
Modicon	Modbus	Driver
	

Filename Modbus.dll

Manufacturer Modicon

Devices Any	device	compatible	with	Modbus	protocol	v1.1b

Protocol Modbus	v1.1b

Version 3.1.36

Last	Update 03/17/2017

Platform Win32	and	Windows	CE	(Pocket	PC	ARM,	HPC2000
ARM,	HPC2000	X86,	and	HPC2000	MIPS)

DependenciesNo	dependencies
Superblock
Readings

Yes

Level 0

	



Introduction
This	 Driver	 implements	 the	 Modbus	 protocol,	 which	 allows	 an	 Elipse
application	 to	 communicate	 with	 any	 slave	 device	 that	 implements	 this
protocol	in	ASCII,	RTU,	or	TCP	modes.
This	Driver	always	works	as	a	master	of	a	Modbus	network.	If	users	want
to	 use	 a	 Driver	 to	 communicate	 with	 master	 devices,	 then	 Elipse's
Modbus	 Slave	 Driver	 must	 be	 used,	 which	 can	 be	 downloaded	 at
Elipse's	website.
Modbus	 Driver,	 starting	 at	 version	 2.00,	 was	 developed	 using	 Elipse's
IOKit	 library.	 This	 library	 is	 responsible	 for	 implementing	 the	 physical
layer	access	(Serial,	Ethernet,	Modem,	or	RAS).	For	more	 information
about	 IOKit	 configuration,	 please	 check	 topic	 Documentation	 of	 I/O
Interfaces.
It	is	recommended	to	start	by	reading	topic	Quick	Configuration	Guide
if	the	device	is	fully	compliant	with	standard	Modbus	protocol,	defined	by
the	Modbus	Organization	(modbus.org),	and	if	users	only	want	to	read	or
write	bits	and	registers,	without	using	more	advanced	Driver	features.
For	 a	 complete	 understanding	 of	 all	 Driver	 functionality,	 it	 is
recommended	to	start	reading,	in	this	order,	chapters	Adding	a	Driver	to
an	Elipse	Application	and	Configuration.
To	create	 large	scale	applications,	 it	 is	also	recommended	to	read	topic
Performance	Tips.
If	 users	 are	 not	 familiar	 with	 the	 protocol,	 please	 check	 the	 following
topics:

Modbus	Protocol

Recommended	Websites

Supported	Functions

Special	Functions

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

http://www.elipse.com.br/downloads


There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Quick	Configuration	Guide Top		Previous		Next

This	topic	describes	all	necessary	steps	to	configure	a	Modbus	Driver	for
communication	 with	 devices	 compliant	 with	 the	 standard	 protocol
defined	 by	 the	 Modbus	 Organization,	 considering	 the	 most	 common
configuration	options.
If	a	device	 is	 fully	compliant	with	 the	standard	protocol,	and	users	only
want	to	read	or	write	registers	or	bits,	the	next	three	topics	are	probably
sufficient	to	configure	this	Driver:

Inserting	a	Driver

Configuring	a	Driver

Configuring	I/O	Tags

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://www.modbus.org
http://kb.elipse.com.br/en-us


Inserting	a	Driver Top		Previous		Next

If	using	E3	or	Elipse	Power,	please	read	topic	Adding	a	Driver	to	an
Elipse	Software	Application	-	E3	or	Elipse	Power.
If	using	Elipse	SCADA,	please	read	topic	Adding	a	Driver	to	an	Elipse
Software	Application	-	Elipse	SCADA.
Then,	read	the	next	step	on	this	Manual,	which	shows	how	to	configure
a	Driver	using	its	configuration	window	for	the	most	common	cases.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Adding	a	Driver	to	an	Elipse	Software
Application

Top		Previous	
Next

This	 section	 describes	 how	 to	 add	 a	 Modbus	 Driver	 to	E3	 or	 Elipse
Power	and	Elipse	SCADA	applications.



E3	or	Elipse	Power Top		Previous		Next

On	Organizer,	 right-click	 the	Server	Objects	 -	Drivers	and	OPC	 item,
select	the	Insert	I/O	Driver	in	option,	and	then	select	a	project.

Adding	a	Driver	to	an	E3	or	Elipse	Power
application

On	the	window	that	opens,	select	a	Driver	(this	file	must	be	extracted	to
a	folder	on	the	computer	in	use)	and	click	Open.



Browse	Driver	window
E3	or	Elipse	Power	automatically	opens	Driver's	configuration	window,
shown	on	the	next	figure.



Driver's	configuration	window
On	 the	 second	step	 of	 topic	Quick	 Configuration	Guide,	 there	 is	 a
procedure	for	a	basic	Driver	configuration,	for	the	most	common	usages.
On	topic	Properties	this	configuration	is	presented	in	details.
Driver's	 configuration	 window	 can	 also	 be	 opened,	 later,	 by	 clicking
Driver	settings	 ,	as	shown	on	the	next	figure.



Driver	settings	option
After	 configuring	 Driver's	 properties,	 click	 OK	 so	 that	 E3	 or	 Elipse
Power	opens	Tag	Browser	window,	allowing	to	insert	pre-defined	Tags	in
the	application,	based	on	the	most	used	settings.	The	next	figure	shows
Tag	Browser's	window.	To	add	Tags,	drag	them	from	the	list	on	the	right
(Tags	 available	 from	 driver)	 to	 the	 list	 on	 the	 left	 (Current	 project
tags).



Tag	Browser	window
Tags	 available	 in	 Tag	 Browser	 are	 Tags	configured	using	Strings,	 a
new	method	that	does	not	use	the	old	concept	of	operations.	Insert	the
most	 adequate	 ones	 to	 the	 application,	 editing	 their	 fields	 as	 needed.
Tag	Browser	window	can	be	opened	later	by	clicking	Tag	Browser	 .

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Elipse	SCADA Top		Previous		Next

On	Organizer,	select	the	Drivers	item	and	click	New.

Adding	a	new	Driver	to	Elipse	SCADA
On	the	window	that	opens,	select	a	Driver	(this	file	must	be	extracted	to
a	folder	on	the	computer	in	use)	and	click	Open.



Selecting	a	Driver
This	Driver	is	then	added	to	the	application.

Driver	in	Organizer



For	 this	Driver	 to	work	correctly,	 users	still	 need	 to	 configured	 it	 on	 its
configuration	window.	To	open	 this	window,	showed	on	 the	next	 figure,
click	Extra.

Driver's	configuration	window
The	second	step	 of	 topic	Quick	Configuration	Guide	 shows	 how	 to
configure	a	Driver	 for	 the	most	common	usages,	 for	devices	complying
to	 default	 Modbus	 protocol	 requirements.	 On	 topic	 Properties	 that
configuration	 is	 described	 in	 details,	 including	 advanced	 configuration
resources.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):



There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Configuring	a	Driver Top		Previous		Next

After	 inserting	 a	 Driver	 in	 an	 application,	 users	 must	 open	 Driver's
configuration	 window,	 as	 explained	 on	 topics	E3	 or	 Elipse	 Power	 or
Elipse	SCADA.	With	this	configuration	window	open,	follow	these	steps:
1. Configure	communication's	physical	layer:

a. On	Setup	tab,	select	a	physical	layer	(Serial,	Ethernet,	Modem,	or
RAS)	to	use	when	connecting	with	a	device.

b. Configure	 the	 selected	 physical	 layer	 on	 its	 corresponding	 tab
(Serial,	Ethernet,	Modem,	or	RAS).

c. For	 more	 information	 about	 configuring	 a	 physical	 layer,	 please
check	topic	Documentation	of	I/O	Interfaces.

2. On	Modbus	tab,	select	the	protocol	mode	(RTU,	ASCII,	or	TCP)	used
by	the	device.	As	a	general	rule,	users	must	select	RTU	or	ASC	 (for
most	devices	it	is	RTU)	for	Serial	or	Modem	physical	 layers,	or	TCP
for	Ethernet	or	RAS	physical	layers.	The	other	options	usually	can	be
kept	with	 their	 default	 configurations.	 For	more	 information	 about	 all
options	on	this	tab,	please	check	topic	Modbus	Tab.

	

NOTE
For	 new	 applications,	 it	 is	 strongly	 recommended	 to	 avoid	 using
ModbusRTU	 (RTU	mode)	 encapsulated	 in	 an	Ethernet	 TCP/IP	 layer.
However,	 if	 by	 any	 reason,	 for	 legacy	 applications,	 users	 must	 use
ModbusRTU	encapsulated	in	TCP/IP,	please	do	not	forget	to	enable	the
Reconnect	after	Timeout	option,	described	on	topic	Modbus	Tab.

	
3.When	creating	applications	for	newer	Elipse	Software	products	such
as	E3,	 Elipse	 Power,	 or	 Elipse	 OPC	 Server,	 users	 can	 use	 Tag
configuration	by	Strings	 (Device	and	 Item	 fields).	 If	 this	 is	 the	case,
please	go	to	the	next	step	of	this	guide.

4. If	 users	 still	 need	 to	 use	 the	 old	 numerical	 configuration	 (N/B
parameters),	 used	 by	 Elipse	 SCADA,	 it	 is	 important	 to	 check	 the
Operations	 tab.	 There	 are	 seven	 default	 operations	 already	 pre-



configured	 on	 the	 Driver.	 Operations	 are	 configurations	 of	 functions
and	 data	 formats	 that	 later	 are	 referenced	 by	 application's	 Tags.
These	 seven	 default	 operations,	 already	 available	 when	 a	 Driver	 is
loaded	 for	 the	 first	 time,	 are	 the	 most	 common	 ones.	 Evaluate	 all
reading	 and	 writing	 functions	 and	 the	 data	 types	 used	 for	 each
operation,	 and	 check	 which	 ones	 are	 needed	 for	 the	 application.	 If
these	 seven	 pre-defined	 operations	 do	 not	 fit	 the	 application	 needs,
users	 must	 edit	 them	 or	 even	 create	 new	 operations.	 If	 this	 is	 the
case,	please	read	topic	Operations	Tab.	The	next	table	lists	all	seven
pre-defined	operations.

Pre-defined	operations

OPERATION READING
FUNCTION

WRITING
FUNCTION

DATA
TYPE

PURPOSE

1 3:	Read
Holding
Registers

16:	Write
Multiple
Registers

Word Reading	and	writing
unsigned	16-bit
integers

2 3:	Read
Holding
Registers

16:	Write
Multiple
Registers

DWordReading	and	writing
unsigned	32-bit
integers

3 3:	Read
Holding
Registers

16:	Write
Multiple
Registers

Int16 Reading	and	writing
signed	16-bit	integers

4 3:	Read
Holding
Registers

16:	Write
Multiple
Registers

Int32 Reading	and	writing
signed	32-bit	integers

5 3:	Read
Holding
Registers

16:	Write
Multiple
Registers

Float Reading	32-bit	floating
point	values

6 3:	Read
Multiple
Coils

15:	Write
Multiple	Coils

Bit Reading	and	writing
bits

7 2:	Read
Discrete
Inputs

None Bit Reading	bits	from	a
data	block	of	Discrete
Inputs



	

NOTE
These	seven	default	operations	are	configured	assuming	 that	a	device
complies	with	Modbus'	default	byte	order,	big	endian,	in	which	the	most
significant	 bytes	 come	 first.	 If	 a	 device	 does	 not	 comply	 with	 that
standard,	 please	 check	 topic	 Operations	 Tab	 for	 more	 information
about	configuring	operations	for	different	byte	orders.

	
For	 more	 information	 about	 configuring	 this	 Driver,	 please	 read	 topic
Configuration.
The	next	step	 demonstrates	how	 to	 configure	 I/O	Tags	based	on	pre-
defined	operations.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Configuring	I/O	Tags Top		Previous		Next

This	section	describes	how	 to	configure	 I/O	Tags	 in	E3,	Elipse	Power
and	in	old	Elipse	SCADA	for	the	most	common	usages.
	



Tag	Configuration	in	E3	and	in	Elipse	Power
Configuring	I/O	Tags	in	E3	and	in	Elipse	Power	can	be	performed	using
the	 new	 String	 configuration	 method	 or	 using	 the	 old	 numerical
configuration	 method,	 compatible	 with	 Elipse	 SCADA.	 For	 new
projects,	it	is	recommended	to	use	String	configuration,	which	improves
application's	legibility	and	maintenance.
Next	 there	 is	a	description	of	 the	 recommended	procedures	 for	String
configuration	and	also	for	the	old	numerical	configuration,	if	it	is	needed
for	legacy	applications.
	



String	Configuration
To	 add	 String-configured	 Tags,	 users	 have	 an	 option	 to	 import	 Tag
Browser's	pre-defined	models,	as	explained	on	topic	Adding	a	Driver	to
an	Elipse	Software	Application.	To	do	so,	users	must	keep	the	Show
Operations	 in	 Tag	Browser	 option	 disabled	 on	Operations	 tab,	 and
then	open	Tag	Browser	by	clicking	Tag	Browser	 .
To	 add	 a	 new	Tag	 to	 an	 application	without	 Tag	Browser,	 follow	 these
steps:
1. On	Organizer,	double-click	the	Driver,	select	the	Design	tab,	click	Add

,	and	then	select	the	I/O	Tag	item,	according	to	the	next	figure.

Adding	a	new	I/O	Tag
2. On	the	Adding	IOTag	window,	configure	the	Quantity	field	with	value
1	(one)	and	specify	a	name	for	this	Tag	in	the	Name	field.	Click	OK	to
create	a	new	Tag.

3. On	the	Device	column,	type	the	numerical	value	of	device's	Slave	Id
to	communicate,	followed	by	a	colon,	such	as	"1:"	for	a	Slave	Id	equal
to	 1	 (one).	 Notice	 that,	 in	 an	 Ethernet	 TCP/IP	 layer,	 this	 value	 is
sometimes	 ignored,	 and	 only	 the	 IP	 address	 is	 used	 and	 the	 port
configured	 on	 Ethernet	 tab,	 which	 must	 be	 declared	 on	 device's
documentation.

4. On	 the	 Item	 column,	 specify	 a	mnemonic	 for	 the	address	space	 (a
set	of	reading	and	writing	Modbus	functions)	followed	by	the	register's



or	bit's	address.	For	Holding	Registers,	 the	 address	 space	 is	 "hr"	 or
"shr",	 and	 this	 last	 one	 does	 not	 allow	 writing	 in	 blocks,	 because	 it
uses	 the	 writing	 function	 06	 (Write	 Single	 Register),	 while	 the	 "hr"
address	space	uses	the	writing	function	16	(Write	Multiple	Registers).
Both	use	the	reading	function	03	(Read	Holding	Registers).	For	Coils
use	"cl"	or	"scl".	Again,	the	difference	is	that	the	last	one,	which	uses
function	05	 (Force	Single	Coil),	does	not	write	 to	blocks.	Next,	 there
are	some	examples	of	configurations	for	the	Item	column.
a. Reading	or	writing	Holding	Register	150	using	functions	03	and	16
(writing	multiple	registers):	Item	must	be	equal	to	"hr150".

b. Reading	or	writing	Holding	Register	150	using	functions	03	and	06
(writing	simple	registers):	Item	must	be	equal	to	"shr150".

c. Reading	 or	 writing	 a	 Coil	 with	 address	 FFF0h	 (65520)	 using
functions	01	 and	15	 (writing	multiple	 bits):	 Item	 must	 be	 equal	 to
"cl65520"	 or	 "cl&hFFF0"	 (prefix	 "&h"	 can	 be	 used	 to	 provide
addresses	in	hexadecimal	format).

d. Reading	 or	 writing	 a	 Coil	 with	 address	 FFF0h	 (65520)	 using
functions	01	and	05	(writing	simple	bits,	one	by	one):	Item	must	be
equal	 to	 "scl65520"	 or	 "scl&hFFF0"	 (prefix	 "&h"	 can	 be	 used	 to
provide	addresses	in	hexadecimal	format).

5. For	 more	 information	 about	 other	 features	 of	 String	 configuration,
such	as	other	Modbus	functions,	special	 functions,	and	different	data
types,	please	check	topic	String	Configuration.

6. Tag	addressing	must	correspond	to	the	Modbus	address	map	on	the
device,	 which	 must	 be	 declared	 on	 manufacturer's	 documentation.
When	in	doubt,	please	check	topic	Addressing	Tips.

	
Prefer	 simple	 Tags	 (called	 PLC	 Tags	 in	 Elipse	 SCADA)	 rather	 than
Block	 Tags,	 keeping	 the	 Superblock	 feature	 enabled	 (the
EnableReadGrouping	property	set	to	True),	leaving	group	optimization
to	the	application	and	to	the	Driver.	For	more	details,	please	check	topic
Superblock	Reading.
As	an	example,	the	next	figure	shows	Tags	configured	by	Strings.



Example	of	Tags	configured	by	Strings



Numerical	Configuration
For	E3	or	Elipse	Power,	users	can	use	Tag	Browser	to	create	Tags	with
pre-defined	 operations,	numerically	 configured.	 To	 do	 so,	 select	 the
Show	Operations	in	Tag	Browser	option	on	Operations	tab.
Tag	 Browser's	 window,	 shown	 on	 the	 next	 figure,	 is	 opened	 when
clicking	OK	on	Driver's	configuration	window.

Tag	Browser	for	numerical	configuration	of	Tags
To	add	a	new	Tag	to	an	application,	follow	these	steps:
1. Drag	Tags	from	the	list	Tags	available	from	driver	to	the	list	Current
project	tags,	 as	described	on	 topic	E3	or	Elipse	Power.	 For	many
devices,	 operation	 1,	 the	 most	 common,	 should	 be	 sufficient,	 drag
Op1<word>	Tag	to	the	list	of	project	Tags.	Notice	that,	assuming	that
several	Tags	are	needed	with	 the	same	operation,	which	 is	a	normal
situation,	users	can	drag	 the	same	Tag	several	 times	 (notice	 that	an
application	adds	sequential	numbers	to	the	default	name).	Users	can
also	add	a	Tag	from	each	operation	and	then	later	create	other	copies
in	Organizer.

2. Close	Tag	Browser	 and	 configure	 the	N4/B4	 parameter	 of	 each	Tag



with	the	register	or	bit	address	to	read	or	write,	according	to	device's
register	map.	This	address	map	must	be	described	on	manufacturer's
documentation.	When	in	doubt,	please	check	topic	Addressing	Tips.

3. Also	configure	the	N1/B1	parameter	of	each	Tag	with	device's	address
(Slave	 Id)	 to	 access	 in	 each	 case.	 This	 parameter	 is	 usually
configured	 on	 the	 device	 and,	 to	 determine	 it,	 please	 check
manufacturer's	documentation	or	technical	support	when	in	doubt.

4. Rename	 all	 Tags,	 if	 needed,	 with	 a	 more	 significant	 name	 for	 the
application.

	
Configure	 simple	 Tags	 (called	PLC	Tags	 in	 old	Elipse	SCADA)	 rather
than	 Block	 Tags,	 keeping	 the	 Superblock	 feature	 enabled	 (the
EnableReadGrouping	property	set	to	True),	leaving	group	optimization
to	the	application	and	to	the	Driver.	For	more	information,	please	check
topic	Superblock	Reading.
	



Tag	Configuration	in	Elipse	SCADA
Elipse	SCADA	 does	 not	 support	 Tag	Browser,	 thus	 it	 is	 necessary	 to
configure	I/O	Tags	manually.	Users	must	create	Tags	with	the	following
configuration:

N1/B1:	Device	address	(Slave	Id)

N2/B2:	Operation	Code

N3/B3:	Not	used,	leave	it	0	(zero)

N4/B4:	Address	of	a	Modbus	register	or	bit
	
Notice	 that,	 for	 this	Driver,	 simple	 Tag's	N	 parameters	 have	 the	 same
meaning	as	Block	Tag's	B	parameters,	so	they	are	described	together.
When	 in	doubt	about	which	value	 to	configure	 in	 the	N4/B4	parameter,
please	check	topic	Addressing	Tips.
As	Elipse	SCADA	does	not	support	Superblocks,	it	is	recommended	to
create	 Block	 Tags,	 grouping	 adjacent	 or	 close	 registers,	 to	 read	 the
maximum	 number	 of	 registers	 in	 the	 smallest	 number	 of	 protocol
requests.
Also	notice	that,	once	a	device	supports	default	protocol	limits	for	the
size	 of	 a	 communication	 frame,	 due	 to	Automatic	 Block	 Partition
feature,	there	is	no	need	to	worry	about	exceeding	the	maximum	block
size	supported	by	this	protocol,	because	this	Driver	already	creates	the
appropriate	subdivisions	during	communication.
	



Final	Considerations
If	 users	 only	 want	 to	 use	 Driver's	 default	 operations,	 and	 if	 a	 device
complies	 with	 the	 standard	 protocol	 defined	 by	 Modbus	 Organization,
the	 three	 steps	presented	 in	 this	Quick	Configuration	Guide	should	be
sufficient	to	configure	this	Driver.
For	 larger	 applications,	 it	 is	 recommended	 to	 read	 topic	Optimization
Tips.
More	details	on	I/O	Tag	configuration	are	provided	on	topic	Configuring
an	I/O	Tag.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


The	Modbus	Protocol Top		Previous		Next

The	Modbus	Protocol	was	initially	developed	by	Modicon	in	1979,	and
today	 it	 is	 an	 open	 standard,	maintained	 by	 the	Modbus	Organization
(modbus.org),	 and	 implemented	 by	 hundreds	 of	 manufacturers	 in
thousands	of	devices.	Schneider	Electric,	current	controller	of	Modicon,
transferred	protocol	rights	to	the	Modbus	Organization	in	April	2004,	and
committed	to	keep	Modbus	as	an	open	protocol.	Its	specification	can	be
downloaded	 for	 free	 at	Organization's	website	 (www.modbus.org),	 and
protocol's	usage	is	free	of	licensing	fees.
This	protocol	is	based	on	command	and	response	messages,	positioned
at	layer	7	of	the	OSI	model	(application	layer),	which	provides	client	and
server	 communication	 among	 devices	 connected	 to	 different	 types	 of
networks.	 It	offers	services	with	 functions	defined	by	an	eight-bit	 code.
There	are	three	categories	of	function	codes:

Public	function	codes:	Protocol's	well-defined	functions,	guaranteed
to	 be	 unique,	 validated	 by	 the	 Modbus	 community,	 and	 publicly
documented	in	MB	IETF	RFC.	They	can	assume	values	ranging	from
1	to	64,	from	73	to	99,	and	from	111	to	127
User-defined	function	codes:	Non-standard	functions,	which	do	not
need	Modbus.org	 approval,	without	 any	 guarantee	 of	 being	 unique,
and	freely	 implementable.	They	can	assume	values	ranging	from	65
to	72	and	from	100	to	110
Reserved	 function	 codes:	 Codes	 with	 values	 inside	 the	 range	 of
public	 functions,	 currently	 used	 by	 some	 manufacturers	 for	 legacy
products,	and	not	publicly	available	anymore.	Examples	are	9,	10,	13,
14,	41,	42,	90,	91,	125,	126,	and	127	 codes.	 For	more	 information,
please	 check	 Annex	 A	 of	 protocol's	 specification	 (version	 1.1b),
which	is	available	at	protocol's	official	website

	
This	Driver	currently	implements	11	of	all	19	public	functions	defined	on
the	 current	 version	 of	 protocol's	 specification	 (1.1b),	 as	 well	 as	 some
specific	manufacturer's	 functions	 or	 related	 to	 specific	 Driver	 features,
known	 as	 Special	 Functions.	 All	 public	 functions	 implemented	 are

http://www.modbus.org
http://www.modbus.org/specs.php


described	 on	 topic	 Supported	 Functions.	 The	 following	 protocol's
public	functions	are	not	yet	supported:

Function	08:	Diagnostic

Function	11:	Get	Com	event	counter

Function	12:	Get	Com	Event	Log

Function	17:	Report	Slave	ID

Function	22:	Mask	Write	Register

Function	23:	Read/Write	Multiple	Registers

Function	24:	Read	FIFO	queue

Function	43:	Read	Device	Identification
	
If	users	want	to	implement	one	of	these	functions,	please	contact	Elipse
Software's	commercial	department.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

mailto:%3C%ADDRESS_EMAIL_SALES_US%25%3E
http://kb.elipse.com.br/en-us


Recommended	Websites Top		Previous		Next

Modbus	 Driver	 is	 available	 for	 download	 (at	 no	 cost)	 at	 Elipse
Software's	Drivers	download	area.
More	 information	 about	 the	 Modbus	 protocol	 can	 be	 found	 at
www.modbus.org,	protocol's	official	website.
Elipse	 Modbus	 Simulator	 is	 available	 for	 download	 (at	 no	 cost)	 at
Elipse	Software's	E3	download	area.
Modsim	 Modbus	 Slave	 Simulator,	 probably	 the	 best	 known	 in	 its
category,	 can	 be	 purchased	 at	www.win-tech.com/html/modsim32.htm.
This	 software	 emulates	 a	 device,	 allowing	 communication	 with	 this
Driver.
There	 is	 also	 a	 free	 alternative	 called	 Free	Modbus	 PLC	 Simulator,
available	for	download	at	www.plcsimulator.org.
Other	 alternatives	 for	 simulators	 and	 software	 tools	 related	 to	 this
protocol	can	be	found	at	protocol's	official	website.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://www.elipse.com.br/downloads
http://www.modbus.org
http://www.elipse.com.br/downloads/
http://www.win-tech.com/html/modsim32.htm
http://www.plcsimulator.org
http://www.modbus.org/tech.php
http://kb.elipse.com.br/en-us


Supported	Functions Top		Previous		Next

Modbus	protocol	functions	supported	by	this	Driver	are	described	next.



Reading	functions
01:	Bit	Reading	(Read	Coil	Status	-	0x)

02:	Bit	Reading	(Read	Input	Status	-	1x)

03:	Word	Reading	(Read	Holding	Registers	-	4x)

04:	Word	Reading	(Read	Input	Registers	-	3x)

07:	Status	Reading	(Read	Exception	Status)

20:	File	Record	Reading	(Read	File	Register	-	6x)
	



Writing	functions
05:	Bit	Writing	(Force	Single	Coil	-	0x)

06:	Simple	Word	Writing	(Preset	Single	Register	-	4x)

15:	Bit	Writing	(Force	Multiple	Coils	-	0x)

16:	Word	Writing	(Preset	Multiple	Registers	-	4x)

21:	File	Record	Writing	(Write	File	Register	-	6x)

	
Detailed	information	about	each	one	of	these	functions	can	be	found	on
Modbus	 protocol's	 specification,	 available	 for	 download	 at	 Modbus
Organization's	website.
In	addition	to	protocol's	standard	functions,	as	already	stated,	this	Driver
also	 implements	 special	 functions,	 not	 defined	 by	 the	 protocol,	 usually
related	 to	 mass	 memory	 readings.	 A	 list	 of	 all	 supported	 special
functions	 can	 be	 checked	 on	 topic	 Special	 Functions.	 A	 complete
Driver	configuration	is	described	on	topic	Configuration.
If	 users	 want	 to	 add	 support	 to	 a	 new	 function	 in	 this	 Driver,	 please
contact	Elipse	Software's	commercial	department.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://modbus.org/
mailto:%3C%ADDRESS_EMAIL_SALES_US%25%3E
http://kb.elipse.com.br/en-us


Special	Functions Top		Previous		Next

Special	reading	and	writing	functions	are	Driver	functions	not	defined	by
the	 standard	Modbus	 protocol.	 They	 were	 developed	 to	 meet	 specific
features	of	certain	devices,	or	else	to	provide,	in	a	standardized	way	by
this	Driver,	features	not	available	in	the	standard	protocol.	The	Modbus
Driver,	in	its	current	version,	includes	the	following	special	functions:



Reading	Functions
65	03:	Mass	Memory	Reading	(ABB	MGE	144),	described	 in	details
on	 topic	 Reading	 Mass	 Memory	 Registers	 in	 ABB	 MGE	 144
Meters
GE	 SOE:	 Event	 Reading	 (GE	 PAC	 RX7	 Systems),	 described	 in
details	 on	 topic	 Reading	 an	 Event	 Buffer	 in	 GE	 PAC	 RX7
Controllers
SP	SOE:	Event	Reading	(Schneider	Electric	SEPAM	series	Relays),
described	in	details	on	topic	Reading	Events	in	Schneider	Electric
SEPAM	Series	20,	40,	and	80	Relays
GenSOE:	 SOE	 reading	with	 a	 generic	 algorithm,	 implemented	 by	 a
resident	 software	 in	 the	 slave	device	 (PLC),	 described	 in	 details	 on
topic	Elipse	Software's	Generic	SOE	Reading	Algorithm

	



Writing	Functions
65	 01:	 Restarts	 (performs	 a	 reset	 operations)	 a	 power	meter	 (ABB
MGE	144).	This	command	is	sent	as	a	Tag's	simple	writing	command
(Write).	Tag's	Value	field	is	ignored	by	this	Driver	and	can	be	left	in	0
(zero).	For	more	information,	please	check	device's	manual

65	02:	Zeroes	the	maximum	and	minimum	memory	(ABB	MGE	144).
This	 command	 is	 sent	 as	 a	 Tag's	 simple	 writing	 command	 (Write).
Tag's	Value	field	is	ignored	by	this	Driver	and	can	be	left	in	0	(zero).
For	more	information,	please	check	device's	manual

	
Notice	that	this	Driver's	special	functions,	except	for	the	writing	function
65	 01,	 are	 directly	 or	 indirectly	 related	 to	 mass	 memory	 reading	 of
registers	of	their	respective	devices.	For	more	information,	please	check
topic	Mass	 Memory	 Reading.	 For	 a	 description	 on	 how	 to	 configure
operations	 and	 Tags	 using	 these	 functions,	 please	 check	 topic
Configuration.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Configuration Top		Previous		Next

This	section	describes	how	to	configure	a	Modbus	Driver.	The	following
topics	are	discussed:

Properties

Configuring	Tags

Mass	Memory	Reading



Properties Top		Previous		Next

Driver	 properties	 can	 be	 configured	 at	 design	 time	 or	 at	 run	 time.	 A
runtime	configuration	is	also	called	an	Offline	Mode	Configuration,	and
it	is	described	on	a	specific	topic.
At	 design	 time,	 this	 Driver	 can	 be	 configured	 using	 its	 configuration
window,	displayed	on	the	next	figure.

Driver's	configuration	window
To	 open	Driver's	 configuration	 window	 in	 E3	 or	 Elipse	 Power,	 double-
click	 the	 Driver	 object	 in	 Organizer	 and	 click	 Driver	 settings	 ,	 as
displayed	on	the	next	figure.



Driver	settings	option
In	Elipse	SCADA,	on	the	other	hand,	Driver's	configuration	window	can
be	opened	by	clicking	Extra,	in	application's	Organizer.
This	configuration	window	is	divided	into	several	tabs,	some	of	them	for
IOKit	 configuration,	 and	others	 are	Driver-specific.	 For	Modbus	Driver,
the	Modbus,	Operations,	and	Gen	SOE	tabs	are	specific.	All	other	tabs
are	for	 IOKit	configuration,	and	 they	are	not	described	on	 this	Manual.
For	 more	 information	 about	 IOKit	 configuration,	 please	 check	 topic
Documentation	of	I/O	Interfaces.
The	 next	 topics	 describe	 Driver's	 specific	 tabs	 and	 also	 the	 runtime
configuration,	in	Offline	Mode,	using	scripts.

Modbus	Tab

Operations	Tab

Gen	SOE	Tab

Offline	Mode	Configuration

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?



Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Modbus	Tab Top		Previous		Next

The	Modbus	 tab	allows	configuring	Driver	and	protocol	parameters,	as
shown	on	the	next	figure.

Modbus	tab
The	next	sections	describe	all	configuration	options	available	on	this	tab.
	



Protocol	Options
This	group	of	options	gathers	options	referring	to	variations	on	protocol's
standards,	according	to	the	next	table.

Available	protocol	options	on	Modbus	tab

OPTION DESCRIPTION
Modbus
Mode

On	this	combo	box	users	can	select	a	protocol	mode	to
use.	Protocol	modes	are	variations	defined	by	the	standard
for	a	better	adaptation	to	different	physical	layers	(Serial,
Ethernet	TCP/IP,	RAS,	etc.).	There	are	three	available
options:
RTU	mode:	Default	mode	for	use	in	serial
communications.	Includes	a	16-bit	CRC
ASCII	mode:	Also	used	in	serial	communications,	it	is
used	in	simpler	devices,	which	do	not	support	RTU	mode
requirements.	It	uses	ASCII	characters	for	transmission,
where	each	byte	contains	two	ASCII	characters	(one	per
nibble),	thus	it	is	less	efficient	than	RTU	mode,	and	rarely
found	on	the	market.	Uses	LRC	(Longitudinal
Redundancy	Checking)	for	error	checking
ModbusTCP	mode:	Used	for	communication	in	TCP/IP
mode.	Includes	a	field	for	transaction	check	and	does	not
have	an	error	check	system.	The	transaction	field	allows
discarding	delayed	responses,	thus	avoiding	that	a
Driver	assumes	as	a	valid	response	for	the	current
command	the	response	frames	from	previous
commands.	This	situation	may	occur	if	previous	modes
are	encapsulated	in	TCP/IP

Customize
Max.	PDU
Size

If	enabled,	this	option	allows	defining	a	maximum	custom
size	for	PDU	(Protocol	Data	Unit).	A	PDU	is	a	part	of	the
protocol	that	does	not	vary	between	modes	(ModbusTCP,
ASCII,	and	RTU)	and	contains	a	data	area.	The	number	of
data	bytes	supported	in	each	communication	is	given	by
this	value	minus	the	header	bytes,	which	depend	on	the
Modbus	function	used.	If	disabled,	the	maximum



considered	size	is	the	default	value	defined	by	the
Modbus	protocol	version	1.1b,	with	253	bytes.	This	is
the	recommended	option	for	most	devices

Enable
CMS
Addressing

This	option	must	be	only	used	in	devices	that	support	the
TeleBUS	protocol.	If	enabled,	this	Driver	accepts	a	16-bit
Word	as	its	slave	address,	that	is,	users	can	define	values
above	255	and	below	65535	as	a	slave	address.	In	this
case,	a	slave	address	is	then	defined	in	the	protocol	by
three	bytes.	In	addition,	the	Default	Slave	Address	option
stops	working

Data
Address
Model
Offset

This	option	enables	or	disables	the	default	protocol's	data
offset,	by	one	unit.	Available	options	are:
Data	is	addressed	from	1	(default):	The	address
provided	(address	of	the	Item	field	in	String
configuration	or	the	N4/B4	parameter	in	numerical
configuration)	is	decremented	by	1	(one)	before	sending
it	to	a	device.	This	offset	is	part	of	protocol's
specification,	therefore	this	is	the	default	option
Data	is	addressed	from	0:	The	user-provided	address
is	used	in	protocol	requests,	without	changes

As	a	general	rule,	select	the	first	option	if	device's	register
mapping	starts	at	1	(one)	and	the	second	option	if	it	starts
at	0	(zero).	Also	check	if	the	manufacturer	uses	additional
offsets	from	the	old	Modbus	Convention.	For	more
information,	please	check	the	next	section.

	

TIP
Avoid	 using	 protocol's	 RTU	 mode	 encapsulated	 in	 Ethernet	 TCP/IP
layer.	If	there	is	a	need	to	encapsulate	serial	communication	for	devices
using	Modbus	 RTU	 in	 TCP/IP,	 there	 are	 gateways	 available	 on	 the
market	 that	 not	 only	 encapsulate	 serial	 communication	 in	 Ethernet
TCP/IP,	 but	 also	 convert	 Modbus	 RTU	 to	 Modbus	 TCP.	 As	 a	 last
option,	if	using	Modbus	RTU	in	an	Ethernet	TCP/IP	layer	is	inevitable,
remember	to	enable	the	Reconnect	after	Timeout	option,	described	on



the	next	table.

	



Data	Address	Model	Offset
This	configuration	option,	described	on	the	previous	table,	 is	a	source
of	 frequent	doubts	when	addressing	I/O	Tags,	because	there	are	many
variations	in	how	it	is	implemented	by	manufacturers.	Next	there	is	more
information	about	this	addressing.
In	 protocol's	 standard	 data	 model,	 four	 data	 blocks	 are	 defined	 (or
address	 spaces):	Discrete	 Inputs,	Coils,	 Input	 Registers,	 and	 Holding
Registers.	 In	 each	 one	 of	 these	 blocks,	 data	 elements	 are	 addressed
starting	 at	 1	 (one).	 On	 the	 other	 hand,	 the	 communication	 frame's
specification	defines	a	PDU	with	addresses	 that	 range	 from	0	(zero)	 to
65535.	The	relation	between	the	address	provided	by	the	PDU	and	the
address	of	data	elements,	therefore,	has	an	offset	of	1	(one),	that	is,	if	in
a	 request's	 PDU	 there	 is	 an	 address	 0	 (zero),	 the	 data	 element	 to
access	is	the	address	1	(one).
With	 this	 option	 on	Modbus	 tab,	 users	 can	 select	 whether	 this	 Driver
sets	 that	 value	 automatically,	 thus	 allowing	 the	 use	 of	 data	 element's
address	 on	 Tags	 (default	 option)	 or	 the	 value	 sent	 in	 the	 PDU	 is	 the
same	provided	on	Tag	configuration	(the	N4/B4	parameter	in	numerical
configuration).	There	are	devices	that	comply	with	Modbus	standard	in
their	 address	maps	 (starting	 at	 one)	 and	 other	 devices	 that	map	 their
values	without	a	default	offset,	directly	using	the	value	of	the	address	on
communication's	frame	(starting	at	zero).
In	 addition	 to	 this	 single	 offset,	 there	 are	 still	 devices	 that	 use	 the	 old
offset	standard	used	by	Modicon,	the	company	that	created	the	protocol,
which	is	known	as	Modbus	Convention,	detailed	on	topic	Addressing
Tips.	Please	check	device's	manual	for	information	on	the	register	map
used.	When	in	doubt,	please	check	manufacturer's	technical	support.
	

NOTE
The	Data	Address	Model	Offset	option	used	to	be	named	Use	Older
Address	 on	 versions	 earlier	 than	 version	 2.03,	 where	 the	 Data	 is
addressed	from	1	option	 is	equivalent	 to	 the	old	Use	Older	Address
option	enabled,	and	the	Data	is	addressed	from	0	option	is	equivalent
to	the	Use	Older	Address	option	disabled.



	



Other	Options
The	next	table	describes	all	other	options	on	this	tab,	referring	to	Driver's
behavior.

Other	available	options	on	Modbus	tab

OPTION DESCRIPTION
Default
Slave
Address

This	feature	allows	configuring	a	default	address	for	slaves,
so	that	it	is	not	necessary	to	configure	them	in	each	Tag.	To
use	this	feature,	configure	the	Slave	Id	(the	N1/B1
parameter	on	numerical	configuration	or	the	Device	field
on	String	configuration)	as	1000,	that	is,	all	Tags	with	their
Slave	Id	equal	to	1000	have	this	value	replaced	by	the
value	configured	in	the	Default	Slave	Address	option.
Users	can	also	force	using	a	default	address	in	all	Tags,
regardless	of	the	value	configured	in	Slave	Id,	by	selecting
the	Use	Default	Address	option

Wait
Silence	on
error

If	this	option	is	enabled,	after	every	communication	error	a
Driver	remains	in	loop,	receiving	data	until	a	time-out
occurs.	This	clears	the	reception	channel	and	prevents
problems	in	future	communications	due	to	the	reception	of
delayed	bytes	still	in	transit	at	the	time	of	the	error,	and
which	may	be	confused	with	a	response	to	a	new	command

Reconnect
after
Timeout
(Ethernet
only)

With	this	option	enabled,	after	any	time-out	error	in	device's
frame	reception,	this	Driver	performs	a	disconnection	and	a
reconnection	to	the	physical	layer,	clearing	the	connection
from	possible	delayed	frames	still	in	transit,	which	may
affect	future	requests.	This	option	must	be	always	enabled	if
using	Modbus	RTU	in	an	Ethernet	TCP/IP	layer	is
inevitable	in	legacy	systems,	as	the	RTU	mode	does	not
have	a	transaction	control,	therefore	it	is	not	always
possible	to	distinguish	a	correct	response	frame	from	a
delayed	one	resulting	from	a	previous	reading,	possibly
from	another	address,	which	failed	by	a	time-out.	For	new
projects,	it	is	strongly	recommended	NOT	using	Modbus
RTU	or	Modbus	ASC	modes	in	an	Ethernet	TCP/IP	layer.



Notice	that	users	must	keep	the	Retry	failed	connection
every	option	enabled	on	IOKit's	Setup	tab,	so	that	this
Driver	reconnects	after	a	time-out.	Otherwise,	this	time-out
only	generates	a	disconnection	and	the	application	is
responsible	for	managing	this	new	connection

	

NOTE
The	 old	 Swap	 Address	 Delay	 option	 was	 removed	 from	 the
configuration	window	in	version	2.08.	This	Driver	still	supports	it	 in	pre-
existing	applications	and	allows	enabling	it	by	script	(please	check	topic
Offline	Mode	Configuration).	For	new	applications,	it	is	recommended
to	 use	 the	 Inter-frame	 Delay	 option	 on	 IOKit's	 Serial	 tab,	 which
replaces	this	old	option	with	benefits.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Operations	Tab Top		Previous		Next

This	 topic	 describes	 how	 to	 configure	 the	Operations	 tab	 on	 Driver's
configuration	window,	where	all	operations	used	on	I/O	Tags	are	defined,
as	shown	on	the	next	figure.
Configuring	 operations	 is	 no	 longer	 used	 when	 configuring	 Tags	 by
Strings,	 it	 is	 only	 used	 in	 the	 old	 numerical	 configuration	 (N/B
parameters)	on	Elipse	SCADA.

Operations	tab	on	Driver's	configuration	window



Operations
For	a	proper	usage	of	this	Driver,	users	must	define	which	reading	and
writing	Modbus	 functions	 are	 used	 for	 each	 I/O	 Tag.	 To	 do	 so,	 if	 Tag
configuration	 is	performed	using	 the	old	N/B	numerical	parameters	 in
Elipse	SCADA,	select	the	Operations	tab	on	configuration	window.
For	this	Driver,	Operations	are	configurations	defining	how	each	I/O	Tag
performs	data	writings	and	readings	to	and	from	a	device.
An	operation	is	nothing	more	than	a	definition	of	a	pair	of	protocol
functions,	 one	 for	 writing	 and	 another	 one	 for	 reading,	 and	 a
specification	for	additional	conversions	on	the	 format	of	data	 that
can	be	 linked	 to	application	Tags.	 In	 other	words,	 in	Modbus	Driver
the	N	or	B	 numerical	 parameters	 of	 I/O	Tags	 do	 not	 directly	 reference
protocol	 functions,	 but	 rather	 pre-configured	 operations,	which	 by	 their
turn	not	only	inform	functions	(protocol's	native	or	even	special	ones)	to
use	when	communicating,	as	well	as	the	way	native	protocol	data	must
be	interpreted.
Configuration	 of	 I/O	 Tag	 parameters	 is	 described	 later	 on	 topic
Configuring	an	I/O	Tag.	Next,	there	is	a	description	of	the	configuration
of	operations,	which	must	be	later	linked	to	each	I/O	Tag.
	

NOTE
Operations	work	only	as	a	template	to	configure	I/O	Tags,	and	user	can,
and	usually	want	to,	set	a	single	operation	to	several	Tags,	which	have
in	common	the	same	value	for	their	N2/B2	parameters.

	



Functions
The	Modbus	protocol	 defines	 reading	 and	writing	 functions,	which	 can
access	 distinct	 address	 spaces	 on	 a	 device,	 and	 with	 specific	 data
types.	Functions	03	and	16,	for	example,	protocol's	most	used	ones,	are
responsible	for	reading	and	writing	Holding	Registers,	which	are	simply
16-bit	unsigned	integer	values	(Words).
Modbus	protocol's	default	functions	provide	data	only	in	basic	16-bit	Bit
and	Word	 formats.	 There	 are	 no	 additional	 data	 formats	 in	 protocol's
specification.
A	list	of	all	Modbus	functions	supported	by	this	Driver,	which	can	be	set
to	 the	 configured	 operations,	 can	 be	 checked	 on	 topic	 Supported
Functions.
In	addition	to	protocol	functions,	this	Driver	also	contains	some	Special
Functions	 that	 are	 not	 part	 of	 protocol's	 standard,	 with	 a	 proprietary
format	and	commonly	used	for	reading	events	(SOE).
	



Data	Formatting
In	addition	 to	allow	 linking	functions	(from	the	protocol	or	special	ones)
to	specific	Tags,	operations	also	allow	defining	an	additional	 formatting
to	apply	to	data,	providing	support	to	additional	data	types,	not	specified
by	the	protocol,	such	as	32-bit	(Float)	and	64-bit	(Double)	floating	point
values.	 Supported	 data	 types	 are	 described	 on	 topic	Supported	Data
Types.
It	is	important	to	notice	that,	when	32-	and	64-bit	data	types	are	defined
in	operations,	users	must	define	protocol	functions	that	work	with	16-bit
registers.	 This	 way,	 reading	 data	 with	 more	 than	 16	 bits	 results	 in
reading	several	16-bit	Modbus	registers	from	a	device,	that	is,	to	read	a
Tag	 linked	 to	an	operation	defining	a	32-bit	Float	data	 type,	 this	Driver
must	 read	 two	consecutive	16-bit	 registers	 from	a	device,	 concatenate
them,	and	then	perform	a	conversion	to	a	Float	format.
Users	 can	 also	 define	 eight-bit	 data	 types	 (Byte,	 Int8,	 or	 Char)	 in
operations.	Notice	 that,	 as	protocol	 functions	do	not	allow	 reading	and
writing	isolated	bytes,	for	each	two	Block	Elements	of	eight-bit	types,	this
Driver	is	forced	to	access	a	distinct	16-bit	register	on	a	device.	For	that
reason,	this	Driver	does	not	allow	writing	eight-bit	data	types	to	Tags,	to
isolated	Block	Elements,	or	 to	Blocks	with	odd	or	unitary	sizes.	Writing
eight-bit	data	types	must	be	always	performed	even-size	Blocks.
	



User-Defined	Data	Types
In	 addition	 to	 pre-defined	 data	 types	 (native	 or	 built-in	 data	 types)
described	on	topic	Supported	Data	Types,	this	Driver	also	allows	user-
defined	 data	 types.	 These	 data	 types	must	 be	 declared	 on	 a	 specific
window,	by	clicking	User	Defined	Types,	at	 the	bottom	of	Operations
tab.	Such	data	types	are	structures	created	from	pre-defined	data	types.
For	more	information	about	user-defined	data	types,	please	check	topic
User-Defined	Data	Types.
	



Byte	Order
In	addition	to	protocol's	reading	and	writing	functions	and	the	data	type
used,	 each	 operation	 also	 allows	 setting	 additional	 manipulations	 to
bytes,	 related	 to	 a	 byte	 order,	 that	 is,	 the	 order	 of	 bytes	 inside	 every
value.	These	are	 called	 swap	options	 (Swap	Bytes,	Swap	Words,	 and
Swap	DWords).	Such	options	only	need	 to	be	enabled	 for	devices	 that
do	not	respect	protocol's	default	byte	order.
The	Modbus	 protocol	 defines	 that	 its	 16-bit	 values	 always	 use	 a	 byte
order	known	as	big	endian,	also	known	as	Motorola,	because	it	is	used
by	 this	 manufacturer.	 The	 big	 endian	 standard	 always	 defines	 a	 byte
order	so	that	 the	most	significant	byte	of	each	value	comes	first.	Thus,
as	an	example,	when	reading	the	hexadecimal	value	1234h,	the	device
first	 sends	 the	most	 significant	 byte	 12h	 and	 then	 the	 least	 significant
one,	34h.
For	devices	that	do	not	implement	protocol's	default	byte	order,	and	use
another	 one	 known	as	 little	 endian	 or	 Intel,	 data	 is	 sent	with	 the	 least
significant	 bytes	 first.	 Users	 must	 then	 enable	 those	 swap	 options	 to
reverse	that	byte	order.
There	are	also	devices	that	use	different	byte	orders	 for	32-	and	16-bit
types.	For	devices	that,	for	example,	use	Modbus'	default	byte	order	(big
endian)	for	16-bit	types,	but	provide	32-bit	data	with	the	least	significant
Word	 first	 (little	 endian),	 users	 must	 only	 enable	 the	 Swap	 Words
option,	 leaving	 the	Swap	Bytes	 option	deselected.	There	are	basically
three	possible	situations:

For	 devices	 that	 provide	 data	 using	 Modbus'	 default	 byte	 order
(Motorola	 or	big	 endian),	 with	 the	most	 significant	 bytes	 first,	 users
must	left	all	swap	options	disabled.	This	is	the	most	common	situation

For	 devices	 using	 another	 byte	 order	 standard,	 with	 the	 least
significant	 bytes	 first	 (little	 endian),	 users	 must	 enable	 all	 swap
options	referring	to	the	data	type	used,	that	is,	for	16-bit	types,	enable
the	 Swap	 Bytes	 option.	 For	 32-bit	 data	 types,	 enable	 the	 Swap
Bytes	 and	 Swap	Words	 options.	 For	 64-bit	 types,	 all	 three	 swap
options	must	be	enabled

In	 the	 least	common	case,	devices	 that	use	different	byte	orders	 for



different	data	sizes,	providing,	 for	example,	 the	most	significant	byte
of	each	Word	first,	but	the	least	significant	Word	of	each	DWord	first,
then	users	must	 evaluate	 in	which	 case	each	 swap	option	must	 be
enabled,	so	that	it	converts	a	value	returned	by	a	device	to	protocol's
default	big	endian	format

	

NOTE
All	mentioned	swap	options	have	no	effect	for	Bit	data	types	or	for	data
types	 with	 an	 eight-bit	 size	 (Byte,	Char,	 and	 Int8).	 Swapping	 occurs
inside	every	data	type,	that	is,	the	Swap	Words	option	has	no	effect	for
16-bit	data	types,	as	well	as	the	Swap	DWords	option	has	no	effect	for
32-bit	data	types.	BCD	data	types	also	do	not	allow	swapping.

	
To	 check	 if	 a	 device	 uses	 some	 unusual	 byte	 order	 format,	 check	 its
manufacturer's	documentation.	 In	case	 this	 information	 is	not	 found	on
that	documentation,	please	contact	manufacturer's	technical	support.
The	 topic	 Frequently	 Asked	 Questions	 contains	 tips	 on	 byte	 order
configurations	for	some	devices	that	are	known	to	use	swap	options.
	



Bit	Mask
The	Use	Bit	Mask	option	 is	an	advanced	 feature,	used	 in	specific	and
unusual	 cases	 where	 users	 want	 to	 read	 only	 a	 bit	 from	 the	 value
returned	by	a	device,	but	they	cannot	use	application's	bit	mapping.
For	most	users,	application's	bit	mapping	fields	are	 the	best	alternative
to	access	bit	masks,	and	there	is	no	need	to	use	this	Driver's	feature.
This	 feature	 was	 initially	 created	 to	 allow	 reading	 bits	 from	 Holding
Registers	 by	 specialized	 E3	 libraries,	 in	 situations	 that	 prevented	 the
usage	of	application's	bit	mapping.
In	 this	case,	 this	Driver	reads	a	value	from	a	device	normally	and	then
masks	it,	to	return	to	Tag's	Value	field	only	the	specified	bit	(0	or	1).	The
definition	 of	 a	 bit	 number	 to	 return	 is	 performed	 on	 I/O	 Tag's	 N3/B3
parameter.
The	Use	Bit	Mask	option	can	only	be	used	with	integer	data	types	with
16	bits	or	more	(Int16,	Int32,	Word,	or	DWord).	 In	addition,	operations
that	 enable	 this	 option	 can	 only	 be	 used	 for	 reading.	 The	 Modbus
function	for	writing	operations	(Write)	 that	use	this	mask	option	can	be
defined	as	None.
	



Driver's	Default	Operations
By	default,	when	a	new	Driver	 is	added	to	an	application,	 this	Driver	 is
already	 created	 with	 seven	 default	 operations,	 described	 on	 the	 next
table.

Default	operations

OPERATION READING
FUNCTION

WRITING
FUNCTION

DATA
TYPE

PURPOSE

1 3	 -	 Read
Holding
Registers

16	 -	 Write
Multiple
Registers

Word Reading	 and	 writing
unsigned	 16-bit
integers

2 3	 -	 Read
Holding
Registers

16	 -	 Write
Multiple
Registers

DWordReading	 and	 writing
unsigned	 32-bit
integers

3 3	 -	 Read
Holding
Registers

16	 -	 Write
Multiple
Registers

Int16 Reading	 and	 writing
signed	16-bit	integers

4 3	 -	 Read
Holding
Registers

16	 -	 Write
Multiple
Registers

Int32 Reading	 and	 writing
signed	32-bit	integers

5 3	 -	 Read
Holding
Registers

16	 -	 Write
Multiple
Registers

Float Reading	 an	 writing
32-bit	 floating	 point
values

6 3	 -	 Read
Holding
Registers

15	 -	 Write
Multiple	Coils

Bit Reading	 and	 writing
bits

7 2	 -	 Read
Discrete
Inputs

None Bit Reading	 bits	 from	 a
Discrete	 Input	 data
block

	
These	operations	are	the	most	commonly	used,	and	operation	1	is
the	most	common	one.	For	most	devices,	select	all	operations	needed
among	 the	 ones	 provided	 by	 default,	 there	 is	 no	 need	 to	 create	 new



operations	or	change	the	configuration	of	these	default	operations.
	



Defining	New	Operations
To	add	a	new	operation	to	a	Driver,	click	Add.

Adding	a	new	operation
To	configure	 this	 new	operation,	 select	 a	number	 for	 it	 (this	 number	 is
used	on	I/O	Tag's	N2/B2	parameter),	which	function	to	use	for	reading,
and	which	function	to	use	for	writing,	as	well	as	informing	a	data	type	to
be	 read	 or	 written	 by	 this	 Driver.	 Notice	 that,	 when	 clicking	Add,	 this
Driver	already	suggests	a	value	that	is	not	in	use	for	this	new	operation.
For	 more	 information	 about	 supported	 data	 types,	 please	 check	 topic
Supported	Data	Types.	 All	 other	 fields	 can	be	 configured	as	 needed.
The	next	table	contains	a	description	of	these	fields.

Field	options	for	operations

OPTION DESCRIPTION
Size A	size	in	bytes	of	each	element	of	the	selected	data	type	must



be	informed.	This	field	is	automatically	filled	in	for	fixed-size
data	types,	such	as	Byte,	Word,	and	Int16,	and	it	must	be
filled	in	for	String	and	BCD	data	types.	For	Strings,	this	size
defines	exactly	the	number	of	bytes	sent	or	received	for	each
String	value,	that	is,	for	each	Tag	or	Block	Element.	If	the
String	read	or	written	has	a	shorter	size,	the	remaining	bytes
are	filled	in	with	zeroes	to	complete	its	configured	size.	The
String	data	type	in	this	Driver	has	no	defined	maximum	limit
size,	this	limit	is	the	maximum	allowed	by	the	protocol	for
frame's	data	area	of	a	certain	function

Swap
Bytes

Indicates	that	this	Driver	must	reverse	the	byte	order,	one	by
one,	to	retrieve	a	value

Swap
Words

Indicates	that	this	Driver	must	reverse	the	byte	order,	two	by
two	(in	Words),	to	retrieve	a	value

Swap
DWords

Indicates	that	this	Driver	must	reverse	the	byte	order,	four	by
four	(in	DWords),	to	retrieve	a	value

Use	Bit
Mask

Enables	a	bit	masking	of	registers,	using	the	N3/B3	parameter.
This	option	only	affects	readings	and	can	only	be	used	with
integer	data	types,	signed	or	unsigned,	with	at	least	16	bits	of
size	(Int16,	Int32,	Word,	or	DWord).	Operations	with	this
option	enabled	cannot	be	used	for	writing.	For	most	users,	it	is
recommended	to	use	application's	bit	mapping,	and	leave	this
option	deselected	(please	check	the	specific	section)

	
Protocol	functions	that	can	be	configured	in	operations'	Read	and	Write
fields	 are	 described	 on	 topic	 Supported	 Functions.	 The	 next	 table
describes	each	one	of	the	available	options.

Available	options	on	Operations	tab

OPTION DESCRIPTION
Import
Configuration

This	option	allows	importing	configurations	for
operations	from	versions	prior	to	Modbus	Master/Slave
Driver	version	2.0,	which	stored	these	configurations	on
a	modbus.ini	file.	This	Driver	does	not	use	INI	files
anymore	to	store	such	configurations,	which	are	now



stored	on	the	application	file.	For	more	information,
please	check	topic	Import	and	Export	Operations

Export
Configuration

This	option	executes	the	opposite	operation	of	the
previous	option,	generating	an	INI	file	containing	all
operation	configurations,	in	the	current	format	or	in	the
same	format	of	this	Driver's	previous	versions.	This	way,
users	can	store	operation	configurations	of	a	certain
device	on	a	file,	and	these	configurations	can	be	used	by
other	applications.	For	more	details,	please	check	topic
Import	and	Export	Operations

Show
Operations	in
Tag	Browser

If	this	option	is	not	selected	(default),	templates	of	Tags
configured	by	Strings	(Device	and	Item	fields)	are
displayed	on	Tag	Browser.	If	it	is	selected,	templates	of
Tags	numerically	configured	(N/B	parameters)	are
displayed	on	Tag	Browser.	When	creating	new	instances
of	this	Driver,	this	option	is	deselected	by	default.	In
legacy	applications,	when	Driver's	version	is	updated
from	a	version	previous	to	3.1,	this	option	is	already
selected,	keeping	the	behavior	of	previous	versions

Add Adds	a	new	operation	to	the	list

Edit Updates	the	selected	operation	on	the	list	(equivalent	to
double-clicking	an	item)

Remove Removes	the	selected	operation	from	the	list

	

NOTE
The	Swap	Bytes,	Swap	Words,	and	Swap	DWords	options,	as	already
explained,	were	added	to	provide	compatibility	with	devices	that	do	not
comply	with	Modbus	protocol's	standard	on	data	encoding	(byte	order).
If	these	options	remain	disabled,	Driver's	behavior	corresponds	to
protocol's	 standard,	 which	 is	 the	 recommended	 option	 for	 most
devices.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?



Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Supported	Data	Types Top		Previous		Next

The	 next	 table	 lists	 Driver's	 native	 data	 types,	 which	 can	 be	 defined
when	configuring	I/O	Tags.
As	explained	on	topics	String	Configuration	and	Operations	Tab,	 the
Modbus	protocol	 itself	only	supports	Bit	and	Word	data	 types	(16	bits)
for	 the	most	 commonly	 used	 functions	 implemented	 by	 this	 Driver
(the	only	exception	is	currently	function	7).	All	other	Driver's	data	types
are	converted	to	Word	at	protocol's	level,	for	reading	from	or	writing	to	a
device	or	slave	device.
Also	notice	that	this	Driver	supports	User-Defined	Data	Types,	defined
as	structures	with	elements	composed	by	the	native	data	types	listed	on
the	next	table.
On	 the	 next	 table,	 data	 types	 use	 the	 same	 denominations	 of
mnemonics	 for	 the	 data	 type	 field,	 when	 Tags	 are	 configured	 by
Strings.	For	the	old	numerical	configuration,	the	same	denominations
are	 also	 used	 on	 Data	 column	 of	 Driver's	 configuration	 window	 (on
Operations	Tab).	In	some	cases,	frequent	alternative	denominations	are
displayed	between	parentheses.

Available	options	for	data	types

TYPE RANGE DESCRIPTION
Char -128	to	127 Eight-bit	word,	character.	Writing	must	always

occur	in	blocks	with	even	size	(Words)
Byte 0	to	255 Unsigned	eight-bit	word.	Writing	must	always

occur	in	blocks	with	even	size	(Words)
Int8 -128	to	127 Signed	eight-bit	word.	Writing	must	always

occur	in	blocks	with	even	size	(Words)
Int16 -32768	to

32767
Signed	16-bit	integer

Int32 -2147483648
to
2147483647

Signed	32-bit	integer



Word	(or
UInt)

0	to	65535 Unsigned	16-bit	integer

DWord	(or
ULong)

0	to
4294967295

Unsigned	32-bit	integer	(Double	Word)

Float -3.4E38	to
3.4E38

32-bit	floating	point	(IEEE	754)	(four	bytes:
EXP	F2	F1	0)

Float_GE -1.427E+45
to
1.427E+45

32-bit	floating	point	used	by	GE,	not
compatible	with	IEEE	754.	It	is	used	in	GE
GEDE	UPS	devices,	with	an	eight-bit
exponent	2[-128	...	+127]	and	24-bit	mantissa
[-223	...+(223-1)].	(four	bytes:	EXP	F2	F1	F0).
For	more	information,	please	check	device's
documentation

Double	(or
Real)

-1.7E308	to
1.7E308

64-bit	floating	point	(IEEE	754)

String Does	not
apply

Text	in	ANSI	format,	with	a	determined
number	of	eight	bit	ASCII	characters	(Chars)

BCD Check
description

BCD	(Binary-Coded	Decimal)	numerical
value.	When	using	this	data	type,	an
application	must	provide	a	positive	and
integer	decimal	value,	sent	in	BCD	format,
respecting	the	specified	size.	The	Size	field,
for	BCD	types,	refers	to	the	number	of	bytes
sent	to	represent	a	value.	As	in	BCD
encoding	each	figure	is	converted	to	a	nibble,
then	the	allowed	values	must	have	a
maximum	number	of	figures	equal	to	double
the	size	of	the	value	specified	in	the	Size	field,
that	is,	if	a	value	of	two	is	selected	for	the
Size	field,	the	maximum	value	that	can	be
sent	is	9999.	Likewise,	if	Size	is	equal	to	four,
the	maximum	value	is	then	99999999.
Allowed	values	for	the	Size	field	for	BCD
types	are	two	(Word)	and	four	(Double
Word).	For	more	information	about	the	BCD



encoding,	please	check	topic	BCD	Encoding
GE_eventsCheck

description
Data	type	used	when	reading	an	event	buffer
(SOE)	from	a	GE	PAC	RX7	PLC.	Its	definition
is	only	allowed	for	operations	that	use	the
special	reading	function	GE	SOE.	These
events	are	returned	as	blocks	with	two
Elements,	with	timestamps	defined	by	the
controller.	For	more	information,	please	check
topic	Reading	an	Event	Buffer	in	GE	PAC
RX7	Controllers

Bit 0	(zero)	or	1
(one)

This	data	type	is	automatically	selected	when
a	bit-access	function	is	selected.	Bit-access
functions	are	01,	02,	05,	and	15.	The	Size
field	is	not	used	for	Bit	types.	When	using	this
data	type,	each	Tag	or	Block	Tag	Element
represents	a	bit

SP_events Check
description

Data	type	used	when	reading	events	(SOE)	in
Schneider	Electric	relays	from	SEPAM	20,	40,
and	80	series.	Its	definition	is	only	allowed	for
operations	that	use	the	special	reading
function	SP	SOE.	These	events	are	returned
as	a	three-Element	Block,	with	a	device-
provided	timestamp.	For	more	information,
please	check	topic	Reading	Events	in
Schneider	Electric	Relays	from	SEPAM	20,
40,	and	80	Series

GenTime 1/1/1970
00:00	to
31/12/2035
23:59:59.999
(please
check	the
next	note)

Date	and	time	type	composed	by	an	eight-bit
structure,	originally	created	for	use	when
reading	events	using	generic	SOE	algorithm
(GenSOE).	This	data	type	can	be	used	with
other	Modbus	protocol	functions,	in	addition	to
GenSOE.	This	format	is	read	internally	as	a
structure	of	Words,	and	the	only	valid	swap
function	for	this	type	is	Swap	Bytes.
Representation	of	this	type	in	PLC	memory	is
described	on	topic	GenTime	Data	Type.	For



more	information	about	this	type,	please
check	topic	Elipse	Software's	Generic	SOE
Reading	Algorithm

Sp_time 1/1/1970
00:00	to
31/12/2035
23:59:59.999
(please
check	the
next	note)

Date	and	time	data	type	composed	by	an
eight-byte	structure,	used	by	Schneider
Electric	relays	from	SEPAM	20,	40,	and	80
series,	usually	to	represent	a	timestamp.	For
more	information,	please	check	device's
documentation

UTC64d 1/1/1970
00:00	to
31/12/2035
23:59:59.999
(please
check	the
next	note)

Date	and	time	data	type	represented	in
Double	format	(64-bit	IEEE	754),	with
seconds	since	1/1/1970	00:00

UTC32 1/1/1970
00:00	to
31/12/2035
23:59:59.999
(please
check	the
next	note)

Date	and	time	data	type	represented	as	an
unsigned	32-bit	integer	(DWord	or	UInt),	with
seconds	since	1/1/1970	00:00.	This	format
does	not	represent	milliseconds,	which	are
always	considered	as	0	(zero)

Int16_sm -32767	to
32767

Signed	16-bit	integer	(magnitude	signal)

Int32_sm -2147483647
to
2147483647

Signed	32-bit	integer	(magnitude	signal)

	

NOTE
Although	the	representation	of	date	and	time	data	types	on	the	previous
table	can	represent	dates	greater	than	12/31/2035,	this	limit	is	displayed
on	 the	 table	 because	 Elipse	 Software	 applications	 do	 not	 currently



support	ranges	of	values	that	exceed	this	limit	for	timestamps.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


GenTime	Type Top		Previous		Next

GenTime	 is	a	date	and	 time	data	 type	originally	defined	and	added	 to
this	 Driver	 for	 use	 with	 Elipse	 Software's	 Generic	 SOE	 Reading
Algorithm.	 It	 is,	however,	a	generic	data	 type	 that	 can	be	easily	used
with	almost	any	PLC.
In	an	application,	that	 is,	 in	values	of	Tags	and	Block	Tag	Elements,	as
well	 as	 in	 Tag's	 Timestamp	 field,	 this	 data	 type,	 as	 well	 as	 all	 other
Driver's	 date	 and	 time	 data	 types,	 is	 represented	 by	 an	 application's
native	date	and	 time	data	 type.	For	more	 information	about	other	date
and	 time	 data	 types	 supported	 by	 this	 Driver,	 please	 check	 topic
Supported	Data	Types.	 For	more	 information	about	 application's	 date
and	time	data	types,	please	check	their	respective	user's	manual	(there
are	some	differences	between	VBScript	used	in	Elipse	SCADA	and	the
one	used	in	E3	and	Elipse	Power).
In	the	PLC	or	slave	device,	this	data	type	is	represented	by	a	structure
composed	by	four	16-bit	registers	(eight	bytes),	as	displayed	on	the	next
table.

Structure	of	registers

OFFSET CONTENT BIT	MAPPING	(16
BITS)

RANGE
(DECIMAL)

0 Year AAAAAAAA
AAAAAAAA

Between	0	and
65535

1 Day	and	Month DDDDDDDD
MMMMMMMM

Between	0	and
65535

2 Hour	and	Minute HHHHHHHH
MMMMMMMM

Between	0	and
65535

3 Second	and
Millisecond

SSSSSSMM
MMMMMMMM

Between	0	and
65535

	
The	 base	 address	 (offset	 0),	 for	 attribution	 on	 Tag's	N4/B4	 parameter
accessing	data,	contains	 the	year.	The	next	 register	 (offset	1)	 contains
the	 day	 as	 the	 most	 significant	 byte	 and	 the	 month	 as	 the	 least



significant	byte.	The	offset	2	contains	the	hour	represented	 in	the	most
significant	byte	and	the	minutes	 in	 the	 least	significant	byte.	The	fourth
register	contains	the	four	most	significant	bits	of	the	Word	representing
seconds,	 and	 the	 remaining	 bits	 (the	 two	 least	 significant	 of	 the	most
significant	 and	 the	 integer's	 least	 significant	 byte)	 representing
milliseconds.
Notice	that	each	Tag	referencing	this	data	type	forces	a	Driver	to	read	a
block	 of	 four	Modbus	 registers	 in	 the	 device	 to	 represent	 the	 value	 of
each	Tag	or	Block	Element	to	return	a	valid	value.
Advantages	of	this	data	type	are	its	simplicity	(it	is	easily	generated	in	a
PLC	ladder),	 its	milliseconds	precision,	and	its	relative	compression,	as
it	does	not	need	native	support	by	the	PLC	or	slave	device.
	

NOTE
Although	 the	 GenTime	 data	 type	 itself	 is	 an	 eight-byte	 size	 (four
Words),	 the	 only	 effective	 swap	 option	 is	Swap	Bytes.	 This	 happens
because,	as	already	explained	on	this	topic,	this	data	type	is	structured
in	the	PLC	memory	as	having	four	Words,	and	it	is	not	a	device's	native
data	 type,	 rather	 a	 Driver's	 data	 type.	 More	 information	 about	 swap
options	(byte	order)	can	be	found	on	topic	Operations	Tab.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


User-Defined	Data	Types Top		Previous		Next

User-defined	data	types,	or	structures,	after	configured	on	User	Defined
Types	configuration	window,	can	be	used	by	Driver	operations	the	same
way	as	pre-defined	data	types.
These	 data	 types	 are	 in	 fact	 structures	 whose	 elements	 may	 have
different	native	data	types,	that	is,	a	user-defined	data	type	is	merely	a
structure	 defined	 based	 on	 Driver's	 pre-defined	 data	 types	 (native	 or
built-in	data	 types),	allowing	users	 to	configure	Block	Tags	where	each
Element	may	have	a	different	native	data	type.
Users	 can	 use	 almost	 all	 data	 types	 pre-defined	 by	 the	Driver	 in	 their
structures.	The	only	data	types	not	allowed	are	Bit	data	types,	eight-bit
data	types,	variable-size	data	types,	such	as	String	and	BCD,	and	event
data	types	linked	to	specific	SOE	functions.
Once	a	data	 type	 is	defined,	users	can	 link	 it	 to	any	Tag,	as	 long	as	 it
uses	Modbus	functions	supporting	Words,	that	is,	it	is	not	allowed	to	link
a	 user-defined	 data	 type	 to	 an	 operation	 that	 defines	 as	 its	 reading
function	(Read)	the	01	function,	for	example,	because	that	function	only
reads	bits.
In	 addition	 to	 the	 definition	 of	 structure	 elements,	 whose	 values	 are
returned	 in	 Block	 Elements,	 users	 can	 also	 define	 the	 type	 of	 a	 Tag's
timestamp,	as	well	as	the	default	address	for	that	structure,	address	that
is	used	for	the	B4	parameter	of	Tags	available	using	E3's	Tag	Browser.
	



Applications
User-defined	data	types	were	originally	implemented	for	use	with	Elipse
Software's	 Generic	 SOE	 Reading	 Algorithm	 (Gen	 SOE),	 as	 this
algorithm	performs	a	reading	on	data	structure	tables.
In	addition	 to	using	with	SOE's	generic	algorithm,	 this	 feature	can	also
be	used	to	group	different	data	types	on	a	single	Block	Tag,	optimizing
communication	 in	 applications	 without	 Superblocks,	 such	 as	 Elipse
SCADA,	 or	 if	 the	device	 in	 use	 for	 some	 reason	does	not	 allow	using
Superblocks	(please	check	topic	Superblock	Reading).
	



Configuring	User-Defined	Data	Types
Configuration	 of	 user-defined	 data	 types	 is	 performed	 on	 a	 specific	 window,	 by
clicking	User	Defined	Types	on	Operations	Tab	 of	Driver's	 configuration	window,
as	shown	on	the	next	figure.

Operations	tab	of	Driver's	configuration	window
This	window	to	configure	user-defined	data	 types	allows	editing	 files	with	structure
configurations.	When	opening	 this	window	 for	 the	 first	 time,	 it	 displays	 the	 default
configuration	 file	 (with	 comments),	which	defines	 three	example	 types	 that	 appear
commented	with	multiple-line	comments	("/*"	and	"*/"),	as	explained	later.
The	next	figure	displays	the	configuration	window	for	user-defined	data	types,	with	a
small	file	defining	these	three	example	data	types.



Configuration	of	user-defined	data	types
Notice	 that	 line	comments	always	start	with	"//",	 identifying	what	 is	on	 the	right,	on
the	 same	 line,	 as	 a	 comment,	 following	 the	 pattern	 for	 line	 comments	 of	 the	C++
programming	 language,	which	 is	also	used	 for	other	 languages	such	as	 Java	and
C#.
Comments	 with	 multiple	 lines	 are	 also	 supported,	 still	 following	 the	 same	 C++
syntax,	 starting	 by	 "/*"	 and	 finishing	 by	 "*/".	 Notice	 that	 the	 example	 file	 that
accompanies	this	Driver	already	applies	that	comment	format	to	 its	example	types,
leaving	them	commented	by	default.	Remove	the	lines	indicated	by	"/*	Sample	types
entirely	 commented	by	default"	 and	 "*/"	 (without	quotation	marks)	 so	 that	all	 three
example	data	types	are	ready	to	use.
As	the	text	of	the	configuration	file	changes,	the	status	bar	displays	the	result	of	this



file's	 syntactical	 analysis,	 in	 real-time.	 This	 status	 bar	 displays	 a	 "Status:	 OK!"
message	if	no	errors	are	detected	in	this	file.
The	 line	and	column	of	cursor	position	 in	 the	edit	box	are	always	displayed	on	the
right	side	of	the	status	bar.	Errors	displayed	on	the	status	bar	always	reference	the
line	and	column	number	where	it	was	detected.
This	check	can	be	also	fully	performed	by	clicking	Verify	and,	in	case	of	any	error,
cursor	is	then	automatically	placed	on	the	error	line.
The	definition	of	each	 type	has	 the	 following	syntax	 (elements	 inside	brackets	are
optional):

struct	<Type	Name>	{
		[timestamp	=	<date	and	time	type>;]
		[DefaultAddress	=	<address>;]
		<type>	[name	of	element	1];
		<type>	[name	of	element	2];
		<type>	[name	of	element	3];
[...]
		<type>	[name	of	element	n];
}

	
Where:

struct:	Keyword,	lower	case,	starting	the	definition	of	a	user-defined	data	type.

<Type	Name>:	Name	by	which	this	new	data	type	is	identified	by	the	Driver.	This
is	 the	name	displayed	on	the	combo	box	Data,	when	configuring	operations.	 Its
maximum	size	is	six	characters

timestamp:	Optional	field	indicating	that	this	structure	contains	a	device-defined
timestamp,	which	must	be	returned	in	Tag's	Timestamp	field.	Each	structure	can
have	only	one	timestamp.	The	order	in	which	it	appears	on	this	structure	affects
the	position	 in	which	 this	 field	 is	 read	 in	 the	 frame	 returned	by	a	device	 (notice
that	in	Tags	this	value	is	returned	only	in	the	Timestamp	field).	Any	date	and	time
data	 types	 supported	by	 this	Driver	 can	be	defined.	 In	 the	 current	 version,	 this
Driver	 supports	 date	 and	 time	 data	 types	 GenTime,	 Sp_time,	 UTC64d
UTC32.	 For	more	 information	 about	 data	 types,	 please	 check	 topic	
Data	Types
DefaultAddress:	Optional	field	specifying	a	default	address	value,	used	to	fill	the



B4	 parameter	 of	 Tags	 in	 Tag	 Browser	 referencing	 operations	 containing	 this
structure.	Address	values	can	be	provided	in	decimal	or	hexadecimal	format.	To
use	 the	 later	 format,	 users	 must	 precede	 the	 number	 with	 the	 "0x"	 prefix	 (for
example,	using	"0x10"	to	encode	the	decimal	value	16	to	hexadecimal)

<date	and	time	type>:	Pre-defined	date	and	time	data	types	for	this	Driver,	which
can	 be	 used	 as	 a	 timestamp	 by	 a	 slave	 device.	 In	 the	 current	 version	 of	 this
Driver,	native	data	types	GenTime,	Sp_time,	UTC32,	and	UTC64d	are	accepted
<type>:	 Element's	 data	 type.	 It	must	 be	 defined	 as	 one	 of	Driver's	 pre-defined
data	types,	and	written	as	it	appears	on	the	combo	box	Data,	on	the	configuration
window	 for	 operation	 parameters,	 respecting	 lower	 and	 upper	 case.	
types,	 eight-bit	 data	 types,	 and	 variable-size	 data	 types,	 such	 as	
String,	are	not	allowed
[name	of	element]:	Optional	parameter	defining	a	name	for	each	Block	Element.
If	defined,	determines	a	name	for	Block	Elements	 in	Tags	displayed	 in	
Browser.	 If	 not	 defined	 in	 structure's	 declaration,	 this	 Driver	 then	 sets	 default
names	to	Elements	 in	Tag	Browser,	with	 the	keyword	"Element"	 followed	by	the
index	of	that	Element	in	the	Block	("Element1",	"Element2",	etc.)

	



Importing	and	Exporting
The	Import	File	and	Export	File	options	allow	importing	and	exporting	a
configuration	file	with	user-defined	data	types	to	text	files	on	disk.	These
options	 can	 be	 used	 to	 create	 backup	 copies	 of	 a	 file,	 or	 to	 share	 it
among	 several	 Drivers.	 This	 file	 is	 always	 saved	 and	 read	 using
Windows	default	ANSI	format	(Windows-1252	Charset).	Future	versions
of	this	Driver	may	include	support	for	other	formats.
In	 addition	 to	 copying	 a	 file	 to	 disk,	 users	 can	 also	 use	 shortcut	 keys
CTRL	+	A	(Select	All),	CTRL	+	C	(Copy),	and	CTRL	+	V	(Paste)	to	copy
and	paste	this	file's	content	to	another	Text	Editor.
The	Load	Default	Configuration	option	 loads	the	default	configuration
file	 again	 in	 the	 editor,	 the	 same	 file	 loaded	 when	 the	 configuration
window	is	opened	for	the	first	time.
	

NOTE
When	clicking	Cancel,	all	changes	performed	on	the	file	are	discarded
by	this	Driver.	By	clicking	OK,	 this	 file	 is	 then	stored	 in	 the	application.
This	 operation	 performs	 a	 full	 check	 on	 this	 file	 and	 if	 any	 error	 is
identified,	 this	error	 is	 then	displayed	and	 this	window	 is	not	 closed.	 If
users	want	to	save	these	changes	with	pending	errors,	export	this	file	or
copy	and	paste	it	to	another	Text	Editor.

	



Using	 User-Defined	 Data	 Types	 with	 Tags	 Configured
using	Strings
Names	 for	user-defined	data	 types	can	be	used	as	mnemonics	 for	 the
Type	field	in	the	Item	parameter,	such	as	with	Driver's	native	data	types,
as	long	as	this	name	has	been	previously	declared,	as	defined	earlier	in
this	topic.
	

IMPORTANT
As	 in	E3	 the	 Item	 field	 is	 not	 case-sensitive,	 to	 use	 user-defined	data
types	 in	 this	 field,	 the	 user-defined	 data	 types	 must	 not	 be	 case-
insensitive,	 that	 is,	 users	 must	 not	 define,	 for	 example,	 a	 data	 type
named	as	"type1"	and	another	one	as	"TYPE1".	 If	 this	happens,	users
cannot	use	that	user-defined	data	type	in	the	Item	field	until	that	name	is
fixed.

	
For	more	 information	on	Tag	configuration	using	Strings,	please	check
topic	String	Configuration.	Example:
1. Read	or	write	Holding	Registers	(functions	03	and	06)	of	address	100
from	a	device	with	Id	5,	interpreted	as	a	user-defined	data	type	named
"mytype",	with	Slave	Id	in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	"5:shr100.mytype"

	

NOTE
Swap	options	(byte	order)	for	user-defined	data	types	are	only	effective
on	the	elements	of	the	defined	structure,	not	on	the	entire	structure,	that
is,	if	the	Swap	Words	option	is	enabled,	all	elements	with	more	than	16
bits	 have	 their	 Words	 swapped.	 16-bit	 elements,	 however,	 are	 not
changed.

	



Using	 User-Defined	 Data	 Types	 on	 Numerical
Configuration
After	 defining	 new	 data	 types	 in	 the	 configuration	 file	 on	 the	 User-
Defined	Types	window,	these	data	types	are	available	for	use	in	Driver
operations.	Remember	 that	 only	 operations	 that	 use	Modbus	 functions
for	access	to	16-bit	registers,	such	as	functions	03,	04,	06,	and	16,	allow
user-defined	data	types.
The	next	figure	displays	the	configuration	of	a	new	operation	that	uses	a
user-defined	 data	 type	 (structure)	 named	 TYPE3,	 showed	 on	 the
previous	example,	after	clicking	Add.

Adding	a	user-defined	data	type

NOTE
Swap	options	for	user-defined	types	are	only	effective	on	the	elements
of	 the	 defined	 structure	 and	 not	 on	 the	 entire	 structure,	 that	 is,	 if	 the



Swap	Words	 option	 is	 enabled,	 all	 elements	 with	 more	 than	 16	 bits
have	their	Words	swapped.	16-bit	elements,	however,	are	not	changed.

	
After	defining	a	new	operation,	by	using	the	new	type	TYPE3,	define	a
Block	 Tag	 with	 that	 same	 data	 type	 and	 size	 equal	 to	 the	 number	 of
elements	of	that	structure,	as	shown	on	the	next	figure.

Declaring	Tags	using	structures	in	E3	or	Elipse
Power

If	a	name	was	defined	for	each	element	of	this	structure,	then	users	can
use	E3's	Tag	Browser	to	 include	a	Block	Tag	referring	the	desired	data
type	in	an	application,	without	typing	it	again.	To	use	this	feature,	users
must	 select	 the	 Show	 Operations	 in	 Tag	 Browser	 option	 on
Operations	tab.	The	next	figure	shows	how	to	perform	this	procedure.



Using	Tag	Browser	to	define	Tags	using	structures
As	 this	 figure	 suggests,	 click	 	 on	 Driver's	Design	 tab	 to	 open	 Tag
Browser	 and	 drag	 the	 desired	 data	 type	 from	 the	 list	 Tags	 available
from	driver	to	the	list	Tags	from	current	project.
	



Event-Reported	Reading
User-defined	 data	 types	 or	 structures	 are	 generally	 used	 to	 define
events	 in	 PLC's	 memory,	 and	 can	 be	 used	 with	 Elipse	 Software's
Generic	 SOE	 Reading	 Algorithm.	 However,	 if	 users	 want	 to	 read
events	organized	in	PLC's	memory,	such	as	a	sequence	of	structures,	in
an	operation	that	only	uses	protocol's	public	reading	function,	that	is,
without	using	special	functions	with	the	SOE	algorithm,	such	procedure
can	be	performed	in	two	ways:

Block	Reading:	Create	a	Block	with	a	number	of	Elements	that	is	a
multiple	 of	 the	 number	 of	 elements	 of	 user's	 data	 structure.	 For
example,	a	user-defined	data	type	or	structure	with	two	elements	that
represent	 events	 collected	 on	 an	 arrangement	 in	 PLC's	memory.	 If
users	want	to	read	a	block	with	five	events,	they	must	define	a	Block
Tag	with	10	Elements.	Thus,	a	single	reading	from	this	Tag	retrieves
all	events	at	once

Event-Reported	 Reading:	 Uses	 a	 sequence	 of	 Tag's	 OnRead
events	to	read	a	data	block.	With	 it,	considering	the	example	on	the
previous	item,	instead	of	creating	a	Tag	with	10	Elements,	users	only
need	to	create	a	single	Block	Tag	with	 two	Elements,	configuring	 its
B3	 parameter	as	 "5".	This	way,	when	performing	a	Tag	 reading,	E3
calls	Tag's	OnRead	event	 five	 times,	and	at	each	call	 the	Elements
and	 properties	 of	 this	 Block	 Tag	 contain	 data	 related	 to	 a	 specific
event.	 The	 most	 common	 usage	 for	 Tags	 reported	 by	 events	 is
storing	events	read	directly	 from	a	historical	database.	This	 is	easily
performed	using	Historic's	WriteRecord	method	previously	 linked	 to
this	Tag,	on	 the	OnRead	event	of	 the	event-reported	Tag.	For	more
information,	 please	 check	 topic	 about	 Event-Reported	 Tags	 on	 E3
User's	Manual

	
In	other	words,	 every	 I/O	Tag	using	 structures	and	using	a	protocol's
public	reading	function	(this	resource	does	not	work	for	special	SOE
functions),	 becomes	 an	 Event-Reported	 Tag	 if	 its	 B3	 parameter	 is
configured	with	a	non-null	value.
In	case	of	special	SOE	functions,	such	as	 the	Gen	SOE	 function,	 the

http://www.elipse.com.br/downloads


event-reported	 return	 is	 defined	 by	 the	 function's	 proprietary	 algorithm
itself.
For	more	 information	 about	 I/O	Tag	 configurations,	 please	 check	 topic
Configuring	an	I/O	Tag.
	

IMPORTANT
When	 reading	 mass	 memory	 events	 in	 event-reported	 Tags	 in	 E3,
disable	Tag's	dead	band	(the	EnableDeadBand	property	configured	as
False)	and	also	the	linked	Historic	object	(the	DeadBand	property	equal
to	zero),	to	avoid	loosing	events	with	close	values.	It	is	also	important	to
disable	 the	 historic	 by	 scan	 (in	 E3,	 the	 ScanTime	 property	 equal	 to
zero).	 This	 ensures	 that	 new	 events	 are	 only	 stored	 using	 the
WriteRecord	method,	executed	 in	Tag's	OnRead	 event,	 thus	avoiding
duplicated	events.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Importing	 and	 Exporting
Operations

Top		Previous	
Next

Importing	 and	 exporting	 operations	 can	 be	 performed	 on	 Driver's
Operations	 tab,	 by	 clicking	 Import	 Configuration	 or	 Export
Configuration,	as	shown	on	the	next	figure.

Options	for	importing	and	exporting	operations
These	 options	 allow	 importing	 and	 exporting	 operation	 configurations
displayed	on	Modbus	Operations	frame	to	INI	files.
On	this	Driver's	versions	previous	to	2.00,	operation	configurations	were
performed	 on	 a	 modbus.ini	 file,	 which	 was	 loaded	 during	 Driver's
initialization.	modbus.ini	files	of	these	old	versions	still	can	be	loaded	on
the	current	Driver	version,	by	using	the	import	option.
	



NOTE
Driver	operations	used	to	be	called	Driver	Functions	in	initial	versions.
This	name	was	then	changed	to	Driver	Operations	due	to	some	cases
when	users	confused	it	with	Protocol	Functions.

	



Importing
Importing	configuration	files	is	very	simple.	Click	 Import	Configuration
and	 select	 an	 INI	 file.	 The	 Driver	 must	 load	 operation	 configurations,
which	 immediately	 appear	 on	Modbus	Operations	 frame.	 This	 Driver
allows	importing	files	generated	on	previous	versions.
	



Exporting
Exporting	 files	with	operation	configurations	can	be	performed	to	share
the	 same	 operation	 configurations	 among	 different	 Driver	 objects,	 as
well	as	performing	backup	copies	of	operation	configurations	of	a	certain
device.
Another	 possible	 use	 is	 exporting	 configurations	 to	 a	 modbus.ini	 file
compatible	 with	 previous	 Driver	 versions,	 allowing	 to	 load	 these
configurations	 on	 previous	 versions.	 This	 is	 not	 advisable	 but,	 if
inevitable	 in	 case	 of	 legacy	 applications,	 users	 must	 consider	 the
following	situations.
When	clicking	Export	Configuration,	a	window	with	two	options	is	then
opened,	as	in	the	following	figure.

Export	options
On	this	window,	users	must	select	between	exporting	based	on	the	new
format	(New	format	with	type	mnemonics),	with	displayed	data	 types
defined	 as	 Strings	 (mnemonics),	 or	 based	 on	 the	 old	 format	 (Old
format	with	types'	numeric	codes),	in	which	data	types	were	identified
by	 a	 numerical	 value,	 corresponding	 to	 the	 position	 where	 they
appeared	on	the	combo	box	Data	on	Operations	tab.
This	new	format	is	more	legible,	making	it	easy	to	debug,	and	is	used	on
the	most	recent	versions	of	this	Driver,	and	it	is	the	most	recommended
option.
The	 old	 format,	 on	 the	 other	 hand,	 must	 be	 selected	 only	 if	 it	 is
indispensable	 to	 export	 for	 versions	 previous	 to	 version	 2.08	 of	 this
Driver.
Notice	 that,	 to	 export	 modbus.ini	 files	 successfully	 to	 load	 them	 to
versions	previous	 to	2.00,	operations	cannot	define	any	new	data	 type



not	 implemented	on	 the	destination	 version,	 nor	 define	operations	 that
use	the	Use	bit	mask	parameter,	or	the	import	operation	may	fail.
Generally,	 it	 is	 recommended	 to	 avoid	 exporting	 configurations	 to
previous	versions,	preferring	updated	Driver	versions.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Gen	SOE	Tab Top		Previous		Next

The	 goal	 of	 this	 tab	 is	 to	 concentrate	 configuration	 options	 for	Elipse
Software's	Generic	SOE	Reading	Algorithm.	The	next	figure	displays
all	options	on	this	tab.

Gen	SOE	tab
On	the	current	version,	there	is	only	one	configuration	option:

Enable	 control	 and	 data	 registers	 grouping	 (default	 True):
Enables	grouping	control	and	data	registers,	to	perform	the	minimum
possible	 number	 of	 readings.	 If	 this	 option	 is	 enabled,	 this	 Driver
starts	 reading	 tables	already	 trying	 to	 read	 the	maximum	number	of
protocol-allowed	 registers,	 be	 them	 control	 or	 data	 registers,	 and
possibly	reading	the	entire	table	in	a	single	reading.	Such	procedure
usually	 optimizes	 Tag	 scanning	 the	 same	 way	 as	 Superblocks,
because	 the	 time	spent	 for	 reading	 large	blocks	 is	usually	 less	 than



the	time	needed	to	perform	several	readings	of	 the	same	amount	of
data,	although	this	may	depend	on	the	PLC.	ATOS	PLCs	do	not	allow
grouped	 reading	 of	 control	 registers	 and	 data	 structures,	 thus
requiring	this	option	to	be	disabled

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Offline	Mode	Configuration Top		Previous		Next

Driver	configurations	can	also	be	accessed	at	run	time	if	a	Driver	starts
in	 Offline	 mode,	 as	 explained	 on	 topic	 Documentation	 of	 I/O
Interfaces,	by	using	the	String-type	parameters	described	on	 the	next
table.

Available	parameters

PARAMETER TYPE
ModiconModbus.ModbusMode Integer:

0:	Modbus	RTU
1:	Modbus	ASCII
2:	Modbus	TCP

ModiconModbus.Olderaddr Boolean	(0	or	1):
0:	Data	is
addressed	from	0
(zero)
1:	Data	is
addressed	from	1
(one)

ModiconModbus.UseDefaultSlaveAddress Boolean	(0	or	1)

ModiconModbus.DefaultSlaveAddress Unsigned	integer

ModiconModbus.UseSwapAddressDelay Boolean	(0	or	1)

ModiconModbus.SwapAddressDelay Integer,	with	a	delay
interval	in
milliseconds.
NOTE:	Obsolete
option	kept	for
compatibility
reasons.	For	new
applications,	please
use	the	Inter-frame
delay	option	on



IOKit's	Serial	tab
ModiconModbus.WaitSilenceOnError Boolean	(0	or	1)

ModiconModbus.EnableCMSAddressing Boolean	(0	or	1)

ModiconModbus.EnCustomizeMaxPDUSize Boolean	(0	or	1)

ModiconModbus.MaxPDUSize Integer

ModiconModbus.ConfigFile String	containing	a
configuration	file
with	Driver
operations.	This	file
can	be	exported
and	imported	on
Operations	tab	on
Driver's
configuration
window

ModiconModbus.EnableReconnectAfterTimeoutBoolean	(0	or	1):
0:	Time-out	does
not	generates	a
disconnection
from	physical
layer
1:	In	case	of	a
time-out,	when	in
an	Ethernet
physical	layer,
this	Driver
performs	a
physical	layer
disconnection
and	a
reconnection

ModiconModbus.UserTypesConfigFile Configuration
String	for	user-
defined	data	types



(structures).	This	is
the	same
configuration	file
available	on
Driver's
configuration
window	(User-
Defined	Types)

ModiconModbus.EnableGenSOERegGrouping Boolean	(0	or	1):
0:	Event-reading
algorithm	first
reads	control
registers,	and
then	event	data
1:	Generic	SOE
reading	is
grouped	to	its
maximum,	not
only	reading
control	registers
first,	but	also	the
maximum
possible	events

ModiconModbus.ShowOperationsInTagBrowser Boolean	(0	or	1):
0:	Tag	Browser
displays	Tag
models
configured	by
Strings	(default
behavior)
1:	Tag	Browser
displays	Tag
models
configured
numerically



(legacy	behavior)

	
For	 more	 information	 about	Offline	 configurations	 at	 run	 time,	 please
check	topic	Documentation	of	I/O	Interfaces.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Configuring	Tags Top		Previous		Next

This	topic	describes	configurations	for	several	types	of	Tags	supported
by	 this	 Driver.	 Tags	 are	 divided	 into	 two	 categories,	 described	 on	 the
following	topics:

Configuring	an	I/O	Tag

Configuring	Special	Tags



Configuring	an	I/O	Tag Top		Previous		Next

Driver's	I/O	Tags	are	Tags	that	allow	communication	with	devices.
I/O	Tags	allow	 reading	and	writing	Modbus	 registers	 from	and	 to	slave
devices,	 by	 using	 Modbus	 protocol	 functions,	 or	 even	 special
functions.	This	Driver	does	not	differentiate	between	Block	and	simple
Tags,	in	case	of	I/O	Tags,	that	is,	I/O	Tags	work	the	same	way	as	a	Block
with	a	single	Element.
Data	 is	 read	 from	 a	 device	 using	 protocol-supported	 formats,	 that	 is,
registers	with	integer	values	of	16	bits,	bytes,	or	sets	of	bits,	depending
on	 the	 protocol's	 function	 used.	 For	 more	 information	 about	 protocol
functions,	please	check	specifications	at	protocol's	official	website.
I/O	Tags	can	be	configured	in	two	ways,	described	in	the	next	topics:

String	Configuration:	 This	 is	 the	newest	method	 that	 can	be	used
with	 Elipse	 E3,	 Elipse	 Power,	 and	 Elipse	 OPC	 Server,
recommended	for	new	projects.	It	is	not	supported	by	Elipse	SCADA
Numerical	Configuration:	Old	method	used	in	Elipse	SCADA

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://www.modbus.org/specs.php
http://kb.elipse.com.br/en-us


String	Configuration Top		Previous		Next

The	String	configuration	of	I/O	Tags	is	performed	using	the	Device	and
Item	fields	of	each	Tag.
That	new	configuration	method	does	not	work	with	Elipse	SCADA,	which
still	uses	the	old	numerical	configuration	(N	and	B	parameters).
N	and	B	parameters	are	not	used	when	configuring	by	Strings	and	they
must	be	left	in	0	(zero).
Configuration	 by	 Strings	 makes	 Tag	 configuration	 more	 readable,
making	it	easy	to	configure	and	maintain	applications.
	



Block	Reading
Tags	configured	by	Strings	can	be	simple	Tags	or	Block	Tags,	with	their
Device	and	Item	fields	with	the	same	syntax.
	

NOTE
The	 grouping	 service	 of	 Tags	 performed	 by	 Superblocks	 is	 not
available	 for	 Tags	 using	 configuration	 by	 Strings.	 If	 users	 want
optimization	 through	 superblock	 readings,	 application	 Tags	 must	 use
only	Numerical	Configuration.

	



Device	Field
In	the	Device	field,	the	Slave	Id	(device's	identification	address)	must	be
provided	 as	 a	 number	 between	 1	 (one)	 and	 255	 followed	 by	 a	 colon,
such	as	"1:",	"101:",	"225:"	etc.
Please	remember	that,	in	Modbus	protocol,	the	Slave	Id	255	is	reserved
for	broadcasting,	which	only	makes	sense	if	used	by	writing	operations,
because	there	is	no	return	from	devices,	or	else	there	would	be	conflicts.
Optionally,	 the	Slave	Id	may	appear	at	 the	beginning	of	 the	 Item	 field,
explained	later,	and	in	this	case	the	Device	field	must	be	left	empty.	This
option	is	detailed	next.
	



Item	Field
The	Item	 field	must	provide	all	addressing	and	operation	information	to
be	performed	by	a	Tag,	using	the	following	syntax:

<address	space><address>[.<type>[<type	size>]][.<byte	order>][/bit]
	
Where	parameters	between	brackets	are	optional.
As	mentioned	earlier,	 users	 can	alternatively	 provide	a	Slave	 Id	 at	 the
beginning	of	the	Item	field,	such	as	the	next	example:

<slave	id>:<address	space><address>[.<type>[<type	size>]][.<byte	order>]
[/bit]

	
In	 this	 case,	 as	 already	 explained,	 users	 must	 leave	 the	Device	 field
empty.
The	 next	 examples	 show	 the	most	 common	 usage	 cases	 (notice	 that
quotation	marks	must	not	be	added	to	the	application):
1. Reading	 or	 writing	 a	 Holding	 Register	 (functions	 03	 and	 16)	 on
address	100	of	a	device	with	Id	1,	and	Slave	Id	provided	in	the	Device
field:
a. Device:	"1:"
b. Item:	"hr100"

2. Reading	 or	 writing	 a	 Holding	 Register	 (functions	 03	 and	 16)	 on
address	120	of	a	device	with	 Id	3,	and	Slave	Id	provided	 in	 the	 Item
field:
a. Device:	""	(empty	String)
b. Item:	"3:hr120"

3. Reading	 or	 writing	 a	 Coil	 (functions	 01	 and	 15)	 on	 address	 65535
(FFFFh)	of	a	device	with	Slave	Id	4,	here	provided	in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	"4:cl&hFFFF"	(or	optionally	"4:cl65535")

	



The	 next	 figure	 shows	 examples	 of	 String-configured	 Tags	 on	 E3
Developer's	Tutorial.

String-configured	Tags	on	E3	Developer's	Tutorial



Mandatory	and	Optional	Fields
Mandatory	fields	for	all	Tags	are	described	next	and	individually	detailed
later	in	this	topic:
1. Address	space:	A	mnemonic	defining	a	set	of	protocol's	reading	and
writing	 functions	 to	 use	 (please	 check	 the	 table	 with	 all	 supported
mnemonics	later	on	this	topic)

2. Address:	A	numerical	value	identifying	the	item's	address	(register	or
bit)	 to	 read	or	write	within	 the	defined	address	 space.	These	 values
can	be	provided	in	decimal,	hexadecimal,	or	octal.	For	decimal	values,
no	 prefix	 is	 needed,	 or	 optionally	 a	 "&d"	 prefix	 can	 be	 used.	 For
hexadecimal	values,	use	the	"&h"	prefix	(for	example,	"&hFFFF").	For
octal	values,	use	the	"&ho"	prefix	(for	example,	"&o843").	This	address
can	have	an	offset	relative	to	the	address	sent	 in	 the	communication
frame,	which	 depends	 on	 the	 convention	 used	 by	 the	manufacturer.
When	 in	 doubt	 about	 addressing	 conventions,	 please	 check	 topic
Addressing	Tips	(Modbus	Convention).	Particularly,	check	whether
the	 device	 implements	 the	 default	 offset	 of	 protocol's	 Data	 Model
(please	check	 the	Data	Address	Model	Offset	 options	 on	Modbus
tab)

	
The	next	fields	are	optional,	used	for	extensions	to	the	default	protocol
or	for	compatibility	with	devices	not	fully	compliant	with	the	protocol	(they
are	also	individually	detailed	later	in	this	topic):
1. Type:	 Defines	 how	 bytes	 from	 the	 data	 area	 of	 the	 communication
frame	must	be	interpreted.	If	omitted,	the	default	types	of	the	protocol
for	 the	 respective	 functions	 are	 used,	 that	 is,	Word	 for	 functions	 to
access	registers	and	Bit	for	functions	to	access	digital	data	(Coils	and
Discrete	Inputs).	Please	check	the	mnemonics	table	for	all	supported
types	later	in	this	topic.

2. Type	size:	Users	must	 specify	 this	 field	 only	 for	 variable-size	 types,
such	as	BCD	and	String.	Its	numerical	value	indicates	the	size	of	the
type	in	bytes.

3. Byte	order:	Mnemonic	indicating	the	byte	order	of	numerical	values.	If
omitted,	protocol's	default	order	is	then	used,	with	the	most	significant



bytes	 coming	 first	 in	 the	 communication	 frame,	 which	 is	 called	 big
endian.	Please	check	more	 information	on	 the	specific	section	about
this	option,	later	in	this	topic.

4. Bit:	Allows	returning	a	specific	bit	of	an	integer	value,	which	obviously
only	 makes	 sense	 in	 Modbus	 functions	 returning	 integer	 values
(Words).	Usually,	users	are	advised	to	not	use	this	feature,	preferring
application's	bit	mapping.	Bit	 1	 (one)	 is	 the	 least	 significant	and,	 the
greater	the	value,	the	most	significant	is	the	bit.	The	maximum	allowed
value	 obviously	 depends	 on	 the	 type	 size,	 which	 is	 currently	 64	 for
Double	 types.	This	field	corresponds	to	the	old	Use	bit	mask	option
on	numerical	configuration.	Please	check	more	 information	on	 this
option	on	topic	Operations	Tab.

	



Exceptions
Modbus	 protocol's	 functions	 20	 and	 21,	 which	 access	 files,	 use	 a
slightly	different	syntax	from	the	one	described	previously:

fr<file>.<register>[.<type>[<type	size>]][.<byte	order>][/bit]
	
Example:

Device:	""	(empty	String)

Item:	"1:fr4.101"	(reading	register	101	from	file	4	on	Slave	Id	1)

	
Specifically	for	the	GenSOE	special	function	(Elipse	Generic	SOE):
elsoe<N>.<initial	addr.>[.<type>[<type	size>]][.<byte	order>][/bit]

	
Specifically	for	the	SP	SOE	special	function	(Sepam	SOE),	to	read	all
events:

spsoe<event	type>.<initial	addr.>[.<type>][.<byte	order>][/bit]
	
Specifically	 for	 the	SP	 SOE	 special	 function	 (Sepam	 SOE),	 to	 read
events	from	specific	points:

ptspsoe<event	type>.<event	addr.>
	
Specifically	for	the	GE	SOE	special	function	(GE	PAC	RX7	SOE):
gesoe<tag	type	+	point	index>.<queue	base	addr.>

	
Please	 check	 specific	 topics	 about	 the	 special	 functions	 mentioned
previously	 for	 more	 information	 about	 configuring	 the	 respective	 Tags
using	Strings.
	



Address	Space
Instead	 of	 explicitly	 defining	 Modbus	 functions	 or	 special	 reading	 and
writing	 functions	 to	 use,	 as	 performed	 on	 the	 old	 numerical
configuration	 and	 its	 concept	 of	 operations,	 when	 configuring	 using
Strings	users	define	an	address	space	through	mnemonics	listed	on	the
next	 table,	 already	 linked	 to	 protocol's	 pre-defined	 functions	 and	 their
respective	native	data	types.

Address	spaces	and	mnemonics

ADDRESS
SPACE

MNEMONIC NATIVE
TYPE

FUNCTION COMMENTS

Holding
Register

hr Word	 (16-
bit)

Functions
03	and	16

Functions	 03	 and
16	 are	 protocol's
most	 used	 ones
(Modbus	class	0)

Single
Holding
Register

shr Word	 (16-
bit)

Functions
03	and	06

Function	06	writes
to	 the	 same
registers	 of
function	 16,	 the
difference	 is	 that
function	 16	 can
only	 write	 in
Blocks,	 while
function	 06	 writes
to	a	single	register
at	a	 time,	but	with
less	overhead

Coil cl Bit Functions
01	and	15

	

Single
Coil

scl Bit Functions
01	and	05

Function	05	writes
to	 the	 same
registers	 of
function	 15,	 but
cannot	 write	 in
Blocks,	 therefore



with	 less
overhead

Discrete
Input

di Bit Functions
02	 and
None
(read-only)

	

Input
Register

ir Word	 (16-
bit)

Functions
04	 and
None
(read-only)

	

Exception
Status

es Byte Functions
07	 and
None
(read-only)

	

File
Register

fr Word	 (16-
bit)

Functions
20	and	21

	

ABB	MGE
144	-
Mass
Memory
Reading

abbmge Word	 (16-
bit)

Functions
65	 03	 and
None
(read-only)

	

ABB	MGE
144	-
Reset

abbmge.rst Not	used Functions
None	 for
reading
and	 65	 01
for	writing

	

ABB	MGE
144	-
Zeroes
Maximum
and
Minimum
Memory

abbmge.rstmxmnNot	used Functions
None	 for
reading
and	 65	 02
for	writing

	

GE	PAC gesoe GE_events Functions 	



RX7	SOE
-	Reading

GE	 SOE
for	 reading
and	 None
for	writing

SEPAM
SOE
Events

spsoe SP_events Functions
SP	SOE	for
reading
and	 None
for	writing

Collects	 from	 the
meter	 and	 returns
a	 structure	 (with
SP_events	 type)
to	 the	 Tag	 with
events	 from	 any
points	 (please
check	 topic
SEPAM	SOE)

SEPAM
SOE
Single
Point
Events

ptspsoe Int32 Functions
SP	SOE	for
reading
and	 None
for	writing

Collects	 from	 the
meter	 and	 returns
to	 the	 Tag	 an
integer	value	 from
the	 Edge	 field,
relative	 to	 events
from	 a	 specific
point	 (please
check	 topic
SEPAM	SOE)

Elipse
Generic
SOE

elsoe Word	 (16-
bit)

Functions
GEN	 SOE
for	 reading
(Modbus
function	 03
with
additional
algorithms)
and	 16	 for
writing

	

	



Data	Types
The	 table	 on	 the	previous	 section	 lists	 all	 protocol's	 native	data	 types,
according	to	the	Modbus	functions	used,	as	well	as	some	specific	data
types	 used	 in	 special	 functions	 (non-standard).	 For	 Tags	 returning
these	native	data	 types,	 the	Data	Type	parameter	can	be	omitted	 from
the	Item	field's	String.
If	users	must	 interpret	native	data	 in	a	different	way,	which	 is	common
among	devices	using	Modbus,	they	must	specify	the	data	type	to	use,	as
explained	in	this	section.
A	list	with	all	native	data	types	supported	by	this	Driver,	as	well	as	their
description,	can	be	checked	on	topic	Supported	Data	Types.
The	next	table	lists	all	mnemonics	used	in	the	<type>	parameter	of	 the
Item	field	for	each	supported	data	type,	Driver-native,	and	also	an	alias
or	an	alternative	name.

Supported	data	types

TYPE MNEMONIC ALIAS
Char char ch

Byte byte by	or	u8

Int8 int8 i8

Int16 int16 i16

Int32 int32 i32

Word	or	UInt word u16

DWord	or	ULong dword u32

Float float f

Float_GE float_GE fge

Double	or	Real double d

String string s

BCD BCD bcd

GenTime GenTime gtm



Sp_time Sp_time sptm

UTC64d UTC64d -

UTC32 UTC32 -

	



User-Defined	Data	Types
In	addition	to	the	data	types	listed	on	the	previous	table,	users	can	also
provide	 mnemonics	 for	 user-defined	 data	 types	 or	 structures	 (please
check	topic	User-Defined	Data	Types).
To	use	user-defined	data	types	in	the	Item	field,	however,	the	names	of
these	data	types	must	not	be	case-insensitive,	as	the	Item	field	does	not
differentiate	upper	and	lower	case.	If	 that	happens,	the	Driver	does	not
allow	using	these	data	types	in	the	Item	field	(please	check	topic	User-
Defined	Data	Types).
	



Examples
1. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	100	of	a	device	with	Id	1,	interpreted	as	a	DWord,	with	Slave
Id	in	the	Device	field:
a. Device:	"1:"
b. Item:	 "hr100.u32"	 or	 "hr100.dword",	 or	 if	 a	 hexadecimal	 is
convenient,	"hr&h64.u32"

2. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	150	of	a	device	with	Id	3,	interpreted	as	a	Float,	with	Slave	Id
in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	 "3:hr150.f"	 or	 "3:hr150.float",	 or	 if	 a	 hexadecimal	 is
convenient,	"3:hr&h96.f"

3. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	 1500	 of	 a	 device	 with	 Id	 5,	 interpreted	 as	 a	Double,	 with
Slave	Id	in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	 "5:hr1500.d"	 or	 "5:hr1500.double",	 or	 if	 a	 hexadecimal	 is
convenient,	"5:hr&h5DC.d"

4. Reading	or	writing	Holding	Registers	(functions	03	and	06)	to	or	from
address	100	of	a	device	with	Id	5,	interpreted	as	a	Word,	with	Slave	Id
in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	"5:shr100"	or	"5:shr100.u16",	or	"5:shr100.word".	Notice	that,
because	 it	 is	 a	 Word,	 Modbus	 protocol's	 native	 data	 type	 for
Holding	Registers,	the	data	type	can	be	omitted

5. Reading	or	writing	Holding	Registers	(functions	03	and	06)	to	or	from
address	100	of	a	device	with	Id	5,	interpreted	as	a	user-defined	data
type	named	"mytype",	with	Slave	Id	in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	"5:shr100.mytype"



	

NOTE
The	 address	 space	 of	 Holding	 Registers	 in	Modbus	 protocol	 contains
16-bit	registers.	Therefore,	to	read	32-bit	data	types,	such	as	a	DWord
or	a	Float,	users	must	read	two	"hr"	addresses	for	each	Tag	accessed.
Likewise,	 reading	 a	 Double-type	 Tag	 demands	 the	 reading	 of	 four
Holding	Register	addresses.	For	the	same	reasons,	reading	and	writing
"hr"	Tags	with	a	Byte	data	type	can	only	be	performed	in	pairs.	On	the
device,	each	Holding	Register	address	always	contains	two	bytes.

	



Size	of	Data	Types
BCD-	and	String-data	types,	as	they	have	a	variable	size,	demand	the
specification	of	a	data	type	size,	in	bytes,	right	after	their	data	type.
Notice	that	only	data	types	2	and	4	are	valid	(2	and	4	bytes	or	4	and	8
digits)	for	BCD	data	types.	Examples:
1. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	 100	 of	 a	 device	 with	 Id	 1,	 interpreted	 as	 a	 10-byte-String
(five	"hr"	registers),	with	Slave	Id	in	the	Device	field:
a. Device:	"1:"
b. Item:	"hr100.s10"

2. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	100	of	a	device	with	Id	1,	interpreted	as	an	eight-digit-BCD
(four	bytes	or	two	"hr"	registers),	with	Slave	Id	in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	"1:hr100.bcd4"

	



Byte	Order
As	explained	 on	 the	 syntax	 of	 the	 previous	 section,	 users	 can	 add	 an
optional	 byte	 order	 parameter	 in	 Tag's	 Item	 field	 to	 specify	 a	 byte
ordering	 for	 devices	 that	 do	 not	 comply	 with	 protocol's	 standard.	 If	 a
device	 complies	with	Modbus	 protocol's	 default	 ordering,	 this	 field	 can
be	omitted.
If	distorted	values	are	read,	which	can	be	observed	on	early	tests	with	a
device,	and	if	these	values,	converted	to	hexadecimal,	are	correct	after
inverting	the	position	of	some	bytes,	please	read	this	section	carefully.
The	 Modbus	 protocol	 uses	 the	 big	 endian	 format	 by	 default,	 where
values	 are	 formatted	 with	 their	 most	 significant	 coming	 first	 in
communication	 frames.	 This	 is	 the	 default	 format	 used	 by	 this	 Driver.
There	 is,	 however,	 a	 large	 amount	 of	 devices	 in	 the	 market	 that	 use
values	with	other	combinations	for	byte	ordering.
As	an	example,	if	a	Driver	reads	a	value	equal	to	"1234h"	(or	"4660"	in
decimal),	 by	 default	 this	 Driver	 waits	 that	 data	 be	 sent	 with	 a	 byte
sequence	equal	to	12h	and	34h.	If	 the	device	uses	an	inverted	default,
which	 is	called	 little	 indian,	 then	 the	byte	34h	 is	sent	 first	and	 then	 the
byte	12h,	and	the	Driver	may	interpret	it	as	3412h,	or	13330	in	decimal,
unless	these	two	bytes	were	inverted	before	interpreting.
For	32-bit	values,	there	are	cases	when	Word	values	are	swapped,	but
with	 bytes	 inside	 Word	 values	 keeping	 their	 default	 ordering.	 For
example,	 the	 value	 12345678h	 can	 be	 received	 as	 56781234h.	 There
are	also	other	situations,	with	several	different	combinations	for	ordering.
To	allow	communication	with	these	devices	that	do	not	follow	protocol's
standard	 byte	 order,	 this	 Driver	 allows	 users	 to	 configure	 Tags	 by
specifying	the	order	to	use.
The	byte	order	parameter	corresponds	to	the	swap	options	from	the	old
numerical	configuration,	and	it	may	have	values	"b0",	"b1",	"b2",	"b3",
"b4",	 "b5",	 "b6",	 "b7",	 "alias",	 or	 else	 "alias2"	 (please	 check	 the	 next
table).
If	 the	 byte	 order	 parameter	 is	 omitted,	 a	 data	 is	 interpreted	 as	 the
protocol's	default,	which	is	equivalent	to	the	"b0"	code.
The	 next	 table	 indicates	 that	 swap	 operations	 (Swap	 Bytes,	 Swap



Words,	and	Swap	DWords)	are	performed	for	each	ordering	mnemonic
(from	"b0"	to	"b7").

Swapping	operations

	 SWAP
BYTES

SWAP
WORDS

SWAP
DWORDS

ALIAS ALIAS	2
(SWAPS)

BYTE	ORDER	*

b0 	 	 	 msb - by7	by6	by5	by4
by3	by2	by1	by0

b1X 	 	 - sb by6	by7	by4	by5
by2	by3	by0	by1

b2 	 X 	 - sw by5	by4	by7	by6
by1	by0	by3	by2

b3X X 	 - sb.sw by4	by5	by6	by7
by0	by1	by2	by3

b4 	 	 X - sdw by3	by2	by1	by0
by7	by6	by5	by4

b5X 	 X - sb.sdw by2	by3	by0	by1
by6	by7	by4	by5

b6 	 X X - sw.sdw by1	by0	by3	by2
by5	by4	by7	by6

b7X X X lsb sb.sw.sdw by0	by1	by2	by3
by4	by5	by6	by7

*	64-bit	(where	"by0"	is	"lsb"	and	"b7"	is	"msb")
That	 is,	 "b0"	 does	 not	 perform	 any	 swap	 operation	 on	 data	 bytes,
keeping	the	original	ordering	of	bytes	received	from	the	device,	which	is
equivalent	to	deselecting	the	swap	options	on	Operations	tab	from	the
old	numerical	configuration.
"b1",	on	the	other	hand,	performs	a	byte	swapping,	two	by	two,	that	 is,
when	 receiving	a	Word	 (unsigned	16-bit	 integer)	with	 the	hexadecimal
value	 0102h,	 the	 value	 returned	 to	 the	 Tag	 is	 0201h,	 with	 its	 bytes
swapped.	It	is	equivalent	to	the	old	Swap	Bytes	option.
"b2"	 performs	 a	 Word	 swapping,	 that	 is,	 bytes	 two	 by	 two,	 which
obviously	affects	only	32-bit	data	or	larger.	This	is	the	same	as	selecting



the	Swap	Words	 option	 from	 the	 old	 numerical	 configuration.	 As	 an
example,	 if	 the	 value	 01020304h	 is	 received	 from	 a	 device,	 the	 value
used	for	application	Tags	is	03040102h.
"b3"	performs	byte	and	Word	 swapping,	which	 is	equivalent	 to	 the	old
Swap	Bytes	and	Swap	Words	options	enabled	simultaneously.	 In	 this
case,	the	value	01020304h	becomes	04030201h.
Likewise,	 "b4"	 performs	 a	 DWord	 swapping	 for	 64-bit	 values,	 which
corresponds	 to	 the	 Swap	 DWords	 option	 from	 the	 old	 numerical
configuration,	 that	 is,	 the	value	1122334455667788h	 is	 interpreted	as
5566778811223344h.	And	so	on	for	all	other	codes.
The	 last	 two	 table	 columns	 specify	 aliases	 that	 users	 can	 use	 for
readability,	 that	 is,	 instead	 of	 using	 a	 "b0"	 code,	 users	 can	 use	 an
"sw.sdw"	alias,	and	so	on.
	



How	to	Select	the	Correct	Byte	Order?
In	most	cases,	device's	documentation	specifies	the	byte	order	used,	or
how	to	configure	it	(there	are	devices	that	allow	that	configuration).
In	cases	where	device's	documentation	does	not	contain	a	configuration,
users	must	contact	manufacturer's	technical	support.
If	 there	 is	 no	 reliable	 information,	 users	 must	 perform	 empirical	 tests,
analyzing	 the	 returned	 values,	 in	 hexadecimal,	 comparing	 them	 to	 the
expected	 values	 and	 observing	 if	 there	 are	 byte	 order	 inversions	 that
may	explain	the	differences.
There	are	basically	three	situations:
1. For	devices	providing	data	using	Modbus	protocol's	default	byte	order
(big	endian	or	Motorola),	with	 the	most	significant	bytes	coming	 first,
users	must	omit	 this	parameter	or	define	 it	as	 "b0".	This	 is	 the	most
common	situation.

2. For	 devices	 using	 another	 byte	 order	 standard,	 with	 the	 least
significant	bytes	coming	first	(little	endian),	users	must	enable	all	swap
options	referring	to	the	data	type	used,	which	corresponds	to	the	"b7"
mnemonic.

3. In	 the	 least	 common	 case,	 there	 are	 devices	 that	 use	 different	 byte
orders	 for	 different	 data	 sizes,	 providing	 for	 instance	 the	 most
significant	 byte	 of	 each	Word	 first,	 but	 the	 least	 significant	Word	 of
each	DWord	first.	Therefore,	users	must	evaluate	in	which	case	each
swap	option	must	be	enabled,	 thus	converting	 the	value	 returned	by
the	device	to	protocol's	default	big	endian	format.

	

NOTE
All	mentioned	swap	options	have	no	effect	for	Bit	data	types	or	eight-bit-
size	 types	 (Byte,	Char,	 and	 Int8).	 Swapping	 occurs	 inside	 each	 data
type,	that	is,	the	Swap	Words	option	has	no	effect	for	16-bit	data	types,
as	well	as	the	Swap	DWords	option	has	no	effect	for	32-bit	data	types.
BCD	data	types	do	not	allow	swapping	operations	either.

	



The	 topic	 Frequently	 Asked	 Questions	 lists	 a	 few	 known	 cases,
already	observed	on	technical	supports.	Examples:
1. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	1500	of	a	device	with	 Id	5,	 interpreted	as	a	Double	without
byte	inversion,	with	Slave	Id	in	the	Item	field:
a. Device:	""	(empty	String)
b. Item:	"5:hr1500.d"	or	"5:hr1500.double",	or	else	"5:hr1500.d.b0"

2. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	1500	of	a	device	with	Id	5,	 interpreted	as	a	Double	with	 the
least	significant	byte	of	each	Word	coming	first,	and	with	Slave	Id	 in
the	Item	field:
a. Device:	""	(empty	String)
b. Item:	 "5:hr1500.d.b1"	 or	 "5:hr1500.double.b1",	 or	 else
"5:hr1500.double.sb"

3. Reading	or	writing	Holding	Registers	(functions	03	and	16)	to	or	from
address	1500	of	a	device	with	Id	5,	 interpreted	as	a	Double	with	 the
least	 significant	 byte	 coming	 first	 (little	 endian),	 and	with	Slave	 Id	 in
the	Item	field:
a. Device:	""	(empty	String)
b. Item:	 "5:hr1500.d.b7"	 or	 other	 variations,	 such	 as	 "5:hr1500.d.lsb"
and	"5:hr1500.d.sb.sw.sdw"

	



Driver's	Special	Tags
In	addition	to	all	Tags	described	previously,	users	can	configure	Driver's
Special	 Tags	 using	 Strings,	 which	 are	 described	 in	 details	 on	 their
specific	topics	(click	an	item	for	more	information).

Special	Tags

DEVICE ITEM OPERATION
	 ForceWaitSilence Writing

<slave	id>: LastExceptionCode Reading	or	writing

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Numerical	Configuration Top		Previous		Next

Numerical	configuration	 is	performed	using	N	and	B	 parameters	of	 I/O
Tags,	 not	 using	 the	Device	 and	 Item	 fields	 available	 in	Elipse	E3	 or
Power,	which	must	be	left	empty.
This	configuration	method	must	be	used	with	Elipse	SCADA	 and	with
legacy	 applications.	 In	 applications	 using	 newer	 products,	 such	 as
Elipse	E3,	Elipse	Power,	or	Elipse	OPC	Server,	it	 is	recommended	to
use	String	configuration.
I/O	 Tags	 configured	 numerically	 reference	 operations	 previously
configured	on	configuration	window.
	



Operations
As	already	explained	on	topic	Operations	tab,	this	Driver	supports	other
data	types	in	addition	to	protocol's	native	data	types.	For	this	reason,	the
concept	of	Operation	was	created	on	this	Driver.
On	operations	using	Modbus	functions	that	read	and	write	bits,	such	as
protocol	functions	1,	5,	and	15,	this	Driver	always	map	binary	values	of
each	bit	to	Block	Elements,	where	each	Element	represents	the	value	of
a	specific	bit.
Operations	 with	 eight-bit	 data	 types,	 such	 as	 the	 Byte	 type,	 always
imply,	obviously,	on	reading	at	least	two	bytes	(a	16-bit	Modbus	register).
To	prevent	surprises,	 this	Driver	 requires	 that	eight-bit	data	writings	be
performed	 in	 pairs,	 that	 is,	 writing	 Blocks	 with	 an	 even	 number	 of
Elements.	These	operations	must	be	referenced	using	 I/O	Tag's	N2/B2
parameters,	as	described	later.
	



Configuration	Parameters	of	I/O	Tags
The	following	configuration	applies	to	I/O	Tag's	N	parameters,	as	well	as
to	I/O	Block	Tag's	B	parameters.

N1/B1:	Address	of	 a	 slave	device	 (PLC)	on	 the	network	 (Slave	 Id).
This	address	is	used	on	serial	networks	and	can	vary	from	1	to	247.
This	parameter	can	be	also	configured	with	value	0	(zero).	Thus,	this
Tag	 works	 in	 Broadcast	 mode,	 sending	 a	 message	 to	 all	 slave
devices	(PLC)	on	the	network.	In	Ethernet	(Modbus	TCP	mode),	the
address	generally	used	is	the	IP	address,	but	the	Slave	Id	can	still	be
used	 when	 the	 IP	 address	 references	 a	 gateway	 connected	 to	 a
device	network	(usually	an	RS485	network,	with	Modbus	RTU,	using
a	gateway	capable	of	performing	a	conversion	from	Modbus	TCP	to
Modbus	RTU)

	

NOTE
In	Broadcast	 mode	 with	N1	 equal	 to	 0	 (zero),	 users	 cannot	 perform
readings,	 only	 writings.	 In	 this	 mode	 all	 devices	 on	 the	 network	 are
addressed,	receiving	the	written	value	and	not	returning	any	response,
to	avoid	network	conflicts.

	
N2/B2:	Operation	 code.	References	an	operation	added	on	Driver's
configuration	window	(please	check	topic	Operations	Tab)
N3/B3:	 Additional	 parameter.	 This	 parameter	 is	 not	 generally	 used
and	can	be	kept	in	0	(zero).	It	is	only	used	in	four	situations:

Modbus	 functions	 20	 and	 21:	 For	 operations	 that	 use	 these
functions	 for	 file	 access	 (functions	 20	 and	 21),	 the	 N3/B3
parameters	specify	the	file	to	access

Use	 Bit	Mask:	 For	 Tags	 referencing	 operations	 with	 the	Use	 Bit
Mask	option	enabled,	the	N3/B3	parameter	specifies	the	number	of
the	bit	to	access	(please	check	topic	Operations	Tab)
User-Defined	Data	Types:	For	operations	that	use	structures,	if	the
B3	 parameter	 is	 greater	 than	 0	 (zero),	 it	 defines	 the	 return	 of	 an



event-reported	block	array,	by	using	a	sequence	of	Tag's	OnRead
events	(please	check	topic	User-Defined	Data	Types)
Gen	SOE	Special	Function:	For	operations	that	use	the	Gen	SOE
special	reading	function,	the	N3/B3	parameter	 indicates	 the	size	of
the	 linked	 table	 in	 the	 PLC	 or	 slave	 device	 memory,	 as	 the
maximum	number	 of	 supported	 events	 (please	 check	 topic	Elipse
Software's	Generic	SOE	Reading	Algorithm)

N4/B4:	Register,	variable,	or	bit	address	on	the	slave	device	(PLC)	to
read	 or	 write,	 according	 to	 device's	 register	 map	 (please	 check
device's	 documentation).	 It	 is	 important	 to	 correctly	 configure	 the
Data	 Address	 Model	 Offset	 option	 (please	 check	 topic	 Modbus
Tab)	and	check	if	manufacturer's	documentation	does	not	use	offsets
used	by	old	Modbus	devices,	known	as	Modbus	Convention
Size/Index	 (Block	 Tags	 only):	 Each	 Block	 Element	 represents	 a
data	 value	 of	 a	 type	 defined	 in	 the	 operation	 used	 (the	 N2/B2
parameter).	Notice	that	this	protocol	only	supports	Bit	or	Word	types.
Thus,	if	this	operation	selects	the	DWord	type	(32-bit)	for	each	Block
Element,	 this	 Driver	 must	 read	 two	 consecutive	 registers	 from	 a
device

	



Special	Tags
In	 addition	 to	 I/O	 Tags	 (Tags	 referencing	 operations),	 there	 are	 also
special	 Tags	 to	 execute	 specific	 Driver	 functions.	 These	 Tags	 are
described	on	topic	Configuring	Special	Tags.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Addressing	 Tips	 (Modbus
Convention)

Top		Previous	
Next

On	topic	Configuring	an	I/O	Tag,	Tag	addressing	(N4/B4	parameters	on
numerical	 configuration)	 is	 described	 based	 on	 the	 most	 recent
Modbus	 protocol	 specification	 (version	 1.1b).	 However,	 there	 are
devices	 that	 still	 use	 the	 old	 offset	 addressing	 convention	 known	 as
Modbus	 Convention,	 which	 adds	 offsets	 to	 an	 address.	 This	 topic
explains	 how	 to	 address	 Tags	 if	 device's	 register	mapping	 still	 follows
that	 old	 convention,	 originated	 from	 initial	 Modicon	 specification,	 not
included	on	the	current	specification.
The	address	provided	in	the	Tag	is	sent	together	with	protocol's	request
frame,	 with	 or	 without	 the	 default	 offset	 of	 1	 (one),	 required	 by	 the
Modbus	 Data	 Model	 specified	 by	 the	 protocol,	 according	 to	 the
configuration	in	the	Data	Model	Offset	field,	on	Modbus	tab	of	Driver's
configuration	window.
In	addition	to	this	default	offset	of	1	(one),	defined	on	the	current	Modbus
standard	 (version	 1.1b),	 some	manufacturers	 still	 use	 the	 old	Modicon
standard,	 known	 as	Modbus	 Convention,	 with	 an	 offset	 that	 can	 be
added	 to	 the	 address,	 and	 whose	 value	 depends	 on	 the	 Modbus
function	used,	or	more	specifically,	depends	on	which	address	space	this
function	 accessed	 originally.	 Such	 additional	 offset	 must	 be	 ignored
when	defining	Tag	addresses	on	this	Driver.	Later	on	this	Manual	there
are	more	examples.	The	next	table	lists	all	offsets	used	by	the	Modbus
Convention	standard.

Modbus	Convention	standard	offsets

DATA	TYPE	(STANDARD	DATA
MODEL)

MODBUS	FUNCTION OFFSET

Coils 01:	Read	Coils	(0x)
05:	Write	Single	Coil	(0x)
15:	Write	Multiple	Coils
(0x)

000000

Discrete	Inputs 02:	Read	Discrete	Inputs
(1x)

10000



Input	Registers 04:	Read	Input	Registers
(3x)

30000

Holding	Registers 03:	Read	Holding
Registers	(4x)
06:	Write	Single	Register
(4x)
16:	Write	Multiple
Registers	(4x)

40000

File	Register	(old	Extended
Memory	file)

20:	Read	General
Reference	(6x)
21:	Write	General
Reference	(6x)

60000

	
If	 device's	 register	 map	 uses	 this	 convention,	 users	 must	 follow	 this
procedure	 to	determine	 the	addresses	 to	attribute	 to	Tags,	 in	 the	 Item
field	 when	 configuring	 by	 Strings	 or	 in	 N4	 or	 B4	 parameters	 for
numerical	configuration:
1. On	Modbus	tab,	select	the	Data	is	addressed	from	1	option.
2. Subtract	 from	 the	 address	 displayed	 on	 device's	 manual	 the	 offset
shown	 on	 the	 previous	 table	 for	 the	 Modbus	 function	 used.	 TIP:
Remove	the	fifth	digit	from	right	to	the	left.

	
Notice	that,	in	devices	that	use	this	old	convention,	users	can	determine
which	Modbus	functions	can	be	used	to	access	each	register	or	bit	using
the	offset	used	in	its	address.

Examples

ADDRESS	WITH
OFFSET	(DEVICE)

ADDRESS	ON	I/O	TAG
(ITEM	OR	N4/B4)

MODBUS
FUNCTION

01234 1234 01:	Read	Coils
05:	Write	Single
Coil
15:	Write	Multiple



Coils

11234 1234 02:	Read	Discrete
Inputs

31234 1234 04:	Read	Input
Registers

41234 1234 03:	Read	Holding
Registers
06:	Write	Single
Register
16:	Write	Multiple
Registers

45789 5789 03:	Read	Holding
Registers
06:	Write	Single
Register
16:	Write	Multiple
Registers

65789 5789 20:	Read	General
Reference
21:	Write	General
Reference

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Automatic	Block	Partition Top		Previous		Next

Starting	 with	 version	 2.00,	 Modbus	 Driver	 now	 has	 a	 feature	 called
Automatic	Block	Partition.	With	 this	 feature,	 this	Driver	manages	 the
division	of	blocks	 larger	 than	protocol	 limits.	Thus,	users	do	not	need
to	worry	about	exceeding	the	maximum	limit	for	block	size,	because	this
Driver	 divides	 blocks	 in	 the	 correct	 sizes	 during	 communication	with	 a
device,	if	any	Block	Tag	exceeds	the	maximum	allowed	size.
Starting	 with	 version	 2.01,	 this	 Driver	 also	 supports	 Superblock
Readings.	 With	 this	 feature	 enabled,	 users	 do	 not	 need	 to	 group
variables	into	Block	Tags	aiming	to	improve	performance,	it	is	possible	to
use	 only	 Tags	without	 degrading	 performance.	 And	 as	 the	Superblock
algorithm	 already	 considers	 the	 maximum	 block	 size	 allowed	 by	 the
protocol,	when	this	feature	is	used	this	Driver	also	does	not	need	to	use
Automatic	Partition	feature.
In	 cases	 when,	 due	 to	 device's	 specificity	 (please	 check	 topic
Superblock	 Reading),	 it	 is	 not	 possible	 to	 enable	 the
EnableReadGrouping	property	in	E3	or	Elipse	Power	 (a	property	 that
enables	 Superblocks),	 or	 if	 users	 are	 using	 the	 old	 Elipse	 SCADA,
which	 does	 not	 support	 grouping	 (Superblocks),	 then	 they	 must	 use
Automatic	Block	Partition	to	ignore	protocol	limits.
	

IMPORTANT
Superblock	 grouping	 in	 E3	 and	 Elipse	 Power,	 as	 well	 as	 Driver's
Automatic	 Block	 Partition,	 require	 that	 a	 device	 supports	 all	 limits
established	 by	 standard	Modbus	 (please	 check	 topic	Maximum	Limit
for	 the	 Size	 of	 Blocks	 Supported	 by	 the	 Protocol).	 There	 are
devices,	 however,	 that	 support	 lower	 limits.	 For	 this	 automatic	 block
partition	to	work	in	these	cases,	as	well	as	Superblock	grouping,	starting
with	version	2.03	this	Driver	allows	customizing	the	maximum	supported
limit	 for	 PDU	 (Protocol	Data	Unit).	 To	 do	 so,	 on	 Driver's	 configuration
window,	on	Modbus	tab,	enable	the	Customize	Max.	PDU	Size	option
and	configure	 the	maximum	size	of	bytes	supported	by	 this	device	 for
PDU.	 If	 this	 device	 has	 different	 limits	 for	 each	 function,	 it	 may	 be
necessary	 to	 perform	 that	 grouping	 manually	 (please	 check	 topic



Superblock	Reading).

	
The	article	KB-23112	in	Elipse	Knowledgebase	presents	a	summary	of
questions	related	to	Tag	grouping	and	Block	resizing	 in	Modbus	Driver,
discussed	 here	 and	 in	 other	 topics	 (please	 check	 topics	 Superblock
Reading	and	Optimization	Tips).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us/questions/3722
http://kb.elipse.com.br/en-us


Superblock	Reading	(Grouping) Top		Previous		Next

Starting	with	version	2.01,	 this	Driver	supports	a	Superblock	Reading
feature.	This	 feature	 is	supported	by	E3	and	Elipse	Power,	 and	 it	 can
be	 enabled	 via	 Driver's	 EnableReadGrouping	 property	 in	 Organizer.
When	 this	 property	 is	 configured	 in	 True,	 users	 do	 not	 need	 to	 worry
about	block	resizing.
With	 this	 feature,	 it	 is	 possible	 (and	 usually	 recommended)	 to	 create
applications	with	only	simple	Tags	(PLC	Tags	in	Elipse	SCADA)	without
performance	 issues,	 because	 group	 optimization	 on	 readings	 is
automatically	performed	during	communication.	The	next	figure	displays
the	configuration	of	the	EnableReadGrouping	property	in	E3	or	Elipse
Power.

EnableReadGrouping	property
Elipse	 SCADA	 does	 not	 support	 Superblocks.	 The	 behavior	 when
reading	 Tags	 in	 Elipse	 SCADA	 is	 identical	 to	 E3	 and	 Elipse	 Power
when	the	EnableReadGrouping	property	is	configured	as	False.	In	both
cases,	this	Driver	relies	on	Automatic	Block	Partition,	and	it	can	divide
blocks	with	sizes	larger	than	protocol	 limits	 into	smaller	blocks	during



communication.	In	these	cases,	users	must	consider	that	grouping	when
defining	application	Tags,	as	seen	later	on	this	topic.
	

NOTES
Automatic	grouping	is	performed	based	on	application	Tags	in	advise.
Whenever	new	Tags	enter	or	 leave	advise,	 the	Superblock	algorithm
redefines	 this	grouping,	 that	 is,	Superblocks	 to	be	read	automatically,
at	run	time,	including	only	Tags	in	advise
Only	 Tags	 using	 numerical	 configuration	 can	 be	 grouped	 by	 the
Superblock	 service.	 Tags	 using	 configuration	 by	 Strings	 are	 not
grouped	by	the	Superblock	service

	

IMPORTANT
Superblock	 grouping	 in	 E3,	 as	 well	 as	 Driver's	 Automatic	 Block
Partition,	 require	 that	 a	 device	 supports	 the	 limits	 established	 by
standard	Modbus	(please	check	 topic	Maximum	Limit	 for	 the	Size	of
Blocks	Supported	by	the	Protocol).	There	are	devices,	however,	that
support	 lower	 limits.	 For	 automatic	 block	 partition	 and	 Superblock
grouping	to	work	on	these	cases,	starting	with	version	2.03,	 this	Driver
allows	customizing	the	maximum	limit	supported	for	PDU	(Protocol	Data
Unit).	To	do	so,	on	Driver's	configuration	window,	Modbus	 tab,	enable
the	Customize	Max.	PDU	Size	option	and	configure	the	maximum	size
of	 bytes	 supported	 for	 PDU	 on	 this	 device.	 If	 this	 device	 supports
different	 limits	 for	each	 type	of	 function,	users	must	perform	a	manual
grouping	 (please	 check	 further	 on	 this	 topic),	 observing	 all	 limits
described	on	manufacturer's	documentation.

	



Identifying	 Devices	 that	 do	 not	 Support	 Automatic
Grouping	(Superblocks)
Superblock	algorithm	considers	all	limits	and	addressing	spaces	defined
by	 standard	 Modbus	 protocol.	 For	 devices	 that	 implement	 Modbus
protocol	with	small	variations,	some	additional	advanced	configurations
may	be	necessary	 to	use	 this	Superblock	 feature,	 if	 its	usage	appears
viable.	In	these	cases,	it	is	necessary	to	disable	automatic	grouping	(the
EnableReadGrouping	property	configured	as	False),	and	then	perform
a	 manual	 grouping.	 The	 following	 conditions	 may	 prevent	 using
Superblocks,	or	may	require	additional	advanced	configurations:

Devices	 that	 define	 maximum	 limits	 for	 block	 sizes	 lower	 than
protocol's	 standard	 limit	 (a	 limit	 of	 253	 bytes	 for	 PDU).	Solution:
Configure	the	Customize	Max.	PDU	Size	option,	on	Modbus	tab

	

NOTE
There	 are	 devices	 whose	 PDU	 limits	 vary	 according	 to	 the	 Modbus
function	 used.	 In	 these	 cases,	 if	 it	 is	 necessary	 to	 use	 functions	 with
different	 limits,	 it	 is	 also	 necessary	 to	 disable	 Superblocks	 (the
EnableReadGrouping	 property	 configured	 as	 False),	 by	 manually
grouping	Tags	(please	check	later	on	this	topic).

	
Devices	 with	 discontinuities	 (undefined	 address	 intervals	 inserted
between	 valid	 intervals)	 on	 the	 register	 map.	 Solution:	 Once	 it	 is
impossible	 to	 inform	 to	 the	 Superblock	 algorithm	 which	 intervals
cannot	 be	 inserted	 in	 blocks,	 usually	 it	 is	 not	 possible	 to	 use
Superblocks.	 Disable	 Superblocks	 (the	 EnableReadGrouping
property	configured	as	False)	and	manually	group	all	Tags

Devices	 that	 do	 not	 support	 block	 readings.	 Solution:	 Disable
Superblocks	 (the	 EnableReadGrouping	 property	 configured	 as
False)	and	define	simple	Tags

Devices	 that	only	allow	defining	blocks	 in	pre-determined	addresses
and	 with	 fixed	 sizes.	 Solution:	 Disable	 Superblocks	 (the
EnableReadGrouping	 property	 configured	 as	 False)	 and	 define



simple	 Tags	 (PLC	 Tags	 in	 Elipse	 SCADA)	 or	 Blocks	 according	 to
device's	specification

	



Manual	Grouping
Usually,	 the	 larger	 the	grouping	of	variables	 in	blocks,	 the	 less	 reading
requests	are	needed	to	complete	a	scan	cycle	of	application	Tags,	thus
increasing	Tag's	update	speed.	For	 this	reason,	 if	 it	 is	not	possible	use
automatic	grouping	 (Superblocks),	 it	 is	preferable	 to	create	Block	Tags
containing	 as	 many	 variables	 as	 possible,	 instead	 of	 creating	 simple
Tags	(PLC	Tags	in	Elipse	SCADA).
Notice	that,	due	to	Automatic	Block	Partition	feature,	there	is	no	need
to	 prevent	 exceeding	 protocol's	 maximum	 limits,	 as	 long	 as	 a	 device
supports	protocol's	 default	 maximum	 limits.	 If	 this	 device	 does	 not
support	 these	 limits,	 but	 defines	 fixed	 limits,	 valid	 for	 all	 supported
Modbus	functions,	users	must	configure	the	Customize	Max.	PDU	Size
option,	on	Modbus	tab.
If	 a	 device	 supports	 different	 limits	 for	 each	 supported	 function,
automatic	 partitioning	 can	 be	 also	 unfeasible.	 In	 these	 cases,	 an
application	 developer	 must	 also	 consider	 device's	 limits,	 and	 define
blocks	respecting	these	limits.
For	 a	 manual	 grouping,	 using	 User-Defined	 Types	 can	 increase
possibilities	 of	 grouping,	 by	 allowing	 to	 gather	 on	 a	 single	 Block	 Tag
variables	 from	 the	 same	 addressing	 space,	 that	 is,	 a	 single	 Modbus
function,	 but	 with	 different	 data	 types	 (the	 defined	 structure	may	 have
elements	with	different	data	types).
For	more	 tips,	 please	 check	 topic	Optimization	Tips.	 The	 article	KB-
23112	 in	 Elipse	 Knowledgebase	 presents	 a	 summary	 of	 questions
related	to	Tag	grouping	and	block	resizing	in	Modbus	Driver,	discussed
here	and	on	other	topics.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

http://kb.elipse.com.br/en-us/questions/3722


Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Configuring	Special	Tags Top		Previous		Next

In	addition	to	I/O	Tags,	this	Driver	also	supports	a	few	Special	Tags	that
allow	 an	 application	 to	 trigger	 features	 not	 related	 to	 data	 reading	 or
writing.	 Unlike	 I/O	 Tags,	 Special	 Tags	 do	 not	 reference	 Driver
operations	 in	 numerical	 configuration.	 The	 next	 topics	 describe	 in
details	all	supported	Special	Tags:

Forcing	a	Wait	Silence

Reading	the	Last	Exception	Code

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Forcing	a	Wait	Silence Top		Previous		Next

Special	Tag	used	to	discard	all	pending	data	from	communication	until	it
finds	a	time-out,	indicating	that	there	is	no	more	data	to	receive.
This	 service	 can	 be	 configured	 on	 Modbus	 tab,	 to	 occur	 whenever
detecting	 a	 communication	 error.	 With	 this	 Tag,	 however,	 users	 can
execute	this	service	at	any	time	by	an	application.
This	Special	Tag	 is	executed	using	a	Tag's	writing	command.	Its	value,
written	to	the	Tag,	is	ignored.
	



String	Configuration
Device:	Not	used,	this	field	must	be	left	blank

Item:	"ForceWaitSilence"

	



Numerical	Configuration
N1:	Not	used,	can	be	left	in	zero

N2:	9001

N3:	Not	used,	can	be	left	in	zero

N4:	Not	used,	can	be	left	in	zero

Value:	Not	used,	can	be	left	in	zero

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Reading	the	Last	Exception	Code Top		Previous		Next

As	already	mentioned	on	this	Manual,	Special	Tags	for	reading	the	last
exception	 code	 are	 used	 to	 read	 the	 last	 exception	 code	 sent	 from	 a
certain	slave	device.
Such	codes	are	automatically	stored	by	this	Driver	 in	 internal	registers,
which	 can	 then	 be	 accessed	 using	 this	 Tag.	 In	 addition,	 at	 each
successful	communication	with	a	certain	device	where	no	exception	was
returned,	this	Driver	automatically	zeroes	the	associated	register.
	



Exception	Codes
Exception	 codes	 are	 used	 by	 a	 slave	 device	 (PLC)	 to	 report	 a	 failure
when	 executing	 a	 certain	 function.	 Slave	 devices	 do	 not	 return
exceptions	 in	 case	 of	 communication	 failures,	 a	 situation	where	 these
devices	simply	do	not	respond.	Exception	codes	are	returned	by	slaves
in	 situations	 where	 a	 master	 request	 (in	 case	 of	 a	 Driver)	 was
successfully	received,	but	could	not	be	executed	for	any	reason,	such	as
trying	to	read	or	write	to	a	non-existent	register.	In	this	case,	the	returned
exception	code	 indicates	 the	 type	of	error	occurred,	 that	 is,	 the	 reason
that	 a	 Driver's	 request,	 although	 correctly	 received,	 could	 not	 be
completed.
The	specification	of	Modbus	protocol	defines	nine	exception	codes.	The
list	 of	 protocol's	 default	 exceptions	 can	 be	 checked	 on	 topic	 List	 of
Protocol's	 Default	 Exceptions.	 In	 addition	 to	 these	 codes,	 some
manufacturers	 define	 additional	 codes,	 specific	 to	 their	 devices.	 Such
codes	must	be	documented	on	device's	manual.	If	 they	are	not,	please
check	with	manufacturer's	technical	support.
	



String	Configuration
Device:	Numerical	value	of	device's	Id	(Slave	Id)	followed	by	a	colon.
Example:	"1:",	"2:",	"3:",	etc.

Item:	"LastExceptionCode"

	



Numerical	Configuration
B1:	Slave	device's	address	(Slave	Id)

B2:	9999

B3:	Not	used,	can	be	left	in	zero

B4:	Not	used,	can	be	left	in	zero
	
Values	returned	on	Block	Elements:

Element	 1	 (index	 0):	 Exception	 code	 returned	 by	 a	 device	 (please
check	topic	List	of	Protocol's	Default	Exceptions)
Element	2	(index	1):	N2/B2	parameter	of	the	I/O	Tag	generating	this
exception

Element	3	(index	2):	N3/B3	parameter	of	the	I/O	Tag	generating	this
exception

Element	4	(index	3):	N4/B4	parameter	of	the	I/O	Tag	generating	this
exception

Element	5	 (index	4):	Size	 parameter	of	 the	 I/O	Tag	generating	 this
exception

Element	6	(index	5):	Device	parameter	of	the	I/O	Tag	generating	this
exception

Element	7	 (index	6):	 Item	 parameter	of	 the	 I/O	Tag	generating	 this
exception

	



Using	a	Special	Tag
The	most	common	usage	 for	 this	Tag	during	a	normal	scan	of	 function
Tags	is	via	an	exception	Tag's	OnRead	event.	In	this	case,	a	script	must
first	 reject	 null	 values,	 because	 these	 values	 indicate	 that	 exceptions
were	not	 received.	Next,	users	can	handle	 that	exception	by	executing
the	adequate	procedures,	according	to	the	received	code.	It	is	advisable
to	zero	the	exception	register	when	leaving	a	script,	to	indicate	that	this
exception	 was	 already	 handled.	 Please	 check	 the	 following	 example,
written	in	Elipse	Basic	(Elipse	SCADA):
//	TagExc	Tag's	OnRead	event	//	Note:	For	this	example,	consider	TagExc
//	with	automatic	reading	and	writing	enabled
	
If	TagExc	==	0
		Return
EndIf
	
If	TagExc	==	1
		...	//	Handles	exception	1
ElseIf	TagExc	==	2
		...	//	Handles	exception	2
Else
		...	//	Handles	all	other	exceptions
EndIf
	
TagExc	=	0	//	Zeroes	the	exception	register

	
This	 is	 another	 example,	 written	 in	 VBScript	 (Elipse	 E3	 and	 Elipse
Power):
'	TagExc	Tag's	OnRead	event
'	Note:	For	this	example,	consider	TagExc
'	with	automatic	reading	and	writing	enabled
	
Sub	TagExc_OnRead()
		If	Value	=	0	Then
				Exit	Sub
		End	If



	
		If	Value	=	1	Then
				...	'	Handles	exception	1
		ElseIf	Value	=	2	Then
				...	'	Handles	exception	2
		Else
				...	'	Handles	all	other	exceptions
		End	If
	
		Value	=	0	'	Zeroes	the	exception	register
End	Sub

	
In	writing	operations	by	script,	on	the	other	hand,	where	users	must	test
for	returned	exceptions	right	after	sending	a	command,	users	must	first
zero	the	exception	register.	That	avoids	an	eventual	exception	provoked
by	 a	 writing	 command	 to	 be	 confused	 with	 another	 pre-existing	 one.
Execute	the	writing	operation	and	test	a	Special	Tag's	value,	which	must
return	0	 (zero)	 if	no	exception	was	 received.	 In	case	 it	 returns	a	value
different	 from	 0	 (zero),	 then	 users	 can	 properly	 handle	 that	 received
exception.	Please	 check	 the	 following	example,	written	 in	Elipse	Basic
(Elipse	SCADA):
//	Note:	For	this	example,	consider	TagExc
//	with	automatic	reading	and	writing	enabled
//	and	TagVal	with	automatic	writing	disabled
	
TagExc	=	0	//	Zeroes	the	exception	register
	
TagVal.WriteEx(10)	//	Writes	the	value	10
	
If	TagExc	<>	0
		...	//	Handles	this	exception
EndIf

	
This	 is	 another	 example,	 written	 in	 VBScript	 (Elipse	 E3	 and	 Elipse
Power):
'	Note:	For	this	example,	consider	TagExc



'	with	automatic	reading	and	writing	enabled
'	and	TagVal	with	automatic	writing	disabled
	
'	Zeroes	the	exception	register
Application.GetObject("Tags.TagExc").Value	=	0
	
'	Writes	the	value	10
Application.GetObject("Tags.TagVal").WriteEx(10)
	
If	Application.GetObject("Tags.TagExc").Value	<>	0	Then
		...	'	Handles	the	exception
End	If

	

NOTE
This	Special	Tag	returns,	 in	addition	to	an	exception	code	(returned	on
Element	 zero),	 also	 Tag	 parameters	 whose	 communication	 provoked
that	 exception.	 If	 this	 information	 is	 not	 needed,	 users	 can	 read	 the
same	register	using	a	simple	Tag	(a	PLC	Tag	in	Elipse	SCADA),	without
using	a	Block	Tag.	In	this	case,	all	recommended	procedures	remain	the
same.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Mass	Memory	Reading Top		Previous		Next

This	Driver	allows	defining,	on	operations,	special	 reading	functions	for
collecting	mass	memory	from	slave	devices.	Such	functions	do	not	exist
in	the	protocol,	and	imply	in	using	specific	algorithms	for	reading	events
from	devices,	which	may	read	or	write	in	several	registers,	by	using	one
or	more	protocol	functions.
	



Callback	Readings
Starting	with	 version	 2.08,	 this	Driver	 implements	 callback	 readings,	 a
feature	available	 in	E3	 (starting	with	version	3.0)	and	 in	Elipse	Power,
which	 optimizes	 performance	 of	 mass	 memory	 readings.	 With	 this
feature,	an	application	delegates	to	a	Driver	a	Tag	scan	for	reading	mass
memory	 events.	 In	 other	words,	 an	 application	 does	 not	 need	 to	 keep
asking	 a	 Driver	 at	 each	 scan	 period.	 Instead,	 a	 Driver	 performs	 a
verification	of	 new	events	 on	a	 device	and	 collects	 events	 as	 soon	as
they	become	available,	and	sends	them	to	an	application.
	



Special	Functions	for	Mass	Memory	Readings
On	the	current	version	of	 this	Driver,	 the	following	functions	for	reading
sequences	of	events	(SOE)	are	supported:

GE	 SOE:	 Performs	 event	 collecting	 from	 GE	 PAC	 RX7	 PLCs.	 For
more	information,	please	check	topic	Reading	an	Event	Buffer	from
GE	PAC	RX7	Controllers
SP	SOE:	Collects	events	 from	Schneider	Electric	SEPAM	series	20,
40,	and	80	relays.	For	more	information,	please	check	topic	Reading
Events	from	Schneider	Electric	Relays	from	SEPAM	20,	40,	and
80	Series
GenSOE:	This	 function	uses	a	generic	Algorithm	created	by	Elipse
Software,	 Elipse	 Modbus	 SOE,	 which	 can	 be	 used	 by	 most
Programmable	 Controllers.	 It	 requires	 the	 creation	 of	 an	 analogous
programming	 procedure	 on	 PLC's	 programming	 (ladder).	 For	 more
information,	 please	 check	 topic	 Elipse	 Software's	 Generic	 SOE
Reading	Algorithm
65	03:	 Special	 function	 for	 reading	mass	memory	 events	 from	ABB
MGE	144	meters.	For	more	information,	please	check	topic	Reading
Mass	Memory	Registers	from	ABB	MGE	144	Meters

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Reading	an	Event	Buffer	from	GE	PAC
RX7	Controllers

Top	
Previous	

Next

An	event	buffer	can	be	read	using	three	types	of	Tags:	Event-reported
Tags,	Event-reported	Tags	by	point,	and	Real-time	Tags.
	



Event-reported	Tags
Event-reported	Tags	return,	at	each	reading	operation,	all	events	stored
in	 Driver's	 internal	 buffer,	 and	 they	 can	 be	 configured	 by	 Strings	 or
numerically.
	
String	Configuration

Device:	"<slave	id>:"

Item:	"gesoe0.<Base	address	of	an	event	stack>"

	
Numerical	Configuration
To	 read	 an	 event	 buffer	 from	 GE	 PAC	 RX7	 using	 numerical
configuration,	 users	 must	 define,	 on	 Driver's	 configuration	 window,	 an
operation	 that	 uses	 as	 its	 reading	 function	 the	 special	 function	 GE
SOE.	Its	data	type	must	be	defined	as	GE_events.

B1:	Slave	ID

B2:	Code	of	the	operation	defined	with	GE	SOE	function

B3:	0	(zero)

B4:	Base	address	of	PLC's	event	stack
	
At	 each	 scan	 on	 this	 Tag,	 this	 Driver	 checks	 if	 there	 are	 events	 on
controller's	buffer.	If	there	are	events,	this	Driver	starts	an	event-reading
thread,	 which	 is	 executed	 in	 background,	 not	 blocking	 the	 scan	 of	 all
other	 Tags.	 After	 finishing	 the	 reading	 of	 a	 Driver's	 buffer,	 this	 event-
reported	Tag	returns	the	set	of	events	read	on	that	scan.
Returned	events	generate	a	 sequence	of	OnRead	 events	on	 this	Tag.
For	 each	 read	 event,	 E3	 updates	 Tag	 fields	 (Element	 values	 and
timestamp)	 with	 values	 from	 a	 certain	 event,	 and	 calls	 the	 OnRead
event	 once.	 This	 event's	 script	 must	 be	 defined	 by	 users,	 and	 it	 is
generally	used	to	insert	Tag's	data	in	a	Historic.
Every	 event	 is	 represented	 by	 a	 Block	 with	 two	 Elements,	 with	 its
Timestamp	field	read	from	a	device.	Fields	from	the	respective	reading



Block	Tag	are	displayed	on	the	next	table.
Block	Tag	fields

OFFSET MEANING DATA	TYPE RANGE	OF	VALUES
0 Point	identification Byte Between	0	and	15

1 Point	status Byte Between	0	and	1

	
For	 more	 information	 about	 event-reported	 Tags,	 please	 check	 the
specific	topic	on	E3	User's	Manual.
	

IMPORTANT
When	 reading	 mass	 memory	 events	 in	 event-reported	 Tags	 in	 E3,
disable	Tag's	dead	band	(the	EnableDeadBand	property	configured	as
False)	and	also	the	linked	Historic	object	(the	DeadBand	property	equal
to	zero),	to	avoid	loosing	events	with	near	values.	It	is	also	important	to
disable	historic	by	scan	 (in	E3,	 the	ScanTime	property	equal	 to	zero).
This	 ensures	 that	 new	 events	 are	 only	 stored	 using	 the	WriteRecord
method,	 executed	 on	 Tag's	 OnRead	 event,	 avoiding	 duplication	 of
events.

	

http://www.elipse.com.br/downloads


Event-Reported	Tags	by	Point
Starting	with	version	2.5	of	this	Driver,	it	is	possible	to	use	a	new	Tag	to
download	events	from	a	specific	point.
This	Tags	works	as	the	previous	one,	except	that	 it	returns	only	events
from	a	specific	point.
Different	 from	 the	 previous	 event,	 the	 returned	 value	 only	 contains	 a
single	Element	with	a	status	value	of	a	point,	so	that	only	one	Tag	can
be	used.	This	Tag	must	be	configured	as	follows:
	



String	Configuration
Device:	"<Slave	Id>:"

Item:	"gesoe<200	+	Point's	index>.<base	address	of	event	queue>"

	



Numerical	Configuration
N1:	Slave	ID

N2:	Code	of	the	operation	defined	with	GE	SOE	function

N3:	 200	 +	 Point's	 index	 (for	 example,	 for	 point	 2,	 configure	N3	 as
202)

N4:	Base	address	of	PLC's	event	stack
	
For	more	information	about	event-reported	Tags,	please	check	a	specific
topic	on	E3	User's	Manual.
	

http://www.elipse.com.br/downloads


Real-time	Tags
These	 Tags	 return	 the	 most	 recent	 event	 already	 read	 for	 a	 specific
point.	 These	 events	 are	 stored	 on	 Driver's	 internal	 memory	 for	 each
PLC's	 event	 reading,	 with	 their	 respective	 timestamps	 read	 from	 a
device.	This	Tag	uses	the	following	parameters:
	



String	Configuration
Device:	"<Slave	Id>:"

Item:	"gesoe<100	+	Point's	index>.<base	address	of	event	queue>"

	



Numerical	Configuration
N1:	Slave	ID

N2:	Operation	Code

N3:	100	+	Point's	index

N4:	Base	address	of	PLC's	event	stack

Value:	Point's	status

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Reading	 Events	 from	 Schneider	 Electric
Relays	from	SEPAM	20,	40,	and	80	Series

Top	
Previous	

Next

To	 read	 SEPAM	 relays,	 the	 offset	 model	 of	 addressing	 must	 be
configured	 as	Data	 is	 addressed	 from	 0,	 on	Modbus	 tab.	 Reading
these	events	is	performed	using	two	basic	types	of	Tags:

Tag	for	collecting	all	table	events	(mandatory):	Performs	a	collect
of	all	table	events	from	a	certain	memory	zone	on	a	device.	This	Tag,
in	 addition	 to	 returning	 all	 events	 read	 to	 an	 event-reported
application,	 still	 stores	 events	 read	 in	 a	 Driver's	 internal	 buffer,	 to
remove	 them	 using	 readings	 on	 Tags	 for	 reading	 a	 single	 event,
described	next

Tag	for	reading	a	single	event	(optional):	Returns	events	received
from	a	 specified	 relay,	with	 a	 certain	 address,	 type,	 and	 zone.	 This
Tag	 does	 not	 perform	 a	 direct	 reading	 from	 a	 device,	 but	 returns
events	from	Driver's	internal	buffer,	stored	during	the	reading	of	a	Tag
for	collecting	all	table	events,	described	previously,	that	is,	to	be	able
to	read	events	with	this	type	of	Tag,	a	Collecting	all	events-type	Tag
must	be	already	active,	with	its	scan	enabled.	This	Tag	is	useful	when
users	need	to	get	events	from	a	specific	type	and	source	(relay,	zone,
address,	and	type).	An	example	of	usage	is	an	association	to	Screen
objects,	displaying	the	status	of	a	certain	event	address.	Although	this
Tag	 returns	 the	 same	 information	 returned	 by	 the	 previous	 Tag,	 its
usage	 prevents	 users	 from	 creating	 filters,	Select	Case	 clauses	 in
VBScript,	 or	 any	 other	method	 to	 separate	 several	 types	 of	 events
returned	 by	 a	 Tag	 for	 collecting	 all	 events	 by	 script	 in	 an
application

	
An	application	must	 implement	 a	Tag	 for	 collecting	 all	 events	 for	 each
table	 or	 event	 zone	 to	 collect	 on	 each	 relay,	 because	 it	 is	 during	 the
reading	 of	 this	 Tag	 that	 actual	 events	 are	 collected	 from	 a	 device.
Configuration	for	these	two	Tags	is	presented	next.
	



Tag	for	Collecting	all	Table	Events	(Event	Zone)
This	 is	an	event-reported	Tag.	 Its	 typical	usage	 is	 inserting	events	 in	a
linked	Historic,	by	using	Historic's	WriteRecord	method,	called	on	Tag's
OnRead	event.	At	each	reading,	that	is,	at	each	Tag's	scan	period,	this
Driver	 can	 collect	 up	 to	 four	 new	 events	 from	 a	 device.	 This	 is	 the
maximum	 number	 of	 events	 that	 each	 relay's	 event	 zone	 contains	 at
each	reading	request.
As	it	is	during	the	reading	of	this	Tag	that	events	are	effectively	collected
from	a	device,	event	if	its	data	is	not	used	directly,	that	is,	even	if	there	is
no	need	to	store	all	events	in	a	Historic,	its	implementation	is	mandatory
for	single-event	Tags	to	return	data.	A	Tag	for	collecting	all	events	must
be	configured	as	a	Block	Tag	with	three	Elements,	and	with	the	following
parameters:
	



String	Configuration
Device:	"<slave	id>:"

Item:	"spsoe<Zone	or	Event	Table	(1	or	2)>"

	
Example:	To	read	Zone	1	of	Slave	1,	Device	is	equal	to	"1:"	and	Item	is
equal	 to	 "spsoe1".	 Alternatively,	Device	 can	 be	 equal	 to	 ""	 and	 Item
equal	to	"1:spsoe1"	(please	check	the	topic	String	Configuration).
	



Numerical	Configuration
To	use	numerical	configuration,	users	must	define,	on	Operations	tab,
an	operation	 that	uses	as	 its	 reading	 function	 the	special	function	SP
SOE.	 Its	data	 type	 is	automatically	defined	as	SP_events,	as	soon	as
the	SP	SOE	reading	function	is	selected.

B1:	 1000	 +	 Slave	 address	 (relay)	 on	 the	 network	 (between	 1	 and
247)

B2:	 Code	 of	 the	 operation	 configured	 with	 special	 reading
function	SP	SOE
B3:	0	(zero)

B4:	Zone	or	event	table	(1	or	2)
	
The	 next	 table	 describes	 the	meaning	 of	 these	 three	 Block	 Elements,
which	have	their	values	returned	as	reported	by	events.

Meaning	of	Block	Elements	(SP_events	data	type)

OFFSETMEANING DATA
TYPE

RANGE	OF	VALUES

0 Type	of
event

Word From	0	to	65535	(800H	for	Remote
Annunciation,	Internal	Data,	and	Logic
Input)

1 Address	of
the	event

Word References	bit	addresses	from	1000H	to
105FH

2 Ramp	up
or	down

Word 00:	Ramp	down
01:	Ramp	up

	
For	 more	 information	 about	 event-reported	 Tags,	 please	 check	 topic
Tags	Reported	by	Events	on	E3	User's	Manual.
	

IMPORTANT
When	 reading	 mass	 memory	 events	 in	 event-reported	 Tags	 in	 E3,

http://www.elipse.com.br/downloads


disable	Tag's	dead	band	(the	EnableDeadBand	property	configured	as
False)	and	also	the	associated	Historic	object	(the	DeadBand	property
equal	 to	 zero),	 to	 avoid	 loosing	 events	 with	 close	 values.	 It	 is	 also
important	 to	 disable	 historic	 by	 scan	 (in	 E3,	 the	 ScanTime	 property
equal	 to	zero).	This	ensures	that	new	events	are	only	stored	using	the
WriteRecord	 method,	 executed	 on	 Tag's	 OnRead	 event,	 avoiding
duplication	of	events.

	



Tag	for	Reading	a	Single	Event
This	is	also	an	event-reported	Tag,	and	users	can	use	its	OnRead	event
for	storage	in	a	Historic.	Notice	that	this	does	not	prevent	it	to	be	treated
as	a	normal	Tag	(a	real-time	Tag),	 in	case	only	 its	most	recent	value	is
relevant.	 As	 this	Driver	 only	 reads	 an	 internal	 buffer,	 it	 is	 advisable	 to
define	a	very	low	scan	time,	even	lower	than	the	one	from	the	other	type
of	 Tag.	 CPU	 consumption	 at	 each	 scan	 can	 be	 considered	 as	 not
significant.	 It	 is	 suggested	 to	 configure	 it	 as	 half	 the	 scan	period	 for	 a
Tag	for	collecting	all	events.
As	already	mentioned,	this	Tag	is	used	to	get	a	status	for	a	certain	event
address,	without	parsing	or	performing	filters	on	events	that	arrive	by	the
previous	 Tag,	 by	 script,	 or	 by	 any	 other	 means.	 A	 typical	 application
would	be	linking	it	to	Screen	objects.
A	 Tag	 for	 reading	 a	 single	 event,	 as	 already	 mentioned,	 does	 not
perform	a	 reading	of	events	 from	a	device,	but	 from	a	Driver's	 internal
buffer,	 previously	 filled	 during	 the	 reading	 of	 a	 Tag	 for	 collecting	 all
events.	This	Tag	returns	a	single	Element,	an	event-reported	one,	and	it
can	be	configured	as	a	simple	Tag	(it	does	not	need	to	be	a	Block	Tag).
This	Driver	accepts	up	to	eight	events	accumulated	by	event	point,	that
is,	 for	 each	combination	of	 relay,	 zone,	 type,	and	event	address,	 in	 its
internal	buffer.	 If	 there	 is	an	overflow,	 that	 is,	 if	more	 than	eight	events
from	a	single	point	are	returned	without	any	single-event	Tag	collecting
them,	this	Driver	starts	to	discard	older	events.	The	correct	configuration
of	a	scan	time	may	prevent	data	loss.
	

TIP
It	is	recommended	to	configure	a	scan	for	single-event	Tags	with	a	value
equivalent	 to	 half	 the	 configured	 value	 for	 the	 Tag	 for	 collecting	 all
associated	 events,	 thus	 avoiding	 the	 loss	 of	 events	 by	 overflow	 of
Driver's	internal	buffer.

	
This	Tag	must	be	configured	with	the	following	parameters:
	



String	Configuration
Device:	"<slave	id>:"

Item:	 "ptspsoe<Event	 type	(800H	by	default)>.<Event	bit	address)	+
Event	zone	offset*	(please	check	the	next	table)>"

	
Example:	 To	 read	 800H-type	 events	 at	 address	 1	 of	 zone	 2,	 Device
must	 be	 equal	 to	 "1:"	 and	 Item	 must	 be	 equal	 to
"ptspsoe&h800.&h8001".	 Alternatively,	Device	 can	 be	 equal	 to	 ""	 and
Item	 equal	 to	 "1:ptspsoe&h800.&h8001"	 (please	 check	 topic	 String
Configuration).
	



Numerical	Configuration
N1:	Slave	address	(relay)	on	the	network	(between	1	and	247)

N2:	 Code	 of	 the	 operation	 configured	 with	 special	 reading
function	SP	SOE
N3:	 Event	 type	 (0800H	 by	 default,	 according	 to	 manufacturer's
documentation)

N4:	 Event	 address	 (Event	 bit	 address)	 +	 Event	 zone	 offset,	 as
described	on	the	next	table

	
Options	for	event	address	(Events	Zone	Offset)

EVENT	ZONE EVENT	ZONE	OFFSET
1 0

2 8000H	(8000	in	hexadecimal)

	
Examples:

Event	Address:	102FH,	Event	Zone	=	1	®	N4	=	102FH	+	0	=	102FH

Event	Address:	102FH,	Event	Zone	=	2	®	N4	=	102FH	+	8000H	=
902FH

	

NOTE
To	represent	values	in	hexadecimal	in	Elipse	E3	and	in	Elipse	Power,
users	must	use	prefix	"&H"	(for	example,	&H10	=	16).	In	Elipse	SCADA,
use	 suffix	 "h"	 (for	 example,	 10h	 =	 16).	 On	 this	 Manual,	 however,	 the
uppercase	suffix	"H"	is	used	to	indicate	values	in	hexadecimal	format.

	
Value:	Returns	ramp	up	or	down,	as	described	on	the	next	table

Available	options	for	Value

VALUE MEANING



00 Ramp	down

01 Ramp	up

	
Timestamp:	The	Timestamp	property	 represents	 the	date	and	 time
an	event	was	actually	read	from	a	relay,	during	the	reading	of	a	Tag
for	collecting	all	events	previously	described

	
For	 more	 information	 about	 relay	 events,	 their	 meanings	 and
addressing,	 please	 check	 manufacturer's	 documentation.	 For	 more
information	 about	 event-reported	 Tags,	 please	 check	 topic	 Tags
Reported	by	Events	on	E3	User's	Manual.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://www.elipse.com.br/downloads
http://kb.elipse.com.br/en-us


Elipse	 Software's	 Generic	 SOE
Reading	Algorithm

Top		Previous	
Next

The	 Modbus	 protocol	 does	 not	 define	 a	 default	 method	 for	 reading
events	from	a	device.	For	this	reason,	 it	 is	common	that	manufacturers
create	their	own	algorithms	for	reading	events	from	devices	that	support
Modbus	protocol.
The	 generic	 algorithm	 for	 Sequencing	 of	 Events	 (SOE)	 of	 this	 Driver
(Elipse	Modbus	SOE)	was	developed	by	Elipse	Software	to	provide	a
default	alternative	for	reading	events	from	programmable	controllers	that
do	 not	 have	 a	 native	 version	 of	 this	 feature,	 provided	 that	 these
controllers	 meet	 some	 basic	 requirements	 of	 memory	 space	 and
programming	features,	and	also	allow	the	creation	of	tables	and	control
registers	described	later.
This	 algorithm	 allows	 storing	 and	 reading	 events	 from	 almost	 all
programmable	 controllers,	 in	 an	 optimized	 way,	 by	 using	 features
already	implemented	and	validated	in	Modbus	Driver.
Event	reading	on	Modbus	Driver	 follows	a	standard	procedure,	defined
by	 Elipse	 Software,	 reading	 events	 from	 tables	 created	 in	 PLC's
memory	or	in	slave	devices	by	its	resident	application	(ladder).
To	use	this	algorithm,	users	must	define	Tags	using	the	special	function
Gen	 SOE,	 which	 can	 be	 performed	 using	 either	 the	 new	 String
configuration	 (Device	 and	 Item	 fields)	 or	 using	 the	 old	 numerical
configuration	 (N	 and	 B	 parameters).	 Tag	 configuration	 is	 described
later	on	topic	Acquisition	Procedure	in	an	Application.
During	 the	 process	 of	 reading	 events,	 the	 special	 function	 GenSOE
always	 uses	 the	Modbus	 function	 03	 (Read	 Holding	 Register)	 to	 read
registers	from	a	device.	For	writing	during	the	update	of	control	registers,
the	 default	 function	 used	 is	 Modbus	 function	 16	 (Write	 Multiple
Registers).	 By	 using	 the	 numerical	 configuration,	 users	 can	 select	 the
writing	 function	06	 (Write	Single	Registers),	 in	 the	rare	case	of	devices
that	do	not	support	function	16	(the	opposite	is	more	common),	by	using
operation's	Write	field,	on	Operations	tab.
PLC's	resident	software	 (ladder	or	equivalent)	must	keep	updated	all



control	 registers	 that	 provide	 information	 to	 this	 Driver,	 such	 as	 the
number	 of	 events	 available	 for	 reading	 and	 the	 address	 of	 the	 last
register	to	read.
A	 device	 can	 keep	 more	 than	 one	 event	 table,	 in	 different	 memory
addresses,	containing	different	data	types.	Each	table	must	be	preceded
by	their	respective	control	registers,	 in	adjacent	addresses.	This	table
is	 formed	 by	 a	circular	 buffer	 in	 contiguous	 addresses,	 accumulating
events	 or	 data	 for	 collecting	 by	 this	 Driver	 at	 each	 collect	 procedure
(download	of	events).
Users	 can	define	distinct	 data	 formats	 (events)	 for	 each	defined	 table,
which	are	usually	defined	as	a	data	structure,	and	may	contain	event's
timestamp	field.	Events	can	also	be	defined	using	a	Driver's	native	data
type.	 In	 this	 case,	 users	 cannot	 define	 a	Timestamp	 field	 in	 the	PLC
(the	timestamp	is	sent	with	the	date	of	reading),	and	the	event	contains
a	single	field,	which	can	be	represented	by	a	simple	Tag	(a	PLC	Tag	in
Elipse	SCADA).
	

NOTE
SOE	 algorithm	 always	 uses	 Modbus	 protocol's	 function	 03	 (Read
Holding	Registers)	to	read	registers	from	a	device.	For	writing	registers,
the	default	Modbus	function	used	is	16	(Write	Multiple	Registers).	Users
can	 also	 select	 function	06	 (Write	Single	Register)	 only	 on	numerical
configuration,	by	using	 the	Write	 field	of	 the	 respective	operation,	on
Operations	tab.

	
The	next	topics	describe	in	details	this	algorithm,	its	implementation	in	a
PLC	software	(ladder),	and	how	to	perform	its	reading	by	using	Driver's
Tags:

Event	Table

Acquisition	Procedure	in	a	PLC

Acquisition	Procedure	in	an	Application

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?



Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Event	Table Top		Previous		Next

As	already	mentioned	on	topic	Elipse	Software's	Generic	SOE	Reading
Algorithm,	each	event	table	keeps	events	in	a	circular	buffer.	The	circular
buffer	 of	 each	 table	 is	 defined	 by	 its	 initial	 address,	 or	 base	 address,
contiguous	to	control	registers,	and	by	its	maximum	number	of	registers,
which	defines	 its	 final	 limit.	The	following	table	shows	a	 layout	of	events
inside	a	table's	circular	buffer.

Layout	of	events	in	a	circular	buffer

EVENTTIMESTAMPELEMENT1ELEMENT2ELEMENT3 ... ELEMENTN
1 	 	 	 	 	 	

2 	 	 	 	 	 	

3 	 	 	 	 	 	

4 	 	 	 	 	 	

5 	 	 	 	 	 	

... 	 	 	 	 	 	

N 	 	 	 	 	 	

	
Each	 row	 on	 the	 previous	 table	 represents	 a	 stored	 event,	 usually
represented	by	a	structure,	or	by	User-Defined	Data	Types.
Notice	that,	in	the	example	of	the	previous	table,	the	first	element	of	that
event	 structure	 is	 a	 timestamp.	 This	 field,	 whose	 presence	 is	 not
mandatory	and	that	does	not	need	to	appear	in	the	first	position,	defines
Tag's	Timestamp	property	and	it	is	not	returned	in	its	Elements	(for	more
information,	please	check	topic	User-Defined	Data	Types).
It	is	also	possible	to	define	events	with	Driver's	native	data	types,	and	in
this	 case	 there	 is	 only	 one	 data	 Element	 in	 each	 event,	 without
timestamp.
Events	 must	 be	 inserted	 in	 this	 circular	 buffer	 in	 ascending	 order,
returning	to	the	base	address	after	reaching	the	upper	limit	of	this	circular
buffer.	The	following	control	registers	must	be	defined	for	each	table:



Table	 status:	 Must	 be	 kept	 by	 the	 PLC,	 indicating	 the	 number	 of
events	available	for	reading	in	the	circular	buffer.	It	must	be	updated	by
the	 device	whenever	 new	 events	 are	 added	 to	 the	 circular	 buffer,	 or
after	finishing	the	collecting	of	events	by	an	application,	which	can	be
detected	via	Acquisition	status
Recording	pointer:	This	value	indicates	an	index,	starting	at	0	(zero),
of	 the	position	where	a	device	must	 insert	 the	next	event.	 It	must	be
incremented	by	the	device	after	each	new	event	insertion	in	the	circular
buffer,	moving	back	 to	 the	base	address	after	 reaching	buffer's	upper
limit.	 Notice	 that	 this	 value	must	 not	 be	 provided	 in	 units	 of	Modbus
registers,	 but	 in	 event	 positions,	 and	 it	must	 be	 incremented	 by	 one
unit	at	every	new	event	inserted,	regardless	of	the	number	of	Modbus
registers	occupied	 for	each	event	 in	 the	circular	buffer.	With	 this,	 the
maximum	 allowed	 value	 for	 this	 pointer	 is	 given	 by	 the	 formula
MaxWritePtr	=	(Size	of	the	circular	buffer	/	Size	of	event	structure)
-	1
Acquisition	status:	Indicates	the	number	of	registers	already	read	by
a	 Driver	 at	 each	 individual	 event	 reading.	 After	 each	 reading,	 this
Driver	 writes	 in	 this	 register	 the	 number	 of	 registers	 it	 successfully
read.	 Slave's	 resident	 application	 (ladder)	 must	 immediately	 subtract
the	 value	 written	 by	 this	 Driver	 from	 Table	 status	 and	 then	 zeroes
Acquisition	status
Reserved:	This	register	is	currently	not	used.	It	may	be	used	on	future
versions	 of	 this	 Driver,	 and	 it	 can	 be	 kept	 in	 0	 (zero)	 in	 its	 current
version

	
As	already	mentioned,	the	base	address	of	this	circular	buffer,	that	is,	the
address	 in	 which	 an	 event	 table	 starts,	 must	 be	 contiguous	 to	 control
registers.
Control	 registers,	 on	 the	 other	 hand,	 must	 be	 also	 set	 on	 contiguous
addresses,	on	the	same	order	presented	previously,	allowing	their	reading
on	a	single	operation,	 that	 is,	assuming	that	 the	base	address	of	control
registers	for	a	certain	table	is	100,	these	are	the	addresses	for	the	other
registers:



Register	addresses

REGISTER ADDRESS
Table	Status 100

Recording	Pointer 101

Acquisition	Status 102

Reserved 103

Circular	Buffer's	Base	Address 104

	
On	 topic	Acquisition	 Procedure	 in	 a	 PLC	 there	 is	 a	 description	 of	 a
step-by-step	acquisition	procedure	or	algorithm	based	on	a	slave	device
(PLC).	 On	 the	 next	 topic,	 Acquisition	 Procedure	 in	 an	 Application
there	is	a	discussion	on	how	to	configure	an	application	for	acquiring	table
events.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Acquisition	Procedure	in	a	PLC Top		Previous		Next

This	topic	presents	a	discussion	about	an	algorithm	for	collecting	events
from	the	point	of	view	of	a	PLC	or	slave	device.	 Its	goal	 is	 to	clarify	 to
developers	 what	 must	 be	 implemented	 in	 PLC's	 resident	 application
(ladder).
A	 device	 must	 start	 inserting	 events	 in	 ascending	 order,	 starting	 at
table's	base	address,	that	is,	starting	at	the	circular	buffer.	For	each	new
event	 inserted,	 the	Recording	Pointer	must	be	 incremented,	pointing	to
the	next	available	position	in	that	buffer.
This	 Driver	 performs	 a	 reading	 starting	 from	 the	 oldest	 to	 the	 newest
event.	 The	 starting	 address	 of	 this	 reading	 is	 calculated	 by	 this	Driver
using	the	value	of	Recording	Pointer	and	Table	Status.
If	 the	 number	 of	 available	 events	 is	 greater	 than	 protocol's	maximum
allowed	 into	 a	 single	 communication	 frame,	 this	 Driver	 performs
multiple	 block	 readings,	 updating	 the	 value	 of	 Acquisition	 Status	 after
finishing	this	process	with	the	total	amount	of	events	read.
	

NOTE
If	a	device	does	not	respect	the	default	limit	of	253	bytes	for	PDU,	then
users	 must	 configure	 the	 Customize	 Max.	 PDU	 Size	 option,	 on
Modbus	tab,	according	to	supported	limits,	which	must	be	described	on
manufacturer's	documentation.

	
When	 detecting	 a	 non-null	 value	 written	 by	 this	 Driver	 to	 Acquisition
Status,	 a	 PLC's	 or	 device's	 application	 must	 immediately	 subtract
Acquisition	 Status'	 value	 from	 Table	 Status'	 value	 and	 then	 zeroes
Acquisition	Status.	With	Acquisition	Status	zeroed	again,	this	Driver	can
start	a	new	acquisition	at	any	time.
A	PLC	can	insert	new	events	to	a	table	during	PLC's	acquisition	process,
as	 long	as	there	 is	no	overflow	on	circular	buffer,	 that	 is,	as	 long	as	 its
writing	 pointer	 does	 not	 exceed	 its	 reading	 pointer,	 by	 incrementing
Table	Status.



An	 event	 collecting	 or	 downloading	 procedure	 is	 finished	 when	 Table
Status	is	zeroed.	All	collected	events	are	then	provided	to	an	application
via	event-reported	Tags,	as	described	on	the	next	topic.
The	next	 figure	shows	a	 flow	chart,	as	a	UML	Activity	Diagram,	with	a
suggestion	 of	 implementation	 for	 a	 PLC	 logic.	 Notice	 that	 some
variations	are	possible,	for	example	discarding	the	oldest	event	in	case
of	overflow,	which	can	be	evaluated	by	a	developer,	depending	on	 the
context.

UML	Activity	Diagram	(PLC)



Timestamp
As	 already	 mentioned,	 every	 event	 is	 composed	 by	 a	 structure
containing	 one	 or	 more	 data	 elements	 (usually,	 but	 not	 necessarily,
represented	by	User-Defined	Data	Types).
If	 structures	 (user-defined	 data	 types)	 are	 used,	 then	 users	 can
associate	 a	 timestamp	 to	 each	 PLC-provided	 event.	 In	 this	 case,	 the
value	 of	 the	Timestamp	 field	must	 be	 provided	 in	 a	 structure	 field,	 in
PLC	memory,	in	the	order	it	was	declared	in	the	configuration	file,	and	its
value	 is	 not	 displayed	 in	 any	 Block	 Element,	 it	 is	 only	 returned	 in	 the
Timestamp	property	of	the	linked	Tag.
As	explained	on	topic	User-Defined	Data	Types,	any	date	and	time	type
supported	by	this	Driver	can	be	used.	The	GenTime	data	type,	however,
was	specially	created	for	use	with	Elipse	Modbus	SOE,	due	to	an	easy
definition	in	PLC's	resident	application	(ladder).
If	a	millisecond	precision	 is	needed,	another	option	 is	consider	Driver's
UTC32	data	type,	represented	as	an	 integer	with	only	32	bits	(4	bytes)
with	seconds	starting	at	1/1/1970,	without	a	milliseconds	representation,
considered	as	0	(zero).
The	 next	 topic,	Acquisition	 Procedure	 in	 an	 Application,	 describes
how	 to	 configure	 an	 application	 for	 collecting	 events	 accumulated	 in	 a
PLC	or	programmable	slave	device.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Acquisition	 Procedure	 in	 an
Application

Top		Previous	
Next

This	 topic	 contains	 a	 detailed	 explanation	 on	 the	 configuration	 of	 an
application	 to	 acquire	 events	 accumulated	 in	 a	 PLC	 or	 programmable
slave	device.
Reading	events	in	an	application	is	performed	using	Tags	that	reference
the	 special	 reading	 function	 Gen	 SOE.	 Tag's	 data	 type	 defines	 the
structure	of	events	stored	in	the	device's	event	table.	If	a	Driver's	native
data	 type	 is	 defined	 (a	 built-in	 type),	 each	 event	 contains	 only	 one
element	of	this	type,	without	a	device-provided	timestamp	(a	timestamp
represents	 the	 instant	 events	 were	 collected).	 On	 the	 other	 hand,	 if
user-defined	data	types	are	used,	then	users	can	define	structures	for
events,	including	timestamps,	as	explained	later	on	this	topic.
Next,	 there	 is	 a	description	of	 the	 configuration	of	Tags	using	 the	new
methodology	of	configuring	by	Strings	(Device	and	Item	fields),	as	well
as	 the	 old	 numerical	 configuration	 used	 by	Elipse	 SCADA	 (N	 and	B
parameters).
	



String	Configuration
Device:	"<Slave	Id>:"

Item:	 "elsoe<N>.<start	 add.>[.<type>[<type	 size>]][.<byte	 order>]
[/bit]"

	
Where:

N:	"<Slave	Id>:"

start	 add.:	 Address	 of	 the	 first	 control	 register,	 using	 the	 value
defined	on	the	example	table	of	topic	Event	Table
type:	Native	 or	 user-defined	 data	 type	 used	 for	 each	 event	 (please
check	topic	String	Configuration)
type	size:	Used	only	for	variable-size	data	types	(please	check	topic
String	Configuration)
byte	 order:	 Byte	 ordering.	 It	 can	 be	 omitted	 for	 devices	 fully
compliant	with	protocol's	standard	(please	check	the	Byte	Order	item
on	topic	String	Configuration	for	more	information).	When	structures
are	used,	it	only	affects	their	individual	elements	(please	check	topic
User-Defined	Data	Types)
bit:	Bit	masking.	Usually	can	be	omitted,	it	would	hardly	be	used	here
(please	check	the	Bit	field	on	topic	String	Configuration)

	
Example:

Device:	"1:"

Item:	"elsoe150.&h101.TYPE3"

	
The	TYPE3	 data	 type	 is	defined	as	 follows	 in	Driver's	default	 example
file	(please	check	topic	User-Defined	Data	Types).
//	This	type	has	an	UTC32-type	timestamp	//	and	a	few	named	elements
struct	TYPE3
{



		DefaultAddress	=	0x101;
		timestamp	=	UTC32;
		float	Va;
		float	Vb;
		float	Vc;
		float	Ia;
		float	Ib;
		float	Ic;
}

	
This	is	a	Structure	data	type	containing	six	data	fields	and	a	timestamp.
Therefore,	this	Tag	must	be	a	Block	with	six	Elements	to	represent	that
structure.
Notice	 that,	 as	 already	 explained,	 timestamp's	 value,	 although	 it
occupies	 registers	 in	 the	 PLC,	 does	 not	 need	 Block	 Tag	 Elements,
because	its	value	is	returned	in	Tag's	timestamp	field.
	

NOTE
The	N	parameter	informs	the	size	of	a	table	as	the	maximum	number	of
events,	 not	 as	 Modbus	 records.	 Together	 with	 the	 Start	 Address
parameter,	 it	 indirectly	 informs	 the	 final	 address	 or	 upper	 limit	 of	 that
table.	 The	 size	 of	 table's	 data	 area,	 therefore,	 in	 number	 of	 Modbus
registers,	 is	 the	 product	 of	N	 by	 the	 size	 of	 each	 event	 in	 number	 of
Modbus	registers,	that	is,	in	16-bit	Words.

	



Numerical	Configuration	(N	and	B	Parameters)
To	 configure	 Tags	 for	 reading	 Elipse	 SOE	 using	 a	 numerical
configuration,	 users	 must	 configure	 an	 operation	 on	Operations	 tab,
using	the	special	function	GenSOE.
The	 next	 figure	 shows	 an	 example	 of	 a	 new	 operation	 added	 using
special	function	GenSOE	with	a	Word	data	type.

Special	function	GenSOE
Notice	 that	 function	 16	 (Write	 Multiple	 Registers)	 was	 selected	 as	 its
writing	 function,	 which	 is	 the	most	 commonly	 used	 function.	 However,
users	 are	 encouraged	 to	 use	 function	 06	 (Write	 Single	 Register)
whenever	supported	by	a	device.
The	next	figure	shows	the	same	operation	with	a	user-defined	data	type
TYPE3	(please	check	topic	User-Defined	Data	Types),	which	is	a	data
type	defined	in	the	example	default	configuration	file,	available	with	this
Driver	when	it	 is	firstly	added	to	the	application,	used	as	an	example	in



this	topic.

Configuration	using	the	GenSOE	function	and	a	user-defined
data	type

Data	type	TYPE3	is	defined	in	Driver's	example	file	as	follows:
//	This	type	has	an	UTC32-type	timestamp
//	and	a	few	named	elements
struct	TYPE3
{
		DefaultAddress	=	0x101;
		timestamp	=	UTC32;
		float	Va;
		float	Vb;
		float	Vc;
		float	Ia;
		float	Ib;
		float	Ic;



}
	
This	 is,	 therefore,	 a	 Structure	 data	 type	 with	 six	 data	 fields,	 a
timestamp,	and	a	default	address	(Tag's	B4	parameter)	equal	to	"101H"
(257	 in	decimal).	To	read	 it,	users	must	define	a	Communication	Block
Tag	with	six	Elements	and	the	following	configuration:

B1:	Slave	device's	address	(PLC)	on	the	network	(Slave	Id)

B2:	8	(a	previously	defined	operation	with	special	function	Gen	SOE)

B3:	N	 (size	 of	 a	 device's	 table,	 as	 the	maximum	number	 of	 events
that	table	can	contain)

B4:	100	(address	of	the	first	control	register,	using	a	value	defined	on
the	example	table	of	topic	Event	Table)
Size:	6

	

NOTE
The	B3	parameter	informs	the	size	of	a	table	as	the	maximum	number	of
events,	 not	 as	 Modbus	 records.	 Together	 with	 the	 B4	 parameter,	 it
indirectly	informs	the	final	address	or	upper	limit	of	that	table.	The	size	of
table's	data	area,	therefore,	in	number	of	Modbus	records,	is	the	product
of	B3	by	the	size	of	each	event	in	number	of	Modbus	records,	that	is,	in
16-bit	Words.

	
Notice	that,	if	E3's	Tag	Browser	is	used	to	insert	a	Tag	in	an	application,
as	 explained	 on	 topic	 User-Defined	 Data	 Types,	 Tag	 Elements	 are
already	named	according	to	the	name	given	to	structure	elements	when
they	 were	 declared.	 Tag	 Browser	 can	 be	 opened	 by	 clicking	 	 on
Driver's	Design	tab.
	



Usage
Once	defined	an	appropriate	Tag	(or	Tags),	enable	 its	scan	and	 let	 the
Driver	 collect	 events	 from	 their	 respective	 table,	whenever	new	events
are	detected.
Tags	 linked	 to	 the	 GenSOE	 function	 (elsoe	 when	 configuring	 by
Strings)	are	always	event-reported.	This	means,	as	already	explained
on	 topic	User-Defined	Data	Types,	 that	 this	Driver	 can	 return	 several
events	 on	 a	 single	 reading	 operation,	 that	 is,	 on	 a	 single	 interval	 of	 a
Tag's	scan.
This	 means	 that	 this	 Driver	 returns	 a	 set	 of	 events	 (for	 the	 previous
example,	 sets	of	 blocks	with	 six	data	 fields	and	a	 timestamp)	at	 once,
which	produces	a	sequence	of	OnRead	events	on	a	Tag,	one	for	each
event	 (a	 block	 with	 six	 data	 fields	 and	 a	 timestamp)	 returned	 by	 this
Driver.
For	detailed	instructions	on	the	right	way	to	handle	event-reported	Tags,
please	 check	 topic	Tags	Reported	by	Events	 on	E3	User's	Manual.
Elipse	SCADA	User's	Manual	also	contains	an	analogous	topic.
In	short,	 the	usual	way	of	handling	event-reported	Tags	 is	by	adding	a
call	to	the	WriteRecord	method	of	a	previously	linked	Historic	object	on
Tag's	OnRead	event,	ensuring	that	all	events	reaching	this	Historic	are
registered.	In	this	case,	this	Historic	must	be	configured	without	a	dead
band	(the	DeadBand	property	set	to	zero)	and	disabling	historic	by	scan
(in	E3,	 the	 ScanTime	 property	 set	 to	 zero).	 Tag's	 EnableDeadBand
property	must	also	be	configured	to	False.
	

IMPORTANT
When	 reading	 mass	 memory	 events	 in	 E3's	 event-reported	 Tags,
disable	Tag's	dead	band	(the	EnableDeadBand	property	configured	as
False)	 and	 also	 in	 the	 linked	 Historic	 object	 (the	DeadBand	 property
configured	as	zero),	 to	avoid	 losing	events	with	close	values.	 It	 is	also
important	 to	 disable	 historic	 by	 scan	 (in	 E3,	 the	 ScanTime	 property
configured	as	zero).	This	ensures	that	new	events	are	only	stored	using
the	WriteRecord	method,	 executed	 on	Tag's	OnRead	 event,	 avoiding
duplicated	events.

http://www.elipse.com.br/downloads


	



Optimization	and	Compatibility
Some	devices,	such	as	PLCs	by	ATOS,	do	not	support	block	 readings
using	 data	 types	 with	 different	 structures.	 In	 practice,	 this	 prevents	 a
Driver	to	read	data	from	control	and	event	registers	as	a	single	block.	To
collect	 PLC	 events	 with	 these	 restrictions,	 users	 must	 disable	 the
Enable	 Control	 and	 Data	 Registers	 Grouping	 option	 on	Gen	 SOE
tab.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Reading	Mass	Memory	Registers	 from
ABB	MGE	144	Meters

Top	
Previous	

Next

To	read	mass	memory	registers	from	ABB	MGE	144	meters,	users	must
configure	Tags	using	the	special	reading	function	65	03,	as	described	on
this	topic.
The	 special	 function	 65	 03	 is	 ABB's	 proprietary	 and	 it	 is	 practically
identical	 to	 protocol's	 standard	 function	 03	 (Read	 Holding	 Registers),
differing	only	on	returned	data,	referring	to	ABB	meter's	mass	memory.
Data	 is	 returned	as	a	Word	 (as	 in	 function	03),	with	 protocol's	 default
byte	order	(big	endian).	Therefore,	there	is	no	need	to	enable	any	swap
function	(Swap	Bytes,	Swap	Words,	or	Swap	DWords).
Meter's	 register	 map,	 specifying	 data	 to	 read	 as	 well	 as	 its	 correct
configuration,	 must	 be	 checked	 on	 meter's	 manufacturer-provided
documentation.
This	 Driver	 also	 contains	 two	 special	 writing	 functions	 specific	 for	 this
meter,	 functions	 65	 01	 and	 65	 02.	 For	 more	 information	 about	 those
special	 writing	 functions,	 please	 check	 topic	 Special	 Functions	 and
also	device's	documentation.
	



String	Configuration
Device:	"<slave	id>:"

Item:	"abbmge<address>[.<type>[<type	size>]][.<byte	order>][/bit]"

	
Where:

Address:	Address	of	the	Modbus	register	to	read

Type:	 Data	 type.	 If	 omitted,	 assumes	 default	 Word.	 For	 more
information,	please	check	topic	String	Configuration
Type	 size:	 Used	 only	 for	 variable-sized	 data	 types.	 For	 more
information,	please	check	topic	String	Configuration
Byte	order:	Byte	ordering.	If	omitted,	assumes	protocol's	default.	For
more	information,	please	check	topic	String	Configuration
Bit:	Bit	masking.	Usually	omitted	(prefer	application's	bit	masks).	For
more	information,	please	check	topic	String	Configuration

	



Numerical	Configuration	(N	or	B	Parameters)
N1/B1:	Slave	Id

N2/B2:	Code	of	the	operation	configured	with	function	65	03	 (check
next)

N3/B3:	Not	used,	leave	in	0	(zero)

N4/B4:	Register's	address
	
To	 configure	 Tags	 numerically,	 users	 must	 first	 add	 an	 operation	 with
function	65	03	on	Operations	tab	 of	Driver's	 configuration	window,	 as
shown	on	the	next	figure.

Creating	an	operation	with	special	function	65	03

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?



Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Appendix Top		Previous		Next

This	appendix	contains	the	following	topics:

Optimization	Tips

Frequently	Asked	Questions

List	of	Devices	that	Communicate	with	Modbus

List	of	Protocol's	Default	Exceptions

Maximum	Limit	for	the	Size	of	Blocks	Supported	by	the	Protocol

BCD	Encoding



Optimization	Tips Top		Previous		Next

This	topic	enumerates	some	optimization	tips	to	communicate	with	slave
devices.
	



Tips	for	Configuring	a	Driver	for	E3	and	Elipse	Power
Use	Superblocks	whenever	possible,	preferring	to	create	simple	Tags
(PLC	Tags	 in	Elipse	SCADA)	 instead	 of	 Block	 Tags	 (please	 check
topic	Superblock	Reading).
If	 Superblocks	 are	 not	 an	 option,	 prefer	 to	 create	 Block	 Tags,
grouping	 the	 largest	 possible	 number	 of	 variables	 in	 the	 smallest
number	 of	 blocks	 (please	 check	 the	 text	 about	manual	 grouping	on
topic	Superblock	Reading).
Consider	all	 recommendations	of	article	Performance	 tips	 for	E3,	 in
Elipse	Knowledgebase.
In	case	of	high-latency	networks,	reduced	bandwidth,	or	packet	loss,
please	also	read	article	E3's	Network	Settings	for	networks	with	high
latency,	low	bandwidth	and/or	packet	loss.

In	high-latency	networks,	configure	higher	time-outs,	considering	the
expected	 latency.	 Remember	 that	 a	 time-out	 is	 only	 effective	 on
delays,	 it	 does	 not	 interfere	 with	 performance	 on	 normal	 usage
situations.

	

http://kb.elipse.com.br/en-us/questions/4324
http://kb.elipse.com.br/en-us/questions/4291


Tips	for	Configuring	a	Driver	for	Elipse	SCADA
Prefer	to	create	Block	Tags,	by	grouping	the	largest	possible	number
of	variables	 in	 the	smallest	number	of	blocks	 (please	check	 the	 text
about	manual	grouping	on	topic	Superblock	Reading).
Consider	all	recommendations	of	article	Developing	applications	with
optimum	performances,	also	available	in	Elipse	Knowledgebase.
In	high-latency	networks,	configure	higher	time-outs,	considering	the
expected	 latency.	 Remember	 that	 a	 time-out	 is	 only	 effective	 on
delays,	 it	 does	 not	 interfere	 with	 performance	 on	 normal	 usage
situations.

	

http://kb.elipse.com.br/en-us/questions/4547


Tips	for	Configuring	or	Programming	a	Device
If	 possible,	 group	 all	 variables	 defined	 by	 a	 resident	 application
(ladder)	that	have	the	smallest	scan	time,	in	contiguous	addresses	in
PLC's	memory.	 The	 total	 scan	 time	 of	 Tags	 highly	 depends	 on	 the
capacity	of	grouping	variables	in	communication	blocks.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Frequently	Asked	Questions Top		Previous		Next



Known	peculiarities	of	Twido	devices	by	Schneider
The	application	 is	 trying	 to	 read	a	Float-type	 value,	 but	 it	 is	 failing.
The	value	displayed	by	this	PLC	is	completely	different	from	the	one
displayed	by	the	application	for	the	same	address.

Answer:	This	device	does	not	use	protocol's	default	byte	order	(big
endian).	Users	must	configure	a	byte	order	by	executing	a	swap	of
Words,	which	 corresponds	 to	 the	b2	 option	 on	 the	configuration
by	Strings.,	or	select	the	Swap	Words	option	on	the	configuration
of	 operations	 on	 numerical	 configuration	 (please	 check	 topic
Operations	Tab).

The	 application	 is	 trying	 to	 read	PLC's	 inputs	 and	 outputs,	 but	 it	 is
failing.

Answer:	 This	 device	 does	 not	 allow	 reading	 or	 writing	 input	 and
output	 variables,	 and	 users	 must	 use	 PLC's	 internal	 variables	 to
perform	this	reading,	that	is,	create	a	mirror	of	inputs	and	outputs	in
an	area	where	this	Driver	has	access.	Users	must	also	be	careful	to
create	 a	 PLC	 routine	 to	 check	 when	 an	 application	 changes	 an
output	value,	so	that	 it	 is	effectively	activated	or	deactivated	 in	 this
PLC.

	



Known	 peculiarities	 of	 MPC	 6006	 devices	 by	 Atos	 -
Schneider

The	application	is	trying	to	read	a	DWord-type	value,	but	the	correct
value	is	not	displayed.	The	application	displays	values	different	from
the	ones	in	this	PLC.

Answer:	 Please	 check	 the	 article	 Using	 Modbus	 Master
(ASC/RTU/TCP)	 drivers	 with	 ATOS's	 controllers	 in	 Elipse
Knowledgebase.	If	using	the	new	String	configuration	(Device	and
Item	 fields),	 also	 check	 section	 Byte	 Order	 on	 topic	 String
Configuration.	 If	 using	 the	 old	 numerical	 configuration	 (N/B
parameters),	 also	 check	 topic	Operations	Tab,	 specially	 the	Byte
Order	section.

	

http://kb.elipse.com.br/en-us/questions/4441


How	to	 join	 two	 Int16-type	values	 (which	are	 in	 this	PLC)
into	an	Int32-type	value	(in	an	application)?

There	 is	 a	 32-bit	 number	 stored	 in	 two	 16-bit	 registers	 in	 this	PLC.
How	to	display	this	number	on	an	application's	screen	as	a	single	32-
bit	register?

Answer:	Users	must	create	Tags	using	32-bit	data	 types,	such	as
Float,	DWord,	 or	 Int32	 data	 types.	When	 configuring	 an	 I/O	 Tag,
users	must	 inform	 the	 first	 address	 of	 each	 PLC	 variable	 (please
check	topic	Configuring	an	I/O	Tag).	This	Driver	then	joins	two	16-
bit	 registers	 from	 the	 device	 into	 a	 single	 32-bit	 value,	 which	 is
returned	on	Tag's	Value	 field	or	on	Block	Tag's	Element.	 If	using	a
configuration	 by	 Strings	 (Device	 and	 Item	 fields),	 inform	 a	 data
type	 right	 after	 register's	 address	 (please	 check	 topic	 String
Configuration).	 If	 using	 the	 old	 numerical	 configuration	 (N/B
parameters),	 users	 must	 define	 operations	 with	 32-bit	 data	 types.
Notice	 that,	 on	 the	 configuration	window	 (Operations	Tab),	 32-bit
data	types	are	always	displayed	with	a	four-byte	size	(the	Size	field,
please	check	topic	Supported	Data	Types).

The	application	is	already	developed,	but	how	to	join	values	from	two
Words	into	a	single	Tag?
Answer:	 Users	 can	 execute	 that	 join	 operation	 using	 scripts,	 by
creating	 an	 unsigned	32-bit	 integer.	 To	 do	 so,	 users	must	multiply
the	Word	that	contains	the	highest	part	of	that	Word	by	65536	and
then	sum	the	Word	that	contains	the	lowest	part	of	that	Word.	For
example,	UInt32	=	(HighWord	×	65536)	+	LowWord.

The	application	wants	 to	 read	Float-type	 values.	A	 reading	 function
03	and	a	writing	function	16	with	a	Float	data	type	were	configured.
However,	 the	 application	 displays	 a	 value	 that	 is	 different	 from	 the
one	on	this	device.

Answer:	The	official	Modbus	protocol	uses	a	big	endian	byte	order,
with	 the	 most	 significant	 bytes	 of	 every	 value	 coming	 first.	 If	 this
Driver	 is	 reading	nonsense	 values,	 even	with	 its	 address	 correctly
configured,	probably	the	device	uses	a	non-standard	byte	order.	 In
this	case,	users	must	configure	its	swap	options.	If	users	are	using	a



configuration	by	Strings	(Device	and	Item	 fields)	please	check	the
Byte	 Order	 section	 on	 topic	 String	 Configuration.	 If	 users	 are
using	 the	 old	 numerical	 configuration	 (N/B	 parameters),	 please
check	 the	Byte	Order	 section	 on	 topic	Operations	Tab	 for	 more
information	on	using	these	swap	options.

	



How	 to	 communicate	 with	 more	 than	 one	 device	 on	 a
Serial	communication	network?

There	is	more	than	one	device	on	a	serial	network,	each	one	with	a
unique	address.	How	to	communicate	with	every	one	of	them?

Answer:	Users	must	be	careful	with	 the	Slave	Id	of	each	 I/O	Tag,
because	 this	 field	 indicates	 the	 device	 to	 communicate.	 On	 an
RS485	serial	network,	all	devices	 listen	simultaneously	to	all	driver
requests	 (there	 is	 a	 single	 bus),	 although	 only	 the	 one	 with	 the
corresponding	Slave	 Id	 responds	 to	 the	 request	 (multiple	 devices
with	the	same	Id	are	not	allowed).	When	configuring	by	Strings,	this
value	can	be	provided	in	the	Device	field,	or	at	the	beginning	of	the
Item	 field	 (please	 check	 for	 more	 information	 on	 topic	 String
Configuration).	 If	 users	 are	 using	 the	 numerical	 configuration,
this	 value	 is	 provided	 in	 the	N1/B1	 parameter	 of	 each	 Tag.	Users
can	use	the	same	operations	for	Tags	from	several	devices.	A	good
reference	 for	 information	 and	 tips	 regarding	 the	 installation	 and
maintenance	of	serial	networks	is	the	book	Serial	Port	Complete,	by
Jan	Axelson.

There	is	more	than	one	serial	port	on	the	computer.	How	to	configure
this	 Driver	 to	 communicate	 with	 devices	 connected	 to	 each	 one	 of
these	ports?

Answer:	 In	 this	case,	as	 there	 is	more	 than	one	different	physical
layer	(Serial	1,	Serial	2,	etc.),	it	is	necessary	as	many	I/O	Drivers	as
the	existing	ports.	Configurations	 for	 this	Driver's	Tags	 can	be	 the
same	 for	 all	 Driver	 objects	 (instances).	 The	 only	 difference	 is	 that
one	 Driver	 must	 be	 configured	 to	 communicate	 via	 Serial	 1	 port,
another	Driver	configured	to	communicate	via	Serial	2	port,	and	so
on.	 Port	 configuration	 is	 performed	 on	 the	 Serial	 tab	 of	 Driver's
configuration	window	(please	check	topic	Properties).

	

http://janaxelson.com/spc.htm


How	 to	 communicate	 with	 more	 than	 one	 device	 on	 a
serial	network	with	an	RS485	converter?

There	 is	an	RS485	network	with	several	devices	communicating	via
an	 RS232-RS485	 converter	 using	 a	 Serial	 port.	 Whenever	 an
address	switches	 (Slave	ID),	 that	 is,	when	 this	Driver	 requests	data
from	 another	 device,	 a	 time-out	 occurs.	 After	 retrying	 the	 same
message,	this	device	answers	normally.	Is	there	a	way	of	preventing
this	time-out	during	an	address	switching	(Slave	ID)?

Answer:	Some	RS232-RS485	converters	require	a	 time	 interval	 to
switch,	 that	 is,	 commuting	 from	 transmission	 mode	 to	 reception
mode,	or	vice	versa.	To	circumvent	this	limitation,	users	can	use	the
Inter-frame	 delay	 option	 on	 IOKit's	 Serial	 tab,	 available	 on	 the
configuration	window.	 This	 field	 defines	 a	 time	 interval	 between
messages.	The	exact	value	of	this	interval	depends	on	the	converter
in	 use	 but,	 if	 it	 is	 unknown,	 users	 are	 recommended	 to	 try	 values
between	50	ms	and	300	ms.

	

NOTE
IOKit's	Inter-frame	delay	option	may	significantly	degrade	performance
in	 some	 applications,	 and	 it	 must	 be	 used	 only	 when	 absolutely
necessary.	Please	be	sure	that	this	converter	is	in	good	conditions,	and
if	 it	 effectively	 requires	 a	 delay.	 If	 needed,	 please	 check	 with
manufacturer's	technical	support.

	



How	 to	 communicate	 with	 more	 than	 one	 device	 on	 an
Ethernet	network?

There	 is	 more	 than	 one	 device	 connected	 to	 an	 Ethernet	 network,
each	one	with	a	unique	 IP	address.	How	to	communicate	with	each
one	of	them?

Answer:	 Currently,	 for	 each	 IP	 address,	 users	 need	 as	many	 I/O
Drivers	 as	 the	 number	 of	 IP	 addresses	 to	 communicate.	 The
configuration	 referring	 to	 Driver	 Tags	 can	 be	 the	 same	 for	 all
Drivers.	The	only	difference	is	that	one	Driver	must	be	configured	to
communicate	with	IP	address	1,	another	Driver	must	be	configured
to	 communicate	 with	 IP	 address	 2,	 and	 so	 on.	 The	 Slave	 Id
parameter	 can	be	 still	 used	 in	Modbus	TCP	mode	 to	 differentiate
devices	connected	 to	a	Modbus	Ethernet	 /	RS485	gateway	on	 the
same	 IP	address.	Notice	 that	 this	gateway	not	only	must	allow	an
interconnection	 among	 Ethernet	 and	 serial	 networks,	 but	 also
convert	 ModbusTCP	 frames	 for	 the	 serial	 modes	 supported	 by
devices	 (ModbusRTU	 or	ModbusASC).	 The	 IP	 address	 must	 be
configured	 on	 IOKit's	 Ethernet	 tab,	 on	 Driver's	 configuration
window.

	

TIP
Avoid	using	protocol's	RTU	or	ASC	mode	encapsulated	in	TCP/IP	layer.
If	 users	 want	 to	 encapsulate	 serial	 communication	 of	 devices	 using
Modbus	RTU	in	TCP/IP,	there	are	gateways	available	in	the	market	that
not	 only	 encapsulate	 serial	 communication	 in	 Ethernet	 TCP/IP
(physical,	network,	and	transport	layers),	but	also	convert	Modbus	RTU
into	Modbus	TCP	(application	layer).	As	a	last	option,	if	it	is	inevitable	to
use	Modbus	 RTU	 in	 Ethernet	 TCP/IP	 layer,	 enable	 the	 Reconnect
after	Timeout	option,	previously	described	on	topic	Modbus	Tab.

	



Modbus	Simulator	Software
Is	 there	 any	 software	 that	 simulates	 Modbus	 protocol	 and	 can	 be
used	for	testing	with	this	Driver?

Answer:	 Yes,	 there	 are	 several	 alternatives.	 Elipse	 Software
provides	 a	 free	 version	 (demo)	 of	Elipse	Modbus	Simulator	 on	 its
website,	which	 allows	 simulating	 the	most	 basic	 protocol	 features.
There	 is	 also	 the	 possibility	 of	 using	 Elipse	 Software's	Modbus
Slave	Driver	as	an	emulator.	Another	possibility	is	Modsim,	one	of
the	oldest	and	well	 known	alternatives	 to	emulate	a	slave	Modbus
device.	 This	 simulator	 can	 be	 purchased	 at	 http://www.win-
tech.com/html/modsim32.htm.	 In	 addition	 to	 it,	 there	 is	 also	 a	 free
and	 open	 alternative	 named	 Free	 Modbus	 PLC	 Simulator,
available	at	www.plcsimulator.org.	There	are	still	many	other	options
and	a	list	with	other	software	can	be	found	at	Modbus.org	website.

	

http://www.elipse.com.br/downloads
http://www.win-tech.com/html/modsim32.htm
http://www.plcsimulator.org
http://www.modbus.org/tech.php


How	to	configure	the	N4/B4	parameter	of	I/O	Tags?
Which	address	to	use	in	the	N4/B4	parameter	of	an	I/O	Tag?

Answer:	This	address	varies	from	device	to	device.	To	know	which
is	the	exact	address	to	use,	please	check	device's	documentation	or
contact	 its	manufacturer's	technical	support.	The	topic	Addressing
Tips	provides	tips	on	common	additional	offset	conventions	used	by
many	manufacturers.

	



When	 to	 use	 RTS	 and	 DTR	 controls	 (which	 appear	 on
Serial	tab	of	Driver's	configuration	window)?

The	application	is	communicating	with	a	device	directly	connected	to
computer's	 RS232	 serial	 port.	 How	 to	 configure	 RTS	 and	 DTR
controls?

Answer:	 Please	 check	 device's	 documentation	 or	 manufacturer's
technical	support	for	the	correct	configuration.

The	 application	 is	 communicating	 with	 a	 device	 using	 an	 RS232-
RS485	converter	connected	to	computer's	RS232	serial	port.	How	to
configure	RTS	and	DTR	controls?
Answer:	 When	 communicating	 with	 devices	 using	 RS232-RS485
converters,	 such	 configurations	 depend	 on	 the	 converter.	 The
device	(Slave)	does	not	 influence	 it,	as	 these	signals	only	exist	on
the	RS232	serial	side,	with	no	equivalent	on	the	RS485	serial	layer.
The	RTS	 control	 is	 commonly	 used	 by	 older	 converters	 to	 switch
between	transmission	and	reception	modes	(RS485	is	half-duplex),
and	in	these	cases	it	must	be	configured	in	Toggle	mode	(there	are
some	 rare	 devices	 that	 require	 other	 configurations).	 On	 most
recent	 converters,	 however,	 switching	 between	 transmission	 and
reception	 is	 automatic,	 and	 these	 signals	 in	 general	 are	not	 used,
and	 they	 may	 be	 ignored.	 For	 more	 information,	 please	 check
converter's	documentation	or	manufacturer's	technical	support.

	



When	to	use	Swap	Bytes,	Swap	Words,	and	Swap	DWords
options?
These	 options	must	 be	 used	 for	 16-,	 32-,	 or	 64-bit	 data	 types,	whose
byte	order	of	this	device-provided	value	does	not	correspond	to	Modbus
default	 byte	 order,	 where	 the	most	 significant	 bytes	 always	 come	 first
(big	 endian,	 also	 called	Motorola).	 If	 this	 Driver	 is	 reading	 nonsense
values,	or	values	different	from	the	ones	stored	on	the	PLC,	it	may	use	a
byte	order	different	from	protocol's	default.	For	more	information,	please
check	section	Byte	Order	on	topic	String	Configuration	or,	if	using	the
old	 numerical	 configuration	 (N/B	 parameters),	 please	 check	 section
Byte	Order	on	topic	Operations	Tab.	Users	are	also	advised	to	check
device's	documentation.

The	application	is	trying	to	read	a	Word	value,	but	this	value	appears
different	 from	 the	 one	 configured	 in	 the	 PLC.	 If	 in	 the	 PLC	 it	 is
configured	as	"1"	(one),	the	application	displays	it	as	"256".

Answer:	Value	1	 (one)	 in	hexadecimal	 is	0001H	and	value	256	 in
hexadecimal	corresponds	to	0100H.	This	device	has	a	non-standard
byte	 order.	 Users	 must	 enable	 the	 Swap	 Bytes	 option	 (the	 "b1"
option	on	the	String	Configuration)	to	read	the	correct	value.

The	application	contains	a	Tag	configured	to	read	a	DWord	value,	but
the	value	read	by	the	application	is	different	from	the	value	stored	in
the	 PLC.	 When	 setting	 the	 value	 "258",	 for	 example,	 to	 a	 PLC
register,	the	application	displays	a	nonsense	value	of	"16908288".

Answer:	The	value	258	in	hexadecimal	is	00000102H	and	the	value
16908288	 in	hexadecimal	 corresponds	 to	01020000H.	This	device
has	 a	 byte	 order	 different	 from	 protocol's	 default,	 where	 the	 least
significant	Word	 comes	 first.	 In	 this	 case,	 users	 must	 enable	 the
Swap	Words	option	(the	"b2"	option	on	the	String	Configuration)
to	read	the	correct	value.

	



How	to	correctly	read	Float	data	types	from	WEG	TPW-03
PLCs?

Answer:	When	 configuring	 I/O	Tags,	 users	must	 enable	 the	Swap
Words	 option,	 which	 corresponds	 to	 the	 "b2"	 option	 on	 String
configuration.	If	users	are	using	the	old	numerical	configuration	(N/B
parameters),	please	check	section	Byte	Order	on	 topic	Operations
Tab.

	



Known	 peculiarities	 of	 devices	 from	 the	 ABB	 Advant
Controller	 31	 series	 90	 family	 (for	 example,	 ABB	 07KT97
PLC)

An	E3	or	Elipse	Power	application	 is	 trying	 to	 read	registers	or	bits
from	a	PLC,	but	there	are	always	errors.

Answer:	Devices	from	this	series	do	not	allow	using	E3	(or	Elipse
Power)	Superblocks	for	two	reasons:
There	are	 interruptions	on	 the	address	map	of	device's	 registers,
with	undefined	address	intervals.

Maximum	 PDU	 size	 is	 different	 from	 the	 one	 established	 by
protocol's	 default,	 and	 it	 is	 defined	 as	 a	 size	 that	 supports	 96
Words	 or	Bits.	 As	 this	 protocol	 groups	 eight	 bits	 at	 each	 data
byte,	 that	 results	 in	 different	 maximum	 PDU	 sizes	 for	 reading
functions	 for	 Bits	 and	Words,	 which	 prevents	 customizing	 the
maximum	PDU	 size	allowed	by	 this	Driver,	which	does	not	allow
configuring	different	limits	for	each	protocol	function.

Solution:	Follow	these	steps:

Disable	 Superblock	 reading,	 by	 configuring	 Driver's
EnableReadGrouping	property	to	False.
Prefer	defining	Block	Tags,	by	grouping	the	largest	possible	number
of	 variables	 in	 the	 smallest	 number	 of	 blocks,	 respecting	 device's
limit	of	96	Words	or	96	Bits	 for	each	Block	 (for	more	 information,
please	 read	 the	 section	 about	 Manual	 Grouping	 on	 topic
Superblock	Reading).

	

NOTE
Users	can	also	use	automatic	grouping	(Superblocks)	if	there	is	no	need
to	read	Words	and	Bits	on	the	same	Driver	object,	obviously	depending
on	 the	 interval	 of	 addresses	 to	 read	 (more	 specifically,	 whether	 this
interval	contains	 interruptions	or	not).	 In	 this	case,	anyway,	users	must
configure	 the	 Customize	 Max.	 PDU	 Size	 option	 on	 Modbus	 Tab,
according	to	the	limit	of	96	Words	(96	×	2	=	192	bytes)	or	96	Bits	(96	÷



8	=	12	bytes).	Such	possibility	can	be	carefully	evaluated,	in	a	case-by-
case	basis,	by	the	application's	developer.

	



The	 application	 is	 trying	 to	 read	 Float	 data	 type	 values,
and	 the	 following	 message	 appears	 on	 Driver's	 log:
"Warning:	 denormalized	 float	 number!	 Returning	 zero".
What	to	do?

Answer:	 This	 message	 does	 not	 mean	 a	 communication	 or
configuration	 error.	Users	 are	 advised	 to	 check	PLC's	 programming
why	it	is	returning	non-normalized	values.

Additional	 Information:	 Such	 message	 indicates	 that	 the	 device
sent	a	 floating	point	value	 (Float)	 to	 this	Driver	 in	 IEEE	754	 format,
but	 non-normalized.	 Such	 values	 may	 be	 a	 result	 of	 arithmetical
operations	with	results	that	extrapolate	all	representation	possibilities
of	 this	 format,	 such	 as	 overflow,	 underflow,	 +∞,	 −∞,	 etc.	 Non-
normalized	values	are	described	in	IEEE	754	standard,	and	they	are
not	supposed	 to	 raise	problems	 for	 this	Driver	or	 for	an	application.
However,	 due	 to	 previous	 error	 detections	 related	 to	 specific
hardware,	 this	 Driver	 now	 returns	 0	 (zero)	 to	 an	 application	 when
receiving	 non-normalized	 values	 from	 a	 device,	 registering	 this
message	on	log.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


List	 of	 Devices	 that	 Communicate
with	Modbus

Top		Previous	
Next

The	next	table	contains	a	list	of	devices,	separated	by	manufacturer,	for
which	there	is	already	some	experience	on	communicating	with	Modbus
protocol.
For	a	more	complete	 list	 of	 devices	already	validated	 for	 this	protocol,
please	 check	 Modbus	 Device	 Directory,	 maintained	 by	 the	 Modbus
Organization.

Devices	that	communicate	with	Modbus

MANUFACTURER DEVICE
ABB ETE30

MGE	144
KT97
KT98

Altus Almost	all	Altus	devices	have	Modbus,	except	a
few	models	from	Piccolo	series

Areva MiCOM	P127
P632	relay

Atos ATOS	PLCs	support	Modbus	RTU	protocol	with
small	variations	regarding	the	maximum	size	of
frames	and	byte	order.	For	more	information	about
these	variations,	please	check	the	article	Using
Modbus	Master	(ASC/RTU/TCP)	drivers	with
ATOS's	controllers,	in	Elipse	Knowledgebase

BCM BCM1088
BCM1086
BCM-GP3000
BCM2085

Ciber	Brasil Multivariable	Meter	for	Electrical	Quantities

http://www.modbus.org/devices.php
http://kb.elipse.com.br/en-us/questions/4441


UDP200
Multivariable	Meter	for	Electrical	Quantities
UDP600

Contemp CPM45

Deep	Sea DSE5210
DSE5310
DSE5310M
DSE5320
DSE5510
DSE5510M
DSE5520
DSE7310
DSE7320

Embrasul MD4040	meter

Eurotherm 2500	Intelligent	Data	Acquisition	and	Precision
Multi-Loop	PID	Control

Fatek FB	-	14MCU

GE GE	PAC	RX7
GE	GEDE	UPS

Gefran Gefran	Gilogk	II	PLC
Gefran	600RDR21

Hitachi Hitachi	HDL17264

Honeywell HC-900	PLC

Horner	APG Devices	from	series	XLe/XLt	all-in-one	control
devices

Koyo CPU	260	PLC

Kron MKM-120	meter

LG DMT40U



LG	/	LSIS LG	Master	K120	S
LG	XGB	-	XBM

Moeller XC100	-	Serial	Port	232
XC200	-	Serial	Port	232/422/485	(XIO-SER
communication	module)	and	Ethernet	Port
XV200	-	Serial	Port	232	and	Ethernet	Port
XVH300	-	Serial	Port	232	and	Ethernet	Port
XV400	-	Serial	Port	232	and	Ethernet	Port

Novus N1100
N1500
N2000
N3000

Schneider Twido
A340
M340	PLC
Premium	Series
Frequency	Converters	and	soft	starter
MT	and	BT	breakers
BT	and	MT	protection	relays
SEPAM	Series	20,	40,	and	80	relays

Telemecanique Zelio	Logic	controllers	ending	with	"BD"

Unitronics V120

Weg TP	03
Clic	02

Yaskawa V1000

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No



Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


List	 of	 Protocol's	 Default
Exceptions

Top		Previous	
Next

The	 next	 table	 contains	 a	 list	 of	 default	 exceptions,	 defined	 by	 the
Modbus	protocol	specification	(version	1.1b).
Exceptions	are	 registered	 in	Driver's	 log,	whenever	detected,	and	 they
can	be	read	by	an	application	by	Reading	the	Last	Exception	Code.
Notice	that,	in	addition	to	the	exceptions	listed	here,	a	device	may	define
other	 proprietary	 exceptions.	 In	 this	 case,	 they	 are	 supposed	 to	 be
described	on	manufacturer's	documentation	of	that	device.

Exception	codes	standardized	by	the	Modbus	protocol

CODE	(IN
HEXADECIMAL)

NAME MEANING

01 ILLEGAL
FUNCTION

The	function	code	received	is	not
valid.	This	may	indicate	that	this
function	is	not	implemented	yet	or
the	slave	is	in	an	inadequate	status
to	process	it

02 ILLEGAL	DATA
ADDRESS

The	data	address	received	is	not	a
valid	address.	More	specifically,	the
combination	of	a	reference	address
and	the	amount	of	data	to	transfer
is	invalid

03 ILLEGAL	DATA
VALUE

The	current	value	on	Master's
request	is	not	valid.	This	indicates	a
failure	on	the	remaining	data
structure	of	a	complex	request,
such	as	when	the	informed	size	for
a	data	block	is	not	correct.	This
exception	does	not	indicate	that
values	submitted	for	writing	are	out
of	the	expected	scope	by	an
application,	as	such	information	is
not	accessible	to	this	protocol



04 SLAVE	DEVICE
FAILURE

An	irrecoverable	error	occurred
during	the	processing	of	the
requested	function

05 ACKNOWLEDGEUsed	with	programming	commands.
The	Slave	accepted	this	message
and	it	is	processing	it.	However,	this
processing	demands	a	long	time.
This	exception	prevents	a	Master
time-out.	The	end	of	this	request
must	be	tested	by	a	polling	process

06 SLAVE	DEVICE
BUSY

Used	with	programming	commands.
Indicates	that	the	Slave	is
processing	another	long-lasting
command	and	that	this	request
must	be	sent	again	later,	when	the
Slave	is	available	again

08 MEMORY
PARITY	ERROR

Used	with	functions	20	and	21,
reference	type	6,	to	indicate	the
extended	file	failed	on	a
consistency	test.	The	Slave	device
may	need	maintenance

0A GATEWAY	PATH
UNAVAILABLE

Used	together	with	gateways,	to
indicate	that	a	gateway	was	unable
to	allocate	an	internal	path	to
process	this	request.	It	usually
indicates	that	a	gateway	is	not
correctly	configured	or	it	is
overloaded

0B GATEWAY
TARGET
DEVICE	FAILED
TO	RESPOND

Used	together	with	gateways,	to
indicate	that	no	response	was
received	from	the	destination
device.	It	usually	indicates	that	such
device	is	not	available	on	the
network



	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Maximum	 Limit	 for	 the	 Size	 of	 Blocks
Supported	by	the	Protocol

Top	
Previous	

Next

This	topic	presents	the	maximum	limits	for	block	sizes	supported	by	the
Modbus	 protocol,	 in	 its	 current	 version	 1.1b	 (please	 check	 this
specification	at	protocol's	official	website).
Notice	 that,	 due	 to	 Superblock	 Reading	 and	 Automatic	 Block
Partition	 features,	present	 in	 this	Driver's	current	version,	users	hardly
need	to	consider	these	limits	in	their	applications,	as	this	Driver	already
performs	all	optimizations	automatically	during	communication.
However,	 as	 there	 are	 devices	 that	 do	 not	 support	 default	 limits
established	by	 this	protocol,	users	may	need	 to	know	 these	 limits,	and
most	of	all	they	must	know	how	to	evaluate	device's	limits,	in	case	they
are	 forced	 to	 perform	 a	 manual	 grouping	 (please	 check	 topic
Superblock	Reading).	In	these	cases,	information	on	this	topic	can	be
very	helpful.
	

http://www.modbus.org/specs.php


Limits	Supported	by	this	Protocol
The	Modbus	 protocol	 defines	 a	 simple	 data	 unit	 called	PDU	 (Protocol
Data	 Unit),	 which	 is	 kept	 unchanged	 through	 several	 protocol	 modes
and	through	several	communication	layers.
A	full	communication	layer,	including	a	PDU	and	other	additional	header
fields,	is	called	ADU	(Application	Data	Unit).

Limits	supported	by	this	protocol
According	to	this	protocol's	specification,	a	full	Modbus	frame	(ADU)	can
have	a	PDU	with	a	maximum	size	of	253	bytes.
Thus,	 depending	 on	 the	 data	 type	 or	 Modbus	 function	 used	 in
communication,	 this	 protocol	 imposes	 the	 limits	 for	 block	 elements	 at
each	communication	described	on	the	next	table.

Limits	for	Block	Elements

MODBUS
FUNCTION

DESCRIPTION LIMIT

03,	04 Reading	multiple	16-bit	registers 125	registers
(250	bytes)

16 Writing	multiple	16-bit	registers
(Holding	Registers)

123	registers
(247	bytes)

01,	02 Reading	multiple	bits 2000	bits	(250
bytes)

15 Writing	multiple	bits 1968	bits	(247
bytes)

20 Reading	file	registers 124	registers
(248	bytes)



21 Writing	file	registers 122	registers
(244	bytes)

	
More	information	is	available	at	protocol's	official	website.
The	article	KB-23112:	I/O	Block's	ideal	size	with	Modbus	driver	in	Elipse
Knowledgebase	 presents	 a	 summary	 of	 questions	 relative	 to	 Tag
grouping	and	block	resizing	 in	 this	Driver,	discussed	here	and	on	other
topics.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://www.modbus.org
http://kb.elipse.com.br/en-us/questions/3722
http://kb.elipse.com.br/en-us


BCD	Encoding Top		Previous		Next

BCD	 Encoding	 (Binary-Coded	 Decimal)	 was	 originally	 created	 to
circumvent	limitations	regarding	the	maximum	number	of	digits	that	can
be	represented	in	traditional	formats	for	storing	values.	Formats	such	as
the	 representation	 of	 real	 numbers	 in	 floating	 point	 are	 usually
acceptable	for	math	and	scientific	calculations.	However,	rounding	errors
caused	 by	 numbers	 that	 cannot	 be	 represented	 due	 to	 overflow	 or
underflow	problems	may	not	be	acceptable	in	certain	applications,	such
as	 financial	 procedures.	 To	 overcome	 that	 limitation,	 a	 BCD	 encoding
was	developed	to	allow	representing	numbers	up	to	the	last	digit.
In	this	representation,	each	decimal	digit	is	represented	only	in	a	binary
format,	without	limitations	regarding	its	number	of	digits.
The	next	 table	 shows	decimal	 digits	 and	 their	 corresponding	 values	 in
BCD	(values	in	binary).

Decimal	digits	in	BCD	encoding

DECIMAL BCD DECIMAL BCD
0 0000b 5 0101b

1 0001b 6 0110b

2 0010b 7 0111b

3 0011b 8 1000b

4 0100b 9 1001b

	
To	 improve	 efficiency	 of	 this	 encoding,	 it	 is	 common	 to	 represent	 two
digits	 per	 byte.	 Notice	 that,	 on	 the	 previous	 table,	 each	 decimal	 digit
requires	only	four	bits,	or	a	half	byte,	for	its	representation.
Such	representation	with	two	digits	in	each	byte	is	called	Packed	BCD,
and	this	 the	representation	used	by	this	Driver,	 that	 is,	packets	sent	by
this	Driver	with	BCD	values	use	a	data	byte	 for	every	 two	digits	of	 the
represented	 decimal	 value.	 That	 is	 why	 the	 Size	 field,	 for	BCD	 data
types,	 must	 be	 defined	 as	 half	 the	 maximum	 number	 of	 digits
represented	in	values	that	are	read	or	written.



	



Example
As	an	example,	suppose	that	users	want	to	send	the	value	84	in	decimal
(0x54	 in	 hexadecimal	 format),	 using	 a	 packed	 BCD	 encoding	 in	 one
byte,	the	format	used	by	this	Driver.
The	first	step	is	separate	the	two	decimal	digits	that	compose	this	value
in	its	decimal	representation:

Digit	1:	8

Digit	2:	4
	
If	 users	want	 to	 send	 this	 value	 to	 a	 device	without	 a	 BCD	 encoding,
then	 the	 value	 sent	 to	 the	 protocol	 is	 84,	 which	 is	 represented	 in
hexadecimal	format	by	0x54,	or	else	01010100b	in	binary	format.
By	 using	 a	 packed	 BCD	 format,	 however,	 users	 represent	 these	 two
decimal	digits	separately	in	each	half,	or	nibble,	of	the	byte	to	send:

BCD:	0x84	or	10000100b
	
Notice	that,	if	this	value	0x84	is	mistakenly	interpreted	in	BCD	format	as
a	 value	 in	 hexadecimal	 format	without	 this	 encoding,	 and	 this	 value	 is
then	 converted	 to	 decimal,	 users	 get	 the	 value	 132,	 which	 is
meaningless.
The	 next	 table	 presents	 a	 few	 more	 examples	 of	 decimal	 values
between	0	(zero)	and	99	and	their	respective	representations	in	Packed
BCD	format	in	one	byte,	presented	in	hexadecimal	and	binary	formats.

Decimal	digits	in	Packed	BCD	encoding

DECIMAL HEXADECIMAL BCD	(HEXADECIMAL) BCD	(BINARY)
10 0x0A 0x10 00010000b

0 0x00 0x00 00000000b

99 0x63 0x99 10011001b

81 0x51 0x81 10000001b

45 0x2D 0x45 01000101b



	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Documentation	of	I/O	Interfaces Top		Previous		Next

This	 section	 contains	 the	 documentation	 of	 I/O	 Interfaces	 referring	 to
Modbus	Driver.



Driver	Configuration Top		Previous		Next

I/O	 Interface	configuration	 is	performed	on	Driver's	configuration	dialog
box.	To	access	 the	configuration	of	 this	dialog	box	 in	E3	 (version	1.0),
follow	these	steps:
1. Right-click	the	Driver	object	(IODriver).
2. Select	the	Properties	item	on	the	contextual	menu.
3. Select	the	Driver	tab.
4. Click	Other	parameters.
	
In	E3	version	2.0	or	later,	click	Configure	driver	 	on	Driver's	toolbar.	In
Elipse	SCADA,	follow	these	steps:
1. Open	the	Organizer.
2. Select	the	Driver	on	Organizer's	tree.
3. Click	Extras	on	Driver	tab.
	
Currently,	an	I/O	Interface	allows	opening	only	one	connection	for	each
Driver.	 This	means	 that,	 if	 users	want	 to	 access	 two	 serial	 ports,	 they
must	add	 two	Drivers	 to	an	application	and	 then	configure	each	Driver
for	each	serial	port.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Configuration	Dialog	Box Top		Previous		Next

The	I/O	Interfaces	dialog	box	allows	configuring	the	I/O	connection	used
by	 a	 Driver.	 This	 dialog	 box	 contains	 the	 Setup,	 Serial,	 Ethernet,
Modem,	and	RAS	 tabs,	 described	on	 the	next	 topics.	 If	 a	Driver	does
not	 implement	 a	 specific	 I/O	 connection,	 its	 corresponding	 tab	 is	 not
available	 for	 configuration.	 Some	 Drivers	 may	 contain	 additional	 tabs
(specific	for	each	Driver)	on	the	configuration	dialog	box.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Setup	Tab Top		Previous		Next

The	 Setup	 tab	 contains	 Driver's	 general	 configurations.	 This	 tab	 is
divided	into	three	distinct	parts:

General	 configurations:	 Configurations	 of	 Driver's	 physical	 layer,
time-out,	and	initialization	mode

Connection	management:	Configurations	 on	 how	 the	 I/O	 Interface
keeps	a	connection	and	which	recovery	policy	is	used	on	failure

Logging	options:	Controls	the	generation	of	log	files

Setup	tab
General	options	on	Setup	tab

OPTION DESCRIPTION
Physical
Layer

Select	the	physical	layer	on	the	list.	Available	options	are
Serial,	Ethernet,	Modem,	and	RAS.	The	selected	interface
must	be	configured	on	its	specific	tab.

Timeout Configure	a	time-out,	in	milliseconds,	for	the	physical	layer.



This	is	the	amount	of	time	an	I/O	interface	waits	to	receive	a
byte	(any	byte	from	reception's	buffer).

Start
driver
OFFLINE

Select	this	option	so	that	the	Driver	starts	in	Offline	mode
(stopped).	This	means	that	the	I/O	interface	is	not	created
until	this	Driver	is	configured	to	Online	mode	(using	a	Tag	in
an	application).	This	mode	enables	a	dynamic	configuration	of
an	I/O	interface	at	run	time.	Please	check	topic	Working
Offline	for	more	details.

	
Options	on	Connection	management	group

OPTION DESCRIPTION
Mode Selects	a	management	mode	of	a	connection.	Selecting

the	Automatic	option	allows	a	Driver	to	manage	the
connection	automatically,	as	specified	in	the	next	options.
Selecting	the	Manual	option	allows	an	application	to	fully
manage	the	connection.	Please	check	topic	Driver
Statuses	for	more	details.

Retry
failed
connection
every	...
seconds

Select	this	option	to	enable	a	Driver's	connection	retry	in	a
certain	interval,	in	seconds.	If	the	Give	up	after	failed
retries	option	is	not	selected,	the	Driver	keeps	retrying	until
the	connection	is	performed,	or	until	the	application	is
stopped.

Give	up
after	...
failed
retries

Enable	this	option	to	define	a	maximum	number	of
connection	retries.	When	the	specified	number	of
consecutive	connection	retries	is	reached,	the	Driver	goes
to	the	Offline	mode,	assuming	that	a	hardware	problem
was	detected.	If	a	Driver	establishes	a	successful
connection,	the	number	of	unsuccessful	retries	is	cleared.	If
this	new	connection	is	lost,	then	the	retry	counter	starts	at
zero.

Disconnect
if	non-
responsive
for	...

Enable	this	option	to	force	a	Driver	to	disconnect	if	no	byte
was	received	by	the	I/O	interface	during	the	specified	time-
out,	in	seconds.	This	time-out	must	be	greater	than	the
time-out	configured	in	the	Timeout	option.



seconds

	
Options	on	Logging	Options	group

OPTION DESCRIPTION
Log	to
File

Enable	this	option	and	configure	the	name	of	the	file	to	write
the	log.	Log	files	can	be	large,	so	use	this	option	for	short
periods	of	time,	only	for	test	and	debugging	purposes.
If	the	%PROCESS%	macro	is	used	in	the	log	file	name,	it	is
replaced	by	the	ID	of	the	current	process.	This	option	is
particularly	useful	when	using	several	instances	of	the	same
Driver	in	E3,	thus	allowing	each	instance	to	generate	a
separate	log	file.	For	example,	when	configuring	this	option	as
c:\e3logs\drivers\sim_%PROCESS%.log,	a	file
c:\e3logs\drivers\sim_00000FDA.log	is	generated	for
process	0FDAh.
Users	can	also	use	the	%DATE%	macro	in	the	file	name.	In
this	case	a	log	file	is	generated	every	day	(in	the	format
aaaa_mm_dd).	For	example,	when	configuring	this	option	as
c:\e3logs\drivers\sim_%DATE%.log,	a	file
c:\e3logs\drivers\sim_2005_12_31.log	is	generated	in
12/31/2005	and	a	file	c:\e3logs\drivers\sim_2006_01_01.log
is	generated	in	01/01/2006.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Serial	Tab Top		Previous		Next

Use	this	tab	to	configure	parameters	of	the	Serial	Interface.

Serial	tab
General	options	on	Serial	tab

OPTION DESCRIPTION
Port Select	a	serial	port	on	the	list	(from	COM1	to	COM4)

or	type	the	name	of	a	serial	port	in	the	format	COMn
(for	example,	"COM15").	When	typing	a	port's	name
manually,	the	dialog	box	only	accepts	port	names
starting	with	the	expression	"COM".

Baud	rate Select	a	baud	rate	on	the	list	(1200,	2400,	4800,	9600,
19200,	38400,	57600,	or	115200)	or	type	a	baud	rate
(for	example,	600).

Data	bits Select	7	or	8	data	bits	on	the	list.

Parity Select	a	parity	on	the	list	(None,	Even,	Odd,	Mark,	or
List).



Stop	bits Select	the	number	of	stop	bits	on	the	list	(1,	1.5,	or	2
stop	bits).

Enable	'ECHO'
supression

Enable	this	option	to	remove	the	echo	received	after
the	I/O	Interface	sends	data	via	serial	port.	If	this	echo
is	not	equal	to	the	bytes	just	sent,	then	the	I/O
Interface	aborts	communication.

Inter-byte	delay
(microseconds)

Defines	a	delay	between	each	byte	transmitted	by	the
I/O	Interface,	in	millionths	of	a	second	(1000000	is
equal	to	a	second).	This	option	must	be	used	with
small	delays	(less	than	a	millisecond).

Inter-frame
delay
(milliseconds)

Defines	a	delay	between	packets	sent	or	received	by
the	I/O	Interface,	in	thousandths	of	a	second	(1000	is
equal	to	a	second).	This	delay	is	applied	if	the	I/O
Interface	sends	two	consecutive	packets,	or	between	a
received	packet	and	the	next	sending.

	
The	Handshaking	group	configures	the	usage	of	RTS,	CTS,	and	DTR
signals	 in	 the	handshaking	process	 (controlling	when	data	can	be	sent
or	received	via	serial	line).	Most	of	the	time,	configuring	the	DTR	control
option	to	ON	and	the	RTS	control	option	to	Toggle	works	with	RS232
serial	lines	as	well	as	with	RS485	serial	lines.

Available	options	on	Handshaking	group

OPTION DESCRIPTION
DTR
control

Select	ON	to	keep	the	DTR	signal	always	on	while	the	serial
port	is	open.	Select	OFF	to	turn	the	DTR	signal	off	while	the
serial	port	is	open.	Some	devices	require	the	DTR	signal
always	on	to	allow	communication.

RTS
control

Select	ON	to	keep	the	RTS	signal	always	on	while	the	serial
port	is	open.	Select	OFF	to	turn	the	RTS	signal	off	while	the
serial	port	is	open.	Select	Toggle	to	turn	the	RTS	signal	on
while	sending	bytes	via	serial	port	and	turn	it	off	when	not
sending	bytes,	therefore	enabling	the	reception.

Wait	for Available	only	when	the	RTS	control	option	is	configured	to



CTS
before
send

Toggle.	Use	this	option	to	force	a	Driver	to	check	the	CTS
signal	before	sending	bytes	via	serial	port,	after	turning	the
RTS	signal	on.	In	this	mode	the	CTS	signal	is	handled	as	a
permission	flag	for	sending.

CTS
timeout

Determines	a	maximum	time,	in	milliseconds,	that	a	Driver
waits	for	the	CTS	signal	after	turning	the	RTS	signal	on.	If	the
CTS	signal	is	not	turned	on	within	this	time-out,	the	Driver	then
fails	the	current	communication	and	returns	an	error.

Delay
before
send

Some	serial	port	hardware	have	a	delay	when	enabling	a	data
sending	circuit	after	the	RTS	signal	is	turned	on.	Configure	this
option	to	wait	a	certain	number	of	milliseconds	after	turning	the
RTS	signal	on	and	before	sending	the	first	byte.	IMPORTANT:
This	delay	must	be	used	carefully,	because	it	uses	100%	of
CPU	resources	while	waiting.	System's	general	performance
degrades	as	this	value	increases.

Delay
after
send

This	is	the	same	effect	of	the	Delay	before	send	option,	but	in
this	case	the	delay	is	performed	after	sending	the	last	byte,
before	turning	the	RTS	signal	off.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Ethernet	Tab Top		Previous		Next

Use	 this	 tab	 to	 configure	 parameters	 of	 the	Ethernet	 Interface.	 These
parameters	 (all	 except	port	 configurations)	must	also	be	configured	 for
use	in	the	RAS.

Ethernet	tab
Available	options	on	Ethernet	tab

OPTION DESCRIPTION
Transport Select	TCP/IP	for	a	TCP	socket	(stream).	Select	UDP/IP

to	use	a	UDP	socket	(connectionless	datagram).

Listen	for
connections
on	port

Use	this	option	to	wait	for	new	connections	in	a	specific	IP
port	(common	in	Slave	Drivers).	If	this	option	remains
unselected,	the	Driver	connects	to	the	address	and	port
specified	in	the	Connect	to	option.

Connect	to These	options	configure	an	IP	address	and	port	of	a
remote	device.
IP:	Type	an	IP	address	of	a	remote	device.	It	can	be	an



IP	address	separated	by	dots	as	well	as	a	URL	(for	a
URL,	the	Driver	uses	the	available	DNS	service	to	map
that	URL	to	an	IP	address).	For	example,
"192.168.0.13"	or	"Server1"
Port:	Type	an	IP	port	of	a	remote	device	(from	0	to
65535)
Specify	local	port:	Select	this	option	to	use	a	fixed
local	port	when	connecting	to	the	main	address

Backup
address

Enables	a	backup	address	if	a	device	provides	an
alternative	IP	address	(if	the	first	address	fails):
IP:	Type	an	alternative	IP	address	of	a	remote	device.
This	can	be	an	IP	address	separated	by	dots	or	a	URL
Port:	Type	an	alternative	IP	port	of	a	remote	device
(from	0	to	65535)
Specify	local	port:	Select	this	option	to	use	a	fixed
local	port	when	connecting	to	the	backup	address

PING	before
connecting

Enable	this	option	to	execute	a	ping	command	(check	if	a
device	can	be	reached	on	a	network)	for	a	device	before
trying	a	socket	connection.	This	is	a	quick	way	of
determining	a	successful	connection	before	trying	to	open
a	socket	with	a	device	(the	time-out	of	a	connection	with	a
socket	can	be	very	high):
Timeout:	Specify	the	number	of	milliseconds	to	wait	for
a	reply	from	the	ping	command.	Users	must	use	the
ping	command	to	check	the	normal	reply	time,
configuring	this	option	for	a	value	above	that	average.
Usually	this	value	can	be	configured	between	1000	and
4000	milliseconds	(between	one	and	four	seconds)
Retries:	Number	of	retries	of	a	ping	command	(not
counting	the	first	attempt).	If	all	attempts	fail,	then	the
socket	connection	is	aborted.

Enable
'ECHO'
suppression

Enable	this	option	to	remove	the	echo	from	received	data.
An	echo	is	a	copy	of	sent	data,	which	can	be	returned
before	a	reply	message.



	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Modem	Tab Top		Previous		Next

Use	 this	 tab	 to	 configure	 parameters	 of	 the	Modem	 Interface.	 Some
options	on	the	Serial	tab	affect	the	modem	configuration,	therefore	users
must	also	configure	the	Serial	Interface.

Modem	tab
The	Modem	Interface	uses	the	TAPI	modems	installed	on	the	computer.

Available	options	on	Modem	tab

OPTION DESCRIPTION
Select
the
modem
to	use

Select	a	modem	on	the	list	of	modems	available	on	the
computer.	If	the	Default	modem	option	is	selected,	then	the
first	available	modem	is	used.	Selecting	this	option	is
recommended	specially	when	the	application	is	used	on
another	computer.

Modem
settings

Click	to	open	the	configuration	window	of	the	selected
modem.

Dial Type	a	default	number	for	dialing	(this	value	can	be	changed



Number at	run	time).	Users	can	use	the	w	character	to	represent	a
pause	(waiting	for	the	dial	tone).	Por	exemplo,	"0w33313456"
(disca	o	número	zero,	espera	e	então	disca	o	número
"33313456").

Accept
incoming
calls

Enable	this	option	so	that	the	Driver	answers	the	phone	when
receiving	an	external	call.	To	use	this	option,	users	must
configure	the	Connection	management	option	on	Setup	tab
to	Manual.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


RAS	Tab Top		Previous		Next

Use	this	tab	configure	parameters	of	the	RAS	Interface.	Users	must	also
configure	the	Ethernet	tab.
The	RAS	 Interface	 opens	 a	 socket	 connection	 with	 a	 RAS	 device.	 A
RAS	device	is	a	server	of	modems	available	through	TCP/IP,	waiting	for
socket	connections	on	an	IP	port.	For	each	connection	accepted	on	this
port,	users	have	access	to	one	modem.
When	connecting	to	a	RAS	device,	first	the	I/O	InterfaceIOKit	connects
to	the	socket	on	the	IP	address	and	port	configured	on	the	Ethernet	tab.
After	opening	the	socket,	 the	 following	 initialization	or	connection	steps
are	performed:
1. Clear	the	socket	(remove	any	TELNET	greeting	message	received
from	the	RAS	device).

2. Send	an	AT	dial	message	(in	ASCII)	in	the	socket.
3. Wait	for	a	CONNECT	reply.
4. If	the	time-out	expires,	the	connection	is	aborted.
5. If	the	CONNECT	reply	is	received	within	the	time-out,	the	socket	is
available	for	communication	with	the	device	(connection	was
established).

	
If	step	5	is	successful,	then	the	socket	behaves	as	a	normal	socket,	with
the	RAS	device	working	as	a	router	between	the	Driver	and	the	device.
Bytes	sent	by	the	Driver	are	received	by	the	RAS	device	and	sent	to	the
destination	device	using	a	modem.	Bytes	received	by	the	modem's	RAS
device	are	sent	back	to	the	Driver	using	the	same	socket.
After	 establishing	 the	 connection,	 the	 RAS	 interface	 monitors	 data
received	by	the	Driver.	If	a	String	"NO	CARRIER"	is	found,	the	socket	is
closed.	 If	 the	 RAS	 device	 does	 not	 send	 a	NO	CARRIER	 signal,	 the
RAS	 Interface	cannot	detect	when	the	modem	connection	between	the
RAS	device	 and	 the	 final	 I/O	 device	 fails.	 To	 recover	 from	 this	 failure,
users	are	strongly	advised	to	enable	the	Disconnect	if	non-responsive
option	on	Setup	tab.



RAS	tab
Available	options	on	RAS	tab

OPTION DESCRIPTION
AT
command

A	String	with	the	full	AT	command	used	to	dial	to	a
destination	device.	For	example,	"ATDT33313456"	(tone
dialing	to	number	"33313456").

Connection
timeout

Number	of	seconds	to	wait	for	a	modem's	CONNECT
reply,	after	sending	an	AT	command.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):



Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


General	Configurations Top		Previous		Next

This	section	contains	information	about	the	configuration	of	general	I/O
Tags	and	Properties	of	I/O	Interfaces.



I/O	Tags Top		Previous		Next



General	I/O	Interfaces	Tags	(N2/B2	=	0)
The	Tags	described	next	are	provided	 for	all	 supported	 I/O	 Interfaces.
The	available	Tags	on	this	section	are	the	following:

IO.IOKitEvent

IO.PhysicalLayerStatus

IO.SetConfigurationParameters

IO.WorkOnline



IO.IOKitEvent Top		Previous		Next

Type	of	Tag Block	Tag

Type	of	Access Read-Only

B1	Parameter -1

B2	Parameter 0

B3	Parameter 0

B4	Parameter 1

Size	Property 4

ParamItem	Property IO.IOKitEvent

	
This	 Block	 returns	 Driver	 events	 generated	 by	 several	 sources	 in	 I/O
Interfaces.	 The	 TimeStamp	 property	 of	 this	 Block	 represents	 the
moment	this	event	occurred.	The	Block	Elements	are	the	following:

Element	0:	Type	of	event

0:	Information

1:	Warning

2:	Error

Element	1:	Source	of	event

0:	Driver	(specific	of	a	Driver)

-1:	IOKit	(generic	events	of	I/O	Interfaces)

-2:	Serial	Interface

-3:	Modem	Interface

-4:	Ethernet	Interface

-5:	RAS	Interface

Element	2:	Error	number	(specific	for	each	source	of	event)

Element	3:	Event	message	(String,	specific	for	each	event)



	

NOTE
A	Driver	keeps	a	maximum	number	of	100	events	internally.	If	additional
events	are	reported,	older	events	are	discarded.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.PhysicalLayerStatus Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 2

String	Configuration IO.PhysicalLayerStatus

	
This	Tag	indicates	the	status	of	the	physical	layer.	Its	possible	values	are
the	following:

0:	Physical	layer	stopped	(the	Driver	is	in	Offline	mode,	the	physical
layer	 failed	 when	 initializing,	 or	 exceeded	 the	maximum	 number	 of
reconnection	attempts)

1:	 Physical	 layer	 started	 but	 not	 connected	 (the	Driver	 is	 in	Online
mode,	 but	 the	 physical	 layer	 is	 not	 connected.	 If	 the	 Connection
management	option	 is	configured	as	Automatic,	 the	physical	 layer
can	 be	 connecting,	 disconnecting,	 or	 waiting	 for	 a	 reconnection
attempt.	 If	 the	 Connection	 management	 option	 is	 configured	 as
Manual,	 then	the	physical	 layer	remains	in	this	status	until	 forced	to
connect)

2:	Physical	layer	connected	(the	physical	layer	is	ready	for	use).	This
DOES	NOT	mean	 the	device	 is	connected,	only	 the	access	 layer	 is
working

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):



There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.SetConfigurationParameters Top		Previous		Next

Type	of	Tag Block	Tag

Type	of	Access Read-Only

B1	Parameter -1

B2	Parameter 0

B3	Parameter 0

B4	Parameter 3

Size	Property 2

ParamItem	Property IO.SetConfigurationParameters

	
Use	this	Tag	to	change	any	property	of	Driver's	configuration	dialog	box
at	run	time	(the	complete	list	of	properties	can	be	found	on	the	specific
topic	of	each	Interface).
This	Tag	works	only	while	a	Driver	is	in	Offline	mode.	To	start	a	Driver	in
Offline	 mode,	 select	 the	 Start	 driver	 OFFLINE	 option	 on	 Driver's
configuration	dialog	box.	Users	can	write	to	a	PLC	Tag	or	to	a	Block	Tag
containing	 the	 parameters	 to	 change	 (writings	 of	 individual	 Block
Elements	are	not	supported,	the	whole	Block	must	be	written	at	once).
In	Elipse	 SCADA,	 users	 must	 use	 a	 Block	 Tag.	 Every	 parameter	 to
configure	 uses	 two	 Block	 Elements.	 For	 example,	 if	 users	 want	 to
configure	three	parameters,	then	the	size	of	the	Block	must	be	6	(3	*	2).
The	 first	Element	 is	 the	property's	name	 (as	a	String)	and	 the	second
Element	is	the	property's	value.	Check	this	script	in	Elipse	SCADA:
//	'Block'	must	be	a	Block	Tag	with	automatic	reading,	//	scan	reading,	and
automatic	writing	disabled.
//	Configure	all	parameters
Block.element001	=	"IO.Type"	//	Parameter	1
Block.element002	=	"Serial"
Block.element003	=	"IO.Serial.Port"	//	Parameter	2
Block.element004	=	1
Block.element005	=	"IO.serial.BaudRate"	//	Parameter	3



Block.element006	=	19200
//	Writes	the	whole	Block
Block.Write()

	
When	using	E3,	 the	ability	 to	create	arrays	at	 run	time	allows	using	an
I/O	Tag	as	well	as	a	Block	Tag.	Users	can	use	Driver's	Write	method	to
send	all	parameters	 to	 the	Driver,	without	creating	a	Tag.	Check	 these
examples:

Dim	arr(6)
'	Configure	all	array	elements
arr(1)	=	"IO.Type"
arr(2)	=	"Serial"
arr(3)	=	"IO.Serial.Port"
arr(4)	=	1
arr(5)	=	"IO.serial.BaudRate"
arr(6)	=	19200
'	There	are	two	methods	to	send	parameters
'	Method	1:	Using	an	I/O	Tag
tag.WriteEx	arr
'	Method	2:	Without	using	a	Tag
Driver.Write	-1,	0,	0,	3,	arr

	
A	variation	of	the	previous	example	uses	a	bidimensional	array:

Dim	arr(10)
'	Configure	all	array	elements.	Notice	the	array	was	resized
'	to	10	elements.	Empty	elements	of	the	array	are	ignored	by	the	Driver.
arr(1)	=	Array("IO.Type",	"Serial")
arr(2)	=	Array("IO.Serial.Port",	1)
arr(3)	=	Array("IO.serial.BaudRate",	19200)
Driver.Write	-1,	0,	0,	3,	arr

	
A	Driver	does	not	validate	parameter	names	or	passed	values,	therefore
be	careful	when	writing	parameters	and	values.	The	Write	method	fails	if
the	configuration	array	 is	 incorrectly	 created.	Users	 can	check	Driver's
log	or	use	the	writeStatus	parameter	of	the	WriteEx	method	to	find	out
the	exact	cause	of	the	error:



Dim	arr(10),	strError
arr(1)	=	Array("IO.Type",	"Serial")
arr(2)	=	Array("IO.Serial.Port",	1)
arr(3)	=	Array("IO.serial.BaudRate",	19200)
If	Not	Driver.WriteEx	-1,	0,	0,	3,	arr,	,	,	strError	Then
		MsgBox	"Failure	when	configuring	Driver	parameters:	"	+	strError
End	If

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.WorkOnline Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Reading	or	Writing

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 4

String	Configuration IO.WorkOnline

	
This	Tag	 informs	Driver's	current	status	and	allows	starting	or	stopping
the	physical	layer.

0	-	Driver	Offline:	The	physical	layer	is	closed	(stopped).	This	mode
allows	 a	 dynamic	 configuration	 of	 Driver	 parameters	 using	 the
IO.SetConfigurationParameters	Tag
1	 -	Driver	Online:	 The	 physical	 layer	 is	 open	 (executing).	While	 in
Online	mode,	 the	physical	 layer	 can	be	connected	or	disconnected
(its	 current	 status	 can	 be	 checked	 on	 the	 IO.PhysicalLayerStatus
Tag)

	
In	the	next	example	(using	E3),	the	Driver	is	configured	to	Offline	mode,
its	COM	port	is	changed,	and	then	configured	to	Online	mode	again:
'	Configure	to	Driver	to	Offline	mode	Driver.Write	-1,	0,	0,	4,	0
'	Change	port	to	COM2
Driver.Write	-1,	0,	0,	3,	Array("IO.Serial.Port",	2)
'	Configure	Driver	to	Online	mode
Driver.Write	-1,	0,	0,	4,	1

	
The	Write	method	can	fail	when	configuring	the	Driver	to	Online	mode
(writing	the	value	one).	In	this	case,	the	Driver	remains	in	Offline	mode.
The	cause	of	failure	can	be:



Type	 of	 physical	 layer	 incorrectly	 configured	 (probably	 an	 invalid
value	was	configured	in	the	IO.Type	property)
Driver	may	have	run	out	of	memory

Physical	 layer	probably	did	not	create	its	working	thread	(search	the
log	file	for	the	message	"Failed	to	create	physical	layer	thread!")

Physical	 layer	 could	 not	 start.	 The	 cause	 of	 failure	 depends	 on	 the
type	of	physical	 layer.	 It	can	be	an	 invalid	serial	port	number,	 failure
when	starting	Windows	Sockets,	failure	when	starting	TAPI	(modem),
etc.	This	cause	is	recorded	on	the	log	file

	

IMPORTANT
Even	if	 the	configuration	of	a	Driver	to	Online	mode	 is	successful,	 this
does	not	necessarily	mean	the	physical	 layer	 is	ready	to	use	(ready	to
execute	 input	 and	 output	 operations	 with	 an	 external	 device).	 The
IO.PhysicalLayerStatus	 Tag	must	 be	 checked	 to	 ensure	 the	 physical
layer	is	connected	and	ready	for	communication.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Properties Top		Previous		Next

These	 are	 general	 properties	 of	 all	 supported	 I/O	 Interfaces.	 The
available	properties	on	this	section	are	the	following:

IO.ConnectionMode

IO.GiveUpEnable

IO.GiveUpTries

IO.InactivityEnable

IO.InactivityPeriodSec

IO.RecoverEnable

IO.RecoverPeriodSec

IO.StartOffline

IO.TimeoutMs

IO.Type



IO.ConnectionMode Top		Previous		Next

	Controls	the	management	mode	of	the	Connection:

0:	Automatic	mode	(the	Driver	manages	the	connection)

1:	Manual	mode	(the	application	manages	the	connection)

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.GiveUpEnable Top		Previous		Next

	When	configured	to	True,	defines	a	maximum	number	of	reconnection
attempts.	 If	all	 reconnection	attempts	 fail,	 the	Driver	enters	 the	Offline
mode.	When	configured	to	False,	the	Driver	tries	until	a	reconnection	is
successful.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.GiveUpTries Top		Previous		Next

	 Number	 of	 reconnection	 attempts	 before	 this	 one	 is	 aborted.	 For
example,	if	the	value	of	this	property	is	equal	to	1	(one),	the	Driver	tries
only	one	reconnection	when	the	reconnection	is	lost.	If	this	one	fails,	the
Driver	enters	the	Offline	mode.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.InactivityEnable Top		Previous		Next

	Configure	to	True	to	enable	and	to	False	to	disable	inactivity	detection.
The	physical	layer	is	disconnected	if	inactive	for	a	certain	period	of	time.
The	physical	layer	is	considered	inactive	only	if	 it	 is	capable	of	sending
data	but	not	capable	of	receiving	it	back.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.InactivityPeriodSec Top		Previous		Next

	Number	of	seconds	to	check	 inactivity.	 If	 the	physical	 layer	 is	 inactive
for	this	period	of	time,	it	is	disconnected.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.RecoverEnable Top		Previous		Next

	Configure	to	True	to	enable	a	Driver	to	recover	lost	connections	and	to
False	to	leave	a	Driver	in	Offline	mode	when	a	connection	is	lost.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.RecoverPeriodSec Top		Previous		Next

	Delay	time	between	two	connection	attempts,	in	seconds.
	

NOTE
The	first	reconnection	is	executed	immediately	after	a	connection	is	lost.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.StartOffline Top		Previous		Next

	Configure	to	True	to	start	a	Driver	in	Offline	mode	and	to	False	to	start
a	Driver	in	Online	mode.
	

NOTE
It	 is	 pointless	 to	 change	 this	 property	 at	 run	 time,	 as	 it	 can	 only	 be
changed	when	a	Driver	is	already	in	Offline	mode.	To	configure	a	Driver
in	 Online	 mode	 at	 run	 time,	 write	 the	 value	 1	 (one)	 to	 the
IO.WorkOnline	Tag.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TimeoutMs Top		Previous		Next

	Defines	a	time-out	for	the	physical	layer,	in	milliseconds	(one	second	is
equal	to	1000	milliseconds).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Type Top		Previous		Next

	Defines	the	type	of	physical	interface	used	by	a	Driver.	Possible	values
are	the	following:

N	 or	 None:	 Does	 not	 use	 a	 physical	 interface	 (the	 Driver	 must
provide	a	customized	interface)

S	or	Serial:	Uses	a	local	serial	port	(COMn)

M	or	Modem:	Uses	a	local	modem	(internal	or	external)	accessed	via
TAPI	(Telephony	Application	Programming	Interface)

E	or	Ethernet:	Uses	a	TCP/IP	or	UDP/IP	socket

R	 or	 RAS:	 Uses	 a	 RAS	 (Remote	 Access	 Server)	 Interface.	 The
Driver	 connects	 to	 a	 RAS	 device	 using	 the	Ethernet	 Interface	 and
then	sends	an	AT	(dial)	command

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Statistical	Configuration Top		Previous		Next

This	 section	 contains	 information	 about	 the	 configuration	 of	 I/O	 Tags
and	Properties	of	I/O	Interfaces	statistics.



I/O	Tags Top		Previous		Next



Tags	of	I/O	Interface	statistics	(N2/B2	=	0)
The	 Tags	 described	 next	 display	 statistics	 for	 all	 I/O	 Interfaces.	 The
available	Tags	on	this	section	are	the	following:

IO.Stats.Partial.BytesRecv

IO.Stats.Partial.BytesSent

IO.Stats.Partial.TimeConnectedSeconds

IO.Stats.Partial.TimeDisconnectedSeconds

IO.Stats.Total.BytesRecv

IO.Stats.Total.BytesSent

IO.Stats.Total.ConnectionCount

IO.Stats.Total.TimeConnectedSeconds

IO.Stats.Total.TimeDisconnectedSeconds



IO.Stats.Partial.BytesRecv Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1101

Configuration	by	String IO.Stats.Partial.BytesRecv

	
This	Tag	returns	the	number	of	bytes	received	in	the	current	connection.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Partial.BytesSent Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1100

Configuration	by	String IO.Stats.Partial.BytesSent

	
This	 Tag	 returns	 the	 number	 of	 bytes	 sent	 through	 the	 current
connection.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Partial.TimeConnectedSeconds
Top	

Previous	
Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1102

Configuration	by	String IO.Stats.Partial.TimeConnectedSeconds

	
This	 Tag	 returns	 the	 number	 of	 seconds	 a	 Driver	 is	 connected	 in	 the
current	connection	or	0	(zero)	if	a	Driver	is	disconnected.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Partial.TimeDisconnectedSeconds
Top

Previous
Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1103

Configuration	by	String IO.Stats.Partial.TimeDisconnectedSeconds

	
This	Tag	returns	the	number	of	seconds	a	Driver	 is	disconnected	since
the	last	connection	ended	or	0	(zero)	if	a	Driver	is	connected.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Total.BytesRecv Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1001

Configuration	by	String IO.Stats.Total.BytesRecv

	
This	 Tag	 returns	 the	 number	 of	 bytes	 received	 since	 a	 Driver	 was
loaded.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Total.BytesSent Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1000

Configuration	by	String IO.Stats.Total.BytesSent

	
This	Tag	returns	the	number	of	bytes	sent	since	a	Driver	was	loaded.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Total.ConnectionCount Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1004

Configuration	by	String IO.Stats.Total.ConnectionCount

	
This	Tag	returns	the	number	of	connections	a	Driver	already	established,
successfully,	since	it	was	loaded.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Total.TimeConnectedSeconds Top		Previous	
Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1002

Configuration	by	String IO.Stats.Total.TimeConnectedSeconds

	
This	Tag	 returns	 the	 number	 of	 seconds	 a	Driver	 remained	 connected
since	it	was	loaded.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Stats.Total.TimeDisconnectedSeconds
Top	

Previous	
Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 0

N4	Parameter 1003

Configuration	by	String IO.Stats.Total.TimeDisconnectedSeconds

	
This	Tag	returns	the	number	of	seconds	a	Driver	remained	disconnected
since	it	was	loaded.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Properties Top		Previous		Next

Currently,	 there	 are	 no	 properties	 defined	 specifically	 to	 display	 I/O
Interface	statistics	at	run	time.



Ethernet	Interface	Configuration Top		Previous		Next

This	 section	 contains	 information	 about	 the	 configuration	 of	 I/O	 Tags
and	Properties	of	Ethernet	Interface.



I/O	Tags Top		Previous		Next



Tags	of	Ethernet	Interface	(N2/B2	=	4)
The	Tags	described	next	allow	controlling	and	 identifying	 the	Ethernet
Interface	 at	 run	 time	 (they	 are	 also	 valid	 when	 the	 RAS	 Interface	 is
selected):
	

IMPORTANT
These	Tags	are	available	ONLY	while	a	Driver	is	in	Online	mode.

	
The	available	Tags	on	this	section	are	the	following:

IO.Ethernet.IPSelect

IO.Ethernet.IPSwitch

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.IPSelect Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Reading	or	Writing

N1	Parameter -1

N2	Parameter 0

N3	Parameter 4

N4	Parameter 0

String	Configuration IO.Ethernet.IPSelect

	
Indicates	the	active	IP	address.	Possible	values	are	the	following:

0:	The	main	IP	address	is	selected

1:	The	alternative	(backup)	IP	address	is	selected
	
If	the	Ethernet	(or	RAS)	Interface	is	connected,	this	Tag	indicates	which
of	 the	 two	 IP	 addresses	 configured	 is	 in	 use.	 If	 the	 Interface	 is
disconnected,	 this	 Tag	 indicates	which	 IP	 address	 is	 used	 first	 on	 the
next	connection	attempt.
During	the	connection	process,	if	the	active	IP	address	is	not	available,
the	 I/O	 Interface	 tries	 to	 connect	 using	 the	 other	 IP	 address.	 If	 the
connection	with	the	alternative	IP	address	works,	this	one	is	configured
as	the	active	IP	address	(automatic	switchover).
To	force	a	manual	switchover,	write	the	value	1	(one)	or	0	(zero)	to	this
Tag.	This	forces	a	reconnection	with	the	specified	IP	address	(0:	Main	IP
address	or	1:	Alternative	IP	address)	if	the	Driver	is	currently	connected.
If	 the	Driver	 is	disconnected,	 this	Tag	configures	 the	active	 IP	address
for	the	next	connection	attempt.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):



There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.IPSwitch Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Write-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 4

N4	Parameter 1

String	Configuration IO.Ethernet.IPSwitch

	
Any	value	written	to	this	Tag	forces	a	manual	switchover.	If	the	main	IP
address	 is	active,	 then	the	alternative	(backup)	IP	address	 is	activated,
and	vice	versa.	This	forces	a	reconnection	with	the	specified	IP	address
if	the	Driver	is	currently	connected.	If	the	Driver	is	disconnected,	this	Tag
configures	the	active	IP	address	for	the	next	connection	attempt.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Properties Top		Previous		Next

These	properties	control	the	configuration	of	Ethernet	Interface.
	

NOTE
The	Ethernet	Interface	is	also	used	by	the	RAS	Interface.

	
The	available	properties	on	this	section	are	the	following:

IO.Ethernet.AcceptConnection

IO.Ethernet.BackupEnable

IO.Ethernet.BackupIP

IO.Ethernet.BackupPort

IO.Ethernet.ListenPort

IO.Ethernet.MainIP

IO.Ethernet.MainPort

IO.Ethernet.PingEnable

IO.Ethernet.PingTimeoutMs

IO.Ethernet.PingTries

IO.Ethernet.Transport

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):



Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.AcceptConnection Top		Previous		Next

	Configure	 to	False	 if	 the	Driver	must	not	accept	external	connections
(the	 Driver	 behaves	 as	 a	 master)	 or	 configure	 to	 True	 to	 enable	 the
reception	of	connections	(the	Driver	behaves	as	a	slave).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.BackupEnable Top		Previous		Next

	Configure	to	True	to	enable	the	alternative	(backup)	IP	address.	If	the
reconnection	attempt	with	 the	main	 IP	address	 fails,	 the	Driver	 tries	 to
use	the	alternative	IP	address.	Configure	to	False	to	disable	its	usage.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.BackupIP Top		Previous		Next

	Alternative	 (backup)	 IP	 address	 of	 the	 destination	 device.	Users	 can
use	 a	 numerical	 address	 as	 well	 as	 a	 device's	 host	 name,	 such	 as
"192.168.0.7"	or	"SERVER2".

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.BackupPort Top		Previous		Next

	 Port	 number	 of	 the	 alternative	 IP	 address	 of	 the	 destination	 device
(used	with	the	IO.Ethernet.BackupIP	property).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.ListenPort Top		Previous		Next

	Number	of	the	IP	port	used	by	a	Driver	to	listen	to	connections.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.MainIP Top		Previous		Next

	 IP	 address	 of	 the	 destination	 device.	 Users	 can	 use	 a	 numerical
address	 as	 well	 as	 a	 device's	 host	 name,	 such	 as	 "192.168.0.7"	 or
"SERVER2".

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.MainPort Top		Previous		Next

	 Number	 of	 the	 IP	 port	 on	 the	 destination	 device	 (used	 with	 the
IO.Ethernet.MainIP	property).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.PingEnable Top		Previous		Next

	 Configure	 to	 True	 to	 enable	 sending	 a	 ping	 command	 to	 the	 IP
address	of	the	destination	device,	before	trying	to	connect	to	the	socket.
This	 socket's	 connection	 time-out	 cannot	 be	 controlled,	 therefore
sending	a	ping	command	before	connecting	is	a	fast	way	to	detect	if	the
connection	 is	 going	 to	 fail.	 Configure	 to	 False	 to	 disable	 a	 ping
command.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.PingTimeoutMs Top		Previous		Next

	 Delay	 time	 to	 wait	 for	 a	 response	 from	 a	 ping	 command,	 in
milliseconds.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.PingTries Top		Previous		Next

	Maximum	number	of	attempts	of	a	ping	command.	Minimum	value	is	1
(one),	including	the	first	ping	command.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Ethernet.Transport Top		Previous		Next

	Defines	a	transport	protocol.	Possible	values	are	the	following:

T	or	TCP:	Uses	the	TCP/IP	protocol

U	or	UDP:	Uses	the	UDP/IP	protocol

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Modem	Interface	Configuration Top		Previous		Next

This	 section	 contains	 information	 about	 the	 configuration	 of	 I/O	 Tags
and	Properties	of	Modem	(TAPI)	Interface.



I/O	Tags Top		Previous		Next



Tags	of	Modem	Interface	(N2/B2	=	3)
The	Tags	 described	 next	 allow	 controlling	 and	 diagnosing	 the	Modem
(TAPI)	Interface	at	run	time.
	

IMPORTANT
These	Tags	are	available	ONLY	while	the	Driver	is	in	Online	mode.

	
The	available	Tags	on	this	section	are	the	following:

IO.TAPI.ConnectionBaudRate

IO.TAPI.Dial

IO.TAPI.HangUp

IO.TAPI.IsModemConnected

IO.TAPI.IsModemConnecting

IO.TAPI.ModemStatus

IO.TAPI.PhoneNumber

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.ConnectionBaudRate Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 3

N4	Parameter 5

String	Configuration IO.TAPI.ConnectionBaudRate

	
Indicates	a	baud	rate	value	for	 the	current	connection.	 If	 the	modem	is
not	connected,	returns	the	value	0	(zero).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.Dial Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Write-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 3

N4	Parameter 1

String	Configuration IO.TAPI.Dial

	
Write	any	value	to	this	Tag	to	force	the	Modem	Interface	to	start	a	call.
This	is	an	asynchronous	command,	only	starting	the	call	process.	Users
can	monitor	the	IO.TAPI.IsModemConnected	Tag	to	detect	when	a	call
is	established.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.HangUp Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Write-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 3

N4	Parameter 4

String	Configuration IO.TAPI.HangUp

	
Any	value	written	to	this	Tag	turns	the	current	call	off.
	

NOTE
Use	this	command	only	when	managing	the	physical	layer	manually,	or
when	explicitly	 trying	 to	 force	a	Driver	 to	 restart	 the	 communication.	 If
the	 physical	 layer	 is	 configured	 for	 automatic	 reconnection,	 the	 Driver
immediately	tries	to	reestablish	the	connection.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.IsModemConnected Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 3

N4	Parameter 3

String	Configuration IO.TAPI.IsModemConnected

	
This	Tag	 indicates	modem's	connection	status.	Possible	values	are	 the
following:

0:	The	modem	is	not	connected,	but	it	may	be	performing	or	receiving
an	external	call

1:	The	modem	is	connected	and	the	Driver	completed	or	received	an
external	call	successfully.	While	 it	 is	 in	this	status,	the	physical	 layer
can	send	or	receive	data

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.IsModemConnecting Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 3

N4	Parameter 6

String	Configuration IO.TAPI.IsModemConnecting

	
This	Tag	indicates	the	connection	status	of	a	modem,	with	more	details
than	 the	 IO.TAPI.IsModemConnected	 Tag.	 Possible	 values	 are	 the
following:

0:	Modem	is	not	connected

1:	Modem	is	connecting	(performing	or	receiving	an	external	call)

2:	Modem	 is	 connected.	While	 in	 this	 status,	 the	physical	 layer	 can
send	or	receive	data

3:	Modem	is	disconnecting	the	current	call

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.ModemStatus Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Read-Only

N1	Parameter -1

N2	Parameter 0

N3	Parameter 3

N4	Parameter 2

String	Configuration IO.TAPI.ModemStatus

	
Returns	a	String	with	 the	 current	 status	 of	 a	modem.	Possible	 values
are	the	following:

"No	 status!":	Modem	 Interface	 was	 not	 open	 yet	 or	 was	 already
closed

"Modem	 initialized	 OK!":	 Modem	 Interface	 was	 initialized
successfully

"Modem	error	at	initialization!":	Driver	could	not	initialize	modem's
line.	Check	Driver's	log	file	for	more	details

"Modem	error	at	dial!":	Driver	could	not	start	or	accept	a	call

"Connecting...":	 Driver	 started	 a	 call	 successfully,	 and	 is	 currently
processing	that	call

"Ringing...":	 Indicates	 that	 the	modem	 is	 receiving	an	external	call,
but	it	did	not	accepted	it	yet

"Connected!":	 Driver	 connected	 successfully	 (completed	 or
accepted	an	external	call)

"Disconnecting...":	Driver	is	turning	the	current	call	off

"Disconnected	OK!":	Driver	turned	the	current	call	off

"Error:	 no	dial	 tone!":	Driver	 aborted	 a	 call	 because	 the	 available



line	signal	was	not	detected

"Error:	busy!":	Driver	aborted	a	call	because	the	line	was	busy

"Error:	no	answer!":	Driver	aborted	a	call	because	no	answer	was
received	from	the	other	modem

"Error:	 unknown!":	 Current	 call	 was	 aborted	 because	 of	 an
unknown	error

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.PhoneNumber Top		Previous		Next

Type	of	Tag I/O	Tag

Type	of	Access Reading	or	Writing

N1	Parameter -1

N2	Parameter 0

N3	Parameter 3

N4	Parameter 0

String	Configuration IO.TAPI.PhoneNumber

	
This	Tag	is	a	String	 that	reads	or	changes	the	telephone	number	used
by	the	IO.TAPI.Dial	Tag.	When	changing	this	Tag,	the	new	value	is	used
only	on	the	next	Dial	command.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Properties Top		Previous		Next

These	properties	 control	 the	 configuration	of	Modem	 (TAPI)	 Interface.
The	available	properties	on	this	section	are	the	following:

IO.TAPI.AcceptIncoming

IO.TAPI.ModemID

IO.TAPI.PhoneNumber



IO.TAPI.AcceptIncoming Top		Previous		Next

	 Configure	 to	 False	 if	 the	 modem	 cannot	 accept	 external	 calls	 (the
Driver	behaves	as	a	master)	and	configure	 to	True	 to	enable	 receiving
calls	(the	Driver	behaves	as	a	slave).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.ModemID Top		Previous		Next

	 This	 is	 the	 modem's	 identification	 number.	 This	 ID	 is	 created	 by
Windows	 and	 used	 internally	 to	 identify	 a	modem	 on	 a	 list	 of	 devices
installed	on	the	computer.	This	ID	may	not	remain	valid	if	the	modem	is
reinstalled	or	the	application	is	executed	on	another	computer.
	

NOTE
It	is	advisable	that	this	property	be	configured	to	0	(zero),	indicating	that
the	Driver	must	use	the	first	available	modem.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.TAPI.PhoneNumber Top		Previous		Next

	 The	 telephone	 number	 used	 by	 Dial	 commands.	 For	 example,
"0w01234566"	 (the	 "w"	 character	 forces	 the	 modem	 to	 wait	 for	 a	 call
signal).

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


RAS	Interface	Configuration Top		Previous		Next

This	 section	 contains	 information	 about	 the	 configuration	 of	 I/O	 Tags
and	Properties	of	RAS	Interface.



I/O	Tags Top		Previous		Next



Tags	of	RAS	Interface	(N2/B2	=	5)
Currently,	 there	 are	 no	 Tags	 defined	 specifically	 to	 manage	 the	RAS
Interface	at	run	time.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Properties Top		Previous		Next

These	properties	control	the	configuration	of	RAS	Interface.
	

NOTE
The	RAS	 Interface	 uses	 the	Ethernet	 Interface,	 which	 for	 this	 reason
must	be	also	configured.

	
The	available	properties	on	this	section	are	the	following:

IO.RAS.ATCommand

IO.RAS.CommandTimeoutSec

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.RAS.ATCommand Top		Previous		Next

	 AT	 command	 to	 send	 through	 a	 socket	 to	 force	 a	 RAS	 device	 to
perform	 a	 call	 using	 the	 current	 RAS	 channel.	 Example:
"ATDT6265545".

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.RAS.CommandTimeoutSec Top		Previous		Next

	Time	to	wait	for	a	CONNECT	message	in	response	to	an	AT	command,
in	seconds.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Serial	Interface	Configuration Top		Previous		Next

This	 section	 contains	 information	 about	 the	 configuration	 of	 I/O	 Tags
and	Properties	of	Serial	Interface.



I/O	Tags Top		Previous		Next



Tags	of	Serial	Interface	(N2/B2	=	2)
Currently,	 there	 are	 no	 Tags	 defined	 specifically	 to	manage	 the	Serial
Interface	at	run	time.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Properties Top		Previous		Next

These	 properties	 control	 the	 configuration	 of	 Serial	 Interface.	 The
available	properties	on	this	section	are	the	following:

IO.Serial.Baudrate

IO.Serial.CTSTimeoutMs

IO.Serial.DataBits

IO.Serial.DelayAfterMs

IO.Serial.DelayBeforeMs

IO.Serial.DTR

IO.Serial.InterbyteDelayUs

IO.Serial.InterframeDelayMs

IO.Serial.Parity

IO.Serial.Port

IO.Serial.RTS

IO.Serial.StopBits

IO.Serial.SuppressEcho

IO.Serial.WaitCTS



IO.Serial.Baudrate Top		Previous		Next

	Specifies	a	baud	rate	of	the	serial	port,	such	as	9600.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.CTSTimeoutMs Top		Previous		Next

	Time	to	wait	for	the	CTS	signal,	in	milliseconds.	After	turning	the	RTS
signal	 on,	 a	 timer	 is	 started	 to	 wait	 for	 the	 CTS	 signal.	 If	 this	 timer
expires,	the	Driver	aborts	sending	bytes	through	the	serial	port.	Available
only	when	the	 IO.Serial.RTS	property	 is	configured	as	Toggle	and	 the
IO.Serial.WaitCTS	property	is	configured	to	True.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.DataBits Top		Previous		Next

	Specifies	the	number	of	data	bits	to	configure	the	serial	port.	Possible
values	are	the	following:

5:	Five	data	bits

6:	Six	data	bits

7:	Seven	data	bits

8:	Eight	data	bits

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.DelayAfterMs Top		Previous		Next

	Number	of	milliseconds	to	delay	after	the	last	byte	is	sent	through	the
serial	port,	but	before	turning	the	RTS	signal	off.	Available	only	when	the
IO.Serial.RTS	 property	 is	 configured	 to	 Toggle	 and	 the
IO.Serial.WaitCTS	property	is	configured	to	False.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.DelayBeforeMs Top		Previous		Next

	Number	of	milliseconds	 to	delay	after	 turning	 the	RTS	 signal	 on,	but
before	data	 is	 sent.	Available	only	when	 the	 IO.Serial.RTS	 property	 is
configured	to	Toggle	and	the	 IO.Serial.WaitCTS	property	 is	configured
to	False.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.DTR Top		Previous		Next

	Indicates	how	a	Driver	deals	with	the	DTR	signal:
OFF:	DTR	signal	is	always	turned	off

ON:	DTR	signal	is	always	turned	on

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.InterbyteDelayUs Top		Previous		Next

	Delay	time,	in	milliseconds	(1/1000000	of	a	second),	for	each	two	bytes
sent	through	the	Serial	Interface.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.InterframeDelayMs Top		Previous		Next

	 Delay	 time,	 in	 milliseconds,	 before	 sending	 a	 packet	 after	 the	 last
packet	sent	or	received.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.Parity Top		Previous		Next

	 Specifies	 a	 parity	 for	 the	 configuration	 of	 the	 serial	 port.	 Possible
values	are	the	following:

E	or	Even:	Even	parity

N	or	None:	No	parity

O	or	Odd:	Odd	parity

M	or	Mark:	Mark	parity

S	or	Space:	Space	parity

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.Port Top		Previous		Next

	Number	of	the	local	serial	port:

1:	Uses	the	COM1	port

2:	Uses	the	COM2	port

3:	Uses	the	COM3	port

n:	Uses	the	COMn	port

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.RTS Top		Previous		Next

	Indicates	how	a	Driver	deals	with	the	RTS	signal:
OFF:	RTS	signal	always	off

ON:	RTS	signal	always	on

Toggle:	 Turns	 the	RTS	 signal	 on	when	 transmitting	 data	 and	 turns
the	RTS	signal	off	when	not	transmitting	data

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.StopBits Top		Previous		Next

	Specifies	the	number	of	stop	bits	for	the	configuration	of	the	serial	port.
Possible	values	are	the	following:

1:	One	stop	bit

2:	One	and	a	half	stop	bit

3:	Two	stop	bits

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.SupressEcho Top		Previous		Next

	Use	a	value	different	from	0	(zero)	to	enable	suppressing	the	echo	or	0
(zero)	to	disable	it.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


IO.Serial.WaitCTS Top		Previous		Next

	Configure	 to	True	 to	 force	a	Driver	 to	wait	 for	 the	CTS	 signal	 before
sending	bytes	when	the	RTS	signal	is	turned	on.	Available	only	when	the
IO.Serial.RTS	property	is	configured	to	Toggle.

	
Has	this	section	of	the	documentation	helped	you	configure	this	Driver?

Yes 	No
Comments	(optional):

There	are	150	characters	left.
Contact	(optional):

Reset 	 Send
Check	our	Knowledgebase	for	more	information	about	our	products

http://kb.elipse.com.br/en-us


Driver	Revision	History Top		Previous	

VERSION DATE AUTHOR COMMENTS
3.1.36 03/17/2017C.	Mello Added	support	for	integers	with	a

magnitude	signal	(Case	22091).

3.1.31 07/10/2016F.	Englert Fixed	a	GPF	that	may	occur	when
reading	a	Driver's	error	history	(B2	=
9998)	if	any	communication	error
occurred	at	the	same	time	(Case
21637).

3.1.30 04/01/2016C.	Mello Fixed	a	lack	of	values	in	Tags
configured	by	Strings	when	the
Superblock	service	is	activated
(Case	20754).

3.1.28 01/28/2016A.	Quites Implemented	a	new	Tag	Browser
with	templates	of	Tags	configured	by
Strings	(Case	20460).

3.1.27 01/27/2016A.	Quites Implemented	an	option	for
addressing	Tags	by	Strings	in	the
Item	and	Device	parameters	(Case
19119).
Fixed	an	error	when	reading	real-
time	Tags	of	events	of	a	PAC	RX7
device	by	callbacks	(Case	20374).

3.1.26 01/20/2016A.	Quites Fixed	an	error	in	which	the	Elipse
SOE	function	did	not	return	values
reported	by	events	for	native,	non-
structured,	data	types	(Case	20364).

3.1.25 01/19/2016A.	Quites Implemented	a	configuration	by
Strings	for	user-defined	data	types
(Case	19807).

3.1.24 01/18/2016A.	Quites Added	a	check	to	prevent	the



definition	of	user-defined	data	types
with	names	conflicting	with	Driver's
native	data	types	(Case	19816).
Fixed	an	error	when	reading	UTC32
data	types	in	Block,	which	returned
wrong	values	after	the	second	Block
Element	(Case	19819).

3.1.23 01/14/2016A.	Quites Added	a	validation	to	avoid	a	user
error	when	setting	date	and	time
data	types	to	elements	to	the
structure	of	native	data	types	(Case
20415).

3.1.15 12/22/2015A.	Quites Fixed	a	block	writing	of	Block	Tags
with	Double	data	types	(Case
20053).

3.1.13 12/02/2015A.	Quites Fixed	an	error	when	exporting	INI
files	in	a	format	compatible	with
Driver's	version	1.0,	with	data	types
specified	by	numbers	and	not	by
Strings,	as	it	is	occurring	since
version	2.8	(Case	20203).
Fixed	a	byte	order	error	when	writing
BCD	data	types	with	eight	digits	and
size	with	four	bytes	(Case	20204).

3.1.9 10/01/2015A.	Quites Enabled	the	storage	of	last
exceptions	for	I/O	Tags	configured	by
Strings	(Case	19808).

3.1.8 09/28/2016A.	Quites Fixed	and	error	when	reading	and
writing	BCD	data	types	with	eight
digits	and	four	bytes	larger	than
9999999,	which	finished	the	process
(Case	19733).

3.0.11 05/29/2015A.	Quites Driver	changed	to	avoid	a	possible



strange	behavior	when	reconnecting
after	a	time-out	in	callback	Tags
(SOE),	with	the	Reconnect	after
Timeout	(Ethernet	only)	option
enabled.	Two	simultaneous
connections	followed	by	two
disconnections	may	occur,	for
example	(Case	14775).
Fixed	an	error	when	recording
operations	on	Driver's	configuration
window,	on	Operations	tab,	which
lead	to,	when	removing	operations	at
the	end	of	the	list,	eventually	they
returned	to	the	list	when	the	window
is	closed	by	clicking	OK	and
reopened	right	after	(Case	14874).
Fixed	a	problem	that	could	generate
a	loss	of	information	about	the	last
exception	in	rare	cases	when	valid
frames	are	received	with	a	correct
CRC,	but	they	are	not	meant	to	the
current	request.	It	may	occur	when
using	Modbus	RTU	in	Ethernet
TCP/IP	layer	on	slow	networks
(Case	15314).
Fixed	a	leak	of	handles	of	a
download	thread	of	mass	memory	of
GE	PAC	RX7	(Case	16404).
Fixed	an	error	in	which	the	Driver
could	ignore	the	last	String
characters	read	from	a	device	when
one	of	the	swap	options	where
configured	in	the	operation	(Case
16744).
Fixed	an	error	when	reading
operations	with	the	Use	bit	mask



option	enabled	when	used	with	the
Driver's	EnableReadGrouping
property	enabled	(Case	18340).
Fixed	a	validation	error	in	Driver's
special	Tags	(Case	16433).

3.0.8 07/31/2014A.	Quites Fixed	an	error	that	could	generate
GPFs	or	unexpected	behavior	when
executing	multiple	Driver	instances
on	a	single	IOServer,	specially	if
these	instances	have	different
configurations	on	Modbus	and
Operations	tab	of	Driver's
configuration	window	(Case	14856).

3.0.6 06/12/2014A.	Quites Driver	ported	to	IOKit	2.0	(Case
13891).

2.8.17 10/19/2012A.	Quites Added	user-defined	data	types	or
structures	as	part	of	the
implementation	of	a	Generic	SOE
feature	(Case	12038).
Implemented	a	SOE	reading	and
commands	for	clock	syncing	in
Schneider	Electric	series	SEPAM	20,
40,	and	80	relays	(Case	12106).
The	Reverse	Frame	options	was
removed	from	Driver's	configuration
window.	This	options	is	still
supported	in	legacy	applications	as
an	offline	configuration	only	(Case
12443).
Added	a	reading	by	callbacks	for
SOE's	reading	Tags	(Case	12464).
Added	a	reconnection	option	in	case
of	a	time-out	when	receiving	frames
in	the	Ethernet	physical	layer	(Case



12537).
The	Swap	Address	Delay	option
was	removed	from	Driver's
configuration	window.	This	option
was	replaced	by	IOKit's	Inter-frame
delay	option,	but	it	is	still	available
as	an	offline	configuration,	for
compatibility	with	legacy	applications
(Case	13285).
Fixed	an	error	when	writing	float_GE
values	(Case	12298).
Fixed	an	error	when	loading	a
configuration	file	on	Windows	CE
ARM	HPC2000	(Case	12352).
Fixed	an	error	when	reading	odd-
sized	Strings	could	lack	the	last
character	(Case	12466).

2.7.1 06/30/2010A.	Quites Implemented	a	feature	to	turn	the
Driver	immune	to	noise	before
receiving	a	frame	in	RTU	mode
(Case	11394).

2.6.1 11/26/2009 A.	Quites Driver	ported	to	Windows	CE	(Case
10914).
Driver	reports	a	false	error	in	the	log
when	reading	a	register	address	in
zero	(Case	10654).
Optimized	the	reading	of	bits	using
group	reading,	or	Superblocks	(Case
10971).

C.	Mello The	Wait	Silence	option	does	not
work	for	all	errors	(Case	10850).

2.5.1 06/30/2009A.	Quites Updated	the	maximum	PDU	size
(Case	10274).



Fixed	an	error	when	reading	the
Modbus	20	function,	Read	File
Record	(Case	10312).
Fixed	an	error	in	the	Special	Tag	to
return	the	last	exception.	This	Tag
may	not	report	some	exceptions
(Case	10337).
GE	SOE	events	with	the	current	day
returned	the	wrong	year	(Case
10382).
Swap	address	was	not	working
(Case	10425).

M.
Ludwig

Created	a	new	Tag	to	receive	a	list	of
events	from	specific	GE	SOE	points
(Case	10370).

2.4.1 02/17/2009A.	Quites Added	reading	and	writing	functions
by	default	(Case	9185).
Modbus	Driver	with	GE	events,	last-
event	reading	by	polling	(Case
10178).
Error	when	reading	blocks	of	bits
with	grouped	readings,	or
Superblocks,	enabled	(Case	10100).

2.3.1 09/02/2008A.	Quites Implemented	the	CMS	Extended
Device	Addressing	feature	(Case
8665).
Implemented	a	configuration	for	the
maximum	size	of	Superblocks	(Case

9154)
The	Driver	accepts	sending	a	32-bit
DWord	using	the	Modbus	function	6
(Case	8663).
Revision	on	non-standard	or	rarely
used	functions:	07,	20,	21,	65	01,	65



used	functions:	07,	20,	21,	65	01,	65
02,	and	65	03	(Case	8730).
The	Swap	byte	option	does	not	work
correctly	with	Superblocks	(Case
9220).
Configuration	in	offline	mode	of	the
ModiconModbus.ModbusMode
parameter	(Case	9831).

2.2.1 05/11/2007 A.	Quites Using	an	Int16	data	type	to	read
blocks	return	only	the	first	element
(Case	8243).

2.1.1 01/23/2007A.	Quites Implemented	Superblocks	(Case
6185).
Master	Modicon	Modbus	does	not
test	correctly	the	consistency	of
N2/B2	parameter	(Case	7714).
Offset	error	when	reading	blocks	with
BCD	data	type	and	the	size	of	the
data	type	equal	to	4	(Case	7728).
Reading	blocks	of	Strings	was	not
working	correctly	(Case	7804).

2.0.1 09/14/2005A.	Quites Driver	portado	para	o	IOKit	(Case
2050).

1.3.1 12/19/2006C.	Mello Driver	communicating	with	more	than
one	IP	address	changes	the	values
read	(Case	7191).
Possibility	of	defining	a	local	TCP
port	(Case	7109).

Fixed	an	offset	error	when	reading
blocks	with	BCD	data	type	and	the
size	of	the	data	type	equal	to	4
(Case	7729).
Driver	was	not	correctly	testing
consistency	of	N2/B2	parameters



consistency	of	N2/B2	parameters
(Case	7735).

1.2.1 12/15/2005C.	Mello Adjustments	to	communicate	with
ICP	Flow	Correctors	(Case	4979).
Fixed	a	leak	on	handles	if	a	ping
command	fails	(Case	6497).

1.1.1 12/22/2004C.	Mello Added	retries	to	the	Driver	(Case
3365).
Added	the	Broadcast	function	(Case
4045).
Added	the	HALT	option	to	the	Driver
(Case	4429).
Fixed	an	error	when	reading	and
writing	Strings	(Case	4386).
Fixed	all	configurations	incompatible
with	previous	versions	(Case	4431).


	Modicon Modbus Driver
	Quick Configuration Guide
	Inserting a Driver
	Adding a Driver to an Elipse Software Application
	E3 or Elipse Power
	Elipse SCADA


	Configuring a Driver
	Configuring I/O Tags

	The Modbus Protocol
	Recommended Websites
	Supported Functions
	Special Functions

	Configuration
	Properties
	Modbus Tab
	Operations Tab
	Supported Data Types
	GenTime Type
	User-Defined Data Types

	Importing and Exporting Operations

	Gen SOE Tab
	Offline Mode Configuration

	Configuring Tags
	Configuring an I/O Tag
	String Configuration
	Numerical Configuration
	Addressing Tips (Modbus Convention)
	Automatic Block Partition
	Superblock Reading (Grouping)

	Configuring Special Tags
	Forcing a Wait Silence
	Reading the Last Exception Code


	Mass Memory Reading
	Reading an Event Buffer from GE PAC RX7 Controllers
	Reading Events from Schneider Electric Relays from SEPAM 20, 40, and 80 Series
	Elipse Software's Generic SOE Reading Algorithm
	Event Table
	Acquisition Procedure in a PLC
	Acquisition Procedure in an Application

	Reading Mass Memory Registers from ABB MGE 144 Meters


	Appendix
	Optimization Tips
	Frequently Asked Questions
	List of Devices that Communicate with Modbus
	List of Protocol's Default Exceptions
	Maximum Limit for the Size of Blocks Supported by the Protocol
	BCD Encoding

	Documentation of I/O Interfaces
	Driver Configuration
	Configuration Dialog Box
	Setup Tab
	Serial Tab
	Ethernet Tab
	Modem Tab
	RAS Tab

	General Configurations
	I/O Tags
	IO.IOKitEvent
	IO.PhysicalLayerStatus
	IO.SetConfigurationParameters
	IO.WorkOnline

	Properties
	IO.ConnectionMode
	IO.GiveUpEnable
	IO.GiveUpTries
	IO.InactivityEnable
	IO.InactivityPeriodSec
	IO.RecoverEnable
	IO.RecoverPeriodSec
	IO.StartOffline
	IO.TimeoutMs
	IO.Type


	Statistical Configuration
	I/O Tags
	IO.Stats.Partial.BytesRecv
	IO.Stats.Partial.BytesSent
	IO.Stats.Partial.TimeConnectedSeconds
	IO.Stats.Partial.TimeDisconnectedSeconds
	IO.Stats.Total.BytesRecv
	IO.Stats.Total.BytesSent
	IO.Stats.Total.ConnectionCount
	IO.Stats.Total.TimeConnectedSeconds
	IO.Stats.Total.TimeDisconnectedSeconds

	Properties

	Ethernet Interface Configuration
	I/O Tags
	IO.Ethernet.IPSelect
	IO.Ethernet.IPSwitch

	Properties
	IO.Ethernet.AcceptConnection
	IO.Ethernet.BackupEnable
	IO.Ethernet.BackupIP
	IO.Ethernet.BackupPort
	IO.Ethernet.ListenPort
	IO.Ethernet.MainIP
	IO.Ethernet.MainPort
	IO.Ethernet.PingEnable
	IO.Ethernet.PingTimeoutMs
	IO.Ethernet.PingTries
	IO.Ethernet.Transport


	Modem Interface Configuration
	I/O Tags
	IO.TAPI.ConnectionBaudRate
	IO.TAPI.Dial
	IO.TAPI.HangUp
	IO.TAPI.IsModemConnected
	IO.TAPI.IsModemConnecting
	IO.TAPI.ModemStatus
	IO.TAPI.PhoneNumber

	Properties
	IO.TAPI.AcceptIncoming
	IO.TAPI.ModemID
	IO.TAPI.PhoneNumber


	RAS Interface Configuration
	I/O Tags
	Properties
	IO.RAS.ATCommand
	IO.RAS.CommandTimeoutSec


	Serial Interface Configuration
	I/O Tags
	Properties
	IO.Serial.Baudrate
	IO.Serial.CTSTimeoutMs
	IO.Serial.DataBits
	IO.Serial.DelayAfterMs
	IO.Serial.DelayBeforeMs
	IO.Serial.DTR
	IO.Serial.InterbyteDelayUs
	IO.Serial.InterframeDelayMs
	IO.Serial.Parity
	IO.Serial.Port
	IO.Serial.RTS
	IO.Serial.StopBits
	IO.Serial.SupressEcho
	IO.Serial.WaitCTS



	Driver Revision History

