
Introduction
Doom	Builder	is	an	advanced,	revolutionary	map	editor	for	Doom	and
games	based	on	the	Doom	engine,	such	as	Heretic,	Hexen	and	Strife.
This	editor	is	highly	extendible	for	the	different	game	engines	of	the
Doom	community.	Doom	Builder	introduced	the	3D	editing	mode	in	the
Doom	community	and	is	still	the	leading	editor	for	Doom	levels	today.



Reference	Manual
This	is	the	Reference	Manual	for	Doom	Builder	2.	You	can	use	this
manual	to	look	up	how	the	editor	works	and	what	the	specific	modes
and	actions	do.	This	manual	is	not	a	beginners	tutorial	that	teaches
you	how	to	make	maps.



Terminology



Resource
A	file	or	directory	from	which	textures,	flats,	sprites	and	other
information	is	read	that	is	used	during	map	editing.	Doom	Builder
supports	WAD	files,	PK3	files	and	directories	as	resources.



WAD
A	WAD	file	is	a	collection	of	data,	which	can	include	textures,	sprites,
sounds	but	also	maps.	This	is	the	most	common	resource	type	used	by
Doom.	A	WAD	file	can	be	an	IWAD	(Internal	WAD)	which	contains	all
data	needed	to	run	a	game	without	any	additional	WAD	files,	or	a
PWAD	(Patch	WAD)	which	only	contains	the	data	you	wish	to	change
(for	example;	a	new	map	and	some	textures	only,	but	no	change	in
sounds	or	sprites).	Doom	always	requires	a	single	IWAD	and	optionally
one	or	more	PWADs.



PK3
The	PK3	file	is	actually	a	ZIP	file	and	contains	a	directory	with	a
specific	structure.	It	can	be	used	as	a	replacement	for	WAD	files	in
some	Doom	sourceports	and	is	smaller	than	the	WAD	file	because	it	is
compressed.	Doom	Builder	can	read	from	PK3	files	as	resources,	but
for	better	performance	it	is	recommended	that	you	unzip	your	PK3	file
(keeping	the	directory	structure)	and	add	the	directory	as	resource.	For
more	information,	see	Using	ZIPs	as	WAD	replacement	for	more
information.

http://zdoom.org/wiki/Using_ZIPs_as_WAD_replacement


Element
A	map	consists	of	vertices,	linedefs,	sidedefs,	sectors	and	things.
These	are	all	elements	in	a	map	and	each	has	their	own	set	of
properties.	Some	elements	are	connected	to	other	elements:	A	linedef
is	always	connected	to	two	vertices	and	has	one	or	two	sidedefs.	A
sidedef	is	always	connected	to	one	sector	and	a	sector	has	one	or
more	sidedefs.



Vertex
This	is	the	most	simple	element	in	a	map.	A	vertex	is	a	point	on	the
map	which	has	X	and	Y	coordinates.



Linedef
This	is	a	line	in	your	map	geometry	which	connects	two	vertices.	Every
wall	and	sector	border	must	have	a	linedef.	Linedefs	can	have	an
action	that	is	triggered	when	player	pushes	the	wall	or	walks	over	the
line.	The	linedef	has	a	front	(right)	and	a	back	(left)	side	where	a
sidedef	can	be	attached.	The	front	side	should	always	have	a	sidedef
attached,	but	when	the	linedef	is	a	wall	with	nothing	behind	it	(void),	it
should	not	have	a	back	side.



Sidedef
A	sidedef	defines	how	one	side	of	a	linedef	looks	like	and	which	sector
it	forms.	A	sidedefs	has	a	upper,	middle	and	lower	texture	which	are
sometimes	required	depending	on	the	heights	of	the	sectors	and	all
share	the	same	texture	offsets.



Sector
The	sector	defines	an	area	on	the	map.	It	has	properties	for	the	floor
and	ceiling	and	can	have	special	effects	for	the	environment.	The
shape	of	the	sector	is	defined	by	the	sidedefs	and	the	linedefs	they	are
on	and	should	always	be	a	closed	area	or	multiple	closed	areas.	There
are	exceptional	cases,	however,	where	authors	use	a	non-closed
sector	to	create	a	special	effect	by	exploiting	the	Doom	engine.



Thing
Things	are	basically	any	object	in	the	map	that	is	not	part	of	its
geometry.	They	can	be	decorations,	items,	monsters,	player	starts	or
even	indicators	for	the	sourceport	to	do	something	in	that	location.
They	have	X	and	Y	coordinates	and	in	Hexen	format	they	also	have	a
Z	coordinate	(which	often	is	relative	to	the	sector	floor).



About	the	User	Interface
Doom	Builder's	user	interface	exists	of	one	main	editing	window	in
which	most	of	the	map	editing	will	be	done.	Doom	Builder	also	has	a
window	for	scripting	and	several	built-in	dialogs	for	editing	and	setting
up	your	preferences	and	much	more.	This	part	of	the	Reference
Manual	will	help	you	explain	all	the	buttons	and	controls	on	every
window.



Main	Window
The	main	interface	window	consists	of	the	following	parts;

Menus
The	menus	are	very	straight-forward	and	you'll	find	most	common
features	in	the	usual	places.	File	related	actions	in	the	File	menu,	view
related	actions	in	the	View	menu	and	editing	related	actions	in	the	Edit
menu.

Toolbar
Your	most	needed	actions	and	options	are	on	the	toolbar,	right	below
the	menu.

Information	panel
When	highlighting	or	targeting	a	specific	element	in	the	working	area,	a
small	summary	about	that	element	is	displayed	in	this	panel.	You	can
minimize	the	information	panel	by	clicking	on	the	little	arrow	button	on



the	right	to	maximize	your	working	area.

Statusbar
Doom	Builder	shows	you	the	current	status	in	the	statusbar.	On	the	left
is	a	small	LED	that	turns	green	when	Doom	Builder	is	idle.	When	the
LED	turns	yellow,	it	means	Doom	Builder	is	doing	some	background
work.	When	the	LED	is	red,	then	Doom	Builder	is	busy	performing	an
action.	Right	next	to	the	status	LED	is	a	description	of	the	current
status.	It	also	shows	a	result	description	and	flashes	the	LED	when
performing	and	action.

On	the	right	of	the	statusbar	are	grid	size	(in	mappixels),	the	zoom
percentage	and	the	current	mouse	coordinates.	You	can	click	the
buttons	next	to	the	grid	size	and	the	zoom	percentage	to	bring	up	a
related	menu	that	allows	you	to	change	any	of	these	settings.



Custom	Fields	Editor
The	UDMF	format	allows	any	number	of	custom	properties	on	every
element	in	the	map.	With	the	custom	fields	editor,	you	can	edit	the
known	properties	and	add	custom	ones	yourself.	The	game
configuration	has	known	properties	that	are	supported	by	the
sourceport	and	are	automatically	shown	in	the	list.	Grayed	items	are
known,	but	have	not	been	set	(and	thus	have	their	default	value).	To
add	your	own	custom	properties,	you	can	click	on	the	text	Click	to	add
custom	field	and	type	the	name	for	the	new	property.	Then	you	can
change	the	type	and	set	its	value.	To	remove	a	custom	property,	just
select	it	and	press	Delete.	Known	properties	cannot	be	deleted,
pressing	Delete	with	a	known	property	selected	will	just	reset	it	back	to
its	default	value.



Errors	and	Warnings	Window
When	errors	or	warnings	occur	during	certain	operations	these	will	be
reported	in	this	window.	If	the	window	does	not	automatically	show,	you
can	find	it	in	the	Tools	menu	or	by	pressing	the	default	key	F11.	Click
the	Copy	Selection	button	to	copy	the	selected	errors	to	the	clipboard.
Click	the	Clear	button	to	remove	all	the	errors	from	the	window.

You	can	choose	to	open	this	window	automatically	when	errors	occur
after	operations	such	as	loading	a	map	by	checking	the	option	Show
this	window	when	errors	occur.



Game	Configurations	Window
The	Game	Configurations	window	is	accessible	from	the	Tools	menu,
or	with	the	default	key	F6.	On	the	left	of	this	window	you	can	select	the
game	configuration	for	which	you	want	to	change	settings.	Choose
from	the	tabs	on	the	right	what	you	want	to	change.



Resources
This	is	a	list	of	resources	that	will	be	loaded	before	any	other
resources.	You	should	add	the	IWAD	and	other	project-related
resources	here	so	that	they	are	automatically	loaded	with	every	map
you	make	with	this	game	configuration.	These	resources,	from	top	to
bottom,	will	be	loaded	first	before	any	other	resources.	You	can	drag
the	resource	items	to	change	their	order.	See	also	the	Resource
Options	Window.



Nodebuilder
Building	the	BSP	tree	and	other	additional	information	such	as
BLOCKMAP	and	REJECT	is	useful	to	optimize	the	in-game
performance	and	for	most	older	sourceports	and	vanilla	Doom	it	is
even	required.	This	is	where	you	select	the	nodebuilder	you	want	to
run	in	certain	cases	and	which	settings	to	use.	You	can	choose	a
nodebuilder	to	run	when	saving	the	map	and	when	testing	the	map.
Consult	the	documentation	of	the	sourceport	you	are	using	to	find	out
which	nodebuilder	and	which	settings	you	need.	Advanced	users	may
want	to	add	more	specific	settings	by	writing	a	nodebuilder
configuration.



Testing
No	matter	how	well	an	editor	works,	testing	to	see	how	your	map	looks
and	performs	in	the	sourceport	is	essential.	Here	you	can	choose	the
sourceport	to	test	with	and	the	parameters	to	use.	You	can	also	set	the
default	skill	level,	but	this	can	also	be	easily	changed	from	the	test
dropdown	menu	in	the	toolbar	of	the	main	window.	You	generally	do
not	need	to	specify	custom	parameters	(the	default	ones	should	work
fine)	but	advanced	users	may	wish	to	change	these	parameters.

The	following	special	placeholders	can	be	used	in	the	parameters;

%F WAD	file	with	the	map	that	is	to	be	tested.	NOTE:	this	is
a	temporary	file	and	not	the	file	you	opened	or	saved.

%WP IWAD	resource	file	with	full	path	included.	This	is	the	first
(highest)	IWAD	file	that	is	found	in	the	resources	list.

%WF IWAD	resource	filename	only,	without	path.	This	is	the
first	(highest)	IWAD	file	that	is	found	in	the	resources	list.

%L Map	lump	name	as	is	set	in	the	map	options	window.

%L1
The	first	number	found	in	the	map	lump	name	(as	is	set
in	the	map	options	window).	This	is	for	use	with	the	-
warp	parameter.

%L2
The	second	number	found	in	the	map	lump	name	(as	is
set	in	the	map	options	window).	This	is	for	use	with	the	-
warp	parameter.

%AP
All	resource	files,	except	the	first	IWAD,	with	full	paths
included.	The	resources	are	separated	by	spaces	and
when	this	placeholder	is	enclosed	within	quotes	("%AP")
then	the	quotes	are	repeated	for	every	resource.

%S Skill	number	at	which	to	test.

%NM
This	is	either	-nomonsters	when	you	choose	to	test
without	monsters,	or	nothing	at	all.



When	the	checkbox	Use	short	path	and	file	names	(MSDOS	8.3
format)	is	checked,	all	the	above	placeholders	that	output	filenames
and/or	paths	will	use	the	short	version	that	is	compatible	with	MSDOS.



Textures
You	can	group	your	textures	into	categories	called	Texture	Sets.	There
are	some	fixed	Texture	Sets	that	appear	in	the	browsers	automatically
(such	as	the	"All"	set	and	the	sets	for	each	resource)	and	you	can
create	custom	Texture	Sets	here.	You	can	also	copy	Texture	Sets	from
one	game	configuration	to	another	with	the	Copy	and	Paste	buttons.
With	the	Add	Default	Sets	button	you	can	add	the	default	Texture	Sets
that	are	provided	with	the	game	configuration	(if	any).	For	more
information	about	creating	your	own	Texture	Sets,	see	the	Texture	Set
window.



Modes
Here	you	can	choose	what	editing	modes	you	can	use	when	editing
with	the	selected	game	configuration.	This	is	useful	when	plugins	are
installed	that	replace	certain	editing	modes	or	plugins	that	add	editing
modes	for	a	specific	sourceport	only.	Note	that	some	editing	modes
may	require	other	editing	modes	from	the	same	plugin	to	work
together.	When	plugins	are	installed,	you	should	consult	the	provided
documentation	to	see	what	changes	should	be	made	here.	Only
recommended	for	advanced	users.



Grid	Setup	Window
On	this	window	you	can	configure	the	grid	and	background	settings.
Click	the	grid	icon	in	the	statusbar	or	select	Grid	Setup	from	the	Edit
menu	to	access	this	window.	The	grid	helps	aligning	your	map
elements	and	the	64	mappixels	grid	is	important	to	Doom	as	it
indicates	how	flats	are	aligned.	You	can	change	the	size	of	the	grid	you
want	to	work	with	at	the	top	of	this	window.	Note	that	the	grid	can	also
easily	be	changed	with	the	actions	Grid	Increase	and	Grid	Decrease.

The	background	is	useful	when	drawing	over	an	image	to	copy	its
shape.	Check	the	Show	background	image	checkbox	and	select	a
texture,	flat	or	file	to	be	used	as	the	background	image.	You	can	also
change	the	offset	and	the	scale.



Image	Browser	Window
Use	this	browser	to	look	for	textures	or	flats.	On	the	left	you	have	the
list	with	your	Texture	Sets.	The	list	also	contains	a	set	named	"All"
which,	obviously,	contains	all	textures	or	flats.	A	Texture	Set	for	each
loaded	resource	has	also	been	added.	This	is	useful	if	you	know	in
which	resource	the	image	resides.	Once	you	have	chosen	your	Texture
Set,	you	can	use	the	text	field	at	the	bottom	to	enter	the	texture	name.
You	only	have	to	enter	the	name	partly	and	the	list	of	images	will	adjust
to	show	only	the	images	that	match	with	the	entered	name.	Select	an
image	to	view	its	dimensions	at	the	bottom.	When	the	focus	is	on	the
images	list,	you	can	press	the	Tab	key	to	jump	between	the	same
image	in	the	"Used	textures"	and	"Available	textures"	areas.
Doubleclick	the	image	or	click	OK	to	make	your	selection	or	Cancel	to
close	the	list.

To	make	your	own	Texture	Sets,	see	the	Textures	tab	on	the	Game
Configurations	Window.



Linedef	Properties	Window
With	this	dialog	window	you	can	edit	all	linedef	properties.	When	a
selection	of	multiple	linedefs	is	made,	some	fields	may	appear	grayed
or	empty	in	case	they	are	different	for	some	of	the	selected	elements.
Setting	a	value	in	grayed	or	empty	field	will	apply	this	to	the	entire
selection.



Properties
On	this	tab	you	will	find	all	the	general	settings	for	the	linedef.	These
setting	apply	to	both	sides	of	the	linedef,	unless	specified	otherwise.

The	Settings	area	provides	options	for	the	line	such	as	Impassable
which	blocks	players	and	monsters	from	crossing	the	line,	and
Doublesided	which	is	automatically	set	or	unset	by	Doom	Builder	to
indicate	if	the	line	has	one	or	two	sidedefs.	Depending	on	the	game
configuration,	this	area	can	feature	many	more	options	for	the
behaviour	of	the	linedef.

Below	that	is	the	Action	area,	which	allows	you	to	set	a	special	action
that	is	executed	on	a	specific	trigger	method	such	as	a	switch	or
proximity	trigger.	In	Hexen	format,	the	action	can	take	some	arguments
and	the	trigger	method	can	be	specified	independently	from	the	action.
In	UDMF	format,	the	trigger	method	can	be	any	combination	of
methods.

In	Doom	and	UDMF	formats,	the	line	can	also	be	tagged	with	a
number	that	identifies	the	linedef.	This	number	can	then	be	used	by
Thing	actions	or	scripts	to	perform	actions	on	the	linedef.



Sidedefs
Here	you	can	change	the	properties	for	each	side	of	the	line.	If	you
wish	to	add	or	remove	a	sidedef	on	the	linedef,	just	check	or	uncheck
the	Front	Side	or	Back	Side	box.	In	the	Sector	Index	field	you	can
type	the	sector	index	that	you	which	this	sidedef	to	be	bound	to.	Note
that	you	generally	do	not	have	to	change	this	as	Doom	Builder	will
make	valid	sectors	for	you.	Changing	the	Sector	Index	is	only
recommended	for	advanced	users.	On	the	right	are	the	textures	that
are	on	the	sidedef.	Left-click	on	the	box	to	browse	for	a	texture	using
the	Image	Browser,	right-click	on	the	box	to	clear	the	texture	(making	it
a	single	dash).	If	you	know	the	texture	name,	you	can	also	type	the
name	directly	into	the	text	field	below	the	texture	box.

In	UDMF	format,	you	can	click	the	Custom	Fields	buttons	to	change
the	custom	fields	for	the	sidedefs.	See	Custom	Fields	Editor	for	more
information.



Custom
This	tab	allows	you	to	edit	the	custom	fields	on	the	linedef.	Only
available	in	UDMF	format.	See	Custom	Fields	Editor	for	more
information.



Map	Options	Window
This	dialog	window	allows	you	to	change	some	options	that	apply	to
the	entire	map	and	how	it	is	loaded.	You	can	access	it	from	the	Edit
menu,	or	with	the	default	key	F2.	At	the	top	you	can	choose	the	Game
Configuration	that	you	wish	to	use	when	editing	this	map.	Please	note
that	changing	to	a	configuration	of	a	different	file	format	may	cause	a
loss	of	information	in	your	map,	possibly	breaking	it.	Below	the	Game
Configuration	field	is	the	Level	Name	field.	Here	you	can	enter	the
lump	name	that	is	used	to	store	your	map	in	the	WAD	file.	An	example
level	name	for	a	Doom	1	map	could	be	E2M3	which	indicates	the	map
is	or	episode	2,	level	3.	An	example	for	a	Doom	2	map	is	MAP03	which
is	level	3.



Resources
The	Resources	area	allows	you	to	specify	which	resources	are	loaded
when	editing	this	map.	The	Strictly	load	patches	between	P_START
and	P_END	only	for	this	file	checkbox	applies	to	the	wad	file	you	are
editing	(where	your	map	is	in).	When	this	is	checked,	Doom	Builder	will
resolve	texture	patch	conflicts	by	strictly	loading	patch	lumps	only	from
between	the	P_START	and	P_END	lumps	as	it	was	intended	by	id
Software,	but	most	sourceports	do	not	require	this	(as	result,	older
maps	have	texture	patch	lumps	that	are	not	in	between	P_START	and
P_END).

In	the	list	of	resources	you	can	see	all	the	resources	that	will	be
loaded.	Doom	Builder	shows	the	items	from	the	game	configuration	in
gray	at	the	top	of	the	list,	because	those	are	always	loaded	first.	You
can	change	the	resources	loaded	according	to	the	game	configuration
in	the	Game	Configurations	Window.	You	can	drag	the	resource	items
(except	the	ones	from	the	game	configuration)	to	change	their	order.
See	also	the	Resource	Options	Window.



Open	Map	Window
When	opening	a	map	from	a	WAD	file,	this	is	the	dialog	that	lets	you
choose	what	level	to	open	and	what	options	to	use.	At	the	top	you	can
choose	the	Game	Configuration	that	you	wish	to	use	when	editing
this	map.	When	you	select	the	game	configuration	you	need,	Doom
Builder	will	show	you	a	list	of	maps	from	the	WAD	file	that	can	be
opened	with	the	selected	configuration.	You	must	select	a	map	from
the	list	to	open.



Resources
The	Resources	area	allows	you	to	specify	which	resources	are	loaded
when	editing	this	map.	The	Strictly	load	patches	between	P_START
and	P_END	only	for	this	file	checkbox	applies	to	the	wad	file	you	are
editing	(where	your	map	is	in).	When	this	is	checked,	Doom	Builder	will
resolve	texture	patch	conflicts	by	strictly	loading	patch	lumps	only	from
between	the	P_START	and	P_END	lumps	as	it	was	intended	by	id
Software,	but	most	sourceports	do	not	require	this	(as	result,	older
maps	have	texture	patch	lumps	that	are	not	in	between	P_START	and
P_END).

In	the	list	of	resources	you	can	see	all	the	resources	that	will	be
loaded.	Doom	Builder	shows	the	items	from	the	game	configuration	in
gray	at	the	top	of	the	list,	because	those	are	always	loaded	first.	You
can	change	the	resources	loaded	according	to	the	game	configuration
in	the	Game	Configuration	Window.	You	can	drag	the	resource	items
(except	the	ones	from	the	game	configuration)	to	change	their	order.
See	also	the	Resource	Options	Window.



Preferences	Window
The	Preferences	window	provides	options	that	apply	to	Doom	Builder,
regardless	of	the	game	configuration	or	map	you	choose	to	edit.	You
can	access	this	window	from	the	Tools	menu,	or	with	the	default	key
F5.	The	options	are	categorized	in	different	tabs;



Interface
This	tab	contains	some	interface	related	options.

Default	view:
This	sets	the	default	view	mode	that	you	wish	to	use	when	opening	or
creating	a	new	map.

Preview	image	size:
The	size	of	all	preview	images	in	the	editor	and	in	the	Image	Browser.
Smaller	preview	images	consume	less	system	memory.

Autoscroll	speed:
During	some	actions,	such	as	drawing	and	dragging,	Doom	Builder	can
automatically	scroll	the	working	area	when	you	move	your	mouse
towards	the	edges.	Use	this	setting	to	set	the	scrolling	speed	to	use.
Drag	the	slider	completely	to	the	left	to	turn	off	automatic	scrolling.

Script	Editor:
Here	you	can	set	the	font	and	other	options	regarding	the	Script	Editor.
Check	the	box	Always	on	top	of	main	window	if	you	want	the	script
editor	to	float	above	the	Main	Window	even	when	the	script	editor	does
not	have	the	focus.

Visual	Modes:
This	area	contains	several	settings	for	the	Visual	Mode.	To	improve
performance,	you	may	want	to	decrease	the	View	distance	setting.



Controls
This	is	where	you	configure	your	keyboard	and	mouse	shortcut	keys.
On	the	left	is	a	list	of	all	Actions	in	Doom	Builder	with	the	current
mouse	or	key	combination	shown	next	to	them.	Select	an	action	to
view	a	summary	of	this	action	on	the	right.	Press	any	key	combination
to	set	to	this	action,	or	select	a	special	mouse	combination	from	the
dropdown	box.	Below	that,	you	can	see	which	other	actions	share	the
same	key	combination	so	that	you	can	verify	any	conflicts	it	may	have.
Note	that	actions	used	in	different	editing	modes	can	safely	share	the
same	key	combination.



Appearance
On	this	tab	you	can	change	some	settings	related	to	visual	aesthetics.
On	the	top	and	the	left	of	this	tab	you	can	change	colors	that	are	used
in	the	Script	Editor	and	Working	Area.

Passable	lines	transparency:
This	controls	how	much	translucent	the	passable	lines	are.	0%	is
completely	opaque,	which	is	the	same	as	impassable	lines.	Passable
or	impassable	can	be	set	with	a	linedef	setting,	but	is	automatically	set
by	the	editor	for	singlesided	lines	and	removed	for	doublesided	lines.

Textures	and	Flats	brightness:
With	this	setting	you	can	increase	the	brightness	of	the	textures	and
flats.	This	is	useful	when	viewing	the	texture	against	a	white
background,	or	if	you	are	using	a	dark	monitor.

Black	background	in	image	browser:
Turn	this	on	to	create	a	black	background	in	the	Image	Browser.

Bilinear	filtering	in	classic	modes:
This	enables	bilinear	texture	filtering	for	all	classic	Editing	Modes	(2D).
Bilinear	texture	filtering	removes	the	large	square	blocks	when
zooming	in,	but	can	also	make	it	look	blurry.

Bilinear	filtering	in	visual	modes:
This	enables	bilinear	texture	filtering	for	all	visual	Editing	Modes	(3D).
Bilinear	texture	filtering	removes	the	large	square	blocks	when
zooming	in,	but	can	also	make	it	look	blurry.



High	quality	display	rendering:
This	improves	the	display	with	the	use	of	Pixel	Shader	Model	2.0.	Also
adds	anti-aliasing	to	the	classic	Editing	Modes	(2D).	Performance	may
be	improved	by	turning	off	this	setting	(this	also	gives	a	more	oldschool
Doom	Builder	1.68	look	to	the	working	area).	When	Pixel	Shader
Model	2.0	support	is	not	available,	Doom	Builder	automatically	turns	off
this	setting	and	disables	this	option.

Square	things:
Things	in	Doom	use	a	square	shape	for	collision	detection	and	you
may	want	to	turn	this	option	on	to	get	a	better	view	on	the	bounding
boxes	of	things	in	the	classic	Editing	Modes	(2D).



Resource	Options	Window
Use	this	dialog	window	to	browse	for	a	resource	and	change	any
options	on	how	to	use	the	resource.	Doom	Builder	supports	3	types	of
resources;



WAD	File
This	is	the	most	common	resource	known	with	Doom.	You	can	find
more	information	about	the	WAD	format	on	the	Doom	Wiki.	When	the
Strictly	load	patches	between	P_START	and	P_END	only	for	this
file	checkbox	is	checked,	Doom	Builder	will	resolve	texture	patch
conflicts	by	strictly	loading	patch	lumps	only	from	between	the
P_START	and	P_END	lumps	in	this	WAD	file	as	it	was	intended	by	id
Software,	but	most	sourceports	do	not	require	this	(as	result,	older
maps	have	texture	patch	lumps	that	are	not	in	between	P_START	and
P_END).

http://doom.wikia.com/wiki/WAD


Directory
Doom	Builder	can	load	resources	from	a	directory	in	different	ways.
The	directory	is	expected	to	use	the	PK3	directory	structure	(for	more
information	see	the	ZDoom	Wiki)	but	you	can	use	it	to	simply	load
images	from	the	directory	root	as	textures	or	flats	by	turning	on	the
options	Load	images	in	directory	root	as	textures/flats.

http://www.zdoom.org/wiki/Using_ZIPs_as_WAD_replacement


PK3	File
The	PK3	file	is	a	zipped	directory	structure	and	can	be	used	as	WAD
file	replacement	by	several	sourceports.	For	more	information	see	the
ZDoom	Wiki.

http://www.zdoom.org/wiki/Using_ZIPs_as_WAD_replacement


Script	Editor	Window
The	script	editor	is	a	powerful	text	editor	with	syntax	highlighting	and
autocomplete.	It	allows	you	to	open	and	edit	multiple	documents	at	the
same	time,	even	if	they	do	not	reside	in	your	map.

Each	opened	script	has	its	own	tab	page.	When	there	are	text	lumps	in
the	map	format	(such	as	the	SCRIPTS	lump	in	Hexen	formats),	they
will	be	opened	automatically	and	cannot	be	closed.



Shortcut	Keys
CTRL+O Browse	for	a	script	file	to	open.

CTRL+S
Save	the	current	script	to	file.	This	does	not	work
for	internal	script	lumps,	save	the	map	to	save
the	internal	script	lumps.

CTRL+Space
Autocompletes	the	current	word.	If	there	is	more
than	one	possibility,	it	will	pop	up	a	list	of
keywords	to	choose	from.

CTRL+F Opens	the	Find	and	Replace	dialog	window.

F3 Finds	the	next	occurence	of	the	most	recent
search	with	the	Find	and	Replace	dialog	window.

F2
If	supported	for	the	type	of	script	you	are	editing,
this	opens	a	website	with	information	about	the
current	keyword	that	your	cursor	is	at.



Sector	Properties	Window
On	this	dialog	you	can	change	all	the	sector	properties.	When	a
selection	of	multiple	sectors	is	made,	some	fields	may	appear	grayed
or	empty	in	case	they	are	different	for	some	of	the	selected	elements.
Setting	a	value	in	grayed	or	empty	field	will	apply	this	to	the	entire
selection.



Properties
You	can	manually	set	the	Ceiling	height	and	Floor	height	at	the	top
of	this	window.	On	the	right	are	the	flats	(textures)	that	are	on	the	floor
and	ceiling.	Left-click	on	the	box	to	browse	for	a	flat	using	the	Image
Browser.	If	you	know	the	flat	name,	you	can	also	type	the	name
directly	into	the	text	field	below	the	flat	box.

In	the	Effects	area	you	can	set	a	special	effect	for	the	sector	and	set
the	Brightness	level	to	use.

Below	that	you	can	enter	a	tag	number	to	identify	the	sector.	This
number	can	then	be	used	by	Linedef	actions	or	scripts	to	perform
actions	on	the	sector.



Custom
This	tab	allows	you	to	edit	the	custom	fields	on	the	sector.	Only
available	in	UDMF	format.	See	Custom	Fields	Editor	for	more
information.



Texture	Set	Window
This	dialog	window	lets	you	make	your	own	Texture	Set.	On	the	top	of
this	window	you	can	enter	the	name	of	the	Texture	Set,	this	is	how	it
will	be	displayed	in	the	Game	Configurations	Window	and	the	Image
Browser	Window.	It	is	recommended	that	you	make	your	Texture	Sets
while	the	map	you	are	editing	is	open	in	Doom	Builder,	so	that	you	can
see	the	results	immediately.



Filters
In	this	area	you	set	up	what	you	want	to	include	in	this	Texture	Set.
You	can	use	wildcards	to	include	more	than	one	texture	at	once.	Use
the	question	mark	?	to	indicate	exactly	one	character	(no	matter	which
character)	and	use	the	asterisk	*	to	indicate	zero	or	more	characters
(no	matter	which	characters).	Each	Texture	Set	has	its	own	filters,	so	it
is	possible	for	Texture	Sets	to	overlap	and	include	textures	that	are
also	in	other	Texture	Sets.



Results
If	you	have	a	map	open	in	Doom	Builder	while	you	are	setting	up	your
Texture	Sets,	you	can	instantly	see	the	result	in	the	Results	area.	By
clicking	the	buttons	Show	Matches	and	Show	Not	Matching	you	can
see	which	textures	are	included	and	which	are	not.	When	viewing	the
texture	that	are	not	included,	you	can	double-click	the	texture	image	to
add	it	to	the	filters	list	and	include	it	in	the	Texture	Set.



Thing	Properties	Window
This	dialog	allows	you	to	edit	all	the	thing	properties.	When	a	selection
of	multiple	things	is	made,	some	fields	may	appear	grayed	or	empty	in
case	they	are	different	for	some	of	the	selected	elements.	Setting	a
value	in	grayed	or	empty	field	will	apply	this	to	the	entire	selection.



Properties
On	the	left	of	this	tab	you	can	select	the	Thing	Type.	Either	select	it
from	the	list	or	enter	the	type	number	in	the	field	below	the	list.	If	it	is	a
thing	type	that	is	in	the	Game	Configuration,	the	information	known
about	that	thing	type	is	displayed	as	well.

On	the	right	you	can	change	the	Settings	for	the	thing.	The	settings
available	depend	on	the	Game	Configuration	you	are	using.	Below	that
you	can	change	the	Angle.	In	Hexen	and	UDMF	formats,	you	can	also
specify	the	Z	height	of	the	thing.	The	Z	height	is	usually	relative	to	the
sector	floor,	but	for	some	things	the	Z	height	is	absolute	(refer	to	the
sourceport	documentation).



Action
This	tab	is	only	available	in	Hexen	and	UDMF	formats.	You	can	set	the
thing	Tag	that	is	used	to	refer	to	this	thing.	Below	that	is	the	Action
area,	which	allows	you	to	set	a	special	action	that	is	executed	by	the
thing	(for	monsters	this	is	usually	when	it	dies).	Please	note	that	some
things	use	the	action	arguments	for	their	own	properties	and	that
setting	an	action	on	those	things	may	give	an	unexpected	result	(refer
to	the	sourceport	documentation).



Custom
This	tab	allows	you	to	edit	the	custom	fields	on	the	thing.	Only
available	in	UDMF	format.	See	Custom	Fields	Editor	for	more
information.



Things	Filters	Window
With	the	Things	Filters	dialog	window,	you	can	set	up	your	own	Things
filters	that	you	can	use	to	show	only	relevant	things	in	the	editor.	You
can	access	this	dialog	from	the	View	menu.	Select	a	filter	on	the	left	to
edit	it,	or	click	on	New	Filter	to	create	a	new	one.	You	can	remove	the
selected	filter	by	clicking	on	the	Delete	Selected	button.	On	the	right	is
the	Filter	Settings	are	where	you	can	edit	the	selected	filter.

Enter	the	name	of	your	filter	in	the	Name	field.	If	you	want	to	show	only
Things	from	a	specific	category,	select	the	category	in	the	Filter	by
category	box.	Below	that	you	can	select	the	settings	by	which	you
want	to	filter	the	Things	(Filter	by	settings).	A	grayed/filled	checkbox
means	it	is	not	used	for	the	filter.	If	the	checkbox	is	empty,	it	means
that	the	setting	may	not	be	set	on	the	Things	to	pass	the	filter.	If	the
checkbox	is	checked,	it	means	that	the	setting	must	be	set	on	the
Things	to	pass	the	filter.

Things	Filters	are	stored	separately	for	each	Game	Configuration.



Vertex	Properties	Window
This	dialog	allows	you	to	edit	the	exact	vertex	coordinates.	When	a
selection	of	multiple	vertices	is	made,	some	fields	may	appear	grayed
or	empty	in	case	they	are	different	for	some	of	the	selected	elements.
Setting	a	value	in	grayed	or	empty	field	will	apply	this	to	the	entire
selection.



Custom
This	tab	allows	you	to	edit	the	custom	fields	on	the	vertex.	Only
available	in	UDMF	format.	See	Custom	Fields	Editor	for	more
information.



About	Editing	Modes
With	Doom	Builder,	you	are	always	editing	in	a	specific	mode	which
depends	on	what	you	want	to	do	and	allows	you	to	use	the	same
mouse	buttons	and	key	controls	for	different	purposes.	You	will	find
yourself	switching	editing	modes	all	the	time,	so	it	is	a	good	thing	to
remember	which	keys	you	have	assigned	to	these	modes.



Brightness	Mode
With	this	mode	you	can	easily	change	the	brightness	levels	in	your
map.	Make	a	selection	of	sectors	with	LMB.	Then	hold	RMB	and	drag
up	or	down	to	increase	or	decrease	the	brightness	levels	of	the
selected	sectors.	The	brightness	changes	to	the	nearest	supported
brightness	level	(according	to	the	chosen	game	configuration),	but	you
can	hold	Shift	to	override	this	behavior.

The	order	in	which	you	select	the	sectors	is	important	to	the	Make
Brightness	Gradient	feature	as	it	creates	a	gradient	from	the	first
selected	sector	to	the	last	selected	sector	(the	first	and	last	are	not
modified).	When	you	select	the	sectors,	the	order	will	be	displayed	with
numbers	in	the	sectors.



Curve	Linedefs	Mode
This	mode	shows	a	small	dialog	window	that	you	can	use	to	create	a
curve	from	a	linedef	or	multiple	linedefs.	The	linedefs	will	be	split	in	a
number	of	smaller	linedefs	that	make	up	the	curve.	Although	this	mode
shows	a	dialog	window,	you	can	still	use	the	main	interface	and
zoom/move	your	view	around	the	map.

The	curve	linedefs	editing	mode	is	one	of	the	classic	(2D)	editing
modes.	This	mode	is	volatile,	which	means	that	this	mode	returns	to
the	previous	stable	mode	when	the	map	is	saved	or	closed,	either
accepting	or	discarding	your	preview	changes.	You	can	access	this
mode	through	the	Linedefs	Mode.



Default	Controls
Enter Accept	and	apply	the	changes,	and	return	to

the	previous	mode.

Escape Discard	the	changes	and	return	to	the
previous	mode.



Draw	Geometry	Mode
This	editing	mode	allows	you	to	draw	your	geometry.	Draw	lines	by
clicking	with	the	left	mouse	button	(LMB)	where	you	want	your
vertices.	Depending	on	the	toolbar	buttons,	the	vertex	you	are	drawing
next	will	snap	to	the	grid	and/or	to	nearby	geometry.	You	can	change
this	behavior	by	holding	down	Shift	and/or	Control.	Your	drawing	ends
when	you	draw	onto	the	first	drawn	vertex	(making	a	closed	polygon)
or	when	you	press	your	right	mouse	button	(RMB).

Contrary	to	drawing	in	older	editors,	it	is	not	required	to	draw	in	any
specific	way,	such	as	drawing	clockwise	or	drawing	a	complete
polygon.	You	also	do	not	need	to	traverse	your	existing	lines	when
drawing	a	sector	adjacent	to	existing	geometry.	The	editor	will	solve
any	lines	your	drawing	crosses,	split	sector	you	draw	across	and
creates	new	sectors	where	needed.

This	editing	mode	is	one	of	the	classic	(2D)	editing	modes.	This	mode
is	volatile,	which	means	that	this	mode	returns	to	the	previous	stable
mode	when	the	map	is	saved	or	closed,	either	accepting	or	discarding
your	preview	changes.	You	can	access	this	mode	by	pressing
Control+D	in	any	classic	mode.



Default	Controls
Control+D Starts	this	drawing	mode	(available	from	any

classic	mode).

Enter Accept	and	apply	the	changes,	and	return	to
the	previous	mode.

Escape Discard	the	changes	and	return	to	the
previous	mode.

Backspace Removes	the	last	drawn	vertex.

LMB
Draws	a	new	line	by	placing	a	vertex	at	the
mouse	cursor.	Use	in	combination	with	Shift
and/or	Control	to	change	the	snapping
behavior.

LMB Ends	and	applies	the	drawing,	and	returns	to
the	previous	editing	mode.



Edit	Selection	Mode
With	this	editing	mode	you	can	perform	some	more	advanced
operations	on	a	selection	of	geometry	or	things.	This	editing	mode	is
one	of	the	classic	(2D)	editing	modes.	This	mode	is	volatile,	which
means	that	this	mode	returns	to	the	previous	stable	mode	when	the
map	is	saved	or	closed,	either	accepting	or	discarding	your	preview
changes.	You	can	access	this	mode	by	making	a	selection	or	highlight
and	pressing	E	in	most	classic	modes.	Clicking	on	the	map	outside	the
selection	will	return	to	the	previous	mode,	applying	your	changes.



Functions

Drag	selection
You	can	drag	the	selection	by	holding	LMB	on	the	selection	rectangle
to	grab	it	and	move	it	around.	When	grabbing	the	selection,	the	nearby
vertex	is	highlighted	and	will	be	used	to	snap	to	other	geometry	while
dragging.

Flip	Horizontally
Accessible	from	the	toolbar	or	by	shortcut	key,	you	can	flip	the	entire
selection	horizontally.	It	is	recommended	to	do	this	before	rotating	the
selection.

Flip	Vertically
Accessible	from	the	toolbar	or	by	shortcut	key,	you	can	flip	the	entire
selection	vertically.	It	is	recommended	to	do	this	before	rotating	the
selection.

Resize
Grab	one	of	the	handles	on	the	edges	of	the	selection	rectangle	using
LMB	and	drag	it	to	resize	the	selection.	You	can	drag	your	mouse
away	from	the	selection	and	a	ruler	will	appear	that	allows	you	to	align
the	grabbed	edge	of	the	selection	with	existing	geometry.

Rotate
Grab	one	of	the	handles	on	the	corners	of	the	selection	rectangle	using
LMB	and	drag	it	to	rotate	the	selection.	The	selection	will	normally	only
rotate	by	the	nearest	45	degrees.	You	can	hold	Shift	to	rotate	it	freely.





Default	Controls
Enter Accept	and	apply	the	changes,	and	return	to

the	previous	mode.

Escape Discard	the	changes	and	return	to	the
previous	mode.



Find	&	Replace	Mode
Looking	for	something?	This	is	the	mode	you	want	to	use	to	quickly
find	specific	elements	in	your	map.	This	mode	is	accessible	from	any
classic	mode	using	F3	and	shows	a	dialog	window	that	you	can	use	to
find	items.	Select	the	type	of	search	you	want	to	perform	at	the	top	of
the	dialog	window.	Then	enter	the	value	you	are	looking	for.	Depending
on	the	type	of	search,	you	can	click	the	browse	button	to	select	from	a
browser.	Check	the	Replace	checkbox	if	you	want	to	replace	the	value
of	the	found	elements	with	another	value.	Click	the	Find	/	Replace
button	to	perform	the	search.

The	results	will	be	displayed	in	a	list	that	opens.	Click	on	one	of	the
results	to	zoom	in	on	that	particular	element.	You	can	also	focus	the
main	window	and	scroll	or	zoom	the	map	to	see	the	selected	elements.
Click	the	Edit	Selection	button	to	edit	the	selected	elements.



Linedefs	Mode
With	this	mode	you	can	edit	the	linedefs	in	your	map.	Every	linedef	has
a	front	(right)	and	back	(left)	side	which	make	up	the	boundaries	of
your	sectors.	You	can	edit	the	sidedef	properties	through	the	linedefs	in
this	mode.	Drag	the	linedefs	to	move	them	and	snap	them	to	the	grid
and	other	geometry.	Hold	Shift	and/or	Control	to	disable	snapping	to
the	grid	and	geometry.

The	linedefs	editing	mode	is	one	of	the	classic	(2D)	editing	modes.



Default	Controls
L Switches	from	any	other	classic	editing	mode

to	this	mode.
Insert Starts	the	Draw	Geometry	Mode.

Delete Deletes	the	selected	linedefs.	Note	that	this
may	break	your	sectors.

F Flips	the	linedef	and	changes	the	sidedefs	so
that	they	remain	in	their	correct	position.

Shift+F Flips	the	sidedefs	to	the	other	side	of	the
linedef.

Shift+S Splits	the	linedef	with	a	new	vertex	on	the
linedef,	nearest	to	your	mouse	position.

Shift+1 Keeps	only	the	single-sided	linedefs	selected.

Shift+2 Keeps	only	the	double-sided	linedefs
selected.

Shift+C
Starts	the	Curve	Linedefs	Mode	to	make
curves	with	the	selected	or	highlighted
linedefs.

E Starts	the	Edit	Selection	Mode	to	move,	resize,
flip	and/or	rotate	the	highlighted	or	selected
elements.

LMB Click	to	select	or	deselect.	Hold	and	drag	to
make	a	rectangular	selection.	While	making	a
rectangular	selection	you	can	hold	Shift	to



Make	Sectors	Mode
With	this	mode	you	can	create	new	sectors	from	existing	geometry
only.	This	is	useful	to	fix	broken	sectors,	split	the	islands	from	a	single
sector	into	multiple	sectors,	or	create	sectors	from	enclosed	void
areas.	When	moving	the	mouse	over	the	map,	the	potential	sector	is
highlighted.	Use	LMB	to	create	the	new	sector.

The	Make	Sectors	editing	mode	is	one	of	the	classic	(2D)	editing
modes.



Default	Controls
M Switches	from	any	other	classic	editing	mode

to	this	mode.
LMB Click	to	create	a	new,	closed	sector.

RMB Click	to	create	a	new,	closed	sector	and	edit
its	properties.



Map	Analysis	Mode
This	mode	helps	finding	problems	in	your	map.	It	shows	a	small	dialog
window	with	the	checks	you	wish	to	perform.	Press	F4	in	any	classic
mode	to	switch	to	this	mode.	Select	the	checks	to	perform	and	click	the
Start	Analysis	button.	The	problems	that	are	found	are	displayed	in	a
list.	Click	on	of	the	problems	to	zoom	in	on	the	subject	and	show	a
description	of	the	problem	below	the	list.	For	some	problems,	buttons
appear	below	the	description	that	you	can	use	to	quickly	fix	the
problem.



Sectors	Mode
In	this	mode	you	can	edit	the	sectors	in	your	map.	Every	sector	is
formed	by	the	sidedefs	around	the	sector	(which	are	the	sides	of	the
linedefs).	Drag	the	sectors	to	move	them	and	snap	them	to	the	grid
and	other	geometry.	Hold	Shift	and/or	Control	to	disable	snapping	to
the	grid	and	geometry.	You	can	also	create	a	stairs	or	gradient
brightness	by	using	the	buttons	on	the	toolbar.

The	order	in	which	you	select	the	sectors	is	important	to	some	of	the
functions	of	the	editing	mode	and,	as	long	as	you	stay	in	an	editing
mode	that	keeps	sectors	selected,	the	order	will	stay	the	same.	When
you	select	the	sectors,	the	order	will	be	displayed	with	numbers	in	the
sectors.

The	sectors	editing	mode	is	one	of	the	classic	(2D)	editing	modes.



Default	Controls
S Switches	from	any	other	classic	editing

mode	to	this	mode.
Insert Starts	the	Draw	Geometry	Mode.

Delete

Deletes	the	selected	sectors	and
associated	sidedefs.	When	deleting	a
sector	that	is	enclosed	inside	a	larger
sector,	this	will	create	a	hole	(or	'pillar')
inside	that	sector.	If	you	wish	to	remove
the	sector	without	creating	a	void	area,
use	the	Linedefs	Mode	to	delete	the
lines	instead.

J
Joins	to	selected	sector	to	become	one
sector.	The	properties	of	the	first
selected	sector	will	be	retained.

Shift+J

Merge	the	selected	sectors	to	become
one	sector.	This	is	the	same	as	joining,
with	the	addition	that	lines	in	between
the	selected	sectors	are	automatically
removed.

Shift+D
Create	a	door	from	the	selected	or
highlighted	sectors.	This	will	show	a
dialog	which	allows	you	to	choose
textures	and	flats	for	the	door.

G
Make	gradient	brightness	levels	from
first	selected	sector	to	last	selected
sector.

Shift+ScrollDown Lowers	the	ceiling	of	the	selected	or
highlighted	sectors	by	8	mappixels.

Shift+ScrollUp Raises	the	ceiling	of	the	selected	or
highlighted	sectors	by	8	mappixels.

Shift+G Make	gradient	ceiling	heights	from	first
selected	sector	to	last	selected	sector.
Lowers	the	floors	of	the	selected	or



Control+ScrollDown highlighted	sectors	by	8	mappixels.

Control+ScrollUp Raises	the	floors	of	the	selected	or
highlighted	sectors	by	8	mappixels.

Control+G
Make	gradient	floor	heights	(stairs)	from
first	selected	sector	to	last	selected
sector.

E Starts	the	Edit	Selection	Mode	to	move,	resize,
flip	and/or	rotate	the	highlighted	or	selected
elements.

LMB Click	to	select	or	deselect.	Hold	and	drag	to
make	a	rectangular	selection.	While	making	a
rectangular	selection	you	can	hold	Shift	to



Things	Mode
With	this	editing	mode	you	edit	the	things	in	your	map.	Drag	the	things
to	move	them	and	snap	them	to	the	grid.	Hold	Shift	to	disable	snapping
to	the	grid.	You	can	use	the	Things	Filter	in	the	toolbar	to	show	only
things	with	specific	properties	(such	as	multiplayer	things	or	things	that
only	appear	at	a	hard	skill	level).

The	things	editing	mode	is	one	of	the	classic	(2D)	editing	modes.



Default	Controls
T Switches	from	any	other	classic	editing	mode

to	this	mode.
Insert Inserts	a	new	thing.
Delete Deletes	the	selected	or	highlighted	things.

E Starts	the	Edit	Selection	Mode	to	move,	resize,
flip	and/or	rotate	the	highlighted	or	selected
elements.

LMB Click	to	select	or	deselect.	Hold	and	drag	to
make	a	rectangular	selection.	While	making	a
rectangular	selection	you	can	hold	Shift	to



Vertices	Mode
This	editing	mode	allows	you	to	edit	the	vertices	in	your	map.	You	can
insert	new	vertices	that	automatically	split	linedefs	and	deleting	a
vertex	that	only	has	two	linedefs	attached	will	reconnect	the	linedefs
properly.	You	can	drag	the	vertices	to	move	them	and	snap	them	to	the
grid	and	geometry.	Hold	Shift	and/or	Control	to	disable	snapping	to	the
grid	and	geometry.

The	vertices	editing	mode	is	one	of	the	classic	(2D)	editing	modes.



Default	Controls
V Switches	from	any	other	classic	editing	mode

to	this	mode.

Insert
Inserts	a	new	vertex	at	the	mouse
coordinates.	When	near	a	linedef,	the	linedef
will	be	split	with	this	vertex.

Delete
Deletes	the	selected	vertices.	Note	that	this
may	also	remove	attached	linedefs	and	break
your	sectors.

E Starts	the	Edit	Selection	Mode	to	move,	resize,
flip	and/or	rotate	the	highlighted	or	selected
elements.

LMB Click	to	select	or	deselect.	Hold	and	drag	to
make	a	rectangular	selection.	While	making	a
rectangular	selection	you	can	hold	Shift	to



Visual	Mode
The	Visual	Mode	is	different	from	the	other	modes.	In	this	mode	you
can	walk	and	fly	through	your	map	in	3D	and	see	it	as	it	would	look	like
in	game.	With	the	crosshair	you	can	aim	at	objects	(floors,	ceilings,
walls	and	things)	and	edit	them	instantly.	You	can	also	select	objects
and	perform	actions	on	all	objects	together.	Note	that	not	all	actions
apply	to	an	entire	selection.



Default	Controls

W
Switches	from	any	classic	editing	mode
to	this	mode	and	back	to	the	previous
mode.

LMB
Select	the	targeted	object.	For	walls,
hold	down	this	button	to	drag	the	texture
offsets.

RMB Edit	the	targeted	object's	properties.

MMB Pastes	the	copied	texture	image	or	flat
image	onto	the	target	or	selection.

Control+RMB
Opens	the	Image	Browser	to	select	a
new	texture	or	flat	for	the	targeted	or
selected	object.

Shift+MMB

Flood-fills	with	the	copied	texture	image
or	flat	image	onto	the	target.	This	fills	all
adjacent	textures	or	flats	that	are
identical	to	the	original.	Note	that	this
action	is	only	applied	to	the	targeted
object	and	does	not	work	for	a	selection.

C Clears	the	selection.
E Move	forward.	Hold	Shift	to	move	faster.

D Move	backward.	Hold	Shift	to	move
faster.

S Strafe	left.	Hold	Shift	to	move	faster.
F Strafe	right.	Hold	Shift	to	move	faster.
G Toggle	gravity	on/off.
B Toggle	full-brightness	on/off.

L Toggle	lower	unpegged	linedef	flag
on/off.

U Toggle	upper	unpegged	linedef	flag
on/off.
Toggle	things	on/off/boxed.	When	things
are	set	to	boxed,	you	will	see	the



T bounding	box	of	things	around	them	in
the	color	of	their	category.

A

Auto-aligns	the	neighbouring	textures
horizontally,	until	a	wall	is	encountered
that	has	different	textures.	Note	that	this
action	is	only	applied	to	the	targeted
object	and	does	not	work	for	a	selection.

Shift+A

Auto-aligns	the	neighbouring	textures
vertically,	until	a	wall	is	encountered	that
has	different	textures.	The	vertical
alignment	takes	the	ceiling	height
differences	between	sidedefs	into
account.	Note	that	this	action	is	only
applied	to	the	targeted	object	and	does
not	work	for	a	selection.

Shift+C
Copies	the	targeted	texture	offsets	for
pasting.	Note	that	this	works	only	for	the
targeted	object,	the	selection	is	ignored.

Control+C
Copies	the	targeted	texture	image	or	flat
image	for	pasting.	Note	that	this	works
only	for	the	targeted	object,	the	selection
is	ignored.

Control+Shift+C
Copies	the	targeted	object	properties	for
pasting.	Note	that	this	works	only	for	the
targeted	object,	the	selection	is	ignored.

Shift+V Pastes	the	copied	texture	offsets	onto
the	target	or	selection.

Control+Shift+V Pastes	the	copied	object	properties	onto
the	target	or	selection.

ScrollUp Raises	the	targeted	or	selected	object	by
8	mappixels.

ScrollDown Lowers	the	targeted	or	selected	object
by	8	mappixels.

Shift+ScrollUp Raises	the	targeted	or	selected	object	by
1	mappixel.
Lowers	the	targeted	or	selected	object



Shift+ScrollDown by	1	mappixel.

Control+ScrollUp Increases	the	brightness	level	of	the
targeted	or	selected	object	by	8.

Control+ScrollDown Decreases	the	brightness	level	of	thetargeted	or	selected	object	by	8.

Up Moves	the	targeted	or	selected	texture
up	by	1	pixel.

Down Moves	the	targeted	or	selected	texture
down	by	1	pixel.

Left Moves	the	targeted	or	selected	texture
left	by	1	pixel.

Right Moves	the	targeted	or	selected	texture
right	by	1	pixel.

Shift+Up Moves	the	targeted	or	selected	texture
up	by	8	pixels.

Shift+Down Moves	the	targeted	or	selected	texture
down	by	8	pixels.

Shift+Left Moves	the	targeted	or	selected	texture
left	by	8	pixels.

Shift+Right Moves	the	targeted	or	selected	texture
right	by	8	pixels.

Shift+R Resets	the	texture	offsets	to	0,	0	on	the
targeted	or	selected	object.



About	Configurations
Doom	Builder	is	a	very	flexible	editor	that	can	be	customized	for	your
own	sourceport	or	mapping	project.	Most	of	the	settings	that	are
different	among	the	sourceports	are	in	configuration	files.	You	can	find
these	configurations	in	the	subdirectories	of	your	Doom	Builder
program	directory.	This	part	of	the	Reference	Manual	helps	you	writing
your	own	configurations,	but	is	only	recommended	for	advanced	users.

You	can	safely	create	your	own	configurations	for	your	mapping	project
or	sourceport.	If	there	are	any	errors	in	your	configuration,	Doom
Builder	will	show	these	in	the	Errors	&	Warnings	dialog.	Doom	Builder
is	installed	with	several	configurations	which	can	be	great	examples	to
see	how	these	things	work.	It	is	recommended	to	always	create	new
configurations	in	separate	files.	Do	not	modify	the	files	that	are
installed	by	Doom	Builder,	as	these	will	be	overwritten	when	a	new
version	is	installed.

When	you	made	changes	to	the	configurations	in	the	Doom	Builder
subdirectories,	you	must	restart	Doom	Builder	to	reload	the
configurations	with	your	changes.



Configuration	Syntax
All	configurations	used	with	Doom	Builder	follow	a	specific,	structured
syntax.	The	configurations	are	all	in	plain	text	format	and	can	be	edited
with	any	plain	text	editor.	Every	setting	in	a	configuration	is	in	the
following	form:

settingname	=	value;

Here	are	a	few	examples:

doublesidedflag	=	4;
defaulttexturescale	=	1.0f;
scaledtextureoffsets	=	true;
gamename	=	"Doom";

There	are	a	few	rules	to	the	setting	names	and	values:

The	setting	name	may	not	contain	any	spaces,	tabs,	newlines,
dots	or	(back)slashes.
The	setting	name	must	be	unique	within	the	configuration,	or
within	the	structure	it	is	in.
A	decimal	value	must	contain	a	dot	and	must	end	with	'f'
Boolean	settings	may	use	the	keywords	true	and	false.
Strings	(texts)	must	begin	with	a	doublequote	(")	and	end	with	a
doublequote.	To	include	a	doublequote	in	the	string,	prefix	it	with	a
backslash	(\").	To	use	a	backslash	in	a	string,	also	prefix	it	with	a
backslash.

Some	settings	do	not	require	a	value	and	their	precense	or	absense



alone	is	enough.	Such	a	case	would	look	like	this:

enablelighting;

C-style	comments	can	be	inserted	by	using	double	slashes	(//)	for
singleline	comments	and	/*	and	*/	for	block	comments.	These
comments	will	be	completely	ignored	by	Doom	Builder.	You	can	hide
writings	about	your	wildest	dreams	in	configuration	files!



Structures

Configurations	can	also	contain	structures.	Think	of	them	as	a
collection	of	settings	that	have	their	own	name	space.	The	structure
begins	with	a	name	and	opens	with	an	opening	bracket	({).	At	the	end
of	the	structure	it	closes	with	a	closing	bracktet	(}).	It	is	common	to
ident	the	settings	inside	the	structure	with	a	single	tab	to	make	it	easier
to	see	that	those	settings	belong	in	a	structure.	An	example	of	a
structure	with	settings:

winningnumbers
{
	 car	=	55;
	 washmachine	=	40;
	 tools	=	30;
}

Structures	are	often	used	by	Doom	Builder	in	cases	where	multiple
collections	of	settings	can	be	found.	The	name	of	a	structure	can	also
be	just	a	number,	so	that	a	structure	can	describe	information	about	a
specific	index	number.	Here	is	an	example	of	such	a	case:

things
{
	 1
	 {
	 	 name	=	"Player	1	start";
	 	 color	=	"green";
	 }
	
	 2



	 {
	 	 name	=	"Player	2	start";
	 	 color	=	"green";
	 }
	
	 138
	 {
	 	 name	=	"Hideous	monster";
	 	 color	=	"red";
	 }
}

Please	note	that	in	some	structures,	the	order	of	the	settings	and
structures	is	important.



Including

Some	configurations	(such	as	the	Game	Configurations)	can	become
very	large	and	complex,	while	some	share	the	same	values	in	many
settings.	For	example,	Eternity	is	a	game	engine	that	inherits	features
from	Doom	and	Boom	and	adds	on	top	of	that.	This	is	where	including
pieces	from	other	configuration	files	becomes	interesting.	With	the
include	function,	we	can	insert	features	from	Doom,	then	insert	(and
possible	override)	features	from	Boom	and	then	add	the	Eternity	ones.
This	saves	us	rewriting	all	the	Doom	and	Boom	features	that	already
exists	in	other	configurations.

The	include	function	takes	two	arguments.	The	first	(mandatory)	is	the
filename	(path	relative	to	the	current	file)	and	the	second	(optional)	is
the	name	of	the	structure	to	include.	If	the	second	argument	is	not
given,	the	entire	file	will	be	included.	Here	is	an	example	that	shows
how	such	an	include	functions	look	like:

include("commonsettings.cfg");
include("extras.cfg",	"skills");

Below	are	a	few	examples	that	show	what	the	results	are	when
including	settings	that	override	settings	with	the	same	names	among
other	things.	For	these	examples	we	will	be	including	a	file	named
"extras.cfg",	which	contains	the	following	settings:

maxtexturenamelength	=	8;
skyflatname	=	"F_SKY1";



options
{
	 1	=	"Low";
	 2	=	"Medium";
	 3	=	"High";
}

This	example	shows	how	the	include	function	includes	an	entire	file.
This	is	the	most	basic	include:

thingflags
{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

include("extras.cfg");

Result:

thingflags
{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

maxtexturenamelength	=	8;
skyflatname	=	"F_SKY1";

options
{
	 1	=	"Low";
	 2	=	"Medium";



	 3	=	"High";
}

The	following	example	shows	how	a	single	structure	from	extras.cfg	is
included.	Notice	how	only	the	contents	of	the	structure	are	included
and	not	the	structure	container	itsself!

thingflags
{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

include("extras.cfg",	"options");

Result:

thingflags
{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

1	=	"Low";
2	=	"Medium";
3	=	"High";

If	we	want	our	included	settings	in	a	structure,	we	have	to	put	the
include	function	in	the	structure	where	we	want	our	settings	included.
See	the	following	example:

thingflags



{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

options
{
	 0	=	"None";
	
	 include("extras.cfg",	"options");
	
	 4	=	"Ultra";
}

Result:

thingflags
{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

options
{
	 0	=	"None";
	
	 1	=	"Low";
	 2	=	"Medium";
	 3	=	"High";
	
	 4	=	"Ultra";
}

The	following	example	demonstrates	how	values	can	be	overridden	by



using	the	same	same	setting	name.	It	also	shows	that	this	does	NOT
change	the	order	of	the	items.	The	first	time	an	item	is	defined	(either
by	including	or	because	it	is	written)	is	where	its	position	will	be.	See
this	example:

thingflags
{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

options
{
	 0	=	"None";
	
	 include("extras.cfg",	"options");
	
	 2	=	"Average";
	 4	=	"Ultra";
}

Result:

thingflags
{
	 1	=	"Easy";
	 2	=	"Medium";
	 4	=	"Hard";
}

options
{
	 0	=	"None";
	



	 1	=	"Low";
	 2	=	"Average";
	 3	=	"High";
	
	 4	=	"Ultra";
}

Notice	how	the	definition	of	setting	"2"	("Average")	does	not	move	the
already	defined	"2"	("Medium"),	but	instead	only	changes	its	value	to
"Average".



About	Compiler	Configurations
B



About	Game	Configurations
These	configurations	are	the	largest	and	most	complex	ones.	A	Game
Configuration	contains	all	the	settings	that	determine	Doom	Builder's
behavior	when	editing	your	map	and	optional	features	that	are	specific
to	certain	map	formats	can	be	enabled	or	disabled	here.	A	Game
Configuration	also	keeps	all	information	about	hardcoded	actions	and
things	in	the	game,	which	Doom	Builder	cannot	find	in	the	WAD	files.
You	can	find	the	Game	Configurations	in	"Configurations"	directory,
which	is	a	subdirectory	of	your	Doom	Builder's	program	directory.
Subdirectories	are	not	searched	by	Doom	Builder	for	configurations,
but	you	can	use	them	for	include	files.

Many	settings	in	Doom	Builder's	user	interface	as	bound	to	the
available	Game	Configurations.	This	is	because	the	user	often	wants
to	use	different	resources	and	compilers	for	a	different	project.	When
Doom	Builder	starts	up	and	detects	a	new	Game	Configuration	file,	it
will	automatically	create	default	settings	for	that	configuration.	The
following	default	settings	are	read	from	the	Game	Configuration	(only
when	first	detected	by	Doom	Builder):	testparameters,	testshortpaths,
defaultsavecompiler,	defaulttestcompiler,	thingsfilters	and	texturesets.



Game	Configuration	-	Basic	Settings
type	(string)
This	indicates	the	type	of	configuration	to	prevent	accedential	use	of	a
different	configuration.	Must	always	be	the	string	"Doom	Builder	2
Game	Configuration".

game	(string)
The	name	that	is	displayed	in	Doom	Buider	for	your	Game
Configuration.

engine	(string)
Game	engine/sourceport	name.	This	is	used	as	the	UDMF	namespace
for	UDMF	map	format	interface.	It	currently	has	no	other	function.

defaultlumpname	(string)
Default	lump	name	suggested	when	creating	a	new	map	and	selecting
this	configuration.

testparameters	(string)
Default	parameters	used	to	launch	the	test	game	engine.	See	Game
Configurations	window	for	the	available	parameter	placeholders.

testshortpaths	(boolean)
Set	to	true	to	use	MSDOS	8.3	format	paths	and	filenames	by	default.
Default	is	false.	The	user	can	still	change	this	in	the	Game
Configurations	window.



defaultsavecompiler	(string)
Name	of	the	Nodebuilder	Compiler	Configuration	structure	to	use	as
the	default	settings	for	the	compiler	that	is	used	when	saving	the	map.
The	user	can	still	change	this	in	the	Game	Configurations	window.

defaulttestcompiler	(string)
Name	of	the	Nodebuilder	Compiler	Configuration	structure	to	use	as
the	default	settings	for	the	compiler	that	is	used	when	testing	the	map.
The	user	can	still	change	this	in	the	Game	Configurations	window.

skills	(structure)
This	defines	the	skill	options	the	user	has	available	with	this	game
engine/project.	The	settings	in	this	structure	are	expected	to	be
numbers	with	string	values	(the	descriptive	name	for	the	skill	level).

Example:

skills
{
	 1	=	"I'm	too	young	to	die";
	 2	=	"Hey,	not	too	rough";
	 3	=	"Hurt	me	plenty";
	 4	=	"Ultra-Violence";
	 5	=	"Nightmare!";
}

linetagindicatesectors	(boolean)
When	true,	Doom	Builder	will	highlight	sectors	associated	with	the



same	tag	number	when	a	line	is	highlighted.	This	is	only	really	useful
for	Doom	format	maps,	because	Hexen	format	and	UDMF	format	has
no	single	tag	on	linedefs	(in	those	formats,	the	arguments	of	the
linedef's	action	can	be	tags,	which	also	works	to	highlight	sectors).	The
default	is	false.

soundlinedefflag	(integer	or	string)
This	lets	Doom	Builder	know	the	linedef	flag	that	indicates	where
sound	should	be	blocked.	Doom	Builder	uses	this	to	give	the	line	a
special	color	and	plugins	can	use	this	information	to	perform
operations	related	to	blocking	sound	lines.	For	map	formats	that	use
numeric	flags	(Doom	and	Hexen)	this	must	be	an	integer	specifying	the
flag	value	of	the	Block	Sound	flag.	For	map	formats	that	use	named
flags	(UDMF),	this	must	be	a	string	indicating	the	name	of	the	Block
Sound	flag.

singlesidedflag	(integer	or	string)
This	lets	Doom	Builder	know	the	linedef	flag	that	indicates	a	line	with
only	one	side.	Doom	Builder	will	set	this	flag	value	on	a	linedef	when	it
changes	a	line	to	become	single	sided	and	removes	the	flag	from	a
linedef	when	it	becomes	double	sided.	Plugins	can	also	use	this
information	to	perform	operations	on	linedefs.	For	map	formats	that
use	numeric	flags	(Doom	and	Hexen)	this	must	be	an	integer	flag
value.	For	map	formats	that	use	named	flags	(UDMF),	this	must	be	a
string	indicating	the	name	of	the	flag.

doublesidedflag	(integer	or	string)
This	lets	Doom	Builder	know	the	linedef	flag	that	indicates	a	line	with



two	sides.	Doom	Builder	will	set	this	flag	value	on	a	linedef	when	it
changes	a	line	to	become	double	sided	and	removes	the	flag	from	a
linedef	when	it	becomes	single	sided.	Plugins	can	also	use	this
information	to	perform	operations	on	linedefs.	For	map	formats	that
use	numeric	flags	(Doom	and	Hexen)	this	must	be	an	integer	flag
value.	For	map	formats	that	use	named	flags	(UDMF),	this	must	be	a
string	indicating	the	name	of	the	flag.

impassableflag	(integer	or	string)
This	lets	Doom	Builder	know	the	linedef	flag	that	indicates	a	line	which
blocks	players	and	monsters.	Doom	Builder	uses	this	to	give	the	line	a
special	color	and	plugins	can	use	this	information	to	perform
operations	related	to	blocking	sound	lines.	For	map	formats	that	use
numeric	flags	(Doom	and	Hexen)	this	must	be	an	integer	specifying	the
flag	value	of	the	Impassable	flag.	For	map	formats	that	use	named
flags	(UDMF),	this	must	be	a	string	indicating	the	name	of	the
Impassable	flag.

makedoortrack	(string)
Name	of	a	texture	to	use	on	the	walls	when	making	a	door.

makedooraction	(integer)
Linedef	action	number	to	put	on	the	lines	when	making	a	door.

makedoorarg#	(0	..	4)	(integer)
Arguments	for	the	linedef	action	number	to	put	on	the	lines	when
making	a	door.



doomlightlevels	(boolean)
Set	this	to	false	to	use	linear	lighting	in	Doom	Builder.	Normally	Doom
Builder	uses	a	simulation	of	Doom's	light	levels.	Default	value	is	true.

start3dmode	(integer)
Thing	type	number	that	Doom	Builder	will	use	to	keep	your	Visual
Mode	camera	position	stored	in	the	map.	Doom	Builder	will	place	a
single	thing	of	this	type	in	your	map	and	move	it	along	as	you	move	in
Visual	Mode.

skyflatname	(string)
Name	of	the	flat	that	is	interpreted	as	sky	(meaning	there	is	no	ceiling).
Doom	Builder	and	plugins	can	use	this	information	for	various
purposes.

maxtexturenamelength	(integer)
Maximum	length	of	texture	names	in	characters.	This	is	used	by	Doom
Builder	to	limit	the	input	fields	in	the	user	interface	and	to	check	the
validity	of	texture	names	in	resources.	This	does	NOT	determine	the
actual	limitation	on	the	texture	names	in	the	map	file	format.	Default
value	is	8.



Game	Configuration	-	Map	Format
Settingsformatinterface	(string)
Interface	class	name	in	Doom	Builder	that	is	used	to	read	and	write	the
map	data.

For	Doom	map	format,	use	"DoomMapSetIO".	This	is	a	map
format	that	uses	numeric	flags.
For	Hexen	map	format,	use	"HexenMapSetIO".	This	is	a	map
format	that	uses	numeric	flags.
For	UDMF	map	format,	use	"UniversalMapSetIO".	This	is	a	map
format	that	uses	named	flags.

gamedetect	(structure)
This	is	used	to	determine	if	the	Game	Configuration	is	suitable	for	the
opened	WAD	file.	None	of	the	settings	in	this	structure	have	any
impact	on	the	actual	editing,	limitations	or	storage	of	the	map,	but	only
assist	the	user	when	opening	WAD	files	that	have	not	been	opened
with	Doom	Builder	before	(when	no	.dbs	file	is	available).	The	setting
names	in	this	structure	are	the	lump	names	that	must	be	checked	for.
The	value	of	these	settings	(integers)	indicates	which	rule	applies	to
the	lump	name	for	a	positive	check.	Valid	values	are:

1	-	At	least	one	of	these	lumps	must	exist.
2	-	None	of	these	lumps	must	exist.
3	-	All	of	these	lumps	must	exist.

Example:



gamedetect
{
	 TEXTMAP	=	2;
	 ENDMAP	=	2;
	 EXTENDED	=	2;
	 BEHAVIOR	=	3;
	 E1M1	=	2;
	 E1M2	=	2;
	 E1M3	=	2;
	 MAP01	=	1;
	 MAP02	=	1;
	 MAP03	=	1;
}

maplumpnames	(structure)
This	structure	describes	the	lumps	that	make	up	the	complete	map,
including	scripts	and	nodes.	It	must	also	indicate	what	Doom	Builder	is
supposed	to	do	with	these	lumps	and/or	where	the	lumps	come	from.
These	lumps	are	normally	written	by	the	map	format	interface	class,
but	some	could	be	generated	by	the	nodebuilder	compiler	or	stored	by
Doom	Builder	directly.	In	this	structure,	there	should	be	a	structure	for
every	map	lump.	The	name	of	the	structure	should	be	the	lump	name,
in	uppercase.	For	the	map	header	(which	name	differs)	you	can	use
the	name	~MAP.	The	following	settings	should	be	in	the	lump	structure
(unless	the	default	value	applies):

required	(boolean).
True	to	indicate	that	this	lump	is	a	required	lump	for	the	map.
Default	is	false.

blindcopy	(boolean).



Set	this	to	true	when	Doom	Builder	should	copy	this	lump	along
with	the	map	without	using	it.	Default	is	false.

nodebuild	(boolean).
When	set	to	true,	this	indicates	that	the	nodebuilder	compiler
generates	or	modifies	this	lump.	Default	is	false.

allowempty	(boolean).
Set	to	true	to	allow	the	nodebuilder	to	leave	this	lump	empty.
Default	is	false.

script	(string).
When	this	is	set,	it	indicates	that	this	lump	can	be	edited	with	the
script	editor.	The	contents	of	this	lump	will	be	loaded	in	the	script
editor	automatically.	Set	the	value	to	the	.cfg	filename	(without
path)	of	a	Script	Configuration	to	use.

Example:

maplumpnames
{
	 ~MAP
	 {
	 	 required	=	true;
	 	 blindcopy	=	true;
	 	 nodebuild	=	false;
	 }
	
	 THINGS
	 {
	 	 required	=	true;
	 	 nodebuild	=	true;



	 	 allowempty	=	true;
	 }
	
	 LINEDEFS
	 {
	 	 required	=	true;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 SIDEDEFS
	 {
	 	 required	=	true;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 VERTEXES
	 {
	 	 required	=	true;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 SEGS
	 {
	 	 required	=	false;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 SSECTORS
	 {
	 	 required	=	false;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }



	
	 NODES
	 {
	 	 required	=	false;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 SECTORS
	 {
	 	 required	=	true;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 REJECT
	 {
	 	 required	=	false;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 BLOCKMAP
	 {
	 	 required	=	false;
	 	 nodebuild	=	true;
	 	 allowempty	=	false;
	 }
	
	 SCRIPTS
	 {
	 	 required	=	false;
	 	 nodebuild	=	false;
	 	 script	=	"ZDoom_ACS.cfg";
	 }
}





Game	Configuration	-	Resource
Settingsdecorategames	(string)
Fill	this	to	the	game	names	to	support	DECORATE	actors	from.	Only
the	DECORATE	actors	who's	game	name	is	in	this	string	will	be
loaded.	If	this	setting	is	not	set,	DECORATE	lumps	are	not	loaded.

Example:

decorategames	=	"heretic	raven";

mixtexturesflats	(boolean)
Doom	Builder	will	allow	the	use	of	flats	on	walls	and	textures	on	floors
when	this	is	set	to	true.	Textures	and	flats	will	be	mixed	with	priority	to
the	original	purpose.	For	textures	this	means	that	textures	override
flats	with	the	same	name,	for	flats	this	means	that	flats	override
textures	with	the	same	name.	Default	is	false.

defaulttexturescale	(decimal)
The	scale	of	textures	when	no	scale	is	known.	This	is	a	scalar	value:
0.5	is	half	the	original	size	and	double	the	resolution.	Default	is	1.0.

defaultflatscale	(decimal)
The	scale	of	flats	when	no	scale	is	known.	This	is	a	scalar	value:	0.5	is
half	the	original	size	and	double	the	resolution.	Default	is	1.0.

scaledtextureoffsets	(boolean)



Determines	if	texture	offsets	are	in	world	coordinates	(unscaled	by
texture	scale)	or	texture	coordinates.	Set	to	true	to	use	texture
coordinates.	Default	is	false.

textures	(structure)
This	lists	the	marker	lump	names	that	indicate	the	begin	and	end	of	a
list	of	textures	that	Doom	Builder	should	load.	There	must	be	a
separate	structure	for	each	range,	for	which	the	structure	name	doesn't
matter.	The	range	must	have	a	'start'	setting	and	an	'end'	setting	of
which	the	values	must	be	the	names	of	the	start	and	end	lumps
(strings).	Please	note	that	PNAMES,	TEXTURE1	and	TEXTURE2
lumps	do	not	need	to	be	in	the	game	configuration,	they	are	always
loaded	when	available.

Example:

textures
{
	 zdoom1
	 {
	 	 start	=	"TX_START";
	 	 end	=	"TX_END";
	 }
}

patches	(structure)
This	lists	the	marker	lump	names	that	indicate	the	begin	and	end	of	a
list	of	patches	that	Doom	Builder	should	load.	There	must	be	a
separate	structure	for	each	range,	for	which	the	structure	name	doesn't
matter.	The	range	must	have	a	'start'	setting	and	an	'end'	setting	of



which	the	values	must	be	the	names	of	the	start	and	end	lumps
(strings).	Note	that	Doom	Builder	does	not	load	all	patches,	only	those
that	are	used	by	the	textures.

Example:

patches
{
	 standard1
	 {
	 	 start	=	"P_START";
	 	 end	=	"P_END";
	 }
	
	 standard2
	 {
	 	 start	=	"PP_START";
	 	 end	=	"PP_END";
	 }
}

sprites	(structure)
This	lists	the	marker	lump	names	that	indicate	the	begin	and	end	of	a
list	of	sprites	that	Doom	Builder	should	load.	There	must	be	a	separate
structure	for	each	range,	for	which	the	structure	name	doesn't	matter.
The	range	must	have	a	'start'	setting	and	an	'end'	setting	of	which	the
values	must	be	the	names	of	the	start	and	end	lumps	(strings).	Note
that	Doom	Builder	does	not	load	all	sprites,	only	those	that	are	used	by
the	things.

Example:



sprites
{
	 standard1
	 {
	 	 start	=	"S_START";
	 	 end	=	"S_END";
	 }
}

flats	(structure)
This	lists	the	marker	lump	names	that	indicate	the	begin	and	end	of	a
list	of	flats	that	Doom	Builder	should	load.	There	must	be	a	separate
structure	for	each	range,	for	which	the	structure	name	doesn't	matter.
The	range	must	have	a	'start'	setting	and	an	'end'	setting	of	which	the
values	must	be	the	names	of	the	start	and	end	lumps	(strings).

Example:

flats
{
	 standard1
	 {
	 	 start	=	"F_START";
	 	 end	=	"F_END";
	 }
}

colormaps	(structure)
This	lists	the	marker	lump	names	that	indicate	the	begin	and	end	of	a
list	of	colormaps	that	Doom	Builder	should	load.	There	must	be	a
separate	structure	for	each	range,	for	which	the	structure	name	doesn't



matter.	The	range	must	have	a	'start'	setting	and	an	'end'	setting	of
which	the	values	must	be	the	names	of	the	start	and	end	lumps
(strings).

Example:

colormaps
{
	 standard1
	 {
	 	 start	=	"C_START";
	 	 end	=	"C_END";
	 }
}



Game	Configuration	-	Sectors	Settings
generalizedsectors	(boolean)
Set	to	true	to	support	generalized	sector	effects.	This	makes	the
gen_sectortypes	structure	mandatory.	Default	value	is	false.

sectorbrightness	(structure)
This	structure	provides	Doom	Builder	with	a	list	of	sector	brightness
levels	that	are	most	common.	Doom	Builder	will	use	these	levels	to
increase/decrease	the	brightness	quickly.	The	structure	must	contain
numeric	setting	names	for	the	brightness	levels.	The	settings	don't
need	a	value	and	any	value	will	be	ignored	by	Doom	Builder.

Example:

sectorbrightness
{
	 96;
	 64;
	 32;
	 0;
}

gen_sectortypes	(structure)
Generalized	sector	types	are	described	in	this	structure.	This	structure
is	required	when	generalizedsectors	is	set	to	true.	For	each	option
there	should	be	a	structure.	The	name	of	the	structure	is	displayed	as
the	option	description.	Each	option	structure	should	contain	a	setting
for	the	available	choices.	The	setting	name	must	be	a	numeric	value



that	is	added	to	the	final	sector	effect	value	along	with	the	values	of	the
choices	from	other	options	(so	the	final	sector	effect	value	is	the	sum	of
the	choices	from	every	option).	The	setting	must	have	a	string	value
containing	the	choice	description	to	be	displayed.

Example:

gen_sectortypes
{
	 secret
	 {
	 	 0	=	"No";
	 	 128	=	"Yes";
	 }
	
	 friction
	 {
	 	 0	=	"Disabled";
	 	 256	=	"Enabled";
	 }
	
	 wind
	 {
	 	 0	=	"Disabled";
	 	 512	=	"Enabled";
	 }
}

sectortypes	(structure)
This	is	a	simple	list	of	all	available	sector	effects	that	the	user	can
choose	from.	The	setting	names	must	be	numeric	(the	sector	effect
number)	and	the	value	must	be	a	string	containing	the	description	to
display.



Example:

sectortypes
{
	 0	=	"Normal";
	 1	=	"Light	Blinks	(randomly)";
	 2	=	"Light	Blinks	(2	Hz)";
	 3	=	"Light	Blinks	(1	Hz)";
	 4	=	"Damage	-10	or	20%	health	and	Light	Blinks	(2	Hz)";
	 5	=	"Damage	-5	or	10%	health";
	 7	=	"Damage	-2	or	5%	health";
	 8	=	"Light	Glows	(1+	sec)";
	 9	=	"Secret";
}



Game	Configuration	-	Linedefs	Settings
generalizedlinedefs	(boolean)
Set	to	true	to	support	generalized	linedef	actions.	This	makes	the
gen_linedeftypes	structure	mandatory.	Default	value	is	false.

linedefflags	(structure)
Lists	the	options	that	can	be	set	on	a	linedef.	In	case	of	a	map	format
that	works	with	numeric	flags,	the	values	of	the	chosen	options	are
added	together	to	form	the	final	linedef	flags	value	(so	each	option
should	use	its	own	bit).	Note	that	with	numeric	flags,	the	linedef
activation	flags	are	also	incorporated	in	the	same	value	(see
linedefactivations).
Example	for	numeric	flags:

linedefflags
{
	 1	=	"Impassable";
	 2	=	"Block	Monster";
	 4	=	"Double	Sided";
	 8	=	"Upper	Unpegged";
	 16	=	"Lower	Unpegged";
	 32	=	"Secret";
	 64	=	"Block	Sound";
}

Example	for	named	flags:

linedefflags
{
	 blocking	=	"Impassable";



	 blockmonsters	=	"Block	monster";
	 twosided	=	"Doublesided";
	 dontpegtop	=	"Upper	unpegged";
	 dontpegbottom	=	"Lower	unpegged";
	 secret	=	"Secret";
	 blocksound	=	"Block	sound";
}

linedefactivations	(structure)
This	provides	a	list	of	choices	about	how	a	linedef	is	activated.	Only
one	of	these	choices	can	be	selected	by	the	user.	In	case	of	a	map
format	that	works	with	numeric	flags,	the	value	is	part	of	the	linedef
flags	value	and	should	have	it's	own	range	of	bits.	To	separate	these
bits	from	the	linedef	flag	options,	use	the	linedefactivationsfilter
setting.	For	map	formats	which	use	named	flags,	you	can	just	use
names	for	the	settings.

Example	for	numeric	flags:

linedefactivations
{
	 0	=	"Player	walks	over";
	 1024	=	"Player	presses	Use";
	 2048	=	"Monster	walks	over";
	 3072	=	"Projectile	hits";
	 4096	=	"Player	bumps";
	 5120	=	"Projectile	flies	over";
}

linedefactivationsfilter	(integer)
Bit	mask	value	that	separates	the	linedefactivations	bits	from	the



linedefflags	bits.	This	is	required	in	map	formats	that	use	numeric
linedef	flags,	because	the	bits	share	the	same	integer	linedef	flags
value	in	the	map	data.	This	setting	is	ignored	for	map	formats	that	use
named	flags.

linedefflagstranslation	(structure)
This	is	a	translation	between	named	(UDMF)	linedef	flags	and	the
numeric	linedef	flags	that	your	configuration	uses	(including	linedef
activation	flags,	if	any).	This	structure	is	mandatory	for	all	Game
Configurations	that	do	not	use	the	UDMF	map	format	and	should	not
exist	in	Game	Configurations	that	use	the	UDMF	map	format.	Doom
Builder	uses	this	translation	ot	correctly	work	with	copy/paste	and
prefabs	(which	are	all	converted	to/from	UDMF	format).	The	setting
names	should	be	the	non-UDMF	flags.	In	case	that	your	Game
Configuration	uses	numeric	flags	map	format,	the	setting	names
should	be	numeric.	The	setting	values	must	be	the	equivalent	UDMF
flag	names.	The	value	can	be	prefixed	with	!	to	indicate	that	the	value
should	be	inverted	(for	example,	if	a	setting	32	with	value	'!raisable'	is
to	be	converted,	the	existance	of	the	bit	value	32	will	set	'raisable'	to
false).

Example	for	numeric	flags:

linedefflagstranslation
{
	 1	=	"blocking";
	 2	=	"blockmonsters";
	 4	=	"twosided";
	 8	=	"dontpegtop";
	 16	=	"dontpegbottom";



	 32	=	"secret";
	 64	=	"blocksound";
	 512	=	"repeatspecial";
	 1024	=	"playeruse";
	 2048	=	"monstercross";
	 3072	=	"impact";
	 4096	=	"playerpush";
	 5120	=	"missilecross";
	 8192	=	"monsteractivate";
}



Game	Configuration	-	Things	Settings
defaultthingflags	(structure)
This	defines	what	the	default	flags	should	be	first	the	first	new	thing
when	inserted.	In	map	formats	that	use	numeric	thing	flags,	the
settings	in	this	structure	should	be	the	numeric	flags	to	set.	In	map
formats	that	use	named	flags,	the	settings	must	be	the	names	of	the
flags	to	set.	The	value	of	the	settings	is	optional	and	is	ignored	by
Doom	Builder.

Example	for	numeric	flags:

defaultthingflags
{
	 1;
	 2;
	 4;
	 32;
}

Example	for	named	flags:

defaultthingflags
{
	 skill1;
	 skill2;
	 skill3;
	 single;
	 coop;
}





About	Scripting	Configurations
B


	Introduction
	Terminology
	User Interface
	About the User Interface
	Main Window
	Custom Fields Editor
	Errors and Warnings Window
	Game Configurations Window
	Grid Setup Window
	Image Browser Window
	Linedef Properties Window
	Map Options Window
	Open Map Window
	Preferences Window
	Resource Options Window
	Script Editor Window
	Sector Properties Window
	Texture Sets Window
	Thing Properties Window
	Things Filters Window
	Vertex Properties Window

	Editing Modes
	About Editing Modes
	Brightness Mode
	Curve Linedefs Mode
	Draw Geometry Mode
	Edit Selection Mode
	Find & Replace Mode
	Linedefs Mode
	Make Sectors Mode
	Map Analysis Mode
	Sectors Mode
	Things Mode
	Vertices Mode
	Visual Mode

	Configurations
	About Configurations
	Configuration Syntax
	Compiler Configurations
	About Compiler Configurations

	Game Configurations
	About Game Configurations
	Basic Settings
	Map Format Settings
	Resource Settings
	Sectors Settings
	Linedefs Settings
	Things Settings

	Scripting Configurations
	About Scripting Configurations



