0	0	0																			
	Invalid No	ode:																								*

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold	1.00	-	_	1.00													
RawDataTest_Max	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RawDataTest_Min	Chx1	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBTest_Max CBTest_Min	Chx2	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHxLinearity	Chx3	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHyLinearity	Chx4	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
- Differ2Uniformity_CHyLinearit	Chx5	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx6	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx7	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx8	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx9	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx10	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx11	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
↓ Welver	Chx12	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
et value: Start: End:	Chx13	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chx: 1 💌 15 💌	Chx14	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chy: 1 💌 24 💌	Chx15	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
alue: Modify	Key	11000	11000	11000	11000	11000	11000										
Chy Num: 15																	
Chu Numu																	
Chy Num: 24 _▼																	
Key Num: 6																	
Data Analyze	If you mod	lify the da	ta in the li	et it will b	e saved a	utomatica	ulu.	_	_	_		J					,
Export Min & Max	?誹砆	·服s? 腥	э T 募	?誹??砆	?玂 .	atomadua										Ca	ancel

自动设置阈值

Þ

上图的"Auto Set Threshold"按钮,暂不对外开放

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

先在Interface配置页的IC_Type选择需要以下芯片:

• FT8707

选择Data Test Items配置页时,就会显示以下测试项内容:

Setting I. Interface C. Common Config Other Config Terminal Config Basic Threshold Detail Threshold Cranh Test Items	Check Item: Project Code Test FW Version Test Factory ID Test	Code: Main Version: ID_Number:	0xff ▼ 0xff ▼	
5. Other Test Items 6. Save File	Required Test Item: CB Test RawData Test	হ হ	Channel Number Test Short Circuit Test	
	Option Test Item: INT Pin Test Noise Test CB Uniformity Test		Reset Pin Test Open Test Differ2 Uniformity Test	
	Special Setting:			
				-

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

• Project Code Test:项目版本检测。设置的项目代码,须跟FW预设的

相一致。

- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Ch_X:	15	•	Ch_Y:	24	-
	Key Num:	0	•			

数据通道测试,包括X方向的通道,Y方向的通道以及按键通道,当所有训 道数据都与设置一致时,测试PASS,否则NG

CB Test测试项

CB Test

CB_Min: 3 🗨

CB_Max: 100 -

补偿电容测试。CB是为获取均匀RawData而采取的补偿电容。此测试项标 据补偿电容的变化来判断待测屏的开路短路。在CB_Min和CB_Max设置 小和最大的测试阈值,如果测试时,读取到的CB Data有在测试阈值之外 的,则此测试项为Fail,反之,为Pass。

RawData Test测试项

RawData Test	RawData_Min: 5000 👻	RawData_Max: 11000 -
Compate rest	Kuwbata_nini 5000 ▼	

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路 以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测 试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测ì 项为Fail,反之,为Pass。

Short Circuit Test测试项

Short Circuit Test	CB_Max: 120 -	K2 Value: 150 👻

通道短路测试,CB_Max为短路测试的测试阈值,K2 Value控制电容充放 电时间,间接控制校准时间,如果测试时,读取到的CB Max在测试阈值 之外时,此测试项为Fail,反之Pass

Int Pin Test测试项

Int Pin Test

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 👻

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加/ 不影响其他功能。

Noise Test测试项

Noise Test	sample by frame:	Select Frames: 32 💌
	○ sample by time:	Select Time: 1
T tip before test	Noise_Mode: Ave 💌	Noise_Coefficient: 50 💌

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择 参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,Differ以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

Open Test测试项

-	-	-		
On	en 1	lest		

CB_Min: 60 🗸

获取一定条件下的CB值与设定的CB_Min相比较,若大于设定的CB_Min 值,则测试OK,否则NG。

CB Uniformity Test测试项

CB Uniformity Test	
Min/Max	Threshold: 20 💌
CHX linearity	Threshold: 70 💌
CHY linearity	Threshold: 70 👻

CB值的均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个CB Uniformity测试才通过,可以单独对其中一部分进行设置

Differ2 Uniformity Test测试项

Differ 2 Uniformity Test	
CHX linearity	Threshold: 15
CHY linearity	Threshold: 15 💌
	Differ Min: 1000 💌

Differ2的均匀度测试,

Differ Min: 检测Differ数据是否在一定范围内

Differ2均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG Rx lineary:检查Rx线性度,大于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Differ2 Uniformity测试才通过,可以单独对其中一部分进行设置

E

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting Setting	Wednesday to Force/Tech. Multiple Text Suffrage	X
I. Interface 2. Common Config Other Config Terminal Config Jata Test Items Basic Threshold Detail Threshold	Mutual-Capacitance: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items: Detail.,	
4. Graph Test Items 5. Save File	Self-Capacitance: 1. Set Sort for Some Test Items: Setting 2. Set Detail Threshold for some Test Items:	
	In-Cell: 1. Set invalid node for all Test Items: Setting 2. Set Detail Threshold for some Test Items: Detail	
	Previous Next Cancel	

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

- 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。
- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

Set Invalid Node	-																									x
Prompt:	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
0: invalid node	Chx1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1: valid node	Chx2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: key node	Chx3	1	1	1		1	1	1			1		1		1		1	1		1	1	1	1	1	1	
0: 无效节点,不测试 1: 有效节点,需测试	Chx4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: 按键节点,特殊设置	Chx5	1		1		1	1	1	1		1		1		1		1	1		1	1	1		1	1	
	Chx6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Operate:	Chx8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chx Num: 16	Chx9	1		1		1	1	1	1		1		1	1	1	1	1	1		1	1	1	1	1	1	
	Chx10	1		1		1	1	1				1	1		1	1	1	1		1	1	1	1	1	1	
Chy Num: 24 –	Chx11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Key Num: 6 💌	Chx12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx15	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	
Export Node	Chx16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Key	2	2	2	0	0	0																			
Key 2 2 2 0 0 Invalid Node: Invalid Node: Invalid Node: Invalid Node: Invalid Node:											•															
	•																									+

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold	61		-				-	-	-	-						28	
		4	0	2		r	0	7	0	0	10	44	40	40	44	45	40
RawDataTest_Max	Chx	1	2	3	4	5	5	11000	ð 11000	9	10	11000	12	13	14	15	1000
		11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBTest_Min	Chx2	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHxLinearity	Chx3	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx4	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx5	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx6	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx7	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx8	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx9	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx10	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx11	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
۰ III ا	Chx12	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Set Value: Start: End:	Chx13	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chx: 1 - 15 -	Chy14	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chy15	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	CIXIS	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
/alue: Modify	Key	11000	11000	11000	11000	11000	11000										
Chx Num: 15 💌																	
Chy Num: 24 👻																	
Key Num: 6																	
	•]					F.
Auto Set Inreshold	If you mod	ify the da	ta in the li	st, it will b	e saved a	utomatica	lly.									~	ancol
Export Min & Max	刘表数据	顾修改时:	,修改后	的有效数	据将会被	目动保存											ancei

自动设置阈值

上图的"Auto Set Threshold"按钮,暂不对外开放

先在Interface配置页的IC_Type选择需要以下芯片:

• FT8736

选择Data Test Items配置页时,就会显示以下测试项内容:

tting	1m/16	-		
1. Interface 2. Common Config Other Config Terminal Config 3. Data Test Items Basic Threshold Detail Threshold 4. Graoh Test Items	- Check Item: Project Code Test FW Version Test Factory ID Test	Code: Main Version: ID_Number:	0xff _▼ 0xff ▼	
5. Other Test Items 6. Save File	 Required Test Item: ✓ CB Test ✓ RawData Test 	য য	Channel Number Test Short Circuit Test	
	Option Test Item:		Reset Pin Test	
	CB Uniformity Test	- - -	Differ 2 Uniformity Test CB DecreaseTest IC Type Test	
	Special Setting:			
			Previous Next	Cancel

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

• Project Code Test:项目版本检测。设置的项目代码,须跟FW预设图

相一致。

- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved
Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Ch_X:	15	•	Ch_Y:	24	-
	Key Num:	0	•			

数据通道测试,包括X方向的通道,Y方向的通道以及按键通道,当所有训 道数据都与设置一致时,测试PASS,否则NG

CB Test测试项

CB Test

CB_Min: 3 🗨

CB_Max: 100 -

补偿电容测试。CB是为获取均匀RawData而采取的补偿电容。此测试项标 据补偿电容的变化来判断待测屏的开路短路。在CB_Min和CB_Max设置 小和最大的测试阈值,如果测试时,读取到的CB Data有在测试阈值之外 的,则此测试项为Fail,反之,为Pass。

RawData Test测试项

RawData Test	RawData_Min: 5000 👻	RawData_Max: 11000 -
Compate rest	Kuwbata_nini 5000 ▼	

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路 以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测 试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测ì 项为Fail,反之,为Pass。

Short Circuit Test测试项

Short Circuit Test	CB_Max: 120 -	K2 Value: 150 👻

通道短路测试,CB_Max为短路测试的测试阈值,K2 Value控制电容充放 电时间,间接控制校准时间,如果测试时,读取到的CB Max在测试阈值 之外时,此测试项为Fail,反之Pass

Int Pin Test测试项

Int Pin Test

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 👻

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加/ 不影响其他功能。

Noise Test测试项

Noise Test	sample by frame:	Select Frames: 32 💌
	○ sample by time:	Select Time: 1
T tip before test	Noise_Mode: Ave 💌	Noise_Coefficient: 50 💌

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择 参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,Differ以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

Open Test测试项

-	-	-		
On	en 1	lest		

CB_Min: 60 🗸

获取一定条件下的CB值与设定的CB_Min相比较,若大于设定的CB_Min 值,则测试OK,否则NG。

CB Uniformity Test测试项

CB Uniformity Test	
Min/Max	Threshold: 20 💌
CHX linearity	Threshold: 70 💌
CHY linearity	Threshold: 70 👻

CB值的均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个CB Uniformity测试才通过,可以单独对其中一部分进行设置

Differ2 Uniformity Test测试项

Differ 2 Uniformity Test	
CHX linearity	Threshold: 15
CHY linearity	Threshold: 15 💌
	Differ Min: 1000 💌

Differ2的均匀度测试,

Differ Min: 检测Differ数据是否在一定范围内

Differ2均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Differ2 Uniformity测试才通过,可以单独对其中一部分进行设置

LCD Noise Test测试项

LCD Noise Test	Frame_Num:	200	-	LCD Noise Coefficient:	60 -	[
	Noise_Mode:	Max	-			

Frame_Num设定读取的帧数

LCD Noise Coefficient计算阈值的参数

设定帧数等相关参数,然后读取Differ数据,根据选择的Noise_Mode模式,计算相应的Noise值,之后与计算的阈值进行比较,若超出范围,测试NG.

CB Decrease Test测试项

CB Decrease Test	Original_Min: 800 -	Original_Max: 3000 👻
	Caculated_Min: 2400 -	Caculated_Max: 9000 -
	Step: 4	

先读取两种不同条件下的Rawdata数据,计算出相应的differ数据与设定的 Original的最大、最小值相比较,若超出范围,则测试NG。之后再获取C order计算出一些数值与设定caculate的最大、最小值做比较超出阈值,测 试NG。

VRef Decrease Test测试项

VRef Decrease Test	Original_Min: 800 -	Original_Max: 3000 -
	Caculated_Min: 2400	Caculated_Max: 9000
	VRef1: 3	VRef2: 4

先读取两种不同条件下的Rawdata数据,计算出相应的differ数据与设定的 Original的最大、最小值相比较,若超出范围,则测试NG。之后再获取Cl order计算出相应的数值与设定caculate的最大、最小值做比较超出阈值, 测试NG。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting Setting	Wednesday to Force/Tech. Multiple Text Suffrage	X
I. Interface 2. Common Config Other Config Terminal Config Jata Test Items Basic Threshold Detail Threshold	Mutual-Capacitance: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items: Detail.,	
4. Graph Test Items 5. Save File	Self-Capacitance: 1. Set Sort for Some Test Items: Setting 2. Set Detail Threshold for some Test Items:	
	In-Cell: 1. Set invalid node for all Test Items: Setting 2. Set Detail Threshold for some Test Items: Detail	
	Previous Next Cancel	

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

- 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。
- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

Set Invalid Node	-																									x
Prompt:	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
0: invalid node	Chx1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1: valid node	Chx2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: key node	Chx3	1	1	1		1	1	1			1		1		1		1	1		1	1	1	1	1	1	
0: 无效节点,不测试 1: 有效节点,需测试	Chx4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: 按键节点,特殊设置	Chx5	1		1		1	1	1	1		1		1		1		1	1		1	1	1		1	1	
	Chx6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Operate:	Chx8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chx Num: 16	Chx9	1		1		1	1	1	1		1		1	1	1	1	1	1		1	1	1	1	1	1	
	Chx10	1		1		1	1	1				1	1		1	1	1	1		1	1	1	1	1	1	
Chy Num: 24 –	Chx11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Key Num: 6 💌	Chx12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx15	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	
Export Node	Chx16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Key	2	2	2	0	0	0																			
	Invalid No.	ode:																								•
	•																									+

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold	11		-				-	-	-	-						28	
		4	0	2		r	0	7	0	0	10	44	40	40	44	45	40
RawDataTest_Max	Chx	1	2	3	4	5	5	11000	ð 11000	9	10	11000	12	13	14	15	1000
		11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBTest_Min	Chx2	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHxLinearity	Chx3	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx4	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx5	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx6	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx7	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx8	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx9	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx10	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx11	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
۰ III ا	Chx12	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Set Value: Start: End:	Chx13	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chx: 1 - 15 -	Chy14	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chy15	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	CIXIS	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
/alue: Modify	Key	11000	11000	11000	11000	11000	11000										
Chx Num: 15 💌																	
Chy Num: 24 👻																	
Key Num: 6																	
	•]					F.
Auto Set Inreshold	If you mod	ify the da	ta in the li	st, it will b	e saved a	utomatica	lly.									~	ancol
Export Min & Max	刘表数据	顾修改时:	,修改后	的有效数	据将会被	目动保存											ancei

自动设置阈值

上图的"Auto Set Threshold"按钮,暂不对外开放

先在Interface配置页的IC_Type选择需要以下芯片:

• FTE716

选择Data Test Items配置页时,就会显示以下测试项内容:

1. Interface 2. Common Config	Check Item:	* 200-00-00-00-00-00-00-00-00-00-00-00-00-		
Other Config	Project Code Test	Code:		ASCII Conversion
B. Data Test Items	FW Version Test	Main Version:	0xff 💌	
Basic Threshold	Factory ID Test	ID_Number:	0xff 💽	
l. Graph Test Items 5. Other Test Items				
. Save File	Required Test Item:			
	CB Test		Channel Number Test	
	RawData Test	v	Short Circuit Test	
	Option Test Item:			
	INT Pin Test	Г	Reset Pin Test	
	Noise Test	Г	Open Test	
	CB Uniformity Test	Г	Differ 2 Uniformity Test	
	LCD Noise Test	Г	GPIO Test	
	IC Type Test			
	Special Setting:			

测试项内容分三部分,包括检测项、必选测试项和备选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

• Project Code Test:项目版本检测。设置的项目代码,须跟FW预设[

相一致。

- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

Channel Num Test测试项

Channel Num Test	Ch_X:	15	•	Ch_Y:	24	-
	Key Num:	0	•			

数据通道测试,包括X方向的通道,Y方向的通道以及按键通道,当所有训 道数据都与设置一致时,测试PASS,否则NG

CB Test测试项

CB Test

CB_Min: 3 🗨

CB_Max: 100 -

补偿电容测试。CB是为获取均匀RawData而采取的补偿电容。此测试项标 据补偿电容的变化来判断待测屏的开路短路。在CB_Min和CB_Max设置 小和最大的测试阈值,如果测试时,读取到的CB Data有在测试阈值之外 的,则此测试项为Fail,反之,为Pass。

RawData Test测试项

RawData Test	RawData_Min: 5000 👻	RawData_Max: 11000 -
Compate rest	Kuwbata_nini 5000 ▼	

原始数据测试,此测试项根据读取到的Raw Data判断待测屏的开路短路 以及数据一致性。在Rawdata_Min和RawData_Max设置最小和最大的测 试阈值,如果测试时,读取到的Raw Data有在测试阈值之外的,则此测ì 项为Fail,反之,为Pass。

Short Circuit Test测试项

Short Circuit Test	CB_Max: 120 -	K2 Value: 150 👻

通道短路测试,CB_Max为短路测试的测试阈值,K2 Value控制电容充放 电时间,间接控制校准时间,如果测试时,读取到的CB Max在测试阈值 之外时,此测试项为Fail,反之Pass

Int Pin Test测试项

Int Pin Test

中断脚位测试。Reg_Addr填写响应中断命令的寄存器地址。

Reset Pin Test测试项

Reset Pin Test

Reg Addr: 0x88 👻

复位脚位测试。Reg_Addr填写寄存器地址,此寄存器值可以累加,累加/ 不影响其他功能。

Noise Test测试项

Noise Test	sample by frame:	Select Frames: 32 💌
	○ sample by time:	Select Time: 1
T tip before test	Noise_Mode: Ave 💌	Noise_Coefficient: 50 💌

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择 参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,Differ以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

Open Test测试项

-	-	-		
On	en 1	lest		

CB_Min: 60 🗸

获取一定条件下的CB值与设定的CB_Min相比较,若大于设定的CB_Min 值,则测试OK,否则NG。

CB Uniformity Test测试项

CB Uniformity Test	
Min/Max	Threshold: 20 💌
CHX linearity	Threshold: 70 💌
CHY linearity	Threshold: 70 👻

CB值的均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个CB Uniformity测试才通过,可以单独对其中一部分进行设置

Differ2 Uniformity Test测试项

Differ 2 Uniformity Test	
CHX linearity	Threshold: 15
CHY linearity	Threshold: 15 💌
	Differ Min: 1000 💌

Differ2的均匀度测试,

Differ Min: 检测Differ数据是否在一定范围内

Differ2均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Differ2 Uniformity测试才通过,可以单独对其中一部分进行设置

LCD Noise Test测试项

LCD Noise Test	Frame_Num:	200	Ŧ	LCD Noise Coefficient: 60 💌	I
	Noise_Mode:	Max	-		

Frame_Num设定读取的帧数

LCD Noise Coefficient计算阈值的参数

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最 的噪声为噪声值

设定帧数等相关参数,然后读取Differ数据,根据选择的Noise_Mode模式,计算相应的Noise值,之后与计算的阈值进行比较,若超出范围,测试NG.

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

-

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting Setting	Wednesday to Force/Tech. Multiple Text Suffrage	X
I. Interface 2. Common Config Other Config Terminal Config Jata Test Items Basic Threshold Detail Threshold	Mutual-Capacitance: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items: Detail.,	
4. Graph Test Items 5. Other Test Items 6. Save File	Self-Capacitance: 1. Set Sort for Some Test Items: Setting 2. Set Detail Threshold for some Test Items:	
	In-Cell: 1. Set invalid node for all Test Items: Setting 2. Set Detail Threshold for some Test Items: Detail	
	Previous Next Cancel	

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

- 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。
- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

Set Invalid Node	-																									x
Prompt:	Chx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
0: invalid node	Chx1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1: valid node	Chx2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: key node	Chx3	1	1	1		1	1	1			1		1		1		1	1		1	1	1	1	1	1	
0: 无效节点,不测试 1: 有效节点,需测试	Chx4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2: 按键节点,特殊设置	Chx5	1		1		1	1	1	1		1		1		1		1	1		1	1	1		1	1	
	Chx6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Operate:	Chx8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Chx Num: 16	Chx9	1		1		1	1	1	1		1		1	1	1	1	1	1		1	1	1	1	1	1	
	Chx10	1		1		1	1	1				1	1		1	1	1	1		1	1	1	1	1	1	
Chy Num: 24 –	Chx11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Key Num: 6 💌	Chx12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Chx15	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	
Export Node	Chx16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Key	2	2	2	0	0	0																			
	Invalid No.	ode:																								•
	•																									+

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold	61		-				-	-	-	-						28	
		4	0	2		r	0	7	0	0	10	44	40	40	44	45	40
RawDataTest_Max	Chx	1	2	3	4	5	5	11000	ð 11000	9	10	11000	12	13	14	15	1000
		11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBTest_Min	Chx2	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
CBUniformity_CHxLinearity	Chx3	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx4	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
DifferUniformity_CHyLinearity	Chx5	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx6	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx7	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx8	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx9	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx10	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chx11	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
۰ III ا	Chx12	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Set Value: Start: End:	Chx13	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
Chx: 1 - 15 -	Chy14	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	Chy15	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
	CIXIS	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000
/alue: Modify	Key	11000	11000	11000	11000	11000	11000										
Chx Num: 15 💌																	
Chy Num: 24 👻																	
Key Num: 6																	
	•]					F.
Auto Set Inreshold	If you mod	ify the da	ta in the li	st, it will b	e saved a	utomatica	lly.									~	ancol
Export Min & Max	刘表数据	顾修改时:	,修改后	的有效数	据将会被	目动保存											ancei

自动设置阈值

上图的"Auto Set Threshold"按钮,暂不对外开放

FT3C47U在综合测试软件中使用的UI如下:

先在Interface配置页的IC_Type选择需要以下芯片:

• FT3D47

在这些芯片选择了整体归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

non Config Check Item:			
er Config 🛛 🗍 Project Code Test	Code:	ASCII Co	nversion
ninal Config FW Version Test	Main Version:	0xff 🗨	
c Threshold Factory ID Test	ID_Number:	0xff 🗨	
ail Threshold	Panel ID:	0xff 🗨	
r Test Items File			
RawData Test	v	Weak Short-Circuit Test	
SCap RawData Tes	st 🔽	SCap CB Test	
🔽 RawData Uniformit	y Test	CM Test	
Channel Number Te	est		
TP Option Test Item:	Г	Reset Pin Test	
Scap Noise Test	Γ	LCD Noise Test	
□ Noise Test			
FPC Open Test			
Force Touch Required Te	st Item:		
Channel Number Te	est 🔽	RawData Test	
SCap CB Test	v	Weak Short-Circuit Test	

在这些芯片选择了自动归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

. Interface	Check Item:		
Other Config	Project Code Test	Code:	ASCII Conversion
Terminal Config	FW Version Test	Main Version:	0xff 👻
- Basic Threshold	Factory ID Test	ID_Number:	0xff 🔹
Detail Threshold Graph Test Items	Panel ID Test	Panel ID:	0xff 🗸
. Other Test Items . Save File	TP Required Test Item:		
	RawData Test		✓ Weak Short-Circuit Test
	SCap RawData Test		SCap CB Test
	RawData Uniformity Test		✓ CM Test
	Channel Number Test	Г	Panel Differ Test
	TP Option Test Item:		Reset Pin Test
	Scap Noise Test	Г	LCD Noise Test
	Noise Test	Г	Panel Differ Uniformity Test
	FPC Open Test		
	Force Touch Required Test Item:		
	Channel Number Test		RawData Test
	SCap CB Test	V	✓ Weak Short-Circuit Test

无论选择哪种方式测试项内容均分三部分,包括检测项、必选测试项和备 选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如 下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设能相一致。ASCII Conversion是否进行ascii码转换;勾选输出其ASCII 码值,不勾选输出相应的字符值。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- LCM ID Test:用于区分LCD不同的供应商。
- Panel ID:用于区分不同的面板厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

整体归一的RawData测试项

RawData Test		
V Low Frequency	RawData_Min: 7000 💌	RawData_Max: 10000 -
✓ High Frequency	RawData_Min: 7000	RawData_Max: 10000 💌

自动归一和默认的RawData测试项

RawData Test	RawData Min:	7000	-	RawData Max:	11000	-
	_	7000			11000	

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

整体归一测试原始数据测试包括两部分: 低频状态下的原始数据与高频制态下的原始数据测试,两者综合结果决定RawData Test是否PASS

自动归一和默认测试原始数据测试只有测试低频状态下的原始数据

SCap CB Test测试项

SCap CB Test		
Waterproof Off	Min Threshold:	Max Threshold: 240 💌
Waterproof On	Min Threshold:	Max Threshold: 240 💌

自电容部分的CB测试,检测CB是否饱和。

ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

Scap RawData Test测试项

SCap RawData Test		
✓ Waterproof Off	Min Threshold: 5000 -	Max Threshold: 8500 👻
Waterproof On	Min Threshold: 5000 -	Max Threshold: 8500 🚽

自电容部分的RawData测试,包括开防水(Waterproof On)与关防水 (Waterproof Off)下的RawData测试,两者综合结果决定Scap RawData Test是否PASS

Channel Num Test测试项

Channel Num Test		
🔽 mapping	Tx Channels: 13	Rx Channels: 24 💌
no mapping	Tx Channels: 13 💌	Rx Channels: 24 👻

通道数测试。分为mapping和no mapping,检测读取出来的Tx和Rx数量是 否与FW中的设置mapping和 no mapping时设定的数量一致。一致则 Pass,有出入则Fail。

Int Pin Test测试项		
Int Pin Test	Reg Addr: 0x08 💌	INT
测试项,检测中断功能。		
Reset Pin Test测试项		
Reset Pin Test	Reg Addr: 0x88 💌	

Reset测试项,检测Reset功能,Reset脚位与Wake脚位共用一个脚位。

Noise Test测试项

Noise Test		🖲 sam	ple by	frame:	Select Frames:	32	•
T tip before test		C sam	ple by	time:	Select Time:	1s	Ŧ
	Noise_Mode:	Ave	-	N	oise_Coefficient:	50	Ŧ
Glove Mode	Rawdata_Min:	5000	-	Glove N	loise Coefficient:	100	Ŧ
Noise Threshold Choose	Set_Frequency:	0	-		Noise_Max:	50	Ŧ
TP Tool Process	Min NG Frame:	Defaul	t 🔻				

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Glove Mode是是否选择手套模式。若选中则Rawdata_Min有效,否则无刻

Rawdata_Min是在FIR=1,默认频率下,获取一帧Rawdata值取其中最小的一个Rawdata值,若该值大于等于设定的Rawdata_Min阈值时则 PASS,小于该阈值时则NG。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,X(n)-X(n+1以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的 噪声值大于此计算出阈值则NG,否则为PASS。

Gloce Noise Coefficient是读取用于计算手套模式的噪声阈值的噪声测试的系数,有节点的噪声值大于此计算出阈值则NG,否则为PASS。

Weak Short-circuit Test测试项

CG_Min:	4000	-
---------	------	---

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Uniformity Test测试项

Uniform	nity Test			
V	Tx Linearity	Threshold:	20	-
~	Rx Linearity	Threshold:	20	-
~	Min/Max	Threshold:	70	-

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Uniformity测试才通过,可以单独对其中一部分进行设置

CM Test测试项

CM Test	
Min CM	Threshold: 0.5
Max CM	Threshold: 5

CM值检查测试,分为两部分:

Min CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)小,则NG

Max CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值

比设置阈值(Threshold)大,则NG

两者是相与的关系,只有两项都通过,整个CM测试才算通过,可以单独 对其中一部分进行设置

Panel Differ Test测试项

Panel Differ Test	PanelDiffer_Min: 150	PanelDiffer_Max: 1000 💌
PanelDiffer_Min:	设置的panel Differ阈值的最小值	

PanelDiffer_Max: 设置的panel Differ阈值的最大值

Panel Differ Uniformity Test测试项

Panel Differ Uniformity Test	
Tx Linearity	Threshold: 20 💌
Rx Linearity	Threshold: 20 💌
Min/Max	Threshold: 70 💌

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Panel Differ Uniformity测试才通过,可以单独对其中一部分进行设置

LCD Noise Test测试项

LCD Noise Test			
	Sample Frames: 200 💌	LCD Noise Conficient:	35 👻
	Noise Max: 15 💌	Noise Mode:	1 🔻
	Set_Frequency: 0	Frame Max Num:	5 👻
🔽 Set Max Mode	Noise_Coefficient: 50 💌	Noise_Max:	50 👻

ICD Noise测试,先将设置的前四个值写入相应的寄存器,然后读取 rawdata数据,最后从新获取FrameNum与设定的Frame Max Num相比 较,若大于设定值,则测试NG。

Pattern Test测试项

Pattern Test		
Pattern 00	Pattern FF	
Pattern 55	Pattern AA	
Pattern Bin		

Pattern Test测试,若勾选前四个的任意个,则先擦除1K的flash,之后写入1K相应的勾选的值,如pattern 00,则这1k的flash中全部写0x00,其他刻似,之后读出flash中的值,比较读写是否成功。若勾选pattern Bin则写入相应的app.bin,然后检查读写是否成功。

FPC Open Test测试项

|--|--|

FPC Open Test测试,读取防水模式下的rawdata数据与设定的阈值相比较,若超出范围,则测试NG。

Force Touch Test :

Channel Num Test测试项

Channel Num Test

FS Channels: 10 -

Force Touch通道数测试。检测从FW中读取出来的Force touch Channels num数量是否与设置设定的FS Channels的数量一致。一致则Pass,有出入则Fail。

SCap CB Test测试项

SCap CB Test		
✓ Waterproof Off	Min Threshold:	Max Threshold: 240 💌
Waterproof On	Min Threshold: 0	Max Threshold: 240 -

Force Touch的自电容部分的CB测试,检测CB是否饱和。

Force Touch的ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

RawData Test测试项

RawData Test		
Waterproof Off	Min Threshold: 3000 🗸	Max Threshold: 15000 💌
Waterproof On	Min Threshold: 3000 🗸	Max Threshold: 15000 💌

Force Touch的自电容部分的RawData测试,包括开防水(Waterproof On) 与关防水(Waterproof Off)下的RawData测试,两者综合结果决定Force Touch的Scap RawData Test是否PASS

Weak Short-circuit Test测试项

Weak Short-Circuit Test	CG_Min: 1200 -	CC_Min: 1200 💌
	Cap short test	

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Flatness Test测试项

Flatness Test				
Calibration		Flatness Coefficent:	1	-
Differ Threshold C	heck	Differ Threshold:	0	-
Differ Coefficient (Check	Differ Coefficient	0	•

Calibration自动计算平整度系数

Flatness Coefficient直接设定平整度系数

Differ Threshold是max-min的最大阈值

Differ Coefficient是min/max的最小阈值

Flatness测试,先扫描一帧的force touch数据rawdata1,盖上盖板,重新扫描一帧的force touch数据rawdata2,根据两帧的rawdata数据,计算 differData,将计算的differData乘以之前自动计算或者设置的系数得到新 的NewDifferData,并计算新的differdata数据的最大最小值(max,min), 并通过对max,min的操作来与设定的阈值进行比较,超出阈值,测试NG。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			X
I. Interface 2. Common Config Other Config Terminal Config 3. Data Test Items Basic Threshold Detail Threshold	Mutual-Capacitance: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items:	Setting Detail	
5. Other Test Items 6. Save File	Self-Capacitance: 1. Set Sort for Some Test Items: 2. Set Detail Threshold for some Test Items:	Setting., Detail.,	
	In-Cell: 1. Set invalid node for all Test Items: 2. Set Detail Threshold for some Test Items:	Setting,, Detail.,	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0		5	0	7	0	0	
ompt:		Tx\Rx	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0:无效节点,不	测试	TX3	1	1				1		1	1	1
1: 有效节点,需	测试 雄语罢	1x4	1	1	1	1	1	1	1			1
- 1XME 1788 / 19	AL 10 TH	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
-		Tx7	1			1						
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1	1	1	1	1	1	1	1	1	1
Rx Num:		Tx10	1	1	1	1	1	1	1	1	1	1
10	-	Tx11	1									
Type: MCap	•	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Node												1
		Invalid No	ode:		22							
		(Tx15, R) Key Node	x1), ::		(Tx1	5, Rx2),	(T	x15,	Rx4)	'	(Tx:
		(Tx15, R)	x3),		(Tx1	5, Rx6),	(T	x15,	Rx9)		
		•										

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold		-	<i>F</i> 4	~	-77	-	*				-						
RawDataTest_HIGH_Max	Tx\Rx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RawDataTest_HIGH_Min	Tx1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
PanelDifferTest_Max	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest ON Mi	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_Mi ≘	Tx4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_OFF_N	Ty5	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest ON Max	Type	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Min	1.0	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_OFF_Max		10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM Test Max	1x8	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Min	Tx9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
LCDNoise_Test_Coefficien	Tx10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
ForceTouchRawDataTest	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	Tx12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Start: End:	Tx13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
x: 1 13 Image: Constraint of the second seco																	
Auto Set Threshold	•]					Þ
Export Min & Max	If you mod ?誹砆	ify the da 腿>? 腿	ta in the li э T鄭	st, it will b ?誹??砆	e saved a ?玂	utomatica	lly.									Ca	ancel

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选排测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 4. 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Data Analyze"按钮,则会自动打开数据分析工具,可以在数据 分析工具里面查看数据分析情况。
- 6. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。
- 7. 对于RX Linearity Test和TX Linearity Test而言,步骤4不起作用。采用另外一套方法计算阈值。

整体归一及默认情况时:

to Set Detail Threshold Data Source:		_
Data Directory:]
Test Item:	Threshold:	
RawData Test High	Min Threshold: Change Rate: 25% Change Value:	
	Max Threshold: Change Rate: 25% Change Value:	
FT ScapCB On Test		
FT ScapCB Off Test	Data Analyze Set Threshold	
		*
		-

自动归一时:

Data Source:		
Data Directory:	_	
est Item:	Threshold:	
RawData Test High	Min Threshold: Change Rate: 25% Change Value	:
Panel Differ Test	Max Threshold: Change Rate: Change Value Change Value	:
FT ScapCB On Test		
FT ScapCB Off Test	Data Analyze Set Threshold	

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

FT5442在综合测试软件中使用的UI如下:

先在Interface配置页的IC_Type选择需要以下芯片:

• FT5442

在这些芯片选择了整体归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

 1. Interface 2. Common Config Other Config Terminal Config 3. Data Test Items Basic Threshold Detail Threshold 4. Graph Test Items 5. Other Test Items 	Check Item: Project Code Test FW Version Test Factory ID Test LCM ID Test Panel ID	Code: Main Version: ID_Number: LCM ID: Panel ID:	0xff _ 0xff _ 0x01 _ 0xff _	ASCII Conversion	ĺ
·····b. Save file	Required Test Item:	ସ ସ ସ	Weak Short-Circuit Test SCap CB Test Rawdata Margin Test CM Test		
	Option Test Item: INT Pin Test Noise Test SITO RawData Uniformity test GPIO Test Pattern test FPC Open Test	r r r	Reset Pin Test Adc Detect Test TE Test LCD Noise Test		
			Previous Ne	xt Cancel	

在这些芯片选择了自动归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

 Common Config Other Config Terminal Config 3. Data Test Items Basic Threshold Detail Threshold 4. Graph Test Items 5. Other Test Items 	Check Item: Project Code Test FW Version Test Factory ID Test LCM ID Test Panel ID	Code: Main Version: ID_Number: LCM ID: Panel ID:	0xff ▼ 0xff ▼ 0x01 ▼ 0xff ▼
	Required Test Item: RawData Test SCap RawData Test Channel Number Test RawData Uniformity Test Panel Differ Test	থ থ থ থ থ থ থ থ থ থ থ থ থ	Weak Short-Circuit Test SCap CB Test Rawdata Margin Test CM Test
	Option Test Item: INT Pin Test Noise Test SITO RawData Uniformity test GPIO Test Pattern test FPC Open Test		Reset Pin Test Adc Detect Test TE Test LCD Noise Test Panel Differ Uniformity Test

无论选择哪种方式测试项内容均分三部分,包括检测项、必选测试项和备 选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如 下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设能相一致。ASCII Conversion是否进行ascii码转换;勾选输出其ASCII 码值,不勾选输出相应的字符值。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- LCM ID Test:用于区分LCD不同的供应商。
- Panel ID:用于区分不同的面板厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E
Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

整体归一的RawData测试项

RawData Test		
Cow Frequency	RawData_Min: 7000 👻	RawData_Max: 10000 -
High Frequency	RawData_Min: 7000	RawData_Max: 10000 -
自动归一和默认的Raw	Data测试项	

RawData Test	RawData_Min: 7000 💌	RawData_Max: 11000 -

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

整体归一测试原始数据测试包括两部分: 低频状态下的原始数据与高频状态下的原始数据测试,两者综合结果决定RawData Test是否PASS

自动归一和默认测试原始数据测试只有测试低频状态下的原始数据

Adc Detect Test测试项

Adc Detect Test

Max Theshold: 50 -

ADC饱和度测试, Max Threshold为写入Adc寄存器最大值, 如果没有溢出, 则测试结果PASS, 否则NG

SCap CB Test测试项

ocup co rest		
Waterproof Off	Min Threshold:	Max Threshold: 240
Waterproof On	Min Threshold:	Max Threshold: 240 -

自电容部分的CB测试,检测CB是否饱和。

ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

Scap RawData Test测试项

Con CP Toot

SCap RawData Test		
✓ Waterproof Off	Min Threshold: 5000 💌	Max Threshold: 8500 👻
Waterproof On	Min Threshold: 5000 👻	Max Threshold: 8500 👻

自电容部分的RawData测试,包括开防水(Waterproof On)与关防水 (Waterproof Off)下的RawData测试,两者综合结果决定Scap RawData Test是否PASS

Channel Num Test测试项

Channel Num Test		
🗹 mapping	Tx Channels: 13	Rx Channels: 24
no mapping	Tx Channels: 13	Rx Channels: 24 💌

通道数测试。分为mapping和no mapping,检测读取出来的Tx和Rx数量是 否与FW中的设置mapping和 no mapping时设定的数量一致。一致则 Pass,有出入则Fail。

Int Pin Test测试项		
Int Pin Test	Reg Addr: 0x08	INT
测试项,检测中断功能。		

Reset Pin Test测试项

Reset Pin Test Reg Addr: 0x88 -

Reset测试项,检测Reset功能,Reset脚位与Wake脚位共用一个脚位。

Noise Test测试项

Noise Test		🖲 sam	ple by frame	: Select Frames:	32	•
Tip before test		C sam	ple by time:	Select Time:	1s	-
	Noise_Mode:	Ave	-	Noise_Coefficient:	50	-
Glove Mode	Rawdata_Min:	5000	Glov	ve Noise Coefficient:	100	
Noise Threshold Choose	Set_Frequency:	0	-	Noise_Max:	50	-
TP Tool Process	Min NG Frame:	Defaul	t 👻			

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Glove Mode是是否选择手套模式。若选中则Rawdata_Min有效,否则无效

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,X(n)-X(n+1)以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Rawdata_Min是在FIR=1,默认频率下,获取一帧Rawdata值取其中最小的一个Rawdata值,若该值大于等于设定的Rawdata_Min阈值时则 PASS,小于该阈值时则NG。

Noise Threshold Choose是选择设置阈值的方式,默认为选择 Noise_Coefficient的方式,勾选选择Noise_Max的方式。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的

噪声值大于此计算出阈值则NG,否则为PASS。

Noise_Max是直接设置的噪声的阈值,噪声值大于该阈值则测试NG,否则 Pass。

TP Tool Process用来选择是使用工具来收集噪声值,还是使用FW来收集噪声值。

Min NG Frame最大允许NG的帧数。

Gloce Noise Coefficient是读取用于计算手套模式的噪声阈值的噪声测试的系数,有节点的噪声值大于此计算出阈值则NG,否则为PASS。

Weak Short-circuit Test测试项

Weak Short-Circuit Test	CG_Min: 4000 -	CC_Min: 2000 -

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Uniformity Test测试项

Uniformity Test	
Tx Linearity	Threshold: 20 👻
Rx Linearity	Threshold: 20 👻
Min/Max	Threshold: 70 💌
均匀度测试,均匀度测试又分为3 Tx Lineary: 检查Tx线性度, 大	三小项: 于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Uniformity测试才通过,可以单独对其中一部分进行设置

CM Test测试项

CM Test

Min CM

Threshold: 0.5
Threshold: 5

CM值检查测试,分为两部分:

Min CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)小,则NG

Max CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)大,则NG

两者是相与的关系,只有两项都通过,整个CM测试才算通过,可以单独 对其中一部分进行设置

Rawdata Margin Test测试项

Rawdata Margin Test	Ratio Max: 1	Ratio Min: 10 -

Ratio Max: 最低频点计算出原始RawData,若RawData < 计算出的值,则测试OK,否则测试NG

Ratio Min: 最高频点计算出原始RawData,若RawData > 计算出的值,则测试OK,否则测试NG

Panel Differ Test测试项

Panel	Differ_Min:	150	-	PanelDiffer_Max:	1000	-
	_	100		_	1000	_

Panel Differ Test

PanelDiffer_Min: 设置的panel Differ阈值的最小值 PanelDiffer Max:设置的panel Differ阈值的最大值

Panel Differ Uniformity Test测试项

Panel Differ Uniformity Test

Tx Linearity	Threshold: 20
Rx Linearity	Threshold: 20 💌
Min/Max	Threshold: 70 💌

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Panel Differ Uniformity测试才通过,可以单独对其中一部分进行设置

SITO Rawdata Uniformity Test测试项

SITO RawData Uniformity Test	
🔽 Tx Linearity	Threshold: 10 💌
Rx Linearity	Threshold: 10 💌

SITO rawdata均匀度测试,均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

二则是相与的关系,只有二则都测试通过,整个SITO Rawdata Uniformity 测试才通过,可以单独对其中一部分进行设置

LCD Noise Test测试项

LCD Noise Test Sample Frames: 200 LCD Noise Conficient: 35 -• Noise Max: 15 Noise Mode: 1 -• Set_Frequency: 0 Frame Max Num: 5 • • Noise_Coefficient: 50 Set Max Mode Noise_Max: 50

ICD Noise测试,先将设置的前五个值写入相应的寄存器,然后读取Noise的数据,然后与设定阈值相比较,若超出阈值,则测试NG。此外,若设置完参数后从新获取FrameNum与设定的Frame Max Num相比较,若大于设定值,则测试亦NG。

Pattern Test测试项

Pattern Test		
Pattern 00	Pattern FF	
Pattern 55	Pattern AA	
Pattern Bin		

Pattern Test测试,若勾选前四个的任意个,则先擦除1K的flash,之后写入1K相应的勾选的值,如pattern 00,则这1k的flash中全部写0x00,其他类似,之后读出flash中的值,比较读写是否成功。若勾选pattern Bin则写入相应的app.bin,然后检查读写是否成功。

FPC Open Test测试项

FPC Open Test

Min Threshold: 32736 💌

先设置最小的Scap Rawdata数据,若测试中获取的scap rawdata数据小于 设定的最小值,则测试NG。

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

		TID		0	0			0	7	0	0	
ompt:		Tx\RX	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0: 无效节点,7	下测试	TX3	1	1				1	1	1	1	1
1: 有效节点,需	통测试 ≢难设罢	1x4	1	1	1	1	1	1	1	1	1	1
2. 1XME P.R. 1	<u>а ж кхтт</u>	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
		Tx7	1		1							1
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1									1
Dx Num		Tx10	1	1	1	1	1	1	1	1	1	1
KX Num: 10	-	Tx11	1	1	1	1	1	1	1	1	1	1
Type: MC	ap 💌	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export Nod	e											II
		Invalid No	ode:									
		Invalid No (Tx15, R)	ode: x1),		(Tx15	5, Rx2),	(1	x15,	Rx4),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: x1), :: x3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	רז (ד	x15, x15,	Rx4), Rx9),		(Tx15
		Invalid No (Tx15, R) Key Node (Tx15, R)	ode: k1), :: k3),		(Tx19 (Tx19	5, Rx2 5, Rx6),),	(1 (1	x15, x15,	Rx4), Rx9),		(Tx15

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

t Special Threshold	-	1.00															
	Tx\Rx	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RawDataTest_HIGH_Min	Tx1	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
RawDataTest_LOW_Max	Tx2	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_M	Tx3	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_Mi	Tx4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
	Tx5	10000	12000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Max	Tx6	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Min SCapCbTest_OFF_Max	Tx7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_OFF_Min	Tx8	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Max	Tx9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
RxLinearityTest_Max	Tx10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
TxLinearityTest_Max	Tx11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
III ■ 1	Tx12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Set Value: Start: End:	Tx13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx: 1 💌 13 💌																	
Rx: 1 💌 24 💌																	
alue: Modify																	
Tx Num: 13 V																	
Du Numi																	
KX Num: 24 ▼																	
Auto Set Threshold	•											1					+
Export Min & Max	, If you mod 石山主米叶星	lify the da	ta in the li	st, it will b	e saved a	utomatica 白 z h / 足 左	ally.									G	ancel
Export Full & Flax	73428X10	DXISSIXHI	, isvX/al	10112282	141541	日e/川本15											

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 4. 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Data Analyze"按钮,则会自动打开数据分析工具,可以在数据 分析工具里面查看数据分析情况。
- 6. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。
- 7. 对于RX Linearity Test和TX Linearity Test而言,步骤4不起作用。采用另外一套方法计算阈值。

整体归一及默认情况时:

ata Source:		
Data Directory:		
est Item:	Threshold:	
RawData Test High	Min Threshold: Change Rate: 25% Change Value:	
C RawData Test Low	Max Threshold: Change Rate: 25% Change Value:	
Rx Linearity Test		
Tx Linearity Test	Data Analyze Set Threshold	
		-
		-

自动归一时:

Threshold:	
Min Threshold: Change Rate: Change Value Change Value	2:
Max Threshold: Change Rate: 25% Change Value	2:
Data Analyze Set Threshold	
	*
	-
	Threshold: Min Threshold: Change Rate: 25% Change Value Max Threshold: Data Analyze Set Threshold

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

FT3428U在综合测试软件中使用的UI如下:

先在Interface配置页的IC_Type选择需要以下芯片:

• FT3428U

在这些芯片选择了整体归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

Setting . Interface . Common Config . Other Config . Terminal Config 	Check Item: Project Code Test FW Version Test Factory ID Test Panel ID Test	Code: Main Version: ID_Number: Panel ID:	0xff _▼ 0xff _▼ 0xff _▼	ASCII Conversion	
5. Other Test Items	Required Test Item:	হ হ	Weak Short-Circuit Test SCap CB Test CM Test		
	Option Test Item: INT Pin Test Scap Noise Test SITO RawData Uniformity test		Reset Pin Test LCD Noise Test Noise Test		
			Previous Ne	ext Cancel	-

在这些芯片选择了自动归一以后,选择Data Test Items配置页时,就会显示以下测试项内容:

Common Config Other Config Terminal Config Data Test Items Basic Threshold Detail Threshold Graph Test Items	Froject Code Test FW Version Test Factory ID Test Panel ID Test	Code: Main Version: ID_Number: Panel ID:	0xff 0xff 0xff 0xff
Other Test Items Save File	Required Test Item:		
	RawData Test		Weak Short-Circuit Test
	SCap RawData Test		SCap CB Test
	🔽 RawData Uniformity Test		CM Test
	Channel Number Test	Г	Panel Differ Test
	Option Test Item:		
	INT Pin Test	Г	Reset Pin Test
	🗍 Scap Noise Test	Г	LCD Noise Test
	SITO RawData Uniformity test	Г	Noise Test
		Г	Panel Differ Uniformity Test

无论选择哪种方式测试项内容均分三部分,包括检测项、必选测试项和备 选测试项。

一、检测项

检测项,主要是检查IC与FW是否属于当前测试需要的。主要检测项如下:

- Project Code Test:项目版本检测。设置的项目代码,须跟FW预设的 相一致。ASCII Conversion是否进行ascii码转换;勾选输出其ASCII 码值,不勾选输出相应的字符值。
- FW Version Test:芯片FW版本检测。要检查FW版本,先勾选FW Version Test复选框,然后选择对应的版本值。在Run Mode为 Download + Test或Upgrade + Test时,版本值是烧录更新后的FW版 本。
- Factory ID Test:工厂ID检测,便于管控TP来自哪个屏厂。
- Panel ID:用于区分不同的面板厂。

二、必选测试项

必选测试项,是推荐要测试的。如无其他原因,应测试所有的必选测试 项,以便能够有效检测出待测屏体的好坏。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

三、备选测试项

备选测试项,针对不同项目使用,视不同情况选择。

在这里选择了测试项,其阈值参数将在Basic Threshold页面显示。

具体测试项内容,将在Basic Threshold页面介绍。

Basic Threshold,基础阈值配置页

在Data Test Items配置页选择了哪个测试项,就会在此配置页显示其相应 的阈值参数。下面对每一个测试项进行解释:

RawData Test测试项

整体归一的RawData测试项

RawData Test		
V Low Frequency	RawData_Min: 7000 👻	RawData_Max: 10000 -
High Frequency	RawData_Min: 7000 👻	RawData_Max: 10000 -
自动归一测试项		
RawData Test	RawData_Min: 7000	RawData_Max: 11000 💌

原始数据测试, 此测试项根据读取到的Raw Data判断待测屏的开路短路。在Rawdata_Min和RawData_Max设置最小和最大的测试阈值,如果 测试时,读取到的Raw Data有在测试阈值之外的,则此测试项为Fail,反 之,为Pass。

整体归一测试原始数据测试包括两部分: 低频状态下的原始数据与高频制态下的原始数据测试,两者综合结果决定RawData Test是否PASS

自动归一测试原始数据测试只有测试低频状态下的原始数据

SCap CB Test测试项

SCap CB Test		
Waterproof Off	Min Threshold: 0	Max Threshold: 240 💌
Waterproof On	Min Threshold:	Max Threshold: 240 💌

自电容部分的CB测试,检测CB是否饱和。

ScapCB的测试包括两部分,关防水下的Scap CB测试与开防水下的Scap CB测试,两者综合结果决定Scap CB Test是否PASS

Scap RawData Test测试项

SCap RawData Test		
✓ Waterproof Off	Min Threshold: 5000 -	Max Threshold: 8500 👻
Waterproof On	Min Threshold: 5000 -	Max Threshold: 8500 🚽

自电容部分的RawData测试,包括开防水(Waterproof On)与关防水 (Waterproof Off)下的RawData测试,两者综合结果决定Scap RawData Test是否PASS

Channel Num Test测试项

Channel Num Test		
🔽 mapping	Tx Channels: 13	Rx Channels: 24 💌
no mapping	Tx Channels: 13 💌	Rx Channels: 24 👻

通道数测试。分为mapping和no mapping,检测读取出来的Tx和Rx数量是 否与FW中的设置mapping和 no mapping时设定的数量一致。一致则 Pass,有出入则Fail。

Int Pin Test测试项		
Int Pin Test	Reg Addr: 0x08 💌	INT
测试项,检测中断功能。		
Reset Pin Test测试项		
Reset Pin Test	Reg Addr: 0x88 💌	

Reset测试项,检测Reset功能,Reset脚位与Wake脚位共用一个脚位。

Noise Test测试项

Noise Test		🖲 sam	ple by	frame:	Select Frames:	32	•
T tip before test		C sam	ple by	time:	Select Time:	1s	Ŧ
	Noise_Mode:	Ave	-	N	oise_Coefficient:	50	Ŧ
Glove Mode	Rawdata_Min:	5000	-	Glove N	loise Coefficient:	100	Ŧ
Noise Threshold Choose	Set_Frequency:	0	-		Noise_Max:	50	Ŧ
TP Tool Process	Min NG Frame:	Defaul	t 🔻				

噪声测试,测试在无外界干扰情况下屏体的噪声干扰。

Select Frames是选择参与噪声测试的RawData帧数, Select Time是选择参与噪声测试的采样时间。

Tip Before Test选择是否在Noise测试之前提示。

Glove Mode是是否选择手套模式。若选中则Rawdata_Min有效,否则无刻

Rawdata_Min是在FIR=1,默认频率下,获取一帧Rawdata值取其中最小的一个Rawdata值,若该值大于等于设定的Rawdata_Min阈值时则 PASS,小于该阈值时则NG。

Noise_Mode是噪声判断类型,Avg是以均值噪声为噪声值,Max是以最大的噪声为噪声值,Max-Min以帧内最大值-最小值作为噪声值,X(n)-X(n+1以获取的Rawdata的帧数的每后一帧减去前一帧,噪声值为相应的节点的所有值的最大值。

Noise_Coefficient是读取用于计算噪声阈值的噪声测试的系数,有节点的 噪声值大于此计算出阈值则NG,否则为PASS。

Gloce Noise Coefficient是读取用于计算手套模式的噪声阈值的噪声测试的系数,有节点的噪声值大于此计算出阈值则NG,否则为PASS。

Weak Short-circuit Test测试项

CG_Min:	4000	-
---------	------	---

弱短路测试,可以检测通道之间的微短。CG_Min为对地短路阈值, CC_Min为通道间短路阈值

Uniformity Test测试项

Uniform	nity Test			
V	Tx Linearity	Threshold:	20	-
~	Rx Linearity	Threshold:	20	-
~	Min/Max	Threshold:	70	-

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Uniformity测试才通过,可以单独对其中一部分进行设置

CM Test测试项

CM Test	
Min CM	Threshold: 0.5
Max CM	Threshold: 5

CM值检查测试,分为两部分:

Min CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值 比设置阈值(Threshold)小,则NG

Max CM: 在特定频率下获取RawData,并反向计算出CM值,如果CM值

比设置阈值(Threshold)大,则NG

两者是相与的关系,只有两项都通过,整个CM测试才算通过,可以单独 对其中一部分进行设置

Panel Differ Test测试项

Panel Differ Test	PanelDiffer_Min: 150	PanelDiffer_Max: 1000 💌
PanelDiffer_Min: 设	置的panel Differ阈值的最小值	
PanelDiffer_Max : रि	设置的panel Differ阈值的最大值	Ī
Panel Differ Uniforn	nity Test测试项	
Panel Differ Uniformity Test		

Tx Linearity	Threshold: 20
Rx Linearity	Threshold: 20 V
Min/Max	Threshold: 70 V

均匀度测试,均匀度测试又分为三小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary:检查Rx线性度,大于阈值则NG

Min/Max:检查整屏一致性,小于阈值则NG

三则是相与的关系,只有三则都测试通过,整个Panel Differ Uniformity测试才通过,可以单独对其中一部分进行设置

Scap Noise Test测试项

Scap Noise Test		
	Select Frames: 32	Noise_Mode: Max 💌
Waterproof Off	Min Threshold: 50 💌	
Waterproof On	Min Threshold: 50 💌	

自电容部分的Noise测试,包括开防水(Waterproof On)与关防水

(Waterproof Off)下的noise测试,两者综合结果决定Scap noise Test是否 PASS.

LCD Noise Test测试项

LCD Noise Test		
	Sample Frames: 200 💌	LCD Noise Confficient: 35
	Noise Max 15 💌	Noise_Mode: 1
	Set_Frequency: 0	Frame Max Num: 5
Set Threshold Mode	Noise_Coefficient: 50 💌	Noise_Threshold: 50 💌

ICD Noise测试,先将设置的前五个值写入相应的寄存器,然后读取Noise的数据,然后与设定阈值相比较,若超出阈值,则测试NG。此外,若设 完参数后从新获取FrameNum与设定的Frame Max Num相比较,若大于ì 定值,则测试亦NG。

SITO Rawdata Uniformity Test测试项

SITO RawData Uniformity Test	
🔽 Tx Linearity	Threshold: 10 💌
Rx Linearity	Threshold: 10 -

SITO rawdata均匀度测试,均匀度测试又分为二小项:

Tx Lineary:检查Tx线性度,大于阈值则NG

Rx lineary: 检查Rx线性度,大于阈值则NG

二则是相与的关系,只有二则都测试通过,整个SITO Rawdata Uniformit 测试才通过,可以单独对其中一部分进行设置

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Detail Threshold,详细阈值设置页。

在此页面,可以设置两大功能:

- 1. 设置无效节点。
- 2. 设置详细阈值。

如下图所示:

Setting			×
1. Interface			<u>^</u>
Other Carfs	Mutual-Capacitance:		
Terminal Config	1. Set invalid node for all Test Items:	Setting	
Basic Threshold	2. Set Detail Threshold for some Test Items:	Detail	
0. Bave the	Self-Capacitance:		
	1. Set Sort for Some Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail	
	_ In-Cell:		
	1. Set invalid node for all Test Items:	Setting	
	2. Set Detail Threshold for some Test Items:	Detail, .	
			-
	_	Previous Next	Cancel

一、设置无效节点

在这里,可以设置每一个节点是有效还是无效。

• 设置为0,表示该节点无效,在所有的测试项都不参与测试判断。

- 设置为1,表示该节点有效,需测试。
- 设置为2,表示该节点是按键,在部分测试项当做按键特殊处理,其 他测试项当做有效节点处理。

不接受除了0、1和2之外的值。

				0	-		-	0	- 7	0	0	
ompt:		Tx\RX	1	2	3	4	5	6	1	8	9	10
D: invalid node		T										
2: key node		TX2										
0:无效节点,	不测试	TX3	1	1	1	1		1		1	1	1
1: 有效节点, 2: 按键节占.	需测试 特殊设置	1x4	1	1	1	1	1	1	1			1
- IXME PARTY	13 M KCIII	Tx5	1	1	1	1	1	1	1	1	1	1
		Tx6	1	1	1	1	1	1	1	1	1	1
_		Tx7	1			1						
Operate:		Tx8	1	1	1	1	1	1	1	1	1	1
Tx Num: 15	•	Tx9	1	1	1	1	1	1	1	1	1	1
Rx Num:		Tx10	1	1	1	1	1	1	1	1	1	1
100 100 110	–	Tx11	1									
Type: M	Cap 🔻	Tx12	1	1	1	1	1	1	1	1	1	1
		Tx13	1	1	1	1	1	1	1	1	1	1
		Tx14	1	1	1	1	1	1	1	1	1	1
		Tx15	0	0	2	0	0	2	0	0	2	0
Export No	de											1
		1										
		Invalid No	ode:		22		2	2				2
		(Tx15, R) Key Node	x1),		(Tx1	5, Rx2),	(T	x15,	Rx4)	'	(Tx:
		(Tx15, R)	x3),		(Tx1	5, Rx6),	(T	x15,	Rx9)		
		•										

二、详细阈值设置

设置特殊阈值。在这里可以针对每一个测试项的每一个节点设置阈值。阈 值被修改后,将自动保存到配置文件里。

Special Threshold																	
RawDataTest_HIGH_Max	x\Rx '	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
RawDataTest_HIGH_Min	x1 '	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
PanelDifferTest_Max Tx	x2 ·	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_M; Tx	x3 '	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_ON_Mi	x4	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapRawDataTest_OFF_N	x5	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Max	x6	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_ON_Min	x7	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
SCapCbTest_OFF_Min Tx	x8 ·	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Max		10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
CM_Test_Min	x9	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Noise_Test_Coefficient	x10	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx	x11	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Tx	x12	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
Start: End: Tx	x13	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000
x: 1 💌 13 💌																	
x: 1 🔻 24 💌																	
ue: Modify																	
Tx Num: 13 💌																	
Rx Num: 24																	
Auto Set Threshold																	+
Export Min & Max	ou modify	y the dat	a in the lis	st, it will b	e saved a	utomatica	lly.									C	ancel

自动设置阈值

点击上图的"Auto Set Threshold"按钮,会弹出自动设置工具。其操作步骤如下:

- 1. 使用一些良品TP,经过测试,保存其测试数据。
- 2. 设置数据源。在Data Source区域点击Data Directory的"…"按钮,选打测试数据所在目录。
- 3. 在TestItem区域选择要设置阈值的测试项。
- 4. 在Threshold区域,设置最大和最小阈值的变化规则。选择Change Rate,则以百分比改变每一个节点数据的平均值来作为最大最小阈 值;选择Change Value,则按照所填写的值来改变每一个节点数据的 平均值来作为最大最小阈值。
- 5. 点击"Data Analyze"按钮,则会自动打开数据分析工具,可以在数据 分析工具里面查看数据分析情况。
- 6. 点击"Set Threshold"按钮,则根据选择的数据源、测试项和阈值变化 规格来计算每一个节点的阈值,最后将结果显示在信息框里。

整体归一及默认时:

Auto Set Detail Threshold

Data Directory:		
est Item:	Threshold:	
RawData Test High	Min Threshold: Change Rate: 25% Change Value:	
C RawData Test Low	Max Threshold: Change Rate: 25% Change Value:	
	Data Analyze Set Threshold	
		-

23

自动归一时:

Auto Set Detail Threshold		23
Data Source:		
Test Item: RawData Test High Panel Differ Test	Threshold: Min Threshold: Change Rate: 25% Change Value: Max Threshold: Change Rate: 25% Change Value: Data Analyze Set Threshold	A 7

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

E

Graph Test Items,	图形测试项。	泛指需要触摸TP来执行的测试项。

	Virtual Button Test	Set Key Num: 0	Max_NG:	Never 💌 I	.imit Time: Never 💌	
Other Config	Key coordinate:	Key_1: Left:	Top:	Right:	Bottom:	
- 3. Data Test Items		Key_2: Left:	Top:	Right:	Bottom:	
Basic Threshold		Key_3: Left:	Top:	Right:	Bottom:	
4. Graph Test Items		Key_4: Left:	Top:	Right:	Bottom:	
 Other Test Items Save File 		Key_5 Left:	Top:	Right:	Bottom:	
		Key_6 Left:	Top:	Right:	Bottom:	
		Key_7 Left:	Top:	Right:	Bottom:	
		Key_8 Left:	Top:	Right:	Bottom:	
	🔲 Use Key Value	Key_1:	Key_2:	Key_3:	Key_4:	
	Cone Line Test	Distance(pixel): 50	- Are	a length(pixel): 5	0 -	
	Position: 🔽 Mid-V	/ertical	Mid-Hor	rizontal		
	🔲 Left	Offset: 0	💌 🗖 Right	Offset: 0	-	
	🗖 Тор	Offset: 0	🔄 🗖 Bottom	Offset: 0		
		Max_NG: Neve	- <u>-</u>	Limit Time:	lever 💌	
	Diagonal Test	Distance: 50	▼ Diagonal	Type: All	▼ I✓ Linearity Check	
		Max NG: Neve	r 🔻 Limit	Time: Never	•	

MCAP-画线测试设置界面

Setting	Ministered in Fo	-	Automatica Taxant	Suffragers.		×
1. Interface		Key_2: Left:	Top:	Right:	Bottom:	^
- 2. Common Config		Key_3: Left:	Top:	Right:	Bottom:	
Terminal Config		Key_4: Left:	Top:	Right:	Bottom:	_
- Basic Threshold	🔲 Use Key Value	Key_1:	Key_2:	Key_3:	Key_4:	
4. Graph Test Items 5. Other Test Items	Set Touch Threshold	Preserved Key	800 🔻	Division Number:	100 💌	
o. save File		1st Key Channel:	800 👻	2st Key Channel:	800 👻	
		3st Key Channel:	800 👻	4st Key Channel:	800 👻	
	Linearity Test	Set Para	am,			
	Circle Test	Max NG:	Never 💌	Limite Time:	Never 💌	
		OutLine Boarder:	36.0 mr 💌	Track Center 1:	27.0 mr 💌	
		Linearity:	3.5 mm 💌	Track Center2:	12.0 mr 💌	
		Edge Offset:	2.0 mm 💌	Track Offset:	1.0 mm 💌	
		Outer Splits:	10 💌			
	Square Test	Set Par	am,			
	🕅 Key Test	Key Threshold:	800 🔻	Limite Time:	Never 💌	
	<u></u>	Key Num;	21 💌			
-			Previous	Next	Cance	

SCAP-画线测试设置界面

Virtual Button Test测试项

- 功能说明:虚拟按键测试。检测每一个按键在设定坐标范围内,是否都有触摸点。
- 参数设置:Set Key Num设置要测试的按键个数。Limit Time是对整个 虚拟按键测试进行时间限制,超时则算NG,重新测试。每一个按键f 坐标范围分有Left、Top、Right和Bottom四个参数。判断按键被触摸f 条件:当按键坐标(X,Y)的X不小于Left参数且不大于Right参数,Y 不小于Top参数且不大于Bottom参数。选择Use Key Value复选框,则 表示按钮判断是根据FW上报的按钮键值来判断,而不是坐标。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:在所有按键被触摸之前,都是按键测试过程。

- 限制条件: MaxNG表示最大NG次数, Limit Time表示限制时间
- 结束测试:所有按键被触摸,则结束测试。
- 判断条件:如果所有的按键指示灯都变绿色,则显示结果为PASS, NG判定。对一个按键来说,如果被触摸却没上报触摸坐标,则按键; 效。在测试员模式下,可设置总的测试时间,在限定的时间没能完成 所有的按键测试,则为NG。

One Line Test测试项

- 功能说明:单指画线测试。检测在一条有一定范围的直线内,是否都有触摸点。画线方位分有中间(水平)、中间(垂直)、左边、右边、顶部和底部等六个方位。
- 参数设置:在Distance设置测试范围,单位是TP的像素。建议设置的 范围能容下一个手指,方便画线。在Position选择画线方位。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:以无触摸的情况下按下到手指第1次全部抬起作为整个测i 过程。圆圈所在的矩形块有触摸发现,相应的圆圈将变成绿色。
- 限制条件: MaxNG表示最大NG次数, Limit Time表示限制时间
- 结束测试:全部抬起(无触摸)即结束测试。
- 判断条件:如果所有的指示灯都变绿色,且没有触摸点在画线区域之外,则显示结果为PASS。有指示灯变红色,或有触摸点在画线区域之外,显示为NG。

Diagonal Test测试项

- 功能说明:对角线画线测试。检测在两条有一定范围的对角线内,是 否都有触摸点。
- 参数设置:在Distance设置测试范围,单位是TP的像素。建议设置的 范围能容下一个手指,方便画线。

- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:以无触摸的情况下按下到手指到第二次全部抬起作为整个测试过程。圆圈所在的圆形块有触摸发现,相应的圆圈将变成绿色。 在画对角线过程中,在没有完全触摸所有圆圈之前抬起则视为NG,i 择Linearity Check之后,如果画线轨迹超过规定的范围,则视为NG。
- 限制条件: MaxNG表示最大NG次数, Limit Time表示限制时间。
- 结束测试:所有圆圈全部触摸且Linearity检查通过。
- 判断条件:如果所有的指示灯都变绿色且Linearity满足条件,则显示结果为PASS,否则显示为NG。

Linearity Test测试项

- 功能说明:线性度画线测试,能够进一步判断待测屏是否为良品
- 参数设置:在Min Limit-Max Limit设置测试范围,单位是TP的像素, 且满足Linearity参数设置的线性度要求,Edge表示画线要到达两边的 设定边缘,Grid Length用于设置画线区域间隔。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:以无触摸的情况下按下到手指到最后一次画线抬起作为整个测试过程。方块所在的区域有触摸发现,相应的方块将变成绿色。 在画线过程中,在没有完全触摸所有方块之前抬起则视为NG,Linearity检查不通过,则视为NG。
- 限制条件: MaxNG表示最大NG次数, Limit Time表示限制时间。
- 结束测试:所有线条全部触摸且Linearity检查通过。
- 判断条件:如果所有的指示灯都变绿色且Linearity满足条件,则显示结果为PASS,否则显示为NG。

Special Button Test测试项

1. 功能说明: GPIO测试

- 2. 参数设置: Detect Port待测试端口,同时需要在Other Config页中设置 相应的端口为输入开始测试,且低电平开始测试。
- 3. 开始测试:在TP无触摸的情况下,按下Home键开始测试。
- 4. 测试过程:以无触摸的情况下按下Home键,若检查相应的GPIO端口 未拉低,则测试NG,反之,若相应的GPIO端口拉低,则测试通 过,OK。
- 5. 限制条件:Limit Time表示限制时间。
- 6. 结束测试:设定限制时间到,或者测试结束。

判断条件:如果检测到相应的GPIO端口被拉低,则显示结果为PASS,否 则显示为NG。

Free Paint Test测试项

- 功能说明:画线测试。可在屏幕上任意划线,查看是否报点。
- 参数设置:选中Once,则不保存之前的归一,不选中,则保持之前的 轨迹。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:以无触摸的情况下按下到手指第1次全部抬起作为整个测i 过程。可查看划线轨迹。
- 限制条件:MaxNG表示最大NG次数,Limit Time表示限制时间
- 结束测试:测试时间到则结束,或者强制停止。
- 判断条件: 划线有报点则测试OK, 否则显示NG。

Square Test测试项

- 功能说明:只针对6x36的方形穿戴手表,当测试中出现TBD的测试项 结果时,才会开始该Square画线测试,从而进一步判断待测屏是否为 良品
- 参数设置: Auto Calc Limit设置屏体相关参数, Horz Line、Vert Line5 别设置X、Y方向的像素, Linearity表示线条的宽度, Edge表示画线要

到达两边的设定边缘, Grid Length用于设置画线区域间隔。

- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:以无触摸的情况下按下到手指到最后一次画线抬起作为整个测试过程。方块所在的区域有触摸发现,相应的方块将变成绿色。 在画线过程中,在没有完全触摸所有方块之前抬起则视 为NG,Linearity检查不通过,则视为NG。
- 限制条件: MaxNG表示最大NG次数, Limit Time表示限制时间。
- 结束测试:所有线条全部触摸且Linearity检查通过。
- 判断条件:如果所有的指示灯都变绿色且Linearity满足条件,则显示结果为PASS,否则显示为NG。

Circle Test测试项

- 功能说明:只针对6x36的圆形穿戴手表,当测试中出现TBD的测试项结果时,才会开始该Square画线测试,从而进一步判断待测屏是否为良品
- 参数设置:Outline boarder:VA区圆的半径;Track center1:外圆中心轨迹的半径;Track center2:内圆中心轨迹半径Linearity线性度:2mm(客户尽量收紧此值,建议1.5mm),
 Edge Offset:1mm,为与VA圆保持间隔1mm距离;Track offset:此项E不需要设置,后续软件会删除;Outer Splits:20(此为控制画线的速度,即点亮圆的方块数量)。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:手表项目外观结构是圆形的(VA区接近圆形)会进行画题的测试,圆的中心轨迹设定主要考虑尽量覆盖多的ITO方块为原则,所以会有2个中心轨迹圆;以无触摸的情况下按下到手指到最后一次画线抬起作为整个测试过程。方块所在的区域有触摸发现,相应的方块将变成绿色。在画线过程中,在没有完全触摸所有方块之前抬起则视为NG,Linearity检查不通过,则视为NG。
- 限制条件: Max NG表示最大NG次数, Limit Time表示限制时间。
- 结束测试:所有线条全部触摸且Linearity检查通过。
- 判断条件: 2个圆弧内的方块都点亮变绿色且Linearity满足条件,则显

示结果为PASS,否则显示为NG。

Key Test测试项

- 功能说明:虚拟按键测试。检测每一个按键在设定坐标范围内,是否都有触摸点。
- 参数设置: Threshold设置按键的触摸阈值。Limit Time是对整个虚拟 按键测试进行时间限制,超时则算NG,重新测试。目前支持4个虚拟 按键。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:在所有按键被触摸之前,都是按键测试过程。
- 限制条件:Limit Time表示限制时间
- 结束测试:所有按键被触摸,则结束测试。
- 判断条件:如果所有的按键指示灯都变绿色,则显示结果为PASS, NG判定。在测试员模式下,可设置总的测试时间,在限定的时间没能 完成所有的按键测试,则为NG。

Home KeyTest测试项

- 功能说明: 虚拟按键测试。检测每一个按键是否都有触摸点。
- 参数设置:Key Threshold设置按键的触摸阈值。Limit Time是对整个 虚拟按键测试进行时间限制,超时则算NG,重新测试。key Num设置 虚拟按键的个数。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:在所有按键被触摸之前,都是按键测试过程。
- 限制条件:Limit Time表示限制时间
- 结束测试:4个按键被触摸,则结束测试。

 判断条件:如果所有的按键指示灯都变绿色,则显示结果为PASS, NG判定。在测试员模式下,可设置总的测试时间,在限定的时间没能 完成所有的按键测试,则为NG。

Press Channels测试项

- 功能说明:所有的通道测试。检测每一个通道是否都有触摸点。
- 参数设置: Threshold设置按键的触摸阈值。Limit Time是对整个虚拟 按键测试进行时间限制,超时则算NG,重新测试。测试所有通道。
- 开始测试:在TP无触摸的情况下,按下(有触摸)即开始测试。
- 测试过程:在所有通道被触摸之前,都是通道测试过程。
- 限制条件:Limit Time表示限制时间
- 结束测试:所有通道被触摸,则结束测试。
- 判断条件:如果所有的按键指示灯都变绿色,则显示结果为PASS, NG判定。在测试员模式下,可设置总的测试时间,在限定的时间没能 完成所有的按键测试,则为NG。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

Other Config	Check SIU Version	Main_Ver:	0	•	Sub_Ver:	0	•
- 3. Data Test Items Basic Threshold Detail Threshold	Set Vol for IIC/SPI/VDD Pin	IIC/SPI Vol Type:	3.3V	•	VDD Vol Type:	3.3V	-
4. Graph Test Items 5. Other Test Items 6. Save File	▼ IOVCC Current Test	Vol Type:	3.3V	•	Current type:	Big	•
		Min Threshold(uA):	0 uA	•	Max Threshold(uA):	50 uA	•
	VDD Current Test	Vol Type:	3.3V	•			
	Normal Mode	Min Threshold(uA):	0.00 mA	•	Max Threshold(uA):	5.00 mA	•
	Sleep Mode	Min Threshold(uA):	0 uA	-	Max Threshold(uA):	150 uA	•
					Updata	a SIU Versio	n

OtherTest Items,图形测试项。泛指跟SIU板相关的测试项。

● Check SIU Version: 检查SIU版本号, Main_Ver为主版本, Sub_Ver) 次版本

- Set vol For IIC/SPI/VDD Pin: 设置SIU板的电压
- IOVCC Current Test: IOVCC测试, Vol Type为电压档数, Current Type为电压类型, Min Threshold与Max Threshold为参考阈值, 单位uA

• VDD Current Test: VDD电压测试,分为Normal与Sleep两种模式,可 对两种模式下的参考阈值分别设置,Normal模式下,单位mA,Sleep模式下 单位uA

Setting		
Other Config 	[Valid_File] OnlyMultipleTest=1 [Interface] IC_Type=FTSX16 Interface_Type=0 Slave_Addr=0x70 Freq_Index=2 Phase_Pola=-1 Max_Points=5 iRotationDegree=0 isReversed=0 isReversed=0 isMaxPixel=8800 [TestItem] FW_VERSION_TEST=0 FACTORY_ID_TEST=0 FACTORY_ID_TEST=1 IC_VERSION_TEST=1 PANEL_DIFFER_TEST=1 INT_PIN_TEST=0 RAWDATA_TEST=1 INT_PIN_TEST=0 RASET_PIN_TEST=0 RASET_PIN_TEST=1 INT_PIN_TEST=0 RESET_PIN_TEST=0 RASET_PIN_TEST=0 RASET_PIN_	
	Save as: Project: Station: Version: ▼ Save as	Ŧ
	Previous Finish Cancel	

显示配置信息

这一步在消息框显示基本的配置信息,用户可以在此查看自己设置了 些配置,是否满足测试需求。

保存配置信息

向导到了这一步,已自动把配置信息保存在当前目录下的 Conf_MultipleTest.ini文件里。

用户还可以自定义命名配置文件。软件推荐的自定义命名方式是项目1 加站点加版本号,保存在Engineer文件夹里。当然,用户可以任意输入自 己想要的配置文件名。
程序将会把自定义命名INI文件的属性改为只读,目的是防止INI文件 被随意修改。

至此,已完成设置配置信息,可按"完成"或"取消"按钮退出。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

为了满足不同用户的测试方案,综合测试软件提供多种测试模式和多种排 行测试的操作。

本文档将详细介绍软件支持的测试模式,以及测试的详细过程。

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

为了满足不同屏厂的不同测试方案,测试软件提供多种测试模式。点击软件右上角Mode菜单即可选择不同的测试模式。当软件退出时,会自动保i 当前测试模式,下一次启动软件显示的即是上一次保存的模式。下面将对 支持的测试模式一一介绍。

一、单TP测试模式(测试模式1)

单TP测试模式,即Single TP Test模式。即一台电脑只支持一块TP进行测试。

二、多TP独立测试模式(测试模式2)

多TP独立测试模式,即是Multiple TP_Independent Test模式。一台电脑: 持多块TP分别测试,独立进行,不相干扰。

按照实际需求,独立测试模式分为1拖2模式和1拖4模式。1拖2模式是至≨ 支持2块TP测试;1拖4模式是至多支持4块TP测试。两种模式在功能与操 作上没有区别。

1拖2独立测试模式

1拖4独立测试模式

_	Load Mode Setting Help About
	1. Single TP Test
Number: 2	2. Multiple TP_Independent Test
V Number: 4	3. Multiple TP_Joint Test

三、多TP联合测试模式(测试模式3)

多TP联合测试模式,即是Multiple TP_Joint Test模式。一台电脑至多支持 4块TP同时测试。同时开始测试,直到所有测试都完成,才结束测试。

1	<u>.oad Mode Setting Help About</u>
	1. Single TP Test
	2. Multiple TP_Independent Test
 Image: A start of the start of	3. Multiple TP_Joint Test

不同模式执行开始测试的方式

执行开始测试的操作是多样的。为满足客户的需要,软件提供的执行开始测试操作,包括"Start"按钮、快捷键、SN、连接TP自动测试,以及接收3 GPIO外部信号开始测试等多种。不同模式支持的执行方式是不一样的。 图介绍每个模式支持的执行方式:

Start\Mode	Single TP Test (TestModel)	Multiple TP_Independent Test (TestMode2)	Multiple TP_Joint Test (TestMode3)
Button	•	◆	*
Shortcut Key	•	Δ	*
SN	•	Δ	Δ
Connect TP	•	•	Δ
GPIO	•	•	Δ

♦: Support, △:nonsupport

下面介绍测试的基本情况。

启动软件,显示的即是测试页面,如下图所示:

_	elect: 🖲 Li	st C Message Stop Graph	n Test 6. 查看	测试详细信息			THE FUEL COOF MultipleTest ini
).	Code	Test Item	#1	#2	#3	#4	
	300000	SIU Connection	No Device!	Connected	No Device!	No Device!	BIN FILE(1): 2. 显示配置文件名和FW文件名
	300001	Start Time		13:50:16			BIN FILE(2):
	300003	Power On	None	PASS	None	None	ID RESULT PROGRESS & MESSAGE
	300100	Enter Factory Mode	None	PASS	None	None	
	30010c	Ci Test	None	PASS	None	None	#1 NA
	30010d	Delta Ci Test	None	NG	None	None	Test result: NG
	30010e	Channels Deviation Test	None	NG	None	None	₩ #2
	30010f	Two Sides Deviation Test	None	PASS	None	None	4. 显示测试进度与测试结果
	300107	RawData Test	None	PASS	None	None	T #3 NA
0	300004	Power Off	None	PASS	None	None	
1	300002	End Time		13:50:18			
		5. 显示每一测试项的	则试状态				Short Key: Enter

下面介绍测试的详细过程。

一、初始化配置

1.手动加载:启动程序,点击蓝色导航栏右上角的"Load"菜单,加载配置 文件。如需要烧录FW文件,则在弹出提示后再选择FW文件。

2.自动加载:

a.自动加载.ini配置文件:先将配置好的.ini文件放入软件指定的相对位置:"FT Multiple Test_XX\AutoLoad\Conf"文件夹中,之后启动程序,即

会自动加载配置文件;如果没有提前放置该.ini文件,则操作如同手动加载 一样,需要点击蓝色导航栏右上角的"Load"菜单,加载配置文件。

b.自动加载FW文件:先将需要烧录的FW文件放入软件指定的相对位置:"FT Multiple Test_XX\AutoLoad\IC_Firmware"文件夹中,之后启动程序,即会自动加载提前放置于该文件夹中的文件;如果需要烧录FW文件,但是没有提前在该文件夹中放置FW文件,则会弹出提示框提示选择FW文件。

二、开始测试

执行开始测试的操作是多样的。为满足客户的需要,软件提供的执行开始测试操作,包括"Start"按钮、快捷键、SN、连接TP自动测试,以及接收到GPIO外部信号开始测试等多种。下图介绍每个模式支持的执行方式:

Start\Mode	Single TP Test (TestModel)	Multiple TP_Independent Test (TestMode2)	Multiple TP_Joint Test (TestMode3)
Button	•	•	*
Shortcut Key	•	Δ	*
SN	+	Δ	Δ
Connect TP	•	•	Δ
GPIO	•	•	Δ

♦: Support, ∆:nonsupport

三、测试过程

测试过程中,在列表中当前测试项会实时显示测试状态,黄色背景的"Testing"表示在进行测试,绿色背景的"PASS"表示此项测试结果是 PASS,红色背景的"NG"表示此项测试结果是NG,"None"表示此项未测 试。

软件右边有专门区域显示测试进度与测试结果,如上图的"4.显示测试进度 与测试结果"。

四、测试结果

根据每一个测试项的测试情况来判断测试结果。如果所有测试项的测试情况都为PASS,则测试结果为PASS;如果有一个或以上的测试项的测试情况为NG,则测试结果为NG。

"4.显示测试进度与测试结果"的RESULT列用指示灯显示测试结果。绿色) PASS,红色为NG,测试过程为黄色,初始化状态为灰色。

五、查看测试结果

测试完成后,可以查看详细的测试信息。点击"Message"单选框,出现信息文本框,选择Select Info里对应的设备号,就可以看到详细的测试信息。点击"Save"按钮可以保存当前显示测试信息。

				and the second								
/======			Test Resi	It of #2:								
	Start Test	Date: 20	14-06-30	15:18:24	(+852ms)							
//======				===Test	Item:	Down	load Firmv	vare				
	Start Dow	nload/Upg	grade Date	e: 2014-06	5-30 15:18	:25 (+036	5ms)					
	Succeede	d in Down	oading Fi	rmware								
	End Down	load/Upgr	ade Date:	2014-06-	30 15:18:	33 (+090r	ms)					8
//======				===Test	Item:	Ci Tes	st					
/===== Ci [Data:											
eft Channel:	106	120	126	133	139	145	144	145	70	106	144	126
(ey:	115	119	112	120	155	139	144	140	112	115	115	152
/Max Ci Value:	154, Min C	i Value: 70), Deviatio	n Value: 8	4, Averag	e Value: 1	126					
/ Ci Test is OK.												
//======				===Test	Item:	Delta	Ci Test					
//===== Del	ta Ci Data	:										
eft Channel:	-12	-3	7	9	12	15	25	1	-6	0	-11	-9
kight Channel: Key:	-11 -47	-45	27	12	14	17	26	2	-4	2	-8	-6
									_			
•												P

若要自动保存测试信息,需要在配置文件设置相应的功能,即在Commor Config页面勾选"Save Test Message(*.txt)"复选框,如下:

Store Test Result:				
Auto Store Test Result	Type: All Result 💌	Format: Standard	•	
User-defined Path:				
Add Tester Information t	to the Name of Saved file			
Use IC ID as the Name o	of Saved file			
Replace Old Log After Re	etest			
Save Test Message(*.tx	ct)			
Simple Directory				
User-defined Path: Add Tester Information t Use IC ID as the Name o Replace Old Log After Re Save Test Message(*.tx Simple Directory	to the Name of Saved file of Saved file etest (t)			

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

版本修改信息

E

Revision History

Date	Version	SIU FW	Changes List
2014- 05-27	2.1.0.0	V3.3	初版。 支持的测试模式包括单TP测试、多TP 支持的芯片系列,包括FT5X36、FT52
2014- 07-01	2.2.0.0	SIU板V6.3对 应FW版 本:V3.3 SIU板V7.3对 应FW版 本:V7.4	 增加支持的芯片系列,包括 FT5X46、FT5X46i、FT3X17、FT 优化配置模块,使之操作更流畅。 支持长时间检测连接即开始测试(增加GPIO接口电平信号输入输出功出测试结果。 测试数据存储方面,增加保存Mess件供程序解析使用。 增加自动加载配置文件和FW文件的
2014- 08-20	2.3.0.0	SIU板V6.3对 应FW版 本:V3.3 SIU板V7.3对 应FW版 本:V7.4	 自容IC增加 FPC 测试项 重构画线测试模块,增加四边画线 增加SIU板测试与烧录功能 增加IC型号FT5526,支持win8整材 FT5X46、FT5X46i增加Uniformity; 支持用户输入工位,系统号,并将 支持Win8单TP的测试 ,设置时间,测试结束后,定时将GI MSG界面支持测试结果的高亮显示
		SIU板V6.3对	 添加自容的Sref Open测 试项,自容6X36、3X07 的IC增加 CB Deviation、 TE 测试项。 5336的Panel Differ测试项

2014- 10-20	2.4.0.0	本:V3.3 SIU板V7.3对 应FW版 本:V7.4	加Uniformity测试项。 3.FT5X46、FT5X46i增加 CM逐点卡控功能,Noise 测试增加Golove模式及新 的测试模式,Rawdata Margin测试项。 4.存储测试结果添加了新的 路径及格式。 5.添加画图测试的Special Button Test测试项。 1. 增加支持的芯片系列,	Wu Xun Zeng Ru
2014- 12-18	2.5.0.0	SIU板V6.3对 应FW版 本:V3.3 SIU板V7.3对 应FW版 本:V7.4	 包括FT5526i、FT5436、 FT3X17、FT3X27、 FT5822/FT5626、 FT5726、FT5826B。 2. FT5X46、FT5X46i、 FT5526 等芯片增加归一 化功能。 3. FT6X36增加Differ Test; CB Deviation Test 增加Base设置功能。 4. 修改FT5336芯片的SCap CB、SCap RawData、 Uniformity、SCap Differ、TX short advance 等测试项。 5. 空格进入、退出划线界 面,FreePaint添加其No Once功能。 6. 添加测试结果统计功 能。 7. 增大图标显示测试结 果。 8. 修改FT5446、FT6X36、 FT6X06等芯片的一些测 试项。 	Wu Xun Wan Ying

20 02-	15-	2.6.0.0	SIU板V6.3对 应FW版 本:V3.3 SIU板V7.3对 应FW版 本:V7.4	 增加支持的芯片系 列,包括FT5306、 FT5406。 FT5822、FT5626、 FT5726、FT5826B等 芯片增加归一化功能。 互容测试NG节点增加 颜色显示。 修改FT5446、FT5822 等芯片的一些测试项。 FT5X46、FT5X46i、 FT5526等芯片增加归 一化功能的double Check。 增加全屏绘图功能。 	Wu Xun Wan Yinş
20 05-	15- 07	2.7.0.0	SIU 板 V6.3 对应FW 版 本: V3.3 SIU板 V7.3 对应 FW 版 本:V7.4	 增加支持的芯片系列, 包括FT8606。 修改了5422和FT5822系 列芯片归一化功能,仅 有自动归一和整体归 一。 5336系列芯片添加SITO Uniformity Test测试项、 Rx Short Advance Tests 测试项。 修改FT5446、FT5822等 芯片的一些测试项的内 容及发现的BUG。 6X36系列芯片添加 Differ Test2测试项。 FT5446系列芯片增加 NG Log分类。 	Wu Xun Wan Ying
				 1. 增加支持的芯片,包括 FT5435、FT7681、 FT7661、FT7511、 FT7811等。 2. 5X46系列芯片添加 	

20	2015- 08-11	2.8.0.0	SIU 板 V6.3 对应FW 版 本: V3.3 SIU板 V7.3 对应 FW 版 本: V7.4	 GPIO、LCD Noise等测试页。 5336系列芯片的Uniformity测试项增加Detail设置。 修改FT5446、FT5822等芯片的一些测试项的内容(如:弱短路,噪声测试等等)及发现的BUG。 6X36系列芯片添加K1Differ Test测试项。 配置ini导入数据进行逐点设置时,增加一些测试项对应的GoldenSamples的平均值的保存。 为互容芯片(FT5x46系列芯片、FT5822系列芯片、FT5x36系列芯片)的Project Code测试项增加ascii转换功能。 	Wu Xun Wan Yinş
21	2015- 10-27	2.9.0.0	SIU 板 V6.3 对应FW 版 本: V3.3 SIU板 V7.3 对应 FW 版 本: V7.4	 新增加支持的芯片,包 括FT3C47U、 FT3407U、FT5826S、 FT8716、FT7401等。 5X46系列芯片添加FPC Open 等测试项。 修改FT5446、FT5822、 FT8716等系列芯片的一 些测试项的内容(如: 噪声测试、升级延迟、 打印输出、修改配置等 等)及发现的BUG。 6X36系列芯片添加三个 相关的画线测试项: Square Test、Circle 	Wu Xun Wan Ying

			Test、Key Test。 5.增加测试结束后,若测 试NG,则弹出提示对话 框。	
2016- 03-08	3.0.0.0	SIU板 V6.3 对应FW版 本: V3.3 SIU板 V7.3 对应 FW版 本: V7.4	 新增加支持的芯片,包 括FT3D47、FT8607、 FT8707、FT8736、 FTE716、FT5442、 FT7681、FT7421等。 5X46系列芯片添加panel id等测试项。 5822系列芯片添加panel id等测试项,并添加 download after test功能。 修改FT5446、FT5822系 列芯片的一些测试项的 内容(如:修改LCD Noise/Noise测试的阈值 偏移问题、逐点添加、 修改配置页面等等)及 发现的BUG。 8606系列芯片添加 OSC60MHZ test、OSC TRM Test、ORC Test、 IVSN Test测试项。 8607系列芯片添加OSC TRM Test、ORC Test、 IVSN Test测试项。 8607系列芯片添加OSC TRM Test、LPWG Rawdata Test、LPWG Rawdata Test、LPWG CB test、LPWG Noise Test测试项。 8716系列芯片添加GPIO Test、LCD Noise Test测 试项。 	Wu Xun Wan Ying

2016- 07-26 4.0.0	0.0 SIU板 V6.3 对应FW版 本: V3.3 SIU板 V7.3 对应 FW版 本: V7.4	 新增加支持的芯片,包 括FT3428U、FT6236U、 FT6436U等。 为5X46、5822、8716、 E716系列芯片添加Lock down信息。 添加8716的测试项LCD noise、IC Type、Reset detection。 添加8736的测试项cb decrease、IC Type。 添加E736的测试项CT Type及AscII显示。 修改FT5X46、FT8607、 FT8716、FT8736、 FTE716系列芯片的一些 测试项的内容(如:修改 wpg noise测试项、分开 rawdata的VA及Vkey区、 修改配置页面等等)及发 现的BUG(如:解决 5X46系列芯片Oncell芯片 数据溢出问题等等)。 6X36系列芯片添加 FoolProof test、LCD Noise Test、Report Test测 试项。 3C47U、3D47系列芯片 添加FPC Open Test测试 项。 添加5822的Home key划 线测试。 添加6x36的press channle 划线测试。 添加6x36的press Flash 	Wu Xun Wan Yin
----------------------	--	--	-------------------

	测试	

Copyright 2010-2015 FocalTech-Systems Co.,Ltd. All rights reserved

F