Introduction

Basic information about FCEUX and its features.

Introduction

Overview

FCE Ultra Version History

What's Combined In FCEUX?

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Welcome to the FCEUX Help menu.

The following information is about how to use FCEUX, its commands,
how to use FCEUX to its fullest, and the communities for which FCEUX is
designed.

Introduction

Basic information about FCEUX and its features.
Overview

FCE Ultra Version History

What's Combined In FCEUX?

Additional Chapters

General

Guides for general uses of FCEUX and the FCEUX NES menu.

Config

Commands under FCEUX Config menu.

Tools

Commands under FCEUX Tools menu.

Debug

Commands under FCEUX Debug menu.

FAQ / Guides

Information regarding various concepts such as TAS, ROM Hacking,
RAM Mapping.

Technical Information

Technical information relating to NES hardware emulation & FCEUX file
formats.

Help menu created & compiled by adelikat.
Information collected and/or written/edited by adelikat.
Minor edits of lua-related text by Leeland Kirwan (FatRatKnight).

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

FCEUX

FCEUX is a cross platform, NTSC and PAL Famicom/NES emulator that
is an evolution of the original FCE Ultra emulator. Over time FCE Ultra
had separated into many separate branches.

The concept behind FCEUX is to merge elements from FCEU Ultra,
FCEU rerecording, FCEUXD, FCEUXDSP, FCEUXDSP CE, and FCEU-
mm into a single branch of FCEU. As the X implies, it is an all-
encompassing version of the FCEU emulator that provides the best of all
worlds for the general player, the ROM-hacking community, and the Tool-
Assisted Speedrun Community.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

History of FCEUX / FCE Ultra

FCEUX was started in 2006 by zeromus and rheiny (sp) as an attempt to
merge various branches of FCE Ultra into a unified emulator. Additional
authors joined the project, including mz, adelikat, nitsujrehtona, maximus,
CaH4e3, gFox, punkrockguy318, and Sebastian Porst.

FCEUX contains all features and enhancements from FCE, FCE Ultra,
FCEU rerecording, FCEUXD, and FCEUXDSP as well as many new
mappers from FCEU-mm.

FCEUX sourceforge page

Version Releases

Look at the Side Bar navigation for changelog information on FCEUX 2.1
and newer.

FCEUX 2.0.3 - Released November 02, 2008 (see changeloq)
FCEUX 2.0.2 - Released August 14, 2008 (see changelog)
FCEUX 2.0.1 - Released August 04, 2008 (see changelog)

FCEUX 2.0.0 - Released August 02, 2008 (see changelog)

FCE / FCEUIltra

Bero originally wrote a Nintendo Entertainment System/Famicom
emulator that was referred to as ECE. This name was apparently meant
only to serve as a temporary name, but its usage remained. Xodnizel
originally ported it to Linux SVGAIlib, and made a few improvements. This
code base was abandoned, and work began anew, under DOS, with the

https://sourceforge.net/projects/fceultra
http://www.geocities.co.jp/Playtown/2004/fce.htm

original FCE source code. At the end of November, 1998, FCE Ultra Beta
1 was released.

FCE Ultra remained DOS-only until version 0.18, when it was ported to
Linux SVGAIib, and released as a statically-linked executable. The first
MS Windows port was released as version 0.25.

The source code of 0.40 was released on November 12, 2000. It retained
the simple license of FCE for a long time, which stated that "This
software is freeware. You can use it non-commercially." Almost two years
later, in June 2002, 0.80 was released, and FCE Ultra was re-licensed
under the GNU GPL.

It has been tested (and runs) under DOS, Linux SVGAIib, Linux X, Mac
OS X, and Windows. A native GUI is provided for the Windows port, and
the other ports use a command-line interface. The SDL port should run
on any modern UNIX-like operating system (such as FreeBSD, Solaris or
IRIX) with no code changes. It has also been ported to the GP2X,
PlayStation Portable as PSPFceUltra, the Nintendo GameCube and
Pepper Pad.

FCE Ultra was created by Xodnizel. Development appeared to stop and
the homepage and forums for the emulator were taken down. The last
version before this was v0.98.13-pre, released in September 2004 as
source-only. The last binary release was v0.98.12 in August 2004.

However, it was resurrected again in March of 2006 by Anthony Giorgio
and Mark Doliner.

There is also a graphical frontend for FCE Ultra. GFCE Ultra is written in
Python and uses the GTK2 user interface library. Because is it written in
Python and with portability in mind, it can be run on any UNIX-like
platform and any processor architecture that is supported by Python.

FCEU Rerecording

The "rerecording” version of FCE Ultra was implemented to FCE Ultra
0.98.10 with movie recording support. This was done by blip, and was
implemented for the purpose of creating Tool-Assisted Speedruns.

The rerecording branch continued with 0.98.12, adding movie support
features, such as "bullet proof” recording. In 2006, FCEU 0.98.16 was
implemented by nitsuja and luke. Various tools such as read-only
toggling, increased hotkey mapping, and memory watch were added.

In 2008, FCEU rerecording was picked up again by mz, maximus,
adelikat, and nitsujrehtona with various updates named FCEU.0.98.17 -
0.98.28

FCEU.28 GoogleCode Page

FCEUD / FCEUXD / FCEUXDSP / FCEUXDSP CE

FCEUD

In 2002, Parasyte modified the then-current version (0.81.3) of FCE Ultra
and added a Nesten-style debugger, along with several other features,
and named it "FCEUD" (FCE Ultra Debugger).

FCEUXD

In January 2004, bbitmaster began working on more features and called
it "FCEUXD" (FCE Ultra Extended Debugger).

It is a branch of FCE Ultra that contains many extended debugging
features compared to the original FCE Ultra code such as a trace logger,
a built-in hex editor, a name table viewer, code/data logger, inline
assembler, and Game Genie decoder/encoder in addition to the
debugger and PPU viewer from FCEUD. The last version made was
FCEUXD 1.0a.

FCEUXDSP
FCEUXDSP stands for FCEUXD "SP" version and is a branch of
FCEUXD 1.0a.

http://code.google.com/p/fceu/

It was created in 2006 by sp. The project extends the debugging tools
even further compared to FCEUXD by adding new tools, functions, and
usability of debugging tools.

The last version of FCEUXDSP was 1.07 which adds a feature known as
the RAM Filter. This has since been removed, due to functional
redundancy.

FCEUXDSP homepage

FCEUXDSP CE
CE stands for "Champion Edition" and is a branch of XDSP that adds a
text hooker tool.

FCEUXDSP CE homepage

FCEU-mm

FCEU "mappers modified" is an unofficial build of FCEU Ultra by
CaH4e3, which supports a lot of new mappers including some obscure
mappers such as one for unlicensed NES ROM's.

FCEUX supports mappers from older versions of FCEU-mm.

FCEU-mm SourceForge page

2008

HelpNDoc

http://www.the-interweb.com/serendipity/index.php?/categories/9-FCEUXD-SP
http://www.ximwix.net/boneyard/design19/xb/texthooker.htm
http://sourceforge.net/projects/fceumm/
http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.1.4

Released 31 May 2010

The 2.1.4 release that fixes some many bugs and adds new features
compared to 2.1.3. In addition it also fixes up the movie code
significantly; fixing implementation problems, loading speed, adding new
features, and fixing bugs.

Common

Added microphone support option. When enabled, Port 2 Start
activates the Microphone

Prevent .zip files containing no recognized files from causing crash
Autohold - Added player 3 and 4 to autohold notification window,
labeled controller input

mapper 19 savestate fix mirroring for "Dream Master (J)" corrected to
"four-screen" by CRC check

Disable auto-savestates during turbo

Fixed so Gotcha! auto-enables the zapper

Autohold - Added player 3 and 4 to autohold notification window,
labeled controller input

Movies

Fully implemented "bulletproof" read-only

Movie code now fully conforms to the Savestate section of the Laws of
TAS

Fixed a potential desync that plays out an extra frame without an
update to the frame count involving heavy lua use, joypad.get, and a
loadstate

Movie support for microphone

Movies now have a "finished" mode. If a playback stops the movie
isn't cleared from memory, and can be replayed or a state loaded
Similar functionality as DeSmuME and GENS rerecording

New PPU flag in movie headers (doesn't change an emulators PPU
state when loading a movie)

Much faster movie loading and movie-savestate loading

Made gamepad 2 off by default (so less movies should have unused
player 2 data)

Implemented a "full savestate-movie load" mode similar to the
implementation in VBA-rr and SNES9x-rr. In this mode loading a
savestate in read+write doesn't truncate the movie to its frame count
immediately. Instead it waits until input is recording into the movie
(next frame). For win32 this feature is togglable in movie options and
the context menu. For SDL this is off by default and a toggle will need
to be added

Movie + loadstate errors are handled more gracefully now, with more
informative error messages and the movie doesn't have to stop if
backups are enabled

Fix PlayMovieFromBeginning when using a movie that starts from
savestate

Lua

fix bug that caused zapper.read() to crash when movie playback ends
Win32 - Added option for palette selection as color for LUA colors.
Included is a LUA script to display all choices with the value used to
pick displayed color

New Lua functions

movie.ispoweron()

movie.isfromsavestate()

emu.addgamegenie()

emu.delgamegenie()

savestate.object() which is savestate.create() with intuitive numbering
under windows

gui.getpixel() which gets any gui.pixel() set pixel colors, and possibly
other functions

emu.getscreenpixel() which gets the RGB and Palette of any pixel on
the screen

lua function movie.getfilename() which returns the current movie
filename without the path included

Input Display

e Input display updates on loadstate

e Input display overhaul that uses different colors for different input
contexts

e Input display now shows both currently pressed buttons and buttons
held the previous frame

Win32

e Added NTSC 2x scalar option with some CFG config options of it's
own Added Ram Search hotkeys for the first 6 search types in the list

e Add Cheat buttons for Ram Search and Ram Watch

e With special scaler in window mode, it's possible to resize to anything
above the minimum.

e Recording a new movie adds it to recent movies list

e Replay dialog, when selecting a movie in a relative path (.\movies for
example), the recent movies list stores an absolute path instead

¢ Replay dialog shows PAL flag and New PPU flags

e CDLogger - fixed bug preventing correct interrupt vectors from logging

e Memwatch - ignore spaces at the beginnign of an address in the
address boxes

e Replay dialog - fix bug that was causing it to always report savestate
movies as soft-reset

Debugger

e Added conditional debugging option 'K', for bank PC is on

e Fixed bug involving pausing emulation outside of the debugger, then
trying to use the debugger commands, and having the CPU registers
become corrupted

e Made debugger able to break on and distinguish Stack reads/writes

Hex Editor

e Added "Goto" command
e Made the Hex Editor display the Frozen, Bookmarked, etc. status of

the selected address, and made the Frozen color override the
Bookmarked color.

Cheat Search

Made enabling/disabling cheats no longer deselect the selected cheat
Added context menu to Cheat Dialog Cheat Listbox, populated list with
Toggle Cheat, Poke Cheat Value, and Goto In Hex Editor

Enabled multi-select for Cheat menu to allow multiple toggles and
deletes

Made cheat menu's Pause When Active effect immediate

GUI

e Added Tools - GUI option to partially disable visual themes, so the
emulator can be made to look like it did in 2.1.1 and earlier releases.
Drag & Drop - if dropping a .fcm with no ROM loaded, prompt for one
(same functionality that was added to .fm2 files)

¢ Added single-instance mode, which makes starting a second copy of
FCEUX load the file into the first, then exit.Mode off by default,
togglable under Config - GUI

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.1.3

Released April 8, 2010

The 2.1.3 release that fixes some bugs of 2.1.2, increases game
compatibility, and adds usability enhancements to the windows port and
adds a GUI to the SDL port.

Common

Fixed mappers 82, 25, 21, and 18. Games such as SD Kiji Blader,
Ganbare Goemon Gaiden, and Ganbare Goemon Gaiden 2, Jajamaru
Gekimadden are now playable

Fixes for mappers 253 & 226 - fixes games such as Fire Emblem (J)
and Fire Emblem Gaiden (J)

Fix crashing on game loading for any battery backed ROMs with
mappers from MaplnitTab (fixes Esper Dream 2 - Aratanaru Tatakai (J)
FDS - show name of missing bios file in error message

NewPPU - fixed sprite hit before 255 and for non transparent hits only,
thanks to dwedit for providing the fix

.fm2 file format header now has an FDS flag

SDL

A GUI! A graphic user interface (using GTK) with many basic menu
options

ported to SDL 1.3; compatibility maintained with 1.2

unix netplay is now functional; gtk network gui created

now prints the name of the mapper on ROM load

fixed dpad/joyhat support

VS unisystem keys now configable

changed default hotkeys and keys to match Win32

disallow --inputcfg gamepadO and gamepad5

Win32

¢ Made savestate backups optional (config - enable - backup
savestates)

e Made savestate compression togglable (config - enable - compress
savestates)

e Cheats dialog - Pause while active checkbox

e Cheats dialog - Toggling a cheat in the cheats list now updates the
active cheats count

e Debugger - added an auto-load feature

e Debugger - Fix so it doesn't crash if unminimized with no game loaded

¢ Closing minimized windows no longer moves them the next time they
get opened

e Lua console - added a menu

e Lua console - filename updates when lua scripts are dragged to
emulator or recent filenames invoked

¢ Name Table Viewer - Fix for use with New PPU

e Trace Logger - Trace logger now logs the values of the stack pointer
register

e If a.fm2 file is drag and dropped with no ROM load, the open ROM
dialog will appear

e disable movie messages menu item

e Added more window positions bounds checks. Accounts for -32000
positions and less out-of-range too

e TASEdit - Added interface functionality (save/load, running TASEdit
mid-movie, etc.)

Lua

e New lua functions: gui.parsecolor(), joypad.getup(), joypad.getdown(),
emu.emulating()

e Change gui.line, gui.box, joypad.get to function consistently with other
lua emulators such as GENS rerecording

o fixed zapper.read() to read movie data if a movie is playing. Also
changed the struct values to x,y,fire. This breaks lua scripts that used it
previous, sorry

e gui.text() now has out of bounds checking

e Lua no longer unpauses the emulator when a script is loaded

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.1.2

Released November 3, 2009

The 2.1.2 release that fixes some bugs of 2.1.0a, increases game
compatibility, launches a new PPU core, and adds usability
enhancements to the windows port.

Common

e New PPU is now functional! You can access it by changing the
newPPU flag in the config file. Windows users can access it from
Config > PPU > New PPU

Dragon Ball Z 3 now playable again

Fixed action 52 game that was broken in post-FCEUX 2.0.3 versions
Mapper 253 mostly implemented

Mapper 43 fixed bug

Win32

e Imported NSF features from FCEUXDSP-NSF. Debugging tools are
now compatible with NSF files.

e Movies now record FDS disk swapping commands

e Movie play dialog displays movie time based on ~60.1 (~50.1 PAL)
instead of 60 & 50

e Ram Watch and Ram Search dialogs imported from GENS rerecording

Ram Filter dialog removed (now redundant compared to both cheat

search and ram search)

Lua script window ported from GENS

Fix for the directory overrides bug that caused overrides to reset

Debugger: .deb file saving/loading restored

"Save config file" menu item

"New PPU" menu item

Minor Bug fixes

Minor fixes to recent menus

Fixed a bug that prevented the Map Hotkeys dialog's X button from
closing the dialog

Restored DPCM Logging when Code/Data Logger is active

Memory watch - Save Changes Prompt - clicking save will default to
guicksave first and save as 2nd (instead of always defaulting to save
as)

Made Trace Logger refresh adequately when using stepping options in
the debugger.

Lua

joypad.set() fixed. True,False, and Nil now work properly for all
buttons. In addition there is a new "invert" option.

Luab5.1.dll no longer required to use lua.

fceu.unpause()

Added savestate.registerload(), savestate.registersave(),
savestate.loadscriptdata()

emul. library, has all the same functions as fceu. library for better
compatibility between lua emulators

Many additional function names to increase consistency with other lua
emulators

Added movie.recording() and movie.playing()

Added memory.getregister() and memory.setregister()

Added gui.popup and input.popup

Added savestate.registerload(), savestate.registersave(), and
savestate.loadscriptdata()

New Lua Scripts

A multi-track movie recording tools written by FatRatKnight. Allows
input for different players to be recorded separately.
A rewinding tool written by Jonathan Blow

2008

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.1.1

Released July 29, 2009
This release includes a multitude of new features, major fixes, and
enhancements.

The 2.1 new release that fixes some bugs of 2.1.0a, improves the
accuracy of the sound core, and adds useability enhancements to the
windows port.

Common - Bug fixes

o Fixed reported issue 2746924 (md5_asciistr() doesn't produce correct
string)

¢ Made default save slot O instead of 1

Improved Sound core/PPU

e Fixed the noise value, it seems that the noise logic was shifting the
values to the left by 1 when reloading, but this doesn't work for PAL
since one of the PAL reload value is odd, so fix the logic and used the
old tables. Revert a stupid CPU ignore logic in PPU. Sorry about that.

e Updated with the correct values for the noise and DMC table,

¢ Fixed the CPU unofficial opcode ATX, ORing with correct constant $FF
instead of $EE, as tested by blargg's. These fixes passes the IRQ
flags test from blargg, and also one more opcode test from blargg's
cpu.nes test.

e Square 1 & square 2 volume controls no longer backwards

¢ Length counters for APU now correct variables

NewPPU (still experimental, enabled by setting newppu 1 in the

config file)

e Added experimental $2004 reading support to play micro machines
with (little) shakes, and fixed some timing in the new PPU.

e Added palette reading cases for the new PPU.

Win32

Minor Bug fixes

Replay movie dialog - Stop movie at frame x feature - fixed off by 1
error on the stop frame number

Hex Editor - changed ROM values again dsiplay as red, saved in the
config as RomFreezeColor

Fixed bug in memory watch that would make the first watch value
drawn in the wrong place if watch file was full

Debugger - Step type functions now update other dialogs such as ppu,
nametable, code/data, trace logger, etc.

"Disable screen saver" gui option now also diables the monitor
powersave

Recent menus - no longer crash if item no longer exists, instead it ask
the user if they want to remove the item from the list

Sound Config Dialog - When sound is off, all controls are grayed out
Memory Watch - fixed a regression made in 2.0.1 that broke the Save
As menu item

Memory Watch - save menu item is grayed if file hasn't changed

GUI/Enhancements

Last save slot used is stored in the config file

Made fullscreen toggle (Alt+Enter) remappable

Hex editor - Reverted fixedFontHeight to 13 instead of 14. Gave the
option of adjusting the height by modifying RowHeightBorder in the
.cfg file

Hex Editor - allowed the user to customize the color scheme by use of
RGB values stored in the .cfg file

Hex editor - freeze/unfreeze ram addresses now causes the colors to
update immediately, but only with groups of addresses highlighted at
once (single ones still don't yet update)

Hex Editor - Save Rom As... menu option enabled and implemented
Window caption shows the name of the ROM loaded

e Recent Movie Menu added

e Load Last Movie context menu item added

e Save Movie As... context menu item (for when a movie is loaded in
read+write mode)

e Drag & Drop support for all files related to FCEUX including:
.fcm (autoconverts to .fm2 and begins movie playback)
Savestates
Palette files (.pal)

e Commandline - -palette commandline option

e Memory Watch - option to bind to main window, if checked it gives
GENS dialog style control, where there is no extra task bar item, and it
minimizes when FCEUX is minimized

SDL

added --subtitles

fixed Four Score movie playback

added --ripsubs for converting fm2 movie subtitles to an srt file

Lua is optional again, fixed the real issue

Lua is NO longer optional, so the SConscripts have been updated to
reflect that change. This fixes the mysterious non-working input issue.
implemented saving/loading a savestate from a specific file on Alt+S/L
implemented starting an FM2 movie on Alt+R

added --pauseframe to pause movie playback on frame x

dropped UTFConverter.c from SDL build

added hotkey Q for toggling read-only/read+write movie playback

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.1

Released March 29, 2009
This release includes a multitude of new features, major fixes, and
enhancements.

New Features Win32

*The latest mappers and mapper fixes from FCEU-mm. Adds support for
many new games such as Warioland Il (Unl), Shu Qi Yu, and Street
Dance

*Full screen mode fixed! Also, Alt+Enter properly toggles full screen.
*Individual control for sound channels! (See sound config for details).
*Undo/Redo Savestate/Loadstate features installed! No more loss of
data to unintentional presses. (See getting started for details).

*Movie subtitles can now be included in .fm2 files. See .fm2
documentation for details and Movie options for details on customizing.
*Auto-backup for movie files. (See movie options for details).

*A Ram change monitor for the Memory watch dialog. (see memwatch for
details).

*Frame counter works even without a movie loaded.

*AVI Directory Override option.

Major Bug / Crash Bug Fixes

*Fixed throttling problems that resulted on AMD Dualcore processors.
(Caused FCEUX to appear to be in turbo mode).

*Fix major crash issue where NROM game (such as SMB) savestates
were writing erroneous information if a non NROM game was loaded
prior.

*Fixed a bug that caused a new sav file to not get created when loading a
2nd battery backed game.

*Fix Directory Overrides so to allow users to have no override. Also fixes

directory override reset bug.

Minor Bug fixes

*Hotkeys - prevent "Hotkey explosion” where some laptop keys set off all
unassigned hotkeys

*Timing - "disable throttling when sound is off" now only affects FCEUX
when sound is off

*Clip Left and Right sides taken into account when drawing on screen
(record/play/pause, lag & frame counters, messages, etc)

*Fixed bug where having sound off and Mute turbo caused chirps when
toggling

*Video settings - fixed bug when both aspect ratio correction and special
scaling 3x are set, video was getting resized incorrectly

*Auto-save cleanup -prevent loading an auto-save from previous
session. Added flags for enabling auto-save menu item.

*Fixed issues related to big endian compiling.

*Fix bug so that Escape can now be assigned as a hotkey

*Fixed bug in screenshot numbering that caused numbering to not reset
when changing games.

GUI / Menu Enhancements

*A right-click context menu added! Includes many commonly used items
for a variety of situations.

*Menu items that are hotkey mappable now show their current hotkey
mapping

*Major overhaul to the Menu organization.

*All FCEUX features are now accessible in the menu

*Alt Menu Shortcuts properly configured

*Menu items are properly grayed when not useable

*All movie related menu items moved to a_Movie options dialog
*Removed hard-coded Accel keys and replaced with re-mappable
hotkeys (Open & Close ROM)

*Drag & Drop for .fm2 and .lua files

*Many new functions added to the context menu (See context menu for

details)
*New Mappable Hotkeys: Open Cheats, Open ROM, Close ROM,
Undo/Redo savestate, Toggle Movie Subtitles

Lua

*Added input.get() ! Returns the mouse info and all keyboard buttons
pressed by the user.

*Fixed joypad.set(). False now sets a button to off. Nil does not affect
the button at all (allowing the user to still control it).

*gui.text() Increased height (to approx. 7 lines).

*speedmode("turbo”) now turns on turbo (which employs frame-skipping)
rather than max speed.

*memory.readbyte will recognize frozen addresses (cheats).
*movie.framecount() always return a number, even when no movie is
playing (since the frame counter is implemented without a movie loaded).
*Added FCEU.poweron()

*Added FCEU.softreset()

*Added FCEU.lagged()

*Added FCEU.lagcount()

*Added FCEU.getreadonly()

*Added FCEU.setreadonly()

*Added FCEU.fceu_setrenderplanes(sprites, background)

*Added movie.active()

*Added movie.rerecordcount()

*Added movie.length()

*Added movie.getname()

*Added movie.playbeginning()

*Added -lua command line argment, loads a Lua script on startup
*Added zapper.read() - returns the zapper (mouse) data. (Currently does
return zapper data in movie playback).

*Added joypad.write and joypad.get for naming consistency.

*Added rom.readbyte()

*Added rom.readbytesigned()

Sound Config

*Turning sound off disabled sound config controls
*Re-enabled sound buffer time slider control

Hex Editor

*Freezing ram addresses automatically updates the Cheats dialog if it is
open.

* Added prevention from freezing more than 256 addresses at once
(doing so caused crash bugs).

*Dialog remembers window size.

*Dump Rom & Dump PPU to file Dialogs use ROM to build default
filename

*Maximize and minimize buttons added.

*Help menu item added

Memory Watch

*Dialog now includes Ram change monitoring. (see memwatch for
details).

*Dialog is now collapsible to 1 column.

*No longer crashes when attempting to load an invalid file from the recent
file menu.

*Cancel option added to the save changes dialog.

*Memory address values that are frozen by the debugger or hex editor
are displayed in blue.

*Fixed bug that caused dialog to "disappear" due to saving -32000 as its
window position.

*Save as dialog uses ROM name to build a default memory watch
filename if there was no last used memory watch filename

*Drag and drop for .txt (memory watch) files.

*Minor menu and hotkey fixes.

*Watch values now compatible with custom windows dialog colors.

Debugger

*Shows scanlines and PPU pixel values

*Shows scanlines even while in VBlank

*Added a Run Line button (runs 1 scanline per click)

*Run 128 Lines button (runs 128 scanlines per click)

*Number of active cheats listed.

*Cheats list automatically updated if ram addresses are frozen in the hex
editor.

*Fixed bug that caused dialog to "disappear" due to saving -32000 as its
window position.

*Debugger now has a minimum valid size

*Added "Restore original window size" button

PPU Viewer

*Default refresh value set to 15
*Refresh value stored in the .cfg file

Nametable Viewer

*Default refresh value set to 15
*Refresh value stored in the .cfg file

Trace Logger

*Fixed bug where user can't scroll the log window while it is auto-
updating.

*Changed message about F2 pause (left over from FCEUXDSP) to
display the current hotkey mapping.

Text Hooker

*Saving a .tht file no longer crashes

*Dialog updates every frame

*Initialization error checking reinstalled,

*Dialog remembers window position

*Fixed bug where canceling save as produces an error message.

*Save As produces default filename based on the current ROM

Message Log

*Remembers X,Y position
*Resized width and height
*Allowed more lines of text to appear on the screen at once.

Metadata

*Remembers window position
*Can be called from the context menu if a movie is loaded (see context
menu for details).

TASEdit

*added help menu item
*disabled menu items that are not currently implemented.

Turbo

*Turbo now employs frame skip, greatly increasing its speed

*The mute turbo option completely bypasses sound processing (another
big speed boost)

*Turbo now works with the Lazy wait for VBlank sync setting

SDL

*SDL Movie subtitle support and subtitle toggle hotkey added.
*SDL Added fcm to fm2 converter tool to SDL version.

*SDL Improved the SDL sound code; drastically improves quality of
sound.

*SDL Savestate slots are now mappable.

*SDL Major updates to SDL documentation

*SDL Added Shift+M for toggling automatic movie backups.

*SDL Added option to mute FCEUX for avi capturing, check the
documentation for more details.

*SDL Added --noconfig command line option
*SDL Frame Advance Skip Lag frames toggle implemented

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.0.2

Released November 02, 2008
This release includes some key bug fixes and feature enhancements.

Major Bug / Crash Bug Fixes

* Reset/Power-on recording for .fm2 files!

* fix ..fcm conversion, recording, and playback of reset and power
commands

* Win32 - auto-load the only useful ROM or movie from an archive, in
cases where there is only one

* Win32 - permit user optionally to proceed through the movie savestate
mismatch error condition, in case he knows what he is doing.

* Win32 - fix a bug in the savestate recovery code which prevent aborted
savestate loads from recovering emulator state correctly.

* gracefully handle non-convertible broken UTF-8 text without crashing
* Win32 - don't read every archive file when scanning for replay dialog.
scan them, and only look for *.fm2

New Features Win32

*Win32 - added a toggle for binding savestates to movies
* Win32 - added -cfg (config file) command line argument

Minor Bug fixes

* Win32 - Sound config dialog will now look to see if Mute Turbo should
be checked

* Win32 - Debugger - Fix Child windows inside debugging window get
invalid sizes

* Win32 - bind a menu option for display frame counter

* Win32 - fix problem where replay dialog couldn't work when the process

current directory had changed to something other than emulator base
directory

* Lua ignores second joypad.set()

* Load state as... does not use the savestate override dir (fixed; now, it
does)

*Win32 - debugger - fix issue where keyboard keys get stuck when
switching between debugger window and main window

SDL

* SDL - added support for AVI creation for SDL, see
documentation/Videolog.txt for more

* SDL - --inputcfg can now be used without a filename

* SDL - should fix issues with missing author field crashing FCEUX

* SDL - toggle lag frame counter for SDL, default hotkey F8

* SDL - toggle skipping of lag frames for SDL, default hotkey F6

* SDL - user ability to toggle "bind savestates to movie" added for SDL,
default hotkey F2

* SDL - Lua is now optional, thanks Shinydoofy for a patch. also fixed
some build issues.

* SDL - fixed an issue where flawed movie would crash FCEUX on every
startup

* SDL - fixed issue where windowed mode would always be set to 32 bpp
* SDL - fixed ppc build errors and added LSB_FIRST option to build
scripts

* SDL - --newppu option added to SDL, disabled by default

GFCEUX (SDL)

* GFCEUX - made the input config window more usable
* GFCEUX - added uninstall script for GFCEUX

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.0.2

Released August 14, 2008
This release includes a large number of bug fixes, feature
enhancements, and new features.

Fixed Crashing Bugs

* restore savestate error recovery functionality. Will prevent crashes after
savestate error messages

* Fixed - Low speeds (1%) crash FCEUX

* fixes bug where palflag 1 in .fm2 files crashes fceux

* FCEUX no longer crashes when attempting to open a non movie file

* Buffer overflow (change vsprintf to vsnprintf)

Minor Bug fixes

* SRAM not wiped on power cycle (during movies)

* Moviefilenames without extension now automatically get fm2

* auto-fill .fcs extension in save state as dialog

* FCM>FM2 converter releases file handle

* fix a new bug in windows build which caused fourscore emulation to fail
in some cases

* Player 3 no longer inputs when not used

* prints a special message when trying to open an FCM reminding user to
convert.

* fixes bug where Avi recording with no sound messes up the format

* Fixed bug where Convert .fcm didn't do special characters

* fixed the (null) in the default lua directory listing

* Ctrl+X now works in the memory watch dialog

* Dialog window positions won't "disappear" (-32000 protection on all
dialogs that remember x,y)

* fixed View Slots bug - will now always show the used slots

* added shift+L as default hotkey for reload lua script
* added input display to the FCEUX main menu
* change config filename from fceu98.cfg to fceux.cfg

New Features

* restore IPS patching capability which was lost when archive support
was added

* restore ungzipping (and unzipping in sdl) capability which was lost when
archive support was added

* re-enable an "author" text field in the record movie dialog

* re-enable support for old-format savestates. (Note: can not be loaded
into a movie!)

* Added new toggle - frame adv. - lag skip (menu item + hotkey mapping
+ saved in config), will cause frame adv. to skip frames where input is not
read

* Added support for loading movies from archives (just like ROM files).
Note: Movies loaded from an archive file will be read-only.

* movie replay dialog displays fractions of a second on movie length

* Savestates now save the Lagcounter information.
* added a mute turbo option in sound config

* add an option to pick a constant color to draw in place of BG when BG
rendering is disabled (look for gNoBGFillColor in config).

Mappers

* remove cnrom chr rom size limit for homebrew roms

* mmc5 - 64KB WRAM games now work correctly

* mmc5 - use of chr Aregs for BG in sprite 8x8 mode is fixed

* upgrade to cah4e3's latest mapper 163&164 code to fix a crash in a
game

Debugging Tools

* Debugger - restore snap functionality

* Debugger - add FORBID breakpoints - regions which block breakpoints
from happening if they contain the PC

* Debugger - debugger window is now resizeable

* nametable viewer will display correct NT,CHR,ATTR data in more
cases (specifically, including some exotic mmc5 cases).

Lua

* Savestates remember Lua painting
* add memory.readbyterange to emulua

SDL only

* SDL.: fixed --input(1-4) options. inputl and 2 are regular inputs, input3
and 4 are famicom expansion inputs

* SDL fix configfile woes. configfile now goes to ~/.fceux/fceux.cfg

* SDL.: fixed segfault when opening .fcm files

* SDL: Saner sound defaults for less choppy sound

* SDL: "--special" option fixed for special video scaling filters

* SDL: cleaned up the SConsruct

* SDL.: fixed issue where fceu would lock up when file dialogs were
opened during fullscreen

* SDL.: fixed bug where fceux would close when file dialogs were closed
* SDL.: File open dialog is now used to movie playback

* SDL: File open wrapper now takes a titlebar argument

* SDL: Cleanup of usage

* SDL: rename options --no8lim -> --nospritelim and --color -> --ntsccolor
* SDL: Screenshots now always prepend the game name.

* SDL: Changed default A/B from numpad 2 and 3 to j and k.

* SDL: Enable frameskip by default

* SDL: Fixed a bug that would crash fceux if the emulation speed was
overincreased

* SDL: New default hotkeys to more closely match win32 defaults

* SDL: Added lua script loading hotkey (f3). Non win32 SDL requires
zenity for this to function.

* SDL: Build script cleanup; also added option for DEBUG builds.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.0.1

Released August 04, 2008
This was a maintenance release that fixes a few oversights in the 2.0.0
release.

* reorganize display toggle options in the menu

* autofire fix (wasn't initializing to any autofire pattern from a fresh .cfg)
* homebrew mmc5 games now have 64KB of exwram instead of only
8KB

* fix crash related to player2 in lua scripts

* fixed player2 in lua scripts

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

What's New? 2.0.0

Released August 02, 2008

FCEUX has all the latest tools, enhancements, and features from FCEU
0.28 rerecording and FCEUXDSP 1.07 In addition, it has many new
tools, bug fixes, and enhancements not seen in previous branches.

General

-A detailed Help Menu! No longer are you aimlessly searching the
internet for long lost info on FCEU's options!

-Numerous Dialog box reformats.

-FCEU remembers its last screen (x,y) position.

-Increased command line options

-More options under the Directory Override Menu

-A Turbo Toggle option (turbo now can be toggled on rather than having
to hold the key down)

-More hotkey assignable options in the Map Hotkeys Menu.

-A lag counter

-Autofire uses the lag counter (so it will skip over lag frames)

Maovie support

Overhauls in both the movie and savestate file formats.

fm2 File format

The .fcm file format has been overhauled into a new .fm2 format.
Changes include:

-Uncompressed and text based format. Movie editing can be done

simply in a text editor.

-Recording from soft reset option removed.

-Recording from start (hard reset) no longer has an empty savestate at
the beginning.

-GUID inserted into movies for better savestate/loadstate error handling.
-Rather than an Author field, it has a full metadata menu where an author
can put any info needed.

-A tool to convert .fcm files to .fm2 files.

-More specific info on .fm2 files in the .fm2 documentation.

Savestate/Loadstate

-New savestate file format. NOTE: Savestates from previous FCEU
versions CAN NOT be used in FCEUX.

-Fully functional error handling (savestates from other movies cannot be
loaded).

-Read-only toggling related bugs fixed.

-Savestate filenames include the name of the movie (if a movie was
playing when made). This prevents loading wrong savestates. (This also
means that savestate O is different when a movie is playing and when it is
not).

7z Archive Support

-ROMs in any 7z compatible compressed format can be opened directly.
-If more than one valid ROM exists in an archive file, then a dialog box
will open with a list of available ROM choices.

TAS Editor

-A brand new powerful movie making tool that revolutionizes the way TAS
movies are made. See TAS edit.

New Tools

TAS Edit - a revolutionary new way of making TAS movies.

Input Presets - a system for quickly toggling different input
configurations.

Tool Upgrades

Numerous enhancements have been made to various Tools/Options.

Memory Watch

-Resource management optimized so that memory watch now uses a
minimal amount of CPU

-FCEUX remembers memory watch's last screen position (x,y)
-Tab-able Edit boxes

-Edit boxes now can hold 64 characters

-A Menu bar for all Memory watch functions

-Both "Save as" and "Save" options

-Hotkeys for New, Open, Save, Save As and Close

-A recent files Menu

-A "load on startup” option. If checked, memory watch will open
automatically when FCEUX is opened

-A "load last file" option. If checked, memory watch will load the last file
used

Cheat Search

-Now has a minimize button

-Cheat Search Menu from FCEUXDSP (a major overhaul compared to
other FCEU branches)

-Possibilities update while playing/frame advancing a game

-Double clicking a value in the possibilities window sends the value
directly to Memory Watch

RAM Filter

-Double clicking a value in the possibilities window sends the value
directly to Memory Watch

Lua Scripting

-Uses the latest features of Lua Scripting from FCEU 0.28
-Many enhancements and new commands including dialog creation
commands! Now scripts can create their own dialog's and GUI features.

Lua Basic Bot

-Basicbot removed (from the rerecording version of FCE Ultra). In its
place is lua bot.

AVI Recording

-"Movie playback stopped” message recorded in AVI by default
-Turbo Toggle Hotkey. (Allows turbo to be left on for a faster AVI
capture).

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

General

Guides for general uses of FCEUX.

Getting Started

A guide for loading games, setting up controls, etc.

Command Line Options

FCEUX as an extensive set of options for running from command line (or
.bat file). This guide explains all command options available.

Famicom Disk System

A guide for playing Famicom (.fds) games.

Movie Recording

A guide for playing and recording movie input files (.fm2).

AVI Capturing

A guide for capturing a game/movie file into an AVI file.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Getting Started

Playing Games

The most basic function of FCEUX is to play Nintendo Entertainment
System (NES) and Famicom Disk System (FDS) games.

To play a game, simply open a ROM by selecting "Open" in the File Menu
(or press Ctrl+0O). (See Game Compatibility for information regarding file
types that are compatible with FCEU.)

To get set up properly, you may need to configure any of the following:

-Input

-Video
-Sound
-Timing

-GUI settings

-Hotkeys
-Directory Overrides

Using Savestates

In emulation, a savestate (alternatively called freeze state or game
freeze) is a snapshot of all of an emulated device's state information at a
given moment. This makes it possible to pause emulation, and restart it
later, even in another instance of the emulator, or to test the emulated
machines reaction to different series of inputs using the saved state as a
common starting point.

To make a savestate press shift + F1-F10 to save to a save slot (0-9). Or
select a save slot with the number keys (0-9) and select the quick save
command (Default hotkey is "I")

To load a savestate press F1-F10. Or select a save slot with the number
keys (0-9) and loadstate by navigating to File > Savestate > Loadstate or
by pressing the loadstate hotkey (Default hotkey is "P").

To save a state to a specific file, go to "Save state as..." in the FCEUX
File menu.

To load a specific savestate file, go to the "Load state from..." in the
FCEUX File menu.

Undo Savestate / Loadstate

If you load a state by accident, you can right-click and select "Undo
Loadstate" to restore the emulator back to the state it was in before the
loadstate. Upon using undo loadstate, a redo loadstate will appear as an
option.

If you make a savestate, it will overwrite the existing savestate for that
slot. You have the option to undo this and restore the previous savestate
file by right-clicking and selecting undo savestate. Once you undo, you
will have the option to redo savestate to restore the savestate that you
made. You can also map a hotkey to this function.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

File Formats/Expansion Hardware
Valid Game Types

FCEUX supports the INES, FDS(raw and with a header), UNIF, and NSF
file formats. FDS ROM images in the INES format are not supported; it
would be silly to do so and storing them in that format is nonsensical.

FCEUX supports loading ROM/disk images from some types of
compressed files. FCEUX can load data from both PKZIP-format files
and gzip-format files. Only the "deflate" algorithm is supported, but this is
the most widely used algorithm for these formats.

Playing from compressed (.zip) files

FCEUX is compatible with all compression types compatible with 7z.
Compatible types include .7z, .zip, .rar, and .tar.

If an archive file is opened, it will be scanned for the followings
extensions: .nes, .fds, .nsf, .unf, .nez, .unif. If more than one valid type is
detected, a dialog box will open up with a list of available choices.

Automatic IPS Patching (Playing Hacked Games)
FCEUX supports automatic IPS patching.

Place the IPS file in the same directory as the file to load, and name it
[filename].ips.

Examples: Boat.nes - Boat.nes.ips
Boat.zip - Boat.zip.ips
Boat.nes.gz - Boat.nes.gz.ips
Boat - Boat.ips

(Some operating systems and environments will hide file extensions.
Keep this in mind if you are having trouble.)

Patching is supported for all supported formats (INES, FDS, UNIF, and
NSF), but it will probably only be useful for the INES and FDS formats.
UNIF files can't be patched well with the IPS format because they are
chunk-based with no fixed offsets.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Command Line Options

FCEUX offers numerous command line options.
All commands are case sensitive.

ROM name
Plays specified ROM (ROM name must always be put last in command
line arguments)

fceux path\rom.nes (or rom.zip)

fceux smb.nes
fceux c:\fceux\roms\smb.zip

Play Movie File
Plays a specified movie (.fm2) file. A valid ROM must be specified or
movie will not be played.

fcuex -playmovie path\movie.fm2 romname

fceux -playmovie smb.fm2 smb.nes

Read-only Status

Specifies whether a movie will be in "read-only” or "read & write" mode.
(Note: a specified movie is not required to be used in conjunction with
this command). 1 specifies read only status, 0 specifies read & write.

fceux -readonly flag

fceux -readonly 1
fceux -readonly ©@ -playmovie smb.fm2 smb.nes

fceux -readonly 1 -playmovie
c:\fceux\movies\smb.fm2 c:\fceux\roms\smb.nes

Stop Movie at frame X

Specifies that the movie will automatically stop at the specified frame. (A
movie must be specified with -playmovie for this command to work)

fceux -playmovie path\movie.fm2 -stopframe framenumber romname

fceux -playmovie smb.fm2 -stopframe 10000 smb.nes

Load State

Specifies FCEUX to automatically load a specified savestate file. (Must
have a specified ROM for this to work).

fceux -loadstate path\savestatefile romname

fceux -loadstate smbO®.fcO® smb.nes
fceux -playmovie smb.fm2 -readonly 0 -loadstate
smbO.fcO® smb.nes

Pause Movie After Playback
Sets the "Pause Movie After Playback" switch on/off. 1 sets it to enabled,
0 sets it to disabled.

fceux -stopmovie flag
fceux -stopmovie 1

fceux -playmovie smb.fm2 -readonly 0 -
stopmovie 1 smb0O.nes

Frame Display Toggle

Toggles whether or not the frame count will be displayed. 1 sets it to on,
0 sets it to off.

fceux -framedisplay flag

fceux -framedisplay 1
fceux -playmovie smb2.fm2 -framedisplay 1
smb0.nes

Input Display Toggle
Toggles whether the movie input will be displayed. 1 sets it to on, O sets
it to off.

fceux -inputdisplay flag

fceux -inputdisplay 1
fceux -playmovie smb2.fm2 -inputdisplay 1
smb0.nes

Allow L+R/U+D

Sets whether or not the game will allow L+R/U+D input (see Input
config). 1 enables L+R, O disables it.

fceux -allowUDLR flag

fceux -allowUDLR 1
fceux -allowUDLR O smb®.nes

Enable Background Input
Sets the "Enable Background Input" switch on/off. 1 sets it to enabled, O
sets it to disabled.

fceux -bginput flag

fceux -bginput O
fceux -playmovie smb.fm2 -readonly 0 -bginput 1
smb0O.nes

Use Game Genie
Sets the Game Genie Flag (see Toggle Switches). 1 sets it to enabled, 0
sets it to disabled.

fceux -gg flag

fceux -gg 1
fceux -gg 1 smbO.nes

PAL Emulation

Sets the PAL Emulation Toggle (see Toggle Switches). 1 sets itto
enabled, O sets it to disabled.

(note: FCEUX will assign PAL emulation automatically if a PAL ROM is
loaded)

fceux -pal flag

fceux -pal 1
fceux -pal 1 smb@.nes

Movie Status Icon Toggle
Sets the Status Icon Toggle (see Toggle Switches). 1 turns off the status
icon, O turns it on.

fceux -noicon flag

fceux -noicon 1
fceux -noicon O smb0O.nes

Clip Left and Right Sides

Sets the Clip Left and Right Sides Toggle (see Video Config). 1 turns on
clipping, O turns it off.

fceux -clipsides flag

fceux -clipsides 0 smbO.nes

Allow More than 8 Sprites per Scanline

Sets the 8 Sprites per scanline flag (see Video Config). 1 turns on extra
sprites, 0 turns it off.

fceux -no8lim flag

fceux -no8lim O smb0O.nes

Disable Speed Throttling

Sets the Disable Speed Throttling When Sound is Disabled flag (see
Timing Config). 1 disables throttling, O leaves it on.

fceux -nothrottle flag

fceux -nothrottle O smb0O.nes

Turbo Toggle
Sets the Turbo Toggle. 1 Sets Turbo on, 0 leaves it off.

fceux -turbo flag

fceux -turbo 1 smb0O.nes

Load Config File

Loads a specified config file rather than the default fceux.cfg

Warning: the config file must be in the base directory. A pathname can
NOT be specified in the filename

fceux -cfg filename

fceux -cfg fceux-smbconfig.cfg smb.nes

Load Lua Script

Loads a Lua script on startup.
fceux -lua filename
fceux -lua memwatch.lua

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Customizing through the Config File

There are some options that can only be done by directly editing the
config (fceux.cfq) file. All of those options are documented here.

The .cfg file is a text file and can be opened by any text editor (just as
wordpad).

Emulator background Color when Graphics
Background is disabled

gNoBGFillColor
When you disable the backgrounds (Config > Display > Graphics: GB),

the default color is black. You can change that color by modifying this
value. By default it is 255 (black).

Hex Editor
HexRowHeightBorder O

This value determines the number of pixels between each row of values
in the Hex Editor. By default it is O.

HexBackColorR 255
HexBackColorG 255
HexBackColorB 255

HexForeColorR 0
HexForeColorG 0
HexForeColorB 0

HexFreezeColorR 0

HexFreezeColorG 0
HexFreezeColorB 255

These values allows are the Hex Editor color scheme values (RGB). The
background color is 255,255,255 (white) by default. The foreground color

(text) is 0,0,0 (black) by default. When an address is frozen it is 0,0,255
(blue) by default.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Famicom Disk System

The Family Computer Disk System (FDS) was released in 1986 by
Nintendo as a peripheral for the Family Computer ("Famicom") console in
Japan. It was a unit that used proprietary floppy disks for data storage. It
was announced, but never released, for the North American Nintendo
Entertainment System.

The device was connected to the Famicom deck by plugging a modified
cartridge known as the RAM Adapter into the system's cartridge port,
which attached via a supplied cable to the disk drive.

The floppy disks used were double-sided, with a capacity of 64 kilobytes
per side. Many games spanned both sides of a disk, requiring the user to
switch sides at some point during gameplay. A few games used two full
disks (four sides). The Famicom Disk System was capable of running on
six C-cell batteries or the supplied AC adapter. The battery option was
included due to the likelihood of a standard set of AC sockets already
being occupied by a Famicom and a television.

FDS BIOS ROM

In order to play any Famicom (.fds) game, you will need the FDS BIOS
ROM image and it must be named disksys.rom.

It must be in the base FCEU directory unless you specified a path to
disksys.rom in the Directory Overrides List. FCEUX will not load FDS
games without this file.

File types

Two types of FDS disk images are supported: disk images with the
FWNES-style header, and disk images with no header. The number of
sides on headerless disk images is calculated by the total file size, so
don't put extraneous data at the end of the file.

Writing to disk image

If a loaded disk image is written to during emulation, FCEUX will store the
modified disk image in the save games directory, which is "sav" under the
base directory by default (unless changed under the Directory Overrides
List).

Eject/Insert Disk

Emulates the ejecting of the current disk or the inserting of a new disk. If
a disk image is loaded, this command will eject it. If a disk is ejected, this
will insert a new disk.

This command can be mapped to a keyboard/joypad button in the Map
Hotkeys Menu.

Switch Disk Side

If/when prompted by the game, you can emulate the Switching sides of
the FDS disk with the NES > Switch Disk Side command.

This command can be mapped to a keyboard/joypad button in the Map
Hotkeys Menu.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Video & Audio Capturing
Introduction

FCEU allows for outputting Video/Audio into .avi files or capturing audio
only into .wav files. This can be used to capture one's playing or for
dumping movie files (.fm2) to .avi files.

Capturing a Movie File (.fm2) to Video/Audio (AVI)

-Pause the emulator by navigating to NES > Emulation Speed > pause or
pressing the pause hotkey (the pause key by default).

-For a faster capture increase emulation speed (you can capture at any
emulation speed and FCEUX will still output a 60 (or 50) fps video file).
-Select "Replay Movie" from the File > Movie Menu and select the movie
file

-If you intend to capture beyond the final frame of the movie file, make
sure "Pause after Playback" (Config Menu) is not checked.

-Select "Record AVI" in the File > AVI/Wav menu.

-Select a file location and the video codec you wish to use.

-Unpause the emulator.

-When capturing is complete, pause the emulator and select "Sop AVI" in
the File Menu.

Capture Audio only

To capture audio only, navigate to File > AVI/Wav > Record WAV. Pick a
filename and destination for FCEUX to begin capturing the audio to a
.wav file (raw .pcm). To stop WAV recording, select File > AVI/Wav >
Stop WAV.

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Movie Recording
Introduction

A movie file is a file which contains data needed to reconstruct actions in
a game. In most emulators, the movie files consist of simply the buttons
that were pressed during the game. Because the emulation is completely
predictable (deterministic), it will always play back the same way.

Unless the movie starts from the console power-on or from reset, the
movie file might also contain a savestate that loads the beginning point of
the game. Movie files don’t contain any sound or image data. Such data
is not needed, because the emulator can reconstruct it during movie
playback.

Movie files in FCEUX are .fm2 files. The file format is unique to FCEUX
and not compatible with other movie recording versions of FCE Ultra.
Movie files from other versions (.fcm) can be converted to .fm2 for
playback with the .fcm to .fm2 converter.

Movie features in FCEUX are designed specifically for making Tool-
assisted Speedruns. For more information visit TASVideos.

Recording Movies

To record a movie, open a ROM. Then simply select "Record Movie" in
the File > Movie Menu. You will be prompted to name the file and to
select where to record from. Selecting "Start" will begin the recording
from a Power-on (Hard Reset). If you select "Now", a savestate will be
made at your current location in the game, and the movie will begin
recording from there. If you select browse, you will be prompted to find a
preexisting savestate file to begin recording from.

http://tasvideos.org

Savestates, Slowdown, and Frame Advance

At anytime while recording, you can make a *savestate. Thisis a
snapshot of the game's current memory contents. Once a savestate is
made, it can be loaded with the *loadstate command. This will return the
movie back to the spot in the game where the savestate was made. This
can be used to undo mistakes or to test different strategies for a
particular segment.

(The default key for making a savestate is "I" and the default key for
loading a state is "P". Both of these can be assigned under the Map
Hotkeys Menu). Both can also be access through the File > Savestate
Menu

Tool Assisted movies take advantage of slowing the emulator down in
order to increase precision of the movie making process. Navigating to
NES > Emulation Speed > Slow down or pressing the "-" key will slow
down emulation. NES > Emulation Speed > Speed up or the "=" will
speed it up. (These can be re-mapped in the Map Hotkeys Menu).

Even greater precision can be made using the frame advance key.
Pressing the frame advance key will pause emulation and advance it a
single frame (1/60th of a second NTSC). By holding down input and
pressing the frame advance key, it will record that input for that particular
frame.

For more info seeing Tool Assisted Speedruns.

"Bullet Proof Rerecording"

All savestates made during movie recording contain the movie
information up to the frame of the savestate. When a savestate is
loaded, the movie file in the savestate is also loaded. This is referred to
as "Bullet Proof Rerecording"” because it prevents possible desyncs and
lost data from improper/out of order savestate loading.

Playing Back Movies

To play back a recorded movie, open the ROM. Then select "Replay
Movie" in the File Menu. A movie dialog box will open where you can
select the movie file.

You can also select whether the movie is in Read-only mode. If a movie
is in read-only mode, the movie file can not be altered in any way. If you
make a savestate while playing the movie and load that state, the
playback will simply "rewind" to that state. If the movie is not in read-
only, however, loading a state will set the movie to record mode and
begin recording from that savestate.

You can also select "Pause movie at frame" x. If selected, the movie will
automatically pause when reaching the frame selected (the default is the
last frame of the movie).

Read only

You can select read-only when playing a movie. You can also toggle the
read-only status by navigating to File > Movie > Read only.

In read-only mode a movie can not be edited. Loading a savestate will
take the movie to that point in the movie and stay in playback mode.

In read-write status, loading a state will change a movie from playback
mode to record mode.

Resuming Recording

You can resume recording a previous movie by playing back the movie,
setting the record status to read+write, and then loading a state.

Play Movie from Beginning

At any point while recording or playing back a movie, you can navigate to
File > Movie > Play Movie from Beginning. This will set the movie to read
only status and reset playback to frame 0.

Frame Counter

The Frame counter displays what frame the movie is currently on. If the
movie is playing in read-only mode, it will also display the total number of
frames in the movie. The default key for toggling the Frame Counter
display is the "." (period) key. (This can be re-mapped in the Map
Hotkeys Menu).

Frame Advance

The frame advance key ("backlash” key by default. Re-mappable under
the Map Hotkeys Menu) will advance the game by a single frame and
then pause the game. |If the hotkey is held down, it will auto advance
quickly through the game.

This is a critical tool when perfecting input in movie recording.

Metadata

When you record a new movie via the record movie dialog there is an
author field. This sends the info to the .fm2 file in the form of comment
Author [author name] (see .fm2).

Any line in the .fm2 that starts with "comment" is known as metadata.
You can include any number of comments manually by editing the .fm2
file with any text editor.

On the replay movie dialog, clicking the metadata button will display all

metadata in a separate dialog box (If a movie is currently loaded you can
also access the meta-data by right-clicking and selecting Metadata in the
context menu).

Subtitles

FCEUX now supports subtitles in the .fm2 file format. Subtitles will be
displayed on the screen automatically as a movie plays. You can turn
on/off subtitles by navigating to Config > Movie Options > Display movie
subtitles (see Movie options).

For adding subtitles to a movie see the .fm2 documentation.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

NES

Explains commands in the NES menu of FCEUX.
All these commands can be mapped to a keyboard/joypad button in the
Map Hotkeys Menu.

Reset
Emulates the pressing of the Reset Button on the NES. ("Soft reset”).

Power
Emulates a power cycle, which is turning the power on and off with the
Power button on the NES. ("Hard Reset")

Eject/Insert Disk

Ejects or inserts a FDS disk. (See Famicom Disk System)

Switch Disk Side

Switches Sides of a FDS disk. (See Famicom Disk System)

Insert Coin
Emulates the inserting of a coin in an arcade-style game.

Emulation Speed Sub Menu

Speed Up

Speeds up emulation (emulation speed ranges from 1% to 6400%)

Slow Down
Slows down emulation

Slowest Speed

Sets emulation to 1% speed

Normal Speed
Sets emulation speed to 100%

Turbo

Toggles turbo mode. In turbo mode, emulation is set its fastest settings.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Palette Options

FCEUX comes packaged with several palette files. This page describes
details for each one.

To load a palette file, see Palette config.

FCEUX.pal

This is the default palette that FCEUX uses. It is the same palette used in
FCEU.12 or earlier, and FCEUD/FCEUXD,FCEUXDSP.

FCEU-13-default_nitsuja.pal

This is the palette added to FCEU.13 rerecording by Nitsuja.
FCEU-15-nitsuja-new.pal

This is the palette added to FCEU.15 rerecording by Nitsuja. Itis a slight
adjustment to the FCEU.13 palette.

This one most closely resembles the default palette of Nestopia.

ASQ realityA.pal & ASQ _realityB.pal

BMF palettes had some flaws. AspiringSquire tweaked BMF's palettes
and came up with this. They fix issues mostly related to brightness.
BMF _final2.pal & BMF_final3.pal

These palettes were designed by BMF. He customized these by looking

at snapshots of his television screen and attempting to replicate them as
close as possible.

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

The Config Menu

These chapters explain options under FCEUX's Config menu.

Menu Items & Sub-menus

Explains the basic menu items and sub-menu items in the top of the
menu.

GUI

Settings related to the FCEU emulator window.

Directories

Sets Directory override assignments.

Input

Assigns keys/joypad buttons to emulated controllers.

Network Play

Various settings related to playing over the internet.
Palette

Palette options.

Sound

Sets sound configuration options.

Timin
Settings related to emulation timing.
Video

Sets video & graphics configuration options.

Maovie Options

Sets options related to playing/recording movie files

Map Hotkeys

Sets Hotkey assignments.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Config Toggle Switches

Explains the various toggle switch commands in the top two groups of
commands under the Config Menu.

Hide Menu

Hides the Menu commands on the FCEUX main window. Pres ESC to
unhide the menu.

Game Genie

Allows the use of the game genie ROM. You must have a game genie
ROM named gg.rom (it is save to rename a game genie.nes file to
gg.rom) and it must be in the FCEUX base directory (which is the folder
fceux.exe is in unless you specified a different folder in the Directory
Qverride Menu).

If enabled, FCEUX will open gg.rom first when you load a new game.
Any codes applied in the game genie screen will be applied to the game
just like on a real NES.

(Remember that enabling/disabling Game Genie emulation will not take
effect until a new game is loaded)

Note: Game genie codes can also be added with the Game Genie
Encoder/Decoder via the Cheat Search Menu (and does not require a
game genie ROM).

PAL Emulation

Toggles between NTSC (60fps) and PAL (50fps) frame rates. By default,

FCEUX will detect the proper choice when loading a ROM and set the
flag accordingly.

PPU (Sub-menu)

New PPU / Old PPU

As of FCEUX 2.1.2, FCEUX has a new PPU core. The new PPU has
improved accuracy and greater game compatibility than the previous
PPU. However, some games may not work properly and there will be
slight timing differences that would hurt movie compatibility. Therefore,
FCEUX will still support the old PPU. Currently, Old PPU is the default
setting.

Enable (Sub-menu)

Run in Background

If enabled, FCEUX will continue to emulate when the window is not in
focus. If disabled, the emulator will pause when out of focus.

Background Input

If enabled, FCEUX can continue to receive input while not in focus.
(Useful for playing 2 FCEUX's simultaneously)

Auto-savestates

Enables the Auto-save feature. If enabled, FCEUX will make periodic
savestates as you play (or play/record a movie). You can right-click and
select the "load last auto-save" in the context menu or press the Auto-
save hotkey to back up to the last auto-save savestate.

Frame Adv. - Skip Lag

This feature, if enabled, will cause the frame advance key (see movie
recording) to skip over lag frames. It does this by reading the lag counter
(see display) and skipping past any frames where the input is not polled.

For instance, in a 30fps game (such as double dragon), frame advance
will advance 2 frames instead of 1.

Backup Savestates

Enabled by default. This option allows for savestate & loadstate Undo (&
redo). (see context menu)

Compression Savestates

Enabled by default. This option compresses non movie savestates.

Display (Sub-Menu)

Input Display

The input display will display 1-4 pictures of a NES controller at the
bottom of the screen. When playing/recording a movie, these controllers
will display the input that is captured in the file.

When input comes from a movie file rather than then user, it is displayed
in a different color (silver)

The input display can also be toggled by hotkey/ The default key for
toggling the Input display is the "," (comma) key. (This can be re-mapped

in the Map Hotkeys Menu).

Lag Counter

The lag counter will increment every time to the game fails to poll for user
input. It will display in red on any frame that is currently lagging and will
increment the lag counter by 1. These situations occur when the game is
lagging (too much information to process), or the game is in a screen
transition state (so not polling for user input). In a 30fps game (such as
Double Dragon 2), it will increment every other frame.

The lag counter value is stored in savestates.

Displaying the lag counter can be done by hotkey as well. It must be
mapped to a hotkey in the Map Hokeys Menu.

It can be reset to 0 by mapping the reset lag counter hokey in the Map
Hotkeys Menu.

Frame Counter

Toggles the display of the frame counter. The frame counter will
increment once per frame.

Display BG

Turning this off will turn off the backgrounds in the game.

Display OBJ

Turning this off will turn off the objects in the game.

Note: You can set the default color when the Backgrounds are turned off.

To do so, open fceux.cfg and change the value of the entry named:
gNoBGFillColor

Save Config File

Saves current settings to fceux.cfg. Normally
settings are not saved until FCEUX 1is closed.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Directory Overrides

This menu sets a default directory override for various files relating to
FCEU.

Base Directory
sets the default directory FCEU will use. It will be the folder that FCEU
creates all the sub folders (unless they are also overridden).

ROMS
where FCEU will look for ROMS by default. (What folder will appear
when selecting the Files > Open...)

Battery Saves
where .sav files will stored and opened from. These files contain the
battery backed SRAM used in some games (such as Dragon Watrrior).

Save States
where .fcs (savestate) files will be stored.

FDS BIOS ROM

where FCEU can find disksys.rom. disksys.rom is a required file in order
to load FDS (Famicom Disk System) games. If not specified, FCEUX will
default to the base directory.

Screenshots
where screen captures (.png) files will be saved.

Save Screenshots as "<filebase>-<x>.png"

sets how the .png files will be named. Left unchecked, the file names will
simply be 0.png, 1.png etc. Checked adds the ROM name into the file as
well (such as Double Dragon 2 (U)-0.png)

Cheats

where .cht files will be stored. .cht files store the active cheats set up in
Cheat Search.

Movies
where .fm2 files will be saved/loaded. These files are the input files
used in movie recording.

Memory Watch
where memory watch files are saved/loaded. These are used by memory
watch.

Input Presets
where input presets will be saved/loaded. These are used in the presets
section on the input config window.

Lua Scripts
where Lua scripts will be saved/loaded. These are used when using the
Lua Scripting tool.

AVI Output

overrides which directory FCEUX will default to when saving a .avi file.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

GUI

Various toggle boxes related to the FCEUX main window.

Load "File Open" dialog when FCEUX starts.

If enabled, FCEUX will ask for a ROM to open upon FCEUX start up.

Automatically hide menu on game load.

If enabled, The FCEU Menu will be hidden while a ROM is loaded. To
unhide it, press the ESC key.

Ask confirmation on exit attempt.

If enabled, FCEUX will ask you before closing the window. (It may also
say some other things...)

Disable screen saver while game is loaded.

This is enabled by default. If a game is running, the windows screen
saver will not turn on.

Enable right-click context menu.

This is enabled by default. This allows you to right-click on the emulator
to get context menus. The context menu gives many common options for
a given situation and has a few options not available otherwise.

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Input Configuration

Setting up controllers

On the pull down menus, you can select the device you want to be
emulated on input ports 1 and 2 (game pad, zapper, pad, paddle). If you
check the box labeled "Attach four-score(implies four gamepads)”, you
won't be able to select any of these options, because the four-score
allowed someone to use 2 extra controllers.

The device currently being emulated on each port is listed above the drop
down list; loading certain games will override your settings, but only
temporarily.

To bind these controls to specific keys/joystick controls use the
"configure” the device listed above each drop-down list.

Zapper / Arkanoid Paddle

Most Zapper NES games expect the Zapper to be plugged into port 2.
and most VS Unisystem games expect the Zapper to be plugged into port
1.

The left mouse button is the emulated trigger button for the Zapper. The
right mouse button is also emulated as the trigger, but as long as you
have the right mouse button held down, no color detection will take place,
which is effectively like pulling the trigger while the Zapper is pointed
away from the television screen. Note that you must hold the right button
down for a short time to have the desired effect.

The Arkanoid Paddle emulates the same way the zapper.

Power Pad A/ B

Emulates the NES Power pad. The 12 pad buttons can be routed via the
configure button. FCEUX allows up to 2 Power Pads to be emulated at
once (Power Pad A and B).

Famicom Controllers

You can also select the input device to be emulated on the Famicom
Expansion port. If you select a device for the Famicom Expansion Port,
you should probably have emulated game pads on the emulated NES-
style input ports.

In addition to the traditional famicom controller, FCEUX can emulate the
Famicom version of the Arkanoid controller, the "Space Shadow" gun, the
Famicom 4-player adapter, the Family Keyboard, the HyperShot
controller, the Mahjong controller, the Oeka Kids tablet, the Quiz King
buzzers, the Family Trainer, and the Barcode World barcode reader.

Replace Port 2 Start With Microphone

Checking this box will replace the Start button used by controller 2 with
the microphone option found on the famicom. Pressing the Microphone
button is like blowing or yelling into it on the console equipment. The Port
2 controller used for the Famicom included a microphone and a volume
control in place of the Start and Select buttons. This option isn't
automatically detected, so it has to be manually enabled by the user.
Movie files may also enable and use this feature. Both Famicom
Cartridges and Famicom Disks have made use of this feature, such as
both the cartridge and disk version of Zelda 1, Hikari Shinwa, and
Takeshi no Chosenjo. Games other than those listed here use this
feature.

Input Presets

This feature allow you to set the current input configuration to one of
three presets. This gives you the option to quickly change from one input
configuration to another (such as toggling between 1 or 2 controllers

and/or toggling from controller 2 being bound to controller 1 or having its
own controls).

To assign the current input configuration to a preset press the down
arrow next to one of the presets. To assign the preset as the current
input configuration press the up arrow or use the hotkey assigned to that
specific preset. Preset hotkeys can be assigned in the Map Hotkeys
menu.

Disable left+right/up+down

By default FCEUX allows you to press both the left and right controls at
the same time (or up and down). To disable this feature uncheck the
checkbox on the left.

Auto-Hold

Clicking the auto hold button will allow you to assign a hotkey to the auto-
hold feature.

Clicking the clear button will allow you to assign a hotkey to the clear
auto-holds feature.

To use this feature, close the input config window and return to the
FCEUX main window. Hold down the auto-hold hotkey and press one of
your controller inputs. This will add it as one of the auto-hold
assignments. The game will keep auto-hold assigned buttons held be
default. Pressing one of these keys will release the button for the
duration that it is held.

To turn off all auto-hold assignments press the clear auto-holds hotkey.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Network Play

Allows you to play against a human opponent over the internet. Requires
the use of FCEU server.

Currently however, FCEU Server runs very poorly and is hardly useable.
This issue will be resolved in a future release.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Palette

Settings related to the emulator's color palette choices.

See

NES Palette

Load Palette

Allows you to load a custom color palette (.pal) file to use for the current
game loaded.

A note on on the format of external palettes; Palette files are expected to
contain 64 8-bit RGB triplets(each in that order; red comes first in the
triplet in the file, then green, then blue). Each 8-bit value represents
brightness for that particular color. 0 is minimum, 255 is maximum.

Palettes can be set on a per-game basis. To do this, put a palette file in
the same directory the game is in, and add the extension "pal”.
Examples:

File name: Palette file name:
BigBad.nes BigBad.pal
BigBad.zip BigBad.pal

BigBad.Better.nes BigBad.Better.pal

With so many ways to choose a palette, figuring out which one will be
active may be difficult. Here's a list of what palettes will be used, in order
from highest priority to least priority(if a condition doesn't exist for a
higher priority palette, the emulator will continue down its list of palettes).

* NSF Palette(for NSFs only)

* Palette loaded from the "gameinfo" directory.

* NTSC Color Emulation(only for NTSC NES games).

* VS Unisystem palette(if the game is a VS Unisystem game and a
palette is available).

* Custom global palette.

* Default NES palette.

Restore to Default Palette
Restores the color palette to its default settings.

NTSC Color Emulation

If enabled, FCEUX will simulate actual NTSC signal processing. The
result should be the actual colors you would see if outputting to an actual
NTSC television.

The Tint and Hue knobs can be used to make adjustments to the
resulting color change.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Sound Configuration

where you can configure sound

Input/Output format
The sound enabled/disabled checkbox will turn on/off FCEUX's sound.

The force 8-bit sound checkbox will override the current sound
configuration and use 8-bit sound instead.

You can select the sound quality in the sound quality pull down menu.

Rate sets the audio sample rate.

Mute frame advance

If checked, no sound will be produce when frame advance is pressed.

Mute Turbo

If checked, the sound processing will be bypassed when emulation is in
turbo mode

Buffering

On older machines, increased buffering may be necessary. If the sound
Is glitchy or crackling, increasing the buffing time may resolve the issue.
Lower buffering settings can reduce sound latency.

Volume Control

Sets the sound volume of the master sound or individual sound channels.
Master
Sets the Master volume level. You can also set volume levels using the

sound volume up, volume down, mute, and volume normal hotkeys under
map hotkeys menu.

Triangle/Square 1/Square 2/Noise/PCM
Sets the volume to each individual sound channel.

Note: When using low quality sound, the amount of channel control is
greatly limited. Some sound channels are disabled.

Restore Defaults

Restores the master and individual sound channel volumes to their
default location.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Timings

Settings related to emulation timing.

Disable Speed Throttling Used When Sound is
Disabled

If checked, speed throttling will not be used while sound is disabled.
(Speed throttling gives a performance boost while sound is off).

Set High Priority Thread

Sets processing priority. Enabling can help slower computers keep a
steady 60fps (or 50fps) framerate.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Video Configuration

This window sets various graphics emulation options.

Full Screen Settings

Full Screen
If checked, FCEUX will enter full screen mode when it is loaded.

Enter Full Screen Mode after file is loaded
If checked, FCEUX will only enter full screen mode when a game is
loaded.

Video Mode:

Sets the image size while in full mode. If custom is selected, FCEUX will
use the settings under "Custom Video Mode".

Sync Method:

If the emulator is running poorly, trying out these sync options can help
make it run smoother.

Disable Hardware Acceleration
If full screen is causing problems, checking this might fix it.

Custom Video Mode

Mode:

Sets the image size during full screen mode, if custom is selected under
Full Screen Settings.

Image Size Transform

Special Scaler

Within this box is four options: Hg2x, Scale2x, Hq3x, and Scale3x.

- Scale2x/3x just attempts to render out the corners of the pixels to make
them look a bit rounder. "2x" means two times bigger than 1x1 and "3x"
means three times bigger than 1x1.

- Hg2x/3x does a much better job than scale2x/3x by smearing the pixels
together with a slight blur. However, Hg2x/3x requires a faster computer
for decent speed (at least 1 GHz and above). "2x" means two times
bigger than 1x1 and "3x" means three times bigger than 1x1.

Scale Dimensions by:
Takes the image size and multiplies the x and y by a specific amount.

Stretch to Fill Screen
Stretches the image to fill the screen during full screen mode. (may not
be the best choice depending on your screen size).

Windowed Settings

Size Multiplier
Takes the image size and multiples the x and y by a specific amount.
You can also set these by clicking and dragging the FCEUX window.

Force Integral Scaling Factors
If checked, FCEUX can only be stretched by even amounts (1x, 2x, 3X,
etc.). If unchecked, it can be stretched by any amount.

Force Aspect Ratio Correction
If Integral Scaling Factors is unchecked, checking this will only allow the
correct aspect ratio while stretching the window.

Current Pixel Aspect Ratio
Displays the current Aspect Ratio

Sync Method

If the emulator is running poorly, trying out these sync options can help
make it run smoother.

Disable Hardware Acceleration

This is checked by default. Slower computers my experience slow
emulation and should uncheck this option. The video will be blurred
somewhat with this option checked.

Drawing Area

First Line
Sets the first scan line for NTSC and PAL Modes. This should be left on
the default of 8.

Last Line
Sets the last scan line for NTSC and PAL Modes. This should be left on
the default of 231.

Clip Left and Right Sides (8 columns each)
If enabled, 8 pixels from each side of the windows will be removed. Who
knows why you would want to!

Emulation

Allow More than 8 sprites per scanline.

On real NES hardware, more than 8 sprites on the screen causes
flickering. Enabling this can cause less flickering by allowing more
sprites to be visible at once. If you prefer to say "true" to NES hardware,
this should not be checked.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Movie Options

The movie option dialog has various settings related to movie making.

Pause After Movie Playback

If checked, FCEUX will automatically pause emulation when reaching the
last frame of a movie file. If disabled, the movie will end, and emulation
will continue without a movie loaded.

Show Movie Status Icon

The status Icon shows the "play"” "record" and "pause" icons in the lower
right corner. The Show Status Icon checkbox toggles these on/off.
Bind savestates to movies

Affects the savestate naming system when a movie is loaded. If
checked, the movie name will be appended to a savestate filename.
Display movie subtitles

Toggles whether or not movie subtitles (imbedded into the .fm2 file, see
.fm2 documentation) will be displayed on screen.

Put movie subtitles in AVI

Toggles whether or not movie subtitles will be recorded into a .avi file.

Automatically backup movies

If checked, the auto-movie backup is toggled on. Whenever a movie is
loaded then set into record mode (by loading a savestate while in read-
write mode), a backup copy of the .fm2 is saved before changing the file.

Movie backups will be created only once each time a movie is loaded into
FCEUX. Movie backups are appended with a backup number and the
.bak file extension.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Map Hotkeys

The map hotkeys dialog allows you to assign hotkeys to various FCEUX
commands.

To assign or remove a hotkey assignment, double click on the name of
the hotkey in the list box. Then press the key combination you wish to
assign it. To clear the assignment, press the clear button.

The filter pull down menu allows you to only see hotkey listings in various
categories (the list shows all hotkey assignments by default).

The Restore defaults button will change all hotkeys to their default
values.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Context Menu

FCEUX includes a context menu that allows commonly used menu
functions for various situations. There are some functions that appear
only here.

This page describes all the possible menu items in each possible context
situation.

No game loaded.
Appears when no game is loaded.

Open ROM
Same as the File > Open ROM option

Last ROM used
Opens the most recently used file from the Recent Files Menu

Help
Brings up the Getting Started chapter in the help document.

Game Loaded
Appears when a game is loaded, but not a movie (.fm2).

Play Movie...
Same as the File > Movie > Play Movie menu item.

Record Movie...
Same as the File > Movie > Record Movie menu item.

Undo savestate
If this option is enabled it means the last savestate saved over-wrote a
previous savestate file. This option restores the previous savestate file.

Redo savestate
If this option is in the menu, it means that Undo savestate was recently
used to restore a previous savestate. This reverts that change.

Rewind to last auto-save

Auto-save must be enabled for this menu item to be accessible. Same
as the Load last auto-save Hotkey Item. It loads the last auto-savestate.
Auto-savestates are created once about every 4 seconds, so this
typically has the effect of rewinding emulation.

Screenshot
Same as File > Screenshot.

Close ROM
Same as File > Close

Movie loaded - Read-only
Appears when a movie is loaded and Read-only mode is set.

Toggle to read+write
Sets Read status to Read+Write.

Play Movie from Beginning
Same as File > Movie > Play from Beginning. Turns Read status to
Read-Only and plays the movie from frame 1.

Stop Movie Replay
Same as File > Movie > Stop Movie.

View comments and subtitles
Opens up the Metadata dialog. Same as the Metadata button on the
Play movie dialog.

Undo savestate
If this option is enabled it means the last savestate saved over-wrote a
previous savestate file. This option restores the previous savestate file.

Redo savestate
If this option is in the menu, it means that Undo savestate was recently
used to restore a previous savestate. This reverts that change.

Rewind to last auto-save

Auto-save must be enabled for this menu item to be accessible. Same
as the Load last auto-save Hotkey Item. It loads the last auto-savestate.
Auto-savestates are created once about every 4 seconds, so this
typically has the effect of rewinding emulation.

Help
Opens the Movie recording chapter of the help document.

Movie loaded - Read + Write

Toggle to Read-only
Sets Read status to Read-Only.

Play Movie From Beginning
Same as File > Movie > Play from Beginning. Turns Read status to
Read-Only and plays the movie from frame 1.

Stop Movie Recording
Same as File > Movie > Stop Movie.

View comments and subtitles
Opens up the Metadata dialog. Same as the Metadata button on the

Play movie dialog.

Make backup
Generates a backup .fm2. Uses the same file naming system as the
auto-movie backup. (See movie options for details).

Undo savestate
If this option is enabled it means the last savestate saved over-wrote a
previous savestate file. This option restores the previous savestate file.

Redo savestate
If this option is in the menu, it means that Undo savestate was recently
used to restore a previous savestate. This reverts that change.

Undo loadstate

If this option is enabled it was because the Loadstate function was called
sometime while the game was loaded. This function restores the game
state to where it was before loadstate was called.

Redo loadstate

If Undo loadstate was called, this option is available. It reverts the
change and restores the game back to the point it was when loadstate
was called.

Help
Opens the Movie recording chapter of the help document.

Additional items may also appear related to these situations:

Lua

Load last Lua

If there is at least 1 filename in the Recent Lua Files menu this calls the
most recently used Lua script file. Has the same effect as the File > Lua
> Reload Lua Script menu item.

Stop Lua
If a Lua script is currently loaded this option is available. Same as File >
Lua > Stop Lua Script.

Hide Menu

Unhide menu
If the main FCEUX menu is hidden this option is available. Restores the
main menu.

Subtitles

If a movie is loaded and has subtitles,

a toggle subtitles option will be in the menu

a Dump to SRT file option will be available. This dumps the subtitles to a
standard subtitle file compatible with A/V containers such as .mkv

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Tools

Guides for the specific tools and settings under FCEUX's Tools menu.

Cheat Search

A guide to using the cheat search tool.

Memory Watch

A guide to using the Memory Watch tool.

RAM Filter

A guide to using the RAM filter tool.

TAS Edit

A new tool designed for making TAS movies.

Convert fcm

A tool that will convert .fcm movie files to the .fm2 file format.

Auto Fire settings

A guide for setting auto-fire, auto-fire offset, and alternate A and B
options.

Use External Input

Explanation of Use External Input

Text Hooker

A guide for using the text hooking tool.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

FCE Ultra Cheat Guide

Introduction

FCE Ultra allows cheating by the periodic "patching" of arbitrary
addresses in the 6502's memory space with arbitrary values, as well as
read substitution. "Read substitution” is the method that would be used
on a real NES/Famicom, such as done by the Game Genie and Pro
Action Replay. It is required to support GG and PAR codes, but since it is
relatively slow when done in emulation, it is not the preferred method
when a RAM patch will suffice. Also, in FCE Ultra, read substitution will
not work properly with zero-page addressing modes(instructions that
operate on RAM at $0000 through $00FF).

The RAM patches are all applied a short time before the emulated
vertical blanking period. This detail shouldn't concern most people,
though. However, this does mean that cheating with games that use
bank-switched RAM may be problematic. Fortunately, such games are
not very common (in relation to the total number of NES and Famicom
games).

The cheat search comes with its own set of tools for finding addresses in
memory to use for making cheats (or for monitoring the addresses in the
memory watch window)

Cheat Files

By default cheat files (.cht) are stored in the "cheats" subdirectory under
the base FCEUX. The files are in a simple plain-text format. Each line
represents a one-byte memory patch. The format is as follows(text in
brackets [] represents optional parameters):

[S][C][:]Address(hex):Value(hex):[Compare value:]Description

Example:

040e:05:Infinite super power.
A colon(:;) near the beginning of the line is used to disable the cheat. "S"
denotes a cheat that is a read-substitute-style cheat(such as with Game

Genie cheats), and a "C" denotes that the cheat has a compare value.

Note: When a game is loaded, FCEUX will load any accompanying
saved .cht file automatically.

The default .cht file folder can be changed with the Directory Override
menu.

The Cheat Search Menu

The cheat search interface consists of several components: a list of
addresses and associated data for a search, several command buttons,
and the search parameters.

All addresses listed in the cheat search windows are in unsigned 16-bit
hexadecimal format and all values in these windows are in an unsigned
8-bit decimal format(the range for values is 0 through 255).

Active Cheats

The Active cheats window on the left contains the list of cheats for the
currently loaded game. Existing cheats can be selected, edited, and
updated using the "Update" button.

Each entry in the list is in the format of: * Address = Value
The address is the location in the 6502's address space. The * denotes

that the current cheat is active (double clicking will toggle on/off). Value
is the value (in hex) that the addresses has been locked into.

You can add, delete, and update cheats in the active cheats window with
the boxes below.
To find an address use the cheat search portion of the window.

There is also a right-click menu with the options Toggle Cheat, Poke
Cheat Value, and Goto In Hex Editor.

Toggle Cheat is like Double Clicking. It enables or disables the cheat
code.

Poke Cheat Value is like turning the cheat on, but in this case there's no
off switch. If the code is on when you use this, then when the code is
turned off, it will revert to the value last used. Good for one time life refills,
if you want that sort of thing.

Goto in Hex Editor opens the Hex Editor window, and puts the cursor on
the address shown. It's somewhat similar to how Bookmarks work in the
Hex Editor.

Cheat Search

The cheat search is used to find a specific value in the games RAM by
process of elimination.

The possibilities window is in the format of Address:Original
Value:Current Value

The address is the location in the 6502's address space, the original
value is the value that was stored at this address when the search was
reset, and the current value is the value that is currently stored at that
address. Selecting an item in this list will automatically cause the
"Address" field in the cheat information box on the right side of the
window to be updated with the selected address.

The "Reset" button resets the search process; all valid addresses are
displayed in the possibilities window and the data values at those
addresses noted in both the left and right columns. The number of
possibilities is displayed at the top. Resetting will set it to 2048 or 10240
depending on if the game uses "On cartridge ram" ($6000-$7FFF). (See
NES RAM)

The left column is the "previous value" and the right column is the
"current value"

The "Known Value", "Equal”, "Not Equal”, Greater than" and Less than"
buttons perform a search based on the search parameter and removes
any non-matching addresses from the address list. It then sets the
"previous value" column to the contents of the "current value”

"Known Value" will search for all addresses that match the value in the
box to the right (the value is in hex).

"Equal” will search for all addresses that have the same value now as the
last search (or since reset was pressed, if there has not yet been a
search).

"Not equal" will search for all addresses that have changed sine the last
search (or since reset was pressed, if there has not yet been a search).
If the checkbox next to it is checked it will looks for values that have
changed by the value in the number box to the right. For instance, if it is
checked and the number is 5, it will search for all values that are +- 5
from the previous value.

"Greater than" functions like "Not equal” except it only searches for
values that have increased since the last search.

"Less than" functions like "Not equal” except it only searches for values
that have decreased since the last search.

Using the Results

Any value in the possibilities list can be sent to memory watch by double
clicking it.

Highlighting it and hitting the "Add" button under the Active cheats
window will automatically activate it as a cheat with the value set to its
current value.

Example

Here is an example of cheat search in action.

Let's say | am playing Mega man 3 and | want to find Mega man's energy
level in the game's ram. | will start by opening the ROM and selecting a
level. At this point, | know Mega man's energy address is active. So |
will pause the game and open the cheat search and hit the reset button.
The game uses SRAM so the possibilities window will say 10240
"possibilities".

Next | will frame advance (or briefly unpause) the game. At this point |
know Mega man's energy level is still the same as it was. So | click the
"equal” button. Next | want to take damage. | know for sure now that
the energy level has decreased so after the "ouch" animation, I click the
"Less than button". This will cut the possibilities down significantly. Next
| will advance some more and click the "Equal” button since | know the
value is still the previous value. | will repeat this cycle until I am down to
1 or just a few values. From there | can double click the values to send
them to memory watch to monitor them more closely to weed them out.
(Note: Mega man's energy is located in $00A2).

Context Menu

Right-clicking in the active cheats list brings up the context menu.

Toggle Cheat - does the same thing as double clicking

Poke cheat value - has a different affect that normal freezing, this makes
a one time write of that value as opposed to freezing it temporarily to that
value and having it restored later. It has the same affect as typing in

values in the Hex Editor.

Goto In Hex Editor - Opens the Hex editor dialog to the position of the
selected RAM value.

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Ram Search

Ram Search is a tool originally written for GENS rerecording. It was
ported to FCEUX in version 2.1.2. This dialog has also been ported to
SNES9x-rr, Desmume, PCEjin, VBA-rr, PCSX-rr, Yabause, VBjin, and
EBA-IT.

It is designed to filter ram values just like in the Cheat Search dialog.
However, it features many options that are lacking in the Cheat Search
dialog. Among these are search undo, search preview, a modulus filter, a
data size option, signed/unsigned/hex options, autosearch, and several
more compare by options.

Documentation on this dialog can be found on TASVideos here.

Hotkeys

Hotkeys can be assigned to common search commands so they can be
easily selected while in the main window.

2008

HelpNDoc

http://code.google.com/p/gens-rerecording/
http://code.google.com/p/snes9x-rr/
http://desmume.org/
http://code.google.com/p/pcejin/
http://code.google.com/p/vba-rerecording/
http://code.google.com/p/pcsxrr/
http://code.google.com/p/yabause-rr/
http://code.google.com/p/vbjin/
http://code.google.com/p/fbarr/
http://tasvideos.org/EmulatorResources/RamSearch.html
http://www.ibe-software.com/products/software/helpndoc/

Ram Watch

Ram Watch is a tool originally written for GENS rerecording. It was
ported to FCEUX in version 2.1.2. This dialog has also been ported to
SNES9x-rr, Desmume, PCEjin, VBA-rr, PCSX-rr, Yabause, and FBA-rr.

It is designed to filter ram values just like in the Cheat Search dialog.
However, it features many options that are lacking in the Cheat Search
dialog. Among these are search undo, search preview, a modulus filter, a
data size option, signed/unsigned/hex options, autosearch, and several
more compare by options.

Documentation on this dialog can be found on TASVideos here.

2008

HelpNDoc

http://code.google.com/p/gens-rerecording/
http://code.google.com/p/snes9x-rr/
http://desmume.org/
http://code.google.com/p/pcejin/
http://code.google.com/p/vba-rerecording/
http://code.google.com/p/pcsxrr/
http://code.google.com/p/yabause-rr/
http://code.google.com/p/fbarr/
http://tasvideos.org/EmulatorResources/RamWatch.html
http://www.ibe-software.com/products/software/helpndoc/

Memory Watch
Overview

Memory watch is a tool designed to values of specific known memory
values in the game's RAM. Memory watch does not find values. To find
useful values to monitor, see Cheats, Ram filter, Hex Editor, and

Debugger.

Inserting Values

To display a ram value, simply type its address into one of the address
fields. The name field allows you to put a brief description of the value.

Prefixes

You must put in the hexi-decimal value of the address, but the value will
be displayed will be decimal by default.

To display the value in hex, use a prefix of "x" (such as xO0FD).
Use the prefix "I" to display a 2 byte value.

Use a prefix of "X" to watch a 2 byte value in hex.

Saving/Loading Watch files

You can save your addresses into watch files, as well as loading previous
files using the standard save,load,new options in the File menu.

FCEUX uses the /memw folder by default but you can specify a new
default folder in the Directory Override menu.

Options Menu

If you select Load on Start up, Memory watch will load up automatically
when FCEU is started.

If you select Load Last File on Start up, the most recent file in the
Recent folder will be loaded when memory watch is loaded.

If you select Collapse to 1 Column (or press the right arrow button on

the bottom left of the dialog), the memory watch dialog is reduced to just
1 column.

Frozen Memory Addresses

If one of the watched addresses is frozen by the cheats dialog or the hex
editor, it will display blue in the memory watch dialog.

Memory Change Monitor

The bottom of the memory watch dialog displays a memory change
monitoring section. This monitors the 1st two values of each memory
watch column. Rather than monitoring the value itself, this monitors the
value's behavior.

The address being monitored is under the address column.

The Formula drop down box shows which criteria the change monitoring
IS using.

The count value displays how many times the value has changed based

on the criteria.

Reset will reset the count to 0.

Usage Example:

As an example of the memory change monitoring, Let's say we are
recording a movie of the game Super C and want to keep track of when
the game lags.

The ram address 001C functions as a "lag flag". It will remain 0, then
change to a positive value on a frame that the game lags.

We could put 001C in one of the 1st two memory watch edit boxes. Then
set the corresponding formula in the memory change monitoring to ">
then" (greater than). Now the count will show us how many lag frames
occur in the movie.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

TAS Edit

TAS Edit is an overhaul in very logic of creating TAS movies (see Tool
Assisted Speedruns). Itis a powerful new design that takes movie
making from less of a "recording” concept to a "creating an input file" way
of thinking. The traditional savestates are not used and is replaced with
a list of frames and input. Clicking on a frame sends the emulator to that
frame.

As of the 2.0 release this is an unfinished tool and therefore much of the
features are not implemented.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Converting .fcm to .fm2 files

FCEUX uses a new movie file format (.fm2). In order to use movie files
frame previous FCE Ultra versions (.fcm) you will need to convert to .fm2
first.

Using .fcm Convert

To use it simply highlight it. Then select the .fcm you wish to convert (or
shift+click to select multiple .fcm files). Then click Open to have the
select files converted. All files selected will have a matching .fm2 file
copied into the same folder.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Auto Fire Settings
Autofire Pattern

The default configuration for an auto fire key is the alteration of
on/off/on/off every frame. For most games this works nicely, but there
are situations where this doesn't work properly. For example, Double
Dragon 2 and Teenage Mutant Ninja Turtles run at 30fps (screen updates
every other frame). To use autofire in these types of games, you would
want to set the autofire pattern to 2 on / 2 off. In a situation where a
players weapon on fires every 4th frame, you can set the autofire pattern
to 1 on/ 3 off.

Autofire Offset

The default is for certain frames to have the on setting and others to have
the off setting. For instance, "on" might be lined up with a movie file's
even numbers. But a situation may need the autofire pattern to have "on"
on the odd numbers instead. In this case the autofire offset should be set
to 1. This will delay the normal "on" fire by 1 frame. If an autofire pattern
Is set to 2 on / 2 off, an autofire offset of 2 might be necessary.

Alternate A and B

Alternate A and B is for a specific case where both the A and B autofire
buttons are pressed simultaneously. With alternate A and B, the fire
pattern will be A,B,A,B rather than A+B, off, A+B, off.

Note: All autofire patterns read the Lag Counter (see display) and skip
over any frames where input is not polled. This means that in a laggy
area, the autofire pattern will not be affected.

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Use External Input

Use External Input release control of FCEU so that an external program
(such as a TAS bot) can save/load states, frame advance, and deliver

input. This feature was original implemented for older version of Basic
bot.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Text Hooker
(written by Ugly Joe, author of the Text Hooker tool)

What is Text Hooker?

Here's a premise for you. Suppose you've pirated a bunch of
Japanese NES roms and you load one of them up at random.
Cool music. Cool title screen. You go to start a game, put in
?7?7?7? at the name entry screen, and get to the actual game.
Well, big surprise here, it's an RPG. You soon realize that you
have no idea what people are saying, what shops are selling, or
what your battle options are. It can be fun to trial-and-error for a
while, but you're ultimately stuck in the first town. Time to load
up a new ROM.

Well, being the aspiring Japanophile that | am, | have all kinds
of translation tools and websites at my disposal. It's not
impossible for me to figure out the kana for an item name, put it
into a website somewhere, and figure out what it is. It's a slow
process, but | can figure out short, simple strings of Japanese
text. Sometimes, this is all | need to know to get by.

This is why | made the Text Hooker. What it allows you to do is
highlight text boxes in the game and copy the kana right to the
clipboard. | no longer have to look up stuff, | can just copy from
the emulator, paste into the website, and go from there. While
developing it, | took it a bit further by adding a (shoddy)
translator right into the app, and added features such as word
substitutions (so you only have to look up the word once and

then the app will know what it is as soon as you copy it). What
you end up with is kind of like a translator's notebook. It keeps
commonly used words in a dictionary and helps you get through
a Japanese game without having too much knowledge of the
Japanese language.

What do | need to use to use it?

Some knowledge of the Japanese language

| really can't say how much you need to know, but | suppose the
more you know the better. | could be wrong, but | think you
need to know at least something about the language before you
can start copy/pasting translations.

Know how to make a Japanese table file

I'm not going to explain how to do this since there are adequate
tutorials already out there. You'll need to be able to do this per
game in order for the Text Hooker to work.

Japanese font support

Okay, | have tested this thing on a Win98 installation with no
Japanese font. It still works. However, | didn't test it for very
long and I'm not sure how well translation websites are going to
work without it. So, it might work without Japanese font support,
but I'm not officially saying it does.

A Japanese ROM
Duh, you'll need a game to play. Find it yourself.

How do | use the Text Hooker?

First of all, you need to make your table file. The text hooker
doesn't use Thingy tables, but uses a modified Thingy table
instead. So, make your standard Thingy table file, but save it
with a .tht extension (instead of .tbl). What you need to add to
the table are the dakuten and handakuten marks (tenten and
maru). The byte for the dakuten mark needs to be set to tenten
and the byte for the handakuten mark needs to be set to tenten.
Like:

DC=tenten
DD=maru

If you don't do this, the Text Hooker will fail miserabley when
copying the text over from the game.

Once you have your table file ready, open up your rom in
FCEUXDSP CE and open the text hooker window (Tools ->
Text Hooker). Click on the "Load Table" button and open up
your .tht file. Now you can really get ready to work.

Basic Usage

A warning

All information is saved in the table file. You have to save your
table manually using the Save Table button. If you close the
Text Hooker window or load a different table, your changes
since the last save will be lost. You will not be prompted to save
changes. Please remember to save!

Making Selections
The Selection Window is where you select the text in the game.
It is basically the same view as the actual emulator window, but

it updates less often and does not show sprites (text is not
drawn with sprites, so they are not needed). To make a
selection, click on a deselected tile and drag your mouse. To
remove a selection, click on a selected tile and drag your
mouse. It works a lot like a pen tool and an eraser tool in
standard paint programs.

Once you have made a selection, you can save it for later use.
This comes in handy since most RPGs will display their text
boxes and battle menus in the same place throughout the entire
game. To save a selection, type a name for the selection into
the New Selection Name field and press the Save Selection
button. Note that this selection will not be saved to your table
file until you press the Save Table button.

You can also use the Clear Selection button to deselect all of
the tiles in the selection window.

Please note that when you select text, you should not select the
mostly blank rows that contains the dakuten and handakuten
marks. You're essentially selecting every other row. Please see
the Ul image above for an example.

Translating Text

Once you've made a selection, press the big Snap button to
copy the text into the Hooked Text window. Only the tiles that
are defined in your table file will be copied over. All other tiles
will be ignored. Once you have some Japanese text in your
Hooked Text window, you have a few options. You can press
the Excite.co.jp button to receive a really bad translation (better
than Babelfish, but still bad) in the Translated Text window, or
you can select all or part of the text in the Hooked Text window
and copy/paste it into another translation tool or website. If

you're translating a block of text (as opposed to item names or
menus), you should probably use the Trim button to clean up
the excess whitespace.

Please bear in mind that, due to the limitations of the NES,
Japenese games use very little kanji. This means you'll have to
look up the kana representation of what would normally be a
kanji. Most translation tools will give you a hard time about this.

The word substitution feature can be used to process the
selected text before it is sent to the Hooked Text window. By
entering in Japanese-to-English definitions, you build up your
word subs dictionary. If word subs are enabled and you press
the snap button, the selected text is checked against your
dictionary and any words that it finds are replaced by their
definition.

This is useful for a few reason. One, many words written in
katakana don't translate too well. You can use this to stop the
translators from mangling them. Two, character names are
often the same thing as words. For example, if your character's
name is ??? (Sakura), the translator will likely translate it to
“cherry blossom”. If you define ??? as Sakura, then you won't
have to worry about that. Three, you only really need to
translate menus and items once. Once you have them figured
out, add them to your dictionary. This way, you can just select
your menu (perhaps from a saved selection?) and press Snap -
- instant menu translation! Four, I'm not positive about this, but
if you know that a string of kana is going to always mean a
particular kaniji, you could put the kana in the Japanese side
and the kanji in the English side. This would aid translators
since it wouldn't have to try and figure it out itself. Note that |
haven't tested that last one since | don't know enough kanji to

put it to the test.

Again, please remember that your dictionary will not be saved
unless you use the Save Table button.

Tweaking
Here are some other helpful features.

Pause Button: this is used to pause and unpause the emulator.

Scanline: this is used to determine on what scanline the
Selection Window will be updated. Some games will switch
their font tiles in and out of the PPU. If this happens, you may
need to change the scanline to a bigger number in order to see
the tiles you're looking for. For example, this happens a lot in
the game Metal Slader Glory.

Update every x frames: this is used to determine how often the
Selection Window is updated. The smaller the number, the
slower the emulator will go.

Selection Window checkbox: this is used to determine whether
or not the selection window should be updated. If you're not
going to be needing the Text Hooker for a while, you should
probably uncheck this box while you play.

Word Substitution checkbox: this is used to determine whether
or not word substitution will be used.

(han)dakuten mark position checkbox: this is used to tell the
text hooker where the dakuten and handakuten marks are
located in relation to the kana. Most games will use Above, but
some games that try to squeeze in as much text into a small

area as possible will use Right.

Features > Text Hooker > Reference

Features > Text Hooker > Reference > Text Hooker Table file
reference

| suppose this is the kind of thing that should be documented,
so here it is. When | started to make this thing, | was just using
Thingy tables. When | started to add other features, | knew |
needed to save them somewhere. It seemed kind of dumb to
me to store this information in separate files, so | decided |
would append the other sections to the end of the table files. In
the far off chance that there becomes some kind of archive for
Text Hooker table files, | decided to use a different extension.

A .tht file is comprised of three parts (and possibly more in the
future). The first part resembles a Thingy table, since it's more
or less that same thing. You have a hex byte value, and equals
sign, and the corresponding character after the equals sign.
The biggest difference from Thingy tables is that the tenten and
maru marks must be defined using the words tenten and maru.

The next section is the Selections storage. This section begins
with a

[selections]

declaration. What follows are hashes for saved selections
(name of selection, equals sign, hash). The hashes should be
safe for viewing and saving in any text editor that is capable of
viewing and saving Japanese text. These hashes are,
admittedly, under tested. If anyone can find a situation in which
the selection hashes are corrupted but the rest of the table file
IS not, please let me know.

Up next is the Word Substitution Dictionary. This section begins
with a

[words]

declaration. These lines are formatted in a Japanese=English
manner. You should be able to have Japanese or English on
either or both sides. It's nothing more than a list of values used
during a search and replace function.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Debug

Guides for the specific tools and settings under FCEUX's Debug menu.

Debugger

A tool for looking at game instructions in assembly language. With
experience,

one can use it to fix game patching errors, or find RAM and Game Genie
codes.

PPU Viewer

A tool that displays the current PPU contents and related information.
The PPU

viewer allows you to view the graphic squares that make up what's
displayed.

Name Table Viewer

A tool for displaying the current Name Table contents. Helps to isolate
PPU

and tile information, which allows the debugger to be used to check PPU
coding.

Hex Editor

A tool for displaying a game's RAM contents and for memory poking.
Also allows

for reading in the raw PPU data, copy/paste-ing RAM, and visually
debugging RAM.

Trace Logger

Captures assembly code instructions and outputs them to a file or the
window. Very

useful for modifying code, finding crash addresses, fixing transferred
routines, and

for comparing routine function between a game and a persistently buggy
NSF.

Code/Data Logger

Allows you to extract the data used by a game. Make patch demos, find
data

loaded by a game around a certain point, or just map out a single routine
run.

Game Genie Encoder/Decoder

Allows you to add Game Genie codes to the Cheats menu, decode
existing

ones to their component information, and (re)create a code with desired
values.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Debugger

Taken from the FCEUXDSP 1.07 documentation.

Introduction

The debugger is a powerful tool that reads, displays, and manipulates
assembly language instructions in a game.

Debugger Features

-When you hold the mouse over the left pane in the debugger, you can
now see the ROM file address of the data loaded there.

-Right-click in that pane, it will bring up the Hex Editor at that address so
you can immediately begin editing.

-Left-clicking in that pane brings up the inline assembler.

-"Break on bad opcode” feature; this can help you figure out where your
game is crashing. Middle-clicking on a byte will bring up the Game Genie
Encoder at that address, so you can easily make Game Genie codes.
-Debugging data like breakpoints or bookmarks are automatically saved
and restored when games are closed / opened.

-Ability to give breakpoints a brief description/name.

-All debugging information for addresses < $8000 into the name list file
romname.nes.ram.nl.

-Added a feature to NL files to support arrays.

-Range options for freezing / unfreezing addresses

-Dump RAM to file option

-Dump PPU memory to file option

-Automatically generated .deb debug files created if the debugger is
used.

Using Debugger

Symbolic Debugging

The most important feature (at least for me) that was introduced in
FCEUXD SP is symbolic debugging. With this new feature it's possible to
rename addresses in the disassembly window (like $C022) to easily
understandable names (like AddHealthpoints). It's also possible to add
comments to lines in the disassembly window.

To be able to use this feature it's necessary to create so called name list
files (*.(bank).nl/*.ram.nl, Ex: NES Test Cart (PD).nes.0.nl, NES Test Cart
(PD).nes.ram.nl) which contain all names and comments you wish to
display in the disassembly window. These files are plain ASCII files of the
following format (example follows):

$CO000#NewNamel#Commentl
$CO02##Comment2

$CO004#NewName2#
$C006#NewName3#MultilineComment-Partl
\MultilineComment-Part2
\MultilineComment-Part3
$C008/10#NewName4s#

Every line contains two # characters which separate the three parts of
one line: The first part (starting with a $ character) is the address to be
renamed. Optionally you can add a "/number" part which marks the
offsets as a beginning of an array of the given size (the size must be
specified in hex form). The second (optional) part is the new name of
that address. Whenever the line of that address is shown in the
disassembly window an extra line saying "Name: NewName" is shown
above it. Instructions referencing this address, for example JSR $C000
are also changed to JSR NewNamel (in that example). The third
(optional) part is the comment that's also added above the disassembly
line the comment refers to. It works exactly like the additional name line,
only the prefix of that line is different. Comment lines start with
"Comment: " rather than with "Name: ". Multi-lines comments are
possible. Lines starting with a \ character are just appended to the

comment of the preceding line. Multi-line comments are also shown in
multiple lines in the disassembly window.

Let's get back to the example.

The first line contains all three parts. Using this name list file all
references to the address

$CO000 are replaced with NewNamel and whenever line $C000 is shown
in the disassembly window an

additional comment is also visible right above the actual disassembled
line.

The second line defines only a comment while the third line defines only
a name. Following that

there's a multi-line comment definition for address $CO006.

The last line defines an array called NewName4 of size $10 (= 16) bytes
starting at offset $C008.

Now you know the format of the nl files but you do not yet know the
naming convention for the

file names. Due to the bank-swapping nature of the NES it's getting a
little bit difficult here.

Each bank needs it's own nl file. The naming convention goes like this:
Take the name of the ROM

file and just add ".X.nl" to it where the X is the hexadecimal
representation of the number of the

ROM bank. Suppose you have the ROM file "Faxanadu (U).nes" and you
want to create a nl file for

ROM bank 15. As 15 is OxOF in hex the name of the nl file would be
"Faxanadu (U).nes.F.nl". All

nl files go into the same directory as the ROM file itself.

There is also the *.ram.nl file specification, which allows you to substitute
RAM addresses for

execution addresses, and have those named as well. In this case, you
could use lines of this type:

$00A5S#Mic Test OK#00=Not Passed, 01=Passed

You can enable and disable symbolic debugging by clicking the checkbox

"Symbolic Debugging"” in

the debugger window. To forcibly reload the nl files of the currently active
ROM file press the

button with the text "Reload Symbols".

Arrays

The array feature is an easy way to group names and comments for
sequential offsets.

$C000/5#NewNamel#Commentl
IS equivalent to

$C000#NewNamel#Commentl

Inline Assembler

The debugger an Inline Assembler designed by Parasyte. To activate it,
left-click in the left pane of the debugger, beside the assembly display.

To use it, type in some code and press Enter to add it to the patch list. If
you make a mistake, press "Undo". Once the patch is set up the way you
want it, press "Apply". Be aware that this cannot be undone unless you
reload the ROM. Parasyte implemented this feature before | had the Hex
Editor working, otherwise | would have implemented a way to undo it
from there. Press "Save" to write to the ROM file on disk; note that this
will also save any changes you may have done in the Hex Editor.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

PPU Viewer

Introduction

The NES architecture includes a 6502 CPU as well as a custom video
controller known as a PPU (Picture Processing Unit). The PPU's video
memory is separated from the main CPU memory and can be
read/written via special ports (see PPU Memory).

The PPU viewer will display the contents of the current PPU memory. (It
does not alter game data in anyway).

Using PPU Viewer

Show on Scanline

This options makes it show what the PPU looks like when the screen is
drawing that scanline. It is useful for games like SMB, that swap pattern
tables mid-frame (status bar stuff).

Right clicking on one of the PPU panels cycles the palettes it is shown
with, though pattern palettes and then sprite ones

Putting the mouse cursor over a tile will display the tile address. Moving
cursor over palette color will give palette address.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Name Table Viewer
Introduction

This displays the name tables as they exist in PPU memory.
Furthermore, it shows you the game's current mirroring, and the current
state of the PPU's scroll registers (if the option for this is set). It also lets
you change the mirroring on the fly (which will break most games).

Using the Name Table Viewer

Note that the Name Table Viewer will display the name tables using
whatever CHR is present at the time the "Display on Scanline" scanline is
reached. So for example if it does not correctly display a game's status
bar, try setting it to update on a scanline in which the status bar is
displayed.

The same applies to the Scroll Lines: they display the state of the PPU
scroll registers when the "Display on Scanline” scanline is reached. So
for example if said scanline is within the game's status bar, it will not
display level scrolling because the horizontal scroll is always zero at the
time that scanline is drawn. To display the level scrolling, set it to update
on a scanline in which the level is displayed.

Display on scanline
This will show what it looks like when the NES has finished drawing that
many scanlines to screen including any PPU data scroll line movement

Getting Tile Addresses
Placing the mouse cursor over the name table image will display the tile
address of a given tile.

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Hex Editor

Introduction

The Hex editor is a very powerful memory viewing/editing tool and
obsoletes the Memory Viewer tool from the FCE Ultra and FCEU
Rerecording branches.

It can do a wide range of things. It allows you to view the entire RAM &
ROM contents in an expandable dialog Window. It makes it easy to edit
the game's RAM, PPU memory, and even its currently-loaded ROM data
by simply typing in values in the editor. You can also "freeze" parts of
RAM (to prevent the game from modifying the data there), search for
data, and even copy and paste data to/from the clipboard. Furthermore,
table files are supported, so you can edit a game's text in real-time and
see the result immediately.

Basically, it lets you tinker with any part of a game's RAM or ROM while it
IS running.

Using the Hex Editor
The Hex Editor lets you edit three major areas:

1. NES MEMORY

This allows you to directly edit all of the NES address space ($0000-
$FFFF). While you can easily modify RAM, or write directly to registers
by typing in data, you cannot modify ROM data ($8000-$FFFF) itself.
This is because most mappers have registers which are located in this
space; so writing there can trigger mapper operations that may cause the
game to crash or glitch if you don't know what you're doing. If you want
to edit the ROM itself, right-click on the offset and select "Go here in
ROM file"; that will take you directly to where you need to be so you can

start editing. You can also freeze RAM by clicking on it with the middle
mouse button, or by using the right-click menu. This works by adding it
directly to the Cheat List, which you can see from the Cheat Console.
Finally, the right-click menu can be used to quickly add a read or write
breakpoint to the debugger.

2. PPU MEMORY
This allows you to directly view and write to PPU memory (VRAM).

3. THE ROM FILE

This is possibly the coolest part of FCEUXD: It allows you to edit the
ROM file in real-time, i.e. while the game is running. If you make a
mistake, press Ctrl+Z or Edit->Undo to undo your change (then load a
save-state if the game crashed). If you have the Code/Data Logger
running, then bytes that were logged as code will be colored yellow, while
bytes logged as data will be colored blue. Bytes that have been logged
as code *and* data will be colored green.

The Hex Editor also has support for table files (*.tbl) to map bytes to text.
Each line consists of four characters of the form "xx=y", where "xx" is the
hex value, and "y" is the character that that value represents. | have also
added an extension to represent the Return key: xx=ret whereby
pressing the Return key will enter that value into the ROM. You can
copy/paste data or text by selecting it and using Ctrl+Z (to copy) and
Ctrl+V (to paste). Plus, there is an Edit->Find feature that you can use to
search for data. This feature should be fairly intuitive, so | won't bother to
explain it.

When you're done editing, remember to save the ROM file (File->Save)
or your changes will be lost when you close the ROM.

Why can't | edit NES memory beyond $80007?

NES memory from $8000-$FFFF is where the game's PRG-ROM code is
mapped. Whenever you type in a value in the NES memory editor, it
effectively writes that value to that address. Many games use mappers,

which are usually accessed by writing to $8000-$FFFF (which is read-
only)... and if *you* were to do so, it may trigger a bankswitch, which
could easily make the game crash. In any event, doing so will not modify
the ROM itself. What you *can* do, though, is edit the PRG-ROM itself
by right-clicking on the offset you wish to edit, and selecting "Go here in
the ROM file", which should take you to that spot in the ROM instead,
where you can change the data at instead.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Trace Logger
Introduction

The Trace Logger logs every executed instruction and every byte of ROM
accessed to the window, or a file if you prefer. Logging to a file is useful if
you just want to dump everything that was executed and then search
through it later. Logging to the window is useful when you wish to see
the instructions that were executed prior to a breakpoint being hit. Both
options produce the same data, but the desire to keep that data for a
short amount of time or a long amount of time will determine which is
best for you.

Using the Trace Logger

The Trace Logger is a very nice feature which logs each instruction as it
is being executed; this log can be output either to a file or the window. If
you choose to log to the window, you can set how many lines it will retain
before discarding old lines. The higher this setting, the more RAM it will
consume, but the more lines you'll have available to work with. Normally,
when logging to a window, the only time it shows the log is if you snap
the debugger or pause execution. The option to automatically update the
log window will keep the window updating while the game runs; this is
normally useless unless it is working with the Code/Data Logger to only
show newly-executed instructions.

The Trace Logger has extra options which work with the Code/Data
Logger so that it only shows instructions executed for the first time, or
those which access data for the first time. This can be quite useful for
finding certain key routines or finding otherwise impossible-to-find data in
almost any game. The best way to use this feature is in conjunction with
the option to automatically update the window while logging. Then, as
you play the game, you can watch new results appear at once. If you're

searching for something specific, try to get everything-- EXCEPT what
you're looking for-- to execute, then watch closely as what you're looking
for executes for the first time.

There are two ways to filter what the Code/Data Logger shows. The first
filter lets you log only newly-executed code (so that an instruction is not
logged again if it has already been logged). The second logs only
instructions when they access data which hadn't been accessed before.
Note that both filters can be used at once (which shows bytes that pass
either filter).

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Code/Data Logger

(Taken from the FCEUXD readme.txt)

Introduction

The Code/Data Logger makes it *much* easier to reverse-engineer NES
ROMs. The idea behind it is that a normal NES disassembler cannot
distinguish between code (which is executed) and data (which is read).
The Code/Data logger keeps track of what is executed and what is read
while the game is played, and stores this information in a .cdl file, which
is essentially a mask that tells which bytes in the ROM are code and
which are data. The file can then be used in conjunction with a suitable
disassembler (which | plan to make) to disassemble only the actual game
code, resulting in a much cleaner source code, with code and data
properly separated.

Using the Code/Data Logger

The Code/Data Logger keeps track of every byte in the ROM and records
whether it's code (is executed) or data (is read). In the future, | hope to
combine this with a suitable disassembler that will disassemble only
bytes marked as "code", in order to generate near-perfect source code
(provided you play through the game several times, very thoroughly, to
ensure everything gets logged). In order to get that feature to work, |
need to get the Address Label Logger working, in order to create all the
labels.

But right now, it is very useful for finding specific code and data by using
it with the Trace Logger (see above for instructions on doing this).
Furthermore, while it is running, the Hex Editor will color-code bytes
depending on whether they were logged as code or data. And it can also
be used to create a stripped NES ROM (see below).

Some notes: when you open another .cdl file, it does not clear the current
log; instead, it combines it with the information in the file. This can be
useful if you're trying to obtain a complete log, as multiple people can
play through the game and keep code/data logs, and then the results can
be combined. But if you would like to actually clear the code/data log,
press the "Reset Log" button.

A "stripped” NES ROM is one in which everything that was not logged by
the code/data logger is removed. This may be just a novelty feature,
however it can be useful because you can view the ROM in a Hex Editor,
and you'll see only the parts that were used while playing. Furthermore,
you could use it to create a demo ROM by only playing through the parts
you would like others to see.

To do so, follow these steps:
1. Open the Code/Data Logger, and press Start to begin logging.

2. Perform a soft and a hard reset while logging, in order to capture the
ROM's startup sequence. If you don't do so, you can distribute a save-
state file so they will start from within the game.

3. If the game has Save-RAM (e.g. Zelda), you will need to capture the
game's Save-RAM initialization routines; you can try to do so by deleting
the game's *.sav file and then perform a soft and hard reset (F10, F11)
again while logging.

4. Play through whatever levels you want present in the demo. Be sure to
perform every move, get every item, etc., so that the code and data
necessary for those things are logged. If, for example, you fail to perform
some special move, then if someone plays the stripped ROM and
attempts to perform that move, the game may very well crash or glitch

up.
5. Save the stripped NES ROM.

6. Rejoice, for it is done.

CDL log files are just a mask of the PRG-ROM,; that is, they are the same
size as the PRG-ROM, and each byte represents the corresponding byte
of the PRG-ROM. The format of each byte is like so (in binary):

xPdcAADC

C = Whether it was accessed as code.
D = Whether it was accessed as data.
AA = Into which ROM bank it was mapped when last accessed:
00 = $8000-$9FFF 01 = $A000-$BFFF
10 = $CO000-$DFFF 11 = $SEO0O0-$FFFF
¢ = Whether indirectly accessed as code.
(e.g. as the destination of a JMP ($nnnn) instruction)
d = Whether indirectly accessed as data.
(e.g. as the destination of an LDA ($nn),Y instruction)
P =If logged as PCM audio data.
X = unused.

CDL files make possible a number of things never before done. First, a
PCM data ripper could be created that scans for data that has the 'P' bit
set, in order to find/rip/play every PCM sample in a ROM. Also, itis
possible for someone to make a more intelligent ROM corruptor that only
corrupts data (by checking the 'D' bit). In any case, the Code/Data
Logger opens many new possibilities for discovering useful things in
games. Another interesting possibility (which is now partially supported)
would be to use the Code/Data Logger on an NSF file to create a
stripped NSF. Such an NSF would contain nothing but the relevant
subroutines and data required by each tune played; this would be helpful
to NSF rippers by removing irrelevant information. Thus, an NSF ripper
could create a stripped NSF by listening to each track while the
Code/Data Logger operates on it, and then saving the stripped NSF. It
should be noted that this capability, though tested and working on private
builds, is detrimental to the process of fixing broken NSF files. For this
reason, data logging is allowed for NSF files, but stripping NSF files of
unused data is disabled.

This help file has been generated by the freeware version of HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Game Genie Decoder/Encoder

This will take an NES address space PRG address ($8000-$FFFF), a
comparison value (for 8-letter GG codes; refer to a Game Genie code
FAQ for an explanation of what this does), and a Value that replaces the
addressed byte.

Filling in the Address and Value fields will produce a 6-letter code; if you
also fill out the Compare field, it will produce an 8-letter code. The code
so produced will appear in the Game Genie Code box immediately; you
can then click "Add to Cheat List" to activate it.

To decrypt a Game Genie code, enter it into the Game Genie Code box,
and the Address and Value fields will be automatically filled in, as will the
Compare field if it was an 8-letter code.

Adding Game Genie codes

In the Game Genie Code Decoder/Encoder window, type the code into
the Game Genie Code box and click "Add to Cheat List", which will add it
to the Cheat Search cheat list. You can then enable/disable them by
double-clicking the code in the box (a * means the code is active).

Making Game Genie codes permanent

Using the Game Genie Code Decoder/Encoder, enter in your code in the
"Game Genie Code" box, and under "Possible Affected ROM File
Addresses", a list of possible matches (usually from 1 to 5) is displayed.
Using the built-in Hex Editor, go to the first listed address in the ROM,
and change its value to the value given in the "Value" box (of the GG
code Decoder/Encoder window). If the desired effect isn't achieved, undo
the change (Ctrl+Z) and try the next address. Repeat until the desired
effect is achieved, and then save the ROM.

How do | make my own Game Genie codes?

First of all, you must:

* have a decent amount of ASM knowledge;
* know how to use the debugger;
* understand NES PRG-ROM bank switching.

Once you've found a part of PRG-ROM you want to change to create a
code effect, snap the Debugger (if it's not so already) and find the code's
location in the PRG-ROM's address space ($8000-$FFFF) (you'll want
the debugger snapped so the game won't swap banks out from under
you). Then, using the built-in Hex Editor, view the NES memory and go to
the PRG-ROM address you wish to modify, then right-click the byte and
choose "Create Game Genie Code at this Address". The Game Genie
Code Decoder/Encoder will appear, with the Address and Compare
boxes filled in (the Compare box represents the address's original value).
Enter the new value into the "Value" box.

An alternative way to enter the code is to locate the desired address in
the debugger, and then middle-click on it, which will summon the GG
Code Decoder/Encoder. Then enter the code as described above

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Lua Scripting

Lua is a scripting language similar to Perl or Python. It allows for logical
evaluation equivalent to languages like C but in a much more dynamic
way that eliminates much of the need to compile programs and worry
about low level resource management like deleting objects. In the
context of FCEUX, Lua allows for direct control of the emulator through
this logical construct.

What this means to the non-"programmer" is that it you can essentially
automate certain tasks in FCEUX, such as holding controller inputs,
displaying additional graphical information and saving/loading savestates.

A bit of previous programming knowledge will be useful in taking
advantage of this feature, but it is certainly not a requirement. Luais
specifically written with the intention of being easier than most languages
for anyone to understand and use.

Getting Started

The basics of Lua scripting, its implementation into FCEUX, and how to
get started using Lua.

Using Lua

How to use Lua and basic syntax/commands that are useable under
FCEUX.

Lua Functions List

A list of Lua functions available in FCEUX and a brief description of each.

Lua Bot

How to use Luau's version of Basic bot.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Using Lua scripting
Lua is built into FCEUX as of 2.1.2, and luapack DLL files are no longer
needed in this and later versions.

To run lua scripts in older versions of FCEUX, you will need the lua pack
which can be found here. The .dll files must be unzipped in the same
folder as fceux.exe.

Core Lua Documentation

If you have never programmed, you will probably want to start by learning
the basic of Lua, which is too broad for the scope of this help file. Try
searching on the Internet for "Lua tutorial”. As of this writing, it's official
homepage is http://www.lua.org/

If you are familiar with any programming language you will probably not
have too much difficulty adjusting to the syntax and structure of Lua. You
will probably also find useful information on the Internet.

GUI Frontend

To use a Lua script, you need to create one in a text editor. The name of
the file created should end in .lua to indicate that it is a Lua script.

To run a Lua script, choose "Run Lua Script" ***from where*** In the
dialog that pops up, click "Browse" and find the file you wish to run. This
will insert the path of this file into the dialog. You can then click on "Run”
to run the script or "Cancel" to return to FCEUX without running the
script.

To end a Lua script, choose "Stop Lua Script" ***from where***,

http://fceux.com/luapack
http://www.lua.org/

FCEUX Lua Basics

Your script will be constructed according to the rules of Lua, but you will
use FCEUX-specific functions to interact with the emulator. For example,
one of the most often-used functions is emu.frameadvance() which will
tell the emulator to advance exactly one frame, which is the basic unit of
time on an NES.

In general, your script will probably want to be run until you tell it to stop,
so it will look something like this:

emu.speedmode("normal”) -- Set the speed of the emulator
-- Declare and set variables or functions if needed

while true do

-- Execute instructions for FCEUX

emu.frameadvance() -- This essentially tells FCEUX to keep running
end

The way instructions are sent to FCEUX is through a set of specially
defined functions (and variables) which are called an API, the
specification of which follows.

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

Lua Functions

The following functions are available in FCEUX, in addition to standard
LUA capabilities:

Emu library

emu.poweron()
Executes a power cycle.

emu.softreset()

Executes a (soft) reset.

emu.speedmode(string mode)

Set the emulator to given speed. The mode argument can
be one of these:

"normal"

"nothrottle" (same as turbo on fceux)

"turbo"

"maximum"

emu. frameadvance()

Advance the emulator by one frame. It's like pressing
the frame advance button once.

Most scripts use this function in their main game loop
to advance frames. Note that you can also register
functions by various methods that run "dead",
returning control to the emulator and letting the
emulator advance the frame. For most people, using

frame advance in an endless while loop is easier to
comprehend so I suggest starting with that. This
makes more sense when creating bots. Once you move to
creating auxillary libraries, try the register()
methods.

emu.pause()

Pauses the emulator. FCEUX will not unpause until you
manually unpause it.

emu.unpause()
Unpauses the emulator.

emu.exec_count(int count)

emu.exec_time(int count)

emu.setrenderplanes(bool sprites, bool
background)

Toggles the drawing of the sprites and background
planes. Set to false or nil to disable a pane,
anything else will draw them.
emu.message(string message)

Displays given message on screen in the standard
messages position. Use gui.text() when you need to
position text.

int emu.framecount()

Returns the framecount value. The frame counter runs
without a movie running so this always returns a
value.

int emu.lagcount()

Returns the number of lag frames encountered. Lag
frames are frames where the game did not poll for
input because it missed the vblank. This happens when
it has to compute too much within the frame boundary.
This returns the number indicated on the lag counter.

bool emu.lagged()

Returns true if currently in a lagframe, false
otherwise.

bool emu.emulating()

Returns true if emulation has started, or false
otherwise. Certain operations such as using savestates
are invalid to attempt before emulation has started.
You probably won't need to use this function unless
you want to make your script extra-robust to being
started too early.

bool emu.readonly()
Alias: movie.readonly

Returns whether the emulator is in read-only state.
While this variable only applies to movies, it 1is
stored as a global variable and can be modified even

without a movie loaded. Hence, it is in the emu
library rather than the movie library.

emu.setreadonly(bool state)

Alias: movie.setreadonly

Sets the read-only status to read-only if argument is
true and read+write if false.

Note: This might result in an error if the medium of
the movie file is not writeable (such as in an archive
file).

While this variable only applies to movies, it 1is
stored as a global variable and can be modified even
without a movie loaded. Hence, it is in the emu
library rather than the movie library.

emu.registerbefore(function func)

Registers a callback function to run immediately
before each frame gets emulated. This runs after the
next frame's input is known but before it's used, so
this is your only chance to set the next frame's input
using the next frame's would-be input. For example, if
you want to make a script that filters or modifies
ongoing user input, such as making the game think
"left" is pressed whenever you press "right", you can
do it easily with this.

Note that this is not quite the same as code that's
placed before a call to emu.frameadvance. This
callback runs a little later than that. Also, you
cannot safely assume that this will only be called
once per frame. Depending on the emulator's options,
every frame may be simulated multiple times and your
callback will be called once per simulation. If for
some reason you need to use this callback to keep
track of a stateful linear progression of things
across frames then you may need to key your
calculations to the results of emu.framecount.

Like other callback-registering functions provided by

FCEUX, there is only one registered callback at a time
per registering function per script. If you register
two callbacks, the second one will replace the first,
and the call to emu.registerbefore will return the old
callback. You may register nil instead of a function
to clear a previously-registered callback. If a script
returns while it still has registered callbacks, FCEUX
will keep it alive to call those callbacks when
appropriate, until either the script is stopped by the
user or all of the callbacks are de-registered.

emu.registerafter(function func)

Registers a callback function to run immediately after
each frame gets emulated. It runs at a similar time as
(and slightly before) gui.register callbacks, except
unlike with gui.register it doesn't also get called
again whenever the screen gets redrawn. Similar
caveats as those mentioned in emu.registerbefore

apply.
emu.registerexit(function func)

Registers a callback function that runs when the
script stops. Whether the script stops on its own or
the user tells it to stop, or even if the script
crashes or the user tries to close the emulator, FCEUX
will try to run whatever Lua code you put in here
first. So if you want to make sure some code runs that
cleans up some external resources oOr saves your
progress to a file or just says some last words, you
could put it here. (Of course, a forceful termination
of the application or a crash from inside the
registered exit function will still prevent the code
from running.)

Suppose you write a script that registers an exit
function and then enters an infinite loop. If the user

clicks "Stop" your script will be forcefully stopped,
but then it will start running its exit function. If
your exit function enters an infinite loop too, then
the user will have to click "Stop" a second time to
really stop your script. That would be annoying. So
try to avoid doing too much inside the exit function.

Note that restarting a script counts as stopping it
and then starting it again, so doing so (either by
clicking "Restart" or by editing the script while it
is running) will trigger the callback. Note also that
returning from a script generally does NOT count as
stopping (because your script is still running or
waiting to run its callback functions and thus does
not stop... see here for more information), even if
the exit callback is the only one you have registered.

bool emu.addgamegenie(string str)

Adds a Game Genie code to the Cheats menu. Returns
false and an error message if the code can't be
decoded. Returns false if the code couldn't be added.
Returns true if the code already existed, or if it was
added.

Usage: emu.addgamegenie("NUTANT")

Note that the Cheats Dialog Box won't show the code
unless you close and reopen 1it.

bool emu.delgamegenie(string str)

Removes a Game Genie code from the Cheats menu.
Returns false and an error message if the code can't
be decoded. Returns false if the code couldn't be
deleted. Returns true if the code didn't exist, or if
it was deleted.

Usage: emu.delgamegenie("NUTANT")

Note that the Cheats Dialog Box won't show the code
unless you close and reopen 1it.

emu.print(string str)

Puts a message into the Output Console area of the Lua
Script control window. Useful for displaying usage
instructions to the user when a script gets run.

emu.getscreenpixel(int x, int y, bool
getemuscreen)

Returns the separate RGB components of the given
screen pixel, and the palette. Can be 0-255 by 0-239,
but NTSC only displays 0-255 x 8-231 of it. If
getemuscreen is false, this gets background colors
from either the screen pixel or the LUA pixels set,
but LUA data may not match the information used to put
the data to the screen. If getemuscreen is true, this
gets background colors from anything behind an LUA
screen element.

Usage is local r,g,b,palette = emu.getscreenpixel(5,
5, false) to retrieve the current red/green/blue
colors and palette value of the pixel at 5x5.

Palette value can be 0-63, or 254 if there was an
error.

You can avoid getting LUA data by putting the data

into a function, and feeding the function name to
emu.registerbefore.

FCEU library

The FCEU library is the same as the emu library. It 1is

left in for backwards compatibility. However, the emu
library 1is preferred.

ROM Library

rom.readbyte(int address)
rom.readbyteunsigned(int address)

Get an unsigned byte from the actual ROM file at the
given address.

This includes the header! It's the same as opening the
file in a hex-editor.

rom.readbytesigned(int address)

Get a signed byte from the actual ROM file at the
given address. Returns a byte that is signed.

This includes the header! It's the same as opening the
file in a hex-editor.

Memory Library

memory.readbyte(int address)
memory.readbyteunsigned(int address)

Get an unsigned byte from the RAM at the given
address. Returns a byte regardless of emulator. The
byte will always be positive.

memory.readbyterange(int address, int length)
Get a length bytes starting at the given address and

return it as a string. Convert to table to access the
individual bytes.

memory.readbytesigned(int address)

Get a signed byte from the RAM at the given address.
Returns a byte regardless of emulator. The most
significant bit will serve as the sign.

memory.writebyte(int address, int value)

Write the value to the RAM at the given address. The
value is modded with 256 before writing (so writing
257 will actually write 1). Negative values allowed.

int memory.getregister(cpuregistername)

Returns the current value of the given hardware
register.

For example, memory.getregister("pc") will return the
main CPU's current Program Counter.

Valid registers are: "a", "x", "y", "s", "p", and
IIpCII]

memory.setregister(string cpuregistername, 1int
value)

Sets the current value of the given hardware register.
For example, memory.setregister("pc",0x200) will
change the main CPU's current Program Counter to
0x200.,

Valid registers are: "a", "x", "y", "s", "p", and
IIpCII]

You had better know exactly what you're doing or
you're probably just going to crash the game if you
try to use this function. That applies to the other
memory.write functions as well, but to a lesser
extent.

memory.register(int address, [int size,]
function func)

memory.registerwrite(int address, [int size,]
function func)

Registers a function to be called immediately whenever
the given memory address range 1is written to.

size is the number of bytes to "watch". For example,
if size is 100 and address is 0x0200, then you will
register the function across all 100 bytes from 0x0200
to Ox0263. A write to any of those bytes will trigger
the function. Having callbacks on a large range of
memory addresses can be expensive, so try to use the
smallest range that's necessary for whatever it is
you're trying to do. If you don't specify any size
then it defaults to 1.

The callback function will receive two arguments,
(address, size) indicating what write operation
triggered the callback. If you don't care about that
extra information then you can ignore it and define
your callback function to not take any arguments. The
value that was written is NOT passed into the callback
function, but you can easily use any of the
memory.read functions to retrieve it.

You may use a memory.write function from inside the
callback to change the value that just got written.
However, keep in mind that doing so will trigger your
callback again, so you must have a '"base case" such as
checking to make sure that the value is not already
what you want it to be before writing it. Another,
more drastic option is to de-register the current
callback before performing the write.

If func is nil that means to de-register any memory

write callbacks that the current script has already
registered on the given range of bytes.

memory.registerexec(int address, [int size,]
function func)

memory.registerrun(int address, [int size,]
function func)

memory.registerexecute(int address, [int size,]
function func)

Registers a function to be called immediately whenever
the emulated system runs code located in the given
memory address range.

Besides that, most of the information about
memory.register applies to this function as well.

Joypad Library

table joypad.get(int player)
table joypad.read(int player)

Returns a table of every game button, where each entry
is true if that button is currently held (as of the
last time the emulation checked), or false if it is
not held. This takes keyboard inputs, not Lua. The
table keys look like this (case sensitive):

up, down, left, right, A, B, start, select

Where a Lua truthvalue true means that the button 1is
set, false means the button is unset. Note that only
"false" and "nil" are considered a false value by
Lua. Anything else is true, even the number 0.

joypad.read left in for backwards compatibility with
older versions of FCEU/FCEUX.

table joypad.getdown(int player)
table joypad.readdown(int player)

Returns a table of only the game buttons that are
currently held. Each entry is true if that button 1is
currently held (as of the last time the emulation
checked), or nil if it is not held.

table joypad.getup(int player)
table joypad.readup(int player)

Returns a table of only the game buttons that are not
currently held. Each entry is nil if that button is
currently held (as of the last time the emulation
checked), or false if it is not held.

joypad.set(int player, table input)
joypad.write(int player, table input)

Set the inputs for the given player. Table keys look
like this (case sensitive):

up, down, left, right, A, B, start, select

There are 4 possible values: true, false, nil, and
"invert".

true - Forces the button on
false - Forces the button off
nil - User's button press goes through unchanged

"invert'"- Reverses the user's button press

Any string works in place of "invert". It 1is
suggested as a convention to use "invert" for
readability, but strings like "inv", "Weird switchy
mechanism", "", or "true or false" works as well as
"invert".

nil and "invert" exists so the script can control
individual buttons of the controller without entirely
blocking the user from having any control. Perhaps
there is a process which can be automated by the
script, like an optimal firing pattern, but the user
still needs some manual control, such as moving the
character around.

joypad.write left in for backwards compatibility with
older versions of FCEU/FCEUX.

Zapper Library

table zapper.read()

Returns the zapper data

When no movie is loaded this input is the same as the
internal mouse input (which is used to generate zapper
input, as well as the arkanoid paddle).

When a movie is playing, it returns the zapper data in
the movie code.

The return table consists of 3 values: x, y, and

fire. x and y are the X,y coordinates of the zapper
target in terms of pixels. fire represents the zapper
firing. O = not firing, 1 = firing

Note: The zapper is always controller 2 on the NES so
there is no player argument to this function.

Input Library

table input.get()
table input.read()

Reads input from keyboard and mouse. Returns pressed
keys and the position of mouse in pixels on game
screen. The function returns a table with at least
two properties; table.xmouse and table.ymouse.
Additionally any of these keys will be set to true if
they were held at the time of executing this function:
leftclick, rightclick, middleclick, capslock, numlock,
scrolllock, ©, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D,
E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V,
W, X, Y, Z, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10,
F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21,
F22, F23, F24, backspace, tab, enter, shift, control,
alt, pause, escape, space, pageup, pagedown, end,
home, left, up, right, down, numpad®, numpadil,
numpad2, numpad3, numpad4, numpad5, numpad6, numpad7,
numpad8, numpad9, numpad*, insert, delete, numpad+,
numpad-, numpad., numpad/, semicolon, plus, minus,
comma, period, slash, backslash, tilde, quote,
leftbracket, rightbracket.

string input.popup
Alias: gui.popup

Requests input from the user using a multiple-option
message box. See gui.popup for complete usage and
returns.

Savestate Library

object savestate.object(int slot = nil)

Create a new savestate object. Optionally you can save
the current state to one of the predefined slots(1-10)
using the range 1-9 for slots 1-9, and 10 for 0,
QWERTY style. Using no number will create an
"anonymous" savestate.

Note that this does not actually save the current

state! You need to create this value and pass it on to
the load and save functions in order to save it.

Anonymous savestates are temporary, memory only
states. You can make them persistent by calling
memory.persistent(state). Persistent anonymous states
are deleted from disk once the script exits.

object savestate.create(int slot = nil)

savestate.create is identical to savestate.object,
except for the numbering for predefined slots(1-10, 1
refers to slot 0, 2-10 refer to 1-9). It's being left
in for compatibility with older scripts, and
potentially for platforms with different internal
predefined slot numbering.

savestate.save(object savestate)

Save the current state object to the given savestate.
The argument is the result of savestate.create(). You
can load this state back up by calling
savestate.load(savestate) on the same object.

savestate.load(object savestate)

Load the the given state. The argument is the result
of savestate.create() and has been passed to
savestate.save() at least once.

If this savestate is not persistent and not one of the
predefined states, the state will be deleted after
loading.

savestate.persist(object savestate)

Set the given savestate to be persistent. It will not
be deleted when you load this state but at the exit of

this script instead, unless it's one of the predefined
states. If it is one of the predefined savestates it
will be saved as a file on disk.

savestate.registersave(function func)

Registers a callback function that runs whenever the
user saves a state. This won't actually be called when
the script itself makes a savestate, so none of those
endless loops due to a misplaced savestate.save.

As with other callback-registering functions provided
by FCEUX, there is only one registered callback at a
time per registering function per script. Upon
registering a second callback, the first is kicked out
to make room for the second. In this case, it will
return the first function instead of nil, letting you
know what was kicked out. Registering nil will clear
the previously-registered callback.

savestate.registerload(function func)

Registers a callback function that runs whenever the
user loads a previously saved state. It's not called
when the script itself loads a previous state, so
don't worry about your script interrupting itself just
because it's loading something.

The state's data is loaded before this function runs,
SO0 you can read the RAM immediately after the user
loads a state, or check the new framecount.
Particularly useful if you want to update lua's
display right away instead of showing junk from before
the loadstate.

savestate.loadscriptdata(int location)

Accuracy not yet confirmed.

Intended Function, according to snes9x LUA
documentation:

Returns the data associated with the given savestate
(data that was earlier returned by a registered save
callback) without actually loading the rest of that
savestate or calling any callbacks. location should be
a save slot number.

Movie Library

bool movie.active()

Returns true if a movie is currently loaded and false
otherwise. (This should be used to guard against Lua
errors when attempting to retrieve movie information).

int movie.framecount()

Returns the current frame count. (Has the same affect
as emu.framecount)

string movie.mode()

Returns the current state of movie playback. Returns
one of the following:

- "record"

- "playback"
- "finished"
- nil

movie.rerecordcounting(bool counting)
Turn the rerecord counter on or off. Allows you to do

some brute forcing without inflating the rerecord
count.

movie.stop()
movie.close()

Stops movie playback. If no movie is loaded, it throws
a Lua error.

int movie.length()

Returns the total number of frames of the current
movie. Throws a Lua error if no movie 1is loaded.

string movie.name()
string movie.getname()

Returns the filename of the current movie with path.
Throws a Lua error if no movie is loaded.

movie.getfilename()

Returns the filename of the current movie with no
path. Throws a Lua error if no movie is loaded.

movie.rerecordcount()

Returns the rerecord count of the current movie.
Throws a Lua error if no movie is loaded.

movie.replay()
movie.playbeginning()

Performs the Play from Beginning function. Movie mode
is switched to read-only and the movie loaded will
begin playback from frame 1.

If no movie is loaded, no error is thrown and no
message appears on screen.

bool movie.readonly()

bool movie.getreadonly()
Alias: emu.getreadonly

FCEUX keeps the read-only status even without a movie
loaded.

Returns whether the emulator is in read-only state.

While this variable only applies to movies, it 1is
stored as a global variable and can be modified even
without a movie loaded. Hence, it is in the emu
library rather than the movie library.

movie.setreadonly(bool state)
Alias: emu.setreadonly

FCEUX keeps the read-only status even without a movie
loaded.

Sets the read-only status to read-only if argument is
true and read+write if false.

Note: This might result in an error if the medium of
the movie file is not writeable (such as in an
archive file).

While this variable only applies to movies, it 1is
stored as a global variable and can be modified even

without a movie loaded. Hence, it is in the emu
library rather than the movie library.

bool movie.recording()

Returns true if there is a movie loaded and in record
mode.

bool movie.playing()

Returns true if there is a movie loaded and in play
mode.

bool movie.ispoweron()

Returns true if the movie recording or loaded started
from 'Start'.

Returns false if the movie uses a save state.
Opposite of movie.isfromsavestate()

bool movie.isfromsavestate()

Returns true if the movie recording or loaded started
from 'Now'.

Returns false if the movie was recorded from a reset.
Opposite of movie.ispoweron()

string movie.name()

If a movie is loaded it returns the name of the movie,
else it throws an error.

bool movie.readonly()

Returns the state of read-only. True if in playback
mode, false if in record mode.

GUI Library

gui.pixel(int x, int y, type color)
gui.drawpixel(int x, int y, type color)
guli.setpixel(int x, 1int y, type color)
gui.writepixel(int x, int y, type color)

Draw one pixel of a given color at the given position
on the screen. See drawing notes and color notes at

the bottom of the page.
gui.getpixel(int x, int vy)

Returns the separate RGBA components of the given
pixel set by gui.pixel. This only gets LUA pixels set,
not background colors.

Usage is local r,g,b,a = gui.getpixel(5, 5) to
retrieve the current red/green/blue/alpha values of
the LUA pixel at 5x5.

See emu.getscreenpixel() for an emulator screen
variant.

gui.line(int x1, int y1, int x2, int y2 [,
color [, skipfirst]])

gui.drawline(int x1, int y1, int x2, int y2 [,
color [, skipfirst]])

Draws a line between the two points. The x1,y1l
coordinate specifies one end of the line segment, and
the x2,y2 coordinate specifies the other end. If
skipfirst is true then this function will not draw
anything at the pixel x1,y1l, otherwise it will.
skipfirst is optional and defaults to false. The
default color for the line is solid white, but you may
optionally override that using a color of your choice.
See also drawing notes and color notes at the bottom
of the page.

gui.box(int x1, int y1, int x2, int y2 [,
fillcolor [, outlinecolor]]))

gui.drawbox(int x1, int y1, int x2, int y2 [,
fillcolor [, outlinecolor]]))

gui.rect(int x1, int y1, int x2, int y2 [,
fillcolor [, outlinecolor]]))

gui.drawrect(int x1, int y1, int x2, int y2 [,
fillcolor [, outlinecolor]]))

Draws a rectangle between the given coordinates of the
emulator screen for one frame. The x1,yl coordinate
specifies any corner of the rectangle (preferably the
top-left corner), and the x2,y2 coordinate specifies
the opposite corner.

The default color for the box is transparent white
with a solid white outline, but you may optionally
override those using colors of your choice. Also see
drawing notes and color notes.

gui.text(int x, int y, string str [, textcolor
[, backcolor]])

guli.drawtext(int x, int y, string str [,
textcolor [, backcolor]])

Draws a given string at the given position. textcolor
and backcolor are optional. See 'on colors' at the end
of this page for information. Using nil as the input
or not including an optional field will make it use
the default.

gui.parsecolor(color)

Returns the separate RGBA components of the given
color.

For example, you can say local r,g,b,a =
gui.parsecolor('orange') to retrieve the
red/green/blue values of the preset color orange. (You
could also omit the a in cases like this.) This uses
the same conversion method that FCEUX uses internally
to support the different representations of colors
that the GUI library uses. Overriding this function
will not change how FCEUX interprets color values,

however.

gul.savescreenshot()

Makes a screenshot of the FCEUX emulated screen, and
saves it to the appropriate folder. Performs
identically to pressing the Screenshot hotkey.

string gui.gdscreenshot()

Takes a screen shot of the image and returns it in the
form of a string which can be imported by the gd
library using the gd.createFromGdStr() function.

This function is provided so as to allow FCEUX to not
carry a copy of the gd library itself. If you want raw
RGB32 access, skip the first 11 bytes (header) and
then read pixels as Alpha (always 0), Red, Green,
Blue, left to right then top to bottom, range is 0-255
for all colors.

Warning: Storing screen shots in memory 1is not
recommended. Memory usage will blow up pretty quick.
One screen shot string eats around 230 KB of RAM.

gui.gdoverlay([int dx=0, int dy=0,] string str
[, sx=0, sy=0, sw, sh] [, float alphamul=1.0])
gui.image([int dx=0, int dy=0,] string str [,
sx=0, sy=0, sw, sh] [, float alphamul=1.0])
guli.drawimage([int dx=0, int dy=0,] string str
[, sx=0, sy=0, sw, sh] [, float alphamul=1.0])

Draws an image on the screen. gdimage must be in
truecolor gd string format.

Transparency is fully supported. Also, if alphamul is
specified then it will modulate the transparency of
the image even if it's originally fully opaque.

(alphamul=1.0 is normal, alphamul=0.5 is doubly
transparent, alphamul=3.0 is triply opaque, etc.)

dx,dy determines the top-left corner of where the
image should draw. If they are omitted, the image will
draw starting at the top-left corner of the screen.

gui.gdoverlay is an actual drawing function (like
gui.box and friends) and thus must be called every
frame, preferably inside a gui.register'd function, if
you want it to appear as a persistent image onscreen.

Here is an example that loads a PNG from file,
converts it to gd string format, and draws it once on
the screen:

local gdstr = gd.createFromPng('"myimage.png"):gdStr()
gui.gdoverlay(gdstr)

gui.opacity(int alpha)

Scales the transparency of subsequent draw calls. An
alpha of 0.0 means completely transparent, and an
alpha of 1.0 means completely unchanged (opaque). Non-
integer values are supported and meaningful, as are
values greater than 1.0. It is not necessary to use
this function (or the less-recommended
gui.transparency) to perform drawing with
transparency, because you can provide an alpha value
in the color argument of each draw call. However, it
can sometimes be convenient to be able to globally
modify the drawing transparency.

gui.transparency(int trans)

Scales the transparency of subsequent draw calls.
Exactly the same as gui.opacity, except the range 1is
different: A trans of 4.0 means completely
transparent, and a trans of 0.0 means completely

unchanged (opaque).
function gui.register(function func)

Register a function to be called between a frame being
prepared for displaying on your screen and it actually
happening. Used when that 1 frame delay for rendering
is not acceptable.

string gui.popup(string message [, string type

= "ok"™ [, string icon = "message"]])
string input.popup(string message [, string
type = "yesno" [, string icon = "question"]])

Brings up a modal popup dialog box (everything stops
until the user dismisses it). The box displays the
message tostring(msg). This function returns the name
of the button the user clicked on (as a string).

type determines which buttons are on the dialog box,
and it can be one of the following: 'ok', 'yesno',
'yesnocancel', 'okcancel', 'abortretryignore'.

type defaults to 'ok' for gui.popup, or to 'yesno' for
input.popup.

icon indicates the purpose of the dialog box (or more
specifically it dictates which title and icon 1is
displayed in the box), and it can be one of the
following: 'message', 'question', 'warning', 'error'.
icon defaults to 'message' for gui.popup, or to
"question' for input.popup.

Try to avoid using this function much if at all,
because modal dialog boxes can be irritating.

Linux users might want to install xmessage to perform
the work. Otherwise the dialog will appear on the
shell and that's less noticeable.

Bitwise Operations

All the following functions are left for backward
compatibility, since LuaBitOp is embedded in FCEUX.

int AND(int n1, int n2, ..., int nn)

Binary logical AND of all the given integers. This
function compensates for Lua's lack of it.

int OR(int n1, int n2, ..., int nn)

Binary logical OR of all the given integers. This
function compensates for Lua's lack of it.

int XOR(int n1, int n2, ..., int nn)

Binary logical XOR of all the given integers. This
function compensates for Lua's lack of it.

int BIT(int n1, int n2, ..., int nn)

Returns an integer with the given bits turned on.
Parameters should be smaller than 31.

Appendix

On drawing

A general warning about drawing is that it is always
one frame behind unless you use gui.register. This 1is
because you tell the emulator to paint something but
it will actually paint it when generating the image
for the next frame. So you see your painting, except
it will be on the image of the next frame. You can
prevent this with gui.register because it gives you a
quick chance to paint before blitting.

http://bitop.luajit.org/

Dimensions & color depths you can paint in:
--320%x239, 8bit color (confirm?)
256x224, 8bit color (confirm?)

On colors

Colors can be of a few types.

Int: use the a formula to compose the color as a
number (depends on color depth)

String: Can either be a HTML colors, simple colors, or
internal palette colors.

HTML string: "#rrggbb" ("#228844") or #rrggbbaa if
alpha is supported.

Simple colors: "clear", "red", "green", "blue",
"White", "blaCk", ngrayn’ ngreyn’ norangen’ "yellOW",
"green", "teal", "cyan", "purple", "magenta".

Array: Example: {255,112,48,96} means {red=255,
green=112, blue=48, alpha=96}

Table: Example: {r=255,9=112,b=48,a=96} means
{red=255, green=112, blue=48, alpha=96}

Palette: Example: "POO" for Palette 00. "P3F" for
palette 3F. P40-P7F are for LUA.

For transparancy use "clear".

2008

HelpNDoc

http://www.ibe-software.com/products/software/helpndoc/

(written by gFox)
Introduction

Lua is a scripting language. It is used in games like Farcry and World of
Warcraft (and many other games and applications!). Even though you
can find all kinds of tutorials online, let me help you with the basics.

| will assume you are at least somewhat familiar with the basics of
programming. So basic stuff like arrays, variables, strings, loops and if-
then-else and branching are not explained here.

A hello world EmuLua program looks like this:

while (true) do
gui.text(50,50,"Hello world!);
emu.frameadvance();

end,;

When you load the script, the emulator will sort of go into pause mode
and hand controls over to Lua (you!). Hence you are responsible for
frameadvancing the emulator.

IF YOU DO NOT CALL emu.frameadvance AT THE CYCLE OF THE
MAIN LOOP YOU WILL FREEZE THE EMULATOR! There. You have
been warned. Don't worry though, you'll make this mistake at least once.
Just force-quit the application and try again :)

Syntax

Now then. Just like any other language, Lua has a few quirks you should
be aware of.

First of all, if's require a then and end. After a couple of days intensive
Lua coding, | still make this mistake myself, but the Lua interpreter will
prompt you of such errors on load, so don't worry too much about it. So:

if (something) then
dostuff
end,;

Lua uses nil instead of null.

There are only two values that evaluate to "false", these are "nil" and
"false". ANYTHING else will evaluate to true, even O or the empty string.

Comments are denoted by two consecutive dashes; --. Anything after it
on the same line is a comment and ignored by Lua. There is no /* */ type
of commenting in Lua.

Variables have a local and global scope. You explicitly make a variable
local by declaring it with the "local" keyword.

somethingglobal; -- accessible by any function or flow
local something; -- only known to the same or deeper scope as where it
was declared

Note that variables declared in for loops (see below) are always
considered local.

Arrays are called tables in Lua. To be more precise, Lua uses associative
arrays.

Do not rely on the table.length() when your table can contain nil values,
this function stops when it encounters a nil value, thus possibly cutting
your table short.

One experienced programmers will have to get used to is the table offset;
tables start at index 1, not 0. That's just the way it is, deal with it.

There are a few ways to create a table:

local thl1 = {}; -- empty table

local thl2 = {"a","b","c","d"}; -- table with 5 strings
local thl3 = {a=1,b=2,c=3}; -- associative table with 3 numbers
local thl4 = {"a",b=2,c="x","d"=5}; -- associative table with mixed content

Note that you can mix up the data in one table, as shown by tbl4.

You can refer to table values in a few equivalent manners, using the
examples above:

tbl1[1] -- = nil because tbl1 is empty
tbl2[2] -- = "b"

tbl3['a"] --=1

tbl4.b -- =2

tbl2.3 -- ="c"

When the argument of a function is just a table, the parantheses "()" are
optional. So for instance:

processTable({a=2,b=3});

Is equivalent to
processTable{a=2,b=3};

Another notation that's equivalent is

filehandle.read(filehandle, 5);
filehandle:read(5);

When using the colon notation ":" Lua will call the function adding the
self-reference to the front of the parameterstack.

Functions behave like objects and are declared in the follow manner:
function doSomething(somevalue, anothervalue)

dostuffhere
end;

So no curly braces "{}"!
Some flow control:
for i=0,15 do
-- do stuff here, i runs from 0 to 15 (inclusive!)
end;
for key,value in pairs(table) do
-- do stuff here. pairs will iterate through the table, splitting the keys and
values
end;
while (somethingistrue) do
end;
if (somethingistrue) then
end;
if (somethingistrue) then
else
end;
if (somethingistrue) then
elseif (somethingelseistrue) then
end;
For comparison, you only have to remember that the exclamationmark is

not used. Not equal "I=" is written like tilde-equals "~=" and if
('something) then ... is written with "not " in front of it; if (not something)

then...

For easy reference to the standard libraries look on the bottom half of this
page: http://www.lua.org/manual/5.1/

Lua in FCEUX

Now then, let's get to the emulator specifics!

To load a Lua script in FCEU first load a rom (Lua can only do things after
each frame cycle so load a rom first). Go to file, at the bottom choose
Run Lua Script and select and load the file.

When Lua starts, the emulator pauses and hands control over to Lua.
Lua (that's you!) decides when the next frame is processed. That's why
it's very common to write an endless while loop, exiting the main loop of a
script will exit the script and hand control back to the emulator. This also
happens when a script unexpectingly crashes.

A bare script looks like this:

while (true) do
emu.frameadvance();
end;

And is about equal to not running Lua at all. The frameadvance function
is the same called internally, so no loss of speed there!

Bitwise operators:

Lua does not have bitwise operators, so we supply some for you. These
are common bitwise operators, nothing fancy.

AND(a,b);

OR(a,b);

XOR(a,b);

BIT(n); -- returns a number with only bit n set (1)

The emulator specific Lua is equal to the one of snes9x, with some
platform specific changes (few buttons, for instance).

You can find the reference here: http://dehacked.2y.net/snes9x-lua.htmi
The following is a quick reference, you can go to the snes9x reference for
more details.

To paint stuff on screen, use the gui table. This contains a few predefined
functions to manipulate the main window. For any coordinate, 0,0 is the
top-left pixel of the window. You have to prevent out-of-bound errors
yourself for now. If a color can be passed on, it is a string. HTML-syntax
Is supported ("#34053D"), as well as a FEW colors ("red", "green", "blue"

).

gui.text(x, y, str); -- Print a line to the window, you can use \n for a return
but it will only work once

gui.pixel(x, y, color); -- plot a pixel at the given coordinate

gui.line(x1, y1, x2, y2, color); -- plot a line from x1,y1 to x2,y2
gui.box(x1, y1, x2, y2, color); -- draw a square from x1,yl to x2,y2
gui.popup(str); -- pops up a messagebox informing the user of
