

Encyclopedia	for	Developers	1.75	SR2537
FAR	Manager	 -	 a	 console	 file	manager	 for	 the	Windows	 family	 of	 operating	 systems

(based	on	Win32	API).	The	program	provides	a	comfortable	user	interface	for	working	with
file	systems	(real	and	emulated)	and	files.

FAR	 Manager	 is	 a	 command-line	 shell	 unfolding	 the	 abilities	 of	 the	 native	 Win32
command	prompt.	FAR	Manager	has	a	modular	structure	and	can	be	easily	extended	with	a
number	of	plugins	expanding	its	capabilities	far	beyond	the	simple	console	based	command-
line	shell.

Generally	a	FAR	plugin	is	a	DLL	exporting	specific	functions	and	interacting	with	FAR
Manager	 in	 a	 certain	 way.	 By	 creating	 a	 custom	 plugin	 you	 can	 add	 a	 new	 command,
editor's	 function,	 or	 emulate	 a	 file	 system	 in	 the	 file	 panel	 (i.e.	 list	 archives,	 network
resources	or	the	registry).	Some	of	the	standard	and	important	FAR	manager	functions	are
implemented	 as	 plugin	 modules,	 so	 you	 can	 never	 think	 of	 using	 FAR	 without	 using
plugins.	(See	the	Overview	of	plugin	capabilities).

«Programming	 FAR	 plugins	 -	 Encyclopedia	 for	 Developers»	 is	 the	 most
comprehensive	reference	guide	to	the	plugin	API	for	FAR	Manager.	It	is	meant	for	all	these
people	 creating	 or	 making	 their	 first	 steps	 in	 creating	 FAR	 plug-ins.	 The	 encyclopedia
contains	 authored	 API	 reference	 along	 with	 comments	 from	 3-rd	 party	 professionals
experienced	in	this	area	(See	the	articles	and	notes).

We	hope	 that	 this	Encyclopedia	will	 provide	 a	very	useful	 source	of	 information	 in	 the
process	of	writing	FAR	Manager	plugins.

Introduction	What's	new?
About	the	project
How	to	setup	the	Encyclopedia
License
Authors
Structures
Service	functions
Exported	functions
Dialog	API
Viewer	API
Panel	API
Editor	API
Far	Standard	Functions
Localization
Custom	API
Macros
Addons
Overview	of	plugin	capabilities
Professional	ethics
API	History
Examples
Articles
FAQ

Copyright	©	PlugRinG,	1999-2009.

About	the	Programming	FAR	plugins	-
Encyclopedia	for	Developers	project
Main	|	License	|	How	to	setup	the	Encyclopedia

Project's	goal	-	to	create	a	"full-functioning-plentiful"	help	file	in	russian	and
english,	 for	 the	 C/C++	 and	 Pascal	 programming	 languages.	 This
encyclopedia	will	be	mostly	of	interest	to	developers	of	FAR	Manager	plugins.

The	 Encyclopedia	 exists	 in	 two	 variants	 -	 HTMLHelp
(pluginsr.chm/pluginse.chm)	and	OnlineHelp-version:
pluginsr.chm/pluginse.chm
Applicable	in	conjunction	with	MSDN	(a	variant	with	CHM/CHI-files,
"MSDN	Library	-	July	2001").

pluginsr	online
Online-version	of	the	encyclopedia.	Always	available	for	browsing	at	the
following	address:	http://api.farmanager.com/

The	Encyclopedia	contains	a	wide	variety	of	topics,	besides	the	original	topics
on	Plugins	API,	that	(we	hope	so)	can	help	plugin	developers	to	write	their	own
"creations".

Valentin	Skirdin
vskirdin@mail.ru

Project	coordinator

http://api.farmanager.com/
mailto:Valentin%20Skirdin%20%3Cvskirdin@mail.ru%3E?subject=Pluginse%20Help%20Project

License
main	|	authors

1.	 All	 rights	 to	 the	 "Programming	 FAR	 plugins	 -	 Encyclopedia	 for
Developers"	are	exclusively	owned	by	the	authors.	

2.	 The	 Encyclopedia,	 may	 be	 distributed	 only	 by	 a	 permission	 from	 the
authors,	 provided	 the	 distribution	 package	 is	 not	 modified	 and	 no
commercial	 or	 other	 interest	 of	 the	 authors	 is	 violated.	 No	 person	 or
company	may	charge	a	fee	for	the	distribution	of	the	Encyclopedia	without
a	written	permission	from	all	the	authors.

3.	 The	 Encyclopedia	 exists	 only	 in	 Russian	 and	 English	 languages	 and	 is
viewable	 in	 two	 forms	 -	 HTMLHelp
(FarEncyclopedia.ru.chm/FarEncyclopedia.en.chm)	and	as	Online	Help:
http://api.farmanager.com/.
Other	sources	are	considered	as	violating	the	given	license	agreement.

4.	 THE	 ENCYCLOPEDIA	 IS	 DISTRIBUTED	 "AS	 IS".	 NO	WARRANTY
OF	 ANY	 KIND	 IS	 EXPRESSED	 OR	 IMPLIED.	 YOU	 USE	 AT	 YOUR
OWN	 RISK.	 THE	 AUTHORS	 WILL	 NOT	 BE	 LIABLE	 FOR	 DATA
LOSS,	 DAMAGES,	 LOSS	 OF	 PROFITS	 OR	 ANY	 OTHER	 KIND	 OF
LOSS	WHILE	USING	OR	MISUSING	THIS	PRODUCT.	

5.	 You	may	not	use,	copy,	emulate,	clone,	rent,	lease,	sell,	modify,	decompile,
disassemble,	otherwise	reverse	engineer,	or	transfer	the	licensed	product,	or
any	subset	of	the	licensed	product,	except	as	provided	for	in	this	agreement.
Any	 such	 unauthorized	 use	 shall	 result	 in	 immediate	 and	 automatic
termination	 of	 this	 license	 and	 may	 result	 in	 criminal	 and/or	 civil
prosecution.

6.	 Installing	 and	 using	 the	 Encyclopedia	 signifies	 acceptance	 of	 these	 terms
and	conditions	of	the	license.

7.	 If	 you	 do	 not	 agree	 with	 the	 terms	 of	 this	 license	 you	 must	 remove	 the
Encyclopedia	files	from	your	storage	devices	and	cease	to	use	the	product.

8.	 All	rights	not	expressly	granted	here	are	reserved	by	the	authors.	This	also

http://api.farmanager.com/

implies	 that	any	issues	concerning	the	Encyclopedia	will	be	resolved	by	a
majority	vote	of	the	authors.

9.	 The	 authors	 reserve	 the	 right	 to	 change	 these	 terms	 and	 conditions	 from
time	to	time	at	their	sole	discretion.

				We	thank	you	for	using	the	encyclopedia:
				"Programming	FAR	plugins	-	Encyclopedia	for	Developers".

coordinator	-	Valentin	Skirdin

Copyright	©	PlugRinG,	1999-2009.

What's	new	in	Far	Manager	Encyclopedia	1.75
SR2555?
main

7	October	2009

Macro:	checkhotkey	function	refined.	

8	June	2009

Process	of	going	out	of	limits	of	"just	API	description"	has	begun...
New	file	names	FarEncyclopedia.en.chm	and	FarEncyclopedia.ru.chm.	

1	April	2009

Added	flags	LIF_HIDDEN,	LIF_GRAYED,	MIF_HIDDEN,
MIF_GRAYED.	

Color	palette	now	contains	10	more	colors.	

4	March	2009

Macro:	Eval	function	now	has	a	second	parameter,	allowing	just	to	check
macro	sequence	for	correctness.	Also,	function	return	codes	are	described.	

3	March	2009

Macro:	Menu.Select	function	returns	-1,	if	not	called	from	the	menu.	

2	March	2009

Macro:	macros	can	be	assigned	to	mouse	buttons.	These	constants	can	be
used	in	macro	sequences:	MsX,	MsY,	MsButton,	MsCtrlState.	

24	February	2009

Macro:	new	function	atoi	-	converts	number	from	string	representation	into
numeric.	

23	January	2009

Macro:	additions	and	adjustments	in	editor.sel	function	-	it	now	works	in
the	editor,	dialog	edit	lines,	and	command	line.	

Fixed	errors	in	ECTL_SELECT:
block	highlight	was	always	cleared,	even	if	parameters	were	incorrect
block	highlight	was	always	cleared,	even	if	specified	string
(BlockStartLine)	was	absent	(BlockStartLine	was	greater	than	number
of	strings	in	editor)
if	BlockHeight	was	greater	than	number	of	strings	in	editor	(i.e.	try	to
highlight	a	block	by	specifying	the	last	line,	with	BlockHeight	equal	to
10),	EditorControl	returned	FALSE,	though	the	block	was	highlighted.
when	BlockWidth	was	equal	to	-1,	the	block	highlight	transaction	for
BTYPE_COLUMN	was	incoplete	-	that	could	cause	various	problems
with	blocks.

16	January	2009

Macro:	waitkey	function	has	a	second	optional	parameter	-	type	of	returned
value	

Macro:	new	function	editor.sel	handles	blocks	in	text.	

Macro:	new	function	key	converts	the	value	V	into	string	equivalent	of	the
key	name.	

Macro:	Named	keys	(i.e.	CtrlK)	can	be	present	in	any	expressions;	in	this
case	they	are	treated	as	numbers.	

26	November	2008

A	new	color	was	added	to	the	palette	-	COL_EDITORSCROLLBAR.	

6	November	2008

Dialogs	with	FDLG_SMALLDIALOG	flag	are	drawn	with	shadow	now.
To	disable	shadow	drawing,	set	FDLG_NODRAWSHADOW	flag.	

24	September	2008

New	flags	for	MkLink	function:	FLINK_SYMLINKFILE,
FLINK_SYMLINKDIR	allow	Windows	Vista/2008	symbolic	links
creation.	FLINK_SYMLINK	flag	renamed	into	FLINK_JUNCTION.	

11	August	2008

User	screen	color	is	added	to	color	palette.	

06	August	2008

Macro:	CtrlBreak	combination	breaks	macro	execution.	

Macro:	Added	function	S=trim(S[,Mode])	-	removes	all	whitespace
symbols.	

Viewer	API:	VCTL_GETINFO	command	returned	WindowSizeY	value
that	was	less	by	1	than	the	real	value.	

19	June	2008

Macro:	Now	Dlg.ItemType	returns	the	same	value	as
Dlg.GetValue(XXX,1).	

17	June	2008

Viewer	API:	added	two	events	VE_GOTFOCUS	and	VE_KILLFOCUS.	

15	May	2008

New	constants	in	FarDialogSettings	enum:
FDIS_DELREMOVESBLOCKS	("Del	removes	blocks	in	edit	controls")
and	FDIS_MOUSECLICKOUTSIDECLOSESDIALOG	("Mouse	click
outside	a	dialog	closes	it").	

3	April	2008

Macro:	added	functions	to	handle	stack	bookmarks	BM.XXX().	

30	March	2008

6	new	EditorControl	commands	for	navigation	positions	("stack
bookmarks")	control	in	editor:
ECTL_ADDSTACKBOOKMARK,
ECTL_CLEARSTACKBOOKMARKS	and
ECTL_DELETESTACKBOOKMARK	-	creating	and	deleting	navigation
positions,
ECTL_GETSTACKBOOKMARKS	-	receiving	navigation	positions
information,
ECTL_NEXTSTACKBOOKMARK	and
ECTL_PREVSTACKBOOKMARK	-	navigation	in	editor	

29	March	2008

new	panel	flag:	PFLAGS_PANELLEFT.	

27	March	2008

Macro:	added	"Consts"	macro	area	to	store	named	constants.	

25	March	2008

Colors	for	long	string	markers	in	menus,	lists	and	combo	lists	were	added	to
color	palette.	

Macro:	Added	"Editor.RealPos"	constant	-	current	cursor	position	in	the
string	in	editor	(tab	size	independent).	

Macro:	Some	functions	can	have	optional	parameters.	

Macro:	New	prompt	function	-	allows	to	input	one	text	string.	

11	March	2008

Macro:	New	V=akey(N)	function	-	returns	name	or	code	of	the	key	that
initiated	the	macro.	

31	December	2007

API:	New	command	ACTL_REDRAWALL	-	redraw	all	FAR	windows.	

23	December	2007

Plugins	menu	can	be	opened	from	a	dialog.	

Plugin	can	export	ProcessDialogEvent	function	to	process	dialog	events.	

14	December	2007

Macro:	Added	function	Result=replace(Str,Find,Replace,Cnt).	

API:	New	MCMD_GETSTATE	command	for	ACTL_KEYMACRO,
returns	macro	engine	work	status.	

Macro:	Menu.Select	function	now	has	two	parameters.	

6	December	2007

2	new	events	for	panel	plugins:	FE_GOTFOCUS	and	FE_KILLFOCUS.	

2	new	events	for	editor	plugins:	EE_GOTFOCUS	and	EE_KILLFOCUS.	

In	dialogs,	immediately	after	DN_INITDIALOG,	DN_GOTFOCUS	is	fired
for	the	element	with	Focus=1.	

4	December	2007

Macro:	Added	function	n=mod(n1,n2).	

Macro:	Added	function	N=Menu.Select(S).	Selects	the	first	item	that
contains	S.	

New	flag	DIF_NOAUTOCOMPLETE	for	edit	strings	-	disables
autocomplete.	

12	October	2007

Macro:	Added	constant	"MacroArea"	-	returns	the	name	of	current	Macro
area.	

Macro:	Bof/Eof/Empty/Selected	in	panels	like	QView/Info/Tree	return
values	for	these	types	of	panels.	For	regular	panels,	values	are	returned	for
command	line.	

13	September	2007

Now	when	DI_COMBOBOX	is	open,	DN_KEY	or	DN_MOUSEEVENT
events	are	sent	to	the	dialog	procedure.	This	behavior	can	be	controlled
using	events	DM_SETCOMBOBOXEVENT	and
DM_GETCOMBOBOXEVENT.	

30	August	2007

Bug:	Macro:	If	menu	item	does	not	contain	hot	key,	GetHotkey()	returns
"0"	instead	of	"".	

Macro:	Added	command	$SelWord	-	selects	a	word.	

Bug:	Macro:	Some	variables	did	not	work	in	QuickView	and	Infopanel:
ItemCount,	CurPos,	Selected,	Bof,	Eof	were	always	equal	to	0;	Empty	was
always	equal	to	1.	

7	August	2007

Bug:	If	a	plug-in	disabled	the	mouse	cursor	tracking	reaction
(LMRT_NEVER)	for	a	list,	the	dialog	procedure	did	not	get
DN_MOUSECLICK	event	for	mouse	double	click	(Mantis#0000309).	

In	the	PluginPanelItem	structure,	FAR_FIND_DATA	structure	was	used
instead	of	WIN32_FIND_DATA.	_FAR_USE_WIN32_FIND_DATA	macro
should	be	used	instead	of	_FAR_USE_FARFINDDATA.	

23	July	2007

Added	commands	DM_GETEDITPOSITION	and
DM_SETEDITPOSITION	-	line	position	control	within	edit	strings	and
dialogs.	

5	July	2007

Macro:	Added	function	gethotkey.	

Macro:	Variables	beginning	with	a	number	(such	as	%3DO)	were	not
processed.	

Bug:	DM_LISTGETCURPOS	retrned	wrong	value	after	opening	a
ComboBox,	moving	through	the	list	and	cancelling	(pressing	Esc).	

31	May	2007

Macro:	Added	function	Panel.SetPosIdx	-	File	panel	positioning	using
index.	

10	May	2007

Macro:	new	functions	asc()	and	chr.	

23	March	2007

Macros	in	the	Registry	can	have	REG_MULTI_SZ	type.	

Added	flag	KSFLAGS_REG_MULTI_SZ.	

14	March	2007

After	calling	EditorControl(ECTL_SELECT)	with	BlockStartLine	=	-1,
next	call	to	ECTL_GETINFO	also	returned	-1	in	BlockStartLine.	

13	March	2007

Macro:	new	functions	waitkey()	and	eval.	

20	February	2007

Added	flag	DIF_NOTCVTUSERCONTROL	for	DI_USERCONTROL.	

7	February	2007

Macro:	new	words	APanel.ColumnCount	and	PPanel.ColumnCount.	

30	January	2007

New	command:	FCTL_GETUSERSCREEN.	

25	January	2007

For	DI_VTEXT	element,	added	handling	of	flags:	DIF_CENTERGROUP,
DIF_SEPARATOR,	DIF_SEPARATOR2,	DIF_SHOWAMPERSAND.	

In	DefDlgProc	handler,	DIF_BTNNOCLOSE	flag	was	not	handled	for
DN_BTNCLICK	event.	

Incorrect	DI_TEXT	element	drawing	for	conditions:	DIF_CENTERTEXT
+	DIF_SEPARATOR	+	X1	not	equal	to	"-1"	

24	January	2007

Rules	regarding	X2	and	Y2	coordinates	in	the	dialog	elements	are
hardened.	Y2	should	be	always	set,	do	not	use	0.	

18	January	2007

EE_CLOSE	event	was	not	fired	for	"?New	File?".	

Incorrect	color	drawing	for	information	dialog	when	FMSG_WARNING
flag	was	used	in	a	Message	function	without	buttons.	

27	December	2006

Macro:	New	states	Help.FileName,	Help.Topic	and	Help.SelTopic.	

The	command	ACTL_GETWINDOWINFO	now	fills	the	Name	field	for
help	windows	-	contains	the	full	path	to	the	HLF	file.	

01	December	2006

Viewer	API:	Structure	member	ViewerMode.TypeWrap	renamed	to
ViewerMode.WordWrap	

Viewer	API:	Added	command	VCTL_SETMODE.	

23	November	2006

Macro:	$AKey.	

21	November	2006

Bringing	the	API	to	64bit	compatibility:
DlgProc:	long	Param2	->	LONG_PTR	Param2	and	returns
LONG_PTR	instead	of	long
SendDlgMessage:	long	Param2	->	LONG_PTR	Param2	and	returns
LONG_PTR	instead	of	long
DefDlgProc:	long	Param2	->	LONG_PTR	Param2	and	returns
LONG_PTR	instead	of	long
DialogEx:	long	Param	->	LONG_PTR	Param
FarMenuItemEx:	DWORD	UserData	->	DWORD_PTR	UserData
PluginPanelItem:	DWORD	UserData	->	DWORD_PTR	UserData
AdvControl:	returns	INT_PTR	instead	of	int
OpenPlugin:	int	Item	->	INT_PTR	Item

20	September	2006

Macro:	fexist()	understands	file	mask	symbols	'*'	and	'?'.	

Macro:	If	the	name	contains	'*'	or	'?',	then	fattr()	will	return	the	attributes	of
the	first	found	file.	

Macro:	fexist()	and	fattr()	do	not	longer	work	with	the	panels,	new
functions	were	added	to	work	with	the	panels:	panel.fexist()	and
panel.fattr().	

25	August	2006

Corrected	the	description	of	the	DN_BTNCLICK	event	for
DI_RADIOBUTTON.	

29	July	2006

New	function:	FSF.snprintf.	

20	June	2006

Macro	function	"N=sleep(N)".	

Macro	constant	"Far.Height".	

Macro	constant	"Far.Title".	

Macro	constant	"Title".	

Macro	constant	"Drv.ShowPos".	

Macro	constant	"Drv.ShowMode".	

Long	history,	API	history

Exported	functions	-	Common	functions
main	|	exported	functions

Function Description

Configure plugin	configuration

ExitFAR before	closing	the	FAR	Manager

GetMinFarVersion get	mininum	FAR	Manager	version

GetPluginInfo get	plugin	information

SetStartupInfo global	settings

See	also:
Service	functions,	Structures,	Archive	support,	Addons

Configure
main	|	exported	functions

The	Configure	function	allows	the	user	to	configure	the	plugin	module.	It	is
called	when	one	of	the	items	exported	by	this	plugin	to	the	"Plugin
configuration"	menu	is	selected.

int	WINAPI	Configure(

		int	ItemNumber

);

Parameters
ItemNumber
The	number	of	selected	item	in	the	list	of	items	exported	by	this	plugin	to	the
"Plugin	configuration"	menu.

Return	value
If	the	function	succeeds,	the	return	value	must	be	TRUE	-	in	this	case	FAR
updates	the	panels.	If	the	configuration	is	canceled	by	user,	FALSE	should	be
returned.

Remarks
If	your	plugin	exports	only	one	menu	item	then	you	can	ignore	ItemNumber.

Example
int	WINAPI	_export	Configure(int	ItemNumber)

{

		switch(ItemNumber)

		{

				case	0:

						return(Config());

		}

		return(FALSE);

}

See	also:
GetPluginInfo

ExitFAR
main	|	exported	functions

The	ExitFAR	function	is	called	before	FAR	exits.	In	this	function	plugins	can
release	all	used	resources.

void	WINAPI	ExitFAR(void);

Parameters
None.

Return	value
None.

See	also:
ClosePlugin

GetMinFarVersion
main	|	exported	functions

The	GetMinFarVersion	is	called	to	get	the	minimum	FAR	version	required	for
the	plugin	to	work	correctly.

int	WINAPI	GetMinFarVersion(void);

Parameters
None.

Return	value
This	function	must	return	an	integer	in	the	form	0xZZZZXXYY:

Component Description

ZZZZ build	number	(FAR	1.70.387	=	0x0183)

XX major	version	(FAR	1.70	=	0x01)

YY minor	version	(FAR	1.70	=	0x46)

It	is	recomended	to	use	the	macro	MAKEFARVERSION.

Remarks
If	the	required	version	is	greater	than	the	current	FAR	version,	an	error	message
is	displayed	and	the	plugin	is	then	unloaded.

Example
//	For	a	plugin	that	requires	FAR	Manager	1.70	build	591	or	later

int	WINAPI	_export	GetMinFarVersion(void)

{

		return	MAKEFARVERSION(1,70,591);

}

//	And	this	plugin	will	work	in	FAR	Manager	version	1.70	and	later

int	WINAPI	_export	GetMinFarVersion(void)

{

		return	MAKEFARVERSION(1,70,0);

}

See	also:
MAKEFARVERSION,	FARMANAGERVERSION

GetPluginInfo
main	|	exported	functions

The	GetPluginInfo	function	is	called	to	get	general	plugin	information.

void	WINAPI	GetPluginInfo(

		struct	PluginInfo	*Info

);

Parameters
Info
Points	to	a	PluginInfo	structure	that	should	be	filled	by	this	function.	The
plugin	must	fill	this	structure.

Return	value
None.

Remarks

1.	 This	function	is	called	before	the	following	actions:
before	the	plugins	configuration	menu	is	shown
before	the	plugin	commands	menu	(F11)	is	shown
before	the	disks	menu	(Alt-F1/Alt-F2)	is	shown
when	a	command	with	a	prefix	is	entered	in	the	command	line	(for
example,	net:\\share).

2.	 Because	this	function	gets	called	frequently,	time	consuming	operations
should	not	be	done	within	it.

3.	 The	PluginInfo	structure	passed	to	this	function	is	already	filled	with	zeros.
The	plugin	is	required	to	fill	the	StructSize	field	of	the	structure.

4.	 FAR	calls	GetPluginInfo	function	rather	often,	therefore	it	is	necessary	to
minimize	"computations"	performed	by	this	function	when	developing	a
plugin.

Example
void	WINAPI	_export	GetPluginInfo(struct	PluginInfo	*Info)

{

		Info->StructSize=sizeof(struct	PluginInfo);

		Info->Flags=PF_EDITOR|PF_DISABLEPANELS;

		static	char	*PluginMenuStrings[1];

		PluginMenuStrings[0]=GetMsg(MBrackets);

		Info->PluginMenuStrings=PluginMenuStrings;

		Info->PluginMenuStringsNumber=sizeof(PluginMenuStrings)/

													sizeof(PluginMenuStrings[0]);

}

See	also:
PluginInfo

SetStartupInfo
main	|	exported	functions

The	SetStartupInfo	function	is	called	once,	after	the	DLL	module	is	loaded	to
memory.	This	function	gives	the	plugin	information	necessary	for	further
operation.

void	WINAPI	SetStartupInfo(

		const	struct	PluginStartupInfo	*Info

);

Parameters
Info
Points	to	a	PluginStartupInfo	structure.

Return	value
None.

Remarks

1.	 In	FAR	Manager	1.65	or	older	this	function	is	called	first	just	after	the	DLL
module	is	loaded.

2.	 In	FAR	Manager	1.70	or	later	this	function	is	called	after
GetMinFarVersion.

3.	 The	Info	pointer	is	valid	only	until	return,	so	the	structure	must	be	copied
to	an	internal	variable	for	further	usage:

static	struct	PluginStartupInfo	Info;

...

void	WINAPI	_export	SetStartupInfo(const	struct	PluginStartupInfo	*Info)

{

		::Info=*Info;

		...

}

4.	 If	the	plugin	uses	"standard	functions"	from	the	FarStandardFunctions
structure	then	the	PluginStartupInfo.FSF	member	must	be	copied	to	an
internal	variable	for	further	usage:
static	struct	PluginStartupInfo	Info;

static	struct	FarStandardFunctions	FSF;

void		_export	SetStartupInfo(struct	PluginStartupInfo	*psInfo)

{

				Info=*psInfo;

				FSF=*psInfo->FSF;

				Info.FSF=&FSF;	//	adjust	the	address	in	the	local	variable

				...

}	

Exported	functions	-	Panel	specific	functions
main	|	exported	functions

	Attention!
All	file	names	passed	to	FAR	must	be	in	OEM	code	page.	FAR	also
passes	file	names	in	OEM	code	page.	Before	calling	plugin	functions
FAR	calls	SetFileApisToOEM.	If	plugin	uses	anywhere
SetFileApisToANSI,	it	must	call	SetFileApisToOEM	again	before
returning	control	to	FAR.

Function Description

ClosePlugin before	closing	an	open	plugin	instance.

Compare overrides	sorting	algorithm

DeleteFiles delete	files

FreeFindData frees	memory,	allocated	by	GetFindData

FreeVirtualFindData frees	memory,	allocated	by	GetVirtualFindData

GetFiles get	files

GetFindData get	file	list

GetOpenPluginInfo get	information	about	an	open	plugin	instance

GetVirtualFindData get	files

MakeDirectory make	a	directory

OpenFilePlugin open	a	file

OpenPlugin create	a	new	plugin	instance

ProcessEvent process	events

ProcessHostFile execute	archive	commands

ProcessKey process	keyboard	events

PutFiles put	files	to	the	emulated	file	system

SetDirectory set	current	directory	in	the	emulated	file	system

SetFindList transfers	found	files	from	the	"Find	file"	dialog	to	the
emulated	file	system

See	also:
Service	functions,	Structures,	Archive	support,	Addons

ClosePlugin
main	|	exported	functions

The	ClosePlugin	function	closes	an	open	plugin	instance.

void	WINAPI	ClosePlugin(

		HANDLE	hPlugin

);

Parameters
hPlugin
Open	plugin	handle

Return	value
None

See	also:
ExitFar

Compare
main	|	exported	functions

A	plugin	can	export	the	function	Compare	to	override	the	default	file	panel
sorting	algorithm.

int	WINAPI	Compare(

		HANDLE	hPlugin,

		const	struct	PluginPanelItem	*Item1,

		const	struct	PluginPanelItem	*Item2,

		unsigned	int	Mode

);

Parameters
hPlugin
Plugin	handle,	returned	by	OpenPlugin	or	OpenFilePlugin.

Item1,	Item2
Pointers	to	PluginPanelItem	structures	to	compare.

Mode
See	Sort	modes

Return	value
This	function	returns	an	int	value	that	is:

-1	if	Item1	<	Item2
	0	if	Item1	==	Item2
	1	if	Item1	>	Item2
-2	if	the	default	FAR	compare	function	should	be	used	for	this	sort	mode.

Remarks
The	standard	RTL	qsort	function	that	implements	and	unstable	sorting	algorithm
is	used	by	FAR	for	sorting	needs.	In	other	words	if	array	elements	are	equal	to
the	compare	function	then	on	the	panels	they	will	be	shown	in	random	order,	that
changes	upon	each	redrawing	of	the	panel.

DeleteFiles
main	|	exported	functions

The	DeleteFiles	function	is	called	to	delete	files	in	the	file	system	emulated	by
the	plugin.
(FAR	to	plugin:	"this	file(s)	from	your	panel	need	to	be	deleted").

int	WINAPI	DeleteFiles(

		HANDLE	hPlugin,

		struct	PluginPanelItem	*PanelItem,

		int	ItemsNumber,

		int	OpMode

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

PanelItem
Points	to	an	array	of	PluginPanelItem	structures.	Each	structure	describes	a
file	to	delete.

ItemsNumber
Number	of	elements	in	the	PanelItem	array.

OpMode
Combination	of	the	operation	mode	flags.	This	function	should	process	the
flag	OPM_SILENT.

Return	value
If	the	function	succeeds,	the	return	value	must	be	TRUE.	If	the	function	fails,
FALSE	should	be	returned.

Remarks

1.	 The	plugin	should	process	"its	folders"	by	itself.
2.	 It	is	considered	a	good	form	of	behaviour	to	inquire	the	user	about	his/her

intensions	(see	also	ACTL_GETCONFIRMATIONS,	flags	FCS_DELETE
and	FCS_DELETENONEMPTYFOLDERS)

Example
int	WINAPI	DeleteFiles(HANDLE	hPlugin,	PluginPanelItem	*PanelItem,

											int	ItemsNumber,int	OpMode)

{

		struct	PluginPanelItem	*	curPI=&PanelItem[0];

		for(int	CurItem=0;

						CurItem<ItemsNumber;CurItem++,

						curPI++)

		{

				char*	aFile=curPI->FindData.cFileName;

				if(!RemoveFileFromFS(aFile))
				{

						char	*MsgItems[]={"Delete	failed","","OK"};

						MsgItems[1]	=	GetErrorStringFS();
						Message(MyNumber,0,NULL,MsgItems,

														sizeof(MsgItems)/sizeof(MsgItems[0]),1);

						return(FALSE);

				}

		}

		return(TRUE);

}

FreeFindData
main	|	exported	functions

The	FreeFindData	function	is	called	to	release	the	data	allocated	by
GetFindData
(FAR	to	plugin:	"the	list	I	requested,	well,	I	no	longer	need	it,	free	the	memory").

void	WINAPI	FreeFindData(

		HANDLE	hPlugin,

		struct	PluginPanelItem	*PanelItem,

		int	ItemsNumber

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

PanelItem
Points	to	an	array	of	PluginPanelItem	structures	previously	allocated	by
GetFindData.

ItemsNumber
Number	of	elements	in	the	PanelItem	array.

Return	value
None.

See	also:
GetFindData

FreeVirtualFindData
main	|	exported	functions

The	FreeVirtualFindData	function	is	called	to	release	the	data	allocated	by
GetVirtualFindData.

void	WINAPI	FreeVirtualFindData(

		HANDLE	hPlugin,

		struct	PluginPanelItem	*PanelItem,

		int	ItemsNumber

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

PanelItem
Points	to	an	array	of	PluginPanelItem	structures	previously	allocated	by
GetVirtualFindData.

ItemsNumber
Number	of	elements	in	the	PanelItem	array.

Return	value
None.

See	also:
GetVirualFindData

GetFiles
main	|	exported	functions

The	GetFiles	function	is	called	to	get	files	from	the	file	system	emulated	by	the
plugin.
(FAR	to	plugin:	"I	want	those	files	from	your	panel,	destination	is	specified").

int	WINAPI	GetFiles(

		HANDLE	hPlugin,

		struct	PluginPanelItem	*PanelItem,

		int	ItemsNumber,

		int	Move,

		char	*DestPath,

		int	OpMode

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

PanelItem
Points	to	an	array	of	PluginPanelItem	structures.	Each	structure	describes	a
file	to	get.

ItemsNumber
Number	of	elements	in	the	PanelItem	array.

Move
If	zero,	files	should	be	copied,	if	nonzero	-	moved.

DestPath
Destination	path	to	put	files.	If	OpMode	flag	OPM_SILENT	is	not	set,	you
can	allow	the	user	to	change	it,	but	in	that	case	the	new	path	must	be	copied	to
DestPath.

OpMode
Combination	of	the	operation	mode	flags.	This	function	should	be	ready	to
process	OPM_SILENT,	OPM_FIND,	OPM_VIEW,	OPM_QUICKVIEW	and
OPM_EDIT	flags.	Also	it	can	process	OPM_DESCR	and	OPM_TOPLEVEL
to	speed	up	operation	if	necessary.

Return	value
If	the	function	succeeds,	the	return	value	must	be	1.	If	the	function	fails,	0
should	be	returned.	If	the	function	was	interrupted	by	the	user,	it	should	return
-1.

Remarks

1.	 The	plugin	should	process	"its	folders"	by	itself.
2.	 If	the	operation	has	failed,	but	part	of	the	files	was	successfully	processed,

the	plugin	can	remove	selection	only	from	the	processed	files.	To	perform
it,	plugin	should	clear	the	PPIF_SELECTED	flag	for	processed	items	in	the
PluginPanelItem	list	passed	to	function.

3.	 This	function	is	called	only	for	plugins	that	implement	virtual	file	systems.
For	this	it	is	necessary	to	remove	the	OPIF_REALNAMES	flag	when
GetOpenPluginInfo	is	called,	otherwise	this	function	will	never	be	called.

See	also:
PutFiles,	GetDirList,	GetPluginDirList

GetFindData
main	|	exported	functions

The	GetFindData	function	is	called	to	get	the	list	of	files	in	the	current	directory
of	the	file	system	emulated	by	the	plugin.
(FAR	to	plugin:	"let	me	look	at	your	file	list,	allocate	the	memory	yourself	:-)").

int	WINAPI	GetFindData(

		HANDLE	hPlugin,

		struct	PluginPanelItem	**pPanelItem,

		int	*pItemsNumber,

		int	OpMode

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

pPanelItem
Points	to	a	variable	that	receives	the	address	of	a	PluginPanelItem	structures
array.

pItemsNumber
Points	to	a	variable	that	receives	the	number	of	PluginPanelItem	structures.

OpMode
Combination	of	the	operation	mode	flags.	This	function	should	be	ready	to
process	the	OPM_FIND	flag.

Return	value
If	the	function	succeeds,	the	return	value	must	be	TRUE.	If	the	function	fails,
FALSE	should	be	returned.

Remarks

1.	 The	memory	for	the	requested	data	should	be	allocated	by	the	plugin.
Because	of	that	it	is	important	to	export	the	FreeFindData	function	so	the
allocated	memory	will	be	freed	when	no	longer	needed.

2.	 If	this	function	returns	FALSE,	the	plugin	will	be	closed.
3.	 In	some	cases	(for	example	when	searching	in	archives	Alt-F7)	a	panel	in

not	created	physically,	so	it	necessary	to	check	the	return	value	of	the
Control	function,	to	prevent	a	crash	in	the	most	upappropriate	moment
while	carying	out	work	for	a	none	existant	panel.

4.	 If	you	want	to	prevent	your	plugin	from	participating	in	the	"search	in
archive"	("[x]	Search	in	archives"	in	the	Find	file	dialog)	then	return
FALSE	when	OpMode	contains	the	OPM_FIND	flag.

See	also:
FreeFindData

GetOpenPluginInfo
main	|	exported	functions

The	GetOpenPluginInfo	function	is	called	to	get	the	information	about	an	open
plugin	instance.

void	WINAPI	GetOpenPluginInfo(

		HANDLE	hPlugin,

		struct	OpenPluginInfo	*Info

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

Info
Points	to	an	OpenPluginInfo	structure	that	should	be	filled	by	this	function.

Return	value
None.

Remarks

1.	 The	OpenPluginInfo	structure	passed	to	this	function	is	already	filled	with
zeroes.	The	plugin	is	required	to	fill	the	OpenPluginInfo.StructSize	field.

2.	 FAR	calls	GetOpenPluginInfo	function	rather	often,	therefore	it	is
necessary	to	minimize	"computations"	performed	by	this	function	when
developing	a	plugin.

See	also:
OpenPluginInfo

GetVirtualFindData
main	|	exported	functions

The	GetVirtualFindData	function	can	be	used	to	return	a	list	of	files	to	show	in
another	file	panel	in	addition	to	the	real	files.

int	WINAPI	GetVirtualFindData(

		HANDLE	hPlugin,

		struct	PluginPanelItem	**pPanelItem,

		int	*pItemsNumber,

		const	char	*Path

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

pPanelItem
Points	to	a	variable	that	receives	the	address	of	an	array	of	PluginPanelItem
structures.

pItemsNumber
Points	to	a	variable	that	receives	the	number	of	PluginPanelItem	structures.

Path
Path	for	which	the	list	of	files	is	returned	(the	current	directory	on	another
panel).	The	path	is	terminated	with	a	backslash.

Return	value
If	the	function	succeeds,	the	return	value	must	be	TRUE.	If	the	function	fails,
FALSE	should	be	returned.

Remarks
This	function	can	be	used	to	implement	"delayed	file	copying".	When	delayed
copying	is	used,	the	files	copied	from	a	plugin	panel	to	a	file	panel	are	shown	on
the	file	panel	immediately,	but	the	physical	copy	operation	is	performed	later,
when	the	plugin	is	closed	or	a	special	command	is	executed.	Delayed	copying
can	be	useful,	for	example,	for	plugins	supporting	Arvid.

See	also:
FreeVirualFindData

MakeDirectory
main	|	exported	functions

The	MakeDirectory	function	is	called	to	create	a	new	directory	in	the	file
system	emulated	by	the	plugin.

int	WINAPI	MakeDirectory	(

		HANDLE	hPlugin,

		char	*Name,

		int	OpMode

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

Name
Name	of	the	directory.	If	OpMode	flag	OPM_SILENT	is	not	set,	you	can
allow	the	user	to	change	it,	but	in	that	case	the	new	name	must	be	copied	to
Name	(max.	NM	bytes).

OpMode
Combination	of	the	operation	mode	flags.	This	function	should	be	ready	to
process	OPM_SILENT	flag.

Return	value
If	the	function	succeeds,	the	return	value	must	be	1.	If	the	function	fails,	0
should	be	returned.	If	the	function	was	interrupted	by	the	user,	it	should	return
-1.

See	also
OpenPlugin,	OpenFilePlugin

OpenFilePlugin
main	|	exported	functions

The	OpenFilePlugin	function	is	called	to	open	a	plugin	which	emulates	a	file
system	based	on	a	file	passed	to	this	function	(an	archive	for	example).

HANDLE	WINAPI	OpenFilePlugin(

		char	*Name,

		const	unsigned	char	*Data,

		int	DataSize

);

Parameters
Name
Points	to	the	full	name	of	the	file	(including	the	path).	This	pointer	is	valid
only	until	return,	so	if	the	plugin	will	process	this	file,	it	should	copy	this
name	to	an	internal	variable.
The	OpenFilePlugin	function	is	also	called	when	the	user	is	going	to	create	a
new	file	(when	Shift-F1	is	pressed).	In	that	case	Name	is	NULL	and	other
parameters	are	undefined.	If	a	plugin	does	not	support	creating	new	files,	it
must	return	INVALID_HANDLE_VALUE,	otherwise	it	must	return	the
handle	of	a	new	plugin	instance	that	must	be	ready	to	process
GetOpenPluginInfo	and	PutFiles	functions.	If	Name	is	NULL,	the	plugin
needs	to	request	Name	from	the	user	in	the	PutFiles	function.

Data
Points	to	data	from	the	beginning	of	the	file.	It	can	be	used	to	detect	file	type.
The	plugin	must	not	change	this	data.

DataSize
Size	of	the	passed	file	data.	Currently	it	can	be	from	0	to	128Kb,	depending	on
file	size,	but	you	should	be	ready	to	process	any	other	value.

Return	value

If	the	plugin	will	process	the	passed	file,	the	return	value	must	be	new
plugin	handle.
If	this	file	type	is	not	supported,	the	return	value	must	be
INVALID_HANDLE_VALUE.

If	operation	is	interrupted	by	the	user,	the	value	-2	(cast	to	the	HANDLE
type)	should	be	returned.

Remarks

1.	 When	<Enter>	is	pressed	on	a	selected	file,	FAR	queries	all	plugins	that
export	this	function.	The	plugins	are	queried	in	alphabetic	order	(sorted	by
the	DLL	name).	When	a	plugin	returns	a	value	different	from
INVALID_HANDLE_VALUE,	FAR	stops	querying	other	plugins.

2.	 The	size	of	data	read	from	the	file	can	be	configured	-	TechInfo	#63:
[HKEY_CURRENT_USER\Software\Far\System]

"PluginMaxReadData":REG_DWORD

The	key	"System/PluginMaxReadData"	of	DWORD	type	allows	to	set	the

maximum	size	of	the	data	read	from	a	file	after	an	attempt	to	enter

it	from	the	panels	(Enter	or	Ctrl-PgDn)	was	made.	The	data	read	will

be	passed	to	plugins	to	determine	which	plugin	supports	a	file	of	this

type.

Can	be	any	value	in	the	range	of	0x1000	to	0x80000.

The	default	value	is	0x20000.

OpenPlugin
main	|	exported	functions

The	OpenPlugin	is	called	to	create	a	new	plugin	instance.

HANDLE	WINAPI	OpenPlugin(

		int	OpenFrom,

		INT_PTR	Item

);

Parameters
OpenFrom
Identifies	how	the	plugin	is	invoked.	Can	be	one	of	the	following	values
(OPENPLUGIN_OPENFROM	enum):

Constant Description

OPEN_DISKMENU Opened	from	the	disks	menu

OPEN_PLUGINSMENU Opened	from	the	plugins	menu	(F11)

OPEN_FINDLIST Opened	from	the	"Find	File"	dialog.	The	plugin	will
be	called	with	this	identifier	only	if	it	exports	the
SetFindList	function,	and	SetFindList	will	be	called
only	if	OpenPlugin	returns	a	valid	handle.

OPEN_SHORTCUT Opened	using	a	folder	shortcut	command.

OPEN_COMMANDLINE Opened	from	the	command	line..	This	type	is	used	if
the	plugin	has	defined	a	command	prefix	in	the
GetPluginInfo	function,	and	this	prefix,	followed	by
a	colon,	is	found	in	the	command	line.

OPEN_EDITOR Opened	from	internal	editor

OPEN_VIEWER Opened	from	internal	viewer.

OPEN_DIALOG Opened	from	dialog

Item
Its	meaning	depends	on	the	value	of	OpenFrom:

For	OPEN_DISKMENU,	OPEN_PLUGINSMENU,	OPEN_EDITOR
and	OPEN_VIEWER	Item	is	a	position	of	the	activated	plugin	item	in	the
exported	items	list	in	disks	or	plugins	menu.	If	a	plugin	exports	only	one
item,	this	field	is	always	zero.

For	OPEN_FINDLIST	Item	is	always	zero.
For	OPEN_SHORTCUT	Item	contains	the	address	of	a	string	that	was
passed	in	the	ShortcutData	member	of	the	OpenPluginInfo	structure,
when	saving	the	shortcut.	The	plugin	can	use	it	to	store	any	additional
information	about	its	current	state.	It	is	not	necessary	to	save	the
information	about	the	current	directory,	because	it	is	restored	by	FAR
when	using	folder	shortcuts.
For	OPEN_DIALOG	Item	contains	adress	of	an	OpenDlgPluginData
structure.
For	OPEN_COMMANDLINE	Item	contains	address	of	a	string
containing	the	command	line	entered	by	the	user.	Plugin	command	prefix
is	not	included	in	this	string,	unless	the	PF_FULLCMDLINE	flag	is	set.
For	example,	if	a	plugin	defined	the	prefix	ftp	and	the	user	entered
ftp://ftp.abc.com,	Item	will	point	to	//ftp.abc.com.
However,	if	PF_FULLCMDLINE	is	set,	Item	will	point	to
ftp://ftp.abc.com.

Return	value
If	the	function	succeeds,	the	return	value	is	a	plugin	handle.	This	handle	will	be
passed	later	to	other	plugin	functions	to	allow	them	to	distinguish	different
plugin	instances.	Handle	format	is	not	important	for	FAR,	it	can	be	the	address
of	a	new	plugin	class	object,	or	the	address	of	a	structure	with	plugin	data,	or	an
array	index,	or	any	other	value	but	zero.

If	the	function	fails,	the	return	value	must	be	INVALID_HANDLE_VALUE.

Remarks

1.	 Note	that	you	can	use	this	function	to	implement	FAR	commands	that	work
without	creating	new	panels.	Just	perform	all	necessary	actions	here	and
return	INVALID_HANDLE_VALUE.

2.	 If	this	functions	returns	zero,	the	plugin	will	be	unloaded.

ProcessEvent
main	|	exported	functions

The	ProcessEvent	function	informs	plugin	about	different	FAR	events	and
allows	to	process	some	of	them.

int	WINAPI	ProcessEvent(

		HANDLE	hPlugin,

		int	Event,

		void	*Param

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

Event
Event	type.	Can	be	one	of	the	following	values	(FAR_EVENTS	enum):

Event Description

FE_CHANGEVIEWMODE Panel	view	mode	is	changed.
Param	points	to	a	null-terminated	string	specifying
column	types,	for	example	N,S,D,T.	Return	value
must	be	FALSE.

FE_REDRAW The	panel	is	about	to	redraw.
Param	is	equal	to	NULL.
Return	FALSE	to	use	the	FAR	redraw	routine	or
TRUE	to	disable	it.	In	the	latter	case	the	plugin	must
redraw	the	panel	itself.

FE_IDLE Sent	every	few	seconds.	A	plugin	can	use	this	event
to	request	panel	updating	and	redrawing,	if
necessary.
Param	is	equal	to	NULL.
Return	value	must	be	FALSE.

FE_CLOSE The	panel	is	about	to	close.
Param	is	equal	to	NULL.
Return	FALSE	to	close	the	panel	or	TRUE	to	cancel
it.

FE_BREAK Ctrl-Break	is	pressed.
Param	currently	can	be	only
(int)CTRL_BREAK_EVENT

Return	value	must	be	FALSE.

Processing	of	this	event	is	performed	in	separate
thread,	so	the	plugin	must	be	careful	when
performing	console	input	or	output	and	must	not	use
FAR	service	functions.

FE_COMMAND About	to	execute	a	command	from	the	FAR
command	line.
Param	points	to	the	command	text.
he	plugin	should	return	FALSE	to	allow	standard
command	execution	or	TRUE	if	it	is	going	to	process
the	command	internally.

FE_KILLFOCUS Panel	has	lost	keyboard	focus.
Param	=	NULL.
Return	value	must	be	FALSE.

FE_GOTFOCUS Panel	received	keyboard	focus.
The	active	panel	receives	the	FE_GOTFOCUS	event
immediately	after	its	creation.
Param	=	NULL.
Return	value	must	be	FALSE.

Param
Points	to	data	dependent	on	event	type.	Read	events	description	for	concrete
information.

Return	value
Return	value	depends	on	event	type.	Read	events	description	for	concrete
information.
Return	FALSE	for	unknown	event	types

ProcessHostFile
main	|	exported	functions	|	archive	support

The	ProcessHostFile	function	is	called	to	perform	FAR	archive	commands.	It	is
recommended	to	use	this	function	to	perform	additional	operations	on	the	file
that	is	handled	by	a	file	processing	plugin.

int	WINAPI	ProcessHostFile(

		HANDLE	hPlugin,

		struct	PluginPanelItem	*PanelItem,

		int	ItemsNumber,

		int	OpMode

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

PanelItem
Points	to	an	array	of	PluginPanelItem	structures.	Each	structure	corresponds	to
a	selected	file	in	the	plugin	panel.

ItemsNumber
Number	of	elements	in	the	PanelItem	array.

OpMode
Combination	of	the	operation	mode	flags.	For	this	function	it	is	either	0	or
OPM_TOPLEVEL.

Return	value
If	the	function	succeeds,	the	return	value	must	be	TRUE.	If	the	function	fails,
FALSE	should	be	returned.

Remarks
If	the	operation	failed,	but	part	of	files	was	successfully	processed,	plugin	can
remove	selection	only	from	the	processed	files.	To	perform	it,	the	plugin	should
clear	PPIF_SELECTED	flag	in	processed	items	in	the	PluginPanelItem	list
passed	to	the	function.

ProcessKey
main	|	exported	functions

The	ProcessKey	function	allows	to	override	standard	control	keys	processing	in
a	plugin	panel.

int	WINAPI	ProcessKey(

		HANDLE	hPlugin,

		int	Key,

		unsigned	int	ControlState

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

Key
Virtual	key	code.	
Key	may	have	the	PKF_PREPROCESS	flag	set.

ControlState
Indicates	control	keys	state.	One	or	more	flags	from	the	FAR_PKF_FLAGS
enum	(except	PKF_PREPROCESS).
For	example,	when	Shift-F7	is	pressed,	Key	is	equal	to	VK_F7	and
ControlState	is	equal	to	PKF_SHIFT.

Return	value
Return	FALSE	to	use	standard	FAR	key	processing.	If	the	plugin	processes	the
key	combination	by	itself,	it	should	return	TRUE

Remarks

FAR	1.70	build	2051	and	earlier	versions:
Because	of	FAR	kernel	implementation	specifics	this	function	does	not
receive	the	following	keys:	Tab,	Ctrl-F1,	Ctrl-F2,	Ctrl-B,	Cltr-
L,	Ctrl-Q,	Ctrl-T,	Ctrl-O,	Ctrl-P,	Ctrl-I,	Ctrl-U,	Alt-F1,
Alt-F2,	Alt-F7,	Ctrl-Down,	Ctrl-Up,	Ctrl-Left,	Ctrl-
Right,	Ctrl-Num5,	F9,	Shift-F10,	Ctrl-0..9,	Alt-Ins,
Ctrl-W,	F11,	Alt-F9,	F12,	Ctrl-Tab	and	Ctrl-Shift-Tab.

Since	1.70	build	2052	those	restrictions	no	longer	apply	(refer	to	the
remarks	on	the	PKF_PREPROCESS	flag)

PutFiles
main	|	exported	functions

The	PutFiles	function	is	called	to	put	files	to	the	file	system	emulated	by	the
plugin.	(FAR	to	plugin:	"those	files	are	for	you,	you	should	place	then	on	your
panel").

int	WINAPI	PutFiles(

		HANDLE	hPlugin,

		struct	PluginPanelItem	*PanelItem,

		int	ItemsNumber,

		int	Move,

		int	OpMode

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

PanelItem
Points	to	an	array	of	PluginPanelItem	structures.	Each	structure	describes	a
file	to	put.

ItemsNumber
Number	of	elements	in	the	PanelItem	array.

Move
If	zero,	files	should	be	copied,	if	nonzergo	-	moved.

OpMode
Combination	of	the	operation	mode	flags.	This	function	should	be	ready	to
process	OPM_SILENT	flag.	Also	it	can	process	OPM_DESCR.

If	OPM_SILENT	is	not	set,	you	can	ask	the	user	for	confirmation	and	allow	to
edit	destination	path.

Return	value
If	the	function	succeeds,	the	return	value	must	be	1	or	2.	If	the	return	value	is	1,
FAR	tries	to	position	the	cursor	to	the	most	recently	created	file	on	the	active
panel.	If	the	plugin	returns	2,	FAR	does	not	perform	any	positioning	operations.

If	the	function	fails,	0	should	be	returned.	If	the	function	was	interrupted	by	the
user,	it	should	return	-1.

Remarks

1.	 If	the	operation	has	failed,	but	part	of	the	files	was	successfully	processed,
the	plugin	can	remove	selection	only	from	the	processed	files.	To	perform
it,	plugin	should	clear	the	PPIF_SELECTED	flag	for	processed	items	in	the
PluginPanelItem	list	passed	to	function.

See	also:
GetFiles,	GetDirList,	GetPluginDirList

SetDirectory
main	|	exported	functions

The	SetDirectory	function	is	called	to	set	the	current	directory	in	the	file	system
emulated	by	the	plugin.

int	WINAPI	SetDirectory(

		HANDLE	hPlugin,

		const	char	*Dir,

		int	OpMode

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

Dir
Directory	name.	Usually	contains	only	the	name,	without	full	path.	To	provide
basic	functionality	the	plugin	should	also	process	the	names	'..'	and	'\'.
For	correct	restoring	of	current	directory	after	using	"Search	from	the
root	folder"	mode	in	the	Find	file	dialog,	the	plugin	should	be	able	to
process	full	directory	name	returned	in	the	GetOpenPluginInfo	function.	It	is
not	necessary	when	"Search	from	the	current	folder"	mode	is
set	in	the	Find	file	dialog.

OpMode
Combination	of	the	operation	mode	flags.	This	function	should	be	ready	to
process	the	OPM_FIND	flag.	If	the	OPM_FIND	flag	is	set,	the	function	is
called	from	Find	file	or	another	directory	scanning	command,	and	the	plugin
must	not	perform	any	actions	except	changing	directory	and	returning	TRUE
if	successful	or	FALSE	if	it	is	impossible	to	change	the	directory.	(The	plugin
should	not	try	to	close	or	update	the	panels,	ask	the	user	for	confirmations,
show	messages	and	so	on.)

Return	value
If	the	function	succeeds,	the	return	value	must	be	TRUE.	If	the	function	fails,
FALSE	should	be	returned.

Remarks

If	the	OPM_FIND	flag	is	set	in	OpMode	then:

1.	 It	means	that	the	SetDirectory	function	is	called	from	the	Find	file	dialog
(Alt-F7)	or	any	other	command	that	scans	directory	listings.	Because	if
that	the	plugin	must	not	perform	any	other	actions	except	changing
directory	and	returning	TRUE	if	successful	or	FALSE	if	it	is	impossible	to
change	the	directory.

2.	 The	plugin	should	carefully	process	".."	and	if	changing	to	the	parent
directory	is	not	possible	it	should	return	FALSE.	Otherwise	the	search	can
enter	an	endless	loop	on	panel	of	that	plugin.

SetFindList
main	|	exported	functions

The	SetFindList	function	is	called	to	put	the	file	names	found	by	the	Find	file
command	to	the	file	system	emulated	by	the	plugin.	The	files	should	not	be
physically	copied	or	changed.

int	WINAPI	SetFindList(

		HANDLE	hPlugin,

		const	struct	PluginPanelItem	*PanelItem,

		int	ItemsNumber

);

Parameters
hPlugin
Plugin	handle	returned	by	OpenPlugin	or	OpenFilePlugin.

PanelItem
Points	to	an	array	of	PluginPanelItem	structures.	Each	structure	describes	a
file	to	put.

ItemsNumber
Number	of	elements	in	the	PanelItem	array.

Return	value
If	the	function	succeeds,	the	return	value	must	be	TRUE.	If	the	function	fails,
FALSE	should	be	returned.

Remarks

This	function	is	typically	used	by	the	Temporary	panel	plugin
(TMPCLASS.CPP,	function	TmpPanel::SetFindList)
Before	calling	this	function,	FAR	calls	the
OpenPlugin(OPEN_FINDLIST,0)	function.	The	SetFindList	function	is
called	only	after	a	successful	return	of	OpenPlugin.

Exported	functions	-	Editor	specific	functions
main	|	exported	functions

Function Description

ProcessEditorInput process	keyboard	events

ProcessEditorEvent process	editor	events

See	also:
Service	functions,	Structures,	Archive	support,	Addons

ProcessEditorInput
main	|	exported	functions

The	ProcessEditorInput	function	is	called	from	the	internal	editor	every	time
there	is	user	input	(mouse	or	keyboard)	to	process.

int	WINAPI	ProcessEditorInput(

		const	INPUT_RECORD	*Rec

);

Parameters
Rec
Points	to	the	INPUT_RECORD	structure.	This	structure	is	defined	in	Win32
API	and	contains	information	about	the	last	input	(keyboard	or	mouse)	event.

Return	value
If	the	plugin	returns	0,	the	input	event	is	processed	by	the	FAR	editor.	The	plugin
should	return	1	if	it	has	completely	processed	the	event	or	if	the	event	should	be
discarded.

Remarks

1.	 A	plugin	should	correctly	process	incoming	events	by	analysing
INPUT_RECORD.EventType	fields	and	in	the	case	of	an	unhandled
even	to	return	control	back	to	FAR.

2.	 While	in	macro	playback	keyboard	events	(KEY_EVENT)	have	a	new	type
-	the	INPUT_RECORD.EventType	field	equals	0x8001.

3.	 EditorControl	commands	can	be	called	from	this	function,	but	be	careful
when	calling	ECTL_PROCESSINPUT	from	here,	because	this	command
calls	the	ProcessEditorInput	function	again.	So	the	plugin	should	take
steps	to	prevent	recursion	at	this	place.

4.	 A	plugin	does	not	receive	the	following	key	combinations:	Ctrl-W,	F11,
Alt-F9,	F12,	Ctrl-Tab,	Ctrl-Shift-Tab,	Alt-Ins	and	Ctrl-
Alt-Shift.

5.	 A	plugin	receives	the	following	key	combinations	with	the	following
restrictions:

Alt-F5	-	if	the	PrintMan	plugin	is	not	installed
Alt-F11	-	if	the	editor	is	modal

F6	-	if	switching	to	viewer	is	disabled	(when	calling	Editor	with	the
EF_ENABLE_F6	flag	omitted).

See	also:
INPUT_RECORD

ProcessEditorEvent
main	|	exported	functions

The	ProcessEditorEvent	function	informs	plugins	about	different	internal	editor
events.

int	WINAPI	ProcessEditorEvent(

		int	Event,

		void	*Param

);

Parameters
Event
Event	type.
Can	be	one	of	the	following	values	(EDITOR_EVENTS	enum):

Event Description

EE_CLOSE One	of	the	internal	editors	is	closing.
Plugins	can	use	this	event	to	free	internal	data
structures.	Note	that	several	editors	can	be	active	at
the	same	time.
Param	points	to	an	integer	variable	containing	the
EditorID	parameter	of	the	editor	instance	beeing
closed.	The	EditorID	of	the	current	editor	can	be
obtained	earlier	using	the	ECTL_GETINFO
EditorControl	command.	But	the	plugin	should	not
call	the	EditorControl	function	when	processing	this
event,	because	the	editor	is	already	closed.
Return	value	must	be	0.

	Remark.
Starting	with	FAR	1.70	build	1989	only
the	following	commands	can	be	used	from
EE_CLOSE	ECTL_GETINFO	and
ECTL_GETBOOKMARKS.

EE_READ A	new	file	has	just	been	read.	The	plugin	can	use
EditorControl	commands	to	modify	the	read	data.
Param	equals	NULL.
Return	value	must	be	0.

EE_SAVE The	file	being	edited	is	about	to	be	saved.	The	plugin
can	use	EditorControl	commands	to	modify	data
before	saving.
Param	equals	NULL.

Return	value	must	be	0.

EE_REDRAW The	editor	screen	is	about	to	redraw.	Plugin	can	use
EditorControl	ECTL_ADDCOLOR	command	to	set
line	colors.
Param	can	be	one	of	the	following	vslue:

Constans Description

EEREDRAW_ALL The	whole	screen	will	be
redrawn

EEREDRAW_LINE Only	the	current	line	will	be
redrawn

EEREDRAW_CHANGE Redrawing	caused	by	text
change

In	the	case	of
EEREDRAW_CHANGE	the
current	line	or	the	whole
screen	might	be	redrawn.	So	if
changes	were	made	to	the
highlighting	outside	the
current	line,	it	is	recomended
to	call	ECTL_REDRAW	when
you	finished	highlighting.
Otherwise	those	changes	will
be	seen	only	after	cursor
movement	or	other	actions	that
cause	screen	redraw.	Most
important	is	not	to	enter
recursion	upon	doing	so.

Return	value	must	be	0.

EE_KILLFOCUS Editor	has	lost	keyboard	focus.
Param	points	to	a	variable	containing	the	EditorID
of	the	editor	that	looses	focus.
Return	value	must	be	0.

EE_GOTFOCUS Editor	received	keyboard	focus.
Param	points	to	a	variable	containing	the	EditorID
of	the	editor	that	receives	focus.
Return	value	must	be	0.

	Attention!

When	processing	EE_REDRAW	it	is	HIGLY
UNDESIRABLE	TO	CALL	Info.Message,	Info.Menu,
Info.Dialog	and	Info.DialogEx.	Calling	those	function
leads	to	recursive	calling	of	EE_REDRAW.

Param

Points	to	data	dependent	on	the	event	type.

Return	value
Return	value	depends	on	the	event	type.
Return	0	for	unknown	event	types.

Remarks
EE_READ	is	called	only	once	for	each	file.
EE_SAVE	is	called	every	time	F2	or	Shift-F2	is	pressed.
EE_REDRAW	is	called	every	time	the	screen	is	redrawn	(for	example,	after

moving	the	cursor).

Exported	functions	-	Viewer	specific	functions
main	|	exported	functions

Function Description

ProcessViewerEvent process	viewer	events

See	also:
Service	functions,	Structures,	Archive	support,	Addons

ProcessViewerEvent
main	|	exported	functions

The	ProcessViewerEvent	function	informs	plugins	about	different	internal
viewer	events.

int	WINAPI	ProcessViewerEvent(

		int	Event,

		void	*Param

);

Parameters
Event
Event	type.
Can	be	one	of	the	following	values	(VIEWER_EVENTS	enum):

Event Description

VE_CLOSE One	of	the	internal	viewers	is	closing.	Plugins	can
use	this	event	to	free	internal	data	structures.	Note
that	several	viewers	can	be	active	at	the	same	time.
Param	points	to	an	integer	variable	containing	the
ViewerID	parameter	of	the	viewer	instance	being
closed.	The	ViewerID	of	the	current	viewer	can	be
obtained	earlier	using	the	VCTL_GETINFO
ViewerControl	command.	But	the	plugin	should	not
call	the	ViewerControl	function	when	processing	this
event,	because	the	viewer	is	already	closed.
Return	value	must	be	0.

VE_READ A	new	file	has	just	been	loaded.
Param	=	NULL.
Return	value	must	be	0.

VE_KILLFOCUS Viewer	has	lost	input	focus.
Param	points	to	a	variable	containing	the	ViewerID
value	of	the	viewer	instance	that	has	lost	focus.
Return	value	must	be	0.

VE_GOTFOCUS Viewer	has	got	input	focus.
Param	points	to	a	variable	containing	the	ViewerID
value	of	the	viewer	instance	that	has	got	focus.
Return	value	must	be	0.

Param
Points	to	data	dependent	on	the	event	type.

Return	value
Return	value	depends	on	the	event	type.
Return	0	for	unknown	event	types.

Remarks
VE_READ	is	called	only	once	for	each	file.

See	also:
ViewerControl

Exported	functions	-	Dialog
main	|	exported	functions

Function Description

ProcessDialogEvent process	dialog	events

See	also:
Service	functions,	Structures,	Archive	support,	Addons

ProcessDialogEvent
main	|	exported	functions

The	ProcessDialogEvent	function	informs	plugins	about	different	dialog	events.

int	WINAPI	ProcessDialogEvent(

		int	Event,

		void	*Param

);

Parameters
Event
Event	type.
Can	be	one	of	the	following	values	(DIALOG_EVENTS	enum):

Event Description

DE_DLGPROCINIT Event	was	sent	to	the	dialog	handler.
Param	-	pointer	to	the	FarDialogEvent	structure.

DE_DEFDLGPROCINIT Event	was	sent	to	the	internal	dialog	handler.
Param	-	pointer	to	the	FarDialogEvent	structure.

DE_DLGPROCEND Dialog	handler	processed	the	event.
FarDialogEvent.Result	contains	the	dialog	handler
return	value.
Param	-	pointer	to	the	FarDialogEvent	structure.

Param
Pointer	to	the	FarDialogEvent	structure.

Return	value
TRUE	-	the	event	was	processed	internally.	FarDialogEvent.Result	will	be	used
as	dialog	handler	return	value.
FALSE	-	the	event	should	be	processed	by	the	internal	handler	of	the	Dialog	API
kernel.

Remarks

See	also:
FarDialogEvent,	events,	Dialog	API

Service	functions	-	Common
main

Function Description

AdvControl advanced	control	functions;	can	be	called	from
anywhere:	panels,	viewer	or	editor.

CharTable allows	to	get	information	about	installed	character
tables.

CmpName function	compares	a	text	string	(for	example,	a	file
name)	with	a	pattern	(mask).

GetMsg returns	a	message	from	the	language	file.

Menu shows	a	menu.

RestoreScreen restores	a	screen	area	previously	saved	by	SaveScreen.

SaveScreen saves	a	screen	area.

ShowHelp shows	the	specified	FAR	help	topic	for	the	specified
hlf	file.

Text writes	a	text	string	to	the	screen.

See	also:
Exported	functions,	Structures,	Archive	support,	Addons,	Win32
structures	and	function

AdvControl
main	|	service	functions

The	AdvControl	function	provides	access	to	FAR	services	and	allows	to	query
information.	It	can	be	called	from	anywhere:	panels,	viewer	or	editor.

INT_PTR	WINAPI	AdvControl(

		int	ModuleNumber,

		int	Command,

		void	*Param

);

Parameters
ModuleNumber
Number	of	the	plugin	module.	It	is	passed	to	the	plugin	in	the	SetStartupInfo
function.

Command
Control	command	type.	Can	be	one	of	the	following	values
(ADVANCED_CONTROL_COMMANDS	enum):

Command Description

ACTL_COMMIT "Commits"	the	results	of	the	last	operation	with	FAR	windows	
ACTL_SETCURRENTWINDOW).
Param	is	ignored	(set	to	zero).
The	function	returns	TRUE	on	success	or	FALSE	in	case	of	failure.

ACTL_CONSOLEMODE Retrieves	or	sets	console	mode	(FullScreen	<->	Windowed).
Param	can	be	one	of	the	following	constants:

Constant Description

FAR_CONSOLE_GET_MODE returns	current	console	mode

FAR_CONSOLE_SET_FULLSCREEN sets	the	console	to	fullscreen	mode

FAR_CONSOLE_SET_WINDOWED sets	the	console	to	windowed	mode

FAR_CONSOLE_TRIGGER toggles	console	mode

The	returned	value	is	the	current	console	mode.	Can	be	one	of	the	following
constants:

Constant Description

FAR_CONSOLE_WINDOWED windowed	mode

FAR_CONSOLE_FULLSCREEN fullscreen	mode

ACTL_EJECTMEDIA Allows	to	programmatically	eject	media	from	removable	drives	(CD-
ROM/USB/SUBST).
Param	points	to	an	ActlEjectMedia	structure.
This	command	returns	TRUE	if	the	media	was	succesfully	ejected,	otherwise
FALSE	is	returned.

ACTL_KEYMACRO Various	actions	with	macro	commands.
Param	points	to	an	ActlKeyMacro	structure.
The	return	value	is	TRUE	if	the	command	was	executed	successfully	or	
the	execution	failed	(not	enough	memory,	a	macro	command	is	
executed	or	played).

ACTL_GETARRAYCOLOR Allows	to	get	an	array	of	all	FAR	colors.
Param	points	to	an	array	of	bytes	to	receive	the	current	FAR	colors.	
color	is	stored	in	one	byte	-	high	4	bits	is	the	background	color,	
foreground	color.
If	Param	is	equal	to	NULL,	the	size	of	the	FAR	color	array	is	returned.	FAR	color
indexes	defined	in	farcolor.hpp	can	be	used	for	accessing	this	array.
This	command	always	returns	the	size	of	the	FAR	color	array.

ACTL_GETCOLOR Allows	to	get	the	FAR	color	with	the	specified	index.
Param	must	contain	one	of	the	COL_*	color	indexes	defined	in
farcolor.hpp.
The	return	value	is	the	color	if	a	correct	index	was	specified,

ACTL_GETFARVERSION Gets	the	FAR	version.
Param	either	points	to	a	variable	of	type	DWORD,	or	it	can	be	NULL.
Version	format:

HIWORD:									=	build	number		(FAR	1.70.387	=	0x0183)

LOWORD:		HIBYTE	=	major	version	(FAR	1.70.387	=	0x01)

									LOBYTE	=	minor	version	(FAR	1.70.387	=	0x46)

Param	can	be	set	to	NULL.
This	command	returns	the	FAR	version.

ACTL_GETFARHWND Returns	the	window	handle	(HWND)	of	the	current	FAR	Manager	
Param	is	ignored	(set	to	0).

ACTL_GETCONFIRMATIONS Returns	information	about	the	confirmation	settings.	Returns	a	
FarConfirmationsSettings	flags	set	according	to	options	in	the
"Confirmations"	dialog.
Param	is	ignored	(set	to	0).

ACTL_GETDESCSETTINGS Returns	information	about	the	file	description	settings.	Returns	a	
FarDescriptionSettings	flags	set	according	to	options	in	the	"File
descriptions"	dialog.
Param	is	ignored	(set	to	0).

ACTL_GETDIALOGSETTINGS Returns	information	about	the	dialog	settings.	Returns	a	DWORD
FarDialogSettings	flags	set	according	to	options	in	the	"Dialog	Settings"
dialog.
Param	is	ignored	(set	to	0).

ACTL_GETINTERFACESETTINGS Returns	information	about	the	interface	settings.	Returns	a	DWORD
FarInterfaceSettings	flags	set	according	to	options	in	the	"Interface
settings"	dialog.
Param	is	ingoner	(set	to	0).

ACTL_GETPANELSETTINGS Returns	information	about	the	panel	settings.	Returns	a	DWORD
FarPanelSettings	flags	set	according	to	options	in	the	"Panel	settings"
dialog.
Param	is	ignored	(set	to	0).

ACTL_GETPLUGINMAXREADDATA Returns	the	maximum	data	size	that	can	be	passed	to	OpenFilePlugin
DWORD	of	any	value	from	0x1000	to	0x80000	(4KB	to	512KB),	but	you	should
be	ready	to	receive	any	other	value.	Param	is	ignored	(set	to	0)

ACTL_GETSYSTEMSETTINGS Returns	information	about	the	system	settings.	Returns	a	DWORD
FarSystemSettings	set	according	to	options	in	the	"System	settings"	dialog.
Param	is	ignored	(set	to	0).

ACTL_GETSYSWORDDIV Retrieves	a	string	containing	the	word	delimiter	characters.
Param	points	to	a	string	buffer	in	which	the	word	delimiters	will	be	copied.
Set	Param	to	NULL	to	get	string	length	(without	the	terminating	
The	maximum	length	of	the	buffer	is	260	characters,	including	the	terminating
null.

ACTL_GETWCHARMODE Returns	the	FAR	console	working	mode
Param	is	ingnored	(set	to	0).
Returns	TRUE,	is	the	FAR	console	mode	is	set	to	Unicode.	
set	to	8-bit	mode.

ACTL_GETWINDOWCOUNT Returns	the	count	of	open	windows	in	FAR	Manager.
Param	is	ignored	(set	to	0).
There	is	always	at	least	1	open	window	(file	panels,	or	an	editor	or	a	viewer	
FAR	was	started	with	a	command	line	parameter	-e	or	-v)

ACTL_GETWINDOWINFO Retrieve	information	about	a	FAR	Manager	window.
Param	-	Param	points	to	a	WindowInfo	structure.
You	must	initialize	the	member	WindowInfo.Pos	before	calling	the	function.	If
WindowInfo.Pos	is	equal	to	-1,	information	about	the	current	window	is	returned.
The	return	value	is	TRUE	if	the	window	with	the	index	WindowInfo.Pos	exists
and	FALSE	if	there	is	no	such	window	(in	the	latter	case,	the	
structure	is	not	filled).

ACTL_GETSHORTWINDOWINFO Retrieve	information	about	a	FAR	Manager	window.
Param	-	Param	points	to	a	WindowInfo	structure.
You	must	initialize	the	member	WindowInfo.Pos	before	calling	the	function.	If
WindowInfo.Pos	is	equal	to	-1,	information	about	the	current	window	is	returned.
The	return	value	is	TRUE	if	the	window	with	the	index	WindowInfo.Pos	exists
and	FALSE	if	there	is	no	such	window	(in	the	latter	case,	the	
structure	is	not	filled).
In	oppose	to	the	ACTL_GETWINDOWINFO	command	the
WindowInfo.TypeName	and	WindowInfo.Name	members	are	not	filled	and	so	this
command	can	be	called	from	any	thread.

ACTL_POSTKEYSEQUENCE Post	a	sequence	of	internal	key	codes	to	the	FAR	keyboard	queue.
Param	Param	points	to	a	KeySequence	structure.
The	return	value	is	TRUE	if	the	keys	have	been	posted	successfully	and	
case	of	an	error.
The	keys	will	be	interpreted	as	soon	as	the	plugin	returns	control	to	FAR.

ACTL_REDRAWALL Redraw	all	FAR	windows.
Param	is	ignored	(set	to	0).

ACTL_SETARRAYCOLOR Allows	to	change	a	specified	range	of	the	FAR	color	scheme.
Param	points	to	a	FarSetColors	structure.
The	return	value	is	TRUE	if	the	range	was	successfully	changed	or	
parameters	in	the	FarSetColors	structure	were	specified	incorrectly.

ACTL_SETCURRENTWINDOW Allows	to	switch	to	a	specific	FAR	Manager	window.
Param	is	an	integer	specifying	the	index	of	the	window	to	switch	to	(the
numbering	starts	at	0).
The	function	returns	TRUE	if	the	switch	was	successful	or	FALSE
failure	(the	window	to	switch	to	does	not	exist).

	Attention!
The	switching	will	not	occur	untill	ACTL_COMMIT
Manager	receives	control.

ACTL_WAITKEY Allows	to	wait	for	a	keystroke.
If	Param	is	set	to	-1	or	NULL	-	waits	for	any	key
If	Param	is	set	to	the	internal	key	code	-	waits	for	that	key.
Returns	value	is	always	zero.

Param
Points	to	data	dependent	on	the	command	type.	See	the	command	descriptions
for	specific	information.

Return	value
Return	value	depends	on	the	command	type.	See	the	command	descriptions	for
specific	information.

See	also:
Control,	EditorControl

CharTable
main	|	service	functions

The	CharTable	function	allows	to	get	information	about	installed	character
tables.

int	WINAPI	CharTable(

		int	Command,

		char	*Buffer,

		int	BufferSize

);

Parameters
Command
Either	the	number	of	the	requested	character	table	or	one	of	the	following
commands	(the	FARCHARTABLE_COMMAND	enum):

Command Description

FCT_DETECT Autodetect	the	character	table	for	given	text

Buffer
If	Command	is	equal	to	FCT_DETECT,	specifies	the	address	of	a	buffer	with
text	data.	Otherwise,	specifies	the	address	of	a	CharTableSet	structure	that
receives	information	about	the	requested	character	table.

BufferSize
If	Command	is	FCT_DETECT,	BufferSize	should	contain	the	size	of	the
buffer	with	text	data	to	analyze.	Otherwise	it	is	the	size	of	the	CharTableSet
structure.

Return	value
-1,	if	the	requested	table	is	not	present	or	autodetection	failed.
If	successful,	the	function	returns	the	number	of	the	requested	table	and	fills	the
structure	pointed	by	Buffer.	In	FCT_DETECT	mode	it	returns	the	number	of
the	detected	table	and	does	not	change	Buffer	data.

Remarks

1.	 To	enumerate	all	FAR	character	tables,	start	with	Command	equal	to	0	and

increment	it	until	the	return	value	will	be	-1.
2.	 The	CharTableSet	structure	is	filled	with	OEM	data	if	there	where	problems

while	reading	settigs	of	some	table	(when	Command	does	not	equals
FCT_DETECT).

CmpName
main	|	service	functions	|	FSF.ProcessName

The	CmpName	function	compares	a	null-terminated	text	string	(for	example,	a
file	name)	with	a	pattern	(mask).

int	WINAPI	CmpName(

		const	char	*Pattern,

		const	char	*String,

		int	SkipPath

);

Parameters
Pattern
Address	of	the	pattern	string.

String
Address	of	the	null-terminated	text	string.

SkipPath
If	TRUE,	the	file	path	in	String	is	ignored	and	only	the	file	name	is	used	in
comparison.

Return	value
TRUE	if	the	string	matches	the	pattern,	otherwise	FALSE.

Remarks
The	Pattern	parameter	can	contain	any	characters	allowed	in	file	names	and	the
following	special	characters	(wildcards):

Wildcard Description

* any	number	of	characters

? any	single	character

[c,x-z] any	character	from	the	range	specified	in	square
brackets;	both	individual	characters	and	character
ranges	can	be	specified.

For	example,	files	ftp.exe,	fc.exe	and	f.ext	will	meet	the	following	mask
f*.ex?,	the	mask	*co*	corresponds	to	color.ini	and	edit.com,	the	mask	[c-

ft]*.txt	corresponds	to	config.txt,	demo.txt,	faq.txt	and	tips.txt.

Control
main	|	service	functions

The	Control	function	allows	to	request	misc	information	and	perform	various
control	actions	for	the	panels	and	the	command	line.

int	WINAPI	Control(

		HANDLE	hPlugin,

		int	Command,

		void	*Param

);

Parameters
hPlugin
Current	plugin	instance	handle.	To	request	information	about	the	active	panel
set	this	parameter	to	INVALID_HANDLE_VALUE.	This	allows	to	use	this
function	in	plugin	commands	that	work	without	creating	new	panel.	The
INVALID_HANDLE_VALUE	is	also	used	with	none	plugin	panels.

Command
Control	command	type.	Can	be	one	of	the	following	values
(FILE_CONTROL_COMMANDS	enum):

Command Description

Panel

FCTL_CHECKPANELSEXIST Checks	if	the	file	panels	exist.
Param	must	be	equal	to	0	(unused).
The	function	returns	FALSE	if	FAR	was	started	with	the	/e	or	/v
command	line	arguments	(as	an	external	viewer	or	editor).	In
this	mode	the	panels	are	not	created.

	Attention!
When	FAR	is	started	with	the	/e	or	/v	command	line
arguments,	this	function	processes	only	one	command
-	FCTL_CHECKPANELSEXIST.

FCTL_CLOSEPLUGIN Closes	the	current	plugin.
Param	points	to	the	name	of	the	directory	that	will	be	set	in	the
panel	after	closing	the	plugin.

FCTL_GETPANELINFO
FCTL_GETANOTHERPANELINFO

Gets	information	about	a	plugin	active/passive	panel.
Param	points	to	a	PanelInfo	structure	that	will	receive	panel
information.

If	no	items	are	selected	in	panel,
PanelInfo.SelectedItemsNumber	is	equal	to	1	and
PanelInfo.SelectedItems	contains	data	for	the	item	under	cursor.
In	order	to	verify	whether	the	file	is	actually	selected,	check	if
the	PPIF_SELECTED	flag	is	set	for	that	item.

While	processing	the	following	request

Info.Control(INVALID_HANDLE_VALUE,

													FCTL_GETPANELINFO,

													&PInfo);

FAR	call	the	GetOpenPluginInfo	exported	function	of	the	plugin
to	which	the	panel	belongs.	FAR	contains	a	protection	against	an
endless	recursion	in	the	case	when	the	plugin,	from	inside	the
GetOpenPluginInfo()	function,	also	calls
Info.Control(...,FCTL_GETPANELINFO),	the
secondary	call	of	GetOpenPluginInfo()	will	not	happen.

In	some	cases	(e.g.	searching	in	archives	by	Alt-F7)	the
plugin	panel	is	not	really	created,	for	that	reason	you	must	check
the	return	value	of	the	Control	function,	as	to	not	crash	in	the
most	unfitting	moment	by	working	on	an	none	existing	panel.

	Attention!
The	PanelItems	and	SelectedItems	fields	of	the
PanelInfo	structure	will	have	different	addresses	after
each	new	call	of	FCTL_GETPANELINFO
FCTL_GETANOTHERPANELINFO.

FCTL_GETPANELSHORTINFO
FCTL_GETANOTHERPANELSHORTINFO

Similar	to
FCTL_GETPANELINFO/FCTL_GETANOTHERPANELINFO,
but	the	PanelItems	and	the	SelectedItems	fields	of	the	PanelInfo
structure	are	not	filled	and	are	set	to	NULL.	This	command	is
intended	to	be	used	when	only	the	common	information	about
the	active/passive	panel	is	needed,	without	any	concrete
information	on	elements	in	that	panel.

FCTL_REDRAWPANEL
FCTL_REDRAWANOTHERPANEL

Redraws	the	plugin	active/passive	panel.
Param	can	be	either	NULL	or	the	address	of	a	PanelRedrawInfo
structure,	so	you	can	set	a	new	cursor	position	and	the	top
element	for	that	panel.	If	Param	is	set	to	NULL,	the	cursor
position	and	the	top	element	will	not	be	changed.
If	hPlugin	equals	INVALID_HANDLE_VALUE,	then	the	active
panel	will	be	redrawn	no	matter	what	command	was	used	by	the
plugin.
The	panel	will	be	redrawn	only	if	that	panel	is	visible	at	the
moment.

FCTL_SETNUMERICSORT
FCTL_SETANOTHERNUMERICSORT

Sets	numeric	sort	mode	for	the	active/passive	panel.
Param	points	to	an	integer	value:	0	(turn	numeric	sort	off)	or	1

(turn	numeric	sort	on).
Setting	Param	to	NULL	is	equivalent	to	setting	the	numeric	sort
off.

FCTL_SETPANELDIR
FCTL_SETANOTHERPANELDIR

Sets	the	current	directory	of	a	plugin	active/passive	panel.
Param	points	to	the	directory	name.	If	the	plugin	supports	its
own	panel,	it	will	be	closed	after	execution	of	this	command.

Note	that	this	function	resets	the	file	selection	in	a	directory	and
makes	it	impossible	to	restore	by	pressing	Ctrl-M,	even	if	the
directory	passed	to	this	function	is	the	same	as	the	current
directory.

FCTL_SETSELECTION
FCTL_SETANOTHERSELECTION

Sets	active/passive	panel	items	selection.
Param	points	to	the	PanelInfo	structure	filled	by	a	previous
FCTL_GETPANELINFO	or
FCTL_GETANOTHERPANELINFO	call.	You	must	not	use	
other	Control	functions	between	FCTL_GETPANELINFO	and
FCTL_SETSELECTION.

To	change	selection,	set	or	clear	PPIF_SELECTED	flag	in	the
items	of	the	array	pointed	to	by	the	PanelItems	member	of	the
PanelInfo	structure.	Note	that	FCTL_GETPANELINFO	and
FCTL_GETANOTHERPANELINFO	return	PPIF_SELECTED
in	this	array	set	to	its	real	state.

You	need	to	call	FCTL_REDRAWPANEL	to	show	the	changes.

FCTL_SETSORTMODE
FCTL_SETANOTHERSORTMODE

Sets	the	active/passive	panel	sort	mode.
Param	points	to	an	integer	containing	the	new	sort	mode	(see
"Sort	modes").

FCTL_SETSORTORDER
FCTL_SETANOTHERSORTORDER

Sets	the	active/passive	panel	sort	order.
Param	points	to	an	integer	value	representing	the	sort	order:	0
for	normal	order	or	1	for	reverse	order.
Setting	Param	to	NULL	is	equivalent	to	setting	the	normal	sort
order	(0).

FCTL_SETVIEWMODE
FCTL_SETANOTHERVIEWMODE

Sets	active/passive	panel	view	mode.
Param	points	to	an	integer	containing	the	new	view	mode
number,	from	0	to	9.
Setting	Param	to	NULL	is	equivalent	to	setting	mode	0.

FCTL_UPDATEPANEL
FCTL_UPDATEANOTHERPANEL

Updates	plugin	active/passive	panel	contents.
If	Param	is	NULL,	the	file	selection	will	be	cleared,	otherwise
selection	is	not	changed.

Command	line

FCTL_GETCMDLINE Gets	the	command	line	contents.
Param	points	to	the	buffer	to	receive	data	(the	buffer	should	not
be	smaller	than	1	Kb).

FCTL_GETCMDLINEPOS Gets	the	cursor	position	in	the	command	line.

Param	points	to	a	variable	of	type	int	that	receives	the	cursor
position.

FCTL_GETCMDLINESELECTEDTEXT Retrieves	the	selected	text	in	the	command	line.
Param	points	to	the	buffer	to	receive	data	(the	buffer	should	not
be	smaller	than	1	Kb).

FCTL_GETCMDLINESELECTION Returns	the	parameters	of	the	text	selection	in	the	command
line.
Param	points	to	a	CmdLineSelect	structure.

FCTL_INSERTCMDLINE Inserts	text	into	the	command	line	beginning	from	the	current
cursor	position.
Param	points	to	a	zero	terminated	string	to	insert	to	the
command	line.

FCTL_SETCMDLINE Sets	the	command	line	contents.
Param	points	to	a	zero	terminated	string	to	copy	to	the
command	line.

FCTL_SETCMDLINEPOS Sets	the	cursor	position	in	the	command	line.
Param	points	to	a	variable	of	type	int	that	contains	the	new
cursor	position.

FCTL_SETCMDLINESELECTION Selects	a	text	fragment	in	the	command	line.
Param	points	to	a	CmdLineSelect	structure.

Other

FCTL_SETUSERSCREEN Copies	the	current	screen	contents	to	the	FAR	user	screen	buffer
(which	is	displayed	when	the	panels	are	switched	off).
Param	must	be	NULL.

FCTL_GETUSERSCREEN Outputs	the	FAR	user	screen	buffer	(which	is	displayed	when
the	panels	are	switched	off)	to	the	screen.
Param	must	be	NULL.

Param
Points	to	control	command	parameters.	Read	the	description	of	the	Command
parameter	for	concrete	information.

Return	value
If	the	function	succeeds,	the	return	value	is	TRUE.	If	the	function	fails,	FALSE
is	returned.

Remarks
Usually	you	do	not	need	to	update	or	redraw	panel	and	close	plugin	directly.
FAR	does	this	itself,	when	performing	standard	operations.	These	functions	can
become	necessary	to	implement	some	non-standard	functionality.

See	also:
AdvControl,	EditorControl

FreeDirList
main	|	service	functions

The	FreeDirList	function	releases	the	memory	allocated	for	files	list	by
GetDirList	and	GetPluginDirList	functions.

void	WINAPI	FreeDirList(

		const	struct	PluginPanelItem	*PanelItem

);

Parameters
PanelItem
Address	of	an	array	of	PluginPanelItem	structures.

Return	value
None.

GetDirList
main	|	service	functions

The	GetDirList	function	returns	the	list	of	files	in	the	specified	directory
including	subdirectories.

int	WINAPI	GetDirList(

		const	char	*Dir,

		struct	PluginPanelItem	**pPanelItem,

		int	*pItemsNumber

);

Parameters
Dir
Name	of	the	directory	to	scan.	It	can	be	a	name	only	or	a	full	pathname.

pPanelItem
Points	to	the	variable	that	will	receive	the	address	of	an	array	of
PluginPanelItem	structures.
When	this	array	is	no	longer	needed,	it	must	be	passed	to	the	FreeDirList
function.

pItemsNumber
Points	to	the	variable	that	will	receive	the	number	of	PluginPanelItem
PluginPanelItem	structures.

Return	value
If	the	function	succeeds,	the	return	value	is	TRUE.	If	the	function	fails	or
directory	scanning	is	cancelled	by	the	user,	FALSE	is	returned.

Remarks

1.	 The	function	returns	file	names	relative	to	the	specified	directory.	For
example,	if	Dir	is	D:\DIR1\DIR2,	file	names	will	be	in	DIR2\file.ext
format.

2.	 The	user	can	interrupt	the	directory	scanning	process	by	pressing	Esc.	In
this	case	the	function	will	return	FALSE.

See	also:

GetPluginDirList

GetMsg
main	|	service	functions

The	GetMsg	function	returns	a	message	from	the	language	file.	It	is	strongly
recommended	to	use	this	function	instead	of	hard-coding	text	constants	directly
in	the	program,	because	it	allows	to	localize	your	plugin	and	switch	the	language
of	FAR	and	plugins	simultaneously.

const	char*	WINAPI	GetMsg(

		int	PluginNumber,

		int	MsgId

);

Parameters
PluginNumber
Number	of	the	plugin	module.	It	is	passed	to	the	plugin	in	the	SetStartupInfo
function.

MsgId
Index	of	the	message	in	the	message	file.

Return	value
The	function	returns	the	address	of	the	requested	message.

Remarks
All	*.lng	files	in	plugin	directory	are	considered	as	language	files.	FAR	selects
the	necessary	*.lng	file	depending	on	the	current	language.	Before	using
GetMsg	first	time,	all	messages	are	loaded	into	the	memory,	so	they	can	be
accessed	later	much	faster	and	you	don't	need	to	store	the	messages	in	an
additional	buffers.

Example
In	all	the	examples,	as	you	can	see,	the	following	function	is	used:
C/C++:
const	char	*GetMsg(int	MsgId)

{

		return(Info.GetMsg(Info.ModuleNumber,MsgId));

}

Delphi:
function	GetMsg(MsgId:	TMessageStrings):	PChar;

begin

		result:=	Info.GetMsg(Info.ModuleNumber,integer(MsgId));
end;

Info	is	declared	as	a	global	variable:

struct	PluginStartupInfo	Info;

...and	initialized	in	the	SetStartupInfo	function:

void	WINAPI	_export	SetStartupInfo(struct	PluginStartupInfo	*Info)

{

		...

		::Info=*Info;

		...

}

See	also:
Language	and	help	files	|	LocMsg

GetPluginDirList
main	|	service	functions

The	GetPluginDirList	function	returns	list	of	files	in	the	specified	directory
(including	subdirectories)	in	the	file	system	emulated	by	a	plugin.

int	WINAPI	GetPluginDirList(

		int	PluginNumber,

		HANDLE	hPlugin,

		const	char	*Dir,

		struct	PluginPanelItem	**pPanelItem,

		int	*pItemsNumber

);

Parameters
PluginNumber
Number	of	the	plugin	module.	It	is	passed	to	the	plugin	in	the	SetStartupInfo
function.

hPlugin
Current	plugin	instance	handle.	If	the	plugin	handle	is	equal	to
INVALID_HANDLE_VALUE,	the	value	of	PluginNumber	is	ignored	and	the
function	works	with	the	plugin	that	controls	the	active	panel.

Dir
Name	of	the	plugin	directory	to	scan.	It	must	be	in	the	form	acceptable	by	the
SetDirectory	function	of	the	plugin.

To	keep	the	current	plugin	directory	unchanged	after	the	GetPluginDirList
call,	either	Dir	has	to	be	a	subdirectory	of	the	current	plugin	directory,	or	the
SetDirectory	function	of	the	plugin	must	be	able	to	process	a	directory	name
returned	by	GetOpenPluginInfo.	Otherwise	the	current	directory	will	be
changed	and	you	should	be	ready	to	restore	it.

pPanelItem
oints	to	the	variable	that	will	receive	the	address	of	an	array	of
PluginPanelItem	structures.
When	this	array	is	no	longer	needed,	it	must	be	passed	to	the	FreeDirList
function.

pItemsNumber

Points	to	the	variable	that	will	receive	the	count	of	PluginPanelItem	structures.

Return	value
If	the	function	succeeds,	the	return	value	is	TRUE.	If	the	function	fails	or
directory	scanning	is	cancelled	by	the	user,	FALSE	is	returned.

Remarks

1.	 Returned	file	names	are	relative	to	the	specified	directory.	For	example,	if
Dir	is	D:\DIR1\DIR2,	file	names	will	be	in	DIR2\file.ext	format.

2.	 The	user	can	interrupt	the	directory	scanning	process	by	pressing	Esc,
which	will	cause	the	function	to	return	FALSE.

See	also:
GetDirList

Menu
main	|	service	functions

The	Menu	function	shows	a	menu.

int	WINAPI	Menu(

		int	PluginNumber,

		int	X,

		int	Y,

		int	MaxHeight,

		DWORD	Flags,

		const	char	*Title,

		const	char	*Bottom,

		const	char	*HelpTopic,

		const	int	*BreakKeys,

		int	*BreakCode,

		const	struct	FarMenuItem	*Item,

		int	ItemsNumber

);

Parameters
PluginNumber
Number	of	the	plugin	module.	It	is	passed	to	the	plugin	in	the	SetStartupInfo
function.

X,Y
Top	left	menu	corner	coordinates.
To	assign	coordinates	automatically	set	them	to	-1

MaxHeight
Maximum	count	of	visible	menu	items.	If	it	is	less	than	the	items	number,
items	will	be	scrolled.
To	use	maximum	possible	height	set	this	parameter	to	0.

Flags
Can	be	a	combination	of	the	following	values	(FARMENUFLAGS	enum):

Constant Description

FMENU_AUTOHIGHLIGHT If	specified,	item	hot	keys	will	be	assigned
automatically,	beginning	from	the	first	item.

FMENU_CHANGECONSOLETITLE If	specified,	the	the	title	of	the	console
window	will	be	set	to	Title	(if	Title	is	not
empty).

FMENU_SHOWAMPERSAND Shows	ampersands	in	menu	item	texts.
Without	this	flags	ampersands	are	used	to
specify	item	hot	keys.

FMENU_REVERSEAUTOHIGHLIGHT If	specified,	item	hot	keys	will	be	assigned
automatically,	beginning	from	the	last	item.

FMENU_USEEXT Instead	of	FarMenuItem	the	FarMenuItemEx
structure	is	used.

FMENU_WRAPMODE If	specified,	attempts	to	move	the	cursor
above	the	first	item	or	below	the	last	will
move	the	cursor	to	the	last	or	the	first	item,
respectively.

It	is	recommended	to	always	set	this	flag,
unless	you	have	specific	reasons	not	to	do	so.

If	the	FMENU_USEEXT	flag	is	set	then	it	is	necessary	to	perform	a	type
cast:

struct	FarMenuItemEx	FooEx[]={

		...

};

Info.Menu(...,FMENU_USEEXT|...,(const	struct	FarMenuItem	*)

Title
Menu	title.	Set	to	NULL	if	menu	title	is	not	needed.

Bottom
Menu	bottom	title.	Set	to	NULL	if	menu	bottom	title	is	not	needed.

HelpTopic
The	help	topic	associated	with	the	menu.	Set	to	NULL	if	help	is	not	needed.

BreakKeys
Address	of	an	array	with	virtual	key	codes	(VK_*),	that	will	close	the	menu.
The	last	array	item	must	be	0.	If	you	do	not	need	to	define	such	keys	in
addition	to	the	standard	keys	(<Enter>,	<Esc>	and	<F10>),	set	this
parameter	to	NULL.	The	high	word	of	an	array	item	can	be	either	0	or	a
combination	of	PKF_CONTROL,	PKF_ALT	and	PKF_SHIFT	flags	to
describe	corresponding	key	combinations.

For	example	in	the	MultiArc	plugin	in	the	"Archive	commands"	menu
(Shift-F3	on	archive)	the	F4	keystroke	is	processed	in	the	following	way:

int	BreakCode;

int	BreakKeys[2]={VK_F4,0};

ExitCode=Info.Menu(Info.ModuleNumber,-1,-1,0,FMENU_USEEXT|FMENU_WRAPMODE,

					GetMsg(MArcCmdTitle),GetMsg(MSelectF4),"ArcCmd",

					(struct	FarMenuItem	*)MenuItems,Count);

if(ExitCode>=0)

{

		if(BreakCode	==	0)		//	F4	pressed

		{

				GetFormatName(MenuItems[0].Text.Text);

				ConfigCommands(MenuItems[0].Text.Text,2+MenuData[ExitCode].Cmd*2);

				continue;

		}

}

else

		return	FALSE;

BreakCode
Address	of	a	variable	that	will	receive	the	index	in	the	BreakKeys	array	of	the
key	used	to	close	the	menu,	or	-1	if	the	menu	was	closed	using	one	of	the
standard	keys.	This	parameter	can	be	NULL.

Item
Address	of	an	array	of	FarMenuItem	structures	or	if	the	FMENU_USEEXT
flag	is	specified,	address	of	an	array	of	FarMenuItemEx	structures.	Each
structure	describes	one	menu	item.

ItemsNumber
Number	of	FarMenuItem	structures.

Return	value
This	function	returns	either	-1,	if	the	user	cancelled	the	menu,	or	the	selected
menu	item	number.

Example
This	example	is	taken	from	the	EditCase	plugin:

struct	FarMenuItem	MenuItems[2];

memset(MenuItems,0,sizeof(MenuItems));

strcpy(MenuItems[0].Text,GetMsg(MCaseLower));

strcpy(MenuItems[1].Text,GetMsg(MCaseUpper));

MenuItems[0].Selected=TRUE;

int	MenuCode=Info.Menu(Info.ModuleNumber,-1,-
						1,0,FMENU_AUTOHIGHLIGHT|FMENU_WRAPMODE,

						GetMsg(MCaseConversion),NULL,

						"Contents",NULL,NULL,

						MenuItems,

						sizeof(MenuItems)/sizeof(MenuItems[0]));

if	(MenuCode<0)

		return(INVALID_HANDLE_VALUE);

.	.	.

Info	is	defined	as	a	global	variable:

struct	PluginStartupInfo	Info;

...and	is	initialized	in	the	SetStartupInfo	function:

void	WINAPI	_export	SetStartupInfo(struct	PluginStartupInfo	*Info)

{

		...

		::Info=*Info;
		...

}

See	also:
FarMenuItem

RestoreScreen
main	|	service	functions

The	RestoreScreen	function	restores	a	screen	area	previously	saved	by
SaveScreen.

void	WINAPI	RestoreScreen(

		HANDLE	hScreen,

);

Parameters
hScreen
A	handle	received	from	SaveScreen.	This	handle	is	no	longer	usable	after
calling	RestoreScreen.

Return	value
None.

Remarks
To	improve	speed	RestoreScreen	redraws	only	the	modified	screen	area.	But	if
there	was	screen	output	produced	by	non-FAR	functions	(for	example,	if	an
external	program	was	executed	from	a	plugin),	RestoreScreen	cannot	correctly
calculate	this	area.	In	that	case	you	need	first	to	call	RestoreScreen	with
hScreen	set	to	NULL	to	inform	FAR	that	the	screen	was	changed	and	then	call
RestoreScreen	as	usual	with	SaveScreen	handle.

See	also:
SaveScreen

SaveScreen
main	|	service	functions

The	SaveScreen	function	saves	a	screen	area.	To	restore	it	use	the	RestoreScreen
function.

HANDLE	WINAPI	SaveScreen(

		int	X1,

		int	Y1,

		int	X2,

		int	Y2

);

Parameters
X1,Y1,X2,Y2
Screen	area	coordinates.	If	X2	or	Y2	is	equal	to	-1,	they	are	replaced	with
screen	right	or	screen	bottom	coordinate	correspondingly.	So
SaveScreen(0,0,-1,-1)	will	save	the	entire	screen.

Return	value
The	return	value	is	a	handle	that	can	be	passed	to	RestoreScreen.	All	handles
allocated	by	SaveScreen	must	be	passed	to	RestoreScreen	to	avoid	memory
leaks.

See	also:
RestoreScreen

ShowHelp
main	|	service	functions

The	ShowHelp	function	shows	the	specified	topic	from	a	given	hlf-file.

BOOL	WINAPI	ShowHelp(

		const	char	*ModuleName,

		const	char	*HelpTopic,

		int			Flags

);

Parameters
ModuleName
Name	of	the	plugin	module.	It	is	passed	to	the	plugin	in	the	SetStartupInfo
function.

HelpTopic
Help	topic.	If	this	parameter	is	NULL,	then	the	topic	"Contents"	will	be	used.

Flags
Can	be	one	of	the	following	values	(FarHelpFlags	enum):

Constant Description

FHELP_SELFHELP Assume	ModuleName	is	Info.ModuleName	and
show	the	topic	from	the	help	file	of	the	calling
plugin.	If	HelpTopic	begins	with	a	coulomb	':',	the
topic	from	the	main	FAR	help	file	will	be	shown	(in
that	case	ModuleName	is	ignored).

FHELP_FARHELP ModuleName	is	ignored	and	the	topic	from	the	main
FAR	help	file	will	be	shown.	In	this	case	you	do	not
need	to	start	the	HelpTopic	with	a	coulomb	':'.

FHELP_CUSTOMFILE Assume	ModuleName	specifies	full	path	to	a	hlf-file
(c:\path\filename).

FHELP_CUSTOMPATH Assume	ModuleName	specifies	full	path	to	a	folder
(c:\path)	from	which	a	help	file	will	be	selected
according	to	current	language	settings.

FHELP_USECONTENTS If	the	specified	HelpTopic	is	not	found,	will	try	to
show	the	"Contents"	topic.	This	flag	can	be
combined	with	other	flags.

FHELP_NOSHOWERROR Disable	file	or	topic	not	found	error	messages	for	this

function	call.	This	flag	can	be	combined	with	other
flags.

Return	value
TRUE	-	parameters	were	successfully	transferred	to	the	Help	Manager.
FALSE	-	one	of	the	following	errors	occurred:

Flags	contains	an	illegal	value.
ModuleName	=	NULL	and	FHELP_FARHELP	flag	is	not	set.
Specified	help	file	or	topic	were	not	found	by	the	Help	Manager.
Help	file	or	topic	were	not	found	while	browsing	the	help	file.

Example
For	convience	when	frequently	used	the	following	function	can	be	used	in	your
plugin:
void	ShowHelp(const	char	*HelpTopic)

{

		Info.ShowHelp(Info.ModuleName,HelpTopic,0);

}

Info	is	defined	as	a	global	variable...

struct	PluginStartupInfo	Info;

...ans	is	initialized	in	the	SetStartupInfo	function:
void	WINAPI	_export	SetStartupInfo(const	struct	PluginStartupInfo	*Info)

{

.	.	.

		::Info=*Info;
.	.	.

}

See	also:
Help	files

Text
main	|	service	functions

The	Text	function	writes	a	text	string	to	the	screen.	FAR	uses	internal	screen
buffering	to	improve	performance	so	for	compatibility	reasons	plugins	must	not
write	text	directly	to	screen,	but	should	use	the	Text	function	instead.

void	WINAPI	Text(

		int	X,

		int	Y,

		int	Color,

		const	char	*Str

);

Parameters
X,Y
Text	coordinates.	The	origin	of	the	coordinate	system	(0,0)	-	is	at	the	top	left
cell	of	the	screen.

Color
Text	color	attributes.

Str
Null-terminated	text	string.	To	display	changes	immediately	call	Text	with	Str
set	to	NULL	just	after	writing	the	string,	for	FAR	to	flush	its	screen	buffer.	But
do	not	overuse	it,	because	frequent	buffer	flushing	decreases	overall
performance.

Return	value
None.

Service	functions	-	Editor
main

Function Description

Editor allows	to	invoke	the	FAR	internal	editor.

EditorControl provides	access	to	low	level	internal	editor	API.

See	also:
Exported	functions,	Structures,	Archive	support,	Addons,	Win32
structures	and	function

Editor
main	|	service	functions

The	Editor	function	allows	to	invoke	the	FAR	internal	editor.

int	WINAPI	Editor(

		const	char	*FileName,

		const	char	*Title,

		int	X1,

		int	Y1,

		int	X2,

		int	Y2,

		DWORD	Flags,

		int	StartLine,

		int	StartChar

);

Parameters
FileName
Name	of	the	file	to	edit.	Unless	EF_CREATENEW	is	set	in	the	Flags
parameter,	must	specify	an	existing	file.

Title
Null-terminated	text	string	that	will	be	shown	in	the	top	line	of	the	editor
window.	If	this	parameter	is	NULL,	the	file	name	will	be	used.

X1,	Y1,	X2,	Y2
Editor	window	coordinates.	If	X2	or	Y2	is	-1,	they	will	be	replaced	with	the
screen	width	or	height.	If	X1	or	Y1	are	less	than	zero,	then	their	are	taken	as
zero.

Flags
Editor	flags.	Can	be	a	combination	of	the	following	values	(EDITOR_FLAGS
enum):

Flag Description

EF_NONMODAL Creates	a	non-modal	editor	window.	If	this	flag	is
present,	the	user	will	be	able	to	switch	to	other
FAR	windows.

The	plugin	will	regain	control	only	after	the	editor

is	closed,	or	after	the	user	switches	to	a	different
window	(e.g.	by	pressing	Ctrl+Tab).	If	you
need	to	regain	control	immediately	after	the	editor
has	been	opened,	use	the
EF_IMMEDIATERETURN	flag.

EF_IMMEDIATERETURN If	this	flag	is	set,	the	Editor	function	returns
immediately	after	the	editor	has	been	opened.	The
newly	opened	editor	becomes	the	active	window.
This	flag	can	be	used	only	with
EF_NONMODAL.

EF_DELETEONCLOSE Instructs	FAR	to	delete	the	file	being	edited	after
the	editor	is	closed.	If	the	directory	with	the	edited
file	contains	no	other	files,	it	will	also	be	deleted.
If	only	the	file	needs	to	be	deleted	use	the
EF_DELETEONLYFILEONCLOSE	flag.
The	file	will	not	be	deleted:

1.	 if	the	user	switched	to	the	viewer	by
pressing	F6,	or	if	the	file	is	open	in	other
viewer	or	editor	windows.

2.	 if	the	user	has	saved	the	file.

EF_DELETEONLYFILEONCLOSE Similar	to	EF_DELETEONCLOSE,	but	only	the
file	will	be	deleted.	The	directory	will	not	be
deleted	even	if	it	is	empty.	This	flag	has	a	lower
priority	than	EF_DELETEONCLOSE.

EF_CREATENEW Opens	a	new	(non-existing)	file	in	the	editor,
similar	to	pressing	Shift-F4	in	FAR.

EF_ENABLE_F6 Enables	switching	from	the	editor	to	the	viewer	by
pressing	F6.

EF_DISABLEHISTORY Disables	adding	the	file	name	to	the	view/edit
history	(Alt-F11).	If	this	flag	is	not	specified,
the	name	is	added	to	the	history.

StartLine
Number	of	the	line	to	which	the	cursor	is	positioned	(0-based).

StartChar
Initial	cursor	position	in	the	line	(1-based).

Return	value
This	function	can	return	one	of	the	following	values	(EDITOR_EXITCODE
enum):

Returned	value Description

EEC_OPEN_ERROR File	open	error,	occurs	in	the	following	cases:

FAR	could	not	allocate	enough	memory	while
creating	the	editor	(as	an	object);
if	FileName	is	an	empty	line;
if	FileName	is	a	path	to	an	existing	folder;
if	the	file	to	be	opend	is	read-only	and	the	user
refused	to	continue	editing	this	file	in	the
corresponding	dialog.

EEC_MODIFIED Successful	return.	File	was	modified.	This	value	is
also	returned	if	the	EF_NONMODAL	flag	was	used.

EEC_NOT_MODIFIED Successful	return.	File	was	not	modified.

EEC_LOADING_INTERRUPTED File	loading	was	stopped	by	user.

Remarks
If	StartLine	and	StartChar	are	both	equal	to	-1	and	the	option	"Save	file	position"
is	enabled,	the	previously	saved	file	position	will	be	restored.

See	also:
Viewer

EditorControl
main	|	service	functions

The	EditorControl	function	provides	access	to	the	low	level	API	of	the	internal
editor.

int	WINAPI	EditorControl(

		int	Command,

		void*	Param

);

Parameters
Command
Control	command	type.	Can	be	one	of	the	following
(EDITOR_CONTROL_COMMANDS	enum):

Command Description

ECTL_ADDCOLOR Specifies	color	for	a	line	area.	This	command	can	be	applied	
to	specify	several	color	areas.	Param	points	to	an	EditorColor
line	does	not	exist,	this	command	will	return	FALSE,	otherwise	TRUE.

ECTL_ADDSTACKBOOKMARK Create	navigation	position	("stack	bookmark")	at	current	editor	position.	
positions	with	index	greater	then	current	one	will	be	deleted.	
command	is	processed	successfully,	this	command	returns	TRUE,	otherwise	FALSE.

ECTL_CLEARSTACKBOOKMARKS Deletes	all	navigation	positions.	Param	must	be	NULL.

ECTL_DELETEBLOCK Deletes	the	block	currently	selected	in	the	editor.	Returns	TRUE
deleted	successfully	or	FALSE	in	case	the	editor	is	locked	(the	user	pressed	
no	block	is	selected.	Param	must	be	NULL.

ECTL_DELETECHAR Deletes	the	character	under	cursor.	Param	must	be	NULL.

ECTL_DELETESTACKBOOKMARK Deletes	specified	navigation	position.	Param	contains	index	of	navigation	position	to	be
deleted	(0	and	greater)	or	-1	for	deleting	current	navigation	position.	Count	of	navigation
positions	can	be	recieved	after	executing	ECTL_GETSTACKBOOKMARKS
with	Param	containing	NULL.
If	command	is	processed	successfully,	this	command	returns	TRUE,	otherwise	FALSE.

ECTL_DELETESTRING Deletes	the	current	line.	Param	must	be	NULL.

ECTL_EDITORTOOEM Converts	text	from	the	editor	codepage	to	the	OEM	codepage.	
EditorConvertText	structure.

ECTL_EXPANDTABS Expands	all	tabulation	characters	in	a	line	to	spaces.	Param	points	to	an	integer	variable
that	contains	the	number	of	the	line	to	expand	or	-1	to	process	the	current	line.

ECTL_GETBOOKMARKS Returns	information	about	bookmarks	for	the	current	editor.	Param

EditorBookMarks	structure.	
This	command	returns	FALSE	in	case:

1.	 the	file	is	not	yet	open;
2.	 Param	is	NULL;

If	the	command	succeeds	TRUE	is	returned.

ECTL_GETSTACKBOOKMARKS Returns	information	about	navigation	positions	("stack	bookmarks")	for	the	current	editor.
Param	points	to	an	EditorBookMarks	structure	or	contains	NULL
count	of	navigation	positions	were	successfully	set	(or	summary	navigation	positions
count	in	case	if	Param	was	NULL).

ECTL_GETCOLOR Gets	the	color	of	a	line	area.	Param	points	to	an	EditorColor	structure.	If	the	specified
string	or	the	specified	color	area	does	not	exist,	this	command	will	return	FALSE,
otherwise	TRUE.

ECTL_GETINFO Gets	editor	information.	Param	points	to	an	EditorInfo	structure.

ECTL_GETSTRING Gets	information	about	a	line.	Param	points	to	an	EditorGetString
string	will	be	in	the	editor	codepage.

//	get	the	first	line	of	the	edited	file

struct	EditorGetString	egs;

egs.StringNumber=0;

Info.EditorControl(ECTL_GETSTRING,&egs);

ECTL_INSERTSTRING Inserts	a	new	line	at	the	current	cursor	position	and	moves	the	
the	new	line	or	to	the	indented	position.	If	Param	oints	to	an	integer	variable	containing
the	value	1,	indent	will	be	used	when	executing	this	command.	To	disable	indent,	set
Param	to	NULL	or	pass	0	in	the	variable	pointed	to	by	Param
same	as	if	the	user	presses	<Enter>	in	the	editor;	for	example,	spaces	and	tabs	are	not
inserted	into	the	new	line	if	it	does	not	contain	any	characters	after	the	new	cursor
position.

//	insert	an	empty	string	without	indentation

Info.EditorControl(ECTL_INSERTSTRING,0);

ECTL_INSERTTEXT Inserts	text	at	the	current	cursor	position.	Param	points	to	a	null-terminated	text	string	in
the	OEM	codepage.	The	command	correctly	processes	newline	
is	processed	in	the	same	way	as	it	it	had	been	entered	from	the	

//	insert	the	string	"Text"	at	the	current	cursor	position

Info.EditorControl(ECTL_INSERTTEXT,"Text");

ECTL_NEXTSTACKBOOKMARK Go	to	next	navigation	position.
Param	must	be	NULL.	If	command	is	processed	successfully,	this	command	returns
TRUE,	otherwise	FALSE.

ECTL_OEMTOEDITOR Converts	text	from	the	OEM	codepage	to	the	editor	codepage.	
EditorConvertText	structure.

ECTL_PREVSTACKBOOKMARK Go	to	previous	navigation	position.If	there	were	no	navigation	commands	after	last

ECTL_ADDSTACKBOOKMARK	command,	current	editor	position	will	be	saved	as	a
new	navigation	position	before	executing	this	command.
Param	must	be	NULL.	If	command	is	processed	successfully,	this	command	returns
TRUE,	otherwise	FALSE.

ECTL_PROCESSINPUT Passes	an	INPUT_RECORD	structure	to	the	internal	editor	for	processing.	
to	an	INPUT_RECORD	structure.	
Note:	if	your	plugin	exports	the	ProcessEditorInput	function,	
immediately	passed	to	that	function.	The	scheme	is	simple:

case	ECTL_PROCESSINPUT:

		if	(ProcessEditorInput(Param))

				return(TRUE);

		...

So	if	you	use	EditorControl(ECTL_PROCESSINPUT)
ProcessEditorInput	function,	you	should	take	care	to	avoid	infinite	recursion.

ECTL_PROCESSKEY This	command	allows	to	send	keystrokes	to	the	internal	editor.	The	
keystrokes	are	passed	in	Param.
The	internal	key	codes	are	used	(see	farkeys.hpp).	
This	command	always	returns	TRUE.

//	go	to	the	end	of	the	file

Info.EditorControl(ECTL_PROCESSKEY,(void*)KEY_CTRLEND);

ECTL_QUIT Closes	the	editor.	Any	unsaved	information	will	be	lost.	Param
command	always	returns	TRUE.

ECTL_READINPUT Fills	the	INPUT_RECORD	structure	with	data	recieved	from	the	standard	input	device.
Param	points	to	an	INPUT_RECORD	(this	structure	is	defined	in	Win32	API	and	used	by
the	ReadConsoleInput	function).

ECTL_REALTOTAB Converts	real	string	position	to	screen	position.	If	string	does	
characters,	source	and	result	positions	will	be	equal.	Param	points	to	an	
structure.

ECTL_REDRAW Redraws	the	editor	window.	Param	must	be	NULL.

ECTL_SAVEFILE Saves	the	file	currently	being	edited.	Param	points	to	anEditorSaveFile
Param	is	NULL,	the	default	file	name	and	format	(DOS-format	-	newline	
"\r\n",	Unix-format	-	"\n").	If	the	file	is	saved	successfully,	this	command	returns	TRUE,
otherwise	FALSE.

ECTL_SELECT Selects	or	deselects	a	block.	Param	points	to	an	EditorSelect	structure.

ECTL_SETKEYBAR Allows	to	control	key	bar	titles	in	the	editor:
Param	=	NULL	-	restores	the	previous	value
Param	=	-1	-	redraws	the	key	bar
Param	=	pointer	to	a	KeyBarTitles	structure.

This	command	cannot	be	used	in	the	code	that	processes	the	editor	event	
because	when	this	event	is	processed,	the	key	bar	titles	object	does	not	yet	exist.
This	command	returns	TRUE	on	success	or	FALSE	if	it	wasn't	possible	to	set	the	key	bar
titles	(if	the	key	bar	titles	object	does	not	yet	exist).

ECTL_SETPARAM Changes	the	settings	of	the	current	editor.	Param	points	to	an	
structure.	
This	function	returns	TRUE	if	the	settings	have	been	successfully	changed	or	FALSE
otherwise.

ECTL_SETPOSITION Sets	the	cursor	position.	Param	points	to	an	EditorSetPosition

ECTL_SETSTRING Sets	the	text	of	a	line.	Param	points	to	an	EditorSetString	structure.	
be	in	the	editor	codepage.

ECTL_SETTITLE Sets	the	editor	window	title	(top	status	line).	The	standard	title	will	be	automatically
restored	after	the	plugin	has	finished	processing.	Param	points	to	a	null-terminated
text	string	that	will	be	used	as	the	title.

//	DrawLine\DrawLine.cpp:	SetTitle	function

Info.EditorControl(ECTL_SETTITLE,(char	*)GetMsg(IDTitle));

ECTL_TABTOREAL Converts	screen	cursor	position	to	a	real	string	position.	If	string	does	not	contain
tabulation	characters,	source	and	result	positions	will	be	equal.	
EditorConvertPos	structure.

ECTL_TURNOFFMARKINGBLOCK Resets	the	editor	flag	that	is	set	while	the	user	is	marking	a	block	in	the	editor.	This	flag	is
internal	to	FAR	Manager	and	is	not	used	by	plugins.	However,	minor	(mostly	cosmetic)
defects	may	appear	if	the	user	starts	marking	a	block,	then	launches	your	plugin	(or	it	is
lunched	automatically)	and	the	plugin	modifies,	for	example,	
Therefore,	you	should	use	this	command	before	returning	control	to	the	
plugin	modifies	the	text	in	the	editor,	block	selection	or	cursor	
Param	must	be	NULL.

Param
Points	to	control	command	parameters.	Read	the	description	of	the	Command
parameter	for	concrete	information.

Return	value
If	the	function	succeeds,	the	return	value	is	TRUE.	If	the	function	fails,	FALSE
is	returned.

Remarks
The	editor	window	contents	is	updated	upon	any	active	user	operation.	Call	the
ECTL_REDRAW	command	to	force	an	update	after	any	changes	to	the
contents.

See	also:
AdvControl,	Control

Service	functions	-	Viewer
main

Function Description

Viewer allows	to	invoke	the	internal	viewer.

ViewerControl allows	to	query	and	control	the	state	of	the	internal
viewer

See	also:
Exported	functions,	Structures,	Archive	support,	Addons,	Win32
structures	and	function

Viewer
main	|	service	functions

The	Viewer	function	allows	to	invoke	the	FAR	internal	viewer.

int	WINAPI	Viewer	(

		const	char	*FileName,

		const	char	*Title,

		int	X1,

		int	Y1,

		int	X2,

		int	Y2,

		DWORD	Flags

);

Parameters
FileName
Name	of	the	file	to	view.

Title
Text	string	that	will	be	shown	in	the	top	line	of	the	viewer	window.	If	set	to
NULL,	the	file	name	will	be	used	as	the	title.

X1,	Y1,	X2,	Y2
Viewer	window	coordinates.	If	X2	or	Y2	equals	-1,	they	will	be	replaced	with
screen	width	or	height.	If	X1	or	Y1	is	less	than	zero	it	is	considered	as	zero.

Flags
Can	be	a	combination	of	the	following	values	(VIEWER_FLAGS	enum):

Flag Desciption

VF_DELETEONCLOSE Instructs	FAR	to	delete	the	viewed	file	after
closing	the	viewer.	If	the	directory	containing	the
viewed	file	contains	no	other	files,	it	will	also	be
deleted.	If	only	the	file	needs	to	be	deleted	use
VF_DELETEONLYFILEONCLOSE.	The	file
will	not	be	deleted	if	the	user	pressed	F6	to	switch
between	viewing	and	editing,	or	if	the	same	file	is
open	in	a	different	editor	or	viewer	instance.

VF_DELETEONLYFILEONCLOSE Similar	to	VF_DELETEONCLOSE,	but	only	the
file	will	be	deleted.	This	flag	has	a	lower	priority

than	VF_DELETEONCLOSE.

VF_DISABLEHISTORY Disables	adding	the	file	name	to	the	viewer
history	(Alt-F11).	By	default,	the	file	name	is
added	to	the	history.

VF_ENABLE_F6 Enables	switching	from	viewer	to	editor	by
pressing	F6.

VF_IMMEDIATERETURN Allows	the	plugin	to	receive	control	immediately
after	the	viewer	is	opened.	The	newly	opened
viewer	becomes	the	active	window.	This	flag
makes	sense	only	if	combined	with	the
VF_NONMODAL	flag.

VF_NONMODAL Creates	a	non-modal	viewer	window.	If	this	flag	is
present,	the	user	will	be	able	to	switch	to	other
FAR	windows.

The	plugin	will	regain	control	only	after	the
viewer	is	closed,	or	after	the	user	switches	to	a
different	window	(by	pressing	Ctrl-Tab).	If
you	need	to	regain	control	immediately	after	the
viewer	has	been	opened,	use	the
VF_IMMEDIATERETURN	flag.

Return	value
If	the	VF_NONMODAL	flag	is	not	specified,	the	function	returns	TRUE	if
successful	or	FALSE	if	the	file	cannot	be	opened.	If	the	flag	is	specified,	the
function	always	returns	TRUE.

See	also:
Editor

ViewerControl
main	|	service	functions

The	ViewerControl	function	allows	to	query	and	control	the	state	of	the	internal
viewer.

int	WINAPI	ViewerControl(

		int	Command,

		void	*Param

);

Parameters
Command
Control	command	type.	Can	be	one	of	the	following
(VIEWER_CONTROL_COMMANDS	enum):

Command Description

VCTL_GETINFO Gets	viewer	information.	Param	points	to	a
ViewerInfo	structure.	This	command	always	returns
TRUE.

VCTL_QUIT Close	the	viewer.	Param	must	be	NULL.	This
command	always	returns	TRUE.

VCTL_REDRAW Redraws	the	viewer	window.	Param	must	be	NULL.
This	command	always	returns	TRUE.

VCTL_SETKEYBAR Allows	to	control	key	bar	titles	in	the	viewer:
Param	=	NULL	-	restores	the	previous	value
Param	=	-1	-	redraws	the	key	bar
Param	=	pointer	to	a	KeyBarTitles	structure.
This	command	always	returns	TRUE.

VCTL_SELECT Controls	selection.	Param	points	to	a	ViewerSelect
structure.	
If	Param	=	NULL,	selection	will	be	reset.
If	the	command	succeeds	TRUE	is	returned.

VCTL_SETMODE Change	viewer	mode.
Param	points	to	a	ViewerSetMode	structure.	If	the
command	succeeds	TRUE	is	returned.

VCTL_SETPOSITION Sets	position	in	file.	Param	points	to	an
ViewerSetPosition	structure.	If	the	command
succeeds	TRUE	is	returned.

Param
Read	the	description	of	the	Command	parameter	for	concrete	information.

Return	Value
Read	the	description	of	the	Command	parameter	for	concrete	information.

Remark
In	FAR	1.70	build	1579	and	newer	VCTL_QUIT	when	send	from	an	information
or	a	qiuck	view	panel	does	not	close	the	viewer.

See	also:
Service	functions,	ViewerInfo,	ViewerSetPosition,	ViewerSelect

Service	functions	-	Dialog	API
main

Function Description

DefDlgProc allows	to	call	the	internal	dialog	callback	function.

Dialog shows	a	dialog.

DialogEx shows	a	dialog	that	allows	to	assign	for	it	a	callback
function.

InputBox a	simple	dialog	box	allowing	to	enter	one	line	of	text.

Message shows	a	message.

SendDlgMessage used	to	send	a	message	to	the	dialog	callback	function.

See	also:
Exported	functions,	Structures,	Archive	support,	Addons,	Win32
structures	and	function

DefDlgProc
main	|	Dialog	API	|	Events	and	Messages

The	DefDlgProc	function	allows	to	call	the	internal	dialog	callback	function.

LONG_PTR	WINAPI	DefDlgProc(

		HANDLE	hDlg,

		int				Msg,

		int				Param1,

		LONG_PTR	Param2

);

Parameters
hDlg
Dialog	handle

Msg
One	of	the	Dialog	API	messages	or	events.

Param1
The	1st	parameter.

Param2
The	2nd	parameter.

Return	value
The	return	value	depends	on	the	Msg	parameter.

Example
A	fragment	from	the	Reversi	game	dialog	callback	proc:
LONG_PTR	WINAPI	ReversiDialogProc(HANDLE	hDlg,	int	Msg,int	Param1,LONG_PTR	Param2)

{

		...

		return	Info.DefDlgProc(hDlg,Msg,Param1,Param2);

}

See	also:
DialogEx
SendDlgMessage

Dialog
main	|	Dialog	API

The	Dialog	function	shows	a	dialog.

int	WINAPI	Dialog(

		int	PluginNumber,

		int	X1,

		int	Y1,

		int	X2,

		int	Y2,

		const	char	*HelpTopic,

		struct	FarDialogItem	*Item,

		int	ItemsNumber

);

Parameters
PluginNumber
Number	of	the	plugin	module.	It	is	passed	to	the	plugin	in	the	SetStartupInfo
function.

X1,	Y1,	X2,	Y2
Dialog	coordinates.	You	can	specify	them	explicitly	or	use	"Width	x
Height"	formula	-	in	this	case	both	X1	and	Y1	must	be	set	to	-1,	while	X2
and	Y2	define	dialog	width	and	height	respectively.	In	the	latter	case	the	dialog
will	be	automatically	centered	on	the	screen.	X2	and	Y2	parameters	can't	be
less	than	zero.

HelpTopic
Help	topic	associated	with	the	dialog.	It	can	be	NULL	if	help	is	not	required.

Item
Address	of	an	array	of	FarDialogItem	structures.	Each	structure	describes	one
dialog	item.

ItemsNumber
Number	of	FarDialogItem	structures.

Return	value
This	function	returns	either	-1,	if	the	user	cancelled	the	dialog,	or	the	index	of

the	selected	dialog	item	in	the	Item	array.

Remarks
FAR	transforms	Item	elements	to	its	own	internal	structure	before	creating	a
dialog.	After	dialog	processing	is	over,	Item	elements	array	is	adjusted	according
to	changes	made	in	the	progress	of	user	work	with	the	dialog.

Example
Example	from	the	configuration	dialog	of	TempPanel	plugin:
int	Config()

{

		struct	InitDialogItem	InitItems	[]={

				DI_DOUBLEBOX,3,1,72,8,0,0,0,0,(char	*)MConfigTitle,

				DI_CHECKBOX,5,2,0,2,0,0,0,0,(char	*)MConfigAddToDisksMenu,

				DI_FIXEDIT,7,3,7,3,1,0,0,0,"",

				DI_TEXT,9,3,0,3,0,0,0,0,(char	*)MConfigDisksMenuDigit,

				DI_TEXT,5,4,0,4,0,0,DIF_BOXCOLOR|DIF_SEPARATOR,0,"",

				DI_CHECKBOX,5,5,0,5,0,0,0,0,(char	*)MConfigCommonPanel,

				DI_TEXT,5,6,0,6,0,0,DIF_BOXCOLOR|DIF_SEPARATOR,0,"",

				DI_BUTTON,0,7,0,7,0,0,DIF_CENTERGROUP,1,(char	*)MOk,

				DI_BUTTON,0,7,0,7,0,0,DIF_CENTERGROUP,0,(char	*)MCancel

		};

		struct	FarDialogItem	DialogItems[sizeof(InitItems)/sizeof(InitItems[0])];

		.	.	.

		InitDialogItems(InitItems,DialogItems,

																			sizeof(InitItems)/sizeof(InitItems[0]));

		.	.	.

		int	ExitCode=Info.Dialog(Info.ModuleNumber,

																		-1,-1,76,10,

																		"TempCfg",DialogItems,

																		sizeof(DialogItems)/sizeof(DialogItems[0]));

		if	(ExitCode	!=	7)

				return(FALSE);

.	.	.

}

See	also:
DialogEx,	service	functions,	Message,	InitDialogItems

DialogEx
main	|	Dialog	API	|	Events	and	Messages

The	DialogEx	function	shows	a	dialog	with	the	possibility	to	assign	a	callback
function	for	it.

int	WINAPI	DialogEx(

		int	PluginNumber,

		int	X1,

		int	Y1,

		int	X2,

		int	Y2,

		const	char	*HelpTopic,

		struct	FarDialogItem	*Item,

		int	ItemsNumber,

		DWORD	Reserved,

		DWORD	Flags,

		FARWINDOWPROC	DlgProc,

		LONG_PTR	Param

);

Parameters
PluginNumber
Plugin	module	number.	It	is	passed	to	the	plugin	in	the	SetStartupInfo	function

X1,	Y1,	X2,	Y2
Dialog	coordinates.	You	can	specify	them	explicitly	or	use	"Width	x
Height"	formula	-	in	this	case	both	X1	and	Y1	must	be	set	to	-1,	while	X2
and	Y2	define	dialog	width	and	height	respectively.	In	the	latter	case	the	dialog
will	be	automatically	centered	on	the	screen.	X2	and	Y2	parameters	can't	be
less	than	zero.

HelpTopic
Help	topic	for	the	dialog.	If	help	is	not	needed,	set	this	parameter	to	NULL.

Item
Address	of	an	array	of	FarDialogItem	structures.	Each	structure	describes	one
dialog	item.

ItemsNumber

Number	of	FarDialogItem	array	elements.
Reserved
Reserved	for	future	use.	Must	be	0.

Flags
Set	of	flags,	specifying	additional	dialog	parameters.	It	can	be	a	combination
of	the	following	values	(FARDIALOGFLAGS	enumeration):

Flag Description

FDLG_WARNING Sets	"Warning"	color	scheme	for	the	dialog.

FDLG_SMALLDIALOG Allows	to	create	dialogs	with	reduced	border	size.
When	drawing	separators	(DIF_SEPARATOR)	for
these	dialogs	it's	assumed	there's	no	space	between
dialog	border	and	dialog	double-line	frame.

FDLG_NODRAWSHADOW Don't	draw	shadow	under	the	dialog.

FDLG_NODRAWPANEL Don't	draw	dialog	panel.

DlgProc
Pointer	to	the	FARWINDOWPROC	dialog	callback	function.

Param
Data	that	will	be	sent	to	the	dialog	callback	function	with	the
DN_INITDIALOG	event.

Return	value
The	function	returns	either	-1	when	user	cancels	the	dialog	or	the	selected	dialog
item	index	(index	of	Item	array	element,	it's	emphasized	in	the	example	below).

Remarks

1.	 FAR	transforms	Item	elements	to	its	own	internal	structure	before	creating	a
dialog.	After	dialog	processing	is	over,	Item	elements	array	is	adjusted
according	to	the	changes	made	in	the	progress	of	user	work	with	the	dialog.

2.	 Starting	from	version	1.71	build	2451	"small"	dialogs
(FDLG_SMALLDIALOG	flag)	are	drawn	with	a	shadow.	Set	the
FDLG_NODRAWSHADOW	flag	to	suppress	drawing	a	shadow	for	these
dialogs.

Example

		int	ExitCode=Info.DialogEx(Info.ModuleNumber,

																		-1,-1,76,10,

																		"TempCfg",DialogItems,

																		sizeof(DialogItems)/sizeof(DialogItems[0]),

																		0,0,

																		DlgProc,0);

		if	(ExitCode	!=	7)
				return(FALSE);

See	also:
Dialog,	DefDlgProc,	SendDlgMessage,	Service	functions,
Message,	InitDialogItems

DlgProc
main	|	Dialog	API	|	Events	and	Messages

In	a	plugin	there	must	be	a	dialog	callback	function,	which	is	responsible	for
processing	events	and	messages	sent	to	the	dialog.	The	function	has	four
parameters:	dialog	handle,	message	and	two	additional	parameters.

Dialog	handler	function	syntax	is	presented	here,	as	it	should	appear	in	a	plugin.

LONG_PTR	WINAPI	DlgProc(

		HANDLE	hDlg,

		int				Msg,

		int				Param1,

		LONG_PTR			Param2

);

Parameters
hDlg
Dialog	handle

Msg
One	of	events	or	messages.

Param1
Parameter	1

Param2
Parameter	2

Return	value
The	DlgProc	function	return	value	depends	on	the	Msg	parameter.

Remarks
Sometimes	information	contained	in	Param1	and	Param2	consists	of	two	parts,
which	are	placed	in	two	16-bit	words,	composing	each	parameter.	There're	two
macros	defined	in	Windows	to	provide	access	to	each	part	of	Param1	and

Param2	-	LOWORD	 	and	HIWORD	

	.
They	return	high-order	and	low-order	words	respectively	from	long	int	32-bit
value.

Example
Dialog	handler	code	fragment	for	Reversi	game:
LONG_PTR	WINAPI	ReversiDialogProc(HANDLE	hDlg,	int	Msg,int	Param1,LONG_PTR	Param2)

{

		struct	FarDialogItem	DialogItem;

		struct	FarListItem	*ListItems;

		int	i;

		switch(Msg)

		{

				case	DN_INITDIALOG:

						//	Get	information	about	the	element

						Info.SendDlgMessage(hDlg,DM_GETDLGITEM,75,(LONG_PTR)&DialogItem);

						ListItems=DialogItem.ListItems->Items;

						...

						NewGame(hDlg);

						return	FALSE;

				case	DN_HELP:

				{

						//	Show	different	help	topics	depending	on	game	move

						static	char	*Help[3]={"Contents","Rule","Recommendations"};

JavaScript:link7.Click()
JavaScript:link8.Click()

						if(NumPl1==2	&&	NumPl2	==	2)

								i=0;

						else	if(NumPl1+NumPl2	>	16)

								i=2;

						else

								i=1;

						return	(LONG_PTR)(Help[i]);

				}

				...

				case	DM_CLOSE:

						//	Check	the	element	with	which	the	user	tries	to	close	the	dialog

						if(Param1	!=	10	&&	Param1	>	0)

								return	FALSE;		//	one	can't	close	the	dialog

						break;

		}

		//	Let	the	Dialog	Manager	process	other	events	and	messages

		return	Info.DefDlgProc(hDlg,Msg,Param1,Param2);

}

See	also:
DefDlgProc,	DialogEx,	SendDlgMessage

InputBox
main	|	service	functions

The	InputBox	function	displays	a	simple	dialog	box	allowing	to	enter	one	line
of	text.

int	WINAPI	InputBox(

		const	char	*Title,

		const	char	*Prompt,

		const	char	*HistoryName,

		const	char	*SrcText,

		char	*DestText,

		int			DestLength,

		const	char	*HelpTopic,

		DWORD	Flags

);

Parameters
Title
Iput	dialog	title.	Can	be	NULL	or	"".

Prompt
Prompt	text	(text	above	the	input	line).	Can	be	NULL	or	"".

HistoryName
Name	of	the	"history"	record	for	the	input	line.	Set	to	NULL	if	history	is	not
needed.

SrcText
The	initial	value	of	the	input	line.	Can	be	NULL	or	"".

DestText
Points	to	the	result	string.	Can	point	to	the	same	buffer	as	SrcText,	but	you
must	reserve	enough	space.

DestLength
Size	of	destination	buffer.

HelpTopic
Help	topic	for	the	inputbox	in	the	format	of	"<FullPath>Topic",	e.g.:

"<D:\\FAR\\Plugins\\Foo\\>FooInfo"

Set	to	NULL	if	help	is	not	used.
Flags
Can	be	a	combination	of	the	following	values	(INPUTBOXFLAGS	enum):

Constant Description

FIB_ENABLEEMPTY the	function	will	return	true	even	if	the	input	line	is
empty.

FIB_PASSWORD used	to	input	passwords	-	entered	text	is	represented
by	'*'	on	the	screen.

FIB_EXPANDENV after	a	successful	return,	any	environment	variables
present	in	the	input	line	will	be	replaced	by	their
values	in	the	DestText	buffer,	e.g.	if	the	user	entered
'%TEMP%',	then	DestText	will	contain	'C:\TEMP'.

FIB_NOUSELASTHISTORY if	SrcText	is	empty	and	HistoryName	is	not	NULL,
then	do	not	initialize	the	input	line	from	the	history.

FIB_BUTTONS displays	a	separator	and	the	[OK]	and	[Cancel]
buttons	below	the	input	line.	The	dialog	will	grow	by
2	lines.

FIB_NOAMPERSAND the	ampersand	character	will	not	be	shown	in	the
prompt	string	but	can	instead	be	used	to	define	a
hotkey.

Return	value
The	function	returns	TRUE	in	case	of	successful	user	input,	and	FALSE	in	case
of	user	interruption.

Remarks
FAR	Manager	uses	this	function	to	promt	the	user	when	creating	a	folder:

Example

See	also:
Dialog

Message
main	|	service	functions

The	Message	function	shows	a	message.

int	WINAPI	Message(

		int	PluginNumber,

		DWORD	Flags,

		const	char	*HelpTopic,

		const	char	*	const	*Items,

		int	ItemsNumber,

		int	ButtonsNumber

);

Parameters
PluginNumber
Number	of	the	plugin	module.	It	is	passed	to	the	plugin	in	the	SetStartupInfo
function.

Flags
Can	be	a	combination	of	the	following	values	(FARMESSAGEFLAGS
enum):

Flag Description

FMSG_WARNING Warning	message	colors	are	used	(white	text	on
red	background	by	default).

FMSG_ERRORTYPE If	error	type	returned	by	GetLastError	

is	known	to	FAR	or	Windows,	the	error
description	will	be	shown	in	the	first	message
line.	In	that	case,	the	text	given	by	the	plugin	will
be	displayed	below	the	error	description.

FMSG_KEEPBACKGROUND Do	not	redraw	the	message	background.

FMSG_DOWN Display	the	message	two	lines	lower	than	usual.

JavaScript:link27.Click()

FMSG_LEFTALIGN Left	align	the	message	lines	instead	of	centering
them.

FMSG_ALLINONE In	this	case	the	Items	parameter	is	not	an	array	of
string	pointers.	Instead	it	points	to	a	single
string	in	which	the	lines	of	the	message	are
separated	by	the	newline	character	'\n'.

Minimal	number	of	lines	is	-	2	-	a	title	and	one
message	line.

If	this	flag	is	specified	the	ItemsNumber
parameter	is	ignored	and	the	number	of	lines
shown	is	calculated	automatically	(taking	into
account	the	button	flags	-FMSG_MB_*).

To	suppress	title	output	when	this	flag	is
specified,	start	the	line	with	a	'\n'	character.

FMSG_MB_OK Additional	button:	<Ok>

FMSG_MB_OKCANCEL Additional	buttons:	<Ok>	and	<Cancel>

FMSG_MB_ABORTRETRYIGNORE Additional	buttons:	<Abort>,	<Retry>	and
<Ignore>

FMSG_MB_YESNO Additional	buttons:	<Yes>	and	<No>

FMSG_MB_YESNOCANCEL Additional	buttons:	<Yes>,	<No>	and	<Cancel>

FMSG_MB_RETRYCANCEL Additional	buttons:	<Retry>	and	<Cancel>

HelpTopic
The	help	topic	associated	with	the	message.Set	to	NULL	if	help	is	not	used.

Items
Address	of	an	array	of	pointers	to	null-terminated	text	strings.	The	first	string
is	the	message	title,	the	last	ButtonsNumber	strings	are	buttons,	and	all	other
strings	belong	to	the	message	body.
To	draw	a	single	border	line	start	the	string	with	a	character	with	code	1
(\x001).
To	draw	a	double	border	line	start	the	string	with	a	character	with	code	2
(\x002).
See	also	the	description	of	the	flag	FMSG_ALLINONE

ItemsNumber
Number	of	strings	in	the	array	passed	in	the	Items	parameter.	Minimal	values	-
2	lines.

ButtonsNumber

Number	of	strings	which	are	shown	as	buttons.	If	one	of	the	FMSG_MB_*
flags	is	set,	this	value	is	ignored.

Return	value
This	function	returns	either	-1,	if	the	user	cancelled	the	message	(or	the	sysrem
could	not	allocate	enough	memory	for	internal	buffers),	or	the	number	of	the
selected	button	(for	the	first	button	0	is	returned,	for	the	second	1	is	returned,
and	so	on).

Remarks

1.	 In	FAR	Manager	versions	up	to	(and	including)	1.70	beta	4	the	maximum
number	of	items	in	a	message	(including	the	buttons)	was	limited	to	13.

2.	 If	ButtonsNumber	is	zero	and	none	of	the	FMSG_MB_*	flags	is	set	the
plugin	should	restore	the	screen	either	by	using	RestoreScreen	or	in	any
other	way	when	the	message	output	is	no	longer	necessary

3.	 If	ButtonsNumber	is	not	equal	to	zero,	the	screen	will	be	restored	by	FAR.
4.	 If	Items	is	NULL	or	the	total	number	of	items	is	less	than	2,	the	message	is

not	shown.
5.	 When	FMSG_MB_*	button	flags	are	specified	the	ButtonsNumber

parameter	is	ignored.
6.	 It	is	possible	to	specify	hotkeys	for	buttons.
7.	 When	using	the	FMSG_ALLINONE	flag	you	need	to	do	an	explicit

typecast	to	achieve	error	free	compilation:
Info.Message(Info.ModuleNumber,

		FMSG_ALLINONE|FMSG_MB_OKCANCEL,

		"HelpTopic",

		(const	char	*	const	*)"Title\nItem1\nItem2\nItem3",

		0,0);

or

const	char	*Msg="Title\nItem1\nItem2\nItem3\nOk\nCancel";

Info.Message(Info.ModuleNumber,

		FMSG_ALLINONE,

		"HelpTopic",

		(const	char	*	const	*)Msg,

		0,2);

Example
The	following	function	displays	a	file	deletion	confirmation	dialog:

BOOL	IsDeleted(char	*filename)

{

		const	char	*Msg[5];

		Msg[0]=GetMsg(MTitle);							//	message	title

		Msg[1]=GetMsg(MIsDeleted);			//	message	body

		Msg[2]=filename;

		Msg[3]=GetMsg(MDelete);						//	last	ButtonsNumber	(2)	strings	are	buttons

		Msg[4]=GetMsg(MCancel);

		return	Info.Message(Info.ModuleNumber,

															0,

															"DeleteFile",

															Msg,

															sizeof(Msg)/sizeof(Msg[0]),

															2)	==	0;

}

Info	is	defined	as	a	global	variable:

struct	PluginStartupInfo	Info;

...and	is	initialized	in	the	SetStartupInfo	function:
void	WINAPI	_export	SetStartupInfo(struct	PluginStartupInfo	*Info)

{

		...

		::Info=*Info;

		...

}

See	also:
Dialog

SendDlgMessage
main	|	Dialog	API	Messages

The	SendDlgMessage	function	is	used	to	send	a	message	to	the	dialog	callback
function.

LONG_PTR	WINAPI	SendDlgMessage(

		HANDLE	hDlg,

		int				Msg,

		int				Param1,

		LONG_PTR	Param2

);

Arguments
hDlg
Dialog	handle

Msg
One	of	the	Dialog	API	messages.

Param1
The	1st	parameter.

Param2
The	2nd	parameter.

Return	value
Return	value	depends	on	Msg	value.

Example
A	fragment	from	the	Reversi	game	dialog	callback	proc:
LONG_PTR	WINAPI	ReversiDialogProc(HANDLE	hDlg,	int	Msg,int	Param1,LONG_PTR	Param2)

{

...

				case	DN_INITDIALOG:

						//get	element	info

						Info.SendDlgMessage(hDlg,DM_GETDLGITEM,75,(LONG_PTR)&DialogItem);

						ListItems=DialogItem.ListItems->Items;

						...

						NewGame(hDlg);

						return	FALSE;

...

}

See	also:
DialogEx,	DefDlgProc

AddEndSlash
main	|	FarStandardFunctions

The	FSF.AddEndSlash	function	is	used	to	add	a	trailing	backslash	or	slash	to	a
path.	The	symbol	that	will	be	added	depends	on	those	used	in	the	path.

int	WINAPI	AddEndSlash(

		char	*Path

);

Parameters
Path
A	string	containing	the	path	to	which	you	want	to	add	a	trailing	slash	or
backslash.

Note	that	Path	must	have	enough	space	for	an	additional	character.

Return	value
On	success	return	value	is	TRUE,	otherwise	return	value	is	FALSE.

Remarks

1.	 The	string	must	be	large	enough	to	contain	an	additional	character	('\'	or	'/').
2.	 This	function	works	with	both	types	of	slashes	-	normal	and	backslashes.
3.	 If	a	string	already	has	a	trailing	slash	it	will	be	converted	to	the	slash	of

such	type	which	is	more	common	in	the	Path	string.
4.	 No	slash	will	be	added	at	the	end	of	the	string	if	the	string	already	contains

a	trailing	slash.

Example

atoi
main	|	FarStandardFunctions

The	FSF.atoi	function	converts	a	string	to	a	32-bit	integer.

int	WINAPI	atoi(

		const	char	*Str

);

Parameters
Str
Points	to	a	string	to	convert.

Return	value
If	the	function	succeeds,	return	value	is	the	converted	value	of	the	input	string
Str,	otherwise	it	returns	0.

Remarks
The	Str	string	parameter	must	be	in	the	following	form:
[ws][sn][ddd]	where
		ws	-	space	or	tab	characters	(ignored)
		sn	-	sign	-	'+'	or	'-'
		ddd	-	one	or	more	decimal	digits	-	from	'0'	to	'9'
The	function	stops	reading	the	input	string	at	the	first	character	that	it	cannot
recognize	as	part	of	a	number.	In	case	of	overflow	the	return	value	is	undefined.

Example
You	can	define	and	initialize	a	function	pointer	to	use	it	later:

FARSTDATOI	FarAtoi;

...

FarAtoi=Info.FSF->atoi;

...

I=FarAtoi(Str);

...or	call	the	function	directly:
I=Info.FSF->atoi(Str);

See	also:
FSF.atoi64	|	FSF.itoa	|	FSF.itoa64

atoi64
main	|	FarStandardFunctions

The	FSF.atoi	function	converts	a	string	to	a	64-bit	integer	(__int64).

__int64	WINAPI	atoi64(

		const	char	*Str

);

Parameters
Str
Points	to	a	string	to	convert.

Return	value
If	the	function	succeeds,	return	value	is	the	converted	value	of	the	input	string,
otherwise	it	returns	0i64.

Remarks
The	Str	string	parameter	must	be	in	the	following	form:
[ws][sn][ddd]	where
		ws	-	space	or	tab	characters	(ignored)
		sn	-	sign	-	'+'	or	'-'
		ddd	-	one	or	more	decimal	digits	-	from	'0'	to	'9'
The	function	stops	reading	the	input	string	at	the	first	character	that	it	cannot
recognize	as	part	of	a	number.	In	case	of	overflow	the	return	value	is	undefined.

Example
You	can	define	and	initialize	a	function	pointer	to	use	it	later:

FARSTDATOI64	FarAtoi64;

...

FarAtoi64=Info.FSF->atoi64;

...

I_64=FarAtoi64(Str);

...or	call	the	function	directly:
I_64=Info.FSF->atoi64(Str);

See	also:
FSF.atoi	|	FSF.itoa	|	FSF.itoa64

bsearch
main	|	FarStandardFunctions

The	FSF.bsearch	function	allows	to	perform	a	binary	search	of	a	sorted	array.

void*	WINAPI	bsearch(

		const	void	*key,

		const	void	*base,

		size_t	nelem,

		size_t	width,

		int	(__cdecl	*fcmp)(const	void	*,	const	void	*)

);

Parameters
key
Points	to	a	value	that	you	want	to	search	for.

base
Points	to	an	element	from	which	you	want	the	search	to	be	started.

nelem
The	number	of	elements	in	the	array	you	want	to	search.

width
The	size	of	each	element	in	bytes.

fcmp
User-defined	comparison	function	that	must	be	declared	with	__cdecl	-	C-
style	calling	convention.	This	function	must	compare	two	accepted	elements
and	return	an	integer	value:
*elem1	<	*elem2 -	fcmp	returns	value	<	0
*elem1	==	*elem2 -	fcmp	returns	value	==	0
*elem1	>	*elem2 -	fcmp	returns	value	>	0

Return	value
bsearch	returns	the	address	of	the	first	occurrence	of	key	value	in	the	array	base
or	NULL	if	no	occurrence	found.

Remarks
See	the	C/C++	run-time	library	reference	for	more	information.

Example

See	also:
FSF.qsort

ConvertNameToReal
main	|	FarStandardFunctions

The	FSF.ConvertNameToReal	function	converts	a	relative	name	of	a	file	object
to	its	full	pathname	and	expands	symbolic	links	(Windows	2000	reparse	points).

int	WINAPI	ConvertNameToReal(

		const	char	*Src,

		char	*Dest,

		int	DestSize

);

Parameters
Src
Source	string	-	a	full	or	relative	name	of	a	file	or	a	directory.

Dest
Destination	string	-	the	expanded	pathname	will	be	stored	here.	Can	be	NULL.

DestSize
Length	of	the	destination	string.	If	Dest=NULL,	DestSize	is	ignored.

Return	value
The	actual	size	needed	to	store	the	expanded	pathname	in	Dest.

For	mounted	drives	that	do	not	have	a	drive	letter	assigned,	the	function
will	store	into	Dest	a	string	similar	to	this	one:	"\\?
\Volume{273872e0-5e49-11d5-b614-

0080ad70bb9b}\Foo.bar"

If,	for	example,	the	directory	"D:\Foo\Bar"	is	a	symbolic	link	to	an	existing
directory	"C:\work\doc",	calling	this	function	for	the	file
"D:\Foo\Bar\1092\readme.txt"	will	return
"C:\work\Doc\1092\readme.txt".

Remarks

1.	 The	function	correctly	determines	the	real	pathname	only	under	Windows
2000	or	later.	Under	earlier	operating	systems,	it	is	not	possible	to
determine	the	real	name	of	a	symbolic	link	if	one	is	encountered	in	the	path.

2.	 Parameters	Src	and	Dest	can	point	to	the	same	string.

Example

CopyToClipboard
main	|	FarStandardFunctions

The	FSF.CopyToClipboard	function	copies	a	text	string	to	the	Windows
clipboard.

int	WINAPI	CopyToClipboard(

		const	char	*Data

);

Parameters
Data
Pointer	to	the	string	that	you	want	to	place	into	the	clipboard.

Return	value
On	success	the	return	value	is	TRUE,	otherwise	the	return	value	is	FALSE.

Remarks
See	FAQ:"There	are	dupes	in	the	Clipboard..."

Example

DeleteBuffer
main	|	FarStandardFunctions

The	FSF.DeleteBuffer	function	is	used	to	free	an	allocated	buffer	returned	by
the	PasteFromClipboard	function.

void	WINAPI	DeleteBuffer(

		void	*Buffer

);

Parameters
Buffer
Pointer	to	the	buffer	that	needs	to	be	freed.

Return	value
None.

Remarks
This	function	must	be	used	to	free	FAR	memory	blocks	since	plugin's	memory
manager	can	be	different	from	the	one	used	in	FAR.

Example

ExpandEnvironmentStr
main	|	FarStandardFunctions

The	FSF.ExpandEnvironmentStr	function	is	used	to	expand	environment
variables	in	a	string	to	their	values.

DWORD	WINAPI	ExpandEnvironmentStr(

		const	char	*Src,

		char	*Dest,

		size_t	Size

);

Parameters
Src
Pointer	to	a	null-terminated	string	containing	references	to	environment
variables	of	the	form:	%VariableName%.	For	each	such	reference,	the
%VariableName%	portion	is	replaced	with	the	current	value	of	that
environment	variable.

The	replacement	rules	are	the	same	as	those	used	by	the	command	interpreter.
Case	is	ignored	when	looking	up	the	environment-variable	name.	If	the	name
is	not	found,	the	%VariableName%	portion	is	left	unchanged.

Dest
Pointer	to	the	buffer	that	will	receive	the	result	of	the	expansion.	May	be	the
same	as	Src.

Size
Size	of	the	destination	buffer	(Dest),	including	the	trailing	'\0'.

Return	value
The	function	returns	the	number	of	characters	stored	into	the	buffer.	If	the
environment	variable	expansion	fails,	up	to	(Size-1)	characters	are	copied	from
Src	to	Dest.

Remarks

1.	 This	function	is	just	a	"wrapper"	for	the	ExpandEnvironmentStrings	

JavaScript:link22.Click()

	Windows	API	function,	so	you	can
see	Windows	API	documentation	for	the	details.

2.	 Unlike	ExpandEnvironmentStrings	
FSF.ExpandEnvironmentStr	always	fills	Dest	buffer.

3.	 Src	and	Dest	must	be	in	the	OEM	code	page.

JavaScript:link23.Click()

FarInputRecordToKey
main	|	FarStandardFunctions

The	FSF.FarInputRecordToKey	function	is	used	to	convert	a	key	code	from	an
INPUT_RECORD	structure	to	an	internal	FAR	key	code.

int	WINAPI	FarInputRecordToKey(

		INPUT_RECORD	*Rec

);

Parameters
Rec
Pointer	to	an	INPUT_RECORD	structure	you	want	to	convert.

Return	value
Return	value	is	an	internal	FAR	key	code.

Remarks

Example

FarKeyToName
main	|	FarStandardFunctions

The	FSF.FarKeyToName	is	used	to	convert	an	internal	FAR	key	code	to	a
string.

BOOL	WINAPI	FarKeyToName(

		int	Key,

		char	*KeyText,

		int	Size

);

Parameters
Key
Internal	FAR	key	code	to	convert	to	a	string.

KeyText
String	that	will	receive	the	result	of	conversion.

Size
The	size	of	converted	string,	not	including	a	null	character,	that	will	be	copied
to	KeyText,	or	0	to	use	the	whole	length	of	converted	string.

Return	value
If	conversion	succeeds	TRUE	is	returned,	otherwise	if	the	passed	Key	is	not
known	to	FAR,	FALSE	is	returned.

Remarks
If	you	use	0	in	Size,	then	KeyText	must	be	at	least	32	bytes	long.

FarNameToKey
main	|	FarStandardFunctions

The	FSF.FarNameToKey	is	used	to	convert	a	literal	key	name	to	an	internal
FAR	key	code.

int	WINAPI	FarNameToKey(

		const	char	*Name

);

Parameters
Name
Points	to	a	string	containing	a	literal	key	name	that	you	want	to	convert	to	an
internal	FAR	key	code.

Return	value
If	conversion	succeeds	an	internal	FAR	key	code	is	returned,	otherwise	if	the
passed	Name	is	not	known	to	FAR,	-1	is	returned.

Remarks

1.	 If	the	literal	key	name	contains	Ctrl	or	Alt	part	and	the	"letter",	this
"letter"	will	be	uppercased.	For	example,
FarNameToKey("CtrlAltz")	will	return	KEY_CTRLALTZ.

2.	 If	the	literal	key	name	contains	Ctrl	or	Alt	and	the	"letter	from	the
national	alphabet"	-	this	"letter"	will	be	converted	to	it's	keyboard
equivalent	and	uppercased.	For	example,	FarNameToKey("CtrlУ")
will	return	KEY_CTRLE.

3.	 Shift-"letter"	combination	will	be	converted	to	the	"LETTER"	key
(Shift	part	will	be	removed	and	the	"letter"	will	be	uppercased).

FarRecursiveSearch
main	|	FarStandardFunctions

The	FSF.FarRecursiveSearch	function	is	used	to	find	a	file	in	a	directory	tree
with	a	name	matching	the	given	mask.

void	WINAPI	FarRecursiveSearch(

		const	char	*InitDir,

		const	char	*Mask,

		FRSUSERFUNC	UserFunc,

		DWORD	Flags,

		void	*Param

);

Parameters
InitDir
Name	of	the	directory	where	you	want	to	start	the	search.
("c:\far\plugins"	for	example).

Mask
File	mask	to	search	for.	Starting	with	FAR	1.70	beta	4,	all	standard	features	of
FAR	masks	(multiple	masks,	character	ranges,	exclude	masks	and	so	on)	are
supported	(see	File	masks).

UserFunc
Pointer	to	a	user-defined	callback	function	of	FRSUSERFUNC	type	that	is
called	for	every	found	file.	This	function	have	to	return	TRUE	to	continue	the
search	or	FALSE	to	stop	it.

Flags
Can	be	a	combination	of	the	following	flags	(FRSMODE	enumeration):

Flag Description

FRS_RETUPDIR When	the	search	is	stopped,	the	FullName	parameter
of	the	UserFunc	function	will	contain	the	directory
name	where	the	file	is	found,	instead	of	the	name	of
the	file.

FRS_RECUR Recurse	the	directory	tree	while	searching	for	the
specified	file.

FRS_SCANSYMLINK The	search	will	follow	symbolic	links	just	as	if	they

were	directories.
If	one	of	the	scanned	symbolic	links	is	a	"recursive"
one	(for	example,	symbolic	link	points	to	one	of	it's
root	directories)	the	search	will	continue	until	the
maximum	allowed	length	of	the	full	path	string	will
be	reached.

Param
Application-defined	value	to	be	passed	to	the	callback	function	specified	in
the	UserFunc	parameter.

Return	value
None.

Remarks

1.	 If	you	want	to	use	the	data	passed	in	the	parameters	of	the	UserFunc
function	after	the	search	is	complete,	you	must	copy	it	to	an	internal
variable.

2.	 In	FAR	versions	up	to	and	including	1.70	beta	3	the	"*"	Mask	is	to	be	used
if	you	want	to	find	all	files.

3.	 In	FAR	versions	up	to	and	including	1.70	beta	3,	when	doing	recursive
search,	the	file	mask	given	in	the	Mask	parameter	is	also	used	to	determine
the	directories	searched.	So,	if	you	want	to	find	a	file	recursively,	in	most
cases	you	should	pass	"*"	in	the	Mask	parameter	and	use	the	callback
function	to	stop	the	search	when	the	needed	file	is	found.

4.	 If	the	FRS_SCANSYMLINK	flag	is	not	set,	symbolic	links	will	not	be
parsed,	in	no	dependence	of	FAR	configuration.

GetFileOwner
main	|	FarStandardFunctions

The	FSF.GetFileOwner	function	is	used	to	determine	the	owner	of	the	given
file.

int	WINAPI	GetFileOwner(

		const	char	*Computer,

		const	char	*Name,

		char	*Owner

);

Parameters
Computer
Name	of	the	computer	containing	the	file	for	which	you	want	to	determine	the
owner.	If	this	value	is	NULL,	then	the	owner	of	the	file	for	the	current	system
is	determined.

Name
The	name	of	the	file	for	which	you	want	to	determine	the	owner.

Owner
Pointer	to	a	buffer	that	receives	the	file	owner.	This	buffer	must	be	large
enough	to	hold	the	returned	string	(minimum	buffer	size	is	-	NM)

Return	value
If	the	function	succeeds	the	return	value	is	TRUE,	otherwise	the	return	value	is
FALSE.

Remarks

Example

GetNumberOfLinks
main	|	FarStandardFunctions

The	FSF.GetNumberOfLinks	function	returns	the	number	of	hard	links	to	the
specified	file.

int	WINAPI	GetNumberOfLinks(

		const	char	*Name

);

Parameters
Name
Name	of	the	file	for	which	you	want	to	obtain	the	number	of	links.

Return	value
If	the	function	succeeds,	the	return	value	is	the	number	of	links	to	the	specified
file,	otherwise	the	return	value	is	0.	On	file	systems	other	than	NTFS	the	number
of	links	to	a	file	is	always	1.

See	also:
MkLink

GetPathRoot
main	|	FarStandardFunctions

The	FSF.GetPathRoot	function	is	used	to	get	the	root	directory	from	a	given
path.

void	WINAPI	GetPathRoot(

		const	char	*Path,

		char	*Root

);

Parameters
Path
The	path	from	which	you	want	to	get	the	root	directory.

Root
Buffer	that	receives	the	root	directory.

Return	value
None.

Remarks
Root	must	be	large	enough	to	hold	the	resulting	string:

Local	drives	-	driver	letter,	colon,	slash	-	C:\
Reparse	point	(on	NTFS	5	filesystem	-	Windows	2000)	-	something	like	
\\?\Volume{be877ec2-afd6-11d4-b5e3-806d6172696f}\	or	
\??\D:\
UNC-path	-	host	and	share	-	\\host\share\

Example

GetReparsePointInfo
main	|	FarStandardFunctions

The	FSF.GetReparsePointInfo	function	allows	to	determine	the	target	(path	to
the	target	drive	and	directory)	of	a	symbolic	link	(reparse	point).

int	WINAPI	GetReparsePointInfo(

		const	char	*Src,

		char	*Dest,

		int	DestSize

);

Parameters
Src
Source	string.	Must	contain	a	full	pathname	to	a	symbolic	link	terminated	with
a	backslash	('\').

Dest
Destination	string.	May	be	NULL.

DestSize
Length	of	the	destination	string	(Dest).	If	Dest=NULL,	DestSize	is	ignored.

Return	value
The	actual	size	of	the	string	stored	in	Dest,	or	the	required	buffer	size	if	Dest	is
NULL.

The	function	returns	0	in	case	of	an	error:

the	function	is	not	supported	(the	current	operating	system	is	not	Windows
2000	or	later);
if	the	path	is	invalid	(in	this	case,	the	system	error	code
ERROR_PATH_NOT_FOUND	is	set).
symbolic	link	is	on	a	network	drive	and	in	most	cases	real	directory	name
where	symbolic	link	points	to	is	useless.

Remarks

1.	 Src	and	Dest	can	point	to	the	same	string.

2.	 The	function	works	only	under	Windows	2000	or	later.
3.	 Return	value	is	practically	useless	for	symbolic	links	on	network	drives.
4.	 Unlike	ConvertNameToReal,	this	function	can	only	be	used	for	symbolic

links.
5.	 You	can	obtain	a	bit	of	information	about	symbolic	links	here.

Example

itoa
main	|	FarStandardFunctions

The	FSF.itoa	function	converts	a	32-bit	integer	value	into	a	string.

char	*	WINAPI	itoa(

		int	Value,

		char	*Str,

		int	Radix);

Parameters
Value
Integer	value	to	convert.

Str
Pointer	to	a	buffer	that	will	receive	the	resulting	string.	The	size	of	the	Str
string	must	be	large	enougth	to	hold	the	converted	string	(max	value	=	32
symbols	+	'\0').

Radix
Base	of	Value.	Must	be	in	then	range	of	2	-	36.

Return	value
The	return	value	is	a	pointer	to	the	resulting	string	(Str).

Remarks
If	Radix	equals	10	and	Value	is	negative,	the	first	character	of	the	result	string
will	be	the	minus	sign	'-'.

Example
You	can	define	and	initialize	a	function	pointer	to	use	it	later:
FARSTDITOA	FarItoa;

...

FarItoa=Info.FSF->itoa;

...

FarItoa(Value,Str,10);

...or	call	the	function	directly:

Info.FSF->itoa(Value,Str,10);

See	also:
FSF.atoi	|	FSF.atoi64	|	FSF.itoa64

itoa64
main	|	FarStandardFunctions

The	FSF.itoa64	function	converts	a	64-bit	integer	value	into	a	string.

char	*	WINAPI	itoa64(

		__int64	Value,

		char	*Str,

		int	Radix);

Parameters
Value
64-bit	integer	value	to	convert.

Str
Pointer	to	a	buffer	that	will	receive	the	resulting	string.	The	size	of	the	Str
string	must	be	large	enough	to	hold	the	converted	string	(max	value	=	64
symbols	+	'\0').

Radix
Base	of	Value.	Must	be	in	then	range	2	-	36.

Return	value
The	return	value	is	a	pointer	to	the	resulting	string	(Str).	There	is	no	error	return.

Remarks
If	Radix	equals	10	and	Value	is	negative,	the	first	character	of	the	resulting	string
will	be	the	minus	sign	'-'.

Example
You	can	define	and	initialize	a	function	pointer	to	use	it	later:
FARSTDITOA64	FarItoa64;

...

FarItoa64=Info.FSF->itoa64;

...

FarItoa64(Value64,Str,10);

...or	call	the	function	directly:

Info.FSF->itoa64(Value64,Str,10);

See	also:
FSF.atoi	|	FSF.atoi64	|	FSF.itoa

LIsAlpha
main	|	FarStandardFunctions

The	FSF.LIsAlpha	function	tests	whether	the	given	character	is	a	letter.	This
function	works	in	OEM	code	page.

int	WINAPI	LIsAlpha(

		unsigned	Ch

);

Parameters
Ch
The	character	you	want	to	test.

Return	value
If	the	given	character	is	a	letter	returns	TRUE,	otherwise	returns	FALSE.

Remarks

Example

LIsAlphanum
main	|	FarStandardFunctions

The	FSF.LIsAlphanum	function	tests	whether	the	given	character	is	a	letter	or	a
number.	This	function	works	in	OEM	code	page.

int	WINAPI	LIsAlphanum(

		unsigned	Ch

);

Parameters
Ch
The	character	you	want	to	test.

Return	value
If	the	given	character	is	a	letter	or	a	number	returns	TRUE,	otherwise	returns
FALSE.

Remarks

Example

LIsLower
main	|	FarStandardFunctions

The	FSF.LIsLower	function	tests	whether	the	given	character	is	in	lower	case.
This	function	works	in	OEM	code	page.

int	WINAPI	LIsLower(

		unsigned	Ch

);

Parameters
Ch
The	character	you	want	to	test.

Return	value
If	the	given	character	is	in	lower	case	returns	TRUE,	otherwise	returns	FALSE.

Remarks

Example

LIsUpper
main	|	FarStandardFunctions

The	FSF.LIsUpper	function	tests	whether	the	given	character	is	in	upper	case.
This	function	works	in	OEM	code	page.

int	WINAPI	LIsUpper(

		unsigned	Ch

);

Parameters
Ch
The	character	you	want	to	test.

Return	value
If	the	given	character	is	in	upper	case	returns	TRUE,	otherwise	returns	FALSE.

Remarks

Example

LLower
main	|	FarStandardFunctions

The	FSF.LLower	function	converts	a	character	to	lower	case.	This	function
works	in	OEM	code	page.

unsigned	WINAPI	LLower(

		unsigned	UpperChar

);

Parameters
UpperChar
The	character	you	want	to	convert.

Return	value
This	function	returns	the	converted	character.

Remarks

Example

LLowerBuf
main	|	FarStandardFunctions

The	FSF.LLowerBuf	function	converts	an	array	of	characters,	including	null
ones,	to	lower	case.	This	function	works	in	OEM	code	page.

void	WINAPI	LLowerBuf(

		char	*Buf,

		int	Length

);

Parameters
Buf
An	array	of	characters	you	want	to	convert.

Length
Size	of	the	array	in	bytes.

Return	value
None.

Remarks

Example

LStricmp
main	|	FarStandardFunctions

The	FSF.LStricmp	function	compares	two	strings	without	case	sensitivity.	This
function	works	in	OEM	code	page.

int	WINAPI	LStricmp(

		const	char	*Str1,

		const	char	*Str2

);

Parameters
Str1,	Str2
The	strings	you	want	to	compare.

Return	value
This	function	returns:
-1	-	if	s1	<	s2

1	-	if	s1	>	s2

0	-	if	s1	==	s2

Remarks

Example

LStrlwr
main	|	FarStandardFunctions

The	FSF.LStrlwr	function	converts	a	null-terminated	string	to	lower	case.	This
function	works	in	OEM	code	page.

void	WINAPI	LStrlwr(

		char	*s1

);

Parameters
s1
The	string	you	want	to	convert.

Return	value
None.

Remarks

Example

LStrnicmp
main	|	FarStandardFunctions

The	FSF.LStrnicmp	function	compares	portions	of	two	strings	without	case
sensitivity.	This	function	works	in	OEM	code	page.

int	WINAPI	LStrnicmp(

		const	char	*Str1,

		const	char	*Str2,

		int	Num

);

Parameters
Str1,	Str2
The	strings	you	want	to	compare.

Num
Number	of	characters	to	compare.

Return	value
This	function	returns:
-1	-	if	s1	<	s2

1	-	if	s1	>	s2

0	-	if	s1	==	s2

Remarks

Example

LStrupr
main	|	FarStandardFunctions

The	FSF.LStrupr	function	converts	a	null-terminated	string	to	upper	case.	This
function	works	in	OEM	code	page.

void	WINAPI	LStrupr(

		char	*Str

);

Parameters
Str
The	string	you	want	to	convert.

Return	value
None.

Remarks

Example

LTrim
main	|	FarStandardFunctions

The	FSF.LTrim	function	removes	all	leading	whitespaces	from	a	string.

char*	WINAPI	LTrim(

		char	*Str

);

Parameters
Str
The	string	from	which	you	want	to	remove	leading	whitespace.	The	result	will
be	stored	in	the	same	string.

Return	value
Pointer	to	the	resulting	string.

See	also:
FSF.RTrim	|	FSF.Trim

LUpper
main	|	FarStandardFunctions

The	FSF.LUpper	function	converts	a	character	to	upper	case.	This	function
works	in	OEM	code	page.

unsigned	WINAPI	LUpper(

		unsigned	LowerChar

);

Parameters
LowerChar
The	character	you	want	to	convert.

Return	value
This	function	returns	the	converted	character.

Remarks

Example

LUpperBuf
main	|	FarStandardFunctions

The	FSF.LUpperBuf	function	converts	an	array	of	characters,	including	null
ones,	to	upper	case.	This	function	works	in	OEM	code	page.

void	WINAPI	LUpperBuf(

		char	*Buf,

		int	Length

);

Parameters
Buf
An	array	of	characters	you	want	to	convert.

Length
Size	of	the	array	in	bytes.

Return	value
None.

Remarks

Example

MkTemp
main	|	FarStandardFunctions

The	FSF.MkTemp	function	is	used	to	create	a	temporary	file	name	with	the	path
based	on	a	specified	template.

char*	WINAPI	MkTemp(

		char	*Dest,

		const	char	*Prefix

);

Parameters
Dest
Pointer	to	buffer	to	receive	the	temporary	file	name.	It	must	be	large	enough	to
hold	the	resulting	string	(the	path	to	the	temporary	directory	+	12	characters
for	the	name	of	the	temporary	file).

Prefix
Points	to	a	null-terminated	prefix	string.	At	most	four	leading	characters	from
that	string	will	be	used	as	the	filename	prefix.	FAR	will	pad	the	prefix	with
zeroes	if	its	length	is	less	than	4	bytes.
If	Prefix	is	NULL	or	points	to	an	empty	string,	the	standard	prefix	"FTMP"
will	be	used.

Return	value
Pointer	to	Dest	containing	the	temporary	file	name,	or	NULL	if	function	has
failed.	A	possible	reason	for	the	failure	is	that	the	temporary	directory	contains
too	many	files	and	should	be	cleaned.

Remarks

1.	 The	temporary	file	name	is	obtained	by	concatenating	the	temporary
directory	path	(returned	by	the	GetTempPath	

JavaScript:link24.Click()

	Windows	API	function),	the	prefix
passed	to	the	function	and	several	random	hexadecimal	digits.	The	name
has	the	following	format:

PrefXXXP.PTT

where
			Pref	-	Pref	is	the	4-character	prefix;
			XXX	-	three	random	hexadecimal	digits;
			PP	-	two	hexagemical	digits	from	process	ID	(returned	by	the

GetCurrentProcessId	 	Windows	API
function);
			TT	-	two	hexagemical	digits	from	thread	ID	(returned	by	the

GetCurrentThreadId	 	Windows	API
function).

2.	 Unlike	in	FAR	1.70	beta	3,	this	function	does	not	create	the	file	on	the	disk;
it	only	generates	the	name.

3.	 In	FAR	1.70	beta	3,	this	function	used	only	the	first	three	characters	of	the
prefix.

Example
char	TempName[NM];

JavaScript:link25.Click()
JavaScript:link26.Click()

FSF.MkTemp(TempName,NULL);								->	"FTMP000D.P50"

FSF.MkTemp(TempName,"");										->	"FTMP000D.P50"

FSF.MkTemp(TempName,"MY");								->	"MY00000D.P50"

FSF.MkTemp(TempName,"BaR");							->	"BAR0000D.P50"

FSF.MkTemp(TempName,"TstPlugin");	->	"TSTP000D.P50"

MkLink
main	|	FarStandardFunctions

The	FSF.MkLink	function	supports	creating	hard	and	symbolic	links,	directory
junctions	and	mounting	local	drives	to	the	file	system.	The	function	works	only
under	Windows	NT	4	or	higher.

int	WINAPI	MkLink(

		const	char	*Src,

		const	char	*Dest,

		DWORD	Flags

);

Parameters
Src
Name	of	the	file	object	to	which	the	link	is	created.

Dest
Name	of	the	created	link.

Flags
Operation	mode.	One	of	the	following	flags	(MKLINKOP	enum):

Operation Description

FLINK_HARDLINK Create	a	hard	link.

FLINK_JUNCTION Create	a	directory	junction.

FLINK_VOLMOUNT Mount	a	local	drive	to	the	file	system.

FLINK_SYMLINKFILE Create	a	file	symbolic	link.

FLINK_SYMLINKDIR Create	a	directory	symbolic	link.

You	can	combine	operation	mode	with	one	of	the	following	flags:

Flag Description

FLINK_SHOWERRMSG Show	error	messages.

FLINK_DONOTUPDATEPANEL Do	not	update	the	panel	after	the	link	has	been
created.

Return	value

1	-	the	link	was	created	successfully.

0	-	error	creating	link.

Possible	error	resons:

For	hard	links:
Src	and	Dest	are	on	different	partitions;
the	partition	is	not	NTFS;
the	partition	is	not	local;
Src	does	not	exist	or	is	not	a	file;
Dest	already	exists;

For	directory	junctions:
Src	or	Dest	is	not	on	the	local	partition;
the	partition	is	not	NTFS	5.0;
Src	does	not	exist	or	is	not	a	directory;
Dest	exists,	but	is	not	an	empty	directory;

For	volume	mounts:
Src	or	Dest	is	not	on	the	local	partition;
the	partition	for	Dest	is	not	NTFS	5.0;
Src	does	not	exist	or	is	not	a	local	drive;
Dest	exists,	but	is	not	an	empty	directory;

Remarks

1.	 The	links	are	created	according	to	the	following	rules:
hard	links	are	created	only	for	files	within	a	single	NTFS	partition
(NT4/Win2K/XP);
Directory	junctions	are	created	only	for	directories	within	local	NTFS
partitions	(Win2K/NTFS	5.0);
mounting	local	drives	to	the	file	system	is	possible	only	on	NTFS
partitions	(Win2K/NTFS	5.0).

2.	 If	the	value	of	Src	is,	for	example,	"C:",	a	volume	mount	will	be	created
instead	of	a	junction.

3.	 If	the	destination	directory	for	a	volume	mount	operation	is	terminated	with
a	backslash,	a	subdirectory	"disk_N"	will	be	created	in	Dest,	where	N	is	the
letter	of	the	drive	being	mounted.

4.	 On	Windows	2000	you	cannot	create	a	junction	which	points	to	a	CD-ROM
folder,	but	you	can	mount	this	CD-ROM	disk	as	an	NTFS	folder	(see
Mount	Points)	and	then	create	the	necessary	junction.

Example

See	also:
GetNumberOfLinks

PasteFromClipboard
main	|	FarStandardFunctions

The	FSF.PasteFromClipboard	function	is	used	to	get	data	from	the	Windows
clipboard.

char*	WINAPI	PasteFromClipboard(void);

Parameters
None.

Return	value
Pointer	to	string,	or	NULL	if	the	function	has	failed.

Remarks
The	buffer	returned	from	this	function	must	be	freed	through	a	call	to	the
DeleteBuffer	function.

Example

PointToName
main	|	FarStandardFunctions

The	FSF.PointToName	function	is	used	to	get	a	file	name	from	a	given	file
path.

char	*WINAPI	PointToName(

		const	char	*Path

);

Parameters
Path
The	file	path	from	which	you	want	to	get	the	file	name.

Return	value
Pointer	to	the	file	name	in	the	given	path.

Remarks

Example

ProcessName
main	|	FarStandardFunctions	|	CmpName

The	FSF.ProcessName	function	allows	to	perform	various	actions	on	a	file
name:	compare	with	a	mask,	with	a	list	of	masks	or	to	generate	new	file	name
using	the	mask.

int	WINAPI	ProcessName(

		const	char	*Param1,

		char	*Param2,

		DWORD	Flags

);

Parameters
Param1
Depends	on	the	Flags	value.

Param2
Depends	on	the	Flags	value.

Flags
Specifies	a	command	that	can	be	one	of	the	following	values
(PROCESSNAME_FLAGS	enum):

Action Description

PN_CMPNAME Compares	a	file	name	with	the	specified	mask.	This
flag	works	like	the	CmpName	function	-	Param1
corresponds	to	Pattern,	Param2	corresponds	to
String.	In	case	of	success	TRUE	is	returned.

PN_CMPNAMELIST Compares	a	file	name	with	a	list	of	masks	delimited
by	commas.	This	flag	works	like	PN_CMPNAME,
but	Param1	contains	the	list	of	masks.	Note	that	this
function	doesn't	support	exclude	masks	that	were
first	implemented	in	FAR	1.70	beta	4.

PN_SKIPPATH This	flag	is	a	modifier	for	the	PN_CMPNAME	and
PN_CMPNAMELIST	flags.	It	specifies	that	the	path
to	the	file	name	must	be	ignored	when	comparing.

PN_GENERATENAME Generates	a	file	name	based	on	the	name	contained
in	Param1	and	a	mask	contained	in	Param2.	The
result	is	returned	in	Param2.	In	case	of	success
TRUE	is	returned,	otherwise	FALSE.	If	there	is	a

necessity	to	process	only	a	part	of	Param1,	there	is	a
possibility	to	specify	a	size	of	this	part	(up	to	255)	by
combining	it	with	PN_GENERATENAME,	for
example:	Param1	contains	"dir1\\file1"	but	the	user
wants	to	change	only	"dir1",	then	flags	must	contain
PN_GENERATENAME|4.

Return	value
The	return	value	depends	on	the	Flags	parameter.

qsort
main	|	FarStandardFunctions

The	FSF.qsort	function	allows	to	sort	an	array	of	any	type	of	data	using	the
QuickSort	algorithm.

void	WINAPI	qsort(

		void	*Base,

		size_t	NElem,

		size_t	Width,

		int	(__cdecl	*fcmp)(const	void	*,	const	void	*)

);

Parameters
Base
Start	of	target	array.

NElem
Array	size	in	elements.

Width
The	size	of	each	element	in	bytes.

fcmp
User-defined	comparison	function	that	must	be	declared	with	__cdecl	-	C-
style	calling	convention.	This	function	takes	two	arguments	-	elem1	and
elem2.	These	arguments	are	the	pointers	to	the	array	elements.	fcmp	function
must	compare	these	elements	and	return	an	integer	value:
*elem1	<	*elem2 -	fcmp	returns	value	<	0
*elem1	==	*elem2 -	fcmp	returns	value	==	0
*elem1	>	*elem2 -	fcmp	returns	value	>	0

Return	value
None.

Remarks

1.	 See	the	C/C++	run-time	library	reference	for	more	information.
2.	 If	you	need	to	pass	user-defined	data	to	the	compare	function,	you	should

use	the	qsortex	function	instead.

3.	 The	sort	implemented	by	the	qsort	and	qsortex	functions	is	not	stable.	In
other	words,	the	order	for	the	elements	that	are	equal	according	to	the
compare	function	is	not	defined.	The	order	can	change	when	the	array	is
sorted	repeatedly.

Example

See	also:
FSF.bsearch,	FSF.qsortex

qsortex
main	|	FarStandardFunctions

The	FSF.qsortex	function	allows	to	sort	an	array	of	any	type	of	data	using	the
QuickSort	algorithm.	Unlike	the	qsort	function,	it	allows	to	pass	user-defined
data	to	the	compare	function.

void	WINAPI	qsortex(

		void	*Base,

		size_t	NElem,

		size_t	Width,

		int	(__cdecl	*fcmp)(const	void	*,	const	void	*,	void	*),

		void	*User

);

Parameters
Base
Start	of	target	array.

NElem
Array	size	in	elements.

Width
The	size	of	each	element	in	bytes.

fcmp
User-defined	comparison	function	that	must	be	declared	with	__cdecl	-	C-
style	calling	convention.	This	function	takes	three	arguments	-	elem1,	elem2
(the	pointers	to	the	array	of	elements)	and	user	(user-defined	data	passed	in
the	User	argument	to	the	qsortex	function).	fcmp	function	must	compare
elem1	and	elem2	elements	and	return	an	integer	value:
*elem1	<	*elem2 -	fcmp	returns	value	<	0
*elem1	==	*elem2 -	fcmp	returns	value	==	0
*elem1	>	*elem2 -	fcmp	returns	value	>	0

User
User-defined	data	passed	as	the	third	parameter	to	the	comparison	function.

Return	value
None.

Remarks
The	sort	implemented	by	the	qsort	and	qsortex	functions	is	not	stable.	In	other
words,	the	order	for	the	elements	that	are	equal	according	to	the	compare
function	is	not	defined.	The	order	can	change	when	the	array	is	sorted
repeatedly.

See	also:
FSF.bsearch,	FSF.qsort

QuoteSpaceOnly
main	|	FarStandardFunctions

The	FSF.QuoteSpaceOnly	function	encloses	an	input	string	in	double	quotes	if
it	contains	at	least	one	space	inside.

char*	WINAPI	QuoteSpaceOnly(

		char	*Str

);

Parameters
Str
String	that	you	want	to	quote.	The	result	will	be	placed	in	the	same	string.

Return	value
This	function	returns	a	pointer	to	the	resulting	string.

Remarks

1.	 Note	that	Str	must	be	large	enough	to	hold	the	resulting	string.
2.	 This	function	does	nothing	if	the	string	is	already	enclosed	in	quotes.

RTrim
main	|	FarStandardFunctions

The	FSF.RTrim	function	removes	all	trailing	whitespace	from	a	string.

char*	WINAPI	RTrim(

		char	*Str

);

Parameters
Str
String	from	which	you	want	to	remove	the	trailing	whitespace.

Return	value
On	return	Str	contains	a	string	with	trailing	spaces	removed.

See	also:
FSF.LTrim,	FSF.Trim

snprintf
main	|	FarStandardFunctions

The	FSF.snprintf	function	allows	to	write	formatted	output	to	a	string.

int	WINAPI	snprintf(

		char	*Buffer,

		size_t	Sizebuf,

		const	char	*Format,

		...

);

Parameters
Buffer
Buffer	that	receives	the	formatted	string.

Sizebuf
The	maximum	allowed	size	of	the	receiving	buffer.

Format
Format	string.

...
Series	of	arguments,	in	accordance	with	the	format	string.

Return	value
If	the	function	succeeds	the	return	value	is	the	number	of	bytes	put	to	Buffer,
otherwise	it	returns	-1.

Remarks
See	a	C/C++	run-time	library	reference	for	more	information.
Delphi:
You	can	use	format()	function.	
Please	read	Object	Pascal	(Delphi)	language	reference	for	more	information	on	that	function.

See	also:
FSF.sprintf

sprintf
main	|	FarStandardFunctions

The	FSF.sprintf	function	allows	to	write	formatted	output	to	a	string.

int	WINAPI	sprintf(

		char	*Buffer,

		const	char	*Format,

		...

);

Parameters
Buffer
Buffer	that	receives	the	formatted	string.

Format
Format	string.

...
Series	of	arguments,	in	accordance	with	the	format	string.

Return	value
If	the	function	succeeds	the	return	value	is	the	number	of	bytes	put	to	Buffer,
otherwise	it	returns	-1.

Remarks
See	a	C/C++	run-time	library	reference	for	more	information.
Delphi:
You	can	use	format()	function.	
Please	read	Object	Pascal	(Delphi)	language	reference	for	more	information	on	that	function.

See	also:
FSF.snprintf

sscanf
main	|	FarStandardFunctions

The	FSF.sscanf	function	allows	to	read	formatted	data	from	a	string.

int	WINAPI	sscanf(

		const	char	*Buffer,

		const	char	*Format,

		[address,	...]

);

Parameters
Buffer
Buffer	that	will	be	scanned.

Format
Format	string

address
Series	of	arguments	that	receive	data	in	accordance	with	the	formatted	string.

Return	value
If	the	function	succeeds	the	return	value	is	the	number	of	fields	successfully
converted	and	assigned.	-1	is	returned	if	the	number	of	format	specifiers	is
greater	than	the	number	of	fields	in	the	scanned	string.	On	error	return	value	is	0.

Remarks
See	a	C/C++	run-time	library	reference	for	more	information.

Trim
main	|	FarStandardFunctions

The	FSF.Trim	function	removes	all	leading	and	trailing	whitespace	from	a
string.

char*	WINAPI	Trim(

		char	*Str

);

Parameters
Str
The	string	from	which	you	want	to	remove	the	leading	and	trailing
whitespace.

Return	value
On	return	Str	contains	the	string	with	all	leading	and	trailing	whitespace
removed.

See	also:
FSF.LTrim,	FSF.RTrim

TruncPathStr
main	|	FarStandardFunctions

The	FSF.TruncPathStr	function	truncates	a	given	path	to	specified	length	and,
if	needed,	inserts	into	it	an	ellipsis	to	indicate	the	place	of	truncation.

char*	WINAPI	TruncPathStr(

		char	*Str,

		int	MaxLength

);

Parameters
Str
Path	that	you	want	to	truncate.	The	result	will	be	placed	into	the	same	buffer.

MaxLength
Specifies	the	length	to	truncate	the	path	to.

Return	value
On	return	Str	contains	a	pointer	to	the	truncated	path.

See	also:
FSF.TruncStr

TruncStr
main	|	FarStandardFunctions

The	FSF.TruncStr	function	truncates	a	given	string	to	the	specified	length	and,
if	needed,	inserts	into	its	beginning	an	ellipsis	instead	of	the	truncated	part.

char*	WINAPI	TruncStr(

		char	*Str,

		int	MaxLength

);

Parameters
Str
String	that	you	want	to	truncate.	The	result	will	be	placed	in	the	same	buffer.

MaxLength
Specifies	the	length	to	truncate	the	string	to.

Return	value
On	return	Str	contains	a	pointer	to	truncated	string.

Remarks

Example

See	also:
FSF.TruncPathStr

Unquote
main	|	FarStandardFunctions

The	FSF.Unquote	function	removes	all	double	quotes	from	a	null-terminated
string.

void	WINAPI	Unquote(

		char	*Str

);

Parameters
Str
The	string	from	which	you	want	quotes	to	be	removed.	The	result	will	be
placed	into	the	same	buffer.

Return	value
None.

Remarks
In	versions	of	FAR	starting	with	1.70	beta	1	and	up	to	1.70	beta	3,	this	function
deleted	only	leading	and	trailing	quotation	marks.

XLat
main	|	FarStandardFunctions

The	FSF.XLat	function	is	used	to	transliterate	a	string	portion	from	one
character	set	(for	example	Russian)	to	another	character	set	(for	example	Latin).

char*	WINAPI	XLat(

		char	*Line,

		int	StartPos,

		int	EndPos,

		const	struct	CharTableSet	*TableSet,

		DOWRD	Flags

);

Parameters
Line
Pointer	to	a	string	a	portion	of	which	you	want	to	transliterate.

StartPos
Starting	position	of	the	portion	you	want	to	transliterate.

EndPos
End	position	of	the	portion	you	want	to	transliterate.

TableSet
If	it	is	necessary	to	convert	a	string	to	OEM	code	page	before	transliteration
and	then	back,	this	field	can	contain	a	pointer	to	a	CharTableSet	structure.
This	field	can	also	accept	a	NULL	value.

Flags
Can	be	a	combination	of	the	following	flags	(XLATMODE	enum):

Flag Description

XLAT_SWITCHKEYBLAYOUT Switches	the	keyboard	layout	after	the	transliteration.

	Attention!
This	function	doesn't	support	switching
the	keyboard	layout	under	Windows
95/98/Me.

XLAT_SWITCHKEYBBEEP Sounds	a	beep	after	keyboard	layout	switching
(works	in	conjunction	with

XLAT_SWITCHKEYBLAYOUT).

Return	value
This	function	returns	a	pointer	to	the	transliterated	string.

General	purpose	structures
main	|	structures

Structure Description

ActlEjectMedia Eject	media

ActlKeyMacro Macro-oriented	operations

CharTableSet Character	table

CmdLineSelect Command-line	text	selection/deselection

FarMenuItem Menu	item

FarSetColors FAR	Manager	color	scheme	manipulations

FarStandardFunctions Useful	functions	from	Far.exe

KeySequence Description	of	a	key	code	sequence

OpenPluginInfo Information	about	the	current	plugin	instance

PluginInfo Information	about	a	plugin	module

PluginStartupInfo Various	pieces	of	important	plugin	information

WindowInfo Information	about	the	FAR	Manager	window

See	also:
Exported	functions,	Service	functions,	Dialog	API,	Archive
support,	Addons,	Delphi	structures,	Win32	structures

ActlEjectMedia
main	|	structures

The	ActlEjectMedia	structure	is	used	in	the	AdvControl	function	to	eject	the
medium	from	a	removable	drive	(CD-ROM/USB/SUBST).

struct	ActlEjectMedia	{

		DWORD	Letter;

		DWORD	Flags;

};

Elements
Letter
Drive	letter	of	the	removable	drive.

Flags
Combination	of	the	following	flags	(FAREJECTMEDIAFLAGS	enum):

Flag Description

EJECT_NO_MESSAGE suppress	error	message	display

EJECT_LOAD_MEDIA attempt	to	"load/close"	device	(works	only	for	CD-
ROM	drives,	doesn't	work	under	Windows
95/98/Me)

See	also:
Structures	|	TActlEjectMedia

ActlKeyMacro
main	|	structures

The	ActlKeyMacro	structure	is	used	in	the	AdvControl	function	for	operations
with	macro-commands.

struct	ActlKeyMacro	{

		int	Command;

		union{

				struct	{

						char	*SequenceText;

						DWORD	Flags;

				}	PlainText;

				DWORD	Reserved[3];

		}	Param;

};

Elements
Command
One	of	the	following	commands	(FARMACROCOMMAND	enum):

Command Description

MCMD_LOADALL Read	all	macros	from	the	registry	into	FAR	memory.
Previous	values	are	erased.

MCMD_POSTMACROSTRING Pass	a	macro	in	text	form	to	FAR	(in	the	same	format
as	macros	are	stored	in	the	registry).
The	AdvControl	function	returns	TRUE	if	the	macro
is	analyzed	and	placed	into	the	queue	(the	macro	will
start	running	when	FAR	gets	control).	FALSE	is
returned	if	the	macro	contains	any	error.

MCMD_SAVEALL Forces	FAR	to	immediately	save	all	macros	from
memory	to	the	registry.

MCMD_GETSTATE Get	macro	execution	status.
Returns	one	of	the	following	values	(enum
FARMACROSTATE):

Value Description

MACROSTATE_NOMACRO no	macro	is
being
executed

MACROSTATE_EXECUTING a	macro	is
being

executed
without
sending	key
strokes	to
plugins

MACROSTATE_EXECUTING_COMMON a	macro	is
being
executed;
key	strokes
are	sent	to
plugins

MACROSTATE_RECORDING a	macro	is
being
recorded
without
sending	key
strokes	to
plugins

MACROSTATE_RECORDING_COMMON a	macro	is
being
recorded;
key	strokes
are	sent	to
plugins

Param	is	ignored.	The	value	is	returned	by
AdvControl.

Param.PlainText.SequenceText
Pointer	to	a	zero-terminated	string	containing	a	macro	sequence	in	text	form.
OEM-encoding	should	be	used	to	store	macros.	This	member	is	used	in	the
MCMD_POSTMACROSTRING	command.

Param.PlainText.Flags
Combination	of	the	following	macro	execution	flags
(FARKEYSEQUENCEFLAGS	enum):

Flag Description

KSFLAGS_DISABLEOUTPUT Disable	screen	output	during	macro
playback.

KSFLAGS_NOSENDKEYSTOPLUGINS Don't	send	keystrokes	to	editor	plugins
(plugins,	that	export	ProcessEditorInput
function).

KSFLAGS_REG_MULTI_SZ The	Param.PlainText.SequenceText
parameter	is	represented	in	the
REG_MULTI_SZ	format.
REG_MULTI_SZ	in	the	registry:

line	1\x00

line	2\x00

...

line	N\x00

\x00

This	member	is	used	in	the	MCMD_POSTMACROSTRING	command.
Reserved
Reserved	for	future	use.

Remarks

1.	 The	MCMD_LOADALL	and	MCMD_SAVEALL	commands	won't
execute	during	macro	recording	or	playback.

2.	 The	KSFLAGS_REG_MULTI_SZ	flag	can	be	discarded,	if
Param.PlainText.SequenceText	contains	'\n'	instead	of	0x00.

Example
MCMD_POSTMACROSTRING	usage	in	FARCmds	plugin:
command.Command=MCMD_POSTMACROSTRING;

command.Param.PlainText.SequenceText=(char	*)malloc(strlen(pCmd)+1);

if(command.Param.PlainText.SequenceText)

{

		command.Param.PlainText.Flags=KSFLAGS_DISABLEOUTPUT;

		strcpy(command.Param.PlainText.SequenceText,pCmd);

		Info.AdvControl(Info.ModuleNumber,ACTL_KEYMACRO,&command);

		free(command.Param.PlainText.SequenceText);

}

MCMD_LOADALL	usage	in	FARCmds	plugin:

command.Command=MCMD_LOADALL;

Info.AdvControl(Info.ModuleNumber,ACTL_KEYMACRO,&command;);

MCMD_SAVEALL	usage	in	FARCmds	plugin:
command.Command=MCMD_SAVEALL;

Info.AdvControl(Info.ModuleNumber,ACTL_KEYMACRO,&command;);

See	also:
Structures	|	KeySequence	|	TActlKeyMacro

CharTableSet
main	|	structures

The	CharTableSet	structure	contains	a	set	of	arrays	describing	a	FAR	character
table.	This	structure	is	used	by	the	CharTable	function.

struct	CharTableSet

{

		unsigned	char	DecodeTable[256];

		unsigned	char	EncodeTable[256];

		unsigned	char	UpperTable[256];

		unsigned	char	LowerTable[256];

		char	TableName[128];

};

Elements
DecodeTable
Table	to	decode	the	given	codepage	to	the	DOS	(OEM)	codepage.

EncodeTable
Table	to	encode	from	DOS	(OEM)	codepage	to	the	given	codepage.

UpperTable
Lowercase	to	uppercase	conversion	table.

LowerTable
Uppercase	to	lowercase	conversion	table.

TableName
Name	of	the	character	table.

See	also:
Structures	|	TCharTableSet

FARINT64
main	|	structures

The	FARINT64	structure	is	used	to	hold	a	64	bit	integer	value.

typedef	union

{

		__int64	i64;

		struct

		{

				DWORD	LowPart;

				LONG		HighPart;

		}	Part;

}	FARINT64;

See	also:

CmdLineSelect
main	|	structures

The	CmdLineSelect	structure	is	used	in	the	Control	function	for	text
selection/deselection	on	the	FAR	command	line,	or	getting	selection	information
thereof.

struct	CmdLineSelect

{

		int	SelStart;

		int	SelEnd;

};

Elements
SelStart
Selection	start	position.

SelEnd
Selection	end	position.

Remarks
To	clear	the	selection,	set	SelStart	and	SelEnd	to	-1.

See	also:
Structures	|	TCmdLineSelect	|
FCTL_GETCMDLINESELECTION	|
FCTL_SETCMDLINESELECTION.

FarMenuItem
main	|	structures

The	FarMenuItem	structure	describes	a	single	menu	item.	An	array	of	these
structures	is	passed	to	the	Menu	function	to	show	a	menu.

struct	FarMenuItem

{

		char	Text[128];

		int	Selected;

		int	Checked;

		int	Separator;

};

Elements
Text
Item	text.

Selected
Item	selection	flag.	There	must	be	only	one	item	for	which	Selected	is	equal
to	1.

Checked
If	nonzero,	a	selection	mark	is	displayed	before	the	item	text.	If	Checked	is	1,
the	standard	mark	is	displayed,	otherwise	the	value	of	Checked	is	used	as	the
mark	character.

Separator
If	nonzero,	the	menu	item	is	displayed	as	a	separator	line.	The	other	fields	are
ignored	in	this	case.

Remarks
As	the	FarMenuItem.Text	field	is	large,	direct	initialization	of	an	array	of
FarMenuItem	structures	can	significantly	increase	plugin	size.	To	prevent	this,
the	InitMenuItem	non-standard	structure	can	be	used.

See	also:
structures	|	InitMenuItem	|	TFarMenuItem	|	FarMenuItemEx

FarMenuItemEx
main	|	structures	|	Menu	

The	FarMenuItemEx	structure	describes	a	single	menu	item.	An	array	of
structures	of	this	type	is	passed	to	the	Menu	function.	In	order	to	use	the
FarMenuItemEx	structure	the	FMENU_USEEXT	flag	should	be	set	when	the
Menu	function	is	called.

struct	FarMenuItemEx

{

		DWORD	Flags;

		union	{

				char		Text[128];

				const	char	*TextPtr;

		}	Text;

		DWORD	AccelKey;

		DWORD	Reserved;

		DWORD_PTR	UserData;

};

Elements
Flags
Combination	of	the	following	values	(the	FARMENUFLAGS	enumeration):

Flag Description

MIF_SELECTED Denotes	a	selected	menu	item.	Only	one	item	can	be
selected.

MIF_CHECKED Denotes	a	checked	menu	item.	Check	sign	will	be
shown	near	the	item.

MIF_SEPARATOR The	menu	item	is	shown	as	delimiter.	Unlike	in	the
FarMenuItem	structure,	the	delimiter	can	contain
text.	The	text	is	center-aligned	and	is	not	selectable.

MIF_DISABLE Denotes	a	disabled	menu	item.

MIF_GRAYED If	this	flag	is	set,	the	menu	item	is	shown,	but	cannot
be	selected.

MIF_HIDDEN If	this	flag	is	set,	the	menu	item	is	not	shown.

MIF_USETEXTPTR The	menu	item	uses	the	Text.TextPtr	field.

Text.Text
The	text	of	the	menu	item.

Text.TextPtr
A	pointer	to	the	menu	item	text.	Used	in	conjunction	with	the
MIF_USETEXTPTR	flag,	if	the	Text.Text	array	has	insufficient	size	or	a
string	from	a	language	file	is	used,	for	example:
struct	FarMenuItemEx	Item;

Item.Flags=MIF_USETEXTPTR;

Item.Text.TextPtr=Info.GetMsg(Info.ModuleNumber,MFooItem);

AccelKey
The	FAR	Manager	key	code	which	will	be	used	to	activate	the	menu	item.
Example:	in	the	"Commands"	menu	pressing	Ctrl-O	is	used	to	the	select	the
"Panels	On/Off"	menu	item.	As	opposed	to	the	BreakKeys	parameter	of	the
Menu	function,	the	AccelKey	field	is	analogous	to	the	hotkey.

Reserved
Reserved	for	future	use,	should	be	set	to	0.

UserData
User	data	associated	with	the	menu	item.	FAR	Manager	does	not	use	this	field.

Remarks

1.	 In	the	low	order	word	of	the	Flags	a	field	character	code	can	be	specified
which	will	be	displayed	as	the	check	mark.	In	this	case,	FAR	will
automatically	set	the	MIF_CHECKED	flag	for	this	menu	item.

2.	 If	the	low	order	word	of	the	Flags	field	is	0	and	the	MIF_CHECKED	flag
is	set,	or	if	the	low	order	word	of	the	Flags	field	is	1,	then	the	default	check
mark	will	be	displayed:	the	character	with	code	0FBh	(√).

3.	 If	the	MIF_SEPARATOR	flag	is	used	without	text,	the	Text.Text	or
Text.TextPtr	fields	should	be	initialized	to	0,	for	example:
struct	FarMenuItemEx	Item;

Item.Flags=MIF_SEPARATOR;

Item.Text.Text[0]=0;

or:

struct	FarMenuItemEx	Item;

Item.Flags=MIF_SEPARATOR|MIF_USETEXTPTR;

Item.Text.TextPtr=NULL;

See	also:
structures	|	FarMenuItem	|	TFarMenuItemEx

FarSetColors
main	|	structures

The	FarSetColors	structure	is	used	in	the	AdvControl	function	to	change	the
color	palette	of	FAR	Manager.

struct	FarSetColors	{

		DWORD	Flags;

		int	StartIndex;

		int	ColorItem;

		LPBYTE	Colors;

};

Elements
Flags
Can	contain	a	combination	of	the	following	values	(the	FARCOLORFLAGS
enumeration):

Flag Description

FCLR_REDRAW Redraw	the	screen	after	the	color	scheme	has	been
changed.

StartIndex
Start	index	of	the	color	scheme	range	that	should	be	changed.

ColorItem
Number	of	the	colors	to	be	changed.

Colors
Points	to	the	byte	array	containing	the	new	color	attributes.

Remarks

See	also:
structures	|	ACTL_SETARRAYCOLOR	|	TFarSetColors

InfoPanelLine
main	|	structures

The	InfoPanelLine	structure	describes	a	single	line	n	the	information	panel.	An
array	of	InfoPanelLine	structures	is	passed	to	FAR	by	the	GetOpenPluginInfo
function.

struct	InfoPanelLine

{

		char	Text[80];

		char	Data[80];

		int	Separator;

};

Elements
Text
Parameter	header	-	left-aligned	text	displayed	using	the	regular	text	color
(COL_PANELTEXT).

Data
Parameter	data	-	right-aligned	text	displayed	using	the	selected	text	color
(COL_PANELINFOTEXT)

Separator
If	non-zero,	a	separator	is	displayed.	Text	is	used	as	the	separator	header,	Data
is	ignored.

See	also:
structures	|	TInfoPanelLine

KeyBarTitles
main	|	structures

The	KeyBarTitles	structure	is	used	to	redefine	the	function	key	labels	in	the	key
bar.	An	array	of	these	structures	can	be	passed	to	FAR	in	the	GetOpenPluginInfo
function.

struct	KeyBarTitles

{

		char	*Titles[12];

		char	*CtrlTitles[12];

		char	*AltTitles[12];

		char	*ShiftTitles[12];

		//	FAR	Manager	>=	1.70

		char	*CtrlShiftTitles[12];

		char	*AltShiftTitles[12];

		char	*CtrlAltTitles[12];

};

Elements
Titles,	CtrlTitles,	AltTitles,	ShiftTitles
Contain	addresses	of	new	key	bar	labels.	CtrlTitles,	AltTitles	and	ShiftTitles	are
used	when	<Ctrl>,	<Alt>	or	<Shift>	is	pressed.	If	it	is	desired	to	leave	some
standard	FAR	labels	unaltered,	set	the	corresponding	addresses	to	NULL.

CtrlShiftTitles,	AltShiftTitles,	CtrlAltTitles
Contain	addresses	of	new	key	bar	titles.	CtrlShiftTitles,	AltShiftTitles	and
CtrlAltTitles	are	used	when	<CtrlShift>,	<AltShift>	or	<CtrlAlt>	is	pressed.
Use	NULL	as	above.	Available	in	FAR	versions	after	1.70

See	also:
ECTL_SETKEYBAR	|	structures	|	TKeyBarTitles

KeySequence
main	|	structures

The	KeySequence	structure	is	used	in	the	AdvControl	function	to	pass	a
sequence	of	key	codes	to	FAR.

struct	KeySequence	{

		DWORD	Flags;

		int	Count;

		DWORD	*Sequence;

};

Elements
Flags
May	be	a	combinaiton	of	the	following	flags	(the
FARKEYSEQUENCEFLAGS	enumeration):

Flag Description

KSFLAGS_DISABLEOUTPUT Do	not	display	the	results	of	processing	each
key	on	the	screen.

KSFLAGS_NOSENDKEYSTOPLUGINS Do	not	pass	keys	to	editor	plugins	(plugins,
that	export	the	ProcessEditorInput	function).

Count
Count	of	key	codes	in	the	Sequence	array.

Sequence
Points	to	an	array	of	FAR	key	codes.

Remarks

See	also:
structures	|	ActlKeyMacro	|	TKeySequence

OpenPluginInfo
main	|	structures

The	OpenPluginInfo	structure	describes	a	plugin	instance	to	FAR.

struct	OpenPluginInfo

{

		int	StructSize;

		DWORD	Flags;

		const	char	*HostFile;

		const	char	*CurDir;

		const	char	*Format;

		const	char	*PanelTitle;

		const	struct	InfoPanelLine	*InfoLines;

		int	InfoLinesNumber;

		const	char	*	const	*DescrFiles;

		int	DescrFilesNumber;

		const	struct	PanelMode	*PanelModesArray;

		int	PanelModesNumber;

		int	StartPanelMode;

		int	StartSortMode;

		int	StartSortOrder;

		const	struct	KeyBarTitles	*KeyBar;

		const	char	*ShortcutData;

		long	Reserverd;

};

Elements
StructSize
This	field	should	contain	size	of	the	OpenPluginInfo	structure:
C:	Opi.StructSize	=	sizeof	(struct	OpenPluginInfo);

Pascal:	Opi.StructSize	:=	SizeOf(Info);

Flags
A	combination	of	the	following	values	(the	OPENPLUGININFO_FLAGS
enumeration):

Flag Description

OPIF_USEFILTER Use	filter	in	the	plugin	panel.

OPIF_USESORTGROUPS Use	sort	groups	in	the	plugin	panel.

OPIF_USEHIGHLIGHTING Use	file	highlighting	in	the	plugin	panel.

OPIF_ADDDOTS Add	".."	item	automatically	if	it	is	absent.

OPIF_RAWSELECTION Folders	may	be	selected	regardless	of	FAR
settings.

OPIF_REALNAMES Turns	on	the	standard	FAR	file	processing
mechanism	if	requested	operation	is	not
supported	by	the	plugin.	If	this	flag	is	set,	the
items	on	the	plugin	panel	should	be	real	file
names.

OPIF_SHOWNAMESONLY Show	file	names	without	paths	by	default.

OPIF_SHOWRIGHTALIGNNAMES Show	file	names	right-aligned	by	default	in	all
panel	display	modes.

OPIF_SHOWPRESERVECASE Show	file	names	using	original	case	regardless	of
FAR	settings.

OPIF_FINDFOLDERS Apply	"Find	file"	command	for	folders.	The
OPIF_FINDFOLDERS	flag	has	no	effect	since
FAR	Manager	1.70	beta	4.

OPIF_COMPAREFATTIME Convert	timestamps	to	FAT	format	for	the
Compare	folders	operation.	Set	this	flag	if	the
plugin	file	system	doesn't	provide	the	time
accuracy	necessary	for	standard	comparison
operations.

OPIF_EXTERNALGET
OPIF_EXTERNALPUT
OPIF_EXTERNALDELETE
OPIF_EXTERNALMKDIR

These	flags	can	be	used	with
OPIF_REALNAMES	only.	Forces	usage	of
corresponding	internal	FAR	functions,	even	if
plugin	exports	such	function.

OPIF_USEATTRHIGHLIGHTING FAR	Manager	1.70	build	#963	and	below:	use
attribute-based	file	highlighting.	All	file
highlighting	templates,	except	*	and	*.*	will	be
ignored.
FAR	Manager	1.70	build	#964	and	above:	use
attributes	only	for	file	highlighting.	File	names
will	be	ignored.	Color	is	chosen	from	file	color
groups,	which	have	templates	excluded	from
analysis	(i.e.	option	"[]	Match	file
mask(s)"	in	file	highlighting	setup	dialog	is
off).

HostFile
File	name	on	emulated	file	system.	If	plugin	doesn't	emulate	a	file	system
based	on	files,	set	this	field	to	NULL.

CurDir
Current	directory	of	plugin.	If	plugin	returns	empty	string	here,	FAR	will	close
plugin	automatically	if	ENTER	is	pressed	on	".."	item.

Format
Plugin's	format	name.	This	is	shown	in	the	file	copy	dialog.

PanelTitle
Plugin	panel	header.

InfoLines
Pointer	to	an	array	of		InfoPanelLine	structures.	Each	structure	describes	one
line	in	the	information	panel.	If	no	plugin-dependent	information	needs	to	be
shown	in	the	information	panel,	set	this	field	to	NULL.

InfoLinesNumber
Number	of	structures	in	InfoPanelLine.

DescrFiles
Pointer	to	an	array	of	pointers	to	strings	with	description	file	names.	FAR	tries
to	read	these	files	(using	the	GetFiles	function)	when	descriptions	are	shown
and	refresh	them	after	file	processing,	if	the	PPIF_PROCESSDESCR	flag	in
the	PluginPanelItem	structure	was	set.	Depending	on	the	plugin	type,
description	processing	can	take	significant	time.	If	you	don't	need	this
functionality,	set	the	field	to	NULL.

DescrFilesNumber
Number	of	description	file	names.

PanelModesArray
Pointer	to	an	array	of	PanelMode	structures.	Panel	display	mode	settings	can
be	redefined	using	this	field.	The	first	structure	describes	display	mode
number	0,	the	second	-	number	1,	etc.	If	new	panel	display	modes	are	not
required,	set	the	field	to	NULL.

PanelModesNumber
Number	of	PanelMode	structures.

StartPanelMode
The	panel	display	mode	to	set	on	panel	creation.	Must	be	in	the	form	'0'+
<view	mode	number>.	For	example,	'1'	(0x31)	will	set	Brief	view	mode.
If	you	don't	want	to	change	panel	display	mode	at	plugin	startup,	set	the	field

to	0.
StartSortMode
The	sort	mode	to	set	on	panel	creation.	One	of	the	following	values	can	be
specified:	SM_UNSORTED,	SM_NAME,	SM_EXT,	SM_MTIME,
SM_CTIME,	SM_ATIME,	SM_SIZE,	SM_DESCR,	SM_OWNER,
SM_COMPRESSEDSIZE,	SM_NUMLINKS.	If	you	don't	want	to	change	sort
mode	at	plugin	startup,	set	the	field	to	SM_DEFAULT	or	0.

StartSortOrder
If	StartSortMode	is	specified,	this	field	must	be	used	to	set	sort	direction:	0	for
ascending,	1	-	for	descedning.

KeyBar
Pointer	to	the	KeyBarTitles	structure.	Function	key	labels	are	redefined	using
this	field.	Set	to	NULL	if	not	required.

ShortcutData
Pointer	to	a	null-terminated	string,	which	describes	the	current	state	of	the
plugin.	The	length	of	string	should	be	less	than	or	equal	to
MAXSIZE_SHORTCUTDATA.	This	string	is	passed	to	the	OpenPlugin
function,	when	the	plugin	is	activated	by	the	link	to	folder	command.	For
example,	an	FTP	client	can	place	the	server	host	name,	login	and	password
here.	The	current	directory	is	not	required	as	FAR	will	restore	this	itself.
If	no	additional	information	is	required	for	activation	of	links	to	a	folder,	set
this	field	to	NULL.

Reserverd
Reserved	for	future	use,	set	to	0.

Remarks

1.	 All	data,	passed	through	this	structure	should	be	valid	after	return	from	the
GetOpenPluginInfo	function.	This	means,	for	example,	that	pointers	to	the
stack	are	not	allowed,	use	static	or	global	variables	instead.

2.	 When	this	structure	is	passed	to	a	plugin's	GetOpenPluginInfo	function,	it
can	be	assumed	to	be	cleared	to	zeros.

See	also:
structures	|	TOpenPluginInfo

PanelInfo
main	|	structures

The	PanelInfo	structure	contains	information	about	a	FAR	panel.	Use	the
Control	function	to	populate	this	structure.

struct	PanelInfo

{

		int	PanelType;

		int	Plugin;

		RECT	PanelRect;

		struct	PluginPanelItem	*PanelItems;

		int	ItemsNumber;

		struct	PluginPanelItem	*SelectedItems;

		int	SelectedItemsNumber;

		int	CurrentItem;

		int	TopPanelItem;

		int	Visible;

		int	Focus;

		int	ViewMode;

		char	ColumnTypes[80];

		char	ColumnWidths[80];

		char	CurDir[NM];

		int	ShortNames;

		int	SortMode;

		DWORD	Flags;

		DWORD	Reserved;

};

Elements
PanelType
May	be	(the	PANELINFOTYPE	enumeration):

Type Description

PTYPE_FILEPANEL Regular	file	panel

PTYPE_TREEPANEL Tree	panel

PTYPE_QVIEWPANEL Quick	view	panel

PTYPE_INFOPANEL Information	panel

Plugin
TRUE	if	panel	is	supported	by	a	plugin.

PanelRect
Panel	geometry,	the	RECT	structure.

PanelItems
Pointer	to	an	array	of	all	panel	items	(see	PluginPanelItem).	Plugins	shouldn't
change	items	(except	those	marked	with	PPIF_SELECTED)	or	free	memory
allocated	for	this	array.	Data	is	valid	until	return	from	the	plugin's	exported
function,	which	retrieved	it	via	a	call	to	the
Control(FCTL_GET[ANOTHER]PANELINFO,	...)	function,	or	until	the	next
call	to	the	Control	function.

ItemsNumber
Number	of	items	in	the	PanelItems	array.

SelectedItems
Pointer	to	the	array	of	selected	panel	items.	(see	PluginPanelItem).	Plugin
shouldn't	change	elements	(except	those	marked	with	PPIF_SELECTED)	or
free	memory	allocated	for	this	array.	Data	is	valid	until	return	from	the
plugin's	exported	function,	which	retrieved	it	via	a	call	to	the
Control(FCTL_GET[ANOTHER]PANELINFO,	...)	function,	or	until	the	next
call	to	the	Control	function.

SelectedItemsNumber
Number	of	items	in	the	SelectedItems	array.	When	there	is	no	selection,
SelectedItemsNumber	is	equal	to	1.	When	there	is	no	selection	and	current
element	is	".."	then	SelectedItemsNumber	is	equal	to	0.

CurrentItem
Index	of	the	current	item	in	the	PanelItems	array.	Ensure	that	ItemsNumber	>
0	before	using	CurrentItem.

TopPanelItem
Panel	item	which	is	at	the	first	visible	position	in	the	panel.

Visible
If	non-zero,	panel	is	visible.

Focus
If	non-zero,	panel	is	active.

ViewMode
Number	of	panel	view	mode.

ColumnTypes
Null-terminated	string,	which	describes	column	types.	Column	types	are
encoded	with	one	or	several	letters,	separated	by	commas,	for	example:
"N,SC,D,T".

ColumnWidths

Null-terminated	string,	which	describes	columns	width.
CurDir
Current	directory	for	panel.	If	Type	=	PTYPE_TREEPANEL,	CurDir
contains	currently	selected	directory	in	panel.

ShortNames
Non-zero,	if	short	file	names	mode	is	on.

SortMode
Panel	sort	mode.	Can	be	SM_DEFAULT,	SM_UNSORTED,	SM_NAME,
SM_EXT,	SM_MTIME,	SM_CTIME,	SM_ATIME,	SM_SIZE,	SM_DESCR,
SM_OWNER,	SM_COMPRESSEDSIZE,	SM_NUMLINKS.

Flags
Additional	flags.	Can	be	a	combination	of	the	following	values	(the
PANELINFOFLAGS	enumeration):

Flag Description

PFLAGS_SHOWHIDDEN Hidden	and	system	files	are	displayed.

PFLAGS_HIGHLIGHT File	highlighting	is	used.

PFLAGS_REVERSESORTORDER Descending	sort	is	used.

PFLAGS_USESORTGROUPS Sort	groups	are	used.

PFLAGS_SELECTEDFIRST Show	selected	files	first.

PFLAGS_REALNAMES Plugin	panel	items	are	shown	with	real	file	names
(see	also	OPIF_REALNAMES).

PFLAGS_NUMERICSORT Numeric	sort	is	used.

PFLAGS_PANELLEFT Left	panel.

Reserved
Reserved	for	future	use.

Remarks
Additional	information	about	panel	can	be	retrieved	using	the	AdvControl
function	(the	ACTL_GETPANELSETTINGS	command)

See	also:
structures	|	TPanelInfo

PanelMode
main	|	structures

The	PanelMode	structure	describes	one	panel	view	mode.	An	array	of	these
structures	should	be	passed	to	the	GetOpenPluginInfo	function.

struct	PanelMode

{

		char	*ColumnTypes;

		char	*ColumnWidths;

		char	**ColumnTitles;

		int	FullScreen;

		int	DetailedStatus;

		int	AlignExtensions;

		int	CaseConversion;

		char	*StatusColumnTypes;

		char	*StatusColumnWidths;

		DWORD	Reserved[2];

};

Elements
ColumnTypes
Text	string	which	describes	column	types.	Column	types	are	encoded	by	one
or	more	letters	separated	by	commas:	"N,SC,D,T".	To	use	standard	Far
panel	view	modes,	set	this	field	to	NULL.

ColumnWidths

Text	string	which	gives	the	columns	width.
ColumnTitles
Pointer	to	an	array	of	strings	which	specifies	the	column	labels.	To	use
standard	column	names,	set	this	value	to	NULL.

FullScreen
If	TRUE	-	resize	panel	to	fill	the	entire	window	(instead	of	half).

DetailedStatus
If	TRUE,	the	status	line	will	display	name,	size,	date	and	time	of	the	file,	if
StatusColumnTypes=NULL	and	StatusColumnWidths=NULL.	Otherwise,	the

status	line	will	only	display	the	file	name.
AlignExtensions
TRUE	-	align	file	extensions.

CaseConversion
FALSE	-	to	preserve	file	names.

StatusColumnTypes
As	ColumnTypes,	but	applies	to	the	status	line.	To	use	the	standard	status	line,
set	StatusColumnTypes	to	NULL.

StatusColumnWidths
As	ColumnWidths,	but	applies	to	the	status	line.
Reserved
Reserved	for	future	use.	Set	to	0.

See	also:
structures	|	TPanelMode

PanelRedrawInfo
main	|	structures

The	PanelRedrawInfo	structure	can	be	used	to	determine	the	new	cursor
position	after	a	panel	redraw	caused	by	the	Control	function.

struct	PanelRedrawInfo

{

		int	CurrentItem;

		int	TopPanelItem;

};

Elements
CurrentItem
Zero-based	index	of	the	current	panel	item.

TopPanelItem
Zero-based	index	of	the	first	visible	panel	item.

See	also:
structures	|	TPanelRedrawInfo

PluginInfo
main	|	structures

The	PluginInfo	structure	describes	a	FAR	Manager	plugin.

struct	PluginInfo

{

		int	StructSize;

		DWORD	Flags;

		const	char	*	const	*DiskMenuStrings;

		int	*DiskMenuNumbers;

		int	DiskMenuStringsNumber;

		const	char	*	const	*PluginMenuStrings;

		int	PluginMenuStringsNumber;

		const	char	*	const	*PluginConfigStrings;

		int	PluginConfigStringsNumber;

		const	char	*CommandPrefix;

		DWORD	Reserved;

};

Elements
StructSize
This	field	should	contain	the	size	of	the	PluginInfo	structure.

Flags
A	combination	of	the	following	values	(the	PLUGIN_FLAGS	enumeration).

Flag Description

PF_PRELOAD Disables	plugin	parameters	caching	and	forces	FAR
to	always	load	the	plugin	at	startup.	Must	be
specified	if	it	is	necessary	to	change	items	in
"Disks",	"Plugins"	or	"Plugins	configuration"	menus
dynamically.	This	flag	decreases	efficiency	of
memory	usage.

PF_DISABLEPANELS Do	not	show	the	plugin	in	the	"Plugin	commands"
menu	called	from	panels.

PF_EDITOR Show	the	plugin	in	the	"Plugin	commands"	menu
called	from	the	FAR	editor.

PF_VIEWER Show	the	plugin	in	the	"Plugin	commands"	menu
called	from	the	FAR	viewer.

PF_DIALOG Show	the	plugin	in	the	"Plugin	commands"	menu
called	from	the	FAR	dialog.

PF_FULLCMDLINE Forces	FAR	to	pass	the	full	command	line	(with	the
prefix	CommandPrefix)	to	the	plugin.	Use	this	flag
when	a	plugin	can	handle	multiple	command	line
prefixes.

DiskMenuStrings
If	the	plugin	adds	items	to	the	Disks	menu,	this	field	is	set	to	the	address	of	an
array	with	pointers	to	menu	items,	otherwise	set	it	to	NULL.

DiskMenuNumbers
Preferred	hotkey	numbers	for	the	items	added	to	the	Disks	menu.	To	have	FAR
autoassign	them,	either	set	DiskMenuNumbers	to	NULL	or	set	preferred
numbers	to	0.
If	specified	number	is	already	in	use	by	another	plugin,	FAR	reassigns	it	itself.

DiskMenuStringsNumber
Number	of	items	to	be	added	to	the	Disks	menu.

PluginMenuStrings
Similar	to	DiskMenuStrings,	but	items	are	added	to	the	"Plugin	commands"
menu.

PluginMenuStringsNumber
Number	of	items	to	be	added	to	the	"Plugin	commands"	menu.

PluginConfigStrings
Similar	to	DiskMenuStrings,	but	items	are	added	to	the	"Plugins
configuration"	menu.

PluginConfigStringsNumber
Numer	of	items	to	be	added	to	the	"Plugins	configuration"	menu.

CommandPrefix
This	parameter	can	contain	a	string	of	command	line	prefixes	that	will	be	used
to	intercept	FAR	commands.	For	example,	if	the	string	passed	in	this	field	is
ftp	and	the	user	enters	anything	beginning	with	ftp:	in	the	command	line,
OpenPlugin	with	OPEN_COMMANDLINE	will	be	called.
To	define	more	than	one	prefix,	the	plugin	must	separate	the	prefixes	with	a
colon.	For	example,	if	the	plugin	needs	to	process	the	edit:,	goto:	and
view:	prefixes,	the	string	passed	in	this	field	should	be	to:

CommandPrefix="edit:view:goto";

If	the	plugin	does	not	process	FAR	commands,	set	this	parameter	to	NULL.
Reserved
Reserved	for	future	use,	should	be	set	to	NULL.

Remarks

1.	 All	data	passed	in	this	structure	must	be	valid	after	returning	from
GetPluginInfo,	therfore	pointers	to	the	stack	are	illegal,	use	static	or	global
variables	instead.

2.	 The	structure	passed	to	the	GetPluginInfo	function,	is	preinitialized	to
zeros.

See	also:
structures	|	TPluginInfo

PluginPanelItem
main	|	structures

The	PluginPanelItem	structure	describes	a	single	item	in	a	file	system	emulated
by	a	plugin.	It	is	used	both	to	return	information	about	the	plugin	file	system	and
to	pass	a	list	of	files	to	process	to	the	plugin.

	Attention!
The	size	of	the	PluginPanelItem	structure	should	be	366	bytes.

struct	PluginPanelItem

{

#ifndef	_FAR_USE_WIN32_FIND_DATA

		struct	FAR_FIND_DATA			FindData;

#else

		WIN32_FIND_DATA	FindData;

#endif

		DWORD	PackSizeHigh;

		DWORD	PackSize;

		DWORD	Flags;

		DWORD	NumberOfLinks;

		char	*Description;

		char	*Owner;

		char	**CustomColumnData;

		int	CustomColumnNumber;

		DWORD_PTR	UserData;

		DWORD	CRC32;

		DWORD	Reserved[2];

};

Elements
FindData
The	FindData	field	contains	many	file	parameters.	See	the	description	of	the
WIN32_FIND_DATA	structure	for	detailed	information.

PackSizeHigh
Contains	the	high-order	4	bytes	of	the	file's	packed	size	(in	bytes).	Currently
unused.

PackSize

Contains	the	low-order	4	bytes	of	the	file's	packed	size	(in	bytes).
Flags
A	combination	of	the	following	values	(the	PLUGINPANELITEMFLAGS
enumeration):

Flag Description

PPIF_PROCESSDESCR Use	FAR's	internal	description	processing.	This	flag
can	be	set	for	processed	files	in	the	DeleteFiles,
GetFiles	and	PutFiles	functions.	If	set,	FAR	will
update	the	description	file	contents	using	file	names
returned	from	the	GetOpenPluginInfo	function.

PPIF_SELECTED In	Control	functions	FCTL_GETPANELINFO,
FCTL_GETANOTHERPANELINFO,
FCTL_SETSELECTION	and
FCTL_SETANOTHERSELECTION	this	flag	allows
to	check	and	set	item	selection.
In	PutFiles,	GetFiles	and	ProcessHostFile	functions,
if	an	operation	has	failed,	but	some	of	the	files	were
successfully	processed,	the	plugin	can	remove
selection	only	from	the	processed	files.	To	perform
this,	the	plugin	should	clear	the	PPIF_SELECTED
flag	in	processed	items	in	the	PluginPanelItem	list
passed	to	the	function.

PPIF_USERDATA If	this	flag	is	set,	FAR	considers	the	UserData	field	a
pointer	to	a	user	data	structure.	Cf.	the	description	of
the	UserData	field.

The	low	order	word	of	the	Flags	parameter	can	be
used	by	a	plugin	for	its	own	flags.

NumberOfLinks
Number	of	hard	links.

Description
Points	to	a	file	description.	Plugins	can	use	this	field	to	pass	file	descriptions
to	FAR.	If	not	required,	set	theis	field	to	NULL.	If	a	plugin	uses	standard	FAR
description	processing	and	has	passed	description	file	names	to	FAR	in	the
GetOpenPluginInfo	function,	this	field	also	must	be	NULL.

Owner
Points	to	a	file	owner	name.	Plugins	can	use	this	field	to	pass	file	owner
names	to	FAR.	If	not	used,	set	this	field	to	NULL.

CustomColumnData

Points	to	an	array	of	string	addresses	for	plugin	defined	column	types.	The
first	string	contains	data	for	the	C0	column	type,	the	second	-	for	C1	and	so
on.	Up	to	10	additional	column	types	from	C0	to	C9	can	be	defined.	If	not
used,	set	this	field	to	NULL.

CustomColumnNumber
Number	of	data	strings	for	additional	column	types.

UserData
This	field	can	be	used	by	the	plugin	to	store	either	a	32-bit	value	or	a	pointer
to	a	data	structure.	In	the	latter	case,	the	first	field	of	this	structure	must	be	a
32-bit	value	containig	the	structure	size	and	the	plugin	must	set
PPIF_USERDATA	in	the	Flags	field.	This	allows	FAR	to	copy	the	structure
correctly	to	FAR	internal	buffers	and	later	pass	it	to	the	plugin	in
PluginPanelItem	lists.	In	the	FreeFindData	function	the	plugin	must	free	the
memory	occupied	by	this	additional	structure.

CRC32
A	32-bit	CRC	(checksum)	value.	FAR	does	not	use	this	field.

Reserved
Reserved	for	future	use,	should	be	set	to	0.

Remarks

1.	 All	the	data	allocated	by	the	plugin	for	Description,	Owner	and
CustomColumnData	members	must	be	released	by	the	plugin.	FAR	copies
these	data	to	its	own	structures,	so	it	can	be	released	at	any	time	after
passing	these	to	FAR	in	the	GetFindData	function.

2.	 If	the	plugin	uses	the	UserData	field	to	store	information	about	a	file,	the
plugin	writer	should	check	the	validity	of	that	field.	This	is	related	to	the
following	issue:	When	FAR	calls	the	GetFiles	function	from	the	list	of
found	files,	only	the	FindData	member	of	the	PluginPanelItem	structure	is
filled	correctly.	All	other	fields	are	equal	to	NULL.

See	also:
structures	|	_FAR_USE_WIN32_FIND_DATA	|
FAR_FIND_DATA	|	TPluginPanelItem

PluginStartupInfo
main	|	structures

The	PluginStartupInfo	structure	is	used	in	the	SetStartupInfo	function	to	pass
various	important	information	to	the	plugin.

struct	PluginStartupInfo

{

		int	StructSize;

		char	ModuleName[NM];

		int	ModuleNumber;

		const	char	*RootKey;

		FARAPIMENU													Menu;

		FARAPIDIALOG											Dialog;

		FARAPIMESSAGE										Message;

		FARAPIGETMSG											GetMsg;

		FARAPICONTROL										Control;

		FARAPISAVESCREEN							SaveScreen;

		FARAPIRESTORESCREEN				RestoreScreen;

		FARAPIGETDIRLIST							GetDirList;

		FARAPIGETPLUGINDIRLIST	GetPluginDirList;

		FARAPIFREEDIRLIST						FreeDirList;

		//	FAR	>=	1.50

		FARAPIVIEWER											Viewer;

		FARAPIEDITOR											Editor;

		FARAPICMPNAME										CmpName;

		//	FAR	>=	1.52

		FARAPICHARTABLE								CharTable;

		FARAPITEXT													Text;

		//	FAR	>=	1.60

		FARAPIEDITORCONTROL				EditorControl;

		//	FAR	>=	1.70

		FARSTANDARDFUNCTIONS		*FSF;

		FARAPISHOWHELP									ShowHelp;

		FARAPIADVCONTROL							AdvControl;

		FARAPIINPUTBOX									InputBox;

		FARAPIDIALOGEX									DialogEx;

		FARAPISENDDLGMESSAGE			SendDlgMessage;

		FARAPIDEFDLGPROC							DefDlgProc;

		DWORD_PTR														Reserved;

		FARAPIVIEWERCONTROL				ViewerControl;

};

Elements
StructSize
Structure	size.	If	new	fields	are	added,	this	field	will	allow	detection	of	the
version	of	the	structure	used.

ModuleName
Full	name	with	path	of	the	plugin	module.

ModuleNumber
Number	of	the	plugin	module.	Passed	as	parameter	in	some	functions.

RootKey
Registry	root	key,	where	plugins	can	save	their	parameters.	Valid	both	for
HKEY_CURRENT_USER	and	HKEY_LOCAL_MACHINE.	Usually	it	is
"Software\Far\Plugins",	but	you	must	not	specify	this	string	directly,
because	it	can	be	changed	or	can	become	optional	in	future.	For	example,	if
FAR	is	started	with	'/u	user1'	command	line	parameter,	RootKey	will
contain	"Software\Far\Users\user1\Plugins".

Do	not	save	parameters	directly	in	the	RootKey,	create	your	own	subkey	here.
Menu
Address	of	the	Menu	function.

Dialog
Address	of	the	Dialog	function.

Message
Address	of	the	Message	function.

GetMsg

Address	of	the	GetMsg	function.
Control
Address	of	the	Control	function.

SaveScreen
Address	of	the	SaveScreen	function.

RestoreScreen
Address	of	the	RestoreScreen	function.

GetDirList
Address	of	the	GetDirList	function.

GetPluginDirList
Address	of	the	GetPluginDirList	function.

FreeDirList
Address	of	the	FreeDirList	function.

Viewer
Address	of	the	Viewer	function.

Editor
Address	of	the	Editor	function.

CmpName
Address	of	the	CmpName	function.

CharTable
Address	of	the	CharTable	function.

Text
Address	of	the	Text	function.

EditorControl
Address	of	the	EditorControl	function.

FSF
Pointer	to	the	FarStandardFunctions	structure,	which	contains	addresses	of
useful	functions	from	far.exe.

ShowHelp
Address	of	the	ShowHelp.

AdvControl
Address	of	the	AdvControl.

InputBox
Address	of	the	InputBox.

DialogEx
Address	of	the	DialogEx.

SendDlgMessage
Address	of	the	SendDlgMessage.

DefDlgProc
Address	of	the	DefDlgProc.

DefDlgProc
Address	of	the	ViewerControl.

Remarks
FAR	Manager	versions:

below	1.50	(with	plugins	support)	-	do	not	contain	fields	after	FreeDirList;
below	1.52	-	do	not	contain	fields	after	CmpName;
below	1.60	-	do	not	contain	fields	after	Text;
below	1.65	-	do	not	contain	fields	after	EditorControl

So,	if	you	intend	to	use	Viewer	or	Editor	functions	or	any	other	function	after
these,	you	should	first	check	the	StructSize	field,	to	determine	if	the	required
function	is	present	in	the	running	FAR	version.

See	also:
structures	|	TPluginStartupInfo

WindowInfo
main	|	structures

The	WindowInfo	structure	contains	information	about	one	FAR	Manager
window.	A	plugin	can	retrieve	this	information	using	the
ACTL_GETWINDOWINFO	command.

struct	WindowInfo{

		int		Pos;

		int		Type;

		int		Modified;

		int		Current;

		char	TypeName[64];

		char	Name[NM];

};

Elements
Pos
Zero-based	number	of	the	window	to	retrieve	information	for.	Pos	=	-1	will
return	information	for	the	current	window.

Type
Window	type.	Can	be	one	of	the	following	(the	WINDOWINFO_TYPE
enumeration):

Type Description

WTYPE_PANELS File	panels.

WTYPE_VIEWER Internal	viewer	window.

WTYPE_EDITOR Internal	editor	window.

WTYPE_DIALOG Dialog.

WTYPE_VMENU Menu.

WTYPE_HELP Help	window.

Modified
Modification	flag.	Can	be	set	only	if	Type	=	WTYPE_EDITOR.

Current
Nonzero	if	the	window	is	active.

TypeName
The	name	of	the	window	type	(Panels,View,Edit,Help,VMenu),	depends	on
the	current	language	setting	of	Far.

Name
Window	title.	For	WTYPE_VIEWER	and	WTYPE_EDITOR	windows	this
is	a	file	name.	For	panels,	the	name	of	the	currently	selected	file	object.	For
the	help	window	-	full	path	to	the	opened	HLF	file.	For	menu	and	dialogs	-
header.

Example
void	GetFarWindowInfo()

{

		WindowInfo	WInfo;

		int	CountWindow;

		int	I;

		FILE	*Fp;

		if((Fp=fopen("window.log","a+t"))	==	NULL)

						return	;

		//	request	window	count

		CountWindow=(int)Info.AdvControl(Info.ModuleNumber,ACTL_GETWINDOWCOUNT,NULL);

		fprintf(Fp,"WindowCount=%i\n",CountWindow);

		for	(I=0;	I	<	CountWindow;	I++)

		{

				WInfo.Pos=I;

				//	request	window	information

				Info.AdvControl(Info.ModuleNumber,ACTL_GETWINDOWINFO,(void*)&WInfo);

				//	output	it

				fprintf(Fp,"Window[%i],	Type=%i	(%s),	File=[%s]	Current=%i,	Modified=%i\n",

															I,WInfo.Type,WInfo.TypeName,WInfo.Name,

															WInfo.Current,WInfo.Modified);

		}

		fclose(Fp);

		//	set	window	number	1	(i.e.	second)

		Info.AdvControl(Info.ModuleNumber,ACTL_SETCURRENTWINDOW,(void*)1);

}

See	also:
structures	|	AdvControl	|	TWindowInfo

Editor	plugin	structures
main	|	structures

Structure Description

EditorBookMarks Information	about	bookmarks	in	the	currently	edited
file

EditorColor Information	about	color	regions

EditorConvertPos Conversion	between	real	and	screen	positions	of	the
cursor

EditorConvertText Text	conversion	between	the	OEM	and	the	internal	Far
character	set

EditorGetString Editor	line	retrieval

EditorInfo Current	Far	editor	state

EditorSaveFile Editor	file	saving

EditorSelect Text	selection/deselection	in	the	editor

EditorSetParameter Cditor	parameter	control

EditorSetPosition Position	control	in	the	Far	editor

EditorSetString Change	or	insert	a	string	in	the	Far	editor

See	also:
Exported	functions,	Service	functions,	Dialog	API,	Archive
support,	Addons,	Delphi	structures,	Win32	structures

EditorBookMarks
main	|	structures

The	EditorBookMarks	structure	is	used	in	the	EditorControl	function	to
retrieve	information	about	bookmarks	in	the	current	editor
(ECTL_GETBOOKMARKS	command).

struct	EditorBookMarks

{

		long	*Line;

		long	*Cursor;

		long	*ScreenLine;

		long	*LeftPos;

		DWORD	Reserved[4];

};

Elements
Line
Pointer	to	an	array	of	line	numbers	for	each	bookmark.

Cursor
Pointer	to	an	array	of	cursor	positions	for	each	bookmark.

ScreenLine
Points	to	an	array	of	line	numbers	specifying	the	first	line	visible	on	the	screen
for	each	bookmark.

LeftPos
Points	to	an	array	of	positions	specifying	the	leftmost	character	visible	on	the
screen	for	each	bookmark.

Reserved
Reserved	for	future	use.

Remarks

1.	 Before	retrieving	information	about	bookmarks	you	should	determine	the
length	of	the	arrays	Line,	Cursor,	ScreenLine	and	LeftPos	and	allocate
the	required	amount	of	memory	for	them.	The	bookmark	count	is	stored	in
the	BookMarkCount	member	of	the	EditorInfo	structure.

2.	 If	a	plugin	does	not	need	the	information	stored	in	one	of	the	arrays,	it
should	set	the	respective	member	of	the	structure	to	NULL.

See	also:
Structures	|	TEditorBookMarks

EditorColor
main	|	structures

The	EditorColor	structure	is	used	in	the	EditorControl	function	to	get	or	set
information	about	color	regions	in	FAR	editor.

struct	EditorColor

{

		int	StringNumber;

		int	ColorItem;

		int	StartPos;

		int	EndPos;

		int	Color;

};

Elements
StringNumber
Line	number	to	process	or	-1	for	current	string.

ColorItem
Ordinal	number	of	the	color	region	whose	information	is	to	be	retrieved.	A
line	consists	of	a	set	of	segments	(regions)	all	of	which	can	have	a	different
color.	Set	ColorItem	to	0	to	retrieve	information	about	the	first	segment,	1	for
the	second,	and	so	on.
This	field	isn't	used	with	the	ECTL_ADDCOLOR	command.	The	new	color	is
applied	to	the	whole	region	between	positions	StartPos	and	EndPos,	regardless
of	color	regions	which	existed	there	before.

StartPos,	EndPos
Line	region	bounds.
Input	parameters	for	the	ECTL_ADDCOLOR	command	and	output
parameters	for	the	ECTL_GETCOLOR	command.

Color
Character	color.
Input	parameter	for	the	ECTL_ADDCOLOR	command	and	output	parameter
for	the	ECTL_GETCOLOR	command.
For	the	ECTL_ADDCOLOR	command,	if	Color	is	set	to	0,	EndPos	is
ignored	and	the	command	will	remove	all	existing	color	regions	starting	at

position	StartPos.	In	the	latter	case,	if	StartPos	is	-1,	all	color	regions	for	the
line	will	be	removed.

Starting	with	build	1957	FAR	highlights	the	tabulation	character	to	its	full
length.	If	it	is	needed	to	highlight	the	tab	character	as	a	character	of	width	1
then	in	addition	to	specifying	the	color	for	the	Color	member	set	the
ECF_TAB1	flag	(EDITORCOLORFLAGS	enum):

Flag Description

ECF_TAB1 If	a	tab	character	is	to	be	found	inside	a	color	region,
highlight	it	as	a	character	of	width	1.

Remarks
Partial	deletion	of	color	regions	is	not	very	useful,	as	FAR	does	not	renormalize
the	segments	as	new	ones	are	added,	this	is	the	programmer's	responsibility.
Normally,	it	is	necessary	to	clear	all	regions	in	line,	and	recreate	them	as
normalized	---	non-overlapping	---	segments	(otherwise	the	regions	will
accumulate	causing	increased	memory	usage).

Using	the	Color	parameter,	the	background	color	can	be	set	also.	Furthermore,
regardless	of	line	length,	you	can	set	a	color	region	starting	from	the	first	visible
position	and	ending	at	the	rightmost;	this	will	change	the	editor	background
color.	Unfortunately	this	method	won't	work	for	files	with	a	line	count	less	than
the	editor	screen	height.

See	also:
structures	|	TEditorColor

EditorConvertPos
main	|	structures

The	EditorConvertPos	structure	is	used	in	the	EditorControl	function	to	convert
a	position	in	the	line	to	a	screen	position	(and	vice	versa).	This	is	useful	for	lines
which	contain	tab	characters.

struct	EditorConvertPos

{

		int	StringNumber;

		int	SrcPos;

		int	DestPos;

};

Elements
StringNumber
Line	number	or	-1	for	current	line.

SrcPos
Source	position.

DestPos
Converted	position.

See	also:
structures	|	TEditorConvertPos

EditorConvertText
main	|	structures

The	EditorConvertText	structure	is	used	in	the	EditorControl	function	for	text
conversion	from	OEM-encoding	to	the	current	FAR	editor's	codepage	(and	vice
versa).

struct	EditorConvertText

{

		char	*Text;

		int	TextLength;

};

Elements
Text
Points	to	text	for	conversion.

TextLength
Length	of	text	for	conversion.

See	also:
structures	|	TEditorConvertText

EditorGetString
main	|	structures

The	EditorGetString	structure	is	used	in	the	EditorControl	function	to	retrieve	a
text	line	from	the	FAR	editor.

struct	EditorGetString

{

		int	StringNumber;

		const	char	*StringText;

		const	char	*StringEOL;

		int	StringLength;

		int	SelStart;

		int	SelEnd;

};

Elements
StringNumber
Zero-based	index	of	the	line	to	retrieve.	Can	be	set	to	-1	to	retrieve	the	current
line	(see	this	article	regarding	the	-1	value).

StringText
Pointer	to	line	data.	Cannot	be	modified.	Note,	that	line	data	is	not	a	zero-
terminated	string	and	can	contain	ASCII	NULL-s.

StringEOL
End-of-line	sequence.	Can	be	the	empty	string,	\r\n	or	\n

StringLength
Size	of	data	pointed	to	by	StringText.

SelStart
Start	position	of	selection	in	the	line.	If	line	doesn't	contain	selection	this	field
has	a	value	of	-1.

SelEnd
End	position	of	selection	in	the	line.	If	selection	includes	the	StringEOL
sequence	this	field	has	a	value	of	-1.

See	also:

structures	|	TEditorGetString

EditorInfo
main	|	structures

The	EditorInfo	structure	is	used	in	the	EditorControl	function	to	get	information
about	the	current	FAR	editor	state.

struct	EditorInfo

{

		int	EditorID;

		const	char	*FileName;

		int	WindowSizeX;

		int	WindowSizeY;

		int	TotalLines;

		int	CurLine;

		int	CurPos;

		int	CurTabPos;

		int	TopScreenLine;

		int	LeftPos;

		int	Overtype;

		int	BlockType;

		int	BlockStartLine;

		int	AnsiMode;

		int	TableNum;

		DWORD	Options;

		int	TabSize;

		int	BookMarkCount;

		DWORD	CurState;

		DWORD	Reserved[6];

};

Elements
EditorID
Identifier	of	the	editor	instance.	Each	editor	instance	has	a	unique	identifier
during	the	lifetime	of	a	FAR	session.

FileName
Full	path	and	name	of	the	edited	file	.

WindowSizeX,	WindowSizeY

Width	and	height	of	the	editor	window.
TotalLines
Total	number	of	lines	in	the	edited	text.

CurLine
Number	of	the	current	line.

CurPos
Cursor	position	in	the	current	line.

CurTabPos
Cursor	screen	position	in	the	current	line.	If	the	line	does	not	contain	tab
characters,	CurTabPos	is	equal	to	CurPos.

TopScreenLine
Number	of	the	line	at	the	top	of	the	screen.

LeftPos
Position	of	the	left	border	of	the	editor	window	in	the	edited	text.

Overtype
Overtype	mode	state.	0	-	insert	mode,	1	-	overtype	mode.

BlockType
Type	of	the	selected	block.	One	of	the	following	values	(the
EDITOR_BLOCK_TYPES	enum):

Block	type Description

BTYPE_NONE no	selection,

BTYPE_STREAM stream	block

BTYPE_COLUMN column	(rectangular)	block.

BlockStartLine
Number	of	the	first	line	in	the	selected	block.

AnsiMode
ANSI	text	mode	state.	This	field	is	nonzero	only	when	no	character	table	is
used	and	the	text	is	in	the	ANSI	codepage.

TableNum
Number	of	FAR	character	table	currently	used	in	the	editor.	-1	if	no	table	is
used	and	the	text	is	in	OEM	format	(in	this	case	see	AnsiMode).	If	this	field	is

not	-1,	you	can	pass	it	to	the	CharTable	function	to	get	the	table.
Options
Describes	the	state	of	editor	options.	Can	be	a	combination	of	the	following
flags	(the	EDITOR_OPTIONS	enumeration):

Flag Description

EOPT_EXPANDTABS The	"Expand	all	tabs	to	spaces"	option	is	selected.
While	editing	a	file	convert	all	entered	and	existing
Tab	characters	to	the	corresponding	number	of
spaces.
This	parameter	can	be	changed	using	the
ECTL_SETPARAM	command
(ESPT_EXPANDTABS).

EOPT_EXPANDONLYNEWTABS The	"Expand	newly	entered	tabs	to	spaces"	option
is	selected.	While	editing	a	file	convert	all	newly
entered	Tab	characters	to	the	corresponding	number
of	spaces.	Existing	Tab	characters	won't	be
converted.
This	parameter	can	be	changed	using	the
ECTL_SETPARAM	(ESPT_EXPANDTABS).

EOPT_PERSISTENTBLOCKS "Persistent	blocks"	option	is	on.

EOPT_DELREMOVESBLOCKS "Del	removes	blocks"	option	is	on.

EOPT_AUTOINDENT "Auto	indent"	option	is	on.	This	parameter	can	be
changed	using	the	ECTL_SETPARAM	command.

EOPT_AUTODETECTTABLE "Autodetect	character	table"	option	is	on.

EOPT_CURSORBEYONDEOL "Cursor	beyond	end	of	line"	option	is	on.	This
parameter	can	be	changed	using	the
ECTL_SETPARAM	command.

EOPT_SAVEFILEPOSITION "Save	file	position"	option	is	on.	This	parameter
can	be	changed	using	the	ECTL_SETPARAM
command.

TabSize
Tab	size.	This	parameter	can	be	changed	using	the	ECTL_SETPARAM
command.

BookMarkCount
Number	of	editor	bookmarks.	To	retrieve	information	about	bookmarks,	use
the	ECTL_GETBOOKMARKS	command.

CurState

Current	state	of	the	text	in	the	editor.	Can	contain	one	or	more	of	the	following
flags	(the	EDITOR_CURRENTSTATE	enumeration):

Flag Description

ECSTATE_MODIFIED modified

ECSTATE_SAVED saved

ECSTATE_LOCKED locked	(Ctrl-L)

Reserved
Reserved	for	future	use.

Remarks
To	determine	current	character	set	in	the	editor	exactly,	the	following	table	can
be	used:
																				EditorInfo.TableNum								EditorInfo.AnsiMode

DOS																										-1																									0

WIN																										-1																									1

Other																			Table	number																				0

For	"Other",	the	CharTable	function	should	be	used	to	retrieve	the	character
table	name.

See	also:
structures	|	TEditorInfo

EditorSelect
main	|	structures

The	EditorSelect	is	used	in	the	EditorControl	function	to	select	or	deselect	text
in	the	FAR	editor.

struct	EditorSelect

{

		int	BlockType;

		int	BlockStartLine;

		int	BlockStartPos;

		int	BlockWidth;

		int	BlockHeight;

};

Elements
BlockType
One	of	the	following	values	(the	EDITOR_BLOCK_TYPES	enumeration):

Block	type Description

BTYPE_NONE deselect	block

BTYPE_STREAM select	stream	block

BTYPE_COLUMN select	column	(rectangular)	block

If	BlockType	is	equal	to	BTYPE_NONE,	other	fields	of	the	structure	are
ignored.

BlockStartLine
First	line	of	the	selection.	The	field	can	be	-1	-	current	line	will	be	the	start	of
the	block.

BlockStartPos
Start	position	of	the	selection.	If	BlockStartPos	=	-1,	text	is	deselected.

BlockWidth
Block	width.	Can	be	negative.

BlockHeight
Block	height,	should	be	>=	1

Remarks

1.	 EditorControl	function	returns	FALSE,	if:
size	of	transferred	variable	is	less	than	EditorSelect	structure;
BlockHeight	is	less	than	1;
BlockStartLine	is	greater	than	number	of	lines	in	editor.

Example
Stream	block	from	(X1,Y1)	to	(X2,Y2)	can	be	selected	in	this	way:

es.BlockType=BTYPE_STREAM;

es.BlockStartLine=min(Y2,Y1);

es.BlockStartPos=(Y1	<	Y2?X1:X2);

//	small	correction	if	positions	are	equal

if(X1	==	X2)

		es.BlockStartPos+=(Y1	<	Y2?1:-1);

es.BlockHeight=max(Y1,Y2)-min(Y1,Y2)+1;

if(Y1	<	Y2)

		es.BlockWidth=X2-X1+1;

else

		es.BlockWidth=X1-X2+1;

if(X1	==	X2)

{

		if(Y1	<	Y2)

				es.BlockStartPos--;

		else

				es.BlockStartPos++;

}

Info.EditorControl(ECTL_SELECT,(void*)&es);

See	also:
structures	|	TEditorSelect

EditorSetParameter
main	|	structures

The	EditorSetParameter	structure	is	used	in	the	EditorControl	function	to
change	the	settings	of	the	current	FAR	editor.

struct	EditorSetParameter

{

		int	Type;

		union	{

				int	iParam;

				char	*cParam;

				DWORD	Reserved1;

		}	Param;

		DWORD	Flags;

		DWORD	Reserved2;

};

Elements
Type
Which	setting	to	change.	Can	have	one	of	the	following	values	(the
EDITOR_SETPARAMETER_TYPES	enum):

Option Description

ESPT_AUTOINDENT Sets	the	"Auto	indent"	mode	according	to
iParam=TRUE	or	FALSE.

ESPT_CHARCODEBASE Display	format	of	the	current	character	code	in	the
editor	status	line.	iParam	can	have	one	of	the
following	values:

0	-	octal	(3	characters	with	leading	zeros)
1	-	decimal	(3	characters	with	leading	spaces)
2	-	hexadecimal	(2	digits	+	the	character	'h')

ESPT_CHARTABLE Sets	the	current	character	table	in	the	editor.	The
value	of	iParam	can	be:

1	-	OEM
2	-	ANSI
3	-	character	table	with	the	index	0
...

N	-	character	table	with	the	index	(N-3)

In	case	of	an	error,	FALSE	is	returned	by
EditorControl	and	the	character	table	is	not	changed.

ESPT_CURSORBEYONDEOL Sets	the	"Cursor	beyond	end	of	line"	mode	according
to	iParam=TRUE	or	FALSE.

ESPT_EXPANDTABS Controls	the	behaviour	of	tabs	to	spaces	convertion.
iParam	can	be	one	of	the	following	flags
(EXPAND_TABS	enum):

Flag Description

EXPAND_NOTABS

EXPAND_ALLTABS

EXPAND_NEWTABS

	Attention!
This	operation	is	not	reversible;	that	is,	if	a
file	contained	tabs	instead	of	spaces,	the
sequences	of	spaces	in	the	file	will	not	be
converted	to	tabs	when	the	"Expand	tabs
to	spaces"	mode	is	disabled.

ESPT_LOCKMODE Prohibit	or	allow	user	to	modify	the	text	in	the	editor
(similar	to	Ctrl-L)	according	to	iParam=TRUE	or
FALSE.

ESPT_SAVEFILEPOSITION Sets	the	"Save	file	position"	option	according	to
iParam=TRUE	or	FALSE.

ESPT_SETWORDDIV Changes	the	word	delimiter	set	(using	the	cParam
field)	for	the	current	editor	instance.
If	cParam	is	NULL	or	the	empty	string,	the	default
delimiter	set	-	"~!%^&*()+|{}:"<>?`-=\
[];',./"	-	is	used.	The	word	delimiter	set	cannot
contain	more	than	255	characters.

ESPT_GETWORDDIV Retrieves	the	word	delimiter	set	(using	the	cParam
field)	for	the	current	editor	instance.
cParam	should	point	to	a	buffer	of	at	least	256
characters.

ESPT_TABSIZE Changes	the	tabsize.	iParam	is	the	new	value	-
between	1	and	512.	If	iParam	is	out	of	range,	tabsize
is	set	to	8.

iParam
Contains	a	numeric	setting;	see	the	description	of	the	individual	settings.

cParam

Contains	a	pointer	to	a	null-terminated	text	string;	see	the	description	of
individual	settings.

Reserved1
Not	used;	reserved	for	future	use.

Flags
Contains	additional	flags	or	data;	see	the	description	of	individual	settings.

Reserved2
Not	used;	reserved	for	future	use.	Must	be	set	to	0.

Remarks
If	a	plugin	changes	the	values	of	the	"Tabsize"	and	"Expand	tabs	to	spaces"
parameters	at	the	same	time,	it	is	recommended	to	set	the	tabsize	first	and	then
set	the	"Expand	tabs	to	spaces"	mode.

See	also:
structures	|	TEditorSetParameter

EditorSetPosition
main	|	structures

The	EditorSetPosition	structure	is	used	in	the	EditorControl	function	to	set	the
cursor	position	and	state	in	the	FAR	editor.

struct	EditorSetPosition

{

		int	CurLine;

		int	CurPos;

		int	CurTabPos;

		int	TopScreenLine;

		int	LeftPos;

		int	Overtype;

};

Elements
CurLine
New	value	of	the	current	line	index,	or	-1	to	retain	the	current	value.

CurPos
New	value	of	the	cursor	position	in	the	line,	or	-1	to	retain	the	current	value.

CurTabPos
New	value	of	the	cursor	position	on	the	screen,	or	-1	to	keep	the	current	value.
If	the	current	line	doesn't	contain	tab	characters,	CurTabPos	has	the	same
meaning,	as	CurPos.	Both	CurPos	and	CurTabPos	should	not	be	specified,
either	one	or	the	other	must	be	set	to	-1.

TopScreenLine
New	value	of	the	first	visible	line	index,	or	-1	to	keep	the	current	value.

LeftPos
New	value	of	the	leftmost	visible	position	of	the	text	on	the	screen,	or	-1	to
keep	the	current	value.

Overtype
Set	to	0	for	insert	mode,	1	for	overtype	mode,	-1	to	keep	the	current	mode.

See	also:

structures	|	TEditorSetPosition

EditorSetString
main	|	structures

The	EditorSetString	structure	is	used	in	the	EditorControl	function	to	change
the	value	of	a	text	line	in	the	internal	FAR	editor.

struct	EditorSetString

{

		int	StringNumber;

		char	*StringText;

		char	*StringEOL;

		int	StringLength;

};

Elements
StringNumber
Number	of	the	text	line	to	change,	-1	indicates	the	current	line.

StringText
Pointer	to	the	line	text.

StringEOL
End-of-line	sequence.	Can	be	an	empty	string,	\r\n	or	\n.	You	can	place	this
sequence	either	in	StringEOL	or	directly	in	StringText.	This	field	can	also	be
set	to	NULL	to	use	the	default	sequence.

StringLength
Length	of	data	pointed	to	by	StringText.

See	also:
structures	|	TEditorSetString

Dialog	API	structures
main	|	structures

Structure Description

FarDialogEvent Information	about	dialog	event

FarDialogItem Dialog	item

FarDialogItemData Passing	data	to	a	dialog	item

FarList The	DI_LISTBOX	list

FarListColors Describes	color	schemes	for	DI_COMBOBOX	and
DI_LISTBOX	controls

FarListDelete Parameters	for	deletion	from	a	DI_COMBOBOX	or
DI_LISTBOX

FarListFind Search	in	a	DI_COMBOBOX	or	DI_LISTBOX

FarListGetItem Retrieval	of	one	element	from	a	DI_COMBOBOX	or
DI_LISTBOX

FarListInfo Retrieval	of	information	about	a	DI_COMBOBOX	or
DI_LISTBOX

FarListInsert Item	insertion	into	a	DI_COMBOBOX	or
DI_LISTBOX

FarListItem List	item

FarListPos Positioning	in	the	list

FarListItemData Association	of	a	list	item	with	data

FarListTitles Set	or	get	list	labels

FarListUpdate List	item	update	data

OpenDlgPluginData Information	about	dialog	and	activated	plugin	item.

See	also:
Exported	functions,	Service	functions,	Dialog	API,	Archive
support,	Addons,	Delphi	structures,	Win32	structures

FarDialogEvent
main	|	Dialog	API

FarDialogEvent	structure	describes	an	event,	sent	to	the	ProcessDialogEvent
function.

struct	FarDialogEvent

{

		HANDLE	hDlg;

		int	Msg;

		int	Param1;

		LONG_PTR	Param2;

		LONG_PTR	Result;

};

Elements
hDlg
Dialog	handle

Msg
One	of	the	messages	or	events

Param1
Param	1

Param2
Param	2

Result
Dialog	handler	return	code.

Remarks

See	also:
Structures,	ProcessDialogEvent,	Dialog	API

FarDialogItem
main	|	Dialog	API	|	Dialog	items

The	FarDialogItem	structure	describes	one	dialog	item.	An	array	of	those
structures	is	passed	to	the	Dialog	or	DialogEx	functions	to	show	a	dialog.

struct	FarDialogItem

{

		int	Type;

		int	X1;

		int	Y1;

		int	X2;

		int	Y2;

		int	Focus;

		union

		{

				DWORD_PTR	Reserved;

				int	Selected;

				const	char	*History;

				const	char	*Mask;

				struct	FarList	*ListItems;

				int		ListPos;

				CHAR_INFO	*VBuf;

		}

#ifdef	_FAR_NO_NAMELESS_UNIONS

		Param

#endif

		;

		DWORD	Flags;

		int	DefaultButton;

		union

		{

				char	Data[512];

				struct

				{

						DWORD	PtrFlags;

						int			PtrLength;

						char	*PtrData;

						char		PtrTail[1];

				}	Ptr;

		}

#ifdef	_FAR_NO_NAMELESS_UNIONS

		Data

#endif

		;

};

Members
Type
Dialog	item	type.	Can	be	one	of	the	following	values,	described	in	the	"Dialog
items"	topic.

X1,Y1,X2,Y2
Dialog	item	coordinates,	calculated	relative	to	the	top	left	dialog	corner
(coordinates	start	from	0,0).	For	more	information	about	coordinates	see	the
description	of	a	specific	dialog	item.

Focus
Keyboard	focus	flag.	You	must	specify	one	item	with	Focus	equal	to	TRUE.

Param.Reserved
Size	of	this	members	always	equals	the	size	of	the	Param	union,	which	allows
to	use	this	member	for	platform	independent	initialization.

Param.Selected
Applicable	for	DI_CHECKBOX	and	DI_RADIOBUTTON	controls.	Allows
to	set	their	initial	state	and	get	their	state	after	closing	the	dialog.

Param.History
Contains	the	address	of	a	null-terminated	text	string	that	will	be	used	as	the
internal	history	name	when	an	edit	control	has	the	DIF_HISTORY	flag.	If
several	edit	controls	have	the	same	history	name,	they	will	share	the	same
history	list.

Param.Mask
Contains	the	address	of	a	null-terminated	string	that	serves	as	a	mask	for	a
DI_FIXEDIT	control.

Param.ListItems
Pointer	to	a	FarList	structure	that	describes	the	list	of	items	for	a

DI_COMBOBOX	or	DI_LISTBOX	control.
Param.ListPos
Current	list	position	in	a	DI_LISTBOX	or	DI_COMBOBOX	control.

Param.VBuf
Pointer	to	an	array	of	CHAR_INFO	structures	describing	a	virtual	buffer	for
the	DI_USERCONTROL	control.

Flags
Combination	of	values	described	in	the	"Dialog	item	flags"	topic.

DefaultButton
Define	current	item	as	the	"default	control".	If	while	pressing	<Enter>	the
focus	is	not	set	on	a	button,	the	Dialog	function	(or	DialogEx)	will	return	the
number	of	the	item	with	DefaultButton	set	to	1.	The	DefaultButton	flag	can	be
set	not	only	for	a	button,	but	for	any	other	dialog	item.

Data.Data
Buffer	to	exchange	data	with	the	dialog	(without	DIF_VAREDIT	flag).	See
dialog	items	descriptions	for	details.

Data.Ptr.PtrFlags
Additional	flags	(not	used	in	Dialog	API	1.0).	Ptr.PtrFlags	must	be	0.

Data.Ptr.PtrLength
Length	of	the	data	pointed	to	by	PtrData.

Data.Ptr.PtrData
Points	to	the	user	buffer	for	the	edit	data.

Data.Ptr.PtrTail
"Tail"	-	provides	access	to	the	remaining	part	of	the	Data	member.

Remarks

1.	 All	information	about	the	FarDialogItem	structure	is	described	with	named
unions	taken	into	account.	See	details	in	the
_FAR_NO_NAMELESS_UNIONS	macro	description.

2.	 Because	the	Data.Data	member	size	is	large,	direct	initialization	of	a
FarDialogItem	structures	array	can	be	very	memory	consuming.	To	avoid
it,	you	can,	for	example,	initialize	a	temporary	structure	type	array	with
*Data	instead	of	Data[512]	and	then	convert	it	to	a	FarDialogItem	array

using	a	simple	function.
3.	 The	example	function	to	do	the	abovementioned	conversion	can	be	found	in

the	sources	of	example	plugins	supplied	with	FAR	Manager	(the
InitDialogItems	function	and	the	InitDialogItem	structure).

4.	 The	Ptr.*	members	are	used	only	for	DI_EDIT	controls	with	the
DIF_VAREDIT	flag.

See	also:
Structures,	_FAR_NO_NAMELESS_UNIONS,	InitDialogItem,
TFarDialogItem,	Dialog	item	flags

FarDialogItemData
main	|	Dialog	API

The	FarDialogItemData	structure	describes	data,	being	sent	(received)	to	the
dialog	item	by	a	DM_SETTEXT	message	(DM_GETTEXT)	as	Param2
parameter.

struct	FarDialogItemData

{

		int			PtrLength;

		char	*PtrData;

};

Members
PtrLength
Data	size	in	PtrData	without	ending	NULL	character.

PtrData
Pointer	to	the	data	being	sent.

Remarks

See	also:
DM_GETTEXT,	DM_SETTEXT,	TFarDialogItemData,
Structures

FarList
main	|	Dialog	API

The	FarList	structure	contains	a	pointer	to	an	array	of	FarListItem	structures	for
DI_LISTBOX	or	DI_COMBOBOX	controls.

struct	FarList

{

		DWORD	ItemsNumber;

		struct	FarListItem	*Items;

};

Members
ItemsNumber
The	number	of	list	items.

Items
Pointer	to	an	array	of	FarListItem	structures	containing	a	list	of	combobox,
dropdown	list	or	list	box	items.

Remarks

See	also:
TFarList,	FarListItem,	Structures

FarListColors
main	|	Dialog	API

The	FarListColors	structure	describes	the	color	scheme	for	DI_LISTBOX	and
DI_COMBOBOX	controls.

struct	FarListColors

{

		DWORD		Flags;

		DWORD		Reserved;

		int				ColorCount;

		LPBYTE	Colors;

};

Members
Flags
Falgs.	Must	be	0.

Reserved
Reserved	for	future	use.	Must	be	0.

ColorCount
Amount	of	items	in	the	Colors	array.

Colors
Byte	array	of	the	color	attributes	(background_color+text_color).	By	default
the	folowing	attributes	are	set:

for	DI_LISTBOX

Index Constant Description

0 COL_DIALOGLISTBOX	 	background

1 COL_DIALOGLISTBOX	 	border

2 COL_DIALOGLISTTITLE	 	titles	-	top	and	bottom

3 COL_DIALOGLISTTEXT	 	normal	item

4 COL_DIALOGLISTHIGHLIGHT	 	hotkey

5 COL_DIALOGLISTBOX	 	separator

6 COL_DIALOGLISTSELECTEDTEXT	 	selected	item

7 COL_DIALOGLISTSELECTEDHIGHLIGHT	 	selected	hotkey

8 COL_DIALOGLISTSCROLLBAR	 	scrollbar

9 COL_DIALOGLISTDISABLED	 	disabled	item

10 COL_DIALOGLISTARROWS	 	long	string	indicators

11 COL_DIALOGLISTARROWSSELECTED	 	selected	long	string	indicators

12 COL_DIALOGLISTARROWSDISABLED	 	disabled	long	string	indicators

13 COL_DIALOGLISTGRAY	 	grayed	out	item

14 COL_DIALOGLISTSELECTEDGRAYTEXT	 	selected	grayed	out	item

for	DI_COMBOBOX

Index Constant Description

0 COL_DIALOGCOMBOBOX	 	background

1 COL_DIALOGCOMBOBOX	 	border

2 COL_DIALOGCOMBOTITLE	 	titles	-	top	and	bottom

3 COL_DIALOGCOMBOTEXT	 	normal	item

4 COL_DIALOGCOMBOHIGHLIGHT	 	hotkey

5 COL_DIALOGCOMBOBOX	 	separator

6 COL_DIALOGCOMBOSELECTEDTEXT	 	selected	item

7 COL_DIALOGCOMBOSELECTEDHIGHLIGHT	 	selected	hotkey

8 COL_DIALOGCOMBOSCROLLBAR	 	scrollbar

9 COL_DIALOGCOMBODISABLEDTEXT	 	disabled	item

10 COL_DIALOGCOMBOARROWS	 	long	string	indicators

11 COL_DIALOGCOMBOARROWSSELECTED	 	selected	long	string
indicators

12 COL_DIALOGCOMBOARROWSDISABLED	 	disabled	long	string
indicators

13 COL_DIALOGCOMBOGRAY	 	grayed	out	item

14 COL_DIALOGCOMBOSELECTEDGRAYTEXT	 	selected	grayed	out	item

Remarks

See	also:
DN_CTLCOLORDLGLIST,	TFarListColors,	Structures

FarListDelete
main	|	Dialog	API

The	FarListDelete	structure	specifies	settings	for	deletion	of	items	from	a
DI_LISTBOX	or	DI_COMBOBOX	list.

struct	FarListDelete

{

		int	StartIndex;

		int	Count;

};

Members
StartIndex
Index	of	the	first	item	to	be	deleted.

Count
Number	of	items	to	be	deleted.

Remarks
If	the	value	of	Count	is	less	or	equal	to	0,	all	items	will	be	deleted.

See	also:
DM_LISTDELETE,	TFarListDelete,	Structures

FarListFind
main	|	Dialog	API

The	FarListFind	structure	specifies	settings	for	item	search	in	a	DI_LISTBOX
or	DI_COMBOBOX	list.

struct	FarListFind

{

		int	StartIndex;

		const	char	*Pattern;

		DWORD	Flags;

		DWORD	Reserved;

};

Members
StartIndex
Index	of	the	item	from	which	the	search	is	started.

Pattern
Pattern	to	find	in	the	format	used	by	the	CmpName	function

Flags
Search	options.	Combination	of	zero	or	more	of	the	following	values
(FARLISTFINDFLAGS	enum):

Flag Description

LIFIND_EXACTMATCH The	Pattern	field	is	not	a	pattern	(mask)	but	a	literal
string.	It	must	be	an	exact	match	of	the	listbox	string
(that	is,	not	only	the	beginning	should	match).

Reserved
Reserved

Remarks

See	also:
DM_LISTFINDSTRING,	TFarListFind,	Structures

FarListGetItem
main	|	Dialog	API

The	FarListGetItem	structure	describes	one	item	of	a	FarListItem	structure	for
DI_LISTBOX	and	DI_COMBOBOX	dialog	items.

struct	FarListGetItem

{

		int	ItemIndex;

		struct	FarListItem	Item;

};

Members
ItemIndex
Index	of	the	list	item.

Item
List	item	represented	by	a	FarListItem	structure.

Remarks

See	also:
TFarListGetItem,	FarListItem,	DM_LISTGETITEM,	Structures

FarListInfo
main	|	Dialog	API

The	FarListInfo	structure	is	used	to	retrieve	information	about	a	DI_LISTBOX
or	DI_COMBOBOX	control.

struct	FarListInfo

{

		DWORD	Flags;

		int	ItemsNumber;

		int	SelectPos;

		int	TopPos;

		int	MaxHeight;

		int	MaxLength;

		DWORD	Reserved[6];

};

Members
Flags
A	combination	of	zero	or	more	of	the	following	flags	(FARLISTINFOFLAGS
enum):

Flag Description

LINFO_SHOWNOBOX A	DI_LISTBOX	control	is	drawn	without	a	frame
when	the	DIF_LISTNOBOX	flag	is	set.

LINFO_AUTOHIGHLIGHT Hotkeys	will	be	assigned	automatically,	starting	with
the	first	item.

LINFO_REVERSEHIGHLIGHT Hotkeys	will	be	assigned	automatically,	starting	with
the	last	item.

LINFO_WRAPMODE Trying	to	move	the	cursor	above	the	first	item	or
below	the	last	item	will	move	the	cursor	to	the
bottom	or	the	top	of	the	list,	respectively.

LINFO_SHOWAMPERSAND Show	ampersands	(&).	If	this	flag	is	not	set,
ampersands	are	used	to	define	hot	keys	for	list	items.

ItemsNumber
Number	of	items	in	the	list.

SelectPos

Index	of	the	selected	item	in	the	list.
TopPos
Index	of	the	topmost	visible	item	in	the	list.

MaxHeight
Maximum	height	of	the	list.

MaxLength
Maximum	length	of	a	list	item	line.

Reserved
Reserved	for	future	use.

Remarks

See	also:
DM_LISTINFO,	TFarListInfo,	Structures

FarListInsert
main	|	Dialog	API

The	FarListInsert	structure	specifies	the	settings	for	insertion	of	an	item	into	a
DI_LISTBOX	or	DI_COMBOBOX	list.

struct	FarListInsert

{

		int	Index;

		struct	FarListItem	Item;

};

Members
Index
Position	at	which	the	item	is	to	be	inserted.	If	the	position	is	greater	than	the
count	of	items	in	the	list,	the	item	is	appended	to	the	end	of	the	list.	If	the
position	is	negative,	the	item	is	inserted	at	the	beginning	of	the	list.

Item
Pointer	to	a	FarListItem	structure	describing	the	item	to	insert.

Remarks

See	also:
FarListItem,	DM_LISTINSERT,	TFarListInsert,	Structures

FarListItem
main	|	Dialog	API

The	FarListItem	structure	describes	one	item	in	a	DI_LISTBOX	or
DI_COMBOBOX	list.

struct	FarListItem

{

		DWORD	Flags;

		char	Text[128];

		DWORD	Reserved[3];

};

Members
Flags
Can	be	a	combination	of	the	following	values	(LISTITEMFLAGS	enum):

Flag Description

LIF_SELECTED Item	selection	flag.	It	must	be	set	only	for	one	item.

LIF_CHECKED If	this	flag	is	set,	a	selection	mark	is	displayed	before
the	item's	text.	(character	with	code	0xFB,	for
example).

LIF_SEPARATOR If	this	flag	is	set,	the	menu	item	is	displayed	as	a
separator.	If	Text	is	not	empty,	it	is	drawn	over	the
separator	line.

LIF_DISABLE If	this	flag	is	set,	the	list	item	becomes	disabled.

LIF_GRAYED If	this	flag	is	set,	the	list	item	is	shown,	but	cannot	be
selected.

LIF_HIDDEN If	this	flag	is	set,	the	list	item	is	not	shown.

LIF_DELETEUSERDATA This	flag	is	set	in	the	Item	parameter	of	the
DM_LISTUPDATE	message,	if	it	is	needed	to	delete
related	data	when	list	item	is	being	updated.

Text
Item	text.

Reserved
Reserved.	Must	be	0.

Remarks

See	also:
FarList,	DM_LISTGETITEM,	FarListInsert,	FarListUpdate,
TFarListItem,	Structures

FarListPos
main	|	Dialog	API

The	FarListPos	structure	contains	information	about	the	cursor	position	in	a
DI_LISTBOX	or	DI_COMBOBOX	list.

struct	FarListPos

{

		int	SelectPos;

		int	TopPos;

};

Members
SelectPos
Index	of	the	current	item.

TopPos
Index	of	the	first	visible	item,	or	-1	if	the	first	visible	item	should	be
determined	automatically	according	to	SelectPos.

Remarks

See	also:
DM_LISTGETCURPOS,	DM_LISTSETCURPOS,	TFarListPos,
Structures

FarListItemData
main	|	Dialog	API

The	FarListItemData	structure	describes	the	data	that	will	be	associated	with
an	item	in	a	DI_LISTBOX	or	DI_COMBOBOX	list.

struct	FarListItemData

{

		int			Index;

		int			DataSize;

		void	*Data;

		DWORD	Reserved;

};

Members
Index
Index	of	the	list	item	to	which	the	data	is	associated.

DataSize
Size	of	Data	or	0	if	a	null-terminated	string	is	being	associated	with	the	item.

Data
Pointer	to	the	data.

Reserved
Reserved.

Remarks
Dialog	manager	allocates	memory	for	the	data	associated	with	the	list	item	using
the	following	rules:

DataSize Data

0 Pointer	to	a	null-terminated	string.	Memory	area	of
strlen(Data)+1	bytes	is	alocated.	The	data	is
then	copied	to	the	allocated	space.

<=	sizeof(DWORD) Character	array	of	4	or	less	elements	or	any	pointer
(HWND	window	handle,	for	example).	No	memory	is
allocated.	Data	is	placed	in	the	local	area	of	the	list
item.

>	sizeof(DWORD) Arbitrary	data.	Memory	area	of	DataSize	bytes	is

allocated.	The	data	is	then	copied	to	the	allocated
space.

See	also:
FarList,	DM_LISTGETDATA,	DM_LISTSETDATA,
TFarListItemData,	Structures

FarListTitles
main	|	structures	|	Dialog	API

The	FarListTitles	structure	specifies	the	titles	(top	and	bottom)	of	a
DI_LISTBOX	list.

struct	FarListTitles

{

		int			TitleLen;

		char	*Title;

		int			BottomLen;

		char	*Bottom;

};

Members
TitleLen
Length	of	the	top	title	string.

Title
Top	title	string.	May	be	NULL;	in	this	case,	the	title	is	not	shown.

BottomLen
Length	of	the	bottom	title	string.

Bottom
Bottom	title	string.	May	be	NULL;	in	this	case,	the	title	is	not	shown.

Remarks
TitleLen	and	BottomLen	members	are	required	only	while	getting	list	titles	(see
DM_LISTGETTITLES)

See	also:
TFarListTitles,	DM_LISTGETTITLES,	DM_LISTSETTITLES

FarListUpdate
main	|	Dialog	API

The	FarListUpdate	structure	specifies	the	settings	for	updating	an	item	in	a
DI_LISTBOX	or	DI_COMBOBOX	list:	the	index	of	the	item	to	update	and	the
updated	item's	data.

struct	FarListUpdate

{

		int	Index;

		struct	FarListItem	Item;

};

Members
Index
Index	of	the	item	to	update.

Items
A	FarListItem	structure	being	updated.

Remarks
User	data	associated	with	a	list	item	is	not	deleted.	Use
LIF_DELETEUSERDATA	for	autodeletion	of	user	data.

See	also:
DM_LISTUPDATE,	TFarListUpdate,	FarListItem,	Structures

OpenDlgPluginData
main	|	structures

Pointer	to	an	OpenDlgPluginData	structure	is	passed	to	an	OpenPlugin
function,	when	plugin	is	called	from	dialog.

struct	OpenDlgPluginData

{

		int	ItemNumber;

		HANDLE	hDlg;

};

Elements
ItemNumber
Position	of	the	activated	plugin	item	in	the	exported	items	list	in	plugins
menu.

hDlg
Dialog	handle.

Remarks

See	also:
OpenPlugin,	structures

Structure	-	Viewer
main	|	structures

Viewer	specific	structures
Structure Description

FARINT64 used	to	hold	a	64	bit	integer	value.

ViewerInfo current	viewer	state

ViewerMode information	about	the	current	view	mode

ViewerSelect block	selection	in	the	internal	viewer

ViewerSetMode set	the	working	mode	of	the	current	viewer	instance

ViewerSetPosition position	setting	in	the	viewer

See	also:
Exported	functions,	Service	functions,	Delphi	structures,	Win32
structures

ViewerInfo
main	|	structures

The	ViewerInfo	structure	is	used	to	get	information	about	the	current	state	of	the
internal	viewer.

struct	ViewerInfo

{

		int		StructSize;

		int		ViewerID;

		const	char	*FileName;

		FARINT64	FileSize;

		FARINT64	FilePos;

		int		WindowSizeX;

		int		WindowSizeY;

		DWORD	Options;

		int		TabSize;

		struct	ViewerMode	CurMode;

		int		LeftPos;

		DWORD	Reserved3;

};

Elements
StructSize
Size	of	the	ViewerInfo	structure.	You	must	set	this	field.

ViewerID
Identifier	of	the	viewer	instance.	Each	viewer	instance	has	a	unique	identifier
that	cannot	be	repeated	during	a	FAR	session.

FileName
Full	path	and	name	of	the	file	beeing	viewed.

FileSize
File	size.	Veriable	of	FARINT64	type.

FilePos
Current	file	position	(absolute	offset	in	bytes).	Variable	of	FARINT64	type.

WindowSizeX,	WindowSizeY

Width	and	height	of	the	viewer	window.
Options
Describes	viewer	options	state.	Can	be	a	combination	of	the	following	flags
(VIEWER_OPTIONS	enum):

Flag Description

VOPT_SAVEFILEPOSITION "Save	file	position"

VOPT_AUTODETECTTABLE "Autodetect	character	table"

TabSize
Tabulation	size.

CurMode
A	variable	of	ViewerMode	type	-	additional	information	about	the	view	mode.

LeftPos
Position	of	the	left	border	of	the	viewer	window	in	the	viewed	text.

Reserved3
Reserved	for	future	use.

See	also:
Structures,	ViewerControl,	ViewerMode

ViewerMode
main	|	structures

The	ViewerMode	structure	is	used	to	receive	additional	information	about	the
state	of	the	current	viewer	instance.

struct	ViewerMode

{

			int	UseDecodeTable;

			int	TableNum;

			int	AnsiMode;

			int	Unicode;

			int	Wrap;

			int	WordWrap;

			int	Hex;

			DWORD	Reserved[4];

};

Elements
UseDecodeTable
If	1,	then	a	decoding	table	is	used.

TableNum
The	number	of	the	user	character	table.	Use	only	if	UseDecodeTable	is	1.

AnsiMode
If	1,	then	the	current	charset	is	ANSI.

Unicode
If	1,	then	the	current	charset	is	Unicode.

Wrap
Text	wrapping	is	on	-	1,	off	-	0.

TypeWrap
Text	wrapping	mode:	1	-	word	wrap	is	on,	0	-	line	wrap.

Hex
If	1,	then	the	viewer	is	in	hex-mode.

Reserved

Reserved	for	future	use.

See	also:
Structures,	ViewerControl,	ViewerInfo

ViewerSelect
main	|	structures

The	ViewerSelect	structure	is	used	to	select	a	block	in	the	internal	viewer.

struct	ViewerSelect

{

			FARINT64	BlockStartPos;

			int		BlockLen;

};

Elements
BlockStartPos
Selection	start	-	in	characters,	not	in	bytes.	This	means	that	if	the	viewer	is	in
Unicode	mode,	BlockStartPos	will	equal	-	position	in	file	/	2.

BlockLen
Selection	length	in	characters.

See	also:
Structures,	ViewerControl,	FARINT64

ViewerSetMode
main	|	structures

The	ViewerSetMode	structure	is	used	to	set	the	view	mode	of	the	current	viewer
instance.

struct	ViewerSetMode

{

		int	Type;

		union	{

				int	iParam;

				char	*cParam;

		}	Param;

		DWORD	Flags;

		DWORD	Reserved;

};

Elements
Type
Mode	type.	Can	be	one	of	the	following	values
(VIEWER_SETMODE_TYPES	enum):

Mode Description

VSMT_HEX Text/Hex	mode:	iParam=1	-	turn	Hex	mode	on,
iParam=0	-	text	mode.

VSMT_WRAP Line	wrap:	iParam=1	-	line	wrap	is	on,	iParam=0	-
off)

VSMT_WORDWRAP Word	wrap:	iParam=1	-	word	wrap	is	on,	iParam=0
-	off.

iParam
Integer	value,	see	details	above.

cParam
Pointer	to	a	null	terminated	string,	see	details	above.

Flags
Additional	flags	(VIEWER_SETMODEFLAGS_TYPES	enum):

Mode Description

VSMFL_REDRAW Redraw	the	screen.	Otherwise	use	the
VCTL_REDRAW	command	to	redraw	the	screen
after	changing	the	mode.

Reserved
Reserved	for	future	use.	Should	be	0.

Remarks

See	also:
structures	|	TViewerSetMode

ViewerSetPosition
main	|	structures

The	ViewerSetPosition	structure	is	used	to	change	the	current	position	in	the
current	viewer	instance.

struct	ViewerSetPosition

{

			DWORD		Flags;

			FARINT64	StartPos;

			int		LeftPos;

};

Elements
Flags
Flags,	defining	the	position	change	process.	Can	be	a	confination	of	the
following	flags	(VIEWER_SETPOS_FLAGS	enum):

Flag Description

VSP_NOREDRAW Do	not	redraw	the	screen.

VSP_PERCENT The	offset	is	given	in	percents	not	bytes.

VSP_RELATIVE The	offset	is	relative	not	absolute.

VSP_NORETNEWPOS Do	not	return	the	real	position	(see	StartPos).

StartPos
New	file	positions	(in	bytes	or	percents	-	depends	on	the	VSP_PERCENT
flag,	can	be	negative	if	the	VSP_RELATIVE	flag	is	specified).	Generaly	it	is
not	possible	to	set	the	exact	position	in	the	viewer,	so	the	new	position	may
not	coninside	with	the	one	in	StartPos.	The	new	real	position	is	then	stored	in
StartPos	(if	the	VSP_NORETNEWPOS	is	not	specified).	Use	this	property	if
needed.

LeftPos
Position	of	the	left	border	of	the	viewer	window	in	the	viewed	text.

See	also:
Structures,	ViewerControl,	FARINT64

TActlEjectMedia
main	|	structures	|	ActlEjectMedia	

The	ActlEjectMedia	stucture	for	Delphi:

TActlEjectMedia	=	packed	record

		Letter:	DWORD;

		Flags:	DWORD;

end;

PActlEjectMedia	=	^TActlEjectMedia;

TActlKeyMacro
main	|	structures	|	ActlKeyMacro	

The	ActlKeyMacro	stucture	for	Delphi:

TActlKeyMacro	=	packed	record

		Command:	Integer;

		Reserved:	packed	array[0..2]	of	DWORD;

end;

PActlKeyMacro	=	^TActlKeyMacro;

TArcInfo
Archive	support	|	structures	|	ArcInfo

The	ArcInfo	stucture	for	Delphi:

TArcInfo	=	packed	record

		SFXSize:	Integer;

		Volume:	Integer;

		Comment:	Integer;

		Recovery:	Integer;

		Lock:	Integer;

		Flags:	Integer;

end;

PArcInfo	=	^TArcInfo;

TArcItemInfo
Archive	support	|	structures	|	TArcItemInfo

The	ArcItemInfo	stucture	for	Delphi:

TArcItemInfo	=	packed	record

		HostOS:	packed	array[0..31]	of	char;

		Description:	packed	array[0..255]	of	char;

		Solid:	integer;

		Comment:	integer;

		Encrypted:	integer;

		DictSize:	integer;

		UnpVer:	integer;

end;

PArcItemInfo	=	^TArcItemInfo;

TCharTableSet
main	|	structures	|	CharTableSet

The	CharTableSet	stucture	for	Delphi:

TCharTableSet	=	packed	record

		DecodeTable:	packed	array[0..255]	of	BYTE;

		EncodeTable:	packed	array[0..255]	of	BYTE;

		UpperTable:	packed	array[0..255]	of	BYTE;

		LowerTable:	packed	array[0..255]	of	BYTE;

		TableName:	packed	array[0..127]	of	char;

end;

PCharTableSet	=	^TCharTableSet;

TCmdLineSelect
main	|	structures	|	CmdLineSelect

The	CmdLineSelect	stucture	for	Delphi:

TCmdLineSelect	=	packed	record

		SelStart:	integer;

		SelEnd:	integer;

end;

PEditorSelect	=	^TCmdLineSelect;

TEditorBookMarks
main	|	structures	EditorBookMarks

The	EditorBookMarks	stucture	for	Delphi:

TEditorBookMarks	=	packed	record

		Line:	^Integer;

		Cursor:	^Integer;

		ScreenLine:	^Integer;

		LeftPos:	^Integer;

		Reserved:	packed	array[0..3]	of	DWORD;

end;

PEditorBookMarks	=	^TEditorBookMarks;

TEditorColor
main	|	structures

The	EditorColor	stucture	for	Delphi:

TEditorColor	=	packed	record

		StringNumber:	integer;

		ColorItem:	integer;

		StartPos:	integer;

		EndPos:	integer;

		Color:	integer;

end;

PEditorColor	=	^TEditorColor;

TEditorConvertPos
main	|	structures	|	EditorConvertPos

The	EditorConvertPos	stucture	for	Delphi:

TEditorConvertPos	=	packed	record

		StringNumber:	integer;

		SrcPos:	integer;

		DestPos:	integer;

end;

PEditorConvertPos	=	^TEditorConvertPos;

TEditorConvertText
main	|	structures	|	EditorConvertText

The	EditorConvertText	stucture	for	Delphi:

TEditorConvertText	=	packed	record

		Text:	PChar;

		TextLength:	integer;

end;

PEditorConvertText	=	^TEditorConvertText;

TEditorGetString
main	|	structures	|	EditorGetString

The	EditorGetString	stucture	for	Delphi:

TEditorGetString	=	packed	record

		StringNumber:	integer;

		StringText:	PChar;

		StringEOL:	PChar;

		StringLength:	integer;

		SelStart:	integer;

		SelEnd:	integer;

end;

PEditorGetString	=	^TEditorGetString;

TEditorInfo
main	|	structures	|	EditorInfo

The	EditorInfo	stucture	for	Delphi:

TEditorInfo	=	packed	record

		EditorID:	integer;

		FileName:	PChar;

		WindowSizeX:	integer;

		WindowSizeY:	integer;

		TotalLines:	integer;

		CurLine:	integer;

		CurPos:	integer;

		CurTabPos:	integer;

		TopScreenLine:	integer;

		LeftPos:	integer;

		Overtype:	integer;

		BlockType:	integer;

		BlockStartLine:	integer;

		AnsiMode:	integer;

		TableNum:	integer;

		Options:	DWORD;

		TabSize:	integer;

		BookMarkCount:	integer;

		Reserved:	packed	array[0..6]	of	DWORD;

end;

PEditorInfo	=	^TEditorInfo;

TEditorSelect
main	|	structures	|	EditorSelect

The	EditorSelect	stucture	for	Delphi:

TEditorSelect	=	packed	record

		BlockType:	integer;

		BlockStartLine:	integer;

		BlockStartPos:	integer;

		BlockWidth:	integer;

		BlockHeight:	integer;

end;

PEditorSelect	=	^TEditorSelect;

TEditorSetParameter
main	|	structures	|	EditorSetParameter

The	EditorSetParameter	stucture	for	Delphi:

TEditorSetParameter	=	packed	record

		ParamType:	integer;

		case	integer	of

				0:	(iParam:	integer);

				1:	(cParam:	PChar);

				2:	(Reserved1:	DWORD);

		Flags:	DWORD;

		Reserved2:	DWORD;

end;

PEditorSetParameter	=	^TEditorSetParameter;

TEditorSetPosition
main	|	structures	|	EditorSetPosition

The	EditorSetPosition	stucture	for	Delphi:

TEditorSetPosition	=	packed	record

		CurLine:	integer;

		CurPos:	integer;

		CurTabPos:	integer;

		TopScreenLine:	integer;

		LeftPos:	integer;

		Overtype:	integer;

end;

PEditorSetPosition	=	^TEditorSetPosition;

TEditorSetString
main	|	structures	|	EditorSetString

The	EditorSetString	stucture	for	Delphi:

TEditorSetString	=	packed	record

		StringNumber:	integer;

		StringText:	PChar;

		StringEOL:	PChar;

		StringLength:	integer;

end;

PEditorSetString	=	^TEditorSetString;

TFarSetColors
main	|	structures	|	FarSetColors

The	FarSetColors	stucture	for	Delphi:

TFarSetColors	=	packed	record

		Flags:	DWORD;

		StartIndex:	integer;

		ColorCount:	integer;

		Colors:	PChar;

end;

PFarSetColors	=	^TFarSetColors;

TFarDialogItem
main	|	structures

The	FarDialogItem	stucture	for	Delphi:

		TFarPtr	=	packed	record

				PtrFlags:	DWORD;

				PtrLength:	integer;

				PtrData:	PChar;

				PtrTail:	array[0..0]	of	char;

		end;

TFarDialogItem	=	packed	record

		ItemType:	integer;

		X1:	integer;

		Y1:	integer;

		X2:	integer;

		Y2:	integer;

		Focus:	integer;

		case	integer	of

				0:	(History:	PChar);

				1:	(Mask:	PChar);

				2:	(ListItems:	PFarListItemArr);

				3:	(VBuf:	PCharInfo);

				4:	(Selected:	integer;

								Flags:	DWORD;

								DefaultButton:	integer;

								case	integer	of

										0:	(Data:	packed	array[0..511]	of	char);

										1:	(Ptr:	TFarPtr)

);

end;

PFarDialogItem	=	^TFarDialogItem;

TFarDialogItemData
main	|	structures	|	FarDialogItemData	

The	FarDialogItemData	stucture	for	Delphi:

TFarDialogItemData	=	packed	record

		DataLength:	Integer;

		DataPtr:	PChar;

end;

PFarDialogItemData	=	^TFarDialogItemData;

TFarList
main	|	structures	|	FarList

The	FarList	stucture	for	Delphi:

TFarList	=	packed	record

		ItemsNumber:	integer;

		Items:	PFarListItemArr;

end;

PFarList	=	^TFarList;

TFarListColors
main	|	structures	|	FarListColors

The	FarListColors	stucture	for	Delphi:

TFarListColors	=	packed	record

		Flags:	DWORD;

		Reserved:	integer;

		ColorCount:	integer;

		Colors:	PChar;

end;

PFarListColors	=	^TFarListColors;

TFarListDelete
main	|	structures	|	FarListDelete

The	FarListDelete	stucture	for	Delphi:

TFarListDelete	=	packed	record

		StartIndex:	integer;

		Count:	integer;

end;

PFarListDelete	=	^TFarListDelete;

TFarListGetItem
main	|	structures	|	FarListGetItem

The	FarListGetItem	stucture	for	Delphi:

TFarListGetItem	=	packed	record

		ItemIndex:	integer;

		Item:	FarListItem;

end;

PFarListGetItem	=	^TFarListGetItem;

TFarListItem
main	|	structures	FarListItem

The	FarListItem	stucture	for	Delphi:

TFarListItem	=	packed	record

		Flags:	DWORD;

		Text:	packed	array[0..127]	of	char;

		Reserved:	array[0..2]	of	DWORD;

end;

PFarListItem	=	^TFarListItem;

TFarListPos
main	|	structures	FarListPos

The	FarListPos	stucture	for	Delphi:

TFarListPos	=	packed	record

		SelectPos:	Integer;

		TopPos:	Integer;

end;

PFarListPos	=	^TFarListPos;

TFarListItemData
main	|	structures	FarListItemData

The	FarListItemData	stucture	for	Delphi:

TFarListItemData	=	packed	record

		Index:	integer;

		DataSize:	integer;

		Data:	PChar;

		Reserved:	DWORD;

end;

PFarListItemData	=	^TFarListItemData;

TFarListTitles
main	|	structures	|	FarListTitles

The	FarListTitles	stucture	for	Delphi:

TFarListTitles	=	packed	record

		TitleLen:	Integer;

		Title:	PChar;

		BottomLen:	Integer;

		Bottom:	PChar;

end;

PFarListTitles	=	^TFarListTitles;

TFarMenuItem
main	|	structures

The	FarMenuItem	stucture	for	Delphi:

TFarMenuItem	=	packed	record

		Text:	packed	array[0..127]	of	char;

		Selected:	integer;

		Checked:	integer;

		Separator:	integer;

end;

PFarMenuItem	=	^TFarMenuItem;

TFarMenuItemEx
main	|	structures	FarMenuItemEx

The	FarMenuItemEx	stucture	for	Delphi:

TFarMenuItemEx	=	packed	record

		Flags:	DWORD;

		Text:	packed	array[0..127]	of	char;

		UserData:	DWORD;

end;

PFarMenuItemEx	=	^TFarMenuItemEx;

TFarListFind
main	|	structures	|	FarListFind

The	FarListFind	stucture	for	Delphi:

TFarListFind	=	packed	record

		StartIndex:	integer;

		Pattern:	PChar;

		Flags:	DWORD;

		Reserved:	DWORD;

end;

PFarListFind	=	^TFarListFind;

TFarListInfo
main	|	structures	|	FarListInfo

The	FarListInfo	stucture	for	Delphi:

TFarListInfo	=	packed	record

		Flags:	DWORD;

		ItemsNumber:	integer;

		SelectPos:	integer;

		TopPos:	integer;

		MaxHeight:	integer;

		MaxLength:	integer;

		Reserved:	array[0..5]	of	DWORD;

end;

PFarListInfo	=	^TFarListInfo;

TFarListInsert
main	|	structures	|	FarListInsert

The	FarListInsert	stucture	for	Delphi:

TFarListInsert	=	packed	record

		Index:	integer;

		Item:	TFarListItem;

end;

PFarListInsert	=	^TFarListInsert;

TInfoPanelLine
main	|	structures	|	InfoPanelLine

The	InfoPanelLine	stucture	for	Delphi:

TInfoPanelLine	=	packed	record

		Text:	packed	array[0..79]	of	char;

		Data:	packed	array[0..79]	of	char;

		Separator:	integer;

end;

PInfoPanelLine	=	^TInfoPanelLine;

TKeyBarTitles
main	|	structures	|	KeyBarTitles

The	KeyBarTitles	stucture	for	Delphi:

TKeyBarTitles	=	packed	record

		Titles:	packed	array[0..11]	of	PChar;

		CtrlTitles:	packed	array[0..11]	of	PChar;

		AltTitles:	packed	array[0..11]	of	PChar;

		ShiftTitles:	packed	array[0..11]	of	PChar;

		CtrlShiftTitles:	packed	array[0..11]	of	PChar;

		AltShiftTitles:	packed	array[0..11]	of	PChar;

		CtrlAltTitles:	packed	array[0..11]	of	PChar;

end;

PKeyBarTitles	=	^TKeyBarTitles;

TKeySequence
main	|	structures	|	KeySequence	

The	KeySequence	stucture	for	Delphi:

TKeySequence	=	packed	record

		Flags:	DWORD;

		Reserved:	DWORD;

		Count:	Integer;

		Sequence:	^DWORD;

end;

PKeySequence	=	^TKeySequence;

TOpenPluginInfo
main	|	structures

The	OpenPluginInfo	stucture	for	Delphi:

TOpenPluginInfo	=	packed	record

				StructSize:	integer;

				Flags:	DWORD;

				HostFile:	PChar;

				CurDir:	PChar;

				Format:	PChar;

				PanelTitle:	PChar;

				InfoLines:	PInfoPanelLineArr;

				InfoLinesNumber:	integer;

				DescrFiles:	PPCharArray;

				DescrFilesNumber:	integer;

				PanelModesArray:	PPanelModeArr;

				PanelModesNumber:	integer;

				StartPanelMode:	integer;

				StartSortMode:	integer;

																		(*

																				SM_DEFAULT,

																				SM_UNSORTED,

																				SM_NAME,

																				SM_EXT,

																				SM_MTIME,

																				SM_CTIME,

																				SM_ATIME,

																				SM_SIZE,

																				SM_DESCR,

																				SM_OWNER,

																				SM_COMPRESSEDSIZE,

																				SM_NUMLINKS

																		*)

				StartSortOrder:	Integer;

				KeyBar:	PKeyBarTitles;

				ShortcutData:	PChar;

				Reserved:	DWORD;

end;

POpenPluginInfo	=	^TOpenPluginInfo;

TPanelInfo
main	|	structures

The	PanelInfo	stucture	for	Delphi:

TPanelInfo	=	packed	record

				PanelType:	integer;

														(*

																PTYPE_FILEPANEL,

																PTYPE_TREEPANEL,

																PTYPE_QVIEWPANEL,

																PTYPE_INFOPANEL

														*)

				Plugin:	integer;

				PanelRect:	TRect;

				PanelItems:	PPluginPanelItemArr;

				ItemsNumber:	integer;

				SelectedItems:	PPluginPanelItemArr;

				SelectedItemsNumber:	integer;

				CurrentItem:	integer;

				TopPanelItem:	integer;

				Visible:	integer;

				Focus:	integer;

				ViewMode:	inetegr;

				ColumnTypes:	packed	array[0..79]	of	char;

				ColumnWidths:	packed	array[0..79]	of	char;

				CurDir:	packed	array[0..Pred(NM)]	of	char;

				ShortNames:	integer;

				SortMode:	integer;

													(*

															SM_DEFAULT,

															SM_UNSORTED,

															SM_NAME,

															SM_EXT,

															SM_MTIME,

															SM_CTIME,

															SM_ATIME,

															SM_SIZE,

															SM_DESCR,

															SM_OWNER,

															SM_COMPRESSEDSIZE,

															SM_NUMLINKS

													*)

				Reserved:	packed	array[0..1]	of	DWORD;

end;

PPanelInfo	=	^TPanelInfo;

TPanelMode
main	|	structures

The	PanelMode	stucture	for	Delphi:

TPanelMode	=	packed	record

		ColumnTypes:	PChar;

		ColumnWidths:	PChar;

		ColumnTitles:	PPCharArray;

		FullScreen:	integer;

		DetailedStatus:	integer;

		AlignExtensions:	integer;

		CaseConversion:	integer;

		StatusColumnTypes:	PChar;

		StartusColumnWidths:		PChar;

		Reserved:	array[0..1]	of	DWORD;

end;

PPanelMode	=	^TPanelMode;

TPanelRedrawInfo
main	|	structures

The	PanelRedrawInfo	stucture	for	Delphi:

TPanelRedrawInfo	=	packed	record

				CurrentItem:	integer;

				TopPanelItem:	integer;

end;

PPanelRedrawInfo	=	^TPanelRedrawInfo;

TPluginInfo
main	|	structures

The	PluginInfo	stucture	for	Delphi:

TPluginInfo	=	packed	record

		StructSize:	Integer;

		Flags:	DWORD;

		DiskMenuStrings:	PPCharArray;

		DiskMenuNumbers:	PIntegerArray;

		DiskMenuStringsNumber:	integer;

		PluginMenuStrings:	PPCharArray;

		PluginMenuStringsNumber:	integer;

		PluginConfigStrings:	PPCharArray;

		PluginConfigStringsNumber:	integer;

		CommandPrefix:	PChar;

end;

PPluginInfo	=	^TPluginInfo;

TPluginPanelItem
main	|	structures	|	PluginPanelItem

The	PluginPanelItem	stucture	for	Delphi:

TPluginPanelItem	=	packed	record

		FindData:	TWin32FindDataEx;

		PackSizeHigh:	DWORD;

		PackSize:	DWORD;

		Flags:	DWORD;

		NumberOfLinks:	DWORD;

		Description:	PChar;

		Owner:	PChar;

		CustomColumnData:	PPCharArray;

		CustomColumnNumber:	integer;

		UserData:	DWORD;

		Reserved:	array[0..2]	of	DWORD;

end;

PPluginPanelItem	=	^TPluginPanelItem;

TPluginStartupInfo
main	|	structures	|	PluginStartupInfo

The	PluginStartupInfo	stucture	for	Delphi:

TPluginStartupInfo	=	packed	record

		StructSize:	Integer;

		ModuleName:	array[0..Pred(NM)]	of	char;

		ModuleNumber:	integer;

		RootKey:	PChar;

		Menu:	TFarApiMenu;

		Dialog:	TFarApiDialog;

		Message:	TFarApiMessage;

		GetMsg:	TFarApiGetMsg;

		Control:	TFarApiControl;

		SaveScreen:	TFarApiSaveScreen;

		RestoreScreen:	TFarApiRestoreScreen;

		GetDirList:	TFarApiGetDirList;

		GetPluginDirList:	TFarApiGetPluginDirList;

		FreeDirList:	TFarApiFreeDirList;

		Viewer:	TFarApiViewer;

		Editor:	TFarApiEditor;

		CmpName:	TFarApiCmpName;

		CharTable:	TFarApiCharTable;

		Text:	TFarApiText;

		EditorControl:	TFarApiEditorControl;

		FSF:	PFarStandardFunctions;

		ShowHelp:	TFarApiShowHelp;

		AdvControl:	TFarApiAdvControl;

		InputBox:	TFarApiInputBox;

		DialogEx:	TFarApiDialogEx;

		SendDlgMessage:	TFarApiSendDlgMessage;

		DefDlgProc:	TFarApiDefDlgProc;

		Reserved1:	DWORD;

		Reserved2:	DWORD;

end;

PPluginStartupInfo	=	^TPluginStartupInfo;

Where:

TFarApiMenu	=	function(

		PluginNumber:	integer;

		X,	Y:	integer;

		MaxHeight:	integer;

		Flags:	DWORD;

		Title:	PChar;

		Bottom:	PChar;

		HelpTopic:	PChar;

		BreakKeys:	PIntArr;

		BreakCode:	PIntArr;

		Items:	PFarMenuItemArr;

		ItemsNumber:	integer):	integer;	stdcall;

TFarApiDialog	=	function(

		PluginNumber:	integer;

		X1,	Y1:	integer;

		X2,	Y2:	integer;

		HelpTopic:	PChar;

		Items:	PFarDialogItemArr;

		ItemsNumber:	integer):	integer;	stdcall;

TFarApiMessage	=	function(

		PluginNumber:	integer;

		Flags:	DWORD;

		HelpTopic:	PChar;

		Items:	PPCharArr;

		ItemsNumber:	integer;

		ButtonsNumber:	integer):	integer;	stdcall;

TFarApiGetMsg	=	function(

		PluginNumber:	integer;

		MsgId:	integer):	PChar;	stdcall;

TFarApiControl	=	function(

		hPlugin:	THandle;

		Command:	integer;

		Param:	pointer):	integer;	stdcall;

TFarApiSaveScreen	=	function(

		X1,	Y1:	integer;

		X2,	Y2:	integer):	THandle;	stdcall;

TFarApiRestoreScreen	=	procedure(

		hScreen:	THandle);	stdcall;

TFarApiGetDirList	=	function(

		Dir:	PChar;

		var	PanelItems:	PPluginPanelItemArr;

		var	ItemsNumber:	integer):	integer;	stdcall;

TFarApiGetPluginDirList	=	function(

		PluginNumber:	integer;

		hPlugin:	THandle;

		Dir:	PChar;

		var	PanelItems:	PPluginPanelItemArr;

		var	ItemsNumber:	integer):	integer;	stdcall;

TFarApiFreeDirList	=	procedure(

		PanelItems:	PPluginPanelItemArr);	stdcall;

TFarApiViewer	=	function(

		FileName:	PChar;

		Title:	PChar;

		X1,	Y1:	integer;

		X2,	Y2:	integer;

		Flags:	DWORD):	integer;	stdcall;

TFarApiEditor	=	function(

		FileName:	PChar;

		Title:	PChar;

		X1,	Y1:	integer;

		X2,	Y2:	integer;

		Flags:	DWORD;

		StartLine:	integer;

		StartChar:	integer):	integer;	stdcall;

TFarApiCmpName	=	function(

		Pattern:	PChar;

		FileName:	PChar;

		SkipPath:	integer):	integer;	stdcall;

TFarApiCharTable	=	function(

		Command:	integer;

		Buffer:	PChar;

		BufferSize:	integer):	integer;	stdcall;

TFarApiText	=	procedure(

		X,	Y:	integer;

		Color:	integer;

		Str:	PChar);	stdcall;

TFarApiEditorControl	=	function(

		Command:	integer;

		Param:	pointer):	integer;	stdcall;

TFarApiAdvControl	=	function(

		ModuleNumber:	integer;

		Command:	integer;

		Param:	pointer):	integer;	stdcall;

TFarApiDialogEx	=	function(

		PluginNumber:	integer;

		X1,	Y1:	integer;

		X2,	Y2:	integer;

		HelpTopic:	PChar;

		Items:	PFarDialogItemArr;

		ItemsNumber:	integer;

		Reserved:	DWORD;

		Flags:	DWORD;

		DlgProc:	TFarApiWndProc;

		Param:	integer):	integer;	stdcall;

TFarApiSendDlgMessage	=	function(

		hDlg:	THandle;

		Msg:	integer;

		Param1:	integer;

		Param2:	integer):	integer;	stdcall;

TFarApiDefDlgProc	=	function(

		hDlg:	THandle;

		Msg:	integer;

		Param1:	integer;

		Param2:	integer):	integer;	stdcall;

TFarApiInputBox	=	function(

		Title:	PChar;

		SubTitle:	PChar;

		HistoryName:	PChar;

		SrcText:	PChar;

		DstText:	PChar;

		DstLength:	integer;

		HelpTopic:	PChar;

		Flags:	DWORD):	integer;	stdcall;

TFarApiShowHelp	=	function(

		ModuleName:	PChar;

		HelpTopic:	PChar;

		Flags:	DWORD):	BOOL;	stdcall;

TWin32FindDataEx
main	|	structures

The	WIN32_FIND_DATA	stucture	for	Delphi:

TWin32FindDataEx	=	packed	record

		dwFileAttributes:	DWORD;

		ftCreationTime:	TFileTime;

		ftLastAccessTime:	TFileTime;

		ftLastWriteTime:	TFileTime;

		nFileSizeHigh:	DWORD;

		nFileSizeLow:	DWORD;

		dwReserved0:	DWORD;

		dwReserved1:	DWORD;

		cFileName:	packed	array[0..MAX_PATH	-	1]	of	AnsiChar;

		cAlternateFileName:	packed	array[0..13]	of	AnsiChar;

end;

See	also:
WIN32_FIND_DATA

TWindowInfo
main	|	structures	|	WindowInfo	

The	WindowInfo	stucture	for	Delphi:

TWindowInfo	=	packed	record

		Pos:	Integer;

		Type:	Integer;

		Modified:	Integer;

		Current:	Integer;

		TypeName:	array[0..63]	of	char;

		Name:	array[0..Pred(NM)]	of	char;

end;

PWindowInfo	=	^TWindowInfo;

TFarInt64
main	|	structures

FARINT64	structure	for	Delphi:

TFarInt64Part	=	packed	record

				LowPart	:	DWORD;

				HighPart	:	DWORD;

end;

TFarInt64	=	packed	record

			case	Integer	of

{$IFDEF	USE_DELPHI4}

									0	:	(i64	:	Int64);

{$ENDIF}

									1	:	(Part	:	TFarInt64Part);

			end;

TViewerInfo
main	|	structures

ViewerInfo	structure	for	Delphi:

TViewerInfo	=	packed	record

			StructSize	:	Integer;

			ViewerID	:	Integer;

			FileName	:	PChar;

			FileSize	:	TFarInt64;

			FilePos	:	TFarInt64;

			WindowSizeX	:	Integer;

			WindowSizeY	:	Integer;

			Options	:	DWORD;

			TabSize	:	Integer;

			CurMode	:	TViewerMode;

			LeftPos	:	Integer;

			Reserved3	:	DWORD;

end;

PViewerInfo	=	^TViewerInfo;

TViewerMode
main	|	structures

ViewerMode	structure	for	Delphi:

TViewerMode	=	packed	record

			UseDecodeTable	:	Integer;

			TableNum	:	Integer;

			AnsiMode	:	Integer;

			Unicode	:	Integer;

			Wrap	:	Integer;

			WordWrap	:	Integer;

			Hex	:	Integer;

			Reserved	:	array	[0..3]	of	DWORD;

end;

PViewerMode	=	^TViewerMode;

TViewerSelect
main	|	structures

ViewerSelect	structure	for	Delphi:

TViewerSelect	=	packed	record

				BlockStartPos	:	TFarInt64;

				BlockLen	:	Integer;

end;

PViewerSelect	=	^TViewerSelect;

TViewerSetMode
main	|	structures

ViewerSetMode	structure	for	Delphi:

TViewerSetMode	=	packed	record

			ParamType	:	Integer;

			Param	:	record	case	Integer	of

						0	:	(iParam	:	Integer);

						1	:	(cParam	:	PChar);

			end;

			Flags	:	DWORD;

			Reserved	:	DWORD;

end;

PViewerSetMode	=	^TViewerSetMode;

TViewerSetPosition
main	|	structures

ViewerSetPosition	structure	for	Delphi:

TViewerSetPosition	=	packed	record

			Flags	:	DWORD;

			StartPos	:	TFarInt64;

			LeftPos	:	Integer;

end;

PViewerSetPosition	=	^TViewerSetPosition;

Color	indexes
main	|	types	and	definitions

This	table	lists	the	FAR	Manager	color	scheme	indexes,	located	in	the	registry	at
HKCU\Software\Far\Colors\CurrentPalette	(see
farcolor.hpp,	PaletteColors	enum).

The	hexadecimal	color	values	of	the	default	color	scheme	are	provided	in	the
"Color"	column.

Constant Color Description
COL_DIALOGBOXTITLE	 	Text	 	0x70	 	Dialog.Title

COL_DIALOGHIGHLIGHTBOXTITLE	 	Text	 	0x7E	 	Dialog.Highlighted	title

COL_DIALOGBOX	 	Text	 	0x70	 	Dialog.Border

COL_DIALOGTEXT	 	Text	 	0x70	 	Dialog.Normal	text

COL_DIALOGHIGHLIGHTTEXT	 	Text	 	0x7E	 	Dialog.Highlighted	text

COL_DIALOGDISABLED	 	Text	 	0x78	 	Dialog.Disabled	text

COL_DIALOGSELECTEDBUTTON	 	Text	 	0x30	 	Dialog.Button.Selected	text

COL_DIALOGHIGHLIGHTSELECTEDBUTTON	 	Text	 	0x3E	 	Dialog.Button.Selected
highlighted	text

COL_DIALOGHIGHLIGHTBUTTON	 	Text	 	0x7E	 	Dialog.Button.Highlighted	text

COL_DIALOGBUTTON	 	Text	 	0x70	 	Dialog.Button.Normal	text

COL_DIALOGEDITUNCHANGED	 	Text	 	0x38	 	Dialog.Input.Unchanged	text

COL_DIALOGEDITSELECTED	 	Text	 	0x0F	 	Dialog.Input.Selected	text

COL_DIALOGEDITDISABLED	 	Text	 	0x38	 	Dialog.Input.Disabled	test

COL_DIALOGEDIT	 	Text	 	0x30	 	Dialog.Input.Normal	text

COL_DIALOGLISTTITLE	 	Text	 	0x70	 	Dialog.Listbox.Title

COL_DIALOGLISTSELECTEDTEXT	 	Text	 	0x0F	 	Dialog.Listbox.Selected	text

COL_DIALOGLISTSELECTEDHIGHLIGHT	 	Text	 	0x0E	 	Dialog.Listbox.Selected
highlighted	text

COL_DIALOGLISTHIGHLIGHT	 	Text	 	0x7E	 	Dialog.Listbox.Highlighted	text

COL_DIALOGLISTBOX	 	Text	 	0x70	 	Dialog.Listbox.Border

COL_DIALOGLISTDISABLED	 	Text	 	0x78	 	Dialog.Listbox.Disabled	text

COL_DIALOGLISTSCROLLBAR	 	Text	 	0x70	 	Dialog.Listbox.Scrollbar

COL_DIALOGLISTTEXT	 	Text	 	0x70	 	Dialog.Listbox.Normal	text

COL_DIALOGCOMBOTITLE	 	Text	 	0x3F	 	Dialog.Combobox.Title

COL_DIALOGCOMBOSELECTEDTEXT	 	Text	 	0x0F	 	Dialog.Combobox.Selected	text

COL_DIALOGCOMBOSELECTEDHIGHLIGHT	 	Text	 	0x0E	 	Dialog.Combobox.Selected

highlighted	text
COL_DIALOGCOMBOHIGHLIGHT	 	Text	 	0x3E	 	Dialog.Combobox.Highlighted

text
COL_DIALOGCOMBOBOX	 	Text	 	0x3F	 	Dialog.Combobox.Border

COL_DIALOGCOMBODISABLED	 	Text	 	0x38	 	Dialog.Combobox.Disabled	text

COL_DIALOGCOMBOSCROLLBAR	 	Text	 	0x3F	 	Dialog.Combobox.Scrollbar

COL_DIALOGCOMBOTEXT	 	Text	 	0x3F	 	Dialog.Combobox.Normal	text

COL_MENUDISABLEDTEXT	 	Text	 	0x38	 	Menu.Disabled	item

COL_MENUTITLE	 	Text	 	0x3F	 	Menu.Title

COL_MENUSELECTEDHIGHLIGHT	 	Text	 	0x0E	 	Menu.Selected	highlighted	text

COL_MENUSELECTEDTEXT	 	Text	 	0x0F	 	Menu.Selected	text

COL_MENUHIGHLIGHT	 	Text	 	0x3E	 	Menu.Highlighted	text

COL_MENUBOX	 	Text	 	0x3F	 	Menu.Border

COL_MENUSCROLLBAR	 	Text	 	0x3F	 	Menu.Scrollbar

COL_MENUTEXT	 	Text	 	0x3F	 	Menu.Normal	text

COL_HMENUSELECTEDTEXT	 	Text	 	0x0F	 	Horizontal	menu.Selected	text

COL_HMENUSELECTEDHIGHLIGHT	 	Text	 	0x0E	 	Horizontal	menu.Selected
highlighted	text

COL_HMENUHIGHLIGHT	 	Text	 	0x3E	 	Horizontal	menu.Highlighted	text

COL_HMENUTEXT	 	Text	 	0x30	 	Horizontal	menu.Normal	text

COL_KEYBARTEXT	 	Text	 	0x30	 	Key	bar.Key	names

COL_KEYBARNUM	 	Text	 	0x07	 	Key	bar.Key	numbers

COL_KEYBARBACKGROUND	 	Text	 	0x07	 	Key	bar.Background

COL_WARNDIALOGBOXTITLE	 	Text	 	0x4F	 	Warning	message.Title

COL_WARNDIALOGHIGHLIGHTTEXT	 	Text	 	0x4E	 	Warning	message.Highlighted
text

COL_WARNDIALOGLISTTITLE	 	Text	 	0x4F	 	Warning	message.Listbox.Title

COL_WARNDIALOGLISTSELECTEDTEXT	 	Text	 	0x70	 	Warning
message.Listbox.Selected	text

COL_WARNDIALOGLISTSELECTEDHIGHLIGHT	 	Text	 	0x7E	 	Warning
message.Listbox.Selected
highlighted	text

COL_WARNDIALOGLISTHIGHLIGHT	 	Text	 	0x4E	 	Warning
message.Listbox.Highlighted	text

COL_WARNDIALOGLISTBOX	 	Text	 	0x4F	 	Warning	message.Listbox.Border

COL_WARNDIALOGLISTDISABLED	 	Text	 	0x48	 	Warning
message.Listbox.Disabled	text

COL_WARNDIALOGLISTSCROLLBAR	 	Text	 	0x4F	 	Warning

message.Listbox.Scrollbar
COL_WARNDIALOGLISTTEXT	 	Text	 	0x4F	 	Warning	message.Listbox.Normal

text
COL_WARNDIALOGHIGHLIGHTBOXTITLE	 	Text	 	0x4E	 	Warning	message.Highlighted

title
COL_WARNDIALOGBOX	 	Text	 	0x4F	 	Warning	message.Border

COL_WARNDIALOGDISABLED	 	Text	 	0x48	 	Warning	message.Disabled	text

COL_WARNDIALOGSELECTEDBUTTON	 	Text	 	0x70	 	Warning	message.Button.Selected
text

COL_WARNDIALOGHIGHLIGHTSELECTEDBUTTON	 	Text	 	0x7E	 	Warning	message.Button.Selected
highlighted	text

COL_WARNDIALOGHIGHLIGHTBUTTON	 	Text	 	0x4E	 	Warning
message.Button.Highlighted	text

COL_WARNDIALOGBUTTON	 	Text	 	0x4F	 	Warning	message.Button.Normal
text

COL_WARNDIALOGEDITUNCHANGED	 	Text	 	0x38	 	Warning
message.Input.Unchanged	text

COL_WARNDIALOGEDITSELECTED	 	Text	 	0x0F	 	Warning	message.Input.Selected
text

COL_WARNDIALOGEDITDISABLED	 	Text	 	0x38	 	Warning	message.Input.Disabled
text

COL_WARNDIALOGEDIT	 	Text	 	0x30	 	Warning	message.Input.Normal
text

COL_WARNDIALOGCOMBOTITLE	 	Text	 	0x3F	 	Warning
message.Combobox.Title

COL_WARNDIALOGCOMBOSELECTEDTEXT	 	Text	 	0x0F	 	Warning
message.Combobox.Selected	text

COL_WARNDIALOGCOMBOSELECTEDHIGHLIGHT	 	Text	 	0x0E	 	Warning
message.Combobox.Selected
highlighted	text

COL_WARNDIALOGCOMBOHIGHLIGHT	 	Text	 	0x3E	 	Warning
message.Combobox.Highlighted
text

COL_WARNDIALOGCOMBOBOX	 	Text	 	0x3F	 	Warning
message.Combobox.Border

COL_WARNDIALOGCOMBODISABLED	 	Text	 	0x38	 	Warning
message.Combobox.Disabled	text

COL_WARNDIALOGCOMBOSCROLLBAR	 	Text	 	0x3F	 	Warning
message.Combobox.Scrollbar

COL_WARNDIALOGCOMBOTEXT	 	Text	 	0x3F	 	Warning
message.Combobox.Normal	text

COL_WARNDIALOGTEXT	 	Text	 	0x4F	 	Warning	message.Normal	text

COL_VIEWERSELECTEDTEXT	 	Text	 	0x30	 	Viewer.Selected	text

COL_VIEWERARROWS	 	Text	 	0x1E	 	Viewer.Screen	scrolling	arrows

COL_VIEWERSTATUS	 	Text	 	0x30	 	Viewer.Status	line

COL_VIEWERSCROLLBAR	 	Text	 	0x1B	 	Viewer.Scrollbar

COL_VIEWERTEXT	 	Text	 	0x1B	 	Viewer.Normal	text

COL_PANELHIGHLIGHTTEXT	 	Text	 	0x17	 	Panel.(not	used)

COL_PANELCOLUMNTITLE	 	Text	 	0x1E	 	Panel.Column	title

COL_PANELSELECTEDTEXT	 	Text	 	0x1E	 	Panel.Selected	text

COL_PANELSELECTEDTITLE	 	Text	 	0x30	 	Panel.Selected	title

COL_PANELSELECTEDCURSOR	 	Text	 	0x3E	 	Panel.Selected	cursor

COL_PANELINFOTEXT	 	Text	 	0x1E	 	Panel.Highlighted	info

COL_PANELBOX	 	Text	 	0x1B	 	Panel.Border

COL_PANELDRAGTEXT	 	Text	 	0x3E	 	Panel.Dragging	text

COL_PANELTOTALINFO	 	Text	 	0x1B	 	Panel.Total	info

COL_PANELSCREENSNUMBER	 	Text	 	0x0B	 	Panel.Number	of	background
screens

COL_PANELSELECTEDINFO	 	Text	 	0x3E	 	Panel.Selected	info

COL_PANELSCROLLBAR	 	Text	 	0x1B	 	Panel.Scrollbar

COL_PANELTEXT	 	Text	 	0x1B	 	Panel.Normal	text

COL_PANELTITLE	 	Text	 	0x1B	 	Panel.Normal	title

COL_PANELCURSOR	 	Text	 	0x30	 	Panel.Nirmal	cursor

COL_EDITORSELECTEDTEXT	 	Text	 	0x30	 	Editor.Selected	text

COL_EDITORSTATUS	 	Text	 	0x30	 	Editor.Status	line

COL_EDITORTEXT	 	Text	 	0x1B	 	Editor.Normal	text

COL_COMMANDLINESELECTED	 	Text	 	0x70	 	Command	line.Selected	text

COL_COMMANDLINEPREFIX	 	Text	 	0x07	 	Command	line.Prefix	text

COL_COMMANDLINE	 	Text	 	0x07	 	Command	line.Normal	text

COL_HELPBOXTITLE	 	Text	 	0x30	 	Help.Title

COL_HELPSELECTEDTOPIC	 	Text	 	0x0F	 	Help.Selected	link

COL_HELPHIGHLIGHTTEXT	 	Text	 	0x3F	 	Help.Highlighted	text

COL_HELPTOPIC	 	Text	 	0x3E	 	Help.Link

COL_HELPBOX	 	Text	 	0x30	 	Help.Border

COL_HELPSCROLLBAR	 	Text	 	0x30	 	Help.Scrollbar

COL_HELPTEXT	 	Text	 	0x30	 	Help.Normal	text

COL_VIEWERCLOCK	 	Text	 	0x30	 	Clock.Viewer

COL_EDITORCLOCK	 	Text	 	0x30	 	Clock.Editor

COL_CLOCK	 	Text	 	0x30	 	Clock.Panel

COL_DIALOGLISTARROWS	 	Text	 	0x30	 	Dialog.List	box.Long	string
indicators

COL_DIALOGLISTARROWSDISABLED	 	Text	 	0x30	 	Dialog.List	box.Long	string
indicators.Disabled	item

COL_DIALOGLISTARROWSSELECTED	 	Text	 	0x0E	 	Dialog.List	box.Long	string
indicators.Selected	item

COL_DIALOGCOMBOARROWS	 	Text	 	0x3E	 	Dialog.Combobox.Long	string
indicators

COL_DIALOGCOMBOARROWSDISABLED	 	Text	 	0x38	 	Dialog.Combobox.Long	string
indicators.Disabled	item

COL_DIALOGCOMBOARROWSSELECTED	 	Text	 	0x0E	 	Dialog.Combobox.Long	string
indicators.Selected	item

COL_WARNDIALOGLISTARROWS	 	Text	 	0x4E	 	Warning	message.List	box.Long
string	indicators

COL_WARNDIALOGLISTARROWSDISABLED	 	Text	 	0x48	 	Warning	message.List	box.Long
string	indicators.Disabled	item

COL_WARNDIALOGLISTARROWSSELECTED	 	Text	 	0x7E	 	Warning	message.List	box.Long
string	indicators.Selected	item

COL_WARNDIALOGCOMBOARROWS	 	Text	 	0x3E	 	Warning
message.Combobox.Long	string
indicators

COL_WARNDIALOGCOMBOARROWSDISABLED	 	Text	 	0x38	 	Warning
message.Combobox.Long	string
indicators.Disabled	item

COL_WARNDIALOGCOMBOARROWSSELECTED	 	Text	 	0x0E	 	Warning
message.Combobox.Long	string
indicators.Selected	item

COL_MENUARROWS	 	Text	 	0x3E	 	Menu.Long	string	indicators

COL_MENUARROWSDISABLED	 	Text	 	0x38	 	Menu.Long	string
indicators.Disabled	item

COL_MENUARROWSSELECTED	 	Text	 	0x0E	 	Menu.Long	string
indicators.Selected	item

COL_COMMANDLINEUSERSCREEN	 	Text	 	0x07	 	Command	line.User	screen

COL_EDITORSCROLLBAR	 	Text	 	0x1B	 	Editor.Scrollbar

COL_MENUGRAYTEXT	 	Text	 	0x38	 	Menu.Gray	text

COL_MENUSELECTEDGRAYTEXT	 	Text	 	0x07	 	Menu.Selected	gray	text

COL_DIALOGCOMBOGRAY	 	Text	 	0x38	 	Dialog.Combobox.Gray	text

COL_DIALOGCOMBOSELECTEDGRAYTEXT	 	Text	 	0x07	 	Dialog.Combobox.Selected	gray
text

COL_DIALOGLISTGRAY	 	Text	 	0x78	 	Dialog.List	box.Gray	text

COL_DIALOGLISTSELECTEDGRAYTEXT	 	Text	 	0x07	 	Dialog.List	box.Selected	gray	text

COL_WARNDIALOGCOMBOGRAY	 	Text	 	0x38	 	Warning
message.Combobox.Gray	text

COL_WARNDIALOGCOMBOSELECTEDGRAYTEXT	 	Text	 	0x07	 	Warning
message.Combobox.Selected	gray
text

COL_WARNDIALOGLISTGRAY	 	Text	 	0x48	 	Warning	message.List	box.Gray
text

COL_WARNDIALOGLISTSELECTEDGRAYTEXT	 	Text	 	0x70	 	Warning	message.List
box.Selected	gray	text

COL_RESERVED0	 	Text	 	0x00	 	(reserved	for	internal	needs)

FAR	Manager	key	codes
main	|	types	and	definitions	|	virtual	key	codes

This	table	shows	the	hexadecimal	key	codes	used	in	FAR	manager	(in
farkeys.hpp	the	BaseDefKeyboard	enum).

Basic	set:
Key KEY_* Hex Remarks

Ctrl KEY_CTRL 01000000 Left	Ctrl
Alt KEY_ALT 02000000 Left	Alt
Shift KEY_SHIFT 04000000

Right	Ctrl KEY_RCTRL 10000000 Right	Ctrl
Right	Alt KEY_RALT 20000000 Right	Alt
[KEY_BRACKET 0000005B

] KEY_BACKBRACKET 0000005D

, KEY_COMMA 0000002C

" KEY_QUOTE 00000022

. KEY_DOT 0000002E

/ KEY_SLASH 0000002F

: KEY_COLON 0000003A

\ KEY_BACKSLASH 0000005C

Backspace KEY_BS 00000008

Tab KEY_TAB 00000009

Enter KEY_ENTER 0000000D

Esc KEY_ESC 0000001B

Space KEY_SPACE 00000020

Break KEY_BREAK 00000103 Ctrl-Pause
Page	Up KEY_PGUP 00000121

Page
Down

KEY_PGDN 00000122

End KEY_END 00000123

Home KEY_HOME 00000124

Left KEY_LEFT 00000125

UP KEY_UP 00000126

Right KEY_RIGHT 00000127

Down KEY_DOWN 00000128

Insert KEY_INS 0000012D

Delete KEY_DEL 0000012E

Left	Win KEY_LWIN 0000015B

Right	Win KEY_RWIN 0000015C

Apps KEY_APPS 0000015D

Numpad	0 KEY_NUMPAD0 00000160 Numeric	keypad	(if	"UseNumPad"	option	is
on)

Numpad	1 KEY_NUMPAD1 00000161 Numeric	keypad	(if	"UseNumPad"	option	is
on)

Numpad	2 KEY_NUMPAD2 00000162 Numeric	keypad	(if	"UseNumPad"	option	is
on)

Numpad	3 KEY_NUMPAD3 00000163 Numeric	keypad	(if	"UseNumPad"	option	is
on)

Numpad	4 KEY_NUMPAD2 00000164 Numeric	keypad	(if	"UseNumPad"	option	is
on)

Numpad	5 KEY_NUMPAD5 00000165 Numeric	keypad
Numpad	6 KEY_NUMPAD6 00000166 Numeric	keypad	(if	"UseNumPad"	option	is

on)
Numpad	7 KEY_NUMPAD7 00000167 Numeric	keypad	(if	"UseNumPad"	option	is

on)
Numpad	8 KEY_NUMPAD8 00000168 Numeric	keypad	(if	"UseNumPad"	option	is

on)
Numpad	9 KEY_NUMPAD9 00000169 Numeric	keypad	(if	"UseNumPad"	option	is

on)
KEY_CLEAR 00000165 Same	as	KEY_NUMPAD5

Gray	* KEY_MULTIPLY 0000016A Numeric	keypad
Gray	+ KEY_ADD 0000016B Numeric	keypad
Gray	- KEY_SUBTRACT 0000016D Numeric	keypad
Gray	/ KEY_DIVIDE 0000016F Numeric	keypad
F1 KEY_F1 00000170

F2 KEY_F2 00000171

F3 KEY_F3 00000172

F4 KEY_F4 00000173

F5 KEY_F5 00000174

F6 KEY_F6 00000175

F7 KEY_F7 00000176

F8 KEY_F8 00000177

F9 KEY_F9 00000178

F10 KEY_F10 00000179

F11 KEY_F11 0000017A

F12 KEY_F12 0000017B

F13 KEY_F13 0000017C

F14 KEY_F14 0000017D

F15 KEY_F15 0000017E

F16 KEY_F16 0000017F

F17 KEY_F17 00000180

F18 KEY_F18 00000181

F19 KEY_F19 00000182

F21 KEY_F20 00000183

F22 KEY_F22 00000184

F23 KEY_F23 00000185

F24 KEY_F24 00000186

KEY_BROWSER_BACK 000001A6 Same	as	VK_BROWSER_BACK
KEY_BROWSER_FORWARD 000001A7 Same	as	VK_BROWSER_FORWARD
KEY_BROWSER_REFRESH 000001A8 Same	as	VK_BROWSER_REFRESH
KEY_BROWSER_STOP 000001A9 Same	as	VK_BROWSER_STOP
KEY_BROWSER_SEARCH 000001AA Same	as	VK_BROWSER_SEARCH
KEY_BROWSER_FAVORITES 000001AB Same	as	VK_BROWSER_FAVORITES
KEY_BROWSER_HOME 000001AC Same	as	VK_BROWSER_HOME
KEY_VOLUME_MUTE 000001AD Same	as	VK_VOLUME_MUTE
KEY_VOLUME_DOWN 000001AE Same	as	VK_VOLUME_DOWN
KEY_VOLUME_UP 000001AF Same	as	VK_VOLUME_UP
KEY_MEDIA_NEXT_TRACK 000001B0 Same	as	VK_MEDIA_NEXT_TRACK
KEY_MEDIA_PREV_TRACK 000001B1 Same	as	VK_MEDIA_PREV_TRACK
KEY_MEDIA_STOP 000001B2 Same	as	VK_MEDIA_STOP
KEY_MEDIA_PLAY_PAUSE 000001B3 Same	as	VK_MEDIA_PLAY_PAUSE
KEY_LAUNCH_MAIL 000001B4 Same	as	VK_LAUNCH_MAIL
KEY_LAUNCH_MEDIA_SELECT 000001B5 Same	as	VK_LAUNCH_MEDIA_SELECT
KEY_LAUNCH_APP1 000001B6 Same	as	VK_LAUNCH_APP1
KEY_LAUNCH_APP2 000001B7 Same	as	VK_LAUNCH_APP2

	 	 000001XX Other	special	keys	that	have	a	virtual	code
other	than	0xFF,	are	formed	by	the	following
formula:	"KEY_FKEY_BEGIN"	+
"Virtual	code".
In	macros	such	keys	are	stored	as
"OemXXXXX"	(here	XXXXX	is	the	virtual
key	code).

KEY_CTRLALTSHIFTPRESS 00000201 All	three	keys	are	pressed
KEY_CTRLALTSHIFTRELEASE 00000202 All	the	three	keys	were	released
KEY_MSWHEEL_UP 00000203 The	mouse	wheel	is	rotated	one	notch	up
KEY_MSWHEEL_DOWN 00000204 The	mouse	wheel	is	rotated	one	notch	down
KEY_NUMDEL 00000209 Del	on	the	numpad	when	NumLock	is	off
KEY_DECIMAL 0000020A Del	on	the	numpad	when	NumLock	is	on
KEY_NUMENTER 0000020B Enter	on	the	numpad
KEY_MSWHEEL_LEFT 0000020C The	mouse	wheel	is	rotated	one	notch	left
KEY_MSWHEEL_RIGHT 0000020D The	mouse	wheel	is	rotated	one	notch	right
KEY_STANDBY 0000020E Same	as	VK_SLEEP
KEY_MSLCLICK 0000020F Click	left	mouse	button	(only	for	macros	-

shortcuts	and	within	macro	sequences)

KEY_MSRCLICK 00000210 Click	right	mouse	button	(only	for	macros	-
shortcuts	and	within	macro	sequences)

KEY_MSM1CLICK 00000211 Click	middle	(next	to	left)	mouse	button
(only	for	macros	-	shortcuts	and	within
macro	sequences)

KEY_MSM2CLICK 00000212 Click	third	after	left	mouse	button	(only	for
macros	-	shortcuts	and	within	macro
sequences)

KEY_MSM3CLICK 00000213 Click	fourth	after	left	mouse	button	(only	for
macros	-	shortcuts	and	within	macro
sequences)

KEY_VK_0xFF_BEGIN 00000300 Beginning	of	special	keys	definitions	that
have	a	virtual	code	of	0xFF	(i.e.	misc.
multimedia	keys	which	are	added	by
keyboard	manufacturers).	Key	code	is
formed	using	the	following	formula:
"KEY_VK_0xFF_BEGIN"	+	ScanCode.
In	macros	those	keys	are	saved	as
"SpecXXXXX"	(here	XXXXX	is	the	scan
code	of	the	key).

KEY_VK_0xFF_END 000003FF Ending	of	special	keys	definitions.
	

KEY_NONE 00001001 Idle
KEY_IDLE 00001002 Idle
KEY_END_SKEY 0000FFFF The	end	of	basic	set

Virtual	key	codes
main	|	FAR	Manager	key	codes

The	following	table	shows	the	symbolic	constant	names,	hexadecimal	values,
and	mouse	or	keyboard	equivalents	for	the	virtual-key	codes	used	by	the	system.
The	codes	are	listed	in	numeric	order.
Symbolic	constant	name Value	(hex) Mouse	or	keyboard	equivalents

VK_LBUTTON 01 Left	mouse	button
VK_RBUTTON 02 Right	mouse	button
VK_CANCEL 03 Control-break	processing
VK_MBUTTON 04 Middle	mouse	button	(three-button	mouse)
VK_XBUTTON1 05 Windows	2000/XP/2003/Vista/2008/7:	X1	mouse	button
VK_XBUTTON2 06 Windows	2000/XP/2003/Vista/2008/7:	X2	mouse	button
- 07 Undefined
VK_BACK 08 BACKSPACE	key
VK_TAB 09 TAB	key
- 0A-0B Reserved
VK_CLEAR 0C CLEAR	key
VK_RETURN 0D ENTER	key
- 0E-0F Undefined
VK_SHIFT 10 SHIFT	key
VK_CONTROL 11 CTRL	key
VK_MENU 12 ALT	key
VK_PAUSE 13 PAUSE	key
VK_CAPITAL 14 CAPS	LOCK	key
VK_KANA 15 Input	Method	Editor	(IME)	Kana	mode
VK_HANGUEL 15 IME	Hanguel	mode	(maintained	for	compatibility;	use

VK_HANGUL)
VK_HANGUL 15 IME	Hangul	mode
- 16 Undefined
VK_JUNJA 17 IME	Junja	mode
VK_FINAL 18 IME	final	mode
VK_HANJA 19 IME	Hanja	mode
VK_KANJI 19 IME	Kanji	mode
- 1A Undefined
VK_ESCAPE 1B ESC	key
VK_CONVERT 1C IME	convert	(Reserved	for	Kanji	systems)
VK_NONCONVERT 1D IME	nonconvert	(Reserved	for	Kanji	systems)
VK_ACCEPT 1E IME	accept	(Reserved	for	Kanji	systems)
VK_MODECHANGE 1F IME	mode	change	request	(Reserved	for	Kanji	systems)
VK_SPACE 20 SPACEBAR

http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/VirtualKeyCodes.asp

VK_PRIOR 21 PAGE	UP	key
VK_NEXT 22 PAGE	DOWN	key
VK_END 23 END	key
VK_HOME 24 HOME	key
VK_LEFT 25 LEFT	ARROW	key
VK_UP 26 UP	ARROW	key
VK_RIGHT 27 RIGHT	ARROW	key
VK_DOWN 28 DOWN	ARROW	key
VK_SELECT 29 SELECT	key
VK_PRINT 2A PRINT	key
VK_EXECUTE 2B EXECUTE	key
VK_SNAPSHOT 2C PRINT	SCREEN	key	for	Windows	3.0	and	later
VK_INSERT 2D INS	key
VK_DELETE 2E DEL	key
VK_HELP 2F HELP	key
VK_0 30 0	key
VK_1 31 1	key
VK_2 32 2	key
VK_3 33 3	key
VK_4 34 4	key
VK_5 35 5	key
VK_6 36 6	key
VK_7 37 7	key
VK_8 38 8	key
VK_9 39 9	key
- 3A-40 Undefined
VK_A 41 A	key
VK_B 42 B	key
VK_C 43 C	key
VK_D 44 D	key
VK_E 45 E	key
VK_F 46 F	key
VK_G 47 G	key
VK_H 48 H	key
VK_I 49 I	key
VK_J 4A J	key
VK_K 4B K	key
VK_L 4C L	key
VK_M 4D M	key
VK_N 4E N	key
VK_O 4F O	key

VK_P 50 P	key
VK_Q 51 Q	key
VK_R 52 R	key
VK_S 53 S	key
VK_T 54 T	key
VK_U 55 U	key
VK_V 56 V	key
VK_W 57 W	key
VK_X 58 X	key
VK_Y 59 Y	key
VK_Z 5A Z	key
VK_LWIN 5B Left	Windows	key	(Microsoft	Natural	Keyboard)
VK_RWIN 5C Right	Windows	key	(Microsoft	Natural	Keyboard)
VK_APPS 5D Applications	key	(Microsoft	Natural	Keyboard)
- 5E Reserved
VK_SLEEP 5F Computer	Sleep	key
VK_NUMPAD0 60 Numeric	keypad	0	key
VK_NUMPAD1 61 Numeric	keypad	1	key
VK_NUMPAD2 62 Numeric	keypad	2	key
VK_NUMPAD3 63 Numeric	keypad	3	key
VK_NUMPAD4 64 Numeric	keypad	4	key
VK_NUMPAD5 65 Numeric	keypad	5	key
VK_NUMPAD6 66 Numeric	keypad	6	key
VK_NUMPAD7 67 Numeric	keypad	7	key
VK_NUMPAD8 68 Numeric	keypad	8	key
VK_NUMPAD9 69 Numeric	keypad	9	key
VK_MULTIPLY 6A Multiply	key
VK_ADD 6B Add	key
VK_SEPARATOR 6C Separator	key
VK_SUBTRACT 6D Subtract	key
VK_DECIMAL 6E Decimal	key
VK_DIVIDE 6F Divide	key
VK_F1 70 F1	key
VK_F2 71 F2	key
VK_F3 72 F3	key
VK_F4 73 F4	key
VK_F5 74 F5	key
VK_F6 75 F6	key
VK_F7 76 F7	key
VK_F8 77 F8	key
VK_F9 78 F9	key

VK_F10 79 F10	key
VK_F11 7A F11	key
VK_F12 7B F12	key
VK_F13 7C F13	key
VK_F14 7D F14	key
VK_F15 7E F15	key
VK_F16 7F F16	key
VK_F17 80H F17	key
VK_F18 81H F18	key
VK_F19 82H F19	key
VK_F20 83H F20	key
VK_F21 84H F21	key
VK_F22 85H F22	key
VK_F23 86H F23	key
VK_F24 87H F24	key
- 88-8F Unassigned
VK_NUMLOCK 90 NUM	LOCK	key
VK_SCROLL 91 SCROLL	LOCK	key
VK_OEM_NEC_EQUAL 92 NEC	PC-9800	kbd	definitions:	'='	key	on	numpad
VK_OEM_FJ_JISHO 92 Fujitsu/OASYS	kbd	definitions:	'Dictionary'	key
VK_OEM_FJ_MASSHOU 93 Fujitsu/OASYS	kbd	definitions:	'Unregister	word'	key
VK_OEM_FJ_TOUROKU 94 Fujitsu/OASYS	kbd	definitions:	'Register	word'	key
VK_OEM_FJ_LOYA 95 Fujitsu/OASYS	kbd	definitions:	'Left	OYAYUBI'	key
VK_OEM_FJ_ROYA 96 Fujitsu/OASYS	kbd	definitions:	'Right	OYAYUBI'	key
- 97-9F Unassigned
VK_LSHIFT A0 Left	SHIFT	key
VK_RSHIFT A1 Right	SHIFT	key
VK_LCONTROL A2 Left	CONTROL	key
VK_RCONTROL A3 Right	CONTROL	key
VK_LMENU A4 Left	MENU	key
VK_RMENU A5 Right	MENU	key
VK_BROWSER_BACK A6 Windows	2000/XP/2003/Vista/2008/7:	Browser	Back	key
VK_BROWSER_FORWARD A7 Windows	2000/XP/2003/Vista/2008/7:	Browser	Forward

key
VK_BROWSER_REFRESH A8 Windows	2000/XP/2003/Vista/2008/7:	Browser	Refresh

key
VK_BROWSER_STOP A9 Windows	2000/XP/2003/Vista/2008/7:	Browser	Stop	key
VK_BROWSER_SEARCH AA Windows	2000/XP/2003/Vista/2008/7:	Browser	Search

key
VK_BROWSER_FAVORITES AB Windows	2000/XP/2003/Vista/2008/7:	Browser	Favorites

key

VK_BROWSER_HOME AC Windows	2000/XP/2003/Vista/2008/7:	Browser	Start	and
Home	key

VK_VOLUME_MUTE AD Windows	2000/XP/2003/Vista/2008/7:	Volume	Mute	key
VK_VOLUME_DOWN AE Windows	2000/XP/2003/Vista/2008/7:	Volume	Down	key
VK_VOLUME_UP AF Windows	2000/XP/2003/Vista/2008/7:	Volume	Up	key
VK_MEDIA_NEXT_TRACK B0 Windows	2000/XP/2003/Vista/2008/7:	Next	Track	key
VK_MEDIA_PREV_TRACK B1 Windows	2000/XP/2003/Vista/2008/7:	Previous	Track	key
VK_MEDIA_STOP B2 Windows	2000/XP/2003/Vista/2008/7:	Stop	Media	key
VK_MEDIA_PLAY_PAUSE B3 Windows	2000/XP/2003/Vista/2008/7:	Play/Pause	Media

key
VK_LAUNCH_MAIL B4 Windows	2000/XP/2003/Vista/2008/7:	Start	Mail	key
VK_LAUNCH_MEDIA_SELECT B5 Windows	2000/XP/2003/Vista/2008/7:	Select	Media	key
VK_LAUNCH_APP1 B6 Windows	2000/XP/2003/Vista/2008/7:	Start	Application	1

key
VK_LAUNCH_APP2 B7 Windows	2000/XP/2003/Vista/2008/7:	Start	Application	2

key
- B8-B9 Reserved
VK_OEM_1 BA Windows	2000/XP/2003/Vista/2008/7:	For	the	US

standard	keyboard,	the	';:'	key
VK_OEM_PLUS BB Windows	2000/XP/2003/Vista/2008/7:	For	any

country/region,	the	'+'	key
VK_OEM_COMMA BC Windows	2000/XP/2003/Vista/2008/7:	For	any

country/region,	the	','	key
VK_OEM_MINUS BD Windows	2000/XP/2003/Vista/2008/7:	For	any

country/region,	the	'-'	key
VK_OEM_PERIOD BE Windows	2000/XP/2003/Vista/2008/7:	For	any

country/region,	the	'.'	key
VK_OEM_2 BF Windows	2000/XP/2003/Vista/2008/7:	For	the	US

standard	keyboard,	the	'/?'	key
VK_OEM_3 C0 Windows	2000/XP/2003/Vista/2008/7:	For	the	US

standard	keyboard,	the	'`~'	key
- C1-D7 Reserved
- D8-DA Unassigned
VK_OEM_4 DB Windows	2000/XP/2003/Vista/2008/7:	For	the	US

standard	keyboard,	the	'[{'	key
VK_OEM_5 DC Windows	2000/XP/2003/Vista/2008/7:	For	the	US

standard	keyboard,	the	'\|'	key
VK_OEM_6 DD Windows	2000/XP/2003/Vista/2008/7:	For	the	US

standard	keyboard,	the	']}'	key
VK_OEM_7 DE Windows	2000/XP/2003/Vista/2008/7:	For	the	US

standard	keyboard,	the	'single-quote/double-quote'	key
VK_OEM_8 DF Used	for	miscellaneous	characters;	it	can	vary	by	keyboard.

- E0 Reserved

E1 OEM	specific
VK_OEM_102 E2 Windows	2000/XP/2003/Vista/2008/7:	Either	the	angle

bracket	key	or	the	backslash	key	on	the	RT	102-key
keyboard

- E3-E4 OEM	specific
VK_PROCESSKEY E5 Windows	95/98/Me,

Windows	NT/2000/XP/2003/Vista/2008/7:	IME
PROCESS	key

- E6 OEM	specific
VK_PACKET E7 Windows	2000/XP/2003/Vista/2008/7:	Used	to	pass

Unicode	characters	as	if	they	were	keystrokes.	The
VK_PACKET	key	is	the	low	word	of	a	32-bit	Virtual	Key
value	used	for	non-keyboard	input	methods.	For	more
information,	see	Remark	in	KEYBDINPUT	

	,

SendInput	
	,

WM_KEYDOWN	
	,	and

WM_KEYUP	

JavaScript:link122.Click()
JavaScript:link123.Click()
JavaScript:link124.Click()
JavaScript:link125.Click()

- E8 Unassigned
VK_OEM_RESET E9 Only	used	by	Nokia.
VK_OEM_JUMP EA Only	used	by	Nokia.
VK_OEM_PA1 EB Only	used	by	Nokia.
VK_OEM_PA2 EC Only	used	by	Nokia.
VK_OEM_PA3 ED Only	used	by	Nokia.
VK_OEM_WSCTRL EE Only	used	by	Nokia.
VK_OEM_CUSEL EF Only	used	by	Nokia.
VK_OEM_ATTN F0 Only	used	by	Nokia.
VK_OEM_FINNISH F1 Only	used	by	Nokia.
VK_OEM_COPY F2 Only	used	by	Nokia.
VK_OEM_AUTO F3 Only	used	by	Nokia.
VK_OEM_ENLW F4 Only	used	by	Nokia.
VK_OEM_BACKTAB F5 Only	used	by	Nokia.
VK_ATTN F6 Attn	key
VK_CRSEL F7 CrSel	key
VK_EXSEL F8 ExSel	key
VK_EREOF F9 Erase	EOF	key
VK_PLAY FA Play	key
VK_ZOOM FB Zoom	key
VK_NONAME FC Reserved	for	future	use.
VK_PA1 FD PA1	key
VK_OEM_CLEAR FE Clear	key

FF Multimedia	keys.	See	ScanCode	keys.

Operation	mode
main	|	types	and	definitions

The	OpMode	parameter	passes	to	plugin	additional	information	about	function
operation	mode	and	place,	from	which	it	was	called.	It	can	be	a	combination	of
the	following	values	(OPERATION_MODES	enum):

Mode Description

OPM_SILENT Plugin	should	minimize	user	requests	if	possible,
because	the	called	function	is	only	a	part	of	a	more
complex	file	operation.

OPM_FIND Plugin	function	is	called	from	Find	file	or	another
directory	scanning	command.	Screen	output	has	to	be
minimized.

OPM_VIEW Plugin	function	is	called	as	part	of	a	file	view
operation.	If	file	is	viewed	on	quickview	panel,	than
both	OPM_VIEW	and	OPM_QUICKVIEW	are	set.

OPM_QUICKVIEW Plugin	function	is	called	as	part	of	a	file	view
operation	activated	from	the	quick	view	panel
(activated	by	pressing	Ctrl-Q	in	the	file	panels).

OPM_EDIT Plugin	function	is	called	as	part	of	a	file	edit	operation.

OPM_DESCR Plugin	function	is	called	to	get	or	put	file	with	file
descriptions.

OPM_TOPLEVEL All	files	in	host	file	of	file	based	plugin	should	be
processed.	This	flag	is	set	when	executing	Shift-F2
and	Shift-F3	FAR	commands	outside	of	host	file.
Passed	to	plugin	functions	files	list	also	contains	all
necessary	information,	so	plugin	can	either	ignore	this
flag	or	use	it	to	speed	up	processing.

See	also:
SetDirectory,	PutFiles,	ProcessHostFile,	GetFiles,	DeleteFiles,
GetFindData,	MakeDirectory

Sorting	methods
main	|	types	and	definitions

Sorting	method	can	be	one	of	the	following	values
(OPENPLUGININFO_SORTMODES	enum):

Method Description

SM_DEFAULT Default	sort	mode

SM_UNSORTED Unsorted

SM_NAME Sort	by	name

SM_EXT Sort	by	extension

SM_MTIME Sort	by	file	modification	time

SM_CTIME Sort	by	file	creation	time

SM_ATIME Sotr	by	last	file	access	time

SM_SIZE Sort	by	size

SM_DESCR sotr	by	description

SM_OWNER Sort	by	owner

SM_COMPRESSEDSIZE Sort	be	compressed	size

SM_NUMLINKS Sort	by	number	of	hard	file	links

See	also:
Compare	|	OpenPluginInfo	|	PanelInfo

FAR_PKF_FLAGS
main	|	types	and	definitions

The	members	of	the	FAR_PKF_FLAGS	enumeration	describe	the	state	of	the
shift	keys	of	an	event	sent	to	the	ProcessKey	function.

Flag Description

PKF_CONTROL Ctrl	is	pressed

PKF_ALT Alt	is	pressed

PKF_SHIFT Shift	is	pressed

PKF_PREPROCESS Preprocessing:	-	FAR	passes	a	"raw"	keystroke.
This	flag	is	applicable	only	to	the	virtual	key	code
(second	parameter	of	the	ProcessKey	function).

Remarks

Since	FAR	Manager	1.70	build	2052	keyboard	events	are	sent	to	the	plugins
with	no	exclusions	(refer	to	the	remarks	on	the	ProcessKey	function).	If	the
PKF_PREPROCESS	flag	is	set,	plugin	may	ignore	calls	to	the
ProcessKey	function.	In	this	case	after	the	input	is	complete	FAR	will	form
the	needed	command	and	pass	it	to	the	plugin.
For	example,	if	a	user	enters	"cd	..Enter"	in	the	command	line	the
plugin	receives	the	sequence
"80043h	80044h	80020h	800BEh	800BEh	8000Dh"	(every
virtual	code	has	the	PKF_PREPROCESS	flag	set).
The	plugin	may	behave	in	two	ways:
1.	 process	the	sequence	by	itself;
2.	 ignore	the	calls	to	ProcessKey	with	PKF_PREPROCESS	set	and

wait	for	FAR	to	call	SetDirectory	with	Dir	=	"..".

See	also:
ProcessKey

_FAR_NO_NAMELESS_UNIONS
main	|	types	and	definitions

The	macro	_FAR_NO_NAMELESS_UNIONS	controls	whether	the
FarDialogItem	structure	uses	anonymous	unions.	Anonymous	unions	are	a
language	feature	that	is	allowed	by	the	C++	standard	but	not	supported	in	ANSI
C.

If	the	macro	_FAR_NO_NAMELESS_UNIONS	is	not	defined,	the
FarDialogItem	structure	will	be	compatible	with	FAR	Manager	versions
prior	to	FAR	1.70	beta	3	(inclusive).	So	the	FarDialogItem	structure	will	have
the	following	form:

struct	FarDialogItem

{

		...

		union	{

				int	Selected;

				char	*History;

				char	*Mask;

				struct	FarList	*ListItems;

				CHAR_INFO	*VBuf;

		};
		...

		union	{

				char	Data[512];

				struct	{

						DWORD	PtrFlags;

						int			PtrLength;

						char	*PtrData;

						char		PtrTail[1];

				}	Ptr;

		};
};

So	to	access	the	Data	member	of	the	FarDialogItem	structure	it	will	be	suficient
to	write	Data,	and	to	access	the	Selected	member	-	Selected.

If	the	macro	_FAR_NO_NAMELESS_UNIONS	is	defined,	the	structure	will

use	named	unions.	Then	it	will	be	compatible	with	ANSI	C	compilers,	but	will
not	be	source-level	compatible	with	plugins	written	for	FAR	1.65.	The	structure
will	have	the	following	form:

struct	FarDialogItem

{

		...

		union	{

				int	Selected;

				char	*History;

				char	*Mask;

				struct	FarList	*ListItems;

				CHAR_INFO	*VBuf;

		}	Param;
		...

		union	{

				char	Data[512];

				struct	{

						DWORD	PtrFlags;

						int			PtrLength;

						char	*PtrData;

						char		PtrTail[1];

				}	Ptr;

		}	Data;
};

In	this	case	to	access	the	Data	member	of	the	structure	you	will	have	to	write
Data.Data,	and	to	access	the	Selected	member	-	Param.Selected.

The	macro	must	be	defined	before	the	#include	"plugin.hpp"	directive:

#define	_FAR_NO_NAMELESS_UNIONS

#include	"plugin.hpp"

	Attention!
In	FAR	1.70	beta	4,	the	default	variant	is	compatible	with	old	plugins
(_FAR_NO_NAMELESS_UNIONS	is	not	defined).	However,	in	FAR
1.70	release	the	new	default	will	be
_FAR_NO_NAMELESS_UNIONS.	So	if	you	want	your	plugins	to	be

source-level	compatible	with	FAR	1.70	release,	you	can	right	now
define	the	_FAR_NO_NAMELESS_UNIONS	macro	and	modify	the
source	code	of	your	plugins	accordingly.

See	also:
GetMinFarVersion

FARMANAGERVERSION
main	|	types	and	definitions

The	FARMANAGERVERSION	constant	defines	the	current	FAR	Manager
version	and	has	the	following	format	-	0xBBBBXXYY:

BBBB	=	build	number	(343	=	0x0157)
XX	=	major	version	(FAR	1.70	=	0x01)
YY	=	minor	version	(FAR	1.70	=	0x46)

So	for	FAR	Manager	1.70	beta	3	build	343	this	constant	will	be:	0x01570146

The	FARMANAGERVERSION	constant	is	formed	using	the
MAKEFARVERSION	macro.

See	also:
GetMinFarVersion

MAKEFARVERSION
main	|	types	and	definitions

The	macro	MAKEFARVERSION	is	intended	to	be	used	in	the
GetMinFarVersion	function	to	return	the	minimal	FAR	Manager	version	needed
to	run	the	plugin.

MAKEFARVERSION(major,minor,build)

See	also:
GetMinFarVersion

FarConfirmationsSettings
main	|	types	and	definitions

Information	about	the	confirmation	settings	(FarConfirmationsSettings	enum).
Corresponds	to	options	in	the	"Confirmations"	dialog.

Constant Description

FCS_COPYOVERWRITE "Overwrite	files	when	copying"

FCS_MOVEOVERWRITE "Overwritte	files	when	moving"

FCS_DRAGANDDROP "Drag	and	drop"

FCS_DELETE "Delete"

FCS_DELETENONEMPTYFOLDERS "Delete	non-empty	folders"

FCS_INTERRUPTOPERATION "Interrupt	operation"

FCS_DISCONNECTNETWORKDRIVE "Disconnect	network	drive"

FCS_RELOADEDITEDFILE "Reload	edited	file"

FCS_CLEARHISTORYLIST "Clear	history	list"

FCS_EXIT Exit

See	also:
ACTL_GETCONFIRMATIONS

FarInterfaceSettings
main	|	types	and	definitions

Information	about	the	interface	settings	(FarInterfaceSettings	enum).
Corresponds	to	options	in	the	"Interface	settings"	dialog.

Constant Description

FIS_CLOCKINPANELS "Clock	in	panels"

FIS_CLOCKINVIEWERANDEDITOR "Clock	in	viewer	and	editor"

FIS_MOUSE "Mouse"

FIS_SHOWKEYBAR "Show	key	bar"

FIS_ALWAYSSHOWMENUBAR "Always	show	menu	bar,	even	when
it's	inactive"

FIS_USERIGHTALTASALTGR "Use	right	Alt	as	AltGr"

FIS_SHOWTOTALCOPYPROGRESSINDICATOR "Show	total	copy	progress	indicator"

FIS_SHOWCOPYINGTIMEINFO "Show	copying	time	information"

FIS_USECTRLPGUPTOCHANGEDRIVE "Use	Ctrl-PgUp	to	change	drive"

See	also:
ACTL_GETINTERFACESETTINGS

FarDialogSettings
main	|	types	and	definitions

Information	about	the	dialog	settings	(FarDialogSettings	enum).	Corresponds	to
options	in	the	"Dialog	Settings"	dialog.

Constant Description

FDIS_AUTOCOMPLETEININPUTLINES "AutoComplete	in	edit	controls"

FDIS_HISTORYINDIALOGEDITCONTROLS "History	in	dialog	edit	controls"
(applies	to	some	internal	dialogs)

FDIS_PERSISTENTBLOCKSINEDITCONTROLS "Persistent	blocks	in	edit	controls"

FDIS_BSDELETEUNCHANGEDTEXT "Backspace	deletes	unchanged	text".
If	this	option	is	turned	on,	pressing
BackSpace	inside	an	input	line	with
unchanged	text	will	delete	the	whole
line	as	if	Del	was	pressed.

FDIS_DELREMOVESBLOCKS "Del	removes	blocks	in	edit	controls"

FDIS_MOUSECLICKOUTSIDECLOSESDIALOG "Mouse	click	outside	a	dialog	closes
it"

See	also:
ACTL_GETDIALOGSETTINGS

FarDescriptionSettings
main	|	types	and	definitions

Information	about	the	file	description	settings	(FarDescriptionSettings	enum).
Corresponds	to	options	in	the	"File	descriptions"	dialog.

Constant Description

FDS_SETHIDDEN "Set	"Hidden"	attribute	to	new	description	lists"

FDS_UPDATEALWAYS "Always	update	descriptions"

FDS_UPDATEIFDISPLAYED "Update	descriptions	if	displayed"

FDS_UPDATEREADONLY "Update	read	only	description	file"

Remarks
The	FDS_UPDATEALWAYS	and	FDS_UPDATEIFDISPLAYED	flags	are
mutually	exclusive.

See	also:
ACTL_GETDESCSETTINGS

FarSystemSettings
main	|	types	and	definitions

Information	about	the	system	settings	(FarSystemSettings	enum).	Corresponds
to	options	in	the	"System	settings"	dialog.

Constant Description

FSS_CLEARROATTRIBUTE "Clear	R/O	attribute	from	CD	files"

FSS_DELETETORECYCLEBIN "Delete	to	Recycle	Bin"

FSS_USESYSTEMCOPYROUTINE "Use	system	copy	routine"

FSS_COPYFILESOPENEDFORWRITING "Copy	files	opened	for	writing"

FSS_SCANSYMLINK "Scan	symbolic	links"

FSS_CREATEFOLDERSINUPPERCASE "Create	folders	in	uppercase"

FSS_SAVECOMMANDSHISTORY "Save	commands	history"

FSS_SAVEFOLDERSHISTORY "Save	folders	history"

FSS_SAVEVIEWANDEDITHISTORY "Save	view	and	edit	history"

FSS_USEWINDOWSREGISTEREDTYPES "Use	Windows	registered	types"

FSS_AUTOSAVESETUP "Auto	save	setup"

See	also:
ACTL_GETSYSTEMSETTINGS

FarPanelSettings
main	|	types	and	definitions

Information	about	the	panel	settings	(FarPanelSettings	enum).	Corresponds	to
options	in	the	"Panel	settings"	dialog.

Constant Description

FPS_SHOWHIDDENANDSYSTEMFILES "Show	hidden	and	system	files"

FPS_HIGHLIGHTFILES "Highlight	files"

FPS_AUTOCHANGEFOLDER "Auto	change	folder"

FPS_SELECTFOLDERS "Select	folders"

FPS_ALLOWREVERSESORTMODES "Allow	reverse	sort	modes"

FPS_SHOWCOLUMNTITLES "Show	column	titles"

FPS_SHOWSTATUSLINE "Show	status	line"

FPS_SHOWFILESTOTALINFORMATION "Show	files	total	information"

FPS_SHOWFREESIZE "Show	free	space"

FPS_SHOWSCROLLBAR "Show	scrollbar"

FPS_SHOWBACKGROUNDSCREENSNUMBER "Show	background	screens	number"

FPS_SHOWSORTMODELETTER "Show	sort	mode	letter"

See	also:
ACTL_GETPANELSETTINGS

File	masks
main

File	masks	are	frequently	used	in	FAR	commands	to	select	a	single	file	and/or
folder	or	a	group	files	and/or	folders.	Masks	may	contain	common	valid	file
name	symbols,	wildcards	('*'	and	'?')	and	special	expressions:

Expression Description

* Zero	or	more	characters.

? Any	single	character.

[c,x-z] Any	character	enclosed	in	the	brackets.	Both	lists	and
ranges	of	characters	are	allowed.

For	example,	files	ftp.exe,	fc.exe	and	f.ext	may	be	selected	using	the
mask	f*.ex?,	the	mask	*co*	will	select	both	color.ini	and	edit.com,
the	mask	[c-f,t]*.txt	will	select	config.txt,	demo.txt,	faq.txt
and	tips.txt.

In	many	FAR	commands	you	may	enter	several	file	masks	separated	by	commas
or	semicolons.	For	example,	to	select	all	the	documents,	you	can	enter
.doc,.txt,*.wri	in	the	"Select"	command.

It	is	allowed	to	put	any	of	the	masks	(in	a	list)	in	quotes	(but	not	the	whole	list).
For	example,	you	have	to	do	this	when	a	mask	contains	any	of	the	delimiting
characters	(a	comma	or	a	semicolon),	so	that	the	mask	isn't	confused	with	a	list
of	masks.

In	some	commands	(find	files,	file	selection,	file	associations,	sort	groups	and
file	highlighting)	you	may	use	exclude	masks.	An	exclude	mask	is	one	or
multiple	file	masks	that	must	not	be	matched	by	the	needed	files.	The
exclude	mask	is	delimited	from	the	main	mask	by	the	'|'	character.

Usage	examples	of	exclude	masks:

1.	 *.cppAll	files	with	the	cpp	extension.
2.	 *.*|*.bak,*.tmp

All	files	except	for	the	files	with	bak	and	tmp	extensions.
3.	 *.*|

This	mask	has	an	error	-	the	character	'|',	is	entered,	but	the	mask	itself	is
not	specified.

4.	 *.*|*.bak|*.tmp

Also	an	error	-	the	character	'|'	may	not	be	specified	in	the	mask	more	than
once.

5.	 |*.bak
The	same	as	'*|*.bak'

Help	topic	syntax
main	|	Help	files

The	HelpTopic	parameter	describes	a	help	topic	and	can	be	in	one	of	the
following	formats:

Format Description

"Topic" Reference	to	a	topic	in	the	plugins	help	file.

":Topic" Reference	to	a	topic	from	the	main	FAR	Manager	help	file.

"<FullPath>Topic" Reference	to	a	topic	in	a	help	file	located	in	a	folder	with
full	or	relative	path	of	FullPath.	An	ending	backslash	must
be	added.
The	reference	must	not	be	split	on	mutiple	lines.	For
example,	the	plugin	Foo	is	located	in	folder
'D:\FAR\Plugins\Foo'	and	we	need	to	show	the	topic
'FooInfo'	from	its	help	file:

"<D:\FAR\Plugins\Foo\>FooInfo"

"<FullModuleName>Topic" Reference	to	a	topic	in	a	help	file	located	in	the	same
folder	as	the	plugin	with	the	relative	or	full	path	of
FullModuleName.
The	reference	must	not	be	split	on	mutiple	lines.	For
example,	we	need	to	show	the	help	topic	'FooInfo'	from	the
help	file	of	the	plugin	Foo	'D:\FAR\Plugins\Foo\Foo.dll':

"<D:\FAR\Plugins\Foo\Foo.dll>FooInfo"

See	also:
ShowHelp,	Dialog,	DialogEx,	DN_HELP,	InputBox,	Menu,
Message

Control	statements
main	|	language	and	help	files

In	the	beginning,	language	and	help	files	can	contain	the	following	control
statements,	starting	from	a	dot	character.

Control
statement Description

.Language
.Language=<Language	name>,<Language	description>

This	statement	must	be	present	at	the	beginning	of	all	language	and	help	files.

<Language	name>
describes	the	file	language	and	must	be	a	standard	language	name	in	English.	All	files	with	the	same	language	must	have	the	same
<Language	name>	field.

<Language	description>
can	contain	a	language	description	in	arbitrary	form.	It	will	be	displayed	in	the	Languages

.PluginContents
.PluginContents=<Contents	topic	name>

This	optional	statement	can	be	used	to	add	the	<Contents	topic	name>	entry	to	the	plugins	help	list	that	is	displayed	in	FAR	help	when
Shift-F2	is	pressed.	After	choosing	this	entry,	the	topic	Contents	of	the	plugin	help	will	be	displayed.	
Contents	topic).

.Options
.Options	<KeyName>=<Value>

This	optional	statement	can	be	used	to	specify	additional	options	in	help	files.	There	are	

<KeyName>
One	of	the	following	options:

CtrlColorChar	<Value>	contains	the	character	that	will	be	used	to	specify	the	color	attribute	for	the	
files"	about	the	CtrlColorChar	option).	For	example	specifying:

.Options	CtrlColorChar=\

sets	the	\	character	to	be	the	color	specifying	character.
TabSize
<Value>	specifies	the	tab	size	in	the	HLF	file.	Must	be	in	the	range	of	1	to	16,	
CtrlStartPosChar
<Value>	contains	the	character	that	will	be	used	to	mark	a	block	alignment	position.	

.Options	CtrlStartPosChar=&

means	that	the	'&'	character	will	mark	a	block	alignment	position,	then	the	block:

item	1	-	&Joe;'s	father	is	strong	in	math,	he	studies	instead	of	Joe	all	year	long.

will	be	aligned	as	follows:

item	1	-	Joe's	father	is	strong	in	math,

									he	studies	instead	of	Joe	all	year	long.

Example:
.Language=Engish,English

.PluginContents=FTP	client

@Contents

$	#FTP	client#

			~Connecting	to	an	FTP	server~@FTPConnect@

			~Working	with	server	names~@FTPNames@

			~FTP	client	commands~@FTPCmd@

			~FTP	client	configuration~@FTPCfg@

			~FTP	client	panel	modes~@FTPPanel

See	also:
Language	and	Help	files,	Help	files

Language	files
main	|	language	and	help	files	|	GetMsg

The	language	file	(a	text	file	with	the	.LNG	extension)	is	intended	to	store
language	resources	used	by	the	plugin	to	output	messages	in	dialogs	and	menus.

Messages	in	language	files	must	be	enclosed	in	double	quotes.	You	can	use	the
double	quote	character	inside	messages	as	well.

All	lines	not	beginning	with	a	dot	or	a	double	quote	are	ignored.	Leading	spaces
are	ignored.

.Language=English,English

"Please	register	your	copy"

"Registered"

"Yes"

"No"

:

//functional	keys	-	6	characters	max

"Help"

"UserMn"

:

"Group"

"SelUp"

//End	of	functional	keys

Remarks

1.	 When	using	double	quotes	inside	messages	it	is	not	obligatory	to	prepend
them	with	a	backslash.	While	processing	each	line	of	language	file,	FAR
Manager	checks	only	the	opening	and	closing	quotes.	For	example:
"Option	"Autodetect	character	table"	is	off."

"Copy	\"%.55s\"	to"

both	lines	are	correct;
2.	 a	line	may	not	be	longer	than	1000	characters;
3.	 messages	may	not	be	split	on	mutiple	lines;
4.	 the	following	control	charachters	are	allowed:	'\n',	'\r',	'\\',

'\b',	'\t'

See	also:
Control	statements,	Language	and	Help	files,	GetMsg

Help	files
main	|	language	and	help	files

Help	file	syntax.
The	following	control	statements	can	be	used	in	help	files.

Control	statement Description

@Topic	(at	the	beginning	of	a	line) Starts	a	topic	definition.	There	are	four	topics	with	special	names:

1.	 The	topic	with	the	name	Contents	has	a	special	meaning.	It	is	shown	when	
the	FAR	command	line	when	the	plugin	is	active	or	when	an	item	
plugins	help	list.

2.	 If	a	plugin	can	be	configured,	it	is	recommended	to	specify	
topic	for	the	configuration	dialog.	This	topic	will	be	shown	when	
plugins	configuration	menu	(Options|Plugins	configuration).

3.	 If	a	plugin	can	be	invoked	both	in	the	panels	and	in	the	editor	or	viewer	and	has	different
functions	depending	on	where	it	was	invoked,	it	is	recommended	to	use	topics	
Viewer	for	describing	the	operation	in	the	viewer	and	editor,	respectively.	These	topics	will
be	shown	when	Shift-F1	is	pressed	in	the	list	of	plugin	commands	in	the	viewer	or
editor.

$Text	(at	the	beginning	of	a	line) Defines	a	non-scrolling	region.	All	lines	starting	with	$	must	be	in	
(immediately	after	the	line	starting	with	@)	and	will	be	shown	in	a	
from	the	rest	of	the	text	with	a	horizontal	line.

~Text~@Topic@ Reference	to	a	topic.	If	you	wish	to	access	a	topic	from	the	main	FAR	
plugins	help,	precede	the	topic	name	with	a	colon	(':').
The	reference	must	not	be	split	on	mutiple	lines.

~Text~@<FullPath>Topic@ Reference	to	a	topic	in	a	help	file	located	at	a	folder	with	full	or	relative	path	of	
ending	backslash	must	be	added.
The	reference	must	not	be	split	on	mutiple	lines.
For	example,	the	plugin	Foo	is	located	in	folder	'D:\FAR\Plugins\Foo'	and	we	need	to	show	the
topic	'FooInfo'	from	its	help	file.

~About	Foo~@<D:\FAR\Plugins\Foo\>FooInfo@

~Text~@<FullModuleName>Topic@ Reference	to	a	topic	in	a	help	file	located	at	the	same	folder	as	the	plugin	with	the	relative	or	full
path	of	FullModuleName.
The	reference	must	not	be	split	on	mutiple	lines.
For	example,	we	need	to	show	the	help	topic	'FooInfo'	from	the	help	file	of	the	plugin	Foo
'D:\FAR\Plugins\Foo\Foo.dll'.

~About	Foo~@<D:\FAR\Plugins\Foo\Foo.dll>FooInfo@

~Text~@URL@ URL	activator,	allowing	to	run	applications	that	support	URL	protocols.	The	following	list	shows
the	protocols	that	can	be	used	in	help	files:

~File	access	protocol~@file://C:\Program	Files\Far\License.txt@

~File	transfer	protocol~@ftp://ftp.kgb.ru/WinUtil/Rar/@

~HTTP~@http://plugring.farmanager.com/@

~MailTo~@mailto:vskirdin@@mail.ru@

~News~@news://fido7.far.support@

~Telnet~@telnet://fido7.far.support@

The	reference	must	not	be	split	on	mutiple	lines.

#Text# Highlights	the	text	Text.

^	(at	the	beginning	of	a	line	or	after
$)

Centers	the	line.

@-	(at	the	beginning	of	a	line) Disables	text	auto	format.	By	default	FAR	formats	all	lines	in	which	
position	(is	not	indented).	Must	be	placed	in	a	separate	line.

@+	(at	the	beginning	of	a	line) Enables	text	auto	format.	Must	be	placed	in	a	separate	line.

<CtrlColorChar>XX Specifies	a	color	attribute	that	will	be	used	to	display	the	text	following	it.	The	color	attribute	XX
consists	of	two	hexadecimal	digits	(0-9A-F).
For	example,	the	backslash	('\')	character	is	set	to	be	the	color	specifying	character
(<CtrlColorChar>).	Then	the	statement	\4F	will	force	the	help	manager	to	output	the	following
text	with	white	letters	on	dark	red	background.	
(see	CtrlColorChar)

<CtrlColorChar>- Specifies	that	the	following	text	must	be	displayed	in	default	colors.	
(see	CtrlColorChar)

Remarks

1.	 The	length	of	a	text	string	in	a	help	file	must	not	exceed	300	characters.
2.	 If	you	need	to	display	the	characters	~,	#	or	@,	duplicate	them	(~~,	##,

@@).
3.	 In	the	<URL>	field	of	URL	activators,	the	~	and	#	characters	may	be

duplicated	or	specified	once,	but	the	@	character	must	be	always
duplicated.	If	the	URL	must	contain	a	sequence	of	two	~	or	#	characters,
specify	a	sequence	of	3	or	4	characters	(for	example,	~~~	and	~~~~	will	be
shown	as	~~).

4.	 Don't	use	special	characters	~,	#	or	@	inside	a	reference	that	is	not	an	URL
activator.

Example
The	following	example	is	taken	from	the	FarEng.hlf	file.

@FolderShortcuts

$	#Folder	shortcuts#

				Folder	shortcuts	are	designed	to	provide	fast	access	to	frequently

used	folders.	Press	Ctrl-Shift-0..9,	to	create	a	shortcut

to	the	current	folder.	To	change	to	the	folder	recorded	in	the	shortcut,

press	RightCtrl-0..9.	If	RightCtrl-0..9	pressed	in	edit	line,	it	inserts

the	shortcut	path	into	the	line.

				The	#Show	folder	shortcuts#	item	in	the	~Commands	menu~@CmdMenu@

used	to	view,	set,	edit	and	delete	folder	shortcuts.

It	looks	like	this:

The	following	examples	demonstrates	usage	of	the	URL	activator.
E-mail	client	activation:

~vskirdin@@mail.ru~@mailto:vskirdin@@mail.ru@

Browser	activation:

~http://plugring.farmanager.com/~@plugring.farmanager.com/@

or

~http://www.uic.nnov.ru/~~ruiv/plugring/~@http://www.uic.nnov.ru/~ruiv/plugring/@

The	following	example	demonstrates	usage	of	color	attributes:

.Language=English,English

.PluginContents=Reversi	-	Game

.Options	CtrlColorChar=\

...

@-

									Reversi,	also	known	as	Othello,	is	a	strategy	game

	\70	B	\-\2F	W	\-		played	by	two	players:		Black	and

	\2F	W	\-\70	B	\-		#White#.		It	is	played	on	an	8x8	board

									using	64	disks	with	different	color	on	each	side.

@+

It	looks	like	this:

See	also:
Control	statements,	Language	files

Win32	structures
main

Structure Description

CHAR_INFO specifies	the	character	and	its	attributes

CONSOLE_CURSOR_INFO contains	information	about	the	console	cursor

COORD defines	the	coordinates	of	a	character	cell	in	a
console	screen	buffer

FILETIME the	64-bit	number	of	100-nanosecond	intervals
since	January	1,	1601	(UTC)

FOCUS_EVENT_RECORD reports	focus	events	in	a	console
INPUT_RECORD	structure

INPUT_RECORD reports	input	events	in	the	console	input	buffer

KEY_EVENT_RECORD reports	keyboard	input	events	in	a	console
INPUT_RECORD	structure

MENU_EVENT_RECORD reports	menu	events	in	a	console
INPUT_RECORD	structure

MOUSE_EVENT_RECORD reports	mouse	input	events	in	a	console
INPUT_RECORD	structure

RECT defines	the	coordinates	of	the	upper-left	and	lower-
right	corners	of	a	rectangle

SMALL_RECT defines	the	coordinates	of	the	upper-left	and	lower-
right	corners	of	a	rectangle

SYSTEMTIME represents	a	date	and	time	using	individual
members	for	the	month,	day,	year,	weekday,	hour,
minute,	second,	and	millisecond

WIN32_FIND_DATA describes	a	file	found	by	the	FindFirstFile,
FindFirstFileEx,	or	FindNextFile	function

WINDOW_BUFFER_SIZE_RECORD reports	changes	in	the	size	of	the	screen	buffer	in	a
console	INPUT_RECORD	structure

See	also:
Exported	functions	Service	functions
Addons

CHAR_INFO
main	|	structures	|	win32	structures

The	CHAR_INFO	structure	specifies	the	Unicode	or	ANSI	character	and	the
colour	attributes	of	the	screen	character	cell.	This	structure	is	used	by	console
functions	to	read	from	and	write	to	a	console	screen	buffer.

typedef	struct	_CHAR_INFO	{

		//	Unicode	or	ANSI	character

		union	{

						WCHAR	UnicodeChar;

						CHAR	AsciiChar;

		}	Char;

		//	Text	and	background	colors

		WORD	Attributes;

}	CHAR_INFO,	*PCHAR_INFO;

Members
Char
Unicode	(wide-character)	or	ANSI	character	of	a	screen	buffer	character	cell,
depending	on	whether	it	is	used	with	the	Unicode	or	ANSI	version	of	a
function.

Attributes
Character	attributes.	There	are	two	classes	of	the	attributes	-	colour	and
DBCS.	This	member	can	be	zero	or	any	combination	of	the	following
attributes:	(all	of	them	are	defined	in	Wincon.h).

Attribute Description

FOREGROUND_BLUE Text	color	contains	blue.

FOREGROUND_GREEN Text	color	contains	green.

FOREGROUND_RED Text	color	contains	red.

FOREGROUND_INTENSITY Text	color	is	intensified.

BACKGROUND_BLUE Background	color	contains	blue.

BACKGROUND_GREEN Background	color	contains	green.

BACKGROUND_RED Background	color	contains	red.

BACKGROUND_INTENSITY Background	color	is	intensified.

COMMON_LVB_LEADING_BYTE DBCS:	Leading	byte.

COMMON_LVB_TRAILING_BYTE DBCS:	Trailing	byte.

COMMON_LVB_GRID_HORIZONTAL DBCS:	Grid	attribute:	top	horizontal.

COMMON_LVB_GRID_LVERTICAL DBCS:	Grid	attribute:	left	vertical.

COMMON_LVB_GRID_RVERTICAL DBCS:	Grid	attribute:	right	vertical.

COMMON_LVB_REVERSE_VIDEO DBCS:	Reverse	foreground	and	background
attributes.

COMMON_LVB_UNDERSCORE DBCS:	Underscore.

The	foreground	attributes	(FOREGROUND_*)	define	the	colour	of	the	text
symbols.	The	background	attributes	(BACKGROUND_*)	define	the	colour	of
the	background	of	the	text	cell.	Other	attributes	(COMMON_LVB_*)	are	used
with	DBCS.

Remarks

See	also:
ReadConsoleOutput	

	,
ScrollConsoleScreenBuffer	

	,
WriteConsoleOutput	

JavaScript:link28.Click()
JavaScript:link29.Click()
JavaScript:link30.Click()

CONSOLE_CURSOR_INFO
main	|	structures	|	win32	structures

The	CONSOLE_CURSOR_INFO	structure	contains	information	about	the
console	cursor.

typedef	struct	_CONSOLE_CURSOR_INFO	{

		DWORD		dwSize;

		BOOL			bVisible;

}	CONSOLE_CURSOR_INFO,	*PCONSOLE_CURSOR_INFO;

Members
dwSize
Percentage	of	the	character	cell	that	is	filled	by	the	cursor.	This	value	is
between	1	and	100.	The	cursor	appearance	varies,	ranging	from	completely
filling	the	cell	to	showing	up	as	a	horizontal	line	at	the	bottom	of	the	cell.

	Windows	9X/Me
To	show	a	fully	filled	cursor	in	Windows	9x/Me	set	this	value	to	99.

bVisible
Visibility	of	the	cursor.	If	the	cursor	is	visible,	this	member	is	TRUE.

See	also:
GetConsoleCursorInfo	

	,
SetConsoleCursorInfo	

JavaScript:link31.Click()
JavaScript:link32.Click()

COORD
main	|	structures	|	win32	structures

The	COORD	structure	defines	the	coordinates	of	a	character	cell	in	a	console
screen	buffer.	The	origin	of	the	coordinate	system	(0,0)	is	at	the	top,	left	cell	of
the	buffer.

typedef	struct	_COORD	{

		SHORT	X;

		SHORT	Y;

}	COORD;

Members
X
Horizontal	coordinate	or	column	value.

Y
Vertical	coordinate	or	row	value.

Remarks

See	also:

FILETIME
main	|	structures	|	win32	structures

The	FILETIME	data	structure	is	a	64-bit	value	representing	the	number	of	100-
nanosecond	intervals	since	January	1,	1601.	It	is	the	means	by	which	Win32
determines	the	date	and	time.

typedef	struct	_FILETIME	{

		DWORD	dwLowDateTime;

		DWORD	dwHighDateTime;

}	FILETIME;	

Members
dwLowDateTime
Specifies	the	low-order	32	bits	of	the	Win32	date/time	value.

dwHighDateTime
Specifies	the	high-order	32	bits	of	the	Win32	date/time	value.

Remarks
It	is	not	recommended	that	you	add	or	substract	values	from	this	structure	to
obtain	relative	times.	Instead,	you	should	do	the	following:

Copy	this	structure	to	a	ULARGE_INTEGER	

	structure.
Use	standard	64-bit	arithmetic	on	the	ULARGE_INTEGER	

	value	or	cast	a	variable	of

JavaScript:link33.Click()
JavaScript:link34.Click()

FILETIME	type	to	the	__int64	type:
FILETIME	WriteTime1,	WriteTime2;

if(*(__int64*)	&	WriteTime1	==	*(__int64*)	&	WriteTime2)

	...

Not	all	file	systems	can	record	creation	and	last	access	time	and	not	all	file
systems	record	them	in	the	same	manner.	For	example,	on	NT	FAT,	create	time
has	a	resolution	of	10	milliseconds,	write	time	has	a	resolution	of	2	seconds,	and
access	time	has	a	resolution	of	1	day	(really,	the	access	date).	On	NTFS,	access
time	has	a	resolution	of	1	hour.	Therefore,	the	GetFileTime	function	may	not
return	the	same	file	time	information	set	using	the	SetFileTime	function.
Furthermore,	FAT	records	times	on	disk	in	local	time.	However,	NTFS	records
times	on	disk	in	UTC.

See	also:
CompareFileTime	

	,	GetFileTime,
SetFileTime,	ULARGE_INTEGER	

JavaScript:link35.Click()
JavaScript:link36.Click()

FOCUS_EVENT_RECORD
main	|	structures	|	win32	structures	|	INPUT_RECORD

The	FOCUS_EVENT_RECORD	structure	is	used	to	report	focus	events	in	a
console	INPUT_RECORD	structure.	These	events	are	used	internally	and
should	be	ignored.

typedef	struct	_FOCUS_EVENT_RECORD	{

				BOOL	bSetFocus;

}	FOCUS_EVENT_RECORD;

Members
bSetFocus
Reserved.

See	also:
INPUT_RECORD

INPUT_RECORD
main	|	structures	|	win32	structures

The	INPUT_RECORD	structure	is	used	to	report	input	events	in	the	console
input	buffer.	These	records	can	be	read	from	the	input	buffer	by	using	the
ReadConsoleInput	or	PeekConsoleInput	function,	or	written	to	the	input	buffer
by	using	the	WriteConsoleInput	function.

typedef	struct	_INPUT_RECORD	{

	WORD	EventType;

	union	{

				KEY_EVENT_RECORD	KeyEvent;

				MOUSE_EVENT_RECORD	MouseEvent;

				WINDOW_BUFFER_SIZE_RECORD	WindowBufferSizeEvent;

				MENU_EVENT_RECORD	MenuEvent;

				FOCUS_EVENT_RECORD	FocusEvent;

	}	Event;

}	INPUT_RECORD;

Members
EventType
Handle	to	the	type	of	input	event	and	the	event	record	stored	in	the	Event
member.
This	member	can	be	one	of	the	following	values.

Value Description

KEY_EVENT The	Event	member	contains	a
KEY_EVENT_RECORD	structure	with
information	about	a	keyboard	event.

MOUSE_EVENT The	Event	member	contains	a
MOUSE_EVENT_RECORD	structure	with
information	about	a	mouse	movement	or	button
press	event.

WINDOW_BUFFER_SIZE_EVENT The	Event	member	contains	a
WINDOW_BUFFER_SIZE_RECORD	structure
with	information	about	the	new	size	of	the	screen
buffer.

MENU_EVENT The	Event	member	contains	a
MENU_EVENT_RECORD	structure.	These
events	are	used	internally	and	should	be	ignored.

FOCUS_EVENT The	Event	member	contains	a
FOCUS_EVENT_RECORD	structure.	These
events	are	used	internally	and	should	be	ignored.

FARMACRO_KEY_EVENT The	Event	member	contains	a
KEY_EVENT_RECORD	structure	with
information	about	a	keyboard	event.	Plugin
receives	this	specific	message	from	FAR
manager	version	1.70	build	1663	and	higher
while	playing	keyboard	macro.

Event
Event	information.	The	format	of	this	member	depends	on	the	event	type
specified	by	the	EventType	member.

See	also:
KEY_EVENT_RECORD,	MOUSE_EVENT_RECORD,
WINDOW_BUFFER_SIZE_RECORD,
MENU_EVENT_RECORD,	FOCUS_EVENT_RECORD,
PeekConsoleInput,	ReadConsoleInput,	WriteConsoleInput

KEY_EVENT_RECORD
main	|	structures	|	win32	structures	|	INPUT_RECORD

The	KEY_EVENT_RECORD	structure	is	used	to	report	keyboard	input	events
in	a	console	INPUT_RECORD	structure.

typedef	struct	_KEY_EVENT_RECORD	{

				BOOL	bKeyDown;

				WORD	wRepeatCount;

				WORD	wVirtualKeyCode;

				WORD	wVirtualScanCode;

				union	{

								WCHAR	UnicodeChar;

								CHAR		AsciiChar;

				}	uChar;

				DWORD	dwControlKeyState;

}	KEY_EVENT_RECORD;

Members
bKeyDown
Indicates	whether	a	key	is	down.	This	member	is	TRUE	if	the	key	is	pressed,
or	FALSE	if	the	key	is	released.

wRepeatCount
Count	indicating	that	a	key	is	being	held	down.	For	example,	when	a	key	is
held	down,	you	might	get	five	events	with	this	member	equal	to	1,	one	event
with	this	member	equal	to	5,	or	multiple	events	with	this	member	greater	than
or	equal	to	1.

wVirtualKeyCode
Virtual-key	code	that	identifies	the	given	key	in	a	device-independent	manner.

wVirtualScanCode
Virtual	scan	code	of	the	given	key	that	represents	the	device-dependent	value
generated	by	the	keyboard	hardware.

uChar
Translated	Unicode	or	ASCII	character,	depending	on	whether	the	wide-
character	(Unicode)	or	ANSI	version	of	the	ReadConsoleInput	function	was
used.

dwControlKeyState
Indicates	the	state	of	the	control	keys.	This	member	can	be	one	or	more	of	the
following	values.

Key Value Description

CAPSLOCK_ON 0x0080 The	CAPS	LOCK	light	is	on.

ENHANCED_KEY 0x0100 The	key	is	enhanced.

LEFT_ALT_PRESSED 0x0002 The	left	ALT	key	is	pressed.

LEFT_CTRL_PRESSED 0x0008 The	left	CTRL	key	is	pressed.

NUMLOCK_ON 0x0020 The	NUM	LOCK	light	is	on.

RIGHT_ALT_PRESSED 0x0001 The	right	ALT	key	is	pressed.

RIGHT_CTRL_PRESSED 0x0004 The	right	CTRL	key	is	pressed.

SCROLLLOCK_ON 0x0040 The	SCROLL	LOCK	light	is	on.

SHIFT_PRESSED 0x0010 The	SHIFT	key	is	pressed.

Remarks
Enhanced	keys	for	the	IBM®	101-	and	102-key	keyboards	are	the	INS,	DEL,
HOME,	END,	PAGE	UP,	PAGE	DOWN,	and	direction	keys	in	the	clusters	to	the
left	of	the	keypad;	and	the	divide	(/)	and	ENTER	keys	in	the	keypad.	
Keyboard	input	events	are	generated	when	any	key,	including	control	keys,	is
pressed	or	released.	However,	the	ALT	key	when	pressed	and	released	without
combining	with	another	character,	has	special	meaning	to	the	system	and	is	not
passed	through	to	the	application.	Also,	the	CTRL+C	key	combination	is	not
passed	through	if	the	input	handle	is	in	processed	mode
(ENABLE_PROCESSED_INPUT).

See	also:
PeekConsoleInput,	ReadConsoleInput,	WriteConsoleInput,
INPUT_RECORD

MENU_EVENT_RECORD
main	|	structures	|	win32	structures	|	INPUT_RECORD

The	MENU_EVENT_RECORD	structure	reports	menu	events	in	a	console
INPUT_RECORD	structure.	These	events	are	used	internally	and	should	be
ignored.

typedef	struct	_MENU_EVENT_RECORD	{

				UINT	dwCommandId;

}	MENU_EVENT_RECORD,	*PMENU_EVENT_RECORD;

Members
dwCommandId
Reserved.

See	also:
INPUT_RECORD

MOUSE_EVENT_RECORD
main	|	structures	|	win32	structures	|	input_record

The	MOUSE_EVENT_RECORD	structure	is	used	in	a	console
INPUT_RECORD	structure	to	report	mouse	input	events.

typedef	struct	_MOUSE_EVENT_RECORD	{

				COORD	dwMousePosition;

				DWORD	dwButtonState;

				DWORD	dwControlKeyState;

				DWORD	dwEventFlags;

}	MOUSE_EVENT_RECORD;

Members
dwMousePosition
Location	of	the	cursor,	in	terms	of	the	screen	buffer's	character-cell
coordinates	(see	COORD	structure).

dwButtonState
Indicates	the	status	of	the	mouse	buttons.	The	least	significant	bit	corresponds
to	the	leftmost	mouse	button.	The	next	least	significant	bit	corresponds	to	the
rightmost	mouse	button.	The	next	bit	indicates	the	next-to-leftmost	mouse
button.	The	bits	then	correspond	left	to	right	to	the	mouse	buttons.	A	bit	is	1	if
the	button	was	pressed.	
The	following	constants	are	defined	for	the	first	five	mouse	buttons:
FROM_LEFT_1ST_BUTTON_PRESSED
RIGHTMOST_BUTTON_PRESSED
FROM_LEFT_2ND_BUTTON_PRESSED
FROM_LEFT_3RD_BUTTON_PRESSED
FROM_LEFT_4TH_BUTTON_PRESSED

dwControlKeyState
Indicates	the	state	of	the	control	keys.	This	member	can	be	one	or	more	of	the
following	values.

Value Description

CAPSLOCK_ON The	CAPS	LOCK	light	is	on.

ENHANCED_KEY The	key	is	enhanced.

LEFT_ALT_PRESSED The	left	ALT	key	is	pressed.

LEFT_CTRL_PRESSED The	left	CTRL	key	is	pressed.

NUMLOCK_ON The	NUM	LOCK	light	is	on.

RIGHT_ALT_PRESSED The	right	ALT	key	is	pressed.

RIGHT_CTRL_PRESSED The	right	CTRL	key	is	pressed.

SCROLLLOCK_ON The	SCROLL	LOCK	light	is	on.

SHIFT_PRESSED The	SHIFT	key	is	pressed.

dwEventFlags
Indicates	the	type	of	mouse	event.	If	this	value	is	zero,	it	indicates	a	mouse
button	being	pressed	or	released.	Otherwise,	this	member	is	one	of	the
following	values.

Value Description

DOUBLE_CLICK The	second	click	(button	press)	of	a	double-click
occurred.	The	first	click	is	returned	as	a	regular
button-press	event.

MOUSE_MOVED A	change	in	mouse	position	occurred.

MOUSE_WHEELED Windows	2000/XP/2003/Vista/2008/7:	The	vertical
mouse	wheel	was	moved.	If	this	flag	is	set,	high
word	of	dwButtonState	indicates	the	distance	the
wheel	is	rotated,	expressed	in	multiples	or	divisions
of	WHEEL_DELTA.

MOUSE_HWHEELED Windows	Vista/2008/7:	The	horizontal	mouse	wheel
was	moved.	If	this	flag	is	set,	high	word	of
dwButtonState	indicates	the	distance	the	wheel	is
rotated,	expressed	in	multiples	or	divisions	of
WHEEL_DELTA.

Remarks
Mouse	events	are	placed	in	the	input	buffer	when	the	console	is	in	mouse	mode
(ENABLE_MOUSE_INPUT).
Mouse	events	are	generated	whenever	the	user	moves	the	mouse,	or	presses	or
releases	one	of	the	mouse	buttons.	Mouse	events	are	placed	in	the	console	input
buffer	only	when	the	console	group	has	the	keyboard	focus	and	the	cursor	is
within	the	borders	of	the	console	window.

See	also:
COORD,	PeekConsoleInput,	ReadConsoleInput,
WriteConsoleInput,	INPUT_RECORD

RECT
main	|	structures	|	win32	structures

The	RECT	structure	defines	the	coordinates	of	the	upper-left	and	lower-right
corners	of	a	rectangle.

typedef	struct	_RECT	{

		LONG	left;

		LONG	top;

		LONG	right;

		LONG	bottom;

}	RECT,	*PRECT;

Members
left
Specifies	the	X-coordinate	of	the	upper-left	corner	of	the	rectangle.

top
Specifies	the	Y-coordinate	of	the	upper-left	corner	of	the	rectangle.

right
Specifies	the	X-coordinate	of	the	lower-right	corner	of	the	rectangle.

bottom
Specifies	the	Y-coordinate	of	the	lower-right	corner	of	the	rectangle.

Remarks

See	also:
SMALL_RECT

SMALL_RECT
main	|	structures	|	win32	structures

The	SMALL_RECT	structure	defines	the	coordinates	of	the	upper-left	and
lower-right	corners	of	a	rectangle.

typedef	struct	_SMALL_RECT	{

		SHORT	Left;

		SHORT	Top;

		SHORT	Right;

		SHORT	Bottom;

}	SMALL_RECT;

Members
Left
X-coordinate	of	the	upper	left	corner	of	the	rectangle.

Top
Y-coordinate	of	the	upper	left	corner	of	the	rectangle.

Right
X-coordinate	of	the	lower	right	corner	of	the	rectangle.

Bottom
Y-coordinate	of	the	lower	right	corner	of	the	rectangle.

Remarks
This	structure	is	used	by	console	functions	to	specify	rectangular	areas	of
console	screen	buffers,	where	the	coordinates	specify	the	rows	and	columns	of
screen-buffer	character	cells.

See	also:
RECT

SYSTEMTIME
main	|	structures	|	win32	structures

The	SYSTEMTIME	structure	represents	a	date	and	time	using	individual
members	for	the	month,	day,	year,	weekday,	hour,	minute,	second,	and
millisecond.

typedef	struct	_SYSTEMTIME	{

		WORD	wYear;

		WORD	wMonth;

		WORD	wDayOfWeek;

		WORD	wDay;

		WORD	wHour;

		WORD	wMinute;

		WORD	wSecond;

		WORD	wMilliseconds;

}	SYSTEMTIME;

Members
wYear
Specifies	the	current	year.	The	year	must	be	greater	than	1601.

	Windows	XP,	Windows	Server
The	year	cannot	be	greater	than	30827.

wMonth
Specifies	the	current	month;	January	=	1,	February	=	2,	and	so	on.

wDayOfWeek
Specifies	the	current	day	of	the	week;	Sunday	=	0,	Monday	=	1,	and	so	on.

wDay
Specifies	the	current	day	of	the	month.

wHour
Specifies	the	current	hour	(0-23).

wMinute
Specifies	the	current	minute	(0-59).

wSecond

Specifies	the	current	second	(0-59).
wMilliseconds
Specifies	the	current	millisecond	(0-999).

Remarks
It	is	not	recommended	that	you	add	or	substract	values	from	this	structure	to
obtain	relative	times.	Instead,	you	should	do	the	following:

Convert	the	SYSTEMTIME	structure	to	a	FILETIME	structure	using	the

SystemTimeToFileTime	 	function.
Copy	the	resulting	FILETIME	structure	to	a	ULARGE_INTEGER	

	structure.
Use	standard	64-bit	arithmetic	on	the	ULARGE_INTEGER	

	value	or	cast	a	variable	of
FILETIME	type	to	the	__int64	type:

FILETIME	WriteTime1,	WriteTime2;

if(*(__int64*)	&	WriteTime1	==	*(__int64*)	&	WriteTime2)

	...

JavaScript:link116.Click()
JavaScript:link117.Click()
JavaScript:link118.Click()

See	also:
FILETIME,	LARGE_INTEGER	

	,
GetSystemTime	

	,

SetSystemTime	

JavaScript:link119.Click()
JavaScript:link120.Click()
JavaScript:link121.Click()

WIN32_FIND_DATA
main	|	structures	|	win32	structures

The	WIN32_FIND_DATA	structure	describes	a	file	found	by	the	FindFirstFile,
FindFirstFileEx	or	FindNextFile	function.

typedef	struct	_WIN32_FIND_DATA	{

		DWORD	dwFileAttributes;

		FILETIME	ftCreationTime;

		FILETIME	ftLastAccessTime;

		FILETIME	ftLastWriteTime;

		DWORD	nFileSizeHigh;

		DWORD	nFileSizeLow;

		DWORD	dwReserved0;

		DWORD	dwReserved1;

		TCHAR	cFileName[MAX_PATH];

		TCHAR	cAlternateFileName[14];

}	WIN32_FIND_DATA;

Members
dwFileAttributes
Specifies	the	file	attributes	of	the	file	found.	This	member	can	be	one	or	more
of	the	following	values.

Attribute Description

FILE_ATTRIBUTE_ARCHIVE The	file	or	directory	is	an	archive
file	or	directory.	Applications	use
this	attribute	to	mark	files	for
backup	or	removal.

FILE_ATTRIBUTE_COMPRESSED The	file	or	directory	is	compressed.
For	a	file,	this	means	that	all	of	the
data	in	the	file	is	compressed.	For	a
directory,	this	means	that
compression	is	the	default	for	newly
created	files	and	subdirectories.

FILE_ATTRIBUTE_DIRECTORY The	handle	identifies	a	directory.

FILE_ATTRIBUTE_ENCRYPTED The	file	or	directory	is	encrypted.
For	a	file,	this	means	that	all	data	in
the	file	is	encrypted.	For	a	directory,
this	means	that	encryption	is	the

default	for	newly	created	files	and
subdirectories.

FILE_ATTRIBUTE_HIDDEN The	file	or	directory	is	hidden.	It	is
not	included	in	an	ordinary
directory	listing.

FILE_ATTRIBUTE_NORMAL The	file	or	directory	has	no	other
attributes	set.	This	attribute	is	valid
only	if	used	alone.

FILE_ATTRIBUTE_OFFLINE The	file	data	is	not	immediately
available.	This	attribute	indicates
that	the	file	data	has	been	physically
moved	to	offline	storage.

FILE_ATTRIBUTE_READONLY The	file	or	directory	is	read-only.
Applications	can	read	the	file	but
cannot	write	to	it	or	delete	it.	In	the
case	of	a	directory,	applications
cannot	delete	it.

FILE_ATTRIBUTE_REPARSE_POINT The	file	has	an	associated	reparse
point.

FILE_ATTRIBUTE_SPARSE_FILE The	file	is	a	sparse	file.

FILE_ATTRIBUTE_SYSTEM The	file	or	directory	is	part	of	the
operating	system	or	is	used
exclusively	by	the	operating	system.

FILE_ATTRIBUTE_TEMPORARY The	file	is	being	used	for	temporary
storage.	File	systems	attempt	to
keep	all	of	the	data	in	memory	for
quicker	access,	rather	than	flushing
it	back	to	mass	storage.	A
temporary	file	should	be	deleted	by
the	application	as	soon	as	it	is	no
longer	needed.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED The	file	or	directory	is	not	be
indexed	by	the	content	indexing
service.

FILE_ATTRIBUTE_VIRTUAL A	file	is	a	virtual	file.

ftCreationTime
A	FILETIME	structure	that	specifies	when	the	file	or	directory	was	created.	If
the	underlying	file	system	does	not	support	creation	time,	ftCreationTime	is
zero.

ftLastAccessTime

A	FILETIME	structure.	For	a	file,	the	structure	specifies	when	the	file	was	last
read	from	or	written	to.	For	a	directory,	the	structure	specifies	when	the
directory	was	created.	For	both	files	and	directories,	the	specified	date	will	be
correct,	but	the	time	of	day	will	always	be	set	to	midnight.	If	the	underlying
file	system	does	not	support	last	access	time,	ftLastAccessTime	is	zero.

ftLastWriteTime
A	FILETIME	structure.	For	a	file,	the	structure	specifies	when	the	file	was	last
written	to.	For	a	directory,	the	structure	specifies	when	the	directory	was
created.	If	the	underlying	file	system	does	not	support	last	write	time,
ftLastWriteTime	is	zero.

nFileSizeHigh
Specifies	the	high-order	DWORD	value	of	the	file	size,	in	bytes.	This	value	is
zero	unless	the	file	size	is	greater	than	MAXDWORD.	The	size	of	the	file	is
equal	to	(nFileSizeHigh	*	(1+MAXDWORD))	+	nFileSizeLow.

nFileSizeLow
Specifies	the	low-order	DWORD	value	of	the	file	size,	in	bytes.

dwReserved0
If	the	dwFileAttributes	member	includes	the
FILE_ATTRIBUTE_REPARSE_POINT	attribute,	this	member	specifies
the	reparse	tag.	Otherwise,	this	value	is	undefined	and	should	not	be	used.

dwReserved1
Reserved.

cFileName
A	null-terminated	string	that	is	the	name	of	the	file.

cAlternateFileName
A	null-terminated	string	that	is	an	alternative	name	for	the	file.	This	name	is	in
the	classic	8.3	(filename.ext)	file	name	format.

Remarks

If	a	file	has	a	long	file	name,	the	complete	name	appears	in	the	cFileName
field,	and	the	8.3	format	truncated	version	of	the	name	appears	in	the
cAlternateFileName	field.	Otherwise	cAlternateFileName	is	empty.	As	an
alternative,	you	can	use	the	GetShortPathName	

JavaScript:link126.Click()

	function	to	find	the	8.3	format
version	of	a	file	name.
Not	all	file	systems	can	record	creation	and	last	access	time	and	not	all	file
systems	record	them	in	the	same	manner.	For	example,	on	NT	FAT,	create
time	has	a	resolution	of	10	milliseconds,	write	time	has	a	resolution	of	2
seconds,	and	access	time	has	a	resolution	of	1	day	(really,	the	access	date).
On	NTFS,	access	time	has	a	resolution	of	1	hour.

See	also:
_FAR_USE_WIN32_FIND_DATA,	FAR_FIND_DATA,
FILETIME,	TWin32FindData

WINDOW_BUFFER_SIZE_RECORD
main	|	structures	|	win32	structures

The	WINDOW_BUFFER_SIZE_RECORD	structure	is	used	in	a	console
INPUT_RECORD	structure	to	report	changes	in	the	size	of	the	screen	buffer.

typedef	struct	_WINDOW_BUFFER_SIZE_RECORD	{

				COORD	dwSize;

}	WINDOW_BUFFER_SIZE_RECORD;

Members
dwSize
Size	of	the	screen	buffer,	in	character	cell	columns	and	rows.

Remarks
Buffer	size	events	are	placed	in	the	input	buffer	when	the	console	is	in	window-
aware	mode	(ENABLE_WINDOW_INPUT).

See	also:
INPUT_RECORD,	COORD,	ReadConsoleInput

Win32	functions
main

Function Description

GetFileTime retrieves	the	date	and	time	that	a	file	was	created,	last
accessed,	and	last	modified

PeekConsoleInput reads	data	from	the	specified	console	input	buffer
without	removing	it	from	the	buffer

ReadConsoleInput reads	data	from	a	console	input	buffer	and	removes	it
from	the	buffer

SetFileApisToAnsi causes	the	file	I/O	functions	to	use	the	ANSI	character
set	code	page

SetFileApisToOem causes	the	file	I/O	functions	to	use	the	OEM	character
set	code	page

SetFileTime sets	the	date	and	time	that	a	file	was	created,	last
accessed,	or	last	modified

WriteConsoleInput writes	data	directly	to	the	console	input	buffer

See	also:
Exported	functions	Service	functions
Addons

GetFileTime
main	|	structures	|	win32	structures

The	GetFileTime	function	retrieves	the	date	and	time	that	a	file	was	created,	last
accessed,	and	last	modified.

BOOL	GetFileTime(

		HANDLE	hFile,

		CONST	FILETIME	*lpCreationTime,

		CONST	FILETIME	*lpLastAccessTime,

		CONST	FILETIME	*lpLastWriteTime

);

Parameters
hFile
Handle	to	the	file	for	which	to	get	dates	and	times.	The	file	handle	must	have
been	created	with	the	GENERIC_READ	access	to	the	file.

lpCreationTime
Pointer	to	a	FILETIME	structure	to	receive	the	date	and	time	the	file	was
created.	This	parameter	can	be	NULL	if	the	application	does	not	require	this
information.

lpLastAccessTime
Pointer	to	a	FILETIME	structure	to	receive	the	date	and	time	the	file	was	last
accessed.	The	last	access	time	includes	the	last	time	the	file	was	written	to,
read	from,	or,	in	the	case	of	executable	files,	run.	This	parameter	can	be
NULL	if	the	application	does	not	require	this	information.

lpLastWriteTime
Pointer	to	a	FILETIME	structure	to	receive	the	date	and	time	the	file	was	last
written	to.	This	parameter	can	be	NULL	if	the	application	does	not	require	this
information.

Return	value
If	the	function	succeeds,	the	return	value	is	nonzero.
If	the	function	fails,	the	return	value	is	zero.	To	get	extended	error	information,

call	GetLastError	 	.

Remarks
The	FAT	and	NTFS	file	systems	support	the	file	creation,	last	access,	and	last
write	time	values.

	Time	precision
The	file	time	precision	can	vary	depending	on	operating	system,	file
system,	network	configuration.	See	remarks	for	the	FILETIME	for
details.

	Windows	NT	family
When	Windows	NT	creates	a	list	of	folders	(e.g.	DIR	command)	in	a
NTFS	volume,	it	modifies	last	access	date/time	for	all	found	folders.	It
can	degrade	effectiveness	if	the	number	of	folders	is	very	large.
This	behaviour	can	be	controled,	see	Disable	the	NTFS	Last	Access
Time	Stamp	for	details.
If	you	rename	or	delete	a	file,	then	restore	it	shortly	thereafter,	Windows
NT	searches	the	cache	for	file	information	to	restore.	Cached
information	includes	its	short/long	name	pair	and	creation	time.

Example
The	following	example	demonstrates	how	to	retrieve	last-write	time	for	a	file	in
string	form	(Windows	NT/2000).

BOOL	GetLastWriteTime(HANDLE	hFile,	LPSTR	lpszString)

{

		FILETIME	ftCreate,	ftAccess,	ftWrite;

		SYSTEMTIME	stUTC,	stLocal;

		//	get	file	time	and	date

		if	(!GetFileTime(hFile,	&ftCreate,	&ftAccess,	&ftWrite))

						return	FALSE;

JavaScript:link37.Click()
http://www.winguides.com/registry/display.php/50/

		//	convert	modification	time	to	local	time.

		FileTimeToSystemTime(&ftWrite,	&stUTC);

		SystemTimeToTzSpecificLocalTime(NULL,	&stUTC,	&stLocal);

		//	convert	retrieved	time	to	string

		wsprintf(lpszString,	"%02d/%02d/%d		%02d:%02d",

						stLocal.wDay,	stLocal.wMonth,	stLocal.wYear,

						stLocal.wHour,	stLocal.wMinute);

		return	TRUE;

}

See	also:
FILETIME,	GetFileSize	

	,	SetFileTime,

GetFileType	

JavaScript:link38.Click()
JavaScript:link39.Click()

PeekConsoleInput
main	|	structures	|	win32	structures

The	PeekConsoleInput	function	reads	data	from	the	specified	console	input
buffer	without	removing	it	from	the	buffer.

BOOL	PeekConsoleInput(

		HANDLE	hConsoleInput,

		PINPUT_RECORD	lpBuffer,

		DWORD	nLength,

		LPDWORD	lpNumberOfEventsRead

);

Parameters
hConsoleInput
Handle	to	the	input	buffer.	The	handle	must	have	GENERIC_READ	access.

lpBuffer
Pointer	to	an	INPUT_RECORD	buffer	that	receives	the	input	buffer	data.

nLength
Specifies	the	size,	in	records,	of	the	buffer	pointed	to	by	the	lpBuffer
parameter.

lpNumberOfEventsRead
Pointer	to	a	variable	that	receives	the	number	of	input	records	read.

Return	value
If	the	function	succeeds,	the	return	value	is	nonzero.
If	the	function	fails,	the	return	value	is	zero.	To	get	extended	error	information,

call	GetLastError	 	.

Remarks

JavaScript:link40.Click()

If	the	number	of	records	requested	exceeds	the	number	of	records	available	in
the	buffer,	the	number	available	is	read.	If	no	data	is	available,	the	function
returns	immediately.

	Windows	NT/2000/XP/2003/Vista/2008/7
This	function	uses	either	Unicode	characters	or	8-bit	characters	from	the
console's	current	code	page.	The	console's	code	page	defaults	initially	to
the	system's	OEM	code	page.	To	change	the	console's	code	page,	use

the	SetConsoleCP	 	or

SetConsoleOutputCP	 	functions,
or	use	the	chcp	or	mode	con	cp	select=	commands.

See	also:
INPUT_RECORD,	ReadConsoleInput,	SetConsoleCP	

	,
SetConsoleOutputCP	

	,

JavaScript:link41.Click()
JavaScript:link42.Click()
JavaScript:link43.Click()
JavaScript:link44.Click()

WriteConsoleInput

ReadConsoleInput
main	|	structures	|	win32	structures

The	ReadConsoleInput	function	reads	data	from	a	console	input	buffer	and
removes	it	from	the	buffer.

BOOL	ReadConsoleInput(

		HANDLE	hConsoleInput,

		PINPUT_RECORD	lpBuffer,

		DWORD	nLength,

		LPDWORD	lpNumberOfEventsRead

);

Parameters
hConsoleInput
Handle	to	the	input	buffer.	The	handle	must	have	GENERIC_READ	access.

lpBuffer
Pointer	to	an	INPUT_RECORD	buffer	that	receives	the	input	buffer	data.

nLength
Specifies	the	size,	in	input	records,	of	the	buffer	pointed	to	by	the	lpBuffer
parameter.

lpNumberOfEventsRead
Pointer	to	a	variable	that	receives	the	number	of	input	records	read.

Return	value
If	the	function	succeeds,	the	return	value	is	nonzero.
If	the	function	fails,	the	return	value	is	zero.	To	get	extended	error	information,

call	GetLastError	 	.

Remarks

JavaScript:link45.Click()

If	the	number	of	records	requested	in	the	nLength	parameter	exceeds	the
number	of	records	available	in	the	buffer,	the	number	available	is	read.	The
function	does	not	return	until	at	least	one	input	record	has	been	read.

A	process	can	specify	a	console	input	buffer	handle	in	one	of	the	wait	functions
to	determine	when	there	is	unread	console	input.	When	the	input	buffer	is	not
empty,	the	state	of	a	console	input	buffer	handle	is	signaled.

To	determine	the	number	of	unread	input	records	in	a	console's	input	buffer,	use
the	GetNumberOfConsoleInputEvents	function.	To	read	input	records	from	a
console	input	buffer	without	affecting	the	number	of	unread	records,	use	the
PeekConsoleInput	function.	To	discard	all	unread	records	in	a	console's	input

buffer,	use	the	FlushConsoleInputBuffer	
function.

	Windows	NT/2000/XP/Vista/2008/7
This	function	uses	either	Unicode	characters	or	8-bit	characters	from	the
console's	current	code	page.	The	console's	code	page	defaults	initially	to
the	system's	OEM	code	page.	To	change	the	console's	code	page,	use

the	SetConsoleCP	 	or

SetConsoleOutputCP	 	functions,
or	use	the	chcp	or	mode	con	cp	select=	commands.

JavaScript:link46.Click()
JavaScript:link47.Click()
JavaScript:link48.Click()

See	also:
INPUT_RECORD,	SetConsoleCP	

	,
SetConsoleOutputCP	

	,
WriteConsoleInput,	PeekConsoleInput,	FlushConsoleInputBuffer	

	,
GetNumberOfConsoleInputEvents	

	,	ReadConsole	

	,	ReadFile	

JavaScript:link49.Click()
JavaScript:link50.Click()
JavaScript:link51.Click()
JavaScript:link52.Click()
JavaScript:link53.Click()
JavaScript:link54.Click()

SetFileApisToANSI
main	|	structures	|	win32	structures

The	SetFileApisToANSI	function	causes	the	file	I/O	functions	to	use	the	ANSI
character	set	code	page.	This	function	is	useful	for	8-bit	console	input	and	output
operations.

VOID	SetFileApisToANSI(VOID);

Parameters
This	function	has	no	parameters.

Return	value
This	function	has	no	return	value.

Remarks
The	SetFileApisToANSI	function	complements	the	SetFileApisToOEM
function,	which	causes	file	I/O	functions	to	use	the	OEM	character	set	code
page.

The	8-bit	console	functions	use	the	OEM	code	page	by	default.	All	other
functions	use	the	ANSI	code	page	by	default.	This	means	that	strings	returned	by
the	console	functions	may	not	be	processed	correctly	by	other	functions,	and
vice	versa.	For	example,	if	the	FindFirstFileA	function	returns	a	string	that
contains	certain	extended	ANSI	characters,	and	the	8-bit	console	functions	are
set	to	use	the	OEM	code	page,	then	the	WriteConsoleA	function	does	not
display	the	string	properly.

Use	the	AreFileApisANSI	function	to	determine	which	code	page	the	set	of	file
I/O	functions	is	currently	using.	Use	the	SetConsoleCP	and
SetConsoleOutputCP	functions	to	set	the	code	page	for	the	8-bit	console
functions.

To	solve	the	problem	of	code	page	incompatibility,	it	is	best	to	use	Unicode	for
console	applications.	Console	applications	that	use	Unicode	are	much	more
versatile	than	those	that	use	8-bit	console	functions.	Barring	that	solution,	a
console	application	can	call	the	SetFileApisToOEM	to	cause	the	set	of	file	I/O
functions	to	use	OEM	character	set	strings	rather	than	ANSI	character	set
strings.	Use	the	SetFileApisToANSI	to	set	those	functions	back	to	the	ANSI
code	page.

The	SetFileApisToANSI	and	SetFileApisToOEM	functions	affect	the
following	set	of	Win32	file	functions.

Function Description

_lopen	 open	existing	file

CopyFile	 copy	file

CreateDirectory	 create	directory

CreateFile	 create/open	an	object	(file,	pipe,	etc.)

CreateProcess	 create	process

JavaScript:link55.Click()
JavaScript:link56.Click()
JavaScript:link57.Click()
JavaScript:link58.Click()
JavaScript:link59.Click()

DeleteFile	 delete	file

FindFirstFile	 start	searching	for	a	file	object

FindNextFile	 continue	searching

GetCurrentDirectory	 get	the	current	directory

GetDiskFreeSpace	 get	disk	info

JavaScript:link60.Click()
JavaScript:link61.Click()
JavaScript:link62.Click()
JavaScript:link63.Click()
JavaScript:link64.Click()

GetDriveType	 get	drive	type

GetFileAttributes	 get	file	attributes

GetFullPathName	 get	path	to	a	file

GetModuleFileName	 get	full	name	of	the	module

JavaScript:link65.Click()
JavaScript:link66.Click()
JavaScript:link67.Click()
JavaScript:link68.Click()

GetModuleHandle	 get	handle	of	the	module

GetSystemDirectory	 get	path	to	the	system	directory

GetTempFileName	 get	name	for	a	temporary	file

GetTempPath	 get	path	to	the	TEMP	directory

JavaScript:link69.Click()
JavaScript:link70.Click()
JavaScript:link71.Click()
JavaScript:link72.Click()

GetVolumeInformation	 get	file	system	information

GetWindowsDirectory	 get	path	to	the	Windows	directory

LoadLibrary	 load	library	(DLL)

LoadLibraryEx	 load	library	(DLL)

JavaScript:link73.Click()
JavaScript:link74.Click()
JavaScript:link75.Click()
JavaScript:link76.Click()

MoveFile	 move/rename	file	or	directory

MoveFileEx	 move/rename	file	or	directory

OpenFile	 create/open/delete	file

RemoveDirectory	 delete	directory

JavaScript:link77.Click()
JavaScript:link78.Click()
JavaScript:link79.Click()
JavaScript:link80.Click()

SearchPath	 search	for	a	file

SetCurrentDirectory	 set	current	directory

SetFileAttributes	 set	file	attributes

When	dealing	with	command	lines,	a	console	application	should	obtain	the
command	line	in	Unicode	form	and	then	convert	it	to	OEM	form	using	the
relevant	character-to-OEM	functions.	Note	also	that	the	array	in	the	argv
parameter	contains	ANSI	character	set	strings	in	this	case.

See	also:
SetFileApisToOEM

JavaScript:link81.Click()
JavaScript:link82.Click()
JavaScript:link83.Click()

SetFileApisToOEM
main	|	structures	|	win32	structures

The	SetFileApisToOEM	function	causes	the	file	I/O	functions	to	use	the	OEM
character	set	code	page.	This	function	is	useful	for	8-bit	console	input	and	output
operations.

VOID	SetFileApisToOEM(VOID);

Parameters
This	function	has	no	parameters.

Return	value
This	function	has	no	return	value.

Remarks
The	SetFileApisToOEM	function	complements	the	SetFileApisToANSI
function,	which	causes	file	I/O	functions	to	use	the	ANSI	character	set	code
page.

The	8-bit	console	functions	use	the	OEM	code	page	by	default.	All	other
functions	use	the	ANSI	code	page	by	default.	This	means	that	strings	returned	by
the	console	functions	may	not	be	processed	correctly	by	other	functions,	and
vice	versa.	For	example,	if	the	FindFirstFileA	function	returns	a	string	that
contains	certain	extended	ANSI	characters,	and	the	8-bit	console	functions	are
set	to	use	the	OEM	code	page,	then	the	WriteConsoleA	function	does	not
display	the	string	properly.

Use	the	AreFileApisANSI	function	to	determine	which	code	page	the	set	of	file
I/O	functions	is	currently	using.	Use	the	SetConsoleCP	and
SetConsoleOutputCP	functions	to	set	the	code	page	for	the	8-bit	console
functions.

To	solve	the	problem	of	code	page	incompatibility,	it	is	best	to	use	Unicode	for
console	applications.	Console	applications	that	use	Unicode	are	much	more
versatile	than	those	that	use	8-bit	console	functions.	Barring	that	solution,	a
console	application	can	call	the	SetFileApisToOEM	to	cause	the	set	of	file	I/O
functions	to	use	OEM	character	set	strings	rather	than	ANSI	character	set
strings.	Use	the	SetFileApisToANSI	to	set	those	functions	back	to	the	ANSI
code	page.

The	SetFileApisToANSI	and	SetFileApisToOEM	functions	affect	the
following	set	of	Win32	file	functions.

Function Description

_lopen	 open	existing	file

CopyFile	 copy	file

CreateDirectory	 create	directory

CreateFile	 create/open	an	object	(file,	pipe,	etc.)

CreateProcess	 create	process

JavaScript:link84.Click()
JavaScript:link85.Click()
JavaScript:link86.Click()
JavaScript:link87.Click()
JavaScript:link88.Click()

DeleteFile	 delete	file

FindFirstFile	 start	searching	for	a	file	object

FindNextFile	 continue	searching

GetCurrentDirectory	 get	the	current	directory

GetDiskFreeSpace	 get	disk	info

JavaScript:link89.Click()
JavaScript:link90.Click()
JavaScript:link91.Click()
JavaScript:link92.Click()
JavaScript:link93.Click()

GetDriveType	 get	drive	type

GetFileAttributes	 get	file	attributes

GetFullPathName	 get	path	to	a	file

GetModuleFileName	 get	full	name	of	the	module

JavaScript:link94.Click()
JavaScript:link95.Click()
JavaScript:link96.Click()
JavaScript:link97.Click()

GetModuleHandle	 get	handle	of	the	module

GetSystemDirectory	 get	path	to	the	system	directory

GetTempFileName	 get	name	for	a	temporary	file

GetTempPath	 get	path	to	the	TEMP	directory

JavaScript:link98.Click()
JavaScript:link99.Click()
JavaScript:link100.Click()
JavaScript:link101.Click()

GetVolumeInformation	 get	file	system	information

GetWindowsDirectory	 get	path	to	the	Windows	directory

LoadLibrary	 load	library	(DLL)

LoadLibraryEx	 load	library	(DLL)

JavaScript:link102.Click()
JavaScript:link103.Click()
JavaScript:link104.Click()
JavaScript:link105.Click()

MoveFile	 move/rename	file	or	directory

MoveFileEx	 move/rename	file	or	directory

OpenFile	 create/open/delete	file

RemoveDirectory	 delete	directory

JavaScript:link106.Click()
JavaScript:link107.Click()
JavaScript:link108.Click()
JavaScript:link109.Click()

SearchPath	 search	for	a	file

SetCurrentDirectory	 set	current	directory

SetFileAttributes	 set	file	attributes

When	dealing	with	command	lines,	a	console	application	should	obtain	the
command	line	in	Unicode	form	and	then	convert	it	to	OEM	form	using	the
relevant	character-to-OEM	functions.	Note	also	that	the	array	in	the	argv
parameter	contains	ANSI	character	set	strings	in	this	case.

See	also:
SetFileApisToANSI

JavaScript:link110.Click()
JavaScript:link111.Click()
JavaScript:link112.Click()

SetFileTime
main	|	structures	|	win32	structures

The	SetFileTime	function	sets	the	date	and	time	that	a	file	was	created,	last
accessed,	or	last	modified.

BOOL	SetFileTime(

		HANDLE	hFile,

		CONST	FILETIME	*lpCreationTime,

		CONST	FILETIME	*lpLastAccessTime,

		CONST	FILETIME	*lpLastWriteTime

);

Parameters
hFile
Handle	to	the	file	for	which	to	set	the	dates	and	times.	The	file	handle	must
have	been	created	with	GENERIC_WRITE	access	to	the	file.

lpCreationTime
Pointer	to	a	FILETIME	structure	that	contains	the	date	and	time	the	file	was
created.	This	parameter	can	be	NULL	if	the	application	does	not	need	to	set
this	information.

lpLastAccessTime
Pointer	to	a	FILETIME	structure	that	contains	the	date	and	time	the	file	was
last	accessed.	The	last	access	time	includes	the	last	time	the	file	was	written
to,	read	from,	or	(in	the	case	of	executable	files)	run.	This	parameter	can	be
NULL	if	the	application	does	not	need	to	set	this	information.

lpLastWriteTime
Pointer	to	a	FILETIME	structure	that	contains	the	date	and	time	the	file	was
last	written	to.	This	parameter	can	be	NULL	if	the	application	does	not	want
to	set	this	information.

Return	value
If	the	function	succeeds,	the	return	value	is	nonzero.
If	the	function	fails,	the	return	value	is	zero.	To	get	extended	error	information,

call	GetLastError	 	.

Remarks
The	FAT	and	NTFS	file	systems	support	the	file	creation,	last	access,	and	last
write	time	values.

The	file	time	precision	can	vary	depending	on	operating	system,	file	system,
network	configuration.	See	remarks	for	the	FILETIME	for	details.

Example
The	following	example	sets	the	last-write	time	for	a	file	to	the	current	system
time.

BOOL	SetFileToCurrentTime(HANDLE	hFile)

{

		FILETIME	ft;

		SYSTEMTIME	st;

		GetSystemTime(&st);																	//	gets	current	time

		SystemTimeToFileTime(&st,	&ft);					//	converts	to	file	time	format

		return	SetFileTime(hFile,											//	sets	last-write	time	for	file

														(LPFILETIME)	NULL,	(LPFILETIME)	NULL,	&ft);

}

See	also:
FILETIME,	GetFileSize	

	,	GetFileTime,

JavaScript:link113.Click()
JavaScript:link114.Click()

GetFileType	

JavaScript:link115.Click()

WriteConsoleInput
main	|	structures	|	win32	structures

The	WriteConsoleInput	function	writes	data	directly	to	the	console	input
buffer.

BOOL	WriteConsoleInput(

		HANDLE	hConsoleInput,

		CONST	INPUT_RECORD	*lpBuffer,

		DWORD	nLength,

		LPDWORD	lpNumberOfEventsWritten

);

Parameters
hConsoleInput
Handle	to	the	console	input	buffer.	The	handle	must	have	GENERIC_WRITE
access.

lpBuffer
Pointer	to	an	INPUT_RECORD	buffer	containing	data	to	be	written	to	the
input	buffer.

nLength
Specifies	the	number	of	input	records	to	be	written.

lpNumberOfEventsWritten
Pointer	to	a	variable	that	receives	the	number	of	input	records	actually	written.

Return	value
If	the	function	succeeds,	the	return	value	is	nonzero.
If	the	function	fails,	the	return	value	is	zero.	To	get	extended	error	information,

call	GetLastError	 	.

Remarks

JavaScript:link127.Click()

WriteConsoleInput	places	input	records	into	the	input	buffer	behind	any
pending	events	in	the	buffer.	The	input	buffer	grows	dynamically,	if	necessary,	to
hold	as	many	events	as	are	written.

	Windows	NT/2000/XP/2003/Vista/2008/7
This	function	uses	either	Unicode	characters	or	8-bit	characters	from	the
console's	current	code	page.	The	console's	code	page	defaults	initially	to
the	system's	OEM	code	page.	To	change	the	console's	code	page,	use

the	SetConsoleCP	 	or

SetConsoleOutputCP	 	functions,
or	use	the	chcp	or	mode	con	cp	select=	commands.

See	also:
INPUT_RECORD,	ReadConsoleInput,	SetConsoleCP	

	,
SetConsoleOutputCP	

	,

JavaScript:link128.Click()
JavaScript:link129.Click()
JavaScript:link130.Click()
JavaScript:link131.Click()

PeekConsoleInput

Win32	definitions
main

Constant Description

Virtualkeycodes virtual	key	codes

See	also:
Exported	functions	Service	functions
Addons

Dialog	functions
main	|	Dialog	API

The	following	functons	are	used	in	the	dialog	API.

Function Description

Dialog Shows	"uncontrollable"	dialog

DialogEx Shows	extended	dialog

SendDlgMessage Sends	a	message	to	the	dialog	callback	function

DefDlgProc Calls	the	default	dialog	callback	function

DlgProc Dialog	callback	function	template

See	also:
Structures,	Dialog	items,	Dialog	item	flags,	Events	and	Messages,
Exported	functions,	Service	functions,	Structures,	Archive
support,	Addons

FARWINDOWPROC
main	|	Dialog	API	|	macros	and	types

The	FARWINDOWPROC	type	describes	the	dialog	window	callback	function.

typedef	LONG_PTR	(WINAPI	*FARWINDOWPROC)(

		HANDLE			hDlg,

		int						Msg,

		int						Param1,

		LONG_PTR	Param2

);

See	also:
DialogEx

DI_BUTTON
main	|	Dialog	API	|	Dialog	items

The	DI_BUTTON	dialog	item	describes	a	Push	Button	control.

struct	FarDialogItem

{

		int	Type										=	DI_BUTTON

		int	X1												=	X

		int	Y1												=	Y

		int	X2												=	0	(not	used	in	Dialog	API	1.0)

		int	Y2												=	Y	(equals	to	Y1)

		int	Focus									=	Focus

		int	Selected						=	Selected

		DWORD	Flags							=	Flags

		int	DefaultButton	=	DefaultButton

		char	Data[512]				=	Button	caption

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Focus
Keyboard	focus	flag.

Selected
If	the	button	had	focus	when	the	user	pressed	<Enter>	this	field	is	set	to	1.

Flags
There	are	several	flags	applicable	to	the	DI_BUTTON	item:

Flag Description

DIF_BTNNOCLOSE Disables	dialog	closing	after	pressing	the	button.

DIF_CENTERGROUP
Sequential	items	having	this	flag	set	and	equal	vertical
coordinates	will	be	horizontally	centered	in	the	dialog.
Their	X1	and	X2	coordinates	are	ignored.	Useful	for
centering	button	groups.

DIF_NOBRACKETS Display	button	titles	without	brackets.

DIF_SETCOLOR The	low	byte	of	Flags	will	be	used	as	the	item	color.

DIF_DISABLE Disables	user	access	to	the	control.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

DIF_SHOWAMPERSAND Show	ampersand	symbol	in	caption	instead	of	using	it
for	defining	hotkeys.

Event
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before	the	button	control	is
drawn.

DN_CTLCOLORDLGITEM The	plugin	should	pass	the	color	attributes	of	the	button	when	this	event	arrives.
Param2	argument	(foreground+background):

LoWord	LoByte	-	color	of	the	caption

																(COL_WARNDIALOGBUTTON	or

					COL_DIALOGBUTTON)

LoWord	HiByte	-	color	of	highlighted	text

																(COL_WARNDIALOGHIGHLIGHTBUTTON	or

					COL_DIALOGHIGHLIGHTBUTTON)

Param2,	when	the	button	has	focus:

LoWord	LoByte	-	color	of	the	caption

																(COL_WARNDIALOGSELECTEDBUTTON	or

					COL_DIALOGSELECTEDBUTTON)

LoWord	HiByte	-	color	of	highlighted	text

																(COL_WARNDIALOGHIGHLIGHTSELECTEDBUTTON

					COL_DIALOGHIGHLIGHTSELECTEDBUTTON)

HiWord	LoByte	-	0

HiWord	HiByte	-	0

If	the	special	DIF_SETCOLOR	flag	is	used,	then	the	button's	caption	(LoWord
LoByte)	will	be	drawn	according	to	the	above	settings.

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in	the	dialog.

DN_HOTKEY A	hotkey	was	pressed	(Alt-<letter>).

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog	items	or	outside	the
dialog	with	a	mouse	button.

DN_BTNCLICK The	button	was	pressed.

DN_KILLFOCUS This	event	is	sent	before	the	button	loses	the	focus,	if	the	flag	DIF_NOFOCUS
was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	button	has	received	the	keyboard	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

Remarks
The	FarDialogItem	structure	is	described	assuming	the	use	of	named	unions.
For	more	information,	see	_FAR_NO_NAMELESS_UNIONS.

See	also:
DI_CHECKBOX,	DI_RADIOBUTTON,	FarDialogItem

DI_CHECKBOX
main	|	Dialog	API	|	Dialog	items

The	DI_CHECKBOX	dialog	item	describes	a	Check	Box	control.	It	is	also
known	as	a	"button	with	independent	fixation"	or	an	"on/off	switch".	The	switch
is	considered	to	be	ON	when	the	dialog	item	has	non-zero	Selected	field.

struct	FarDialogItem

{

		int	Type										=	DI_CHECKBOX

		int	X1												=	X

		int	Y1												=	Y

		int	X2												=	0	(not	used	in	Dialog	API	1.0)

		int	Y2												=	Y	(equals	to	Y1)

		int	Focus									=	Focus

		int	Selected						=	Selected

		DWORD	Flags							=	Flags

		int	DefaultButton	=	DefaultButton

		char	Data[512]				=	Checkbox	caption

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Focus
Keyboard	focus	flag.

Selected
This	field	reflects	current	state	of	the	checkbox	control:	is	it	switched	on	or	off.

Flags
There	are	several	flags	applicable	to	the	DI_CHECKBOX	item:

Flag Description

DIF_CENTERGROUP
Sequential	items	having	this	flag	set	and	equal	vertical
coordinates	will	be	horizontally	centered	in	the	dialog.
Their	X1	and	X2	coordinates	are	ignored.	Useful	for
centering	checkbox	groups.

DIF_SETCOLOR The	low	byte	of	Flags	will	be	used	as	the	item	color.

DIF_DISABLE Disables	user	access	to	the	control.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

DIF_3STATE The	checkbox	will	have	3	possible	states:	"off",	"on",
"undefined".

DIF_SHOWAMPERSAND Show	ampersand	symbol	in	caption	instead	of	using	it
for	defining	hotkeys.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before	the	control	is	drawn.

DN_CTLCOLORDLGITEM The	plugin	should	pass	the	color	attributes	of	the	checbox	when	this	event
comes.	Param2	argument	(foreground+background):

LoWord	LoByte	-	color	of	the	caption

																(COL_WARNDIALOGBUTTON	or

					COL_DIALOGBUTTON)

LoWord	HiByte	-	color	of	highlighted	text

																(COL_WARNDIALOGHIGHLIGHTBUTTON	or

					COL_DIALOGHIGHLIGHTBUTTON)

Param2,	when	the	checkbox	has	focus:

LoWord	LoByte	-	color	of	the	caption

																(COL_WARNDIALOGSELECTEDBUTTON	or

					COL_DIALOGSELECTEDBUTTON)

LoWord	HiByte	-	color	of	highlighted	text

																(COL_WARNDIALOGHIGHLIGHTSELECTEDBUTTON

					COL_DIALOGHIGHLIGHTSELECTEDBUTTON)

HiWord	LoByte	-	0

HiWord	HiByte	-	0

If	the	special	flag	DIF_SETCOLOR	is	used,	the	checkbox's	caption	(LoWord
LoByte)	will	be	drawn	according	to	the	above	settings.

DN_HOTKEY A	hotkey	was	pressed	(Alt-<letter>).

DN_BTNCLICK The	state	of	the	checkbox	was	changed.

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in	the	dialog.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog	items	or	outside	the
dialog	with	a	mouse	button.

DN_KILLFOCUS This	event	is	sent	before	the	button	loses	the	focus,	if	the	flag	DIF_NOFOCUS
was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	button	has	received	the	keyboard	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

Remarks
It	is	strongly	recommended	to	set	correct	values	for	X2	and	Y2	fields,	though
they	aren't	used	in	Dialog	API	1.0.

See	also:
DI_RADIOBUTTON,	DI_BUTTON,	FarDialogItem

DI_COMBOBOX
main	|	Dialog	API	|	Dialog	items

The	DI_COMBOBOX	dialog	item	describes	an	edit	box	with	a	drop-down	list
(Combo	Box).

struct	FarDialogItem

{

		int	Type													=	DI_COMBOBOX

		int	X1															=	X1

		int	Y1															=	Y

		int	X2															=	X2

		int	Y2															=	Y	(equals	to	Y1)

		int	Focus												=	Focus

		union	{

				FarList	*ListItems	=	ListItems		[passed	to]

				int	ListPos								=	ListPos				[returned]

		};

		DWORD	Flags										=	Flags

		int	DefaultButton				=	DefaultButton

		union	{

				char	Data[512];				=	the	text	for	editing	(without	

				struct	{

						DWORD	PtrFlags;		=	advanced	flags	(not	used	in	Dialog	API	1.0)

						int			PtrLength;	=	size	of	the	user	buffer	pointed	by	PtrData

						char	*PtrData;			=	the	pointer	to	the	user	buffer

						char		PtrTail[1];=	the	remainder	part	of	Data

				}	Ptr;													=	the	text	for	editing	(with	DIF_VAREDIT

		};

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Focus
Keyboard	focus	flag.

ListItems
This	is	the	pointer	to	the	FarList	structure	containing	fields	for	the	combo	box

initialization.	The	"edit"	part	of	the	combo	box	gets	the	value	of	the	first	item	in
the	list	with	the	LIF_SELECTED	flag	set,	if	any.

If	this	field	is	set	to	NULL,	then	the	list	box	will	not	be	shown.

ListPos
Current	position	in	the	ListItems.Items	list.	The	index	of	the	item	selected	by	the
user	is	stored	in	this	field	after	the	dialog	has	been	closed.

Flags
There	are	several	flags	applicable	to	the	DI_COMBOBOX	control	(for	the	flags
of	the	list	box,	see	FarListItem):

Flag Description

DIF_DROPDOWNLIST Shows	non-editable	drop-down	list	instead	of	a
common	combo	box.

DIF_EDITEXPAND Expand	environment	variables.

DIF_LISTAUTOHIGHLIGHT Assigns	hotkeys	for	the	list	elements	automatically,
starting	with	the	first	item.

DIF_LISTNOAMPERSAND Shows	a	hotkey	instead	of	showing	the	ampersand
itself.

DIF_LISTWRAPMODE If	this	flag	is	set,	trying	to	move	the	cursor	up	from	the
first	element	or	down	from	the	last	element	will	move
the	cursor	to	the	bottom	or	the	top	of	the	list,
respectively.

DIF_DISABLE Disables	user	access	to	the	combo	box.

DIF_READONLY Sets	read-only	state	for	the	edit	control.

DIF_SELECTONENTRY Makes	the	edit	control	always	select	the	text	when	it
receives	focus.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

DIF_VAREDIT If	this	flag	is	set,	the	dialog	manager	will	use	only	the
Ptr.*	members	instead	of	Data	in	the	FarDialogItem
structure.	The	use	of	this	flag	allows	to	exceed	the
512-byte	limit	for	the	edit	control.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	before	the	combo	box	is

drawn.

DN_CTLCOLORDLGITEM Plugin	should	pass	the	color	attributes	of	the	edit	item	of	the	combo	box	when
this	event	comes.	Param2	parameter:

LoWord	LoByte	-	color	of	the	text	in	the	edit	control

																(COL_WARNDIALOGEDIT	or

																	COL_DIALOGEDIT)

LoWord	HiByte	-	color	of	selected	text

																(COL_DIALOGEDITSELECTED)

HiWord	LoByte	-	color	of	unchanged	text

																(COL_DIALOGEDITUNCHANGED)

HiWord	HiByte	-	color	of	the	drop-down	arrow

																(COL_DIALOGTEXT)

DN_CTLCOLORDLGLIST When	this	event	comes,	the	plugin	may	change	the	color	attributes	of	the	list
item	of	the	combo	box	to	be	drawn.

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in	the	dialog.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog	items	or	outside
the	dialog	with	the	mouse	button.

DN_EDITCHANGE The	text	in	the	edit	field	has	been	changed.

DN_KILLFOCUS This	event	is	sent	before	the	combo	box	loses	the	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	button	has	received	the	keyboard	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

Remarks

See	also:
DI_LISTBOX,	FarDialogItem

DI_DOUBLEBOX
main	|	Dialog	API	|	Dialog	items

The	DI_DOUBLEBOX	dialog	item	describes	a	double	line	frame.

struct	FarDialogItem

{

		int	Type										=	DI_DOUBLEBOX

		int	X1												=	X1

		int	Y1												=	Y1

		int	X2												=	X2

		int	Y2												=	Y2

		int	Focus									=	0

		int	Selected						=	0

		DWORD	Flags							=	Flags

		int	DefaultButton	=	0

		char	Data[512]				=	Caption

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Flags
There	are	several	flags	applicable	to	the	DI_DOUBLEBOX	control:

Flag Description

DIF_SETCOLOR The	low	byte	of	Flags	will	be	used	as	the	frame	color.

DIF_LEFTTEXT The	caption	of	the	frame	will	be	left	aligned.

DIF_SHOWAMPERSAND
Show	ampersand	symbol	in	caption	instead	of	using	it
for	defining	hotkeys.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before	the	double	line	frame	is
drawn.

DN_CTLCOLORDLGITEM The	plugin	should	pass	the	color	attributes	of	the	frame	item	when	this	event
comes.	Param2	parameter:

LoWord	LoByte	-	color	of	text	in	the	caption

																(COL_WARNDIALOGBOXTITLE	or

																	COL_DIALOGBOXTITLE)

LoWord	HiByte	-	color	of	highlighted	text	in	the	caption

																(COL_WARNDIALOGHIGHLIGHTBOXTITLE	or

																	COL_DIALOGHIGHLIGHTBOXTITLE)

HiWord	LoByte	-	color	of	the	frame	lines

																(COL_WARNDIALOGBOX	or	COL_DIALOGBOX

HiWord	HiByte	-	0	(not	used)

DN_HOTKEY Hotkey	was	pressed	(Alt-<letter>).

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog	items	or	outside	the
dialog	with	the	mouse	button.

Remarks

1.	 If	this	item	is	the	first	in	the	dialog	items	array,	its	caption	is	copied	into	the
FAR	console	window	title.

2.	 When	X1==X2	or	Y1==Y2,	a	line	(vertical	or	horizontal)	will	be	drawn
instead	of	the	frame.

See	also:
DI_SINGLEBOX,	FarDialogItem

DI_EDIT
main	|	Dialog	API	|	Dialog	items

The	DI_EDIT	dialog	item	describes	an	edit	box.

struct	FarDialogItem

{

		int	Type													=	DI_EDIT

		int	X1															=	X1

		int	Y1															=	Y

		int	X2															=	X2

		int	Y2															=	Y	(equals	to	Y1)

		int	Focus												=	Focus

		char	*History								=	History

		DWORD	Flags										=	Flags

		int	DefaultButton				=	DefaultButton

		union	{

				char	Data[512];				=	the	text	for	editing	(without	

				struct	{

						DWORD	PtrFlags;		=	advanced	flags	(not	used	in	Dialog	API	1.0)

						int			PtrLength;	=	size	of	the	user	buffer	pointed	by	PtrData

						char	*PtrData;			=	the	pointer	to	the	user	buffer

						char		PtrTail[1];=	the	remainder	part	of	Data

				}	Ptr;													=	the	text	for	editing	(with	DIF_VAREDIT

		};

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Focus
Keyboard	focus	flag.

History
Contains	the	address	of	a	null-terminated	text	string	that	will	be	used	as	the
internal	history	name	when	an	edit	control	has	the	DIF_HISTORY	flag.	If
several	edit	fields	have	the	same	history	name,	they	will	share	the	same	history
list.

Flags
There	are	several	flags	applicable	to	the	DI_EDIT	control:

Flag Description

DIF_EDITOR Sequential	edit	controls	with	this	flag	are	grouped	into
a	simple	editor	with	the	ability	to	insert	and	delete
lines.

DIF_HISTORY Adds	a	history	list	to	an	edit	control.	If	this	flag	is	set,
the	History	field	must	contain	the	address	of	a	text
string	that	will	be	used	as	the	internal	name	of	the
history.

DIF_MANUALADDHISTORY Specifies	that	items	will	be	added	to	the	history	list	of
an	edit	box	only	manually,	not	automatically.	Must	be
used	together	with	DIF_HISTORY.

DIF_USELASTHISTORY The	initial	value	will	be	set	to	the	last	history	element.

DIF_EDITEXPAND Expand	environment	variables.

DIF_DISABLE Disables	user	access	to	the	edit	control.

DIF_READONLY Sets	read-only	state	for	the	edit	control.

DIF_SELECTONENTRY Makes	the	edit	control	always	select	the	text	when	it
receives	the	focus.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

DIF_VAREDIT If	this	flag	is	set,	the	dialog	manager	will	use	only	the
Ptr.*	members	instead	of	Data	in	the	FarDialogItem
structure.	The	use	of	this	flag	allows	to	exceed	the
512-byte	limit	for	the	edit	control.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before	the	edit	box	is
drawn.

DN_CTLCOLORDLGITEM The	plugin	should	pass	the	color	attributes	of	the	edit	control	when	this	event
comes.	Param2	parameter:

LoWord	LoByte	-	color	of	the	text

																(COL_WARNDIALOGEDIT	or

																	COL_DIALOGEDIT)

LoWord	HiByte	-	color	of	selected	text

																(COL_DIALOGEDITSELECTED)

HiWord	LoByte	-	color	of	unchanged	text

																(COL_DIALOGEDITUNCHANGED)

HiWord	HiByte	-	color	of	the	History	drop-down	arrow

																(COL_DIALOGTEXT)

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in	the	dialog.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog	items	or	outside
the	dialog	with	the	mouse	button.

DN_EDITCHANGE The	text	in	the	edit	field	has	been	changed.

DN_KILLFOCUS This	event	is	sent	before	the	combo	box	loses	the	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	button	has	received	the	keyboard	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

See	also:
DI_PSWEDIT,	DI_FIXEDIT,	FarDialogItem

DI_FIXEDIT
main	|	Dialog	API	|	Dialog	items

The	DI_FIXEDIT	dialog	item	describes	a	fixed	size	edit	box.	It	is	the	same	as
DI_EDIT,	except	the	text	in	the	DI_FIXEDIT	cannot	be	scrolled.

struct	FarDialogItem

{

		int	Type										=	DI_FIXEDIT

		int	X1												=	X1

		int	Y1												=	Y

		int	X2												=	X2

		int	Y2												=	Y	(equals	to	Y1)

		int	Focus									=	Focus

		union{

				char	*History			=	History

				char	*Mask;					=	Mask

		};

		DWORD	Flags							=	Flags

		int	DefaultButton	=	DefaultButton

		char	Data[512]				=	the	text	for	editing

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Focus
Keyboard	focus	flag.

History
Contains	the	address	of	a	null-terminated	text	string	that	will	be	used	as	the
internal	history	name	when	an	edit	control	has	the	DIF_HISTORY	flag.	If
several	edit	fields	have	the	same	history	name,	they	will	share	the	same	history
list.

Mask
Contains	the	address	of	a	null-terminated	string	that	serves	as	a	mask	for	user
input	when	the	DIF_MASKEDIT	flag	is	set.	NULL	value	means	the	edit	field
has	no	input	mask.

The	DIF_HISTORY	flag	has	higher	priority	than	the
DIF_MASKEDIT	flag.

Flags
There	are	several	flags	applicable	to	DI_FIXEDIT:

Flag Description

DIF_HISTORY Adds	a	history	list	to	an	edit	control.	If	this	flag	is	set,
the	History	field	must	contain	the	address	of	a	text
string	that	will	be	used	as	the	internal	name	of	the
history.

DIF_MANUALADDHISTORY Specifies	that	items	will	be	added	to	the	history	list	of
an	edit	box	only	manually	and	not	automatically.	Must
be	used	together	with	DIF_HISTORY.

DIF_USELASTHISTORY The	initial	value	will	be	set	to	the	last	history	element.

DIF_MASKEDIT Uses	the	null-terminated	string	in	the	Mask	field	as	a
filter	for	user	input.

DIF_DISABLE Disables	user	access	to	the	edit	control.

DIF_READONLY Sets	read-only	state	for	the	edit	control.

DIF_SELECTONENTRY Makes	the	edit	control	always	select	the	text	when	it
receives	the	focus.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before	the	edit	box	is
drawn.

DN_CTLCOLORDLGITEM Plugin	should	pass	the	color	attributes	of	the	edit	control	when	this	event
comes.	Param2	parameter:

LoWord	LoByte	-	color	of	the	text

																(COL_WARNDIALOGEDIT	or

																	COL_DIALOGEDIT)

LoWord	HiByte	-	color	of	selected	text

																(COL_DIALOGEDITSELECTED)

HiWord	LoByte	-	color	of	unchanged	text

																(COL_DIALOGEDITUNCHANGED)

HiWord	HiByte	-	color	of	the	History	drop-down	arrow

																(COL_DIALOGTEXT)

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in	the	dialog.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog	items	or	outside
the	dialog	with	the	mouse	button.

DN_EDITCHANGE The	text	in	the	edit	field	has	been	changed.

DN_KILLFOCUS This	event	is	sent	before	the	combo	box	loses	the	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	button	has	received	the	keyboard	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

Remarks
The	text	cursor	in	the	DI_FIXEDIT	edit	field	will	initially	be	in	overwrite
mode.

See	also:
DI_EDIT,	DI_PSWEDIT,	FarDialogItem

DI_LISTBOX
main	|	Dialog	API	|	Dialog	items

The	DI_LISTBOX	dialog	item	describes	a	list	box.

struct	FarDialogItem

{

		int	Type										=	DI_LISTBOX

		int	X1												=	X1

		int	Y1												=	Y1

		int	X2												=	X2

		int	Y2												=	Y2

		int	Focus									=	Focus

		union	{

				FarList	*ListItems=	ListItems		[passed	to]

				int	ListPos							=	ListPos				[returned]

		};

		DWORD	Flags							=	Flags

		int	DefaultButton	=	DefaultButton

		char	Data[512];			=	Caption

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

ListItems
This	is	a	pointer	to	the	FarList	structure	containing	fields	for	the	list	box
initialization.

ListPos
Current	position	in	the	ListItems.Items	list.	The	index	of	the	item	selected	by	the
user	will	be	stored	in	this	filed	when	the	dialog	is	closed.

Flags
There	are	several	flags	applicable	to	the	DI_LISTBOX	(for	the	flags	of	the	list
box,	see	FarListItem):

Flag Description

DIF_LISTAUTOHIGHLIGHT Assigns	hotkeys	for	the	list	elements	automatically,

starting	with	the	first	item.

DIF_LISTNOAMPERSAND Shows	a	hotkey	when	a	letter	is	preceded	with	an
ampersand	instead	of	showing	the	ampersand	itself.

DIF_LISTWRAPMODE If	this	flag	is	set,	trying	to	move	the	cursor	up	from	the
first	element	or	down	from	the	last	element	will	move
the	cursor	to	the	bottom	or	the	top	of	the	list,
respectively.

DIF_DISABLE Disables	user	access	to	the	list	box.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

DIF_LISTNOBOX Disables	the	drawing	of	a	frame	around	the	list.	The
Data	field	is	ignored	in	this	case.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just
before	the	list	box	is	drawn.

DN_CTLCOLORDLGLIST Plugin	should	pass	the	color	attributes	of	the	list	box
when	this	event	comes.

DN_LISTCHANGE Position	in	the	list	was	changed.

DN_LISTHOTKEY This	event	comes	after	the	user	has	pressed	a	hotkey	in
the	list.

See	also:
DI_COMBOBOX,	FarDialogItem

DI_PSWEDIT
main	|	Dialog	API	|	Dialog	items

DI_PSWEDIT	dialog	item	describes	a	password	edit	control.	It	is	the	same	as
DI_EDIT,	except	the	text	in	the	DI_PSWEDIT	is	hidden	with	'*'	symbols.

struct	FarDialogItem

{

		int	Type										=	DI_PSWEDIT

		int	X1												=	X1

		int	Y1												=	Y

		int	X2												=	X2

		int	Y2												=	Y	(equals	to	Y1)

		int	Focus									=	Focus

		int	Selected						=	0

		DWORD	Flags							=	Flags

		int	DefaultButton	=	DefaultButton

		char	Data[512]				=	the	text	for	editing

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Focus
Keyboard	focus	flag.

Flags
There	are	several	flags	applicable	to	the	DI_PSWEDIT:

Flag Description

DIF_DISABLE Disables	user	access	to	the	password	control.

DIF_READONLY Sets	read-only	state	for	the	password	control.

DIF_SELECTONENTRY Makes	the	password	control	always	select	the	text
when	it	receives	focus.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

Events

Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before
the	password	box	is	drawn.

DN_CTLCOLORDLGITEM Plugin	should	pass	the	color	attributes	of	the	password
control	when	this	event	comes.	Param2	parameter:

LoWord	LoByte	-	color	of	the	text

																(COL_WARNDIALOGEDIT	or

																	COL_DIALOGEDIT)

LoWord	HiByte	-	color	of	selected	text

																(COL_DIALOGEDITSELECTED)

HiWord	LoByte	-	color	of	unchanged	text

																(COL_DIALOGEDITUNCHANGED)

HiWord	HiByte	-	0	(not	used)

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in	the
dialog.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog
items	or	outside	the	dialog	with	the	mouse	button.

DN_EDITCHANGE The	text	in	the	password	field	was	changed.

DN_KILLFOCUS This	event	is	sent	before	the	password	control	loses	focus,	if
the	flag	DIF_NOFOCUS	was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	password	control	receives
keyboard	focus,	if	the	flag	DIF_NOFOCUS	was	not	used.

Remarks
The	DI_PSWEDIT	control	doesn't	allow	copying	password	text	to	the
clipboard.

See	also:
DI_EDIT,	DI_FIXEDIT,	FarDialogItem

DI_RADIOBUTTON
main	|	Dialog	API	|	Dialog	items

The	DI_RADIOBUTTON	dialog	item	describes	a	Radio	Button	control.	It	is
also	known	as	the	"button	with	dependent	fixation".	It	acts	like	a	Check	Box,
except	that	if	the	first	radio	button	item	in	a	group	of	several	consequent	radio
button	items	have	the	DIF_GROUP	flag	set,	they	become	mutually	exclusive	—
if	one	of	them	has	been	switched	on	all	others	will	be	switched	off.

struct	FarDialogItem

{

		int	Type										=	DI_RADIOBUTTON

		int	X1												=	X

		int	Y1												=	Y

		int	X2												=	0	(not	used	in	Dialog	API	1.0)

		int	Y2												=	Y	(equals	to	Y1)

		int	Focus									=	Focus

		int	Selected						=	Selected

		DWORD	Flags							=	Flags

		int	DefaultButton	=	DefaultButton

		char	Data[512]				=	Radio	button	caption

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Focus
Keyboard	focus	flag.

Selected
The	field	reflects	current	state	of	the	radio	button	control:	is	it	switched	on	or
off.

Flags
There	are	several	flags	applicable	to	the	DI_RADIOBUTTON	control:

Flag Description

DIF_SETCOLOR The	low	byte	of	Flags	will	be	used	as	the	item's	color.

DIF_GROUP This	flag	should	be	set	for	the	first	radio	button	item	in

a	group.

DIF_MOVESELECT Change	selection	in	a	radio	button	group	when	focus	is
moved.	Radio	buttons	with	this	flag	set	are	also	drawn
without	parentheses	around	the	selection	mark
(example:	FAR	color	selection	dialog).

DIF_CENTERGROUP Sequential	items	with	this	flag	set	and	equal	vertical
coordinates	will	be	horizontally	centered	in	the	dialog.
Their	X1	and	X2	coordinates	are	ignored.

DIF_DISABLE Disables	user	access	to	the	control.

DIF_NOFOCUS The	dialog	item	cannot	receive	keyboard	focus,	but
can	handle	other	user	events.

DIF_SHOWAMPERSAND Show	ampersand	symbol	in	caption	instead	of	using	it
for	defining	hotkeys.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	before	the
control	is	drawn.

DN_CTLCOLORDLGITEM Plugin	should	pass	the	color	attributes	of	the	control	when	this
event	comes.	Param2	parameter	(foreground+background):

LoWord	LoByte	-	color	of	the	caption

																(COL_WARNDIALOGBUTTON	or

																	COL_DIALOGTEXT)

LoWord	HiByte	-	color	of	highlighted	text

																(COL_WARNDIALOGHIGHLIGHTTEXT	or

																	COL_DIALOGHIGHLIGHTTEXT)

HiWord	LoByte	-	0

HiWord	HiByte	-	0

If	a	special	attribute	is	used	(DIF_SETCOLOR	flag),	the	caption
(LoWord	LoByte)	will	be	drawn	according	to	the	parameters.

DN_HOTKEY Hotkey	was	pressed	(Alt-<letter>).

DN_BTNCLICK State	of	the	radiobutton	was	changed.

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in	the	dialog.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog
items	or	outside	the	dialog	with	the	mouse	button.

DN_KILLFOCUS This	event	is	sent	just	before	the	button	loses	focus,	if	the	flag
DIF_NOFOCUS	was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	button	has	received	keyboard	focus,	if
the	flag	DIF_NOFOCUS	was	not	used.

Remarks
It	is	strongly	recommended	to	set	correct	values	for	X2	and	Y2	fields,	although
they	aren't	used	in	Dialog	API	1.0.

See	also:
DI_CHECKBOX,	DI_BUTTON,	FarDialogItem

DI_SINGLEBOX
main	|	Dialog	API	|	Dialog	items

The	DI_SINGLEBOX	dialog	item	describes	a	single	line	frame.

struct	FarDialogItem

{

		int	Type										=	DI_SINGLEBOX

		int	X1												=	X1

		int	Y1												=	Y1

		int	X2												=	X2

		int	Y2												=	Y2

		int	Focus									=	0

		int	Selected						=	0

		DWORD	Flags							=	Flags

		int	DefaultButton	=	0

		char	Data[512]				=	Caption

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Flags
There	are	several	flags	applicable	to	the	DI_SINGLEBOX	control:

Flag Description

DIF_SETCOLOR The	low	byte	of	Flags	will	be	used	as	the	frame	color.

DIF_LEFTTEXT The	caption	of	the	frame	will	be	left	aligned.

DIF_SHOWAMPERSAND Show	ampersand	symbol	in	caption	instead	of	using	it
for	defining	hotkeys.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	before	the	double	line	box	is
drawn.

DN_CTLCOLORDLGITEM Plugin	should	pass	the	color	attributes	of	the	frame	when	this	event	comes.	Param2
parameter:

LoWord	LoByte	-	color	of	text	in	the	caption

																(COL_WARNDIALOGBOXTITLE	or

																	COL_DIALOGBOXTITLE)

LoWord	HiByte	-	color	of	highlighted	text	in	the	caption

																(COL_WARNDIALOGHIGHLIGHTBOXTITLE	or

																	COL_DIALOGHIGHLIGHTBOXTITLE)

HiWord	LoByte	-	color	of	the	frame	lines

																(COL_WARNDIALOGBOX	or	COL_DIALOGBOX

HiWord	HiByte	-	0	(not	used)

			

DN_HOTKEY Hotkey	was	pressed	(Alt-<letter>).

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog	items	or	outside	the
dialog	with	the	mouse	button.

Remarks

1.	 If	this	item	is	the	first	in	the	dialog	items	array,	its	caption	is	copied	into	the
FAR	console	window	title.

2.	 When	X1==X2	or	Y1==Y2,	a	line	(vertical	or	horizontal)	will	be	drawn
instead	of	a	frame.

See	also:
DI_DOUBLEBOX,	FarDialogItem

DI_TEXT
main	|	Dialog	API	|	Dialog	items

The	DI_TEXT	dialog	item	describes	a	static	text	label.

struct	FarDialogItem

{

		int	Type										=	DI_TEXT

		int	X1												=	X1

		int	Y1												=	Y

		int	X2												=	X2

		int	Y2												=	Y	(not	used	in	Dialog	API	1.0,	must	be	equal	to	Y1)

		int	Focus									=	0

		int	Selected						=	0

		DWORD	Flags							=	Flags

		int	DefaultButton	=	0

		char	Data[512]				=	text	label

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Flags
There	are	several	flags	applicable	to	the	DI_TEXT	control:

Flag Description

DIF_SETCOLOR The	low	byte	of	Flags	will	be	used	as	the	item's	color.

DIF_BOXCOLOR The	text	item	will	be	displayed	using	frame	color
(COL_DIALOGBOX	or	COL_WARNDIALOGBOX)

DIF_CENTERGROUP Sequential	strings	with	this	flag	set	and	equal	vertical
coordinates	will	be	horizontally	centered	in	the	dialog.
Their	X1	and	X2	coordinates	are	ignored.

DIF_SEPARATOR Draws	a	single-line	separator.	You	may	write	any	text
on	the	separator	line,	just	use	Data	and	the	coordinate
fields.

DIF_SEPARATOR2 Draws	a	double-line	separator.	You	may	write	any	text
on	the	separator	line,	just	use	Data	and	the	coordinate
fields.

DIF_SHOWAMPERSAND Show	ampersand	symbol	in	caption	instead	of	using	it
for	defining	hotkeys.

DIF_CENTERTEXT Centers	the	text	between	the	X1	and	X2	coordinates.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before	the
text	item	is	drawn.

DN_CTLCOLORDLGITEM Plugin	should	pass	the	color	attributes	of	the	text	item	when	this
event	comes.	Param2	parameter	(foreground+background):

LoWord	LoByte	-	color	of	the	text

																(COL_WARNDIALOGTEXT	or

																	COL_DIALOGTEXT).

																If	DIF_BOXCOLOR	flag	is	set:

																	COL_WARNDIALOGBOX	or

																	COL_DIALOGBOX

LoWord	HiByte	-	color	of	highlighted	text

																(COL_WARNDIALOGHIGHLIGHTTEXT	or

																	COL_DIALOGHIGHLIGHTTEXT)

HiWord	LoByte	-	0	(not	used)

HiWord	HiByte	-	0	(not	used)

If	a	special	attribute	is	used	(DIF_SETCOLOR	flag),	the	text
(LoWord	LoByte)	will	be	drawn	according	to	the	parameters.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog
items	or	outside	the	dialog	with	the	mouse	button.

DN_HOTKEY Hotkey	was	pressed	(Alt-<letter>).

Remarks

1.	 It	is	recommended	to	set	the	Y2	coordinate	correctly,	although	it's	not	used
in	Dialog	API	1.0.	Just	set	it	equal	to	the	Y1	coordinate.

2.	 If	the	DIF_CENTERTEXT	flag	is	set,	the	X2	field	must	have	adequate
value	for	the	correct	text	centering.

3.	 If	the	DIF_CENTERTEXT	flag	is	not	set,	FAR	will	calculate	X2	and	Y2
coordinates	automatically.

4.	 If	this	text	item	is	the	first	in	the	dialog	items	array,	the	text	string	is	copied
into	the	FAR	console	window	title.

5.	 If	the	text	of	the	DI_TEXT	item	has	a	hotkey	and
DIF_SHOWAMPERSAND	flag	isn't	set,	then	pressing	Alt-Letter	causes
the	keyboard	focus	to	move	to	the	next	available	dialog	item.

See	also:
DI_VTEXT,	FarDialogItem

DI_USERCONTROL
main	|	Dialog	API	|	Dialog	items

The	DI_USERCONTROL	dialog	item	describes	an	user-defined	control
controlled	completely	by	the	plugin:	initialize,	draw	etc.

struct	FarDialogItem

{

		int	Type										=	DI_USERCONTROL

		int	X1												=	X1

		int	Y1												=	Y1

		int	X2												=	X2

		int	Y2												=	Y2

		int	Focus									=	User	Defined

		CHAR_INFO	*VBuf			=	Virtual	Draw	Buffer

		DWORD	Flags							=	Flags

		int	DefaultButton	=	0

		char	Data[512]				=	User	Defined

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Virtual	Draw	Buffer
VBuf	parameter	points	to	an	array	of	CHAR_INFO	structures	that	contain
characters	and	their	attributes	to	be	drawn	in	the	dialog.

If	VBuf	is	NULL,	the	plugin	itself	must	draw	the	control	using	the	Text	service
function	when	a	DN_DRAWDLGITEM	event	comes.

If	VBuf	is	not	NULL,	the	plugin	must	fill	the	VBuf	array	when	it	receives	the
DN_DRAWDLGITEM	event,	and	the	dialog	manager	will	then	copy	the
contents	of	the	buffer	to	the	screen.

This	is	the	typical	scenario	for	using	the	DI_USERCONTROL	(see	the	source
code	of	Reversi	plugin):

//	allocate	memory	for	the	virtual	buffer	before	calling	DialogEx

#define	DIM(Item)	(((Item).X2-(Item).X1+1)*((Item).Y2-(Item).Y1+1))

CHAR_INFO	*VBuf=new	CHAR_INFO[DIM(DialogItems[11])];

DialogItems[11].VBuf=VBuf;

http://plugring.farmanager.com/downld/files/reversi.rar

		.

		.

		.

//	in	the	dialog	callback	function

struct	FarDialogItem	DialogItem;

case	DN_DRAWDLGITEM:

		if(Param1	==	11)

		{

				char	Face[4]="			";

				SMALL_RECT	Rect;

				BYTE	AddColor=0x00;

				//	get	coordinates	of	the	dialog	and	description	of	the	item

				Info.SendDlgMessage(hDlg,DM_GETDLGRECT,0,(LONG_PTR)&Rect);

				Info.SendDlgMessage(hDlg,DM_GETDLGITEM,11,(LONG_PTR)&DialogItem);

				//	drawing	the	game	field

				for(Y=0;	Y	<	8;	++Y)

				{

						for(X=0;	X	<	8;	++X)

						{

								//	prepare	one	rectangle

								//	if	the	cell	is	not	used...

								if	(GAME[0].Field[Y*8+X]==0)

										Face[1]='	';

								//	for	the	white	player

								else	if	(GAME[0].Field[Y*8+X]==GAME[0].Pl1)

								{

										Face[1]=FaceWhite;

										AddColor=0x00;

								}

								//	for	the	black	player

								else	if	(GAME[0].Field[Y*8+X]==GAME[0].Pl2)

								{

										Face[1]=FaceBlack;

										AddColor=0x0F;

								}

								//	if	the	memory	couldn't	be	allocated,

								//	draw	with	the	Text	function

								if(!DialogItem.VBuf)

								{

										Info.Text(Rect.Left+DialogItem.X1+X*3,

																			Rect.Top+DialogItem.Y1+Y,

																		ColorsPanel[Y&1][X&1]|AddColor,

																		Face);

								}

								else	//	if	the	memory	was	allocated,	use	virtual	buffer

								{

										CHAR_INFO	*VBuf=&DialogItem.VBuf[Y*8*3+X*3];

										VBuf[0].Char.AsciiChar=Face[0];

										VBuf[1].Char.AsciiChar=Face[1];

										VBuf[2].Char.AsciiChar=Face[2];

										VBuf[0].Attributes=

													VBuf[1].Attributes=

													VBuf[2].Attributes=ColorsPanel[Y&1][X&1]|AddColor;

								}

						}

				}

		}

		return	TRUE;

Flags
There	are	several	flags	applicable	to	the	DI_USERCONTROL	control:

Flag Description

DIF_NOFOCUS The	user-defined	dialog	control	cannot	receive
keyboard	focus,	but	can	handle	other	user	events.

DIF_DISABLE Disables	user	access	to	the	control.

DIF_NOTCVTUSERCONTROL do	not	convert	characters	(CHAR_INFO::Char)	while
writing	the	virtual	buffer	to	the	screen.

Events

Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just
before	the	item	is	drawn.

DN_KEY This	event	comes	after	the	user	has	pressed	a	key	in
the	dialog.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	a	mouse
button;	coordinates	are	counted	from	upper	left	corner
of	the	item

DN_KILLFOCUS This	event	is	sent	before	the	button	loses	focus,	if	the
flag	DIF_NOFOCUS	was	not	used.

DN_GOTFOCUS This	event	is	sent	after	the	button	has	received
keyboard	focus,	if	the	flag	DIF_NOFOCUS	was	not
used.

Remarks

1.	 For	a	description	of	how	to	manage	the	text	cursor	in	a	user-defined	dialog
control,	see	DM_GETCURSORPOS	or	DM_SETCURSORPOS.

2.	 The	DI_USERCONTROL	item	is	not	supported	by	the	Dialog	function.

See	also:
FarDialogItem

DI_VTEXT
main	|	Dialog	API	|	Dialog	items

The	DI_VTEXT	dialog	item	describes	a	vertical	static	text	label.

struct	FarDialogItem

{

		int	Type										=	DI_VTEXT

		int	X1												=	X

		int	Y1												=	Y1

		int	X2												=	X	(not	used	in	Dialog	API	1.0,	must	be	equal	to	X1)

		int	Y2												=	Y2

		int	Focus									=	0

		int	Selected						=	0

		DWORD	Flags							=	Flags

		int	DefaultButton	=	0

		char	Data[512]				=	text	label

};

	Attention!
This	is	an	exemplary	structure;	read	full	description	here.

Flags
There	are	several	flags	applicable	to	the	DI_VTEXT	control:

Flag Description

DIF_SETCOLOR The	low	byte	of	Flags	will	be	used	as	the	item's	color.

DIF_BOXCOLOR The	text	item	will	be	displayed	using	box	colors
(COL_DIALOGBOX	or	COL_WARNDIALOGBOX)

DIF_CENTERGROUP Centers	two	vertical	text	labels	with	equal	horizontal
position	(Y1	is	ignored)

DIF_SEPARATOR Draws	a	single-line	vertical	separator;	Y1	is	ignored	if
Data	is	empty;
if	Data	is	not	empty,	it	will	also	be	drawn	with	Y1	as
its	starting	position.

DIF_SEPARATOR2 Draws	a	double-line	vertical	separator	Y1	is	ignored	if
Data	is	empty;
if	Data	is	not	empty,	it	will	also	be	drawn	with	Y1	as
its	starting	position.

DIF_SHOWAMPERSAND Show	ampersand	symbol	in	caption	instead	of	using	it

for	defining	hotkeys.

DIF_CENTERTEXT Centers	the	text	between	the	Y1	and	Y2	coordinates.

Events
Event Description

DN_DRAWDLGITEM This	event	is	sent	to	the	dialog	callback	function	just	before	the
text	item	is	drawn.

DN_CTLCOLORDLGITEM Plugin	should	pass	the	color	attributes	of	the	text	item	when	this
event	comes.	Param2	parameter	(foreground+background):

LoWord	LoByte	-	color	of	the	text

																(COL_WARNDIALOGTEXT	or

																	COL_DIALOGTEXT).

																If	DIF_BOXCOLOR	flag	is	set:

																	COL_WARNDIALOGBOX	or

																	COL_DIALOGBOX

LoWord	HiByte	-	color	of	highlighted	text

																(COL_WARNDIALOGHIGHLIGHTTEXT	or

																	COL_DIALOGHIGHLIGHTTEXT)

HiWord	LoByte	-	0	(not	used)

HiWord	HiByte	-	0	(not	used)

If	a	special	attribute	is	used	(DIF_SETCOLOR	flag),	the	text
(LoWord	LoByte)	will	be	drawn	according	to	the	parameters.

DN_MOUSECLICK This	event	comes	after	the	user	has	clicked	one	of	the	dialog
items	or	outside	the	dialog	with	the	mouse	button.

Remarks

1.	 It	is	recommended	to	set	the	X2	coordinate	correctly,	although	it	isn't	used
in	Dialog	API	1.0.	Just	set	it	equal	to	the	X1	coordinate.

2.	 If	the	DIF_CENTERTEXT	flag	is	set,	the	Y2	field	must	have	an	adequate
value	for	the	correct	text	centering.

3.	 If	the	DIF_CENTERTEXT	flag	is	not	set,	FAR	will	calculate	the	X2	and	Y2
coordinates	automatically.

4.	 If	the	text	of	the	DI_TEXT	item	has	a	hotkey	and
DIF_SHOWAMPERSAND	flag	isn't	set,	then	pressing	Alt-Letter	causes
the	keyboard	focus	to	move	to	the	next	available	dialog	item.

See	also:
DI_TEXT,	FarDialogItem

DIF_3STATE
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_3STATE	flag	indicates	that	a	DI_CHECKBOX	element	will	have
three	states:

[]	-	off											(FarDialogItem.Selected	=	0)

[x]	-	on												(FarDialogItem.Selected	=	1)

[?]	-	undefined					(FarDialogItem.Selected	=	2)

Controls
The	DIF_3STATE	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_CHECKBOX Check	box.

Remarks
When	using	the	DIF_3STATE	flag	it	is	necessary	to	remember	what	the	user
expects	while	working	with	such	checkbox.	That	is,	if	the	user	have	selected	the
undefined	checkbox	state,	then	the	option	being	controlled	by	this	checkbox
must	be	completely	ignored	during	further	processing.	File	attributes	dialog	is
the	striking	example:

[]	-	clear	attribute

[+]	-	set	attribute

[?]	-	don't	do	anything	with	this	attribute

See	also:

DIF_BOXCOLOR
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_BOXCOLOR	flag	allows	to	specify	initial	element	color
corresponding	to	the	dialog	frame	color	(COL_WARNDIALOGBOX	or
COL_DIALOGBOX).

Controls
The	DIF_BOXCOLOR	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_TEXT Text	string.

DI_VTEXT Vertical	text	string.

Remarks
It	is	possible	to	change	the	color	value	upon	receiving	the
DN_CTLCOLORDLGITEM	event	in	the	dialog	callback	function.

See	also:
DIF_SETCOLOR,	Color	indexes

DIF_BTNNOCLOSE
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_BTNNOCLOSE	flag	directs	the	button	not	to	close	the	dialog	when
pressed.	Default	behavior	of	the	buttons	is	to	end	dialog	processing.	Another
way	to	change	the	normal	behavior	is	to	return	FALSE	for	the	DN_CLOSE
event.

Controls
The	DIF_BTNNOCLOSE	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_BUTTON Push	Button.

Remarks
The	DIF_BTNNOCLOSE	flag	has	no	meaning	for	a	dialog	with	no	callback
function.

See	also:
DM_CLOSE

DIF_CENTERGROUP
main	|	Dialog	API	|	Dialog	item	flags

Sequentially	declared	elements	with	the	DIF_CENTERGROUP	flag	and	with
the	same	vertical	position	will	be	centered	in	the	dialog.	Horizontal	coordinates
of	those	elements	(X1	and	X2)	are	ignored.

Controls
The	DIF_CENTERGROUP	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_BUTTON Push	button.

DI_CHECKBOX Check	box.

DI_RADIOBUTTON Radio	button.

DI_TEXT Text	string	.

DI_VTEXT Vertical	text	string.

Remarks

1.	 It	is	convenient	for	centering	a	group	of	buttons.
2.	 FAR	itself	handles	group	centering	upon	dialog	resize.

See	also:

DIF_CENTERTEXT
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_CENTERTEXT	flag	allows	to	align	text	in	the	DI_TEXT	and
DI_VTEXT	elements	centering	it	relatively	to	element's	geometry.

Controls
The	DIF_CENTERTEXT	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_TEXT Text	string.

DI_VTEXT Vertical	text	string.

Remarks
If	you	specify	this	flag,	it	is	necessary	to	fill	the	X2	coordinate	(for	the	DI_TEXT
control)	and	the	Y2	coordinate	(for	the	DI_VTEXT	control)	correctly.

See	also:

DIF_DISABLE
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_DISABLE	flag	directs	the	Dialog	Manager	to	disable	this	item.	It
means	that	such	dialog	element	will	not	receive	input	focus	and	will	not	respond
to	mouse,	but	at	the	same	time	a	control	with	this	flag	set	can	be	changed
programmatically.

Controls
The	DIF_DISABLE	flag	is	applicable	to	the	following	dialog	items:

Control Description

All All	dialog	items	can	be	disabled.

Remarks

1.	 To	change	Enabled/Disabled	state	of	a	control,	send	the	DM_ENABLE
message	to	the	Dialog	Manager	(using	the	SendDlgMessage	function).

2.	 Disabled	edit	controls	are	displayed	using	the
COL_DIALOGEDITDISABLED	color.	If	you	want	to	change	the	color	of
a	control,	you	must	add	the	following	code	to	the	dialog	handler:
...

if(msg	==	DN_CTLCOLORDLGITEM)

{

		if(Param1	>=	9	&&	Param1	<=	13)

		{

				int	Lo=(int)Info.AdvControl(Info.ModuleNumber,ACTL_GETCOLOR,(void*)COL_DIALOGEDIT);

				int	Hi=(int)Info.AdvControl(Info.ModuleNumber,ACTL_GETCOLOR,(void*)COL_DIALOGEDITSELECTED);

				return	(LONG_PTR)MAKELONG(MAKEWORD(Lo,Hi),MAKEWORD(Lo,Hi));

		}

}

...

In	this	example,	predefined	colors	for	disabled	items	are	modified	to	match
colors	corresponding	to	the	normal	state	of	the	edit	control.

See	also:

DIF_DROPDOWNLIST
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_DROPDOWNLIST	flag	specifies	that	a	DI_COMBOBOX	control	is
a	read-only	drop-down	list.

Controls
The	DIF_DROPDOWNLIST	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_COMBOBOX Combo	box.

Remarks

See	also:

DIF_EDITEXPAND
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_EDITEXPAND	flag	"expands"	environment	variables	after
completion	of	dialog	execution	(for	example,	%TEMP%	will	be	expanded	to
C:\TEMP)

Controls
The	DIF_EDITEXPAND	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_COMBOBOX Combo	box.

DI_EDIT Edit	box.

Remarks
Environment	variables	"expansion"	is	done	by	using	the

ExpandEnvironmentStrings	 	function,	so	if
some	%VariableName%	value	doesn't	exist	in	the	environment,	it	will	remain
untouched.

See	also:

JavaScript:link9.Click()

DIF_EDITOR
main	|	Dialog	API	|	Dialog	item	flags

Sequentially	declared	edit	controls	(DI_EDIT)	with	the	DIF_EDITOR	flag	set
are	grouped	into	an	editor	capable	of	insertion	and	removal	of	lines.

Controls
The	DIF_EDITOR	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_EDIT Edit	box.

Remarks
In	order	to	create	an	edit	area	with	the	size	of	5	rows	it	is	necessary	to	place	5
elements	of	type	DI_EDIT	with	DIF_EDITOR	flag	set,	as	shown	in	the
following	example:

DI_EDIT,5,3,29,3,1,1,DIF_EDITOR,0,"",
DI_EDIT,5,4,29,4,0,1,DIF_EDITOR,0,"",
DI_EDIT,5,5,29,5,0,1,DIF_EDITOR,0,"",
DI_EDIT,5,6,29,6,0,1,DIF_EDITOR,0,"",
DI_EDIT,5,7,29,7,0,1,DIF_EDITOR,0,"",

See	also:

DIF_GROUP
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_GROUP	flag,	if	specified	with	the	first	DI_RADIOBUTTON	control,
and	groups	sequentially	declared	radio	buttons:
//	color	selection	dialog	in	FAR	Manager:

...

//	first	group	of	radiobuttons

DI_RADIOBUTTON,6,3,0,0,0,0,F_LIGHTGRAY|B_BLACK|DIF_GROUP

DI_RADIOBUTTON,6,4,0,0,0,0,F_BLACK|B_RED|DIF_SETCOLOR|DIF_MOVESELECT,0,"",

...

//	second	group	of	radiobuttons

DI_RADIOBUTTON,21,3,0,0,0,0,F_LIGHTGRAY|B_BLACK|DIF_GROUP

DI_RADIOBUTTON,21,4,0,0,0,0,F_BLACK|B_RED|DIF_SETCOLOR|DIF_MOVESELECT,0,"",

...

Controls
The	DIF_GROUP	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_RADIOBUTTON Radio	button.

Remarks
Set	this	flag	for	the	first	item	in	the	group.

See	also:

DIF_HIDDEN
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_HIDDEN	flag	hides	a	dialog	item.

Controls
The	DIF_HIDDEN	flag	is	applicable	to	the	following	dialog	items:

Control Description

All All	dialog	elements	can	be	hidden.

Remarks

See	also:

DIF_HISTORY
main	|	Dialog	API	|	Dialog	item	flags

DIF_HISTORY	flag	allows	to	keep	a	history	list	for	edit	controls.	When	this
flag	is	set,	the	History	field	must	contain	the	address	of	a	text	string	that	will	be
used	as	the	internal	history	name.	If	several	edit	controls	have	the	same	history
name,	they	will	share	the	same	history	list.	For	the	following	example
(ARCPROC.CPP	file	from	MultiArc):

const	char	*PathHistoryName="ExtrDestPath";
struct	InitDialogItem	InitItems[]={

	...

	DI_EDIT,5,3,70,3,1,(DWORD)PathHistoryName,DIF_HISTORY,0,DestPath,

	...

};

the	history	will	be	stored	in	the	registry	(under
HKCU\Software\Far\SavedDialogHistory\ExtrDestPath	key),
one	line	(key	names	look	like	"Line<number>",	of	REG_SZ	type)	for	each	value
entered	by	the	user.
Kyes	with	names	looking	like	"Locked<number>"	(REG_DWORD)	are
intended	for	marking	lines	that	cannot	be	deleted	(while	in	the	list,	this	state	can
be	changed	with	the	<Insert>	key).

Controls
The	DIF_HISTORY	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_EDIT Edit	box.

DI_FIXEDIT Fixed	size	edit	box.

Remarks

1.	 The	DIF_HISTORY	flag	DOES	NOT	WORK	with	the	DI_PSWEDIT
control!

2.	 DIF_HISTORY	has	higher	priority	than	the	DIF_MASKEDIT	flag.
3.	 FAR	1.70	beta	3:	If	a	plugin	has	an	edit	box	with	a	history	list,	it	is

assumed	that	the	user	will	leave	the	dialog	using	the	Esc	key	(Enter	is
reserved	for	other	needs),	then	the	data	will	not	be	stored	in	the	history

because	Esc	means	rejection	of	further	dialog	processing.	In	such	case,
plugin	can	add	necessary	strings	to	the	history	list.	It	can	be	carried	out	by
sending	the	DM_ADDHISTORY	message	to	the	Dialog	Manager.

4.	 If	an	item	has	the	DIF_MANUALADDHISTORY	flag,	then	the	Dialog
Manager	will	not	add	strings	to	the	history	list	when	the	dialog	closes.

5.	 Also,	a	plugin	can	keep	united	history	lists	using	predefined	names:
name purpose

"SearchText" search	edit	box
"ReplaceText" replace	edit	box
"PersPath" personal	plugins'	paths
"Copy" destination	edit	box	in	copy	dialog
"LineNumber" editor	goto	(Alt-F8)
"ViewerOffset" viewer	goto	(Alt-F8)
"NewEdit" edited	files	(Shift-F4/Shift-F2)
"Masks" file	masks	(selection,	associations,	filters,	file	search)
"UserVarN" user	variables
"ApplyCmd" "apply	command"	(Ctrl-G)
"DizText" file	description	edit	box
"NewFolder" folder	creation

See	also:
DIF_USELASTHISTORY,	DM_ADDHISTORY,
DIF_MANUALADDHISTORY.

DIF_LEFTTEXT
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_LEFTTEXT	flag	allows	to	left-align	the	title	of	a	frame.	Frame	title	is
center-aligned	by	default.

Controls
The	DIF_LEFTTEXT	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_DOUBLEBOX Double	frame.

DI_SINGLEBOX Single	frame.

Remarks

See	also:

DIF_LISTAUTOHIGHLIGHT
main	|	Dialog	API	|	Dialog	item	flags

If	the	DIF_LISTAUTOHIGHLIGHT	flag	is	set,	then	hot	keys	will	be	assigned
automatically	starting	from	the	first	item.

Controls
The	DIF_LISTAUTOHIGHLIGHT	flag	is	applicable	to	the	following	dialog
items:

Control Description

DI_LISTBOX List	box.

DI_COMBOBOX Combo	box.

Remarks

See	also:

DIF_LISTNOAMPERSAND
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_LISTNOAMPERSAND	flag	allows	to	display	hot	keys	in	the	list.	By
default,	ampersands	in	the	list	are	shown	on	the	screen,	and	are	not	used	for	hot
key	assignment.

Controls
The	DIF_LISTNOAMPERSAND	flag	is	applicable	to	the	following	dialog
items:

Control Description

DI_LISTBOX List	box.

DI_COMBOBOX Combo	box.

Remarks

See	also:

DIF_LISTNOBOX
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_LISTNOBOX	flag	turns	off	the	frame	around	a	DI_LISTBOX
control.

Controls
The	DIF_LISTNOBOX	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_LISTBOX List	box.

Remarks

See	also:

DIF_LISTNOCLOSE
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_LISTNOCLOSE	flag	directs	a	list	not	to	close	the	dialog	after	item
selection.	Default	list	behavior	after	item	selection	is	to	end	dialog	processing.
Another	way	to	change	the	default	behavior	is	to	return	FALSE	for	the
DN_CLOSE	event.

Controls
The	DIF_LISTNOCLOSE	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_LISTBOX List	box.

DI_COMBOBOX Combo	box.

DIF_LISTWRAPMODE
main	|	Dialog	API	|	Dialog	item	flags

If	the	DIF_LISTWRAPMODE	flag	is	set,	then	attempts	to	move	the	cursor	up
from	the	first	item	or	down	from	the	last	item	will	result	in	movement	to	the	last
or	the	first	item,	respectively.

Controls
The	DIF_LISTWRAPMODE	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_LISTBOX List	box.

DI_COMBOBOX Combo	box.

Remarks

See	also:

DIF_MANUALADDHISTORY
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_MANUALADDHISTORY	flag	informs	the	Dialog	Manager	that	the
dialog	handler	will	manually	add	strings	to	the	history	list.

Controls
The	DIF_MANUALADDHISTORY	flag	is	applicable	to	the	following	dialog
items:

Control Description

DI_EDIT Edit	box.

DI_FIXEDIT Fixed	size	edit	box.

Remarks

1.	 Adding	a	string	to	the	history	list	is	carried	out	by	the	DM_ADDHISTORY
message.

2.	 This	flag	only	extends	the	DIF_HISTORY	flag	and	has	no	meaning	on	its
own.

This	flag	allows	to	obtain	the	most	complete	control	on	addition	of	strings	to	the
history	list.

See	also:
DIF_HISTORY,	DM_ADDHISTORY

DIF_MASKEDIT
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_MASKEDIT	flag	allows	to	set	a	mask	for	a	DI_FIXEDIT	control.	If
this	flag	is	set,	Mask	must	contain	the	address	of	a	text	string	with	the	mask.

For	now,	the	following	mask	characters	are	supported:
'X' allows	to	enter	any	character	at	the	given	line	position;
'#' allows	to	enter	digits,	spaces,	and	the	minus	sign	at	the	given	line	position;
'9' allows	to	enter	only	digits	at	the	given	line	position;
'A' allows	to	enter	only	letters	at	the	given	line	position;
'H' allows	to	enter	only	hexadecimal	digits	at	the	given	line	position.

It	is	possible	to	create	an	infinite	variety	of	masks,	for	example:	"(###)	#99-
99-99".	In	this	mask,	parenthesis	and	hyphens	will	be	static	(i.e.,	they	cannot
be	deleted)	line	elements,	and	it	is	possible	to	enter	digits	or	spaces	in	the
parenthesis	(e.g.,	city	phone	code),	but	it	is	possible	to	enter	only	digits	in	the
positions	with	"9"	digits.

One	note	about	the	usage	of	the	DIF_MASKEDIT	flag.	When	you	set	a	mask
string	(e.g.,	to	"99.99.9999"),	remember	that	processing	is	organized	so	that	the
edit	string	length	is	forcibly	set	to	the	mask	string	length.

Controls
The	DIF_MASKEDIT	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_FIXEDIT Fixed	size	edit	box.

Remarks
The	DIF_HISTORY	flag	has	a	higher	priority	than	the	DIF_MASKEDIT	flag.

See	also:

DIF_MOVESELECT
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_MOVESELECT	flag	allows	to	change	the	selected	item	in	a	group	of
DI_RADIOBUTTON	controls	upon	change	of	input	focus,	and	the	element	will
have	a	different	look	--	drawen	without	the	round	brackets.	For	an	example	of
this	flag	usage	see	FAR	Manager	colors	setup	dialog.

Controls
The	DIF_MOVESELECT	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_RADIOBUTTON Radio	button.

Remarks

See	also:

DIF_NOAUTOCOMPLETE
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_NOAUTOCOMPLETE	flag	disables	autocompletion	for	input	lines.

Controls
The	DIF_NOAUTOCOMPLETE	flag	is	applicable	to	the	following	dialog
items::

Control Description

DI_COMBOBOX Combo	box.

DI_EDIT Edit	box.

DI_FIXEDIT Fixed	size	edit	box.

DI_PSWEDIT Password	edit	box.

Renarks

See	also:

DIF_NOBRACKETS
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_NOBRACKETS	flag	forces	the	Dialog	Manager	to	display	a
DI_BUTTON	title	without	square	brackets.

Controls
The	DIF_NOBRACKETS	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_BUTTON Push	button.

Remarks

See	also:

DIF_NOFOCUS
main	|	Dialog	API	|	Dialog	item	flags

A	control	item	with	the	DIF_NOFOCUS	flag	set	cannot	receive	keyboard	input
focus.	It	is	useful	if	only	mouse	control	must	be	provided	(see	"Reversi"	plugin
for	usage	example).

Controls
The	DIF_NOFOCUS	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_BUTTON Push	button.

DI_CHECKBOX Check	box.

DI_EDIT Edit	box.

DI_FIXEDIT Fixed	size	edit	box.

DI_COMBOBOX Combo	box.

DI_RADIOBUTTON Radio	button.

DI_PSWEDIT Password	edit	box.

DI_LISTBOX List	box.

DI_USERCONTROL User	control.

Remarks

See	also:

http://plugring.farmanager.com/downld/files/reversi11.rar

DIF_NOTCVTUSERCONTROL
main	|	Dialog	API	|	Dialog	item	flags

A	dialog	item	with	the	DIF_NOTCVTUSERCONTROL	flag	set	will	not
convert	characters	(CHAR_INFO::Char)	from	the	virtual	buffer	before	writing
them	to	the	screen.	Without	this	flag	only	the	CHAR_INFO::Char.AsciiChar
member	is	used	by	Far	and	converted	according	to	the	current	output	method
(OEM	or	Unicode).

Controls
The	DIF_NOTCVTUSERCONTROL	flag	is	applicable	to	the	following	dialog
items:

Control Description

DI_USERCONTROL User	control.

Remarks

See	also:

DIF_READONLY
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_READONLY	flag	sets	an	edit	box	into	a	"read	only"	state.

Controls
The	DIF_READONLY	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_COMBOBOX Combo	box.

DI_EDIT Edit	box.

DI_FIXEDIT Fixed	size	edit	box.

DI_PSWEDIT Password	edit	box.

Remarks

See	also:

DIF_SELECTONENTRY
main	|	Dialog	API	|	Dialog	item	flags

The	contents	of	an	edit	box	with	the	DIF_SELECTONENTRY	flag	set	will	be
selected	upon	receiving	input	focus.

Controls
The	DIF_SELECTONENTRY	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_COMBOBOX Combo	box.

DI_EDIT Edit	box.

DI_FIXEDIT Fixed	size	edit	box.

DI_PSWEDIT Password	edit	box.

Remarks
Selection	in	an	edit	box	with	the	DIF_SELECTONENTRY	flag	will	be	cleared
upon	input	focus	loss.

See	also:

DIF_SEPARATOR
main	|	Dialog	API	|	Dialog	item	flags

A	text	string	DI_TEXT	control	with	the	DIF_SEPARATOR	flag	is	displayed	as
a	single	horizontal	line	with	double	line	on	edges.

Controls
The	DIF_SEPARATOR	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_TEXT Text	string.

DI_VTEXT Vertical	text	string.

Remarks

1.	 Separator	line	drawing	coordinates	are	(left	dialog	edge	=	0):	X1	=
X1_Dialog	+	3;	X2	=	X2_Dialog	-	3.

2.	 X1	coordinate	affects	only	text	string	positioning	(is	displayed	above
separator	line)	from	Data.	If	you	need	a	separator	line	with	centered	text
you	must	specify	X1	=	-1.

3.	 If	Data	contains	an	empty	string,	element	is	displayed	simply	as	a	separator
line.

See	also:
DIF_SEPARATOR2

DIF_SEPARATOR2
main	|	Dialog	API	|	Dialog	item	flags

A	text	string	DI_TEXT	control	with	the	DIF_SEPARATOR2	flag	is	displayed
as	a	double	horizontal	line	with	double	line	on	edges.

Controls
The	DIF_SEPARATOR2	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_TEXT Text	string.

DI_VTEXT Vertical	text	string.

Remarks

1.	 Separator	line	drawing	coordinates	are	(left	dialog	edge	=	0):	X1	=
X1_Dialog	+	3;	X2	=	X2_Dialog	-	3.

2.	 X1	coordinate	affects	only	text	string	positioning	(is	displayed	above
separator	line)	from	Data.	If	you	need	a	separator	line	with	centered	text
you	must	specify	X1	=	-1.

3.	 If	Data	contains	an	empty	string,	element	is	displayed	simply	as	a	separator
line.

See	also:
DIF_SEPARATOR

DIF_SETCOLOR
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_SETCOLOR	flag	allows	to	set	the	initial	color	of	an	item,	placing	the
necessary	color	into	the	low-order	byte	of	the	FarDialogItem.Flags	variable.

The	DIF_COLORMASK	value	is	a	mask	used	by	the	Dialog	Manager	to	select
the	color	component	passed	in.

Controls
The	DIF_SETCOLOR	flag	is	applicable	to	the	following	dialog	item:

Control Description

DI_BUTTON Push	button.

DI_CHECKBOX Check	box.

DI_RADIOBUTTON Radio	button.

DI_TEXT Text	string.

DI_VTEXT Vertical	text	string.

DI_DOUBLEBOX Single	frame.

DI_SINGLEBOX Double	frame.

Remarks
Color	value	can	be	changed	upon	receiving	the	DN_CTLCOLORDLGITEM
event	in	the	dialog	handler.

See	also:
DIF_BOXCOLOR,	Color	indexes

DIF_SHOWAMPERSAND
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_SHOWAMPERSAND	flag	forces	the	Dialog	Manager	to	show
ampersands	(&)	in	text	items	and	frames,	not	using	it	for	the	hot	key	definition.

Controls
The	DIF_SHOWAMPERSAND	flag	is	applicable	to	the	following	dialog	item:

Control Description

DI_BUTTON Push	button.

DI_CHECKBOX Check	box.

DI_RADIOBUTTON Radio	button.

DI_TEXT Text	string.

DI_VTEXT Vertical	text	string.

DI_DOUBLEBOX Double	frame.

DI_SINGLEBOX Single	frame.

Remarks

See	also:

DIF_USELASTHISTORY
main	|	Dialog	API	|	Dialog	item	flags

An	edit	box	with	the	DIF_HISTORY	and	DIF_USELASTHISTORY	flags	set
is	set	to	the	initial	value	from	the	last	item	of	the	history	list,	if	the	initial	value	is
not	specified.

Controls
The	DIF_USELASTHISTORY	flag	is	applicable	to	the	following	dialog	item:

Control Description

DI_EDIT Edit	box.

DI_FIXEDIT Fixed	size	edit	box.

Remarks

See	also:
DIF_HISTORY

DIF_VAREDIT
main	|	Dialog	API	|	Dialog	item	flags

The	DIF_VAREDIT	flag	is	the	"512	bytes	barrier	overcoming	for	an	edit	box".
The	Dialog	Manager,	while	working	with	an	edit	box	or	a	combo	box	(with
DIF_VAREDIT	flag	set)	will	take	into	account	only	Ptr.*	members	of	the
FarDialogItem	structure.

Controls
The	DIF_VAREDIT	flag	is	applicable	to	the	following	dialog	items:

Control Description

DI_COMBOBOX Combo	box.

DI_EDIT Edit	box.

Remarks

1.	 The	plugin	itself	must	take	care	of	memory	allocation	for
FarDialogItem.Ptr.PtrData	and	fill	in	the	size	of	this	buffer	correctly
(FarDialogItem.Ptr.PtrLength).

2.	 If	the	size	of	the	data	being	used	does	not	exceed	512	bytes	(or
sizeof(FarDialogItem.Data)),	then	there	is	no	sence	in	using	the
DIF_VAREDIT	flag.

See	also:

Dialog	API	Messages
main	|	Dialog	API	|	Events

Messages Description

DM_ADDHISTORY add	an	item	to	the	history

DM_CLOSE a	signal	that	the	dialog	is	about	to	close

DM_EDITUNCHANGEDFLAG controlling	the	"unchanged"	state	of	a	text	input	box

DM_ENABLE enable	or	disable	a	dialog	item	or	to	determine	if	a
dialog	item	is	enabled

DM_ENABLEREDRAW enable	or	disable	dialog	redrawing

DM_GETCHECK retrieve	the	state	of	DI_CHECKBOX	or
DI_RADIOBUTTON	items

DM_GETCOMBOBOXEVENT determine	the	state	of	event	sending	for	an	open
combo	box

DM_GETCURSORPOS get	cursor	position

DM_GETCURSORSIZE get	cursor	size

DM_GETDLGDATA retrieve	a	data	value	associated	with	the	dialog

DM_GETDLGITEM retrieve	complete	information	about	a	dialog	item

DM_GETDLGRECT retrieve	the	screen	coordinates	of	the	dialog	window

DM_GETDROPDOWNOPENED determine	if	there	is	an	open	combo	box	or	history
list	in	the	dialog

DM_GETEDITPOSITION get	cursor	position	in	edit	controls

DM_GETFOCUS retrieve	the	ID	of	the	dialog	item	that	has	the
keyboard	focus

DM_GETITEMDATA retrieve	a	data	value	associated	with	a	dialog	item

DM_GETITEMPOSITION retrieve	the	size	and	position	of	a	dialog	item

DM_GETSELECTION retrieve	selection	parameters	in	dialog	edit	lines

DM_GETTEXT retrieve	the	text	of	an	edit	string	or	the	caption	of	an
item

DM_GETTEXTLENGTH get	text	string	length

DM_GETTEXTPTR retrieve	the	text	of	an	edit	string	or	the	caption	of	a
dialog	item

DM_KEY and	a	key	codes	array	to	the	dialog	manager

DM_LISTADD add	new	item	to	a	list

DM_LISTADDSTR add	a	string	to	a	list

DM_LISTDELETE delete	list	items

DM_LISTFINDSTRING find	list	item

DM_LISTGETCURPOS get	current	position	in	a	list

DM_LISTGETDATA retrieve	a	data	value	associated	with	a	list	item

DM_LISTGETDATASIZE retrieve	the	size	of	the	data	value	associated	with	a
list	item

DM_LISTGETITEM retrieve	a	list	item

DM_LISTGETTITLES retrieve	the	titles	of	a	list

DM_LISTINFO retrieve	information	about	a	list

DM_LISTINSERT insert	an	item	to	a	list

DM_LISTSET replace	a	list	with	new	list	items

DM_LISTSETCURPOS set	position	in	a	list

DM_LISTSETDATA set	the	data	value	associated	with	a	list	item

DM_LISTSETMOUSEREACTION set	the	behavior	for	handling	mouse	movement	in	a
DI_LISTBOX

DM_LISTSETTITLES set	list	titles

DM_LISTSORT sort	list	items

DM_LISTUPDATE update	a	list	item

DM_MOVEDIALOG move	the	dialog

DM_REDRAW redraw	the	whole	dialog

DM_RESIZEDIALOG change	dialog	size

DM_SET3STATE change	the	style	of	a	DI_CHECKBOX

DM_SETCHECK change	the	state	of	DI_CHECKBOX	and
DI_RADIOBUTTON	items

DM_SETCOMBOBOXEVENT enable	or	disable	the	sending	of	DN_KEY	or
DN_MOUSEEVENT	events	for	an	open	combo	box

DM_SETCURSORPOS set	cursor	position	in	a	dialog	item

DM_SETCURSORSIZE set	cursor	size

DM_SETDLGDATA associate	a	data	vaule	with	the	dialog

DM_SETDLGITEM change	a	specified	dialog	item

DM_SETDROPDOWNOPENED open	or	close	a	combo	box	or	history	list

DM_SETEDITPOSITION set	cursor	position	in	edit	controls

DM_SETFOCUS set	the	keyboard	focus	to	the	given	dialog	item

DM_SETHISTORY manage	availability	of	history	in	edit	lines

DM_SETITEMDATA associate	a	data	vaule	with	a	dialog	item

DM_SETITEMPOSITION change	position	of	a	dialog	item

DM_SETMAXTEXTLENGTH set	the	maximum	length	of	an	edit	string

DM_SETMOUSEEVENTNOTIFY control	initial	non-altered	mouse	events

DM_SETSELECTION select	a	block	in	dialog	edit	lines

DM_SETTEXT set	a	new	string	value	for	an	edit	line	or	a	new
caption	for	an	item

DM_SETTEXTPTR set	a	new	string	value	for	an	edit	line	or	a	new
caption	for	an	item

DM_SHOWDIALOG show/hide	the	dialog	window

DM_SHOWITEM show/hide	a	dialog	item

DM_USER starting	value	for	user	defined	messages

See	also:
Dialog	API	Events

DM_ADDHISTORY
Messages	|	Dialog	API

The	DM_ADDHISTORY	message	is	sent	to	the	dialog	manager	to	add	an	item
to	the	history	of	a	text	input	string.

Param1
The	ID	of	the	dialog	item	for	which	the	history	item	is	added.

Param2
Pointer	to	a	NULL-terminated	string	to	be	added	to	the	history.

Return
TRUE	-	data	was	successfully	added.
FALSE	-	the	specified	dialog	item	doesn't	have	a	history.

Controls
Control Description

DI_EDIT Text	input	string

DI_FIXEDIT Fixed	width	text	input	string

Remarks
The	message	applies	only	to	the	DI_EDIT	and	DI_FIXEDIT	items	with	the
DIF_HISTORY	flag	set.	Also,	if	the	DIF_MANUALADDHISTORY	flag	is	not
set,	items	will	be	added	to	the	history	automatically.

Example
For	example,	in	a	calculator	pressing	Enter	computes	an	expression.	To	save	the
entered	expression	to	history	after	Enter	was	pressed	it	is	necessary	to	get	that
string	and	add	it	to	history:

FarDialogItem	dialog[]	=	{

...

		{	DI_EDIT,	10,	3,	49,	0,	1,	(int)"foo_history",	DIF_HISTORY|DIF_MANUALADDHISTORY,	0,	""	},

...

};

LONG_PTR	WINAPI	FooDlgProc(HANDLE	hDlg,	int	Msg,	int	Param1,	LONG_PTR	Param2)

{

...

				if	(Msg	==	DM_KEY	&&	Param2	==	KEY_ENTER){

						Info.SendDlgMessage(hDlg,	DM_GETTEXTPTR,	2,	(LONG_PTR)Text);

						Info.SendDlgMessage(hDlg,	DM_ADDHISTORY,	2,	(LONG_PTR)Text);

						Res	=	AData.Parse(Text);

...

}

See	also:
DialogEx,	DIF_HISTORY,	DIF_MANUALADDHISTORY.

DM_CLOSE
Messages	|	Dialog	API

The	DM_CLOSE	message	is	sent	to	the	dialog	manager	when	a	plugin	notifies
the	Dialog	API	kernel	that	it	wants	to	close	the	dialog.

Param1
ID	of	the	item	that	will	be	returned	from	the	DialogEx	function.	If	Param1	is
equal	to	-1,	DialogEx	will	return	the	ID	of	the	item	that	currently	has	the	focus.

Param2
0

Return
Value	which	is	returned	by	dialog	handler	as	the	answer	to	DN_CLOSE.

Remarks
The	DN_CLOSE	event	is	received	immediately	after	the	DM_CLOSE	message
is	sent.

Example

See	also:
DialogEx,	DN_CLOSE

DM_EDITUNCHANGEDFLAG
Messages	|	Dialog	API

The	DM_EDITUNCHANGEDFLAG	message	allows	to	control	the	state	of	the
"unchanged	text"	flag	for	edit	boxes.

Param1
The	ID	of	the	dialog	item	for	which	the	operation	is	performed.

Param2
One	of	the	following	values:
-1	-	get	the	current	value	of	the	flag	for	an	edit	box;
0	-	clear	the	"unchanged	text"	flag;
1	-	set	the	"unchanged	text"	flag.

Return
Previous	state	of	the	"unchanged	text"	flag.

Controls
Control Description

DI_COMBOBOX combined	list	(without	DIF_DROPDOWNLIST	flag
set)

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

DI_PSWEDIT password	input	field

Remarks

1.	 When	the	dialog	is	initialized,	the	"unchanged	text"	flag	is	set	for	all	items
mentioned	above,	except	for	DI_FIXEDIT.

2.	 This	message	also	clears	the	selection	for	the	edit	box	for	which	it	is	called.

See	also:
DialogEx

DM_ENABLE
Messages	|	Dialog	API

The	DM_ENABLE	message	is	sent	to	the	Dialog	API	kernel	to	enable	or
disable	a	dialog	item	or	to	determine	if	a	dialog	item	is	enabled.

Param1
ID	of	the	dialog	item.

Param2
Item	state:
TRUE	-	enable	item
FALSE	-	disable	item
-1	-	get	current	item	state

Return
Previous	state	of	the	item:
TRUE	-	enabled
FALSE	-	disabled

Controls
Control Description

All All	dialog	items

Remarks

Example

See	also:
DialogEx
DIF_DISABLE

DM_ENABLEREDRAW
Messages	|	Dialog	API

The	DM_ENABLEREDRAW	message	is	sent	to	the	dialog	manager	to	enable
or	disable	dialog	redrawing.

Param1
TRUE	-	enable	dialog	redrawing
FALSE	-	disable	dialog	redrawing
-1	-	get	current	state	of	counter	of	output	locking.

Param2
0

Return
Previous	state	of	counter	of	output	locking.

Remarks
This	function	is	used	to	prevent	excessive	dialog	redraws	when	modifying
multiple	dialog	items.	Calling	this	function	with	Param1	=	TRUE	increments	an
internal	counter,	and	calling	with	Param1	=	FALSE	decrements	the	counter.	The
dialog	is	drawn	when	the	value	of	the	counter	is	zero.	This	is	normal	behavior
for	embedded	manipulations.	Typical	usage:

Info.SendDlgMessage(hDlg,DM_ENABLEREDRAW,FALSE,0);

//	here	we	change	lots	of	headers

Info.SendDlgMessage(hDlg,DM_ENABLEREDRAW,TRUE,0);

See	also:
DialogEx

DM_GETCHECK
Messages	|	Dialog	API

The	DM_GETCHECK	message	is	sent	to	the	dialog	manager	to	retrieve	the
state	of	DI_CHECKBOX	or	DI_RADIOBUTTON	items.

Param1
The	ID	of	the	dialog	item	for	which	you	want	to	retrieve	the	state.

Param2
0

Return
State	of	the	item:	BSTATE_UNCHECKED,	BSTATE_CHECKED,
BSTATE_3STATE.

Controls
Control Description

DI_CHECKBOX Check	Box

DI_RADIOBUTTON Radio	Button

Remarks

Example

See	also:
DialogEx	|	DM_SETCHECK	|	DM_SET3STATE.

DM_GETCOMBOBOXEVENT
Messages	|	Dialog	API

The	DM_GETCOMBOBOXEVENT	message	allows	to	determine	if	the
sending	of	DN_KEY	or	DN_MOUSEEVENT	events	for	an	open
DI_COMBOBOX	is	enabled	or	disabled.

Param1
ID	of	a	DI_COMBOBOX.

Param2
0

Return
State	flags	(FARCOMBOBOXEVENTTYPE	enum).

Controls
Control Description

DI_COMBOBOX combined	list

Remarks

Example

See	also:
DM_SETCOMBOBOXEVENT

DM_GETCURSORPOS
Messages	|	DM_SETCURSORPOS|	Dialog	API

The	DM_GETCURSORPOS	message	is	sent	to	the	dialog	handler	to	retrieve
the	cursor	position	in	edit	lines	or	DI_USERCONTROL	item.

Param1
The	ID	of	the	dialog	item	for	which	you	want	to	retrieve	the	cursor	position.

Param2
Pointer	to	a	COORD	structure	where	dialog	manager	will	place	information
about	cursor	position	(COORD.Y	=	0	for	line	editor).

Return
FALSE	is	returned	if	the	given	ID	does	not	specify	an	edit	control	or
DI_USERCONTROL	item.
TRUE	is	returned	when	COORD	contains	cursor	position.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

DI_PSWEDIT password	input	field

DI_USERCONTROL custom	(defined	by	programmer)	control

Remarks

Example

See	also:
DialogEx	|	DM_SETCURSORPOS|

DM_GETCURSORSIZE
Messages	|	DM_SETCURSORSIZE|	Dialog	API

The	DM_GETCURSORSIZE	message	is	sent	to	the	dialog	handler	to	retrieve
the	cursor	size	in	edit	lines	or	in	DI_USERCONTROL	controls.

Param1
The	ID	of	the	dialog	item	for	which	you	want	to	retrieve	the	cursor	position.

Param2
0

Return
The	high	word	is	the	cursor	size	(from	0	to	100,	as	used	in	the
CONSOLE_CURSOR_INFO	structure),	the	low	word	is	the	cursor	visibility
flag	(1	-	the	cursor	is	visible,	0	-	the	cursor	is	hidden).

Controls
Control Description

DI_COMBOBOX combined	list	(without	DIF_DROPDOWNLIST	flag)

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

DI_PSWEDIT password	input	field

DI_USERCONTROL custom	(defined	by	programmer)	control

Remarks

Example

See	also:
DialogEx	|	DM_SETCURSORSIZE|	DM_GETCURSORPOS|
DM_SETCURSORPOS|

DM_GETDLGDATA
Messages	|	Dialog	API

The	DM_GETDLGDATA	returns	to	the	dialog	handler	a	32-bit	data	value
associated	with	the	dialog.	Each	dialog	has	a	corresponding	32-bit	value
designed	for	use	by	the	plugin	that	created	the	dialog.

Param1
0

Param2
0

Return
The	dialog	manager	returns	32-bit	value	passed	by	plugin	earlier.

Remarks
Initially	the	32-bit	data	value	contains	the	data	passed	in	Param	to	the	DialogEx
function.

Example

See	also:
DialogEx,	DM_SETDLGDATA

DM_GETDLGITEM
Messages	|	Dialog	API

The	DM_GETDLGITEM	message	is	sent	to	the	dialog	handler	to	retrieve
complete	information	about	a	dialog	item.

Param1
Dialog	item	ID.

Param2
Pointer	to	a	FarDialogItem	structure.

Return
TRUE	is	returned	if	the	data	was	retrieved	successfully.	If	Param1	contains	an
invalid	item	ID,	FALSE	is	returned.

Controls
Control Description

All All	dialog	items

Remarks

Example
//	retrieve	parameters	of	12th	item

struct	FarDialogItem	DialogItem;

Info.SendDlgMessage(hDlg,DM_GETDLGITEM,12,(LONG_PTR)&DialogItem);

See	also:
DialogEx
DM_GETITEMPOSITION
DM_GETDLGRECT

DM_GETDLGRECT
Messages	|	Dialog	API

The	DM_GETDLGRECT	allows	to	retrieve	the	screen	coordinates	of	the
dialog	window.

Param1
0

Param2
Pointer	to	a	SMALL_RECT	structure	that	receives	the	dialog	coordinates.

Return
TRUE	is	returned	if	the	data	was	retrieved	successfully.	If	Param2	is	NULL,
FALSE	is	returned.

Example
struct	InitDialogItem	InitDlg[]={

...

/*11*/		DI_USERCONTROL,9,4,32,11,0,0,DIF_NOFOCUS,0,"",

...

};

long	WINAPI	ReversiDialogProc(HANDLE	hDlg,	int	Msg,int	Param1,LONG_PTR	Param2)

{

...

				case	DN_DRAWDLGITEM:

						if(Param1	==	11)

						{

								SMALL_RECT	Rect;

								Info.SendDlgMessage(hDlg,DM_GETDLGRECT,0,(LONG_PTR)&Rect);

								...

														Info.Text(Rect.Left+DialogItem.X1+X*3,

																							Rect.Top+DialogItem.Y1+Y,

																						ColorsPanel[Y&1][X&1]|AddColor,

																						Face);

								...

...

}

See	also:
DialogEx
DM_GETDLGITEM
DM_GETITEMPOSITION

DM_GETDROPDOWNOPENED
Messages	|	Dialog	API

The	DM_GETDROPDOWNOPENED	message	is	sent	to	the	dialog	manager
to	determine:	"if	there	is	an	open	combo	box	or	history	list	in	the	dialog".

Param1
0

Param2
0

Return
FALSE	-	there	is	no	open	combo	box	or	history	list.
TRUE	-	there	is	an	open	combo	box	or	history	list.

Controls
Control Description

Dialog message	concerning	dialog	only

Remarks

Example

See	also:
DialogEx
DM_SETDROPDOWNOPENED

DM_GETEDITPOSITION
Messages	|	DM_SETEDITPOSITION|	Dialog	API

The	DM_GETEDITPOSITION	message	is	sent	to	the	dialog	manager	to	get
the	cursor	position	and	state	in	edit	controls.

Param1
Dialog	item	ID

Param2
Pointer	to	a	EditorSetPosition	structure.

Return
FALSE	-	the	given	dialog	item	ID	is	not	an	edit	control.
TRUE	-	the	EditorSetPosition	structure	was	filled.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_FIXEDIT fixed	size	input	field

DI_PSWEDIT password	input	field

Remarks

Example

See	also:
DialogEx	|	DM_GETCURSORPOS|	DM_SETCURSORPOS|
DM_SETEDITPOSITION

DM_GETFOCUS
Messages	|	Dialog	API

The	DM_GETFOCUS	message	is	sent	to	the	dialog	manager	to	retrieve	the	ID
of	the	dialog	item	that	has	the	keyboard	focus.

Param1
0

Param2
0

Return
The	ID	of	the	dialog	item	that	has	the	keyboard	focus.

Controls
Control Description

All All	items	that	could	have	keyboard	input	focus.

Remarks

Example

See	also:
DialogEx

DM_GETITEMDATA
Messages	|	Dialog	API

The	DM_GETITEMDATA	returns	a	32-bit	data	value	associated	with	a	dialog
item.	Every	dialog	item	has	a	corresponding	32-bit	data	value	designed	for	use
by	the	plugin	that	created	the	dialog.

Param1
The	ID	of	the	dialog	item	for	which	the	data	is	retrieved.

Param2
0

Return
The	dialog	manager	returns	32-bit	value	that	was	previously	passed	by	a	plugin
(or	0,	if	the	plugin	didn't	associate	data	with	this	dialog	item).

Remarks

Example

See	also:
DialogEx,	DM_SETITEMDATA,	DM_GETDLGDATA
DM_SETDLGDATA,

DM_GETITEMPOSITION
Messages	|	Dialog	API

The	DM_GETITEMPOSITION	message	is	sent	to	the	dialog	manager	to
retrieve	the	size	and	position	of	a	dialog	item.

Param1
The	ID	of	the	dialog	item	for	which	the	position	is	retrieved.

Param2
Pointer	to	a	SMALL_RECT	structure	that	will	contain	the	size	and	position	of
the	item.

Return
TRUE	if	the	data	has	been	copied	or	FALSE	if	Param2	is	NULL	or	the	item
does	not	exist.

Example

See	also:
DialogEx
DM_SETITEMPOSITION
DM_GETDLGITEM
DM_GETDLGRECT

DM_GETSELECTION
Messages	|	DM_SETSELECTION|	Dialog	API

The	DM_GETSELECTION	message	is	sent	to	the	dialog	handler	to	retrieve
selection	parameters	in	dialog	edit	lines.

Param1
Dialog	item	ID.

Param2
Pointer	to	a	EditorSelect	structure,	where	dialog	manager	will	put	the
information	about	selection	in	edit	line.

Return
FALSE	is	returned	if	the	item	ID	is	not	a	line	editor.
TRUE	is	returned	if	the	EditorSelect	structure	contains	selection	parameters.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

DI_PSWEDIT password	input	field

Remarks

Example

See	also:
DialogEx	|	DM_SETSELECTION

DM_GETTEXT
Messages	|	Dialog	API

The	DM_GETTEXT	message	is	sent	to	the	dialog	manager	to	retrieve	the	text
of	an	edit	string	or	the	caption	of	an	item.

Param1
The	ID	of	the	dialog	item	for	which	you	want	to	retrieve	the	text.

Param2
Pointer	to	a	FarDialogItemDatastructure	that	receives	the	text.
If	Param2	is	NULL	this	is	yet	another	way	to	retrieve	necessary	data	size	(see
DM_GETTEXTLENGTH):
LenData=SendDlgMessage(hDlg,DM_GETTEXT,1,(LONG_PTR)NULL);

is	equal	to

LenData=SendDlgMessage(hDlg,DM_GETTEXTLENGTH,1,0);

Return
Data	size	without	terminating	character	'\0'.

Controls
Control Description

All String	data	for	edit	lines,	captions	for	other	items.
Everything	contained	in	FarDialogItem.Data	or
FarDialogItem.PtrData.

Remarks
The	DM_GETTEXT	message	in	FAR	versions	up	to	(and	including)	1.70	beta	3
returned	the	size	INCLUDING	the	terminating	character.

Example

See	also:
DialogEx	|	DM_SETTEXTPTR

DM_GETTEXTPTR
Messages	|	Dialog	API

The	DM_GETTEXTPTR	message	is	sent	to	the	dialog	manager	to	retrieve	the
text	of	an	edit	string	or	the	caption	of	a	dialog	item.	Unlike	the	DM_GETTEXT
message,	this	one	works	with	a	string	pointer.

Param1
The	ID	of	the	dialog	item	for	which	you	want	to	retrieve	the	text.

Param2
Pointer	to	destination	string	that	receives	the	text.
If	Param2	is	NULL	this	is	yet	another	way	to	get	the	size	of	the	text	(see
DM_GETTEXTLENGTH).

Return
Size	of	the	specified	dialog	item	string	NOT	including	the	terminating	character
'\0'.

Controls
Control Description

All String	data	is	returned	for	edit	lines,	captions	for	any
other	items.	Everything	contained	in
FarDialogItem.Data	or	FarDialogItem.PtrData.

Remarks
The	DM_GETTEXTPTR	message	in	FAR	versions	up	to	1.70	beta	3	returned
the	string	length	INCLUDING	the	terminating	character.

Example

See	also:
DialogEx	|	DM_GETTEXT

DM_GETTEXTLENGTH
Messages	|	Dialog	API

The	DM_GETTEXTLENGTH	message	is	sent	to	the	dialog	manager	to
retrieve	the	size	of	data	from	FarDialogItem.Data	or	value	of
FarDialogItem.Ptr.PtrLength	field.

Param1
The	ID	of	the	dialog	item	for	which	you	want	to	retrieve	the	text	size.

Param2
0

Return
Length	of	the	specified	dialog	item	string	NOT	including	the	terminating
character	'\0'.

Controls
Control Description

All All	dialog	items.

Remarks
The	DM_GETTEXTLENGTH	message	in	FAR	version	up	to	1.70	beta	3
returned	the	string	length	INCLUDING	the	terminating	character.

Example

See	also:
DialogEx

DM_KEY
Messages	|	Dialog	API

Using	the	DM_KEY	message	a	plugin	sends	a	key	codes	array	to	the	dialog
manager.

Param1
The	number	of	passed	keys.

Param2
Pointer	to	an	array	(DWORD	type)	of	internal	FAR	key	codes.

Return
0

Remarks
The	dialog	manager	will	not	receive	the	DN_KEY	event	in	response	to	the
DM_KEY	message.

Example
Example	of	sending	the	key	input	to	the	dialog	(focus	item):

//	add	semicolon	to	the	end	of	edit	string

DWORD	Keys[2]={KEY_END,';'};

Info.SendDlgMessage(hDlg,DM_KEY,sizeof(Keys)/sizeof(Keys[0]),(LONG_PTR)Keys);

See	also:
DialogEx,	DN_KEY

DM_LISTADD
Messages	|	Dialog	API

The	DM_LISTADD	message	is	sent	to	the	dialog	manager	to	add	items	to	a
DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	to	which	items	should	be	added.

Param2
Pointer	to	a	FarList	structure	describing	the	data	to	be	added.

Return
TRUE	if	the	items	have	been	added	to	the	list.
FALSE	in	case	of	error	while	adding	the	items.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example

See	also:
DialogEx

DM_LISTADDSTR
Messages	|	Dialog	API

The	DM_LISTADDSTR	message	is	sent	to	the	dialog	manager	to	add	a	string
to	a	DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	to	which	the	string	should	be	added.

Param2
Pointer	to	the	string	to	be	added.

Return
Index	of	the	string	added	to	the	list.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example

See	also:
DialogEx

DM_LISTDELETE
Messages	|	Dialog	API

The	DM_LISTDELETE	message	is	sent	to	the	dialog	manager	to	delete	items
from	a	DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	from	which	the	items	should	be	deleted.

Param2
Pointer	to	a	FarListDelete	structure	describing	the	delete	parameters,	or	NULL.

Return
TRUE	if	the	items	have	been	deleted	from	the	list.
FALSE	if	an	error	occurred	while	deleting	data.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks
If	Param2	is	equal	to	NULL,	all	items	will	be	deleted	from	the	list.

Example
//	***	delete	first	two	list	items	***

struct	FarListDelete	FLDItem;

FLDItem.StartIndex=0;

FLDItem.Count=2;

Info.SendDlgMessage(hDlg,DM_LISTDELETE,ID,(LONG_PTR)&FLDItem);

//	***	clear	all	list	***

		//			Method	1:

		struct	FarListDelete	FLDItem={0,0};

		Info.SendDlgMessage(hDlg,DM_LISTDELETE,ID,(LONG_PTR)&FLDItem);

		//			Method	2:

		Info.SendDlgMessage(hDlg,DM_LISTDELETE,ID,(LONG_PTR)

See	also:
DialogEx,	FarListDelete

DM_LISTFINDSTRING
Messages	|	Dialog	API

The	DM_LISTFINDSTRING	message	is	sent	to	the	dialog	manager	to	find	an
element	by	pattern	in	a	DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	in	which	the	item	is	searched.

Param2
Pointer	to	a	FarListFindstructure	specifying	the	element	to	find.

Return
Index	of	the	found	element	(0-based),	or	-1	if	the	specified	item	was	not	found.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example

See	also:
FarListFind	|	DialogEx

DM_LISTGETCURPOS
Messages	|	Dialog	API

The	DM_LISTGETCURPOS	message	is	sent	to	the	dialog	manager	to
determine	the	current	cursor	position	in	a	DI_COMBOBOX	or	DI_LISTBOX
list.

Param1
The	ID	of	the	dialog	item	for	which	the	cursor	position	is	determined.

Param2
Pointer	to	a	FarListPos,	structure	that	will	contain	additional	information	about
the	current	position,	or	NULL	if	the	additional	information	is	not	required.

Return
Current	cursor	position	in	the	list.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example
//	get	current	position

CurPos=Info.SendDlgMessage(hDlg,DM_LISTGETCURPOS,ID,0);

See	also:
DialogEx,	DM_LISTSETCURPOS

DM_LISTGETDATA
Messages	|	Dialog	API

The	DM_LISTGETDATA	message	is	sent	to	the	dialog	manager	to	retrieve
data	associated	with	an	item	in	a	DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	for	which	the	item	data	is	retrieved.

Param2
Index	of	the	item	for	which	the	data	is	retrieved.

Return
Data	value	the	plugin	has	associated	with	the	list	item	using
DM_LISTSETDATA	message	or	NULL	if	no	data	was	associated.	See	notes	for
FarListItemData	structure	for	more	details	about	data	storing	logic.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

See	also:
DialogEx,	DM_LISTSETDATA

DM_LISTGETDATASIZE
Messages	|	Dialog	API

The	DM_LISTGETDATASIZE	message	is	sent	to	the	dialog	manager	to
retrieve	the	size	of	the	data	associated	with	an	item	in	a	DI_COMBOBOX	or
DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	for	which	the	item	data	is	retrieved.

Param2
Index	of	the	item	for	which	the	data	is	retrieved.

Return
Size	of	the	data	value	the	plugin	has	associated	with	the	item	using
DM_LISTSETDATA	messages.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

See	also:
DialogEx,	DM_LISTSETDATA	DM_LISTGETDATA

DM_LISTGETITEM
Messages	|	Dialog	API

The	DM_LISTGETITEM	message	is	sent	to	the	dialog	manager	to	retrieve	a
single	item	from	a	DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	from	which	the	elements	should	be	retrieved.

Param2
Pointer	to	a	FarListGetItem,	structure	that	will	contain	the	retrieved	data.

Return
TRUE	-	data	has	been	retrieved.
FALSE	-	error	retrieving	data.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks
Before	retrieving	a	list	element,	you	should	fill	the	FarListGetItemstructure.	The
FarListGetItem.ItemIndex	field	should	contain	the	index	of	the	element	to	be
retrieved.
struct	FarListGetItem	List;

List.ItemIndex=Index;

Info.SendDlgMessage(hDlg,DM_LISTGETITEM,ID,(LONG_PTR)&List);

See	also:
DialogEx,	FarListGetItem

DM_LISTGETTITLES
Messages	|	Dialog	API

The	DM_LISTGETTITLES	message	is	sent	to	the	dialog	manager	to	retrieve
the	titles	(header	and	footer)	of	a	DI_LISTBOX	list.

Param1
he	ID	of	the	dialog	item	for	which	the	titles	are	retrieved.

Param2
Pointer	to	a	FarListTitles	structure	where	the	titles	will	be	stored.

Return
TRUE	-	titles	have	been	retrieved	successfully.
FALSE	-	the	item	is	not	a	list.

Controls
Control Description

DI_LISTBOX list

Remarks
You	must	initialize	the	FarListTitlesstructure	before	sending	the	message:
char	Title[100];

char	Bottom[100];

FarListTitles	ListTitle;

ListTitle.Title=Title;

ListTitle.TitleLen=sizeof(Title);

ListTitle.Bottom=Bottom;

ListTitle.BottomLen=sizeof(Bottom);

Info.SendDlgMessage(hDlg,DM_LISTGETTITLES,ID,(LONG_PTR)&ListTitle);

See	also:
DialogEx,	FarListTitles,	DM_LISTSETTITLES

DM_LISTINFO
Messages	|	Dialog	API

The	DM_LISTINFO	message	is	sent	to	the	dialog	manager	to	retrieve
information	about	a	DI_COMBOBOX	or	DI_LISTBOXlist.

Param1
The	ID	of	the	dialog	item	for	which	the	information	is	retrieved.

Param2
Pointer	to	a	FarListInfo	structure	that	will	contain	the	information	about	the	list.

Return
TRUE	-	the	FarListInfo	structure	has	been	filled	successfully.
FALSE	-	error	retrieving	information	(Param2	is	NULL).

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example
//	get	info	about	the	list

struct	FarListInfo	ListInfo;

Info.SendDlgMessage(hDlg,DM_LISTINFO,ID,(LONG_PTR)&ListInfo;);

See	also:
FarListInfo	|	DialogEx

DM_LISTINSERT
Messages	|	Dialog	API

The	DM_LISTINSERT	message	is	sent	to	the	dialog	manager	to	insert	an
element	into	a	DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	in	which	the	element	is	inserted.

Param2
Pointer	to	a	FarListInsertstructure	specifying	the	element	to	insert.

Return
New	number	of	elements	in	the	list,	or	-1	in	case	of	an	error	during	insert.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example

See	also:
DialogEx

DM_LISTSET
Messages	|	Dialog	API

The	DM_LISTSET	message	is	sent	to	the	dialog	manager	to	replace	the
contents	of	a	DI_COMBOBOX	or	DI_LISTBOX	list	with	the	given	list	of
elements.

Param1
The	ID	of	the	dialog	item	in	which	the	elements	are	replaced.

Param2
Pointer	to	a	FarList	structure	specifying	the	new	contents	of	the	list.

Return
TRUE	if	the	elements	have	been	added	successfully
FALSE	in	case	of	an	error.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example
FarList	List;

FarListItem	*ListItems;

...

ListItems=new	FarListItem[MenuItemsNumber];

List.ItemsNumber=MenuItemsNumber;

List.Items=ListItems;

...

Info.SendDlgMessage(hDlg,DM_LISTSET,0,(LONG_PTR)&List);

See	also:
DialogEx

DM_LISTSETCURPOS
Messages	|	Dialog	API

The	DM_LISTSETCURPOS	message	is	sent	to	dialog	message	to	set	the
cursor	position	in	DI_COMBOBOX	or	DI_LISTBOX.

Param1
The	ID	of	the	dialog	item.

Param2
Param2	contains	pointer	to	FarListPos	structure.

Return
Modified	cursor	position	in	the	list	taking	into	account	separators	and
unavailable	items.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example
//	set	current	position

RealPos=Info.SendDlgMessage(hDlg,DM_LISTSETCURPOS,ID,(LONG_PTR)&NewPos;);

See	also:
DialogEx,	DM_LISTGETCURPOS

DM_LISTSETDATA
Messages	|	Dialog	API

The	DM_LISTSETDATA	message	is	sent	to	the	dialog	manager	to	associate
the	user	data	with	an	element	of	a	DI_COMBOBOX	or	DI_LISTBOX.

Param1
The	ID	of	the	dialog	item	for	which	the	data	is	associated.

Param2
Pointer	to	a	FarListItemData,	structure	describing	the	data	added.

Return
Size	of	the	data	added,	or	0	if	the	data	is	incorrect	or	there	is	not	enough
memory.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

See	also:
DialogEx,	DM_LISTGETDATA

DM_LISTSETMOUSEREACTION
Messages	|	Dialog	API

The	DM_LISTSETMOUSEREACTION	message	is	sent	to	the	dialog
manager	to	set	the	behavior	for	handling	mouse	movement	in	a	DI_LISTBOX
list.

Param1
The	ID	of	the	dialog	item	for	which	the	behaviour	is	set.

Param2
Can	have	one	of	the	following	values	(listing	of
FARLISTMOUSEREACTIONTYPE):

Value Description

LMRT_ONLYFOCUS The	list	will	react	on	mouse	movement	(change	cursor
position	in	the	list)	only	when	the	item	is	in	focus

LMRT_ALWAYS The	list	will	always	react	on	mouse	movement	(change
cursor	position	in	the	list).	The	example	of	such
behavior	is	a	list	of	found	files	in	search	results	(Alt-
F7)

LMRT_NEVER The	list	will	not	react	on	mouse	movement

Return
Previous	value.

Controls
Control Description

DI_LISTBOX list

Remarks

1.	 By	default,	a	nonfocused	DI_LISTBOX	item	reacts	to	mouse	movement.
2.	 Far	Manager	1.70	beta	5	and	earlier:	Param2	different	of

LMRT_ONLYFOCUS	or	LMRT_ALWAYS	is	similar	to	LMRT_ALWAYS
value.

Example

See	also:
DialogEx

DM_LISTSETTITLES
Messages	|	Dialog	API

The	DM_LISTSETTITLES	message	is	sent	to	the	dialog	manager	to	set	the
titles	(header	and	footer)	of	a	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	for	which	the	titles	are	set.

Param2
Pointer	to	a	FarListTitles,	structure	containing	the	titles	to	be	set.

Return
TRUE	-	titles	have	been	set.
FALSE	-	the	item	is	not	a	list.

Controls
Control Description

DI_LISTBOX list

Remarks
You	must	fill	the	FarListTitles	structure	before	sending	the	message:
FarListTitles	ListTitle;

ListTitle.Title="Some	title";

ListTitle.Bottom=NULL;	//	reset	footer

Info.SendDlgMessage(hDlg,DM_LISTSETTITLES,ID,(LONG_PTR)&ListTitle);

See	also:
DialogEx,	FarListTitles,	DM_LISTGETTITLES

DM_LISTSORT
Messages	|	Dialog	API

The	DM_LISTSORT	message	is	sent	to	the	dialog	manager	to	sort	the	elements
of	a	DI_COMBOBOX	or	DI_LISTBOX	list.

Param1
The	ID	of	the	dialog	item	to	sort.

Param2
Sort	direction:	0	-	ascending,	1	-	descending.

Return
TRUE	-	the	list	has	been	sorted.
FALSE	-	error	sorting	list.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks

Example
//	sort	the	list	descending	(from	'Z'	to	'A')

Info.SendDlgMessage(hDlg,DM_LISTSORT,ID,1);

See	also:
DialogEx

DM_LISTUPDATE
Messages	|	Dialog	API

The	DM_LISTUPDATE	message	is	sent	to	the	dialog	manager	to	update	an
element	of	a	DI_COMBOBOX	or	DI_LISTBOX.

Param1
The	ID	of	the	dialog	item	to	be	updated.

Param2
Pointer	to	a	FarListUpdatestructure	specifying	the	element	to	update.

Return
TRUE	-	the	list	element	has	been	successfully	updated.
FALSE	-	error	updating	data.

Controls
Control Description

DI_LISTBOX list

DI_COMBOBOX combined	list

Remarks
It	is	also	possible	to	use	the	DM_SETTEXTPTR	(or	DM_SETTEXT)	message
to	update	the	text	of	the	current	item	of	the	DI_LISTBOX	list.

Example

See	also:
DialogEx

DM_MOVEDIALOG
Messages	|	Dialog	API

The	DM_MOVEDIALOG	message	is	sent	to	the	dialog	manager	to	move	the
dialog	window.

Param1
TRUE	-	Param2	contains	absolute	coordinates.
FALSE	-	Param2	contains	relative	coordinates.

Param2
Pointer	to	a	COORD	structure	containing	the	new	coordinates	of	the	upper	left
corner	of	the	dialog	window.

Return
The	COORDstructure	containing	the	current	coordinates	of	the	upper	left	corner
of	the	dialog	window.

Remarks
In	order	to	center	the	dialog	window	on	the	screen	fill	the	COORD	structure
with	-1	values	and	set	Param1	=	TRUE.

Example
//	center	the	dialog

COORD	c={-1,-1};

Info.SendDlgMessage(hDlg,DM_MOVEDIALOG,TRUE,(LONG_PTR)&c);

//	move	the	dialog	to	the	top	left	corner	of	the	screen	with	coordinates	1,1

COORD	c={1,1};

Info.SendDlgMessage(hDlg,DM_MOVEDIALOG,TRUE,(LONG_PTR)&c);

//	move	the	dialog	by	2	positions	to	the	right

COORD	c={2,0};

Info.SendDlgMessage(hDlg,DM_MOVEDIALOG,FALSE,(LONG_PTR)&c);

See	also:
DM_RESIZEDIALOG
DialogEx

DM_REDRAW
Messages	|	Dialog	API

The	DM_REDRAW	message	is	sent	to	the	dialog	manager	to	redraw	the	entire
dialog	window.

Param1
0

Param2
0

Return
0

Remarks
In	FAR	versions	up	to	1.70	beta	3	DM_REDRAW	was	called
DM_SETREDRAW.

See	also:
DialogEx

DM_RESIZEDIALOG
Messages	|	Dialog	API

The	DM_RESIZEDIALOG	message	is	sent	to	the	dialog	manager	to	resize	the
dialog	window.

Param1
0

Param2
Pointer	to	a	COORD	structure	containing	the	new	size	of	the	dialog	window.

Return
The	COORD	structure	containing	the	new	size	of	the	dialog	window.

Remarks

Example

See	also:
DM_MOVEDIALOG
DialogEx

DM_SET3STATE
Messages	|	Dialog	API

The	DM_SET3STATE	message	is	sent	to	the	dialog	manager	to	change	the
style	of	a	DI_CHECKBOX	item.

Param1
The	ID	of	the	dialog	item	that	you	want	to	change.

Param2

TRUE	-	the	check	box	can	have	3	states
FALSE	-	the	check	box	can	have	only	2	states.

Return
Previous	style	of	the	item.

Controls
Control Description

DI_CHECKBOX Check	Box

Remarks

Example

See	also:
DialogEx	|	DM_GETCHECK	|	DM_SETCHECK.

DM_SETCHECK
Messages	|	Dialog	API

The	DM_SETCHECK	message	is	sent	to	the	dialog	manager	to	change	the
state	of	DI_CHECKBOX	and	DI_RADIOBUTTON	items.

Param1
The	ID	of	the	dialog	item	that	you	want	to	change.

Param2
Param2	applies	only	DI_CHECKBOX	and	can	have	one	of	the	following
values	(listing	of	FARCHECKEDSTATE):

Flag Description

BSTATE_UNCHECKED Off	-	[]	or	()

BSTATE_CHECKED On	-	[x]	or	(*)

BSTATE_3STATE Set	to	undefined	state	-	[?]	(applies	only	to	the
items	with	DIF_3STATE	flag	set).

BSTATE_TOGGLE Toggle	the	item	state.	For	elements	with
DIF_3STATE	flag	set	the	state	will	be	toggled
sequentially	between	"on",	"off",	"undefined").

Return
Previous	state	of	the	item.	For	DI_RADIOBUTTON	returns	the	ID	of	the
dialog	item	in	the	radio	button	group	that	was	previously	checked.	(see
DIF_GROUP).

Controls
Control Description

DI_CHECKBOX Check	Box

DI_RADIOBUTTON Radio	Button

Remarks

Example

See	also:
DialogEx	|	DM_GETCHECK	|	DM_SET3STATE.

DM_SETCOMBOBOXEVENT
Messages	|	Dialog	API

The	DM_SETCOMBOBOXEVENT	message	allows	to	control	the	sending	of
DN_KEY	or	DN_MOUSEEVENT	events	for	an	open	DI_COMBOBOX.

Param1
ID	of	a	DI_COMBOBOX.

Param2
Param2	is	a	combination	of	the	following	flags
(FARCOMBOBOXEVENTTYPE	enum):

Flag Description

CBET_KEY Enable	DN_KEY	events

CBET_MOUSE Enable	DN_MOUSEEVENT	events

Return
Previous	state.

Controls
Control Description

DI_COMBOBOX combined	list

Remarks
By	default,	the	DN_KEY	and	DN_MOUSEEVENT	events	are	not	sent	for	an
open	DI_COMBOBOX.

Example

See	also:
DM_GETCOMBOBOXEVENT

DM_SETCURSORPOS
Messages	|	Dialog	API

The	DM_SETCURSORPOS	message	is	sent	to	dialog	manager	to	position	the
cursor	in	dialog	edit	lines	and	DI_USERCONTROL	items.

Param1
The	ID	of	the	dialog	item

Param2
Pointer	to	a	COORD	structure	containing	information	about	cursor	position
(COORD.Y	is	ignored	for	line	editor).

Return
FALSE	-	the	item	is	not	a	line	editor	or	DI_USERCONTROL	item.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

DI_PSWEDIT password	input	field

DI_USERCONTROL custom	(defined	by	programmer)	control

Remarks
To	switch	off	the	cursor	in	DI_USERCONTROL	item	set	fields	of	COORD
structure	to	-1.

Example

See	also:
DialogEx

DM_SETCURSORSIZE
Messages	|	Dialog	API

The	DM_SETCURSORSIZE	message	is	sent	to	the	dialog	manager	to	set	the
cursor	size	and	its	visibility	flag	in	edit	lines	or	DI_USERCONTROL	item.

Param1
The	ID	of	the	dialog	item	for	which	you	want	to	retrieve	the	cursor	position.

Param2
The	high	word	is	the	cursor	size	(from	0	to	100,	as	used	in	the
CONSOLE_CURSOR_INFO)	structure),	the	low	word	is	the	cursor	visibility
flag	(1	-	the	cursor	is	visible,	0	-	the	cursor	is	hidden).

Return
Previous	values:
The	high	word	is	the	cursor	size	(from	0	to	100,	as	used	in	the
CONSOLE_CURSOR_INFO	structure),	the	low	word	is	the	cursor	visibility
flag	(1	-	the	cursor	is	visible,	0	-	the	cursor	is	hidden).

Controls
Control Description

DI_COMBOBOX combined	list	(without	DIF_DROPDOWNLIST	flag)

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

DI_PSWEDIT password	input	field

DI_USERCONTROL custom	(defined	by	programmer)	control

Remarks

1.	 To	show	the	cursor	in	a	DI_USERCONTROL	dialog	item,	it	is	also
necessary	to	move	the	cursor	to	the	necessary	position:

Coord.X=X;

Coord.Y=Y;

Info.SendDlgMessage(hDlg,DM_SETCURSORPOS,3,(LONG_PTR)&Coord);

The	default	cursor	position	in	a	DI_USERCONTROL	is	{-1,-1}.
2.	 To	show	a	cursor	filling	the	entire	character	cell	under	Windows	9x/Me	set

the	high	word	of	Param2	to	99.

Example
//	set	the	cursor	of	3rd	element	as	fully	filled	cell

Info.SendDlgMessage(hDlg,DM_SETCURSORSIZE,3,(LONG_PTR)MAKELONG(1,99));

See	also:
DialogEx	|	DM_GETCURSORSIZE|	DM_GETCURSORPOS|
DM_SETCURSORPOS|

DM_SETDLGDATA
Messages	|	Dialog	API

The	DM_SETDLGDATA	message	is	sent	to	the	dialog	manager	to	set	the	32-
bit	data	value	associated	with	the	dialog.	This	value	is	designed	for	use	by	the
plugin	that	created	the	dialog.

Param1
0

Param2
New	32-bit	value.

Return
Previous	value.

Remarks
Initially	the	Param	value	of	DialogEx	is	here.

Example

See	also:
DialogEx
DM_GETDLGDATA

DM_SETDLGITEM
Messages	|	Dialog	API

The	DM_SETDLGITEM	message	is	sent	to	the	dialog	manager	to	change	a
specified	dialog	item.

Param1
The	ID	of	the	dialog	item	that	you	want	to	change.

Param2
Pointer	to	a	FarDialogItem	structure	containing	the	new	item	data.

Return
TRUE	if	the	new	dialog	item	data	has	been	set	successfully
FALSE	if	the	item	with	such	ID	does	not	exist	or	the	item	type	was	changed.

Controls
Control Description

All All	dialog	items

Remarks
You	can't	change	item	type.

See	also:
DialogEx

DM_SETDROPDOWNOPENED
Messages	|	Dialog	API

The	DM_SETDROPDOWNOPENED	message	is	sent	to	the	dialog	manager	to
open	or	close	a	combo	box	or	history	list.

Param1
The	ID	of	the	element	for	which	the	combo	box	(DI_COMBOBOX)	or	history
list	(DI_EDIT	or	DI_FIXEDIT	with	the	DIF_HISTORY	flag)	should	be	opened.

Param2
TRUE	-	open	the	list	for	the	element	with	the	given	ID.
FALSE	-	close	the	open	combo	box	or	history	list.	In	this	case	Param1	is
ignored.

Return
If	Param2=FALSE	the	returned	value	is	always	TRUE.
If	Param2=TRUE,	the	returned	value	is	TRUE	if	the	combo	box	or	history	list
has	been	opened	successfully.	FALSE	is	returned	if	ID	of	not	suppored	type	was
set.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

Remarks
Only	one	combo	box	or	history	list	can	be	open	in	a	dialog	at	the	same	time.
Therefore,	sending	this	message	with	Param2=TRUE	closes	an	already	opened
combo	box	before	opening	the	specified	one,	and	when	sending	the	message
with	Param2=FALSE	it	is	not	needed	to	specify	the	item	ID.

Example

See	also:
DialogEx
DM_GETDROPDOWNOPENED

DM_SETEDITPOSITION
Messages	|	DM_SETEDITPOSITION|	Dialog	API

The	DM_SETEDITPOSITION	message	is	sent	to	the	dialog	manager	to	set	the
cursor	position	and	state	in	edit	controls.

Param1
Dialog	item	ID

Param2
Pointer	to	a	EditorSetPosition	structure.

Return
FALSE	-	the	given	dialog	item	ID	is	not	an	edit	control.
TRUE	-	cursor	position	is	set.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_FIXEDIT fixed	size	input	field

DI_PSWEDIT password	input	field

Remarks

Example
Example	of	a	mouse	selection	support	function	for	edit	controls	from	the	"Visual
renaming	files"	plugin
static	void	MouseSelect(HANDLE	hDlg,	DWORD	idStr,	DWORD	dwMousePosX)

{

		SMALL_RECT	dlgRect,	itemRect;

		Info.SendDlgMessage(hDlg,	DM_GETDLGRECT,	0,	(LONG_PTR)&dlgRect);

		Info.SendDlgMessage(hDlg,	DM_GETITEMPOSITION,	idStr,	(LONG_PTR)&itemRect);

		EditorSetPosition	esp;

		Info.SendDlgMessage(hDlg,	DM_GETEDITPOSITION,	idStr,	(LONG_PTR)&esp);

		int	length=Info.SendDlgMessage(hDlg,	DM_GETTEXTLENGTH,	idStr,	0);

		int	CurPos=dwMousePosX	-	(dlgRect.Left	+	itemRect.Left);

		if	(dwMousePosX	<=	(dlgRect.Left	+	itemRect.Left)	&&	esp.LeftPos	>	0)

				esp.LeftPos-=1;

		else	if	(dwMousePosX	>=	(dlgRect.Left	+	itemRect.Right)	&&	CurPos+esp.LeftPos	<	length)

				esp.LeftPos+=1;

		if	(CurPos+esp.LeftPos	<	0)

				CurPos=0;

		else	if	(CurPos+esp.LeftPos	>	length)

				CurPos=length;

		else

				CurPos+=esp.LeftPos;

		esp.CurPos=esp.CurTabPos=CurPos;

		if	(bStartSelect)

		{

				StartPosX=CurPos;

				bStartSelect=false;

		}

		EditorSelect	es;

		es.BlockType=BTYPE_COLUMN;

		es.BlockStartLine=es.BlockHeight=0;

		if	(CurPos	>	StartPosX)

		{

				es.BlockStartPos=StartPosX;

				es.BlockWidth=CurPos-StartPosX;

		}

		else

		{

				es.BlockStartPos=CurPos;

				es.BlockWidth=StartPosX-CurPos;

		}

		Info.SendDlgMessage(hDlg,	DM_SETSELECTION,	idStr,	(LONG_PTR)&es);

		Info.SendDlgMessage(hDlg,	DM_SETEDITPOSITION,	idStr,	(LONG_PTR)&esp);

}

See	also:
DialogEx	|	DM_GETCURSORPOS|	DM_SETCURSORPOS|
DM_GETEDITPOSITION

DM_SETFOCUS
Messages	|	Dialog	API

The	DM_SETFOCUS	message	sets	the	keyboard	focus	to	the	given	dialog	item.

Param1
The	ID	of	the	dialog	item	that	receives	the	input	focus.

Param2
0

Return
FALSE	-	the	given	dialog	item	cannot	receive	the	keyboard	focus
TRUE	-	the	focus	has	been	set	successfully.

Controls
Control Description

All All	items	that	can	have	keyboard	input	focus.

Remarks
The	DM_SETFOCUS	spawns	the	following	events:	DN_KILLFOCUS	for	the
element	that	loses	focus	and	DN_GOTFOCUS	for	the	element	that	gets	focus.
The	DN_KILLFOCUS	and	DN_GOTFOCUS	events	are	not	generated	when
Param1	is	equal	to	the	item	currently	having	focus.

See	also:
DialogEx

DM_SETHISTORY
Messages	|	Dialog	API

The	DM_SETHISTORY	allows	to	manage	availability	of	history	in	edit	lines.

Param1
The	ID	of	the	dialog	item	for	which	the	history	is	changed.

Param2
Pointer	to	a	string	containing	the	history	list	ID,	or	NULL,	if	the	history	should
be	disabled.

Return
FALSE	-	the	dialog	item	specified	in	Param1	does	not	support	history	lists.
TRUE	-	the	history	has	been	assigned	successfully.

Controls
Control Description

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

Remarks
If	the	edit	line	is	empty	and	the	flag	DIF_USELASTHISTORY	for	the	DI_EDIT
item	is	set,	FAR	will	automatically	subsitute	the	first	value	from	the	history	into
an	empty	edit	line.

Example
Implementation	of	this	message	can	be	seen	in	MultiArc	plugin	sources.

This	example	sets	history	and	empties	edit	line:

...

		else	if(Msg	==	MAM_ARCSWITCHES)

		{

				static	char	SwHistoryName[NM];

				FSF.sprintf(SwHistoryName,"ArcSwitches\\%s",pdd->ArcFormat);

				Info.SendDlgMessage(hDlg,DM_SETHISTORY,4,(LONG_PTR)SwHistoryName);

				Info.SendDlgMessage(hDlg,DM_SETTEXTPTR,4,(LONG_PTR)"");

		}

...

In	order	to	make	FAR	substitute	the	first	line	from	keys	histiry	the	code	should
be	rewritten	in	the	following	way:

...

		else	if(Msg	==	MAM_ARCSWITCHES)

		{

				static	char	SwHistoryName[NM];

				FSF.sprintf(SwHistoryName,"ArcSwitches\\%s",pdd->ArcFormat);

				Info.SendDlgMessage(hDlg,DM_SETTEXTPTR,4,(LONG_PTR)"");

				Info.SendDlgMessage(hDlg,DM_SETHISTORY,4,(LONG_PTR)SwHistoryName);

		}

...

The	edit	line	is	being	emptied	and	the	item	history	is	set	after.

See	also:
DialogEx,	DM_ADDHISTORY,	DIF_HISTORY

DM_SETITEMDATA
Messages	|	Dialog	API

The	DM_SETITEMDATAmessage	is	sent	to	the	dialog	manager	to	set	the	32-
bit	data	value	associated	with	a	dialog	item.	Every	dialog	item	has	a
corresponding	32-bit	data	value	designed	for	use	by	the	plugin	that	created	the
dialog.

Param1
The	ID	of	the	dialog	item	for	which	the	data	is	retrieved.

Param2
The	new	32-bit	data	value.

Return
Previous	data	value.

Remarks

Example

See	also:
DialogEx
DM_GETITEMDATA,	DM_GETDLGDATA,
DM_SETDLGDATA

DM_SETITEMPOSITION
Messages	|	Dialog	API

The	DM_SETITEMPOSITION	message	is	sent	to	the	dialog	manager	to
change	the	position	of	a	dialog	item.

Param1
The	ID	of	the	dialog	item	for	which	the	position	is	changed.

Param2
Pointer	to	a	SMALL_RECT	structure	containing	the	new	item	coordinates.

Return
TRUE	-	item	position	has	been	changed.
FALSE	-	item	wiht	such	ID	does	not	exist.

Controls
Control Description

All All	dialog	items

See	also:
DialogEx
DM_GETITEMPOSITION
DM_RESIZEDIALOG

DM_SETMAXTEXTLENGTH
Messages	|	Dialog	API

The	DM_SETMAXTEXTLENGTH	message	is	sent	to	the	dialog	manager	to
set	the	maximum	length	of	an	edit	string.

Param1
The	ID	of	a	dialog	item.

Param2
New	maximum	length	of	the	string.

Return
The	previous	value	of	the	length	of	the	string	or	0	in	case	of	error.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_PSWEDIT password	input	field

Remarks

1.	 For	DI_COMBOBOX	items	affects	only	the	edit	line	(has	no	effect	for
items	with	the	DIF_DROPDOWNLIST	flag	set)

2.	 In	FAR	versions	before	1.70	beta	4,	this	message	was	called
DM_SETTEXTLENGTH.

Example

See	also:
DialogEx

DM_SETMOUSEEVENTNOTIFY
Messages	|	Dialog	API

The	DM_SETMOUSEEVENTNOTIFY	message	allows	to	control	the
mechanism	for	sending	initial	non-altered	mouse	event	(DN_MOUSEEVENT)
to	a	dialog	manager	before	they	are	processed	by	the	dialog	kernel.

Param1
0	-	off
1	-	on
-1	-	get	state

Param2
0

Return
Previous	state.

Controls
Control Description

Dialog message	applies	to	the	dialog	only

Remarks

Example

See	also:
DialogEx
DN_MOUSEEVENT

DM_SETSELECTION
Messages	|	DM_GETSELECTION|	Dialog	API

The	DM_SETSELECTION	is	sent	to	dialog	manager	to	select	a	block	in	dialog
edit	lines.

Param1
The	ID	of	dialog	item

Param2
Pointer	to	an	EditorSelect	structure.

Return
FALSE	-	the	item	is	not	an	edit	line.
TRUE	-	the	text	was	selected.

Controls
Control Description

DI_COMBOBOX combined	list

DI_EDIT edit	line

DI_FIXEDIT fixed-size	input	field

DI_PSWEDIT password	input	field

Remarks

Example

See	also:
DialogEx	|	DM_GETSELECTION

DM_SETTEXT
Messages	|	Dialog	API

The	DM_SETTEXT	message	is	sent	to	the	dialog	manager	to	set	a	new	string
value	for	an	edit	line	or	a	new	caption	for	an	item.

Param1
The	ID	of	the	dialog	item	for	which	the	text	should	be	changed.

Param2
Pointer	to	the	FarDialogItemData	structure	that	is	used	to	set	the	dialog	item
text.
If	this	parameter	is	equal	to	NULL,	the	message	does	nothing.

Return
Size	of	the	new	dialog	item	string	NOT	including	the	terminating	character	'\0'.

Controls
Control Description

All All	dialog	items

Remarks

1.	 For	DI_COMBOBOX	items	affects	only	the	edit	line	(has	no	effect	for
items	with	the	DIF_DROPDOWNLIST	flag	set).

2.	 The	DM_SETTEXT	message	in	FAR	version	prior	to	1.70	beta	4	returned
the	string	length	INCLUDING	the	terminating	NULL	character.

Example

See	also:
DialogEx	|	DM_SETTEXTPTR

DM_SETTEXTPTR
Messages	|	Dialog	API

The	DM_SETTEXTPTR	message	is	sent	to	the	dialog	manager	to	set	a	new
string	value	for	an	edit	line	or	a	new	caption	for	an	item.	Unlike	the
DM_SETTEXT	message,	this	message	works	with	a	string	pointer.

Param1
The	ID	of	the	dialog	item	for	which	the	text	should	be	changed.

Param2
Pointer	to	the	string	containing	the	new	text.	If	this	parameter	is	equal	to	NULL
the	message	does	nothing.

Return
Size	of	the	new	dialog	item	string	NOT	including	terminating	character	'\0'.

Controls
Control Description

All All	dialog	items

Remarks

1.	 For	DI_COMBOBOX	items	affects	only	the	edit	line	(has	no	effect	for
items	with	the	DIF_DROPDOWNLIST	flag	set).

2.	 The	DM_SETTEXTPTR	message	in	FAR	versions	prior	to	1.70	beta	4
returned	the	string	length	INCLUDING	the	terminating	NULL	character.

Example

See	also:
DialogEx	|	DM_SETTEXT

DM_SHOWDIALOG
Messages	|	Dialog	API

The	DM_SHOWDIALOG	message	is	sent	to	the	dialog	manager	to	show	or
hide	the	dialog	window	on	the	screen.

Param1
TRUE	-	show	the	dialog	window.
FALSE	-	hide	the	dialog	window.

Param2
0

Return
0

See	also:
DM_SHOWITEM
DialogEx

DM_SHOWITEM
Messages	|	Dialog	API

The	DM_SHOWITEM	message	is	sent	to	the	dialog	manager	to	show	or	hide	a
dialog	item.

Param1
The	ID	of	the	dialog	item	to	be	shown	or	hidden.

Param2
One	of	the	following	values:

-1	-	get	the	state	of	the	item
0	-	hide	the	item
1	-	show	the	item

Return
Previous	state	of	the	dialog	item

Controls
Control Description

All All	dialog	items

Remarks

1.	 Dialog	item	is	force	redrawn	if	it	is	visible	and	Param2=1.
2.	 Dialog	item	is	not	redrawn	if	Param2=-1.

Example

See	also:
DM_SHOWDIALOG
DialogEx

DM_USER
Messages	|	Dialog	API

The	DM_USER	message	is	intended	to	specify	the	starting	value	for	user-
defined	messages.

Param1
User-defined	value.

Param2
User-defined	value.

Return
User-defined	value.

Controls
Control Description

All All	dialog	items

Remarks

Example
#define	DMREV_RESULT	DM_USER+1

LONG_PTR	WINAPI	ReversiDialogProc(HANDLE	hDlg,	int	Msg,int	Param1,LONG_PTR	Param2)

{

...

				Info.SendDlgMessage(hDlg,DMREV_RESULT,0,0);

...

				case	DMREV_RESULT:	//	user's	definition

						...

						return	0;

...

}

See	also:
DialogEx

Dialog	API	Events
main	|	Dialog	API	|	Messages

Event Description

DN_CLOSE Sent	before	the	dialog	is	closed.

DN_BTNCLICK Sent	after	a	button,	radiobutton	or	checkbox	was
clicked.

DN_CTLCOLORDIALOG Sent	before	the	dialog	background	is	drawn,	for
changing	its	color.

DN_CTLCOLORDLGITEM Sent	before	a	dialog	item	is	drawn,	for	changing	its
color.

DN_CTLCOLORDLGLIST Sent	before	a	list	is	drawn,	for	changing	its	color.

DN_DRAGGED Notification	of	dialog	dragging.

DN_DRAWDIALOG Sent	before	the	dialog	is	drawn.

DN_DRAWDIALOGDONE Sent	after	the	dialog	has	been	drawn.

DN_DRAWDLGITEM Sent	before	a	dialog	item	is	drawn.

DN_EDITCHANGE Sent	when	the	text	in	the	dialog	edit	control	has
changed.

DN_ENTERIDLE Sent	when	the	dialog	enters	the	idle	state.

DN_GOTFOCUS Sent	when	the	dialog	item	gets	input	focus.

DN_HELP Sent	before	a	help	topic	is	displayed.

DN_HOTKEY Sent	after	the	user	has	pressed	an	hotkey	(Alt-).

DN_INITDIALOG Sent	before	initializing	the	dialog.

DN_KEY Sent	after	the	user	has	pressed	a	key	in	the	dialog.

DN_KILLFOCUS Sent	before	a	dialog	item	loses	the	input	focus.

DN_LISTCHANGE Sent	when	a	list	item	is	changed.

DN_LISTHOTKEY Sent	after	the	user	has	pressed	an	hotkey	(Alt-)	inside
a	list.

DN_MOUSECLICK Sent	after	the	user	has	clicked	one	of	the	dialog	items
with	the	mouse.

DN_MOUSEEVENT Sent	before	a	mouse	event	is	handled	by	the	dialog
kernel.

DN_RESIZECONSOLE Sent	after	the	size	of	the	console	window	has	changed.

See	also:

Dialog	API	Messages

DN_BTNCLICK
Events	|	Dialog	API

The	DN_BTNCLICK	event	is	received	by	the	following	items	DI_BUTTON,
DI_CHECKBOX,	DI_RADIOBUTTON	after	the	user	pressed	Enter	or	Space
(for	buttons),	'+',	'-'	or	'*'.

Param1
Dialog	item	ID.

Param2
State	of	the	item	after	the	keystroke:
DI_BUTTON	=	0
DI_CHECKBOX	=0	(unchecked),	1	(checked)	and	2	(undefined,	if	the
DIF_3STATE	flag	is	set)
DI_RADIOBUTTON	=	0	-	for	the	previous	element	in	the	group,	1	-	for	the
active	element	in	the	group.

Return
For	DI_BUTTON:	TRUE	-	if	the	message	has	been	handled	and	it	should	not	be
processed	by	the	kernel.
FALSE	-	continue	processing	the	message	by	the	kernel.

For	other	elements:	TRUE	-	to	apply	the	changes	and	redraw	the	control.
FALSE	-	to	discard	changes.

Controls
Control Description

DI_BUTTON Push	Button.

DI_CHECKBOX Check	Box.

DI_RADIOBUTTON Radio	Button.

Remarks

Example

See	also:
DialogEx

DN_CLOSE
Events	|	Dialog	API

The	DN_CLOSE	event	is	sent	to	the	dialog	callback	function	as	a	notification
before	the	dialog	is	closed	-	the	user	wants	to	close	the	dialog.

Param1

The	ID	of	the	dialog	item	that	had	the	keyboard	focus	when	Ctrl+Enter	was
pressed	or	that	has	the	DefaultButton	field	set	to	1.
ID	of	the	dialog	item	that	had	the	keyboard	focus	when	Ctrl+Enter	was
pressed	or	ID	of	the	dialog	item	that	has	the	DefaultButton	field	set	to	1.
-2	-	if	KEY_BREAK	was	pressed	(Ctrl-Pause	or	Ctrl-ScrollLock)
-1	-	KEY_ESC	or	KEY_F10

Param2
0

Return
TRUE	-	to	allow	closing	the	dialog
FALSE	-	to	continue	working	with	the	dialog.

Remarks

1.	 The	DN_CLOSE	event	is	received	immediately	after	the	DM_CLOSE
message	is	sent.

Example

See	also:
DialogEx,	DM_CLOSE

DN_CTLCOLORDIALOG
Events	|	Dialog	API

The	DN_CTLCOLORDIALOG	event	is	sent	to	the	dialog	callback	function
before	the	dialog	background	is	drawn.

Param1
0

Param2
Color	attribute	(foreground+background)	that	the	callback	function	wants	to	use
to	draw	the	dialog	background.	By	default,	this	attribute	is	equal	to
COL_DIALOGTEXT	for	standard	dialogs	and	COL_WARNDIALOGTEXT	for
dialogs	with	the	FDLG_WARNING	flag	set.	

Return
Color	attribute	(foreground+background)	that	the	callback	function	should	use	to
draw	the	dialog	background.

Remarks
This	event	is	received	immediately	after	DN_DRAWDIALOG.

Example

See	also:
DialogEx

DN_CTLCOLORDLGITEM
Events	|	Dialog	API

The	DN_CTLCOLORDLGITEM	event	is	sent	to	the	dialog	callback	function
before	each	dialog	item	is	drawn.

Param1
ID	of	the	dialog	item	that	is	about	to	be	drawn.

Param2
Color	attribute	(foreground+background)	that	the	callback	function	wants	to	use
to	draw	dialog	item:
DI_SINGLEBOX
DI_DOUBLEBOX
LO(LO=Title,HI=HiText),	HI(LO=Frame,0)

DI_TEXT
LO(LO=Title,HI=HiText),	HI(LO=Frame,0)
The	box	color	applies	only	to	text	items	with	the	DIF_SEPARATOR	and
DIF_SEPARATOR2	flags	set.

DI_VTEXT
LO(LO=Title,HI=0),	HI(0,0)

DI_EDIT
DI_FIXEDIT
DI_PSWEDIT
DI_COMBOBOX
LO(LO=EditLine,HI=SelectText),	HI(LO=UnchangedColor,
HI=History&ComboBox	pointer)

DI_CHECKBOX
DI_RADIOBUTTON
LO(LO=Title,HI=HiText),	HI(0,0)

DI_BUTTON
LO(LO=Title,HI=HiText),	HI(0,0)

DI_LISTBOX
For	the	DI_LISTBOX	item	only	the	DN_CTLCOLORDLGLIST	event	is
recieved.

Return
Color	attribute	(foreground+background)	that	the	callback	function	should	use	to
draw	the	dialog	item.

Controls
Control Description

All Applies	to	all	dialog	items	with	the	exception	of
DI_LISTBOX	and	DI_USERCONTROL

Remarks

Example
For	example,	this	is	how	the	macro	assignment	dialog	in	FAR	Manager	changes
the	color	of	input	field:
/*	02	*/	DI_EDIT,5,3,28,3,1,0,0,1,"",

case	DN_CTLCOLORDLGITEM:

		//	Unchanged	resides	in	the	Lo	byte	of	the	Hi	word.

		Param2&=0xFF00FFFFU;

		Param2|=(Param2&0xFF)<<16;

		return	Param2;

See	also:
DialogEx

DN_CTLCOLORDLGLIST
Events	|	Dialog	API

The	DN_CTLCOLORDLGLIST	event	is	sent	to	the	dialog	callback	function
before	each	list	item	(DI_COMBOBOX,	DI_LISTBOX,	DIF_HISTORY)	is
drawn.

Param1
ID	of	the	dialog	item	that	is	about	to	be	drawn.

Param2
Pointer	to	a	FarListColors,	structure	specifying	the	color	scheme	of	the	list.

Return
TRUE	-	to	apply	the	changes
FALSE	-	to	leave	as	is.

Controls
Control Description

DI_LISTBOX List

DI_COMBOBOX Combined	List

DI_EDIT Text	input	line	(with	the	DIF_HISTORY	flag	set)

DI_FIXEDIT Fixed	sized	text	input	line	(with	the	DIF_HISTORY
flag	set)

Remarks
The	dialog	callback	function	can	use	this	event	to	change	the	colors	used	for
drawing	the	list.

Example

See	also:
DialogEx	|	FarListColors

DN_DRAGGED
Events	|	Dialog	API

The	DN_DRAGGED	event	is	sent	to	the	dialog	callback	function	as	a
notification	of	the	beginning	and	the	ending	of	dragging	the	dialog.

Dragging	of	the	dialog	has	began

Param1
0

Param2
0

Return
TRUE	-	allow	dragging	the	dialog
FALSE	-	forbid	dragging	the	dialog

Dragging	of	the	dialog	is	finished

Param1
1

Param2
0	-	dialog	successfully	displaced
1	-	if	the	dragging	of	the	dialog	was	cancelled	by	pressing	Esc	or	the	right	mouse
button.

Return
Ignored.

Remarks

1.	 The	DN_DRAGGED	event	is	sent	before	the	dialog	is	redrawn.

Example

See	also:
DialogEx

DN_DRAWDIALOG
Events	|	Dialog	API

The	DN_DRAWDIALOG	event	is	sent	to	the	dialog	callback	function	before
the	whole	dialog	is	drawn.

Param1
0

Param2
0

Return
If	the	dialog	callback	function	returns	FALSE,	the	dialog	is	not	drawn.

Remarks

Example

See	also:
DialogEx,	DN_DRAWDIALOGDONE

DN_DRAWDIALOGDONE
Events	|	Dialog	API

The	DN_DRAWDIALOGDONE	event	is	sent	to	the	dialog	callback	function
after	the	whole	dialog	has	been	drawn.

Param1
0

Param2
0

Return
Ignored.

Remarks
Although	this	event	is	sent	at	the	end	of	the	drawing	process,	the	virtual	screen
buffer	is	not	yet	"flushed".	Meaning	that	if	a	plugin	wants	to	draw	something
ontop	the	dialog,	the	changes	might	be	erased	from	the	screen	when	returning
from	the	dialog	callback	function.

To	prevent	this,	you	must	force	the	virtual	screen	buffer	to	be	flushed	using	the
Text(0,0,0,NULL)	function,	and	only	the	"draw"	your	changes.	For
example:

		case		DN_DRAWDIALOGDONE:

				Info.Text(0,0,0,NULL);

				//	draw	ours	here

				break;

Example

See	also:
DialogEx,	DN_DRAWDIALOG

DN_DRAWDLGITEM
Events	|	Dialog	API

The	DN_DRAWDLGITEM	event	is	sent	to	the	dialog	callback	function	before
a	dialog	item	is	drawn.

Param1
ID	of	the	dialog	item	that	is	about	to	be	drawn.

Param2
Pointer	to	the	FarDialogItem	structure	for	the	item	to	be	drawn.

Return
If	the	dialog	callback	function	returns	FALSE,	the	item	will	not	be	drawn.

Controls
Control Description

All All	dialog	items

Remarks
A	dialog	item	of	the	DI_USERCONTROL	type,	but	not	any	other	dialog	item,
can	be	prepared	in	advance	in	a	virtual	buffer.	FAR	Manager	does	not	copy	the
contents	of	this	buffer	to	its	internal	structures,	so	as	a	response	to	the
DN_DRAWDLGITEM	event	it	is	sufficient	to	change	only	the	state	of	the
virtual	buffer:
case	DN_DRAWDLGITEM:

		CHAR_INFO	*VBuf=((struct	FarDialogItem*)Param2)->Param.VBuf;

		for	(I=0;	I	<	256;	I++)

		{

				VBuf[I].Char.AsciiChar	=	DecodeTable[I];

				VBuf[I].Attributes	=	Color;

		}

		return	TRUE;

Example

See	also:
DialogEx

DN_EDITCHANGE
Events	|	Dialog	API

The	DN_EDITCHANGE	event	is	sent	to	the	dialog	callback	function	when	an
edit	item	has	changed	(for	example,	a	character	has	been	entered).

Param1
The	ID	of	the	dialog	item	that	has	changed.

Param2
Pointer	to	the	FarDialogItem	structure	for	the	item	that	has	changed.

Return
In	Dialog	API	1.0,	the	return	value	is	ignored,	but	to	ensure	compatibility	with
future	versions	of	Dialog	API,	it	is	recommended	to	return:

TRUE	-	to	confirm	the	changes
FALSE	-	to	cancel	the	changes

Controls
Control Description

DI_COMBOBOX Combined	list

DI_EDIT Text	input	line

DI_FIXEDIT Fixed	size	text	input	line

DI_PSWEDIT Password	input	line

Remarks

1.	 The	ability	to	change	the	state	of	the	dialog	item	by	changing	the	elements
of	the	FarDialogItem	structure	is	missing	in	Dialog	API	1.0.

2.	 The	DN_EDITCHANGE	event	will	not	be	sent	in	a	response	to	the
following	messages:	DM_SETTEXTPTR	and	DM_SETTEXT.

Example
...

//	show	a	copy	of	the	entered	data	only	for	numbers

if	(Msg	==	DN_EDITCHANGE	&&	Param1	==	2)

{

		FarDialogItem	*Item=(FarDialogItem	*)Param2;

		int	Len=strlen(Item->Data);

		for(int	I=0;	I	<	Len;	++I)

				if(!isdigit(Item->Data[I]))

						break;

		if(I	==	Len)

				return	FALSE;

		Info.SendDlgMessage(hDlg,	DM_SETTEXTPTR,	3,	(LONG_PTR)Item->Data);

		return	TRUE;

}

...

See	also:
DialogEx

DN_ENTERIDLE
Events	|	Dialog	API

The	DN_ENTERIDLE	event	is	sent	to	the	dialog	callback	function	when	the
dialog	enters	the	idle	state.

	Attention!
This	event	has	nothing	to	do	with	the	timer.	The	dialog	enters	the	idle
state	when	there	are	no	events	in	the	system	(no	keystrokes,	no	mouse
moves).

Param1
0

Param2
0

Return
0

Example
//	while	in	Idle	state	let	the	computer	calculate	the	next	move

case	DN_ENTERIDLE:
		Timer(hDlg);

		return	0;

See	also:
DialogEx

DN_GOTFOCUS
Events	|	Dialog	API

The	DN_GOTFOCUS	event	is	sent	to	the	dialog	callback	function	after	a	dialog
item	has	received	keyboard	focus.

Param1
ID	of	the	dialog	item	that	has	received	the	focus.

Param2
0

Return
0

Controls
Control Description

All All	elements	that	can	receive	keyboard	focus.

Remarks
The	event	is	also	sent	to	the	focused	element	immediately	after
DN_INITDIALOG.

Example

See	also:
DialogEx

DN_HELP
Events	|	Dialog	API

The	DN_HELP	event	is	sent	to	the	dialog	callback	function	before	a	help	topic
is	displayed.

Param1
ID	of	the	dialog	item	that	has	the	keyboard	focus.

Param2
Pointer	to	a	string	containing	the	name	of	a	help	topic	that	the	dialog	callback
function	wants	to	display.

Return
Pointer	to	a	string	containing	the	name	of	a	help	topic	that	the	dialog	callback
function	should	display.	If	NULL	is	returned,	no	help	topic	will	be	displayed.

Controls
Control Description

All All	elements	that	can	receive	keyboard	focus.

Remarks
This	event	allows	to	control	which	help	topic	will	be	displayed	based	on	the
current	dialog	item.

Example
//	based	on	the	state	of	the	game	select	which	help	topic	to	display

//	in	this	case	the	current	dialog	item	is	if	no	matter	to	us

case	DN_HELP:

{

		static	char	*HelpTopics[3]={"Contents","Rule","Recommendations"};

		int	i=1;

		if(GAME[0].NumPl1==2	&&	GAME[0].NumPl2	==	2)

				i=0;

		else	if(GAME[0].NumPl1+GAME[0].NumPl2	>	16)

				i=2;

		return	(LONG_PTR)(&HelpTopics[i][0]);

}

See	also:
DialogEx

DN_HOTKEY
Events	|	Dialog	API

The	DN_HOTKEY	event	is	sent	to	the	dialog	callback	function	when	the	user
presses	a	hotkey	(Alt-letter).

Param1
The	ID	of	the	dialog	item	that	will	receive	the	keyboard	focus	after	the	hotkey	is
processed.

Param2
Internal	FAR	key	code.

Return
TRUE	-	allow	the	hot	key	to	be	processed
FALSE	-	cancel	the	hot	key.

Controls
Control Description

DI_DOUBLEBOX double	line	frame;	if	it	has	a	hotkey	(the
DIF_SHOWAMPERSAND	flag	is	not	set)	then	the
focus	is	transfered	to	the	nearest	control	that	can	have
keyboard	focus.

DI_SINGLEBOX single	line	frame;	if	it	has	a	hotkey	(the
DIF_SHOWAMPERSAND	flag	is	not	set)	then	the
focus	is	transfered	to	the	nearest	control	that	can	have
keyboard	focus.

DI_TEXT text	label;	if	it	has	a	hotkey	(the
DIF_SHOWAMPERSAND	flag	is	not	set)	then	the
focus	is	transfered	to	the	nearest	control	that	can	have
keyboard	focus.

DI_VTEXT vertical	text	label;	if	it	has	a	hotkey	(the
DIF_SHOWAMPERSAND	flag	is	not	set)	then	the
focus	is	transfered	to	the	nearest	control	that	can	have
keyboard	focus.

DI_BUTTON Push	Button;	if	the	DIF_SHOWAMPERSAND	flag	is
not	set	the	element	itself	responds	to	the	Alt-Letter
combination.

DI_CHECKBOX Check	Box;	if	the	DIF_SHOWAMPERSAND	flag	is
not	set	the	element	itself	responds	to	the	Alt-Letter
combination.

DI_RADIOBUTTON Radio	Button;	if	the	DIF_SHOWAMPERSAND	flag	is
not	set	the	element	itself	responds	to	the	Alt-Letter
combination.

Example

See	also:
DialogEx

DN_INITDIALOG
Events	|	Dialog	API

The	DN_INITDIALOG	event	is	sent	to	the	dialog	callback	function	after	all
dialog	items	are	initialized,	but	before	they	are	displayed.

Param1
The	ID	of	the	dialog	item	that	will	initially	receive	the	keyboard	focus.

Param2
Programmer	specific	data	that	was	passed	to	the	DialogEx	-	in	the	Param
parameter.

Return
TRUE	-	if	dialog	items	were	changed.
FALSE	-	no	changes	were	made.

Remarks
In	response	to	this	event	the	dialog	callback	function	initializes	each	dialog
element	to	some	correct	initial	state.	For	example,	it	can	fill	a	list	item	with
elements	that	the	user	can	later	view...
If	changes	were	made	but	the	dialog	callback	function	returned	FALSE,	the
changes	will	be	discarded.

Example
case	DN_INITDIALOG:
		struct	FarDialogItem	DialogItem;

		Info.SendDlgMessage(hDlg,DM_GETDLGITEM,75,(LONG_PTR)&DialogItem);

		if(DialogItem.ListItems->Items[0].Flags&LIF_SELECTED

				Computer=Pl2;

		else

		...

		return	TRUE;

See	also:
DialogEx

DN_KEY
Events	|	Dialog	API

The	DN_KEY	event	is	sent	to	the	dialog	callback	function	after	the	user	presses
a	key	in	the	dialog.

Param1
The	ID	of	the	dialog	item	receiving	the	event	(usually	it	is	the	item	that	has	the
keyboard	focus).

Param2
Internal	key	code.

Return
TRUE	-	the	key	was	processed	internally.
FALSE	-	the	key	should	be	processed	by	the	internal	handler	of	the	Dialog	API
kernel.

Remarks
By	default	the	DN_KEY	event	is	not	sent	for	an	open	DI_COMBOBOX.	Use
the	DM_SETCOMBOBOXEVENT	message	to	enable	the	sending	of	DN_KEY
events.

Example
Example	of	processing	the	event:
//	Center	the	dialog	if	the	user	has	pressed	Ctrl-Apps

case	DN_KEY:

		if(Param2	==	KEY_CTRLAPPS)

		{

				COORD	c={-1,-1};

				Info.SendDlgMessage(hDlg,DM_MOVEDIALOG,TRUE,(LONG_PTR)&c);

				return	TRUE;

		}

See	also:
DialogEx,	DM_KEY

DN_KILLFOCUS
Events	|	Dialog	API

The	DN_KILLFOCUS	event	is	sent	to	the	dialog	callback	function	before	a
dialog	item	loses	the	focus.

Param1
The	ID	of	the	dialog	item	that	loses	the	focus.

Param2
0

Return
-1	-	allow	the	dialog	item	to	lose	focus
>=0	-	ID	of	the	dialog	item	you	want	to	pass	the	focus	to.

Controls
Control Description

All All	elements	that	can	receive	the	keyboard	focus.

Remarks

Example

See	also:
DialogEx

DN_LISTCHANGE
Events	|	Dialog	API

The	DN_LISTCHANGE	event	is	sent	to	the	dialog	callback	function	to	notify
of	changes	that	occurred	to	an	item	in	the	list	of	the	DI_COMBOBOX,
DI_LISTBOX	or	DIF_HISTORY	types.

Param1
Dialog	item	ID.

Param2
Current	position	in	the	list.

Return
TRUE	-	allow	the	changes
FALSE	-	discard	changes.

Controls
Control Description

DI_COMBOBOX Combined	list

DI_LISTBOX List	box

DI_EDIT Text	input	control	(with	the	DIF_HISTORY	flag	set)

DI_FIXEDIT Fixed	size	text	input	control	(with	the	DIF_HISTORY
flag	set)

Remarks

Example

See	also:
DialogEx

DN_LISTHOTKEY
Events	|	Dialog	API

The	DN_LISTHOTKEY	event	is	sent	to	the	dialog	callback	function	to	notify
that	the	user	used	a	hotkey	to	change	to	an	item	in	the	list	(DI_LISTBOX).

Param1
Dialog	item	ID	DI_LISTBOX.

Param2
Position	of	the	selected	item	in	the	list.

Return
FALSE	-	allow	the	change,
TRUE	-	the	plugin	has	processed	the	event	by	itself.

Controls
Control Description

DI_LISTBOX List	box

See	also:
DialogEx

DN_MOUSECLICK
Events	|	Dialog	API

The	DN_MOUSECLICK	event	is	sent	to	the	dialog	callback	function	after	the
user	clicks	the	mouse	on	one	of	the	dialog	items	or	outside	the	dialog.

Param1
Dialog	item	ID	or	-1	if	the	user	clicked	outside	the	dialog.

Param2
Pointer	to	a	MOUSE_EVENT_RECORD	structure.

Return
TRUE	-	the	dialog	callback	function	has	handled	the	message,	no	further
processing	by	the	kernel	is	needed.
FALSE	-	continue	processing	the	message	by	the	kernel.

Controls
Control Description

All All	dialog	elements	excluding	hidden	and	disabled

Remarks

1.	 For	the	DI_USERCONTROL	control	the	mouse	cursor	coordinates	are
relative	to	the	upper	left	corner	of	the	control.	For	all	other	elements	the
coordinates	are	relative	to	the	upper	left	corner	of	the	screen.

2.	 The	dialog	callback	function	can	handle	the	DOUBLE_CLICK	event.	For
this	you	should	check	the
MouseEvent.dwEventFlags==DOUBLE_CLICK	flag:

3.	 If	the	user	clicks	outside	the	dialog,	then:
the	left	mouse	button	is	treated	as	if	<Esc>	was	pressed;
the	right	mouse	button	is	treated	as	if	<Enter>	was	pressed;
other	mouse	buttons	are	ignored	(for	a	multiple	button	mice).
If	the	dialog	callback	function	doesn't	handle	the	message	with	ID=-1,
the	dialog	will	be	closed

Example

See	also:
DialogEx

DN_MOUSEEVENT
Events	|	Dialog	API

The	DN_MOUSEEVENT	event	is	sent	to	the	dialog	callback	function	before	a
mouse	message	is	handled	by	the	dialog	kernel.

Param1
0

Param2
Pointer	to	a	MOUSE_EVENT_RECORD	structure.

Return
TRUE	-	enable	further	processing	of	the	event	by	the	dialog	kernel.
FALSE	-	the	event	has	been	handled	by	the	plugin.

Controls
Control Description

Dialog the	event	applies	only	to	the	dialog

Remarks

1.	 By	default,	the	DN_MOUSEEVENT	event	is	not	sent	to	the	dialog
callback	function.	To	enable/disable	sending	of	this	event,	use	the
DM_SETMOUSEEVENTNOTIFY	message.

2.	 Do	not	enable	this	event	unless	you	really	need	it:	mouse	events	are	sent
very	frequently!

3.	 A	plugin	may	modify	the	fields	of	the	MOUSE_EVENT_RECORD
structure	passed	to	it.

4.	 By	default	the	DN_MOUSEEVENT	event	is	not	sent	for	an	open
DI_COMBOBOX.	Use	the	DM_SETCOMBOBOXEVENT	message	to
enable	the	sending	of	DN_MOUSEEVENT	events.

Example

See	also:
DialogEx
DM_SETMOUSEEVENTNOTIFY

DN_RESIZECONSOLE
Events	|	Dialog	API

The	DN_RESIZECONSOLE	event	is	sent	to	the	dialog	callback	function	after
the	console	window	size	has	changed	(for	example,	when	the	user	presses	Alt-
F9).

Param1
0

Param2
Pointer	to	a	COORD	structure	containing	the	current	size	of	the	console.

Return
TRUE.

Controls
Control Description

Dialog This	event	apllies	only	to	the	dialog

Remarks
The	DN_RESIZECONSOLE	message	is	useful	in	the	case	when	a	dialog	can
adapt	to	the	current	size	of	the	console.	An	example	of	such	functionality	is	the
Find	files	dialog	(Alt-F7).

Example
Adaptation	of	Find	File's	(Alt-F7)	dialog	size	when	console	size	changes:

case	DN_RESIZECONSOLE:

{

		COORD	coord=(*(COORD*)Param2);

		SMALL_RECT	rect;

		int	IncY=coord.Y-DlgHeight-4;

		...

		Info.SendDlgMessage(hDlg,DM_ENABLEREDRAW,FALSE,0);

		Info.SendDlgMessage(hDlg,DM_GETDLGRECT,0,(LONG_PTR)&rect);

		coord.X=rect.Right-rect.Left+1;

		DlgHeight+=IncY;

		coord.Y=DlgHeight;

		if	(IncY	>	0)

				Info.SendDlgMessage(hDlg,DM_RESIZEDIALOG,0,(LONG_PTR)&coord);

		for	(I=0;	I	<	2;	I++)

		{

				Info.SendDlgMessage(hDlg,DM_GETITEMPOSITION,I,(LONG_PTR)&rect);

				rect.Bottom+=(short)IncY;

				Info.SendDlgMessage(hDlg,DM_SETITEMPOSITION,I,(LONG_PTR)&rect);

		}

		for	(I=2;	I	<	10;	I++)

		{

				Info.SendDlgMessage(hDlg,DM_GETITEMPOSITION,I,(LONG_PTR)&rect);

				if	(I==2)

						rect.Left=-1;

				rect.Top+=(short)IncY;

				Info.SendDlgMessage(hDlg,DM_SETITEMPOSITION,I,(LONG_PTR)&rect);

		}

		if	(IncY	<=	0)

				Info.SendDlgMessage(hDlg,DM_RESIZEDIALOG,0,(LONG_PTR)&coord);

		Info.SendDlgMessage(hDlg,DM_ENABLEREDRAW,TRUE,0);

		...

		return	TRUE;

}

See	also:
DialogEx

Input	focus
main	|	Dialog	API	|	Dialog	items

For	keyboard	messages	distribution	the	so-called	keyboard	input	focus
conception	is	used.	Input	focus	is	an	attribute	which	applies	to	a	dialog	element.
If	the	element	has	the	focus	it	means	that	it	receives	all	(nearly	:))	keyboard
messages	from	FAR	Manager	system	queue.

The	Dialog	Manager	can	move	input	focus	from	one	element	to	another.	When
you	press	Tab,	Shift-Tab,	or	Alt-Symbol,	the	input	focus	moves	to	the
next/previous	dialog	element,	or	to	the	element	that	have	the	corresponding	hot-
key	defined,	respectively.

The	dialog	callback	function	can	track	getting/losing	the	input	focus	of	dialog
controls.	When	an	element	gets	the	input	focus,	the	callback	function	receives
the	DN_GOTFOCUS	event.	When	an	element	loses	the	input	focus,	the	callback
function	receives	the	DN_KILLFOCUS	event.	In	responce	to	the
DN_KILLFOCUS	event	the	callback	function	can	disallow	focus	loss	by	the
element,	by	returning	the	value	-1.	The	DN_GOTFOCUS	event	has	only	an
informative	meaning,	i.e.	you	can't	undo/prevent	this	event	from	happening.

FAR	Manager	Dialog	API	programming	interface	contains	two	messages	which
allow	to	get	or	change	the	control	having	the	input	focus.	These	messages	are
DM_GETFOCUS	and	DM_SETFOCUS	correspondingly.

Listed	below	are	dialog	controls	which	can	receive	keyboard	input	focus
(provided	that	there're	no	DIF_NOFOCUS	and/or	DIF_DISABLE	flags	set	for
them):

Item Description

DI_BUTTON Button.

DI_CHECKBOX Check	Box.

DI_COMBOBOX Dropdown	List	(ComboBox).

DI_EDIT Edit	Box.

DI_FIXEDIT Fixed-size	Edit	Box.

DI_LISTBOX List	Box.

DI_PSWEDIT Password	Input	Box.

DI_RADIOBUTTON Radio	Button.

DI_USERCONTROL Custom	control	element	defined	by	a	programmer.

See	also:
DefDlgProc,	DialogEx,	SendDlgMessage

Service	functions	-	Panel
main

Function Description

Control allows	to	request	different	information	about	the	FAR
panels	and	perform	various	control	actions.

FreeDirList releases	the	memory	allocated	for	files	list	by
GetDirList	and	GetPluginDirList	functions.

GetDirList returns	the	list	of	files	in	the	specified	directory.

GetPluginDirList returns	list	of	files	in	the	specified	directory	in	the	file
system	emulated	by	a	plugin.

See	also:
Exported	functions,	Structures,	Archive	support,	Addons,	Win32
structures	and	function

Panel	plugin	structures
main	|	structures

Structure Description

InfoPanelLine One	line	in	the	info	panel

KeyBarTitles Overrides	function	key	labels	in	the	key	bar

PanelInfo Information	about	a	Far	panel

PanelMode Describes	a	panel	view	mode

PanelRedrawInfo Used	to	redraw	a	panel

PluginPanelItem Information	about	an	item	in	the	emulated	file	system

See	also:
Exported	functions,	Service	functions,	Dialog	API,	Archive
support,	Addons,	Delphi	structures,	Win32	structures

Addons	-	General	purpose	functions
main	|	addons

Function Description

InitDialogItems Translates	InitDialogItem	structure	to	FarDialogItem
structure

InitMenuItems Translates	InitMenuItem	structure	to	FarMenuItem
structure

LocMsg Returns	a	pointer	to	a	string	according	to	language
settings	of	FAR	Manager

See	also:
Custom	API	Exported	functions
Structures
Archive	support

InitDialogItems
main	|	Addons

The	InitDialogItems	function	translates	an	array	of	InitDialogItem	structures	to
an	array	of	FarDialogItem	structures.

	Attention!
The	InitDialogItems	function	is	not	part	of	the	standard	API.

void	InitDialogItems(

							const	struct	InitDialogItem	*Init,

							struct	FarDialogItem	*Item,

							int	ItemsNumber

)

{

		int	I;

		const	struct	InitDialogItem	*PInit=Init;

		struct	FarDialogItem	*PItem=Item;

		for	(I=0;	I	<	ItemsNumber;	I++,PItem++,PInit++)

		{

				PItem->Type=PInit->Type;

				PItem->X1=PInit->X1;

				PItem->Y1=PInit->Y1;

				PItem->X2=PInit->X2;

				PItem->Y2=PInit->Y2;

				PItem->Focus=PInit->Focus;

				PItem->Reserved=PInit->Selected;

				PItem->Flags=PInit->Flags;

				PItem->DefaultButton=PInit->DefaultButton;

				if	((unsigned	int)PInit->Data	<	2000)

						strcpy(PItem->Data,GetMsg((unsigned	int)PInit->Data));

				else

						strcpy(PItem->Data,PInit->Data);

		}

}

Parameters
Init
Pointer	to	an	array	of	InitDialogItem	structures.	Each	array	item	defines	one

dialog	item.
Item
Pointer	to	an	array	of	FarDialogItem	structures	to	initialize.	Each	array	item
will	define	one	dialog	item.

ItemsNumber
Number	of	elements	in	Init.

Return	value
None.

Remarks
Use	of	the	InitDialogItems	function	is	reasoned	by	the	following:
FarDialogItem.Data	variable	is	large,	that's	why	direct	initalization	of	an	array
of	FarDialogItem	structures	may	significantly	increase	memory	usage.

The	example	bellow	shows	how	to	use	the	InitDialogItems	function	and	the
InitDialogItem	structure	to	create	a	dialog.

Example
TempPanel	plugin	configuration	dialog	sample:

int	Config()

{

		struct	InitDialogItem	InitItems	[]={

				DI_DOUBLEBOX,3,1,72,8,0,0,0,0,(char	*)MConfigTitle,

				DI_CHECKBOX,5,2,0,0,0,0,0,0,(char	*)MConfigAddToDisksMenu,

				.	.	.

				DI_BUTTON,0,7,0,0,0,0,DIF_CENTERGROUP,1,(char	*)MOk,

				DI_BUTTON,0,7,0,0,0,0,DIF_CENTERGROUP,0,(char	*)MCancel

		};

		struct	FarDialogItem	DialogItems[sizeof(InitItems)/sizeof(InitItems[0])];

		.	.	.

		InitDialogItems(InitItems,DialogItems,sizeof(InitItems)/sizeof(InitItems[0]));

		.	.	.

		int	ExitCode=Info.Dialog(Info.ModuleNumber,

																		-1,-1,76,10,

																		"TempCfg",DialogItems,

																		sizeof(DialogItems)/sizeof(DialogItems[0]));

		if	(ExitCode	!=	7)

				return(FALSE);

.	.	.

}

	

See	also:
Dialog	|	InitDialogItem	|	FarDialogItem

InitMenuItems
main	|	Addons

The	InitMenuItems	function	translates	an	array	of	InitMenuItem	structures	to
an	array	of	FarMenuItem	structures.

	Attention!
The	InitMenuItems	function	is	not	part	of	the	standard	API.

void	InitMenuItems(

									const	struct	InitMenuItem	*Init,

									struct	FarMenuItem	*Item,

									int	ItemsNumber)

{

		int	I;

		struct	FarMenuItem	*PItem=Item;

		const	struct	InitMenuItem	*PInit=Init;

		for	(I=0;	I	<	ItemsNumber;	I++,PItem++,PInit++)

		{

				PItem->Selected=PInit->Selected;

				PItem->Checked=PInit->Checked;

				PItem->Separator=PInit->Separator;

				if	((unsigned	int)PInit->Text	<	2000)

						strcpy(PItem->Text,GetMsg((unsigned	int)PInit->Text));

				else

						strcpy(PItem->Text,PInit->Text);

		}

}

Parameters
Init
Pointer	to	an	array	of	InitMenuItem	structures.	Each	array	item	defines	one
menu	item.

Item
Pointer	to	an	array	of	FarMenuItem	structures	to	initialize.	Each	array	item
defines	one	menu	item.

ItemsNumber

Number	of	elements	in	Init.

Return	value
None.

Remarks
Use	of	the	InitMenuItems	function	is	reasoned	by	the	following:
FarMenuItem.Text	variable	is	large,	that's	why	direct	initalization	of	an	array	of
FarMenuItem	structures	may	significantly	increase	memory	usage.

Example	bellow	shows	how	to	use	the	InitMenuItems	function	and	the
InitMenuItem	structure	to	create	a	menu.

See	also:
Menu	|	InitMenuItem	|	FarMenuItem

LocMsg
main	|	Addons

The	LocMsg	function	returns	a	pointer	to	a	string	according	to	the	language
settings	of	FAR	Manager.	It	is	an	analogue	of	the	standard	GetMsg	function.

	Attention!
The	LocMsg	function	function	is	not	part	of	the	standard	API.	The
source	code	is	available	here.

char	*LocMsg(

		struct	PluginStartupInfo	*psi,

		char	*MsgName,

		char	*Var,

		int	Len

);

Parameters
psi
Pointer	to	a	PluginStartupInfo	structure;	it	is	used	to	get	RootKey	and
ModuleNumber	variables.

MsgName
Name	of	the	requested	message.

Var
If	not	NULL,	points	to	a	buffer	that	receives	the	requested	string.

Len
If	zero,	all	the	data	is	copied.

Return	value
Pointer	to	the	requested	string.

Remarks

1.	 In	contrast	to	the	GetMsg,	this	function	does	not	cache	data.	This	allows	to
change	data	dynamically	(without	restarting	FAR	Manager,	etc.).

2.	 The	LocMsg	function	may	be	used	to	"localize"	"second	level"	plugins.
3.	 It	considers	the	language	setting	of	the	current	user.

4.	 A	file	containing	the	messages	should	be	located	in	the	same	folder,	as	the
plugin,	and	should	be	named	as	following:	PluginName.msg.	It	is	a
standard	ini-file	with	the	following	structure:
[Default]

//This	section	defines	the	default	language	section,	which	will	be	used,

//if	the	requested	section	is	not	found.

//It	is	an	optional	section,	if	it	is	absent,	first	section	will	be	the

//default.

Language=Russian

//Section	names	SHOULD	be	taken	from	the	first	line	of

//the	corresponding	.lng	file:

//.Language=Russian,Russian	(Русский)

//										^^^^^^^

//										This	should	be	the	the	name	of	the	section

[Russian]

String1=Текст	первого	сообщения

String2=Текст	второго	сообщения

IsSkipNoWord=1

[English]

String1=Text	of	the	first	message

String2=Text	of	the	second	message

IsSkipNoWord=1

//etc.

Example
		BOOL	IsSkipNoWord;

		p=LocMsg("IsSkipNoWord",NULL,1);

		IsSkipNoWord=(*p	!=	'0')?TRUE:FALSE;

		phf=strrchr(LocMsg(temp,"String1",956),".");

See	also:
GetMsg	|	Language	files

Addons	-	Structures
main	|	Addons

Structure Description

InitDialogItem Defines	the	dialog	item

InitMenuItem Defines	the	menu	item

See	also:
Custom	API	Exported	functions
Structures
Archive	support

InitDialogItem
main	|	structures	|	Addons

The	InitDialogItem	structure	defines	one	dialog	item.	This	structure	is	non-
standard	-	it	is	the	analogue	of	the	FarDialogItem	structure.	The	only	difference
is	the	Data	member.

	Attention!
The	InitDialogItem	structure	is	not	a	part	of	the	standard	API.

struct	InitDialogItem

{

		int	Type;

		int	X1;

		int	Y1;

		int	X2;

		int	Y2;

		int	Focus;

		DWORD_PTR	Selected;

		unsigned	int	Flags;

		int	DefaultButton;

		char	*Data;

};

Remarks
Use	of	the	InitDialogItem	structure	instead	of	the	FarDialogItem	structure	is
reasoned	by	the	following:
The	FarDialogItem.Data	variable	is	large,	that's	why	direct	initalization	of	an
array	of	FarDialogItem	structures	may	significantly	increase	memory	usage.	
You	can	use	the	InitDialogItems	function	for	translation	of	InitDialogItem
structures	to	FarDialogItem	structures	.

See	also:
Structures	|	FarDialogItem	|	TFarDialogItem	|	InitDialogItems

InitMenuItem
main	|	structures	|	Addons

The	InitMenuItem	structure	defines	one	menu	item.	This	structure	is	non-
standard	-	it	is	the	analogue	of	the	FarMenuItem	structure.	The	only	difference	is
the	Text	member.

	Attention!
The	InitMenuItem	structure	is	not	a	part	of	the	standard	API.

struct	InitMenuItem

{

		char*	Text;

		int	Selected;

		int	Checked;

		int	Separator;

};

Remarks
Use	of	the	InitMenuItem	structure	instead	of	the	FarMenuItem	structure	is
reasoned	by	the	following:
FarMenuItem.Text	variable	is	large,	that's	why	direct	initalization	of	an	array	of
FarMenuItem	structures	may	significantly	increase	memory	usage.

You	can	use	the	InitMenuItems	function	for	translation	of	InitMenuItem
structures	to	FarMenuItem	structures.

See	also:
Structures	|	FarMenuItem	|	TFarMenuItem

FMT-modules	exported	functions
main	|	Custom	API	|	archive	support

	Note
This	information	is	valid	only	for	MultiArc	plugin	which	comes	with
the	standard	distribution	of	FAR	Manager!

Function Description

CloseArchive Close	an	archive.

GetArcItem Get	the	information	about	the	next	archive	element.

GetDefaultCommands Get	archiver	command	list	used	by	default

GetFormatName Get	archive	format	name.

GetSFXPos Get	archive	beginning	position.

IsArchive Check	whether	the	specified	file	is	an	archive.

LoadFormatModule Called	when	a	sublugin	is	being	loaded.

OpenArchive Open	an	archive	and	prepare	it	for	reading.

SetFarInfo Pass	global	settings	to	a	plugin.

See	also:
Exported	functions,	Service	functions,	structures,	Addons,
custom.ini	file	format

LoadFormatModule
main	|	Custom	API	|	archive	support

It's	called	when	a	subplugin	is	finished	loading.	This	function	is	optional	and	can
be	omitted.

DWORD	WINAPI	LoadFormatModule(

		const	char	*ModuleName

);

Parameters
ModuleName
subplugin	module	name	(FMT	file	full	path	name)

Return	value
Must	be	0.	May	be	used	in	the	future	for	returning	information	about	a
subplugin.

Remarks
This	function	is	called	only	once	when	MultiArc	loads	a	subplugin	(see	MultiArc
sources	-	ARCPLG.CPP	file,	ArcPlugins::LoadFmtModules	function).

See	also:
archive	support

IsArchive
main	|	Custom	API	|	archive	support

Check	whether	the	specified	file	is	an	archive.

BOOL	WINAPI	IsArchive(

		const	char	*Name,

		const	unsigned	char	*Data,

		int	DataSize

);

Parameters
Name
Archive	name

Data
archive	file	data	(pointer	to	data	of	DataSize	size	relative	to	the	beginning	of
the	file)

DataSize
the	size	of	data	passed	to	the	function

Return	value
TRUE	if	the	archive	type	is	supported	by	plugin.

Example
An	example	of	ZIP	archive	definition	(ZIP.CPP)

BOOL	WINAPI	_export	IsArchive(const	char	*Name,

																						const	unsigned	char	*Data,

																						int	DataSize)

{

		for	(int	I=0;I	<	DataSize-10;I++)

		{

				const	unsigned	char	*D=Data+I;

				if	(D[0]=='P'	&&	D[1]=='K'	&&

								D[2]==3			&&	D[3]==4			&&

								D[8]<15			&&	D[9]==0)

				{

						SFXSize=I;

						return(TRUE);

				}

		}

		return(FALSE);

}

See	also:
archive	support

GetSFXPos
main	|	Custom	API	|	archive	support

Returns	the	position	of	the	beginning	of	the	archive	in	the	data	stream	passed	to
the	function.

DWORD	WINAPI	GetSFXPos(void);

Parameters
None.

Return	value
Position	of	the	beginning	of	the	archive	relative	to	the	beginning	of	file.

Remarks
GetSFXPos	function	is	called	right	after	the	successful	archive	recognition	by
the	IsArchive	function.	MultiArc	selects	the	FMT-module	which	returned	the
least	value	(closer	to	the	beginning	of	the	file).	This	fixes	the	issue	when,	for
example,	there's	an	ARJ	archive	placed	without	compression	inside	the	ZIP
archive	with	the	name,	say,	"N3gk8v1t.106".	Previous	versions	of	MultiArc
would	show	the	contents	of	the	ARJ	archive	instead	of	the	ZIP	one.

See	also:
archive	support

OpenArchive
main	|	Custom	API	|	archive	support

Opens	an	archive	and	prepares	it	for	reading.	Called	after	a	successful	execution
of	the	IsArchive	function.

BOOL	WINAPI	OpenArchive(

		const	char	*Name,

		int	*Type

);

Parameters
Name
archive	name

Type
if	the	plugin	supports	several	archive	types	then	set	it	to	the	archive	type	else
set	it	to	0.

Return	value
TRUE	if	success,	FALSE	in	case	of	error.

Remarks
This	function	should	be	used	for	archive	file	opening,	getting	the	necessary
information	about	an	archive	and	all	that	is	needed	for	successfull	filling	of
FAR's	virtual	file	system.

See	also:
archive	support

GetArcItem
main	|	Custom	API	|	archive	support

Get	the	information	about	archive's	next	element.	Executed	in	a	cycle	after	the
OpenArchive	function	call	while	the	module	returns	GETARC_SUCCESS
value.

int	WINAPI	GetArcItem(

		struct	PluginPanelItem	*Item,

		struct	ArcItemInfo	*Info

);

Parameters
Item
This	structure	must	be	initialized	(see	PluginPanelItem	for	detailed	info	about
structure	fields)

Info
Additional	item	information,	which	should	be	filled	if	possible	(see
ArcItemInfo).

Return	value
Return	value Description

GETARC_EOF End	of	archive	reached.

GETARC_SUCCESS Item	received	successfully.

GETARC_BROKEN Broken	(damaged)	archive

GETARC_UNEXPEOF Unexpected	end	of	archive

GETARC_READERROR Read	error

See	also:
archive	support

CloseArchive
main	|	Custom	API	|	archive	support

Close	the	archive.	Launched	after	the	last	call	of	the	GetArcItem	function.

BOOL	WINAPI	CloseArchive(

		struct	ArcInfo	*Info

);

Parameters
Info
Extended	archive	information	which	should	be	filled	if	there's	an	opportunity
(see	ArcInfo).

Return	value
TRUE	if	the	function	succeeds.

See	also:
archive	support,	ArcInfo,	GetArcItem

GetFormatName
main	|	Custom	API	|	archive	support

Get	archive	format	name.

BOOL	WINAPI	GetFormatName(

		int	Type,

		char	*FormatName,

		char	*DefaultExt

);

Parameters
Type
archive	type

FormatName
format	name;	it's	used	for	saving	parameters	in	the	registry	and	for	selecting
the	desired	archive	format.

DefaultExt
default	file	extension	for	the	format	(without	'.');	used	for	accelerating	format
recognition.

Return	value
TRUE	in	case	of	success.	FALSE	when	the	specified	archive	type	is	not
supported.

Example
An	example	getting	ZIP-file	format	name	(ZIP.CPP)

BOOL	WINAPI	_export	GetFormatName(int	Type,char	*FormatName,char	*DefaultExt)

{

		if	(Type==0)

		{

				strcpy(FormatName,"ZIP");

				strcpy(DefaultExt,"zip");

				return(TRUE);

		}

		return(FALSE);

}

See	also:
archive	support

GetDefaultCommands
main	|	Custom	API	|	archive	support

Get	archiver	command	strings	used	by	default

BOOL	WINAPI	GetDefaultCommands(

		int	Type,

		int	Command,

		char	*Dest

);

Parameters
Type
Archive	type

Command
Archiver	command	number:

Number Description

0 extract

1 extract	without	path

2 test

3 delete

4 comment	archive

5 comment	files

6 convert	to	SFX

7 lock

8 add	recovery	record

9 recover

10 add	files

11 move	files

12 add	files	and	folders

13 move	files	and	folders

14 mask	to	select	all	files

This	is	how	it	looks	like	in	MultiArc	plugin	settings:

Dest
Buffer	for	copying	commands.	MultiArc	expects	string	of	no	more	than	512
bytes.

Return	value
TRUE	in	case	of	success.	FALSE	if	the	specified	archive	type	is	unsupported.	If
the	type	is	supported	but	the	required	command	is	missing	return	TRUE	and	set
Dest	to	an	empty	string.

See	also:
archive	support

SetFarInfo
main	|	Custom	API	|	archive	support

Called	when	a	subplugin	module	is	loaded	and	MultiArc	passes	a
PluginStartupInfo	structure	pointer	to	the	plugin.	This	function	is	optional	and
can	be	omitted.

void		WINAPI	SetFarInfo(

		const	struct	PluginStartupInfo	*Info

);

Parameters
Info
a	pointer	to	a	PluginStartupInfo	structure

Return	value
None.

Remarks

1.	 Function	is	called	only	once	immediately	after	LoadFormatModule	function
call,	after	which	a	subplugin	knows	about	FAR	Manager	as	much	as
MultiArc	plugin	itself	(plus	some	additional	info	from	MultiArc).

2.	 Info	pointer	is	valid	only	within	the	function	scope	(only	inside	the
function)	so	the	structure	must	be	copied	to	subplugin's	internal	variable	for
further	use:
static	struct	PluginStartupInfo	Info;

...

void	WINAPI	_export	SetStartupInfo(const	struct	PluginStartupInfo	*Info)

{

		::Info=*Info;

		...

}

3.	 If	there're	"standard	functions"	(from	FarStandardFunctions	structure)	used
in	the	plugin	then	PluginStartupInfo.FSF	member	must	be	saved	to
subplugin's	local	scope	as	well:
static	struct	PluginStartupInfo	Info;

static	struct	FarStandardFunctions	FSF;

void		_export	SetStartupInfo(struct	PluginStartupInfo	*psInfo)

{

				Info=*psInfo;

				FSF=*psInfo->FSF;

				Info.FSF=&FSF;	//	correct	the	address	in	the	local	structure

				...

}	

See	also:
archive	support,	PluginStartupInfo

Structures	used	by	FMT-modules
main	|	Custom	API	|	archive	support

	Note
This	information	is	valid	only	for	MultiArc	plugin	which	comes	with
the	standard	distribution	of	FAR	Manager!

Structure Description

ArcInfo Common	information	about	an	archive

ArcItemInfo Information	about	a	specific	archive	element

See	also:
Exported	functions,	Service	functions,	structures,	Addons,
custom.ini	file	format

ArcItemInfo
main	|	Custom	API	|	archive	support

This	structure	is	passed	to	the	GetArcItem	function	(all	fields	are	already
initialized	by	0's).

struct	ArcItemInfo

{

		char	HostOS[32];

		char	Description[256];

		int	Solid;

		int	Comment;

		int	Encrypted;

		int	DictSize;

		int	UnpVer;

		int	Chapter;

};

Members
HostOS
Host	operating	system	or	empty	string	if	it's	unknown

Description
Element	description	or	an	empty	string

Solid
Flag	that	indicates	that	the	archive	is	solid.

Comment
Set	this	flag	if	there's	a	comment	in	the	archive

Encrypted
Set	this	flag	if	the	archive	is	encrypted

DictSize
Dictionary	size	or	0	if	it's	unknown

UnpVer
Archiver	version	necessary	for	unpacking	(HighNumber*256+LowNumber)
or	0	if	it's	unknown

Chapter
archive	chapter	where	the	file	belongs.

See	also:
archive	support	structures

ArcInfo
main	|	Custom	API	|	archive	support

This	structure	is	passed	to	the	CloseArchive	function.

struct	ArcInfo

{

		int	SFXSize;

		int	Volume;

		int	Comment;

		int	Recovery;

		int	Lock;

		DWORD	Flags;

		DWORD	Reserved;

		int	Chapters;

};

Members
SFXSize
SFX	module	size

Volume
Volume	flag

Comment
Archive	comment	is	present

Recovery
Recovery	record	is	present

Lock
Archive	is	locked

Flags
Additional	archive	information	flags.	The	Flags	field	can	be	a	combination	of
the	following	values:

Structure Description

AF_AVPRESENT There's	a	digital	signature	(archive	authenticity
information).

AF_IGNOREERRORS Archive	command	exit	codes	are	ignored	for	this
archive.

AF_HDRENCRYPTED Archive	header	is	encrypted.

Reserved
reserved	for	future	use.

Chapters
Number	of	chapters	in	an	archive.

Remarks
ArcInfo	structure,	initialized	by	0's,	is	passed	to	the	CloseArchive	function.

See	also:
archive	support,	structures

Archivers'	command	line	arguments
main	|	Custom	API	|	archive	support	

The	following	variables	can	be	used	in	external	archivers'	command-lines	for
different	archive	handling	operations:

Variables Description

%%A Archive	name.

%%a Archive	short	name.

%%W Folder	for	temporary	files,	including	trailing	slash
symbol.

%%P Password.

%%R Current	folder	in	the	archive.

%%L List	of	file	names	(file	list).	It's	a	file	containing	file
names	to	be	processed	by	the	external	archiver.

%%l List	of	short	file	names.

%%F Name(s)	of	the	file(s)	to	process.	If	all	the	file	names
don't	fit	in	the	command	line	then	the	archiver	will	be
launched	several	times	until	all	file	names	are
processed.	By	default	the	maximum	command	line
length	is	127	symbols,	but	one	can	define	it	explicitly
right	after	%%F	(i.e.	%%F512).	The	%%F	variable
should	be	used	only	in	case	the	archiver	doesn't
support	file	lists.

%%f Name	of	a	single	file	to	process.	Archiver	will	be
launched	several	times	until	all	the	file	names	are
processed.	This	variable	should	be	used	only	in	case
the	archiver	doesn't	support	file	lists	or	several	file
names	in	its	command	line.

%%E	«exit	code» Maximum	allowable	exit	code.	For	example,	%%E2
shows	that	exit	codes	of	0,	1	and	2	are	allowed.	The
variable	can	be	used	at	any	place	in	the	command	line.
If	it's	missing	the	only	available	exit	code	is	0.

%%S Place	for	additional	command	line	keys	defined	in	the
second	line	of	the	"Add"	dialog.	When	the	variable	is
missing	keys	are	added	to	the	end	of	the	command
line.

Modifiers	for	the	variables	Q,	S,	M,	N,	*,	W	can	be	used	for	more	accurate
definitions	of	file	name	formats.

Modifier Description

'Q' enclose	file	names	with	spaces	in	quotes;

'q' enclose	all	file	names	in	quotes;

'S' use	'/'	instead	of	'\'	in	full	paths;

'M' pass	folder	names	to	archivers	as	'name*.*';

'N' pass	folder	names	to	archivers	as	'name';

'*' use	'*'	mask	to	select	all	files.	This	modifier	overrides
"All	files	Mask"	parameter	for	any	single	command	of
the	archiver;

'W' use	name	without	path;

'P' use	path	without	name;

'A' use	ANSI	encoding.

These	modifiers	can	be	used	right	after	the	%%F,	%%f,	%%L	and	%%l	variables
without	spaces.	'P'	and	'A'	can	also	be	specified	after	%%A	and	%%a.	It's
allowed	to	use	several	modifiers	at	once,	for	example,	%%LMN	or
%%FQSN128.	If	there're	no	'M'	or	'N'	modifiers	the	archiver	receives	both
'name'	and	'name*.*'.

If	some	part	of	the	command	line	is	enclosed	in	curly	braces	{...}	it	will	be
added	to	the	resulting	command	line	only	in	case	it	contains	at	least	one	not
empty	variable	described	above.

If	an	external	archiver	doesn't	support	some	command	simply	leave	the
corresponding	line	empty.

See	also:
archive	support,	GetDefaultCommands

custom.ini	file	format
main	|	Custom	API	|	archive	support

In	the	standard	distribution	of	MultiArc	there's	a	limited	number	of	FMT-
modules	supporting	most	commonly	used	archivers.	Among	them	there's	the
CUSTOM.FMT	module	which	allows	to	define	"missing"	archivers	by	defining
the	archiver's	output	listing	format.	For	these	descriptions	the	CUSTOM.INI	file
is	used.

Each	new	archive	type	is	defined	within	individual	[Archive	Name]	sections
used	for	archive	type	name.	The	following	parameters	are	used	in	this	section:
TypeName	(optional	parameter)
overrides	format	name	defined	in	the	section	name	(left	for	compatibility
reasons)

ID	(optional	parameter)
archive	identifier	-	a	sequence	of	space	delimited	two-digit	hex	numbers	(i.e.
the	"ID=1a	4a	61	72	1b"	sequence	defines	JAR	archive	identifier)

IDOnly	(optional	parameter)
"archive	identifier	only".	If	it's	set	to	"1"	file	extension	is	ignored	and	archive
type	is	determined	by	the	ID	field	only.	If	it's	"0"	then	both	file	extension	and
ID	field	(if	it's	defined	in	this	section)	are	used	to	determine	archive	type.

IDPos	(optional	parameter)
position	from	which	CUSTOM.FMT	begins	to	look	for	the	archive	identifier
(ID).	If	the	field	is	not	defined	then	the	ID	is	searched	from	the	beginning	of
the	file.	By	default	FAR	"gives"	to	the	plugin	the	first	128K	of	data.

Extension
archive	extension	(without	'.').

List
external	archiver	command	for	file	listing.	Archive	name	is	added	after	this
string.	For	example,	for	List="jar32	v	-y"	field	the	jar32	v	-y
archive_name	command	will	be	composed.

Errorlevel	(optional	parameter)
listing	analysis	is	performed	only	if	archiver's	exit	code	is	less	than	the	one
defined	in	the	Errorlevel	parameter.

IgnoreErrors	(optional	parameter)

if	it's	not	0	then	archiver's	exit	code	is	ignored.	Use	with	caution!
Start	(optional	parameter)
substring	which	defines	the	beginning	of	the	listing	analysis.	If	the	string
begins	with	the	'^'	symbol	then	the	search	for	substring	is	performed	starting
from	the	second	symbol	of	the	current	line	in	the	listing.

End	(optional	parameter)
substring	which	defines	the	end	of	the	listing	analysis.	If	the	string	begins	with
the	'^'	symbol	then	search	for	substring	is	performed	starting	from	the	second
symbol	the	current	line	in	the	listing.

Format0	...	FormatN
parameters	describing	the	record	for	a	single	archive	element.	Each	parameter
describes	an	ordinary	record	string,	allowing	the	following	codes:

Code Description

n file	name

. remove	trailing	spaces	from	file	name	and	append
name	with	dot

z file	size

c file	description

p packed	file	size

d day

t month

TTT three	letters	of	month	name	(Jan,	Feb,	Mar,	...)

y year

h hours

H hours	modifier	letter	(a	-	a.m.	time,	p	-	p.m.	time)

m minutes

s seconds

a file	attributes

* skip	until	first	space	or	end	of	line

b day	of	last	access

v month	of	last	access

e year	of	last	access

x hours	of	last	access

l minutes	of	last	access

k seconds	of	last	access

j day	of	creation

g month	of	creation

f year	of	creation

o hours	of	creation

i minutes	of	creation

u seconds	of	creation

r CRC	(hex)

C Chapter	descriptions	field

(<number>) optional	digits,	some	or	all	digits	may	be	missing

If	the	string	begins	with	the	'^'	symbol	then	search	for	substring	is	performed
starting	from	the	second	symbol	of	the	current	line	in	the	listing.

IgnoreString0	...	IgnoreStringN
parameters	defining	strings	which	are	ignored	by	the	module	in	the	listing
analysis.	If	the	string	begins	with	the	'^'	symbol	then	search	for	substring	is
performed	starting	from	the	second	symbol	of	current	line	in	the	listing.

Extract	...	MoveRecurse
parameters	describing	archiver	commands.

Command Description

Extract unpack

ExtractWithoutPath unpack	without	paths

Test test	archive

Delete delete	files	from	archive

Comment add	archive	comment

CommentFiles add	files	comment

SFX convert	to	SFX

Lock lock	archive

Protect add	recovery	record

Recover recover	damaged	archive

Add add	files

Move move	files	to	archive

AddRecurse add	files	with	recursive	folder	tree	traversal

MoveRecurse move	files	with	recursive	folder	tree	traversal

Pseudo-variables	described	here	can	be	used	in	external	archivers'	command
lines	for	different	archive	processing	purposes.

AllFilesMask
"All	Files"	mask

Regular	expressions

Regular	expressions	(Perl5	syntax)	can	be	used	in	the	following	parameters:
FormatX,	IgnoreStringX,	Start,	End.	To	specify	that	a	pattern	should	be	matched
as	a	regular	expression,	enclose	it	in	slashes	('/').	The	following	regexp	flags	can
be	used	(if	corresponding	characters	are	placed	after	closing	slash):

Flag Description

i ignore	case

x extended	(use	explaining	spaces)

The	following	open	source	library	is	used	to	process	regular	expressions:	PCRE
(by	Philip	Hazel,	copyright	by	the	University	of	Cambridge,	England).

When	using	regexps	in	the	FormatX	parameter,	named	strings	(of	the	form	(?
P<name>\w+))	are	used	to	extract	information	from	listing	lines.	The
following	field	names	are	available:

Field Description

name file	name	with	relative	path	(leading	and	trailing
spaces	are	trimmed)

description file	description

size unpacked	file	size	in	bytes	(non-digit	characters	are
ignored	in	this	and	all	other	numeric	fields)

packedSize packed	file	size	in	bytes

attr file	attributes	(A	-	archive,	R	-	readonly,	S	-	system,	C
-	compressed,	H	-	hidden,	D	-	directory)

cYear,	cDay,	cMonth,	cHour,	cMin,
cSec

creation	time

mYear,	mDay,	mMonth,	mHour,
mMin,	mSec

modification	time

mAMPM,	mMonthA extended	time	fields	for	modification	time

aYear,	aDay,	aMonth,	aHour,	aMin,
aSec

access	time

CRC 32	bit	file	Cyclic	Redundancy	Checksum	(CRC)

For	example	to	process	the	following	listing:

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

	Volume	in	drive	D	is	work

	Volume	Serial	Number	is	xxxx-xxxx

	Directory	of	D:\works\MultiArc\final\Formats

15.11.2004		07:15				<DIR>										.

15.11.2004		07:15				<DIR>										..

14.11.2004		00:46													5	632	Ace.fmt

14.11.2004		00:46													4	608	Arc.fmt

14.11.2004		00:46													6	656	Arj.fmt

14.11.2004		00:46													6	144	Cab.fmt

15.11.2004		06:07												56	832	Custom.fmt

15.11.2004		07:14													1	551	custom.ini-re

15.11.2004		07:11												54	344	Formats.jkr

14.11.2004		00:46													4	608	Ha.fmt

14.11.2004		00:46													6	144	Lzh.fmt

15.11.2004		07:15																	0	out

14.11.2004		00:46													6	144	Rar.fmt

14.11.2004		00:46													9	216	TarGz.fmt

14.11.2004		00:46													6	656	Zip.fmt

														13	File(s)								168	535	bytes

															2	Dir(s)		37	840	883	712	bytes	free

the	following	settings	are	used:

Start="/^	Directory	of/"

End="/File\(s\)/"

Format0="/^(?P<cDay>\d+).(?P<cMonth>\d+).(?P<cYear>\d+)\s+	(?P<cHour>\d+):(?P<cMin>\d+)\s+(?P<packedSize>[\d\xff]+)\s(?P<name>.*?)\s*$/"

The	following	settings:

Start="/^..reading	directory/"

End="/^..listing	completed/"

Format0="/^[^\|]*\|(?P<size>[^\|]+)\|(?P<attr>[^\|]+)\|\s+(?P<name>.*?)\s*$/"

IgnoreString0="/^----	----	----	----/"

can	be	used	to	process	this	listing:

jkRes	utility	version	002

		pack/unpack	tool	to	work	with	jkRes	resource	bundles

..listing	files	from	resource	bundle

..reading	directory...12	items	found

----	----	----	----

				zlib	|					5632	|	A....	|	Ace.fmt

				zlib	|					4608	|	A....	|	Arc.fmt

				zlib	|					6656	|	A....	|	Arj.fmt

				zlib	|					6144	|	A....	|	Cab.fmt

				zlib	|				56832	|	A....	|	Custom.fmt

				zlib	|					4608	|	A....	|	Ha.fmt

				zlib	|					6144	|	A....	|	Lzh.fmt

				zlib	|					6144	|	A....	|	Rar.fmt

				zlib	|					9216	|	A....	|	TarGz.fmt

				zlib	|					6656	|	A....	|	Zip.fmt

				zlib	|				13012	|	A....	|	Custom.ini

				zlib	|					1072	|	A....	|	custom.ini-re

----	----	----	----

..listing	completed

..done

See	also:
archive	support

CRegExp
main	|	Custom	API	|	regexp

A	regular	expression	object	initialization	and	destruction.

Class	methods:

CRegExp();

CRegExp(char	*Text);

~CRegExp();

DLL	interface:

PRegExp	WINAPI	reCreate();

PRegExp	WINAPI	reCreateCompile(char	*text);

BOOL	WINAPI	reDestroy(PRegExp	re);

Members
re
Pointer	to	an	object	to	destroy.

Text
pointer	to	the	string	that	contains	the	regular	expression	to	compile.

Return	value
The	reCreate	and	reCreateCompile	functions	return	a	pointer	to	the	created
object,	which	will	be	used	in	every	function	call,	or	NULL	in	case	of	failure.
reDestroy	returns	the	result	of	regular	expression	object	destruction.

Remarks
Constructor	with	an	initialization	parameter	compiles	the	expression.	Result	is
available	through	isok	method	or	through	geterror	method.

See	also:
isok

CRegExp.isok
main	|	Custom	API	|	regexp

Returns	the	result	of	the	last	compilation.

Class	method:

bool	isok();

DLL	interface:

BOOL	WINAPI	reIsok(PRegExp	re);

Members
re
a	pointer	to	an	object

Return	value
Returns	TRUE	or	FALSE	depending	on	success	or	failure	of	the	last
compilation.

Remarks
It's	possible	to	use	geterror	extended	method	to	get	more	detailed	information
about	an	error.

See	also:
geterror
CRegExp

CRegExp.geterror
main	|	Custom	API	|	regexp

Extended	information	about	a	compilation	error.

Class	method:

EError	geterror();

DLL	interface:

EError	WINAPI	reGetError(PRegExp	re);

Members
re
a	pointer	to	an	object

Return	value
EError	enumeration	type	-	error	type:

enum	EError

{

		EOK	=	0,	EERROR,	ESYNTAX,	EBRACKETS,	EOP

};

all	goes	without	saying.

See	also:
isok

[missing	in	colorer	FreeCraze]

CRegExp.SetNoMoves
main	|	Custom	API	|	regexp

Allows/disallows	moving	inside	the	target	string.

Class	method:

bool	SetNoMoves(bool	Moves);

DLL	interface:

BOOL	WINAPI	reSetNoMoves(PRegExp	re,	BOOL	Moves);

Members
re
a	pointer	to	an	object

Moves
If	TRUE,	the	scanning	function	doesn't	move	inside	the	target	string.
Otherwise	an	attempt	is	taken	to	find	the	match	for	every	position	in	the	string.

Return	value
Returns	success/failure	of	setting	a	parameter.

Remarks
With	movement	along	the	target	string	enabled	in	fact	there's	a	scanning	function
call	for	every	position	in	the	string	from	the	first	through	the	last,	and	for	every
position	there's	an	attempt	to	find	a	match.	If	you	don't	need	this	feature,	don't
forget	to	call	SetNoMoves(TRUE);

See	also:
CRegExp

CRegExp.SetBkTrace
main	|	Custom	API	|	regexp

Set	references	for	\yN	operator

Class	method:

bool	SetBkTrace(char	*Str,	PMatches	Trace);

DLL	interface:

BOOL	WINAPI	reSetBkTrace(PRegExp	re,	char	*str,	PMatches	trace);

Members
re
a	pointer	to	an	object

Str
string	for	setting	a	relation

trace
set	of	bracket	matches	for	the	previous	regexp

Return	value
Returns	TRUE	or	FALSE	depending	of	operation	success/failure.

Remarks
This	function	is	used	for	setting	a	relation	between	different	regexps	(it's	used	in
the	colorer	plugin,	for	example)	-	by	means	of	\yN	operator,	where	N	-	bracket
number	in	the	first	regexp	for	reference.

See	also:
CRegExp

CRegExp.SetExpr
main	|	Custom	API	|	regexp

Sets	and	compiles	a	regexp.

Class	method:

bool	SetExpr(char	*Expr);

DLL	interface:

BOOL	WINAPI	reSetExpr(PRegExp	re,	char	*expr)

Members
re
a	pointer	to	an	object

expr
String	with	a	regexp	written	by	following	colorer	rules.	If	you	perform	the
search	in	non-OEM	codepage	then	you	should	first	pass	the	string	converted
to	your	codepage	to	this	method,	and	call	the	SetCodePage	function	with	the
address	of	the	transliteration	table	from	your	codepage	to	OEM.

Return	value
Returns	TRUE	or	FALSE	depending	on	operation	success/failure.

Remarks
It's	possible	to	use	extended	geterror	method	for	getting	more	detailed
information	about	an	error.

See	also:
SetCodePage	geterror
CRegExp

CRegExp.SetCodePage
main	|	Custom	API	|	regexp

Sets	codepage	for	working	with	texts	in	non-OEM	codepage.

Class	method:

void	SetCodePage(char	*Table);

DLL	interface:

void	WINAPI	reSetCodePage(PRegExp	re,	char	*Table);

Members
re
a	pointer	to	an	object

Table
Table	for	transliteration	from	the	target	code	page	to	OEM

Return	value
None

Remarks
For	regexps	to	be	full-fledged	in	another	codepage	it's	necessary	to	set	the
regexp	itself	to	the	target	codepage.	You	can	recompile	the	class	so	that	is	uses
non-OEM	codepage	by	default.	In	this	case	setcodepage	method	will	also	work
but	the	transliteration	tables	would	have	to	be	set	relative	to	the	codepage	the
cRegExp	class	has	been	compiled	with.

See	also:
CRegExp

[is	missing	in	FreeCraze	colorer]

CRegExp.Parse
main	|	Custom	API	|	regexp

Parses	the	compiled	regexp	against	a	target	string.

Class	method:

bool	Parse(char	*Str,	PMatches	Mtch);

DLL	interface:

BOOL	WINAPI	reParse(PRegExp	re,	char	*str,	PMatches	mtch);

Members
re
a	pointer	to	an	object

str
a	target	string	to	process

mtch
Pointer	to	a	structure	for	saving	bracket	matches

Return	value
Returns	TRUE	or	FALSE	depending	on	parsing	success/failure.

Remarks
When	one	uses	this	method	some	things	go	by	default.	The	beginning	of	the
string	corresponds	to	the	real	begginning,	and	the	end	of	the	string	corresponds
to...	er...	the	real	end.	If	you	want	to	use	the	extended	capabilities	-	use	a	more
feature-full	Parse	variant.

See	also:
Parse
CRegExp

CRegExp.Parse
main	|	Custom	API	|	regexp

Parses	the	compiled	regexp	against	a	target	string	using	extended	parameters.

Class	method:

bool	Parse(char	*Str,	char	*Sol,	char	*Eol,	PMatches	Mtch,	int	Moves	=	-1);

DLL	interface:

BOOL	WINAPI	reParseParam(PRegExp	re,	char	*str,	char	*Sol,	char	*Eol,	PMatches	mtch,	BOOL	moves)

Members
re
a	pointer	to	an	object

str
a	target	string	to	process

Sol
the	beginning	of	a	string

Eol
the	end	of	a	string

mtch
Pointer	to	a	structure	for	saving	bracket	matches

moves
-1	by	default,	it	means	NoMoves	state	isn't	changing.	It's	possible	to	set
another	value	-	see	SetNoMoves	function.

Return	value
Returns	TRUE	or	FALSE	depending	on	parsing	success/failure.

Remarks
If	you	see	it	more	convenient	to	leave	most	parameters	in	their	default	values
then	use	the	simplified	Parse	variant.

See	also:
SetNoMoves
Parse
CRegExp

SMatches
main	|	Custom	API	|	regexp

Returns	the	last	compilation	result.

#define	MATCHESNUM	0x10

typedef	struct	SMatches

{

		int	s[MATCHESNUM];

		int	e[MATCHESNUM];

		int	CurMatch;

}	*PMatches;

Members
s
array	of	matched	opening	bracket	offsets

e
array	of	matched	closing	bracket	offsets

CurMatch
Total	number	of	brackets	in	the	regexp

Remarks
If	there's	no	match	for	a	bracket	(it	was	skipped)	then	both	s	and	e	are	-1.	Mind
that	CurMatch	is	not	necessary	equals	to	the	number	of	brackets	matched	-	the
latter	can	occur	in	any	order.

See	also:
CRegExp

Areas	of	execution
main	|	Macros	|	General	background

FAR	can	create	independent	macro	commands	(macros	with	the	same	shortcut
keystroke)	for	different	areas	of	execution.

	ATTENTION!
Area	to	which	the	new	macro	command	will	be	assigned	is	defined	by
the	place	where	its	recording	had	been	started.

Current	version	supports	the	following	independent	areas	of	execution:

file	panels;
internal	file	viewer;
internal	file	editor;
dialog	boxes;
quick	file	search;
drive	selection	menu;
main	menu;
other	menus;
help	system;
informational	panel;
quick	view	panel;
folder	tree	panel;
folder	search	panel;
user	menu;
screen	capturing	mode.

It	is	not	allowed	to	create	different	macro	commands	with	the	same	name
(keyboard	shortcut)	in	the	same	area	of	execution	(there's	some	work-around
though	using	the	primitive	macro-language).	Existing	macro	command	will	be
overwritten	in	attempt	to	create	the	macro	command	with	the	same	keyboard
shortcut.

Thus	each	area	of	execution	can	contain	only	one	macro	command	with	the
same	keyboard	shortcut.

There's	also	the	Common	area	of	execution.	Macro	command	assigned	to	this
area	can	be	executed	in	every	other	area	of	execution	but	this	area	has	the	lower
priority	then	native	ones	so	if	some	area	already	contains	macro	with	the	same
shortcut	then	common	macro	will	be	overridden.	Macro	commands	cannot	be

created	interactively	in	the	common	area,	but	can	be	deleted.

Recording	a	macro
main	|	Macros	|	Using	macros

Macro	command	should	be	created	using	the	following	actions:

1.	 Start	recording	a	macro.	Hotkey	Ctrl-<.>	(Ctrl	and	'dot')	to	record	a
macro	in	general	mode	and	Ctrl-Shift-<.>	(Ctrl,	Shift	and	'dot'),	to
record	a	macro	in	special	mode.
In	the	top	left	corner	of	the	screen	you	should	see	R	symbol	indicating	that
FAR	Manager	has	began	to	record	a	new	macro.

2.	 Macro	command	text.
FAR	records	every	key	the	user	presses	with	the	following	exceptions:
the	only	keystrokes	will	be	stored	that	are	processed	by	FAR	Manager.	I.e.
if	any	application	is	launched	from	FAR	Manager	console	than	FAR	will
save	only	the	keystrokes	made	before	the	launching	and	after	closing	this
application.

3.	 Stop	recording	a	macro.
Since	the	parameters	of	the	macro	command	can	be	additionally	adjusted
there're	two	different	commands	that	the	user	can	use	to	complete	the
recording	of	a	macro:	Ctrl-<.>	(Ctrl	and	'dot'	key)	and	Ctrl-Shift-
<.>	(Ctrl,	Shift	and	'dot'	key).	First	can	be	used	to	complete	the	macro	with
default	execution	parameters,	the	second	one	brings	up	the	'execution
parameters'	dialog	box	upon	completion	the	recording	of	the	macro.

4.	 Assigning	the	shortcut	key	combination.
Shortcut	assignment	dialog	box	will	appear	immediately	after	completion
of	a	recording	of	a	macro.	You	can	use	it	to	assign	a	specific	shortcut	key
combination	that	can	be	used	to	call	the	macro	execution.

	Notes:
All	existing	macro	commands	will	be	deactivated	while	the	user
attempts	to	record	a	new	macro	command.	Thus	it	is	impossible	to
create	a	'nested'	macro	command	that	could	use	existing	macro
commands	in	its	command	sequence.

Deleting	a	macro
main	|	Macros	|	Using	macros

To	delete	a	previously	recorded	macro	you	should	record	an	empty	(with	no
actions)	macro	and	assign	it	the	same	shortcut	key	combination	as	in	the	existing
one	that	you	would	like	to	remove.

You	can	do	it	as	following:

1.	 Start	recording	a	macro	(Ctrl-<.>)
2.	 Stop	recording	a	macro	(Ctrl-<.>)
3.	 Enter	or	select	in	the	dropdown	box	the	shortcut	key	combination	value	of

the	macro	command	you	want	to	remove.

	ATTENTION!
Shortcut	key	combination	will	perform	its	original	functions	if	any	as
soon	as	you	delete	the	macro	command.	I.e.	if	some	macro	command
overrides	some	function	performed	by	a	plugin	or	FAR	manager	then
you	will	return	this	function	back	to	a	plugin	module	or	FAR	manager
by	deleting	this	macro.

Assigning	macro	commands
main	|	Macros	|	Using	macros

Macro	command	can	be	assigned	to:

1.	 any	key;
2.	 any	key	combination	with	Ctrl,	Alt	and	Shift	modifiers;
3.	 any	key	combination	with	two	modifiers.	FAR	is	capable	to	recognize	the

following	double	modification	keys:	Ctrl-Shift-<key>,	Ctrl-Alt-<key>	and
Alt-Shift-<key>

Macro	command	cannot	be	assigned	to	the	following	key	combinations:	Alt-Ins,
Ctrl-<.>,	Ctrl-Shift-<.>,	Ctrl-Alt,	Ctrl-Shift,	Shift-Alt,	Shift-<character>,	Ctrl-
Alt-Shift.

Macro	command	cannot	be	assigned	to	the	following	system	key	combinations:
Alt-Space,	Alt-Shift-Space,	Alt-Enter,	Alt-Shift-Enter.

There	are	several	key	combinations	(particularly	Enter,	Esc,	F1,	Ctrl-F5,	Ctrl-
Down,	MsWheelUp	and	MsWheelDown	with	all	Ctrl,	Shift	and	Alt
combinations)	that	cannot	be	entered	in	shortcut	assignment	dialog	box	directly
because	these	combinations	perform	some	special	functions	in	FAR.	These	key
combinations	should	be	selected	using	the	drop-down	selection	box	instead.

See	also:
Record	a	macro,	Delete	a	macro

Macro	command	parameters
main	|	Macros	|	Using	macros

Macro	command	parameters	define	the	conditions	and	the	way	the	macro
command	is	going	to	be	executed.

To	set	up	the	additional	parameters	for	the	macro	command	created	complete	the
recording	using	Ctrl-Shift-.	instead	of	Ctrl-.	and	choose	its	parameter
values	using	the	dialog	box:
Allow	screen	output	while	executing	the	macro
Setting	this	parameter	to	0	will	disable	screen	refreshing	operations	for	the
time	necessary	to	complete	the	macro	command	execution.	All	changes	made
to	screen	content	will	be	complete	after	the	command	execution.

Execute	after	FAR	Manager	startup
Allows	to	execute	the	macro	command	immediately	after	FAR	Manager
startup.

The	following	conditions	are	possible	for	the	active	and	inactive	panels
activating	the	macro	command:
Panel	type

[x]	-	execute	if	the	panel	is	used	by	a	plugin

[]	-	execute	if	the	panel	is	used	by	FAR	file	list

[?]	-	ignore	the	panel	type

Execute	for	the	folders

[x]	-	execute	if	there's	a	folder	under	the	cursor	on	the	panel

[]	-	execute	if	there's	a	file	under	the	cursor	on	the	panel

[?]	-	disregard	the	type	of	an	element	under	the	cursor

Selection	is	present

[x]	-	execute	if	there	are	files	or	folders	selected	on	the	panel

[]	-	execute	if	there	are	no	files	or	folders	selected	on	the	panel

[?]	-	ignore	the	file	or	folder	selection	state

Miscellaneous	activation	conditions:

Command	line	is	empty

[x]	-	execute	only	if	the	command	line	is	empty

[]	-	execute	only	if	the	command	line	is	not	empty

[?]	-	ignore	the	command	line	state

Text	block	is	selected

[x]	-	execute	only	if	there's	a	selected	text	block	in	the	internal	viewer/editor,	command	line	or	dialog	input	text	box.

[]	-	execute	if	there's	no	selected	text	block

[?]	-	ignore	the	block	selection	state

	Notes:
*	FAR	Manager	checks	all	above	conditions	before	executing	the	macro
command.
*	There	are	several	key	combinations	(particularly	Enter,	Esc,	F1,	Ctrl-
F5,	Ctrl-Down,	MsWheelUp	and	MsWheelDown	with	all	Ctrl,	Shift	and
Alt	combinations)	that	cannot	be	entered	in	shortcut	assignment	dialog
box	directly	because	these	combinations	perform	some	special	functions
in	FAR.	To	assign	one	of	these	key	comdinations	select	it	from	the
drop-down	selection	box	instead.

See	also:
Record	a	macro,	Delete	a	macro

Macro-commands
main	|	Macros	|	Macro-language

Macro-commands	that	can	be	used	in	the	macro:
Macro-command Description

$Date	["format"] Insert	the	current	date/time.
See	"$Date"	for	details.

$Text	"string" Insert	arbitrary	text.
See	"$Text"	for	details.

$IClip Working	with	the	clipboard.
See	"$IClip"	for	details.

$MMode	1 Changes	the	screen	refresh	mode	during	the	macro	command
execution.
See	"$MMode"	for	details.

$Exit Stops	macro	command	execution.
See	"$Exit"	for	details.

$XLat Invokes	the	text	transliteration	function.
See	"$XLat"	for	details.

$KbdSwitch Cyclic	switching	of	the	keyboard	layouts.
See	"$KbdSwitch"	for	details.

$If	(Expr)	TruePart
[$Else	FalsePart]	$End

Implements	a	conditional	execution	operator.
See	"$If"	for	details.

$While	(Expr)	Sequence
$End

Implements	an	iterative	process	-	"Execute	the	Sequence	while
condition	Expr	is	true".
See	"$While"	for	details.

$Rep	(Expr)	Sequence
$End

Implements	the	iterative	process	-	"Execute	the	Sequence	Expr
number	of	times".
See	"$Rep"	for	details.

$AKey The	hotkey	that	was	used	to	call	the	macro.
See	"$AKey"	for	details.

$SelWord Select	the	word	under	the	cursor.
See	"$SelWord"	for	details.

%var=value;
%%var=value;

Using	variables.
See	"variables"	for	details.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only

by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

$AKey
main	|	Macros	|	Macro-language	|	Macro-commands

The	$AKey	macro-command	inserts	the	name	of	the	hotkey	that	was	used	to	call
the	current	macro.

$AKey

Arguments
None.

Remarks

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Example
A	macro	for	switching	between	screens.	10	similar	AltNumber	macros	should	be
entered	in	the	Common	area:
$If	(Dialog	||	MainMenu	||	Menu	||	UserMenu	||	Search)

		$AKey

$Else

		%s	=	AKey	(1);

		%c	=	substr	(%s,	len	(%s)	-	1,	1);

		F12

		$If	(CheckHotkey	(%c))

				eval	(%c)

		$Else

				Esc

				$AKey

		$End

$End

See	also:
akey,	Examples

$Date
main	|	Macros	|	Macro-language	|	Macro-commands

The	$Date	macro-command	inserts	the	current	date/time	into	the	current	object
editor.

$Date	["format"]

Arguments
format
The	current	date/time	is	converted	to	a	string	according	to	the	"format"
parameter.	Its	meaning	is	similar	to	the	Unix	'date'	function	formatting
parameter.	$Date	supports	the	following	format	specification	(similar	to	the
format	used	by	the	strftime	function):

Format Description

%% Percent	sign	(%)

%a Abbreviated	day	of	week	name	(Sun)

%A Full	day	of	week	name	(Sunday)

%b Abbreviated	month	name	(Jan)

%B Full	month	name	(January)

%c Date	and	time	representation	in	the	format:	WDay	Mnt	Day	HH:MM:SS	yyyy
(Mon	Jan	10	04:11:54	2000)

%C Century	as	a	decimal	number	(00	-	99).	1992	=>	19

%d Day	of	the	month	as	decimal	number	(01	-	31)

%D Same	as	%x

%e Similar	to	%d,	but	the	leading	zero	is	replaced	with	a	space.

%h Same	as	%b

%H Hour	in	24-hour	format	(00	-	23)

%I Hour	in	12-hour	format	(01	-	12)

%j Day	of	year	as	decimal	number	(001	-	366)

%k Similar	to	%H,	but	the	leading	zero	is	replaced	with	a	space.

%l Similar	to	%I,	but	the	leading	zero	is	replaced	with	a	space

%L Use	the	localized	set	of	names	of	months	and	days	rather	then	English.
FAR	Manager	requests	two	sets	of	names	from	the	system	during	startup:

1)	English	names	of	months	and	weekdays
2)	names	according	to	the	current	user's	localization	settings
(LOCALE_USER_DEFAULT).
By	default	the	English	names	are	used.

%m Month	as	decimal	number	(1	-	12)

%m0 Similar	to	%m,	but	with	a	leading	zero	(01	-	12)

%mh Current	month	as	hexadecimal	number	(1	-	C)

%M Minute	as	decimal	number	(00	-	59)

%n Line	break	`\\n'
ATTENTION!	Using	this	specifier	in	the	editor	macros	will	switch	the	auto
indentation	off.

%p AM	or	PM

%r Same	as	%I:%M:%S	%p

%R Same	as	%H:%M

%S Seconds	as	decimal	number	(00	-	59)

%t Tab	character	`\\t'

%T Same	as	%X

%U Week	of	year	as	decimal	number,	with	Sunday	as	first	day	of	week	(00	-	53)

%v Date	in	the	format	dd-mmm-yyyy	(mmm	-	the	month	name	is	in	upper	case)

%V Week	of	year	according	to	ISO	8601:
"If	the	week	number	containing	January	1st	has	>=	4	days	in	the	new	year,
then	it	is	week	1;	otherwise,	it	is	the	last	numbered	week	of	the	previous	year
(52	or	53)"

%w Day	of	week	as	decimal	number	(0	-	6,	Sunday	is	0)

%W Week	of	year	as	decimal	number,	with	Monday	as	first	day	of	week	(00	-	53)

%x Date	in	the	format	dd<sep>mm<sep>yyyy	(the	separator	<sep>	and	the	order	of
day,	month	and	year	are	determined	from	the	regional	settings)

%X Time	in	the	format	HH<sep>MM<sep>SS	the	separator	<sep>	is	determined
from	the	regional	settings)

%y Year	without	century,	as	decimal	number	(00	-	99)

%Y Year	with	century,	as	decimal	number	(19yy-20yy)

%Z Time-zone	name	or	abbreviation,	nothing	if	time	zone	is	unknown

Format	string	must	be	encoded	using	the	OEM	codepage.
The	following	escape	sequences	are	allowed:

Format Description

\" The	'"'	character

\' The	'''	character

\\ The	'\'	character

\n New	line	`\n'

\t Tab	`\t'

\a bell

\b `\b'

\f `\f'

\v `\v'

\N
\NN
\NNN

Octal	characters	code	for	the	OEM	code	page

\xNN Hexadecimal	characters	code	for	the	OEM	code	page

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

2.	 If	the	"format"	argument	is	not	specified	FAR	uses	the	"%a	%b	%d
%H:%M:%S	%Z	%Y"	format	string.

Example
REGEDIT

;insertion	of	current	date

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Common\CtrlD]

"Sequence"="$If	(Editor	||	Dialog	||	Search)	$Date	\"%d.%m0.%Y\"	Space	$Else	CtrlD	$End"

"DisableOutput"=dword:00000001

See	also:
Examples,	date()

$Text
main	|	Macros	|	Macro-language	|	Macro-commands

The	$Text	macro-command	inserts	the	text	into	the	current	object	editor.

$Text	"string"

Elements
string
The	text	to	be	inserted	'string'	must	be	encoded	using	OEM	codepage.
The	following	escape-sequences	can	be	used	in	this	macro-command:

Format Description

\" The	'"'	character

\' The	'''	character

\\ The	'\'	character

\n New	line	`\n'

\t Tab	`\t'

\a Bell

\b `\b'

\f `\f'

\v `\v'

\N
\NN
\NNN

Octal	characters	code	for	the	OEM	code	page

\xNN Hexadecimal	characters	code	for	the	OEM	code	page

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

2.	 This	macro	command	allows	to	minimize	the	usage	of	memory	allocated
for	the	macro	command	sequence	and	make	the	sequence	more
comprehensive.

3.	 Keyword	"$Text"	can	be	omitted	i.e.	FAR	will	automatically	transform	any

quoted	text	to	$Text	"text"	except	the	situation	when	the	"	character	is
followed	by	the	'space'	character.

Example
REGEDIT

;create	the	new	folder	named	by	the	current	date

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlShiftF7]

"Sequence"="%Folder=date(\"%d.%m0.%Y\");	$If	(!panel.fexist(0,%Folder))	F7	$Text	%Folder	Enter	$End"

"DisableOutput"=dword:00000001

"NoPluginPanels"=dword:00000001

See	also:
Examples

$IClip
main	|	Macros	|	Macro-language	|	Macro-commands

The	$IClip	macro-command	helps	to	organize	the	clipboard	usage.

FAR	Manager	uses	the	standard	Microsoft	Windows	clipboard	to	perform
copy/paste	operations	by	default.	This	macro-command	can	switch	between	the
usage	of	the	internal	FAR	clipboard	or	the	standard	Windows	clipboard	within	a
single	macro.
Works	as	a	trigger.

$IClip

Arguments
None.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Example
REGEDIT4

;quick	find	the	file	in	the	passive	panel	with	the	same	name	as	selected	in	the	active	panel

;sequence	F5	ShiftEnter	CtrlIns	is	used	to	get	the	file	name	independently

;of	the	state	of	the	command	line	and	number	of	selected	files	in	the	panels

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlAltLeft]

"Sequence"="$IClip	$If	(((Bof	&&	APanel.Root)	||	!Bof)	&&	PPanel.Visible)

$If	(fexist(PPanel.Path+\"\\\\\"+APanel.Current)	==	1)	F5	ShiftEnter

CtrlIns	Esc	Tab	Home	Alt<	ShiftIns	Esc	$End	$End"

"DisableOutput"=dword:00000001

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlAltRight]

"Sequence"="$IClip	$If	(((Bof	&&	APanel.Root)	||	!Bof)	&&	PPanel.Visible)

$If	(fexist(PPanel.Path+\"\\\\\"+APanel.Current)	==	1)	F5	ShiftEnter	CtrlIns

Esc	Tab	Home	Alt<	ShiftIns	Esc	$End	$End"

"DisableOutput"=dword:00000001

See	also:
Examples,	Clip,	IClip

$MMode
main	|	Macros	|	Macro-language	|	Macro-commands

The	$MMode	macro-command	toggles	the	screen	refreshing	mode	during	the
execution	of	a	macro	sequence.
Works	as	a	trigger.

$MMode	1

Arguments
1
Should	always	be	1.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Example
REGEDIT4

;insert	the	current	time

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Common\CtrlT]

"Sequence"="$If	(Editor	||	Dialog)	$Date	\"%H:%M:%S\"	CtrlU	Space

$Else	$MMode	1	CtrlT	$End"

"DisableOutput"=dword:00000001

See	also:
Examples

$Exit
main	|	Macros	|	Macro-language	|	Macro-commands

The	$Exit	macro-command	stops	the	execution	of	a	macro	sequence.

$Exit

Arguments
None.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Example
REGEDIT4

;remove	the	selected	characters	from	the	command	line

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Common\ShiftDel]

"Sequence"="$If	(Qview	||	Shell)

$If	(!APanel.Visible)	ShiftDel	$Exit	$End	CtrlO	ShiftDel	CtrlO

$Else	ShiftDel	$End"

"DisableOutput"=dword:00000001

"NotEmptyCommandLine"=dword:00000001

See	also:
Examples

$XLat
main	|	Macros	|	Macro-language	|	Macro-commands

The	$XLat	macro-command	transliterates	the	text	selected	in	the	current	object.

$XLat

Arguments
None.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

2.	 This	macro-command	ignores	the	hotkeys	assigned	using	the	TechInfo#10.

Example
REGEDIT4

;transliterates	the	last	word	using	XLAT

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\ShiftBS]

"Sequence"="CtrlShiftLeft	$XLat	CtrlRight"

"DisableOutput"=dword:00000001

"NotEmptyCommandLine"=dword:00000001

See	also:
Examples

$KbdSwitch
main	|	Macros	|	Macro-language	|	Macro-commands

The	$KbdSwitch	macro-command	toggles	the	keyboard	layout	in	a	cyclic
manner.

$KbdSwitch

Parameters
None.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

See	also:
Examples

$SelWord
main	|	Macros	|	Macro-language	|	Macro-commands

The	$SelWord	macro-command	allows	to	select	the	word	under	the	cursor.

$SelWord

Arguments
None.

Remarks

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

See	also:
Examples

$If
main	|	Macros	|	Macro-language	|	Macro-commands

The	$If	macro-command	implements	conditional	execution	of	the	macro
sequence	fragments.

$If	(Expr)	TruePart	[$Else	FalsePart]	$End

Elements
Expr
Conditional	expression.

TruePart
Execute	if	Expr	is	true.

FalsePart
Execute	if	Expr	is	false.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

2.	 The	$Else	element	can	be	omitted.

Example
REGEDIT4

;more	convenient	Alt-navigation

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Common\AltUp]

"Sequence"="$If	(Viewer	||	Qview)	Up	$Else	AltUp	$End"

"DisableOutput"=dword:00000001

See	also:
Examples

$While
main	|	Macros	|	Macro-language	|	Macro-commands

The	$While	loop	macro-command	macro-command	executes	the	Sequence	of
the	macro-commands	while	the	Expr	is	true.

$While	(Expr)	Sequence	$End

Elements
Expr
Loop	conditional	expression.

Sequence
Sequence	to	be	executed	while	Expr	is	true.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Example
REGEDIT

;set	the	cursor	to	the	nearest	file	in	the	panel

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\AltAdd]

"Sequence"="$While	(APanel.Folder	&&	!APanel.Eof)	Down	$End"

"DisableOutput"=dword:00000001

See	also:
Examples

$Rep
main	|	Macros	|	Macro-language	|	Macro-commands

The	$Rep	loop	macro-command	executes	the	Sequence	of	the	macro-commands
Expr	number	of	times.

$Rep	(Expr)	Sequence	$End

Elements
Expr
Expression,	evaluated	once	on	loop	initialization.

Sequence
Sequence	to	be	executed	Expr	times.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Example
REGEDIT4

;exit	FAR	Manager

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Common\AltX]

"Sequence"="$If	(Editor	&&	(Editor.State	&	0x8))	F2	$End

$Rep	(2)	$If	(!Shell)	Esc	$End	$End	F10"

"DisableOutput"=dword:00000001

See	also:
Examples,	$While

Boolean	operators
main	|	Macros	|	Macro-language

You	can	use	the	following	operators	in	a	conditional	expression	Expr	within	the
$If	and	$While	macro-commands:

Operator Description

== equal

!= not	equal

< less

> greater

<= less	or	equal

>= greater	or	equal

	ATTENTION!
Comparison	operations	for	string	arguments	are	case	sensitive.

Boolean	conditional	expression	Expr	can	be	complex.	You	can	use	the	following
operators	to	combine	the	result	of	several	simple	expressions:

Operator Description

&& Logical	AND

|| Logical	OR

You	can	use	the	braces	to	change	the	condition	evaluation	precedence.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Boolean	object	states
main	|	Macros	|	Macro-language

It	is	allowed	to	use	the	following	keywords	within	the	$If	and	$While
conditional	expression:

State Description

detection	of	the	current	area	of	execution	of	the	macro	command

Shell file	panels

Viewer internal	viewer

Editor internal	editor

Dialog dialog	boxes

Search quick	file	search

Disks drive	selection	menu

MainMenu main	menu

Menu other	menus

Help help	system

Info informational	panel

QView quick	view	panel

Tree folder	tree	panel

FindFolder folder	search	panel

UserMenu user	menu

Other screen	capturing	mode

panel	object	states

APanel.Bof	PPanel.Bof true	if	the	current	panel	item	is	the	first

APanel.Eof
PPanel.Eof

true	if	the	current	panel	item	is	the	last

APanel.Empty
PPanel.Empty

true	if	the	panel	is	empty

APanel.LFN
PPanel.LFN

true	if	LFN	(long	file	names)	is	enabled	for	the	panel

APanel.Selected
PPanel.Selected

true	if	there	are	any	files	or	folders	selected	on	the
panel

APanel.Root
PPanel.Root

true	if	the	panel	folder	is	root

APanel.Visible
PPanel.Visible

true	if	the	panel	is	visible

APanel.Plugin
PPanel.Plugin

true	if	the	panel	is	a	plugin	panel

APanel.Folder
PPanel.Folder

true	if	the	current	element	is	a	folder

APanel.Left
PPanel.Left

true	if	the	panel	is	a	left	panel

APanel.FilePanel
PPanel.FilePanel

true	if	the	panel	is	a	file	panel

command	line	object	states

CmdLine.Bof true	if	the	cursor	is	at	the	beginning	of	the	command
line

CmdLine.Eof true	if	the	cursor	is	at	the	end	of	the	command	line

CmdLine.Empty true	if	the	command	line	is	empty

CmdLine.Selected true	if	there	is	a	selected	block	of	text	within	the
command	line

execution	context	dependent	object	states

Bof beginning	of	file	is	reached	in	the	editor,	viewer;	in
QView/Info/Tree	panels	-	beginning	of	file	is	reached
in	the	viewing	area,	in	other	"panels"	-	cursor	is	at	the
beginning	of	the	command	line;	in	dialog	input	lines	-
cursor	is	at	the	beginning	of	the	line;	in	lists/menus	-
cursor	is	set	on	the	first	item.

Eof end	of	file	is	reached	in	the	editor,	viewer;	in
QView/Info/Tree	panels	-	end	of	file	is	reached	in	the
viewing	area,	in	other	"panels"	-	cursor	is	at	the	end	of
the	command	line;	in	dialog	input	lines	-	cursor	is	at
the	end	of	the	line;	in	lists/menus	-	cursor	is	set	on	the
last	item.

Empty in	QView/Info/Tree	panels	-	viewing	area	is	empty,	in
other	panels	-	command	line	is	empty;	dialog	input
line	is	empty;	in	viewer/editor	-	the	file	is	empty;
menu/list	is	empty.

Selected a	block	is	selected	in	dialog	input	lines,	in	the	editor	or
viewer,	in	the	viewing	are	of	QView/Info/Tree	panels,
in	other	panels	-	a	block	is	selected	in	the	command
line	(current	area	is	Shell)

IClip true	if	FAR	Manager	is	working	with	the	internal
clipboard	(See	'$IClip')

Windowed true	if	FAR	Manager	is	in	the	windowed	mode

state	of	macro	command	parameters

DisableOutput true	if	the	screen	output	is	disabled

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Functions
main	|	Macros	|	Macro-language

Function	list
You	can	use	the	following	functions	in	the	macro	sequence:

Mathematical	functions

Function Description

N=abs(N) Returns	the	absolute	value	of	a	numeric	argument	N

N=max(N1,N2) Returns	the	maximal	value	of	two	numeric	arguments	

N=min(N1,N2) Returns	the	minimal	value	of	two	numeric	arguments	

N=mod(N1,N2) Division	of	N1	by	the	modulus	N2.

N=int(V) Evaluates	the	V	argument	to	a	number.

String	functions

Function Description

N=index(S1,S2) Returns	the	position	of	the	first	occurrence	of	the	substring	

N=rindex(S1,S2) Returns	the	position	of	the	last	occurrence	of	the	substring	

Result=replace(Str,Find,Replace[,Cnt]) Replace	substing	Find	in	Str	with	Replace,	Cnt	times	
Returns	the	resulting	string.

N=asc(S) Returns	the	code	of	character	S.

S=chr(N) Returns	the	character	for	the	code	N.

S=itoa(N[,Radix]) Converts	numeric	value	N	to	a	string.	Radix	parameter	defines	the	radix	of	the	numerical	representation	for	the	number
conversion.	The	valid	Radix	values	are	from	2	to	36.	

N=atoi(S[,Radix]) Converts	string	representation	of	a	number	N	into	a	number.	
S.	The	valid	Radix	values	are	from	2	to	36.
If	Radix	is	omitted,	function	tries	to	determine	the	correct	value	automatically.

N=len(V) Returns	the	length	of	the	expression	V.	This	function	evaluates	the	value	of	

S=string(V) Converts	the	value	of	the	expression	V	to	a	string.

S=substr(V,N1[,N2]) Returns	the	substring	of	the	expression	V	beginning	from	position	
If	N2	parameter	is	omitted	or	equal	to	-1,	function	returns	the	substring	from	position	
If	N2	parameter	is	equal	to	0,	function	returns	empty	string.

S=trim(V[,N]) Removes	whitespace	(spaces,	tabs,	line	feeds,	and	carriage	returns)	
leading	(N=1),	or	only	trailing	(N=2).

S=lcase(S) Transforms	the	string	S	to	lower-case.

S=ucase(S) Transforms	the	string	S	to	upper-case.

S=date(format) Returns	the	current	date/time	according	to	the	format	
This	function	is	similar	to	$Date	macro-command	but	can	also	be	used	in	expressions.	

S=xlat(S) Returns	the	transliterated	string.
This	function	is	similar	to	$XLat	macro	command	but	can	be	used	in	expressions.	

File	functions

Function Description

S=fsplit(path,N) Splits	the	path	path	into	the	components	and	returns	theirs	combination	depending	on	the	flag	combination	

Value Description

0x00000001 Current	drive	in	"C:"	representation.
For	network	shares	-	"\\server\share"

0x00000002 Rooted	path	in	"\Program	Files\Far\"	representation

0x00000004 Name

0x00000008 Extension	in	".EXT"	representation	or	empty	string,	if	there's	no	extension.

N=fexist(S) Checks	if	the	file	or	folder	S	exists	and	returns	1	if	true	or	0	otherwise.
Usage	of	the	'*'	and	'?'	mask	symbols	is	allowed	in	the	
the	file	or	folder.
This	function	does	not	work	with	the	panels.

N=fattr(S) Returns	the	file	system	attributes	of	the	file	or	folder	

Attribute Description

0x00000001 FILE_ATTRIBUTE_READONLY.	The	file	or	folder	is	read-only.	Applications	can	read	the	file	but	cannot	write	to	it	or	delete	it.	In	the
case	of	a	folder,	applications	cannot	delete	it.

0x00000002 FILE_ATTRIBUTE_HIDDEN.	The	file	or	folder	is	hidden.	It	is	not	included	in	an	ordinary	directory	listing.

0x00000004 FILE_ATTRIBUTE_SYSTEM.	The	file	or	folder	is	part	of	the	operating	system	or	is	used	exclusively	by	the	operating	system.

0x00000010 FILE_ATTRIBUTE_DIRECTORY.	This	is	a	folder.

0x00000020 FILE_ATTRIBUTE_ARCHIVE.	The	file	or	folder	is	an	archive	file.	Applications	use	this	attribute	to	mark	files	for	backup	or	removal.

0x00000080 FILE_ATTRIBUTE_NORMAL.	The	file	or	folder	has	no	other	attributes	set.	This	attribute	is	valid	only	if	used	alone.

0x00000100 FILE_ATTRIBUTE_TEMPORARY.	The	file	is	being	used	for	temporary	storage.	File	systems	avoid	writing	data	back	to	mass	storage	if
sufficient	cache	memory	is	available,	because	often	the	application	deletes	the	temporary	file	shortly	after	the	handle	is	closed.	In	that
case,	the	system	can	entirely	avoid	writing	the	data.	Otherwise,	the	data	will	be	written	after	the	handle	is	closed.

0x00000200 FILE_ATTRIBUTE_SPARSE_FILE.	The	file	is	a	sparse	file.

0x00000400 FILE_ATTRIBUTE_REPARSE_POINT.	The	file	or	folder	has	an	associated	reparse	point.

0x00000800 FILE_ATTRIBUTE_COMPRESSED.	The	file	or	folder	is	compressed.	For	a	file,	this	means	that	all	of	the	data	in	the	file	is	compressed.
For	a	folder,	this	means	that	compression	is	the	default	for	newly	created	files	and	subdirectories.

0x00001000 FILE_ATTRIBUTE_OFFLINE.	The	data	of	the	file	is	not	immediately	available.	This	attribute	indicates	that	the	file	data	has	been
physically	moved	to	offline	storage.	This	attribute	is	used	by	Remote	Storage,	the	hierarchical	storage	management	software.	Applications
should	not	arbitrarily	change	this	attribute.

0x00002000 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED.	The	file	or	directory	is	not	be	indexed	by	the	content	indexing	service.

0x00004000 FILE_ATTRIBUTE_ENCRYPTED.	The	file	or	folder	is	encrypted.	For	a	file,	this	means	that	all	data	in	the	file	is	encrypted.	For	a	folder,
this	means	that	encryption	is	the	default	for	newly	created	files	and	subdirectories.

0x00010000 FILE_ATTRIBUTE_VIRTUAL.	A	file	is	a	virtual	file.

if	file	system	object	does	not	exist	this	function	returns	-1.

Usage	of	the	'*'	and	'?'	mask	symbols	is	allowed	in	the	
the	file	or	folder.
This	function	does	not	work	with	the	panels.

Panel

Function Description

N=panel.fexist(panelType,S) Checks	if	the	file	or	folder	S	exists	in	the	active	(panelType
otherwise).
Usage	of	the	'*'	and	'?'	mask	symbols	is	allowed	in	the	
the	file	or	folder.
This	function	works	only	with	the	panels.

N=panel.fattr(panelType,S) Returns	the	file	system	attributes	of	the	file	or	folder	

Attribute Description

0x00000001 FILE_ATTRIBUTE_READONLY.	The	file	or	folder	is	read-only.	Applications	can	read	the	file	but	cannot	write	to	it	or	delete	it.	In	the
case	of	a	folder,	applications	cannot	delete	it.

0x00000002 FILE_ATTRIBUTE_HIDDEN.	The	file	or	folder	is	hidden.	It	is	not	included	in	an	ordinary	directory	listing.

0x00000004 FILE_ATTRIBUTE_SYSTEM.	The	file	or	folder	is	part	of	the	operating	system	or	is	used	exclusively	by	the	operating	system.

0x00000010 FILE_ATTRIBUTE_DIRECTORY.	This	is	a	folder.

0x00000020 FILE_ATTRIBUTE_ARCHIVE.	The	file	or	folder	is	an	archive	file.	Applications	use	this	attribute	to	mark	files	for	backup	or	removal.

0x00000080 FILE_ATTRIBUTE_NORMAL.	The	file	or	folder	has	no	other	attributes	set.	This	attribute	is	valid	only	if	used	alone.

0x00000100 FILE_ATTRIBUTE_TEMPORARY.	The	file	is	being	used	for	temporary	storage.	File	systems	avoid	writing	data	back	to	mass	storage	if
sufficient	cache	memory	is	available,	because	often	the	application	deletes	the	temporary	file	shortly	after	the	handle	is	closed.	In	that
case,	the	system	can	entirely	avoid	writing	the	data.	Otherwise,	the	data	will	be	written	after	the	handle	is	closed.

0x00000200 FILE_ATTRIBUTE_SPARSE_FILE.	The	file	is	a	sparse	file.

0x00000400 FILE_ATTRIBUTE_REPARSE_POINT.	The	file	or	folder	has	an	associated	reparse	point.

0x00000800 FILE_ATTRIBUTE_COMPRESSED.	The	file	or	folder	is	compressed.	For	a	file,	this	means	that	all	of	the	data	in	the	file	is	compressed.
For	a	folder,	this	means	that	compression	is	the	default	for	newly	created	files	and	subdirectories.

0x00001000 FILE_ATTRIBUTE_OFFLINE.	The	data	of	the	file	is	not	immediately	available.	This	attribute	indicates	that	the	file	data	has	been
physically	moved	to	offline	storage.	This	attribute	is	used	by	Remote	Storage,	the	hierarchical	storage	management	software.	Applications
should	not	arbitrarily	change	this	attribute.

0x00002000 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED.	The	file	or	directory	is	not	be	indexed	by	the	content	indexing	service.

0x00004000 FILE_ATTRIBUTE_ENCRYPTED.	The	file	or	folder	is	encrypted.	For	a	file,	this	means	that	all	data	in	the	file	is	encrypted.	For	a	folder,
this	means	that	encryption	is	the	default	for	newly	created	files	and	subdirectories.

0x00010000 FILE_ATTRIBUTE_VIRTUAL.	A	file	is	a	virtual	file.

if	file	system	object	does	not	exist	this	function	returns	-1.
Usage	of	the	'*'	and	'?'	mask	symbols	is	allowed	in	the	
the	file	or	folder.
This	function	works	only	with	the	panels.

V=panelitem(panelType,itemIndex,propIndex) Queries	the	information	for	the	panel	element	itemIndex
propIndex	can	be	one	of	the	following	values:

Value Type Description

0 String File	or	folder	name

1 String File	or	folder	short	name

2 Number File	attributes

3 String Creation	date/time

4 String Last	access	date/time

5 String Last	modification	date/time

6 Number Size

7 Number Packed	size

8 Number "Is	selected?"

9 Number Number	of	the	hardlinks

10 Number SortGroup

11 String Diz-text

12 String Owner

13 Number CRC32

14 Number Position	of	the	element	while	reading	from	the	file	system

Date/time	is	returned	in	the	DD.MM.YYYY	HH:MM:SS	format.	
the	regional	settings.	To	receive	information	on	the	current	file	(under	cursor)	

N=panel.setpos(panelType,fileName) Positions	the	cursor	on	the	element	with	name	fileName
Returns	the	position	of	the	element	or	0	if	there	is	no	such	element.
For	example,	the	following	macro	creates	a	directory	named	after	the	current	date	in	
cursor	on	this	directory	if	it	already	exists.

%dt=date("%Y%m0%d");

$If	(fexist(%dt))

		panel.SetPos(0,%dt)

$Else

		F7	$Text	%dt	Enter

$End

N=panel.setpath(panelType,pathName[,fileName]) In	the	active	(panelType=0)	or	passive	(panelType=1)	panel	changes	folder	to	
name	fileName	(if	fileName	parameter	was	specified).
Returns	1	if	folder	was	changed	successfully	and	0	if	folder	does	not	exist.
For	example,	in	the	active	panel	change	folder	to	"C:\WINDOWS",	in	the	passive	panel	to	"C:\Program	Files",	make	left	panel
the	active	one	and	set	cursor	to	"FAR"	folder:

$if(APanel.Left)	CtrlU	$End

panel.SetPath(1,"C:\\WINDOWS")

panel.SetPath(0,"C:\\Program	Files","FAR")

N=panel.setposidx(panelType,indexItem) Positions	the	cursor	on	the	element	with	index	indexItem
Returns	element	position	or	0	if	such	element	does	not	exist.

Control	functions

Function Description

V=iif(Cond,True,False) Conditional	function.	If	condition	Cond	is	true	then	

Execution	environment

Function Description

V=akey(N) Returns	the	name	or	code	of	the	key	combination	that	was	used	to	call	this	macro.	
is	returned.
See	example	in	the	full	description	$AKey

S=env(V) Returns	the	value	of	an	environment	variable	V,	for	instance:

$if	(Env("FARLANG")	==	"English")	

B=msave(S) Stores	the	value	of	a	global	variable	with	the	name	S
Example:

%%GlobalVars="Foo	Bar";	%a=msave("%%GlobalVars");

V=clip(Cmd[,S]) Allows	to	perform	miscellaneous	manipulations	on	the	Clipboard	in	accordance	with	the	

Cmd Description

0 Returns	data	from	the	Clipboard;	the	S	parameter	is	ignored;	in	case	of	error	returns	0

1 Put	the	string	S	to	the	Clipboard;	in	case	of	error	returns	0

2 Add	the	string	S	to	the	Clipboard;	in	case	of	error	returns	0

3 Copy	the	Windows	Clipboard	to	the	internal	clipboard	buffer;	the	

4 Copy	the	internal	clipboard	buffer	to	the	Windows	Clipboard;	the	

For	example,	put	to	the	Clipboard	a	list	of	selected	files	in	the	CSV	format	(name	and	size):

Clip(1,"Name;Size\r\n")

Home

$While(!APanel.Eof)

		$If(!APanel.Folder	&&	PanelItem(0,0,8))

					Clip(2,PanelItem(0,0,0)+";"+PanelItem(0,0,6)+"\r\n")

		$End

		Down

$End

See	$IClip,	IClip.

V=flock(Nkey,NState) Toggles	Lock	keys	state	(NumLock,	CapsLock,	and	ScrollLock).
Key	Nkey:

Nkey Description

0 NumLock

1 CapsLock

2 ScrollLock

State	NState:

NState Description

-1 get	key	state

0 toggle	key	to	off

1 toggle	key	to	on

2 toggle	key	to	reverse	state

In	Windows	95/98/Me	the	function	can	change	only	CapsLock	and	ScrollLock	states.	Windows	NT	family	(NT/2000/XP/...)	has
no	such	restriction.
The	function	is	unstable	(computer	may	freeze)	and	should	be	used	carefully.	For	example,	macro	with	CtrlCapsLock	hot	key
(switching	between	windows)	should	be	wrapped	in	certain	way:

CtrlShiftTab

%a=flock(1,-1)&1;

$while((flock(1,-1)&1)==%a)

		sleep(50)

		flock(1,2)

$end

N=sleep(N) Pause	macro	execution	for	N	milliseconds.	Negative	sleep	time	is	considered	to	be	an	error	and	the	function	returns	0.

V=waitkey([N,	[T]]) Waits	until	a	key	is	pressed	and	returns	its	name	(T=0)	or	value	(
an	empty	string	(T=0)	or	0	(T=1).	If	N	is	omitted	or	is	equal	to	0,	function	will	wait	for	key	press	infinitely.	

S=key(V) Converts	parameter	V	into	the	string	equivalent	of	the	key	name.
If	V	is	a	string,	its	correctness	is	checked	and	returned	back,	
name.
Function	returns	empty	string	in	case	of	any	errors.	

N=eval(S[,T]) "Play	back"	(T=0)	or	check	(T=1)	macro	sequence	defined	in	the	string	
played.	
FAR	compiles	sequence	S.
For	playback	mode	(T=0):	if	there	are	no	errors,	state	of	the	current	macro	is	preserved,	
playing	S,	suspended	macro	continues	its	work.

If	the	sequence	S	compilation	was	successful,	function	returns	0,	otherwise	error	code	is	returned:

Error Description

1 Unrecognized	keyword	'keyword'

2 Unrecognized	function	'function'

3 Incorrect	number	of	arguments	for	function	'function

4 Unexpected	$Else

5 Unexpected	$End

6 Unexpected	end	of	source	string

7 Expected	'keyword'

8 Bad	Hex	Control	Char

9 Bad	Control	Char

10 Variable	Expected	'Variable'

11 Expression	Expected

12 Zero-length	macro

Local	variables	are	common	for	both	the	current	macro	and	the	macro	executed	by	

For	example,	by	pressing	F10	we	want	to	open	an	Explorer	window	with	the	current	folder	on	the	active	panel,	command	line

contents	should	be	saved.
We	set	2	string	variables,	in	the	Vars	area,	containing	a	macro	sequence	for	saving	and	restoring	the	command	line:

%%CmdSave=$If	(!CmdLine.Empty)	%Flg_Cmd=1;

										%CmdCurPos=CmdLine.ItemCount-CmdLine.CurPos+1;

										%CmdVal=CmdLine.Value;	Esc	$End

%%CmdRestore=$If	(%Flg_Cmd==1)	$Text	%CmdVal

										%Flg_Cmd=0;	%Num=%CmdCurPos;

										$While	(%Num!=0)	%Num=%Num-1;	CtrlS	$End	$End

then	we	set	the	following	macro	to	F10:

$If	(APanel.Visible	&&	(!APanel.Plugin	||	(!APanel.Bof	&&(APanel.OPIFlags	&	0x20))))

		Eval(%%CmdSave)

		$If	(APanel.Current	==	"..")

				.

				ShiftEnter

		$Else

				"%SystemRoot%\\explorer.exe	/select,"

				$If	(Apanel.LFN)

						CtrlN

				$End

				CtrlEnter

				$If	(!Apanel.LFN)

						CtrlN

				$End

				Enter

		$End

		Eval(%%CmdRestore)

$End

User	interaction

Function Description

N=msgbox([Title[,Text[,Flags]]]) Shows	up	the	message	box	with	the	Text	and	the	Title
Flags	can	be	a	combination	of	the	following	values:

Flags Description

0x00000001 Use	the	'Warning'	color	scheme	(usually	white	text	on	red	background).

0x00000008 Show	the	message	lower	by	two	lines.

0x00000010 Use	the	left	alignment	for	the	message	strings	(align	to	center	of	not	specified).

0x00010000 Show	the	<Ok>	button.

0x00020000 Show	the	<Ok>	and	<Cancel>	buttons.

0x00030000 Show	the	<Abort>,	<Retry>	and	<Ignore>	buttons.

0x00040000 Show	the	<Yes>	and	<No>	buttons.

0x00050000 Show	the	<Yes>,	<No>	and	<Cancel>	buttons.

0x00060000 Show	the	<Retry>	and	<Cancel>	buttons.

If	the	Flags	argument	is	0	(or	omitted)	then	standard	message	box	is	displayed	with	the	<Ok>	button.
The	return	value	is	the	number	of	the	button	the	user	selected	(1	for	the	first,	2	for	the	second,	etc.),	
the	result	will	be	0.

S=prompt("Title"[,"Prompt"[,flags[,	"Src"[,
"History"]]]])

Function	allows	to	enter	one	text	string.
Parameters:	Title	-	dialog	caption,	Prompt	-	prompt	for	input,	
Flags	can	be	the	set	of	these	values	(similar	to	FIB_*

Flag Description

0x00000001 the	function	will	return	empty	string	if	the	input	string	is	empty.

0x00000002 entered	text	is	represented	by	

0x00000004 after	a	successful	input,	any	environment	variables	within	the	input	string	will	be	replaced
by	their	values	in	the	resulting	string	
contain	'

0x00000008 if	Src
history.

0x00000010 display	a	separator	and	the	[OK]	and	[Cancel]	buttons	below	the	input	line.	The	dialog	will
grow	by	2	lines.

0x00000020 the	ampersand	character	will	not	be	shown	in	the	prompt	string	but	can	instead	be	used	to
define	a	hotkey.

Function	returns	a	string	entered	by	user.
For	example,	ask	for	password	and	show	it:

%s=prompt("Password","Input	password:",0x02);	$Text	%s

Control	elements

Function Description

N=checkhotkey(S[,Pos]) Function	checks	and	gets	the	position	of	the	element	(starting	from	
function	will	return	the	position	of	the	element	without	hot	keys.
Returns:	-1	-	if	called	from	the	wrong	area	(MainMenu,	Menu,	Disks,	UserMenu,	and	Dialog),	0	-	nothing	was	nound,	>	0	-	if
menu/dialog/list	contains	hot	key	S.

For	example,	in	the	plugin	menu	(F11),	hot	key	'7'	is	defined	for	S&R	plugin.	

F11	$if	(checkhotkey("7"))	7	1	$else	Esc	AltF7	$end

will	call	the	plugin	if	hot	key	is	defined,	or	standard	Search	dialog,	if	hot	key	is	not	defined.

S=gethotkey(N) Returns	the	hot	key	S	for	item	N,	if	the	item	has	a	hot	key	
N	-	item	position	beginning	with	1	(0	-	current	item).

N=Menu.Select(S[,N]) In	the	menu,	places	cursor	to	the	first	item	that	contains	

Mode Description

0 string	is	

1 string	begins	with	

2 string	ends	with	

3 string	contains	

Search	is	case-insensitive.	If	item	is	not	found,	does	nothing.
Returns:	-1=Error	-	if	called	not	from	the	menu,	0=Placement	error	(item	is	absent	or	disabled),	otherwise	returns	menu	item
position.

F11	$if(Menu.Select("Advanced	compare",0)	>	0)	Enter	$end

If	N	parameter	is	omitted,	full	string	coincidence	is	assumed.

V=Dlg.GetValue(ID,Type) Get	misc.	values	of	the	current	dialog.
ID	-	dialog	element	number	(elements	are	numbered	starting	with	1;	0	-	is	the	dialog	windows	itself).
Type	-	type	of	the	value	to	get,	depending	on	the	type	of	the	element.	For	the	dialog	windows	itself	(ID=0)	the	following	values
are	allowed:

Type Var	type Description

0 Number Number	of	elements	in	the	dialog

2 Number X1

3 Number Y1

4 Number X2

5 Number Y2

6 Number ID	of	the	current	element	that	has	the	

For	dialog	elements	the	following	values	are	allowed:

Type Var	type Element Description

0 Number CheckBox State	of	the	checkbox

0 Number RadioButtons State	of	the	radio	button

0 String ListBox Value	of	the	current	list	item

0 String ComboBox Value	of	the	current	list	item

0 String Other Textual	value	(the	

1 Number All Element	type

2 Number All X1	relative	to	the	dialog	window

3 Number All Y1	relative	to	the	dialog	window

4 Number All X2	relative	to	the	dialog	window

5 Number All Y2	relative	to	the	dialog	window

6 Number All does	the	element	has	focus?

7 Number CheckBox State	of	the	checkbox

7 Number RadioButtons State	of	the	radio	button

7 String ListBox Current	position	in	the	list	(first	list	item	=	1)

7 String ComboBox Current	position	in	the	list	(first	list	item	=	1)

7 Number Other 0

8 Number All Element	flags

9 Number All A	flag	that	specifies	that	the	given	dialog	element	is	the	"default	element".

10 String Other Textual	value	(the	

Returns	-1	if	ID	is	bigger	than	the	number	of	elements	in	the	dialog	or	the	value	of	

V=Editor.Set(Idx,Var) Change	settings	of	the	current	editor	instance.

Index Var	Type Description

0 Number Tab	size

1 Number Expand	tabs

2 Number Persistent	blocks

3 Number Del	removes	blocks

4 Number Autoindent

5 Number Autodetect	character	table

6 Number Create	new	files	in	WIN	encoding

7 Number Cursor	beyond	end	of	line

8 Number BackSpace	behaviour	(TechInfo	#13)

9 Number Representation	of	the	character	under	cursor	in	the	status	line	(TechInfo	#32)

10 Number Save	file	position

11 Number Save	bookmarks

12 String Word	delimiters	(TechInfo	#1)

13 Number EditorF7Rules	(TechInfo	#18)

14 Number AllowEmptySpaceAfterEof	(TechInfo	#67)

The	value	of	Var	can	be	-1,	in	this	case	the	function	will	not	change	any	settings	
Returns	the	previous	value	of	the	option	or	-1	if	wrong	arguments	are	given.
For	example,	a	macro	that	moves	the	selected	block	one	line	down:

$IClip	CtrlX	%a=Editor.Set(2,1);	Down	CtrlV	%a=Editor.Set(2,%a);

V=Editor.Sel(Action[,Opt]) Function	allows	manipulations	with	blocks	in	the	text	(in	editor,	input	strings	in	dialogs,	command	line).

Action Description

0 get	parameters	of	the	current	block

Opt Description

0 return	the	string	number	of	the	block	start

1 return	the	position	number	of	string	of	the	block	start

2 return	the	string	number	of	the	block	end

3 return	the	position	number	of	string	of	the	block	end

4 return	the	type	of	highlighted	block:	0	-	block	is	not
highlighted,	1	-	regular	block,	2	-	vertical	block
(alternative	way	is	Editor.State

1 place	cursor	within	current	block	(block	state	is	not	changed	during	cursor	placement)

Opt Description
0 place	cursor	to	the	start	of	the	highlighted	block

1 place	cursor	to	the	end	of	the	highlighted	block

2 set	block	positions

Opt Description

0 set	block	start	position

1 set	block	end	position
Позицией	начала/конца	блока	считается	текущая	позиция	курсора.	Блок	помечается	только	после	указания	конечной	позиции
(Opt=1),	с	ранее	выделенного	блока	пометка	снимается.	
равносильна	снятию	пометки	блока.

3 установка	позиций	вертикального	блока

Opt Description

0 отметить	позицию	начала	вертикального	блока

1 отметить	позицию	конца	вертикального	блока
Позицией	начала/конца	блока	считается	текущая	позиция	курсора.	Блок	помечается	только	после	указания	конечной	позиции
(Opt=1),	с	ранее	выделенного	блока	пометка	снимается.	
равносильна	снятию	пометки	блока.

4 снять	выделение	с	блока
Параметр	Opt	игнорируется.
Всегда	возвращается	1.

В	случае	ошибки	(в	т.ч.	функция	вызвана	не	из	"редактора")	возвращаемое	значение	равно	0,	иначе	1.	Для	
возвращается	запрошенное	значение.	
Например,	повторим	некоторые	сочетания	клавиш	из	Turbo-сред	(макрос	на	сочетание	Ctrl-K):

%k=waitkey(0,1);

$if(%k==B	||	%k==b	||	%k==CtrlB)

		editor.sel(2,0)

$else

		$if(%k==K	||	%k==k	||	%k==CtrlK)

				editor.sel(2,1)

		$else

				$if((%k==C	||	%k==c	||	%k==CtrlC)	&&	Selected)

						CtrlC

				$else

						$if((%k==Y	||	%k==y	||	%k==CtrlY)	&&	Selected)

								CtrlD

						$else

								eval("F1")

						$end

				$end

		$end

$end

Bookmarks

Function Description

N=BM.Add() Добавить	текущие	параметры	закладки	и	обрезать	хвост

N=BM.Clear() Clear	all	bookmarks

N=BM.Del([Idx]) Удалить	закладку	с	указанным	индексом	Idx	(нумерация	начинается	с	1).	Если	параметр	
удаляется	текущая	закладка.

N=BM.Get(Idx,M) Получить	параметры	закладки	с	индексом	Idx	(нумерация	начинается	с	1),	Idx=0	-	текущая	закладка.
M	parameter	can	have	these	values:

Type Description

0 координаты	строки	(начиная	с	1)

1 координаты	колонки	(начиная	с	1)

2 позиция,	соответствующая	первому	видимому	символу	текста	на	экране	слева

3 номер	строки,	соответствующей	первой	видимой	строке	текста	на	экране

N=BM.Next() Jump	to	the	next	bookmark

N=BM.Prev() Jump	to	the	previous	bookmark

N=BM.Stat([M]) Get	bookmark	information.
M	parameter	can	have	these	values:

Type Description

0 current	number	of	bookmarks

Bookmark	handling	example:

		

Notes

1.	 Bookmark	functions	BM.XXX()	are	available	only	within	the	editor.
2.	 Function	arguments	given	in	square	brackets	may	be	omitted.	See	default

values	in	function	description.
3.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in

a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Operations
main	|	Macros	|	Macro-language

You	can	use	the	following	operations	on	the	variables:

Operation Description

+ Numeric	addition	or	string	concatenation

- Numeric	subtraction	or	unary	negation

* Numeric	multiplication

/ Numeric	division.	FAR	interrupts	macro	execution	if
division	by	0	occurs.

& Bitwise	AND

^ Bitwise	XOR

| Bitwise	OR

<< Logical	left	shift

>> Logical	right	shift

! Logical	NOT

~ Bitwise	NOT

Operator	precedence:

Operation Description

!	~	- Unary	(R->L)

*	/ Arithmetic

+	- Arithmetic

<<	>> Logical	shift

<	<=	>	=> Logical	comparison

==	!= Logical	comparison

& Bitwise	(and)

^ Bitwise	(xor)

| Bitwise	(or)

&& Logical

|| Logical

Notes

1.	 Named	keys	(e.g.	CtrlK)	can	be	present	in	any	expressions;	in	this	case	they
are	treated	as	numbers.

2.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Object	states
main	|	Macros	|	Macro-language

Panels

Operator Type Description

APanel.ItemCount
PPanel.ItemCount

Number stores	the	number	of	the	elements	on	the	panel

APanel.SelCount
PPanel.SelCount

Number stores	the	number	of	the	selected	files	on	the	panel

APanel.CurPos
PPanel.CurPos

Number stores	the	index	of	an	element	on	the	panel

APanel.Current
PPanel.Current

String stores	the	name	of	an	element	under	the	cursor

APanel.Path
PPanel.Path

String stores	the	path	for	the	panel	(without	trailing	'\')

APanel.UNCPath
PPanel.UNCPath

String stores	the	UNC	path	for	the	panel	(without	trailing	'\')

APanel.Width
PPanel.Width

Number stores	the	width	of	the	panel

APanel.Type
PPanel.Type

Number stores	the	type	of	the	panel:

Value Description

0 File	panel

1 Tree	panel

2 Quick	view	panel

3 Informational	panel

APanel.DriveType
PPanel.DriveType

Number specifies	the	drive	type	of	the	panel:

Value Description

-1 plugin	panel

0 Drive	type	couldn't	be	detected

2 Removable	drive

3 Hard	disk

4 Mapped	network	share

5 CDROM

6 Virtual	drive

15 SUBST-disk

APanel.OPIFlags Number plugin	panel	flags,	can	be	a	combination	of	the	following	values	(if	the	panel	is	not	a	plugin	panel

PPanel.OPIFlags then	this	value	is	0):

Value Description

0x00000001 there's	a	filter	applied	to	the	panel

0x00000002 there're	a	sort	groups	used	on	the	panel

0x00000004 the	highlighting	is	used	on	the	panel

0x00000010 folder	selection	mode	does	not	depend	on	the	FAR	Manager	settings

0x00000020 the	standard	FAR	file	processing	mode	is	used,	if	the	requested	operation	is	not	supported	by	the
plugin;	if	this	flag	is	set	then	panel	element	names	are	the	real	file	names

0x00000040 file	names	without	paths	are	shown

0x00000080 file	names	are	aligned	to	the	right

0x00000100 the	original	case	is	used	to	display	the	file	names	(despite	of	FAR	Manager	settings)

APanel.ColumnCount
PPanel.ColumnCount

Number Number	of	panel	columns.

Dialogs

Dlg.ItemCount Number number	of	elements	in	a	dialog	box

Dlg.CurPos Number the	number	of	the	item	of	a	dialog	box	currently	in	focus

Dlg.ItemType Number type	of	the	element	currently	in	focus

Value Description

-1 error,	for	example	Dlg.ItemType	was	called	outside	of	the	dialog

4 Text	input	box

5 Password	input	box

6 Fixed	width	input	box

7 Push	Button

8 Check	Box

9 Radio	Button

10 Combo	box

11 List	box

255 Custom	control

0x8004 Text	input	box	history

0x800A Combo	box	list

Command	Line

CmdLine.ItemCount Number number	of	characters	in	the	command	line

CmdLine.CurPos Number current	command	line	cursor	position

CmdLine.Value String command	line	content

Editor

Editor.FileName String full	name	of	the	file	being	edited

Editor.CurLine Number current	line	in	the	editor	(first	line	is	1)

Editor.CurPos Number current	cursor	position	in	the	current	line	in	the	editor	(first	column	is	1);	tab	size	is	accounted

Editor.RealPos Number current	cursor	position	in	the	current	line	in	the	editor	(first	column	is	1);	without	accounting	for	tab
size

Editor.Value Value contents	of	the	current	line	in	the	editor	(under	the	cursor).
For	example,	to	show	the	character	under	the	cursor:

MsgBox(substr(Editor.Value,Editor.CurPos-1,1),Editor.FileName,0)

Editor.Lines Number number	of	lines	in	the	editor

Editor.State Number state	of	the	current	internal	file	editor	-	bit	flag	set:

Value Description

0x00000001 file	is	new	or	already	deleted

0x00000002 can	be	switched	to	the	viewer	by	F6

0x00000004 remove	the	file	after	closing	the	editor

0x00000008 file	was	modified	in	the	editor	(there	is	a	'*'	sign	in	the	editor	status	line)

0x00000010 there	is	a	stream	selection	box	(alternative	is	Editor.Sel(0,4))

0x00000020 there	is	a	vertical	selection	block	(alternative	is	Editor.Sel(0,4))

0x00000040 file	was	modified	during	the	whole	editing	session

0x00000080 the	cursor	is	in	replace	mode

0x00000100 cursor	position	was	modified	by	the	plugin

0x00000200 the	editor	is	locked	(ReadOnly)

0x00000400 permanent	blocks	are	used

0x00000800 modal	editor

0x08000000 FAR	is	started	with	/e

Example:

$If	(Editor.State	&	0x8)	...do	something	if	file	was	modified...

Viewer

Viewer.FileName String full	name	of	the	file	being	viewed

Viewer.State Number state	of	the	current	internal	file	viewer	-	bit	flag	set:

Value Description

0x00000001 codepage	autodetection	is	on

0x00000002 text	and	codepage	are	not	in	ANSI	encoding

0x00000004 Unicode	mode

0x00000008 line	wrapping	is	on

0x00000010 wrap	lines	by	words	instead	of	by	letters

0x00000020 hexadecimal	mode	is	used

0x00000800 modal	viewer

0x08000000 FAR	is	started	with	/v

Example,

$If	(Viewer.State	&	0x20)	...do	something	if	hex	mode	is	on...

Drive	menu

Drv.ShowPos Number drive	menu	is	shown	for	the	left	panel	(AltF1,	value	1)	or	the	right	panel	(AltF2,	value	2).

Drv.ShowMode Number drive	menu	representation	flags;	bitmask:

Value Description

0x00000001 disk	type	displaying	is	enabled

0x00000002 network	name	(and	the	path	associated	with	a	SUBST	drive	under	NT)	displaying	is	enabled

0x00000004 disk	label	displaying	is	enabled

0x00000008 file	system	type	displaying	is	enabled

0x00000010 total	and	free	disk	size	displaying	is	enabled

0x00000020 removable	disk	parameters	displaying	is	enabled

0x00000040 plugin	items	displaying	is	enabled

0x00000080 CD	parameters	displaying	is	enabled

0x00000100 total	and	free	disk	size	(Windows	Explorer	style)	displaying	is	enabled

0x00000200 network	parameters	displaying	is	enabled

Other

MacroArea String name	of	the	current	macro	area

ItemCount Number number	of	elements	in	the	current	object;	delimiters	are	also	counted	in	the	menu

CurPos Number position	in	the	current	object

Title String title	of	the	current	object

Far.Width Number FAR	Manager	console	width

Far.Height Number FAR	Manager	console	height

Far.Title String current	title	of	FAR	console	window

Help.FileName String full	path	to	the	opened	help	file;	for	the	list	of	plugins	help	topics	(Shift-F2)	this	value	is	empty

Help.Topic String ID	of	the	current	help	topic	(without	the	leading	'@'	symbol)

Help.SelTopic String ID	of	the	selected	help	topic	(without	the	leading	'@'	symbol)

MsX Number Horizontal	offset	of	mouse	cursor	since	the	last	mouse	event	was	triggered

MsY Number Vertical	offset	of	mouse	cursor	since	the	last	mouse	event	was	triggered

MsButton Number Indicates	the	status	of	the	mouse	buttons.	The	least	significant	bit	corresponds	to	the	leftmost
mouse	button.	The	next	least	significant	bit	corresponds	to	the	rightmost	mouse	button.	The	next	bit

indicates	the	next-to-leftmost	mouse	button.	The	bits	then	correspond	left	to	right	to	the	mouse
buttons.	A	bit	is	1	if	the	button	was	pressed.
The	following	constants	are	defined	for	the	first	five	mouse	buttons:

Value Description

0x0001 FROM_LEFT_1ST_BUTTON_PRESSED

0x0002 RIGHTMOST_BUTTON_PRESSED

0x0004 FROM_LEFT_2ND_BUTTON_PRESSED

0x0008 FROM_LEFT_3RD_BUTTON_PRESSED

0x0010 FROM_LEFT_4TH_BUTTON_PRESSED

MsCtrlState Number Indicates	the	state	of	the	control	keys.	This	member	can	be	one	or	more	of	the	following	values.

Value Description

0x0001 RIGHT_ALT_PRESSED

0x0002 LEFT_ALT_PRESSED

0x0004 RIGHT_CTRL_PRESSED

0x0008 LEFT_CTRL_PRESSED

0x0010 SHIFT_PRESSED

0x0020 NUMLOCK_ON

0x0040 SCROLLLOCK_ON

0x0080 CAPSLOCK_ON

0x0100 ENHANCED_KEY

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Variables
main	|	Macros	|	Macro-language

You	can	use	the	variables	to	store	some	values	associated	with	the	names	and	use
them	later	in	the	macro	sequences.	Both	global	and	local	variables	can	be	used	in
the	macro	sequence.

Naming
Local	variable	name	begins	with	the	'%'	sign	followed	by	the	alpha	characters,
numbers	or	'_'	characters.

Global	variable	name	begins	with	the	'%%'	signs	followed	by	the	alpha
characters,	numbers	or	'_'	characters.

Variable	value	assignment	should	be	ended	with	';'

Variable	names	are	not	case	sensitive	thus	'%myStr'	and	'%MYstr'	is	the	same
variable.

Types
Variables	can	be	either	string	or	integer.

Integer	constants	can	be	represented	by:	NNN	-	decimal	constant,	0NNN	-	octal
constant,	0xNNN	-	hexadecimal	constant.

Integers	are	of	64	bit	width.

Scope	of	action
The	scope	for	the	local	variables	is	the	current	macro	sequence.

The	scope	for	the	global	variables	is	a	current	FAR	Manager	session.	Global
variables	can	be	stored	in	the	Vars	execution	area.	Every	time	FAR	starts	up	it
restores	the	global	variables	stored	in	this	area.

Representation	in	registry
In	the	registry,	global	variables	are	stored	in	the	special	key
[HKEY_CURRENT_USER\Software\Far\

[Users\USERNAME\]KeyMacros\Vars].

Every	global	variable	has	a	name	and	can	be	of	three	types	REG_SZ	(for	string
variables)	and	REG_DWORD	or	REG_QDWORD	(for	integer	variables).	If	a
variable	had	REG_DWORD	type	initially,	it	changes	type	to	REG_QDWORD

during	saving	with	msave	function.

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

See	also:
msave()

Technical	details
main	|	Macros

Storing	macro	commands
FAR	macro	commands	are	located	in	Windows	registry	under
[HKEY_CURRENT_USER\Software\Far\

[Users\USERNAME\]KeyMacros]	registry	key	in	a	text	form.

Macro	commands	are	divided	into	16	areas	of	execution	and	2	areas	to	store
global	variables	and	constants.	Area	name	corresponds	to	the	registry	key:

Area Purpose

"Shell" File	panels

"Viewer" Internal	file	viewer

"Editor" Internal	file	editor

"Dialog" Dialog	boxes

"Search" Quick	file	search

"Disks" Drive	selection	menu

"MainMenu" Main	menu

"Menu" Other	menus

"Help" Help	system

"Info" Informational	panel

"QView" Quick	view	panel

"Tree" Folder	tree	panel

"FindFolder" Folder	search	panel

"UserMenu" User	menu

"Other" Screen	capturing	mode

"Common" Common	area.	Macros	created	in	this	area	can	be	used
everywhere.	This	area	has	the	lowest	priority	while
processing	macros.

"Vars" Global	variables	area	read	by	FAR	during	startup.
Variables	can	be	string	(REG_SZ)	and	numeric
(REG_QWORD).	One	can	write	to	this	area	using
msave()	function.

"Consts" Global	constants	area	read	by	FAR	during	startup.
Constants	can	be	string	(REG_SZ)	and	numeric

(REG_QWORD).

Every	macro	command	is	stored	in	a	separate	sub	key	of	the	certain	area	of
execution,	which	name	is	assigned	to	a	new	shortcut	name	and	contains	a	set	of
values	that	define	the	macro	command	behaviour.

Name Type Default Description

Sequence REG_SZ
REG_MULTI_SZ

	 Contains	the	sequense	of	the
keystrokes.

DisableOutput REG_DWORD 0 Disable	screen	output	while
executing	the	macro.	When	user
creates	new	macro	FAR	sets	this
parameter	to	1	(disable	screen
output).	If	this	parameter	is
omitted	FAR	uses	its	default
value	and	enables	screen	output.

RunAfterFARStart REG_DWORD 0 Execute	macro	command	after
FAR	startup.	This	flag	applies
only	to	macros	that	start	in	the
Shell	area.

EmptyCommandLine REG_DWORD 0 Execute	this	macro	only	if
command	line	is	empty.

NotEmptyCommandLine REG_DWORD 0 Execute	this	macro	only	if
command	line	is	not	empty.

NoFilePanels REG_DWORD 0 Do	not	execute	this	macro	for	a
file	panel.

NoFilePPanels REG_DWORD 0 Do	not	execute	this	macro	for	a
passive	file	panel.

NoPluginPanels REG_DWORD 0 Do	not	execute	this	macro	for	a
plugin	panel.

NoPluginPPanels REG_DWORD 0 Do	not	execute	this	macro	for	a
passive	plugin	panel.

NoFolders REG_DWORD 0 Do	not	execute	this	macro	if	the
current	element	is	a	folder.

NoPFolders REG_DWORD 0 Do	not	execute	this	macro	if	the
current	element	is	a	folder	for	a
passive	panel.

NoFiles REG_DWORD 0 Do	not	execute	this	macro	if	the
current	element	is	a	file.

NoPFiles REG_DWORD 0 Do	not	execute	this	macro	if	the
current	element	is	a	file	for	an
inactive	panel.

Selection REG_DWORD 0 Execute	only	if	there	are	any
selected	elements	on	the	panel.

PSelection REG_DWORD 0 Execute	only	if	there	are	any
selected	elements	on	the	passive
panel.

NoSelection REG_DWORD 0 Execute	only	if	there	are	no
selected	elements	on	a	panel.

NoPSelection REG_DWORD 0 Execute	only	if	there	are	no
selected	elements	on	a	passive
panel.

EVSelection REG_DWORD 0 Execute	if	there	is	a	selected	text
block	in	the	viewer,	editor	or
dialog	text	boxes.

NoEVSelection REG_DWORD 0 Execute	if	there	is	no	selected
text	block	in	the	viewer,	editor	or
dialog	text	boxes.

NoSendKeysToPlugins REG_DWORD 0 Special	mode:	don't	send
keystrokes	to	the	plugins	during
recording	and	executing.

Description REG_SZ 	 Macro	command	description.

There's	only	one	mandatory	parameter	"Sequence",	other	parameters	can	be
omitted	and	they	will	have	the	default	values	according	to	their	specifications.

The	"Sequence"	parameter	contains	literal	representation	of	the	command
sequence.	Every	keystroke	is	represented	by	its	string	equivalent	delimited	by
space	or	tab	character.

During	startup	FAR	compiles	command	sequence	for	every	macro	command
defined	into	internal	byte	code	representation.	If	there	is	any	error	during
compilation	of	the	macro	command	then	the	macro	will	be	ignored.

Execution	conditions

Before	executing	the	macro	FAR	checks	the	execution	conditions	in	the
following	order:

1.	 NoSendKeysToPlugins
2.	 EmptyCommandLine	+	NotEmptyCommandLine
3.	 NoFilePanels	+	NoPluginPanels
4.	 NoFilePPanels	+	NoPluginPPanels

5.	 NoFolders	+	NoFiles
6.	 NoPFolders	+	NoPFiles
7.	 Selection	+	NoSelection	(outside	Viewer,	Editor	and	Dialog)
8.	 PSelection	+	NoPSelection	(outside	Viewer,	Editor	and	Dialog)
9.	 EVSelection	+	NoEVSelection	(inside	Viewer,	Editor	and	Dialog)

See	also:
General	background,	Using	macros,	Macro-language,	Examples

Examples
main

Description	of	FAR	plugins	examples	delivered	with	FAR	Manager.	Source	files
are	located	in	%FAR%\PlugDoc\Examples\.

Editor	Plugins:
Align
Performs	block	align	in	FAR	editor.
A	simple	plug-in	related	to	"Activated	-	working	-	done"	category.
It	gives	an	example	of	using	EditorControl	service	function.

Auto	Wrap
Enables	auto	wrap	in	FAR	editor.
This	is	an	example	of	"hooking"	the	input	stream	in	FAR	Manager	internal
editor.
When	enabled	plugin	monitors	all	keyboard	and	mouse	events	using
ProcessEditorInput	function:
int	WINAPI	_export	ProcessEditorInput(const	INPUT_RECORD	*Rec)

{

		//	KEY_EVENT	processing	code

}

Brackets
Searches	and	highlights	the	paired	brackets	in	FAR	editor.
This	is	an	example	of	a	"Opened,	made	something,	finished"	plugin.
Plugin	uses	ECTL_GETSTRING	command	to	search	brackets,
ECTL_SETPOSITION	command	to	place	cursor	on	the	paired	bracket	found
and	ECTL_SELECT	command	to	highlight	block.

DrawLine
Enables	user	to	draw	a	pseudo	graphics	lines	and	tables	in	the	FAR	editor.
The	"hooking"	version	of	plugin	related	to	"Activated	-	working	-	done"
category.	This	plugin	uses	an	infinite	cycle	to	process	data	using
ECTL_READINPUT	and	ECTL_PROCESSINPUT	commands:

HANDLE	WINAPI	_export	OpenPlugin(int	OpenFrom,INT_PTR	Item)

{

		...

		while	(!Done)

		{

				Info.EditorControl(ECTL_READINPUT,&rec);

				...

				Info.EditorControl(ECTL_PROCESSINPUT,&rec);

		}

		...

}

EditCase
Enables	FAR	editor	to	change	the	case	of	the	selected	block	or	a	word	under
cursor.
This	is	an	example	of	a	"Opened,	made	something,	finished"	plugin.
This	plugin	gets	a	string	using	ECTL_GETSTRING	command	then	transforms
it	and	puts	it	back	into	the	document	being	edited	using	ECTL_SETSTRING
command.

HlfViewer
HlfViewer	adds	to	the	FAR	editor	an	ability	to	view	HLF	help	files.	HlfViewer
plugin	is	supposed	to	be	a	useful	tool	for	developers	who	create	or	modify
HLF-files	or	for	those	who	just	want	to	view	an	HLF	help	file	(processes	F1
key	and	shows	up	HLF-file	being	edited	in	a	window,	processes	"hlf:"	prefix).

Other	Plug-ins:
HelloWorld
"Hello,	World!"	is	a	simple	plugin	helping	beginners	to	understand	the
common	plugin	structure	and	the	way	it	interacts	with	FAR	environment.

FAR	Commands
FAR	Commands	plug-in	(FARCmd)	brings	additional	functionality	to	the	user
menu,	file	associations	and	command	line	usage.	There	are	several	samples	of
prefixes	handling.

FileCase
This	command	enables	user	to	change	the	file	name	case	for	selected	files
according	to	one	of	case	of	the	case	change	rules	specified.	This	plugin	is
quite	simple	so	you	can	use	it	as	a	template	to	create	new	commands	for	FAR
Manager.

MultiArc
This	plugin	extends	FAR	Manager	to	be	able	to	read	the	contents	of	archives,

compress,	extract	and	process	files	using	archives.	MultiArc	represents
archive	and	everything	within	as	a	directory	structure	transparent	to	user	with
some	limitations	though.	FAR	passes	your	commands	to	external	archivers	to
process	your	requests.	This	plugin	is	quite	complex.	It	supports	second-level
plugins	so	you	can	add	support	for	new	archive	formats	by	writing	small
modules	and	without	having	to	recompile	the	MultiArc	itself.

Network
Using	Network	plugin	you	can	browse	the	network	and	network	shared
resources,	mount	and	dismount	them	as	local	drives.	You	can	press	F5	to	map
the	chosen	shared	resource	to	the	next	available	letters	or	F6	if	you	want	to
choose	the	letter	yourself.	F8	disconnects	already	mapped	drive.

TmpPanel
Temporary	panel	adds	to	FAR	Manager	the	ability	to	maintain	virtual	file	lists
similar	to	the	file	panels	without	directory	structure.	Temporary	panels	enable
processing	of	multiple	files	from	different	folders.	Up	to	10	temporary	panels
with	different	file	lists	can	be	used.

How	to	make	a	FAR	plug-in	using	Visual	C++	
step	by	step
main	|	articles

Phoenix	aka	Ruslan	Ilgasov	?subject=Articles">	

phoenixbird@hotmail.ru	

It's	difficult	to	find	a	man	who	doesn't	know	about	or	who	doesn't	use	FAR	-
IMHO	the	best	NC	clone	for	Windows.	It	is	really	very	good	file-manager,
moreover,	there	are	a	lot	of	plug-in	modules	for	it.	Plug-in	module	is	a	DLL	file
that	uses	FAR	functions	instead	of	using	standard	Windows	functions	in	order	to
work	with	monitor,	keyboard,	etc.	FAR	supports	all	functions	necessary	for
working	in	the	text	mode.	You	can	install	the	plug-in	module	easily	-	just	copy
DLL	file	and	data	files	to	the	folder	under	Far\Plugins	and	restart	FAR.
FAR	is	distributed	along	with	the	full	set	of	files	required	for	writing	a	plug-in
using	any	Windows-based	C	compiler.	This	article	guides	how	to	make	a	FAR
plug-in	using	Visual	C++	(I	used	Visual	C++	5.0).	After	FAR	is	installed,	there's
a	PlugDoc.rar	file	in	its	folder	that	contains	examples	of	plug-ins	and	header	file
(note:	beginning	from	FAR	1.70	beta	5	examples	are	installed	into	the	separate
PlugDoc	folder).	All	the	examples	are	used	in	FAR.	Also,	the	VCReadme.txt
is	included	there,	in	which	the	details	of	Visual	C++	workflow	are	described.
You'll	investigate	examples	later.
We'll	write	the	plug-in	that	gets	the	list	of	open	windows	and	can	be	used	as	a
prototype	for	your	own	plug-ins.	As	a	matter	of	fact,	you	have	only	to	start,	the
things	are	not	so	complicated	as	you	can	think.	So,	let's	go:

1.	 Start	VC,	and	make	a	new	project	named	SimpleFP	from	the	"Win32
Dynamic-Link	Library"	template.	Create	simplefp.cpp	file	-	we'll	actually
write	there.	Copy	plugin.hpp	header	file	from	the	PlugDoc.rar	archive	to	the
SimpleFP	folder.	(note:	the	samples	are	installed	into	the	PlugDoc	folder,
beginning	from	FAR	1.70	beta	5).

2.	 We	should	make	a	.def	file	now	-	the	file	where	the	functions	called	from
external	modules	are	described.	We	should	describe	the	FAR	functions	that
we'll	use	in	our	module.	So,	make	a	simplefp.def	text	file,	in	which:

LIBRARY

EXPORTS

GetPluginInfo=_GetPluginInfo@4

mailto:Ruslan%20Ilgasov%20<phoenixbird@hotmail.ru>?subject=Articles

OpenPlugin=_OpenPlugin@8

SetStartupInfo=_SetStartupInfo@4

Here	we	describe	the	3	functions	we'll	need	later.	Now	add	the
simpledef.def	to	the	project	files	(Project	-	Add	to	project	-	Files	-
simplefp.def).

3.	 We're	writing	the	plug-in	now	-	working	with	simplefp.cpp	file.	I	decided
the	source	text	to	be	commented,	so	you	can	copy	it	into	C++	and	begin	to
play	with	it.	But	let's	begin	from	fundamentals.

Far	works	using	the	same	principles	as	Windows	uses	-	in	your	program	you	call
any	functions	you	want	if	they	are	already	exist	in	the	system.	Far	provides
functions	for	handling	form	views	in	the	console	application	mode.	When
starting	a	plug-in,	FAR	starts	OpenPlugin	function,	we'll	treat	it	as	similar	to
main()	or	WinMain().	But	we	still	have	to	pass	our	plug-in	data	to	FAR.	The
GetPluginInfo	function	does	that.
/*

*	SimpleFP	-	a	simple	FAR	plug-in.	(C)	2000	Phoenix,	Moscow

*/

#include	<stdio.h>				//	for	sprintf	calling

#include	<windows.h>		//	for	Windows	functions

#include	"plugin.hpp"	//	for	FAR	functions

#define	PLUGIN_NAME	"Open	windows"						//	Plug-in	name

#define	WINDOW_HEAD	"Open	windows	list"	//	Our	menu	title

//

//	Here	the	FAR	functions	we	are	working	with	are	described.

//

extern	"C"

{

void	WINAPI	_export	SetStartupInfo(struct	PluginStartupInfo	*Info);

HANDLE	WINAPI	_export	OpenPlugin(int	OpenFrom,int	Item);

void	WINAPI	_export	GetPluginInfo(struct	PluginInfo	*Info);

};

static	struct	PluginStartupInfo	Info;	//	Our	plug-in	info

//

//	Module	information	is	defined	in	the	Info	structure

//

void	WINAPI	_export	SetStartupInfo(struct	PluginStartupInfo	*Info)

{

		::Info=*Info;

}

//	This	function	is	called	to	get	the	plug-in	information.

//	We	must	fill	the	Info	structure	fields.

//

void	WINAPI	_export	GetPluginInfo(struct	PluginInfo	*Info)

{

		Info->StructSize=sizeof(*Info);	//	Info	structure	size

		Info->Flags=0;	//	It's	useless	for	us

		Info->DiskMenuStringsNumber=0;	//	It's	also	useless	for	us

		//	Determine	a	string	with	module	name

		static	char	*PluginMenuStrings[1];

		PluginMenuStrings[0]=	PLUGIN_NAME;

		//	Determine	a	plug-in	module	name

		Info->PluginMenuStrings=PluginMenuStrings;

		Info->PluginMenuStringsNumber=

				sizeof(PluginMenuStrings)/sizeof(PluginMenuStrings[0]);

		Info->PluginConfigStringsNumber=0;	//	It's	useless	for	us

}

//	This	function	is	called	when	starting	the	plug-in	module.

//

HANDLE	WINAPI	_export	OpenPlugin(int	OpenFrom,int	Item)

{

		HWND	hwnd;	//	Use	it	to	get	the	handle

		char	p[128],	o[128];	//	Use	it	to	create	a	menu	string

		int	i=0;	//	Counter

		struct	FarMenuItem	MenuItems[64];	//	Description	of	the	menu	that	FAR	creates	for	us

		memset(MenuItems,0,sizeof(MenuItems));	//	Initialize	our	menu

		MenuItems[0].Selected=TRUE;

		hwnd	=	GetDesktopWindow();	//	Get	desktop	handle

		hwnd	=	GetWindow(hwnd,	GW_CHILD);	//	Get	its	handle

		while	(hwnd	!=0)	//	While	it	is	not	last

		{

				hwnd	=	GetWindow(hwnd,	GW_HWNDNEXT);	//	Get	window	handle

				GetWindowText(hwnd,p,128);	//	and	its	caption

				if	(strlen(p)>0)	//	if	caption	exists

				{

						sprintf(o,"%0.8xld	%s",	hwnd,	p);	//	create	a	string

						strcpy(MenuItems[i++].Text,	o);	//	copy	this	string	to	the	MenuItems	array

				}

		}

		//	Call	the	menu	we	created	just	now,	get	the	selected	item	number	-	MenuCode

		//

		int	MenuCode=Info.Menu(Info.ModuleNumber,

																		-1,-1,0,

																		FMENU_AUTOHIGHLIGHT|FMENU_WRAPMODE,

																		WINDOW_HEAD,

																		NULL,

																		"Menu	content",

																		NULL,

																		NULL,

																		MenuItems,

																		i);

		return(INVALID_HANDLE_VALUE);

}

Then,	compile	the	project,	copy	to	Far\Plugins	folder,	and	restart	FAR.	When	in
FAR,	press	F11	-	this	is	the	list	of	plug-in	modules.	"Open	windows"	string	must
be	there.	Look	at	the	result.	You	can	now	develop	it,	for	example,	process	the
MenuCode	data,	and	then	pass	the	WM_CLOSE	message	to	the	selected
window,	or	do	something	more	peculiar.	Plug-in	modules	creation	for	FAR	is

well-documented,	so	you	can	investigate	that.
Encyclopedia	includes	simplefp.zip	archive	-	a	DLL	file	example	(~20Kb)

Phoenix	aka	Ruslan	Ilgasov,	Moscow	

E-Mail:phoenixbird@hotmail.ru	

FIDO:	2:5020/2637.2	

	

13.05.2000
to	the	top

mailto:phoenixbird@hotmail.ru

ECTL_GETSTRING	works	very	slowly
main	|	articles

Stanislav	V.	Mekhanoshin	?subject=Articles">

rampitec@tu.spb.ru

Let's	suppose	a	plugin	is	to	scan	a	large	number	of	strings	in	the	editor	in
sequence.	In	my	case,	the	Incremental	Search	plugin	searched	for	a	substring	in
the	editor.	The	first	idea	was	to	perform	a	sequential	search	for	strings	in	this
way:
{

				struct	EditorGetString	egs;

				struct	EditorSetPosition	esp;

				struct	EditorInfo	ei;

				Info.EditorControl(ECTL_GETINFO,&ei;);

				for(egs.StringNumber=ei.CurLine;

									egs.StringNumber	<	ei.TotalLines;

									egs.StringNumber++)

				{

								Info.EditorControl(ECTL_GETSTRING,⪖);
								if(process(egs.StringText,	egs.StringLength)){

												esp.CurLine=egs.StringNumber;

												esp.CurPos=-1;

												esp.CurTabPos=-1;

												esp.TopScreenLine=-1;

												esp.LeftPos=-1;

												esp.OverType=-1;

												Info.EditorControl(ECTL_SETPOSITION,&esp;);

												return	TRUE;	//	Success,	the	string	is	set	now.

								}

				}

				return	FALSE;	//	Fail,	just	return	back.	There	are

																		//	no	changes	in	the	editor.

}

However,	having	code	written	in	this	way,	I	discovered	that	string	processing
code	(essentially	the	process()	function)	worked	considerably	faster	than	the

mailto:Stanislav%20V%2E%20Mekhanoshin%20<rampitec@tu.spb.ru>?subject=Articles
http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Select=PlugIn&SelectPlugIn=171

whole	iteration.	In	other	words,	the	procedure	that	returned	the	string	by	its
number	took	~99%	of	time.
The	code	was	rewritten	according	to	the	ER's	advice	(Andrew	Tretyakov	did	the
same	in	the	EditCompletion	plugin).	Essentially,	the	advice	is	to	obtain	a	current
string	(-1)	always,	without	using	its	real	number.	In	other	words,	to	substitute
ECTL_GETSTRING	with	the	string	number	for	twain	ECTL_SETPOSITION
with	the	string	number	and	ECTL_GETSTRING	with	-1.
Need	to	mention	that	you	must	store	the	current	cursor	position	in	the	editor	and
restore	it	when	doing	rollback	in	order	to	use	this	method.	But	the	matter	is
worthy	of	it.	So,	you	must	rewrite	the	code	mentioned	above	in	this	way:
{

				struct	EditorGetString	egs;

				struct	EditorSetPosition	esp;

				struct	EditorInfo	ei;

				Info.EditorControl(ECTL_GETINFO,&ei;);

				egs.StringNumber=-1;

				for(esp.CurLine=ei.CurLine;

									esp.CurLine<ei.TotalLines;

									esp.CurLine++)

				{

								Info.EditorControl(ECTL_SETPOSITION,&esp;);

								Info.EditorControl(ECTL_GETSTRING,⪖);
								if(process(egs.StringText,	egs.StringLength))

												return	TRUE;	//	Success,	the	string	is	set	now.

				}

				//	Restore	the	old	position:

				esp.CurLine=ei.CurLine;

				esp.CurPos=ei.CurPos;

				esp.TopScreenLine=ei.TopScreenLine;

				esp.LeftPos=ei.LeftPos;

				esp.CurTabPos=-1;

				esp.OverType=-1;

				Info.EditorControl(ECTL_SETPOSITION,&esp;);

http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Select=PlugIn&SelectPlugIn=93

				return	FALSE;

}

By	the	way,	FAR	doesn't	redraw	changes	immediately,	so	the	screen	won't
flicker.
And	the	most	pleasant:	time	metering	performed	on	my	computer	showed	that
we	get	the	string	(only	get,	without	processing	-	the	raw	time)	63	times	faster	in
the	second	case	than	in	the	first	case.	The	effect	is	stable	for	both	relatively	small
files	and	files	with	size	more	than	half	of	my	RAM.	Andrew	Tretyakov	has
almost	the	same	results	-	he	has	ratio	of	1/65.	In	other	words,	the	figures	are
rather	close.
For	metering,	I	used	the	Watcom	C	11.0	run-time	profiler	based	on	the	rdtsc
Pentium	profiling	instruction.	IMHO	it's	the	best	profiler.	But	speed-up	is	highly
noticeable	even	without	any	tools.	All	tests	were	performed	using	IP-240,	96Mb
RAM,	Windows	NT	4.0	SP6.	Andrew	Tretyakov	used	486-dx4-100	for
metering.
Minor	warning:	When	setting	the	position,	FAR	may	change	the	LeftPos,
TopScreenLine,	and	CurPos	values	even	if	you	set	them	to	-1	already.	For
example,	if	the	cursor	can't	move	beyond	the	end	of	the	line,	but	the	line	is
shorter	than	CurPos	you	try	to	store	by	setting	it	to	-1,	then	CurPos	will	change
despite	of	that.	Such	behaviour	is	acceptable	for	most	users.	However,	user
doesn't	see	intermediate	moves	through	the	text	when	searching	strings
sequentially	within	the	iteration	mentioned	above.	He	will	be	surprised	seeing
the	position	he	doesn't	expect	(from	his	point	of	view)	when	moving	from	the	1st
to	the	10th	string.	Such	problem	can't	appear	in	the	first	example	since	only	one
move	is	actually	performed.	But	you	should	modify	the	second	example	in	order
not	to	face	with	problem	like	that.
There	are	many	ways	to	modify	it.	For	example,	this	problem	gets	eliminated	if
your	plugin	doesn't	change	the	current	position	at	all	(i.e.	always	restores	it).	If
the	plugin	computes	TopScreenLine,	LeftPos,	or	CurPos	values	according	to	the
its	own	concept	(perhaps	not	related	to	their	previous	state),	it	just	calls	this	code
after	the	iteration	is	finished.	In	my	case	I	always	restore	the	stored	position,	and
then	use	the	ECTL_SETPOSITION	by	passing	the	required	string	and	-1	for
other	parameters	there.	Here's	the	example	of	the	modified	code:
{

				struct	EditorGetString	egs;

				struct	EditorSetPosition	esp;

				struct	EditorInfo	ei;

				int				nFound=-1;	//	number	of	the	found	string

				Info.EditorControl(ECTL_GETINFO,&ei;);

				egs.StringNumber=-1;

				for(esp.CurLine=ei.CurLine;

									esp.CurLine	<	ei.TotalLines;

									esp.CurLine++)

				{

								Info.EditorControl(ECTL_SETPOSITION,&esp;);

								Info.EditorControl(ECTL_GETSTRING,⪖);
								if(process(egs.StringText,	egs.StringLength)){

												nFound=esp.CurLine;	//	Success

												break;

								}

				}

				//	Restore	the	old	position:

				esp.CurLine=ei.CurLine;

				esp.CurPos=ei.CurPos;

				esp.TopScreenLine=ei.TopScreenLine;

				esp.LeftPos=ei.LeftPos;

				esp.CurTabPos=-1;

				esp.OverType=-1;

				Info.EditorControl(ECTL_SETPOSITION,&esp;);

				if(nFound	>=	0)

				{															//	Now	set	again	to	the	found	position...

								esp.CurLine=nFound;

								esp.CurPos=-1;										//	Despite	these	fields	contain	values

								esp.TopScreenLine=-1;			//	already,	they	must	be	set	to	-1.

								esp.LeftPos=-1;									//	It's	not	the	same!	Explicit	number	is

								esp.CurTabPos=-1;							//	unconditional.	-1	only	_tries_	to	store

								esp.OverType=-1;								//	the	old	value,	if	possible!

								Info.EditorControl(ECTL_SETPOSITION,&esp;);

				}

				return	nFound	>=	0;

}

	

28.11.1999

Rev.	26.06.2000
to	the	top

Additional	topics
main

Additional	structures	and	functions
Examples
'Rules	to	set	the	right	tone'
Overview	of	plugin	capabilities
Lyrical	introduction	to	plugins
FAR	plugins	API	History
How	to	setup	the	Encyclopedia
FAQ
Authors

How	to	setup	the	Encyclopedia
main

Microsoft	Visual	C++	-	MSDN
It	is	possible	to	incorporate	the	Encyclopedia	into	the	MSDN	library	if	you	have
one	installed	on	your	computer	to	be	able	to	use	Encyclopedia	along	with
MSDN	help.	Serg	Bormant	(2:5027/12.80@fidonet)	sent	us	a	«GuideLine»;	here
it	is	(with	my	remarks,	ruiv).

				While	looking	through	the	encyclopedia	(FarEncyclopedia.en.chm),	I've	discovered	a

topic	about	its	setup.

..

				Separate	.chm	and	.chi	are	good	only	if	you	keep	the	text	on	removable	media

while	having	index	(.chi)	set	up.	But	it's	meaningless	for	Encyclopedia	taking

into	account	its	small	size.	A	"monolithic"	.chm	also	contains	an	index,	so	it's

easy	to	link	it.

				To	incorporate	it	into	the	MSDN	collection	you	must	consider	that	*.col	describes

the	collection	definition	(logical	structure)	on	the	sections	(Folders)	level,	while

the	physical	file	locations	are	kept	in	the	hhcolreg.dat	file.

				Here's	the	method	of	FarEncyclopedia.en.chm	incorporation.	I	don't	claim	it	to	be	exactly

correct	:),	but	it	works	well...

				0.	Input	data...

Windows	2000	English,	Visual	Studio	6	SP3,	MSDN	Jan	2000,	HTML	Help	Control	4.74.8702

Encyclopedia:

D:\Program	Files\Far\PlugDoc\

		FarEncyclopedia.en.chm

Collection	(this	path	you	can	find	in	the	MSDN	desktop	link):

D:\Program	Files\mvs\MSDN\2000JAN\1033\

		MSDN000.COL

Collection	registration:

D:\Documents	and	Settings\All	Users\Application	Data\Microsoft\HTML	Help\

		hhcolreg.dat

				1.	Do	as	following:

				1.1.	Unload	MSDN	Library...

				1.2.	Find	all	*.col	in	the	MSDN	folder	(it's	msdn000.col	in	my	case),	and	back	them	up

(same	for	every	other	file	we	change).	Then	before	Folders	closing	tag	</Folders>	add

the	following	(added	strings	are	marked	with	">"):

	<XML>

	<HTMLHelpCollection>

	<collectionnum	value=10003/>

	...

	<Folders>

	<Folder>

			<TitleString	value="MSDN	Library	-	January	2000"/>

			<FolderOrder	value=1/>

	...

	</Folder>

>

><Folder>

>		<TitleString	value="Far	PlugRinG	Help	Project"/>

><FolderOrder	value=2/>

>		<Folder>

>				<TitleString	value="=pluginsr"/>

>				<FolderOrder	value=1/>

>				<LangId	value=1033/>

>		</Folder>

></Folder>

>

	</Folders>

	</HTMLHelpCollection>

	</XML>

				Pay	attention	to	the	tags	<collectionnum.../>	(collection	number)	and

<FolderOrder.../>	(number	of	folder	within	the	level).

				(You	will	need	collectionnum	when	changing	next	file	because	FolderOrder

depends	on	the	location	where	you've	inserted	the	fragment.	Its	number	must	be

greater	than	the	one	specified	in	the	previous	Folder	section

				1.3.	Find	collection	registration	file	(there	can	be	several	files	of	that	type,

we	need	the	one	where	Encyclopedia	collection	is	defined	in	the	<Collections>

section),	and	add	the	file	information	to	the	<DocCompilations>	section:

(This	file	(hhcolreg.dat)	was	in	the	d:\winnt\help\	directory	on	my	computer

	<XML>

	<HTMLHelpDocInfo>

	...

	<Collections>

	...

	<Collection>

			<ColNum	value=10003/>

			<ColName	value="D:\Program	Files\MVS\MSDN\2000JAN\1033\MSDN000.COL"/>

	</Collection>

	</Collections>

	<Locations>

	...

	</Locations>

	<DocCompilations>

	<DocCompilation>

	...

	</DocCompilation>

>

><DocCompilation>

><DocCompId	value="pluginsr"/>

>		<DocCompLanguage	value=1033/>

>		<LocationHistory>

>				<ColNum	value=10003/>

>				<TitleLocation	value="D:\Program	Files\Far\PlugDoc\FarEncyclopedia.en.chm"/>

>				<IndexLocation	value="D:\Program	Files\Far\PlugDoc\FarEncyclopedia.en.chm"/>

>				<QueryLocation	value=""/>

>				<LocationRef	value=""/>

>				<Version	value=0/>

>				<LastPromptedVersion	value=0/>

>				<TitleSampleLocation	value=""/>

>				<TitleQueryLocation	value=""/>

>				<SupportsMerge	value=0/>

>		</LocationHistory>

></DocCompilation>

>

	</DocCompilations>

	</HTMLHelpDocInfo>

	</XML>

				The	collection	number	here	is	<ColNum.../>	(This	is	the	number	that	you

noted	while	changing	collection,	see	1.2)

				1.4.	Load	MSDN.	You	should	see	a	new	topic	under	Contents.	Click	on	the	Index	tab,

wait	until	the	new	index	is	created	(it's	a	long	process),	and	check	the	operability

by	typing	any	keyword,	e.g.	AF_AVPRESENT.

				2.	If	you	didn't	succeed,	then	you	made	a	mistake	somewhere	:(,	so	try	to	return

to	the	first	step	and	repeat	from	the	beginning	:)

Serg	Bormant,	2:5027/12.80@fidonet,	bormant@chat.ru,	bormant@netcity.ru

Yours	faithfully,	Serg	Bormant																											June	29,	2000

---	GoldED+/W32	1.1.4.5

	*	Origin:	To	be,	to	be,	two	beer:	without	questions...	(2:5027/12.80)

The	only	drawback	of	this	method	is	that	MSDN	indexes	should	be	rebuilt	every
time	the	Encyclopedia	is	changed	-	i.e.	after	a	new	version	has	been	installed	(it
takes	3-5	minutes).	But	now	you	have	an	integrated	FAR	Manager	Plug-in	API
help	along	with	MSDN	help	system.

Note	that	incorporated	Encyclopedia	supports	cross-links	to	the	MSDN	topics.

	
The	latest	amendment:

Date:	Wed,	26	Sep	2001	21:40:15	+0400

From:	Dennis	Trachuk	<dennis.trachuk@nm.ru>

Subject:	MSDN	Integration

Hello	All!

Article	about	HTML-help	files	integration	into	MSDN

mailto:dennis.trachuk@nm.ru

http://codeproject.com/winhelp/msdnintegrator.asp

(local	copy	of	this	article	is	available)

and	the	best	thing,	a	utility	for	doing	that	is	available:

http://codeproject.com/winhelp/MSDNIntegrator/MSDNIntegrator.zip

and	the	same,	but	with	sources:

http://codeproject.com/winhelp/MSDNIntegrator/MSDNIntegrator_src.zip

FAR	Manager
If	you	want	to	write	your	programs	using	FAR	built-in	editor,	take	advantage	of
the	"Active-Help"	plug-in.	It	extends	the	editor's	capability	to	context-sensitive
help	invocation...

It	works	with	HLP	as	well	as	with	CHM	files.	Also,	you	can	specify	your	MSDN
collection	(MSDNVS98.COL)	path	in	plug-in	settings	and	it	will	use	MSDN
collection!

http://codeproject.com/winhelp/msdnintegrator.asp
http://codeproject.com/winhelp/MSDNIntegrator/MSDNIntegrator.zip
http://codeproject.com/winhelp/MSDNIntegrator/MSDNIntegrator_src.zip
http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Select=PlugIn&SelectPlugIn=430

Lyrical	introduction	to	plugins
main

Tell	me,	what	has	the	power?
Money,	you	say.
My	brother	thinks	so	as	well.
But	actually...	plugins	hold	the	power.
Plugins	 might	 seem	 clumsy	 and	 overwhelming,	 but	 in	 fact,	 there's	 over	 a

hundred	plugins	of	all	kinds	for	FAR	Manager	now	-	ranging	from	Tetris	games
to	 e-mail	 clients.	 This	 phenomenon	 is	 strange	 at	 first	 sight,	 but	 it	 is
understandable	-	everyone	wants	what	he	needs	and	doesn't	wait	for	someone	to
do	that.
Plugin	 technology	 is	 definitely	 not	 new,	 but	 few	 other	 application	 can	 claim

such	an	extensive	use	of	plugins	as	FAR.	The	 reason	 is,	most	 likely,	 the	 fairly
flexible	 structure	 of	 FAR	 itself,	 along	 with	 the	 simple	 approach	 of	 shell
interaction	 with	 plugins.	 Essentially,	 this	 encyclopedia	 is	 dedicated	 to	 this
approach.	 We	 won't	 praise,	 analyze	 or	 rave	 about	 the	 advantages	 of	 plugin
interface.	 Just	 start	 study	 it	 and	 you	 will	 understand	 that	 in	 FAR	 you	 can	 do
anything	you	want.
The	main	 idea	 behind	 the	 concept	 of	 plugins	 is	 customizability.	 Install	 only

those	 plugins	 that	 provide	 the	 functionality	 you	 want,	 and	 discard	 anything
unneeded.	That	way,	your	tool	will	end	up	exactly	the	way	you	want	it,	without
any	unnecessary	sag	--	and	that's	the	main	advantage	of	FAR	Manager	over	the
integrated	shells.	Besides,	it	can	always	learn	new	tricks	and	do	something	that	it
has	never	done	before.
So	how	do	you	take	advantage	of	 that?	Alas,	 it's	not	entirely	magic;	you	will

need	certain	programming	experience.	However,	from	this	point	there's	very	few
requirements;	almost	any	programming	language	would	do,	given	that	you	have
a	 compiler	 capable	 of	 producing	 Windows	 DLLs.	 Best	 documentation	 and
examples	 are	 available	 for	 C/C++,	 Delphi	 and	 assembly	 language;	 there	 are
plugins	known	 to	be	written	 in	Modula,	Ada	 and	C--.	 In	 some	cases	you'll	 be
faced	with	lots	of	extra	details.	You	can	read	about	them	in	special	topics.
During	 initialization,	 FAR	 scans	 its	 Plugins	 folder	 and	 its	 respective

subfolders,	 and	 considers	 all	 files	 with	 .DLL	 extension	 found	 there	 to	 be	 its
plugins.	Therefore,	if	your	plugin	uses	its	own	DLLs,	they	must	have	a	different
extension.	In	fact,	plugin	is	an	ordinary	library	that	runs	in	the	console	process
environment,	so	it	functions	just	like	any	console	Win32	application.	However,

due	to	the	compatibility	issues	plugin	shouldn't	directly	write	text	to	the	screen;
Text	function	from	FAR	Manager	service	should	be	used	instead.

See	also:
Overview	of	plugin	capabilities,	Exported	functions,	Service
functions,	Structures,	Archive	support

Overview	of	plugin	capabilities
main	|	Internet

FAR	 Manager	 is	 so	 tightly	 integrated	 with	 its	 plugins	 that	 it	 is	 simply
meaningless	 to	 talk	about	FAR	and	not	 to	mention	the	plugins.	Plugins	present
an	almost	limitless	expansion	of	the	features	of	FAR.

Without	going	into	details,	some	of	the	capabilities	can	be	noted:

printers	control,	both	connected	to	PC	and	network.
syntax	highlighting	in	program	source	texts.
working	with	FTP-servers	(including	access	through	proxy,	automatic
download	resume,	etc.).
search	and	replace	in	many	files	at	the	same	time,	using	regular
expressions.
renaming	groups	of	files	with	support	for	complex	compound	masks
consisting	of	substitution	symbols	and	templates.
NNTP/SMTP/POP3/IMAP4	clients	and	sending	messages	to	a	pager.
working	with	non-standard	text	screen	resolutions.
conversion	of	texts	from	one	national	code	page	to	another.
manipulating	the	contents	of	the	Recycle	Bin.
Process	priority	control	on	local	or	network	PC.
Words	autocomplete	in	editor	and	working	with	templates.
Windows	system	registry	editing.
Creating	and	modifying	Windows	shortcuts.
File	and	text	operations	making	it	more	comfortable	to	use	FidoNet.
Files	UU-encode	and	UU-decode.
WinAmp	control	and	MP3-tags	modifying.
Quake	PAK-files	processing.
Connection	and	debugging	of	queries	to	ODBC-compatible	databases.
RAS	service	control.
External	programs	executing	(compilers,	converters	etc.)	while	editing	text
in	FAR	editor.
Windows	help	files	contents	displaying	(.hlp	and	.chm)
Calculators	with	different	possibilities.
Several	games	:-)
Spell	checker	functions	while	editing	text	in	FAR	editor.
Removable	drives	catalog	preparation	and	much	more...

It	is	useless	to	list	all	the	functions	provided	by	FAR	and	its	plugins,	because
this	 list	 is	constantly	growing.	As	an	information	source,	which	can	be	used	to
search	for	specific	plugins,	one	can	recommend:

1.	 PlugRinG	site
http://plugring.farmanager.com

2.	 Online	forum
http://forum.farmanager.com

3.	 USENET	echo	conference
news:fido7.far.support	(at	the	Google	Groups)
news:fido7.far.development	(at	the	Google	Groups)

4.	 FidoNet	echo	conferences
far.support
far.development

5.	 Mailing	lists
http://groups.google.com/group/fardeven
http://groups.yahoo.com/group/plugringenglish
http://groups.yahoo.com/group/farpluginsapi
http://groups.yahoo.com/group/plugring_announce

6.	 Use	the	PlugRinG	viewer	plugin	-	and	you	will	be	able	to	view	and
download	all	the	new	plugins	directly	from	FAR.

http://plugring.farmanager.com/
http://forum.farmanager.com/
news:fido7.far.support
http://groups.google.ru/groups?hl=ru&lr=&ie=UTF-8&group=fido7.far.support
news:fido7.far.development
http://groups.google.ru/groups?hl=ru&lr=&ie=UTF-8&group=fido7.far.development
http://groups.google.com/group/fardeven/
http://groups.yahoo.com/group/plugringenglish/
http://groups.yahoo.com/group/farpluginsapi/
http://groups.yahoo.com/group/plugring_announce/
http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Select=PlugIn&SelectPlugIn=259

Plugin	parameters...
main

...or	"Professional	ethics".	Recommendations.	Last	revised
on	30.04.2001

This	document	is	an	attempt	of	creating	the	FAR	manager	plugins	specification
(or,	 rather,	 recommendations).	All	materials	 are	 in	 plain	 text	 for	 now	 (will	 be
divided	into	topics	later).

This	document	is	for	programmers	who	write	plugins	for	FAR	manager.

You	are	encouraged	to	add,	adjust,	recommend,	etc.

1.	 Plugin	files	MUST	be	packed	into	ZIP	archive,	since	some	servers	treat
RAR	archives	as	text/plain,	which	results	in	the	so-called	"broken"	archive.

	

2.	 The	plugin	archive	MUST	be	supplied	with	a	file_id.diz	file,	which
should	contain	the	plugin	name,	version,	release	date,	short	description	of
features	(in	English	and	Russian)	and	how	to	contact	the	developer.	This
file	must	be	in	the	root	of	the	archive.

	

3.	 The	plugin	archive	should	be	supplied	with	a	whatsnew.txt	file	(or
history.txt),	which	should	contain	decription	of	changes	(indicating
version	and	date).

	

4.	 The	plugin	name	should	be	the	same	in	Plugin	commands	menu	and	in
Plugins	configuration	menu:
If	plugin	adds	"Search	and	replace"	string	to	the	menu,	then	the	string
with	the	same	beginning	must	be	in	the	Plugins	configuration	menu.
Strings	like	"This	is	Search	and	replace	configuration"	or	"Settings"
are	not	suitable.	In	this	case	user	will	find	the	settings	for	your	plugin
much	faster.

	

5.	 If	you	supply	the	plugin	with	REG-file	macros,	do	not	forget	to	fill	the
"Description"	value.

	

6.	 The	plugin	should	not	add	multiple	strings	to	the	menu.	It's	better	to	show
your	own	menu	with	all	needed	items	instead:
Do	not	add	"Search",	"Replace",	"Search	in	highlighted"	topics.	Your
plugin	is	just	one	among	others,	there	are	many	other	strings	in	the
menu	already.	You'd	better	add	a	single	"Search	and	replace"	item,	and
then	show	a	menu	with	"Search",	"Replace"	strings,	etc.

	

7.	 The	plugin	MUST	delete	all	temporary	files	or	folders	upon	completion	of
its	job.

	

8.	 If	the	plugin	supports	processing	groups	of	files	(using	wildcards),	the	user
should	be	able	to	specify	these	wildcards	manually.

Example.
Trucer	deletes	trailing	spaces	from	the	file	in	the	editor.	It	permits	you
to	specify	the	exclusion	mask.	It's	good.	It	would	be	bad	if	it	didn't.
Conclusion:	if	we	don't	want	to	handle	all	the	files,	we	must	provide
the	file	mask	support;	and	it	is	desirable	to	permit	the	user	to	adjust
this	setting.

	

9.	 If	the	plugin	supports	several	actions	for	each	of	these	files,	you	should
provide	the	possibility	to	access	all	these	actions	from	the	commandline,
user	menu,	and	file	associations.

Example.
"Shell	link..."	plugin	(it's	about	version	1.20!)	permits	editing	the	link
properties	and	calling	the	original	file	from	the	Plugins	commands
menu.	It's	bad.	It	would	be	better	if	Oscar	(the	author)	added	the
commandline	prefixes	support.	In	that	case	it	would	be	possible	to
make	the	*.LNK	associations.	For	example,	F4	-	edit	properties,	Enter
-	go	to	the	link	target.	This	is	more	natural.

	

10.	 All	messages	the	plugin	shows	on	the	screen	(in	dialogs	or	in	menu),	must

be	in	LNG-files.	Alternatively,	you	can	use	the	LocMsg.cpp	localization
module	from	the	Encyclopedia	bonus	(it	is	recommended	to	use	the
LocMsg.cpp	in	the	second-level	plugins	or	in	cases	when	it	is	necessary	for
your	plugin	to	respond	to	changes	in	the	message	file	without	restarting
FAR.	It	helps	you	to	make	the	plugin	language-independent.

	

11.	 The	user	should	have	a	possibility	to	interrupt	the	process	during	time-
consuming	operations.	Unambiguously,	the	plugin	MUST	have	this	feature.
Even	such	as	Colorer.	FAR	should	not	crash	because	Colorer	can't	parse	a
200KB	string.

	

12.	 For	help	files,	it	is	recommended:
to	keep	all	the	necessary	information:	"Why	should	I	keep	any
readmes	on	my	hard	disk?	I	have	them,	but	they're	archived.	Why
should	I	search	the	archive	when	I	need	some	additional	info?	IMHO,
all	that	I	need	to	work	with	plugin	can	be	in	HLF,	but	common
information	should	be	separated	from	advanced	info,	and	links	like
"detailed",	"advanced"	should	be	available...	So	I	don't	have	to	close
the	plugin	inappropriately	and	search	for	that	separate	text	file.	All	that
is	"IMHO",	of	course."
At	the	main	page
1.	 show	the	plugin	purpose	and	its	version
2.	 show	links	to	other	topics

It	is	desirable	to	have	an	"Alphabetical	list"	topic,	where	all	other
topics	are	listed.
There	should	be	a	link	to	the	main	page	in	any	help	topic.
It	is	necessary	to	check	how	any	of	the	help	pages	appear	in	the	80x25
console	window.	Many	people	forget	about	that,	and	as	a	result	only
the	author	can	see	the	help	as	he	wanted	it	to	be;	others	see	messed-up
strings.	HlfViewer	plugin	can	help	in	that	case.

	

13.	 Plugin	in	any	case	should	be	visible	while	pressing	F11	on	any	file.	Also,
the	user	shoud	have	a	possibility	to	disable	the	OpenFilePlugin
functionality	in	the	plugin	settings.

	

14.	 Some	words	about	calling	from	commandline	:-).	It	would	be	nice,	if	the
prefix	can	be	adjusted	from	the	plugin	configuration	in	order	not	to	interfere
with	other	plugins'	prefixes.

	

15.	 Plugin	may	have	no	feature	to	change	the	menu	items	order,	but	if	it	has
such	feature,	it	should	make	use	of	Ctrl-Up/Down	key	combinations.

	

16.	 Try	to	use	the	FMENU_WRAPMODE	flag	while	showing	menus,
otherwise	they	will	be	inconvenient	for	users.

	

17.	 About	menus.
1.	 If	a	menu	item	has	an	ellipsis	("...")	-	a	dialog	box	should	appear
2.	 If	a	menu	item	has	a	right-aligned	">"	sign	-	a	submenu	should	appear
3.	 In	other	cases,	the	selected	command	should	be	executed

Example:
Just	now	I	wanted	to	print	a	text	file,	so	I	decided	for	the	first	time	to
do	it	from	FAR	using	its	Print	Manager.	I	placed	the	cursor	on	the	file,
pressed	F11	/	Print	Manager.	In	the	menu	I	saw	the	"Print	selected
files"	item,	but	I	didn't	know	what	would	happen	when	I	choose	that
item	-	immediate	printing	or	some	more	settings	invoked.	The	same	is
in	the	printers	list.	As	a	result	it	is	extremely	inconvenient.

	

18.	 If	your	plugin	uses	components	(DLL,	OCX,	etc.),	which	are	not	a	part	of
Windows,	specify	that	in	the	"Installation"	topic	of	your	readme.txt.

It	will	be	perfect	if	you	test	your	plugin	installation	on	plain,	"clean"
Windows	95	installed	using	minimal	configuration.

	

19.	 When	handling	keyboard	events	in	the	editor,	do	not	forget	that	the	cursor
movement	keys	(Left,	Right,	Up,	Down,	PgUp,	PgDn,	Home,	End)	are	not
the	only	keys	used	to	position	the	cursor	-	mind	the	Ctrl-N,	Ctrl-E	and
Ctrl-S	key	combinations.

	

20.	 If	you	supplement	your	plugin	(not	being	of	multi-purpose	type)	with
macros	to	provide	the	fast	and	convenient	operation,	and	these	macros	are
usable	only	when	editing	C++	sources	or	only	with	text	files,	you	shouldn't
use	the	ordinary	macros	that	are	kept	in	the	Windows	Registry	since	they
affect	all	editors	and	occupy	the	keys	at	the	expense	of	files	of	other	types.
You	may	offer	the	macros	for	[ESC]	plugin	instead	(here	in	brackets	should
be	the	author's	name,	direct	reference	to	the	plugin	or	to	the	author's	home
page,	since	the	plugin	and	URL	can	change)	or	similar	plugin	(there	are	no
such	plugins	at	the	moment).	They	are	actually	the	same	as	FAR	macros,
but	don't	have	their	drawbacks	(they	affect	only	user-specified	file	types
and	aren't	kept	in	the	Windows	Registry).

FAR	Plugins	API	History
main

The	key	moments	of	FAR	Manager	Plugins	API	history	are	noted	here.

FAR	1.75	01.04.2009

+	LIF_HIDDEN,	LIF_GRAYED

+	MIF_HIDDEN,	MIF_GRAYED

+	COL_MENUGRAYTEXT

+	COL_MENUSELECTEDGRAYTEXT

+	COL_DIALOGCOMBOGRAY

+	COL_DIALOGCOMBOSELECTEDGRAYTEXT

+	COL_DIALOGLISTGRAY

+	COL_DIALOGLISTSELECTEDGRAYTEXT

+	COL_WARNDIALOGCOMBOGRAY

+	COL_WARNDIALOGCOMBOSELECTEDGRAYTEXT

+	COL_WARNDIALOGLISTGRAY

+	COL_WARNDIALOGLISTSELECTEDGRAYTEXT

FAR	1.71	26.11.2008

+	COL_EDITORSCROLLBAR

FAR	1.71	05.11.2008

+	KEY_SLEEP

FAR	1.71	24.09.2008

*	FLINK_SYMLINK	renamed	to	FLINK_JUNCTION

+	FLINK_SYMLINKFILE

+	FLINK_SYMLINKDIR

FAR	1.71	11.08.2008

+	COL_COMMANDLINEUSERSCREEN

FAR	1.71	17.06.2008

+	VE_GOTFOCUS,	VE_KILLFOCUS

FAR	1.71	15.05.2008

+	FDIS_DELREMOVESBLOCKS

+	FDIS_MOUSECLICKOUTSIDECLOSESDIALOG

FAR	1.71	30.03.2008

+	ECTL_ADDSTACKBOOKMARK

+	ECTL_CLEARSTACKBOOKMARKS

+	ECTL_DELETESTACKBOOKMARK

+	ECTL_GETSTACKBOOKMARKS

+	ECTL_NEXTSTACKBOOKMARK

+	ECTL_PREVSTACKBOOKMARK

FAR	1.71	29.03.2008

+	PFLAGS_PANELLEFT

FAR	1.71	17.03.2008

+	COL_DIALOGLISTARROWS,

+	COL_DIALOGLISTARROWSDISABLED,

+	COL_DIALOGLISTARROWSSELECTED,

+	COL_DIALOGCOMBOARROWS,

+	COL_DIALOGCOMBOARROWSDISABLED,

+	COL_DIALOGCOMBOARROWSSELECTED,

+	COL_WARNDIALOGLISTARROWS,

+	COL_WARNDIALOGLISTARROWSDISABLED,

+	COL_WARNDIALOGLISTARROWSSELECTED,

+	COL_WARNDIALOGCOMBOARROWS,

+	COL_WARNDIALOGCOMBOARROWSDISABLED,

+	COL_WARNDIALOGCOMBOARROWSSELECTED,

+	COL_MENUARROWS,

+	COL_MENUARROWSDISABLED,

+	COL_MENUARROWSSELECTED,

FAR	1.71	05.01.2008

+	KEY_MSWHEEL_LEFT,	KEY_MSWHEEL_RIGHT

FAR	1.71	31.12.2007

+	ACTL_REDRAWALL

FAR	1.71	23.12.2007

+	ProcessDialogEvent

+	FarDialogEvent

+	OpenDlgPluginData

+	PF_DIALOG

+	OPEN_DIALOG

+	DIALOG_EVENTS

FAR	1.71	14.12.2007

+	MCMD_GETSTATE

FAR	1.71	06.12.2007

+	EE_GOTFOCUS,	EE_KILLFOCUS

+	FE_GOTFOCUS,	FE_KILLFOCUS

FAR	1.71	04.12.2007

+	DIF_NOAUTOCOMPLETE

FAR	1.71	06.08.2007

-	_FAR_USE_FARFINDDATA

+	_FAR_USE_WIN32_FIND_DATA

FAR	1.71	20.02.2007

+	DIF_NOTCVTUSERCONTROL

FAR	1.71	30.01.2007

+	FCTL_GETUSERSCREEN

FAR	1.71	07.12.2006

+	VIEWER_SETMODEFLAGS_TYPES

FAR	1.71	01.12.2006

*	ViewerMode.TypeWrap	renamed	to	ViewerMode.WordWrap

+	VCTL_SETMODE

+	enum	VIEWER_SETMODE_TYPES

+	struct	ViewerSetMode

FAR	1.70	29.03.2006

!	restrictions	to	keys	received	by	the	ProcessKey()	function	no	longer	apply.

+	PKF_PREPROCESS

+	ACTL_GETSHORTWINDOWINFO

+	ECF_TAB1

!	EOPT_EXPANDTABS	->	EOPT_EXPANDALLTABS

+	EOPT_EXPANDONLYNEWTABS,	EXPAND_TABS

+	FARINT64

+	ViewerAPI:	ViewerInfo,	ViewerMode,	ViewerSelect,	ViewerSetPosition,

													ViewerControl,	ProcessViewerEvent,

*	All	enumerations	in	plugin.hpp	are	now	named.

+	FARMACRO_KEY_EVENT

+	DM_GETSELECTION,	DM_SETSELECTION

+	DN_LISTHOTKEY

!	Now	plugins	receive	keyboard	events	through	ProcessEditorInput	both

		when	recording	and	when	playing	back	macros.	Previously,	keyboard

		events	were	received	only	when	recording	macros.

*	Removed	some	of	the	limitations	on	the	keys	sent	to	plugins	through

		ProcessEditorInput.

		Keys	which	are	not	sent	to	plugins:	Ctrl-W,	F11,	Alt-F9,	F12,	Ctrl-Tab,

		Ctrl-Shift-Tab,	Alt-Ins,	Ctrl-Alt-Shift.

		The	following	key	combinations	are	sent	if:

				Alt-F5	-	the	PrintMan	plugin	is	not	installed;

				Alt-F11	-	the	editor	is	modal;

				F6	-	switching	to	the	viewer	is	disabled

+	DN_DRAWDIALOGDONE

+	ACTL_GETPLUGINMAXREADDATA,	ACTL_GETWCHARMODE

+	ACTL_GETDIALOGSETTINGS

!	FIS_PERSISTENTBLOCKSINEDITCONTROLS	->	FDIS_PERSISTENTBLOCKSINEDITCONTROLS

!	FIS_HISTORYINDIALOGEDITCONTROLS				->	FDIS_HISTORYINDIALOGEDITCONTROLS

!	FIS_AUTOCOMPLETEININPUTLINES							->	FDIS_AUTOCOMPLETEININPUTLINES

+	FRS_SCANSYMLINK

+	FSS_SCANSYMLINK

!	Now	GetReparsePointInfo	returns	an	error	for	remote	folders,	because

		correct	information	about	symbolic	link	contents	can	not	be	obtained	in

		such	case.

-	Garbage	had	been	returned	in	PanelInfo.SelectedItems[0]	when	no	files	were

		selected	and	the	cursor	was	positioned	on	the	".."	element.

+	MCMD_POSTMACROSTRING

+	ActlKeyMacro.Param

+	KSFLAGS_NOSENDKEYSTOPLUGINS

+	ESPT_SETWORDDIV,	ESPT_GETWORDDIV

+	FMENU_CHANGECONSOLETITLE

!	DM_LISTSETMOUSEREACTION	(behaviour	changed)

+	LMRT_*

+	FCTL_SETNUMERICSORT,	FCTL_SETANOTHERNUMERICSORT,	PFLAGS_NUMERICSORT

FAR	1.70	beta	5	09.04.2003

+	OPM_QUICKVIEW

+	FCTL_GETPANELSHORTINFO,	FCTL_GETANOTHERPANELSHORTINFO

+	FIB_NOAMPERSAND

+	ESPT_LOCKMODE

+	ECTL_TURNOFFMARKINGBLOCK

!	CONSOLE_*	->	FAR_CONSOLE_*

+	MAXSIZE_SHORTCUTDATA

+	FCTL_CHECKPANELSEXIST

+	LIF_DELETEUSERDATA

+	EF_IMMEDIATERETURN,	VF_IMMEDIATERETURN

+	FLINK_DONOTUPDATEPANEL

+	ECTL_DELETEBLOCK

+	FDLG_SMALLDIALOG,	FDLG_SMALLDIALOG

+	ACTL_SETARRAYCOLOR,	FarSetColors,	FARCOLORFLAGS.FCLR_REDRAW

+	FarListColors

MultiArc:

+	ArcInfo.Chapters

+	ArcItemInfo.Chapter

FAR	1.70	beta	4	13.03.2002

+	EJECT_LOAD_MEDIA

+	FDLG_WARNING,	FDLG_SMALLDIALOG

+	PFLAGS_*

!	PanelInfo.Flags

+	KEY_MSWHEEL_UP,	KEY_MSWHEEL_DOWN

+	DM_LIST*

+	VF_ENABLE_F6,	VF_DISABLEHISTORY

+	EF_ENABLE_F6,	EF_DISABLEHISTORY,	EF_DELETEONCLOSE

+	FarList*

+	DIF_LISTWRAPMODE,	DIF_LISTAUTOHIGHLIGHT,	DIF_LISTNOBOX,

		DIF_SEPARATOR2

+	DM_GETCHECK,	DM_SETCHECK,	DM_SET3STATE,	DM_SETITEMPOSITION,

		DM_GETITEMPOSITION,	DM_GETDROPDOWNOPENED,	DM_SETDROPDOWNOPENED,

		DM_SETHISTORY,	DM_SETMOUSEEVENTNOTIFY

+	DM_LISTSETMOUSEREACTION

+	LINFO_*

+	BSTATE_*

+	ACTL_GETWINDOWCOUNT,	ACTL_SETCURRENTWINDOW,	ACTL_COMMIT,

		ACTL_GETFARHWND,	ACTL_POSTKEYSEQUENCE

+	WTYPE_*

+	KeySequenceFlags.KSFLAGS_DISABLEOUTPUT

+	KeySequence

!	Unquote

!	ExpandEnvironmentStr

+	ECTL_GETBOOKMARKS

+	EditorBookMark

+	DN_LISTCHANGE,	DN_MOUSECLICK,	DN_DRAGGED,	DN_RESIZECONSOLE,

		DN_MOUSEEVENT

+	LIFIND_EXACTMATCH

+	FMENU_USEEXT

+	MIF_*

+	FarMenuItemEx

!	FarRecursiveSearch

!	DI_RADIOBUTTON

+	ESPT_CHARTABLE,	ESPT_SAVEFILEPOSITION

!	FarCharTable

+	FCTL_GETCMDLINESELECTEDTEXT,	FCTL_SETCMDLINESELECTION,

		FCTL_GETCMDLINESELECTION

+	PluginPanelItem.CRC32

+	ConvertNameToReal

+	GetReparsePointInfo

!	AddEndSlash

FAR	1.70	beta	3	20.04.2001

!	In	plugin.hpp,	the	"const"	modifier	has	been	added	for	the

		unchangeable	parameters	of	some	exported	and	service	functions.

+	DIF_VAREDIT	-	"breaking	of	the	512-byte	barrier"	-	works	for	DI_EDIT

		and	DI_COMBOBOX	controls.

!	Changed	the	FarListItem	structure	(possibility	of	working	with	"long

		data").

+	Added	flag	LIF_PTRDATA	-	for	working	with	"long	data".

!	Changed	the	values	of	LISTITEMFLAGS	(LIF_*)	-	the	values	for

		LIF_SELECTED,	LIF_CHECKED	and	LIF_SEPARATOR	have	been	shifted	to	the

		lower	byte	of	the	upper	word,	and	LIF_DISABLE	has	been	shifted	"down".

!	Changed	field	names	in	the	FarDialogItemData	structure.

+	It	is	now	possible	to	handle	a	double	click	event	through	the

		DN_MOUSECLICK	message	(MouseEvent.dwEventFlags==DOUBLE_CLICK).

!	Significant	revamping	of	the	internal	key	codes	(farkeys.hpp).

+	ACTL_EJECTMEDIA

+	DM_GETTEXTPTR,	DM_SETTEXTPTR,	DM_SHOWITEM,	DM_ADDHISTORY

!	Ctrl-Break	can	now	be	controlled.	Earlier	the	dialog	was	closed

		unconditionally,	regardless	of	what	the	callback	function

		returned	on	the	DM_CLOSE	message.

+	DIF_HIDDEN,	DIF_MANUALADDHISTORY

+	The	DIF_SHOWAMPERSAND	flag	can	be	used	for	DI_SINGLEBOX	and

		DI_DOUBLEBOX	items.

+	ACTL_KEYMACRO:

		struct	ActlKeyMacro	-	the	interface	part	for	ACTL_KEYMACRO

		MCMD_LOADALL					-	load	all	macros	from	the	registry	into	the	FAR

																					memory

		MCMD_SAVEALL					-	save	all	macros	from	the	registry	into	the	FAR

																					memory

!	Extended	the	syntax	of	the	Message	function

+	FSF.qsortex

+	EF_CREATENEW

!	FSF.FarRecursiveSearch	-	added	parameter	void	*param

+	FAR	knows	about	4	predefined	help	topics	in	HLF	files:

		Contents	-	the	standard	main	topic;

		Config			-	the	topic	invoked	by	pressing	Shift-F1	in	the	plugins

													configuration	menu;

		Editor			-	the	topic	invoked	by	pressing	Shift-F1	in	the	plugins	menu

													of	the	editor;

		Viewer			-	the	topic	invoked	by	pressing	Shift-F1	in	the	plugins	menu

													of	the	viewer.

+	FHELP_USECONTENTS

*	ACTL_GETFARVERSION	returns	the	version	number,	and	not	TRUE/FALSE.

*	ACTL_WAITKEY	waits	for	any	key	if	NULL	or	-1	is	passed	in	the	parameter

		Param.

+	ECTL_SETPARAM	-	allows	to	set	editor	parameters:

			-	Tab	size	(ESPT_TABSIZE)

			-	Expand	tabs	to	spaces	(ESPT_EXPANDTABS)

			-	Auto	indent	(ESPT_AUTOINDENT)

			-	Cursor	beyond	end	of	line	(ESPT_CURSORBEYOUNDEOL)

			-	The	format	of	the	current	character	code	(ESPT_CHARCODEBASE)

FAR	1.70	beta	2	16.12.2000

!	Changes	in	Param2	for	messages	DM_SETTEXT	and	DM_GETTEXT.

		Now	they	use	pointers	to	FarDialogItemData	structure.

+	6	new	colors	are	added	for	DISABLED	items	(in	dialogs	and	warning

		messages).	See	Headers.c\farcolor.hpp	(or	Headers.pas\farcolor.pas).

+	DIF_3STATE

!	The	DIF_EDITEXPAND	flag	is	no	longer	processed	by	DI_PSWEDIT	and

		DI_FIXEDIT	controls.

+	ACTL_GETCOLOR,	ACTL_GETARRAYCOLOR

!	The	AddEndSlash	function	works	with	both	types	of	slashes	and	replaces

		the	existing	trailing	slash	with	the	type	of	slashes	that	was	used

		more	often.

!	The	version	format	changed	-	the	constant	in	plugin.hpp::FARMANAGERVERSION

		has	the	following	format:

					HIWORD:									=	NNN	-	#	build

					LOWORD:		HIBYTE	=			1	-	version	Hi

														LOBYTE	=		70	-	version	Lo

FAR	1.70	beta	1	20.11.2000

+	Dialog	API	1.0

!	New/changed	header	files:

					farcolor.hpp		-	Color	attributes	indexes.

					farkeys.hpp			-	FAR	manager	internal	key	codes.

+	"Standard	functions"	-	for	reducing	plugins	size	-

			the	FarStandardFunctions	structure.

+	GetMinFarVersion().

+	URL-activators	and	color	attributes	in	HLF-files.

struct	PluginStartupInfo:

		+	AdvControl

		+	InputBox

		+	ShowHelp

		+	DialogEx

		+	SendDlgMessage

		+	DefDlgProc

+	PF_FULLCMDLINE

+	FCTL_*SORTMODE,	FCTL_*SORTORDER

struct	KeyBarTitles:

		+	CtrlShiftTitles

		+	AltShiftTitles

		+	CtrlAltTitles

+	EF_NONMODAL

+	ECTL_SETKEYBAR

+	DI_COMBOBOX,	DI_LISTBOX,	DI_USERCONTROL

+	DIF_EDITEXPAND,	DIF_DROPDOWNLIST,	DIF_USELASTHISTORY,	DIF_BTNNOCLOSE,

		DIF_MASKEDIT,	DIF_DISABLE

+	Input	fields	with	fixed	length	can	have	an	input	mask.

+	Structures:	FarListItem,	FarList.

+	Header	files	for	Pascal/Delphi

FAR	1.64	beta	24.05.2000

+	ECTL_SAVEFILE

+	ECTL_QUIT

+	struct	EditorSaveFile

FAR	1.63	b	20.08.1999

+	VF_NONMODAL

+	VF_DELETEONCLOSE

FAR	1.62	23.05.1999

+	FCTL_GETCMDLINEPOS

FAR	1.62	b2	10.05.1999

+	EE_CLOSE

FAR	1.62	b	24.04.1999
The	"Colorer"	plugin	"introduced"	highlighting	in	the	editor:

+	EE_REDRAW

+	ECTL_ADDCOLOR

+	ECTL_GETCOLOR

+	struct	EditorColor

+	FCTL_SETCMDLINEPOS

+	FE_COMMAND

FAR	1.61	24.02.1999

+	EE_READ

+	EE_SAVE

FAR	1.60	13.10.1998
Rapid	progress	of	the	Editor	API:

+	FCTL_SETPANELDIR

+	ECTL_*

+	EOPT_*

+	BTYPE_*

+	PF_DISABLEPANELS

+	PF_EDITOR

+	PF_VIEWER

+	OPEN_EDITOR

+	OPEN_VIEWER

+	struct	EditorGetString

+	struct	EditorSetString

+	struct	EditorInfo

+	struct	EditorSetPosition

+	struct	EditorSelect

+	struct	EditorConvertText

+	struct	EditorConvertPos

struct	PluginStartupInfo:

		+	EditorControl

FAR	1.52	26.06.1998

+	FCTL_SETUSERSCREEN

+	FCT_DETECT

+	SM_COMPRESSEDSIZE

+	SM_NUMLINKS

+	FE_BREAK

+	OPM_DESCR

+	struct	CharTableSet

struct	PanelInfo:

		+	ShortNames

		+	SortMode

struct	PluginStartupInfo:

		+	CharTable

		+	Text

FAR	1.50	(release	version)	09.02.1998

+	PPIF_USERDATA

+	FCTL_SETVIEWMODE

+	FCTL_SETANOTHERVIEWMODE

+	FCTL_INSERTCMDLINE

+	OPIF_USEATTRHIGHLIGHTING

struct	PluginPanelItem:

		+	UserData

FAR	1.50	beta	03.10.1997

+	DIF_HISTORY

+	FCTL_GETCMDLINE

+	FCTL_SETANOTHERSELECTION

+	FCTL_SETCMDLINE

+	FCTL_SETSELECTION

+	FE_CLOSE

+	FMSG_LEFTALIGN

+	OPEN_COMMANDLINE

+	OPEN_SHORTCUT

+	OPIF_EXTERNALDELETE

+	OPIF_EXTERNALGET

+	OPIF_EXTERNALMKDIR

+	OPIF_EXTERNALPUT

+	OPM_TOPLEVEL

+	PPIF_SELECTED

struct	PluginStartupInfo:

		+	Viewer

		+	Editor

		+	CmpName

struct	PluginInfo:

		+CommandPrefix

struct	PanelMode:

		+StatusColumnTypes

		+StatusColumnWidths

struct	KeyBarTitles:

		+ShortcutData

MultiArc:

		Changed	a	member	of	the	ArcInfo	structure:

				-	int	AuthVer

				+	DWORD	Flags

		Flags	added...

				enum	ARCINFO_FLAGS

				{

						AF_AVPRESENT=1,

						AF_IGNOREERRORS=2

				};

FAR	1.40	beta	27.06.1997
First	time	the	FAR	Plugins	API	was	mentioned:
"External	DLL	modules	(plugins)	can	be	used	to	implement	new	FAR
commands	and	emulate	file	systems..."

ER>	"As	a	matter	of	fact	I	started	thinking	about	plugins	after	Lavrentiev

ER>	asked	me	to	create	a	version	of	FAR	with	Arvid	support.	He	even	invented

ER>	(thank	you	very	much)	a	good	name	for	it	-	FARvid	;-)	I	didn't	really

ER>	want	to	develop	such	a	version	and	so	I	decided	to	make	available,	to

ER>	whomever	was	interested,	the	API	that	will	be	sufficient	as	to	add	such

ER>	capability	to	FAR	without	my	participation..."

The	following	items	are	available	in	this	version:

Exported	functions:
ClosePlugin,	Configure,	DeleteFiles,	ExitFAR,	FreeFindData,
FreeVirtualFindData,	GetFiles,	GetFindData,	GetOpenPluginInfo,
GetPluginInfo,	GetVirtualFindData,	MakeDirectory,	OpenFilePlugin,
OpenPlugin,	ProcessEvent,	ProcessHostFile,	ProcessKey,	PutFiles,
SetDirectory,	SetFindList,	SetStartupInfo
Service	functions:

Control,	Dialog,	FreeDirList,	GetDirList,	GetMsg,	GetPluginDirList,
Menu,	Message,	RestoreScreen,	SaveScreen
Structures
FarDialogItem,	FarMenuItem,	InfoPanelLine,	KeyBarTitles,
OpenPluginInfo,	PanelInfo,	PanelMode,	PanelRedrawInfo,	PluginInfo,
PluginPanelItem,	PluginStartupInfo
Language	and	help	files

Programming	FAR	plugins	-	Encyclopedia	for
Developers	-	Long	History
main

Affairs	of	bygone	days,
Inheritance	of	olden	times.

"In	a	land	far,	far	away,	long,	long	ago...",	or	maybe	not	so	far,	in	any	case	this
is	already	history...	Enjoy	:-)

March	29	2006

First	release	of	the	english	Encyclopedia	translation.

Frequently	Asked	Questions
main

General	questions

1.	 How	can	I	hide	the	cursor?
2.	 How	can	I	put	it	to	the	required	position?
3.	 How	should	I	set	the	flags	for	plugin	to	work	in	the	editor	as	well	as	in	the

panels:	Info->Flags=?????;
4.	 Is	dynamic	plugin	connection/disconnection	possible	without	FAR	restart?
5.	 Are	plugins	in	the	editor	operable	after	activation	only?	Can	I	make	a

plugin	work	in	the	background	mode?
6.	 Can	I	merge	several	plugins	(or	functions)	into	one	DLL	module?...
7.	 ...and	then	recognize	the	user's	choice	using	the	Item	parameter	of

OpenPlugin	function?	Am	I	right?
8.	 Can	I	make	a	plugin	that	works	in	the	background	mode	using	the	current

API?
9.	 I	have	a	file	that	can	be	processed	by	a	plugin.	How	can	I	find	that	out?...
10.	 How	can	I	get	the	full	plugin	module	path	from	within	it?
11.	 Can	I	switch	FAR	background	screens	from	the	plugin?
12.	 How	does	FAR	determine	that	the	block	in	the	Clipboard	is	a	vertical

block?
13.	 Is	it	possible	to	recognize	where	the	cursor	is	set	on	the	current	panel?...
14.	 Can	I	redraw	the	window	caption	while	redrawing	any	panel?...
15.	 Where	does	FAR	get	the	procedures	from	for	file	copying/deletion/...	?
16.	 How	can	I	get	the	name	of	the	folder	from	which	FAR	was	started?
17.	 How	can	I	reduce	the	size	of	the	DLL?...
18.	 There	are	dupes	in	the	Clipboard,	why	should	FAR	put	there	the	same	stuff

several	times?
19.	 How	can	I	determine	what	is	the	"symbolic	link"?...
20.	 ...what	'\\?\Volume{...'	hides	inside?
21.	 Can	I	get	some	more	useful	info	about	symbolic	links?
22.	 Can	I	get	the	changed/unchanged	flags	for	the	file	being	edited?...
23.	 How	can	I	get	the	name	of	the	file	loaded	in	viewer?
24.	 Is	it	possible	in	FSF.ProcessName	to	get	TRUE,	when	comparing...
25.	 How	does	Windows	dump	the	file	name	from	the	Explorer	to	the	console

window?
26.	 ProcessKey	doesn't	work	for	some	reason...
27.	 How	can	a	plugin	position	the	cursor	on	a	specific	file?

28.	 How	can	a	plugin	run	a	program?	And	show	its	output	under	the	panels?

Dialogs

1.	 Can	I	somehow	overcome	the	edit	window	limitation,	where	the	macro
sequence	is	limited	to	512	characters?

2.	 If	I	don't	use	the	Dialog	function	to	work	with	dialog,	how	can	I	handle	the
data	input?	Should	I	write	that	myself?

3.	 If	I	use	the	Dialog	function	and	an	input	line	within	it,	will	the
ProcessEditorInput	and	ProcessEditorEvent	functions	work	for	this	control
element?

4.	 Can	I	change	elements	like	Static	(their	captions)	dynamically	in	a	dialog?
5.	 The	set	of	control	elements	handled	by	FAR	isn't	sufficient	for	me...
6.	 Why	the	ListBox	and	ComboBox	are	so	crude?...
7.	 Why	the	buttons	for	closing	the	window	don't	work	in	the	"new-style"

dialog?
8.	 Should	I	close	the	dialog	myself	from	now	on?
9.	 If	I	use	the	mouse,	should	I	catch	the	DN_MOUSECLICK?
10.	 Should	I	handle	the	DefaultButton	myself	as	well?
11.	 In	no	way	the	SEPARATOR	can	reach	the	frame	right	edge...
12.	 Can	I	somehow	disable	the	automatic	selection	of	elements	using	mouse	in

lists?...

General	questions

1.	 Q:	How	can	I	hide	the	cursor?	A:	Win32	console	API:

SetConsoleCursorInfo	 	,	but	don't
forget	to	bring	it	back.

2.	 Q:	How	can	I	put	it	to	the	required	position?	

JavaScript:link10.Click()

A:	There:	SetConsoleCursorPosition	 	

3.	 Q:	How	should	I	set	the	flags	for	plugin	to	work	in	the	editor	as	well	as
in	the	panels:	Info->Flags=?????;	
A:	PF_EDITOR

4.	 Q:	Is	dynamic	plugin	connection/disconnection	possible	without	FAR
restart?	
A:	Disconnection	is	impossible.	Why	do	you	want	to	disconnect	it?
Connections	are	handled	by	FAR	itself.	You	can	still	ask	FAR	not	to	cache
the	configuration	of	that	plugin,	but	to	load	it	to	memory	every	time	FAR
starts	by	specifying	the	PF_PRELOAD	flag.	But	it	will	be	better	for	you	not
to	do	that	since	it	leads	to	delays	and	extra	memory	consumption.

5.	 Q:	Are	plugins	in	the	editor	operable	after	activation	only?	Can	I	make
a	plugin	work	in	the	background	mode?	
A:	Yes,	you	can.	Export	the	ProcessEditorInput,	and	it	will	intercept	all
keyboard	events	in	the	editor.

6.	 Q:	Can	I	merge	several	plugins	(or	functions)	into	one	DLL	module?
And	call	each	of	them	as	if	it	was	in	a	separate	DLL-file	(even	if	I	load
that	DLL	every	time)...	
A:	Yes,	you	can.	In	the	PluginInfo	you	can	specify	several	strings	that	will
be	added	to	the	Plugins	menu.	But	it	violates	the	rules	of	professional
ethics.

7.	 Q:	...and	then	recognize	the	user's	choice	using	the	Item	parameter	of
OpenPlugin	function?	Am	I	right?	
A:	You're	right.

8.	 Q:	Can	I	make	a	plugin	that	works	in	the	background	mode	using	the
current	API?	
A:	In	the	editor	only.	There's	no	support	for	doing	that	in	panels.

JavaScript:link11.Click()

9.	 Q:	I	have	a	file	that	can	be	processed	by	a	plugin.	How	can	I	find	that
out?	I	think	it	would	be	better	to	send	the	cd	command	there	and	get
the	answer	-	was	it	able	to	do	that	or	not.	
A:	You	can't	do	this	since	there's	no	API	for	plugin	interaction	in	FAR.	A
simple	check	for	file	belonging	to	a	plugin	is	not	sufficient.

10.	 Q:	How	can	I	get	the	full	plugin	module	path	from	within	it?	
A:	FAR	passes	the	pointer	in	the	PluginStartupInfo	structure	to	the
SetStartupInfo	function.	Full	module	path	is	in	the	ModuleName	field	of
that	structure.

11.	 Q:	Can	I	switch	FAR	background	screens	from	the	plugin?	
A:	You	can	do	it	beginning	from	the	FAR	Manager	1.70	beta	4.

12.	 Q:	How	does	FAR	determine	that	the	block	in	the	Clipboard	is	a
vertical	block?	
A:	Vertical	block	has	"FAR_VerticalBlock"	Clipboard	format.

13.	 Q:	Is	it	possible	to	recognize	where	the	cursor	is	set	on	the	current
panel?	In	particular,	at	the	folder	or	at	the	file...	
A:
Control(FCTL_GETANOTHERPANELINFO);

Control(FCTL_GETPANELINFO);

PanelInfo.PanelItems[PanelInfo.CurrentItem].FindData.dwFileAttributes

14.	 Q:	Can	I	redraw	the	window	caption	while	redrawing	any	panel?	I
think	it	would	be	easier	and	faster	than	calling
FCTL_REDRAWPANEL.	
A:	It	won't	necessarily	be	faster.	If	the	caption	was	not	changed	by	the
plugin	(it's	usual	practice),	there's	no	need	to	redraw	it.

15.	 Q:	Where	does	FAR	get	the	procedures	from	for	file	copying/deletion/...
?	
A:	It	gets	them	from	Win32	API.

Copying:	CreateFile	 	+ReadFile	

	+WriteFile	

	+CloseHandle	

	or	CopyFile	

	(Ex),	depending	on	the	operating
system	and	the	"Use	system	copy	routine"	option.

JavaScript:link12.Click()
JavaScript:link13.Click()
JavaScript:link14.Click()
JavaScript:link15.Click()
JavaScript:link16.Click()

Deletion:	DeleteFile	 	or

SHFileOperation	 	,	depending	on	the
"Delete	to	Recycle	Bin"	option.

16.	 Q:	How	can	I	get	the	name	of	the	folder	from	which	FAR	was	started?	
A:
char	lpName[_MAX_PATH],	lpFullPath[_MAX_PATH];

LPTSTR	lpFile;

GetModuleFileName

(NULL,lpName,sizeof(lpName));

GetFullPathName

(lpName,sizeof(lpFullPath),lpFullPath,&lpFile);

*lpFile='\0';

JavaScript:link17.Click()
JavaScript:link18.Click()
JavaScript:link19.Click()
JavaScript:link20.Click()

17.	 Q:	How	can	I	reduce	the	size	of	the	DLL	-	the	module	is	so	heavy?	
A:
1.	 There	are	some	notes	regarding	that	in	the	"Articles"	topic.
2.	 The	writers	of	plugins	who	use	Visual	C++	and	want	to	reduce	the

plugin	module	size	are	strongly	advised	to	read	this:
http://msdn.microsoft.com/msdnmag/issues/01/01/hood/default.aspx
(local	copy	is	here)

18.	 Q:	There	are	dupes	in	the	Clipboard,	why	should	FAR	put	there	the
same	stuff	several	times?	
A:	If	the	text	in	the	Clipboard	is	in	any	particular	format,	but	the	program
wants	another	one,	Windows	does	the	conversion	itself,	and	sometimes
does	this	incorrectly.	The	pseudographics	gets	corrupted	in	this	case,
russian	symbols	are	converted	into	'?'	sometimes.	The	bugs	depend	on	the
Windows	version	and	initial/final	formats	combination.	If	all	the	formats
are	in	the	Clipboard	together,	Windows	finds	the	necessary	one	and	uses	it
without	any	conversions.

19.	 Q:	How	can	I	determine	what	is	the	"symbolic	link"	-	a	simple
directory	link	or	a	mounted	volume?	
A:	The	main	rule:	symbolic	links	on	Win2K	are	FOR	DIRECTORIES
ONLY!	So,	we	need	to	know	-	"Is	THIS	a	directory?".	We	can	use
FA_DIREC	(or	FILE_ATTRIBUTE_DIRECTORY)	file	attribute	to	do
that.	
Let's	continue.	
We	know	for	sure	that	any	symbolic	link	(or	reparse	point)	in	Win2K	has	a
FILE_ATTRIBUTE_REPARSE_POINT	attribute	-	so	let's	check	it.	
Call
FSF.GetReparsePointInfo(FullFolderName,DestName,sizeof(DestName))

This	function	returns	real	"DestName"	for	specified	"FullFolderName",
specifically:
1.	 "\??\D:\Junc..."

directory	junction.
2.	 "\\?\Volume{..."

mounted	volume.

Moreover,	the	first	4	symbols	are	irrelevant	for	us!	Therefore	it	is	enough	to

http://msdn.microsoft.com/msdnmag/issues/01/01/hood/default.aspx

check	7	symbols	beginning	from	the	4th:

if(!strncmp(JuncName+4,"Volume{",7))

{

		//	obviously,	this	is	a	mounted	volume!

}

else

{

		//	an	ordinary	directory	junction.

}

20.	 Q:	But	it's	interesting	what	'\\?\Volume{...'	hides	inside?	
A:	It's	easy	as	a	pie.	Call	the

FSF.GetPathRoot(JuncName,Root);

function	that	returns	the	real	root	directory	in	one	of	two	forms:
1.	 "D:\"
2.	 "\\?\Volume{..."

The	second	case	is	turbid	:-)	-	apparently	at	the	system	level	(from	the	disk
manager)	someone	has	deleted	the	letter	assigned	to	this	disk...	One	might
say,	in	order	not	to	see	it	;-)

21.	 Q:	Can	I	get	some	more	useful	info	about	symbolic	links?	
A:	Of	course	you	can	:-)	Really,	not	entirely	about	symbolic	links,	but...	
We	can,	for	example,	get	a	portion	of	information	about	the	mounted
volumes.	It's	simple	-	call	the	standard	GetVolumeInformation()	

	function.	
In	other	words,	we	know	the	root	already	-
"GetPathRoot(JuncName,Root);",	it	remained	only	to	get	the
information	(e.g.,	file	system	extended	attributes	support	-	compression,
encryption,	and	file	system	type):

JavaScript:link21.Click()

DWORD	FileSystemFlags;

char	FSysName[NM];

if	(GetVolumeInformation(Root,NULL,0,NULL,NULL,

																								&FileSystemFlags,FSysName,sizeof(FSysName)))

{

		if	(FileSystemFlags	&	FS_FILE_COMPRESSION)

		{

				//	file	system	supports	file	compression

		}

		if	(FileSystemFlags	&	FS_FILE_ENCRYPTION)

		{

				//	file	system	supports	file	encryption

		}

}

A	typical	function	to	check	the	ability	of	hard	link	creation	looks	like	that:
BOOL	CanCreateHardLinks(char	*TargetFile,char	*HardLinkName)

{

		char	RootTarget[NM],RootHardLink[NM],FSysName[NM];

		GetPathRoot(TargetFile,RootTarget);

		GetPathRoot(HardLinkName,RootHardLink);

		if(!strcmp(RootTarget,RootHardLink))	//	the	same	root	(the	same	volume)?

		{

				//	NTFS	drive?

				DWORD	FileSystemFlags;

				if(GetVolumeInformation(RootTarget,NULL,0,NULL,NULL,&FileSystemFlags,

																												FSysName,sizeof(FSysName)))

				{

						if(!strcmp(FSysName,"NTFS"))

								return	TRUE;

				}

		}

		return	FALSE;

}

22.	 Q:	Can	I	get	the	changed/unchanged	flags	for	the	file	being	edited?	I
didn't	find	that,	but	FAR	knows	about	that	and	displays	an	asterisk	in
the	first	line.	
A:	See	the	EditorInfo	structure	description,	specifically	the
EditorInfo.CurState	field	values.

23.	 Q:	How	can	I	get	the	name	of	the	file	loaded	in	viewer?	
A:	This	code	gets	the	current	file	name	in	the	viewer:

WindowInfo	wi;

wi.Pos=-1;

Info.AdvControl(Info.ModuleNumber,ACTL_GETWINDOWINFO,&wi);

That's	all.	File	name	is	in	wi.Name.

24.	 Q:	Is	it	possible	in	FSF.ProcessName	to	get	TRUE,	when	comparing
"OUTBOUND\\????????.MO?"	mask	and
"C:\\FILES\\OUTBOUND\\0000ee2c.mod"	file,	but	to	get	FALSE	with
"C:\\MUSIC\\assol_1.mod"?	PN_SKIPPATH	is	a	wrong	approach.
When	"\\"	is	in	the	mask	it	won't	ever	return	TRUE.	
A:	Compare	with	the	"*\\OUTBOUND\\????????.MO?"	mask	without
using	the	PN_SKIPPATH.	

25.	 Q:	How	does	Windows	dump	the	file	name	from	the	Explorer	to	the
console	window?	
A:	Vasily	Titsky:	"...Briefly,	when	inserting	text	into	the	console	application
(through	the	system	menu	or	through	the	link	drag-and-drop)	the	kind	OS
does	the	following:	if	the	next	symbol	code	is	not	within	the	current
application	Keyboard	Layout	(current	language	is	English,	but	we	need	to
insert	a	Russian	symbol;	or	vice	versa),	system	"emulates"	the	input	of	this
symbol	through	the	Alt+digits.	For	example,	when	inserting	Russian	'A'	,
the	following	will	be	generated:	press	Alt,	press	'1',	release	'1',	press	'2',
release	'2',	press	'8',	release	'8',	release	Alt.	When	inserting	symbols	with
codes	below	99	(?	-	I	didn't	check	this)	the	pressing	of	two	digits	is
generated.	We	only	have	to	detect	it	correctly	and	then	handle	it..."	

26.	 Q:	ProcessKey	doesn't	work	for	some	reason...	I	write	in	Delphi:

function	ProcessKey(hPlugin:	THandle;	Key:	Integer;	ControlState:	Word):	integer;	stdcall;

begin

		windows.Beep(300,200);

		//return	False	in	order	to	be	processed	by	FAR	itself

		result:=0;

end;

Any	key	pressing	should	be	followed	by	a	beep	-	but	there	are	no	beeps.
The	same	is	for	any	particular	key.	
A:	FAR	calls	the	ProcessKey	function	for	the	active	plugin	panel	only.	

27.	 Q:	How	can	a	plugin	position	the	cursor	on	a	specific	file?	
A:
{

		struct	PanelInfo	PInfo;

		Info.Control(INVALID_HANDLE_VALUE,FCTL_GETPANELINFO,&PInfo);

		//	set	cursor	position	on	the	selectItem	panel	item

		struct	PanelRedrawInfo	PRI;

		char	Name[NM],	Dir[NM*5];

		int	pathlen;

		strcpy(Name,Info.FSF->PointToName(selectItem));

		pathlen=Info.FSF->PointToName(selectItem)-selectItem;

		if(pathlen)

				memcpy(Dir,selectItem,pathlen);

		Dir[pathlen]=0;

		Info.FSF->Trim(Name);

		Info.FSF->Trim(Dir);

		Info.FSF->Unquote(Name);

		Info.FSF->Unquote(Dir);

		if(*Dir)

				Info.Control(INVALID_HANDLE_VALUE,FCTL_SETPANELDIR,&Dir);

		Info.Control(INVALID_HANDLE_VALUE,FCTL_GETPANELINFO,&PInfo);

		PRI.CurrentItem=PInfo.CurrentItem;

		PRI.TopPanelItem=PInfo.TopPanelItem;

		for(int	J=0;	J	<	PInfo.ItemsNumber;	J++)

		{

				if(!Info.FSF->LStricmp(Name,Info.FSF->PointToName(PInfo.PanelItems[J].FindData.cFileName)))

				{

						PRI.CurrentItem=J;

						PRI.TopPanelItem=J;

						break;

				}

		}

		Info.Control(INVALID_HANDLE_VALUE,FCTL_REDRAWPANEL,&PRI);

}

28.	 Q:	How	can	a	plugin	run	a	program?	And	show	its	output	under	the
panels?	
A:
Info.Control(INVALID_HANDLE_VALUE,FCTL_GETUSERSCREEN,NULL);

if	(CreateProcess(NULL,"ls.exe",NULL,NULL,TRUE,0,NULL,NULL,&si,&pi))

{

		WaitForSingleObject(pi.hProcess,	INFINITE);

		CloseHandle(pi.hProcess);

		CloseHandle(pi.hThread);

}

Info.Control(INVALID_HANDLE_VALUE,FCTL_SETUSERSCREEN,NULL);

To	the	top

Dialogs

1.	 Q:	Can	I	somehow	overcome	the	edit	window	limitation,	where	the
macro	sequence	is	limited	to	512	characters?	
A:	It's	the	FAR	dialog	property.	In	the	FarDialogItem	structure	the	Data
field	size	is	512	characters.	(the	answer	is	relevant	for	FAR	Manager	1.70
beta	2	and	earlier;	see	the	DIF_VAREDIT	flag	description)

2.	 Q:	If	I	don't	use	the	Dialog	function	to	work	with	dialog,	how	can	I
handle	the	data	input?	Should	I	write	that	myself?	
A:	You	can	write	that	yourself	:-)	But	you	can	also	use	the	DialogAPI...

3.	 Q:	If	I	use	the	Dialog	function	and	an	input	line	within	it,	will	the
ProcessEditorInput	and	ProcessEditorEvent	functions	work	for	this
control	element?	
A:	No,	they	won't.	Use	the	DialogEx	function	instead.

4.	 Q:	Can	I	change	elements	like	Static	(their	captions)	dynamically	in	a
dialog?	
A:	It	depends	on	the	dialog	type	used.	After	the	dialog	creation	and	Dialog
function	call,	you	can't.	But	you	can	close	the	dialog,	change	its	caption	and
recreate	the	dialog.	If	you	do	all	that	in	a	sequence	it	will	be	rather	fast.
If	you	use	the	DialogEx	function,	you	can	send	the	DM_SETTEXT
message	to	the	DialogAPI	from	the	function	that	handles	the	dialog.

5.	 Q:	OK,	I	use	the	DialogAPI,	but	the	set	of	control	elements	handled	by
FAR	isn't	sufficient	for	me.	
A:	Use	the	DI_USERCONTROL	element.	It	handles	the	element	drawing
and	controls	it	-	the	plugin	can	do	all	the	stuff!

6.	 Q:	Why	the	ListBox	and	ComboBox	are	so	crude?	I	can't	deal	with
them	in	a	usual	way	-	I	have	to	extricate	from	this	problem	in	order	to
add	or	delete	them.	
A:	What	do	you	want	from	the	very	first	version	of	the	DialogAPI?

7.	 Q:	Why	the	buttons	for	closing	the	window	don't	work	in	the	"new-
style"	dialog?	
A:	"Old-style"	ones	don't	have	a	handler.	It's	no	wonder	that	their	behavior
should	be	the	same	as	in	FAR	1.65	and	earlier.
"New-style"	ones	use	a	handler.	You	should	handle	the	dialog	closing
yourself,	except	for:	Ctrl-Break	-	always	closes,	Ctrl-Enter	-	closes	if	there

exists	at	least	one	button	with	field	DefaultButton=1,	then	a	Close	request
with	Param1	=	current	element	number,	Esc	and	F10	can	be	handled	from
the	handler	-	should	the	dialog	close	or	not.

8.	 Q:	Should	I	close	the	dialog	myself	from	now	on?	
A:	If	you	use	a	dialog	handler	-	YES,	you	should:	catch	the
DN_BTNCLICK	event,	check	Param1	for	match	with	required	number	and
send	the	DM_CLOSE	message	to	the	dialog	core.

9.	 Q:	If	I	use	the	mouse,	should	I	catch	the	DN_MOUSECLICK?	
A:	It's	to	your	discretion	:-)	First,	a	mouse	message	comes	(ignore	it),	then
the	DN_BTNCLICK	comes	right	after	it...

10.	 Q:	Should	I	handle	the	DefaultButton	myself	as	well?	
A:	No,	you	don't	have	to.	For	DefaultButton,	the	sequence	is	like	that:
[DN_MOUSECLICK	->]	DN_BTNCLICK	->	DM_CLOSE.

11.	 Q:	Somehow	it	turned	out	that	in	no	way	the	SEPARATOR	could	reach
the	frame	right	edge,	but	it	got	recovered	when	I	rewrote	everything
from	scratch.	
A:	See	the	comments	for	the	DIF_SEPARATOR	flag.

12.	 Q:	Can	I	somehow	disable	the	automatic	selection	of	elements	using
mouse	in	lists	(when	mouse	hovering	over	the	list	selects	the	element,
particularly	if	this	list	is	not	active)?	
A:	Partially,	you	can.	See	the	DM_LISTSETMOUSEREACTION

To	the	top

Authors
main

"Programming	FAR	plugins	-	Encyclopedia	for	Developer"	is	a	collective
creation	by	a	group	of	authors	(and	co-authors)	-	free	translation	(with	additions)
of	the	original	plugins.hlp

This	is	a	list	of	all	authors	and	co-authors	of	this	work.	All	who	took	part	in	the
creation	of	this	work	-	by	word	or	by	deed,...	(except	authors	from	the	«Articles»
section)

The	authors	want	to	thank	Eugene	Roshal	for	the	support	provided	in	the
creation	of	this	work.

Authors	of	the	english	version

Valentin	Skirdin
vskirdin@mail.ru

«Programming	FAR	plugins	-	Encyclopedia	for
Developers»	project	coordinator	-	compilation
and	release.

Alex	Yaroslavsky
trexinc@yandex.ru
http://trexinc.sf.net/

«Head	translator,	proofreader»	and	english
version	coordinator.

Alexey	Yatsenko
«translator»

Max	Belugin
belugin@mail.ru

«translator»

Alexander	Kornienko
alexfh@mail.ru

«translator»

mailto:roshal@rarlab.com
mailto:vskirdin@mail.ru
mailto:trexinc@yandex.ru
http://trexinc.sf.net/
mailto:belugin@mail.ru
mailto:alexfh@mail.ru

Eugene	Mindrov
reaper_man@mail.ru

«translator»

WARP	ItSelf
WARP_ItSelf@inbox.ru

«translator»

Roman	Vorobets
gembox@yandex.ru

«translator»

Alexander	Nesterovsky
nsky@bigfoot.com

«translator»

Max	Gorobchuk
maxgorobchuk@mail.ru

«translator»

Andrey	Tsybin
andrew.sloven@gmail.com

«translator»	and	«proofreading»

Roman	Synyshyn
synyshyn@univ.kiev.ua

«translator»

Peter	Koves
kovesp@sympatico.ca

«proofreading»

Oliver	Schneider
Borbarad@gmxpro.net

«proofreading»

Wesha	the	Leopard

mailto:reaper_man@mail.ru
mailto:WARP_ItSelf@inbox.ru
mailto:gembox@yandex.ru
mailto:nsky@bigfoot.com
mailto:maxgorobchuk@mail.ru
mailto:andrew.sloven@gmail.com
mailto:synyshyn@univ.kiev.ua
mailto:kovesp@sympatico.ca
mailto:Borbarad@gmxpro.net

weshasmail@cmtk.net
«proofreading»

Pawel	Pawlak
morris@elysium.pl

«proofreading»

Authors	of	the	original	russian	version

Valentin	Skirdin
vskirdin@mail.ru
http://www.farmanager.com/skirda

«Programming	FAR	plugins	-	Encyclopedia	for
Developers»	project	coordinator	-	compilation
and	release.

Igor	Ruskih
cail@nm.ru
http://cail.nm.ru/

co-coordinator	/	design,	scripts,	adaptation...

Ivan	Sintyurin
spinoza@mail.ru
http://www.moris.ru/~spinoza

«Head	translator»	-	translation	of	articles	from
english	to	russian...

Kirill	Kirichenko
nectokris@mail.ru

«translator»	-	translation	of	articles	from	english
to	russian...

Artyom	Nazarov
">tema@mail.ru

«DrWeb»	-	proofreading,	etc...

mailto:weshasmail@cmtk.net
mailto:morris@elysium.pl
mailto:vskirdin@mail.ru
http://www.farmanager.com/skirda/
mailto:cail@nm.ru
http://cail.nm.ru/
mailto:spinoza@mail.ru
http://www.moris.ru/~spinoza
mailto:nectokris@mail.ru
mailto:Artyom Nazarov <tema@mail.ru>

Vasily	Moshninov
vmoshninov@newmail.ru
http://proxykit.narod.ru

The	Delphi	section,	remarks,	etc...

Dmitry	Jemerov
">yole@yole.ru

«Purify»	-	proofreading,	etc...

Links

Far	PlugRinG	site:

http://plugring.farmanager.com/
Far	official	site:

http://www.farmanager.com
http://www.rarlab.com

mailto:vmoshninov@newmail.ru
http://proxykit.narod.ru/
mailto:Dmitry Jemerov <yole@yole.ru>
http://plugring.farmanager.com/
http://plugring.farmanager.com/
http://www.farmanager.com
http://www.rarlab.com

FAR	Manager	on	the	Internet
main

http://www.farmanager.com	Official	site	of	the	FAR	Manager.

http://www.rarlab.com
Official	site	of	WinRAR	and	FAR	Manager	support.

http://www.farmanager.com/mantis
Registration	and	handling	of	problems	and	wishes	related	to	Far	Manager
and	its	standard	plug-ins.

http://api.farmanager.com
Online	version	of	"Programming	FAR	plugins	-	Encyclopedia	for
Developers".

http://forum.farmanager.com
Official	online	forum	for	FAR	manager	users.

http://plugring.farmanager.com
Official	site	of	the	FAR	Manager	user	support	team,	the	main	site	of	the	Far
PlugRinG	web-ring	-	joint	community	of	plugin	developers.

http://farmanager.com/svn
Official	SVN	repository	for	source	code	of	Far	Manager	and	its	standard
plug-ins.

Mailing	lists	(from	2000	to	2007):
http://groups.yahoo.com/group/plugringenglish
Mailing	list:	Discussion	of	FAR	Manager	plugins	takes	place	in	the
"PlugRinG	Forum"	mailing	list.	

http://groups.yahoo.com/group/farpluginsapi
Mailing	list:	The	"FAR	Manager	Plugins	API"	mailing	list	is	intended
for	FAR	Manager	plugin	developers	to	discuss	questions	that	may
arise	while	developing	plugins	and	other	topics	that	concerning	the
"FAR	Manager	Plugins	API"	(including	discussion	of	the
"Programming	FAR	plugins	-	Encyclopedia	for	Developers"	help

http://www.farmanager.com/
http://www.rarlab.com/
http://www.farmanager.com/mantis/
http://api.farmanager.com/
http://forum.farmanager.com/
http://plugring.farmanager.com/
http://farmanager.com/svn/
http://groups.yahoo.com/group/plugringenglish/
http://groups.yahoo.com/group/farpluginsapi/

topics).

http://groups.yahoo.com/group/plugring_announce
Mailing	list:	Announcements	of	new	additions	to	the	PlugRinG	site.

Mailing	lists	(from	2007):
http://groups.google.com/group/fardeven
"Far	Manager	Development"	mailing	list	is	intended	for	discussion	on
any	issues	related	to	development	of	Far	Manager	and	its	plugins.

http://groups.google.com/group/farcommits
"SVN	Official	Patches	Monitoring"	mailing	list	is	intended	for	getting
information	about	the	changes	in	official	source	code	repository.

http://farplugins.sourceforge.net/wiki
Far	Wiki	-	a	place	where	miscellaneous	information	about	Far	Manager	and
its	plugins	is	collected.	A	sort	of	an	open	encyclopedia!

news:fido7.far.support
USENET	FAR.SUPPORT	echo	conference	(see	also	in	Google	Groups)

news:fido7.far.development
USENET	FAR.DEVELOPMENT	echo	conference	(see	also	in	Google
Groups)

http://groups.yahoo.com/group/plugring_announce/
http://groups.google.com/group/fardeven/
http://groups.google.com/group/farcommits/
http://farplugins.sourceforge.net/wiki/
news:fido7.far.support
http://groups.google.ru/groups?hl=ru&lr=&ie=UTF-8&group=fido7.far.support
news:fido7.far.development
http://groups.google.ru/groups?hl=ru&lr=&ie=UTF-8&group=fido7.far.development

Dictionary
main

Some	materials	about	the	file	system	properties	have	been	taken	from
http://www.windowsfaq.ru/.	All	links	to	MSDN	which	are	mentioned	in	the
Dictionary	will	be	opened	in	a	separate	window	as	search	results	within
msdn.microsoft.com.

Plugin
Software	component-addon	to	the	FAR	Manager,	which	permits	the
implementation	of	additional	functions.	In	fact,	plugin	is	an	ordinary	library
that	runs	in	the	console	process	environment,	so	it	functions	like	an	ordinary
console	Win32	application.	The	plugin	concept	itself	allows	you	to	tune	the
shell	as	you	want	by	adding	necessary	and	discarding	unnecessary	stuff.	

Reparse	Points
Most	innovations	in	the	Windows	2000	file	system	become	possible	due	to	the
introduction	of	the	Reparse	Points	concept,	which	allows	attaching	of	the
additional	data	storage	subsystems	without	using	the	additional	programs.

Reparse	points	are	actually	file	system	objects	with	special	attributes	that
allow	using	the	extended	functionality	of	data	storage	subsystem.	Any	file	or
directory	can	contain	a	reparse	point.	It	means	that	several	kinds	of	extended
functionality	are	available	at	once	when	accessing	the	resource	at	the	same
path.	
See	also:	MSDN:	Reparse	Points	

Directory	Junctions
Directory	Junctions	allow	you	to	map	any	local	folder	to	any	other	local
folder.	For	example,	if	you	have	three	folders,	C:\folder1,	C:\folder2	and
C:\documents,	you	can	create	directory	junctions	in	such	a	way	that
C:\documents	will	look	like	a	subfolder	of	two	other	folders,	i.e.	folders
C:\folder1\documents	and	C:\folder2\documents	will	exist.

It	was	supposed	initially	that	a	special	utility	called	linkd.exe	will	be	supplied
for	creation	of	directory	junctions,	but	it	isn't	included	in	Win2000	and
supplied	as	a	part	of	the	Resource	Kit.	Also,	directory	junctions	can	be	created
using	API,	but	this	requires	writing	own	software.

http://www.windowsfaq.ru/
http://msdn.microsoft.com/
http://search.microsoft.com/Results.aspx?qsc0=3&FORM=QBMH2&l=2&q=Reparse+Points

At	first	sight,	Directory	Junctions	and	Distributed	File	System	implement	the
same	functions,	since	they	both	can	make	multiple	distributed	folders	look	like
a	single	folder	tree.	But	there	are	some	essential	differences	between	them:

DFS	uses	the	Active	Directory	service	for	storing	its	data
Due	to	the	Active	Directory	using,	DFS	can	provide	fault	protection	and
system	load	balancing,	while	directory	junctions	can't,	although	it	isn't
necessary	when	using	a	local	computer
DFS	is	intended	mainly	to	the	integration	of	the	network	resources	into
the	common	namespace,	while	directory	junctions	join	the	local
resources	only
DFS	can	operate	on	several	file	systems,	while	directory	junctions	are
based	on	NTFS	5.0	only
DFS	requires	a	client	application,	while	directory	junctions	don't

See	also:	MSDN:	Directory	Junctions,	MSDN:	Inside	Win2K	NTFS,	Part	1.	

Mount	Points
Mount	Points	are	essentially	the	same	as	the	Directory	Junctions,	but	they	only
allow	mapping	of	the	root	folder	of	one	volume	to	a	local	folder	of	another
volume.	Mount	points	are	created	with	the	help	of	reparse	points	and	therefore
need	NTFS	5.0.

Mount	Points	are	useful	for	increasing	the	volume	size	without	changing	the
actual	structure	of	the	volumes	on	the	disk.	For	example,	with	a	volume	mount
point	set	the	user	might	see	drive	D	as	"C:\Documents"	as	well	as	"D:",	and
the	size	of	drive	C	will	seem	to	increase.	
See	also:	MSDN:	Volume	Mount	Points	

Hard	Links
Hard	Link	is	the	term	used	when	a	file	has	more	than	one	name.	For	example,
a	file	has	names	1.txt	and	2.txt.	If	the	user	deletes	1.txt,	2.txt	remains,	and	vice
versa.	In	other	words,	once	the	file	has	a	new	name,	the	names	are	equivalent.
A	file	actually	is	deleted	when	its	last	hard	link	is	deleted.	Hard	links	cannot
be	cross	volume	boundaries,	this	means	you	cannot	hardlink,	for	example,
D:\somefile.txt	to	C:\somefilelink.txt.	Keep	in	mind,	that	having	the	same
drive	letter	in	the	path,	files	may	reside	on	different	volumes	(see	Mount

http://search.microsoft.com/Results.aspx?qsc0=3&FORM=QBMH2&l=2&q=Directory+Junctions
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnw2kmag00/html/NTFSPart1.asp
http://search.microsoft.com/Results.aspx?qsc0=3&FORM=QBMH2&l=2&q=Volume+Mount+Points

Points).	You	can	create	a	hard	link	only	if	the	underlying	filesystem	supports
it.	
See	also:	MSDN:	Hard	Links,	Q106166	-	Windows	NT	Backup	and	Hard
Links.	

Symbolic	Links
Much	more	efficient	feature	that	allows	virtual	folders	creating	-	just	as	virtual
disks	created	using	SUBST	command	in	DOS.	It	has	a	wide	range	of	uses	-
folder	structure	simplification,	for	example.	If	you	don't	like	the	name
"Documents	and	settings\Administrator\Documents",	you
can	link	it	to	the	root	folder,	so	the	system	will	still	handle	the	real	name	of
this	folder	while	you	are	working	with	much	more	convenient,	shorter	name,
fully	equivalent	to	the	real	one.

Keep	in	mind,	that	symbolic	links	created	under	Windows	Vista	will	not	be
accessible	under	previous	versions	of	Windows.

See	also:	MSDN:	Symbolic	Links,	Windows	2000	Magazine:	Inside	Win2K
NTFS,	Part	1.	

Sparse	File
NTFS	5	supports	sparse	files,	in	which	much	of	the	data	is	zeros.	Such	file	can
be	marked	as	sparse	file.	The	system	does	not	allocate	hard	drive	space	to	a
sparse	file	except	in	regions	where	it	contains	nonzero	data.	It	keeps	the
information	about	location	of	nonzero	values	only.	This	method	allows
optimal	data	allocation	on	NTFS	volumes	when	storing	sparse	files	and
handling	them	by	applications.	
See	also:	MSDN:	Sparse	Files,	NTFS	possibilities.	

Numeric	sort
The	sorting	algorithm	which	is	used	by	the	operating	system	to	sort	file	lists
was	changed	in	Windows	XP.	A	numeric	sort	is	used	instead	of	string	sort.
FAR	also	allows	using	numeric	sort	as	in	Windows	XP	-	in	other	words,
leading	zeros	in	a	file	name	are	ignored.	The	following	example	shows	how
the	files	are	sorted:

http://search.microsoft.com/Results.aspx?qsc0=3&FORM=QBMH2&l=2&q=Hard+Links
http://support.microsoft.com/support/kb/articles/Q106/1/66.asp
http://search.microsoft.com/Results.aspx?qsc0=3&FORM=QBMH2&l=2&q=Symbolic+Links
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnw2kmag00/html/NTFSPart1.asp
http://search.microsoft.com/Results.aspx?qsc0=3&FORM=QBMH2&l=2&q=Sparse+Files
http://www.osp.ru/win2000/2001/08/031_print.htm

Numeric	sort	is	on	(Windows	XP) Numeric	sort	is	off	(Windows	2000)

Ie4_01 Ie4_01

Ie4_128 Ie4_128

Ie5 Ie401sp2

Ie6 Ie5

Ie401sp2 Ie501sp2

Ie501sp2 Ie6

5.txt 11.txt

11.txt 5.txt

88.txt 88.txt

See	also:	Q319827	-	The	Sort	Order	for	Files	and	Folders	Whose	Names....	

http://support.microsoft.com/default.aspx?kbid=319827

Articles
main

This	section	contains	articles	and	notes	on	programming	and	similar	topics.	We
hope	that	the	following	articles	will	be	helpful	to	you	in	the	process	of	writing
Far	Manager	plugins.	

How	to	make	a	FAR	plug-in	using	Visual	C++
Ruslan	Ilgasov.	13.05.2000
ECTL_GETSTRING	works	very	slowly...
Stanislav	V.	Mekhanoshin.	28.11.1999

If	you	have	some	non	secret	"little	secrets"	or	while	working	on	a	plugin
you	have	come	across	some	peculiarities,	"hidden	features"	and	have
overcame	those	obstacles	then	tell	us	about	them,	write	it	in	a	form	of	a
small	article	and	we	will	happily	publish	your	material	in	this
Encyclopedia...

See	also:

Structures
main

General	purpose	structures:
Structure Description

ActlEjectMedia Eject	media

ActlKeyMacro Macro-oriented	operations

CharTableSet Character	tables

CmdLineSelect Command-line	text	selection/deselection

FarMenuItem Menu	item

FarSetColors FAR	Manager	color	scheme	manipulations

FarStandardFunctions Useful	functions	from	Far.exe

FARINT64 used	to	hold	a	64	bit	integer	value.

KeySequence Description	of	a	key	code	sequence

OpenPluginInfo Information	about	the	current	plugin	instance

PluginInfo Information	about	a	plugin	module

PluginStartupInfo Various	pieces	of	important	plugin	information

WindowInfo Information	about	the	FAR	Manager	window

Panel	plugin	structures
Structure Description

InfoPanelLine One	line	in	the	info	panel

KeyBarTitles Overrides	function	key	labels	in	the	key	bar

PanelInfo Information	about	a	Far	panel

PanelMode Describes	a	panel	view	mode

PanelRedrawInfo Is	used	to	redraw	a	panel

PluginPanelItem Information	about	an	item	in	the	emulated	file	system

Editor	plugin	structures
Structure Description

EditorBookMarks Information	about	bookmarks	in	the	currently	edited
file

EditorColor Information	about	color	regions

EditorConvertPos Conversion	between	real	and	screen	positions	of	the
cursor

EditorConvertText Text	conversion	between	the	OEM	and	the	internal
FAR	character	set

EditorGetString Editor	line	retrieval

EditorInfo Current	Far	editor	state

EditorSaveFile Editor	file	saving

EditorSelect Text	selection/deselection	in	the	editor

EditorSetParameter Editor	parameter	control

EditorSetPosition Position	control	in	the	internal	FAR	editor

EditorSetString String	control	in	the	internal	FAR	editor

Dialog	API	structures
Structure Description

FarDialogEvent Information	about	dialog	event

FarDialogItem Dialog	item

FarDialogItemData Passing	data	to	a	dialog	item

FarList The	DI_LISTBOX	list

FarListColors Describes	color	schemes	for	DI_COMBOBOX	and
DI_LISTBOX	controls

FarListDelete Parameters	for	deletion	from	DI_COMBOBOX	or
DI_LISTBOX

FarListFind Search	in	a	DI_COMBOBOX	or	DI_LISTBOX

FarListGetItem Retrieval	of	one	element	from	a	DI_COMBOBOX	or
DI_LISTBOX

FarListInfo Retrieval	of	information	about	a	DI_COMBOBOX	or
DI_LISTBOX

FarListInsert Item	insertion	into	a	DI_COMBOBOX	or
DI_LISTBOX

FarListItem List	item

FarListPos Positioning	in	the	list

FarListItemData Association	of	a	list	item	with	data

FarListTitles Set	or	get	list	labels

FarListUpdate List	item	update	data

OpenDlgPluginData Information	about	dialog	and	activated	plugin	item.

Viewer	specific	structures
Structure Description

ViewerInfo Current	viewer	state

ViewerMode Information	about	the	current	view	mode

ViewerSelect Block	selection	in	the	internal	viewer

ViewerSetPosition Position	setting	in	the	viewer

See	also:
Exported	functions,	Service	functions,	Dialog	API,	Archive
support,	Addons,	Delphi	structure,	Win32	structure

Service	functions
main

The	following	functions	allow	plugins	to	use	FAR	menu,	dialogs,	language
support	and	some	other	useful	functionality.	Pointers	to	these	functions	are
passed	to	plugins	in	the	SetStartupInfo	function.

	Attention!
Some	of	the	functions	listed	below	are	absent	in	the	older	FAR	versions.
Read	the	remarks	to	the	PluginStartupInfo	structure	and	the
GetMinFarVersion	function	for	more	information.

Common	functions
Function Description

AdvControl advanced	control	functions;	can	be	called	from
anywhere:	panels,	viewer	or	editor.

CharTable allows	to	get	information	about	installed	character
tables.

CmpName function	compares	a	text	string	(for	example,	a	file
name)	with	a	pattern	(mask).

GetMsg returns	a	message	from	the	language	file.

Menu shows	a	menu.

RestoreScreen restores	a	screen	area	previously	saved	by	SaveScreen.

SaveScreen saves	a	screen	area.

ShowHelp shows	the	specified	FAR	help	topic	for	the	specified
hlf	file.

Text writes	a	text	string	to	the	screen.

Panel	specific	functions
Function Description

Control allows	to	request	different	information	about	the	FAR
panels	and	perform	various	control	actions.

FreeDirList releases	the	memory	allocated	for	files	list	by
GetDirList	and	GetPluginDirList	functions.

GetDirList returns	the	list	of	files	in	the	specified	directory.

GetPluginDirList returns	list	of	files	in	the	specified	directory	in	the	file
system	emulated	by	a	plugin.

Editor	specific	functions
Function Description

Editor allows	to	invoke	the	FAR	internal	editor.

EditorControl provides	access	to	low	level	internal	editor	API.

Dialog	API	specific	functions
Function Description

DefDlgProc allows	to	call	the	internal	dialog	callback	function.

Dialog shows	a	dialog.

DialogEx shows	a	dialog	that	allows	to	assign	for	it	a	callback
function.

InputBox a	simple	dialog	box	allowing	to	enter	one	line	of	text.

Message shows	a	message.

SendDlgMessage used	to	send	a	message	to	the	dialog	callback	function.

Viewer	specific	functions
Function Description

Viewer allows	to	invoke	the	internal	viewer.

ViewerControl allows	to	query	and	control	the	state	of	the	internal
viewer

See	also:
Exported	functions,	Structures,	Archive	support,	Addons,	Win32
structures	and	function

Exported	functions
main

FAR	Manager	communicates	with	its	plugins	by	a	set	of	functions	exported	by
the	plugins.	A	plugin	does	not	need	to	export	all	functions	listed	below.
Implement	only	those	that	are	required	by	the	functionality	of	the	plugin.	

	Attention!
All	file	names	passed	to	FAR	must	be	in	OEM	code	page.	FAR	also
passes	file	names	in	OEM	code	page.	Before	calling	plugin	functions
FAR	calls	SetFileApisToOEM.	If	plugin	uses	anywhere
SetFileApisToANSI,	it	must	call	SetFileApisToOEM	again	before
returning	control	to	FAR.

Common	functions
Function Description

Configure plugin	configuration

ExitFAR before	closing	the	FAR	Manager

GetMinFarVersion get	mininum	FAR	Manager	version

GetPluginInfo get	plugin	information

SetStartupInfo global	settings

File	panel	specific	functions
Function Description

ClosePlugin before	closing	an	open	plugin	instance.

Compare overrides	sorting	algorithm

DeleteFiles delete	files

FreeFindData frees	memory,	allocated	by	GetFindData

FreeVirtualFindData frees	memory,	allocated	by	GetVirtualFindData

GetFiles get	files

GetFindData get	file	list

GetOpenPluginInfo get	information	about	an	open	plugin	instance

GetVirtualFindData get	files

MakeDirectory make	a	directory

OpenFilePlugin open	a	file

OpenPlugin create	a	new	plugin	instance

ProcessEvent process	events

ProcessHostFile execute	archive	commands

ProcessKey process	keyboard	events

PutFiles put	files	to	the	emulated	file	system

SetDirectory set	current	directory	in	the	emulated	file	system

SetFindList transfers	found	files	from	the	"Find	file"	dialog	to	the
emulated	file	system

Editor	specific	functions
Function Description

ProcessEditorInput process	keyboard	events

ProcessEditorEvent process	editor	events

Viewer	specific	functions
Function Description

ProcessViewerEvent process	viewer	events

Dialog	specific	functions
Function Description

ProcessDialogEvent Process	dialog	events

See	also:
Service	functions,	Structures,	Archive	support,	Addons

Dialog	API	1.0
main

	Attention!
All	Dialog	API	details	are	written	with	taking	named	unions	of	the
FarDialogItem	structure	into	account.	For	more	details	see	the
description	of	_FAR_NO_NAMELESS_UNIONS.

Dialog	API	represents	an	individual	API	beginning	from	FAR	Manager	version
1.70.	What's	in	it	for	plugin	developers?	The	main	thing	is	higher	control	over
the	created	dialog.

There're	two	different	dialog	types:

Dialogs	of	so-called	"About"	style	(FAR	version	1.65	and	below)
Extended	style	dialogs	-	those	using	the	dialog	callback	function.

Regardless	of	the	style	used,	dialog	manager	v1.0	supports	only	so-called	Modal
Dialogs.	This	dialog	represents	a	window	which	disables	user	interaction	with
any	FAR	Manager	object	outside	the	boundaries	of	the	dialog.	The	modal	dialog
cuts	off	all	keyboard/mouse	events	sent	to	other	FAR	Manager	objects.

"About"	style
It's	simple	-	UNCONTROLLABLE	DIALOGS!	Dialogs	of	this	type	are	created
with	either	Dialog	or	DialogEx	function	call	with	the	DlgProc	parameter	set	to
NULL.

This	style	defines	the	following	dialog	behavior:

any	changes	in	control	element	state	become	known	to	the	plugin	only	after
dialog	is	closed;
dialog	is	closed	when	user	presses	one	of	the	following	keys:	Esc,	Ctrl-
Enter,	Enter	(pressing	Enter	closes	the	dialog	regardless	of	which
control	element	has	the	focus,	with	the	exception	of	edit	boxes	with
DIF_EDITOR	flag	set),	or	clicks	a	mouse	button	beyond	the	dialog	bounds.
This	style	is	intended	for	simple	dialogs.

"Extended"	style
This	is	the	most	interesting	style.	Plugin	has	ultimate	control	over	the	dialog.

dialog	has	its	own	callback	function	which	reacts	to	a	lot	of	messages	sent
by	the	Dialog	Manager;
the	callback	function	communicates	with	the	Dialog	Manager	by	sending
messages	with	the	SendDlgMessage	function;
the	callback	function	can	delegate	control	to	the	Dialog	Manager	with	the
DefDlgProc	function;
when	user	tries	to	interact	with	inaccessible	FAR	Manager	objects,	clicking
mouse	buttons	outside	the	dialog,	the	Dialog	Manager	warns	him/her	with
beeps.
the	plugin	is	in	control	of	the	dialog	session	ending.
this	style	is	intended	for	dialogs	implementing	complex	user	interaction
logic.

If	one	simply	delegates	control	to	the	kernel	in	a	dialog	callback	function	with
the	DefDlgProc	function	call,	then	one	gets	simple	About-styled	dialog:
//	dialog	callback	function	with	minimal	code

LONG_PTR	WINAPI	MyDlgProc(HANDLE	hDlg,int	Msg,int	Param1,LONG_PTR	Param2)

{

		return	Info.DefDlgProc(hDlg,Msg,Param1,Param2);

}

Choosing	dialog	style	is	simple:

to	create	a	dialog	with	one	InputBox	choose	simple	About	style	-	the	lesser
the	code	the	simpler	the	result,	reducing	possibility	of	errors;
to	create	more	complex	plugins	(game,	calculator,	querying	a	database
using	ODBC,	etc.)	choose	Extended	style	as	it	provides	complex	logic,
dynamic	controls,	advanced	user	interaction	(on	which	may	depend
sunsequent	actions),	etc..

Well	then,	the	Dialog	API	v1.0:
Functions	Structures
Macros	and	types
Dialog	elements
Dialog	element	flags
Events	and	Messages
Input	focus
Working	with	lists

	

Remarks
To	get	more	familiar	with	the	Dialog	API	see	the	dialog.cpp	file	from
"Reversi"	plugin	sources.

See	also:
Exported	functions,	Service	functions,	Structures,	Archive
support,	Addons

http://plugring.farmanager.com/downld/files/reversi.zip

Viewer	API
main

Exported	functions
Function Description

ProcessViewerEvent process	viewer	events

Service	functions
Function Description

Viewer allows	to	invoke	the	internal	viewer.

ViewerControl allows	to	query	and	control	the	state	of	the	internal
viewer

Structures
Structure Description

FARINT64 used	to	hold	a	64	bit	integer	value.

ViewerInfo current	viewer	state

ViewerMode information	about	the	current	view	mode

ViewerSelect block	selection	in	the	internal	viewer

ViewerSetMode set	the	view	mode	of	the	current	viewer	instance

ViewerSetPosition position	setting	in	the	viewer

See	also:

Panel	API
main

Exported	functions
Function Description

ClosePlugin before	closing	an	open	plugin	instance.

Compare overrides	sorting	algorithm

DeleteFiles delete	files

FreeFindData frees	memory,	allocated	by	GetFindData

FreeVirtualFindData frees	memory,	allocated	by	GetVirtualFindData

GetFiles get	files

GetFindData get	file	list

GetOpenPluginInfo get	information	about	an	open	plugin	instance

GetVirtualFindData get	files

MakeDirectory make	a	directory

OpenFilePlugin open	a	file

OpenPlugin create	a	new	plugin	instance

ProcessEvent process	events

ProcessHostFile execute	archive	commands

ProcessKey process	keyboard	events

PutFiles put	files	to	the	emulated	file	system

SetDirectory set	current	directory	in	the	emulated	file	system

SetFindList transfers	found	files	from	the	"Find	file"	dialog	to	the
emulated	file	system

Service	functions
Function Description

Control allows	to	request	different	information	about	the	FAR
panels	and	perform	various	control	actions.

FreeDirList releases	the	memory	allocated	for	files	list	by
GetDirList	and	GetPluginDirList	functions.

GetDirList returns	the	list	of	files	in	the	specified	directory.

GetPluginDirList returns	list	of	files	in	the	specified	directory	in	the	file

system	emulated	by	a	plugin.

Structures
Structure Description

InfoPanelLine One	line	in	the	info	panel

KeyBarTitles Overrides	function	key	labels	in	the	key	bar

PanelInfo Information	about	a	Far	panel

PanelMode Describes	a	panel	view	mode

PanelRedrawInfo Used	to	redraw	a	panel

PluginPanelItem Information	about	an	item	in	the	emulated	file	system

Constants
Constants Description

NM size	of	the	buffer	needed	to	receive	a	full	file	name.

OPM_* additional	information	about	function	operation	mode
and	place,	from	which	it	was	called.

SM_* sort	modes.

See	also:

Editor	API
main

Exported	functions
Function Description

ProcessEditorInput process	keyboard	events

ProcessEditorEvent process	editor	events

Service	functions
Function Description

Editor allows	to	invoke	the	FAR	internal	editor.

EditorControl provides	access	to	low	level	internal	editor	API.

Structures
Structure Description

EditorBookMarks information	about	bookmarks	in	the	currently	edited
file

EditorColor information	about	color	regions

EditorConvertPos conversion	between	real	and	screen	positions	of	the
cursor

EditorConvertText text	conversion	between	OEM	and	internal	FAR
character	set

EditorGetString editor	line	retrieval

EditorInfo current	editor	state

EditorSaveFile editor	file	saving

EditorSelect text	selection/deselection	in	the	editor

EditorSetParameter editor	parameters	setting

EditorSetPosition position	setting	in	the	editor

EditorSetString change	or	insert	string	in	the	editor

See	also:

Far	Standard	Functions
main	|	Structures	|	TFarStandardFunctions

The	FarStandardFunctions	structure	contains	addresses	to	standard	FAR
functions.	Using	these	functions	allows	the	plugin	to	use	standard	operations	and
reduce	the	size	of	the	plugin's	DLL.

struct	FarStandardFunctions

{

		int	StructSize;

		FARSTDATOI																	atoi;

		FARSTDATOI64															atoi64;

		FARSTDITOA																	itoa;

		FARSTDITOA64															itoa64;

		FARSTDSPRINTF														sprintf;

		FARSTDSSCANF															sscanf;

		FARSTDQSORT																qsort;

		FARSTDBSEARCH														bsearch;

		FARSTDQSORT																qsortex;

		FARSTDSNPRINTF													snprintf;

		DWORD_PTR																		Reserved[8];

		FARSTDLOCALISLOWER									LIsLower;

		FARSTDLOCALISUPPER									LIsUpper;

		FARSTDLOCALISALPHA									LIsAlpha;

		FARSTDLOCALISALPHANUM						LIsAlphanum;

		FARSTDLOCALUPPER											LUpper;

		FARSTDLOCALLOWER											LLower;

		FARSTDLOCALUPPERBUF								LUpperBuf;

		FARSTDLOCALLOWERBUF								LLowerBuf;

		FARSTDLOCALSTRUPR										LStrupr;

		FARSTDLOCALSTRLWR										LStrlwr;

		FARSTDLOCALSTRICMP									LStricmp;

		FARSTDLOCALSTRNICMP								LStrnicmp;

		FARSTDUNQUOTE														Unquote;

		FARSTDEXPANDENVIRONMENTSTR	ExpandEnvironmentStr;

		FARSTDLTRIM																LTrim;

		FARSTDRTRIM																RTrim;

		FARSTDTRIM																	Trim;

		FARSTDTRUNCSTR													TruncStr;

		FARSTDTRUNCPATHSTR									TruncPathStr;

		FARSTDQUOTESPACEONLY							QuoteSpaceOnly;

		FARSTDPOINTTONAME										PointToName;

		FARSTDGETPATHROOT										GetPathRoot;

		FARSTDADDENDSLASH										AddEndSlash;

		FARSTDCOPYTOCLIPBOARD						CopyToClipboard;

		FARSTDPASTEFROMCLIPBOARD			PasteFromClipboard;

		FARSTDKEYTOKEYNAME									FarKeyToName;

		FARSTDKEYNAMETOKEY									FarNameToKey;

		FARSTDINPUTRECORDTOKEY					FarInputRecordToKey;

		FARSTDXLAT																	XLat;

		FARSTDGETFILEOWNER									GetFileOwner;

		FARSTDGETNUMBEROFLINKS					GetNumberOfLinks;

		FARSTDRECURSIVESEARCH						FarRecurseSearch;

		FARSTDMKTEMP															MkTemp;

		FARSTDDELETEBUFFER									DeleteBuffer;

		FARSTDPROCESSNAME										ProcessName;

		FARSTDMKLINK															MkLink;

		FARCONVERTNAMETOREAL							ConvertNameToReal;

		FARGETREPARSEPOINTINFO					GetReparsePointInfo;

};

Members
Function Description

StructSize Structure	size.	If	the	structure	will	change	in	the
future,	this	field	will	allow	to	determine	it.

atoi converts	a	string	to	a	32-bit	integer.

atoi64 converts	a	string	to	a	64-bit	integer	(__int64).

itoa converts	a	32-bit	integer	value	into	a	string.

itoa64 converts	a	64-bit	integer	(__int64)	value	into	a	string.

sprintf allows	to	write	formatted	output	to	a	string.

sscanf allows	to	read	formatted	data	from	a	string.

qsort allows	to	sort	an	array	of	any	type	of	data	using	the
QuickSort	algorithm.

bsearch allows	to	perform	a	binary	search	of	a	sorted	array.

qsortex allows	to	sort	an	array	of	any	type	of	data	using	the
QuickSort	algorithm.

snprintf allows	to	write	formatted	output	to	a	string.

LIsLower tests	whether	the	given	character	is	in	lower	case.

LIsUpper tests	whether	the	given	character	is	in	upper	case.

LIsAlpha tests	whether	the	given	character	is	a	letter.

LIsAlphanum tests	whether	the	given	character	is	a	number	or	a
letter.

LUpper converts	a	character	to	upper	case.

LLower converts	a	character	to	lower	case.

LUpperBuf converts	an	array	of	characters,	including	null	ones,	to
upper	case.

LLowerBuf converts	an	array	of	characters,	including	null	ones,	to
lower	case.

LStrupr converts	a	null-terminated	string	to	upper	case.

LStrlwr converts	a	null-terminated	string	to	lower	case.

LStricmp compares	two	strings	without	case	sensitivity.

LStrnicmp compares	portions	of	two	strings	without	case
sensitivity.

Unquote removes	all	quotes	from	a	null-terminated	string.

ExpandEnvironmentStr used	to	expand	environment	variables	in	a	string	to
their	values.

LTrim removes	leading	whitespace	from	a	string.

RTrim removes	trailing	whitespace	from	a	string.

Trim removes	all	leading	and	trailing	whitespace	from	a
string.

TruncStr truncates	a	given	string	to	the	specified	length	and,	if
needed,	inserts	in	its	beginning	an	ellipsis	instead	of
the	truncated	part.

TruncPathStr truncates	a	given	path	to	specified	length	and,	if
needed,	inserts	an	ellipsis	to	indicate	the	place	of
truncation.

QuoteSpaceOnly quotes	the	input	string	if	it	contains	at	least	one	space
inside.

PointToName used	to	get	the	file	name	from	a	given	file	path.

GetPathRoot used	to	get	the	root	directory	from	a	given	file	path.

AddEndSlash used	to	add	a	trailing	backslash	or	a	slash	to	a	path.

CopyToClipboard copies	a	text	string	to	the	Windows	clipboard.

PasteFromClipboard used	to	get	data	from	the	Windows	clipboard.

FarKeyToName used	to	convert	an	internal	FAR	key	code	to	a	string.

FarNameToKey used	to	convert	a	literal	key	name	to	an	internal	FAR
key	code.

FarInputRecordToKey used	to	convert	a	key	code	from	an	INPUT_RECORD
structure	to	an	internal	FAR	key	code.

XLat used	to	transliterate	a	string	portion	from	one	character
set	(for	example	Russian)	to	another	character	set	(for
example	Latin).

GetFileOwner used	to	determine	the	owner	of	the	given	file.

GetNumberOfLinks returns	the	number	of	hard	links	to	the	specified	file.

FarRecursiveSearch used	to	find	a	file	in	a	directory	tree	with	name
matching	the	given	mask.

MkTemp used	to	create	a	temporary	file	name	with	the	path
based	on	a	specified	template.

DeleteBuffer used	to	free	an	allocated	buffer	returned	by	the
PasteFromClipboard	function.

ProcessName allows	to	perform	various	actions	on	a	file	name:
compare	with	a	mask,	with	a	list	of	masks	or	to
generate	new	file	name	using	a	mask.

MkLink supports	creating	hard	and	symbolic	links	and
mounting	local	drives	to	the	file	system.

ConvertNameToReal converts	a	relative	name	of	a	file	object	to	its	full
pathname	and	expands	symbolic	links	(reparse	points).

GetReparsePointInfo allows	to	determine	the	target	(path	to	the	target	drive
and	directory)	of	a	symbolic	link	(reparse	point).

Remarks
Before	you	can	start	using	standard	functions	you	have	to	store	structure
contents	locally:

static	struct	PluginStartupInfo	Info;

static	struct	FarStandardFunctions	FSF;

void		_export	SetStartupInfo(struct	PluginStartupInfo	*psInfo)

{

				Info=*psInfo;

				FSF=*psInfo->FSF;

				Info.FSF=&FSF;	//	now	Info.FSF	will	point	to	the	correct	local	address

				...

}	

See	also:
Structures	|	PluginStartupInfo

Language	and	Help	files
main

Using	the	information	given	below	will	allow	you	to	easily	adjust	the	language
of	your	plugins	(within	sensible	limits)	-	just	create	a	few	files	and	you're	done.

All	*.lng	and	*.hlf	files	in	the	FAR	directory,	Plugins	directory	and	all
subdirectories	of	the	Plugins	directory	are	considered	to	be	language	and	help
files,	respectively.	The	.Language	control	statement	defines	the	language	of	the
file.

Format Description

Control	statements description	of	control	statements	in	language	and	help
files

Language	files description	of	language	files	syntax

Help	files description	of	help	files	syntax

See	also:

Custom	API
main

This	topic	presents	"third-party"	APIs,	which	aid	in	writing	subplugins	for
several	well-known	FAR	plugins.

API Description

Archive	support	API FMT-modules	development	API	for	the	MultiArc
plugin.

Regular	expressions	interface	for
the	colorer	library

Regular	expressions	description	for	colorer,	both
sources	and	external	DLL	interface.

Search	and	Replace	plugins
programming

SRP-modules	development	API	for	the	Search	and
Replace	plugin.

Mr.Ripper	API RIP-modules	development	API	for	the	Mr.Ripper
plugin.

Macros
main

Macro	command	or	'macro'	in	FAR	is	a	recorded	sequence	of	keystrokes	that	can
be	assigned	to	a	shortcut	command.	Macro	can	be	used	to	repeatedly	perform	a
certain	sequence	of	user	actions	at	a	time	by	pressing	a	single	hotkey.

Generally	macros	can	be	used	to:

1.	 Assign	an	often	used	set	of	actions	to	a	shortcut	to	use	it	repeatedly;
2.	 Perform	special	functions	which	can	be	specified	in	a	macro	command	text

by	using	special	commands;
3.	 Redefine	the	standard	FAR	hotkeys.

Mostly	macros	are	used	to	define	shortcut	access	to	the	external	plugin	modules
and	redefine	hotkeys	for	standard	FAR	functions.

See	also:
General	background	Using	macros
Macro-language
Technical	details
Examples

Addons
main

The	following	fuctions	and	structures	are	not	included	in	the	standart	API,	but
often	used	when	writing	plugins.
This	section	will	also	contain	structures	and	functions,	which	may	help	in
writing	plugins.	If	you	think,	that	your	structure	or	function	is	worthy	of	being
here,	write	to	authors	of	this	encyclopedia.

General	purpose	functions
Function Description

InitDialogItems Translates	InitDialogItem	structure	to	FarDialogItem
structure

InitMenuItems Translates	InitMenuItem	structure	to	FarMenuItem
structure

LocMsg Returns	a	pointer	to	a	string	according	to	language
settings	of	FAR	Manager

Structures
Structure Description

InitDialogItem Defines	the	dialog	item

InitMenuItem Defines	the	menu	item

See	also:
Custom	API	Exported	functions
Structures
Archive	support

Constants
main	|	Macros	|	Macro-language

You	can	use	the	constants	to	store	values	associated	with	the	names	and	use	them
later	in	the	macro	sequences.

Naming
Names	of	the	constants	should	comply	with	these	rules:

1.	 Name	should	begin	from	the	english	letter,	and	can	contain	in	arbitrary
order	english	letters,	digits,	and	'_'	symbol.

2.	 Name	should	not	coincide	with	predefined	boolean	states,	macro	functions
names,	names	of	the	keys,	and	other	macro	states.

Types
Constants	can	be	either	string	or	integer.

Integer	constants	can	be	represented	by:	NNN	-	decimal	constant,	0NNN	-	octal
constant,	0xNNN	-	hexadecimal	constant.

Integers	are	of	64	bit	width.

Area	of	effect
The	scope	for	the	constants	is	a	current	FAR	Manager	session.

Representation	in	registry
In	the	registry,	constants	are	stored	in	the	special	key
[HKEY_CURRENT_USER\Software\Far\

[Users\USERNAME\]KeyMacros\Consts].

Every	constant	has	a	name	and	can	be	of	three	types	REG_SZ	(for	string
constants)	and	REG_DWORD	or	REG_QDWORD	(for	integer	constants).

Remarks

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

Example
Example	of	using	FIB_PASSWORD	constant	(0x00000002)	for	prompt	function

REGEDIT

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Consts]

"FIB_PASSWORD"=dword:00000002

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Editor\CtrlP]

"Sequence"="%s=prompt(\"Password\",\"Input	password:\",FIB_PASSWORD);	$Text	%s"

"DisableOutput"=dword:00000001

See	also:

FAR_FIND_DATA
main	|	structures	|	win32	structures

The	FAR_FIND_DATA	structure	describes	a	file	object	located	in	the	FAR	file
panel.

typedef	struct	_FAR_FIND_DATA	{

		DWORD	dwFileAttributes;

		FILETIME	ftCreationTime;

		FILETIME	ftLastAccessTime;

		FILETIME	ftLastWriteTime;

		DWORD	nFileSizeHigh;

		DWORD	nFileSizeLow;

		DWORD	dwReserved0;

		DWORD	dwReserved1;

		TCHAR	cFileName[MAX_PATH];

		TCHAR	cAlternateFileName[14];

}	FAR_FIND_DATA;

Members
dwFileAttributes
File	attributes	of	the	file	found.	This	member	can	be	one	or	more	of	the
following	values:

Attribute Description

FILE_ATTRIBUTE_ARCHIVE The	file	or	directory	is	an	archive
file	or	directory.	Applications	use
this	attribute	to	mark	files	for
backup	or	removal.

FILE_ATTRIBUTE_COMPRESSED The	file	or	directory	is	compressed.
For	a	file,	this	means	that	all	of	the
data	in	the	file	is	compressed.	For	a
directory,	this	means	that
compression	is	the	default	for	newly
created	files	and	subdirectories.

FILE_ATTRIBUTE_DIRECTORY Identifies	a	directory.

FILE_ATTRIBUTE_ENCRYPTED The	file	or	directory	is	encrypted.
For	a	file,	this	means	that	all	data	in
the	file	is	encrypted.	For	a	directory,
this	means	that	encryption	is	the

default	for	newly	created	files	and
subdirectories.

FILE_ATTRIBUTE_HIDDEN The	file	or	directory	is	hidden.	It	is
not	included	in	an	ordinary
directory	listing.

FILE_ATTRIBUTE_NORMAL The	file	or	directory	has	no	other
attributes	set.	This	attribute	is	valid
only	if	used	alone.

FILE_ATTRIBUTE_OFFLINE The	file	data	is	not	immediately
available.	This	attribute	indicates
that	the	file	data	has	been	physically
moved	to	offline	storage.

FILE_ATTRIBUTE_READONLY The	file	or	directory	is	read-only.
Applications	can	read	the	file	but
cannot	write	to	it	or	delete	it.	In	the
case	of	a	directory,	applications
cannot	delete	it.

FILE_ATTRIBUTE_REPARSE_POINT The	file	or	directory	has	an
associated	reparse	point.

FILE_ATTRIBUTE_SPARSE_FILE The	file	is	a	sparse	file.

FILE_ATTRIBUTE_SYSTEM The	file	or	directory	is	part	of	the
operating	system	or	is	used
exclusively	by	the	operating	system.

FILE_ATTRIBUTE_TEMPORARY The	file	is	being	used	for	temporary
storage.	File	systems	attempt	to
keep	all	of	the	data	in	memory	for
quicker	access,	rather	than	flushing
it	back	to	mass	storage.	A
temporary	file	should	be	deleted	by
the	application	as	soon	as	it	is	no
longer	needed.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED The	file	or	directory	is	not	be
indexed	by	the	content	indexing
service.

FILE_ATTRIBUTE_VIRTUAL A	file	is	a	virtual	file.

ftCreationTime
A	FILETIME	structure	that	specifies	when	the	file	or	directory	was	created.

The	FindFirstFile	 	and	FindNextFile	

	functions	return	file	time	in	the	UTC
format.	Those	functions	set	FILETIME	to	0	if	the	underlying	file	system	does
not	support	creation	time.	You	can	use	the	FileTimeToLocalFileTime	

	functions	to	transform	the	file	time	from
UTC	format	to	local	time	format.	And	then	use	the	FileTimeToSystemTime	

	function	to	transform	the	local	time	to	a
SYSTEMTIME	structure	which	has	different	members	for	month,	day,	year,
etc.

ftLastAccessTime
A	FILETIME	structure.	For	a	file,	the	structure	specifies	when	the	file	was	last
read	from	or	written	to.	For	a	directory,	the	structure	specifies	when	the
directory	was	created.	For	both	files	and	directories,	the	specified	date	will	be
correct,	but	the	time	of	day	will	always	be	set	to	midnight.	If	the	underlying
file	system	does	not	support	last	access	time,	this	member	is	zero.	File	time	is

JavaScript:link1.Click()
JavaScript:link2.Click()
JavaScript:link3.Click()
JavaScript:link4.Click()

returned	in	the	UTC	format.
ftLastWriteTime
A	FILETIME	structure.	For	a	file,	the	structure	specifies	when	the	file	was	last
written	to.	For	a	directory,	the	structure	specifies	when	the	directory	was
created.	If	the	underlying	file	system	does	not	support	last	write	time,	this
member	is	zero.	File	time	is	returned	in	the	UTC	format.

nFileSizeHigh
High-order	DWORD	value	of	the	file	size,	in	bytes.	This	value	is	zero	unless
the	file	size	is	greater	than	MAXDWORD.	The	size	of	the	file	is	equal	to
(nFileSizeHigh	*	(MAXDWORD+1))	+	nFileSizeLow.

nFileSizeLow
Low-order	DWORD	value	of	the	file	size,	in	bytes.

dwReserved0
If	the	dwFileAttributes	member	includes	the
FILE_ATTRIBUTE_REPARSE_POINT	attribute,	this	member	specifies
the	reparse	tag.	Otherwise,	this	value	is	undefined	and	should	not	be	used.

dwReserved1
Reserved	for	future	use.

cFileName
A	null-terminated	string	that	specifies	the	name	of	the	file.

cAlternateFileName
A	null-terminated	string	that	specifies	an	alternative	name	for	the	file.	This
name	is	in	the	classic	8.3	(filename.ext)	file	name	format.

Remarks

1.	 If	a	file	has	a	long	file	name,	the	complete	name	appears	in	the	cFileName
member,	and	the	8.3	format	truncated	version	of	the	name	appears	in	the
cAlternateFileName	member.	Otherwise,	cAlternateFileName	is	empty.	As
an	alternative,	you	can	use	the	GetShortPathName	

JavaScript:link5.Click()

	function	to	find	the	8.3	format
version	of	a	file	name.

2.	 Not	all	file	systems	can	record	creation	and	last	access	time	and	not	all	file
systems	record	them	in	the	same	manner.	For	example,	on	NT	FAT,	create
time	has	a	resolution	of	10	milliseconds,	write	time	has	a	resolution	of	2
seconds,	and	access	time	has	a	resolution	of	1	day	(really,	the	access	date).
On	NTFS,	access	time	has	a	resolution	of	1	hour.

See	also:
_FAR_USE_WIN32_FIND_DATA	|	WIN32_FIND_DATA	|
FILETIME	|	TWin32FindData

_FAR_USE_WIN32_FIND_DATA
main	|	types	and	definitions

The	macro	_FAR_USE_WIN32_FIND_DATA	controls	whether	the
PluginPanelItem	structure	uses	the	WIN32_FIND_DATA	structure	defined	in
the	Windows	API	headers	or	the	the	FAR_FIND_DATA	that	has	the	same	layout
but	is	defined	in	plugin.hpp.	As	some	compilers	(for	instance,	Borland	C++
5.5)	force	8-byte	alignment	for	structures	defined	in	the	Windows	API	headers,	it
is	not	possible	to	achieve	the	correct	2-byte	alignment	for	the	entire
PluginPanelItem	structure	when	the	WIN32_FIND_DATA	structure	is	used.

If	the	_FAR_USE_WIN32_FIND_DATA	macro	is	defined,	the
PluginPanelItem	structure	will	be	compatible	with	FAR	1.65	and	FAR	1.70
headers.	But	correct	compilation	will	not	be	possible	with	Borland	C++	5.5
without	modifying	Windows	API	header	files.

If	the	macro	_FAR_USE_WIN32_FIND_DATA	is	not	defined,	the
FAR_FIND_DATA	structure	will	be	used.	This	way	the	code	would	compile
correctly	with	any	compiler,	but	some	plugins	that	depend	on	the	usage	of
WIN32_FIND_DATA	would	not	compile.

	Attention!
In	FAR	1.70	release	WIN32_FIND_DATA	is	used	by	default
(_FAR_USE_WIN32_FIND_DATA	is	defined).	In	FAR	1.71
FAR_FIND_DATA	will	be	used	by	default.

See	also:
FAR_FIND_DATA	|	WIN32_FIND_DATA

NM
main	|	types	and	definitions

The	constant	NM	deffines	the	size	for	a	buffer	containing	a	full	file	name.

Column	types
main	|	exported	functions

The	following	column	types	are	allowed:
N	-	file	name,	allowed	modifiers	(e.g.	"NMR"):
M	-	show	selection	marks;
O	-	show	names	without	paths	(intended	mainly	for	plugins);
R	-	right	aligned	names.

S	-	file	size;
Allowed	modifiers	for	file	sizes:
C	-	format	file	size	with	commas;
T	-	use	1000	instead	of	1024	as	divider,	if	column	width	is	too	small	to	show
full	size.
F	-	file	size	if	shown	as	a	float	number	as	in	Windows	Explorer	(i.e.	999	bytes
are	shown	as	999,	however	1000	bytes	are	shown	as	0.97	KB);
E	-	economic	mode,	no	space	is	shown	between	the	size	and	the	suffix

P	-	packed	file	size.
Allowed	modifiers	for	file	sizes:
C	-	format	file	size	with	commas;
T	-	use	1000	instead	of	1024	as	divider,	if	column	width	is	too	small	to	show
full	size.
F	-	file	size	if	shown	as	a	float	number	as	in	Windows	Explorer	(i.e.	999	bytes
are	shown	as	999,	however	1000	bytes	are	shown	as	0.97	KB);
E	-	economic	mode,	no	space	is	shown	between	the	size	and	the	suffix

D	-	file	modification	date
T	-	file	modification	time
	
DM	-	file	modification	date	and	time
Allowed	modifiers:
B	-	brief	(Unix	style)	file	time	format;
M	-	use	text	month	names;

DC	-	file	creation	date	and	time
Allowed	modifiers:
B	-	brief	(Unix	style)	file	time	format;
M	-	use	text	month	names;

DA	-	file	last	access	date	and	time
Allowed	modifiers:
B	-	brief	(Unix	style)	file	time	format;
M	-	use	text	month	names;

A	-	file	attributes
Z	-	file	description
O	-	file	owner
LN	-	hard	links	number
C0..C9	-	user	defined	column	types.
If	the	column	types	description	contains	more	than	one	file	name	column,	the
file	panel	will	be	displayed	in	multicolumn	form.

See	also:
PanelMode

Win32	structures,	functions	and	definitions
main

This	chapter	contains	the	articles	on	WinAPI	structures	and	functions	commonly
used.

Win32	functions:
Function Description

GetFileTime retrieves	the	date	and	time	that	a	file	was	created,	last
accessed,	and	last	modified

PeekConsoleInput reads	data	from	the	specified	console	input	buffer
without	removing	it	from	the	buffer

ReadConsoleInput reads	data	from	a	console	input	buffer	and	removes	it
from	the	buffer

SetFileApisToAnsi causes	the	file	I/O	functions	to	use	the	ANSI	character
set	code	page

SetFileApisToOem causes	the	file	I/O	functions	to	use	the	OEM	character
set	code	page

SetFileTime sets	the	date	and	time	that	a	file	was	created,	last
accessed,	or	last	modified

WriteConsoleInput writes	data	directly	to	the	console	input	buffer

Win32	structures:
Structure Description

CHAR_INFO specifies	the	character	and	its	attributes

CONSOLE_CURSOR_INFO contains	information	about	the	console	cursor

COORD defines	the	coordinates	of	a	character	cell	in	a
console	screen	buffer

FILETIME the	64-bit	number	of	100-nanosecond	intervals
since	January	1,	1601	(UTC)

FOCUS_EVENT_RECORD reports	focus	events	in	a	console
INPUT_RECORD	structure

INPUT_RECORD reports	input	events	in	the	console	input	buffer

KEY_EVENT_RECORD reports	keyboard	input	events	in	a	console
INPUT_RECORD	structure

MENU_EVENT_RECORD reports	menu	events	in	a	console
INPUT_RECORD	structure

MOUSE_EVENT_RECORD reports	mouse	input	events	in	a	console
INPUT_RECORD	structure

RECT defines	the	coordinates	of	the	upper-left	and	lower-
right	corners	of	a	rectangle

SMALL_RECT defines	the	coordinates	of	the	upper-left	and	lower-
right	corners	of	a	rectangle

SYSTEMTIME represents	a	date	and	time	using	individual
members	for	the	month,	day,	year,	weekday,	hour,
minute,	second,	and	millisecond

WIN32_FIND_DATA describes	a	file	found	by	the	FindFirstFile,
FindFirstFileEx,	or	FindNextFile	function

WINDOW_BUFFER_SIZE_RECORD reports	changes	in	the	size	of	the	screen	buffer	in	a
console	INPUT_RECORD	structure

Win32	definitions:
Constant Description

Virtualkeycodes virtual	key	codes

See	also:
Exported	functions	Service	functions
Addons

EditorSaveFile
main	|	structures

The	EditorSaveFile	structure	is	used	in	the	EditorControl	function	to	save	the
currently	edited	file	(the	ECTL_SAVEFILE	command).

struct	EditorSaveFile

{

		char	FileName[NM];

		char	*FileEOL;

};

Elements
FileName
Optional	new	name	for	the	file	(full	path	required).	Set	the	first	byte	of	the
FileName	field	to	zero	to	retain	the	current	file	name.

FileEOL
End-of-line	sequence.	Can	be	NULL	(leave	current	EOL-sequence),	\r\n	or
\n

See	also:
structures	|	TEditorSaveFile

Dialog	API	Events	&	Messages
main	|	Dialog	API

The	Dialog	API	has	many	messages	and	events	that	allow	plugins	to	work	with
extended	dialogs.

See	also:
Events	|	Messages

ERROR_*
main	|	types	and	definitions

Below	are	known	to	Far	errors	that	can	be	returned	by	GetLastError	

	function	(see	FMSG_ERRORTYPE):
Constants	from	winerror.h Text	from	Far*.lng

ERROR_INVALID_FUNCTION "Incorrect	function"
ERROR_BAD_COMMAND,
ERROR_CALL_NOT_IMPLEMENTED

"Command	not	recognized"

ERROR_FILE_NOT_FOUND "File	not	found"
ERROR_PATH_NOT_FOUND "Path	not	found"
ERROR_TOO_MANY_OPEN_FILES "Too	many	open	files"
ERROR_ACCESS_DENIED "Access	denied"
ERROR_NOT_ENOUGH_MEMORY,
ERROR_OUTOFMEMORY

"Not	enough	memory"

ERROR_WRITE_PROTECT "Cannot	write	to	write	protected	disk"
ERROR_NOT_READY "The	device	is	not	ready"
ERROR_NOT_DOS_DISK "Disk	cannot	be	accessed"
ERROR_SECTOR_NOT_FOUND "Sector	not	found"
ERROR_OUT_OF_PAPER "The	printer	is	out	of	paper"
ERROR_WRITE_FAULT "Write	fault	error"
ERROR_READ_FAULT "Read	fault	error"
ERROR_GEN_FAILURE "Device	general	failure"
ERROR_SHARING_VIOLATION,
ERROR_LOCK_VIOLATION

"File	sharing	violation"

ERROR_BAD_NETPATH "The	network	path	was	not	found"
ERROR_NETWORK_BUSY "The	network	is	busy"
ERROR_NETWORK_ACCESS_DENIED "Network	access	is	denied"
ERROR_NET_WRITE_FAULT "A	write	fault	occurred	on	the	network"
ERROR_DRIVE_LOCKED "The	disk	is	in	use	or	locked	by	another	process"
ERROR_ALREADY_EXISTS "File	or	folder	already	exists"
ERROR_BAD_PATHNAME,
ERROR_INVALID_NAME

"The	specified	name	is	invalid"

ERROR_DISK_FULL,
ERROR_HANDLE_DISK_FULL

"Insufficient	disk	space"

JavaScript:link6.Click()

ERROR_DIR_NOT_EMPTY "The	folder	is	not	empty"
ERROR_INTERNET_INCORRECT_USER_NAME "Incorrect	user	name"
ERROR_INTERNET_INCORRECT_PASSWORD "Incorrect	password"
ERROR_INTERNET_LOGIN_FAILURE "Login	failure"
ERROR_INTERNET_CONNECTION_ABORTED "Connection	aborted"
ERROR_CANCELLED "Operation	cancelled"
ERROR_NO_NETWORK "No	network	present"
ERROR_DEVICE_IN_USE "Device	is	in	use	and	cannot	be	disconnected"
ERROR_OPEN_FILES "This	network	connection	has	open	files"
ERROR_ALREADY_ASSIGNED "The	local	device	name	is	already	in	use"
ERROR_DEVICE_ALREADY_REMEMBERED "The	local	device	is	already	in	the	user	profile"
ERROR_NOT_LOGGED_ON "User	has	not	logged	on	to	the	network"
ERROR_INVALID_PASSWORD "The	user	password	is	invalid"
ERROR_NO_RECOVERY_POLICY "There	is	no	valid	encryption	recovery	policy

configured	for	this	system"
ERROR_ENCRYPTION_FAILED "The	specified	file	could	not	be	encrypted"
ERROR_DECRYPTION_FAILED "The	specified	file	could	not	be	decrypted"
ERROR_FILE_NOT_ENCRYPTED "The	specified	file	is	not	encrypted"

See	also:
Message

FRSUSERFUNC
main	|	types	and	definitions

The	FRSUSERFUNC	type	describes	a	callback	function	for	the
FSF.FarRecursiveSearch	function	that	is	called	for	each	found	file.

typedef	int		(WINAPI	*FRSUSERFUNC)(

		const	WIN32_FIND_DATA	*FData,

		const	char	*FullName,

		void	*Param

);

Parameters
FData
Points	to	the	WIN32_FIND_DATA	structure	of	the	found	file.

FullName
Full	path	to	the	found	file.

Param
Points	to	user	data	(the	Param	parameter	of	the	FSF.FarRecursiveSearch
function).

Return	value
The	function	should	return	TRUE	to	continue	searching	the	file	system,	or
FALSE	for	the	search	process	to	be	interrupted.

Remarks
FData	and	FullName	are	defined	only	in	the	context	of	this	function,	the	plugin
should	not	save	those	pointers.	To	save	the	data,	the	plugin	must	copy	those
values	to	internal	structures.	Param	-	the	data	that	was	passed	to	the
FSF.FarRecursiveSearch	function.

See	also:
FSF.FarRecursiveSearch

Delphi	structures
main	|	structures

General	purpose	structures
Structure Description

TActlEjectMedia Eject	media

TActlKeyMacro Macro-oriented	operations

TCharTableSet Character	tables

TCmdLineSelect Command-line	text	selection/deselection

TFarMenuItem Menu	item

TFarSetColors FAR	Manager	color	scheme	manipulations

TFarStandardFunctions Useful	functions	from	Far.exe

TInfoPanelLine One	line	in	the	info	panel

TKeySequence Description	of	key	code	sequence

TKeyBarTitles Overrides	function	key	labels	in	the	key	bar

TOpenPluginInfo Information	about	the	current	plugin	instance

TPanelInfo Information	about	a	Far	panel

TPanelMode Describes	a	panel	view	mode

TPanelRedrawInfo Is	used	to	redraw	a	panel

TPluginInfo Information	about	a	plugin	module

TPluginPanelItem Information	about	one	item	in	the	emulated	file	system

TPluginStartupInfo Various	pieces	of	important	plugin	information

TWindowInfo Information	about	the	FAR	Manager	window

Editor	specific	structures
Structure Description

TEditorBookMarks Information	about	bookmarks	in	the	currently	edited
file

TEditorColor Information	about	color	regions

TEditorConvertPos Conversion	between	real	and	screen	positions	of	the
cursor

TEditorConvertText Text	conversion	between	the	OEM	and	the	internal
FAR	character	set

TEditorGetString Editor	line	retrieval

TEditorInfo Current	Far	editor	state

TEditorSaveFile Editor	file	saving

TEditorSelect Text	selection/deselection	in	the	editor

TEditorSetParameter Editor	parameter	control

TEditorSetPosition Position	control	in	the	internal	FAR	editor

TEditorSetString String	control	in	the	internal	FAR	editor

Dialog	API	specific	structures
Structure Description

TFarDialogItem Dialog	item

TFarDialogItemData Passing	data	to	a	dialog	item

TFarList The	DI_LISTBOX	list

TFarListColors Describes	color	scheme	for	DI_COMBOBOX	and
DI_LISTBOX	controls

TFarListDelete Parameters	for	deletion	from	DI_COMBOBOX	or
DI_LISTBOX

TFarListFind Search	in	a	DI_COMBOBOX	or	DI_LISTBOX

TFarListGetItem Retrieval	of	one	element	from	a	DI_COMBOBOX	or
DI_LISTBOX

TFarListInfo Retrieval	of	information	about	a	DI_COMBOBOX	or
DI_LISTBOX

TFarListInsert Item	insertion	into	a	DI_COMBOBOX	or
DI_LISTBOX

TFarListItem List	item

FarListPos Positioning	in	the	list

TFarListTitles Set	or	get	list	labels

TFarListItemData Association	of	a	list	item	with	data

FarListUpdate List	item	update	data

Viewer	API	specific	structures
Structure Description

TFarInt64 used	to	hold	a	64	bit	integer	value.

TViewerInfo current	viewer	state

TViewerMode information	about	the	current	view	mode

TViewerSelect block	selection	in	the	internal	viewer

TViewerSetMode set	the	view	mode	of	the	current	viewer	instance

TViewerSetPosition position	setting	in	the	viewer

See	also:
Exported	functions,	Service	functions,	Archive	support,	Addons

Column	width
main	|	structures

The	ColumnWidths	member	of	the	PanelInfo	and	PanelMode	structures
describes	the	width	of	the	panel	columns	(e.g.	"0,8,0,5").

The	format	is	simple	-	a	string	of	numbers	(representing	the	column	width)
delimited	by	commas.

If	width	is	0,	the	default	value	will	be	used.	If	the	width	of	the	name,	description
or	owner	column	is	0,	the	it	will	be	automatically	calculated	depending	on	panel
width.	At	least	one	of	the	column	widths	should	be	set	to	0	for	correct
representation	in	any	panel	width.

If	12-hour	format	is	used,	the	standard	width	of	the	file	time	or	the	file	time	and
date	column	should	be	increased	by	one.	Increasing	by	a	bigger	value	will	show
seconds	and	milliseconds.

To	show	the	year	in	a	4-digit	format	you	should	increase	the	width	of	the	date
column	by	2.

See	also:
structures	|	PanelInfo	|	PanelMode

Dialog	API	controls
main	|	Dialog	API	|	FarDialogItem

Dialog	API	supports	a	set	of	controls.	Each	one	is	described	by	a	FarDialogItem
structure.	An	array	of	these	structures	is	passed	to	the	Dialog	and	DialogEx
functions	to	show	a	dialog.

Dialog	item Value Description

DI_BUTTON 7 Button	control

DI_CHECKBOX 8 Checkbox	control

DI_COMBOBOX 10 Combobox	control

DI_DOUBLEBOX 3 Double	line	frame

DI_EDIT 4 Edit	control

DI_FIXEDIT 6 Edit	control	with	a	fixed	text	length

DI_LISTBOX 11 Listbox	control

DI_PSWEDIT 5 Password	edit	control

DI_RADIOBUTTON 9 Radiobutton

DI_SINGLEBOX 2 Single	line	frame

DI_TEXT 0 Text	string

DI_USERCONTROL 255 User-defined	control

DI_VTEXT 1 Vertical	text	string

See	also:
Dialog	item	flags

Dialog	item	flags
main	|	Dialog	API	|	Dialog	items

It	is	possible	to	control	DialogAPI	behavior	and	appearance	using	flags.	To
know	which	flags	affect	a	specific	control,	read	in	the	control	item's	description.

Flag Description

DIF_3STATE A	DI_CHECKBOX	control	will	have	3	states.

DIF_BOXCOLOR Control	text	will	have	frame	color.

DIF_BTNNOCLOSE For	button	--	do	not	close	dialog.

DIF_CENTERGROUP Centering	a	group	of	controls.

DIF_CENTERTEXT Text	centering	in	static	controls.

DIF_COLORMASK Mask	for	color	attributes	selection.

DIF_DISABLE Disabling	a	control.

DIF_DROPDOWNLIST Defines	read-only	list	style.

DIF_EDITEXPAND Environment	variables	"expansion"	in	edit	boxes.

DIF_EDITOR Sequentially	defined	edit	boxes.

DIF_GROUP Grouping	of	radio	buttons.

DIF_HISTORY Allows	to	keep	history	for	edit	boxes.

DIF_HIDDEN Hides	a	control.

DIF_LEFTTEXT Left-align	title	of	a	frame.

DIF_LISTAUTOHIGHLIGHT Automatic	assignment	of	list	hotkeys.

DIF_LISTNOAMPERSAND Allows	showing	ampersands	in	the	listbox.

DIF_LISTNOBOX Display	listbox	without	a	frame.

DIF_LISTNOCLOSE Do	not	close	the	dialog	upon	list	item	selection.

DIF_LISTWRAPMODE "Wraps"	list	upon	navigation.

DIF_MANUALADDHISTORY The	dialog	handler	itself	will	be	adding	lines	to	the
history.

DIF_MASKEDIT Defines	mask	in	edit	boxes.

DIF_MOVESELECT Change	selection	in	radio	buttons	group	upon	input
focus	change.

DIF_NOAUTOCOMPLETE Disable	autocompletion	for	input	lines.

DIF_NOBRACKETS Displays	button	caption	without	brackets.

DIF_NOFOCUS Control	item	can't	receive	input	focus.

DIF_NOTCVTUSERCONTROL do	not	convert	characters	(CHAR_INFO::Char)	while
writing	the	virtual	buffer	to	the	screen.

DIF_READONLY Makes	edit	boxes	"read-only".

DIF_SELECTONENTRY Edit	box	contents	will	be	selected	upon	receiving	input
focus.

DIF_SEPARATOR Text	string	is	displayed	as	a	separator	(single
horizontal	line).

DIF_SEPARATOR2 Text	string	is	displayed	as	a	separator	(double
horizontal	line).

DIF_SETCOLOR Element	color	definition.

DIF_SHOWAMPERSAND Show	ampersand	character	not	using	it	for	the	hot	key
definition.

DIF_USELASTHISTORY Initial	value	is	taken	from	the	history	list.

DIF_VAREDIT Edit	box	without	size	limit.

See	also:

Dialog	API	structures
Dialog	API

Dialog	API	1.0	supports	the	following	structures.

Structure Description

FarDialogItem Dialog	item

FarDialogItemData Passing	data	to	a	dialog	item

FarList The	DI_LISTBOX	list

FarListColors Describes	a	color	scheme	for	DI_COMBOBOX	and
DI_LISTBOX	controls

FarListDelete Parameters	for	deletion	from	DI_COMBOBOX	or
DI_LISTBOX

FarListFind Search	in	a	DI_COMBOBOX	or	DI_LISTBOX

FarListGetItem Retrieval	of	one	element	from	a	DI_COMBOBOX	or
DI_LISTBOX

FarListInfo Retrieval	of	information	about	a	DI_COMBOBOX	or
DI_LISTBOX

FarListInsert Item	insertion	into	a	DI_COMBOBOX	or
DI_LISTBOX

FarListItem List	item

FarListPos Positioning	in	the	list

FarListItemData Association	of	a	list	item	with	data

FarListTitles Set	or	get	list	labels

FarListUpdate List	item	update	data

See	also:
FAR	API	structures

TFarListUpdate
main	|	structures	|	FarListUpdate

The	FarListUpdate	stucture	for	Delphi:

TFarListUpdate	=	packed	record

		Index:	integer;

		Item:	TFarListItem;

end;

PFarListUpdate	=	^TFarListUpdate;

TFarStandardFunctions
main	|	structures	|	FarStandardFunctions

The	FarStandardFunctions	stucture	for	Delphi:

TFarStandardFunctions	=	packed	record

		StructSize:	integer;

		atoi:	TFarStdAToI;

		atoi64:	TFarStdAToI64;

		itoa:	TFarStdIToA;

		itoa64:	TFarStdIToA64;

		sprintf:	pointer;

		sscanf:		pointer;

		qsort:	TFarStdQSort;

		bsearch:	TFarStdBSearch;

		qsortex:	TFarStdQSortEx;

		Reserved:	packed	array[0..8]	of	DWORD;

		LIsLower:				TFarStdLocalIsLower;

		LIsUpper:				TFarStdLocalIsUpper;

		LIsAlpha:				TFarStdLocalIsAlpha;

		LIsAlphanum:	TFarStdLocalIsAlphaNum;

		LUpper:						TFarStdLocalUpper;

		LLower:						TFarStdLocalLower;

		LUpperBuf:			TFarStdLocalUpperBuf;

		LLowerBuf:			TFarStdLocalLowerBuf;

		LStrupr:					TFarStdLocalStrUpr;

		LStrlwr:					TFarStdLocalStrLwr;

		LStricmp:				TFarStdLocalStrICmp;

		LStrnicmp:			TFarStdLocalStrNICmp;

		Unquote:	TFarStdUnquote;

		ExpandEnvironmentStr:	TFarStdExpandEnvironmentStr;

		LTrim:	TFarStdLTrim;

		RTrim:	TFarStdRTrim;

		Trim:	TFarStdTrim;

		TruncStr:	TFarStdTruncStr;

		TruncPathStr:	TFarStdTruncPathStr;

		QuoteSpaceOnly:	TFarStdQuoteSpaceOnly;

		PointToName:	TFarStdPointToName;

		GetPathRoot:	TFarStdGetPathRoot;

		AddEndSlash:	TFarStdAddEndSlash;

		CopyToClipboard:	TFarStdCopyToClipboard;

		PasteFromClipboard:	TFarStdPasteFromClipboard;

		FarKeyToName:	TFarStdKeyToKeyName;

		FarNameToKey:	TFarStdKeyNameToKey;

		FarInputRecordToKey:	TFarStdInputRecordToKey;

		XLAT:	TFarStdXLAT;

		GetFileOwner:	TFarStdGetFileOwner;

		GetNumberOfLinks:	TFarStdGetNumberOfLinks;

		FarRecurseSearch:	TFarRecursiveSearch;

		MkTemp:	TFarStdMkTemp;

		DeleteBuffer:	TFarStdDeleteBuffer;

		ProcessName:	TFarStdProcessName;

		MkLink:	TFarStdMkLink;

		ConvertNameToReal:	TFarStdConvertNameToReal;

		GetReparsePointInfo:	TFarStdGetReparsePointInfo;

end;

PFarStandardFunctions	=	^TFarStandardFunctions;

Where:

TFarStdatoi	=	function(

		S:	PChar):	integer;	stdcall;

TFarStdAToI64	=	function(

		S:	PChar):	int64;	stdcall;

TFarStdIToA	=	function(

		Value:	integer;

		Str:	PChar;

		Radix:	integer):	PChar;	stdcall;

TFarStdIToA64	=	function(

		Value:	int64;

		Str:	PChar;

		Radix:	integer):	PChar;	stdcall;

		TFarStdQSortFunc	=	function(

				Param1:	pointer;

				Param2:	pointer):	integer;	cdecl;

TFarStdQSort	=	procedure(

		Base:	pointer;

		NElem:	size_t;

		Width:	size_t;

		fcmp:	TFarStdQSortFunc);	stdcall;

TFarStdBSearch	=	procedure(

		Key:	pointer;

		Base:	pointer;

		NElem:	size_t;

		Width:	size_t;

		fcmp:	TFarStdQSortFunc);	stdcall;

TFarStdLocalIsLower	=	function(

		Ch:	integer):	integer;	stdcall;

TFarStdLocalIsUpper	=	function(

		Ch:	integer):	integer;	stdcall;

TFarStdLocalIsAlpha	=	function(

		Ch:	integer):	integer;	stdcall;

TFarStdLocalIsAlphaNum	=	function(

		Ch:	integer):	integer;	stdcall;

TFarStdLocalUpper	=	function(

		LowerChar:	integer):	integer;	stdcall;

TFarStdLocalLower	=	function(

		UpperChar:	integer):	integer;	stdcall;

TFarStdLocalUpperBuf	=	procedure(

		Buf:	PChar;

		Length:	integer);	stdcall;

TFarStdLocalLowerBuf	=	procedure(

		Buf:	PChar;

		Length:	integer);	stdcall;

TFarStdLocalStrUpr	=	procedure(

		s1:	PChar);	stdcall;

TFarStdLocalStrLwr=	procedure(

		s1:	PChar);	stdcall;

TFarStdLocalStrICmp	=	function(

		s1:	PChar;

		s2:	PChar):	integer;	stdcall;

TFarStdLocalStrNICmp	=	function(

		s1:	PChar;

		s2:	PChar;

		n:	integer):	integer;	stdcall;

TFarStdUnquote	=	procedure(

		Str:	PChar);	stdcall;

TFarStdExpandEnvironmentStr	=	function(

		Src:	PChar;

		Dst:	PChar;

		Size:	DWORD):	DWORD;	stdcall;

TFarStdLTrim	=	function(

		Str:	PChar):	PChar;	stdcall;

TFarStdRTrim	=	function(

		Str:	PChar):	PChar;	stdcall;

TFarStdTrim	=	function(

		Str:	PChar):	PChar;	stdcall;

TFarStdTruncStr	=	function(

		Str:	PChar;

		MaxLength:	integer):	PChar;	stdcall;

TFarStdTruncPathStr	=	function(

		Str:	PChar;

		MaxLength:	integer):	PChar;	stdcall;

TFarStdQuoteSpaceOnly	=	function(

		Str:	PChar):	PChar;	stdcall;

TFarStdPointToName	=	function(

		Path:	PChar):	PChar;	stdcall;

TFarStdGetPathRoot	=	procedure(

		Path:	PChar;

		Root:	PChar);	stdcall;

TFarStdAddEndSlash	=	function(

		Path:	PChar):	integer;	stdcall;

TFarStdCopyToClipboard	=	function(

		Data:	PChar):	integer;	stdcall;

TFarStdPasteFromClipboard	=	function:	PChar;	stdcall;

TFarStdKeyToKeyName	=	function(

		Key:	integer;	KeyName:	PChar;	Size:	integer):	BOOL;	stdcall;

TFarStdKeyNameToKey	=	function(

		Name:	PChar):	integer;	stdcall;

TFarStdInputRecordToKey	=	function(

		var	R:	INPUT_RECORD):	integer;	stdcall;

TFarStdXLAT	=	function(

		Line:	PChar;

		StartPos:	integer;

		EndPos:	integer;

		TableSet:	PCharTableSet;

		Flags:	DWORD):	PChar;	stdcall;

TFarStdGetFileOwner	=	function(

		Computer:	PChar;

		Name:	PChar;

		Owner:	PChar):	integer;	stdcall;

TFarStdGetNumberOfLinks	=	function(

		Name:	PChar):	integer;	stdcall;

TFRSFunction	=	function(

		var	FindData:	TWin32FindDataEx;

		FullName:	PChar):	integer;	stdcall;

TFarRecursiveSearch	=	procedure(

		InitDir:	PChar;

		Mask:	PChar;

		Func:	TFRSFunction;

		Flags:	DWORD);	stdcall;

TFarStdMkTemp	=	function(

		Dest:	PChar;

		Template:	PChar):	PChar;	stdcall;

TFarStdDeleteBuffer	=	procedure(

		Buffer:	PChar);	stdcall;

TFarStdProcessName	=	function(

		Param1:	PChar;

		Param2:	PChar;

		Flags:	DWORD):	integer;

TFarStdMkLink	=	function(

		const	Src:	PChar;

		const	Dest:	PChar;

		Flags:	DWORD):	integer;

TFarStdConvertNameToReal	=	function(

		const	Src:	PChar;

		Dest:	PChar;

		DestSize:	integer):	integer;

TFarStdGetReparsePointInfo	=	function(

		const	Src:	PChar;

		Dest:	PChar;

		DestSize:	integer):	integer;

Types	and	definitions
main

Types
Type Description

FARWINDOWPROC Dialog	window	callback	function.

FRSUSERFUNC Callback	function	for	the	FSF.FarRecursiveSearch
function.

Macros
Macro Description

MAKEFARVERSION generates	the	needed	FAR	Manager	version.

Constants
Constant Description

COL_* color	indexes	in	the	FAR	color	scheme	(see
farcolor.hpp).

FARMACRO_KEY_EVENT the	type	of	input	event	passed	while	"playing"	a	macro
sequence.

FARMANAGERVERSION FAR	Manager	version	number.

_FAR_NO_NAMELESS_UNIONS "Pure	C".

KEY_* key	codes	used	in	FAR	Manager	(see
farkeys.hpp).

NM size	of	the	buffer	needed	to	receive	a	full	file	name.

OPM_* additional	information	about	function	operation	mode
and	place,	from	which	it	was	called.

FPS__* information	about	the	panel	settings.

FSS__* information	about	the	system	settings.

FDS__* information	about	the	file	description	settings.

FCS__* information	about	the	confirmation	settings.

FIS__* information	about	the	interface	settings.

FDIS__* information	about	the	dialog	settings.

PKF_* state	of	the	shift	keys	of	an	event	sent	to	the
ProcessKey	function

SM_* sort	modes.

See	also:
Exported	functions,	Service	functions,	Structures,	Archive
support,	Addons

Macros	and	types
main	|	Dialog	API

Types
Type Description

FARWINDOWPROC Dialog	window	callback	function.

Macros
Macro Description

Dlg_GetDlgData(Info,hDlg) Retrieve	the	32-bit	data	value
associated	with	the	dialog
(DM_GETDLGDATA).

Dlg_GetDlgItemData(Info,hDlg,ID) Retrieve	the	32-bit	data	value
associated	with	a	dialog	item
(DM_GETITEMDATA).

Dlg_RedrawDialog(Info,hDlg) Redraw	the	entire	dialog	window
(DM_REDRAW).

Dlg_SetDlgData(Info,hDlg,Data) Set	the	32-bit	data	value	associated
with	the	dialog	(DM_SETDLGDATA).

Dlg_SetDlgItemData(Info,hDlg,ID,Data) Set	the	32-bit	data	value	associated
with	a	dialog	item
(DM_SETITEMDATA).

DlgEdit_AddHistory(Info,hDlg,ID,Str) Add	an	item	to	the	history	of	an	input
line	(DM_ADDHISTORY).

DlgItem_Disable(Info,hDlg,ID) Disable	dialog	item	(DM_ENABLE).

DlgItem_Enable(Info,hDlg,ID) Enable	dialog	item	(DM_ENABLE).

DlgItem_GetCheck(Info,hDlg,ID) Retrieve	the	state	of	DI_CHECKBOX
and	DI_RADIOBUTTON	dialog	items
(DM_GETCHECK).

DlgItem_GetFocus(Info,hDlg) Retrieve	the	ID	of	the	dialog	item	that
has	the	keyboard	focus
(DM_GETFOCUS).

DlgItem_IsEnable(Info,hDlg,ID) Check	if	a	dialog	item	is	disabled
(DM_ENABLE).

DlgItem_SetCheck(Info,hDlg,ID,State) Set	the	state	of	DI_CHECKBOX	and
DI_RADIOBUTTON	dialog	items	to
one	of	three	allowed	states
(DM_SETCHECK).

DlgItem_SetFocus(Info,hDlg,ID) Set	keyboard	focus	to	the	given	dialog
item	(DM_SETFOCUS).

DlgItem_SetText(Info,hDlg,ID,Str) Set	new	string	value	for	an	input	line
or	new	caption	for	an	item
(DM_SETTEXTPTR).

DlgList_AddString(Info,hDlg,ID,Str) Add	a	string	to	a	DI_COMBOBOX	or
DI_LISTBOX	list
(DM_LISTADDSTR).

DlgList_ClearList(Info,hDlg,ID) Clear	a	DI_COMBOBOX	or
DI_LISTBOX	list
(DM_LISTDELETE).

DlgList_DeleteItem(Info,hDlg,ID,Index) Delete	an	item	from	a
DI_COMBOBOX	or	DI_LISTBOX
list	(DM_LISTDELETE).

DlgList_GetCurPos(Info,hDlg,ID) Retrieve	the	current	cursor	position	in
a	DI_COMBOBOX	or	DI_LISTBOX
list	(DM_LISTGETCURPOS).

DlgList_GetItemData(Info,hDlg,ID,Index) Retrieve	data	associated	with	an	item
in	a	DI_COMBOBOX	or
DI_LISTBOX	list
(DM_LISTGETDATA).

DlgList_SetCurPos(Info,hDlg,ID,NewPos) Set	new	cursor	position	in	a
DI_COMBOBOX	or	DI_LISTBOX
list	(DM_LISTSETCURPOS).

DlgList_SetItemStrAsData(Info,hDlg,ID,Index,Str) Associate	a	string	with	an	item	of	a
DI_COMBOBOX	or	DI_LISTBOX
list	(DM_LISTSETDATA).

DlgList_SortDown(Info,hDlg,ID) Sort	the	items	of	a	DI_COMBOBOX
or	DI_LISTBOX	list	in	descending
order	(DM_LISTSORT).

DlgList_SortUp(Info,hDlg,ID) Sort	the	items	of	a	DI_COMBOBOX
or	DI_LISTBOX	list	in	ascending
order	(DM_LISTSORT).

Here:
Info
Reference	to	the	PluginStartupInfo	structure.

hDlg
Dialog	handle.

ID

The	index	of	the	dialog	item	in	the	FarDialogItem	structure.
Data
32-bit	value	(numeric	value	of	DWORD	type	or	a	pointer).

Str
Null-terminated	string.

State
Item	state	(one	of	the	BSTATE_*	constants,	described	here
DM_SETCHECK).

Index
Position	in	a	list.

NewPos
New	position	in	a	list.

See	also:
Types	and	definitions

Archive	support
main	|	Custom	API

	Note
This	information	is	valid	only	for	MultiArc	plugin	which	comes	with
the	standard	distribution	of	FAR	Manager!

For	specific	archive	formats	support,	MultiArc	plugin	uses	second-level	plugins
(subplugins)	-	the	so	called	FMT-modules.	These	are	all	the	*.FMT	files
contained	within	Formats	subfolder	of	MultiArc	(but	not	in	subfolders	of
Formats).

Functions	exported	by	FMT-modules
Function Description

CloseArchive Close	archive.

GetArcItem Get	the	information	about	the	next	archive	element.

GetDefaultCommands Get	archiver	command	strings	used	by	default

GetFormatName Get	archive	format	name.

GetSFXPos Get	the	position	of	the	beginning	of	the	archive.

IsArchive Check	whether	the	specified	file	is	an	archive.

LoadFormatModule Called	when	a	subplugin	is	loaded.

OpenArchive Open	an	archive	and	prepare	it	for	reading.

SetFarInfo Passes	global	settings	to	the	plugin.

Structures	used	by	FMT-modules
Structure Description

ArcInfo Common	information	about	an	archive

ArcItemInfo Information	about	a	specific	archive	element

Remarks

1.	 You	can	use	subplugin	technology	in	your	own	plugins.	Examples	of	such
plugins:

Expression	Calculator	(Alexey	Torgashin)
Search	and	Replace	(Ivan	Sintyurin)
Address	Book	(Pavel	Kostromitinov)

http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Sort=Date&Select=PlugIn&SelectPlugIn=89
http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Sort=Date&Select=PlugIn&SelectPlugIn=159

Mr.Ripper	(Vladimir	Kubyshev)

See	also:
Exported	functions,	Service	functions,	structures,	Addons,
custom.ini	file	format

http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Sort=Date&Select=PlugIn&SelectPlugIn=506

Colorer	library	regular	expressions	interface
main	|	Custom	API

Regular	expressions	are	funny	things	and	if	needed	they	can	be	quite	easily	used
in	your	program/plugin.	You	can	use	colorer	regexps	in	the	most	native	way	-
they	come	in	C++	sources	-	as	a	standalone	class.	But	then,	if	you	use	different
languages	or	there's	some	other	reason,	you	can	always	use	them	in	pre-
compiled	DLL	binary	form.

The	sources	themselves	are	found	in	the	colorer	distribution	(beginning	with	the
"freecraze"	version),	and	the	DLL	can	be	compiled	in	icolorer	directory,
which	is	also	found	in	the	colorer	distribution.	In	case	you're	using	the	sources
you've	got	to	work	with	the	CRegExp	class	and	its	methods,	and	if	you're	using
the	DLL	you	simply	export	caller	functions	for	these	methods.

It's	good	to	mention	my	regexps	are	slightly	incorrect	by	formal	approach	-	it
means	they	don't	follow	perl	standards	when	applied	to	some	complex	situations.
Plus	they	are	not	fully	compatible	with	the	latter	in	ways	of	syntax	of	some
complex	operators.	But,	all	was	made	with	speed	and	colorer	in	mind	-	so	it	pays
when	it	comes	to	simplicity.

Methods
Method Description

CRegExp Regexp	object	constructor	and	destructor.

isok Latest	expression	compilation	result.

geterror Extended	error	information.

SetNoMoves Allow/dissallow	moving	inside	the	target	string.

SetBkTrace Set	references	for	\yN	operator.

SetExpr Expression	compilation.

SetCodePage Set	transliteration	table	for	texts	in	non-OEM
codepage.

Parse Parse	regexp	against	target	string.

Parse Parse	regexp	against	target	string,	with	extended
settings.

Structures:
Structure Description

SMatches array	with	finite	bracket	matches

See	also:
Addons

General	background
main	|	Macros

Every	macro	command	has:

keyboard	shortcut	used	to	execute	the	recorded	sequence;
additional	parameter	set	affecting	the	way	and	specifying	the	conditions
under	which	the	execution	will	take	place.

	ATTENTION!
Please,	keep	in	mind	that	macro	commands	are	divided	by	areas	of
execution,	i.e.	context	of	the	FAR	application	from	which	the	macro
command	is	going	to	be	executed.

Macros	can	contain	the	special	commands,	providing	some	service	functions	and
operators	including	conditional	and	iterative	sequence	execution	etc.

Please	note:

FAR	ignores	macros	that	have	error	in	the	macro	name	or	sequence
parameter	"Sequence".
Macro	commands	are	not	case	sensitive.
During	startup	FAR	Manager	loads	all	macro	commands	defined	in	the
macro	command	storage	in	the	registry.	Any	macro	sequence	recorded	is
going	to	be	put	into	the	registry	immediately	(if	macro	command	autosave
option	is	on).
Macro	command	is	considered	to	be	inactive	if	its	name	begins	with	'~'
character.
FAR	Manager	translates	mouse	wheel	events	into	the	pseudo	keystrokes:
-	scroll	the	wheel	up	-	"MsWheelUp"
-	scroll	thw	wheel	down	-	"MsWheelDown"
You	can	use	these	pseudo	keys	with	Ctrl,	Shift	and	Alt	modifier	keys.
If	you	trying	to	enter	a	character	using	Alt-number	combination	FAR	saves
the	combination,	not	the	resulting	character.
For	instance,	Alt-151	will	be	saved	by	FAR	as	"Alt00151".
Special	keys	that	have	a	virtual	code	other	than	0xFF,	but	names	of	which
are	not	known	to	FAR,	will	be	stored	as	"OemXXXXX"	(here	XXXXX	is
the	decimal	virtual	key	code	with	leading	zeroes).
Special	keys	that	have	a	virtual	code	of	0xFF,	will	be	stored	as
"SpecXXXXX"	(here	XXXXX	is	the	decimal	scan	code	of	the	key	with

leading	zeroes).
We	recommend	using	special	plugin	"Macro	Browser"	by	Konstantin
Melnikov	to	edit	and	organize	macro	commands.	This	FAR	module
provides	the	functionality	for	viewing,	editing,	copying	and	moving	macro
commands	between	areas	of	execution,	copying	and	moving	macros
between	different	FAR	Manager	settings,	exporting,	creating	and	removing
existing	FAR	Manager	macro	commands.
The	value	of	the	"NoSendKeysToPlugins"	macro	command	parameter
depends	on	the	way	the	macro	command	recording	had	started.
CtrlBreak	breaks	macro	execution.	Macro	assigned	to	CtrlBreak	does	not
trigger	in	this	case..

For	more	convenient	and	comfortable	management	of	the	macro	commands	you
can	use	the	special	plugin	MacroView	Manager.

See	also:
Using	macros,	Macro-language,	Technical	details,	Examples

http://plugring.farmanager.com/cgi-bin/downld.cgi?Draw=List&Select=PlugIn&SelectPlugIn=35

Macro-language
main	|	Macros

FAR	implements	a	simple	macro-language	that	brings	logic	into	the	keystroke
sequence	and	raises	macro	commands	to	the	higher	level	turning	the	macros	in
combination	with	the	plugins	into	a	powerful	tool	that	extends	FAR	Manager
functionality.	Macro-language	is	highly	specialized	and	thus	cannot	be
considered	as	an	universal	language.

Macro-language	functionality:

Macro-commands
Conditional	operators
Boolean	object	states
Functions
Operations
Object	states
Variables
Constants

Notes

1.	 It	is	impossible	to	use	macro-language	elements	while	recording	a	macro	in
a	usual	way.	Macro-language	elements	can	be	added	to	the	sequence	only
by	editing	the	registry	manually	or	by	using	special	applications	or	FAR
plugins.

2.	 Named	keys	(e.g.	CtrlK)	can	be	present	in	any	expressions;	in	this	case	they
are	treated	as	numbers.

See	also:
General	background,	Using	macros,	Technical	details,	Examples

Using	macros
main	|	Macros

FAR	provides	two	modes	for	recording	and	execution	of	the	macro	commands:

1.	 General	mode:	all	keystrokes	will	be	passed	to	the	plugins	during	macro
recording	and	execution.

2.	 Special	mode:	all	keystrokes	won't	be	passed	to	the	plugins	intercepting	the
editor	events	during	recording	and	execution.

Let's	imagine	we	have	a	plugin	handling	Ctrl+A	key	combination.	Using	special
mode	we	can	disable	this	plugin	receiving	this	notification	and	thus	prevent	it
from	performing	some	action	it	should	perform	normally	handling	this
keystroke.

So	what	can	we	do	with	the	macros:
Record	Delete

You	can	execute	macro	command	by	pressing	the	key	combination	assigned	by
the	user.	Execution	parameters	can	be	specified	while	recording	the	macro
command	and	the	only	way	to	change	them	is	to	record	certain	macro	over
again.

See	also:
General	background,	Macro-language,	Techniacl	details,
Examples

Examples
main	|	Macros

REGEDIT4

;open	the	disks	menu	in	the	passive	file	panel

;make	the	panel	for	which	the	menu	is	going	to	be	open	visible	if	it	was	hidden	before.

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Disks\Tab]

"Sequence"="Esc	$If	(!PPanel.Visible)	$If	(APanel.Left)	CtrlF2	$Else	CtrlF1	$End	$End	Tab	F9	Enter	End	Enter"

"DisableOutput"=dword:00000001

REGEDIT4

;select/unselect	a	single	word	under	the	text	cursor

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Editor\RAlt]

"Sequence"="RCtrl9	CtrlRight	CtrlLeft	$If	(!Selected)	CtrlShiftRight	$Else	CtrlU	$End	Ctrl9"

"DisableOutput"=dword:00000001

REGEDIT4

;create	a	new	folder	with	name	consisting	of	the	current	date

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlShiftF7]

"Sequence"="%folder=date(\"%d.%m0.%Y\");	$If	(!panel.fexist(0,%folder))	F7	CtrlY	$Text	%folder	Enter	$End"

"DisableOutput"=dword:00000001

"NoPluginPanels"=dword:00000001

REGEDIT4

;quick	find	the	file	in	the	passive	panel	with	the	same	name	as	selected

;in	the	active	panel

;sequence	F5	ShiftEnter	CtrlIns	is	used	to	get	the	file	name	independently

;of	the	state	of	the	command	line	and	number	of	selected	files	in	the	panels

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlAltLeft]

"Sequence"="$IClip	$If	(((Bof	&&	APanel.Root)	||	!Bof)	&&	PPanel.Visible)

$If	(fexist(PPanel.Path+\"\\\\\"+APanel.Current)	==	1)	F5	ShiftEnter

CtrlIns	Esc	Tab	Home	Alt<	ShiftIns	Esc	$End	$End"

"DisableOutput"=dword:00000001

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlAltRight]

"Sequence"="$IClip	$If	(((Bof	&&	APanel.Root)	||	!Bof)	&&	PPanel.Visible)

$If	(fexist(PPanel.Path+\"\\\\\"+APanel.Current)	==	1)	F5	ShiftEnter	CtrlIns

Esc	Tab	Home	Alt<	ShiftIns	Esc	$End	$End"

"DisableOutput"=dword:00000001

REGEDIT4

;select	30	next/previous	files	or	folders

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlDown]

"Sequence"="$If	(!Eof)	$Rep	(30)	$If	(Eof)	Ins	$Exit	$Else	Ins	$End	$End	$End"

"DisableOutput"=dword:00000001

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlUp]

"Sequence"="Up	$If	(Bof)	$If	(!APanel.Root)	Down	$End	$Exit	$Else	Down	$End

$If	(Eof)	Ins	$Else	Ins	Up	$End	$Rep	(29)	Up	Ins	Up	$If	(Bof)

$If	(!APanel.Root)	Down	$End	$Exit	$End	$End	Up"

"DisableOutput"=dword:00000001

REGEDIT4

;capture	the	whole	screen	to	the	text	file	far-screen.out

;this	macro	works	only	in	the	Dialog	area	of	execution

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Dialog\AltP]

"Sequence"="$IClip	AltIns	CtrlHome	ShiftEnd	ShiftPgDn	Enter	Esc

$If	(!Shell)	Esc	$End	$If	(Shell	&&	!APanel.Plugin)	ShiftF4	CtrlY

\"far-screen.out\"	Enter	ShiftIns	Enter	Enter	F2	Esc	$End"

"DisableOutput"=dword:00000001

REGEDIT4

;delete	the	file	or	folder	using	Del	hotkey

;if	the	cursor	was	on	the	..	element	then	try	to	delete	the	parent	folder

;if	command	line	cursor	is	not	in	the	end	of	the	command	line	then	delete	current	symbol

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\Del]

"Sequence"="$If	(!CmdLine.Eof)	Del	$Exit	$Else

$If	((APanel.Bof	&&	!APanel.Selected)	&&

(!APanel.Root	||	APanel.Plugin))	CtrlPgUp	$End	F8	$End"

"DisableOutput"=dword:00000001

REGEDIT4

;maximize	the	passive	panel	before	showing	the	quickview	panel

;restore	the	panel	size	before	closing	the	quickview	panel

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlQ]

"Sequence"="Tab	$If	(QView)	Tab	Ctrl2	Tab	CtrlClear	$Else	Tab	Ctrl6	Tab

$If	(APanel.Left)	$Rep	(APanel.width)	CtrlRight	$End	$Else

$Rep	(APanel.width)	CtrlLeft	$End	$End	$End	Tab	CtrlQ"

"DisableOutput"=dword:00000001

This	macro	is	intended	to	highlight	HTML	file/folder	pairs:

REGEDIT4

[HKEY_CURRENT_USER\Software\Far\KeyMacros\Shell\CtrlShiftIns]

"Sequence"="%Current=APanel.Current;	%Ext=substr(%Current,len(%Current)-6);

$If	(%Ext==\"_files\")	%Name=substr(%Current,0,len(%Current)-6);	$Else

%Ext=fsplit(%Current,FSPLIT_EXT);	%Name=fsplit(%Current,FSPLIT_NAME);	$End

$if	(%Ext==\".htm\"	||	%Ext==\".html\")	panel.setpos(ACTIVEPANEL,%Name+\".files\")

panel.setpos(ACTIVEPANEL,%Name+\"_files\")	$end	$if	(%Ext==\".files\"	||	%Ext==\"_files\")

panel.setpos(ACTIVEPANEL,%Name+\".htm\")	panel.setpos(ACTIVEPANEL,%Name+\".html\")	$End

$if	(APanel.Current!=%Current)	$If(!panelitem(ACTIVEPANEL,0,PANELITEM_SELECTED))	Ins	$End

panel.setpos(ACTIVEPANEL,%Current)	$If(!panelitem(ACTIVEPANEL,0,PANELITEM_SELECTED))

Ins	$End	$End	$MMode	1	$MMode	1"

"DisableOutput"=dword:00000001

;Macro	is	not	called	when	command	line	is	not	empty,	in	order	to	keep	the	primary

;action	of	CtrlShiftIns	combination	-	Copy	names	of	selected	files	to	clipboard

"EmptyCommandLine"=dword:00000001

Reduce	EXE	and	DLL	Size	with	LIBCTINY.LIB
main	|	articles

Matt	Pietrek	

Original:

http://msdn.microsoft.com/msdnmag/issues/01/01/hood/default.aspx

Download	the	code	for	this	article:	Hood0101.exe	(45KB)

Way	back	in	my	October	1996	column	in	MSJ,	I	addressed	a	question
concerning	the	size	of	executable	files.	Back	then,	a	simple	Hello	World
program	compiled	to	a	32KB	executable.	Two	compiler	versions	later,	the
problem	is	only	slightly	better.	The	same	program	with	the	Visual	C++	6.0
compiler	is	now	28KB.
In	that	column,	I	provided	a	replacement	runtime	library	that	lets	you	create	very
small	executable	programs.	There	were	some	restrictions	on	what	situations	it
was	useful	for,	but	for	a	large	number	of	my	own	programs	it	worked	well.	After
living	with	these	restrictions	for	quite	a	while,	I	decided	it	was	time	to	fix	some
of	them.	Making	these	modifications	also	happens	to	provide	a	great	opportunity
to	describe	a	little-known	linker	option	that	can	be	used	to	further	reduce
program	size.

EXE	and	DLL	Size
Before	jumping	into	the	code	for	my	replacement	runtime	library,	it's	worth
taking	the	time	to	review	why	simple	EXEs	and	DLLs	are	bigger	than	you	might
expect.	Consider	the	canonical	Hello	World	program:
#include	<stdio.h>

void	main()

{

				printf	("Hello	World!\n");

}

Let's	compile	this	program	for	size,	and	generate	a	map	file.	Using	the
command-line	Visual	C++	compiler,	the	syntax	would	be:

Cl	/O1	Hello.CPP	/link	/MAP

First,	look	at	the	.MAP	file;	a	trimmed	down	version	is	shown	in	Figure	1.	From

http://msdn.microsoft.com/msdnmag/issues/01/01/hood/default.aspx
http://download.microsoft.com/download/2/8/c/28c4ace3-f5ed-4e14-bc64-3d563b807dfb/Hood0101.exe
http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/msj/archive/S569.aspx

looking	at	the	addresses	of	main	(0001:00000000)	and	of	printf
(0001:0000000C),	you	can	infer	that	function	main's	code	is	only	0xC	bytes	in
length.	Looking	at	the	last	line	of	the	file,	the	__chkstk	function	at	address
0001:00003B10,	you	can	also	infer	that	there's	at	least	0x3B10	bytes	of	code	in
the	executable.	That's	over	14KB	of	code	to	send	Hello	World	to	the	screen.
Now,	start	looking	through	some	of	the	other	.MAP	file	lines.	Some	items	make
sense,	for	example,	the	__initstdio	function.	After	all,	printf	writes	its	output	to	a
file,	so	some	amount	of	underlying	runtime	library	support	routines	for	stdio
makes	sense.	Likewise,	it's	reasonable	to	expect	that	the	printf	code	might	call
strlen,	so	its	inclusion	isn't	a	surprise.
However,	take	a	look	at	some	of	the	other	functions,	for	instance
__sbh_heap_init.	This	is	the	initialization	function	for	the	runtime	library's	small
block	heap.	The	Win32-based	operating	systems	offer	up	their	own	heap	in	the
form	of	the	HeapAlloc	family	of	functions.	Potential	performance	gains
notwithstanding,	the	Visual	C++	library	could	choose	to	use	the	Win32	heap
APIs,	but	doesn't.	Thus,	you	end	up	with	more	code	than	necessary	in	your
executable.
While	some	people	might	not	care	that	the	runtime	library	implements	its	own
heap,	there	are	other	less	defensible	examples.	Consider	the	__crtMessageBoxA
function	near	the	bottom	of	the	map	file.	This	function	allows	the	runtime	library
to	call	the	MessageBox	API	without	forcing	the	executable	to	link	against
USER32.DLL.	For	a	simple	Hello	World	program,	it's	hard	to	anticipate	the	need
to	call	MessageBox.
Consider	another	example:	the	__crtLCMapStringA	function,	which	does	locale-
dependent	transformations	of	strings.	While	Microsoft	is	somewhat	obligated	to
provide	locale	support,	it's	not	really	needed	for	a	large	number	of	programs.
Why	make	programs	that	don't	use	locales	pay	the	cost	for	those	that	do?
I	could	continue	with	other	examples	of	unneeded	code,	but	I've	made	my	point.
A	typical	small	program	contains	lots	of	little	nuggets	of	code	that	aren't	used.
By	themselves,	they	don't	contribute	much	to	the	code	size,	but	add	up	all	the
cases	and	you're	into	serious	amounts	of	code!

What	About	the	C++	Runtime	Library	DLL?
Alert	readers	might	say,	"Hey	Matt!	Why	don't	you	just	use	the	DLL	version	of
the	runtime	library?"	In	the	past,	I	could	make	the	argument	that	there	was	no
consistently	named	version	of	the	C++	runtime	library	DLL	available	on
Windows	95,	Windows	98,	Windows	NT	3.51,	Windows	NT	4.0,	and	so	forth.

Luckily,	we've	moved	past	those	days,	and	in	most	cases	you	can	rely	on
MSVCRT.DLL	being	available	on	your	target	machines.
Making	this	switch	and	recompiling	Hello.CPP,	the	resulting	executable	is	now
only	16KB.	Not	bad,	but	you	can	do	better.	More	importantly,	you're	just	shifting
all	of	this	unneeded	code	to	someplace	else	(that	is,	to	MSVCRT.DLL).	In
addition,	when	your	program	starts	up,	another	DLL	will	have	to	be	loaded	and
initialized.	This	initialization	includes	items	like	locale	support,	which	you	may
not	care	about.	If	MSVCRT.DLL	suits	your	needs,	then	by	all	means	use	it.
However,	I	believe	that	using	a	stripped-down,	statically	linked	runtime	library
still	has	merit.
I	may	be	tilting	at	windmills	here,	but	my	e-mail	conversations	with	readers
show	that	I'm	not	alone.	There	are	people	out	there	who	want	the	leanest
possible	code.	In	this	day	of	writeable	CDs,	DVDs,	and	fast	Internet
connections,	it's	easy	not	to	worry	about	code	size.	However,	the	best	Internet
connection	I	can	get	at	home	is	only	24Kbps.	I	hate	wasting	time	downloading
bloated	controls	for	a	Web	page.
As	a	matter	of	principle,	I	want	my	code	to	have	as	small	a	footprint	as	possible.
I	don't	want	to	load	any	extra	DLLs	that	I	don't	really	need.	Even	if	I	might	need
a	DLL,	I'll	try	to	delayload	it	so	that	I	don't	incur	the	cost	of	loading	it	until	I	use
the	DLL.	Delayloading	is	a	topic	I've	described	in	previous	columns,	and	I
strongly	encourage	you	to	become	familiar	with	it.	See	Under	the	Hood	in	the
December	1998	issue	of	MSJ	for	starters.

Digging	Deeper
Now	that	I've	beaten	up	the	unneeded	code	within	the	program,	let's	turn	to	the
executable	file	itself.	If	you	were	to	run	DUMPBIN	/HEADERS	on	my
Hello.EXE,	you'd	see	the	following	two	lines	in	the	output:
1000	section	alignment

1000	file	alignment

The	second	line	is	interesting.	It	says	that	every	code	and	data	section	in	the
executable	is	aligned	on	a	4KB	(0x1000)	byte	boundary.	Because	sections	are
stored	contiguously	in	a	file,	it's	not	hard	to	see	the	potential	for	wasting	up	to
4KB	between	the	end	of	one	section	and	the	start	of	the	next.
If	I	had	linked	the	program	with	a	version	of	the	linker	that	came	before	Visual
C++	6.0,	I	would	have	seen	something	different,	as	you	see	here:

1000	section	alignment

http://msdn.microsoft.com/isapi/gomscom.asp?TARGET=/msj/1298/hood/hood1298.aspx

200	file	alignment

The	key	difference	is	that	the	alignment	between	sections	is	only	512	bytes
(0x200).	There's	much	less	space	available	to	waste.	In	Visual	C++	6.0,	the
linker	defaults	were	changed	to	make	the	file	alignment	of	sections	equal	to	the
alignment	in	memory.	This	provides	a	slight	load-time	performance
improvement	on	Windows	9x,	but	makes	executables	bigger.
Luckily,	the	Visual	C++	linker	has	a	way	to	go	back	to	the	previous	behavior.
The	magic	switch	is	/OPT:NOWIN98.	Rebuilding	Hello.CPP	as	before,	but	with
the	addition	of	this	linker	switch	gets	the	executable	file	down	to	21KB	a	savings
of	7KB.	If	I	switch	to	linking	with	MSVCRT.DLL	and	using	/OPT:NOWIN98,
the	executable	size	drops	to	2560	bytes!

LIBCTINY:	A	Minimal	Runtime	Library
Now	that	you	understand	the	problem	of	why	simple	EXEs	and	DLLs	are	so
large,	it's	time	to	introduce	my	new	and	improved	replacement	runtime	library.
In	the	October	1996	column	(mentioned	earlier),	I	created	a	small	static	.LIB	file
designed	to	replace	or	augment	the	Microsoft	LIBC.LIB	and	LIBCMT.LIB
libraries.	I	called	this	replacement	runtime	library	LIBCTINY.LIB,	since	it	was	a
very	stripped-down	version	of	Microsoft's	own	runtime	library	sources.
LIBCTINY.LIB	is	intended	for	simple	applications	that	don't	require	a	huge
amount	of	runtime	library	support.	Thus,	it's	not	suitable	for	MFC	applications
or	other	complicated	scenarios	that	make	extensive	use	of	the	C++	runtime.
LIBCTINY's	ideal	target	is	small	programs	or	DLLs	that	call	some	Win32	APIs
and	perhaps	display	some	simple	output.
There	are	two	guiding	principles	behind	LIBCTINY.LIB.	First,	it	replaces	the
standard	Visual	C++	startup	routines	with	much	simpler	code.	This	simpler	code
doesn't	refer	to	any	of	the	more	esoteric	runtime	library	functions	like
__crtLCMapStringA.	Because	of	this,	much	less	extraneous	code	is	linked	into
your	binary.	As	I'll	show	shortly,	the	LIBCTINY	routines	perform	a	bare
minimum	of	tasks	before	calling	your	WinMain,	main,	or	DllMain	routines.
The	second	guiding	principle	of	LIBCTINY.LIB	is	to	implement	relatively	large
functions	like	malloc	or	printf	with	code	that's	already	in	the	Win32	system
DLLs.	Beyond	the	minimal	startup	code,	most	of	the	other	LIBCTINY	source
files	are	simple	implementations	of	standard	C++	runtime	library	functions	such
as	malloc,	free,	new,	delete,	printf,	strupr,	strlwr,	and	so	on.	Take	a	look	at	the
implementation	of	printf	in	printf.cpp	(see	Figure	2)	to	get	an	idea	of	what	I'm
talking	about.

In	my	original	version	of	LIBCTINY.LIB	there	were	two	restrictions	that
annoyed	me.	First,	the	original	version	did	not	support	DLLs.	You	could	make
tiny	console	and	GUI	executable	programs,	but	if	you	wanted	to	create	a	tiny
DLL,	you	were	out	of	luck.
Second,	the	original	LIBCTINY	did	not	support	static	C++	constructors	and
destructors.	By	this,	I	mean	constructors	and	destructors	declared	at	global
scope.	In	the	new	version,	I've	added	the	basic	code	that	implements	this
support.	Along	the	way,	I	learned	quite	a	bit	about	how	the	compiler	and	runtime
library	play	a	complicated	game	to	make	static	constructors	and	destructors
work.

The	Dark	Underbelly	of	Constructors
When	the	compiler	processes	a	source	file	that	has	a	static	constructor,	it
generates	two	things.	The	first	is	a	small	blob	of	code	with	a	name	like	$E2	that
calls	the	constructor.	The	second	thing	the	compiler	emits	is	a	pointer	to	this
blob	of	code.	This	pointer	is	written	to	a	specially	named	section	in	the	.OBJ
called	.CRT$XCU.
Why	the	funny	section	name?	It's	a	bit	complicated.	Let	me	throw	another	piece
of	data	at	you	to	help	explain.	If	you	examine	the	Visual	C++	runtime	library
sources	(for	instance,	CINITEXE.C),	you'll	find	the	following:

#pragma	data_seg(".CRT$XCA")

_PVFV	__xc_a[]	=	{	NULL	};

#pragma	data_seg(".CRT$XCZ")

_PVFV	__xc_z[]	=	{	NULL	};

The	previous	lines	of	code	create	two	data	segments,	.CRT$XCA	and
.CRT$XCZ.	In	each	segment	it	places	a	variable	(__xc_a	and	__xc_z,
respectively).	Note	that	the	segment	names	are	very	similar	to	the	.CRT$XCU
segment	to	which	the	compiler	emits	the	constructor	code	pointer.
At	this	point,	a	little	linker	theory	is	needed.	When	processing	all	of	the
segments	to	create	the	final	portable	executable	(PE)	file,	the	linker	concatenates
all	the	data	from	identically	named	segments.	Thus,	if	A.OBJ	has	a	section
called	.data,	and	B.OBJ	also	has	a	.data	section,	all	the	data	from	A.OBJ	and
B.OBJ	will	be	written	contiguously	into	a	single	.data	section	in	the	PE	file.
The	use	of	a	$	in	a	segment	name	puts	a	new	twist	on	things.	When	encountering
segment	names	with	a	$	in	them,	the	linker	treats	the	portion	of	the	name

preceding	the	$	as	the	final	segment	name.	Thus,	the	.CRT$XCA,	.CRT$XCU,
and	.CRT$XCZ	segments	all	end	up	together	in	the	final	executable	in	a	segment
called	.CRT.
What	about	the	part	of	the	segment	name	following	the	$?	When	combining
these	types	of	sections,	the	linker	writes	out	the	segments	in	the	order	dictated	by
the	string	following	the	$.	The	ordering	is	alphabetical,	so	all	the	data	from
.CRT$XCA	goes	first,	followed	by	all	of	the	data	from	.CRT$XCU,	and	finally
all	of	the	data	from	.CRT$XCZ.	This	is	a	crucial	point	to	understand.
What's	going	on	here	is	that	the	runtime	library	code	has	no	idea	how	many
static	constructor	calls	are	needed	for	a	given	EXE	or	DLL.	However,	it	does
know	that	only	pointers	to	constructor	code	blobs	will	be	in	the	.CRT$XCU
segment.	When	the	linker	concatenates	all	the	.CRT$XCU	sections,	it	has	the	net
effect	of	creating	a	function	pointer	array.	By	defining	.CRT$XCA	and
.CRT$XCZ	segments	along	with	the	__xc_a	and	__xc_z	symbols,	the	runtime
library	can	reliably	locate	the	beginning	and	end	of	the	function	pointer	array.
As	you	might	expect,	calling	all	the	static	constructors	in	a	module	is	a	simple
matter	of	enumerating	through	the	function	pointer	array,	calling	each	pointer	in
turn.	The	routine	that	does	this	is	_initterm,	shown	in	Figure	3.	This	routine	is
identical	to	the	version	from	the	Visual	C++	runtime	library	sources.
All	things	considered,	getting	static	constructors	to	work	in	LIBCTINY	was
relatively	easy.	It	was	mostly	a	matter	of	defining	the	right	data	segments
(specifically,	.CRT$XCA	and	.CRT$XCZ),	and	calling	_initterm	from	the	correct
spot	in	the	startup	code.	Getting	static	destructors	to	work	was	a	bit	trickier.
Unlike	the	function	pointer	array	that	the	compiler	and	linker	conspire	to	create
for	static	constructors,	the	list	of	static	destructors	to	call	is	built	at	runtime.	To
build	this	list,	the	compiler	generates	calls	to	the	atexit	function,	which	is	part	of
the	Visual	C++	runtime.	The	atexit	function	takes	a	function	pointer	and	adds	the
pointer	to	a	first-in,	last-out	list.	When	the	EXE	or	DLL	unloads,	the	runtime
library	iterates	through	the	list	and	calls	each	function	pointer.
LIBCTINY's	implementation	of	the	atexit	functionality	is	significantly	simpler
than	what	the	Visual	C++	runtime	library	does.	There	are	three	functions	and	a
handful	of	static	variables	for	this	support,	which	is	also	in	initterm.cpp.	The
_atexit_init	function	simply	allocates	an	array	to	hold	32	function	pointers,	and
stores	the	pointer	in	the	pf_atexitlist	static	variable.
The	atexit	function	checks	to	see	if	there's	room	in	the	array,	and	if	so,	adds	the
pointer	to	the	end	of	the	list.	A	more	robust	version	of	this	code	would	reallocate
the	array	to	a	larger	size	if	necessary.	Finally,	the	_DoExit	function	uses	your

friend,	_initterm,	to	iterate	through	the	array	and	call	each	function	pointer.	In	an
ideal	world,	_DoExit	would	iterate	through	the	array	in	reverse	order,	mimicking
the	behavior	of	the	Visual	C++	runtime	library	implementation.	However,	the
whole	purpose	of	LIBCTINY	is	to	be	simple	and	small,	rather	than	striving	for
perfect	compatibility.

LIBCTINY's	Minimal	Startup	Routines
Now	let's	take	a	look	at	LIBCTINY's	new	support	for	small	DLLs.	As	with
EXEs,	the	trick	is	to	make	the	DLL's	entry	point	code	as	small	as	possible	and
omit	calls	to	unneeded	routines	that	bring	in	lots	of	other	code.	Figure	4	shows
the	minimal	DLL	startup	code.	When	your	DLL	is	loaded,	it	is	this	code,	not
your	DllMain	routine,	that	executes	first.
The	_DllMainCRTStartup	is	the	very	first	place	execution	begins	in	your	DLL.
In	LIBCTINY's	implementation,	it	first	checks	to	see	if	the	DLL	is	in	its
DLL_PROCESS_ATTACH	call.	If	so,	the	code	calls	_atexit_init	(described
earlier),	and	_initterm	to	invoke	any	static	constructors.	The	heart	of	the	function
is	the	call	to	DllMain,	which	is	the	routine	you	supply	as	part	of	your	DLL's
code.	This	DllMain	call	is	made	for	all	four	notification	types	(process
attach/detach,	and	thread	attach/detach).
The	last	thing	DllMainCRTStartup	does	is	to	check	if	the	DLL	is	in	its
DLL_PROCESS_DETACH	code.	If	so,	the	code	calls	_DoExit.	As	described
earlier,	this	causes	any	static	destructors	to	be	called.	If	you're	curious	about	the
startup	code	for	console	and	GUI	mode	EXEs,	be	sure	to	check	out
CRT0TCON.CPP	and	CRT0TWIN.CPP,	respectively.	(These	modules
accompany	the	code	download,	found	at	the	link	at	the	top	of	this	article.)
One	other	thing	worth	checking	out	in	DLLCRTO.CPP	(see	Figure	4)	is	this	line
near	the	top:
#pragma	comment(linker,	"/OPT:NOWIN98")

This	puts	a	linker	directive	into	the	DLLCRT0.OBJ	file	that	tells	the	linker	to	use
the	/OPT:NOWIN98	switch.	The	benefit	is	that	you	don't	have	to	manually	add
/OPT:NOWIN98	to	your	make	files	or	project	files	by	hand.	I	figure	if	you're
using	LIBCTINY,	you'd	probably	want	to	use	/OPT:NOWIN98	as	well.

Using	LIBCTINY.LIB
Using	LIBCTINY	is	very	simple.	All	you	have	to	do	is	add	LIBCTINY.LIB	to
the	linker's	list	of	.LIB	files	to	search.	If	you're	using	the	Visual	Studio	IDE,	this

would	be	in	the	Projects	|	Settings	|	Link	tab.	It	doesn't	matter	what	type	of
binary	you're	building	(console	EXE,	GUI	EXE,	or	DLL),	since	LIBCTINY.LIB
contains	appropriate	entry	point	routines	for	each	of	them.
Take	a	look	at	TEST.CPP	in	Figure	5.	This	program	simply	exercises	a	few	of
the	routines	that	LIBCTINY.LIB	implements,	and	includes	a	static	constructor
and	destructor	invocation.	When	I	compile	it	normally	with	Visual	C++	6.0,

CL	/O1	TEST.CPP

the	resulting	executable	is	32768	bytes.	By	simply	adding	LIBCTINY.LIB	to	the
command	line

CL	/O1	TEST.CPP	LIBCTINY.LIB

the	resulting	executable	shrinks	to	3072	bytes.

You	might	be	wondering	about	the	runtime	library	routines	that	LIBCTINY
doesn't	implement.	For	instance,	in	TEST.CPP,	there's	a	call	to	strrchr.	There's	no
problem	here	because	that	function	exists	in	the	regular	LIBC.LIB	or
LIBCMT.LIB	that	Visual	C++	provides.	Both	LIBCTINY.LIB	and	LIBC.LIB
implement	a	variety	of	routines.	LIBCTINY's	list	is	obviously	smaller	than	what
LIBC.LIB	provides.	The	important	thing	for	your	purposes	is	that	the	linker
finds	the	LIBCTINY	routines	first	when	resolving	function	calls,	and	so
LIBCTINY's	routines	are	what's	used.	If	something	isn't	implemented	in
LIBCTINY,	the	linker	finds	it	in	LIBC.LIB	instead.
Finally,	it's	worth	repeating	that	LIBCTINY	isn't	suitable	for	all	purposes.	For
example,	if	your	code	makes	use	of	multiple	threads	and	relies	on	the	runtime
library's	per-thread	data	support,	then	LIBCTINY	isn't	for	you.	What	I	do	is	try
LIBCTINY	with	a	prospective	program.	If	it	works,	great!	If	not,	I	simply	use
the	normal	runtime	library.

Metadata	Article	Correction
In	my	October	2000	MSDN	Magazine	article	"Avoiding	DLL	Hell:	Introducing
Application	Metadata	in	the	Microsoft	.NET	Framework,"	I	said	that	using	the
Visual	C++	6.0	#import	directive	causes	the	compiler	to	read	in	a	COM	type
library	and	generate	ATL-ready	header	files	for	all	the	interfaces	contained
within.	While	header	files	are	generated	by	#import,	it	turns	out	they	don't	use
ATL.

Richard	Grimes,	author	of	Professional	ATL	COM	Programming	(Wrox	Press,

http://msdn.microsoft.com/msdnmag/issues/1000/metadata/default.aspx

1998),	kindly	pointed	out	to	me	that	#import	generates	what	Microsoft	calls
"compiler	COM	support	classes,"	which	are	supported	by	the	COMDEF.H
header.	Richard	goes	on	to	say,	"There	are	many	differences	between	the	COM
compiler	support	classes	and	the	equivalent	in	ATL.	The	most	important	is	that
ATL	does	not	use	C++	exceptions.	In	fact,	the	ATL	classes	are	more	lightweight
than	the	COM	compiler	support	classes	and	so	I	would	have	preferred	if
Microsoft	had	decided	to	generate	ATL	code."
I	have	to	confess	that	I	should	have	studied	this	more	before	I	wrote	it.	My
experience	with	ATL	is	limited	to	the	wizards	in	Visual	C++,	and	tweaking	the
resulting	code.	I	have	used	#import	on	a	few	occasions,	but	not	enough	to	have
made	the	connection	that	the	resulting	code	wasn't	ATL.	Thanks	to	Richard	for
pointing	this	out	to	me,	and	for	giving	me	even	more	incentive	to	verify
everything	before	I	write	about	it.

Matt	Pietrek	does	advanced	research	for	the	NuMega	Labs	of	Compuware
Corporation,	and	is	the	author	of	several	books.	His	Web	site,	at
http://www.wheaty.net/,	has	a	FAQ	page	and	information	on	previous	columns
and	articles.

From	the	January	2001	issue	of	MSDN	Magazine.

http://www.wheaty.net/
http://msdn.microsoft.com/msdnmag/issues/01/01/default.aspx
http://msdn.microsoft.com/msdnmag/default.aspx

Working	with	lists
main	|	Dialog	API	|	Dialog	items

FAR	Manager	1.70	beta	4	offers	the	following	scheme	for	working	with
DI_COMBOBOX	and	DI_LISTBOX	lists:

Dialog[Ex]	start
FarDialogItem.Param.ListItems	-	only	for	first	initialization.	

DM_LISTADD
Adds	list	item	only,	without	associated	data.	

DM_LISTINSERT
Inserts	list	item	only,	without	associated	data.	

DM_LISTUPDATE
Deletes	UserData	for	the	list	item	to	be	updated.
Updates	list	item	only,	without	associated	data.	

DM_LISTSETDATA
Associates	new	data	with	the	list	item,	old	data	is	deleted	(if	memory	was
allocated	for	it).	

DM_LISTGETDATA
Returns	value	previously	set	by	DM_LISTSETDATA.	

DM_LISTGETDATASIZE
Returns	size	of	associated	data.	

DM_LISTGETITEM
Returns	list	item	only,	without	associated	data.	

DM_GETDLGITEM
Sets	FarDialogItem.Param.ListPos	variable.	

Dialog[Ex]	completion
Setting	FarDialogItem.Param.ListPos	variable.
Deleting	associated	data	(if	memory	was	allocated	for	it).	

See	also:
DefDlgProc,	DialogEx,	SendDlgMessage

Search	and	Replace	plugins	programming
Custom	API

Search	and	Replace	(S&R)	is	a	FAR	plugin	that	allows	to	search	and	replace
information	both	in	single	file	and	in	multiple	ones.	It	also	works	in	the	viewer
and	the	editor.
SRP-modules	API	information	(help	file	srplugins.chm	is	needed)	is
available	from	the	plugin's	author:	Ivan	Sinturin	http://www.moris.ru/~spinoza.
Also	the	on-line	version	is	available	here:
http://www.moris.ru/~spinoza/download/s_and_r/srplugins

http://www.moris.ru/~spinoza
http://www.moris.ru/~spinoza/download/s_and_r/srplugins

Mr.Ripper	API
Custom	API

Mr.Ripper	-	is	a	FAR	plugin,	allowing	to	rip	different	files	from	other	files'
bowels.	It	understands	more	than	20	file	formats,	among	them	WAV,	AVI,	BMP,
JPG,	PNG,	GIF,	DJVU,	MP3,	MOD,	XM,	IT,	RTF	and	others.	Also	it	supports
more	than	15	package	file	formats	of	different	game	engines.	Format	supporting
is	made	through	subplugins,	both	for	standalone	formats	and	game	packages.
To	develop	RIP-modules	you	will	need	the	ripapi.chm	help	file	which
describes	the	API.	The	help	file	is	available	from	the	plugin	author:	Vladimir
Kubyshev	http://vovan.dankov.net/mrripper/doc_ripapi.html.

http://vovan.dankov.net/mrripper/doc_ripapi.html

TEditorSaveFile
main	|	structures

The	EditorSaveFile	stucture	for	Delphi.

TEditorSaveFile	=	packed	record

		FileName:	packed	array[0..Pred(NM)]	of	char;

		FileEOL:	PChar;

end;

PEditorSaveFile	=	^TEditorSaveFile;

See	also:
structures	|	EditorSaveFile

FARMACRO_KEY_EVENT
main	|	types	and	definitions

The	FARMACRO_KEY_EVENT	constant	defines	the	type	of	input	event	in
the	INPUT_RECORD	structure,	which	is	sent	to	the	ProcessEditorInput	function
while	"playing"	a	macro	sequence.	The	Event	parameter	contains	the
KEY_EVENT_RECORD	structure	with	information	on	the	event.

	Attention!
This	message	is	defined	for	FAR	Manager	starting	with	build	1663	and
is	recieved	while	"playing"	a	macro	sequence.

Figure	1	Hello	World	.MAP	File
Address									Publics	by	Value													Rva+Base					Lib:Object

0001:00000000			_main																								00401000	f			hello.obj

0001:0000000c			_printf																						0040100c	f			LIBC:printf.obj

0001:0000003d			_mainCRTStartup														0040103d	f			LIBC:crt0.obj

0001:0000011c			__amsg_exit																		0040111c	f			LIBC:crt0.obj

0001:00000165			__stbuf																						00401165	f			LIBC:_sftbuf.obj

0001:000001f2			__ftbuf																						004011f2	f			LIBC:_sftbuf.obj

0001:0000022f			__output																					0040122f	f			LIBC:output.obj

0001:00000a39			___initstdio																	00401a39	f			LIBC:_file.obj

0001:00000ade			___endstdio																		00401ade	f			LIBC:_file.obj

0001:00000af2			__cinit																						00401af2	f			LIBC:crt0dat.obj

0001:00000b1f			_exit																								00401b1f	f			LIBC:crt0dat.obj

0001:00000b30			__exit																							00401b30	f			LIBC:crt0dat.obj

0001:00000bf4			__XcptFilter																	00401bf4	f			LIBC:winxfltr.obj

0001:00000d78			__setenvp																				00401d78	f			LIBC:stdenvp.obj

0001:00000e31			__setargv																				00401e31	f			LIBC:stdargv.obj

0001:0000107e			___crtGetEnvironmentStringsA	0040207e	f			LIBC:a_env.obj

0001:000011b0			__ioinit																					004021b0	f			LIBC:ioinit.obj

0001:0000135b			__heap_init																		0040235b	f			LIBC:heapinit.obj

0001:00001398			__global_unwind2													00402398	f			LIBC:exsup.obj

0001:000013da			__local_unwind2														004023da	f			LIBC:exsup.obj

0001:00001432			__NLG_Return2																00402432	f			LIBC:exsup.obj

0001:00001442			__abnormal_termination							00402442	f			LIBC:exsup.obj

0001:00001465			__NLG_Notify1																00402465	f			LIBC:exsup.obj

0001:0000146e			__NLG_Notify																	0040246e	f			LIBC:exsup.obj

0001:00001481			__NLG_Dispatch															00402481	f			LIBC:exsup.obj

0001:00001490			__except_handler3												00402490	f			LIBC:exsup3.obj

0001:0000154d			__seh_longjmp_unwind@4							0040254d	f			LIBC:exsup3.obj

0001:00001568			__FF_MSGBANNER															00402568	f			LIBC:crt0msg.obj

0001:000015a1			__NMSG_WRITE																	004025a1	f			LIBC:crt0msg.obj

0001:000016f4			_malloc																						004026f4	f			LIBC:malloc.obj

0001:00001706			__nh_malloc																		00402706	f			LIBC:malloc.obj

0001:00001732			__heap_alloc																	00402732	f			LIBC:malloc.obj

0001:00001768			__isatty																					00402768	f			LIBC:isatty.obj

0001:0000178e			_fflush																						0040278e	f			LIBC:fflush.obj

0001:000017c9			__flush																						004027c9	f			LIBC:fflush.obj

0001:00001825			__flushall																			00402825	f			LIBC:fflush.obj

0001:000018a0			_strlen																						004028a0	f			LIBC:strlen.obj

0001:0000191b			_wctomb																						0040291b	f			LIBC:wctomb.obj

0001:00001990			__aulldiv																				00402990	f			LIBC:ulldiv.obj

0001:00001a00			__aullrem																				00402a00	f			LIBC:ullrem.obj

0001:00001a75			__flsbuf																					00402a75	f			LIBC:_flsbuf.obj

0001:00001b8a			_calloc																						00402b8a	f			LIBC:calloc.obj

0001:00001c07			__fcloseall																		00402c07	f			LIBC:closeall.obj

0001:00001c5f			_free																								00402c5f	f			LIBC:free.obj

0001:00001c90			_strcpy																						00402c90	f			LIBC:strcat.obj

0001:00001ca0			_strcat																						00402ca0	f			LIBC:strcat.obj

0001:00001d80			__setmbcp																				00402d80	f			LIBC:mbctype.obj

0001:00002144			___initmbctable														00403144	f			LIBC:mbctype.obj

0001:00002160			_memcpy																						00403160	f			LIBC:memcpy.obj

0001:00002495			___sbh_heap_init													00403495	f			LIBC:sbheap.obj

0001:000024d3			___sbh_find_block												004034d3	f			LIBC:sbheap.obj

0001:000024fe			___sbh_free_block												004034fe	f			LIBC:sbheap.obj

0001:00002829			___sbh_alloc_block											00403829	f			LIBC:sbheap.obj

0001:00002b32			___sbh_alloc_new_region						00403b32	f			LIBC:sbheap.obj

0001:00002be3			___sbh_alloc_new_group							00403be3	f			LIBC:sbheap.obj

0001:00002cde			___crtMessageBoxA												00403cde	f			LIBC:crtmbox.obj

0001:00002d70			_strncpy																					00403d70	f			LIBC:strncpy.obj

0001:00002e6e			__callnewh																			00403e6e	f			LIBC:handler.obj

0001:00002e89			__commit																					00403e89	f			LIBC:commit.obj

0001:00002ee0			__write																						00403ee0	f			LIBC:write.obj

0001:0000308d			__fptrap																					0040408d	f			LIBC:crt0fp.obj

0001:00003096			__lseek																						00404096	f			LIBC:lseek.obj

0001:00003130			__getbuf																					00404130	f			LIBC:_getbuf.obj

0001:00003180			_memset																						00404180	f			LIBC:memset.obj

0001:000031d8			_fclose																						004041d8	f			LIBC:fclose.obj

0001:0000322e			___crtLCMapStringA											0040422e	f			LIBC:a_map.obj

0001:0000347d			___crtGetStringTypeA									0040447d	f			LIBC:a_str.obj

0001:000035d0			_memmove																					004045d0	f			LIBC:memmove.obj

0001:00003905			__free_osfhnd																00404905	f			LIBC:osfinfo.obj

0001:0000397f			__get_osfhandle														0040497f	f			LIBC:osfinfo.obj

0001:000039bc			__dosmaperr																		004049bc	f			LIBC:dosmap.obj

0001:00003a23			__close																						00404a23	f			LIBC:close.obj

0001:00003ad6			__freebuf																				00404ad6	f			LIBC:_freebuf.obj

0001:00003b10			__alloca_probe															00404b10	f			LIBC:chkstk.obj

0001:00003b10			__chkstk																					00404b10	f			LIBC:chkstk.obj

Figure	2	PRINTF.CPP

//==

//	LIBCTINY	-	Matt	Pietrek	2001

//	MSDN	Magazine,	January	2001

//==

#include	<windows.h>

#include	<stdio.h>

#include	<stdarg.h>

//	Force	the	linker	to	include	USER32.LIB

#pragma	comment(linker,	"/defaultlib:user32.lib")

extern	"C"	int	__cdecl	printf(const	char	*	format,	...)

{

		char	szBuff[1024];

		int	retValue;

		DWORD	cbWritten;

		va_list	argptr;

		va_start(argptr,	format);

		retValue	=	wvsprintf(szBuff,	format,	argptr);

		va_end(argptr);

		WriteFile(GetStdHandle(STD_OUTPUT_HANDLE),	szBuff,	retValue,

														&cbWritten,	0);

		return	retValue;

}

Figure	3	INITTERM

//==

//	LIBCTINY	-	Matt	Pietrek	2001

//	MSDN	Magazine,	January	2001

//==

#include	<windows.h>

#include	<malloc.h>

#include	"initterm.h"

#pragma	data_seg(".CRT$XCA")

_PVFV	__xc_a[]	=	{	NULL	};

#pragma	data_seg(".CRT$XCZ")

_PVFV	__xc_z[]	=	{	NULL	};

#pragma	data_seg()		/*	reset	*/

#pragma	comment(linker,	"/merge:.CRT=.data")

typedef	void	(__cdecl	*_PVFV)(void);

void	__cdecl	_initterm	(

								_PVFV	*	pfbegin,

								_PVFV	*	pfend

)

{

		/*

			*	walk	the	table	of	function	pointers	from	the	bottom	up,	until

			*	the	end	is	encountered.		Do	not	skip	the	first	entry.		The	initial

			*	value	of	pfbegin	points	to	the	first	valid	entry.		Do	not	try	to

			*	execute	what	pfend	points	to.		Only	entries	before	pfend	are

			*	valid.

			*/

		while	(pfbegin	<	pfend)

		{

				//	if	current	table	entry	is	non-NULL,	call	thru	it.

				if	(*pfbegin	!=	NULL)

						(**pfbegin)();

				++pfbegin;

		}

}

static	_PVFV	*	pf_atexitlist	=	0;

static	unsigned	max_atexitlist_entries	=	0;

static	unsigned	cur_atexitlist_entries	=	0;

void	__cdecl	_atexit_init(void)

{

		max_atexitlist_entries	=	32;

		pf_atexitlist	=	(_PVFV	*)calloc(max_atexitlist_entries,

																																			sizeof(_PVFV*));

}

int	__cdecl	atexit	(_PVFV	func)

{

		if	(cur_atexitlist_entries	<	max_atexitlist_entries)

		{

				pf_atexitlist[cur_atexitlist_entries++]	=	func;

				return	0;

		}

		return	-1;

}

void	__cdecl	_DoExit(void)

{

		if	(cur_atexitlist_entries)

		{

				_initterm(pf_atexitlist,

															//	Use	ptr	math	to	find	the	end	of	the	array

															pf_atexitlist	+	cur_atexitlist_entries);

		}

}

Figure	4	DLLCRTO.CPP

//==

//	LIBCTINY	-	Matt	Pietrek	2001

//	MSDN	Magazine,	January	2001

//	FILE:	DLLCRT0.CPP

//==

#include	<windows.h>

#include	"initterm.h"

//	Force	the	linker	to	include	KERNEL32.LIB

#pragma	comment(linker,	"/defaultlib:kernel32.lib")

//	Force	512	byte	section	alignment	in	the	PE	file

#pragma	comment(linker,	"/OPT:NOWIN98")

//	#pragma	comment(linker,	"/nodefaultlib:libc.lib")

//	#pragma	comment(linker,	"/nodefaultlib:libcmt.lib")

//	User	routine	DllMain	is	called	on	all	notifications

extern	BOOL	WINAPI	DllMain(

																											HANDLE		hDllHandle,

																											DWORD			dwReason,

																											LPVOID		lpreserved

)	;

//

//	Modified	version	of	the	Visual	C++	startup	code.		Simplified	to

//	make	it	easier	to	read.		Only	supports	ANSI	programs.

//

extern	"C"

BOOL	WINAPI	_DllMainCRTStartup(

																															HANDLE		hDllHandle,

																															DWORD			dwReason,

																															LPVOID		lpreserved

)

{

		if	(dwReason	==	DLL_PROCESS_ATTACH)

		{

				//	set	up	our	minimal	cheezy	atexit	table

				_atexit_init();

				//	Call	C++	constructors

				_initterm(__xc_a,	__xc_z);

		}

		BOOL	retcode	=	DllMain(hDllHandle,	dwReason,	lpreserved);

		if	(dwReason	==	DLL_PROCESS_DETACH)

		{

				_DoExit();

		}

		return	retcode	;

}

Figure	5	TEST.CPP

//	Small	test	program	to	exercise	TINYCRT.		Does	nothing	useful

//

#include	<windows.h>

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

int	main(int	argc,	char	*argv[])

{

		int	i;

		for	(i	=	0;	i	<	argc;	i++)

		{

				printf("argc:	%u	\'%s\'\n",	i,	argv[i]);

		}

		char	*	p	=	new	char[10];

		lstrcpy(p,	"Hello");

		delete	p;

		printf("%s\n",	strlwr("MyLowerCaseString"));

		printf	("strcmpi:	%u\n",	strcmpi("Abc",	"abc"));

		strrchr("foo",	'o');

		return	0;

}

//	Declare	a	simple	C++	class	with	a	constructor

class	TestClass

{

public:

		TestClass(void)

		{

				printf("In	TestClass	constructor\n");

		}

		~TestClass(void)

		{

				printf("In	TestClass	destructor\n");

		}

};

//	Create	a	global	instance	of	the	class

TestClass	g_TestClassInstance;

	Far Manager Encyclopedia
	Programming FAR plugins
	About the Programming FAR plugins - Encyclopedia for Developers project
	License
	What's new?
	Exported functions
	Common functions
	Configure
	ExitFAR
	GetMinFarVersion
	GetPluginInfo
	SetStartupInfo

	Panel specific functions
	ClosePlugin
	Compare
	DeleteFiles
	FreeFindData
	FreeVirtualFindData
	GetFiles
	GetFindData
	GetOpenPluginInfo
	GetVirtualFindData
	MakeDirectory
	OpenFilePlugin
	OpenPlugin
	ProcessEvent
	ProcessHostFile
	ProcessKey
	PutFiles
	SetDirectory
	SetFindList

	Editor specific functions
	ProcessEditorInput
	ProcessEditorEvent

	Viewer specific functions
	ProcessViewerEvent

	Dialog specific functions
	ProcessDialogEvent

	Service functions
	Common functions
	AdvControl
	CharTable
	CmpName
	Control
	FreeDirList
	GetDirList
	GetMsg
	GetPluginDirList
	Menu
	RestoreScreen
	SaveScreen
	ShowHelp
	Text

	Editor specific functions
	Editor
	EditorControl

	Viewer specific functions
	Viewer
	ViewerControl

	Dialog API functions
	DefDlgProc
	Dialog
	DialogEx
	DlgProc
	InputBox
	Message
	SendDlgMessage

	Far Standard Functions
	AddEndSlash
	atoi
	atoi64
	bsearch
	ConvertNameToReal
	CopyToClipboard
	DeleteBuffer
	ExpandEnvironmentStr
	FarInputRecordToKey
	FarKeyToName
	FarNameToKey
	FarRecursiveSearch
	GetFileOwner
	GetNumberOfLinks
	GetPathRoot
	GetReparsePointInfo
	itoa
	itoa64
	LIsAlpha
	LIsAlphanum
	LIsLower
	LIsUpper
	LLower
	LLowerBuf
	LStricmp
	LStrlwr
	LStrnicmp
	LStrupr
	LTrim
	LUpper
	LUpperBuf
	MkTemp
	MkLink
	PasteFromClipboard
	PointToName
	ProcessName
	qsort
	qsortex
	QuoteSpaceOnly
	RTrim
	snprintf
	sprintf
	sscanf
	Trim
	TruncPathStr
	TruncStr
	Unquote
	XLat

	Structures
	General purpose structures
	ActlEjectMedia
	ActlKeyMacro
	CharTableSet
	FARINT64
	CmdLineSelect
	FarMenuItem
	FarMenuItemEx
	FarSetColors
	FarStandardFunctions
	InfoPanelLine
	KeyBarTitles
	KeySequence
	OpenPluginInfo
	PanelInfo
	PanelMode
	PanelRedrawInfo
	PluginInfo
	PluginPanelItem
	PluginStartupInfo
	WindowInfo

	Editor specific structures
	EditorBookMarks
	EditorColor
	EditorConvertPos
	EditorConvertText
	EditorGetString
	EditorInfo
	EditorSelect
	EditorSetParameter
	EditorSetPosition
	EditorSetString

	Dialog API structures
	FarDialogEvent
	FarDialogItem
	FarDialogItemData
	FarList
	FarListColors
	FarListDelete
	FarListFind
	FarListGetItem
	FarListInfo
	FarListInsert
	FarListItem
	FarListPos
	FarListItemData
	FarListTitles
	FarListUpdate
	OpenDlgPluginData

	Viewer specific structures
	ViewerInfo
	ViewerMode
	ViewerSelect
	ViewerSetMode
	ViewerSetPosition

	Delphi structures
	TActlEjectMedia
	TActlKeyMacro
	TArcInfo
	TArcItemInfo
	TCharTableSet
	TCmdLineSelect
	TEditorBookMarks
	TEditorColor
	TEditorConvertPos
	TEditorConvertText
	TEditorGetString
	TEditorInfo
	TEditorSelect
	TEditorSetParameter
	TEditorSetPosition
	TEditorSetString
	TFarSetColors
	TFarDialogItem
	TFarDialogItemData
	TFarList
	TFarListColors
	TFarListDelete
	TFarListGetItem
	TFarListItem
	TFarListPos
	TFarListItemData
	TFarListTitles
	TFarMenuItem
	TFarMenuItemEx
	TFarListFind
	TFarListInfo
	TFarListInsert
	TInfoPanelLine
	TKeyBarTitles
	TKeySequence
	TOpenPluginInfo
	TPanelInfo
	TPanelMode
	TPanelRedrawInfo
	TPluginInfo
	TPluginPanelItem
	TPluginStartupInfo
	TWin32FindData
	TWindowInfo
	TFarInt64
	TViewerInfo
	TViewerMode
	TViewerSelect
	TViewerSetMode
	TViewerSetPosition

	Types and definitions
	COL_* - Color indexes
	KEY_* - FAR Manager key codes
	VK_* - Virtual Key Codes (Win32)
	OPM_* - Operation mode
	SM_* - Sorting methods
	PKF_* - state of the shift keys
	_FAR_NO_NAMELESS_UNIONS - using ANSI C
	FARMANAGERVERSION - FAR Manager version number
	MAKEFARVERSION - Generates needed FAR Manager version number
	FarConfirmationsSettings - information about the confirmation settings
	FarInterfaceSettings - information about the interface settings
	FarDialogSettings - information about the dialog settings
	FarDescriptionSettings - information about the file description settings
	FarSystemSettings - information about the system settings
	FarPanelSettings - information about the panel settings
	File masks
	Help topic syntax

	Language and Help files
	Control statements
	Language files
	Help files

	Win32 structures, functions and definitions
	Win32: structures
	CHAR_INFO
	CONSOLE_CURSOR_INFO
	COORD
	FILETIME
	FOCUS_EVENT_RECORD
	INPUT_RECORD
	KEY_EVENT_RECORD
	MENU_EVENT_RECORD
	MOUSE_EVENT_RECORD
	RECT
	SMALL_RECT
	SYSTEMTIME
	WIN32_FIND_DATA
	WINDOW_BUFFER_SIZE_RECORD

	Win32: functions
	GetFileTime
	PeekConsoleInput
	ReadConsoleInput
	SetFileApisToANSI
	SetFileApisToOEM
	SetFileTime
	WriteConsoleInput

	Win32: definitions
	Virtual key codes

	Dialog API
	Dialog API functions
	DefDlgProc
	Dialog
	DialogEx
	DlgProc
	InputBox
	Message
	SendDlgMessage

	Dialog API structures
	FarDialogItem
	FarDialogItemData
	FarList
	FarListColors
	FarListDelete
	FarListFind
	FarListGetItem
	FarListInfo
	FarListInsert
	FarListItem
	FarListPos
	FarListItemData
	FarListTitles
	FarListUpdate

	Macros and types
	FARWINDOWPROC - dialog window callback function

	Dialog API controls
	DI_BUTTON
	DI_CHECKBOX
	DI_COMBOBOX
	DI_DOUBLEBOX
	DI_EDIT
	DI_FIXEDIT
	DI_LISTBOX
	DI_PSWEDIT
	DI_RADIOBUTTON
	DI_SINGLEBOX
	DI_TEXT
	DI_USERCONTROL
	DI_VTEXT

	Dialog item flags
	DIF_3STATE
	DIF_BOXCOLOR
	DIF_BTNNOCLOSE
	DIF_CENTERGROUP
	DIF_CENTERTEXT
	DIF_DISABLE
	DIF_DROPDOWNLIST
	DIF_EDITEXPAND
	DIF_EDITOR
	DIF_GROUP
	DIF_HIDDEN
	DIF_HISTORY
	DIF_LEFTTEXT
	DIF_LISTAUTOHIGHLIGHT
	DIF_LISTNOAMPERSAND
	DIF_LISTNOBOX
	DIF_LISTNOCLOSE
	DIF_LISTWRAPMODE
	DIF_MANUALADDHISTORY
	DIF_MASKEDIT
	DIF_MOVESELECT
	DIF_NOAUTOCOMPLETE
	DIF_NOBRACKETS
	DIF_NOFOCUS
	DIF_NOTCVTUSERCONTROL
	DIF_READONLY
	DIF_SELECTONENTRY
	DIF_SEPARATOR
	DIF_SEPARATOR2
	DIF_SETCOLOR
	DIF_SHOWAMPERSAND
	DIF_USELASTHISTORY
	DIF_VAREDIT

	Dialog API messages
	DM_ADDHISTORY
	DM_CLOSE
	DM_EDITUNCHANGEDFLAG
	DM_ENABLE
	DM_ENABLEREDRAW
	DM_GETCHECK
	DM_GETCOMBOBOXEVENT
	DM_GETCURSORPOS
	DM_GETCURSORSIZE
	DM_GETDLGDATA
	DM_GETDLGITEM
	DM_GETDLGRECT
	DM_GETDROPDOWNOPENED
	DM_GETEDITPOSITION
	DM_GETFOCUS
	DM_GETITEMDATA
	DM_GETITEMPOSITION
	DM_GETSELECTION
	DM_GETTEXT
	DM_GETTEXTPTR
	DM_GETTEXTLENGTH
	DM_KEY
	DM_LISTADD
	DM_LISTADDSTR
	DM_LISTDELETE
	DM_LISTFINDSTRING
	DM_LISTGETCURPOS
	DM_LISTGETDATA
	DM_LISTGETDATASIZE
	DM_LISTGETITEM
	DM_LISTGETTITLES
	DM_LISTINFO
	DM_LISTINSERT
	DM_LISTSET
	DM_LISTSETCURPOS
	DM_LISTSETDATA
	DM_LISTSETMOUSEREACTION
	DM_LISTSETTITLES
	DM_LISTSORT
	DM_LISTUPDATE
	DM_MOVEDIALOG
	DM_REDRAW
	DM_RESIZEDIALOG
	DM_SET3STATE
	DM_SETCHECK
	DM_SETCOMBOBOXEVENT
	DM_SETCURSORPOS
	DM_SETCURSORSIZE
	DM_SETDLGDATA
	DM_SETDLGITEM
	DM_SETDROPDOWNOPENED
	DM_SETEDITPOSITION
	DM_SETFOCUS
	DM_SETHISTORY
	DM_SETITEMDATA
	DM_SETITEMPOSITION
	DM_SETMAXTEXTLENGTH
	DM_SETMOUSEEVENTNOTIFY
	DM_SETSELECTION
	DM_SETTEXT
	DM_SETTEXTLENGTH
	DM_SETTEXTPTR
	DM_SHOWDIALOG
	DM_SHOWITEM
	DM_USER

	Dialog API events
	DN_BTNCLICK
	DN_CLOSE
	DN_CTLCOLORDIALOG
	DN_CTLCOLORDLGITEM
	DN_CTLCOLORDLGLIST
	DN_DRAGGED
	DN_DRAWDIALOG
	DN_DRAWDIALOGDONE
	DN_DRAWDLGITEM
	DN_EDITCHANGE
	DN_ENTERIDLE
	DN_GOTFOCUS
	DN_HELP
	DN_HOTKEY
	DN_INITDIALOG
	DN_KEY
	DN_KILLFOCUS
	DN_LISTCHANGE
	DN_LISTHOTKEY
	DN_MOUSECLICK
	DN_MOUSEEVENT
	DN_RESIZECONSOLE

	Input focus

	Panel API
	Exported functions
	Compare
	DeleteFiles
	FreeFindData
	FreeVirtualFindData
	GetFiles
	GetFindData
	GetVirtualFindData
	MakeDirectory
	OpenFilePlugin
	OpenPlugin
	ProcessEvent
	ProcessHostFile
	ProcessKey
	PutFiles
	SetDirectory
	SetFindList

	Service functions
	Control
	FreeDirList
	GetDirList
	GetPluginDirList

	Structures
	InfoPanelLine
	KeyBarTitles
	PanelInfo
	PanelMode
	PanelRedrawInfo
	PluginPanelItem

	Editor API
	Exported functions
	ProcessEditorInput
	ProcessEditorEvent

	Service functions
	Editor
	EditorControl

	Editor API structures
	EditorBookMarks
	EditorColor
	EditorConvertPos
	EditorConvertText
	EditorGetString
	EditorInfo
	EditorSelect
	EditorSetParameter
	EditorSetPosition
	EditorSetString

	Viewer API
	Exported functions
	ProcessViewerEvent

	Service functions
	Viewer
	ViewerControl

	Structures
	FARINT64
	ViewerInfo
	ViewerMode
	ViewerSelect
	ViewerSetMode
	ViewerSetPosition

	Custom API
	Additional structures and functions
	General purpose functions
	InitDialogItems
	InitMenuItems
	LocMsg

	Structures
	InitDialogItem
	InitMenuItem

	Archive support
	Exported functions
	LoadFormatModule
	IsArchive
	GetSFXPos
	OpenArchive
	GetArcItem
	CloseArchive
	GetFormatName
	GetDefaultCommands
	SetFarInfo

	Structures
	ArcItemInfo
	ArcInfo

	Archivers' command line arguments
	custom.ini file format

	Colorer library regular expressions interface
	CRegExp
	isok
	geterror
	SetNoMoves
	SetBkTrace
	SetExpr
	SetCodePage
	Parse
	extended Parse
	SMatches

	Search and Replace plugins programming
	Mr.Ripper API

	Macros
	General background
	Areas of execution

	Using macros
	Recording a macro
	Deleting a macro
	Assigning macro commands
	Macro command parameters

	Macro-language
	Macro-commands
	$AKey
	$Date
	$Text
	$IClip
	$MMode
	$Exit
	$XLat
	$KbdSwitch
	$SelWord
	$If
	$While
	$Rep

	Boolean operators
	Boolean object states
	Functions
	Operations
	Object states
	Variables

	Technical details
	Examples

	Articles
	How to make a FAR plug-in...
	ECTL_GETSTRING works very slowly

	Additional topics
	How to setup the Encyclopedia
	Lyrical introduction to plugins
	Overview of plugin capabilities
	'Professional ethics'
	Examples
	FAR plugins API History
	Long History
	FAQ
	Authors

	Internet

