
Dundas	Software	is	a	professional	developer	of	class	libraries	and
components	for	Microsoft	DevStudio	developers.	Dundas	has	been
developing	software	for	major	corporations,	associations,	and	private
organizations	since	1987.

Dundas	has	provided	software	and	services	to	developers	and
organizations	in	more	than	50	countries	throughout	the	world.	Our	core
technology	components	have	been	included	in	every	type	of	software
imaginable,	including	retail	and	corporate	internal	projects.	Our
consulting	services	have	also	aided	in	customizing	our	components	for
the	banking,	financial,	insurance,	medical,	and	political	markets.

This	long	term	exposure	has	proven	Dundas	to	be	a	reliable	software
provider,	and	Dundas	is	now	enabling	developers	to	utilize	their	robust
software	as	ActiveX	controls	and	COM	components.

For	more	information	on	Dundas	Software's	products	and
services,	visit	us	at	www.dundas.com

Phone: (800)	463-1492

	 (416)	467-5100

Fax: (416)	422-4801

	 	

Email: sales@dundas.com

http://www.dundas.com
mailto:sales@dundas.com

	

	

Ultimate	Toolbox	includes	more	than	200	MFC
classes,	adding	valuable	features	that	include	GUI
classes,	Framework	classes,	Utility	classes,	MAPI
classes,	OLE	classes,	Image	classes,	File	classes	and
more.

Ultimate	Toolbox	has	drop-in	simplicity	and
integrates	seamlessly	with	MFC,	thereby	becoming	a	part	of	the	MFC
framework.

Customers	consistently	report	that	the	classes	in	Ultimate	Toolbox	are
"well	thought	out,	debugged,	useful,	and	save	time	and	coding".

New	classes	are	released	every	two	weeks,	ensuring	that	the	toolbox	is
always	up	to	date.

Full	source	code	is	included	for	more	than	200	classes,	and	an
attractive	yearly	subscription	plan	is	available.	This	subscription
includes	access	to	the	new	classes	released	every	two	weeks,	source
code	for	the	new	classes	and	full	technical	support.

For	more	information	visit	our	web	site	at	http://www.dundas.com/

http://www.dundas.com/

COXMaskedEdit	Overview

Copyright	©	Dundas	Software	Ltd.	1997	1999,	All	Rights	Reserved

Class	Members	|	Mask	Characters

The	COXMaskedEdit	control	extends	the	MFC	CEdit	control	to	provide
restricted	data	input	with	visual	cues,	formatted	data	output,	overtype
capability,	and	a	validation	framework.

You	can	use	COXMaskedEdit	anywhere	you	would	use	a	CEdit	class.	If
no	input	mask	is	set,	it	will	behave	like	a	standard	CEdit.

If	you	define	an	input	mask,	each	character	position	in	the	Masked	Edit
control	maps	to	either	a	placeholder	of	a	specified	type	or	a	literal
character.	(Literal	characters,	or	'literals',	can	give	visual	cues	about	the
type	of	data	being	used.	For	example,	the	parentheses	surrounding	the
area	code	of	a	telephone	number	are	literals:	(206)	777-2222.)

The	input	mask	prevents	you	from	entering	invalid	characters	into	the
control.	If	you	attempt	to	enter	a	character	that	conflicts	with	the	input
mask,	the	control	generates	a	ValidationError	beep.

The	insertion	point	automatically	skips	over	literals	as	you	enter	data	or
move	the	insertion	point.

When	you	insert	or	delete	a	character,	all	nonliteral	characters	to	the	right
of	the	insertion	point	are	shifted,	as	necessary.	If	shifting	these
characters	leads	to	a	validation	error,	the	insertion	or	deletion	is
prevented,	and	a	ValidationError	beep	is	triggered.

For	example,	suppose	the	Mask	property	is	defined	as	"?###",	and	the
current	value	of	the	Text	property	is	"A12."	If	you	attempt	to	insert	the
letter	"B"	to	the	left	of	the	letter	"A,"	the	"A"	would	shift	to	the	right.	Since
the	second	value	of	the	input	mask	requires	a	number,	the	letter	"A"
would	cause	the	control	to	generate	a	ValidationError	beep.

The	Masked	Edit	control	also	validates	the	parameter	value	of	the
SetInputText	function	the	user	passes	at	run	time.	If	you	use	the
SetInputText	function	so	that	it	conflicts	with	the	input	mask,	the	function
will	return	an	errorcode.

You	may	select	text	in	the	same	way	as	for	a	standard	text	box	control.
When	selected	text	is	deleted,	the	control	attempts	to	shift	the	remaining
characters	to	the	right	of	the	selection.	However,	any	remaining	character
that	might	cause	a	validation	error	during	this	shift	is	deleted,	and	no
ValidationError	beep	is	generated.

Normally,	when	a	selection	in	the	Masked	Edit	control	is	copied	onto	the
Clipboard,	the	entire	selection,	including	literals,	is	transferred	onto	the
Clipboard.	You	can	use	the	SetClipMode	function	to	define	the	behavior
for	transferring	only	user-entered	data	onto	the	Clipboard	or	not	-	literal
characters	that	are	part	of	the	input	mask	are	not	copied.

Using	COXMaskedEdit

You	can	attach	a	COXMaskedEdit	to	an	existing	edit	control	by
subclassing	the	latter.

This	is	remarkably	simple	to	do	in	the	DevStudio	IDE	when	working	with
an	MFC	dialog.

Place	a	standard	edit	control	on	the	dialog	using	the	dialog	editor.	Invoke
the	Class	Wizard	and	select	the	Member	Variables	page.	Add	a	member
variable	for	the	ID	of	the	edit	control,	selecting	a	CEdit	control	as	the
type.

Next,	open	the	header	file	for	the	dialog.	Include	OXMaskedEdit.h.

In	the	AFX_DATA	section	for	the	dialog	you	will	see	the	declaration	for
the	edit	control	as	a	CEdit.	Change	this	to	COXMaskedEdit	(or	a	class
derived	from	COXMaskedEdit)	and	viola!

Typically	you	will	call	SetMask	and	SetPromptSymbol	on	the	control	in
OnInitDialog	to	set	up	your	particular	mask	etc.

Note	that	you	won't	need	to	call	Create	in	this	scenario.

Don't	forget	to	include	the	OXMaskedEdit.cpp	file	in	your	project!

Depending	on	the	order	of	compilation	you	may	also	find	if	helpful	to
include	OXMaskedEdit.h	in	the	dialog	and/or	main	application	.cpp	file	of
your	project.

	

	

COXMaskedEdit

Copyright	©	Dundas	Software	Ltd.	1997	1999,	All	Rights	Reserved

Overview	|	Edit	Mask	Characters

COXMaskedEdit 	
The	constructor.	Can	be	called	with	a	mask.
	

Create 	
Creates	the	control	-	much	like	CEdit	create.
	

GetMask 	
Retrieves	the	current	mask.
	

SetMask 	
Sets	the	mask.
	

ShowMask 	
Retrieves	the	data	-	both	user	input	and	literals.
	

GetInputData 	
Retrieves	the	data	-	user	input	only.
	

SetInputData 	
Allows	programmatic	entry	of	user	data.
	

GetPromptSymbol 	
Retrieves	the	placeholder	character.
	

SetPromptSymbol 	
Sets	the	placeholder	character.
	

EmptyData 	
Clears	input	data.	Optionally	clears	the	mask.
	

IsInputEmpty 	
Determines	if	data	has	been	entered	by	the	user.
	

GetInsertMode 	
Retrieves	the	overtype	state.
	

SetInsertMode 	
Sets	the	overtype	state.
	

ValidationError 	
An	overridable,	called	for	errors.
	

OnValidate 	
An	overridable	method	which	allows	for	validation
when	the	control	loses	focus.
	

GetAutoTab 	
Retrieves	the	state	of	the	auto	tab	option.
	

SetAutoTab 	
Sets	the	state	of	the	auto	tab	option.
	

RPtoLP 	
Converts	the	real	position	to	the	logical	position.
	

LPtoRP 	
Converts	the	logical	position	to	the	real	position.
	

COXMaskedEdit	Mask	Characters

Class	Members	|	Overview

These	are	the	characters	you	can	use	to	set	the	mask:

		.	(period) Decimal	placeholder.	The	actual	character	used	is	the	one
specified	as	the	decimal	placeholder	in	your	international
settings.	This	character	is	treated	as	a	literal	for	masking
purposes.

	

		,	(comma) Thousands	separator.	The	actual	character	used	is	the	one
specified	as	the	thousands	separator	in	your	international
settings.	This	character	is	treated	as	a	literal	for	masking
purposes.

	

		:	(colon) Time	separator.	The	actual	character	used	is	the	one
specified	as	the	time	separator	in	your	international
settings.	This	character	is	treated	as	a	literal	for	masking
purposes.

	

		/	(slash) Date	separator.	The	actual	character	used	is	the	one
specified	as	the	date	separator	in	your	international
settings.	This	character	is	treated	as	a	literal	for	masking
purposes.

	

		# Digit	placeholder	(0-9).

	

		A Alphanumeric	character	placeholder	(0-9	and	a-Z).

	

		? Alphabetic	placeholder	(a-Z).

	

		> Alphabetic	placeholder,	but	forces	uppercase	chars	(A-Z).

	

		< Alphabetic	placeholder,	but	forces	them	to	lowercase	(a-z).

	

		& Character	placeholder.	Valid	values	for	this	placeholder	are
ANSI	characters	in	the	following	ranges:	32-126	and	128-
255.

	

		\ Literal	escape.	Use	this	to	place	your	own	literals	in	the
mask	-	note	that	two	backslashes	must	be	used	in	string
literals	to	accomodate	for	the	fact	that	this	is	also	treated
as	an	escape	character	for	ASNI/ISO	string	formatting.

As	an	example,	lets	look	at	a	string	to	mask	an	IP	address:

"IP	\\Address:	###\\.###\\.###\\.###"

This	will	appear	as:

IP	Address:	___.___.___.___

Assuming	that	the	placeholder	or	'prompt'	symbol	has

been	set	to	the	underscore.

Note	that	we	needed	to	use	the	escape	character	to
enable	both	the	'A'	in	Address	and	the	periods	to	show	as
literals.

To	display	the	string	'http://	'	we	would	have	to	use	the
escape	char	for	the	colon	and	slashes:

"http\\:\\/\\/	"

To	display	a	backslash	as	a	literal,	we	need	to	escape	the
escape,	as	in	"c:\\\\AAAAAAAA\\.AAA"

	

See	also:	COXMaskedEdit::SetMask	|	COXMaskedEdit::GetMask	|
COXMaskedEdit::COXMaskedEdit	|	COXMaskedEdit::SetPromptSymbol

	

COXMaskedEdit::COXMaskedEdit

Class	Members	|	Overview

COXMaskedEdit(LPCTSTR	pszMask=_T(""))

Parameters

pszMask A	mask	can	be	specified	at	construction	time.

Remarks

Constructs	the	object.

COXMaskedEdit::Create

Class	Members	|	Overview

BOOL	Create(DWORD	dwStyle,	const	RECT&	rect,	CWnd*	pParentWnd,	UINT	nID)

Parameters

dwStyle Edit	control	styles.

rect Edit	control	size	and	position.

pParentWnd Edit	control	parent	window.

nID Edit	control	ID.

Return	Value

True	on	success.

Remarks

Same	as	CEdit::Create	except	that	it	sets	the	mask	after	creation	and
shows	it	as	the	text	of	the	control	(the	mask	may	have	been	set	by
SetMask	or	the	constructor).

See	also:	SetMask	|	COXMaskedEdit

COXMaskedEdit::EmptyData

Class	Members	|	Overview

void	EmptyData(BOOL	bOnlyInput=FALSE)

Parameters

bOnlyInput Set	to	TRUE	to	only	clear	the	data.

Remarks

Clears	the	contents	of	the	masked	edit.	Depending	on	the	value	of
bOnlyInput,	this	function	clears	all	data	(mask	+	input)	or	only	input	data.

COXMaskedEdit::GetAutoTab

Class	Members	|	Overview

BOOL	GetAutoTab()	const

Return	Value

TRUE	if	AutoTab	mode	is	set,	otherwise	FALSE.

Remarks

If	AutoTab	mode	is	set	then	when	the	last	allowed	symbol	is	typed	the
focus	goes	to	the	next	control	with	a	WS_TABSTOP	style.	AutoTab	mode
is	not	set	by	default.

See	also:	SetAutoTab

COXMaskedEdit::GetInputData

Class	Members	|	Overview

CString	GetInputData()	const

Returns

A	CString	which	stores	the	string	that	was	entered	(excludes	the	literals).

Remarks

To	retrieve	the	contents	of	the	control	including	literals	call	ShowMask.
You	can	also	call	the	CWnd	method	GetWindowText	to	retrieve	the	actual
contents	of	the	control,	including	prompt	symbols.

See	also:	GetMask

	

COXMaskedEdit::GetInsertMode

Class	Members	|	Overview

BOOL	GetInsertMode()	const

Return	Value

TRUE	if	insert	mode	enabled,	otherwise	FALSE.

Remarks

The	standard	CEdit	control	does	not	support	over-typing.
COXMaskedEdit	supports	an	overtype	mode,	and	GetInsertMode	lets	the
coder	check	if	this	mode	is	set.

Overtype	will	only	take	effect	if	an	input	mask	is	set.

Note	that	internally	the	control	will	toggle	the	insert	mode	in	response	to
the	insert	key,	and	will	revert	to	overtype	if	there	is	no	room	to	insert
characters.

See	Also:	SetInsertMode

COXMaskedEdit::GetMask

Class	Members	|	Overview

CString	GetMask()	const

Return	Value

A	string	representing	the	current	mask.

See	also:	SetMask	|	GetInputData	|	ShowMask	|	COXMaskedEdit	|
COXMaskedEdit	Mask	Characters

	

COXMaskedEdit::GetPromptSymbol

Class	Members	|	Overview

TCHAR	GetPromptSymbol()

Return	Value

The	current	prompt	symbol.

Remarks

The	prompt	symbol	is	shown	occupying	the	space	available	for	user
input.	For	example,	a	telephone	number	mask	such	as	(###)\	###\-#####
might	typically	use	the	underscore	character	as	the	prompt	character,
resulting	in	a	display	of	(___)	___-____	in	the	control.

The	default	prompt	character	is	the	space.

COXMaskedEdit::IsInputEmpty

Class	Members	|	Overview

BOOL	IsInputEmpty()

Return	Value

TRUE	if	the	control	only	has	mask	and	prompt	symbols,	FALSE
otherwise.

Remarks

Retrieves	the	flag	that	specifies	whether	the	control	is	populated	with
some	text	other	than	mask	and	prompt	symbols.

See	also:	GetInputData	|	ShowMask

COXMaskedEdit::LPtoRP

Class	Members	|	Overview

int	LPtoRP(int	nLogicalPos)	const

Parameters

nLogicalPos Logical	position	in	the	edit	control	(only	takes	into	account
non-literal	characters).

Return	Value

The	corresponding	real	position	(taking	into	account	all	symbols	including
literals)	or	one	(1)	if	nLogicalPos	is	not	a	valid	logical	position.

Remarks

Converts	the	logical	position	within	the	masked	edit	control	to	the
corresponding	real	one.

All	COXMaskedEdit	functions	that	take	a	cursor	position	as	an	argument
interpret	it	as	a	real	position	within	the	control	(taking	into	account	all
symbols	including	literals).	But	sometimes	we	want	to	set	the	cursor	at	a
position	before	or	after	a	particular	non-literal	symbol.	This	is	where	this
method	comes	in	handy.

See	also:	RPtoLP

	

COXMaskedEdit::OnValidate

Class	Members	|	Overview

virtual	BOOL	OnValidate()

Return	Value

TRUE	if	the	current	text	passes	validation,	otherwise	FALSE.

Remarks

This	virtual	function	gets	called	when	the	control	loses	focus,	unless	the
OMMEN_VALIDATE	notification	handler	of	the	parent	decides	otherwise
(see	below).	Use	in	a	COXMaskedEdit	derived	class	to	perform	user
validation.	The	default	implementation	returns	TRUE.

If	this	method	returns	FALSE,	the	virtual	method	ValidationError	will	be
called.	The	default	behavior	of	COXMaskedEdit::ValidationError	is	to
simply	sound	a	message	beep.

There	is	another	way	to	provide	data	validation	that	can	be	used
irregardless	of	the	control	being	used	as	a	base	class.

When	the	control	loses	focus	it	will	send	a	WM_NOTIFY	notification	to	its
parent	passing	the	ID	of	the	control	in	wParam	and	a	pointer	to	a
MENMHDR	structure	in	lParam.	The	hdr.code	member	of	the	structure
will	contain	OXMEN_VALIDATE.

There	are	two	BOOL	members	of	the	MENMHDR	structure	you	can
modify	to	return	information	on	what	action	to	take:

MENMHDR.bVaild Specifies	whether	data	is	valid.

MENMHDR.bDefaultValidation Specifies	whether	to	call	OnValidate.

See	also:	ValidationError

COXMaskedEdit::RPtoLP

Class	Members	|	Overview

int	RPtoLP(int	nRealPos)	const

Parameters

nRealPos The	real	position	in	the	edit	control	(takes	into	account	all
symbols	including	literals).

Return	Value

Corresponding	logical	position	(taking	into	account	only	nonliterals),	or	-1
if	the	character	at	the	real	position	specified	corresponds	to	a	literal.

Remarks

Converts	a	real	position	(character	location)	within	the	masked	edit
control	to	a	corresponding	logical	one.

See	Also:	LPtoRP

COXMaskedEdit::SetAutoTab

Class	Members	|	Overview

void	SetAutoTab(BOOL	bAutoTab)

Parameters

bAutoTab TRUE	will	set	the	control	in	AutoTab	mode,	FALSE	will	set	the
control	in	Normal	mode.

Remarks

Changes	the	AutoTab	mode.	If	the	AutoTab	mode	is	set	then	when	the
last	allowed	symbol	is	typed	the	focus	goes	to	the	next	control	with	a
WS_TABSTOP	style.	AutoTab	mode	is	turned	off	by	default.

See	Also:	GetAutoTab

COXMaskedEdit::SetInputData

Class	Members	|	Overview

BOOL	SetInputData(LPCTSTR	pszInputData,	int	nBeginPos=0,	BOOL	bAllowPrompt=TRUE)

Parameters

pszInputData Each	character	is	entered	into	the	control	as	if	the	user
typed	it	in.

nBeginPos Starting	position	for	inserting	or	overwriting	the	Insert
symbols	in	the	mask.

bAllowPrompt Determines	whether	or	not	the	prompt	symbol	is	a	valid
input	character.

Return	Value

TRUE	if	some	data	was	inserted,	otherwise	FALSE.

Remarks

Use	this	to	programmatically	insert	pszInputData	into	the	masked	edit
control.		The	mask	is	applied	to	the	InputData.

COXMaskedEdit::SetInsertMode

Class	Members	|	Overview

void	SetInsertMode(BOOL	bInsertMode)

Parameters

bInsertMode If	TRUE	characters	are	inserted;	if	FALSE	characters	will
overwrite	existing	characters.

Remarks

The	standard	CEdit	control	does	not	support	over-typing,	but
COXMaskedEdit	does	support	an	overtype	mode.	SetInsertMode	lets	the
coder	toggle	this	mode	on	or	off,	but	the	control	can	also	change	mode
based	on	user	input.

Internally	(in	OnKeyDown)	the	control	will	respond	to	the	insert	key	to
toggle	insert	mode	using	this	function.

If	the	control	is	in	insert	mode	and	there	is	no	room	to	insert	characters
the	control	will	revert	to	over-type	mode	automatically.

Note	that	overtype	mode	is	related	to	the	input	mask	-	if	no	mask	is	set
the	control	will	act	like	a	normal	CEdit	and	SetInsertMode	will	have	no
effect.

See	Also:	GetInsertMode

	

COXMaskedEdit::SetMask

Class	Members	|	Overview

void	SetMask(LPCTSTR	pszMask=_T(""))

Parameters

pszMask A	string	containing	the	new	mask.

Remarks

Changing	the	mask	may	involve	loss	of	user	data	from	the	masked	edit
control.

See	Also:	GetMask	|	COXMaskedEdit	Mask	Characters

	

COXMaskedEdit::SetPromptSymbol

Class	Members	|	Overview

void	SetPromptSymbol(TCHAR	chNewPromptSymbol)

Parameters

chNewPromptSymbol Sets	a	new	prompt	symbol.	The	new	symbol
cannot	be	NULL,	a	carriage	return	or	a	line	feed.

Remarks

The	prompt	symbol	is	shown	occupying	the	space	available	for	user
input.	For	example,	a	telephone	number	mask	such	as	(###)\	###\-#####
might	typically	use	the	underscore	character	as	the	prompt	symbol,
resulting	in	a	display	of	(___)	___-____	in	the	control.

The	default	symbol	is	a	space.

See	Also:	GetPromptSymbol

COXMaskedEdit::ShowMask

Class	Members	|	Overview

CString	ShowMask()	const

Return	Value

The	fully	formated	mask	with	all	input	data.	To	retrieve	only	the
characters	entered	by	the	user	call	the	GetInputData	method.

See	also:	COXMaskedEdit	Mask	Characters

COXMaskedEdit::ValidationError

Class	Members	|	Overview

virtual	void	ValidationError()

Remarks

This	is	an	overridable	function	that	is	called	when	data	fails	validation	or
an	incorrect	key	is	pressed.

See	Also:	OnValidate

COX3DTabViewContainer	Overview

Copyright	©	Dundas	Software	Ltd.	1997	-	1999,	All	Rights	Reserved

Class	Reference

Dependencies	and	Related	Files

Example	of	a	3DTabViewContainer:

	
For	most	applications	it's	not	enough	to	use	only	one	window	to	provide
output.	There	are	different	solutions	for	this	problem	like	splitters	or
docking	windows	but	they	usually	have	one	common	inconvenience:	all
of	the	windows	are	shown	at	the	same	time,	taking	up	precious	screen
space	while	being	unused.

A	good	example	of	how	this	problem	can	be	resolved	can	be	found	in	the
Microsoft	Visual	Studio	IDE	with	its	"Output"	window	(with	"Build",
"Debug",	"Find	in	Files..."	panes)	and	"Result	List"	window	(with	"Search",
"Lookup",	"See	Also"	and	"History"	panes).	We	call	these	windows
TabViews.

TabViews	are	a	good	alternative	for	splitter	windows	when	you	need	to
have	more	than	one	view	per	document.	TabViews	can	be	used	within	a
docking	window	and	can	also	serve	as	a	container	for	associated
windows	(pages)	that	are	implemented	as	dialog	bars.

COX3DTabViewContainer	introduces	a	new	implementation	of
TabViews.	The	paradigm	remains	the	same	but	we've	changed	the	way
associated	windows	(pages)	are	represented	in	the	container.	We	use	a
standard	Tab	control	and	display	a	tab	button	for	each	page,	and	when
a	user	clicks	on	a	button	the	corresponding	page	is	activated	and
displayed.	Tab	buttons	can	be	positioned	at	any	side	of	the	container
window	by	applying	corresponding	Tab	control	styles	(refer	to	the
Create()	function	for	details).

COX3DTabViewContainer	is	derived	from	the	standard	CTabCtrl	and
implements	all	of	the	functionality	needed	to	support	tab	views.

Here	is	a	list	of	steps	that	should	be	taken	in	order	to	deploy	TabViews	in
your	application:

First	Case	Scenario:	COX3DTabViewContainer	will	be	used	as	a
container	for	document	view(s).

1)	Embed	a	COX3DTabViewContainer	member	variable	in	the	parent
frame	(main	frame	window	for	SDI	application,	MDIChild	window	for	MDI
application).

2)	Override	the	parent	frame's	CFrameWnd::OnCreateClient()	member
function.

3)	From	within	the	overridden	OnCreateClient,	call	the	Create()	member
function	of	the	COX3DTabViewContainer.	You	will	have	to	specify	the
parent	window	and	you	can	optionally	specify	the	initial	rectangle,
window	styles	and	the	window	ID.	This	is	where	you	can	specify	the	Tab
control	styles	that	define	the	way	tab	buttons	are	positioned	and
displayed.

4)	To	assign	images	to	TabView	pages	you	will	have	to	create	and	load

an	image	list	and	associate	it	with	a	COX3DTabViewContainer	object
using	the	CTabCtrl::SetImageList()	function.

5)	After	the	COX3DTabViewContainer	window	is	successfully	created
you	can	populate	it	with	window	objects	using	the	AddPage()	or
InsertPage()	functions.	If	you	are	inserting	a	view	object	you	have	to
specify	the	runtime	class	and	context	information	in	order	to	keep	the
document/view	architecture	in	place.	If	you	are	adding	a	window	object
that	is	not	a	document	view	then	you	will	have	to	create	it	before
adding	it	to	the	COX3DTabViewContainer	window.	In	the	AddPage()	or
InsertPage()	functions	you	can	specify	the	text	that	will	be	used	as	the
page	title	in	the	corresponding	tab	button.	You	can	also	specify	the	index
of	the	image	in	the	tab	control's	image	list	that	should	be	displayed	in	the
tab	button.

For	example:

BOOL	CChildFrame::OnCreateClient(LPCREATESTRUCT	lpcs,	CCreateContext*	pContext)

	 {
//	TODO:	Add	your	specialized	code	here	and/or	call	the	base	class

UNREFERENCED_PARAMETER(lpcs);

if(!m_TabViewContainer.Create(this))

		return	FALSE;

VERIFY(m_ilTabView.Create(IDB_IL_TABVIEWS,16,0,RGB(255,0,255)));

m_TabViewContainer.SetImageList(&m_ilTabView);

if(!m_TabViewContainer.AddPage(pContext->m_pNewViewClass,
		pContext,_T("Primary	View"),0))

{
				return	FALSE;

}

if(!m_TabViewContainer.AddPage(RUNTIME_CLASS(CMyView2),
				pContext,_T("View2"),1))

	

{
				return	FALSE;

}

m_TabViewContainer.SetActivePageIndex(0);

return	TRUE;

}

	

Second	Case	Scenario:	The	COX3DTabViewContainer	will	be	used	as
a	container	for	windows	within	a	control	bar.

1)	Create	your	own	CControlBar-derived	class	(you	can	use	our
COXSizeControlBar	as	a	parent	class	if	you	need	sizable	docking
windows).	Let's	call	it	CMyControlBar.

2)	Embed	a	COX3DTabViewContainer	member	variable	in	this	class.

3)	Override	the	CMyControlBar::OnCreate()	member	function.

4)	From	within	the	overridden	OnCreate(),	call	the	Create	member
function	of	the	COX3DTabViewContainer	object.	You	have	to	specify	the
parent	window	and	you	can	optionally	specify	the	initial	rectangle,
window	styles	and	window	ID.	This	is	where	you	can	specify	Tab	control
styles	that	defines	the	way	tab	buttons	are	positioned	and	displayed.

5)	If	you	plan	to	assign	images	to	TabView	pages	then	you	have	to	create
and	load	an	image	list	and	associate	it	with	the
COX3DTabViewContainer	using	the	CTabCtrl::SetImageList()	function.

6)	After	the	COX3DTabViewContainer	window	is	successfully	created
you	can	populate	it	with	window	objects	using	the	AddPage()	or
InsertPage()	functions.	Note	that	you	have	to	create	the	window	object
before	adding	it	to	COX3DTabViewContainer.	In	the	AddPage	or
InsertPage	functions	you	can	specify	the	text	that	will	be	used	as	the
page	title	in	a	tab	button.	You	can	also	specify	the	index	of	an	image	in

the	tab	control	image	list	that	should	be	displayed	in	the	tab	button.

7)	Override	the	CMyControlBar::OnSize()	member	function	and	resize
the	COX3DTabViewContainer	object.

For	example:

int	CMyControlBar::OnCreate(LPCREATESTRUCT	lpCreateStruct)

	 {

if	(COXSizeControlBar::OnCreate(lpCreateStruct)	==	-1)

				return	-1;

if(!m_TabViewContainer.Create(this))

				return	-1;

VERIFY(m_ilTabView.Create(IDB_IL_TABVIEWS,16,0,RGB(255,0,255)));

m_TabViewContainer.SetImageList(&m_ilTabView);

	
//	edit	control

if(!edit.Create(WS_CHILD|ES_MULTILINE|ES_AUTOHSCROLL|
				ES_AUTOVSCROLL|WS_HSCROLL|WS_VSCROLL,CRect(0,0,0,0),
				&m_TabViewContainer,1))

{

				return	-1;

}

m_TabViewContainer.AddPage(&edit,_T("Edit"),0);

	
//	list	box

if(!listBox.Create(WS_CHILD|WS_HSCROLL|WS_VSCROLL,
				CRect(0,0,0,0),&m_TabViewContainer,2))

	

{

				return	-1;

}

m_TabViewContainer.AddPage(&listBox,_T("ListBox"),1);

	
//	list	control

if(!listCtrl.Create(WS_CHILD|LVS_REPORT,
				CRect(0,0,0,0),&m_TabViewContainer,3))

{

				return	-1;

}

m_TabViewContainer.AddPage(&listCtrl,_T("List"),2);

	
//	tree	control

if(!treeCtrl.Create(WS_CHILD|TVS_HASLINES|TVS_LINESATROOT|TVS_HASBUTTONS,
				CRect(0,0,0,0),&m_TabViewContainer,4))

{

				return	-1;

}

m_TabViewContainer.AddPage(&treeCtrl,_T("Tree"),3);

m_TabViewContainer.SetActivePageIndex(0);

return	0;

}

Note	that	any	child	window	can	be	used	as	a	COX3DTabViewContainer
page.

The	steps	to	be	taken	in	order	to	implement	COX3DTabViewContainer
in	a	CControlBar	derived	window	should	be	used	in	general	cases	as
well.	A	CControlBar	derived	window	was	used	above	since	it	is	a	likely
choice	for	the	parent	window.

The	following	functions	have	been	provided	for	those	who	need	to
dynamically	change	the	contents	of	a	COX3DTabViewContainer	object:

In	order	to	remove	any	page	at	run	time	call	the	DeletePage()	function.

To	set/retrieve	the	page	title	that	is	displayed	in	the	corresponding	tab
button	use	GetPageTitle()	and	SetPageTitle().

To	set/retrieve	the	active	page	index	call	GetActivePageIndex()	and
SetActivepageIndex().

For	more	information	examine	the	sample	found	in:
<INSTALLDIR>\3DTabVws\Samples\Gui\3DTabView\TabViews.dsw

	

	

COX3DTabViewContainer	Class	Members

Copyright	©	Dundas	Software	Ltd.	1997	1999,	All	Rights	Reserved

Overview

COX3DTabViewContainer 	
Constructs	the	object.
	

Create 	
Creates	the	3DTabView	container.
	

AddPage 	
Adds	a	new	page	to	the
3DTabViewContainer.
	

InsertPage 	
Inserts	a	new	page	into	the
3DTabViewContainer.
	

DeletePage 	
Deletes	an	existing	page	from	the
3DTabView	container.
	

GetPage 	
Retrieves	a	pointer	to	a	page	which	is
specified	by	an	index.
	

GetPageTitle 	
Retrieves	the	title	of	the	specified	page.
	

SetPageTitle 	
Sets	the	title	of	the	specified	page.
	

GetPageImageIndex 	
Retrieves	the	image	index	of	the	specified
page.
	

SetPageImageIndex 	
Sets	the	image	index	of	the	specified	page.
	

GetPageCount 	
Retrieves	the	number	of	pages	in	the
3DTabView	container.
	

FindPage 	
Retrieves	a	flag	indicating	whether	or	not
the	specified	window	is	a	page	belonging
to	the	3DTabViewContainer.	If	it	is	then	the
index	of	the	located	page	is	provided.
	

IsPage 	
Retrieves	a	flag	indicating	whether	or	not
the	specified	window	is	a	page	belonging
to	the	3DTabViewContainer.
	

IsActivePage 	
Retrieves	a	flag	indicating	whether	the

specified	window	is	the	currently	active
page	for	the	3DTabViewContainer.
	

GetActivePageIndex 	
Retrieves	the	index	of	the	currently	active
page.
	

GetActivePage 	
Retrieves	a	pointer	to	the	currently	active
page.
	

SetActivePage 	
Sets	the	specified	page	as	the	active	page.
	

SetActivePageIndex 	
Sets	the	specified	page	as	the	active	page
via	the	page	index.
	

SetOffsetExternal 	
Sets	the	tab	control	offset	from	the	parent
window	borders.
	

GetOffsetExternal 	
Retrieves	the	tab	control	offset	from	the
parent	window	borders.
	

SetOffsetInternal 	
Sets	the	page	window	offset	from	the	tab
control	display	rectangle.
	

GetOffsetInternal 	
Retrieves	the	page	window	offset	from	the
tab	control	display	rectangle.
	

AcceptDraggedObject 	
Toggles	"drag	object	over"	support	for	the
tab	control	on	or	off.
	

IsAcceptingDraggedObject 	
Retrieves	a	flag	that	specifies	whether	the
3DTabView	container	activates	the
corresponding	page	window	when	an
object	is	dragged	over	tab	control	items.
	

RecalcPageRect 	
Calculates	the	rectangle	which	specifies
the	coordinates	of	the	active	page	window.
	

GetPageRect 	
Retrieves	the	rectangle	whcih	specifies	the
coordinates	of	the	active	page	window.
	

COX3DTabViewContainer::COX3DTabViewContainer

Class	Members	|	Overview

COX3DTabViewContainer()

Remarks

Constructor.

COX3DTabViewContainer::AcceptDraggedObject

Class	Members	|	Overview

void	AcceptDraggedObject(const	BOOL	bAccept=TRUE)	

Parameters

bAccept Any	object	dragged	over	tab	items	will	result	in	the
corresponding	page	window	being	activated	if	set	to	TRUE.

Remarks

Toggles	'drag	object	over'	support	for	the	tab	control	on	and	off.

COX3DTabViewContainer::AddPage

Class	Members	|	Overview

BOOL	AddPage(CRuntimeClass*	pClass,	CCreateContext*	pContext,	LPCTSTR
lpszTitle=NULL,	const	int	nImage=-1)

BOOL	AddPage(CWnd*	pWnd,	LPCTSTR	lpszTitle=NULL,	const	int	nImage=-1)

Parameters

pClass Pointer	to	the	runtime	class	information	of	the	new	window	to
be	added	as	new	page.

pContext Pointer	to	context	information	(refer	to	the	description	of	the
CCreateContext	class	in	the	MFC	documentation).

pWnd Pointer	to	a	created	window	to	be	added	as	a	new	page.

lpszTitle Text	that	will	be	used	as	the	page	title	for	a	tab	button.

nImage Index	of	the	image	in	the	image	list	associated	with	the
container	that	will	be	set	to	the	corresponding	button.

Return	Value

TRUE	if	the	new	page	was	successfully	added,	otherwise	FALSE.

Remarks

Adds	a	new	page	to	a	3DTabView	container.	Use	the	first	version	of	the
function	if	you	have	to	add	a	CView	derived	class	that	will	be	part	of	the
document/view	architecture	of	your	application.

COX3DTabViewContainer::Create

Class	Members	|	Overview

virtual	BOOL	Create(CWnd*	pParentWnd,	CRect	rect=CRect(0,0,0,0),	DWORD
dwStyle=DEFAULT_	TABCTRLSTYLE,	UINT	nID=AFX_IDW_PANE_FIRST)

Parameters

pParentWnd Pointer	to	the	window	that	is	the	3DTabViewContainer's
parent.

rect Window	rectangle.

dwStyle The	3DTabView	container's	style.	By	default	we	use
DEFAULT_TABCTRLSTYLE	which	expands	as
TCS_MULTILINE	|	TCS_BOTTOM	|	TCS_HOTTRACK	|
TCS_SCROLLOPPOSITE	|	TCS_RIGHTJUSTIFY	|
TCS_FOCUSNEVER	|	WS_VISIBLE	|	WS_CHILD.

nID The	3DTabViewContainer's	ID.

Return	Value

TRUE	if	the	3DTabViewContainer	was	successfully	created,	otherwise
FALSE.

Remarks

Creates	a	3DTabViewContainer.

COX3DTabViewContainer::DeletePage

Class	Members	|	Overview

virtual	BOOL	DeletePage(const	CWnd*	pWnd,	const	BOOL	bDestroy=TRUE)

virtual	BOOL	DeletePage(const	int	nIndex,	const	BOOL	bDestroy=TRUE)

Parameters

pWnd Pointer	to	the	page	to	be	deleted.

nIndex Index	of	the	page	to	be	deleted.

bDestroy Flag	which	specifies	if	the	window	has	to	be	destroyed.

Return	Value

TRUE	if	the	specified	page	was	successfully	deleted,	otherwise	FALSE.

Remarks

Deletes	an	existing	page	from	a	3DTabViewContainer.

COX3DTabViewContainer	Dependencies	and	Related	Files

Copyright	©	Dundas	Software	Ltd.	1997-1999,	All	Rights	Reserved

Overview

SOURCE OX3DTabView.cpp

	 	

INCLUDEOX3DTabView.h

	 	

SAMPLE <INSTALLDIR>\3DTabVws\Samples\Gui\3DTabView\TabViews.dsw

	

COX3DTabViewContainer::FindPage

Class	Members	|	Overview

BOOL	FindPage(const	CWnd*	pTestWnd,	int&	nIndex)	const

BOOL	FindPage(const	HWND	hTestWnd,	int&	nIndex)	const

Parameters

pTestWnd Pointer	to	the	window	to	be	tested	as	a
3DTabViewContainer's	page.

hTestWnd Handle	of	the	window	to	be	tested	as	a
3DTabViewContainer's	page.

nIndex Reference	variable,	stores	the	index	of	the	page	if	found.
This	index	is	zero	(0)	based.

Return	Value

TRUE	if	the	specified	window	is	a	3DTabView	container's	page,
otherwise	FALSE.

Remarks

Retrieves	a	flag	which	specifies	whether	the	specified	window	is	a
3DTabViewContainer's	page.	If	it	is	then	the	index	of	the	located	page	is
indicated	by	nIndex.

COX3DTabViewContainer::GetActivePage

Class	Members	|	Overview

CWnd*	GetActivePage()	const

Return	Value

Pointer	to	the	currently	active	page	of	a	3DTabViewContainer.

Remarks

Retrieves	a	pointer	to	the	currently	active	page	of	a
3DTabViewContainer	object.

See	also:	GetActivePageIndex

COX3DTabViewContainer::GetActivePageIndex

Class	Members	|	Overview

int	GetActivePageIndex()	const

Return	Value

Index	of	a	3DTabViewContainer's	currently	active	page.

Remarks

Retrieves	the	index	of	the	currently	active	page.

See	also:	GetActivePage

	

COX3DTabViewContainer::GetOffsetExternal

Class	Members	|	Overview

DWORD	GetOffsetExternal()	const

Return	Value

Offset	in	points	from	the	parent	window	client	area	where	the	tab	control
will	be	displayed.

Remarks

Retrieves	the	tab	control	offset	from	the	parent	window's	borders.

See	also:	SetOffsetExternal

COX3DTabViewContainer::GetOffsetInternal

Class	Members	|	Overview

DWORD	GetOffsetInternal()	const

Return	Value

Offset	in	points	from	the	display	area	of	the	tab	control	and	active	page
window.

Remarks

Retrieves	the	page	window	offset	from	the	tab	control	display	rectangle.

See	also:	SetOffsetInternal

COX3DTabViewContainer::GetPage

Class	Members	|	Overview

CWnd*	GetPage(const	int	nIndex)	const

Parameters

nIndex Zero-based	index	of	the	page	to	be	retrieved.

Return	Value

Pointer	to	the	corresponding	page	window	or	NULL	if	the	specified	index
was	out	of	range.

Remarks

Retrieves	a	pointer	to	the	specified	page.

COX3DTabViewContainer::GetPageCount

Class	Members	|	Overview

int	GetPageCount()	const

Return	Value

The	number	of	pages	in	the	3DTabView	container.

Remarks

Retrieves	the	number	of	pages	in	the	COX3DTabViewContainer.

COX3DTabViewContainer::GetPageImageIndex

Class	Members	|	Overview

int	GetPageImageIndex(const	CWnd*	pWnd)	const

int	GetPageImageIndex(const	int	nIndex)	const

Parameters

pWnd Pointer	to	the	page	whose	image	index	is	to	be	retrieved.

nIndex Zero-based	index	of	the	page	whose	image	index	is	to	be
retrieved.

Return	Value

Image	index	of	the	specified	page.

Remarks

Retrieves	the	image	index	of	the	specified	page.

COX3DTabViewContainer::GetPageRect

Class	Members	|	Overview

CRect	GetPageRect()	const

Return	Value

The	rectangle	that	specifies	the	coordinates	of	the	active	page	window.

Remarks

Retrieves	the	rectangle	which	specifies	the	coordinates	of	the	active
page	window.

COX3DTabViewContainer::GetPageTitle

Class	Members	|	Overview

CString	GetPageTitle(const	CWnd*	pWnd)	const

CString	GetPageTitle(const	int	nIndex)	const

Parameters

pWnd Pointer	to	a	page	for	which	the	title	is	to	be	retrieved.

nIndex Zero-based	index	of	the	page	for	which	the	image	index	is	to
be	retrieved.

Return	Value

Title	of	the	corresponding	page.

Remarks

Retrieves	the	title	of	the	specified	page.

COX3DTabViewContainer::InsertPage

Class	Members	|	Overview

virtual	BOOL	InsertPage(const	int	nIndex,	CRuntimeClass*	pClass,	CCreateContext*
pContext,	LPCTSTR	lpszTitle=NULL,	const	int	nImage=1)

virtual	BOOL	InsertPage(const	int	nIndex,	CWnd*	pWnd,	LPCTSTR	lpszTitle=NULL,	const
int	nImage=1)

Parameters

nIndex Zero-based	index	of	the	page	to	be	added.

pClass Pointer	to	the	runtime	class	information	of	the	new	window	to
be	added.

pContext Pointer	to	context	information	(refer	to	the	description	of	the
CCreateContext	class	in	the	MFC	documentation).

pWnd Pointer	to	the	created	window	to	be	inserted	as	the	new
page.

lpszTitle The	text	that	will	be	used	as	the	page	title	in	a	tab	button.

nImage Index	of	the	image	in	the	image	list	(which	is	associated	with
the	container)	that	will	be	used	for	the	corresponding	button.

Return	Value

TRUE	if	the	new	page	was	successfully	inserted,	otherwise	FALSE.

Remarks

Inserts	a	new	page	into	a	3DTabViewContainer.	Use	the	first	version	of

the	function	if	you	have	to	insert	a	CView	derived	class	which	is	part	of
the	document/view	architecture	of	your	application.

COX3DTabViewContainer::IsAcceptingDraggedObject

Class	Members	|	Overview

BOOL	IsAcceptingDraggedObject()	const

Return	Value

TRUE	if	the	3DTabViewContainer	activates	the	corresponding	page
window	when	an	object	is	dragged	over	tab	control	items,	otherwise
FALSE.

Remarks

Retrieves	the	flag	that	specifies	whether	the	3DTabViewContainer
activates	the	corresponding	page	window	when	an	object	is	dragged	over
tab	control	items.

COX3DTabViewContainer::IsActivePage

Class	Members	|	Overview

BOOL	IsActivePage(const	HWND	hTestWnd)	const

BOOL	IsActivePage(const	CWnd*	pTestWnd)	const

Parameters

hTestWndHandle	of	the	window	to	be	tested	as	the	currently	active
3DTabViewContainer's	page.

pTestWnd Pointer	to	the	window	to	be	tested	as	the	currently	active
3DTabViewContainer's	page.

Return	Value

TRUE	if	the	specified	window	is	the	currently	active
3DTabViewContainer's	page,	otherwise	FALSE.

Remarks

Retrieves	a	flag	which	indicates	whether	or	not	the	specified	window	is
the	currently	active	3DTabViewContainer's	page.

COX3DTabViewContainer::IsPage

Class	Members	|	Overview

BOOL	IsPage(const	HWND	hTestWnd)	const

BOOL	IsPage(const	CWnd*	pTestWnd)	const

Parameters

hTestWndHandle	of	the	window	to	be	tested	as	the
3DTabViewContainer's	page.

pTestWnd Pointer	to	the	window	to	be	tested	as	the
3DTabViewContainer's	page.

Return	Value

TRUE	if	the	specified	window	is	a	page	of	the	3DTabViewContainer,
otherwise	FALSE.

Remarks

Retrieves	a	flag	which	indicates	whether	the	specified	window	is	a	page
of	the	3DTabViewContainer.

COX3DTabView::RecalcPageRect

Class	Members	|	Overview

void	RecalcPageRect()

Remarks

Calculates	the	rectangle	whcih	specifies	the	coordinates	of	the	active
page	window.

COX3DTabViewContainer::SetActivePage

Class	Members	|	Overview

BOOL	SetActivePage(const	CWnd*	pWnd)

Parameters

pWnd Pointer	to	the	page	to	be	set	as	active.

Return	Value

TRUE	if	the	specified	page	was	successfully	set	as	the	active	page.

Remarks

Sets	the	specified	page	as	being	active.

COX3DTabViewContainer::SetActivePageIndex

Class	Members	|	Overview

virtual	BOOL	SetActivePageIndex(const	int	nIndex)

Parameters

nIndex Index	of	the	page	to	be	set	as	the	active	page.

Return	Value

TRUE	if	a	page	with	the	specified	index	was	successfully	set	as	the
active	page.

Remarks

Sets	a	page	with	the	specified	index	as	the	active	page.

COX3DTabViewContainer::SetOffsetExternal

Class	Members	|	Overview

void	SetOffsetExternal(const	DWORD	dwOffset)

Parameters

dwOffset The	offset	in	points	from	the	parent	window	client	area	where
the	tab	control	will	be	displayed.

Remarks

Sets	the	tab	control	offset	from	the	parent	window	borders.

See	also:	GetOffsetExternal

COX3DTabViewContainer::SetOffsetInternal

Class	Members	|	Overview

void	SetOffsetInternal(const	DWORD	dwOffset)

Parameters

dwOffset The	offset	in	points	from	the	display	area	of	the	tab	control	and
active	page	window.

Remarks

Sets	the	page	window	offset	from	the	tab	control	display	rectangle.

See	also:	GetOffsetInternal

COX3DTabViewContainer::SetPageImageIndex

Class	Members	|	Overview

BOOL	SetPageImageIndex(const	CWnd*	pWnd,	int	nImage)

BOOL	SetPageImageIndex(const	int	nIndex,	int	nImage)

Parameters

pWnd Pointer	to	the	page	for	which	the	image	is	to	be	set.

nIndex Zero-based	index	of	the	page	for	which	the	image	is	to	be	set.

nImage Index	of	an	image	in	the	image	list	that	will	be	used	as	the
page	image	in	the	corresponding	tab	button.

Remarks

Sets	the	image	index	of	the	specified	page.

COX3DTabViewContainer::SetPageTitle

Class	Members	|	Overview

BOOL	SetPageTitle(const	CWnd*	pWnd,	LPCTSTR	lpszTitle)

BOOL	SetPageTitle(const	int	nIndex,	LPCTSTR	lpszTitle)

Parameters

pWnd Pointer	to	the	page	for	which	the	title	is	to	be	set.

nIndex Zero-based	index	of	the	page	for	which	the	title	is	to	be	set.

lpszTitle The	text	that	will	be	used	as	the	page	title	in	the	tab	button.

Remarks

Sets	the	title	of	the	specified	page.

COXToolTipCtrl	Overview

Copyright	©	Dundas	Software	Ltd.	1997-1999,	All	Rights	Reserved

COXToolTipCtrl	Class	Members

COXToolTipCtrl	is	an	extended	tooltip	control	that	allows	multiline
tooltips,	plus	extended	tooltip	text.	Extended	tooltip	text	is	extra	text	that
is	displayed	if	the	user	clicks	on	the	tooltip	window.	If	the	tooltip	contains
extended	text	(as	well	as	a	standard	tooltip	string)	then	the	info	window
will	contain	a	small	arrow	that	prompts	the	user	to	click	on	the	window.
Once	the	window	is	clicked	the	extended	text	is	shown.	If	the	window	is
clicked	again	then	the	window	is	reduced	to	displaying	just	the	standard
text.

The	maximum	width	of	the	tooltips	can	be	specified,	and	if	the	info	text	is
too	large	to	fit	within	these	bounds	then	the	text	will	be	wrapped	over
multiple	lines.	The	control	also	allows	you	to	specify	different	text	and
background	colors	for	the	tooltips,	and	the	display	font	can	also	be
changed.

This	class	is	a	direct	replacement	for	the	CToolTipCtrl	class.	It
incorporates	the	entire	API	of	the	standard	CToolTipCtrl	and	introduces
new	features	not	found	in	the	standard	tooltip.

The	control	is	used	just	like	any	other	tooltip	control.	To	use	it	simply	call
Create(...)	and	specify	the	parent	window	of	the	tool,	then	add	tools	to	the
control	using	the	AddTool(...)	member	functions.	For	example,	to	add	the
tooltip	to	a	formview	or	dialog:

tooltip.Create(this);	tooltip.AddTool(GetDlgItem(IDC_CONTROL),
_T("Tooltip	text\rThis	is	the	extended\ntooltip	text"));

where	ID_CONTROL	is	the	ID	of	a	control.

To	specify	extended	text	for	a	tooltip	simply	append	a	'\r'	after	your	tooltip

text,	and	then	append	the	extended	tooltip	info.

As	with	the	standard	tooltip	control	you	can	specify	the	actual	text	for	the
tool	at	creation	time	(as	shown	above),	or	you	can	specify	the
LPSTR_TEXTCALLBACK	value	and	provide	a	TTN_NEEDTEXT	handler
to	return	the	text	dynamically	at	runtime.

To	handle	the	TTN_NEEDTEXT	message	you	will	need	to	add	a
message	handler	in	the	parent	window	as	well	as	an	entry	in	the
message	map.	For	example,	in	a	view	or	form:

BEGIN_MESSAGE_MAP(CMyDlg,	CDialog)

.

ON_NOTIFY_EX(TTN_NEEDTEXT,	0,	OnToolTipNotify)

END_MESSAGE_MAP()

BOOL	CMyDlg::OnInitDialog()

{

CDialog::OnInitDialog();

				tooltip.Create(this);

				tooltip.AddTool(GetDlgItem(IDC_CONTROL),	LPSTR_TEXTCALLBACK);

			

}

BOOL	CMyDlg::OnToolTipNotify(UINT	id,	NMHDR*	pNMHDR,	LRESULT*	pResult)

{

TOOLTIPTEXT	*pTTT	=	(TOOLTIPTEXT	*)pNMHDR;

				UINT	nID	=	pNMHDR->idFrom;

				if	(nID	==	IDC_CONTROL)				//	Fill	in	the	text	buffer

				{

_tcscpy(pTTT->szText,	_T("Tooltip	text\rExtended	tooltip	text"));

								return	TRUE;

				}

return	FALSE;

}

Alternatively	you	can	supply	text	by	either	supplying	a	string	resource:

pTTT->lpszText	=	MAKEINTRESOURCE(nID);
pTTT->hinst	=	AfxGetResourceHandle();
return	TRUE;

or	by	supplying	a	pointer	to	the	text:

pTTT->lpszText	=	_T("Tooltip	text\rExtended	tooltip	text");
return	TRUE;

Newline	characters	('\n')	can	be	embedded	anywhere	within	the	text	or
extended	text	to	produce	a	multiline	tooltip.	If	the	width	of	the	tooltip
window	is	specified	using	SetMaxTipWidth()	then	the	tooltip	text	will	be
wrapped	to	this	length,	and	if	necessary	will	be	displayed	on	more	than
one	line.

To	change	the	font	of	the	tooltips	simply	use	the	SetFont()	member
function.

The	GetToolInfo/SetToolInfo	functions	and	the	HitTest	functions	are	very
similar	to	the	CToolTipCtrl	versions	with	the	exception	that	they	use	a
OXTOOLINFO	structure	instead	of	a	TOOLINFO	structure.	This	structure

is	defined	as

struct	OXTOOLINFO	:	public	TOOLINFO
{
#if	(_WIN32_IE	<	0x0300)
				LPARAM	lParam;	//Application	defined	value	that	is	associated
with	the	tool
#endif
				int	nWidth;	//Width	of	box,	or	0	for	default
				COLORREF	clrTextColor;	//text	color
				COLORREF	clrBackColor;	//background	color
}

and	is	very	similar	to	the	standard	TOOLINFO.	It	is	used	in	the	same	way
except	that	the	uFlags	member	is	not	used	(yet).

To	change	the	color	of	an	individual	tip	use	the	GetToolInfo/SetToolInfo
functions:

OXTOOLINFO	ToolInfo;

if	(m_toolTip.GetToolInfo(ToolInfo,	GetDlgItem(IDC_CONTROL)))

{

		ToolInfo.clrBackColor	=	RGB(255,	255,	255);

				ToolInfo.clrTextColor	=	RGB(0,	0,	255);

				m_toolTip.SetToolInfo(&ToolInfo);

}

	
The	ToolTipEx	sample	that	demonstrates	the	functionality	of	the
COXToolTipCtrl	class	can	be	found	in:
<INSTALLDIR>\ToolTips\Samples\Gui\ToolTipEx\ToolTipEx.dsw.

	

	

COXToolTipCtrl	Class	Members

Copyright	©	Dundas	Software	Ltd.	1997-1999,	All	Rights	Reserved

Overview

COXToolTipCtrl 	
Constructs	and	initializes	the	object.
	

GetToolInfo 	
Retrieves	the	information	that	a	tooltip	control
maintains	about	a	tool.
	

SetToolInfo 	
Sets	the	information	that	a	tooltip	maintains	for	a
tool.
	

GetMargin 	
Retrieves	the	margins	used	for	drawing	the	text
in	the	tooltip.
	

GetText 	
Retrieves	the	text	that	a	tooltip	control	maintains
for	a	tool.
	

SetDelayTime 	
Sets	the	delay	times	for	the	tooltip	in
milliseconds.
	

GetDelayTime 	
Retrieves	the	initial,	pop-up,	and	reshow
durations	currently	set	for	a	tooltip	control.
	

GetMaxTipWidth 	
Retrieves	the	maximum	width	of	the	tooltip
window.
	

SetMaxTipWidth 	
Sets	the	maximum	tooltip	window	width.
	

GetTipBkColor 	
Retrieves	the	background	color.
	

SetTipBkColor 	
Sets	the	background	colour	for	all	tools
maintained	by	this	control.
	

GetTipTextColor 	
Retrieves	the	text	color.
	

SetTipTextColor 	
Sets	the	text	color	for	all	tools	maintained	by	this
control.
	

Activate 	
Activates/deactivates	the	tooltip	control.
	

GetToolCount 	

Retrieves	a	count	of	the	tools	registered	with	the
tooltip	control.
	

SetMargin 	
Sets	the	top,	left,	bottom,	and	right	margins	for	a
tooltip			window.
	

Create 	
Creates	the	tooltip	window.
	

AddTool 	
Registers	a	tool	with	the	tooltip	control.
	

DelTool 	
Removes	the	specified	tool.
	

RelayEvent 	
Passes	a	mouse	message	to	a	tooltip	control	for
processing.
	

HitTest 	
Retrieves	a	flag	which	specifies	if	a	given	point
is	in	the	windows	toolinfo	bounding	rectangle.
	

Pop 	
Hides	the	tooltip.
	

CalculateInfoBoxRect 	
Advanced	overridable.	Protected	virtual	function

that	calculates	the	rectangle	(in	screen	coords)
that	is	best	suited	to	displaying	the	tooltip	info.
	

GetBoundsRect 	
Advanced	overridable.	Protected	virtual	function
that	calculates	the	smallest	possible	rectangle
that	will	contain	the	text.
	

	

COXToolTipCtrl::Activate

Members	|	Overview

void	Activate(BOOL	bActivate)

Parameters

bActivate Specifies	whether	the	tooltip	control	is	to	be	activated	or
deactivated.

Remarks

Call	this	function	to	activate	or	deactivate	a	tooltip	control.	If	bActivate	is
TRUE,	the	control	is	activated.	If	FALSE,	it	is	deactivated.	When	a	tooltip
control	is	active,	the	tooltip	information	appears	when	the	cursor	is	on	a
tool	that	is	registered	with	the	control;	when	it	is	inactive,	the	tooltip
information	does	not	appear,	even	when	the	cursor	is	over	a	registered
tool.

COXToolTipCtrl::AddTool

Members	|	Overview

BOOL	AddTool(CWnd*	pWnd,	UINT	nIDText,	LPCRECT	lpRectTool	=	NULL,	UINT	nIDTool	=
0)

BOOL	AddTool(CWnd*	pWnd,	LPCTSTR	szText,	LPCRECT	lpRectTool	=	NULL,	UINT
nIDTool	=	0)

Parameters

pWnd Pointer	to	the	window	that	contains	the	tool.
	

nIDText ID	of	the	string	resource	that	contains	the	text	or	the	tool.
If	the	text	contains	a	'\r'	character,	then	all	text	before	the
\r	is	the	standard	tooltip	text,	and	all	text	after	the	\r	will	be
displayed	as	extended	text	if	the	use	clicks	on	the	tooltip.
	

lpszText Pointer	to	the	text	for	the	tool.	If	the	text	contains	a	'\r'
character,	then	all	text	before	the	\r	is	the	standard	tooltip
text,	and	all	text	after	the	\r	will	be	displayed	as	extended
text	if	the	user	clicks	on	the	tooltip.	If	the	text	is
LPSTR_TEXTCALLBACK	then	the	control	will	send	the
TTN_NEEDTEXT	notification	message	to	the	parent
window	to	retrieve	the	text.
	

lpRectTool Pointer	to	a	RECT	structure	containing	coordinates	of	the
tool's	bounding	rectangle,	using	client	coordinates	relative
to	the	window	identified	by	pWnd.
	

nIDTool ID	of	the	tool.

	

Return	Value

TRUE	on	success,	FALSE	otherwise.

Remarks

Registers	a	tool	with	the	tooltip	control,	so	that	the	information	stored	in
the	tooltip	is	displayed	when	the	cursor	is	over	the	tool.

See	also:	GetToolCount	|	DelTool

COXToolTipCtrl::CalculateInfoBoxRect

Members	|	Overview

virtual	CRect	CalculateInfoBoxRect(CPoint&	pt,	COXToolTipInfo*	pToolTip,	CRect&
rectTextBounds)	const

Parameters

pt The	top	left	corner	of	the	region.

pToolTip Information	on	the	tooltip.

rectTextBounds The	minimum	rectangle	needed	to	contain	the	text.

Return	Value

A	rectangle	containing	the	bounds	of	the	tooltip.

Remarks

Given	the	bounding	rectangle	of	some	text,	this	function	returns	the
rectangle	(in	screen	coordinates)	that	is	best	suited	to	displaying	the
tooltip	information	(uses	the	current	mouse	position).	You	can	override
this	method	in	a	derived	class	to	customize	the	calculation	method.

COXToolTipCtrl::COXToolTipCtrl

Members	|	Overview

COXToolTipCtrl()

Remarks

Constructor.	Creates	an	instance	of	this	class.

COXToolTipCtrl::Create

Members	|	Overview

BOOL	Create(CWnd*	pParentWnd)

Parameters

pParentWnd A	pointer	to	the	tooltip	control's	parent.

Return	Value

TRUE	if	successfulk,	otherwise	FALSE.

Remarks

Creates	the	tooltip	window	which	initially	is	not	visible.

COXToolTipCtrl::DelTool

Members	|	Overview

void	DelTool(CWnd*	pWnd,	UINT	nIDTool	=	0)

Parameters

pWnd Pointer	to	the	window	that	contains	the	tool.
	

nIDTool ID	of	the	tool.
	

Remarks

Removes	the	tool	specified	by	pWnd	and	nIDTool	from	the	collection	of
tools	supported	by	a	tooltip	control.

See	also:	AddTool

	

COXToolTipCtrl::GetBoundsRect

Members	|	Overview

virtual	CRect	GetBoundsRect(CString	strText,	int	nWidth)	const

Parameters

strText The	text	to	be	displayed	(may	be	multiline).

nWidth The	desired	width.	If	this	is	zero	(0)	the	width	will	be
calculated.

Return	Value

The	bounding	RECT	for	the	text	(with	the	top	left	corner	at	0,	0).

Remarks

Returns	the	smallest	possible	rectangle	that	will	contain	the	text
(including	margins).

See	also:	CalculateInfoBoxRect

COXToolTipCtrl::GetDelayTime

Members	|	Overview

int	GetDelayTime(DWORD	dwDuration)	const

Parameters

dwDuration Flag	that	specifies	which	duration	value	will	be	retrieved.
It	can	be	one	of	the	following:
	

TTDT_AUTOPOP The	length	of	time	the	tooltip
window	remains	visible	if	the
pointer	is	stationary	within	a	tool's
bounding	rectangle.

TTDT_INITIAL The	length	of	time	the	pointer
must	remain	stationary	within	a
tool's	bounding	rectangle	before
the	tooltip	window	appears.

Return	Value

The	delay	times	for	the	tooltip	are	in	milliseconds	(mS).

Remarks

Retrieves	the	initial,	pop-up,	and	reshow	durations	currently	set	for	a
tooltip	control.

See	also:	SetDelayTime

COXToolTipCtrl::GetMargin

Members	|	Overview

void	GetMargin(LPRECT	lprc)	const

Parameters

lprc Address	of	a	RECT	structure	that	will	store	the	margin
information.

Remarks

Retrieves	the	margins	used	for	drawing	the	text	in	the	tooltip.	The
rectangle	does	not	specify	a	bounding	rect,	but	rather	the	top,	bottom,	left
and	right	distances	(in	pixels)	between	the	text	and	the	edge	of	the	tooltip
window.

See	also:	GetBoundsRect

COXToolTipCtrl::GetMaxTipWidth

Members	|	Overview

int	GetMaxTipWidth()	const

Return	Value

The	maximum	width	for	a	tooltip	window,	or	zero	(0)	if	this	width	is
calculated	automatically.

Remarks

Retrieves	the	maximum	width	of	the	tooltip	window.

See	also:	SetMaxTipWidth

COXToolTipCtrl::GetText

Members	|	Overview

void	GetText(CString&	str,	CWnd*	pWnd,	UINT	nIDTool	=	0)

Parameters

str Reference	to	a	CString	object	that	stores	the	tool​s	text.

pWnd Pointer	to	the	window	that	contains	the	tool.

nIDTool ID	of	the	tool.

Remarks

Retrieves	the	text	that	a	tooltip	control	maintains	for	a	tool.	If	pWnd	and
nIDTool	specify	a	valid	tool	that	has	been	previously	registered,	then	str
is	filled	with	the	tooltip's	text.

	

COXToolTipCtrl::GetTipBkColor

Members	|	Overview

COLORREF	GetTipBkColor()	const

Return	Value

A	COLORREF	value	that	represents	the	background	color	of	the	tooltip
window.

Remarks

Retrieves	the	background	color	of	the	tooltip	window.

See	also:	SetTipBkColor	|	SetTipTextColor

COXToolTipCtrl::GetTipTextColor

Members	|	Overview

COLORREF	GetTipTextColor()	const

Return	Value

A	COLORREF	value	that	represents	the	text	color.

Remarks

Retrieves	the	text	color	of	the	tooltip	window.

See	also:	SetTipTextColor	|	SetTipBkColor

COXToolTipCtrl::GetToolCount

Members	|	Overview

int	GetToolCount()	const

Return	Value

The	number	of	tools	registered	with	the	tooltip	control.

Remarks

Retrieves	the	number	of	tools	registered	with	the	tooltip	control.

See	also:	AddTool	|	DelTool

	

COXToolTipCtrl::GetToolInfo

Members	|	Overview

BOOL	GetToolInfo(OXTOOLINFO&	ToolInfo,	CWnd*	pWnd,	UINT	nIDTool	=	0)

Parameters

ToolInfo Reference	to	an	OXTOOLINFO	object	that	receives	the	tool​s
text.

pWnd Pointer	to	the	window	that	contains	the	tool.

nIDTool ID	of	the	tool.

Return	Value

TRUE	if	successful,	otherwise	FALSE.

Remarks

Call	this	function	to	retrieve	the	information	that	a	tooltip	control	maintains
about	a	tool.	If	the	control	has	information	on	the	tool	identified	by	pWnd
and	nIDTool	then	the	COXToolTipInfo	structure	is	populated	with	that
information.

See	the	overview	for	a	description	of	the	OXTOOLINFO	structure.

See	also:	SetToolInfo

COXToolTipCtrl::HitTest

Members	|	Overview

BOOL	HitTest(CWnd*	pWnd,	POINT	pt,	OXTOOLINFO*	pToolInfo)	const

Parameters

pWnd Pointer	to	the	window	that	contains	the	tool.

pt Pointer	to	a	CPoint	object	containing	the	coordinates	of	the
point	to	be	tested.

pToolInfo Pointer	to	a	OXTOOLINFO	structure	that	contains	information
about	the	tool.

Return	Value

TRUE	if	the	point	specified	by	the	hit-test	information	is	within	the	tool​s
bounding	rectangle;	otherwise	FALSE.

Remarks

Returns	TRUE	if	the	given	pt	is	in	the	windows	toolinfo	bounding
rectangle	(pt	is	in	client	coordinates	relative	to	the	parent	window).	If	this
function	returns	TRUE	the	structure	pointed	to	by	pToolInfo	is	populated
with	information	about	the	corresponding	tool.

See	the	overview	for	information	on	the	OXTOOLINFO	structure.

COXToolTipCtrl::Pop

Members	|	Overview

void	Pop()

Remarks

Hides	the	tooltip.

COXToolTipCtrl::RelayEvent

Members	|	Overview

void	RelayEvent(MSG*	pMsg)

Parameters

pMsg Pointer	to	a	MSG	structure	that	contains	the	message	to	relay.

Remarks

Call	this	function	to	pass	a	mouse	message	to	a	tooltip	control	for
processing.

COXToolTipCtrl::SetDelayTime

Members	|	Overview

void	SetDelayTime(DWORD	dwDuration,	int	nTime)
void	SetDelayTime(UINT	nDelay)

Parameters

dwDuration Flag	that	specifies	which	duration	value	will	be	set.	Can	be
one	of	the	following	values:
	

TTDT_AUTOPOP The	length	of	time	the	tooltip
window	remains	visible	if	the
pointer	is	stationary	within	a	tool's
bounding	rectangle.
	

TTDT_INITIAL The	length	of	time	the	pointer	must
remain	stationary	within	a	tool's
bounding	rectangle	before	the
tooltip	window	appears.
	

nTime Specifies	the	new	delay	time,	in	milliseconds	(mS).
	

nDelay Specifies	the	new	delay	time,	in	milliseconds	(mS).
	

Remarks

Sets	the	delay	times	for	the	tooltip	in	milliseconds.

See	also:	GetDelayTime

COXToolTipCtrl::SetMargin

Members	|	Overview

void	SetMargin(LPRECT	lprc)

Parameters

lprc Address	of	a	RECT	structure	that	contains	the	margin	information
to	be	set.	The	members	of	the	RECT	structure	do	not	define	a
bounding	rectangle,	but	rather	the	top,	bottom,	left	and	right
distances	(in	pixels)	between	the	text	and	the	the	edge	of	the
tooltip	window.

Remarks

Sets	the	top,	left,	bottom,	and	right	margins	for	a	tooltip	window.	A	margin
is	the	distance,	in	pixels,	between	the	tooltip	window	border	and	the	text
contained	within	the	tooltip	window.

See	also:	GetMargin

COXToolTipCtrl::SetMaxTipWidth

Members	|	Overview

int	SetMaxTipWidth(int	nWidth)

Parameters

nWidth The	maximum	width	of	a	tooltip	window,	or	zero	(0)	if	this	width
is	to	be	calculated	automatically.	The	maximum	tooltip	width
value	does	not	indicate	a	tooltip	window's	actual	width.	Rather,
if	a	tooltip	string	exceeds	the	maximum	width,	the	control
breaks	the	text	into	multiple	lines,	using	spaces	to	determine
line	breaks.	If	the	text	cannot	be	segmented	into	multiple	lines,
it	will	be	displayed	on	a	single	line.	The	length	of	this	line	may
exceed	the	maximum	tooltip	width.
	

Return	Value

The	previous	maximum	tooltip	window	width.

Remarks

Sets	the	maximum	tooltip	window	width.

See	also:	GetMaxTipWidth

COXToolTipCtrl::SetTipBkColor

Members	|	Overview

void	SetTipBkColor(COLORREF	clr)

Parameters

clr The	new	background	color,	as	a	COLORREF	structure.

Remarks

Sets	the	background	color	for	all	tools	maintained	by	this	control.	If	the
value	is	CLR_DEFAULT	then	the	default	system	color	is	used.

See	also:	GetTipBkColor

COXToolTipCtrl::SetTipTextColor

Members	|	Overview

void	SetTipTextColor(COLORREF	clr)

Parameters

clr The	new	text	color.

Remarks

Sets	the	text	color	for	all	tools	maintained	by	this	control.	If	the	value	is
CLR_DEFAULT	then	the	default	system	color	is	used.

COXToolTipCtrl::SetToolInfo

Members	|	Overview

void	SetToolInfo(OXTOOLINFO*	pToolInfo)

Parameters

pToolInfo A	pointer	to	an	OXTOOLINFO	structure	that	specifies	the
information	to	be	set.

Remarks

Applies	the	information	that	a	tooltip	maintains	for	a	tool.

See	the	overview	for	a	description	of	the	OXTOOLINFO	structure.

	

		

The	ultimate	set	of	Internet/Intranet	products	for	C++,	MFC	and	ATL
developers.	Dundas	TCP/IP	products	allow	for	simple	Email	integration,
fully	secure	real-time	data	streaming,	and	much,	much	more!

Need	to	Internet-enable	an	application,	but	don't	have	the	time	or
necessary	experience?
The	Dundas	TCP/IP	client	edition	may	be	just	what	you	need.	This
product	lets	you	Internet-enable	an	application	with	incredible	ease!
Includes	many	client	side	protocols,	such	as	Email	(SMTP,	POP3,
IMAP4)	,	FTP,	and	Web	(HTTP).	more

Need	to	create	scalable	Internet/Intranet	applications	fast?
The	Dundas	TCP/IP	Enterprise	Edition	includes	all	of	the	components
necessary	for	creating	highly	scalable	client	and	server	applications.
more

Need	to	secure	your	Internet/Intranet	data?
The	Dundas	TCP/IP	Security	Add-on	provides	industry	standard
SSL/TLS	security	for	applications	using	the	Dundas	TCP/IP	Client	or
Enterprise	editions.	more

	

CUT_RAS	Overview
Copyright	©	Dundas	Software	Ltd.	1996-1999,	All	Rights	Reserved

CUT_RAS	Class	Members

Dependencies	and	Related	Files

The	RAS	Dialup	class	(CUT_RAS)	is	part	of	the	Ultimate	TCP/IP	client
and	enterprise	editions	and	provides	easy	to	use	modem	dialing
capabilities.	This	class	allows	you	to	create	and	modify	dial-up	entries,
dial	and	hang	up	connections	and	more.	CUT_RAS	works	within	MFC,
ATL	and	straight	SDK	projects.

CUT_RAS	works	with	the	main	system	phonebook.

To	utilize	your	own	errorcodes	you	can	use	UTExtErr.h.

Sample	Code:

The	following	code	demonstrates	how	to	set	up	a	dialog	box	in	order	to
dial	the	first	entry	in	a	system	phone	book,	and	a	user	defined	WM
(window	message)	is	created	to	inform	us	of	the	dialup	progress.
	

NOTE:	for	this	demo	to	work	you	must	have	Dial	Up	Networking	installed.
Please	refer	to	CUT_RAS	Dependencies	and	Related	Files	for	a	listing	of
dependency	files.

To	run	this	sample	code	follow	the	steps	below:

1.	 Open	a	new	win32	project.	

2.	 Insert	a	new	dialog	(named	IDD_DIALOG1).

3.	 Rename	the	OK		button	of	the	dialog	to	IDC_DIAL.

4.	 Add	an	edit	control	named	IDC_EDIT1.

5.	 Add	a	new	header	file	"stdafx.h"	that	contains	the	following	four	lines
of	code:

#ifndef	__UT_RAS12345_STDAFX
#define		__UT_RAS12345_STDAFX
#include	<windows.h>
#endif	//	__UT_RAS12345_STDAFX

6.	 Locate	and	add	ut_RAS.h	&	ut_RAS.cpp	to	the	project.

7.	 Create	a	new	c++	source	file	(lets	call	it	main.cpp).

8.	 Copy	and	past	the	code	shown	below	

9.	 Run	the	program.

For	an	MFC	sample	please	see	the	project	included	with	the	install
program	for	this	class.

	

#include	"stdafx.h"		//	the	stdafx	file

	

//The	header	file	of	CUT_RAS	class

#include	"ut_ras.h"

	

//resource	header	for	a	dialog	(IDD_DIALOG1)	which	contains	a	cancel	button	(IDCANCEL),

//	a	dial	button	and	a	read	only	edit	box	(IDC_EDIT1)

#include	"resource.h"

	

//	User	defined	window	message	that	will	be	sent	back	to	us	by	the

//	CUT_RAS	class	to	inform	us	of	the	dial	up	progress

#define	WM_CUT_RAS_DIALSTATUS	WM_USER+1

	

//	Dialog	proc	Prototype

BOOL	CALLBACK	DialupDlgProc(HWND	hwndDlg,	UINT	message,	WPARAM	wParam,	LPARAM	lParam);

	

//	Window	Main	function

int	CALLBACK	WinMain(HINSTANCE	hInstance,HINSTANCE	,LPSTR	,int)

{

	

//create	modal	dialog	box

DialogBox(hInstance,MAKEINTRESOURCE(IDD_DIALOG1),NULL,	(DLGPROC)DialupDlgProc);

return	0;

}

	

//	Dialog	proc

BOOL	CALLBACK	DialupDlgProc(HWND	hwndDlg,	UINT	message,	WPARAM	wParam,	LPARAM	lParam)

{

	

//	a	static	instance	of	the	CUT_RAS	object

static	CUT_RAS	ras;

	

//	Pool	the	window	messages

switch	(message)	{

case	WM_INITDIALOG:

{

	

//	upon	initializing	this	dialog	lets	instruct	the	CUT_RAS	object	to	send	this	dialog

//	our	user	defined	message	to	report	the	dialup	status.

ras.SetDialStatusCallback	(hwndDlg,WM_CUT_RAS_DIALSTATUS);

return	1;

}

	

//	handle	user	inputs

case	WM_COMMAND:

switch	(LOWORD(wParam))

{

//	user	pressed	the	cancel	button

case	IDCANCEL:

{

//	abort	any	bending	dial	attempt	if	any

ras.CancelDial	();

	

//	Hang	up	the	current	connection

ras.HangUp	();

	

//	Exit	closing	this	dialog

EndDialog(hwndDlg,	IDOK);

break;

}

	

//	user	pressed	the	dial	button

case	IDC_DIAL:

{

	

//	create	a	phone	entry	name	place	holder

LPRASENTRYNAME	ren	=	new	RASENTRYNAME	[sizeof(RASENTRYNAME)+1];

	

//	clear	any	data	in	the	new	allocated	memory

memset(ren,0,sizeof(RASENTRYNAME));

	

//	initialize	the	RAS	dll	and	enumerate	the	available	entries

ras.EnumEntries();

	

//	get	the	first	entry

ras.GetEntry	(ren,0);

	

//	dial	the	first	entry	in	the	phonebook

ras.Dial(ren->szEntryName);

	

//	reclaim	the	allocated	memory

delete	[]	ren;

break;

}

}

break;

	

//	if	this	incoming	message	is	the	same	as	the	one	we	specified	as	the	dial	status	notification

//	then	get	the	string	from	the	Lower	word	of	the	message	parameter

//	and	display	it	in	the	status	edit	box.

case	WM_CUT_RAS_DIALSTATUS	:

{

SetDlgItemText(hwndDlg,	IDC_EDIT1,(LPCSTR)(LPARAM)lParam);

return	1;

}

	

//	the	window	is	closing

case	WM_CLOSE:{

	

//	abort	any	pending	dial	attempts	(if	any	exist)

ras.CancelDial	();

	

//	Hang	up	the	current	connection

ras.HangUp	();

EndDialog(hwndDlg,	IDOK);

break;

}

}

return	0;

}

	

CUT_RAS	Class	Members

Copyright	©	Dundas	Software	Ltd.	1996-2000.	All	Rights	Reserved

Overview

CUT_RAS 	
Class	constructor.
	

~CUT_RAS 	
Destructor	of	the	class.
	

InitRAS 	
Loads	in	the	RAS	DLLs	dynamically.
	

OnError 	
Callback	function	which	is	raised	when	an	error
occurs.	You	can	use	this	function	to	provide
extended	error	handling	and	debugging
capabilities.
	

Dial 	
Dials	a	given	phonebook	entry.
	

HangUp 	
Call	this	function	to	hang	up	a	currently	active
RAS	connection.
	

SetDialStatusCallback 	
Sets	the	window	which	will	receive	messages
during	dialing.
	

GetDialState 	
Call	this	function	to	retrieve	the	current	state	of
the	dialup	process.	If	this	is	not	available	then
the	last	dialup	state	is	retrieved.
	

CancelDial 	
Cancels	the	current	dial-up	process.
	

IsConnected 	
Call	this	function	to	check	the	state	of	the
current	connection.
	

EnumDevices 	
Enumerates	all	of	the	available	RAS	dialup
devices.
	

GetDeviceCount 	
Retrieves	the	number	of	available	RAS	dialup
devices.
	

GetDevice 	
Call	this	function	to	retrieve	device	information.
Populates	the	supplied	RASDEVINFO
structure	with	the	device	information.
	

EnumConnections 	

Call	this	function	to	enumerate	all	of	the
running	RAS	connections	and	store	them	in	an
internal	array	of	RASCONN	structures.
	

GetConnectionCount 	
Retrieves	the	current	number	of	RAS
connections.
	

GetConnection 	
Fills	in	the	supplied	RASCONN	structure	with
the	connection	information	for	the	specified
running	connection.
	

EnumEntries 	
Call	this	function	to	enumerate	all	of	the
phonebook	entry	names	for	the	main
phonebook	(the	CUT_RAS	class	only	supports
the	main	phonebook).
	

GetEntryCount 	
Returns	the	number	of	available	phonebook
entries	for	the	main	phonebook	(the	CUT_RAS
class	only	supports	the	main	phonebook).
	

GetEntry 	
Call	this	function	to	fill	in	the	given
RASENTRYNAME	structure	with	a	phonebook
entry's	name.
	

GetEntryProperties 	
Retrieves	the	properties	for	a	given	phonebook

entry.
	

SetEntryProperties 	
Call	this	function	to	create	or	modify	a
phonebook	entry.
	

SetDialEntryParams 	
Sets	the	dialing	parameters	for	a	given
phonebook	entry.
	

GetDialEntryParams 	
Retrieves	the	dialing	parameters	for	a	given
phonebook	entry.
	

DoesEntryExist 	
Call	this	function	to	see	if	the	specified
phonebook	entry	exists	in	the	main	RAS
phonebook.
	

ValidateEntryName 	
Checks	to	see	if	the	specified	entry	name	is	a
valid	name	for	a	new	phonebook	entry.
	

ClearEntryPassword 	
Call	this	function	to	clear	the	password	from	a
given	phonebook	entry.
	

DeleteEntry 	
Deletes	an	entry	from	a	phone	book.
	

RenameEntry 	
Call	this	function	to	rename	the	given
phonebook	entry.
	

GetEntryPhoneNumber 	
Retrieves	the	phone	number	and	area	code	for
the	given	phonebook	entry	from	the	main
phonebook.
	

GetEntryUserName 	
Retrieves	the	main	phonebook's	username	for
the	given	phonebook	entry.
	

GetEntryPassword 	
Retrieves	the	main	phonebook's	password	for
the	specified	phonebook	entry.
	

GetLastRASError 	
Retrieves	the	errorcode	from	the	last	RAS
function	called.
	

GetRASErrorString 	
Returns	the	appropriate	error	string
corresponding	to	the	passed	RAS	error	code.
	

	

CUT_RAS	Dependencies	and	Related	Files

Copyright	©	Dundas	Software	Ltd.	1996-2000,	All	Rights	Reserved

Overview

SOURCE Ut_ras.cpp

	 	

INCLUDE Ut_err.h

	 Ut_ras.h

	 	

LIBRARIESRasApi32.dll	OR	Rnaph.dll	(comes	with	Dial	Up
Networking).

	

SAMPLE

	

<INSTALLDIR>\RasDial\Sample\Ras\TestApp.dsw

	

CUT_RAS::~CUT_RAS

Members	|	Overview

virtual	~CUT_RAS()

Remarks

Destructor	function.	Frees	the	loaded	RAS	DLL	and	reclaims	any	locally
allocated	memory.

CUT_RAS::CUT_RAS

Members	|	Overview

CUT_RAS()

Remarks

Constructor.

CUT_RAS::CancelDial

Members	|	Overview

void	CancelDial()

Remarks

Cancels	the	current	dial-up	process	that	was	initiated	with	Dial.
CancelDial	is	usually	used	inside	of	the	Dial	callback	message	handler.
See	SetDialStatusCallback	for	more	details.

Once	CancelDial	is	called	the	Dial	function	will	clean	up	after	itself	and
return	without	completing	the	dial	operation.

	

CUT_RAS::ClearEntryPassword

Members	|	Overview

int	ClearEntryPassword(LPCSTR	szEntryName)

Parameters

szEntryName Phonebook	entry	to	delete	the	password	from.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	call	failed	(see	GetLastRASError
for	more	details).

UTE_RAS_LOAD_ERROR	 Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	clear	the	password	from	a	given	phonebook	entry.
This	can	also	be	performed	by	using	the	SetDialEntryParams	function,
but	ClearEntryPassword	encapsulates	the	operation.

See	also:		SetDialEntryParams

CUT_RAS::DeleteEntry

Members	|	Overview

int	DeleteEntry(LPCSTR	szEntryName)

Parameters

szEntryName Name	of	the	phonebook	entry	to	delete.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Operation	failed	(see	GetLastRASError	for
more	details).

UTE_RAS_LOAD_ERRORUnable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	delete	an	entry	from	the	main	phone	book.

	

CUT_RAS::Dial

Members	|	Overview

int	Dial(LPCSTR	szEntry,LPCSTR	szUserName	=	NULL,	LPCSTR	szPassword	=
NULL,LPCSTR	szNumber	=	NULL)

Parameters

szEntry The	name	of	the	phone-book	entry	to	dial.

szUserName A	string	containing	the	user's	username.	This	string	is
used	to	authenticate	the	user's	access	to	the	remote
access	server.

szPassword A	string	containing	the	user's	password.	The	password	is
used	to	authenticate	the	user's	access	to	the	remote
access	server.

szNumber A	string	containing	an	overriding	phone	number.	An
empty	string	("")	indicates	that	the	phone-book	entry's
phone	number	should	be	used.	NOTE:	If	szEntry	is	""
then	szNumber	cannot	be	NULL.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Operation	failed.

UTE_RAS_DIALINIT_ERROR	 Error	occurred	when	the	dialing	process
was	initiated	(see	GetLastRASError	for
more	details).

UTE_RAS_DIAL_ERROR	 Error	occurred	during	the	dialing	process.
Use	the	GetDialState	function	to	retrieve
more	detailed	information.

UTE_RAS_LOAD_ERROR	 Unable	to	load	the	RAS	DLLs.

	
Remarks

Dials	a	given	phonebook	entry.	The	szUserName,	szPassword	and
szNumber	parameters	are	optional	and	can	be	NULL.	To	override
information	located	in	the	dialup	entry	you	would	then	specify	these
parameters	(the	phonebook	entry	itself	will	not	be	modified).

Under	Win98	and	NT	this	function	can	dial	without	a	phonebook	entry	by
using	the	given	information	and	the	first	available	dial-up	device.
Although	a	dialup	connection	can	be	made	without	specifying	a
phonebook	entry	it	is	recommended	that	you	do	so	for	reliability
purposes.

This	function	does	not	return	until	the	dialing	has	either	been	successfully
completed	or	an	error	occurs.

To	monitor	the	connection	use	the	SetDialStatusCallback	function	to	send
dial	status	information	(as	a	message)	to	a	given	window.	To	retrieve
more	information	when	this	function	returns	use	the	GetDialState
function.

See	also:	DoesEntryExist

Example

/**********************************

In	the	following	example	we	will	enumerate	the	available	phonebook	entries	and	then	we	will	attempt	to	connect	to	the	first	available	entry.

**********************************/

#include	"stdafx.h"		//	this	header	includes	nothing	but	the	#include	<windows.h>	statement

#include	"ut_ras.h"	//	the	header	files	for	the	CUT_RAS	class

	

//	resource	header	for	a	dialog	(IDD_DIALOG1)	that	contains	a	read	only	edit	box	(IDC_EDIT1)	,	Dial	button	(IDC_DIAL)	and	a	cancel	button	(IDCANCEL)

#include	"resource.h"

	

//	our	user	defined	window	message	for	dialup	status

#define	WM_CUT_RAS_DIALSTATUS	WM_USER+1

	

//	prototype	of	the	only	dialog	procedure

BOOL	CALLBACK	DialupDlgProc(HWND	hwndDlg,	UINT	message,	WPARAM	wParam,	LPARAM	lParam);

	

//	windows	main	entry	point

int	CALLBACK	WinMain(HINSTANCE	hInstance,HINSTANCE	,LPSTR	,int)

{

//	create	modal	dialog	box

DialogBox(hInstance,MAKEINTRESOURCE(IDD_DIALOG1),NULL,	(DLGPROC)DialupDlgProc);

return	0;

}

	

//	enumerate	the	available	phonebook	entries	and	attempt	to	connect	to	the	first	one	available

BOOL	CALLBACK	DialupDlgProc(HWND	hwndDlg,	UINT	message,	WPARAM	wParam,	LPARAM	lParam)

{

	

//	static	instance	of	the	CUT_RAS	class

static	CUT_RAS	ras;

	

//	dispatch	the	window	messages

switch	(message)	{

	

//	initializing	the	dialog

case	WM_INITDIALOG:

{

//	we	want	the	CUT_RAS	class	to	send	us	the	WM_CUT_RAS_DIALSTATUS	window	message

//	informing	us	of	the	progress	of	the	dialup	attempt

ras.SetDialStatusCallback	(hwndDlg,WM_CUT_RAS_DIALSTATUS);

return	1;

}

	

//	if	the	message	is	the	one	we	have	asked	the	CUT_RAS	to	use

//	then	inform	us	of	the	dialup	attempt	progress

case	WM_CUT_RAS_DIALSTATUS	:

{

//	Update	the	edit	box	with	the	string	passed	by	the	CUT_RAS	class.

//	The	lower	word	of	the	message	parameter	is	the	string	describing	the	current	dialup	state

SetDlgItemText(hwndDlg,	IDC_EDIT1,(LPCSTR)(LPARAM)lParam);

return	1;

}

	

//	if	the	message	is	a	user	command

case	WM_COMMAND:	

switch	(LOWORD(wParam))

{

	

//	the	user	clicked	on	the	Cancel	button

case	IDCANCEL:

{

//	cancel	any	pending	new	dialup	attempt	on	this	instance	of	the	CUT_RAS	class

ras.CancelDial	();

	

//	hang-up	the	current	connection

ras.HangUp	();

	

//	cLose	the	dialog

EndDialog(hwndDlg,	IDOK);

break;

}

	

//	the	user	pressed	the	Dial	button

case	IDC_DIAL:

{

LPRASENTRYNAME	ren	=	new	RASENTRYNAME	[sizeof(RASENTRYNAME)+1];

	

//	get	the	first	entry

ras.EnumEntries();

memset(ren,0,sizeof(RASENTRYNAME));

ras.GetEntry	(ren,0);

	

//	dial	the	first	entry

ras.Dial(ren->szEntryName);

break;

}

}

break;

	

case	WM_CLOSE:

{

ras.CancelDial	();

ras.HangUp	();

EndDialog(hwndDlg,	IDOK);

break;

}

}

return	0;

}

	

	

CUT_RAS::DoesEntryExist

Members	|	Overview

int	DoesEntryExist(LPCSTR	szEntryName)

Parameters

szEntryName The	name	of	the	main	phonebook	entry	to	check	for.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Operation	failed.

UTE_RAS_LOAD_ERRORUnable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	see	if	the	specified	phonebook	entry	exists	in	the
main	RAS	phonebook.

	

CUT_RAS::EnumConnections

Members	|	Overview

int	EnumConnections()

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_RAS_ENUM_ERROR Enumeration	error	occurred	(see
GetLastRASError	for	more	details).

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	enumerate	all	of	the	running	RAS	connections	and
store	them	in	an	internal	array	of	RASCONN	structures.

Once	enumerated	the	data	can	be	retrieved	by	using	the
GetConnectionCount	and	GetConnection	functions.	EnumConnections
MUST	be	called	for	these	functions	to	succeed.

See	also:	GetConnection	|	GetConnectionCount

Example	

	

//retrieves	all	available	RAS	connections

CComboBox*	cb3	=	(CComboBox*)GetDlgItem(IDC_COMBO3);

m_ras.EnumConnections();

int	cnt	=	m_ras.GetConnectionCount();

RASCONN	rc;

for(x	=	0;	x	<	cnt;	x++){

m_ras.GetConnection(&rc,x);

cb3->AddString(rc.szEntryName);

}

cb3->SetCurSel(0);

	

	

CUT_RAS::EnumDevices

Members	|	Overview

in	EnumDevices()

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_RAS_ENUM_ERROR Enumeration	error	occurred	(see
GetLastRASError	for	more	details).

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	enumerate	all	of	the	available	RAS	dialup	devices.
Stores	the	devices	in	an	internal	array	of	RASDEVINFO	structures.	Once
it	is	enumerated	the	data	can	be	retrieved	by	using	the	GetDeviceCount
and	GetDevice	functions.	EnumDevices	MUST	be	called	for	these
functions	to	succeed.

Refer	to	the	MSDN	library	for	more	information	on	the	RASDEVINFO
structure.

See	also:	GetDeviceCount	|	GetDevice

Example

	

//retrieve	all	available	dialup	devices

CComboBox*	cb2	=	(CComboBox*)GetDlgItem(IDC_COMBO2);

m_ras.EnumDevices();

cnt	=	m_ras.GetDeviceCount();

RASDEVINFO	rdi;

for(x	=	0;	x	<	cnt;	x++){

m_ras.GetDevice(&rdi,x);

cb2->AddString(rdi.szDeviceName);

}

cb2->SetCurSel(0);

	

	

CUT_RAS::EnumEntries

Members	|	Overview

int	EnumEntries()

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_RAS_ENUM_ERROR Enumeration	error	occurred	(see
GetLastRASError	for	more	details).

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	enumerate	all	of	the	phonebook	entry	names	for	the
main	phonebook	(this	free	version	of	the	CUT_RAS	class	only	supports
the	main	phonebook)	and	stores	them	in	an	internal	array	of
RASENTRYNAME	structures.

Once	enumerated	the	data	can	be	retrieved	by	using	the	GetEntryCount
and	GetEntry	functions.	EnumEntries	MUST	be	called	for	these
functions	to	succeed.

Refer	to	the	MSDN	library	for	more	information	on	the	RASENTRYNAME
structure.

See	also:	GetEntryCount	|	GetEntry		

Example

	

//enumerates	all	main	phonebook	entries

CComboBox*	cb	=	(CComboBox*)GetDlgItem(IDC_COMBO1);

m_ras.EnumEntries();

int	cnt	=	m_ras.GetEntryCount();

RASENTRYNAME	ren;

for(int	x	=	0;	x	<	cnt;	x++){

m_ras.GetEntry(&ren,x);

cb->AddString(ren.szEntryName);

}

cb->SetCurSel(0);

	

	

CUT_RAS::GetConnection

Members	|	Overview

int	GetConnection(LPRASCONN	rc,DWORD	index)

Parameters

rc A	pointer	to	an	existing	RASCONN	structure.

index A	zero-based	index	(0	to	(GetConnectionCount()-1)),	specifying
the	RAS	connection	from	which	information	will	be	retrieved.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR An	error	occurred	and	there	is	no	data	to
return.

UTE_INDEX_OUTOFRANGE The	given	index	does	not	point	to	a	valid
RASCONN	entry.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	fill	in	the	given	RASCONN	structure	with	the
connection	information	for	the	specified	running	connection.	A
RASCONN	structure	contains	the	phonebook	entry's	name	as	well	as	the
device's	type	and	name.

Refer	to	the	MSDN	library	for	more	information	on	RASCONN	structures.

See	also:	GetConnectionCount

Example

//retrieves	and	shows	connection	information	for	all	running	connections

CComboBox*	cb3	=	(CComboBox*)GetDlgItem(IDC_COMBO3);

m_ras.EnumConnections();

int	cnt	=	m_ras.GetConnectionCount();

RASCONN	rc;

for(x	=	0;	x	<	cnt;	x++){

		m_ras.GetConnection(&rc,x);

		cb3->AddString(rc.szEntryName);

}

cb3->SetCurSel(0)

	

CUT_RAS::GetConnectionCount

Members	|	Overview

DWORD	GetConnectionCount()

Return	Value

The	number	of	available	connections.	Returns	-1	if	an	error	occurs.

Remarks

Call	this	function	to	retrieve	the	number	of	connections	found	during	the
enumeration.	EnumConnections	needs	to	be	called	before	this	function
will	return	any	valuable	information.

See	also:	EnumConnections	|	GetConnection

Example

//retrieves	and	displays	the	number	of	available	connections

	

CComboBox*	cb3	=	(CComboBox*)GetDlgItem(IDC_COMBO3);

m_ras.EnumConnections();

int	cnt	=	m_ras.GetConnectionCount();

RASCONN	rc;

for(int	x	=	0;	x	<	cnt;	x++){

		m_ras.GetConnection(&rc,x);

		cb3->AddString(rc.szEntryName);

}

cb3->SetCurSel(0);

	

CUT_RAS::GetDevice

Members	|	Overview

int	GetDevice(LPRASDEVINFO	rdi,DWORD	index)

Parameters

rdi A	pointer	to	an	existing	RASDEVINFO	structure.

index A	zero-based	index	(0	to	(GetDeviceCount()-1)).	Specifies	the
device	from	which	information	will	be	retrieved.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Operation	failed	and	there	is	no	data	to	be
returned.

UTE_INDEX_OUTOFRANGE The	given	index	does	not	point	to	a	valid
device	entry.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	fill	in	the	given	RASDEVINFO	structure	with	the
specified	device	information.	RASDEVINFO	contains	the	device's	type
and	name.

Refer	to	the	MSDN	library	for	more	information	on	RASDEVINFO
structures.

See	also:	EnumDevices	|	GetDeviceCount

Example

//retrieves	and	lists	all	available	RAS	devices

	
CComboBox*	cb2	=	(CComboBox*)GetDlgItem(IDC_COMBO2);

m_ras.EnumDevices();

int	cnt	=	m_ras.GetDeviceCount();

RASDEVINFO	rdi;

for(int	x	=	0;	x	<	cnt;	x++){

m_ras.GetDevice(&rdi,x);

cb2->AddString(rdi.szDeviceName);

}

cb2->SetCurSel(0);

	

CUT_RAS::GetDeviceCount

Members	|	Overview

DWORD	GetDeviceCount()

Return	Value

DWORD The	number	of	devices	found,	or	-1	if	an	error	occurs.

Remarks

Call	this	function	to	retrieve	the	number	of	available	devices.
EnumDevices	MUST	be	called	before	this	function	will	return	any
valuable	information.

See	also:		GetDevice	|	EnumDevices

Example:	see	GetDevice

CUT_RAS::GetDialEntryParams

Members	|	Overview

int	GetDialEntryParams(LPCSTR	szEntryName,LPRASDIALPARAMS	pRasDialParams,
BOOL*	bClearPassword=	NULL)

Parameters

szEntryName A	phonebook	entry	name.

pRasDialParams A	pointer	to	a	RASDIALPARAMS	structure.

bClearPassword If	TRUE	then	the	password	has	been	cleared,	if
FALSE	then	the	password	is	valid.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Operation	failed.

UTE_NULL_PARAM pRasDialParams	is	NULL.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	retrieve	the	dialing	parameters	for	the	given
phonebook	entry.

You	MUST	use	this	function	in	order	to	retrieve	the	username	and
password	for	a	phonebook	entry.

The	RASDIALPARAMS	also	contains	other	information	as	well.

See	also:			GetEntryPassword	|	GetEntryUserName	|
GetEntryPhoneNumber

CUT_RAS::GetDialState

Members	|	Overview

DWORD	GetDialState()

Return	Value

DWORD The	LOWORD	contains	the	the	current	(or	last)	state	of	the
dialup	process	(see	RASCONNSTATE	in	the	MSDN	library	for
a	complete	listing	of	states).	The	HIWORD	contains	the
errorcode	which	applies	to	the	current	state	(for	a	complete
listing	of	errorcodes	see	the	RASERROR.H	header	file	of	the
Windows	SDK	or	the	"RAS	Error	Values"	topic	in	the	MSDN
library).

Remarks

Call	this	function	to	retrieve	the	current	state	of	the	dialup	process.	If	this
is	not	available	then	the	last	dialup	state	is	retrieved.	This	is	useful	for
determining	the	state	of	the	dialup	after	the	Dial	function	has	completed.

See	also:		GetRASErrorString

CUT_RAS::GetEntry

Members	|	Overview

int	GetEntry(LPRASENTRYNAME	ren,DWORD	index)

Parameters

ren A	pointer	to	an	existing	RASENTRYNAME	structure.

index A	zero-based	index	(0	to	(GetEntryCount()-1)).	Determines	the
entry	from	which	to	retrieve	information.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Operation	failed	and	there	is	no	data	to	be
returned.

UTE_INDEX_OUTOFRANGE The	supplied	index	does	not	point	to	a
valid	phonebook	entry.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	fill	in	the	given	RASENTRYNAME	structure	with	the
phonebook	entry's	name.

See	also:	EnumEntries	|	GetEntryCount

Example

//	stores	the	first	phonebook	entry's	name	to	a	RASENTRYNAME	structure

LPRASENTRYNAME	ren	=	new	RASENTRYNAME	[sizeof(RASENTRYNAME)+1];

	

//	get	the	first	phonebook	entry

ras.EnumEntries();

memset(ren,0,sizeof(RASENTRYNAME));

ras.GetEntry	(ren,0);

delete	[]	ren;

	

CUT_RAS::GetEntryCount

Members	|	Overview

DWORD	GetEntryCount()

Return	Value

DWORD Number	of	available	phonebook	entries,	or	-1	if	an	error
occurs.

Remarks

Returns	the	number	of	phonebook	entries.	EnumEntries	MUST	be	called
before	this	function	will	return	any	valuable	information.

Refer	to	the	MSDN	library	for	more	information	on	RASDEVINFO
structures.

See	also:		GetEntry	|	EnumEntries

Example

//retrieves	phonebook	entries	and	displays	them

CComboBox*	cb	=	(CComboBox*)GetDlgItem(IDC_COMBO1);

m_ras.EnumEntries();

int	cnt	=	m_ras.GetEntryCount();

RASENTRYNAME	ren;

for(int	x	=	0;	x	<	cnt;	x++){

m_ras.GetEntry(&ren,x);

cb->AddString(ren.szEntryName);

}

cb->SetCurSel(0);

	

CUT_RAS::GetEntryPassword

Members	|	Overview

int	GetEntryPassword(LPCSTR	szEntryName,LPSTR	szPassword,	long	nMaxLen)

Parameters

szEntryName A	phonebook	entry.

szPassword Pointer	to	a	string	buffer	that	will	store	the	password.

nMaxLen Length	of	the	szPassword	buffer.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR The	function	failed	(see	GetLastRASError
for	more	details).

UTE_BUFFER_TOO_SHORT The	password	string	is	larger	than	the
specified	nMaxLen.

UTE_NULL_PARAM The	passed	buffer	is	NULL.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Returns	the	main	phonebook's	password	for	the	specified	phonebook
entry.	This	function	is	more	efficient	than	the	GetEntryProperties	function
when	it	comes	to	retrieving	a	password.

See	also:	GetEntryProperties	|	GetEntryUserName	|
GetEntryPhoneNumber

	

CUT_RAS::GetEntryPhoneNumber

Members	|	Overview

int	GetEntryPhoneNumber(LPCSTR	szEntryName,	LPSTR	szPhoneNumber,	long
nPhoneNumberLen,	LPSTR	szAreaCode,	long	nAreaCodeLen)

Parameters

szEntryName The	desired	phonebook	entry.

szPhoneNumber Pointer	to	a	string	buffer	that	will	store	the	retrieved
phone	number.

nPhoneNumberLen Length	of	the	szPhoneNumber	buffer.

szAreaCode Pointer	to	a	string	buffer	that	will	store	the	retrieved
area	code.

nAreaCodeLen Length	of	the	szAreaCode	buffer.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	failed	(see	GetLastRASError	for
more	details).

UTE_RAS_LOAD_ERRORUnable	to	load	the	RAS	DLLs.

Remarks

Retrieves	the	main	phonebook	number	and	area	code	for	the	given
phonebook	entry.	This	function	reduces	the	amount	of	work	required	to

retrieve	a	phone	number	compared	to	using	the	GetEntryProperties
function	directly.

See	also:		GetEntryProperties

Example

	

//	retrieves	an	entry	phone	number	and	displays	it	if	the	number	was	successfully	retrieved

if	(m_pRas->GetEntryPhoneNumber(m_szEntryName,szTemp,sizeof(szTemp),szAreaCode,

{

SetDlgItemText(IDC_PHONE_NUMBER,szTemp);

SetDlgItemText(IDC_AREA_CODE,szAreaCode);

}

	

CUT_RAS::GetEntryProperties

Members	|	Overview

int	GetEntryProperties(LPCSTR	szEntryName,	LPRASENTRY	pRasEntry,DWORD*
pnRasEntryLen)

Parameters

szEntryName A	phonebook	entry.

pRasEntry A	pointer	to	an	allocated	RASENTRY	structure.	The
dwSize	member	of	the	structure	must	be	set	to
"sizeof(RASENTRY)".

pnRasEntryLen The	size	of	the	pRasEntry	buffer.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	failed	(see	GetLastRASError	for
more	details).

UTE_BUFFER_TOO_SHORT The	supplied	buffer	was	too	small.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Retrieves	the	properties	for	a	given	phonebook	entry.	This	function	takes
a	pointer	to	a	RASENTRY	structure	which	must	already	exist.		

NOTE:	the	RASENTRY	structure	can	be	followed	by	an	array	of	null-

terminated	alternate	phone	number	strings.	The	last	string	is	terminated
by	two	consecutive	null	characters.	The	dwAlternateOffset	member	of	the
RASENTRY	structure	contains	the	offset	to	the	first	string.

Set	the	nRasEntryLen	parameter	to	the	total	length	of	the	given	data
buffer.	If	the	buffer	is	too	small	then	the	function	will	fail.

To	help	ensure	success	call	the	function	with	pRasEntry	set	to	NULL	and
nRasEntryLen	set	to	0.	If	the	function	returns	with	a	value	of
UTE_BUFFER_TOO_SHORT	then	nRasEntryLen	will	contain	the
required	size	of	the	buffer.	Allocate	a	buffer	of	the	required	size	and	call
the	function	again.

Example

	

//	if	the	entry	name	is	passed	then	a	modification	call	is	made

//	to	this	dialog	instead	of	an	add	call.

if	(m_pRas->GetEntryProperties(m_szEntryName,	NULL,&size)	==	UTE_BUFFER_TOO_SHORT)

{

m_rasEntry	=	new	RASENTRY[size];

m_rasEntry->dwSize	=	size;

	

//	retrieve	all	properties	for	the	selected	book	entry

if	(m_pRas->GetEntryProperties(m_szEntryName,	m_rasEntry,&size)	==	UTE_SUCCESS)

{

//	get	the	username

if	(m_pRas->GetEntryUserName(m_szEntryName,	szTemp,sizeof(szTemp))	==	UTE_SUCCESS)

{

SetDlgItemText(IDC_USER,szTemp);

}

	

//	get	the	password

if	(m_pRas->GetEntryPassword(m_szEntryName,	szTemp,sizeof(szTemp))	==	UTE_SUCCESS)

{

SetDlgItemText(IDC_PASSWORD,szTemp);

}	

	

//	get	phone	number	and	area	code

if	(m_pRas->GetEntryPhoneNumber(m_szEntryName,szTemp,sizeof(szTemp),szAreaCode,

{

SetDlgItemText(IDC_PHONE_NUMBER,szTemp);

SetDlgItemText(IDC_AREA_CODE,szAreaCode);

}

}

}

	

CUT_RAS::GetEntryUserName

Members	|	Overview

int	GetEntryUserName(LPCSTR	szEntryName,LPSTR	szUserName,	long	nMaxLen)

Parameters

szEntryName Phonebook	entry	to	retrieve	the	username	from.

szUserName Pointer	to	a	string	buffer	that	will	store	the	retrieved
username	value.

nMaxLen Length	of	the	szUserName	buffer.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	failed	(see	GetLastRASError	for
more	details).

UTE_BUFFER_TOO_SHORT The	username	string	is	larger	than	the
specified	nMaxLen	parameter.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Returns	the	main	phonebook's	username	for	the	given	phonebook	entry.
This	function	reduces	the	amount	of	work	required	to	retrieve	a	username
compared	to	using	the	GetEntryProperties	function	directly.

See	also:	GetEntryProperties	|	GetEntryPassword	

Example

	

//	retrieve	username	for	the	specified	phonebook	entry

char	szTemp[]

if	(m_pRas->GetEntryUserName(m_szEntryName,	szTemp,sizeof(szTemp))	==	UTE_SUCCESS)

{

SetDlgItemText(IDC_USER,szTemp);

}

	

CUT_RAS::GetLastRASError

Members	|	Overview

DWORD	GetLastRASError()

Return	Value

DWORD Errorcode	of	the	last	RAS	operation.

Remarks

This	function	returns	the	errorcode	from	the	last	RAS	function	called.	For
a	complete	listing	of	errorcodes	see	the	RASERROR.H	header	file	of	the
Windows	SDK	or	the	"RAS	Error	Values"	topic	in	the	MSDN	library.

Calling	this	function	is	useful	if	extended	error	information	is	required.

See	also:	GetErrorString	|	GetRASErrorString

		Example

//	if	error	is	a	RAS	error	display	the	appropriate	error	string,

//	otherwise	use	CUT_ERR::GetErrorString.

int	CUT_TestRas::OnError(int	nError)

{

if	(nError	!=	UTE_SUCCESS	&&	nError	!=	UTE_BUFFER_TOO_SHORT)

{

//	if	the	error	is	a	RAS	error	dial	then	display	the	error	string

if	(nError	!=	UTE_RAS_DIAL_ERROR)

{

MessageBox(NULL,CUT_ERR::GetErrorString	(nError),"ON	ERROR",MB_OK);

}else

{

//	lets	make	sure	that	the	error	is	within	the	limit

if	(GetLastRASError()	>	RASBASE	&&	GetLastRASError()	<=	ERROR_HANGUP_FAILED)

{

MessageBox(NULL,GetRASErrorString	(GetLastRASError()),"ON	ERROR",MB_OK);

}

}

}

return	nError;

}

	

CUT_RAS::GetRASErrorString

Members	|	Overview

LPCSTR	GetRASErrorString(DWORD	error)

Parameters

error DWORD	specifying	the	RAS	error	code.	

Return	Value

LPCSTR	 A	string	describing	the	error	code.

Remarks

This	function	returns	the	appropriate	error	string	corresponding	to	the
passed	RAS	error	code.	For	a	complete	listing	of	errorcodes	see	the
RASERROR.H	header	file	of	the	Windows	SDK	or	the	"RAS	Error
Values"	topic	in	the	MSDN	library.

Calling	this	function	is	useful	if	extended	error	information	is	required.

See	also:	GetErrorString

		Example

//display	an	errorstring	based	on	an	errorcode

int	CUT_TestRas::OnError(int	nError)

{

if	(nError	!=	UTE_SUCCESS	&&	nError	!=	UTE_BUFFER_TOO_SHORT)

{

//	if	the	error	is	a	RAS	dialing	error	display	the	error	string

if	(nError	!=	UTE_RAS_DIAL_ERROR)

{

MessageBox(NULL,CUT_ERR::GetErrorString	(nError),"ON	ERROR",MB_OK);

}

else

{

//	lets	make	sure	that	the	error	is	within	the	limits	of	our	errorcodes

if	(GetLastRASError()	>	RASBASE	&&	GetLastRASError()	<=	ERROR_HANGUP_FAILED)

MessageBox(NULL,GetRASErrorString	(GetLastRASError()),"ON	ERROR",MB_OK);

}

}

return	nError;

}

	

CUT_RAS::HangUp

Members	|	Overview

int	HangUp()

int	HangUp(HRASCONN	rasConn)

Parameters

rasConn A	RAS	connection	handle.

Return	Value

UTE_SUCCESS Successfully	hung	up	the	connection	or	it
was	not	connected	to	begin	with.

UTE_RAS_HANDLE_ERRORNULL	RAS	handle	supplied.

UTE_RAS_LOAD_ERROR Unable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	hang	up	a	currently	active	RAS	connection.	If
rasConn	is	not	specified	then	the	function	attempts	to	hang	up	the	current
connection	that	was	initiated	with	the	Dial	function.		Otherwise	it	will	hang
up	the	specified	RAS	connection	by	using	the	supplied	RAS	connection
handle.

RAS	connection	handles	can	be	retrieved	using	the	EnumConnections
function.	

Once	the	hang-up	process	starts	this	function	will	wait	until	the	hang-up
is	complete.	Hang-up	times	vary	and	depend	on	the	modem.	Usually	1-3

seconds	is	the	norm.	

If	the	hang-up	status	cannot	be	monitored	(which	is	the	case	on	some
older	versions	of	Win95)	then	a	4	second	waiting	period	is	applied	to
ensure	a	proper	hang-up.

Example

//hangs	up	a	specified	connection

void	CTestAppDlg::OnHangUp()

{

RASCONN	rConection;

int	index=	0;

	

//if	we	are	currently	trying	to	connect	then	exit	the	connection	attempt

m_ras.CancelDial();

	

//Get	the	Selected	connection	out	of	the	ComboBox

index	=	m_ctlConnections.GetCurSel();

if	(index	!=	LB_ERR	&&	index	<	m_ctlConnections.GetCount())

{

m_ras.GetConnection(&rConection,index);

m_ras.HangUp(rConection.hrasconn);

}

else

m_ras.HangUp();

	

//display	the	connections

CComboBox*	cb3	=	(CComboBox*)GetDlgItem(IDC_COMBO3);

cb3->ResetContent();

cb3->SetWindowText("");

m_ras.EnumConnections();

int	cnt	=	m_ras.GetConnectionCount();

RASCONN	rc;

for(int	x	=	0;	x	<	cnt;	x++){

m_ras.GetConnection(&rc,x);

cb3->AddString(rc.szEntryName);

}

cb3->SetCurSel(0);

}

	

	

	

CUT_RAS::InitRAS

Members	|	Overview

BOOL	InitRAS()

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_RAS_LOAD_ERROR Could	not	load	the	RAS	DLLs.

Remarks

This	function	loads	in	the	RAS	DLLs	dynamically.	This	allows	the	class	to
be	used	in	applications	where	RAS	may	or	may	not	be	installed.	For
Win95	OSR2	and	later	the	RASAPI32.DLL	is	used.	For	earlier	Win95
versions	RNAPH.DLL	is	used	for	some	functions.	This	DLL	may	be	re-
distributed	since	it	is	not	a	part	of	RAS	but	a	patch	for	early	Win95
versions.

This	function	SHOULD	BE	CALLED	prior	to	calling	other	functions	of
CUT_RAS.	Note	that	InitRAS	is	called	internally	by	some	functions	of	the
CUT_RAS	class	such	as	EnumEntries	and	EnumConnections.

CUT_RAS::IsConnected

Members	|	Overview

BOOL	IsConnected()

Return	Value

Returns	TRUE	if	connected,	otherwise	it	returns	FALSE.

Remarks

Call	this	function	to	check	the	state	of	the	current	connection.	If	the
connection	is	still	good	then	TRUE	is	returned	but	if	the	connection	has
been	terminated	FALSE	is	returned.

This	function	is	useful	for	monitoring	a	connection	throughout	its	lifetime,
since	disconnections	are	quite	common	for	a	variety	of	reasons	(ISP
timeouts,	voice	priority	over	data	on	busy	phone	lines,	noisy	phone	lines,
etc.).

	Example

//	update	the	connection	status	of	this	application's	instance	of	the	RAS	connection

void	CTestAppDlg::OnTimer(UINT	nIDEvent)

{

CString	strStatus;

//	check	if	we	are	connected

if	(m_ras.IsConnected())

strStatus	=	"Connected";

else

strStatus	=	"Disconnected";

SetDlgItemText(IDC_STATUS,strStatus);

CDialog::OnTimer(nIDEvent);

}

	

CUT_RAS::OnError

Members	|	Overview

virtual	int	OnError(int	nError)

Parameters

nError The	errorcode	of	the	error	that	occurred.

Return	Value

UTE_SUCCESSOperation	completed	successfully.

UTE_ERROR Operation	failed.

Remarks

All	functions	which	have	return	error	codes	call	this	function.	Override
OnError	to	provide	extended	error	handling	and	debugging	capabilities.

See	also:		GetLastRASError	|	GetRASErrorString	

		Example

//display	an	errorstring	via	the	OnError	callback

int	CUT_TestRas::OnError(int	nError)

{

if	(nError	!=	UTE_SUCCESS	&&	nError	!=	UTE_BUFFER_TOO_SHORT)

{

if	(nError	!=	UTE_RAS_DIAL_ERROR)

{

MessageBox(NULL,CUT_ERR::GetErrorString	(nError),"ON	ERROR",MB_OK);

}else

{

if	(GetLastRASError()	>	RASBASE	&&	GetLastRASError()	<=	ERROR_HANGUP_FAILED)

MessageBox(NULL,GetRASErrorString	(GetLastRASError()),"ON	ERROR",MB_OK);

}

}

return	nError;

}

	

CUT_RAS::RenameEntry

Members	|	Overview

int	RenameEntry(LPCSTR	szEntryName,LPCSTR	szNewEntryName)

Parameters

szEntryName Phonebook	entry	to	rename.

szNewEntryNameNew	name	of	the	phonebook	entry.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	failed	(see	GetLastRASError	for
more	details)

UTE_RAS_LOAD_ERRORUnable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	rename	the	given	phonebook	entry.

CUT_RAS::SetDialEntryParams

Members	|	Overview

int	SetDialEntryParams(LPCSTR	szEntryName,LPRASDIALPARAMS	pRasDialParams,
BOOL	bClearPassword	=	FALSE)

Parameters

szEntryName A	phonebook	entry	name.

pRasDialParams A	pointer	to	a	RASDIALPARAMS	structure.

bClearPassword Set	this	to	TRUE	to	remove	the	password	from	the
given	entry.	Set	this	to	FALSE	to	set	the	password.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	failed	(see	GetLastRASError	for
more	details).

UTE_NULL_PARAM The	pRasDialParams	parameter	is	NULL.

UTE_RAS_LOAD_ERRORUnable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	set	the	dialing	parameters	for	the	given	phonebook
entry.	The	phonebook	entry	MUST	exist	for	this	function	to	succeed.

Use	SetDialEntryParams	to	store	the	username	and		password	for	a
phonebook	entry.	The	RASDIALPARAMS	structure	also	contains	other

optional	information.

Refer	to	the	MSDN	library	for	more	information	on	the	RASDIALPARAMS
structure.

		Example

//	set	the	dialing	parameters	for	a	dialup	entry

	

if	(m_pRas->SetEntryProperties(m_szEntryName,m_rasEntry)==	UTE_SUCCESS)

{

//	now	set	the	Dialup	properties

LPRASDIALPARAMS	pDialParam	=	new	RASDIALPARAMS[sizeof

memset(pDialParam,0,sizeof(RASDIALPARAMS));

pDialParam->dwSize=	sizeof(RASDIALPARAMS);

	

//	Set	the	Entry	name

strcpy(pDialParam->szEntryName	,m_szEntryName);

	

//	set	the	phone	number

GetDlgItemText(IDC_PHONE_NUMBER,pDialParam->szPhoneNumber,RAS_MaxPhoneNumber);

	

//	set	the	user	name

GetDlgItemText(IDC_USER,pDialParam->szUserName,UNLEN);

	

//	set	the	password	string

GetDlgItemText(IDC_PASSWORD,pDialParam->szPassword,PWLEN);

	

//	now	update	the	entry's	Dialup	parameters

m_pRas->SetDialEntryParams	(m_szEntryName,pDialParam,FALSE);

delete	[]	pDialParam	;

}

	

CUT_RAS::SetDialStatusCallback

Members	|	Overview

int	SetDialStatusCallback(HWND	hWnd,	int	nMessageID)

Parameters

hWnd Handle	of	the	window	which	will	receive	the	window
messages.

nMessageID ID	of	the	message	to	send.

Return	Value

UTE_SUCCESS This	function	always	return	as	successful.

Remarks

Sets	the	window	which	will	retrieve	messages	during	dialing	(see	the	Dial
function).	Messages	are	sent	each	time	the	dialing	state	changes,	and
this	function	is	useful	for	showing	the	user	the	current	state	within	a
window	or	dialog	box.

The	format	of	the	message	sent	back	by	the	class	to	the	window
specified	by	the	hWnd	handle	is:

wParam	The	LOWORD	contains	a	string	indicating	the	current	state	of
the	dialup	process.	The	HIWORD	contains	the	errorcode	which	applies	to
the	current	state.	See	the	RASERROR.H	header	file	for	a	complete
listing	of	errorcodes.

lParam
Points	to	a	string	buffer	which	describes	the	current	state.

Examples

Dial	is	invoked	as	an	asynchronous	operation	and	the	function	returns
immediately.	The	user	must	therefore	specify	a	notification	handler	that
the	RAS	object	uses	to	inform	the	client	application	when	the	connection
operation	state	changes	or	an	error	occurs.	This	handler	is	implemented
below.	For	more	information	see	the	sample	code	in	the	Overview	page.

	

MFC	Sample

Header	File

//	Generated	message	map	functions

//{{AFX_MSG(CTestAppDlg)

........

afx_msg	LRESULT	OnDialStatus(WPARAM	wParam,	LPARAM	lParam);

.......

//}}AFX_MSG

DECLARE_MESSAGE_MAP()

	
Source	File

BEGIN_MESSAGE_MAP(CTestAppDlg,	CDialog)

//{{AFX_MSG_MAP(CTestAppDlg)

...

ON_MESSAGE(WM_USER+1,OnDialStatus)

.......

//}}AFX_MSG_MAP

END_MESSAGE_MAP()

.....

	

(in	OnInitDialog)

//	specify	a	notification	handler	that	RAS	uses

//	to	inform	the	client	application	when	the	connection

//	operation	state	changes	or	an	error	occurs

m_ras.SetDialStatusCallback(m_hWnd,WM_USER);

......

LRESULT	CTestAppDlg::OnDialStatus(WPARAM	wParam,	LPARAM	lParam){

DWORD	dwError	=	HIWORD(wParam);

UpdateData();

	

CString	szTemp	=	(LPCSTR)m_strStatus;

szTemp	+=	"\r\n";

szTemp	+=	(LPCSTR)lParam;

SetDlgItemText(IDC_EDIT1,szTemp);

if(dwError){

MessageBox(m_ras.GetRASErrorString(dwError));

}

m_ctlStatus.LineScroll(100000);

return	0;

}

SDK	Sample

ras.SetDialStatusCallback	(hwndDlg,WM_USER+1);

case	WM_USER+1	:

{

SetDlgItemText(hwndDlg,	IDC_EDIT1,(LPCSTR)(LPARAM)lParam);

return	1;

}

	

CUT_RAS::SetEntryProperties

Members	|	Overview

int	SetEntryProperties(LPCSTR	szEntryName,	LPRASENTRY	pRasEntry,DWORD
nRasEntryLen	=	sizeof(RASENTRY)

Parameters

szEntryName Name	of	the	phonebook	entry	to	add	or	update.

pRasEntry A	pointer	to	a	RASENTRY	structure	which	contains	the
data	for	the	entry	to	add	or	update.	The	dwSize	member
of	the	structure	must	be	set	to	sizeof(RASENTRY).
NOTE:	This	can	optionally	be	followed	by	a	list
of	alternative	phone	numbers.

nRasEntryLen Size	of	the	RAS	entry.	Defaults	to	sizeof(RASENTRY).	It
can	be	set	if	a	list	of	alternative	phone	numbers	are	also
available.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	failed	(see	GetLastRASError	for
more	details).

UTE_RAS_LOAD_ERRORUnable	to	load	the	RAS	DLLs.

Remarks

Call	this	function	to	create	or	modify	a	phonebook	entry.	If	the	given	entry
does	not	exist	then	a	new	one	is	created,	but	if	the	entry	already	exists

then	it	is	overwritten.	This	function	takes	a	pointer	to	a	RASENTRY
structure	which	contains	all	of	the	fields	required	to	make	a	complete
phonebook	entry	except	for	the	user	name	and	password	(see
SetDialEntryParams).		NOTE:	the	RASENTRY	structure	can	be	followed
by	an	array	of	null-terminated	alternate	phone	number	strings.	The	last
string	is	terminated	by	two	consecutive	null	characters.	The
dwAlternateOffset	member	of	the	RASENTRY	structure	contains	the
offset	to	the	first	string.

Set	the	nRasEntryLen	parameter	to	the	total	length	of	the	given	data.
nRasEntryLen	has	a	default	value	of	sizeof(RASENTRY).

Use	ValidateEntryName	to	make	sure	that	a	new	entry	name	is	valid.

See	also:		GetEntryProperties	|	GetEntry

	
Example

/***

Read	the	values	from	the	dialog's	controls	and	update	the

Ras	Entry	structure	and	then	set	the	properties	of	the	specified	entry.

This	sample	code	only	adds	new	entries.	For	clarity,	if	the	entry

exists	it	is	not	modified	(you	can	modify	the	code	to

alter	existing	entries).

***/

void	CAddModifyEntry::OnOk()

{

//	read	the	values	from	the	dialog's	controls	and	update	the

//	Ras	Entry	structure	then	Set	the	Properties

if	(m_bModify){

	

//	Update	the	Dialogs	controls	based	on	the	entry's	Data

GetDlgItemText(IDC_ENTRYNAME,m_szEntryName,RAS_MaxEntryName);

if	(m_pRas->DoesEntryExist	(m_szEntryName)	==	UTE_SUCCESS)

{

//	ask	if	the	user	wants	to	modify	the	existing	entry

MessageBox("An	entry	with	this	name	already	exists");

}else

{

if	(m_pRas->ValidateEntryName	(m_szEntryName)	==	UTE_SUCCESS)

{

	

//	get	the	new	phone	number

GetDlgItemText(IDC_PHONE_NUMBER,m_rasEntry->szLocalPhoneNumber,RAS_MaxPhoneNumber);

	

//	get	the	new	are	code	number

GetDlgItemText(IDC_AREA_CODE,m_rasEntry->szAreaCode,RAS_MaxAreaCode);

if	(m_pRas->SetEntryProperties(m_szEntryName,m_rasEntry)==	UTE_SUCCESS)

{

//	now	set	the	Dialup	properties

LPRASDIALPARAMS	pDialParam	=	new	RASDIALPARAMS[sizeof(RASDIALPARAMS)+1];

memset(pDialParam,0,sizeof(RASDIALPARAMS));

pDialParam->dwSize=	sizeof(RASDIALPARAMS);

	

//	Set	the	Entry	name

strcpy(pDialParam->szEntryName	,m_szEntryName);

	

//	set	the	phone	number

GetDlgItemText(IDC_PHONE_NUMBER,pDialParam->szPhoneNumber,RAS_MaxPhoneNumber);

	

//	set	the	user	name

GetDlgItemText(IDC_USER,pDialParam->szUserName,UNLEN);

//	set	the	password	string

GetDlgItemText(IDC_PASSWORD,pDialParam->szPassword,PWLEN);

	

//	now	update	the	entry's	Dialup	parameters

m_pRas->SetDialEntryParams	(m_szEntryName,pDialParam,FALSE);

delete	[]	pDialParam	;

CDialog::OnOK	();

}

}else	//	the	selected	name	is	not	valid	name

MessageBox("Name	not	valid");

}

}else	//	if	we	are	not	adding	a	new	entry	then	just	exit

CDialog::OnOK	();

}

	

CUT_RAS::ValidateEntryName

Members	|	Overview

int	ValidateEntryName(LPCSTR	szEntryName)

Parameters

szEntryName A	string	specifying	the	phonebook	entry	to	check.

Return	Value

UTE_SUCCESS Operation	completed	successfully.

UTE_ERROR Function	failed	(see	GetLastRASError	for
more	details).

UTE_RAS_LOAD_ERRORUnable	to	load	the	RAS	DLLs.

Remarks

Checks	to	see	if	the	specified	phonebook	entry	is	a	valid	name	for	a	new
entry.	This	function	will	also	fail	if	the	phonebook	entry	already	exists.

CUT_ERR	Overview
Copyright	©	Dundas	Software	Ltd.	1996-1999,	All	Rights	Reserved

CUT_ERR	Class	Members

Dependencies	and	Related	Files

CUT_ERR	can	be	thought	of	as	a	sort	of	'namespace'	class	which
organizes	the	declaration	of	error	codes	and	their	associated	error	text.
The	motivation	for	the	class	was	to	move	error	code	definitions	out	of	the
realm	of	the	preprocessor	and	into	the	code	itself,	so	that	values	would
be	visible	during	debug	sessions,	etc.

The	class	uses	an	enumeration	to	define	error	codes	that	will	be	used	for
other	classes	in	the	library.	These	could	have	been	declared	as	const
members,	but	not	all	compilers	support	this	feature.

The	constructor,	destructor,	copy	constructor	and	assignment	operator
are	declared	as	private	members.	This	class	cannot	be	instantiated	or
used	as	a	base	class.

Along	with	the	enumeration	of	errorcodes,	two	static	public	methods	are
declared.	GetErrorString()	allows	the	user	to	retrieve	a	text	description	of
the	error.	GetSocketError()	can	be	used	during	development	to	retrieve
the	error	associated	with	a	winsock	API	call	that	has	returned
SOCKET_ERROR.

GetErrorString	calls	the	static	private	method	InitErrorStrings()	the	first
time	it	is	called.	InitErrorStrings()	then	initializes	an	array	of	string
constants.

Adding	New	Codes

The	list	of	errors	available	(in	uterr.h)	is	easily	extended	by	adding	the
new	constant	(e.g.	UTE_THE_ERROR_DUNDAS_FORGOT)	to	the

CUT_ERROR_CONSTANTS	enumeration	and	then	adding	a	line	of	code
to	the	initialization	method	InitErrorStrings.	You	might	like	to	leave	the
core	code	alone,	so	we've	provided	a	mechanism	for	extending	the	errors
without	modifying	uterr.h.

An	additional	header	'UTExtErr.h'	can	be	found	in	the	Include	directory.
You	can	use	this	file	to	insert	new	errorcodes	and	their	corresponding
text	into	the	CUT_ERR	enumeration.	You	can	edit	this	file	in	place	if	you
want	to	extend	your	new	errors	to	all	projects,	or	you	can	use	it	on	a	per-
project	basis	by	copying	it	to	your	project	directory.	(Make	sure	your
project	pre-processor	additional	includes	contains	".\"	so	that	this	version
is	included	from	within	uterr.h).

Inside	UTExtErr.h	you	will	find	the	following	(commented)	sample:

#ifndef	_EXT_ERR_STRINGS	//	Add	your	error	constants	here.	See	example	below:
//	UTE_DATABASE_CONNECT_ERROR,
//	UTE_NOT_SUPPORTED,
#else
//	Add	your	error	string	associations	here.	See	example	below:
//	pStrings[UTE_DATABASE_CONNECT_ERROR]	=_T("Database	connection	error.");
//	pStrings[UTE_NOT_SUPPORTED]	=_T("Operation	is	not	supported.");
#endif

Add	the	mnemonic	for	your	new	code	followed	by	a	comma,	and	specify
a	string	to	be	returned	from	GetErrorString().

Usage

While	the	enumerated	'constants'	are	available	without	the	need	for
scoping,	the	static	GetErrorString	needs	to	be	prefaced	by	the	class
name.	(This	is	the	'namespace'	aspect	of	the	class.)

For	example,	to	display	all	of	the	available	errorcodes	and	their	numeric
value	one	could	write:

for	(int	i	=	0;	i	<	CUT_MAX_ERROR;	i++)

cout	<<	i	<<	".	"	<<	CUT_ERR::GetErrorString(i)	<<	endl;

This	may	be	something	you	want	to	do	in	order	to	have	a	numeric
reference	for	debugging.	We	don't	explicitly	assign	values	to	the	codes
inside	the	enumeration,	so	you	can	not	just	refer	to	the	header	to	see
what	'error	43'	means.	Being	able	to	call	GetErrorString	provides	some
compensation.

Many	of	the	client	and	server	classes	that	use	these	enumerations	as
return	codes	do	so	via	a	virtual	OnError	method	which	can	be	overridden
or	modified	to	trace	error	messages	through	the	use	of	GetErrorString.	In
most	cases	we	leave	it	up	to	you	to	implement	this	so	that	you	can	then
select	the	appropriate	output	device.

	

	

	

CUT_ERR	Class	Members

Copyright	©	Dundas	Software	Ltd.	1996-1999,	All	Rights	Reserved

Overview

GetErrorString 	
Retrieves	the	error	text	for	a	given	error.
	

GetSocketError 	
Retrieves	the	error	and	string	description	of	a
winsock	error	for	a	socket.
	

	

CUT_ERR	Dependencies	and	Related	Files

Copyright	©	Dundas	Software	Ltd.	1996-1999,	All	Rights	Reserved

Overview

INCLUDE uterr.h

	

CUT_ERR::GetErrorString

Members	|	Overview

static	const	_TCHAR*	GetErrorString(int	err)

Parameters

err The	enumerated	error	code.		

Return	Value

Returns	a	text	description	of	the	error	that	has	occurred.	If	the	call	is
made	with	an	err	value	that	is	out	of	range	the	string	then
"CUT_ERR::GetErrorString:	ErrorString	array	improperly	initialized"	will
be	returned.

Remarks

You	will	usually	call	this	method	to	obtain	a	description	of	an	error
returned	from	one	of	the	client	or	server	Ultimate	TCPIP	v3.0	classes.
Note	that	you	must	use	the	CUT_ERR::	scoping	preface	-	this	is	a	static
method	of	a	class	that	is	never	instantiated.

		Example

	

//	test	for	the	success/failure	of	a	SendFile	operation.

if(UTE_SUCCESS	!=	(res	=	MyDerivedWSClient.SendFile("myfile.txt")))	{

#ifdef	_DEBUG

cout	<<	CUT_ERR::GetErrorString(res)	<<	endl;

#endif

switch	(res)

{

case	UTE_ABORTED:

//	send	aborted	by	user

break;

case	UTE_FILE_OPEN_ERROR:

	

//	unable	to	open	specified	file

break;

case	UTE_CONNECT_TERMINATED:

	

//	remote	connection	terminated

break;

default:

assert(0);	//	should	never	happen...

break;

}

}

	

CUT_ERR::GetSocketError

Members	|	Overview

static	LPCSTR	GetSocketError(SOCKET	*	s,	int	*	result=NULL)

Parameters

s A	pointer	to	the	socket	to	be	queried.

result An	optional	integer	that	will	receive	the	actual	winsock	error
code.

Return	Value

A	string	containing	a	readable	description	of	the	last	error	to	occur	on	the
socket	(if	available).

Remarks

In	most	cases,	the	predefined	return	codes	are	sufficient	to	indicate	what
went	wrong	with	a	call	to	a	method	of	one	of	the	Ultimate	TCPIP	classes.

Occasionally	you	will	find	that	you	need	to	deal	with	a	return	value	of
SOCKET_ERROR	from	a	call	to	a	winsock	API	function,	particularly
when	extending	a	class.

This	ususally	involves	a	call	to	WSAGetLastError,	and	a	switch	statement
to	determine	which	error	constant	was	returned.	Often	you	will	need	the
switch	to	determine	a	course	of	action	to	take,	but	if	all	you	are
concerned	with	is	knowing	what	the	error	was,	GetSocketError	can	be	a
time	and	space	saver.

WSAGetLastError	will	return	the	last	error	that	occurred	on	any	socket	in
the	current	thread.	The	code	in	GetSocketError	takes	a	pointer	to	the

socket	in	order	to	query	the	socket.	This	is	done	by	using	the
GetSockOpt	call,	rather	than	WSAGetLastError.

If	the	socket	is	invalid	the	return	string	will	be	"GetSockOpt	error:
WSAENOTSOCK",	indicating	that	the	call	to	GetSockOpt	failed.	Other
errors	may	be	returned	as	GetSockOpt	errors.

If	you	want	the	actual	error	code	pass	a	pointer	to	the	result	parameter.

For	some	TCPIP	methods	you	should	call	WSAGetLastError	to
determine	the	socket	error	if	a	particular	call	returns	UTE_ERROR	or	-1.
This	is	indicated	where	appropriate.

If	the	socket	is	still	valid	(i.e.	the	method	was	not	involved	with	creating	or
destroying	the	socket)	you	may	find	it	more	convenient	to	call
GetSocketError	instead	of	WSAGetLastError.

GetSocketError	is	intended	more	as	a	development	aid	than	a	library
export.

See	also:	GetErrorString

Example

//	if	an	error	occurs	connecting	then	in	the	OnError	callback

//	we	are	just	examining	the	error	and	then	returning	an	errorcode.

if(connect(m_socket,	(LPSOCKADDR)&m_sockAddr,	sizeof(m_sockAddr))	==SOCKET_ERROR)

{

//	you	can	place	a	break	point	here	to	examine	the	string

LPCSTR	str	=	CUT_ERR::GetSocketError(&m_socket);

return	OnError(UTE_SOCK_CONNECT_FAILED);

}

	

	

	

Dundas	Mailer	Control	1.0

Copyright	©	Dundas	Software	Ltd.	2000,	All	Rights	Reserved.

Overview	|	Properties	|	Methods

The	Dundas	Mailer	Control	1.0	is	a	free	commercial	email	control	which
utilizes	the	SMTP,	MIME	and	NNTP	protocols	to	send	email	messages
and	post	news	articles.	It	has	been	designed	for	use	within	Active	Server
Pages	(ASP)	and	can	be	used	by	any	person	or	organization	that	is
hosting	web	sites	using	Microsoft's	Internet	Information	Server.	It	is	also
used	in	conjunction	with	the	Dundas	Upload	Control	when	dealing	with
uploaded	files	to	be	sent	either	as	attachments	or	embedded	html
objects.

The	Dundas	Mailer	control	is	extremely	fast	and	reliable.	The	following	is
a	listing	of	the	control's	features:

Specify	multiple	recipients	by	using	the	TOs,	CCs,	and	BCCs
collections.

Ability	to	post	news	articles	to	news	groups.

Supports	both	text-based	and	html-based	email.

Support	for	embedded	html	objects	within	an	html-based	email
(audio	files,	images,	etc.).

Ability	to	send	multiple	file	attachments.

ReplyTo	property	(implemented	as	a	collection).

Message	headers	can	be	set	to	non-ASCII	values	with	the
EncodeHeader	method.

You	can	specify	the	character	set	to	be	used	for	the	message	body
(for	non-English	emails).

Priority	property	used	to	indicate	low,	high	or	normal	priorities.

A	QuickSend	method	which	allows	you	to	send	an	email	with	a
minimal	amount	of	code.

Use	multiple	SMTP	relays	for	improved	speed	and	reliability.

Validate	email	addresses	with	the	ValidateAddress	method.

Use	one	or	more	specified	DNS	servers	for	Direct	Sending	of	email.

ConfirmRead	property.

ReturnReceipt	property.

Optionally	load	the	message	body	from	file.

Supports	the	addition	of	custom	headers	to	an	email.

MSDN	integrated	help.

Full	control	over	various	time	out	properties.

The	Dundas	Mailer	control	exposes	two	methods	which	will	send	an
email	message.	The	QuickSend	method	lets	you	send	an	email	with	a
minimal	amount	of	code,	and	its	advantage	is	its	simplicity	and	ease	of
use.	SendMail	also	sends	an	message	but	it	does	require	that	certain
properties	and	collections	to	be	set	first.	The	advantage	of	SendMail	is
that	it	incorporates	ALL	features	of	the	control.

To	post	an	article	to	a	news	group	you	can	call	the	PostArticle	method.

The	ProgID	of	the	control	is	"Dundas.Mailer".

Most	methods	of	this	control	will	throw	an	exception	if	an	error	occurs.
Trap	for	the	success/failure	of	mail	operations	by	using	an	On	Error
Resume	Next	statement	and	examine	the	Err	object	after	a	function	call.

See	Also:	Product	Overview	|	How	to	Use	the	Dundas	Mailer	Control	|
Dundas	Upload	Control

Product	Overview	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

The	Dundas	Mailer	Control	1.0	is	a	free	commercial	email	control	which
utilizes	the	SMTP,	MIME	and	NNTP	protocols	to	send	email	messages
and	post	news	articles.	It	has	been	designed	for	use	within	Active	Server
Pages	(ASP)	and	can	be	used	by	web	developers	or	ASP	developers	to
quickly	and	painlessly	add	web-based	email	capabilities	to	their	ASP
applications.

The	Dundas	Upload	control,	which	also	incorporates	an	Upload	Progress
component	and	a	State	Server	executable,	can	be	used	in	conjunction
with	the	Mailer	control	when	working	with	uploaded	files	in	order	to
provide	developers	with	web-based	email	solutions	which	fully	support	a
web-farm	environment.

Features	List	Installation/Redistribution
How	to	use	the	Documentation

Features	List

The	following	is	just	some	of	the	features	of	the	Dundas	Mailer	control:

1.	 Choose	between	text	and/or	html-based	email.

2.	 Fully	supports	embedded	html	objects	within	an	html-based	email
(audio	files,	graphics	files,	etc.).

3.	 Ability	to	post	news	articles	to	news	groups.	You	have	the	option	of
posting	to	the	root	directory	or	as	a	response	to	a	particular	article.

4.	 Specify	multiple	recipients	by	using	the	TOs,	CCs,	and	BCCs
collections.

5.	 Message	headers	and	the	message	body	can	be	set	to	non-ASCII
values.

6.	 Validate	your	email	addresses	to	save	your	bandwidth.

7.	 Specify	multiple	SMTP	and	DNS	servers	to	make	your	email
operations	lightning	quick.

8.	 Fully	supports	the	use	of	custom	headers.

9.	 Optionally	prioritizes	your	messages.	You	can	also	request
confirmation	when	the	user	retrieves	and/or	reads	an	email
message.

10.	 Send	multiple	attachments	with	your	messages.

11.	 MSDN	integrated	html	help.

	

Installation/Redistribution

Controls	and	Samples	Install

The	name	of	the	install	file	is:	"AspMail.exe".

The	windows	account	under	which	the	install	runs	needs	to
have	administrative	priviledges	for	a	successful	installation.	

The	following	files	will	be	copied	to	the	selected	installation
directory:

1)	ASP	pages:	AutoResponse.asp,	PostArticle.asp,
PostArticle_Process.asp,	SendMail.asp,
SendMail_Process.asp,	SendHtmlEmail.asp,
SendHtmlEmail_Process.asp	and	Error.asp.

2)	Various	graphics	files	required	by	the	ASP	pages
(InstallDirectory/Images/).

3)	ReadMe.htm.

	
Start	menu	entries	are	as	follows:

Dundas	Software	|	Free	Products	|	Mailer	and	Upload
Controls	|	ReadMe

	
Documentation	Install

To	uninstall	the	documentation	run	the	install	file	again
(FPDocInst.exe)	and	choose	either	"Remove	From	MSDN"	if
you	integrated	into	the	MSDN	or	"Remove	All"	if	you	did	not
integrate	into	the	MSDN.

	

How	to	use	the	Documentation

Documentation	for	the	Mailer	control	consists	of	the	following:

1.	 Compiled	html	help	(optionally	integrated	into	the	MSDN).	The	html
help	provides	detailed	explanations	for	all	members	of	the	control	as
well	as	a	control	overview.	Other	topics	which	should	be	especially
useful	are:

How	to	Use	the	Dundas	Mailer	Control

Overview	(Dundas	Mailer	Control	1.0)

QuickStart	(Dundas	Mailer	Control	1.0)

Tutorial	1:	Sending	an	Email	with	an	Attachment

Tutorial	2:	Sending	an	Html	Email	with	an	Embedded	Image

Tutorial	3:	Posting	to	a	Newsgroup

2.	 ReadMe.htm.	This	file	is	distributed	with	the	Mailer	control,	and
consists	of	installation	information,	release	notes	and	a
troubleshooting	section.

	

How	to	Use	the	Dundas	Mailer	Control

Overview	|	Properties	|	Methods

The	Dundas	Mailer	Control	is	a	free	fully	commercial	email	control	which
allows	you	to	send	both	html	and	text-based	emails	as	well	as	post
articles	to	news	groups.	It	is	used	in	conjunction	with	the	Dundas	Upload
Control	when	dealing	with	uploaded	files,	html	embedded	objects	and	file
attachments.

Two	methods	are	used	for	sending	an	email:	QuickSend	and	SendMail.
Refer	to	the	sections	below	for	a	detailed	explanation	on	how	to	use	the
Mailer	control	with	either	of	these	two	methods.	To	post	articles	to	news
groups	you	can	utilize	the	PostArticle	method.	See	Tutorial	3:	Posting	to
a	NewsGroup	for	further	details.

Refer	to	the	section	below	for	details	on	how	to	use	the	Mailer	and
Upload	controls	together.	You	can	also	examine	Tutorial	1:	Sending	an
Email	with	an	Attachment	or	Tutorial	2:	Sending	an	Html	Email	with	an
Embedded	Image	for	example	source	of	this.

NOTE:	All	sending	methods	utilize	the	SMTPRelayServers	and	DNSServers	collections.	To
maximize	the	speed	of	the	mail	operation	populate	these	collections	before	sending	the	email
message.

Using	QuickSend

1.	 Create	an	instance	of	the	Mailer	control.	The	ProgID	of	the	control	is
"Dundas.Mailer".

2.	 Optionally	set	properties	(including	collections)	used	by	the
QuickSend	method.	Unlike	SendMail	(which	incorporates	all	of	the
control's	functionality)	QuickSend	only	utilizes	some	of	the	control's
properties	and	collections	(all	of	which	are	optional).	See	QuickSend
for	a	listing	of	these	properties.

3.	 Call	QuickSend	to	send	an	email.	Notice	that	this	method's

arguments	are	used	to	set	any	required	message	headers.

4.	 Error	trap	for	the	success/failure	of	the	operation	by	using	an	On
Error	Resume	Next	statement	and	examine	VBScript's	Err	object
(Err.Number	will	be	a	non-zero	value	if	an	error	occurred)
immediately	following	the	function	call.

5.	 Destroy	the	instance	of	the	Mailer	control.

		Advantage	-	Lets	you	send	an	email	with	a	minimal	amount	of	coding.
	

Using	SendMail

1.	 Create	an	instance	of	the	Mailer	control.	The	ProgID	of	the	control	is
"Dundas.Mailer".

2.	 Unlike	the	QuickSend	method	SendMail	does	not	use	function
arguments	at	all.	It	relies	on	various	properties	and	collections	to	set
message	headers	and	other	message	elements	(e.g.	Body	property,
SMTPRelayServers	collection,	TOs	collection,	TimeOutConnect
property,	etc.).	For	the	function	call	to	succeed	you	MUST	specify	a
destination	address	by	adding	an	Address	object	to	one	of	the
following	collections:	TOs,	CCs,	or	BCCs.	Use	the	Add	method	of
the	collections	to	do	this.

3.	 Once	you	have	specified	a	destination	address	set	any	other
properties	(collections	incuded)	that	you	would	like	to	be	used	for	the
mailing	operation.

4.	 Error	trap	for	the	success/failure	of	the	operation	by	using	an	On
Error	Resume	Next	statement	and	examine	VBScript's	Err	object
(Err.Number	will	be	a	non-zero	value	if	an	error	occurred)
immediately	following	the	function	call.

5.	 Destroy	the	instance	of	the	Mailer	control.

Advantage	-	Although	more	coding	is	required	to	send	an	email
compared	to	QuickSend	the	SendMail	method	offers	you	a	tremendous
amount	of	flexibilty	and	options	for	the	mailing	operation.	It	utilizes	ALL

properties/collections	of	the	control.

	
Using	the	Upload	and	Mailer	Controls

Use	the	Dundas	Upload	control	to	save	uploaded	files	and	access	form
elements.	Once	you	have	saved	the	uploaded	files	to	disk	you	can	then
access	form	elements	via	the	Form	collection.	You	can	also	iterate
through	all	uploaded	files	via	the	Upload	control's	Files	collection,	which
stores	UploadedFile	objects.

If	you	are	just	sending	an	attachment	with	the	email	then	add	the
uploaded	file	to	the	Mailer	control's	Attachments	collection.	Use	the
UploadedFile	object's	Path	property	as	the	FileName	argument	of	the
Attachments.Add	method	call.	Then	call	the	SendMail	method	to	send
the	email	with	the	attachment.

To	embed	uploaded	files	into	an	html	email	loop	through	the	Files
collection	of	the	Upload	control	and	add	the	UploadedFile	objects	to	the
HtmlEmbeddedObjs	collection,	and	then	embed	the	object	by	wrapping
the	appropriate	html	tags	around	the	object	in	the	Mailer	control's
HtmlBody	property.	You	can	use	the	UploadedFile	object's	TagName
property	to	determine	which	file	input	box	the	object	originated	from,	and
you	can	also	use	VBScripts's	InStr	method	in	conjunction	with	the
UploadedFile	objects	ContentType	property	to	determine	the	type	of	the
object.	This	lets	you	make	sure	that	an	object	is	not	embedded	into	the
html	body	of	the	email	with	the	wrong	tags	around	it.

There	are	four	tutorials	which	illustrate	the	various	send	message
operations:

QuickStart	(Illustrates	how	to	send	an	email	with	a	minimum	of
code).

Tutorial	1:	Sending	an	Email	with	an	Attachment

Tutorial	2:	Sending	an	Html	Email	with	an	Embedded	Image

Tutorial	3:	Posting	to	a	Newsgroup

QuickStart	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

The	following	source	code	demonstrates	how	to	send	an	email	with	both
the	QuickSend	and	the	SendMail	methods.	The	difference	between	the
two	methods	is	that	SendMail	incorporates	all	functionality	of	the	control,
while	QuickSend	only	utilizes	some	of	the	control's	properties.	Please
note	that	this	sample	sends	the	email	messages	with	a	minimal	amount
of	code	so	not	all	of	the	Mailer	control's	functionality	is	demonstrated.

	

Sending	an	Email	with	the	QuickSend	Method	<%
'most	control	methods	throw	an	exception	if	an	error	occurs	so	we	will	use	an	On	Error	statement
On	Error	Resume	Next

Dim	objMailer	'Mailer	control

'create	instance	of	Mailer	control
Set	objMailer	=	Server.CreateObject("Dundas.Mailer")

'send	email
objMailer.QuickSend	"FromMe@SomeServer.com","ToSomeUser@SomeDomain.com","Subject","This	is	the	body."
'you	can	test	for	the	success/failure	of	the	operation	by	examining	VBScript's	Err	object	here

Set	objMailer	=	Nothing
%>

	

Sending	an	Email	with	the	SendMail	Method
<%
'most	control	methods	throw	an	exception	if	an	error	occurs	so	we	will	use	an	On	Error	statement
On	Error	Resume	Next

Dim	objMailer	'Mailer	control

'create	instance	of	Mailer	control
Set	objMailer	=	Server.CreateObject("Dundas.Mailer")

'set	Mailer	control	properties	and	collection	items
objMailer.TOs.Add	"martine@dundas.com"
objMailer.FromAddress	=	"FromMe@SomeServer.com"
objMailer.Subject	=	"Subject"
objMailer.Body	=	"This	is	the	body."

'send	email
objMailer.SendMail
'you	can	test	for	the	success/failure	of	the	operation	by	examining	VBScript's	Err	object	here

Set	objMailer	=	Nothing
%>

	

Tutorial	1:	Send	an	Email	with	an	Attachment

Overview	|	Properties	|	Methods

The	following	source	code	demonstrates	how	to	send	an	email	along	with
a	file	attachment	via	an	ASP	page.

Files	are	uploaded	by	the	user	via	file	input	elements	in	a	form	(with	an
EncType	of	"multipart/form-data").	Then	the	Dundas	Upload	Control	is
used	to	save	uploaded	files	to	disk.	Once	this	is	done	we	then	iterate
through	all	uploaded	files	via	the	Upload	control's	Files	collection	and	add
each	file	to	the	Mailer	control's	Attachments	collection.	Once	all	files	have
been	added	to	this	collection	the	email	is	sent	with	the	SendMail	method
of	the	Mailer	control.

Assumptions

A	form	with	an	ENCTYPE	of	"multipart/form-data"	is	POSTING	data
to	this	ASP	page.

The	form	contains	one	or	more	file	input	elements	(e.g.	<input
type="file"	name="txtFile">

<%	Dim	objUpload	'stores	upload	control	instance
Dim	objEmail	'stores	mailer	control	instance
Dim	strPath	'stores	path	of	the	asp	page
Dim	Index	'counter	variable

'functions	will	throw	an	exception	if	not	successful	so	On	Error	Resume	Next	is	used	for	inline	error	trapping
On	Error	Resume	Next

Set	objUpload	=	Server.CreateObject("Dundas.Upload")	'Upload	object
Set	objEmail	=	Server.CreateObject("Dundas.Mailer")	'Mailer	object

'create	temporary	directory	to	store	uploaded	files	(if	it	doesn't	already	exist)

'	at	the	same	directory	level	as	this	asp	page
strPath	=	Server.MapPath(".")	&	"\temp\"
objUpload.DirectoryCreate	strPath

'save	the	uploaded	files	to	the	temp	directory.
'doing	this	populates	the	Upload	control's	collections
'note	that	we	could	also	save	to	memory	with	the	SaveToMemory	method
objUpload.Save	strPath

'add	an	Address	object	to	the	TOs	collection	(this	specifies	the	destination	address)
objEmail.TOs.Add	"someone@somewhere.com"

'specify	the	message	subject
objEmail.Subject	=	"Some	Subject"

'specify	an	SMTP	server.	Doing	this	increases	the	speed	and	reliability	of	the	mail	operation
objEmail.SMTPRelayServers.Add	"somesmtpserver.com"

'set	the	message	body
objEmail.Body	=	"This	is	the	message	body"

'now	loop	through	all	uploaded	files	(uploaded	via	file	input	boxes),	and	add
'	each	uploaded	file	to	the	Mail	control's	Attachments	collection
'NOTE:	you	can	use	either	a	For	Each	loop	or	a	standard	For	loop	here
For	Each	Item	in	objUpload.Files
'Note:	we	are	using	the	OriginalPath	property	of	the	UploadedFile	object
'	(which	composes	the	Files	collection)	for	the	ContentName	argument	of	each	Attachment
'	object.	This	lets	the	recipient	of	the	email	see	the	original	filename	of	the	attachment,
'	(e.g.	SomePicture.jpg)	instead	of	the	name	by	which	the	attachment	was	saved	as.	All	files
'	which	are	saved	to	disk	have	a	GUID	preceding	the	original	filename	used	for	unique	identification.
objEmail.Attachments.Add	Item.Path,Item.OriginalPath
Next

'now	send	the	email
objEmail.SendMail

'test	for	success/failure	of	the	SendMail	operation	using	VBScript's	Err	object
If	Err.Number	<>	0	Then	
'an	error	occurred	so	output	the	relevant	error	string
Response.Write	"The	following	error	occurred:	"	&	Err.Description
Else
'successful,	so	output	a	success	message	to	user
Response.Write	"The	email	was	successfully	forwarded	to	the	specified	SMTP	server."
End	If

Set	objEmail	=	Nothing	'release	resources
Set	objUpload	=	Nothing
%>

	

Tutorial	2:	Sending	an	Html	Email	with	an	Embedded	Image

Overview	|	Properties	|	Methods

Files	to	be	embedded	are	uploaded	by	the	user	via	file	input	elements	in
a	form	(with	an	EncType	of	"multipart/form-data").	Then	the	Dundas
Upload	Control	is	used	to	save	uploaded	files	to	disk	with	its	Save
method	(we	could	also	save	directly	to	memory	as	well).	Once	this	is
done	we	can	then	iterate	through	all	uploaded	files	via	the	Upload
control's	Files	collection	and	check	to	see	if	valid	file	types	were
uploaded	for	each	file	input	element	(lets	assume	that	there	are	two	file
input	boxes,	one	for	an	image	file	and	the	other	for	an	audio	file).	If	a
valid	file	type	was	uploaded	we	add	the	file	to	the	Mailer	control's
HtmlEmbeddedObjs	collection,	and	then	embed	the	object	into	the	Mailer
control's	HtmlBody	property.	When	we	embed	the	object	into	the
HtmlBody	property	we	"wrap"	the	appropriate	tags	around	the	object	to
be	embedded	and	identify	it	by	using	the	contentID	(cid).	We	then
continue	looping	through	the	Files	collection.	Once	the	objects	have
been	added	to	the	HtmlEmbeddedObjs	collection	the	email	is	sent	via
the	SendMail	method	of	the	Mailer	control.

Please	note	that	you	CAN	NOT	use	ASP's	Request	object	to	retrieve
form	element	values	when	the	ENCTYPE	of	the	form	is	"multipart/form-
data".	To	retrieve	form	values	you	MUST	call	the	Save	method	of	the
Upload	control.	Not	only	does	this	save	the	uploaded	files	to	disk	but	it
also	populates	the	Upload	controls	collections,	thereby	letting	you	access
form	elements	with	the	Upload	control's	Form	collection	(e.g.
strToAddress	=	objUpload.Form("txtTO")).

Assumptions

A	form	with	an	ENCTYPE	of	"multipart/form-data"	is	POSTING	data
to	this	ASP	page.

The	form	contains	two	(2)	file	input	elements	named	"txtAudio"	and
"txtImage"	(e.g.	<input	type="file"	name="txtAudio">).

<%	Dim	objUpload	'stores	an	Upload	control	object
Dim	objEmail	'stores	a	Mailer	control	object
Dim	strPath	'stores	path	to	a	directory	we	create	at	same	level	as	this	ASP	page

'The	SendMail	function	will	throw	an	exception	if	the	operation	is
'	unsuccessful,	so	we	enable	inline	error	trapping
On	Error	Resume	Next

Set	objUpload	=	Server.CreateObject("Dundas.Upload")	'Upload	object
Set	objEmail	=	Server.CreateObject("Dundas.Mailer")	'Mailer	object

'create	a	directory	at	same	level	as	this	ASP	page
'	this	directory	is	used	to	store	the	uploaded	files	(which	are	renamed	with	a	GUID	preceding
'	the	original	filename)
'NOTE:	to	delete	these	files	you	would	have	to	use	the	ImpersonateUser
'	the	Upload	control	since	the	IUSR_	account	SHOULD	NOT	have	permission	to	delete	files
strPath	=	Server.MapPath(".")	&	"\temp"	
objUpload.DirectoryCreate	strPath

'save	the	uploaded	files.	THIS	POPULATES	THE	UPLOAD	CONTROL'S	COLLECTIONS!
objUpload.Save	strPath

'specify	the	recipient	of	this	message
objEmail.TOs.Add	"SomeUsername@SomeDomain.com"

'specify	the	subject	of	the	email
objEmail.Subject	=	"This	is	the	subject."

'specify	the	sender	of	the	message
objEmail.FromAddress	=	"MyUsername@MyDomain.com"

'specify	an	SMTP	Relay	server.	This	increases	the	speed	and	reliability	of	the	operation
objEmail.SMTPRelayServers.Add	"SomeSmtpServer.com"

'initialize	the	HtmlBody	property,	we'll	throw	a	header	into	it
objEmail.HTMLBody	=	"<Html><Head></Head><Body><H2>This	is	the	body.</H2>

"

'now	lets	loop	through	the	uploaded	files	to	be	embedded.
For	Each	Item	in	objUpload.Files
'we	will	check	to	see	which	file	input	element	is	responsible	for	the	uploaded	file
If	(Item.TagName	=	"txtAudio")	Then
'we	now	know	the	file	came	from	the	txtAudio	box,	but	lets	make	sure	that
'	the	user	actually	uploaded	some	sort	of	audio	file	by	using	InStr	and	the	ContentType	property
If	InStr(1,Item.ContentType,"audio")	Then
'the	file	is	actually	an	audio	type,	so	add	it	to	the	HtmlEmbeddedObjs	collection
'	and	embed	it	into	the	HtmlBody	property.	Note	that	we	set	the	ContentName	argument
'	of	the	HtmlEmbeddedObj	to	the	OriginalPath	property	of	the	uploaded	file	so	that
'	if	the	client	email	software	displays	the	name	of	the	file	the	filename	will	be	user-friendly
'Also	note	that	we	MAKE	SURE	that	the	ID	for	the	embedded	object	is	unique!!
objEmail.HtmlEmbeddedObjs.Add	Item.Path,	1,	Item.OriginalPath
objEmail.HtmlBody	=	objEmail.HtmlBody	&	"<BGSound	src=cid:1></BGSound>"
End	If
End	If
If	(Item.TagName	=	"txtImage")	Then
'lets	make	sure	user	uploaded	a	valid	image	file
If	InStr(1,Item.ContentType,"image")	Then
objEmail.HtmlEmbeddedObjs.Add	Item.Path,	2,	Item.OriginalPath
objEmail.HtmlBody	=	objEmail.HtmlBody	&	""
End	If
End	If
Next

'finish	html	body	by	adding	closing	html	tags
objEmail.HTMLBody	=	objEmail.HTMLBody	&	"</body></html>"

'send	the	email
objEmail.SendMail

'test	for	success/failure
If	Err.Number	<>	0	Then
'an	error	occurred	so	output	error	message

Response.Write	"Sorry,	the	following	error	occurred:	"	&	Err.Description
Else
'success!
Response.Write	"The	html	email	was	successfully	sent."
End	If

'release	resources
Set	objEmail	=	Nothing
Set	objUpload	=	Nothing
%>

	

Tutorial	3:	Posting	to	a	Newsgroup

Overview	|	Properties	|	Methods

The	following	source	code	demonstrates	how	to	post	an	article	to	a
specified	news	group	at	a	news	server.

We	create	an	instance	of	the	Dundas	Mailer	Control,	set	the
FromAddress	property	(used	as	the	ReplyTo
address	if	there	are	no	Address	objects	in	the	ReplyTOs	collection)	and
then	set	the	Body	property	which	constitutes
the	article	body.	For	this	demonstration	we	will	post	an	article	in	reply	to
an	existing	article	which	we	read.	To
post	our	article	underneath	an	existing	article	(as	opposed	to	posting	to
the	root	directory)	we	will	add	a	custom
header	named	"References"	to	the	Mailer	control's	CustomHeaders
collection,	and	set	its	value	to	the	ID	of	the	article
we	are	responding	to.

<%
Dim	objEmail	'stores	instance	of	Mailer	object

'PostArticle	throws	an	exception	if	it	is	not	successful	so	we	use
'	inline	error	trapping	with	an	On	Error	Resume	Next	statement
On	Error	Resume	Next

'create	instance	of	Mailer	control
Set	objEmail	=	Server.CreateObject("Dundas.Mailer")

'specify	an	SMTP	server	to	increase	the	speed	and	reliability	of	the	operation
objEmail.SMTPRelayServers.Add	"SomeSmtpServer.com"

'set	the	subject	of	the	article
objEmail.Subject	=	"This	is	the	article	subject."

'add	a	custom	header	named	"References"	to	the	CustomHeaders	collection,	setting
'	the	value	of	the	header	to	the	ID	of	the	article	to	post	beneath	(respond	to)
objEmail.CustomHeaders.Add	"References",	"TheArticleID"

'set	the	body	of	the	article
objEmail.Body	=	"This	is	the	body	of	the	article."

'set	the	FromAddress	(This	is	used	as	the	ReplyTo	address	if	are	no	Address
'	objects	in	the	ReplyTOs	collection)
objEmail.FromAddress	=	"UserName@DomainName.com"

'now	attempt	to	post	the	article	(we	will	use	a	public	Microsoft	news	group	here)
objEmail.PostArticle	"msnews.microsoft.com","microsoft.a.test"

'now	trap	for	success/failure	of	the	article	posting
If	Err.Number	<>	0	Then
'PostArticle	failed.
Response.Write	"The	following	error	occurred:	"	&	Err.Description	
Else
'PostArticle	succeeded
Response.Write	"The	article	was	successfully	posted."
End	If

Set	objEmail	=	Nothing
%>

	

Object	Hierarchy	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

NOTE:	The	yellow	rectangles	represent	collections	while	the	blue
rectangles	represent	objects.

See	Also:	Overview	(Dundas	Mailer	Control	1.0)	|	How	to	Use	the
Dundas	Mailer	Control

Troubleshooting	the	Mailer	Control	Demos

The	uninstall	does	not	remove	the	UploadControl.dll	and
DSMailer.dll

	
The	inetinfo.exe	process	may	be	referencing	the	dlls	during	the
uninstall	process.		Reboot	your	computer	and	remove	the	dlls
manually.	

	
Object	variable	not	set

This	will	occur	as	a	result	of	referencing	a	collection	item	which	does
not	exist	(e.g.	using	the	Form	collection	to	reference	a	checkbox
which	is	not	checked).		

	

To	rectify	this	error	check	to	make	sure	that	the	item	you	are
referencing	in	the	collection	has	the	correct	spelling.				To	test	for	an
empty	checkbox	use	the	following	line	of	code:	"If
objUpload.Form("chkMyCheckbox")	Is	Nothing	Then	...	Else...End
If".		

	
The	relevant	Err.Number	will	be	"91".		

	
Server.CreateObject	failed.		Invalid	class	string	specified

The	specified	ProgID	of	either	the	Mailer	or	Upload	control	is
incorrect.		The	ProgID	of	the	Mailer	control	is	"Dundas.Mailer",	and
the	ProgID	of	the	Upload	control	is	"Dundas.Upload".		

	
This	can	also	be	caused	by	a	control	which	is	not	registered.	
Register	the	control	in	question	by	using	regsvr32.exe.

	
HTTP	Error	403	Forbidden:	Execute	Access	Forbidden	

You	have	not	set	up	the	permissions	for	your	ASP	files	correctly.	Use
Windows	Explorer	to	set	up	proper	NTFS	directory	permissions	if
you	are	running	Win	NT	or	Win	2000	(Read	access	is	required),	and
also	make	sure	that	the	Web	permissions	set	in	MMC	(Microsoft
Management	Console)	are	at	least	Read	with	Script	Execute	rights.	
Also	make	sure	that	the	Samples/Images	folder	has	Read
permissions	as	well.

	
HTTP	Error	404	File	Not	Found	

The	URL	you	are	specifying	in	your	browser	is	incorrect.		Determine
where	your	ASP	pages	are	and	enter	the	appropriate	URL	(e.g.
http://127.0.0.1/RelativePathFromRootWebDirectory/PostArticle.ASP).

	
Access	is	Denied

The	appropriate	permissions	have	not	been	set	up	for	the	deletion	of
files	or	folders.		You	need	to	either	give	the	default	web	account
(usually	IUSR_MACHINENAME)	Full	Control	NTFS	permission	for
the	folder	in	question	or	you	can	use	the	ImpersonateUser	method	of
the	Upload	control	to	utilize	a	user	account	which	does	have	the	right
to	delete	files/folders.		

		VBSCript	RunTime	Error	"800a01ad"	ActiveX	component	can	not
create	object

Either	the	UploadControl.dll	or	DSMailer.dll	does	not	have	the
appropriate	permissions.		Make	sure	that	the	default	web	account
has	Full	Control	rights	for	both	dll's.

	
Error	"800a001e"	A	required	priviledge	is	not	held	by	the	client

This	is	probably	caused	by	calling	the	ImpersonateUser	method	of
the	Upload	control	in	conjunction	with	the	"Run	in	Separate	Memory
Space"	box	being	checked	in	your	Home	Directories	property	page
(found	in	the	Microsoft	Management	Console,	or	MMC).		To	get
around	this	you	can	either	grant	the	default	web	account	"Act	as	Part

http://127.0.0.1/RelativePathFromRootWebDirectory/PostArticle.ASP

of	the	Operating	System"	priviledges	or	alternatively	you	can	just
turn	off	the	"Run	in	Separate	Memory	Space"	option.		Refer	to	either
the	MSDN	or	the	Free	Programs	Documentation	(examine	the
ImpersonateUser	topic)	for	details	on	how	to	grant	operating	system
priviledges.

http://www.dundas.com/downloads/freeproducts/files/FPDocInst.exe

Dundas	Mailer	Control	1.0	Properties

Copyright	©	Dundas	Software	Ltd.	2000,	All	Rights	Reserved.

Overview	|	Properties	|	Methods

Body The	text-based	body	of	the	email.	Not	used
with	the	QuickSend	method.

BodyCharSet The	character	set	to	be	used	for	the	email's
text-based	body.

ConfirmRead If	this	is	set	to	TRUE	and	the	recipient's	server
supports	this	feature	then	a	confirmation	email
will	be	sent	to	the	supplied	From	address	when
the	email	is	read	by	the	recipient.

FromAddress The	email	address	of	the	person	sending	the
email.

FromName The	name	of	the	email	sender.	This	is	the
name	which	sometimes	appears	before	the
email	address	of	the	sender	in	the	From	field.

HtmlBody Use	this	property	to	specify	the	body	of	the
email	in	html	format.	Not	used	with	the
QuickSend	method.

HtmlBodyCharSet The	character	set	to	be	used	for	the	email's
html-based	body.

Organization The	organization	sending	the	email.

Priority The	priority	rating	of	the	email.

ReturnReceipt If	this	is	set	to	TRUE	and	the	recipient's	server
supports	this	feature	then	a	confirmation	email
will	be	sent	to	the	supplied	From	address	when
the	email	is	retrieved	by	the	recipient.

Subject The	subject	field	of	the	email.	Not	used	with	the
QuickSend	method.

TimeOutConnect The	connection	time	out	value.

TimeOutReceive The	receive	time	out	value.

TimeOutSend The	send	time	out	value.

	

	 	

Collection	Properties 	

Attachments Collection	of	Attachment	objects,	specifying	the
attachments	to	be	sent	with	the	email	(not	used
by	the	QuickSend	method).

CustomHeaders Collection	of	CustomHeader	objects,	specifying
the	custom	headers	to	be	added	to	the	email
(not	used	by	the	QuickSend	method).

DNSServers Collection	of	DNSServer	objects,	specifying	the
DNS	server(s)	to	be	used.	Improves	the	speed
and	efficiency	of	the	mail	operation.

HtmlEmbeddedObjs Collection	of	HtmlEmbeddedObj	objects,
specifying	the	objects	which	are	embedded	into
the	HtmlBody	of	the	email.	Not	used	by	the

QuickSend	method.

SMTPRelayServers Collection	of	SMTPRelayServer	objects,
specifying	the	SMTP	server(s)	to	be	used.
Improves	the	speed	and	efficiency	of	the	mail
operation.	If	no	SMTP	servers	are	used	then
the	email	is	sent	using	DirectSend.

TOs Collection	of	Address	objects,	specifying	the
recipients	of	the	email	(not	used	by	the
QuickSend	method).

CCs Collection	of	Address	objects.	This	specifies
the	CC	recipients	of	the	email.	Not	used	by	the
QuickSend	method.

BCCs Collection	of	Address	objects.	This	specifies
the	BCC	recipients	of	the	email.	Not	used	by
the	QuickSend	method.

ReplyTOs Collection	of	Address	objects.	This	specifies
the	addresses	to	be	used	for	message	replies.
Not	used	by	the	QuickSend	method.

Body	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Determines	the	body	of	the	email	(unless	you	are	calling	the	QuickSend
method).

Syntax

MailerObject.Body	=	[string]

The	Body	property	syntax	has	the	following	parts:

Part Description

string A	string	expression	which	determines	the	body	of	the	email.

Remarks

Set	this	property	to	specify	the	body	of	an	email	message.

The	QuickSend	method	does	not	use	this	property.

Please	note	that	the	maximum	allowable	size	of	the	email	body	is	32Kb.

NOTE:	if	you	set	both	the	Body	property	and	the	HtmlBody	property
before	sending	the	message	then	the	type	of	body	displayed	is
dependent	on	the	default	settings	of	the	recipient's	email	software.	If	the
recipient	defaults	to	html	email	then	the	body	displayed	will	be
determined	by	the	HtmlBody	property.	However,	if	the	recipient's	email
program	defaults	to	text-based	email	then	the	Body	property	determines
the	body	of	the	message.

See	Also:	SendMail

BodyCharSet	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

This	property	determines	the	character	set	to	be	used	for	the	text-based
body	of	the	email.

Syntax

MailerObject.BodyCharSet	=	[string]

The	BodyCharSet	property	syntax	has	the	following	parts:

Part Description

string Any	valid	character	set.	Defaults	to	"US-ASCII".

Remarks

Use	this	property	to	select	a	character	set	for	the	message	body.	The
value	of	BodyCharSet	is	used	in	conjunction	with	the	Body	property
which	determines	the	text-based	body	of	the	email.	Alternatively	you	can
set	the	BodyCharSet	property	and	load	the	message	body	from	file	via
the	LoadBodyFromFile	method.

To	select	a	character	set	for	an	html-based	email	use	the
HtmlBodyCharSet	property.

See	Also:	Body

ConfirmRead	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

If	this	property	is	set	to	TRUE	and	the	recipient's	user	agent	(email
software)	supports	this	feature	then	a	confirmation	email	will	be	sent
when	the	email	is	read	by	the	recipient.

Syntax

MailerObject.ConfirmRead	=	[boolean]

The	ConfirmRead	property	syntax	has	the	following	parts:

Part Description

boolean Set	this	to	TRUE	to	request	confirmation	that	the	email	has
been	read.	Defaults	to	FALSE.

Remarks

If	ConfirmRead	is	set	to	TRUE	and	this	feature	is	also	supported	by	the
client's	user	agent	then	a	notice	will	be	sent	back	to	the	address	in	the
email's	From	header	confirming	that	the	email	has	been	read.

NOTE:	Make	sure	you	supply	a	valid	email	address	for	the	From	field
when	sending	the	message,	since	it	is	the	address	in	the	From	header
which	determines	where	the	confirmation	reply	is	sent.	If	you	are	using
SendMail	then	ensure	that	the	FromAddress	property	has	been	set
before	sending	the	email.	If	you	are	using	the	QuickSend	method	make
sure	that	you	supply	the	correct	email	address	for	the	From	argument.

This	property	can	be	used	in	conjunction	with	all	methods	which	send	an
email.

The	PostArticle	method	does	not	utilize	the	ConfirmRead	property.

Microsoft's	Outlook	supports	this	feature,	while	OutLook	Express	does
not.

See	Also:	ReturnReceipt

FromAddress	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

The	email	address	of	the	message	sender.

Syntax

MailerObject.FromAddress	=	[string]

The	FromAddress	property	syntax	has	the	following	parts:

Part Description

string The	email	address	the	message	is	being	sent	from.	Defaults
to	a	zero-length	string.

Remarks

If	the	FromName	property	is	a	zero-length	string	then	this	FromAddress
property	determines	the	contents	of	the	From	header,	and	when	the	client
reads	the	message	this	email	address	will	be	what	appears	in	the	client
software's	From	field	(e.g.	johnd@dundas.com).

If	the	FromName	property	has	been	set	then	both	the	FromName	and
FromAddress	properties	make	up	the	From	header	of	the	email.	When
the	client	reads	the	message	the	From	field	will	then	contain	either	both
properties	(e.g.	John	Doe	<johnd@dundas.com>)	or	just	the	FromName
value,	depending	on	the	client's	user	agent.

Although	this	property	does	not	have	to	be	set	when	using	SendMail	(the
function	calls	will	not	fail)	we	highly	recommend	that	you	do	specify	a
valid	email	address	for	FromAddress.

NOTE:	You	MUST	set	this	property	if	you	want	to	use	either	the
ConfirmRead	property	or	the	ReturnReceipt	property.

If	the	ReplyTo	collection	has	no	items	in	it	then	the	address	used	for
replies	is	retrieved	from	this	FromAddress	property.	You	MUST	SET	the
FromAddress	property	when	posting	an	article	with	the	PostArticle
method.

See	Also:	FromName

FromName	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

The	name	of	the	email	sender.

Syntax

MailerObject.FromName	=	[string]

The	FromName	property	syntax	has	the	following	parts:

Part Description

string Name	of	the	person	sending	the	message.	Defaults	to	a	zero-
length	string	(optional).

Remarks

The	FromAddress	property	MUST	be	set	if	you	want	to	use	FromName.

If	the	FromName	property	is	a	zero-length	string	then	the	FromAddress
property	determines	the	contents	of	the	From	header	of	the	email,	and
when	the	client	reads	the	message	this	email	address	will	be	what
appears	in	the	client	software's	From	field	(e.g.	johnd@dundas.com).

If	the	FromName	property	has	been	set	then	both	the	FromName	and
FromAddress	properties	make	up	the	From	header	of	the	email.	When
the	client	reads	the	message	the	From	field	will	then	contain	either	both
properties	(e.g.	John	Doe	<johnd@dundas.com>),	or	the	value	of
FromName,	depending	on	the	client's	user	agent.

See	Also:	FromAddress

HtmlBody	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

The	html	body	of	the	message.

Syntax

MailerObject.HtmlBody	=	[string]

The	HtmlBody	property	syntax	has	the	following	parts:

Part Description

string A	string	expression	containing	html	code	which	constitutes	the
body	of	the	email.

Remarks

Use	this	property	to	send	the	body	of	the	email	in	an	html	format.

Using	html	for	the	body	of	your	email	allows	you	to	embed	html	objects
into	your	message	body	via	the	HtmlEmbeddedObjs	collection.

It	is	also	possible	to	set	the	email	body	by	using	the	LoadBodyFromFile
method.	Just	make	sure	that	the	appropriate	html	tags	are	included	in	the
ASCII	file.

The	HtmlBody	property	MUST	CONTAIN	all	standard	html	headers	that
any	html	page	would	contain	(e.g.	<html><head></head><body></body>
</html>).	It	is	the	responsiblity	of	the	developer	to	supply	these	tags
when	setting	the	HtmlBody	property.

The	QuickSend	method	can	only	send	text-based	email.	You	must	use
SendMail	in	order	to	send	an	email	with	an	html	body.

If	you	set	both	the	Body	property	and	the	HtmlBody	property	before
sending	the	message	then	the	type	of	body	displayed	is	dependent	on
the	default	settings	of	the	client's	email	software.	If	the	client	defaults	to
html	email	then	the	body	displayed	will	be	determined	by	the	HtmlBody
property.	However,	if	the	client's	email	program	defaults	to	text-based
email	then	the	Body	property	determines	the	body	of	the	message.

Note	that	you	will	need	to	replace	any	carriage	return/linefeed	characters
with	
	or	<p>	tags	from	text	gathered	with	textboxes	if	you	want	to
display	the	email	body	on	more	than	one	line.

The	PostArticle	method	can	also	use	html	but	we	strongly	discourage	this
practice.	Many	servers	WILL	NOT	accept	articles	in	an	html	format.

The	maximum	allowable	size	of	the	email	body	is	32Kb.

Refer	to	Tutorial	2:	Sending	an	Html	Email	with	an	Embedded	Image	for
example	source	code	on	sending	an	html	email.

See	Also:	Body	|	Dundas	Upload	Control	|	HtmlEmbeddedObjs
Collection

HtmlBodyCharSet	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

This	property	determines	the	character	set	to	be	used	for	the	body	of	an
html-based	email.

Syntax

MailerObject.HtmlBodyCharSet	=	[string]

The	HtmlBodyCharSet	property	syntax	has	the	following	parts:

Part Description

string Any	valid	character	set.	Defaults	to	US-ASCII.

Remarks

Use	this	property	to	select	a	character	set	for	the	message	body.	The
value	of	HtmlBodyCharSet	is	used	in	conjunction	with	the	HtmlBody
property	which	determines	the	html-based	body	of	the	email.	Alternatively
you	can	set	the	HtmlBodyCharSet	property	and	load	the	message	body
from	file	via	the	LoadBodyFromFile	method	(make	sure	that	the	text	file
has	the	appropriate	html	tags	in	it).

To	select	a	character	set	for	text-based	email	use	the	BodyCharSet
property.

See	Also:	HtmlBody

TimeOutConnect	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Retrieves	or	sets	the	connection	time	out	value	in	seconds.

Syntax

MailerObject.TimeOutConnect	=	[long]

The	TimeOutConnect	property	syntax	has	the	following	parts:

Part Description

long Any	positive	long	expression.	The	time	to	wait	for	a
connection	to	be	established	before	cancelling	the	operation.
Defaults	to	30	seconds.

Remarks

You	can	increase	this	value	if	your	connection	attempts	to	the	server
continually	time	out.

Note	that	this	timeout	value	is	multiplied	if	you	specify	more	than	one
SMTP	or	DNS	servers.	In	otherwords,	the	timeout	value	is	applied	on	a
per	connection	attempt	basis.

See	Also:	TimeOutReceive	|	TimeOutSend

Organization	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

This	property	determines	the	contents	of	the	Organization	header	of	the
email,	indicating	the	organization	the	message	was	sent	from.

Syntax

MailerObject.Organization	=	[string]

The	Organization	property	syntax	has	the	following	parts:

Part Description

string The	organization	the	message	was	sent	from.	Defaults	to	a
zero-length	string.

Remarks

This	method	adds	an	Organization	header	which	describes	the
organization	to	which	the	sender	belongs,	or	to	which	the	machine
belongs.	The	intent	of	this	header	is	to	help	identify	the	person	posting
the	message,	since	host	names	are	often	so	cryptic	that	it	is	difficult	to
determine	the	organization	which	sent	the	message.

See	Also:	FromAddress	|	FromName

Priority	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

This	property	determines	the	priority	of	the	message.

Syntax

MailerObject.Priority	=	[integer]

The	Priority	property	syntax	has	the	following	parts:

Part Description

integer Priority	level	of	the	message,	ranging	from	one	(1)	to	five	(5).
One	is	the	highest	priority	while	five	is	the	lowest	priority.
Defaults	to	-1	(no	priority	rating).

Remarks

Priority	determines	the	contents	of	the	X-Priority	header	of	the	email.	If
the	value	of	this	property	is	-1	then	the	email	message	will	not	contain	the
X-Priority	header.

The	use	of	this	header	depends	on	the	client	email	software	being	used
by	the	recipient	of	the	message.	For	example,	Outlook	Express	assigns
special	icons	to	messages	of	high	priority	and	low	priority.

Usually	a	priority	of	1	or	2	will	be	indicated	as	high	priority	while	4	or	5	will
be	indicated	as	a	low	priority.

	

ReturnReceipt	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

If	this	property	is	set	to	TRUE	and	the	client's	user	agent	(email	software)
supports	this	feature	then	confirmation	will	be	sent	to	the	address	in	the
email's	From	header	when	the	email	is	retrieved	by	the	recipient.

Syntax

MailerObject.ReturnReceipt	=	[boolean]

The	ReturnReceipt	property	syntax	has	the	following	parts:

Part Description

boolean Set	this	to	TRUE	to	request	confirmation	that	the	email	has
been	retrieved	by	the	recipient.	Defaults	to	FALSE.

Remarks

If	ReturnReceipt	is	set	to	TRUE	and	this	feature	is	also	supported	by	the
client's	user	agent	then	a	notice	will	be	sent	back	to	the	address	in	the
email's	From	header	confirming	that	the	email	has	been	retrieved	by	the
recipient.

NOTE:	Make	sure	you	supply	a	valid	email	address	for	the	From	field
when	sending	the	message,	since	it	is	the	address	in	the	From	header
which	determines	where	the	confirmation	reply	is	sent.	If	you	are	using
SendMail	ensure	that	the	FromAddress	property	has	been	set	before
sending	the	email.	If	you	are	using	the	QuickSend	method	make	sure
that	you	supply	the	correct	email	address	for	the	From	argument.

This	property	can	be	used	in	conjunction	with	ALL	methods	which	send
an	email.	PostArticle,	however,	does	not	utilize	the	ReturnReceipt
property.

Microsoft's	Outlook	supports	this	feature,	while	OutLook	Express	does
not.

See	Also:	ConfirmRead

Subject	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Use	this	property	to	set	the	Subject	field	of	your	message	if	you	are	not
using	the	QuickSend	method	to	send	the	email.

Syntax

MailerObject.Subject	=	[string]

The	Subject	property	syntax	has	the	following	parts:

Part Description

string A	string	expression	describing	the	subject	matter	of	the	email.

		Remarks

Use	this	property	to	set	the	Subject	field	of	the	email	if	you	are	using	the
SendMail	method	to	send	the	email	message.	The	QuickSend	method
sets	the	Subject	field	via	its	Subject	argument.

We	strongly	recommend	that	you	set	this	property	before	sending	an
email.

See	Also:	Body	|	HtmlBody

TimeOutReceive	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Use	this	property	to	retrieve	or	set	the	receive	time	out	value.

Syntax

MailerObject.TimeOutReceive	=	[long]

The	TimeOutReceive	property	syntax	has	the	following	parts:

Part Description

long The	amount	of	time	(in	seconds)	to	wait	for	a	reply	from	the
SMTP	server.	Defaults	to	30	seconds.

		Remarks

You	can	increase	this	property	if	a	requested	mail	operation	continually
times	out	on	you.

See	Also:	TimeOutConnect	|	TimeOutSend

TimeOutSend	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Use	this	property	to	retrieve	or	set	the	send	time	out	value.

Syntax

MailerObject.TimeOutSend	=	[long]

The	TimeOutSend	property	syntax	has	the	following	parts:

Part Description

long The	amount	of	time	(in	seconds)	that	a	message	will	wait	to	be
sent	before	the	operation	times	out.

		Remarks

This	property	setting	determines	how	long	the	message	will	wait	in	the
queue	before	the	send	mail	operation	times	out.

See	Also:	TimeOutConnect	|	TimeOutReceive

Dundas	Mailer	Control	1.0	Methods

Copyright	©	Dundas	Software	Ltd.	2000,	All	Rights	Reserved.

Overview	|	Properties	|	Methods

EncodeHeader Use	this	method	to	encode	an	html	header.	Useful
for	non-ASCII	header	values.

LoadBodyFromFile Loads	the	message	body	from	a	file.

QuickSend Sends	an	email	without	having	to	set	any	properties
or	collections.

PostArticle Call	this	method	to	post	an	article	to	a	news	group.

SendMail Sends	an	email.	Unlike	QuickSend	this	does	not	use
any	arguments,	so	you	must	set	properties	and
collections	before	calling	this	method.

ValidateAddress Call	this	function	if	you	want	to	validate	an	email
address.
	

EncodeHeader	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Use	this	method	to	encode	an	html	header.	Useful	for	non-US-ASCII
header	values.

Syntax

[string]	=	MailerObject.EncodeHeader(Text	As	String,	CharSet	As	String,
[Encoding	As	Long	=	0])

The	EncodeHeader	method	syntax	has	the	following	parts:

Part Description

Text The	string	value	of	the	header	which	is	to	be	encoded.

CharSet The	character	set	to	be	used	for	the	header.

Encoding Optional.	The	type	of	encoding	to	be	used,	either	BASE64	(1),
or	QUOTEDPRINTABLE	(0).	Defaults	to	0.

string The	encoded	version	of	the	header.

		Return	Values

A	string	expression	which	is	the	encoded	value	of	the	Text	argument.

Remarks

This	method	lets	you	specify	character	sets	other	than	the	standard	US-
ASCII	character	set	for	the	message	headers.	This	is	particularly	useful
for	setting	the	Subject	header	and	the	FromName	component	of	the
From	header	to	non-English	values.

To	use	"Quoted	Printable"	encoding	set	the	Encoding	argument	to	zero
(0)	or	use	the	default	value.	To	use	BASE64	encoding	specify	a	value	of
one	(1)	for	the	Encoding	argument.

Use	either	BodyCharSet	or	HtmlBodyCharSet	to	specify	a	non-"US-
ASCII"	character	set	for	the	message	body.

See	Also:	CustomHeader	Object	|	CustomHeaders	Collection	|	Add
Method	(CustomHeaders	collection)

LoadBodyFromFile	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Call	this	method	to	load	the	message	body	from	any	text	file.
LoadBodyFromFile	can	be	used	for	both	text-based	and	html-based
emails.

Syntax

MailerObject.LoadBodyFromFile(FileName	as	string,	[HtmlText	as
boolean	=	False])

The	LoadBodyFromFile	method	syntax	has	the	following	parts:

Part Description

FileName The	full	pathname	of	the	file	to	load	into	the	message	body.

HtmlText If	TRUE	then	the	file	contents	are	loaded	into	the	HtmlBody
property,	otherwise	the	file	contents	are	loaded	into	the	Body
property	(text-based).	Defaults	to	FALSE.

Remarks

Use	this	method	to	load	the	message	body	from	file.	The	file	can	be	any
valid	ASCII	file	(e.g.	.htm	and	.txt	files).

An	exception	is	thrown	if	an	error	occurs.	Trap	for	the	success/failure	of
the	operation	by	examining	VBScript's	Err	object	immediately	after	calling
this	method	(the	Number	property	of	the	Err	object	will	be	a	non-zero
value	if	an	error	occurred).	MAKE	SURE	that	you	have	enabled	inline
error	trapping	by	using	an	On	Error	Resume	Next	statement	at	the
beginning	of	the	ASP	page.

If	you	use	this	method	to	set	the	HtmlBody	property	then	it	is	up	to	you

to	make	sure	that	the	ASCII	file	contains	all	necessary	html	tags	(e.g.
<html>,	<body>,	etc.).

See	Also:	Body	|	HtmlBody

PostArticle	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Call	this	method	to	post	an	article	to	a	newsgroup.	You	can	post	to	either
the	root	of	the	article	listing	or	beneath	an	existing	article.

Syntax

MailerObject.PostArticle(Server	as	string,	[Group	as	string	=	"",
UserName	as	string	=	"",	Password	as	string	=	"",	Port	as	long	=	119])

The	PostArticle	method	syntax	has	the	following	parts:

Part Description

Server The	name	of	the	server	to	post	the	article	to	(e.g.
msnews.microsoft.com),	or	its	corresponding	IP	address.

Group The	name	of	the	news	group	to	post	the	article	to.	Defaults
to	a	zero-length	string.

UserName Username	of	the	news	group	account	(usually	not	required
by	newsgroups).	Defaults	to	a	zero-length	string.

Password Password	of	the	news	group	account	(usually	not	required
by	newsgroups).	Defaults	to	a	zero-length	string.

Port The	port	to	be	used	when	posting	the	article.	Defaults	to	port
119.

		Remarks

An	exception	is	thrown	if	an	error	occurs.	Trap	for	the	success/failure	of
the	operation	by	examining	VBScript's	Err	object	immediately	after	calling

this	method	(the	Number	property	of	the	Err	object	will	be	a	non-zero
value	if	an	error	occurred).	MAKE	SURE	that	you	have	enabled	inline
error	trapping	by	using	an	On	Error	Resume	Next	statement	at	the
beginning	of	the	ASP	page.

The	material	to	be	posted	is	determined	by	the	Body	property	(you	can
alternatively	use	the	HtmlBody	property	but	not	all	news	servers	support
html-based	articles).	PostArticle	uses	all	properties	of	the	Mailer	control
except	for	the	ones	listed	below:

Priority

ReturnReceipt

ConfirmRead

TOs	collection

CCs	collection

BCCs	collection

DNSServers	collection,	and

SMTPRelayServers	collection

You	MUST	specify	the	name	of	the	server	the	article	is	to	be	posted	to.
You	can	then	set	the	Group	argument	to	the	name	of	the	news	group	to
post	to	or	alternatively	you	can	leave	this	as	a	zero-length	string	and	then
add	the	"Group"	custom	header	to	the	CustomHeaders	collection.	Set	the
value	of	this	custom	header	to	the	name	of	the	news	group	to	post	to.

If	there	are	no	items	in	the	ReplyTOs	collection	then	the	FromAddress
property	determines	the	address	to	be	used	for	replies.	You	will	also
HAVE	TO	set	the	Body	property	before	sending	the	article.	If	you	try	to
post	an	"empty"	article	a	trappable	error	will	occur.

You	can	post	to	more	than	one	group	by	specifying	multiple	news	groups
for	the	Group	argument	and	then	separating	the	multiple	entries	with
commas.	If	you	are	using	the	CustomHeaders	collection	to	specify	the

news	groups	then	just	add	the	names	of	the	desired	news	groups	to	this
collection.

You	also	have	the	option	of	posting	either	to	the	root	of	the	news	article
listing	(the	default)	or	you	can	post	your	article	so	that	it	appears	below
an	existing	article.	To	have	your	article	appear	as	a	node	of	an	existing
article	you	have	to	know	the	MessageID	of	the	desired	"root"	article.	If
you	know	the	MessageID	you	can	add	a	custom	header	named
"References"	to	the	CustomHeaders	collection.	Set	this	custom	header	to
the	MessageID	of	the	desired	"root"	article.	When	the	PostArticle
method	executes	it	looks	in	the	CustomHeaders	collection	for	the
"References:"	header	and	if	this	header	exists	the	article	is	posted
beneath	the	article	specified	by	the	MessageID.

The	UserName	and	Password	arguments	are	only	required	if	the
newsgroup	you	belong	to	requires	authentication	(which	is	usually	not	the
case).

To	use	an	optional	parameter	without	specifying	any	values	for	previous
optional	parameters	just	enter	consecutive	commas	for	the	missing
arguments.	For	example,	"PostArticle("someserver.com",,,,323)"	is	a
valid	function	call.

For	example	source	code	illustrating	how	to	post	a	news	atricle	see
Tutorial	3:	Posting	to	a	Newsgroup	.

See	Also:	CustomHeaders	Collection	|	Add	Method	(CustomHeaders
collection)

QuickSend	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Use	this	method	to	send	an	email.	Most	headers	are	set	explicitly	via	the
method's	arguments.

Syntax

[long]	=	MailerObject.QuickSend(From	as	string,	To	as	string,	Subject	as
string,	Body	as	string,	[CC	as	string,	Attachments	as	string])

The	QuickSend	method	syntax	has	the	following	parts:

Part Description

From The	sender	of	the	email.	Usually	this	is	the	email	address
of	the	person	sending	the	message.	You	can	optionally
precede	the	sender's	address	with	the	name	of	the
sender.

To Destination	address	of	the	email.	You	can	optionally
precede	the	address	with	the	recipient's	name.

Subject Subject	of	the	message.

Body Body	of	the	message.

CC Optional.	Email	address(es)	to	have	carbon	copies	of	the
message	sent	to.

Attachments Optional.	A	comma-delimited	list	of	attachments	to	be	sent
with	the	email.

		Remarks

An	exception	is	thrown	if	an	error	occurs.	Trap	for	the	success/failure	of
the	operation	by	examining	VBScript's	Err	object	immediately	after	calling
this	method	(the	Number	property	of	the	Err	object	will	be	a	non-zero
value	if	an	error	occurred).	MAKE	SURE	that	you	have	enabled	inline
error	trapping	by	using	an	On	Error	Resume	Next	statement	at	the
beginning	of	the	ASP	page.	If	an	SMTP	relay	server	is	being	used	to
send	the	message	then	the	indicated	success/failure	only	pertains	to
getting	the	message	to	the	relay	server.	The	mail	operation	is	then	in	the
hands	of	the	relay	server.

You	can	use	this	method	to	send	an	email	without	having	to	set	any
properties	or	collections.

You	must	provide	values	for	the	From,	To,	Subject	and	Body	arguments
when	calling	this	method.

The	following	is	a	listing	of	optional	properties/collections	which	are
utilized	by	QuickSend:

Priority	property.

All	time	out	properties	(TimeOutConnect,	TimeOutReceive,
TimeOutSend).

ReturnReceipt	property.

ConfirmRead	property.

SMTPRelayServers	collection.

DNSServers	collection.

Note	that	QuickSend	does	not	support	html	email.	To	send	a	message
with	an	html	body	call	the	SendMail	method.

To	specify	multiple	values	for	the	To	or	Cc	arguments	separate	the
multiple	entries	with	commas.

For	example	source	code	on	how	to	use	this	method	see	QuickStart.

See	Also:	SendMail

SendMail	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Use	this	method	to	send	an	email.

Syntax

MailerObject.SendMail()

Remarks

An	exception	is	thrown	if	an	error	occurs.	Trap	for	the	success/failure	of
the	operation	by	examining	VBScript's	Err	object	immediately	after	calling
this	method	(the	Number	property	of	the	Err	object	will	be	a	non-zero
value	if	an	error	occurred).	MAKE	SURE	that	you	have	enabled	inline
error	trapping	by	using	an	On	Error	Resume	Next	statement	at	the
beginning	of	the	ASP	page.	If	an	SMTP	relay	server	is	being	used	to
send	the	message	then	the	indicated	success/failure	only	pertains	to
getting	the	message	to	the	relay	server.	The	mail	operation	is	then	in	the
hands	of	the	relay	server.

To	send	an	email	with	this	method	you	MUST	specify	the	message
recipient(s)	by	using	either	the	TOs,	CCs	or	BCCs	collections.	To	set	the
body	of	the	email	use	the	Body	property	and/or	the	HtmlBody	property.
To	specify	the	Subject	use	the	Subject	property.

SendMail	uses	ALL	properties	and	collections	of	the	Dundas	Mailer
control.

The	advantage	of	using	SendMail	as	opposed	to	QuickSend	is	that
SendMail	incorporates	all	features	of	the	Dundas	Mailer	control.

Unlike	the	QuickSend	method	SendMail	is	capable	of	sending	a
message	with	an	html	body.

For	example	source	code	illustrating	the	use	of	SendMail	see	one	of	the

following	tutorials:

QuickStart

Tutorial	1:	Sending	an	Email	with	an	Attachment

Tutorial	2:	Sending	an	Html	Email	with	an	Embedded	Image

See	Also:	QuickSend

ValidateAddress	(Dundas	Mailer	Control	1.0)

Overview	|	Properties	|	Methods

Call	this	method	to	validate	an	email	address.

Syntax

[long]	=	MailerObject.ValidateAddress(Address	as	string)

The	ValidateAddress	method	syntax	has	the	following	parts:

Part Description

Address A	string	expression	specifying	the	address	to	be	validated.

long The	return	value	of	the	method	call	signifying	the	validity	of	the
supplied	address.

		Return	Values

This	function	will	return	zero	(0)	if	the	supplied	email	address	is	valid.	A
non-zero	return	value	indicates	an	invalid	address.	The	following	is	a
listing	of	return	values	and	their	meanings:

One	(1):	The	specified	address	was	empty.

Two	(2):	The	specified	address	was	too	large.

Three	(3):	The	SMTP	send	operation	failed.

Four	(4):	The	specified	user	was	not	found.

Five	(5):	The	MX	record	was	not	found.

Six	(6):	The	address	validation	operation	failed.

NOTE:	unlike	the	other	Mailer	control	methods	ValidateAddress	WILL

NOT	raise	an	exception	if	an	error	occurs.

Remarks

IMPORTANT:	If	you	do	not	specify	a	DNS	server	before	calling	this
method	then	it	will	take	a	substantial	amount	of	time	to	perform	the
validation.	Make	sure	you	use	a	DNS	server!

ValidateAddress	uses	the	DNSServers	collections	to	perform	mail
exchange	lookups,	so	it	is	highly	recommended	that	you	add	multiple
DNS	servers	to	this	collection.	If	no	DNS	servers	have	been	added	to	the
DNSServers	collection	then	the	following	default	servers	will	be	tried	in
their	respective	order:	"A.ROOT-SERVERS.NET",	"B.ROOT-
SERVERS.NET"	and	"C.ROOT-SERVERS.NET".	If	these	servers	are	not
available	then	the	method	call	will	fail	and	return	an	error	code.

To	validate	an	address	this	method	first	determines	if	the	specified
domain	name	exists	(remember	that	an	email	address	consists	of
username@domainname)	by	performing	a	DNS	lookup	of	mail	exchange
records.	If	the	domain	name	exists	we	then	initiate	sending	a	message	to
the	specified	username	for	the	domain	whose	existence	was	just	verified.
If	the	server	for	the	specified	domain	name	then	refuses	to	accept	any
data	for	the	username	ValidateAddress	returns	FALSE,	indicating	that
the	address	does	not	exist.	However,	if	the	server	requests	data	we
assume	that	the	specified	username	exists	and	the	function	call	returns
TRUE.

NOTE:	In	certain	instances	the	ValidateAddress	method	may	return
erroneous	information	concerning	the	existence	of	an	email	address.	This
may	occur	as	a	result	of:

The	mail	server	being	down	temporarily.

The	SMTP	protocol	implementation	of	the	server.

You	can	increase	the	efficiency	and	speed	of	ValidateAddress	by	adding
DNS	servers	to	the	DNSServers	collection.

See	Also:	DNSServers	Collection

Address	Object	(Dundas	Mailer	Control	1.0)

An	Address	object	stores	details	about	a	particular	email	address.

Remarks

This	object	is	used	in	the	TOs,	CCs,	BCCs	and	ReplyTOs	collections.	To
add	Address	objects	to	these	collections	use	their	Add	methods.

The	Address	object	consists	of	the	following	two	(2)	properties:

Address	as	string.	Any	valid	email	address	(e.g.
jimmys@dundas.com).

Name	as	string.	An	optional	name	which	will	precede	the	Address
property	(e.g.	"Jimmy	Smith")

If	we	specify	an	address	and	a	name	then	the	name	will	precede	the
address	property	or	be	the	only	thing	displayed,	depending	on	the	type	of
email	software	being	used	by	the	client.	For	example,	if	the	specified
Address	property	is	"jimmys@dundas.com"	and	the	Name	property	has
been	set	to	"Jimmy	Smith"	then	the	address	displayed	by	the	client's
email	software	will	be	either	"Jimmy	Smith"	<jimmys@dundas.com>	or
just	"Jimmy	Smith".

The	Name	property	defaults	to	a	zero-length	string.

See	Also:	BCCs	collection	|	CCs	collection	|	ReplyTos	collection	|	TOs
collection

Attachment	Object	(Dundas	Mailer	Control	1.0)

This	object	is	used	to	store	details	about	a	file	attachment	to	be	sent	with
the	email.	Not	used	by	the	QuickSend	method.

Remarks

This	object	comprises	the	Attachments	collection.	To	add	Attachment
objects	to	the	Attachment	collection	use	the	collection's	Add	method.	To
remove	a	single	attachment	call	the	Remove	method	of	the	collection.	To
clear	all	Attachment	objects	from	the	collection	use	the	Clear	method.

The	Attachment	object	consists	of	the	following	six	(6)	properties:

FileName	as	string.	The	full	pathname	of	the	file	to	be	attached	to
the	message.

ContentName	as	string.	Name	to	be	displayed	in	the	client	email
software.	Defaults	to	the	specified	FileName	argument.

ContentType	as	string.	Specifies	the	content	type	of	the	attachment.
Defaults	to	"Application/Octet-stream".

EncodingType	as	string.	The	type	of	MIME	encoding	used.	This
defaults	to	"BASE64".

CharSet	as	string.	Specifies	the	character	set	to	be	used	for	the
attachment.	Defaults	to	"US-ASCII".

CustomHeaders	as	string.	Used	to	add	custom	headers	to	the	file
attachment.	Defaults	to	a	zero-length	string.

If	you	do	not	specify	a	value	for	the	ContentName	property	then	the	client
email	software	will	reference	the	attachment	by	using	the	FileName
parameter.

The	Content-Type	header	field	(represented	by	the	ContentType
property)	is	used	to	specify	the	nature	of	the	data	in	the	attachment.	It
uses	type	and	subtype	identifiers	in	the	format	of	"type/sub-type"	(e.g.

text/html,	text/plain,	etc.)	and	also	provides	auxiliary	information	that	may
be	required	for	certain	types.	After	the	type	and	subtype	names	the
remainder	of	the	header	field	is	simply	a	set	of	parameters,	specified	in
an	attribute/value	notation.	These	parameters	differ	for	different	types,
and	the	ordering	of	the	parameters	is	not	important.	Among	the	defined
arguments	is	a	"charset"	parameter	which	determines	the	character	set
to	be	used	for	the	attachment.	Comments	are	allowed	in	accordance	with
RFC	822,	and	the	rules	for	structured	header	fields	may	be	found	in	RFC
2046.

The	CharSet	property	determines	the	character	set	to	be	used	for	the
attachment.

The	two	supported	encoding	types	(as	specified	by	the	EncodingType
argument)	are	"BASE64"	and	"QUOTEDPRINTABLE".	If	you	want	to
explicitly	set	the	EncodingType	parameter	then	keep	in	mind	that	it	must
be	uppercase,	and	the	value	of	this	argument	is	used	for	the	value	of	the
"Content-Transfer-Encoding"	header.	If	an	invalid	type	is	specified	then
"BASE64"	is	used.	For	more	information	about	the	"Content-Transfer-
Encoding"	header	refer	to	RFC	2045.

Note	that	the	QuickSend	method	DOES	NOT	utilize	the	Attachments
collection.

If	you	are	using	the	Dundas	Upload	control	you	can	loop	through	all	items
in	the	the	Upload	control's	Files	collection	and	add	each	UploadedFile
object	to	the	Attachments	collection.	The	uploaded	files	will	then	be	sent
along	with	the	email	as	attachments.	Note	that	the	ContentType	of	the
UploadedFile	will	be	used	for	the	ContentType	of	the	Attachment	object,
unless	you	set	this	argument	explicitly.	See	Tutorial	1:	Sending	an	Email
with	an	Attachment	for	sample	code	which	demonstrates	using	the
Upload	control	in	conjunction	with	the	Mailer	control.

See	Also:	Attachments	Collection	|	Add	Method	|	Remove	Method	|	Item
Method	|	Count	Property

Attachments	Collection	(Dundas	Mailer	Control	1.0)

The	Attachments	collection	is	0-based	and	stores	Attachment	objects.
This	collection	determines	how	many	attachments	will	be	sent	with	the
email	if	you	use	the	SendMail	method.

Remarks

To	specify	the	attachments	to	be	sent	with	the	email	add	Attachment
objects	to	this	collection	(unless	you	are	using	the	QuickSend	method	to
send	the	mail).

The	Attachments	collection	supports	the	following	methods	and
properties:

Add(FileName	as	string,	[ContentName	as	string	=	FileName,
ContentType	as	string	=	"Application/Octet-stream",	EncodingType
as	string	=	"BASE64",	CharSet	as	string	=	"US-ASCII",
CustomHeaders	as	string	=	""]).	Adds	an	attachment	to	the
collection.

Remove(Index).	Removes	an	attachment	from	the	collection.

Count	(read-only	property).	The	number	of	Attachment	objects
stored	in	the	collection.

Item(Index).	Used	to	retrieve	an	Attachment	object	from	the
collection.

Clear().	Removes	all	objects	from	the	collection.

The	Index	argument	can	be	either	a	zero-based	numerical	index	or	a
string	key.	The	string	key	is	defined	by	the	FileName	property	of	the
Attachment	object.

If	you	are	using	the	Dundas	Upload	control	you	can	loop	through	all	items
in	the	the	Upload	control's	Files	collection	and	add	each	UploadedFile
object	to	the	Attachments	collection.	The	uploaded	files	will	then	be	sent
along	with	the	email	as	attachments.	Note	that	the	ContentType	of	the
UploadedFile	will	be	used	for	the	ContentType	of	the	Attachment	object,
unless	you	set	this	argument	explicitly.	See	Tutorial	1:	Sending	an	Email
with	an	Attachment	for	sample	code	which	demonstrates	using	the
Upload	control	in	conjunction	with	the	Mailer	control.

The	QuickSend	function	does	not	use	this	collection.

See	Also:	Attachment	Object	|	Add	Method	|	Remove	Method	|	Clear
Method	|	Item	Method	|	Count	Property	

	

	

	

CustomHeader	Object	(Dundas	Mailer	Control	1.0)

This	object	is	used	with	the	CustomHeaders	collection.

Remarks

To	add	CustomHeader	objects	to	the	CustomHeaders	collection	use	the
collection's	Add	method.	To	remove	one	item	call	the	Remove	method	of
the	collection.	To	clear	all	objects	from	the	collection	use	the	Clear
method.

The	CustomHeader	object	consists	of	the	following	two	(2)	properties:

Name	as	string.	The	name	of	the	custom	header	to	be	added	to	the
message.

Value	as	string.	The	value	of	the	specified	custom	header.

If	the	header	is	specific	for	your	application	then	by	convention	the
header	name	should	start	with	the	characters	"X-".

The	QuickSend	method	does	not	utilize	the	CustomHeaders	collection.

See	Also:	CustomHeaders	Collection	|	Add	Method	|	Remove	Method	|
Item	Method	|	Count	Property

	

CustomHeaders	Collection	(Dundas	Mailer	Control	1.0)

Stores	CustomHeader	objects.	This	collection	is	0-based	and	determines
the	custom	headers	to	be	added	to	the	email	message	(unless	you	are
using	the	QuickSend	method).

Remarks

This	collection	specifies	the	custom	headers	to	be	added	to	the	email.

The	CustomHeaders	collection	supports	the	following	methods	and
properties:

Add(Name	as	string,	Value	as	string).	Adds	a	CustomHeader	object
to	the	collection.

Remove(Index).	Removes	a	particular	object	from	the	collection.

Count	(read-only	property).	The	number	of	CustomHeader	objects
stored	in	the	collection.

Item(Index).	Used	to	retrieve	a	particular	object	from	the	collection.

Clear().	Removes	all	CustomHeader	objects	from	the	collection.

If	the	header	is	specific	for	your	application	then	by	convention	the
header	name	should	start	with	the	characters	"X-".

Custom	headers	are	very	helpful	if	you	want	to	automate	your	Internet
messaging	application,	since	headers	are	at	the	top	of	messages	and
require	less	reading	as	compared	to	the	whole	message.

The	QuickSend	function	does	not	use	this	collection.

See	Also:	CustomHeader	Object	|	Add	Method	|	Remove	Method	|	Clear

Method	|	Item	Method	|	Count	Property	

	

	

	

DNSServer	Object	(Dundas	Mailer	Control	1.0)

This	object	is	used	with	the	DNSServers	collection.

Remarks

To	add	DNSServer	objects	to	the	DNSServers	collection	use	the
collection's	Add	method.	To	remove	one	item	call	the	Remove	method	of
the	collection.	To	clear	all	objects	from	the	collection	use	the	Clear
method.

The	DNSServer	object	consists	of	the	following	property:

Name	as	string.	The	name	of	the	DNS	server	to	be	used,	or	its
corresponding	IP	address.

TCPIPRetryCount	as	long.	The	maximum	number	of	times	to
attempt	to	connect	to	the	server	using	the	TCP/IP	protocol.	Defaults
to	1.

UDPRetryCount	as	long.	The	maximum	number	of	times	to	attempt
to	connect	to	the	server	using	the	UDP	protocol.	Defaults	to	3.

If	the	SMTPRelayServers	collection	is	empty	then	the	email	message	is
sent	directly	to	the	destination	server,	so	a	DNS	server	is	required	to
determine	where	the	message	is	to	be	sent.	However,	if	the
SMTPRelayServers	collection	is	not	empty	then	the	message	is	sent
using	the	specified	relay	server,	and	the	DNSServers	collection	is
ignored	since	the	relay	server	is	responsible	for	determining	where	the
message	is	being	sent	to.	If	both	the	SMTPRelayServers	and
DNSServers	collections	are	empty	the	DNS	server	to	be	used	defaults	to
"A.ROOT-SERVERS.NET".	If	this	fails	"B.ROOT-SERVERS.NET"	will	be
tried.	If	this	too	fails	then	"C.ROOT-SERVERS.NET"	will	be	tried.	If	all	of
these	fail	then	the	mail	operation	will	fail	as	well.

There	are	two	(2)	methods	of	connecting	to	a	DNS	server:	using	the
TCP/IP	protocol	and	using	the	UDP	protocol.	Different	DNS	servers	may

support	either	protocol	or	both	protocols.	By	default	the	TCP/IP	method	is
tried	first.	If	this	fails	we	then	attempt	to	contact	the	server	using	UDP.	If
you	know	what	protocols	your	specified	DNS	servers	use	you	can
optimize	the	DNS	lookup	operations	by	specifying	which	protocol	to	use
when	working	with	the	DNS	server(s).

Specifying	multiple	DNS	servers	(when	not	using	SMTP	relays)	increases
the	reliability	and	performance	of	your	mail	operation.

This	collection	can	be	used	by	all	mail	sending	functions	(as	well	as
PostArticle),	depending	on	whether	SMTP	relay	servers	are	being	used
or	not.

See	Also:	CustomHeaders	Collection	|	Add	Method	|	Remove	Method	|
Item	Method	|	Count	Property

	

	

DNSServers	Collection	(Dundas	Mailer	Control	1.0)

Stores	DNSServer	objects.	This	collection	is	0-based	and	determines	the
DNS	server(s)	which	will	perform	the	DNS	lookups	necessary	to	send	the
email	message	if	SMTP	relay	servers	are	not	being	used.

Remarks

This	collection	specifies	the	DNS	server(s)	to	be	used	if	the	email	is
being	sent	directly	to	the	destination	server.

The	DNSServers	collection	supports	the	following	methods	and
properties:

Add(Name	as	string,	TCPIP	as	long,	UDP	as	long).	Adds	a
DNSServer	object	to	the	collection.

Remove(Index).	Removes	a	particular	object	from	the	collection.

Count	(read-only	property).	The	number	of	DNSServer	objects
stored	in	the	collection.

Item(Index).	Used	to	retrieve	a	particular	object	from	the	collection.

Clear().	Removes	all	objects	from	the	collection.

The	Index	argument	can	be	either	a	zero-based	numerical	index	or	a
string	key.	The	string	key	is	defined	by	the	Name	argument.

If	the	SMTPRelayServers	collection	is	empty	then	the	email	message	is
sent	directly	to	the	destination	server,	so	a	DNS	server	is	required	to
determine	where	the	message	is	to	be	sent.	However,	if	the
SMTPRelayServers	collection	is	not	empty	then	the	message	is	sent
using	the	specified	relay	server,	and	the	DNSServers	collection	is

ignored	since	the	relay	server	is	responsible	for	determining	where	the
message	is	being	sent	to.	If	both	the	SMTPRelayServers	and
DNSServers	collections	are	empty	the	DNS	server	to	be	used	defaults	to
"A.ROOT-SERVERS.NET".	If	this	fails	"B.ROOT-SERVERS.NET"	will	be
tried.	If	this	too	fails	then	"C.ROOT-SERVERS.NET"	will	be	tried.	If	all	of
these	fail	then	the	mail	operation	will	fail	as	well.

Note	that	the	first	server	in	the	collection	will	be	tried	first.	If	it	is	not
available	the	next	DNSServer	object	will	be	tried,	and	so	on	and	so	forth.

There	are	two	(2)	methods	of	connecting	to	a	DNS	server:	using	the
TCP/IP	protocol	and	using	the	UDP	protocol.	Different	DNS	servers	may
support	either	protocol	or	both	protocols.	By	default	the	TCP/IP	method	is
tried	first.	If	this	fails	we	then	attempt	to	contact	the	server	using	UDP.
However,	if	you	know	what	protocols	your	specified	DNS	servers	use	you
can	optimize	the	DNS	lookup	operations	by	specifying	which	protocol	to
use	when	working	with	the	DNS	server(s).

This	collection	may	be	used	by	all	send	mail	functions	(as	well	as
PostArticle),	depending	on	whether	SMTP	relay	servers	are	being	used
or	not.

See	Also:	DNSServer	Object	|	Add	Method	|	Remove	Method	|	Clear
Method	|	Item	Method	|	Count	Property	|	SMTPRelayServers	Collection

	

	

HtmlEmbeddedObj	Object	(Dundas	Mailer	Control	1.0)

This	object	is	stored	in	the	HtmlEmbeddedObjs	collection.

Remarks

To	add	HtmlEmbeddedObj	objects	to	the	HtmlEmbeddedObjs	collection
use	the	collection's	Add	method.	To	remove	a	single	object	call	the
Remove	method	of	the	collection.	To	clear	all	objects	from	the	collection
use	the	Clear	method.

The	HtmlEmbeddedObj	object	consists	of	the	following	four	(4)
properties:

FileName	as	string.	The	name	of	the	file	to	be	embedded.

ContentID	as	string.	A	unique	ID	which	is	used	to	identify	each
embedded	object.

ContentName	as	string.	Optional.	The	new	name	of	the	file
attachment.	If	you	do	not	use	this	argument	then	the	FileName
argument	is	used	instead.

CustomHeaders	as	string.

Add	HtmlEmbeddedObj	objects	to	the	HtmlEmbeddedObjs	collection	to
embed	audio	files,	graphics	files	etc.	to	the	html	body	of	the	email
message.

To	embed	objects	into	an	html	email	you	will	need	to	"wrap"	the
appropriate	tags	around	the	HtmlEmbeddedObj	objects	being
embedded	into	the	HtmlBody	property.	Audio	elements	can	be	inserted
as	the	BGSOUND	attribute	of	the	BODY	tag,	while	graphics	files	are
commonly	inserted	using		tags.	Refer	to	Tutorial	2:	Sending	an
Html	Email	with	an	Embedded	Image	for	example	source	code	of	this.

When	you	add	HtmlEmbeddedObj	objects	to	the	HtmlEmbeddedObjs
collection	MAKE	SURE	that	the	values	you	supply	for	the	ContentID

argument	are	unique.	This	ContentID	is	referenced	within	html	tags	with
"cid:theuniquenumber"	.	It	is	also	important	to	use	lower-case	when
specifying	"cid".	Microsoft's	Outlook	will	not	embed	objects	if	you	use
"CID".

If	the	client	email	software	supports	html	email	it	might	not	support
embedded	html	objects.	In	this	case	the	ContentName	argument	will	be
displayed	in	the	email	body	instead	of	the	embedded	object's	content.	

NOTE:	The	QuickSend	method	can	not	send	an	html-based	email.

See	Also:	HtmlEmbeddedObjs	Collection	|	Add	Method	|	Remove
Method	|	Item	Method	|	Count	Property	|	Tutorial	2:	Sending	an	Html
Email	with	an	Embedded	Image

	

HtmlEmbeddedObjs	Collection	(Dundas	Mailer	Control	1.0)

Stores	HtmlEmbeddedObj	objects.	This	collection	is	0-based	and
determines	the	objects	which	can	be	embedded	into	the	html	body	of	the
email.

Remarks

This	collection	stores	any	objects	to	be	embedded	into	the	html	body	of
the	email.	Objects	which	can	be	embedded	into	the	html	body	of	the
message	are	audio	files,	graphics	files,	etc.

The	HtmlEmbeddedObjs	collection	supports	the	following	methods	and
properties:

Add	(FileName	as	string,	ContentID	as	string,	[ContentName	as
string,	CustomHeaders	as	string]).	Adds	an	HtmlEmbeddedObj
object	to	the	collection.

Remove(Index).	Removes	a	particular	object	from	the	collection.

Count	(read-only	property).	The	number	of	objects	stored	in	the
collection.

Item(Index).	Used	to	retrieve	a	particular	object	from	the	collection.

Clear().	Removes	all	objects	from	the	collection.

The	Index	argument	can	be	either	a	zero-based	numerical	index	or	a
string	key.	The	string	key	is	defined	by	the	FileName	argument.

To	embed	objects	into	an	html	email	you	will	need	to	"wrap"	the
appropriate	tags	around	the	HtmlEmbeddedObj	object	when	adding	the
objects	to	the	HtmlBody	property.	Audio	elements	can	be	inserted	as	the

BGSound	attribute	of	the	Body	tag,	while	graphics	files	are	commonly
inserted	using		tags.	Refer	to	Tutorial	2:	Sending	an	Html	Email
with	an	Embedded	Image	for	example	source	code	of	this.

To	embed	objects	into	an	email	you	will	need	to	iterate	through	the	Files
collection	of	the	Dundas	Upload	control.

When	you	add	objects	to	this	collection	MAKE	SURE	that	the	values	you
supply	for	the	ContentID	argument	are	unique.	This	ContentID	is
referenced	within	html	tags	with	"cid:theuniquenumber"	.	It	is	also
important	to	use	lower-case	when	specifying	"cid".	Microsoft's	Outlook
will	not	embed	objects	if	you	use	"CID".

The	QuickSend	method	does	not	utilize	this	collection.

Note	that	if	the	HtmlBody	property	is	a	zero-length	string	(the	default)
then	the	items	in	this	collection	will	be	ignored.	Items	will	also	be	ignored
if	both	the	HtmlBody	and	Body	properties	are	set	and	the	client's	email
software	displays	text-based	email	by	default.

Refer	to	Tutorial	2:	Sending	an	Html	Email	with	an	Embedded	Image	for
example	source	code	on	how	to	send	an	html	email	with	embedded
objects.

See	Also:	HtmlEmbeddedObj	Object	|	Add	Method	|	Remove	Method	|
Clear	Method	|	Item	Method	|	Count	Property	

	

	

	

	

SMTPRelayServer	Object	(Dundas	Mailer	Control	1.0)

This	object	is	used	by	the	SMTPRelayServers	collection.

Remarks

To	add	SMTPRelayServer	objects	to	the	SMTPRelayServers	collection
use	the	collection's	Add	method.	To	remove	one	item	call	the	Remove
method	of	the	collection.	To	clear	all	objects	from	the	collection	use	the
Clear	method.

The	SMTPRelayServer	object	consists	of	the	following	properties:

Name	as	string.	The	name	of	the	SMTP	relay	server.

Port	as	long.	The	port	number	to	be	used	with	the	server.	Defaults	to
25.

Localhost	as	string.	The	local	computer's	name	or	it's	IP	address.
Used	with	the	HELO	command,	this	defaults	to	"local.com".

User	as	string.	A	valid	username	(if	the	SMTP	server	requires
authentication).	Defaults	to	a	zero-length	string.

Password	as	string.	A	valid	password	(if	the	SMTP	server	requires
authentication).	Defaults	to	a	zero-length	string.

SMTP	relay	servers	are	used	to	relay	a	message	to	a	destination	server.

If	the	SMTPRelayServers	collection	is	empty	then	the	email	message	is
sent	directly	to	the	destination	server,	so	a	DNS	server	is	required	to
determine	where	the	message	is	to	be	sent.	However,	if	the
SMTPRelayServers	collection	is	not	empty	then	the	message	is	sent
using	the	specified	relay	server,	and	the	DNSServers	collection	is
ignored	since	the	relay	server	is	responsible	for	determining	where	the
message	is	being	sent	to.	If	both	the	SMTPRelayServers	and
DNSServers	collections	are	empty	the	DNS	server	to	be	used	defaults	to
"A.ROOT-SERVERS.NET".	If	this	fails	"B.ROOT-SERVERS.NET"	will	be

tried.	If	this	too	fails	then	"C.ROOT-SERVERS.NET"	will	be	tried.	If	all	of
these	fail	then	the	mail	operation	will	fail	as	well	and	return	an	error	code.

Specifying	multiple	SMTP	relay	servers	increases	the	reliablity	and
performance	of	your	mail	operation.

All	mail	send	operations	(including	PostArticle)	utilize	the
SMTPRelayServer	collection.

See	Also:	SMTPRelayServers	Collection	|	Add	Method	|	Remove
Method	|	Item	Method	|	Count	Property

	

SMTPRelayServers	Collection	(Dundas	Mailer	Control	1.0)

This	collection	stores	SMTPRelayServer	objects,	and	determines	the
SMTP	relay	servers	to	be	used	when	sending	the	email	(if	any).	Note	that
it	is	0-based.

Remarks

The	SMTPRelayServers	collection	supports	the	following	methods	and
properties:

Add(Name	as	string,	[Port	as	long	=	25,	LocalHost	as	string	=
"local.com",	User	as	string	=	"",	Password	as	string	=	"").	Adds	an
SMTPRelayServer	object	to	the	collection.

Remove(Index).	Removes	a	particular	object	from	the	collection.

Count	(read-only	property).	The	number	of	objects	stored	in	the
collection.

Item(Index).	Used	to	retrieve	a	particular	object	from	the	collection.

Clear().	Removes	all	objects	from	the	collection.

If	the	SMTPRelayServers	collection	is	empty	then	the	email	message	is
sent	directly	to	the	destination	server,	so	a	DNS	server	is	required	to
determine	where	the	message	is	to	be	sent.	However,	if	the
SMTPRelayServers	collection	is	not	empty	then	the	message	is	sent
using	the	specified	relay	server,	and	the	DNSServers	collection	is	ignored
since	the	relay	server	is	responsible	for	determining	where	the	message
is	being	sent	to.	If	both	of	these	collections	are	empty	then	the	DNS
server	to	be	used	defaults	to	"A.ROOT-SERVERS.NET".	If	this	fails
"B.ROOT-SERVERS.NET"	will	be	tried.	If	this	too	fails	then	"C.ROOT-
SERVERS.NET"	will	be	tried.	If	all	of	these	fail	then	the	mail	operation

will	fail	as	well.

It	is	highly	recommended	that	you	specify	at	least	one	relay	server.	Using
a	relay	increases	the	speed	of	the	operation,	and	a	relay	will	also	attempt
to	send	a	message	multiple	times	if	it	can	not	be	sent	with	the	first
attempt.	A	Direct	Send	mail	operation	(performed	when	no	SMTP	servers
have	been	specified)	will	only	attempt	to	send	the	email	one	(1)	time.

All	mail	send	operations	(including	PostArticle)	utilize	this	collection.

See	Also:	SMTPRelayServer	Object	|	Add	Method	|	Clear	Method	|
Count	Property	|	Item	Method	|	Remove	Method	|	DNSServers	Collection

	

TOs,	CCs,	BCCs	and	ReplyTOs	collections	(Dundas	Mailer
Control	1.0)

These	collections	store	Address	objects,	and	determine	the	recipient(s)
of	the	email.	They	are	all	0-based.

Remarks

These	collections	support	the	following	methods	and	properties:

Add(Address	as	string,	[Name	as	string]).	Adds	an	Address	object
to	the	collection.

Remove(Index).	Removes	a	particular	object	from	the	collection.

Count	(read-only	property).	The	number	of	Address	objects	stored
in	the	collection.

Item(Index).	Used	to	retrieve	a	particular	object	from	the	collection.

Clear().	Removes	all	Address	objects	from	the	collection.

The	QuickSend	method	does	not	use	these	collections.	All	other	mail
send	methods	(as	well	as	PostArticle)	use	these	collections.

You	can	send	an	email	to	multiple	recipients	by	adding	more	than	one
Address	object	to	these	collections.	You	can	also	specify	multiple
addresses	with	just	one	(1)	Address	object	by	separating	the	multiple
entries	with	commas.	However,	if	you	use	just	one	(1)	Address	object	to
specify	multiple	addresses	then	you	CAN	NOT	precede	the	address	with
the	name	of	the	message	sender	(e.g.	"Firstname	Lastname"
fromme@someserver.com).

The	ReplyTOs	collection	is	used	if	the	recipient	of	the	email	decides	to

reply	to	the	email	message.	If	there	are	no	items	in	this	collection	then
the	ReplyTo	address	is	taken	from	the	FromAddress	property.	Note	that
all	Address	objects	will	be	used	for	the	reply	message.

To	have	multiple	addresses	appear	in	the	To	field	of	the	resulting	email
just	add	multiple	Address	objects	to	the	ReplyTOs	collection.

See	Also:	Address	Object	|	Add	Method	|	Remove	Method	|	Clear
Method	|	Item	Method	|	Count	Property	

	

	

	

Count	Property	(All	Dundas	Mailer	collections)

Use	this	read-only	property	to	determine	the	number	of	elements
currently	stored	in	any	Dundas	Mailer	collection.

Syntax

AnyMailerCollection.Count

Remarks

Use	this	property	to	find	out	how	many	elements	are	currently	being
stored	in	any	Dundas	Mailer	collection.	This	is	useful	for	determining	the
upper	loop	delimiter	when	iterating	through	all	of	a	collection's	items.
Note	that	you	can	also	iterate	through	any	Dundas	Mailer	collection	with
For...Each	loops.

See	Also:	Remove	Method	|	Item	Method	|	Clear	Method

	

Add	Method	(Attachments	collection)

Adds	an	Attachment	object	to	the	Attachments	collection.

Syntax

AttachmentsCollection.Add	(FileName	as	string,	[ContentName	as	string
=	FileName,	ContentType	as	string	=	"Application/Octet-stream",
EncodingType	as	string	=	"BASE64",	CharSet	as	string	=	"US-ASCII",
CustomHeaders	as	string	=	""])

The	Add	method	syntax	has	the	following	parts:

Part Description

FileName The	full	pathname	of	the	file	to	be	added.

ContentName The	name	by	which	the	attachment	will	be	referred	to	in
the	client's	email	software.

ContentType Specifies	the	media	type	and	subtype	of	data	in	the
body	of	the	message.

EncodingType The	type	of	encoding	to	be	used	for	the	attachment.
Must	be	uppercase.

CharSet The	character	set	to	be	used.

CustomHeaders Any	custom	header	to	be	added	to	the	attachment.

		Remarks

Use	this	method	to	add	an	Attachment	object	to	the	Attachments
collection.	To	remove	an	Attachment	use	the	Remove	method.	To
remove	all	Attachments	from	the	collection	call	the	Clear	method.

To	send	multiple	attachments	just	add	the	desired	file	attachments	to	this
collection	and	call	the	SendMail	method.

If	you	do	not	specify	a	value	for	the	ContentName	property	then	the	client
email	software	will	reference	the	attachment	by	using	the	FileName
parameter.

To	add	a	custom	header	to	the	attachment	use	the	CustomHeaders
argument.

The	Content-Type	header	field	(represented	by	the	ContentType
argument)	is	used	to	specify	the	nature	of	the	data	in	the	attachment.	It
uses	type	and	subtype	identifiers	in	the	format	of	"type/sub-type"	(e.g.
text/html,	text/plain,	etc.)	and	also	provides	auxiliary	information	that	may
be	required	for	certain	types.	After	the	type	and	subtype	names	the
remainder	of	the	header	field	is	simply	a	set	of	parameters,	specified	in
an	attribute/value	notation.	These	parameters	differ	for	different	types,
and	the	ordering	of	the	parameters	is	not	important.	Among	the	defined
arguments	is	a	"charset"	parameter	which	determines	the	character	set
to	be	used	for	the	attachment.	Comments	are	allowed	in	accordance	with
RFC	822,	and	the	rules	for	structured	header	fields	may	be	found	in	RFC
2046.

The	CharSet	argument	determines	the	character	set	to	be	used	for	the
attachment.	This	parameter	is	not	case	sensitive.

The	two	supported	encoding	types	(as	specified	by	the	EncodingType
argument)	are	"BASE64"	and	"QUOTEDPRINTABLE".	If	you	want	to
explicitly	set	the	EncodingType	parameter	then	keep	in	mind	that	it	must
be	uppercase,	and	the	value	of	this	argument	is	used	for	the	value	of	the
"Content-Transfer-Encoding"	header.	If	an	invalid	type	is	specified	then
"BASE64"	is	used.	You	may	want	to	use	"QUOTEDPRINTABLE"	if	the
attachment	content	can	be	represented	with	ASCII	characters.	For	more
information	about	the	"Content-Transfer-Encoding"	header	refer	to	RFC
2045.

If	you	are	using	the	Dundas	Upload	control	you	can	loop	through	all	items
in	the	the	Upload	control's	Files	collection	and	add	each	UploadedFile

object	to	the	Mailer	control's	Attachments	collection.	The	uploaded	files
will	then	be	sent	along	with	the	email	as	attachments.	The	ContentType
of	the	UploadedFile	will	be	used	for	the	ContentType	of	the	Attachment
object	unless	you	set	this	argument	explicitly.	See	Tutorial	1:	Sending	an
Email	with	an	Attachment	for	sample	code	which	demonstrates	using	the
Upload	control	in	conjunction	with	the	Mailer	control.	You	can	also	refer
to	the	Upload	control's	tutorials	for	further	code	samples	and	instructions.

See	Also:	Attachments	Collection	|	Clear	Method	|	Count	Property	|	Item
Method	|	Remove	Method

Add	Method	(CustomHeaders	collection)

Adds	a	CustomHeader	object	to	the	CustomHeaders	collection.

Syntax

CustomHeadersCollection.Add	(Name	as	string,	Value	as	string)

The	Add	method	syntax	has	the	following	parts:

Part Description

Name The	name	of	the	custom	header	to	be	added.

Value The	value	of	the	custom	header	to	be	added.

		Remarks

Use	this	method	to	add	a	CustomHeader	object	to	the	CustomHeaders
collection.	To	remove	a	CustomHeader	object	use	the	Remove	method.
To	remove	all	CustomHeader	objects	from	the	collection	call	the	Clear
method.

Please	note	that	the	QuickSend	method	does	not	utilize	this	collection.

See	Also:	CustomHeaders	Collection	|	Clear	Method	|	Count	Property	|
Item	Method	|	Remove	Method

	

Add	Method	(DNSServers	collection)

Adds	a	DNSServer	object	to	the	DNSServers	collection.

Syntax

DNSServersCollection.Add	(Name	as	string,	[TCPIP	as	long	=	1,	UDP	as
long	=	3])

The	Add	method	syntax	has	the	following	parts:

Part Description

Name The	name	of	the	DNS	server,	or	its	corresponding	IP	address.

TCPIP The	maximum	number	of	connection	attempts	using	the	TCP/IP
protocol.	Defaults	to	one	(1).

UDP The	maximum	number	of	connection	attempts	using	the	UDP
protocol.	Defaults	to	three	(3).

		Remarks

Use	this	method	to	add	a	DNSServer	object	to	the	DNSServers
collection.	To	remove	a	DNSServer	object	use	the	Remove	method.	To
remove	all	objects	from	the	collection	call	the	Clear	method.

To	make	sure	that	a	DNS	server	is	available	to	process	emails	it	is
recommended	that	you	specify	more	than	one	server.

Note	that	the	first	server	in	the	collection	will	be	tried	first.	If	it	is	not
available	the	next	DNSServer	object	will	contacted,	and	so	on.

There	are	two	(2)	methods	of	connecting	to	a	DNS	server:	using	the
TCP/IP	protocol	and	using	the	UDP	protocol.	Different	DNS	servers	may
support	either	protocol	or	both	protocols.	By	default	the	TCP/IP	method	is

tried	first.	If	this	fails	we	then	attempt	to	contact	the	server	using	UDP.
However,	if	you	know	what	protocols	your	specified	DNS	servers	use	you
can	optimize	the	DNS	lookup	operations	by	specifying	which	protocol	to
use	when	working	with	the	DNS	servers	(i.e.	set	the	protocol	argument
which	isn't	used	by	your	DNS	server	to	zero).

See	Also:	DNSServers	Collection	|	Clear	Method	|	Count	Property	|	Item
Method	|	Remove	Method

	

Add	Method	(HtmlEmbeddedObjs	collection)

Adds	an	HtmlEmbeddedObj	object	to	the	HtmlEmbeddedObjs
collection.

Syntax

HtmlEmbeddedObjsCollection.Add	(FileName	as	string,	ContentID	as
string,	[ContentName	as	string,	CustomHeaders	as	string])

The	Add	method	syntax	has	the	following	parts:

Part Description

FileName The	filename	of	the	object	to	be	embedded.

ContentID A	unique	ID	which	is	used	to	identify	each	embedded
object.

ContentName The	name	which	will	be	displayed	in	the	email.	If	this	is
not	set	then	the	FileName	will	be	displayed.

CustomHeaders Any	custom	header.

		Remarks

Use	this	method	to	add	an	HtmlEmbeddedObj	object	to	the
HtmlEmbeddedObjs	collection.	To	remove	an	object	use	the	Remove
method.	To	remove	all	objects	from	the	collection	call	the	Clear	method.

Objects	which	can	be	embedded	are	graphics	files,	audio	files,	etc.

MAKE	SURE	that	the	values	you	supply	for	the	ContentID	argument	are
unique.	This	ContentID	is	referenced	within	html	tags	with
"cid:uniquenumber"	(see	the	sample	source	code	below	for	an	example

of	this).	It	is	also	important	to	use	lower-case	when	specifying	"cid".
Microsoft's	Outlook	will	not	embed	objects	if	you	use	"CID".

Use	the	Dundas	Upload	control	to	allow	the	user	to	specify	objects	to	be
embedded	in	the	email.	The	Upload	control	exposes	a	Files	collection
which	consists	of	UploadedFile	objects	which	can	then	be	used	as	the
embedded	objects.	To	embed	the	uploaded	files	loop	through	the	Files
collection	and	add	them	to	the	HtmlEmbeddedObjs	collection,	and	then
embed	the	object	by	wrapping	the	appropriate	html	tags	around	the
object	in	the	Mailer	control's	HtmlBody	property.	You	can	use	the
UploadedFile	object's	TagName	property	to	determine	which	file	input
box	the	object	originated	from,	and	you	can	also	use	VBScripts's	InStr
method	in	conjunction	with	the	UploadedFile	objects	ContentType
property	to	determine	the	type	of	the	object.	This	lets	you	make	sure	that
an	object	is	not	embedded	into	the	html	body	of	the	email	with	the	wrong
tags	around	it	(see	the	code	sample	below).	You	can	also	refer	to	Tutorial
2:	Sending	an	Html	Email	with	an	Embedded	Image	for	sample	source
code	which	demonstrates	using	the	Upload	control	in	conjunction	with	the
Mailer	control	to	embed	objects	into	an	email.

Please	note	that	it	is	up	to	you	to	wrap	the	appropriate	tags	around	the
embedded	objects.	This	lets	you	control	where	in	the	email	the	objects
will	appear.	The	cid	(content	ID)	is	used	within	the	html	tags	to	identify
which	object	in	the	HtmlEmbeddedObjs	collection	is	to	be	embedded
(see	the	example	source	code	below).

See	Also:	HtmlEmbeddedObjs	Collection	|	Clear	Method	|	Count
Property	|	Item	Method	|	Remove	Method

Example

'This	small	code	snippet	assumes	that	there	is	an	input	element	of	the	File	type	called
'	txtBGSound	which	lets	the	user	upload	a	file	to	the	server	(to	be	used	for	the	background
'	sound	of	the	html-based	email).	We	check	to	see	if	a	file	was	uploaded	from	this
'	particular	file	input	box	and	then	we	check	the	ContentType	property	of	the	uploaded
'	file	to	make	sure	that	the	user	uploaded	a	valid	audio	file.	
'	NOTE:	it	is	assumed	here	that	objUpload.Save	has	already	been	called.

'initialize	the	HtmlBody	property
objEmail.HtmlBody	=	"<html><body>"

'loop	through	all	files	uploaded	by	user
for	i	=	0	to	objUpload.Files.Count	-	1

'check	to	see	if	a	file	was	uploaded	using	a	file	input	box	named	"txtBGSound"
if	(objUpload.Files(i).TagName	=	"txtBGSound")	then

'now	make	sure	that	the	user	actually	uploaded	a	valid	audio	file
if	(InStr(1,objUpload.Files(i).ContentType,"audio"))	then

'now	add	the	object	to	the	HtmlEmbeddedObjs	collection,	and	then	embed
'	the	object	into	the	HtmlBody	property,	wrapping	the	appropriate	tags
'	around	it.	Note	that	we	are	setting	the	ContentName	argument	of	the	
'	HtmlEmbeddedObj	object	to	the	OriginalPath	property	of	the	UploadedFile
'	object	(e.g.	c:\MyPic.jpg).	Then	the	resulting	name	of	the	object	in	the
'	email	will	not	be	preceded	with	a	guid	(all	uploaded	files	will	be	saved
'	to	disk	with	a	guid	as	the	first	part	of	their	filename).	
objEmail.HTMLEmbeddedObjs.Add	objUpload.Files(i).Path,1,objUpload.Files(i).OriginalPath
objEmail.HTMLBody	=	objEmail.HTMLBody	&	"<BGSound	src=cid:1></BGSound>"

end	if

end	if

next

'now	finish	setting	the	HtmlBody	property
objEmail.HtmlBody	=	objEmail.HtmlBody	&	"</body></html>"

	

Add	Method	(SMTPRelayServers	collection)

Adds	an	SMTPRelayServer	object	to	the	SMTPRelayServers	collection.

Syntax

SMTPRelayServersCollection.Add	(Name	as	string,	[Port	as	long	=	25,
LocalHost	as	string	=	"local.com",	User	as	string	=	"",	Password	as	string
=	""])

The	Add	method	syntax	has	the	following	parts:

Part Description

Name The	name	of	the	SMTP	server,	or	its	corresponding	IP
address.

Port The	port	to	use	when	connecting	to	the	server.	Defaults	to	25.

LocalHost The	local	computer's	name	or	its	IP	address.	Used	with	the
HELO	command,	this	defaults	to	"local.com".

User A	valid	username	if	the	NNTP	server	requires	authentication.
	ONLY	applies	to	NNTP	servers!

Password The	password	corresponding	to	the	supplied	username	(if	the
NNTP	server	requires	authentication).		ONLY	applies	to
NNTP	servers!

		Remarks

Use	this	method	to	add	an	SMTPRelayServer	object	to	the
SMTPRelayServers	collection.	To	remove	an	object	use	the	Remove
method.	To	remove	all	objects	from	the	collection	call	the	Clear	method.

If	the	specified	server	requires	authentication	then	you	must	supply	a
valid	username	and	password.	However,	most	SMTP	servers	do	not
require	authentication.

If	you	specify	more	than	one	(1)	server	then	the	first	server	in	this
collection	will	be	used	to	send	the	email.	However,	if	this	server	is	down
then	the	next	server	in	the	collection	will	be	used	to	send	the	email,	and
so	on.	Specifying	more	than	one	server	increases	the	chances	of
successfully	sending	your	email,	and	using	a	relay	server	is	also	faster
than	sending	the	message	directly.

You	can	set	an	optional	value	without	having	to	provide	values	for
previous	optional	arguments	by	separating	the	arguments	with	commas.
For	example,	to	provide	a	username	and	password	you	could	call	the
Add	method	with	the	following	syntax:	SMTPRelayServersCollection.Add
"someserver.com",,,"MyUsername","MyPassword".

NOTE:	The	username	and	password	parameters	are	only
implemented	for	NNTP	servers.		If	you	need	to	implement	a
username/password	for	an	SMTP	server	you	will	have	to	purchase	the
source	code	to	the	Mailer	control.

See	Also:	SMTPRelayServers	Collection	|	Clear	Method	|	Count
Property	|	Item	Method	|	Remove	Method

	

Add	Method	(TOs,	CCs,	BCCs	and	ReplyTOs	collections)

Adds	an	Address	object	to	the	relevant	collection.

Syntax

Collection.Add	(Address	as	string,	[Name	as	string])

The	Add	method	syntax	has	the	following	parts:

Part Description

Address An	email	address	to	send	the	message	to.

Name Optional.	The	"name"	of	the	email	recipient.

		Remarks

Use	this	method	to	add	an	Address	object	to	the	specified	collection.
The	email	will	be	sent	to	every	Address	object	in	the	collection.	To
remove	an	Address	use	the	Remove	method.	To	remove	all	addresses
from	the	collection	call	the	Clear	method.

The	optional	Name	argument	lets	you	specify	a	user-friendly	name	which
will	appear	in	the	appropriate	field	of	the	email	(i.e.	To,	CC,	BCC	or
ReplyTo	fields).	For	example,	let's	assume	that	the	specified	address	for
John	Doe	is	"johnd@dundas.com".	If	we	also	set	the	Name	argument	to
"John	Doe"	then	the	recipient	of	the	email	will	see	either	"John	Doe"
<johnd@dundas.com>	or	"John	Doe",	depending	on	the	email	program
the	client	is	using.

NOTE:	one	of	these	collections	needs	to	have	an	Address	object	in
order	for	the	SendMail	operation	to	proceed.	If	none	of	these	collections
have	been	populated	then	the	SendMail	operation	will	immediately	fail
since	no	destination	address	has	been	specified.

See	Also:	TOs,	CCs,	BCCs	and	ReplyTOs	collections	|	Clear	Method	|
Count	Property	|	Item	Method	|	Remove	Method

Clear	(All	Dundas	Mailer	collections)

Removes	all	elements	from	a	Dundas	Mailer	collection.

Syntax

AnyMailerCollection.Clear

Remarks

Use	this	method	to	empty	a	collection	of	all	elements.	To	remove	just	one
element	in	a	collection	use	the	Remove	method.

See	Also:	Count	Property	|	Item	Method	|	Remove	Method

	

Remove	Method	(All	Dundas	Mailer	collections)

Call	this	method	to	remove	one	(1)	element	from	any	Dundas	Mailer
collection.

Syntax

AnyMailerCollection.Remove	(Index)

The	Remove	method	syntax	has	the	following	parts:

Part Description

Index This	argument	can	be	either	a	number	(integer	or	long
data	type)	or	a	string	key.	All	of	the	Dundas	Mailer
collections	are	zero	(0)	based.

Remarks

To	identify	the	collection	item	to	be	removed	you	can	specify	either	a
number	(integer	or	long	data	types)	or	a	string	key	for	the	Index
argument.	If	you	specify	a	number	then	the	index	of	the	element	will	be
used	(the	index	being	zero-based).	For	example,	the	statement
"TOs.Remove	0"	will	remove	the	first	element	in	the	TOs	collection.	If	a
string	key	is	specified	then	the	element	to	be	removed	will	be	identified
by	its	key.	Refer	to	the	following	for	a	listing	of	the	various	collection	keys:

TOs	Collection	string	key	=	Address	property

CCs	Collection	string	key	=	Address	property

BCCs	Collection	string	key	=	Address	property

Attachments	Collection	string	key	=	FileName	property

HTMLEmbeddedObjs	Collection	string	key	=	FileName	property

CustomHeaders	Collection	string	key	=	Name	property

DNSServers	Collection	string	key	=	Name	property

SMTPServers	Collection	string	key	=	Name	property

For	example,	to	remove	an	email	address	named	"johnd@dundas.com"
from	the	TOs	collection	you	would	enter:	TOs.Remove
"johnd@dundas.com".

See	Also:	Count	Property	|	Item	Method	|	Clear	Method

Item	Method	(All	Dundas	Mailer	collections)

Call	this	method	to	retrieve	an	element	from	any	Dundas	Mailer
collection.	This	is	the	default	member	of	all	collections.

Syntax

AnyMailerCollection.Item	(Index)

The	Item	method	syntax	has	the	following	parts:

Part Description

Index This	argument	can	be	either	a	number	(integer	or	long	data
type)	or	a	string	key.	All	of	the	Dundas	Mailer	collections	are
zero	(0)	based.

Remarks

If	the	Index	argument	is	specified	as	a	number	then	the	item	is	retrieved
via	the	index	of	the	collection	(zero-based).	For	example,	to	retrieve	the
first	element	in	the	TOs	collection	you	could	use	the	following	statement:
Set	objAddress	=	TOsCollection.Item(0).	If	a	string	is	specified	then	the
element	is	retrieved	via	its	key.	For	a	listing	of	collection	keys	refer	to	the
following:

TOs	Collection	string	key	=	Address	property

CCs	Collection	string	key	=	Address	property

BCCs	Collection	string	key	=	Address	property

Attachments	Collection	string	key	=	FileName	property

HTMLEmbeddedObjs	Collection	string	key	=	FileName	property

CustomHeaders	Collection	string	key	=	Name	property

DNSServers	Collection	string	key	=	Name	property

SMTPServers	Collection	string	key	=	Name	property

This	method	is	the	default	collection	method	so	you	do	not	have	to
explicitly	declare	it.	For	example,	to	retrieve	the	first	Address	object	from
the	TOs	collection	you	could	use	this	statement:	Set	objAddress	=
TOs(0).

See	Also:	Count	Property	|	Clear	Method	|	Remove	Method

	

	

Designed	from	the	ground	up	for	ASP	developers,	Dundas	Chart	is	easy
to	use,	flexible,	and	backed	by	Dundas	Software's	award	winning	team	of
software	engineers.

Dundas	Chart	delivers	presentation-quality	graphics,	and	supports	both
2D	and	3D	charts.

With	blazing	performance,	stunning	presentation	quality	graphics,	power,
speed	and	unmatched	flexibility,	Dundas	Chart	has	all	the	features	you
need.

The	3D	charting	control	will	also	automatically	leverage	3D	accelerated
video	hardware	(if	present)	in	your	system	or	web	server.

Dundas	Chart	3D	Features

Stunning	presentation	quality

Hardware	acceleration	-	utilizes	3D	accelerated	hardware	from	ATI,
3Dfx,	nVidia,	and	an	array	of	other	manufacturers

OpenGL	-	State-of-the-art	OpenGL	implementation

Rotation	-	you	can	rotate	your	charts	programmatically.

Selection	(drilldown)	-	determine	what	slice	a	user	clicked	on	and
implement	a	drilldown	scenario	with	ease!

Wide	variety	of	chart	types

Texture	flexibility	-	use	a	bitmap	image	as	a	customtexture

Texture/Color	blending	-	Not	only	can	you	use	textures,	but	you
can	also	change	the	texture's	color

Grayscale	texturing	-	If	colors	are	not	in	the	plans,	grayscaling	is
also	supported,	giving	you	added	image	flexibility

Template	Creator	to	pre-load	texture/color/size	types	-	save	time

in	creating	chart	types	by	using	the	template	creator	to	store/load
pre-made	colour	schemes/textures	and	sizes

Edge	Beveling	-	edges	can	be	beveled	to	give	added	customization
to	charts;	make	your	edges	as	rounded	or	as	square	as	is	needed.

Annotation	-	add	notes	anywhere	on	the	chart	-	add	single	or
multiple	notes	to	the	chart	in	any	position.		

Vertical	annotation	-	text	and	notes	can	be	displayed	vertically	for
added	customization.

User-configurable	element	positioning	-	position	legends,	titles,
annotations	and	other	elements	either	programmatically	or	by	using
simple	drag	and	drop	actions

		Dundas	Chart	Editions	:

ASP/Windows	DNA	2000	Development

Specially	designed	for	use	in	server-side	projects,	Dundas	Chart	(2D	and
3D)	offers	full	support	for	your	ASP	and	Windows	DNA	development
efforts	with	a	full	set	of	server	side	features.

Enterprise	Edition		

Dundas	Chart	Enterprise	provides	the	complete	C++/ATL	sourcecode,
documentation,	project	and	workspace	files	needed	to	build	the	product.	
Dundas	Chart	Enterprise	offers	unlimited	customization	and	flexibility.		If
you	have	very	specialized	requirements	or	porting	needs	then	look	to
Dundas	Chart	Enterprise	for	the	solution!

For	more	information	visit	our	web	site	at	Dundas	Chart

	

http://www.dundas.com/

Dundas	Pie	Chart	Server	Control	2.0

Copyright	©	Dundas	Software	Ltd.	2000.	All	Rights	Reserved

Overview	|	Properties	|	Methods

The	Dundas	Pie	Chart	Server	Control	2.0	allows	you	to	quickly	and
painlessly	add	dynamic	pie	charts	to	your	ASP	applications.

		Features:

Add	or	remove	pie	chart	slices	(elements).

Change	the	title	of	the	pie	chart.

Rotate	the	chart	progammatically.

Implement	selection	and	drilldown	with	ease.

Change	the	pie	slice	labels	as	well	as	the	labels	for	the	pie	slices	in
the	Legend.

Change	the	sizes	of	the	pie	slices.

Change	the	minimum	"collected"	value	(see	below	for	more	details).

Change	the	textures	and/or	colors	of	pie	elements.

Explode/collapse	pie	elements.

	
To	use	this	control	in	web	pages	you	MUST	USE	either	an		tag
(see	the	source	code	for	the	two	supplied	ASP	pages)	or	an	<A>	tag.	In
this	demo	there	is	one	ASP	page	(let's	call	it	the	secondary	page)	which
creates	an	instance	of	the	ASP	Pie	Chart	control,	loads	a	template
(created	with	the	Template	Creator),	adds	the	specified	data	and	then
calls	SendJPEG	to	send	the	data	to	the	client.	The	first	page	(lets	call	it
the	main	page)	sets	up	the	user	interface,	retrieves	pie	chart	variables

(like	the	number	of	slices,	whether	the	slices	are	exploded,	etc.)	and	then
retrieves	the	pie	chart	image	by	embedding	the	secondary	ASP	page	in
an		tag	with	the	SRC	attribute	set	to	the	secondary	page.	The	first
page	can	be	either	an	html	or	ASP	file.

Small	data	elements	(pie	slices)	are	"collected"	and	then	displayed
together	as	one	pie	slice	called	the	"collected"	element.	You	can	change
the	minimum	data	value	at	which	slices	are	collected	with	the
SetCollectedLimit	method.	Call	SetCollectedProp	to	manipulate	the
properties	of	the	collected	slice	(texture,	color,	etc.).

To	make	sure	that	the	browser	never	uses	a	cached	copy	of	the	jpeg	set
the	Expires	property	of	the	Response	object	to	either	zero	or	a	negative
value.	See	a	tutorial	for	an	example	of	this.

To	output	a	pie	chart	jpeg	perform	the	following	actions	in	their	specified
order:

1.	 Create	an	instance	of	an	ASPPieChart	object	by	using	CreateObject
(e.g.	CreateObject("Dundas.PieChartServer.2")).

2.	 Set	the	directory	properties	of	the	control	which	specify	working
directories	for	different	aspects	of	chart	activity.	These	properties	are
DirTemplate	and	DirTexture,	and	deal	with	the	directories	used	to
store	templates	and	textures,	respectively.

3.	 Load	a	template	via	the	LoadTemplate	method.

4.	 Set	the	properties	of	the	pie	chart	(e.g.	exploded	pieces,	collected
element	properties,	etc.)

5.	 Add	pie	chart	data	with	the	AddData	method.

6.	 Send	the	resulting	jpeg	directly	to	a	client	with	the	SendJPEG
method	or	alternatively	you	can	save	the	jpeg	to	disk	with
CreateJPEGFile	and	then	present	the	image	to	a	user	with	a
standard		tag.

7.	 If	you	want	to	generate	another	Jpeg	using	the	same	template	then
repeat	Steps	4	to	6.	If	you	want	to	create	another	jpeg	with	a

different	template	repeat	steps	1	to	6.

8.	 Destroy	the	Pie	Chart	object	by	setting	it	to	Nothing	(e.g.	Set
objPieChart	=	Nothing).

9.	 MAKE	SURE	that	there	is	no	html	code	in	this	ASP	page	which
outputs	the	jpeg.

The	ProgID	of	the	control	is:	Dundas.PieChartServer.2

IMPORTANT:	to	successfully	output	a	pie	chart	jpeg	the	Intel
compression	library	(ijl15.dll)	must	exist	either	in	your	system
directory	or	at	the	same	directory	level	as	the	server	control
(AspPieChart.dll).

To	minimize	the	amount	of	whitespace	in	the	jpeg	make	the	pie	chart
image	as	large	as	possible	in	the	Template	Creator.

For	information	concerning	debugging,	as	well	as	FAQs	and
troubleshooting	go	to	our	developer	site.

See	Also:	Dundas	Pie	Chart	Overview	|	Template	Creator	Overview

http://support.dundas.com/?section=72

AddData

Overview	|	Properties	|	Methods

Call	this	method	to	add	data	elements	(slices)	to	a	pie	chart.

Syntax

long	=	PieChartObject.AddData(Value	As	Double,	[DataLabel	As	String],
[Color	As	Long	=&HFFFFFF],	[Texture	As	String])

The	AddData	method	syntax	has	the	following	parts:

Part Description

Value The	size	of	the	pie	chart	slice	(element).

DataLabel The	label	of	the	pie	slice.	If	this	is	not	set	then	your
resulting	jpeg	will	not	have	pie	slice	labels.

LegendLabel The	legend	title	of	the	pie	slice.	If	this	is	not	set	then	your
resulting	jpeg	will	not	have	labels	(text)	for	the	legend.

Color The	color	of	the	pie	slice	(defaults	to	white).	Use	either	a
hexadecimal	value	or	VBScript's	RGB	function.

Texture The	texture	of	the	pie	slice.

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a

non-zero	value	is	returned.

	
Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	you	can	use	this	return	value	as	the	argument	for	GetErrorText	in
order	to	retrieve	a	relevant	text	error	message,	or	alternatively	you	can
rem	out	the	"On	Error	Resume	Next"	statement	and	observe	the	thrown
exception	for	a	description	of	the	error.

Remarks

The	size	of	the	pie	slice	is	dictated	by	the	Data	argument.	The	size	is	not
in	any	specific	units	(e.g.	degrees	or	radians),	rather	it	is	represented	as
a	percentage	of	the	total	number	of	specified	sizes.	For	example,	if	there
are	four	slices	and	they	all	have	a	Data	value	of	10	then	their	individual
sizes	will	be:	(10/(10	+	10	+	10	+	10))	*	100%.

If	you	do	not	specify	a	color	or	texture	for	an	element	then	the	color	or
texture	for	that	particular	element	will	be	obtained	from	the	loaded
template	(if	it	exists).	If	the	same	element	does	not	exist	in	the	template
then	the	default	color	is	white	and	the	texture	is	set	to	"none".	For
example,	assume	we	have	loaded	a	template	which	contains	four	(4)	pie
slices.	If	we	add	pie	slice	#1	with	AddData	and	we	do	not	specify	a	color
or	texture	then	the	color	and	texture	for	pie	element	#1	in	the	template
will	be	used.	If,	however,	we	add	pie	element	#5	without	specifying	a
color	or	texture	then	there	will	be	no	texture	used	and	the	color	of	the	pie
slice	will	be	white	since	the	template	we	loaded	does	not	have	a	fifth	pie
slice.

To	set	the	Color	argument	you	can	use	either	a	hexadecimal	value	or
VBScript's	RGB	function.

Please	note	that	a	template	only	provides	textures	and	colors	for	pie
slices.	You	MUST	SPECIFY	the	pie	slice	labels	and	legend	labels	if	you

want	to	display	them	in	your	jpeg.

IMPORTANT:	You	MUST	load	the	desired	template	BEFORE	calling
AddData,	otherwise	values	set	in	the	AddData	call	will	be	overwritten	by
the	pie	chart	attributes	stored	in	the	template.

See	Also:	LoadTemplate	|	Overview	(Dundas	Pie	Chart	Server	Control)

AddLabel

Overview	|	Properties	|	Methods

Call	this	method	to	set	legend	elements.

Syntax

long	=	ChartObject.AddLabel(Text	As	String)

The	AddLabel	method	syntax	has	the	following	parts:

Part Description

Text The	text	for	the	legend	element.

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a
non-zero	value	is	returned.

		Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	use	this	return	value	as	the	argument	for	GetErrorText	in	order	to
retrieve	a	relevant	text	error	message.

Remarks

AddLabel	lets	you	set	legend	elements	programmatically.

AngleX

Overview	|	Properties	|	Methods

Set	this	property	to	the	amount	of	rotation	around	the	X-axis	for	the
previously	displayed	chart	object	before	calling	the	Rotate	method.

Syntax

PieChartObject.AngleX	=	[double]

The	AngleX	property	syntax	has	the	following	parts:

Part Description

double The	degree	of	rotation	of	the	chart	object	around	the	X-axis
the	last	time	it	was	displayed.

		Remarks

In	order	to	rotate	a	chart	you	must	let	the	chart	instance	know	what	the
rotational	angles	were	after	the	last	rotation	operation	(defaults	are	used
when	the	first	rotation	occurs)	before	calling	the	Rotate	method.	This
means	that	you	must	preserve	state	information	(e.g.	use	session-level
variables,	hidden	input	boxes,	etc.)	between	Chart	object
creation/deletion.

Once	you	have	set	the	AngleX,	AngleY	and	AngleZ	properties	the	chart
object	then	knows	its	location	as	set	by	a	previous	rotation	operation,	and
you	can	then	call	the	Rotate	method	to	rotate	the	chart.	Once	this	is
done	MAKE	SURE	that	you	record	the	new	X,	Y	and	Z	angles	for	the
chart	(to	be	used	if	the	chart	is	rotated	again).	To	save	the	chart's	new
position	record	(e.g.	session	variables)	the	AngleX,	AngleY	and	AngleZ
properties.

Refer	to	the	Rotation	Tutorial	for	sample	source	code	demonstrating

rotation.

See	Also:	Rotate	|	Tutorial:	Rotation

AngleY

Overview	|	Properties	|	Methods

Set	this	property	to	the	amount	of	rotation	around	the	Y-axis	for	the
previously	displayed	chart	object	before	calling	the	Rotate	method.

Syntax

PieChartObject.AngleY	=	[double]

The	AngleY	property	syntax	has	the	following	parts:

Part Description

double The	degree	of	rotation	of	the	chart	object	around	the	Y-axis
the	last	time	it	was	displayed.

		Remarks

In	order	to	rotate	a	chart	you	must	let	the	chart	instance	know	what	the
rotational	angles	were	after	the	last	rotation	operation	(defaults	are	used
when	the	first	rotation	occurs)	before	calling	the	Rotate	method.	This
means	that	you	must	preserve	state	information	(session-level	variables,
hidden	inputboxes,	etc.)	between	Chart	object	creation/deletion.

Once	you	have	set	the	AngleX,	AngleY	and	AngleZ	properties	the	chart
object	then	knows	its	location	as	set	by	a	previous	rotation	operation,	and
you	can	then	call	the	Rotate	method	to	rotate	the	chart.	Once	this	is
done	MAKE	SURE	that	you	record	the	new	X,	Y	and	Z	angles	for	the
chart	(to	be	used	if	the	chart	is	rotated	again).	To	save	the	chart's	new
position	record	(e.g.	session	variables)	the	AngleX,	AngleY	and	AngleZ
properties.

Refer	to	the	Rotation	Tutorial	for	sample	source	code	demonstrating
rotation.

See	Also:	Rotate	|	Tutorial:	Rotation

	

AngleZ

Overview	|	Properties	|	Methods

Set	this	property	to	the	amount	of	rotation	around	the	Z-axis	for	the
previously	displayed	chart	object	before	calling	the	Rotate	method.

Syntax

PieChartObject.AngleZ	=	[double]

The	AngleZ	property	syntax	has	the	following	parts:

Part Description

double The	degree	of	rotation	of	the	chart	object	around	the	Z-axis
the	last	time	it	was	displayed.

		Remarks

In	order	to	rotate	a	chart	you	must	let	the	chart	instance	know	what	the
rotational	angles	were	after	the	last	rotation	operation	(defaults	are	used
when	the	first	rotation	occurs)	before	calling	the	Rotate	method.	This
means	that	you	must	preserve	state	information	(session-level	variables,
hidden	inputboxes,	etc.)	between	Chart	object	creation/deletion.

Once	you	have	set	the	AngleX,	AngleY	and	AngleZ	properties	the	chart
object	then	knows	its	location	as	set	by	a	previous	rotation	operation,	and
you	can	then	call	the	Rotate	method	to	rotate	the	chart.	Once	this	is
done	MAKE	SURE	that	you	record	the	new	X,	Y	and	Z	angles	for	the
chart	(to	be	used	if	the	chart	is	rotated	again).	To	save	the	chart's	new
position	record	(e.g.	session	variables)	the	AngleX,	AngleY	and	AngleZ
properties.

Refer	to	the	Rotation	Tutorial	for	sample	source	code	demonstrating
rotation.

See	Also:	Rotate	|	Tutorial:	Rotation

	

CodePage

Overview	|	Properties	|	Methods

Set	this	property	to	utilize	a	language	other	than	english.

Syntax

PieChartObject.CodePage	=	[long]

The	CodePage	property	syntax	has	the	following	parts:

Part Description

long Represents	a	valid	code	page	for	the	system	which	is
running	the	ASP	engine.

		Remarks

A	code	page	is	a	character	set	which	is	used	to	interpret	and	display
data.	Differing	languages	and	locales	can	be	used	by	setting	this	property
to	the	desired	codepage.

Set	this	property	at	the	beginning	of	your	ASP	code,	before	you	call
SendJPEG.

Please	note	that	the	Dundas	Pie	Chart	Server	component	fully	supports
Unicode.

Refer	to	the	table	below	for	a	listing	of	code	pages:

Code	Page
	

Description

1252 ISO	Character	Set	(default)

	

850
	

Multilingual

437
	

U.S.	English

874
	

Thai

932
	

Japanese

936
	

Chinese	(simplified)

949
	

Korean

950
	

Chinese	(traditional)

1250
	

Central	European

1251
	

Cyrillic

1253
	

Greek

1254
	

Turkish

1255
	

Hebrew

1256
	

Arabic

1257 Baltic

For	more	information	about	code	pages	refer	to	the	MSDN	library.

	

CreateJpegFile

Overview	|	Properties	|	Methods

Saves	the	resulting	jpeg	to	disk.

Syntax

long	=	PieChartObject.CreateJpegFile(FileName	As	String,	Width	As
Long,	Height	As	Long,	[Compression	As	Long])

The	CreateJpegFile	method	syntax	has	the	following	parts:

Part Description

FileName The	full	pathname	of	the	file	to	be	saved	to	disk.

Width Width	of	the	saved	jpeg	in	pixels.

Height Height	of	the	saved	jpeg	in	pixels.

Compression Amount	of	compression	(0	to	100).

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a
non-zero	value	is	returned.

		Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	you	can	use	this	return	value	as	the	argument	for	GetErrorText	in
order	to	retrieve	a	relevant	text	error	message,	or	alternatively	you	can
rem	out	the	"On	Error	Resume	Next"	statement	and	observe	the	thrown
exception	for	a	description	of	the	error.

Remarks

You	can	use	this	as	a	test	method	to	see	if	the	control	is	actually
producing	a	jpeg.

You	can	also	use	this	method	in	a	VB	(Visual	Basic)	application	and	then
call	VB's	LoadPicture	method	to	assign	the	jpeg	to	a	Picture	Box	or
Image	control.

See	Also:	SendJPEG

DirTemplate

Overview	|	Properties	|	Methods

Sets	or	retrieves	the	directory	where	templates	are	stored.

Syntax

PieChartObject.DirTemplate	=	[string]

The	DirTemplate	property	syntax	has	the	following	parts:

Part Description

string The	full	pathname	of	the	folder	which	stores	the	templates.

	
Remarks

The	template	folder	is	where	all	of	your	textures	must	be	located	in	order
to	be	available	for	loading	into	a	pie	chart.

You	MUST	set	this	property	before	loading	a	template.

See	Also:	DirTexture

DirTexture

Overview	|	Properties	|	Methods

Set	or	retieves	the	directory	where	the	textures	must	be	stored.

Syntax

PieChartObject.DirTexture	=	[string]

The	DirTexture	property	syntax	has	the	following	parts:

Part Description

string The	full	pathname	of	the	folder	which	stores	the	textures.

	
Remarks

Your	textures	must	be	located	in	this	folder.

NOTE:	You	MUST	set	this	property	BEFORE	loading	a	template.

See	Also:	DirTemplate

	

GetErrorText

Overview	|	Properties	|	Methods

Outputs	a	relevant	error	string	based	on	a	returned	error	code.

Syntax

string	=	PieChartObject.GetErrorText(ErrorCode	As	Long)

The	GetErrorText	method	syntax	has	the	following	parts:

Part Description

ErrorCode An	error	code	which	is	returned	from	a	function	call.

string An	error	string	which	describes	the	error	that	occurred.

	
Returns

An	error	string.

Remarks

All	functions	with	the	exception	of	GetErrorText	return	an	error	code	(a
long)	which	signifies	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	the	operation	is	successful,	otherwise	a	non-zero	value	is
returned.	If	the	return	is	non-zero	you	can	use	GetErrorText	to	retrieve
an	error	string.

NOTE:	The	Pie	Chart	Server	control	will	also	throw	an	exception	if
an	error	occurs,	so	instead	of	using	the	GetErrorText	method	you

can	examine	the	thrown	exception	for	a	meaningful	error	message.

When	attempting	to	obtain	a	meaningful	error	message	you	MUST	load
the	page	producing	the	jpeg	(i.e.	the	page	with	the	SendJPEG	call)
directly	into	your	browser	(i.e.	do	not	load	this	page	with	an		tag
from	another	page).

GetSelectedPosition

Overview	|	Properties	|	Methods

Use	this	method	to	determine	which	data	element	the	user	selected
(zero-based).

Syntax

long	=	PieChartObject.GetSelectedPosition()

Remarks

Call	this	method	ONLY	WHEN	you	have	successfully	called	the	Select
method	inside	the	page	which	is	handling	the	item	selection,	specified	by
the	SRC	attribute	of	the	<A>	tag	immediately	preceding	the	server-side
chart	image	tag	(e.g.	<A	HREF	SRC="PageToHandleSelectedItem.asp">
).		The	return	value	will	be	the
data	element	that	the	user	clicked	on.

This	is	useful	in	drilldown	scenarios	where	you	can	take	appropriate
action	(e.g	show	another	chart	image)	based	on	the	pie	slice	the	user
selected.

GetSelectedPosition	is	zero-based,	so	a	return	of	zero	(0)	indicates	that
the	user	selected	the	first	element	added	to	the	chart	with	the	AddData
method.

You	should	first	call	GetSelectedSeries	to	make	sure	that	the	user	clicked
on	a	pie	slice	or	a	legend	item.

If	the	user	clicks	on	a	legend	item	then	the	corresponding	pie	slice's
position	is	returned.

IMPORTANT:	The	return	number	represents	the	selected	element	as	per
the	order	that	the	data	elements	were	added	via	the	AddData	method.
This	has	certain	ramifications	since	a	pie	chart	types	can	be	set	up	to	use

a	"collected"	element.	If	an	element	is	collected	it	will	still	be	counted	as	a
position.	For	example,	if	the	first	element	is	collected	(and	therefore	only
visible	as	the	collected	element)	then	GetSelectedPosition	will	return
one	(as	opposed	to	zero)	if	the	user	clicks	on	the	first	visible	pie	slice.

NOTE:	Even	though	the	page	which	handles	the	selection	does	not
output	a	jpeg	we	MUST	reproduce	the	exact	same	chart	which	is	created
by	the	page	within	the		tag	(the	page	which	outputs	the	jpeg	via
SendJPEG).	In	order	to	guarantee	that	the	exact	same	chart	is
reproduced	we	highly	recommend	using	a	server-side	include	for	the
code	which	creates	the	chart	(starting	from	the	CreateObject	call	all	the
way	to	setting	the	Chart	object	to	Nothing).

For	sample	source	on	this	refer	to	the	Tutorial:	Drilldown	and	Selection	of
Data	Elements.	You	can	also	examine	the	Selection,	Grand	Prix	or	Gross
Domestic	Product	(Drilldown)	samples	which	are	distributed	with	the
Chart	Server	Control	for	sample	source	code	about	the	Select,
GetSelectedPosition	and	GetSelectedSeries	methods.

See	Also:	GetSelectedSeries	|	Select

GetSelectedSeries

Overview	|	Properties	|	Methods

Use	this	method	to	determine	which	data	series	the	user	selected	(zero-
based).		Note	that	pie	charts	only	use	one	data	series.

Syntax

long	=	PieChartObject.GetSelectedSeries()

Remarks

GetSelectedSeries	is	zero-based,	and	will:

return	-999	if	the	user	clicked	on	the	collected	data	element.

return	a	negative	number	if	the	user	clicked	anywhere	except	a	data
element	or	the	legend	item	that	corresponds	to	a	pie	slice.

always	return	zero	(0)	if	the	user	selected	an	actual	data	element
(i.e.	pie	slice).

Even	though	pie	charts	have	only	one	data	series	you	should	still
call	this	method	to	make	sure	an	actual	slice	or	legend	item	was
selected!

Call	this	method	ONLY	WHEN	you	have	successfully	called	the	Select
method	inside	the	page	which	is	handling	the	item	selection	(as	specified
by	the	SRC	attribute	of	the	<A>	tag	immediately	preceding	the	server-
side	chart	image	tag).	The	return	value	will	be	the	data	element	that	the
user	clicked	on	inside	of	the	chart	server-side	imagemap	(<A	HREF
SRC="PageToHandleSelectedItem.asp"><IMG	IsMap
SRC="MakeJpeg.asp">).

Important:	Even	though	the	page	which	handles	the	selection	(i.e	the
page	which	has	the	GetSelectedSeries	call)	does	not	output	a	jpeg	we
MUST	reproduce	the	exact	same	chart	which	is	created	by	the	page

within	the		tag	(the	page	which	outputs	the	jpeg	via	SendJPEG).
In	order	to	guarantee	that	the	exact	same	chart	is	reproduced	we	highly
recommend	using	a	server-side	include	for	the	code	which	creates	the
chart	(starting	from	the	CreateObject	call	all	the	way	to	setting	the	Chart
object	to	Nothing).

For	sample	source	on	this	refer	to	the	Tutorial:	Drilldown	and	Selection	of
Data	Elements.

See	Also:	GetSelectedPosition	|	Select	|	SetCollectedLimit	|
SetCollectedProp

LoadTemplate

Overview	|	Properties	|	Methods

Loads	a	template	into	a	pie	chart.

Syntax

long	=	PieChartObject.LoadTemplate(FileName	As	String)

The	LoadTemplate	method	syntax	has	the	following	parts:

Part Description

FileName The	name	of	the	template	to	load.

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a
non-zero	value	is	returned.

		Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	you	can	use	this	return	value	as	the	argument	for	GetErrorText	in
order	to	retrieve	a	relevant	text	error	message,	or	alternatively	you	can
rem	out	the	"On	Error	Resume	Next"	statement	and	observe	the	thrown
exception	for	a	description	of	the	error.

Remarks

Templates	define	chart	characteristics	such	as	the	title,	default	textures
and	colors	for	data	elements	(pie	slices),	labels,	lighting	properties,	etc.
Use	the	Template	Creator	to	create	or	change	templates	for	use	with	the
Dundas	Pie	Chart	Server	control.

Call	LoadTemplate	BEFORE	you	set	the	Title	property	or	use	any	of	the
object's	methods,	otherwise	the	default	template	values	will	overwrite
your	properties/data.

For	a	description	of	the	steps	which	should	be	followed	to	create	a	pie
chart	and	the	order	in	which	they	should	be	performed	see	the	Dundas
Pie	Chart	Server	Control	Overview.

See	Also:	Template	Creator	Overview	|	DirTemplate

Dundas	Pie	Chart	Server	Control	Methods

Copyright	©	Dundas	Software	Ltd.	2000.	All	Rights	Reserved

Overview	|	Properties	|	Methods

AddData Call	this	method	to	add	data	elements	(slices)	to	a
pie	chart.

AddLabel Sets	the	legend	text	for	a	pie	slice.

CreateJPEGFile Saves	a	pie	chart	to	disk	as	a	jpeg	file.

GetErrorText Retrieves	an	error	string	based	on	a	returned	error
code.

GetSelectedPosition Returns	the	pie	slice	the	user	selected	(clicked	on).

GetSelectedSeries Returns	the	data	series	the	user	selected	(clicked
on).

LoadTemplate Loads	a	template	into	a	pie	chart	object.

Select MUST	be	called	before	using	GetSelectedPosition
and	GetSelectedSeries.

SendJPEG Outputs	the	pie	chart	object	in	a	jpeg	format.

SetCollectedLimit Sets	the	limit	at	which	data	elements	will	be
incorporated	into	the	collected	data	element.

SetCollectedProp Sets	the	properties	of	the	collected	data	element.

SetExploded Explodes	a	pie	slice.

Dundas	Pie	Chart	Server	Control	Properties

Copyright	©	Dundas	Software	Ltd.	2000.	All	Rights	Reserved

Overview	|	Properties	|	Methods

AngleX The	amount	of	rotation	around	the	X-axis	for	the
previously	displayed	chart	object	(must	be	set	before
calling	the	Rotate	method).

AngleY The	amount	of	rotation	around	the	Y-axis	for	the	previously
displayed	chart	object	(must	be	set	before	calling	the
Rotate	method).

AngleZ The	amount	of	rotation	around	the	Z-axis	for	the
previously	displayed	chart	object	(must	be	set	before
calling	the	Rotate	method).

CodePage The	codepage	to	be	used.

DirTemplate Sets	or	retrieves	the	folder	which	stores	the	templates.

DirTexture Sets	or	retrieves	the	folder	which	stores	the	textures.

Title Sets	or	retrieves	the	title	of	the	pie	chart.

Rotate

Overview	|	Properties	|	Methods

Call	this	method	to	rotate	a	chart.

Syntax

long	=	PieChartObject.Rotate(Angle	As	Double,	Axis	As	Long)

The	Rotate	method	syntax	has	the	following	parts:

Part Description

Angle This	is	the	angle	at	which	the	rotation	should	be	set	for	the
axis	passed	in.	The	angle	is	specified	in	degrees,	and	is
relative	to	the	current	position	(e.g.	the	value	specified	in	a
previous	call	to	Rotate	or	one	found	in	the	template).

Axis The	axis	to	have	the	chart	rotated	around.	This	value
should	be	zero	(0)	for	the	X-axis,	one	(1)	for	the	Y-axis,	and
two	(2)	for	the	Z-axis.

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a
non-zero	value	is	returned.

Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	use	this	return	value	as	the	argument	for	GetErrorText	in	order	to
retrieve	a	relevant	text	error	message.

Remarks

Make	sure	you	only	call	this	method	after	adding	all	data	to	the	chart
object.

In	order	to	rotate	a	chart	you	must	let	the	chart	instance	know	what	the
rotational	angles	were	after	the	last	rotation	operation	(defaults	are	used
when	the	first	rotation	occurs)	before	calling	the	Rotate	method.	This
means	that	you	must	preserve	state	information	(session-level	variables,
hidden	inputboxes,	etc.)	between	Chart	object	creation/deletion.

To	set	the	initial	rotation	angles	use	your	preserved	state	information	and
set	the	AngleX,	AngleY	and	AngleZ	properties.	Once	you	have	set	the
previous	rotation	angles	you	can	call	the	Rotate	method	to	rotate	the
chart.	Once	this	is	done	MAKE	SURE	that	you	record	the	new	X,	Y	and	Z
angles	for	the	chart	(to	be	used	if	the	chart	is	rotated	again).	To	save	the
chart's	new	position	record	(e.g.	session	variables)	the	AngleX,	AngleY
and	AngleZ	properties.

NOTE:	if	you	repeatedly	call	this	method	(to	rotate	around	all	three	axis)
and	you	then	call	SendJPEG	you	must	remember	the	order	of	rotation	for
the	different	axis.	In	otherwords,	if	you	rotate	around	the	X,	Y,	and	Z-axis
in	that	order	then	the	next	time	you	rotate	the	chart	you	must	rotate
around	the	X,	Y,	and	Z-axis	using	the	same	order.

Note	that	rotation	occurs	in	screen	coordinates,	not	chart	coordinates
(e.g.	the	z-axis	is	always	at	right	angles	to	the	screen).

Refer	to	the	Rotation	Tutorial	for	sample	source	code	demonstrating
rotation.

See	Also:	AngleX	|	AngleY	|	AngleZ	|	Tutorial:	Rotation

Select

Overview	|	Properties	|	Methods

Call	this	method	so	that	you	can	utilize	the	GetSelectedPosition	and
GetSelectedSeries	methods	when	working	with	a	server-side	chart
imagemap	(i.e.	implementing	drilldown	and/or	selection).

Syntax

long	=	PieChartObject.	Select(X	As	Long,	Y	As	Long,	Width	As	Long,
Height	As	Long)

The	Select	method	syntax	has	the	following	parts:

Part Description

X The	X-coordinate	of	the	mouse	position	where	the	user
clicked.	Use	the	querystring's	first	number	(from	the
imagemap)	for	this	argument.

Y The	Y-coordinate	of	the	mouse	position	where	the	user
clicked.	Use	the	resulting	querystring's	second	number	for
this	argument.

Width The	height	of	the	jpeg	image	(as	set	in	the	SendJPEG()
call).

Height The	width	of	the	jpeg	image	(as	set	in	the	SendJPEG()	call).

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a
non-zero	value	is	returned.

		Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	use	this	return	value	as	the	argument	for	GetErrorText	in	order	to
retrieve	a	relevant	text	error	message.

Remarks

Call	this	method	in	a	page	which	is	loaded	as	a	result	of	a	server-side
chart	imagemap	being	clicked	on	in	order	to	find	out	which	data	element
was	selected.	This	method	is	used	when	working	with	a	drill-down	type	of
scenario.

To	set	the	X	and	Y	arguments	you	will	need	to	parse	the	passed
querystring	item	(the	mouse	position	with	a	syntax	of	"201,75")	which
results	from	the	IsMap	attribute	within	the		tag.	To	parse	this	data
()	use	the	InStr	VBScript	function.	The	first	number	in	the	querystring	will
be	the	mouse'	X-coordinate,	while	the	second	querystring	value	is	the
corresponding	mouse'	Y-coordinate.

IMPORTANT:	Even	though	the	page	which	handles	the	selection	does
not	output	a	jpeg	we	MUST	reproduce	the	exact	same	chart	which	is
created	by	the	page	within	the		tag	(the	page	which	outputs	the
jpeg	via	SendJPEG).	In	order	to	guarantee	that	the	exact	same	chart	is
reproduced	we	highly	recommend	using	a	server-side	include	for	the
code	which	creates	the	chart	(starting	from	the	CreateObject	call	all	the
way	to	setting	the	Chart	object	to	Nothing).

The	height	and	width	arguments	should	match	those	specified	in	the
corresponding	SendJPEG	call	as	well	as	those	which	may	have	been
specified	as	Height	and	Width	attributes	in	the	relevant		tag.

For	sample	source	on	this	refer	to	the	Tutorial:	Drilldown	and	Selection	of
Data	Elements.	You	can	also	examine	the	Selection,	Grand	Prix	or	Gross
Domestic	Product	(Drilldown)	samples	which	are	distributed	with	the
Chart	Server	Control	for	sample	source	code	about	the	Select,
GetSelectedPosition	and	GetSelectedSeries	methods.

See	Also:	GetSelectedPosition	|	GetSelectedSeries	|	Tutorial:	Drilldown

and	Selection	of	Data	Elements

SendJPEG

Overview	|	Properties	|	Methods

Outputs	a	binary	stream	in	JPEG	format	by	using	the
Response.BinaryWrite	Asp	method.

Syntax

long	=	PieChartObject.SendJPEG(Width	As	Long,	Height	As	Long,
[Compression	As	Long	=	20],	[Smoothing	As	Long	=	20])

The	SendJPEG	method	syntax	has	the	following	parts:

Part Description

Width Width	of	the	jpeg	(pixels).

Height Height	of	the	jpeg	(pixels).

Compression The	amount	by	which	the	original	pie	chart	image	is
compressed.	Ranges	from	0	to	100	(no	compression	to
maximum	compression).

Smoothing The	amount	of	smoothing	that	occurs	for	the	jpeg	image.
Ranges	from	0	to	100	(no	smoothing	to	maximum
smoothing).

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a
non-zero	value	is	returned.

		Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is

returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	you	can	use	this	return	value	as	the	argument	for	GetErrorText	in
order	to	retrieve	a	relevant	text	error	message,	or	alternatively	you	can
rem	out	the	"On	Error	Resume	Next"	statement	and	observe	the	thrown
exception	for	a	description	of	the	error.

Remarks

Outputs	a	jpeg	file	by	using	the	Response.BinaryWrite	Asp	method.

There	are	two	ways	to	embed	this	jpeg	file	into	an	Asp	page.	The	first	is
to	use	an		tag	and	set	the	SRC	attribute	to	the	secondary	Asp
page	which	is	responsible	for	creating	the	Asp	Pie	Chart	object	and
creating	the	pie	chart	(see	Overview	for	more	details).	The	second
method	is	the	same	as	the	first	except	we	use	an	<A>	tag	instead	of	an
	tag.	For	an	example	of	this	see	the	Asp	demo	pages.	You	can
also	refer	to	the	overview	for	more	information.

IMPORTANT:	The	Response.BinaryWrite	method	utilizes	HTTP	headers,
and	as	a	result	you	CAN	NOT	insert	any	html	code	into	the	Asp	page
before	calling	this	method!

See	Also:	CreateJPEGFile	|	Overview

SetCollectedLimit

Overview	|	Properties	|	Methods

Sets	the	value	at	which	a	data	element	(pie	slice)	will	be	collected.

Syntax

long	=	PieChartObject.SetCollectedLimit(Limit	As	Double,	[LimitType	As
Long])

The	SetCollectedLimit	method	syntax	has	the	following	parts:

Part Description

Limit The	value	at	which	a	data	element	will	become	a	"collected"
element.

LimitType The	limit	type.	If	this	is	zero	(0)	then	the	size	of	the	element
as	a	percentage	will	be	used.	If	this	is	set	to	one	(1)	then	the
size	of	the	pie	element	will	be	used.

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a	non-
zero	value	is	returned.

	
Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	you	can	use	this	return	value	as	the	argument	for	GetErrorText	in

order	to	retrieve	a	relevant	text	error	message,	or	alternatively	you	can
rem	out	the	"On	Error	Resume	Next"	statement	and	observe	the	thrown
exception	for	a	description	of	the	error.

Remarks

Small	data	elements	are	"collected"	and	then	displayed	together	as	one
pie	slice	called	the	"collected"	element.	SetCollectedLimit	determines	at
which	point	an	element	will	be	a	part	of	the	collected	element.

See	Also:	Overview	|	SetCollectedProp

	

SetCollectedProp

Overview	|	Properties	|	Methods

Sets	the	properties	for	the	collected	data	element.

Syntax

long	=	PieChartObject.SetCollectedProp([Label	As	String],	[Color	As
Long	=	16711680],	[Texture	As	String])

The	SetCollectedProp	method	syntax	has	the	following	parts:

Part Description

Label The	label	which	will	be	displayed	next	to	the	collected	data
element.

Color The	underlying	color	to	be	used	for	the	collected	pie	slice.

Texture The	texture	to	be	used	for	the	collected	data	element.

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a	non-
zero	value	is	returned.

		Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	you	can	use	this	return	value	as	the	argument	for	GetErrorText	in
order	to	retrieve	a	relevant	text	error	message,	or	alternatively	you	can
rem	out	the	"On	Error	Resume	Next"	statement	and	observe	the	thrown
exception	for	a	description	of	the	error.

Remarks

Small	data	elements	are	"collected"	and	then	displayed	together	as	one
pie	slice	called	the	"collected"	element.

SetCollectedProp	sets	the	properties	of	the	collected	pie	slice.	If	the
template	(which	MUST	be	loaded	before	calling	this	method)	defines
default	values	for	the	collected	data	element	then	these	default	values
will	be	used	if	you	do	not	specify	a	collected	property.	For	example,	if	you
call	SetCollectedProp	and	specify	a	label	and	underlying	color	to	be
used	for	the	collected	pie	slice	then	the	default	values	(if	they	are	defined
in	the	template)	will	not	be	used,	but	the	default	texture	will	be	used	since
we	did	not	specify	a	texture	in	the	SetCollectedProp	call.

See	Also:	SetCollectedLimit	|	LoadTemplate	|	Template	Creator
Overview

SetExploded

Overview	|	Properties	|	Methods

Call	this	method	to	explode	a	particular	pie	slice.

Syntax

long	=	PieChartObject.SetExploded([Index	As	Long	=	-1])

The	SetExploded	method	syntax	has	the	following	parts:

Part Description

Index Zero	(0)	based	index	of	the	data	elements	(pie	slices)	in	the
pie	chart.	Set	this	to	-1	(or	do	not	specify	the	index	at	all)	to
explode	the	collected	pie	slice.

long Returns	a	long	indicating	the	success	or	failure	of	the
operation.	Zero	(0)	is	returned	if	successful,	otherwise	a	non-
zero	value	is	returned.

	
Returns

A	long	which	indicates	the	success/failure	of	the	operation.	Zero	(0)	is
returned	if	successful,	otherwise	a	non-zero	value	is	returned.	If	an	error
occurs	you	can	use	this	return	value	as	the	argument	for	GetErrorText	in
order	to	retrieve	a	relevant	text	error	message,	or	alternatively	you	can
rem	out	the	"On	Error	Resume	Next"	statement	and	observe	the	thrown
exception	for	a	description	of	the	error.

Remarks

Call	this	function	to	explode	a	pie	element	or	the	collected	element.

If	you	specify	a	data	element	to	be	exploded	and	the	element	ends	up
being	collected	it	will	not	be	exploded	(unless	the	collected	data	element
is	set	up	to	be	exploded).	However,	if	you	were	to	decrease	the	limit	at
which	elements	are	collected	by	calling	SetCollectedLimit	and	the	same
pie	slice	is	no	longer	a	collected	element	it	will	then	be	exploded.	In
otherwords,	it	remembers	that	it	is	supposed	to	be	exploded.

You	MUST	call	AddData	before	exploding	pie	elements.

See	Also:	SetCollectedLimit	|	SetCollectedProp

Title

Overview	|	Properties	|	Methods

Sets	or	retrieves	the	title	of	the	pie	chart.

Syntax

PieChartObject.Title	=	[string]

The	Title	property	syntax	has	the	following	parts:

Part Description

string The	title	of	the	pie	chart.

	
Remarks

Sets	or	retrieves	the	title	of	the	pie	chart.	Use	this	property	AFTER	the
template	is	loaded,	otherwise	the	default	title	from	the	template	will	be
used	instead.

See	Also:	LoadTemplate

Template	Creator	Overview

Copyright	©	Dundas	Software	Ltd.	2000,	All	Rights	Reserved

The	Template	Creator	enables	editing	and	manipulation	of	a	pie	chart
template.	A	template	is	a	binary	file	that	stores	reusable	chart
information,	and	all	templates	have	a	file	extension	of	".cuc".	You	can
also	create	a	new	template	with	the	Template	Creator.

Templates	define	the	characteristics	of	a	chart,	and	are	loaded	by	the
Dundas	Pie	Chart	Server	control	via	the	LoadTemplate	method.

Pie	chart	properties	are	edited	by	property	pages.	To	display	a	property
sheet	either	double-click	on	a	pie	chart	element	or	right-click	over	an
element	and	select	'Properties'.

IMPORTANT:	the	Template	Creator	will	only	function	correctly	if	your
screen	resolution	is	set	up	to	display	at	least	32k	colors.

The	Dundas	Pie	Chart	Server	control	can	load	a	template	and	create	a
jpeg	image	from	it.	To	minimize	the	amount	of	whitespace	in	the	resulting
jpeg	make	the	pie	chart	image	as	large	as	possible	in	the	Template
Creator.

By	default	a	new	template	will	not	display	the	last	pie	slice	because	it	is
collected.	To	view	this	last	slice	(which	is	collected	and	therefore	not
visible)	open	the	Pie	Element	property	page	for	ANY	visible	slice	and	set
the	Collected	Data	Limit	to	zero	percent.	This	makes	sure	that	no
elements	are	collected	(all	pie	slices	will	be	visible).	If	you	want	to
determine	which	slice	is	the	collected	slice	open	the	same	property	page
and	set	the	Collected	Data	Limit	to	100%,	thereby	causing	all	slices	to	be
collected.	The	resulting	pie	chart	will	then	display	only	the	collected	slice.
To	change	the	texture/color	of	the	collected	slice	right-click	over	it,	select
the	Properties	menu	item	and	then	choose	the	Textures	property	page.

The	values	(sizes)	of	the	slices	are	indicated	by	Tooltips	which	appear

when	you	rest	the	mouse	cursor	over	a	pie	slice.

The	creator	allows	you	to	use	gradient	colors	for	the	template
background,	legends,	static	notes	(labels)	and	the	title.

Some	chart	properties	can	only	be	set	by	the	Dundas	Pie	Chart	Server
control	(like	data	values	or	labels),	while	others	can	only	be	set	by	the
Template	Creator	(e.g.	background	colors	and	textures,	the	pie
orientation	or	the	light	direction).	Some	properties	can	be	set	by	both	the
control	and	by	the	Template	Creator	(e.g.	textures	and	colors	of	pie
slices).	Refer	to	the	table	below	for	more	detailed	information:

Property	Name		 Template	Creator Dundas	Pie	Chart
Server	Control

Background 	 	

all	properties Yes No

	 	 	

Title 	 	

position Yes No

font	properties Yes No

text Yes Yes

	 	 	

Pie	chart	orientation Yes No

	 	 	

Light	parameters	and
direction

Yes No

	 	 	

Legend 	 	

position Yes No

border	style Yes No

font	properties Yes No

labels No Yes

	 	 	

Pie	chart 	 	

size Yes No

rounding	radius Yes No

number	of
rounding	points

Yes No

parameters	for
collected	data

Yes Yes

label	for	collected
data

Yes Yes

number	of	pie
slices

Yes	(slices	will	have
default	values)

Yes

side	texture Yes No

disable	textures Yes No

disable	lighting Yes No

	 	 	

Pie	slice	(element) 	 	

value No No

color/texture Yes	(saved	as	the
default	values)

No

exploded Yes	(not	saved) No

label	text Yes	(not	saved) No

label	font Yes Yes

	 	 	

Static	notes 	 	

all	properties Yes No

	
Please	note	that	a	template	does	not	save	data	for	a	chart	object.

The	filename	of	the	Template	Creator	is	PieTEditor.exe.

To	be	able	to	resize	a	legend	the	AutoSize	option	MUST	BE	selected	(in
the	Lables	property	page	for	a	legend	element).

IMPORTANT:	for	the	Template	Creator	to	work	correctly	the	Intel
compression	library	(ijl15.dll)	must	be	located	either	in	your	system
directory	or	at	the	same	directory	level	as	the	Template	Creator.
Also,	in	order	to	use	the	distributed	textures	the	"Textures"	folder
(which	stores	these	textures)	must	also	exist	at	the	same	directory
level	as	the	Creator).

See	Also:	Dundas	Pie	Chart	Server	-	Demo	Overview	|	Overview
(Dundas	Pie	Chart	Server	Control)	|	Collected	Data

	

How	to	use	the	Template	Creator

The	Template	Creator	lets	you	create	and/or	manipulate	templates	to	be
used	with	the	Dundas	Pie	Chart	Server	Control.		The	Template	Creator
can	be	accessed	via	the	Start	Menu	Entry	named	"Pie	Chart
Template	Creator".

The	application	menu	lets	you	create,	open,	and	save	templates	to	disk.
The	popup	menu	allows	you	to	open	a	property	sheet	for	property	editing,
switch	to	either	Size	or	Move	mode,	and	work	with	static	text	labels.

The	properties	of	elements	are	available	for	editing	via	property	sheets.
The	possible	property	pages	are:	Pie	Element;	Data	Label;	Texture;	Size
-	Move;	Light;	Labels;	Line	Patterns;	Title;	and	Scene.

Note	that	the	property	pages	displayed	depends	on	the	type	of	element
you	click	over,	so	only	some	of	the	pages	listed	above	will	be	shown.

To	rotate	a	chart	use	the	keyboard's	navigational	keys.	For	more	details
see	Rotating	a	Chart.

For	a	listing	of	pie	chart	properties	that	can	be	edited	via	the	Template
Creator	see	the	overview.

By	default	a	new	template	will	not	display	the	last	pie	slice	because	it	is
collected.	To	view	this	last	slice	(which	is	collected	and	therefore	not
visible)	open	the	Pie	Element	property	page	for	ANY	visible	slice	and	set
the	Collected	Data	Limit	to	zero	percent.	This	makes	sure	that	no
elements	are	collected	(all	pie	slices	will	be	visible).	If	you	want	to
determine	which	slice	is	the	collected	slice	open	the	same	property	page
and	set	the	Collected	Data	Limit	to	100%,	thereby	causing	all	slices	to	be
collected.	The	resulting	pie	chart	will	then	display	only	the	collected
'slice'.	You	can	then	change	the	texture/color	of	the	collected	slice	by
right-clicking	over	it,	selecting	the	Properties	menu	item	and	then
choosing	the	Textures	property	page.

A	new	template	randomly	sets	the	colors	of	the	pie	slices.

IMPORTANT:	for	the	Template	Creator	to	work	correctly	the	Intel
compression	library	(ijl15.dll)	must	be	located	either	in	your	system
directory	or	at	the	same	directory	level	as	the	Template	Creator.
Also,	in	order	to	use	the	distributed	textures	the	"Textures"	folder
(which	stores	these	textures)	must	also	exist	at	the	same	directory
level	as	the	Template	Creator).

See	Also:	Template	Creator	Overview	|	Collected	Data	Elements

Application	Menu	-	Template	Creator

The	application	menu	lets	you	perform	the	following	actions:

File 	

New Create	a	new	template.	By	default	the	first	slice	is
collected.

Open Open	a	template	for	editing.

Save Save	the	template.

Save	As Save	the	template	with	a	new	filename.

Pie 	

Add	Pie	Slice Add	another	pie	slice	to	the	pie	chart.

Add	3	Pie
Slices

Adds	three	pie	slices.

Delete	Pie	Slice Delete	the	last	pie	slice	in	the	pie	chart	(each	slice
is	identified	by	an	index).

Delete	3	Pie
Slices

Delete	the	last	three	pie	slices	in	the	template.

		See	Also:	Popup	Menu	|	Collected	Data	Elements

Collected	Data	Elements

Collected	data	consists	of	all	pie	slices	which	fall	below	a	minmum	value,
and	is	indicated	to	the	user	with	a	special	"collected"	pie	slice	which	has
its	own	color/texture.	This	collected	pie	slice	eliminates	situations	where
there	are	numerous	slices	which	can	not	be	drawn	properly	(i.e.	if	there
are	twenty	slices	which	are	very	small	then	the	resulting	pie	chart	would
be	very	messy	if	there	was	no	collected	pie	slice).

By	default	a	NEW	template	will	not	display	the	last	pie	slice	because	it	is
collected.	To	view	this	last	slice	(which	is	collected	and	therefore	not
visible)	open	the	Pie	Element	property	page	for	ANY	visible	slice	and	set
the	Collected	Data	Limit	to	zero	percent.	This	makes	sure	that	no
elements	are	collected	(all	pie	slices	will	be	visible).	If	you	want	to
determine	which	slice	is	the	collected	slice	open	the	same	property	page
and	set	the	Collected	Data	Limit	to	100%,	thereby	causing	all	slices	to	be
collected.	The	resulting	pie	chart	will	then	display	only	the	collected
'slice'.	To	change	the	texture/color	of	the	collected	slice	right-click	over	it,
select	the	Properties	menu	item	and	then	choose	the	Textures	property
page.

A	new	template	randomly	sets	the	colors	of	the	pie	slices.	The	last	slice	is
collected,	so	the	collected	pie	slice	is	shown	instead	of	the	last	slice.

The	Collected	Data	Limit	determines	how	small	a	slice	must	be	before	it
is	added	to	the	collected	slice.	This	can	be	either	a	percentage	of	the
entire	pie	or	an	absolute	value.

See	Also:	How	to	use	the	Template	Creator	|	Template	Creator	Overview
|	Pie	Element	Property	Page

	

	

Data	Label	Property	Page	-	Template	Creator

The	data	label	property	page	is	only	available	for	pie	slices.

To	display	this	property	page	either	double-click	on	a	pie	slice	or	right-
click	over	a	pie	slice	and	select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Edit	Data	Label Change	the	label	text	for	the	pie	slice	you	right-
clicked	over.
	

Orientation Set	the	orientation	of	the	pie	element	label	to	either
vertical	or	horizontal.
	

Font	(all	items) Set	the	font	type,	font	size,	and	font	color.
	

Effects Set	the	color	of	the	label.
	

	
See	Also:	How	to	use	the	Template	Creator	|	Popup	Menu	-	Template
Creator

Gradient	Property	Page	-	Template	Creator

The	gradient	property	page	is	available	for	all	template	items	except	pie
slices.

To	display	this	property	page	either	double-click	on	an	element	or	right-
click	over	an	element	and	select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Solid Displays	the	selected	item	with	a	uniformly	colored
background.
	

Gradient Displays	the	selected	item	with	a	colored	gradient
background.
	

Transparent Displays	the	selected	item	with	a	transparent
background.	Not	available	for	the	background	of	the
template	itself.
	

Shading	Styles:
	

	

Horizontal Shading	occurs	horizontally.
	

Vertical Shading	occurs	vertically.
	

Diagonal	Up Shading	occurs	from	the	bottom	left-hand	corner	to
the	top	right-hand	corner.
	

Diagonal
Down

Shading	occurs	from	the	bottom	right-hand	corner	to
the	top	left-hand	corner.
	

From	Corner Shading	occurs	from	one	corner	only.
	

From	Center Shading	occurs	from	the	center	on	outwards.
	

Color Determines	which	two	(2)	colors	are	to	be	used	for
the	shading.
	

Fill	Styles Determines	how	the	shading	style	will	be
implemented.	You	can	choose	any	one	of	the	four	(4)
available	fill	styles.
	

See	Also:	How	to	use	the	Template	Creator

	

	

Labels	Property	Page	-	Template	Creator

The	labels	property	page	is	only	available	for	legend	elements.

To	display	this	property	page	either	double-click	on	a	legend	element	or
right-click	over	a	legend	element	and	select	'Properties'.

To	be	able	to	resize	the	legend	the	AutoSize	option	MUST	be	selected.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Edit	Labels Change	the	text	of	a	particular	legend	item.
	

Font Specify	the	font	to	be	used	for	the	legend	item.
	

Font	Style Specify	the	font	style	to	be	used	for	the	legend	item.
	

Size Specify	the	font	size	for	the	legend	item.
	

Effects:
	

	

Color The	text	color	of	ALL	the	legend	items.
	

Auto	Size Automatically	sizes	the	legend	items.	This	MUST	be
checked	if	you	want	to	resize	the	legend.
	

	
See	Also:	How	to	use	the	Template	Creator

	

Light	Property	Page	-	Template	Creator

The	light	property	page	is	available	for	the	area	element	(background)	as
well	as	pie	slices.	Please	note	that	setting	light	parameters	for	one	chart
element	will	change	the	light	settings	for	the	entire	pie	chart.

To	display	this	property	page	either	double-click	on	the	background	or	pie
slice	or	alternatively	right-click	over	the	background	or	a	pie	element	and
select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Directional
Sphere
(large	red	ball)

Use	this	item	to	set	the	direction	that	the	light	will	strike
your	pie	chart.	You	can	either	use	the	red	directional
arrows	or	alternatively	you	can	left-click,	hold	the
button	down	and	move	the	directional	sphere	in	the
desired	direction.
	

Light	Disabled Disable	all	lighting	effects.
	

Rotation	Step Sets	the	increment	by	which	the	light	direction	will
change	(e.g.	how	quickly	the	red	ball	will	rotate).
	

Light
Parameters:
	

	

Ambient Change	the	RGB	(Red,	Green,	Blue)	values	of	the
ambient	(non-directional)	light.
	

Diffuse Change	the	RGB	values	of	the	diffuse	light.	Diffuse

light	is	reflected,	and	its	intensity	varies	depending	on
the	angle	between	the	pixel's	normal	vector	and	the
direction	of	the	light	source.
	

Specular Change	the	RGB	values	of	the	specular	light.	Specular
light	is	also	reflected,	but	its	intensity	varies	with	the
angle	between	the	viewer	and	the	direction	of	the
reflected	light.

	
See	Also:	How	to	use	the	Template	Creator

Line	Patterns	Property	Page	-	Template	Creator

The	line	patterns	property	page	is	only	available	for	legend	elements.

To	display	this	property	page	either	double-click	on	a	legend	element	or
right-click	over	a	legend	element	and	select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Default
Patterns

You	may	select	one	of	several	pre-defined	line	patterns
for	the	legend's	outline.
	

Pattern Use	the	radio	buttons	to	define	your	own	custom
legend	outline.
	

Line
Parameters:
	

	

Line	Width Sets	the	width	of	the	legend's	outline.
	

Color Sets	the	color	of	the	legend's	outline.
	

Factor Magnifies	the	specified	line	pattern.	For	example,	if	the
outline	consists	of	dot	-	space	-	dot	and	you	magnify	by
a	fctor	of	two	then	the	resulting	outline	will	then	be:	dot-
dot	-	space	-	space	-	dot	-	dot.

	
See	Also:	How	to	use	the	Template	Creator

Pie	Element	Property	Page	-	Template	Creator

The	pie	element	property	page	is	only	available	when	you	click	over	a	pie
slice.

The	properties	exposed	by	this	page	apply	to	ALL	pie	elements	except
for	the	Exploded	option	(only	applied	to	the	slice	which	was	clicked	over).

To	display	this	property	page	either	double-click	on	a	pie	slice	or	right-
click	over	a	pie	slice	and	select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	page:

Pie	Parameters:		 	

Number	of
Points

The	number	of	points	used	to	draw	the
circumference	of	the	pie	chart.
	

Vertical	Radius The	radius	of	the	pie	edge.	Imagine	the	pie	chart
when	it	is	rotated	to	the	point	where	you	can	only
see	its	edge.	The	rounding	of	the	pie	at	both	ends
is	determined	by	this	value.
	

Vertical	Number
of
		Points

The	number	of	points	to	be	used	to	define	the
circumference	of	the	pie	chart's	edge	(e.g.
thickness).	This	property	determines	the	number	of
points	used	to	draw	that	part	of	the	pie	whose
radius	is	determined	by	the	Vertical	Radius.

	

Exploded Explodes/collapses	the	relevant	pie	slice.

	

Collected	Data: There	is	only	one	collected	pie	element.	You	may
set	the	collected	properties	listed	below	by	clicking
over	ANY	pie	element.	To	set	other	collected
properties	(e.g.	texture)	click	over	the	collected	pie
element	itself.
	

Absolute The	value	used	to	determine	if	a	slice	is	collected
will	be	an	absolute	value.
	

Percentage The	value	used	to	determine	if	a	slice	is	collected
will	be	a	percentage	of	the	entire	pie	chart.
	

Limit The	value	(either	absolute	or	a	percentage)	at
which	a	pie	slice	will	be	collected.
	

	
See	Also:	How	to	use	the	Template	Creator	|	Template	Creator	Overview

Popup	Menu	-	Template	Creator

The	popup	menu	lets	you	perform	the	following	actions:

Properties Displays	the	property	sheet	appropriate	for	the
element	which	you	right-clicked	over.
	

Get	Another
Element

You	can	select	an	area	element	(background),
legend	element	or	title	element.	Another	popup
menu	will	appear,	allowing	you	to	edit	the	element.
	

Add	Notes Lets	you	insert	a	static	notes	element	(a	generic	text
element)	when	you	click	over	the	background.
	

Switch	to	Size/
Switch	to	Move
	

Toggles	between	sizing	mode	and	moving	mode.

Delete Delete	the	static	notes	element	which	you	clicked
over.	Only	for	static	notes.

	
To	display	the	popup	menu	right-click	over	any	pie	chart	element.

NOTE:	the	items	displayed	by	the	popup	menu	are	dependent	on	where
you	right-click	in	the	pie	chart,	so	not	all	of	the	preceding	items	may	be
displayed.

See	Also:	Application	Menu	-	Template	Creator

Rotating	a	Chart	-	Template	Creator

To	rotate	a	chart	object	in	the	Template	Creator	use	the	keyboard's
navigational	keys.	Refer	to	the	following	table	for	a	detailed	description
on	how	the	different	keys	rotate	a	pie	chart:

Key Description

Up	Arrow Rotates	the	top	of	the	chart	away	from	the	user.

Down	Arrow Rotates	the	top	of	the	chart	towards	the	user.

Left	Arrow Rotates	the	chart	clockwise	around	its	vertical	axis.

Right	Arrow Rotates	the	chart	counter-clockwise	around	its	vertical
axis.

Home Rotates	the	chart	counter-clockwise	around	its	horizontal
axis.

End Rotates	the	chart	clockwise	around	its	horizontal	axis.

Page	Up Same	as	the	End	key.

Page	Down Same	as	the	Home	key.

		See	Also:	How	to	use	the	Template	Creator

Scene	Property	Page	-	Template	Creator

The	scene	property	page	is	only	available	when	you	right-click	over	a	pie
slice.

To	display	this	property	page	either	double-click	on	a	pie	slice	or	right-
click	over	a	pie	slice	and	select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Rotation To	rotate	the	pie	chart	object	use	either	the	red
directional	arrows	or	left-click	on	the	object	and	rotate	it
while	holding	the	left	mouse	button	down.
	

Rotation	Step Determines	the	increment	by	which	the	scene	will	be
rotated.
	

Reset Resets	the	pie	chart	to	its	default	position.
	

	
See	Also:	How	to	use	the	Template	Creator	|	Template	Creator	Overview

Size	-	Move	Property	Page	-	Template	Creator

The	size-move	property	page	is	available	for	every	pie	chart	element
except	the	background	(which	is	an	area	element).

To	display	this	property	page	either	double-click	on	an	element	or	right-
click	over	an	element	and	select	'Properties'.

Every	element	has	an	associated	bounding	rectangle	(you	can	see	this	if
you	click	on	the	element	in	question).	When	you	view	the	size-move	page
notice	that	there	are	two	sets	of	arrows:	an	inner	set	and	an	outer	set
separated	by	the	outline	of	a	square.	This	square	represents	the
bounding	rectangle	of	the	element	that	is	being	sized/moved.	Arrows
inside	and	outside	of	the	same	edge	for	the	square	outline	will	move	the
associated	bounding	rectangle	side	in	the	direction	indicated	by	the
arrow.

The	difference	between	moving	and	resizing	is	this:	if	sizing	mode	is	on
then	changing	one	side	of	the	bounding	rectangle	WILL	NOT	result	in	any
of	the	other	sides	of	the	bounding	rectangle	being	moved	as	well.	If
moving	mode	is	selected	then	adjusting	one	bounding	edge	WILL	result
in	the	rest	of	the	bounding	edges	being	moved	as	well,	since	we	are
moving	the	pie	chart	element	and	not	resizing	it.

To	size/move	an	object	click	on	the	object	with	the	left	mouse	button	and
size/move	it	by	dragging	the	mouse.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Object:		 	

Element Selects	one	element	to	move/resize.
	

Group Used	to	move/size	a	group	of	pie	chart
elements.	This	is	actually	used	with	other
Dundas	Chart	chart	types	and	is	not	applicable
for	this	sample.
	

Chart Move/resize	the	chart	object.

	

Operation:
	

	

Size Size	the	selected	pie	chart	object.
	

Move Move	the	selected	object.

	

Steps:
	

	

Horizontal	step Sets	the	horizontal	increment	by	which	the	pie
chart	or	pie	chart	object	will	be	moved/resized.
	

Vertical	step Sets	the	vertical	increment	by	which	the	pie
chart	or	pie	chart	object	will	be	moved/resized.
	

	
See	Also:	How	to	use	the	Template	Creator

Texture	Property	Page	-	Template	Creator

The	texture	property	page	is	available	for	pie	slices,	legends,	and	the
background.	It	lets	you	specify	textures	and	colors	and	also	lets	you
import	textures	(jpeg	or	bitmap	formats).

Note	that	the	elements	for	this	property	page	may	differ,	depending	on
the	chart	element	the	Textures	page	applies	to.

To	display	this	property	page	either	double-click	on	an	appropriate
element	or	right-click	over	the	element	and	select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	property	page:

Type 	

No	Texture No	texture	will	be	used.
	

Texture Use	the	texture	selected	from	the	texture	window
(the	window	to	the	immediate	right	of	the	Texture
button).	When	this	option	is	selected	you	can	not
specify	a	color.

Colored
Texture

Enabled	for	pie	slices.	This	lets	you	specify	a	texture
and	a	color.

	

Tile Enabled	for	legends	and	the	background.	If	this	is
checked	then	the	selected	texture	will	be	tiled.	If	it	is
not	selected	the	texture	will	be	enlarged	to	fill	the
relevant	window	area.

	

Side	Texture Only	available	for	pie	slices.	Sets	the	texture	to	be
used	for	the	sides	of	a	pie	slice.	This	is	useful	for
exploded	pie	segments.
	

Group Used	for	other	Dundas	Chart	chart	types.	Not
applicable	to	the	pie	chart.
	

Back	to	Series Used	for	other	Dundas	Chart	chart	types.	Not
applicable	to	the	pie	chart.
	

Textures	Disabled Disables	the	use	of	textures.	Note	that	the	elements
still	own	the	textures.
	

Color Select	a	color	for	the	element.	You	can	specify	a
color	AND	a	texture	for	a	pie	element.
	

Import	Texture Import	a	texture	to	be	used	for	the	element.	The
texture	should	be	a	jpeg	or	bitmap,	and	the
maximum	size	of	the	image	is	1024	X	1024	pixels.
The	width	and	height	of	the	image	must	also	be	to
the	base	2	(e.g.	2^m	=	Width	and	2^n	=	Height	in
pixels).
	

	
Textures	or	colors	for	a	legend	element	will	be	applied	to	the	background
of	the	entire	legend.

IMPORTANT:	The	maximum	size	of	an	imported	texture	(jpeg	or	bitmap)
is	1024	X	1024	pixels.	Also,	the	width	and	height	of	the	image	must	be	to

the	base	2	(e.g.	2^m	=	Width	and	2^n	=	Height	in	pixels,	where	n	and	m
are	whole	numbers).

See	Also:	How	to	use	the	Template	Creator

Title	Property	Page	-	Template	Creator

The	title	property	page	is	available	for	title	elements	only.

To	display	this	property	page	either	double-click	on	a	title	element	or
right-click	over	the	element	and	select	'Properties'.

The	following	is	a	description	of	what	you	can	do	via	this	page:

Edit	Title Determines	the	text	of	the	title	element.
	

Orientation
	

	

Horizontal The	horizontal	orientation	can	be	changed	for
static	notes	elements.

Vertical The	vertical	orientation	can	be	changed	for	static
notes	elements.
	

Effects
	

	

Auto	Size Automatically	sizes	the	title	in	its	bounding
rectangle.
	

Vertical	Center Centers	the	title	vertically	within	its	bounding
rectangle.	Only	available	if	Auto	Size	is	not
selected.
	

Horizontal	Center Centers	the	title	horizontally	within	its	bounding

rectangle.	Only	available	if	Auto	Size	is	not
selected.
	

Color Sets	the	color	of	the	title	text.
	

Font Sets	the	font	to	be	used	for	the	title.
	

Font	Style Sets	the	font	style	to	be	used	for	the	title.
	

Size The	size	of	the	font	to	be	used.
	

	
See	Also:	How	to	use	the	Template	Creator

Dundas	Pie	Chart	Overview

Copyright	©	Dundas	Software	Ltd.	2000.	All	Rights	Reserved

This	free	ASP	component	consists	of	two	parts	-	the	Template	Creator
and	the	Dundas	Pie	Chart	Server	control	(implemented	via	ASP	pages).

A	template	is	a	binary	file	that	stores	reusable	chart	information,	and	the
Template	Creator	lets	you	create	new	templates	and	also	modify	existing
ones.	The	Dundas	Pie	Chart	Server	control	loads	a	template,	adds	data
and	then	creates	a	pie	chart	image	in	a	jpeg	format.	This	image	can	then
be	saved	to	file	or	transferred	directly	to	a	web	page.

Note	that	the	Dundas	Pie	Chart	Server	control	and	the	Template	Creator
both	use	OpenGL	libraries	(OpenGL32.dll	and	glu32.dll).	These	libraries
are	installed	by	default	with	Windows	98	and	Windows	NT.	In	addition
they	also	depend	on	the	presence	of	the	ijl15.dll	Intel	Compression
library,	which	MUST	exist	at	the	same	directory	level	as	both	the	server
control	and	the	Template	Creator	(unless	it	is	in	your	system	directory).

See	Also:	Pie	Chart	Control	Overview	|	Template	Creator	Overview

	

	

	

Tutorial:	Creating	a	Basic	Pie	Chart

To	use	this	control	in	a	web	site	you	will	need	to	use	two	(2)	web	pages.
One	ASP	page	(let's	call	it	the	secondary	page)	creates	an	instance	of
the	ASP	Pie	Chart	control,	loads	a	template,	adds	the	specified	data	and
then	calls	SendJPEG	to	send	the	data	to	the	client.	The	other	page	(lets
call	it	the	main	page)	retrieves	the	pie	chart	image	by	embedding	the
secondary	ASP	page	in	an		tag	or	<A>	tag	with	the	SRC	attribute
set	to	the	secondary	page.	The	main	page	can	be	either	an	html	or	ASP
file.

If	you	do	not	know	how	to	create	a	template	using	the	Template
Creator	then	click	here	for	instructions	on	how	to	do	so.		This
tutorial	DOES	NOT	cover	how	to	make	your	pie	chart	templates,	it
assumes	you	already	have	a	template	ready	to	be	loaded.

IMPORTANT:	the	Intel	compression	library	(ijl15.dll)	MUST	be	located	in
either	your	system	directory	or	at	the	same	directory	level	as	both	the
chart	server	control	and	the	Template	Creator,	otherwise	both	the	control
and	the	Creator	will	not	function	correctly.

Click	here	for	instructions	on	how	to	debug	the	Pie	Chart	Server.		For
further	information	concerning	debugging,	as	well	as	FAQs,	and
troubleshooting	go	to	our	developer	site.

To	output	a	pie	chart	jpeg	perform	the	following	actions	in	their	specified
order:

1.	 Create	the	main	page	(ASP	or	html)	and	embed	the	secondary	page
(ASP)	into	it	with	either	an		tag	or	<A>	tag.

2.	 Create	the	secondary	page	(ASP)	and	perform	the	following	actions
in	their	indicated	order:

The	Pie	Chart	Server	will	throw	an	exception	if	an	error	occurs,	so
enable	error	handling	with	an	"On	Error	Resume	Next"	statement.

http://support.dundas.com/?section=72

Create	an	ASPPieChart	object	by	using	CreateObject	(e.g.
CreateObject("Dundas.PieChartServer.1")).

Set	the	directory	properties	of	the	control	which	specify	working
directories	for	different	aspects	of	chart	activity.	These	properties	are
DirTemplate	and	DirTexture,	and	deal	with	the	directories	used	to
store	templates	and	textures,	respectively.

Load	a	template	via	the	LoadTemplate	method.

Set	the	properties	of	the	pie	chart	(e.g.	exploded	pieces,	collected
element	properties,	etc.)

Add	pie	chart	data	with	the	AddData	method.

Send	the	resulting	jpeg	directly	to	a	client	with	the	SendJPEG
method	or	alternatively	you	can	save	the	jpeg	to	disk	with
CreateJPEGFile	and	then	present	the	image	to	a	user	with	a
standard		tag.

If	you	want	to	generate	another	Jpeg	using	the	same	template	then
repeat	Steps	4	to	6.	If	you	want	to	create	another	jpeg	with	a
different	template	repeat	steps	1	to	6.

Destroy	the	Pie	Chart	object	by	setting	it	to	Nothing	(e.g.	Set
objPieChart	=	Nothing).

MAKE	SURE	that	there	is	no	html	code	in	this	ASP	page	which
outputs	the	jpeg.

The	ProgID	of	the	control	is:	Dundas.PieChartServer.2

Example

'Displays	a	pie	chart	in	an	html	page

'lets	make	the	main	page,	and	call	it	Main.htm	<Html>
<Body>

</Body></Html>

'now	make	the	secondary	page	which	outputs	the	jpeg
'let's	call	it	MakeJpeg.asp
<%
'make	sure	browser	never	uses	cached	copy	of	jpeg
Response.Buffer	=	True
Response.CacheControl	=	"Private"
Response.Expires	=	-100

'enable	error	handling,	since	an	exception	will	be	thrown	if	an	error	occurs.	To	debug	this	page
'	disable	the	Resume	Next	statement	and	load	this	page	directly	into	your	browser,	and	observe
'	the	raised	exception.
On	Error	Resume	Next

'retrieve	the	physical	directory	where	ASP	pages	are	located
strPath	=	Server.MapPath(".")

'create	an	instance	of	the	control
Set	objPieChart	=	Server.CreateObject("Dundas.PieChartServer.1")

'set	the	Template	directory	of	the	control
objPieChart.DirTemplate	=	strPath	&	"\Templates\"

'set	the	Textures	directory	of	the	control
objPieChart.DirTexture	=	strPath	&	"\Textures\"

'load	any	template	(made	with	the	Template	Editor)
ret	=	objPieChart.LoadTemplate("Textures.cuc")
'check	for	an	error.	If	the	method	call	is	not	successful	then	the
'	returned	error	code	will	not	be	zero	(0)	and	in	addition	an	exception	will	be	thrown.
'See	the	"Debugging"	section	at	the	bottom	of	this	page	for	information	on	how	to	debug	your	pie	charts.
If	ret	<>	0	Then
Response.Write	objPieChart.GetErrorText(ret)
End	If

'add	3	slices	to	the	pie	chart	and	specify	values	(sizes),	slice	labels	and	legend	labels

ret	=	objPieChart.AddData(25,	"Label1","Slice1")
ret	=	objPieChart.AddData(25,	"Label2","Slice2")
ret	=	objPieChart.AddData(25,	"Label3","Slice3")
'check	for	an	error.	If	method	not	successful	then	output	the	
'	corresponding	error	string.	See	the	"Debugging"	section	below	for
'	more	details	concerning	debugging	the	pie	chart	server	
If	ret	<>	0	Then
Response.Write	objPieChart.GetErrorText(ret)
End	If

'output	graphics,	specifying	the	width	and	height	of	the	image	in	pixels
ret	=	objPieChart.SendJPEG(450,350)
If	ret	<>	0	Then
Response.Write	objPieChart.GetErrorText(ret)
End	If

'destroy	AspPieChart	object
Set	objPieChart	=	Nothing
%>

Notice	that	there	is	NO	HTML	CODE	in	this	page	which	outputs	the
jpeg!

	
Debugging	the	Pie	Chart	Server

If	an	error	occurs	then	an	exception	will	be	raised	and	the	returned	error
code	will	not	be	zero	(0).	Since	an	exception	will	be	raised	MAKE	SURE
that	the	page	which	outputs	the	jpeg	has	an	"On	Error	Resume	Next"
statement.

To	debug	the	Pie	Chart	Server	control	you	should	load	the	page
which	contains	the	"SendJPEG"	call	directly	into	your	browser,	and
you	can	then	use	either	the	control's	GetErrorText	method
(explained	in	detail	below)	or	you	can	merely	examine	the	exception
thrown	by	the	control	(make	sure	the	"On	Error	Resume	Next"

statement	is	disabled).

If	an	error	occurs	and	a	pie	chart	image	is	not	produced	you	can	also
retrieve	a	relevant	error	string	by	loading	the	page	which	produces	the
JPEG	directly	into	your	browser	and	observing	the	error	string	generated
by	the	control's	GetErrorText	method.	For	example,	in	the	preceding
sample	code	you	could	load	the	MakeJpeg.asp	page	directly	into	your
browser	and	then	see	what	GetErrorText	returns.

Note	that	this	method	of	retrieving	relevant	error	strings	will	only	work	if
the	page	that	produces	the	JPEG	image	contains	NO	html	code	(e.g.	the
page	only	contains	server-side	ASP	code).

See	Also:	Tutorial:	Drilldown	and	Selection	of	Data	Elements	|	Tutorial:
Rotation

Tutorial:	Drilldown	and	Selection	of	Data	Elements

Drilldown	and	the	selection	of	chart	items	is	accomplished	by	using	a
chart	image	as	a	hyperlinked	server-side	imagemap.	To	use	a	chart
image	as	a	server-side	imagemap	specify	the	IsMap	attribute	inside	the
relevant		tag.

Use	the	following	syntax	in	the	ASP	page	which	displays	a	chart	being
used	as	the	imagemap:	.	Note	that	the	specified	Asp
page	in	the	<A>	tag	is	the	page	which	must	determine	which
series/data	element	the	user	selected.

To	determine	what	data	series/data	element	the	user	selected	(clicked
on)	call	the	Select	method	and	then	examine	the	returns	from	the
GetSelectedSeries	and	GetSelectedPosition	methods.

Once	you	have	determined	what	the	user	selected	you	can	perform	the
appropriate	action,	giving	you	"drilldown"	capabilities.

Note	that	clicking	on	a	server-side	imagemap	will	allow	the	page	handling
the	selected	item	to	retrieve	the	mouse	coordinates	of	the	clicked-on
position	since	the	mouse	coordinates	are	available	via	the	resulting
querystring.	Use	VBSCript's	InStr	method	to	parse	the	querystring	and
retrieve	the	mouse	X,	Y-coordinates.	Then	use	these	X	and	Y	values
when	calling	the	Select	method.

IMPORTANT:	the	EXACT	same	chart	must	be	reproduced	in	the	page
which	handles	the	selection	as	compared	to	the	Chart	generated	by	the
page	specified	within	the		tag.	Therefore	it	is	highly
recommended	that	you	use	a	server-side	include	for	the	source	code
which	actually	produces	the	chart	image	(starting	from	the	CreateObject
call	all	the	way	to	setting	the	Chart	object	to	Nothing).	This	will	ensure
that	the	chart	produced	in	the	page	which	handles	the	selection	(using
the	Select,	GetSelectedPosition,	and	GetSelectedSeries	methods)	will

be	exactly	the	same	as	the	chart	produced	by	the	page	which	outputs	the
chart	jpeg	(using	the	SendJPEG	method).

Refer	to	the	sample	source	code	below	for	further	clarification.

If	you	do	not	know	how	to	create	a	template	using	the	Template
Creator	then	click	here	for	instructions	on	how	to	do	so.		This
tutorial	DOES	NOT	cover	how	to	make	your	pie	chart	templates,	it
assumes	you	already	have	a	template	ready	to	be	loaded.

Example

Scenario	-	We	will	use	a	pie	chart	as	an	imagemap	(with	4	pie	slices)
in	the	main	page	(Main.asp).
-	When	the	user	selects	an	element	we	will	explode	the	selected	element.
-	Note	that	we	are	using	Session-level	variables.
-	A	secondary	page	named	MakeJpeg.asp	will	create
and	output	the	resulting	jpeg	to	the	main	page.
-	To	see	if	a	function	call	was	successful	you	can	examine	the	returned
error	code	(zero	equals	success).	To	get	a	relevant	error	string	use
the	GetErrorText	method.	

Main.asp
<%@	Language=VBScript	%>
<%Response.Buffer	=	True	%>
<HTML>
<HEAD></HEAD>
<BODY>
<%
Dim	QString	'the	querystring	resulting	from	the	user	clicking
'	on	the	Chart	server-side	imagemap
Dim	Position	'the	data	element	the	user	selected
Dim	XPosition	'the	mouse	X-coordinate	where	the	user	clicked	
Dim	YPosition	'the	mouse	Y-coordinate	wherre	the	user	clicked
Dim	ret	'returned	error	code	from	function	call

Dim	objChart	'Dundas	Chart	Server	object
Dim	strErrorCode	'string	error	message

'retrieve	the	querystring	with	the	mouse	coordinates
QString	=	Request.QueryString()

'initialize	the	selected	position	to	-1	so	that	the	SetExploded	call	does	not
'	initially	explode	a	data	element.
Session("Position")	=	-1

'the	following	code	only	executes	if	the	user	clicked	on	a	pie	slice	
If	QString	<>	""	Then
Position	=	InStr(1,QString,",",1)
XPosition	=	CInt(Mid(QString,1,Position	-	1))
YPosition	=	CInt(Mid(QString,Position+1))

'create	instance	of	the	Chart	control
Set	objChart	=	CreateObject("Dundas.ChartServer")

'NOTE:	Even	though	this	page	does	not	output	a	jpeg	we	MUST	
'	reproduce	the	exact	same	chart	which	is	produced	by	the	page	within
'	the		tag.	In	order	to	guarentee	that	the	exact	same	chart	is
'	reproduced	we	highly	recommend	using	a	server-side	include	for	the	
'	code	which	creates	the	chart	(starting	from	the	CreateObject
'	call	all	the	way	to	setting	the	Chart	object	to	Nothing).

'now	set	the	control's	directory	properties
objChart.DirTexture	=	"c:\dschart\dschart_local\Textures\"
objChart.DirTemplate	=	"c:\dschart\dschart_local\Templates\"

'load	a	pie	chart	template	made	with	the	Template	Creator
'note	that	a	return	value	of	zero	indicates	success
ret	=	objChart.LoadTemplate("selection.cuc")

'now	add	some	data	to	the	pie	chart

ret	=	objChart.AddData(3.2)
ret	=	objChart.AddData(2.8)
ret	=	objChart.AddData(9.1)
ret	=	objChart.AddData(4.5)

'now	call	the	Select	method	so	we	can	determine	the	selected	element
'note	that	the	width	and	height	specified	in	the	Select	method	call
'	should	be	the	same	as	that	specifed	in	the		tag	found
'	at	the	bottom	of	this	page.
ret	=	objChart.Select(XPosition,YPosition,300,300)
'lets	check	return	value	(useful	for	debugging)
If	ret	<>	0	Then
strErrorCode	=	objChart.GetErrorText(ret)
End	If

'NOTE:	if	you	are	using	a	chart	other	than	a	sphere	or	pie	chart
'	for	the	imagemap	you	would	then	need	to	call	GetSelectedSeries
'	as	well	as	calling	GetSelectedPosition.	If	you	are	using	a	sphere	or	pie
'	chart	and	are	using	the	"collected"	data	element	you	will	still	need	
'	to	call	GetSelectedSeries	in	order	to	determine	if	the	user	clicked	on
'	the	collected	data	slice	(return	value	will	be	-999).
Position	=	objChart.GetSelectedPosition()
'this	session-level	variable	lets	the	MakeJpeg.asp	page	know	what	was	selected
Session("Position")	=	Position

'release	resources
Set	objChart	=	Nothing

End	If
%>
<!--Make	the	Dundas	Chart	server-side	imagemap	-->
<center>
<center></center>
</BODY>

</HTML>

MakeJpeg.asp
<%@	Language=VBScript	%>
<%	Option	Explicit	%>
<%
'disable	caching	so	that	image	is	always	retrieved	from	server
Response.Buffer	=	True
Response.CacheControl	=	"Private"	
Response.Expires	=	-1000

Dim	Position	'item	selected	by	the	user
Dim	ret	'returned	error	code	from	function	calls
Dim	objChart	'Dundas	Chart	Server	instance
Dim	strError	'error	string

'retrieve	the	selected	element	as	determined	by	the	main	page
Position	=	Session("Position")

'create	an	instance	of	the	control
Set	objChart	=	CreateObject("Dundas.ChartServer")

'set	up	the	control's	directory	properties
objChart.DirTexture	=	"c:\dschart\dschart_local\Textures\"
objChart.DirTemplate	=	"c:\dschart\dschart_local\Templates\"

'load	the	pie	chart	template,	created	in	the	Template	Creator
ret	=	objChart.LoadTemplate("selection.cuc")

'now	add	data	to	the	pie	chart
ret	=	objChart.AddData(3.2)
ret	=	objChart.AddData(2.8)
ret	=	objChart.AddData(9.1)
ret	=	objChart.AddData(4.5)

'now	we	will	explode	the	data	element	selected	by	the	user
objChart.SetExploded(Position)

'now	output	the	chart	jpeg.	Note	that	you	can	step	through	your	code
'	and	check	the	strError	variable	if	SendJPEG	was	unsuccessful
ret	=	objChart.SendJpeg(300,300)
If	ret	<>	0	Then
strError=objChart.GetErrorText(ret)
End	If

'release	resources
Set	objChart	=	Nothing
%>

See	Also:	Tutorial:	Creating	a	Basic	Pie	Chart	|	Tutorial:	Rotation

Tutorial:	Rotation	Example

In	order	to	rotate	a	chart	you	must	let	the	chart	instance	know	what	the
rotational	angles	were	after	the	last	rotation	operation	(defaults	are	used
when	the	first	rotation	occurs)	before	calling	the	Rotate	method.	This
means	that	you	must	preserve	state	information	(session-level	variables,
hidden	inputboxes,	etc.)	between	Chart	object	creation/deletion.

To	set	the	initial	rotation	angles	use	your	preserved	state	information	and
set	the	AngleX,	AngleY	and	AngleZ	properties.	Once	you	have	set	the
previous	rotation	angles	you	can	then	call	the	Rotate	method	to	rotate
the	chart.	Before	the	chart	object	is	destroyed	MAKE	SURE	that	you
store	the	new	rotation	angles	(to	be	used	for	the	next	rotation	operation).
	this	can	be	done	using	session	variables,	hidden	input	boxes,	etc.

Refer	to	the	sample	source	code	below	for	further	clarification.

Example

If	you	do	not	know	how	to	create	a	template	using	the	Template
Creator	then	click	here	for	instructions	on	how	to	do	so.		This
tutorial	DOES	NOT	cover	how	to	make	your	pie	chart	templates,	it
assumes	you	already	have	a	template	ready	to	be	loaded.

Scenario	-	We	will	allow	the	user	to	rotate	a	pie	chart	clockwise.	
-	The	amount	of	rotation	will	be	hard-coded	to	20	degrees.
-	State	information	concerning	the	last	displayed	position
of	the	chart	will	be	preserved	by	using	session-level	variables.
-	Main.asp	will	display	the	chart,	while	MakeJpeg.asp	will	actually
create	the	chart	jpeg.

Main.asp
<Html>
<Head>
</Head>

<Body><Center>
</Center>
<form	action="Main.asp"	method="post"	id="form1"	name="form1">
<input	type="submit"	name="cmdRotate"	id="cmdRotate"	value="Rotate">
</form>
</Body>
</Html>

MakeJpeg.asp
<%
'disable	caching	so	that	image	is	always	retrieved	from	server
Response.Buffer	=	True
Response.CacheControl	=	"Private"	
Response.Expires	=	-1000

'create	an	instance	of	the	control
Set	objChart	=	Server.CreateObject("Dundas.ChartServer")

'set	required	directory	properties
objChart.DirTexture	=	"c:\dschart\dschart_local\Textures"
objChart.DirTemplate	=	"c:\dschart\dschart_local\Templates"

'load	a	pie	chart	template,	made	with	the	Template	Creator
ret	=	objChart.LoadTemplate("Rotation.cuc")

'now	add	some	data	to	the	pie	chart	
ret	=	objChart.AddData(900)
ret	=	objChart.AddData(1900)
ret	=	objChart.AddData(200)
ret	=	objChart.AddData(400)

'if	one	rotation	operation	has	already	occurred	then	we	need	to
'	let	the	chart	know	its	previous	location	
If	Session("AngleX")	<>	""	Then	objChart.AngleX	=	Session("AngleX")
If	Session("AngleY")	<>	""	Then	objChart.AngleY	=	Session("AngleY")

If	Session("AngleZ")	<>	""	Then	objChart.AngleZ	=	Session("AngleZ")

'now	rotate	the	chart	20	degrees	clockwise	(around	the	window's	z-axis)
ret	=	objChart.Rotate(-20,2)

'now	set	session-level	variables	so	we	can	set	the	chart	object's
'	previous	location	the	next	time	we	rotate	the	chart	
Session("AngleX")	=	objChart.AngleX
Session("AngleY")	=	objChart.AngleY
Session("AngleZ")	=	objChart.AngleZ

'now	output	the	pie	chart	jpeg
ret	=	objChart.SendJpeg(300,300)
'lets	check	the	return	value	(useful	for	debugging)
If	ret	<>	0	Then
strErrorCode	=	objChart.GetErrorText(ret)
End	If

'release	resources
Set	objChart	=	Nothing
%>

See	Also:	Tutorial:	Creating	a	Basic	Pie	Chart	|	Tutorial:	Drilldown	and
Selection	of	Data	Elements

Distributed	Samples

The	distributed	ASP	samples	are	implemented	with	two	(2)	ASP	pages
each.	The	first	page	(PieChart1.asp	and	PieChart2.asp	for	samples	1
and	2,	respectively)	sets	up	the	user	interface	and	displays	the	chart,
while	the	second	page	(MakeJPEG1.asp	and	MakeJPEG2.asp	for
samples	1	and	2,	respectively)	loads	the	selected	template,	adds	the
specified	data	to	the	pie	chart	and	then	outputs	the	image	as	a	jpeg.	The
second	page	is	embedded	into	the	first	using	an		tag	(you	can	also
use	an	<A>	tag).

To	run	the	ASP	demos	you	must	be	set	up	to	host	web	pages	with	either
Microsoft	Internet	Information	Server	(IIS)	or	Microsoft	Personal	Web
Server.

The	first	demo	uses	four	templates	which	are	displayed	to	a	user	via	a
listbox	in	the	main	ASP	page.	Note	that	you	can	modify	these	templates
by	using	the	Template	Creator	any	time	you	wish.	The	second	ASP	demo
randomly	selects	one	of	five	templates	and	also	explodes	pie	slices	at
random.

To	successfully	run	these	demos	make	sure	that	the	"Templates"	and
"Textures"	folders	exist	at	the	same	level	as	the	ASP	pages	that	make	up
the	samples.	The	Template	Creator	should	also	be	located	here.

Dundas	Upload	Control	2.0

Copyright	©	Dundas	Software	Ltd.	2000,	All	Rights	Reserved.

Overview	|	Properties	|	Methods

The	Dundas	Upload	Control	2.0	is	a	free,	fully	tested	commercial	MTS
component	which	allows	you	to	accept,	save	and	manipulate	files
uploaded	via	a	web	browser	which	is	compliant	with	RFC	1867	(e.g.
Netscape	3.0+	and	Microsoft's	IE	4.0+).	It	is	designed	to	be	used	in
Active	Server	Pages	(ASP)	which	are	hosted	with	Microsoft's	IIS
(Windows	NT	or	Windows	2000).

The	Upload	control	also	ships	with	the	UploadProgress	component	and
the	Dundas	State	Server.	The	UploadProgress	component	works	in
conjunction	with	the	State	Server	and	Upload	control	and	enables	web
developers	to	quickly	and	painlessly	utilize	progress	bars	to	display	the
progress	of	an	upload	operation.	The	State	Server	component	can	run
anywhere	on	your	network,	so	it	is	"web-farm"	ready,	and	may	be	used	to
store	any	state	information.

You	can	also	use	the	Upload	control	along	with	our	free	Dundas	Mailer
Control	in	order	to	give	your	applications	web-based	email	capabilities
which	can	handle	multiple-file	upload	operations.		The	Mailer	control,	like
the	Upload	control,	is	also	a	fully	developed	and	tested	commercial
product	which	is	free.

Features	List	Installation/Redistribution
How	to	use	the	Documentation

	
Features	List

The	following	are	just	some	of	the	features	of	the	Dundas	Upload	Control
2.0:

It	ships	web-farm	ready.

MTS	support	(object	pooling).

ADO	support	via	safe-array-of-bytes	variants,	allowing	you	to	persist
uploaded	files	as	BLOBs.

Handles	uploading	of	multiple	files.

Upload	form	data	either	all	at	once	or	incrementally.	Incremental
retrieval	of	data	allows	the	developer	to	access	some	of	the	form
data	prior	to	the	upload	as	well	as	skip	files	to	be	uploaded.

Lets	you	specify	a	maximum	allowable	limit	for	uploaded	data,	a
maximum	number	of	files	to	be	uploaded	as	well	as	a	maximum
allowable	file	size.

Implement	a	progress	bar	via	the	ProgressBar	and	StateServer
components.

Save	uploaded	files	either	to	disk	or	to	memory.

Capable	of	performing	numerous	file	and	directory	operations.

Impersonate	user	accounts	other	than	the	IUSR	(or	default)	account,
thereby	allowing	you	to	perform	operations	for	which	the	default
account	does	not	have	permissions.

COM	registration.

MacBinary	support	(for	Macintosh	client	machines).

Uploaded	files	ACL,	owner	and	attribute	manipulation.

	
Installation	and	Redistribution

A	previous	version	of	the	Upload	control	(version	1.0)	was	shipped	with
the	free	Dundas	Mailer	control.	This	first	control	allowed	users	to	upload
multiple	files	and	also	supported	other	basic	upload	operations.	It	is
recommended	that	you	uninstall	this	previous	version	if	you	installed	the
Dundas	Mailer	control.

Controls	and	Samples	Install

The	name	of	the	install	file	is:	"AspUpload.exe".

The	windows	account	under	which	the	install	runs	needs	to
have	administrative	priviledges	for	a	successful	installation.

The	Dundas	State	Server	(StateServer.exe)	when	installed	is
set	up	to	run	as	a	normal	executable.	This	has	the	advantage	of
giving	you	a	GUI	which	displays	the	operations	which	have
occurred	or	are	occurring.	Please	note,	however,	that	you	can
run	the	State	Server	as	a	service.	Running	the	executable	as	a
service	can	increase	its	performance	up	to	five	times	(five
hundred	percent).		

Start	menu	entries	are	as	follows:

Dundas	Software	|	Free	Products	|	Asp	Upload	Control	|
ReadMe

	
Documentation	Install

To	uninstall	this	documentation	run	the	install	file	again
(FPDocInst.exe)	and	choose	either	"Remove	From	MSDN"	if
you	integrated	into	the	MSDN	or	"Remove	All"	if	you	did	not
integrate	into	the	MSDN.	

	

How	to	use	the	Documentation

Documentation	for	the	Upload	control	consists	of	the	following:

1.	 Compiled	html	help	(optionally	integrated	into	the	MSDN).	The	html
help	provides	detailed	explanations	for	all	members	of	the	control	as
well	as	a	control	overview	and	tutorials.	Topics	which	should	be
especially	useful	are:

How	to	Use	the	Dundas	Upload	Control

Overview	(Dundas	Upload	Control	2.0)

QuickStart	(Dundas	Upload	Control	2.0)

Tutorial	1:	Uploading	Multiple	Files	and	Using	the	Form	and
Files	Collections

Tutorial	2:	Retrieving	Form	Data	Incrementally	Using	the
GetNextFile	Method

Tutorial	3:	ADO	Support	and	Saving	a	File	as	a	BLOB

Tutorial	4:	Implementing	a	Progress	Bar

2.	 ReadMe.htm.	This	file	is	distributed	with	the	Upload	control,	and
consists	of	installation	information,	release	notes	and	a
troubleshooting	section	for	your	convenience.

	

	

Overview	(Dundas	Upload	Control	2.0)

Copyright	©	Dundas	Software	Ltd.	2000,	All	Rights	Reserved.

Overview	|	Properties	|	Methods

The	Dundas	Upload	Control	is	an	MTS	component	which	allows	you	to
accept,	save	and	manipulate	files	uploaded	via	a	web	browser.	It	is	used
in	Active	Server	Pages	(ASP)	which	are	hosted	with	either	Microsoft's	IIS
(Windows	NT	or	Windows	2000)	or	Microsoft's	PWS	(Windows	9X).

Dundas	Upload	Control	2.0	Features:

Web	farm	ready.

MTS	support	(object	pooling).

ADO	support	via	safe-array-of-bytes	variants.	Allows	you	to	persist
uploaded	files	as	BLOBs.

Handles	uploading	of	multiple	files	and	form	data.

Upload	form	data	either	all	at	once	or	incrementally.	Incremental
retrieval	of	data	allows	the	developer	to	access	some	of	the	form
data	prior	to	the	upload	as	well	as	skip	files	to	be	uploaded.

Lets	you	specify	a	maximum	allowable	limit	for	uploaded	data,	a
maximum	number	of	files	to	be	uploaded	as	well	as	a	maximum
allowable	file	size.

Implement	a	progress	bar	via	the	ProgressBar	component	and	the
Dundas	StateServer.

Save	uploaded	files	either	to	disk	or	to	memory.

Performs	numerous	file	and	directory	operations.

Impersonate	user	accounts	other	than	the	IUSR	(or	default)	account,

thereby	allowing	you	to	perform	operations	for	which	the	default
account	does	not	have	permissions.

COM	registration.

MacBinary	support	(for	Macintosh	client	machines).

Uploaded	files	ACL,	owner	and	attribute	manipulation.

Disable	or	set	the	default	values	of	certain	features	via	the	registry.

Handles	file	downloading.

Optionally	save	uploaded	files	with	unique	filenames.

To	create	an	instance	of	the	Upload	control	use	the	CreateObject	method
with	a	ProgID	of	either	"Dundas.Upload"	or	"Dundas.Upload.2".

To	utilize	named	constants	in	your	code	use	a	server-side	include	for	the
DSUpload.inc	file,	which	defines	the	constants	for	you.

Most	methods	of	the	control	will	throw	an	exception	if	an	error	occurs.
Trap	for	the	success/failure	of	the	various	operations	by	using	an	On
Error	Resume	Next	statement	and	then	examine	the	Err	object	after	a
method	call.

You	should	find	the	following	topics	especially	useful:

How	to	Use	the	Dundas	Upload	Control

Tutorial	1:	Uploading	Multiple	Files	and	Using	the	Form	and	Files
Collections

Tutorial	2:	Retrieving	Form	Data	Incrementally	Using	the	GetNextFile
Method

Tutorial	3:	ADO	Support	and	Saving	a	File	as	a	BLOB

Tutorial	4:	Implementing	a	Progress	Bar

See	Also:	Progress	Bar	Component	Overview	|	State	Server	Component
Overview

How	to	Use	the	Dundas	Upload	Control

Overview	|	Properties	|	Methods

To	use	the	Dundas	Upload	control	the	client	must	be	using	a	browser
which	is	capable	of	html	form-based	uploading	(as	per	RFC	1867).
Netscape	3.0+	and	Microsoft's	Internet	Explorer	4.0+	both	support	this.

The	POST	html	form	MUST	use	an	"EncType"	of:	"Multipart/Form-Data"
(i.e.	<form	method="POST"	name="SomeName"
EncType="Multipart/Form-Data">.

Click	here	for	list	of	steps	to	be	followed	when	implementing	the	Upload
control.

Files	to	be	uploaded	are	determined	through	the	use	of	file	input	boxes	in
the	POST	form.

The	Form	and	Files	collections	of	the	control	are	especially	important.
The	Form	collection	is	used	to	access	form	data	such	as	input	elements,
select	elements,	etc...	.	This	collection	also	allows	you	to	retrieve	the
values	of	multiple-entry	form	items	(e.g.	multi-select	listbox).	The	Files
collection	(consisting	of	UploadedFile	objects)	is	used	to	access	and
manipulate	uploaded	files.

To	determine	the	file	input	box	which	corresponds	to	a	particular
uploaded	file	use	the	TagName	property	of	the	UploadedFile	object	(the
TagName	property	is	the	same	as	the	Name	attribute	of	the
corresponding	file	input	box).	You	can	iterate	through	all	uploaded	files
with	either	a	standard	For	loop	or	a	For	Each	loop.	To	determine	the	file
type	that	was	uploaded	use	VBScript's	InStr	method	with	the
ContentType	property	of	an	UploadedFile	object.	Note	that	the	NextFile
object	also	exposes	the	ContentType	and	TagName	properties.
Remember	that	calling	the	Save	or	SaveToMemory	methods	of	the
NextFile	object	will	also	update	the	Files	collection.

To	retrieve	the	values	of	form	elements	other	than	file	input	boxes	use	the
control's	Form	collection	(you	can	not	retrieve	form	elements	with	the
ASP	Request.Form	object	when	the	encoding	type	of	the	form	is
"Multipart/Form-Data").	To	retrieve	particular	form	values	use	the	name	of
the	form	element	(e.g.	strVariable	=	objUpload.Form("txtSomeTextbox")).
You	can	also	retrieve	items	by	their	numerical	index.	For	example,	to
retrieve	the	value	of	the	first	form	element	you	can	use:	strVariable	=
objUpload.Form(0).

Form	data	is	either	retrieved	all	at	once	or	incrementally.	To	retrieve	all	of
the	form	data	with	one	method	call	you	must	use	either	the	control's	Save
or	SaveToMemory	methods.	The	Save	method	saves	all	uploaded	files	to
disk	locally,	while	SaveToMemory	saves	uploaded	files	to	memory.
Irregardless	of	which	method	is	used	it	is	VERY	IMPORTANT	to	know
that	either	method	populates	the	Files	collection	with	ALL	uploaded	files
as	well	as	the	control's	Form	collection	with	ALL	form	data.

You	can	retrieve	form	data	incrementally	by	repeatedly	calling	the
GetNextFile	method	(as	opposed	to	using	either	Save	or
SaveToMemory).	GetNextFile	returns	NextFile	objects,	with	each
NextFile	object	containing	the	header	information	for	one	uploaded	file.
The	first	NextFile	object	will	correspond	to	the	first	file	uploaded	by	the
user,	the	next	NextFile	object	(obtained	by	calling	GetNextFile	again)
will	contain	the	header	information	for	the	next	populated	file	input	box	in
the	POST	form,	etc...	.	It	is	IMPORTANT	to	realize	that	each	call	to	the
GetNextFile	method	will	populate	the	control's	Form	collection	with	all
form	data	which	appears	BEFORE	the	form's	populated	file	input	box
which	corresponds	to	the	current	NextFile	object.	The	NextFile	object
(like	the	control	itself)	exposes	both	Save	and	SaveToMemory	methods.
Use	either	of	these	methods	while	looping	through	all	NextFile	objects	to
optionally	save	uploaded	files	in	their	entirety.	You	can	use	whatever
deciding	criteria	you	want,	but	the	TagName	and	ContentType	properties
in	particular	can	be	very	useful	when	deciding	whether	or	not	to	save	files
uploaded	by	the	user	(see	the	paragraph	below).	To	skip	uploading	a	file
just	call	the	GetNextFile	method	again	without	first	calling	the	object's
Save	or	SaveToMemory	methods.	Note	that	if	you	choose	to	retrieve	the
file	in	its	entirety	by	calling	either	Save	or	SaveToMemory	then	the	Files

collection	of	the	control	will	be	populated	with	the	uploaded	file	in
question.

If	a	form	element	was	not	populated	by	the	user	then	there	will	be	no
corresponding	FormItem	object	in	the	control's	Form	collection	(e.g.	if
you	loop	through	the	Form	collection	with	a	For	...	Each	loop	there	will	be
no	FormItem	object	for	the	form	elements	left	empty	by	the	user).	If	you
retrieve	the	value	of	a	particular	form	element	which	was	left	empty	by
the	user	the	return	will	be	"Empty".	You	can	test	to	see	if	the	user	left	a
form	element	blank,	or	empty,	by	using	VBScript's	IsEmpty	method.

To	find	out	how	to	implement	a	progress	bar	(via	the	ProgressBar	and
StateServer	Components)	click	here.

You	can	disable	or	preset	certain	features	of	the	Upload	control	through
the	use	of	registry	keys.	Click	here	for	more	information.

NOTE:	to	utilize	named	constants	in	your	ASP	code	use	a	server-side
include	and	include	the	UploadControl.inc	file	(distributed	with	the
application).

Most	methods	will	throw	an	exception	if	an	error	occurs	so	make	sure
that	you	have	enabled	inline	error	trapping	by	using	an	On	Error
Resume	Next	statement.	Examine	VBScript's	Err	object	after	a	function
call	to	check	for	the	success/failure	of	the	operation.

The	Dundas	Upload	Control	2.0	provides	many	methods	for	performing
file	operations,	such	as	FileCopy,	FileMove,	etc...	.

You	can	also	temorarily	assume	a	valid	Windows	account	other	than	the
default	web	account	by	calling	the	ImpersonateUser	method.	You	might
want	to	use	this	method	if	the	default	web	account	does	not	have	the
rights	to	perform	a	particular	operation.	Once	you	have	finished	using	the
impersonated	account	you	can	revert	back	to	the	default	account	by
calling	the	ImpersonationTerminate	method.	Other	methods	of	the	control
which	are	related	to	rights/permissions	are:	AllowAccess,	DenyAccess,
RevokeAccess	and	SetOwner.

Perform	the	following	steps	when	utilizing	the	Upload	control:

1.	 Make	sure	that	the	form	which	is	POSTING	the	data	is	using	an
EncType	of	"Multipart/Form-Data".	You	will	also	need	to	use	file	input
elements	(<input	type="file">)	in	this	form	so	the	user	can	browse	for
files	to	be	uploaded.

2.	 Enable	inline	error	trapping	in	the	page	being	POSTED	to	with	an
"On	Error	Resume	Next"	statement.	Most	methods	of	the	control	will
throw	an	exception	if	unsuccessful,	so	you	can	perform	error
trapping	using	VBScript's	Err	object.

3.	 Create	an	instance	of	the	Upload	control	in	the	page	which	the	form
is	POSTING	to.	To	do	this	use	the	Server.CreateObject	method	with
a	ProgID	of	either	"Dundas.Upload"	or	"Dundas.Upload.2".

4.	 You	can	either	retrieve	ALL	form	data	(uploaded	files	as	well	as	form
input	elements)	at	once	by	using	the	Save	or	SaveToMemory
methods	of	the	control.	Alternatively	you	can	retrieve	form	data
incrementally	by	using	the	GetNextFile	method.	Please	note	that
retrieving	form	data	incrementally	will	result	in	the	Form	and	Files
collections	also	being	populated	incrementally.

5.	 Retrieve	any	form	element	values	via	the	control's	Form	collection.
Note	that	empty	form	elements	WILL	NOT	be	inserted	into	the	Form
collection,	and	attempting	to	retrieve	the	value	of	a	form	element
which	was	left	empty	by	the	user	will	result	in	an	exception	being
thrown	(which	you	can	trap	for).

6.	 Manipulate	files	saved	to	either	disk	or	memory	via	the	Files
collection.	This	collection	is	populated	with	either	one	Save	or
SaveToMermory	call	of	the	control,	unlike	the	Save	and
SaveToMemory	methods	of	the	NextFile	object	(NextFile	objects
are	returned	by	GetNextFile	calls)	which	populates	the	Files
collection	one	file	at	a	time.

7.	 Set	the	Upload	object	to	nothing.

See	Also:	Overview	(Dundas	Upload	Control	2.0)	|	Tutorial	1:	Uploading
Multiple	Files	and	Using	the	Form	and	Files	Collections	|	Tutorial	2:

Retrieving	Form	Data	Incrementally	Using	the	GetNextFile	Method	|
Tutorial	3:	ADO	Support	and	Saving	a	File	as	a	BLOB	|	Tutorial	4:
Implementing	a	Progress	Bar

Disabling	and	Setting	Features	via	the	Registry

Overview	|	Properties	|	Methods

Some	of	the	Upload	Control's	features	(i.e.	methods)	can	be
disabled/enabled	through	the	use	of	registry	values	in	the
"HKEY_LOCAL_MACHINE\SOFTWARE\Dundas
Software\DundasUpload"	key.

An	exception	will	be	thrown	if	a	disabled	method	is	called.

If	a	registry	value	does	not	exist	or	it	is	set	to	zero	(0)	then	the	method	is
enabled.	However,	setting	a	registry	entry	to	any	non-zero	value	will
cause	the	corresponding	method	to	be	disabled.

You	can	also	preset	the	value	of	any	Upload	control	property	to	be	read-
only	as	well	as	having	a	specific	value.	To	accomplish	this	just	create	a
registry	value	(under	the	same	key)	with	the	exact	same	name	as	the
relevant	property	and	set	it	to	the	desired	default.	The	type	of	the	value
depends	on	the	data	type	of	the	property.	If	the	property	in	question	is	a
boolean	or	a	numeric	data	type	then	the	corresponding	registry	type
should	be	a	DWORD.	A	string	property	equates	to	a	string	registry	data
type.	If	the	user	attempts	to	change	the	value	of	a	property	which	has
been	set	to	read-only	via	the	registry	then	an	exception	will	be	raised.

Refer	to	the	table	below	for	a	listing	of	possible	registry	entries	and	their
corresponding	methods:

Value Corresponding	Method(s)

DisableImpersonation ImpersonateUser,
ImpersonationTerminate

DisableSecurity AllowAccess,	DenyAccess,
RevokeAccess

DisableRegisterServer RegisterServer

DisableSend SendBinary

DisableDirectoryDelete DirectoryDelete

DisableDirectoryCreate DirectoryCreate

DisableFileCopy FileCopy

DisableFileMove FileMove

DisableFileDelete FileDelete

DisableMemoryUpload SaveToMemory

DisableProgressBar UploadProgress	Component	creation

NameOfRelevantProperty Default	value.	You	can	set	the	default
value	of	ANY	Upload	control	property
by	creating	a	key	with	the	same
name	as	the	relevant	property	and
then	setting	its	value	to	the	desired
default	value.

	

QuickStart	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

The	following	code	demonstrates	how	to	populate	the	Upload	control's
collections,	save	uploaded	files	to	disk	and	retrieve	form	data.	Please
note	that	for	brevity	we	do	not	perform	any	error	checking	(done	with
VBScript's	Err	object	and	raised	exceptions).

We	will	assume	that	a	form	with	an	encoding	type	of	"Multipart/Form-
Data"	is	POSTING	to	the	ASP	page	which	contains	the	following	code:

<%@	Language=VBScript	%>
<%
'most	control	methods	throw	an	exception	if	an	error	occurs	so	we	will	use	an
'	On	Error	Resume	Next	statement
On	Error	Resume	Next

'create	instance	of	Upload	control
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'save	uploaded	files	to	to	disk.	Note	that	we	could	also	save	the
'	uploaded	files	to	memory.	This	populates	the	Form	and	Files	collections
objUpload.Save	"c:\temp\"

'retrieve	the	value	of	a	form	element	called	txtName
strName	=	objUpload.Form("txtName")

'retrieve	the	size	of	the	first	uploaded	file
strSize	=	objUpload.Files(0).Size

'release	resources
Set	objUpload	=	Nothing
%>

	

Tutorial	1:	Uploading	Multiple	Files	and	Using	the	Form	and
Files	Collections

The	objectives	of	this	tutorial	are	to:

Demonstrate	how	to	save	uploaded	files	and	populate	the	Files	and
Form	collections.

Show	how	to	access	the	items	in	the	Files	and	Form	collections.

Demonstrate	how	to	use	ContentType	property	to	check	for	the	type
of	files	which	were	uploaded.

Show	how	to	retrieve	the	name	of	the	file	input	boxes	responsible	for
the	uploads	by	using	the	TagName	property.

We	are	assuming	that	a	form	with	an	EncType	of	"Multipart/Form-Data"	is
POSTING	data	to	the	ASP	page	which	contains	the	following	code.

Example

<%	'most	control	methods	throw	an	exception	if	an	error	occurs	so	we	will	use	an
'	On	Error	Resume	Next	statement	for	error	trapping	purposes
On	Error	Resume	Next

'create	an	instance	of	the	Upload	control
Set	objUpload	=	Server.CreateObject	("Dundas.Upload.2")

'we	will	save	all	uploaded	data	(form	data	as	well	as	any	uploaded	files)	to	disk.
'note	that	we	could	also	save	the	uploaded	files	to	memory	with	the	SaveToMemory	method.
'also	note	that	both	the	Save	and	SaveToMemory	methods	populate	the	Form	and
'	Files	collections	with	one	method	call.
'its	also	important	to	realize	that	by	default	files	saved	to	disk	will	have	unique	filenames,	but
'	this	can	be	changed	with	the	UseUniqueNames	property
objUpload.Save	"c:\temp\"

'check	to	see	if	method	call	was	successful	using	VBScript's	Err	object,	if	
'	an	error	occurred	we	will	redirect	user	to	a	fictitious	error	page
If	Err.Number	<>	0	Then
Response.Redirect	"Error.asp"
Else
'use	a	For	Each	loop	and	check	to	see	if	the	uploaded	file	is	an
'	executable	(utilizing	VBScript's	InStr	method),	if	it	is	delete	it	from	disk.
'but	first	we	will	output	the	name	of	the	file	input	box(es)	responsible	for	uploads
For	Each	objUploadedFile	in	objUpload.Files
Response.Write	"The	""	&	objUploadedFile.TagName	&	""	file	input	box	was	used	to	upload	a	file.
"
If	InStr(1,objUploadedFile.ContentType,"octet-stream")	Then
'if	the	default	web	account	does	not	have	the	right	to	delete	files
'	for	the	folder	you	save	uploaded	files	to	(in	this	case	c:\temp)	then	you	can	either	set
'	the	required	rights	manually	or	you	could	use	the	ImpersonateUser	method
objUploadedFile.Delete
End	If
Next

'we	will	just	output	the	name	of	the	populated	form	elements	and	their	values
For	Each	objFormItem	In	objUpload.Form
Response.Write	"
The	name	of	the	form	item	is:	"	&	objFormItem
Response.Write	"
The	value	of	the	form	item	is:	"	&	objFormItem.Value	&	"
"
Next

End	If

'Release	resources
Set	objUpload	=	Nothing
%>

	

Tutorial	2:	Retrieving	Form	Data	Incrementally	Using	the
GetNextFile	Method

The	objectives	of	this	tutorial	are	to:

Demonstrate	how	to	optionally	upload	files	using	the	GetNextFile
method	(retrieves	form	data	incrementally).

Show	how	the	Form	collection	is	populated	by	GetNextFile	method
calls.

Demonstrate	how	to	use	the	TagName	property	to	check	which
uploaded	files	originated	from	which	file	input	boxes.

Demonstrate	how	to	use	the	ContentType	property	to	determine	the
type	of	file	the	user	wishes	to	upload.

We	are	assuming	that	a	form	with	an	EncType	of	"Multipart/Form-Data"	is
POSTING	data	to	an	ASP	page	which	contains	the	following	code.

Example

<%	'most	control	methods	throw	an	exception	if	an	error	occurs	so	we	will	use	an	On	Error
'	Resume	Next	statement	for	error	trapping	purposes
On	Error	Resume	Next

'create	an	instance	of	the	Upload	control
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'retrieve	the	first	NextFile	object,	which	contains	header	data	only	for
'	the	first	file	uploaded	by	user.	Note	that	the	Form	collection	will	be
'	populated	with	all	form	data	which	occurs	up	to	the	first	populated
'	file	input	box	(which	results	in	this	first	NextFile	object)
Set	objNextFile	=	objUpload.GetNextFile
'check	to	see	if	method	call	was	successful	using	VBScript's	Err	object,	if	
'	an	error	occurred	we	will	redirect	user	to	a	fictitious	error	page

If	Err.Number	<>	0	Then	Response.Redirect	"Error.asp"

'we	will	retrieve	NextFile	objects	until	there	are	no	more	uploaded	files
'	to	process	(each	NextFile	object	corresponds	to	a	populated	file	input	box)
'if	the	file	is	not	an	executable	we	will	save	the	uploaded	file	to	memory,	if
'	it	is	an	executable	then	we	will	not	save	it	at	all	(by	just	calling	GetNextFile	again)
Do	Until	objNextFile	Is	Nothing

'NOTE:	you	can	retrieve	any	form	data	here	as	long	as	it	occurs	in	the	html	POST	form
'	BEFORE	the	populated	file	input	box	which	corresponds	to	the	current	NextFile	object
strSomestring	=	objUpload.Form("SomeFormElement")

'now	save	file	if	not	an	*.exe,	and	for	demonstration	purposes	we	will	output	
'	the	name	of	the	file	input	box	from	which	the	uploaded	file	originated
If	InStr(1,objNextFile.ContentType,"octet-stream",1)	=	0	Then
objNextFile.SaveToMemory
Response.Write	objNextFile.TagName	&	"
"
End	If

'call	NextFile	again,	to	retrieve	the	header	data	for	the	next	uploaded	file
'	once	again	it	should	be	noted	that	this	will	populate	the	Form	collection
'	with	all	data	up	to	the	corresponding	populated	file	input	box
Set	objNextFile	=	objUpload.GetNextFile

Loop

'release	resources
Set	objUpload	=	Nothing
%>

	

Tutorial	3:	ADO	Support	and	Saving	a	File	as	a	BLOB

The	objectives	of	this	tutorial	are	to:

Demonstrate	how	to	work	with	an	ADO	recordset	with	a	DSNless
connection.

Show	how	to	save	an	uploaded	file	as	a	BLOB.

We	are	assuming	that	a	form	with	an	EncType	of	"Multipart/Form-Data"	is
POSTING	data	to	the	ASP	page	which	contains	the	following	code.

Assumptions

1.	 A	SQL	Server	7.0	database	named	"Temp"	exists	with	a	SQL
username	and	password	of	"sa"	and	"",	respectively.

2.	 This	database	has	a	table	called	"Test".

3.	 The	table	has	an	"image"	column	named	"Picture".

4.	 The	name	of	the	server	is	"SOMESERVER".

5.	 The	POST	form	uses	one	or	more	file	input	boxes.

Example

<%	'use	inline	error	trapping	so	that	any	exceptions	raised	by	the	Upload	control	are	caught
On	Error	Resume	Next

'create	an	instance	of	the	Uplaod	control
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'we	will	temporarily	save	uploaded	files	to	disk
objUpload.Save	"c:\temp"

'set	the	connection	string
strConnect	=	"Driver={SQL	Server};Server=SOMESERVER;Database=Temp;UID=sa;PWD="

'create	an	ADO	recordset
Set	rs	=	Server.CreateObject("ADODB.Recordset")

'open	a	recordset	using	the	connection	string
rs.Open	"Test",	strConnect,	2,	3

'loop	through	all	uploaded	files	and	save	to	the	database	as	BLOBs	if
'	an	image	was	actually	uploaded	(we	use	the	ContentType	property	of
'	the	UploadedFile	object	to	accomplish	this)
For	Each	objFile	In	objUpload.Files

If	InStr(1,objFile.ContentType,"image")	<>	0	Then

'add	a	new	record	and	insert	the	image	file
rs.AddNew
rs("Picture").Value	=	objFile.Binary

End	If

Next

'save	changes	and	close	recordset
rs.Update
rs.Close

'release	resources
Set	rs	=	Nothing
Set	objUpload	=	Nothing
%>

	

Tutorial	4:	Implementing	a	Progress	Bar

The	objective	of	this	tutorial	is	to:

Demonstrate	how	to	utilize	the	Upload	control,	UploadProgress
component	and	the	State	Server	in	order	to	implement	a	progress
bar.

To	implement	a	progress	bar	you	will	need	to	have	three	elements:	an
html	Input	Form;	a	Progress	Bar	ASP	page;	and	a	Submit	Action	ASP
page.	These	elements	utilize	the	Dundas	Upload	control	to	gather	the
upload	data	and	POST	the	upload	operation	details	to	the	State	Server.
The	State	Server	(StateServer.exe)	is	responsible	for	storing	upload
progress	information	which	can	then	be	updated	and	retrieved	using	an
instance	of	either	the	UploadProgress	component	or	the	Upload	control.
The	purpose	of	the	Upload	Progress	component	is	to	create	unique
Progress	IDs,	retrieve	the	progress	information	from	the	State	Server	and
also	delete	information	stored	at	the	State	Server	when	an	upload	is
finished.

To	use	a	progress	bar	you	must	perform	the	following	actions	for	these
three	required	items:

1.	 Input	Form

1.	 Before	submitting	the	form	data	the	developer	must	create	an
instance	of	the	Upload	Progress	component	(the	ProgID	is
"Dundas.UploadProgress)	and	request	a	new	Progress	ID.

2.	 Open	the	Progress	Bar	window	and	pass	this	Progress	ID	as	a
parameter.

3.	 Submit	the	form	data,	once	again	passing	this	Progress	ID	as	a
parameter	to	the	Submit	Action	ASP	page.

2.	 Progress	Bar	ASP

1.	 This	page	should	be	refreshed	(e.g.	every	two	seconds).

2.	 The	progress	information	is	accessed	by	using	an	instance	of
the	Upload	Progress	component	along	with	the	Progress	ID
passed	to	this	page	by	the	Input	Form.	To	access	the	upload
data	set	the	ProgressID	property	of	the	Upload	Progress
instance	to	the	passed	Progress	ID,	call	the	GetProgress
method	and	then	utilize	the	TotalSize,	UploadedSize	and
PercentCompleted	properties.

3.	 The	state	information	must	be	deleted	when	the	upload
operation	is	either	completed	or	an	error	occurs	(an	exception
will	be	thrown).	To	delete	the	upload	information	at	the	State
Server	just	call	the	DeleteProgress	method	of	the	Upload
Progress	instance.

4.	 The	window	may	be	closed	when	the	upload	reaches	either
100%	or	an	error	occurs.

3.	 Submit	Action	ASP

1.	 While	uploading	the	data	the	Upload	control	(the	ProgID	is
"Dundas.Upload.2")	needs	to	post	the	progress	status	of	the
upload	operation	to	the	State	Server.	To	accomplish	this	just	set
the	ProgressID	property	of	the	control	instance	to	the	passed
Progress	ID.

	
How	you	implement	these	steps	is	totally	up	to	you.	If	you	require	more
detailed	instructions	on	utilizing	a	progress	bar	then	refer	to	the	following
or	see	the	fully	commented	sample	code.

NOTE:	You	MUST	USE	an	<%@ENABLESESSIONSTATE	=	FALSE%>
statement	at	the	top	of	these	ASP	pages	so	that	more	than	one	ASP
page	will	be	processed	at	the	same	time.

Detailed	Instructions

1.	 Create	a	main	ASP	page	(we	will	call	this	page	"main.asp").	This

page	must:

1.	 Have	a	form	with	an	EncType	of	"multipart/form-data".	This	form
needs	to	have	one	or	more	file	input	boxes	for	the	uploading	of
data.

2.	 POST	the	data	to	a	secondary	page	(we	will	call	this	page
"process.asp").

3.	 Create	an	instance	of	the	UploadProgress	component	before
POSTING	the	data	(the	ProgID	is	"Dundas.UploadProgress)."
Once	this	is	done	you	must	then	obtain	a	new	Progress	ID
(which	uniquely	identifies	each	upload	operation)	by	calling	the
GetNewProgressID	method	of	the	UploadProgress	component.

4.	 Pass	this	Progress	ID	to	process.asp	when	POSTING	the	data
(how	this	is	done	is	up	to	you).	In	the	following	example	we
accomplish	this	by	using	a	standard	form	button	(instead	of	a
"submit"	button)	and	we	specify	a	client-side	function	for	the
OnClick	event.	In	this	function	we	use	"document.form.action"
and	"document.form.submit"	statements	to	submit	the	form	data
to	process.asp	(after	opening	the	progressbar.asp	window	-->
see	the	next	step).	Note	that	the	"action	statement"	uses	a
querystring	to	pass	the	Process	ID	to	process.asp.

5.	 Create	the	progress	bar	window	(before	POSTING	the	data).
This	window	is	an	ASP	page	(let's	call	it	"progressbar.asp")	and
once	again	you	HAVE	to	let	this	page	know	what	the	Progress
ID	is	(which	you	obtained	from	the	UploadProgress
component).	We	accomplish	this	by	using	a	"window.open"
statement	in	our	form	button's	OnClick	event.	Note	that	this
"window.open"	statement	uses	a	querystring	to	pass	this
Progress	ID.

2.	 Create	the	page	which	will	process	the	data	(process.asp).	This
page	must:

1.	 Utilize	the	passed	Progress	ID	and	set	the	ProgressID	property
of	the	Upload	control	to	this	Progress	ID	BEFORE	calling	either
the	Save,	SaveToMemory	or	GetNextFile	method.	Once	this	is

done	you	can	proceed	with	the	uploading	of	data.	By	setting	this
property	the	Upload	control	instance	will	continuously	update
the	State	Server	with	upload	operation	details,	which	can	then
be	retrieved	via	the	Progress	Upload	component	in	the
progressbar.asp	page.

3.	 Create	the	progress	bar	window	via	an	ASP	page
("progressbar.asp").	This	page	must:

1.	 Be	able	to	display	the	amount	of	data	which	has	currently	been
uploaded.	How	you	accomplish	this	is	up	to	you.	Note	that	the
following	sample	code	uses	embedded	tables	with	differing
colors	to	accomplish	this.

2.	 Be	refreshed,	for	example,	every	two	(2)	seconds.	You	can	use
a	meta	refresh	tag	for	this.

3.	 Retrieve	details	concerning	the	upload	operation.	This	is
accomplished	by	creating	an	instance	of	the	UploadProgress
component,	setting	its	ProgressID	property	to	the	Progress	ID
passed	by	main.asp,	calling	the	GetProgress	method	and	then
utilizing	the	TotalSize,	UploadedSize	and	PercentCompleted
properties.	Every	time	the	page	is	refreshed	you	can	use	these
properties	to	update	your	"progess	bar".

4.	 If	the	State	Server	(StateServer.exe)	is	located	on	another
machine	compared	to	this	ASP	page	then	you	must	set	the
StateServer	property	of	the	UploadProgress	and	Upload
objects	to	the	IP	address	of	the	machine	where	the	State
Server	is	lcoated.	If	you	have	set	the	"Port"	property	of	the
State	Server	to	something	other	than	the	default	then	you	must
set	the	StateServerPort	property	of	the	UploadProgress	and
Upload	objects	to	the	same	port.

5.	 Delete	the	progress	information	once	the	upload	operation	is
cancelled	or	completed.	This	is	done	by	calling	the
DeleteProgress	method	of	the	UploadProgress	component.

6.	 You	can	close	the	window	once	the	upload	is	completed	or
cancelled.	How	you	do	this	is	up	to	you.	Note	that	the	following

sample	code	accomplishes	this	through	client-side	script.

	
NOTE:	You	MUST	USE	an	<%@ENABLESESSIONSTATE	=	FALSE%>
statement	at	the	top	of	these	ASP	pages	so	that	more	than	one	ASP
page	will	be	processed	at	the	same	time.

Assumptions	for	the	following	Sample	Code

1.	 There	are	three	pages	to	this	sample:	main.asp,	progressbar.asp
and	process.asp	(as	described	above).

2.	 The	form	in	main.asp	is	POSTING	data	to	process.asp	with	an
EncType	of	"mulitpart/form-data".	It	is	assumed	that	this	form	has
one	file	input	box	named	"file1".

main.asp
<%@ENABLESESSIONSTATE=FALSE%>	'turn	off	session	state	support	so	that	more	than
'	one	ASP	page	can	be	processed	at	the	same	time.	
<html><head></head>
<body	color="black"	bgcolor="white">
<%
dim	objUploadProgress	'UploadProgress	component	instance
dim	ProgressID	'new	progress	(state)	id	-	uniquely	identifies	this	upload	operation

'create	an	instance	of	the	UploadProgress	component
set	objUploadProgress	=	server.CreateObject("Dundas.UploadProgress")

'we	must	retrieve	a	new	progress	id,	which	is	passed	to	both	process.asp	and	progressbar.asp
ProgressID	=	objUploadProgress.GetNewProgressID
%>
<Script	language="javascript">
<!--
//retrieve	the	State	(Progress)	ID	to	be	passed	to	progressbar.asp
//	and	process.asp
ProgressID=<%=ProgressID%>;

function	Upload()
//this	javascript	function	runs	when	the	user	clicks	on	the	form's	button.
//it	opens	the	progressbar.asp	window	and	then	submits	the	form	data	to	process.asp
{
if	(ProgressID	!=	-1){
//only	open	progressbar.asp	window	if	there	is	a	valid	id.	We	will	center	this	progress	bar	as	well.
Param	=	"SCROLLBARS=no,RESIZABLE=no,	TOOLBAR=no,STATUS=no,MENUBAR=no,WIDTH=400,HEIGHT=100";
Param	+=	",TOP="	+	String(window.screen.Height/2	-	50);
Param	+=	",LEFT="	+	String(window.screen.Width/2	-	200);
//note	that	we	pass	the	Progress	ID	to	progressbar.asp
window.open("ProgressBar.asp?ProgressID=<%=ProgressID%>",	null,	Param);
}

//now	that	progress	bar	window	is	open	submit	the	form	data	to	Process.asp,	passing
//	the	ProgressID	as	a	querystring	parameter
document.frmMain.action	=	"Process.asp?ProgressID=<%=ProgressID%>"
document.frmMain.submit();
}
//-->
</Script>
<form	name="frmMain"	action="process.asp"	enctype="multipart/form-data"	method="post">
Please	choose	a	file	to	be	uploaded:	<input	type="file"	name="File1">

<!--Note	that	we	use	a	standard	button	and	not	a	submit	button.	We	do	this	so	that
we	can	open	the	progress	bar	window	(Progress.asp)	as	well	as	pass	the	submitted
data	to	the	page	which	processes	the	submitted	form	data	-->
<input	type="button"	name="submit1"	value="Upload	File"	OnClick="Upload()">
</form>
</body>
</html>

process.asp
<%@ENABLESESSIONSTATE=FALSE%>	

<%'we	just	disabled	session	state	so	that	more	than	one	asp	page	can	be	processed	at	once

On	Error	Resume	Next

'create	an	instance	of	the	Upload	component
Dim	objUpload
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'set	the	ProgressID	property	of	the	control	to	the	state	(progress)	ID	which
'	was	obtained	in	main.asp	and	passed	as	a	querystring.	By	setting	this	property
'	the	Upload	control	instance	will	continuously	update	the	State	Server	with	
'	information	concerning	this	particular	upload	operation.	
objUpload.ProgressID	=	Request.QueryString("ProgressID")

'set	maximum	file	size	to	2	MByte
objUpload.MaxFileSize	=	200000000

'save	uploaded	data	to	memory,	and	then	check	for	errors
objUpload.SaveToMemory
'if	an	error	occurred	we	will	close	the	progressbar.asp	window	by
'	deleting	the	state	information	at	the	State	Server
If	Err.Number	<>	0	Then
dim	objUploadProgress
set	objUploadProgress	=	server.CreateObject("Dundas.UploadProgress")
objUploadProgress.ProgressID	=	Request.QueryString("ProgressID")
objUploadProgress.DeleteProgress
End	If

'release	resources
Set	objUpload	=	Nothing
%>

progressbar.asp
<%@ENABLESESSIONSTATE=FALSE%>
<html><head>

<meta	http-equiv=refresh	content="1,ProgressBar.asp?ProgressID=<%=Request.QueryString("ProgressID")%>">
</head>
<%

On	Error	Resume	Next

'force	this	page	to	expire	immediately
Response.Expires	=	-10000

'create	an	instance	of	the	UploadProgress	component
Set	objUploadProgress	=	Server.CreateObject("Dundas.UploadProgress")

'if	the	State	Server	is	running	on	a	different	machine	compared	to	these	ASP	pages
'	then	this	is	where	you	would	have	to	set	the	State	Server's	IP	address
'objUploadProgress.StateServer	=	"127.0.0.1"

'retrieve	progress	data	from	the	StateServer
objUploadProgress.ProgressID	=	Request.QueryString("ProgressID")
objUploadProgress.GetProgress
Percentage	=	objUploadProgress.PercentCompleted
TotalSize	=	objUploadProgress.TotalSize
UploadedSize	=	objUploadProgress.UploadedSize

'if	there	is	no	data	yet	for	this	particular	upload	operation	then	these	proeprties	will
'	be	set	to	negative	one	(-1)
If	TotalSize	=	-1	OR	UploadedSize	=	-1	Then
'if	no	data	yet	set	to	zero,	since	we	do	not	want	to	display	negative	one
TotalSize	=	0
UploadedSize	=	0
End	If

'If	an	error	occurs	set	the	percentage	value	to	-1.	The	client-side	script	below
'	will	close	the	progress	bar	window	when	this	occurs.	Note	that	a	negative	one	will
'	be	encountered	since	we	delete	the	state	information	for	this	particular	upload
'	operation	when	100%	is	reached,	so	the	next	call	to	the	GetProgress	method	will

'	result	in	an	exception	being	raised,	thereby	resulting	in	this	window	being	closed.
If	Err.number	<>	0	Then
Percentage	=	-1
End	If

'delete	progress	data	when	we	hit	100%
If	objUploadProgress.PercentCompleted	=	100	Then
objUploadProgress.DeleteProgress
End	If

'release	resources
Set	objUploadProgress	=	Nothing
%>

<script>
<!--	set	a	variable	to	the	percent	complete	-->
var	val	=	<%=Percentage%>;

//	If	there	are	any	errors	or	upload	is	complete	then	close	window
if(val	==	-1){
top.close();
}
</script>
<body>
<!--	use	embedded	tables	with	different	color	to	simulate	a	progress	bar	-->
<table	border="1"	width="100%">
<tr>
<td>
<table	ID="Prog"	border="0"	width="<%=Percentage%>%"	bgcolor="#FF0000">
<tr>
<td	width="100%"> </td>
</tr>
</table>
</td>

</tr>
</table>
</body>
<P	align="center">
<%=Percentage%>%	(Uploaded	<%=UploadedSize%>	of	<%=TotalSize%>	bytes)
</P>
</html>

	

Properties	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

CheckMacBinary You	can	set	this	property	to	TRUE	before	uploading
so	that	each	uploaded	file	is	checked	for	a	MacBinary
format.
	

MaxFileCount The	maximum	number	of	files	which	can	be	uploaded.
	

MaxFileSize The	maximum	size	of	any	file	uploaded	by	the	user	(in
bytes).
	

MaxUploadSize The	maximum	amount	of	data	that	can	be	uploaded
to	the	server	(in	bytes).	This	includes	form	data	as
well	as	uploaded	files.
	

ProgressID Set	this	property	to	a	unique	ID	(obtained	by	the
UploadProgress	component	from	the	Dundas	State
Server)	when	processing	an	upload	which	utilizes	a
progress	bar	window.
	

StateServer Set	this	property	to	the	IP	address	of	the	Dundas
State	Server	when	processing	an	upload	which
utilizes	a	progress	bar	window.
	

StateServerPort Set	this	property	to	the	port	that	the	State	Server	is
listening	on	when	processing	an	upload	which	utilizes

a	progress	bar	window.
	

UseUniqueNames Stores	uploaded	files	with	unique	filenames.	This	is
done	by	preceding	the	original	filename	with	a	GUID
and	"_".
	

UseVirtualDir Set	this	property	to	TRUE	so	that	virtual	directories
are	used.	If	TRUE	then	any	method	which	utilizes	a
Path	argument	should	use	a	virtual	pathname	and	not
a	physical	pathname.
	

	 	

Collection
Properties

	

Files Collection	of	UploadedFile	objects,	each	of	which
represents	a	file	uploaded	from	an	html	form.
	

Form Collection	of	FormItem	objects,	with	each	object
corresponding	to	a	form	element.	Note	that	input
elements	of	the	file	type	(<input	type="file">)	are	not
represented	in	the	Form	collection.
	

	

	

CheckMacBinary	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Set	this	property	to	TRUE	before	uploading	so	that	each	uploaded	file	is
checked	for	a	MacBinary	format.

Syntax

UploadObject.CheckMacBinary	=	[boolean]

The	CheckMacBinary	property	syntax	has	the	following	parts:

Part Description

boolean If	set	to	TRUE	(before	uploading)	then	each	uploaded	file	will
be	checked	for	a	MacBinary	format.

Remarks

Client	machines	which	are	Macintosh	may	utilize	a	protocol	called
"MacBinary".

MacBinary	formatted	files	consist	of	a	128-byte	header,	a	data	fork	and	a
resource	fork.	If	you	set	this	property	to	TRUE	and	a	MacBinary	file	is
encountered	then	only	the	data	fork	portion	of	the	uploaded	file	will	be
saved.

	

	

MaxFileCount	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

The	maximum	number	of	files	which	can	be	uploaded	to	the	server.

Syntax

UploadObject.MaxFileCount	=	[long]

The	MaxFileCount	property	syntax	has	the	following	parts:

Part Description

long The	maximum	number	of	files	which	can	be	uploaded	to	the
server.	Defaults	to	negative	one	(no	limit).

Remarks

Set	this	property	before	calling	Save	or	SaveToMemory	in	order	to	limit
the	number	of	files	a	user	is	allowed	to	upload.	If	this	limit	is	exceeded
and	you	call	either	the	control's	or	the	NextFile	object's	Save	or
SaveToMemory	methods	an	exception	will	be	raised	and	the	save
operation	will	be	cancelled.

Note	that	if	the	maximum	number	of	allowable	uploads	is	exceeded	as	a
result	of	a	NextFile	object's	save	operation	then	any	previous	uploaded
data	will	still	be	available	from	the	control's	Form	collection.

Make	sure	that	you	use	an	On	Error	Resume	Next	statement	so	that
any	raised	exceptions	are	handled.	To	retrieve	a	relevant	error	string	use
VBScript's	Err.Description	property.

	Set	this	property	to	negative	one	(-1)	for	no	limit.

See	Also:	MaxFileSize	|	MaxUploadSize

MaxFileSize	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

The	maximum	allowable	file	size	in	bytes.

Syntax

UploadObject.MaxFileSize	=	[long]

The	MaxFileSize	property	syntax	has	the	following	parts:

Part Description

long The	maximum	allowable	file	size	in	bytes.	Defaults	to	negative
one	(no	limit).

Remarks

Set	this	property	before	calling	Save	or	SaveToMemory	in	order	to	limit
the	size	of	files	uploaded	by	a	user.	If	you	call	either	the	control's	or	the
NextFile	object's	Save	or	SaveToMemory	methods	and	this	limit	is
exceeded	then	an	exception	will	be	raised.

Note	that	if	a	file	is	encountered	which	exceeds	this	limit	then	no	further
form	data	will	be	processed.	However,	you	can	still	access	any	form	data
processed	previously	through	the	control's	Form	collection.

Set	this	property	to	negative	one	(-1)	for	no	limit.

Make	sure	that	you	use	an	On	Error	Resume	Next	statement	so	that
any	raised	exceptions	are	handled	in	your	ASP	page.	To	retrieve	a
relevant	error	string	use	VBScript's	Err.Description	property.

See	Also:	MaxFileCount	|	MaxUploadSize

MaxUploadSize	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

The	maximum	amount	of	data	which	can	be	uploaded	to	the	server.

Syntax

UploadObject.MaxUploadSize	=	[long]

The	MaxUploadSize	property	syntax	has	the	following	parts:

Part Description

long The	maximum	amount	of	data	which	can	be	uploaded	to	the
server	(in	bytes).	Defaults	to	negative	one	(no	limit).

Remarks

Uploaded	data	consists	of	all	uploaded	files	as	well	as	any	form	data	(as
a	result	of	a	POST	operation).

If	you	do	not	set	this	property	then	the	default	of	negative	one	(-1)	is	used
and	no	limit	is	set.

Calling	the	Save	or	SaveToMemory	methods	of	either	the	control	or	the
NextFile	object	will	result	in	an	exception	being	thrown	if	the	uploaded
data	exceeds	the	maximum	allowable	limit.	As	a	result	no	data	will	be
saved	and	the	control's	collections	will	not	be	populated.

Unlike	the	MaxFileCount	or	the	MaxFileSize	properties	if	this	allowable
data	limit	is	exceeded	then	there	will	be	no	available	data	via	the	control's
Form	collection	irregardless	of	when	the	exception	is	thrown.

Set	this	property	to	negative	one	(-1)	for	no	limit	to	the	uploaded	data.

See	Also:	MaxFileCount	|	MaxFileSize

ProgressID	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Set	this	property	to	a	unique	ID	(obtained	by	the	UploadProgress
component	from	the	Dundas	State	Server)	when	processing	an	upload
which	utilizes	a	progress	bar	window.

Syntax

long	=	UploadObject.ProgressID

The	ProgressID	property	syntax	has	the	following	parts:

Part Description

long An	ID	which	uniquely	identifies	one	particular	upload
operation.	Defaults	to	negative	one	(disabled).

Remarks

You	must	set	this	property	before	calling	either	the	Save	or
SaveToMemory	methods	of	the	control	if	you	want	to	utilize	the
StateServer	and	the	UploadProgress	component	in	order	to	display	a
progress	bar.

Setting	this	property	allows	the	State	Server	component's	data	for	the
upload	operation	in	question	to	be	continuosly	updated	by	the	Upload
Control.	Inotherwords,	as	the	uploading	of	form	data	occurs	the	State
Server	is	continuously	being	updated	as	to	how	much	data	has	been
uploaded,	thereby	allowing	the	UploadProgress	component	to	retrieve
this	information	in	order	to	update	a	progress	bar	window.

A	unique	ID	is	generated	by	calling	the	GetNewProgressID	method	of	the
UploadProgress	component.

See	Also:	Tutorial	4:	Implementing	a	Progress	Bar	|	StateServer	|
StateServerPort

StateServer	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Set	this	property	to	the	IP	address	of	the	Dundas	State	Server	when
processing	an	upload	which	utilizes	a	progress	bar	window.

Syntax

UploadObject.StateServer	=	string

The	StateServer	property	syntax	has	the	following	parts:

Part Description

string The	IP	address	of	the	machine	which	is	running	the	Dundas
State	Server.	Defaults	to	the	local	loopback	address
(127.0.0.1).

Remarks

You	must	set	this	property	before	calling	either	the	Save	or
SaveToMemory	methods	of	the	Upload	control	if:	you	want	to	utilize	the
StateServer	and	the	UploadProgress	component	in	order	to	display	a
progress	bar;	and	the	State	Server	is	running	at	a	different	machine
compared	to	where	the	ASP	page(s)	in	question	are	located.

You	do	not	have	to	set	this	property	if	the	State	Server	is	running	on	the
same	machine	which	the	ASP	page	in	question	is	running	on	since	the
local	loopback	address	is	the	default.

See	Also:	Tutorial	4:	Implementing	a	Progress	Bar	|	StateServerPort	|
ProgressID

StateServerPort	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Set	this	property	to	the	port	that	the	State	Server	is	listening	on	when
processing	an	upload	which	utilizes	a	progress	bar	window.

Syntax

UploadObject.StateServerPort	=	long

The	StateServerPort	property	syntax	has	the	following	parts:

Part Description

long The	port	which	the	Dundas	State	Server	is	listening	on.
Defaults	to	6723,	which	is	also	the	default	port	that	the	State
Server	is	set	to.

Remarks

You	must	set	this	property	before	calling	either	the	Save	or
SaveToMemory	methods	of	the	Upload	control	if:	you	want	to	utilize	the
StateServer	and	the	UploadProgress	component	in	order	to	display	a
progress	bar	and;	the	port	that	the	State	Server	is	listening	on	was
changed	from	the	default	(which	is	also	port	6723).

See	Also:	Tutorial	4:	Implementing	a	Progress	Bar	|	StateServer	|
ProgressID

UseUniqueNames	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

A	boolean	property	which	determines	if	uploaded	files	are	saved	to	disk
with	unique	filenames.

Syntax

UploadObject.UseUniqueNames	=	[boolean]

The	UseUniqueNames	property	syntax	has	the	following	parts:

Part Description

boolean If	this	property	is	set	to	TRUE	(the	default)	then	files	will	be
saved	to	disk	with	unique	filenames.	If	it	is	set	to	FALSE	then
files	will	be	saved	to	disk	using	their	original	filenames.

Remarks

If	this	is	TRUE	(the	default)	then	the	resulting	filename	will	have	the
following	format:	GUID_OriginalFilename.

We	highly	recommend	that	you	save	files	with	unique	filenames	if	you	are
saving	to	disk.	This	ensures	that	two	users	who	upload	a	file	with	the
same	name	at	the	same	time	does	not	cause	problems.

See	Also:	Save

UseVirtualDir	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

A	boolean	property	which	determines	if	file	save,	copy	or	move
operations	should	use	physical	or	virtual	directories/paths.

Syntax

UploadObject.UseVirtualDir	=	[boolean]

The	UseVirtualDir	property	syntax	has	the	following	parts:

Part Description

boolean If	this	property	is	set	to	TRUE	then	you	must	specify	a	virtual
directory	if	you	are	copying,	moving	or	saving	files	to	disk.	If	it
is	set	to	FALSE	(the	default)	then	you	must	specify	a	physical
directory/path.

Remarks

If	this	property	is	TRUE	then	make	sure	that	the	virtual	path	specified	in	a
Save	method	call	begins	with	a	forward	slash.	The	first	directory
specified	after	the	forward	slash	must	be	preceded	with	a	forward	slash,
and	any	subsequent	sub-directories	(physical	folders	located	beneath	the
virtual	directory)	are	separated	with	forward	slashes.

You	will	also	have	to	specify	virtual	paths	when	calling	any	other	methods
which	take	a	path	argument	(e.g.	Move,	Copy,	etc.).

Use	the	following	format	for	a	relative	path	argument	in	a	function	call:
objUpload.Save	"/MyVirtualDir/ASubDirectory".

See	Also:	Save

Methods	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

DirectoryCreate Creates	a	directory.

DirectoryDelete Deletes	a	directory.

DirectoryExists Checks	to	see	if	the	specified	directory	exists.

FileCopy Copy	a	file	from	one	location	to	another.

FileDelete Deletes	a	specified	file.

FileExists Checks	to	see	if	the	specified	file	actaully	exists.

FileMove Moves	a	file	from	one	location	to	another.

GetFileDirName Call	this	method	to	extract	the	directory	name	from	a
fully	specified	pathname.

GetFileExt Call	this	method	to	extract	the	file	extension	from	a
fully	specified	pathname.

GetFileName Call	this	method	to	extract	the	filename	from	a
fully	specified	pathname.

GetNextFile Used	to	retrieve	form	data	incrementally,	this
method	returns	NextFile	objects.

GetUniqueName This	method	returns	a	GUID	(useful	for	saving
files	with	unique	names).

ImpersonateUser Call	this	method	to	temporarily	utilize	a

Windows	account	other	than	the	default	(usually
the	IUSR	account).

ImpersonationTerminate Call	this	method	to	revert	back	to	the	default
user	account	after	having	called	the
ImpersonateUser	method.

RegisterServer Call	this	method	to	register	a	COM	component.

Save Saves	uploaded	files	to	disk	and	populates	the
Upload	control's	Form	and	Files	collections.

SaveToMemory Saves	all	uploaded	form	data	(uploaded	files	as
well	as	form	element	values)	to	memory.	This
method	also	populates	the	Files	and	Form
collections.

SendBinary Call	this	method	to	download	files	from	the
server.

DirectoryCreate	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	create	a	folder.

Syntax

UploadObject.DirectoryCreate(Path	As	String,	[MustNotExist	As	Boolean
=	FALSE])

The	DirectoryCreate	method	syntax	has	the	following	parts:

Part Description

Path The	name	of	the	folder	to	be	created.	Either	a	virtual	or
physical	pathname	must	be	used,	depending	on	the
UseVirtualDir	property	setting.

MustNotExist A	boolean	which	specifies	whether	or	not	the	directory
must	not	exist.

		Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).
MAKE	SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On
Error	Resume	Next	statement	at	the	beginning	of	the	ASP	page.

Note	that	an	exception	is	also	thrown	if	you	set	the	MustNotExist
argument	to	TRUE	and	the	folder	already	exists.	The	resulting	error
string	will	be	"Can	not	create	a	file	when	that	file	already	exists."

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid

alias.	Any	following	folders	need	to	be	separated	with	forward	slashes.

If	the	default	user	account	does	not	have	permission	to	create	a	folder
then	an	"Access	Denied"	error	will	occur.	You	can	use	the
ImpersonateUser	method	to	temporarily	assume	another	user	account
which	has	the	permission	to	create	a	folder	and	then	call
ImpersonationTerminate	to	resume	using	the	default	account.

See	Also:	DirectoryDelete	|	DirectoryExists

DirectoryDelete	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	delete	a	folder.

Syntax

UploadObject.DirectoryDelete(Path	As	String[,	DeleteContent	As	Bool	=
FALSE])

The	DirectoryDelete	method	syntax	has	the	following	parts:

Part Description

Path The	name	of	the	folder	to	be	deleted.	Either	a	virtual	or
physical	pathname	must	be	used,	depending	on	the
UseVirtualDir	property	setting.

DeleteContent If	set	to	TRUE	then	the	folder	and	all	of	its	contents	will
be	deleted.

		Remarks

An	exception	is	thrown	if	the	operation	fails	(the	Number	property	of	the
Err	object	will	be	a	non-zero	value	upon	failure).	MAKE	SURE	that	you
have	enabled	inline	error	trapping	by	using	an	On	Error	Resume	Next
statement	at	the	beginning	of	the	ASP	page.

If	the	default	user	account	does	not	have	permission	to	delete	a	folder
then	an	"Access	Denied"	error	will	occur.	You	can	use	the
ImpersonateUser	method	to	temporarily	assume	another	user	account
which	has	the	permission	to	delete	a	folder	and	then	call
ImpersonationTerminate	to	resume	using	the	default	account.	For	more
details	on	deleting	uploaded	files	at	the	server	refer	to	the	UploadedFile
Object	topic.

An	exception	is	raised	if	the	specified	folder	does	not	exist,	and	the
resulting	error	string	is	"The	system	can	not	find	the	file	specified".	Trying
to	delete	a	folder	which	is	not	empty	and	DeleteContent	=	FALSE	also
results	in	an	exception,	and	the	resulting	error	string	from	this	situation	is
"The	directory	is	not	empty".

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.	If
you	specify	a	physical	pathname	when	UseVirtualDir	is	TRUE	an
exception	will	be	thrown.

See	Also:	DirectoryCreate	|	DirectoryExists

DirectoryExists	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	check	if	the	specified	folder	already	exists	on	the
server.

Syntax

boolean	=	UploadObject.DirectoryExists	(Path	as	String)

Part Description

Path The	pathname	of	the	folder	to	be	checked.

Remarks

Returns	TRUE	if	the	folder	is	found	on	the	server,	otherwise	FALSE	is
returned.

Note	that	the	type	of	path	specified	depends	on	the	UseVirtualDir
property	setting.	If	this	property	is	FALSE	then	a	physical	pathname	is
required.	If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs
to	be	relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a
valid	alias,	and	any	sub-folders	need	to	be	separated	with	forward
slashes.

See	Also:	DirectoryCreate	|	DirectoryDelete

FileCopy	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	copy	a	file	from	a	specified	source	to	a	specified
destination	at	the	server.

Syntax

UploadObject.FileCopy	(Source	As	String,	Destination	As	String[,	FailIfExists
As	Boolean	=	TRUE]

The	FileCopy	method	syntax	has	the	following	parts:

Part Description

Source The	name	of	the	file	to	be	copied.	Use	either	a	relative
or	absolute	pathname,	depending	on	the	setting	of	the
UseVirtualDir	property.

Destination The	name	of	the	folder	to	copy	the	file	to.	Either	a
relative	or	absolute	pathname,	depending	on	the
setting	of	the	UseVirtualDir	property.

FailIfExits If	TRUE	then	an	exception	will	be	thrown	if	the	file
already	exists	at	the	specified	destination.	If	this	is
FALSE	an	existing	file	will	be	overwritten.	Defaults	to
TRUE.

Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).	MAKE
SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On	Error

Resume	Next	statement	at	the	beginning	of	the	ASP	page.

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.	If
you	specify	a	physical	pathname	when	UseVirtualDir	is	TRUE	an
exception	will	be	thrown.

If	the	default	user	account	does	not	have	the	appropriate	permission	to
perform	this	action	then	an	"Access	Denied"	error	will	occur.	You	can	use
the	ImpersonateUser	method	to	temporarily	assume	another	user
account	which	has	the	appropriate	permission,	perform	the	operation	and
then	call	ImpersonationTerminate	to	resume	using	the	default	account.

See	Also:	FileDelete	|	FileExists	|	FileMove

	

FileDelete	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	delete	a	file.

Syntax

UploadObject.FileDelete	(Path	As	String)

The	FileDelete	method	syntax	has	the	following	parts:

Part Description

Path Location	of	the	file	to	be	deleted.	Use	either	a	relative	or
absolute	pathname,	depending	on	the	setting	of	the
UseVirtualDir	property.

Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).	MAKE
SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On	Error
Resume	Next	statement	at	the	beginning	of	the	ASP	page.

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.	If
you	specify	a	physical	pathname	when	UseVirtualDir	is	TRUE	an
exception	will	be	thrown.

If	the	default	user	account	does	not	have	the	appropriate	permission	to
perform	this	action	then	an	"Access	Denied"	error	will	occur.	You	can	use
the	ImpersonateUser	method	to	temporarily	assume	another	user
account	which	has	the	appropriate	permission,	perform	the	operation	and

then	call	ImpersonationTerminate	to	resume	using	the	default	account.

See	Also:	FileCopy	|	FileExists	|	FileMove

FileExists	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	see	if	the	specified	file	exists	at	the	specified	location.

Syntax

UploadObject.FileExists(Path	As	String)	As	Boolean

The	FileExists	method	syntax	has	the	following	parts:

Part Description

Path The	name	of	the	file	to	be	checked.	Use	either	a	relative
or	absolute	pathname,	depending	on	the	setting	of	the
UseVirtualDir	property.

Remarks

This	method	returns	TRUE	if	the	file	is	found,	otherwise	FALSE	is
returned.

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.

See	Also:	FileCopy	|	FileDelete	|	FileMove

	

FileMove	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	move	a	file	from	one	location	to	another.

Syntax

UploadObject.FileMove(Source	As	String,	Destination	As	String[,	FailIfExsists
As	Boolean	=	TRUE])

The	FileMove	method	syntax	has	the	following	parts:

Part Description

Source Name	of	the	file	to	be	moved.	Use	either	a	relative	or
absolute	pathname,	depending	on	the	setting	of	the
UseVirtualDir	property.

Destination Destination	location.	Use	either	a	relative	or	absolute
pathname,	depending	on	the	setting	of	the	UseVirtualDir
property.

FailIfExists If	TRUE	an	exception	will	be	thrown	if	the	file	already	exists
at	the	specified	destination.	If	this	is	FALSE	then	an	existing
file	with	the	same	name	will	be	overwritten.	Defaults	to
TRUE.

Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).	MAKE
SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On	Error
Resume	Next	statement	at	the	beginning	of	the	ASP	page.

This	method	can	be	used	to	rename	a	file	by	specifying	the	same	directory	path
with	differing	filenames	for	the	Source	and	Destination	arguments.

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.	If
you	specify	a	physical	pathname	when	UseVirtualDir	is	TRUE	an
exception	will	be	thrown.

If	the	default	user	account	does	not	have	the	appropriate	permission	to
perform	this	action	then	an	"Access	Denied"	error	will	occur.	You	can	use
the	ImpersonateUser	method	to	temporarily	assume	another	user
account	which	has	the	appropriate	permission,	perform	the	operation	and
then	call	ImpersonationTerminate	to	resume	using	the	default	account.

See	Also:	FileCopy	|	FileExists	|	FileDelete

	

GetFileDirName	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	extract	the	directory	name	from	a	fully	specified	path.

Syntax

UploadObject.GetFileDirName(Path	As	String)	As	String

The	GetFileDirName	method	syntax	has	the	following	part(s):

Part Description

Path Full	path	and	filename.

Remarks

This	method	truncates	the	filename	from	a	fully	specified	pathname.	Note	that
this	method	does	not	check	for	the	existence	of	the	specified	directory	or	file.

An	exception	IS	NOT	RAISED	if	the	specified	file	in	the	pathname	does	not
exist.

See	Also:	GetFileExt	|	GetFileName

	

GetFileExt	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	extract	the	file	extension	from	a	fully	specified	path.

Syntax

UploadObject.GetFileExt(Path	As	String)	As	String

The	GetFileExt	method	syntax	has	the	following	part(s):

Part Description

Path Full	path	and	filename	with	a	file	extension.

Remarks

This	method	simply	truncates	and	returns	the	extension	from	a	fully	specfied
path.	Note	that	this	method	does	not	check	for	the	existence	of	the	directory	nor
the	file.

An	exception	IS	NOT	RAISED	if	the	specified	file	in	the	pathname	does	not
exist.

See	Also:	GetFileDirName	|	GetFileName

GetFileName	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	extract	the	filename	from	a	fully	specified	path.

Syntax

UploadObject.GetFileName(Path	As	String)	As	String

The	GetFileName	method	syntax	has	the	following	part(s):

Part Description

Path Full	path	and	filename	with	extension

Remarks

This	method	simply	truncates	the	filename	(with	the	extension)	from	a	full
pathname.	Note	that	this	method	does	not	check	for	the	existence	of	the
directory	nor	the	file.

This	method	is	very	useful	if	you	are	looping	through	the	Files	collection	and
want	to	copy	or	move	files	saved	to	disk	to	another	location,	possibly	depending
on	some	sort	of	criteria	concerning	the	uploaded	file.	Use	GetFileName	with	the
UploadedFile	object's	Path	property	as	the	Path	argument	so	that	you	can	copy
the	file(s)	to	another	location	using	the	same	filename.	See	the	Copy	method	for
sample	source	code	illustrating	this.

An	exception	IS	NOT	RAISED	if	the	specified	file	in	the	pathname	does	not
exist.

See	Also:	GetFileDirName	|	GetFileExt

	

GetNextFile	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	retrieve	the	headers	for	uploaded	files	one	at	a	time.

Syntax

Set	NextFileObject	=	UploadObject.GetNextFile()

Remarks

This	method	reads	an	HTML	form	in	a	top-down	manner	and	returns	a	NextFile
object	when	data	from	a	populated	file	input	box	is	encountered.	Any	form	data
(e.g.	textbox	data)	prior	to	the	populated	file	input	box	is	uploaded	to	the	Form
collection.	"Nothing"	is	returned	if	no	populated	file	input	box	is	found.

Please	note	that	if	the	user	did	not	specify	any	files	to	be	uploaded	then	calling
this	method	for	the	first	time	will	result	in	the	Upload	control's	Form	collection
to	be	populated	with	ALL	values	entered	by	the	user	into	the	form's	elements.

To	loop	through	all	uploaded	files	use	a	"Do	Until"	loop,	and	test	to	see	if	the
returned	NextFile	object	is	"Nothing".	See	the	sample	code	below	for	an
example	of	this.

Only	the	header	for	the	file	is	uploaded,	and	you	can	programmatically	decide	if
you	want	to	retrieve	the	file	in	its	entirety,	depending	on	some	sort	of	criteria
(e.g.	if	the	file	is	an	image).	If	you	want	to	retrieve	the	entire	file	then	call	either
the	Save	method	or	the	SaveToMemory	method	of	the	NextFile	object	BEFORE
calling	GetNextFile	again.	If	you	call	GetNextFile	again	WITHOUT	calling
Save	or	SaveToMemory	then	the	file	in	question	will	NOT	be	uploaded.

If	you	call	Save	or	SaveToMemory	then	the	uploaded	file	will	also	have	a
corresponding	UploadedFile	object	appended	to	the	control's	Files	collection.

The	advantage	of	this	method	is	that	you	are	not	forced	to	retrieve	all	form	data
at	once.	The	ability	to	accept	or	reject	uploads	is	also	advantageous	to	the
developer.

See	Also:	NextFile	Object	|	Tutorial	2:	Retrieving	Form	Data
Incrementally	Using	the	GetNextFile	Method

Example

'Note:	it	is	assumed	that	a	form	(which	contains	one	or	more	file	input	boxes)	is	posting	data	to	this	page	with	an	encoding	type	of	"multipart/form-data"

'create	an	instance	of	the	Upload	control	Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'retrieve	the	header	for	the	first	uploaded	file
Set	objNextFile	=	objUpload.GetNextFile()

Do	Until	objNextFile	Is	Nothing
'loop	through	all	uploaded	files	and	retrieve	the	uploaded	file	if	it	is	an	image

If	InStr(1,objNextFile.contenttype,"Image",1)	Then

objNextFile.SaveToMemory()

End	If

'retrieve	header	for	next	uploaded	file
Set	objNextFile	=	objUpload.GetNextFile()

Loop

'destroy	object
Set	Upload	=	Nothing

	

GetUniqueName	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

This	method	returns	a	unique	name	(a	GUID).

Syntax

string	=	UploadObject.GetUniqueName()

Remarks

Call	this	method	to	retrieve	a	GUID	(a	Globally	Unique	Identifier).	This	can	be
useful	when	saving	files	with	unique	filenames.

Note	that	you	can	also	utilize	unique	filenames	by	setting	the	UseUniqueNames
property	to	TRUE.	If	the	UseUniqueNames	property	is	set	to	TRUE	(the
default)	then	all	files	will	be	saved	with	a	GUID	and	an	"_"	preceding	the
original	filename.

See	Also:	UseUniqueNames

	

ImpersonateUser	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	switch	from	the	default	user	account	to	another
account	with	different	permissions.

Syntax

UploadObject.ImpersonateUser(UserName	As	String,	Password	As
String,	[Domain	As	String],	[Type	As	Long	=	2])

The	ImpersonateUser	method	syntax	has	the	following	parts:

Part Description

UserName The	username	of	the	Windows	account	to	use.

Password The	password	of	the	Windows	account	to	use.

Domain The	domain	of	the	Windows	account	to	use.	If	not	specified
the	domain	of	the	current	default	account	is	used.

Type Specifies	the	type	of	logon	operation	to	perform.

		Remarks

An	exception	is	thrown	if	this	operation	fails.	You	can	trap	for
success/failure	by	examining	VBScript's	Err	object	immediately	after
calling	this	method	(the	Number	property	of	the	Err	object	will	be	a	non-
zero	value	if	it	failed).	MAKE	SURE	that	you	have	enabled	inline	error
trapping	by	using	an	On	Error	Resume	Next	statement	at	the	beginning
of	the	ASP	page.

This	method	is	useful	if	you	need	to	perform	an	operation	for	which	the

default	user	account	(usually	the	IUSR	account)	does	not	have	the
appropriate	permissions.	For	example,	you	can	call	ImpersonateUser	to
use	an	account	which	has	the	rights	to	delete,	move	or	copy	files,	and
when	the	file	operation	is	complete	you	can	then	call
ImpersonationTerminate	to	revert	back	to	the	default	account.

IMPORTANT:	If	your	virtual	web	site	directory	has	"Run	in	separate
memory	space"	checked	then	in	order	to	use	ImpersonateUser	you
MUST	give	the	default	account	"Part	of	the	operating	system"	priviledges.
See	below	for	instructions	on	how	to	do	this.

The	Type	argument	determines	how	the	logon	operation	is	to	be
performed	(you	can	use	the	distributed	include	file	named
UploadControl.inc	to	incorporate	named	constants	in	your	ASP	source
code).	The	possible	values	for	this	are:

LOGON_INTERACTIVE	(2).

LOGON_NETWORK	(3).

LOGON_BATCH	(4).

LOGON_SERVICE	(5).

	For	more	details	concerning	the	logon	type	refer	to	your	MSDN	under
the	"LogonUser"	topic.

	
Granting	Operating	System	Priviledges	in	Windows	NT:

1.	 Open	"Start	Menu	|	Administrative	Tools	|	User	Manager".

2.	 Then	open	"Policies	|	User	Rights"	from	the	menu,	MAKING	SURE
that	the	"Show	Advanced	User	Rights"	box	is	checked.

3.	 From	the	dropdown	listbox	select	"Act	as	Part	of	the	Operating
System".

4.	 Add	the	default	user	account	to	the	list	of	accounts	which	have	this
priviledge	by	clicking	on	the	ADD	button.	If	the	default	account	is	not

listed	then	add	it	by	clicking	on	"Show	Users"	and	selecting	the
default	account	and	then	clicking	the	"Add"	and	"OK"	buttons.

5.	 Reboot.

	Granting	Operating	System	Priviledges	in	Windows	2000:

1.	 Open	"Administrative	Tools	|	Local	Security	Policy"	and	then	double-
click	on	"Local	Policies".

2.	 Open	"User	Rights	Assignment"	and	then	double-click	on	"Act	as
Part	of	the	Operating	System".

3.	 Add	the	default	(i.e.	IUSR)	account	to	the	current	list.	If	the	default
account	is	not	listed	follow	Step	4	from	above.

See	Also:	ImpersonationTerminate

ImpersonationTerminate	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	revert	back	to	using	the	default	user	account.

Syntax

UploadObject.ImpersonationTerminate()

Remarks

An	exception	is	thrown	if	the	operation	fails.	You	can	trap	for
success/failure	by	examining	VBScript's	Err	object	immediately	after
calling	this	method	(the	Number	property	of	the	Err	object	will	be	a	non-
zero	value	if	it	failed).	MAKE	SURE	that	you	have	enabled	inline	error
trapping	by	using	an	On	Error	Resume	Next	statement	at	the	beginning
of	the	ASP	page.

If	you	need	to	perform	an	operation	for	which	the	default	user	account
does	not	have	permission	then	call	the	ImpersonateUser	method	to
utilize	an	account	which	has	wider	permissions	than	the	default	account
(which	is	usually	the	IUSR	account).	Once	you	no	longer	need	these
wider	permissions	call	the	ImpersonationTerminate	method	to	revert
back	to	using	the	default	account.

See	Also:	ImpersonateUser

RegisterServer	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Use	this	method	to	register/unregister	a	(COM)	component	at	the	server.

Syntax

UploadObject.RegisterServer(Path	As	String[,	Unregister	As	Boolean	=
False])

The	RegisterServer	method	syntax	has	the	following	part(s):

Part Description

Path Pathname	of	the	component	to	be	registered.	Use
either	a	relative	or	absolute	pathname,	depending	on
the	setting	of	the	UseVirtualDir	property.

Unregister Set	this	boolean	to	FALSE	to	register	the	component
(the	default).	Set	it	to	TRUE	to	unregister	the
component.

	

Remarks

This	method	will	raise	an	exception	if	the	specified	file	does	not	exist.	To
make	sure	that	the	file	in	question	exists	you	can	use	the	FileExists
method	before	calling	RegisterServer.

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.	If
you	specify	a	physical	pathname	when	UseVirtualDir	is	TRUE	an

exception	will	be	thrown.

See	Also:	FileExists

Save	(Upload	Control	and	NextFile	Object)

Overview	|	Properties	|	Methods

Call	this	method	to	save	uploaded	files	to	disk	and	populate	the	control's
collections.

Syntax

Object.Save(Path	As	string)

The	Save	method	syntax	has	the	following	parts:

Part Description

Path A	string	expression	specifying	the	folder	path	to	save	the
uploaded	files	in.	Use	either	a	relative	or	absolute	pathname,
depending	on	the	setting	of	the	UseVirtualDir	property.

		Remarks

Call	this	method	to	save	uploaded	files	to	disk.	If	the	UseUniqueNames
property	is	set	to	TRUE	(the	default)	then	all	files	will	be	saved	with	a
GUID	and	an	"_"	preceding	the	original	filename.	For	example,	if	the
name	of	an	uploaded	file	is	"index.txt"	then	the	corresponding	file	saved
to	disk	will	be	"SomeGUID_index.txt".	We	highly	recommend	that	you
utilize	unique	names	for	saved	files.

You	MUST	EITHER	CALL	THIS	METHOD,	the	SaveToMemory	method
or	the	GetNextFile	method	before	attempting	to	use	either	the	Form	or
Files	collections.	Not	only	do	these	methods	retrieve	uploaded	files	but
they	also	populate	the	Upload	control's	collections.	A	trappable	error	will
occur	if	you	try	to	utilize	these	collections	before	calling	either	of	these
methods.

Calling	a	save	method	will	throw	an	exception	if	the	uploaded	data

exceeds	the	maximum	allowable	limit,	as	set	by	the	MaxUploadSize
property.	As	a	result	no	files	will	be	saved	and	the	control's	collections	will
not	be	populated.

An	exception	will	also	be	thrown	if	the	specified	path	does	not	exist.

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.	If
you	specify	a	physical	pathname	when	UseVirtualDir	is	TRUE	an
exception	will	be	thrown.

NOTE:	If	you	do	not	want	to	automatically	retrieve	all	downloaded	files
and	form	data	then	alternatively	you	can	use	the	GetNextFile	method	to
retrieve	the	form	data.

See	Also:	UseUniqueNames	|	MaxUploadSize	|	SaveToMemory	|
GetNextFile	|	Tutorial	1:	Uploading	Multiple	Files	and	Using	the	Form	and
Files	Collections	|	Tutorial	2:	Retrieving	Form	Data	Incrementally	Using
the	GetNextFile	Method

SaveToMemory	(Upload	Control	and	NextFile	Object)

Call	this	method	to	save	uploaded	files	to	memory	and	populate	both
the	Files	and	Form	collections.

Syntax

Object.SaveToMemory()

Remarks

You	MUST	EITHER	CALL	THIS	METHOD	or	the	Save	method	before
attempting	to	use	either	the	Form	or	Files	collections.	Not	only	do	these	methods
retrieve	uploaded	files	but	they	also	populate	the	Upload	control's	collections.	A
trappable	error	will	occur	if	you	try	to	utilize	these	collections	before	calling	one
of	these	methods.

If	files	are	saved	to	memory	then	calling	any	of	the	following	methods	will	result
in	an	exception	being	thrown	since	there	will	be	no	files	saved	to	disk:	FileCopy,
FileDelete,	FileMove,	SetAttributes,	GetAttributes	and	the	SetOwner	methods	of
the	UploadedFile	object.

Calling	the	SaveToMemory	method	will	also	throw	an	exception	if	the	uploaded
data	exceeds	the	maximum	allowable	limit,	as	set	by	the	MaxUploadSize
property.	As	a	result	no	form	data	will	be	retrieved.

Note	that	calling	the	control's	SaveToMemory	method	populates	the	Files	and
Form	collections	with	one	method	call,	while	calling	the	SaveToMemory
method	of	a	NextFile	object	populates	the	Form	and	Files	collections
incrementally.

See	Also:	Save	|	Tutorial	1:	Uploading	Multiple	Files	and	Using	the	Form
and	Files	Collections	|	Tutorial	2:	Retrieving	Form	Data	Incrementally
Using	the	GetNextFile	Method

	

SendBinary	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Call	this	method	to	download	files	from	the	server.

Syntax

	UploadObject.SendBinary(Path	As	String[,	ContentType	As	String	=	"default"])

The	SendBinary	method	syntax	has	the	following	part(s):

Part Description

Path The	pathname	of	the	file	to	be	downloaded.	Use	either	a
relative	or	absolute	pathname,	depending	on	the	setting	of
the	UseVirtualDir	property.

ContentType The	type	of	file	to	be	downloaded.

	

Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).	MAKE
SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On	Error
Resume	Next	statement	at	the	beginning	of	the	ASP	page.

If	UseVirtualDir	is	set	to	TRUE	then	the	specified	path	needs	to	be
relative.	It	should	start	with	a	forward	slash	and	be	followed	by	a	valid
alias,	and	any	sub-folders	need	to	be	separated	with	forward	slashes.	If
you	specify	a	physical	pathname	when	UseVirtualDir	is	TRUE	an
exception	will	be	thrown.

If	you	specify	an	empty	content	type	the	resulting
Response.ContentType	header	is	not	set.	If	it	is	set	to	the	default
(which	is	"default")	then	the	resulting	content	type	header	will	be	set
to	a	value	which	corresponds	to	the	associated	file	extension.

Please	note	that	it	is	much	more	efficient	to	use	the	SaveToMemory
method	when	calling	SendBinary.

The	data	sent	back	to	the	client	will	constitute	the	contents	of	the
resulting	web	page	displayed	in	the	client's	browser.

	

Files	Collection	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

The	Files	collection	stores	UploadedFile	objects	which	are	a	result	of
files	uploaded	to	the	server.

Remarks

The	Files	collection	stores	one	(1)	UploadedFile	object	for	every	file
uploaded	to	the	server	as	a	result	of	file	input	inboxes	(e.g.	<input
type="file"	name="File1>)	in	a	Form.	The	Form	must	POST	to	the	ASP
page	which	uses	the	Files	collection,	and	the	ENCTYPE	of	the	form	must
be	"Multipart/Form-Data".

This	collection	is	zero-based.

You	MUST	CALL	one	of	the	following	methods	to	populate	the	Files
collection:	the	Save	method	of	either	the	Upload	object	or	a	NextFile
object;	or	the	SaveToMemory	method	of	either	an	Upload	object	or	a
NextFile	object.	Please	note	that	using	the	NextFile	object's	Save	or
SaveToMemory	methods	will	populate	the	Files	collection	one	file	at	a
time,	unlike	the	Upload	control's	save	methods	which	populates	the	Files
collection	with	one	method	call.

Loop	through	this	collection	when	you	want	to	utilize	the	uploaded	files
(e.g.	as	Attachment	objects	for	the	Mailer	control).	You	can	use	the
Count	property	of	the	collection	as	the	upper	loop	delimiter	with	a
standard	For	loop,	or	alternatively	you	can	iterate	through	the	collection
by	using	a	For	Each	loop.

See	Also:	UploadedFile	Object	|	NextFile	Object	|	Tutorial	1:	Uploading
Multiple	Files	and	Using	the	Form	and	Files	Collections	|	Tutorial	3:	ADO
Support	and	Saving	a	File	as	a	BLOB

Example

Assumptions

Instances	of	the	Upload	and	Mailer	controls	have	been	created.

Another	html	or	ASP	page	has	POSTED	files	to	the	page	which	contains	this	code	via	file	input	boxes	in	a	form,	with	an	ENCTYPE	of	"Multipart/Form-Data".

The	uploaded	files	will	be	used	as	email	attachments.

'	we	will	loop	through	all	UploadedFile	objects	and	use	them	'	as	email	attachments.

For	Each	Item	in	objUpload.Files
'note	that	we	are	using	the	OriginalPath	property	of	the	UploadedFile	objects	as	the
'	ContentName	property	of	the	Attachment	objects	(ContentName	will	be	the	filename
'	displayed	in	the	client's	email	software).	If	we	do	not	do	this	then	the	filename
'	that	the	uploaded	file	was	saved	under	will	be	used	instead	(all	uploaded	files
'	are	automatically	saved	with	a	GUID	preceding	the	original	filename).
objMailer.Attachments.Add	Item.Path,	Item.OriginalPath
Next

	

Form	Collection	(Dundas	Upload	Control	2.0)

Overview	|	Properties	|	Methods

Consists	of	FormItem	objects	which	store	uploaded	form	data.

Remarks

To	use	the	Upload	control	the	html	form	which	POSTS	the	data	must
have	an	ENCTYPE	of	"Multipart/Form-Data".

The	Form	collection	is	used	to	retrieve	form	data.	You	MUST	use	this
collection	when	examining	form	elements	and	their	values	since	a	form
with	an	ENCTYPE	of	"Multipart/Form-Data"	POSTS	the	data	in	such	a
way	that	you	can	no	longer	use	ASP's	Request.Form	object	to	retrieve
the	data.

This	collection	is	zero-based.

If	a	form	element	was	not	populated	by	the	user	then	there	will	be	no
corresponding	FormItem	object	in	the	control's	Form	collection	(e.g.	if
you	loop	through	the	Form	collection	with	a	For	...	Each	loop	there	will	be
no	FormItem	object	for	the	form	elements	left	empty	by	the	user).	If	you
retrieve	the	value	of	a	particular	form	element	which	was	left	empty	by
the	user	the	return	will	be	"Empty".	You	can	test	to	see	if	the	user	left	a
form	element	blank,	or	empty,	by	using	VBScript's	IsEmpty	method.

To	use	the	Form	collection	you	MUST	CALL	one	of	the	following
methods:	the	Save	method	of	either	the	Upload	control	or	a	NextFile
object;	or	the	SaveToMemory	method	of	either	the	Upload	control	or	a
NextFile	object.	Please	note	that	using	the	GetNextFile	method	(which
returns	a	NextFile	object)	will	populate	the	Form	collection	with	all	form
data	up	to	the	file	input	box	in	question.	The	Upload	object's	save
methods,	however,	populates	the	Form	collection	with	ALL	POSTED	form
data	in	one	method	call.

To	retrieve	form	items	you	can	specify	the	name	of	the	form	element	via

its	string	key	(e.g.	strVariable	=	objUpload.Form("txtSomeTextBox").
Alternatively	you	can	retrieve	an	element's	value	by	specifying	the
appropriate	numerical	index	(e.g.	strVariable	=	objupload.Form(0)).

You	can	retrieve	multiple	selections	for	one	form	element	(e.g.	a	listbox)
by	using	the	Count	property	of	the	FormItem	object	(this	will	have	the
total	number	of	items	selected	for	the	form	element)	along	with	the	Value
method.	Use	a	For	loop	with	the	Count	property	of	the	FormItem	object
as	the	upper	loop	delimiter	and	call	the	Value	method	for	each	item.	For
example,	to	retrieve	all	selected	elements	for	a	multi-item	listbox	(named
"ListBox")	you	could	use	the	following	syntax:

For	i	=	0	To	objUpload.Form("ListBox").Count	-	1

Response.Write	objUpload.Form("ListBox").Value(i)

Next
Note:	alternatively	you	can	also	use	a	For	...	Each	loop	to	access
multiple-item	form	element	values.

To	iterate	through	all	form	elements	you	can	use	a	standard	For	loop	with
the	upper	delimiter	set	to	one	less	than	the	Form	collection's	Count
property.	You	can	also	loop	through	all	form	elements	by	using	a	For
Each	loop	(e.g.	For	Each	Item	in	objUpload.Form).	Then	access	each
form	element	using	the	following	syntax:	strSomeString	=
objUpload.Form(Item).

The	Form	collection	supports	the	following	properties	and	methods:

Properties Description

Count Read-only	property	which	stores	the	number	of
FormItem	objects	in	the	collection.
	

Methods Description

Item Use	this	method	to	retrieve	items	from	the	collection.
The	default	member	of	the	collection.
	

The	Item	method	is	the	default	member	of	the	collection	so	it	does	not
have	to	be	used	explicitly.	For	example,	"Set	objFormItem	=
objUpload.Form(0).Item"	accomplishes	the	same	thing	as	"Set
objFormItem	=	objUpload.Form(0)".

See	Also:	FormItem	Object	|	How	to	Use	the	Dundas	Upload	Control	|
Tutorial	1:	Uploading	Multiple	Files	and	Using	the	Form	and	Files
Collections

Count	Property	(All	Dundas	Upload	Collections)

Use	this	read-only	property	to	determine	the	number	of	elements
currently	stored	in	any	Dundas	Upload	collection.

Syntax

AnyUploadCollection.Count

Remarks

Use	this	property	to	find	out	how	many	elements	are	currently	being
stored	in	any	Dundas	Upload	collection.	This	is	useful	for	determining	the
upper	loop	delimiter	when	iterating	through	all	of	a	collection's	items.
Note	that	you	can	also	iterate	through	any	Dundas	Upload	collection	with
For...Each	loops.

See	Also:	Item

Item	(All	Dundas	Upload	Collections)

Call	this	method	to	retrieve	an	element	from	any	Dundas	Upload
collection.	This	is	the	default	member	of	all	collections.

Syntax

AnyMailerCollection.Item	(Index)

The	Item	method	syntax	has	the	following	parts:

Part Description

Index This	argument	can	be	either	a	number	(integer	or	long	data
type)	or	a	string	key.	All	of	the	Dundas	Upload	collections	are
zero	(0)	based.

Remarks

If	the	Index	argument	is	specified	as	a	number	then	the	item	is	retrieved
via	the	index	of	the	collection	(zero-based).	For	example,	to	retrieve	the
first	element	in	the	Files	collection	you	could	use	the	following	statement:
Set	objUploadedFile	=	Files.Item(0).	If	a	string	is	specified	then	the
element	is	retrieved	via	its	key.	For	a	listing	of	collection	keys	refer	to	the
following:

Files	Collection	string	key	=	TagName	property	of	the	UploadedFile
object.

Form	Collection	string	key	=	TagName	property	of	the	FormItem
object.

This	method	is	the	default	collection	method	so	you	do	not	have	to
explicitly	declare	it.	For	example,	to	retrieve	the	first	UploadedFile	object
in	the	Files	collection	you	could	use	the	following:	Set	objUploadedFile	=
objUpload.Files(0).

Note:	if	you	specify	an	index	which	is	out	of	range	then	an	exception	will
be	thrown.

See	Also:	Count	Property

UploadedFile	Object	(Dundas	Upload	Control	2.0)

Comprises	the	Files	collection,	and	stores	data	for	one	uploaded	file.

Remarks

The	UploadedFile	object	is	used	to	store	information	and	data	about	an
uploaded	file,	and	each	object	corresponds	to	a	file	uploaded	via	an	html
form.

You	must	first	call	the	control's	Save	or	SaveToMemory	method	before
attempting	to	use	the	Files	collection.	See	the	sample	code	below	for	an
illustration	of	this.

If	you	call	the	SaveToMemory	method	then	the	Path	property	will	be	a
zero-length	string.

Example

'this	sample	code	illustrates	how	to	populate	the	Files	collection	'	with	UploadedFile	objects

'method	failures	usually	throw	an	exception
On	Error	Resume	Next

'create	an	instance	of	the	Upload	Control
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")
'we	will	examine	the	Err	object	to	see	if	an	error	occurred,	if	so	we	will
'	redirect	user	to	an	error	page
If	Err.Number	<>	0	Then
Response.Redirect	"Error.asp?Error="	&	Err.Description
End	If

'call	the	SaveToMemory	method	of	the	control	to	populate	the	Files	collection	first
objUpload.SaveToMemory

'loop	through	all	uploaded	files,	and	output	their	size	in	bytes

For	Each	objUploadedFile	in	objUpload.Files
Response.Write("Size:	"	&	objUploadedFile.Size	&	"
")
Next

'destroy	Upload	object
Set	objUpload	=	Nothing

	

UploadedFile	Object	Properties

Path Read-only	property	which	stores	the	uploaded
file's	local	path	at	the	server.
	

OriginalPath This	read-only	property	stores	the	original
pathname	(at	the	client)	of	the	uploaded	file.
	

Size Read-only	property	which	stores	the	uploaded
file's	size	in	bytes.
	

TagName Read-only	property	which	stores	the	name	of	the
form's	file	input	box	from	which	the	uploaded	file
originated.
	

ContentType Read-only	property	which	stores	the	uploaded
file's	content	type.
	

Binary Read-only	property	which	stores	the	uploaded
file's	data	as	a	safe-array-of-bytes.	Useful	for
saving	uploaded	image	files	into	a	database
BLOB.
	

Binary	(UploadedFile	Object)

Overview

Read-only	property	which	stores	the	uploaded	file's	data	as	a	safe-array-
of-bytes.

Syntax

UploadObject.Binary	=	[variant]

The	Binary	property	syntax	has	the	following	parts:

Part Description

variant The	file's	data	as	a	safe-array-of-bytes.

Remarks

To	use	the	Files	collection	you	must	first	call	either	the	Save	or
SaveToMemory	methods	of	either	the	Upload	control	or	a	NextFile	object.

You	can	save	uploaded	binary	files	to	a	BLOB	(e.g.	a	SQL	Server
"Image"	column)	by	using	an	ADO	recordset	with	a	DSNless	connection.
Note	that	you	can	not	utilize	a	system	DSN	to	open	the	database.

See	Also:	Tutorial	3:	ADO	Support	and	Saving	a	File	as	a	BLOB

ContentType	(UploadedFile	and	NextFile	Objects)

Overview

Read-only	property	which	stores	the	uploaded	file's	content	type.

Syntax

[string]	=	Object.ContentType

The	ContentType	property	syntax	has	the	following	parts:

Part Description

string The	value	of	the	contenttype	header.

Remarks

To	use	the	Files	collection	(which	stores	UploadedFile	objects)	you	must
first	call	either	the	Save	or	SaveToMemory	methods.

To	work	with	a	NextFile	object	you	must	first	call	the	GetNextFile	method.

The	format	of	the	content	type	is	as	follows:	"Type/Sub-Type"	(e.g.
"image/bmp").

To	determine	what	type	of	file	has	been	uploaded	you	can	use	VBScript's
InStr	method	with	this	property	as	the	string	to	be	searched.	For
example,	to	see	if	the	uploaded	file	is	an	image	you	could	use	this	line	of
code:	InStr(1,objUploadedFile.ContentType,"image",1).

	

OriginalPath	(UploadedFile	and	NextFile	Objects)

Overview

This	read-only	property	stores	the	original	pathname	(at	the	client)	of	the
uploaded	file.

Syntax

[string]	=	Object.OriginalPath

The	OriginalPath	property	syntax	has	the	following	parts:

Part Description

string The	full	pathname	(at	the	client)	of	the	uploaded	file.

Remarks

To	use	the	Files	collection	(which	stores	UploadedFile	objects)	you	must
first	call	either	the	Save	or	SaveToMemory	methods.

To	work	with	a	NextFile	object	you	must	first	call	the	GetNextFile	method.

This	property	is	useful	if	you	want	to	save	files	which	have	been
uploaded	to	memory	to	disk	with	their	original	filenames	(i.e.	filename	at
the	client).	For	sample	source	code	demonstrating	this	see	the	SaveAs
topic.

See	Also:	Path

	

Path	(UploadedFile	Object)

Overview

Read-only	property	which	stores	the	uploaded	file's	local	path	at	the
server.

Syntax

[string]	=	Object.Path

The	Path	property	syntax	has	the	following	parts:

Part Description

string The	physical	location	of	the	uploaded	file	at	the	server.

Remarks

To	use	the	Files	collection	(which	stores	UploadedFile	objects)	you	must
first	call	either	the	Save	or	SaveToMemory	methods.	If	you	use	the
SaveToMemory	method	then	this	property	will	be	a	zero-length	string.

The	Path	property	returns	the	physical	path	of	the	uploaded	file	at	the
server,	even	if	the	UseVirtualDir	property	has	been	set	to	TRUE.

This	property	is	useful	if	you	want	to	copy/move	uploaded	files	using	the
filenames	they	were	originally	saved	to	disk	with.	For	sample	source
code	demonstrating	this	see	the	Copy	topic.

See	Also:	OriginalPath

Size	(UploadedFile	Object)

Overview

Read-only	property	which	stores	the	uploaded	file's	size	in	bytes.

Syntax

[long]	=	Object.Size

The	Size	property	syntax	has	the	following	parts:

Part Description

long The	size	of	the	uploaded	file	in	bytes.

Remarks

To	use	the	Files	collection	(which	stores	UploadedFile	objects)	you	must
first	call	either	the	Save	or	SaveToMemory	methods.

If	you	want	to	set	the	allowable	size	of	a	file	to	be	uploaded	use	the
MaxFileSize	property.

TagName	(UploadedFile,	NextFile	and	FormItem	Objects)

Overview	|	Properties	|	Methods

Read-only	property	which	stores	the	name	of	the	form's	file	input	box
from	which	the	uploaded	file	originated.

Syntax

[string]	=	Object.TagName

The	TagName	property	syntax	has	the	following	parts:

Part Description

string The	name	of	the	form's	file	input	box	from	which	the	uploaded
file	originated.

Remarks

To	use	the	Files	collection	(which	stores	UploadedFile	objects)	you	must
first	call	either	the	Save	or	SaveToMemory	methods.	To	use	a	NextFile
object	you	must	first	call	the	GetNextFile	method.

This	property	is	extremely	useful	if	you	want	users	to	upload	a	particular
file	type	for	a	specific	file	input	box.	Examine	the	uploaded	file's	content
type,	and	if	the	content	type	for	a	particular	file	input	box	is	not	correct
you	can	take	action	accordingly.	This	is	especially	useful	if	you	are
retrieving	uploaded	files	one	at	a	time	via	the	GetNextFile	method	(using
NextFile	objects)	since	this	method	gives	you	the	option	of	not	allowing
the	upload	of	a	file	to	occur	(only	headers	are	retrieved	with	the
GetNextFile	method).

Refer	to	the	source	code	below	for	further	illustration	on	how	to	ensure
that	a	file	is	a	certain	type	for	a	given	file	input	box.

See	Also:	ContentType

Example

'this	sample	code	will	assume	there	a	file	input	box	inside	a	POST	form
'	box	is	"Audio",	and	we	will	perform	type	checking	to	make	sure	that
'	the	user	actually	uploaded	a	valid	audio	file	to	the	server	from	this	input	box

'create	an	instance	of	the	control
objUpload	=	Server.CreateObject("Dundas.Upload.2")

'now	lets	loop	through	the	uploaded	files
For	Each	Item	in	objUpload.Files
'we	will	check	to	see	which	file	input	element	is	responsible	for	the	uploaded	file
If	(Item.TagName	=	"Audio")	Then
'we	now	know	the	file	came	from	the	Audio	file	input	box,	but	lets	make	sure
'	that	the	user	actually	uploaded	some	sort	of	audio	file
If	InStr(1,Item.ContentType,"audio")	Then
'the	file	is	actually	an	audio	type
Response.Write	"The	uploaded	file	is	a	valid	audio	file."
End	If
End	If
Next

'release	resources
Set	objUpload	=	Nothing

	

UploadedFile	Object	Methods

AllowAccess Adds	an	allowance	access	control	entity	for	a	file	which
has	been	saved	to	disk.
	

Copy Call	this	method	to	copy	files	which	have	been	saved	to
disk	to	a	specified	destination	on	the	server.
	

Delete Call	this	method	to	delete	uploaded	files	which	have
been	saved	to	disk.
	

DenyAccess Call	this	method	to	add	a	denial	control	entity	for	a	file
saved	to	disk.
	

GetAttributes Call	this	method	to	retrieve	the	attributes	of	an
uploaded	file	which	has	been	saved	to	disk.
	

Move Call	this	method	to	move	files	which	have	been	saved	to
disk	to	a	specified	destination	on	the	server.
	

RevokeAccess Call	this	method	to	remove	an	allowance	access	control
entity	for	a	file	which	has	been	saved	to	disk.
	

SaveAs Call	this	method	to	save	an	uploaded	file	in	memory	to	disk.
	

SetAttributes Call	this	method	to	change	the	attributes	of	a	file	which	has
been	saved	to	disk.
	

SetOwner Call	this	method	to	set	an	owner	to	a	file	which	has	been	saved
to	disk.
	

AllowAccess	(UploadedFile	Object)

Adds	an	allowance	access	control	entity	for	a	file	which	has	been	saved
to	disk.

Syntax

UploadedFileObject.AllowAccess(Account	As	String,	Flags	As	Long)

The	AllowAccess	method	syntax	has	the	following	parts:

Part Description

Account The	name	of	a	valid	Windows	account.	You	can	optionally
precede	the	account	name	with	the	domain	name	and	a
backslash.

Flags A	long	which	determines	the	type	of	access	to	be	granted.

	

Remarks

Call	this	method	to	set	the	access	rights	for	an	uploaded	file	which	has
been	saved	to	disk.	This	method	is	not	applicable	if	the	SaveToMemory
method	has	been	used	instead	of	the	Save	method,	since	there	will	not
be	a	copy	of	the	uploaded	file	on	disk.

To	use	named	constants	use	a	server-side	include	for	the	DSUpload.inc
file	which	is	distributed	with	the	Upload	Control	installation.

The	Account	argument	uses	the	following	syntax:	"[Domain\]Username".

The	Flags	argument	can	have	any	of	the	following	values	or	any	logical
combination	of	the	following	values:

Description Value

	 	

Generic	Access	Rights 	

GENERIC_ALL &H10000000

GENERIC_EXECUTE &H20000000

GENERIC_WRITE &H40000000

GENERIC_READ &H80000000

	 	

Standard	Access	Rights 	

DELETE &H00010000

READ_CONTROL &H00020000

WRITE_DAC &H00040000

WRITE_OWNER &H00008000

WRITE_SYNCHRONIZE &H00010000

	 	

Specific	Access	Rights	for
files

	

FILE_GENERIC_READ &H120089

FILE_GENERIC_WRITE &H120116

FILE_GENERIC_EXECUTE &H1200A0

	 	

FILE_READ_DATA &H0001

FILE_WRITE_DATA &H0002

FILE_APPEND_DATA &H0004

FILE_READ_EA &H0008

FILE_WRITE_EA &H0010

FILE_EXECUTE &H0020

FILE_READ_ATTRIBUTES &H0080

FILE_WRITE_ATTRIBUTES &H0100

FILE_ALL_ACCESS &H001f03ff

		See	Also:	DenyAccess	|	RevokeAccess

	

	

Copy	(UploadedFile	Object)

Call	this	method	to	copy	files	which	have	been	saved	to	disk	to	a
specified	destination	on	the	server.

Syntax

UploadedFileObject.Copy	(Destination	As	String	[,	Overwrite	As	Bool	=
FALSE])

The	Copy	method	syntax	has	the	following	parts:
	

Part Description

Destination The	full	pathname	of	the	destination	(including	the
filename).

Overwrite If	this	is	TRUE	then	an	existing	file	with	the	same
filename	will	be	overwritten.	Defaults	to	FALSE

	
Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).
MAKE	SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On
Error	Resume	Next	statement	at	the	beginning	of	the	ASP	page.

An	exception	will	be	thrown	if	you	attempt	to	copy	a	file	if	the	Files
collection	was	populated	using	the	SaveToMemory	method.	If	files	are
saved	using	a	virtual	path	(i.e.	the	UseVirtualDir	property	has	been	set	to
TRUE)	then	a	virtual	path	should	also	be	used	for	the	Destination
argument.

When	calling	this	method	you	must	specify	the	directory	and	filename	for
the	desired	destination	(e.g.	"e:\temp\myfile.txt").	To	copy	the	file	to	a
directory	using	the	same	name	that	the	file	was	saved	to	disk	with	you
can	use	the	Upload	control's	GetFileName	method,	using	the
UploadedFile	object's	Path	property	as	the	argument.	See	the	sample
source	code	below	for	an	illustration	of	this.

See	Also:	Move	|	Delete	|	Save

Example

'we	will	assume	that	the	Files	collection	has	been	populated	using	the	Upload
'	control's	Save	method	(e.g.	uploaded	files	have	been	saved	to	disk).
'
'this	sample	code	copies	the	files	saved	to	disk	to	a	directory	named	"temp",
'	using	the	filenames	that	the	files	were	saved	to	disk	with.

'create	instance	of	control
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'populate	collections	and	retrieve	all	uploaded	form	data	(including
'	uploaded	files)
objUpload.Save	"c:\SomeDir"

'loop	through	all	uploaded	files	and	copy	each	file	to	the	"temp"
'	directory,	using	the	same	filenames	that	the	files	were	saved
'	to	disk	with.
For	Each	objUploadedFile	in	objUpload.Files
objUploadedFile.Copy	"c:\temp\"	&	objUpload.GetFileName(objUploadedFile.Path)
Next

'release	resources
Set	objUpload	=	Nothing

Delete	(UploadedFile	Object)

Call	this	method	to	delete	uploaded	files	which	have	been	saved	to
disk.

Syntax

UploadedFileObject.Delete

Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).	MAKE
SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On	Error
Resume	Next	statement	at	the	beginning	of	the	ASP	page.

An	exception	will	be	thrown	if	you	attempt	to	delete	a	file	if	the	Files	collection
has	been	populated	by	calling	SaveToMemory	instead	of	the	Save	method.

See	Also:	Move	|	Copy	|	Save

	

DenyAccess	(UploadedFile	Object)

Call	this	method	to	add	a	denial	control	entity	for	a	file	saved	to	disk.

Syntax

UploadedFileObject.DenyAccess(Account	As	String,	Flags	As	Long)

The	DenyAccess	method	syntax	has	the	following	parts:

Part Description

Account A	valid	Windows	account	name.	You	can	optionally	precede
the	account	name	with	the	domain	name	and	a	backslash.

Flags A	long	which	determines	the	type	of	access	to	be	denied.

Remarks

This	method	is	not	applicable	if	the	SaveToMemory	method	has	been
used	instead	of	the	Save	method,	since	there	will	not	be	a	copy	of	the
uploaded	file	on	disk.

To	use	named	constants	use	a	server-side	include	for	the	DSUpload.inc
file	which	is	distributed	with	the	Upload	Control	installation.

The	Account	argument	uses	the	following	syntax:	"[Domain\]Username".

The	Flags	argument	can	have	any	of	the	following	values	or	any	logical
combination	of	the	following	values:

Description Value

	 	

Generic	Access	Rights 	

GENERIC_ALL &H10000000

GENERIC_EXECUTE &H20000000

GENERIC_WRITE &H40000000

GENERIC_READ &H80000000

	 	

Standard	Access	Rights 	

DELETE &H00010000

READ_CONTROL &H00020000

WRITE_DAC &H00040000

WRITE_OWNER &H00008000

WRITE_SYNCHRONIZE &H00010000

	 	

Specific	Access	Rights	for
files

	

FILE_GENERIC_READ &H120089

FILE_GENERIC_WRITE &H120116

FILE_GENERIC_EXECUTE &H1200A0

	 	

FILE_READ_DATA &H0001

FILE_WRITE_DATA &H0002

FILE_APPEND_DATA &H0004

FILE_READ_EA &H0008

FILE_WRITE_EA &H0010

FILE_EXECUTE &H0020

FILE_READ_ATTRIBUTES &H0080

FILE_WRITE_ATTRIBUTES &H0100

FILE_ALL_ACCESS &H001f03ff

See	Also:	AllowAccess	|	RevokeAccess

GetAttributes	(UploadedFile	Object)

Call	this	method	to	retrieve	the	attributes	of	an	uploaded	file	which
has	been	saved	to	disk.

Syntax

long	=	UploadedFileObject.GetAttributes()

Remarks

This	method	returns	the	file's	attributes	as	a	long.

Please	note	that	calling	this	method	will	result	in	an	exception	being	thrown	if
the	file	has	been	saved	to	memory	using	the	SaveToMemory	method.

The	attributes	argument	can	have	any	of	the	following	values	or	any	logical
combination	of	the	following	values:

Value Description.

0 No	attributes	are	set.

1 Read-only	file.

2 Hidden	file.

4 System	file.

8 Disk	drive	volume	label.

16 Folder	or	directory.	Attribute	is	read-only.

32 File	has	changed	since	last	backup	(archive).	Attribute	is
read/write.

64 Link	or	shortcut.	Attribute	is	read-only.

128 Compressed	file.	Attribute	is	read-only.

		Note:	Calling	this	method	will	result	in	an	exception	being	thrown	if	the	file
was	saved	to	memory.

See	Also:	SetAttributes

Move	(UploadedFile	Object)

Call	this	method	to	move	files	which	have	been	saved	to	disk	to	a
specified	destination	on	the	server.

Syntax

UploadedFileObject.Move(Path	As	String[,	FailIfExsists	As	Boolean	=
True])

The	Move	method	syntax	has	the	following	part(s):

Part Description

Path The	full	pathname	of	the	destination	(including	the
filename).	If	you	saved	uploaded	files	to	disk	using	a	virtual
directory	then	this	argument	must	also	use	a	virtual
directory.

FailIfExsists If	TRUE	then	an	exception	will	be	thrown	if	the	file	already
exists	at	the	destination	folder.	Defaults	to	TRUE.

		Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).	MAKE
SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On	Error
Resume	Next	statement	at	the	beginning	of	the	ASP	page.

An	exception	will	also	be	thrown	if	the	Files	collection	was	populated	by	using
the	SaveToMemory	method.

You	must	use	a	virtual	directory	for	the	Path	argument	if	a	virtual
directory	was	used	in	the	Save	method	call	(i.e.	the	UseVirtualDir

property	was	set	to	TRUE	before	calling	the	Save	method).	The
syntax	for	the	Path	argument	would	then	be:
"/VirtualDir/AnyOtherDirs/FileName".

See	Also:	Copy	|	Delete	|	Save

	

RevokeAccess	(UploadedFile	Object)

Call	this	method	to	remove	an	allowance	access	control	entity	for	a	file
which	has	been	saved	to	disk.

Syntax

UploadedFileObject.RevokeAccess(Account	As	String)

The	RevokeAccess	method	syntax	has	the	following	part(s):

Part Description

Account The	name	of	a	valid	Windows	account.	You	can	optionally
precede	the	account	name	with	the	domain	name	and	a
backslash.

		Remarks

This	method	will	throw	an	exception	if	an	invalid	account	name	has	been
specified.

The	Account	argument	uses	the	following	syntax:	"[Domain\]Username".

See	Also:	DenyAccess	|	AllowAccess

SaveAs	(UploadedFile	Object)

Call	this	method	to	save	an	uploaded	file	in	memory	to	disk.

Syntax

UploadedFileObject.SaveAs	(Path	As	String)

The	SaveAs	method	syntax	has	the	following	part(s):

Part Description

Path The	full	pathname	(i.e.	path	and	filename)	of	the	file's
destination.	If	UseVirtualDir	has	been	set	to	TRUE	then	this
argument	must	also	use	a	virtual	directory.

		Remarks

To	utilize	this	method	the	file	must	have	been	saved	to	memory	using
the	SaveToMemory	method.	An	exception	will	be	thrown	if	the	file	in
question	was	not	saved	to	memory.	An	exception	will	also	be	raised	if
you	call	this	method	twice	for	the	same	file.

If	you	have	set	the	UseVirtualDir	property	to	TRUE	then	the	Path
argument	must	also	use	a	virtual	directory.	The	syntax	for	the	Path
argument	would	then	be:	"/VirtualDir/AnyOtherDirs/FileName".

When	calling	this	method	you	must	specify	the	directory	and	filename	for
the	desired	destination	(e.g.	"e:\temp\myfile.txt").	To	save	the	file	to	a
directory	using	the	original	filename	(i.e.	the	filename	at	the	client)	you
can	use	the	Upload	control's	GetFileName	method,	using	the
UploadedFile	object's	OriginalPath	property	as	the	argument.	See	the
sample	source	code	below	for	an	illustration	of	this.

See	Also:	Save	|	SaveToMemory

Example

'we	will	assume	that	the	Files	collection	has	been	populated	using	the	Upload
'	control's	SaveToMemory	method.
'
'this	sample	code	saves	the	files	in	memory	to	a	directory	named	"temp",
'	using	the	file's	original	names	(at	the	client)

'create	instance	of	control
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'populate	collections	and	retrieve	all	uploaded	form	data	(including
'	uploaded	files)
objUpload.SaveToMemory

'loop	through	all	uploaded	files	and	save	each	file	to	the	"temp"
'	directory,	using	their	original	filenames
For	Each	objUploadedFile	in	objUpload.Files
objUploadedFile.SaveAs	"c:\temp\"	&	objUpload.GetFileName(objUploadedFile.OriginalPath)
Next

'release	resources
Set	objUpload	=	Nothing

SetAttributes	(UploadedFile	Object)

Call	this	method	to	change	the	attributes	of	a	file	which	has	been	saved	to	disk.

Syntax

UploadedFileObject.SetAttributes	(Attributes	As	Long)

The	SetAttributes	method	syntax	has	the	following	part(s):

Part Description

Attributes A	long	which	determines	the	file	attributes	to	be	set.

		Remarks

Calling	this	method	will	result	in	an	exception	being	thrown	if	the	file	was	saved
to	memory.

The	attributes	argument	can	have	any	of	the	following	values	or	any	logical
combination	of	the	following	values:

Value Description.

0 No	attributes	are	set.

1 Read-only	file.

2 Hidden	file.

4 System	file.

8 Disk	drive	volume	label.

16 Folder	or	directory.	Attribute	is	read-only.

32 File	has	changed	since	last	backup	(archive).
Attribute	is	read/write.

64 Link	or	shortcut.	Attribute	is	read-only.

128 Compressed	file.	Attribute	is	read-only.

	
See	Also:	GetAttributes

SetOwner	(UploadedFile	Object)

Call	this	method	to	set	an	owner	to	a	file	which	has	been	saved	to	disk.

Syntax

UploadedFileObject.SetOwner(Account	As	String)

The	SetOwner	method	syntax	has	the	following	part(s):

Part Description

Account The	name	of	a	valid	Windows	account.	You	can	optionally
precede	the	account	name	with	the	domain	name	and	a
backslash.

Remarks

An	exception	is	thrown	if	the	operation	fails.	Trap	for	success/failure	by
examining	VBScript's	Err	object	immediately	after	calling	this	method	(the
Number	property	of	the	Err	object	will	be	a	non-zero	value	if	it	failed).	MAKE
SURE	that	you	have	enabled	inline	error	trapping	by	using	an	On	Error
Resume	Next	statement	at	the	beginning	of	the	ASP	page.

Note:	Permission	issues	should	be	considered	when	using	this	method	since	an
exception	will	be	thrown	if	the	user	does	not	have	the	right	to	set	the	owner.	Use
the	ImpersonateUser	method	to	temporarily	assume	another	Windows	account
which	has	the	permission	to	set	the	file's	owner.	Once	this	is	done	call	the
ImpersonationTerminate	method	to	resume	using	the	default	account.

See	Also:	ImpersonateUser	|	ImpersonationTerminate

	

FormItem	Object	(Dundas	Upload	Control	2.0)

Comprises	the	Form	collection,	and	stores	input	data	for	a	form	element.

Remarks

The	FormItem	object	is	used	to	retrieve	data	from	the	POST	form.

To	use	the	Upload	control	the	html	form	which	POSTS	the	data	must
have	an	ENCTYPE	of	"Multipart/Form-Data".

To	retrieve	data	you	MUST	FIRST	CALL	either	the	control's	Save
method,	the	SaveToMemory	method	or	the	GetNextFile	method	first	so
that	the	Form	collection	is	populated.	Once	this	is	done	you	can	retrieve
data	via	the	Form	collection's	FormItem	objects.

Note:	the	Save	and	SaveToMemory	methods	will	retrieve	ALL	form	data
with	one	method	call,	unlike	the	GetNextFile	method	which	retrieves	all
form	data	up	to	the	first	populated	file	input	box	encountered.	To	retrieve
all	form	data	with	GetNextFile	call	GetNextFile	until	the	function	returns
"Nothing."	for	sample	code	demonstrating	how	to	do	this	see	the
GetNextFile	topic.

To	retrieve	form	items	you	can	specify	the	name	of	the	form	element	via
its	string	key	(e.g.	strVariable	=	objUpload.Form("txtSomeTextBox")).
Note	that	the	string	key	is	actually	the	TagName	property	of	the
FormItem	object.	Alternatively	you	can	retrieve	an	element's	value	by
specifying	the	appropriate	numerical	index	(e.g.	strVariable	=
objupload.Form(0)).	To	retireve	the	value	you	do	not	have	to	specify
Value.

NOTE:	If	a	form	element	is	left	empty	by	the	user	then	attempting	to
access	the	element's	data	via	the	Upload	control's	Form	collection	will
result	in	a	value	of	"Empty"	being	returned.	To	test	for	an	empty	form
element	use	the	following	line	of	code:	"If
IsEmpty(objUpload.Form("MyFormElement"))	Then	...	Else...End	If".

To	retrieve	multiple	selections	for	one	form	element	(e.g.	a	listbox)	use
the	Count	property	of	the	FormItem	object	(this	will	have	the	total
number	of	items	selected	for	the	form	element).	Use	a	For	loop	with	the
Count	property	of	the	FormItem	object	as	the	upper	loop	delimiter	and
call	the	Value	method	for	each	item.	For	example,	to	retrieve	all	selected
elements	for	a	multi-item	listbox	(named	"ListBox")	you	could	use	the
following	syntax:

For	i	=	0	To	objUpload.Form("ListBox").Count	-	1

Response.Write	objUpload.Form("ListBox").Value(i)

Next

Note:	alternatively	you	could	use	a	For	...	Each	loop	to	access	these
multiple	selections.	To	use	a	For	...	Each	loop	utilize	the	following	syntax:

For	Each	Item	in	objUpload.Form

strSomeVariable	=	objUpload.Form(Item)

Next

See	Also:	Form	Collection	|	How	to	Use	the	Dundas	Upload	Control	

Count	Property	(FormItem	Object)

Overview

This	property	indicates	the	number	of	data	elements	selected	for	a
form	element	with	multiple	items.

Syntax

FormItemObject.Count

Remarks

This	count	property	is	useful	if	multiple	data	has	been	entered/selected
in	a	form	item	(e.g.	a	multiple	item	listbox).	Use	this	property	to
determine	the	total	number	of	selected	data	entries.

You	can	retrieve	the	value	of	each	data	item	using	the	Value	property
of	the	FormItem	object	in	question.

See	Also:	Value

Value	(FormItem	Object)

Overview

Use	this	property	to	retrieve	the	value	of	a	form	element.

Syntax

string	=	FormItemObject.Value

Remarks

This	property	is	essential	for	retrieving	data	from	a	multiple-entry
form	element	(e.g.	a	multiple	item	listbox).	It	is	also	the	default
member	of	the	FormItem	object,	so	it	does	not	have	to	be	declared
explicitly.

To	retrieve	multiple	selected	values	for	one	single	form	element	use
the	following	syntax:	string	=	objFormItem.[Value](Index),	where
Index	is	a	zero-based	long.

See	Also:	Count	Property	(FormItem	Object)

NextFile	Object	(Dundas	Upload	Control	2.0)

Contains	header	information	for	a	file	originating	from	a	file	input	box.

Remarks

A	NextFile	object	is	returned	from	a	GetNextFile	call.

The	NextFile	object	stores	header	information	for	a	file	resulting	from	a
form's	file	input	box.	You	can	examine	the	exposed	properties	of	the
NextFile	object	and	decide	whether	or	not	you	want	to	allow	the	user	to
upload	the	file.	To	allow	the	upload	to	occur	call	the	Save	or
SaveToMemory	methods	of	the	NextFile	object.	To	cancel	the	upload	just
call	the	GetNextFile	method	again	without	calling	either	the	Save	or
SaveToMemory	method	first.

To	see	sample	source	code	illustrating	how	to	loop	through	all	files	the
user	wants	to	upload	to	the	server	see	the	GetNextFile	topic.

See	Also:	GetNextFile	|	Tutorial	2:	Retrieving	Form	Data	Incrementally
Using	the	GetNextFile	Method

Example

'this	sample	code	will	determine	if	an	image	file	has	been	specified	by	the	user
'	upload	to	occur.	Note	that	we	are	assuming	that	a	form	has	POSTED	data
'	to	this	page,	using	an	encoding	type	of	"Multipart/Form-Data".

'create	an	instance	of	the	Upload	control
Set	objUpload	=	Server.CreateObject("Dundas.Upload.2")

'call	GetNextFile	to	retrieve	the	header	for	the	file	which	the	user	wants
'	to	upload.	Note	that	GetNextFile	will	return	a	value	of	"Nothing"	if
'	the	user	did	not	specify	any	files	at	all	to	be	uploaded.	Also	note	that
'	GetNextFile	populates	the	control's	Form	collection	with	the	values	of	
'	ALL	form	elements	which	occur	in	the	html	form	ONLY	up	until	the	first	

'	encountered,	populated	file	input	box.	If	no	populated	file	input	box
'	is	found	then	all	form	element	values	will	be	inserted	into	the	Form	collection.	
Set	objNextFile	=	objUpload.GetNextFile()

If	InStr(1,objNextFile.ContentType,"image")	Then
objNextFile.SaveToMemory
End	If

'release	resources
Set	objUpload	=	Nothing

	

NextFile	Object	Properties

Attributes Read-write	property	which	allows	you	to	retrieve	or	set	the
attributes	of	a	file	stored	in	a	NextFile	object.	

ContentType Read-only	property	which	stores	the	file's	content	type.
	

FileName Read-write	property	which	determines	the	file's	full
pathname	(at	the	server).
	

OriginalPath This	read-only	property	stores	the	original	pathname	(at
the	client)	of	the	file	in	question.
	

TagName Read-only	property	which	stores	the	name	of	the	form's
file	input	box	from	which	the	file	originated.
	

Attributes	(NextFile	Object)

Overview

This	read-write	property	lets	you	retrieve	or	set	the	attributes	of	a	file	stored	in	a
NextFile	object.

Syntax

NextFileObject.Attributes	=	[long]

Part Description

long A	long	which	determines	the	attributes	of	the	file	in
question.

		Remarks

To	set	this	property	make	sure	that	you	call	either	Save	or	SaveToMemory
AFTER	the	attributes	have	been	set.	To	set	or	retrieve	a	file's	attributes	AFTER
the	file	has	been	saved	to	disk	or	memory	use	the	Upload	control's	GetAttributes
and	SetAttributes	methods.

A	file's	attributes	can	be	any	of	the	following	values	or	any	logical	combination
of	the	following	values:

Value Description.

0 No	attributes	are	set.

1 Read-only	file.

2 Hidden	file.

4 System	file.

8 Disk	drive	volume	label.

16 Folder	or	directory.	Attribute	is	read-only.

32 File	has	changed	since	last	backup	(archive).	Attribute	is
read/write.

64 Link	or	shortcut.	Attribute	is	read-only.

128 Compressed	file.	Attribute	is	read-only.

	
See	Also:	GetAttributes	|	SetAttributes

FileName	(NextFile	Object)

Overview

Read-write	property	which	determines	the	uploaded	file's	full	pathname
(at	the	server).

Syntax

NextFileObject.FileName	=	[string]

The	Path	property	syntax	has	the	following	parts:

Part Description

string The	full	pathname	of	the	uploaded	file	(at	the	server).

Remarks

If	files	are	to	be	saved	with	uniques	filenames	(the	default)	then	the	value
of	this	property	will	be:	GUID_OriginalFileName.	If	uniques	filenames	are
not	being	used	then	this	property	will	just	consist	of	the	original	filename
(i.e.	the	filename	at	the	client).

If	you	would	like	to	allow	the	upload	of	the	file	to	occur	and	you	want	to
specify	the	name	the	file	is	to	be	saved	with	then	set	this	property
BEFORE	calling	the	Save	method	(SaveToMemory	is	not	relevant	here).

Important:	if	you	specify	the	filename	which	the	file	is	to	be	saved	under
then	it	is	your	responsibility	to	make	sure	that	the	name	is	unique	(if
unique	filenames	are	desired).	Use	the	GetUniqueName	method	of	the
Upload	control	to	help	you	accomplish	this.

See	Also:	GetUniqueName

NextFile	Object	Methods

Save Uploads	and	saves	the	file	to	disk.
	

SaveToMemory Uploads	and	saves	the	file	to	memory.
	

UploadProgress	Component	Overview

Component	Properties	|	Component	Methods

Use	the	UploadProgress	component	when	you	want	to	display	a
progress	bar	for	an	upload	operation.

The	UploadProgress	Component	is	used	to	access	the	State	Server	and
retrieve	upload	information	which	can	then	be	used	to	update	a	progress
bar	window.	It	can	retrieve	new	progress	ID's,	retrieve	the	progress
information	stored	in	the	State	Server	and	also	delete	state	information
by	ID.	It	is	also	responsible	for	retrieving	a	new	Progress	ID	when	an
upload	operation	is	initiated	(accomplished	via	the	GetNewProgressID
method).

To	retrieve	upload	information	set	the	ProgressID	property	to	the	unique
Progress	ID,	call	the	GetProgress	method	and	then	utilize	the
PercentCompleted,	TotalSize,	and	UploadedSize	properties.	Please	note
that	these	properties	will	be	negative	one	(-1)	if	no	data	has	been
uploaded	yet.

For	detailed	instructions	on	how	to	implement	a	progress	bar	see	Tutorial
4:	Implementing	a	Progress	Bar.

Any	errors	which	occur	will	result	in	an	exception	being	thrown.

See	Also:	Overview	(Dundas	State	Server)

UploadProgress	Component	Methods

The	following	is	a	list	of	all	methods	of	the	UploadProgress	Component:

Method Description

	
GetNewProgressID

	
Returns	a	new	ProgressID	(obtained	from
the	State	Server	Component)	which	is	used
to	uniquely	identify	the	upload	operation.

GetProgress Connects	to	the	State	Server	component
and	causes	the	TotalSize,	UploadedSize
and	PercentCompleted	properties	of	the
Progress	Bar	component	to	be	re-
calculated.	You	must	obtain	an	ID	(via
GetNewProgressID)	before	calling	this
method.

DeleteProgress Connects	to	the	State	Server	component
and	deletes	the	progress	state	information
for	the	given	ProgressID.	You	must	obtain
an	ID	(via	GetNewProgressID)	before
calling	this	method.

Please	note	that	any	errors	will	result	in	an	exception	being	thrown.

See	Also:	Progress	Bar	Component	Methods	|	Overview	(Progress	Bar
Component)

UploadProgress	Component	Properties

The	following	is	a	listing	of	all	UploadProgress	Component	properties:

Property Data
Type

Description

	
ProgressID

	
long

	
A	unique	Progress	ID	(set	by	the
GetNewProgressID	method).
	

PercentCompleted long Read-only,	the	upload	completion
percentage	(set	by	the
GetProgress	method).	This	will	be
negative	one	(-1)	if	there	has
been	no	data	uploaded	yet.
	

StateServer string The	IP	address	of	the	machine
where	the	State	Server
executable	is	running.
	

StateServerPort long The	port	number	to	use	for	the
State	Server	Component.
	

TotalSize long Read-only,	the	total	amount	of
data	being	uploaded	(set	by	the
GetProgress	method).	This	will	be
negative	one	(-1)	if	there	has
been	no	data	uploaded	yet.
	

UploadedSize long Read-only,	the	amount	of	data
which	has	been	uploaded	(set	by
the	GetProgress	method).	This
will	be	negative	one	(-1)	if	there
has	been	no	data	uploaded	yet.
	

See	Also:	UploadProgress	Component	Methods	|	Overview
(UploadProgress	Component)

Dundas	State	Server	Overview

The	Dundas	State	Server	(StateServer.exe)	is	used	to	store	upload
progress	information	which	can	be	stored	and	retrieved	using	the
UploadProgress	and	Upload	components.	This	data	is	accessible	from
anywhere	on	a	network,	thereby	allowing	the	State	Server	to	function	in	a
web-farm	scenario.

The	State	Server	can	also	be	set	up	to	run	as	a	service	(see	below	for
more	details).

Perform	the	following	steps	to	set	up	the	Server:

1.	 Move	the	StateServer.exe	to	the	machine	which	is	to	be	used	to
store	state	information.

2.	 You	can	either	run	the	server	as	a	normal	executable	or	alternatively
you	can	run	it	as	a	service.	To	run	it	as	a	service	refer	to	the	section
immediately	following	this	listing	of	steps.

3.	 Set	the	following	properties	or	alternatively	use	their	defaults:

1.	 To	accept	a	request	from	any	machine	on	the	network	do	not
insert	any	entries	into	the	"Valid	Client's	IP	Addresses"	listbox.
However,	if	you	want	to	restrict	which	machines	on	the	network
can	access	the	server	then	enter	their	IP	addresses	into	this
listbox.	Note	that	by	specifying	one	or	more	addresses	here	only
those	IP	addresses	will	be	allowed	to	access	the	State	Server.

2.	 Set	the	port	number	which	the	server	should	listen	on	(this	is	the
port	number	which	you	must	specify	when	connecting	to	the
State	Server)	or	use	the	default	port	(6723).

3.	 The	timeout	value	determines	when	a	request	will	be	timed-out.
You	can	accept	the	default	of	15	seconds	or	set	this	yourself.

4.	 The	"State	Valid	For"	value	determines	how	long	state
information	for	a	particular	upload	operation	will	be	stored.	You

can	increase	or	decrease	this	value	as	you	see	fit.

5.	 The	"Max.	Connections"	value	determines	how	many
components	can	access	the	State	Server	at	one	time.	The
default	value	is	"20",	but	you	may	change	this	if	you	so	desire.

If	you	have	set	up	the	State	Server	to	run	as	a	service	then	there	will	be
no	GUI	to	set	these	properties	with.	You	will	need	to	run	the	State	Server
manually	(see	below),	set	up	your	properties	and	then	set	the	State
Server	back	to	running	as	a	service.

To	set	the	State	Server	up	to	run	as	a	service	you	will	need	to	run	the
executable	from	the	command	line	with	the	following	switches:

i	-	Run	the	Server	as	a	service	the	next	time	the	machine	is	booted.

u	-	Causes	the	State	Server	to	be	uninstalled	as	a	service.

m	-	Runs	the	State	Server	manually	from	the	command	line.	Use	this
option	if	the	server	is	running	as	a	service	and	you	want	to	set	or
change	one	or	more	properties.

For	example,	to	set	up	the	State	Server	to	run	as	a	service	use	the
following	sytax	from	the	command	line	(using	a	fictitious	path):
"e:\StateServer.exe	/i".

For	detailed	help	on	how	to	utilize	the	State	Server	in	conjunction	with	the
UploadProgress	component	see	Tutorial	4:	Implementing	a	Progress	Bar.

See	Also:	Overview	(Progress	Bar	Component)

Copyright

Dundas	Chart,	Ultimate	Toolbox,	Ultimate	Grid,	Ultimate	ChartPro,
Ultimate	Diagram,	Hyperview,	HyperHost,	Ultimate	FastMaps!,	Ultimate
TCP/IP,	Ultimate	VB/NTService,	Ultimate	16	Bit	CoolTools,	Ultimate
Wizard	Factory	and	their	respective	documentation	are	copyright	(c)
Dundas	Software	Ltd.

Microsoft,	MS,	MS-DOS,	Internet	Explorer,	Microsoft	Developer	Studio,
Windows,	Windows	NT,	Win32,	and	Win32s	are	registered	trademarks	of
Microsoft	Corporation.

Some	files	distributed	with	Ultimate	Toolbox	and/or	incorporated	with
Dundas	Chart	are	copyright	(c)	1991-1995,	Thomas	G.	Lane	and	form
part	of	the	Independent	JPEG	Group's	software.

Some	files	distributed	with	Ultimate	Toolbox	are	copyright	(c)	1995,	Intel
Corporation.

OpenGL	is	a	registered	trademark	of	Silicon	Graphics,	Inc.

All	other	products	and	company	names	cited	herein	may	be	the
trademarks	of	their	respective	owners.

Technical	Support

We	understand	that	when	you	use	our	development	products	you	are
making	an	investment	in	Dundas	Software,	and	are	putting	your	faith	in
us.	That	is	why	we	take	technical	support	very	seriously.

All	of	these	products,	although	free,	are	not	shareware/freeware.	They
are	commercial-quality	components	that	come	with	extensive
documentation,	tutorials,	examples,	and	fully-commented	sample
applications.		You	are	entitled	to	free	email	support,	we	will	attempt	to
help	you	with	any	of	your	inquiries	as	quickly	as	possible.

To	further	help	our	users,	Dundas	has	a	dedicated	Online	Developer's
Site,	where	you	will	find	even	more	examples,	helpful	articles,	hints	and
tips,	and	notices	concerning	point	releases	and	code	updates.

Dundas	Software's	Priority	support	is	also	available,	and	comes	with
direct	telephone	and	email	assistance.	Our	professional	support	team
can	give	you	dozens	of	time	saving	pointers	and	development	tips	that
can	dramatically	compress	your	development	cycle.	They	can	also	offer
you	suggestions	on	how	to	enhance	your	programs,	helping	to	make	a
great	result	even	better.	Call	our	sales	department	to	find	out	more	about
Dundas	Priority	support.

Phone:	416	467-5100

Fax:	416	422-4801

E-mail:	sales@dundas.com

mailto:support@dundas.com
http://support.dundas.com/?section=71

	Free Products
	Ultimate Toolbox
	COXMaskedEdit
	COXMaskedEdit Class Members
	COXMaskedEdit Mask Characters
	COXMaskedEdit::COXMaskedEdit
	COXMaskedEdit::Create
	COXMaskedEdit::EmptyData
	COXMaskedEdit::GetAutoTab
	COXMaskedEdit::GetInputData
	COXMaskedEdit::GetInsertMode
	COXMaskedEdit::GetMask
	COXMaskedEdit::GetPromptSymbol
	COXMaskedEdit::IsInputEmpty
	COXMaskedEdit::LPtoRP
	COXMaskedEdit::OnValidate
	COXMaskedEdit::RPtoLP
	COXMaskedEdit::SetAutoTab
	COXMaskedEdit::SetInputData
	COXMaskedEdit::SetInsertMode
	COXMaskedEdit::SetMask
	COXMaskedEdit::SetPromptSymbol
	COXMaskedEdit::ShowMask
	COXMaskedEdit::ValidationError

	COX3DTabViewContainer
	COX3DTabViewContainer Class Members
	COX3DTabViewContainer::COX3DTabViewContainer
	COX3DTabViewContainer::AcceptDraggedObject
	COX3DTabViewContainer::AddPage
	COX3DTabViewContainer::Create
	COX3DTabViewContainer::DeletePage
	COX3DTabViewContainer Dependencies and Related Files
	COX3DTabViewContainer::FindPage
	COX3DTabViewContainer::GetActivePage
	COX3DTabViewContainer::GetActivePageIndex
	COX3DTabViewContainer::GetOffsetExternal
	COX3DTabViewContainer::GetOffsetInternal
	COX3DTabViewContainer::GetPage
	COX3DTabViewContainer::GetPageCount
	COX3DTabViewContainer::GetPageImageIndex
	COX3DTabViewContainer::GetPageRect
	COX3DTabViewContainer::GetPageTitle
	COX3DTabViewContainer::InsertPage
	COX3DTabViewContainer::IsAcceptingDraggedObject
	COX3DTabViewContainer::IsActivePage
	COX3DTabViewContainer::IsPage
	COX3DTabViewContainer::RecalcPageRect
	COX3DTabViewContainer::SetActivePage
	COX3DTabViewContainer::SetActivePageIndex
	COX3DTabViewContainer::SetOffsetExternal
	COX3DTabViewContainer::SetOffsetInternal
	COX3DTabViewContainer::SetPageImageIndex
	COX3DTabViewContainer::SetPageTitle

	COXToolTipCtrl
	COXToolTipCtrl Class Members
	COXToolTipCtrl::Activate
	COXToolTipCtrl::AddTool
	COXToolTipCtrl::CalculateInfoBoxRect
	COXToolTipCtrl::COXToolTipCtrl
	COXToolTipCtrl::Create
	COXToolTipCtrl::DelTool
	COXToolTipCtrl::GetBoundsRect
	COXToolTipCtrl::GetDelayTime
	COXToolTipCtrl::GetMargin
	COXToolTipCtrl::GetMaxTipWidth
	COXToolTipCtrl::GetText
	COXToolTipCtrl::GetTipBkColor
	COXToolTipCtrl::GetTipTextColor
	COXToolTipCtrl::GetToolCount
	COXToolTipCtrl::GetToolInfo
	COXToolTipCtrl::HitTest
	COXToolTipCtrl::Pop
	COXToolTipCtrl::RelayEvent
	COXToolTipCtrl::SetDelayTime
	COXToolTipCtrl::SetMargin
	COXToolTipCtrl::SetMaxTipWidth
	COXToolTipCtrl::SetTipBkColor
	COXToolTipCtrl::SetTipTextColor
	COXToolTipCtrl::SetToolInfo

	Dundas TCP/IP 4.0
	RAS Class
	CUT_RAS Class Members
	CUT_RAS Dependencies and Related Files
	CUT_RAS::~CUT_RAS
	CUT_RAS::CUT_RAS
	CUT_RAS::CancelDial
	CUT_RAS::ClearEntryPassword
	CUT_RAS::DeleteEntry
	CUT_RAS::Dial
	CUT_RAS::DoesEntryExist
	CUT_RAS::EnumConnections
	CUT_RAS::EnumDevices
	CUT_RAS::EnumEntries
	CUT_RAS::GetConnection
	CUT_RAS::GetConnectionCount
	CUT_RAS::GetDevice
	CUT_RAS::GetDeviceCount
	CUT_RAS::GetDialEntryParams
	CUT_RAS::GetDialState
	CUT_RAS::GetEntry
	CUT_RAS::GetEntryCount
	CUT_RAS::GetEntryPassword
	CUT_RAS::GetEntryPhoneNumber
	CUT_RAS::GetEntryProperties
	CUT_RAS::GetEntryUserName
	CUT_RAS::GetLastRASError
	CUT_RAS::GetRASErrorString
	CUT_RAS::HangUp
	CUT_RAS::InitRAS
	CUT_RAS::IsConnected
	CUT_RAS::OnError
	CUT_RAS::RenameEntry
	CUT_RAS::SetDialEntryParams
	CUT_RAS::SetDialStatusCallback
	CUT_RAS::SetEntryProperties
	CUT_RAS::ValidateEntryName

	Dundas Mailer Control 1.0
	Product Overview
	How to Use Dundas Mailer
	QuickStart
	Tutorial 1: Sending an Email with an Attachment
	Tutorial 2: Sending an Html Email with an Embedded Image
	Tutorial 3: Posting to a Newsgroup
	Object Hierarchy
	Troubleshooting the Mailer Control Demos
	Control Properties
	Body
	BodyCharSet
	ConfirmRead
	FromAddress
	FromName
	HtmlBody
	HtmlBodyCharSet
	TimeOutConnect
	Organization
	Priority
	ReturnReceipt
	Subject
	TimeOutReceive
	TimeOutSend

	Control Methods
	EncodeHeader
	LoadBodyFromFile
	PostArticle
	QuickSend
	SendMail
	ValidateAddress

	Dundas Chart
	Dundas Pie Chart Server Control 2.0
	AddData
	AddLabel
	AngleX
	AngleY
	AngleZ
	CodePage
	CreateJPEGFile
	DirTemplate
	DirTexture
	GetErrorText
	GetSelectedPosition
	GetSelectedSeries
	LoadTemplate
	Methods (Dundas Pie Chart Server Control)
	Properties (Dundas Pie Chart Server Control)
	Rotate
	Select
	SendJPEG
	SetCollectedLimit
	SetCollectedProp
	SetExploded
	Title
	Template Creator
	How to use the Template Creator
	Application Menu - Template Creator
	Collected Data Elements
	Data Label Property Page
	Gradient Property Page
	Labels Property Page
	Light Property Page
	Line Patterns Property Page
	Pie Element Property Page
	Popup Menus
	Rotating a Chart
	Scene Property Page
	Size - Move Property Page
	Texture Property Page
	Title Property Page

	Dundas Pie Chart Overview
	Tutorial: Creating a Basic Pie Chart
	Tutorial: Drilldown and Selection of Data Elements
	Tutorial: Rotation Example
	Distributed Samples

	Dundas Upload Control 2.0
	Overview
	How to Use the Dundas Upload Control
	Disabling and Setting Features via the Registry
	QuickStart
	Tutorial 1: Uploading Multiple Files and Using the Form and Files Collections
	Tutorial2: Retrieving Form Data Incrementally using GetNextFile
	Tutorial 3: ADO Support and Saving a File as a BLOB
	Tutorial 4: Implementing a Progress Bar
	Control Properties
	CheckMacBinary
	MaxFileCount
	MaxFileSize
	MaxUploadSize
	ProgressID
	StateServer
	StateServerPort
	UseUniqueNames
	UseVirtualDir

	Control Methods
	DirectoryCreate
	DirectoryDelete
	DirectoryExists
	FileCopy
	FileDelete
	FileExists
	FileMove
	GetFileDirName
	GetFileExt
	GetFileName
	GetNextFile
	GetUniqueName
	ImpersonateUser
	ImpersonationTerminate
	RegisterServer
	Save (Upload Control and NextFile Object)
	SaveToMemory (Upload Control and NextFile Object)
	SendBinary

	UploadedFile Object
	Properties
	Binary
	ContentType (UploadedFile and NextFile Objects)
	OriginalPath (UploadedFile and NextFile Objects)
	Path
	Size
	TagName (UploadedFile and NextFile Objects)

	Methods
	AllowAccess
	Copy
	Delete
	DenyAccess
	GetAttributes
	Move
	RevokeAccess
	SaveAs
	SetAttributes
	SetOwner

	FormItem Object
	NextFile Object
	Properties
	Attributes
	ContentType (UploadedFile and NextFile Objects)
	FileName
	OriginalPath
	TagName

	Methods
	Save (Upload Control and NextFile Object)
	SaveToMemory (Upload Control and NextFile Object)

	UploadProgress Component
	Methods
	Properties

	State Server Component

	Copyright
	Technical Support

