
.fm2
Technical	Information	››	Movie	&	Savestate	formats	››

	 	

FCEUX	Movie	File	format
FCEUX	uses	a	new	movie	file	format	-	.fm2.

This	differs	from	the	previous	FCE	Ultra	movie	format	(.fcm)	in	the
following	ways:

It	is	text	based	by	default;	allowing	easy	movie	editing/splicing
An	imbedded	GUID	so	FCEUX	can	tell	if	a	savestate	belongs	to	a
movie	file
Movies	recorded	from	Start	(Power-on)	no	longer	have	a	redundant
savestate
Contains	mouse	input	for	recording	the	Zapper	&	Arkanoid	Paddle

Format

FM2	consists	of	two	parts:	Header	and	Input	Log.
The	header	is	always	in	ASCII	plain	text	format.	It	consists	of	several
key-value	pairs.
The	input	log	section	can	be	identified	by	it	starting	with	a	|	(pipe).
The	input	log	section	can	be	either	in	ASCII	plain	text	format	or	in	binary
format.
The	input	log	section	terminates	at	EOF,	unless	the	length	key	is
specified	in	header.
Newlines	may	be	\r\n	or	\n.

Header

Key-value	pairs	consist	of	a	key	identifier,	followed	by	a	space	separator,
followed	by	the	value	text.
Value	text	is	always	terminated	by	a	newline,	which	the	value	text	does

not	include.
The	value	text	is	parsed	differently	depending	on	the	type	of	the	key.
The	key-value	pairs	may	be	in	any	order,	except	that	the	first	key	must	be
version.

Integer	keys	(also	used	for	booleans,	with	a	1	for	true	and	0	for	false)
must	have	a	value	that	can	be	stored	as	int32:

-	version	(required)	-	the	version	of	the	movie	file	format;	for	now	it	is
always	3

-	emuVersion	(required)	-	the	version	of	the	emulator	used	to	produce
the	movie

-	rerecordCount	(optional)	-	the	rerecord	count
-	palFlag	(bool)	(optional)	-	true	if	the	movie	uses	PAL	timing
-	NewPPU	(bool)	(optional)	-	true	if	the	movie	uses	New	PPU
-	FDS	(bool)	(optional)	-	true	if	movie	was	recorded	on	a	Famicom	Disk
System	(FDS)	game

-	fourscore	(bool)	-	true	if	a	fourscore	was	used.	If	fourscore	is	not	used,
then	port0	and	port1	are	required

-	port0	-	indicates	the	type	of	input	device	attached	to	the	port	0.
Supported	values	are:
				SI_NONE	=	0
				SI_GAMEPAD	=	1
				SI_ZAPPER	=	2

-	port1	-	indicates	the	type	of	input	device	attached	to	the	port	1.
Supported	values	are:
				SI_NONE	=	0
				SI_GAMEPAD	=	1
				SI_ZAPPER	=	2

-	port2	(required)	-	indicates	the	type	of	the	FCExp	port	device	which
was	attached.	Supported	values	are:
				SIFC_NONE	=	0

-	binary	(bool)	(optional)	-	true	if	input	log	is	stored	in	binary	format

-	length	(optional)	-	movie	size	(number	of	frames	in	the	input	log).	If	this
key	is	specified	and	the	number	is	>=	0,	the	input	log	ends	after	specified
number	of	records,	and	any	remaining	data	should	not	be	parsed.	This
key	is	used	in	fm3	format	to	allow	storing	extra	data	after	the	end	of	input
log

String	keys	have	values	that	consist	of	the	remainder	of	the	key-value
pair	line.	As	a	consequence,	string	values	cannot	contain	newlines.

-	romFilename	(required)	-	the	name	of	the	file	used	to	record	the	movie
-	comment	(optional)	-	simply	a	memo

by	convention,	the	first	token	in	the	comment	value	is	the	subject	of
the	comment
by	convention,	subsequent	comments	with	the	same	subject	should
have	their	ordering	preserved	and	may	be	used	to	approximate	multi-
line	comments
by	convention,	the	author	of	the	movie	should	be	stored	in
comment(s)	with	a	subject	of:	author

Example:
comment	author	adelikat

-	subtitle	(optional)	-	a	message	that	will	be	displayed	on	screen	when
movie	is	played	back	(unless	Subtitles	are	turned	off,	see	Movie	options)

by	convention,	subtitles	begin	with	the	word	"subtitle"
by	convention,	an	integer	value	following	the	word	"subtitle"	indicates
the	frame	that	the	subtitle	will	be	displayed
by	convention,	any	remaining	text	after	the	integer	is	considered	to
be	the	string	displayed

Example:
subtitle	1000	Level	Two

At	frame	1000	the	words	"Level	Two"	will	be	displayed	on	the	screen

-	guid	(required)	-	a	unique	identifier	for	a	movie,	generated	when	the
movie	is	created,	which	is	used	when	loading	a	savestate	to	make	sure	it
belongs	to	the	current	movie
GUID	keys	have	a	value	which	is	in	the	standard	guide	format:

452DE2C3-EF43-2FA9-77AC-0677FC51543B

-	romChecksum	(required)	-	the	base64	of	the	hexified	MD5	hash	of	the
ROM	which	was	used	to	record	the	movie

-	savestate	(optional)	-	a	fcs	savestate	blob,	in	case	a	movie	was
recorded	from	savestate		
Hex	string	keys	(used	for	binary	blobs)	have	a	value	that	is	like
0x0123456789ABCDEF...

Input	log

The	input	log	section	consists	of	movie	records	either	in	the	form	of	text
lines	or	in	the	form	of	binary	data.

Text	format	(default	format):

Every	frame	of	the	movie	is	represented	by	line	of	text	beginning	and
ending	with	a	|	(pipe).
The	fields	in	the	line	are	as	follows,	except	when	fourscore	is	used.
|commands|port0|port1|port2|

Field	commands	is	a	variable	length	decimal	integer	which	is	interpreted
as	a	bit	field	corresponding	to	miscellaneous	input	states	which	are	valid
at	the	start	of	the	frame.	Current	values	for	this	are:

1	=	Soft	Reset
2	=	Hard	Reset	(Power)
4	=	FDS	Disk	Insert
8	=	FDS	Disk	Select
16	=	VS	Insert	Coin

The	format	of	port0,	port1,	port2	depends	on	which	types	of	devices	were
attached.

SI_GAMEPAD:
the	field	consists	of	eight	characters	which	constitute	a	bit	field

any	character	other	than	'	'	or	'.'	means	that	the	button	was	pressed
by	convention,	the	following	mnemonics	are	used	in	a	column	to
remind	us	of	which	button	corresponds	to	which	column:	RLDUTSBA
(Right,	Left,	Down,	Up,	sTart,	Select,	B,	A)

SI_ZAPPER:
XXX	YYY	B	Q	Z

XXX:	%03d,	the	x	position	of	the	mouse
YYY:	%03d,	the	y	position	of	the	mouse
B:	%1d,	1	if	the	mouse	button	is	pressed;	0	if	not
Q:	%1d,	an	internal	value	used	by	the	emulator's	zapper	code
Z:	%d,	a	variable-length	decimal	integer;	an	internal	value	used	by	the
emulator's	zapper	code

SI_NONE:
the	field	must	be	empty

If	a	fourscore	is	used,	then	port0	and	port1	are	irrelevant	and	ignored.
The	input	types	must	all	be	gamepads,	and	each	input	log	record	must
be	in	the	following	format:
|commands|RLDUTSBA|RLDUTSBA|RLDUTSBA|RLDUTSBA|port2|
{commands,	player1,	player2,	player3,	player4,	port2}

Binary	format:

Input	log	section	starts	with	a	|	(pipe).
Every	frame	of	the	movie	is	represented	by	a	record	of	a	fixed	length
which	can	be	determined	by	the	devices	on	port0	and	port1.

The	first	byte	of	each	record	stores	"commands"	bit	field.
bit	0	=	Soft	Reset
bit	1	=	Hard	Reset	(Power)
bit	2	=	FDS	Disk	Insert
bit	3	=	FDS	Disk	Select
bit	4	=	VS	Insert	Coin

The	remaining	bytes	in	the	record	depend	on	which	types	of	devices	are
attached	to	port0	and	port1.

SI_GAMEPAD:
1	byte	added	to	the	size	of	record
bits	of	the	byte	represent	the	state	of	buttons	(bit0	=	A,	bit1	=	B,	bit2	=
Select,	bit3	=	sTart,	bit4	=	Up,	bit5	=	Down,	bit6	=	Left,	bit7	=	Right).	If
the	bit	is	set,	respective	button	is	considered	to	be	pressed,	if	the	bit	is
clear,	the	button	is	not	pressed

SI_ZAPPER:
12	bytes	added	to	the	size	of	record
1st	byte	-	the	x	position	of	the	mouse
2nd	byte	-	the	y	position	of	the	mouse
3rd	byte	-	1	if	the	mouse	button	is	pressed;	0	if	not
4th	byte	-	an	internal	value	used	by	the	emulator's	zapper	code
bytes	5-12	(uint64)	-	an	internal	value	used	by	the	emulator's	zapper
code

SI_NONE:
0	bytes	added	to	the	size	of	record

If	a	fourscore	is	used,	then	port0	and	port1	are	irrelevant	and	ignored.	4
bytes	are	added	to	the	size	of	record.	The	bits	of	the	1st	byte	represent
the	state	of	buttons	of	the	1st	joypad	(bit0	=	A,	bit1	=	B,	bit2	=	Select,	bit3
=	sTart,	bit4	=	Up,	bit5	=	Down,	bit6	=	Left,	bit7	=	Right);	bits	of	the	2nd
byte	represent	the	state	of	buttons	of	the	2nd	joypad,	and	so	on.

Notes:

A.	All	movies	start	from	power-on,	unless	a	savestate	key-value	is
present.

B.	The	emulator	uses	these	framerate	constants
	-	NTSC:	1008307711	/256/65536	=	60.099822938442230224609375

	-	PAL	:	838977920		/256/65536	=	50.00698089599609375

Created	with	the	Personal	Edition	of	HelpNDoc:	Create	iPhone	web-
based	documentation

2016

http://www.helpndoc.com/feature-tour/iphone-website-generation

.fcm
Technical	Information	››	Movie	&	Savestate	formats	››

	 	

FCE	Ultra	Movie	File	Format
							-	Updated	March	22,	2004
The	FCM	file	format	is	a	somewhat	"joined"	file	format.		The	first	part	of	a
FCM
file	will	contain	an	FCS-format	state	save.		After	this	data,	the	FCM-
specific	data
begins,	which	is	being	referred	to	from	this	point.

Currently,	the	only	supported	input	scheme	for	a	FCM	is	four	joysticks.

The	FCM	data	consists	of	a	stream	of	joystick	commands:

							dLLjjbbb

							d		=	Dummy	update,	if	set.		Used	to	reset	frame	timestamp.
							LL		=	timestamp	length,	in	bytes(maximum	of	3	bytes).
							jj		=	Which	joystick(0-3).
							bbb	=	Which	button(0-7).

							If	the	dummy	update	bit	is	set,	a	command	can	also	have	occurred.
	Look	at	the
							lower	5	bits:
															0								=								Just	a	dummy	update.
															1								=								Reset
															2								=								Power

							The	timestamp	is	stored	after	the	joystick	command,	in	LSB-first
format.		It	is
							the	number	of	frames	since	the	last	event.		A	timestamp	length	of	"0"
is	valid,	to
							be	used	when	several	different	buttons	need	to	change	state	at	the
same	time(same	frame,

							at	least).

Created	with	the	Personal	Edition	of	HelpNDoc:	Create	HTML	Help,
DOC,	PDF	and	print	manuals	from	1	single	source

2016

http://www.helpndoc.com/help-authoring-tool

Savestate	(.fcs)
Technical	Information	››	Movie	&	Savestate	formats	››

	 	

FCE	Ultra	Save	State	Format
Updated:		Mar	9,	2003

FCE	Ultra's	save	state	format	is	now	designed	to	be	as	forward	and
backwards
compatible	as	possible.		This	is	achieved	through	the	(over)use	of
chunks.
All	multiple-byte	variables	are	stored	LSB(least	significant	byte)-first.
Data	types:

							(u)int8	-	(un)signed	8	bit	variable(also	referred	to	as	"byte")
							(u)int16	-	(un)signed	16	bit	variable
							(u)int32	-	(un)signed	32	bit	variable

--	Main	File	Header:

The	main	file	header	is	16-bytes	in	length.		The	first	three	bytes	contain
the	string	"FCS".		The	next	byte	contains	the	version	of	FCE	Ultra	that
saved
this	save	state.		This	document	only	applies	to	version	"53"(.53)	and
higher.
After	the	version	byte,	the	size	of	the	entire	file	in	bytes(minus	the	16	byte
main	file	header)	is	stored.		If	oldversion	is	set	to	255,	the	32-bit	version
field	will	be	used.		In	this	field,	a	version	such	as	0.98.10	is	stored	as
"9810"(decimal).
The	rest	of	the	header	is	currently	unused	and	should	be	nulled	out.		
Example	of	relevant	parts:

							FCS	<uint8	oldversion>	<uint32	totalsize>	<uint32	version>

--	Section	Chunks:

Sections	chunk	headers	are	5-bytes	in	length.		The	first	byte	defines	what

section	it		is,	the	next	four	bytes	define	the	total	size	of	the	section
(including	the	section	chunk	header).

							<uint8	section>	<uint32	size>

Section	definitions:

							1								-								"CPU"
							2								-								"CPUC"
							3								-								"PPU"
							4								-								"CTLR"
							5								-								"SND"
							16								-								"EXTRA"

--	Subsection	Chunks

Subsection	chunks	are	stored	within	section	chunks.		They	contain	the
actual
state	data.		Each	subsection	chunk	is	composed	of	an	8-byte	header	and
the	data.
The	header	contains	a	description(a	name)	and	the	size	of	the	data
contained
in	the	chunk:
															<uint8	description[4]>	<uint32	size>

The	name	is	a	four-byte	string.		It	does	not	need	to	be	null-terminated.
If	the	string	is	less	than	four	bytes	in	length,	the	remaining	unused	bytes
must	be	null.

--	Subsection	Chunk	Description	Definitions

Note	that	not	all	subsection	chunk	description	definitions	listed	below
are	guaranteed	to	be	in	the	section	chunk.		It's	just	a	list	of	what	CAN
be	in	a	section	chunk.		This	especially	applies	to	the	"EXTRA"
subsection.

----	Section	"CPU"

							Name:								Type:																Description:
							
							PC								uint16																Program	Counter
							A								uint8																Accumulator
							P								uint8																Processor	status	register
							X								uint8																X	register
							Y								uint8																Y	register
							S								uint8																Stack	pointer
							RAM								uint8[0x800]								2KB	work	RAM

----	Section	"CPUC"	(emulator	specific)

							Name:								Type:																Description:

							JAMM								uint8																Non-zero	value	if	CPU	in	a	"jammed"	state
							IRQL								uint8																Non-zero	value	if	IRQs	are	to	be	generated
constantly
							ICoa								int32																Temporary	cycle	counter
							ICou								int32																Cycle	counter

----	Section	"PPU"

							Name:								Type:																Description:

							NTAR								uint8[0x800]								2	KB	of	name/attribute	table	RAM
							PRAM								uint8[32]								32	bytes	of	palette	index	RAM
							SPRA								uint8[0x100]								256	bytes	of	sprite	RAM
							PPU								uint8[4]								Last	values	written	to	$2000	and	$2001,	the
PPU
																															status	register,	and	the	last	value	written	to
																															$2003.
							XOFF								uint8																Tile	X-offset.
							VTOG								uint8																Toggle	used	by	$2005	and	$2006.
							RADD								uint16																PPU	Address	Register(address	written
to/read	from
																															when	$2007	is	accessed).

							TADD								uint16																PPU	Address	Register
							VBUF								uint8																VRAM	Read	Buffer
							PGEN								uint8																PPU	"general"	latch.		See	Ki's	document.

----	Section	"CTLR"	(somewhat	emulator	specific)

							Name:								Type:																Description:

							J1RB								uint8																Bit	to	be	returned	when	first	joystick	is
read.
							J2RB								uint8																Bit	to	be	returned	when	second	joystick	is
read.

----	Section	"SND"	(somewhat	emulator	specific)

							NREG								uint16																Noise	LFSR.
							P17								uint8																Last	byte	written	to	$4017.
							PBIN								uint8																DMC	bit	index.
							PAIN								uint32																DMC	address	index(from	$8000).
							PSIN								uint32																DMC	length	counter(how	many	bytes	left
																															to	fetch).

							<to	be	finished>

----	Section	"EXTRA"	(varying	emulator	specificness)

							For	iNES-format	games(incomplete,	and	doesn't	apply	to	every
game):

							Name:								Type:																Description:

							WRAM								uint8[0x2000]								8KB	of	WRAM	at	$6000-$7fff
							MEXR								uint8[0x8000]								(very	emulator	specific)
							CHRR								uint8[0x2000]								8KB	of	CHR	RAM	at	$0000-$1fff(in
PPU	address	space).
							EXNR								uint8[0x800]								Extra	2KB	of	name/attribute	table	RAM.
							MPBY								uint8[32]								(very	emulator	specific)

							MIRR								uint8																Current	mirroring:
																																							0	=	"Horizontal"
																																							1	=	"Vertical"
																																							$10	=	Mirror	from	$2000
																																							$11	=	Mirror	from	$2400
							IRQC								uint32																Generic	IRQ	counter
							IQL1								uint32																Generic	IRQ	latch
							IQL2								uint32																Generic	IRQ	latch
							IRQA								uint8																Generic	IRQ	on/off	register.
							PBL								uint8[4]																List	of	4	8KB	ROM	banks	paged	in	at
$8000-$FFFF
							CBL								uint8[8]																List	of	8	1KB	VROM	banks	page	in	at
$0000-$1FFF(PPU).

							For	FDS	games(incomplete):

							Name:								Type:																Description:

							DDT<x>		uint8[65500]				Disk	data	for	side	x(0-3).
							FDSR								uint8[0x8000]								32	KB	of	work	RAM
							CHRR								uint8[0x2000]								8	KB	of	CHR	RAM
							IRQC								uint32																IRQ	counter
							IQL1								uint32																IRQ	latch
							IRQA								uint8																IRQ	on/off.

							WAVE								uint8[64]								Carrier	waveform	data.
							MWAV								uint8[32]								Modulator	waveform	data.
							AMPL								uint8[2]																Amplitude	data.

Created	with	the	Personal	Edition	of	HelpNDoc:	Create	HTML	Help,
DOC,	PDF	and	print	manuals	from	1	single	source

2016

http://www.helpndoc.com/help-authoring-tool

