
Introduction

Introduction
Basic	information	about	FCEUX	and	its	features.

Introduction

Overview

FCE	Ultra	Version	History

What's	Combined	In	FCEUX?

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Introduction

Welcome	to	the	FCEUX	Help	menu.
The	following	information	is	about	how	to	use	FCEUX,	its	commands,
how	to	use	FCEUX	to	its	fullest,	and	the	communities	for	which	FCEUX	is
designed.

Introduction
Basic	information	about	FCEUX	and	its	features.

Overview

FCE	Ultra	Version	History

What's	Combined	In	FCEUX?

Additional	Chapters

General

Guides	for	general	uses	of	FCEUX	and	the	FCEUX	NES	menu.

Config

Commands	under	FCEUX	Config	menu.

Tools

Commands	under	FCEUX	Tools	menu.

Debug

Commands	under	FCEUX	Debug	menu.

FAQ	/	Guides

Information	regarding	various	concepts	such	as	TAS,	ROM	Hacking,
RAM	Mapping.

Technical	Information

Technical	information	relating	to	NES	hardware	emulation	&	FCEUX	file
formats.

Help	menu	created	&	compiled	by	adelikat.
Information	collected	and/or	written/edited	by	adelikat.
Minor	edits	of	lua-related	text	by	Leeland	Kirwan	(FatRatKnight).

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Overview

FCEUX
FCEUX	is	a	cross	platform,	NTSC	and	PAL	Famicom/NES	emulator	that
is	an	evolution	of	the	original	FCE	Ultra	emulator.		Over	time	FCE	Ultra
had	separated	into	many	separate	branches.	

The	concept	behind	FCEUX	is	to	merge	elements	from	FCEU	Ultra,
FCEU	rerecording,	FCEUXD,	FCEUXDSP,	FCEUXDSP	CE,	and	FCEU-
mm	into	a	single	branch	of	FCEU.		As	the	X	implies,	it	is	an	all-
encompassing	version	of	the	FCEU	emulator	that	provides	the	best	of	all
worlds	for	the	general	player,	the	ROM-hacking	community,	and	the	Tool-
Assisted	Speedrun	Community.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

FCE	Ultra	Version	History

History	of	FCEUX	/	FCE	Ultra
FCEUX	was	started	in	2006	by	zeromus	and	rheiny	(sp)	as	an	attempt	to
merge	various	branches	of	FCE	Ultra	into	a	unified	emulator.		Additional
authors	joined	the	project,	including	mz,	adelikat,	nitsujrehtona,	maximus,
CaH4e3,	qFox,	punkrockguy318,	and	Sebastian	Porst.

FCEUX	contains	all	features	and	enhancements	from	FCE,	FCE	Ultra,
FCEU	rerecording,	FCEUXD,	and	FCEUXDSP	as	well	as	many	new
mappers	from	FCEU-mm.

FCEUX	sourceforge	page

Version	Releases

Look	at	the	Side	Bar	navigation	for	changelog	information	on	FCEUX	2.1
and	newer.

FCEUX	2.0.3	-	Released	November	02,	2008	(see	changelog)

FCEUX	2.0.2	-	Released	August	14,	2008	(see	changelog)

FCEUX	2.0.1	-	Released	August	04,	2008	(see	changelog)

FCEUX	2.0.0	-	Released	August	02,	2008	(see	changelog)

FCE	/	FCEUltra

Bero	originally	wrote	a	Nintendo	Entertainment	System/Famicom
emulator	that	was	referred	to	as	FCE.	This	name	was	apparently	meant
only	to	serve	as	a	temporary	name,	but	its	usage	remained.	Xodnizel
originally	ported	it	to	Linux	SVGAlib,	and	made	a	few	improvements.	This
code	base	was	abandoned,	and	work	began	anew,	under	DOS,	with	the

https://sourceforge.net/projects/fceultra
http://www.geocities.co.jp/Playtown/2004/fce.htm

original	FCE	source	code.	At	the	end	of	November,	1998,	FCE	Ultra	Beta
1	was	released.

FCE	Ultra	remained	DOS-only	until	version	0.18,	when	it	was	ported	to
Linux	SVGAlib,	and	released	as	a	statically-linked	executable.	The	first
MS	Windows	port	was	released	as	version	0.25.

The	source	code	of	0.40	was	released	on	November	12,	2000.	It	retained
the	simple	license	of	FCE	for	a	long	time,	which	stated	that	"This
software	is	freeware.	You	can	use	it	non-commercially."	Almost	two	years
later,	in	June	2002,	0.80	was	released,	and	FCE	Ultra	was	re-licensed
under	the	GNU	GPL.

It	has	been	tested	(and	runs)	under	DOS,	Linux	SVGAlib,	Linux	X,	Mac
OS	X,	and	Windows.	A	native	GUI	is	provided	for	the	Windows	port,	and
the	other	ports	use	a	command-line	interface.	The	SDL	port	should	run
on	any	modern	UNIX-like	operating	system	(such	as	FreeBSD,	Solaris	or
IRIX)	with	no	code	changes.	It	has	also	been	ported	to	the	GP2X,
PlayStation	Portable	as	PSPFceUltra,	the	Nintendo	GameCube	and
Pepper	Pad.

FCE	Ultra	was	created	by	Xodnizel.	Development	appeared	to	stop	and
the	homepage	and	forums	for	the	emulator	were	taken	down.	The	last
version	before	this	was	v0.98.13-pre,	released	in	September	2004	as
source-only.	The	last	binary	release	was	v0.98.12	in	August	2004.

However,	it	was	resurrected	again	in	March	of	2006	by	Anthony	Giorgio
and	Mark	Doliner.

There	is	also	a	graphical	frontend	for	FCE	Ultra.	GFCE	Ultra	is	written	in
Python	and	uses	the	GTK2	user	interface	library.	Because	is	it	written	in
Python	and	with	portability	in	mind,	it	can	be	run	on	any	UNIX-like
platform	and	any	processor	architecture	that	is	supported	by	Python.

FCEU	Rerecording

The	"rerecording"	version	of	FCE	Ultra	was	implemented	to	FCE	Ultra
0.98.10	with	movie	recording	support.		This	was	done	by	blip,	and	was
implemented	for	the	purpose	of	creating	Tool-Assisted	Speedruns.

The	rerecording	branch	continued	with	0.98.12,	adding	movie	support
features,	such	as	"bullet	proof"	recording.		In	2006,	FCEU	0.98.16	was
implemented	by	nitsuja	and	luke.		Various	tools	such	as	read-only
toggling,	increased	hotkey	mapping,	and	memory	watch	were	added.

In	2008,	FCEU	rerecording	was	picked	up	again	by	mz,	maximus,
adelikat,	and	nitsujrehtona	with	various	updates	named	FCEU.0.98.17	-
0.98.28

FCEU.28	GoogleCode	Page

FCEUD	/	FCEUXD	/	FCEUXDSP	/	FCEUXDSP	CE

FCEUD
In	2002,	Parasyte	modified	the	then-current	version	(0.81.3)	of	FCE	Ultra
and	added	a	Nesten-style	debugger,	along	with	several	other	features,
and	named	it	"FCEUD"	(FCE	Ultra	Debugger).

FCEUXD
In	January	2004,	bbitmaster	began	working	on	more	features	and	called
it	"FCEUXD"	(FCE	Ultra	Extended	Debugger).
It	is	a	branch	of	FCE	Ultra	that	contains	many	extended	debugging
features	compared	to	the	original	FCE	Ultra	code	such	as	a	trace	logger,
a	built-in	hex	editor,	a	name	table	viewer,	code/data	logger,	inline
assembler,	and	Game	Genie	decoder/encoder	in	addition	to	the
debugger	and	PPU	viewer	from	FCEUD.		The	last	version	made	was
FCEUXD	1.0a.

FCEUXDSP
FCEUXDSP	stands	for	FCEUXD	"SP"	version	and	is	a	branch	of
FCEUXD	1.0a.

http://code.google.com/p/fceu/

It	was	created	in	2006	by	sp.		The	project	extends	the	debugging	tools
even	further	compared	to	FCEUXD	by	adding	new	tools,	functions,	and
usability	of	debugging	tools.	

The	last	version	of	FCEUXDSP	was	1.07	which	adds	a	feature	known	as
the	RAM	Filter.	This	has	since	been	removed,	due	to	functional
redundancy.

FCEUXDSP	homepage

FCEUXDSP	CE
CE	stands	for	"Champion	Edition"	and	is	a	branch	of	XDSP	that	adds	a
text	hooker	tool.

FCEUXDSP	CE	homepage

FCEU-mm

FCEU	"mappers	modified"	is	an	unofficial	build	of	FCEU	Ultra	by
CaH4e3,	which	supports	a	lot	of	new	mappers	including	some	obscure
mappers	such	as	one	for	unlicensed	NES	ROM's.

FCEUX	supports	mappers	from	older	versions	of	FCEU-mm.

FCEU-mm	SourceForge	page

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.the-interweb.com/serendipity/index.php?/categories/9-FCEUXD-SP
http://www.ximwix.net/boneyard/design19/xb/texthooker.htm
http://sourceforge.net/projects/fceumm/
http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.1.2	(changelog)

What's	New?	2.1.4
Released	31	May	2010

The	2.1.4	release	that	fixes	some	many	bugs	and	adds	new	features
compared	to	2.1.3.	In	addition	it	also	fixes	up	the	movie	code
significantly;	fixing	implementation	problems,	loading	speed,	adding	new
features,	and	fixing	bugs.

Common
Added	microphone	support	option.	When	enabled,	Port	2	Start
activates	the	Microphone
Prevent	.zip	files	containing	no	recognized	files	from	causing	crash
Autohold	-	Added	player	3	and	4	to	autohold	notification	window,
labeled	controller	input
mapper	19	savestate	fix	mirroring	for	"Dream	Master	(J)"	corrected	to
"four-screen"	by	CRC	check
Disable	auto-savestates	during	turbo
Fixed	so	Gotcha!	auto-enables	the	zapper
Autohold	-	Added	player	3	and	4	to	autohold	notification	window,
labeled	controller	input

Movies

Fully	implemented	"bulletproof"	read-only

Movie	code	now	fully	conforms	to	the	Savestate	section	of	the	Laws	of
TAS
Fixed	a	potential	desync	that	plays	out	an	extra	frame	without	an
update	to	the	frame	count	involving	heavy	lua	use,	joypad.get,	and	a
loadstate
Movie	support	for	microphone
Movies	now	have	a	"finished"	mode.		If	a	playback	stops	the	movie
isn't	cleared	from	memory,	and	can	be	replayed	or	a	state	loaded
Similar	functionality	as	DeSmuME	and	GENS	rerecording

New	PPU	flag	in	movie	headers	(doesn't	change	an	emulators	PPU
state	when	loading	a	movie)
Much	faster	movie	loading	and	movie-savestate	loading
Made	gamepad	2	off	by	default	(so	less	movies	should	have	unused
player	2	data)
Implemented	a	"full	savestate-movie	load"	mode	similar	to	the
implementation	in	VBA-rr	and	SNES9x-rr.		In	this	mode	loading	a
savestate	in	read+write	doesn't	truncate	the	movie	to	its	frame	count
immediately.		Instead	it	waits	until	input	is	recording	into	the	movie
(next	frame).		For	win32	this	feature	is	togglable	in	movie	options	and
the	context	menu.		For	SDL	this	is	off	by	default	and	a	toggle	will	need
to	be	added
Movie	+	loadstate	errors	are	handled	more	gracefully	now,	with	more
informative	error	messages	and	the	movie	doesn't	have	to	stop	if
backups	are	enabled
Fix	PlayMovieFromBeginning	when	using	a	movie	that	starts	from
savestate

Lua
fix	bug	that	caused	zapper.read()	to	crash	when	movie	playback	ends
Win32	-	Added	option	for	palette	selection	as	color	for	LUA	colors.
Included	is	a	LUA	script	to	display	all	choices	with	the	value	used	to
pick	displayed	color

New	Lua	functions
movie.ispoweron()
movie.isfromsavestate()
emu.addgamegenie()
emu.delgamegenie()
savestate.object()	which	is	savestate.create()	with	intuitive	numbering
under	windows
gui.getpixel()	which	gets	any	gui.pixel()	set	pixel	colors,	and	possibly
other	functions
emu.getscreenpixel()	which	gets	the	RGB	and	Palette	of	any	pixel	on
the	screen
lua	function	movie.getfilename()	which	returns	the	current	movie
filename	without	the	path	included

Input	Display
			Input	display	updates	on	loadstate
Input	display	overhaul	that	uses	different	colors	for	different	input
contexts
Input	display	now	shows	both	currently	pressed	buttons	and	buttons
held	the	previous	frame

Win32
Added	NTSC	2x	scalar	option	with	some	CFG	config	options	of	it's
own	Added	Ram	Search	hotkeys	for	the	first	6	search	types	in	the	list
Add	Cheat	buttons	for	Ram	Search	and	Ram	Watch
With	special	scaler	in	window	mode,	it's	possible	to	resize	to	anything
above	the	minimum.
Recording	a	new	movie	adds	it	to	recent	movies	list
Replay	dialog,	when	selecting	a	movie	in	a	relative	path	(.\movies	for
example),	the	recent	movies	list	stores	an	absolute	path	instead
Replay	dialog	shows	PAL	flag	and	New	PPU	flags
CDLogger	-	fixed	bug	preventing	correct	interrupt	vectors	from	logging
Memwatch	-	ignore	spaces	at	the	beginnign	of	an	address	in	the
address	boxes
Replay	dialog	-	fix	bug	that	was	causing	it	to	always	report	savestate
movies	as	soft-reset

Debugger

Added	conditional	debugging	option	'K',	for	bank	PC	is	on
Fixed	bug	involving	pausing	emulation	outside	of	the	debugger,	then
trying	to	use	the	debugger	commands,	and	having	the	CPU	registers
become	corrupted
Made	debugger	able	to	break	on	and	distinguish	Stack	reads/writes

Hex	Editor

Added	"Goto"	command
Made	the	Hex	Editor	display	the	Frozen,	Bookmarked,	etc.	status	of

the	selected	address,	and	made	the	Frozen	color	override	the
Bookmarked	color.

Cheat	Search

Made	enabling/disabling	cheats	no	longer	deselect	the	selected	cheat
Added	context	menu	to	Cheat	Dialog	Cheat	Listbox,	populated	list	with
Toggle	Cheat,	Poke	Cheat	Value,	and	Goto	In	Hex	Editor
Enabled	multi-select	for	Cheat	menu	to	allow	multiple	toggles	and
deletes
Made	cheat	menu's	Pause	When	Active	effect	immediate

GUI

Added	Tools	-	GUI	option	to	partially	disable	visual	themes,	so	the
emulator	can	be	made	to	look	like	it	did	in	2.1.1	and	earlier	releases.
Drag	&	Drop	-	if	dropping	a	.fcm	with	no	ROM	loaded,	prompt	for	one
(same	functionality	that	was	added	to	.fm2	files)
Added	single-instance	mode,	which	makes	starting	a	second	copy	of
FCEUX	load	the	file	into	the	first,	then	exit.Mode	off	by	default,
togglable	under	Config	-	GUI

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.1.2	(changelog)

What's	New?	2.1.3
Released	April	8,	2010

The	2.1.3	release	that	fixes	some	bugs	of	2.1.2,	increases	game
compatibility,	and	adds	usability	enhancements	to	the	windows	port	and
adds	a	GUI	to	the	SDL	port.

Common
Fixed	mappers	82,	25,	21,	and	18.		Games	such	as	SD	Kiji	Blader,
Ganbare	Goemon	Gaiden,	and	Ganbare	Goemon	Gaiden	2,	Jajamaru
Gekimadden	are	now	playable
Fixes	for	mappers	253	&	226	-	fixes	games	such	as	Fire	Emblem	(J)
and	Fire	Emblem	Gaiden	(J)
Fix	crashing	on	game	loading	for	any	battery	backed	ROMs	with
mappers	from	MapInitTab	(fixes	Esper	Dream	2	-	Aratanaru	Tatakai	(J)
FDS	-	show	name	of	missing	bios	file	in	error	message
NewPPU	-	fixed	sprite	hit	before	255	and	for	non	transparent	hits	only,
thanks	to	dwedit	for	providing	the	fix
.fm2	file	format	header	now	has	an	FDS	flag

SDL

A	GUI!		A	graphic	user	interface	(using	GTK)	with	many	basic	menu
options
ported	to	SDL	1.3;	compatibility	maintained	with	1.2
unix	netplay	is	now	functional;	gtk	network	gui	created
now	prints	the	name	of	the	mapper	on	ROM	load
fixed	dpad/joyhat	support
VS	unisystem	keys	now	configable
changed	default	hotkeys	and	keys	to	match	Win32
disallow	--inputcfg	gamepad0	and	gamepad5

Win32

Made	savestate	backups	optional	(config	-	enable	-	backup
savestates)
Made	savestate	compression	togglable	(config	-	enable	-	compress
savestates)
Cheats	dialog	-	Pause	while	active	checkbox
Cheats	dialog	-	Toggling	a	cheat	in	the	cheats	list	now	updates	the
active	cheats	count
Debugger	-	added	an	auto-load	feature
Debugger	-	Fix	so	it	doesn't	crash	if	unminimized	with	no	game	loaded
Closing	minimized	windows	no	longer	moves	them	the	next	time	they
get	opened
Lua	console	-	added	a	menu
Lua	console	-	filename	updates	when	lua	scripts	are	dragged	to
emulator	or	recent	filenames	invoked
Name	Table	Viewer	-	Fix	for	use	with	New	PPU
Trace	Logger	-	Trace	logger	now	logs	the	values	of	the	stack	pointer
register
If	a	.fm2	file	is	drag	and	dropped	with	no	ROM	load,	the	open	ROM
dialog	will	appear
disable	movie	messages	menu	item
Added	more	window	positions	bounds	checks.	Accounts	for	-32000
positions	and	less	out-of-range	too
TASEdit	-	Added	interface	functionality	(save/load,	running	TASEdit
mid-movie,	etc.)

Lua
New	lua	functions:	gui.parsecolor(),	joypad.getup(),	joypad.getdown(),
emu.emulating()
Change	gui.line,	gui.box,	joypad.get	to	function	consistently	with	other
lua	emulators	such	as	GENS	rerecording
fixed	zapper.read()	to	read	movie	data	if	a	movie	is	playing.		Also
changed	the	struct	values	to	x,y,fire.	This	breaks	lua	scripts	that	used	it
previous,	sorry
gui.text()	now	has	out	of	bounds	checking

Lua	no	longer	unpauses	the	emulator	when	a	script	is	loaded

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.1.2	(changelog)

What's	New?	2.1.2
Released	November	3,	2009

The	2.1.2	release	that	fixes	some	bugs	of	2.1.0a,	increases	game
compatibility,	launches	a	new	PPU	core,	and	adds	usability
enhancements	to	the	windows	port.

Common
New	PPU	is	now	functional!		You	can	access	it	by	changing	the
newPPU	flag	in	the	config	file.		Windows	users	can	access	it	from
Config	>	PPU	>	New	PPU
Dragon	Ball	Z	3	now	playable	again
Fixed	action	52	game	that	was	broken	in	post-FCEUX	2.0.3	versions
Mapper	253	mostly	implemented
Mapper	43	fixed	bug

Win32

Imported	NSF	features	from	FCEUXDSP-NSF.		Debugging	tools	are
now	compatible	with	NSF	files.
Movies	now	record	FDS	disk	swapping	commands
Movie	play	dialog	displays	movie	time	based	on	~60.1	(~50.1	PAL)
instead	of	60	&	50
Ram	Watch	and	Ram	Search	dialogs	imported	from	GENS	rerecording
Ram	Filter	dialog	removed	(now	redundant	compared	to	both	cheat
search	and	ram	search)
Lua	script	window	ported	from	GENS
Fix	for	the	directory	overrides	bug	that	caused	overrides	to	reset
Debugger:		.deb	file	saving/loading	restored
"Save	config	file"	menu	item
"New	PPU"	menu	item

Minor	Bug	fixes

Minor	fixes	to	recent	menus
Fixed	a	bug	that	prevented	the	Map	Hotkeys	dialog's	X	button	from
closing	the	dialog
Restored	DPCM	Logging	when	Code/Data	Logger	is	active
Memory	watch	-	Save	Changes	Prompt	-	clicking	save	will	default	to
quicksave	first	and	save	as	2nd	(instead	of	always	defaulting	to	save
as)
Made	Trace	Logger	refresh	adequately	when	using	stepping	options	in
the	debugger.

Lua
joypad.set()	fixed.		True,False,	and	Nil	now	work	properly	for	all
buttons.		In	addition	there	is	a	new	"invert"	option.
Lua5.1.dll	no	longer	required	to	use	lua.
fceu.unpause()
Added	savestate.registerload(),	savestate.registersave(),
savestate.loadscriptdata()
emu.	library,	has	all	the	same	functions	as	fceu.	library	for	better
compatibility	between	lua	emulators
Many	additional	function	names	to	increase	consistency	with	other	lua
emulators
Added	movie.recording()	and	movie.playing()
Added	memory.getregister()	and	memory.setregister()
Added	gui.popup	and	input.popup
Added	savestate.registerload(),	savestate.registersave(),	and
savestate.loadscriptdata()

New	Lua	Scripts
A	multi-track	movie	recording	tools	written	by	FatRatKnight.		Allows
input	for	different	players	to	be	recorded	separately.
A	rewinding	tool	written	by	Jonathan	Blow

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.1.1	(changelog)

What's	New?	2.1.1
Released	July	29,	2009
This	release	includes	a	multitude	of	new	features,	major	fixes,	and
enhancements.

The	2.1	new	release	that	fixes	some	bugs	of	2.1.0a,	improves	the
accuracy	of	the	sound	core,	and	adds	useability	enhancements	to	the
windows	port.

Common	-	Bug	fixes
Fixed	reported	issue	2746924	(md5_asciistr()	doesn't	produce	correct
string)
Made	default	save	slot	0	instead	of	1

Improved	Sound	core/PPU
Fixed	the	noise	value,	it	seems	that	the	noise	logic	was	shifting	the
values	to	the	left	by	1	when	reloading,	but	this	doesn't	work	for	PAL
since	one	of	the	PAL	reload	value	is	odd,	so	fix	the	logic	and	used	the
old	tables.	Revert	a	stupid	CPU	ignore	logic	in	PPU.	Sorry	about	that.
Updated	with	the	correct	values	for	the	noise	and	DMC	table,
Fixed	the	CPU	unofficial	opcode	ATX,	ORing	with	correct	constant	$FF
instead	of	$EE,	as	tested	by	blargg's.	These	fixes	passes	the	IRQ
flags	test	from	blargg,	and	also	one	more		opcode	test	from	blargg's
cpu.nes	test.
Square	1	&	square	2	volume	controls	no	longer	backwards
Length	counters	for	APU	now	correct	variables

NewPPU	(still	experimental,	enabled	by	setting	newppu	1	in	the
config	file)

Added	experimental	$2004	reading	support	to	play	micro	machines
with	(little)	shakes,	and	fixed	some	timing	in	the	new	PPU.
Added	palette	reading	cases	for	the	new	PPU.

Win32

Minor	Bug	fixes
Replay	movie	dialog	-	Stop	movie	at	frame	x	feature	-	fixed	off	by	1
error	on	the	stop	frame	number
Hex	Editor	-	changed	ROM	values	again	dsiplay	as	red,	saved	in	the
config	as	RomFreezeColor
Fixed	bug	in	memory	watch	that	would	make	the	first	watch	value
drawn	in	the	wrong	place	if	watch	file	was	full
Debugger	-	Step	type	functions	now	update	other	dialogs	such	as	ppu,
nametable,	code/data,	trace	logger,	etc.
"Disable	screen	saver"	gui	option	now	also	diables	the	monitor
powersave
Recent	menus	-	no	longer	crash	if	item	no	longer	exists,	instead	it	ask
the	user	if	they	want	to	remove	the	item	from	the	list
Sound	Config	Dialog	-	When	sound	is	off,	all	controls	are	grayed	out
Memory	Watch	-	fixed	a	regression	made	in	2.0.1	that	broke	the	Save
As	menu	item
Memory	Watch	-	save	menu	item	is	grayed	if	file	hasn't	changed

GUI/Enhancements
Last	save	slot	used	is	stored	in	the	config	file
Made	fullscreen	toggle	(Alt+Enter)	remappable
Hex	editor	-	Reverted	fixedFontHeight	to	13	instead	of	14.		Gave	the
option	of	adjusting	the	height	by	modifying	RowHeightBorder	in	the
.cfg	file
Hex	Editor	-	allowed	the	user	to	customize	the	color	scheme	by	use	of
RGB	values	stored	in	the	.cfg	file
Hex	editor	-	freeze/unfreeze	ram	addresses	now	causes	the	colors	to
update	immediately,	but	only	with	groups	of	addresses	highlighted	at
once	(single	ones	still	don't	yet	update)
Hex	Editor	-	Save	Rom	As...	menu	option	enabled	and	implemented
Window	caption	shows	the	name	of	the	ROM	loaded

Recent	Movie	Menu	added
Load	Last	Movie	context	menu	item	added
Save	Movie	As...	context	menu	item	(for	when	a	movie	is	loaded	in
read+write	mode)
Drag	&	Drop	support	for	all	files	related	to	FCEUX	including:

				.fcm	(autoconverts	to	.fm2	and	begins	movie	playback)
				Savestates
				Palette	files	(.pal)

Commandline	-	-palette	commandline	option
Memory	Watch	-	option	to	bind	to	main	window,	if	checked	it	gives
GENS	dialog	style	control,	where	there	is	no	extra	task	bar	item,	and	it
minimizes	when	FCEUX	is	minimized

SDL

added	--subtitles
fixed	Four	Score	movie	playback
added	--ripsubs	for	converting	fm2	movie	subtitles	to	an	srt	file
Lua	is	optional	again,	fixed	the	real	issue
Lua	is	NO	longer	optional,	so	the	SConscripts	have	been	updated	to
reflect	that	change.		This	fixes	the	mysterious	non-working	input	issue.
implemented	saving/loading	a	savestate	from	a	specific	file	on	Alt+S/L
implemented	starting	an	FM2	movie	on	Alt+R
added	--pauseframe	to	pause	movie	playback	on	frame	x
dropped	UTFConverter.c	from	SDL	build
added	hotkey	Q	for	toggling	read-only/read+write	movie	playback

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.1	(changelog)

What's	New?	2.1
Released	March	29,	2009
This	release	includes	a	multitude	of	new	features,	major	fixes,	and
enhancements.

New	Features	Win32

*The	latest	mappers	and	mapper	fixes	from	FCEU-mm.		Adds	support	for
many	new	games	such	as	Warioland	II	(Unl),	Shu	Qi	Yu,		and	Street
Dance
*Full	screen	mode	fixed!		Also,	Alt+Enter	properly	toggles	full	screen.
*Individual	control	for	sound	channels!	(See	sound	config	for	details).
*Undo/Redo	Savestate/Loadstate	features	installed!		No	more	loss	of
data	to	unintentional	presses.		(See	getting	started	for	details).
*Movie	subtitles	can	now	be	included	in	.fm2	files.		See	.fm2
documentation	for	details	and	Movie	options	for	details	on	customizing.
*Auto-backup	for	movie	files.		(See	movie	options	for	details).
*A	Ram	change	monitor	for	the	Memory	watch	dialog.	(see	memwatch	for
details).
*Frame	counter	works	even	without	a	movie	loaded.
*AVI	Directory	Override	option.

Major	Bug	/	Crash	Bug	Fixes

*Fixed	throttling	problems	that	resulted	on	AMD	Dualcore	processors.
(Caused	FCEUX	to	appear	to	be	in	turbo	mode).
*Fix	major	crash	issue	where	NROM	game	(such	as	SMB)	savestates
were	writing	erroneous	information	if	a	non	NROM	game	was	loaded
prior.
*Fixed	a	bug	that	caused	a	new	sav	file	to	not	get	created	when	loading	a
2nd	battery	backed	game.
*Fix	Directory	Overrides	so	to	allow	users	to	have	no	override.		Also	fixes

directory	override	reset	bug.

Minor	Bug	fixes

*Hotkeys	-	prevent	"Hotkey	explosion"	where	some	laptop	keys	set	off	all
unassigned	hotkeys
*Timing	-	"disable	throttling	when	sound	is	off"	now	only	affects	FCEUX
when	sound	is	off
*Clip	Left	and	Right	sides	taken	into	account	when	drawing	on	screen
(record/play/pause,	lag	&	frame	counters,	messages,	etc)
*Fixed	bug	where	having	sound	off	and	Mute	turbo	caused	chirps	when
toggling
*Video	settings	-	fixed	bug	when	both	aspect	ratio	correction	and	special
scaling	3x	are	set,	video	was	getting	resized	incorrectly
*Auto-save	cleanup	-prevent	loading	an	auto-save	from	previous
session.		Added	flags	for	enabling	auto-save	menu	item.
*Fixed	issues	related	to	big	endian	compiling.
*Fix	bug	so	that	Escape	can	now	be	assigned	as	a	hotkey
*Fixed	bug	in	screenshot	numbering	that	caused	numbering	to	not	reset
when	changing	games.

GUI	/	Menu	Enhancements

*A	right-click	context	menu	added!		Includes	many	commonly	used	items
for	a	variety	of	situations.
*Menu	items	that	are	hotkey	mappable	now	show	their	current	hotkey
mapping
*Major	overhaul	to	the	Menu	organization.	
*All	FCEUX	features	are	now	accessible	in	the	menu
*Alt	Menu	Shortcuts	properly	configured
*Menu	items	are	properly	grayed	when	not	useable
*All	movie	related	menu	items	moved	to	a	Movie	options	dialog
*Removed	hard-coded	Accel	keys	and	replaced	with	re-mappable
hotkeys	(Open	&	Close	ROM)
*Drag	&	Drop	for	.fm2	and	.lua	files
*Many	new	functions	added	to	the	context	menu	(See	context	menu	for

details)
*New	Mappable	Hotkeys:	Open	Cheats,	Open	ROM,	Close	ROM,
Undo/Redo	savestate,	Toggle	Movie	Subtitles

Lua

*Added	input.get()	!		Returns	the	mouse	info	and	all	keyboard	buttons
pressed	by	the	user.
*Fixed	joypad.set().		False	now	sets	a	button	to	off.		Nil	does	not	affect
the	button	at	all	(allowing	the	user	to	still	control	it).
*gui.text()	Increased	height	(to	approx.	7	lines).
*speedmode("turbo")	now	turns	on	turbo	(which	employs	frame-skipping)
rather	than	max	speed.
*memory.readbyte	will	recognize	frozen	addresses	(cheats).
*movie.framecount()	always	return	a	number,	even	when	no	movie	is
playing	(since	the	frame	counter	is	implemented	without	a	movie	loaded).
*Added	FCEU.poweron()
*Added	FCEU.softreset()
*Added	FCEU.lagged()
*Added	FCEU.lagcount()
*Added	FCEU.getreadonly()
*Added	FCEU.setreadonly()
*Added	FCEU.fceu_setrenderplanes(sprites,	background)
*Added	movie.active()
*Added	movie.rerecordcount()
*Added	movie.length()
*Added	movie.getname()
*Added	movie.playbeginning()
*Added	-lua	command	line	argment,	loads	a	Lua	script	on	startup
*Added	zapper.read()	-	returns	the	zapper	(mouse)	data.		(Currently	does
return	zapper	data	in	movie	playback).
*Added	joypad.write	and	joypad.get	for	naming	consistency.
*Added	rom.readbyte()
*Added	rom.readbytesigned()

Sound	Config

*Turning	sound	off	disabled	sound	config	controls
*Re-enabled	sound	buffer	time	slider	control

Hex	Editor

*Freezing	ram	addresses	automatically	updates	the	Cheats	dialog	if	it	is
open.
*	Added	prevention	from	freezing	more	than	256	addresses	at	once
(doing	so	caused	crash	bugs).
*Dialog	remembers	window	size.
*Dump	Rom	&	Dump	PPU	to	file	Dialogs	use	ROM	to	build	default
filename
*Maximize	and	minimize	buttons	added.
*Help	menu	item	added

Memory	Watch

*Dialog	now	includes	Ram	change	monitoring.	(see	memwatch	for
details).
*Dialog	is	now	collapsible	to	1	column.
*No	longer	crashes	when	attempting	to	load	an	invalid	file	from	the	recent
file	menu.
*Cancel	option	added	to	the	save	changes	dialog.
*Memory	address	values	that	are	frozen	by	the	debugger	or	hex	editor
are	displayed	in	blue.
*Fixed	bug	that	caused	dialog	to	"disappear"	due	to	saving	-32000	as	its
window	position.
*Save	as	dialog	uses	ROM	name	to	build	a	default	memory	watch
filename	if	there	was	no	last	used	memory	watch	filename
*Drag	and	drop	for	.txt	(memory	watch)	files.
*Minor	menu	and	hotkey	fixes.
*Watch	values	now	compatible	with	custom	windows	dialog	colors.

Debugger

*Shows	scanlines	and	PPU	pixel	values
*Shows	scanlines	even	while	in	VBlank
*Added	a	Run	Line	button	(runs	1	scanline	per	click)
*Run	128	Lines	button	(runs	128	scanlines	per	click)
*Number	of	active	cheats	listed.
*Cheats	list	automatically	updated	if	ram	addresses	are	frozen	in	the	hex
editor.
*Fixed	bug	that	caused	dialog	to	"disappear"	due	to	saving	-32000	as	its
window	position.
*Debugger	now	has	a	minimum	valid	size
*Added	"Restore	original	window	size"	button

PPU	Viewer

*Default	refresh	value	set	to	15
*Refresh	value	stored	in	the	.cfg	file

Nametable	Viewer

*Default	refresh	value	set	to	15
*Refresh	value	stored	in	the	.cfg	file

Trace	Logger

*Fixed	bug	where	user	can't	scroll	the	log	window	while	it	is	auto-
updating.
*Changed	message	about	F2	pause	(left	over	from	FCEUXDSP)	to
display	the	current	hotkey	mapping.

Text	Hooker

*Saving	a	.tht	file	no	longer	crashes
*Dialog	updates	every	frame
*Initialization	error	checking	reinstalled,
*Dialog	remembers	window	position
*Fixed	bug	where	canceling	save	as	produces	an	error	message.

*Save	As	produces	default	filename	based	on	the	current	ROM

Message	Log

*Remembers	X,Y	position
*Resized	width	and	height
*Allowed	more	lines	of	text	to	appear	on	the	screen	at	once.

Metadata

*Remembers	window	position
*Can	be	called	from	the	context	menu	if	a	movie	is	loaded	(see	context
menu	for	details).

TASEdit

*added	help	menu	item
*disabled	menu	items	that	are	not	currently	implemented.

Turbo
*Turbo	now	employs	frame	skip,	greatly	increasing	its	speed
*The	mute	turbo	option	completely	bypasses	sound	processing	(another
big	speed	boost)
*Turbo	now	works	with	the	Lazy	wait	for	VBlank	sync	setting

SDL
*SDL	Movie	subtitle	support	and	subtitle	toggle	hotkey	added.
*SDL	Added	fcm	to	fm2	converter	tool	to	SDL	version.
*SDL	Improved	the	SDL	sound	code;	drastically	improves	quality	of
sound.
*SDL	Savestate	slots	are	now	mappable.
*SDL	Major	updates	to	SDL	documentation
*SDL	Added	Shift+M	for	toggling	automatic	movie	backups.
*SDL	Added	option	to	mute	FCEUX	for	avi	capturing,	check	the
documentation	for	more	details.

*SDL	Added	--noconfig	command	line	option
*SDL	Frame	Advance	Skip	Lag	frames	toggle	implemented

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.0.3	(changelog)

What's	New?	2.0.2
Released	November	02,	2008
This	release	includes	some	key	bug	fixes	and	feature	enhancements.

Major	Bug	/	Crash	Bug	Fixes

*	Reset/Power-on	recording	for	.fm2	files!
*	fix	..fcm	conversion,	recording,	and	playback	of	reset	and	power
commands
*	Win32	-	auto-load	the	only	useful	ROM	or	movie	from	an	archive,	in
cases	where	there	is	only	one
*	Win32	-	permit	user	optionally	to	proceed	through	the	movie	savestate
mismatch	error	condition,	in	case	he	knows	what	he	is	doing.
*	Win32	-	fix	a	bug	in	the	savestate	recovery	code	which	prevent	aborted
savestate	loads	from	recovering	emulator	state	correctly.
*	gracefully	handle	non-convertible	broken	UTF-8	text	without	crashing
*	Win32	-	don't	read	every	archive	file	when	scanning	for	replay	dialog.
scan	them,	and	only	look	for	*.fm2

New	Features	Win32

*	Win32	-	added	a	toggle	for	binding	savestates	to	movies
*	Win32	-	added	-cfg	(config	file)	command	line	argument

Minor	Bug	fixes

*	Win32	-	Sound	config	dialog	will	now	look	to	see	if	Mute	Turbo	should
be	checked
*	Win32	-	Debugger	-	Fix	Child	windows	inside	debugging	window	get
invalid	sizes
*	Win32	-	bind	a	menu	option	for	display	frame	counter
*	Win32	-	fix	problem	where	replay	dialog	couldn't	work	when	the	process

current	directory	had	changed	to	something	other	than	emulator	base
directory
*	Lua	ignores	second	joypad.set()
*	Load	state	as...	does	not	use	the	savestate	override	dir	(fixed;	now,	it
does)
*Win32	-	debugger	-	fix	issue	where	keyboard	keys	get	stuck	when
switching	between	debugger	window	and	main	window

SDL

*	SDL	-	added	support	for	AVI	creation	for	SDL,	see
documentation/Videolog.txt	for	more
*	SDL	-	--inputcfg	can	now	be	used	without	a	filename
*	SDL	-	should	fix	issues	with	missing	author	field	crashing	FCEUX
*	SDL	-	toggle	lag	frame	counter	for	SDL,	default	hotkey	F8
*	SDL	-	toggle	skipping	of	lag	frames	for	SDL,	default	hotkey	F6
*	SDL	-	user	ability	to	toggle	"bind	savestates	to	movie"	added	for	SDL,
default	hotkey	F2
*	SDL	-	Lua	is	now	optional,	thanks	Shinydoofy	for	a	patch.		also	fixed
some	build	issues.
*	SDL	-	fixed	an	issue	where	flawed	movie	would	crash	FCEUX	on	every
startup
*	SDL	-	fixed	issue	where	windowed	mode	would	always	be	set	to	32	bpp
*	SDL	-	fixed	ppc	build	errors	and	added	LSB_FIRST	option	to	build
scripts
*	SDL	-	--newppu	option	added	to	SDL,	disabled	by	default

GFCEUX	(SDL)

*	GFCEUX	-	made	the	input	config	window	more	usable
*	GFCEUX	-	added	uninstall	script	for	GFCEUX

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.0.2	(changelog)

What's	New?	2.0.2
Released	August	14,	2008
This	release	includes	a	large	number	of	bug	fixes,	feature
enhancements,	and	new	features.

Fixed	Crashing	Bugs

*	restore	savestate	error	recovery	functionality.		Will	prevent	crashes	after
savestate	error	messages
*	Fixed	-	Low	speeds	(1%)	crash	FCEUX
*	fixes	bug	where	palflag	1	in	.fm2	files	crashes	fceux
*	FCEUX	no	longer	crashes	when	attempting	to	open	a	non	movie	file
*	Buffer	overflow	(change	vsprintf	to	vsnprintf)

Minor	Bug	fixes

*	SRAM	not	wiped	on	power	cycle	(during	movies)
*	Moviefilenames	without	extension	now	automatically	get	fm2
*	auto-fill	.fcs	extension	in	save	state	as	dialog
*	FCM>FM2	converter	releases	file	handle
*	fix	a	new	bug	in	windows	build	which	caused	fourscore	emulation	to	fail
in	some	cases
*	Player	3	no	longer	inputs	when	not	used
*	prints	a	special	message	when	trying	to	open	an	FCM	reminding	user	to
convert.
*	fixes	bug	where	Avi	recording	with	no	sound	messes	up	the	format
*	Fixed	bug	where	Convert	.fcm	didn't	do	special	characters
*	fixed	the	(null)	in	the	default	lua	directory	listing
*	Ctrl+X	now	works	in	the	memory	watch	dialog
*	Dialog	window	positions	won't	"disappear"	(-32000	protection	on	all
dialogs	that	remember	x,y)
*	fixed	View	Slots	bug	-	will	now	always	show	the	used	slots

*	added	shift+L	as	default	hotkey	for	reload	lua	script
*	added	input	display	to	the	FCEUX	main	menu
*	change	config	filename	from	fceu98.cfg	to	fceux.cfg

New	Features

*	restore	IPS	patching	capability	which	was	lost	when	archive	support
was	added
*	restore	ungzipping	(and	unzipping	in	sdl)	capability	which	was	lost	when
archive	support	was	added
*	re-enable	an	"author"	text	field	in	the	record	movie	dialog
*	re-enable	support	for	old-format	savestates.	(Note:	can	not	be	loaded
into	a	movie!)

*	Added	new	toggle	-	frame	adv.	-	lag	skip	(menu	item	+	hotkey	mapping
+	saved	in	config),	will	cause	frame	adv.	to	skip	frames	where	input	is	not
read
*	Added	support	for	loading	movies	from	archives	(just	like	ROM	files).	
Note:	Movies	loaded	from	an	archive	file	will	be	read-only.
*	movie	replay	dialog	displays	fractions	of	a	second	on	movie	length

*	Savestates	now	save	the	Lagcounter	information.
*	added	a	mute	turbo	option	in	sound	config

*	add	an	option	to	pick	a	constant	color	to	draw	in	place	of	BG	when	BG
rendering	is	disabled	(look	for	gNoBGFillColor	in	config).

Mappers

*	remove	cnrom	chr	rom	size	limit	for	homebrew	roms
*	mmc5	-	64KB	WRAM	games	now	work	correctly
*	mmc5	-	use	of	chr	A	regs	for	BG	in	sprite	8x8	mode	is	fixed
*	upgrade	to	cah4e3's	latest	mapper	163&164	code	to	fix	a	crash	in	a
game

Debugging	Tools

*	Debugger	-	restore	snap	functionality
*	Debugger	-	add	FORBID	breakpoints	-	regions	which	block	breakpoints
from	happening	if	they	contain	the	PC
*	Debugger	-	debugger	window	is	now	resizeable
*	nametable	viewer		will	display	correct	NT,CHR,ATTR	data	in	more
cases	(specifically,	including	some	exotic	mmc5	cases).

Lua

*	Savestates	remember	Lua	painting
*	add	memory.readbyterange	to	emulua

SDL	only

*	SDL:	fixed	--input(1-4)	options.		input1	and	2	are	regular	inputs,	input3
and	4	are	famicom	expansion	inputs
*	SDL	fix	configfile	woes.	configfile	now	goes	to	~/.fceux/fceux.cfg
*	SDL:	fixed	segfault	when	opening	.fcm	files
*	SDL:	Saner	sound	defaults	for	less	choppy	sound
*	SDL:	"--special"	option	fixed	for	special	video	scaling	filters
*	SDL:	cleaned	up	the	SConsruct
*	SDL:	fixed	issue	where	fceu	would	lock	up	when	file	dialogs	were
opened	during	fullscreen
*	SDL:	fixed	bug	where	fceux	would	close	when	file	dialogs	were	closed
*	SDL:	File	open	dialog	is	now	used	to	movie	playback
*	SDL:	File	open	wrapper	now	takes	a	titlebar	argument
*	SDL:	Cleanup	of	usage
*	SDL:	rename	options	--no8lim	->	--nospritelim	and	--color	->	--ntsccolor
*	SDL:	Screenshots	now	always	prepend	the	game	name.
*	SDL:	Changed	default	A/B	from	numpad	2	and	3	to	j	and	k.
*	SDL:	Enable	frameskip	by	default
*	SDL:	Fixed	a	bug	that	would	crash	fceux	if	the	emulation	speed	was
overincreased

*	SDL:	New	default	hotkeys	to	more	closely	match	win32	defaults
*	SDL:	Added	lua	script	loading	hotkey	(f3).		Non	win32	SDL	requires
zenity	for	this	to	function.
*	SDL:	Build	script	cleanup;	also	added	option	for	DEBUG	builds.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?	2.0.1	(changelog)

What's	New?	2.0.1
Released	August	04,	2008
This	was	a	maintenance	release	that	fixes	a	few	oversights	in	the	2.0.0
release.

*	reorganize	display	toggle	options	in	the	menu
*	autofire	fix	(wasn't	initializing	to	any	autofire	pattern	from	a	fresh	.cfg)
*	homebrew	mmc5	games	now	have	64KB	of	exwram	instead	of	only
8KB
*	fix	crash	related	to	player2	in	lua	scripts
*	fixed	player2	in	lua	scripts

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's	New?

What's	New?	2.0.0
Released	August	02,	2008
FCEUX	has	all	the	latest	tools,	enhancements,	and	features	from	FCEU
0.28	rerecording	and	FCEUXDSP	1.07		In	addition,	it	has	many	new
tools,	bug	fixes,	and	enhancements	not	seen	in	previous	branches.

General
-A	detailed	Help	Menu!		No	longer	are	you	aimlessly	searching	the
internet	for	long	lost	info	on	FCEU's	options!
-Numerous	Dialog	box	reformats.
-FCEU	remembers	its	last	screen	(x,y)	position.
-Increased	command	line	options
-More	options	under	the	Directory	Override	Menu
-A	Turbo	Toggle	option	(turbo	now	can	be	toggled	on	rather	than	having
to	hold	the	key	down)
-More	hotkey	assignable	options	in	the	Map	Hotkeys	Menu.
-A	lag	counter
-Autofire	uses	the	lag	counter	(so	it	will	skip	over	lag	frames)

Movie	support
Overhauls	in	both	the	movie	and	savestate	file	formats.

.fm2	File	format

The	.fcm	file	format	has	been	overhauled	into	a	new	.fm2	format.	
Changes	include:

-Uncompressed	and	text	based	format.		Movie	editing	can	be	done

simply	in	a	text	editor.
-Recording	from	soft	reset	option	removed.
-Recording	from	start	(hard	reset)	no	longer	has	an	empty	savestate	at
the	beginning.
-GUID	inserted	into	movies	for	better	savestate/loadstate	error	handling.
-Rather	than	an	Author	field,	it	has	a	full	metadata	menu	where	an	author
can	put	any	info	needed.
-A	tool	to	convert	.fcm	files	to	.fm2	files.
-More	specific	info	on	.fm2	files	in	the	.fm2	documentation.

Savestate/Loadstate

-New	savestate	file	format.		NOTE:		Savestates	from	previous	FCEU
versions	CAN	NOT	be	used	in	FCEUX.
-Fully	functional	error	handling	(savestates	from	other	movies	cannot	be
loaded).
-Read-only	toggling	related	bugs	fixed.
-Savestate	filenames	include	the	name	of	the	movie	(if	a	movie	was
playing	when	made).		This	prevents	loading	wrong	savestates.	(This	also
means	that	savestate	0	is	different	when	a	movie	is	playing	and	when	it	is
not).

7z	Archive	Support

-ROMs	in	any	7z	compatible	compressed	format	can	be	opened	directly.
-If	more	than	one	valid	ROM	exists	in	an	archive	file,	then	a	dialog	box
will	open	with	a	list	of	available	ROM	choices.

TAS	Editor

-A	brand	new	powerful	movie	making	tool	that	revolutionizes	the	way	TAS
movies	are	made.		See	TAS	edit.

New	Tools

TAS	Edit	-	a	revolutionary	new	way	of	making	TAS	movies.

Input	Presets	-	a	system	for	quickly	toggling	different	input
configurations.

Tool	Upgrades
Numerous	enhancements	have	been	made	to	various	Tools/Options.

Memory	Watch

-Resource	management	optimized	so	that	memory	watch	now	uses	a
minimal	amount	of	CPU
-FCEUX	remembers	memory	watch's	last	screen	position	(x,y)
-Tab-able	Edit	boxes
-Edit	boxes	now	can	hold	64	characters
-A	Menu	bar	for	all	Memory	watch	functions
-Both	"Save	as"	and	"Save"	options
-Hotkeys	for	New,	Open,	Save,	Save	As	and	Close
-A	recent	files	Menu
-A	"load	on	startup"	option.	If	checked,	memory	watch	will	open
automatically	when	FCEUX	is	opened
-A	"load	last	file"	option.		If	checked,	memory	watch	will	load	the	last	file
used

Cheat	Search

-Now	has	a	minimize	button
-Cheat	Search	Menu	from	FCEUXDSP	(a	major	overhaul	compared	to
other	FCEU	branches)
-Possibilities	update	while	playing/frame	advancing	a	game
-Double	clicking	a	value	in	the	possibilities	window	sends	the	value
directly	to	Memory	Watch

RAM	Filter

-Double	clicking	a	value	in	the	possibilities	window	sends	the	value
directly	to	Memory	Watch

Lua	Scripting

-Uses	the	latest	features	of	Lua	Scripting	from	FCEU	0.28
-Many	enhancements	and	new	commands	including	dialog	creation
commands!		Now	scripts	can	create	their	own	dialog's	and	GUI	features.

Lua	Basic	Bot

-Basicbot	removed	(from	the	rerecording	version	of	FCE	Ultra).		In	its
place	is	lua	bot.

AVI	Recording
-"Movie	playback	stopped"	message	recorded	in	AVI	by	default
-Turbo	Toggle	Hotkey.		(Allows	turbo	to	be	left	on	for	a	faster	AVI
capture).

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

General

General
Guides	for	general	uses	of	FCEUX.

Getting	Started

A	guide	for	loading	games,	setting	up	controls,	etc.

Command	Line	Options

FCEUX	as	an	extensive	set	of	options	for	running	from	command	line	(or
.bat	file).		This	guide	explains	all	command	options	available.

Famicom	Disk	System

A	guide	for	playing	Famicom	(.fds)	games.

Movie	Recording

A	guide	for	playing	and	recording	movie	input	files	(.fm2).

AVI	Capturing

A	guide	for	capturing	a	game/movie	file	into	an	AVI	file.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Getting	Started

Getting	Started
Playing	Games

The	most	basic	function	of	FCEUX	is	to	play	Nintendo	Entertainment
System	(NES)	and	Famicom	Disk	System	(FDS)	games.

To	play	a	game,	simply	open	a	ROM	by	selecting	"Open"	in	the	File	Menu
(or	press	Ctrl+O).		(See	Game	Compatibility	for	information	regarding	file
types	that	are	compatible	with	FCEU.)

To	get	set	up	properly,	you	may	need	to	configure	any	of	the	following:

-Input
-Video
-Sound
-Timing
-GUI	settings
-Hotkeys
-Directory	Overrides

Using	Savestates

In	emulation,	a	savestate	(alternatively	called	freeze	state	or	game
freeze)	is	a	snapshot	of	all	of	an	emulated	device's	state	information	at	a
given	moment.	This	makes	it	possible	to	pause	emulation,	and	restart	it
later,	even	in	another	instance	of	the	emulator,	or	to	test	the	emulated
machines	reaction	to	different	series	of	inputs	using	the	saved	state	as	a
common	starting	point.

To	make	a	savestate	press	shift	+	F1-F10	to	save	to	a	save	slot	(0-9).		Or
select	a	save	slot	with	the	number	keys	(0-9)	and	select	the	quick	save
command	(Default	hotkey	is	"I")

To	load	a	savestate	press	F1-F10.		Or	select	a	save	slot	with	the	number
keys	(0-9)	and	loadstate	by	navigating	to	File	>	Savestate	>		Loadstate	or
by	pressing	the	loadstate	hotkey	(Default	hotkey	is	"P").

To	save	a	state	to	a	specific	file,	go	to	"Save	state	as..."	in	the	FCEUX
File	menu.

To	load	a	specific	savestate	file,	go	to	the	"Load	state	from..."	in	the
FCEUX	File	menu.

Undo	Savestate	/	Loadstate

If	you	load	a	state	by	accident,	you	can	right-click	and	select	"Undo
Loadstate"	to	restore	the	emulator	back	to	the	state	it	was	in	before	the
loadstate.		Upon	using	undo	loadstate,	a	redo	loadstate	will	appear	as	an
option.	

If	you	make	a	savestate,	it	will	overwrite	the	existing	savestate	for	that
slot.		You	have	the	option	to	undo	this	and	restore	the	previous	savestate
file	by	right-clicking	and	selecting	undo	savestate.		Once	you	undo,	you
will	have	the	option	to	redo	savestate	to	restore	the	savestate	that	you
made.		You	can	also	map	a	hotkey	to	this	function.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Game	file	compatibility

File	Formats/Expansion	Hardware
Valid	Game	Types

FCEUX	supports	the	iNES,	FDS(raw	and	with	a	header),	UNIF,	and	NSF
file	formats.	FDS	ROM	images	in	the	iNES	format	are	not	supported;	it
would	be	silly	to	do	so	and	storing	them	in	that	format	is	nonsensical.

FCEUX	supports	loading	ROM/disk	images	from	some	types	of
compressed	files.	FCEUX	can	load	data	from	both	PKZIP-format	files
and	gzip-format	files.	Only	the	"deflate"	algorithm	is	supported,	but	this	is
the	most	widely	used	algorithm	for	these	formats.

Playing	from	compressed	(.zip)	files

FCEUX	is	compatible	with	all	compression	types	compatible	with	7z.	
Compatible	types	include	.7z,	.zip,	.rar,	and	.tar.

If	an	archive	file	is	opened,	it	will	be	scanned	for	the	followings
extensions:	.nes,	.fds,	.nsf,	.unf,	.nez,	.unif.		If	more	than	one	valid	type	is
detected,	a	dialog	box	will	open	up	with	a	list	of	available	choices.

Automatic	IPS	Patching	(Playing	Hacked	Games)

FCEUX	supports	automatic	IPS	patching.	

Place	the	IPS	file	in	the	same	directory	as	the	file	to	load,	and	name	it
[filename].ips.

								Examples:								Boat.nes	-						Boat.nes.ips
																								Boat.zip	-							Boat.zip.ips
																								Boat.nes.gz	-		Boat.nes.gz.ips
																								Boat					-									Boat.ips

							

(Some	operating	systems	and	environments	will	hide	file	extensions.
Keep	this	in	mind	if	you	are	having	trouble.)

Patching	is	supported	for	all	supported	formats	(iNES,	FDS,	UNIF,	and
NSF),	but	it	will	probably	only	be	useful	for	the	iNES	and	FDS	formats.
UNIF	files	can't	be	patched	well	with	the	IPS	format	because	they	are
chunk-based	with	no	fixed	offsets.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Command	Line	Options

Command	Line	Options
FCEUX	offers	numerous	command	line	options.
All	commands	are	case	sensitive.

ROM	name
Plays	specified	ROM	(ROM	name	must	always	be	put	last	in	command
line	arguments)

fceux	path\rom.nes	(or	rom.zip)

							fceux	smb.nes
							fceux	c:\fceux\roms\smb.zip

Play	Movie	File
Plays	a	specified	movie	(.fm2)	file.		A	valid	ROM	must	be	specified	or
movie	will	not	be	played.

fcuex	-playmovie	path\movie.fm2	romname

							fceux	-playmovie	smb.fm2	smb.nes

Read-only	Status
Specifies	whether	a	movie	will	be	in	"read-only"	or	"read	&	write"	mode.	
(Note:	a	specified	movie	is	not	required	to	be	used	in	conjunction	with
this	command).	1	specifies	read	only	status,	0	specifies	read	&	write.

fceux	-readonly	flag

							fceux	-readonly	1
							fceux	-readonly	0	-playmovie	smb.fm2	smb.nes

							fceux	-readonly	1	-playmovie

c:\fceux\movies\smb.fm2	c:\fceux\roms\smb.nes

Stop	Movie	at	frame	x
Specifies	that	the	movie	will	automatically	stop	at	the	specified	frame.		(A
movie	must	be	specified	with	-playmovie	for	this	command	to	work)

fceux	-playmovie	path\movie.fm2	-stopframe	framenumber	romname

							fceux	-playmovie	smb.fm2	-stopframe	10000	smb.nes

Load	State
Specifies	FCEUX	to	automatically	load	a	specified	savestate	file.		(Must
have	a	specified	ROM	for	this	to	work).

fceux	-loadstate	path\savestatefile	romname

							fceux	-loadstate	smb0.fc0	smb.nes
							fceux	-playmovie	smb.fm2	-readonly	0	-loadstate

smb0.fc0	smb.nes

Pause	Movie	After	Playback
Sets	the	"Pause	Movie	After	Playback"	switch	on/off.		1	sets	it	to	enabled,
0	sets	it	to	disabled.

fceux	-stopmovie	flag

							fceux	-stopmovie	1
							fceux	-playmovie	smb.fm2	-readonly	0	-

stopmovie	1	smb0.nes

Frame	Display	Toggle

Toggles	whether	or	not	the	frame	count	will	be	displayed.		1	sets	it	to	on,
0	sets	it	to	off.

fceux	-framedisplay	flag

							fceux	-framedisplay	1
							fceux	-playmovie	smb2.fm2	-framedisplay	1

smb0.nes

Input	Display	Toggle
Toggles	whether	the	movie	input	will	be	displayed.		1	sets	it	to	on,	0	sets
it	to	off.

fceux	-inputdisplay	flag

							fceux	-inputdisplay	1

							fceux	-playmovie	smb2.fm2	-inputdisplay	1

smb0.nes

Allow	L+R/U+D
Sets	whether	or	not	the	game	will	allow	L+R/U+D	input	(see	Input
config).		1	enables	L+R,	0	disables	it.

fceux	-allowUDLR	flag

							fceux	-allowUDLR	1
							fceux	-allowUDLR	0	smb0.nes

Enable	Background	Input
Sets	the	"Enable	Background	Input"	switch	on/off.		1	sets	it	to	enabled,	0
sets	it	to	disabled.

fceux	-bginput	flag

							fceux	-bginput	0
							fceux	-playmovie	smb.fm2	-readonly	0	-bginput	1

smb0.nes

Use	Game	Genie
Sets	the	Game	Genie	Flag	(see	Toggle	Switches).		1	sets	it	to	enabled,	0
sets	it	to	disabled.

fceux	-gg	flag

							fceux	-gg	1

							fceux	-gg	1	smb0.nes

PAL	Emulation
Sets	the	PAL	Emulation	Toggle	(see	Toggle	Switches).		1	sets	it	to
enabled,	0	sets	it	to	disabled.
(note:	FCEUX	will	assign	PAL	emulation	automatically	if	a	PAL	ROM	is
loaded)

fceux	-pal	flag

							fceux	-pal	1

							fceux	-pal	1	smb0.nes

Movie	Status	Icon	Toggle
Sets	the	Status	Icon	Toggle	(see	Toggle	Switches).		1	turns	off	the	status
icon,	0	turns	it	on.

fceux	-noicon	flag

							fceux	-noicon	1

							fceux	-noicon	0	smb0.nes

Clip	Left	and	Right	Sides
Sets	the	Clip	Left	and	Right	Sides	Toggle	(see	Video	Config).		1	turns	on
clipping,	0	turns	it	off.

fceux	-clipsides	flag

							fceux	-clipsides	0	smb0.nes

Allow	More	than	8	Sprites	per	Scanline
Sets	the	8	Sprites	per	scanline	flag	(see	Video	Config).		1	turns	on	extra
sprites,	0	turns	it	off.

fceux	-no8lim	flag

							fceux	-no8lim	0	smb0.nes

Disable	Speed	Throttling
Sets	the	Disable	Speed	Throttling	When	Sound	is	Disabled	flag	(see
Timing	Config).		1	disables	throttling,	0	leaves	it	on.

fceux	-nothrottle	flag

							fceux	-nothrottle	0	smb0.nes

Turbo	Toggle
Sets	the	Turbo	Toggle.		1	Sets	Turbo	on,	0	leaves	it	off.

fceux		-turbo	flag

							fceux	-turbo	1	smb0.nes

Load	Config	File

Loads	a	specified	config	file	rather	than	the	default	fceux.cfg

Warning:		the	config	file	must	be	in	the	base	directory.		A	pathname	can
NOT	be	specified	in	the	filename

fceux	-cfg	filename

							fceux	-cfg	fceux-smbconfig.cfg	smb.nes

Load	Lua	Script
Loads	a	Lua	script	on	startup.

fceux	-lua	filename

							fceux	-lua	memwatch.lua

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Customizing	through	the	Config	File

Customizing	through	the	Config	File
There	are	some	options	that	can	only	be	done	by	directly	editing	the
config	(fceux.cfg)	file.		All	of	those	options	are	documented	here.

The	.cfg	file	is	a	text	file	and	can	be	opened	by	any	text	editor	(just	as
wordpad).

Emulator	background	Color	when	Graphics
Background	is	disabled

gNoBGFillColor

When	you	disable	the	backgrounds	(Config	>	Display	>	Graphics:	GB),
the	default	color	is	black.		You	can	change	that	color	by	modifying	this
value.		By	default	it	is	255	(black).

Hex	Editor

HexRowHeightBorder	0

This	value	determines	the	number	of	pixels	between	each	row	of	values
in	the	Hex	Editor.		By	default	it	is	0.

HexBackColorR	255
HexBackColorG	255
HexBackColorB	255

HexForeColorR	0
HexForeColorG	0
HexForeColorB	0

HexFreezeColorR	0

HexFreezeColorG	0
HexFreezeColorB	255

These	values	allows	are	the	Hex	Editor	color	scheme	values	(RGB).		The
background	color	is	255,255,255	(white)	by	default.		The	foreground	color
(text)	is	0,0,0	(black)	by	default.		When	an	address	is	frozen	it	is	0,0,255
(blue)	by	default.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Famicom	Disk	Sytem

Famicom	Disk	System
The	Family	Computer	Disk	System	(FDS)	was	released	in	1986	by
Nintendo	as	a	peripheral	for	the	Family	Computer	("Famicom")	console	in
Japan.	It	was	a	unit	that	used	proprietary	floppy	disks	for	data	storage.	It
was	announced,	but	never	released,	for	the	North	American	Nintendo
Entertainment	System.

The	device	was	connected	to	the	Famicom	deck	by	plugging	a	modified
cartridge	known	as	the	RAM	Adapter	into	the	system's	cartridge	port,
which	attached	via	a	supplied	cable	to	the	disk	drive.

The	floppy	disks	used	were	double-sided,	with	a	capacity	of	64	kilobytes
per	side.	Many	games	spanned	both	sides	of	a	disk,	requiring	the	user	to
switch	sides	at	some	point	during	gameplay.	A	few	games	used	two	full
disks	(four	sides).	The	Famicom	Disk	System	was	capable	of	running	on
six	C-cell	batteries	or	the	supplied	AC	adapter.	The	battery	option	was
included	due	to	the	likelihood	of	a	standard	set	of	AC	sockets	already
being	occupied	by	a	Famicom	and	a	television.

FDS	BIOS	ROM

In	order	to	play	any	Famicom	(.fds)	game,	you	will	need	the	FDS	BIOS
ROM	image	and	it	must	be	named	disksys.rom.
It	must	be	in	the	base	FCEU	directory	unless	you	specified	a	path	to
disksys.rom	in	the	Directory	Overrides	List.	FCEUX	will	not	load	FDS
games	without	this	file.

File	types

Two	types	of	FDS	disk	images	are	supported:	disk	images	with	the
FWNES-style	header,	and	disk	images	with	no	header.	The	number	of
sides	on	headerless	disk	images	is	calculated	by	the	total	file	size,	so
don't	put	extraneous	data	at	the	end	of	the	file.

Writing	to	disk	image

If	a	loaded	disk	image	is	written	to	during	emulation,	FCEUX	will	store	the
modified	disk	image	in	the	save	games	directory,	which	is	"sav"	under	the
base	directory	by	default	(unless	changed	under	the	Directory	Overrides
List).

Eject/Insert	Disk

Emulates	the	ejecting	of	the	current	disk	or	the	inserting	of	a	new	disk.		If
a	disk	image	is	loaded,	this	command	will	eject	it.		If	a	disk	is	ejected,	this
will	insert	a	new	disk.
This	command	can	be	mapped	to	a	keyboard/joypad	button	in	the	Map
Hotkeys	Menu.

Switch	Disk	Side

If/when	prompted	by	the	game,	you	can	emulate	the	Switching	sides	of
the	FDS	disk	with	the	NES	>	Switch	Disk	Side	command.
This	command	can	be	mapped	to	a	keyboard/joypad	button	in	the	Map
Hotkeys	Menu.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

AVI	Capturing

Video	&	Audio	Capturing
Introduction

FCEU	allows	for	outputting	Video/Audio	into	.avi	files	or	capturing	audio
only	into	.wav	files.		This	can	be	used	to	capture	one's	playing	or	for
dumping	movie	files	(.fm2)	to	.avi	files.

Capturing	a	Movie	File	(.fm2)	to	Video/Audio	(AVI)

-Pause	the	emulator	by	navigating	to	NES	>	Emulation	Speed	>	pause	or
pressing	the	pause	hotkey	(the	pause	key	by	default).	
-For	a	faster	capture	increase	emulation	speed	(you	can	capture	at	any
emulation	speed	and	FCEUX	will	still	output	a	60	(or	50)	fps	video	file).
-Select	"Replay	Movie"	from	the	File	>	Movie	Menu	and	select	the	movie
file
-If	you	intend	to	capture	beyond	the	final	frame	of	the	movie	file,	make
sure	"Pause	after	Playback"	(Config	Menu)	is	not	checked.
-Select	"Record	AVI"	in	the	File	>	AVI/Wav	menu.
-Select	a	file	location	and	the	video	codec	you	wish	to	use.
-Unpause	the	emulator.
-When	capturing	is	complete,	pause	the	emulator	and	select	"Sop	AVI"	in
the	File	Menu.

Capture	Audio	only

To	capture	audio	only,	navigate	to	File	>	AVI/Wav	>	Record	WAV.		Pick	a
filename	and	destination	for	FCEUX	to	begin	capturing	the	audio	to	a
.wav	file	(raw	.pcm).		To	stop	WAV	recording,	select	File	>	AVI/Wav	>
Stop	WAV.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Movie	Recording

Movie	Recording
Introduction

A	movie	file	is	a	file	which	contains	data	needed	to	reconstruct	actions	in
a	game.	In	most	emulators,	the	movie	files	consist	of	simply	the	buttons
that	were	pressed	during	the	game.	Because	the	emulation	is	completely
predictable	(deterministic),	it	will	always	play	back	the	same	way.

Unless	the	movie	starts	from	the	console	power-on	or	from	reset,	the
movie	file	might	also	contain	a	savestate	that	loads	the	beginning	point	of
the	game.		Movie	files	don’t	contain	any	sound	or	image	data.	Such	data
is	not	needed,	because	the	emulator	can	reconstruct	it	during	movie
playback.

Movie	files	in	FCEUX	are	.fm2	files.		The	file	format	is	unique	to	FCEUX
and	not	compatible	with	other	movie	recording	versions	of	FCE	Ultra.	
Movie	files	from	other	versions	(.fcm)	can	be	converted	to	.fm2	for
playback	with	the	.fcm	to	.fm2	converter.

Movie	features	in	FCEUX	are	designed	specifically	for	making	Tool-
assisted	Speedruns.		For	more	information	visit	TASVideos.

Recording	Movies

To	record	a	movie,	open	a	ROM.		Then	simply	select	"Record	Movie"	in
the	File	>	Movie	Menu.		You	will	be	prompted	to	name	the	file	and	to
select	where	to	record	from.		Selecting	"Start"	will	begin	the	recording
from	a	Power-on	(Hard	Reset).		If	you	select	"Now",	a	savestate	will	be
made	at	your	current	location	in	the	game,	and	the	movie	will	begin
recording	from	there.		If	you	select	browse,	you	will	be	prompted	to	find	a
preexisting	savestate	file	to	begin	recording	from.

http://tasvideos.org

Savestates,	Slowdown,	and	Frame	Advance

At	anytime	while	recording,	you	can	make	a	*savestate.		This	is	a
snapshot	of	the	game's	current	memory	contents.		Once	a	savestate	is
made,	it	can	be	loaded	with	the	*loadstate	command.		This	will	return	the
movie	back	to	the	spot	in	the	game	where	the	savestate	was	made.		This
can	be	used	to	undo	mistakes	or	to	test	different	strategies	for	a
particular	segment.

(The	default	key	for	making	a	savestate	is	"I"	and	the	default	key	for
loading	a	state	is	"P".		Both	of	these	can	be	assigned	under	the	Map
Hotkeys	Menu).		Both	can	also	be	access	through	the	File	>	Savestate
Menu

Tool	Assisted	movies	take	advantage	of	slowing	the	emulator	down	in
order	to	increase	precision	of	the	movie	making	process.		Navigating	to
NES	>	Emulation	Speed	>	Slow	down	or	pressing	the	"-"	key	will	slow
down	emulation.		NES	>	Emulation	Speed	>	Speed	up	or	the	"="	will
speed	it	up.		(These	can	be	re-mapped	in	the	Map	Hotkeys	Menu).

Even	greater	precision	can	be	made	using	the	frame	advance	key.	
Pressing	the	frame	advance	key	will	pause	emulation	and	advance	it	a
single	frame	(1/60th	of	a	second	NTSC).		By	holding	down	input	and
pressing	the	frame	advance	key,	it	will	record	that	input	for	that	particular
frame.

For	more	info	seeing	Tool	Assisted	Speedruns.

"Bullet	Proof	Rerecording"

All	savestates	made	during	movie	recording	contain	the	movie
information	up	to	the	frame	of	the	savestate.		When	a	savestate	is
loaded,	the	movie	file	in	the	savestate	is	also	loaded.		This	is	referred	to
as	"Bullet	Proof	Rerecording"	because	it	prevents	possible	desyncs	and
lost	data	from	improper/out	of	order	savestate	loading.

Playing	Back	Movies

To	play	back	a	recorded	movie,	open	the	ROM.		Then	select	"Replay
Movie"	in	the	File	Menu.		A	movie	dialog	box	will	open	where	you	can
select	the	movie	file.	

You	can	also	select	whether	the	movie	is	in	Read-only	mode.		If	a	movie
is	in	read-only	mode,	the	movie	file	can	not	be	altered	in	any	way.		If	you
make	a	savestate	while	playing	the	movie	and	load	that	state,	the
playback	will	simply	"rewind"	to	that	state.		If	the	movie	is	not	in	read-
only,	however,	loading	a	state	will	set	the	movie	to	record	mode	and
begin	recording	from	that	savestate.

You	can	also	select	"Pause	movie	at	frame"	x.		If	selected,	the	movie	will
automatically	pause	when	reaching	the	frame	selected	(the	default	is	the
last	frame	of	the	movie).

Read	only

You	can	select	read-only	when	playing	a	movie.		You	can	also	toggle	the
read-only	status	by	navigating	to	File	>	Movie	>	Read	only.
In	read-only	mode	a	movie	can	not	be	edited.		Loading	a	savestate	will
take	the	movie	to	that	point	in	the	movie	and	stay	in	playback	mode.

In	read-write	status,	loading	a	state	will	change	a	movie	from	playback
mode	to	record	mode.

Resuming	Recording

You	can	resume	recording	a	previous	movie	by	playing	back	the	movie,
setting	the	record	status	to	read+write,	and	then	loading	a	state.

Play	Movie	from	Beginning

At	any	point	while	recording	or	playing	back	a	movie,	you	can	navigate	to
File	>	Movie	>	Play	Movie	from	Beginning.		This	will	set	the	movie	to	read
only	status	and	reset	playback	to	frame	0.

Frame	Counter

The	Frame	counter	displays	what	frame	the	movie	is	currently	on.		If	the
movie	is	playing	in	read-only	mode,	it	will	also	display	the	total	number	of
frames	in	the	movie.		The	default	key	for	toggling	the	Frame	Counter
display	is	the	"."	(period)	key.		(This	can	be	re-mapped	in	the	Map
Hotkeys	Menu).

Frame	Advance

The	frame	advance	key	("backlash"	key	by	default.		Re-mappable	under
the	Map	Hotkeys	Menu)	will	advance	the	game	by	a	single	frame	and
then	pause	the	game.			If	the	hotkey	is	held	down,	it	will	auto	advance
quickly	through	the	game.

This	is	a	critical	tool	when	perfecting	input	in	movie	recording.

Metadata

When	you	record	a	new	movie	via	the	record	movie	dialog	there	is	an
author	field.		This	sends	the	info	to	the	.fm2	file	in	the	form	of	comment
Author	[author	name]	(see	.fm2).	

Any	line	in	the	.fm2	that	starts	with	"comment"	is	known	as	metadata.	
You	can	include	any	number	of	comments	manually	by	editing	the	.fm2
file	with	any	text	editor.	

On	the	replay	movie	dialog,	clicking	the	metadata	button	will	display	all

metadata	in	a	separate	dialog	box	(If	a	movie	is	currently	loaded	you	can
also	access	the	meta-data	by	right-clicking	and	selecting	Metadata	in	the
context	menu).

Subtitles

FCEUX	now	supports	subtitles	in	the	.fm2	file	format.		Subtitles	will	be
displayed	on	the	screen	automatically	as	a	movie	plays.		You	can	turn
on/off	subtitles	by	navigating	to	Config	>	Movie	Options	>	Display	movie
subtitles	(see	Movie	options).

For	adding	subtitles	to	a	movie	see	the	.fm2	documentation.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NES

NES
Explains	commands	in	the	NES	menu	of	FCEUX.
All	these	commands	can	be	mapped	to	a	keyboard/joypad	button	in	the
Map	Hotkeys	Menu.

Reset
Emulates	the	pressing	of	the	Reset	Button	on	the	NES.	("Soft	reset").

Power
Emulates	a	power	cycle,	which	is	turning	the	power	on	and	off	with	the
Power	button	on	the	NES.	("Hard	Reset")

Eject/Insert	Disk
Ejects	or	inserts	a	FDS	disk.		(See	Famicom	Disk	System)

Switch	Disk	Side
Switches	Sides	of	a	FDS	disk.	(See	Famicom	Disk	System)

Insert	Coin
Emulates	the	inserting	of	a	coin	in	an	arcade-style	game.

Emulation	Speed	Sub	Menu

Speed	Up
Speeds	up	emulation	(emulation	speed	ranges	from	1%	to	6400%)

Slow	Down
Slows	down	emulation

Slowest	Speed
Sets	emulation	to	1%	speed

Normal	Speed
Sets	emulation	speed	to	100%

Turbo
Toggles	turbo	mode.			In	turbo	mode,	emulation	is	set	its	fastest	settings.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Palette	Options

Palette	Options
FCEUX	comes	packaged	with	several	palette	files.		This	page	describes
details	for	each	one.

To	load	a	palette	file,	see	Palette	config.

FCEUX.pal

This	is	the	default	palette	that	FCEUX	uses.	It	is	the	same	palette	used	in
FCEU.12	or	earlier,	and	FCEUD/FCEUXD,FCEUXDSP.

FCEU-13-default_nitsuja.pal

This	is	the	palette	added	to	FCEU.13	rerecording	by	Nitsuja.

FCEU-15-nitsuja-new.pal

This	is	the	palette	added	to	FCEU.15	rerecording	by	Nitsuja.		It	is	a	slight
adjustment	to	the	FCEU.13	palette.
This	one	most	closely	resembles	the	default	palette	of	Nestopia.

ASQ_realityA.pal	&	ASQ_realityB.pal

BMF	palettes	had	some	flaws.		AspiringSquire	tweaked	BMF's	palettes
and	came	up	with	this.		They	fix	issues	mostly	related	to	brightness.

BMF_final2.pal	&	BMF_final3.pal

These	palettes	were	designed	by	BMF.		He	customized	these	by	looking
at	snapshots	of	his	television	screen	and	attempting	to	replicate	them	as
close	as	possible.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Config

The	Config	Menu
These	chapters	explain	options	under	FCEUX's	Config	menu.

Menu	Items	&	Sub-menus

Explains	the	basic	menu	items	and	sub-menu	items	in	the	top	of	the
menu.

GUI

Settings	related	to	the	FCEU	emulator	window.

Directories

Sets	Directory	override	assignments.

Input

Assigns	keys/joypad	buttons	to	emulated	controllers.

Network	Play

Various	settings	related	to	playing	over	the	internet.

Palette

Palette	options.

Sound

Sets	sound	configuration	options.

Timing

Settings	related	to	emulation	timing.

Video

Sets	video	&	graphics	configuration	options.

Movie	Options

Sets	options	related	to	playing/recording	movie	files

Map	Hotkeys

Sets	Hotkey	assignments.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Toggle	Switches	(Hide	Menu,	etc)

Config	Toggle	Switches
Explains	the	various	toggle	switch	commands	in	the	top	two	groups	of
commands	under	the	Config	Menu.

Hide	Menu

Hides	the	Menu	commands	on	the	FCEUX	main	window.		Pres	ESC	to
unhide	the	menu.

Game	Genie

Allows	the	use	of	the	game	genie	ROM.		You	must	have	a	game	genie
ROM	named	gg.rom	(it	is	save	to	rename	a	game	genie.nes	file	to
gg.rom)	and	it	must	be	in	the	FCEUX	base	directory	(which	is	the	folder
fceux.exe	is	in	unless	you	specified	a	different	folder	in	the	Directory
Override	Menu).

If	enabled,	FCEUX	will	open	gg.rom	first	when	you	load	a	new	game.	
Any	codes	applied	in	the	game	genie	screen	will	be	applied	to	the	game
just	like	on	a	real	NES.	

(Remember	that	enabling/disabling	Game	Genie	emulation	will	not	take
effect	until	a	new	game	is	loaded)

Note:		Game	genie	codes	can	also	be	added	with	the	Game	Genie
Encoder/Decoder	via	the	Cheat	Search	Menu	(and	does	not	require	a
game	genie	ROM).

PAL	Emulation

Toggles	between	NTSC	(60fps)	and	PAL	(50fps)	frame	rates.		By	default,

FCEUX	will	detect	the	proper	choice	when	loading	a	ROM	and	set	the
flag	accordingly.	

PPU	(Sub-menu)

New	PPU	/	Old	PPU
As	of	FCEUX	2.1.2,	FCEUX	has	a	new	PPU	core.		The	new	PPU	has
improved	accuracy	and	greater	game	compatibility	than	the	previous
PPU.		However,	some	games	may	not	work	properly	and	there	will	be
slight	timing	differences	that	would	hurt	movie	compatibility.		Therefore,
FCEUX	will	still	support	the	old	PPU.		Currently,	Old	PPU	is	the	default
setting.

Enable	(Sub-menu)

Run	in	Background

If	enabled,	FCEUX	will	continue	to	emulate	when	the	window	is	not	in
focus.		If	disabled,	the	emulator	will	pause	when	out	of	focus.

Background	Input

If	enabled,	FCEUX	can	continue	to	receive	input	while	not	in	focus.	
(Useful	for	playing	2	FCEUX's	simultaneously)

Auto-savestates

Enables	the	Auto-save	feature.		If	enabled,	FCEUX	will	make	periodic
savestates	as	you	play	(or	play/record	a	movie).		You	can	right-click	and
select	the	"load	last	auto-save"	in	the	context	menu	or	press	the	Auto-
save	hotkey	to	back	up	to	the	last	auto-save	savestate.

Frame	Adv.	-	Skip	Lag

This	feature,	if	enabled,	will	cause	the	frame	advance	key	(see	movie
recording)	to	skip	over	lag	frames.		It	does	this	by	reading	the	lag	counter
(see	display)	and	skipping	past	any	frames	where	the	input	is	not	polled.	

For	instance,	in	a	30fps	game	(such	as	double	dragon),	frame	advance
will	advance	2	frames	instead	of	1.

Backup	Savestates

Enabled	by	default.		This	option	allows	for	savestate	&	loadstate	Undo	(&
redo).	(see	context	menu)

Compression	Savestates

Enabled	by	default.		This	option	compresses	non	movie	savestates.

Display	(Sub-Menu)

Input	Display

The	input	display	will	display	1-4	pictures	of	a	NES	controller	at	the
bottom	of	the	screen.		When	playing/recording	a	movie,	these	controllers
will	display	the	input	that	is	captured	in	the	file.	

When	input	comes	from	a	movie	file	rather	than	then	user,	it	is	displayed
in	a	different	color	(silver)

The	input	display	can	also	be	toggled	by	hotkey/		The	default	key	for
toggling	the	Input	display	is	the	","	(comma)	key.		(This	can	be	re-mapped

in	the	Map	Hotkeys	Menu).

Lag	Counter

The	lag	counter	will	increment	every	time	to	the	game	fails	to	poll	for	user
input.		It	will	display	in	red	on	any	frame	that	is	currently	lagging	and	will
increment	the	lag	counter	by	1.		These	situations	occur	when	the	game	is
lagging	(too	much	information	to	process),	or	the	game	is	in	a	screen
transition	state	(so	not	polling	for	user	input).		In		a	30fps	game	(such	as
Double	Dragon	2),	it	will	increment	every	other	frame.

The	lag	counter	value	is	stored	in	savestates.			

Displaying	the	lag	counter	can	be	done	by	hotkey	as	well.		It	must	be
mapped	to	a	hotkey	in	the	Map	Hokeys	Menu.
It	can	be	reset	to	0	by	mapping	the	reset	lag	counter	hokey	in	the	Map
Hotkeys	Menu.

Frame	Counter

Toggles	the	display	of	the	frame	counter.		The	frame	counter	will
increment	once	per	frame.

Display	BG
Turning	this	off	will	turn	off	the	backgrounds	in	the	game.

Display	OBJ
Turning	this	off	will	turn	off	the	objects	in	the	game.

Note:	You	can	set	the	default	color	when	the	Backgrounds	are	turned	off.	
To	do	so,	open	fceux.cfg	and	change	the	value	of	the	entry	named:
gNoBGFillColor

Save	Config	File

Saves	current	settings	to	fceux.cfg.		Normally

settings	are	not	saved	until	FCEUX	is	closed.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Directories

Directory	Overrides
This	menu	sets	a	default	directory	override	for	various	files	relating	to
FCEU.

Base	Directory
sets	the	default	directory	FCEU	will	use.		It	will	be	the	folder	that	FCEU
creates	all	the	sub	folders	(unless	they	are	also	overridden).

ROMS
where	FCEU	will	look	for	ROMS	by	default.		(What	folder	will	appear
when	selecting	the	Files	>	Open...)

Battery	Saves
where	.sav	files	will	stored	and	opened	from.		These	files	contain	the
battery	backed	SRAM	used	in	some	games	(such	as	Dragon	Warrior).

Save	States
where	.fcs	(savestate)	files	will	be	stored.

FDS	BIOS	ROM
where	FCEU	can	find	disksys.rom.		disksys.rom	is	a	required	file	in	order
to	load	FDS	(Famicom	Disk	System)	games.		If	not	specified,	FCEUX	will
default	to	the	base	directory.

Screenshots
where	screen	captures	(.png)	files	will	be	saved.

Save	Screenshots	as	"<filebase>-<x>.png"
sets	how	the	.png	files	will	be	named.		Left	unchecked,	the	file	names	will
simply	be	0.png,	1.png	etc.		Checked	adds	the	ROM	name	into	the	file	as
well	(such	as	Double	Dragon	2	(U)-0.png)

Cheats
where	.cht	files	will	be	stored.		.cht	files	store	the	active	cheats	set	up	in
Cheat	Search.

Movies
where		.fm2	files	will	be	saved/loaded.		These	files	are	the	input	files
used	in	movie	recording.

Memory	Watch
where	memory	watch	files	are	saved/loaded.		These	are	used	by	memory
watch.

Input	Presets
where	input	presets	will	be	saved/loaded.		These	are	used	in	the	presets
section	on	the	input	config	window.

Lua	Scripts
where	Lua	scripts	will	be	saved/loaded.		These	are	used	when	using	the
Lua	Scripting	tool.

AVI	Output

overrides	which	directory	FCEUX	will	default	to	when	saving	a	.avi	file.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

GUI

GUI
Various	toggle	boxes	related	to	the	FCEUX	main	window.

Load	"File	Open"	dialog	when	FCEUX	starts.

If	enabled,	FCEUX	will	ask	for	a	ROM	to	open	upon	FCEUX	start	up.

Automatically	hide	menu	on	game	load.

If	enabled,	The	FCEU	Menu	will	be	hidden	while	a	ROM	is	loaded.		To
unhide	it,	press	the	ESC	key.

Ask	confirmation	on	exit	attempt.

If	enabled,	FCEUX	will	ask	you	before	closing	the	window.		(It	may	also
say	some	other	things...)

Disable	screen	saver	while	game	is	loaded.

This	is	enabled	by	default.		If	a	game	is	running,	the	windows	screen
saver	will	not	turn	on.

Enable	right-click	context	menu.

This	is	enabled	by	default.		This	allows	you	to	right-click	on	the	emulator
to	get	context	menus.		The	context	menu	gives	many	common	options	for
a	given	situation	and	has	a	few	options	not	available	otherwise.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Input

Input	Configuration
Setting	up	controllers

On	the	pull	down	menus,	you	can	select	the	device	you	want	to	be
emulated	on	input	ports	1	and	2	(game	pad,	zapper,	pad,	paddle).	If	you
check	the	box	labeled	"Attach	four-score(implies	four	gamepads)",	you
won't	be	able	to	select	any	of	these	options,	because	the	four-score
allowed	someone	to	use	2	extra	controllers.
The	device	currently	being	emulated	on	each	port	is	listed	above	the	drop
down	list;	loading	certain	games	will	override	your	settings,	but	only
temporarily.

To	bind	these	controls	to	specific	keys/joystick	controls	use	the	
"configure"	the	device	listed	above	each	drop-down	list.

Zapper	/	Arkanoid	Paddle

Most	Zapper	NES	games	expect	the	Zapper	to	be	plugged	into	port	2.
and	most	VS	Unisystem	games	expect	the	Zapper	to	be	plugged	into	port
1.

The	left	mouse	button	is	the	emulated	trigger	button	for	the	Zapper.	The
right	mouse	button	is	also	emulated	as	the	trigger,	but	as	long	as	you
have	the	right	mouse	button	held	down,	no	color	detection	will	take	place,
which	is	effectively	like	pulling	the	trigger	while	the	Zapper	is	pointed
away	from	the	television	screen.	Note	that	you	must	hold	the	right	button
down	for	a	short	time	to	have	the	desired	effect.

The	Arkanoid	Paddle	emulates	the	same	way	the	zapper.

Power	Pad	A	/	B

Emulates	the	NES	Power	pad.		The	12	pad	buttons	can	be	routed	via	the
configure	button.		FCEUX	allows	up	to	2	Power	Pads	to	be	emulated	at
once	(Power	Pad	A	and	B).

Famicom	Controllers

You	can	also	select	the	input	device	to	be	emulated	on	the	Famicom
Expansion	port.		If	you	select	a	device	for	the	Famicom	Expansion	Port,
you	should	probably	have	emulated	game	pads	on	the	emulated	NES-
style	input	ports.

In	addition	to	the	traditional	famicom	controller,	FCEUX	can	emulate	the
Famicom	version	of	the	Arkanoid	controller,	the	"Space	Shadow"	gun,	the
Famicom	4-player	adapter,	the	Family	Keyboard,	the	HyperShot
controller,	the	Mahjong	controller,	the	Oeka	Kids	tablet,	the	Quiz	King
buzzers,	the	Family	Trainer,	and	the	Barcode	World	barcode	reader.

Replace	Port	2	Start	With	Microphone

Checking	this	box	will	replace	the	Start	button	used	by	controller	2	with
the	microphone	option	found	on	the	famicom.	Pressing	the	Microphone
button	is	like	blowing	or	yelling	into	it	on	the	console	equipment.	The	Port
2	controller	used	for	the	Famicom	included	a	microphone	and	a	volume
control	in	place	of	the	Start	and	Select	buttons.	This	option	isn't
automatically	detected,	so	it	has	to	be	manually	enabled	by	the	user.
Movie	files	may	also	enable	and	use	this	feature.	Both	Famicom
Cartridges	and	Famicom	Disks	have	made	use	of	this	feature,	such	as
both	the	cartridge	and	disk	version	of	Zelda	1,	Hikari	Shinwa,	and
Takeshi	no	Chosenjo.	Games	other	than	those	listed	here	use	this
feature.

Input	Presets

This	feature	allow	you	to	set	the	current	input	configuration	to	one	of
three	presets.		This	gives	you	the	option	to	quickly	change	from	one	input
configuration	to	another	(such	as	toggling	between	1	or	2	controllers

and/or	toggling	from	controller	2	being	bound	to	controller	1	or	having	its
own	controls).

To	assign	the	current	input	configuration	to	a	preset	press	the	down
arrow	next	to	one	of	the	presets.		To	assign	the	preset	as	the	current
input	configuration	press	the	up	arrow	or	use	the	hotkey	assigned	to	that
specific	preset.		Preset	hotkeys	can	be	assigned	in	the	Map	Hotkeys
menu.

Disable	left+right/up+down

By	default	FCEUX	allows	you	to	press	both	the	left	and	right	controls	at
the	same	time	(or	up	and	down).		To	disable	this	feature	uncheck	the
checkbox	on	the	left.

Auto-Hold

Clicking	the	auto	hold	button	will	allow	you	to	assign	a	hotkey	to	the	auto-
hold	feature.	
Clicking	the	clear	button	will	allow	you	to	assign	a	hotkey	to	the	clear
auto-holds	feature.

To	use	this	feature,	close	the	input	config	window	and	return	to	the
FCEUX	main	window.		Hold	down	the	auto-hold	hotkey	and	press	one	of
your	controller	inputs.		This	will	add	it	as	one	of	the	auto-hold
assignments.		The	game	will	keep	auto-hold	assigned	buttons	held	be
default.		Pressing	one	of	these	keys	will	release	the	button	for	the
duration	that	it	is	held.

To	turn	off	all	auto-hold	assignments	press	the	clear	auto-holds	hotkey.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Network	Play

Network	Play
Allows	you	to	play	against	a	human	opponent	over	the	internet.		Requires
the	use	of	FCEU	server.

Currently	however,	FCEU	Server	runs	very	poorly	and	is	hardly	useable.	
This	issue	will	be	resolved	in	a	future	release.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Palette

Palette
Settings	related	to	the	emulator's	color	palette	choices.

See

NES	Palette

Load	Palette
Allows	you	to	load	a	custom	color	palette	(.pal)	file	to	use	for	the	current
game	loaded.

A	note	on	on	the	format	of	external	palettes;	Palette	files	are	expected	to
contain	64	8-bit	RGB	triplets(each	in	that	order;	red	comes	first	in	the
triplet	in	the	file,	then	green,	then	blue).	Each	8-bit	value	represents
brightness	for	that	particular	color.	0	is	minimum,	255	is	maximum.

Palettes	can	be	set	on	a	per-game	basis.	To	do	this,	put	a	palette	file	in
the	same	directory	the	game	is	in,	and	add	the	extension	"pal".
Examples:

							
																File	name:														Palette	file	name:
																	BigBad.nes													BigBad.pal
																	BigBad.zip														BigBad.pal
																	BigBad.Better.nes			BigBad.Better.pal

With	so	many	ways	to	choose	a	palette,	figuring	out	which	one	will	be
active	may	be	difficult.	Here's	a	list	of	what	palettes	will	be	used,	in	order
from	highest	priority	to	least	priority(if	a	condition	doesn't	exist	for	a
higher	priority	palette,	the	emulator	will	continue	down	its	list	of	palettes).

				*	NSF	Palette(for	NSFs	only)

				*	Palette	loaded	from	the	"gameinfo"	directory.
				*	NTSC	Color	Emulation(only	for	NTSC	NES	games).
				*	VS	Unisystem	palette(if	the	game	is	a	VS	Unisystem	game	and	a
palette	is	available).
				*	Custom	global	palette.
				*	Default	NES	palette.

Restore	to	Default	Palette
Restores	the	color	palette	to	its	default	settings.

NTSC	Color	Emulation

If	enabled,	FCEUX	will	simulate	actual	NTSC	signal	processing.		The
result	should	be	the	actual	colors	you	would	see	if	outputting	to	an	actual
NTSC	television.

The	Tint	and	Hue	knobs	can	be	used	to	make	adjustments	to	the
resulting	color	change.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Sound

Sound	Configuration
where	you	can	configure	sound

Input/Output	format

The	sound	enabled/disabled	checkbox	will	turn	on/off	FCEUX's	sound.	

The	force	8-bit	sound	checkbox	will	override	the	current	sound
configuration	and	use	8-bit	sound	instead.

You	can	select	the	sound	quality	in	the	sound	quality	pull	down	menu.

Rate	sets	the	audio	sample	rate.

Mute	frame	advance

If	checked,	no	sound	will	be	produce	when	frame	advance	is	pressed.

Mute	Turbo

If	checked,	the	sound	processing	will	be	bypassed	when	emulation	is	in
turbo	mode

Buffering

On	older	machines,	increased	buffering	may	be	necessary.		If	the	sound
is	glitchy	or	crackling,	increasing	the	buffing	time	may	resolve	the	issue.	
Lower	buffering	settings	can	reduce	sound	latency.

Volume	Control

Sets	the	sound	volume	of	the	master	sound	or	individual	sound	channels.

Master

Sets	the	Master	volume	level.		You	can	also	set	volume	levels	using	the
sound	volume	up,	volume	down,	mute,	and	volume	normal	hotkeys	under
map	hotkeys	menu.

Triangle/Square	1/Square	2/Noise/PCM

Sets	the	volume	to	each	individual	sound	channel.

Note:	When	using	low	quality	sound,	the	amount	of	channel	control	is
greatly	limited.		Some	sound	channels	are	disabled.

Restore	Defaults

Restores	the	master	and	individual	sound	channel	volumes	to	their
default	location.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Timing

Timings
Settings	related	to	emulation	timing.

Disable	Speed	Throttling	Used	When	Sound	is
Disabled

If	checked,	speed	throttling	will	not	be	used	while	sound	is	disabled.	
(Speed	throttling	gives	a	performance	boost	while	sound	is	off).

Set	High	Priority	Thread

Sets	processing	priority.		Enabling	can	help	slower	computers	keep	a
steady	60fps	(or	50fps)	framerate.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Video

Video	Configuration
This	window	sets	various	graphics	emulation	options.

Full	Screen	Settings

Full	Screen
If	checked,	FCEUX	will	enter	full	screen	mode	when	it	is	loaded.

Enter	Full	Screen	Mode	after	file	is	loaded
If	checked,	FCEUX	will	only	enter	full	screen	mode	when	a	game	is
loaded.

Video	Mode:
Sets	the	image	size	while	in	full	mode.		If	custom	is	selected,	FCEUX	will
use	the	settings	under	"Custom	Video	Mode".

Sync	Method:
If	the	emulator	is	running	poorly,	trying	out	these	sync	options	can	help
make	it	run	smoother.

Disable	Hardware	Acceleration
If	full	screen	is	causing	problems,	checking	this	might	fix	it.

Custom	Video	Mode

Mode:
Sets	the	image	size	during	full	screen	mode,	if	custom	is	selected	under
Full	Screen	Settings.

Image	Size	Transform

Special	Scaler
Within	this	box	is	four	options:	Hq2x,	Scale2x,	Hq3x,	and	Scale3x.
-	Scale2x/3x	just	attempts	to	render	out	the	corners	of	the	pixels	to	make
them	look	a	bit	rounder.	"2x"	means	two	times	bigger	than	1x1	and	"3x"
means	three	times	bigger	than	1x1.
-	Hq2x/3x	does	a	much	better	job	than	scale2x/3x	by	smearing	the	pixels
together	with	a	slight	blur.	However,	Hq2x/3x	requires	a	faster	computer
for	decent	speed	(at	least	1	GHz	and	above).	"2x"	means	two	times
bigger	than	1x1	and	"3x"	means	three	times	bigger	than	1x1.

Scale	Dimensions	by:
Takes	the	image	size	and	multiplies	the	x	and	y	by	a	specific	amount.

Stretch	to	Fill	Screen
Stretches	the	image	to	fill	the	screen	during	full	screen	mode.	(may	not
be	the	best	choice	depending	on	your	screen	size).

Windowed	Settings

Size	Multiplier
Takes	the	image	size	and	multiples	the	x	and	y	by	a	specific	amount.	
You	can	also	set	these	by	clicking	and	dragging	the	FCEUX	window.

Force	Integral	Scaling	Factors
If	checked,		FCEUX	can	only	be	stretched	by	even	amounts	(1x,	2x,	3x,
etc.).		If	unchecked,	it	can	be	stretched	by	any	amount.

Force	Aspect	Ratio	Correction
If	Integral	Scaling	Factors	is	unchecked,	checking	this	will	only	allow	the
correct	aspect	ratio	while	stretching	the	window.

Current	Pixel	Aspect	Ratio
Displays	the	current	Aspect	Ratio

Sync	Method

If	the	emulator	is	running	poorly,	trying	out	these	sync	options	can	help
make	it	run	smoother.

Disable	Hardware	Acceleration
This	is	checked	by	default.		Slower	computers	my	experience	slow
emulation	and	should	uncheck	this	option.		The	video	will	be	blurred
somewhat	with	this	option	checked.

Drawing	Area

First	Line
Sets	the	first	scan	line	for	NTSC	and	PAL	Modes.		This	should	be	left	on
the	default	of	8.

Last	Line
Sets	the	last	scan	line	for	NTSC	and	PAL	Modes.		This	should	be	left	on
the	default	of	231.

Clip	Left	and	Right	Sides	(8	columns	each)
If	enabled,	8	pixels	from	each	side	of	the	windows	will	be	removed.		Who
knows	why	you	would	want	to!

Emulation

Allow	More	than	8	sprites	per	scanline.
On	real	NES	hardware,	more	than	8	sprites	on	the	screen	causes
flickering.		Enabling	this	can	cause	less	flickering	by	allowing	more
sprites	to	be	visible	at	once.		If	you	prefer	to	say	"true"	to	NES	hardware,
this	should	not	be	checked.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Movie	Options

Movie	Options
The	movie	option	dialog	has	various	settings	related	to	movie	making.

Pause	After	Movie	Playback

If	checked,	FCEUX	will	automatically	pause	emulation	when	reaching	the
last	frame	of	a	movie	file.		If	disabled,	the	movie	will	end,	and	emulation
will	continue	without	a	movie	loaded.

Show	Movie	Status	Icon

The	status	Icon	shows	the	"play"	"record"	and	"pause"	icons	in	the	lower
right	corner.		The	Show	Status	Icon	checkbox	toggles	these	on/off.

Bind	savestates	to	movies

Affects	the	savestate	naming	system	when	a	movie	is	loaded.		If
checked,	the	movie	name	will	be	appended	to	a	savestate	filename.

Display	movie	subtitles

Toggles	whether	or	not	movie	subtitles	(imbedded	into	the	.fm2	file,	see
.fm2	documentation)	will	be	displayed	on	screen.

Put	movie	subtitles	in	AVI

Toggles	whether	or	not	movie	subtitles	will	be	recorded	into	a	.avi	file.

Automatically	backup	movies

If	checked,	the	auto-movie	backup	is	toggled	on.		Whenever	a	movie	is
loaded	then	set	into	record	mode	(by	loading	a	savestate	while	in	read-
write	mode),	a	backup	copy	of	the	.fm2	is	saved	before	changing	the	file.	

Movie	backups	will	be	created	only	once	each	time	a	movie	is	loaded	into
FCEUX.		Movie	backups	are	appended	with	a	backup	number	and	the
.bak	file	extension.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Map	Hotkeys

Map	Hotkeys
The	map	hotkeys	dialog	allows	you	to	assign	hotkeys	to	various	FCEUX
commands.

To	assign	or	remove	a	hotkey	assignment,	double	click	on	the	name	of
the	hotkey	in	the	list	box.		Then	press	the	key	combination	you	wish	to
assign	it.		To	clear	the	assignment,	press	the	clear	button.

The	filter	pull	down	menu	allows	you	to	only	see	hotkey	listings	in	various
categories	(the	list	shows	all	hotkey	assignments	by	default).

The	Restore	defaults	button	will	change	all	hotkeys	to	their	default
values.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Context	Menu	Items

Context	Menu
FCEUX	includes	a	context	menu	that	allows	commonly	used	menu
functions	for	various	situations.		There	are	some	functions	that	appear
only	here.

This	page	describes	all	the	possible	menu	items	in	each	possible	context
situation.

No	game	loaded.

Appears	when	no	game	is	loaded.

Open	ROM
Same	as	the	File	>	Open	ROM	option

Last	ROM	used
Opens	the	most	recently	used	file	from	the	Recent	Files	Menu

Help
Brings	up	the	Getting	Started	chapter	in	the	help	document.

Game	Loaded

Appears	when	a	game	is	loaded,	but	not	a	movie	(.fm2).

Play	Movie...
Same	as	the	File	>	Movie	>	Play	Movie	menu	item.

Record	Movie...
Same	as	the	File	>	Movie	>	Record	Movie	menu	item.

Undo	savestate
If	this	option	is	enabled	it	means	the	last	savestate	saved	over-wrote	a
previous	savestate	file.		This	option	restores	the	previous	savestate	file.

Redo	savestate
If	this	option	is	in	the	menu,	it	means	that	Undo	savestate	was	recently
used	to	restore	a	previous	savestate.		This	reverts	that	change.

Rewind	to	last	auto-save
Auto-save	must	be	enabled	for	this	menu	item	to	be	accessible.		Same
as	the	Load	last	auto-save	Hotkey	Item.		It	loads	the	last	auto-savestate.	
Auto-savestates	are	created	once	about	every	4	seconds,	so	this
typically	has	the	effect	of	rewinding	emulation.

Screenshot
Same	as	File	>	Screenshot.

Close	ROM
Same	as	File	>	Close

Movie	loaded	-	Read-only

Appears	when	a	movie	is	loaded	and	Read-only	mode	is	set.

Toggle	to	read+write
Sets	Read	status	to	Read+Write.

Play	Movie	from	Beginning
Same	as	File	>	Movie	>	Play	from	Beginning.		Turns	Read	status	to
Read-Only	and	plays	the	movie	from	frame	1.

Stop	Movie	Replay
Same	as	File	>	Movie	>	Stop	Movie.

View	comments	and	subtitles
Opens	up	the	Metadata	dialog.		Same	as	the	Metadata	button	on	the
Play	movie	dialog.

Undo	savestate
If	this	option	is	enabled	it	means	the	last	savestate	saved	over-wrote	a
previous	savestate	file.		This	option	restores	the	previous	savestate	file.

Redo	savestate
If	this	option	is	in	the	menu,	it	means	that	Undo	savestate	was	recently
used	to	restore	a	previous	savestate.		This	reverts	that	change.

Rewind	to	last	auto-save
Auto-save	must	be	enabled	for	this	menu	item	to	be	accessible.		Same
as	the	Load	last	auto-save	Hotkey	Item.		It	loads	the	last	auto-savestate.	
Auto-savestates	are	created	once	about	every	4	seconds,	so	this
typically	has	the	effect	of	rewinding	emulation.

Help
Opens	the	Movie	recording	chapter	of	the	help	document.

Movie	loaded	-	Read	+	Write

Toggle	to	Read-only
Sets	Read	status	to	Read-Only.

Play	Movie	From	Beginning
Same	as	File	>	Movie	>	Play	from	Beginning.		Turns	Read	status	to
Read-Only	and	plays	the	movie	from	frame	1.

Stop	Movie	Recording
Same	as	File	>	Movie	>	Stop	Movie.

View	comments	and	subtitles
Opens	up	the	Metadata	dialog.		Same	as	the	Metadata	button	on	the

Play	movie	dialog.

Make	backup
Generates	a	backup	.fm2.		Uses	the	same	file	naming	system	as	the
auto-movie	backup.		(See	movie	options	for	details).

Undo	savestate
If	this	option	is	enabled	it	means	the	last	savestate	saved	over-wrote	a
previous	savestate	file.		This	option	restores	the	previous	savestate	file.

Redo	savestate
If	this	option	is	in	the	menu,	it	means	that	Undo	savestate	was	recently
used	to	restore	a	previous	savestate.		This	reverts	that	change.

Undo	loadstate
If	this	option	is	enabled	it	was	because	the	Loadstate	function	was	called
sometime	while	the	game	was	loaded.		This	function	restores	the	game
state	to	where	it	was	before	loadstate	was	called.

Redo	loadstate
If	Undo	loadstate	was	called,	this	option	is	available.		It	reverts	the
change	and	restores	the	game	back	to	the	point	it	was	when	loadstate
was	called.

Help
Opens	the	Movie	recording	chapter	of	the	help	document.

Additional	items	may	also	appear	related	to	these	situations:

Lua

Load	last	Lua
If	there	is	at	least	1	filename	in	the	Recent	Lua	Files	menu	this	calls	the
most	recently	used	Lua	script	file.		Has	the	same	effect	as	the	File	>	Lua
>	Reload	Lua	Script	menu	item.

Stop	Lua
If	a	Lua	script	is	currently	loaded	this	option	is	available.		Same	as	File	>
Lua	>	Stop	Lua	Script.

Hide	Menu

Unhide	menu
If	the	main	FCEUX	menu	is	hidden	this	option	is	available.	Restores	the
main	menu.

Subtitles

If	a	movie	is	loaded	and	has	subtitles,
a	toggle	subtitles	option	will	be	in	the	menu
a	Dump	to	SRT	file	option	will	be	available.		This	dumps	the	subtitles	to	a
standard	subtitle	file	compatible	with	A/V	containers	such	as	.mkv

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Tools

Tools
Guides	for	the	specific	tools	and	settings	under	FCEUX's	Tools	menu.

Cheat	Search

A	guide	to	using	the	cheat	search	tool.

Memory	Watch

A	guide	to	using	the	Memory	Watch	tool.

RAM	Filter

A	guide	to	using	the	RAM	filter	tool.

TAS	Edit

A	new	tool	designed	for	making	TAS	movies.

Convert	fcm

A	tool	that	will	convert	.fcm	movie	files	to	the	.fm2	file	format.

Auto	Fire	settings

A	guide	for	setting	auto-fire,	auto-fire	offset,	and	alternate	A	and	B
options.

Use	External	Input

Explanation	of	Use	External	Input

Text	Hooker

A	guide	for	using	the	text	hooking	tool.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Cheat	Search

FCE	Ultra	Cheat	Guide
Introduction
FCE	Ultra	allows	cheating	by	the	periodic	"patching"	of	arbitrary
addresses	in	the	6502's	memory	space	with	arbitrary	values,	as	well	as
read	substitution.	"Read	substitution"	is	the	method	that	would	be	used
on	a	real	NES/Famicom,	such	as	done	by	the	Game	Genie	and	Pro
Action	Replay.	It	is	required	to	support	GG	and	PAR	codes,	but	since	it	is
relatively	slow	when	done	in	emulation,	it	is	not	the	preferred	method
when	a	RAM	patch	will	suffice.	Also,	in	FCE	Ultra,	read	substitution	will
not	work	properly	with	zero-page	addressing	modes(instructions	that
operate	on	RAM	at	$0000	through	$00FF).

The	RAM	patches	are	all	applied	a	short	time	before	the	emulated
vertical	blanking	period.	This	detail	shouldn't	concern	most	people,
though.	However,	this	does	mean	that	cheating	with	games	that	use
bank-switched	RAM	may	be	problematic.	Fortunately,	such	games	are
not	very	common	(in	relation	to	the	total	number	of	NES	and	Famicom
games).

The	cheat	search	comes	with	its	own	set	of	tools	for	finding	addresses	in
memory	to	use	for	making	cheats	(or	for	monitoring	the	addresses	in	the
memory	watch	window)

Cheat	Files
By	default	cheat	files	(.cht)	are	stored	in	the	"cheats"	subdirectory	under
the	base	FCEUX.	The	files	are	in	a	simple	plain-text	format.	Each	line
represents	a	one-byte	memory	patch.	The	format	is	as	follows(text	in
brackets	[]	represents	optional	parameters):

				[S][C][:]Address(hex):Value(hex):[Compare	value:]Description

Example:

				040e:05:Infinite	super	power.

A	colon(:)	near	the	beginning	of	the	line	is	used	to	disable	the	cheat.	"S"
denotes	a	cheat	that	is	a	read-substitute-style	cheat(such	as	with	Game
Genie	cheats),	and	a	"C"	denotes	that	the	cheat	has	a	compare	value.

Note:		When	a	game	is	loaded,	FCEUX	will	load	any	accompanying
saved	.cht	file	automatically.

The	default	.cht	file	folder	can	be	changed	with	the	Directory	Override
menu.

The	Cheat	Search	Menu
The	cheat	search	interface	consists	of	several	components:	a	list	of
addresses	and	associated	data	for	a	search,	several	command	buttons,
and	the	search	parameters.

All	addresses	listed	in	the	cheat	search	windows	are	in	unsigned	16-bit
hexadecimal	format	and	all	values	in	these	windows	are	in	an	unsigned
8-bit	decimal	format(the	range	for	values	is	0	through	255).

Active	Cheats

The	Active	cheats	window	on	the	left	contains	the	list	of	cheats	for	the
currently	loaded	game.	Existing	cheats	can	be	selected,	edited,	and
updated	using	the	"Update"	button.

Each	entry	in	the	list	is	in	the	format	of:		*	Address	=	Value

The	address	is	the	location	in	the	6502's	address	space.		The	*	denotes
that	the	current	cheat	is	active	(double	clicking	will	toggle	on/off).		Value
is	the	value	(in	hex)	that	the	addresses	has	been	locked	into.

You	can	add,	delete,	and	update	cheats	in	the	active	cheats	window	with
the	boxes	below.
To	find	an	address	use	the	cheat	search	portion	of	the	window.

There	is	also	a	right-click	menu	with	the	options	Toggle	Cheat,	Poke
Cheat	Value,	and	Goto	In	Hex	Editor.

Toggle	Cheat	is	like	Double	Clicking.	It	enables	or	disables	the	cheat
code.
Poke	Cheat	Value	is	like	turning	the	cheat	on,	but	in	this	case	there's	no
off	switch.	If	the	code	is	on	when	you	use	this,	then	when	the	code	is
turned	off,	it	will	revert	to	the	value	last	used.	Good	for	one	time	life	refills,
if	you	want	that	sort	of	thing.
Goto	in	Hex	Editor	opens	the	Hex	Editor	window,	and	puts	the	cursor	on
the	address	shown.	It's	somewhat	similar	to	how	Bookmarks	work	in	the
Hex	Editor.

Cheat	Search

The	cheat	search	is	used	to	find	a	specific	value	in	the	games	RAM	by
process	of	elimination.

The	possibilities	window	is	in	the	format	of		Address:Original
Value:Current	Value
The	address	is	the	location	in	the	6502's	address	space,	the	original
value	is	the	value	that	was	stored	at	this	address	when	the	search	was
reset,	and	the	current	value	is	the	value	that	is	currently	stored	at	that
address.	Selecting	an	item	in	this	list	will	automatically	cause	the
"Address"	field	in	the	cheat	information	box	on	the	right	side	of	the
window	to	be	updated	with	the	selected	address.

The	"Reset"	button	resets	the	search	process;	all	valid	addresses	are
displayed	in	the	possibilities	window	and	the	data	values	at	those
addresses	noted	in	both	the	left	and	right	columns.		The	number	of
possibilities	is	displayed	at	the	top.		Resetting	will	set	it	to	2048	or	10240
depending	on	if	the	game	uses	"On	cartridge	ram"	($6000-$7FFF).		(See
NES	RAM)

The	left	column	is	the	"previous	value"	and	the	right	column	is	the
"current	value"

The	"Known	Value",	"Equal",	"Not	Equal",	Greater	than"	and	Less	than"
buttons	perform	a	search	based	on	the	search	parameter	and	removes
any	non-matching	addresses	from	the	address	list.			It	then	sets	the
"previous	value"	column	to	the	contents	of	the	"current	value"

"Known	Value"	will	search	for	all	addresses	that	match	the	value	in	the
box	to	the	right	(the	value	is	in	hex).

"Equal"	will	search	for	all	addresses	that	have	the	same	value	now	as	the
last	search	(or	since	reset	was	pressed,	if	there	has	not	yet	been	a
search).

"Not	equal"	will	search	for	all	addresses	that	have	changed	sine	the	last
search	(or	since	reset	was	pressed,	if	there	has	not	yet	been	a	search).
If	the	checkbox	next	to	it	is	checked	it	will	looks	for	values	that	have
changed	by	the	value	in	the	number	box	to	the	right.		For	instance,	if	it	is
checked	and	the	number	is	5,	it	will	search	for	all	values	that	are	+-	5
from	the	previous	value.

"Greater	than"	functions	like	"Not	equal"	except	it	only	searches	for
values	that	have	increased	since	the	last	search.

"Less	than"	functions	like	"Not	equal"	except	it	only	searches	for	values
that	have	decreased	since	the	last	search.

Using	the	Results

Any	value	in	the	possibilities	list	can	be	sent	to	memory	watch	by	double
clicking	it.	
Highlighting	it	and	hitting	the	"Add"	button	under	the	Active	cheats
window	will	automatically	activate	it	as	a	cheat	with	the	value	set	to	its
current	value.

Example

Here	is	an	example	of	cheat	search	in	action.

Let's	say	I	am	playing	Mega	man	3	and	I	want	to	find	Mega	man's	energy
level	in	the	game's	ram.		I	will	start	by	opening	the	ROM	and	selecting	a
level.		At	this	point,	I	know	Mega	man's	energy	address	is	active.		So	I
will	pause	the	game	and	open	the	cheat	search	and	hit	the	reset	button.	
The	game	uses	SRAM	so	the	possibilities	window	will	say	10240
"possibilities".	
Next	I	will	frame	advance	(or	briefly	unpause)	the	game.		At	this	point	I
know	Mega	man's	energy	level	is	still	the	same	as	it	was.		So	I	click	the
"equal"	button.			Next	I	want	to	take	damage.		I	know	for	sure	now	that
the	energy	level	has	decreased	so	after	the	"ouch"	animation,	I	click	the
"Less	than	button".		This	will	cut	the	possibilities	down	significantly.		Next
I	will	advance	some	more	and	click	the	"Equal"	button	since	I	know	the
value	is	still	the	previous	value.		I	will	repeat	this	cycle	until	I	am	down	to
1	or	just	a	few	values.		From	there	I	can	double	click	the	values	to	send
them	to	memory	watch	to	monitor	them	more	closely	to	weed	them	out.	
(Note:		Mega	man's	energy	is	located	in	$00A2).

Context	Menu

Right-clicking	in	the	active	cheats	list	brings	up	the	context	menu.

Toggle	Cheat	-	does	the	same	thing	as	double	clicking

Poke	cheat	value	-	has	a	different	affect	that	normal	freezing,	this	makes
a	one	time	write	of	that	value	as	opposed	to	freezing	it	temporarily	to	that
value	and	having	it	restored	later.		It	has	the	same	affect	as	typing	in
values	in	the	Hex	Editor.

Goto	In	Hex	Editor	-	Opens	the	Hex	editor	dialog	to	the	position	of	the
selected	RAM	value.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

RAM	Search

Ram	Search
Ram	Search	is	a	tool	originally	written	for	GENS	rerecording.		It	was
ported	to	FCEUX	in	version	2.1.2.		This	dialog	has	also	been	ported	to
SNES9x-rr,	Desmume,	PCEjin,	VBA-rr,	PCSX-rr,	Yabause,	VBjin,	and
FBA-rr.

It	is	designed	to	filter	ram	values	just	like	in	the	Cheat	Search	dialog.	
However,	it	features	many	options	that	are	lacking	in	the	Cheat	Search
dialog.		Among	these	are	search	undo,	search	preview,	a	modulus	filter,	a
data	size	option,	signed/unsigned/hex	options,	autosearch,	and	several
more	compare	by	options.

Documentation	on	this	dialog	can	be	found	on	TASVideos	here.

Hotkeys

Hotkeys	can	be	assigned	to	common	search	commands	so	they	can	be
easily	selected	while	in	the	main	window.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://code.google.com/p/gens-rerecording/
http://code.google.com/p/snes9x-rr/
http://desmume.org/
http://code.google.com/p/pcejin/
http://code.google.com/p/vba-rerecording/
http://code.google.com/p/pcsxrr/
http://code.google.com/p/yabause-rr/
http://code.google.com/p/vbjin/
http://code.google.com/p/fbarr/
http://tasvideos.org/EmulatorResources/RamSearch.html
http://www.ibe-software.com/products/software/helpndoc/

RAM	Watch

Ram	Watch
Ram	Watch	is	a	tool	originally	written	for	GENS	rerecording.		It	was
ported	to	FCEUX	in	version	2.1.2.		This	dialog	has	also	been	ported	to
SNES9x-rr,	Desmume,	PCEjin,	VBA-rr,	PCSX-rr,	Yabause,	and	FBA-rr.

It	is	designed	to	filter	ram	values	just	like	in	the	Cheat	Search	dialog.	
However,	it	features	many	options	that	are	lacking	in	the	Cheat	Search
dialog.		Among	these	are	search	undo,	search	preview,	a	modulus	filter,	a
data	size	option,	signed/unsigned/hex	options,	autosearch,	and	several
more	compare	by	options.

Documentation	on	this	dialog	can	be	found	on	TASVideos	here.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://code.google.com/p/gens-rerecording/
http://code.google.com/p/snes9x-rr/
http://desmume.org/
http://code.google.com/p/pcejin/
http://code.google.com/p/vba-rerecording/
http://code.google.com/p/pcsxrr/
http://code.google.com/p/yabause-rr/
http://code.google.com/p/fbarr/
http://tasvideos.org/EmulatorResources/RamWatch.html
http://www.ibe-software.com/products/software/helpndoc/

Memory	Watch

Memory	Watch
Overview

Memory	watch	is	a	tool	designed	to	values	of	specific	known	memory
values	in	the	game's	RAM.	Memory	watch	does	not	find	values.		To	find
useful	values	to	monitor,	see	Cheats,	Ram	filter,	Hex	Editor,	and
Debugger.

Inserting	Values

To	display	a	ram	value,	simply	type	its	address	into	one	of	the	address
fields.		The	name	field	allows	you	to	put	a	brief	description	of	the	value.		

Prefixes

You	must	put	in	the	hexi-decimal	value	of	the	address,		but	the	value	will
be	displayed	will	be	decimal	by	default.

To	display	the	value	in	hex,	use	a	prefix	of	"x"	(such	as	x00FD).	

Use	the	prefix	"!"	to	display	a	2	byte	value.

Use	a	prefix	of	"X"	to	watch	a	2	byte	value	in	hex.

Saving/Loading	Watch	files

You	can	save	your	addresses	into	watch	files,	as	well	as	loading	previous
files	using	the	standard	save,load,new	options	in	the	File	menu.

FCEUX	uses	the	/memw	folder	by	default	but	you	can	specify	a	new
default	folder	in	the	Directory	Override	menu.

Options	Menu

If	you	select	Load	on	Start	up,	Memory	watch	will	load	up	automatically
when	FCEU	is	started.

If	you	select	Load	Last	File	on	Start	up,	the	most	recent	file	in	the
Recent	folder	will	be	loaded	when	memory	watch	is	loaded.

If	you	select	Collapse	to	1	Column	(or	press	the	right	arrow	button	on
the	bottom	left	of	the	dialog),	the	memory	watch	dialog	is	reduced	to	just
1	column.

Frozen	Memory	Addresses

If	one	of	the	watched	addresses	is	frozen	by	the	cheats	dialog	or	the	hex
editor,	it	will	display	blue	in	the	memory	watch	dialog.

Memory	Change	Monitor
The	bottom	of	the	memory	watch	dialog	displays	a	memory	change
monitoring	section.		This	monitors	the	1st	two	values	of	each	memory
watch	column.		Rather	than	monitoring	the	value	itself,	this	monitors	the
value's	behavior.	

The	address	being	monitored	is	under	the	address	column.

The	Formula	drop	down	box	shows	which	criteria	the	change	monitoring
is	using.

The	count	value	displays	how	many	times	the	value	has	changed	based

on	the	criteria.

Reset	will	reset	the	count	to	0.

Usage	Example:

As	an	example	of	the	memory	change	monitoring,	Let's	say	we	are
recording	a	movie	of	the	game	Super	C	and	want	to	keep	track	of	when
the	game	lags.
The	ram	address	001C	functions	as	a	"lag	flag".		It	will	remain	0,	then
change	to	a	positive	value	on	a	frame	that	the	game	lags.

We	could	put	001C	in	one	of	the	1st	two	memory	watch	edit	boxes.		Then
set	the	corresponding	formula	in	the	memory	change	monitoring	to	">
then"	(greater	than).		Now	the	count	will	show	us	how	many	lag	frames
occur	in	the	movie.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

TAS	Edit

TAS	Edit
TAS	Edit	is	an	overhaul	in	very	logic	of	creating	TAS	movies	(see	Tool
Assisted	Speedruns).		It	is	a	powerful	new	design	that	takes	movie
making	from	less	of	a	"recording"	concept	to	a	"creating	an	input	file"	way
of	thinking.		The	traditional	savestates	are	not	used	and	is	replaced	with
a	list	of	frames	and	input.		Clicking	on	a	frame	sends	the	emulator	to	that
frame.

As	of	the	2.0	release	this	is	an	unfinished	tool	and	therefore	much	of	the
features	are	not	implemented.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Covert	fcm

Converting	.fcm	to	.fm2	files
FCEUX	uses	a	new	movie	file	format	(.fm2).		In	order	to	use	movie	files
frame	previous	FCE	Ultra	versions	(.fcm)	you	will	need	to	convert	to	.fm2
first.

Using	.fcm	Convert

To	use	it	simply	highlight	it.		Then	select	the	.fcm	you	wish	to	convert	(or
shift+click	to	select	multiple	.fcm	files).		Then	click	Open	to	have	the
select	files	converted.		All	files	selected	will	have	a	matching	.fm2	file
copied	into	the	same	folder.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Auto	Fire	Configurations

Auto	Fire	Settings
Autofire	Pattern
The	default	configuration	for	an	auto	fire	key	is	the	alteration	of
on/off/on/off	every	frame.		For	most	games	this	works	nicely,	but	there
are	situations	where	this	doesn't	work	properly.		For	example,	Double
Dragon	2	and	Teenage	Mutant	Ninja	Turtles	run	at	30fps	(screen	updates
every	other	frame).		To	use	autofire	in	these	types	of	games,	you	would
want	to	set	the	autofire	pattern	to	2	on	/	2	off.			In	a	situation	where	a
players	weapon	on	fires	every	4th	frame,	you	can	set	the	autofire	pattern
to	1	on	/	3	off.

Autofire	Offset
The	default	is	for	certain	frames	to	have	the	on	setting	and	others	to	have
the	off	setting.		For	instance,	"on"	might	be	lined	up	with	a	movie	file's
even	numbers.		But	a	situation	may	need	the	autofire	pattern	to	have	"on"
on	the	odd	numbers	instead.		In	this	case	the	autofire	offset	should	be	set
to	1.		This	will	delay	the	normal	"on"	fire	by	1	frame.		If	an	autofire	pattern
is	set	to	2	on	/	2	off,	an	autofire	offset	of	2	might	be	necessary.

Alternate	A	and	B
Alternate	A	and	B	is	for	a	specific	case	where	both	the	A	and	B	autofire
buttons	are	pressed	simultaneously.		With	alternate	A	and	B,	the	fire
pattern	will	be	A,B,A,B	rather	than	A+B,	off,	A+B,	off.

Note:	All	autofire	patterns	read	the	Lag	Counter	(see	display)	and	skip
over	any	frames	where	input	is	not	polled.		This	means	that	in	a	laggy
area,	the	autofire	pattern	will	not	be	affected.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

External	Input

Use	External	Input
Use	External	Input	release	control	of	FCEU	so	that	an	external	program
(such	as	a	TAS	bot)	can	save/load	states,	frame	advance,	and	deliver
input.		This	feature	was	original	implemented	for	older	version	of	Basic
bot.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Text	Hooker

Text	Hooker
(written	by	Ugly	Joe,	author	of	the	Text	Hooker	tool)

What	is	Text	Hooker?

Here's	a	premise	for	you.	Suppose	you've	pirated	a	bunch	of
Japanese	NES	roms	and	you	load	one	of	them	up	at	random.
Cool	music.	Cool	title	screen.	You	go	to	start	a	game,	put	in
????	at	the	name	entry	screen,	and	get	to	the	actual	game.
Well,	big	surprise	here,	it's	an	RPG.	You	soon	realize	that	you
have	no	idea	what	people	are	saying,	what	shops	are	selling,	or
what	your	battle	options	are.	It	can	be	fun	to	trial-and-error	for	a
while,	but	you're	ultimately	stuck	in	the	first	town.	Time	to	load
up	a	new	ROM.

Well,	being	the	aspiring	Japanophile	that	I	am,	I	have	all	kinds
of	translation	tools	and	websites	at	my	disposal.	It's	not
impossible	for	me	to	figure	out	the	kana	for	an	item	name,	put	it
into	a	website	somewhere,	and	figure	out	what	it	is.	It's	a	slow
process,	but	I	can	figure	out	short,	simple	strings	of	Japanese
text.	Sometimes,	this	is	all	I	need	to	know	to	get	by.

This	is	why	I	made	the	Text	Hooker.	What	it	allows	you	to	do	is
highlight	text	boxes	in	the	game	and	copy	the	kana	right	to	the
clipboard.	I	no	longer	have	to	look	up	stuff,	I	can	just	copy	from
the	emulator,	paste	into	the	website,	and	go	from	there.	While
developing	it,	I	took	it	a	bit	further	by	adding	a	(shoddy)
translator	right	into	the	app,	and	added	features	such	as	word
substitutions	(so	you	only	have	to	look	up	the	word	once	and

then	the	app	will	know	what	it	is	as	soon	as	you	copy	it).	What
you	end	up	with	is	kind	of	like	a	translator's	notebook.	It	keeps
commonly	used	words	in	a	dictionary	and	helps	you	get	through
a	Japanese	game	without	having	too	much	knowledge	of	the
Japanese	language.

What	do	I	need	to	use	to	use	it?

Some	knowledge	of	the	Japanese	language
I	really	can't	say	how	much	you	need	to	know,	but	I	suppose	the
more	you	know	the	better.	I	could	be	wrong,	but	I	think	you
need	to	know	at	least	something	about	the	language	before	you
can	start	copy/pasting	translations.

Know	how	to	make	a	Japanese	table	file
I'm	not	going	to	explain	how	to	do	this	since	there	are	adequate
tutorials	already	out	there.	You'll	need	to	be	able	to	do	this	per
game	in	order	for	the	Text	Hooker	to	work.

Japanese	font	support
Okay,	I	have	tested	this	thing	on	a	Win98	installation	with	no
Japanese	font.	It	still	works.	However,	I	didn't	test	it	for	very
long	and	I'm	not	sure	how	well	translation	websites	are	going	to
work	without	it.	So,	it	might	work	without	Japanese	font	support,
but	I'm	not	officially	saying	it	does.

A	Japanese	ROM
Duh,	you'll	need	a	game	to	play.	Find	it	yourself.

How	do	I	use	the	Text	Hooker?

First	of	all,	you	need	to	make	your	table	file.	The	text	hooker
doesn't	use	Thingy	tables,	but	uses	a	modified	Thingy	table
instead.	So,	make	your	standard	Thingy	table	file,	but	save	it
with	a	.tht	extension	(instead	of	.tbl).	What	you	need	to	add	to
the	table	are	the	dakuten	and	handakuten	marks	(tenten	and
maru).	The	byte	for	the	dakuten	mark	needs	to	be	set	to	tenten
and	the	byte	for	the	handakuten	mark	needs	to	be	set	to	tenten.
Like:

DC=tenten
DD=maru

If	you	don't	do	this,	the	Text	Hooker	will	fail	miserabley	when
copying	the	text	over	from	the	game.

Once	you	have	your	table	file	ready,	open	up	your	rom	in
FCEUXDSP	CE	and	open	the	text	hooker	window	(Tools	->
Text	Hooker).	Click	on	the	"Load	Table"	button	and	open	up
your	.tht	file.	Now	you	can	really	get	ready	to	work.

Basic	Usage

A	warning
All	information	is	saved	in	the	table	file.	You	have	to	save	your
table	manually	using	the	Save	Table	button.	If	you	close	the
Text	Hooker	window	or	load	a	different	table,	your	changes
since	the	last	save	will	be	lost.	You	will	not	be	prompted	to	save
changes.	Please	remember	to	save!

Making	Selections
The	Selection	Window	is	where	you	select	the	text	in	the	game.
It	is	basically	the	same	view	as	the	actual	emulator	window,	but

it	updates	less	often	and	does	not	show	sprites	(text	is	not
drawn	with	sprites,	so	they	are	not	needed).	To	make	a
selection,	click	on	a	deselected	tile	and	drag	your	mouse.	To
remove	a	selection,	click	on	a	selected	tile	and	drag	your
mouse.	It	works	a	lot	like	a	pen	tool	and	an	eraser	tool	in
standard	paint	programs.

Once	you	have	made	a	selection,	you	can	save	it	for	later	use.
This	comes	in	handy	since	most	RPGs	will	display	their	text
boxes	and	battle	menus	in	the	same	place	throughout	the	entire
game.	To	save	a	selection,	type	a	name	for	the	selection	into
the	New	Selection	Name	field	and	press	the	Save	Selection
button.	Note	that	this	selection	will	not	be	saved	to	your	table
file	until	you	press	the	Save	Table	button.

You	can	also	use	the	Clear	Selection	button	to	deselect	all	of
the	tiles	in	the	selection	window.

Please	note	that	when	you	select	text,	you	should	not	select	the
mostly	blank	rows	that	contains	the	dakuten	and	handakuten
marks.	You're	essentially	selecting	every	other	row.	Please	see
the	UI	image	above	for	an	example.

Translating	Text
Once	you've	made	a	selection,	press	the	big	Snap	button	to
copy	the	text	into	the	Hooked	Text	window.	Only	the	tiles	that
are	defined	in	your	table	file	will	be	copied	over.	All	other	tiles
will	be	ignored.	Once	you	have	some	Japanese	text	in	your
Hooked	Text	window,	you	have	a	few	options.	You	can	press
the	Excite.co.jp	button	to	receive	a	really	bad	translation	(better
than	Babelfish,	but	still	bad)	in	the	Translated	Text	window,	or
you	can	select	all	or	part	of	the	text	in	the	Hooked	Text	window
and	copy/paste	it	into	another	translation	tool	or	website.	If

you're	translating	a	block	of	text	(as	opposed	to	item	names	or
menus),	you	should	probably	use	the	Trim	button	to	clean	up
the	excess	whitespace.

Please	bear	in	mind	that,	due	to	the	limitations	of	the	NES,
Japenese	games	use	very	little	kanji.	This	means	you'll	have	to
look	up	the	kana	representation	of	what	would	normally	be	a
kanji.	Most	translation	tools	will	give	you	a	hard	time	about	this.

The	word	substitution	feature	can	be	used	to	process	the
selected	text	before	it	is	sent	to	the	Hooked	Text	window.	By
entering	in	Japanese-to-English	definitions,	you	build	up	your
word	subs	dictionary.	If	word	subs	are	enabled	and	you	press
the	snap	button,	the	selected	text	is	checked	against	your
dictionary	and	any	words	that	it	finds	are	replaced	by	their
definition.

This	is	useful	for	a	few	reason.	One,	many	words	written	in
katakana	don't	translate	too	well.	You	can	use	this	to	stop	the
translators	from	mangling	them.	Two,	character	names	are
often	the	same	thing	as	words.	For	example,	if	your	character's
name	is	???	(Sakura),	the	translator	will	likely	translate	it	to
“cherry	blossom”.	If	you	define	???	as	Sakura,	then	you	won't
have	to	worry	about	that.	Three,	you	only	really	need	to
translate	menus	and	items	once.	Once	you	have	them	figured
out,	add	them	to	your	dictionary.	This	way,	you	can	just	select
your	menu	(perhaps	from	a	saved	selection?)	and	press	Snap	-
-	instant	menu	translation!	Four,	I'm	not	positive	about	this,	but
if	you	know	that	a	string	of	kana	is	going	to	always	mean	a
particular	kanji,	you	could	put	the	kana	in	the	Japanese	side
and	the	kanji	in	the	English	side.	This	would	aid	translators
since	it	wouldn't	have	to	try	and	figure	it	out	itself.	Note	that	I
haven't	tested	that	last	one	since	I	don't	know	enough	kanji	to

put	it	to	the	test.

Again,	please	remember	that	your	dictionary	will	not	be	saved
unless	you	use	the	Save	Table	button.

Tweaking
Here	are	some	other	helpful	features.

Pause	Button:	this	is	used	to	pause	and	unpause	the	emulator.

Scanline:	this	is	used	to	determine	on	what	scanline	the
Selection	Window	will	be	updated.	Some	games	will	switch
their	font	tiles	in	and	out	of	the	PPU.	If	this	happens,	you	may
need	to	change	the	scanline	to	a	bigger	number	in	order	to	see
the	tiles	you're	looking	for.	For	example,	this	happens	a	lot	in
the	game	Metal	Slader	Glory.

Update	every	x	frames:	this	is	used	to	determine	how	often	the
Selection	Window	is	updated.	The	smaller	the	number,	the
slower	the	emulator	will	go.

Selection	Window	checkbox:	this	is	used	to	determine	whether
or	not	the	selection	window	should	be	updated.	If	you're	not
going	to	be	needing	the	Text	Hooker	for	a	while,	you	should
probably	uncheck	this	box	while	you	play.

Word	Substitution	checkbox:	this	is	used	to	determine	whether
or	not	word	substitution	will	be	used.

(han)dakuten	mark	position	checkbox:	this	is	used	to	tell	the
text	hooker	where	the	dakuten	and	handakuten	marks	are
located	in	relation	to	the	kana.	Most	games	will	use	Above,	but
some	games	that	try	to	squeeze	in	as	much	text	into	a	small

area	as	possible	will	use	Right.
Features	>	Text	Hooker	>	Reference
Features	>	Text	Hooker	>	Reference	>	Text	Hooker	Table	file
reference
I	suppose	this	is	the	kind	of	thing	that	should	be	documented,
so	here	it	is.	When	I	started	to	make	this	thing,	I	was	just	using
Thingy	tables.	When	I	started	to	add	other	features,	I	knew	I
needed	to	save	them	somewhere.	It	seemed	kind	of	dumb	to
me	to	store	this	information	in	separate	files,	so	I	decided	I
would	append	the	other	sections	to	the	end	of	the	table	files.	In
the	far	off	chance	that	there	becomes	some	kind	of	archive	for
Text	Hooker	table	files,	I	decided	to	use	a	different	extension.

A	.tht	file	is	comprised	of	three	parts	(and	possibly	more	in	the
future).	The	first	part	resembles	a	Thingy	table,	since	it's	more
or	less	that	same	thing.	You	have	a	hex	byte	value,	and	equals
sign,	and	the	corresponding	character	after	the	equals	sign.
The	biggest	difference	from	Thingy	tables	is	that	the	tenten	and
maru	marks	must	be	defined	using	the	words	tenten	and	maru.

The	next	section	is	the	Selections	storage.	This	section	begins
with	a

[selections]

declaration.	What	follows	are	hashes	for	saved	selections
(name	of	selection,	equals	sign,	hash).	The	hashes	should	be
safe	for	viewing	and	saving	in	any	text	editor	that	is	capable	of
viewing	and	saving	Japanese	text.	These	hashes	are,
admittedly,	under	tested.	If	anyone	can	find	a	situation	in	which
the	selection	hashes	are	corrupted	but	the	rest	of	the	table	file
is	not,	please	let	me	know.

Up	next	is	the	Word	Substitution	Dictionary.	This	section	begins
with	a

[words]

declaration.	These	lines	are	formatted	in	a	Japanese=English
manner.	You	should	be	able	to	have	Japanese	or	English	on
either	or	both	sides.	It's	nothing	more	than	a	list	of	values	used
during	a	search	and	replace	function.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Debug

Debug
Guides	for	the	specific	tools	and	settings	under	FCEUX's	Debug	menu.

Debugger

A	tool	for	looking	at	game	instructions	in	assembly	language.	With
experience,
one	can	use	it	to	fix	game	patching	errors,	or	find	RAM	and	Game	Genie
codes.

PPU	Viewer

A	tool	that	displays	the	current	PPU	contents	and	related	information.
The	PPU
viewer	allows	you	to	view	the	graphic	squares	that	make	up	what's
displayed.

Name	Table	Viewer

A	tool	for	displaying	the	current	Name	Table	contents.	Helps	to	isolate
PPU
and	tile	information,	which	allows	the	debugger	to	be	used	to	check	PPU
coding.

Hex	Editor

A	tool	for	displaying	a	game's	RAM	contents	and	for	memory	poking.
Also	allows
for	reading	in	the	raw	PPU	data,	copy/paste-ing	RAM,	and	visually
debugging	RAM.

Trace	Logger

Captures	assembly	code	instructions	and	outputs	them	to	a	file	or	the
window.	Very
useful	for	modifying	code,	finding	crash	addresses,	fixing	transferred
routines,	and
for	comparing	routine	function	between	a	game	and	a	persistently	buggy
NSF.

Code/Data	Logger

Allows	you	to	extract	the	data	used	by	a	game.	Make	patch	demos,	find
data
loaded	by	a	game	around	a	certain	point,	or	just	map	out	a	single	routine
run.

Game	Genie	Encoder/Decoder

Allows	you	to	add	Game	Genie	codes	to	the	Cheats	menu,	decode
existing
ones	to	their	component	information,	and	(re)create	a	code	with	desired
values.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Debugger

Debugger
Taken	from	the	FCEUXDSP	1.07	documentation.

Introduction
The	debugger	is	a	powerful	tool	that	reads,	displays,	and	manipulates
assembly	language	instructions	in	a	game.

Debugger	Features

-When	you	hold	the	mouse	over	the	left	pane	in	the	debugger,	you	can
now	see	the	ROM	file	address	of	the	data	loaded	there.
-Right-click	in	that	pane,	it	will	bring	up	the	Hex	Editor	at	that	address	so
you	can	immediately	begin	editing.
-Left-clicking	in	that	pane	brings	up	the	inline	assembler.
-"Break	on	bad	opcode"	feature;	this	can	help	you	figure	out	where	your
game	is	crashing.	Middle-clicking	on	a	byte	will	bring	up	the	Game	Genie
Encoder	at	that	address,	so	you	can	easily	make	Game	Genie	codes.
-Debugging	data	like	breakpoints	or	bookmarks	are	automatically	saved
and	restored	when	games	are	closed	/	opened.
-Ability	to	give	breakpoints	a	brief	description/name.
-All	debugging	information	for	addresses	<	$8000	into	the	name	list	file
romname.nes.ram.nl.
-Added	a	feature	to	NL	files	to	support	arrays.
-Range	options	for	freezing	/	unfreezing	addresses
-Dump	RAM	to	file	option
-Dump	PPU	memory	to	file	option
-Automatically	generated	.deb	debug	files	created	if	the	debugger	is
used.

Using	Debugger

Symbolic	Debugging

The	most	important	feature	(at	least	for	me)	that	was	introduced	in
FCEUXD	SP	is	symbolic	debugging.		With	this	new	feature	it's	possible	to
rename	addresses	in	the	disassembly	window	(like	$C022)	to	easily
understandable	names	(like	AddHealthpoints).	It's	also	possible	to	add
comments	to	lines	in	the	disassembly	window.

To	be	able	to	use	this	feature	it's	necessary	to	create	so	called	name	list
files	(*.(bank).nl/*.ram.nl,	Ex:	NES	Test	Cart	(PD).nes.0.nl,	NES	Test	Cart
(PD).nes.ram.nl)	which	contain	all	names	and	comments	you	wish	to
display	in	the	disassembly	window.	These	files	are	plain	ASCII	files	of	the
following	format	(example	follows):

$C000#NewName1#Comment1
$C002##Comment2
$C004#NewName2#
$C006#NewName3#MultilineComment-Part1
\MultilineComment-Part2
\MultilineComment-Part3
$C008/10#NewName4#

Every	line	contains	two	#	characters	which	separate	the	three	parts	of
one	line:	The	first	part	(starting	with	a	$	character)	is	the	address	to	be
renamed.	Optionally	you	can	add	a	"/number"	part	which	marks	the
offsets	as	a	beginning	of	an	array	of	the	given	size	(the	size	must	be
specified	in	hex	form).		The	second	(optional)	part	is	the	new	name	of
that	address.	Whenever	the	line	of	that	address	is	shown	in	the
disassembly	window	an	extra	line	saying	"Name:	NewName"	is	shown
above	it.		Instructions	referencing	this	address,	for	example	JSR	$C000
are	also	changed	to	JSR	NewName1	(in	that	example).		The	third
(optional)	part	is	the	comment	that's	also	added	above	the	disassembly
line	the	comment	refers	to.	It	works	exactly	like	the	additional	name	line,
only	the	prefix	of	that	line	is	different.	Comment	lines	start	with
"Comment:	"	rather	than	with	"Name:	".		Multi-lines	comments	are
possible.	Lines	starting	with	a	\	character	are	just	appended	to	the

comment	of	the	preceding	line.	Multi-line	comments	are	also	shown	in
multiple	lines	in	the	disassembly	window.

Let's	get	back	to	the	example.
The	first	line	contains	all	three	parts.	Using	this	name	list	file	all
references	to	the	address
$C000	are	replaced	with	NewName1	and	whenever	line	$C000	is	shown
in	the	disassembly	window	an
additional	comment	is	also	visible	right	above	the	actual	disassembled
line.
The	second	line	defines	only	a	comment	while	the	third	line	defines	only
a	name.	Following	that
there's	a	multi-line	comment	definition	for	address	$C006.
The	last	line	defines	an	array	called	NewName4	of	size	$10	(=	16)	bytes
starting	at	offset	$C008.

Now	you	know	the	format	of	the	nl	files	but	you	do	not	yet	know	the
naming	convention	for	the
file	names.	Due	to	the	bank-swapping	nature	of	the	NES	it's	getting	a
little	bit	difficult	here.
Each	bank	needs	it's	own	nl	file.	The	naming	convention	goes	like	this:
Take	the	name	of	the	ROM
file	and	just	add	".X.nl"	to	it	where	the	X	is	the	hexadecimal
representation	of	the	number	of	the
ROM	bank.	Suppose	you	have	the	ROM	file	"Faxanadu	(U).nes"	and	you
want	to	create	a	nl	file	for
ROM	bank	15.	As	15	is	0x0F	in	hex	the	name	of	the	nl	file	would	be
"Faxanadu	(U).nes.F.nl".	All
nl	files	go	into	the	same	directory	as	the	ROM	file	itself.

There	is	also	the	*.ram.nl	file	specification,	which	allows	you	to	substitute
RAM	addresses	for
execution	addresses,	and	have	those	named	as	well.	In	this	case,	you
could	use	lines	of	this	type:
$00A5#Mic	Test	OK#00=Not	Passed,	01=Passed

You	can	enable	and	disable	symbolic	debugging	by	clicking	the	checkbox

"Symbolic	Debugging"	in
the	debugger	window.	To	forcibly	reload	the	nl	files	of	the	currently	active
ROM	file	press	the
button	with	the	text	"Reload	Symbols".

Arrays

The	array	feature	is	an	easy	way	to	group	names	and	comments	for
sequential	offsets.

$C000/5#NewName1#Comment1

is	equivalent	to

$C000#NewName1#Comment1

Inline	Assembler

The	debugger	an	Inline	Assembler	designed	by	Parasyte.		To	activate	it,
left-click	in	the	left	pane	of	the	debugger,	beside	the	assembly	display.	
To	use	it,	type	in	some	code	and	press	Enter	to	add	it	to	the	patch	list.	If
you	make	a	mistake,	press	"Undo".		Once	the	patch	is	set	up	the	way	you
want	it,	press	"Apply".	Be	aware	that	this	cannot	be	undone	unless	you
reload	the	ROM.		Parasyte	implemented	this	feature	before	I	had	the	Hex
Editor	working,	otherwise	I	would	have	implemented	a	way	to	undo	it
from	there.		Press	"Save"	to	write	to	the	ROM	file	on	disk;	note	that	this
will	also	save	any	changes	you	may	have	done	in	the	Hex	Editor.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

PPU	Viewer

PPU	Viewer

Introduction
The	NES	architecture	includes	a	6502	CPU	as	well	as	a	custom	video
controller	known	as	a	PPU	(Picture	Processing	Unit).		The	PPU's	video
memory	is	separated	from	the	main	CPU	memory	and	can	be
read/written	via	special	ports	(see	PPU	Memory).

The	PPU	viewer	will	display	the	contents	of	the	current	PPU	memory.		(It
does	not	alter	game	data	in	anyway).	

Using	PPU	Viewer

Show	on	Scanline
This	options	makes	it	show	what	the	PPU	looks	like	when	the	screen	is
drawing	that	scanline.		It	is	useful	for	games	like	SMB,	that	swap	pattern
tables	mid-frame	(status	bar	stuff).

Right	clicking	on	one	of	the	PPU	panels	cycles	the	palettes	it	is	shown
with,	though	pattern	palettes	and	then	sprite	ones
Putting	the	mouse	cursor	over	a	tile	will	display	the	tile	address.		Moving
cursor	over	palette	color	will	give	palette	address.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Name	Table	Viewer

Name	Table	Viewer
Introduction
This	displays	the	name	tables	as	they	exist	in	PPU	memory.
Furthermore,	it	shows	you	the	game's	current	mirroring,	and	the	current
state	of	the	PPU's	scroll	registers	(if	the	option	for	this	is	set).		It	also	lets
you	change	the	mirroring	on	the	fly	(which	will	break	most	games).

Using	the	Name	Table	Viewer

Note	that	the	Name	Table	Viewer	will	display	the	name	tables	using
whatever	CHR	is	present	at	the	time	the	"Display	on	Scanline"	scanline	is
reached.	So	for	example	if	it	does	not	correctly	display	a	game's	status
bar,	try	setting	it	to	update	on	a	scanline	in	which	the	status	bar	is
displayed.

The	same	applies	to	the	Scroll	Lines:	they	display	the	state	of	the	PPU
scroll	registers	when	the	"Display	on	Scanline"	scanline	is	reached.	So
for	example	if	said	scanline	is	within	the	game's	status	bar,	it	will	not
display	level	scrolling	because	the	horizontal	scroll	is	always	zero	at	the
time	that	scanline	is	drawn.	To	display	the	level	scrolling,	set	it	to	update
on	a	scanline	in	which	the	level	is	displayed.

Display	on	scanline
This	will	show	what	it	looks	like	when	the	NES	has	finished	drawing	that
many	scanlines	to	screen	including	any	PPU	data	scroll	line	movement

Getting	Tile	Addresses
Placing	the	mouse	cursor	over	the	name	table	image	will	display	the	tile
address	of	a	given	tile.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Hex	Editor

Hex	Editor
Introduction

The	Hex	editor	is	a	very	powerful	memory	viewing/editing	tool	and
obsoletes	the	Memory	Viewer	tool	from	the	FCE	Ultra	and	FCEU
Rerecording	branches.

It	can	do	a	wide	range	of	things.		It	allows	you	to	view	the	entire	RAM	&
ROM	contents	in	an	expandable	dialog	Window.		It	makes	it	easy	to	edit
the	game's	RAM,	PPU	memory,	and	even	its	currently-loaded	ROM	data
by	simply	typing	in	values	in	the	editor.	You	can	also	"freeze"	parts	of
RAM	(to	prevent	the	game	from	modifying	the	data	there),	search	for
data,	and	even	copy	and	paste	data	to/from	the	clipboard.		Furthermore,
table	files	are	supported,	so	you	can	edit	a	game's	text	in	real-time	and
see	the	result	immediately.

Basically,	it	lets	you	tinker	with	any	part	of	a	game's	RAM	or	ROM	while	it
is	running.

Using	the	Hex	Editor

The	Hex	Editor	lets	you	edit	three	major	areas:

1.	NES	MEMORY
This	allows	you	to	directly	edit	all	of	the	NES	address	space	($0000-
$FFFF).	While	you	can	easily	modify	RAM,	or	write	directly	to	registers
by	typing	in	data,	you	cannot	modify	ROM	data	($8000-$FFFF)	itself.	
This	is	because	most	mappers	have	registers	which	are	located	in	this
space;	so	writing	there	can	trigger	mapper	operations	that	may	cause	the
game	to	crash	or	glitch	if	you	don't	know	what	you're	doing.		If	you	want
to	edit	the	ROM	itself,	right-click	on	the	offset	and	select		"Go	here	in
ROM	file";	that	will	take	you	directly	to	where	you	need	to	be	so	you	can

start	editing.		You	can	also	freeze	RAM	by	clicking	on	it	with	the	middle
mouse	button,	or	by	using	the	right-click	menu.	This	works	by	adding	it
directly	to	the	Cheat	List,	which	you	can	see	from	the	Cheat	Console.	
Finally,	the	right-click	menu	can	be	used	to	quickly	add	a	read	or	write
breakpoint	to	the	debugger.

2.	PPU	MEMORY
This	allows	you	to	directly	view	and	write	to	PPU	memory	(VRAM).

3.	THE	ROM	FILE
This	is	possibly	the	coolest	part	of	FCEUXD:		It	allows	you	to	edit	the
ROM	file	in	real-time,	i.e.	while	the	game	is	running.	If	you	make	a
mistake,	press	Ctrl+Z	or	Edit->Undo	to	undo	your	change	(then	load	a
save-state	if	the	game	crashed).		If	you	have	the	Code/Data	Logger
running,	then	bytes	that	were	logged	as	code	will	be	colored	yellow,	while
bytes	logged	as	data	will	be	colored	blue.	Bytes	that	have	been	logged
as	code	*and*	data	will	be	colored	green.

The	Hex	Editor	also	has	support	for	table	files	(*.tbl)	to	map	bytes	to	text.
Each	line	consists	of	four	characters	of	the	form	"xx=y",	where	"xx"	is	the
hex	value,	and	"y"	is	the	character	that	that	value	represents.		I	have	also
added	an	extension	to	represent	the	Return	key:		xx=ret	whereby
pressing	the	Return	key	will	enter	that	value	into	the	ROM.		You	can
copy/paste	data	or	text	by	selecting	it	and	using	Ctrl+Z	(to	copy)	and
Ctrl+V	(to	paste).	Plus,	there	is	an	Edit->Find	feature	that	you	can	use	to
search	for	data.	This	feature	should	be	fairly	intuitive,	so	I	won't	bother	to
explain	it.

When	you're	done	editing,	remember	to	save	the	ROM	file	(File->Save)
or	your	changes	will	be	lost	when	you	close	the	ROM.

Why	can't	I	edit	NES	memory	beyond	$8000?

NES	memory	from	$8000-$FFFF	is	where	the	game's	PRG-ROM	code	is
mapped.		Whenever	you	type	in	a	value	in	the	NES	memory	editor,	it
effectively	writes	that	value	to	that	address.	Many	games	use	mappers,

which	are	usually	accessed	by	writing	to	$8000-$FFFF	(which	is	read-
only)...	and	if	*you*	were	to	do	so,	it	may	trigger	a	bankswitch,	which
could	easily	make	the	game	crash.	In	any	event,	doing	so	will	not	modify
the	ROM	itself.		What	you	*can*	do,	though,	is	edit	the	PRG-ROM	itself
by	right-clicking	on	the	offset	you	wish	to	edit,	and	selecting	"Go	here	in
the	ROM	file",	which	should	take	you	to	that	spot	in	the	ROM	instead,
where	you	can	change	the	data	at	instead.

.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Trace	Logger

Trace	Logger
Introduction

The	Trace	Logger	logs	every	executed	instruction	and	every	byte	of	ROM
accessed	to	the	window,	or	a	file	if	you	prefer.		Logging	to	a	file	is	useful	if
you	just	want	to	dump	everything	that	was	executed	and	then	search
through	it	later.		Logging	to	the	window	is	useful	when	you	wish	to	see
the	instructions	that	were	executed	prior	to	a	breakpoint	being	hit.		Both
options	produce	the	same	data,	but	the	desire	to	keep	that	data	for	a
short	amount	of	time	or	a	long	amount	of	time	will	determine	which	is
best	for	you.

Using	the	Trace	Logger

The	Trace	Logger	is	a	very	nice	feature	which	logs	each	instruction	as	it
is	being	executed;	this	log	can	be	output	either	to	a	file	or	the	window.		If
you	choose	to	log	to	the	window,	you	can	set	how	many	lines	it	will	retain
before	discarding	old	lines.	The	higher	this	setting,	the	more	RAM	it	will
consume,	but	the	more	lines	you'll	have	available	to	work	with.		Normally,
when	logging	to	a	window,	the	only	time	it	shows	the	log	is	if	you	snap
the	debugger	or	pause	execution.	The	option	to	automatically	update	the
log	window	will	keep	the	window	updating	while	the	game	runs;	this	is
normally	useless	unless	it	is	working	with	the	Code/Data	Logger	to	only
show	newly-executed	instructions.

The	Trace	Logger	has	extra	options	which	work	with	the	Code/Data
Logger	so	that	it	only	shows	instructions	executed	for	the	first	time,	or
those	which	access	data	for	the	first	time.	This	can	be	quite	useful	for
finding	certain	key	routines	or	finding	otherwise	impossible-to-find	data	in
almost	any	game.		The	best	way	to	use	this	feature	is	in	conjunction	with
the	option	to	automatically	update	the	window	while	logging.	Then,	as
you	play	the	game,	you	can	watch	new	results	appear	at	once.	If	you're

searching	for	something	specific,	try	to	get	everything--	EXCEPT	what
you're	looking	for--	to	execute,	then	watch	closely	as	what	you're	looking
for	executes	for	the	first	time.

There	are	two	ways	to	filter	what	the	Code/Data	Logger	shows.	The	first
filter	lets	you	log	only	newly-executed	code	(so	that	an	instruction	is	not
logged	again	if	it	has	already	been	logged).	The	second	logs	only
instructions	when	they	access	data	which	hadn't	been	accessed	before.
Note	that	both	filters	can	be	used	at	once	(which	shows	bytes	that	pass
either	filter).

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Code/Data	Logger

Code/Data	Logger
(Taken	from	the	FCEUXD	readme.txt)

Introduction

The	Code/Data	Logger	makes	it	*much*	easier	to	reverse-engineer	NES
ROMs.		The	idea	behind	it	is	that	a	normal	NES	disassembler	cannot
distinguish	between	code	(which	is	executed)	and	data	(which	is	read).
The	Code/Data	logger	keeps	track	of	what	is	executed	and	what	is	read
while	the	game	is	played,	and	stores	this	information	in	a	.cdl	file,	which
is	essentially	a	mask	that	tells	which	bytes	in	the	ROM	are	code	and
which	are	data.	The	file	can	then	be	used	in	conjunction	with	a	suitable
disassembler	(which	I	plan	to	make)	to	disassemble	only	the	actual	game
code,	resulting	in	a	much	cleaner	source	code,	with	code	and	data
properly	separated.

Using	the	Code/Data	Logger

The	Code/Data	Logger	keeps	track	of	every	byte	in	the	ROM	and	records
whether	it's	code	(is	executed)	or	data	(is	read).	In	the	future,	I	hope	to
combine	this	with	a	suitable	disassembler	that	will	disassemble	only
bytes	marked	as	"code",	in	order	to	generate	near-perfect	source	code
(provided	you	play	through	the	game	several	times,	very	thoroughly,	to
ensure	everything	gets	logged).	In	order	to	get	that	feature	to	work,	I
need	to	get	the	Address	Label	Logger	working,	in	order	to	create	all	the
labels.

But	right	now,	it	is	very	useful	for	finding	specific	code	and	data	by	using
it	with	the	Trace	Logger	(see	above	for	instructions	on	doing	this).	
Furthermore,	while	it	is	running,	the	Hex	Editor	will	color-code	bytes
depending	on	whether	they	were	logged	as	code	or	data.	And	it	can	also
be	used	to	create	a	stripped	NES	ROM	(see	below).

Some	notes:	when	you	open	another	.cdl	file,	it	does	not	clear	the	current
log;	instead,	it	combines	it	with	the	information	in	the	file.		This	can	be
useful	if	you're	trying	to	obtain	a	complete	log,	as	multiple	people	can
play	through	the	game	and	keep	code/data	logs,	and	then	the	results	can
be	combined.		But	if	you	would	like	to	actually	clear	the	code/data	log,
press	the	"Reset	Log"	button.

A	"stripped"	NES	ROM	is	one	in	which	everything	that	was	not	logged	by
the	code/data	logger	is	removed.	This	may	be	just	a	novelty	feature,
however	it	can	be	useful	because	you	can	view	the	ROM	in	a	Hex	Editor,
and	you'll	see	only	the	parts	that	were	used	while	playing.	Furthermore,
you	could	use	it	to	create	a	demo	ROM	by	only	playing	through	the	parts
you	would	like	others	to	see.

To	do	so,	follow	these	steps:

1.	Open	the	Code/Data	Logger,	and	press	Start	to	begin	logging.

2.	Perform	a	soft	and	a	hard	reset	while	logging,	in	order	to	capture	the
ROM's	startup	sequence.	If	you	don't	do	so,	you	can	distribute	a	save-
state	file	so	they	will	start	from	within	the	game.

3.	If	the	game	has	Save-RAM	(e.g.	Zelda),	you	will	need	to	capture	the
game's	Save-RAM	initialization	routines;	you	can	try	to	do	so	by	deleting
the	game's	*.sav	file	and	then	perform	a	soft	and	hard	reset	(F10,	F11)
again	while	logging.

4.	Play	through	whatever	levels	you	want	present	in	the	demo.	Be	sure	to
perform	every	move,	get	every	item,	etc.,	so	that	the	code	and	data
necessary	for	those	things	are	logged.	If,	for	example,	you	fail	to	perform
some	special	move,	then	if	someone	plays	the	stripped	ROM	and
attempts	to	perform	that	move,	the	game	may	very	well	crash	or	glitch
up.

5.	Save	the	stripped	NES	ROM.

6.	Rejoice,	for	it	is	done.

CDL	log	files	are	just	a	mask	of	the	PRG-ROM;	that	is,	they	are	the	same
size	as	the	PRG-ROM,	and	each	byte	represents	the	corresponding	byte
of	the	PRG-ROM.		The	format	of	each	byte	is	like	so	(in	binary):

															xPdcAADC

															C		=	Whether	it	was	accessed	as	code.
															D		=	Whether	it	was	accessed	as	data.
															AA	=	Into	which	ROM	bank	it	was	mapped	when	last	accessed:
																							00	=	$8000-$9FFF								01	=	$A000-$BFFF
																							10	=	$C000-$DFFF								11	=	$E000-$FFFF
															c		=	Whether	indirectly	accessed	as	code.
																							(e.g.	as	the	destination	of	a	JMP	($nnnn)	instruction)
															d		=	Whether	indirectly	accessed	as	data.
																							(e.g.	as	the	destination	of	an	LDA	($nn),Y	instruction)
															P		=	If	logged	as	PCM	audio	data.
															x		=	unused.

CDL	files	make	possible	a	number	of	things	never	before	done.		First,	a
PCM	data	ripper	could	be	created	that	scans	for	data	that	has	the	'P'	bit
set,	in	order	to	find/rip/play	every	PCM	sample	in	a	ROM.		Also,	it	is
possible	for	someone	to	make	a	more	intelligent	ROM	corruptor	that	only
corrupts	data	(by	checking	the	'D'	bit).		In	any	case,	the	Code/Data
Logger	opens	many	new	possibilities	for	discovering	useful	things	in
games.		Another	interesting	possibility	(which	is	now	partially	supported)
would	be	to	use	the	Code/Data	Logger	on	an	NSF	file	to	create	a
stripped	NSF.	Such	an	NSF	would	contain	nothing	but	the	relevant
subroutines	and	data	required	by	each	tune	played;	this	would	be	helpful
to	NSF	rippers	by	removing	irrelevant	information.	Thus,	an	NSF	ripper
could	create	a	stripped	NSF	by	listening	to	each	track	while	the
Code/Data	Logger	operates	on	it,	and	then	saving	the	stripped	NSF.		It
should	be	noted	that	this	capability,	though	tested	and	working	on	private
builds,	is	detrimental	to	the	process	of	fixing	broken	NSF	files.	For	this
reason,	data	logging	is	allowed	for	NSF	files,	but	stripping	NSF	files	of
unused	data	is	disabled.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Game	Genie	Encoder/Decoder

Game	Genie	Decoder/Encoder
This	will	take	an	NES	address	space	PRG	address	($8000-$FFFF),	a
comparison	value	(for	8-letter	GG	codes;	refer	to	a	Game	Genie	code
FAQ	for	an	explanation	of	what	this	does),	and	a	Value	that	replaces	the
addressed	byte.

Filling	in	the	Address	and	Value	fields	will	produce	a	6-letter	code;	if	you
also	fill	out	the	Compare	field,	it	will	produce	an	8-letter	code.		The	code
so	produced	will	appear	in	the	Game	Genie	Code	box	immediately;	you
can	then	click	"Add	to	Cheat	List"	to	activate	it.

To	decrypt	a	Game	Genie	code,	enter	it	into	the	Game	Genie	Code	box,
and	the	Address	and	Value	fields	will	be	automatically	filled	in,	as	will	the
Compare	field	if	it	was	an	8-letter	code.

Adding	Game	Genie	codes

In	the	Game	Genie	Code	Decoder/Encoder	window,	type	the	code	into
the	Game	Genie	Code	box	and	click	"Add	to	Cheat	List",	which	will	add	it
to	the	Cheat	Search	cheat	list.	You	can	then	enable/disable	them	by
double-clicking	the	code	in	the	box	(a	*	means	the	code	is	active).

Making	Game	Genie	codes	permanent

Using	the	Game	Genie	Code	Decoder/Encoder,	enter	in	your	code	in	the
"Game	Genie	Code"	box,	and	under	"Possible	Affected	ROM	File
Addresses",	a	list	of	possible	matches	(usually	from	1	to	5)	is	displayed.
Using	the	built-in	Hex	Editor,	go	to	the	first	listed	address	in	the	ROM,
and	change	its	value	to	the	value	given	in	the	"Value"	box	(of	the	GG
code	Decoder/Encoder	window).	If	the	desired	effect	isn't	achieved,	undo
the	change	(Ctrl+Z)	and	try	the	next	address.	Repeat	until	the	desired
effect	is	achieved,	and	then	save	the	ROM.

How	do	I	make	my	own	Game	Genie	codes?

First	of	all,	you	must:

*	have	a	decent	amount	of	ASM	knowledge;
*	know	how	to	use	the	debugger;
*	understand	NES	PRG-ROM	bank	switching.

Once	you've	found	a	part	of	PRG-ROM	you	want	to	change	to	create	a
code	effect,	snap	the	Debugger	(if	it's	not	so	already)	and	find	the	code's
location	in	the	PRG-ROM's	address	space	($8000-$FFFF)	(you'll	want
the	debugger	snapped	so	the	game	won't	swap	banks	out	from	under
you).	Then,	using	the	built-in	Hex	Editor,	view	the	NES	memory	and	go	to
the	PRG-ROM	address	you	wish	to	modify,	then	right-click	the	byte	and
choose	"Create	Game	Genie	Code	at	this	Address".	The	Game	Genie
Code	Decoder/Encoder	will	appear,	with	the	Address	and	Compare
boxes	filled	in	(the	Compare	box	represents	the	address's	original	value).
Enter	the	new	value	into	the	"Value"	box.

An	alternative	way	to	enter	the	code	is	to	locate	the	desired	address	in
the	debugger,	and	then	middle-click	on	it,	which	will	summon	the	GG
Code	Decoder/Encoder.	Then	enter	the	code	as	described	above

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Lua	Scripting

Lua	Scripting
Lua	is	a	scripting	language	similar	to	Perl	or	Python.		It	allows	for	logical
evaluation	equivalent	to	languages	like	C	but	in	a	much	more	dynamic
way	that	eliminates	much	of	the	need	to	compile	programs	and	worry
about	low	level	resource	management	like	deleting	objects.		In	the
context	of	FCEUX,	Lua	allows	for	direct	control	of	the	emulator	through
this	logical	construct.

What	this	means	to	the	non-"programmer"	is	that	it	you	can	essentially
automate	certain	tasks	in	FCEUX,	such	as	holding	controller	inputs,
displaying	additional	graphical	information	and	saving/loading	savestates.

A	bit	of	previous	programming	knowledge	will	be	useful	in	taking
advantage	of	this	feature,	but	it	is	certainly	not	a	requirement.		Lua	is
specifically	written	with	the	intention	of	being	easier	than	most	languages
for	anyone	to	understand	and	use.

Getting	Started

The	basics	of	Lua	scripting,	its	implementation	into	FCEUX,	and	how	to
get	started	using	Lua.

Using	Lua

How	to	use	Lua	and	basic	syntax/commands	that	are	useable	under
FCEUX.

Lua	Functions	List

A	list	of	Lua	functions	available	in	FCEUX	and	a	brief	description	of	each.

Lua	Bot

How	to	use	Luau's	version	of	Basic	bot.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Getting	Started

Using	Lua	scripting
Lua	is	built	into	FCEUX	as	of	2.1.2,	and	luapack	DLL	files	are	no	longer
needed	in	this	and	later	versions.

To	run	lua	scripts	in	older	versions	of	FCEUX,	you	will	need	the	lua	pack
which	can	be	found	here.	The	.dll	files	must	be	unzipped	in	the	same
folder	as	fceux.exe.

Core	Lua	Documentation
If	you	have	never	programmed,	you	will	probably	want	to	start	by	learning
the	basic	of	Lua,	which	is	too	broad	for	the	scope	of	this	help	file.		Try
searching	on	the	Internet	for	"Lua	tutorial".		As	of	this	writing,	it's	official
homepage	is	http://www.lua.org/

If	you	are	familiar	with	any	programming	language	you	will	probably	not
have	too	much	difficulty	adjusting	to	the	syntax	and	structure	of	Lua.		You
will	probably	also	find	useful	information	on	the	Internet.

GUI	Frontend
To	use	a	Lua	script,	you	need	to	create	one	in	a	text	editor.		The	name	of
the	file	created	should	end	in	.lua	to	indicate	that	it	is	a	Lua	script.

To	run	a	Lua	script,	choose	"Run	Lua	Script"	***from	where***		In	the
dialog	that	pops	up,	click	"Browse"	and	find	the	file	you	wish	to	run.		This
will	insert	the	path	of	this	file	into	the	dialog.		You	can	then	click	on	"Run"
to	run	the	script	or	"Cancel"	to	return	to	FCEUX	without	running	the
script.

To	end	a	Lua	script,	choose	"Stop	Lua	Script"	***from	where***.

http://fceux.com/luapack
http://www.lua.org/

FCEUX	Lua	Basics
Your	script	will	be	constructed	according	to	the	rules	of	Lua,	but	you	will
use	FCEUX-specific	functions	to	interact	with	the	emulator.		For	example,
one	of	the	most	often-used	functions	is	emu.frameadvance()	which	will
tell	the	emulator	to	advance	exactly	one	frame,	which	is	the	basic	unit	of
time	on	an	NES.

In	general,	your	script	will	probably	want	to	be	run	until	you	tell	it	to	stop,
so	it	will	look	something	like	this:

emu.speedmode("normal")	--	Set	the	speed	of	the	emulator

--	Declare	and	set	variables	or	functions	if	needed

while	true	do
			--	Execute	instructions	for	FCEUX
			emu.frameadvance()	--	This	essentially	tells	FCEUX	to	keep	running
end

The	way	instructions	are	sent	to	FCEUX	is	through	a	set	of	specially
defined	functions	(and	variables)	which	are	called	an	API,	the
specification	of	which	follows.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Lua	Functions	List

Lua	Functions
The	following	functions	are	available	in	FCEUX,	in	addition	to	standard
LUA	capabilities:

Emu	library

emu.poweron()

Executes	a	power	cycle.

emu.softreset()

Executes	a	(soft)	reset.

emu.speedmode(string	mode)

Set	the	emulator	to	given	speed.	The	mode	argument	can

be	one	of	these:

							-	"normal"

							-	"nothrottle"	(same	as	turbo	on	fceux)

							-	"turbo"

							-	"maximum"

emu.frameadvance()

Advance	the	emulator	by	one	frame.	It's	like	pressing

the	frame	advance	button	once.

Most	scripts	use	this	function	in	their	main	game	loop

to	advance	frames.	Note	that	you	can	also	register

functions	by	various	methods	that	run	"dead",

returning	control	to	the	emulator	and	letting	the

emulator	advance	the	frame.		For	most	people,	using

frame	advance	in	an	endless	while	loop	is	easier	to

comprehend	so	I	suggest		starting	with	that.		This

makes	more	sense	when	creating	bots.	Once	you	move	to

creating	auxillary	libraries,	try	the	register()

methods.

emu.pause()

Pauses	the	emulator.	FCEUX	will	not	unpause	until	you

manually	unpause	it.

emu.unpause()

Unpauses	the	emulator.

emu.exec_count(int	count)

emu.exec_time(int	count)

emu.setrenderplanes(bool	sprites,	bool

background)

Toggles	the	drawing	of	the	sprites	and	background

planes.	Set	to	false	or	nil	to	disable	a	pane,

anything	else	will	draw	them.

emu.message(string	message)

Displays	given	message	on	screen	in	the	standard

messages	position.	Use	gui.text()	when	you	need	to

position	text.

int	emu.framecount()

Returns	the	framecount	value.	The	frame	counter	runs

without	a	movie	running	so	this	always	returns	a

value.

int	emu.lagcount()

Returns	the	number	of	lag	frames	encountered.	Lag

frames	are	frames	where	the	game	did	not	poll	for

input	because	it	missed	the	vblank.	This	happens	when

it	has	to	compute	too	much	within	the	frame	boundary.

This	returns	the	number	indicated	on	the	lag	counter.

bool	emu.lagged()

Returns	true	if	currently	in	a	lagframe,	false

otherwise.

bool	emu.emulating()

Returns	true	if	emulation	has	started,	or	false

otherwise.	Certain	operations	such	as	using	savestates

are	invalid	to	attempt	before	emulation	has	started.

You	probably	won't	need	to	use	this	function	unless

you	want	to	make	your	script	extra-robust	to	being

started	too	early.

bool	emu.readonly()

Alias:	movie.readonly

Returns	whether	the	emulator	is	in	read-only	state.	

While	this	variable	only	applies	to	movies,	it	is

stored	as	a	global	variable	and	can	be	modified	even

without	a	movie	loaded.		Hence,	it	is	in	the	emu

library	rather	than	the	movie	library.

emu.setreadonly(bool	state)

Alias:	movie.setreadonly

Sets	the	read-only	status	to	read-only	if	argument	is

true	and	read+write	if	false.

Note:	This	might	result	in	an	error	if	the	medium	of

the	movie	file	is	not	writeable	(such	as	in	an	archive

file).

While	this	variable	only	applies	to	movies,	it	is

stored	as	a	global	variable	and	can	be	modified	even

without	a	movie	loaded.		Hence,	it	is	in	the	emu

library	rather	than	the	movie	library.

emu.registerbefore(function	func)

Registers	a	callback	function	to	run	immediately

before	each	frame	gets	emulated.	This	runs	after	the

next	frame's	input	is	known	but	before	it's	used,	so

this	is	your	only	chance	to	set	the	next	frame's	input

using	the	next	frame's	would-be	input.	For	example,	if

you	want	to	make	a	script	that	filters	or	modifies

ongoing	user	input,	such	as	making	the	game	think

"left"	is	pressed	whenever	you	press	"right",	you	can

do	it	easily	with	this.

Note	that	this	is	not	quite	the	same	as	code	that's

placed	before	a	call	to	emu.frameadvance.	This

callback	runs	a	little	later	than	that.	Also,	you

cannot	safely	assume	that	this	will	only	be	called

once	per	frame.	Depending	on	the	emulator's	options,

every	frame	may	be	simulated	multiple	times	and	your

callback	will	be	called	once	per	simulation.	If	for

some	reason	you	need	to	use	this	callback	to	keep

track	of	a	stateful	linear	progression	of	things

across	frames	then	you	may	need	to	key	your

calculations	to	the	results	of	emu.framecount.

Like	other	callback-registering	functions	provided	by

FCEUX,	there	is	only	one	registered	callback	at	a	time

per	registering	function	per	script.	If	you	register

two	callbacks,	the	second	one	will	replace	the	first,

and	the	call	to	emu.registerbefore	will	return	the	old

callback.	You	may	register	nil	instead	of	a	function

to	clear	a	previously-registered	callback.	If	a	script

returns	while	it	still	has	registered	callbacks,	FCEUX

will	keep	it	alive	to	call	those	callbacks	when

appropriate,	until	either	the	script	is	stopped	by	the

user	or	all	of	the	callbacks	are	de-registered.

emu.registerafter(function	func)

Registers	a	callback	function	to	run	immediately	after

each	frame	gets	emulated.	It	runs	at	a	similar	time	as

(and	slightly	before)	gui.register	callbacks,	except

unlike	with	gui.register	it	doesn't	also	get	called

again	whenever	the	screen	gets	redrawn.	Similar

caveats	as	those	mentioned	in	emu.registerbefore

apply.

emu.registerexit(function	func)

Registers	a	callback	function	that	runs	when	the

script	stops.	Whether	the	script	stops	on	its	own	or

the	user	tells	it	to	stop,	or	even	if	the	script

crashes	or	the	user	tries	to	close	the	emulator,	FCEUX

will	try	to	run	whatever	Lua	code	you	put	in	here

first.	So	if	you	want	to	make	sure	some	code	runs	that

cleans	up	some	external	resources	or	saves	your

progress	to	a	file	or	just	says	some	last	words,	you

could	put	it	here.	(Of	course,	a	forceful	termination

of	the	application	or	a	crash	from	inside	the

registered	exit	function	will	still	prevent	the	code

from	running.)

Suppose	you	write	a	script	that	registers	an	exit

function	and	then	enters	an	infinite	loop.	If	the	user

clicks	"Stop"	your	script	will	be	forcefully	stopped,

but	then	it	will	start	running	its	exit	function.	If

your	exit	function	enters	an	infinite	loop	too,	then

the	user	will	have	to	click	"Stop"	a	second	time	to

really	stop	your	script.	That	would	be	annoying.	So

try	to	avoid	doing	too	much	inside	the	exit	function.

Note	that	restarting	a	script	counts	as	stopping	it

and	then	starting	it	again,	so	doing	so	(either	by

clicking	"Restart"	or	by	editing	the	script	while	it

is	running)	will	trigger	the	callback.	Note	also	that

returning	from	a	script	generally	does	NOT	count	as

stopping	(because	your	script	is	still	running	or

waiting	to	run	its	callback	functions	and	thus	does

not	stop...	see	here	for	more	information),	even	if

the	exit	callback	is	the	only	one	you	have	registered.

bool	emu.addgamegenie(string	str)

Adds	a	Game	Genie	code	to	the	Cheats	menu.	Returns

false	and	an	error	message	if	the	code	can't	be

decoded.	Returns	false	if	the	code	couldn't	be	added.

Returns	true	if	the	code	already	existed,	or	if	it	was

added.

Usage:	emu.addgamegenie("NUTANT")

Note	that	the	Cheats	Dialog	Box	won't	show	the	code

unless	you	close	and	reopen	it.

bool	emu.delgamegenie(string	str)

Removes	a	Game	Genie	code	from	the	Cheats	menu.

Returns	false	and	an	error	message	if	the	code	can't

be	decoded.	Returns	false	if	the	code	couldn't	be

deleted.	Returns	true	if	the	code	didn't	exist,	or	if

it	was	deleted.

Usage:	emu.delgamegenie("NUTANT")

Note	that	the	Cheats	Dialog	Box	won't	show	the	code

unless	you	close	and	reopen	it.

emu.print(string	str)

Puts	a	message	into	the	Output	Console	area	of	the	Lua

Script	control	window.	Useful	for	displaying	usage

instructions	to	the	user	when	a	script	gets	run.

emu.getscreenpixel(int	x,	int	y,	bool

getemuscreen)

Returns	the	separate	RGB	components	of	the	given

screen	pixel,	and	the	palette.	Can	be	0-255	by	0-239,

but	NTSC	only	displays	0-255	x	8-231	of	it.	If

getemuscreen	is	false,	this	gets	background	colors

from	either	the	screen	pixel	or	the	LUA	pixels	set,

but	LUA	data	may	not	match	the	information	used	to	put

the	data	to	the	screen.	If	getemuscreen	is	true,	this

gets	background	colors	from	anything	behind	an	LUA

screen	element.

Usage	is	local	r,g,b,palette	=	emu.getscreenpixel(5,

5,	false)	to	retrieve	the	current	red/green/blue

colors	and	palette	value	of	the	pixel	at	5x5.

Palette	value	can	be	0-63,	or	254	if	there	was	an

error.

You	can	avoid	getting	LUA	data	by	putting	the	data

into	a	function,	and	feeding	the	function	name	to

emu.registerbefore.

FCEU	library
The	FCEU	library	is	the	same	as	the	emu	library.	It	is

left	in	for	backwards	compatibility.	However,	the	emu

library	is	preferred.

ROM	Library

rom.readbyte(int	address)

rom.readbyteunsigned(int	address)

Get	an	unsigned	byte	from	the	actual	ROM	file	at	the

given	address.	

This	includes	the	header!	It's	the	same	as	opening	the

file	in	a	hex-editor.

rom.readbytesigned(int	address)

Get	a	signed	byte	from	the	actual	ROM	file	at	the

given	address.	Returns	a	byte	that	is	signed.

This	includes	the	header!	It's	the	same	as	opening	the

file	in	a	hex-editor.

Memory	Library

memory.readbyte(int	address)

memory.readbyteunsigned(int	address)

Get	an	unsigned	byte	from	the	RAM	at	the	given

address.	Returns	a	byte	regardless	of	emulator.	The

byte	will	always	be	positive.

memory.readbyterange(int	address,	int	length)

Get	a	length	bytes	starting	at	the	given	address	and

return	it	as	a	string.	Convert	to	table	to	access	the

individual	bytes.

memory.readbytesigned(int	address)

Get	a	signed	byte	from	the	RAM	at	the	given	address.

Returns	a	byte	regardless	of	emulator.	The	most

significant	bit	will	serve	as	the	sign.

memory.writebyte(int	address,	int	value)

Write	the	value	to	the	RAM	at	the	given	address.	The

value	is	modded	with	256	before	writing	(so	writing

257	will	actually	write	1).	Negative	values	allowed.

int	memory.getregister(cpuregistername)

Returns	the	current	value	of	the	given	hardware

register.

For	example,	memory.getregister("pc")	will	return	the

main	CPU's	current	Program	Counter.

Valid	registers	are:	"a",	"x",	"y",	"s",	"p",	and

"pc".

memory.setregister(string	cpuregistername,	int

value)

Sets	the	current	value	of	the	given	hardware	register.

For	example,	memory.setregister("pc",0x200)	will

change	the	main	CPU's	current	Program	Counter	to

0x200.

Valid	registers	are:	"a",	"x",	"y",	"s",	"p",	and

"pc".

You	had	better	know	exactly	what	you're	doing	or

you're	probably	just	going	to	crash	the	game	if	you

try	to	use	this	function.	That	applies	to	the	other

memory.write	functions	as	well,	but	to	a	lesser

extent.

memory.register(int	address,	[int	size,]

function	func)

memory.registerwrite(int	address,	[int	size,]

function	func)

Registers	a	function	to	be	called	immediately	whenever

the	given	memory	address	range	is	written	to.

size	is	the	number	of	bytes	to	"watch".	For	example,

if	size	is	100	and	address	is	0x0200,	then	you	will

register	the	function	across	all	100	bytes	from	0x0200

to	0x0263.	A	write	to	any	of	those	bytes	will	trigger

the	function.	Having	callbacks	on	a	large	range	of

memory	addresses	can	be	expensive,	so	try	to	use	the

smallest	range	that's	necessary	for	whatever	it	is

you're	trying	to	do.	If	you	don't	specify	any	size

then	it	defaults	to	1.

The	callback	function	will	receive	two	arguments,

(address,	size)	indicating	what	write	operation

triggered	the	callback.	If	you	don't	care	about	that

extra	information	then	you	can	ignore	it	and	define

your	callback	function	to	not	take	any	arguments.	The

value	that	was	written	is	NOT	passed	into	the	callback

function,	but	you	can	easily	use	any	of	the

memory.read	functions	to	retrieve	it.

You	may	use	a	memory.write	function	from	inside	the

callback	to	change	the	value	that	just	got	written.

However,	keep	in	mind	that	doing	so	will	trigger	your

callback	again,	so	you	must	have	a	"base	case"	such	as

checking	to	make	sure	that	the	value	is	not	already

what	you	want	it	to	be	before	writing	it.	Another,

more	drastic	option	is	to	de-register	the	current

callback	before	performing	the	write.

If	func	is	nil	that	means	to	de-register	any	memory

write	callbacks	that	the	current	script	has	already

registered	on	the	given	range	of	bytes.

memory.registerexec(int	address,	[int	size,]

function	func)

memory.registerrun(int	address,	[int	size,]

function	func)

memory.registerexecute(int	address,	[int	size,]

function	func)

Registers	a	function	to	be	called	immediately	whenever

the	emulated	system	runs	code	located	in	the	given

memory	address	range.

Besides	that,	most	of	the	information	about

memory.register	applies	to	this	function	as	well.

Joypad	Library

table	joypad.get(int	player)

table	joypad.read(int	player)

Returns	a	table	of	every	game	button,	where	each	entry

is	true	if	that	button	is	currently	held	(as	of	the

last	time	the	emulation	checked),	or	false	if	it	is

not	held.	This	takes	keyboard	inputs,	not	Lua.	The

table	keys	look	like	this	(case	sensitive):

up,	down,	left,	right,	A,	B,	start,	select

Where	a	Lua	truthvalue	true	means	that	the	button	is

set,	false	means	the	button	is	unset.	Note	that	only

"false"	and	"nil"	are	considered	a	false	value	by

Lua.		Anything	else	is	true,	even	the	number	0.

joypad.read	left	in	for	backwards	compatibility	with

older	versions	of	FCEU/FCEUX.

table	joypad.getdown(int	player)

table	joypad.readdown(int	player)

Returns	a	table	of	only	the	game	buttons	that	are

currently	held.	Each	entry	is	true	if	that	button	is

currently	held	(as	of	the	last	time	the	emulation

checked),	or	nil	if	it	is	not	held.

table	joypad.getup(int	player)

table	joypad.readup(int	player)

Returns	a	table	of	only	the	game	buttons	that	are	not

currently	held.	Each	entry	is	nil	if	that	button	is

currently	held	(as	of	the	last	time	the	emulation

checked),	or	false	if	it	is	not	held.

joypad.set(int	player,	table	input)

joypad.write(int	player,	table	input)

Set	the	inputs	for	the	given	player.	Table	keys	look

like	this	(case	sensitive):

up,	down,	left,	right,	A,	B,	start,	select

There	are	4	possible	values:	true,	false,	nil,	and

"invert".

true				-	Forces	the	button	on

false			-	Forces	the	button	off

nil					-	User's	button	press	goes	through	unchanged

"invert"-	Reverses	the	user's	button	press

Any	string	works	in	place	of	"invert".		It	is

suggested	as	a	convention	to	use	"invert"	for

readability,	but	strings	like	"inv",	"Weird	switchy

mechanism",	"",	or	"true	or	false"	works	as	well	as

"invert".

nil	and	"invert"	exists	so	the	script	can	control

individual	buttons	of	the	controller	without	entirely

blocking	the	user	from	having	any	control.	Perhaps

there	is	a	process	which	can	be	automated	by	the

script,	like	an	optimal	firing	pattern,	but	the	user

still	needs	some	manual	control,	such	as	moving	the

character	around.

joypad.write	left	in	for	backwards	compatibility	with

older	versions	of	FCEU/FCEUX.

Zapper	Library

table	zapper.read()

Returns	the	zapper	data

When	no	movie	is	loaded	this	input	is	the	same	as	the

internal	mouse	input	(which	is	used	to	generate	zapper

input,	as	well	as	the	arkanoid	paddle).

When	a	movie	is	playing,	it	returns	the	zapper	data	in

the	movie	code.

The	return	table	consists	of	3	values:	x,	y,	and

fire.		x	and	y	are	the	x,y	coordinates	of	the	zapper

target	in	terms	of	pixels.		fire	represents	the	zapper

firing.		0	=	not	firing,	1	=	firing

Note:	The	zapper	is	always	controller	2	on	the	NES	so

there	is	no	player	argument	to	this	function.

Input	Library

table	input.get()

table	input.read()

Reads	input	from	keyboard	and	mouse.	Returns	pressed

keys	and	the	position	of	mouse	in	pixels	on	game

screen.		The	function	returns	a	table	with	at	least

two	properties;	table.xmouse	and	table.ymouse.	

Additionally	any	of	these	keys	will	be	set	to	true	if

they	were	held	at	the	time	of	executing	this	function:

leftclick,	rightclick,	middleclick,	capslock,	numlock,

scrolllock,	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,

E,	F,	G,	H,	I,	J,	K,	L,	M,	N,	O,	P,	Q,	R,	S,	T,	U,	V,

W,	X,	Y,	Z,	F1,	F2,	F3,	F4,	F5,	F6,		F7,	F8,	F9,	F10,

F11,	F12,	F13,	F14,	F15,	F16,	F17,	F18,	F19,	F20,	F21,

F22,	F23,	F24,	backspace,	tab,	enter,	shift,	control,

alt,	pause,	escape,	space,	pageup,	pagedown,	end,

home,	left,	up,	right,	down,	numpad0,	numpad1,

numpad2,	numpad3,	numpad4,	numpad5,	numpad6,	numpad7,

numpad8,	numpad9,	numpad*,	insert,	delete,	numpad+,

numpad-,	numpad.,	numpad/,	semicolon,	plus,	minus,

comma,	period,	slash,	backslash,	tilde,	quote,

leftbracket,	rightbracket.

string	input.popup

Alias:	gui.popup

Requests	input	from	the	user	using	a	multiple-option

message	box.	See	gui.popup	for	complete	usage	and

returns.

Savestate	Library

object	savestate.object(int	slot	=	nil)

Create	a	new	savestate	object.	Optionally	you	can	save

the	current	state	to	one	of	the	predefined	slots(1-10)

using	the	range	1-9	for	slots	1-9,	and	10	for	0,

QWERTY	style.	Using	no	number	will	create	an

"anonymous"	savestate.

Note	that	this	does	not	actually	save	the	current

state!	You	need	to	create	this	value	and	pass	it	on	to

the	load	and	save	functions	in	order	to	save	it.

Anonymous	savestates	are	temporary,	memory	only

states.	You	can	make	them	persistent	by	calling

memory.persistent(state).	Persistent	anonymous	states

are	deleted	from	disk	once	the	script	exits.

object	savestate.create(int	slot	=	nil)

savestate.create	is	identical	to	savestate.object,

except	for	the	numbering	for	predefined	slots(1-10,	1

refers	to	slot	0,	2-10	refer	to	1-9).	It's	being	left

in	for	compatibility	with	older	scripts,	and

potentially	for	platforms	with	different	internal

predefined	slot	numbering.

savestate.save(object	savestate)

Save	the	current	state	object	to	the	given	savestate.

The	argument	is	the	result	of	savestate.create().	You

can	load	this	state	back	up	by	calling

savestate.load(savestate)	on	the	same	object.

savestate.load(object	savestate)

Load	the	the	given	state.	The	argument	is	the	result

of	savestate.create()	and	has	been	passed	to

savestate.save()	at	least	once.

If	this	savestate	is	not	persistent	and	not	one	of	the

predefined	states,	the	state	will	be	deleted	after

loading.

savestate.persist(object	savestate)

Set	the	given	savestate	to	be	persistent.	It	will	not

be	deleted	when	you	load	this	state	but	at	the	exit	of

this	script	instead,	unless	it's	one	of	the	predefined

states.		If	it	is	one	of	the	predefined	savestates	it

will	be	saved	as	a	file	on	disk.

savestate.registersave(function	func)

Registers	a	callback	function	that	runs	whenever	the

user	saves	a	state.	This	won't	actually	be	called	when

the	script	itself	makes	a	savestate,	so	none	of	those

endless	loops	due	to	a	misplaced	savestate.save.

As	with	other	callback-registering	functions	provided

by	FCEUX,	there	is	only	one	registered	callback	at	a

time	per	registering	function	per	script.	Upon

registering	a	second	callback,	the	first	is	kicked	out

to	make	room	for	the	second.	In	this	case,	it	will

return	the	first	function	instead	of	nil,	letting	you

know	what	was	kicked	out.	Registering	nil	will	clear

the	previously-registered	callback.

savestate.registerload(function	func)

Registers	a	callback	function	that	runs	whenever	the

user	loads	a	previously	saved	state.	It's	not	called

when	the	script	itself	loads	a	previous	state,	so

don't	worry	about	your	script	interrupting	itself	just

because	it's	loading	something.

The	state's	data	is	loaded	before	this	function	runs,

so	you	can	read	the	RAM	immediately	after	the	user

loads	a	state,	or	check	the	new	framecount.

Particularly	useful	if	you	want	to	update	lua's

display	right	away	instead	of	showing	junk	from	before

the	loadstate.

savestate.loadscriptdata(int	location)

Accuracy	not	yet	confirmed.

Intended	Function,	according	to	snes9x	LUA

documentation:

Returns	the	data	associated	with	the	given	savestate

(data	that	was	earlier	returned	by	a	registered	save

callback)	without	actually	loading	the	rest	of	that

savestate	or	calling	any	callbacks.	location	should	be

a	save	slot	number.

Movie	Library

bool	movie.active()

Returns	true	if	a	movie	is	currently	loaded	and	false

otherwise.		(This	should	be	used	to	guard	against	Lua

errors	when	attempting	to	retrieve	movie	information).

int	movie.framecount()

Returns	the	current	frame	count.	(Has	the	same	affect

as	emu.framecount)

string	movie.mode()

Returns	the	current	state	of	movie	playback.	Returns

one	of	the	following:

-	"record"

-	"playback"

-	"finished"

-	nil

movie.rerecordcounting(bool	counting)

Turn	the	rerecord	counter	on	or	off.	Allows	you	to	do

some	brute	forcing	without	inflating	the	rerecord

count.

movie.stop()

movie.close()

Stops	movie	playback.	If	no	movie	is	loaded,	it	throws

a	Lua	error.

int	movie.length()

Returns	the	total	number	of	frames	of	the	current

movie.	Throws	a	Lua	error	if	no	movie	is	loaded.

string	movie.name()

string	movie.getname()

Returns	the	filename	of	the	current	movie	with	path.

Throws	a	Lua	error	if	no	movie	is	loaded.

movie.getfilename()

Returns	the	filename	of	the	current	movie	with	no

path.	Throws	a	Lua	error	if	no	movie	is	loaded.

movie.rerecordcount()

Returns	the	rerecord	count	of	the	current	movie.

Throws	a	Lua	error	if	no	movie	is	loaded.

movie.replay()

movie.playbeginning()

Performs	the	Play	from	Beginning	function.	Movie	mode

is	switched	to	read-only	and	the	movie	loaded	will

begin	playback	from	frame	1.

If	no	movie	is	loaded,	no	error	is	thrown	and	no

message	appears	on	screen.

bool	movie.readonly()

bool	movie.getreadonly()

Alias:	emu.getreadonly

FCEUX	keeps	the	read-only	status	even	without	a	movie

loaded.

Returns	whether	the	emulator	is	in	read-only	state.	

While	this	variable	only	applies	to	movies,	it	is

stored	as	a	global	variable	and	can	be	modified	even

without	a	movie	loaded.		Hence,	it	is	in	the	emu

library	rather	than	the	movie	library.

movie.setreadonly(bool	state)

Alias:	emu.setreadonly

FCEUX	keeps	the	read-only	status	even	without	a	movie

loaded.

Sets	the	read-only	status	to	read-only	if	argument	is

true	and	read+write	if	false.

Note:	This	might	result	in	an	error	if	the	medium	of

the	movie	file	is		not	writeable	(such	as	in	an

archive	file).

While	this	variable	only	applies	to	movies,	it	is

stored	as	a	global	variable	and	can	be	modified	even

without	a	movie	loaded.		Hence,	it	is	in	the	emu

library	rather	than	the	movie	library.

bool	movie.recording()

Returns	true	if	there	is	a	movie	loaded	and	in	record

mode.

bool	movie.playing()

Returns	true	if	there	is	a	movie	loaded	and	in	play

mode.

bool	movie.ispoweron()

Returns	true	if	the	movie	recording	or	loaded	started

from	'Start'.

Returns	false	if	the	movie	uses	a	save	state.

Opposite	of	movie.isfromsavestate()

bool	movie.isfromsavestate()

Returns	true	if	the	movie	recording	or	loaded	started

from	'Now'.

Returns	false	if	the	movie	was	recorded	from	a	reset.

Opposite	of	movie.ispoweron()

string	movie.name()

If	a	movie	is	loaded	it	returns	the	name	of	the	movie,

else	it	throws	an	error.

bool	movie.readonly()

Returns	the	state	of	read-only.	True	if	in	playback

mode,	false	if	in	record	mode.

GUI	Library

gui.pixel(int	x,	int	y,	type	color)

gui.drawpixel(int	x,	int	y,	type	color)

gui.setpixel(int	x,	int	y,	type	color)

gui.writepixel(int	x,	int	y,	type	color)

Draw	one	pixel	of	a	given	color	at	the	given	position

on	the	screen.	See	drawing	notes	and	color	notes	at

the	bottom	of	the	page.	

gui.getpixel(int	x,	int	y)

Returns	the	separate	RGBA	components	of	the	given

pixel	set	by	gui.pixel.	This	only	gets	LUA	pixels	set,

not	background	colors.

Usage	is	local	r,g,b,a	=	gui.getpixel(5,	5)	to

retrieve	the	current	red/green/blue/alpha	values	of

the	LUA	pixel	at	5x5.

See	emu.getscreenpixel()	for	an	emulator	screen

variant.

gui.line(int	x1,	int	y1,	int	x2,	int	y2	[,

color	[,	skipfirst]])

gui.drawline(int	x1,	int	y1,	int	x2,	int	y2	[,

color	[,	skipfirst]])

Draws	a	line	between	the	two	points.	The	x1,y1

coordinate	specifies	one	end	of	the	line	segment,	and

the	x2,y2	coordinate	specifies	the	other	end.	If

skipfirst	is	true	then	this	function	will	not	draw

anything	at	the	pixel	x1,y1,	otherwise	it	will.

skipfirst	is	optional	and	defaults	to	false.	The

default	color	for	the	line	is	solid	white,	but	you	may

optionally	override	that	using	a	color	of	your	choice.

See	also	drawing	notes	and	color	notes	at	the	bottom

of	the	page.

gui.box(int	x1,	int	y1,	int	x2,	int	y2	[,

fillcolor	[,	outlinecolor]]))

gui.drawbox(int	x1,	int	y1,	int	x2,	int	y2	[,

fillcolor	[,	outlinecolor]]))

gui.rect(int	x1,	int	y1,	int	x2,	int	y2	[,

fillcolor	[,	outlinecolor]]))

gui.drawrect(int	x1,	int	y1,	int	x2,	int	y2	[,

fillcolor	[,	outlinecolor]]))

Draws	a	rectangle	between	the	given	coordinates	of	the

emulator	screen	for	one	frame.	The	x1,y1	coordinate

specifies	any	corner	of	the	rectangle	(preferably	the

top-left	corner),	and	the	x2,y2	coordinate	specifies

the	opposite	corner.

The	default	color	for	the	box	is	transparent	white

with	a	solid	white	outline,	but	you	may	optionally

override	those	using	colors	of	your	choice.	Also	see

drawing	notes	and	color	notes.

gui.text(int	x,	int	y,	string	str	[,	textcolor

[,	backcolor]])

gui.drawtext(int	x,	int	y,	string	str	[,

textcolor	[,	backcolor]])

Draws	a	given	string	at	the	given	position.	textcolor

and	backcolor	are	optional.	See	'on	colors'	at	the	end

of	this	page	for	information.	Using	nil	as	the	input

or	not	including	an	optional	field	will	make	it	use

the	default.

gui.parsecolor(color)

Returns	the	separate	RGBA	components	of	the	given

color.

For	example,	you	can	say	local	r,g,b,a	=

gui.parsecolor('orange')	to	retrieve	the

red/green/blue	values	of	the	preset	color	orange.	(You

could	also	omit	the	a	in	cases	like	this.)	This	uses

the	same	conversion	method	that	FCEUX	uses	internally

to	support	the	different	representations	of	colors

that	the	GUI	library	uses.	Overriding	this	function

will	not	change	how	FCEUX	interprets	color	values,

however.

gui.savescreenshot()

Makes	a	screenshot	of	the	FCEUX	emulated	screen,	and

saves	it	to	the	appropriate	folder.	Performs

identically	to	pressing	the	Screenshot	hotkey.

string	gui.gdscreenshot()

Takes	a	screen	shot	of	the	image	and	returns	it	in	the

form	of	a	string	which	can	be	imported	by	the	gd

library	using	the	gd.createFromGdStr()	function.

This	function	is	provided	so	as	to	allow	FCEUX	to	not

carry	a	copy	of	the	gd	library	itself.	If	you	want	raw

RGB32	access,	skip	the	first	11	bytes	(header)	and

then	read	pixels	as	Alpha	(always	0),	Red,	Green,

Blue,	left	to	right	then	top	to	bottom,	range	is	0-255

for	all	colors.

Warning:	Storing	screen	shots	in	memory	is	not

recommended.	Memory	usage	will	blow	up	pretty	quick.

One	screen	shot	string	eats	around	230	KB	of	RAM.

gui.gdoverlay([int	dx=0,	int	dy=0,]	string	str

[,	sx=0,	sy=0,	sw,	sh]	[,	float	alphamul=1.0])

gui.image([int	dx=0,	int	dy=0,]	string	str	[,

sx=0,	sy=0,	sw,	sh]	[,	float	alphamul=1.0])

gui.drawimage([int	dx=0,	int	dy=0,]	string	str

[,	sx=0,	sy=0,	sw,	sh]	[,	float	alphamul=1.0])

Draws	an	image	on	the	screen.	gdimage	must	be	in

truecolor	gd	string	format.

Transparency	is	fully	supported.	Also,	if	alphamul	is

specified	then	it	will	modulate	the	transparency	of

the	image	even	if	it's	originally	fully	opaque.

(alphamul=1.0	is	normal,	alphamul=0.5	is	doubly

transparent,	alphamul=3.0	is	triply	opaque,	etc.)

dx,dy	determines	the	top-left	corner	of	where	the

image	should	draw.	If	they	are	omitted,	the	image	will

draw	starting	at	the	top-left	corner	of	the	screen.

gui.gdoverlay	is	an	actual	drawing	function	(like

gui.box	and	friends)	and	thus	must	be	called	every

frame,	preferably	inside	a	gui.register'd	function,	if

you	want	it	to	appear	as	a	persistent	image	onscreen.

Here	is	an	example	that	loads	a	PNG	from	file,

converts	it	to	gd	string	format,	and	draws	it	once	on

the	screen:

local	gdstr	=	gd.createFromPng("myimage.png"):gdStr()

gui.gdoverlay(gdstr)

gui.opacity(int	alpha)

Scales	the	transparency	of	subsequent	draw	calls.	An

alpha	of	0.0	means	completely	transparent,	and	an

alpha	of	1.0	means	completely	unchanged	(opaque).	Non-

integer	values	are	supported	and	meaningful,	as	are

values	greater	than	1.0.	It	is	not	necessary	to	use

this	function	(or	the	less-recommended

gui.transparency)	to	perform	drawing	with

transparency,	because	you	can	provide	an	alpha	value

in	the	color	argument	of	each	draw	call.	However,	it

can	sometimes	be	convenient	to	be	able	to	globally

modify	the	drawing	transparency.

gui.transparency(int	trans)

Scales	the	transparency	of	subsequent	draw	calls.

Exactly	the	same	as	gui.opacity,	except	the	range	is

different:	A	trans	of	4.0	means	completely

transparent,	and	a	trans	of	0.0	means	completely

unchanged	(opaque).

function	gui.register(function	func)

Register	a	function	to	be	called	between	a	frame	being

prepared	for	displaying	on	your	screen	and	it	actually

happening.	Used	when	that	1	frame	delay	for	rendering

is	not	acceptable.

string	gui.popup(string	message	[,	string	type

=	"ok"	[,	string	icon	=	"message"]])

string	input.popup(string	message	[,	string

type	=	"yesno"	[,	string	icon	=	"question"]])

Brings	up	a	modal	popup	dialog	box	(everything	stops

until	the	user	dismisses	it).	The	box	displays	the

message	tostring(msg).	This	function	returns	the	name

of	the	button	the	user	clicked	on	(as	a	string).

type	determines	which	buttons	are	on	the	dialog	box,

and	it	can	be	one	of	the	following:	'ok',	'yesno',

'yesnocancel',	'okcancel',	'abortretryignore'.

type	defaults	to	'ok'	for	gui.popup,	or	to	'yesno'	for

input.popup.

icon	indicates	the	purpose	of	the	dialog	box	(or	more

specifically	it	dictates	which	title	and	icon	is

displayed	in	the	box),	and	it	can	be	one	of	the

following:	'message',	'question',	'warning',	'error'.

icon	defaults	to	'message'	for	gui.popup,	or	to

'question'	for	input.popup.

Try	to	avoid	using	this	function	much	if	at	all,

because	modal	dialog	boxes	can	be	irritating.

Linux	users	might	want	to	install	xmessage	to	perform

the	work.	Otherwise	the	dialog	will	appear	on	the

shell	and	that's	less	noticeable.

Bitwise	Operations

All	the	following	functions	are	left	for	backward

compatibility,	since	LuaBitOp	is	embedded	in	FCEUX.

int	AND(int	n1,	int	n2,	...,	int	nn)

Binary	logical	AND	of	all	the	given	integers.	This

function	compensates	for	Lua's	lack	of	it.

int	OR(int	n1,	int	n2,	...,	int	nn)

Binary	logical	OR	of	all	the	given	integers.	This

function	compensates	for	Lua's	lack	of	it.

int	XOR(int	n1,	int	n2,	...,	int	nn)

Binary	logical	XOR	of	all	the	given	integers.	This

function	compensates	for	Lua's	lack	of	it.

int	BIT(int	n1,	int	n2,	...,	int	nn)

Returns	an	integer	with	the	given	bits	turned	on.

Parameters	should	be	smaller	than	31.

Appendix

On	drawing

A	general	warning	about	drawing	is	that	it	is	always

one	frame	behind	unless	you	use	gui.register.	This	is

because	you	tell	the	emulator	to	paint	something	but

it	will	actually	paint	it	when	generating	the	image

for	the	next	frame.	So	you	see	your	painting,	except

it	will	be	on	the	image	of	the	next	frame.	You	can

prevent	this	with	gui.register	because	it	gives	you	a

quick	chance	to	paint	before	blitting.

http://bitop.luajit.org/

Dimensions	&	color	depths	you	can	paint	in:

--320x239,	8bit	color	(confirm?)

256x224,	8bit	color	(confirm?)

On	colors

Colors	can	be	of	a	few	types.

Int:	use	the	a	formula	to	compose	the	color	as	a

number	(depends	on	color	depth)

String:	Can	either	be	a	HTML	colors,	simple	colors,	or

internal	palette	colors.

HTML	string:	"#rrggbb"	("#228844")	or	#rrggbbaa	if

alpha	is	supported.

Simple	colors:	"clear",	"red",	"green",	"blue",

"white",	"black",	"gray",	"grey",	"orange",	"yellow",

"green",	"teal",	"cyan",	"purple",	"magenta".

Array:	Example:	{255,112,48,96}	means	{red=255,

green=112,	blue=48,	alpha=96}

Table:	Example:	{r=255,g=112,b=48,a=96}	means

{red=255,	green=112,	blue=48,	alpha=96}

Palette:	Example:	"P00"	for	Palette	00.	"P3F"	for

palette	3F.	P40-P7F	are	for	LUA.

For	transparancy	use	"clear".

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Commands

(written	by	qFox)
Introduction

Lua	is	a	scripting	language.	It	is	used	in	games	like	Farcry	and	World	of
Warcraft	(and	many	other	games	and	applications!).	Even	though	you
can	find	all	kinds	of	tutorials	online,	let	me	help	you	with	the	basics.

I	will	assume	you	are	at	least	somewhat	familiar	with	the	basics	of
programming.	So	basic	stuff	like	arrays,	variables,	strings,	loops	and	if-
then-else	and	branching	are	not	explained	here.

A	hello	world	EmuLua	program	looks	like	this:

while	(true)	do
							gui.text(50,50,"Hello	world!");
							emu.frameadvance();
end;

When	you	load	the	script,	the	emulator	will	sort	of	go	into	pause	mode
and	hand	controls	over	to	Lua	(you!).	Hence	you	are	responsible	for
frameadvancing	the	emulator.
IF	YOU	DO	NOT	CALL	emu.frameadvance	AT	THE	CYCLE	OF	THE
MAIN	LOOP	YOU	WILL	FREEZE	THE	EMULATOR!	There.	You	have
been	warned.	Don't	worry	though,	you'll	make	this	mistake	at	least	once.
Just	force-quit	the	application	and	try	again	:)

Syntax

Now	then.	Just	like	any	other	language,	Lua	has	a	few	quirks	you	should
be	aware	of.

First	of	all,	if's	require	a	then	and	end.	After	a	couple	of	days	intensive
Lua	coding,	I	still	make	this	mistake	myself,	but	the	Lua	interpreter	will
prompt	you	of	such	errors	on	load,	so	don't	worry	too	much	about	it.	So:

if	(something)	then
							dostuff
end;

Lua	uses	nil	instead	of	null.

There	are	only	two	values	that	evaluate	to	"false",	these	are	"nil"	and
"false".	ANYTHING	else	will	evaluate	to	true,	even	0	or	the	empty	string.

Comments	are	denoted	by	two	consecutive	dashes;	--.	Anything	after	it
on	the	same	line	is	a	comment	and	ignored	by	Lua.	There	is	no	/*	*/	type
of	commenting	in	Lua.

Variables	have	a	local	and	global	scope.	You	explicitly	make	a	variable
local	by	declaring	it	with	the	"local"	keyword.

somethingglobal;	--	accessible	by	any	function	or	flow
local	something;	--	only	known	to	the	same	or	deeper	scope	as	where	it
was	declared

Note	that	variables	declared	in	for	loops	(see	below)	are	always
considered	local.

Arrays	are	called	tables	in	Lua.	To	be	more	precise,	Lua	uses	associative
arrays.

Do	not	rely	on	the	table.length()	when	your	table	can	contain	nil	values,
this	function	stops	when	it	encounters	a	nil	value,	thus	possibly	cutting
your	table	short.

One	experienced	programmers	will	have	to	get	used	to	is	the	table	offset;
tables	start	at	index	1,	not	0.	That's	just	the	way	it	is,	deal	with	it.

There	are	a	few	ways	to	create	a	table:

local	tbl1	=	{};	--	empty	table

local	tbl2	=	{"a","b","c","d"};	--	table	with	5	strings
local	tbl3	=	{a=1,b=2,c=3};	--	associative	table	with	3	numbers
local	tbl4	=	{"a",b=2,c="x","d"=5};	--	associative	table	with	mixed	content

Note	that	you	can	mix	up	the	data	in	one	table,	as	shown	by	tbl4.

You	can	refer	to	table	values	in	a	few	equivalent	manners,	using	the
examples	above:

tbl1[1]	--	=	nil	because	tbl1	is	empty
tbl2[2]	--	=	"b"
tbl3["a"]	--	=	1
tbl4.b	--	=	2
tbl2.3	--	=	"c"

When	the	argument	of	a	function	is	just	a	table,	the	parantheses	"()"	are
optional.	So	for	instance:

processTable({a=2,b=3});

Is	equivalent	to

processTable{a=2,b=3};

Another	notation	that's	equivalent	is

filehandle.read(filehandle,	5);
filehandle:read(5);

When	using	the	colon	notation	":"	Lua	will	call	the	function	adding	the
self-reference	to	the	front	of	the	parameterstack.

Functions	behave	like	objects	and	are	declared	in	the	follow	manner:

function	doSomething(somevalue,	anothervalue)
							dostuffhere
end;

So	no	curly	braces	"{}"	!

Some	flow	control:

for	i=0,15	do
		--	do	stuff	here,	i	runs	from	0	to	15	(inclusive!)
end;

for	key,value	in	pairs(table)	do
		--	do	stuff	here.	pairs	will	iterate	through	the	table,	splitting	the	keys	and
values
end;

while	(somethingistrue)	do

end;

if	(somethingistrue)	then

end;

if	(somethingistrue)	then

else

end;

if	(somethingistrue)	then

elseif	(somethingelseistrue)	then

end;

For	comparison,	you	only	have	to	remember	that	the	exclamationmark	is
not	used.	Not	equal	"!="	is	written	like	tilde-equals	"~="	and	if
(!something)	then	...	is	written	with	"not	"	in	front	of	it;	if	(not	something)

then...

For	easy	reference	to	the	standard	libraries	look	on	the	bottom	half	of	this
page:	http://www.lua.org/manual/5.1/

Lua	in	FCEUX

Now	then,	let's	get	to	the	emulator	specifics!

To	load	a	Lua	script	in	FCEU	first	load	a	rom	(Lua	can	only	do	things	after
each	frame	cycle	so	load	a	rom	first).	Go	to	file,	at	the	bottom	choose
Run	Lua	Script	and	select	and	load	the	file.

When	Lua	starts,	the	emulator	pauses	and	hands	control	over	to	Lua.
Lua	(that's	you!)	decides	when	the	next	frame	is	processed.	That's	why
it's	very	common	to	write	an	endless	while	loop,	exiting	the	main	loop	of	a
script	will	exit	the	script	and	hand	control	back	to	the	emulator.	This	also
happens	when	a	script	unexpectingly	crashes.

A	bare	script	looks	like	this:

while	(true)	do
		emu.frameadvance();
end;

And	is	about	equal	to	not	running	Lua	at	all.	The	frameadvance	function
is	the	same	called	internally,	so	no	loss	of	speed	there!

Bitwise	operators:

Lua	does	not	have	bitwise	operators,	so	we	supply	some	for	you.	These
are	common	bitwise	operators,	nothing	fancy.

AND(a,b);
OR(a,b);
XOR(a,b);
BIT(n);	--	returns	a	number	with	only	bit	n	set	(1)

The	emulator	specific	Lua	is	equal	to	the	one	of	snes9x,	with	some
platform	specific	changes	(few	buttons,	for	instance).
You	can	find	the	reference	here:	http://dehacked.2y.net/snes9x-lua.html
The	following	is	a	quick	reference,	you	can	go	to	the	snes9x	reference	for
more	details.

To	paint	stuff	on	screen,	use	the	gui	table.	This	contains	a	few	predefined
functions	to	manipulate	the	main	window.	For	any	coordinate,	0,0	is	the
top-left	pixel	of	the	window.	You	have	to	prevent	out-of-bound	errors
yourself	for	now.	If	a	color	can	be	passed	on,	it	is	a	string.	HTML-syntax
is	supported	("#34053D"),	as	well	as	a	FEW	colors	("red",	"green",	"blue"
...).

gui.text(x,	y,	str);	--	Print	a	line	to	the	window,	you	can	use	\n	for	a	return
but	it	will	only	work	once
gui.pixel(x,	y,	color);	--	plot	a	pixel	at	the	given	coordinate
gui.line(x1,	y1,	x2,	y2,	color);	--	plot	a	line	from	x1,y1	to	x2,y2
gui.box(x1,	y1,	x2,	y2,	color);	--	draw	a	square	from	x1,y1	to	x2,y2
gui.popup(str);	--	pops	up	a	messagebox	informing	the	user	of
something.	Real	handy	when	debugging!
gui.getpixel(x,y);	--	return	the	values	of	the	pixel	at	given	position.
Returns	three	numbers	of	the	emulator	image	before	paiting	is	applied.
gui.gdscreenshot();	--	Takes	a	screen	shot	of	the	image	and	returns	it	in
the	form	of	a	string	which	can	be	imported	by	the	gd	library	using	the
gd.createFromGdStr()	function
(for	more	gd	functions	see	DeHackED's	reference:
http://dehacked.2y.net/snes9x-lua.html)

PAINTING	IS	ALWAYS	ONE	FRAME	BEHIND!	This	is	because	the
painting	is	done	at	the	creation	of	the	next	frame,	not	while	Lua	is
running.

Emulator	control:

emu.frameadvance();	--	advances	emulation	ONE	frame
emu.pause();	--	same	as	pressing	the	pause	button

emu.speedmode(strMode);	--	Supported	are
"normal","turbo","nothrottle","maximum".	But	know	that	except	for
"normal",	all	other	modes	will	run	as	"turbo"	for	now.
emu.wait();	--	skips	the	emulation	of	the	next	frame,	in	case	your	script
needs	to	wait	for	something

Memory	control:

memory.readbyte(adr);	--	read	one	byte	from	given	address	and	return	it.
Besides	decimal	values	Lua	also	allows	the	hex	notation	0x00FA.	In
FCEUX	reading	is	done	BEFORE	the	cheats	are	applied!
memory.writebyte(adr,	value);	--	write	one	byte	to	the	RAM	of	the	NES.
writing	is	done	AFTER	the	hexeditor	receives	its	values,	so	if	you	are
freezing	an	address	by	Lua,	it	will	not	show	in	the	hex	editor	(but	it	will	in
the	game	:)
memory.readbytesigned(adr);	--	same	as	readbyte,	except	this	returns	a
signed	value,	rather	then	an	unsigned	value.
memory.register(adr,	function);	--	binds	a	function	to	an	address.	The
function	will	be	called	when	an	address	changes.	NOTE	THAT	THIS	IS
EXPENSIVE	(eg.:	slow)!	Only	one	function	allowed	per	address.

Input	control:

You	can	read	and	write	input	by	using	the	joypad	table.	A	input	table	has
the	following	(case	sensitive)	keys,	where	nil	denotes	they	are	not	to	be
pressed:	up	down	left	right	start	select	A	B

joypad.read(playern);	--	get	the	input	table	for	the	player	who's	input	you
want	to	read	(a	number!)
joypad.write(playern,	inputtable);	--	set	the	input	for	player	n.	Note	that
this	will	overwrite	any	input	from	the	user,	and	only	when	this	is	used.

Savestates:

You	can	load	and	save	to	the	predefined	savestates	1	...	9	or	create	new
"anonymous"	savestates.	You	must	first	create	a	savestate	object,	which
is	your	handle	to	a	savestate.	Then	you	can	pass	this	handle	on	to

savestate.load	or	save	to	do	so.

savestate.create(n);	--	n	is	optional.	When	supplied,	it	will	create	a
savestate	for	slot	n,	otherwise	a	new	(anonymous)	savestate	object	is
created.	Note	that	this	does	not	yet	save	or	load	anything!
savestate.load(state);	--	load	the	given	savestate
savestate.save(state);	--	save	the	given	savestate

For	an	up-to-date	list	of	functions,	see	the	Lua	Functions	List.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Lua	Bot

LuaBot
LuaBot	employs	a	new	concept	in	FCEUX	Tool	creation.		It	is	an	external
lua	script	that	creates	the	Basic	bot	GUI.		The	GUI	then	uses	lua	scripting
to	perform	botting	tasks.

To	run	it	you	must	have	lua	scripting	enabled	(see	Getting	Started).	
LuaBot	is	included	in	the	lua	pack	under	/luaScripts.		to	get	started	run	
luabot_framework.lua.

What	is	Lua	Bot?
LuaBot	is...well,	a	bot.	It	uses	a	combination	of	probability,	scripting	and
RAM	monitoring	to	play	games.		Specifically		basic	bot	is	used	to	create
portions	of	Tool	Assisted	Speedrun.			It	is	most	powerful	for	finding
solutions	in	highly	random	situations,	or	highly	improbably	events	(such
as	manipulating	a	critical	hit	in	an	RPG).		Basic	bot	comes	with	a	rather
powerful	scripting	language	in	order	to	be	"programmed"	to	handle	these
specific	situations.		LuaBot	in	its	most	extreme	application	can	even	be
"taught"	to	play	video	games!

How	to	Use	Lua	Bot
LuaBot	is	a	trial	and	error	script	that	exhausts	the	input-search-space	by
simply	trying	to	push	buttons.

You	can	program	it	to	limit	this	searchspace,	as	it	can	become
exponentially	large.	You	can	press	eight	possible	buttons	at	any	frame,
each	on	or	off.	That's	2	raised	to	the	8,	or	256	possible	combinations	in
that	one	frame.	There	are	60	frames	in	one	second,	so	you	have	256
raised	to	the	power	of	60.	Write	a	three.	Now	start	writing	144	zeroes
after	it.	It's	not	a	small	number.

Anyways,	the	bot	has	two	parts.	The	frontend,	which	we'll	call	BeeBee,

and	the	Lua	part,	which	we	call	LuaBot.

You	start	the	bot	by	opening	the	LuaBot_front.lua	script	file.	Make	sure
the	LuaBot_backend.lua	file	is	in	the	same	directory.

BeeBee

BeeBee	(who	received	it's	name	from	BasicBot,	its	predecessor)	just
writes	it's	contents	into	the	LuaBot	framework	and	produces	a	big	Lua
script	for	you.
All	you	need	to	do	is	enter	Lua	code	for	the	specific	functions	and	the
code	will	generate	the	script.

You	can	also	save	and	load	the	contents	of	the	front-end.	That	way	you
can	easily	manage	your	bot	scripts,	without	actually	having	to	look	into
the	LuaBot	code.

BeeBee	is	only	a	pasting	mechanism.	It	does	not	compile	Lua	or	warn	for
errors.

LuaBot

LuaBot	is	a	generic	trial-and-error	script	that	serves	as	a	bot	framework.
It	will	set	inputs	as	you	program	them	for	a	number	of	frames	(called	an
attempt).	When	the	isAttemptEnd()	says	the	attempt	ends,	a	new	attempt
is	started.	All	the	attempts	fall	under	one	segment.	At	the	end	of	a
segment	(denoted	by	the	isSegmentEnd()	function),	the	best	attempt	is
kept	(judged	by	the	score	and	tie	functions)	and	the	next	segment	is
started.	The	bot	is	capable	of	rolling	back	if	a	segment	runs	into	a	dead
end.	This	allows	you	to	backtrack	and	restart	a	previous	segment.

The	bot	evaluates	a	true	or	false	by	checking	to	see	whether	the	return
value	of	a	function	is	bigger	then	a	certain	value.	It	does	this	for	EVERY
function	that	returns	something	and	every	function	that	returns	something
must	return	a	number	(or	Lua	_will_	complain).	For	absolute	true	or	false
you	can	return	"yes"	and	"no",	"maxvalue"	and	"minvalue"	or	"pressed"
and	"released".	Read	variable	info	for	more	information.

The	script	takes	a	number	of	variables	and	functions	into	account.	Some
variables	become	important	to	prevent	desyncing	over	segments.

-	maxvalue
The	maximum	value	(exclusive)	of	the	random	evaluation.	If	a	value	is
higher	than	rand(minvalue,	maxvalue),	it	evaluates	as	true,	else	false.	By
default	this	is	set	to	100.

-	minvalue
The	lowest	value	(inclusive)	of	the	random	evaluation.	If	a	value	is	lower
than	rand(minvalue,	maxvalue),	it	evaluates	to	false,	else	true.	By	default
this	is	set	to	0.

-	yes	/	no
-	pressed	/	released
These	map	to	the	minvalue/maxvalue.

-	loopcounter
The	number	of	times	a	frameadvance	has	been	called	by	the	main
botloop.

-	key1	key2	key3	key4
The	input	table	of	players	1-4.	The	keys	are:	A	B	up	down	left	right	select
start.	Set	any	to	1	if	you	want	them	to	be	set	and	to	nil	if	you	don't	want
them	set.
Note	that	these	get	cleared	right	before	onInputStart	is	called.	This
variable	is	saved	in	a	pseudo-movie	table	if	the	attempt	is	better	then	the
previous	one	and	used	for	playback	when	moving	to	the	next	segment.

-	lastkey1	lastkey2	lastkey3	lastkey4
The	inputs	that	were	given	to	FCEU	on	the	PREVIOUS	frame.	This	holds
for	segments	as	well	(at	the	beginning	of	a	new	segment,	the	lastkeys	of
the	previous	segment	are	set).	This	also	goes	for	the	start.	If	you	use
key1-4	in	onStart,	the	first	segment	will	have	those	keys	as	lastkey.

-	frame

The	number	of	frames	of	the	current	attempt.	Starts	at	1.

-	attempt
The	number	of	attempts	in	the	current	segment.	Starts	at	1.

-	segment
The	segment	the	bot	is	currently	running.	Note	that	rolledback	segments
are	deducted	from	this	number.

-	okattempts
The	number	of	attempts	that	have	been	deemed	ok.	This	is	a	statistical
variable.	It	might	tell	you	how	well	your	bot	is	doing	(combined	with	the
number	of	failed	attempts).

-	failattempts
The	number	of	attempts	in	the	current	segment	that	have	been	deemed
bad.	This	is	a	statistical	variable.	It	might	tell	you	how	well	your	bot	is
doing	(combined	with	the	number	of	approved	attempts).

-	segments
This	is	the	big	table	that	holds	everything	together.	Don't	mess	with	it.

-	maxframes
You	can	set	maxframes	and	check	it	in	the	isAttemptEnd	function	to
simply	limit	a	attempt	by	this	many	frames.	You	can	also	just	ignore	this
and	do	something	else	instead.

-	maxattempts
Same	as	maxframes,	except	for	attempts	in	a	segment.

-	maxsegments
Same	as	maxframes,	except	for	segments	in	a	run.

-	playingbest
Will	be	set	to	true	when	the	bot	is	playing	back	it's	best	attempt	to
advance	to	the	next	segment.	Not	really	used	by	other	functions.

-	keyrecording1-4
A	simple	table	with	the	pressed	keys	for	playback.

-	X	Y	Z	P	Q
Some	"static"	variables.	These	allow	you	to	easily	set	them	onStart	and
use	them	in	various	functions	to	return	the	same	number.	Like	a	global
variable.	The	P	and	Q	numbers	used	to	denote	a	random	number
between	0	and	P	or	Q,	but	they	don't	right	now.

-	vars
This	is	your	variable	table.	It's	contents	is	saved	at	the	end	of	an	attempt
and	will	be	loaded	at	the	beginning	of	a	segment.	On	rollback,	this	table
is	also	kept.	Put	any	variable	you	want	to	keep	across	segments	in	this
table.

Ok.	That's	it	for	the	variables.	Now	for	functions.	There	are	basically
three	types	of	functions.	The	functions	that	determine	whether	a	button	is
pressed	(8	for	each	player),	to	determine	whether	an
attempt/segment/run	has	ended	or	was	ok	and	functions	for	certain
events.	This	number	is	not	evaluated	by	the	random-eval	function.

-	getScore
This	returns	how	"well"	the	current	attempt	is.	At	the	end	of	a	segment,
the	best	scoring	good	attempt	will	be	used	to	continue	to	the	next
segment.	In	case	of	a	tie,	see	the	tie	functions.	This	number	is	not
evaluated	by	the	random-eval	function!

-	getTie1-4
If	the	score	ends	in	a	tie,	that	is,	two	attempts	score	equally	well	(have	an
equal	number	of	points	for	instance),	you	can	use	these	functions	to
break	that	tie.	Like,	which	attempt	has	the	most	health	or	is	the	fastest	or
whatever.	This	number	is	not	evaluated	by	the	random-eval	function!

-	isRunEnd
Return	whether	the	bot	should	stop	running.	If	the	returned	number	is
bigger	then	the	random	number	rand(minvalue-maxvalue),	the	bot	will

stop.

-	mustRollBack
Returns	whether	the	bot	should	rollback	the	current	attempt.	In	such
case,	the	previous	segment	is	loaded	and	the	current	segment	is
completely	discarded.	If	the	returned	number	is	bigger	then	the	random
number	rand(minvalue-maxvalue),	the	segment	will	rollback	one
segment.

-	isSegmentEnd
If	the	returned	number	is	bigger	then	the	random	number	rand(minvalue-
maxvalue),	the	bot	will	stop	the	current	segment,	play	back	the	best
recorded	attempt	and	start	a	new	segment.	Mostly	done	when	a	certain
number	of	attempts	is	reached,	but	possibly	you	know	when	have	the
best	possible	attempt	and	can	move	on.

-	isAttemptEnd
If	the	returned	number	is	bigger	then	the	random	number	rand(minvalue-
maxvalue),	the	attempt	will	stop	and	a	new	attempt	will	be	started.	Some
examples	when	this	function	should	return	yes	is	when	you	reached	a
certain	goal,	a	number	of	frames	or	when	you	died	(in	which	case	the	bot
should	try	again	:).

-	isAttemptOk
If	the	returned	number	is	bigger	then	the	random	number	rand(minvalue-
maxvalue),	the	current	attempt	(which	has	just	ended)	is	deemed	ok.
Only	attempts	that	are	deemed	ok	are	up	for	being	saved.	For	instance,
when	the	player	died	in	the	current	attempt,	you	should	return	no.

-	pressKeyX	(pressKeyA1,	pressKeyStart4,	etc...)
These	functions	determine	whether	a	button	should	be	pressed	in	the
next	frame.	If	the	returned	number	is	bigger	then	the	random	number
rand(minvalue-maxvalue),	the	button	is	pressed,	otherwise	it	is	not.	To
absolutely	press	a	button,	simply	return	yes	or	no.	To	use	some	odds,
return	a	number	between	minvalue	and	maxvalue.	For	instance,	using
the	default	settings,	if	you	return	50,	there	is	a	50%	chance	the	button	will
be	pressed.

-	onStart
Maybe	a	little	misleading,	but	the	onStart	function	is	called	BEFORE	the
main	botloop	starts.	You	can	do	some	non-generic	startup	stuff	here	like
press	start	at	the	title	screen	and	get	the	game	started.	Returns	nothing.

-	onFinish
The	opposite	to	onStart,	this	function	is	called	when	the	main	botloop
exits.	You	can	cleanup,	or	write	stuff	or	whatever.

-	onSegmentStart
When	a	new	segment	is	started,	this	is	called.	After	initializing	variables
and	such,	but	before	onAttemptStart	is	called.	Returns	nothing.

-	onSegmentEnd
When	isSegmentEnd	evaluates	to	true,	this	function	is	called.	Returns
nothing.

-	onAttemptStart
Called	at	the	start	of	a	new	attempt,	after	onSegmentStart	(in	case	of	a
new	segment)	but	before	onInputStart.	Returns	nothing.

-	onAttemptEnd(wasOk)
Called	at	the	end	of	an	attempt.	The	only	function	to	have	a	parameter
(note:	case	sensitive).	The	parameter	wasOk	will	return	(boolean)
whether	isAttemptOk	evaluated	to	true	or	false.	Returns	nothing.

-	onInputStart
In	a	frame,	this	is	the	first	place	where	the	key1-4	variables	are	cleared.
This	is	called	before	all	the	input	(pressKeyX)	functions	are	called.
Returns	nothing.

-	onInputEnd
This	is	called	immediately	after	the	input	(pressKeyX)	functions	have
been	called.	Returns	nothing.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

FAQ	/	Guides

FAQ	/	Guides
Information	regarding	various	concepts	such	as	TAS,	ROM	Hacking,
RAM	Mapping.

Troubleshooting	FAQ

A	guide	to	common	problems	people	experience,	and	what	to	do	about
them.

Tool	Assisted	Speedruns	(TAS)

Information	regarding	Tool	Assisted	Speedruns	and	the	TAS	community.

ROM	Hacking

Information	regarding	making	ROM	Hacks	and	the	ROM	Hacking
community.

NES	RAM	Mapping

A	guide	to	the	layout	of	NES	RAM,	and	how	to	interpret	its	contents.

Debugger	Usage	Guide	(Intermediate)

This	is	a	guide	that	explains	some	of	the	debugging	features	in	terms	that
someone
with	previous	experience	with	assembly	can	understand,	and	delves	into
the	most
basic	understanding	to	a	degree	as	well.	Likely	won't	help	a	beginner	too

much.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Troubleshooting

Troubleshooting
This	section	describes	potential	problems/question	that	could	arise	when
using	FCEUX.

Slow	emulation	/	Sound	crackle

FCEUX	may	not	run	well	on	slower	CPU's.		You	can	improve
performance	by	setting	sound	to	low	quality	in	the	Sound	Dialog.		In
addition,	for	windowed	mode	try	enabling	hardware	acceleration	in	the
Video	config	dialog	may	also	help.

Slow	savestates	when	recording	movies

On	slower	computers,	savestates	can	be	slow	with	long	movies.		A	small
speedup	can	be	done	by	disabling	config	>	enable	>	Backup	savestates.

"The	colors	in	game	X	do	not	look	right"

FCEUX	uses	the	color	palette	of	the	old	FCEU	/	FCEUXD	branches.	
However,	FCEUX	comes	pre-packaged	with	several	additional	color
palettes.		For	more	information	see	Palette	config	and	Palette	options.

"FCEUX	won't	open	my	ROM/File.		It	let's	me	select	it	in	the
Open	File	dialog	then	ignores	my	selection"

It	maybe	be	that	the	filename	or	pathname	includes	one	or	more	on
ASCII	characters.		Currently	FCEUX	does	not	support	Unicode
characters.

"I	converted	a	.fcm	file	to	.fm2	but	the	.fm2	desyncs"

Depending	on	what	version	of	FCEU	/	Game	your	.fcm	was	made,	there
maybe	a	number	of	sync	issues.		These	are	listed	in	detail	at
http://tasvideos.org/ConvertFCMtoFM2.html.

In	addition,	the	.fm2	conversion	tool	has	had	some	issues	on	certain
operating	systems	including	Vista	and	Mac.

"When	I	attempt	to	load	a	Lua	script	I	get	an	error	/	crash"

Double	check	you	have	the	Lua	.dll	files	that	came	packaged	with
FCEUX	2.1.		They	must	be	in	the	/dll	folder	from	the	root	directory	(where
fceux.exe	is	stored).

"Directdraw:	Error	creating	secondary	surface"

Currently	this	error	will	happen	when	attempting	to	do	Full	screen	mode
on	Windows	Vista.		In	addition,	there	has	been	one	reported	case	of	this
happening	on	the	32-bit	version	of	Windows	XP.		This	is	a	known	issue
with	FCEUX	that	has	not	yet	been	resolved.

"Can't	find	FDS	Bios	image	when	I	attempt	to	load	a	.fds
game!"

FCEUX	requires	the	FDS	Bios	to	be	named	disksys.rom.		It	must	be
located	in	the	root	directory	(where	fceux.exe	is	stored)	or	in	the	folder	of
the	FDS	Directory	override	(see	Directory	overrides).

In	addition,	there	are	some	bad	versions	of	disksys.rom.		The	one	FDS
requires	is	8192	bytes.

"How	can	I	use	Netplay	/	Where	can	I	get	FCEU	Server?"

Currently	FCEUX	is	not	compatible	with	the	FCEU-server	code.		This	is	a

http://tasvideos.org/ConvertFCMtoFM2.html

known	issue	and	will	be	resolved	in	a	future	release.

"I	have	a	Game	Genie	rom,	how	can	I	use	it	with	FCEUX?"

While	FCEUX	has	a	Game	Genie	code	converter,	you	can	also	use
game	genie	codes	with	the	game	genie	rom.		It	must	be	named	gg.rom
and	be	placed	in	the	root	directory	(where	fceux.exe	is	stored).		You	must
also	check	NES	>	Game	Genie	in	the	main	menu.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Tool	Assisted	Speedruns

Tool	Assisted	Speedruns
What	is	Tool	Assisted	Speedrunning?

A	tool-assisted	speedrun	(commonly	abbreviated	TAS)	is	a	speedrun
movie	or	performance	produced	with	the	use	of	tools	such	as	slow
motion	and	re-recording.	The	basic	premise	of	these	runs	is	that	a	"tool"
(such	as	an	emulator	that	provides	the	author	with	features	that	are
unavailable	in	regular	playing)	is	used	in	order	to	overcome	human
limitations	such	as	skill	and	reflex.

Creating	a	tool-assisted	speed	run	is	the	process	of	finding	the	ideal	set
of	inputs	to	complete	a	given	criterion	-	usually	completing	a	game	as	fast
as	possible.	No	limits	are	imposed	on	the	tools	used	for	this	search,	but
the	result	has	to	be	a	set	of	timed	key-presses	that,	when	played	back	on
the	actual	console,	achieves	the	target	criterion.	Traditionally,	the	only
available	tool	for	this	was	an	emulator	with	re-recording	-	the	ability	to
use	savestate	while	recording	key-presses.	However,	due	to	advances	in
the	field,	it	is	now	often	expected	that	frame-advance,	stepping	through
emulation	one	frame	at	a	time,	is	used.	A	tool-assisted	speed	run	done
without	this	technique	may	be	criticised	as	"sloppy	play".	Before	frame-
advance	became	common,	playing	in	slow	motion	was	a	common
technique,	but	frame-advance	has	displaced	this.

In	essence,	Tool	Assistance	allows	one	to	overcome	human	limitations	of
skill	and	reflex	in	order	push	a	game	to	its	limits.		One	important	thing	to
remember	is	that	TAS	movies	are	not	competing	in	terms	of	playing	skill,
nor	do	they	claim	to.

For	more	info	on	Tool	Assisted	Speedruns:
http://tasvideos.org/
http://tasvideos.org/WhyAndHow.html
http://en.wikipedia.org/wiki/Tool-assisted_speedrun

http://tasvideos.org/
http://tasvideos.org/WhyAndHow.html
http://en.wikipedia.org/wiki/Tool-assisted_speedrun

FCEUX	TAS	features

FCEUX	provides	a	wealth	of	tools	and	resources	for	creating	TAS	Movies
for	NES	&	FDS	games.		It	features	the	most	current	and	cutting	edge
tools	for	optimizing	movies	and	making	the	process	of	movie	making
quicker	an	easier.

Basic	Recording	features:
Frame	advance,	Slow-downs,	"bullet-proof"	rerecording,	TAS	edit

Advanced	Recording	features
Input	presets,	Auto	Hold	&	Auto-Fire

Automated	Movie	Making	Processes
Macros	&		Multi-tracking,	Lua	scripting,	Basic	Bot,

Finding	Ram	values:
Cheat	Search,	RAM	Filter,	Hex	Editor,	Debugger,	NES	RAM	Guide

RAM	Monitoring:
Memory	Watch,	Hex	Editor

Movie	Splicing	Editing
Text	based	file	format

Movie	making

To	get	started	making	a	Tool	Assisted	Movie,	simply	begin	recording	a
movie	(see	Movie	Recording).		The	basic	premise	of	TASing,	however,	is
to	use	re-records	to	optimize	the	execution	of	a	decided	upon	goal
(usually	to	complete	the	game	as	fast	as	possible).		Re-recording	is	the
act	of	replacing	an	already	recorded	part	(of	a	movie)	with	something
else;	also	called	undo.

In	the	making	of	emulator	movies,	re-recording	is	done	by	loading	a

savestate	of	earlier	event	in	the	movie	and	continuing	playing	from	that
point.		The	emulator	will	update	the	movie	file	to	undo	everything	that
was	cancelled	by	the	savestate	loading,	and	continue	recording	from	that
point.		The	makers	of	tool-assisted	speedruns	use	re-recording	very
extensively	to	reach	perfection	and	to	avoid	mistakes.
							*	In	single-segment	non-assisted	speedruns,	re-recording	is	starting
over	from	beginning.	The	recording	of	the	failed	playing	is	usually	not
preserved.			
							*	In	multi-segment	non-assisted	speedruns,	re-recording	is	starting
over	from	the	beginning	of	current	segment.	The	recording	of	the	failed
segment	is	not	preserved.			
							*	In	tool-assisted	speedruns,	re-recording	only	undoes	a	small	part	of
playing.	The	undone	part	will	not	be	seen	in	the	resulting	movie.		A	tool-
assisted	movie	may	have	been	re-recorded	anything	between	50	and
200000	times,	depending	on	the	precision	of	the	movie	and	the	difficulty
of	the	game.		Often,	the	same	small	passage	of	the	game	(could	be	as
small	as	fractions	of	second	long)	is	attempted	tens	of	times	before
continuing.

For	more	info	on	making	TAS	movies:
http://tasvideos.org/CommonTricks.html
http://tasvideos.org/GenericTips.html

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://tasvideos.org/CommonTricks.html
http://tasvideos.org/GenericTips.html
http://www.ibe-software.com/products/software/helpndoc/

ROM	Hacking

ROM	Hacking
What	is	ROM	Hacking?

ROM	Hacking	is	the	process	of	modifying	a	video	game	ROM	image	to
alter	the	game's	graphics,	dialogue,	levels,	gameplay,	or	other	gameplay
elements.	This	is	usually	done	by	technically-inclined	video	game	fans	to
breathe	new	life	into	a	cherished	old	game,	as	a	creative	outlet,	or	to
make	essentially	new	unofficial	games	using	an	old	game	as	a
foundation.

ROM	hacking	is	generally	accomplished	through	use	of	a	hex	editor	(a
program	for	editing	non-textual	data)	and	various	specialized	tools	such
as	tile	editors,	and	game-specific	tools	which	are	generally	used	for
editing	levels,	items,	and	the	like,	although	more	advanced	tools	such	as
assemblers	and	debuggers	are	occasionally	used.	Once	ready,	they	are
usually	distributed	on	the	Internet	for	others	to	play	on	an	emulator.

For	more	information	on	ROM	Hacking:
"The	ROM	Hackers	Bible"
Parodius	-	ROM	Hacking	Community
ROM-Hacking.net	Archive

FCEUX	ROM-Hacking	Features

FCEUX	provides	a	wealth	of	tools	and	resources	to	aid	in	hacking	NES	&
FDS	games.		It	features	the	most	current	and	cutting	edge	tools
debugging	and	hacking	games	as	well	as	making	the	process	quicker	an
easier.

Debugging	/	Reverse	engineering:
Debugger,	Trace	Logger,	Code/Data	Logger,	Cheat	Search,	RAM	Filter,
Movie	Making	tools/Frame	Advance

http://www.gamefaqs.com/console/nes/file/916386/2948
http://nesdev.parodius.com/
http://www.rom-hacking.net/old-site/

Memory	&	PPU	Viewing:
Debugger,	PPU	Viewer,	Hex	Editor,	Trace	Logger,	Code/Data	Logger

ROM	Editing	/	Game	Genie	Codes
Hex	Editor,	Cheat	Search,	Game	Genie	Decoder/Encoder

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NES	RAM	(Mapping/Finding	Values)

NES	Mapping
This	guide	gives	a	map	of	the	addresses	in	the	NES	cpu	and	explains
each	portion	in	detail.	

It	also	provides	information	for	the	basic	layout	of	ram	values	in	typical
NES	games.		This	info	can	be	used	to	quickly	map	and	find	useful	values
in	the	game's	ram.

Contents

Memory	Map
							Gives	a	diagram	of	the	2A03	CPU	memory	map	.

2C02	PPU	memory	map
							Gives	more	detailed	info	about	each	section	of	the	Memory	map
diagram

Game	Ram	Details
							On	board	RAM	Map	($000-$07FF)	Map	(gives	specific	info	on	the
how	NES	games	typically	layout	their	ram	values)

Online	Resources
NES	Programming	-	Wikipedia
NES	Memory	Map

Memory	Map	(NES	RAM/ROM)
2A03	CPU	memory	map
2A03	CPU	is	a	6502-compatible	CPU	without	the	decimal	mode	(CLD
and	SED	do	nothing).	It	has	an	on-die	sound	generator,	very	limited	DMA

http://en.wikibooks.org/wiki/NES_Programming
http://everything2.com/e2node/NES%2520memory%2520map

capability,	and	an	input	device	controller	that	can	be	accessed	through
the	2A03	registers.

																																																																																																																																											
6502	CPU	Memory
Map																																																																																																																													
Address	Range																Size	in	bytes								Notes	(Page	size	=	256bytes)
(Hexadecimal)																														
																																																																																																																																																				

$0000	-	$07FF																2048																Game	Ram

($0000	-	$00FF)																256																Zero	Page	-	Special	Zero	Page
addressing	modes	give	faster	memory	read/write	access
($0100	-	$01FF)																256																Stack	memory
($0200	-	$07FF)																1536																RAM
																																																																																																																																																																																																															

$0800	-	$0FFF																2048																Mirror	of	$0000-$07FF								

($0800	-	$08FF)																256																	Zero	Page
($0900	-	$09FF)								256																Stack
($0A00	-	$0FFF)																1024																Ram
																																																																																																																																																																																																															

$1000	-	$17FF																2048	bytes								Mirror	of	$0000-$07FF

($1000	-	$10FF)																256																Zero	Page
$1100	-	$11FF																256																Stack
$1200	-	$17FF																1024																RAM
																																																																																																																																																																																																															

$1800	-	$1FFF																2048	bytes								Mirror	of	$0000-$07FF								

($1800	-	$18FF)																256																Zero	Page
($1900	-	$19FF)																256																Stack

($1A00	-	$1FFF)								1024																RAM
																																																																																																																																																																																																															

$2000	-	$2007																8	bytes																Input	/	Output	registers
$2008	-	$3FFF																8184	bytes								Mirror	of	$2000-$2007	(mulitple
times)
																																																																																																																																																																																																															

$4000	-	$401F																32	bytes								Input	/	Output	registers
$4020	-	$5FFF																8160	bytes								Expansion	ROM	-	Used	with
Nintendo's	MMC5	to	expand	the	capabilities	of	VRAM.
																																																																																																																																																																																																															

$6000	-	$7FFF																8192	bytes								SRAM	-	Save	Ram	used	to
save	data	between	game	plays.
																																																																																																																																																																																																															

$8000	-	$BFFF																16384	bytes								PRG-ROM	lower	bank	-
executable	code
$C000	-	$FFFF																16384	bytes								PRG-ROM	upper	bank	-
executable	code
$FFFA	-	$FFFB								2	bytes																Address	of	Non	Maskable	Interrupt
(NMI)	handler	routine
$FFFC	-	$FFFD								2	bytes																Address	of	Power	on	reset	handler
routine
$FFFE	-	$FFFF																2	bytes																Address	of	Break	(BRK
instruction)	handler	routine
																																																																																																																																																																																																															

2C02	PPU	memory	map
2C02	PPU	is	a	character	generator	with	sprites,	designed	by	Nintendo
specifically	for	the	NES.

					__

0000|	Pattern	table	0																										|
				|__|
1000|	Pattern	table	1																										|
				|__|			_____	_____
2000|	Nametable	0																														|		|					|					|
				|__|		|		0		|		1		|
2400|	Nametable	1																														|		|_____|_____|
				|__|		|					|					|
2800|	Nametable	2																														|		|		2		|		3		|
				|__|		|_____|_____|
2c00|	Nametable	3																														|
				|__|
3000|	Mirror	of	$2000-$2eff																				|
				|__|
3f00|	Palette																																		|
				|__|
3f20|	Mirrors	of	$3f00-$3f1f																			|
				|__|

The	NES	PPU	has	enough	RAM	for	two	nametables	(0	and	3);	it	brings
some	PPU	nametable	address	lines	to	the	cart	edge	so	that	the	cart	can
decide	whether	to	map	0	onto	2	and	1	onto	3	(vertical	mirroring	as	in
Super	Mario	Brothers	and	Contra)	or	0	onto	1	and	2	onto	3	(horizontal
mirroring	as	in	Kid	Icarus	and	Ikari),	all	screens	to	either	0	or	3	(as	in
many	Rare	games	such	as	Battletoads	and	Jeopardy!),	or	all	screens	to
RAM	on	the	cartridge	(as	in	Gauntlet).	Split-screen	games	that	scroll	in
all	four	directions	(such	as	Super	Mario	Brothers	3	and	Kirby's
Adventure)	often	use	vertical	or	one-screen	mirroring	(with	a	small
amount	of	screen	corruption	at	the	sides	due	to	tiles	wrapping	around	the
sides)	and	stick	the	status	bar	in	some	random	unused	area	of	the
screen.

Game	RAM	Details
							Mapping	RAM/Finding	Ram
							Written	by:	adelikat

This	guide	is	written	specifically	for	finding	useful	values	for	TAS	movie
making.	
It	does	not	tell	you	how	to	use	specific	tools	to	find	values.		For	that	refer
to	Hex	editor,	Cheat	Search,	and	RAM	filter.

Most	games	use	the	basic	on	board	ram.		The	address	range	of	this	ram
is	$0000-$07FF.		This	translates	to	2048	possible	ram	values.

Pages

This	ram	is	broken	down	into	8	pages.		A	"page"	is	a	block	of	256	ram
values.

I	will	refer	to	these	values	as	such:
Block	0																$00xx																($0000-$00FF)
Block	1																$01xx																($0100-$01FF)
Block	2																$02xx																($0200-$02FF)
Block	3																$03xx																($0300-$03FF)
Block	4																$04xx																($0400-$04FF)
Block	5																$05xx																($0500-$05FF)
Block	6																$06xx																($0600-$06FF)
Block	7																$07xx																($0700-$07FF)

Each	block	will	be	organized	will	similar	data.		For	instance,	all	sprite	data
will	be	in	the	same	block.		Enemy/Player	statistics	(energy,	coordinates,
speed,	etc.)	will	be	in	another.		For	instance,	if	you	find	the	main
character's	HP	and	it	is	located	in	block	3,	you	know	that	the	remaining
stats	for	the	character	are	also	in	that	block.		This	can	significantly	cut
down	time	when	trying	to	find	related	values.

There	are	always	the	following	blocks:

Sprite	Data																Block	2

I've	yet	to	see	map	a	game	that	does	not	use	this	block	solely	for	sprite
data.		It	will	contain	the	"ID"	numbers	for	all	the	items	currently	on	the

screen.		Simply	put,	this	data	is	precisely	the	data	you	see	on	the
screen.		For	making	TAS	movies	this	is	not	useful	data.		If	you	are	using
cheat	search	and	have	narrowed	it	down	your	search	to	a	few	values,
you	can	immediately	discard	any	$02xx	values.

In	games	with	a	lot	of	sprite	data,	I've	seen	blocks	1	&	3	also	reserved	for
sprite	data.

Music	&	Sound	FX								Block	1	or	7,	generally

This	one	has	more	deviation,	but	almost	all	games	reserve	an	entire
block	for	memory	allocated	to	the	game's	Music	and	Sound	FX.		Again,
for	TAS	purposes	these	values	are	not	*useful.	By	finding	even	1	of	these
values,	you	can	eliminate	that	block	from	your	search	possibilities.		
Finding	which	block	is	reserved	for	music	is	often	quite	simple	with	the
Hex	editor.		Watching	the	ram	values	with	the	game	playing,	you	can	see
which	addresses	"move	to	the	beat".	

*Actually	they	can	come	in	handy	for	"dancing	to	the	beat"

Player	&	Enemy	Stats								Blocks	1,3,4,5	generally	(any	or	all	of	these)

This	is	your	"sweet	spot"	for	movie	making,	as	often	you	will	be	wanting
to	track	the	players	speed	or	coordinates,	enemy	energy,	or	enemy
coordinates.

These	values	rarely	(if	at	all)	reside	outside	blocks	1,	3,	4,	or	5.		This
knowledge	already	reduces	your	search	possibilities	in	half!

Rows

Each	block	is	broken	down	into	16	"rows"	of	addresses.		For	example,	in
block	3,	the	first	row	is	$030x	($0300-$030F).

Each	row	of	16*	will	contain	similar	data.		For	instance	all	x	coordinates
will	generally	be	in	the	same	row.		So	xxx0	might	be	the	main	characters
x	position.		xxxx1	would	be	"enemy	1"	(1st	enemy	loaded	onto	the

screen),	and	so	on.

The	y	coordinates	would	be	in	another	row,	x	subpixel	values	in	yet
another	row,	etc.

*Super	Mario	Bros.	2	(U)	is	a	rare	example	that	uses	rows	of	10

Columns

A	column	would	be	all	the	values	of	a	block	that	share	the	same	last
digit.		So	a	column	would	be	16	addresses	such	as	$0300,	$0310,	$0320,
etc.

For	enemy/player	stats,	columns	usually	refer	to	the	same	player	or
enemy.

So	for	example,	if	a	player's	energy	was	stored	in	$0300.		The	remaining
row	will	be	other	player/enemy's	energy.	

If	the	next	row	($031x)	is	x	positions.		$0310	would	be	the	player's	x
position.		The	remaining	positions	of	that	row	would	correspond	to	the
other	player/enemy	x	positions	in	line	with	the	hp	values	of	the	previous
row.

Example

These	distinctions	are	easier	to	see	in	a	visual	example.		This	is	the
enemy/player	stats	as	they	are	mapped	in	the	game	Teenage	Mutant
Ninja	Turtles.

Block	4
																											P		W1	W2	W3	E1	E2	E3	E4	E5

E6	E7	E8	X		X		X		X	

Sprite	ID:								040x:	09	00	00	00	00	9E	9E	9E	9E	00

00	00	00	00	00	00

ID	counter:							041x:	00	00	00	00	00	00	00	00	00	00

00	00	00	00	00	00

Timer/sp	change:		042x:	02	00	00	00	00	03	03	03	03	00

00	00	00	00	00	00

hit	animation:				043x:	00	00	00	00	00	00	00	00	00	00

00	00	00	00	00	00

characteristics:		044x:	00	00	00	00	00	8D	8D	8D	8D	00

00	00	00	00	00	00

characteristics:		045x:	C2	00	00	00	00	C2	C2	C3	C3	00

00	00	00	00	00	00

Y	position:							046x:	4C	00	00	00	00	B4	B4	64	B4	00

00	00	00	00	00	00

Y	subpixel:							047x:	34	00	00	00	00	00	00	00	00	00

00	00	00	00	00	00

X	position:							048x:	50	00	00	00	00	79	B9	CC	CC	00

00	00	00	00	00	00

X	subpixel:							049x:	80	00	00	00	00	C0	C0	C0	00	00

00	00	00	00	00	00

Not	used:									04ax:	00	00	00	00	00	00	00	00	00	00

00	00	00	00	00	00

Y	pix	speed:						04bx:	00	00	00	00	00	00	00	00	00	00

00	00	00	00	00	00

Y	subpix	speed:			04cx:	00	00	00	00	00	00	00	00	00	00

00	00	00	00	00	00

Not	used:									04dx:	00	00	00	00	00	00	00	00	00	00

00	00	00	00	00	00

X	pix	speed:						04ex:	00	00	00	00	00	01	01	FE	FE	00

00	00	00	00	00	00

X	subpix	speed:			04fx:	00	00	00	00	00	60	60	A0	A0	00

00	00	00	00	00	00

P	=	current	turtle	(player)
W	=	weapon	(up	to	3	on	the	screen	at	one	time)
E	=	enemy	(up	to	8	on	the	screen	at	one	time)
X	=	no	use

E1	=	"Enemy	slot	1"	which	will	be	the	first	enemy	on	the	screen	loaded
into	memory.		The	2nd	will	be	placed	in	"Enemy	slot	2".		When	enemy	1
is	removed	from	memory	(killed	or	goes	off	screen),	the	next	enemy	will
be	loaded	into	that	slot.		Enemy's	always	take	the	lowest	available	slot

when	loaded.		Note:	usually	enemy	slots	are	in	reverse	order.		So	the	first
addresses	is	usually	the	last	enemy	slot	loaded	into	memory.		TMNT	is
an	exception.

All	object	(player,	weapon,	enemy)	characteristics	reside	in	block	4.
Each	row	is	a	different	characteristic	of	each	object	on	the	screen	(040x
refers	to	a	sprite	ID	of	an	object)
Each	column	corresponds	to	a	specific	object	on	the	screen.		(All	04x0	's
refer	to	the	player).

See	also,	Memory	Watch,	Hex	Editor,	Cheat	Search,	Ram	Filter,	Movie
Making,	Tool	Assisted	Speedruns

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Debugger	Usage	(Intermediate)

Debugger	Usage	(Intermediate)
Intent
This	guide	assumes	that	you	have	a	working	knowledge	of	how	to
interpret	Assembly	instructions,	and	are	willing	to	look	up	the	table	of
6502	instructions	on	your	own.	This	document	describes	the	debugger,
and	to	a	much	lesser	degree,	how	to	tell	it	what	you	want	to	do	in	terms
of	the	assembly.

Main	Window
In	the	main	window,	you'll	see	lines	like	this	on	the	left:
1E:80E5:66	FF					ROR	$00FF	=	#$9A

This	is	the	disassembly	area.

On	the	right	are	Breakpoints,	the	stack	address	and	partial	contents,
status	flags,	PC	and	registers,	and	several	buttons	and	text	boxes.	Not	all
buttons	and	features	will	be	described,	simply	because	one	can't	write
about	what	one	hasn't	used.

Of	the	buttons,	the	one's	you'll	likely	use	the	most	are	Run,	Step	Into,	and
Step	Out.

Run	simply	makes	the	program	continue	operating	until	it	hits	a	condition
that	causes	it	to	stop	running.

Step	Into	allows	you	to	move	to	the	next	line,	and	if	you	Step	Into	a	JSR,
you'll	be	taken	to	the	address	listed	for	it	to	continue	running.

Step	Out	attempts	to	run	until	the	debugger	is	outside	of	the	function	you
Stepped	Into.	This	doesn't	always	work,	and	may	appear	to	make	the
emulator	'Run'	instead.	The	next	time	you	use	Step	Out,	it	will	tell	you	it

will	erase	the	old	Step	Out	watch	to	do	the	new	one.	Press	OK	to	do	so.

Other	buttons	include	Step	Over,	which	basically	tries	to	run	to	the	PC
address	after	the	JSR,	Run	Line,	which	runs	a	single	VBlank	line,	128
lines,	which	is	the	last	button's	action	128	times,	"Seek	To:"	and	a	text
box,	which	lets	you	move	around	the	disassembly	window	quickly,	and
Seek	PC,	which	orients	you	back	to	the	code	to	be	run	without	doing
anything	else.

Interpreting	the	line	below	is	as	follows:
1E:80E5:66	FF					ROR	$00FF	=	#$9A

(1E:)	is	the	bank	used.	A	bank	is	0x4000	in	size	for	a	.NES	file(and
0x1000	for	a	.NSF	file,	but	don't	worry	about	this	for	now).	80E5,	masked
with	3FFF,	equals	00E5.	0x1E	multiplied	by	4000	is	0x78000.	Together,
this	gives	0x78000	+	0x00E5,	which	equals	the	address	0x780E5.	Add
0x10	to	this	to	account	for	the	0x10	byte	.NES	header,	and	you	get
0x780F5,	which	is	what	the	address	is	within	the	.NES	file.	That	is	all	that
this	piece	of	information	means.

1E:(80E5)	is	the	address	that	the	data	that	follows	is	being	read	from.
The	banking	stated	above	allows	the	same	address	to	show	different
data,	but	(1E:80E5)	will	always	be	the	same	address	on	the	same	page
of	data.

1E:80E5:(66	FF					ROR	$00FF)	is	the	byte	code	for	ROR,	followed	by
the	parameter	that	tells	it	to	use	$00FF.	After	that	is	the	interpreted
assembly	code.	Note	that	just	because	code	can	be	interpreted	doesn't
mean	that	it	can	be	run.	Even	data	that's	for	graphics	will	inevitable	look
like	code	to	a	certain	degree	to	the	disassembly	window.

1E:80E5:66	FF					ROR	$00FF(=	#$9A)	tells	you	what	the	value	of
$00FF	is.	$00FF	refers	to	00FF	in	RAM,	and	the	value	is	0x9A.	If	the
program	points	to	an	address	in	ROM	instead	of	RAM,	it	still	shows	the
value	for	you.

Breakpoints
The	breakpoint	buttons	are	Add,	Delete,	and	Edit.	These	should	be	self-
explanatory.	Delete	removes	the	selected	code.	Edit	will	allow	you	to
change	an	existing	entry	with	the	same	window	as	you	use	to	Add.	Add
will	open	an	empty	window,	which	allows	you	to	fill	in	several	details.
Double-clicking	a	breakpoint	will	enable	and	disable	it,	so	you	don't	have
to	delete	items	to	stop	them	from	causing	the	debugger	to	halt	the
game(the	short	term	for	this	is	called	'breaking'	the	debugger,	referred	to
in	the	same	way	as	one	would	refer	to	a	broken	vase)

In	the	Add	Breakpoint	window,	you	have	2	Address	boxes	[]	-	[].	You
must	put	in	at	least	1	value,	preferable	in	the	left	box.	If	you	want	to	use	a
range	of	values,	you	can	fill	in	the	first	box	as	the	start,	and	the	second
box	as	the	end.	The	addresses	can	be	either	RAM	(0000-07FF),	ROM
(8000-FFFF),	or	the	special	addresses(6000-7FFF,	which	can	be	extra
RAM,	ROM,	or	unused,	depending	on	game)

The	Read,	Write,	and	Execute	checkboxes	allow	you	to	specify	whether
to	break	the	debugger	when	that	address	is	Read	From,	Written	To,	or
Executed	by	the	CPU.	All	of	them	can	be	checked	at	the	same	time	if	you
don't	know	how	the	data	is	used,	but	are	sure	it's	used	somehow.	Note
that	if	it's	the	value	to	an	assembly	instruction,	it	won't	cause	a	break,
because	the	byte	itself	isn't	the	start	of	an	instruction,	and	isn't	read	by
the	CPU	so	much	as	used	for	an	instruction.

The	Option	boxes	CPU	Mem,	PPU	Mem,	and	Sprite	Mem	tell	the
debugger	where	to	look.	The	Hex	Viewer	will	show	you	CPU	Mem	by
default,	and	PPU	Mem	if	you	tell	it	to.	PPU	Mem	is	where	data	is	written
to	display	the	actual	images	on	the	screen,	rather	than	to	decide	what	it
is	that	should	be	put	there.	My	own	experience	is	that	this	won't	have	to
be	touched	unless	you	accidentally	click	off	of	CPU	Mem.	PPU
debugging	is	more	of	an	advanced	skill,	primarily	because	when
something	does	go	wrong,	it's	usually	because	an	address	outside	of	the
normal	PPU	address	is	getting	written	to	and	causing	very	weird	graphics
errors.

Name	is	simply	a	name	that	can	be	seen	to	the	right,	if	there's	space	for
it.

The	forbid	option	allows	you	to	exclude	a	range	of	RAM	or	ROM	from	the
breakpoint	list.	These	can	be	enabled	and	disabled	as	of	this	writing.

Condition	is	part	of	the	Conditional	Debugging	system.	This	system	is
slightly	complicated,	and	extremely	powerful	when	used	correctly,	and
can	make	extremely	hard	problems	to	debug	turn	into	lazy	clicking	when
you	understand	how	to	use	the	feature.

Conditional	Debugging
Conditions	only	apply	to	the	breakpoint	they	are	applied	to.	You	can
breakpoint	the	same	address	multiple	times	with	different	conditions
applied	to	each	one.

Registers:	A,	X,	Y,	(P	=	PC)	(A==#12,	to	break	if	A	=	12)	(P!=#804C	to
NOT	break	when	the	PC	is	on	804C)
Flags:	N,	C,	Z,	I,	B,	V,	U,	D	(N==#0	for	off,	N==#1	for	on)
Bank:	K	(K!=#1E	to	NOT	break	when	the	bank	is	1E)

Addresses:	($0000!=#00	makes	it	test	RAM	address	0000,	and	if	it's	NOT
00,	it	can	break)
Numbers:	(#0123	is	interpreted	as	123.	It	can	be	used	in	tests	for	known
values	to	exclude	or	include)

Numerical	Comparisons:
==	=	Equal
!=	=	Not	Equal
<=	=	Less	Than	or	Equal
>=	=	Greater	Than	or	Equal
<	Less	Than
>	Greater	Than

Math	Operators:
+,	-,	*,	/	(which	are	add,	subtract,	multiply,	divide)
If	you	want	to	do	complex	math	that	involves	5	memory	addresses,	2
ROM	addresses,	and	a	smattering	of	defined	values,	you	can	use	these
to	do	it.	I've	never	had	to,	but	if	you	want	to,	this	is	how.

Multiple	Tests:
(N==#0||A!=#0	makes	it	break	if	EITHER	N	is	off,	or	A	isn't	00)
(A!=#0&&X==#a5	makes	it	break	is	A	isn't	00,	AND	X	is	A5)

Brackets:
$[#2CC	+	X]	==	#34:	The	value	of	the	byte	at	address	$2CC	+	X	is	0x34

Parentheses:
(#1	+	#2)==#3	(This	evaluates	to	true,	so	the	breakpoint	can	break.	If	you
need	a	different	order	of	operation	for	math	operators,	you	can	use
parentheses)

This	is	what's	currently	found	in	the	source	file	for	Conditional
Debugging:
P									->	Connect
Connect			->	Compare	{('||'	|	'&&')	Compare}
Compare			->	Sum	{('=='	|	'!='	|	'<='	|	'>='	|	'<'	|	'>')	Sum}
Sum							->	Product	{('+'	|	'-')	Product}
Product			->	Primitive	{('*'	|	'/')	Primitive}
Primitive	->	Number	|	Address	|	Register	|	Flag	|	'('	Connect	')'
Number				->	'#'	[1-9A-F]*
Address			->	'$'	[1-9A-F]*	|	'$'	'['	Connect	']'
Register		->	'A'	|	'X'	|	'Y'	|	'R'
Flag						->	'N'	|	'C'	|	'Z'	|	'I'	|	'B'	|	'V'
PC	Bank			->	'K'

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Technical	Information

Technical	Information
These	chapters	deal	with	documentation	of	specific	hardware
configurations	of	the	NES	and/or	how	the	FCEU	core	emulates	these
aspects.

More	documentation	about	NES	and	Famicom	hardware	specifications
can	be	found	at:	http://nesdev.parodius.com/

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://nesdev.parodius.com/
http://www.ibe-software.com/products/software/helpndoc/

Movie	formats

Movie	and	Savestate	File	Formats
The	Following	documentation	deals	with	the	specific	technical	information
regarding	the	format	of	movie	&	savestate	files.

.fm2	-	FCEUX	Movie	file	format

.fcm	-	Movie	file	format	from	previous	FCEU	versions	(compatible	with
FCEUX	via	Convert	FCM)

.fcs	-	Savestate	file	format

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

.fm2

FCEUX	Movie	File	format
designed	by:	Zeromus
FCEUX	uses	a	new	movie	file	format	-	.fm2.

This	differs	from	the	previous	FCE	Ultra	movie	format	(.fcm)	in	the
following	ways:

-It	is	completely	text	based;	allowing	easy	movie	editing/splicing
-An	imbedded	GUID	so	FCEUX	can	tell	if	a	savestate	belongs	to	a	movie
file
-Movies	recorded	from	Start	(Power-on)	no	longer	have	a	redundant
savestate
-Can	no	longer	record	from	soft	reset
-Contains	mouse	input	for	recording	the	Zapper	&	Arkanoid	Paddle

Format

FM2	is	ASCII	plain	text.		It	consists	of	several	key-value	pairs	followed	by
an	input	log	section.

The	input	log	section	can	be	identified	by	its	starting	with	a	|	(pipe).
The	input	log	section	terminates	at	eof.
Newlines	may	be	\r\n	or	\n

Key-value	pairs	consist	of	a	key	identifier,	followed	by	a	space	separator,
followed	by	the	value	text.
Value	text	is	always	terminated	by	a	newline,	which	the	value	text	will	not
include.
The	value	text	is	parsed	differently	depending	on	the	type	of	the	key.
The	key-value	pairs	may	be	in	any	order,	except	that	the	first	key	must	be
version.

Integer	keys	(also	used	for	booleans,	with	a	1	or	0)	will	have	a	value	that
is	a	simple	integer	not	to	exceed	32bits

-	version	(required)	-	the	version	of	the	movie	file	format;	for	now	it	is
always	3
-	emuVersion	(required)	-	the	version	of	the	emulator	used	to	produce	the
movie
-	rerecordCount	(optional)	-	the	rerecord	count
-	palFlag	(bool)	(optional)	-	true	if	the	movie	uses	pal	timing
-	fourscore	(bool)	(*note	C)	-	true	if	a	fourscore	was	used
-	FDS	(bool)	(optional)	-	true	if	movie	was	recorded	on	a	Famicom	Disk
System	(FDS)	game
-	port0,	port1	(*note	C)	-	indicates	the	types	of	input	devices.	Supported
values	are:
					SI_GAMEPAD	=	1,
					SI_ZAPPER	=	2
-	port2	(required)	-	indicates	the	type	of	the	FCExp	port	device	which	was
attached.	Supported	values	are:
					SIFC_NONE	=	0

Header

String	keys	have	values	that	consist	of	the	remainder	of	the	key-value
pair	line.	As	a	consequence,	string	values	cannot	contain	newlines.
-	romFilename	(required)	-	the	name	of	the	file	used	to	record	the	movie

Hex	string	keys	(used	for	binary	blobs)	will	have	a	value	that	is	like
0x0123456789ABCDEF...
-	romChecksum	(required)	-	the	MD5	hash	of	the	ROM	which	was	used
to	record	the	movie
-	savestate	(optional)	-	a	fcs	savestate	blob,	in	case	a	movie	was
recorded	from	savestate

GUID	keys	have	a	value	which	is	in	the	standard	guide	format:
452DE2C3-EF43-2FA9-77AC-0677FC51543B
-	guide	(required)	a	unique	identifier	for	a	movie,	generated	when	the
movie	is	created,	which	is	used	when	loading	a	savestate	to	make	sure	it
belongs	to	the	current	movie.

Comments

-	comment	(optional)	-	simply	a	memo.
					by	convention,	the	first	token	in	the	comment	value	is	the	subject	of
the	comment.
					by	convention,	subsequent	comments	with	the	same	subject	will	have
their	ordering	preserved	and	may	be	used	to	approximate	multi-line
comments.
					by	convention,	the	author	of	the	movie	should	be	stored	in
comment(s)	with	a	subject	of:	author

example:
comment	author	adelikat

Subtitles

-	subtitle	(optional)	-	a	message	that	will	be	displayed	on	screen	when
movie	is	played	back	(unless	Subtitles	are	turned	off,	see	Movie	options).
				by	convention,	subtitles	will	begin	with	the	word	subtitle
				by	convention,	an	integer	value	will	proceed	which	will	indicate	the
frame	that	the	subtitle	will	be	displayed
				by	convention,	a	string	of	text	will	follow	which	will	be	the	string
displayed

example:
subtitle	1000	Level	Two

At	frame	1000	the	words	"Level	Two"	will	be	displayed	on	the	screen

Input	log

The	input	log	section	consists	of	lines	beginning	and	ending	with	a	|
(pipe).
The	fields	are	as	follows,	except	as	noted	in	note	C.
|c|port0|port1|port2|

field	c	is	a	variable	length	decimal	integer	which	is	a	bit	field
corresponding	to	miscellaneous	input	states	which	are	valid	at	the	start	of
the	frame.
Current	values	for	this	are
MOVIECMD_RESET	=	1

the	format	of	port0,	port1,	port2	depends	on	which	types	of	devices	were
attached.
SI_GAMEPAD:
the	field	consists	of	eight	characters	which	constitute	a	bit	field.
any	character	other	than	'	'	or	'.'	means	that	the	button	was	pressed.
by	convention,	the	following	mnemonics	will	be	used	in	a	column	to
remind	us	of	which	button	corresponds	to	which	column:
			RLDUTSBA	(Right,Left,Down,Up,sTart,Select,B,A)
SI_ZAPPER:
XXX	YYY	B	Q	Z
XXX:	%03d,	the	x	position	of	the	mouse
YYY:	%03d,	the	y	position	of	the	mouse
B:	%1d,	1	if	the	mouse	button	is	pressed;	0	if	not
Q:	%1d,	an	internal	value	used	by	the	emulator's	zapper	code	(this	is
most	unfortunate..)
Z:	%d,	a	variable-length	decimal	integer;	an	internal	value	used	by	the
emulator's	zapper	code	(this	is	even	more	unfortunate..)
SIFC_NONE:
this	field	must	always	be	empty.

*	Notes	*
A.	There	is	no	key-value	pair	that	indicates	the	length	of	the	movie.	This
must	be	read	by	scanning	the	input	log	and	counting	the	number	of	lines.

B.	All	movies	start	from	power-on,	unless	a	savestate	key-value	is
present.

C.
If	a	fourscore	is	used,	then	port0	and	port1	are	irrelevant	and	ignored.
The	input	types	must	all	be	gamepads,	and	the	input	log	will	be	in	the
following	format:

		{player1		player2		player3		player4}
|c|ABSTUDLR|ABSTUDLR|ABSTUDLR|ABSTUDLR|port2|
If	a	fourscore	is	not	used,	then	port0	and	port1	are	required.

D.	The	emulator	uses	these	framerate	constants
		-	NTSC:	1008307711	/256/65536	=	60.099822938442230224609375
		-	PAL	:	838977920		/256/65536	=	50.00698089599609375

E.	The	author	of	this	format	is	curious	about	what	people	think	of	it.
Please	let	him	know!

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

.fcm

FCE	Ultra	Movie	File	Format
							-	Updated	March	22,	2004
The	FCM	file	format	is	a	somewhat	"joined"	file	format.		The	first	part	of	a
FCM
file	will	contain	an	FCS-format	state	save.		After	this	data,	the	FCM-
specific	data
begins,	which	is	being	referred	to	from	this	point.

Currently,	the	only	supported	input	scheme	for	a	FCM	is	four	joysticks.

The	FCM	data	consists	of	a	stream	of	joystick	commands:

							dLLjjbbb

							d		=	Dummy	update,	if	set.		Used	to	reset	frame	timestamp.
							LL		=	timestamp	length,	in	bytes(maximum	of	3	bytes).
							jj		=	Which	joystick(0-3).
							bbb	=	Which	button(0-7).

							If	the	dummy	update	bit	is	set,	a	command	can	also	have	occurred.	
Look	at	the
							lower	5	bits:
															0								=								Just	a	dummy	update.
															1								=								Reset
															2								=								Power

							The	timestamp	is	stored	after	the	joystick	command,	in	LSB-first
format.		It	is
							the	number	of	frames	since	the	last	event.		A	timestamp	length	of	"0"
is	valid,	to
							be	used	when	several	different	buttons	need	to	change	state	at	the
same	time(same	frame,
							at	least).

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Savestate	(.fcs)

FCE	Ultra	Save	State	Format
Updated:		Mar	9,	2003

FCE	Ultra's	save	state	format	is	now	designed	to	be	as	forward	and
backwards
compatible	as	possible.		This	is	achieved	through	the	(over)use	of
chunks.
All	multiple-byte	variables	are	stored	LSB(least	significant	byte)-first.
Data	types:

							(u)int8	-	(un)signed	8	bit	variable(also	referred	to	as	"byte")
							(u)int16	-	(un)signed	16	bit	variable
							(u)int32	-	(un)signed	32	bit	variable

--	Main	File	Header:

The	main	file	header	is	16-bytes	in	length.		The	first	three	bytes	contain
the	string	"FCS".		The	next	byte	contains	the	version	of	FCE	Ultra	that
saved
this	save	state.		This	document	only	applies	to	version	"53"(.53)	and
higher.
After	the	version	byte,	the	size	of	the	entire	file	in	bytes(minus	the	16	byte
main	file	header)	is	stored.		If	oldversion	is	set	to	255,	the	32-bit	version
field	will	be	used.		In	this	field,	a	version	such	as	0.98.10	is	stored	as
"9810"(decimal).
The	rest	of	the	header	is	currently	unused	and	should	be	nulled	out.	
Example	of	relevant	parts:

							FCS	<uint8	oldversion>	<uint32	totalsize>	<uint32	version>

--	Section	Chunks:

Sections	chunk	headers	are	5-bytes	in	length.		The	first	byte	defines	what
section	it		is,	the	next	four	bytes	define	the	total	size	of	the	section
(including	the	section	chunk	header).

							<uint8	section>	<uint32	size>

Section	definitions:

							1								-								"CPU"
							2								-								"CPUC"
							3								-								"PPU"
							4								-								"CTLR"
							5								-								"SND"
							16								-								"EXTRA"

--	Subsection	Chunks

Subsection	chunks	are	stored	within	section	chunks.		They	contain	the
actual
state	data.		Each	subsection	chunk	is	composed	of	an	8-byte	header	and
the	data.
The	header	contains	a	description(a	name)	and	the	size	of	the	data
contained
in	the	chunk:
															<uint8	description[4]>	<uint32	size>

The	name	is	a	four-byte	string.		It	does	not	need	to	be	null-terminated.
If	the	string	is	less	than	four	bytes	in	length,	the	remaining	unused	bytes
must	be	null.

--	Subsection	Chunk	Description	Definitions

Note	that	not	all	subsection	chunk	description	definitions	listed	below
are	guaranteed	to	be	in	the	section	chunk.		It's	just	a	list	of	what	CAN
be	in	a	section	chunk.		This	especially	applies	to	the	"EXTRA"
subsection.

----	Section	"CPU"

							Name:								Type:																Description:

							
							PC								uint16																Program	Counter
							A								uint8																Accumulator
							P								uint8																Processor	status	register
							X								uint8																X	register
							Y								uint8																Y	register
							S								uint8																Stack	pointer
							RAM								uint8[0x800]								2KB	work	RAM

----	Section	"CPUC"	(emulator	specific)

							Name:								Type:																Description:

							JAMM								uint8																Non-zero	value	if	CPU	in	a	"jammed"	state
							IRQL								uint8																Non-zero	value	if	IRQs	are	to	be	generated
constantly
							ICoa								int32																Temporary	cycle	counter
							ICou								int32																Cycle	counter

----	Section	"PPU"

							Name:								Type:																Description:

							NTAR								uint8[0x800]								2	KB	of	name/attribute	table	RAM
							PRAM								uint8[32]								32	bytes	of	palette	index	RAM
							SPRA								uint8[0x100]								256	bytes	of	sprite	RAM
							PPU								uint8[4]								Last	values	written	to	$2000	and	$2001,	the
PPU
																															status	register,	and	the	last	value	written	to
																															$2003.
							XOFF								uint8																Tile	X-offset.
							VTOG								uint8																Toggle	used	by	$2005	and	$2006.
							RADD								uint16																PPU	Address	Register(address	written
to/read	from
																															when	$2007	is	accessed).
							TADD								uint16																PPU	Address	Register
							VBUF								uint8																VRAM	Read	Buffer

							PGEN								uint8																PPU	"general"	latch.		See	Ki's	document.

----	Section	"CTLR"	(somewhat	emulator	specific)

							Name:								Type:																Description:

							J1RB								uint8																Bit	to	be	returned	when	first	joystick	is
read.
							J2RB								uint8																Bit	to	be	returned	when	second	joystick	is
read.

----	Section	"SND"	(somewhat	emulator	specific)

							NREG								uint16																Noise	LFSR.
							P17								uint8																Last	byte	written	to	$4017.
							PBIN								uint8																DMC	bit	index.
							PAIN								uint32																DMC	address	index(from	$8000).
							PSIN								uint32																DMC	length	counter(how	many	bytes	left
																															to	fetch).

							<to	be	finished>

----	Section	"EXTRA"	(varying	emulator	specificness)

							For	iNES-format	games(incomplete,	and	doesn't	apply	to	every
game):

							Name:								Type:																Description:

							WRAM								uint8[0x2000]								8KB	of	WRAM	at	$6000-$7fff
							MEXR								uint8[0x8000]								(very	emulator	specific)
							CHRR								uint8[0x2000]								8KB	of	CHR	RAM	at	$0000-$1fff(in
PPU	address	space).
							EXNR								uint8[0x800]								Extra	2KB	of	name/attribute	table	RAM.
							MPBY								uint8[32]								(very	emulator	specific)
							MIRR								uint8																Current	mirroring:
																																							0	=	"Horizontal"

																																							1	=	"Vertical"
																																							$10	=	Mirror	from	$2000
																																							$11	=	Mirror	from	$2400
							IRQC								uint32																Generic	IRQ	counter
							IQL1								uint32																Generic	IRQ	latch
							IQL2								uint32																Generic	IRQ	latch
							IRQA								uint8																Generic	IRQ	on/off	register.
							PBL								uint8[4]																List	of	4	8KB	ROM	banks	paged	in	at
$8000-$FFFF
							CBL								uint8[8]																List	of	8	1KB	VROM	banks	page	in	at
$0000-$1FFF(PPU).

							For	FDS	games(incomplete):

							Name:								Type:																Description:

							DDT<x>		uint8[65500]				Disk	data	for	side	x(0-3).
							FDSR								uint8[0x8000]								32	KB	of	work	RAM
							CHRR								uint8[0x2000]								8	KB	of	CHR	RAM
							IRQC								uint32																IRQ	counter
							IQL1								uint32																IRQ	latch
							IRQA								uint8																IRQ	on/off.

							WAVE								uint8[64]								Carrier	waveform	data.
							MWAV								uint8[32]								Modulator	waveform	data.
							AMPL								uint8[2]																Amplitude	data.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Sound

Sound
Includes	specifications	for	the	NSF	Format	&	NES	Sound	core

NSF	Format

NES	Sound

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NSF	Format

NES	Music	Format	Spec

By:	Kevin	Horton		khorton@iquest.net

NOTE:

Remember	that	I	am	very	willing	to	add	stuff	and	update	this	spec.		If
you	find	a	new	sound	chip	or	other	change	let	me	know	and	I	will	get
back
with	you.		E-mail	to	the	above	address.

V1.61	-	06/27/2000	Updated	spec	a	bit
V1.60	-	06/01/2000	Updated	Sunsoft,	MMC5,	and	Namco	chip
information
V1.50	-	05/28/2000	Updated	FDS,	added	Sunsoft	and	Namco	chips
V1.32	-	11/27/1999	Added	MMC5	register	locations
V1.30	-	11/14/1999	Added	MMC5	audio	bit,	added	some	register	info
V1.20	-	09/12/1999	VRC	and	FDS	prelim	sound	info	added
V1.00	-	05/11/1999	First	official	NSF	specification	file

This	file	encompasses	a	way	to	transfer	NES	music	data	in	a	small,	easy
to
use	format.

The	basic	idea	is	one	rips	the	music/sound	code	from	an	NES	game	and
prepends
a	small	header	to	the	data.

A	program	of	some	form	(6502/sound	emulator)	then	takes	the	data	and
loads
it	into	the	proper	place	into	the	6502's	address	space,	then	inits	and
plays
the	tune.

Here's	an	overview	of	the	header:

offset		#	of	bytes			Function

0000				5			STRING		"NESM",01Ah		;	denotes	an	NES	sound	format	file
0005				1			BYTE				Version	number	(currently	01h)
0006				1			BYTE				Total	songs			(1=1	song,	2=2	songs,	etc)
0007				1			BYTE				Starting	song	(1=	1st	song,	2=2nd	song,	etc)
0008				2			WORD				(lo/hi)	load	address	of	data	(8000-FFFF)
000a				2			WORD				(lo/hi)	init	address	of	data	(8000-FFFF)
000c				2			WORD				(lo/hi)	play	address	of	data	(8000-FFFF)
000e				32		STRING		The	name	of	the	song,	null	terminated
002e				32		STRING		The	artist,	if	known,	null	terminated
004e				32		STRING		The	Copyright	holder,	null	terminated
006e				2			WORD				(lo/hi)	speed,	in	1/1000000th	sec	ticks,	NTSC	(see
text)
0070				8			BYTE				Bankswitch	Init	Values	(see	text,	and	FDS	section)
0078				2			WORD				(lo/hi)	speed,	in	1/1000000th	sec	ticks,	PAL	(see
text)
007a				1			BYTE				PAL/NTSC	bits:
																	bit	0:	if	clear,	this	is	an	NTSC	tune
																	bit	0:	if	set,	this	is	a	PAL	tune
																	bit	1:	if	set,	this	is	a	dual	PAL/NTSC	tune
																	bits	2-7:	not	used.	they	*must*	be	0
007b				1			BYTE				Extra	Sound	Chip	Support
																	bit	0:	if	set,	this	song	uses	VRCVI
																	bit	1:	if	set,	this	song	uses	VRCVII
																	bit	2:	if	set,	this	song	uses	FDS	Sound
																	bit	3:	if	set,	this	song	uses	MMC5	audio

																	bit	4:	if	set,	this	song	uses	Namco	106
																	bit	5:	if	set,	this	song	uses	Sunsoft	FME-07
																	bits	6,7:	future	expansion:	they	*must*	be	0
007c				4			----				4	extra	bytes	for	expansion	(must	be	00h)
0080				nnn	----				The	music	program/data	follows

This	may	look	somewhat	familiar;		if	so	that's	because	this	is	somewhat
sorta	of	based	on	the	PSID	file	format	for	C64	music/sound.

Loading	a	tune	into	RAM

If	offsets	0070h	to	0077h	have	00h	in	them,	then	bankswitching	is	*not*
used.		If	one	or	more	bytes	are	something	other	than	00h	then
bankswitching
is	used.		If	bankswitching	is	used	then	the	load	address	is	still	used,
but	you	now	use	(ADDRESS	AND	0FFFh)	to	determine	where	on	the	first
bank
to	load	the	data.

Each	bank	is	4K	in	size,	and	that	means	there	are	8	of	them	for	the
entire	08000h-0ffffh	range	in	the	6502's	address	space.		You	determine
where
in	memory	the	data	goes	by	setting	bytes	070h	thru	077h	in	the	file.
These	determine	the	inital	bank	values	that	will	be	used,	and	hence
where
the	data	will	be	loaded	into	the	address	space.

Here's	an	example:

METROID.NSF	will	be	used	for	the	following	explaination.

The	file	is	set	up	like	so:		(starting	at	070h	in	the	file)

0070:	05	05	05	05	05	05	05	05	-	00	00	00	00	00	00	00	00
0080:	...	music	data	goes	here...

Since	0070h-0077h	are	something	other	than	00h,	then	we	know	that	this
tune	uses	bankswitching.		The	load	address	for	the	data	is	specified	as
08000h.		We	take	this	AND	0fffh	and	get	0000h,	so	we	will	load	data	in
at	byte	0	of	bank	0,	since	data	is	loaded	into	the	banks	sequentially
starting	from	bank	0	up	until	the	music	data	is	fully	loaded.

Metroid	has	6	4K	banks	in	it,	numbered	0	through	5.		The	6502's	address
space	has	8	4K	bankswitchable	blocks	on	it,	starting	at	08000h-08fffh,
09000h-09fffh,	0a000h-0afffh	...	0f000h-0ffffh.		Each	one	of	these	is	4K	in
size,	and	the	current	bank	is	controlled	by	writes	to	05ff8h	thru	05fffh,
one	byte	per	bank.		So,	05ff8h	controls	the	08000h-08fffh	range,	05ff9h
controls	the	09000h-09fffh	range,	etc.	up	to	05fffh	which	controls	the
0f000h-0ffffh	range.		When	the	song	is	loaded	into	RAM,	it	is	loaded	into
the	banks	and	not	the	6502's	address	space.		Once	this	is	done,	then	the
bank	control	registers	are	written	to	set	up	the	inital	bank	values.
To	do	this,	the	value	at	0070h	in	the	file	is	written	to	05ff8h,	0071h
is	written	to	05ff9h,	etc.	all	the	way	to	0077h	is	written	to	05fffh.
This	is	should	be	done	before	every	call	to	the	init	routine.

If	the	tune	was	not	bankswitched,	then	it	is	simply	loaded	in	at	the
specified	load	address,	until	EOF

Initalizing	a	tune

This	is	pretty	simple.		Load	the	desired	song	#	into	the	accumulator,
minus	1	and	set	the	X	register	to	specify	PAL	(X=1)	or	NTSC	(X=0).
If	this	is	a	single	standard	tune	(i.e.	PAL	*or*	NTSC	but	not	both)
then	the	X	register	contents	should	not	matter.		Once	the	song	#	and
optional	PAL/NTSC	standard	are	loaded,	simply	call	the	INIT	address.
Once	init	is	done,	it	should	perform	an	RTS.

Playing	a	tune

Once	the	tune	has	been	initalized,	it	can	now	be	played.		To	do	this,
simply	call	the	play	address	several	times	a	second.		How	many	times
per	second	is	determined	by	offsets	006eh	and	006fh	in	the	file.
These	bytes	denote	the	speed	of	playback	in	1/1000000ths	of	a	second.	
For	the	"usual"	60Hz	playback	rate,	set	this	to	411ah.	

To	generate	a	differing	playback	rate,	use	this	formula:

									1000000
PBRATE=	---------
										speed

Where	PBRATE	is	the	value	you	stick	into	006e/006fh	in	the	file,	and
speed	is	the	desired	speed	in	hertz.

"Proper"	way	to	load	the	tune

1)	If	the	tune	is	bankswitched,	go	to	#3.

2)	Load	the	data	into	the	6502's	address	space	starting	at	the	specified
			load	address.	Go	to	#4.

3)	Load	the	data	into	a	RAM	area,	starting	at	(start_address	AND	0fffh).

4)	Tune	load	is	done.

"Proper"	way	to	init	a	tune

1)	Clear	all	RAM	at	0000h-07ffh.

2)	Clear	all	RAM	at	6000h-7fffh.

3)	Init	the	sound	registers	by	writing	00h	to	04000-0400Fh,	10h	to	4010h,
			and	00h	to	4011h-4013h.

4)	Set	volume	register	04015h	to	00fh.

5)	If	this	is	a	banked	tune,	load	the	bank	values	from	the	header	into
			5ff8-5fffh.

6)	Set	the	accumulator	and	X	registers	for	the	desired	song.

7)	Call	the	music	init	routine.

"Proper"	way	to	play	a	tune

1)	Call	the	play	address	of	the	music	at	periodic	intervals	determined
			by	the	speed	words.		Which	word	to	use	is	determined	by	which	mode
			you	are	in-	PAL	or	NTSC.

Sound	Chip	Support

Byte	007bh	of	the	file	stores	the	sound	chip	flags.		If	a	particular	flag
is	set,	those	sound	registers	should	be	enabled.		If	the	flag	is	clear,
then	those	registers	should	be	disabled.

*	VRCVI	Uses	registers	9000-9002,	A000-A002,	and	B000-B002,	write
only.

Caveats:	1)	The	above	registers	are	*write	only*	and	must	not	disrupt
music
												code	that	happens	to	be	stored	there.

									2)	Major	caveat:		The	A0	and	A1	lines	are	flipped	on	a	few	games!!
												If	you	rip	the	music	and	it	sounds	all	funny,	flip	around
												the	xxx1	and	xxx2	register	pairs.		(i.e.	9001	and	9002)		9000
												and	9003	can	be	left	untouched.		I	decided	to	do	this	since	it
												would	make	things	easier	all	around,	and	this	means	you	only
												will	have	to	change	the	music	code	in	a	very	few	places	(6).
												Esper2	and	Madara	will	need	this	change,	while	Castlevania	3j
												will	not	for	instance.
								
									3)	See	my	VRCVI.TXT	doc	for	a	complete	register	description.

*	VRCVII	Uses	registers	9010	and	9030,	write	only.

Caveats:	1)	Same	caveat	as	#1,	above.

									2)	See	my	VRCVII.TXT	doc	for	a	complete	register	description.

*	FDS	Sound	uses	registers	from	4040	through	4092.

Caveats:	1)	6000-DFFF	is	assumed	to	be	RAM,	since	6000-DFFF	is
RAM	on	the
												FDS.		E000-FFFF	is	usually	not	included	in	FDS	games	because
												it	is	the	BIOS	ROM.		However,	it	can	be	used	on	FDS	rips	to	help
												the	ripper	(for	modified	play/init	addresses).

									2)	Bankswitching	operates	slightly	different	on	FDS	tunes.	
												5FF6	and	5FF7	control	the	banks	6000-6FFF	and	7000-7FFF
												respectively.		NSF	header	offsets	76h	and	77h	correspond	to
												both	6000-7FFF	*AND*	E000-FFFF.		Keep	this	in	mind!

*	MMC5	Sound	Uses	registers	5000-5015,	write	only	as	well	as	5205	and
5206,
												and	5C00-5FF5

Caveats:	1)	Generating	a	proper	doc	file.		Be	patient.	

									2)	5205	and	5206	are	a	hardware	8*8	multiplier.		The	idea	being
												you	write	your	two	bytes	to	be	multiplied	into	5205	and	5206
												and	after	doing	so,	you	read	the	result	back	out.		Still	working
												on	what	exactly	triggers	it	(I	think	a	write	to	either	5205
												or	5206	triggers	the	multiply).

									3)	5C00-5FF5	should	be	RAM	to	emulate	EXRAM	while	in	MMC5
mode.

Note:	Thanks	to	Mamiya	for	the	EXRAM	info.

*	Namco	106	Sound	Uses	registers	4800	and	F800.	

												This	works	similar	to	VRC7.		4800	is	the	"data"	port	which	is
												readable	and	writable,	while	F800	is	the	"address"	port	and	is
												writable	only.

												The	address	is	7	bits	plus	a	"mode"	bit.		Bit	7	controls
												address	auto-incrementing.		If	bit	7	is	set,	the	address	will
												auto-increment	after	a	byte	of	data	is	read	or	written	from/to
												4800.

												$40	ffffffff	f:frequency	L
												$42	ffffffff	f:frequency	M
												$44	---sssff	f:frequency	H	s:tone	length	(8-s)*4	in	4bit-samples
												$46	tttttttt	t:tone	address(4bit-address,$41	means	high-4bits	of
$20)
												$47	-cccvvvv	v:linear	volume	1+c:number	of	channels	in	use($7F
only)
												$40-47:ch1	$48-4F:ch2	...	$78-7F:ch8
												ch2-ch8	same	to	ch1

												$00-3F(8ch)...77(1ch)	hhhhllll	tone	data
												h:odd	address	data(signed	4bit)
												l:even	address	data(signed	4bit)

												real	frequency	=	(f	*	NES_BASECYCLES)	/	(40000h	*	(c+1)	*	(8-
s)*4	*	45)
												NES_BASECYCLES	21477270(Hz)

Note:		Very	Special	thanks	to	Mamiya	for	this	information!

*	Sunsoft	FME-07	Sound	uses	registers	C000	and	E000

												This	is	similar	to	the	common	AY	3-8910	sound	chip	that	is
												used	on	tons	of	arcade	machines,	and	in	the	Intellivision.

												C000	is	the	address	port
												E000	is	the	data	port

												Both	are	write-only,	and	behave	like	the	AY	3-8910.

Note:		Special	thanks	to	Mamiya	for	this	information	as	well

Caveats

1)	The	starting	song	number	and	maximum	song	numbers	start	counting
at
			1,	while	the	init	address	of	the	tune	starts	counting	at	0.		To
			"fix",	simply	pass	the	desired	song	number	minus	1	to	the	init
			routine.

2)	The	NTSC	speed	word	is	used	*only*	for	NTSC	tunes,	or	dual
PAL/NTSC	tunes.
			The	PAL	speed	word	is	used	*only*	for	PAL	tunes,	or	dual	PAL/NTSC
tunes.

3)	The	length	of	the	text	in	the	name,	artist,	and	copyright	fields	must
			be	31	characters	or	less!		There	has	to	be	at	least	a	single	NULL	byte
			(00h)	after	the	text,	between	fields.

4)	If	a	field	is	not	known	(name,	artist,	copyright)	then	the	field	must
			contain	the	string	"<?>"	(without	quotes).	

5)	There	should	be	8K	of	RAM	present	at	6000-7FFFh.	MMC5	tunes
need	RAM	at
			5C00-5FF7	to	emulate	its	EXRAM.	8000-FFFF	Should	be	read-only
(not
			writable)	after	a	tune	has	loaded.		The	only	time	this	area	should	be
			writable	is	if	an	FDS	tune	is	being	played.

6)	Do	not	assume	the	state	of	*anything*	on	entry	to	the	init	routine
			except	A	and	X.		Y	can	be	anything,	as	can	the	flags.	

7)	Do	not	assume	the	state	of	*anything*	on	entry	to	the	play	routine
either.
			Flags,	X,	A,	and	Y	could	be	at	any	state.		I've	fixed	about	10	tunes
			because	of	this	problem	and	the	problem,	above.

8)	The	stack	sits	at	1FFh	and	grows	down.		Make	sure	the	tune	does	not
			attempt	to	use	1F0h-1FFh	for	variables.	(Armed	Dragon	Villigust	did
and
			I	had	to	relocate	its	RAM	usage	to	2xx)

9)	Variables	should	sit	in	the	0000h-07FFh	area	*only*.		If	the	tune	writes
			outside	this	range,	say	1400h	this	is	bad	and	should	be	relocated.
			(Terminator	3	did	this	and	I	relocated	it	to	04xx).

That's	it!

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NES	Sound

2A03	sound	channel	hardware	documentation

Brad	Taylor	(big_time_software@hotmail.com)
4th	release:								February	19th,	2K3

All	results	were	obtained	by	studying	prior	information	available	(from
nestech	1.00,	and	postings	on	NESDev	from	miscellanious	people),	and
through	a	series	of	experiments	conducted	by	me.	Results	acquired	by
individuals	prior	to	my	reverse-engineering	have	been	double	checked,
and	final	results	have	been	confirmed.	Credit	is	due	to	those	individual(s)
who	contributed	miscellanious	information	in	regards	to	NES	sound
channel	hardware.	Such	individuals	are:

Goroh
Memblers
FluBBa
Izumi
Chibi-Tech
Quietust
SnowBro

Kentaro	Ishihara	(Ki)	is	responsible	for	posting	(on	the	NESdev	mailing
list)	differrences	in	the	2	square	wave	channels,	including	the	operation
of	2A03	hardware	publically	undocumented	(until	now)	such	as	the	frame
IRQ	counter,	and	it's	ties	with	sound	hardware.	Goroh	had	originally
discovered	some	of	this	information,	and	Ki	confirmed	it.

A	special	thanks	goes	out	to	Matthew	Conte,	for	his	expertise	on	pseudo-
random	number	generation	(amoung	other	things),	which	allowed	for	the
full	reverse	engineering	of	the	NES's	noise	channel	to	take	place.
Without	his	help,	I	would	still	be	trying	to	find	a	needle	in	a	haystack,	as
far	as	the	noise's	method	of	pseudo-random	number	generation	goes.
Additionally,	his	previous	findings	/	reverse	engineering	work	on	the

NES's	sound	hardware	really	got	the	ball	of	NES	sound	emulation	rolling.
If	it	weren't	for	Matt's	original	work,	this	document	wouldn't	exist.

*	Introduction	*

The	2A03	(NES's	integrated	CPU)	has	4	internal	channels	to	it	that	have
the	ability	to	generate	semi-analog	sound,	for	musical	playback
purposes.	These	channels	are	2	square	wave	channels,	one	triangle
wave	channel,	and	a	noise	generation	channel.	This	document	will	go
into	full	detail	on	every	aspect	of	the	operation	and	timing	of	the
mentioned	sound	channels.

*	Channel	details	*

Each	channel	has	different	characteristics	to	it	that	make	up	it's
operation.

The	square	channel(s)	have	the	ability	to	generate	a	square	wave
frequency	in	the	range	of	54.6	Hz	to	12.4	KHz.	It's	key	features	are
frequency	sweep	abilities,	and	output	duty	cycle	adjustment.

The	triangle	wave	channel	has	the	ability	to	generate	an	output	triangle
wave	with	a	resolution	of	4-bits	(16	steps),	in	the	range	of	27.3	Hz	to	55.9
KHz.	The	key	features	this	channel	has	is	it's	analog	triangle	wave
output,	and	it's	linear	counter,	which	can	be	set	to	automatically	disable
the	channel's	sound	after	a	certain	period	of	time	has	gone	by.

The	noise	channel	is	used	for	producing	random	frequencys,	which
results	in	a	"noisey"	sounding	output.	Output	frequencys	can	range
anywhere	from	29.3	Hz	to	447	KHz.	It's	key	feature	is	it's	pseudo-
random	number	generator,	which	generates	the	random	output
frequencys	heard	by	the	channel.

*	Frame	counter	*

The	2A03	has	an	internal	frame	counter.	The	purpose	of	it	is	to	generate
the	various	low	frequency	signals	(60,	120,	240	Hz,	and	48,	96,	192	Hz)
required	to	clock	several	of	the	sound	hardware's	counters.	It	also	has
the	ability	to	generate	IRQ's.

The	smallest	unit	of	timing	the	frame	counter	operates	around	is	240Hz;
all	other	frequencies	are	generated	by	multiples	of	this	base	frequency.	A
clock	divider	of	14915	(clocked	at	twice	the	CPU	speed)	is	used	to	get
240Hz	(this	was	the	actual	measured	ratio).

+---------------+
|$4017	operation|
+---------------+
Writes	to	register	$4017	control	operation	of	both	the	clock	divider,	and
the	frame	counter.

-	Any	write	to	$4017	resets	both	the	frame	counter,	and	the	clock	divider.
Sometimes,	games	will	write	to	this	register	in	order	to	synchronize	the
sound	hardware's	internal	timing,	to	the	sound	routine's	timing	(usually
tied	into	the	NMI	code).	The	frame	IRQ	is	slightly	longer	than	the	PPU's,
so	you	can	see	why	games	would	desire	this	syncronization.

-	bit	7	of	$4017	controls	the	frame	counter's	divide	rate.	Every	time	the
counter	cycles	(reaches	terminal	count	(0)),	a	frame	IRQ	will	be
generated,	if	enabled	by	clearing	bit	6	of	$4017.	$4015.6	holds	the	status
of	the	frame	counter	IRQ;	it	will	be	set	if	the	frame	counter	is	responsible
for	the	interrupt.

$4017.7		divider		frame	IRQ	freq.
-------		-------		---------------
0								4								60
1								5								48

On	2A03	reset,	both	bits	of	$4017	(6	&	7)	will	be	cleared,	enabling	frame
IRQ's	off	the	hop.	The	reason	why	the	existence	of	frame	IRQ's	are
generally	unknown	is	because	the	6502's	maskable	interrupt	is	disabled
on	reset,	and	this	blocks	out	the	frame	IRQ's.	Most	games	don't	use	any
IRQ-generating	hardware	in	general,	therefore	they	don't	bother	enabling
maskable	interrupts.

Note	that	the	IRQ	line	will	be	held	down	by	the	frame	counter	until	it	is
acknowledged	(by	reading	$4015).	Before	this,	the	6502	will	generate	an
IRQ	*every*	time	interrupts	are	enabled	(either	by	CLI	or	RTI),	since	the
IRQ	design	on	the	6502	is	level-triggered,	and	not	edge.	If	you've	written
a	program	that	does	not	read	$4015	in	the	IRQ	handler,	and	you	execute
CLI,	the	processor	will	immediately	go	into	a	infinite	IRQ	call-return	loop.

+-----------------------+
|Frame	counter	operation|
+-----------------------+
Depending	on	the	status	of	$4017.7,	the	frame	counter	will	follow	2
different	count	sequences.	These	sequences	determine	when	sound
hardware	counters	will	be	clocked.	The	sequences	are	initialized
immediately	following	any	write	to	$4017.

$4017.7		sequence
-------		--------
0								4,	0,1,2,3,	0,1,2,3,...,	etc.
1								0,1,2,3,4,	0,1,2,3,4,...,	etc.

During	count	sequences	0..3,	the	linear	(triangle)	and	envelope	decay
(square	&	noise)	counters	recieve	a	clock	for	each	count.	This	means
that	both	these	counters	are	clocked	once	immediately	after	$4017.7	is
written	with	a	value	of	1.

Count	sequences	1	&	3	clock	(update)	the	frequency	sweep	(square),
and	length	(all	channels)	counters.	Even	though	the	length	counter's
smallest	unit	of	time	counting	is	a	frame,	it	seems	that	it	is	actually	being

clocked	twice	per	frame.	That	said,	you	can	consider	the	length	counters
to	contain	an	extra	stage	to	divide	this	clock	signal	by	2.

No	aforementioned	sound	hardware	counters	are	clocked	on	count
sequence	#4.	You	should	now	see	how	this	causes	the	96,	and	192	Hz
signals	to	be	generated	when	$4017.7=1.

The	rest	of	the	document	will	describe	the	operation	of	the	sound
channels	using	the	$4017.7=0	frequencies	(60,	120,	and	240	Hz).	For
$4017.7=1	operation,	replace	those	frequencies	with	48,	96,	and	192	Hz
(respectively).

*	Sound	hardware	delay	*

After	resetting	the	2A03,	the	first	time	any	sound	channel(s)	length
counter	contains	a	non-zero	value	(channel	is	enabled),	there	will	be	a
2048	CPU	clock	cycle	delay	before	any	of	the	sound	hardware	is
clocked.	After	the	2K	clock	cycles	go	by,	the	NES	sound	hardware	will	be
clocked	normally.	This	phenomenon	only	occurs	prior	to	a	system	reset,
and	only	occurs	during	the	first	2048	CPU	clocks	after	the	activation	of
any	of	the	4	basic	sound	channels.

The	information	in	regards	to	this	delay	is	only	provided	to	keep	this
document	accurate	with	all	information	that	is	currently	known	about	the
2A03's	sound	hardware.	I	haven't	done	much	tests	on	the	behaviour	of
this	delay	(mainly	because	I	don't	care,	as	I	view	it	as	a	inconvenience
anyway),	so	this	information	should	be	taken	with	a	grain	of	salt.

*	Register	Assignments	*

The	sound	hardware	internal	to	the	2A03	has	been	designated	these
special	memory	addresses	in	the	CPU's	memory	map.

$4000-$4003								Square	wave	1
$4004-$4007								Square	wave	2	(identical	to	the	first,	except	for	upward
frequency	sweeps	(see	"sweep	unit"	section))
$4008-$400B								Triangle
$400C-$400F								Noise
$4015																Channel	enable	/	length/frame	counter	status
$4017																frame	counter	control

Note	that	$4015	(and	$4017,	but	is	unrelated	to	sound	hardware)	are	the
only	R/W	registers.	All	others	are	write	only	(attempt	to	read	them	will
most	likely	return	the	last	byte	on	the	bus	(usually	040H),	due	to	heavy
capacitance	on	the	NES's	data	bus).	Reading	a	"write	only"	register,	will
have	no	effect	on	the	specific	register,	or	channel.

Every	sound	channel	has	4	registers	affiliated	with	it.	The	description	of
the	register	sets	are	as	follows:

+----------------+
|	Register	set	1	|
+----------------+

$4000(sq1)/$4004(sq2)/$400C(noise)	bits

0-3								volume	/	envelope	decay	rate
4								envelope	decay	disable
5								length	counter	clock	disable	/	envelope	decay	looping	enable
6-7								duty	cycle	type	(unused	on	noise	channel)

$4008(tri)	bits

0-6								linear	counter	load	register
7								length	counter	clock	disable	/	linear	counter	start

+----------------+
|	Register	set	2	|
+----------------+

$4001(sq1)/$4005(sq2)	bits

0-2								right	shift	amount
3								decrease	/	increase	(1/0)	wavelength
4-6								sweep	update	rate
7								sweep	enable

$4009(tri)/$400D(noise)	bits

0-7								unused

+----------------+
|	Register	set	3	|
+----------------+

$4002(sq1)/$4006(sq2)/$400A(Tri)	bits

0-7								8	LSB	of	wavelength

$400E(noise)	bits

0-3								playback	sample	rate
4-6								unused
7								random	number	type	generation

+----------------+
|	Register	set	4	|
+----------------+

$4003(sq1)/$4007(sq2)/$400B(tri)/$400F(noise)	bits
--
0-2								3	MS	bits	of	wavelength	(unused	on	noise	channel)
3-7								length	counter	load	register

+--------------------------------+
|	length	counter	status	register	|
+--------------------------------+

$4015(read)

0								square	wave	channel	1
1								square	wave	channel	2
2								triangle	wave	channel
3								noise	channel
4								DMC	(see	"DMC.TXT"	for	details)
5-6								unused
7								IRQ	status	of	DMC	(see	"DMC.TXT"	for	details)

+-------------------------+
|	channel	enable	register	|
+-------------------------+

$4015(write)

0								square	wave	channel	1
1								square	wave	channel	2
2								triangle	wave	channel
3								noise	channel
4								DMC	channel	(see	"DMC.TXT"	for	details)
5-7								unused

*	Channel	architecture	*

This	section	will	describe	the	internal	components	making	up	each
individual	channel.	Each	component	will	then	be	described	in	full	detail.

Device																																	Triangle	Noise	

Square

------																																	--------	------

triangle	step	generator																								X

linear	counter																																X

programmable	timer																								X					

X						X

length	counter																																X					

X						X

4-bit	DAC																																						

	X						X						X

volume/envelope	decay	unit																								

X						X

sweep	unit																																												

													X

duty	cycle	generator																																		

							X

wavelength	converter																																	X

random	number	generator																														

		X

+-------------------------+
|	Triangle	step	generator	|
+-------------------------+
This	is	a	5-bit,	single	direction	counter,	and	it	is	only	used	in	the	triangle
channel.	Each	of	the	4	LSB	outputs	of	the	counter	lead	to	one	input	on	a
corresponding	mutually	exclusive	XNOR	gate.	The	4	XNOR	gates	have
been	strobed	together,	which	results	in	the	inverted	representation	of	the
4	LSB	of	the	counter	appearing	on	the	outputs	of	the	gates	when	the
strobe	is	0,	and	a	non-inverting	action	taking	place	when	the	strobe	is	1.
The	strobe	is	naturally	connected	to	the	MSB	of	the	counter,	which
effectively	produces	on	the	output	of	the	XNOR	gates	a	count	sequence
which	reflects	the	scenario	of	a	near-	ideal	triangle	step	generator
(D,E,F,F,E,D,...,2,1,0,0,1,2,...).	At	this	point,	the	outputs	of	the	XNOR
gates	will	be	fed	into	the	input	of	a	4-bit	DAC.

This	5-bit	counter	will	be	halted	whenever	the	Triangle	channel's	length

or	linear	counter	contains	a	count	of	0.	This	results	in	a	"latching"
behaviour;	the	counter	will	NOT	be	reset	to	any	definite	state.

On	system	reset,	this	counter	is	loaded	with	0.

The	counter's	clock	input	is	connected	directly	to	the	terminal	count
output	pin	of	the	11-bit	programmable	timer	in	the	triangle	channel.	As	a
result	of	the	5-bit	triangle	step	generator,	the	output	triangle	wave
frequency	will	be	32	times	less	than	the	frequency	of	the	triangle
channel's	programmable	timer	is	set	to	generate.

+----------------+
|	Linear	counter	|
+----------------+
The	linear	counter	is	only	found	in	the	triangle	channel.	It	is	a	7-bit
presettable	down	counter,	with	a	decoded	output	condition	of	0	available
(not	exactly	the	same	as	terminal	count).	Here's	the	bit	assignments:

$4008	bits

0-6								bits	0-6	of	the	linear	counter	load	register	(NOT	the	linear
counter	itself)
7								linear	counter	start

The	counter	is	clocked	at	240	Hz	(1/4	framerate),	and	the	calculated
length	in	frames	is	0.25*N,	where	N	is	the	7-bit	loaded	value.	The	counter
is	always	being	clocked,	except	when	0	appears	on	the	output	of	the
counter.	At	this	point,	the	linear	counter	&	triangle	step	counter	clocks
signals	are	disabled,	which	results	in	both	counters	latching	their	current
state	(the	linear	counter	will	stay	at	0,	and	the	triangle	step	counter	will
stop,	and	the	channel	will	be	silenced	due	to	this).

The	linear	counter	has	2	modes:	load,	and	count.	When	the	linear
counter	is	in	load	mode,	it	essentially	becomes	transparent	(i.e.	whatever
value	is	currently	in,	or	being	written	to	$4008,	will	appear	on	the	output
of	the	counter).	Because	of	this,	no	count	action	can	occur	in	load	mode.

When	the	mode	changes	from	load	to	count,	the	counter	will	now	latch
the	value	currently	in	it,	and	start	counting	down	from	there.	In	the	count
mode,	the	current	value	of	$4008	is	ignored	by	the	counter	(but	still
retained	in	$4008).	Described	below	is	how	the	mode	of	the	linear
counter	is	set:

Writes	to	$400B

cur								mode
---								----
1								load
0								load	(on	next	linear	counter	clock),	count

Cur	is	the	current	state	of	the	MSB	of	$4008.

Writes	to	$4008

old								new								mode
---								---								----
0								X								count
1								0								no	change	(during	the	CPU	write	cycle),	count
1								1								no	change

Old	and	new	represent	the	state(s)	of	the	MSB	of	$4008.	Old	is	the	value
being	replaced	in	the	MSB	of	$4008	on	the	write,	and	new	is	the	value
replacing	the	old	one.

"no	change"	indicates	that	the	mode	of	the	linear	counter	will	not	change
from	the	last.

Note	that	writes	to	$400B	when	$4008.7=0	only	loads	the	linear	counter
with	the	value	in	$4008	on	the	next	*linear*	counter	clock	(and	NOT	at
the	end	of	the	CPU	write	cycle).	This	is	a	correction	from	older	versions
of	this	doc.

+--------------------+
|	Programmable	timer	|
+--------------------+
The	programmable	timer	is	a	11-bit	presettable	down	counter,	and	is
found	in	the	square,	triangle,	and	noise	channel(s).	The	bit	assignments
are	as	follows:

$4002(sq1)/$4006(sq2)/$400A(Tri)	bits

0-7								represent	bits	0-7	of	the	11-bit	wavelength

$4003(sq1)/$4007(sq2)/$400B(Tri)	bits

0-2								represent	bits	8-A	of	the	11-bit	wavelength

Note	that	on	the	noise	channel,	the	11	bits	are	not	available	directly.	See
the	wavelength	converter	section,	for	more	details.

The	counter	has	automatic	syncronous	reloading	upon	terminal	count
(count=0),	therefore	the	counter	will	count	for	N+1	(N	is	the	11-bit	loaded
value)	clock	cycles	before	arriving	at	terminal	count,	and	reloading.	This
counter	will	typically	be	clocked	at	the	2A03's	internal	6502	speed	(1.79
MHz),	and	produces	an	output	frequency	of	1.79	MHz/(N+1).	The
terminal	count's	output	spike	length	is	typically	no	longer	than	half	a	CPU
clock.	The	TC	signal	will	then	be	fed	to	the	appropriate	device	for	the
particular	sound	channel	(for	square,	this	terminal	count	spike	will	lead	to
the	duty	cycle	generator.	For	the	triangle,	the	spike	will	be	fed	to	the
triangle	step	generator.	For	noise,	this	signal	will	go	to	the	random
number	generator	unit).

+----------------+
|	Length	counter	|
+----------------+
The	length	counter	is	found	in	all	sound	channels.	It	is	essentially	a	7-bit
down	counter,	and	is	conditionally	clocked	at	a	frequency	of	60	Hz.

When	the	length	counter	arrives	at	a	count	of	0,	the	counter	will	be
stopped	(stay	on	0),	and	the	appropriate	channel	will	be	silenced.

The	length	counter	clock	disable	bit,	found	in	all	the	channels,	can	also
be	used	to	halt	the	count	sequence	of	the	length	counter	for	the
appropriate	channel,	by	writing	a	1	out	to	it.	A	0	condition	will	permit
counting	(unless	of	course,	the	counter's	current	count	=	0).	Location(s)
of	the	length	counter	clock	disable	bit:

$4000(sq1)/$4004(sq2)/$400C(noise)	bits

5								length	counter	clock	disable

$4008(tri)	bits

7								length	counter	clock	disable

To	load	the	length	counter	with	a	specified	count,	a	write	must	be	made
out	to	the	length	register.	Location(s)	of	the	length	register:

$4003(sq1)/$4007(sq2)/$400B(tri)/$400F(noise)	bits
--
3-7								length

The	5-bit	length	value	written,	determines	what	7-bit	value	the	length
counter	will	start	counting	from.	A	conversion	table	here	will	show	how
the	values	are	translated.

							+-----------------------+
							|								bit3=0								|
							+-------+---------------+
							|								|frames																|
							|bits								+-------+-------+
							|4-6								|bit7=0								|bit7=1								|
							+-------+-------+-------+
							|0								|05								|06								|

							|1								|0A								|0C								|
							|2								|14								|18								|
							|3								|28								|30								|
							|4								|50								|60								|
							|5								|1E								|24								|
							|6								|07								|08								|
							|7								|0D								|10								|
							+-------+-------+-------+

							+---------------+
							|								bit3=1								|
							+-------+-------+
							|bits								|								|
							|4-7								|frames								|
							+-------+-------+
							|0								|7F								|
							|1								|01								|								
							|2								|02								|
							|3								|03								|
							|4								|04								|
							|5								|05								|
							|6								|06								|
							|7								|07								|
							|8								|08								|
							|9								|09								|
							|A								|0A								|
							|B								|0B								|
							|C								|0C								|
							|D								|0D								|
							|E								|0E								|
							|F								|0F								|
							+-------+-------+

The	length	counter's	real-time	status	for	each	channel	can	be	attained.	A
0	is	returned	for	a	zero	count	status	in	the	length	counter	(channel's
sound	is	disabled),	and	1	for	a	non-zero	status.	Here's	the	bit	description
of	the	length	counter	status	register:

$4015(read)

0								length	counter	status	of	square	wave	channel	1
1								length	counter	status	of	square	wave	channel	2
2								length	counter	status	of	triangle	wave	channel
3								length	counter	status	of	noise	channel
4								length	counter	status	of	DMC	(see	"DMC.TXT"	for	details)
5								unknown
6								frame	IRQ	status
7								IRQ	status	of	DMC	(see	"DMC.TXT"	for	details)

Writing	a	0	to	the	channel	enable	register	will	force	the	length	counters	to
always	contain	a	count	equal	to	0,	which	renders	that	specific	channel
disabled	(as	if	it	doesn't	exist).	Writing	a	1	to	the	channel	enable	register
disables	the	forced	length	counter	value	of	0,	but	will	not	change	the
count	itself	(it	will	still	be	whatever	it	was	prior	to	the	writing	of	1).

Bit	description	of	the	channel	enable	register:

$4015(write)

0								enable	square	wave	channel	1
1								enable	square	wave	channel	2
2								enable	triangle	wave	channel
3								enable	noise	channel
4								enable	DMC	channel	(see	"DMC.TXT"	for	details)
5-7								unknown

Note	that	all	5	used	bits	in	this	register	will	be	set	to	0	upon	system	reset.

+-----------+
|	4-bit	DAC	|
+-----------+
This	is	just	a	standard	4-bit	DAC	with	16	steps	of	output	voltage
resolution,	and	is	used	by	all	4	sound	channels.	On	the	2A03,	square

wave	1	&	2	are	mixed	together,	and	are	available	via	pin	1.	Triangle	&
noise	are	available	on	pin	2.

These	analog	outputs	require	a	negative	current	source,	to	attain	linear
symmetry	on	the	various	output	voltage	levels	generated	by	the
channel(s)	(moreover,	to	get	the	sound	to	be	audible).	Instead	of	current
sources,	the	NES	uses	external	100	ohm	pull-down	resistors.	This	results
in	the	output	waveforms	having	some	linear	asymmetry	(i.e.,	as	the
desired	output	voltage	increases	on	a	linear	scale,	the	actual	outputted
voltage	increases	less	and	less	each	step).

The	side	effect	of	this	is	that	the	DMC's	7-bit	DAC	port	($4011)	is	able	to
indirectly	control	the	volume	(somewhat)	of	both	triangle	&	noise
channels.	While	I	have	not	measured	the	voltage	asymmetery,	others	on
the	NESdev	messageboards	have	posted	their	findings.	The	conclusion
is	that	when	$4011	is	0,	triangle	&	noise	volume	outputs	are	at	maximum.
When	$4011	=	7F,	the	triangle	&	noise	channel	outputs	operate	at	only
57%	total	volume.

The	odd	thing	is	that	a	few	games	actually	take	advantage	of	this
"volume"	feature,	and	write	values	to	$4011	in	order	to	regulate	the
amplitude	of	the	triangle	wave	channel's	output.

+------------------------------+
|	Volume	/	envelope	decay	unit	|
+------------------------------+
The	volume	/	envelope	decay	hardware	is	found	only	in	the	square	wave
and	noise	channels.

$4000(sq1)/$4004(sq2)/$400C(noise)

0-3								volume	/	envelope	decay	rate
4								envelope	decay	disable
5								envelope	decay	looping	enable

When	the	envelope	decay	disable	bit	(bit	4)	is	set	(1),	the	current	volume

value	(bits	0-3)	is	sent	directly	to	the	channel's	DAC.	However,
depending	on	certain	conditions,	this	4-bit	volume	value	will	be	ignored,
and	a	value	of	0	will	be	sent	to	the	DAC	instead.	This	means	that	while
the	channel	is	enabled	(producing	sound),	the	output	of	the	channel
(what	you'll	hear	from	the	DAC)	will	either	be	the	4-bit	volume	value,	or	0.
This	also	means	that	a	4-bit	volume	value	of	0	will	result	in	no	audible
sound.	These	conditions	are	as	follows:

-	When	hardware	in	the	channel	wants	to	disable	it's	sound	output	(like
the	length	counter,	or	sweep	unit	(square	channels	only)).

-	On	the	negative	portion	of	the	output	frequency	signal	coming	from	the
duty	cycle	/	random	number	generator	hardware	(square	wave	channel	/
noise	channel).

When	the	envelope	decay	disable	bit	is	cleared,	bits	0-3	now	control	the
envelope	decay	rate,	and	an	internal	4-bit	down	counter	(hereon	the
envelope	decay	counter)	now	controls	the	channel's	volume	level.
"Envelope	decay"	is	used	to	describe	the	action	of	the	channel's	audio
output	volume	starting	from	a	certain	value,	and	decreasing	by	1	at	a
fixed	(linear)	rate	(which	produces	a	"fade-out"	sounding	effect).	This
fixed	decrement	rate	is	controlled	by	the	envelope	decay	rate	(bits	0-3).
The	calculated	decrement	rate	is	240Hz/(N+1),	where	N	is	any	value
between	$0-$F.

When	the	channel's	envelope	decay	counter	reaches	a	value	of	0,
depending	on	the	status	of	the	envelope	decay	looping	enable	bit	(bit	5,
which	is	shared	with	the	length	counter's	clock	disable	bit),	2	different
things	will	happen:

bit	5								action
-----								------
0								The	envelope	decay	count	will	stay	at	0	(channel	silenced).
1								The	envelope	decay	count	will	wrap-around	to	$F	(upon	the	next
clock	cycle).	The	envelope	decay	counter	will	then	continue	to	count
down	normally.

Only	a	write	out	to	$4003/$4007/$400F	will	reset	the	current	envelope
decay	counter	to	a	known	state	(to	$F,	the	maximum	volume	level)	for	the
appropriate	channel's	envelope	decay	hardware.	Otherwise,	the
envelope	decay	counter	is	always	counting	down	(by	1)	at	the	frequency
currently	contained	in	the	volume	/	envelope	decay	rate	bits	(even	when
envelope	decays	are	disabled	(setting	bit	4)),	except	when	the	envelope
decay	counter	contains	a	value	of	0,	and	envelope	decay	looping	(bit	5)
is	disabled	(0).

+------------+
|	Sweep	unit	|
+------------+
The	sweep	unit	is	only	found	in	the	square	wave	channels.	The	controls
for	the	sweep	unit	have	been	mapped	in	at	$4001	for	square	1,	and
$4005	for	square	2.

The	controls

Bit	7										when	this	bit	is	set	(1),	sweeping	is	active.	This	results	in	real-
time	increasing	or	decreasing	of	the	the	current	wavelength	value	(the
audible	frequency	will	decrease	or	increase,	respectively).	The
wavelength	value	in	$4002/3	($4006/7)	is	constantly	read	&	updated	by
the	sweep.	Modifying	the	contents	of	$4002/3	will	be	immediately
audible,	and	will	result	in	the	sweep	now	starting	from	this	new
wavelength	value.

Bits	6-4								These	3	bits	represent	the	sweep	refresh	rate,	or	the
frequency	at	which	$4002/3	is	updated	with	the	new	calculated
wavelength.	The	refresh	rate	frequency	is	120Hz/(N+1),	where	N	is	the
value	written,	between	0	and	7.

Bit	3										This	bit	controls	the	sweep	mode.	When	this	bit	is	set	(1),
sweeps	will	decrease	the	current	wavelength	value,	as	a	0	will	increase
the	current	wavelength.

Bits	2-0								These	bits	control	the	right	shift	amount	of	the	new

calculated	sweep	update	wavelength.	Code	that	shows	how	the	sweep
unit	calculates	a	new	sweep	wavelength	is	as	follows:
bit	3

0								New	=	Wavelength	+	(Wavelength	>>	N)
1								New	=	Wavelength	-	(Wavelength	>>	N)	(minus	an	additional	1,	if
using	square	wave	channel	1)

where	N	is	the	the	shift	right	value,	between	0-7.

Note	that	in	decrease	mode,	for	subtracting	the	2	values:
1's	compliment	(NOT)	is	being	used	for	square	wave	channel	1
2's	compliment	(NEG)	is	being	used	for	square	wave	channel	2

This	information	is	currently	the	only	known	difference	between	the	2
square	wave	channels.

On	each	sweep	refresh	clock,	the	Wavelength	register	will	be	updated
with	the	New	value,	but	only	if	all	3	of	these	conditions	are	met:

-	bit	7	is	set	(sweeping	enabled)
-	the	shift	value	(which	is	N	in	the	formula)	does	not	equal	to	0
-	the	channel's	length	counter	contains	a	non-zero	value

Notes

There	are	certain	conditions	that	will	cause	the	sweep	unit	to	silence	the
channel,	and	halt	the	sweep	refresh	clock	(which	effectively	stops	sweep
action,	if	any).	Note	that	these	conditions	pertain	regardless	of	any	sweep
refresh	rate	values,	or	if	sweeping	is	enabled/disabled	(via	bit	7).

-	an	11-bit	wavelength	value	less	than	$008	will	cause	this	condition
-	if	the	sweep	unit	is	currently	set	to	increase	mode,	the	New	calculated
wavelength	value	will	always	be	tested	to	see	if	a	carry	(bit	$B)	was
generated	or	not	(if	sweeping	is	enabled,	this	carry	will	be	examined
before	the	Wavelength	register	is	updated)	from	the	shift	addition
calculation.	If	carry	equals	1,	the	channel	is	silenced,	and	sweep	action	is

halted.

+----------------------+
|	Duty	cycle	generator	|
+----------------------+
The	duty	cycle	generator	takes	the	fequency	produced	from	the	11-bit
programmable	timer,	and	uses	a	4	bit	counter	to	produce	4	types	of	duty
cycles.	The	output	frequency	is	then	1/16	that	of	the	programmable	timer.
The	duty	cycle	hardware	is	only	found	in	the	square	wave	channels.	The
bit	assignments	are	as	follows:

$4000(sq1)/$4004(sq2)

6-7								Duty	cycle	type

							duty	(positive/negative)
val								in	clock	cycles
---								---------------
00									2/14
01									4/12
10									8/	8
11								12/	4

Where	val	represents	bits	6-7	of	$4000/$4004.

This	counter	is	reset	when	the	length	counter	of	the	same	channel	is
written	to	(via	$4003/$4007).

The	output	frequency	at	this	point	will	now	be	fed	to	the	volume/envelope
decay	hardware.

+----------------------+
|	Wavelength	converter	|
+----------------------+
The	wavelength	converter	is	only	used	in	the	noise	channel.	It	is	used	to

convert	a	given	4-bit	value	to	an	11-bit	wavelength,	which	then	is	sent	to
the	noise's	own	programmable	timer.	Here	is	the	bit	descriptions:

$400E	bits

0-3								The	4-bit	value	to	be	converted

Below	is	a	conversion	chart	that	shows	what	4-bit	value	will	represent	the
11-bit	wavelength	to	be	fed	to	the	channel's	programmable	timer:

value								octave								scale								CPU	clock	cycles	(11-bit	wavelength+1)
-----								------								-----								--------------------------------------
0								15								A								002
1								14								A								004
2								13								A								008
3								12								A								010
4								11								A								020
5								11								D								030
6								10								A								040
7								10								F								050
8								10								C								065
9									9								A								07F
A									9								D								0BE
B									8								A								0FE
C									8								D								17D
D									7								A								1FC
E									6								A								3F9
F									5								A								7F2

Octave	and	scale	information	is	provided	for	the	music	enthusiast
programmer	who	is	more	familiar	with	notes	than	clock	cycles.

+-------------------------+
|	Random	number	generator	|
+-------------------------+
The	noise	channel	has	a	1-bit	pseudo-random	number	generator.	It's

based	on	a	15-bit	shift	register,	and	an	exclusive	or	gate.	The	generator
can	produce	two	types	of	random	number	sequences:	long,	and	short.
The	long	sequence	generates	32,767-bit	long	number	patterns.	The	short
sequence	generates	93-bit	long	number	patterns.	The	93-bit	mode	will
generally	produce	higher	sounding	playback	frequencys	on	the	channel.
Here	is	the	bit	that	controls	the	mode:

$400E	bits

7								mode

If	mode=0,	then	32,767-bit	long	number	sequences	will	be	produced
(32K	mode),	otherwise	93-bit	long	number	sequences	will	be	produced
(93-bit	mode).

The	following	diagram	shows	where	the	XOR	taps	are	taken	off	the	shift
register	to	produce	the	1-bit	pseudo-random	number	sequences	for	each
mode.

mode												<-----
----								EDCBA9876543210
32K								**
93-bit								*					*

The	current	result	of	the	XOR	will	be	transferred	into	bit	position	0	of	the
SR,	upon	the	next	shift	cycle.	The	1-bit	random	number	output	is	taken
from	pin	E,	is	inverted,	then	is	sent	to	the	volume/envelope	decay
hardware	for	the	noise	channel.	The	shift	register	is	shifted	upon
recieving	2	clock	pulses	from	the	programmable	timer	(the	shift	frequency
will	be	half	that	of	the	frequency	from	the	programmable	timer	(one
octave	lower)).

On	system	reset,	this	shift	register	is	loaded	with	a	value	of	1.

RP2A03E	quirk

I	have	been	informed	that	revisions	of	the	2A03	before	"F"	actually	lacked
support	for	the	93-bit	looped	noise	playback	mode.	While	the	Famicom's
2A03	went	through	4	revisions	(E..H),	I	think	that	only	one	was	ever	used
for	the	front	loading	NES:	"G".	Other	differences	between	2A03	revisions
are	unknown.

EOF

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NES	Processor

NES	Processing
Includes	Technical	Specifications	for	the	emulation	of	the	NES	CPU
(6502)	and	the	NES	PPU	(2C02).

CPU

PPU

NES	Scrolling	part	1

NES	Scrolling	part	2

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

6502	CPU
#

#	$Id:	6502_cpu.txt,v	1.1.1.1	2004/08/29	01:29:35

bryan	Exp	$

#

#	This	file	is	part	of	Commodore	64	emulator

#						and	Program	Development	System.

#

#	See	README	for	copyright	notice

#

#	This	file	contains	documentation	for

6502/6510/8500/8502	instruction	set.

#

#

#	Written	by

#			John	West							(john@ucc.gu.uwa.edu.au)

#			Marko	MŠkelŠ				(msmakela@kruuna.helsinki.fi)

#

#

#	$Log:	6502_cpu.txt,v	$

#	Revision	1.1.1.1		2004/08/29	01:29:35		bryan

#	no	message

#

#	Revision	1.1		2002/05/21	00:42:27		xodnizel

#	updates

#

#	Revision	1.8		1994/06/03		19:50:04		jopi

#	Patchlevel	2

#

#	Revision	1.7		1994/04/15		13:07:04		jopi

#	65xx	Register	descriptions	added

#

#	Revision	1.6		1994/02/18		16:09:36		jopi

#

#	Revision	1.5		1994/01/26		16:08:37		jopi

#	X64	version	0.2	PL	1

#

#	Revision	1.4		1993/11/10		01:55:34		jopi

#

#	Revision	1.3		93/06/21		13:37:18		jopi

#		X64	version	0.2	PL	0

#

#	Revision	1.2		93/06/21		13:07:15		jopi

#	***	empty	log	message	***

#

#

Note:	To	extract	the	uuencoded	ML	programs	in	this	article	most
							easily	you	may	use	e.g.	"uud"	by	Edwin	Kremer	,
							which	extracts	them	all	at	once.

Documentation	for	the	NMOS	65xx/85xx	Instruction	Set

								6510	Instructions	by	Addressing	Modes
								6502	Registers
								6510/8502	Undocumented	Commands
								Register	selection	for	load	and	store
								Decimal	mode	in	NMOS	6500	series
								6510	features
								Different	CPU	types
								6510	Instruction	Timing
								How	Real	Programmers	Acknowledge	Interrupts
								Memory	Management
								Autostart	Code
								Notes
								References

6510	Instructions	by	Addressing	Modes

off-	++++++++++	Positive	++++++++++		----------

Negative	----------

set		00						20						40						60						80						a0					

c0						e0						mode

+00		BRK					JSR					RTI					RTS					NOP*				LDY				

CPY					CPX					Impl/immed

+01		ORA					AND					EOR					ADC					STA					LDA				

CMP					SBC					(indir,x)

+02			t							t							t							t						NOP*t			LDX				

NOP*t			NOP*t					?	/immed

+03		SLO*				RLA*				SRE*				RRA*				SAX*				LAX*			

DCP*				ISB*				(indir,x)

+04		NOP*				BIT					NOP*				NOP*				STY					LDY				

CPY					CPX					Zeropage

+05		ORA					AND					EOR					ADC					STA					LDA				

CMP					SBC					Zeropage

+06		ASL					ROL					LSR					ROR					STX					LDX				

DEC					INC					Zeropage

+07		SLO*				RLA*				SRE*				RRA*				SAX*				LAX*			

DCP*				ISB*				Zeropage

+08		PHP					PLP					PHA					PLA					DEY					TAY				

INY					INX					Implied

+09		ORA					AND					EOR					ADC					NOP*				LDA				

CMP					SBC					Immediate

+0a		ASL					ROL					LSR					ROR					TXA					TAX				

DEX					NOP					Accu/impl

+0b		ANC**			ANC**			ASR**			ARR**			ANE**			LXA**		

SBX**			SBC*				Immediate

+0c		NOP*				BIT					JMP					JMP	()		STY					LDY				

CPY					CPX					Absolute

+0d		ORA					AND					EOR					ADC					STA					LDA				

CMP					SBC					Absolute

+0e		ASL					ROL					LSR					ROR					STX					LDX				

DEC					INC					Absolute

+0f		SLO*				RLA*				SRE*				RRA*				SAX*				LAX*			

DCP*				ISB*				Absolute

+10		BPL					BMI					BVC					BVS					BCC					BCS				

BNE					BEQ					Relative

+11		ORA					AND					EOR					ADC					STA					LDA				

CMP					SBC					(indir),y

+12			t							t							t							t							t							t						

t							t									?

+13		SLO*				RLA*				SRE*				RRA*				SHA**			LAX*			

DCP*				ISB*				(indir),y

+14		NOP*				NOP*				NOP*				NOP*				STY					LDY				

NOP*				NOP*				Zeropage,x

+15		ORA					AND					EOR					ADC					STA					LDA				

CMP					SBC					Zeropage,x

+16		ASL					ROL					LSR					ROR					STX		y)	LDX		y)

DEC					INC					Zeropage,x

+17		SLO*				RLA*				SRE*				RRA*				SAX*	y)	LAX*	y)

DCP*				ISB*				Zeropage,x

+18		CLC					SEC					CLI					SEI					TYA					CLV				

CLD					SED					Implied

+19		ORA					AND					EOR					ADC					STA					LDA				

CMP					SBC					Absolute,y

+1a		NOP*				NOP*				NOP*				NOP*				TXS					TSX				

NOP*				NOP*				Implied

+1b		SLO*				RLA*				SRE*				RRA*				SHS**			LAS**		

DCP*				ISB*				Absolute,y

+1c		NOP*				NOP*				NOP*				NOP*				SHY**			LDY				

NOP*				NOP*				Absolute,x

+1d		ORA					AND					EOR					ADC					STA					LDA				

CMP					SBC					Absolute,x

+1e		ASL					ROL					LSR					ROR					SHX**y)	LDX		y)

DEC					INC					Absolute,x

+1f		SLO*				RLA*				SRE*				RRA*				SHA**y)	LAX*	y)

DCP*				ISB*				Absolute,x

								ROR	intruction	is	available	on	MC650x	microprocessors	after
								June,	1976.

								Legend:

								t							Jams	the	machine
								*t						Jams	very	rarely
								*							Undocumented	command
								**						Unusual	operation

								y)						indexed	using	Y	instead	of	X
								()						indirect	instead	of	absolute

Note	that	the	NOP	instructions	do	have	other	addressing	modes	than	the
implied	addressing.	The	NOP	instruction	is	just	like	any	other	load
instruction,	except	it	does	not	store	the	result	anywhere	nor	affects	the
flags.

6502	Registers

The	NMOS	65xx	processors	are	not	ruined	with	too	many	registers.	In
addition
to	that,	the	registers	are	mostly	8-bit.	Here	is	a	brief	description	of	each
register:

					PC	Program	Counter
										This	register	points	the	address	from	which	the	next	instruction
										byte	(opcode	or	parameter)	will	be	fetched.	Unlike	other
										registers,	this	one	is	16	bits	in	length.	The	low	and	high	8-bit
										halves	of	the	register	are	called	PCL	and	PCH,	respectively.	The
										Program	Counter	may	be	read	by	pushing	its	value	on	the	stack.
										This	can	be	done	either	by	jumping	to	a	subroutine	or	by	causing
										an	interrupt.
					S	Stack	pointer
										The	NMOS	65xx	processors	have	256	bytes	of	stack	memory,
ranging
										from	$0100	to	$01FF.	The	S	register	is	a	8-bit	offset	to	the	stack
										page.	In	other	words,	whenever	anything	is	being	pushed	on	the
										stack,	it	will	be	stored	to	the	address	$0100+S.

										The	Stack	pointer	can	be	read	and	written	by	transfering	its	value
										to	or	from	the	index	register	X	(see	below)	with	the	TSX	and	TXS
										instructions.
					P	Processor	status
										This	8-bit	register	stores	the	state	of	the	processor.	The	bits	in
										this	register	are	called	flags.	Most	of	the	flags	have	something
										to	do	with	arithmetic	operations.

										The	P	register	can	be	read	by	pushing	it	on	the	stack	(with	PHP	or
										by	causing	an	interrupt).	If	you	only	need	to	read	one	flag,	you
										can	use	the	branch	instructions.	Setting	the	flags	is	possible	by
										pulling	the	P	register	from	stack	or	by	using	the	flag	set	or
										clear	instructions.

										Following	is	a	list	of	the	flags,	starting	from	the	8th	bit	of	the
										P	register	(bit	7,	value	$80):
															N	Negative	flag
																				This	flag	will	be	set	after	any	arithmetic	operations
																				(when	any	of	the	registers	A,	X	or	Y	is	being	loaded
																				with	a	value).	Generally,	the	N	flag	will	be	copied	from
																				the	topmost	bit	of	the	register	being	loaded.

																				Note	that	TXS	(Transfer	X	to	S)	is	not	an	arithmetic
																				operation.	Also	note	that	the	BIT	instruction	affects
																				the	Negative	flag	just	like	arithmetic	operations.
																				Finally,	the	Negative	flag	behaves	differently	in
																				Decimal	operations	(see	description	below).
															V	oVerflow	flag
																				Like	the	Negative	flag,	this	flag	is	intended	to	be	used
																				with	8-bit	signed	integer	numbers.	The	flag	will	be
																				affected	by	addition	and	subtraction,	the	instructions
																				PLP,	CLV	and	BIT,	and	the	hardware	signal	-SO.	Note	that
																				there	is	no	SEV	instruction,	even	though	the	MOS
																				engineers	loved	to	use	East	European	abbreviations,	like
																				DDR	(Deutsche	Demokratische	Republik	vs.	Data	Direction
																				Register).	(The	Russian	abbreviation	for	their	former
																				trade	association	COMECON	is	SEV.)	The	-SO	(Set
																				Overflow)	signal	is	available	on	some	processors,	at
																				least	the	6502,	to	set	the	V	flag.	This	enables	response
																				to	an	I/O	activity	in	equal	or	less	than	three	clock
																				cycles	when	using	a	BVC	instruction	branching	to	itself
																				($50	$FE).

																				The	CLV	instruction	clears	the	V	flag,	and	the	PLP	and

																				BIT	instructions	copy	the	flag	value	from	the	bit	6	of
																				the	topmost	stack	entry	or	from	memory.

																				After	a	binary	addition	or	subtraction,	the	V	flag	will
																				be	set	on	a	sign	overflow,	cleared	otherwise.	What	is	a
																				sign	overflow?	For	instance,	if	you	are	trying	to	add
																				123	and	45	together,	the	result	(168)	does	not	fit	in	a
																				8-bit	signed	integer	(upper	limit	127	and	lower	limit
																				-128).	Similarly,	adding	-123	to	-45	causes	the
																				overflow,	just	like	subtracting	-45	from	123	or	123	from
																				-45	would	do.

																				Like	the	N	flag,	the	V	flag	will	not	be	set	as	expected
																				in	the	Decimal	mode.	Later	in	this	document	is	a	precise
																				operation	description.

																				A	common	misbelief	is	that	the	V	flag	could	only	be	set
																				by	arithmetic	operations,	not	cleared.
															1	unused	flag
																				To	the	current	knowledge,	this	flag	is	always	1.
															B	Break	flag
																				This	flag	is	used	to	distinguish	software	(BRK)
																				interrupts	from	hardware	interrupts	(IRQ	or	NMI).	The	B
																				flag	is	always	set	except	when	the	P	register	is	being
																				pushed	on	stack	when	jumping	to	an	interrupt	routine	to
																				process	only	a	hardware	interrupt.

																				The	official	NMOS	65xx	documentation	claims	that	the	BRK
																				instruction	could	only	cause	a	jump	to	the	IRQ	vector
																				($FFFE).	However,	if	an	NMI	interrupt	occurs	while
																				executing	a	BRK	instruction,	the	processor	will	jump	to
																				the	NMI	vector	($FFFA),	and	the	P	register	will	be
																				pushed	on	the	stack	with	the	B	flag	set.
															D	Decimal	mode	flag
																				This	flag	is	used	to	select	the	(Binary	Coded)	Decimal
																				mode	for	addition	and	subtraction.	In	most	applications,
																				the	flag	is	zero.

																				The	Decimal	mode	has	many	oddities,	and	it	operates
																				differently	on	CMOS	processors.	See	the	description	of
																				the	ADC,	SBC	and	ARR	instructions	below.
															I	Interrupt	disable	flag
																				This	flag	can	be	used	to	prevent	the	processor	from
																				jumping	to	the	IRQ	handler	vector	($FFFE)	whenever	the
																				hardware	line	-IRQ	is	active.	The	flag	will	be
																				automatically	set	after	taking	an	interrupt,	so	that	the
																				processor	would	not	keep	jumping	to	the	interrupt
																				routine	if	the	-IRQ	signal	remains	low	for	several	clock
																				cycles.
															Z	Zero	flag
																				The	Zero	flag	will	be	affected	in	the	same	cases	than
																				the	Negative	flag.	Generally,	it	will	be	set	if	an
																				arithmetic	register	is	being	loaded	with	the	value	zero,
																				and	cleared	otherwise.	The	flag	will	behave	differently
																				in	Decimal	operations.
															C	Carry	flag
																				This	flag	is	used	in	additions,	subtractions,
																				comparisons	and	bit	rotations.	In	additions	and
																				subtractions,	it	acts	as	a	9th	bit	and	lets	you	to	chain
																				operations	to	calculate	with	bigger	than	8-bit	numbers.
																				When	subtracting,	the	Carry	flag	is	the	negative	of
																				Borrow:	if	an	overflow	occurs,	the	flag	will	be	clear,
																				otherwise	set.	Comparisons	are	a	special	case	of
																				subtraction:	they	assume	Carry	flag	set	and	Decimal	flag
																				clear,	and	do	not	store	the	result	of	the	subtraction
																				anywhere.

																				There	are	four	kinds	of	bit	rotations.	All	of	them	store
																				the	bit	that	is	being	rotated	off	to	the	Carry	flag.	The
																				left	shifting	instructions	are	ROL	and	ASL.	ROL	copies
																				the	initial	Carry	flag	to	the	lowmost	bit	of	the	byte;
																				ASL	always	clears	it.	Similarly,	the	ROR	and	LSR
																				instructions	shift	to	the	right.
					A	Accumulator

										The	accumulator	is	the	main	register	for	arithmetic	and	logic
										operations.	Unlike	the	index	registers	X	and	Y,	it	has	a	direct
										connection	to	the	Arithmetic	and	Logic	Unit	(ALU).	This	is	why
										many	operations	are	only	available	for	the	accumulator,	not	the
										index	registers.
					X	Index	register	X
										This	is	the	main	register	for	addressing	data	with	indices.	It	has
										a	special	addressing	mode,	indexed	indirect,	which	lets	you	to
										have	a	vector	table	on	the	zero	page.
					Y	Index	register	Y
										The	Y	register	has	the	least	operations	available.	On	the	other
										hand,	only	it	has	the	indirect	indexed	addressing	mode	that
										enables	access	to	any	memory	place	without	having	to	use
										self-modifying	code.

6510/8502	Undocumented	Commands

--	A	brief	explanation	about	what	may	happen	while	using	don't	care
states.

								ANE	$8B									A	=	(A	|	#$EE)	&	X	&	#byte

																								same	as

																								A	=	((A	&	#$11	&	X)	|	(#$EE	&

X))	&	#byte

																								In	real	6510/8502	the	internal	parameter	#$11
																								may	occasionally	be	#$10,	#$01	or	even	#$00.
																								This	occurs	when	the	video	chip	starts	DMA
																								between	the	opcode	fetch	and	the	parameter	fetch
																								of	the	instruction.		The	value	probably	depends
																								on	the	data	that	was	left	on	the	bus	by	the	VIC-II.

								LXA	$AB									C=Lehti:			A	=	X	=	ANE

																								Alternate:	A	=	X	=	(A	&	#byte)

																								TXA	and	TAX	have	to	be	responsible	for	these.

								SHA	$93,$9F					Store	(A	&	X	&	(ADDR_HI	+	1))

								SHX	$9E									Store	(X	&	(ADDR_HI	+	1))

								SHY	$9C									Store	(Y	&	(ADDR_HI	+	1))

								SHS	$9B									SHA	and	TXS,	where	X	is

replaced	by	(A	&	X).

																								Note:	The	value	to	be	stored	is	copied	also
																								to	ADDR_HI	if	page	boundary	is	crossed.

								SBX	$CB									Carry	and	Decimal	flags	are	ignored	but	the
																								Carry	flag	will	be	set	in	substraction.	This
																								is	due	to	the	CMP	command,	which	is	executed
																								instead	of	the	real	SBC.

								ARR	$6B									This	instruction	first	performs	an	AND
																								between	the	accumulator	and	the	immediate
																								parameter,	then	it	shifts	the	accumulator	to
																								the	right.	However,	this	is	not	the	whole
																								truth.	See	the	description	below.

Many	undocumented	commands	do	not	use	AND	between	registers,	the
CPU
just	throws	the	bytes	to	a	bus	simultaneously	and	lets	the
open-collector	drivers	perform	the	AND.	I.e.	the	command	called	'SAX',
which	is	in	the	STORE	section	(opcodes	$A0...$BF),	stores	the	result
of	(A	&	X)	by	this	way.

More	fortunate	is	its	opposite,	'LAX'	which	just	loads	a	byte
simultaneously	into	both	A	and	X.

								$6B		ARR

This	instruction	seems	to	be	a	harmless	combination	of	AND	and	ROR	at
first	sight,	but	it	turns	out	that	it	affects	the	V	flag	and	also	has
a	special	kind	of	decimal	mode.	This	is	because	the	instruction	has
inherited	some	properties	of	the	ADC	instruction	($69)	in	addition	to
the	ROR	($6A).

In	Binary	mode	(D	flag	clear),	the	instruction	effectively	does	an	AND
between	the	accumulator	and	the	immediate	parameter,	and	then	shifts
the	accumulator	to	the	right,	copying	the	C	flag	to	the	8th	bit.	It
sets	the	Negative	and	Zero	flags	just	like	the	ROR	would.	The	ADC	code
shows	up	in	the	Carry	and	oVerflow	flags.	The	C	flag	will	be	copied
from	the	bit	6	of	the	result	(which	doesn't	seem	too	logical),	and	the
V	flag	is	the	result	of	an	Exclusive	OR	operation	between	the	bit	6
and	the	bit	5	of	the	result.		This	makes	sense,	since	the	V	flag	will
be	normally	set	by	an	Exclusive	OR,	too.

In	Decimal	mode	(D	flag	set),	the	ARR	instruction	first	performs	the
AND	and	ROR,	just	like	in	Binary	mode.	The	N	flag	will	be	copied	from
the	initial	C	flag,	and	the	Z	flag	will	be	set	according	to	the	ROR
result,	as	expected.	The	V	flag	will	be	set	if	the	bit	6	of	the
accumulator	changed	its	state	between	the	AND	and	the	ROR,	cleared
otherwise.

Now	comes	the	funny	part.	If	the	low	nybble	of	the	AND	result,
incremented	by	its	lowmost	bit,	is	greater	than	5,	the	low	nybble	in
the	ROR	result	will	be	incremented	by	6.	The	low	nybble	may	overflow
as	a	consequence	of	this	BCD	fixup,	but	the	high	nybble	won't	be
adjusted.	The	high	nybble	will	be	BCD	fixed	in	a	similar	way.	If	the
high	nybble	of	the	AND	result,	incremented	by	its	lowmost	bit,	is
greater	than	5,	the	high	nybble	in	the	ROR	result	will	be	incremented
by	6,	and	the	Carry	flag	will	be	set.	Otherwise	the	C	flag	will	be
cleared.

To	help	you	understand	this	description,	here	is	a	C	routine	that
illustrates	the	ARR	operation	in	Decimal	mode:

								unsigned

											A,		/*	Accumulator	*/

											AL,	/*	low	nybble	of	accumulator	*/

											AH,	/*	high	nybble	of	accumulator	*/

											C,		/*	Carry	flag	*/

											Z,		/*	Zero	flag	*/

											V,		/*	oVerflow	flag	*/

											N,		/*	Negative	flag	*/

											t,		/*	temporary	value	*/

											s;		/*	value	to	be	ARRed	with	Accumulator

*/

								t	=	A	&	s;																						/*	Perform	the

AND.	*/

								AH	=	t	>>	4;																				/*	Separate

the	high	*/

								AL	=	t	&	15;																				/*	and	low

nybbles.	*/

								N	=	C;																										/*	Set	the	N

and	*/

								Z	=	!(A	=	(t	>>	1)	|	(C	<<	7));	/*	Z	flags

traditionally	*/

								V	=	(t	^	A)	&	64;															/*	and	V	flag

in	a	weird	way.	*/

								if	(AL	+	(AL	&	1)	>	5)										/*	BCD	"fixup"

for	low	nybble.	*/

										A	=	(A	&	0xF0)	|	((A	+	6)	&	0xF);

								if	(C	=	AH	+	(AH	&	1)	>	5)						/*	Set	the

Carry	flag.	*/

										A	=	(A	+	0x60)	&	0xFF;								/*	BCD	"fixup"

for	high	nybble.	*/

								$CB		SBX			X	<-	(A	&	X)	-	Immediate

The	'SBX'	($CB)	may	seem	to	be	very	complex	operation,	even	though	it
is	a	combination	of	the	subtraction	of	accumulator	and	parameter,	as
in	the	'CMP'	instruction,	and	the	command	'DEX'.	As	a	result,	both	A
and	X	are	connected	to	ALU	but	only	the	subtraction	takes	place.	Since

the	comparison	logic	was	used,	the	result	of	subtraction	should	be
normally	ignored,	but	the	'DEX'	now	happily	stores	to	X	the	value	of
(A	&	X)	-	Immediate.		That	is	why	this	instruction	does	not	have	any
decimal	mode,	and	it	does	not	affect	the	V	flag.	Also	Carry	flag	will
be	ignored	in	the	subtraction	but	set	according	to	the	result.

Proof:

begin	644	vsbx

M`0@9$,D'GL(H-#,IJC(U-JS"*#0T*:HR-

@```*D`H#V1*Z`_D2N@09$KJ0>%

M^QBE^VEZJ+$KH#F1*ZD`2"BI`*(`RP`(:-

B@.5$K*4#P`E@`H#VQ*SAI`)$K

JD-Z@/[$K:0"1*Y#4J2X@TO\XH$&Q*VD`D2N0Q,;

[$+188/_^]_:_OK>V

`

end

and

begin	644	sbx

M`0@9$,D'GL(H-#,IJC(U-JS"*#0T*:HR-@```'BI`*!-

D2N@3Y$KH%&1*ZD#

MA?L8I?M*2)`#J1@LJ3B@29$K:$J0`ZGX+*G8R)$K&/BXJ?

2B8\L)AOP(:(7]

MV#B@3;KH\Q*Z!1\2L(1?SP`0!H1?

TIM]#XH$VQ*SAI`)$KD,N@3[$K:0"1

9*Y#!J2X@TO\XH%&Q*VD`D2N0L<;[$))88-#X

`

end

These	test	programs	show	if	your	machine	is	compatible	with	ours
regarding	the	opcode	$CB.	The	first	test,	vsbx,	proves	that	SBX	does
not	affect	the	V	flag.	The	latter	one,	sbx,	proves	the	rest	of	our
theory.	The	vsbx	test	tests	33554432	SBX	combinations	(16777216
different	A,	X	and	Immediate	combinations,	and	two	different	V	flag
states),	and	the	sbx	test	doubles	that	amount	(16777216*4	D	and	C	flag
combinations).	Both	tests	have	run	successfully	on	a	C64	and	a	Vic20.

They	ought	to	run	on	C16,	+4	and	the	PET	series	as	well.	The	tests
stop	with	BRK,	if	the	opcode	$CB	does	not	work	as	expected.	Successful
operation	ends	in	RTS.	As	the	tests	are	very	slow,	they	print	dots	on
the	screen	while	running	so	that	you	know	that	the	machine	has	not
jammed.	On	computers	running	at	1	MHz,	the	first	test	prints
approximately	one	dot	every	four	seconds	and	a	total	of	2048	dots,
whereas	the	second	one	prints	half	that	amount,	one	dot	every	seven
seconds.

If	the	tests	fail	on	your	machine,	please	let	us	know	your	processor's
part	number	and	revision.	If	possible,	save	the	executable	(after	it
has	stopped	with	BRK)	under	another	name	and	send	it	to	us	so	that	we
know	at	which	stage	the	program	stopped.

The	following	program	is	a	Commodore	64	executable	that	Marko
M"akel"a
developed	when	trying	to	find	out	how	the	V	flag	is	affected	by	SBX.
(It	was	believed	that	the	SBX	affects	the	flag	in	a	weird	way,	and
this	program	shows	how	SBX	sets	the	flag	differently	from	SBC.)		You
may	find	the	subroutine	at	$C150	useful	when	researching	other
undocumented	instructions'	flags.	Run	the	program	in	a	machine
language	monitor,	as	it	makes	use	of	the	BRK	instruction.	The	result
tables	will	be	written	on	pages	$C2	and	$C3.

begin	644	sbx-c100

M`,%XH`",#L&,$,&,$L&XJ8*B@LL7AOL(:

(7\N#BM#LM,'ML(Q?OP`B@`

M:$7\\`,@4,'N#L'0U.X0P=#/SB#0[A+!T,

<``````````````)BJ\!>M#L$M

L$,'=_\'0":T2P=W_PM`!8,K0Z:T.P2T0P9D`PID`!*T2P9D`PYD`!

Other	undocumented	instructions	usually	cause	two	preceding	opcodes
being	executed.	However	'NOP'	seems	to	completely	disappear	from
'SBC'
code	$EB.

The	most	difficult	to	comprehend	are	the	rest	of	the	instructions

located	on	the	'$0B'	line.

All	the	instructions	located	at	the	positive	(left)	side	of	this	line
should	rotate	either	memory	or	the	accumulator,	but	the	addressing
mode	turns	out	to	be	immediate!	No	problem.	Just	read	the	operand,	let
it	be	ANDed	with	the	accumulator	and	finally	use	accumulator
addressing	mode	for	the	instructions	above	them.

RELIGION_MODE_ON
/*	This	part	of	the	document	is	not	accurate.		You	can
			read	it	as	a	fairy	tale,	but	do	not	count	on	it	when
			performing	your	own	measurements.	*/

The	rest	two	instructions	on	the	same	line,	called	'ANE'	and	'LXA'
($8B	and	$AB	respectively)	often	give	quite	unpredictable	results.
However,	the	most	usual	operation	is	to	store	((A	|	#$ee)	&	X	&	#$nn)
to	accumulator.	Note	that	this	does	not	work	reliably	in	a	real	64!
In	the	Commodore	128	the	opcode	$8B	uses	values	8C,	CC,	EE,	and
occasionally	0C	and	8E	for	the	OR	instead	of	EE,EF,FE	and	FF	used	in
the	C64.	With	a	C128	running	at	2	MHz	#$EE	is	always	used.		Opcode
$AB
does	not	cause	this	OR	taking	place	on	8502	while	6510	always	performs
it.	Note	that	this	behaviour	depends	on	processor	and/or	video	chip
revision.

Let's	take	a	closer	look	at	$8B	(6510).

								A	<-	X	&	D	&	(A	|	VAL)

								where	VAL	comes	from	this	table:

							X	high			D	high		D	low			VAL
								even					even				---				$EE	(1)
								even					odd					---				$EE
								odd						even				---				$EE
								odd						odd						0					$EE
								odd						odd					not	0		$FE	(2)

(1)	If	the	bottom	2	bits	of	A	are	both	1,	then	the	LSB	of	the	result	may
				be	0.	The	values	of	X	and	D	are	different	every	time	I	run	the	test.
				This	appears	to	be	very	rare.
(2)	VAL	is	$FE	most	of	the	time.	Sometimes	it	is	$EE	-	it	seems	to	be
random,
				not	related	to	any	of	the	data.	This	is	much	more	common	than	(1).

		In	decimal	mode,	VAL	is	usually	$FE.

Two	different	functions	have	been	discovered	for	LAX,	opcode	$AB.	One
is	A	=	X	=	ANE	(see	above)	and	the	other,	encountered	with	6510	and
8502,	is	less	complicated	A	=	X	=	(A	&	#byte).	However,	according	to
what	is	reported,	the	version	altering	only	the	lowest	bits	of	each
nybble	seems	to	be	more	common.

What	happens,	is	that	$AB	loads	a	value	into	both	A	and	X,	ANDing	the
low	bit	of	each	nybble	with	the	corresponding	bit	of	the	old
A.	However,	there	are	exceptions.	Sometimes	the	low	bit	is	cleared
even	when	A	contains	a	'1',	and	sometimes	other	bits	are	cleared.	The
exceptions	seem	random	(they	change	every	time	I	run	the	test).	Oops	-
that	was	in	decimal	mode.	Much	the	same	with	D=0.

What	causes	the	randomness?		Probably	it	is	that	it	is	marginal	logic
levels	-	when	too	much	wired-anding	goes	on,	some	of	the	signals	get
very	close	to	the	threshold.	Perhaps	we're	seeing	some	of	them	step
over	it.	The	low	bit	of	each	nybble	is	special,	since	it	has	to	cope
with	carry	differently	(remember	decimal	mode).	We	never	see	a	'0'
turn	into	a	'1'.

Since	these	instructions	are	unpredictable,	they	should	not	be	used.

There	is	still	very	strange	instruction	left,	the	one	named	SHA/X/Y,
which	is	the	only	one	with	only	indexed	addressing	modes.	Actually,
the	commands	'SHA',	'SHX'	and	'SHY'	are	generated	by	the	indexing
algorithm.

While	using	indexed	addressing,	effective	address	for	page	boundary
crossing	is	calculated	as	soon	as	possible	so	it	does	not	slow	down
operation.	As	a	result,	in	the	case	of	SHA/X/Y,	the	address	and	data
are	processed	at	the	same	time	making	AND	between	them	to	take
place.
Thus,	the	value	to	be	stored	by	SAX,	for	example,	is	in	fact	(A	&	X	&
(ADDR_HI	+	1)).		On	page	boundary	crossing	the	same	value	is	copied
also	to	high	byte	of	the	effective	address.

RELIGION_MODE_OFF

Register	selection	for	load	and	store

			bit1	bit0					A		X		Y

				0				0													x

				0				1										x

				1				0							x

				1				1							x		x

So,	A	and	X	are	selected	by	bits	1	and	0	respectively,	while
~(bit1|bit0)	enables	Y.

Indexing	is	determined	by	bit4,	even	in	relative	addressing	mode,
which	is	one	kind	of	indexing.

Lines	containing	opcodes	xxx000x1	(01	and	03)	are	treated	as	absolute
after	the	effective	address	has	been	loaded	into	CPU.

Zeropage,y	and	Absolute,y	(codes	10x1	x11x)	are	distinquished	by	bit5.

Decimal	mode	in	NMOS	6500	series

		Most	sources	claim	that	the	NMOS	6500	series	sets	the	N,	V	and	Z
flags	unpredictably	when	performing	addition	or	subtraction	in	decimal
mode.	Of	course,	this	is	not	true.	While	testing	how	the	flags	are

set,	I	also	wanted	to	see	what	happens	if	you	use	illegal	BCD	values.

		ADC	works	in	Decimal	mode	in	a	quite	complicated	way.	It	is	amazing
how	it	can	do	that	all	in	a	single	cycle.	Here's	a	C	code	version	of
the	instruction:

								unsigned

											A,		/*	Accumulator	*/

											AL,	/*	low	nybble	of	accumulator	*/

											AH,	/*	high	nybble	of	accumulator	*/

											C,		/*	Carry	flag	*/

											Z,		/*	Zero	flag	*/

											V,		/*	oVerflow	flag	*/

											N,		/*	Negative	flag	*/

											s;		/*	value	to	be	added	to	Accumulator	*/

								AL	=	(A	&	15)	+	(s	&	15)	+	C;									/*

Calculate	the	lower	nybble.	*/

								AH	=	(A	>>	4)	+	(s	>>	4)	+	(AL	>	15);	/*

Calculate	the	upper	nybble.	*/

								if	(AL	>	9)	AL	+=	6;																		/*	BCD

fixup	for	lower	nybble.	*/

								Z	=	((A	+	s	+	C)	&	255	!=	0);									/*	Zero

flag	is	set	just

																																																	like

in	Binary	mode.	*/

								/*	Negative	and	Overflow	flags	are	set	with

the	same	logic	than	in

											Binary	mode,	but	after	fixing	the	lower

nybble.	*/

								N	=	(AH	&	8	!=	0);

								V	=	((AH	<<	4)	^	A)	&	128	&&	!((A	^	s)	&	128);

								if	(AH	>	9)	AH	+=	6;																		/*	BCD

fixup	for	upper	nybble.	*/

								/*	Carry	is	the	only	flag	set	after	fixing	the

result.	*/

								C	=	(AH	>	15);

								A	=	((AH	<<	4)	|	(AL	&	15))	&	255;

		The	C	flag	is	set	as	the	quiche	eaters	expect,	but	the	N	and	V	flags
are	set	after	fixing	the	lower	nybble	but	before	fixing	the	upper	one.
They	use	the	same	logic	than	binary	mode	ADC.	The	Z	flag	is	set	before
any	BCD	fixup,	so	the	D	flag	does	not	have	any	influence	on	it.

Proof:	The	following	test	program	tests	all	131072	ADC	combinations	in
							Decimal	mode,	and	aborts	with	BRK	if	anything	breaks	this	theory.
							If	everything	goes	well,	it	ends	in	RTS.

begin	600	dadc

M	0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@			'BI&*	

A/N$_$B@+)$KH(V1

M*Q@(I?PI#X7]I?LI#V7]R0J0	FD%J"D/A?VE^RGP9?PI\	C	$)

":0^JL	@H

ML	?)H)	&""@X:5\X!?V%_0AH*3W@	!	""8"HBD7[$	JE^T7\,

28"4"H**7[

M9?S0!)@)	J@8N/BE^V7\V	A%_=	G:(3]1?W0(.;[T(?F_-"#:$D8\

)88*D=

0&&4KA?NI	&4LA?RI.&S[A%

end

		All	programs	in	this	chapter	have	been	successfully	tested	on	a	Vic20
and	a	Commodore	64	and	a	Commodore	128D	in	C64	mode.	They
should	run	on
C16,	+4	and	on	the	PET	series	as	well.	If	not,	please	report	the	problem
to	Marko	M"akel"a.	Each	test	in	this	chapter	should	run	in	less	than	a

minute	at	1	MHz.

SBC	is	much	easier.	Just	like	CMP,	its	flags	are	not	affected	by
the	D	flag.

Proof:

begin	600	dsbc-cmp-flags

M	0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@			'B@	(3[A/RB

XH8:66HL2N@

M09KHR1*XII::BQ*Z!%D2N@4)$K^#BXI?OE_-@(:

(7].+BE^^7\"&A%_?	!

5	.;[T./F_-#?RA"_8!@X&#CEY<7%

end

		The	only	difference	in	SBC's	operation	in	decimal	mode	from	binary
mode
is	the	result-fixup:

								unsigned

											A,		/*	Accumulator	*/

											AL,	/*	low	nybble	of	accumulator	*/

											AH,	/*	high	nybble	of	accumulator	*/

											C,		/*	Carry	flag	*/

											Z,		/*	Zero	flag	*/

											V,		/*	oVerflow	flag	*/

											N,		/*	Negative	flag	*/

											s;		/*	value	to	be	added	to	Accumulator	*/

								AL	=	(A	&	15)	-	(s	&	15)	-	!C;								/*

Calculate	the	lower	nybble.	*/

								if	(AL	&	16)	AL	-=	6;																	/*	BCD

fixup	for	lower	nybble.	*/

								AH	=	(A	>>	4)	-	(s	>>	4)	-	(AL	&	16);	/*

Calculate	the	upper	nybble.	*/

								if	(AH	&	16)	AH	-=	6;																	/*	BCD

fixup	for	upper	nybble.	*/

								/*	The	flags	are	set	just	like	in	Binary	mode.

*/

								C	=	(A	-	s	-	!C)	&	256	!=	0;

								Z	=	(A	-	s	-	!C)	&	255	!=	0;

								V	=	((A	-	s	-	!C)	^	s)	&	128	&&	(A	^	s)	&	128;

								N	=	(A	-	s	-	!C)	&	128	!=	0;

								A	=	((AH	<<	4)	|	(AL	&	15))	&	255;

		Again	Z	flag	is	set	before	any	BCD	fixup.	The	N	and	V	flags	are	set
at	any	time	before	fixing	the	high	nybble.	The	C	flag	may	be	set	in	any
phase.

		Decimal	subtraction	is	easier	than	decimal	addition,	as	you	have	to
make	the	BCD	fixup	only	when	a	nybble	overflows.	In	decimal	addition,
you	had	to	verify	if	the	nybble	was	greater	than	9.	The	processor	has
an	internal	"half	carry"	flag	for	the	lower	nybble,	used	to	trigger
the	BCD	fixup.	When	calculating	with	legal	BCD	values,	the	lower	nybble
cannot	overflow	again	when	fixing	it.
So,	the	processor	does	not	handle	overflows	while	performing	the	fixup.
Similarly,	the	BCD	fixup	occurs	in	the	high	nybble	only	if	the	value
overflows,	i.e.	when	the	C	flag	will	be	cleared.

		Because	SBC's	flags	are	not	affected	by	the	Decimal	mode	flag,	you
could	guess	that	CMP	uses	the	SBC	logic,	only	setting	the	C	flag
first.	But	the	SBX	instruction	shows	that	CMP	also	temporarily	clears
the	D	flag,	although	it	is	totally	unnecessary.

		The	following	program,	which	tests	SBC's	result	and	flags,
contains	the	6502	version	of	the	pseudo	code	example	above.

begin	600	dsbc

M	0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@			'BI&*	

A/N$_$B@+)$KH':1

M*S@(I?PI#X7]I?LI#^7]L	/I!1@I#ZBE_"GPA?VE^RGP"#CE_2GPL

KI7RBP

M#ND/.+)*+	&Z0^P	NE?A/T%_87]*+BE^^7\"&BH.+CXI?OE_-

@(1?W0FVB$

8_47]T)3F^]">YOS0FFA)&-	$J3C0B%A@

end

		Obviously	the	undocumented	instructions	RRA	(ROR+ADC)	and	ISB
(INC+SBC)	have	inherited	also	the	decimal	operation	from	the	official
instructions	ADC	and	SBC.	The	program	droradc	proves	this	statement
for	ROR,	and	the	dincsbc	test	proves	this	for	ISB.	Finally,
dincsbc-deccmp	proves	that	ISB's	and	DCP's	(DEC+CMP)	flags	are	not
affected	by	the	D	flag.

begin	644	droradc

M`0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-

@```'BI&*``A/N$_$B@+)$KH(V1

M*S@(I?PI#X7]I?LI#V7]R0J0`FD%J"D/A?VE^RGP9?

PI\`C`$)`":0^JL`@H

ML`?)H)`&""@X:5\X!?

V%_0AH*3W@`!`""8"HBD7[$`JE^T7\,`28"4"H**7[

M9?

S0!)@)`J@XN/BE^R;\9_S8"$7]T"=HA/U%_=`@YOO0A>;\T(%H21CP`EA@

2J1T892N%^ZD`92R%_*DX;/L`

`

end

begin	644	dincsbc

M`0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-

@```'BI&*``A/N$_$B@+)$KH':1

M*S@(I?PI#X7]I?LI#^7]L`/I!1@I#ZBE_"GPA?

VE^RGP"#CE_2GPL`KI7RBP

M#ND/.+`)*+`&Z0^P`NE?A/T%_87]*+BE^^7\"&BH.+CXI?O&_.?

\V`A%_="9

::(3]1?W0DN;[T)SF_-"8:$D8T`2I.-"&6&#\

`

end

begin	644	dincsbc-deccmp

M`0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-

@```'B@`(3[A/RB`XH8:7>HL2N@

M3Y$KH%R1*XII>ZBQ*Z!3D2N@8)$KBFE_J+$KH%61*Z!BD2OX.+BE^^;\Q_S8

L"&B%_3BXI?OF_,?\"&A%_?`!`.;[T-_F_-

#;RA"M8!@X&#CFYL;&Q\?GYP#8

`

end

6510	features

			o		PHP	always	pushes	the	Break	(B)	flag	as	a	`1'	to	the	stack.
						Jukka	Tapanim"aki	claimed	in	C=lehti	issue	3/89,	on	page	27	that	the
						processor	makes	a	logical	OR	between	the	status	register's	bit	4
						and	the	bit	8	of	the	stack	pointer	register	(which	is	always	1).
						He	did	not	give	any	reasons	for	this	argument,	and	has	refused	to
clarify
						it	afterwards.	Well,	this	was	not	the	only	error	in	his	article...

			o		Indirect	addressing	modes	do	not	handle	page	boundary	crossing	at
all.
						When	the	parameter's	low	byte	is	$FF,	the	effective	address	wraps
						around	and	the	CPU	fetches	high	byte	from	$xx00	instead	of
$xx00+$0100.
						E.g.	JMP	($01FF)	fetches	PCL	from	$01FF	and	PCH	from	$0100,
						and	LDA	($FF),Y	fetches	the	base	address	from	$FF	and	$00.

			o		Indexed	zero	page	addressing	modes	never	fix	the	page	address	on
						crossing	the	zero	page	boundary.
						E.g.	LDX	#$01	:	LDA	($FF,X)	loads	the	effective	address	from	$00
and	$01.

			o		The	processor	always	fetches	the	byte	following	a	relative	branch

						instruction.	If	the	branch	is	taken,	the	processor	reads	then	the
						opcode	from	the	destination	address.	If	page	boundary	is	crossed,	it
						first	reads	a	byte	from	the	old	page	from	a	location	that	is	bigger
						or	smaller	than	the	correct	address	by	one	page.

			o		If	you	cross	a	page	boundary	in	any	other	indexed	mode,
						the	processor	reads	an	incorrect	location	first,	a	location	that	is
						smaller	by	one	page.

			o		Read-Modify-Write	instructions	write	unmodified	data,	then	modified
						(so	INC	effectively	does	LDX	loc;STX	loc;INX;STX	loc)

			o		-RDY	is	ignored	during	writes
						(This	is	why	you	must	wait	3	cycles	before	doing	any	DMA	--
						the	maximum	number	of	consecutive	writes	is	3,	which	occurs
						during	interrupts	except	-RESET.)

			o		Some	undefined	opcodes	may	give	really	unpredictable	results.

			o		All	registers	except	the	Program	Counter	remain	unmodified	after	-
RESET.
						(This	is	why	you	must	preset	D	and	I	flags	in	the	RESET	handler.)

Different	CPU	types

The	Rockwell	data	booklet	29651N52	(technical	information	about
R65C00
microprocessors,	dated	October	1984),	lists	the	following	differences
between
NMOS	R6502	microprocessor	and	CMOS	R65C00	family:

					1.	Indexed	addressing	across	page	boundary.
													NMOS:	Extra	read	of	invalid	address.
													CMOS:	Extra	read	of	last	instruction	byte.

					2.	Execution	of	invalid	op	codes.
													NMOS:	Some	terminate	only	by	reset.	Results	are	undefined.
													CMOS:	All	are	NOPs	(reserved	for	future	use).

					3.	Jump	indirect,	operand	=	XXFF.
													NMOS:	Page	address	does	not	increment.
													CMOS:	Page	address	increments	and	adds	one	additional	cycle.

					4.	Read/modify/write	instructions	at	effective	address.
													NMOS:	One	read	and	two	write	cycles.
													CMOS:	Two	read	and	one	write	cycle.

					5.	Decimal	flag.
													NMOS:	Indeterminate	after	reset.
													CMOS:	Initialized	to	binary	mode	(D=0)	after	reset	and	interrupts.

					6.	Flags	after	decimal	operation.
													NMOS:	Invalid	N,	V	and	Z	flags.
													CMOS:	Valid	flag	adds	one	additional	cycle.

					7.	Interrupt	after	fetch	of	BRK	instruction.
													NMOS:	Interrupt	vector	is	loaded,	BRK	vector	is	ignored.
													CMOS:	BRK	is	executed,	then	interrupt	is	executed.

6510	Instruction	Timing

		The	NMOS	6500	series	processors	always	perform	at	least	two	reads
for	each	instruction.	In	addition	to	the	operation	code	(opcode),	they
fetch	the	next	byte.	This	is	quite	efficient,	as	most	instructions	are
two	or	three	bytes	long.

		The	processors	also	use	a	sort	of	pipelining.	If	an	instruction	does
not	store	data	in	memory	on	its	last	cycle,	the	processor	can	fetch
the	opcode	of	the	next	instruction	while	executing	the	last	cycle.	For
instance,	the	instruction	EOR	#$FF	truly	takes	three	cycles.	On	the
first	cycle,	the	opcode	$49	will	be	fetched.	During	the	second	cycle
the	processor	decodes	the	opcode	and	fetches	the	parameter	#$FF.	On
the	third	cycle,	the	processor	will	perform	the	operation	and	store
the	result	to	accumulator,	but	simultaneously	it	fetches	the	opcode
for	the	next	instruction.	This	is	why	the	instruction	effectively
takes	only	two	cycles.

		The	following	tables	show	what	happens	on	the	bus	while	executing
different	kinds	of	instructions.

		Interrupts

					NMI	and	IRQ	both	take	7	cycles.	Their	timing	diagram	is	much	like
					BRK's	(see	below).	IRQ	will	be	executed	only	when	the	I	flag	is
					clear.	IRQ	and	BRK	both	set	the	I	flag,	whereas	the	NMI	does	not
					affect	its	state.

					The	processor	will	usually	wait	for	the	current	instruction	to
					complete	before	executing	the	interrupt	sequence.	To	process	the
					interrupt	before	the	next	instruction,	the	interrupt	must	occur
					before	the	last	cycle	of	the	current	instruction.

					There	is	one	exception	to	this	rule:	the	BRK	instruction.	If	a
					hardware	interrupt	(NMI	or	IRQ)	occurs	before	the	fourth	(flags
					saving)	cycle	of	BRK,	the	BRK	instruction	will	be	skipped,	and
					the	processor	will	jump	to	the	hardware	interrupt	vector.	This
					sequence	will	always	take	7	cycles.

					You	do	not	completely	lose	the	BRK	interrupt,	the	B	flag	will	be
					set	in	the	pushed	status	register	if	a	BRK	instruction	gets
					interrupted.	When	BRK	and	IRQ	occur	at	the	same	time,	this	does
					not	cause	any	problems,	as	your	program	will	consider	it	as	a

					BRK,	and	the	IRQ	would	occur	again	after	the	processor	returned
					from	your	BRK	routine,	unless	you	cleared	the	interrupt	source	in
					your	BRK	handler.	But	the	simultaneous	occurrence	of	NMI	and	BRK
					is	far	more	fatal.	If	you	do	not	check	the	B	flag	in	the	NMI
					routine	and	subtract	two	from	the	return	address	when	needed,	the
					BRK	instruction	will	be	skipped.

					If	the	NMI	and	IRQ	interrupts	overlap	each	other	(one	interrupt
					occurs	before	fetching	the	interrupt	vector	for	the	other
					interrupt),	the	processor	will	most	probably	jump	to	the	NMI
					vector	in	every	case,	and	then	jump	to	the	IRQ	vector	after
					processing	the	first	instruction	of	the	NMI	handler.	This	has	not
					been	measured	yet,	but	the	IRQ	is	very	similar	to	BRK,	and	many
					sources	state	that	the	NMI	has	higher	priority	than	IRQ.	However,
					it	might	be	that	the	processor	takes	the	interrupt	that	comes
					later,	i.e.	you	could	lose	an	NMI	interrupt	if	an	IRQ	occurred	in
					four	cycles	after	it.

					After	finishing	the	interrupt	sequence,	the	processor	will	start
					to	execute	the	first	instruction	of	the	interrupt	routine.	This
					proves	that	the	processor	uses	a	sort	of	pipelining:	it	finishes
					the	current	instruction	(or	interrupt	sequence)	while	reading	the
					opcode	of	the	next	instruction.

					RESET	does	not	push	program	counter	on	stack,	and	it	lasts
					probably	6	cycles	after	deactivating	the	signal.	Like	NMI,	RESET
					preserves	all	registers	except	PC.

		Instructions	accessing	the	stack

					BRK

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		read	next	instruction	byte	(and

throw	it	away),

																							increment	PC

								3		$0100,S		W		push	PCH	on	stack	(with	B	flag

set),	decrement	S

								4		$0100,S		W		push	PCL	on	stack,	decrement	S

								5		$0100,S		W		push	P	on	stack,	decrement	S

								6			$FFFE			R		fetch	PCL

								7			$FFFF			R		fetch	PCH

					RTI

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		read	next	instruction	byte	(and

throw	it	away)

								3		$0100,S		R		increment	S

								4		$0100,S		R		pull	P	from	stack,	increment	S

								5		$0100,S		R		pull	PCL	from	stack,	increment

S

								6		$0100,S		R		pull	PCH	from	stack

					RTS

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		read	next	instruction	byte	(and

throw	it	away)

								3		$0100,S		R		increment	S

								4		$0100,S		R		pull	PCL	from	stack,	increment

S

								5		$0100,S		R		pull	PCH	from	stack

								6				PC					R		increment	PC

					PHA,	PHP

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		read	next	instruction	byte	(and

throw	it	away)

								3		$0100,S		W		push	register	on	stack,

decrement	S

					PLA,	PLP

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		read	next	instruction	byte	(and

throw	it	away)

								3		$0100,S		R		increment	S

								4		$0100,S		R		pull	register	from	stack

					JSR

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	low	address	byte,

increment	PC

								3		$0100,S		R		internal	operation

(predecrement	S?)

								4		$0100,S		W		push	PCH	on	stack,	decrement	S

								5		$0100,S		W		push	PCL	on	stack,	decrement	S

								6				PC					R		copy	low	address	byte	to	PCL,

fetch	high	address

																							byte	to	PCH

		Accumulator	or	implied	addressing

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		read	next	instruction	byte	(and

throw	it	away)

		Immediate	addressing

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	value,	increment	PC

		Absolute	addressing

					JMP

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	low	address	byte,

increment	PC

								3				PC					R		copy	low	address	byte	to	PCL,

fetch	high	address

																							byte	to	PCH

					Read	instructions	(LDA,	LDX,	LDY,	EOR,	AND,	ORA,

ADC,	SBC,	CMP,	BIT,

																								LAX,	NOP)

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	low	byte	of	address,

increment	PC

								3				PC					R		fetch	high	byte	of	address,

increment	PC

								4		address		R		read	from	effective	address

					Read-Modify-Write	instructions	(ASL,	LSR,	ROL,

ROR,	INC,	DEC,

																																					SLO,	SRE,	RLA,

RRA,	ISB,	DCP)

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	low	byte	of	address,

increment	PC

								3				PC					R		fetch	high	byte	of	address,

increment	PC

								4		address		R		read	from	effective	address

								5		address		W		write	the	value	back	to

effective	address,

																							and	do	the	operation	on	it

								6		address		W		write	the	new	value	to

effective	address

					Write	instructions	(STA,	STX,	STY,	SAX)

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	low	byte	of	address,

increment	PC

								3				PC					R		fetch	high	byte	of	address,

increment	PC

								4		address		W		write	register	to	effective

address

		Zero	page	addressing

					Read	instructions	(LDA,	LDX,	LDY,	EOR,	AND,	ORA,

ADC,	SBC,	CMP,	BIT,

																								LAX,	NOP)

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	address,	increment	PC

								3		address		R		read	from	effective	address

					Read-Modify-Write	instructions	(ASL,	LSR,	ROL,

ROR,	INC,	DEC,

																																					SLO,	SRE,	RLA,

RRA,	ISB,	DCP)

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	address,	increment	PC

								3		address		R		read	from	effective	address

								4		address		W		write	the	value	back	to

effective	address,

																							and	do	the	operation	on	it

								5		address		W		write	the	new	value	to

effective	address

					Write	instructions	(STA,	STX,	STY,	SAX)

								#		address	R/W	description

							---	-------	---	-------------------------------

								1				PC					R		fetch	opcode,	increment	PC

								2				PC					R		fetch	address,	increment	PC

								3		address		W		write	register	to	effective

address

		Zero	page	indexed	addressing

					Read	instructions	(LDA,	LDX,	LDY,	EOR,	AND,	ORA,

ADC,	SBC,	CMP,	BIT,

																								LAX,	NOP)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1					PC						R		fetch	opcode,	increment	PC

								2					PC						R		fetch	address,	increment	PC

								3			address			R		read	from	address,	add	index

register	to	it

								4		address+I*	R		read	from	effective	address

							Notes:	I	denotes	either	index	register	(X	or

Y).

														*	The	high	byte	of	the	effective	address

is	always	zero,

																i.e.	page	boundary	crossings	are	not

handled.

					Read-Modify-Write	instructions	(ASL,	LSR,	ROL,

ROR,	INC,	DEC,

																																					SLO,	SRE,	RLA,

RRA,	ISB,	DCP)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1					PC						R		fetch	opcode,	increment	PC

								2					PC						R		fetch	address,	increment	PC

								3			address			R		read	from	address,	add	index

register	X	to	it

								4		address+X*	R		read	from	effective	address

								5		address+X*	W		write	the	value	back	to

effective	address,

																									and	do	the	operation	on	it

								6		address+X*	W		write	the	new	value	to

effective	address

							Note:	*	The	high	byte	of	the	effective	address

is	always	zero,

															i.e.	page	boundary	crossings	are	not

handled.

					Write	instructions	(STA,	STX,	STY,	SAX)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1					PC						R		fetch	opcode,	increment	PC

								2					PC						R		fetch	address,	increment	PC

								3			address			R		read	from	address,	add	index

register	to	it

								4		address+I*	W		write	to	effective	address

							Notes:	I	denotes	either	index	register	(X	or

Y).

														*	The	high	byte	of	the	effective	address

is	always	zero,

																i.e.	page	boundary	crossings	are	not

handled.

		Absolute	indexed	addressing

					Read	instructions	(LDA,	LDX,	LDY,	EOR,	AND,	ORA,

ADC,	SBC,	CMP,	BIT,

																								LAX,	LAE,	SHS,	NOP)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1					PC						R		fetch	opcode,	increment	PC

								2					PC						R		fetch	low	byte	of	address,

increment	PC

								3					PC						R		fetch	high	byte	of	address,

																									add	index	register	to	low

address	byte,

																									increment	PC

								4		address+I*	R		read	from	effective	address,

																									fix	the	high	byte	of

effective	address

								5+	address+I		R		re-read	from	effective

address

							Notes:	I	denotes	either	index	register	(X	or

Y).

														*	The	high	byte	of	the	effective	address

may	be	invalid

																at	this	time,	i.e.	it	may	be	smaller

by	$100.

														+	This	cycle	will	be	executed	only	if

the	effective	address

																was	invalid	during	cycle	#4,	i.e.	page

boundary	was	crossed.

					Read-Modify-Write	instructions	(ASL,	LSR,	ROL,

ROR,	INC,	DEC,

																																					SLO,	SRE,	RLA,

RRA,	ISB,	DCP)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1				PC							R		fetch	opcode,	increment	PC

								2				PC							R		fetch	low	byte	of	address,

increment	PC

								3				PC							R		fetch	high	byte	of	address,

																									add	index	register	X	to	low

address	byte,

																									increment	PC

								4		address+X*	R		read	from	effective	address,

																									fix	the	high	byte	of

effective	address

								5		address+X		R		re-read	from	effective

address

								6		address+X		W		write	the	value	back	to

effective	address,

																									and	do	the	operation	on	it

								7		address+X		W		write	the	new	value	to

effective	address

							Notes:	*	The	high	byte	of	the	effective	address

may	be	invalid

																at	this	time,	i.e.	it	may	be	smaller

by	$100.

					Write	instructions	(STA,	STX,	STY,	SHA,	SHX,	SHY)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1					PC						R		fetch	opcode,	increment	PC

								2					PC						R		fetch	low	byte	of	address,

increment	PC

								3					PC						R		fetch	high	byte	of	address,

																									add	index	register	to	low

address	byte,

																									increment	PC

								4		address+I*	R		read	from	effective	address,

																									fix	the	high	byte	of

effective	address

								5		address+I		W		write	to	effective	address

							Notes:	I	denotes	either	index	register	(X	or

Y).

														*	The	high	byte	of	the	effective	address

may	be	invalid

																at	this	time,	i.e.	it	may	be	smaller

by	$100.	Because

																the	processor	cannot	undo	a	write	to

an	invalid

																address,	it	always	reads	from	the

address	first.

		Relative	addressing	(BCC,	BCS,	BNE,	BEQ,	BPL,	BMI,

BVC,	BVS)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1					PC						R		fetch	opcode,	increment	PC

								2					PC						R		fetch	operand,	increment	PC

								3					PC						R		Fetch	opcode	of	next

instruction,

																									If	branch	is	taken,	add

operand	to	PCL.

																									Otherwise	increment	PC.

								4+				PC*					R		Fetch	opcode	of	next

instruction.

																									Fix	PCH.	If	it	did	not

change,	increment	PC.

								5!				PC						R		Fetch	opcode	of	next

instruction,

																									increment	PC.

							Notes:	The	opcode	fetch	of	the	next	instruction

is	included	to

														this	diagram	for	illustration	purposes.

When	determining

														real	execution	times,	remember	to

subtract	the	last

														cycle.

														*	The	high	byte	of	Program	Counter	(PCH)

may	be	invalid

																at	this	time,	i.e.	it	may	be	smaller

or	bigger	by	$100.

														+	If	branch	is	taken,	this	cycle	will	be

executed.

														!	If	branch	occurs	to	different	page,

this	cycle	will	be

																executed.

		Indexed	indirect	addressing

					Read	instructions	(LDA,	ORA,	EOR,	AND,	ADC,	CMP,

SBC,	LAX)

								#				address			R/W	description

							---	-----------	---	---------------------------

								1						PC							R		fetch	opcode,	increment	PC

								2						PC							R		fetch	pointer	address,

increment	PC

								3				pointer				R		read	from	the	address,	add

X	to	it

								4			pointer+X			R		fetch	effective	address	low

								5		pointer+X+1		R		fetch	effective	address

high

								6				address				R		read	from	effective	address

							Note:	The	effective	address	is	always	fetched

from	zero	page,

													i.e.	the	zero	page	boundary	crossing	is

not	handled.

					Read-Modify-Write	instructions	(SLO,	SRE,	RLA,

RRA,	ISB,	DCP)

								#				address			R/W	description

							---	-----------	---	---------------------------

								1						PC							R		fetch	opcode,	increment	PC

								2						PC							R		fetch	pointer	address,

increment	PC

								3				pointer				R		read	from	the	address,	add

X	to	it

								4			pointer+X			R		fetch	effective	address	low

								5		pointer+X+1		R		fetch	effective	address

high

								6				address				R		read	from	effective	address

								7				address				W		write	the	value	back	to

effective	address,

																											and	do	the	operation	on	it

								8				address				W		write	the	new	value	to

effective	address

							Note:	The	effective	address	is	always	fetched

from	zero	page,

													i.e.	the	zero	page	boundary	crossing	is

not	handled.

					Write	instructions	(STA,	SAX)

								#				address			R/W	description

							---	-----------	---	---------------------------

								1						PC							R		fetch	opcode,	increment	PC

								2						PC							R		fetch	pointer	address,

increment	PC

								3				pointer				R		read	from	the	address,	add

X	to	it

								4			pointer+X			R		fetch	effective	address	low

								5		pointer+X+1		R		fetch	effective	address

high

								6				address				W		write	to	effective	address

							Note:	The	effective	address	is	always	fetched

from	zero	page,

													i.e.	the	zero	page	boundary	crossing	is

not	handled.

		Indirect	indexed	addressing

					Read	instructions	(LDA,	EOR,	AND,	ORA,	ADC,	SBC,

CMP)

								#				address			R/W	description

							---	-----------	---	---------------------------

								1						PC							R		fetch	opcode,	increment	PC

								2						PC							R		fetch	pointer	address,

increment	PC

								3				pointer				R		fetch	effective	address	low

								4			pointer+1			R		fetch	effective	address

high,

																											add	Y	to	low	byte	of

effective	address

								5			address+Y*		R		read	from	effective

address,

																											fix	high	byte	of	effective

address

								6+		address+Y			R		read	from	effective	address

							Notes:	The	effective	address	is	always	fetched

from	zero	page,

														i.e.	the	zero	page	boundary	crossing	is

not	handled.

														*	The	high	byte	of	the	effective	address

may	be	invalid

																at	this	time,	i.e.	it	may	be	smaller

by	$100.

														+	This	cycle	will	be	executed	only	if

the	effective	address

																was	invalid	during	cycle	#5,	i.e.	page

boundary	was	crossed.

					Read-Modify-Write	instructions	(SLO,	SRE,	RLA,

RRA,	ISB,	DCP)

								#				address			R/W	description

							---	-----------	---	---------------------------

								1						PC							R		fetch	opcode,	increment	PC

								2						PC							R		fetch	pointer	address,

increment	PC

								3				pointer				R		fetch	effective	address	low

								4			pointer+1			R		fetch	effective	address

high,

																											add	Y	to	low	byte	of

effective	address

								5			address+Y*		R		read	from	effective

address,

																											fix	high	byte	of	effective

address

								6			address+Y			R		read	from	effective	address

								7			address+Y			W		write	the	value	back	to

effective	address,

																											and	do	the	operation	on	it

								8			address+Y			W		write	the	new	value	to

effective	address

							Notes:	The	effective	address	is	always	fetched

from	zero	page,

														i.e.	the	zero	page	boundary	crossing	is

not	handled.

														*	The	high	byte	of	the	effective	address

may	be	invalid

																at	this	time,	i.e.	it	may	be	smaller

by	$100.

					Write	instructions	(STA,	SHA)

								#				address			R/W	description

							---	-----------	---	---------------------------

								1						PC							R		fetch	opcode,	increment	PC

								2						PC							R		fetch	pointer	address,

increment	PC

								3				pointer				R		fetch	effective	address	low

								4			pointer+1			R		fetch	effective	address

high,

																											add	Y	to	low	byte	of

effective	address

								5			address+Y*		R		read	from	effective

address,

																											fix	high	byte	of	effective

address

								6			address+Y			W		write	to	effective	address

							Notes:	The	effective	address	is	always	fetched

from	zero	page,

														i.e.	the	zero	page	boundary	crossing	is

not	handled.

														*	The	high	byte	of	the	effective	address

may	be	invalid

																at	this	time,	i.e.	it	may	be	smaller

by	$100.

		Absolute	indirect	addressing	(JMP)

								#			address		R/W	description

							---	---------	---	-----------------------------

								1					PC						R		fetch	opcode,	increment	PC

								2					PC						R		fetch	pointer	address	low,

increment	PC

								3					PC						R		fetch	pointer	address	high,

increment	PC

								4			pointer			R		fetch	low	address	to	latch

								5		pointer+1*	R		fetch	PCH,	copy	latch	to	PCL

							Note:	*	The	PCH	will	always	be	fetched	from	the

same	page

															than	PCL,	i.e.	page	boundary	crossing

is	not	handled.

																How	Real	Programmers	Acknowledge

Interrupts

		With	RMW	instructions:

								;	beginning	of	combined	raster/timer	interrupt

routine

								LSR	$D019							;	clear	VIC	interrupts,	read

raster	interrupt	flag	to	C

								BCS	raster						;	jump	if	VIC	caused	an

interrupt

								...													;	timer	interrupt	routine

								Operational	diagram	of	LSR	$D019:

										#		data		address		R/W

									---	----		-------		---		---------------------

										1			4E					PC						R			fetch	opcode

										2			19				PC+1					R			fetch	address	low

										3			D0				PC+2					R			fetch	address	high

										4			xx				$D019				R			read	memory

										5			xx				$D019				W			write	the	value	back,

rotate	right

										6		xx/2			$D019				W			write	the	new	value

back

								The	5th	cycle	acknowledges	the	interrupt	by

writing	the	same

								value	back.	If	only	raster	interrupts	are

used,	the	6th	cycle

								has	no	effect	on	the	VIC.	(It	might

acknowledge	also	some

								other	interrupts.)

		With	indexed	addressing:

								;	acknowledge	interrupts	to	both	CIAs

								LDX	#$10

								LDA	$DCFD,X

								Operational	diagram	of	LDA	$DCFD,X:

										#		data		address		R/W		description

									---	----		-------		---		---------------------

										1			BD					PC						R			fetch	opcode

										2			FD				PC+1					R			fetch	address	low

										3			DC				PC+2					R			fetch	address	high,

add	X	to	address	low

										4			xx				$DC0D				R			read	from	address,

fix	high	byte	of	address

										5			yy				$DD0D				R			read	from	right

address

								;	acknowledge	interrupts	to	CIA	2

								LDX	#$10

								STA	$DDFD,X

								Operational	diagram	of	STA	$DDFD,X:

										#		data		address		R/W		description

									---	----		-------		---		---------------------

										1			9D					PC						R			fetch	opcode

										2			FD				PC+1					R			fetch	address	low

										3			DC				PC+2					R			fetch	address	high,

add	X	to	address	low

										4			xx				$DD0D				R			read	from	address,

fix	high	byte	of	address

										5			ac				$DE0D				W			write	to	right

address

		With	branch	instructions:

								;	acknowledge	interrupts	to	CIA	2

																LDA	#$00		;	clear	N	flag

																JMP	$DD0A

								DD0A				BPL	$DC9D	;	branch

								DC9D				BRK							;	return

								You	need	the	following	preparations	to

initialize	the	CIA	registers:

																LDA	#$91		;	argument	of	BPL

																STA	$DD0B

																LDA	#$10		;	BPL

																STA	$DD0A

																STA	$DD08	;	load	the	ToD	values	from

the	latches

																LDA	$DD0B	;	freeze	the	ToD	display

																LDA	#$7F

																STA	$DC0D	;	assure	that	$DC0D	is	$00

								Operational	diagram	of	BPL	$DC9D:

										#		data		address		R/W		description

									---	----		-------		---		---------------------

										1			10				$DD0A				R			fetch	opcode

										2			91				$DD0B				R			fetch	argument

										3			xx				$DD0C				R			fetch	opcode,	add

argument	to	PCL

										4			yy				$DD9D				R			fetch	opcode,	fix	PCH

								(5			00				$DC9D				R			fetch	opcode)

								;	acknowledge	interrupts	to	CIA	1

																LSR							;	clear	N	flag

																JMP	$DCFA

								DCFA				BPL	$DD0D

								DD0D				BRK

								;	Again	you	need	to	set	the	ToD	registers	of

CIA	1	and	the

								;	Interrupt	Control	Register	of	CIA	2	first.

								Operational	diagram	of	BPL	$DD0D:

										#		data		address		R/W		description

									---	----		-------		---		---------------------

										1			10				$DCFA				R			fetch	opcode

										2			11				$DCFB				R			fetch	argument

										3			xx				$DCFC				R			fetch	opcode,	add

argument	to	PCL

										4			yy				$DC0D				R			fetch	opcode,	fix	PCH

								(5			00				$DD0D				R			fetch	opcode)

								;	acknowledge	interrupts	to	CIA	2

automagically

																;	preparations

																LDA	#$7F

																STA	$DD0D							;	disable	all

interrupt	sources	of	CIA2

																LDA	$DD0E

																AND	#$BE								;	ensure	that	$DD0C

remains	constant

																STA	$DD0E							;	and	stop	the	timer

																LDA	#$FD

																STA	$DD0C							;	parameter	of	BPL

																LDA	#$10

																STA	$DD0B							;	BPL

																LDA	#$40

																STA	$DD0A							;	RTI/parameter	of	LSR

																LDA	#$46

																STA	$DD09							;	LSR

																STA	$DD08							;	load	the	ToD	values

from	the	latches

																LDA	$DD0B							;	freeze	the	ToD

display

																LDA	#$09

																STA	$0318

																LDA	#$DD

																STA	$0319							;	change	NMI	vector	to

$DD09

																LDA	#$FF								;	Try	changing	this

instruction's	operand

																STA	$DD05							;	(see	comment	below).

																LDA	#$FF

																STA	$DD04							;	set	interrupt

frequency	to	1/65536	cycles

																LDA	$DD0E

																AND	#$80

																ORA	#$11

																LDX	#$81

																STX	$DD0D							;	enable	timer

interrupt

																STA	$DD0E							;	start	timer

																LDA	#$00								;	To	see	that	the

interrupts	really	occur,

																STA	$D011							;	use	something	like

this	and	see	how

								LOOP				DEC	$D020							;	changing	the	byte

loaded	to	$DD05	from

																BNE	LOOP								;	#$FF	to	#$0F	changes

the	image.

								When	an	NMI	occurs,	the	processor	jumps	to

Kernal	code,	which	jumps	to

								($0318),	which	points	to	the	following

routine:

								DD09				LSR	$40									;	clear	N	flag

																BPL	$DD0A							;	Note:	$DD0A	contains

RTI.

								Operational	diagram	of	BPL	$DD0A:

										#		data		address		R/W		description

									---	----		-------		---		---------------------

										1			10				$DD0B				R			fetch	opcode

										2			11				$DD0C				R			fetch	argument

										3			xx				$DD0D				R			fetch	opcode,	add

argument	to	PCL

										4			40				$DD0A				R			fetch	opcode,	(fix

PCH)

		With	RTI:

								;	the	fastest	possible	interrupt	handler	in

the	6500	family

																;	preparations

																SEI

																LDA	$01									;	disable	ROM	and

enable	I/O

																AND	#$FD

																ORA	#$05

																STA	$01

																LDA	#$7F

																STA	$DD0D							;	disable	CIA	2's	all

interrupt	sources

																LDA	$DD0E

																AND	#$BE								;	ensure	that	$DD0C

remains	constant

																STA	$DD0E							;	and	stop	the	timer

																LDA	#$40

																STA	$DD0C							;	store	RTI	to	$DD0C

																LDA	#$0C

																STA	$FFFA

																LDA	#$DD

																STA	$FFFB							;	change	NMI	vector	to

$DD0C

																LDA	#$FF								;	Try	changing	this

instruction's	operand

																STA	$DD05							;	(see	comment	below).

																LDA	#$FF

																STA	$DD04							;	set	interrupt

frequency	to	1/65536	cycles

																LDA	$DD0E

																AND	#$80

																ORA	#$11

																LDX	#$81

																STX	$DD0D							;	enable	timer

interrupt

																STA	$DD0E							;	start	timer

																LDA	#$00								;	To	see	that	the

interrupts	really	occur,

																STA	$D011							;	use	something	like

this	and	see	how

								LOOP				DEC	$D020							;	changing	the	byte

loaded	to	$DD05	from

																BNE	LOOP								;	#$FF	to	#$0F	changes

the	image.

								When	an	NMI	occurs,	the	processor	jumps	to	Kernal	code,	which
								jumps	to	($0318),	which	points	to	the	following	routine:

								DD0C				RTI

								How	on	earth	can	this	clear	the	interrupts?	Remember,	the
								processor	always	fetches	two	successive	bytes	for	each
								instruction.

								A	little	more	practical	version	of	this	is	redirecting	the	NMI
								(or	IRQ)	to	your	own	routine,	whose	last	instruction	is	JMP
								$DD0C	or	JMP	$DC0C.		If	you	want	to	confuse	more,	change	the	0
								in	the	address	to	a	hexadecimal	digit	different	from	the	one
								you	used	when	writing	the	RTI.

								Or	you	can	combine	the	latter	two	methods:

								DD09				LSR	$xx		;	xx	is	any	appropriate	BCD

value	00-59.

																BPL	$DCFC

								DCFC				RTI

								This	example	acknowledges	interrupts	to	both	CIAs.

		If	you	want	to	confuse	the	examiners	of	your	code,	you	can	use	any
of	these	techniques.	Although	these	examples	use	no	undefined
opcodes,

they	do	not	necessarily	run	correctly	on	CMOS	processors.	However,	the
RTI	example	should	run	on	65C02	and	65C816,	and	the	latter	branch
instruction	example	might	work	as	well.

		The	RMW	instruction	method	has	been	used	in	some	demos,	others
were
developed	by	Marko	M"akel"a.	His	favourite	is	the	automagical	RTI
method,	although	it	does	not	have	any	practical	applications,	except
for	some	time	dependent	data	decryption	routines	for	very	complicated
copy	protections.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

PPU

NTSC	2C02	technical	operation

Brad	Taylor	(big_time_software@hotmail.com)
1st	release:	Sept	25th,	Y2K
2nd	release:	Jan		27th,	2K3
3rd	release:	Feb			4th,	2K3
4th	release:	Feb		19th,	2K3

This	document	describes	the	low-level	operation	and	technical	details	of
the	2C02,	the	NES's	PPU.	In	general,	it	contains	important	information	in
regards	to	PPU	timing,	which	no	NES	coder/emulator	author	should	be
without.	This	document	assumes	that	you	already	understand	the	basics
of	how	the	PPU	works,	like	how	the	playfield/object	images	are
generated,	and	the	behaviour	of	scroll/address	counters	during	playfield
rendering.

Alot	of	the	concepts	behind	how	the	PPU	works	described	here	have
been	extracted	from	Nintendo's	patent	documentation	(U.S.#4,824,106).
With	block	diagrams	of	the	PPU's	architecture	(and	even	some
schematics),	these	papers	will	definetely	aid	in	the	comprehension	of	this
complex	device.

Since	the	first	release,	this	document	has	been	given	a	major	overhaul.
Most	sections	of	the	document	have	been	reworked,	and	new	information
has	been	added	just	about	everywhere.	If	you've	read	the	old	version	of
this	document	before,	I	recommend	that	you	read	this	new	one	in	it's
entirity;	there's	new	information	even	in	sections	which	may	look	like	they
haven't	changed	much.

Topics	discussed	hereon	are	as	follows.

-	Video	signal	generation
-	PPU	base	timing

-	Miscellanious	PPU	info
-	PPU	memory	access	cycles
-	Frame	rendering	details
-	Scanline	rendering	details
-	In-range	object	evaluation
-	Details	of	playfield	render	pipeline
-	Details	of	object	pattern	fetch	&	render
-	Extra	cycle	frames
-	The	MMC3's	scanline	counter
-	PPU	pixel	priority	quirk
-	Graphical	enhancements

+-------+
|History|
+-------+
On	the	weekend	of	Sept.	25th,	Y2K,	I	setup	an	experiment	with	my	NTSC
NES	MB	&	my	PC	so's	I	could	RE	the	PPU's	timing.	What	I	did	was
(using	a	PC	interface)	analyse	the	changes	that	occur	on	the	PPU's
address	and	data	pins	on	every	rising	&	falling	edge	of	the	PPU's	clock.	I
was	not	planning	on	removing	the	PPU	from	the	motherboard	(yet),	so
basically	I	just	kept	everything	intact	(minus	the	stuff	I	added	onto	the	MB
so	I	could	monitor	the	PPU's	signals),	and	popped	in	a	game,	so	that	it
would	initialize	the	PPU	for	me	(I	used	DK	classics,	since	it	was	only
taking	somthing	like	4	frames	before	it	was	turning	on	the
background/sprites).

The	only	change	I	made	was	taking	out	the	21	MHz	clock	generator
circuitry.	To	replace	the	clock	signal,	I	connected	a	port	controlled	latch	to
the	NES's	main	clock	line	instead.	Now,	by	writing	a	0	or	a	1	out	to	an	PC
ISA	port	of	my	choice	(I	was	using	$104),	I	was	able	to	control	the	21
MHz	clockline	of	the	NES.	After	I	would	create	a	rise	or	a	fall	on	the
NES's	clock	line,	I	would	then	read	in	the	data	that	appeared	on	the
PPU's	address	and	data	pins,	which	included	monitoring	what	PPU
registers	the	game	read/wrote	to	(&	the	data	that	was	read/written).

+-----------------------+
|Video	signal	generation|
+-----------------------+
A	21.48	MHz	clock	signal	is	fed	into	the	PPU.	This	is	the	NES's	main
clock	line,	which	is	shared	by	the	CPU.

Inside	the	PPU,	the	21.48	MHz	signal	is	used	to	clock	a	three-stage
Johnson	counter.	The	complimentery	outputs	of	both	master	and	slave
portions	of	each	stage	are	used	to	form	12	mutually	exclusive	output
phases-	all	3.58	MHz	each	(the	NTSC	colorburst).	These	12	different
phases	form	the	basis	of	all	color	generation	for	the	PPU's	composite
video	output.

Naturally,	when	the	user	programs	the	lower	4-bits	of	a	palette	register,
they	are	essentially	selecting	any	1	of	12	phases	to	be	routed	to	the
PPU's	video	out	pin	(this	corresponds	to	chrominance	(tint/hue)	video
information)	when	the	appropriate	pixel	indexes	it.	Other	chrominance
combinations	(0	&	13)	are	simply	hardwired	to	a	1	or	0	to	generate
grayscale	pixels.

Bits	4	&	5	of	a	palette	entry	selects	1	of	4	linear	DC	voltage	offsets	to
apply	to	the	selected	chrominance	signal	(this	corresponds	to	luminance
(brightness)	video	information)	for	a	pixel.

Chrominance	values	14	&	15	yield	a	black	pixel	color,	regardless	of	any
luminance	value	setting.

Luminance	value	0,	mixed	with	chrominance	value	13	yield	a	"blacker
than	black"	pixel	color.	This	super	black	pixel	has	an	output	voltage	level
close	to	the	vertical/horizontal	syncronization	pulses.	Because	of	this,
some	video	monitors	will	display	warped/distorted	screens	for	games
which	use	this	color	for	black	(Game	Genie	is	the	best	example	of	this).
Essentially	what	is	happening	is	the	video	monitor's	horizontal	timing	is
compromised	by	what	it	thinks	are	extra	syncronization	pulses	in	the
scanline.	This	is	not	damaging	to	the	monitors	which	are	effected	by	it,
but	use	of	the	super	black	color	should	be	avoided,	due	to	the	graphical
distortion	it	causes.

The	amplitude	of	the	selected	chrominance	signal	(via	the	4	lower	bits	of
a	palette	register)	remain	constant	regardless	of	bits	4	or	5.	Thus	it	is	not
possible	to	adjust	the	saturation	level	of	a	particular	color.

+---------------+
|PPU	base	timing|
+---------------+
Other	than	the	3-stage	Johnson	counter,	the	21.48	MHz	signal	is	not
used	directly	by	any	other	PPU	hardware.	Instead,	the	signal	is	divided
by	4	to	get	5.37	MHz,	and	is	used	as	the	smallest	unit	of	timing	in	the
PPU.	All	following	references	to	PPU	clock	cycle	(abbr.	"cc")	timing	in	this
document	will	be	in	respect	to	this	timing	base,	unless	otherwise
indicated.

-	Pixels	are	rendered	at	the	same	rate	as	the	base	PPU	clock.	In	other
words,	1	clock	cycle=	1	pixel.

-	341	PPU	cc's	make	up	the	time	of	a	typical	scanline	(or	341/3	CPU
cc's).

-	One	frame	consists	of	262	scanlines.	This	equals	341*262	PPU	cc's	per
frame	(divide	by	3	for	#	of	CPU	cc's).

+------------------------+
|PPU	memory	access	cycles|
+------------------------+
All	PPU	memory	access	cycles	are	2	clocks	long,	and	can	be	made
back-to-back	(typically	done	during	rendering).	Here's	how	the	access
breaks	down:

At	the	beginning	of	the	access	cycle,	PPU	address	lines	8..13	are
updated	with	the	target	address.	This	data	remains	here	until	the	next
time	an	access	cycle	occurs.

The	lower	8-bits	of	the	PPU	address	lines	are	multiplexed	with	the	data
bus,	to	reduce	the	PPU's	pin	count.	On	the	first	clock	cycle	of	the	access,
A0..A7	are	put	on	the	PPU's	data	bus,	and	the	ALE	(address	latch
enable)	line	is	activated	for	the	first	half	of	the	cycle.	This	loads	the	lower
8-bit	address	into	an	external	8-bit	transparent	latch	strobed	by	ALE
(74LS373	is	used).

On	the	second	clock	cycle,	the	/RD	(or	/WR)	line	is	activated,	and	stays
active	for	the	entire	cycle.	Appropriate	data	is	driven	onto	the	bus	during
this	time.

+----------------------+
|Miscellanious	PPU	info|
+----------------------+
-	Sprite	DMA	is	1536	clock	cycles	long	(512	CPU	cc's).	256	individual
transfers	are	made	from	CPU	memory	to	a	temp	register	inside	the	CPU,
then	from	the	CPU's	temp	reg,	to	$2004.

-	The	PPU	makes	NO	external	access	to	the	PPU	bus,	unless	the
playfield	or	objects	are	enabled	during	a	scanline	outside	vblank.	This
means	that	the	PPU's	address	and	data	busses	are	dead	while	in	this
state.

-	palette	RAM	is	accessed	internally	during	playfield	rendering	(i.e.,	the
palette	address/data	is	never	put	on	the	PPU	bus	during	this	time).
Additionally,	when	the	programmer	accesses	palette	RAM	via	$2006/7,
the	palette	address	accessed	actually	does	show	up	on	the	PPU	address
bus,	but	the	PPU's	/RD	&	/WR	flags	are	not	activated.	This	is	required;	to
prevent	writing	over	name	table	data	falling	under	the	approprite	mirrored
area	(since	the	name	table	RAM's	address	decoder	simply	consists	of	an
inverter	connected	to	the	A13	line-	effectively	decoding	all	addresses	in
$2000-$3FFF).

-	the	VINT	impulse	(NMI)	and	bit	$2002.7	are	set	simultaniously.	Reading
$2002	will	reset	bit	7,	but	it	seems	that	the	VINT	flag	goes	down	on	it's
own.	Because	of	this,	when	the	PPU	generates	a	VINT,	it	doesn't	require

any	acknowledgement	whatsoever;	it	will	continue	firing	off	VINTs,
regardless	of	inservice	to	$2002.	The	only	way	to	stop	VINTs	is	to	clear
$2000.7.

-	Because	the	PPU	cannot	make	a	read	from	PPU	memory	immediately
upon	request	(via	$2007),	there	is	an	internal	buffer,	which	acts	as	a	1-
stage	data	pipeline.	As	a	read	is	requested,	the	contents	of	the	read
buffer	are	returned	to	the	NES's	CPU.	After	this,	at	the	PPU's	earliest
convience	(according	to	PPU	read	cycle	timings),	the	PPU	will	fetch	the
requested	data	from	the	PPU	memory,	and	throw	it	in	the	read	buffer.
Writes	to	PPU	mem	via	$2007	are	pipelined	as	well,	but	it	is	unknown	to
me	if	the	PPU	uses	this	same	buffer	(this	could	be	easily	tested	by	writing
somthing	to	$2007,	and	seeing	if	the	same	value	is	returned	immediately
after	reading).

+-----------------------+
|Frame	rendering	details|
+-----------------------+
		The	following	describes	the	PPU's	status	during	all	262	scanlines	of	a
frame.	Any	scanlines	where	work	is	done	(like	image	rendering),	consists
of	the	steps	which	will	be	described	in	the	next	section.

0..19:								Starting	at	the	instant	the	VINT	flag	is	pulled	down	(when	a
NMI	is	generated),	20	scanlines	make	up	the	period	of	time	on	the	PPU
which	I	like	to	call	the	VINT	period.	During	this	time,	the	PPU	makes	no
access	to	it's	external	memory	(i.e.	name	/	pattern	tables,	etc.).

20:								After	20	scanlines	worth	of	time	go	by	(since	the	VINT	flag	was
set),	the	PPU	starts	to	render	scanlines.	This	first	scanline	is	a	dummy
one;	although	it	will	access	it's	external	memory	in	the	same	sequence	it
would	for	drawing	a	valid	scanline,	no	on-screen	pixels	are	rendered
during	this	time,	making	the	fetched	background	data	immaterial.	Both
horizontal	*and*	vertical	scroll	counters	are	updated	(presumably)	at	cc
offset	256	in	this	scanline.	Other	than	that,	the	operation	of	this	scanline
is	identical	to	any	other.	The	primary	reason	this	scanline	exists	is	to	start
the	object	render	pipeline,	since	it	takes	256	cc's	worth	of	time	to

determine	which	objects	are	in	range	or	not	for	any	particular	scanline.

21..260:	after	rendering	1	dummy	scanline,	the	PPU	starts	to	render	the
actual	data	to	be	displayed	on	the	screen.	This	is	done	for	240	scanlines,
of	course.

261:								after	the	very	last	rendered	scanline	finishes,	the	PPU	does
nothing	for	1	scanline	(i.e.	the	programmer	gets	screwed	out	of	perfectly
good	VINT	time).	When	this	scanline	finishes,	the	VINT	flag	is	set,	and
the	process	of	drawing	lines	starts	all	over	again.

+--------------------------+
|Scanline	rendering	details|
+--------------------------+
Naturally,	the	PPU	will	fetch	data	from	name,	attribute,	and	pattern	tables
during	a	scanline	to	produce	an	image	on	the	screen.	This	section	details
the	PPU's	doings	during	this	time.

As	explained	before,	external	PPU	memory	can	be	accessed	every	2
cc's.	With	341	cc's	per	scanline,	this	gives	the	PPU	enough	time	to	make
170	memory	accesses	per	scanline	(and	it	uses	all	of	them!).	After	the
170th	fetch,	the	PPU	does	nothing	for	1	clock	cycle.	Remember	that	a
single	pixel	is	rendered	every	clock	cycle.

Memory	fetch	phase	1	thru	128

1.	Name	table	byte
2.	Attribute	table	byte
3.	Pattern	table	bitmap	#0
4.	Pattern	table	bitmap	#1

This	process	is	repeated	32	times	(32	tiles	in	a	scanline).

This	is	when	the	PPU	retrieves	the	appropriate	data	from	PPU	memory

for	rendering	the	playfield.	The	first	playfield	tile	fetched	here	is	actually
the	3rd	to	be	drawn	on	the	screen	(the	playfield	data	for	the	first	2	tiles	to
be	rendered	on	this	scanline	are	fetched	at	the	end	of	the	scanline	prior
to	this	one).

All	valid	on-screen	pixel	data	arrives	at	the	PPU's	video	out	pin	during
this	time	(256	clocks).	For	determining	the	precise	delay	between	when	a
tile's	bitmap	fetch	phase	starts	(the	whole	4	memory	fetches),	and	when
the	first	pixel	of	that	tile's	bitmap	data	hits	the	video	out	pin,	the	formula	is
(16-n)	clock	cycles,	where	n	is	the	fine	horizontal	scroll	offset	(0..7
pixels).	This	information	is	relivant	for	understanding	the	exact	timing
operation	of	the	"object	0	collision"	flag.

Note	that	the	PPU	fetches	an	attribute	table	byte	for	every	8	sequential
horizontal	pixels	it	draws.	This	essentially	limits	the	PPU's	color	area	(the
area	of	pixels	which	are	forced	to	use	the	same	3-color	palette)	to	only	8
horizontally	sequential	pixels.

It	is	also	during	this	time	that	the	PPU	evaluates	the	"Y	coordinate"
entries	of	all	64	objects	in	object	attribute	RAM	(OAM),	to	see	if	the
objects	are	within	range	(to	be	drawn	on	the	screen)	for	the	*next*
scanline	(this	is	why	Y-coordinate	entries	in	the	OAM	must	be
programmed	to	a	value	1	less	than	the	scanline	the	object	is	to	appear
on).	Each	evaluation	(presumably)	takes	4	clock	cycles,	for	a	total	of	256
(which	is	why	it's	done	during	on-screen	pixel	rendering).

In-range	object	evaluation

An	8-bit	comparator	is	used	to	calculate	the	9-bit	difference	between	the
current	scanline	(minus	21),	and	each	Y-coordinate	(plus	1)	of	every
object	entry	in	the	OAM.	Objects	are	considered	in	range	if	the
comparator	produces	a	difference	in	the	range	of	0..7	(if	$2000.5
currently	=	0),	or	0..15	(if	$2000.5	currently	=	1).

(Note	that	a	9-bit	comparison	result	is	generated.	This	means	that	setting
object	scanline	coordinates	for	ranges	-1..-15	are	actually	interpreted	as

ranges	241..255.	For	this	reason,	objects	with	these	ranges	will	never	be
considered	to	be	part	of	any	on-screen	scanline	range,	and	will	not	allow
smooth	object	scrolling	off	the	top	of	the	screen.)

Tile	index	(8	bits),	X-coordinate	(8	bits),	&	attribute	information	(4	bits;
vertical	inversion	is	excluded)	from	the	in-range	OAM	element,	plus	the
associated	4-bit	result	of	the	range	comparison	accumulate	in	a	part	of
the	PPU	called	the	"sprite	temporary	memory".	Logical	inversion	is
applied	to	the	loaded	4-bit	range	comparison	result,	if	the	object's	vertical
inversion	attribute	bit	is	set.

Since	object	range	evaluations	occur	sequentially	through	the	OAM
(starting	from	entry	0	to	63),	the	sprite	temporary	memory	always	fills	in
order	from	the	highest	priority	in-range	object,	to	lower	ones.	A	4-bit	"in-
range"	counter	is	used	to	determine	the	number	of	found	objects	on	the
scanline	(from	0	up	to	8),	and	serves	as	an	index	pointer	for	placement	of
found	object	data	into	the	8-element	sprite	temporary	memory.	The
counter	is	reset	at	the	beginning	of	the	object	evaluation	phase,	and	is
post-incremented	everytime	an	object	is	found	in-range.	This	occurs	until
the	counter	equals	8,	when	found	object	data	after	this	is	discarded,	and
a	flag	(bit	5	of	$2002)	is	raised,	indicating	that	it	is	going	to	be	dropping
objects	for	the	next	scanline.

An	additional	memory	bit	associated	with	the	sprite	temporary	memory	is
used	to	indicate	that	the	primary	object	(#0)	was	found	to	be	in	range.
This	will	be	used	later	on	to	detect	primary	object-to-playfield	pixel
collisions.

Playfield	render	pipeline	details

As	pattern	table	&	palette	select	data	is	fetched,	it	is	loaded	into	internal
latches	(the	palette	select	data	is	selected	from	the	fetched	byte	via	a	2-
bit	1-of-4	selector).

At	the	start	of	a	new	tile	fetch	phase	(every	8	cc's),	both	latched	pattern
table	bitmaps	are	loaded	into	the	upper	8-bits	of	2-	16-bit	shift	registers

(which	both	shift	right	every	clock	cycle).	The	palette	select	data	is	also
transfered	into	another	latch	during	this	time	(which	feeds	the	serial
inputs	of	2	8-bit	right	shift	registers	shifted	every	clock).	The	pixel	data	is
fed	into	these	extra	shift	registers	in	order	to	implement	fine	horizontal
scrolling,	since	the	periods	when	the	PPU	fetch	tile	data	is	fixed.

A	single	bit	from	each	shift	register	is	selected,	to	form	the	valid	4-bit
playfield	pixel	for	the	current	clock	cycle.	The	bit	selection	offset	is	based
on	the	fine	horizontal	scroll	value	(this	selects	bit	positions	0..7	for	all	4
shift	registers).	The	selected	4-bit	pixel	data	will	then	be	fed	into	the
multiplexer	(described	later)	to	be	mixed	with	object	data.

Memory	fetch	phase	129	thru	160

1.	Garbage	name	table	byte
2.	Garbage	name	table	byte
3.	Pattern	table	bitmap	#0	for	applicable	object	(for	next	scanline)
4.	Pattern	table	bitmap	#1	for	applicable	object	(for	next	scanline)

This	process	is	repeated	8	times.

This	is	the	period	of	time	when	the	PPU	retrieves	the	appropriate	pattern
table	data	for	the	objects	to	be	drawn	on	the	*next*	scanline.	When	less
than	8	objects	exist	on	the	next	scanline	(as	the	in-range	object
evaluation	counter	indicates),	dummy	pattern	table	fetches	take	place	for
the	remaining	fetches.	Internally,	the	fetched	dummy-data	is	discarded,
and	replaced	with	completely	transparent	bitmap	patterns).

Although	the	fetched	name	table	data	is	thrown	away,	and	the	name
table	address	is	somewhat	unpredictable,	the	address	does	seem	to
relate	to	the	first	name	table	tile	to	be	fetched	for	the	next	scanline.	This
would	seem	to	imply	that	PPU	cc	#256	is	when	the	PPU's	scroll/address
counters	have	their	horizontal	scroll	values	automatically	updated.

It	should	also	be	noted	that	because	this	fetch	is	required	for	objects	on

the	next	scanline,	it	is	neccessary	for	a	garbage	scanline	to	exist	prior	to
the	very	first	scanline	to	be	actually	rendered,	so	that	object	attribute
RAM	entries	can	be	evaluated,	and	the	appropriate	bitmap	data
retrieved.

As	far	as	the	wasted	fetch	phases	here,	well,	what	can	I	say.	Either
Nintendo's	engineers	were	VERY	lazy,	and	didn't	want	to	add	the	small
amount	of	extra	circuitry	to	the	PPU	so	that	16	object	fetches	could	take
place	per	scanline,	or	Nintendo	couldn't	spot	the	extra	memory	required
to	implement	16	object	scanlines.	Thing	is	though-	between	the	object
attribute	mem,	sprite	temporary	&	buffer	mem,	and	palette	mem,	that's
already	2406	bits	of	RAM;	I	don't	think	it	would've	killed	them	to	just	add
the	408	bits	it	would've	took	for	an	extra	8	objects,	which	would've	made
games	with	horrible	OAM	cycling	(Double	Dragon	2	w/	2	players)	look
half-decent	(hell,	with	16	object	scanlines,	games	would	hardly	even
need	OAM	cycling).

Details	of	object	pattern	fetch	&	render
--
Where	the	PPU	fetches	pattern	table	data	for	an	individual	object	is
conditioned	on	the	contents	of	the	sprite	temporary	memory	element,	and
$2000.5.	If	$2000.5	=	0,	the	tile	index	data	is	used	as	usual,	and	$2000.3
selects	the	pattern	table	to	use.	If	$2000.5	=	1,	the	MSB	of	the	range
result	value	become	the	LSB	of	the	indexed	tile,	and	the	LSB	of	the	tile
index	value	determines	pattern	table	selection.	The	lower	3	bits	of	the
range	result	value	are	always	used	as	the	fine	vertical	offset	into	the
selected	pattern.

Horizontal	inversion	(bit	order	reversing)	is	applied	to	fetched	bitmaps,	if
indicated	in	the	sprite	temporary	memory	element.

The	fetched	pattern	table	data	(which	is	2	bytes),	plus	the	associated	3
attribute	bits	(palette	select	&	priority),	and	the	x	coordinate	byte	in	sprite
temporary	memory	are	then	loaded	into	a	part	of	the	PPU	called	the
"sprite	buffer	memory"	(the	primary	object	present	bit	is	also	copied).	This
memory	area	again,	is	large	enough	to	hold	the	contents	for	8	sprites.

The	composition	of	one	sprite	buffer	element	here	is:	2	8-bit	shift
registers	(the	fetched	pattern	table	data	is	loaded	in	here,	where	it	will	be
serialized	at	the	appropriate	time),	a	3-bit	latch	(which	holds	the	color	&
priority	data	for	an	object),	and	an	8-bit	down	counter	(this	is	where	the	x
coordinate	is	loaded).

The	counter	is	decremented	every	time	the	PPU	renders	a	pixel	(the	first
256	cc's	of	a	scanline;	see	"Memory	fetch	phase	1	thru	128"	above).
When	the	counter	equals	0,	the	pattern	table	data	in	the	shift	registers
will	start	to	serialize	(1	shift	per	clock).	Before	this	time,	or	8	clocks	after,
consider	the	outputs	of	the	serializers	for	each	stage	to	be	0
(transparency).

The	streams	of	all	8	object	serializers	are	prioritized,	and	ultimately	only
one	stream	(with	palette	select	&	priority	information)	is	selected	for
output	to	the	multiplexer	(where	object	&	playfield	pixels	are	prioritized).

The	data	for	the	first	sprite	buffer	entry	(including	the	primary	object
present	flag)	has	the	first	chance	to	enter	the	multiplexer,	if	it's	output
pixel	is	non-transparent	(non-zero).	Otherwise,	priority	is	passed	to	the
next	serializer	in	the	sprite	buffer	memory,	and	the	test	for	non-
transparency	is	made	again	(the	primary	object	present	status	will	always
be	passed	to	the	multiplexer	as	false	in	this	case).	This	is	done	until	the
last	(8th)	stage	is	reached,	when	the	object	data	is	passed	through
unconditionally.	Keep	in	mind	that	this	whole	process	occurs	every	clock
cycle	(hardware	is	used	to	determine	priority	instantly).

The	multiplexer	does	2	things:	determines	primary	object	collisions,	and
decides	which	pixel	data	to	pass	through	to	index	the	palette	RAM-	either
the	playfield's	or	the	object's.

Primary	object	collisions	occur	when	a	non-transparent	playfield	pixel
coincides	with	a	non-transparent	object	pixel,	while	the	primary	object
present	status	entering	the	multiplexer	for	the	current	clock	cycle	is	true.
This	causes	a	flip-flop	($2002.6)	to	be	set,	and	remains	set	(presumably)
some	time	after	the	VINT	occurence	(prehaps	up	until	scanline	20?).

The	decision	for	selecting	the	data	to	pass	through	to	the	palette	index	is
made	rather	easilly.	The	condition	to	use	object	(opposed	to	playfield)
data	is:

(OBJpri=foreground	OR	PFpixel=xparent)	AND	OBJpixel<>xparent

Since	the	PPU	has	2	palettes;	one	for	objects,	and	one	for	playfield,	the
appropriate	palette	will	be	selected	depending	on	which	pixel	data	is
passed	through.

After	the	palette	look-up,	the	operation	of	events	follows	the
aforementioned	steps	in	the	"video	signal	generation"	section.

Memory	fetch	phase	161	thru	168

1.	Name	table	byte
2.	Attribute	table	byte
3.	Pattern	table	bitmap	#0	(for	next	scanline)
4.	Pattern	table	bitmap	#1	(for	next	scanline)

This	process	is	repeated	2	times.

It	is	during	this	time	that	the	PPU	fetches	the	appliciable	playfield	data	for
the	first	and	second	tiles	to	be	rendered	on	the	screen	for	the	*next*
scanline.	These	fetches	initialize	the	internal	playfield	pixel	pipelines	(2-
16-bit	shift	registers)	with	valid	bitmap	data.	The	rest	of	tiles	(3..32)	are
fetched	at	the	beginning	of	the	following	scanline.

Memory	fetch	phase	169	thru	170

1.	Name	table	byte
2.	Name	table	byte

I'm	unclear	of	the	reason	why	this	particular	access	to	memory	is	made.
The	name	table	address	that	is	accessed	2	times	in	a	row	here,	is	also
the	same	nametable	address	that	points	to	the	3rd	tile	to	be	rendered	on
the	screen	(or	basically,	the	first	name	table	address	that	will	be
accessed	when	the	PPU	is	fetching	playfield	data	on	the	next	scanline).

After	memory	access	170

The	PPU	simply	rests	for	1	cycle	here	(or	the	equivelant	of	half	a	memory
access	cycle)	before	repeating	the	whole	pixel/scanline	rendering
process.

+------------------+
|Extra	cycle	frames|
+------------------+
Scanline	20	is	the	only	scanline	that	has	variable	length.	On	every	odd
frame,	this	scanline	is	only	340	cycles	(the	dead	cycle	at	the	end	is
removed).	This	is	done	to	cause	a	shift	in	the	NTSC	colorburst	phase.

You	see,	a	3.58	MHz	signal,	the	NTSC	colorburst,	is	required	to	be
modulated	into	a	luminance	carrying	signal	in	order	for	color	to	be
generated	on	an	NTSC	monitor.	Since	the	PPU's	video	out	consists	of
basically	square	waves	(as	opposed	to	sine	waves,	which	would	be
preferred),	it	takes	an	entire	colorburst	cycle	(1/3.58	MHz)	for	an	NTSC
monitor	to	identify	the	color	of	a	PPU	pixel	accurately.

But	now	you	remember	that	the	PPU	renders	pixels	at	5.37	MHz-	1.5x
the	rate	of	the	colorburst.	This	means	that	if	a	single	pixel	resides	on	a
scanline	with	a	color	different	to	those	surrounding	it,	the	pixel	will
probably	be	misrepresented	on	the	screen,	sometimes	appearing	faintly.

Well,	to	somewhat	fix	this	problem,	they	added	this	extra	pixel	into	every
odd	frame	(shifting	the	colorburst	phase	over	a	bit),	and	changing	the
way	the	monitor	interprets	isolated	colored	pixels	each	frame.	This	is	why
when	you	play	games	with	detailed	background	graphics,	the	background

seems	to	flicker	a	bit.	Once	you	start	scrolling	the	screen	however,	it
seems	as	if	some	pixels	become	invisible;	this	is	how	stationary	PPU
images	would	look	without	this	cycle	removed	from	odd	frames.

Certain	scroll	rates	expose	this	NTSC	PPU	color	caveat	regardless	of	the
toggling	phase	shift.	Some	of	Zelda	2's	dungeon	backgrounds	are	a	good
place	to	see	this	effect.

+---------------------------+
|The	MMC3's	scanline	counter|
+---------------------------+
As	most	people	know,	the	MMC3	bases	it's	scanline	counter	on	PPU
address	line	A13	(which	is	why	IRQ's	can	be	fired	off	manually	by
toggling	A13	a	bunch	of	times	via	$2006).	What's	not	common
knowledge	is	the	number	of	times	A13	is	expected	to	toggle	in	a	scanline
(although	if	you've	been	paying	close	attention	to	the	doc	here,	you
should	already	know	;)

A13	was	probably	used	for	the	IRQ	counter	(as	opposed	to	using	the
PPU's	/READ	line)	because	this	address	line	already	needed	to	be
connected	to	the	MMC	for	bankswitching	purposes	(so	in	other	words,	to
reduce	the	MMC3's	pin	count	by	1).	They	also	probably	used	this	method
of	counting	(as	opposed	to	a	CPU	cycle	counter)	since	A13	cycles	(0	->
1)	exactly	42	times	per	scanline,	whereas	the	CPU	count	of	cycles	per
scanline	is	not	an	exact	integer	(113.67).	Having	said	that,	I	guess
Nintendo	wanted	to	provide	an	"easy-to-use"	method	of	generating
special	image	effects,	without	making	programmers	have	to	figure	out
how	many	clock	cycles	to	program	an	IRQ	counter	with	(a	pretty	lame
excuse	for	not	providing	an	IRQ	counter	with	CPU	clock	cycle	precision
(which	would	have	been	more	useful	and	versatile)).

Regardless	of	any	values	PPU	registers	are	programmed	with,	A13	will
operate	in	a	predictable	fashion	during	image	rendering	(and	if	you
understand	how	PPU	addressing	works,	you	should	understand	that	A13
is	the	*only*	address	line	with	fixed	behaviour	during	image	rendering).

+------------------------+
|PPU	pixel	priority	quirk|
+------------------------+
Object	data	is	prioritized	between	itself,	then	prioritized	between	the
playfield.	There	are	some	odd	side	effects	to	this	scheme	of	rendering,
however.	For	instance,	imagine	a	low	priority	object	pixel	with	foreground
priority,	a	high	priority	object	pixel	with	background	priority,	and	a	playfield
pixel	all	coinciding	(all	non-transparent).

Ideally,	the	playfield	is	considered	to	be	the	middle	layer	between
background	and	foreground	priority	objects.	This	means	that	the	playfield
pixel	should	hide	the	background	priority	object	pixel	(regardless	of	object
priority),	and	the	foreground	priority	object	should	appear	atop	the	PF
pixel.

However,	because	of	the	way	the	PPU	renders	(as	just	described),	OBJ
priority	is	evaluated	first,	and	therefore	the	background	object	pixel	wins,
which	means	that	you'll	only	be	seeing	the	PF	pixel	after	this	mess.

A	good	game	to	demonstrate	this	behaviour	is	Megaman	2.	Go	into
airman's	stage.	First,	jump	into	the	energy	bar,	just	to	confirm	that
megaman's	sprite	is	of	a	higher	priority	than	the	energy	bar's.	Now,	get	to
the	second	half	of	the	stage,	where	the	clouds	cover	the	energy	bar.	The
energy	bar	will	be	ontop	of	the	clouds,	but	megaman	will	be	behind	them.
Now,	look	what	happens	when	you	jump	into	the	energy	bar	here...	you
see	the	clouds	where	megaman	underlaps	the	energy	bar.

+----------------------+
|Graphical	enhancements|
+----------------------+
Since	an	NES	cartridge	has	access	to	the	PPU	bus,	any	number	of	on-
cart	hardware	schemes	can	be	used	to	enhance	the	graphic	capabilities
of	the	NES.	After	all,	the	PPU's	playfield	pipeline	is	very	simple:	it	fetches
272	playfield	pixels	per	scanline	(as	34*2	byte	fetches,	in	real-time),	and
outputs	256	of	them	to	the	screen	(with	the	0..7	pixel	offset	determined

by	the	fine	X	scroll	register),	along	with	object	data	combined	with	it.

Essentially,	you	can	bypass	the	PPU's	simple	scrolling	system,
implement	a	custom	one	on	your	cart	(fetching	bitmap	data	in	your	own
fashion),	and	feed	the	PPU	bitmap	data	in	your	own	order.

The	possibilities	of	this	are	endless	(like	sporting	multiple	playfields,	or
even	playfield	rotation/scaling),	but	of	course	what	it	comes	down	to	is
the	amount	of	cartridge	hardware	required.

Generally,	playfield	rotation/scaling	can	be	done	quite	easily-	it	only
requires	a	few	sets	of	16-bit	registers	and	adders	(the	16	bits	are	broken
up	into	8.8	fixed	point	values).	But	this	kind	of	implementation	is	more
suited	for	an	integrated	circuit,	since	this	would	require	dozens	of	discrete
logic	chips.

Multiple	playfields	are	another	thing	which	could	be	easily	done.	The
caveat	here	is	that	pixel	pipelines	(i.e.,	shift	registers)	and	a	multiplexer
would	have	to	be	implemented	on	the	cart	(not	to	mention	exclusive
name	table	RAM)	in	order	to	process	the	playfield	bitmaps	from	multiple
sources.	The	access	to	the	CHR-ROM/RAM	would	also	have	to
increased-	but	as	it	stands,	the	CHR-ROM/RAM	bandwidth	is	1.34	MHz,
a	rather	low	frequency.	With	a	memory	device	capable	of	a	10.74	MHz
bandwith,	you	could	have	8	playfields	to	work	with.	Generally,	this	would
be	very	useful	for	displaying	multiple	huge	objects	on	the	screen-	without
ever	having	to	worry	about	annoying	flicker.

The	only	restriction	to	doing	any	of	this	is	that:

-	every	8	sequential	horizontal	pixels	sent	to	the	PPU	must	share	the
same	palette	select	value.	Because	of	this,	hardware	would	have	to	be
implemented	to	decide	which	palette	select	value	to	feed	the	PPU
between	8	horizontally	sequential	pixels,	if	they	do	not	all	share	the	same
palette	select	value.	The	on-screen	results	of	this	may	not	be	too
flattering	sometimes,	but	this	is	a	small	price	to	pay	to	do	some	neat
graphical	tricks	on	the	NES.

-only	the	playfield	palette	can	be	used.	As	usual,	this	pretty	much	limits
your	randomly	accessable	colors	to	about	12+1.

It's	a	damn	shame	that	Nintendo	never	created	a	MMC	which	would
enhance	graphics	on	the	NES	in	useful	ways	as	mentioned	above.	The
MMC5	was	the	only	device	that	came	close,	and	it's	only	selling	features
were	the	single-tile	color	area,	and	the	vertical	split	screen	mode	(which	I
don't	think	any	game	ever	used).	Considering	the	amount	of	pins	(100)
the	MMC5	had,	and	number	of	gates	they	put	in	it	just	for	the	EXRAM
(which	was	1K	bytes),	they	could've	put	some	really	useful	graphics
hardware	inside	there	instead.

Prehaps	the	infamous	Color	Dreams	"Hellraiser"	cart	was	the	closest	the
NES	ever	came	to	seeing	such	sophisticated	graphics.	The	cart	was
never	released,	but	from	what	I've	read,	it	was	going	to	use	some	sort	of
frame	buffer,	and	a	Z80	CPU	to	do	the	graphical	rendering.	It	had	been
rumored	that	the	game	had	3D	graphics	(or	at	least	2.5D)	in	it.	If	so	(and
the	game	was	actually	good),	prehaps	it	would	have	raised	a	few
eyebrows	in	the	industry,	and	inspired	Nintendo	to	develop	a	new	MMC
chip	with	similar	capabilities,	in	order	to	keep	the	NES	in	it's	profit	margin
for	another	few	years	(and	allow	it	to	compete	somewhat	with	the	more
advanced	systems	of	the	time).

EOF

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NES	Scrolling	1

Subject:	[nesdev]	the	skinny	on	nes	scrolling
Date:	Tue,	13	Apr	1999	16:42:00	-0600
From:	loopy	<zxcvzxcv@netzero.net>
Reply-To:	nesdev@onelist.com
To:	nesdev@onelist.com
From:	loopy	<zxcvzxcv@netzero.net>

the	current	information	on	background	scrolling	is	sufficient	for	most
games;
however,	there	are	a	few	that	require	a	more	complete	understanding.

here	are	the	related	registers:
								(v)	vram	address,	a.k.a.	2006	which	we	all	know	and	love.		(16	bits)
								(t)	another	temp	vram	address	(16	bits)
											(you	can	really	call	them	15	bits,	the	last	isn't	used)
							(x)	tile	X	offset	(3	bits)

the	ppu	uses	the	vram	address	for	both	reading/writing	to	vram	thru
2007,
and	for	fetching	nametable	data	to	draw	the	background.		as	it's	drawing
the
background,	it	updates	the	address	to	point	to	the	nametable	data
currently
being	drawn.		bits	0-11	hold	the	nametable	address	(-$2000).		bits	12-14
are
the	tile	Y	offset.

stuff	that	affects	register	contents:
(sorry	for	the	shorthand	logic	but	i	think	it's	easier	to	see	this	way)

2000	write:
								t:0000110000000000=d:00000011
2005	first	write:

								t:0000000000011111=d:11111000
								x=d:00000111
2005	second	write:
								t:0000001111100000=d:11111000
								t:0111000000000000=d:00000111
2006	first	write:
								t:0011111100000000=d:00111111
								t:1100000000000000=0
2006	second	write:
								t:0000000011111111=d:11111111
								v=t
scanline	start	(if	background	and	sprites	are	enabled):
								v:0000010000011111=t:0000010000011111
frame	start	(line	0)	(if	background	and	sprites	are	enabled):
								v=t

note!		2005	and	2006	share	the	toggle	that	selects	between	first/second
writes.		reading	2002	will	clear	it.

note!		all	of	this	info	agrees	with	the	tests	i've	run	on	a	real	nes.		BUT
if	there's	something	you	don't	agree	with,	please	let	me	know	so	i	can
verify
it.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NES	Scrolling	2

nes	scrolling
Date:	Tue,	13	Apr	1999	17:48:54	-0600
From:	loopy	<zxcvzxcv@netzero.net>
Reply-To:	nesdev@onelist.com
To:	nesdev@onelist.com

From:	loopy	<zxcvzxcv@netzero.net>

(more	notes	on	ppu	logic)

you	can	think	of	bits	0,1,2,3,4	of	the	vram	address	as	the	"x	scroll"(*8)
that	the	ppu	increments	as	it	draws.		as	it	wraps	from	31	to	0,	bit	10	is
switched.		you	should	see	how	this	causes	horizontal	wrapping	between
name
tables	(0,1)	and	(2,3).

you	can	think	of	bits	5,6,7,8,9	as	the	"y	scroll"(*8).		this	functions
slightly	different	from	the	X.		it	wraps	to	0	and	bit	11	is	switched	when
it's	incremented	from	_29_	instead	of	31.		there	are	some	odd	side
effects
from	this..	if	you	manually	set	the	value	above	29	(from	either	2005	or
2006),	the	wrapping	from	29	obviously	won't	happen,	and	attrib	data	will
be
used	as	name	table	data.		the	"y	scroll"	still	wraps	to	0	from	31,	but
without	switching	bit	11.		this	explains	why	writing	240+	to	'Y'	in	2005
appeared	as	a	negative	scroll	value.

2008

This	help	file	has	been	generated	by	the	freeware	version	of	HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

	Introduction
	Introduction
	Overview
	FCE Ultra Version History
	What's New? 2.1.4 (changelog)
	What's New? 2.1.3 (changelog)
	What's New? 2.1.2 (changelog)
	What's New? 2.1.1 (changelog)
	What's New? 2.1 (changelog)
	What's New? 2.0.3 (changelog)
	What's New? 2.0.2 (changelog)
	What's New? 2.0.1 (changelog)
	What's New? 2.0.0

	General
	Getting Started
	Game file compatibility
	Command Line Options
	Customizing through the Config File
	Famicom Disk Sytem
	AVI Capturing
	Movie Recording
	NES Menu
	Palette Options

	Config
	Menu Items & Submenus
	Directories
	GUI
	Input
	Network Play
	Palette
	Sound
	Timing
	Video
	Movie Options
	Map Hotkeys
	Context Menu Items

	Tools
	Cheat Search
	RAM Search
	RAM Watch
	Memory Watch
	TAS Edit
	Convert fcm
	Auto Fire Settings
	External Input
	Text Hooker

	Debug
	Debugger
	PPU Viewer
	Name Table Viewer
	Hex Editor
	Trace Logger
	Code/Data Logger
	Game Genie Encoder/Decoder

	Lua Scripting
	Getting Started
	Lua Functions List
	Using Lua
	Lua Bot

	FAQ / Guides
	Troubleshooting
	Tool Assisted Speedruns
	ROM Hacking
	NES RAM (Mapping/Finding Values)
	Debugger Usage Guide (Intermediate)

	Technical Information
	Movie & Savestate formats
	.fm2
	.fcm
	Savestate (.fcs)

	Sound
	NSF Format
	NES Sound

	NES Processing
	CPU - 6502
	PPU - 2C02
	NES Scrolling 1
	NES Scrolling 2

