
5.8

https://www.gapotchenko.com/eazfuscator.net

Eazfuscator.NET	Documentation
Copyright	©	2017	Gapotchenko

Table	of	Contents

What	Is	Eazfuscator.NET?

1.	Introduction
Definition	of	Obfuscation
Why	.NET	Applications	Need	Obfuscation

In	Theory
In	Practice

When	to	Use	Obfuscation
Drawbacks	of	The	Obfuscation

2.	Quick	Start

3.	How	Does	Eazfuscator.NET	Work?
Obfuscation	Techniques

Symbol	Renaming
String	Encryption
Constant	Literals	Pruning
Overload	Induction
Class	Hierarchy	Linerization
XML	Documentation	Filter
XAML	Renaming

Optimization	Techniques
Merging	of	String	Literal	Duplicates
Sealing	of	Terminal	Classes
String	Compression
Code	Optimizations

4.	Advanced	Features
About	Advanced	Features
Declarative	Obfuscation	Using	Custom	Attributes

System.Reflection.ObfuscateAssemblyAttribute
System.Reflection.ObfuscationAttribute
.NET	Compact	Framework,	Silverlight,	Windows	Store	and	.NET
Core	Projects
Indirect	Declarative	Obfuscation
Obfuscation	Attribute	Priorities

Conditional	Obfuscation
Type	Members
Options	are	Combinable
Diagnostics

Symbol	Names	Encryption
Advanced	Symbol	Renaming	Options

Symbol	Renaming	with	Printable	Characters
Type	Renaming	Patterns

Advanced	String	Encryption	Options
Code	Control	Flow	Obfuscation
Assemblies	Merging

Introduction
Instructions
Tuning
Internalization
Custom	Parameters	for	Merging

Assemblies	Embedding
Introduction
What's	the	point	for	embedding	when	we	have	merging	(or	vice
versa)?
Instructions
Tuning
Troubleshooting

Resource	Encryption

Introduction
Instructions
Compression
Selective	Resource	Encryption
Options	are	Combinable

Serialization	Tuning
Overview
Binary	Serialization	and	Obfuscation
Self-Interoperability
Non-stable	Self-Interoperable	Serialization
Stable	Self-Interoperable	Serialization

Debugging
Introduction	to	Debugging	After	Obfuscation
How	It	Works
Possible	Security	Risks
Tuning
Debug	Renaming

PEVerify	Integration
Probing	Paths

About	Probing	Paths
How	to	Define	Probing	Paths?

Script	Variables

5.	Sensei	Features
About	Sensei	Features
Code	Inlining
Protected	Private	Visibility
Custom	Attributes	Removal
Design-Time	Usage	Protection

Overview
How	It	Works
Instructions
Tuning

Resource	Sanitization
Introduction
Instructions
Minification
Selective	Resource	Sanitization
Options	are	Combinable

6.	Virtualization
Introduction
How	to	Use	Code	Virtualization
How	to	Use	Data	Virtualization

7.	Troubleshooting
My	application	is	not	working	properly	after	obfuscation.	Why	does	it
happen?
Troubleshooting	Features

Stack	Trace	Decoding
Inspection-Friendly	Obfuscation

Preserving	the	Original	Names
Disabling	ILDASM	Suppression

About	InternalsVisibleToAttribute
Solution	#1.	Do	not	use	InternalsVisibleToAttribute	at	all
Solution	#2.	Swap	with	EditorBrowsable	attribute
Solution	#3.	Hide	the	warning
Solution	#4.	Ignore	the	attribute

"Option	Strict	Off"	Compatibility	for	VB.NET
Introduction
Compatibility	Mode
Instructions

Nonintrusive	Debugging
Introduction
Sample	Scenario

Warnings	and	Errors
Disabling	Warnings
Treat	Warnings	as	Errors

Long-Term	Compatibility
Compatibility	Version
Demanding	the	Specific	Version	of	Eazfuscator.NET

Error	Codes	Knowledge	Base
EF-1099:	Unable	to	load	input	assembly,	reflection	load	failed
EF-3035:	Assembly	or	part	of	it	is	already	obfuscated

8.	Best	Practices
Introduction
General	Best	Practices
Keeping	the	Balance

Human	Factors
Keeping	It	Simple

The	Paralysis	of	Simplicity

9.	Deployment
About	Eazfuscator.NET	Deployment
Microsoft	Installer	(MSI)
NuGet	Package	Manager
Command	Line	Interface

Glossary
Bibliography

5.8

https://www.gapotchenko.com/eazfuscator.net

What	Is	Eazfuscator.NET?

Eazfuscator.NET	is	an	obfuscator	and	optimizer	for	.NET	platform.

The	main	purpose	of	obfuscator	is	to	protect	intellectual	property	of	the
software.

Key	features:

Easy	to	use	as	1-2-3
Automatic	code	protection	with	variety	of	supported	obfuscation	techniques
Automatic	optimizations
Can	obfuscate	any	100%	managed	.NET	assembly
Provides	easy	to	use	GUI	interface	as	well	as	classical	command	line
interface
Microsoft	Visual	Studio	integration.	Supported	versions	are	Microsoft
Visual	Studio	2005	–	2017	including	Express	editions
Supports	automatic	builds

Supported	platforms	and	technologies:

.NET	Framework	versions	2.0 – 4.7
XAML	with	intelligent	renaming	of	symbols
Enterprise-grade	technologies:	ClickOnce,	VSTO,	VSIX,	MEF,	Entity
Framework,	ASP.NET	and	many	others
.NET	Standard	versions	1.0 – 2.0
.NET	Core	versions	1.0 – 2.0
Universal	Windows	Platform	(UWP)
Windows	Store	applications	for	Windows	8 – 8.1	and	Windows	Phone	7 – 
8.1	platforms
Silverlight	2 – 5
XNA	applications	for	Windows,	Xbox	360	and	Zune	platforms
.NET	Compact	Framework	versions	2.0	and	3.5

Why	Eazfuscator.NET	so	outstanding	among	others?

To	protect	your	intellectual	property	you	need	to	perform	just	several
mouse	clicks	–	do	not	waste	your	precious	hours	to	manually	enter	all	the
complex	settings	and	make	killing-hard	decisions	as	you	do	with	the	most
other	obfuscators
Eazfuscator.NET	has	as	its	object	to	automatically	protect	intellectual
property	to	the	maximum	possible	extent	but	without	breaking	.NET
assembly	functionality
Eazfuscator.NET	applies	code	optimizations	to	deliver	the	best	performance
to	your	applications.	Furthemore,	Eazfuscator.NET	is	built	to	deliver	the
best	runtime	performance	from	ground	up.	It	does	not	use	dirty	tricks,	hacks
and	incompatible	techniques	that	break	application	reliability,	performance
and	satisfaction	of	your	customers.
The	history	of	obfuscation	technology	knows	the	score:

Every	single	obfuscator	before	Eazfuscator.NET	required	a	lot	of
manual	configuration,	tuning	and	integration	efforts.
Every	single	obfuscator	after	Eazfuscator.NET	tends	to	claim	it	does
nearly	everything	out	of	the	box.

How	to	use	it?	

See	Quick	Start	guide.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	1.	Introduction

Table	of	Contents

Definition	of	Obfuscation
Why	.NET	Applications	Need	Obfuscation

In	Theory
In	Practice

When	to	Use	Obfuscation
Drawbacks	of	The	Obfuscation

Definition	of	Obfuscation

Obfuscated	code	is	a	code	that	is	(usually	intentionally)	very	hard	to	read	and
understand.	Some	programming	languages	and	technologies	are	more	prone	to
obfuscation	than	others.

There	are	also	programs	known	as	obfuscators	that	may	operate	on	source	code,
object	code,	or	both,	for	the	purpose	of	deterring	reverse	engineering.

Obfuscating	code	to	prevent	reverse	engineering	is	typically	done	to	manage
risks	that	stem	from	unauthorized	access	to	source	code.	These	risks	include	loss
of	intellectual	property,	ease	of	probing	for	application	vulnerabilities	and	loss
of	revenue	that	can	result	when	applications	are	reverse	engineered,	modified	to
circumvent	metering	or	usage	control	and	then	recompiled.	Obfuscating	code	is,
therefore,	also	a	compensating	control	to	manage	these	risks.	The	risk	is	greater
in	computing	environments	such	as	Java	and	Microsoft's	.NET	which	take
advantage	of	"Just-in-Time"	(JIT)	compilation	technology	that	allow	developers
to	deploy	an	application	as	intermediate	code	rather	than	code	which	has	been
compiled	into	native	machine	language	before	being	deployed.	[WikiObCode]

Eazfuscator.NET	is	an	obfuscator	that	operates	on	.NET	object	code	entitled	as
CIL.

5.8

https://www.gapotchenko.com/eazfuscator.net

Why	.NET	Applications	Need	Obfuscation

In	Theory

Traditionally	applications	were	compiled	to	the	native	code	of	the	target	CPU.
During	this	translation	all	the	information	about	the	source	code	was	lost.
However	it	is	still	possible	to	infer	the	program	operation	using	debugging	and
hacking	tools	but	it's	difficult,	time-consuming	and	very	expensive	craft.

In	contrast,	.NET	applications	are	compiled	to	the	CIL	code.	CIL	code	contains	a
lot	of	additional	metadata	which	allows	to	achieve	better	interoperability	and
robustness	of	the	application.	But	CIL	metadata	allows	to	infer	program
operation	much	easier	at	the	same	time.	Using	specially	designed	tools	such	as
decompilers	it	is	even	possible	to	retrieve	source	code	of	the	.NET	application.
So	when	.NET	application	published	without	being	obfuscated	it	is	equivalent	to
releasing	its	source	code	with	all	painful	consequences.

Obfuscation	removes	redundant	CIL	metadata	and	scrambles	and	encrypts	the
rest.	So	after	obfuscation	it	is	much	harder	to	dig	in	into	obfuscated	.NET
application.	However	it	is	still	possible	to	infer	the	program	operation	using
specially	designed	tools	but	it	is	difficult,	time-consuming	and	expensive	now
just	as	in	case	of	the	native	code.

In	Practice

Let's	perform	some	practical	job	to	undercover	the	way	your	.NET	application
can	be	decompiled.	First	of	all,	we	need	some	sample	application	to	dig	in.	Let
me	introduce	one	of	superstar	applications	with	ambitious	title	"My	Precious
Idea"	as	a	sample.	I	should	admit	that	this	application	is	based	on	the	Mike's
Gold	port	of	the	vintage	"Space	Invaders"	game.	This	C#	application	was
compiled	in	Release	configuration	with	Microsoft	Visual	Studio.	Here	is	the
look	of	sample	application	when	it	is	running:

Really	nice,	isn't	it?	To	decompile	the	application	we	will	use	.NET	Reflector
tool.	Then	just	open	"My	Precious	Idea.exe"	file	with	.NET	Reflector.	Here	is
what	can	be	seen	after	opening:

https://www.gapotchenko.com/go/reflector

As	you	can	see	in	the	screenshot	above,	all	application	sources	can	be	easily
obtained	just	with	several	mouse	clicks!	If	your	product	is	not	obfuscated	then
hackers	have	a	huge	possibilities	to	tamper	with	product	features.	Unsavory
competitors	may	even	copy	&	paste	parts	of	your	code	for	use	in	their	own
products.

5.8

https://www.gapotchenko.com/eazfuscator.net

When	to	Use	Obfuscation

You	may	use	obfuscation	in	freeware,	shareware	or	any	kind	of	commercial
software	when	you	want	to	protect	your	intellectual	property.

Obfuscation	of	open	source	software	has	no	sense	because	application	source
code	is	always	available.

5.8

https://www.gapotchenko.com/eazfuscator.net

Drawbacks	of	The	Obfuscation

Exception	stack	traces	in	obfuscated	assemblies	will	contain	obfuscated
symbol	names	instead	of	real	symbol	names.	This	fact	makes	difficult	to
resolve	possible	application	issues.	However	it	is	easy	to	overcome	this
problem	by	using	stack	trace	decoding	feature.
Obfuscator	may	break	assembly	functionality	in	case	of	usage	of	reflection
techniques	in	the	obfuscated	application.	However	Eazfuscator.NET	tries	to
minimize	such	failures	by	heuristic	detection	of	reflection	usage	patterns
and	thoroughly	analyzing	an	assembly	item	before	applying	any
obfuscation	transformations	to	it.	But	because	of	heuristic	nature	of	analysis
it	is	not	100%	reliable.

More	information	about	possible	problems	and	their	solutions	can	be	found	at
the	chapter	about	troubleshooting.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	2.	Quick	Start

Are	you	ready	to	protect	your	intellectual	property?	Now	it	is	as	simple	as	never
was	before.

First	of	all,	download	and	install	Eazfuscator.NET.	If	you	install
Eazfuscator.NET	for	the	first	time	then	it's	highly	recommended	to	restart	Visual
Studio	if	it	was	running	during	installation.

Then,	launch	Eazfuscator.NET	Assistant	from	Visual	Studio	menu.	To	do	that,
go	to	Tools	→	Eazfuscator.NET	Assistant	menu	item	and	click:

Such	floating	window	will	appear:

https://www.gapotchenko.com/eazfuscator.net/download

As	you	can	see,	the	window	above	consists	of	two	main	zones	—	green	and	red.
Green	zone	is	responsible	for	protection	and	red	zone	is	responsible	for
protection	removal.	Whenever	you	want	to	protect	the	project	you	can	drag	and
drop	it	to	the	green	zone.

After	you	drop	the	project	onto	protection	zone	the	progress	window	will	appear.
This	window	is	shown	at	the	picture	below.	You	should	close	it	when	protection
is	completed.

When	you	return	to	Visual	Studio	it	will	ask	you	to	reload	modified	project.
Click	Reload	button.

Once	protection	had	been	applied	to	the	project,	it	will	be	obfuscated	during
every	build	in	Release	configuration.

That's	all!

Next	you	may	find	useful	to	read	the	chapter	about	the	best	practices.

Note

Quick	Start	guide	covers	just	the	most	common	usage
pattern.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	3.	How	Does	Eazfuscator.NET	Work?

Table	of	Contents

Obfuscation	Techniques
Symbol	Renaming
String	Encryption
Constant	Literals	Pruning
Overload	Induction
Class	Hierarchy	Linerization
XML	Documentation	Filter
XAML	Renaming

Optimization	Techniques
Merging	of	String	Literal	Duplicates
Sealing	of	Terminal	Classes
String	Compression
Code	Optimizations

Obfuscation	Techniques

Eazfuscator.NET	works	on	the	CIL	level	so	any	100%	managed	.NET	assembly
can	be	obfuscated.	Automatic	obfuscation	of	satellite	assemblies	is	fully
supported.	Assemblies	with	embedded	native	code	are	not	supported	by
Eazfuscator.NET.	Obfuscated	assemblies	produced	by	Eazfuscator.NET	can
work	on	alternative	.NET	runtime	implementations	such	as	Mono.

Eazfuscator.NET	uses	several	techniques	to	obfuscate	the	code.

Eazfuscator.NET	automatically	selects	appropriate	obfuscation	methods	for
every	item	in	.NET	assembly.	Not	all	the	items	can	be	obfuscated	without
breaking	assembly	functionality	and	so	Eazfuscator.NET	thoroughly	analyzes	an
item	before	applying	obfuscation	transformations	to	it.	Eazfuscator.NET	has	as
its	object	to	protect	intellectual	property	to	the	maximum	possible	extent	but
without	breaking	assembly	functionality.	If	intellectual	property	safety	is
endangered	then	Eazfuscator.NET	produces	a	warning	message	but	almost	never
overobfuscates	at	cost	of	breaking	assembly	functionality.

Let's	overview	main	obfuscation	techniques	used	by	Eazfuscator.NET.

Symbol	Renaming

Symbol	renaming	is	the	most	powerful	obfuscation	method.	Classes,	methods,
properties,	fields	and	method's	parameters	get	renamed	with	a	randomly
generated	or	encrypted	title	whenever	it	is	applicable.	New	name	usually
consists	of	unprintable	or	chaotic	Unicode	characters.

Example	3.1.	Source	code	retrieved	with	decompiler	before	symbol
renaming

class	MainForm

{

				…

				private	bool	_UseStartupShutdownEffects;

				private	bool	_FadeDirection;

				private	bool	_LargeFadeStep;

				private	System.Windows.Forms.Timer	_OpacityTimer;

				…

https://www.gapotchenko.com/go/mono

				private	void	MainForm_Load(object	sender,	EventArgs	e)

				{

								if	(this.DesignMode)

												return;

								this.Icon	=	

Icon.ExtractAssociatedIcon(Assembly.GetEntryAssembly().Location);

								if	(this._UseStartupShutdownEffects)

								{

												this.Opacity	=	0;

												this._FadeDirection	=	true;

												this._LargeFadeStep	=	true;

												this._OpacityTimer.Start();

								}

								else

								{

												Application.DoEvents();

												Point	point1	=	this.Location;

												this.Location	=	new	Point(Int32.MinValue,	

Int32.MinValue);

												this.Show();

												Application.DoEvents();

												this.Location	=	point1;

								}

				}

				…

}

Example	3.2.	Source	code	retrieved	with	decompiler	after	symbol	renaming

class	 
{

				…

				private	bool	 ;
				private	bool	 ;
				private	bool	 ;
				private	System.Windows.Forms.Timer	 ;
				…

				private	void	  (object	 ,	EventArgs	 )
				{

								if	(this.DesignMode)

												return;

								this.Icon	=	

Icon.ExtractAssociatedIcon(Assembly.GetEntryAssembly().Location);

								if	(this. )

								{

												this.Opacity	=	0;

												this. 	=	true;
												this. 	=	true;
												this. .Start();
								}

								else

								{

												Application.DoEvents();

												Point	point1	=	this.Location;

												this.Location	=	new	Point(Int32.MinValue,	

Int32.MinValue);

												this.Show();

												Application.DoEvents();

												this.Location	=	point1;

								}

				}

				…

}

There	are	advanced	options	available	for	symbol	renaming	feature.

String	Encryption

String	is	one	of	the	most	widely	used	data	type	in	applications.	At	the	same	time,
unencrypted	string	values	allow	to	easily	infer	the	program	operation	with	an
extreme	brutality.	To	avoid	that,	every	string	value	gets	encrypted	during
obfuscation.

Example	3.3.	Source	code	retrieved	with	decompiler	before	string
encryption

class	LicenseManager

{

				…

				internal	bool	CanRun()

				{

								if	

(LicenseContainer.Get("License").IsValidFor(_CurrentCustomer))

												return	true;

								else

												return	false;

				}

				…

}

Example	3.4.	Source	code	retrieved	with	decompiler	after	string	encryption

class	LicenseManager

{

				…

				internal	bool	CanRun()

				{

								if	(LicenseContainer.Get( . 
(-2942637)).IsValidFor(_CurrentCustomer))

												return	true;

								else

												return	false;

				}

				…

}

There	are	advanced	options	available	for	string	encryption	feature.

Constant	Literals	Pruning

Constant	literals	pruning	removes	redundant	meta	information	from	the
obfuscated	.NET	assembly	whenever	it	is	possible.	This	information	is	often	not
necessary	at	the	runtime,	and	it	is	useful	at	compile	time	only.	However	its
presence	in	the	compiled	assembly	can	lead	to	additional	weakness	for
decompilation.

Example	3.5.	Source	code	retrieved	with	decompiler	before	constant	literals
pruning

class	LicenseManager

{

				…

				public	enum	Decision

				{

								Allow,

								Deny,

								UnrestrictedDeveloperMode,

								Lock

				}

				

				internal	Decision	MakeDecision()

				{

								if	(CanRun())

												return	Decision.Allow;

								if	(IsDeveloperSite())

												return	Decision.UnrestrictedDeveloperMode;

								int	int1	=	UnlicensedRunCount;

								if	(int1	>	MaxUnlicensedRunCount)

												return	Decision.Lock;

								int1++;

								UnlicensedRunCount	=	int1;

								return	Decision.Deny;

				}

				…

}

Example	3.6.	Source	code	retrieved	with	decompiler	after	constant	literals
pruning

class	LicenseManager

{

				…

				public	enum	Decision

				{

				}

				

				internal	Decision	MakeDecision()

				{

								if	(CanRun())

												return	0;

								if	(IsDeveloperSite())

												return	2;

								int	int1	=	UnlicensedRunCount;

								if	(int1	>	MaxUnlicensedRunCount)

												return	3;

								int1++;

								UnlicensedRunCount	=	int1;

								return	1;

				}

				…

}

Overload	Induction

Overload	induction	is	a	complementary	obfuscation	method	to	symbol	renaming
technique.	Formally,	overload	induction	algorithm	minimizes	the	number	of
unique	symbol	names	in	the	obfuscated	assembly.	As	a	result,	obfuscated
classes,	fields,	properties	and	methods	may	have	the	same	name	as	long	as	it
doesn't	violate	symbol	resolution	rules	used	by	.NET	runtime.	Such	symbol
names	sameness	makes	prying	intruder	absolutely	entangled.

Example	3.7.	Source	code	retrieved	with	decompiler	before	symbol
renaming	using	overload	induction

class	MainForm

{

				…

				private	bool	_UseStartupShutdownEffects;

				private	bool	_FadeDirection;

				private	bool	_LargeFadeStep;

				private	System.Windows.Forms.Timer	_OpacityTimer;

				…

				private	void	MainForm_Load(object	sender,	EventArgs	e)

				{

								if	(this.DesignMode)

												return;

								this.Icon	=	

Icon.ExtractAssociatedIcon(Assembly.GetEntryAssembly().Location);

								if	(this._UseStartupShutdownEffects)

								{

												this.Opacity	=	0;

												this._FadeDirection	=	true;

												this._LargeFadeStep	=	true;

												this._OpacityTimer.Start();

								}

								else

								{

												Application.DoEvents();

												Point	point1	=	this.Location;

												this.Location	=	new	Point(Int32.MinValue,	

Int32.MinValue);

												this.Show();

												Application.DoEvents();

												this.Location	=	point1;

								}

				}

				

				private	int	CalculateSize()

				{

								return	this.Width	*	2	/	3;

				}

				…

}

Example	3.8.	Source	code	retrieved	with	decompiler	after	symbol	renaming
using	overload	induction

Note

In	this	listing	unprintable	characters	in	symbol	names	were
replaced	with	visible	ones	(A,	B,	C,	…)	to	show	up	names'
uniqueness	distribution.

class	A

{

				…

				private	bool	A;

				private	bool	B;

				private	bool	C;

				private	System.Windows.Forms.Timer	D;

				…

				private	void	A(object	A,	EventArgs	B)

				{

								if	(this.DesignMode)

												return;

								this.Icon	=	

Icon.ExtractAssociatedIcon(Assembly.GetEntryAssembly().Location);

								if	(this.A)

								{

												this.Opacity	=	0;

												this.B	=	true;

												this.C	=	true;

												this.D.Start();

								}

								else

								{

												Application.DoEvents();

												Point	point1	=	this.Location;

												this.Location	=	new	Point(Int32.MinValue,	

Int32.MinValue);

												this.Show();

												Application.DoEvents();

												this.Location	=	point1;

								}

				}

				private	int	A()

				{

								return	this.Width	*	2	/	3;

				}

				…

}

Class	Hierarchy	Linerization

Class	hierarchy	linearization	is	a	complementary	obfuscation	method	to	symbol
renaming	technique.	This	method	is	applied	to	the	class	names	only.	During
obfuscation	all	the	information	about	class	namespaces	is	irreversibly	destroyed
when	it's	possible.	After	the	obfuscation,	all	obfuscated	classes	are	linearly
located	at	the	large	root	namespace,	so	all	the	information	about	class	affiliation
with	application's	subsystems	is	pruned.

Example	3.9.	Source	code	retrieved	with	decompiler	before	symbol
renaming	using	class	hierarchy	linearization

namespace	MyPreciousIdea

{

				namespace	Licensing

				{

								class	License

								{

												…

								}

								class	Manager

								{

												…

								}

				}

				namespace	UI

				{

								class	MainForm

								{

												…

								}

								

								class	SettingsForm

								{

												…

								}

								class	LicensingForm

								{

												…

								}

				}

				…

}

Example	3.10.	Source	code	retrieved	with	decompiler	after	symbol
renaming	using	class	hierarchy	linearization

class	 
{

				…

}

class	 
{

				…

}

class	 
{

				…

}

								

class	 
{

				…

}

class	 
{

				…

}

…

XML	Documentation	Filter

Some	.NET	languages	provide	an	easy	way	to	automatically	create	XML
documentation	for	projects.	You	can	automatically	generate	an	XML	skeleton	for
your	types	and	members,	and	then	provide	summaries,	descriptive
documentation	for	each	parameter,	and	other	remarks.	With	the	appropriate
setup,	the	XML	documentation	is	automatically	emitted	into	an	XML	file	with
the	same	name	as	your	project	and	the	.xml	extension.	This	file	is	located	in	the
same	directory	as	the	output	.exe	or	.dll	file	of	your	project.

Everything	seems	good	until	it	is	discovered	that	XML	documentation	file
contains	descriptions	not	only	for	publicly	visible	classes	and	members,	but	for
private	items	too.

Eazfuscator.NET	stops	that	threat	by	instantly	applying	XML	documentation
filter	on	every	obfuscation	run.	XML	documentation	for	all	non-public	classes,
methods,	fields,	properties	and	events	is	automatically	pruned	so	that	essential
knowledge	about	component	internals	does	not	leak	to	the	rest	of	the	world
anymore.	This	feature	is	essential	for	component	developers	and	publishers.

XAML	Renaming

XAML	markup	language	is	used	by	WPF,	Silverlight,	Windows	Store
applications	to	define	elements,	events,	data	bindings	and	other	aspects	of	user
interface.	XAML	renaming	is	the	process	of	simultaneous	renaming	of	related
symbols	in	code	and	XAML	during	obfuscation.

Eazfuscator.NET	finds	all	connections	between	XAML	and	code:

Then,	the	related	symbols	get	renamed.	Synchronously	and	consistently	in	code
and	XAML:

As	a	result,	XAML	renaming	delivers	higher	obfuscation	coverage	and	ensures
that	all	related	items	are	accordingly	and	correctly	processed	in	XAML	and
code.

5.8

https://www.gapotchenko.com/eazfuscator.net

Optimization	Techniques

Eazfuscator.NET	performs	several	code	and	metadata	optimizations	during
obfuscation.

Merging	of	String	Literal	Duplicates

Merging	of	string	literal	duplicates	is	a	complementary	optimization	method	to
string	encryption	obfuscation	technique.	Formally,	this	optimization	ensures	that
all	encrypted	string	values	are	unique	in	one	.NET	assembly.	Such	kind	of
optimization	also	widely	known	as	string	pooling.

Example	3.11.	Hypothetical	string	table	before	encryption

String	Values
Abracadabra
Siam
Foo
Abracadabra
Foo
Bar

Example	3.12.	Hypothetical	string	table	after	encryption	with	duplicates
merging

Original	String	Values Encrypted	String	Values
Abracadabra }S£tP)€_9€[]
Siam @!€NayfI*
Foo !>@"buY]
Bar E)€a£J

Sealing	of	Terminal	Classes

Sealed	class	is	a	specially	marked	class	which	can	not	be	inherited.	.NET
runtime	uses	a	knowledge	about	such	classes	to	perform	an	optimization	on
virtual	method	calls,	such	optimization	has	considerable	impact	on	overall
application	performance.	Therefore	Eazfuscator.NET	analyzes	the	classes	of
.NET	assembly	and	marks	all	not	inheritable	ones	as	sealed	when	it	is	possible.
However,	this	optimization	does	not	enhance	obfuscation;	information	about
class	inheritance	can	be	used	by	a	hacker	as	an	additional	information	to	infer
the	program	operation.	But	in	this	case	the	risk	is	lower	than	performance
benefits.

Example	3.13.	Source	code	retrieved	with	decompiler	before	sealing	of
terminal	classes

class	Shape

{

				…

}

class	Circle	:	Shape

{

				…

}

Example	3.14.	Source	code	retrieved	with	decompiler	after	sealing	of
terminal	classes

class	Shape

{

				…

}

sealed	class	Circle	:	Shape

{

				…

}

String	Compression

String	compression	is	an	automatic	size	optimization	which	results	in	smaller
assemblies.	Large	strings	are	compressed	during	obfuscation.	The	compressed
strings	are	uncompressed	on	demand	during	the	run	time.	The	decompression
algorithm	is	incredibly	fast,	so	there	is	no	performance	penalty	observed	—	the
actual	decompression	speed	comes	very	close	to	the	speed	of	a	simple	memory
copy.

String	compression	is	a	part	of	string	encryption	technique	and	is	on	by	default.

Code	Optimizations

Eazfuscator.NET	applies	code	optimizations	to	deliver	the	best	performance	to
your	applications.	.NET	compilers	such	as	C#,	VB.NET	and	JIT	already	do	a
pretty	decent	job	in	this	area.	But	what	they	all	do	not	do	is	high-level
optimizations.

High-level	optimization	is	a	fresh	trend	in	optimization	technology	and
Eazfuscator.NET	establishes	itself	as	the	first	tool	to	deliver	this	technology	to
the	wide	.NET	user	base.	The	best	way	to	briefly	describe	high-level
optimization	is	to	start	thinking	as	developer	thinks:	we	all	know	that	there	are
some	methods	and	code	patterns	which	are	faster	than	others.	What
Eazfuscator.NET	does	is	this:	it	finds	the	slow	code	and	swaps	it	with	faster	one.
Eazfuscator.NET	uses	a	preciously	brewed	knowledge	base	of	common	and
efficient	code	patterns	that	you	can	meet	in	every	.NET	application.

At	first	glance,	high-level	optimization	is	very	similar	to	a	well-known	peephole
optimization	approach.	But	the	main	difference	is	that	the	classical	peephole
optimization	works	only	on	a	small	window	of	target	machine	instructions,	while
high-level	optimization	works	at	the	application-wide	level	and	considers	control
and	data	flows	as	well	as	the	sacred	knowledge	about	specific	frameworks	such
as	LINQ,	MEF	and	others.

Let's	take	a	look	at	example.

Example	3.15.	The	slow	code

[Flags]

enum	RunOptions

{

				None	=	0x00,

				PrepareDatabase	=	0x01,

				SkipPlugins	=	0x02

}

class	Engine

{

				public	void	Run(RunOptions	options)

				{

								if	(options.HasFlag(RunOptions.PrepareDatabase))

												InitializeDatabase();

								…

				}

				…

}

The	code	above	uses	Enum.HasFlag	method	to	check	whether	PrepareDatabase
flag	is	set.	Being	sweet	in	syntax,	the	code	has	astonishingly	bad	performance
due	to	boxing	operations	that	are	invisilbly	generated	by	C#	compiler.

Example	3.16.	The	fast	code.	Produced	by	Eazfuscator.NET	after	optimizing
the	slow	code

		public	void	Run(RunOptions	options)

		{

						if	((options	&	RunOptions.PrepareDatabase)	==	

RunOptions.PrepareDatabase)

										InitializeDatabase();

						…

		}

As	you	can	see,	Eazfuscator.NET	emitted	functionally	equivalent	code.	The
result	of	optimization	is	500x	speed	improvement	of	condition	evaluation	over
original	slow	code.

The	optimizer	is	on	by	default	and	works	behind	the	scenes	during	obfuscation.

To	get	information	about	advanced	obfuscation	algorithms	please	read	the	next
chapter.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	4.	Advanced	Features

Table	of	Contents

About	Advanced	Features
Declarative	Obfuscation	Using	Custom	Attributes

System.Reflection.ObfuscateAssemblyAttribute
System.Reflection.ObfuscationAttribute
.NET	Compact	Framework,	Silverlight,	Windows	Store	and	.NET	Core
Projects
Indirect	Declarative	Obfuscation
Obfuscation	Attribute	Priorities

Conditional	Obfuscation
Type	Members
Options	are	Combinable
Diagnostics

Symbol	Names	Encryption
Advanced	Symbol	Renaming	Options

Symbol	Renaming	with	Printable	Characters
Type	Renaming	Patterns

Advanced	String	Encryption	Options
Code	Control	Flow	Obfuscation
Assemblies	Merging

Introduction
Instructions
Tuning
Internalization
Custom	Parameters	for	Merging

Assemblies	Embedding
Introduction
What's	the	point	for	embedding	when	we	have	merging	(or	vice	versa)?
Instructions
Tuning

Troubleshooting
Resource	Encryption

Introduction
Instructions
Compression
Selective	Resource	Encryption
Options	are	Combinable

Serialization	Tuning
Overview
Binary	Serialization	and	Obfuscation
Self-Interoperability
Non-stable	Self-Interoperable	Serialization
Stable	Self-Interoperable	Serialization

Debugging
Introduction	to	Debugging	After	Obfuscation
How	It	Works
Possible	Security	Risks
Tuning
Debug	Renaming

PEVerify	Integration
Probing	Paths

About	Probing	Paths
How	to	Define	Probing	Paths?

Script	Variables

About	Advanced	Features

You	may	want	to	get	more	control	on	obfuscation	process	when	you	become
more	familar	with	obfuscation.	Advanced	features	of	Eazfuscator.NET	allow	you
to	achieve	this.

To	start	with	advanced	features	it	is	recommended	to	read	about	declarative
obfuscation.

5.8

https://www.gapotchenko.com/eazfuscator.net

Declarative	Obfuscation	Using	Custom	Attributes

The	.NET	Framework	since	version	2.0	provides	two	custom	attributes	designed
to	make	it	easy	to	change	obfuscation	behavior.	Using	these	two	attributes	it	is
possible	to	override	default	decisions	made	by	Eazfuscator.NET	during
obfuscation.	Also	these	attributes	can	be	used	to	configure	advanced
Eazfuscator.NET	features.	It	is	assumed	that	you	have	a	knowledge	about
custom	attributes	and	how	to	apply	them	in	your	development	language.

System.Reflection.ObfuscateAssemblyAttribute

This	attribute	can	be	applied	to	an	assembly	to	tell	obfuscator	how	to	treat	it.
Setting	the	AssemblyIsPrivate	property	to	false	tells	obfuscator	to	treat	an
assembly	as	a	library.	Setting	the	AssemblyIsPrivate	property	to	true	tells
obfuscator	to	treat	an	assembly	as	an	executable.	The	difference	is	how
Eazfuscator.NET	renames	and	seals	public	types	and	their	public	members.	In
case	of	an	executable	all	public	types	and	their	public	members	are	considered
terminal	so	they	gets	renamed.	In	case	of	a	library,	those	types	and	members	may
be	used	by	other	assemblies,	thus	they	do	not	get	renamed.

The	default	obfuscator	behavior	is	to	treat	all	.dll	assemblies	as	libraries	and	all
.exe	and	.com	assemblies	as	executables.	If	the	assembly	has	another	file
extension	(nor	.dll	neither	.exe/.com)	then	Eazfuscator.NET	treats	such
assemblies	depending	on	the	entry	point	presence.	If	the	assembly	has	the	entry
point	then	it	is	treated	as	an	executable,	otherwise	it	is	treated	as	a	library.

System.Reflection.ObfuscationAttribute

This	attribute	is	the	main	troubleshooter	of	the	reflection	related	problems	that
may	occur	during	obfuscation.	As	it	was	mentioned	above	Eazfuscator.NET	has
no	formal	reflection	scenarios	analysis	engine	and	it	uses	heuristic	algorithms
instead.	Decisions	produced	by	those	algorithms	may	be	wrong	in	some	rare
cases	so	you	may	need	to	override	them	by	using
System.Reflection.ObfuscationAttribute

System.Reflection.ObfuscationAttribute	can	be	applied	to	a	type.	Possible
feature	property	values	are	"all"	(by	default),	"renaming"	and	"properties

renaming".	So	if	you	want	to	disable	renaming	of	your	class	you	may	write
something	like	an	example	below	(C#):

Example	4.1.	Disabling	class	renaming

[System.Reflection.ObfuscationAttribute(Feature	=	"renaming",	

ApplyToMembers	=	false)]

class	MyOneThousandAndFirstClass

{

				…

}

If	you	want	to	disable	renaming	of	your	class	and	all	its	members	you	may	write:

Example	4.2.	Disabling	class	and	its	members	renaming

[System.Reflection.ObfuscationAttribute(Feature	=	"renaming",	

ApplyToMembers	=	true)]

class	MyOneThousandAndSecondClass

{

				…

}

If	you	want	to	disable	renaming	of	the	properties	in	your	class	you	may	write:

Example	4.3.	Disabling	class	properties	renaming

[System.Reflection.ObfuscationAttribute(Feature	=	"properties	

renaming")]

class	MyOneThousandAndThirdClass

{

				…

}

Sometimes	it	may	be	useful	to	disable	just	single	or	several	properties	in	a	class.
In	order	to	do	that	you	may	write:

Example	4.4.	Disabling	single	class	property	renaming

class	MyOneThousandAndFourthClass

{

				[System.Reflection.ObfuscationAttribute(Feature	=	

"renaming")]

				public	string	DisplayName

				{

								get;

								set;

				}

}

In	some	rare	cases	you	may	want	to	disable	the	renaming	of	properties	for
anonymous	types.	In	order	to	do	that,	you	should	apply	the	following	attribute	at
the	assembly	level:

Example	4.5.	Disabling	the	renaming	of	anonymous	type	properties

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"anonymous	type	properties	

renaming",	Exclude	=	true)]

Another	appliance	of	System.Reflection.ObfuscationAttribute	is	to
configure	Eazfuscator.NET	features.	You	may	find	more	information	about	this
at	the	following	places:

Advanced	symbol	renaming	options
Advanced	string	encryption	options
Code	control	flow	obfuscation
Assemblies	merging
Assemblies	embedding
Resource	encryption
Debugging

.NET	Compact	Framework,	Silverlight,	Windows	Store	and	.NET
Core	Projects

There	are	no	System.Reflection.ObfuscateAssemblyAttribute	and
System.Reflection.ObfuscationAttribute	attributes	available	in	.NET
Compact	Framework,	Silverlight	and	WinRT	runtimes.	So	if	you	want	to	use
declarative	obfuscation	you	must	define	corresponding	attributes	in	your
assembly.	The	easiest	way	to	do	this	is	to	add	ready-to-use	file
ObfuscationAttributes.cs	(for	C#)	or	ObfuscationAttributes.vb	(for	VB.NET)	to
your	project.	These	files	can	be	found	at	Start	Menu	→	Eazfuscator.NET	→
Eazfuscator.NET	Code	Snippets	menu	item.	Alternatively	they	can	be	found	at
C:\Program	Files\Eazfuscator.NET\Code	Snippets	path.

Note

The	path	may	differ	depending	on	the	installation	options	and
operating	system.	For	example,	this	path	may	look	like
C:\Program	Files	(x86)\Eazfuscator.NET\Code

Snippets	on	64-bit	operating	systems.

Indirect	Declarative	Obfuscation

Sometimes	it	may	not	be	possible	to	access	the	class	definition	directly	to	apply
a	custom	attribute	for	obfuscation	tuning.	If	latter	is	the	case	then	indirect
declarative	obfuscation	comes	to	the	rescue.	It	allows	to	indirectly	tune	the
obfuscation	by	using	custom	attributes	defined	at	the	assembly	level.

Let's	take	a	closer	look	on	an	example.	Suppose	there	is	a	class
MyNamespace.ResourceClass1	and	its	declaration	can	not	be	changed	because	it
was	automatically	generated	by	a	tool.	So	how	to	disable	the	renaming	of	that
class	during	obfuscation?	The	solution	is	to	use	indirect	declarative	obfuscation.
In	order	to	do	that,	you	should	apply	the	following	attribute	at	the	assembly	level
(C#):

Example	4.6.	Indirectly	disable	the	renaming	of	a	class

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	

MyNamespace.ResourceClass1:	renaming",	Exclude	=	true,	

ApplyToMembers	=	false)]

Please	note,	the	feature	string	starts	with	"Apply	to	type"	expression	in	the
sample	above.	That	expression	signals	Eazfuscator.NET	that	feature	should	be
redirected	to	MyNamespace.ResourceClass1	class.	There	is	a	semicolon	after	the
class	name;	just	next	to	it,	there	is	a	real	feature	name	"renaming".	So,	the	above
sample	code	is	virtually	equivalent	to	the	code	shown	below	(C#):

namespace	MyNamespace

{

				[System.Reflection.ObfuscationAttribute(Feature	=	

"renaming",	Exclude	=	true,	ApplyToMembers	=	false)]

				class	ResourceClass1

				{

								…

				}

}

The	class	name	in	indirect	expression	can	contain	mask	characters	such	as	*	and
?,	so	one	indirect	expression	can	match	several	classes.	*	stands	for	several	any
characters,	?	stands	for	any	character.

As	for	example,	it's	possible	to	disable	all	obfuscation	features	for	all	classes
inside	a	given	namespace.	The	following	attribute	should	be	applied	at	the
assembly	level	in	order	to	do	that	(C#):

Example	4.7.	Indirectly	disable	all	obfuscation	features	for	a	given
namespace

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	

SomeExcludedNamespace.*:	all",	Exclude	=	true,	ApplyToMembers	=	

true)]

A	more	powerful	configuration	syntax	is	available	in	conditional	obfuscation.

Obfuscation	Attribute	Priorities

Introduction

Sometimes	you	may	want	to	define	obfuscation	attributes	in	several	places.

For	example,	the	given	assembly	may	be	configured	by	two	files.	One	file,
ObfuscationSettings.cs,	defines	the	obfuscation	directives	directly	related	to
the	given	assembly.	Another	file,	CommonObfuscationSettings.cs,	defines	the
obfuscation	directives	common	to	all	obfuscated	assemblies	in	a	whole	project.
That	file	is	shared	among	all	obfuscated	assemblies	in	a	project.

Then	you	decide	that	string	encryption	is	not	needed	for	most	assemblies,	so	you
just	disable	it	at	the	common	level	in	CommonObfuscationSettings.cs	file:

[assembly:	Obfuscation(Feature	=	"string	encryption",	Exclude	=	

true)]

Some	time	after,	it	turns	out	that	a	particular	assembly	ContosoEngine.dll
should	have	string	encryption	enabled.	ObfuscationSettings.cs	file	defined	in
ContosoEngine	assembly	looks	like	this:

[assembly:	Obfuscation(Feature	=	"string	encryption",	Exclude	=	

false)]

Please	note	that	both	ObfuscationSettings.cs	and
CommonObfuscationSettings.cs	files	are	included	in	compilation	of
ContosoEngine	assembly	as	source	code	files.	So	both	directives	find	their	ways
into	resulting	compiled	ContosoEngine.dll	file.

What	happens	when	Eazfuscator.NET	sees	conflicting	obfuscation	directives	in
input	assembly?	The	exact	semantics	depends	on	a	directive.	Eazfuscator.NET
may	just	take	the	least	permissive	directive	for	features	like	string	encryption.
Another	strategy	is	to	take	the	very	first	directive	and	abandon	the	rest	(note	that
C#	and	many	other	.NET	compilers	do	not	guarantee	the	order	of	custom
attributes	in	resulting	compiled	assembly).	Nevertheless	this	is	not	what	you
want	when	it	comes	to	several	configuration	sources	where	you	want	to	have
priorities.	E.g.	directives	defined	in	ObfuscationSettings.cs	file	should	have
higher	priority	than	those	defined	in	CommonObfuscationSettings.cs	file.

So	how	to	achieve	the	prioritization	of	obfuscation	attributes?	Just	follow

priority	syntax	described	below.

Priority	Syntax

Priority	is	defined	by	a	numeric	prefix:

[Obfuscation(Feature	=	"1.	<some	feature	here>")]

The	idea	behind	priority	prefixes	is	to	form	a	natural	list:

[Obfuscation(Feature	=	"1.	<some	high	priorty	feature	here>")]

[Obfuscation(Feature	=	"2.	<medium	priorty	feature>")]

[Obfuscation(Feature	=	"3.	<a	feature	with	the	lowest	

priority>")]

where	the	first	item	has	the	highest	priority,	the	second	is	less	important	and	so
on.	Just	like	your	typical	TODO	list.

Note

Priority	prefix	can	only	contain	a	natural	number	(a	positive
integer).	Zero	and	negative	priorities	are	not	allowed.

Complete	Example

So	here	is	how	the	aforementioned	configuration	files	should	be	defined	to	make
the	prioritization	work	according	to	the	task	described	in	introduction.	The
content	of	CommonObfuscationSettings.cs	file:

[assembly:	Obfuscation(Feature	=	"2.	string	encryption",	Exclude	

=	true)]

The	content	of	ObfuscationSettings.cs	file	for	ContosoEngine	assembly:

[assembly:	Obfuscation(Feature	=	"1.	string	encryption",	Exclude	

=	false)]

5.8

https://www.gapotchenko.com/eazfuscator.net

Conditional	Obfuscation

Conditional	obfuscation	is	an	extension	feature	to	indirect	declarative
obfuscation.	Conditional	obfuscation	allows	to	process	the	types	in	a	bulk
according	to	their	natural	properties	such	as	visibility	(public,	internal,	protected,
private),	subtype	(class,	struct,	enum,	delegate)	and	others.

This	functionality	is	achieved	by	when	conditional	clause	which	can	be	specified
in	an	obfuscation	attribute.	So	the	full	conditional	attribute	notation	has	the
following	form:

[assembly:	Obfuscation(Feature	=	"Apply	to	type	[name	mask]	when	

[condition]:	[feature]")]

where	[condition]	is	a	string	defining	the	condition	for	a	match.

Condition	is	defined	as	a	boolean	predicate	with	Pascal	syntax.	Quick	example
of	an	conditional	attribute	is	shown	below.

Example	4.8.	Indirectly	disable	renaming	of	all	internal	enums	and	their
members

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*	when	internal	

and	enum:	renaming",	Exclude	=	true,	ApplyToMembers	=	true)]

Please	take	a	closer	look	at	internal	and	enum	predicate	in	the	sample	above.
What	it	says	is	this:	the	result	of	predicate	is	true	when	internal	variable
equals	to	true	and	enum	variable	equals	to	true	too;	otherwise	the	result	of
predicate	is	false.	The	values	of	internal	and	enum	variables	are	calculated	for
every	type	in	the	assembly,	describing	the	natural	properties	of	a	CLR	type	in
boolean	form.

The	list	of	available	variables	is	presented	in	the	table	below.

Table	4.1.	The	list	of	available	variables	for	conditional	obfuscation	of	types

Variable Description
abstract true	if	the	type	is	abstract;	otherwise,	false

anonymous true	if	the	type	is	anonymous;	otherwise,	false
class true	if	the	type	is	a	class;	otherwise,	false
delegate true	if	the	type	is	a	delegate;	otherwise,	false
enum true	if	the	type	is	an	enumeration;	otherwise,	false
generic true	if	the	type	is	generic;	otherwise,	false
interface true	if	the	type	is	an	interface;	otherwise,	false
internal true	if	the	type	is	internal;	otherwise,	false
nested true	if	the	type	is	nested;	otherwise,	false

private true	if	the	type	is	private;	otherwise,	false.	Applies	to	nested
types	only;	false	if	the	type	is	not	nested

protected true	if	the	type	is	protected;	otherwise,	false.	Applies	to	nested
types	only;	false	if	the	type	is	not	nested

public true	if	the	type	is	public;	otherwise,	false
sealed true	if	the	type	is	sealed;	otherwise,	false
serializable true	if	the	type	is	serializable;	otherwise,	false
static true	if	the	type	is	static;	otherwise,	false
struct true	if	the	type	is	a	structure;	otherwise,	false

Predefined	constants	can	be	used	in	expressions	as	well.	The	list	of	available
constants	is	presented	in	the	table	below.

Table	4.2.	The	list	of	available	constants	for	conditional	obfuscation

Constant Description
false false	value
true true	value

Built-in	functions	can	be	used	in	expressions	too.	The	list	of	available	functions
is	presented	in	the	table	below.

Table	4.3.	Built-in	functions	for	conditional	obfuscation

Function Description

inherits('type_name')

Returns	true	if	the	type	inherits	another	type	specified	by	
parameter;	otherwise,	false.	Inherits	function	considers	base	and	all
inherited	types	including	interfaces.	Type	name	parameter	can	contain
either	the	full	type	name	or	a	mask	for	a	bulk	match

extends('type_name')

Returns	true	if	the	type	extends	another	type	specified	by	
parameter;	otherwise,	false.	Extends	function	only	checks	the	base
type,	but	all	implemented	and	inherited	interfaces	are	considered.
Type	name	parameter	can	contain	either	the	full	type	name	or	a	mask
for	a	bulk	match

has_attribute('type_name')

Returns	true	if	the	type	or	member	has	a	custom	attribute	specified	by
type_name	parameter;	otherwise,	false.	Type	name	parameter	can
contain	either	the	full	type	name	or	a	mask	for	a	bulk	match.	
Example:
has_attribute('System.ComponentModel.DisplayNameAttribute

Variables,	functions	and	constants	can	be	combined	by	operators.	They	have	the
standard	Pascal	precedence.	The	list	of	available	operators	is	presented	in	the
table	below.

Table	4.4.	The	list	of	available	operators	for	conditional	obfuscation

Operator Description Priority
not Unary	operator	for	boolean	negation Highest
and Binary	operator	for	boolean	and	operation Medium
or Binary	operator	for	boolean	or	operation Lower
= Binary	operator	for	boolean	equal	operation Lowest
<> Binary	operator	for	boolean	not	equal	operation Lowest

The	precedence	of	operations	can	be	changed	by	parentheses.

Let's	take	a	look	on	examples.

Example	4.9.	Disable	renaming	of	all	types	except	enums

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*	when	not	enum:	

renaming",	Exclude	=	true)]

Example	4.10.	Disable	renaming	of	all	internal	nested	and	serializable	types
together	with	their	members

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*	when	internal	

and	(nested	or	serializable):	renaming",	Exclude	=	true,	

ApplyToMembers	=	true)]

Example	4.11.	Disable	renaming	of	all	types	except	internal	nested	and
serializable	types

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*	when	not	

(internal	and	(nested	or	serializable)):	renaming",	Exclude	=	

true)]

Example	4.12.	Disable	renaming	of	all	interfaces	in	Contoso.Core.Services
namespace

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	

Contoso.Core.Services.*	when	interface:	renaming",	Exclude	=	

true)]

Example	4.13.		Disable	renaming	of	all	classes	derived	from
System.IDisposable	interface.	Renaming	of	members	for	matched	classes	is
disabled	too

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*	when	class	and	

extends('System.IDisposable'):	renaming",	Exclude	=	true,	

ApplyToMembers	=	true)]

As	you	can	see	the	conditions	can	have	any	complexity	and	can	be	freely	defined
to	achieve	your	specific	goals.

Type	Members

It	was	described	how	to	tune	the	obfuscation	of	types	in	a	bulk	way	in	the
section	above.	But	what	about	type	members	such	as	methods,	fields,	properties
and	others?	Sometimes	it	may	be	beneficial	to	process	them	in	a	bulk	way	too.

The	declarative	attribute	for	conditional	obfuscation	of	type	members	has	the
following	form:

using	System.Reflection;

[Obfuscation(Feature	=	"Apply	to	member	[name	mask]	when	

[condition]:	[feature]")]

class	Sample1

{

		…

}

[name	mask]	is	a	pattern	which	selects	the	members	according	to	their	names.
[condition]	allows	to	specify	a	boolean	predicate	to	select	members	according
to	their	properties.	The	rules	are	all	the	same	as	for	types;	the	only	difference	is	a
set	of	variables	which	can	be	used	in	a	boolean	predicate.	The	list	of	available
variables	is	presented	below.

Table	4.5.	The	list	of	available	variables	for	conditional	obfuscation	of	type
members

Variable Description
abstract true	if	the	member	is	abstract;	otherwise,	false

const true	if	the	member	defines	a	literal	constant;	otherwise,	false.
Applies	to	fields	only;	false	if	the	member	is	not	a	field

constructor true	if	the	member	is	a	constructor;	otherwise,	false
event true	if	the	member	is	an	event;	otherwise,	false
field true	if	the	member	is	a	field;	otherwise,	false

generic true	if	the	member	is	generic;	otherwise,	false.	Applies	to
methods	only;	false	if	the	member	is	not	a	method

internal true	if	the	member	is	internal;	otherwise,	false
method true	if	the	member	is	a	method;	otherwise,	false
private true	if	the	member	is	private;	otherwise,	false
property true	if	the	member	is	a	property;	otherwise,	false
protected true	if	the	member	is	protected;	otherwise,	false
public true	if	the	member	is	public;	otherwise,	false

readonly
true	if	the	member	is	read-only;	otherwise,	false.	Applies	to
fields	and	properties	only;	false	if	the	member	is	neither	a	field
nor	a	property

static true	if	the	member	is	static;	otherwise,	false
virtual true	if	the	member	is	virtual;	otherwise,	false

The	information	on	this	topic	is	extremely	bare,	so	let's	take	a	relaxed	look	on
some	real-life	samples.

Example	4.14.	Disable	renaming	of	public	properties

using	System.Reflection;

[Obfuscation(Feature	=	"Apply	to	member	*	when	property	and	

public:	renaming",	Exclude	=	true)]

class	ImageQualityService

{

		…

}

Example	4.15.	Disable	renaming	of	all	methods

using	System.Reflection;

[Obfuscation(Feature	=	"Apply	to	member	*	when	method:	

renaming",	Exclude	=	true)]

class	CellCallEngine

{

		…

}

Example	4.16.	Disable	renaming	of	internal	fields

using	System.Reflection;

[Obfuscation(Feature	=	"Apply	to	member	*	when	field	and	

internal:	renaming",	Exclude	=	true)]

class	ContosoHeadquarters

{

		…

}

Options	are	Combinable

Conditional	obfuscation	of	types	and	type	members	can	be	easily	combined	to
achieve	specific	goals	in	an	elegant	and	powerful	way.

Just	take	a	look	at	the	samples	below.

Example	4.17.		Disable	renaming	of	property	Contoso	in	type	Acme.Services

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	Acme.Services:	

apply	to	member	Contoso	when	property:	renaming",	Exclude	=	

true)]

Example	4.18.	Disable	renaming	of	all	public	properties	in	all	types

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*:	apply	to	

member	*	when	public	and	property:	renaming",	Exclude	=	true)]

Example	4.19.		Disable	renaming	of	all	public	properties	in	types	defined	in
MyNamespace

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	MyNamespace.*:	

apply	to	member	*	when	public	and	property:	renaming",	Exclude	=	

true)]

Example	4.20.	Disable	renaming	of	all	internal	events	in	all	public	types

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*	when	public:	

apply	to	member	*	when	event	and	internal:	renaming",	Exclude	=	

true)]

Diagnostics

How	do	you	know	which	classes	or	members	conditional	obfuscation	applies
to?

Sometimes	it	may	be	useful	to	get	the	full	list	of	classes	and	members	that	are
targeted	by	specific	conditional	obfuscation	statement.	To	achieve	that,	you	can
use	log	feature	as	shown	below:

Example	4.21.	Log	all	affected	members	of	all	public	classes

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*	when	public:	

apply	to	member	*:	log")]

Note

Logging	does	not	affect	obfuscation	in	any	way.	It	just	dumps
the	list	of	items	at	Eazfuscator.NET's	console	output.	To	see
this	list	in	Visual	Studio,	please	take	a	look	at	Output
Window	with	View	→	Output	(Ctrl+W,O)	right	after
obfuscation.

5.8

https://www.gapotchenko.com/eazfuscator.net

Symbol	Names	Encryption

Symbol	names	encryption	is	a	complementary	feature	to	symbol	renaming
technique.	Encryption	feature	is	useful	in	production	scenarios	when	it's
necessary	to	resolve	possible	issues	with	your	product.	Such	issues	are	very
often	reported	via	log	files	and	error	stack	traces.

But	as	you	might	know,	symbol	names	are	renamed	with	randomly	generated
titles	and	become	irreversibly	lost	after	obfuscation.	This	makes	it	nearly
impossible	to	analyze	stack	traces	because	it's	hard	to	establish	a	correlation
between	error	stack	trace	and	original	source	code.	Symbol	names	encryption
can	be	used	to	overcome	this	problem.	It	encrypts	obfuscated	symbol	names
instead	of	random	generation.

Symbol	names	encryption	technology	uses	symmetrical	crypto	algorithm
underneath.	Used	crypto	algorithm	is	AES	with	256	bits	key	strength.
Cryptographic	key	for	the	algorithm	is	derived	from	the	password.	Symbol
names	encryption	produces	printable	ASCII	characters	in	encrypted	symbol
names,	so	error	dumps	can	be	easily	transfered	with	E-mail	or	some	other	kind
of	textual	error	reporting.

By	default,	symbol	names	encryption	is	not	used	during	obfuscation	of	the
assembly.

To	enable	symbol	names	encryption	you	should	apply	specially	formed	attribute
to	your	assembly.	In	order	to	do	that	you	can	use	the	instructions	below.

Instructions	on	enabling	symbol	names	encryption

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"encrypt	symbol	names	with	

password	XXXXXX",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="encrypt	symbol	names	with	

password	XXXXXX",	Exclude:=False)>	

Note

Change	XXXXXX	with	your	password.	Keep	the
password	in	secret.

Passwords	with	a	greater	length	are	more	preferable	than
short	ones.	Longer	passwords	have	a	better
informational	entropy	thus	greatly	improving
cryptographic	strength	of	the	encrypted	data.	It's
suggested	to	have	a	password	which	at	least	consists	of
8	characters.

When	symbol	names	encryption	is	enabled	on	your	project	then	you	able	to	use
stack	trace	decoding	feature.

Tip

If	your	product	or	solution	consists	of	several	projects	then
you	most	likely	want	to	give	them	all	the	same	encryption
password.	In	order	to	do	that	globally,	you	can	create
CommonObfuscationSettings.cs	(or	.vb)	file	that	is	shared
among	all	the	projects	in	the	solution.	Note	that	Microsoft
Visual	Studio	supports	adding	of	a	project	file	as	a	reference,
so	you	can	add	a	reference	to	the	same	global
CommonObfuscationSettings.*	file	in	several	projects.	Please

also	note,	that	a	reference	to	global
CommonObfuscationSettings.*	file	may	be	added	just	to	one
project	and	then	just	drag	and	dropped	to	all	other	projects.

5.8

https://www.gapotchenko.com/eazfuscator.net

Advanced	Symbol	Renaming	Options

Symbol	Renaming	with	Printable	Characters

Symbol	renaming	algorithm	uses	unprintable	unicode	characters	by	default.	But
sometimes	it	may	be	useful	to	use	printable	ASCII	characters	instead.	In	order	to
do	that	you	can	use	the	instructions	below.	Alternatively	you	may	use	symbol
names	encryption	for	the	same	purpose.

Instructions	on	enabling	printable	characters	for	symbol	renaming

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"rename	symbol	names	with	

printable	characters",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="rename	symbol	names	with	

printable	characters",	Exclude:=False)>	

Note

Please	note	that	printable	characters	in	symbol	names	can	be
controlled	at	the	assembly	level	only.	For	example,	it	is
impossible	to	use	printable	characters	for	some	specific	class
or	method;	it	is	possible	to	do	this	just	for	a	whole	assembly.

Type	Renaming	Patterns

Eazfuscator.NET	removes	the	namespaces	of	renamed	types	by	default.	This	can
lead	to	some	issues	when	badly	written	code	tries	to	get	a	namespace	of	an
renamed	type	via	reflection.

Let's	see	on	example	what	kind	of	flawed	code	can	suffer	from	the	absence	of
namespaces.

Example	4.22.	Example	code	which	fails	with	NullReferenceException	when
the	given	type	has	no	namespace

bool	SampleMethod(Type	type)

{

				if	(type	!=	null	&&	

type.Namespace.StartsWith("System.Data"))

								return	true;

				return	false;

}

As	you	can	see	in	the	sample	above,	the	method	can	fail	with
NullReferenceException	when	type.Namespace	property	returns	null	indicating
that	the	given	type	has	no	namespace.	This	issue	can	be	easily	fixed	if	you	have
access	to	the	source	code,	but	sometimes	the	flawed	code	has	the	binary	form
only.

To	workaround	possible	problems,	a	custom	type	renaming	pattern	can	be
defined	for	an	assembly,	for	a	type	or	for	a	group	of	types.	The	examples	below
show	the	possible	definitions.

Example	4.23.	Add	'b'	namespace	to	all	renamed	types	in	assembly

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"type	renaming	pattern	'b'.*",	

Exclude	=	false)]

Example	4.24.	Add	'b'	namespace	to	a	class

using	System;

using	System.Reflection;

namespace	App

{

				[Obfuscation(Feature	=	"type	renaming	pattern	'b'.*",	

Exclude	=	false)]

				class	Class1

				{

								...

				}

}

Example	4.25.	Add	'b'	namespace	to	a	group	of	renamed	classes.	All	classes
with	'Impl'	name	ending	are	affected

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*Impl:	type	

renaming	pattern	'b'.*",	Exclude	=	false)]

Tip

Of	course	you	are	free	to	choose	any	namespace	in	a	pattern.

5.8

https://www.gapotchenko.com/eazfuscator.net

Advanced	String	Encryption	Options

String	encryption	is	a	technique	which	encrypts	every	string	in	the	assembly.	It	is
always	turned	on	by	default.

However	in	some	situations	you	may	prefer	to	turn	this	feature	off.	In	order	to	do
that	you	can	use	the	instructions	below.

Instructions	on	disabling	string	encryption

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"string	encryption",	

Exclude	=	true)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="string	encryption",	

Exclude:=True)>	

Note

Please	note	that	string	encryption	can	be	controlled	at	the
assembly	level	only.	For	example,	it	is	impossible	to	disable
string	encryption	for	some	specific	class	or	method;	it	is
possible	to	do	this	just	for	a	whole	assembly.

5.8

https://www.gapotchenko.com/eazfuscator.net

Code	Control	Flow	Obfuscation

Code	control	flow	obfuscation	allows	to	make	IL	code	more	entangled.
Decompilers	often	crash	on	such	code,	so	the	code	may	be	considered	as	much
better	protected.

By	default,	code	control	flow	obfuscation	feature	is	not	used	during	obfuscation
of	the	assembly.

To	enable	code	control	flow	obfuscation	feature	you	should	apply	a	specially
formed	attribute	to	your	assembly.	In	order	to	do	that	you	can	use	the
instructions	below.

Instructions	on	enabling	control	flow	obfuscation

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"code	control	flow	

obfuscation",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="code	control	flow	

obfuscation",	Exclude:=False)>	

5.8

https://www.gapotchenko.com/eazfuscator.net

Assemblies	Merging

Introduction

Assemblies	merging	allows	to	merge	several	assemblies	into	one.	This	may	be
beneficial	from	the	deployment	and	security	points	of	view.

By	default,	assemblies	merging	is	not	used	during	obfuscation	of	the	assembly.

Instructions

To	enable	assemblies	merging	you	should	apply	specially	formed	attribute(s)	to
your	assembly.	In	order	to	do	that	you	can	use	the	instructions	below.

Instructions	on	enabling	assemblies	merging

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"merge	with	XXXXXX.dll",	

Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="merge	with	XXXXXX.dll",	

Exclude:=False)>	

Note

Change	XXXXXX.dll	with	the	file	name	of	the
assembly	you	want	to	merge	with.

Tip

Eazfuscator.NET	automatically	finds	the	assembly	path
when	only	the	file	name	is	supplied.	
If	you	prefer	to	specify	the	exact	file	path	to	assembly
then	you	can	use	script	variables:

[assembly:	Obfuscation(Feature	=	@"merge	

with	$(InputDir)\Lib\AssemblyToMerge.dll",	

Exclude	=	false)]

Tip

If	you	want	to	merge	with	several	assemblies	then	just
add	several	attributes:

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"merge	with	

Assembly1.dll",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"merge	with	

AnotherAssembly2.dll",	Exclude	=	false)]

…

Note

Usage	of	assemblies	merging	may	lead	to	some	side	effects
which	may	make	obfuscation	to	fail.	If	such	is	the	case	then
use	the	principle	of	the	least	common	denominator	–	merge
just	those	assemblies	which	do	not	cause	obfuscation	failure.	

Assemblies	embedding	can	be	used	in	conjunction	or	as	an
alternative	to	assemblies	merging.

Tuning

The	satellite	assemblies	are	not	merged	by	default.	You	may	prefer	to	change
that	by	instructing	Eazfuscator.NET	to	automatically	merge	them	for	you.	In
order	to	do	that,	please	read	the	notes	below.

The	full	notation	of	a	custom	attribute	for	assembly	merging	has	the	following
form:

[assembly:	Obfuscation(Feature	=	"merge	with	[flags]	

XXXXXX.dll",	Exclude	=	false)]

where	[flags]	is	an	optional	enumeration	of	flags	separated	by	spaces.

The	list	of	available	flags	is	presented	in	the	table	below.

Table	4.6.	The	list	of	flags	for	assembly	merging	attribute

Flag Description
satellites Enables	automatic	merging	of	satellite	assemblies

internalization=auto

Instructs	Eazfuscator.NET	to	automatically	decide	which
public	merged	types	should	be	internalized.	This	is	the
default	setting.	The	typical	decision	is	to	internalize	a
given	type.	At	the	same	time	the	type	internalization	can
be	inhibited,	for	example,	by	the	fact	that	some	kinds	of
WPF	controls	cannot	have	internal	visibility

internalization=none Disables	the	internalization	of	public	merged	types

internalization=full Instructs	Eazfuscator.NET	to	internalize	all	public
merged	types

Let's	take	a	look	on	examples.

Example	4.26.	Merge	with	assembly	and	its	satellite	assemblies

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"merge	with	[satellites]	

XXXXXX.dll",	Exclude	=	false)]

Example	4.27.	Merge	with	assembly	and	its	satellite	assemblies;	do	not
internalize	public	merged	types

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"merge	with	[satellites	

internalization=none]	XXXXXX.dll",	Exclude	=	false)]

Internalization

Internalization	changes	the	visibility	of	merged	classes	from	public	to
internal.	By	default,	classes	from	merged	assemblies	are	automatically
internalized	in	order	to	improve	obfuscation	coverage.

That's	fine	for	the	most	scenarios	but	sometimes	you	may	want	to	change	that	for
some	specific	classes.	Please	follow	the	instructions	below	to	achieve	it.

Instructions	on	disabling	internalization	for	specific	class

1.	 Open	the	source	code	of	a	class

2.	 Add	a	custom	attribute	as	shown	below	(C#):

using	System;

using	System.Reflection;

[Obfuscation(Feature	=	"internalization",	Exclude	=	true)]

public	class	YourClass

{

				...

}

For	Visual	Basic	.NET:

Imports	System

Imports	System.Reflection

<Obfuscation(Feature:="internalization",	Exclude:=True)>	

Class	YourClass

				...				

End	Class

Important

Conditional	obfuscation	is	not	available	for	this	feature.

Custom	Parameters	for	Merging

Sometimes	you	may	need	to	pass	custom	parameters	for	assembly	merging.	For
example,	you	may	prefer	to	control	class	internalization	yourself	or	use	some
tricky	merging	feature.

Historically	Eazfuscator.NET	relied	on	ILMerge	utility	in	the	past.	Now	it	is
equipped	with	its	own	compatible	merger	since	version	4.1.	The	new	merger
understands	most	of	ILMerge	configuration	parameters	and	can	be	configured	in
the	very	same	way.	Please	refer	to	ILMerge	documentation	for	the	list	of
available	parameters.

Instructions	on	passing	custom	parameters	to	merger

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

https://www.gapotchenko.com/go/ilmerge
https://www.gapotchenko.com/go/ilmerge/documentation

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"ilmerge	custom	parameters:	

<parameters>",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="ilmerge	custom	parameters:	

<parameters>",	Exclude:=False)>	

Note

Change	<parameters>	with	the	parameters	you	want	to
pass	to	merger.	Eazfuscator.NET	passes	/internalize
/ndebug	parameters	by	default	when	no	attribute
defined.	If	you	do	not	want	to	pass	any	parameters	to
merger	then	change	<parameters>	with	none	string.

5.8

https://www.gapotchenko.com/eazfuscator.net

Assemblies	Embedding

Introduction

Assemblies	embedding	allows	to	embed	assembly's	dependencies	into	assembly
itself.	This	may	be	beneficial	from	the	deployment	and	security	points	of	view.

Assemblies	embedding	is	similar	to	merging.	The	main	difference	is	that	the
assemblies	are	not	merged	into	single	assembly	when	they	are	embedded.	They
just	get	encrypted	and	packed	as	the	assembly	resources.	As	a	result,	there	is	a
single	assembly	at	the	output	and	it	contains	the	packed	dependencies	at	the
same	file.

What's	the	point	for	embedding	when	we	have	merging	(or	vice
versa)?

Assemblies	merging	delivers	the	best	performance	for	the	resulting	assemblies.
They	can	be	NGEN'ed,	they	work	in	all	constrained	environments	(Windows
Phone,	Compact	Framework	etc.).	File	mappings	and	JIT'ted	code	can	be	cached
by	the	operating	system	for	such	assemblies,	bringing	the	blinding	fast
application	startups.	Assembly	merging	definitely	rocks.

The	only	downside	of	merging	is	that	it's	not	always	possible	to	apply	it	without
breaking	the	application.	So	this	is	the	point	where	assemblies	embedding	comes
to	the	rescue.

Embedded	assemblies	are	easy	goals	to	achieve	and	they	work	out	of	the	box.
Downsides?	Well,	they	are	present.	Embedded	assemblies	can	not	be	NGEN'ed,
they	do	not	work	in	some	constrained	environments	(Xbox,	Windows	Phone	and
Compact	Framefork).	The	extraction	of	embedded	assemblies	during	the
application	load	is	a	performance	penalty	(penalty	is	pretty	small,	so	it's	unlikely
you	are	able	to	notice	it).

Assemblies	embedding	brings	some	benefits	as	well.	The	embedded	assemblies
are	encrypted,	so	this	is	a	securty	hardening	against	the	hackers.	Embedded
assemblies	are	compressed,	bringing	the	size	reduction	of	the	resulting	assembly.
And	of	course	assemblies	embedding	is	the	easiest	way	to	achieve	single-file

deployment,	making	your	application	to	consist	of	a	single	.exe	(or	.dll)	file.

Instructions

To	enable	assemblies	embedding	you	should	apply	specially	formed	attribute(s)
to	your	assembly.	In	order	to	do	that	you	can	use	the	instructions	below.

Instructions	on	enabling	assemblies	embedding

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"embed	XXXXXX.dll",	Exclude	

=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="embed	XXXXXX.dll",	

Exclude:=False)>	

Note

Change	XXXXXX.dll	with	the	file	name	of	the
assembly	you	want	to	embed.

Important

It	is	recommended	to	obsuscate	the	embedded
assemblies.

Tip

Eazfuscator.NET	automatically	finds	the	assembly	path
when	only	the	file	name	is	supplied.	
If	you	prefer	to	specify	the	exact	file	path	to	assembly
then	you	can	use	script	variables:

[assembly:	Obfuscation(Feature	=	@"embed	

$(InputDir)\Lib\AssemblyToEmbed.dll",	

Exclude	=	false)]

Tip

If	you	want	to	embed	several	assemblies	then	just	add
several	attributes:

[assembly:	Obfuscation(Feature	=	"embed	

Assembly1.dll",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"embed	

AnotherAssembly2.dll",	Exclude	=	false)]

…

Tuning

Embedded	assemblies	are	compressed	and	encrypted	by	default.	You	may	prefer
to	turn	off	the	compression,	encryption	or	them	both.	In	order	to	do	that,	please
read	the	notes	below.

The	full	notation	of	a	custom	attribute	for	assembly	embedding	has	the	following
form:

[assembly:	Obfuscation(Feature	=	"embed	[flags]	XXXXXX.dll",	

Exclude	=	false)]

where	[flags]	is	an	optional	enumeration	of	flags	separated	by	spaces.

The	list	of	available	flags	is	presented	in	the	table	below.

Table	4.7.	The	list	of	flags	for	assembly	embedding	attribute

Flag Description
no_compress Disables	the	compression
no_encrypt Disables	the	encryption
no_satellites Disables	automatic	embedding	of	satellite	assemblies

load_from_file

Instructs	Eazfuscator.NET	to	load	the	embedded	assembly
from	file	instead	of	memory	during	the	obfuscated	assembly
run-time.	This	can	be	used	to	preserve	a	meaningful	value	of
Location	property	from	System.Reflection.Assembly	type.

immediate_load

Instructs	Eazfuscator.NET	to	load	the	embedded	assembly
immediately	on	a	module	start.	This	may	be	required	to
satisfy	the	technologies	that	rely	on	a	custom	assembly
resolution	mechanism.	An	example	of	such	technology	is
WPF	which	uses	XmlnsDefinitionAttribute	to	locate	the
assemblies	at	runtime.	Please	note	that	Eazfuscator.NET
automatically	detects	the	most	of	affected	technologies	and
applies	the	flag	automatically	when	required.

Let's	take	a	look	on	examples.

Example	4.28.	Embed	assembly	without	compression	and	encryption

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"embed	[no_compress	no_encrypt]	

XXXXXX.dll",	Exclude	=	false)]

Example	4.29.	Embed	assembly	without	encryption;	compression	is	enabled

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"embed	[no_encrypt]	

XXXXXX.dll",	Exclude	=	false)]

Example	4.30.	Embed	assembly;	compression	and	encryption	are	enabled

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"embed	XXXXXX.dll",	Exclude	=	

false)]

Example	4.31.	Embed	own	satellite	assemblies;	compression	and	encryption
are	enabled

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"embed	satellites",	Exclude	=	

false)]

Troubleshooting

While	assembly	embedding	is	the	most	non-intrusive	way	to	link	the	assembly,
some	rare	issues	may	occur.	Possible	issues	are	described	in	this	chapter	together
with	corresponding	solutions	to	avoid	them.

Possible	Issue	#1:	Location	Property	of	System.Reflection.Assembly	Class

Issue	summary.		Location	property	of	System.Reflection.Assembly	class	is
often	used	to	find	the	paths	of	files	near	the	assembly.	While	not	being	a	correct
solution,	this	works	for	most	deployment	scenarios.

What	may	go	wrong?		First	of	all,	Location	property	can	have	a	completely
unexpected	value	when	assembly	shadow	copying	is	used,	thus	breaking	the
intended	application	logic.	Secondly,	Location	property	has	a	null	value	when	a
corresponding	assembly	is	embedded.

Solution.		Use	EscapedCodeBase	property	instead.	This	property	always	has	a
correct	value	in	all	deployment	scenarios.	Please	take	a	look	at	the	sample	below.

using	System;

class	Program

{

				static	string	GetEulaPath()

				{

								var	assembly	=	typeof(Program).Assembly;

								//	string	location	=	assembly.Location;	//	Please	do	not	

use	this.	This	is	a	flawed	approach

								string	location	=	new	

Uri(assembly.EscapedCodeBase).LocalPath;	//	<--	Use	this	instead

								return	Path.Combine(Path.GetDirectoryName(location),	

"EULA.rtf");

				}

}

Alternative	workaround	is	to	use	load_from_file	flag	for	the	embedded
assembly.

Possible	Issue	#2:	Custom	Assembly	Loading

Issue	summary.		Some	applications,	libraries	and	technologies	use	custom
assembly	loading	mechanisms	that	go	beyond	locating	assemblies	by	strong
names.	They	typically	rely	on	some	domain-specific	properties	of	an	assembly.	It
may	be	special	assembly	name	convention,	specific	custom	attribute	applied	to
an	assembly	etc.

What	may	go	wrong?		A	particular	property	of	a	custom	assembly	loading
mechanism	is	that	it	looks	for	an	assembly	either	at	the	list	of	loaded	assemblies
or	at	the	probing	paths	for	the	current	AppDomain.	This	is	where	Assemblies
Embedding	may	become	a	breaking	change	for	the	custom	algorithm	–	the
assembly	is	no	longer	there,	it	is	embedded.

Solution.		Use	immediate_load	flag	for	the	embedded	assembly.	This	will
instruct	Eazfuscator.NET	to	immediately	load	the	assembly	at	the	module
startup.

5.8

https://www.gapotchenko.com/eazfuscator.net

Resource	Encryption

Introduction

Resource	encryption	feature	allows	to	encrypt	and	optionally	compress	the
embedded	resources	of	an	assembly.

Instructions

To	enable	resource	encryption	you	should	apply	an	attribute	to	your	assembly.	In
order	to	do	that	you	can	use	the	instructions	below.

Instructions	on	enabling	resource	encryption

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"encrypt	resources",	

Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="encrypt	resources",	

Exclude:=False)>	

Compression

Assembly	resources	are	not	compressed	by	default.	If	you	want	to	achieve
smaller	size	of	an	output	assembly	then	you	may	consider	to	turn	on	the	resource
compression.	The	[compress]	flag	turns	on	the	compression	when	specified,	as
shown	in	the	sample	below.

Example	4.32.	Encrypt	and	compress	all	resources

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"encrypt	resources	[compress]",	

Exclude	=	false)]

Selective	Resource	Encryption

Sometimes	it	may	be	beneficial	to	encrypt	just	some	resources	while	leaving	the
others	intact.	The	[exclude]	flag	can	be	used	in	order	to	do	that,	as	shown	in	the
sample	below.

Example	4.33.	Encrypt	all	resources	except	.png	files

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"encrypt	resources",	Exclude	=	

false)]

[assembly:	Obfuscation(Feature	=	"encrypt	resources	[exclude]	

*.png",	Exclude	=	false)]

It	may	be	profitable	to	go	other	way	around	by	explicitly	specifying	just	those
resources	that	should	be	encrypted.	This	technique	is	shown	in	the	sample	below.

Example	4.34.	Encrypt	secret.txt	and	all	.sql	resources;	the	others	are	left
intact

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"encrypt	resources	secret.txt",	

Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"encrypt	resources	*.sql",	

Exclude	=	false)]

Options	are	Combinable

The	given	options	can	be	combined	in	a	free	way	giving	you	the	power	to
choose	the	best	combination	for	performance,	security	and	possibly	obscurity	to
mislead	the	hacker.

If	you	are	not	sure	which	combination	to	choose	then	just	go	with	a	simplest
one:	encrypt	all	resources.

If	you	know	what	you	are	doing	then	you	can	end	up	with	something	like	that:

Example	4.35.	Advanced	resource	encryption	configuration

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"encrypt	resources",	Exclude	=	

false)]

[assembly:	Obfuscation(Feature	=	"encrypt	resources	[exclude]	

License.txt",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"encrypt	resources	[exclude]	

CommandLineOptions.txt",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"encrypt	resources	[compress]	

*.dat",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"encrypt	resources	[compress]	

*.sql",	Exclude	=	false)]

5.8

https://www.gapotchenko.com/eazfuscator.net

Serialization	Tuning

Overview

Serialization	can	be	defined	as	the	process	of	storing	the	state	of	an	object	to	a
storage	medium.	There	are	two	main	kinds	of	serialization	available	in	.NET:

XML	serialization
Binary	serialization

This	chapter	covers	the	binary	serialization.

Binary	serialization	is	often	used	in	application	state	persistence,	offline	caches
and	remoting	communication.	.NET	platform	has	rich	services	that	allow	to
perform	binary	serialization	of	objects	within	several	lines	of	code.	All
serializable	classes	and	structures	are	marked	with	[Serializable]	(or
<Serializable()>	in	VB.NET)	custom	attribute,	so	.NET	runtime	is	aware
about	serialization-ability	of	every	class	and	structure.

Binary	Serialization	and	Obfuscation

.NET	serialization	services	use	reflection	to	retrieve	the	data	of	the	serializable
objects.	That	means	that	obfuscator	should	take	some	precautions	when	it	tries	to
obfuscate	serializable	elements.	Eazfuscator.NET	uses	the	safest	approach	by
default	—	all	serializable	classes,	structures	and	fields	are	automatically
excluded	from	symbol	renaming.	This	guarantees	that	obfuscation	has	the
minimal	impact	on	application	functionality	and	interoperability.	At	the	same
time,	this	approach	has	one	drawback	—	all	serializable	elements	are	too
obviously	visible	during	reverse	engineering.

Self-Interoperability

Sometimes	absolute	interoperability	of	binary	serialization	is	not	required	for	an
application.	It's	a	very	common	situation	when	application	serializes	and
deserializes	the	objects	by	itself,	so	no	other	applications	are	meant	to	have	an
access	to	the	serialized	data.	If	latter	is	the	case	then	it	is	possible	to	improve	the
obfuscation	of	serializable	elements	in	your	application	by	using	self-

interoperable	serialization.

Non-stable	Self-Interoperable	Serialization

If	serialized	data	do	not	leave	the	boundaries	of	the	application	process	then	non-
stable	binary	serialization	can	be	used	instead	of	fully	interoperable	one.	This
kind	of	serialization	is	called	non-stable	because	the	names	of	serializable
elements	are	changed	on	every	obfuscation	of	the	application.	Technically,	non-
stable	serialization	is	achieved	by	enabling	the	renaming	of	serializable
elements,	so	they	are	not	excluded	from	symbol	renaming	process	anymore.

To	enable	non-stable	self-interoperable	serialization	you	should	apply	specially
formed	attribute	to	your	assembly.	In	order	to	do	that	you	can	use	the
instructions	below.

Instructions	on	enabling	non-stable	self-interoperable	serialization

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"rename	serializable	

symbols",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="rename	serializable	

symbols",	Exclude:=False)>	

Stable	Self-Interoperable	Serialization

Stable	serialization	should	be	used	when	the	serialized	data	can	leave	the
boundaries	of	the	application	process.	This	kind	of	serialization	is	called	stable
because	the	names	of	serializable	elements	stay	the	same	between	the
obfuscations	of	the	application.	Some	obfuscator	vendors	use	the	term
incremental	obfuscation	when	they	want	to	say	that	symbol	names	remain	the
same	between	several	obfuscations.	Technically,	stable	serialization	is	achieved
by	encrypting	the	names	of	serializable	elements	with	a	password.	The
encryption	algorithm	is	the	same	as	in	symbol	names	encryption.

To	enable	stable	self-interoperable	serialization	you	should	apply	specially
formed	attribute	to	your	assembly.	In	order	to	do	that	you	can	use	the
instructions	below.

Instructions	on	enabling	stable	self-interoperable	serialization

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"encrypt	serializable	

symbol	names	with	password	'XXXXXX'",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="encrypt	serializable	symbol	

names	with	password	'XXXXXX'",	Exclude:=False)>	

Note

Change	XXXXXX	with	your	password.	Keep	the
password	in	secret.

Passwords	with	a	greater	length	are	more	preferable	than
short	ones.	Longer	passwords	have	a	better
informational	entropy	thus	greatly	improving
cryptographic	strength	of	the	encrypted	data.	It's
suggested	to	have	a	password	which	at	least	consists	of
8	characters.

Tip

If	you	use	symbol	names	encryption	and	want	to	use	the	same
password	for	the	stable	serialization	then	apply	"encrypt
serializable	symbol	names	with	password"	instead	of
"encrypt	serializable	symbol	names	with	password

'XXXXXX'"	token	at	the	custom	attribute	shown	above.

5.8

https://www.gapotchenko.com/eazfuscator.net

Debugging

Introduction	to	Debugging	After	Obfuscation

Assembly	can	be	easily	debugged	in	Debug	project	configuration	when	no
obfuscation	takes	place.

But	you	may	want	to	debug	your	assembly	in	Release	configuration	when
obfuscation	does	take	place.	There	are	not	much	reasons	to	do	so,	however
sometimes	it	may	be	a	life-saver.	That's	why	debugging	after	obfuscation	is
supported	by	Eazfuscator.NET.

The	debugging	feature	of	Eazfuscator.NET	is	turned	off	by	default	to	allow
faster	builds	and	better	optimizations.	If	you	want	to	enable	debugging	then
please	follow	the	instructions	below:

Instructions	on	enabling	debug	support	for	an	output	assembly

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"debug",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="debug",	Exclude:=False)>	

Note

Debugging	experience	may	slightly	suffer	if	used	together
with	code	control	flow	obfuscation	feature.

How	It	Works

Eazfuscator.NET	changes	assembly	contents	during	obfuscation,	so	the
debugging	information	gets	out	of	sync	when	no	special	provisions	are	made.	If
the	input	assembly	contains	an	applied	"debug"	attribute	that	was	discussed
above	then	Eazfuscator.NET	takes	care	of	debugging	information	and	transforms
it	according	to	the	applied	assembly	changes.	That's	why	the	debug	information
is	always	in	sync	when	debug	support	is	on	for	a	given	assembly.

The	debug	information	is	stored	in	.pdb	file	which	is	located	near	the	assembly.
For	example,	MyAssembly.dll	may	have	a	corresponding	MyAssembly.pdb	file.
When	you	start	a	debug	session	the	debugger	tries	to	find	the	.pdb	files	for	all
loaded	assemblies.	If	the	right	.pdb	file	is	found	then	you	are	able	to	set
breakpoints	and	watch	variables	in	debugger.

Possible	Security	Risks

.pdb	files	store	the	following	information:

The	names	of	source	files	(including	their	full	paths)
Line	numbers
Associations	between	IL	instruction	offsets,	line	numbers	and	source	files

The	names	of	source	files	can	be	used	to	find	the	original	class	names	when
corresponding	.pdb	file	is	available	to	a	reverse-engineer.	So	please	use	.pdb
files	with	care	—	they	can	weaken	the	protection	strength.

The	security	of	.pdb	files	can	be	improved	by	using	secure	debugging.

Tuning

The	debugging	directive	provides	a	basic	experience	by	default.	This	is	enough
to	quickly	step	through	your	code	and	spot	exceptions.	You	may	also	opt	in	to
the	improved	security	and	readability	of	debugging	information.	In	order	to	do
that,	please	read	the	notes	below.

The	full	notation	of	a	custom	attribute	for	debugging	has	the	following	form:

[assembly:	Obfuscation(Feature	=	"debug	[flags]",	Exclude	=	

false)]

where	[flags]	is	an	optional	enumeration	of	flags	separated	by	spaces.

The	list	of	available	flags	is	presented	in	the	table	below.

Table	4.8.	The	list	of	flags	for	debugging	directive

Flag Description
secure Activates	secure	debugging
relative_file_paths Instructs	to	produce	relative	file	paths	in	resulting	.pdb	file

nonintrusive
Allows	to	perform	nonintrusive	debugging	sessions	to
catch	hard-to-reproduce	bugs	sensitive	to	time,	size	or
other	nonlinear	factors

Secure	Debugging

Debug	information	can	be	a	weak	point	in	security	of	an	obfuscated	application.
But	what	if	you	want	to	get	the	line	numbers	and	file	names	without
compromising	the	security?	Well,	this	goal	is	easily	achievable.	All	you	have	to
do	is	to	supply	[secure]	flag	to	an	obfuscation	attribute	like	so	in	C#:

[assembly:	Obfuscation(Feature	=	"debug	[secure]",	Exclude	=	

false)]

or	in	VB.NET:

<Assembly:	Obfuscation(Feature:="debug	[secure]",	

Exclude:=False)>

What	happens	then?	Eazfuscator.NET	starts	to	encrypt	source	file	names	in	.pdb
file	in	the	very	same	way	as	it	does	for	other	items	such	as	class	and	method
names.	So,	whenever	you	have	symbol	names	encryption	set	up	for	your
assembly	it	will	be	also	applied	to	the	content	of	.pdb	file.

Tip

If	you	do	not	want	to	apply	symbol	names	encryption	to	the
whole	assembly	then	just	provide	a	password	as	shown
below:

[assembly:	Obfuscation(Feature	=	"debug	[secure]	

with	password	XXXXXX",	Exclude	=	false)]

Change	XXXXXX	with	your	password.	Keep	the	password
in	secret.

Obviously,	the	secure	debugging	makes	stepping	through	the	code	impossible	as
a	debugger	no	longer	knows	how	to	find	the	source	files:	their	names	are	now
encrypted	and	debugger	has	no	means	to	decrypt	them.	This	is	a	little	sacrifice
for	the	big	benefit:	all	logged	exceptions	will	contain	the	full	information	you
need	in	an	encrypted	and	safe	form.	Class	names,	method	names,	argument
names,	file	names	and	line	numbers	are	all	there	to	help	you	to	precisely	locate
the	problematic	code.	And	now	you	can	safely	distribute	.pdb	files	to	your
customers	without	the	risk	of	security	breach.

Tip

Secure	debugging	is	essential	feature	when	you	want	to
distribute	.pdb	files	to	your	customers	as	a	sole	part	of	your
product.	Smaller	applications	surely	can	live	without	it.
Applications	of	a	larger	scale,	notably	business-oriented	ones,
may	have	the	hard	times	unless	secure	debugging	is
employed	for	the	obfuscated	code.

Relative	File	Paths

.pdb	file	stores	the	full	paths	of	source	files	by	default.	That's	an	excellent	idea
for	an	interactive	debugger	because	it	can	find	the	source	files	easily.	However
this	can	be	an	overhead	when	you	only	need	stack	traces	or	secure	debugging.
That's	why	you	may	prefer	to	save	some	storage	bits	by	using	relative	file	paths.
They	are	shorter,	as	well	as	a	resulting	.pdb	file.	Stack	traces	get	shorter	too,
their	readibility	improves.	If	you	use	automated	error	reporting	then	you	will
benefit	from	smaller	workloads.	To	use	relative	file	paths,	please	supply
[relative_file_paths]	flag	to	an	obfuscation	attribute	like	so	in	C#:

[assembly:	Obfuscation(Feature	=	"debug	[relative_file_paths]",	

Exclude	=	false)]

or	in	VB.NET:

<Assembly:	Obfuscation(Feature:="debug	[relative_file_paths]",	

Exclude:=False)>

Debug	Renaming

Debug	renaming	is	a	special	renaming	technique	for	debugging	of	obfuscated
applications.	The	result	of	this	technique	is	the	presence	of	human	readable
symbol	names	in	output	assemblies.	Such	symbol	names	allow	to	instantly	watch
variables	and	stack	traces	by	an	unaided	eye.

Debug	renaming	works	by	applying	_x_	prefix	to	every	renamed	class	and	class
member.	The	name	part	after	prefix	equals	to	original	item	name.

Instructions	on	enabling	debug	renaming	for	an	output	assembly

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"debug	renaming",	Exclude	=	

false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="debug	renaming",	

Exclude:=False)>	

Caution

Debug	renaming	is	exclusively	a	debugging	feature.	Never
leave	this	feature	enabled	for	production	assemblies,
otherwise	original	symbol	names	can	leak	to	the	outside
world.

5.8

https://www.gapotchenko.com/eazfuscator.net

PEVerify	Integration

PEVerify	tool	allows	to	check	assemblies	to	determine	whether	MSIL	code	and
associated	metadata	meet	type	safety	requirements.	.NET	verification	has	the
special	meaning	in	security	constrained	environments	such	as	Windows	Phone,
WinRT	and	Silverlight,	where	running	the	unverifiable	code	can	produce
unexpected	results,	sometimes	rendering	the	application	unworkable.

Eazfuscator.NET	modifies	metadata	and	MSIL	assembly	code	during
obfuscation.	So	it	may	be	profitable	to	ensure	that	the	output	assembly	still
meets	type	safety	requirements.

PEVerify.exe	is	distributed	as	a	part	of	.NET	SDK	which	is	installed	together
with	Microsoft	Visual	Studio	and	can	be	invoked	manually.	But
Eazfuscator.NET	provides	a	much	better	option:	an	ability	to	automatically
invoke	PEVerify	tool	after	obfuscation.	Please	use	the	instructions	below	in
order	to	use	the	latter	feature.

Instructions	on	turning	on	the	PEVerify	tool	for	an	output	assembly

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"PEVerify",	Exclude	=	

false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="PEVerify",	Exclude:=False)>		

5.8

https://www.gapotchenko.com/eazfuscator.net

Probing	Paths

About	Probing	Paths

Probing	paths	is	a	set	of	places	at	the	file	system	where	Eazfuscator.NET	can
search	for	dependencies	of	input	assembly.	Eazfuscator.NET	is	smart	enough	to
deduct	these	paths	from	installed	assemblies	and	from	project	settings,	however
it	might	be	neccessary	to	define	probing	paths	manually	when	some	complex
scenario	is	involved.

How	to	Define	Probing	Paths?

There	are	two	ways	to	define	probing	paths:	by	declarative	obfuscation	attributes
or	by	command	line	option.

Define	probing	paths	by	declarative	obfuscation	attributes	(the
recommended	way)

To	define	a	probing	path	you	should	apply	an	attribute	to	your	assembly.	In	order
to	do	that	you	can	use	the	instructions	below.

Instructions	on	defining	the	probing	path	by	declarative	obfuscation
attribute

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	@"assembly	probing	path	

C:\Example\Lib")]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="assembly	probing	path	

C:\Example\Lib")>	

Note

Change	C:\Example\Lib	with	the	directory	name	you
want	to	be	probed	for	assembly	dependencies.

Tip

It	is	recommended	to	use	relative	directory	paths	with
script	variables:

[assembly:	Obfuscation(Feature	=	@"assembly	

probing	path	$(InputDir)\Lib")]

Tip

If	you	want	to	define	several	probing	paths	then	just	add
several	attributes:

[assembly:	Obfuscation(Feature	=	@"assembly	

probing	path	C:\Example\Lib1")]

[assembly:	Obfuscation(Feature	=	@"assembly	

probing	path	C:\Example\Lib2")]

…

Define	probing	paths	by	command	line	option

There	is	a	command	line	option	--probing-paths	"C:\Example\Lib"	which
can	be	specified	to	achieve	this	functionality.	If	you	want	to	define	several

probing	paths	then	please	use	semicolon	as	a	list	separator:	--probing-paths
"C:\Example\Lib1;C:\Example\Lib2".

Note

Change	C:\Example\Lib	with	the	directory	name	you	want	to
be	probed	for	assembly	dependencies.

Warning

Do	not	put	a	trailing	slash	at	the	end	of	the	path,	otherwise
the	operating	system	will	interpret	it	as	an	escape	symbol.

5.8

https://www.gapotchenko.com/eazfuscator.net

Script	Variables

Eazfuscator.NET	provides	support	for	script	variables	that	can	be	used	to
configure	probing	paths,	assemblies	merging	and	assembly	embedding.	The	list
of	available	script	variables	is	presented	in	the	table	below.

Table	4.9.	The	list	of	available	script	variables

Variable Description Example	value

$(InputDir)
Directory	path	of
the	input	assembly

C:\Dev\Project1\bin\Release

$(ProjectDir)
Directory	path	of
the	MSBuild	project

C:\Dev\Project1

$(SolutionDir)

Directory	path	of
the	MSBuild
solution

C:\Dev

$(ConfigurationName)

Name	of	MSBuild
project
configuration

Release

Environment	variables	can	be	referenced	as	well.	Please	use	pattern	%VARIABLE%
to	reference	a	corresponding	environment	variable.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	5.	Sensei	Features

Table	of	Contents

About	Sensei	Features
Code	Inlining
Protected	Private	Visibility
Custom	Attributes	Removal
Design-Time	Usage	Protection

Overview
How	It	Works
Instructions
Tuning

Resource	Sanitization
Introduction
Instructions
Minification
Selective	Resource	Sanitization
Options	are	Combinable

About	Sensei	Features

Sensei	()	is	a	Japanese	word	that	is	used	to	show	respect	to	someone	who	has
achieved	a	certain	level	of	mastery	in	an	art	form	or	some	other	skill.
Obfuscation	is	not	exception.

Sensei	obfuscation	features	are	powerful	and	demanding.	With	a	great	power
comes	great	responsibility.	Not	all	of	them	are	designed	for	a	common	everyday
usage.	Still,	you	may	want	them	one	day.	Especially	when	you	work	on	a
licensing	code	or	want	to	improve	obfuscation	coverage	even	further.

5.8

https://www.gapotchenko.com/eazfuscator.net

Code	Inlining

Method	bodies	can	be	inlined	to	their	call	sites	during	obfuscation.	Please	take	a
look	at	example	(C#):

Example	5.1.	Before	obfuscation

using	System;

using	System.Reflection;

class	Program

{

				static	void	Main(string[]	args)

				{

								Console.WriteLine("Inlining	test");

								SecretMethod();

				}

				[Obfuscation(Feature	=	"inline",	Exclude	=	false)]

				static	void	SecretMethod()

				{

								Console.WriteLine("Secret");

				}

}

Example	5.2.	After	obfuscation

using	System;

using	System.Reflection;

class	Program

{

				static	void	Main(string[]	args)

				{

								Console.WriteLine("Inlining	test");

								Console.WriteLine("Secret");

				}

}

Code	inlining	brings	obvious	security	benefits:

Once	method	is	inlined,	it's	no	longer	a	subject	of	hacker's	special	attention

Call	site	gets	larger	as	it	takes	inlined	instructions	of	the	method.	This
makes	code	analysis	a	harder	task	for	an	intruder

Code	inlining	may	be	useful	in	such	scenarios	as	licensing	checks	and	know-
how	algorithms.

Instructions	on	enabling	method	inlining

1.	 Open	the	source	code	of	a	method	you	want	to	inline

2.	 	Add	a	custom	attribute	as	shown	below	(C#):

using	System;

using	System.Reflection;

class	YourClass

{

				[Obfuscation(Feature	=	"inline",	Exclude	=	false)]

				void	YourMethod()

				{

								...

				}

}

For	Visual	Basic	.NET:

Imports	System

Imports	System.Reflection

Class	YourClass

				<Obfuscation(Feature:="inline",	Exclude:=False)>	

				Sub	YourMethod()

								...

				End	Sub

				

End	Class

5.8

https://www.gapotchenko.com/eazfuscator.net

Protected	Private	Visibility

.NET	languages	offer	a	few	keywords	for	visibility	control	between	assemblies,
classes	and	members.	For	example,	C#	has	public,	internal,	protected,
protected	internal	and	private	access	modifiers.

Sometimes	you	may	need	a	special	access	level:	protected	private.	It	exists	in
C++	but	absent	in	C#	and	VB.NET.	It	corresponds	to	FamANDAssem	visibility
scope	in	terms	of	.NET	CLR.

This	is	indeed	a	rare	requirement.	Let's	take	a	look	on	specific	example.	Suppose
you	have	a	DLL	assembly	written	in	C#	that	does	XML	serialization	for	some
entities:

Example	5.3.	Original	code

using	System;

using	System.Xml.Serialization;

//	This	class	is	used	by	System.Xml.Serialization.XmlSerializer.

public	class	Card

{

				public	string	ID

				{

								get;

								set;

				}

				protected	virtual	void	Validate()

				{

				}

}

//	This	class	is	used	by	System.Xml.Serialization.XmlSerializer.

public	class	VerticalCard	:	Card

{

				public	int	Height

				{

								get;

								set;

				}

http://msdn.microsoft.com/en-us/library/system.reflection.fieldinfo.isfamilyandassembly.aspx

				protected	override	void	Validate()

				{

								if	(Height	<=	0)

												throw	new	Exception("Vertical	card	height	should	be	

a	positive	number	greater	than	zero.");

				}

}

See	that	Validate	method?	It	won't	be	renamed	after	obfuscation	despite	the
wish	of	developer.	But	why?	The	answer	is:	because	assembly	is	DLL,	the	class
is	public	and	Validate	method	is	protected.	This	means	that	Validate	method
can	be	reached	by	a	third-party	assembly	and	Eazfuscator.NET	leaves	its	name
intact.

That's	ok	for	most	situations.

Still,	let's	imagine	that	one	picky	developer	decides	to	rename	Validate	method
whatever	it	costs.	Potential	workarounds	are:

Make	Validate	methods	private.	Won't	work	because	it	wouldn't	be
possible	to	override	Validate	method	in	VerticalCard	class

Make	Card	and	VerticalCard	classes	internal.	Won't	work	because
XmlSerializer	works	on	public	classes	only

Make	Validate	methods	internal.	Will	work	but	will	break	the	visibility
borders	inside	the	assembly.	This	may	be	unfeasible	if	you	work	in	a	team
with	established	responsibility	borders	between	its	members

Make	Validate	methods	protected	private.	Will	perfectly	work,	but
only	in	C++.	C#	and	VB.NET	have	no	corresponding	access	modifier

Move	validation	away	to	a	separate	set	of	classes.	Will	work,	but	it	requires
code	refactoring.	It	may	be	risky	for	a	large	code	base	and	thus	not	always
suitable

So	we	are	stuck	if	our	code	is	in	C#	or	VB.NET.

Fortunately	Eazfuscator.NET	can	change	the	visibility	of	class	members	to
FamANDAssem	level.	This	is	the	exact	same	thing	as	protected	private	in	C++.
Having	that,	we	can	now	solve	the	dilemma	(C#):

Example	5.4.	Modified	code	to	allow	family	and	assembly	visibility	for
specified	methods

using	System;

using	System.Xml.Serialization;

using	System.Reflection;

//	This	class	is	used	by	System.Xml.Serialization.XmlSerializer.

public	class	Card

{

				public	string	ID

				{

								get;

								set;

				}

				[Obfuscation(Feature	=	"family	and	assembly	visibility",	

Exclude	=	false)]

				protected	virtual	void	Validate()

				{

				}

}

//	This	class	is	used	by	System.Xml.Serialization.XmlSerializer.

public	class	VerticalCard	:	Card

{

				public	int	Height

				{

								get;

								set;

				}

				[Obfuscation(Feature	=	"family	and	assembly	visibility",	

Exclude	=	false)]

				protected	override	void	Validate()

				{

								if	(Height	<=	0)

												throw	new	Exception("Vertical	card	height	should	be	

a	positive	number	greater	than	zero.");

				}

}

Once	that	in	place,	Validate	methods	will	be	renamed	and	will	no	longer	be

visible	to	other	assemblies.

Instructions	on	changing	visibility	to	FamANDAssem	level	for	a
class	member

1.	 Open	the	source	code	of	a	class	member	that	should	have	a	visibility
change

2.	 	Add	a	custom	attribute	as	shown	below	(C#):

using	System;

using	System.Reflection;

class	YourClass

{

				[Obfuscation(Feature	=	"family	and	assembly	visibility",	

Exclude	=	false)]

				protected	void	YourMethod()

				{

								...

				}

}

For	Visual	Basic	.NET:

Imports	System

Imports	System.Reflection

Class	YourClass

				<Obfuscation(Feature:="family	and	assembly	visibility",	

Exclude:=False)>	

				Protected	Sub	YourMethod()

								...

				End	Sub

				

End	Class

Tip

If	you	change	visibility	for	a	virtual	method	then	it	is
beneficial	to	ensure	that	the	whole	inheritance	hierarchy	has	a
corresponding	change.	This	will	improve	renaming	coverage
during	obfuscation.

Tip

It	may	be	a	good	idea	to	turn	on	code	verification	for	your
assembly	when	visibility	changes	are	applied	to	ensure	that
generated	code	conforms	to	industrial	standard.

5.8

https://www.gapotchenko.com/eazfuscator.net

Custom	Attributes	Removal

.NET	framework	provides	a	set	of	custom	attributes	that	allows	to	describe	meta
properties	of	a	given	class,	field,	property	or	method.

For	example,	Windows	Forms	and	WPF	visual	designers	use
System.ComponentModel.DescriptionAttribute	to	find	the	textual
descriptions	for	editable	class	properties.	There	are	other	use	cases	and	they	are
numerous.

Eazfuscator.NET	automatically	prunes	excessive	meta	attributes	whenever
possible.	However	you	may	prefer	to	remove	all	custom	attributes	with	given
conditions	in	some	scenarios	to	achieve	better	obfuscation	coverage.

Instructions	on	using	the	custom	attributes	removal

Suppose	we	want	to	remove	System.ComponentModel.DescriptionAttribute
from	every	class	member	of	the	assembly.	Please	follow	the	instructions	below
to	achieve	that.

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*:	apply	to	

member	*:	remove	custom	attribute	

System.ComponentModel.DescriptionAttribute",	Exclude	=	

false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="Apply	to	type	*:	apply	to	

member	*:	remove	custom	attribute	

System.ComponentModel.DescriptionAttribute",	

Exclude:=False)>	

Tip

You	can	use	specific	conditions	to	define	the	scope	of	custom
attributes	removal.	See	conditional	obfuscation	for	details.

Tip

You	can	specify	any	class	name	instead	of
System.ComponentModel.DescriptionAttribute.	
Patterns	are	allowed	too,	for	example:
*.DescriptionAttribute

Tip

Attribute	literal	at	the	end	of	the	class	name	can	be	omitted,
e.g.	System.ComponentModel.Description	will	do	the	job
too.

5.8

https://www.gapotchenko.com/eazfuscator.net

Design-Time	Usage	Protection

Overview

It	is	a	common	scenario	when	software	developers	use	class	libraries	authored
in-house.	Such	libraries	are	not	made	available	to	third-parties	but	they	are
extensively	used	throughout	the	application.

Eazfuscator.NET	provides	a	way	to	protect	such	libraries	from	unsolicited	usage
by	third-parties	in	design	time.

How	It	Works

Eazfuscator.NET	injects	special	checks	into	obfuscated	assembly	and	shrinks
public	API	surface	when	design-time	usage	protection	is	enabled.	The	injected
checks	ensure	that	components	can	only	be	instantiated	at	runtime	context,	thus
effectively	preventing	their	unsolicited	usage	in	designer.

Component	Designer	Suppression

Let's	take	a	look	on	example.	Suppose	the	application	has
ContosoWindowsFormsControlLibrary	assembly	that	defines
ContosoUserControl	UI	component.	When	the	solution	is	in	Debug
configuration	and	is	not	obfuscated,	the	developer	is	able	to	use	Toolbox	panel
and	play	with	ContosoUserControl	in	Visual	Studio	designer:

Let's	switch	the	solution	to	Release	configuration	and	build	it	with	enabled
obfuscation	and	design-time	usage	protection:

Please	note	that	designer	now	shows	"Design-time	usage	is	not	allowed"
message.	This	is	expected	error	message	because	the	control	library	was
obfuscated	and	protected	from	usage	in	designer.

Component	designer	suppression	is	automatically	applied	to	Component	Model
and	Windows	Forms	components	defined	in	class	library	when	design-time
protection	is	on.

Public	API	Surface	Shrink

Public	API	surface	is	a	set	of	public	classes	and	their	members	exposed	by	a
class	library.	By	default,	Eazfuscator.NET	preserves	public	API	surface	of	class
library	so	that	it	can	be	consumed	by	other	modules.	However	not	all	data	are
needed	in	runtime.	For	example,	method	arguments	can	be	renamed	to
obfuscated	titles	without	loosing	runtime	functionality.

What	Eazfuscator.NET	does	is	essentially	this:	it	automatically	renames	method

arguments	to	obfuscated	equivalents	when	design-time	protection	is	on.	This
process	is	called	public	API	surface	shrink.	It	allows	to	achieve	better
obfuscation	coverage.

Instructions

Please	follow	the	instructions	below	to	enable	design-time	usage	protection	for
your	assembly:

Instructions	on	enabling	design-time	usage	protection

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"design-time	usage	

protection",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="design-time	usage	

protection",	Exclude:=False)>	

Tuning

By	default,	component	designer	suppression	and	public	API	surface	shrink	are
active	when	design-time	usage	protection	is	enabled	for	your	assembly.	You	may
prefer	to	turn	off	the	component	designer	suppression	or	configure	public	API
shrink	options.	In	order	to	do	that,	please	read	the	notes	below.

The	full	notation	of	a	custom	attribute	for	design-time	usage	protection	has	the
following	form:

[assembly:	Obfuscation(Feature	=	"design-time	usage	protection	

[flags]",	Exclude	=	false)]

where	[flags]	is	an	optional	enumeration	of	flags	separated	by	spaces.

The	list	of	available	flags	is	presented	in	the	table	below.

Table	5.1.	The	list	of	flags	for	design-time	usage	protection	attribute

Flag Description
no_cds Disables	the	component	designer	suppression
arguments=keep Disables	the	method	arguments	renaming

arguments=auto
Eazfuscator.NET	automatically	decides	which	arguments
to	rename	during	public	API	surface	shrink.	This	is	the
default	setting

arguments=rename

All	method	arguments	are	renamed	during	public	API
surface	shrink.	Note	that	this	seeting	may	cause	troubles
with	optional	parameters	if	they	are	referenced	by	names
in	source	code

Let's	take	a	look	on	example.

Example	5.5.	Enable	design-time	usage	protection	without	component
designer	suppression.	Rename	all	method	arguments	during	public	API
surface	shrink

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"design-time	usage	protection	

[no_cds	arguments=rename]",	Exclude	=	false)]

5.8

https://www.gapotchenko.com/eazfuscator.net

Resource	Sanitization

Introduction

Resource	sanitization	feature	allows	to	sanitize	and	optionally	minify	the
embedded	resources	of	an	assembly.	Sanitization	removes	privacy	disclosing
information	such	as	comments	in	XML	and	JSON	files,	EXIF	tag/thumbnail
headers	in	JPEG	and	PNG	files	etc.

Eazfuscator.NET	supports	a	finite	set	of	file	types	which	can	be	sanitized:	XML,
XSD,	XSLT,	JSON,	PNG	and	JPEG.	All	other	file	types	are	ignored	and	kept
intact	even	when	there	is	a	directive	that	instructs	to	sanitize	them.

Let's	take	a	look	on	example.

Example	5.6.	The	original	XML	file

<request	id="1">

		<reference>REQ-D2867DBE</reference>

		<destination>Contoso	Headquarters</destination>

		<!--	For	the	full	list	of	types	see	

https://example.net/internal/docs/contoso-protocol-doc.html	-->

		<type>43</type>

</request>

Example	5.7.	The	sanitized	XML	file

<request	id="1">

		<reference>REQ-D2867DBE</reference>

		<destination>Contoso	Headquarters</destination>

		<type>43</type>

</request>

As	you	can	see,	the	XML	comment	was	pruned	during	sanitization.

Instructions

To	enable	resource	sanitization	you	should	apply	an	attribute	to	your	assembly.

In	order	to	do	that	you	can	use	the	instructions	below.

Instructions	on	enabling	resource	sanitization

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 	Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"sanitize	resources",	

Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="sanitize	resources",	

Exclude:=False)>	

Minification

Assembly	resources	are	not	minified	by	default.	If	you	want	to	achieve	smaller
size	and	better	runtime	performance	of	an	output	assembly	then	you	may
consider	to	turn	on	the	resource	minification.

The	exact	minification	effect	depends	on	a	file	type.	For	example,	all	the
redundant	whitespaces	in	.xml	files	are	pruned	when	minification	is	on.

Example	5.8.	The	sanitized	XML	file

<request	id="1">

		<reference>REQ-D2867DBE</reference>

		<destination>Contoso	Headquarters</destination>

		<type>43</type>

</request>

Example	5.9.	The	sanitized	and	minified	XML	file

<request	id="1"><reference>REQ-D2867DBE</reference>

<destination>Contoso	Headquarters</destination><type>43</type>

</request>

The	[minify]	flag	turns	on	the	minification	when	specified,	as	shown	in	the
sample	below:

Example	5.10.	Sanitize	and	minify	all	resources

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"sanitize	resources	[minify]",	

Exclude	=	false)]

Selective	Resource	Sanitization

Sometimes	it	may	be	beneficial	to	sanitize	just	some	resources	while	leaving	the
others	intact.	The	[exclude]	flag	can	be	used	in	order	to	do	that,	as	shown	in	the
sample	below.

Example	5.11.	Sanitize	all	resources	except	.png	files

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"sanitize	resources",	Exclude	=	

false)]

[assembly:	Obfuscation(Feature	=	"sanitize	resources	[exclude]	

*.png",	Exclude	=	false)]

It	may	be	profitable	to	go	other	way	around	by	explicitly	specifying	just	those
resources	that	should	be	sanitized.	This	technique	is	shown	in	the	sample	below.

Example	5.12.	Sanitize	secret.xml	and	all	.jpg	resources;	the	others	are	left
intact

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"sanitize	resources	

secret.xml",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"sanitize	resources	*.jpg",	

Exclude	=	false)]

Options	are	Combinable

The	given	options	can	be	combined	in	a	free	way	giving	you	the	power	to
choose	the	best	combination.	If	you	are	not	sure	which	combination	to	choose
then	just	go	with	a	simplest	one:	sanitize	all	resources.	If	you	know	what	you	are
doing	then	you	can	end	up	with	something	like	that:

Example	5.13.	Advanced	resource	sanitization	configuration

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"sanitize	resources",	Exclude	=	

false)]

[assembly:	Obfuscation(Feature	=	"sanitize	resources	[exclude]	

*.png",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"sanitize	resources	[exclude]	

*.jpg",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"sanitize	resources	[minify]	

License.xml",	Exclude	=	false)]

[assembly:	Obfuscation(Feature	=	"sanitize	resources	[minify]	

Help.xml",	Exclude	=	false)]

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	6.	Virtualization

Table	of	Contents

Introduction
How	to	Use	Code	Virtualization
How	to	Use	Data	Virtualization

Introduction

Code	Virtualization

Many	of	us	consider	particular	pieces	of	code	especially	important.	May	it	be	a
license	code	check	algorithm	implementation,	an	innovative	optimization
method,	or	anything	else	equally	important	so	we	would	want	to	protect	it	by
any	means	possible.	As	we	know,	the	traditional	obfuscation	techniques
basically	do	renaming	of	symbols	and	encryption,	thus	leaving	the	actual
algorithms	—	cycles,	conditional	branches	and	arithmetics	potentially	naked	to
eye	of	the	skilled	intruder.

Here	a	radical	approach	may	be	useful:	to	remove	all	the	.NET	bytecode
instructions	from	an	assembly,	and	replace	it	with	something	completely
different	and	unknown	to	an	external	observer,	but	functionally	equivalent	to	the
original	algorithm	during	runtime	—	this	is	what	the	code	virtualization	actually
is.

Eazfuscator.NET	provides	an	implementation	of	custom	virtual	machine	which
works	atop	the	.NET	virtual	machine,	using	a	different	virtual	instruction	set
every	time	you	obfuscate	your	application.	This	makes	the	code	of	a	protected
algorithm	completely	bullet-proof	and	hidden	from	others.	All	you	need	to	hide
your	precious	logic	is	to	apply	a	special	attribute	to	your	methods	or	classes.

See	how	to	use	code	virtualization

Data	Virtualization

Not	only	the	code,	but	data	can	be	virtualized	too.	The	virtualization	changes	the
way	the	data	are	represented	in	memory	and	on	disk.	The	resulting	data
representation	is	something	completely	different	and	unknown	to	an	external
observer,	but	functionally	equivalent	to	the	original	algorithm	during	runtime.

See	how	to	use	data	virtualization

Tip

Code	and	data	always	come	together	so	it	is	beneficial	to	use
both	kinds	of	virtualization	to	achieve	better	protection
results.

5.8

https://www.gapotchenko.com/eazfuscator.net

How	to	Use	Code	Virtualization

To	enable	the	code	virtualization	you	should	apply	a	custom	attribute	to	your
method.	In	order	to	do	that	you	can	use	the	instructions	below.

Instructions	on	enabling	code	virtualization

1.	 Open	the	source	code	of	a	method	you	want	to	virtualize

2.	 	Add	a	custom	attribute	as	shown	below	(C#):

using	System;

using	System.Reflection;

class	YourClass

{

				[Obfuscation(Feature	=	"virtualization",	Exclude	=	

false)]

				void	YourMethod()

				{

								...

				}

}

For	Visual	Basic	.NET:

Imports	System

Imports	System.Reflection

Class	YourClass

				<Obfuscation(Feature:="virtualization",	Exclude:=False)>		

				Sub	YourMethod()

								...

				End	Sub

				

End	Class

Note

Virtualization	can	significantly	slow	down	the	speed	of	code
execution,	so	please	use	this	feature	wisely.

Applying	Code	Virtualization	to	Multiple	Methods	at	Once

It	may	beneficial	to	apply	the	code	virtualization	to	the	whole	class	or	assembly.
The	conditional	obfuscation	can	be	employed	to	achieve	that.

Examples	are	provided	below.

Example	6.1.	Virtualize	all	methods	of	a	class

using	System.Reflection;

[Obfuscation(Feature	=	"Apply	to	member	*	when	method	or	

constructor:	virtualization",	Exclude	=	false)]

class	YourClass

{

				...

}

Example	6.2.	Virtualize	all	methods	in	assembly

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*:	apply	to	

member	*	when	method	or	constructor:	virtualization",	Exclude	=	

false)]

5.8

https://www.gapotchenko.com/eazfuscator.net

How	to	Use	Data	Virtualization

To	enable	the	data	virtualization	you	should	apply	a	custom	attribute	to	your
field.	In	order	to	do	that	you	can	use	the	instructions	below.

Instructions	on	enabling	data	virtualization

1.	 Locate	the	declaration	of	a	field	you	want	to	virtualize

2.	 	Add	a	custom	attribute	as	shown	below	(C#):

using	System;

using	System.Reflection;

class	YourClass

{

				[Obfuscation(Feature	=	"virtualization",	Exclude	=	

false)]

				bool	yourField;

}

For	Visual	Basic	.NET:

Imports	System

Imports	System.Reflection

Class	YourClass

				<Obfuscation(Feature:="virtualization",	Exclude:=False)>		

				Dim	yourField	As	Boolean

				

End	Class

Note

Virtualization	can	significantly	slow	down	the	speed	of	code
execution,	so	please	use	this	feature	wisely.

Note

Only	simple	value	types	such	as	int,	double	etc	can	be
virtualized.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	7.	Troubleshooting

Table	of	Contents

My	application	is	not	working	properly	after	obfuscation.	Why	does	it	happen?
Troubleshooting	Features

Stack	Trace	Decoding
Inspection-Friendly	Obfuscation

Preserving	the	Original	Names
Disabling	ILDASM	Suppression

About	InternalsVisibleToAttribute
Solution	#1.	Do	not	use	InternalsVisibleToAttribute	at	all
Solution	#2.	Swap	with	EditorBrowsable	attribute
Solution	#3.	Hide	the	warning
Solution	#4.	Ignore	the	attribute

"Option	Strict	Off"	Compatibility	for	VB.NET
Introduction
Compatibility	Mode
Instructions

Nonintrusive	Debugging
Introduction
Sample	Scenario

Warnings	and	Errors
Disabling	Warnings
Treat	Warnings	as	Errors

Long-Term	Compatibility
Compatibility	Version
Demanding	the	Specific	Version	of	Eazfuscator.NET

Error	Codes	Knowledge	Base
EF-1099:	Unable	to	load	input	assembly,	reflection	load	failed
EF-3035:	Assembly	or	part	of	it	is	already	obfuscated

My	application	is	not	working	properly	after
obfuscation.	Why	does	it	happen?

The	answer	is	the	most	probably	your	application	uses	reflection.
Eazfuscator.NET	analyzes	assemblies	for	reflection	scenarios	but	analysis
algorithm	is	heuristic	–	that's	why	it	is	not	100%	reliable	at	the	moment.	So
assembly	functionality	depended	on	reflection	may	unintentionally	suffer.
Eazfuscator.NET	is	quite	smart	about	data	serialization,	visualization	and	other
reflection	appliances	but	sometimes	it	may	fail	in	its	decisions.

Note

Theoretically,	it	is	possible	to	create	an	obfuscator	with
99.99%	reliable	reflection	analysis	engine	but	it	is	too
difficult	to	solve	this	problem	in	a	formal	way.	However
Eazfuscator.NET	is	becoming	smarter	with	each	new	release
so	maybe	someday	it	will	have	a	near-formal	reflection
analyzer.

Any	reflection-related	problem	can	be	fixed	manually	with	declarative
obfuscation	using	custom	attributes.

5.8

https://www.gapotchenko.com/eazfuscator.net

Troubleshooting	Features

Troubleshooting	features	is	a	special	set	of	features	that	helps	to	solve	the	most
common	problems	which	can	appear	after	obfuscation.	This	set	of	features	can
be	accessed	by	expanding	Eazfuscator.NET	Assistant	window	as	shown	below:

Expanded	Eazfuscator.NET	Assistant	window	looks	as	shown	below:

Stack	Trace	Decoding

Stack	trace	decoding	is	a	feature	which	is	designed	to	be	used	in	conjunction
with	symbol	names	encryption.	Stack	trace	decoding	can	be	used	to	decode	error
stack	traces	and	log	files	which	contain	symbol	names.	To	be	able	to	use	stack
trace	decoding,	symbol	names	encryption	should	be	setup	for	your	product	first.

Stack	trace	decoding	user	interface	consists	of	two	main	parts:	stack	trace
decoding	zone	and	decoding	window.	Let's	overview	them	both	below.

Stack	Trace	Decoding	Zone

Stack	trace	decoding	zone	has	the	following	look:

This	zone	supports	text	and	text	file	drag	and	drop.	Also	it's	possible	to	double-
click	the	zone.

Stack	Trace	Decoding	Window

Stack	trace	decoding	window	appears	whenever	corresponding	zone	gets	drag
and	dropped	with	text	or	text	file	or	double-clicked.	This	window	has	the
following	look:

As	you	can	see	it's	possible	to	enter	password	and	obfuscated	text	in	the	window
above.	When	you	enter	text	with	encoded	symbol	names	and	corresponding
password	then	you	can	easily	decode	it	by	pressing	Decode	button.

Please	note	that	you	can	use	drag	and	drop	operations	to	deliver	encoded	text
from	different	sources	such	as	text	files,	fields	and	editors.

5.8

https://www.gapotchenko.com/eazfuscator.net

Inspection-Friendly	Obfuscation

Inspection-friendly	obfuscation	is	a	special	mode	of	obfuscation	when	you	can
review	the	resulting	assembly	by	an	unaided	eye.	This	mode	can	be	achieved	by
temporarily	applying	one	or	more	inspection-friendly	settings	to	your	assembly.

Caution

Please	take	care	when	you	apply	inspection-friendly	settings
to	production	assemblies;	otherwise	original	symbol	names
may	leak	to	the	outside	world.

Preserving	the	Original	Names

This	is	the	most	powerful	inspection-friendly	setting.	It	allows	to	keep	the
original	names	for	all	classes	and	members	while	preserving	other	obfuscation
features	on.

Instructions	on	preserving	the	original	names

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"Apply	to	type	*:	

renaming",	ApplyToMembers	=	true,	Exclude	=	true)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="Apply	to	type	*:	renaming",	

ApplyToMembers:=True,	Exclude:=True)>	

Disabling	ILDASM	Suppression

ILDASM	is	a	special	.NET	tool	which	allows	to	translate	the	binary	assembly
files	into	text	files	filled	with	readable	IL	code.

By	default,	Eazfuscator.NET	automatically	adds	SuppressIldasmAttribute	to
the	output	assembly	whenever	possible	in	order	to	block	the	possibility	of
running	ILDASM	on	your	obfuscated	assembly.

You	may	prefer	to	override	that	behavior	and	make	output	assembly	friendly	to
ILDASM.

Instructions	on	disabling	ILDASM	suppression

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"ildasm	suppression",	

Exclude	=	true)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="ildasm	suppression",	

Exclude:=True)>	

5.8

https://www.gapotchenko.com/eazfuscator.net

About	InternalsVisibleToAttribute

.NET	Framework	defines
System.Runtime.CompilerServices.InternalsVisibleToAttribute	class
which	allows	to	specify	that	types	that	are	ordinarily	visible	only	within	the
input	assembly	are	visible	to	another	assembly.

Although	this	can	be	useful	in	some	scenarios,	it's	strongly	not	recommended	to
use	that	feature	of	.NET	Framework	in	Release	builds	because	it	makes	the
obfuscation	theoretically	and	practically	useless.

Eazfuscator.NET	gives	a	warning	message	when	InternalsVisibleToAttribute
attribute	is	defined	in	input	assembly	and	shuts	down	all	obfuscation	features
except	string	encryption	to	save	assembly	functionality.

So,	how	to	resolve	this?	This	is	not	hard,	really.	The	possible	solutions	are
described	at	the	sections	below.

Solution	#1.	Do	not	use	InternalsVisibleToAttribute	at	all

The	recommended	way	is	not	to	use	InternalsVisibleToAttribute	at	all	in
Release	builds.	At	the	same	time	it	may	be	profitable	to	use	the	attribute	in
Debug	builds:	for	example,	unit	test	projects	rely	on
InternalsVisibleToAttribute	to	test	the	internal	parts	of	the	assemblies.	This
can	be	achieved	by	using	the	following	code	pattern,	effectively	applying	the
attribute	in	Debug	configuration	only:

#if	DEBUG	

[assembly:	InternalsVisibleTo(<attribute	parameters	according	to	

your	existing	code>)]	

#endif	

Solution	#2.	Swap	with	EditorBrowsable	attribute

A	less	known	but	decent	alternative	is	to	use
System.ComponentModel.EditorBrowsableAttribute	to	mark	the	classes	and
members	that	you	want	to	hide	from	end-users.	Detailed	information	and	sample
code	are	available	in	corresponding	MSDN	article	.

http://msdn.microsoft.com/en-us/library/system.componentmodel.editorbrowsableattribute.aspx

Solution	#3.	Hide	the	warning

It	may	be	profitable	to	just	hide	the	warning	without	affecting	the	behavior	of
Eazfuscator.NET.

Instructions	on	hiding	the	warning	about	InternalsVisibleToAttribute

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"disable	warning	EF-4001")]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="disable	warning	EF-4001")>	

Solution	#4.	Ignore	the	attribute

If	you	think	that	previous	solutions	are	not	feasible	then	you	can	make
Eazfuscator.NET	to	completely	ignore	InternalsVisibleToAttribute	by
following	the	instructions	below.

Instructions	on	making	Eazfuscator.NET	to	ignore
InternalsVisibleToAttribute

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"ignore	

InternalsVisibleToAttribute",	Exclude	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="ignore	

InternalsVisibleToAttribute",	Exclude:=False)>	

5.8

https://www.gapotchenko.com/eazfuscator.net

"Option	Strict	Off"	Compatibility	for	VB.NET

Introduction

By	default,	the	Visual	Basic	.NET	compiler	does	not	enforce	strict	data	typing
and	uses	late	binding	to	access	methods,	properties	and	fields	of	the	classes.	This
is	somehow	simplifies	the	coding	for	certain	kind	of	people	but	it	has	several
implications:

The	resulting	application	has	a	greater	chance	of	errors	during	runtime
Late	binding	is	considerably	slower	than	a	direct	strongly-typed	access
Late	binding	may	break	after	obfuscation

That's	why	a	very	good	advice	for	Visual	Basic	.NET	programmers	is	to	use
Option	Strict	On	for	their	programs.	Unfortunately,	it	is	not	always	possible
due	to	legacy	code	or	personal	long-term	preferences	that	are	hard	to	change.

Compatibility	Mode

Eazfuscator.NET	provides	a	special	compatibility	mode	that	allows	to
workaround	the	issues	with	late	binding.	It	comes	at	the	expense	of	a	lower
obfuscation	coverage	but	your	code	remains	functional	and	runs	perfectly	after
obfuscation.

Instructions

Instructions	on	activating	Option	Strict	Off	compatibility	mode	for	VB.NET

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.vb.

You	may	prefer	to	use	another	name	instead	of	ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.vb	with	the	following	content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="vb	option	strict	off	

compatibility",	Exclude:=False)>	

5.8

https://www.gapotchenko.com/eazfuscator.net

Nonintrusive	Debugging

Introduction

When	debugging	is	on,	not	only	the	corresponding	.pdb	file	gets	processed
during	obfuscation	but	some	of	code	optimizations	are	turned	off	to	improve	the
interactive	debugging	experience	for	the	resulting	assembly.	This	leads	to	a	bit
different	timing	and	size	characteristics	of	the	resulting	code.	The	micro	changes
in	characteristics	may	mask	or	unmask	the	defects	in	your	code,	especially	those
tied	to	unpredictable	factors	such	as	time.	The	multithreaded	deadlock	is	a
canonical	example	of	such	defect.

Sample	Scenario

Let's	take	a	look	on	concrete	example.	Suppose	your	obfuscated	application
suffers	from	intermittent	multithreaded	deadlock.	You	want	to	fix	that.
Everything	you	currenty	have	is	an	obfuscated	.exe	file	without	debugging
information.

The	next	logical	step	is	to	find	the	source	file	names	and	line	numbers	where
deadlock	occurs.	Being	a	quick	and	somewhat	lazy	person,	you	temporarily
disable	obfuscation	for	your	assembly.	Then	you	build	it	just	to	find	out	that
deadlock	does	not	occur	anymore.

You	think:	“Hm...	probably	the	issue	is	tied	to	that	exact	obfuscated	file
somehow”.	You	enable	obfuscation	again	for	that	assembly.	Then	you	build	it.
The	deadlock	shows	itself	again.

You	think:	“Ok,	let's	try	debug	directive	and	then	attach	debugger	to	the
process”.	You	write:

[assembly:	Obfuscation(Feature	=	"debug",	Exclude	=	false)]

Then	you	build	and	run	your	project	again	only	to	find	out	that	deadlock
mysteriously	does	not	occur	anymore.	How	is	that	possible	that	a	debug
directive	affects	the	runtime	behavior?

The	answer	is	debug	directive	does	not	affect	the	runtime	behavior.	It	just
induces	slight	changes	in	code	speed	and	size.	It	turns	out	that	those	slight
changes	are	enough	to	mask	the	multithreading	defect	in	the	code.

No	problem,	just	use	the	nonintrusive	flag:

[assembly:	Obfuscation(Feature	=	"debug	[nonintrusive]",	Exclude	

=	false)]

It	minimizes	the	amount	of	changes	applied	by	Eazfuscator.NET	to	the	assembly
that	are	required	to	provide	the	debugging	functionality.	In	this	way,	the
assembly	characteristics	stay	the	same	even	when	debugging	is	on.	Now	you	get
a	reproducible	defect	together	with	debug	information.	So	you	build	your	project
again	and	run	it.	The	deadlock	is	reproduced.

What	you	do	next	is	attach	debugger	to	your	running	deadlocked	process.
Launch	Visual	Studio	and	use	Debug	→	Attach	to	Process...	(Ctrl+Alt+P)	menu
item.	Then,	select	your	process	from	the	list.

The	next	step	is	to	freeze	all	running	threads	with	Debug	→	Break	All
(Ctrl+Alt+Break)	menu	item.	Then	take	a	look	at	Debug	→	Windows	→
Threads	(Ctrl+D,T)	window	and	go	through	threads	one	by	one	while	examing
their	call	stacks.	Once	you	find	the	suspected	call	stacks	please	write	down	the
file	names	and	line	numbers	of	possible	deadlock	locations.

You	now	have	the	information	to	proceed	with	a	fix	to	your	source	code.

Note

Stepping	through	the	code	(e.g.	interactive	debugging)	is
hugely	limited	when	nonintrusive	flag	is	specified.
Essentially	you	can	only	attach	debugger	to	a	process	and
freeze	the	threads	as	a	last	resort	solution.

5.8

https://www.gapotchenko.com/eazfuscator.net

Warnings	and	Errors

Eazfuscator.NET	can	produce	warning	and	error	messages.	Generally,	every
warning	and	error	message	can	be	identified	by	a	special	identifier	which	has	the
form	EF-XXXX.	Example	identifier:	EF-4001.

Disabling	Warnings

Please	follow	the	instructions	below	to	disable	a	specific	warning.

Instructions	on	disabling	a	specific	warning

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"disable	warning	EF-XXXX")]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="disable	warning	EF-XXXX")>	

Note
EF-XXXX	must	be	changed	with	an	identifier	of	a	warning
you	want	to	disable.

Treat	Warnings	as	Errors

Please	follow	the	instructions	below	to	treat	all	warnings	as	errors.

Instructions	on	making	Eazfuscator.NET	to	treat	all	warning	as	errors

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"treat	all	warnings	as	

errors")]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="treat	all	warnings	as	

errors")>	

Tip
There	is	a	command	line	option	--warnings-as-errors	all
which	can	be	specified	to	achieve	this	functionality.

Sometimes	it	can	be	useful	to	treat	just	a	specific	warning	as	an	error.	Please
follow	the	instructions	below	to	achieve	this.

Instructions	on	making	Eazfuscator.NET	to	treat	a	specific	warning	as	an
error

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer

to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"treat	warning	EF-XXXX	as	

error")]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="treat	warning	EF-XXXX	as	

error")>	

Tip
There	is	a	command	line	option	--warnings-as-errors	EF-
XXXX	which	can	be	specified	to	achieve	this	functionality.

Note
EF-XXXX	must	be	changed	with	an	identifier	of	a	warning
you	want	to	treat	as	an	error.

5.8

https://www.gapotchenko.com/eazfuscator.net

Long-Term	Compatibility

Eazfuscator.NET	constantly	evolves	from	one	version	to	another.	That's	why
some	provisions	should	be	made	to	ensure	the	successful	integration	of
Eazfuscator.NET	with	your	project	over	the	time.	This	chapter	describes	all
aspects	related	to	compatibility	in	long-term	perspective.

Compatibility	Version

Compatibility	version	option	instructs	Eazfuscator.NET	to	mimic	its
corresponding	version	from	the	past.	Why	it	should	be	used?	The	answer	is	very
straighforward:	usually	Eazfuscator.NET	is	integrated	with	a	project	just	once;
after	that	the	user	of	Eazfuscator.NET	expects	that	integration	will	continue	to
flawlessly	work	whatever	future	version	of	Eazfuscator.NET	is	installed.

Eazfuscator.NET	Assistant	automatically	adds	a	compatibility	version	option	-v
to	obfuscation	command	line	in	post-build	event	of	a	project:

The	value	of	compatibility	version	should	be	equal	to	the	version	of
Eazfuscator.NET	that	was	used	during	the	project	integration	stage.	This
guarantees	that	the	future	versions	of	Eazfuscator.NET	will	mimic	the	integrated
version,	thus	delivering	a	solid	upgrade	path.

Important

If	you	manually	invoke	Eazfuscator.NET	from	command	line
or	from	custom	script	then	please	ensure	that	compatibility
version	is	supplied	with	-v	command	line	option.

Demanding	the	Specific	Version	of	Eazfuscator.NET

Sometimes	it	may	be	useful	to	restrict	the	version	of	Eazfuscator.NET	to	work
with.	For	example,	some	previous	version	of	Eazfuscator.NET	contained	a	bug
which	was	later	fixed,	and	some	of	your	colleagues	may	still	have	that	old
version.	It	is	not	always	possible	to	explicitly	force	the	team	members	to	upgrade
Eazfuscator.NET	to	a	newer	version,	that's	why	an	ability	to	restrict	the	version
of	Eazfuscator.NET	would	be	a	good	way	to	achieve	this.

Please	follow	the	instructions	below	to	instruct	Eazfuscator.NET	to	fail	when	its
version	is	lower	than	required.

Instructions	on	forcing	Eazfuscator.NET	to	fail	when	its	version	is	lower
than	a	given	value

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"require	eazfuscator.net	

version	>=	X.Y")]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="require	eazfuscator.net	

version	>=	X.Y")>	

Note

Change	X.Y	with	Eazfuscator.NET	version	number.

Important

Support	of	this	syntax	appeared	since	Eazfuscator.NET	3.2.
The	syntax	is	ignored	by	previous	versions	of
Eazfuscator.NET.	If	you	have	an	absolute	necessity	to	cover
the	previous	versions	too	then	please	use	the	batch	script
approach	shown	in	the	section	below.

Demanding	the	specific	version	from	batch	script

Batch	scripts	usually	reside	in	.bat	or	.cmd	files,	but	can	also	be	coded	in	post-
build	event	of	a	project.

The	following	batch	script	can	be	used	to	demand	a	specific	version	of
Eazfuscator.NET	which	is	greater	or	equal	to	a	given	value	X.Y:

if	/I	"$(ConfigurationName)"	NEQ	"Release"	goto	SkipObfuscation

Eazfuscator.NET.exe	--check-version	GEQ	X.Y	>NUL	2>NUL

if	%ErrorLevel%	NEQ	0	(

				echo	Eazfuscator.NET	X.Y	or	higher	is	not	installed	on	this	

machine.	Obfuscation	failed.

				REM	The	line	below	resets	error	level	to	0.	Uncomment	it	if	

you	want	to	force	script	to	continue	execution	when	no	required	

version	of	Eazfuscator.NET	is	present

				REM	verify	>NUL	2>NUL

)	else	(

				Eazfuscator.NET.exe	"$(TargetPath)"	--msbuild-project-path	

"$(ProjectPath)"	--msbuild-project-configuration	

"$(ConfigurationName)"	--msbuild-project-platform	

"$(PlatformName)"	--msbuild-solution-path	"$(SolutionPath)"	-n	-

-newline-flush	-v	<compatibility_version>

)

:SkipObfuscation

Note

Change	X.Y	with	Eazfuscator.NET	version	number.

5.8

https://www.gapotchenko.com/eazfuscator.net

Error	Codes	Knowledge	Base

EF-1099:	Unable	to	load	input	assembly,	reflection	load	failed

Error	EF-1099	[1]	occurs	when	input	assembly	or	one	of	its	dependencies	can	not
be	loaded.	Possible	solutions	for	this	problem:

Specify	a	probing	path
Put	a	missing	assembly	near	the	input	file

EF-3035:	Assembly	or	part	of	it	is	already	obfuscated

Error	EF-3035	occurs	when	input	assembly	is	already	obfuscated.
Eazfuscator.NET	stops	processing	and	exits	with	error	code	1,	thus	indicating	the
error	condition.

You	may	prefer	to	just	skip	the	processing	of	an	assembly	without	raising	the
error.	In	order	to	do	that,	please	follow	the	instructions	below.

Instructions	on	making	Eazfuscator.NET	to	ignore	EF-3035	error

1.	 Open	obfuscatable	project	inside	the	IDE
2.	 Add	new	source	file	to	the	project	and	call	it	ObfuscationSettings.cs	(for

C#)	or	ObfuscationSettings.vb	(for	Visual	Basic	.NET).	You	may	prefer
to	use	another	name	instead	of	ObfuscationSettings.cs	or
ObfuscationSettings.vb

3.	 Fill	ObfuscationSettings.cs	with	the	following	content	(C#):

using	System;

using	System.Reflection;

[assembly:	Obfuscation(Feature	=	"ignore	error	EF-3035",	

StripAfterObfuscation	=	false)]

For	Visual	Basic	.NET,	fill	ObfuscationSettings.vb	with	the	following
content:

Imports	System

Imports	System.Reflection

<Assembly:	Obfuscation(Feature:="ignore	error	EF-3035",	

StripAfterObfuscation:=False)>	

[1]	Eazfuscator.NET	before	version	3.2	produced	error	code	EF-E-1099	instead
of	EF-1099.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	8.	Best	Practices

Table	of	Contents

Introduction
General	Best	Practices
Keeping	the	Balance

Human	Factors
Keeping	It	Simple

The	Paralysis	of	Simplicity

Introduction

The	chapter	about	best	practices	shares	the	most	essential	knowledge	for	getting
the	best	results	with	Eazfuscator.NET.

Let's	start	with	general	best	practices.

5.8

https://www.gapotchenko.com/eazfuscator.net

General	Best	Practices

Please	carefully	read	the	list	below.	Not	only	this	will	bring	you	better
obfuscation	results	but	also	this	will	help	you	to	avoid	possible	pitfalls.

Use	minimal	but	feasible	visibility	of	the	classes	and	their	members
Avoid	using
System.Runtime.CompilerServices.InternalsVisibleToAttribute

attribute	for	production	assemblies
Use	CLSCompliantAttribute(true)	to	mark	CLS-compliant	assemblies.	If
you	produce	library	or	component	which	can	be	used	by	your	customers
then	you	should	mark	the	assembly	as	CLS-compliant	to	ensure	successful
interoperability.	Eazfuscator.NET	internally	uses	the	value	of
CLSCompliantAttribute	to	make	a	decision	on	the	level	of	obfuscation	to
apply.	Eazfuscator.NET	turns	off	all	CLS-incompatible	obfuscation	features
when	the	input	assembly	is	marked	as	CLS-compliant
Try	to	keep	reasonable	small	number	of	the	assemblies	in	your	product.	It
leads	to	a	greater	code	integration	inside	one	assembly,	thus	it	is	harder	to
deduct	the	logic	that	is	contained	inside	the	assembly.	Assembly	number
reduction	can	be	achieved	at	the	application	design	phase.	Alternatively,
assemblies	merging	feature	can	be	used	for	that	purpose
Use	symbol	names	encryption	in	production	releases	of	your	product.	It
allows	you	to	decode	error	stack	traces	and	log	files
It	is	highly	recommended	to	sign	your	assemblies	with	a	strong	name.	The
signed	assemblies	are	better	protected	against	integrity	violations
It	is	highly	recommended	to	use	resource	encryption	to	hide	assembly
resources	from	prying	eyes
Please	consider	to	virtualize	the	methods	that	you	want	to	hide	by	any
means	possible
Test	your	product	after	obfuscation

Additional	for	Visual	Basic	.NET

It	is	highly	recommended	to	use	Option	Strict	On	to	achieve	good
obfuscation	results	and	avoid	common	problems.	Alternatively,	you	may
use	a	compatibility	mode	to	workaround	possible	issues

https://msdn.microsoft.com/en-us/library/xc31ft41.aspx

5.8

https://www.gapotchenko.com/eazfuscator.net

Keeping	the	Balance

Security	always	works	against	speed	and	usability.	That's	why	it's	important	to
keep	the	right	balance	between	them.

There	is	no	such	thing	as	absolute	security.	There	is	always	a	tradeoff	between
security,	usability	and	speed.	So,	the	best	solution	is	to	provide	the	point	of
balance	between	those	ends.	Eazfuscator.NET	provides	the	balanced	solution:
your	code	will	be	in	safety	and	it	will	work	fast.

At	the	same	time,	obfuscation	does	not	stop	well-planned	attacks	on	a	particular
method	or	a	class.	For	example,	it	is	not	a	so	big	deal	to	try	to	crack	the	licensing
portion	of	your	code.	Going	beyond	the	obfuscation,	code	virtualization
technology	covers	this	scenario	making	it	extra	hard	and	costly	for	an	intruder.

You	can	just	look	inside	C:\Program	Files
(x86)\Eazfuscator.NET\Eazfuscator.NET.exe	file	with	a	decompiler	to	get	an
example	of	Eazfuscator.NET	vision.	Yes,	you	see	some	calls	or	instructions	but
you	are	unable	to	comprehend	inner	constructs,	crack	or	resell	the	product.

So,	as	you	can	see,	the	obfuscation	is	the	art	of	balance.

Human	Factors

While	Eazfuscator.NET	does	its	best	to	automatically	provide	the	balanced

solution,	there	are	situations	when	it	may	get	distorted	by	human	factors.

Let's	overview	some	human	factors	that	may	come	into	play.

“I	Need	to	Virtualize	Everything”

The	factor	comes	into	play	when	a	person	decides	that	code	virtualization	is	the
only	reliable	protection	technique.	While	virtualization	is	indeed	a	decent
protection	scheme,	it	has	its	drawbacks.	The	assembly	gets	larger	and	virtualized
code	becomes	50x	slower.

In	general,	virtualization	should	not	be	applied	to	every	class	and	every	method.
Instead,	it	should	be	carefully	used	to	protect	the	most	important	parts	of	your
application.	For	example,	licensing	algorithms	are	perfect	target	for
virtualization.

“I	Need	to	Rename	Everything”

The	factor	applies	when	a	person	wants	to	improve	obfuscation	coverage.	This	is
a	noble	aim	and	it	is	perfectly	achievable	by	following	general	best	practices.

But	what	the	person	should	beware	of	and	avoid	is	trying	to	shoot	himself	in	the
foot	by	renaming	the	unrenamable.

For	example,	the	person	can	decide	that	he	needs	to	get	serializable	classes
renamed	while	they	are	used	by	binary	serializer	to	work	with	interchangeable
file	formats.	This	is	a	conflict	situation:	either	class	names	are	kept	intact	or	the
file	serialization	gets	broken.

“I	Need	to	Put	Everything	into	Single	File”

The	factor	comes	into	play	when	a	person	decides	that	his	whole	application
should	be	deployed	as	a	single	file.	Single	file	deployment	may	be	a	requirement
for	portable	applications	despite	the	fact	of	known	performance	implications.

If	the	person	is	not	bound	to	portable	application	requirements	then	he	should
thoroughly	ask	himself	whether	single	file	deployment	is	really	needed.	More
often	than	not,	single	file	deployment	is	not	a	necessity.

Once	person	drops	“The	Single	File”	mantra,	he	becomes	more	open	to	careful
and	responsible	usage	of	assembly	embedding	and	merging	features.	As	a	result,
the	larger	applications	will	likely	have	better	runtime	performance	and	memory
footprint	together	with	more	granular	and	simpler	build	process	during
development.

The	rule	of	a	thumb	goes	as	follows:

Keep	your	assembly	sizes	below	10	MB,	preferably	below	5	MB
Neither	embed	nor	merge	third-party	libraries	(A	good	exception	from	this
rule	is	licensing	libraries)

Of	course,	it	all	depends	on	your	particular	scenario	and	you	should	not	take
these	suggestions	as	a	dogma.

5.8

https://www.gapotchenko.com/eazfuscator.net

Keeping	It	Simple

Eazfuscator.NET	provides	a	simple	integration	path	with	Visual	Studio	projects
as	shown	in	Quick	Start	guide.

The	provided	integration	is	light	yet	powerful.	What	it	essentially	does	is	register
Eazfuscator.NET	in	post-build	event	of	the	project:

Once	registered,	Eazfuscator.NET	comes	into	action	and	obfuscates	the
assembly	every	time	the	project	is	built	in	Release	configuration.

Eazfuscator.NET	messages	can	be	found	at	Output	Window	of	Visual	Studio
with	View	→	Output	(Ctrl+W,O):

That's	it.	The	rest	of	the	things	just	work.

The	Paralysis	of	Simplicity

The	paralysis	of	simplicity	is	a	problem	that	may	apply	to	a	person	who
experience	Eazfuscator.NET	for	the	first	time:

“How	does	Eazfuscator.NET	know	which	key	to	use	for	the	assembly
signing?”
“How	is	it	possible	it	just	works	everytime?”
“What	should	I	do	to	make	Eazfuscator.NET	work	with	MSBuild?”
and	so	on.

The	general	answer	to	these	quesions:	it	just	works	and	there	is	no	need	to	worry
about	it;	just	give	it	a	try.

5.8

https://www.gapotchenko.com/eazfuscator.net

Chapter	9.	Deployment

Table	of	Contents

About	Eazfuscator.NET	Deployment
Microsoft	Installer	(MSI)
NuGet	Package	Manager
Command	Line	Interface

About	Eazfuscator.NET	Deployment

Eazfuscator.NET	can	be	deployed	in	various	ways.	This	chapter	describes	all
available	deployment	methods.

5.8

https://www.gapotchenko.com/eazfuscator.net

Microsoft	Installer	(MSI)

MSI	acronym	stands	for	Microsoft	Installer.	This	is	the	default	and
recommended	deployment	method	for	Eazfuscator.NET.

Eazfuscator.NET	website	provides	a	download	page	where	MSI	setup	file	can	be
retrieved.	Once	you	have	the	MSI	file	you	can	install	it	on	your	machine.

Another	popular	scenario	is	deploying	MSI	through	the	global	policy	objects
(GPO)	in	Active	Directory	(AD).	AD	MSI	deployment	tends	to	be	a	preffered
way	of	installing	software	in	middle	and	large	software	houses.	More
information	on	AD	software	distribution	is	availble	in	corresponding	knowledge
base	article	from	Microsoft.

MSI	technology	is	proven	and	reliable.	If	you	have	any	doubts	about	what
deployment	method	to	choose	for	Eazfuscator.NET	then	please	strongly	consider
MSI.

https://www.gapotchenko.com/eazfuscator.net/download
http://en.wikipedia.org/wiki/Active_Directory
http://support.microsoft.com/kb/816102

5.8

https://www.gapotchenko.com/eazfuscator.net

NuGet	Package	Manager

NuGet	is	the	package	manager	for	the	Microsoft	development	platform.	It	allows
to	quickly	add	a	library	or	a	tool	to	your	project.

Eazfuscator.NET	is	not	exception	and	can	be	added	to	your	solution	via	NuGet
too.

Why	ever	bother	to	use	NuGet	when	we	have	MSI?	A	good	question.	Actually,
there	are	no	many	reasons	to	do	so.	However	some	usage	scenarios	can	not	work
with	MSI.	Let's	take	a	look	at	the	list:

Hosted	TFS	Build	Agents	may	disallow	software	installs.	This	depends	on
TFS	infrastructure	administration	policies.	They	may	prohibit	the
installation	of	third-party	software	on	host	machines
Visual	Studio	Online	does	not	allow	software	installs

This	is	the	point	when	NuGet	becomes	useful	for	Eazfuscator.NET	deployment.
So,	let's	add	Eazfuscator.NET	NuGet	package	to	your	solution:

1.	 Ensure	gapotchenko.com	NuGet	repository	is	configured

To	do	that,	please	go	to	Tools	→	NuGet	Package	Manager	menu	and	click
Package	Manager	Settings	item:	

http://www.nuget.org/
http://www.visualstudio.com/products/visual-studio-online-overview-vs.aspx

Options	window	will	show:	

Please	ensure	there	is	a	registered	package	source	with	gapotchenko.com
name	and	http://www.gapotchenko.com/nuget	URL	as	shown	above.

2.	 Install	Eazfuscator.NET	NuGet	package	for	your	solution

Open	context	menu	for	solution	and	click	on	Manage	NuGet	Packages	for
Solution...	item:	

NuGet	packages	management	window	will	open:	

Please	ensure	you	are	going	to	install	Eazfuscator.NET	(Official)
package	from	gapotchenko.com	source	and	press	Install	button.

What	happens	to	my	projects	after	Eazfuscator.NET	NuGet
package	has	been	installed	in	solution?

The	projects	remain	intact,	e.g.	they	don't	become	protected	or	unprotected.
They	behave	the	same	way	they	did	before.

So,	the	basic	workflow	of	project	integration	remains	the	same:

Project	can	be	protected	by	dropping	to	the	green	zone	of	Eazfuscator.NET
Assistant
Project	can	be	unprotected	by	dropping	to	the	red	zone	of	Eazfuscator.NET
Assistant

You	can	launch	Eazfuscator.NET	Assistant	from	Desktop,	or	you	can	invoke	it
from	Package	Manager	Console,	it	does	not	matter.	It	just	works	no	matter	what
deployment	method	is	in	use	currently.

OK.	If	Eazfuscator.NET	NuGet	package	does	not	affect	projects'
behavior	then	what	it	does?

Well,	it	does	obfuscation	for	projects	that	are	considered	as	protected,	e.g.	were
dropped	to	the	green	zone	any	time	before	or	after.	This	is	the	very	same
behavior	of	MSI-deployed	Eazfucator.NET.

The	big	difference	is	this:	Eazfuscator.NET	is	now	able	to	travel	to	the	cloud	or	a
hosted	TFS	build	agent	and	work	there.	Just	like	any	source	part	of	your	project.
Thanks	to	NuGet,	Eazfuscator.NET	does	not	need	to	be	installed	on	machine.

Important

Eazfuscator.NET	does	not	support	NuGet	package	restore.
Instead,	Eazfuscator.NET	package	should	be	stored	together
with	your	sources.

http://docs.nuget.org/docs/reference/package-restore

5.8

https://www.gapotchenko.com/eazfuscator.net

Command	Line	Interface

Eazfuscator.NET	can	be	run	from	command	line.	Although	this	is	uncommon
usage	pattern	it	can	be	useful	for	some	projects.

The	command-line	interface	of	Eazfuscator.NET	is	accessed	by	invoking
Eazfuscator.NET.exe	executable.	Installer	adds	Eazfuscator's	install	directory
to	PATH	system	variable,	so	Eazfuscator.NET.exe	can	be	invoked	from	any
location	within	the	file	system	and	you	don't	have	to	worry	how	to	find	the	file.

Here	is	the	full	list	of	available	options	(it	can	be	retrieved	by	running
Eazfuscator.NET.exe	--help	at	the	command	line):

Usage:	Eazfuscator.NET.exe	[options]	<input	file	1>	[input	file	

2]	...

Generic	options:

		-?	[--help]									Produce	detailed	help	message	for	

available	options.

		--version													Print	version	string.

		-n	[--nologo]							Suppress	logo	message.

Configuration	options:

		-o	[--output]	arg								Put	obfuscated	assembly	to	the	

specified	output	file.	If	this	option	is	not	specified	then	

output	assembly

																													overwrites	the	input	file.	The	

option	cannot	be	specified	when	multiple	input	files	are	given.

		-k	[--key-file]	arg						If	this	option	is	specified	then	

obfuscated	assembly	will	be	signed	with	a	key	from	specified	

file.

																													PLEASE	NOTE:	obfuscated	assembly	

that	had	a	strong	name	before	obfuscation	MUST	BE	resigned	to	

work	properly;

																													otherwise	it	will	not	be	able	to	

load.	Also	note	that	only	assemblies	with	strong	name	can	be	

resigned	-

																													assemblies	without	strong	name	are	

not	affected.

		-c	[--key-container]	arg	If	this	option	is	specified	then	

obfuscated	assembly	will	be	signed	with	a	key	from	specified	

container.

																													This	option	cannot	be	used	with	

'key-file'	option.

		-q	[--quiet]													Do	not	print	any	information	and	

diagnostic	messages.

Advanced	features:

		--decode-stack-trace-with-password	arg	Decodes	encrypted	stack	

trace.	Password	for	decryption	is	given	with	this	option.	

Encrypted	stack

																																									trace	must	be	fed	to	

standard	input	stream	of	the	application.	Decrypted	stack	trace	

will	be	fed	to	

																																									standard	output	stream.

		--error-sandbox	arg																				Runs	application	given	

as	argument	in	exception	sandbox.	Every	unhandled	exception	is	

caught	by

																																									sandbox	environment.	

This	feature	is	useful	when	obfuscated	application	cannot	be	

started	and	bails	

																																									out	with	default	

unexpected	error	window.

		--ensure-obfuscated																				Checks	the	input	file	

and	ensures	it	is	obfuscated.

Integration	options:

		--msbuild-project-path	arg										MSBuild	project	path.

		--msbuild-project-configuration	arg	MSBuild	project	

configuration	name.

		--msbuild-project-platform	arg						MSBuild	project	platform	

name.

		--msbuild-solution-path	arg									MSBuild	solution	path.

		--protect-project																			Protect	project.	Project	

is	obfuscated	by	Eazfuscator.NET	on	every	build	when	protection	

is	active.

																																						This	option	should	be	used	

with	'msbuild-project-path'	option.

		--unprotect-project																	Remove	project	protection.	

This	option	should	be	used	with	'msbuild-project-path'	option.

Compatibility	options:

		-v	[--compatibility-version]	arg	A	version	of	

Eazfuscator.NET	to	be	compatible	with.

		--check-version																				Instructs	to	check	the	

installed	version	of	Eazfuscator.NET	and	return	the	result	as	

exit	code.	This

																																					option	cannot	be	combined	

with	other	options.	(To	get	more	help,	please	try	to	use	it)

Advanced	configuration	options:

		--probing-paths	arg						Probing	paths	separated	by	semicolon.

		--warnings-as-errors	arg	A	list	of	warnings	to	treat	as	errors	

separated	by	comma.	Example:

																											--warnings-as-errors	EF-4001,EF-4002

																											To	treat	all	warning	as	errors	please	

put	an	argument	'all'	to	this	option:

																											--warnings-as-errors	all

		--configuration-file	arg	Configuration	file	in	C#	or	VB.NET	

format	with	a	list	of	assembly	attributes	for	obfuscation.	

Please	refer	to

																											documentation	for	configuration	

syntax.

		-s	[--statistics]						Produce	obfuscation	statistics	

report.

		--newline-flush										Flushes	output	messages	with	new	line	

(CR/LF)	symbols.	This	feature	is	useful	when	integrating	with	

third-party

																											IDEs.

5.8

https://www.gapotchenko.com/eazfuscator.net

Glossary

C

Common	Intermediate	Language	(CIL)

During	compilation	of	.NET	programming	languages,	the	source	code	is
translated	into	CIL	code	rather	than	platform	or	processor-specific	object
code.	CIL	is	a	CPU-	and	platform-independent	instruction	set	that	can	be
executed	in	any	environment	supporting	the	.NET	framework.	CIL	code	is
verified	for	safety	during	runtime,	providing	better	security	and	reliability
than	natively	compiled	binaries.	[WikiCIL]

E

Encryption

In	cryptography,	encryption	is	the	process	of	transforming	information
(referred	to	as	plaintext)	using	an	algorithm	(called	cipher)	to	make	it
unreadable	to	anyone	except	those	possessing	special	knowledge,	usually
referred	to	as	a	key.	The	result	of	the	process	is	encrypted	information	(in
cryptography,	referred	to	as	ciphertext).	In	many	contexts,	the	word
encryption	also	implicitly	refers	to	the	reverse	process,	decryption	(e.g.
“software	for	encryption”	can	typically	also	perform	decryption),	to	make
the	encrypted	information	readable	again	(i.e.	to	make	it	unencrypted).
[WikiENC]

I

Intellectual	Property	(IP)

In	law,	intellectual	property	(IP)	is	an	umbrella	term	for	various	legal
entitlements	which	attach	to	certain	names,	written	and	recorded	media,	and
inventions.	The	holders	of	these	legal	entitlements	may	exercise	various
exclusive	rights	in	relation	to	the	subject	matter	of	the	IP.	The	adjective
"intellectual"	reflects	the	fact	that	this	term	concerns	a	process	of	the	mind.
The	noun	"property"	implies	that	ideation	is	analogous	to	the	construction

of	tangible	objects.	Consequently,	this	term	is	controversial.	[WikiIP]

P

Peephole	optimization

In	compiler	theory,	peephole	optimization	is	a	kind	of	optimization
performed	over	a	very	small	set	of	instructions	in	a	segment	of	generated
code.	The	set	is	called	a	"peephole"	or	a	"window".	It	works	by	recognising
sets	of	instructions	that	don't	actually	do	anything,	or	that	can	be	replaced
by	a	leaner	set	of	instructions.	[WikiPeepholeOptimization]

R

Reflection

In	computer	science,	reflection	is	the	process	by	which	a	computer	program
of	the	appropriate	type	can	be	modified	in	the	process	of	being	executed,	in
a	manner	that	depends	on	abstract	features	of	its	code	and	its	runtime
behavior.	Figuratively	speaking,	it	is	then	said	that	the	program	has	the
ability	to	"observe"	and	possibly	to	modify	its	own	structure	and	behavior.
[WikiReflectionCS]

Remoting	(.NET	Remoting)

.NET	Remoting	is	a	Microsoft	application	programming	interface	(API)	for
interprocess	communication	released	in	2002	with	the	1.0	version	of	.NET
Framework.	.NET	Remoting	allows	an	application	to	make	an	object
(termed	remotable	object)	available	across	remoting	boundaries,	which
includes	different	appdomains,	processes	or	even	different	computers
connected	by	a	network.	[WikiRemoting]

Reverse	engineering

Reverse	engineering	is	the	process	of	discovering	the	technological
principles	of	a	device	or	object	or	system	through	analysis	of	its	structure,
function	and	operation.	It	often	involves	taking	something	(e.g.	a
mechanical	device,	an	electronic	component,	a	software	program)	apart	and
analyzing	its	workings	in	detail,	usually	to	try	to	make	a	new	device	or

program	that	does	the	same	thing	without	copying	anything	from	the
original.	[WikiRE]

5.8

https://www.gapotchenko.com/eazfuscator.net

Bibliography

[WikiCIL]	Wikipedia	contributors.	Common	Intermediate	Language.	Wikipedia,
The	Free	Encyclopedia.	11	December	2007	07:20	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?
title=Common_Intermediate_Language&oldid=177166979	.	Accessed
December	22,	2007.

[WikiENC]	Wikipedia	contributors.	Encryption.	Wikipedia,	The	Free
Encyclopedia.	November	29,	2007,	12:02	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?title=Encryption&oldid=174579616	.
Accessed	December	12,	2007.

[WikiIP]	Wikipedia	contributors.	Intellectual	property.	Wikipedia,	The	Free
Encyclopedia.	December	10,	2007,	21:30	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?
title=Intellectual_property&oldid=177069633	.	Accessed	December	12,	2007.

[WikiObCode]	Wikipedia	contributors.	Obfuscated	code.	Wikipedia,	The	Free
Encyclopedia.	December	10,	2007,	15:46	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?title=Obfuscated_code&oldid=177002435	.
Accessed	December	12,	2007.

[WikiReflectionCS]	Wikipedia	contributors.	Reflection	(computer	science).
Wikipedia,	The	Free	Encyclopedia.	19	December	2007	00:14	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?
title=Reflection_%28computer_science%29&oldid=178837188	.	Accessed
December	22,	2007.

[WikiRE]	Wikipedia	contributors.	Reverse	engineering.	Wikipedia,	The	Free
Encyclopedia.	November	30,	2007,	14:10	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?
title=Reverse_engineering&oldid=174829884	.	Accessed	December	12,	2007.

[WikiRemoting]	Wikipedia	contributors.	.NET	Remoting.	Wikipedia,	The	Free
Encyclopedia.	May	19,	2009,	13:20	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?title=.NET_Remoting&oldid=290938735	.
Accessed	June	8,	2009.

http://en.wikipedia.org/w/index.php?title=Common_Intermediate_Language&oldid=177166979
http://en.wikipedia.org/w/index.php?title=Encryption&oldid=174579616
http://en.wikipedia.org/w/index.php?title=Intellectual_property&oldid=177069633
http://en.wikipedia.org/w/index.php?title=Obfuscated_code&oldid=177002435
http://en.wikipedia.org/w/index.php?title=Reflection_%28computer_science%29&oldid=178837188
http://en.wikipedia.org/w/index.php?title=Reverse_engineering&oldid=174829884
http://en.wikipedia.org/w/index.php?title=.NET_Remoting&oldid=290938735

[WikiPeepholeOptimization]	Wikipedia	contributors.	Peephole	optimization.
Wikipedia,	The	Free	Encyclopedia.	28	December	2010	19:38	UTC.	Available	at:
http://en.wikipedia.org/w/index.php?
title=Peephole_optimization&oldid=404686923	.	Accessed	March	5,	2012.

http://en.wikipedia.org/w/index.php?title=Peephole_optimization&oldid=404686923

	Table of Contents
	What Is Eazfuscator.NET?
	Introduction
	Why .NET Applications Need Obfuscation
	When to Use Obfuscation
	Drawbacks of The Obfuscation
	Quick Start
	How Does Eazfuscator.NET Work?
	Optimization Techniques
	Advanced Features
	Declarative Obfuscation Using Custom Attributes
	Conditional Obfuscation
	Symbol Names Encryption
	Advanced Symbol Renaming Options
	Advanced String Encryption Options
	Code Control Flow Obfuscation
	Assemblies Merging
	Assemblies Embedding
	Resource Encryption
	Serialization Tuning
	Debugging
	PEVerify Integration
	Probing Paths
	Script Variables
	Sensei Features
	Code Inlining
	Protected Private Visibility
	Custom Attributes Removal
	Design-Time Usage Protection
	Resource Sanitization
	Virtualization
	How to Use Code Virtualization
	How to Use Data Virtualization
	Troubleshooting
	Troubleshooting Features
	Inspection-Friendly Obfuscation
	About InternalsVisibleToAttribute
	"Option Strict Off" Compatibility for VB.NET
	Nonintrusive Debugging
	Warnings and Errors
	Long-Term Compatibility
	Error Codes Knowledge Base
	Best Practices
	General Best Practices
	Keeping the Balance
	Keeping It Simple
	Deployment
	Microsoft Installer (MSI)
	NuGet Package Manager
	Command Line Interface
	Glossary
	Bibliography

