
File	Service
	
FileService	is	a	utility	application	that	can	be	used	to	remotely	manage	files	in	a
Windows	server-based	folder	via	a	RESTful	Web	Service	API.
	
The	service	runs	as	a	Windows	Service	and,	by	default,	can	be	accessed	at	the
following	URL:
	
http://<server_name_or_ip>:8080/FileService
	
The	service	supports	the	following	operations:
	
• Ping

• List	all	files

• Check	if	a	file	exists

• Download	a	text	file

• Create	a	file

• Create	a	file	(chunked)

• Update	a	file

• Delete	a	file
	
Synergy	Licensing
	
FileService	is	a	Windows	service	written	in	Synergy	.NET	and	as	such	requires
that	Synergy/DE	core	components	are	installed	and	configured	on	the	system,
and	requires	the	dedicated	use	of	one	Synergy/DE	Windows	runtime	license
(RUN10).
	
You	should	verify	that	these	prerequisites	are	met	BEFORE	attempting	to	run	the
FileService	installation.
	
Installation
	



The	easiest	way	to	install	file	service	on	a	Windows	system	is	to	download	the
installer	from	the	GitHub	repository	and	then	execute	it	on	the	desired	system	or
systems	system.
	
Because	FileService	runs	as	a	Windows	service,	you	must	be	logged	into	a	user
account	that	has	administrative	rights	for	the	system	in	order	to	successfully	run
the	installation.
	
The	installer	makes	the	following	changes	to	the	system:
	

1. Installs	the	FileService	application	code	in	C:\Program	Files
(x86)\Synergex\FileService

2. Creates	a	start	menu	folder	containing	shortcuts	to	the	documentation	and
uninstall.

3. Registers	a	windows	service	named	FileService	and	sets	the	service	to	start
automatically	when	the	system	boots.

4. Starts	the	service.
	
Configuration
	
The	service	exposes	the	files	in	a	single	storage	folder.	By	default	that	storage
folder	is	C:\Users\Public\Documents\FileService.
	
You	can	change	the	location	used	by	editing	the	configuration	file	C:\Program
Files	(x86)\Synergex\FileService\FileService.exe.config	and	specifying	an
alternate	location	via	the	StorageFolder	setting.
	
The	HTTP	port	that	the	server	listens	on	can	also	be	altered	by	changing	the
value	of	the	HttpListenerPort	setting.
	
<FileService.Properties.Settings>
				<setting	name="StorageFolder"	serializeAs="String">
								<value>C:\some\other\folder</value>
				</setting>
				<setting	name="HttpListenerPort"	serializeAs="String">
								<value>8080</value>
				</setting>

https://github.com/SteveIves/SqlReplicationIoHooks/releases


</FileService.Properties.Settings>
	
If	you	make	any	changes	to	this	file	then	you	must	stop	and	restart	the	service.
	
Starting	and	Stopping	the	Service
	
The	Windows	service	may	be	started	and	stopped	in	several	ways:
	

1. From	the	Services	tab	in	Task	Manager.
2. From	the	Services	control	panel	(services.msc).
3. From	the	command	line

	
net	stop	FileService
	
net	start	FileService

	
License	Agreement
	
Copyright	(c)	2018,	Synergex	International,	Inc.
All	rights	reserved.
	
Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:
	
• Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this

list	of	conditions	and	the	following	disclaimer.
• Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,

this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

	
THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE



COPYRIGHT	HOLDER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.



Web	Service	Operations
	
The	service	supports	the	following	operations:
	
Operation HTTP	MethodURI
Ping GET /FileService/ping
List	all	files GET /FileService
Check	if	a	file	existsGET /FileService/exists/filename.ext
Download	a	text	fileGET /FileService/text/filename.ext
Create	a	file POST /FileService/filename.ext
Update	a	file PUT /FileService/filename.ext
Delete	a	file DELETE /FileService/filename.ext



Ping	the	Server
	
This	operation	allows	you	to	ping	the	server	to	verify	that	it	is	operating.
	
HTTP	method GET

	

URI /FileService/ping
	

Request	headers Host:	<server_dns_or_ip>[:<port>]
	

Request	body n/a
	

Response	headers

Content-Length:	0
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body
None
	

HTTP	result	codesHTTP	204	(no	content)	indicates	a	successful	ping	
	
	



Listing	All	Files
	
This	operation	allows	you	to	retrieve	a	list	of	all	of	the	files	that	currently	exist
in	the	servers	storage	folder.
	
HTTP	method GET

	
URI /FileService	

Request	headers
Host:	<server_dns_or_ip>[:<port>]
Accept:	<mime_type>
	

Request	body n/a
	

Response
headers

Content-Length:	<int>
Content-Type:	<mime_type>
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body
A	JSON	or	XML	array	containing	the	names	of	the	files	present	in	the
server	folder.
	

HTTP	result
code(s)

HTTP	200	(OK)	indicates	a	successful	response.
	

	
Response	Data	Format
	
The	format	of	the	returned	data	is	determined	by	the	value	of	the	HTTP	request
Accept	header	that	you	pass.
	
Response	FormatMIME	Type
JSON application/json
XML application/xml
	
If	you	do	not	pass	an	Accept	header	then	the	default	response	will	be	a	JSON
array.
	



Checking	if	a	File	Exists
	
This	operation	allows	you	to	determine	if	a	file	with	a	specified	name	exists	in
the	servers	storage	folder.
	
HTTP	method GET

	

URI /FileService/exists/<filename>
	

Request	headers Host:	<server_dns_or_ip>[:<port>]
	

Request	body n/a
	

Response	headers

Content-Length:	0
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body None
	

HTTP	result	codes
HTTP	204	(no	content)	indicates	that	the	file	exists.
HTTP	404	(not	found)	indicates	that	the	file	does	not	exist.
	

	
	



Download	a	Text	File
	
This	operation	allows	you	to	download	a	copy	of	a	named	file	from	the	servers
storage	folder.
	
HTTP	method GET

	

URI /FileService/text/<filename>
	

Request
headers

Host:	<server_dns_or_ip>[:<port>]
Accept:	<mime_type>
	

Request	body n/a
	

Response
headers

Content-Length:	<int>
Content-Type:	<mime_type>
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body
A	JSON	or	XML	array	of	strings	containing	the	records	from	the	text
file.
	

HTTP	result
codes

HTTP	200	(OK)	that	the	file	exists	and	its	content	was	returned	in	the
response	body.
HTTP	404	(not	found)	indicates	that	the	file	does	not	exist.
	

	
Response	Data	Format
	
The	format	of	the	returned	data	is	determined	by	the	value	of	the	HTTP	request
Accept	header	that	you	pass.
	
Response	FormatMIME	Type
JSON application/json
XML application/xml
	
If	you	do	not	pass	an	Accept	header	then	the	default	response	will	be	a	JSON
array.



	



Create	a	File
	
This	operation	allows	you	to	create	a	new	named	file	in	the	servers	storage
folder.	If	the	file	already	exists	the	operation	will	fail.
	
HTTP	method POST

	

URI /FileService/<filename>
	

Request	headers

Host:	<server_dns_or_ip>[:<port>]
Accept:	<mime_type>
Content-Length:	<int>
Content-Type:	text/plain
	

Request	body A	string	containing	the	records	from	the	text	file.
	

Response
headers

Content-Length:	0
Date:	<date_time>
Location:	<url_to_retrieve_file>
Server:	Microsoft-HTTPAPI/2.0
ServerFileSpec:	<file_spec>
	

Response	body None
	

HTTP	result
codes

HTTP	201	(created)	indicates	that	the	file	was	created.
HTTP	403	(forbidden)	indicates	that	the	file	already	existed	and	was
NOT	updated.
	

	
	



Create	a	File	(chunked)
	
This	operation	allows	you	to	create	a	new	named	file	in	the	servers	storage
folder	by	uploading	the	file	in	several	"chunks"	which	are	appended	together	on
the	server	to	make	a	single	file.	This	is	useful	when	uploading	very	large	files
that	would	otherwise	not	be	possible	to	process	because	of	memory	or	network
constraints.
	
A	chunked	upload	takes	place	during	a	series	of	at	least	two	web	service	calls.
	

1. A	mandatory	call	to	start	the	chunked	upload.
2. Optionally,	any	number	of	calls	to	continue	the	upload.
3. A	mandatory	call	to	finish	the	chunked	upload.

	
Starting	a	Chunked	Upload
	
This	operation	starts	a	new	chunked	upload.	The	first	part	of	the	files	data	is
passed	and	is	written	to	a	new	file	on	the	server.	If	the	file	already	exists	then	the
operation	will	fail.
	
HTTP	method POST

	

URI /FileService/chunked/start/<filename>
	

Request	headers

Host:	<server_dns_or_ip>[:<port>]
Accept:	<mime_type>
Content-Length:	<int>
Content-Type:	text/plain
	

Request	body A	string	containing	the	first	set	of	records	from	the	text	file.
	

Response
headers

Content-Length:	<int>
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body None
	
HTTP	204	(no	content)	indicates	that	the	first	part	of	the	file	was	created.



HTTP	result
codes

HTTP	403	(forbidden)	indicates	that	the	file	already	existed	and	was
NOT	updated.
	

	
Continuing	a	Chunked	Upload
	
This	operation	continues	a	chunked	upload.	The	next	part	of	the	files	data	is
passed	and	is	appended	to	the	existing	file	on	the	server.
	
HTTP	method POST

	

URI /FileService/chunked/continue/<filename>
	

Request	headers

Host:	<server_dns_or_ip>[:<port>]
Accept:	<mime_type>
Content-Length:	<int>
Content-Type:	text/plain
	

Request	body A	string	containing	the	first	set	of	records	from	the	text	file.
	

Response	headers

Content-Length:	0
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body None
	

HTTP	result
codes

HTTP	204	(no	content)	indicates	that	the	first	part	of	the	file	was
created.
HTTP	400	(bad	request)	indicates	that	the	file	does	not	exist	on	the
server.
	

	
Finishing	a	Chunked	Upload
	
This	operation	finishes	a	chunked	upload.	The	final	part	of	the	files	data	is
passed	and	is	appended	to	the	existing	file	on	the	server.
	
HTTP	method POST

	



URI /FileService/chunked/finish/<filename>
	

Request	headers

Host:	<server_dns_or_ip>[:<port>]
Accept:	<mime_type>
Content-Length:	<int>
Content-Type:	text/plain
	

Request	body A	string	containing	the	first	set	of	records	from	the	text	file.
	

Response
headers

Content-Length:	0
Date:	<date_time>
Location:	<url_to_retrieve_file>
Server:	Microsoft-HTTPAPI/2.0
ServerFileSpec:	<file_spec>
	

Response	body None
	

HTTP	result
codes

HTTP	201	(created)	indicates	that	the	file	was	created.
HTTP	403	(forbidden)	indicates	that	the	file	already	existed	and	was
NOT	updated.
	

	
	



Update	a	File
	
This	operation	allows	you	to	update	an	existing	file	in	the	servers	storage	folder.
If	the	file	already	exists	it	will	be	overwritten.
	
HTTP	method PUT

	

URI /FileService/<filename>
	

Request	headers

Host:	<server_dns_or_ip>[:<port>]
Content-Type:	text/plain
Content-Length:	<length>
	

Request	body A	string	containing	the	records	from	the	text	file.
	

Response	headers

Content-Length:	0
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body None
	

HTTP	result	codesHTTP	200	(OK)	indicates	that	the	file	was	created	or	updated.	
	
	



Delete	a	File
	
This	operation	allows	you	to	delete	a	file	from	the	servers	storage	folder.
	
HTTP	method DELETE

	

URI /FileService/<filename>
	

Request	headers Host:	<server_dns_or_ip>[:<port>]
	

Request	body None
	

Response	headers

Content-Length:	0
Date:	<date_time>
Server:	Microsoft-HTTPAPI/2.0
	

Response	body None
	

HTTP	result	codesHTTP	204	(no	content)	indicates	that	the	file	was	deleted.	
	
	



Change	Log
	
V1.1
	
• Added	chunked	upload.

• The	create	a	file	operation	was	altered	such	that	it	no	longer	returns	the
server	file	spec	in	the	response	body.	Rather	it	now	follows	REST	best
practices	by	returning	the	URL	that	can	be	used	to	retrieve	the	new	file	via
the	Location	response	header,	and	also	returns	the	server	file	spec	via	the
ServerFileSpec	response	header.	The	success	status	code	was	changed
from	200	(OK)	to	201	(created).

• Released	2/21/2018

	
V1.0
	
• Initial	release	with	basic	functionality.

• Released	2/20/2018

	


	Introduction
	Web Service Operations
	Ping the Server
	List All Files
	Check if a File Exists
	Download a Text File
	Create a File
	Create a File (chunked)
	Update a File
	Delete a File

	Change Log

