
About	This	Guide
	
	
	

The	FDO	Developer’s	Guide	introduces	the	Feature	Data	Objects	(FDO)
application	programming	interface	(API)	and	explains	how	to	use	its
customization	and	development	features.

Note For	detailed	information	about	installing	the	FDO	SDK	and	getting	started
using	the	FDO	API,	see	The	Essential	FDO	(FET_TheEssentialFDO).

Topics	in	this	section

Audience	and	Purpose
How	This	Guide	Is	Organized
What’s	New

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Audience	and	Purpose
	
	
	

This	guide	is	intended	to	be	used	by	developers	of	FDO	applications.	It
introduces	the	FDO	API,	explains	the	role	of	a	feature	provider,	and	provides
detailed	information	and	examples	about	how	to	code	your	application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

How	This	Guide	Is	Organized
	
	
	

This	guide	consists	of	the	following	chapters	and	appendixes:

Introduction,	provides	an	overview	of	the	FDO	API	and	the	function	of
FDO	feature	providers.

FDO	Concepts,	describes	the	key	data	and	operational	concepts	upon
which	FDO	is	constructed.

Development	Practices,	discusses	the	best	practices	to	follow	when
using	FDO	for	application	development.

Establishing	a	Connection,	describes	how	to	establish	a	connection	to	an
FDO	provider.

Capabilities,	discusses	the	Capabilities	API,	which	is	used	to	determine
the	capabilities	of	a	particular	provider.

Schema	Management,	describes	how	to	create	and	work	with	schemas
and	presents	the	issues	related	to	schema	management.

Data	Maintenance,	provides	information	about	using	the	FDO	API	to
maintain	the	data.

Performing	Queries,	describes	how	to	create	and	perform	queries.

Long	Transaction	Processing,	discusses	long	transactions	(LT)	and	how
to	implement	LT	processing	in	your	application.

Filter	and	Expression	Languages,	discusses	the	use	of	filter	expressions
to	specify	to	an	FDO	provider	how	to	identify	a	subset	of	the	objects	of
an	FDO	data	store.

The	Geometry	API,	discusses	the	various	Geometry	types	and	formats
and	describes	how	to	work	with	the	Geometry	API	to	develop	FDO-
based	applications.

Autodesk	FDO	Provider	for	Oracle,	discusses	development	issues	that

apply	when	using	FDO	Provider	for	Oracle.

OSGeo	FDO	Provider	for	ArcSDE,	discusses	development	issues	that
apply	when	using	FDO	Provider	for	ESRI®	ArcSDE®.

OSGeo	FDO	Provider	for	MySQL,	discusses	development	issues	that
apply	when	using	FDO	Provider	for	MySQL.

OSGeo	FDO	Provider	for	ODBC,	discusses	development	issues	that
apply	when	using	FDO	Provider	for	ODBC.

Autodesk	FDO	Provider	for	Raster,	discusses	development	issues	that
apply	when	using	FDO	Provider	for	Raster.

OSGeo	FDO	Provider	for	SDF,	discusses	development	issues	that	apply
when	using	FDO	Provider	for	SDF.

OSGeo	FDO	Provider	for	SHP,	discusses	development	issues	that	apply
when	using	FDO	Provider	for	SHP	(Shape).

Autodesk	FDO	Provider	for	SQL	Server,	discusses	development	issues
that	apply	when	using	FDO	Provider	for	SQL	Server.

OSGeo	FDO	Provider	for	WFS,	discusses	development	issues	that	apply
when	using	FDO	Provider	for	WFS.

OSGeo	FDO	Provider	for	WMS,	discusses	development	issues	that
apply	when	using	FDO	Provider	for	WMS.

Expression	Functions,	outlines	the	signatures	and	implementation	details
for	the	enhanced	expression	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What’s	New
	
	
	

This	section	summarizes	the	changes	and	enhancements	you	will	find	in	this
version	of	FDO.

Enhanced	Set	of	Expression	Functions

The	enhanced	set	includes	aggregate,	conversion,	date,	mathematical,	numeric,
string	and	geometry	functions.	All	functions	are	supported	by	all	providers,	with
the	exception	of	the	Raster,	WFS	and	WMS	providers.

For	more	information	and	implementation	details	about	the	expression	function
signatures,	the	RDBMS-specific	built-in	support	for	some	of	the	functions,	and
the	provider-specific	support,	see	the	appendix	Expression	Functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction
	
	
	

You	can	use	the	APIs	in	the	FDO	API	to	manipulate,	define,	and	analyze
geospatial	information.

This	chapter	introduces	application	development	with	the	FDO	API	and	explains
the	role	of	a	feature	provider.

Topics	in	this	section

What	Is	the	FDO	API?
Getting	Started
FDO	Architecture	and	Providers
What	Is	a	Provider?
Developing	Applications

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	the	FDO	API?
	
	
	

Topics	in	this	section

From	the	Perspective	of	the	Client	Application	User
From	the	Perspective	of	the	Client	Application	Engineer

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

From	the	Perspective	of	the	Client	Application	User
	
	
	

The	FDO	API	is	a	set	of	APIs	used	for	creating,	managing,	and	examining
information,	enabling	Autodesk	GIS	products	to	seamlessly	share	spatial	and
non-spatial	information,	with	minimal	effort.

FDO	is	intended	to	provide	consistent	access	to	feature	data,	whether	it	comes
from	a	CAD-based	data	source,	or	from	a	relational	data	store	that	supports	rich
classification.	To	achieve	this,	FDO	supports	a	model	that	can	readily	support
the	capabilities	of	each	data	source,	allowing	consumer	applications
functionality	to	be	tailored	to	match	that	of	the	data	source.	For	example,	some
data	sources	may	support	spatial	queries,	while	others	do	not.	Also,	a	flexible
metadata	model	is	required	in	FDO,	allowing	clients	to	adapt	to	the	underlying
feature	schema	exposed	by	each	data	source.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

From	the	Perspective	of	the	Client	Application	Engineer
	
	
	

The	FDO	API	provides	a	common,	general	purpose	abstraction	layer	for
accessing	geospatial	data	from	a	variety	of	data	sources.	The	API	is,	in	part,	an
interface	specification	of	the	abstraction	layer.	A	provider,	such	as	Autodesk
FDO	Provider	for	Oracle,	is	an	implementation	of	the	interface	for	a	specific
type	of	data	source	(for	example,	for	an	Oracle	relational	database).	The	API
supports	the	standard	data	store	manipulation	operations,	such	as	querying,
updating,	versioning,	locking,	and	others.	It	also	supports	analysis.

The	API	includes	an	extensive	set	of	methods	that	return	information	about	the
capabilities	of	the	underlying	data	source.	For	example,	one	method	indicates
whether	the	data	source	supports	the	creation	of	multiple	schemas,	and	another
indicates	whether	the	data	source	supports	schema	modification.

A	core	set	of	services	for	providers	is	also	available	in	the	API,	such	as	provider
registration,	schema	management,	filter	and	expression	construction,	and	XML
serialization	and	deserialization.

The	API	uses	an	object-oriented	model	for	the	construction	of	feature	schema.	A
feature	is	a	class,	and	its	attributes,	including	its	geometry,	are	a	property	of	the
class.	The	instantiation	of	a	feature	class,	a	Feature	Data	Object	(FDO),	can
contain	other	FDOs.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Getting	Started
	
	
	

For	detailed	information	to	help	you	install	and	get	started	using	Feature	Data
Objects	(FDO),	see	The	Essential	FDO.	It	provides	details	about	connecting	to
and	configuring	providers,	data	store	management	(create/delete),	user	IDs
(create,	grant	permissions),	and	spatial	context.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Architecture	and	Providers
	
	
	

The	following	diagram	shows	the	high-level	overview	architecture	of	the	FDO
API	and	included	FDO	providers.

FDO	Architecture	and	Providers

FDO	Packages

FDO	is	assembled	in	conceptual	packages	of	similar	functionality.	This
conceptual	packaging	is	reflected	in	the	substructure	of	the	FDO	SDK
“includes”	folder.	For	more	information	about	the	structure,	see	The	Essential
FDO.

FDO	commands,	provider-specific	commands,	and	connections	and	capabilities
provide	access	to	native	data	stores	through	each	different	FDO	provider.
Schema	management	(through	XML),	client	services,	and	filters	and	expressions
are	provider-independent	packages	that	tie	into	the	FDO	API.	Each	of	these	are
explained	in	more	detail	in	subsequent	sections.

The	FDO	API	consists	of	classes	grouped	within	the	following	packages:

Commands	package.	Contains	a	collection	of	classes	that	provide	the
commands	allowing	the	application	to	select	and	update	features,	define
new	types	of	feature	classes,	lock	features,	and	perform	analysis	on
features.	Each	Command	object	executes	a	specific	type	of	command
against	the	underlying	data	store.	In	addition,	FDO	providers	expose	one
or	more	Command	objects.

Connections/Capabilities.	Contains	a	collection	of	classes	that	establish
and	manage	the	connection	to	the	underlying	data	store.	Connection
objects	implement	the	FdoIConnection	interface.	Capabilities	API
provides	the	code	for	retrieving	the	various	FDO	provider	capability
categories,	such	as	connection	or	schema	capabilities.	You	can	use	this

this	API	to	determine	the	capabilities	of	a	particular	provider.

Filters	and	Expression	package.	Contains	a	collection	of	classes	that
define	filters	and	expression	in	FDO,	which	are	used	to	identify	a	subset
of	objects	of	an	FDO	data	store.

Client	Services	package.	Contains	a	collection	of	classes	that	define	the
client	services	in	FDO	that,	for	example,	enable	support	for	dynamic
creation	of	connection	objects	given	a	provider	name.

Schema	package	and	FDO	XML.	Contains	a	collection	of	classes	that
provides	a	logical	mechanism	for	specifying	how	to	represent	geospatial
features.	The	FDO	feature	schema	is	based	somewhat	on	a	subset	of	the
OpenGIS	and	ISO	feature	models.	FDO	feature	schemas	can	be	written
to	an	XML	file.	The	FdoFeatureSchema	and
FdoFeatureSchemaCollection	classes	support	the	FdoXmlSerializable
interface.

In	addition,	FDO	is	integrated	with	the	Geometry	API,	which	includes	the
classes	that	support	specific	Autodesk	applications	and	APIs,	including	FDO.

For	more	information	about	each	of	the	FDO	packages,	see	FDO	API	Reference
Help	(FDO_API.chm)	and	subsequent	chapters	is	this	guide.

Provider	API(s)	complete	the	FDO	API	configuration.	Each	provider	has	a
separate	API	reference	Help	(for	example,	SDF_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	a	Provider?
	
	
	

A	provider	is	a	specific	implementation	of	the	FDO	API.	It	is	the	software
component	that	provides	access	to	data	in	a	particular	data	store.

For	this	release,	the	providers	that	are	included	are	as	follows:

Note Autodesk	FDO	Provider	for	Oracle	and	FDO	Provider	for	ArcSDE	are	listed
first	because	they	were	included	in	previous	releases.	The	remaining	providers
are	new	to	this	release	and	are	in	alphabetical	order.	Providers	referenced	in	this
document	with	“Autodesk”	as	part	of	their	name	are	included	only	with
Autodesk	software.	Other	providers	are	open	source.	For	more	information,	see
the	Open	Source	Geospatial	Foundation	website	at	www.OSGeo.org.

Autodesk	FDO	Provider	for	Oracle.	Read/write	access	to	feature	data
in	an	Oracle-based	data	store.	Supports	spatial	indexing,	long
transactions,	and	persistent	locking.	A	custom	API	can	gather	provider
information,	transmit	client	services	exceptions,	list	data	stores,	and
create	connection	objects.

OsGeo	FDO	Provider	for	ArcSDE.	Read/write	access	to	feature	data	in
an	ESRI	ArcSDE-based	data	store	(that	is,	with	an	underlying	Oracle	or
SQL	Server	database).	Supports	describing	schema,	and	inserting,
selecting,	updating,	and	deleting	feature	data	in	existing	schemas;	does
not	support	creating	or	deleting	schemas.

OsGeo	FDO	Provider	for	MySQL.	Read/write	access	to	feature	data	in
a	MySQL-based	data	store.	Supports	spatial	data	types	and	spatial	query
operations.	A	custom	API	can	gather	information,	transmit	exceptions,
list	data	stores,	and	create	connection	objects.	MySQL	architecture
supports	various	storage	engines,	characteristics,	and	capabilities.

OsGeo	FDO	Provider	for	ODBC.	Read/write	access	to	feature	data	in
an	ODBC-based	data	store.	Supports	XYZ	feature	objects	and	can	define
feature	classes	for	any	relational	database	table	with	X,	Y,	and	optionally
Z	columns;	does	not	support	creating	or	deleting	schema.	Object

locations	are	stored	in	separate	properties	in	the	object	definition.

Autodesk	FDO	Provider	for	Raster.	Read-only	access	to	feature	data
in	raster-based	file	format.	Supports	various	image	and	GIS	data	formats
(for	example,	JPEG,	PNG,	MrSID,	and	others).	Supports	georeferenced
file-based	raster	images	and	file-based	grid	coverages.	Pixel-based
images,	such	as	satellite	images,	are	useful	underneath	vector	data.

OsGeo	FDO	Provider	for	SDF.	Read-write	access	to	feature	data	in	an
SDF-based	data	store.	Autodesk’s	geospatial	file	format,	SDF,	supports
multiple	features/attributes,	provides	high	performance	for	large	data
sets	and	interoperability	with	other	Autodesk	products,	and	spatial
indexing.	The	SDF	provider	a	valid	alternative	to	database	storage.	Note
that	this	release	of	the	SDF	provider	supports	version	3.0	of	the	SDF	file
format.

OsGeo	FDO	Provider	for	SHP.	Read/write	access	to	existing	spatial
and	attribute	data	in	an	ESRI	SHP-based	data	store,	which	consists	of
separate	shape	files	for	geometry,	index,	and	attributes.	Each	SHP	and	its
associated	DBF	file	is	treated	as	a	feature	class	with	a	single	geometry
property.	This	is	a	valid	alternative	to	database	storage	but	does	not
support	locking.

Autodesk	FDO	Provider	for	SQL	Server.	Read/write	access	to	feature
data	in	a	Microsoft	SQL	Server-based	data	store.	A	custom	API	supports
schema	read/write	access,	and	geospatial	and	non-geospatial	data
read/write	access.

OsGeo	FDO	Provider	for	WFS.	Read-only	access	to	feature	data	in	an
OGC	WFS-based	data	store.	Supports	client/server	environment	and
retrieves	geospatial	data	encoded	in	GML	from	one	or	more	Web	Feature
Services	sites.	Client/server	communication	is	encoded	in	XML	with	the
exception	of	feature	geometries,	which	are	encoded	in	GML.	Note	that
there	is	no	public	API	documentation	for	this	provider;	all	functionality
is	accessible	via	the	base	FDO	API.

OsGeo	FDO	Provider	for	WMS.	Read-only	access	to	feature	data	in	an
OGC	WMS-based	data	store.	Web	Map	Service	(WMS)	produces	maps
of	spatially	referenced	data	dynamically	from	geographic	information,
which	are	generally	rendered	in	PNG,	GIF,	or	JPEG,	or	as	vector-based
Scalable	Vector	Graphics	(SVG)	or	Web	Computer	Graphics	Metafile

(WebCGM)	formats.

FDO	supports	retrieval	and	update	of	spatial	and	non-spatial	GIS	feature	data
through	a	rich	classification	model	that	is	based	on	OpenGIS	and	ISO	standards.

An	overview	of	the	relationships	between	providers,	data	sources,	data	stores,
and	schemas	is	presented	in	the	FDO	Architecture	and	Providers	graphic.

For	more	detailed	information	about	the	providers,	see	the	appropriate	appendix
in	this	document.	Data	sources	and	data	stores	are	discussed	in	the	Establishing	a
Connection	chapter.	Schema	concepts	are	discussed	in	the	Schema	Management
chapter.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Developing	Applications
	
	
	

You	will	need	to	perform	several	major	tasks	in	using	the	FDO	API	to	develop	a
custom	application.	Each	of	these	tasks	breaks	down	into	a	number	of	more
detailed	coding	issues.

The	major	development	tasks	are:

Working	with	the	Build	Environment

Establishing	a	Connection

Schema	Management

Data	Maintenance

Creating	Queries

Using	Custom	Commands	(Provider-Specific)

These	tasks	are	explored	in	detail	in	the	chapters	that	follow.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Concepts
	
	
	

Before	you	can	work	properly	with	the	FDO	API,	you	need	to	have	a	good
understanding	of	its	basic,	underlying	concepts.	This	chapter	defines	the
essential	constructs	and	dynamics	that	comprise	the	FDO	API.	The	definitions	of
these	constructs	and	dynamics	are	grouped	into	two	interdependent	categories:

Data	Concepts.	Definitions	of	the	data	constructs	that	comprise	the
FDO	API

Operational	Concepts.	Definitions	of	the	operations	that	are	used	to
manage	and	manipulate	the	data.

Topics	in	this	section

Data	Concepts
Operational	Concepts

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Concepts
	
	
	

All	concepts	that	are	defined	in	this	section	relate	to	the	data	that	FDO	is
designed	to	manage	and	manipulate.

What	Is	a	Feature?

A	feature	is	an	abstraction	of	a	natural	or	man-made	real	world	object.	It	is
related	directly	or	indirectly	to	geographic	locations.	A	spatial	feature	has	one	or
more	geometric	properties.	For	example,	a	road	feature	might	be	represented	by
a	line,	and	a	hydrant	might	be	represented	by	a	point.	A	non-spatial	feature	does
not	have	geometry,	but	can	be	related	to	a	spatial	feature	which	does.	For
example,	a	road	feature	may	contain	a	sidewalk	feature	that	is	defined	as	not
containing	a	geometry.

What	Is	a	Schema?

A	schema	is	a	logical	description	of	the	data	types	used	to	model	real-world
objects.	A	schema	is	not	the	actual	data	instances	(that	is,	not	a	particular	road	or
land	parcel),	rather	it	is	metadata.	A	schema	is	a	model	of	the	types	of	data	that
would	be	found	in	a	data	store.	For	example,	a	schema	which	models	the	layout
of	city	streets	has	a	class	called	Road,	and	this	class	has	a	property	called	Name.
The	definition	of	Road	and	its	associated	classes	constitute	the	schema.

What	Is	a	Schema	Override?

A	schema	override	comprises	instructions	to	override	the	default	schema
mappings.	For	example,	an	RDBMS-type	FDO	provider	could	map	a	feature
class	to	a	table	of	the	same	name	by	default.	A	schema	override	might	map	the
class	to	a	differently	named	table,	for	example,	by	mapping	the	"pole"	class	to
the	"telco_pole"	table.

What	is	a	Schema	Mapping

A	Schema	Mapping	is	a	correspondence	between	a	Schema	Element	and	a
physical	object	in	a	data	store.	For	example,	OSGeo	FDO	Provider	for	MySQL
maps	each	Feature	Class	onto	a	table	in	the	MySQL	database	where	the	data
store	resides.	The	physical	structure	of	data	stores	for	each	FDO	provider	can
vary	greatly,	so	the	types	of	Schema	Mappings	can	also	vary	between	providers.
Each	provider	defines	a	set	of	default	schema	mappings.	For	example,	OSGeo
FDO	Provider	for	MySQL	maps	a	class	to	a	table	of	the	same	name	by	default.
These	defaults	can	be	overridden	by	specifying	Schema	Overrides.

What	Are	Elements	of	a	Schema?

A	schema	consists	of	a	collection	of	schema	elements.	In	the	FDO	API,	schema
elements	are	related	to	one	another	by	derivation	and	by	aggregation.	An
element	of	a	schema	defines	a	particular	type	of	data,	such	as	a	feature	class	or	a
property,	or	an	association.	For	example,	a	feature	class	definition	for	a	road
includes	the	class	name	(for	example,	Road),	and	the	class	properties	(for
example,	Name,	NumberLanes,	PavementType,	and	Geometry).

What	Is	a	Class	Type?

A	class	type	is	a	specialization	of	the	base	FDO	class	definition
(FdoClassDefinition).	It	is	used	to	represent	the	complex	properties	of	spatial
and	non-spatial	features.

What	is	a	Feature	Class?

A	feature	class	is	a	schema	element	that	describes	a	type	of	real-world	object.	It
includes	a	class	name	and	property	definitions,	including	zero	or	more	geometric
properties.	It	describes	the	type	of	data	that	would	be	included	in	object
instances	of	that	type.

What	Is	a	Property?

A	property	is	a	single	attribute	of	a	class	and	a	class	is	defined	by	one	or	more
property	definitions.	For	example,	a	Road	feature	class	may	have	properties
called	Name,	NumberLanes,	or	Location.	A	property	has	a	particular	type,	which
can	be	a	simple	type,	such	as	a	string	or	number,	or	a	complex	type	defined	by	a
class,	such	as	an	Address	type,	which	itself	is	defined	by	a	set	of	properties,	such
as	StreetNumber,	StreetName,	or	StreetType.

There	are	five	kinds	of	properties:	association	properties,	data	properties,
geometric	properties,	object	properties,	and	raster	properties.

Individual	properties	are	defined	in	the	following	sections.

What	Is	an	Association	Property?

The	FdoAssociationPropertyDefinition	class	is	used	to	model	a	peer-to-peer
relationship	between	two	classes.	This	relationship	is	defined	at	schema	creation
time	and	instantiated	at	object	creation	time.	The	association	property	supports
various	cardinality	settings,	cascading	locks,	and	differing	delete	rules.	An	FDO
filter	can	be	based	on	association	properties	and	FdoIFeatureReader	can	handle
associated	objects	through	the	GetObject()	method.

What	Is	a	Data	Property?

A	data	property	is	a	non-spatial	property.	An	instance	of	a	data	property	contains
a	value	whose	type	is	either	boolean,	byte,	date/time,	decimal,	single,	double,
Int16,	Int32,	Int64,	string,	binary	large	object,	or	character	large	object.

What	Is	Dimensionality?

Dimensionality,	and	the	concept	of	dimension,	has	two	different	meanings	in	the
discussion	of	geometry	and	geometric	property.

The	first	is	called	shape	dimensionality,	and	it	is	defined	by	the
FdoGeometricType	enumeration.	The	four	shapes	are	point	(0	dimensions),
curve	(1	dimensions),	surface	(2	dimensions),	and	solid	(3	dimensions).

The	other	is	called	ordinate	dimensionality,	and	it	is	defined	by	the
FdoDimensionality	enumeration.	There	are	four	ordinate	dimensions:	XY,	XYZ,
XYM,	and	XYZM.	M	stands	for	measure.

What	Is	a	Geometric	Property?

An	instance	of	a	geometric	property	contains	an	object	that	represents	a
geometry	value.	The	definition	of	the	geometric	property	may	restrict	an	object
to	represent	a	geometry	that	always	has	the	same	shape,	such	as	a	point,	or	it
could	allow	different	object	instances	to	have	different	dimensions.	For	example,
one	geometric	property	object	could	represent	a	point	and	another	could
represent	a	line.	Any	combination	of	shapes	is	permissible	in	the	specification	of
the	geometric	types	that	a	geometry	property	definition	permits.	The	default

geometric	property	specifies	that	an	object	could	represent	a	geometry	that	is	any
one	of	the	four	shapes.

With	respect	to	ordinate	dimensionality,	all	instances	of	a	geometric	property
must	have	the	same	ordinate	dimension.	The	default	is	XY.

Geometric	property	definitions	have	two	attributes	regarding	ordinate
dimensionality:	HasElevation	for	Z	and	HasMeasure	for	M.

What	is	a	Geometry?

A	geometry	is	represented	using	geometric	constructs	either	defined	as	lists	of
one	or	more	XY	or	XYZ	points	or	defined	parametrically,	for	example,	as	a
circular	arc.	While	geometry	typically	is	two-	or	three-dimensional,	it	may	also
contain	the	measurement	dimension	(M)	to	provide	the	basis	for	dynamic
segments.

The	geometry	types	are	denoted	by	the	FdoGeometryType	enumeration	and
describe	the	following:

Point

LineString	(one	or	more	connected	line	segments,	defined	by	positions	at
the	vertices)

CurveString	(a	collection	of	connected	circular	arc	segments	and	linear
segments)

Polygon	(a	surface	bound	by	one	outer	ring	and	zero	or	more	interior
rings;	the	rings	are	closed,	connected	line	segments,	defined	by	positions
at	the	vertices)

CurvePolygon	(a	surface	bound	by	one	outer	ring	and	zero	or	more
interior	rings;	the	rings	are	closed,	connected	curve	segments)

MultiPoint	(multiple	points,	which	may	be	disjoint)

MultiLineString	(multiple	LineStrings,	which	may	be	disjoint)

MultiCurveString	(multiple	CurveStrings,	which	may	be	disjoint)

MultiPolygon	(multiple	Polygons,	which	may	be	disjoint)

MultiCurvePolygon	(multiple	CurvePolygons,	which	may	be	disjoint)

MultiGeometry	(a	heterogenous	collection	of	geometries,	which	may	be
disjoint)

Most	geometry	types	are	defined	using	either	curve	segments	or	a	series	of
connected	line	segments.	Curve	segments	are	used	where	non-linear	curves	may
appear.	The	following	curve	segment	types	are	supported:

CircularArcSegment	(circular	arc	defined	by	three	positions	on	the	arc)

LineStringSegment	(a	series	of	connected	line	segments,	defined	by
positions	are	the	vertices)

There	are	currently	no	geometries	of	type	“solid”	(3D	shape	dimensionality)
supported.

The	FdoIConnection::GetGeometryCapabilities()	method	can	be	used	to	query
which	geometry	types	and	ordinate	dimensionalities	are	supported	by	a
particular	provider.

What	Is	an	Object	Property?

An	object	property	is	a	complex	property	type	that	can	be	used	within	a	class,
and	an	object	property,	itself,	is	defined	by	a	class	definition.	For	example,	the
Address	type	example	described	previously	in	the	Property	definition.	An	object
property	may	define	a	single	instance	for	each	class	object	instance	(for
example,	an	address	property	of	a	land	parcel),	or	may	represent	a	list	of
instances	of	that	class	type	per	instance	of	the	owning	class	(for	example,
inspection	records	as	a	complex	property	of	an	electrical	device	feature	class).

What	is	a	Raster	Property?

A	raster	property	defines	the	information	needed	to	process	a	raster	image,	for
example,	the	number	of	bits	of	information	per	pixel,	the	size	in	pixels	of	the	X
dimension,	and	the	size	in	pixels	of	the	Y	dimension,	needed	to	process	a	raster
image.

What	Is	a	Spatial	Context?

A	spatial	context	describes	the	general	metadata	or	parameters	within	which
geometry	for	a	collection	of	features	resides.	In	particular,	the	spatial	context
includes	the	definition	of	the	coordinate	system,	spheroid	parameters,	units,
spatial	extents,	and	so	on	for	a	collection	of	geometries	owned	by	features.

Spatial	context	can	be	described	as	the	“coordinate	system	plus	identity.”	Any
geometries	that	are	to	be	spatially	related	must	be	in	a	common	spatial	context.

The	identity	component	is	required	in	order	to	support	separate	workspaces,	such
as	schematic	diagrams,	which	are	non-georeferenced.	Also,	it	supports
georeferenced	cases.	For	example,	two	users	might	create	drawings	using	some
default	spatial	parameters	(for	example,	rectangular	and	10,000x10,000),
although	each	drawing	had	nothing	to	do	with	the	other.	If	the	drawings	were	put
into	a	common	database,	the	users	could	preserve	not	only	the	spatial
parameters,	but	also	the	container	aspect	of	their	data,	using	spatial	context.

For	more	information	about	spatial	context,	see	Spatial	Context.

What	is	a	Data	Store?

A	data	store	is	a	repository	of	an	integrated	set	of	objects.	The	objects	in	a	data
store	are	modeled	either	by	classes	or	feature	classes	defined	within	one	or	more
schemas.	For	example,	a	data	store	may	contain	data	for	both	a	LandUse	schema
and	a	TelcoOutsidePlant	schema.	Some	data	stores	can	represent	data	in	only	one
schema,	while	other	data	stores	can	represent	data	in	many	schemas	(for
example,	RDBMS-based	data	stores,	such	as	MySQL).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Operational	Concepts
	
	
	

The	concepts	that	are	defined	in	this	section	relate	to	the	FDO	operations	used	to
manage	and	manipulate	data.

What	Is	a	Command?

In	FDO,	the	application	uses	a	command	to	select	and	update	features,	define
new	types	of	feature	classes,	lock	features,	version	features,	and	perform	some
analysis	of	features.	Each	Command	object	executes	a	specific	type	of	command
against	the	underlying	data	store.	Interfaces	define	the	semantics	of	each
command,	allowing	them	to	be	well-defined	and	strongly	typed.	Because	FDO
uses	a	standard	set	of	commands,	providers	can	extend	existing	commands	and
add	new	commands,	specific	to	that	provider.	Feature	commands	execute	against
a	particular	connection	and	may	execute	within	the	scope	of	a	transaction.

An	FDO	command	is	a	particular	FDO	interface	that	is	used	by	the	application
to	invoke	an	operation	against	a	data	store.	A	command	may	retrieve	data	from	a
data	store	(for	example,	a	Select	command),	may	update	data	in	a	data	store	(for
example,	an	Update	or	Delete	command),	may	perform	some	analysis	(for
example,	an	Activate	Spatial	Context	command),	or	may	cause	some	other
change	in	a	data	store	or	session	(for	example,	a	Begin	Transaction	command).

What	Is	an	Expression?

An	expression	is	a	construct	that	an	application	can	use	to	build	up	a	filter.	An
expression	is	a	clause	of	a	filter	or	larger	expression.	For	example,	“Lanes	>=4
and	PavementType	=	'Asphalt'”	takes	two	expressions	and	combines	them	to
create	a	filter.

For	more	information	about	using	expressions	with	FDO,	see	Filter	and
Expression	Languages.

What	Is	a	Filter?

A	filter	is	a	construct	that	an	application	specifies	to	an	FDO	provider	to	identify
a	subset	of	objects	of	an	FDO	data	store.	For	example,	a	filter	may	be	used	to
identify	all	Road	type	features	that	have	2	lanes	and	that	are	within	200	metres
of	a	particular	location.	Many	FDO	commands	use	filter	parameters	to	specify
the	objects	to	which	the	command	applies.	For	example,	a	Select	command	uses
a	filter	to	identify	the	objects	that	the	application	wants	to	retrieve.	Similarly,	a
Delete	command	uses	a	filter	to	identify	the	objects	that	the	application	wants	to
delete	from	the	data	store.

For	more	information	about	using	filters	with	FDO,	see	Filter	and	Expression
Languages.

What	Is	Locking?

A	user	can	use	locking	to	gain	update	control	of	an	object	in	the	data	store	to	the
exclusion	of	other	users.	There	are	two	general	types	of	locks—transaction	locks
and	persistent	locks.	Transaction	locks	are	temporary	and	endure	only	for	the
duration	of	the	transaction	(see	What	Is	a	Transaction?).

Persistent	locks	applied	to	objects	by	a	user	remain	with	the	object	until	either
that	user	removes	those	locks	or	the	locks	are	removed	by	another	user	with	the
appropriate	authority.

What	Is	a	Transaction?

A	transaction	changes	the	data	store	in	some	way.	The	way	these	changes	affect
the	data	store	is	determined	by	the	transaction’s	properties.	For	example,	the
Atomic	property	specifies	that	either	all	changes	happen	or	non	happen.	In
transaction	processing	the	data	store	treats	a	series	of	commands	as	a	single
atomic	unit	of	change	to	that	data	store.	Either	all	changes	generated	by	the
commands	are	successful	or	the	whole	set	is	cancelled.	A	transaction	is	a	single
atomic	unit	of	changes	to	a	data	store.	The	application	terminates	a	transaction
with	either	a	“commit,”	which	applies	the	set	of	changes,	or	a	“rollback,”	which
cancels	the	set	of	changes.	Further,	the	data	store	may	automatically	roll	back	a
transaction	if	it	detects	a	severe	error	in	any	of	the	commands	within	the
transaction.	A	transaction	has	the	following	properties:

Atomic.	Either	all	changes	generated	by	the	commands	within	a
transaction	happen	or	none	happen.

Consistent.	The	transaction	leaves	the	data	store	in	a	consistent	state
regarding	any	constraints	or	other	data	integrity	rules.

Isolated.	Changes	being	made	within	a	transaction	by	one	user	are	not
visible	to	other	users	until	after	that	transaction	is	committed.

Durable.	After	a	transaction	is	completed	successfully,	the	changes	are
persistent	in	the	data	store	on	disk	and	cannot	be	lost	if	the	program	or
processor	fails.

What	Is	a	Long	Transaction?

A	long	transaction	(LT)	is	an	administration	unit	used	to	group	conditional
changes	to	objects.	Depending	on	the	situation,	such	a	unit	might	contain
conditional	changes	to	one	or	to	many	objects.	Long	transactions	are	used	to
modify	as-built	data	in	the	database	without	permanently	changing	the	as-built
data.	Long	transactions	can	be	used	to	apply	revisions	or	alternates	to	an	object.

What	Is	a	Root	Long	Transaction?

A	root	long	transaction	is	a	long	transaction	that	represents	permanent	data.	Any
long	transaction	has	a	root	long	transaction	as	an	ancestor	in	its	long	transaction
dependency	graph.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Development	Practices
	
	
	

This	chapter	explains	several	practices	to	follow	when	working	with	the	FDO
API	and	provides	examples	of	how	to	follow	these	practices.

Topics	in	this	section

Memory	Management
Collections
Exception	Handling
Exception	Messages
Managing	FdoPtr	Behaviors

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Memory	Management
	
	
	

Some	FDO	functions	(for	example,	the	Create	methods)	allocate	memory	when
they	are	called.	This	memory	needs	to	be	freed	to	prevent	memory	leaks.	All
destructors	on	FDO	classes	are	protected,	so	you	must	call	a	Release()	function
to	destroy	them	(thus	freeing	their	allocated	memory).	Each	class	inherits	from
the	FdoIDisposable	class,	which	defines	the	Release()	method	and	the
AddRef()	method.

In	addition,	these	classes	are	reference	counted,	and	the	count	is	increased	(by
AddRef())	when	you	retrieve	them	through	a	Get	function.	After	finishing	with
the	object,	you	need	to	release	it	(just	as	with	COM	objects).	The	object	is
destroyed	only	when	the	reference	count	hits	0.	Two	macros	are	defined	to	help
in	the	use	of	the	Release()	and	AddRef()	methods.

FDO_SAFE_RELEASE	(*ptr)

If	the	“*ptr”	argument	is	not	null,	FDO_SAFE_RELEASE	calls	the	release()
method	of	the	object	pointed	to	by	the	“*ptr”	argument	and	then	sets	the	local
pointer	to	the	object	to	NULL.	The	macro	definition	is	#define
FDO_SAFE_RELEASE(x)	{if	(x)	(x)->Release();	(x)	=

NULL;}.

FdoFeatureClass*	pBase	=	myClass->GetBaseClass();	

...	

//	Must	release	reference	added	by	GetBaseClass	when	done.	

FDO_SAFE_RELEASE(pBase);	

FDO_SAFE_ADDREF	(*ptr)

If	the	“*ptr”	argument	is	not	null,	FDO_SAFE_ADDREF	calls	the	AddRef()
method	of	the	object	pointed	to	by	the	“*ptr”	argument.	The	macro	definition	is
#define	FDO_SAFE_ADDREF(x)	((x	!=	NULL)	?	(x)-

>AddRef(),	(x):	(NULL)).

return	FDO_SAFE_ADDREF(value)returns	NULL	if	value	equals
NULL	or	increments	the	reference	count	of	the	object	that	value	points
to	and	returns	value.

m_list[index]	=	FDO_SAFE_ADDREF(value)	assigns	NULL
to	the	array	entry	if	value	is	NULL	or	increments	the	reference	count	of
the	object	that	value	points	to	and	assigns	value	to	the	array	entry.

FdoPtr

An	FdoPtr	smart	pointer	is	provided	to	help	manage	memory.	You	wrap	an
FDO	object	in	a	FdoPtr.	The	requirement	is	that	the	object’s	type	must	inherit
from	FdoIDisposable.	The	object	is	then	released	automatically	when	the
FdoPtr	goes	out	of	scope.	The	following	code	illustrates	how	to	use	FdoPtr:

FdoPtr<FdoFeatureClass>	pBase	=	myClass->GetBaseClass();	

...	

//	No	need	to	call	FDO_SAFE_RELEASE.

//	Before	it	is	destroyed,	pBase	calls	Release()	on	the	FdoFeatureClass	object

Note If,	for	some	reason,	you	wanted	to	use	FDO_SAFE_RELEASE	on	an
FdoPtr,	you	would	have	to	use	an	FdoPtr	method	to	get	a	pointer	to	the	object
that	FdoPtr	wraps	and	pass	that	pointer	to	FDO_SAFE_RELEASE.

You	can	use	FdoPtr	for	your	own	classes	by	inheriting	from	the	abstract	class
FdoIDisposable	and	providing	an	implementation	for	the	Dispose()
method	(typically	delete	this;).

FdoPtr	Typedefs

Typedefs	are	provided	that	define	identifiers	representing	Fdo	classes	wrapped
byFdoPtr.	An	example	is	typedef	FdoPtr<FdoClass>	FdoClassP.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Collections
	
	
	

You	can	use	FDO	collection	template	classes	to	store	your	own	objects.	The
requirements	for	your	collection	class	and	the	class	used	to	instantiate	the
template	are	the	same	as	those	for	wrapping	a	class	in	a	FdoPtr.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Exception	Handling
	
	
	

In	the	FDO	API,	FdoCommandException	class	is	the	exception	type	thrown
from	classes	in	the	Commands	package,	and	FdoConnectionException	class	is
the	exception	type	thrown	from	classes	in	the	Connections	package.	Both	of
these	exception	types	derive	from	a	language-level	exception	class	that	is
environment-specific.

All	exceptions	are	derived	from	the	FdoException	class.	To	catch	and	process
specific	exception	types,	nest	catch	statements	as	in	the	following	example:

try	{

...	code

}

		catch	(FdoCommandException	*ex){

				..	process	message

				}

		catch	(FdoException	*ex){

				..	process	message

				}

In	some	cases,	underneath	an	FDO	command,	the	FDO	level	throws	an
FdoException.	The	FDO	command	then	traps	the	FdoException	and	wraps	it	in
an	FdoCommandException	(or	FdoSchemaException	for	a	schema	command).
In	this	case,	several	messages	are	returned	by	one	exception.	The	following
example	shows	how	to	process	multiple	messages	from	one	exception:

catch	(FdoSchemaException*	ex)		{

		//	Loop	through	all	the	schema	messages

		FdoException*	currE	=	ex;

		while	(currE)	{

				CW2A	msg(currE->GetExceptionMessage());

				acutPrintf	("FdoConnectionException:	%s\n",	msg);

				currE	=	currE->GetCause();

An	application	function	may	need	to	catch	and	then	re-throw	exceptions	in	order
to	clean	up	memory.	However,	the	need	to	do	this	can	be	eliminated	by	using
FdoPtr.	The	following	example	cleans	up	memory	on	error:

FdoFeatureClass*	pBase	=	NULL;	

try	{	

pBase	=	myClass->GetBaseClass();	

...	

}	

catch	(...)	{	

FDO_SAFE_RELEASE(pBase);	

throw;	

}	

//	Must	release	reference	added	by	GetBaseClass	when	done.	

FDO_SAFE_RELEASE(pBase);	

The	catch	and	rethrow	is	unnecessary	when	FdoPtr	is	used:

FdoPtr<FdoFeatureClass>	pBase	=	myClass->GetBaseClass();	

...

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Exception	Messages
	
	
	

Exception	messages	are	localized.	On	Windows	the	localized	strings	are	in
resource-only	DLLs,	and	on	Linux	they	are	in	catalogs.	The	message	DLLs	are
in	the	bin	folder;	the	DLL	name	contains	Message	or	Msg.	The	catalog	files	are
in	the	/usr/local/fdo-3.2.0/nls	directory;	the	names	of	these	files	ends	in	.cat.
NLS	stands	for	National	Language	Support.

On	Linux	set	the	NLSPATH	environment	variable	so	that	the	runtime	code	can
locate	the	message	catalogs.	For	example,	export
NLSPATH=/usr/local/fdo-3.2.0/nls/%N.

On	Windows	you	do	not	have	do	anything	special	to	enable	the	runtime	code	to
locate	the	message	DLLs.

The	contents	of	the	exception	message	files	are	indexed.	When	you	call	one	of
the	FdoException::NLSGetMessage	methods	declared	in	Exception.h,	you
provide	a	message	number	argument.	You	may	also	provide	a	default	message
string	argument.	In	the	event	that	the	exception	message	resource	file	cannot	be
found,	the	default	message	is	subsituted	instead.	If	the	default	message	string	is
not	provided	and	the	resource	file	cannot	be	found,	the	message	number	is	used
as	the	exception	message.	Not	finding	the	resource	file	can	only	happend	on
Linux	and	only	if	the	NLSPATH	envrionment	variable	is	not	set.

The	following	two	examples,	when	called	on	Linux	with	the	NLSPATH
environment	variable	not	set,	show	the	use	of	the	default	message	and	the
message	number	in	the	exception	message.

The	following	is	an	example	of	using	the	default	string:	throw
FdoSchemaException::Create(NlsMsgGet1(FDORDBMS_333,

"Class	'%1$ls'not	found",	value->GetText()));

The	following	is	an	example	of	not	setting	the	default	string	and	using	the
message	number	instead:	FdoSchemaException*	pNewException	=
FdoSchemaException::Create(

FdoSmError::NLSGetMessage(FDO_NLSID(FDOSM_221),

pFeatSchema->GetName()),	pException);.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Managing	FdoPtr	Behaviors
	
	
	

The	topics	in	this	section	describe	several	ways	that	you	can	manager	FdoPtr
behavior.	For	more	information	about	managing	FdoPtr	behavior,	see	the	related
topics	“FdoPtr	<T>	Class	Template	Reference”	and	“FdoIDisposable	Class
Reference”	in	the	FDO	Reference	Help	and	The	Essential	FDO.

Chain	Calls

Do	not	chain	calls.	If	you	do,	returned	pointers	will	not	be	released.	For
example,	given	an	FdoClassDefinition*	pclassDef:

psz	=	pclassDef	->GetProperties()->GetItem(0)->GetName())	

The	above	code	would	result	in	two	memory	leaks.	Instead	use:

FdoPropertyDefinitionCollection*	pprops	=	pclassDef	->	GetProperties();

		FdoPropertyDefinition*	ppropDef	=	pprops->GetItem(0);

		psz	=	propDef->GetName();

		ppropDef->Release();

		pprops->Release();

or	(with	FdoPtr):

FdoPtr<FdoPropertyDefinitionCollection>	pprops	=	pclassDef->	GetProperties();

		FdoPtr<FdoPropertyDefinition>	ppropDef	=	pprops->	GetItem(0);

psz	=	propDef->GetName();

or	(also	with	FdoPtr):

psz	=	FdoPtr	<FdoPropertyDefinition>	(FdoPtr	<FdoPropertyDefinitionCollection>(pclassDef->GetProperties())->	GetItem(0))->GetName();

Assigning	Return	Pointer	of	an	FDO	Function	Call	to	a	Non-Smart
Pointer

If	you	are	assigning	the	return	pointer	of	an	FDO	function	call	to	a	non-smart

pointer,	then	you	should	assign	that	pointer	to	a	FdoPtr.	For	example:

FdoLineString*	P	=	gf.CreateLineString(...);

FdoPtr	<FdoLineString>	p2	=	FDO_SAFE_ADDREF(p);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Establishing	a	Connection
	
	
	

This	chapter	explains	how	to	establish	a	connection	to	an	FDO	provider	and
provides	a	connection	example.

Topics	in	this	section

Connection	Semantics
Establishing	a	Connection

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Connection	Semantics
	
	
	

Data	Sources	and	Data	Stores

The	FDO	API	uses	connection	semantics	to	implement	access	to	feature	schema
data.	The	term	data	store	is	used	to	refer	to	a	collection	of	zero	or	more	objects,
which	instantiate	class	definitions	belonging	to	one	or	more	FDO	feature
schema.	The	connection	is	to	a	data	store	because	that	is	where	data	objects	are
stored.	The	underlying	data	source	technologies	used	to	hold	data	stores	can	be
relational	databases,	such	as,	a	MySQL	database,	or	a	file-based	solution,	such	as
an	SDF	file.

The	mapping	of	a	data	store	to	data	source	technology	can	be	one-to-one	or
many-to-one.	For	example,	it	is

One-to-one	when	the	connection	is	made	by	way	of	the	OSGeo	FDO
Provider	for	ArcSDE	and	the	ArcSDE	server	is	using	an	Oracle
database.

Many-to-one	when	the	data	source	is	a	MySQL	database	and	the
connection	is	made	by	way	of	the	OSGeo	FDO	Provider	for	MySQL	(in
this	case,	the	data	store	is	like	a	container	within	a	container).

When	many-to-one	mapping	is	possible,	a	connection	can	be	made	in	one	or	two
steps.	For	more	information,	see	Establishing	a	Connection	and	The	Essential
FDO.

The	underlying	data	source	technologies	differ	in	the	connection	parameters
used	for	connecting	to	a	particular	provider.	The	values	for	these	parameters	are
generated	during	the	installation	and	configuration	of	the	container	technologies.
For	more	information	about	these	values	and	the	process	of	installing	and
configuring	the	associated	data	source	technologies,	see	the	appropriate
appendix	in	this	document	and	The	Essential	FDO.

Providers

You	connect	to	a	data	store	by	way	of	a	provider.

The	FDO	API	contains	a	registry	interface	that	you	can	use	to	register	or
deregister	a	provider.	See	the	class	FdoProviderRegistry	in
Inc/Fdo/ClientServices/ProviderRegistry.h.

The	providers	are	registered	during	the	initialization	of	the	FDO	SDK.	In	order
to	connect	to	a	provider,	you	will	need	the	name	of	the	provider	in	a	particular
format:	<Company/Foundation/Originator>.<Provider>.<Version>.	The
<Company/Foundation/Originator>	and	<Provider>	values	are	invariable.	For
specific	values,	see	The	Essential	FDO.

In	order	to	connect,	you	will	need	the	full	name	including	the	<Version>	value.
You	can	retrieve	the	full	name	from	the	registry	and	display	the	set	of	provider
names	in	a	connection	menu	list.	If,	for	whatever	reason,	you	deregister	a
provider,	save	the	registry	information	for	that	provider	in	case	you	want	to
reregister	it	again.	The	provider	object	returned	by	the	registry	has	a	Set()
method	to	allow	you	to	change	values.	However,	the	only	value	you	can	safely
change	is	the	display	name.	Sample	code	for	using	the	provider	registry	is
located	in	Establishing	a	Connection.

The	registry	contains	the	following	information	about	a	provider:

Name.	The	unique	name	of	the	feature	provider.	This	name	should	be	of
the	form	<Company/Foundation/Originator>.<Provider>.<Version>,	for
example,	Autodesk.Oracle.3.0	or	OSGeo.MySQL.3.0.

DisplayName.	A	user-friendly	display	name	of	the	feature	provider.	The
initial	values	of	this	property	for	the	pre-registered	providers	are
“Autodesk	FDO	Provider	for	Oracle”,	“OSGeo	FDO	Provider	for	SDF”,
etc.,	or	the	equivalent	in	the	language	of	the	country	where	the
application	is	being	used.

Description.	A	brief	description	of	the	feature	provider.	For	example,
the	the	OsGeo	FDO	Provider	for	SDF	description	is	“Read/write	access
to	Autodesk's	spatial	database	format,	a	file-based	personal	geodatabase
that	supports	multiple	features/attributes,	spatial	indexing,	and	file-
locking.”

Version.	The	version	of	the	feature	provider.	The	version	number	string
has	the	form	<VersionMajor>.<VersionMinor>.<BuildMajor>.
<BuildMinor>,	for	example,	3.0.0.0.

FDOVersion.	The	version	of	the	feature	data	objects	specification	to
which	the	feature	provider	conforms.	The	version	number	string	has	the
form	<VersionMajor>.<VersionMinor>.<BuildMajor>.<BuildMinor>,
for	example,	3.0.1.0.

libraryPath.	The	FULL	library	path	including	the	library	name	of	the
provider,	for	example,	<FDO	SDK	Install	Location>/bin/FdoRdbms.dll.

isManaged.	A	flag	indicating	whether	the	provider	is	a	managed	or
unmanaged	.NET	provider.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Establishing	a	Connection
	
	
	

As	mentioned	in	a	previous	section,	Connection	Semantics,	the	FDO	API	uses	a
provider	to	connect	to	a	data	store	and	its	underlying	data	source	technology.
These	data	source	technologies	must	be	installed	and	configured.	Certain	values
generated	during	data	source	installation	and	configuration	are	used	as
arguments	during	the	connection	process.	Because	the	FDO	API	does	not
provide	any	methods	to	automate	the	collection	and	presentation	of	these
configuration	values,	either	the	application	developer	must	request	the	user	to
input	these	configuration	values	during	the	connection	process,	or	the
application	developer	can	provide	an	application	configuration	interface,	which
would	populate	the	application	with	the	container	configuration	values	and	thus
allow	the	user	to	choose	them	from	lists.

Note For	more	information	about	connecting,	see	The	Essential	FDO.

A	connection	can	be	made	in	either	one	or	two	steps:

One-step	connection.	If	the	user	sets	the	required	connection	properties
and	calls	the	connection	object’s	Open()	method	once,	the	returned	state
is	FdoConnectionState_Open,	no	additional	information	is	needed.

Two-step	connection.	If	the	user	sets	the	required	connection	properties
and	calls	the	connection	object’s	Open()	method,	the	returned	state	is
FdoConnectionState_Pending,	additional	information	is	needed	to
complete	the	connection.	In	this	case,	the	first	call	to	Open()	has	resulted
in	the	retrieval	of	a	list	of	values	for	a	property	that	becomes	a	required
property	for	the	second	call	to	the	Open()	method.	After	the	user	has
selected	one	of	the	values	in	the	list,	the	second	call	to	Open()	should
result	in	FdoConnectionState_Open.

Connecting	to	a	data	store	by	way	of	the	MySQL	or	the	ArcSDE	provider,	for
example,	can	be	done	in	either	one	or	two	steps.	In	the	first	step,	the	data	store
parameter	is	not	required.	If	the	user	does	not	give	the	data	store	parameter	a
value,	the	FDO	will	retrieve	the	list	of	data	store	values	from	the	data	source	so

that	the	user	can	choose	from	them	during	the	second	step.	Otherwise	the	user
can	give	the	data	store	a	value	in	the	first	step,	and	assuming	that	the	value	is
valid,	the	connection	will	be	completed	in	one	step.

For	the	purpose	of	this	example,	let’s	assume	that	the	user	has	installed	MySQL
on	his	local	machine.	During	the	installation	he	was	prompted	to	assign	a
password	to	the	system	administrator	account	whose	name	is	‘root’.	He	set	the
password	to	‘test’.

The	following	steps	are	preliminary	to	establishing	a	connection:

1.	 Get	the	list	of	providers.

FdoPtr<FdoProviderRegistry>	registry	=	(FdoProviderRegistry	*)FdoFeatureAccessManager::GetProviderRegistry();

FdoProviderCollection	*	providers	=	registry->GetProviders();

2.	 Get	the	display	names	for	all	of	the	providers	in	the	registry.	An	example
of	a	display	name	might	be	OSGeo	FDO	Provider	for	MySQL.

FdoStringP	displayName;

FdoStringP	internalName;

FdoPtr<FdoProvider>	provider;

int	count	=	providers->GetCount();

for(int	i	=	0;	i	<	count;	i++)	{

		provider	=	providers->GetItem(i);

		internalName	=	provider->GetName();

		displayName	=	provider->GetDisplayName();

		//	add	displayName	to	your	list

}

3.	 Use	the	display	names	to	create	a	menu	list,	from	which	the	user	will
select	from	when	making	a	connection.

After	the	user	initiates	a	provider	display	name	from	the	connection	menu,	do
the	following:

1.	 Loop	through	the	providers	in	the	registry	until	you	match	the	display
name	selected	by	the	user	from	the	connection	menu	with	a	provider
display	name	in	the	registry	and	retrieve	the	internal	name	for	that
provider.	An	example	of	an	internal	could	be	OSGeo.MySQL.3.2.

FdoStringP	internalName	=	provider->GetName();

2.	 Get	an	instance	of	the	connection	manager.

FdoPtr<FdoConnectionManager>	connectMgr	=	(FdoConnectionManager	*)FdoFeatureAccessManager::GetConnectionManager();

3.	 Call	the	manager’s	CreateConnection()	method	using	the	provider
internal	name	as	an	argument	to	obtain	a	connection	object.

FdoPtr<FdoIConnection>	fdoConnection	=	connectMgr->CreateConnection(L”OsGeo.MySQL.3.2”);

4.	 Obtain	a	connection	info	object	by	calling	the	connection	object’s
GetConnectionInfo()	method.

FdoPtr<FdoIConnectionInfo>	info	=	fdoConnection->GetConnectionInfo();

5.	 Obtain	a	connection	property	dictionary	object	by	calling	the	connection
info	object’s	GetConnection	Properties()	method	and	use	this	dictionary
to	construct	a	dialog	box	requesting	connection	information	from	the
user.

FdoPtr<FdoIConnectionPropertyDictionary>	ConnDict	=	info->GetConnectionProperties();

6.	 Get	a	list	of	connection	property	names	from	the	dictionary	and	use	this
list	to	get	information	about	the	property.	The	following	code	loops
through	the	dictionary	getting	all	of	the	possible	information.
Note An	attempt	to	get	the	values	of	an	enumerable	property	is	made	only
if	the	property	is	required.

FdoInt32	count	=	0;

FdoString	**	names	=	NULL;

FdoStringP	name;

FdoStringP	localname;

FdoStringP	val;

FdoStringP	defaultVal;

bool	isRequired	=	false;

bool	isProtected	=	false;

bool	isFilename	=	false;

bool	isFilepath	=	false;

bool	isDatastorename	=	false;

bool	isEnumerable	=	false;

FdoInt32	enumCount	=	0;

FdoString	**	enumNames	=	NULL;

FdoStringP	enumName;

names	=	ConnDict->GetPropertyNames(count);

for(int	i	=	0;	i	<	count;	i++)	{

		name	=	names[i];

		val	=	dict->GetProperty(name);

		defaultVal	=	dict->GetPropertyDefault(name);

		localname	=	dict->GetLocalizedName(name);

		isRequired	=	dict->IsPropertyRequired(name);

		isProtected	=	dict->IsPropertyProtected(name);

		isFilename	=	dict->IsPropertyFileName(name);

		isFilepath	=	dict->IsPropertyFilePath(name);

		isDatastorename	=	dict->IsPropertyDatastoreName(name);

		isEnumerable	=	dict->IsPropertyEnumerable(name);

		if	(isEnumerable)	{

				if	(isRequired)	{

						enumNames	=	dict->EnumeratePropertyValues(name,	enumCount);

						for(int	j	=	0;	j	<	enumCount;	j++)	{

								enumName	=	enumNames[j];

						}

				}

		}

}

7.	 Use	the	GetLocalizedName	method	to	obtain	the	name	of	the	property	to
present	to	the	user.	Calls	to	dictionary	methods	need	the	value	of	the
internal	name	in	the	string	array	returned	by	GetPropertyNames().	So
when	the	user	selects	the	localized	name	in	the	menu,	the	program	must
map	the	localized	name	to	the	internal	name.

8.	 Use	the	IsPropertyRequired	method	to	determine	whether	to	mark	the
line	as	either	required	or	optional;	the	dialog	box	handler	should	not
permit	the	user	to	click	OK	in	the	dialog	box	unless	a	required	field	has	a
value.

9.	 Use	the	IsPropertyProtected	method	to	determine	whether	the	dialog	box
handler	should	process	the	field	value	as	protected	data,	for	example,	a
password.

10.	 Use	the	IsPropertyEnumerable	and	IsRequired	methods	to	determine
whether	to	call	the	EnumeratePropertyValues	method	to	get	a	list	of
valid	values.
Note Call	the	EnumeratePropertyValues	method	only	if	both	methods
return	true.	Otherwise	be	prepared	to	catch	an	exception	if	there	is	no
pending	connection.	The	assumption	is	that	a	connection	exists	and	the
program	is	retrieving	values	from	the	data	store.

As	shown	in	the	code	lines	above,	the	EnumeratePropertyValues	method	takes	a
property	name	and	an	updates	integer	argument	and	returns	a	string	array.	The

updates	integer	will	say	how	many	values	are	in	the	returned	array.	Present	the
list	of	choices	to	the	user.

If	the	property	is	not	enumerable,	present	the	values	returned	by	either	the
GetProperty	or	GetPropertyDefault	methods	to	the	user.

Now	that	the	user	has	seen	the	set	of	properties	in	the	dictionary,	s/he	can	set	the
required	properties.	A	property	is	set	by	calling	the	dictionary’s	SetProperty
method.	The	MySQL	connection	property	names	are	Username,	Password,
Service,	and	DataStore.	The	dictionary	tells	us	that	Username,	Password,	and
Service	are	required	properties	and	that	DataStore	is	not	required.	Let’s	connect
to	the	MySQL	as	root.

ConnDict->SetProperty(L”Username”,	L”root”);

ConnDict->SetProperty(L”Password”,	L”test”);

ConnDict->SetProperty(L”Service”,	L”localhost”);

Note fdoconnection->GetConnectionString()	returns
Username=root;Password=test;Service=localhost;.
fdoconnection-

>SetConnectionString(L”Username=root;Password=test;Service=localhost;”);

would	set	the	connection	properties	to	the	same	values	as	the	three	calls	above	to
the	connection	dictionary’s	SetProperty()	method.

Open	the	connection.

FdoConnectionState	state	=	fdoConnection->Open();

The	value	of	state	is	FdoConnectionState_Pending.	An	examination	of	the
connection	dictionary	will	reveal	that	the	DataStore	property	is	now	required.

When	the	user	checks	the	command	capabilities,	he	discovers	that	he	can	create
a	data	store.

FdoPtr<FdoICommandCapabilities>	commandCapabilities	=	fdoConnection->GetCommandCapabilities();

bool	bSupportsCreateDatastore	=	false;

FdoInt32	numCommands;

FdoIn32	*	commands	=	commandCapabilities->GetCommands(numCommands);

for(int	i	=	0;	i	<	numCommands;	i++)	{

		switch(commands[i])	{

				case	FdoCommandType_CreateDataStore	:	bSupportsCreateDatastore	=	true;

		}

}

He	can	use	the	pending	connection	to	MySQL	to	create	the	datastore.	Use	the
connection	object	to	create	the	FdoICreateDataStore	command	object.	Use	the
command	object	to	create	the	FdoIDataStorePropertyDictionary	object	and	find
out	from	this	object	what	properties	you	must	define.	Use	the	dictionary	object
to	set	the	required	properties	and	then	execute	the	command	to	create	the
‘fdo_user’	data	store.	The	only	required	property	is	DataStore.

Note The	FdoIDataPropertyDictionary	and	the
FdoIConnectionPropertyDictionary	classes	are	both	derived	from
FdoIPropertyDictionary.	The	code	used	above	to	access	the
FdoIConnectionPropertyDictionary	object	works	for	the
FdoIDataPropertyDictionary.

FdoPtr<FdoICreateDataStore>	createDataStoreCmd	=	dynamic_cast<FdoICreateDataStore	*>	(fdoConnection->CreateCommand(FdoCommandType_CreateDataStore));

FdoPtr<FdoIDataStorePropertyDictionary>	createDsDict	=	createDataStoreCmd->GetDataStoreProperties();

createDsDict->SetProperty(L”DataStore”,	L”fdo_user”);

createDataStoreCmd->Execute();

Now	use	the	connection	property	dictionary	to	set	the	DataStore	property	to
‘fdo_user’	and	call	the	Open()	method	on	the	connection	object.	This	method
should	return	FdoConnectionState_Open.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Capabilities
	
	
	

This	chapter	explains	the	Capabilities	API	and	provides	the	code	for	retrieving
the	various	FDO	provider	capability	categories,	such	as	connection	or	schema
capabilities.	You	can	use	this	this	API	to	determine	the	capabilities	of	a
particular	provider.

Topics	in	this	section

What	Is	the	Capabilities	API?
Connection	Capabilities
Schema	Capabilities
Command	Capabilities
Expression	Capabilities
Filter	Capabilities
Geometry	Capabilities
Raster	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	the	Capabilities	API?
	
	
	

You	can	use	this	API	and	its	various	capability	categories	to	determine	the
capabilities	of	a	particular	provider,	for	example,	FDO	Provider	for	Oracle.	The
capabilities	methods	can	be	used	to	execute	code	conditionally,	depending	on
which	provider	is	being	used	and	which	capability	is	being	exercised.

The	capabilities	of	an	FDO	provider	are	grouped	in	the	following	categories:

Connection

Schema

Command

Expression

Filter

Geometry

Raster

Note Topology-related	samples	are	provided	for	informational	use	only.	There	is
no	interface	or	support	provided.	Autodesk	reserves	the	right	to	change	the
software	related	to	the	content	herein.

The	capabilities	are	retrieved	by	using	methods	belonging	to	an	FdoIConnection
object.	First,	you	connect	to	the	provider.	Then,	you	query	its	capabilities.

The	sections	in	this	chapter	describe	how	to	retrieve	the	capabilities	for	each	of
the	categories.	In	each	section,	the	code	fragment	assumes	that	you	have
connected	to	the	provider	and	declared	the	following	connection	object:

#include	<fdo.h>

FdoIConnection	*	connection;

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Connection	Capabilities
	
	
	

Topics	in	this	section

Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Code
	
	
	

Declarations

The	object	and	variable	declarations	are	the	following:

FdoIConnectionCapabilities	*	connectionCapabilities;

//	FdoThreadCapability	is	an	enumerated	type

FdoThreadCapability	threadCapability;

//	FdoSpatialContextExtentType	is	an	enumerated

type

FdoSpatialContextExtentType	*	spatialContextExtentTypes;

FdoInt32	numSpatialContexts;

//	FdoLockType	is	an	enumerated	type

FdoLockType	*	lockTypes;

FdoInt32	numLockTypes;

bool	supportsLocking;

bool	supportsTimeout;

bool	supportsTransactions;

bool	supportsLongTransactions;

bool	supportsSQL;

bool	supportsConfiguration;

Method	calls

The	method	calls	are	the	following:

connectionCapabilities	=	connection->GetConnectionCapabilities();

//	GetThreadCapability()	returns	a	single

value

threadCapability	=	connectionCapabilities->GetThreadCapability();

//	GetSpatialContextTypes()	returns	a	list

spatialContextExtentTypes	=	connectionCapabilities->

		GetSpatialContextTypes(numSpatialContexts);

//	loop	through	the	spatialContextExtentTypes

supportsLocking	=	connectionCapabilities->SupportsLocking();

//	GetLockTypes()	returns	a	list

lockTypes	=	connectionCapabilities->GetLockTypes(numLockTypes);

//	loop	through	the	lockTypes

supportsTimeout	=	connectionCapabilities->SupportsTimeout();

supportsTransactions	=	connectionCapabilities->

		SupportsTransactions();

supportsLongTransactions	=	connectionCapabilities->

		SupportsLongTransactions();

supportsSQL	=	connectionCapabilities->SupportsSQL();

supportsConfiguration	=	connectionCapabilities->

		SupportsConfiguration();

Reference

For	more	information,	see	these	FDO	API	Reference	Help	topics:

class	FdoIConnectionCapabilities

enum	FdoLockType

enum	FdoSpatialContextExtentType

enum	FdoThreadCapability

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Capabilities
	
	
	

Topics	in	this	section

Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Code
	
	
	

Declarations

The	object	and	variable	declarations	are	the	following:

FdoISchemaCapabilities	*	schemaCapabilities;

//	FdoClassType	is	an	enumerated	type

FdoClassType	*	classTypes;

//	FdoDataType	is	an	enumerated	type

FdoDataType	*	dataTypes;

bool	supportsInheritance;

bool	supportsMultipleSchemas;

bool	supportsObjectProperties;

bool	supportsAssociationProperties;

bool	supportsSchemaOverrides;

bool	supportsNetworkModel;

bool	supportsAutoIdGeneration;

bool	supportsDataStoreScopeUniqueIdGeneration;

FdoDataType	*	autoGeneratedTypes;

bool	supportsSchemaModification;

Method	Calls

The	method	calls	are	the	following:

schemaCapabilities	=	connection->GetSchemaCapabilities();

//	this	returns	a	list	of	FdoClassType

classTypes	=	schemaCapabilities->GetClassTypes();

//	loop	through	the	classTypes

//	this	returns	a	list	of	FdoDataType

dataTypes	=	schemaCapabilities->GetDataTypes();

//	loop	through	the	dataTypes

supportsInheritance	=	schemaCapabilities->SupportsInheritance();

supportsMultipleSchemas	=	schemaCapabilities->

		SupportsMultipleSchemas();

supportsObjectProperties	=	schemaCapabilities->

		SupportsObjectProperties();

supportsAssociationProperties	=	schemaCapabilities->

		SupportsAssociationProperties();

supportsSchemaOverrides	=	schemaCapabilities->

		SupportsSchemaOverrides();

supportsNetworkModel	=	schemaCapabilities->SupportsNetworkModel();

supportsAutoIdGeneration	=	schemaCapabilities->

		SupportsAutoIdGeneration();

supportsDataStoreScopeUniqueIdGeneration	=	schemaCapabilities->

		SupportsDataStoreScopeUniqueIdGeneration();

//	this	returns	a	list	of	FdoDataType

autoGeneratedTypes	=	schemaCapabilities->

		GetSupportedAutoGeneratedTypes();

supportsSchemaModification	=	schemaCapabilities->

		SupportsSchemaModification();

References

For	more	information,	see	these	FDO	API	Reference	Help	topics:

class	FdoISchemaCapabilities

enum	FdoClassType

enum	FdoDataType

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Command	Capabilities
	
	
	

Topics	in	this	section

Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Code
	
	
	

Declarations

The	object	and	variable	declarations	are	the	following:

FdoICommandCapabilities	*	commandCapabilities;

//	this	will	contain	values	of	type	FdoCommandType

and

//	possibly	values	of	type	FdoRdbmsCommandType,

which	are

//	provider-specific	commands

FdoInt32	*	commandTypes;

bool	supportsParameters;

bool	supportsTimeout;

bool	supportsSelectExpressions;

bool	supportsSelectFunctions;

bool	supportsSelectDistinct;

bool	supportsSelectOrdering;

bool	supportsSelectGrouping;

Method	Calls

The	method	calls	are	the	following:

commandCapabilities	=	connection->GetCommandCapabilities();

//	this	returns	a	list	of	command	types

commandTypes	=	commandCapabilities->GetCommands();

//	loop	through	the	commandTypes

supportsParameters	=	commandCapabilities->SupportsParameters();

supportsTimeout	=	commandCapabilities->SupportsTimeout();

supportsSelectExpressions	=	commandCapabilities->

		SupportsSelectExpressions();

supportsSelectFunctions	=	commandCapabilities->

		SupportsSelectFunctions();

supportsSelectDistinct	=	commandCapabilities->

		SupportsSelectDistinct();

supportsSelectOrdering	=	commandCapabilities->

		SupportsSelectOrdering();

supportsSelectGrouping	=	commandCapabilities->

		SupportsSelectGrouping();

References

For	more	information,	see	these	FDO	API	Reference	Help	topics:

class	FdoICommandCapabilities

enum	FdoCommandType

enum	FdoRdbmsCommandType

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Expression	Capabilities
	
	
	

Topics	in	this	section

Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Code
	
	
	

Declarations

The	object	and	variable	declarations	are	the	following:

FdoIExpressionCapabilities	*	expressionCapabilities;

FdoInt32	numExpressionTypes	=	0;

//	this	is	an	enumerated	type

FdoExpressionType	*	expressionTypes;

FdoInt32	numFunctionDefinitions	=	0;

FdoFunctionDefinitionCollection	*	functions;

FdoFunctionDefinition	*	functionDefinition;

FdoString	*	functionName;

FdoString	*	functionDescription;

FdoInt32	numArgumentDefinitions	=	0;

FdoReadOnlyArgumentDefinitionCollection	*	arguments;

FdoArgumentDefinition	*	argumentDefinition;

FdoString	*	argumentName;

FdoString	*	argumentDescription;

FdoDataType	argumentType;

Method	Calls

The	method	calls	are	the	following:

expressionCapabilities	=	connection->GetExpressionCapabilities();

//	this	returns	a	list	of	expression	types

expressionTypes	=	expressionCapabilities->GetExpressionTypes();

//	loop	through	the	expression	Types

functions	=	expressionCapabilities->GetFunctions();

numFunctionDefinitions	=	functions->GetCount();

for	(int	i	=	0;	i	<	numFunctionDefinitions;	i++)	{

		functionDefinition	=	functions->GetItem(i);

		functionName	=	functionDefinition->GetName();

		functionDescription	=	functionDefinition->GetDescription();

		arguments	=	functionDefinition->GetArguments();

		numArgumentDefinitions	=	arguments->GetCount();

		for	(int	j	=	0;	j	<	numArgumentDefinitions;	j++)	{

				argumentDefinition	=	arguments->GetItem(j);

				argumentName	=	argumentDefinition->GetName();

				argumentDescription	=	argumentDefinition->GetDescription();

				argumentType	=	argumentDefinition->GetDataType();

		}

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Filter	Capabilities
	
	
	

Topics	in	this	section

Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Code
	
	
	

Declarations

The	object	and	variable	declarations	are	the	following:

FdoIFilterCapabilities	*	filterCapabilities;

FdoInt32	numConditionTypes	=	0;

FdoConditionType	*	conditionTypes;

FdoInt32	numSpatialOperations	=	0;

FdoSpatialOperations	*	spatialOperations;

FdoInt32	numDistanceOperations	=	0;

FdoDistanceOperations	*	distanceOperations;

bool	supportsGeodesicDistance;

bool	supportsNonLiteralGeometricOperations;

Method	Calls

The	method	calls	are	the	following:

filterCapabilities	=	connection->GetFilterCapabilities();

conditionTypes	=	filterCapabilities->

		GetConditionTypes(numConditionTypes);

//	loop	through	conditionTypes

spatialOperations	=	filterCapabilities->

		GetSpatialOperations(numSpatialOperations);

//	loop	through	spatialOperations

distanceOperations	=	filterCapabilities->

		GetDistanceOperations(numSpatialOperations);

//	loop	through	distanceOperations

supportsGeodesicDistance	=	filterCapabilities->

		SupportsGeodesicDistance();

supportsNonLiteralGeometricOperations	=	filterCapabilities->

		SupportsNonLiteralGeometricOperations();

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometry	Capabilities
	
	
	

Topics	in	this	section

Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Code
	
	
	

Declarations

The	object	and	variable	declarations	are	the	following:

FdoIGeometryCapabilities	*	geometryCapabilities;

FdoInt32	numGeometryTypes	=	0;

FdoGeometryType	*	geometryTypes;

FdoInt32	numGeometryComponnentTypes	=	0;

FdoGeometryComponentType	*	geometryComponentTypes;

FdoInt32	dimensionalities	=	0;

Method	calls

The	method	calls	are	the	following:

geometryCapabilities	=	connection->GetGeometryCapabilities();

geometryTypes	=	geometryCapabilities->

		GetGeometryTypes(numGeometryTypes);

//	loop	through	geometryTypes

geometryComponentTypes	=	geometryCapabilities->

		GetGeometryComponentTypes(numGeometryComponentTypes);

//	loop	through	geometryComponentTypes

dimensionalities	=	geometryCapabilities->GetDimensionalities();

//	FdoDimensinality_XY	is	0	and	so	is	always

a	given

if	(dimensionalities	&	FdoDimensionality_Z)	{

		//	do	whatever

}

if	(dimensionalities	&	FdoDimensionality_M)	{

		//	do	whatever

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Raster	Capabilities
	
	
	

Topics	in	this	section

Code

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Code
	
	
	

Declarations

The	object	and	variable	declarations	are	the	following:

FdoIRasterCapabilities	*	rasterCapabilities;

bool	supportsRaster;

bool	supportsStitching;

bool	supportsSubsampling;

bool	supportsDataModel;

FdoRasterDataModel	*	rgbRasterDataModel;

Method	calls

The	method	calls	are	the	following:

rasterCapabilities	=	connection->GetRasterCapabilities();

supportsRaster	=	rasterCapabilities->SupportsRaster();

if	(supportsRaster)	{

		supportsStitching	=	rasterCapabilities->SupportsStitching();

		supportsSubsampling	=	rasterCapabilities->SupportsSubsampling();

		rgbRasterDataModel	=	FdoRasterDataModel::Create();

		rgbRasterDataModel->

				SetDataModelType(FdoRasterDataModelType_RGB);

		rgbRasterDataModel->SetBitsPerPixel(64);

		rgbRasterDataModel->

				SetOrganization(FdoRasterDataOrganization_Image);

		rgbRasterDataModel->SetTileSizeX(64);

		rgbRasterDataModel->SetTileSizeY(128);

		supportsDataModel	=	rasterCapabilities->

				SupportsDataModel(rgbRasterDataModel);

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Management
	
	
	

This	chapter	describes	how	to	create	and	work	with	schemas	and	explains	some
issues	related	to	schema	management.	For	example,	you	can	use	the	FDO	feature
schema	to	specify	how	to	represent	geospatial	features.

Topics	in	this	section

Schema	Package
Schema	Overrides
Working	with	Schemas
FDOFeatureClass
FDOClass
Non-Feature	Class	Issues
Modifying	Models
Schema	Element	States
Rollback	Mechanism
FDO	XML	Format
Creating	and	Editing	a	GML	Schema	File
Schema	Management	Examples

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Package
	
	
	

The	FDO	feature	schema	provides	a	logical	mechanism	for	specifying	how	to
represent	geospatial	features.	FDO	providers	are	responsible	for	mapping	the
feature	schema	to	some	underlying	physical	data	store.	The	FDO	feature	schema
is	based	somewhat	on	a	subset	of	the	OpenGIS	and	ISO	feature	models.	It
supports	both	non-spatial	features	and	spatial	features.

The	Schema	package	contains	a	collection	of	classes	that	define	the	logical
feature	schema.	These	classes	can	be	used	to	set	up	a	feature	schema	and	to
interrogate	the	metadata	from	a	provider	using	an	object-oriented	structure.	The
logical	feature	schema	provides	a	logical	view	of	geospatial	feature	data	that	is
fully	independent	from	the	underlying	storage	schema.	All	data	operations	in
FDO	are	performed	against	the	classes	and	relationships	defined	by	the	logical
feature	schema.	For	example,	different	class	types	in	the	feature	schema	are	used
to	describe	different	types	of	geospatial	objects	and	spatial	features.

Base	Properties

All	classes	in	the	feature	schema	support	the	concept	of	base	properties,	which
are	properties	that	are	pre-defined	either	by	the	FDO	API	or	by	a	specific	FDO
feature	provider.	For	example,	all	classes	in	the	schema	have	two	base
properties:	ClassName	and	SchemaName.	These	properties	can	be	used	to	query
across	an	inheritance	hierarchy	or	to	process	the	results	of	heterogeneous
queries.	FDO	feature	providers	can	also	predefine	base	properties.	The	following
base	properties	are	predefined	by	the	FDO	API:

Property	Name Required Description

SchemaName Y Name	of	the	schema	to
which	objects	of	the	class
belong;	read-only	string.

ClassName Y Name	of	the	class	that

defines	the	object;	read-
only	string.

RevisionNumber N Revision	number	of	the
object;	read-only	64-bit
integer.
Note Some	providers	may
use	this	property	to	support
optimistic	locking.

Cross-Schema	References

Some	FDO	feature	providers	may	support	multiple	schemas.	For	these	providers,
the	feature	schema	supports	the	concept	of	cross-schema	references	for	classes.
This	means	that	a	class	in	one	schema	may	derive	from	a	class	in	another
schema,	relate	to	a	class	in	another	schema,	or	contain	an	object	property
definition	that	is	based	on	a	class	in	another	schema.

Parenting	in	the	Schema	Classes

The	feature	schema	object	model	defined	in	the	FDO	API	supports	full
navigation	through	parenting.	That	is,	once	a	schema	element	is	added	to	an
FdoFeatureSchema	class,	it	can	navigate	the	object	hierarchy	upward	to	the	root
FdoFeatureSchema	and,	from	there,	to	any	other	element	in	the	feature	schema.
This	parenting	support	is	fully	defined	in	the	FdoSchemaElement	abstract	base
class.

When	inserting	features	that	have	object	collections,	the	parent	object	instance
must	be	identified	when	inserting	the	child	objects	(for	example,	a	parent	class
“Road”	has	an	object	property	called	“sidewalks”	of	type	“Sidewalk”).	For	more
information,	see	Data	Maintenance.

Physical	Mappings

Each	feature	provider	maps	the	logical	feature	schema	to	an	underlying	physical
data	store.	Some	feature	providers	may	provide	some	level	of	control	over	how
the	logical	schema	gets	mapped	to	the	underlying	physical	storage.	For	example,
an	RDBMS-based	feature	provider	may	allow	table	and	column	names	to	be

specified	for	classes	and	properties.	Since	this	is	entirely	provider-dependent,	the
FDO	API	simply	provides	abstract	classes	for	passing	physical	schema	and	class
mappings	to	the	provider	(FdoPhysicalSchemaMapping,
FdoPhysicalClassMapping,	FdoPhysicalPropertyMapping,	and
FdoPhysicalElementMapping,	respectively).	The	implementation	of	these
abstract	classes	is	up	to	each	feature	provider.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Overrides
	
	
	

Using	schema	overrides,	FDO	applications	can	customize	the	mappings	between
Feature	(logical)	Schemas	and	the	Physical	Schema	of	the	provider	data	store.

Schema	overrides	are	provider-specific	because	different	FDO	providers	support
FDO	data	stores	with	widely	different	physical	formats.	Therefore,	the	types	of
schema	mappings	in	these	overrides	also	vary	between	providers.	For	example,
an	RDBMS-type	provider	might	provide	a	mapping	to	index	a	set	of	columns	in
a	class	table.	However,	other	providers	would	not	necessarily	be	able	to	work
with	the	concept	of	an	index.	For	information	about	schema	overrides	support	by
a	specific	provider,	see	the	appropriate	appendix	in	this	document	and	The
Essential	FDO.

Note Some	providers	support	only	default	schema	mappings.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Working	with	Schemas
	
	
	

There	are	three	primary	operations	involved	with	schema	management:

Creating	a	schema

Describing	a	schema

Modifying	a	schema

Creating	a	Schema

The	following	basic	steps	are	required	to	create	a	schema	(some	steps	are
optional;	some	may	be	done	in	an	alternate	order	to	achieve	the	same	result):

Use	the	FdoFeatureSchema::Create(“SchemaName”,	“FeatureSchema
Description”)	method	to	create	a	schema.

Use	the	FdoFeatureSchema::GetClasses()	method	to	return	a	class
collection.

Use	the	FdoClass::Create(“className”,	“classDescription”)	or
FdoFeatureClass::Create(“className”,	“classDescription”)	method	to
create	FdoClass	or	FdoFeatureClass	type	objects.

Use	the	FdoClassCollection::Add(class)	method	to	add	FdoClass	or
FdoFeatureClass	objects	to	the	class	collection.

Use	the	FdoGeometricPropertyDefinition::Create(“name”,
“Description”)	method	to	create	FdoGeometryProperty.

Use	the	FdoDataPropertyDefinition::Create(“name”,	“Description”)
method	to	create	FdoDataProperty.

Use	the	FdoObjectPropertyDefinition::Create(“name”,	“Description”)
method	to	create	FdoObjectProperty.

Use	the	FdoClassDefinition::GetProperties()	and	Add(property)	methods

to	add	property	to	class	definition.

Use	the	FdoIApplySchemaCommand::SetFeatureSchema(feature
schema)	method	to	set	the	schema	object	for	the
IFdoApplySchemaCommand.

Use	the	FdoAssociationPropertydefinition	class	to	represent	the
association	between	two	classes.	The	class	of	the	associated	class	must
already	be	defined	in	the	feature	schema	and	cannot	be	abstract.

Use	the	FdoIApplySchemaCommand::Execute()	method	to	execute
changes	to	the	feature	schema.

For	an	example	of	schema	creation,	see	Example:	Creating	a	Feature	Schema.

Use	the	FdoClassDefinition::GetIdentityProperties()	and	Add(Property	Object)
methods	to	set	the	property	as	FdoClass	or	FdoFeatureClass	Identifier.	FDO
allows	multiple	Identifiers	for	both	types	of	classes,	although	Identifiers	have
slight	differences	in	both	cases.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDOFeatureClass
	
	
	

FdoFeatureClass	is	a	class	that	defines	features.	In	the	case	of	GIS,	they	would
often	be	spatial	features,	having	some	sort	of	geometry	associated	with	them.	In
most	providers,	FdoFeatureClass	requires	a	unique	identifier	to	distinguish	the
features.

However,	there	are	identifiers	only	if	no	base	class	exists.	If	the	base	class	has	an
identifier,	the	child	class	does	not	have	one.	You	cannot	set	an	identifier	to	the
child	class.	Any	class	definition	that	has	a	base	class	cannot	also	have	any
identity	properties	because	it	inherits	from	the	base	class.

Therefore,	you	cannot	send	an	identifier	when	a	feature	class	is	a	child	since	it
always	inherits	the	identifier	from	the	base	class.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDOClass
	
	
	

This	class	is	used	for	non-spatial	data.	It	can	act	as	a	stand-alone	class,	where	it
would	have	no	association	with	any	other	class,	or	if	the	FdoClass	is	being	used
as	an	ObjectProperty,	it	can	be	used	to	define	properties	of	some	other	FdoClass
or	FdoFeatureClass.

ObjectProperty	Types

ObjectProperties	have	the	following	types:

Value

Collection

OrderedCollection

The	Value	ObjectProperty	type	has	a	relationship	of	one-to-one,	providing	a
single	value	for	each	property.

The	Collection	and	OrderedCollection	ObjectProperty	types	have	a	one-to-many
relationship,	where	many	ObjectProperties	may	be	associated	with	one	property.
Ordered	Collections	can	be	stored	in	an	ascending	or	descending	order

At	least	one	Identifier	will	be	required	if	the	FdoClass	is	to	be	used	as	a	stand-
alone	Class.

All	Identifiers	for	FdoDataType_Int64	must	not	be	Read-Only,	since
none	of	these	will	be	an	auto-generated	property	value.

If	creating	multiple	Identifiers,	all	Identifiers	must	be	set	to	NOT	NULL.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Non-Feature	Class	Issues
	
	
	

A	non-feature	class	in	FDO	can	be	created	as	a	stand-alone	class,	a	contained
class,	or	both.	As	a	contained	class,	it	defines	a	property	of	another	class	or
feature	class	(see	FdoFeatureClass	and	FdoClassType	Global	Enum).	How	this
non-feature	class	is	created	affects	the	way	the	data	is	inserted,	queried,	and
updated.

Stand-alone	Class

This	type	of	class	stores	non-feature	data	(for	example,	manufacturers).	The
FdoClassType_Class	must	be	created	with	one	or	more	identity	properties	(see
FdoObjectPropertyDefinition),	which	is	required	in	order	that	the	class	has	a
physical	container	(that	is,	a	table	in	the	RDBMS)	associated	with	it.	If	the	class
is	created	without	specifying	an	IdentityProperty,	only	the	definition	is	stored	in
the	metadata,	which	prevents	any	direct	data	inserts.

Contained	Class

This	type	of	class	stores	non-feature	data	that	defines	a	property	of	another	class
or	feature	class	(for	example,	Sidewalk	could	be	a	property	of	a	Road	feature
class;	the	Sidewalk	class	defines	the	Road.Sidewalk	property).	In	this	case,	the
FdoClassType_Class	does	not	need	to	be	created	with	one	or	more	identity
properties,	although	it	can	be.

Class	With	IdentityProperty	Used	as	ObjectProperty

This	type	of	class	reacts	like	a	stand-alone	class;	however,	with	this	type,	it	is
possible	to	do	direct	data	inserts.	It	can	also	be	populated	through	a	container
class	(for	example,	Road.Sidewalk)	since	it	defines	an	object	property	(see
FdoObjectPropertyDefinition).	If	this	class	is	queried	directly,	only	the	data
inserted	into	the	class	as	a	stand-alone	is	returned.	The	data	associated	with	the
ObjectProperty	can	only	be	queried	through	the	container	class	(for	example,
Road.Sidewalk).

Class	Without	a	Defined	IdentityProperty	Used	as	ObjectProperty

Because	this	class	has	no	defined	IdentityProperty,	it	can	only	be	populated
through	the	container	class	(for	example,	Road.Sidewalk)	since	it	defines
ObjectProperty.	This	class	cannot	be	queried	directly.	The	data	associated	with
the	object	property	can	only	be	queried	through	the	container	class	(for	example,
Road.Sidewalk).	As	an	object	property,	it	is	defined	as	one	of	the	following:

Value	type	property.	Does	not	need	any	identifier	since	it	has	a	one-to-
one	relationship	with	the	container	class.

Collection	type	property.	Requires	a	local	identifier,	which	is	an
identifier	defined	when	creating	the	ObjectProperty	object.

Ordered	Collection	type	property.	Requires	a	local	identifier,	which	is
an	identifier	defined	when	creating	the	ObjectProperty	object.

When	defining	either	a	Collection	or	Ordered	Collection	type	ObjectProperty,
you	must	set	an	IdentityProperty	attribute	for	that	object	property.	This
ObjectClass.IdentityProperty	acts	only	as	a	local	identifier	compared	to	the
IdentityProperty	set	at	the	class	level.	As	a	local	identifier,	it	acts	to	uniquely
identify	each	item	within	each	collection	(for	example,	if	the	local	identifier	for
Road.Sidewalk	is	Side,	there	can	be	multiple	sidewalks	with	Side=”Left”	but
only	one	per	Road).

Describing	a	Schema

Use	the	FdoIDescribeSchema::Execute	function	to	retrieve	an
FdoFeatureSchemaCollection	in	order	to	obtain	any	information	about	existing
schema(s).	The	FdoFeatureSchemaCollection	consists	of	all	FdoFeatureSchemas
in	the	data	store	and	can	be	used	to	obtain	information	about	any	schema	object,
including	FdoFeatureSchema,	FdoClass,	FdoFeatureClass,	and	their	respective
properties.	The	following	functions	return	the	main	collections	required	to	obtain
information	about	all	schema	objects:

FdoFeatureSchema::GetClasses	method	obtains	FdoClass	and
FdoFeatureClasses.

FdoClassDefinition::GetProperties	method	obtains	a
FdoPropertyDefinitionCollection.

FdoClassDefinition::GetBaseProperties	method	obtains	a

FdoPropertyDefinitionCollection	of	the	properties	inherited	from	the
base	classes.

Note Even	if	your	schema	has	no	base	classes	(inheritance),	all	classes	will	inherit
some	properties	from	system	classes.

Use	these	functions	throughout	the	application	to	obtain	any	information	about
schema	objects.	For	example,	in	order	to	insert	data	into	a	class,	you	must	use
these	functions	to	determine	what	data	type	is	required.	Description	of	the	data	is
separate	from	actions.

The	example	in	the	following	link	is	a	simple	function	that	shows	how	to	use
FdoIDescribeSchema	and	loop	through	the	schema	and	class	containers	to	search
for	duplicate	class	names.	It	searches	all	schemas	to	ensure	that	the	class	name
does	not	exist	in	any	schema	in	the	data	store.	Class	names	must	be	unique
across	the	entire	FDO	database.

For	a	schema	description	example,	see	Example:	Describing	a	Schema	and
Writing	It	to	an	XML	File	No	label	.

FDO	Schema	Element	Class	Diagram

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e2369.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

Modifying	Models
	
	
	

Add	schema	elements	to	a	model	by	inserting	them	into	the	appropriate
collection.

Elements	are	removed	from	the	model	by	using	either	of	the	following	methods:

Call	the	FdoSchemaElement::Delete()	method.	This	flags	the	element	for
deletion	when	the	changes	are	accepted	(generally	through
FdoIApplySchema),	but	the	element	remains	a	member	of	all	collections
until	that	time.

Remove	the	element	from	the	appropriate	collection	via	the
FdoSchemaCollection::Remove()	or	FdoSchemaCollection::RemoveAt()
methods.	This	immediately	disassociates	the	element	from	the
collection.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Element	States
	
	
	

All	elements	within	the	model	maintain	a	state	flag.	This	flag	can	be	retrieved	by
calling	FdoSchemaElement::GetElementState(),	but	it	cannot	be	directly	set.
Instead,	its	state	changes	in	reaction	to	the	changes	made	to	the	model:

Unchanged.	When	a	schema	model	is	retrieved	via
FdoIDescribeSchema,	all	elements	are	initially	marked	Unchanged.

Detached.	Removing	an	element	from	an	owning	collection	sets	its	state
to	Detached.

Deleted.	Calling	the	Delete()	method	on	an	element	sets	its	state	to
Deleted.

Added.	Placing	an	element	within	a	collection	marks	the	element	as
Added.

Modified.	When	adding	or	removing	a	sub-element,	such	as	a	property
element	from	a	class,	the	class	element	state	will	be	changed	to
Modified.

Additionally,	when	an	element	that	is	contained	by	another	element	is	changed	in
any	way,	the	containing	element	is	also	marked	as	Modified.	So,	for	example,	if
a	new	value	is	added	to	the	SchemaAttributeDictionary	of	the	“Class3”	element
in	our	model,	both	the	“Class3”	FdoClass	object	and	the	FdoFeatureSchema
object	would	be	marked	as	Modified.

The	state	flags	are	maintained	until	the	changes	are	accepted,	that	is,	when
IApplySchema	is	executed.	At	that	time,	all	elements	marked	Deleted	are
released	and	all	other	elements	are	set	to	Unchanged.

Note When	you	remove	an	element	from	an	owning	collection,	its	state	is	marked
as	Detached.	All	collections	currently	in	FDO	are	owning	collections,	except	for
one,	the	collections	FdoClassDefinition::GetIdentityProperties().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Rollback	Mechanism
	
	
	

The	FdoFeatureSchema	contains	a	mechanism	that	allows	you	to	“roll	back”
model	changes	to	the	last	accepted	state.	For	example,	a	model	retrieved	via
FdoIDescribeSchema	can	have	classes	added,	attributes	deleted,	or	names	and
default	values	changed.	All	of	these	changes	are	thrown	out	and	the	model
returned	to	its	unmodified	state	by	calling	FdoFeatureSchema::RejectChanges().

The	converse	of	this	operation	is	the	FdoFeatureSchema::AcceptChanges()
method,	which	removes	all	of	the	elements	with	a	status	of	Deleted	and	sets	the
state	flag	of	all	other	elements	to	Unchanged.	Generally,	this	method	is	only
invoked	by	FDO	provider	code	after	it	has	processed	an
FdoIApplySchema::Execute()	command.	Normal	FDO	clients	should	not	call
this	method	directly.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	XML	Format
	
	
	

FDO	feature	schemas	can	be	written	to	an	XML	file.	The	FdoFeatureSchema
and	FdoFeatureSchemaCollection	classes	support	the	FdoXmlSerializable
interface.	The	sample	code	shows	an	FdoFeatureSchema	object	calling	the
WriteXml()	method	to	generate	an	XML	file	containing	the	feature	schema
created	by	the	sample	code.

FDO	feature	schemas	can	also	be	read	from	an	XML	file.	The
FdoFeatureSchemaCollection	class	supports	the	FdoXmlDeserializable	interface.
The	sample	code	shows	an	FdoFeatureSchemaCollection	object	calling	the
ReadXml()	method	to	read	a	set	of	feature	schemas	into	memory	from	an	XML
file.	The	code	shows	the	desired	schema	being	retrieved	from	the	collection	and
applied	to	the	data	store.

The	XML	format	used	by	FDO	is	a	subset	of	the	Geography	Markup	Language
(GML)	standardized	by	the	Open	GIS	Consortium	(OGC).	One	thing	shown	in
the	sample	code	is	a	round-trip	conversion	from	FDO	feature	schema	to	GML
schema	back	to	FDO	feature	schema.	To	accomplish	this	round-trip,	the
ReadXml()	method	supports	a	superset	of	the	GML	that	is	written	by	the
WriteXml()	method.

The	following	table	specifies	the	mapping	of	FDO	feature	schema	elements	to
GML	elements	and	attributes.	This	mapping	is	sufficient	to	understand	the	XML
file	generated	from	the	schema	defined	by	the	sample	code.	It	also	provides	a
guide	for	writing	a	GML	schema	file	by	hand.	This	file	can	then	be	read	in	and
applied	to	a	data	store.	For	more	information,	see	Example:	Creating	a	Schema
Read	In	from	an	XML	File.

Another	form	of	round-trip	translation	would	be	from	a	GML	schema	produced
by	another	vendor’s	tool	to	an	FDO	feature	schema,	and	then	back	to	a	GML
schema.	However,	the	resemblance	the	of	resulting	GML	schema	to	the	original
GML	schema	might	vary	from	only	roughly	equivalent	to	being	exactly	the
same.

Map	FDO	Element	to	GML	Schema	Fragment

FDO	Element GML	Schema	Fragment

FeatureSchema <xs:schema	xmlns:xs=”http://www.w3.org/2001/XMLSchema”

		targetNamespace=”http://<customer_url>/<FeatureSchemaName>”

		xmlns:fdo=”http://fdo.osgeo.org/isd/schema”

		xmlns:gml=”http://www.opengis.net/gml”

		xmlns:<FeatureSchemaName>=”http://<customer_url>/<FeatureSchemaName>”

		elementFormDefault=”qualified”

		attributeFormDefault=”unqualified”

>

		{	see	<MetaData>	}

		{		optional	xs:import	element	to	enable	schema	validation

		<xs:import	namespace="http://fdo.osgeo.org/schema"	schemaLocation="<FDO	SDK	Install	Location>/docs/XmlSchema/FdoDocument.xsd"/>

		}

		{	<one	xs:element	and/or	xs:complexType	per	class>	}

</xs:schema>

ClassDefinition
(with	identity
properties)

<xs:element	name=”<className>”

		type=”<className>Type”

		abstract=”<true	|	false>”

		substitutionGroup=”gml:_Feature”

>

		<xs:key	name=”<className>Key”>

				<xs:selector	xpath=”.//<className>”/>

				<xs:field	xpath=”<identityProperty1Name>”/>

				<xs:field	xpath=”...”/>

				<xs:field	xpath=”<identityProperty<n>Name>”

		</xs:key>

</xs:element>

FeatureClass <xs:element	...see	ClassDefinition	(with	identity	properties)...</xs:element>

<xs:complexType	name=”<className>Type”

		abstract=”<true	|	false>”/>

		{	see	FeatureClass.GeometryProperty	}

>

		{	see	<MetaData>	}

		<xs:complexContent>

				<xs:extension	base=”{baseClass}	?

						{baseClass.schema.name}:{baseClass.name}	:

						‘gml:AbstractFeatureType’	“

				>

						<xs:sequence>

								{	list	of	properties;	see	DataProperty,	GeometricProperty	}

						</xs:sequence>

				</xs:extension>

		</xs:complexContent>

</xs:complexType>

FeatureClass.
GeometryProperty

<!--	these	attributes	belong	to	the	xs:complexType	element	-->

fdo:geometryName=”<geometryPropertyName>”

fdo:geometricTypes=”<list	of	FdoGeometricTypes>”

fdo:geometryReadOnly=”<true	|	false>”

fdo:hasMeasure=”<true	|	false>”

fdo:hasElevation=”<true	|	false>”

fdo:srsName=”<spatialContextName>”/>

DataProperty
(decimal	or	string)

<!--

		minOccurs	attribute	generated	only	if	value	is	1

		default	attribute	generated	only	if	a	default	value	exists

		fdo:readOnly	attribute	generated	only	if	value	is	true

-->

<xs:element	name=”<propertyName>”

		minOccurs=”{isNullable	?	0	:	1}”

		default=”<defaultValue>”

		fdo:readOnly=”<true	|	false>”

>

		{	see	<MetaData>	}

		<xs:simpleType>

				{	see	DataType	String	or	DataType	Decimal	}

		</xs:simpleType>

</xs:element>

DataProperty
(other	type)

<xs:element	name=”<propertyName>”

		type=”<datatype>”

		minOccurs=”{isNullable	?	0	:	1}”

		default=”<defaultValue>”

		fdo:readOnly=”<true	|	false>”

>

		{	see	<MetaData>	}

</xs:element>

DataType	String <xs:restriction	base=”xs:string”>

		<xs:maxLength	value=”<length>”/>

</xs:restriction>

DataType	Decimal <xs:restriction	base=”xs:decimal”>

		<xs:totalDigits	value=”<precision>”/>

		<xs:fractionDigits	value=”<scale>”/>

</xs:restriction>

GeometricProperty
(not	a	defining
FeatureClass
GeometryProperty)

<xs:element	name=”<propertyName>”

		type=”gml:AbstractGeometryType”

		fdo:geometryName=”<propertyName>”

		fdo:geometricTypes=”<list	of	FdoGeometricTypes>”

		fdo:geometryReadOnly=”<true	|	false>”

		fdo:hasMeasure=”<true	|	false>”

		fdo:hasElevation=”<true	|	false>”

		fdo:srsName=”<spatialContextName>”/>

>

		{	see	<MetaData>	}

</xs:element>

MetaData <!--	the	pattern	referenced	in	the	xs:schema	element	for	FeatureSchema-->

<xs:annotation>

		<xs:documentation>{description	arg	to	static	FdoFeatureSchema::Create()}</xs:documentation>

</xs:annotation>

<!--	the	pattern	referenced	in	the	xs:element	element	for	DataProperty	-->

<xs:annotation>

		<xs:documentation>{description	arg	to	static	FdoDataPropertyDefinition::Create()}</xs:documentation>

</xs:annotation>

<!--

		the	pattern	referenced	in	the	xs:element	element	for	a	non-feature-defining

		GeometricProperty

-->

<xs:annotation>

		<xs:documentation>{description	arg	to	static	FdoGeometricPropertyDefinition::Create()}</xs:documentation>

</xs:annotation>

<!--	the	pattern	referenced	in	the	xs:complexType	element	for	FeatureClass	-->

<xs:annotation>

		<xs:documentation>{description	arg	to	static	FdoFeatureClass::Create()}</xs:documentation>

		<xs:appinfo	source=”<uri>”/>

		<xs:documentation>{description	arg	to	static	FdoGeometricPropertyDefinition::Create()}</xs:documentation>

</xs:annotation>

Map	FDO	Datatype	to	GML	Type

FDO	Datatype GML	Type

Boolean xs:boolean

Byte fdo:Byte

DateTime xs:dateTime

Double xs:double

Int16 fdo:Int16

Int32 fdo:Int32

Int64 fdo:Int64

Single xs:float

BLOB xs:base64Binary

CLOB xs:string

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Creating	and	Editing	a	GML	Schema	File
	
	
	

The	sample	in	this	section	illustrates	the	creation	of	a	GML	schema	file
containing	the	definition	of	an	FDO	feature	schema	that	contains	one	feature.
The	name	of	this	file	will	have	the	standard	XML	schema	extension	name,	.xsd.
This	means	that	it	contains	only	one	schema	and	that	the	root	element	is
xs:schema.	The	ReadXml()	method	will	take	a	filename	argument	whose
extension	is	either	.xsd	or	.xml.	In	the	latter	case,	the	file	could	contain	many
schema	definitions.	If	it	does,	each	schema	is	contained	in	an	xs:schema
element,	and	all	xs:schema	elements	are	contained	in	the	fdo:DataStore	element.
If	there	is	only	one	schema	in	the	.xml	file,	then	the	fdo:DataStore	element	is	not
used,	and	the	root	element	is	xs:schema.

You	may	want	to	validate	the	schema	that	you	create.	To	do	so,	you	must	include
the	optional	xs:import	line	specified	in	the	GML	schema	fragment	for
FeatureSchema.

The	sample	feature	implements	a	table	definition	for	the	Buildings	feature	in	the
Open	GIS	Consortium	document	98-046r1.	This	table	definition	is	expressed	in
an	XML	format	on	page	14	of	the	document	and	is	reproduced	as	follows:

<ogc-sfsql-table>

		<table-definition>

				<name>buildings</name>

				<column-definition>

						<name>fid</name>

						<type>INTEGER</type>

						<constraint>NOT	NULL</constraint>

						<constraint>PRIMARY	KEY</constraint>

				</column-definition>

				<column-definition>

						<name>address</name>

						<type>VARCHAR(64)</type>

				</column-definition>

				<column-definition>

						<name>position</name>

						<type>POINT</type>

				</column-definition>

				<column-definition>

						<name>footprint</name>

						<type>POLYGON</type>

				<column-definition>

		</table-definition>

Add	GML	for	the	FDO	Feature	Schema

Start	with	the	skeleton	GML	for	an	FDO	Feature	Schema	with	the	<MetaData>
reference	replaced	by	the	valid	pattern:

<xs:schema	xmlns:xs=”http://www.w3.org/2001/XMLSchema”

		targetNamespace=”http://<customer_url>/<FeatureSchemaName>”

		xmlns:fdo=”http://fdo.osgeo.org/schema”

		xmlns:gml=”http://www.opengis.net/gml”

		xmlns:<FeatureSchemaName>=”http://<customer_url>/<FeatureSchemaName>”

		elementFormDefault=”qualified”

		attributeFormDefault=”unqualified”

>

		<xs:annotation>

				<xs:documentation>

						{description	arg	to	static	FdoFeatureSchema::Create()}

				</xs:documentation>

		</xs:annotation>

		{	<one	xs:element	and/or	xs:complexType	per	class>	}

</xs:schema>

For	<customer_url>	substitute	“fdo_customer”.	For	<FeatureSchemaName>
substitute	“OGC980461FS”,	and	for	{description	arg	...	}	substitute	“OGC
Simple	Features	Specification	for	SQL.”

Add	GML	for	an	FDO	Feature	Class

Start	with	the	GML	that	is	already	written	and	add	the	skeleton	for	an	FDO
Feature	Class,	which	includes	the	skeleton	for	a	class	definition	with	identity
properties.	The	<MetaData>	is	replaced	with	the	valid	pattern.

<xs:schema	xmlns:xs=”http://www.w3.org/2001/XMLSchema”

		targetNamespace=”http://fdo_customer/OGC980461FS”

		xmlns:fdo=”http://fdo.osgeo.org/schema”

		xmlns:gml=”http://www.opengis.net/gml”

		xmlns:OGC980461FS=”http://fdo_customer/OGC980461FS”

		elementFormDefault=”qualified”

		attributeFormDefault=”unqualified”

>

		<xs:annotation>

				<xs:documentation>OGC	Simple	Features	Specification	for

						SQL</xs:documentation>

		</xs:annotation>

		<xs:element	name=”<className>”

				type=”<className>Type”

				abstract=”<true	|	false>”

				substitutionGroup=”gml:_Feature”

		>

				<xs:key	name=”<className>Key”>

						<xs:selector	xpath=”.//<className>”/>

						<xs:field	xpath=”<identityProperty1Name>”/>

				</xs:key>

		</xs:element>

		<xs:complexType	name=”<className>Type”

				abstract=”<true	|	false>”/>

				fdo:geometryName=”<geometryPropertyName>”

				fdo:geometricTypes=”<list	of	FdoGeometricTypes>”

				fdo:geometryReadOnly=”<true	|	false>”

				fdo:hasMeasure=”<true	|	false>”

				fdo:hasElevation=”<true	|	false>”

				fdo:srsName=”<spatialContextName>”/>

		>

				<xs:annotation>

						<xs:documentation>{description	arg	to	static

								FdoFeatureClass::Create()}</xs:documentation>

						<xs:appinfo	source=”<uri>”/>

						<xs:documentation>{description	arg	to	static

								FdoGeometricPropertyDefinition::Create()}

						</xs:documentation>

				</xs:annotation>

				<xs:complexContent>

				<xs:extension	base=”{baseClass}	?

						{baseClass.schema.name}:{baseClass.name}	:

						‘gml:AbstractFeatureType’	“

				>

								<xs:sequence>

										{	list	of	properties;	see	DataProperty,	GeometricProperty	}

								</xs:sequence>

						</xs:extension>

				</xs:complexContent>

		</xs:complexType>

</xs:schema>

You	can	make	the	following	changes:

For	<className>	substitute	“buildings”.

Set	the	value	of	the	xs:element	abstract	attribute	to	false.

For	<identityPropertyName>	substitute	“fid”.	A	data	property	whose
name	is	“fid”	will	be	added.

Set	the	value	of	the	xs:complexType	abstract	attribute	to	false.

For	<geometryPropertyName>	substitute	“footprint”.

For	<list	of	FdoGeometricTypes>	substitute	“surface”.

Set	the	values	of	fdo:geometryReadOnly,	fdo:hasMeasure,	and
fdo:hasElevation	to	false.

For	<spatialContextName>	substitute	“SC_0”.

For	{description	arg	to	FdoFeatureClass::Create()}	substitute	“OGC	98-
046r1	buildings”.

For	<uri>	substitute	“http://fdo.osgeo.org/schema”.

For	{description	arg	to	FdoGeometricPropertyDefinition::Create()}
substitute	“a	polygon	defines	a	building	perimeter”.

This	class	has	no	base	class	so	set	the	value	of	the	xs:extension	base
attribute	to	‘gml:AbstractFeatureType’.

Add	GML	for	Property	Definitions

An	integer	data	property	whose	name	is	“fid”	will	be	added.	This	property	is
already	identified	as	an	identity	property	in	the	xs:key	element.	A	string	data
property	whose	name	is	“name”	and	a	geometry	property	whose	name	is
“position”	will	also	be	added.

<xs:schema	xmlns:xs=”http://www.w3.org/2001/XMLSchema”

		targetNamespace=”http://fdo_customer/OGC980461FS”

		xmlns:fdo=”http://fdo.osgeo.org/schema”

		xmlns:gml=”http://www.opengis.net/gml”

		xmlns:OGC980461FS=”http://fdo_customer/OGC980461FS”

		elementFormDefault=”qualified”

		attributeFormDefault=”unqualified”

>

		<xs:annotation>

				<xs:documentation>OGC	Simple	Features	Specification	for

				SQL</xs:documentation>

		</xs:annotation>

		<xs:element	name=”buildings”

				type=”buildingsType”

				abstract=”false”

				substitutionGroup=”gml:_Feature”

		>

				<xs:key	name=”buildingsKey”>

						<xs:selector	xpath=”.//buildings”/>

						<xs:field	xpath=”fid”/>

				</xs:key>

		</xs:element>

		<xs:complexType	name=”buildingsType”

				abstract=”false”/>

				fdo:geometryName=”footprint”

				fdo:geometricTypes=”surface”

				fdo:geometryReadOnly=”false”

				fdo:hasMeasure=”false”

				fdo:hasElevation=”alse”

				fdo:srsName=”SC_0”/>

		>

				<xs:annotation>

						<xs:documentation>OGC	98-046r1	buildings

						</xs:documentation>

						<xs:appinfo	source=”http://fdo.osgeo.org/schema”/>

						<xs:documentation>a	polygon	defines	the	perimeter	of	a

								building</xs:documentation>

				</xs:annotation>

				<xs:complexContent>

				<xs:extension	base=”gml:AbstractFeatureType“

				>

								<xs:sequence>

										<xs:element	name=”<propertyName>”

												type=”<datatype>”

												minOccurs=”{isNullable	?	0	:	1}”

												default=”<defaultValue>”

												fdo:readOnly=”<true	|	false>”

										>

												<xs:annotation>

														<xs:documentation>{description	arg	to	static

																FdoDataPropertyDefinition::Create()}

																</xs:documentation>

												</xs:annotation>

										</xs:element>

										<xs:element	name=”<propertyName>”

												minOccurs=”{isNullable	?	0	:	1}”

												default=”<defaultValue>”

												fdo:readOnly=”<true	|	false>”

										>

												<xs:annotation>

														<xs:documentation>{description	arg	to	static

																FdoDataPropertyDefinition::Create()}

														</xs:documentation>

												</xs:annotation>

												<xs:simpleType>

														<xs:restriction	base=”xs:string”>

																<xs:maxLength	value=”<length>”/>

														</xs:restriction>

												</xs:simpleType>

										</xs:element>

										<xs:element	name=”<propertyName>”

												ref=”gml:_Geometry”

												fdo:geometryName=”<propertyName>”

												fdo:geometricTypes=”<list	of	FdoGeometricTypes>”

												fdo:geometryReadOnly=”<true	|	false>”

												fdo:hasMeasure=”<true	|	false>”

												fdo:hasElevation=”<true	|	false>”

												fdo:srsName=”<spatialContextName>”/>

										>

												<xs:annotation>

														<xs:documentation>{description	arg	to	static

																FdoGeometricPropertyDefinition::Create()}

														</xs:documentation>

												</xs:annotation>

										</xs:element>

								</xs:sequence>

						</xs:extension>

				</xs:complexContent>

		</xs:complexType>

</xs:schema>

You	can	make	the	following	changes:

For	the	first	data	property	<propertyName>	substitute	“fid”.

For	the	first	data	property	<dataType>	substitute	“fdo:int32”.

Do	not	include	the	minOccurs	or	default	attributes	because	the	value	of
minOccurs	is	0,	which	is	the	default,	and	there	is	no	<defaultValue>.

Set	the	fdo:readOnly	attribute	for	“fid”	to	false.

Set	the	content	for	xs:documentation	for	“fid”	to	“feature	id”.

For	the	second	data	property	<propertyName>	substitute	“address”.

Do	not	include	the	minOccurs	or	default	attributes	because	the	value	of
minOccurs	is	0,	which	is	the	default,	and	there	is	no	<defaultValue>.

Set	the	fdo:readOnly	attribute	for	“name”	to	false.

Set	the	content	for	xs:documentation	for	“address”	to	“address	of	the
building”.

For	<length>	substitute	“64”.

For	the	geometry	property	<propertyName>	substitute	“position”.

For	<list	of	FdoGeometricTypes>	substitute	“point”.

Set	the	values	of	fdo:geometryReadOnly,	fdo:hasMeasure,	and
fdo:hasElevation	to	false.

For	<spatialContextName>	substitute	“SC_0”.

For	{description	arg	to	FdoGeometricPropertyDefinition::Create()}
substitute	“position	of	the	building”.

The	Final	Result

After	all	the	required	substitutions,	the	GML	for	the	schema	containing	the
Buildings	feature	is	as	follows:

<xs:schema	xmlns:xs=”http://www.w3.org/2001/XMLSchema”

		targetNamespace=”http://fdo_customer/OGC980461FS”

		xmlns:fdo=”http://fdo.osgeo.org/schema”

		xmlns:gml=”http://www.opengis.net/gml”

		xmlns:OGC980461FS=”http://fdo_customer/OGC980461FS”

		elementFormDefault=”qualified”

		attributeFormDefault=”unqualified”

>

		<xs:annotation>

				<xs:documentation>OGC	Simple	Features	Specification	for

						SQL</xs:documentation>

		</xs:annotation>

		<xs:element	name=”buildings”

				type=”buildingsType”

				abstract=”false”

				substitutionGroup=”gml:_Feature”

		>

				<xs:key	name=”buildingsKey”>

						<xs:selector	xpath=”.//buildings”/>

						<xs:field	xpath=”fid”/>

				</xs:key>

		</xs:element>

		<xs:complexType	name=”buildingsType”

				abstract=”false”/>

				fdo:geometryName=”footprint”

				fdo:geometricTypes=”surface”

				fdo:geometryReadOnly=”false”

				fdo:hasMeasure=”false”

				fdo:hasElevation=”false”

				fdo:srsName=”SC_0”/>

		>

				<xs:annotation>

						<xs:documentation>OGC	98-046r1	buildings

						</xs:documentation>

						<xs:appinfo	source=”http://fdo.osgeo.org/schema”/>

						<xs:documentation>a	polygon	defines	the	perimeter	of	a

								building</xs:documentation>

				</xs:annotation>

				<xs:complexContent>

				<xs:extension	base=”gml:AbstractFeatureType“

				>

								<xs:sequence>

										<xs:element	name=”fid”

												type=”fdo:int32”

												fdo:readOnly=”false”

										>

												<xs:annotation>

														<xs:documentation>feature	id

														</xs:documentation>

												</xs:annotation>

										</xs:element>

										<xs:element	name=”address”

												fdo:readOnly=”false”

										>

												<xs:annotation>

														<xs:documentation>address	of	the	building

														</xs:documentation>

												</xs:annotation>

												<xs:simpleType>

														<xs:restriction	base=”xs:string”>

																<xs:maxLength	value=”64”/>

														</xs:restriction>

												</xs:simpleType>

										</xs:element>

										<xs:element	name=”position”

												ref=”gml:_Geometry”

												fdo:geometryName=”position”

												fdo:geometricTypes=”point”

												fdo:geometryReadOnly=”false”

												fdo:hasMeasure=”false”

												fdo:hasElevation=”false”

												fdo:srsName=”SC_0”/>

										>

												<xs:annotation>

														<xs:documentation>position	of	the	building</xs:documentation>

												</xs:annotation>

										</xs:element>

								</xs:sequence>

						</xs:extension>

				</xs:complexContent>

		</xs:complexType>

</xs:schema>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Management	Examples
	
	
	

Example:	Creating	a	Feature	Schema

The	following	sample	code	creates	an	FdoFeatureSchema	object	called
“SampleFeatureSchema.”	The	schema	contains	one	class,	which	has	three
properties.	The	class	and	its	properties	conform	to	the	table	definition	for	the
Lakes	feature	in	the	Open	GIS	Consortium	document	98-046r1.	This	table
definition	is	expressed	in	an	XML	format	on	page	10	of	the	document	and	is
reproduced	as	follows:

<ogc-sfsql-table>

		<table-definition>

				<name>lakes</name>

				<column-definition>

						<name>fid</name>

						<type>INTEGER</type>

						<constgraint>NOT	NULL</constraint>

						<constraint>PRIMARY	KEY<constraint>

				</column-definition>

				<column-definition>

						<name>name</name>

						<type>VARCHAR(64)</type>

				</column-definition>

				<column-definition>

						<name>shore</name>

						<type>POLYGON</type>

				</column-definition>

		</table-definition>

The	table	definition	whose	name	is	“lakes”	is	mapped	to	an	FdoFeatureClass
object	called	“SampleFeatureClass.”	The	column	definition	whose	name	is	“fid”
is	mapped	to	an	FdoDataPropertyDefinition	object	called
“SampleIdentityDataProperty.”	The	column	definition	whose	name	is	“name”	is
mapped	to	an	FdoDataPropertyDefinition	object	called
“SampleNameDataProperty.”	The	column	definition	whose	name	is	“shore”	is
mapped	to	an	FdoGeometricPropertyDefinition	object	called

“SampleGeometricProperty.”

//	Create	the	ApplySchema	command

FdoPtr<FdoIApplySchema>	sampleApplySchema;

sampleApplySchema	=	(FdoIApplySchema	*)

		connection->CreateCommand(FdoCommandType_ApplySchema);

//	Create	the	feature	schema

FdoPtr<FdoFeatureSchema>	sampleFeatureSchema;

sampleFeatureSchema	=	FdoFeatureSchema::Create(L"SampleFeatureSchema",	L"Sample	Feature	Schema	Description");

//	get	a	pointer	to	the	feature	schema's	class	collection

//	this	object	is	used	to	add	classes	to	the	schema

FdoPtr<FdoClassCollection>	sampleClassCollection;

sampleClassCollection	=	sampleFeatureSchema->GetClasses();

//	create	a	feature	class,	i.e.,	a	class	containing	a	geometric

//	property	set	some	class	level	properties

FdoPtr<FdoFeatureClass>	sampleFeatureClass;

sampleFeatureClass	=	FdoFeatureClass::Create(L"SampleFeatureClass",	L"Sample	Feature	Class	Description");

sampleFeatureClass->SetIsAbstract(false);

//	get	a	pointer	to	the	feature	class's	property	collection

//	this	pointer	is	used	to	add	data	and	other	properties	to	the	class

FdoPtr<FdoPropertyDefinitionCollection>	sampleFeatureClassProperties;

sampleFeatureClassProperties	=	sampleFeatureClass->GetProperties();

//	get	a	pointer	to	the	feature	schema's	class	collection

//	this	object	is	used	to	add	classes	to	the	schema

FdoPtr<FdoClassCollection>	sampleClassCollection;

sampleClassCollection	=	sampleFeatureSchema->GetClasses();

//	get	a	pointer	to	the	feature	class's	identity	property	collection

//	this	property	is	used	to	add	identity	properties	to	the	feature

//	class

FdoPtr<FdoDataPropertyDefinitionCollection>	sampleFeatureClassIdentityProperties;

sampleFeatureClassIdentityProperties	=	sampleFeatureClass->GetIdentityProperties();

//	create	a	data	property	that	is	of	type	Int32	and	identifies	

//	the	feature	uniquely

FdoPtr<FdoDataPropertyDefinition>	sampleIdentityDataProperty;

sampleIdentityDataProperty	=	FdoDataPropertyDefinition::Create(L"SampleIdentityDataProperty",	L"Sample	Identity	Data	Property	Description");

sampleIdentityDataProperty->SetDataType(FdoDataType_Int32);

sampleIdentityDataProperty->SetReadOnly(false);

sampleIdentityDataProperty->SetNullable(false);

sampleIdentityDataProperty->SetIsAutoGenerated(false);

//	add	the	identity	property	to	the	sampleFeatureClass

sampleFeatureClassProperties->Add(sampleIdentityDataProperty);

sampleFeatureClassIdentityProperties->Add(sampleIdentityDataProperty);

//	create	a	data	property	that	is	of	type	String	and	names	the

//	feature

FdoPtr<FdoDataPropertyDefinition>	sampleNameDataProperty;

sampleNameDataProperty	=	FdoDataPropertyDefinition::Create(L"SampleNameDataProperty",	L"Sample	Name	Data	Property	Description");

sampleNameDataProperty->SetDataType(FdoDataType_String);

sampleNameDataProperty->SetLength(64);

sampleNameDataProperty->SetReadOnly(false);

sampleNameDataProperty->SetNullable(false);

sampleNameDataProperty->SetIsAutoGenerated(false);

//	add	the	name	property	to	the	sampleFeatureClass

sampleFeatureClassProperties->Add(sampleNameDataProperty);

//	create	a	geometric	property	

FdoPtr<FdoGeometricPropertyDefinition>	sampleGeometricProperty;

sampleGeometricProperty	=	FdoGeometricPropertyDefinition::Create(L"SampleGeometricProperty",	L"Sample	Geometric	Property	Description");

sampleGeometricProperty->SetGeometryTypes(FdoGeometricType_Surface);

sampleGeometricProperty->SetReadOnly(false);

sampleGeometricProperty->SetHasMeasure(false);

sampleGeometricProperty->SetHasElevation(false);

//	add	the	geometric	property	to	the	sampleFeatureClass

sampleFeatureClassProperties->Add(sampleGeometricProperty);

//	identify	it	as	a	geometry	property

sampleFeatureClass->SetGeometryProperty(sampleGeometricProperty);

//	add	the	feature	class	to	the	schema

sampleClassCollection->Add(sampleFeatureClass);

//	point	the	ApplySchema	command	at	the	newly	created	feature	

//	schema	and	execute

sampleApplySchema->SetFeatureSchema(sampleFeatureSchema);

sampleApplySchema->Execute();

Example:	Describing	a	Schema	and	Writing	It	to	an	XML	File

The	following	sample	code	demonstrates	describing	a	schema	and	writing	it	to
an	XML	file:

//	create	the	DescribeSchema	command

FdoPtr<FdoIDescribeSchema>	sampleDescribeSchema;

sampleDescribeSchema	=	(FdoIDescribeSchema	*)

		connection->CreateCommand(FdoCommandType_DescribeSchema);

//	executing	the	DescribeSchema	command	returns	a	feature	

//	schema	collection	that	is,	the	set	of	feature	schema	which	

//	reside	in	the	DataStore

FdoPtr<FdoFeatureSchemaCollection>	sampleFeatureSchemaCollection;

sampleFeatureSchemaCollection	=	sampleDescribeSchema->Execute();

//	find	the	target	feature	schema	in	the	collection,	write	it	

//	to	an	xml	file,	and	clear	the	collection

sampleFeatureSchema	=	sampleFeatureSchemaCollection->FindItem(L"SampleFeatureSchema");

sampleFeatureSchema->WriteXml(L"SampleFeatureSchema.xml");

sampleFeatureSchemaCollection->Clear();

Example:	Destroying	a	Schema

The	following	sample	code	demonstrates	destroying	a	schema:

//	create	the	DestroySchema	command

FdoPtr<FdoIDestroySchema>	sampleDestroySchema;

sampleDestroySchema	=	(FdoIDestroySchema	*)

		connection->CreateCommand(FdoCommandType_DestroySchema);

//	destroy	the	schema

sampleDestroySchema->SetSchemaName(L"SampleFeatureSchema");

sampleDestroySchema->Execute();

Example:	Creating	a	Schema	Read	In	from	an	XML	File

The	following	sample	code	demonstrates	creating	a	schema	read	in	from	an
XML	file:

sampleFeatureSchemaCollection->ReadXml(L"SampleFeatureSchema.xml");

sampleFeatureSchema	=	sampleFeatureSchemaCollection->FindItem(L"SampleFeatureSchema");

sampleApplySchema->SetFeatureSchema(sampleFeatureSchema);

sampleApplySchema->Execute();

sampleFeatureSchemaCollection->Clear();

SampleFeatureSchema.xml

The	following	sample	XML	schema	is	the	contents	of	the	file	written	out	by	the
WriteXml	method	belonging	to	the	FdoFeatureSchema	class	object	that	was
created	in	the	preceding	sample	code:

<?xml	version="1.0"	encoding="UTF-8"	?>	

		<xs:schema	xmlns:xs="http://www.w3.org/2001/XMLSchema"

				targetNamespace="http://fdo_customer/SampleFeatureSchema"

				xmlns:fdo="http://fdo.osgeo.org/schema"

				xmlns:gml="http://www.opengis.net/gml"

				xmlns:SampleFeatureSchema="http://fdo_customer/

						SampleFeatureSchema"

				elementFormDefault="qualified"

				attributeFormDefault="unqualified">

		<xs:annotation>	

				<xs:documentation>Sample	Feature	Schema	Description

						</xs:documentation>	

				<xs:appinfo	source="http://fdo.osgeo.org/schema"	/>	

		</xs:annotation>	

		<xs:element	name="SampleFeatureClass"	

				type="SampleFeatureSchema:SampleFeatureClassType"

				abstract="false"	substitutionGroup="gml:_Feature">	

				<xs:key	name="SampleFeatureClassKey">	

						<xs:selector	xpath=".//SampleFeatureClass"	/>	

						<xs:field	xpath="SampleIdentityDataProperty"	/>	

				</xs:key>	

		</xs:element>	

		<xs:complexType	name="SampleFeatureClassType"

				abstract="false"

				fdo:geometryName="SampleGeometricProperty"

				fdo:hasMeasure="false"

				fdo:hasElevation="false"

				fdo:srsName="SC_0"

				fdo:geometricTypes="surface">	

				<xs:annotation>	

						<xs:documentation>Sample	Feature	Class	Description

						</xs:documentation>	

						<xs:appinfo	source="http://fdo.osgeo.org/schema"	/>	

						<xs:documentation>Sample	Geometric	Property	Description</xs:documentation>	

				</xs:annotation>	

				<xs:complexContent>	

						<xs:extension	base="gml:AbstractFeatureType">	

								<xs:sequence>	

										<xs:element	name="SampleIdentityDataProperty"

												default=""

												type="fdo:int32">	

												<xs:annotation>	

														<xs:documentation>

																Sample	Identity	Data	Property	Description

														</xs:documentation>	

												</xs:annotation>	

										</xs:element>	

										<xs:element	name="SampleNameDataProperty"

												default="">	

												<xs:annotation>	

														<xs:documentation>

																Sample	Name	Data	Property	Description

														</xs:documentation>	

												</xs:annotation>	

												<xs:simpleType>	

														<xs:restriction	base="xs:string">	

																<xs:maxLength	value="64"	/>	

														</xs:restriction>	

												</xs:simpleType>	

										</xs:element>	

								</xs:sequence>	

						</xs:extension>	

				</xs:complexContent>	

		</xs:complexType>	

</xs:schema>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Maintenance
	
	
	

This	chapter	provides	information	about	using	the	FDO	API	to	maintain	data.

Topics	in	this	section

Data	Maintenance	Operations
Related	Class	Topics

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Maintenance	Operations
	
	
	

The	primary	operations	associated	with	data	maintenance	are:

Inserting

Updating

Deleting

Transactions

Locking

Note Discussion	of	Transactions	and	Locking	is	deferred	to	a	future	release	of	this
document.

Topics	in	this	section

Inserting	Values
Updating	Values
Deleting	Values

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Inserting	Values
	
	
	

Preconditions

In	a	previous	chapter,	we	created	a	feature	schema	and	added	a	feature	class	to	it.
The	feature	class	had	three	properties:	an	integer	data	property,	a	string	data
property,	and	a	geometric	property.	We	applied	this	feature	schema	to	the	data
store.	We	are	now	ready	to	create	feature	data	objects,	which	are	instances	of	the
feature	class,	and	insert	them	into	the	data	store.

Property	Values	in	General

We	can	now	create	feature	data	objects,	which	are	instances	of	the	feature	class,
by	defining	a	set	of	property	values	corresponding	to	the	properties	defined	for
the	class	and	then	inserting	them	into	the	data	store.

An	FDO	class	correspondends	roughly	to	a	table	definition	in	a	relational
database	and	a	property	of	a	class	corresponds	roughly	to	a	column	definition	in
a	table.	Adding	the	property	values	corresponds	roughly	to	adding	a	row	in	the
table.

The	main	distinction	between	a	data	value	or	geometry	value	and	a	property
value	is	the	order	in	which	they	are	created.	A	data	value	or	geometry	value
object	is	created	first	and	is	then	used	to	create	a	property	value	object.	The
property	value	object	is	then	added	to	the	value	collection	object	belonging	to
the	Insert	command	object.	Then,	the	command	is	executed.

An	insert	operation	consists	of	the	following	steps:

1.	 Create	the	insert	command	object	(type	FdoIInsert);	this	object	can	be
reused	for	multiple	insert	operations.

2.	 Point	the	insert	command	object	at	the	feature	class	to	which	you	are
adding	values	(call	the	SetFeatureClassName(<className>)	method).

3.	 From	the	insert	command	object,	obtain	a	pointer	using	the

GetPropertyValues()	method	to	a	value	collection	object	(type
FdoPropertyValueCollection).	You	will	add	property	values	to	the	insert
command	object	by	adding	values	to	the	collection	object.

4.	 Create	a	data	value	(type	FdoDataValue)	or	geometry	value	(type
FdoGeometryValue)	object.	Creating	the	data	value	is	straightforward;
you	pass	the	string	or	integer	value	to	a	static	Create()	method.	Creating
the	geometry	value	is	described	in	Geometry	Property	Values.

5.	 Create	a	property	value	(type	FdoPropertyValue)	object,	which	involves
passing	the	data	value	or	geometry	value	object	as	an	argument	to	a
static	Create()	method.

6.	 Add	the	property	value	object	to	the	value	collection	object.

7.	 Execute	the	Insert	command.

Data	Property	Values

A	data	value	object	contains	data	whose	type	is	one	of	the	following:

Boolean

Byte

DateTime

Decimal

Double

Int16

Int32

Int64

Single	(another	floating	point	type)

String

Binary	large	object	(BLOB)

Character	large	object	(CLOB)

The	data	value	object	is	added	to	the	data	property	value	object.	The	data

property	value	object	is	added	to	the	property	value	collection	belonging	to	the
Insert	command.

Geometry	Property	Values

A	geometry	property	value	object	contains	a	geometry	in	the	form	of	a	byte
array.	A	geometry	can	be	relatively	simple,	for	example,	a	point	(a	single	pair	of
ordinates),	or	quite	complex,	for	example,	a	polygon	(one	or	more	arrays	of
ordinates).	In	the	latter	case,	a	number	of	geometry	objects	are	created	and	then
combined	together	to	form	the	target	geometry.	Finally,	the	target	geometry	is
converted	to	a	byte	array	and	incorporated	into	the	geometry	property	value
object.

Creating	a	geometry	value	object	consists	of	the	following	steps:

1.	 Create	a	geometry	value	object	(type	FdoGeometryValue)	using	a	static
Create()	method.

2.	 Create	a	geometry	factory	object	(type	FdoAgfGeometryFactory)	using	a
static	GetInstance()	method.	This	object	is	used	to	create	the	geometry
object	or	objects	which	comprise	the	target	geometry.

3.	 Create	the	required	geometry	object	or	objects	using	the	appropriate
Create<geometry>	method()	belonging	to	the	geometry	factory	object.

4.	 Use	the	geometry	factory	object	to	convert	the	target	geometry	object	to
a	byte	array.

5.	 Incorporate	the	byte	array	into	the	geometry	property	value	object.

Example:	Inserting	an	Integer,	a	String,	and	a	Geometry	Value

The	following	sample	code	shows	how	to	insert	an	integer,	a	string,	and	a
geometry	value:

//	create	the	insert	command

FdoPtr<FdoIInsert>	sampleInsert;

sampleInsert	=	(FdoIInsert	*)

				connection->CreateCommand(FdoCommandType_Insert);

//	index	returned	by	the	operation	which	adds	a	value	to	the	value

//	collection

FdoInt32	valueCollectionIndex	=	0;

//	point	the	Insert	command	to	the	target	class

//	use	a	fully	qualified	class	name

//	whose	format	is	<schemaName>:<className>

sampleInsert->	SetFeatureClassName(L"SampleFeatureSchema:SampleFeatureClass");

//	get	the	pointer	to	the	value	collection	used	to	add	properties

//	to	the	Insert	command

FdoPtr<FdoPropertyValueCollection>	samplePropertyValues;

samplePropertyValues	=	sampleInsert->GetPropertyValues();

//	create	an	FdoDataValue	for	the	identity	property	value

FdoPtr<FdoDataValue>	sampleIdentityDataValue;

sampleIdentityDataValue	=	FdoDataValue::Create(101);

//	add	the	FdoDataValue	to	the	identity	property	value

FdoPtr<FdoPropertyValue>	sampleIdentityPropertyValue;

sampleIdentityPropertyValue	=

				FdoPropertyValue::Create(L"SampleIdentityDataProperty",	

				sampleIdentityDataValue);

//	add	the	identity	property	value	to	the	value	collection

valueCollectionIndex	=

				samplePropertyValues->Add(sampleIdentityPropertyValue);

//	create	an	FdoDataValue	for	the	name	property	value

FdoPtr<FdoDataValue>	sampleNameDataValue;

sampleNameDataValue	=	FdoDataValue::Create(L"Blue	Lake");

//	add	the	FdoDataValue	to	the	name	property	value

FdoPtr<FdoPropertyValue>	sampleNamePropertyValue;

sampleNamePropertyValue	=

				FdoPropertyValue::Create(L"SampleNameDataProperty",

				sampleNameDataValue);

//	add	the	name	property	value	to	the	value	collection

valueCollectionIndex	=

				samplePropertyValues->Add(sampleNamePropertyValue);

//	create	an	FdoGeometryValue	for	the	geometry	property	value

//	this	polygon	represents	a	lake	which	has	an	island

//	the	outer	shoreline	of	the	lake	is	defined	as	a	linear	ring

//	the	shoreline	of	the	island	is	defined	as	a	linear	ring

//	the	outer	shoreline	is	the	external	boundary	of	the	polygon

//	the	island	shoreline	is	an	internal	linear	ring

//	a	polygon	geometry	can	have	zero	or	more	internal	rings

FdoPtr<FdoGeometryValue>	sampleGeometryValue;

sampleGeometryValue	=	FdoGeometryValue::Create();

//	create	an	instance	of	a	geometry	factory	used	to	create	the

//	geometry	objects

FdoPtr<FdoFgfGeometryFactory>	sampleGeometryFactory;

sampleGeometryFactory	=	FdoFgfGeometryFactory::GetInstance();

//	define	the	external	boundary	of	the	polygon,	the	shoreline	of

//	Blue	Lake

FdoPtr<FdoILinearRing>	exteriorRingBlueLake;

FdoInt32	numBlueLakeShorelineOrdinates	=	10;

double	blueLakeExteriorRingOrdinates[]	=	{52.0,	18.0,	66.0,	23.0,

				73.0,	9.0,	48.0,	6.0,	52.0,	18.0};

exteriorRingBlueLake	=	sampleGeometryFactory->CreateLinearRing(

				FdoDimensionality_XY,	numBlueLakeShorelineOrdinates,

				blueLakeExteriorRingOrdinates);

//	define	the	shoreline	of	Goose	Island	which	is	on	Blue	Lake

//	this	is	the	sole	member	of	the	list	of	interior	rings

FdoPtr<FdoILinearRing>	linearRingGooseIsland;

FdoInt32	numGooseIslandShorelineOrdinates	=	10;

double	gooseIslandLinearRingOrdinates[]	=	{59.0,	18.0,	67.0,	18.0,

				67.0,	13.0,	59.0,	13.0,	59.0,	18.0};

linearRingGooseIsland	=	sampleGeometryFactory->CreateLinearRing(

				FdoDimensionality_XY,	numGooseIslandShorelineOrdinates,

				gooseIslandLinearRingOrdinates);

//	add	the	Goose	Island	linear	ring	to	the	list	of	interior	rings

FdoPtr<FdoLinearRingCollection>	interiorRingsBlueLake;

interiorRingsBlueLake	=	FdoLinearRingCollection::Create();

interiorRingsBlueLake->Add(linearRingGooseIsland);

//	create	the	Blue	Lake	polygon

FdoPtr<FdoIPolygon>	blueLake;

blueLake	=

				sampleGeometryFactory->CreatePolygon(exteriorRingBlueLake,

				interiorRingsBlueLake);

//	convert	the	Blue	Lake	polygon	into	a	byte	array

//	and	set	the	geometry	value	to	this	byte	array

FdoByteArray	*	geometryByteArray	=

				sampleGeometryFactory->GetAgf(blueLake);

sampleGeometryValue->SetGeometry(geometryByteArray);

//	add	the	Blue	Lake	FdoGeometryValue	to	the	geometry	property	value

FdoPtr<FdoPropertyValue>	sampleGeometryPropertyValue;

sampleGeometryPropertyValue	=

				FdoPropertyValue::Create(L"SampleGeometryProperty",

				sampleGeometryValue);

//	add	the	geometry	property	value	to	the	value	collection

valueCollectionIndex	=

				samplePropertyValues->Add(sampleGeometryPropertyValue);

//	do	the	insertion

//	the	command	returns	an	FdoIFeatureReader

FdoPtr<FdoIFeatureReader	sampleFeatureReader;

sampleFeatureReader	=	sampleInsert->Execute();

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Updating	Values
	
	
	

After	inserting	(see	Inserting	Values),	you	can	update	the	values.	The	update
operation	involves	identifying	a	feature	class	(“table”),	a	feature	class	object
(“row”),	and	an	object	property	(“column	in	a	row”)	to	be	changed,	and
supplying	a	new	value	for	the	object	property	to	replace	the	old.

First,	create	an	FdoIUpdate	command	object	and	use	the	command	object’s
SetFeatureClassName()	method	to	identify	the	feature	class.	Then,	create	a	filter
to	identity	the	feature	class	object	whose	properties	we	want	to	update,	and	use
the	command	object’s	SetFilter()	method	to	attach	the	command	to	it.	Filters	are
discussed	in	Filter	and	Expression	Languages.

One	of	the	data	properties	in	the	example	SampleFeatureClass	class	definition	is
an	identity	property,	whose	name	is	“SampleIdentityDataProperty”	and	whose
type	is	fdo:Int32.	This	means	that	its	value	uniquely	identifies	the	feature	class
object,	that	is,	the	“row”.	Use	the	name	of	the	identity	property	in	the	filter.	In
the	Insert	operation,	the	value	of	the	identity	property	was	set	to	be	‘101’.	The
value	of	the	filter	that	is	needed	is	“(SampleIdentityDataProperty	=	101)”.

Finally,	create	a	property	value,	which	contains	the	new	value,	attach	it	to	the
command	object,	and	then	execute	the	command.

Example:	Updating	Property	Values

The	following	is	an	example	of	updating	property	values:

FdoPtr<FdoIUpdate>	sampleUpdate;

sampleUpdate	=

				(FdoIUpdate	*)connection->CreateCommand(FdoCommandType_Update);

FdoInt32	numUpdated	=	0;

//	point	the	Update	command	at	the	target	feature	class

//	use	a	fully	qualified	class	name

//	whose	format	is	<schemaName>:<className>

sampleUpdate->	SetFeatureClassName(L"SampleFeatureSchema:SampleFeatureClass");

//	set	the	filter	to	identify	which	set	of	properties	to	update

sampleUpdate->SetFilter(L"(SampleIdentityDataProperty	=	101)");

//	get	the	pointer	to	the	value	collection	used	to	add	properties

//	to	the	Update	command

//	we	are	reusing	the	samplePropertyValues	object	that	we	used

//	for	the	insert	operation

samplePropertyValues	=	sampleUpdate->GetPropertyValues();

//	create	an	FdoDataValue	for	the	name	property	value

FdoPtr<FdoDataValue>	sampleNameDataValue;

sampleNameDataValue	=	FdoDataValue::Create(L"Green	Lake");

//	set	the	name	and	value	of	the	property	value

sampleNamePropertyValue->SetName(L"SampleNameDataProperty");

sampleNamePropertyValue->SetValue(sampleNameDataValue);

//	add	the	name	property	value	to	the	property	value	collection

//	owned	by	the	Update	command

samplePropertyValues->Add(sampleNamePropertyValue);

//	execute	the	command

numUpdated	=	sampleUpdate->Execute();

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Deleting	Values
	
	
	

In	addition	to	inserting	(see	Inserting	Values)	and	updating	(see	Updating
Values)	values,	you	can	delete	the	values.	The	deletion	operation	involves
identifying	a	feature	class	(“table”)	whose	feature	class	objects	(“rows”)	are	to
be	deleted.

First,	create	an	FdoIDelete	command	object	and	use	the	command	object’s
SetFeatureClassName()	method	to	identify	the	feature	class.	Then,	create	a	filter
to	identity	the	feature	class	objects	that	you	want	to	delete,	and	use	the	command
object’s	SetFilter()	method	to	attach	the	filter	to	it.	You	can	use	the	same	filter
that	was	specified	in	the	preceding	section,	Updating	Values.	Finally,	execute	the
command.

Example:	Deleting	Property	Values

FdoPtr<FdoIDelete>	sampleDelete;

sampleDelete	=

				(FdoIDelete	*)connection->CreateCommand(FdoCommandType_Delete);

FdoInt32	numDeleted	=	0;

sampleDelete->	

SetFeatureClassName(L"SampleFeatureSchema:SampleFeatureClass");

sampleDelete->SetFilter(L"(SampleIdentityDataProperty	=	101)");

numDeleted	=	sampleDelete->Execute();

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Related	Class	Topics
	
	
	

The	following	classes	are	used	in	the	preceding	Data	Maintenance	examples:

FdoIInsert

FdoPropertyValueCollection

FdoDataValue

FdoPropertyValue

FdoGeometryValue

FdoFgfGeometryFactory

FdoILinearRing

FdoLinearRingCollection

FdoIPolygon

FdoByteArray

FdoIDelete

FdoIUpdate

For	more	information,	see	FDO	API	Reference	Help.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Performing	Queries
	
	
	

This	chapter	describes	how	to	create	and	perform	queries.	In	the	FDO	API,	you
can	use	queries	to	retrieve	specific	features	from	a	data	store.

Topics	in	this	section

Creating	a	Query
Query	Example

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Creating	a	Query
	
	
	

You	create	and	perform	queries	using	the	FdoISelect	class,	which	is	a	member	of
the	Feature	sub-package	of	the	Commands	package.	Queries	are	used	to	retrieve
features	from	the	data	store,	and	are	executed	against	one	class	at	a	time.	The
class	is	specified	using	the	SetFeatureClassName()	method	in
FdoIFeatureCommand.	The	SetFeatureClassName	can	be	used	with	feature	and
non-feature	classes.

FdoISelect	supports	the	use	of	filters	to	limit	the	scope	of	features	returned	by
the	command.	This	is	done	through	one	of	the	SetFilter	methods	available	in	the
FdoIFeatureCommand	class.	The	filter	is	similar	to	the	SQL	WHERE	clause,
which	specifies	the	search	conditions	that	are	applied	to	one	or	more	class
properties.

Search	conditions	include	spatial	and	non-spatial	conditions.	Non-spatial	queries
create	a	condition	against	a	data	property,	such	as	an	integer	or	string.	Basic
comparisons	(=,	<,	>,	>=,	<=,	!=),	pattern	matching	(like),	and	‘In’	comparisons
can	be	specified.	Spatial	queries	create	a	spatial	condition	against	a	geometry
property.	Spatial	conditions	are	enumerated	in	FdoSpatialCondition	and
FdoDistanceCondition.

The	feature	reader	(FdoIFeatureReader)	is	used	to	retrieve	the	results	of	a	query
for	feature	and	non-feature	classes.	To	retrieve	the	features	from	the	reader,
iterate	through	the	reader	using	the	FdoIFeatureReader.ReadNext	method().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Query	Example
	
	
	

In	the	Data	Maintenance	chapter,	we	created	an	instance	of	the	FdoFeatureClass
SampleFeatureClass	and	assigned	values	to	its	integer,	string,	and	geometry
properties	(see	Example:	Inserting	an	Integer,	a	String,	and	a	Geometry	Value).
The	sample	code	in	the	following	query	example	selects	this	instance	and
retrieves	the	values	of	its	properties.	Specifically,	the	sample	code	does	the
following:

1.	 Creates	the	select	command,	and

2.	 Points	the	select	command	at	the	target	FdoFeatureClass
SampleFeatureClass,	and

3.	 Creates	a	filter	to	identify	which	instance	of	SampleFeatureClass	to
select,	and

4.	 Points	the	select	command	at	the	filter,	and

5.	 Executes	the	command,	which	returns	an	FdoIFeatureReader	object,	and

6.	 Loops	through	the	feature	reader	object,	which	contains	one	or	more
query	results	depending	on	the	filter	arguments.	In	the	sample	code
provided,	there	is	only	one	result.

7.	 Finally,	the	code	extracts	the	property	values	from	each	query	result.

//	we	have	one	FdoFeatureClass	object	in	the	DataStore

//	create	a	query	that	returns	this	object

//	create	the	select	command

FdoPtr<FdoISelect>	sampleSelect;

sampleSelect	=	(FdoISelect	*)

		connection->CreateCommand(FdoCommandType_Select);

//	point	the	select	command	at	the	target	FdoFeatureClass

//	SampleFeatureClass

sampleSelect->SetFeatureClassName(L"SampleFeatureClass");

//	create	the	filter	by

//	1.	creating	an	FdoIdentifier	object	containing	the	name	of	

//			the	identity	property

FdoPtr<FdoIdentifier>	queryPropertyName;

queryPropertyName	=

		FdoIdentifier::Create(L"SampleIdentityDataProperty");

//	2.	creating	an	FdoDataValue	object	containing	the	value	of	the

//			identity	property

FdoPtr<FdoDataValue>	queryPropertyValue;

queryPropertyValue	=	FdoDataValue::Create(101);

//	3.	calling	FdoComparisonCondition::Create()	passing	in	the

//			the	queryPropertyName,	an	enumeration	constant	signifying	an

//			equals	comparison	operation,	and	the	queryPropertyValue

FdoPtr<FdoFilter>	filter;

filter	=	FdoComparisonCondition::Create(queryPropertyName,

		FdoComparisonOperations_EqualTo,	queryPropertyValue);

//	point	the	select	command	at	the	filter

sampleSelect->SetFilter(filter);

//	execute	the	select	command

FdoPtr<FdoIFeatureReader>	queryResults;

queryResults	=	sampleSelect->Execute();

//	declare	variables	needed	to	capture	query	results

FdoPtr<FdoClassDefinition>	classDef;

FdoPtr<FdoPropertyDefinitionCollection>	properties;

FdoInt32	numProperties	=	0;

FdoPropertyDefinition	*	propertyDef;

FdoPropertyType	propertyType;

FdoDataType	dataType;

FdoDataPropertyDefinition	*	dataPropertyDef;

FdoString	*	propertyName	=	NULL;

FdoPtr<FdoByteArray>	byteArray;

FdoIGeometry	*	geometry	=	NULL;

FdoGeometryType	geometryType	=	FdoGeometryType_None;

FdoIPolygon	*	polygon	=	NULL;

FdoILinearRing	*	exteriorRing	=	NULL;

FdoILinearRing	*	interiorRing	=	NULL;

FdoIDirectPosition	*	position	=	NULL;

FdoInt32	dimensionality	=	FdoDimensionality_XY;

FdoInt32	numPositions	=	0;

FdoInt32	numInteriorRings	=	0;

//	loop	through	the	query	results

while	(queryResults->ReadNext())	{

		//	get	the	feature	class	object	and	its	properties

		classDef	=	queryResults->GetClassDefinition();

		properties	=	classDef->GetProperties();

		//	loop	through	the	properties

		numProperties	=	properties->GetCount();

		for(int	i	=	0;	i	<	numProperties;	i++)	{

				propertyDef	=	properties->GetItem(i);

				//	get	the	property	name	and	property	type

				propertyName	=	propertyDef->GetName();

				propertyType	=	propertyDef->GetPropertyType();

				switch	(propertyType)	{

						//	it’s	a	data	property

						case	FdoPropertyType_DataProperty:

								dataPropertyDef	=

										dynamic_cast<FdoDataPropertyDefinition	*>

										(propertyDef);

								dataType	=	dataPropertyDef->GetDataType();

								switch	(dataType)	{

										case	FdoDataType_Boolean:

												break;

										case	FdoDataType_Int32:

												break;

										case	FdoDataType_String:

												break;

										default:

								}

								break;

						//	it’s	a	geometric	property

						//	convert	the	byte	array	to	a	geometry

						//	and	determine	the	derived	type	of	the	geometry

						case	FdoPropertyType_GeometricProperty:

								byteArray	=	queryResults->GetGeometry(propertyName);

								geometry	=

										sampleGeometryFactory->CreateGeometryFromAgf	

										(byteArray);

								geometryType	=	geometry->GetDerivedType();

								//	resolve	the	derived	type	into	a	list	of	ordinates

								switch	(geometryType)	{

										case	FdoGeometryType_None:

												break;

										case	FdoGeometryType_Point:

												break;

										case	FdoGeometryType_LineString:

												break;

										case	FdoGeometryType_Polygon:

												polygon	=	dynamic_cast<FdoIPolygon	*>(geometry);

												exteriorRing	=	polygon->GetExteriorRing();

												dimensionality	=	exteriorRing-

														>GetDimensionality();

												numPositions	=	exteriorRing->GetCount();

												double	X,	Y,	Z,	M;

												for(int	i=0;	i<numPositions;	i++)	{

														position	=	exteriorRing->GetItem(i);

														if	(dimensionality	&	FdoDimensionality_Z	&&	

																dimensionality	&	FdoDimensionality_M)	{

																X	=	position->GetX();

																Y	=	position->GetY();

																Z	=	position->GetZ();

																M	=	position->GetM();

														else	if	(dimensionality	&	FdoDimensionality_Z	

														&&	!(dimensionality	&	FdoDimensionality_M))	{

																X	=	position->GetX();

																Y	=	position->GetY();

																Z	=	position->GetZ();

														else	{

																X	=	position->GetX();

																Y	=	position->GetY();

														}

												}

												numInteriorRings	=	polygon-

														>GetInteriorRingCount();

												for(int	i=0;	i<numInteriorRings;	i++)	{

														interiorRing	=	polygon->GetInteriorRing(i);

														//	do	same	for	interior	ring	as	exterior	ring

												}

												break;

										case	FdoGeometryType_MultiPoint:

												break;

										case	FdoGeometryType_MultiLineString:

												break;

										case	FdoGeometryType_MultiPolygon:

												break;

										case	FdoGeometryType_MultiGeometry:

												break;

										case	FdoGeometryType_CurveString:

												break;

										case	FdoGeometryType_CurvePolygon:

												break;

										case	FdoGeometryType_MultiCurveString:

												break;

										case	FdoGeometryType_MultiCurvePolygon:

												break;

										default:

								}

								break;

						default:

				}

		}

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Long	Transaction	Processing
	
	
	

This	chapter	defines	long	transactions	(LT)	and	long	transaction	interfaces,	and
explains	how	to	implement	LT	processing	in	your	application.

Note For	this	release,	the	providers	that	support	long	transaction	processing	are
Autodesk	FDO	Provider	for	Oracle	and	OSGeo	FDO	Provider	for	ArcSDE.

Topics	in	this	section

What	Is	Long	Transaction	Processing?
Supported	Interfaces

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	Long	Transaction	Processing?
	
	
	

A	long	transaction	(LT)	is	an	administration	unit	that	is	used	to	group	conditional
changes	to	objects.	Depending	on	the	situation,	such	a	unit	can	contain
conditional	changes	to	one	or	to	many	objects.	Long	transactions	are	used	to
modify	as-built	data	in	the	database	without	permanently	changing	the	as-built
data.	Long	transactions	can	be	used	to	apply	revisions	or	alternates	to	an	object.

A	root	long	transaction	is	a	long	transaction	that	represents	permanent	data	and
that	has	descendents.	Any	long	transaction	has	a	root	long	transaction	as	an
ancestor	in	its	long	transaction	dependency	graph.	A	leaf	long	transaction	does
not	have	descendents.

For	more	information	about	Oracle-specific	long	transaction	versions	and
locking,	see	Locking	and	Long	Transactions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Supported	Interfaces
	
	
	

In	the	current	release	of	FDO,	the	following	long	transaction	interfaces	are
supported:

FDOIActivateLongTransaction

FDOIDeactivateLongTransaction

FDOIRollbackLongTransaction

FDOICommitLongTransaction

FDOICreateLongTransaction

FDOIGetLongTransaction

These	interfaces	are	summarized	below.	For	more	information	about	their	usage,
supported	methods,	associated	enumerations	and	readers,	see	the	FDO	API
Reference	Help.

FDOIActivateLongTransaction

The	FdoIActivateLongTransaction	interface	defines	the
ActivateLongTransaction	command,	which	activates	a	long	transaction	where
feature	manipulation	and	locking	commands	operate	on	it.	Input	to	the	activate
long	transaction	command	is	the	long	transaction	name.	The	Execute	operation
activates	the	identified	long	transaction.

FDOIDeactivateLongTransaction

The	FdoIDeactivateLongTransaction	interface	defines	the
DeactivateLongTransaction	command,	which	deactivates	the	active	long
transaction	where	feature	manipulation	and	locking	commands	operate	on	it.	If
the	active	long	transaction	is	the	root	long	transaction,	then	no	long	transaction
will	be	deactivated.

FDOIRollbackLongTransaction

The	FdoIRollbackLongTransaction	interface	defines	the
RollbackLongTransaction	command,	which	allows	a	user	to	execute	rollback
operations	on	a	long	transaction.	Two	different	rollback	operations	are	available:
Full	and	Partial.

The	operation	is	executed	on	all	data	within	a	long	transaction	and	on	all	its
descendents.	The	data	is	removed	from	the	database	and	all	versions	involved	in
the	process	deleted.

Note If	the	currently	active	long	transaction	is	the	same	as	the	one	being
committed	or	rolled	back,	then,	if	the	commit	or	rollback	succeeds,	the	provider
resets	the	current	active	long	transaction	to	be	the	root	long	transaction.	If	it	does
not	succeed,	the	active	long	transaction	is	left	alone	and	current.	If	the	currently
active	long	transaction	is	not	the	same	as	the	one	being	committed	or	rolled
back,	then	it	is	not	affected.

FDOICommitLongTransaction

The	FdoICommitLongTransaction	interface	defines	the	CommitLongTransaction
command,	which	allows	a	user	to	execute	commit	operations	on	a	long
transaction.	Two	different	commit	operations	are	available:	Full	and	Partial.

The	commit	operation	can	be	performed	on	a	leaf	long	transaction	only.	A	long
transaction	is	a	leaf	long	transaction	if	it	does	not	have	descendents.

FDOICreateLongTransaction

The	FdoICreateLongTransaction	interface	defines	the	CreateLongTransaction
command,	which	creates	a	long	transaction	that	is	based	on	the	currently	active
long	transaction.	There	is	always	an	active	long	transaction.	If	the	user	has	not
activated	a	user-defined	long	transaction,	then	the	root	long	transaction	is	active.

Input	to	the	CreateLongTransaction	command	includes	a	name	and	description
for	the	new	long	transaction.	The	long	transaction	name	submitted	to	the
command	has	to	be	unique.	If	it	is	not	unique,	an	exception	is	thrown.

FDOIGetLongTransactions

The	FdoIGetLongTransactions	interface	defines	the	GetLongTransactions
command,	which	allows	the	user	to	retrieve	long	transaction	information.	If	a
long	transaction	name	is	submitted,	the	command	returns	the	information	for	the
named	long	transaction	only.	If	no	long	transaction	name	is	given,	the	command
retrieves	the	names	of	all	available	long	transactions.

For	each	returned	long	transaction,	the	user	has	the	option	to	retrieve	a	list	of
descendents	and/or	ancestors.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Filter	and	Expression	Languages
	
	
	

This	chapter	discusses	the	use	of	filters	and	filter	expressions.	You	can	use	filters
and	expressions	to	specify	to	an	FDO	provider	how	to	identify	a	subset	of	the
objects	in	a	data	store.

For	more	information	and	implementation	details	about	the	expression	functions
signatures,	the	RDBMS-specific	built-in	support	for	some	of	the	functions,	and
the	provider-specific	support,	see	the	appendix	Expression	Functions.

Topics	in	this	section

Filters
Expressions
Filter	and	Expression	Text
Language	Issues

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Filters
	
	
	

FDO	uses	filters	through	its	commands	(including	provider-specific	commands)
to	select	certain	features	and	exclude	others.

A	filter	is	a	construct	that	an	application	specifies	to	an	FDO	provider	to	identify
a	subset	of	objects	of	an	FDO	data	store.	For	example,	a	filter	may	be	used	to
identify	all	Road	type	features	that	have	2	lanes	and	that	are	within	200	metres
of	a	particular	location.	Many	FDO	commands	use	filter	parameters	to	specify
the	objects	to	which	the	command	applies.	For	example,	a	select	command	takes
a	filter	to	identify	the	objects	that	the	application	wants	to	retrieve	or	a	delete
command	takes	a	filter	to	identify	the	objects	that	the	application	wants	to	delete
from	the	data	store.

When	a	command	executes,	the	filter	is	evaluated	for	each	feature	instance	and
that	instance	is	included	in	the	scope	of	the	command	only	if	the	filter	evaluates
to	True.	Filters	may	be	specified	either	as	text	or	as	an	expression	tree.	Feature
providers	declare	their	level	of	support	for	filters	through	the	filter	capabilities
metadata.	Query	builders	should	configure	themselves	based	on	the	filter
capabilities	metadata	in	order	to	provide	users	with	a	robust	user	interface.	For
more	information,	see	What	Is	an	Expression?.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Expressions
	
	
	

FDO	uses	expressions	through	its	commands	(including	provider-specific
commands)	to	specify	input	values	in	order	to	filter	features.	In	general,
commands	in	FDO	do	not	support	the	SQL	command	language	(the	one
exception	is	the	optional	SQLCommand).	However,	to	facilitate	ease	of	use	for
application	developers,	expressions	in	FDO	can	be	specified	using	a	textual
notation	that	is	based	syntactically	on	expressions	and	SQL	WHERE	clauses.	In
FDO,	expressions	are	not	intended	to	work	against	tables	and	columns,	but
against	feature	classes,	properties,	and	relationships.	For	example,	an	expression
to	select	roads	with	four	or	more	lanes	might	look	like	this:

Lanes	>=	4

An	expression	is	a	construct	that	an	application	can	use	to	build	up	a	filter.	In
other	words,	an	expression	is	a	clause	of	a	filter	or	larger	expression.	For
example,	“Lanes	>=4	and	PavementType	=	'Asphalt'”	takes	two	expressions	and
combines	them	to	create	a	filter.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Filter	and	Expression	Text
	
	
	

In	general,	commands	in	FDO	do	not	support	the	SQL	command	language	(the
one	exception	is	the	optional	SQLCommand).	However,	to	facilitate	ease	of	use
for	application	developers,	expressions	and	filters	in	FDO	can	be	specified	using
a	textual	notation	that	is	based	syntactically	on	expressions	and	SQL	WHERE
clauses.	The	biggest	difference	between	this	approach	and	SQL	is	that	these
clauses	are	not	intended	to	work	against	tables	and	columns,	but	against	feature
classes,	properties,	and	relationships.	For	example,	a	filter	to	select	roads	with
four	or	more	lanes	might	look	like:

Lanes	>=	4

Similarly,	a	filter	to	select	all	PipeNetworks	that	have	at	least	one	Pipe	in	the
proposed	state	might	look	like:

Pipes.state	=	"proposed"

Furthermore,	a	filter	to	select	all	existing	parcels	whose	owner	contains	the	text
“Smith”	might	look	like:

state	=	"existing"	and	owner	like	"%Smith%"

Finally,	a	filter	to	select	all	parcels	that	are	either	affected	or	encroached	upon	by
some	change	might	look	like:

state	in	("affected",	"encroached")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Language	Issues
	
	
	

There	are	a	number	of	language	issues	to	be	considered	when	working	with
classes	in	the	Filter,	Expression,	and	Geometry	packages:

Provider-specific	constraints	on	text

Filter	grammar

Expression	grammar

Filter	and	Expression	keywords

Data	types

Operators

Special	characters

Geometry	value

Topics	in	this	section

Provider-Specific	Constraints	on	Filter	and	Expression	Text
Filter	Grammar
Expression	Grammar
Filter	and	Expression	Keywords
Data	Types
Operators
Special	Character
Geometry	Value

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Provider-Specific	Constraints	on	Filter	and	Expression	Text
	
	
	

Some	providers	may	have	reserved	words	that	require	special	rules	when	used
with	filters	and	expressions.	For	more	information,	see	Oracle	Reserved	Words
Used	with	Filter	and	Expression	Text.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Filter	Grammar
	
	
	

The	rules	for	entering	filter	expressions	are	described	in	the	following	sections
using	BNF	notation.	For	more	information	about	BNF	notation,	see
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html.

The	FdoFilter::Parse()	method	supports	the	following	filter	grammar:

<Filter>	::=	'('	Filter	')'

|	<LogicalOperator>

|	<SearchCondition>

<LogicalOperator>	::=	<BinaryLogicalOperator>

|	<UnaryLogicalOperator>

<BinaryLogicalOperator>	::=

<Filter>	<BinaryLogicalOperations>	<Filter>

<SearchCondition>	::=	<InCondition>

|	<ComparisonCondition>

|	<GeometricCondition>

|	<NullCondition>

<InCondition>	::=	<Identifier>	IN	'('	ValueExpressionCollection	')'

<ValueExpressionCollection>	::=	<ValueExpression>

|	<ValueExpressionCollection>	','	<ValueExpression>

<ComparisonCondition>	::=

<Expression>	<ComparisonOperations>	<Expression>

<GeometricCondition>	::=	<DistanceCondition>

|	<SpatialCondition>

<DistanceCondition>	::=

<Identifier>	<DistanceOperations>	<Expression>	<distance>

<NullCondition>	::=	<Identifier>	NULL

<SpatialCondition>	::=

<Identifier>	<SpatialOperations>	<Expression>

<UnaryLogicalOperator>	::=	NOT	<Filter>

<BinaryLogicalOperations>	::=	AND	|	OR

<ComparisionOperations>	::=

=	//	EqualTo	(EQ)

<>	//	NotEqualTo	(NE)

>	//	GreaterThan	(GT)

>=	//	GreaterThanOrEqualTo	(GE)

<	//	LessThan	(LT)

<=	//	LessThanOrEqualTo	(LE)

LIKE	//	Like

<DistanceOperations>	::=	BEYOND	|	WITHINDISTANCE

<distance>	::=	DOUBLE	|	INTEGER

<SpatialOperations>	::=	CONTAINS	|	CROSSES	|	DISJOINT

|	EQUALS	|	INTERSECTS	|	OVERLAPS	|	TOUCHES	|	WITHIN	|	COVEREDBY	|	INSIDE

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Expression	Grammar
	
	
	

The	FdoExpression::Parse()	method	supports	the	following	expression	grammar:

<Expression>	::=	'('	Expression	')'

|	<UnaryExpression>

|	<BinaryExpression>

|	<Function>

|	<Identifier>

|	<ValueExpression>

<BinaryExpression>	::=

<Expression>	'+'	<Expression>

|	<Expression>	'-'	<Expression>

|	<Expression>	'*'	<Expression>

|	<Expression>	'/'	<Expression>

<DataValue>	::=

TRUE

|	FALSE

|	DATETIME

|	DOUBLE

|	INTEGER

|	STRING

|	BLOB	

|	CLOB

|	NULL

<Function>	::=	<Identifier>	'('	<ExpressionCollection>	')'

<ExpressionCollection>	::=	

|	<Expression>	

|	<ExpressionCollection>	','	<Expression>

<GeometryValue>	::=	GEOMFROMTEXT	'('	STRING	')'

<Identifier>	::=	IDENTIFIER

<ValueExpression>	::=	<LiteralValue>	|	<Parameter>;

<LiteralValue>	::=	<GeometryValue>	|	<DataValue>

<Parameter>	::=	PARAMETER	|	':'STRING

<UnaryExpression>	::=	'-'	<Expression>

Expression	Operator	Precedence

The	precedence	is	shown	in	YACC	notation,	that	is,	the	highest	precedence
operators	are	at	the	bottom.

%left	Add	Subtract

%left	Multiply	Divide

%left	Negate

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Filter	and	Expression	Keywords
	
	
	

The	following	case-insensitive	keywords	are	reserved	in	the	language,	that	is,
they	cannot	be	used	as	identifier	or	function	names:

AND	BEYOND	COMPARE	CONTAINS	COVEREDBY	CROSSES	DATE

DISJOINT	DISTANCE	EQUALS	FALSE	GeomFromText	IN	INSIDE

INTERSECTS	LIKE	NOT	NULL	OR	OVERLAPS	RELATE	SPATIAL	TIME

TIMESTAMP	TOUCHES	TRUE	WITHIN	WITHINDISTANCE

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Types
	
	
	

The	available	data	types	are	described	in	this	section.

Topics	in	this	section

Identifier
Parameter
String
Integer
Double
DateTime

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Identifier
	
	
	

An	identifier	can	be	any	alphanumeric	sequence	of	characters	other	than	a
keyword.	Identifiers	can	be	enclosed	in	double	quotes	to	allow	special	characters
and	white	space.	If	you	need	to	include	a	double	quote	character	inside	an
identifier,	double	the	character,	for	example	"abc""def".

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Parameter
	
	
	

Parameters	are	defined	by	a	colon	followed	by	alphanumeric	characters.	The
FDO	filter	language	extends	SQL	to	allow	for	a	literal	string	to	follow	the	colon
to	allow	blanks	(and	other	possibilities),	for	example,	:'Enter	Name'.

Determine	whether	parameters	are	supported	by	the	FDO	Provider	you	are	using
by	checking	SupportParameters	on	the	Connection	interface.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

String
	
	
	

Strings	are	literal	constants	enclosed	in	single	quotes.	The	FDO	filter	language
also	supports	the	special	characters	(left	and	right	single	quotes)	that	Microsoft
Word	uses	to	automatically	replace	the	single	quote	character	typed	from	the
keyboard.	If	you	need	to	include	a	single	quote	character	inside	a	string	you	can
double	the	character,	for	example	'aaa''bbb'.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Integer
	
	
	

Integers	allow	only	decimal	characters	with	an	optional	unary	minus	sign.	Unary
plus	is	not	supported.

(-){[0-9]}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Double
	
	
	

Floating	point	numbers	have	a	decimal	point,	can	be	signed	(-),	and	include	an
optional	exponent	(e{[0-9]}).

Note If	an	integer	is	out	of	the	32-bit	precision	range,	it	is	converted	to	floating
point.

Examples:

-3.4

12345678901234567

1.2e13

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

DateTime
	
	
	

Date	and	time	are	parsed	using	the	standard	SQL	literal	strings:

DATE	'YYYY-MM-DD'

TIME	'HH:MM:SS[.sss]'

TIMESTAMP	'YYYY-MM-DD	HH:MM:SS[.sss]'

For	example:

DATE	'1971-12-24'

TIMESTAMP	'2003-10-23	11:00:02'	

Note The	BLOB	and	CLOB	strings	are	currently	not	supported.	If	you	need	to
support	binary	input,	use	parameters.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Operators
	
	
	

The	following	operators	are	special	characters	common	to	SQL	and	most
programming	languages:

BinaryOperations

These	binary	operations	are	available:

+	Add	(for	compatibility	with	SQL	string	concatenation	may	also	be	defined
using	“||”)

-	Subtract

*	Multiply

/	Divide

UnaryOperations

These	unary	operation	are	available:

-	Negate

Comparison	Operations

These	comparison	operations	are	available:

=	EqualTo	(EQ)

<>	NotEqualTo	(NE)

>	GreaterThan	(GT)

>=	GreaterThanOrEqualTo	(GE)

<	LessThan	(LT)

<=	LessThanOrEqualTo	(LE)

Operator	Precedence

The	following	precedence	is	shown	from	highest	to	lowest:

Negate	NOT

Multiply	Divide

Add	Subtract

EQ	NE	GT	GE	LT	LE

AND

OR

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Special	Character
	
	
	

The	following	special	characters	are	used	in	ExpressionCollections	and
ValueExpressions	to	define	function	arguments	and	IN	conditions:

(Left	Parenthesis

,	Comma

)	Right	Parenthesis

The	Colon	(:)	is	used	in	defining	parameters	and	the	Dot	(.)	can	be	included	in
real	numbers	and	identifiers.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometry	Value
	
	
	

Geometry	values	are	handled	using	a	function	call	GeomFromText('FGF	Text
string'),	as	is	typical	in	an	SQL	query.

The	Autodesk	extension	to	WKT,	referred	to	as	FGF	Text,	is	a	superset	of	WKT
(that	is,	you	can	enter	WKT	as	valid	FGF	Text	strings).	Dimensionality	is
optional.	It	can	be	XY,	XYM,	XYZ,	or	XYZM.	If	it	is	not	specified,	it	is
assumed	to	be	XY.	For	more	information	about	FGF	Text,	see	FGF	Text.

Note Extra	ordinates	are	ignored,	rather	than	generating	an	error	during	FGF	text
parsing.	For	example,	in	the	string	“POINT	(10	11	12)”,	the	‘12’	is	ignored
because	the	dimensionality	is	assumed	to	be	XY.

The	following	is	the	grammar	definition	for	FGF	Text:

<FGF	Text>	::=	POINT	<Dimensionality>	<PointEntity>

|	LINESTRING	<Dimensionality>	<LineString>

|	POLYGON	<Dimensionality>	<Polygon>

|	CURVESTRING	<Dimensionality>	<CurveString>

|	CURVEPOLYGON	<Dimensionality>	<CurvePolygon>

|	MULTIPOINT	<Dimensionality>	<MultiPoint>

|	MULTILINESTRING	<Dimensionality>	<MultiLineString>

|	MULTIPOLYGON	<Dimensionality>	<MultiPolygon>

|	MULTICURVESTRING	<Dimensionality>	<MultiCurveString>

|	MULTICURVEPOLYGON	<Dimensionality>	<MultiCurvePolygon>

|	GEOMETRYCOLLECTION	<GeometryCollection>

<PointEntity>	::=	'('	<Point>	')'

<LineString>	::=	'('	<PointCollection>	')'

<Polygon>	::=	'('	<LineStringCollection>	')'

<MultiPoint>	::=	'('	<PointCollection>	')'

<MultiLineString>	::=	'('	<LineStringCollection>	')'

<MultiPolygon>	::=	'('	<PolygonCollection>	')'

<GeometryCollection	:	'('	<FGF	Collection	Text>	')'

<CurveString>	::=	'('	<Point>	'('	<CurveSegmentCollection>	')'	')'

<CurvePolygon>	::=	'('	<CurveStringCollection>	')'

<MultiCurveString>	::=	'('	<CurveStringCollection>	')'

<MultiCurvePolygon>	::=	'('	<CurvePolygonCollection>	')'

<Dimensionality>	::=	//	default	to	XY

|	XY

|	XYZ

|	XYM

|	XYZM

<Point>	::=	DOUBLE	DOUBLE

|	DOUBLE	DOUBLE	DOUBLE

|	DOUBLE	DOUBLE	DOUBLE	DOUBLE

<PointCollection>	::=	<Point>

|	<PointCollection	','	<Point>

<LineStringCollection>	::=	<LineString>

|	<LineStringCollection>	','	<LineString>

<PolygonCollection>	::=	<Polygon>

|	<PolygonCollection>	','	<Polygon>

<FGF	Collection	Text>	::=	<FGF	Text>

|	<FGF	Collection	Text>	','	<FGF	Text>

<CurveSegment>	::=	CIRCULARARCSEGMENT	'('	<Point>	','	<Point>	')'

|	LINESTRINGSEGMENT	'('	<PointCollection>	')'

<CurveSegmentCollection>	::=	<CurveSegment>

|	<CurveSegmentCollection>	','	<CurveSegment>

<CurveStringCollection>	::=	<CurveString>

|	<CurveStringCollection>	','	<CurveString>

<CurvePolygonCollection>	::=	<CurvePolygon>

|	<CurvePolygonCollection>	','	<CurvePolygon>

The	only	other	token	type	is	DOUBLE,	representing	a	double	precision	floating
point	values.	Integer	(non-decimal	point)	input	is	converted	to	DOUBLE	in	the
lexical	analyzer.

Examples	of	the	Autodesk	extensions	include:

POINT	XY	(10	11)	//	equivalent	to	POINT	(10	11)

POINT	XYZ	(10	11	12)

POINT	XYM	(10	11	1.2)

POINT	XYZM	(10	11	12	1.2)

GEOMETRYCOLLECTION	(POINT	xyz	(10	11	12),POINT	XYM	(30	20	1.8),
LINESTRING	XYZM(1	2	3	4,	3	5	15,	3	20	20))

CURVESTRING	(0	0	(LINESTRINGSEGMENT	(10	10,	20	20,	30	40))))

CURVESTRING	(0	0	(CIRCULARARCSEGMENT	(11	11,	12	12),
LINESTRINGSEGMENT	(10	10,	20	20,	30	40)))

CURVESTRING	(0	0	(ARC	(11	11,	12	12),	LINESTRINGSEGMENT	(10	10,
20	20,	30	40)))

CURVESTRING	XYZ	(0	0	0	(LINESTRINGSEGMENT	(10	10	1,	20	20	1,	30
40	1)))

MULTICURVESTRING	((0	0	(LINESTRINGSEGMENT	(10	10,	20	20,	30

40))),(0	0	(ARC	(11	11,	12	12),	LINESTRINGSEGMENT	(10	10,	20	20,	30
40))))

CURVEPOLYGON	((0	0	(LINESTRINGSEGMENT	(10	10,	10	20,	20	20),
ARC	(20	15,	10	10))),	(0	0	(ARC	(11	11,	12	12),	LINESTRINGSEGMENT	(10
10,	20	20,	40	40,	90	90))))

MULTICURVEPOLYGON	(((0	0	(LINESTRINGSEGMENT	(10	10,	10	20,	20
20),	ARC	(20	15,	10	10))),	(0	0	(ARC	(11	11,	12	12),	LINESTRINGSEGMENT
(10	10,	20	20,	40	40,	90	90)))),((0	0	(LINESTRINGSEGMENT	(10	10,	10	20,
20	20),	ARC	(20	15,	10	10))),	(0	0	(ARC	(11	11,	12	12),
LINESTRINGSEGMENT	(10	10,	20	20,	40	40,	90	90)))))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

The	Geometry	API
	
	
	

This	chapter	describes	the	FdoGeometry	API	(hereafter	called	the	“Geometry
API”)	and	explains	the	various	geometry	types	and	formats.

Topics	in	this	section

Introduction
FGF	and	WKB
FGF	Binary	Specification
FGF	Text
Abstract	and	Concrete	Classes
Geometry	Types
Mapping	Between	Geometry	and	Geometric	Types
Spatial	Context
Specify	Dimensionality	When	Creating	Geometries	Using	String
Specifications
Inserting	Geometry	Values

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction
	
	
	

The	Geometry	API	supports	specific	Autodesk	applications	and	APIs,	including
FDO	(Feature	Data	Objects).	This	API	consists	of	the	following	components:

a	Geometry	Type	package	(all	through	fully	encapsulated	interfaces)

an	Abstract	Geometry	Factory

a	Concrete	Geometry	Factory	for	FGF

You	can	work	with	the	Geometry	API	in	several	different	ways:

FGF	(Feature	Geometry	Format)

FGF	Text

Abstract	Geometry	Factory

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FGF	and	WKB
	
	
	

WKB	is	a	memory	layout	used	to	store	geometry	features.	This	format	was
created	by	the	OpenGIS	organization	to	allow	the	efficient	exchange	of
geometry	data	between	different	components	in	an	FDO	system.	Most	pieces	of
the	original	specification	defining	the	WKB	format	are	in	the	document,	99-
050.pdf,	the	OpenGIS	Simple	feature	specification	for	OLE/COM	that	can	be
found	at	www.opengis.org.

FGF	is	an	extended	version	of	the	Well	Known	Binary	(WKB)	format.	The	two
formats	differ	in	the	following	ways:

WKB	defines	a	byte	order	of	the	data	in	every	piece	of	geometry.	This	is
stored	as	a	byte	field,	which	may	change	the	memory	alignment	from
word	to	byte.	In	FGF,	only	one	memory	alignment	type	is	supported,
which	is	the	same	alignment	type	used	by	the	.NET	framework	and
Windows;	the	encoding	uses	the	little-endian	byte	order	format.	As	a
result,	the	byte	flag	does	not	need	to	be	stored.

WKB	is	defined	as	a	2D	format	only.	This	is	insufficient	to	represent	3D
points,	polylines	and	polygons.	In	FGF,	the	dimension	flag	has	been
added.	In	particular,	a	flag	is	included	for	each	geometry	piece	to
indicate	whether	the	geometry	is	2D,	3D,	or	even	4D	(storing	a	measure
value	as	used	by	dynamic	segmentation.

FGF	includes	geometry	types	that	are	not	yet	covered	by	any	WKB
specification.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FGF	Binary	Specification
	
	
	

In	this	section,	the	memory	layout	of	each	simple	geometry	type	is	described.
The	format	is	based	on	the	OGC	specification,	which	is	built	on	the	memory
layout	of	a	C++	struct.	All	arrays	have	a	computable	size	and	are	inline;	they	do
not	point	to	a	different	location	in	memory.	This	format	allows	streaming	of
geometry	data.

First,	the	different	data	types,	their	size,	and	memory	layout	are	discussed.

//	double	==	8byte	IEEE	double	number	in	little	endian	encoding.

//	int	==	4	byte	integer	in	little	endian	encoding

//	the	type	of	the	geometry

enum	GeometryType	:	int

{

	 None	=	0,

	 Point	=	1,

	 LineString	=	2,

	 Polygon	=	3,

	 MultiPoint	=	4,

	 MultiLineString	=	5,

	 MultiPolygon	=	6,

	 MultiGeometry	=	7,

	 CurveString	=	10,

	 CurvePolygon	=	11,

	 MultiCurveString	=	12,

	 MultiCurvePolygon	=	13

}

Coordinate	Types

This	is	a	bit	field,	for	example,	xym	==	coordinateDimensionality.XY	|
CoordinateDimensionality.M.	The	following	sequence	defines	the	type	of
coordinates	used	for	this	object:

enum	CoordinateDimensionality	:	FdoInt32

{

	 XY	=	0,

	 Z	=	1,

	 M	=	2

}

Basic	Geometry

The	following	sequence	establishes	the	basic	pure	geometry:

struct	Geometry	

{

	 int	geomType;

	 CoordinateDimensionality	type;

}

Notation	Definition

The	following	sequence	defines	a	notation	used	to	specify	geometries	within	a
byte	stream.

//	Define	a	notation	within	this	specification

//	int	PositionSize(geometry)

//	{

	 //	if	(geometry.type	==	CoordinateDimensionality.XY	|

	 	 //	CoordinateDimensionality.M	||	

	 	 //	geometry.type	==	CoordinateDimensionality.XY	|

	 	 //	CoordinateDimensionality.Z)

	 	 //	return	3;

	 //	if	(geometry.type	==	CoordinateDimensionality.XY	|

	 	 //	CoordinateDimensionality.M	|	CoordinateDimensionality.Z)

	 	 //	return	4

	 //	return	2;

//	}

struct	Point	//	:	Geometry

{

	 int	geomType;	//	==	GeometryType.Point;

	 CoordinateDimensionality	type;	//	all	types	allowed

	 double[]	coords;	//	size	=	PositionSize(this)	

}

struct	LineString	

{

	 int	geomType;	

	 CoordinateDimensionality	type;	

	 int	numPts;	//	>0

	 double[]	coords;	//	size	=	numPts*	PositionSize(this)

}

struct	MultiPoint	

{

	 int	geomType;	

	 int	numPoints;	//	>	0	

	 Point[]	points;	//	size	=	numPoints

}

struct	MultiLineString	

{

	 int	geomType;	

	 int	numLineStrings;	//	>=	0	

	 LineString[]	lineStrings;	//	size	=	numLineStrings

}

//	building	block	for	polygons,	not	geometry	by	itself

struct	LinearRing	

{

	 int	numPts;	//	>0

	 double[]	coords;	//	size	=	numPts*	PositionSize(polygon)	

}

struct	Polygon	

{

	 int	geomType;	

	 CoordinateDimensionality	type;	

	 int	numRings;	//	>=	1	as	there	has	to	be	at	least	one	ring	

LinearRing[]	lineStrings;	//	size	=	numRings

}

struct	MultiPolygon	

{

	 int	geomType;	

	 int	numPolygons;	//	>=	0

	 Polygon[]	polygons;	//	size	=	numPolygons

}

struct	MultiGeometry	

{

	 int	geomType;	

	 int	numGeom;	//	>=	0	

	 Geometry[]	geometry;	//	size	=	numGeom

}

enum	CurveElementType	:	int

{

	 LineString	=	1,

	 CircularArc	=	2

}

struct	CurveStringElement

{

	 int	CurveElementType;

}

struct	LinearCurveStringElement	

{

	 int	CurveElementType;	

	 int	length;

	 double[]	coords;	//	size	=	this.length	*	PositionSize	(this)

}

struct	CircularArcCurveStringElement	

{

	 int	CurveElementType;	//	==	CurveElmentType.Arc

	 double[]	coords;	//	size	=	2	*	PositionSize(this)

}

struct	CurveString	

{

	 int	geomType;	

	 CoordinateDimensionality	type;	//	all	types	allowed

	 double[]	startPoint;	//	size	=	PositionSize(this)

	 int	numElements;	//	>=0

	 CurveStringElement[]	elements;	//	size	=	numElements

}

struct	Ring

{

	 double[]	startPoint;	//	size	=	PositionSize(this)

	 int	numElements;	//	>=0

	 CurveStringElement[]	elements;	//	size	=	numElements

}

struct	MultiCurveString	

{

	 int	geomType;	

	 int	numCurveStrings;	//	>=	0	

	 CurveString[]	curveStrings;	//	size	=	numCurveStrings

}

struct	CurvePolygon	

{

	 int	geomType;	;

	 CoordinateDimensionality	type;	

	 int	numRings;	//	>=1	as	there	has	to	be	at	least	one	ring

	 Ring[]	rings;	//	size	=	numRings

}

struct	MultiCurvePolygon

{

	 int	geomType;	

	 int	numPolygons;	//	>=0

	 CurvePolygon[]	polygons;	//	size	=	numElements

}

In	the	following	example	a	polygon	is	formatted	within	a	byte	array	representing
the	stream	according	to	the	FGF	specification.

T	=	3	stands	for	GeometryType	==	GeometryType.Polygon

CT	=	0	stands	for	CoordinateDimensionality	==	CoordinateDimensionality.XY

NR	=	2	stands	for	number	of	rings	=	2

NP	=3	stands	for	number	of	points	=	3

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FGF	Text
	
	
	

FGF	Text	is	the	textual	analogue	to	the	binary	FGF	format.	It	is	a	superset	of	the
OGC	WKT	format.	XY	dimensionality	is	the	default,	and	is	optional.	FGF	Text
can	be	used	to	represent	any	geometry	value	in	the	Geometry	API,	whether	or
not	it	originates	from	the	FGF	geometry	factory.	Conversions	are	done	with	the
following	methods:

FdoGeometryFactoryAbstract::	CreateGeometry(FdoString*	text);

FdoIGeometry::	GetText();”

A	BNF	for	the	FGF	textual	specification	is	contained	in	the	topic	Geometry
Value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Abstract	and	Concrete	Classes
	
	
	

The	Geometry	API	is	almost	completely	abstract.	It	provides	an	object-oriented
interface	to	geometry	values.	All	objects	in	the	Geometry	API	have	factory
methods	in	the	FdoGeometryFactorytAbstract	class.	One	default
implementation	is	provided,	based	on	FGF	in-memory	binary	storage.	It	is
accessible	via	the	concrete	class	FdoFgfGeometryFactory.

Note The	FdoFgfGeometryFactory	employes	object	pooling	for	many	of	the	data
types	in	the	API.	While	many	methods	appear	to	be	executing	“Create”	or	“Get”
actions,	they	are,	in	fact,	accessing	object	pools,	thus	avoiding	costly	operations
on	the	memory	heap.

All	of	the	other	classes	in	the	Geometry	API	with	the	exception	of	two	relate	to
the	main	abstract	type,	FdoIGeometry.	They	either	derive	from	it	or	are
components	of	it.

The	two	exception	concrete	classes	are:

FdoDirectPositionImpl,	a	small	helper	class	implementing
FdoIDirectPosition.

FdoEnvelopeImpl,	a	small	helper	class	implementing
FdoIEnvelope.

Geometries	in	FGF	format	can	be	exchanged	between	software	components
without	depending	on	the	Geometry	API	itself,	because	they	are	not	genuine
geometry	“objects.”	FGF	content	is	based	on	byte	arrays.	It	is	handled	through	a
simple	FdoByteArray	class	that	is	not	specific	to	geometry.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometry	Types
	
	
	

The	Geometry	types	comprise	the	Global	Enum	FdoGeometryType.	The
following	are	Geometry	types:

0	FdoGeometryType_None	Indicates	no	specific	type;	used	for
“unknown”,	“do	not	care”	or	an	incompletely	constructed	Geometry
object.

Note FdoGeometryType_	None	does	not	represent	an	instantiable	type.	An	FDO
client	should	not	expect	an	FDO	provider	to	list	support	for	it	in	its	capabilities.

1	FdoGeometryType_Point	Point	type	(FdoIPoint).

2	FdoGeometryType_LineString	LineString	type	(FdoILineString).

3	FdoGeometryType_Polygon	Polygon	type	(FdoIPolygon).

4	FdoGeometryType_MultiPoint	MultiPoint	type	(FdoIMultiPoint).

5	FdoGeometryType_MultiLineString	MultiLineString	type
(FdoIMultiLineString).

6	FdoGeometryType_MultiPolygon	MultiPolygon	type
(FdoIMultiPolygon).

7	FdoGeometryType_MultiGeometry	MultiGeometry	type
(FdoIMultiGeometry).

10	FdoGeometryType_CurveString	CurveString	type	(FdoICurveString).

11	FdoGeometryType_CurvePolygon	CurvePolygon	type
(FdoICurvePolygon).

12	FdoGeometryType_MultiCurveString	MultiCurveString	type
(FdoIMultiCurveString).

13	FdoGeometryType_MultiCurvePolygon	MultiCurvePolygon	type
(FdoIMultiCurvePolygon

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Mapping	Between	Geometry	and	Geometric	Types
	
	
	

The	FDO	API	GeometricType	enumeration	of	GeometricProperty	gives	the
client	application	some	knowledge	of	which	geometry	types	comprise	the
geometric	property	so	that	it	can	present	the	user	with	an	intelligent	editor	for
selecting	styles	for	rendering	the	geometry.	In	particular,	GeometricType	relates
to	shape	dimensionality	of	geometries	allowed	in	FDO	geometric	properties.	The
nearest	analogues	in	the	Geometry	API	are:

FdoDimensionality,	which	pertains	to	ordinate	(not	shape)
dimensionality	of	geometry	values.

FdoGeometryType,	which	has	types	whose	abstract	base	types	map	to
Geometric	Type

The	GeometricType	enumeration	is	as	follows:

Point	=	0x01,	//	Point	Type	Geometry

Curve	=	0x02,	//	Line	and	Curve	Type	Geometry

Surface	=	0x04,	//	Surface	(or	Area)	Type	Geometry

Solid	=	0x08,	//	Solid	Type	Geometry

Note The	enumeration	defines	a	bit	mask	and	the	GetGeometricTypes	and
SetGeometricTypes	methods	take	and	return	an	integer.	This	is	to	allow	a
geometry	property	to	be	of	more	than	one	type.	For	example,	the	call:
		geometricProperty.SetGeometricTypes(Point	|

Surface);																				would	allow	the	geometric	property	to	represent	either
point	type	geometry	or	surface	type	geometry	(polygons).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Spatial	Context
	
	
	

Spatial	Context	is	a	coordinate	system	with	an	identity.	Any	geometries	that	are
to	be	spatially	related	must	be	in	a	common	spatial	context.

Providing	an	identify	for	each	coordinate	system	supports	separate	workspaces,
such	as	schematic	diagrams,	which	are	non-georeferenced.	However,	there	are
also	georeferenced	cases.	In	general,	two	users	may	create	drawings	using	the
same	default	spatial	parameters	(for	example,	rectangular	and	10,000x10,000)
that	have	nothing	to	do	with	each	other.	If	their	drawings	are	to	be	put	into	a
common	database,	the	spatial	context	capability	of	FDO	preserves	the	container
aspect	of	the	data	along	wih	the	spatial	parameters.

The	FDO	Spatial	Context	Commands	are	part	of	the	FDO	API.	They	support
control	over	Spatial	Contexts	in	the	following	ways:

Metadata	control.	Creates	and	deletes	Spatial	Contexts.

Active	Spatial	Context.	A	session	setting	to	specify	which	Spatial
Context	to	use	by	default	while	storing/retrieving	geometries	and
performing	spatial	queries.

There	is	a	default	Spatial	Context	for	each	database.	Its	attributes	(such	as
coordinate	system)	are	specified	when	the	database	is	created.	This	Spatial
Context	is	the	active	one	in	any	FDO	session	until	a	Spatial	Context	Command
is	used	to	change	this	state.	The	default	Spatial	Context’s	identifier	number	is	0
(zero).

Spatial	contexts	have	two	tolerance	attributes:	XYTolerance	and	ZTolerance.
The	tolerances	are	in	distance	units	that	depend	on	the	coordinate	system	in	use.
Geodetic	coordinate	systems	typically	have	“on	the	ground”	linear	distance	units
instead	of	the	angular	(that	is,	degrees,	minutes	or	seconds)	units	used	for
positional	ordinates.	The	meter	is	the	most	common	unit.	Most	non-geodetic
systems	are	rectilinear	and	use	the	same	unit	for	positional	ordinates	and
distances,	for	example,	meters	or	feet.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Specify	Dimensionality	When	Creating	Geometries	Using
String	Specifications
	
	
	

When	creating	a	3D	geometry	from	string	specifications,	you	must	specify	the
Dimensionality	argument	XYZ	explicitly,	because	the	default	dimensionality	is
XY,	and	the	geometry	factory	code	will	only	process	the	first	two	ordinates.

The	following	code	successfully	creates	pointOne	as	a	3D	point,	whereas
pointTwo	is	created	as	a	2D	point.

FdoFgfGeometryFactory	*	geometryFactory	=	FdoFgfGeometryFactory::GetInstance();

FdoIPoint	*	pointOne;

pointOne	=	dynamic_cast(geometryFactory->CreateGeometry(L”GeomFromText(‘POINT	XYZ	(1	2	3)’)”));

FdoPoint	*	pointTwo;

pointTwo	=	dynamic_cast(geometryFactory->CreateGeometry(L”GeomFromText(‘POINT	(1	2	3)’)”));

xmlFeatureFlags	=	FdoXmlFeatureFlags.Create(None,	FdoXmlFlags.ErrorLevel_Normal,	True,	FdoXmlFeatureFlags.ConflictOption_Add)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Inserting	Geometry	Values
	
	
	

For	information	about	geometry	property	values,	see	Geometry	Property	Values.

See	Example:	Inserting	an	Integer,	a	String,	and	a	Geometry	Value	for	a	code
example	that	shows	how	to	insert	a	Geometry	value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Autodesk	FDO	Provider	for	Oracle
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	using
FDO	Provider	for	Oracle.

Topics	in	this	section

What	Is	FDO	Provider	for	Oracle?
FDO	Provider	for	Oracle	General	Requirements
FDO	Provider	for	Oracle	Connection
FDO	Provider	for	Oracle	and	Foreign	Schemas
FDO	Provider	for	Oracle	and	Schema	Overrides
Oracle-Specific	Schema	Creation	Restrictions
Oracle-Specific	Schema	Modification	Restrictions
Oracle-Specific	Deletion	Restrictions
Oracle	Reserved	Words	Used	with	Filter	and	Expression	Text
Locking	and	Long	Transactions
FDO	Provider	for	Oracle	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	Oracle?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	FDO	Provider	for	Oracle	provides	FDO	with
access	to	an	Oracle-based	data	store.

FDO	Provider	for	Oracle	API	provides	custom	commands	specifically	designed
to	work	with	the	FDO	API.	For	example,	using	these	commands,	you	can	do	the
following:

Gather	information	about	a	provider.

Transmit	client	services	exceptions.

Get	lists	of	accessible	data	stores.

Create	connection	objects.

Create	and	dropping	spatial	indexes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	Oracle	General	Requirements
	
	
	

For	Autodesk	Map	3D	users,	a	pre-requisite	for	creating	schema	and	managing
long	transactions	is	to	include	the	setting	WM_ADMIN_ROLE	in	the	user
definition.

If	a	user	definition	does	not	have	this	setting,	use	the	FDO	User	Manager	Tool
to	delete	the	user	definition	and	then	recreate	it	to	include	WM_ADMIN_ROLE.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	Oracle	Connection
	
	
	

This	information	supplements	the	Establishing	a	Connection	chapter.	You
connect	to	a	data	store	directly	through	FDO	Provider	for	Oracle,	and	the
underlying	data	source	for	the	data	store	is	an	Oracle	database.

You	can	connect	to	the	data	store	in	one	step	if	you	already	know	its	name.
Otherwise,	you	must	connect	in	two	steps.

The	minimum	required	connection	parameters	for	the	initial	call	to	Open()	are
service,	username,	and	password.

The	service	parameter	is	the	Oracle	Net	Service	Name	of	an	Oracle	instance.	An
instance	could	be	running	on	your	machine	or	on	some	other	machine	in	the
network.	You	can	use	the	Oracle	Net	Manager	to	identify	which	Oracle	instances
are	available	to	you	and	what	their	Net	Service	Names	are.	In	an	Oracle	10g
installation	on	a	Microsoft	Windows	XP	machine,	Net	Manager	can	be	accessed
with	Start Programs Oracle Configuration	and	Migration	Tools Net
Manager.	The	connection	information	for	the	Net	Service	Name	is	contained	in	a
file	named	tnsnames.ora,	which	is	located	in	the	Network/Admin	folder	in	either
the	Oracle	instance	or	the	client	installation	directory.

Multiple	users	can	access	the	data	store.	However,	access	is	password-protected.

An	Oracle	data	source,	when	accessed	by	FDO	Provider	for	Oracle,	may	contain
more	than	one	data	store.	For	the	first	call	to	Open(),	a	data	store	name	is
optional.	If	successful,	the	first	call	to	Open()	results	in	the	data	store	parameter
becoming	a	required	parameter	and	a	list	of	the	names	of	the	data	stores	in	the
data	source	becoming	available.	You	must	choose	a	data	store	and	call	Open()
again.

If	you	know	the	name	of	the	data	store,	you	can	provide	it	for	the	first	call	to
Open()	and	make	the	connection	in	one	step.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	Oracle	and	Foreign	Schemas
	
	
	

FDO	Provider	for	Oracle	supports	the	creation	of	foreign	schemas.	A	foreign
schema	is	capable	of	mapping	a	table	to	Oracle	instances.	This	allows	users	with
a	pre-existing	application	(for	example,	one	created	with	Autodesk	GIS	Design
Server)	to	map	their	application	to	FDO.	As	a	result,	both	the	FDO	capability
and	conventional	capability	can	be	used	by	the	same	application.

Topics	in	this	section

Foreign	Schema	Settings
Read-Write	Privileges
Foreign	Schema	Limitations

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Foreign	Schema	Settings
	
	
	

In	order	to	use	a	foreign	schema,	certain	privileges	for	FDO	are	required.	To
support	the	foreign	schema	capability,	the	following	settings	are	required:

FDO	schema	instance

Foreign	schema	instance

Oracle	identity	property

These	settings	are	required	for	accessing	the	foreign	schema	objects	(that	is,
tables,	views,	and	sequences.).

Topics	in	this	section

Settings	on	the	FDO	Schema	Instance
Settings	on	the	Foreign	Schema	Instance
Oracle	Identity	Property

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Settings	on	the	FDO	Schema	Instance
	
	
	

If	the	foreign	schema	is	on	a	different	Oracle	instance,	create	a	PUBLIC
database	link.	A	database	link	is	a	schema	object	that	enables	accessing	of
objects	on	another	Oracle	instance.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Settings	on	the	Foreign	Schema	Instance
	
	
	

If	the	foreign	schema	is	on	a	different	Oracle	instance,	create	an	FDO	user	using
the	same	Username	and	password	as	on	the	instance	where	the	FDO	schema
exists.

Note This	FDO	user	does	not	need	to	have	been	granted	the	f_user_role	role.

Grant	the	select,	update,	delete,	and	insert	privileges	on	tables	(views,
sequences)	to	the	FDO	user	that	is	mapped	to	the	FDO	schema.	Note	that	if	the
Foreign	Schema	tables	are	enabled	for	Oracle	Workspace	Manager,	the
privileges	must	be	granted	for	the	based	table.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Oracle	Identity	Property
	
	
	

When	specifying	the	main	identifier	for	a	feature	class	with	FDO	Provider	for
Oracle,	the	data	type	must	be	Int64.	It	must	also	have	the	following	settings:
ReadOnly=True	and	Autogenerated=True.	If	an	identifier	is	not	created	with
these	properties,	it	will	be	created	by	FDO	Provider	for	Oracle.	Otherwise,	an
exception	may	be	raised	in	certain	conditions.

If	the	foreign	schema	uses	a	different	data	type	for	identifiers,	the	user	must
define	the	identifier	as	a	fdo	int64	type	with	ReadOnly=True	and
Autogenerated=True	in	the	XML	configuration	file.	If	the	identifier	in	the
foreign	schema	uses	an	Oracle	sequence	to	generate	the	unique	numbers,	the
sequencename	override	must	be	defined	in	the	override	XML	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Read-Write	Privileges
	
	
	

If	FDO	requires	read-write	privileges	to	work	with	a	foreign	schema,	the	owner
of	the	foreign	schema	must	grant	these	privileges.	Also,	access	to	the	Oracle
metaschema	on	the	tables	is	required.

Note The	owner	must	explicitly	grant	these	privileges.	These	privileges	will	vary,
according	to	the	schema	owner.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Foreign	Schema	Limitations
	
	
	

This	section	provides	information	about	known	limitations	of	foreign	schemas.

Topics	in	this	section

Ensuring	Valid	Views	When	Applying	a	Feature	Schema	Against	a
Foreign	Schema
Table	Name	Restrictions	When	Working	with	a	Foreign	Schema
Schema	Access	on	a	Different	Oracle	Instance

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Ensuring	Valid	Views	When	Applying	a	Feature	Schema
Against	a	Foreign	Schema
	
	
	

The	ApplySchema	command	can	creates	invalid	views	when	the	feature	schema
is	applied	against	a	foreign	schema.	When	you	apply	against	a	foreign	schema,
tables	and	columns	are	not	automatically	created	if	they	do	not	already	exist.	A
view	is	created,	however,	in	the	connected	data	store	that	references	these
foreign	tables	and	columns.	ApplySchema	succeeds	even	if	certain	tables	or
columns	cannot	be	obtained	for	various	reasons,	such	as:

The	database	link	to	the	foreign	tables	is	invalid.

The	Oracle	instance	containing	the	foreign	tables	is	shut	down	or
unreachable	due	to	network	problems.

The	foreign	table	or	column	simply	does	not	exist.

When	one	of	these	situations	occurs,	ApplySchema	creates	invalid	(dangling)
views	because	these	views	reference	tables	or	columns	that	cannot	be	reached.

Invalid	views	can	occur	regardless	of	whether	schema	overrides	have	been
specified	because	the	default	schema	mappings	can	also	reference	unreachable
tables	or	columns.	For	example,	if	the	feature	schema	being	applied	has	a	Pole
class	with	no	table	name	override,	the	Pole	class	is	mapped	to	the	POLE	table	in
the	foreign	schema	and	a	POLE	view	(referencing	the	POLE	table)	is	created	in
the	data	store	that	the	Oracle	provider	is	currently	connected	to.	If	the	POLE
table	does	not	exist,	then	the	POLE	view	is	dangling,	or	invalid.

Use	one	of	the	following	procedures	to	correct	invalid	views,	depending	on
whether	the	correct	table	name	was	specified	(either	through	a	schema	override
or	the	default	class	to	table	mapping	rule):

Procedure	When	Table	Name	Is	Correct

If	the	table	name	is	correct,	but	it	is	not	reachable	for	the	reasons	listed	above:

1.	 Create	the	table	or	make	it	reachable	by	fixing	the	database	link,	fixing
network	problems,	or	starting	the	Oracle	instance	that	contains	the	table.

2.	 Recompile	the	view	that	references	the	table.

The	Oracle	SQL	statement	for	recompiling	the	view	is:

Alter	view	<view_name>	compile;

If	there	are	a	number	of	views	to	recompile,	an	alternative	method	is	to	use	the
following	procedure	for	a	wrong	table	name,	but	only	do	Steps	1	and	3.

Procedure	When	Wrong	Table	Name	Is	Specified

If	the	wrong	table	name	is	specified,	to	ensure	valid	views:

1.	 Destroy	the	feature	schema.	As	long	as	the	feature	schema	maps	onto	a
foreign	schema,	destroying	it	does	not	result	in	loss	of	data.	No	tables	or
columns	are	dropped,	only	the	referencing	views	created	by	FDO
Provider	for	Oracle	are	dropped.

2.	 Fix	the	schema	overrides	to	supply	the	proper	table	name.	In	some	cases,
you	may	need	to	add	a	schema	override.	For	example,	if	a	class	named
"Pole"	corresponds	to	the	foreign	table	"telco_pole",	then	a	table	name
override	must	be	specified	for	the	Pole	class,	since	the	class	and	table
names	differ.

3.	 Re-apply	the	feature	schema.

If	your	feature	schema	contains	a	mixture	of	classes	mapped	to	foreign	tables
and	classes	mapped	to	non-foreign	tables,	then	the	procedure	is	slightly	more
complex,	especially	if	any	non-foreign	table	contains	data.	In	this	case,	the
following	steps	must	be	done	programmatically	throughout	the	FDO	API:

1.	 Describe	the	feature	schema	using	the	DescribeSchema	command.
Retain	this	description.

2.	 Remove	every	class,	except	the	one	with	the	wrong	table	name,	from	the
feature	schema	returned.	However,	do	not	delete	the	classes	(that	is,	do
not	call	FdoClassDefinition::Delete()).

3.	 Describe	the	feature	schema	again	(ensure	that	you	retain	the	feature
schema	from	the	first	Describe).

4.	 Delete	the	class	with	the	wrong	table	name	from	the	feature	schema
returned	by	the	second	Describe	(by	calling	its
FdoClassDefinition::Delete()	function).

5.	 Fix	the	schema	overrides	to	supply	the	proper	table	name.

6.	 Ensure	that	FdoIApplySchema::SetIgnoreStates()	is	set	to	false,	then
Apply	the	feature	schema	described	from	Step	3.	This	deletes	the	class	to
repair.

7.	 Ensure	that	FdoIApplySchema::SetIgnoreStates()	is	set	to	true,	then
Apply	the	feature	schema	described	from	Step	1,	along	with	the	schema
overrides.	This	re-creates	the	class	to	repair.

Overrides	Capable	of	Causing	Invalid	Views

Any	schema	mapping	between	a	feature	schema	element	and	a	table	or	column
can	create	invalid	views.	This	is	true	for	mappings	specified	through	schema
overrides	or	for	default	mappings.	The	specific	schema	mappings	that	can	cause
invalid	views	are	as	follows:

Class	to	Table	name

Class	to	Geometry	Column	name

Data	Property	to	Column	name

Geometric	Property	to	Column	name

Object	Property	to	Table	name

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Table	Name	Restrictions	When	Working	with	a	Foreign
Schema
	
	
	

The	ApplySchema	command	does	not	automatically	create	tables	in	foreign
schemas.	Therefore,	the	table	specified	for	each	class	must	already	exist	in	the
foreign	schema.	The	Schema	Overrides,	specified	through
ApplySchema.SetPhysicalMapping,	must	contain	a	class	to	table	mapping	for
each	class	whose	table	is	named	differently	from	the	class.	No	mapping	is
required	for	classes	where	the	table	name	and	class	name	are	the	same.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Access	on	a	Different	Oracle	Instance
	
	
	

The	following	are	Oracle	limitations	on	foreign	schema	access	if	the	schema	is
on	a	different	(remote)	Oracle	instance:

LOB	type	columns	are	not	supported.

Versioning	and	locking	using	Oracle	Workspace	Manager	are	not
supported.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	Oracle	and	Schema	Overrides
	
	
	

Schema	overrides	are	supported	through	the	Overrides	API	that	is	specific	to
FDO	Provider	for	Oracle.	This	API	is	published	as	part	of	the	FDO	SDK.

Topics	in	this	section

Schema	Override	Set

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Override	Set
	
	
	

A	schema	override	set	is	the	set	of	schema	overrides	for	a	particular	Feature
Schema	and	FDO	Provider.

The	top	level	of	a	schema	override	set	is	very	similar	to	the	Feature	Schema,
itself.	There	is	a	root	class	(OraclePhysicalSchemaMapping),	with	a	list	of
classes	and	a	list	of	relations.	These	lists	are	subsets	of	the	lists	in	the
corresponding	Feature	Schema.	It	is	not	necessary	to	list	every	class	and
relation;	list	only	the	ones	for	which	overrides	are	being	specified.
OraclePhysicalSchemaMapping	provides	the	Oracle-specific	implementation	of
FdoPhysicalSchemaMapping.

The	methods	for	these	MetaClasses	are	stripped	down	from	the	methods	on	the
corresponding	Feature	Schema	MetaClasses.	In	the	Schema	Override	set,	only
name	and	physical	properties	are	specified.	For	example,	the	names	for	schema
objects	can	be	specified,	but	not	the	descriptions,	since	the	descriptions	cannot
be	overridden.	Name	cannot	be	overidden	either,	but	each	object	needs	a	name
for	identification,	so	it	must	be	specified.

The	Schema	Override	Set	is	used	to	specify	schema-wide	overrides	such	as:

Oracle	Database	for	all	tables	for	classes	and	object	properties	in	the
schema.	Defaults	to	the	current	Oracle	Database	for	the	current
connection.

Oracle	Owner	for	all	tables	for	classes	and	object	properties	in	the
schema.	Defaults	to	the	current	Oracle	Schema	for	the	current
connection.

Tablespace	for	all	tables	for	classes	and	object	properties	in	the	schema.
Defaults	to	the	default	table	space	for	the	Oracle	Owner.

Default	table	mapping	type	for	all	classes	in	the	schema.	If	not	specified,
the	default	table	mapping	type	is	Concrete.

These	schema-wide	overrides	can	themselves	be	overridden	on	an	element-by-

element	basis.	For	example,	there	are	overrides	available	for	class	table,	object
property,	and	geometric	property.

Topics	in	this	section

Class	Table	Overrides
Data	Property	Overrides
Object	Property	Overrides
Geometric	Property	Overrides

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Class	Table	Overrides
	
	
	

The	RDBMS	table	for	storing	class	properties	can	be	specified	by	adding	a	table
to	the	class.	The	table	specifies	the	table	name	and	table	primary	key	name.	By
default,	the	table	name	is	set	to	be	the	same	as	the	class	name.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Property	Overrides
	
	
	

The	physical	representation	for	a	data	property	can	be	overridden	by	attaching	a
column	to	it.	The	column	specifies	the	name	of	the	property’s	corresponding
column	in	the	FDO	database.	If	Column	is	not	specified,	then	the	column	names
default	to	Name	(the	property	name).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Object	Property	Overrides
	
	
	

The	type	of	an	Object	Property	is	a	class	in	a	Feature	Schema.	This	class	can	be
considered	the	referenced	class.	This	referenced	class	has	properties,	so	a	home
for	each	property	must	be	provided	in	the	RDBMS	data	store.	There	are	are	two
different	ways	to	store	these	properties.	The	Mapping	Definition	for	each	Object
Property	is	specified	by	setting	its	MappingDefinition	to	an	object	of	one	of	the
following	classes:

PropertyMappingSingle.	The	referenced	class	properties	are	embedded
in	the	containing	class’s	table.	The	containing	class	is	the	class
containing	the	Object	Property.

PropertyMappingConcrete.	The	Object	Property	is	not	stored	in	the
containing	class’s	table.	A	separate	table	is	automatically	generated	for
it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometric	Property	Overrides
	
	
	

The	column	for	a	Geometric	property	can	be	overridden	by	attaching	a
Geometric	column	to	it.	Only	the	column	name	can	be	specified.	The	column
type	must	always	be	mdsys.sdo_geometry.

The	default	column	depends	on	whether	the	F_Geometry_0	table	is	present	and
whether	the	Geometric	Property	is	also	the	GeometryProperty	for	its	containing
class.

If	it	is	the	GeometryProperty	and	F_Geometry_0	exists,	then	the	table	for	this
property	is	F_Geometry_<n>,	where	<n>	is	the	ID	of	the	Spatial	Context	Group
for	the	associated	Spatial	Context.	If	the	Geometric	Property	is	not	associated
with	a	Spatial	Context,	then	<n>	is	the	ID	of	the	active	Spatial	Context	group,	at
the	time	the	geometric	property	is	created.	The	column	for	the	property	is	always
RDBMS_GEOM.

Otherwise,	the	column	name	is	assumed	to	be	the	same	as	the	property	name.
The	column	table	is	assumed	to	be	the	table	for	the	containing	class.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Oracle-Specific	Schema	Creation	Restrictions
	
	
	

This	section	describes	the	restrictions	that	apply	when	creating	schema(s)	using
FDO	Provider	for	Oracle.

Topics	in	this	section

FDOFeatureClass
Classes
Properties

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDOFeatureClass
	
	
	

An	FdoFeatureClass	must	have	an	identity.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Classes
	
	
	

Class	names	must	be	unique	across	the	data	store.

FdoFeatureClass	must	define	or	inherit	at	least	one	IdentityProperty.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Properties
	
	
	

Restrictions	apply	to	specific	types	of	properties.

Topics	in	this	section

Data	Properties
Identity	Properties
String	Properties
Decimal	Properties
Geometric	Properties
Object	Properties

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Properties
	
	
	

The	default	value	must	not	be	specified.

A	non-nullable	data	property	cannot	be	added	to	a	class	that	already	has
data.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Identity	Properties
	
	
	

Identity	properties	cannot	be	nullable.

Read-only	Identity	properties	must	be	autogenerated.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

String	Properties
	
	
	

String	property	length	must	be	between	1	and	4000	bytes	inclusive.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Decimal	Properties
	
	
	

Decimal	property	precision	must	be	between	0	and	38	inclusive.

Decimal	property	scale	must	be	between	-84	and	127	inclusive.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometric	Properties
	
	
	

Only	FdoFeatureClass	can	have	geometric	properties.	A	feature	class	can
have	multiple	geometric	properties;	main	geometry	is	not	mandatory.
HasMeasure	and	HasElevation	are	supported.

If	the	geometric	property	values	are	stored	in	a	feature	geometry	system
table	(F_GEOMETRY_<n>),	then	HasMeasure	must	be	false.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Object	Properties
	
	
	

The	object	property	class	must	be	an	FdoClass.	(FdoFeatureClass	is	not
allowed.)

IdentityProperty	is	mandatory	if	ObjectType	is	not
FdoObjectType_Value	and	the	object	property	class	has	no	identity
properties.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Oracle-Specific	Schema	Modification	Restrictions
	
	
	

This	section	describes	restrictions	that	apply	when	modifying	schema(s)	using
FDO	Provider	for	Oracle.

Almost	all	modifications	are	disallowed,	with	the	exception	of	those	that	follow.

Topics	in	this	section

Schema	Element	Descriptions
Data	Properties

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Schema	Element	Descriptions
	
	
	

Any	schema	element	description	is	allowed.

Any	schema	attribute	dictionary	(entries	can	be	added,	deleted,	or
modified)	is	allowed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Properties
	
	
	

The	read-only	setting	for	a	data	property	can	be	modified	if	the	property	is	not
autogenerated.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Oracle-Specific	Deletion	Restrictions
	
	
	

This	section	describes	restrictions	that	apply	when	performing	deletion	in	a
schema	while	using	FDO	Provider	for	Oracle.

Topics	in	this	section

FDOClassDefinition
FDOClass
Property

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDOClassDefinition
	
	
	

FdoClassDefinition	cannot	be	deleted	if	it	has	data	(objects).

FdoClassDefinition	cannot	be	deleted	if	another	class	in	the	data	store	has	it	as
its	base	class.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDOClass
	
	
	

FdoClass	cannot	be	deleted	if	it	is	referenced	by	any	object	property	in	the	data
store.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Property
	
	
	

A	data	property	cannot	be	deleted	if	it	has	any	non-null	values.

An	object	property	cannot	be	deleted	if	it	has	data.

A	geometric	property	cannot	be	deleted	if	its	containing	class	has	data.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Oracle	Reserved	Words	Used	with	Filter	and	Expression
Text
	
	
	

When	using	a	filter	string	with	Oracle	reserved	words,	the	string	within	the
expression	must	be	encapsulated	inside	single	quotes	(following	the	same
convention	used	with	the	SQL	language).	Failure	to	do	so	will	result	in	a	parsing
error	because	the	parser	cannot	determine	any	difference	between	the	value	and
the	keyword.

Example	of	a	filter	string:

AND='linetype'	

This	FDO	constraint	appliesto	the	Oracle	reserved	words:

AND

DATE

IN

LIKE

NOT

OR

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Locking	and	Long	Transactions
	
	
	

The	purpose	of	this	section	is	two-fold.	First,	it	illustrates	ways	of	understanding
the	subtleties	of	the	interactions	between	locking	and	long	transactions	in	an
Oracle	context.	Secondly,	it	provides	concrete	examples	of	those	subtleties.

An	FDO	long	transaction	version	is	called	a	workspace	in	an	Oracle	context.	In
this	discussion,	the	FDO	phrase	“long	transaction	version”	is	shortened	to	“long
transaction”.	A	key	phrase	in	the	example	is	“root,”	which	represents	permanent
data.	Any	long	transaction	has	a	root	long	transaction	as	an	ancestor.	The	Oracle
Workspace	Manager	(OWM)	name	for	the	FDO	root	long	transaction	is	“LIVE”.

Version	Enabling

The	Autodesk	FDO	Provider	for	Oracle	creates	tables	in	the	FDO	data	store	that
are	not	automatically	version-enabled.	Therefore,	when	you	create	a	new	Oracle
data	store	using	the	default	options,	the	resulting	table	is	not	version-enabled,	so
persistent	locking	and	long	transaction	are	not	supported.	(This	differs	from
previous	releases.)

OWM	is	used	for	versioning	and	persistent	locking	support.	To	enable
versioning,	you	must	execute	the	EnableVersioning.sql	script	in	the
/FDO/bin/com	folder.	This	will	enable	the	tables	for	OWM.	Use	SQL*Plus	to
execute	the	scripts.

Note If	you	create	a	data	store	in	AutoCAD	Map	3D	2008	that	you	want	to	use
with	the	previous	version	of	Autodesk	Map	3D,	you	must	set	the	value	of	the
lock	and	long	transaction	options	in	the	table	F_Options	in	the	generated	data
store	to	2.	You	can	do	this	with	the	supplied	SQL	script	EnableVersioning.sql,
which	also	enables	versioning	for	all	tables	and	allows	the	creation	of
conditional	data.	Do	not	make	this	change	to	F_Options	in	the	database	if	you
do	not	plan	to	use	it	with	the	previous	version	of	Autodesk	Map	3D.

Read	the	documentation	contained	within	the	script	files	themselves	to
determine	what	privileges	are	required	for	each	script,	how	to	run	the	scripts,

and	what	errors	may	occur.	Severe	consequences	can	occur	if	you	respond
incorrectly	to	any	errors	you	encounter	while	running	a	script.

Note The	DisableVersioning.sql	script	in	the	same	folder	provides	the	opposite
functionality.

Before	executing	the	scripts,	the	following	conditions	must	be	true:

You	always	connect	directly	to	the	Oracle	user	(or	FDO	data	store)	to	be
processed.

The	Oracle	user	executing	the	script	has	sufficient	privileges	(this	user
has	been	granted	the	Workspace	Manager	role	WM_ADMIN_ROLE).

The	Oracle	user	executing	the	script	is	the	only	user	processing	or
accessing	the	current	Oracle	user	(or	FDO	data	store)	during	the
execution	of	the	script.	Otherwise,	a	script	failure	may	result	from	a
session	conflict.

You	can	create	a	script	log	file	by	executing	the	spool	<log	file
name>;	command	before	invoking	the	scripts	and	the	spool	off;
command	after	the	invoked	script	finishes.	The	log	file	can	help	you	resolve	any
issues	encountered	by	the	scripts.

Topics	in	this	section

OWM	and	FDO	Lock	Types
Example:	AllLongTransactionExclusiveLock

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OWM	and	FDO	Lock	Types
	
	
	

The	following	table	shows	the	names	of	the	Oracle	Workspace	Manager	locks
used	to	implement	each	FDO	lock:

FDO	Lock	Type Oracle	Lock	Type

Shared Shared

Exclusive Workspace	Exclusive

Long	Transaction	Exclusive Version	Exclusive

All	Long	Transaction	Exclusive Exclusive

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Example:	AllLongTransactionExclusiveLock
	
	
	

The	following	is	a	proven	example	using	the	AllLongTransactionExclusiveLock
type	with	multiple	users	and	the	Update	command.	When	you	connect	to	an
Oracle	data	store,	you	are	placed	in	the	already-activated,	default	root	long
transaction.	If	a	long	transaction	is	created	in	root,	it	is	considered	a	child	of
root.	When	the	new	long	transaction	is	activated	(for	example,	as	LT1),	the
subsequent	actions	take	place	in	the	context	of	LT1.	If	another	long	transaction	is
subsequently	created	(for	example,	as	LT2),	it	is	created	as	a	child	of	LT1.

Note When	using	FDO	Provider	for	Oracle	long	transactions	and	locking,	the
combination	of	Oracle	Workspace	Manager	capabilities	and,	potentially,	other
third-party	applications	can	introduce	many	variables	and	combinations.	The
possible	resulting	conflicts	in	locking	and	long	transactions	can	be	similarly
wide	and	varied.

This	example	considers	two	closely	related	cases.	The	same	set	of	actions	are
taken	in	both	cases,	but	in	slightly	different	sequences,	yielding	different	results.
User1	creates	a	long	transaction	in	the	context	of	root	and	it	is	activated.	User1
applies	an	AllLongTransactionExclusiveLock	to	a	feature	object	in	a	data	store.
User1	updates	that	feature	object	in	the	data	store.	User2	attempts	to	update	the
same	object,	in	the	same	data	store,	in	the	context	of	root.	In	the	first	case,	User2
succeeds,	and	in	the	second	case	User2	fails	(that	is,	a	lock	conflict	is	reported).

More	specifically,	the	sequence	of	events	for	both	cases	is	captured	in	the
accompanying	Long	Transaction	and	Locking	Sequencing	Example	diagram.
For	this	example,	all	events	occur	in	a	single	data	store.	The	sequence	of	events
are:

1.	 User1	creates	LT1,	activates	LT1,	and	updates	feature	object	“a”	in	LT1.

2.	 User2	successfully	updates	object	“a”	in	root.

3.	 User1	creates	LT2,	activates	LT2,	and	updates	feature	object	“b”	in	LT2.

4.	 User2	fails	to	update	object	“b”	in	root.

The	key	difference	is	that,	in	LT1,	User1	updates	feature	object	“a”	before	the
lock	is	applied,	and,	in	LT2,	User1	applies	the	lock	to	feature	object	“b”	before	it
is	updated.	Prior	to	update,	a	copy	of	object	"b"	has	not	been	made	in	LT2.	This
causes	the	lock	to	be	applied	to	the	copy	of	the	object	in	root,	because	there	is
not	yet	a	copy	in	LT2.

Therefore,	if	User1	intends	to	prevent	anyone	from	modifying	the	object	from
the	root	level,	User1	must	apply	the	lock	to	the	object	before	updating	it.

For	more	information	about	Oracle	Workspace	Manager	and	its	lock
management,	see	the	Oracle	documentation.

Long	Transaction	and	Locking	Sequencing	Example

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	Oracle	Capabilities
	
	
	

The	capabilities	of	an	FDO	provider	are	grouped	in	the	following	categories:

Connection

Schema

Commands

Filters

Expressions

Geometry

Raster

Connection	Capabilities

Use	the	FdoIConnectionCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetConnectionCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoIConnectionCapabilities	class	description	in	the
FDO	API	Reference	documentation.

The	following	capabilities	are	supported:

Per	connection	threading

static	spatial	content	extent	type

locking

lock	types:	shared,	exclusive,	transaction,	AllLongTransactionExclusive,
LongTransactionExclusive

transactions

long	transactions

SQL

XML	configuration

multiple	spatial	contexts

specification	of	the	coordinate	system	by	name	without	specifying	the
WKT

Write

Multi-user	write

Schema	Capabilities

Use	the	FdoISchemaCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetSchemaCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoISchemaCapabilities	class	description	in	the	FDO
API	Reference	documentation.

The	following	capabilities	are	supported:

class	and	feature	class	class	types

Boolean	data	type	with	a	maximum	length	of	1	byte

Byte	data	type	with	a	maximum	length	of	1	byte

DateTime	data	type	with	a	maximum	length	of	12	bytes

Decimal	data	type	with	a	maximum	length	of	165	digits	(maximum
decimal	precision	of	38	and	maximum	decimal	scale	of	127)

Double	data	type	with	a	maximum	length	of	8	bytes

Int16	data	type	with	a	maximum	length	of	2	bytes

Int32	data	type	with	a	maximum	length	of	4	bytes

Int64	data	type	with	a	maximum	length	of	8	bytes

Single	data	type	with	a	maximum	length	of	4	bytes

String	data	type	with	a	maximum	length	of	4000

BLOB	data	type	with	a	maximum	length	of	4000000000	bytes

CLOB	data	type	with	a	maximum	length	of	4000000000	bytes

Int64	auto-generated	data	type

Identity	properties	of	type	Boolean,	Byte,	DateTime,	Decimal,	Double,
Int16,	Int32,	Int64,	Single,	and	String

Name	size	limitation	of	30	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Datastore

Name	size	limitation	of	255	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Schema

Name	size	limitation	of	255	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Class

Name	size	limitation	of	255	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Property

Name	size	limitation	of	255	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Description

Characters	that	cannot	be	used	for	a	schema	element	name:	.:

Association	properties

Auto	ID	generation

Composite	ID

Composite	unique	value	constraints

Datastore	scope	unique	ID	generation

Default	value

Exclusive	value	range	constraints

Inclusive	value	range	constraints

Inheritance

Multiple	schemas

Null	value	constraints

Object	properties

Unique	value	constraints

Schema	modification

Schema	overrides

Unique	value	constraints

Value	constraints	list

Command	Capabilities

Use	the	FdoICommandCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetCommandCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoICommandCapabilities	class	description	in	the	FDO
API	Reference	documentation.

The	following	commands	are	supported:

FdoCommandType_Select

FdoCommandType_SelectAggregates

FdoCommandType_Insert

FdoCommandType_Delete

FdoCommandType_Update

FdoCommandType_DescribeSchema

FdoCommandType_DescribeSchemaMapping

FdoCommandType_ApplySchema

FdoCommandType_DestroySchema

FdoCommandType_ActivateSpatialContext

FdoCommandType_CreateSpatialContext

FdoCommandType_DestroySpatialContext

FdoCommandType_GetSpatialContexts

FdoCommandType_CreateDataStore

FdoCommandType_DestroyDataStore

FdoCommandType_ListDataStores

FdoCommandType_SQLComnmand

FdoCommandType_AcquireLock

FdoCommandType_GetLockInfo

FdoCommandType_GetLockedObjects

FdoCommandType_GetLockOwners

FdoCommandType_ReleaseLock

FdoCommandType_ActivateLongTransaction

FdoCommandType_CommitLongTransaction

FdoCommandType_CreateLongTransaction

FdoCommandType_DeactivateLongTransaction

FdoCommandType_GetLongTransactions

FdoCommandType_RollbackLongTransaction

FdoRdbmsCommandType_CreateSpatialIndex

FdoRdbmsCommandType_DestroySpatialIndex

FdoRdbmsCommandType_GetSpatialIndexes

The	following	capabilities	are	supported:

simple	functions	in	Select	and	SelectAggregate	commands

use	of	expressions	for	properties	in	Select	and	SelectAggregates
commands

use	of	Distinct	in	SelectAggregates	command

availability	of	ordering	in	Select	and	SelectAggregates	command

availability	of	grouping	criteria	in	SelectAggregates	command

Filter	Capabilities

Use	the	FdoIFilterCapabilities	object	methods	to	learn	about	these	capabilities.
You	can	get	this	object	by	calling	the	GetFilterCapabilities()	method	on	the
FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the	capabilities,
consult	the	FdoIFilterCapabilities	class	description	in	the	FDO	API	Reference
documentation.

The	following	capabilities	are	supported:

Conditions	of	type	comparison,	like,	in,	null,	spatial,	and	distance

the	Within	distance	operation

spatial	operations	of	type	CoveredBy,	Inside,	Intersects,
EnvelopeIntersects

Expression	Capabilities

Use	the	FdoIExpressionCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetExpressionCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoIExpressionCapabilities	class	description	in	the	FDO
API	Reference	documentation.

Basic,	function,	and	parameter	expressions	are	supported.

The	following	functions	are	supported:

Double	Avg(<type>	value)	where	<type>	is	one	of	Decimal,	Double,
Single,	Int16,	Int32,	or	Int64.

Decimal	Ceil(<type>	value)	where	<type>	is	one	of	Decimal,	Double,	or
Single

String	Concat(String	str1Val,	String	str2Val)

Int64	Count(<type>	value)	where	<type>	is	one	of	Boolean,	Byte,
DateTime,	Decimal,	Double,	Int16,	Int32,	Int64,	Single,	String,	BLOB,
or	CLOB

Decimal	Floor(<type>	value)	where	<type>	is	one	of	Decimal,	Double,
or	Single

String	Lower(String	value)

Byte	Max(<type>	value)	where	<type>	is	one	of	Byte,	DateTime,
Decimal,	Double,	Int16,	Int32,	Int64,	Single,	or	String.

Byte	Min(<type>	value)	where	<type>	is	one	of	Byte,	DateTime,
Decimal,	Double,	Int16,	Int32,	Int64,	Single,	or	String.

Double	Sum(<type>	value)	where	<type>	is	one	of	Decimal,	Double,
Int16,	Int32,	Int64,	or	Single.

String	Upper(String	value)

GeometricProperty	SpatialExtents(GeometricProperty	property)

Geometry	Capabilities

Use	the	FdoIGeometryCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetGeometryCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoIGeometryCapabilities	class	description	in	the	FDO
API	Reference	documentation.

Dimensionality	XYZM	is	supported.	The	geometry	component	types	Ring,
LinearRing,	CircularArcSegment,	and	LineStringSegment	are	supported.	The
following	geometry	types	are	supported.

Point

LineString

Polygon

MultiPoint

MultiLineString

MultiPolygon

CurveString

CurvePolygon

MultiCurveString

MultiCurvePolygon

Raster	Capabilities

Use	the	FdoIRasterCapabilities	object	methods	to	learn	about	these	capabilities.
You	can	get	this	object	by	calling	the	GetRasterCapabilities()	method	on	the
FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the	capabilities,
consult	the	FdoIRasterCapabilities	class	description	in	the	FDO	API	Reference
documentation.

No	Raster	capabilities	are	supported.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OSGeo	FDO	Provider	for	ArcSDE
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	OSGeo
FDO	Provider	for	ArcSDE.

Topics	in	this	section

What	Is	FDO	Provider	for	ArcSDE?
FDO	Provider	for	ArcSDE	Software	Requirements
FDO	Provider	for	ArcSDE	Limitations
ArcSDE	Limitations
FDO	Provider	for	ArcSDE	Connection
Data	Type	Mappings
Creating	a	Feature	Schema
FDO	Provider	for	ArcSDE	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	ArcSDE?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	A	provider	is	a	specific	implementation	of	the
FDO	API	that	provides	access	to	data	in	a	particular	data	store.	ESRI®
ArcSDE®	(Spatial	Database	Engine)	is	part	of	the	ArcGIS	9	system.	ArcSDE
manages	the	exchange	of	information	between	an	(ArcGIS	9	Desktop)
application	and	a	relational	database	management	system.	FDO	Provider	for
ArcSDE	provides	FDO	with	access	to	an	ArcSDE	9-based	data	store,	which,	in
this	case,	must	be	Oracle	9i	(9.2.0.6).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	ArcSDE	Software	Requirements
	
	
	

Topics	in	this	section

Installed	Components
External	Dependencies

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Installed	Components
	
	
	

FDO	Provider	for	ArcSDE	dynamically	linked	libraries	are	installed	with	the
FDO	SDK.	They	are	located	in	<FDO	SDK	Install	Location>\FDO\bin.	You	do
not	have	to	do	anything	to	make	these	DLLs	visible.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

External	Dependencies
	
	
	

The	operation	of	FDO	Provider	for	ArcSDE	is	dependent	on	the	presence	of
ArcSDE	9	and	a	supported	data	source,	such	as	Oracle	9i,	in	the	network
environment.	The	host	machine	running	FDO	Provider	for	ArcSDE	must	also
have	the	required	DLLs	present,	which	are	available	by	installing	either	an
ArcGIS	9.1	Desktop	application	or	the	ArcSDE	SDK.	For	example,	the	required
DLLs	are	present	if	either	ArcView®,	ArcEditor®,	or	ArcInfo®	are	installed.
For	more	information	about	ArcGIS	9.1	Desktop	applications	and	the	ArcSDE
SDK,	refer	to	the	ESRI	documentation.

Specifically,	in	order	for	FDO	Provider	for	ArcSDE	to	run,	three	dynamically
linked	libraries,	sde91.dll,	sg91.dll,	and	pe91.dll,	are	required	and	you	must
ensure	that	the	PATH	environment	variable	references	the	local	folder	containing
these	DLLs.	For	example,	in	Microsoft	Windows,	if	ArcGIS	9.1	Desktop	is
installed	to	C:\Program	Files\ArcGIS,	then	the	required	ArcSDE	binaries	are
located	at	C:\Program	Files\ArcGIS\ArcSDE\bin.	Similarly,	if	the	ArcSDE	SDK
is	installed	to	the	default	location,	then	the	required	ArcSDE	binaries	are	located
at	C:\ArcGis\ArcSDE\bin.	The	absence	of	this	configuration	may	cause	the
following	exception	message	"The	ArcSDE	runtime	was	not	found.".

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	ArcSDE	Limitations
	
	
	

The	FDO	Provider	for	ArcSDE	is	based	on	a	subset	of	the	ArcSDE	API.	This
subset	does	not	include	the	following:

Raster	functionality

Native	ArcSDE	metadata

The	annotation	data,	with	the	exception	of	the	ANNO_TEXT	column

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

ArcSDE	Limitations
	
	
	

FDO	Provider	for	ArcSDE	must	abide	by	limitations	of	the	ArcSDE	technology
to	which	it	connects.	This	section	discusses	these	limitations.

Topics	in	this	section

Relative	to	ArcObjects	API	and	ArcGIS	Server	API
Locking	and	Versioning

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Relative	to	ArcObjects	API	and	ArcGIS	Server	API
	
	
	

The	ArcSDE	API	does	not	support	the	following	advanced	functionality	found
in	the	ArcObjects	API	and	the	newer	ArcGIS	Server	API:

Advanced	geometries,	such	as	Bezier	curves	and	ellipses

Relationships

Topology

Networks

Analysis

Linear	referencing

Topics	in	this	section

Curved	Segments

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Curved	Segments
	
	
	

If	ArcSDE	encounters	curved	segments,	it	will	automatically	tessellate	them.
This	means	that	if	you	create	a	geometry	containing	an	arc	segment	in	an
ArcSDE	table	using	ArcObjects	API	and	then	you	try	to	read	that	geometry	back
using	the	ArcSDE	API,	you	will	get	a	series	of	line	segments	that	approximate
the	original	arc	segment.	That	is,	you	get	an	approximation	of	the	original
geometry.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Locking	and	Versioning
	
	
	

ArcSDE	permits	row	locks	or	table	versioning	provided	that	the	ID	column,
which	uniquely	identifies	the	row,	is	maintained	by	ArcSDE.	If	there	is	no	ID
column	or	the	ID	column	is	maintained	by	the	user,	ArcSDE	does	not	permit	row
locking	or	table	versioning	to	be	enabled.

Note In	ArcSDE	you	can	either	lock	rows	in	a	table	or	version	a	table,	but	you
cannot	do	both	at	the	same	time.	To	do	either,	you	must	alter	the	table’s
registration.

The	following	sections	illustrate	these	three	steps:

1.	 The	creation	of	a	table.

2.	 The	alteration	of	the	table	registration	to	identify	one	of	the	column
definitions	as	the	row	ID	column	and	to	enable	row	locking.

3.	 The	alteration	of	the	table	registration	to	disable	row	locking	and	to
enable	versioning.

Topics	in	this	section

Table	Creation
Identity	Row	ID	Column	and	Enable	Row	Locking
Disable	Row	Locking	and	Enable	Versioning

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Table	Creation
	
	
	

The	command	is:

sdetable	-o	create	-t	hassdemaintainedrowid	-d	"name	string(20),	fid	integer(9)"	-u	t_user	-p	test

The	output	of	the	describe	registration	command	(sdetable	-o	describe_reg)	for
this	table	is	as	follows:

Note The	Row	Lock	has	no	value	and	the	value	of	Dependent	Objects	is	None.

Table	Owner												:	T_USER

Table	Name													:	HASSDEMAINTAINEDROWID

Registration	Id								:	18111

Row	ID	Column										:

Row	ID	Column	Type					:

Row	Lock															:

Minimum	Row	ID									:

Dependent	Objects						:	None

Registration	Date						:	02/24/05	13:08:02

Config.	Keyword								:	DEFAULTS

User	Privileges								:	SELECT,	UPDATE,	INSERT,	DELETE

Visibility													:	Visible

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Identity	Row	ID	Column	and	Enable	Row	Locking
	
	
	

The	command	is:

sdetable	-o	alter_reg	-t	hassdemaintainedrowid	-c	fid	-C	sde	-L	on	-u	t_user	-p	test

The	output	of	the	describe	registration	command	(sdetable	-o	describe_reg)	for
this	table	is	as	follows.

Note The	Row	ID	Column	value	is	FID,	the	Row	ID	Column	Type	value	is	SDE
Maintained,	and	the	Row	Lock	value	is	Enable.

Table	Owner												:	T_USER

Table	Name													:	HASSDEMAINTAINEDROWID

Registration	Id								:	18111

Row	ID	Column										:	FID

Row	ID	Column	Type					:	SDE	Maintained

Row	ID	Allocation						:	Many

Row	Lock															:	Enable

Minimum	Row	ID									:	1

Dependent	Objects						:	None

Registration	Date						:	02/24/05	13:08:02

Config.	Keyword								:	DEFAULTS

User	Privileges								:	SELECT,	UPDATE,	INSERT,	DELETE

Visibility													:	Visible

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Disable	Row	Locking	and	Enable	Versioning
	
	
	

The	command	is:

sdetable	-o	alter_reg	-t	hassdemaintainedrowid	-L	off	-V	MULTI	-u	t_user	-p	test

The	output	of	the	describe	registration	command	(sdetable	-o	describe_reg)	for
this	table	is	as	follows:

Note The	“Row	Lock”	is	“Not	Enable”	and	“Dependent	Objects”	is	“Multiversion
Table”.

Table	Owner												:	T_USER

Table	Name													:	HASSDEMAINTAINEDROWID

Registration	Id								:	18111

Row	ID	Column										:	FID

Row	ID	Column	Type					:	SDE	Maintained

Row	ID	Allocation						:	Many

Row	Lock															:	Not	Enable

Minimum	Row	ID									:	1

Dependent	Objects						:	Multiversion	Table

Dependent	Object	Names	:	A18111,	D18111

Registration	Date						:	02/24/05	13:08:02

Config.	Keyword								:	DEFAULTS

User	Privileges								:	SELECT,	UPDATE,	INSERT,	DELETE

Visibility													:	Visible

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	ArcSDE	Connection
	
	
	

This	information	supplements	the	Establishing	a	Connection	chapter.	You
connect	to	an	ArcSDE	data	store	indirectly	through	the	ArcSDE	server.	The
underlying	data	source	for	the	data	store	is	a	database,	such	as	Oracle.	The
ArcSDE	server	is	connected	to	the	data	source	and	mediates	the	requests	that
you	send	it.

You	can	connect	to	FDO	Provider	for	ArcSDE	in	one	step	if	you	already	know
the	name	of	the	data	store	that	you	want	to	use.	Otherwise,	you	must	connect	in
two	steps.

The	minimum	required	connection	properties	for	the	initial	call	to	Open()	are
server,	instance,	username,	and	password.	Multiple	users	can	access	the	data
store.	However,	access	is	password-protected.	The	server	property	is	the	name	of
the	machine	hosting	the	ArcSDE	server.	The	instance	property	acts	as	an	index
into	an	entry	in	the	services	file.	An	entry	contains	port	and	protocol	information
used	to	connect	to	the	ArcSDE	server.	On	a	Windows	machine,	the	services	file
is	located	in	C:\WINDOWS\system32\drivers\etc.	Assuming	that	the	instance
name	is	“esri_sde”,	an	entry	would	look	something	like	this:	“esri_sde				
5151/tcp																	#ArcSDE	Server	Listening	Port”.

An	ArcSDE	data	source	may	contain	more	than	one	data	store.	For	the	first	call
to	Open(),	a	data	store	name	is	optional.	If	successful,	the	first	call	to	Open()
results	in	the	data	store	parameter	becoming	a	required	parameter	and	a	list	of
the	names	of	the	data	stores	in	the	data	source	becoming	available.	You	must
choose	a	data	store	and	call	Open()	again.

If	the	data	source	supports	multiple	data	stores,	the	list	returned	by	the	first	call
to	Open()	will	contain	a	list	of	all	of	the	data	stores	resident	in	the	data	source.
Otherwise,	the	list	will	contain	one	entry:	“Default	Data	Store”.

If	you	know	the	name	of	the	data	store,	you	can	provide	it	for	the	first	call	to
Open()	and	make	the	connection	in	one	step.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Data	Type	Mappings
	
	
	

This	section	shows	the	mappings	from	FDO	data	types	to	ArcSDE	data	types	to
Oracle	data	types:

FDO	DataType sdetable	Column
Definition Oracle	Column	Type

FdoDataType_Boolean Not	supported Not	supported

FdoDataType_Byte Not	supported Not	supported

FdoDataType_DateTime date DATE

FdoDataType_Decimal Not	supported Not	supported

FdoDataType_Double double(38,8) NUMBER(38,8)

FdoDataType_Int16 integer(4) NUMBER(4)

FdoDataType_Int32 integer(10) NUMBER(10)

FdoDataType_Int64 Not	supported Not	supported

FdoDataType_Single float(6,2)	//	typical
float(0<n<=6,
o<m<DBMSLimit))
//	possible

NUMBER(6,2)
NUMBER(n,8)

FdoDataType_String string(<length>) VARCHAR2(<length>)

FdoDataType_BLOB blob LONG	RAW

FdoDataType_CLOB Not	supported Not	supported

FdoDatatype_UniqueID Not	supported Not	supported

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Creating	a	Feature	Schema
	
	
	

This	section	describes	the	creation	of	the	SampleFeatureSchema,	which	is	the
example	feature	schema	described	in	the	Schema	Management	chapter.	It	also
describes	the	creation	of	the	OGC980461FS	schema,	which	is	the	schema
defined	in	the	OpenGIS	project	document	98-046r1.

FDO	Provider	for	ArcSDE	does	not	support	the	creation	or	destruction	of	feature
schema	(that	is,	does	not	support	the	FdoIApplySchema	and
FdoIDestroySchema	commands.)	However,	it	does	support	the
FdoIDescribeSchema	command.	The	intended	use	of	FDO	Provider	for	ArcSDE
is	to	operate	on	already	existing	feature	schemas.	FDO	Provider	for	ArcSDE
supports	inserting,	selecting,	updating,	and	deleting	data	in	existing	schemas.

You	can	use	FDO	Provider	for	ArcSDE	to	operate	on	a	new	feature	schema.
However,	you	must	create	the	schema	using	ArcSDE	tools.	In	particular	you	use
the	sdetable	and	sdelayer	commands,	which	can	be	used	to	create	a	schema	in
any	of	the	data	store	technologies	used	by	ArcSDE.	This	part	of	the	description
is	generic.	Other	parts	of	the	description	are	specific	to	Oracle	and	to	Windows
XP	because	Oracle	is	the	data	store	technology	and	Windows	XP	is	the	operating
system	for	this	exercise.

First,	you	must	create	an	Oracle	username	for	the	feature	schema	(that	is,	the
name	of	the	Oracle	user	is	the	name	of	the	feature	schema.)	To	do	this,	you
connect	as	system	administrator	to	the	Oracle	instance	used	by	the	ArcSDE
server.	The	following	command	creates	the	user	and	grants	to	that	user	the
privileges	necessary	for	the	ArcSDE	tool	commands	to	succeed:

grant	connect,resource	to	<schemaName>	identified	by	<password>

Secondly,	you	must	log	in	to	the	host	where	the	ArcSDE	server	is	running.
ArcSDE	tools	are	on	the	host	machine	where	the	ArcSDE	server	resides.

Tip NetMeeting	can	be	used	to	remotely	login	to	where	the	ArcSDE	Server	is
running	and	launch	a	command	window	(that	is,	in	the	Run	dialog	box,	enter
cmd)	The	ArcSDE	tool	commands	can	be	executed	through	the	command

window.	Do	not	use	C:\WINDOWS\SYSTEM32\COMMAND.COM	because
the	line	buffer	is	too	short	to	contain	the	entire	text	of	some	of	the	SDE	tool
command	strings.

Finally,	execute	the	sdetable	and	sdelayer	commands	in	a	command	window	to
create	each	of	the	classes.	Since	you	are	executing	these	commands	on	the	host
where	the	ArcSDE	server	is	located,	you	can	omit	the	server	name	option.	If	the
ArcSDE	server	is	connected	to	only	one	data	store,	you	can	omit	the	service
option.	For	more	information	about	all	of	the	ArcSDE	commands,	consult	the
ArcSDE	Developer	Help	Guide.

SampleFeatureSchema

In	this	sample	a	feature	schema	called	SampleFeatureSchema	is	created,	which
contains	one	feature	class	called	SampleFeatureClass.	This	feature	class	has	the
following	three	properties:

An	Int32	called	SampleIdentityDataProperty.

A	string	called	SampleNameDataProperty.

A	polygon	geometry	called	SampleGeometricProperty.

First,	use	the	sdetable	-o	create	command	to	add	the	integer	and	string	properties
to	SampleFeatureClass.	Then,	use	the	sdetable	-o	alter_reg	command	to	identify
the	SampleIdentityDataProperty	as	an	identity	property.	Finally,	use	the	sdelayer
-o	add	command	to	add	the	geometric	property	to	SampleFeatureClass.	This
assumes	that	only	one	ArcSDE	server	service	is	running	so	that	the	-i	option	is
optional.	The	-i	option	takes	a	service	name	as	an	argument.

The	sdetable	-o	create	command	can	be	invoked	as	follows:

sdetable	-o	create	-t	SampleFeatureClass	-d	“SampleIdentityDataProperty	INTEGER(10),	SampleNameDataProperty	STRING(64)”	-u	SampleFeatureSchema	-p	test.

The	-o	option	takes	the	command	option	name.	The	-d	option	takes	the	column
definitions,	which	is	a	quoted	list	of	column	name/column	type	pairs	delimited
by	commas.	The	-u	option	takes	an	Oracle	database	user	name,	which	becomes
the	feature	schema	name.	The	-p	option	takes	a	password.

The	sdetable	-o	alter_reg	command	is	invoked	as	follows:

sdetable	-o	alter_reg	-t	SampleFeatureClass	-c	SampleIdentityDataProperty	-C	USER	-u	SampleFeatureSchema	-p	test

The	-c	option	identifies	the	column	name	that	will	be	the	identity	property.	The	-
C	option	indicates	whether	SDE	is	supposed	to	generate	the	value	or	obtain	it
from	the	user.	You	will	be	prompted	to	confirm	that	you	want	to	alter	the
registration	of	the	table.

The	sdelayer	command	is	invoked	as	follows:

sdelayer	-o	add	-l	SampleFeatureClass,SampleGeometricProperty	-E	0,0,100,50	-e	a	-u	SampleFeatureSchema	-p	test

The	-o	option	takes	the	command	option	name.	The	-l	option	identifies	the	table
and	column.	The	-E	option	identifies	the	extents;	the	arguments	are
<xmin,ymin,xmax,ymax>.	The	-e	option	identifies	the	geometry	type	with	‘a’
indicating	an	area	shape.

OGC980461FS

This	schema	contains	the	ten	classes	defined	in	the	OpenGIS	Project	Document
980946r1.	The	types	of	the	properties	belonging	to	the	classes	is	similar	to	that
of	SampleFeatureClass,	namely,	an	integer,	a	string,	and	a	geometry.	One
difference	is	that	the	geometry	in	three	of	the	classes	is	multipart.	Two	of	them
have	MULTIPOLYGON	geometries,	and	one	of	them	has	a
MULTILINESTRING	geometry.	A	multipart	geometry	is	indicated	by	adding	a
‘+’	to	the	entity	argument	to	the	-e	option	in	the	sdelayer	command.	A
MULTIPOLYGON	geometry	is	indicated	by	“-e	a+”,	and	a
MULTILINESTRING	geometry	is	indicated	by	“-e	l+”.

An	ArcSDE	table	cannot	have	two	geometries.	This	restriction	impacts	the
definition	of	the	buildings	class,	which	has	a	POLYGON	and	a	POINT
geometry.	We	have	chosen	to	add	the	POINT	geometry.	The	OpenGIS	98-046r1
document	defines	one	query	that	references	building	objects,	and	the	POINT
geometry	supports	this	query.

Note The	use	of	-E	option	in	the	sdelayer	command	defines	the	extents.	The
arguments	are	<xmin,ymin,xmax,ymax>.	The	values	provided	below	ensure	that
you	will	not	receive	any	“ordinate	out	of	bounds”	errors	when	inserting	the
98046r1	data.

ArcSDE	Commands	That	Define	the	OGC980461FS	Classes

sdetable	-o	create	-t	lakes	-d	"fid	integer(10),	name	string(64)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	lakes	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	lakes,shore	-E	0,0,100,50	-e	a	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	road_segments	-d	"fid	integer(10),	name	string(64),	aliases	string(64),	num_lanes	integer(10)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	road_segments	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	road_segments,centerline	-E	0,0,100,50	-e	l	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	divided_routes	-d	"fid	integer(10),	name	string(64),	num_lanes	integer(10)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	divided_routes	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	divided_routes,centerlines	-E	0,0,100,50	-e	l+	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	forests	-d	"fid	integer(10),	name	string(64)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	forests	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	forests,boundary	-E	0,0,100,50	-e	a+	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	bridges	-d	"fid	integer(10),	name	string(64)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	bridges	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	bridges,position	-E	0,0,100,50	-e	p	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	streams	-d	"fid	integer(10),	name	string(64)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	streams	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	streams,centerline	-E	0,0,100,50	-e	l	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	buildings	-d	"fid	integer(10),	address	string(64)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	buildings	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	buildings,position	-E	0,0,100,50	-e	p	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	ponds	-d	"fid	integer(10),	name	string(64),	type	string(64)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	ponds	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	ponds,shores	-E	0,0,100,50	-e	a+	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	named_places	-d	"fid	integer(10),	name	string(64)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	named_places	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	named_places,boundary	-E	0,0,100,50	-e	a	-u	OGC980461FS	-p	test

sdetable	-o	create	-t	map_neatlines	-d	"fid	integer(10)"	-u	OGC980461FS	-p	test

sdetable	-o	alter_reg	-t	map_neatlines	-c	fid	-C	user	-u	OGC980461FS	-p	test

sdelayer	-o	add	-l	map_neatlines,neatline	-E	0,0,100,50	-e	a	-u	OGC980461FS	-p	test

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

FDO	Provider	for	WMS	Capabilities
	
	
	

The	capabilities	of	an	FDO	provider	are	grouped	in	the	following	categories:

Connection

Schema

Commands

Expressions

Filters

Geometry

Raster

Connection	Capabilities

Use	the	FdoIConnectionCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetConnectionCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoIConnectionCapabilities	class	description	in	the
FDO	API	Reference	documentation.

The	following	capabilities	are	supported:

Per	connection	threading

static	spatial	content	extent	type

XML	configuration

Schema	Capabilities

Use	the	FdoISchemaCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetSchemaCapabilities()

method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoISchemaCapabilities	class	description	in	the	FDO
API	Reference	documentation.

The	following	capabilities	are	supported:

class	and	feature	class	class	types

String	data	type	with	a	maximum	length	of	unknown

BLOB	data	type	with	a	maximum	length	of	unknown	bytes

Name	size	limitation	of	unknown	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Datastore

Name	size	limitation	of	unknown	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Schema

Name	size	limitation	of	unknown	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Class

Name	size	limitation	of	unknown	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Property

Name	size	limitation	of	unknown	for	a	schema	element	name	of	type
FdoSchemaElementNameType_Description

Inheritance

Schema	overrides

Command	Capabilities

Use	the	FdoICommandCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetCommandCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoICommandCapabilities	class	description	in	the	FDO
API	Reference	documentation.

The	following	commands	are	supported:

FdoCommandType_Select

FdoCommandType_SelectAggregates

FdoCommandType_DescribeSchema

FdoCommandType_DescribeSchemaMapping

FdoCommandType_GetSpatialContexts

The	following	capabilities	are	supported:

simple	functions	in	Select	and	SelectAggregate	commands

Filter	Capabilities

Use	the	FdoIFilterCapabilities	object	methods	to	learn	about	these	capabilities.
You	can	get	this	object	by	calling	the	GetFilterCapabilities()	method	on	the
FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the	capabilities,
consult	the	FdoIFilterCapabilities	class	description	in	the	FDO	API	Reference
documentation.

No	filter	capabilities	are	supported:

Expression	Capabilities

Use	the	FdoIExpressionCapabilities	object	methods	to	learn	about	these
capabilities.	You	can	get	this	object	by	calling	the	GetExpressionCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoIExpressionCapabilities	class	description	in	the	FDO
API	Reference	documentation.

Function	expressions	are	supported.

The	following	functions	are	supported:

BLOB	RESAMPLE(BLOB	raster,	Double	minX,	Double	minY,	Double
maxX,	Double	maxY,	Int32	height,	Int32	width)

BLOB	CLIP(BLOB	raster,	Double	minX,	Double	minY,	Double	maxX,
Double	maxY)

GeometricProperty	SpatialExtents(BLOB	raster)

Geometry	Capabilities

Use	the	FdoIGeometryCapabilities	object	methods	to	learn	about	these

capabilities.	You	can	get	this	object	by	calling	the	GetGeometryCapabilities()
method	on	the	FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the
capabilities,	consult	the	FdoIGeometryCapabilities	class	description	in	the	FDO
API	Reference	documentation.

Dimensionality	XY	is	supported.	The	geometry	component	type	LinearRing	is
supported.	The	following	geometry	types	are	supported.

Polygon

Raster	Capabilities

Use	the	FdoIRasterCapabilities	object	methods	to	learn	about	these	capabilities.
You	can	get	this	object	by	calling	the	GetRasterCapabilities()	method	on	the
FdoIConnection	object.	For	an	explanation	of	the	meaning	of	the	capabilities,
consult	the	FdoIRasterCapabilities	class	description	in	the	FDO	API	Reference
documentation.

The	Raster	capability	is	supported.	The	following	raster	data	models	are
supported:

Bitonal/1-bit/pixel/Unsigned	Integer

Gray/8-bit/pixel/Unsigned	Integer

RGB/24-bit/pixel/Unsigned	Integer

RGBA/32-bit/pixel/Unsigned	Integer

Palette/8-bit/pixel/Unsigned	Integer

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OSGeo	FDO	Provider	for	MySQL
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	OSGeo
FDO	Provider	for	MySQL.

Topics	in	this	section

What	Is	FDO	Provider	for	MySQL?
FDO	Provider	for	MySQL	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	MySQL?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	FDO	Provider	for	MySQL	provides	FDO	with
access	to	a	MySQL-based	data	store.

The	FDO	Provider	for	MySQL	API	provides	custom	commands	that	are
specifically	designed	to	work	with	the	FDO	API.	For	example,	using	these
commands,	you	can	do	the	following:

Gather	information	about	a	provider.

Transmit	client	services	exceptions.

Get	lists	of	accessible	data	stores.

Create	connection	objects.

Create	and	execute	spatial	queries.

The	MySQL	architecture	supports	different	storage	engines.	Choose	an	engine	as
needed,	depending	on	its	characteristics	and	capabilities,	such	as	the	following:

MyISAM	is	a	disk-based	storage	engine.	It	does	not	support
transactions.

InnoDB	is	a	disk-based	storage	engine.	It	has	full	ACID	transaction
capability.

Memory	(Heap)	is	a	storage	engine	utilizing	only	RAM.	It	is	very	fast.

NDB	is	the	MySQL	Cluster	storage	engine.

MERGE	is	a	variation	of	MyISAM.	A	MERGE	table	is	a	collection	of
identical	MyISAM	tables,	which	means	that	all	tables	have	the	same
columns,	column	types,	indexes,	and	so	on.

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf)	and

the	OSGeo	FDO	Provider	for	MySQL	API	Reference	Help
(MySQL_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OSGeo	FDO	Provider	for	ODBC
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	OSGeo
FDO	Provider	for	ODBC.

Topics	in	this	section

What	Is	FDO	Provider	for	ODBC?
FDO	Provider	for	ODBC	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	ODBC?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	FDO	Provider	for	ODBC	provides	FDO	with
access	to	an	ODBC-based	data	store.

The	FDO	Provider	for	ODBC	can	access	simple	x,	y,	z	feature	objects	that	can
run	in	a	multi-platform	environment,	including	Windows,	Linux,	and	UNIX.

The	FDO	Provider	for	ODBC	has	the	following	characteristics:

The	FDO	Provider	for	ODBC	supports	the	definition	of	one	or	more
feature	classes	in	terms	of	any	relational	database	table	that	contains	an
X,	Y,	and	optionally,	Z	columns.

Metadata,	which	maps	the	table	name,	and	X,	Y,	and	optionally,	Z
columns	to	a	feature	class,	is	maintained	outside	the	database	in	a
configuration	file.	This	information,	in	conjunction	with	the	table
structure	in	the	database,	provides	the	definition	of	the	feature	class.

The	x,	y,	and	z	locations	of	objects	are	stored	in	separate	properties	in
the	primary	object	definition	of	a	feature,	but	are	accessible	through	a
single	class	property	‘Geometry’.

Read-only	access	is	provided	to	pre-existing	data	defined	and	populated
through	3rd	party	applications	(that	is,	FDO	Provider	for	ODBC	will	not
be	responsible	for	defining	the	physical	schema	of	the	data	store	nor	for
populating	the	object	data).

The	schema	configuration	of	the	data	store	is	provided	to	the	FDO
Provider	for	ODBC	through	an	optional	XML	file	containing	the
Geographic	Markup	Language	(GML)	definition	of	the	schema	that
maps	‘tables’	and	‘columns’	in	the	data	store	to	feature	classes	and
property	mappings	in	the	FDO	data	model.

Note Microsoft	Excel	(must	have	at	least	one	named	range;	do	not	use

DATABASE	or	other	reserved	words	as	a	range	name).

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf)	and
the	OSGeo	FDO	Provider	for	ODBC	API	Reference	Help
(ODBC_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Autodesk	FDO	Provider	for	Raster
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to
Autodesk	FDO	Provider	for	Raster.

Topics	in	this	section

What	Is	FDO	Provider	for	Raster?
FDO	Provider	for	Raster	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	Raster?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	Autodesk	FDO	Provider	for	Raster	is	a	stand-
alone	file	format	that	supports	GIS	data.

The	FDO	Provider	for	Raster	has	the	following	characteristics:

The	FDO	Provider	for	Raster	supports	georeferenced	file-based	raster
images	and	file-based	grid	coverages.	Raster	images	are	pixel-based
images,	such	as	digital	photographs	(satellite	images,	for	example).
Raster	images	are	very	useful	as	background	images	underneath	your
vector	data,	for	example,	an	aerial	photograph	of	a	city	with	a	layer	of
streets	overlaying	it.

The	FDO	Provider	for	Raster	can	run	in	a	multi-platform	environment,
including	Windows	and	Linux.

Supported	Formats

The	following	list	shows	the	raster	image	file	formats	that	are	supported,	along
with	their	acronyms	and	file	extensions:

JPEG	(.jpg,	.jpeg)	-	Joint	Photographic	Experts	Group

JPG2K	(.jp2,	.j2k)	-	Joint	Photographic	Experts	Group

MrSID	(.sid)	-	Multi-Resolution	Seamless	Image	Database

PNG	(.png)	-	Portable	Network	Graphic

TIFF	(.tif,	.tiff)	-	Tagged	Image	File	Format

DEM	(.dem)	-	USGS	Format	Digital	Elevation	Model

ECW	(.ecw)	-	Enhanced	Compressed	Wavelet

DTED	(.dt0,	.dt1,	dt2)	-	Digital	Terrain	Elevation	Data

ESRI	ASCII	GRID	(.asc)	-	ESRI	Surface

ESRI	Binary	GRID	(.adf)	-	ESRI	Surface

Supported	Data	Models

The	following	are	the	data	models	supported:

ModelType BitsPerPixel Organization DataType

Bitonal 1 Pixel Unsigned
Integer

Grey 8 Pixel Unsigned
Integer

RGB 24 Pixel Unsigned
Integer

RGBA 32 Pixel Unsigned
Integer

Pallete 8 Pixel Unsigned
Integer

Data 1 Pixel Unsigned
Integer

Data 8 Pixel Unsigned
Integer

Data 8 Pixel Signed
Integer

Data 16 Pixel Unsigned
Integer

Data 16 Pixel Signed
Integer

Data 32 Pixel Unsigned
Integer

Data 32 Pixel Signed
Integer

Data 32 Pixel Float

Note Only	DEM,	TIFF,	and	ECW	images	support	the	‘Data’	ModelType.

Note All	2-	and	4-BitsPerPixel	images	are	promoted	to	8	BitsPerPixel	as	per	the
underlying	ATIL	behavior.

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf)	and
the	Autodesk	FDO	Provider	for	Raster	API	Reference	Help
(Raster_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OSGeo	FDO	Provider	for	SDF
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	OSGeo
FDO	Provider	for	SDF.

Topics	in	this	section

What	Is	FDO	Provider	for	SDF?
FDO	Provider	for	SDF	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	SDF?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	FDO	Provider	for	SDF	is	a	standalone	file
format	that	supports	GIS	data.

The	FDO	Provider	for	SDF	uses	Autodesk's	spatial	database	format,	which	is	a
file-based	personal	geodatabase	that	supports	multiple	features/attributes,	spatial
indexing,	interoperability,	file-locking,	and	high	performance	for	large	data	sets.

The	SDF	file	format	has	the	following	characteristics:

SDF	files	can	be	read	on	different	platforms.

The	SDF	file	has	its	own	spatial	indexing.

SDF	files	can	store	geometric	and	non-geometric	data	with	minimum
overhead.

Although	it	does	not	support	concurrency	control	(locking),	the	SDF	file
format	is	a	valid	alternative	to	RDBMS.

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf)	and
the	OSGeo	FDO	Provider	for	SDF	API	Reference	Help
(SDF_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OSGeo	FDO	Provider	for	SHP
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	OSGeo
FDO	Provider	for	SHP.

Topics	in	this	section

What	Is	FDO	Provider	for	SHP?
FDO	Provider	for	SHP	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	SHP?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	FDO	Provider	for	SHP	provides	FDO	with
access	to	an	SHP-based	data	store.

The	FDO	Provider	for	SHP	uses	a	standalone	file	format	that	supports	GIS	data.
The	FDO	Provider	for	SHP	(Shape)	has	the	following	characteristics:

Read-only	access	is	provided	to	pre-existing	spatial	and	attribute	data
from	an	Environmental	Systems	Research	Institute	(ESRI)	Shape	file
(SHP).

The	FDO	Provider	for	SHP	can	run	in	a	multi-platform	environment,
including	Windows	and	Linux.

A	Shape	file	consists	of	three	separate	files:	SHP	(shape	geometry),	SHX
(shape	index),	and	DBF	(shape	attributes	in	dBASE	format).

The	FDO	Provider	for	SHP	accesses	the	information	in	each	of	the	three
separate	files,	and	treats	each	SHP,	and	its	associated	DBF	file,	as	a
feature	class	with	a	single	geometry	property,	and	optionally,	with	data
attribute	properties.

Schema	configuration	of	the	data	store	is	provided	to	the	FDO	Provider
for	SHP	through	an	XML	file	containing	the	Geographic	Markup
Language	(GML)	definition	of	the	schema	that	maps	SHP	and	DBF	data
in	the	data	store	to	feature	classes	and	property	mappings	in	the	FDO
data	model.

Although	it	does	not	support	concurrency	control	(locking),	the	SHP	file
format	is	a	valid	alternative	to	RDBMS.

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf)	and
the	OSGeo	FDO	Provider	for	SHP	API	Reference	Help
(SHP_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Autodesk	FDO	Provider	for	SQL	Server
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to
Autodesk	FDO	Provider	for	SQL	Server.

Topics	in	this	section

What	Is	FDO	Provider	for	SQL	Server?
FDO	Provider	for	SQL	Server	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	SQL	Server?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	FDO	Provider	for	SQL	Server	provides	FDO
with	access	to	a	Microsoft	SQL	Server-based	data	store.

The	Autodesk	FDO	Provider	for	SQL	Server	API	provides	custom	commands
that	are	specifically	designed	to	work	with	the	FDO	API.	For	example,	using
these	commands,	you	can	do	the	following:

Read	and	create	schema.

Read	and	write	geospatial	and	non-geospatial	data.

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf)	and
the	Autodesk	FDO	Provider	for	SQL	Server	API	Reference	Help
(SQLServer_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OSGeo	FDO	Provider	for	WFS
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	OSGeo
FDO	Provider	for	WFS.

Topics	in	this	section

What	Is	FDO	Provider	for	WFS?
FDO	Provider	for	WFS	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	WFS?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	FDO	Provider	for	WFS	provides	FDO	with
access	to	a	WFS-based	data	store.

An	OGC	Web	Feature	Service	(WFS)	provides	access	to	geographic	features	that
are	stored	in	an	opaque	data	store	in	a	client/server	environment.	A	client	uses
WFS	to	retrieve	geospatial	data	that	is	encoded	in	Geography	Markup	Language
(GML)	from	a	single	or	multiple	Web	Feature	Service.	The	communication
between	client	and	server	is	encoded	in	XML.	If	the	WFS	response	includes
feature	geometries,	it	is	encoded	in	Geography	Markup	Language	(GML),	which
is	specified	in	the	OpenGIS	Geographic	Markup	Language	Implementation
Specification.

Using	FDO	Provider	for	WFS	data	manipulation	operations,	you	can	do	the
following:

Query	features	based	on	spatial	and	non-spatial	constraints.

Create	new	feature	instances.

Delete	feature	instances.

Update	feature	instances.

Lock	feature	instances.

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf).

Note There	is	no	public	API	documentation	for	the	FDO	Provider	for	WFS;
functionality	is	available	through	the	main	FDO	API.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

OSGeo	FDO	Provider	for	WMS
	
	
	

This	appendix	discusses	FDO	API	development	issues	that	are	related	to	OSGeo
FDO	Provider	for	WMS.

Topics	in	this	section

What	Is	FDO	Provider	for	WMS?
FDO	Provider	for	WMS	Capabilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

What	Is	FDO	Provider	for	WMS?
	
	
	

The	Feature	Data	Objects	(FDO)	API	provides	access	to	data	in	a	data	store.	A
provider	is	a	specific	implementation	of	the	FDO	API	that	provides	access	to
data	in	a	particular	data	store.	The	FDO	Provider	for	WMS	provides	FDO	with
access	to	a	WMS-based	data	store.

An	Open	Geospatial	Consortium	(OGC)	Web	Map	Service	(WMS)	produces
maps	of	spatially	referenced	data	dynamically	from	geographic	information.
This	international	standard	defines	a	"map"	to	be	a	portrayal	of	geographic
information	as	a	digital	image	file	suitable	for	display	on	a	computer	screen.	A
map	is	not	the	data	itself.	Maps	by	WMS	are	generally	rendered	in	a	pictorial
format,	such	as	PNG,	GIF	or	JPEG,	or	occasionally	as	vector-based	graphical
elements	in	Scalable	Vector	Graphics	(SVG)	or	Web	Computer	Graphics
Metafile	(WebCGM)	formats.

The	FDO	Provider	for	WMS	has	the	following	characteristics:

The	FDO	Provider	for	WMS	serves	up	map	information	originating
from	an	OGC	Basic	Web	Map	Service	that	provides	pictorially	formatted
images,	such	as	PNG,	GIF,	or	JPEG.

WMS	map	data	is	exposed	through	an	FDO	feature	schema	whose
classes	contain	an	FDO	Raster	property	definition.	The	FDO	schema
exposed	from	the	FDO	Provider	for	WMS	conforms	to	a	pre-defined
FDO	schema	that	is	specific	to	WMS	and	that	acts	as	the	basis	for	all
FDO	interaction	with	WMS	data,	regardless	of	the	originating	source	of
the	WMS	images.

WMS	data	manipulation	operations	are	limited	to	querying	features
based	on	spatial	and	non-spatial	constraints.	Schema	manipulation
operations	are	not	supported.

The	FDO	Provider	for	WMS	can	run	in	a	multi-platform	environment,	including
Windows	and	Linux.

For	more	information,	see	The	Essential	FDO	(FET_TheEssentialFDO.pdf)	and

the	OSGeo	FDO	Provider	for	WMS	API	Reference	Help
(WMS_Provider_API.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Expression	Functions
	
	
	

Topics	in	this	section

Introduction
Expression	Function	List

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction
	
	
	

The	enhanced	set	includes	aggregate,	conversion,	date,	mathematical,	numeric,
string	and	geometry	functions.	All	functions	are	supported	by	all	providers,	with
the	exception	of	the	Raster,	WFS	and	WMS	providers.

This	appendix	outlines	the	following	expression	functions	details:

Signatures

Built-in	support	for	some	of	the	functions	based	on	the	supported
RDBMS

Provider-specific	support	for	some	of	the	functions

Implementation	options

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Expression	Function	List
	
	
	

This	section	lists	and	describes	all	supported	expression	functions.

Topics	in	this	section

Aggregate	Expression	Functions
Conversion	Expression	Functions
Date	Expression	Functions
Geometry	Expression	Functions
Mathematical	Expression	Functions
Numeric	Expression	Functions
String	Expression	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Aggregate	Expression	Functions
	
	
	

The	following	aggregate	expression	functions	are	supported:

Function
Name Description

Avg Returns	the	average	of	the	values	identified	by	the	provided
expression.

Count Returns	the	number	of	rows	returned	by	a	query	identified	by
the	provided	expression.

Max Returns	the	maximum	value	of	the	provided	expression.

Median Represents	an	inverse	distribution	function	that	assumes	a
continuous	distribution	model.	It	takes	a	numeric	or	date-
time	value	and	returns	the	middle	value	or	an	interpolated
value	that	would	be	the	middle	value	once	the	values	are
sorted.

Min Returns	the	minimum	value	of	the	provided	expression.

Stddev Returns	the	sample	standard	deviation	of	the	provided
expression.

Sum Returns	the	sum	of	the	values	identified	by	the	provided
expression.

Spatial
Extent

Returns	the	spatial	extent	of	a	geometry.

Table	1:	List	of	aggregate	expression	functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Conversion	Expression	Functions
	
	
	

The	following	conversion	expression	functions	are	supported.

Function
Name Description

NullValue Evaluates	two	given	expressions	and	returns	the	first	one	if	it
does	not	evaluate	to	NULL,	the	second	otherwise.

ToDate Converts	a	string	with	date/time	information	to	a	date.

ToDouble Converts	a	numeric	or	string	expression	to	a	double.

ToFloat Converts	a	numeric	or	string	expression	to	a	float.

ToInt32 Converts	a	numeric	or	string	expression	to	an	int32.

ToInt64 Converts	a	numeric	or	string	expression	to	an	int64.

ToString Converts	a	numeric	or	date	expression	to	a	string.

Table	2:	List	of	conversion	expression	functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Date	Expression	Functions
	
	
	

The	following	date	expression	functions	are	supported:

Function	Name Description

AddMonths Adds	a	specified	number	of	months	to	a	given	date
expression.

CurrentDate Returns	the	current	date.

Extract Extracts	a	specified	portion	of	a	date.

MonthsBetween Calculates	the	number	of	months	between	two	provide
date	expressions.

Table	3:	List	of	date	expression	functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometry	Expression	Functions
	
	
	

The	following	geometry	expression	functions	are	supported.

Function
Name Description

Area2D Returns	area	of	a	geometry.

Length2D Returns	length	of	a	geometry.

Table	4:	List	of	geometry	expression	functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Mathematical	Expression	Functions
	
	
	

The	following	mathematical	expression	functions	are	supported:

Function	Name Description

Abs Returns	the	absolute	value	of	a	numeric	expression.

Acos Returns	the	arc	cosine	of	a	numeric	expression.

Asin Returns	the	arc	sine	of	a	numeric	expression.

Atan Returns	the	arc	tangent	of	a	numeric	expression.

Cos Returns	the	cosine	of	a	numeric	expression.

Exp Returns	e	raised	to	the	power	of	a	numeric
expression.

Ln Returns	the	natural	logarithm	of	a	numeric
expression.

Log Returns	the	logarithm	of	a	numeric	expression	using
the	provided	base.

Mod Returns	the	remainder	of	the	division	of	two
numeric	expressions.

Power Returns	the	result	of	a	numeric	expression	raised	to
the	power	of	another	numeric	expression.

Remainder Returns	the	remainder	of	the	division	of	two
numeric	expressions.

Sin Returns	the	sine	of	a	numeric	expression.

Sqrt Returns	the	square	root	of	a	numeric	expression.

Tan Returns	the	tangent	of	a	numeric	expression.

	 	

	 	

	 	

Table	5:	List	of	mathematical	expression	functions

M	 N	 	 Mod(M/N)	 Classical	Modulus

11	 	4	 	 	3	 	 	3

	11	 -4	 	 	3	 	 -1

-11	 	4	 	 -3	 	 	1

-11	 -4	 	 -3	 	 -3

Figure	1:	Modulus	Implementation	Results

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Numeric	Expression	Functions
	
	
	

The	following	numeric	expression	functions	are	supported.

Function
Name Description

Ceil Returns	the	smallest	integer	greater	than	or	equal	to	a
numeric	expression.

Floor Returns	the	largest	integer	less	than	or	equal	to	a	numeric
expression.

Round Returns	the	rounded	value	of	a	numeric	expression.

Sign Returns	-1	if	the	provided	numeric	expression	evaluates	to	a
value	less	than	0,	0	if	the	expression	evaluates	to	0	and	1	if
the	expression	evaluates	to	a	value	bigger	than	0.

Trunc Truncates	a	numeric	or	date	expression.

Table	6:	List	of	numeric	expression	functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

String	Expression	Functions
	
	
	

The	following	string	expression	functions	are	supported:

The	function	Translate	does	not	translate	a	string	from	one	character	set	to
a	different	one.	Instead,	it	just	replaces	a	set	of	letters	in	a	string	with	their
corresponding	replacement	characters	where	each	character	specified	in	the
set	of	characters	to	be	replaced	is	replaced	by	the	character	in	the	set	of
replacement	characters	at	the	same	place.	For	example,	if	the	call	is
Translate(‘’SQL*Plus	User’’s	Guide’,	‘	*/’’’,	‘---‘),	each	of	the	specified
characters	in	the	first	set	will	be	replaced	by	the	character	in	the	same
position	in	the	second	set.	In	this	example,	the	resulting	string	will	be
SQL_Plus_Users_Guide	because:

Any	space	will	be	replaced	by	a	_

Any	*	will	be	replaced	by	a	_

Any	/	will	be	replaced	by	a	_	(in	this	case,	nothing	will	be	done	because
the	string	does	not	include	the	specified	character)

Any	’	will	be	removed	because	there	is	no	corresponding	replacement
character	specified.

Function
Name Description

Concat Returns	the	concatenation	of	two	string	expressions.

Instr Returns	the	position	of	a	substring	in	a	string	expression.

Length Returns	the	length	of	a	string	expression.

Lower Converts	all	uppercase	letters	in	a	string	expression	into
lowercase	letters.

Lpad Pads	a	string	expression	to	the	left	to	a	predefined	string
length.

Ltrim Removes	leading	blanks	from	a	string	expression.

Rpad Pads	a	string	expression	to	the	right	to	a	predefined	string
length.

Rtrim Removes	trailing	blanks	from	a	string	expression.

Soundex Returns	the	phonetic	representation	of	a	string	expression.

Substr Extracts	a	substring	from	a	string	expression.

Translate Replaces	a	set	of	letters	in	a	string.

Trim Removes	leading	and/or	trailing	blanks	from	a	string
expression.

Upper Converts	all	lowercase	letters	in	a	string	expression	into
uppercase	letters.

Table	7:	List	of	numeric	expression	functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	About This Guide
	Audience and Purpose
	How This Guide Is Organized
	What’s New
	Introduction
	What Is the FDO API?
	From the Perspective of the Client Application User
	From the Perspective of the Client Application Engineer
	Getting Started
	FDO Architecture and Providers
	What Is a Provider?
	Developing Applications
	FDO Concepts
	Data Concepts
	Operational Concepts
	Development Practices
	Memory Management
	Collections
	Exception Handling
	Exception Messages
	Managing FdoPtr Behaviors
	Establishing a Connection
	Connection Semantics
	Establishing a Connection
	Capabilities
	What Is the Capabilities API?
	Connection Capabilities
	Code
	Schema Capabilities
	Code
	Command Capabilities
	Code
	Expression Capabilities
	Code
	Filter Capabilities
	Code
	Geometry Capabilities
	Code
	Raster Capabilities
	Code
	Schema Management
	Schema Package
	Schema Overrides
	Working with Schemas
	FDOFeatureClass
	FDOClass
	Non-Feature Class Issues
	Modifying Models
	Schema Element States
	Rollback Mechanism
	FDO XML Format
	Creating and Editing a GML Schema File
	Schema Management Examples
	Data Maintenance
	Data Maintenance Operations
	Inserting Values
	Updating Values
	Deleting Values
	Related Class Topics
	Performing Queries
	Creating a Query
	Query Example
	Long Transaction Processing
	What Is Long Transaction Processing?
	Supported Interfaces
	Filter and Expression Languages
	Filters
	Expressions
	Filter and Expression Text
	Language Issues
	Provider-Specific Constraints on Filter and Expression Text
	Filter Grammar
	Expression Grammar
	Filter and Expression Keywords
	Data Types
	Identifier
	Parameter
	String
	Integer
	Double
	DateTime
	Operators
	Special Character
	Geometry Value
	The Geometry API
	Introduction
	FGF and WKB
	FGF Binary Specification
	FGF Text
	Abstract and Concrete Classes
	Geometry Types
	Mapping Between Geometry and Geometric Types
	Spatial Context
	Specify Dimensionality When Creating Geometries Using String Specifications
	Inserting Geometry Values
	Autodesk FDO Provider for Oracle
	What Is FDO Provider for Oracle?
	FDO Provider for Oracle General Requirements
	FDO Provider for Oracle Connection
	FDO Provider for Oracle and Foreign Schemas
	Foreign Schema Settings
	Settings on the FDO Schema Instance
	Settings on the Foreign Schema Instance
	Oracle Identity Property
	Read-Write Privileges
	Foreign Schema Limitations
	Ensuring Valid Views When Applying a Feature Schema Against a Foreign Schema
	Table Name Restrictions When Working with a Foreign Schema
	Schema Access on a Different Oracle Instance
	FDO Provider for Oracle and Schema Overrides
	Schema Override Set
	Class Table Overrides
	Data Property Overrides
	Object Property Overrides
	Geometric Property Overrides
	Oracle-Specific Schema Creation Restrictions
	FDOFeatureClass
	Classes
	Properties
	Data Properties
	Identity Properties
	String Properties
	Decimal Properties
	Geometric Properties
	Object Properties
	Oracle-Specific Schema Modification Restrictions
	Schema Element Descriptions
	Data Properties
	Oracle-Specific Deletion Restrictions
	FDOClassDefinition
	FDOClass
	Property
	Oracle Reserved Words Used with Filter and Expression Text
	Locking and Long Transactions
	OWM and FDO Lock Types
	Example: AllLongTransactionExclusiveLock
	FDO Provider for Oracle Capabilities
	OSGeo FDO Provider for ArcSDE
	What Is FDO Provider for ArcSDE?
	FDO Provider for ArcSDE Software Requirements
	Installed Components
	External Dependencies
	FDO Provider for ArcSDE Limitations
	ArcSDE Limitations
	Relative to ArcObjects API and ArcGIS Server API
	Curved Segments
	Locking and Versioning
	Table Creation
	Identity Row ID Column and Enable Row Locking
	Disable Row Locking and Enable Versioning
	FDO Provider for ArcSDE Connection
	Data Type Mappings
	Creating a Feature Schema
	FDO Provider for ArcSDE Capabilities
	OSGeo FDO Provider for MySQL
	What Is FDO Provider for MySQL?
	FDO Provider for MySQL Capabilities
	OSGeo FDO Provider for ODBC
	What Is FDO Provider for ODBC?
	FDO Provider for ODBC Capabilities
	Autodesk FDO Provider for Raster
	What Is FDO Provider for Raster?
	FDO Provider for Raster Capabilities
	OSGeo FDO Provider for SDF
	What Is FDO Provider for SDF?
	FDO Provider for SDF Capabilities
	OSGeo FDO Provider for SHP
	What Is FDO Provider for SHP?
	FDO Provider for SHP Capabilities
	Autodesk FDO Provider for SQL Server
	What Is FDO Provider for SQL Server?
	FDO Provider for SQL Server Capabilities
	OSGeo FDO Provider for WFS
	What Is FDO Provider for WFS?
	FDO Provider for WFS Capabilities
	OSGeo FDO Provider for WMS
	What Is FDO Provider for WMS?
	FDO Provider for WMS Capabilities
	Expression Functions
	Introduction
	Expression Function List
	Aggregate Expression Functions
	Conversion Expression Functions
	Date Expression Functions
	Geometry Expression Functions
	Mathematical Expression Functions
	Numeric Expression Functions
	String Expression Functions

