
	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay

The	Microsoft®	DirectPlay®	application	programming	interface	(API)	is
the	component	of	Microsoft	DirectX®	that	enables	you	to	write	network
applications	such	as	multiplayer	games.	DirectPlay	performs	all	of	the
hard	work	associated	with	connecting	players,	even	those	behind
Network	Address	Translation	(NAT)	devices,	and	managing	sessions.	It
allows	you	to	create,	find,	and	connect	to	multiplayer	games.	When
connected,	DirectPlay	enables	you	to	send	guaranteed	or	non-
guaranteed	messages	to	other	players.	A	common	framework	for
launching	applications	and	in-game	voice	communications	is	also
provided.	In	addition,	DirectPlay	provides	support	for	Microsoft
Windows®	Powered	Pocket	PC	2002	and	connectivity	with	DirectPlay	8.0
applications.

Information	about	DirectPlay	is	presented	in	the	following	sections.

Roadmap

What's	New	in	DirectPlay.	New	features	and	functionality	of	this
component	in	DirectX	9.0.

Basic	Concepts	in	DirectPlay.	An	overview	of	what	DirectPlay	is	and	what
it	can	do	for	your	application,	together	with	a	first	view	of	some	key
objects	and	the	steps	involved	in	creating	a	network	application.

Peer-to-Peer	Sessions.	A	guide	to	using	the	IDirectPlay8Peer	interface
for	creating	and	managing	peer-to-peer	applications.

Client/Server	Sessions.	A	guide	to	using	the	IDirectPlay8Client	and
IDirectPlay8Server	interfaces	for	creating	and	managing	client/server
applications.

DirectPlay	Lobby.	A	guide	to	using	the	IDirectPlay8LobbyClient	and
IDirectPlay8LobbiedApplication	interfaces	for	setting	up	multiplayer
games.

DirectPlay	Voice.	A	guide	to	using	the	IDirectPlayVoiceClient	and
IDirectPlayVoiceServer	interfaces	for	creating	and	managing	voice
sessions.

DirectPlay	for	Pocket	PC	2002.	Information	about	creating	applications
for	the	Pocket	PC	2002.

Advanced	Topics	in	DirectPlay.	More	advanced	features	of	DirectPlay
including	addressing,	NATs,	callbacks,	and	multithreading.

DirectPlay	C/C++	Tutorials.	Step-by-step	tutorials	following	sample	code
in	the	software	development	kit	(SDK).

DirectPlay	C++	Samples.	A	guide	to	the	C/C++	sample	applications	in	the
SDK.

DirectPlay	C/C++	Reference.	Detailed	information	for	the	DirectPlay	C++
API.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

What's	New	in	DirectPlay

This	section	introduces	new	features	for	Microsoft®	DirectPlay®	9.0.

New	Features	in	DirectPlay
The	DirectPlay	application	programming	interfaces	(APIs)	are
available	for	the	Microsoft	Windows®	Powered	Pocket	PC	2002.
See	DirectPlay	for	Pocket	PC	2002	for	more	information.

The	DPN_MSGID_SEND_COMPLETE	message	structure	has	two
new	members	that	allow	you	to	calculate	the	round-trip	travel	time
of	messages.

DirectPlay	has	a	new	service	provider	for	network	simulation.	You
can	use	the	IDP8SimControl	methods	to	test	applications	under	a
variety	of	network	conditions.

DirectPlay	has	a	new	interface,	IDirectPlay8ThreadPool,	that
allows	you	to	manage	threads	in	your	application.

Applications	can	cancel	all	messages	sent	by	a	particular	player
using	the	DPNCANCEL_PLAYER_SENDS	flag	when	calling
IDirectPlay8Peer::CancelAsyncOperation,
IDirectPlay8Server::CancelAsyncOperation,	and
IDirectPlay8Client::CancelAsyncOperation.

Players	can	receive	their	local	player	identifier	(ID)	in	the
DPN_MSGID_CONNECT_COMPLETE	message.

Hosts	can	prevent	DirectPlay	from	processing	enumeration
queries	by	setting	the	DPNSESSION_NOENUMS	flag	in	the
DPN_APPLICATION_DESC	structure	when	calling
IDirectPlay8Peer::Host	and	IDirectPlay8Server::Host.

Messages	sent	to	a	group	with	no	players	in	it	will	now	return
DPNSUCCESS_NOPLAYERSINGROUP	instead	of
DPNERR_GENERIC.

Packet	signing	is	available	for	all	DirectPlay	traffic.

Applications	can	close	immediately	by	setting	the
DPNCLOSE_IMMEDIATE	flag	when	calling
IDirectPlay8Peer::Close,	IDirectPlay8Client::Close,	and
IDirectPlay8Server::Close.

DirectPlay	9.0	has	improved	defense	against	connection	spoofing.

Use	the	DPNINITIALIZE_HINT_LANSESSION	flag	when	calling
IDirectPlay8Peer::Initialize,	IDirectPlay8Client::Initialize,	and
IDirectPlay8Server::Initialize.

Packet	coalescence	is	available	by	setting	the
DPNSEND_COALESCE	flag	when	calling
IDirectPlay8Peer::SendTo,	IDirectPlay8Client::Send,	and
IDirectPlay8Server::SendTo.

Applications	can	tune	the	DirectPlay	protocol	using	the
DPN_CAPS_EX	structure	used	when	calling
IDirectPlay8Peer::GetCaps,	IDirectPlay8Client::GetCaps,	and
IDirectPlay8Server::GetCaps	or	IDirectPlay8Peer::SetCaps,
IDirectPlay8Client::SetCaps,	and	IDirectPlay8Server::SetCaps.

A	group	owner's	context	value	has	been	added	to	the
DPNMSG_CREATE_GROUP	structure.

If	the	DPNSESSION_NODPNSVR	flag	is	not	set	in	the
DPN_APPLICATION_DESC	structure	when	calling
IDirectPlay8Peer::Host	or	IDirectPlay8Server::Host	and
dpnsvr.exe	does	not	start,	the	call	to	Host	will	fail	and	return
DPNERR_DPNSVRNOTAVAILABLE.

Less	reliable	connections	should	now	perform	better	with	improved
DirectPlay	protocol	behavior.

Network	Address	Translation	(NAT)	support	has	improved.	This
includes	the	new	IDirectPlay8NATResolver	interface,	which	allows
you	to	create	a	NAT	resolver	application.

DirectPlay	now	supports	Internet	Protocol	(IP)	v6.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Basic	Concepts	in	DirectPlay

The	Microsoft®	DirectPlay®	API	provides	developers	with	the	tools	to
develop	multiplayer	applications	such	as	games	or	chat	clients.	For
simplicity,	this	documentation	will	refer	to	all	such	applications	as
"games".	A	multiplayer	application	has	two	basic	characteristics:

Two	or	more	individual	users,	each	with	a	game	client	on	their
computer.

Network	links	that	enable	the	users'	computers	to	communicate
with	each	other,	perhaps	through	a	centralized	server.

DirectPlay	provides	a	layer	that	largely	isolates	your	application	from	the
underlying	network.	For	most	purposes,	your	application	can	just	use	the
DirectPlay	API,	and	enable	DirectPlay	to	handle	the	details	of	network
communication.	DirectPlay	provides	many	features	that	simplify	the
process	of	implementing	many	aspects	of	a	multiplayer	application,
including:

Creating	and	managing	both	peer-to-peer	and	client/server
sessions

Managing	users	and	groups	within	a	session

Managing	messaging	between	the	members	of	a	session	over
different	network	links	and	varying	network	conditions

Enabling	applications	to	interact	with	lobbies

Enabling	users	to	communicate	with	each	other	by	voice

The	following	documentation	provides	a	high-level	overview	of	the
capabilities	of	DirectPlay.

DirectPlay	Network	Communication

Communicating	with	DirectPlay	Objects

Creating	and	Managing	Sessions

Getting	DirectPlay	Data

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Network	Communication

The	primary	function	of	Microsoft®	DirectPlay®	is	to	provide	you	with
efficient	and	flexible	messaging	support	that	largely	isolates	your
application	from	the	underlying	network	hardware	and	software.	If	you
need	to	send	a	status	update,	you	can	call	the	relevant
DirectPlay	application	programming	interface	(API),	regardless	of	what
kind	of	network	link	is	involved.	DirectPlay	network	service	providers
support	communication	over	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP),	Internetwork	Packet	Exchange	(IPX),	modem,	and
serial	links.

Notes	DirectPlay	does	not	provide	secure	communications.

DirectPlay	Transport	Protocol

DirectPlay	Addresses

DirectPlay	Transport	Protocol

The	core	of	the	DirectPlay	networking	capabilities	is	the	DirectPlay
protocol.	This	transport-layer	protocol	has	been	completely	overhauled
for	DirectPlay	8,	and	is	now	used	for	all	messaging.	The	DirectPlay
protocol	is	focused	on	making	it	simple	for	you	to	send	data	from	the
sending	application	to	the	target	application,	without	needing	to	worry
about	what	happens	in	between.	The	protocol	offers	a	number	of	features
that	are	tailored	to	the	needs	of	multiplayer	games,	including:

Reliable	and	unreliable	delivery	of	messages.	Reliable	messages
will	be	resent	until	the	target	application	receives	them.	You	can
assign	the	delivery	type	on	a	message-by-message	basis.

Sequential	and	non-sequential	delivery	of	messages.	Sequential
messages	will	be	passed	to	the	target	application	in	the	order	they
were	sent.

Message	fragmentation	and	reassembly.	If	message	size	exceeds
the	capacity	of	a	particular	network,	DirectPlay	automatically
fragments	and	reassembles	the	message.

Congestion	control.	DirectPlay	automatically	throttles	your
outgoing	messages	to	a	level	that	can	be	handled	by	the	target.
This	feature	prevents	you	from	flooding	the	target	with	more
messages	than	it	can	process.

Send	prioritization.	To	ensure	that	the	most	important	messages
get	sent	first,	DirectPlay	enables	you	to	designate	messages	as
low,	medium,	or	high	priority.	The	high	priority	messages	are	sent
to	the	front	of	the	output	queue,	followed	by	medium	and	low
priority	messages.

Message	timeouts.	To	prevent	the	outgoing	message	queue	from
being	clogged	with	messages	that	have	been	superseded	by	more
recent	messages,	DirectPlay	enables	you	to	assign	a	timeout
value	to	all	messages.	When	a	message	times	out,	it	is	removed
from	the	outgoing	message	queue,	regardless	of	whether	it	has

been	sent	or	not.

DirectPlay	Addresses

In	order	to	deliver	messages,	each	participant	in	a	multiplayer	game	must
have	a	unique	address.	Addresses	can	refer	either	to	the	computer	that
your	application	is	running	on	(device	address),	or	a	computer	that	your
application	needs	to	communicate	with	(host	address).

DirectPlay	addresses	are	in	the	form	of	URL	strings.	These	strings
consist	of	a	scheme,	scheme	separator,	and	data	string	in	the	following
general	format.

x-directplay:/[data	string]

The	data	string	contains	several	elements	that	specify	everything	that	is
needed	to	enable	communication	to	take	place	between	sender	and
target,	over	a	variety	of	different	types	of	network	link.

In	use,	the	URL	strings	are	embedded	in	a	DirectPlay	address	object
which	is	passed	to	or	from	DirectPlay	API	methods.	You	have	the	option
of	either	manipulating	the	URL	string	directly,	or	using	the	methods
exposed	by	the	address	object	to	handle	each	element	of	the	data	string
separately.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Communicating	with	DirectPlay	Objects

Microsoft®	DirectPlay®	consists	of	a	collection	of	Component	Object
Model	(COM)	objects.	Each	object	exposes	one	or	more	interfaces	that
enable	you	to	control	various	aspects	of	DirectPlay.	For	instance,	the
DirectPlay	peer	object	(CLSID_DirectPlay8Peer)	is	used	to	manage	peer-
to-peer	games.

You	communicate	with	a	DirectPlay	object	by	calling	the	methods
exposed	by	its	interfaces.	For	instance,	to	send	some	data	to	another
user	in	a	peer-to-peer	game,	you	would	send	a	message	by	calling	the
IDirectPlay8Peer::SendTo	method.	DirectPlay	then	takes	care	of	getting
the	message	to	its	target.

DirectPlay	communicates	with	your	application	through	one	or	more
callback	functions.	These	functions	are	similar	in	principle	to	the	familiar
Window	procedure.	Your	application	implements	the	callback	function
and	passes	a	pointer	to	the	function	to	DirectPlay	during	initialization.
When	DirectPlay	needs	to	communicate	with	your	application,	it	calls	the
callback	function	and	passes	in	two	key	items	of	information:

A	message	identifier	(ID)	that	identifies	the	message	type

A	pointer	to	a	block	of	data,	typically	a	structure,	that	provides	any
needed	details.

For	instance,	when	the	message	sent	in	the	above	example	arrives	at	its
target,	the	target	application's	callback	function	will	receive	a	message
with	a	DPNMSGID_RECEIVE	message	ID,	indicating	that	a	message
has	arrived	from	another	user.	The	accompanying	structure	contains	the
data.

Because	much	of	DirectPlay	messaging	is	multithreaded,	it	is	critical	that

callback	functions	be	properly	implemented.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Creating	and	Managing	Sessions

A	game	session	is	an	instance	of	a	particular	multiplayer	game.	A	session
has	two	or	more	users	playing	simultaneously,	each	with	the	same	game
client	on	his	or	her	computer.	A	player	is	an	entity	in	the	game	itself,	and
is	defined	by	the	particular	game.	Each	user	may	have	more	than	one
player	in	a	game.	However,	the	game	application	must	manage	these
players	itself,	using	separate	Microsoft®	DirectPlay®	interfaces	or
objects	for	each	player.

The	first	step	in	creating	a	session	is	to	collect	a	group	of	users.	There
are	two	basic	approaches.

Many	game	sessions	are	arranged	by	a	lobby	application	running
on	a	remote	computer.	This	approach	is	used	by	most	Internet-
based	games.

It	is	also	possible	to	arrange	games	by	having	the	individual	users'
computers	communicate	with	each	other.	This	approach	is	typically
limited	such	situations	as	a	group	of	potential	users	that	are	all	on
the	same	LAN.

Once	the	session	has	been	arranged,	the	game	is	launched	and
gameplay	begins.	As	the	session	proceeds,	players	may	be	eliminated
from	the	session,	or	new	players	added.	The	details	are	up	to	the
individual	game.

With	a	multiplayer	game,	each	user's	user	interface	(UI)	can	be
synchronized	with	that	of	all	other	users	in	the	session.	Managing	a
multiplayer	session	thus	requires	a	continual	stream	of	messages	to	and
from	each	user.	For	example,	every	time	a	player	moves,	a	message
must	be	sent	to	update	that	player's	position	on	all	the	other	game	clients
in	the	session.	The	core	of	DirectPlay	is	that	part	of	the	application

programming	interface	(API)	that	supports	efficient	and	flexible
messaging	between	all	the	computers	in	a	session.

There	are	two	basic	ways	to	structure	the	messaging	topology	of	a
session:	peer-to-peer	and	client/server.	Both	topologies	have	their
advantages	and	limitations,	so	you	will	need	to	evaluate	which	is	most
appropriate	for	your	game.

This	section	includes	the	following	topics.

Peer-to-Peer	Topology

Client/Server	Topology

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Peer-to-Peer	Topology

A	peer-to-peer	game	consists	of	the	individual	players'	computers,
connected	by	network	links.	Schematically,	the	topology	of	a	four-player
peer-to-peer	game	looks	like:

Gameplay	is	handled	by	having	each	user's	game	client	communicate
directly	with	the	other	users'	clients.	For	instance,	when	one	user	moves,
the	game	client	must	send	three	update	messages,	one	to	each	of	the
other	users'	computers.

A	peer-to-peer	game	is	normally	arranged	and	launched	through	a	lobby
client	application	that	resides	on	the	user's	computer.	There	are	two
basic	ways	the	lobby	client	can	arrange	a	session:

The	lobby	client	communicates	directly	with	other	potential	users'
lobby	clients.	This	approach	can	be	used,	for	instance,	to	arrange
a	game	among	users	on	the	same	LAN	subnet.

The	lobby	client	acts	as	a	link	to	lobby	server	application	running
on	a	remote	computer.	This	is	the	way	Internet-based	games	are
normally	arranged.

Once	a	session	has	been	arranged	and	launched,	most	or	all	of	the
messaging	will	be	user	to	user.	If	a	lobby	server	is	involved,	it	will	only	be
handling	such	tasks	as	updating	its	list	of	session	members	when	a
player	leaves	the	game,	or	enabling	a	new	user	to	request	entry	to	the
session.	Otherwise,	the	server	stays	in	the	background,	and	is	typically
not	even	aware	of	most	of	the	messages	that	are	being	sent.

Because	the	server	is	either	non-existent	or	at	least	not	directly	involved
with	the	game	play,	one	user	is	designated	as	the	game	host.	They	are

responsible	for	handling	logistical	details	such	as	bringing	new	players
into	an	ongoing	session.

Peer-to-peer	games	have	the	advantage	of	simplicity.	All	that	is	needed
is	a	collection	of	players	with	game	clients,	and	a	way	to	organize	a
session.	The	primary	drawback	of	the	peer-to-peer	topology	is	scalability.
As	the	number	of	users	increase,	the	number	of	messages	needed	to
facilitate	game	play	increases	geometrically.	The	maximum	number	of
users	that	can	be	accommodated	depends	on	the	game	and	the	network
bandwidth,	but	is	typically	no	more	than	20-30.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Client/Server	Topology

A	client/server	game	consists	of	the	individual	players'	computers	(the
"game	clients")	connected	to	a	central	server	computer.	The	topology	of	a
four-player	client/server	game	is	shown	in	the	following	graphic.

Game	play	is	handled	by	having	each	user's	game	client	communicate
with	the	server.	The	server	is	responsible	for	passing	information	about	to
the	other	users.	For	instance,	when	one	user	moves,	the	user's	computer
sends	a	message	to	the	server.	The	server	then	sends	messages	to	the
other	players	to	inform	them	of	a	change	in	game	state.	The	server	can
have	a	number	of	responsibilities;	it	can:

Act	as	the	session's	messaging	hub.	Each	computer	needs	to
send	messages	only	to	the	server.	The	server	handles	the	logistics
of	synchronizing	all	the	other	users.	This	arrangement	can
substantially	reduce	message	traffic,	especially	for	large	games.

Host	the	game.	The	server	typically	takes	care	of	the	tasks	that
must	be	handled	by	the	session	host	in	a	peer-to-peer	game.

Support	many	aspects	of	the	game.	The	server	often	does	much
more	than	support	game	logistics.	With	many	games,	especially
large	ones,	much	of	the	processing	that	maintains	the	"game
universe"	takes	place	on	the	server.	The	game	clients	are	primarily
responsible	for	handling	the	user	interface	(UI).

A	client/server	game	is	typically	arranged	and	launched	through	a	lobby
client	application	that	resides	on	the	user's	computer.	The	lobby	client
acts	as	a	link	to	a	lobby	server	application,	which	usually	runs	on	the
same	remote	computer	that	is	hosting	the	game.	When	the	game	has
been	launched,	the	game	server	application	becomes	the	host	and
handles	tasks	such	as	admitting	new	users	to	the	game.

There	are	a	number	of	advantages	to	client/server	games.

They	are	more	efficient,	especially	for	large-scale	games.	In
particular,	they	scale	much	better	than	peer-to-peer	games
because	additional	players	cause	only	a	linear	increase	in	the
messaging	traffic.	The	client/server	topology	is	necessary	for
massively	multiplayer	games.

You	are	not	limited	by	the	processing	power	of	your	users'
computers.	You	can	locate	much	of	the	processing	required	to
maintain	a	large	complex	"game	universe"	on	a	single	powerful
computer,	and	let	the	users'	computers	handle	the	UI.

You	can	control	key	aspects	of	your	game	at	a	central	site.	For
instance,	you	can	often	update	the	game	or	fix	bugs	by	modifying
the	server	application,	thereby	avoiding	the	need	to	update	large
numbers	of	game	clients.

Once	you	have	developed	and	shipped	a	peer-to-peer	game,	you	are
essentially	finished.	The	game	clients	are	largely	self-sufficient.	However,
with	a	client/server	game,	you	have	an	ongoing	responsibility	to	your
users	that	goes	beyond	providing	support	services.	You	must	also
provide	and	maintain	a	game	server	computer	and	the	associated
software,	along	with	the	network	links	to	handle	all	the	messaging,	for	the
lifetime	of	the	application.	In	the	case	of	massively	multiplayer	games,
you	may	need	to	operate	your	servers	for	extended	periods	with	few	or
no	breaks	in	service,	or	risk	angering	users	by	disrupting	their	game	play.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Getting	DirectPlay	Data

Many	times	during	a	Microsoft®	DirectPlay®	session,	your	application
needs	to	get	information	from	DirectPlay.	This	can	be	to	enumerate	all
the	hosts	available	or	to	get	a	new	player's	data.	The	DirectPlay
programming	model	for	retrieving	data	usually	involves	passing	a	buffer
to	DirectPlay	to	be	filled.	However,	the	buffer	size	needed	is	usually
unknown.	Allocating	a	large	enough	block	of	memory	to	hold	any
conceivable	array	will	work,	but	is	inefficient.	Therefore,	to	use	these
methods	that	return	data,	you	should	first	call	the	method	with	a	null
buffer.	The	method	will	return	to	you	the	required	size	of	the	buffer.	Then
you	can	call	the	method	again	using	the	required	buffer	size.	This	system
of	getting	data	is	used	to:

Get	address	information
(IDirectPlay8Address::GetComponentByIndex,
IDirectPlay8Address::GetComponentByName,
IDirectPlay8Address::GetURLA,	IDirectPlay8Address::GetURLW,
IDirectPlay8Address::GetUserData).

Enumerate	session	hosts	(IDirectPlay8Peer::EnumHosts,
IDirectPlay8Client::EnumHosts).

Enumerate	service	providers
(IDirectPlay8Peer::EnumServiceProviders,
IDirectPlay8Client::EnumServiceProviders,
IDirectPlay8Server::EnumServiceProviders).

Get	application	descriptions
(IDirectPlay8Client::GetApplicationDesc,
IDirectPlay8Server::GetApplicationDesc,
IDirectPlay8Peer::GetApplicationDesc).

Fill	structures	(Structures).

Enumerate	devices	(IDirectPlay8NATResolver::EnumDevices).

Enumerate	players	and
groups(IDirectPlay8Peer::EnumPlayersAndGroups,
IDirectPlay8Server::EnumPlayersAndGroups).

Enumerate	group	members
(IDirectPlay8Peer::EnumGroupMembers,
IDirectPlay8Server::EnumGroupMembers).

Enumerate	local	programs
(IDirectPlay8LobbyClient::EnumLocalPrograms).

The	following	procedure	outlines	how	to	enumerate	the	members	of	a
group	in	a	peer-to-peer	game	as	an	example.	The	same	general
procedure	is	followed	by	all	other	types	of	data	retrieval,	except	for	host
enumerations.	Because	enumerations	are	often	used	to	obtain	a
snapshot	of	information	that	might	be	changing,	you	should	perform
enumerations	in	a	loop	until	you	are	successful.

1.	 Call	IDirectPlay8Peer::EnumGroupMembers.	This	method
returns	an	integer	array	in	the	prgdpnid	parameter	that	contains
the	identifier	(ID)	of	each	player	in	the	group.	The	pcdpnid
parameter	is	used	to	indicate	the	number	of	elements	in	the	array.
Set	the	pcdpnid	parameter	to	0	to	request	the	appropriate	value.
Set	prgdpnid	to	NULL.

2.	 When	the	method	returns,	pcdpnid	will	point	to	the	number	of
elements	that	will	be	in	the	array.

3.	 Allocate	your	array	using	the	returned	pcdpnid	value,	and	assign
the	array	to	the	prgdpnid	parameter.

4.	 Set	pcdpnid	to	the	value	that	was	returned	in	the	first	method	call.

5.	 Call	IDirectPlay8Peer::EnumGroupMembers	again.

6.	 When	the	method	returns	the	second	time,	check	the	return
value.	If	successful,	the	method	will	return	S_OK,	and	the	array
will	contain	the	player's	IDs.

7.	 If	the	method	returns	DPNERR_BUFFERTOOSMALL	again,	the
number	of	players	has	increased	since	the	previous	method	call.

Return	to	step	three	and	use	the	new	pcdpnid	value	to	increase
the	array	size.	Be	careful	not	to	leak	memory.

In	some	cases,	the	method	returns	an	array	of	structures.	In	that	case,
you	follow	the	same	procedure,	but	the	value	returned	from	the	first
method	call	gives	you	the	size	of	the	array	in	bytes,	instead	of	the
number	of	elements	in	the	array.	Refer	to	the	individual	method
references	for	details.

For	more	information,	see	Enumerating	Hosts.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Architect	Your	DirectPlay	Application

Microsoft®	DirectPlay®	offers	many	choices	about	how	you	structure	the
networking	for	your	game.	So,	before	you	start	writing	a	DirectPlay
application,	you	need	to	make	some	decisions	about	the	architecture	of
your	game.	The	following	list	details	the	main	issues	you'll	want	to
consider	before	getting	started.

Peer-to-peer	or	client/server	game.	Peer-to-peer	is	simpler	to	set
up	and,	once	deployed,	has	limited	overhead;	but	client/server
works	better	for	large-scale	multiplayer	games	and	may	provide
improved	Network	Address	Translation	(NAT)	support.	For	more
information,	see	Peer-to-Peer	Topology	and	Client/Server
Topology.

Multithreading.	DirectPlay	provides	the	IDirectPlay8ThreadPool
interface,	which	allows	you	to	control	the	number	of	DirectPlay
threads	in	your	game.	You	can	set	the	thread	count	to	zero	and
call	IDirectPlay8ThreadPool::DoWork	to	perform	DirectPlay	tasks.
This	allows	you	to	avoid	complex	synchronization	issues.
However,	a	multithreaded	DirectPlay	game	scales	better.	For	more
information,	see	DirectPlay	Callback	Functions	and	Multithreading
Issues.

Connection	types,	such	as	local	area	network	(LAN),	broadband,
or	modem.	Supporting	just	one	connection	type	allows	you	to
expect	consistency	among	the	send	and	receive	rates	of	your
players	and	the	amount	of	data	they	can	handle.	However,	if	you
want	to	support	different	connections,	you'll	need	to	include
adjustments	to	keep	the	maximum	send	rate	at	the	rate	of	the
slowest	connection	and	control	the	size	of	the	data	packets,	or
expect	significantly	higher	latency	and	dropped	packets	for	the
slower	connections.	For	more	information,	see	Optimizing	Network
Usage.

Reliable	or	unreliable	messaging.	Most	applications	will	want	to
use	unreliable	messages,	because	they	improve	the	speed	of	your

game.	You	can	specify	certain	messages	to	be	reliable,	for	data
that	cannot	be	lost.	For	more	information,	see	Message
Categories.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Peer-to-Peer	Sessions

A	peer-to-peer	session	consists	of	a	collection	of	users	connected	by	a
network.	While	a	lobby	server	may	be	used	to	arrange	and	launch	the
game,	the	messaging	needed	to	run	the	game	is	sent	directly	from	one
user's	to	another.	Any	communication	with	the	lobby	server	is	for	such
limited	purposes	as	updating	the	list	of	participants.

With	a	peer-to-peer	game,	everything	that	is	needed	to	run	the	game	is
part	of	the	client	software.	With	no	server	involved,	all	the	processing
needed	to	create	and	maintain	the	game	universe	must	be	handled	by
the	client	applications.	This	document	discusses	the	basic	principles	of	a
lobbyable	Microsoft®	DirectPlay®	peer-to-peer	game.	For	a	simple
working	example	of	a	peer-to-peer	application,	see	the	SimplePeer
application	included	with	the	software	development	kit	(SDK).

Initiating	a	Peer-to-Peer	Session

Enumerating	Hosts

Selecting	a	Service	Provider	for	a	Peer-to-Peer	Session

Selecting	a	Host	for	a	Peer-to-Peer	Session

Connecting	to	a	Peer-to-Peer	Session

Managing	a	Peer-to-Peer	Session

Handling	DirectPlay	Messaging

Host	Migration

Normal	Peer-to-Peer	Game	Play

Leaving	a	Peer-to-Peer	Session

Terminating	a	Peer-to-Peer	Session

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Initiating	a	Peer-to-Peer	Session

A	peer-to-peer	game	can	be	launched	directly	by	the	user,	or	lobby-
launched	by	a	lobby	client	application	that	resides	on	the	user's
computer.	This	documentation	will	assume	that	the	game	is	lobbyable,
and	can	communicate	with	the	lobby	client.

One	of	the	first	steps	you	should	take	is	to	determine	whether	your	game
was	lobby-launched.	To	do	so,	create	and	initialize	a	lobbied	application
object	(CLSID_DirectPlay8LobbiedApplication).	When	you	do	so,	you
pass	the	object	a	pointer	to	your	lobbied	application	message	handler.
This	message	handler	receives	messages	directly	from	the	lobbied
application	object,	and	indirectly	from	the	lobby	client	and	the	lobby.

If	the	application	was	lobby-launched,	the
IDirectPlay8LobbiedApplication::Initialize	method	returns	a
connection	handle	to	the	lobby	client	and	a
DPL_MSGID_CONNECT	message	is	sent	to	your	lobbied
application	message	handler.	The	pdplConnectionSettings
member	of	the	associated	structure	points	to	a
DPL_CONNECTION_SETTINGS	structure	that	contains
connection	information	such	as	address	objects	for	the	members
of	the	session.

If	the	application	was	not	lobby	launched,	you	will	receive	neither
the	connection	handle,	nor	the	message.	However,	if	you	call
IDirectPlay8LobbiedApplication::SetAppAvailable,	a	lobby	client
can	later	connect	your	running	application	to	a	session	by	sending
your	lobbied	application	message	handler	a
DPL_MSGID_CONNECT	message.

You	should	also	create	and	initialize	a	peer	object
(CLSID_DirectPlay8Peer).	This	object	will	be	your	primary	means	of
communicating	with	Microsoft®	DirectPlay®,	and	the	other	users	in	the

session.	If	you	want	to	have	multiple	players	in	the	session,	you	must
create	a	separate	instance	of	this	object	for	each	player.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Enumerating	Hosts

One	way	to	arrange	a	session	is	to	have	session	hosts	advertise
themselves	as	available.	Peers	or	clients	can	look	for	a	game	to	join	by
enumerating	the	available	hosts,	selecting	one,	and	then	join	the	game
by	sending	a	connection	request.	See	Peer-to-Peer	Sessions	or
Client/Server	Sessions	for	a	detailed	discussion.

Unlike	other	enumerations,	the	information	needed	to	respond	to	a
request	for	available	hosts	is	not	stored	on	the	local	computer.	Instead,	a
client	or	peer	must	broadcast	a	request,	for	instance	on	their	local
subnet,	and	wait	for	available	hosts	to	respond.	Hosts,	on	the	other	hand,
must	wait	for	these	requests,	and	then	respond	appropriately.	There	are
thus	two	slightly	different	procedures,	depending	on	whether	you	are	a
potential	session	member,	or	a	session	host.

The	following	procedure	illustrates	how	to	enumerate	the	available	hosts
for	a	peer-to-peer	session.	The	procedure	for	a	client/server	session	is
essentially	the	same.	IDirectPlay8Peer::EnumHosts	is	the	method	that
starts	the	enumeration.	The	key	parameters	to	set	are	pApplicationDesc,
pdpaddrDeviceinfo,	and	pdpaddrHost.

1.	 Assign	the	globally	unique	identifier	(GUID)	of	the	game	you	are
interested	in	playing	to	the	guidApplication	member	of	the
DPN_APPLICATION_DESC	structure	and	assign	the	structure
pointer	to	the	pApplicationDesc	parameter.

2.	 Create	an	address	object	for	your	device	and	assign	its	pointer	to
pdpaddrDeviceinfo.	This	object	contains	the	information	needed
to	make	a	network	connection.

3.	 To	query	a	specific	computer	for	available	hosts,	create	a	host
address	object	for	that	computer	and	assign	its	pointer	to
pdpaddrHost.	If	you	set	this	parameter	to	NULL,	Microsoft®

DirectPlay®	will	create	an	address	object	from	the	information
contained	in	pdpaddrDeviceinfo.	See	DirectPlay	Addressing	for
further	discussion	of	address	objects.	If	you	are	using	an	Internet
Protocol	(IP)	or	Internetwork	Packet	Exchange	(IPX)	service
provider,	the	query	will	then	normally	be	broadcast	to	your	local
subnet.	If	you	set	the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flag,	the
service	provider	may	display	a	dialog	box	to	the	user	to	request
address	information.

4.	 Call	IDirectPlay8Peer::EnumHosts.

5.	 Your	callback	message	handler	will	then	receive	a	series	of
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages,	one	for
each	host	that	responds.

Examine	the	information	returned	to	your	message	handler,	select
a	session,	and	ask	to	join	it	by	calling	IDirectPlay8Peer::Connect.

If	you	want	to	be	the	host	of	a	session,	advertise	yourself	as	available,
and	wait	for	queries	or	connection	requests.	The	following	procedure
applies	to	peer-to-peer	hosts,	but	is	essentially	similar	to	the	procedure
for	client/server	hosts.

1.	 Call	IDirectPlay8Peer::SetPeerInfo	to	specify	the	static	settings
for	your	player.

2.	 Specify	the	configuration	of	the	game	by	assigning	values	the
DPN_APPLICATION_DESC	structure.

3.	 Call	IDirectPlay8Peer::Host	to	advertise	yourself	as	a	potential
host.	Set	the	pdnAppDesc	parameter	to	the
DPN_APPLICATION_DESC	structure	defined	in	the	previous
step.

4.	 Wait	for	enumeration	requests.	They	will	take	the	form	of	a
DPN_MSGID_ENUM_HOSTS_QUERY	message	sent	to	your
callback	message	handler.	If	you	want	to	respond	to	the
enumeration	request,	fill	in	the	DPN_APPLICATION_DESC	and
return	S_OK.	The	peer	will	receive	a

DPN_MSGID_ENUM_HOSTS_RESPONSE	message	with	the
information.

5.	 If	the	peer	decides	that	they	would	like	to	join	your	session,	you
will	receive	a	DPN_MSGID_INDICATE_CONNECT	message.

See	the	Peer-to-Peer	Sessions	and	Client/Server	Sessions	sections
for	further	discussion	of	how	to	arrange	and	launch	a	game.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Selecting	a	Service	Provider	for	a	Peer-to-Peer	Session

The	service	provider	is	your	network	connection.	Most	games	use	either
the	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	or	modem
service	provider,	but	Microsoft®	DirectPlay®	also	provides	support	for
serial	and	Internetwork	Packet	Exchange	(IPX)	connections.

If	your	user	was	connected	to	the	session	by	a	lobby	client,	you	can
determine	the	appropriate	service	provider	by	examining	the
DPL_CONNECTION_SETTINGS	structure	that	accompanies	the
DPL_MSGID_CONNECT	message.	Otherwise,	you	may	need	to
determine	which	service	provider	to	use,	perhaps	by	querying	the	user.
You	can	use	the	peer	object's	IDirectPlay8Peer::EnumServiceProviders
method	to	enumerate	the	available	service	providers.	See	Getting
DirectPlay	Data	for	further	discussion.

Once	you	have	selected	a	service	provider,	you	can	then	create	a
DirectPlay	address	object	for	your	user	(a	device	address).	You	will	use
this	address	to	identify	your	device	with	a	number	of	DirectPlay	methods.
See	DirectPlay	Addressing	for	a	detailed	discussion	of	DirectPlay
addresses	and	address	objects.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Selecting	a	Host	for	a	Peer-to-Peer	Session

Although	most	aspects	of	peer-to-peer	games	can	be	handled	by	the
various	users'	communicating	directly	with	each	other,	there	are	some
tasks	that	must	have	a	single	owner.	These	tasks	are	handled	by	the
game	host.	To	join	a	session,	you	must	know	the	address	of	the	session's
host.	A	common	way	to	select	a	host	is	through	a	lobby	server.	In	that
case,	when	a	user's	application	is	connected	to	the	session,	the
connection	settings	that	you	receive	with	the	DPL_MSGID_CONNECT
message	include	the	host's	address	object.	To	find	out	who	the	session
host	is:

Check	the	dwFlags	member	of	the
DPL_CONNECTION_SETTINGS	structure	that	is	returned.	If	that
member	is	set	to	DPLCONNECTSETTINGS_HOST,	your	system
is	the	host.

If	the	DPLCONNECTSETTINGS_HOST	flag	is	not	set,	then	you
can	get	the	address	of	the	host	from	the	pdp8HostAddress
member.

You	can	also	create	a	session,	perhaps	on	a	local	area	network	(LAN)
subnet,	by	advertising	yourself	as	a	session	host.	To	do	so	call
IDirectPlay8Peer::SetPeerInfo	to	set	the	player's	name	and	then	call
IDirectPlay8Peer::Host	to	advertise	yourself	as	a	potential	host.	You
specify	the	configuration	of	the	game	by	assigning	values	the
DPN_APPLICATION_DESC	structure	that	is	passed	through	the
pdnAppDesc	parameter	of	IDirectPlay8Peer::Host.

To	allow	your	user	to	examine	the	available	sessions	and	hosts,	you	can
enumerate	the	available	hosts	by	calling	IDirectPlay8Peer::EnumHosts.
When	the	user	has	selected	a	session,	you	can	request	a	connection.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Connecting	to	a	Peer-to-Peer	Session

Unless	you	are	the	session	host,	you	will	need	to	connect	your	player	to
the	session.	To	do	so,	you	must	have	the	address	of	the	session	host.	If
your	application	was	connected	by	a	lobby	client,	you	can	obtain	the
host's	address	by	calling
IDirectPlay8LobbiedApplication::GetConnectionSettings.	You	can	also
obtain	the	address	by	enumerating	the	available	hosts.	The	information
returned	by	the	enumeration	includes	each	host's	addresses,	and	a
DPN_APPLICATION_DESC	structure	that	describes	the	associated
session.

To	ask	to	join	a	session,	call	IDirectPlay8Peer::SetPeerInfo	to	set	your
player's	name,	and	then	call	IDirectPlay8Peer::Connect	with	the	selected
host's	address	to	connect	to	the	session.

When	a	player	attempts	to	join	a	session,	the	host	receives	a
DPN_MSGID_INDICATE_CONNECT	message.	To	accept	the	player	into
the	session,	return	S_OK.	Returning	any	other	value	rejects	the	request.
In	either	case,	the	player	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	that	contains	your
response.	If	the	host	accepted	the	connection,	the	hResultCode	member
of	the	associated	structure	will	be	set	to	S_OK.	If	not,	hResultCode	will
be	set	to	DPNERR_HOSTREJECTEDCONNECTION.

The	host	can	define	a	player	context	value	when	it	receives	the
DPN_MSGID_INDICATE_CONNECT	message,	however	the	player
identifier	(ID)	will	not	yet	be	defined.	The	host	can	also	wait	to	define	a
player	context	value	until	it	receives	a	DPN_MSGID_CREATE_PLAYER
message,	which	includes	the	player	ID.	Ordinary	players	to	not	receive	a

DPN_MSGID_INDICATE_CONNECT	message.

Once	the	new	player	is	connected,	each	member	of	the	session,
including	the	host,	receives	a	DPN_MSGID_CREATE_PLAYER
message	announcing	the	new	player.	The	structure	associated	with	the
message	contains	the	player	ID	that	you	will	use	to	send	messages	to
that	player.	Peers	that	are	not	hosts	must	define	the	player	context	value
when	they	handle	this	message.	When	a	peer	or	host	has	returned	from
handling	this	message,	that	player	context	value	is	set	for	the	session,
and	cannot	be	changed.	See	Using	Player	Context	Values	for	more
discussion	of	player	context	values.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Managing	a	Peer-to-Peer	Session

The	session	host	is	responsible	for	managing	the	session,	including:

Managing	the	list	of	session	members	and	their	network	addresses

Deciding	whether	a	new	user	is	allowed	to	join	the	session.

Notifying	all	members	when	a	new	user	joins	the	session,	and
passing	them	the	new	user's	address.

Providing	new	users	with	the	current	game	state

Notifying	all	users	when	a	user	leaves	the	session

When	players	attempt	to	join	a	session,	the	host	will	receive	a
DPN_MSGID_INDICATE_CONNECT	message.	To	accept	the	player	into
the	session	return	S_OK.	Returning	any	other	value	rejects	the	request.
In	either	case,	the	player	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	that	contains	your
response.

The	host	can	remove	a	player	from	the	session	by	calling
IDirectPlay8Peer::DestroyPeer.	Other	members	of	the	session	cannot
call	this	method	successfully.	If	you	want	to	allow	players	to	request	that
another	player	be	removed	from	the	session,	you	must	send	the	request
to	the	host	with	normal	Microsoft®	DirectPlay®	messaging,	and	have	the
host	handle	the	request.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Handling	DirectPlay	Messaging

This	set	of	documents	provides	information	about	how	to	handle
Microsoft®	DirectPlay®	messaging.	This	particular	document	introduces
general	considerations	for	all	DirectPlay	messaging.	Details	for
messaging	with	particular	session	types	and	roles	can	be	found	in	the
following	documents.

Handling	Standard	Peer-to-Peer	Messages

Peer-to-Peer	Host	Messages

General	Messaging	Considerations

The	following	general	considerations	apply	to	all	DirectPlay	messaging.

You	will	frequently	receive	a	message	following	a	method	call.	For
instance,	when	you	ask	to	join	a	host's	session	by	calling
IDirectPlay8Peer::Connect,	you	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	that	provides	the
result	of	your	request.	Two	events	thus	follow	your	method	call:
The	method	returns	and	you	receive	a	message.	The	order	in
which	these	events	occur	depend	on	whether	you	call	the	method
synchronously	or	asynchronously,	and	may	not	be	predictable.

By	default,	DirectPlay	performs	most	operations	asynchronously.
To	use	synchronous	operations,	you	typically	need	to	set	an
xxx_SYNC	flag	in	the	method's	dwFlags	parameter.	As	long	as	an
asynchronous	method	call	does	not	fail	for	reasons	such	as
parameter	validation,	it	immediately	returns
DPNSUCCESS_PENDING.	DirectPlay	notifies	you	that	the
operation	is	complete	by	sending	you	a	message	such	as
DPN_MSGID_SEND_COMPLETE	or
DPN_MSGID_ASYNC_OP_COMPLETE.	These	messages	can
arrive	before	or	after	the	method	returns.

DirectPlay	signals	the	end	of	most	asynchronous	operations	by
sending	you	a	completion	message,	usually
DPN_MSGID_ASYNC_OP_COMPLETE.	Two	exceptions	to	this
rule	occur:	Send/SendTo,	and	Connect	operations.	The	end	of
those	operations	is	signaled	by	DPN_MSGID_SEND_COMPLETE
and	DPN_MSGID_CONNECT_COMPLETE,	respectively.
Synchronous	operations	do	not	return	until	the	operation	is
complete.	For	that	reason,	most	do	not	generate	a	completion
message.	The	exception	is	synchronous	connection	operations
that	may	generate	a	DPN_MSGID_CONNECT_COMPLETE
message.	See	Handling	Standard	Peer-to-Peer	Messages	for
further	discussion.

You	can	force	many	asynchronous	operations	to	terminate	at	any

time	by	calling	IDirectPlay8Peer::CancelAsyncOperation.	Group
operations	cannot	be	terminated.

By	default,	DirectPlay	serializes	the	messages	associated	with
each	player.	As	long	as	the	DPNSEND_NONSEQUENTIAL	flag	is
not	set,	you	receive	messages	from	a	particular	player	in	the	order
in	which	they	are	sent.	This	is	true	for	messages	sent	to	you
directly,	and	to	you	as	a	member	of	a	group.	When	a	player	sends
a	message	to	your	group,	the	message	appears	to	you	as	coming
from	the	player,	not	from	the	group.	You	receive	all	messages	from
a	particular	player	on	one	thread	at	a	time,	regardless	of	whether
DPNSEND_NONSEQUENTIAL	is	set.	You	will	not	receive
messages	from	a	player	before	you	have	processed	the
corresponding	DPN_MSGID_CREATE_PLAYER	message,	or	after
you	have	processed	the	corresponding
DPN_MSGID_DESTROY_PLAYER	message.

Group	messages	are	also	serialized.	For	instance,	you	will	not
receive	a	DPN_MSGID_ADD_PLAYER_TO_GROUP	message
until	you	have	processed	DPN_MSGID_CREATE_GROUP.	You
will	not	receive	any	group-related	messages	after	you	have
processed	the	corresponding	DPN_MSGID_DESTROY_GROUP
message.

Create	and	destroy	messages	are	always	paired.	For	instance,
every	DPN_MSGID_CREATE_GROUP	message	will	be	matched
by	a	corresponding	DPN_MSGID_DESTROY_GROUP	message.
You	should	spend	as	little	time	in	your	message	handler	as
possible.	Executing	a	long	blocking	operation	while	handling	a
DirectPlay	message	may	seriously	impede	network	performance.
For	example,	when	you	send	data	to	another	player	in	a	peer-to-
peer	session	by	calling	IDirectPlay8Peer::SendTo	within	your
message	handler,	do	so	asynchronously.	This	allows	you	to	return
from	the	message	handler	as	soon	as	the	method	returns.	You	can
process	the	result	of	the	operation	when	the
DPN_MSGID_SEND_COMPLETE	message	arrives.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Handling	Standard	Peer-to-Peer	Messages

This	document	describes	how	to	handle	Microsoft®	DirectPlay®
messaging	for	a	normal	member	of	a	peer-to-peer	session.	It	does	not
discuss	messages	that	are	specific	to	a	host.	For	a	discussion	of	host-
related	messaging,	see	Peer-to-Peer	Host	Messages.	For	a	discussion	of
general	messaging	issues,	see	Handling	DirectPlay	Messaging.

Startup	Messages

Messaging	During	Normal	Game	Play

Session	Termination	Messages

Startup	Messages

The	host	can	set	up	a	peer-to-peer	session	in	two	ways.

Arrange	the	session	in	advance.	For	example,	you	can	use	an
online	lobby	to	collect	a	group	of	players	prior	to	starting	the
session.	The	player	selected	as	host	is	responsible	for	calling
IDirectPlay8Peer::Host	to	start	the	session.	The	lobby	typically
provides	the	host's	address	to	the	other	players,	and	they	use	that
address	to	connect	directly	to	the	session.	Players	usually	need
not	do	a	host	enumeration.	See	DirectPlay	Lobby	for	details	on
how	to	handle	lobbies.

Create	a	stand-alone	session.	When	a	player	does	a	host
enumeration,	an	enumeration	query	is	sent	to	every	host	at	the
specified	network	location	that	matches	the	player's	description	of
the	type	of	session	they	want	to	join.	If	the	host	chooses	to
respond,	the	host	passes	the	player	the	information	the	player
needs	to	connect	to	the	session.	With	a	stand-alone	session,	there
is	no	need	for	a	lobby.	The	host	calls	IDirectPlay8Peer::Host	and
assembles	the	group	of	players	by	responding	to	enumeration
queries	and	connection	attempts.

This	section	describes	the	messages	you	may	receive	when	selecting
and	joining	a	session.

DPN_MSGID_ENUM_HOSTS_RESPONSE

If	you	need	to	locate	a	standalone	session,	call
IDirectPlay8Peer::EnumHosts	to	enumerate	the	available	hosts.
You	will	receive	a	DPN_MSGID_ENUM_HOSTS_RESPONSE
message	for	each	host	that	responds	to	your	enumeration	request.
You	may	receive	multiple
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages	from	the
same	host.

By	default,	host	enumeration	is	performed	asynchronously.	When
an	asynchronous	enumeration	terminates,	for	instance	after	the
retry	count	is	reached,	you	will	be	notified	with	a
DPN_MSGID_ASYNC_OP_COMPLETE	message.	You	will
receive	no	further	DPN_MSGID_ENUM_HOSTS_RESPONSE
messages	after	DPN_MSGID_ASYNC_OP_COMPLETE	arrives.
You	can	cancel	the	operation	at	any	time	by	calling
IDirectPlay8Peer::CancelAsyncOperation.	You	can	also	cancel	a
host	enumeration	by	calling	IDirectPlay8Peer::Connect	to	connect
to	a	session.	The	enumeration	is	halted	as	soon	as	the	connect
request	completes	successfully.

Note		You	should	call	IDirectPlay8Peer::Connect	outside	of	the
DPN_MSGID_ENUM_HOSTS_RESPONSE	message	handler.
DPN_MSGID_CONNECT_COMPLETE

Typically,	the	next	step	you	will	take	is	to	attempt	to	join	a	session
by	calling	IDirectPlay8Peer::Connect.	You	normally	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	with	the	host's
response,	even	if	the	host	rejects	your	connection	request.	You
can	receive	this	message	for	asynchronous	and	synchronous
calls,	but	there	are	differences	in	detail.

Asynchronous	calls:	When	the	connection	attempt	is
underway,	IDirectPlay8Peer::Connect	normally	returns
DPNSUCCESS_PENDING.	When	you	get	this	return	value,
you	will	always	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	containing
the	outcome	of	the	connection	attempt.	However,	the
message	might	be	indicated	on	a	different	thread	before
IDirectPlay8Peer::Connect	returns.	If	the	method	returns
DPNSUCCESS_PENDING,	you	also	receive	an
asynchronous	operation	handle	that	you	can	use	to	cancel

the	operation	by	calling
IDirectPlay8Peer::CancelAsyncOperation.	This	handle	is
valid	only	until	you	receive	the
DPN_MSGID_CONNECT_COMPLETE	message.	If
IDirectPlay8Peer::Connect	does	not	return
DPNSUCCESS_PENDING,	you	will	not	receive	a
DPN_MSGID_CONNECT_COMPLETE	message.	Typically,
this	occurs	when	there	is	a	problem	with	parameter
validation,	memory	allocation,	or	addressing.

Synchronous	calls:	The	method	returns	after	the	connection
attempt	is	completed.	You	may	receive	a
DPN_MSGID_CONNECT_COMPLETE	message,	as	well
as	a	return	value.	However,	the	message	is	guaranteed	to
arrive	before	the	method	returns.	If	your	connection	attempt
is	successful,	you	will	receive	a
DPN_MSGID_CONNECT_COMPLETE,	followed	by	a
return	value	of	DPN_OK.	You	may	also	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	before
other	return	values,	such	as
DPNERR_HOSTREJECTEDCONNECTION.	You	will	not
receive	DPN_MSGID_CONNECT_COMPLETE	if	the
method	call	fails	because	of	parameter	validation,	memory
allocation,	or	addressing	problems.	You	do	not	receive	an
asynchronous	operation	handle	and	cannot	use
IDirectPlay8Peer::CancelAsyncOperation	to	cancel	a
synchronous	connection	attempt.

DPN_MSGID_CREATE_PLAYER	and
DPN_MSGID_CREATE_GROUP

If	your	connection	attempt	was	successful,	you	will	receive	a
DPN_MSGID_CREATE_PLAYER	message	for	each	player	in	the
session	at	the	time	you	joined.	At	a	minimum,	you	will	receive	one
message	for	the	host	and	one	for	your	player.	If	any	groups	have
been	created,	you	will	receive	a	DPN_MSGID_CREATE_GROUP
message	for	each	group.	You	will	also	receive	a	series	of

DPN_MSGID_ADD_PLAYER_TO_GROUP	messages	for	each
group,	one	for	each	player	in	the	group.	All	of	these	messages	will
arrive	before	DPN_MSGID_CONNECT_COMPLETE.

You	must	define	your	player	and	group	context	values	when	you
handle	the	associated	creation	messages.	These	context	values
can	also	be	defined	earlier,	when	IDirectPlay8Peer::Host,
IDirectPlay8Peer::Connect,	or	IDirectPlay8Peer::CreateGroup
methods	are	called.	You	can	change	those	player	or	group	context
values	when	you	handle	DPN_MSGID_CREATE_PLAYER	or
DPN_MSGID_CREATE_GROUP	respectively.	However,	once	that
handler	returns,	the	corresponding	context	value	cannot	be
changed	again.	See	Using	Player	Context	Values	for	further
discussion.

Messaging	During	Normal	Game	Play

During	a	game,	you	might	receive	any	of	the	following	messages.

DPN_MSGID_CREATE_PLAYER	and
DPN_MSGID_DESTROY_PLAYER

Players	can	typically	enter	or	leave	while	the	game	is	in	progress.
You	receive	a	DPN_MSGID_CREATE_PLAYER	when	a	player
enters	a	game,	and	a	DPN_MSGID_DESTROY_PLAYER
message	when	that	player	leaves.	You	might	receive
DPN_MSGID_CREATE_PLAYER	and
DPN_MSGID_DESTROY_PLAYER	messages	simultaneously	on
different	threads,	but	only	for	different	players.	You	will	not	receive
a	DPN_MSGID_DESTROY_PLAYER	message	before	your
callback	function	has	returned	from	receiving	the	corresponding
DPN_MSGID_CREATE_PLAYER	message.	If	you	want	to	create
a	player	context	value,	you	must	do	so	before	you	return	from	the
DPN_MSGID_CREATE_PLAYER	message	handler.

DPN_MSGID_CREATE_GROUP	and
DPN_MSGID_DESTROY_GROUP

Many	games	simplify	messaging	by	allowing	players	to	be
grouped.	When	a	group	is	created,	you	receive	a
DPN_MSGID_CREATE_GROUP	message,	regardless	of	whether
your	player	is	a	member.	If	you	want	to	create	a	group	context
value,	you	must	do	so	before	you	return	from	the
DPN_MSGID_CREATE_GROUP	message	handler.	When	a	group
is	destroyed,	you	receive	a	DPN_MSGID_DESTROY_GROUP
message.	You	will	not	receive	a
DPN_MSGID_DESTROY_GROUP	message	before	your	callback

function	has	returned	from	processing	the	corresponding
DPN_MSGID_CREATE_GROUP	message.

DPN_MSGID_ADD_PLAYER_TO_GROUP	and
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

You	receive	DPN_MSGID_ADD_PLAYER_TO_GROUP	messages
for	each	group	member	after	a	group	is	created,	and	when	a
player	is	added	to	a	group.	You	receive	a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message
when	a	player	is	removed	from	a	group,	and	for	all	the	remaining
players	in	the	group	when	the	group	is	destroyed.	You	will	not
receive	a	DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
message	before	your	callback	function	has	returned	from
processing	the	corresponding
DPN_MSGID_ADD_PLAYER_TO_GROUP	message.

You	are	guaranteed	to	receive	every
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message	for
a	group	before	you	receive	the	DPN_MSGID_DESTROY_GROUP
message.	When	a	player	is	destroyed,	you	will	receive	a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message	for
every	group	in	which	that	player	is	a	member,	before	you	receive
the	player's	DPN_MSGID_DESTROY_PLAYER	message.

DPN_MSGID_SEND_COMPLETE

You	send	data	to	a	player	or	group	by	calling
IDirectPlay8Peer::SendTo.	If	you	call	this	message
asynchronously,	the	method	will	normally	return
DPNERR_PENDING.	You	receive	a
DPN_MSGID_SEND_COMPLETE	message	when	the	data	is

sent.	The	DPN_MSGID_SEND_COMPLETE	message	can	arrive
before	or	after	the	method	returns.

Receiving	a	DPN_MSGID_SEND_COMPLETE	message	does	not
necessarily	mean	that	the	target	has	received	and	processed	the
message.	By	default,	if	the	network	is	overloaded,	packets	may	be
dropped.	If	you	want	to	be	certain	that	the	message	has	arrived	at
the	target,	set	the	DPNSEND_GUARANTEED	flag	when	you	call
IDirectPlay8Peer::SendTo.	You	will	not	receive	a
DPN_MSGID_SEND_COMPLETE	message	until	DirectPlay	has
verified	that	the	target	has	received	the	data.	If	you	want	to	be
certain	that	the	message	has	also	been	processed	by	the	target,
set	the	DPNSEND_COMPLETEONPROCESS	flag.	If	you	set	this
flag,	you	will	not	receive	a	DPN_MSGID_SEND_COMPLETE
message	until	the	target's	message	handler	has	processed	the
message	and	returned.

Note		Setting	the	DPNSEND_GUARANTEED	and
DPNSEND_COMPLETEONPROCESS	flags	add	overhead	to	the
Send	process.	You	may	want	to	design	your	communication
process	to	be	able	to	tolerate	some	data	loss	in	return	for
increased	performance.

DPN_MSGID_RECEIVE

When	another	player	sends	you	data,	it	is	delivered	to	your
message	handler	with	a	DPN_MSGID_RECEIVE	message.	By
default,	the	buffer	containing	the	data	is	valid	only	until	you	return
from	the	message	handler.	If	you	want	to	retain	control	over	the
data	buffer	after	your	message	handler	returns,	have	your
message	handler	return	DPNERR_PENDING.	This	return	value
will	prevent	DirectPlay	from	freeing	or	modifying	the	buffer.	When
you	no	longer	need	the	buffer,	you	must	return	it	to	the	control	of

DirectPlay	by	calling	IDirectPlay8Peer::ReturnBuffer.

DPN_MSGID_PEER_INFO,	DPN_MSGID_GROUP_INFO,	and
DPN_MSGID_APPLICATION_DESC

Information	structures	are	associated	with	the	application,	and	with
each	player	and	group	in	the	session.	If	this	information	changes
during	a	session,	you	will	receive	the	corresponding	message.	To
obtain	up-to-date	information,	you	must	call
IDirectPlay8Peer::GetApplicationDesc,
IDirectPlay8Peer::GetGroupInfo,	or	IDirectPlay8Peer::GetPeerInfo.

DPN_MSGID_HOST_MIGRATE

A	session	must	have	a	host.	If	the	host	set	the
DPNSESSION_MIGRATE_HOST	flag	when	it	created	the	session
and	then	leaves	the	session	without	terminating	it,	DirectPlay
chooses	a	new	host.	DirectPlay	notifies	the	remaining	players	of
the	change	by	sending	them	a	DPN_MSGID_HOST_MIGRATE
message	with	the	new	host's	identifier	(ID).

Session	Termination	Messages

Sessions	terminate	for	a	variety	of	reasons.	Typically,	the	session
terminates	when	the	host	calls	IDirectPlay8Peer::TerminateSession.	If
host	migration	is	not	permitted,	the	session	terminates	when	the	host
calls	IDirectPlay8Peer::Close	or	is	involuntarily	disconnected.

DPN_MSGID_TERMINATE_SESSION

The	DPN_MSGID_TERMINATE_SESSION	message	notifies	you
that	the	session	is	over.	It	is	followed	by	a	series	of
DPN_MSGID_DESTROY_PLAYER,
DPN_MSGID_DESTROY_GROUP,	and
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	messages.

DPN_MSGID_DESTROY_PLAYER

You	will	receive	a	DPN_MSGID_DESTROY_PLAYER	message	for
each	player	in	the	session.	If	the	host	has	intentionally	terminated
the	session,	this	is	considered	normal	behavior	and	the
dwReason	member	of	the	associated	structure	is	set	to
DPNDESTROYPLAYERREASON_NORMAL.	The
DPNDESTROYPLAYERREASON_SESSIONTERMINATED	value
is	set	only	for	unexpected	disconnections	from	a	session	that	does
not	allow	host	migration.

DPN_MSGID_DESTROY_GROUP	and
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

If	any	groups	have	been	formed,	you	will	receive
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	messages	for
each	member	of	each	group,	and	a
DPN_MSGID_DESTROY_GROUP	message	for	each	group	itself.

The	DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
messages	will	always	arrive	before	the	corresponding
DPN_MSGID_DESTROY_PLAYER	or
DPN_MSGID_DESTROY_GROUP	messages.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Peer-to-Peer	Host	Messages

This	document	describes	how	to	handle	Microsoft®	DirectPlay®
messaging	for	the	host	of	a	peer-to-peer	session.	It	discusses	only	those
messages	that	are	specific	to	a	host.	For	a	discussion	of	messaging	for	a
normal	peer,	see	Handling	Standard	Peer-to-Peer	Messages.	For	a
discussion	of	general	messaging	issues,	see	Handling	DirectPlay
Messaging.

Starting	a	Session

Host	Migration	and	Session	Termination

Starting	a	Session

You	can	set	up	a	peer-to-peer	session	in	two	ways:

Arrange	the	session	in	advance.	For	example,	you	can	use	an
online	lobby	to	collect	a	group	of	players	prior	to	starting	the
session.	The	player	selected	as	host	is	responsible	for	calling
IDirectPlay8Peer::Host	to	start	the	session.	The	lobby	typically
provides	the	host's	address	to	the	other	players,	and	they	use	that
address	to	connect	directly	to	the	session.	Players	usually	need
not	do	a	host	enumeration.	For	details	on	how	to	handle	lobbies,
see	DirectPlay	Lobby.

Create	a	stand-alone	session.	When	a	player	does	a	host
enumeration,	an	enumeration	query	is	sent	to	every	host	at	a
specified	network	location,	which	matches	the	player's	description
of	the	type	of	session	they	want	to	join.	If	the	host	chooses	to
respond,	the	host	passes	the	player	the	information	needed	to
connect	to	the	session.	With	a	stand-alone	session,	there	is	no
need	for	a	lobby.	The	host	calls	IDirectPlay8Peer::Host	and
assembles	the	group	of	players	by	responding	to	enumeration
queries	and	connection	attempts.

In	either	case,	you	must	start	the	session	by	calling
IDirectPlay8Peer::Host.	When	you	start	the	session,	you	must	be
prepared	to	handle	the	following	messages:

DPN_MSGID_ENUM_HOSTS_QUERY

If	you	have	started	a	stand-alone	session,	a	potential	player	must
be	able	find	it	before	the	player	can	connect.	Players	who	are
looking	for	a	stand-alone	session	call
IDirectPlay8Peer::EnumHosts	to	enumerate	the	available
sessions.	They	indicate	the	type	of	session	they	are	interested	in
by	filling	in	the	guidApplication	member	of	the
DPN_APPLICATION_DESC	structure.	They	can	also	specify	the

network	location	they	are	interested	in	by	adding	the	appropriate
items	to	the	host	address	object,	which	is	passed	to	the
pdpaddrHost	parameter	of	IDirectPlay8Peer::EnumHosts.	For
more	information	about	how	to	handle	DirectPlay	address	objects,
see	DirectPlay	Addressing.

During	enumeration,	DirectPlay	sends	each	available	host	a
DPN_MSGID_ENUM_HOSTS_QUERY	that	includes	the	address
of	the	player	requesting	the	enumeration.	If	the	player	specified	an
application	globally	unique	identifier	(GUID),	this	message	will	go
to	only	those	hosts	that	have	specified	the	same	GUID.	If	the
player	does	not	specify	an	application	GUID,	DirectPlay	will	send
DPN_MSGID_ENUM_HOSTS_QUERY	to	all	available	hosts	at	the
specified	network	location.

You	can	accept	the	enumeration	request	by	having	your	handler
return	DPN_OK.	DirectPlay	will	then	pass	information	about	the
session,	specifically	your	address	and	the
DPN_APPLICATION_DESC	structure,	to	the	player.	You	can	also
provide	some	application-specific	data	to	the	player	by	assigning	a
data	buffer	to	the	DPNMSG_ENUM_HOSTS_QUERY	structure's
pvResponse	member.	When	this	buffer	is	no	longer	needed,
DirectPlay	notifies	you	that	it	is	safe	to	free	the	buffer	by	sending
you	a	DPN_MSGID_RETURN_BUFFER	message.

You	can	reject	the	enumeration	request	by	having	your	message
handler	return	a	value	other	than	DPN_OK.	In	that	case,	no
information	will	be	sent	to	the	player.	If	you	reject	an	enumeration
request,	there	is	no	need	for	a	response	buffer,	and	you	will	not
receive	a	DPN_MSGID_RETURN_BUFFER	message.

Note			You	can	receive	a	DPN_MSGID_ENUM_HOSTS_QUERY
message	at	any	time	while	you	are	a	host.	If	you	are	hosting	an
arranged	session,	or	do	not	want	to	add	any	more	players,	you
must	still	handle	this	message	and	reject	the	enumeration	request.

DPN_MSGID_INDICATE_CONNECT

Once	a	player	has	the	address	of	a	host,	the	player	can	attempt	to
connect	to	that	session	by	calling	IDirectPlay8Peer::Connect.	The
session	host	then	receives	a	DPN_MSGID_INDICATE_CONNECT
message	with	information	about	the	player.

To	accept	a	player's	connection	request,	have	your
DPN_MSGID_INDICATE_CONNECT	message	handler	return
DPN_OK.	As	with	DPN_MSGID_ENUM_HOSTS_QUERY,	you
can	also	return	a	data	buffer	to	the	player	by	assigning	it	to	the
DPNMSG_INDICATE_CONNECT	structure's	pvReplyData
member.	When	this	buffer	is	no	longer	needed,	DirectPlay	sends
you	a	DPN_MSGID_RETURN_BUFFER	message	to	notify	you
that	you	can	safely	free	the	buffer.

You	can	also	create	a	local	player	context	value	for	the	player	at
this	time.	That	value	will	be	passed	back	to	you	later	when	you
receive	the	a	DPN_MSGID_CREATE_PLAYER	message	for	the
player.	You	have	the	option	of	changing	the	player	context	value
when	you	handle	that	message.	See	Using	Player	Context	Values
for	more	information	about	player	context	values.

You	can	reject	a	connection	request	by	having	your	handler	return
any	value	other	than	DPN_OK.	In	that	case,	there	is	no	need	for	a
response	buffer	and	you	will	not	receive	a
DPN_MSGID_RETURN_BUFFER	message.	You	can	return	a
data	buffer	to	the	rejected	player	by	assigning	it	to	the

DPNMSG_INDICATE_CONNECT	structure's	pvReplyData
member.	When	this	buffer	is	no	longer	needed,	DirectPlay	sends
you	a	DPN_MSGID_RETURN_BUFFER	message	to	notify	you
that	you	can	safely	free	the	buffer.

You	can	also	prevent	connections	by	limiting	the	number	of	players
in	the	session.	When	you	call	IDirectPlay8Peer::Host	or
IDirectPlay8Peer::SetApplicationDesc,	set	the	dwMaxPlayers
member	of	the	DPN_APPLICATION_DESC	structure	to	the
maximum	number	of	players	you	will	allow	in	the	session.	When
the	number	of	players	in	the	session	reaches	your	specified
maximum,	you	will	receive	no	more
DPN_MSGID_INDICATE_CONNECT	messages.	Instead,
additional	connection	attempts	will	automatically	fail,	returning
DPNERR_SESSIONFULL.

DPN_MSGID_CREATE_PLAYER

After	you	have	returned	DPN_OK	to	accept	a	player's	connection
request,	you	will	receive	a	corresponding
DPN_MSGID_CREATE_PLAYER	message.	If	you	want	to	create
a	player	context	value	or	modify	the	value	you	created	when	you
handled	DPN_MSGID_INDICATE_CONNECT,	you	must	do	so
when	you	handle	DPN_MSGID_CREATE_PLAYER.	When	your
DPN_MSGID_CREATE_PLAYER	message	handler	returns,
DirectPlay	permits	no	further	changes	to	the	player	context	value.

DPN_MSGID_INDICATED_CONNECT_ABORTED

If	a	player	drops	the	connection	after	the	host	has	processed	the
DPN_MSGID_INDICATE_CONNECT	message	but	before	it	has
processed	DPN_MSGID_CREATE_PLAYER,	the	host	receives	a

DPN_MSGID_INDICATED_CONNECT_ABORTED	message.	If
you	receive	this	message,	free	any	memory	that	you	allocated
while	processing	DPN_MSGID_INDICATE_CONNECT.	If	you
process	DPN_MSGID_CREATE_PLAYER	before	the	player
disconnects,	you	will	receive	a	DPN_MSGID_DESTROY_PLAYER
message.	You	can	free	the	memory	you	have	allocated	when	you
process	that	message.	If	the	player	disconnects	while	you	are
processing	DPN_MSGID_CREATE_PLAYER,	you	will	receive	a
DPN_MSGID_DESTROY_PLAYER	message	after	your	message
handler	returns	from	processing
DPN_MSGID_CREATE_PLAYER.

Host	Migration	and	Session	Termination

Every	peer-to-peer	session	must	have	a	host.	However,	the	original	host
may	leave	the	session	either	by	calling	IDirectPlay8Peer::Close	or	by
being	disconnected.	This	situation	can	be	handled	in	one	of	two	ways:

When	host	leaves	the	session,	it	terminates.

When	the	host	leaves	the	session,	a	new	host	is	chosen.

The	original	host	specifies	which	of	those	two	options	is	to	be	followed
when	it	calls	IDirectPlay8Peer::Host	to	start	the	session.	If	it	enables
"host	migration"	by	setting	the	DPNSESSION_MIGRATE_HOST	flag	in
the	DPN_APPLICATION_DESC	structure,	a	new	host	will	be	chosen
when	the	current	host	leaves.	However,	even	if	host	migration	is	enabled,
the	host	can	force	the	session	to	terminate	by	calling
IDirectPlay8Peer::TerminateSession.	If	host	migration	is	not	enabled,	the
session	terminates	when	the	host	leaves.	The	host	will	then	receive	the
same	messages	as	all	other	members	of	the	session.	See	Handling
Standard	Peer-to-Peer	Messages	for	details.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Host	Migration

While	the	host	must	be	one	of	the	initial	members	of	the	session,	they
may	choose	to	leave	before	session	is	finished.	When	the	host	leaves	the
session,	there	are	two	possible	outcomes:

The	session	terminates.

The	host	migrates,	and	another	user	becomes	host.

Sessions	may	or	may	not	permit	host	migration.	To	enable	host
migration,	the	session	organizer	must	set	the
DPNSESSION_MIGRATE_HOST	flag	in	the	dwFlags	member	of	the
DPN_APPLICATION_DESC	structure	when	they	set	up	the	game.	If	this
flag	is	not	set,	the	session	terminates	when	the	host	leaves.

If	the	DPNSESSION_MIGRATE_HOST	flag	is	set,	the	host	can	still	force
the	session	to	terminate	by	calling	IDirectPlay8Peer::TerminateSession.

If	DPNSESSION_MIGRATE_HOST	flag	is	set	and	the	host	leaves	the
session,	Microsoft®	DirectPlay®	will	select	a	new	session	host.	All
remaining	session	members	will	receive	a
DPN_MSGID_HOST_MIGRATE	message	that	includes	the	identifier	(ID)
of	the	new	host.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Normal	Peer-to-Peer	Game	Play

In	Microsoft®	DirectPlay®,	a	message	is	essentially	a	block	of	game-
related	data	that	you	send	to	one	or	more	members	of	the	session.
DirectPlay	does	not	specify	the	contents	or	format	of	the	data	block,	it
just	provides	a	mechanism	to	transmit	the	data	from	one	user	to	another.
When	the	game	is	underway,	each	session	member	will	normally	send	a
constant	stream	of	messages	to	all	other	members	of	the	session	for	the
duration	of	the	game.	The	primary	purpose	of	these	messages	is	to	keep
the	game	state	synchronized,	so	that	each	user's	application	displays	the
same	user	interface	(UI).	However,	messages	can	also	be	used	for	a
variety	of	other	game-specific	purposes.

For	many	games,	especially	rapidly	changing	ones,	you	may	have	to
manage	your	messaging	carefully.	DirectPlay	throttles	outgoing
messages	to	a	level	that	can	be	handled	by	the	target.	You	will	have	be
careful	that	you	do	not	send	messages	too	rapidly,	and	ensure	that	the
most	important	messages	get	through.	See	Basic	Networking	for	a
discussion	of	how	to	effectively	handle	DirectPlay	messaging.

To	send	a	message	to	another	session	member,	call
IDirectPlay8Peer::SendTo.	That	member	will	receive	a
DPN_MSGID_RECEIVE	message	with	the	data.	To	send	a	message	to	a
specific	player,	set	the	dpnid	parameter	to	the	player	identifier	(ID)	that
you	received	with	the	associated	DPN_MSGID_CREATE_PLAYER
message.	You	can	also	send	a	message	to	every	player	in	the	session	by
setting	dpnid	to	DPNID_ALL_PLAYERS_GROUP.	You	can	also	define
groups	of	players,	and	use	a	single	IDirectPlay8Peer::SendTo	call	to
send	a	message	to	all	members	of	a	group.

Note		You	can	also	use	the	IDirectPlay8Peer::SetPeerInfo	method	to

send	information	to	other	users.	They	will	receive	the	information	with	a
DPN_MSGID_PEER_INFO	message.	However,	this	way	of	transmitting
information	is	not	very	efficient,	and	should	not	be	used	for	normal
messaging.

Using	Groups

Many	games	allow	players	to	be	organized	into	groups.	For	instance,
strategy	games	typically	allow	individual	players	to	be	organized	into
groups	that	can	then	be	directed	as	a	single	entity.	DirectPlay	also	allows
the	formation	of	groups	of	players.	DirectPlay	groups	are	essentially	a
way	to	simplify	your	messaging.	When	you	have	defined	a	group,	you
can	send	a	message	to	every	group	member	with	a	single	call	to
IDirectPlay8Peer::SendTo.	While	DirectPlay	groups	normally
correspond	to	the	groups	that	are	defined	by	the	game,	you	are	free	to
create	a	group	for	any	reason.

To	create	a	DirectPlay	group,	call	IDirectPlay8Peer::CreateGroup	All
session	members	will	then	receive	a	DPN_MSGID_CREATE_GROUP
message	with	the	details.	The	message	will	include	a	group	ID	that	is
used	to	send	messages	to	the	group.

Once	the	group	is	created,	you	then	add	players	by	calling
IDirectPlay8Peer::AddPlayerToGroup.	Session	members	will	then	receive
a	DPN_MSGID_ADD_PLAYER_TO_GROUP	message	with	the	IDs	of
the	group	and	the	player	that	was	just	added.

Once	the	group	is	established,	you	can	send	data	to	the	group	by	calling
IDirectPlay8Peer::SendTo,	with	the	dpnid	parameter	set	to	the	group	ID.
All	group	members	will	then	receive	a	DPN_MSGID_RECEIVE	message
with	the	data.

To	remove	a	player	from	a	group,	call
IDirectPlay8Peer::RemovePlayerFromGroup.	The	session	members	will
receive	a	DPN_MSGID_DESTROY_PLAYER	message	with	the	player's
ID.

Finally,	when	you	no	longer	need	the	group,	you	can	destroy	it	by	calling
IDirectPlay8Peer::DestroyGroup	All	session	members	will	then	receive	a
DPN_MSGID_DESTROY_GROUP	message	with	the	group	ID.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Leaving	a	Peer-to-Peer	Session

To	leave	a	session,	terminate	the	connection	by	calling
IDirectPlay8Peer::Close.	The	session	members	will	be	notified	with	a
DPN_MSGID_DESTROY_PLAYER	message.

If	you	are	the	session	host,	leaving	also	terminates	the	session	unless
you	configured	the	session	to	allow	host	migration.	See	Host	Migration
for	details.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Terminating	a	Peer-to-Peer	Session

When	the	session	is	over,	the	host	should	terminate	the	session	by
calling	IDirectPlay8Peer::TerminateSession.	This	method	terminates	the
session	even	if	host-migration	is	enabled.	All	session	members	will	be
notified	by	a	DPN_MSGID_TERMINATE_SESSION	message.	You
should	then	perform	any	necessary	cleanup.	To	start	another	session,
you	must	first	call	IDirectPlay8Peer::Close,	and	then
IDirectPlay8Peer::Initialize.

If	you	registered	your	application	as	available	for	connection	by	calling
IDirectPlay8LobbiedApplication::SetAppAvailable,	a	lobby	client	can	offer
to	connect	you	to	a	new	session	by	sending	your	lobbied	application
message	handler	a	DPL_MSGID_CONNECT	message.	You	must	have
first	called	IDirectPlay8Peer::Close	and	IDirectPlay8Peer::Initialize.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Client/Server	Sessions

A	client/server	session	consists	of	a	collection	of	players,	or	clients,
connected	to	a	central	server.	As	far	as	Microsoft®	DirectPlay®	is
concerned,	a	client	has	no	knowledge	of	any	other	clients,	only	the
server.	The	messaging	needed	to	run	the	game	is	between	the	individual
clients	and	the	server.	DirectPlay	does	not	provide	direct	client-to-client
messaging,	as	it	does	for	peer-to-peer	sessions.

A	client/server	session	requires	two	distinctly	different	applications.

The	server	application	runs	on	a	remote	server.	At	a	minimum,	it
serves	as	a	central	messaging	hub	and	game	host.	The	server
must	receive	and	handle	all	incoming	messages	from	the	clients,
and	send	appropriate	messages	back	out.	Any	transfer	of	data
from	one	client	to	another	must	be	handled	by	the	server
application.

A	client	application	runs	on	each	players'	computer.	The	primary
function	of	this	application	is	to	handle	the	UI,	and	keep	the
player's	game	state	synchronized	with	the	server.

There	are	certain	aspects	of	the	session	that	can	be	handled	by	only	one
of	these	applications.	For	instance,	updating	a	player's	video	display	can
only	be	done	by	the	client	application.	However,	many	aspects	of	the
processing	needed	to	maintain	the	game	universe	can,	at	least	in
principle,	be	done	by	either	application.	Writing	an	effective	client/server
game	requires	some	careful	consideration	of	how	to	divide	the
processing	chores	between	the	two	applications.

This	document	describes	the	basic	principles	of	client	server	games,	and
outlines	how	to	implement	client	and	server	applications.

Initiating	a	Client/Server	Session

Selecting	a	Service	Provider	for	a	Client

Selecting	a	Client/Server	Host

Connecting	to	a	Client/Server	Session

Managing	a	Client/Server	Session

Handling	Client/Server	Messages

Normal	Client/Server	Game	Play

Leaving	a	Client/Server	Session

Terminating	a	Client/Server	Session

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Initiating	a	Client/Server	Session

A	client/server	game	can	be	launched	through	a	lobby,	or	directly	by	the
server	application.

The	Server	Application

Client/server	games	are	often	arranged	through	lobbies.	The	most
straightforward	way	to	launch	the	server	is	to	implement	it	as	a	lobbyable
application.	This	approach	provides	a	way	to	launch	the	server,	and
supports	communication	between	server	and	lobby	during	the	course	of
the	session.	See	DirectPlay	Lobby	for	further	discussion.

A	server	can	also	be	directly	launched,	and	then	advertise	itself	as
available	and	wait	for	clients	to	connect.	See	Selecting	a	Client/Server
Host	for	details.

Once	the	server	application	has	been	launched,	it	should	initialize	itself
by	calling	IDirectPlay8Server::Initialize.	As	with	other	similar	Microsoft®
DirectPlay®	methods,	the	primary	purpose	of	initialization	is	to	provide
DirectPlay	with	a	pointer	to	your	callback	message	handler.	You	should
also	call	IDirectPlay8Server::SetServerInfo	to	describe	the	current	game.
Clients	cannot	connect	to	a	server	until	this	method	has	been	called.

The	Client	Application

One	of	the	first	steps	you	should	take	is	to	determine	whether	your	game
was	lobby-launched.	To	do	so,	create	and	initialize	a	lobbied	application
object	(CLSID_DirectPlay8LobbiedApplication).	When	you	do	so,	you
pass	the	object	a	pointer	to	your	lobbied	application	message	handler.
This	message	handler	receives	messages	directly	from	the	lobbied
application	object,	and	indirectly	from	the	lobby	client	and	the	lobby.

If	the	application	was	lobby-launched,	the
IDirectPlay8LobbiedApplication::Initialize	method	returns	a
connection	handle	to	the	lobby	client	and	a
DPL_MSGID_CONNECT	message	is	sent	to	your	lobbied
application	message	handler.	The	pdplConnectionSettings
member	of	the	associated	structure	points	to	a
DPL_CONNECTION_SETTINGS	structure	that	contains
connection	information	such	as	an	address	object	for	the	server.

If	the	application	was	not	lobby	launched,	you	will	receive	neither
the	connection	handle,	nor	the	message.	However,	if	you	call
IDirectPlay8LobbiedApplication::SetAppAvailable,	a	lobby	client
can	later	connect	your	running	application	to	a	session	by	sending
your	lobbied	application	message	handler	a
DPL_MSGID_CONNECT	message.

You	should	also	create	and	initialize	a	client	object
(CLSID_DirectPlay8Client).	This	object	will	be	your	primary	means	of
communicating	with	DirectPlay	and	the	server.	If	you	want	to	have
multiple	players	in	the	session,	you	must	create	a	separate	instance	of
this	object	for	each	player.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Selecting	a	Service	Provider	for	a	Client

The	service	provider	is	your	network	connection.	Most	games	use	either
the	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	or	modem
service	provider,	but	Microsoft®	DirectPlay®	also	provides	support	for
serial	and	Internetwork	Packet	Exchange	(IPX)	connections.

If	your	user	was	connected	to	the	session	by	a	lobby	client,	you	can
determine	the	appropriate	service	provider	by	examining	the
DPL_CONNECTION_SETTINGS	structure	that	accompanies	the
DPL_MSGID_CONNECT	message.	Otherwise,	you	may	need	to
determine	which	service	provider	to	use,	perhaps	by	querying	the	user.
You	can	use	the	client	object's	IDirectPlay8Client::EnumServiceProviders
method	to	enumerate	the	available	service	providers.	See	Getting
DirectPlay	Data	for	further	discussion.

Once	you	have	selected	a	service	provider,	you	can	then	create	a
DirectPlay	address	object	for	your	user	(a	device	address).	You	will	use
this	address	to	identify	your	device	with	a	number	of	DirectPlay	methods.
See	DirectPlay	Addressing	for	a	detailed	discussion	of	DirectPlay
addresses	and	address	objects.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Selecting	a	Client/Server	Host

By	definition,	the	server	application	hosts	the	session.	To	join	a	session,
a	client	application	must	determine	the	host	server's	address.	A	common
way	to	select	a	host	is	through	a	lobby	server.	In	that	case,	when	a	user's
application	is	connected	to	the	session,	the	connection	settings	that	you
receive	with	the	DPL_MSGID_CONNECT	message	include	the	host's
address	object.	The	pdp8HostAddress	member	of	the	associate
structure	points	to	an	address	object	with	the	host's	address.

Servers	using	an	Internet	Protocol	(IP)	or	Internetwork	Packet	Exchange
(IPX)	service	provider	can	also	create	a	session	perhaps	on	a	local	area
network	(LAN)	subnet,	by	advertising	themselves	as	session	hosts.	To
create	a	session,	call	IDirectPlay8Server::SetServerInfo	to	specify	the
server	settings.	Then	call	IDirectPlay8Server::Host	to	advertise	the	server
as	a	session	host.	You	specify	the	configuration	of	the	game	by	assigning
values	to	the	DPN_APPLICATION_DESC	structure	that	is	passed
through	the	pdnAppDesc	parameter	of	IDirectPlay8Server::Host.

To	allow	your	user	to	view	the	available	sessions	and	hosts,	a	client
application	can	query	for	available	hosts	by	calling
IDirectPlay8Client::EnumHosts.	When	the	user	has	selected	a	host,	you
can	request	a	connection.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Connecting	to	a	Client/Server	Session

All	clients	must	explicitly	join	the	session	by	connecting	to	the	host,	even
if	the	session	has	been	arranged	through	a	lobby.	A	connection
establishes	the	client	as	a	member	of	the	session,	and	provides	the	host
with	the	information	it	needs	to	communicate	with	the	client.	The	host	has
the	option	of	accepting	or	rejecting	a	connection	request.

The	Server	Application

When	a	client	attempts	to	join	a	session,	the	host	receives	a
DPN_MSGID_INDICATE_CONNECT	message.	To	accept	the	player	into
the	session,	return	S_OK.	Returning	any	other	value	rejects	the	request.
In	either	case,	the	client	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	that	contains	your
response.	You	can	define	a	player	context	value	at	this	time,	or	wait	until
you	receive	a	DPN_MSGID_CREATE_PLAYER	message.	See	Using
Player	Context	Values	for	more	discussion	of	player	context	values.

If	the	player	is	successfully	added	to	the	session,	the	server	will	receive	a
DPN_MSGID_CREATE_PLAYER	message	with	the	new	player's
identifier	(ID)	(DPNID).	If	you	want	to	define	a	player	context	value	and
have	not	yet	done	so,	you	must	define	it	before	your	message	handler
returns	from	handling	this	message.	When	it	has	done	so,	you	cannot
change	the	player	context	value.

The	Client	Application

To	connect	to	a	session,	you	must	have	the	address	of	the	session	host.
If	your	application	was	connected	by	a	lobby	client,	you	can	obtain	the
host's	address	by	calling
IDirectPlay8LobbiedApplication::GetConnectionSettings.

If	you	do	not	have	the	address	of	a	session	host	and	you	are	using	either
an	Internet	Protocol	(IP)	or	Internetwork	Packet	Exchange	(IPX)	service
provider,	you	can	look	for	sessions	by	calling
IDirectPlay8Client::EnumHosts	and	enumerating	the	available	hosts.	You
can	also	obtain	the	address	by	enumerating	the	available	hosts.	The
information	returned	by	the	enumeration	includes	each	host's	address,
the	device	use	to	reach	the	host,	and	a	DPN_APPLICATION_DESC
structure	that	describes	the	associated	session.

To	ask	to	join	a	session,	call	IDirectPlay8Client::SetClientInfo	to	set	your
player's	name,	and	then	call	IDirectPlay8Client::Connect	with	the
selected	host's	address	to	connect	to	the	session.

Your	message	handler	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	with	the	host's
response.	If	the	host	accepted	the	connection,	the	hResultCode	member
of	the	associated	structure	will	be	set	to	S_OK.	If	not,	hResultCode	will
be	set	to	DPNERR_HOSTREJECTEDCONNECTION.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Managing	a	Client/Server	Session

As	host,	the	server	is	responsible	for	managing	the	course	of	the	session.
The	details	will	depend	on	how	the	application	is	designed,	but	a	session
host's	duties	include,	at	a	minimum:

Managing	the	list	of	session	members	and	their	network
addresses.	Microsoft®	DirectPlay®	handles	some	of	this	task,	but
server	applications	typically	need	to	manage	more	player	data
than	is	provided	by	DirectPlay.

Deciding	whether	a	new	user	is	allowed	to	join	the	session.

Providing	new	users	with	the	current	game	state.

When	a	player	attempts	to	join	a	session,	the	host	receives	a
DPN_MSGID_INDICATE_CONNECT	message.	To	accept	the	player	into
the	session,	return	S_OK.	Returning	any	other	value	rejects	the
connection	request.	In	either	case,	the	player	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	that	contains	your
response.

The	host	can	remove	a	player	from	the	session	by	calling
IDirectPlay8Server::DestroyClient.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Handling	Client/Server	Messages

This	document	describes	how	to	handle	Microsoft®	DirectPlay®
messaging	for	client/server	sessions.

Messaging	within	client/server	sessions	is	handled	in	much	the	same
way	as	it	is	for	peer-to-peer	sessions	(see	Handling	DirectPlay
Messaging,	Handling	Standard	Peer-to-Peer	Messages,	and	Peer-to-
Peer	Host	Messages).	The	primary	differences	are	that	within
client/server	sessions:

A	client	receives	no	messages	that	carry	information	about	other
playersand	no	group-related	messagesbecause	DirectPlay
provides	no	way	for	a	client	to	know	about	or	to	communicate	with
other	clients.

DirectPlay	provides	no	host-migration	messaging	because	the
server	must	be	the	host.	A	client/server	session	cannot	be	hosted
by	a	client.

This	document	focuses	on	the	issues	specific	to	client/server	sessions.

Client	Startup	Messages

Server	Startup	Messages

Client	Messaging	During	Normal	Game	Play

Server	Messaging	During	Normal	Game	Play

Client	Session	Termination	Messages

Server	Session	Termination	Messages

Client	Startup	Messages

To	select	and	join	a	session,	you	must	locate	the	server	that	is	the
session	host,	connect	to	the	server,	and	handle	the	messaging	used	to
set	up	the	session.	As	with	peer-to-peer	sessions,	the	server	hosting	the
session	can	either	arrange	the	session	in	advance	or	create	a	stand-
alone	session.

To	locate	and	connect	to	the	server,	you	will	need	to	handle	someor	allof
the	following	messages.	The	process	is	essentially	identical	to	that	used
for	a	peer-to-peer	session.	Refer	to	Handling	Standard	Peer-to-Peer
Messages	for	details	on	how	to	handle	individual	messages.

DPN_MSGID_ENUM_HOSTS_RESPONSE

To	enumerate	the	available	servers,	call
IDirectPlay8Client::EnumHosts,	then	handle
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages	from	each
server	that	responds	to	your	enumeration	request.

DPN_MSGID_CONNECT_COMPLETE

After	you	have	located	the	server	and	called
IDirectPlay8Client::Connect	to	attempt	to	connect	to	the	session,
you	will	normally	need	to	handle	a
DPN_MSGID_CONNECT_COMPLETE	message,	containing	the
server's	response.

Server	Startup	Messages

Since	the	server	is,	by	definition,	the	host	of	a	client/server	session,	the
startup	procedure	and	messaging	is	virtually	identical	to	a	peer-to-peer
host.	As	with	peer-to-peer	sessions,	the	host	server	can	either	arrange
the	session	in	advance,	or	create	a	stand-alone	session.	You	will	need	to
handle	some	or	all	of	the	following	messages	while	starting	up	your
session.	Refer	to	Peer-to-Peer	Host	Messages	for	details	on	how	to
handle	the	individual	messages.

DPN_MSGID_ENUM_HOSTS_QUERY

If	you	are	hosting	a	session,	you	will	need	to	handle
DPN_MSGID_ENUM_HOSTS_QUERY	from	potential	players	who
are	attempting	to	find	a	suitable	host.	Even	if	you	are	not	hosting	a
session,	you	may	still	receive	this	message	and	must	handle	it.

DPN_MSGID_INDICATE_CONNECT

You	receive	this	message	when	a	player	attempts	to	connect	to
your	session.	Return	DPN_OK	to	accept	connection	attempt	and
allow	the	player	into	the	session.	Return	any	other	value	to	reject
the	connection	attempt.

DPN_MSGID_CREATE_PLAYER

You	receive	this	message	for	each	player	that	you	accept	into	your
session.

DPN_MSGID_INDICATED_CONNECT_ABORTED

You	receive	this	message	if	a	client	drops	the	connection	after	you
have	processed	the	DPN_MSGID_INDICATE_CONNECT
message	but	before	you	have	processed

DPN_MSGID_CREATE_PLAYER.

Client	Messaging	During	Normal	Game	Play

The	messages	that	you	can	receive	during	normal	game	play	are
basically	a	subset	of	the	messages	that	are	used	by	normal	members	of
a	peer-to-peer	session.	You	will	not	receive	messages	that	carry
information	about	other	players,	and	no	group-related	messages.	You
also	will	not	receive	a	host-migration	message,	because	the	host	cannot
migrate.

You	must	process	the	following	messages.	Refer	to	Handling	Standard
Peer-to-Peer	Messages	for	details	on	how	to	handle	individual
messages.

DPN_MSGID_SEND_COMPLETE

You	can	send	messages	to	the	server	by	calling
IDirectPlay8Client::Send.	As	with	peer-to-peer	sessions,	you
receive	a	DPN_MSGID_SEND_COMPLETE	message	notifying
you	that	the	message	has	been	sent.

DPN_MSGID_RECEIVE

When	the	server	sends	you	data,	it	is	delivered	to	your	message
handler	with	a	DPN_MSGID_RECEIVE	message.

DPN_MSGID_APPLICATION_DESC,
DPN_MSGID_SERVER_INFO

Information	structures	are	associated	with	the	application	and	the
server.	If	this	information	changes	during	a	session,	you	will
receive	a	corresponding	message.	To	retrieve	the	updated
application	and	server	information	structures,	you	must	must	call
IDirectPlay8Client::GetApplicationDesc,
IDirectPlay8Client::GetServerInfo.

Server	Messaging	During	Normal	Game	Play

The	server	receives	essentially	the	same	messages	as	a	peer-to-peer
host	during	normal	game	play.	You	will	need	to	process	the	following
messages.	Refer	to	Handling	Standard	Peer-to-Peer	Messages	for
details	on	how	to	handle	the	individual	messages.

DPN_MSGID_CREATE_PLAYER	and
DPN_MSGID_DESTROY_PLAYER

You	receive	DPN_MSGID_CREATE_PLAYER	when	a	player
enters	a	game,	and	a	DPN_MSGID_DESTROY_PLAYER
message	when	that	player	leaves	the	game.

DPN_MSGID_CREATE_GROUP	and
DPN_MSGID_DESTROY_GROUP

Groups	are	visible	only	to	the	server.	You	receive	a
DPN_MSGID_CREATE_GROUP	message	when	you	create	a
group,	and	DPN_MSGID_DESTROY_GROUP	when	you	destroy
the	group.

DPN_MSGID_ADD_PLAYER_TO_GROUP	and
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

You	receive	a	DPN_MSGID_ADD_PLAYER_TO_GROUP
message	each	time	you	add	a	player	to	a	group,	and
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	each	time	you
remove	a	player.	When	you	destroy	a	group,	you	receive	a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message	for
each	group	member.

DPN_MSGID_SEND_COMPLETE

When	you	send	messages	to	a	client	by	calling

IDirectPlay8Server::SendTo,	you	receive	a
DPN_MSGID_SEND_COMPLETE	message	to	notify	you	that	the
message	was	sent.

DPN_MSGID_RECEIVE

When	a	client	sends	you	data,	it	is	delivered	to	your	message
handler	with	a	DPN_MSGID_RECEIVE	message.

DPN_MSGID_APPLICATION_DESC,
DPN_MSGID_CLIENT_INFO,	DPN_MSGID_GROUP_INFO

Information	structures	are	associated	with	the	application,	the
server,	and	your	groups.	If	this	information	changes	during	a
session,	you	will	receive	the	corresponding	message.	To	retrieve
the	updated	application,	client,	and	group	information	structures,
you	must	must	call	IDirectPlay8Client::GetApplicationDesc,
IDirectPlay8Server::GetClientInfo,	and
IDirectPlay8Server::GetGroupInfo.

Client	Session	Termination	Messages

A	client/server	session	normally	ends	when	the	server	calls
IDirectPlay8Server::Close.	A	session	can	also	end	if	the	server	is
disconnected.	When	the	session	ends,	each	client	receives	the	following
messages.	Refer	to	Handling	Standard	Peer-to-Peer	Messages	for
details	on	how	to	handle	the	individual	messages.

DPN_MSGID_TERMINATE_SESSION

This	messages	notifies	you	that	the	session	is	over.

Server	Session	Termination	Messages

After	you	end	the	session,	you	will	receive	the	following	messages.	Refer
to	Handling	Standard	Peer-to-Peer	Messages.

DPN_MSGID_DESTROY_PLAYER

You	will	receive	a	DPN_MSGID_DESTROY_PLAYER	message	for
each	player	in	your	session.

DPN_MSGID_DESTROY_GROUP	and
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

You	will	receive	a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message	for
each	player	in	each	group,	and	a
DPN_MSGID_DESTROY_GROUP	message	for	each	group.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Normal	Client/Server	Game	Play

In	Microsoft®	DirectPlay®,	a	message	is	essentially	a	block	of	game-
related	data	that	is	sent	from	client	to	server	or	vice	versa.	DirectPlay
does	not	specify	the	contents	or	format	of	the	data	block,	it	just	provides
a	mechanism	to	transmit	the	data.	Once	the	game	is	underway,	each
client	will	normally	send	a	constant	stream	of	messages	to	the	server,
and	vice	versa,	for	the	duration	of	the	game.	The	primary	purpose	of
these	messages	is	to	keep	the	game	state	synchronized,	so	that	each
user's	application	displays	the	same	user	interface	(UI).	However,
messages	can	also	be	used	for	a	variety	of	other	game-specific
purposes.

For	many	games,	especially	rapidly	changing	ones,	you	may	have	to
manage	your	messaging	carefully.	DirectPlay	throttles	outgoing
messages	to	a	level	that	can	be	handled	by	the	target.	You	will	have	be
careful	that	you	do	not	send	messages	too	rapidly,	and	ensure	that	the
most	important	messages	get	through.	See	Basic	Networking	for	a
discussion	of	how	to	effectively	handle	DirectPlay	messaging.

The	Server	Application

To	send	a	message	to	a	client,	call	IDirectPlay8Server::SendTo.	The
client	will	receive	a	DPN_MSGID_RECEIVE	message	with	the	data.

The	Client	Application

To	send	a	message	to	the	server,	call	IDirectPlay8Client::Send.	The
server	will	receive	a	DPN_MSGID_RECEIVE	message	with	the	data.

Note		DirectPlay	does	not	provide	a	mechanism	for	clients	to
communicate	with	other	clients,	only	with	the	server.	Any	client-client
communication	must	be	implemented	by	the	server	application.

Using	Groups

Many	games	allow	players	to	be	organized	into	groups.	For	example,	in	a
squad-based	game,	every	player	in	the	squad	could	be	a	member	of	a
group.	DirectPlay	allows	servers	in	a	client/server	game	to	create	groups
of	players.	While	DirectPlay	groups	typically	correspond	to	the	groups
that	defined	by	the	game,	you	are	free	to	create	a	group	for	any	reason.
DirectPlay	groups	are	essentially	a	way	to	simplify	your	messaging.
When	you	have	defined	a	group,	you	can	send	a	message	to	every	group
member	with	a	single	IDirectPlay8Server::SendTo	call.

To	create	a	DirectPlay	group,	call	IDirectPlay8Server::CreateGroup.	Your
message	handler	will	then	receive	a	DPN_MSGID_CREATE_GROUP
message	with	the	details.	The	message	will	include	a	group	identifier	(ID)
that	is	used	to	send	messages	to	the	group.	Once	the	group	is	created,
you	then	add	players	by	calling	IDirectPlay8Server::AddPlayerToGroup.

Once	the	group	is	established,	you	can	send	data	to	the	group	by	calling
IDirectPlay8Server::SendTo,	with	the	dpnid	parameter	set	to	the	group
ID.	All	group	members	will	then	receive	a	DPN_MSGID_RECEIVE
message	with	the	data.

To	remove	a	player	from	a	group,	call
IDirectPlay8Server::RemovePlayerFromGroup.	Finally,	when	you	no
longer	need	the	group,	you	can	destroy	it	by	calling
IDirectPlay8Server::DestroyGroup.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Leaving	a	Client/Server	Session

A	client	can	leave	a	session	by	calling	IDirectPlay8Client::Close.	The
server	is	notified	with	a	DPN_MSGID_DESTROY_PLAYER	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Terminating	a	Client/Server	Session

To	terminate	a	client/server	session,	the	server	calls
IDirectPlay8Server::Close.	There	is	no	host	migration	in	a	client/server
session,	so	this	method	terminates	all	connections	and	closes	the
session.	The	clients	are	notified	of	the	session	end	by	a
DPN_MSGID_TERMINATE_SESSION	message.

The	server	will	then	receive	a	DPN_MSGID_DESTROY_PLAYER
message	for	each	player,	including	itself.	IDirectPlay8Server::Close	is
synchronous,	and	will	not	return	until	all	the
DPN_MSGID_DESTROY_PLAYER	messages	have	been	processed.
When	IDirectPlay8Server::Close	has	returned,	you	can	safely	shut
down	the	server	application.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Lobby

A	lobby	is	an	application	with	the	primary	purpose	of	helping	users
arrange	multiplayer	games.	The	lobby	is	usually	an	application	that	is
hosted	on	a	remote	server.	The	user	visits	the	lobby,	typically	through	the
Internet,	and	either	sets	up	a	game	session	or	joins	a	session	started	by
someone	else.	The	lobby	application	then	launches	the	group's	individual
game	applications,	and	the	game	is	underway.

Because	many	multiplayer	games	are	arranged	through	lobbies,	most
games	based	on	Microsoft®	DirectPlay®	must	be	able	to	interact	with
lobby	applications.	Conversely,	because	most	lobbies	will	want	to	support
DirectPlay-based	games,	the	lobby	application	must	be	able	to	interact
with	the	game	application.	This	document	discusses	how	to	enable	a
Microsoft	DirectX®	game	to	interact	with	a	lobby	and	vice	versa.

Overviews

DirectPlay	Lobby	Architecture

DirectPlay	Lobby	Support

Implementing	a	Lobby	Client

Implementing	a	Lobbyable	Application

Lobby	Clients

Lobby	Servers

Lobbyable	Applications

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Lobby	Architecture

The	process	of	arranging	and	managing	a	session	of	a	multiplayer	game
based	on	Microsoft®	DirectPlay®	involves	five	separate	components.
The	lobby	server	application	is	an	application	that	typically	resides	on	a
remote	server	and	is	accessed	through	the	Internet.	The	remaining	four
components	are	installed	on	each	player's	computer.

Lobby	client.	The	lobby	client	is	an	application	that	communicates
with	the	lobby	server.	It	also	communicates	with	the	user's	game
application	through	the	DirectPlay	lobby	client	object.

Lobbyable	game	application.	The	lobbyable	game	application	is	an
application	that	uses	the	DirectPlay	lobbied	application	object	to
communicate	with	the	lobby	client,	and	through	the	lobby	client
with	the	lobby	server.

DirectPlay	lobby	client	object.

DirectPlay	lobbied	application	object.

The	two	DirectPlay	objects	act	as	links	between	the	game	application
and	the	lobby	client.	They	communicate	with	each	other	through	private
interfaces.	The	following	graphic	shows	how	these	pieces	are	linked,	and
how	they	communicate.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Lobby	Support

A	lobby	is	an	application	whose	primary	purpose	is	to	enable	players	to
meet	and	arrange	games.	It	is	typically	located	on	a	remote	computer,
and	accessed	over	the	Internet.	Lobby	servers	often	also	perform	a
variety	of	other	functions,	such	as	hosting	chat	rooms,	posting	news	and
information,	and	selling	merchandise.	While	lobby	servers	are	convenient
and	commonly	used	to	arrange	multiplayer	games,	they	aren't	required.
Multiplayer	games	can	also	be	arranged	by	direct	communication
between	lobby	clients.

There	are	normally	three	components	that	are	needed	to	enable	a	game
to	interact	with	a	lobby:

A	lobby	server

A	lobby	client

A	lobbyable	game.

Microsoft®	DirectPlay®	does	not	specify	how	you	should	implement	a
lobby	server	application.	Instead,	DirectPlay	provides	support	for	a	lobby
client.	A	lobby	client	is	an	application	that	is	implemented	by	a	lobby
server	vendor,	and	installed	on	each	user's	system.	It	serves	as	a	link
between	the	user	and	the	lobby.	While	you	could	handle	such
communication	directly,	you	would	have	to	know	the	specific
implementation	details	of	every	lobby	that	might	launch	your	game.

The	lobby	client	application	handles	the	details	of	communicating	with	its
associated	lobby	server,	using	whatever	protocols	are	appropriate.	The
lobby	client	communicates	with	the	user	and	their	game	applications
through	a	DirectPlay	interface.	DirectPlay	then	passes	messages	to	the
application.	The	application	can	also	use	a	DirectPlay	interface	to	pass

messages	to	the	lobby	client.

A	lobby	can	launch	virtually	any	application.	However,	the	application
must	have	some	specific	lobby-aware	components	to	take	full	advantage
of	lobby-launching.	In	particular,	a	lobbyable	application	can
communicate	with	the	lobby	client	throughout	the	course	of	the	session.	If
an	application	is	registered	as	lobbyable,	the	lobby	client	also
automatically	receives	updates	for	various	changes	in	game	status,	such
as	host	migration.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Implementing	a	Lobby	Client

A	lobby	client	is	an	application	that	resides	on	a	user's	computer.	It
typically	serves	as	a	link	between	a	game	application	on	the	user's
computer	and	a	lobby	server	on	a	remote	computer.	However,	lobby
clients	can	also	function	as	stand-alone	applications.	For	instance,	they
can	be	used	to	arrange	a	game	session	among	the	users	of	a	particular
local	area	network	(LAN)	subnet.

Lobby	clients	typically	consist	of	three	primary	components	that	handle
the	following	tasks:

Communicating	with	the	outside	world,	either	a	lobby	server	or
other	lobby	clients.

Communicating	with	the	user,	typically	through	a	graphical	user
interface	(GUI).

Communicating	with	Microsoft®	DirectPlay®.

DirectPlay	does	not	specify	how	the	first	two	items	should	be
implemented.	Lobby	client	vendors	should	use	whatever	approach	is
suitable	to	their	product.	What	DirectPlay	provides	is	a	standard
application	programming	interface	(API)	that	a	lobby	client	can	use	to
communicate	with	DirectPlay,	and	through	DirectPlay	with	the	user's
lobbyable	game	applications.

This	section	discusses	the	essential	details	of	lobby	client
implementation.

Initializing	a	Lobby	Client

Launching	a	Lobbied	Application

Implementing	a	Lobby	Client	Message	Handler

Communicating	with	a	Lobbied	Application

Closing	Down	a	Lobby	Client

See	the	LobbyClient	sample	application	for	a	fully	implemented	example
of	a	simple	lobby	client.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Initializing	a	Lobby	Client

Lobby	clients	are	launched	either	by	a	lobby	server	or	directly,	by	a	user.
When	a	lobby	client	is	launched,	it	must	be	initialized	before	it	can	launch
an	application.	Initialization	involves	the	following	tasks.

Call	CoCreateInstance	to	create	a	lobby	client	object
(CLSID_DirectPlay8LobbyClient).	Use	the	riid	parameter	to
request	an	IDirectPlay8LobbyClient	interface
(IID_IDirectPlay8LobbyClient).

Call	the	lobby	client's	IDirectPlay8LobbyClient::Initialize	method.
Pass	the	method	a	pointer	to	your	lobby	client's	callback	message
handler.

Use	the	IDirectPlay8LobbyClient::EnumLocalPrograms	method	to
enumerate	the	lobbyable	applications	on	the	user's	system.

The	first	two	steps	create	the	lobby	client	object,	and	set	up	a
communication	link	between	that	object	and	your	lobby	client.	The	final
step	determines	what	lobbyable	applications	are	available	on	the	user's
system.	You	need	this	information	in	order	to	launch	the	selected
application.

The	following	code	sample	illustrates	how	to	enumerate	local
applications.	It	is	a	simplified	version	of	the	EnumRegisteredApplications
function	in	the	LobbyClient	sample	found	in	the	software	development	kit
(SDK).	Code	related	to	error	handling	and	to	the	dialog	box	has	been
deleted	for	clarity.	See	the	LobbyClient	sample	in	the	SDK	for	the
complete	code.

HRESULT	EnumRegisteredApplications()
{
				HRESULT	hr;

				DWORD			dwSize					=	0;
				DWORD			dwPrograms	=	0;
				DWORD			iProgram;
				BYTE*			pData			=	NULL;

//	g_pLobbyClient	is	a	pointer	to	an	IDirectPlay8LobbyClient	interface
//	Start	with	a	NULL	data	buffer.	The	required	buffer	size	is
//	returned	through	dwSize.
		hr	=	g_pLobbyClient->EnumLocalPrograms(NULL,	pData,	&dwSize,	&dwPrograms,	0);
	if(dwSize	==	0)
		{
//	No	registered	applications.
		}
//	Set	the	data	buffer	to	the	appropriate	size
		pData	=	new	BYTE[dwSize];
		hr	=	g_pLobbyClient->EnumLocalPrograms(NULL,	pData,	&dwSize,	&dwPrograms,	0)

//	Cast	the	returned	data	to	the	appropriate	structure	type
		DPL_APPLICATION_INFO*	pAppInfo	=	(DPL_APPLICATION_INFO*)	pData;

//	Enumerate	the	names	of	the	registered	applications
		for(iProgram=0;	iProgram<dwPrograms;	iProgram++)
		{
				TCHAR	strAppName[MAX_PATH];
				DXUtil_ConvertWideStringToGeneric(strAppName,	pAppInfo->pwszApplicationName,	MAX_PATH);
		}
		SAFE_DELETE_ARRAY(pData);
		return	S_OK;
}

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Launching	a	Lobbied	Application

When	the	user	has	selected	an	application	and	your	lobby	client	has
verified	that	it	has	been	registered	on	the	user's	system,	you	can	launch
the	application.	To	do	so,	call
IDirectPlay8LobbyClient::ConnectApplication.	The	first	parameter	is	a
DPL_CONNECT_INFO	structure	that	contains	a	variety	of	information
needed	to	launch	the	application,	including	the	following:

The	globally	unique	identifier	(GUID)	that	identifies	the	application.

The	connection	settings,	including	the	user's	Microsoft®
DirectPlay®	address.	See	DirectPlay	Addressing	for	a	discussion
of	DirectPlay	addresses.

Whether	the	application	will	be	a	host.

When	you	call	IDirectPlay8LobbyClient::ConnectApplication,	you	can
set	a	connection	context	value	in	the	pvUserApplicationContext
parameter.	If	you	do	not	set	the	connection	context	value	when	you	call
IDirectPlay8LobbyClient::ConnectApplication,	you	can	set	the
pvConnectionContext	parameter	when	you	handle	the
DPL_MSGID_CONNECT	message.	After	this	value	has	been	set,	the
connection	context	value	will	be	passed	along	in	the
pvConnectionContext	parameter	with	any	message	you	receive	from	that
connection.	This	is	a	useful	parameter	to	set	if	you	are	receiving
messages	from	multiple	connections	and	using	a	common	lobby	client
message	handler.

The	IDirectPlay8LobbyClient::ConnectApplication	method	returns	an
application	handle	that	is	used	to	identify	the	application	in	all	further
communication.	When	the	application	has	launched	and	the	connection
is	successfully	established,	your	message	handler	receives	a

DPL_MSGID_CONNECT	message.

Note		Your	message	handler	may	receive	the	DPL_MSGID_CONNECT
before	the	IDirectPlay8LobbyClient::ConnectApplication	method	has
confirmed	the	connection	by	returning	a	success	code.	Your	message
handler	should	be	prepared	to	handle	the	message	even	if	the	method
has	not	yet	returned.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Implementing	a	Lobby	Client	Message	Handler

The	message	handler	is	a	callback	function	that	is	used	by	the	lobby
client	object	to	communicate	with	the	lobby	client.	The	lobby	client
message	handler	has	three	parameters	that	pass	in	the	following
information.

A	message	identifier	(ID)	that	indicates	the	message	type.

A	pointer	to	a	message	data	block.	You	must	cast	this	parameter	to
the	structure	that	is	used	by	the	particular	message.

A	pointer	to	an	optional	application-defined	user-context	data
block.

The	user	context	value	is	defined	by	the	lobby	client	when	it	calls
IDirectPlay8LobbyClient::Initialize.	It	can	be	used	for	such	purposes	as
differentiating	between	messages	that	are	sent	from	different	objects.	For
more	information	about	user-context	values,	see	Using	Player	Context
Values.

Your	message	handler	must	be	able	to	handle	the	following	five	lobby
client-specific	messages.

DPL_MSGID_CONNECT

DPL_MSGID_CONNECTION_SETTINGS

DPL_MSGID_DISCONNECT

DPL_MSGID_RECEIVE

DPL_MSGID_SESSION_STATUS

Most	of	these	messages	are	generated	by	the	lobby	client	object	in
response	to	changes	in	the	game	status,	or	when	the	lobby	client
requests	information.	The	exception	is	DPL_MSGID_RECEIVE.	This
message	is	used	to	pass	data	directly	from	the	game	application	to	the

lobby	client.	See	PFNDPNMESSAGEHANDLER	for	a	complete
description	the	message	handler	function.

Note		Microsoft®	DirectPlay®	message	handlers	must	be	written	to	work
properly	in	a	multithreaded	environment,	or	your	application	may	not
function	well.

DPL_MSGID_CONNECT

This	message	is	sent	by	the	lobby	client	following	the	launch	of	a
lobbyable	application.	The	message	indicates	that	the	application	has
been	successfully	connected.	The	associated	DPL_MSGID_CONNECT
structure	holds	a	variety	of	information,	including:

A	connection	ID.	Use	this	ID	when	your	lobby	client	needs	to	send
data	to	the	application	with	IDirectPlay8LobbyClient::Send,	or
release	the	connection	with
IDirectPlay8LobbyClient::ReleaseApplication.

Lobby	connection	data.

An	optional	connection	context	value.

DPL_MSGID_CONNECTION_SETTINGS

This	message	is	sent	by	DirectPlay	whenever	an	associated	lobbyable
application	calls	its
IDirectPlay8LobbiedApplication::SetConnectionSettings	method	to	modify
the	session	connections.	The	associated
DPL_MSGID_CONNECTION_SETTINGS	structure	contains	the	updated
connection	information.

DPL_MSGID_DISCONNECT

This	message	is	sent	when	the	lobbyable	application	disconnects	from
the	session	by	calling	IDirectPlay8LobbiedApplication::Close.	Your	lobby
client	application	should	delete	the	connection	from	its	list	and	free	any
data	that	is	associated	with	the	application.

DPL_MSGID_RECEIVE

This	message	enables	an	application	to	pass	data	to	the	lobby	client.
DirectPlay	passes	the	data	block	from	the	application	to	the	lobby	client
in	a	DPL_MSGID_RECEIVE	structure.	It	is	up	to	the	lobby	client	to
process	the	data.

DPL_MSGID_SESSION_STATUS

This	message	is	sent	by	DirectPlay	whenever	one	of	the	following	six
changes	in	the	session's	status	occurs.

The	session	is	connected.

The	session	could	not	connect.

The	session	has	been	disconnected.

The	session	has	been	terminated.

The	session	host	has	migrated.

This	computer	has	become	the	session	host.

The	type	of	status	change	is	indicated	by	the	value	of	the	dwStatus	field
in	the	associated	DPL_MSGID_SESSION_STATUS	structure.

For	more	information,	see	A	Sample	Lobby	Client	Message	Handler.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

A	Sample	Lobby	Client	Message	Handler

The	following	code	is	a	simplified	version	of	the	message	handler	from
the	LobbyClient	sample	in	the	software	development	kit	(SDK).	Error
handling	code	has	been	removed	for	clarity.	See	the	sample	for	a
complete	version.

HRESULT	WINAPI	DirectPlayLobbyMessageHandler(PVOID	pvUserContext,	
																																														DWORD	dwMessageId,	
																																														PVOID	pMsgBuffer)
{
		switch(dwMessageId)
		{
				case	DPL_MSGID_DISCONNECT:
				{
						PDPL_MESSAGE_DISCONNECT	pDisconnectMsg;
						pDisconnectMsg	=	(PDPL_MESSAGE_DISCONNECT)pMsgBuffer;

						//	Free	any	data	associated	with	the	application	and
						//			remove	the	connection	from	the	list.
						break;
				}
				case	DPL_MSGID_RECEIVE:
				{
						PDPL_MESSAGE_RECEIVE	pReceiveMsg;
						pReceiveMsg	=	(PDPL_MESSAGE_RECEIVE)pMsgBuffer;

						//	The	lobby	application	sent	data.	Process	the	data	and
						//			respond	appropriately.
						break;
				}
				case	DPL_MSGID_SESSION_STATUS:

				{
						PDPL_MESSAGE_SESSION_STATUS	pStatusMsg;
						pStatusMsg	=	(PDPL_MESSAGE_SESSION_STATUS)pMsgBuffer;

						switch(pStatusMsg->dwStatus)
						{
								case	DPLSESSION_CONNECTED:								//	Session	connected.
										break;
								case	DPLSESSION_COULDNOTCONNECT:		//	Session	could	not	connect.
										break;
								case	DPLSESSION_DISCONNECTED:					//	Session	disconnected.
										break;
								case	DPLSESSION_TERMINATED:							//	Session	terminated.
										break;
								case	DPLSESSION_HOSTMIGRATED:					//	Host	migrated.
										break;
								case	DPLSESSION_HOSTMIGRATEDHERE:	//	Host	migrated	here.
										break;
						}
						case	DPL_MSGID_CONNECTION_SETTINGS:
						{
								PDPL_MESSAGE_CONNECTION_SETTINGS	pConnectionStatusMsg;
								pConnectionStatusMsg	=	(PDPL_MESSAGE_CONNECTION_SETTINGS)pMsgBuffer;
								//	The	application	has	changed	the	connection	settings.		
								break;
						}
		}
		return	S_OK;
}

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Communicating	with	a	Lobbied	Application

Much	of	the	lobby	client's	interaction	with	an	associated	application	is
indirect.	The	lobby	client	does	something	that	affects	the	application,	and
Microsoft®	DirectPlay®	sends	an	appropriate	message,	and	vice	versa.
For	instance,	if	the	lobby	client	changes	the	connection	settings,
DirectPlay	notifies	the	application	and	provides	the	new	settings.
However,	the	IDirectPlay8LobbyClient::Send	method	enables	the	lobby
client	to	send	a	message	directly	to	the	application.	DirectPlay	passes
the	data	to	the	application	without	modification.	It	is	the	responsibility	of
the	application	to	process	that	data.

The	lobbied	application	can	also	send	data	directly	to	the	lobby	client.
The	data	is	passed	to	the	lobby	client's	message	handler	with	a
DPL_MSGID_RECEIVE	message.	DirectPlay	passes	the	data	to	the
lobby	client	without	modification.	It	is	up	to	the	lobby	client	to	process	the
data.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Closing	Down	a	Lobby	Client

When	you	are	ready	to	close	the	session,	disconnect	the	application	by
calling	IDirectPlay8LobbyClient::ReleaseApplication.	The	application
receives	a	DPL_MSGID_DISCONNECT	message.

After	releasing	the	application,	perform	any	cleanup	that	is	necessary,
and	close	the	session	by	calling	IDirectPlay8LobbyClient::Close.	You
should	then	free	the	lobby	client	object	by	calling
IDirectPlay8LobbyClient::Release.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Implementing	a	Lobbyable	Application

A	lobbyable	application	must	be	designed	to	work	properly	with	a	lobby
client.	While	a	lobby	client	can	launch	any	application,	only	lobby-
launched	applications	can	receive	messages	from	Microsoft®
DirectPlay®	and	from	the	lobby	client.	To	be	lobby	launched,	an
application	must	be	appropriately	registered,	and	it	must	be	able	to	use	a
DirectPlay	lobbied	application	object	to	communicate	with	DirectPlay	and
the	lobby	client.

This	section	discusses	how	to	implement	lobbyable	applications.

Registering	a	Lobbyable	Application

Handling	Lobby	Launching

Implementing	a	Lobbied	Application	Callback	Message	Handler

Communicating	with	a	Lobby	Client

Closing	Down	a	Lobbied	Application

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Registering	a	Lobbyable	Application

A	lobbyable	application	must	be	registered	before	it	can	be	lobby
launched.	This	registration	needs	to	be	done	only	once	and	is	typically
handled	by	the	application's	setup	procedure.	Do	not	attempt	to	modify
the	registry	directly	to	register	an	application	as	lobbyable.	Instead,	do
the	following:

Call	CoCreateInstance	to	create	a	lobbied	application	object
(CLSID_DirectPlay8LobbiedApplication).	Set	the	riid	parameter	to
IID_IDirectPlay8LobbiedApplication	to	request	an
IDirectPlay8LobbiedApplication	interface.

Call	IDirectPlay8LobbiedApplication::RegisterProgram.This
method	takes	the	information	and	creates	appropriate	registry	keys
and	values.

You	must	provide	IDirectPlay8LobbiedApplication::RegisterProgram
with	a	variety	of	information,	including	the	following:

A	globally	unique	identifier	(GUID)	that	is	used	to	identify	the
application.

A	friendly	name	for	the	application.

The	location	and	name	of	the	application's	executable	file.

The	location	and	name	of	an	optional	launcher	application.

Any	command-line	arguments	that	need	to	be	passed	to	the
executable	file	when	it	is	launched.

Instead	of	launching	the	game	application,	Microsoft®	DirectPlay®
launches	a	launcher	application.	The	launcher	application	then	launches
the	game.	Launcher	applications	can	be	used,	for	example,	as	an	anti-
piracy	measure.

To	unregister	a	registered	program,	call

IDirectPlay8LobbiedApplication::UnRegisterProgram.	This	method
removes	the	registry	entries	created	by
IDirectPlay8LobbiedApplication::RegisterProgram.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Handling	Lobby	Launching

The	first	thing	your	lobbyable	application	should	do	when	it	is	launched	is
to	create	and	initialize	a	Microsoft®	DirectPlay®	lobbied	application
object.	To	do	this,	perform	the	following	tasks.

Call	CoCreateInstance	to	create	a	lobbied	application	object
(CLSID_DirectPlay8LobbiedApplication).	Set	the	riid	parameter	to
IID_IDirectPlay8LobbiedApplication	to	request	an
IDirectPlay8LobbiedApplication	interface.

Call	IDirectPlay8LobbiedApplication::Initialize	to	initialize	the
lobbied	application	object.	Pass	the	object	a	pointer	to	your	lobbied
application	callback	message	handler.

Next,	determine	whether	your	application	was	lobby	launched.	If	so,	your
application	needs	to	set	up	a	communication	channel	with	DirectPlay	so
that	you	can	effectively	manage	the	session.	Do	the	following	to	detect
whether	your	application	was	lobby	launched.

When	the	IDirectPlay8LobbiedApplication::Initialize	method
returns,	examine	the	pdpnhConnection	parameter.	If	this
parameter	is	set	to	a	valid	connection	handle,	the	game	was	lobby
launched.

Examine	the	DPL_MSGID_CONNECT	message	you	receive
through	your	message	handler.	This	message	carries	with	it	a
variety	of	information,	including	the	ID	that	you	use	to	send
messages	to	the	lobby	client.

Note		Your	message	handler	may	receive	the	DPL_MSGID_CONNECT
message	before	the	IDirectPlay8LobbiedApplication::Initialize	method
returns.	Your	message	handler	should	be	prepared	to	handle	the
message	appropriately.

If	your	application	was	not	lobby	launched,	you	can	indicate	that	your
application	is	available	to	lobby	clients	for	connection	by	calling

IDirectPlay8LobbiedApplication::SetAppAvailable.	This	method	is
typically	called	when	the	application	has	been	launched	by	the	user.
However,	it	can	also	be	used	if	the	user	has	closed	one	session	but	the
application	is	still	running	and	available	for	another	session.	In	either
case,	your	message	handler	receives	a	DPL_MSGID_CONNECT
message	when	the	lobby	client	connects	your	application	to	a	session.

The	following	sample	code	illustrates	how	to	initialize	a	lobbied
application,	and	how	to	detect	whether	an	application	was	lobby
launched.	It	is	a	simplified	version	of	the	InitDirectPlay	function	used	by
the	SimplePeer	application	in	the	software	development	kit	(SDK).	Refer
to	that	sample	application	for	the	complete	code.	In	particular,	error-
handling	code	has	been	deleted	for	clarity.	The	g_bWasLobbyLaunched
variable	is	a	global	variable	that	is	set	to	TRUE	if	the	application	was
lobby	launched.

HRESULT	InitDirectPlay()
{
		DPNHANDLE	hLobbyLaunchedConnection	=	NULL;
		HRESULT	hr;

		//	Create	IDirectPlay8LobbiedApplication
		hr	=	CoCreateInstance(CLSID_DirectPlay8LobbiedApplication,	NULL,	
																									CLSCTX_INPROC_SERVER,
																									IID_IDirectPlay8LobbiedApplication,	
																									(LPVOID*)	&g_pLobbiedApp);

		//	Initialize	IDirectPlay8LobbiedApplication
		hr	=	g_pLobbiedApp->Initialize(NULL,
																																		DirectPlayLobbyMessageHandler,	
																																		&hLobbyLaunchedConnection,

																																		0);
		//Check	for	a	valid	connection	handle.	If	it	is	non-NULL
		//the	application	was	lobby	launched.
		g_bWasLobbyLaunched	=	(hLobbyLaunchedConnection	!=	NULL);

		return	S_OK;
}

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Implementing	a	Lobbied	Application	Callback	Message
Handler

The	message	handler	is	a	callback	function	that	is	used	by	the	lobbied
application	object	to	communicate	with	a	lobbied	application.	The	lobbied
application	message	handler	has	three	parameters	that	pass	in	the
following	information.

A	message	identifier	(ID)	that	indicates	the	message	type.

A	pointer	to	a	message	data	block.	You	must	cast	this	parameter	to
the	structure	that	is	used	by	the	particular	message.

A	pointer	to	an	optional	application-defined	user-context	data
block.

The	user	context	value	is	defined	by	the	lobby	client	when	it	calls
IDirectPlay8LobbyClient::Initialize.	It	can	be	used	for	such	purposes	as
differentiating	between	messages	that	are	sent	from	different	objects.	For
more	information	about	user-context	values,	see	Using	Player	Context
Values.

Your	message	handler	must	to	be	able	to	handle	the	following	four
lobbied	application-specific	messages.

DPL_MSGID_CONNECT

DPL_MSGID_CONNECTION_SETTINGS

DPL_MSGID_DISCONNECT

DPL_MSGID_RECEIVE

Most	of	these	messages	are	generated	by	the	lobbied	application	object
in	response	to	changes	in	the	connection,	or	when	the	lobbied	application
requests	connection	information.	The	exception	is
DPL_MSGID_RECEIVE.	This	message	is	used	to	pass	data	directly	from

the	lobby	client	to	the	game	application.	See
PFNDPNMESSAGEHANDLER	for	a	complete	description	the	message
handler	function.

Note		Microsoft®	DirectPlay®	message	handlers	must	be	written	to	work
properly	in	a	multithreaded	environment,	or	your	application	may	not
function	well.

DPL_MSGID_CONNECT

This	message	is	sent	by	the	lobbied	application	object	when	the	lobby
client	calls	IDirectPlay8LobbyClient::ConnectApplication	to	connect	an
application	to	a	session.	The	associated	DPL_MSGID_CONNECT
structure	includes	the	following	information.

A	connection	ID.	Use	this	ID	when	your	application	needs	to	send
data	to	the	lobby	client	with	IDirectPlay8LobbiedApplication::Send,
or	update	the	session	status	with
IDirectPlay8LobbiedApplication::UpdateStatus.

Lobby	connection	data.

An	optional	connection	context	value.	You	can	set	the	connection
context	value	when	you	handle	the	DPL_MSGID_CONNECT
message.	If	this	value	is	set	for	a	connection,	it	will	be	returned
whenever	you	receive	a	message	from	that	connection	in	the
pvConnectionContext	parameter.	This	is	a	useful	value	to	set	if
your	application	has	multiple	connections	and	a	common	lobbied
application	message	handler.

DPL_MSGID_CONNECTION_SETTINGS

DirectPlay	sends	this	message	whenever	an	associated	lobby	client	calls
its	IDirectPlay8LobbyClient::SetConnectionSettings	method	to	modify	the
session	connections.	The	associated
DPL_MSGID_CONNECTION_SETTINGS	structure	contains	the	updated
connection	information.

DPL_MSGID_DISCONNECT

This	message	is	sent	when	the	lobby	client	disconnects	the	application
from	the	session	by	calling	IDirectPlay8LobbyClient::ReleaseApplication.
Your	application	should	delete	the	connection	from	its	list,	and	free	any
data	that	is	associated	with	the	session.

DPL_MSGID_RECEIVE

This	message	enables	a	lobby	client	to	pass	data	to	an	application.
DirectPlay	passes	the	data	block	from	the	lobby	client	to	the	application
in	a	DPL_MSGID_RECEIVE	structure.	It	is	up	to	the	application	to
process	the	data.

For	more	information,	see	A	Sample	Lobbied	Application	Message
Handler.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

A	Sample	Lobbied	Application	Message	Handler

The	following	code	is	a	simplified	version	of	the	message	handler	from
the	SimplePeer	sample	in	the	software	development	kit	(SDK).	Error
handling	code	has	been	removed	for	clarity.	See	the	sample	for	a
complete	version.

HRESULT	WINAPI	DirectPlayLobbyMessageHandler(PVOID	pvUserContext,	
																																														DWORD	dwMessageId,	
																																														PVOID	pMsgBuffer)
{
		switch(dwMessageId)
		{
				case	DPL_MSGID_CONNECT:
				{
						PDPL_MESSAGE_CONNECT	pConnectMsg;
						pConnectMsg	=	(PDPL_MESSAGE_CONNECT)pMsgBuffer;

						//	Connected.	Start	the	session.
						break;
				}
				case	DPL_MSGID_DISCONNECT:
				{
						PDPL_MESSAGE_DISCONNECT	pDisconnectMsg;
						pDisconnectMsg	=	(PDPL_MESSAGE_DISCONNECT)pMsgBuffer;

						//	Disconnected.	Free	any	data	associated	with
						//	the	lobby	client.
						break;
				}
				case	DPL_MSGID_RECEIVE:
				{

						PDPL_MESSAGE_RECEIVE	pReceiveMsg;
						pReceiveMsg	=	(PDPL_MESSAGE_RECEIVE)pMsgBuffer;

						//	The	lobby	client	sent	data.	Process	the	data	and
						//	respond	appropriately.
						break;
				}

				case	DPL_MSGID_CONNECTION_SETTINGS:
				{
						PDPL_MESSAGE_CONNECTION_SETTINGS	pConnectionStatusMsg;
						pConnectionStatusMsg	=	(PDPL_MESSAGE_CONNECTION_SETTINGS)pMsgBuffer;

						//	The	lobby	client	has	changed	the	connection	settings.		
						break;
				}
		}
		return	S_OK;
}

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Communicating	with	a	Lobby	Client

Much	of	the	lobbied	application's	interaction	with	an	associated	lobby
client	is	indirect.	The	application	does	something	that	affects	the	lobby
client,	Microsoft®	DirectPlay®	sends	an	appropriate	message,	and	vice
versa.	For	instance,	if	the	application	changes	the	connection	settings,
DirectPlay	notifies	the	lobby	client,	and	provides	the	new	settings.
However,	there	are	two	methods	that	provide	information	directly	to	the
lobby	client:	IDirectPlay8LobbiedApplication::UpdateStatus	and
IDirectPlay8LobbiedApplication::Send.

You	must	notify	the	lobby	client	when	any	of	the	following	changes	in	the
game	status	take	place.

The	session	is	connected.

The	session	could	not	connect.

The	session	has	been	disconnected.

The	session	has	been	terminated.

The	session	host	has	migrated.

This	computer	has	become	the	session	host.

To	notify	the	lobby	client	of	one	of	these	status	changes,	call
IDirectPlay8LobbiedApplication::UpdateStatus,	and	set	the	dwStatus
parameter	to	the	appropriate	value.	The	lobby	client	receives	a
DPL_MSGID_SESSION_STATUS	message	to	notify	it	of	the	status
change.

The	IDirectPlay8LobbiedApplication::Send	method	enables	the
application	to	send	a	message	directly	to	the	lobby	client.	DirectPlay
passes	the	data	to	the	lobby	client	without	modification.	It	is	the
responsibility	of	the	lobby	client	to	process	that	data.

The	lobby	client	can	also	send	data	directly	to	the	application.	The	data	is
passed	to	the	lobby	client's	message	handler	with	a
DPL_MSGID_RECEIVE	message.	DirectPlay	passes	the	data	to	the
application	without	modification.	The	lobby	client	must	process	the	data.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Closing	Down	a	Lobbied	Application

To	close	a	session,	call	IDirectPlay8LobbiedApplication::Close.	The	lobby
client	receives	a	DPL_MSGID_DISCONNECT	message	to	notify	it	of	the
disconnection.	If	you	want	to	keep	the	application	running	and	connect	to
another	session,	indicate	that	your	application	is	available	by	calling
IDirectPlay8LobbiedApplication::SetAppAvailable.	Otherwise,	call
IDirectPlay8LobbiedApplication::Release	to	free	the	lobbied	application
object,	and	shut	the	application	down.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Lobby	Clients

A	lobby	client	is	an	application	that	is	implemented	by	the	lobby	server
vendor	and	installed	on	each	player's	computer.	It	handles
communication	between	the	players	and	their	game	applications,	and	the
lobby	server.	A	common	way	to	install	a	lobby	client	is	to	have	the	user
download	it	from	the	lobby	server's	Web	site	as	part	of	the	sign-up
procedure.

The	following	is	a	typical	scenario.

1.	 A	new	player	goes	to	the	Web	site	and	signs	up.

2.	 As	part	of	the	sign-up	procedure,	the	lobby	client	is	downloaded
to	the	client's	computer.

3.	 The	player	determines	which	to	play	and	asks	to	join	a	session.

4.	 The	Web	site	launches	the	lobby	client	on	the	player's	computer.
A	typical	launch	mechanism	is	a	URL	that	points	to	the	lobby
client's	executable	file.

5.	 The	lobby	client	handles	the	mechanics	of	arranging	the	session,
and	then	launches	the	user's	game	application.

6.	 If	the	game	is	a	lobbyable	application,	the	lobby	client	enables	the
game	application	to	communicate	with	the	lobby	server.	This
connection	enables	the	lobby	server	to	keep	track	of	events	such
as	players	entering	and	leaving	the	game	and	host	migration.

Lobby	clients	do	not	necessarily	have	to	be	linked	to	a	remote	server.	In
another	scenario	the	user	launches	the	lobby	client	directly.	The	lobby
client	then	lists	the	available	games	and	sessions,	perhaps	among	the
people	connected	to	the	user's	local	area	network	(LAN)	subnet.	When
the	user	chooses	a	game	and	session,	the	lobby	client	launches	the
game.

This	section	discusses	some	the	general	features	of	a	lobby	client.	For
more	information	about	communicating	between	a	lobby	client	and	its
associated	lobby	server,	see	Communicating	with	a	Lobbied	Application.

For	more	information	about	implementation	details,	see	Implementing	a
Lobby	Client	or	the	LobbyClient	sample	application	included	in	the
software	development	kit	(SDK).

Communicating	with	a	Lobby	Client

Much	of	the	lobbied	application's	interaction	with	an	associated	lobby
client	is	indirect.	The	application	does	something	that	affects	the	lobby
client,	Microsoft®	DirectPlay®	sends	an	appropriate	message,	and	vice
versa.	For	instance,	if	the	application	changes	the	connection	settings,
DirectPlay	notifies	the	lobby	client,	and	provides	the	new	settings.
However,	there	are	two	methods	that	provide	information	directly	to	the
lobby	client:	IDirectPlay8LobbiedApplication::UpdateStatus	and
IDirectPlay8LobbiedApplication::Send.

You	must	notify	the	lobby	client	when	any	of	the	following	changes	in	the
game	status	take	place.

The	session	is	connected.

The	session	could	not	connect.

The	session	has	been	disconnected.

The	session	has	been	terminated.

The	session	host	has	migrated.

This	computer	has	become	the	session	host.

To	notify	the	lobby	client	of	one	of	these	status	changes,	call
IDirectPlay8LobbiedApplication::UpdateStatus,	and	set	the	dwStatus
parameter	to	the	appropriate	value.	The	lobby	client	receives	a
DPL_MSGID_SESSION_STATUS	message	to	notify	it	of	the	status
change.

The	IDirectPlay8LobbiedApplication::Send	method	enables	the
application	to	send	a	message	directly	to	the	lobby	client.	DirectPlay
passes	the	data	to	the	lobby	client	without	modification.	It	is	the
responsibility	of	the	lobby	client	to	process	that	data.

The	lobby	client	can	also	send	data	directly	to	the	application.	The	data	is
passed	to	the	lobby	client's	message	handler	with	a
DPL_MSGID_RECEIVE	message.	DirectPlay	passes	the	data	to	the
application	without	modification.	The	lobby	client	must	process	the	data.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Lobby	Servers

The	lobby	server	is	an	application	whose	primary	purpose	is	to	enable
players	to	meet	and	arrange	games.	It	is	typically	located	on	a	remote
computer,	and	accessed	over	the	Internet.	Lobby	servers	often	perform	a
variety	of	other	functions	such	as	hosting	chat	rooms,	posting	news	and
information,	and	selling	merchandise.

To	manage	multiplayer	games,	a	lobby	server	typically	handles	a	variety
of	tasks,	including:

Managing	the	network	addresses	of	the	various	game	sessions
and	players.

Launching	a	session	by	launching	the	associated	game
applications	on	the	players'	computers.

Adding	players	to	an	ongoing	session.

Connecting	the	various	computers	in	a	session	to	the	correct
network	addresses.

Keeping	track	of	changes	in	the	session,	such	as	players	leaving
the	game	or	changes	in	the	game's	host.

The	details	of	the	lobby	server	application	depend	on	what	kind	of
services	the	vendor	wants	to	offer.	Microsoft®	DirectPlay®	does	not
specify	how	a	lobby	server	should	be	implemented	nor	how	it	should
communicate	with	its	users'	computers.	However,	lobby	vendors	must
implement	and	distribute	to	their	users	a	lobby	client	that	is	compatible
with	DirectPlay.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Lobbyable	Applications

Lobbyable	applications	are	designed	to	work	with	a	lobby	client	based	on
Microsoft®	DirectPlay®.	While	a	lobby	client	can	use	DirectPlay	to	launch
any	application,	lobbyable	applications	have	a	number	of	advantages.

The	lobby	client	receives	automatic	updates	when	game	status
changes.

The	lobby	client	can	use	a	standard	application	programming
interface	(API)	to	communicate	with	the	application.

The	application	can	use	a	standard	API	to	communicate	with	the
lobby	client.

In	short,	DirectPlay	virtually	eliminates	the	need	for	game-specific	or
lobby	client-specific	communication	code.	You	can	use	a	standard	API	for
everything	with	little	or	no	modification	for	the	particular	game	or	lobby
client.

For	a	discussion	of	implementation	details,	see	Implementing	a
Lobbyable	Application	or	software	development	kit	(SDK)	samples	such
as	SimplePeer,	or	StagedPeer.

Launching	a	Lobbyable	Application

Launching	a	Lobbyable	Application

One	of	the	first	things	a	lobbyable	application	should	do	after	it	is
launched	is	create	a	lobbied	application	object.	Among	other	things,	this
object	enables	your	application	to	determine	whether	it	was	lobby-
launched.	A	lobbied	application	must	also	implement	a	message-handler
callback	function	to	receive	messages	from	the	lobby	client.	The	basic
procedure	is:

Create	a	lobbied	application	object.

Initialize	the	object.

If	the	initialization	method	returns	a	valid	connection	handle,	your
application	was	lobby	launched.

Examine	the	user	context	value	that	is	returned	by	the	initialization
method.	This	value	might	contain	game-specific	information	from
the	lobby	client.

Examine	the	connection	message	received	through	the	lobbied
application	message	handler.	This	message	carries	with	it	a	variety
of	information,	including	the	identifier	(ID)	that	you	will	use	to	send
messages	to	the	lobby	client.

Once	an	application	has	been	successfully	lobby	launched,	DirectPlay
can	automatically	send	status	updates	to	the	lobby	client	when	events
such	as	host	migration	occur.	To	enable	automatic	status	updates,	call
the	RegisterLobby	method	of	the	IDirectPlay8Peer,	IDirectPlay8Client,
or	IDirectPlay8Server	interface.	You	can	also	use	the	lobbied	application
interface	to	send	messages	to	the	lobby	client.

Be	aware	that	your	message	handler	function	might	receive	messages
from	the	lobby	client	before	the	initialization	method	returns.	In	addition	to
the	connection	message,	the	callback	function	receives	messages	when
the	lobby	client	changes	connection	settings,	or	it	breaks	the	connection.

The	lobby	client	can	also	send	messages	directly	to	your	message
handler	that	contain	game-specific	information.

Note		It	is	possible	to	receive	messages	from	more	than	one	thread.	To
handle	messaging	properly,	your	lobbied	application	callback	function
should	be	re-entrant.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Voice

Microsoft®	DirectPlay®	Voice	uses	a	DirectPlay	session	for	media-
independent	network	transport	and	player	management.	The	DirectPlay
Voice	application	programming	interface	(API)	does	not	duplicate	session
control	features	from	DirectPlay.	A	DirectPlay	network	transport	session
must	also	be	created	before	DirectPlay	Voice	can	transmit	and	receive
voice	communications.	DirectPlay	Voice	can	use	either	the	IDirectPlay4
object	or	IDirectPlay8	object	for	network	transport.

If	DirectPlay	Voice	is	being	used	in-process	with	a	multiplayer	game,	the
game	will	most	likely	also	use	the	transport	session	to	exchange	its
game-specific	data.	This	makes	it	possible	to	optimize	the	use	of	network
resources	between	the	game	and	voice	data.

It	is	also	acceptable	to	create	and	use	a	transport	session	specifically	for
the	voice	session,	as	would	be	the	case	for	a	standalone	voice
conferencing	application.

DirectPlay	Voice	is	a	full-voice	communications	API	that	is	integrated	with
DirectPlay	for	network	session	management	and	network	transport.

DirectPlay	Voice	is	also	integrated	with	DirectPlay	Sound	for	voice
recording	and	playback,	and	all	DirectPlay	Sound	audio	features	are
inherited	including	the	ability	to	target	voice	data	to	different	playback
buffers	and	the	use	of	special	audio	effects	such	as	three-dimensional
sound	positioning.

Note		DirectPlay	and	DirectPlay	Voice	sessions	are	separate	entities.
While	there	are	guarantees	about	message	order	for	each	interface,
there	are	no	guarantees	about	message	order	between	interfaces.

Overviews

Audio	Device	Testing

Automatic	Gain	Control

Capture	Focus

Configuring	the	Windows	Sound	Mixer

Creating	a	3-D	Voice	Session

DirectPlay	Voice	Communication

DirectPlay	Voice	Topologies

Fast	User	Switching

Handling	Voice	Client	Messages

Handling	Voice	Host	Messages

Jitter	Buffers

Sharing	the	Audio	Capture	Device

Transmission	Control

Voice	Codecs

Voice	Host	Migration

Working	Set	Guidelines

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Audio	Device	Testing

Microphone	setup	is	supported	by	the	Microsoft®	DirectX®	Voice	Test
Wizard.	This	wizard	confirms	that	your	system	properly	supports	full
duplex	operation	and	ensures	your	microphone	and	playback	settings	are
correct.	You	need	to	run	the	wizard	only	once	for	each	combination	of
playback	and	capture	device	you	select.

You	can	launch	the	Voice	Test	Wizard	in	two	ways:

Launch	the	wizard	from	your	program	by	creating	a	voice	test
object	(CLSID_DirectPlayVoiceTest)	and	calling	its
IDirectPlayVoiceTest::CheckAudioSetup	method.

In	the	Sound	and	Audio	Devices	Control	Panel	application	for
Microsoft	Windows®	Millennium	Edition	(Windows	Me)	or
Windows	XP,	launch	the	wizard	from	the	Voice	tab.

Each	time	your	application	starts,	you	should	test	the	configuration	by
calling	IDirectPlayVoiceTest::CheckAudioSetup	with	the	dwFlags
parameter	set	to	DVFLAGS_QUERYONLY.	This	enables	you	to	quickly
test	whether	the	device	configuration	has	changed	since	you	last	tested
them.	If	your	devices	have	not	been	tested,	you	should	run
IDirectPlayVoiceTest::CheckAudioSetup	again	to	invoke	the	wizard.	If
you	do	not	do	so,	IDirectPlayVoiceClient::Connect	will	return
DVERR_RUNSETUP,	and	you	will	not	be	able	to	initialize	Microsoft
DirectPlay®	Voice.

Many	older	computer	systems	still	in	use	do	not	have	a	full	duplex	sound
card.	Without	full	duplex,	a	sound	card	can	receivebut	not	sendvoice
communications.	Because	games	typically	hold	the	sound	card	in
playback	mode,	DirectX	prevents	problems	by	not	allowing	dynamic
switching	between	playback	and	capture.	The	Voice	Test	Wizard	provides

users	with	information	about	the	duplexing	abilities	of	their	system.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Automatic	Gain	Control

Microsoft®	DirectPlay®	Voice	offers	functionality	to	adjust	the	hardware
input	volume	on	the	sound	card	automatically	to	provide	the	best
recording	input	level	possible.	You	can	enable	automatic	gain	control
when	you	call	IDirectPlayVoiceClient::Connect	to	connect	to	a	voice
session	by	setting	the	DVCLIENTCONFIG_AUTORECORDVOLUME	flag
in	the	dwFlags	member	of	the	DVCLIENTCONFIG	structure.	You	can
activate	or	deactivate	automatic	gain	control	during	a	session	by	calling
IDirectPlayVoiceClient::SetClientConfig.	Set	the
DVCLIENTCONFIG_AUTORECORDVOLUME	flag	to	activate	automatic
gain	control,	and	leave	the	flag	unset	to	deactivate	automatic	gain
control.

Most	game	applications	should	use	automatic	gain	control	because	it
requires	a	negligible	amount	of	game	resources	and	prevents	the	need
for	an	in-game	volume	recording	control.	Users	are	not	required	to	set
the	level	themselves,	yet	they	experience	the	highest	quality	of	voice
transmission	and	reception	possible.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Capture	Focus

The	concept	of	capturing	focus	is	integral	to	creating	lobbyable	game
applications	and	lobby	applications	with	Microsoft®	DirectPlay®	Voice
support.	If	your	game	application	does	not	properly	implement	focus
capture,	it	is	possible	that	voice	communication	will	not	function	if	your
game	was	launched	from	a	lobby	application.

To	illustrate	this	point,	consider	two	players	who	meet	in	a	lobby
application	that	has	DirectPlay	Voice	support.	The	two	players	agree	to
launch	the	game.	After	the	game	is	launched,	the	lobby	application	loses
focus	on	each	player's	computer,	and	each	copy	of	the	game	application
gains	focus.	If	the	game	application	does	not	properly	gain	focus	from	the
lobby	application,	it	is	possible	that	the	lobby	application	can	still	have
focus	while	the	game	application	is	running.

For	example,	this	will	occur	if	the	first	player's	lobby	application	retains
focus	while	the	game	session	is	running	while	the	second	player's	game
session	gains	focus	from	the	lobby	application.	From	the	second	player's
perspective,	the	first	player's	voice	session	has	fallen	back	to	half-duplex.
The	second	player	can	hear	the	first	player,	but	the	first	player	cannot
hear	the	second	player.	From	the	first	player's	perspective,	the	voice
session	has	ended	because	the	second	player	does	not	seem	to	be
speaking.	Also,	the	first	player	does	not	know	that	the	second	player	can
hear	him	or	her.

Note	that	this	behavior	is	by	design.	Consider	the	same	scenario	as
above,	but	when	the	first	player	attempts	to	start	the	game	session	from
the	lobby	application,	there	is	a	problem	and	the	session	fails	to	start.	If
the	second	player's	session	starts	successfully,	that	player	can	hear	the

voice	of	the	first	player	and	the	first	player	can	inform	the	second	player
that	their	game	session	failed.	Both	players	might	then	drop	back	to	the
lobby	and	attempt	to	start	the	session	once	again.

To	handle	capture	focus	properly,	your	game	application	must	set	the
hwndAppWindow	parameter	in	the	DVSOUNDDEVICECONFIG	structure
to	the	window	handle	that	will	have	focus	when	the	game	is	running.	The
DirectPlay	Voice	session	can	then	be	created	through	a	call	to
IDirectPlayVoiceClient::Connect.	The	game	application	must	then	handle
the	DVMSGID_LOSTFOCUS	and	DVMSGID_GAINFOCUS	messages.

See	Sharing	the	Audio	Capture	Device	for	more	information.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Configuring	the	Windows	Sound	Mixer

The	Microsoft®	Windows®	audio	mixer	must	be	correctly	set	up	for
Microsoft	DirectPlay®	Voice	to	function	properly.	This	article	describes
how	to	set	up	the	sound	mixer	to	support	a	DirectPlay	Voice	session.

Selecting	a	DirectPlay	Voice	Device

Configuring	the	Windows	Sound	Mixer	for	Playback

Configuring	the	Windows	Sound	Mixer	for	Recording

Microphone	Boost

Autoconfiguration

Selecting	a	DirectPlay	Voice	Device

On	Windows	XP	and	Windows	Millennium	Edition	(Windows	Me)
systems,	the	Sound	and	Audio	Devices	Control	Panel	application	has	a
Voice	tab.	You	can	use	this	tab	to	select	playback	and	recording	devices
for	DirectPlay	Voice.	If	you	have	multiple	sound	cards	on	your	system,
you	can	select	a	different	sound	card	for	DirectPlay	Voice	transmissions
than	the	sound	card	you	use	for	normal	audio.

Configuring	the	Windows	Sound	Mixer	for	Playback

To	set	up	your	sound	system	for	DirectPlay	Voice	playback,	you	might
have	to	configure	the	Windows	audio	playback	mixer.	You	can	launch	the
playback	mixer	in	several	ways,	including:

Double-click	the	speaker	icon	in	the	status	area	of	the	taskbar.

Launch	the	Voice	Test	wizard	and	click	the	Volume	button	below
the	Playback	box	on	the	microphone	or	speaker	test	pages.
Launch	the	Sound	and	Audio	Devices	Control	Panel	application,
select	the	Audio	Devices	tab,	and	click	the	playback	section's
Volume	button.

The	following	screen	shot	shows	the	Windows	2000	playback	mixer.

To	configure	the	playback	mixer

1.	 From	the	Options	menu,	choose	Properties.

2.	 In	the	Properties	dialog	box	that	appears,	click	Playback.

3.	 At	the	bottom	of	the	dialog	box,	make	sure	all	available	output
lines	are	selected,	as	shown.

4.	 Click	OK	to	display	the	playback	mixer	again.

The	following	screen	shot	shows	the	mixer's	Properties	dialog	box.

The	microphone	has	separate	playback	and	recording	lines.	You	must
disable	microphone	playback	line	or	your	microphone	input	will	be	routed
to	your	speakers	and	DirectPlay	Voice	will	not	be	able	to	record	your
input.

To	disable	the	microphone	playback	line

1.	 Click	OK	on	the	Properties	dialog	box	to	display	the	playback
mixer	again.

2.	 Make	sure	that	the	microphone	section's	Mute	check	box	is
selected.

3.	 If	the	microphone	section	has	a	check	box	labeled	Select,	clear
the	check	box.

Configuring	the	Windows	Sound	Mixer	for	Recording

You	may	also	need	to	manually	configure	the	recording	mixer.	There	are
three	ways	to	launch	the	recording	mixer.

Launch	the	Sound	and	Audio	Devices	Control	Panel	application,
select	the	Audio	Devices	tab,	and	click	the	playback	section's
Volume	button.
Launch	the	Voice	Test	Wizard	and	click	the	Volume	button	below
the	Recording	box	on	either	the	microphone	or	speaker	test
pages.

Launch	the	playback	mixer,	choose	the	Properties	command	on
the	Options	menu,	select	the	Recording	radio	button,	and	click
OK.

	

To	configure	the	recording	settings

1.	 From	the	Options	menu,	choose	Properties.

2.	 Select	Recording.	The	check	boxes	at	the	bottom	of	the	dialog
box	will	show	all	the	available	audio	input	sources	for	your
selected	devices.

3.	 Make	sure	that	all	sources	are	selected,	and	click	OK.	The
recording	mixer	will	then	display	a	volume	control	for	the
microphone	and	all	other	selected	sources.

4.	 Make	sure	that	the	microphone's	Select	check	box	is	selected,
and	all	other	Select	boxes	are	clear.	In	particular,	do	not	select
CD	Audio.	If	CD	Audio	is	selected	and	your	user	is	listening	to	a
CD	while	playing	the	game,	DirectPlay	Voice	will	transmit	the
output	from	the	CD.

The	following	screen	shot	shows	the	Windows	2000	recording	mixer.

Microphone	Boost

Many	sound	cards	have	an	option	called	"Microphone	Boost"	or	"Mic
Boost."	This	feature	boosts	the	input	volume	so	that	weak	input	devices
can	produce	stronger	input.	If	you	determine	that	the	input	level	from	a
system	is	too	low	for	your	voice	session,	you	can	enable	microphone
boost.

To	enable	microphone	boost

1.	 Display	the	recording	mixer,	as	described	in	the	previous	section.

2.	 Enable	the	Advanced	buttons	on	the	mixer	by	choosing	the
Advanced	command	from	the	Options	menu.

3.	 Click	the	microphone	line's	Advanced	button	to	display	the
microphone's	Advanced	Controls	dialog	box.

4.	 Select	the	Microphone	Boost	check	box.

If	microphone	boost	makes	your	input	too	loud,	you	can	use	the	same
procedure	to	disable	microphone	boost.	If	your	sound	card	does	not
support	microphone	boost,	one	or	more	of	the	following	will	be	true.

The	Advanced	command	on	the	recording	mixer's	Options	menu
will	be	unavailable.

The	Advanced	button	in	the	recording	mixer's	microphone	section
will	be	unavailable.

The	Microphone	Boost	check	box	on	the	Advanced	Control
dialog	box	will	be	unavailable.

Autoconfiguration

If	you	set	the	DVSOUNDCONFIG_AUTOSELECT	flag	in	the	dwFlags
member	of	the	DVSOUNDDEVICECONFIG	structure,	DirectPlay	Voice
will	attempt	to	configure	the	recording	portion	of	the	audio	mixer	for	you.
However,	the	attempt	might	fail.	For	example,	DirectPlay	Voice	always
chooses	microphone	0	as	the	input	source.	If	your	user's	system	has
more	than	one	microphone,	autoselection	works	only	if	the	user	has	the
microphone	connected	to	the	microphone	0	input.	To	use	another
microphone	channel,	the	user	must	configure	the	mixer	manually.

Note		To	ensure	that	your	application	works	on	all	systems,	you	should
allow	your	users	to	disable	autoselection	if	necessary	and	configure	the
mixer	manually.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Creating	a	3-D	Voice	Session

You	can	add	extra	realism	to	a	Microsoft®	DirectPlay®	Voice	session	by
making	the	sound	three-dimensional.	Your	players	can	then	use	audio
cues	to	perceive	the	positions	and	movement	of	the	other	players.	The
basis	for	a	3-D	voice	session	is	the	3-D	capabilities	of	Microsoft
DirectSound®.	This	document	discusses	how	to	manage	your	voice
buffers	to	create	a	3-D	voice	session.	For	complete	details	about	how	to
use	the	DirectSound	3-D	application	programming	interface	(API),	see	3-
D	Sound.

Managing	3-D	Voice	Buffers

When	you	receive	a	voice	transmission,	it	is	streamed	into	a	DirectSound
buffer.	By	default,	everything	is	streamed	into	the	main	buffer.	To
implement	3-D	sound,	you	must	have	a	separate	buffer	for	each	distinct
source.	You	can	then	use	the	DirectSound	3-D	API	to	manage	the	buffers
to	create	3-D	sound.

You	can	specify	separate	3-D	buffers	for	individual	players	and	for	groups
of	players.	To	specify	a	3-D	buffer	for	a	particular	player	or	group,	call
IDirectPlayVoiceClient::Create3DSoundBuffer	and	pass	the	method
either	the	player	or	group	DVID.	All	transmissions	from	that	player	or
group	will	then	go	into	the	specified	3-D	buffer.

DirectPlay	Voice	3-D	buffers	have	the	following	characteristics.

If	you	do	not	specify	a	3-D	buffer	for	a	player	or	group,	those
transmissions	will	be	streamed	into	the	main	buffer.

If	you	specify	a	3-D	buffer	for	a	player	or	group,	those
transmissions	will	not	be	streamed	into	the	main	buffer.

You	can	retrieve	the	3-D	buffer	for	the	main	buffer	by	calling
IDirectPlayVoiceClient::Create3DSoundBuffer	with
DVID_REMAINING	as	the	DVID.

A	player's	transmission	can	be	streamed	into	multiple	buffers	that
can	be	managed	separately.	For	instance,	if	a	player	has	a	3-D
buffer	and	is	also	a	member	of	a	group	with	a	3-D	buffer,	the
player's	transmissions	will	be	streamed	into	both	buffers.	For
example,	you	might	have	the	group's	transmissions	coming	from	a
radio	on	a	table.	If	the	player	runs	by	shouting,	you	can	hear	the
player	through	the	radio,	with	a	fixed	position,	as	well	as	from	a
moving	sound	source	as	the	player	runs	by.

You	can	mute	the	main	buffer	by	calling
IDirectPlayVoiceClient::SetClientConfig	and	setting	the

DVCLIENTCONFIG_MUTEGLOBAL	flag	in	the
DVCLIENTCONFIG	structure.	If	the	main	buffer	is	muted,	your
player	will	hear	only	those	voice	streams	that	have	a	3-D	buffer.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Voice	Communication

The	current	trend	toward	team-based	multiplayer	games	makes	player-
to-player	communication	an	essential	part	of	gameplay.	Historically	this
has	been	confined	to	text-based	communication,	where	players	type	out
the	messages	to	their	teammates.	Although	suitable	for	slower,	turn-
based	games,	text-based	communication	is	at	best	an	inconvenience	for
real-time	games.	Not	only	does	it	put	slow	typists	at	a	disadvantage
during	gameplay	but	also	it	is	a	significant	break	in	the	reality	that	games
attempt	to	create	for	the	player.	An	obvious	solution	to	the	problem	is	the
use	of	speech	as	a	means	for	communication.	It	requires	no	training	and
increases	the	immersion	of	the	game	itself.

The	windows	platform	provides	all	the	tools	required	to	provide	real-time
voice	conferencing	to	video	game	developers,	but	it	requires	a	significant
amount	of	effort	on	the	part	of	the	game	developer.	This,	combined	with
the	cost	and	difficulty	of	obtaining	the	rights	to	compression	technology
capable	of	handling	extremely	low	bandwidth	situations,	has	prevented
the	wide-spread	use	of	voice	in	games.

Microsoft®	DirectPlay®	provides	the	game	developer	with	a	robust	real-
time	voice	conferencing	system	that	requires	a	minimal	amount	of	effort
to	use.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Voice	Topologies

Microsoft®	DirectPlay®	Voice	sessions	require	a	DirectPlay	network
session	to	transport	voice	communication.	When	the	network	session	has
been	created,	a	DirectPlay	Voice	object	can	be	created	to	use	one	of
three	topologies.

Forwarding	Server	Voice	Topology

Mixing	Server	Sessions

Peer-to-Peer	Voice	Topology

The	choice	of	topology	is	dependent	on	several	factors,	and	these	factors
are	discussed	in	the	individual	DirectPlay	Voice	topology	topics.	Note	that
not	all	voice	topologies	can	be	transported	over	all	types	of	DirectPlay
networking	sessions.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Forwarding	Server	Voice	Topology

In	a	Microsoft®	DirectPlay®	voice	session	using	a	forwarding	server
topology,	one	computer	in	the	session	acts	as	a	forwarding	server.	Each
client	in	the	voice	session	streams	voice	data	to	the	forwarding	server,
which	then	forwards	the	voice	data	to	all	other	clients	in	the	session.
Each	client	receives	all	incoming	audio	streams	forwarded	from	the
forwarding	server.	Each	client's	computer	then	mixes	the	incoming
streams	and	plays	them	back.

The	outgoing	bandwidth	requirement	on	each	client	in	a	voice	session
using	a	forwarding	server	topology	is	constant	because	there	is	only	one
outgoing	voice	audio	stream.	The	incoming	bandwidth	and	processor
requirements	are	identical	to	the	requirements	of	a	voice	session	using	a
peer-to-peer	topology,	but	they	vary	depending	on	the	number	of
incoming	voice	audio	streams.

The	server	has	much	higher	bandwidth	requirements	than	the	individual
clients	in	a	forwarding	server	DirectPlay	voice	session.	However,	the
processor	requirements	are	not	high	because	no	compression	or
decompression	of	voice	data	occurs	on	the	server.	This	reduced	load	on
the	computer's	processor	also	means	that	an	individual	client's	computer
with	a	high	bandwidth	connection	can	host	the	forwarding	server	without
adversely	affecting	the	performance	of	the	individual	client's	computer	or
the	performance	of	a	game	server	and/or	client	program	running	on	the
same	computer.

Note	that	in	a	voice	session	using	a	peer-to-peer	topology,	the	outgoing
bandwidth	requirements	on	the	individual	clients	are	usually	much	higher

than	the	incoming	bandwidth	requirements.	Therefore,	reducing	the
outgoing	bandwidth	requirement	to	a	single	stream	of	audio	can	result	in
a	significant	reduction	in	total	bandwidth	usage.	For	example,	if	a	client	is
taking	part	in	an	eight-person	voice	session	in	which	all	clients	can	hear
one	another,	the	client	has	seven	outgoing	voice	streams	each	time	voice
data	is	captured	and	transmitted	on	his	or	her	computer.	However,	it	is
rare	that	all	clients	talk	at	once,	so	there	are	most	likely	fewer	than	two	or
three	incoming	voice	streams	at	any	one	time.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Mixing	Server	Sessions

In	mixing	server	sessions,	one	computer	in	the	session	acts	as	a	mixing
server.	Each	client	streams	its	voice	data	to	the	mixing	server.	The	mixing
server	examines	the	targets	of	each	voice	stream,	performs
decompression,	mixing,	and	recompression	as	appropriate	to	generate	a
mixed	stream	of	audio	data	for	each	client.	Each	client	receives	this
single	stream	of	premixed	audio	data	and	plays	it	back.

The	outgoing	bandwidth,	incoming	bandwidth,	and	CPU	requirement	on
the	client	in	a	mixing	server	session	is	easily	predictable	because	each
client	has	only	one	outgoing	stream	of	audio	to	compress	and	send,	and
one	incoming	stream	of	audio	to	decompress	and	play	back.

The	mixing	server	has	much	higher	bandwidth	and	CPU	requirements
than	do	the	clients.	Typically,	the	mixing	server	is	either	a	completely
dedicated	computer,	or	it	shares	a	computer	with	a	dedicated	game
server.

Mixing	server	voice	sessions	do	not	support	3-D	spatialization	of	the
voice	data	through	the	IDirectPlayVoiceClient::Create3DSoundBuffer
method.

You	can	run	mixing	server	voice	sessions	using	either	a	peer-to-peer	or	a
client/server	transport	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Peer-to-Peer	Voice	Topology

In	a	Microsoft®	DirectPlay®	Voice	session	using	a	peer-to-peer	topology,
each	voice-session	client	streams	its	voice	audio	data	directly	to	every
other	voice-session	client.	Each	client	receives	all	individual	incoming
voice	audio	streams,	mixes	the	received	streams,	and	plays	the	resulting
mixed	signal	on	the	client's	computer.

The	advantage	of	using	a	peer-to-peer	topology	is	that	no	computer	in
the	voice	session	requires	high	bandwidth	or	processor	power.	However,
the	bandwidth	and	processor	usage	on	each	client's	computer	varies
according	to	the	number	of	incoming	and	outgoing	audio	streams.	The
number	of	outgoing	voice	audio	streams	is	equal	to	the	number	of	targets
participating	in	the	voice	session,	unless	the	network	provider	is	capable
of	true	multicasting,	as	noted	below.	The	number	of	incoming	voice	audio
streams	depends	on	how	many	other	voice-session	clients	are	targeting
the	client	in	question	and	also	on	how	many	of	the	other	clients	are
speaking.

As	a	game	design	consideration,	it	is	not	useful	for	a	voice-session	client
to	be	the	target	of	more	than	about	six	to	eight	other	clients.	If	all	six	to
eight	clients	are	speaking	at	once,	the	conversation	can	become
confusing,	and	communication	between	clients	can	be	difficult.

If	the	DirectPlay	network	session	supports	true	multicasting,	the	number
of	outgoing	voice	audio	streams	can	be	reduced	considerably.	If	all
clients	are	part	of	a	multicast	network	and	the	target	of	the	voice	stream
is	a	DirectPlay	group,	there	is	only	one	outgoing	stream.

A	DirectPlay	voice	session	using	a	peer-to-peer	voice	topology	supports
3-D	spatialization	of	the	voice	data	using	the
IDirectPlayVoiceClient::Create3DSoundBuffer	method.

It	is	important	to	note	that	a	voice	session	using	a	peer-to-peer	voice
topology	cannot	be	used	if	the	network	transport	is	a	client/server
session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Fast	User	Switching

Unlike	previous	versions	of	Microsoft®	Windows®,	Windows	XP	allows
multiple	users	to	log	on	simultaneously.	Each	user	account	has	its	own
running	applications	and	settings.	The	current	user	does	not	need	to	log
off	in	order	to	switch	to	a	new	user.	The	fast	user	switching	feature	of
Windows	XP	basically	disconnects	the	current	user	account	and	brings
the	newly	connected	user	account	to	the	foreground.	The	disconnected
user's	applications	and	desktop	settings	remain	loaded	and	running	in
the	background.

While	fast	user	switching	offers	a	new	level	of	convenience	for	users,	it
must	be	handled	properly.	Applications	that	use	shared	resources	need
to	ensure	they	don't	interfere	with	the	currently	connected	application.
Microsoft	DirectPlay®	Voice	applications	use	shared	resources	and	have
the	potential	to	cause	problems	when	users	switch.	In	particular,	voice
transmissions	from	the	disconnected	DirectPlay	Voice	application	could
still	be	audible,	interfering	with	the	current	user's	applications.	To	prevent
such	problems,	DirectPlay	Voice	automatically	mutes	voice	transmissions
when	a	user's	account	is	disconnected	and	unmutes	transmissions	when
the	account	is	connected	again.	This	feature	relieves	your	DirectPlay
Voice	application	of	the	need	to	detect	and	handle	a	user	switch.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Handling	Voice	Client	Messages

This	document	describes	how	to	handle	messaging	for	a	client	of	a
Microsoft®	DirectPlay®	Voice	session.	For	a	discussion	of	host-related
messaging,	see	Handling	Voice	Host	Messages.	For	a	discussion	of
general	messaging	issues,	see	Handling	DirectPlay	Messaging.

General	Voice	Messaging	Considerations

Startup	Messages

Messaging	During	Normal	Game	Play

Session	Termination	Messages

General	Voice	Messaging	Considerations

Many	of	the	messages	used	by	DirectPlay	Voice	are	similar	to	those
used	by	the	DirectPlay	core	application	programming	interface	(API).
However,	be	aware	that	similar	core	and	voice	messages	sometimes
differ	in	their	usage.

For	example,	when	you	connect	to	either	a	core	or	voice	session,
DirectPlay	returns	a	completion	message	with	the	results	of	your
connection	attempt.	With	a	core	session,	you	may	get	a
DPN_MSGID_CONNECT_COMPLETE	completion	message	under	some
circumstances,	even	when	you	connect	synchronously.	With	DirectPlay
Voice	however,	you	will	never	get	a	completion	message	if	you	attempt	to
connect	synchronously	to	a	voice	session.	You	get	a
DVMSGID_CONNECTRESULT	completion	message	only	if	you	connect
to	a	voice	session	asynchronously.

One	notable	difference	between	core	and	voice	message	handling	is	that
your	core	message	handler	receives	every	core	message.	With
DirectPlay	Voice,	you	have	the	option	of	specifying	a	list	of	messages
that	you	want	to	receive	by	calling	IDirectPlayVoiceClient::SetNotifyMask.
You	will	receive	only	those	messages	that	are	on	the	notification	list	that
you	pass	to	this	method	through	the	pdwMessageMask	parameter.	This
list	must	contain	at	least	one	message.	You	cannot	use
IDirectPlayVoiceClient::SetNotifyMask	to	disable	all	DirectPlay	Voice
messages.

Note		DirectPlay	and	DirectPlay	Voice	sessions	are	separate	entities.
While	there	are	guarantees	about	message	order	for	each	interface,
there	are	no	guarantees	about	message	order	between	interfaces.

Startup	Messages

DirectPlay	Voice	is	an	optional	addition	to	a	regular	DirectPlay	session.	It
enables	voice	communication	between	the	session	members.	Before	you
can	become	a	client	of	a	voice	session,	you	must	have	created	the
appropriate	DirectPlay	object	and	be	connected	to	a	regular	peer-to-peer
or	client/server	session.	See	Peer-to-Peer	Sessions	or	Client/Server
Sessions	for	details.

Every	voice	session	must	have	a	host.	If	you	are	in	a	peer-to-peer
session,	one	of	the	members	must	be	selected	as	the	voice	session	host.
The	voice	host	need	not	be	the	same	member	as	the	one	that	is	hosting
the	core	session.	If	you	are	in	a	client/server	session,	the	server	must
host	the	voice	session	as	well	as	the	core	session.	When	a	session	host
has	been	determined,	the	host	must	start	the	voice	session	by	creating	a
voice	server	object	and	calling	IDirectPlayVoiceServer::StartSession.
When	the	session	has	been	started,	clients	can	connect.

This	section	outlines	the	messages	that	a	voice	client	receives	when
joining	a	session.

DVMSGID_CONNECTRESULT

Once	the	session	is	set	up,	clients	must	call
IDirectPlayVoiceClient::Connect	to	connect	to	the	voice	session.	If
you	call	this	method	asynchronously	and	it	returns	DV_PENDING,
you	will	receive	a	DVMSGID_CONNECTRESULT	message	with
the	result	of	the	connection	attempt.	This	message	can	arrive
before	or	after	IDirectPlayVoiceClient::Connect	returns
DV_PENDING.	If	you	call	the	method	synchronously,	you	will	not
receive	a	DVMSGID_CONNECTRESULT	message.	The	result	of

a	synchronous	connection	attempt	is	indicated	by	the	method's
return	value.

DVMSGID_CREATEVOICEPLAYER

Voice	clients	receive	this	message	only	if	they	are	a	member	of	a
peer-to-peer	voice	session.	After	you	are	connected	and	have
processed	DVMSGID_CONNECTRESULT,	you	will	receive	a
DVMSGID_CREATEVOICEPLAYER	message	for	yourself	and
each	member	of	the	voice	session.	The	structure	that
accompanies	this	message	contains	the	DVID	value	that	you	will
use	to	identify	the	player	during	the	session.	The	dwFlags
member	of	this	structure	contains	two	flags	that	describe	the
player.	If	the	player	is	the	local	player,	the
DVPLAYERCAPS_LOCAL	flag	will	be	set.	If	the	player	is	half-
duplex,	the	DVPLAYERCAPS_HALFDUPLEX	flag	will	be	set.

If	you	want	to	create	a	voice	session	player	context	value	for	the
player,	you	must	do	so	when	you	handle	this	message.	For	more
information	about	player	context	values,	see	Using	Player	Context
Values.	You	will	receive	no	messages	associated	with	a	player
until	you	have	processed	the	corresponding
DVMSGID_CREATEVOICEPLAYER	message.

Messaging	During	Normal	Game	Play

Once	you	have	successfully	connected,	there	are	a	number	of	messages
that	you	might	receive	during	the	course	of	a	voice	session.	The	list	of
possible	messages	depends	on	whether	you	are	in	a	peer-to-peer	or
client/server	voice	session.	As	a	general	rule,	voice	clients	in	a
client/server	voice	session	do	not	receive	any	messages	that	are
associated	with	a	particular	player.

Common	Voice	Messages

The	following	messages	can	be	received	by	clients	of	both	types	of	voice
sessions.

DVMSGID_GAINFOCUS	and	DVMSGID_LOSTFOCUS

These	messages	let	you	know	whether	you	have	capture	focus
and	are	capturing	audio.	When	you	gain	capture	focus	and	audio
capture	starts,	you	receive	a	DVMSGID_GAINFOCUS	message.
When	you	lose	capture	focus	and	audio	capture	stops,	you	receive
a	DVMSGID_LOSTFOCUS	message.	Both	messages	are	simple
notifications	and	do	not	have	an	associated	structure.	For	more
information	about	capture	focus,	see	Capture	Focus	and
Implementing	a	Callback	Function	in	DirectPlay	and	DirectPlay
Voice.

Note		Gaining	or	losing	capture	focus	does	not	necessarily
indicate	the	beginning	or	end	of	transmission.	The	beginning	or
end	of	transmission	is	indicated	by	the
DVMSGID_RECORDSTART	and	DVMSGID_RECORDSTOP
messages.

DVMSGID_RECORDSTART	and	DVMSGID_RECORDSTOP

These	messages	notify	you	when	the	local	player	is	transmitting.

You	receive	a	DVMSGID_RECORDSTART	message	when
transmission	starts	and	a	DVMSGID_RECORDSTOP	when
transmission	stops.	The	structure	that	accompanies	these
messages	contains	the	voice	player	context	value	for	the	local
player.	What	causes	transmission	to	start	and	stop	depends	on
whether	you	are	using	push-to-talk	or	voice	activation	transmission
control	and	whether	your	application	has	gained	or	lost	audio
capture	focus.

The	simplest	case	is	when	audio	capture	focus	does	not	change.
In	that	case,	voice	activated	transmission	starts	when	the	user's
voice	exceeds	the	activation	threshold.	It	stops	when	the	voice
drops	below	the	activation	threshold.	With	push-to-talk
transmission,	the	user	starts	and	stops	transmission	manually,
typically	by	pushing	and	releasing	a	button.

Even	if	the	player	has	exceeded	the	voice	activation	threshold	or
pushed	push-to-talk,	the	application	must	have	capture	focus	in
order	to	transmit.	If	the	player	is	talking	but	the	application	does
not	have	audio	capture	focus,	transmission	begins	only	when	the
application	gains	audio	capture	focus.	You	will	receive	a
DVMSGID_GAINFOCUS	message	followed	by	a
DVMSGID_RECORDSTART	message	at	that	time.	If	you	lose
audio	capture	focus	while	the	player	is	still	talking,	transmission
immediately	stops	and	you	receive	a	DVMSGID_LOSTFOCUS
message	followed	by	a	DVMSGID_RECORDSTOP	message.	If
you	get	audio	capture	focus	back	and	the	player	is	still	talking,
transmission	will	start	again.

You	normally	receive	a	DVMSGID_RECORDSTOP	message	when
transmission	stops,	regardless	of	the	reason.	However,	if	you

disconnect	from	the	voice	session	while	you	are	transmitting,	you
are	not	guaranteed	to	receive	a	DVMSGID_RECORDSTOP
message.

For	details	about	capture	focus,	see	Capture	Focus.	For	details
about	transmission	control,	see	Transmission	Control.

DVMSGID_INPUTLEVEL	and	DVMSGID_OUTPUTLEVEL

The	DVMSGID_INPUTLEVEL	message	gives	you	the	current
audio	input	level	from	your	player's	microphone.	The
DVMSGID_OUTPUTLEVEL	message	gives	you	the	current	audio
output	level	from	your	player's	speakers	or	headphones.	These
messages	are	sent	at	a	regular	time	interval.	They	start	after	you
have	processed	a	DVMSGID_RECORDSTART	message	and	stop
after	you	process	the	corresponding	DVMSGID_RECORDSTOP
message.	To	specify	the	rate	at	which	the	messages	are	sent,	set
dwNotifyPeriod	member	of	the	DVCLIENTCONFIG	structure	to
an	appropriate	time	interval.	To	suppress	these	messages,	set
dwNotifyPeriod	to	0.

Peer-to-Peer	Messages

The	following	messages	can	be	received	only	by	clients	of	peer-to-peer
voice	sessions.

DVMSGID_CREATEVOICEPLAYER	and
DVMSGID_DELETEVOICEPLAYER

You	receive	a	DVMSGID_CREATEVOICEPLAYER	message	each
time	a	player	is	added	to	the	voice	session.	You	should	handle	this
message	in	the	same	way	as	the	player	creation	messages	that
you	received	when	you	connected	to	the	session.	When	a	player

leaves	the	voice	session,	you	receive	a
DVMSGID_DELETEVOICEPLAYER	message.	You	will	receive	a
DVMSGID_DELETEVOICEPLAYER	message	for	every
DVMSGID_CREATEVOICEPLAYER	message.	When	you	have
processed	a	DVMSGID_DELETEVOICEPLAYER	message,	you
will	receive	no	further	messages	for	that	player.

DVMSGID_SETTARGETS

The	DVMSGID_SETTARGETS	message	is	sent	when	the	list	of
voice	targets	changes.	It	is	generated	any	time	a	voice	client	calls
IDirectPlayVoiceClient::SetTransmitTargets	or	a	voice	host	calls
IDirectPlayVoiceServer::SetTransmitTargets.

DVMSGID_PLAYERVOICESTART	and
DVMSGID_PLAYERVOICESTOP

The	DVMSGID_PLAYERVOICESTART	message	is	sent	when	you
start	to	receive	a	transmission	from	a	player.	If	level	notification	is
enabled,	you	will	start	receiving
DVMSGID_PLAYEROUTPUTLEVEL	messages.	The
DVMSGID_PLAYERVOICESTOP	messages	sent	when	that
player's	transmission	stops.	When	you	have	processed	this
messages,	the	DVMSGID_PLAYEROUTPUTLEVEL	messages
stop.	If	audio	capture	focus	changes,	these	messages	are	handled
in	essentially	the	same	way	as	for	DVMSGID_RECORDSTART
and	DVMSGID_RECORDSTOP.	You	will	not	receive	these
messages	for	a	player	until	you	have	processed	the	corresponding
DVMSGID_CREATEVOICEPLAYER	message.

DVMSGID_PLAYEROUTPUTLEVEL

The	DVMSGID_PLAYEROUTPUTLEVEL	gives	you	the	current

audio	output	level	on	your	player's	speakers	or	headphones	for	a
particular	player's	transmission.	These	messages	are	sent	at	a
regular	time	interval.	They	start	after	you	have	processed	a
DVMSGID_RECORDSTART	message	and	stop	after	you	process
the	corresponding	DVMSGID_RECORDSTOP	message.	To
specify	the	rate	at	which	the	messages	are	sent,	set
dwNotifyPeriod	member	of	the	DVCLIENTCONFIG	structure	to
an	appropriate	time	interval.	To	suppress	these	messages,	set
dwNotifyPeriod	to	0.

DVMSGID_LOCALHOSTSETUP

When	the	voice	host	migrates,	the
DVMSGID_LOCALHOSTSETUP	message	is	sent	to	the	new
voice	host.	This	message	allows	the	new	voice	host	to	set	the
callback	function	and	context	value	that	will	be	used	when	creating
the	new	voice	server	object.	When	your	application	returns	from
handling	this	message,	you	will	receive	a
DVMSGID_HOSTMIGRATED	message.

DVMSGID_HOSTMIGRATED

When	the	host	migrates,	a	DVMSGID_HOSTMIGRATED	message
is	sent	to	all	remaining	members	of	the	voice	session.	The
associated	structure	contains	the	DVID	of	the	new	voice	host.
When	the	host	migrates,	DirectPlay	Voice	automatically	creates	a
new	voice	server	object.	If	your	application	is	the	new	voice	host,
the	DVMSGID_HOSTMIGRATED	message's	structure	will	also
contain	a	pointer	to	the	voice	server's	IDirectPlayVoiceServer
interface.	If	you	want	to	use	this	interface,	you	must	call	the
interface's	AddRef	method	to	increment	the	interface's	reference
count.	If	you	have	called	AddRef	on	IDirectPlayVoiceServer,	be

sure	to	call	Release	when	you	are	finished	with	the	interface.

Session	Termination	Messages
DVMSGID_DISCONNECTRESULT

Disconnect	from	a	voice	session	by	calling
IDirectPlayVoiceClient::Disconnect.	If	you	call	this	method
asynchronously	and	it	returns	DV_PENDING,	you	will	receive	a
DVMSGID_DISCONNECTRESULT	to	notify	you	of	the	outcome.
This	message	can	arrive	before	or	after
IDirectPlayVoiceClient::Disconnect	returns.	The
DVMSGID_DISCONNECTRESULT	message	is	not	sent	if	you	call
IDirectPlayVoiceClient::Disconnect	synchronously.	The	result	of
a	synchronous	disconnection	attempt	is	indicated	by	the	method's
return	value.

For	peer-to-peer	voice	sessions,	the	client	will	receive	a
DVMSGID_DELETEVOICEPLAYER	for	every	remaining	player	in
the	sessionbefore	the	client	receives
DVMSGID_DISCONNECTRESULT.

DVMSGID_SESSIONLOST

If	the	session	terminates	unexpectedly	because	of	an
unrecoverable	error,	clients	will	receive	a
DVMSGID_SESSIONLOST	message.	The	reason	for	the	failure	is
specified	in	the	hrResult	member	of	the	associated	structure.

For	peer-to-peer	voice	sessions,	the	client	will	receive	a
DVMSGID_DELETEVOICEPLAYER	for	every	remaining	player	in
the	sessionbefore	the	client	receives	DVMSGID_SESSIONLOST.

DVMSGID_DELETEVOICEPLAYER

For	peer-to-peer	sessions,	you	will	receive	a
DVMSGID_DELETEVOICEPLAYER	for	every	player	remaining	in
the	voice	session	when	you	are	disconnected,	regardless	of
whether	you	call	IDirectPlayVoiceClient::Disconnect	or	the
session	is	lost.	This	ensures	that	each
DVMSGID_CREATEVOICEPLAYER	that	you	receive	has	a
corresponding	DVMSGID_DELETEVOICEPLAYER	message.	You
will	receive	all	DVMSGID_DELETEVOICEPLAYER	messages
before	the	disconnect	is	completed.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Handling	Voice	Host	Messages

Every	Microsoft®	DirectPlay®	Voice	session	must	have	a	host	that	is
responsible	for	starting,	managing,	and	terminating	the	session.	A	voice
host	must	create	a	voice	server	object	(CLSID_DirectPlayVoiceServer)
and	manage	the	voice	session	through	that	object's
IDirectPlayVoiceServer	interface.	Like	a	voice	client,	a	voice	host	must
have	a	message	handler	and	will	receive	messages	during	a	session.	A
voice	host	message	handler	can	receive	any	of	the	following	three
messages.

DVMSGID_CREATEVOICEPLAYER

DVMSGID_DELETEVOICEPLAYER

DVMSGID_SESSIONLOST

Unlike	core	DirectPlay	messaging,	none	of	these	messages	are	unique	to
a	voice	session	host.	Depending	on	the	type	of	session,	these	messages
may	also	be	received	by	voice	client	message	handlers.	This	document
gives	a	brief	description	of	how	a	voice	session	host	handles	messaging.
For	specific	details	on	how	to	handle	these	messages,	see	Handling
Voice	Client	Messages.	For	a	discussion	of	general	messaging	issues,
see	Handling	DirectPlay	Messaging.

Messaging	During	Normal	Game	Play

A	client/server	voice	host	will	normally	receive	the	following	messages
after	the	voice	session	starts.

DVMSGID_CREATEVOICEPLAYER

You	will	receive	a	DVMSGID_CREATEVOICEPLAYER	message
every	time	a	player	joins	your	voice	session.

DVMSGID_DELETEVOICEPLAYER

You	will	receive	a	DVMSGID_DELETEVOICEPLAYER	message
every	time	a	player	leaves	your	voice	session.

Session	Termination	Messages

A	client/server	voice	host	may	receive	one	or	more	of	the	following
messages	when	the	voice	session	terminates.

DVMSGID_SESSIONLOST

You	will	receive	a	DVMSGID_SESSIONLOST	message	if	the
underlying	core	session	is	disconnected.	For	example,	the	core
session	will	be	disconnected	when	the	underlying	DirectPlay	peer
or	server	transport	object	is	closed,	or	when	your	host	is
disconnected	from	the	network.

DVMSGID_DELETEVOICEPLAYER

You	will	receive	one	DVMSGID_DELETEVOICEPLAYER	message
for	each	client	remaining	in	the	session	when	the	voice	session	is
terminated.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Jitter	Buffers

Microsoft®	DirectPlay®	Voice	features	a	jitter	buffer,	an	adaptive
buffering	algorithm	that	provides	optimal	voice	quality	with	the	least
amount	of	latency.

On	busy	networks,	individual	packets	of	voice	data	information	might
arrive	in	a	different	sequence	from	that	in	which	they	were	encoded	on
the	host	computer.	Because	voice	data	is	sequential	in	nature,	these
incoming	packets	must	be	queued	for	a	time	so	that	delayed	packets
have	an	opportunity	to	arrive	and	be	played	back	in	order.

If	the	jitter	buffer	is	set	to	maximize	the	quality	of	voice	communication,	it
takes	longer	for	the	required	number	of	voice	packets	to	arrive	and	be
queued	for	play.	The	result	is	voice	latency,	and	the	effect	is	that	voice
communication	is	not	heard	in	real	time.	Instead,	the	voice	data	might	be
heard	anywhere	from	a	fraction	of	a	second	to	several	seconds	after	it
was	recorded.	This	can	introduce	problems	during	cooperative	game	play
because	events	can	occur	in	the	game	but	players	will	not	be	able	to
communicate	information	based	on	those	events	in	real	time.	For
example,	if	a	player	in	a	first-person	shooter	is	about	to	be	attacked	from
behind	and	a	teammate	attempts	to	warn	the	player,	the	voice
communication	might	not	be	heard	until	after	the	player	has	been
attacked.

If	the	jitter	buffer	is	set	to	a	reduce	latency,	the	number	of	packets
required	to	fill	the	queue	is	reduced.	However,	it	is	possible	that	not	all
sequential	packets	will	arrive	in	time	and,	as	a	result,	voice	data	will	be
missing	from	the	buffer	when	it	is	played.	The	voice	communication	will
be	heard	much	closer	to	the	actual	time	it	was	recorded.	However,	it	will

have	a	"broken-up"	quality.

The	DirectPlay	jitter	buffer	uses	two	methods	to	determine	how	to	provide
the	best	quality	of	voice	communication	with	the	least	amount	of	latency.
First,	network	conditions	are	monitored	to	determine	the	amount	of	lag	or
network	congestion.	The	size	of	the	jitter	buffer,	or	queue,	is	then
dynamically	sized	to	keep	latency	as	low	as	possible	while	providing	the
least	amount	of	voice	break	up.

The	default	behavior	of	DirectPlay	Voice	jitter	buffer	is	to	automatically
adjust	to	network	conditions.	You	can	manually	adjust	how	closely	the
algorithm	tracks	network	conditions	using	the	dwBufferAggressiveness
and	dwBufferQuality	members	of	the	DVCLIENTCONFIG	structure.	The
higher	the	level	of	"aggressiveness,"	the	more	closely	the	algorithm
monitors	network	conditions.	In	general,	the	higher	the	quality	value,	the
higher	the	quality	of	the	voice,	but	the	higher	the	latency	as	well.	The
lower	the	quality	value,	the	lower	the	latency	but	the	lower	the	quality	of
the	voice.	You	can	set	these	two	members	when	you	call
IDirectPlayVoiceClient::Connect	to	connect	to	a	session,	and	at	any	time
during	the	session	by	calling	IDirectPlayVoiceClient::SetClientConfig.

It	is	important	to	choose	an	appropriate	level	of	aggressiveness	for
network	conditions	when	your	game	application	is	running	because
selecting	a	high	level	of	aggressiveness	during	times	of	steady	network
performance	can	cause	the	algorithm	to	misinterpret	a	transitory	problem
and	overcompensate	for	a	problem	that	might	not	exist.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Sharing	the	Audio	Capture	Device

The	most	recent	versions	of	Microsoft®	Windows®,	Windows	Millennium
Edition	(Windows	Me),	and	Windows	XP	allow	the	audio	capture	device
to	be	shared	between	different	processes.	However,	in	Windows	95,
Windows	98,	and	Windows	2000	operating	systems,	the	audio	capture
device	is	a	shared	resource	and	can	be	opened	by	only	one	process	at	a
time.	To	use	audio	capture	on	these	operating	systems,	your	application
must	be	designed	to	effectively	handle	resource	ownership	and
coordination	issues.	This	document	discusses	how	multiple	Microsoft
DirectPlay®	Voice	applications	can	share	the	same	audio	capture	device
on	any	Windows	operating	system.

Coordinating	Shared	Resources

Resource	ownership	becomes	a	problem	when	a	physical	resource	such
the	audio	capture	device	is	a	shared	resource.	If	one	application	owns
the	shared	audio	capture	device,	other	applications	cannot	open	it.	In	the
past,	this	limitation	rarely	posed	problems	because	few	applications	used
audio	capture.	However,	the	increasing	popularity	of	technologies	such
as	voice	recognition	means	that	applications	can	no	longer	assume	that
they	can	have	exclusive	ownership	of	the	audio	capture	device.	For
instance,	a	lobby	operator	might	want	to	implement	a	voice	chat	feature
to	help	clients	set	up	game	sessions.	However,	if	the	lobby	client
application	owns	the	audio	capture	device,	the	game	application	will	not
be	able	to	use	audio	capture	and	its	voice	features	will	be	effectively
disabled.

Resource	coordination	is	the	process	by	which	two	or	more	applications
manage	ownership	of	a	shared	resource.	For	example,	if	two	voice
communication	applications	are	running,	the	foreground	application	is
typically	the	only	application	that	needs	the	audio	capture	device.	When
focus	changes,	ownership	of	the	audio	capture	device	needs	to	shift	to
the	new	foreground	application.	For	instance,	after	a	group	of	players
have	finished	using	a	lobby's	voice	chat	feature	to	set	up	their	session,
they	will	launch	their	game	applications.	At	that	point,	the	game
application	moves	to	the	foreground	and	acquires	ownership	of	the	audio
capture	device	for	game-related	voice	features.

DirectPlay	Voice	handles	the	problem	of	sharing	the	audio	capture	device
through	a	feature	called	capture	focus.	Capture	focus	operates	on	a	per-
device	basis,	and	allows	multiple	DirectPlay	Voice	applications	to	share	a
single	audio	capture	device	regardless	of	which	version	of	Windows	is

installed	on	the	system.	As	long	as	capture	focus	is	enabled,	any	number
of	DirectPlay	Voice	application	instances	can	have	the	same	audio
capture	device	open.	Capture	focus	also	provides	a	way	for	DirectPlay
Voice	applications	to	coordinate	their	use	of	the	audio	capture	device.
Capture	focus	is	not	available	to	applications	that	are	not	using
DirectPlay	Voice.

Using	Capture	Focus

DirectPlay	Voice	automatically	coordinates	the	use	of	the	audio	capture
device	for	all	DirectPlay	Voice	applications	that	have	enabled	capture
focus.	If	multiple	DirectPlay	Voice	applications	are	running	with	capture
focus	enabled,	focus	is	normally	coordinated	in	the	following	way.

The	application	whose	window	is	in	the	foreground	has	capture
focus	and	can	capture	audio.

An	application	retains	capture	focus	until	another	DirectPlay	Voice
application	that	has	enabled	capture	focus	gains	the	foreground.

None	of	the	other	applications	can	capture	audio	until	they	acquire
capture	focus.

The	shift	in	capture	focus	normally	occurs	after	the	shift	in	window	focus.
Typically,	your	application	will	acquire	capture	focus	one	to	two	seconds
after	your	window	gains	the	foreground.

Capture	focus	is	enabled	by	default.	To	disable	capture	focus,	you	must
set	the	DVSOUNDCONFIG_NOFOCUS	flag	in	the	dwFlags	member	of
the	DVSOUNDDEVICECONFIG	structure	when	you	call
IDirectPlayVoiceClient::Connect	to	connect	to	a	voice	session.

Note		Use	of	the	DVSOUNDCONFIG_NOFOCUS	flag	is	not
recommended.	If	you	set	this	flag	and	an	instance	of	your	application
successfully	opens	the	audio	capture	device,	no	other	DirectPlay	Voice
applications	will	be	able	to	use	that	device.

To	specify	which	window	you	want	DirectPlay	Voice	to	use	for	focus
determination,	assign	its	window	handle	to	the	hwndApp	member	of	the
DVSOUNDDEVICECONFIG	structure	when	you	connect	to	the	voice
session.	You	should	use	the	window	handle	of	your	application's	top-level
window	for	focus	determination.	Do	not	use	the	desktop	window.	Doing

so	may	lead	to	inconsistent	determination	of	focus.

When	capture	focus	shifts,	DirectPlay	sends	a	DVMSGID_LOSTFOCUS
message	to	the	application	that	has	lost	focus.	When	an	application
receives	this	message,	audio	capture	stops	until	the	application	regains
focus.	DirectPlay	sends	a	DVMSGID_GAINFOCUS	message	to	the
application	that	has	gained	focus.	This	message	indicates	that	the
application	has	started	capturing	audio.	It	will	continue	to	do	so	until	it
loses	focus	to	another	application.

Note		This	document	describes	how	to	share	capture	focus	between
different	processes.	However,	it	is	possible	to	share	capture	focus	among
multiple	instances	within	a	single	process	if	each	instance	has	a	unique
window	handle.

Strict	Mode

By	default,	your	application	loses	capture	focus	only	if	another	capture
focus-enabled	DirectPlay	Voice	application	gains	the	foreground.	Your
application	can	retain	capture	focus	even	if	it	is	no	longer	the	foreground
application.	It	must	only	be	higher	in	the	z-order	than	any	other	capture
focus-enabled	application.	If	you	want	your	application	to	have	capture
focus	only	when	it	is	the	foreground	application,	specify	strict	mode.	In
strict	mode,	a	DirectPlay	Voice	application	must	be	active	and	at	the	top
of	the	z-order	in	order	to	have	capture	focus.	If	it	loses	that	status	to	any
other	application,	audio	capture	will	cease.	To	specify	strict	mode,	set	the
DVSOUNDCONFIG_STRICTFOCUS	flag	in	the	dwFlags	member	of	the
DVSOUNDDEVICECONFIG	when	you	connect	to	the	voice	session.

Muting	Capture	Focus

You	can	give	up	capture	focus	programmatically	by	muting	audio	capture.
To	mute	audio	capture,	call	IDirectPlayVoiceClient::SetClientConfig,	and
set	the	DVCLIENTCONFIG_RECORDMUTE	flag	in	the	dwFlags
member	of	the	DVCLIENTCONFIG	structure.	When	you	mute	audio
capture,	your	application	loses	capture	focus	and	the	last	application	that
had	capture	focus	gains	it	again.	If	no	other	application	has	capture	focus
enabled,	DirectPlay	stops	audio	capture.	You	can	unmute	audio	capture
and	attempt	to	regain	capture	focus	by	calling
IDirectPlayVoiceClient::SetClientConfig	without	the
DVCLIENTCONFIG_RECORDMUTE	flag.	However,	this	action	does	not
necessarily	return	capture	focus	to	your	application.

If	yours	is	the	only	capture	focus-enabled	application,	you	will
immediately	regain	capture	focus.

If	your	application	is	higher	in	the	z-order	than	any	other	capture
focus-enabled	application,	you	will	immediately	regain	capture
focus	even	if	you	are	not	the	foreground	application.	In	particular,
when	you	mute	audio	capture,	capture	focus	often	passes	an
application	application	below	yours	in	the	z-order.	If	that	order	does
not	change,	you	will	regain	capture	focus	when	you	unmute	audio
capture.

If	capture	focus	has	passed	to	another	capture	focus-enabled
application	that	is	higher	than	yours	in	the	z-order,	you	do	not
immediately	regain	capture	focus.	Your	application	must	become
the	foreground	application	in	order	to	regain	capture	focus.

If	you	are	in	strict	mode,	you	will	regain	capture	focus	only	if	your
application	is	at	the	top	of	the	z-order.	Your	application	must
become	the	foreground	application	in	order	to	regain	capture
focus.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Transmission	Control

To	keep	the	performance	requirements	of	Microsoft®	DirectPlay®	Voice
low,	voice	data	should	be	transmitted	only	when	the	user	is	speaking.
There	are	three	ways	to	control	voice	data	transmission.

Push-to-Talk

Manual	Voice	Activation

Automatic	Voice	Activation

You	select	which	transmission	control	method	to	use	when	you	call
IDirectPlayVoiceClient::Connect	to	connect	to	a	voice	session.	To	specify
the	type	of	transmission	control	you	want	to	use,	set	the	appropriate	flag
in	the	DVCLIENTCONFIG	structure's	dwFlags	member.	You	can	change
the	method	during	the	session	by	calling
IDirectPlayVoiceClient::SetClientConfig	and	changing	the	flag	setting.

Push	to	Talk

Push-to-talk	transmission	control	is	analogous	to	pushing	the	Talk	button
on	a	two-way	radio.	It	adds	reality	to	certain	game	genres	such	as	first-
person	shooters.	Push-to-talk	requires	users	to	actively	select	when	they
want	to	transmit	voice	data.	There	is	no	danger	that	anything	besides
voice	data	will	activate	transmission.	In	addition,	requiring	users	to
actively	select	when	they	want	to	speak	reduces	the	number	of	users
speaking	at	once.

Push-to-talk	transmission	control	requires	more	design	and	development
than	voice	activation.	In	particular,	you	must	have	some	way	of	detecting
when	the	user	has	chosen	to	start	transmitting,	typically	by	pushing	a
controller	button	or	a	key	on	the	keyboard.	When	you	detect	that	the	user
wants	to	start	talking,	you	must	start	transmission	by	calling
IDirectPlayVoiceClient::SetTransmitTargets,	and	provide	an	array	of
target	identifiers	(IDs)	that	will	receive	the	transmission.	When	you	detect
that	the	user	is	finished,	stop	transmission	by	calling
IDirectPlayVoiceClient::SetTransmitTargets	again,	with	the	target
array	set	to	NULL	and	the	number	of	targets	set	to	0.

Push-to-talk	is	the	default	transmission	control	method.	It	is	enabled
unless	you	explicitly	select	voice	activation	by	setting	the
DVCLIENTCONFIG_AUTOVOICEACTIVATED	or
DVCLIENTCONFIG_MANUALVOICEACTIVATED	flag	in	the
DVCLIENTCONFIG	structure.

Voice	Activation

With	voice	activated	transmission	control,	the	microphone	input	is
constantly	analyzed	to	determine	if	the	user	is	speaking.	When	the	input
exceeds	a	threshold	level,	voice	activation	is	triggered,	and	the	user
begins	transmitting.	Ideally,	transmission	starts	when	the	user	starts
speaking,	and	stops	when	the	user	finishes.

Voice	activation	is	simpler	for	the	user	than	push-to-talk,	because	the
user	must	only	speak	into	the	microphone.	It	is	also	more	easily	coded
because	you	do	not	need	to	detect	when	the	user	wants	to	start	or	stop
transmitting.	You	specify	voice	activation	when	you	connect,	and
transmission	control	is	handled	by	the	system	from	that	point	on.
However,	one	drawback	of	voice	activation	is	that	it	can	result	in
unwanted	transmissions.	In	addition	to	speech,	transmission	can	be
triggered	by	sounds	such	as	the	user	breathing	directly	on	the
microphone,	high	levels	of	ambient	sound	in	a	noisy	environment,	or	a
set	of	external	speakers	playing	the	game's	audio	background.	Low-
quality	microphones	can	increase	the	probability	of	unwanted
transmission.

Voice	activation	can	be	either	automatic	or	manual.	To	specify	one	of
these	modes,	set	the	DVCLIENTCONFIG_AUTOVOICEACTIVATED	or
DVCLIENTCONFIG_MANUALVOICEACTIVATED	flag,	respectively,
when	you	connect	to	the	voice	session.

Automatic	voice	activation	is	the	preferred	transmission	control	method
for	most	applications.	In	this	mode,	the	threshold	for	transmission	is
determined	automatically	by	the	system.	The	threshold	level	is	adaptive,
adjusting	itself	automatically	to	the	input	signal.

With	manual	voice	activation,	you	must	explicitly	set	a	threshold	when
you	connect	to	the	voice	session	by	assigning	a	value	to	the
dwThreshhold	member	of	DVCLIENTCONFIG.	The	system	will	not
change	this	value	for	you.	If	conditions	change,	and	the	threshold	value	is
no	longer	adequate,	you	must	call
IDirectPlayVoiceClient::SetClientConfig	and	specify	a	new	value	for
dwThreshhold.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Voice	Codecs

The	compression/decompression	(codec)	algorithms	provided	with
Microsoft®	DirectPlay®	are	optimized	for	low-bandwidth	voice
compression	and	decompression.	These	codecs	all	operate	on	data
based	on	an	8	kHz,	16-bit,	mono	format.	However,	DirectPlay	Voice
handles	all	the	details	of	converting	voice	data	to	and	from	this
intermediate	format.	Non-Microsoft	codecs	are	not	supported,	and	you
cannot	write	proprietary	codecs	for	use	with	DirectPlay	Voice.

It	is	important	to	note	that	as	the	bandwidth	requirements	drop,	the	audio
quality	of	the	voice	data	also	drops.	The	following	table	lists	the
supported	codecs,	the	bandwidth	in	kilobits	per	second	(Kbps),	and	the
compression	globally	unique	identifier	(GUID)	used	to	select	them.	The
compression	GUIDs	are	defined	in	Dvoice.h.

Codec Bandwidth GUID
Voxware	VR12 variable	(1.2	Kbps,	avg.)		 DPVCTGUID_VR12

Voxware	SC03 3.2	Kbps DPVCTGUID_SC03

Voxware	SC06 6.4	Kbps DPVCTGUID_SC06

TrueSpeech 8	Kbps DPVCTGUID_TRUESPEECH

Global	System	for	Mobile	Communications	(GSM) 13	Kbps DPVCTGUID_GSM

Microsoft	Adaptive	Delta	Pulse	Code	Modulation	(MS-
ADPCM)

32	Kbps DPVCTGUID_ADPCM

Pulse	Code	Modulation	(PCM) 64	Kbps DPVCTGUID_NONE

The	first	three	codecs	provide	a	high	level	of	compression	and	have
approximately	the	same	resource	demands.	On	a	500	MHz	Pentium	III
class	computer,	these	codecs	use	approximately	1.5	percent	of	the	CPU
capacity.	The	VR12	codec	sounds	tinny	and	robotic,	but	the	SC03	and
SC06	codecs	provide	reasonable	fidelity.	The	PCM	codec	provides	the
highest	sound	quality	and	is	essentially	uncompressed,	8	kHz,	16-bit,
mono-format	audio	data.

Note		The	GSM,	ADPCM,	and	PCM	codecs	are	included	with	the
Microsoft	Windows®	installation	but	might	not	have	been	installed	by	the
user.	You	might	need	to	prompt	the	user	to	install	them.	You	can
determine	which	codecs	are	available	on	a	system	by	calling
IDirectPlayVoiceServer::GetCompressionTypes.	If	a	codec	is	not	listed,
the	corresponding	Audio	Compression	Manager	(ACM)	codec	is	not
installed.

Selecting	a	Codec

As	with	all	other	game	setup	parameters,	the	host	controls	which	codec
is	used	for	the	voice	session.	All	members	of	the	voice	session	must	use
the	same	codec.	Remember	that	in	a	peer-to-peer	voice	session,	the
voice-session	host	does	not	necessarily	have	to	be	the	same	as	the
game-data	host.	The	host	selects	the	codec	when	it	calls
IDirectPlayVoiceServer::StartSession.	Set	the	guidCT	member	of	the
DVSESSIONDESC	structure	to	the	compression	GUID	of	the	codec	that
you	want	to	use.	A	client	can	retrieve	this	structure	by	calling
IDirectPlayVoiceClient::GetSessionDesc.

The	same	codec	might	not	be	ideal	for	the	entire	duration	of	a	game.	For
instance,	you	might	want	to	use	one	codec	for	the	lobby	chat	feature	that
players	use	to	set	up	the	game,	and	another	to	handle	voice
communication	after	the	game	is	launched.	You	cannot	dynamically
change	codecs	during	a	voice	session.	To	switch	to	another	codec,	you
must	terminate	the	current	voice	session	and	create	a	new	voice	session
with	the	new	codec.	However,	you	can	stop	and	restart	a	voice	session
without	terminating	the	underlying	DirectPlay	core	session.

As	with	any	form	of	network	communication,	it	is	important	to	analyze	the
cost	of	the	voice	communication	to	ensure	that	adequate	bandwidth	is
available	to	support	communication	of	the	game	data	and	voice	data.
Analyzing	the	voice	bandwidth	consumption	is	straightforward:	Estimate
the	number	of	simultaneous	voice	streams	that	you	anticipate	and
multiply	that	number	by	the	sum	of	the	bandwidth	required	by	the	codec
and	the	protocol	overhead.	CPU	consumption	is	another	factor	to
consider	when	choosing	a	codec.	As	with	network	bandwidth,	CPU
resource	consumption	is	additive,	per	stream.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Voice	Host	Migration

In	a	peer-to-peer	Microsoft®	DirectPlay®	network	session,	one	client	of
the	networking	session	acts	as	host.	If	that	host	exits	the	session	or	stops
responding	for	any	reason,	another	client	in	the	session	is	elected	as
host.

In	a	DirectPlay	voice	session,	a	similar	process	of	host	migration	occurs
in	peer-to-peer	voice	sessions,	except	that	the	voice	host	migrates
independently	of	the	DirectPlay	network	session.	The	voice	host	migrates
when	the	server	calls	IDirectPlayVoiceServer::StopSession	or	if	the	voice
host	stops	responding.

When	the	voice	host	migrates,	the	new	host's	voice	client	message
handler	receives	a	DVMSGID_LOCALHOSTSETUP	message.	The
primary	purpose	of	this	message	is	to	allow	the	new	host	to	provide
DirectPlay	with	a	pointer	to	the	callback	message	handler	that	will	receive
voice	server	messages.	To	specify	your	callback	message	handler,	set
the	value	of	the	pMessageHandler	member	of	the
DVMSGID_LOCALHOSTSETUP	structure	to	point	to	your	voice	server
message	handler	before	you	return	from	the	client	message	handler.	The
new	host	can	also	specify	a	voice	server	context	value	by	setting	the
value	of	the	pvContext	member	of	the	structure.

Each	client	in	the	voice	session	receives	a	DVMSGID_HOSTMIGRATED
message	with	the	DVID	of	the	new	host.	The	client	that	is	chosen	as	the
new	host	also	receives	a	valid	IDirectPlayVoiceServer	pointer,	which	the
client	can	use	to	call	the	voice	server	methods.	The	new	host	does	not
receive	DVMSGID_HOSTMIGRATED	until	after	it	has	processed
DVMSGID_LOCALHOSTSETUP.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Working	Set	Guidelines

Determining	the	best	configuration	of	transport	topology,	voice	topology,
transmission	control,	and	codec	depends	on	the	type	or	genre	of	game
you	are	creating,	the	number	of	players	that	will	participate	in	a	single
game	session,	and	the	type	of	connection	that	will	be	targeted.

It's	important	to	note	that	the	number	of	players	participating	in	the	voice
session	is	not	necessarily	the	number	of	players	actually	participating	in
the	game	session.	For	example,	if	your	game	is	a	first-person	shooter,
voice	communication	can	be	represented	in	the	game	as	a	radio	or
communicator	that	is	offered	as	a	time-limited	powerup.	Also,	the	radio
metaphor	can	be	used	to	limit	communication	to	radios	in	either	vehicles
or	stationary	command	stations.

A	second	example	to	consider	is	an	online	bridge	game,	which	involves
four	players	at	one	time.	Because	this	is	a	small	working	set,	it	is
appropriate	to	choose	a	peer-to-peer	voice	topology	transported	over	a
peer-to-peer	network	topology.	This	small	working	set	also	allows	for	the
use	of	voice	activation	as	the	mode	of	transmission	control.	The	peer-to-
peer	voice	topology	is	easily	implemented	and	does	not	require	any
player	to	act	as	a	server.	If	all	four	players	use	the	Voxware	SC6	codec,
the	maximum	resulting	bandwidth	is	4.2	Kbps	per	speech	stream,
including	the	codec	protocol	overhead.	Further	assuming	that	game	data
requires	negligible	bandwidth,	the	outgoing	maximum	bandwidth
requirement	for	an	individual	speaker	is	three	independent	streams	to	the
other	three	players,	or	12.6	Kbps.	The	incoming	stream	to	any	client
ranges	from	0	if	no	other	players	are	talking,	to	12.6	Kbps	if	all	three
other	players	speak	simultaneously.	The	CPU	requirement	is	8	percent
for	encoding	and	0	to	12	percent	for	decoding.	This	results	in	a	worst-

case	requirement	of	25.2	Kbps.	Therefore	each	player	must	have	a
minimum	of	a	14,400-baud	modem.

Another	example	is	a	squad	combat	game	that	can	involve	up	to	32
players	split	between	2	teams.	Assume	that	the	game	data	requires	a
28,800	baud	modem.	In	this	example,	there	is	a	larger	number	of	players
and	it	is	appropriate	to	choose	a	forwarding	server	voice	topology.	Again,
if	all	players	use	the	Voxware	SC6	codec,	the	bandwidth	requirements
are	the	same	as	the	bridge	game	above:	4.2	Kbps.	In	this	example,	note
that	there	is	4.2	Kbps	outgoing	when	speaking,	and	a	maximum	of	12.6
Kbps	incoming	from	the	squad.	The	maximum	CPU	requirement	is	8
percent	of	a	Pentium	200	for	encode	and	12	percent	receiving.
Therefore,	each	player	requires	28.8	Kbps	for	game	data,	and	the	greater
incoming	bandwidth	of	12.6	Kbps	requires	a	minimum	41,400	baud	rate
from	each	player's	modem.

The	worst-case	scenario	for	the	forwarding	server	itself	is	if	all	32	players
talk	at	once,	requiring	134.4	Kbps.	The	server	CPU	use	is	minimal
because	the	server	is	not	encoding	or	decoding	the	streams.	It	is	merely
redirecting	them.	More	typically,	there	might	be	16	players	talking
simultaneously	for	67.2	Kbps.

To	illustrate	the	difference	between	choosing	a	mixing	server	voice
topology	and	a	forwarding	server	voice	topology,	consider	the	same	32-
player	squad	combat	game	discussed	above.	If	a	mixing	server	voice
topology	is	used,	each	client	requires	4.2	Kbps	to	send	and	4.2	Kbps	to
receive.	The	worst-case	bandwidth	requirements	drop	to	8.4	Kbps	and	12
percent	of	the	Pentium	processor	running	at	200	MHz.	This	reduces	the
modem	requirement	to	a	33,600	Kbps	baud	rate	for	the	client.

For	the	server,	the	CPU	burden	changes.	The	server	is	now	decoding

and	re-encoding	all	incoming	streams	and	is	also	mixing	the	streams	as
required.	The	CPU	burden	mix	the	stream	is	relatively	low	and	is
considered	negligible.	The	worst	case	is	the	decoding	and	encoding	of	32
simultaneous	streams.	This	results	in	a	requirement	of	at	least	a	Pentium
II	processor	running	at	400	MHz	for	the	voice	service	alone.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	for	Pocket	PC	2002

Beginning	with	Microsoft®	DirectX®	8.1,	the	Microsoft
DirectPlay®	application	programming	interfaces	(APIs)	are	available	for
the	Microsoft	Windows®	Powered	Pocket	PC	2002.	The	implementation
of	the	APIs	is	the	same	on	all	platforms,	with	the	following	exceptions	for
Pocket	PC	2002.

The	DirectPlay	Voice	APIs	are	not	available.

Only	the	IPv.4	service	provider	and	Bluetooth	Service	Provider	are
available.	The	IPv.4	service	will	function	over	the	wireless	802.1x
network.	Currently,	serial,	modem,	and	Internetwork	Packet
Exchange	(IPX)	are	not	available.

Because	pop-up	windows	are	not	available	on	the	Pocket	PC
2002,	the	DPNHOST_OKTOQUERYFORADDRESSING,
DPNCONNECT_OKTOQUERYFORADDRESSING,	and
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flags
cannot	be	used.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Bluetooth	Service	Provider

The	Bluetooth	wireless	technology	service	provider	is	a	low-cost,	low-
power	wireless	technology	designed	to	simplify	setting	up	network
connections	between	devices.	This	topic	describes	how	to	use	Bluetooth
with	the	Microsoft®	Windows®	Powered	Pocket	PC	2002.

Note		The	Bluetooth	service	provider	in	Microsoft	DirectPlay®	is	only
supported	with	the	Pocket	PC	2002.	It	is	not	available	for	the	desktop
version.	Applications	wishing	to	operate	between	the	desktop	and	the
Pocket	PC	2002	should	use	the	DirectPlay	Internet	Protocol	(IP)	service
provider.

Native	Bluetooth	support	in	DirectPlay	is	designed	for	hosting	sessions
where	all	players	in	the	session	are	also	using	the	Bluetooth	service
provider.	In	this	scenario,	all	players	must	be	located	within	Bluetooth
radio	range	of	each	other	to	participate.	DirectPlay	does	not	support
using	a	mixture	of	service	providers	within	a	single	session.	Note	that
Bluetooth	can	also	be	used	as	an	access	technology	for	other	network
types.	For	example,	a	player	might	obtain	IP	connectivity	using	a
Bluetooth	Network	Access	Point.	In	this	case	the	Bluetooth	device	is
essentially	invisible	to	DirectPlay,	and	an	application	should	use	the	IP
service	provider	instead.

The	Bluetooth	service	provider	for	DirectPlay	provides	feature	parity	with
the	IP	service	provider.	All	session	types	are	supportedclient,	server,	and
peertogether	with	the	full	set	of	features	from	each.	However,	some	minor
variations	in	setting	up	addresses	and	enumerations	with	Bluetooth	are
described	here.

Addressing

Applications	should	always	check	to	see	if	the	Bluetooth	service	provider
is	available	before	attempting	to	use	it	or	offering	it	as	an	option	to	the
user.	Use	the	IDirectPlay8Peer::EnumServiceProviders	or
IDirectPlay8Client::EnumServiceProviders	or
IDirectPlay8Server::EnumServiceProviders	method	to	see	if	Bluetooth	is
available.

If	the	Bluetooth	service	provider	is	found,	applications	should	set
Bluetooth	as	the	service	provider	for	the	address	object	by	calling
IDirectPlay8Address::SetSP	as	illustrated	in	the	following	example.

IDirectPlay8Address*	 pAddress;
hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	NULL,	
																							CLSCTX_INPROC_SERVER,
																							IID_IDirectPlay8Address,
																							(LPVOID*)	&pAddress);
.
.
.
pAddress->SetSP(&CLSID_DP8SP_BLUETOOTH);

When	creating	IDirectPlay8Address	objects,	applications	need	to	specify
the	address	of	the	host	device	with	the	Host	Name	address	component.
Each	host	name	should	be	specified	as	a	string	using	hex	format	as
shown	in	the	following	example.

WCHAR	*	wszDeviceAddress=L"	50c20003c418";
pAddress->AddComponent(DPNA_KEY_HOSTNAME,	wszDeviceAddress,
(wcslen(wszDeviceAddress)+1)*sizeof(WCHAR),	DPNA_DATATYPE_STRING);

Address	objects	supplied	to	the	application	from	DirectPlay	as	the	result
of	an	enumeration	operation	may	be	enhanced	by	adding	the	name
information	component.	This	specifies	the	name	of	the	Pocket	PC	2002
device	the	address	represents	and	provides	a	more	user	friendly	string	to
present	rather	than	the	Bluetooth	device	address.	Therefore,	applications
should	test	for	the	presence	of	the	DPNA_KEY_NAMEINFO	field	when
displaying	the	result	of	enumerations	and	present	it	to	the	user	if
possible.	Note	that	this	field	is	purely	an	informative	one	and	is	not	used
by	DirectPlay	in	anyway.	Applications	creating	their	own	address	objects
rather	than	obtaining	them	using	enumerations	should	always	use	the
DPNA_KEY_HOSTNAME	field	to	specify	the	address	of	a	remote	device.
Connecting	to	a	device	using	purely	the	DPNA_KEY_NAMEINFO
component	is	not	supported.

Enumeration

When	enumerating	Bluetooth	devices,	DirectPlay	first	attempts	to
discover	all	the	Bluetooth	devices	in	the	area.	Each	device	found	is
contacted	one	at	a	time	and	sent	an	enumeration	request.	This	process
is	hidden	from	the	application	but	the	initial	device	discovery	process	can
take	10	or	more	seconds	to	complete.	Therefore,	a	call	to
IDirectPlay8Peer::EnumHosts	or	IDirectPlay8Client::EnumHosts	will
generate	no	responses	initially	and	then	a	rapid	sequence	of	responses
after	about	10	seconds.

Because	of	the	time	it	takes	to	enumerate	and	because	Bluetooth
addresses	are	fixed	for	each	device,	it	is	recommended	that	applications
provide	a	mechanism	to	store	the	last	few	addresses	to	which	a	player
connected.	This	allows	a	user	to	pick	from	a	list	of	recent	connections
rather	than	needing	to	type	in	a	hexadecimal	address	each	time	or	wait
for	the	enumeration	to	complete.

A	call	to	EnumHosts	works	slightly	differently	with	the	Bluetooth	service
provider.	The	following	parameters	are	different.

dwEnumCount	is	unused.

dwRetryInterval	determines	the	period	in	milliseconds	that
DirectPlay	waits	for	a	response	from	a	single	device	before	moving
onto	the	next	device.

dwTimeout	determines	the	total	period	allowed	for	the	enumeration
operation.

Note		Setting	dwTimeout	to	less	than	15	seconds	is	pointless,	given	the
minimum	discovery	period	outlined	above.	The	recommended	approach
is	to	set	this	value	to	Infinity,	and	wait	for	the	user	to	either	cancel	the
enumeration	or	select	a	session.

Attempting	to	connect	to	or	host	a	session	automatically	cancels	any
running	enumeration.	When	connecting	causes	the	enumeration
cancellation,	the	result	code	for	the	enumeration	supplied	in	the
DPN_MSGID_ASYNC_OP_COMPLETE	message	will	be
DPNERR_CONNECTING.	When	hosting	causes	the	enumeration
cancellation,	the	result	code	will	be	DPNERR_HOSTING.

Session	Limitations

Due	to	the	limits	of	the	Bluetooth	specification,	the	maximum	number	of
devices	supported	in	a	peer-to-peer	session	is	eight.	For	a	client/server
session,	up	to	seven	clients	can	connect	to	a	single	server.

Host	migration	can	take	several	seconds	in	Bluetooth,	and	during	this
period	no	data	transmission	occurs	between	devices.	Therefore,	if	the
host	player	drops	from	the	game,	any	messages	sent	by	the	remaining
players	will	be	queued	during	the	time	it	takes	to	reestablish	the	network
connectivity.

Bluetooth	is	essentially	a	client/server	architecture.	Although	DirectPlay
hides	this	and	offers	a	peer-to-peer	mode	with	host	migration,	all	data	still
has	to	be	routed	through	the	host	in	this	scenario.	Applications	should
consider	this	when	making	assumptions	about	latency	and	available
bandwidth.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Advanced	Topics	in	DirectPlay

This	section	of	the	Microsoft®	DirectPlay®	documentation	is	designed	to
show	you	how	to	use	the	DirectPlay	application	programming	interface
(API)	to	implement	important	aspects	of	multiplayer	applications.

Overviews

DirectPlay	Addressing

DirectPlay	Callback	Functions	and	Multithreading	Issues

DirectPlay	Protocol

DP8Sim	Utility

Monitoring	DirectPlay	Network	Traffic	with	Netmon

Network	Address	Translation,	Firewalls,	and	Proxies

Optimizing	Network	Usage

Packet	Signing

Testing	Network	Performance

Using	Player	Context	Values

Using	the	DirectPlay	DPNSVR	Application

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Addressing

To	deliver	messages,	each	participant	in	a	multiplayer	game	must	have	a
unique	address.	Addresses	can	refer	to	either	the	computer	on	which
your	application	is	running	(device	address),	or	a	computer	with	which
your	application	needs	to	communicate	(host	address).

Microsoft®	DirectPlay®	represents	addresses	in	the	form	of	a	URL	string.
That	address	string	is	then	encapsulated	in	a	DirectPlay	address	object
that	is	passed	as	a	parameter	in	or	out	of	methods	such	as
IDirectPlay8Peer::Connect.

This	section	describes	three	ways	of	handling	DirectPlay	addresses.

DirectPlay	Service	Providers	discusses	what	service	providers	are,
and	which	ones	are	available	with	DirectPlay.

DirectPlay	and	Ports	discusses	what	ports	are,	and	how	to	use
them.

Internet	Protocol	Version	6	discusses	how	to	use	Internet	Protocol,
version	6	(IPv6)	with	DirectPlay.

DirectPlay	URLs	discusses	how	to	construct	the	address	string
directly.

Handling	Addresses	discusses	how	to	pass	address	objects	in	the
Host,	EnumHosts,	or	Connect	methods.
DirectPlay	Address	Objects	discusses	how	to	manipulate	the
address	string	using	the	methods	exposed	by	the	address	object's
IDirectPlay8Address	interface.

Data	Value	Summary	contains	a	table	listing	all	the	possible	data
values	associated	with	DirectPlay	addresses	and	shows	which
values	are	required	for	each	service	provider.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Service	Providers

Microsoft®	DirectPlay®	provides	your	application	with	a	virtual	network
connection	that	enables	you	to	communicate	with	other	computers	in	the
same	way,	regardless	of	type	of	network	involved.	To	provide	this	level	of
abstraction,	network	connections	are	made	through	a	service	provider.
When	you	have	selected	a	service	provider,	your	application	uses	the
appropriate	DirectPlay	methods	to	communicate	with	other	computers	in
a	session.	The	service	provider	handles	the	details	of	communicating
over	the	selected	network	hardware.

DirectPlay	includes	service	providers	for	four	types	of	network
connections:	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP),
Internetwork	Packet	Exchange	(IPX),	modem,	and	serial.	See	DirectPlay
Address	Objects	for	a	discussion	of	how	to	select	a	service	provider.

Note		DirectPlay	uses	the	telephony	application	programming	interface
(API)	(TAPI)	to	handle	modem	communication.	The	use	of	this	API
means	that	the	code	that	is	used	to	answer	the	phone	must	be	in	the
message	loop's	thread.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	and	Ports

This	topic	explains	how	to	select	a	game	port.	Ports	are	an	important	part
of	addressing	for	Internet	Protocol	(IP)	and	Internetwork	Packet
Exchange	(IPX)	service	providers.	In	cases	where	each	computer	has	a
unique	IP	address,	the	port	specifies	the	application	running	on	the
computer.	Microsoft®	Windows®	allows	only	one	application	per	port.	So
if	a	user	were	playing	a	networked	game,	sending	e-mail,	and
downloading	files	at	the	same	time,	each	application	would	be	bound	to	a
different	port.	Each	message	received	would	have	a	port	number	in	its
address	so	that	it	could	be	passed	to	the	correct	application.

In	cases	where	computers	are	behind	a	Network	Address	Translation
(NAT)	device	and	sharing	a	single	public	IP	address,	the	port	not	only
specifies	the	application	but	also	the	computer	on	which	the	application	is
running.	So,	if	three	computers	sharing	the	same	IP	address	were
running	the	same	application,	each	application	would	be	bound	to	a
different	port,	allowing	messages	to	be	delivered	to	the	correct	computer
and	application.

Also,	if	you	specify	a	port,	you	don't	need	to	use	DPNSVR,	which	makes
NAT	device	administration	easier	for	users.	Your	application	should
choose	a	default	port	but	allow	users	to	override	that	port	in	case	it	is
already	in	use.	For	more	information	about	configuring	game	ports	when
players	are	behind	NAT	devices,	see	Network	Address	Translation,
Firewalls,	and	Proxies.

Note		Ports	are	not	used	for	serial	or	modem	service	providers.

Setting	a	Port

Set	a	port	by	calling	the	IDirectPlay8Address::AddComponent	method.	In
the	following	example,	port	12345	is	selected.

IDirectPlay8Address*	pAddress;
DWORD	dwPort;
...
dwPort	=	12345;
hr	=	pAddress->AddComponent(DPNA_KEY_PORT,	&dwPort,	sizeof(dwPort),DPNA_DATATYPE_DWORD);	

The	port	is	specified	as	a	DWORD,	although	the	port	number	is	limited	to
65535	(2	bytes)	and	is	used	in	host	byte	order.	When	selecting	a	port,	do
not	choose	a	reserved	port.

Ports	Selected	by	DirectPlay

If	you	do	not	specify	a	port	as	described	above,	Microsoft	DirectPlay®	will
select	a	port	between	2302	and	2400	for	local	use	when	hosting,
enumerating,	or	connecting.	If	hosts	enable	DPNSVR,	the	helper
application	will	use	port	6073	to	forward	enumeration	queries	to	the
application.	This	is	also	the	default	port	number	used	when	no	port	is
specified	in	the	remote	host	address	passed	to
IDirectPlay8Peer::EnumHosts	and	IDirectPlay8Client::EnumHosts.	And
finally,	if	your	application	does	not	choose	to	disable	the	automated	NAT
features,	you	may	notice	additional	ports	being	opened.	The	actual	port
numbers	selected	for	this	feature	are	not	deterministic.

Reserved	Ports

All	ports	under	1024	are	reserved.

Also,	DirectPlay	has	reserved	the	following	ports.

Port Reserved	for
1900 Universal	Plug	and	Play	(UPnP)	-	Simple	Service	Discovery	Protocol

2302-2400 DirectPlay	device	address	default

2234 Internet	sharing	and	firewall	support	for	Windows	Millennium	Edition	(Windows	Me)	and	Windows	XP

6073 DirectPlay	enumerations	using	DPNSVR

47624 Deprecated	DirectPlay	enumeration

The	Internet	Assigned	Numbers	Authority	 	maintains	a	list	of	registered
User	Datagram	Protocol	(UDP)	ports	that	you	should	avoid	using.

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://www.iana.org

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Internet	Protocol	Version	6

The	Internet	Protocol	(IP)	is	the	foundation	upon	which	all	Internet	traffic
is	based.	The	current	version,	Internet	Protocol,	version	4	(IPv4),	has
remained	unchanged	for	over	two	decades.	While	this	is	a	testament	to
its	original	design,	no	one	ever	envisioned	the	unprecedented	growth	the
Internet	has	seen.	The	demand	for	unique	addresses	used	to	route	traffic
through	this	network	has	grown	so	large	that	many	are	predicting	the
supply	will	be	exhausted	in	a	few	short	years.	Technologies	such	as
Network	Address	Translation	(NAT)	have	only	marginally	extended	the
IPv4	lifetime	at	the	cost	of	end-to-end	connectivity	for	many	applications
such	as	games.	Internet	Protocol,	version	6	(IPv6)	is	the	next	generation
networking	protocol	designed	to	address	this	and	many	other	concerns.

The	Microsoft®	DirectPlay®		Transmission	Control	Protocol/Internet
Protocol	(TCP/IP)	service	provider	supports	both	IPv4	and	IPv6
transparently.	This	ensures	that	the	application	you	write	today	will
automatically	take	advantage	of	the	IPv6	features	as	its	adoption
becomes	more	widespread.	The	only	behavior	required	of	your
application	is	that	it	should	treat	the	value	of	the
DPNA_KEY_HOSTNAME	address	component	returned	by	DirectPlay	as
a	string.	Your	application	should	not	expect	it	to	be	in	an	IPv4	address,
formatted	using	decimal	dotted	notation.	The	DPNA_KEY_HOSTNAME
component	can	be	an	IPv4	address,	an	IPv6	address,	or	a	Domain	Name
System	(DNS)	hostname	string.	You	should	simply	display
DPNA_KEY_HOSTNAME	as	a	string	without	parsing.	Alternatively,	use
match-making	services	or	friendly	player	names	to	hide	the	address
complexity	from	the	user	altogether.

For	more	information	about	creating	TCP/IP	protocol	DirectPlay

addresses,	see	Creating	TCP/IP	Address	Objects.	For	more	information
about	match-making	services,	see	DirectPlay	Lobby.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	URLs

Microsoft®	DirectPlay®	represents	addresses	as	URLs.	In	general,	URLs
are	strings	that	consist	of	three	basic	components	in	the	following	order:
scheme,	scheme	separator,	and	data	string.

All	DirectPlay	addresses	use	"x-directplay"	as	the	scheme,	and	":/"	(a
colon	followed	by	a	forward	slash)	as	the	scheme	separator.	Using	":/"
as	a	separator	implies	that	the	data	that	follows	is	opaque.	In	other
words,	the	data	string	does	not	conform	to	any	Internet	standard	and
should	be	passed	to	the	receiving	application	without	modification.	All
DirectPlay	URLs	thus	have	the	following	general	form.

x-directplay:/[data	string]

Note		Do	not	use	"://"	(a	colon	followed	by	two	forward	slashes)	as	a
scheme	separator.	That	separator	implies	that	the	data	that	follows
conforms	to	an	Internet	standard	and	can	be	interpreted	as	such.	To
prevent	confusion,	DirectPlay	flags	any	URL	containing	"://"	as	invalid.

This	section	discusses	the	following	topics.

Data	Strings

Sample	URLs

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Data	Strings

The	data	string	holds	address	information.	The	first	part	of	a	data	string
consists	of	a	series	of	keyname=	value	elements	separated	by
semicolons	(;).	You	can	include	optional	user	data	by	putting	a	number
sign	(#)	after	the	last	value,	followed	by	an	application-defined	string.

The	key	name	is	a	lowercase	string	that	identifies	the	data	and	implicitly
indicates	what	type	of	data	is	contained	in	the	value.	For	instance,	the
"provider"	key	name	indicates	that	the	value	contains	a	Microsoft®
DirectPlay®	service	provider	globally	unique	identifier	(GUID),	in	the	form
of	a	GUID	string.	The	following	characters	are	reserved	and	should	not
be	used	in	value	strings.

Ampersand	(&) Forward	slash	(/)

At	sign	(@) Number	sign	(#)

Colon	(:) Question	mark	(?)

Equal	sign	(=) Semicolon	(;)

The	first	element	in	the	data	string	must	be	the	provider.	Other	elements
can	follow	in	any	order.	A	generic	URL	looks	something	like	this.

x-directplay:/provider=Provider_GUID;[keyname1=value1];[keyname2=value2][...]#[user	defined	string]

The	Provider_GUID	should	be	of	the	form

{EBFE7BA0-628D-11D2-AE0F-006097B01411}

but	using	the	escape	characters	for	the	invalid	characters	as	shown	in
the	following	example.

%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Sample	URLs

The	following	sample	URLs	illustrate	what	a	Microsoft®	DirectPlay®	URL
might	look	like	for	the	four	standard	service	providers.	Each	GUID
expression	should	start	with	%7B	and	end	with	%7D,	which	are	the
escape	characters	for	{	and	}.

Local	IP	Address

x-directplay:/provider=%7BEBFE7BA0-628D-11D2-AE0F-006097B01411%7D;device=IP	ADAPTER	GUID;port=0000230034#IPUserData

Local	IPX	Address

x-directplay:/provider=%7B53934290-628D-11D2-AE0F-006097B01411%7D;device=IPX	ADAPTER	GUID;port=00230#IPXUserData	

Local	Serial	Address

x-directplay:/provider=%7B743B5D60-628D-11D2-AE0F-006097B01411%7D;device=COM	PORT	GUID;baud=57600;stopbits=1;parity=NONE;flowcontrol=RTSDTR#SerialUserData

Remote	Modem	Address

x-directplay:/provider=%7B6D4A3650-628D-11D2-AE0F-006097B01411%7D;device=MODEM	DEVICE	GUID;phonenumber=555-1212#ModemUserData

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Handling	Addresses

If	you	call	the	Host,	EnumHosts,	or	Connect	methods	exposed	by	the
IDirectPlay8Peer,	IDirectPlay8Client,	or	IDirectPlay8Server	you	must
pass	address	objects	as	parameters.	If	Microsoft®	DirectPlay®	does	not
have	sufficient	address	information,	the	method	that	you	called	will	fail,
and	it	will	return	DPNERR_ADDRESSING.	However,	it	is	not	necessary
to	have	all	the	information	in	the	address	object	at	the	time	you	call	the
method.

All	address	objects	must	have	the	service	provider	globally	unique
identifier	(GUID)	set.	However,	it	is	possible	to	omit	other	data	values.

You	can	omit	the	device	if	the	service	provider	supports	all
adapters.

You	can	omit	the	port	number	for	Internet	Protocol	(IP)	and
Internetwork	Packet	Exchange	(IPX)	service	providers	for	the
Host,	EnumHosts,	and	Connect	methods.	DirectPlay	will	assign
a	port	number.	This	number	may	vary.

If	you	set	the	OKTOQUERYFORADDRESSING	flag,	the	service
provider	can	display	a	dialog	box	asking	the	user	for	the
information	needed	to	complete	the	address.	If	the	user	does	not
supply	sufficient	information,	the	method	will	fail.	If	the
OKTOQUERYFORADDRESSING	flag	is	not	set,	no	dialog	box	will
be	displayed.	If	the	address	you	pass	to	the	method	is	insufficient,
the	method	will	fail.	In	the	last	two	cases,	the	error	value	that	is
returned	will	be	DPNERR_ADDRESSING.

There	are	two	important	issues	for	IP	and	IPX	service	providers	that	you
need	to	be	aware	of.	Failing	to	handle	them	properly	may	cause	your
application	to	fail.

If	you	set	the	NOBROADCASTFALLBACK	flag	when	you	call	an
enumeration	method,	you	must	supply	a	hostname.	If	you	do	not

do	so,	the	method	will	fail	and	return	DPNERR_ADDRESSING.

If	you	do	not	specify	a	port,	do	not	assume	that	DirectPlay	will
always	choose	the	same	port	number.	The	only	way	to	be	certain
of	the	port	number	is	to	specify	it	in	your	address.	If	you	do	not
specify	a	port	number,	you	must	retrieve	the	actual	value	later,
after	the	command	is	in	progress.

Note		Application	developers	who	choose	to	override	the	default
DirectPlay	8	dialog	for	Transmission	Control	Protocol/Internet	Protocol
(TCP/IP)	are	strongly	urged	to	implement	a	solution	that	allows	the	user
to	override	the	port	used	for	a	connection	or	enumeration.	One	possible
solution	is	to	enable	users	to	follow	the	host	name	with	a	colon	and	then
the	port,	as	implemented	by	the	default	DirectPlay	8	TCP/IP	protocol
dialog,	for	example:	host.domain.com:8090.	Another	possible	solution	is
to	add	a	field	to	the	user	interface	(UI)	that	enables	the	user	to	enter	a
port.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Address	Objects

Microsoft®	DirectPlay®	does	not	handle	URL	strings	directly.	Instead,	the
string	must	be	encapsulated	in	a	DirectPlay	address	object
(CLSID_DirectPlay8Address).	This	object	exposes	the
IDirectPlay8Address	interface	that	enables	you	to	insert	URL	information
into,	or	extract	it	from,	the	address	object.

To	create	DirectPlay	address,	you	must	call	CoCreateInstance	to	create
a	DirectPlay	address	object.	You	can	then	define	the	address	in	one	of
two	ways:

Create	the	URL	string	directly.	Then	use	either
IDirectPlay8Address::BuildFromURLA	or
IDirectPlay8Address::BuildFromURLW	to	insert	the	complete
string.

Use	IDirectPlay8Address	methods	to	insert	the	various	pieces	of
data	that	make	up	the	string	directly	into	the	object.	For	details
see:

Creating	TCP/IP	Address	Objects

Creating	Modem	Address	Objects

Creating	IPX	Address	Objects

Creating	Serial	Address	Objects

When	you	receive	an	address	object,	you	have	a	similar	pair	of	options.

Extract	the	entire	URL	string	with	either
IDirectPlay8Address::GetURLA	or
IDirectPlay8Address::GetURLW.	Then	parse	the	string	and	extract
the	needed	information

Use	other	IDirectPlay8Address	methods	to	extract	the	particular
data	you	are	interested	in	from	the	address	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Creating	TCP/IP	Address	Objects

This	topic	discusses	how	to	create	typical	Address	objects	using	the
IDirectPlay8Address	methods	for	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP)	service	providers.

The	first	step	in	creating	an	address	object	is	to	call	CoCreateInstance
to	create	an	IDirectPlay8Address	object.	The	parameters	include	the
class	identifier	of	an	address	object	(CLSID_DirectPlay8Address),	the
identifier	of	the	interface	(IID_IDirectPlay8Address),	and	the	address	of	a
pointer	to	an	IDirectPlay8Address	interface.	The	following	example
illustrates	how	to	create	an	address	object.

IDirectPlay8Address*		g_pDeviceAddress;
.
.
.
hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	NULL,	
																							CLSCTX_INPROC_SERVER,
																							IID_IDirectPlay8Address,
																							(LPVOID*)	&g_pDeviceAddress);

For	more	information	about	using	CoCreateInstance,	see	Creating	a
COM	Object.

After	creating	the	address	object,	you	must	set	the	service	provider
component,	at	a	minimum.	To	do	that,	call	IDirectPlay8Address::SetSP.
The	following	example	illustrates	how	to	set	the	service	provider	to	the
Microsoft®	DirectPlay®	TCP/IP	protocol	service	provider.

hr	=	g_pDeviceAddress->SetSP(&CLSID_DP8SP_TCPIP);

The	EnumHosts,	Connect,	and	Host	methods	each	have	an
OKTOQUERYFORADDRESSING	flag
(DPNENUMHOSTS_OKTOQUERYFORADDRESSING,
DPNCONNECT_OKTOQUERYFORADDRESSING,	and
DPNHOST_OKTOQUERYFORADDRESSING)	that	allow	DirectPlay	to
prompt	the	user	for	any	missing	information	in	the	address	beyond	the
service	provider	component.	However,	for	most	applications	you	will	want
to	override	these	standard	dialogs	to	improve	the	user	experience.	The
following	sections	describe	the	common	and	required	components	used
for	the	TCP/IP	protocol	service	providers.

Device	Addresses

If	you	are	creating	a	device	address	for	the	local	player	and	using	TCP/IP
protocol	as	your	service	provider,	you	may	also	want	to	set	the	device
port.	For	a	list	of	other	data	values	you	may	set,	see	Data	Value
Summary.

The	following	example	illustrates	how	to	set	the	port	for	a	device	address
using	the	IDirectPlay8Address::AddComponent	method.

DWORD	dwPort;
//	Set	dwPort	to	the	port	number	for	the	device	address.

hr	=	g_pDeviceAddress->AddComponent(DPNA_KEY_PORT,											//	pwszName
																																			&dwPort,	sizeof(dwPort),			//	lpvData,	dwDataSize
																																			DPNA_DATATYPE_DWORD);					//	dwDataType

If	you	set	the	port	for	the	player	hosting	the	session,	it	is	recommended
that	you	also	set	the	DPNSESSION_NODPNSVR	flag	in	the
DPN_APPLICATION_DESC	structure	passed	in	the	Host	method.
However,	if	you	disable	DPNSVR,	you	should	do	one	of	the	following:

Specify	the	host	port	in	the	pdpaddrHost	parameter	when	you	call
EnumHosts.
Specify	the	host	port	in	the	pHostAddr	parameter	when	you	call
Connect.

For	more	information	about	DPNSVR,	see	Using	the	DirectPlay	DPNSVR
Application.

Host	Addresses

If	you	are	creating	a	host	address	and	using	TCP/IP	protocol	as	your
service	provider,	you	may	need	to	set	the	host	name	address	component.
For	a	list	of	other	data	values	you	may	set,	see	Data	Value	Summary.	If
you	did	not	use	EnumHosts	to	find	a	session	and	do	not	pass	the
DPNCONNECT_OKTOQUERYFORADDRESSING	flag	to	Connect,	the
host	name	must	be	specified	for	the	host	address.

The	following	example	illustrates	how	to	set	the	host	name	for	a	host
address	using	the	IDirectPlay8Address::AddComponent	method.

size_t	cb;
WCHAR	wstrIP[MAX_PATH];
//	Set	wstrIP	to	the	host	IP	address
hr	=	StringCbLengthW(wstrIP,	MAX_PATH,	&cb);

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_HOSTNAME,					//	pwszName
																																	wstrIP,																	//	lpvData
																																	cb,																					//	dwDataSize	in	bytes
																																	DPNA_DATATYPE_STRING);	//	dwDataType

In	this	example,	wstrIP	contains	the	Internet	Protocol	(IP)	address	or
name	of	the	session	host	in	dotted	notation,	that	is,	the	string
"123.123.123.123"	or	"DirectPlayMaze.rte.microsoft.com".

Similarly,	you	may	need	to	set	the	port	for	the	host	address.	If	you	set	the
port	component	of	the	device	address	for	the	player	calling	Host,	it	is
recommended	that	you	set	the	port	component	of	the	host	address
passed	in	EnumHosts	or	Connect.	If	you	did	not	use	EnumHosts	to
find	a	session's	host	address	and	do	not	pass	the

DPNCONNECT_OKTOQUERYFORADDRESSING	flag,	the	port	must	be
specified	for	the	host	address	in	order	to	connect	to	the	session.

The	following	example	illustrates	how	to	set	the	port	for	a	host	address
using	the	IDirectPlay8Address::AddComponent	method.

DWORD	dwPort;
//	Set	dwPort	to	the	port	number	of	the	host	address

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_PORT,								//	pwszName
																																&dwPort,	sizeof(dwPort),	//	lpvData,	dwDataSize
																																DPNA_DATATYPE_DWORD);			//	dwDataType

After	you	have	created	the	address	objects,	you	connect	to	the	session
by	passing	the	device	address	in	the	pDeviceInfo	parameter	and	the	host
address	in	the	pHostAddr	parameter	in	the	Connect	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Creating	Modem	Address	Objects

This	topic	discusses	how	to	create	typical	address	objects	using	the
IDirectPlay8Address	methods	for	modem	service	providers.

The	first	step	in	creating	an	address	object	is	to	call	CoCreateInstance
to	create	an	IDirectPlay8Address	object.	The	parameters	include	the
class	identifier	of	an	address	object	(CLSID_DirectPlay8Address),	the
identifier	of	the	interface	(IID_IDirectPlay8Address),	and	the	address	of	a
pointer	to	an	IDirectPlay8Address	interface.	The	following	example
illustrates	how	to	create	an	address	object.

IDirectPlay8Address*			g_pDeviceAddress;
.
.
.
hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	NULL,	
																							CLSCTX_INPROC_SERVER,
																							IID_IDirectPlay8Address,
																							(LPVOID*)	&g_pDeviceAddress);

For	more	information	about	using	CoCreateInstance,	see	Creating	a
COM	Object.

After	creating	the	address	object,	you	must	set	the	service	provider
component,	at	a	minimum.	To	do	that,	call	IDirectPlay8Address::SetSP.
The	following	example	illustrates	how	to	set	the	service	provider	to	the
Microsoft®	DirectPlay®	modem	service	provider.

hr	=	g_pDeviceAddress->SetSP(&CLSID_DP8SP_MODEM);

The	EnumHosts,	Connect,	and	Host	methods	each	have	an
OKTOQUERYFORADDRESSING	flag
(DPNENUMHOSTS_OKTOQUERYFORADDRESSING,
DPNCONNECT_OKTOQUERYFORADDRESSING,	and
DPNHOST_OKTOQUERYFORADDRESSING)	that	allow	DirectPlay	to
prompt	the	user	for	any	missing	information	in	the	address	beyond	the
service	provider	component.	However,	for	most	applications	you	will	want
to	override	these	standard	dialogs	to	improve	the	user	experience.	The
following	sections	describe	the	common	and	required	components	used
for	the	modem	service	providers.

Device	Addresses

If	you	are	creating	a	device	address	for	the	local	player	and	using	the
modem	service	provider,	you	may	need	to	set	the	device.	For	a	list	of
other	data	values	you	may	set,	see	Data	Value	Summary.	If	you	do	not
pass	the	respective	OKTOQUERYFORADDRESSING	flag	to
EnumHosts,	Connect,	or	Host,	the	device	must	be	specified	for	the
device	address.

Use	the	EnumServiceProviders	method	to	obtain	a	list	of	available
devices.	The	following	example	illustrates	how	to	retrieve	a	list	of
available	modem	devices	by	calling	the	EnumServiceProviders	method
with	the	pguidServiceProvider	parameter	set	to	CLSID_DP8SP_MODEM.

DWORD	dwSize;
DWORD	dwItems;
PDPN_SERVICE_PROVIDER_INFO	pSPInfoBuffer;

hr	=	g_pDP->EnumServiceProviders(&CLSID_DP8SP_MODEM,								//pguidServiceProvider
																																	NULL,	pSPInfoBuffer,							//pguidApplication,	pSPInfoBuffer
																																	&dwSize,	&dwItems,	0);				//pcbEnumData,	pcReturned,	dwFlags

The	pSPInfoBuffer	parameter	is	the	address	of	the	buffer	where
DirectPlay	places	the	service	provider	device	information	if	the	call	is
successful.	Typically	EnumServiceProviders	is	called	twice,	once	to
retrieve	the	buffer	size	required,	and	again	to	actually	fill	in	the	buffer.

After	enumerating	the	available	devices,	select	a	modem	device	by	using
the	IDirectPlay8Address::AddComponent	method	as	is	shown	below.

GUID	pGuid;

//		Set	pGuid	to	the	GUID	of	the	modem	device.

hr	=	g_pDeviceAddress->AddComponent(DPNA_KEY_DEVICE,								//pwszName
																																				pGuid,	sizeof(GUID),					//lpvData,	dwDataSize
																																				DPNA_DATATYPE_GUID);					//dwDataType

In	this	example,	pGuid	is	the	address	of	the	globally	unique	identifier
(GUID)	that	represents	the	selected	modem	device.

Host	Addresses

If	you	are	creating	a	host	address	and	using	the	modem	service	provider,
you	may	need	to	set	the	phone	number.	For	a	list	of	other	data	values
you	may	set,	see	Data	Value	Summary.	If	you	do	not	pass	the
respective	OKTOQUERYFORADDRESSING	flag	to	EnumHosts	or
Connect,	the	phone	number	must	be	specified	for	the	host	address.

The	following	example	illustrates	how	to	set	the	phone	number	for	a	host
address	using	the	IDirectPlay8Address::AddComponent	method.

size_t	cb;
WCHAR	wstrPhone[MAX_PATH];
//		Set	wstrPhone	to	the	phone	number	of	the	host	address
hr	=	StringCbLengthW(wstrPhone,	MAX_PATH,	&cb);

hr	=	pHostAddress->AddComponent(DPNA_KEY_PHONENUMBER,																	//pwszName
																																	wstrPhone,																												//lpvData
																																	cb,																																			//dwDataSize	in	bytes
																																	DPNA_DATATYPE_STRING);															//dwDataType

In	this	example,	wstrPhone	contains	the	phone	number	of	the	host	to
which	you	will	connect.

After	you	have	created	the	address	objects,	you	connect	to	the	session
by	passing	the	device	address	in	the	pDeviceInfo	parameter	and	the	host
address	in	the	pHostAddr	parameter	in	the	Connect	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Creating	IPX	Address	Objects

This	topic	discusses	how	to	create	typical	address	objects	using	the
IDirectPlay8Address	methods	for	Internetwork	Packet	Exchange	(IPX)
service	providers.

The	first	step	in	creating	an	address	object	is	to	call	CoCreateInstance
to	create	an	IDirectPlay8Address	object.	The	parameters	include	the
class	identifier	of	an	address	object	(CLSID_DirectPlay8Address),	the
identifier	of	the	interface	(IID_IDirectPlay8Address)	and	the	address	of	a
pointer	to	an	IDirectPlay8Address	interface.	The	following	example
illustrates	how	to	create	an	address	object.

IDirectPlay8Address*			g_pDeviceAddress;
.
.
.
hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	NULL,	
																							CLSCTX_INPROC_SERVER,
																							IID_IDirectPlay8Address,
																							(LPVOID*)	&g_pDeviceAddress);

For	more	information	about	using	CoCreateInstance,	see	Creating	a
COM	Object.

After	creating	the	address	object,	you	must	set	the	service	provider
component,	at	a	minimum.	To	do	that,	call	IDirectPlay8Address::SetSP.
The	following	example	illustrates	how	to	set	the	service	provider	to	the
Microsoft®	DirectPlay®	IPX	service	provider.

	hr	=	g_pDeviceAddress->SetSP(&CLSID_DP8SP_IPX);

The	EnumHosts,	Connect,	and	Host	methods	each	have	an
OKTOQUERYFORADDRESSING	flag
(DPNENUMHOSTS_OKTOQUERYFORADDRESSING,
DPNCONNECT_OKTOQUERYFORADDRESSING,	and
DPNHOST_OKTOQUERYFORADDRESSING)	that	allow	DirectPlay	to
prompt	the	user	for	any	missing	information	in	the	address	beyond	the
service	provider	component.	However,	for	most	applications	you	will	want
to	override	these	standard	dialogs	to	improve	the	user	experience.	The
following	sections	describe	the	common	and	required	components	used
for	the	IPX	service	providers.

Device	Addresses

If	you	are	creating	a	device	address	for	the	local	player	and	using	IPX	as
your	service	provider,	you	may	also	want	to	set	the	device	port.	For	a	list
of	other	data	values	you	may	set,	see	Data	Value	Summary.

The	following	example	illustrates	how	to	set	the	port	for	a	device	address
using	the	IDirectPlay8Address::AddComponent	method.

DWORD	dwPort;
//	Set	dwPort	to	the	port	number	for	the	device	address.

hr	=	g_pDeviceAddress->AddComponent(DPNA_KEY_PORT,											//pwszName
																																			&dwPort,	sizeof(dwPort),			//lpvData,	dwDataSize
																																			DPNA_DATATYPE_DWORD);					//dwDataType

If	you	set	the	port	for	the	player	hosting	the	session,	it	is	recommended
that	you	also	set	the	DPNSESSION_NODPNSVR	flag	in	the
DPN_APPLICATION_DESC	structure	passed	in	the	Host	method.
However,	if	you	disable	DPNSVR,	you	should	do	one	of	the	following:

Specify	the	host	port	in	the	pdpaddrHost	parameter	when	you	call
EnumHosts.
Specify	the	host	port	in	the	pHostAddr	parameter	when	you	call
Connect.

Host	Addresses

If	you	are	creating	a	host	address	and	using	IPX	as	your	service	provider,
you	may	need	to	set	the	host	name	address	component.	For	a	list	of
other	data	values	you	may	set,	see	Data	Value	Summary.	If	you	did	not
use	EnumHosts	to	find	a	session,	the	host	name	must	be	specified	for
the	host	address.

The	following	example	illustrates	how	to	set	the	host	name	for	a	host
address	using	the	IDirectPlay8Address::AddComponent	method.

size_t	cb;
WCHAR	wstrIPX[MAX_PATH];
//	Set	wstrIPX	to	the	host	IPX	address
hr	=	StringCbLengthW(wstrIPX,	MAX_PATH,	&cb);

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_HOSTNAME,								//pwszName
																																		pwszHost,																	//lpvData
																																		cb,																							//dwDataSize	in	bytes
																																		DPNA_DATATYPE_STRING);			//dwDataType

In	this	example,	pwszHost	contains	the	IPX	network	and	node	number	of
the	session	host.	If	you	were	to	use	(hexadecimal)	network	2702	and
node	00-02-B3-10-87-64,	the	host	name	string	would	be
"00002702,0002B3108764".

Similarly,	you	may	need	to	set	the	port	for	the	host	address.	If	you	set	the
port	for	the	device	address	of	the	player	who	is	hosting,	it	is
recommended	that	you	set	the	port	for	the	host	address	passed	in
EnumHosts	or	Connect.	If	you	did	not	use	EnumHosts	to	find	a
session's	host	address,	the	port	must	be	specified	for	the	host	address	in

order	to	connect	to	the	session.

The	following	example	illustrates	how	to	set	the	port	for	a	host	address
using	the	IDirectPlay8Address::AddComponent	method.

DWORD	dwPort;
//Set	dwPort	to	the	port	number	of	the	host	address

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_PORT,											//pwszName
																																	&dwPort,	sizeof(dwPort),			//lpvData,	dwDataSize
																																	DPNA_DATATYPE_DWORD);					//dwDataType

After	you	have	created	the	address	objects,	you	connect	to	the	session
by	passing	the	device	address	in	the	pDeviceInfo	parameter	and	the	host
address	in	the	pHostAddr	parameter	in	the	Connect	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Creating	Serial	Address	Objects

This	topic	discusses	how	to	create	typical	address	objects	using	the
IDirectPlay8Address	methods	for	serial	service	providers.

The	first	step	in	creating	an	address	object	is	to	call	CoCreateInstance
to	create	an	IDirectPlay8Address	object.	The	parameters	include	the
class	identifier	of	an	address	object	(CLSID_DirectPlay8Address),	the
identifier	of	the	interface	(IID_IDirectPlay8Address),	and	the	address	of	a
pointer	to	an	IDirectPlay8Address	interface.	The	following	example
illustrates	how	to	create	an	address	object.

IDirectPlay8Address*		g_pDeviceAddress;
.
.
.
hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	NULL,	
																							CLSCTX_INPROC_SERVER,
																							IID_IDirectPlay8Address,
																							(LPVOID*)	&g_pDeviceAddress);

For	more	information	about	using	CoCreateInstance,	see	Creating	a
COM	Object.

After	creating	the	address	object,	you	must	set	the	service	provider
component,	at	a	minimum.	To	do	that,	call	IDirectPlay8Address::SetSP.
The	following	example	illustrates	how	to	set	the	service	provider	to	the
Microsoft®	DirectPlay®	serial	service	provider.

hr	=	g_pDeviceAddress->SetSP(&CLSID_DP8SP_SERIAL);

The	EnumHosts,	Connect,	and	Host	methods	each	have	an
OKTOQUERYFORADDRESSING	flag
(DPNENUMHOSTS_OKTOQUERYFORADDRESSING,
DPNCONNECT_OKTOQUERYFORADDRESSING,	and
DPNHOST_OKTOQUERYFORADDRESSING)	that	allow	DirectPlay	to
prompt	the	user	for	any	missing	information	in	the	address	beyond	the
service	provider	component.	However,	for	most	applications	you	will	want
to	override	these	standard	dialogs	to	improve	the	user	experience.	The
following	sections	describe	the	common	and	required	components	used
for	the	serial	service	providers.

Device	Addresses

If	you	are	creating	a	device	address	for	the	local	player	and	using	the
serial	service	provider,	you	need	to	set	the	following	components.

baud

stop	bits

parity

flow	control

device	(depends	on	your	setup)

For	a	list	of	other	data	values	you	may	set,	see	Data	Value	Summary.

Baud

The	following	example	illustrates	how	to	set	the	baud	rate	using	the
IDirectPlay8Address::AddComponent	method.

DWORD	dwBaudRate;
//		Set	dwBaudRate

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_BAUD,																			//pwszName
																																	&dwBaudRate,	sizeof(dwBaudRate),			//lpvData,	dwDataSize
																																	DPNA_DATATYPE_DWORD);													//dwDataType

In	this	example,	the	dwBaudRate	variable	can	contain	any	of	the
DPNA_BAUD_RATE	constants	defined	in	dpaddr.h.

Stop	bits

The	following	example	illustrates	how	to	set	the	stop	bits	using	the
IDirectPlay8Address::AddComponent	method.

size_t	cb;
hr	=	StringCbLengthW(DPNA_STOP_BITS_ONE,	MAX_PATH,	&cb);

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_STOPBITS,																		//pwszName
																																	DPNA_STOP_BITS_ONE,																			//lpvData
																																	cb,																																			//dwDataSize,	in	bytes
																																	DPNA_DATATYPE_STRING);															//dwDataType

In	this	example,	the	stop	bits	setting	is	1,	as	indicated	by	the	use	of	the
DPNA_STOP_BITS_ONE	constant	defined	in	dpaddr.h.

Parity

The	following	example	illustrates	how	to	set	the	parity	using	the
IDirectPlay8Address::AddComponent	method.

size_t	cb;
hr	=	StringCbLengh(DPNA_PARITY_NONE,	MAX_PATH,	&cb);

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_PARITY,																			//pwszName
																																	DPNA_PARITY_NONE,																			//lpvData
																																	cb,																																	//dwDataSize,	in	bytes
																																	DPNA_DATATYPE_STRING);													//dwDataType

In	this	example,	the	parity	setting	is	none,	as	indicated	by	the	use	of	the
DPNA_PARITY_NONE	constant	defined	in	dpaddr.h.

Flow	Control

The	following	example	illustrates	how	to	set	the	flow	control	using	the
IDirectPlay8Address::AddComponent	method.

size_t	cb;

hr	=	StringCbLengh(DPNA_FLOW_CONTROL_RTSDTR,	MAX_PATH,	&cb);

hr	=	g_pHostAddress->AddComponent(DPNA_KEY_FLOWCONTROL,																				//pwszName
																																	DPNA_FLOW_CONTROL_RTSDTR,																	//lpvData
																																	cb,																																							//dwDataSize,	in	bytes
																																	DPNA_DATATYPE_STRING);																			//dwDataType

In	this	example,	the	flow	control	is	set	to	RTS/DTR,	as	indicated	by	the
use	of	the	DPNA_FLOW_CONTROL_RTSDTR	constant	defined	in
dpaddr.h.

Device

You	may	need	to	set	the	device	if	you	do	not	pass	the	respective
OKTOQUERYFORADDRESSING	flag	to	EnumHosts,	Connect,	or
Host.

Use	the	EnumServiceProviders	method	to	obtain	a	list	of	available
devices.	The	following	example	illustrates	how	to	retrieve	a	list	of
available	serial	devices	by	calling	the	EnumServiceProviders	method
with	the	pguidServiceProvider	parameter	set	to	CLSID_DP8SP_SERIAL.

DWORD	dwSize;
DWORD	dwItems;
PDPN_SERVICE_PROVIDER_INFO	pSPInfoBuffer;

hr	=	g_pDP->EnumServiceProviders(&CLSID_DP8SP_SERIAL,							//pguidServiceProvider
																																	NULL,	pSPInfoBuffer,							//pguidApplication,	pSPInfoBuffer
																																	&dwSize,	&dwItems,	0);				//pcbEnumData,	pcReturned,	dwFlags

The	pSPInfoBuffer	parameter	is	the	address	of	the	buffer	where
DirectPlay	places	the	service	provider	device	information	if	the	call	is

successful.	Typically	EnumServiceProviders	is	called	twice,	once	to
retrieve	the	buffer	size	required,	and	again	to	actually	fill	in	the	buffer.

After	enumerating	the	available	devices,	select	a	serial	device	by	using
the	IDirectPlay8Address::AddComponent	method	as	is	shown	below.

GUID	pGuid;
//		Set	pGuid

hr	=	g_pDeviceAddress->AddComponent(DPNA_KEY_DEVICE,								//pwszName
																																				pGuid,	sizeof(GUID),					//lpvData,	dwDataSize
																																				DPNA_DATATYPE_GUID);					//dwDataType

In	this	example,	pGuid	is	the	address	of	the	globally	unique	identifier
(GUID)	that	represents	the	selected	serial	device.

Host	Addresses

Serial	host	addresses	do	not	need	to	contain	any	additional	information
beyond	the	serial	provider	component.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Data	Value	Summary

The	following	two	tables	outline	the	standard	data	values	and	indicate
which	values	are	used	by	each	type	of	service	provider	for	both	host	and
device	addresses.	For	more	information	about	how	to	create	address
objects,	see	DirectPlay	Address	Objects.

Host	Addresses
	 IP IPX Serial Modem
Application	Instance Optional Optional Optional Optional

Baud Not	used Not	used Required 	

Device Not	used Optional Required Required

Flow	Control Not	used Not	used Required 	

Host	Name Required Required Optional Optional

Parity Not	used Not	used Required 	

Phone	Number Not	used Not	used Not	used Required

Port Required Required Not	used Not	used

Program Optional Optional Optional Optional

Provider Required Required Required Required

Stop	Bits Not	used Not	used Required 	

Device	Addresses
	 IP IPX Serial Modem
Application	Instance Optional Optional Optional Optional

Baud Not	used Not	used Required Not	used

Flow	Control Not	used Not	used Required Not	used

Host	Name Optional Optional Optional Optional

Device Optional Required Required Required

Parity Not	used Not	used Required Not	used

Phone	Number Not	used Not	used Not	used Not	used

Port Optional Required Not	used Not	used

Program Optional Optional Optional Optional

Provider Required Required Required Required

Stop	Bits Not	used Not	used Required Not	used

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Data	Values

The	values	that	need	to	be	included	in	the	data	string	depend	on	the
particular	service	provider.	Modem	providers,	for	instance,	need	a
telephone	number	in	their	address,	whereas	local	area	network	(LAN)
providers	might	need	a	port	number.	This	section	provides	a	detailed
description	of	the	standard	data	values.	It	also	includes	a	key	name	that
can	be	used	in	place	of	the	literal	string.	These	names	are	defined	in
Dpaddr.h.	For	more	information	about	using	these	values,	see	DirectPlay
Address	Objects.

Application	Instance

Baud

Device

Flow	Control

Host	Name

Parity

Phone	Number

Port

Program

Provider

Stop	Bits

NAT	Resolver

NAT	Resolver	User	String

Name	Information

Processor

Scope

Traversal	Mode

Application	Instance

An	optional	globally	unique	identifier	(GUID)	that	identifies	an	application
instance.	This	value	is	used	when	specifying	the	game	that	is	to	be
connected	to.

Key	Name:	DPNA_KEY_APPLICATION_INSTANCE

Key	String:	"applicationinstance"

Data	Type:	GUID

Providers:	All

Valid	Values:	Any	valid	application	instance	GUID.

Baud

The	baud	rate.

Key	Name:	DPNA_KEY_BAUD

Key	String:	"baud"

Data	Type:	DWORD

Providers:	Modem	and	serial

Valid	Values:	Any	valid	baud	rate.	You	can	set	this	value	to	the
appropriate	integer,	or	you	can	use	one	of	the	following	predefined	values
from	Dpaddr.h.

DPNA_BAUD_RATE_9600

DPNA_BAUD_RATE_14400

DPNA_BAUD_RATE_19200

DPNA_BAUD_RATE_38400

DPNA_BAUD_RATE_56000

DPNA_BAUD_RATE_57600

DPNA_BAUD_RATE_115200

Device

A	GUID	that	identifies	the	device	on	the	local	computer	that	will	be	used.
If	the	service	provider	supports	all	adapters,	you	do	not	need	to	specify	a
device.

Key	Name:	DPNA_KEY_DEVICE

Key	String:	"device"

Data	Type:	GUID

Providers:	All,	but	for	device	addresses	only,	not	host	addresses

Valid	Values:	Any	valid	device	GUID.

Flow	Control

The	type	of	flow	control	to	be	used.

Key	Name:	DPNA_KEY_FLOWCONTROL

Key	String:	"flowcontrol"

Data	Type:	String

Providers:	Serial	and	modem

Valid	Values:	Any	of	the	following	predefined	values	from	Dpaddr.h.

DPNA_FLOW_CONTROL_NONE DPNA_FLOW_CONTROL_DTR

DPNA_FLOW_CONTROL_XONXOFF DPNA_FLOW_CONTROL_RTSDTR

DPNA_FLOW_CONTROL_RTS 	

Host	Name

The	name	of	a	remote	host	computer.

Key	Name:	DPNA_KEY_HOSTNAME

Key	String:	"hostname"

Data	Type:	String

Providers:	All,	but	for	host	addresses	only,	not	device	addresses

Valid	Values:	A	fully-qualified	host	name,	or	a	dotted	address.

Parity

The	parity	of	the	connection.

Key	Name:	DPNA_KEY_PARITY

Key	String:	"parity"

Data	Type:	String

Providers:	Serial	and	modem

Valid	Values:	Any	of	the	following	predefined	values	from	Dpaddr.h.

DPNA_PARITY_NONE DPNA_PARITY_MARK

DPNA_PARITY_EVEN DPNA_PARITY_SPACE

DPNA_PARITY_ODD 	

Phone	Number

A	phone	number.

Key	Name:	DPNA_KEY_PHONENUMBER

Key	String:	"phonenumber"

Data	Type:	String

Providers:	Modem

Valid	Values:	Any	valid	phone	number.

Port

An	optional	port	number.	For	more	information,	see	DirectPlay	and	Ports.

Key	Name:	DPNA_KEY_PORT

Key	String:	"port"

Data	Type:	DWORD

Providers:	Internet	Protocol	(IP)	and	Internetwork	Packet	Exchange	(IPX)

Valid	Values:	Any	16-bit	integer.	Only	the	lower	16	bits	of	the	value	are
valid.	If	you	do	not	specify	a	port,	Microsoft®	DirectPlay®	will	choose	one
for	you.

Program

An	optional	application	GUID.

Key	Name:	DPNA_KEY_PROGRAM

Key	String:	"program"

Data	Type:	GUID

Providers:	All

Valid	Values:	Any	valid	application	GUID.

Provider

A	GUID	that	identifies	the	DirectPlay	service	provider	that	will	be	used.
For	more	information,	see	DirectPlay	Service	Providers.

Key	Name:	DPNA_KEY_PROVIDER

Key	String:	"provider"

Data	Type:	GUID

Providers:	All

Valid	Values:	Any	valid	service	provider	GUID.

Stop	Bits

The	number	of	stop	bits.

Key	Name:	DPNA_KEY_STOPBITS

Key	String:	"stopbits"

Data	Type:	String

Providers:	Serial	and	modem

Valid	Values:	Any	of	the	following	predefined	values	from	Dpaddr.h.

DPNA_STOP_BITS_ONE DPNA_STOP_BITS_TWO

DPNA_STOP_BITS_ONE_FIVE 	

NAT	Resolver

A	name	of	a	IDirectPlay8NATResolver	server.	See	Network	Address
Translation,	Firewalls,	and	Proxies	for	more	information.

Key	Name:	DPNA_KEY_NAT_RESOLVER

Key	String:	"natresolver"

Data	Type:	String

Providers:	All,	but	for	device	addresses	only,	not	host	addresses

Valid	Values:	A	fully-qualified	name,	or	a	dotted	address.

NAT	Resolver	User	String

A	password	to	allow	access	to	the	IDirectPlay8NATResolver	server.
See	Network	Address	Translation,	Firewalls,	and	Proxies	for	more
information.

Key	Name:	DPNA_KEY_NAT_RESOLVER_USER_STRING

Key	String:	"natresolveruserstring"

Data	Type:	String

Providers:	All,	but	for	device	addresses	only,	not	host	addresses

Valid	Values:	Any	valid	password.

Name	Information

The	name	of	a	Microsoft	Windows®	Powered	Pocket	PC	2002	device.
See	Bluetooth	Service	Provider	for	more	information.

Key	Name:	DPNA_KEY_NAMEINFO

Key	String:	"nameinfo"

Data	Type:	String

Providers:	None.	This	component	is	only	for	information	returned	from	an
enumeration.	To	connect	to	the	device,	use	the
DPNA_KEY_HOSTNAME	component.

Valid	Values:	A	friendly	name.

Processor

The	processor	number.

Key	Name:	DPNA_KEY_PROCESSOR

Key	String:	"processor"

Data	Type:	String

Providers:	All

Valid	Values:	A	valid	processor	number.

Scope

Not	implemented.

Traversal	Mode

Enable	or	disable	traversal	mode.	See	Network	Address	Translation,
Firewalls,	and	Proxies	for	more	information.

Key	Name:	DPNA_KEY_TRAVERSALMODE

Key	String:	"traversalmode"

Data	Type:	String

Providers:	All

Valid	Values:	Any	of	the	following	predefined	values	from	Dpaddr.h.

DPNA_TRAVERSALMODE_PORTRECOMMENDED

DPNA_TRAVERSALMODE_PORTREQUIRED

DPNA_TRAVERSALMODE_NONE

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Callback	Functions	and	Multithreading	Issues

Microsoft®	DirectPlay®	and	DirectPlay	Voice	both	require	you	to
implement	and	register	several	callback	functions	to	handle	the	events
fired	by	DirectPlay.	If	you	choose	to	use	multiple	DirectPlay	threads	in
your	game,	it	is	possible	that	your	application	will	receive	multiple
overlapping	callbacks.	Alternatively,	you	can	use	DirectPlay's	DoWork
mode	to	avoid	multithreading	issues.

DirectPlay	DoWork	Mode

DirectPlay	offers	a	single-threaded	environment	so	that	application
developers	don't	have	to	worry	about	data	corruption	or	deadlocking	due
to	synchronization	problems.	Applications	simply	set	the	DirectPlay
thread	count	to	zero	by	calling	the
IDirectPlay8ThreadPool::SetThreadCount	method.	Then	call
IDirectPlay8ThreadPool::DoWork	within	the	game	loop	and	DirectPlay
will	perform	all	DirectPlay	tasks	during	the	time	period	specified.	For
more	instructions	about	creating	a	single-threaded	application,	see
Tutorial	10:	DirectPlay	Thread	Pool.

DirectPlay	Thread	Pool

For	most	large-scale,	multiplayer	networked	applications,	you	will	want	to
implement	multithreading	because	it	enables	greater	scalability.	For	this,
DirectPlay	maintains	a	thread	pool,	controlled	with	an
IDirectPlay8ThreadPool	object.	Your	callback	is	invoked	on	a	thread	from
this	pool.	The	size	of	this	thread	pool	is	configurable	on	a	per-process
basis	by	using	the	IDirectPlay8ThreadPool::SetThreadCount	method.

To	correctly	and	reliably	access	data	in	DirectPlay	callbacks,	you	are
required	to	implement	a	method	of	multithreading	synchronization.	This	is
known	as	making	your	callback	re-entrant	or	threadsafe.

The	Microsoft	Windows®	family	of	operating	systems	currently	offers
three	methods	of	synchronizing	data	in	multithreaded	environments:

Mutex	objects	(mutually	exclusive	synchronization	objects).

Semaphore	objects	(flag	variables	used	to	indicate	to	potential
users	that	a	shared	file	or	other	resource	is	in	use).

Critical	section	objects	(also	provide	mutually	exclusive
synchronization	but	used	only	by	the	threads	of	a	single	process).

The	DirectPlay	voice	samples	that	ship	with	the	Microsoft	DirectX®
9.0	software	development	kit	(SDK)	demonstrate	synchronization	using
critical	section	objects.	If	you	want	to	implement	a	mutex	or	semaphore
object,	read	about	these	topics	in	the	Microsoft	Platform	Software
Development	Kit	(SDK)	as	well	as	in	many	reference	books.
Implementing	any	of	these	synchronization	methods	requires	an	expert
knowledge	level	in	these	areas	due	to	the	level	of	complexity	and
difficulty	in	debugging	should	any	issues	arise.

The	DirectPlay	threading	model	is	optimized	for	maximum	efficiency	and

there	are	no	thread	context	switches	during	"indication"	messages,
including	receive	messages.

See	Implementing	a	Callback	Function	in	DirectPlay	and	DirectPlay	Voice
for	more	information.

DirectPlay	Networking	Callbacks

DirectPlay	networking	callback	functions	are	of	type
PFNDPNMESSAGEHANDLER.	Depending	on	the	type	of	networking
session,	you	register	the	address	of	your	callback	function	with
IDirectPlay8Peer::Initialize,	IDirectPlay8Client::Initialize,	or
IDirectPlay8Server::Initialize.

Synchronization	Issues

You	must	employ	one	of	the	three	thread	synchronization	objects	in	order
to	maintain	the	integrity	of	your	game	data	during	processing	in	a
DirectPlay	callback.

To	understand	how	your	game	data	could	be	corrupted,	consider	that
your	callback	inserts	a	packet	of	game	data	into	a	structure.	Because	the
callback	is	reentrant,	another	thread	can	enter	the	callback	before	the
first	callback	has	completed.	It	is	possible	that	this	second	thread	could
also	attempt	to	access	the	structure	at	the	same	location	in	memory	and
change	the	data.	Therefore,	the	data	placed	in	the	structure	by	the	first
thread	is	overwritten	by	the	data	placed	in	the	structure	by	the	second
thread.	Please	note	that	this	is	an	oversimplified	example	of
multithreading	and	there	are	many	other	implications	to	not	properly
synchronizing	multiple	threads.

See	Implementing	a	DirectPlay	Networking	Callback	Using	Critical
Section	Objects	for	an	example	of	how	to	synchronize	data	in	a
DirectPlay	networking	session.

Worker	Threads

You	have	the	option	of	creating	your	own	"worker	threads".	A	worker

thread	is	another	multithreaded	application	defined	callback	that	is
created	to	process	game	data	independently	of	the	DirectPlay	callbacks.
The	most	common	way	of	accomplishing	this	is	to	buffer	data	received
during	a	DirectPlay	networking	callback	thread.	Then,	a	new	thread	is
created	and	a	message	is	sent	to	your	worker	thread	callback	to	notify	it
to	process	the	buffered	data.

Multithreading	Performance	Issues	and	Asynchronous
Operations

It	is	important	to	carefully	consider	how	much	time	is	spent	processing
messages	in	DirectPlay	callbacks.	If	you	process	a	lot	of	data	within	the
DirectPlay	callbacks	and	you	employ	a	data	locking	mechanism	to
synchronize	threads,	you	will	run	into	blocking	problems	as	other	threads
wait	to	enter	the	callback.

If	you	choose	to	implement	a	worker	thread	and	offset	the	processing	of
game	data	to	another	callback,	you	run	the	risk	of	adding	a	lot	of
overhead	processing	time	as	the	CPU	switches	context	between	the
threads	you	create	and	the	threads	created	by	DirectPlay.	This	should	be
done	only	if	the	game	data	requires	a	large	amount	of	processing	time,
and	the	data	is	not	critical	to	the	real	time	operation	of	the	game.	For
example,	it	is	not	recommended	to	process	player	location	data	in	a
worker	thread	because	this	data	is	critical	to	positioning	players	in	real
time	within	the	game.

You	can	also	return	DPNSUCCESS_PENDING	from	the	callback,	create
a	pointer	to	the	data	buffer,	and	make	that	pointer	available	the	worker
thread.	When	the	worker	thread	is	finished	processing	the	game	data,	it
calls	the	ReturnBuffer	method	of	either	IDirectPlay8Peer,
IDirectPlay8Client,	or	IDirectPlay8Server,	depending	on	the	topology

used.

Holding	Locks	Across	API	Calls

In	general,	you	should	avoid	holding	shared	resource	locks	across
application	programming	interface	(API)	calls.	This	is	because	it	can	be
hard	to	envision	all	the	possible	interactions	with	other	threads.	In	the
following	code,	the	sending	thread	is	incorrectly	holding	the	pObj-
>csSomeLock	critical	section	while	calling	IDirectPlay8Peer::SendTo
synchronously.

typedef	struct	_MYOBJECT{
	 CRITICAL_SECTION				csSomeLock;
	 DWORD															dwFlags;
	 .
	 .
	 .
}	MYOBJECT,	*PMYOBJECT;

IDirectPlay8Peer				*pDP8Peer;
PMYOBJECT											pObj;
.
.
.
EnterCriticalSection(&pObj->csSomeLock);
pDP8Peer->SendTo(DPNID_ALL_PLAYERS_GROUP,
																	&dpnBuffer,	1,	0,
																	NULL,	NULL,	DPNSEND_SYNC);
LeaveCriticalSection(&pObj->csSomeLock);

The	local	player	will	receive	a	copy	of	the	message	with	a	call	to	the

application's	message	handler	on	a	different	thread	because	the
DPNSEND_NOLOOPBACK	flag	was	not	used.	If	the	message	handler
tried	to	acquire	pObj->csSomeLock	in	response	to	this	message,	it
would	deadlock,	because	the	sending	thread	cannot	return	from
IDirectPlay8Peer::SendTo	(and	thus	cannot	drop	the	lock)	until	the
message	handler	returns,	but	the	message	handler	can't	return	until	the
sending	thread	drops	the	lock.	Instead,	use	a	flag	or	indexing	system	so
that	you	can	release	the	lock	while	you	make	the	API	call.

typedef	struct	_MYOBJECT{
	 CRITICAL_SECTION				csSomeLock;
	 DWORD															dwFlags;
	 .
	 .
	 .
}	MYOBJECT,	*PMYOBJECT;

IDirectPlay8Peer					*pDP8Peer;
PMYOBJECT												pObj;
.
.
.
EnterCriticalSection(&pObj->csSomeLock);
pObj->dwFlags	|=	FLAGS_SENDING;
LeaveCriticalSection(&pObj->csSomeLock);

pDP8Peer->SendTo(DPNID_ALL_PLAYERS_GROUP,
																	&dpnBuffer,	1,	0,
																	NULL,	NULL,	DPNSEND_SYNC);
	 	 	 	 	
EnterCriticalSection(&pObj->csSomeLock);
pObj->dwFlags	&=	~FLAGS_SENDING;

LeaveCriticalSection(&pObj->csSomeLock);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Implementing	a	Callback	Function	in	DirectPlay	and
DirectPlay	Voice

Microsoft®	DirectPlay®	and	DirectPlay	Voice	both	require	you	to
implement	and	register	several	callback	functions	to	handle	the	events
raised	by	DirectPlay.	DirectPlay	is	multithreaded	and	will	raise	multiple
events	concurrently.	Therefore,	in	order	to	correctly	and	reliably	access
data	in	DirectPlay	callbacks,	you	are	required	to	implement	a	method	of
multithreading	synchronization.	This	is	known	as	making	your	callback
re-entrant	or	threadsafe.

Callback	Function	Structure

The	structure	of	the	callback	follows	standard	Microsoft
Win32®	application	programming	interface	(API)	programming
guidelines.

HRESULT	WINAPI	Callback(
		PVOID	pvUserContext,
		DWORD	dwMessageType,
		PVOID	pMessage);

pvUserContext	is	the	a	context	value	you	supply	when	you	register	the
callback	function	with	DirectPlay.	If	you	pass	this	value	to	DirectPlay
when	you	register	your	callback,	the	context	value	will	be	returned	when
DirectPlay	invokes	your	callback.

dwMessageType	is	one	of	the	identifier	(ID)	values	passed	to	your
callback	by	DirectPlay.

pMessage	will	contain	the	message	passed	by	DirectPlay.

Registering	Your	Callback

DirectPlay	networking	callback	functions	are	of	type
PFNDPNMESSAGEHANDLER.	Depending	on	the	type	of	networking
session,	you	register	the	address	of	your	callback	function	with
IDirectPlay8Peer::Initialize,	IDirectPlay8Client::Initialize,	or
IDirectPlay8Server::Initialize.	If	you	are	registering	a	DirectPlay	voice
callback	function,	register	the	address	of	your	callback	with
IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize,
depending	on	the	type	of	DirectPlay	voice	session	you	want	to	create.

The	following	code	snippet	demonstrates	how	to	register	a	callback
function	with	the	IDirectPlay8Peer	interface.

HRESULT	WINAPI	Callback(PVOID,	DWORD,	PVOID);

IDirectPlay8Peer*	pdp8Peer;

//	Get	the	server	interface
hr	=	CoCreateInstance(CLSID_DirectPlay8Peer,	...)
...

//	Register	the	callback
hr	=	pdp8Peer->Initialize(NULL,	Callback,	0);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Implementing	a	DirectPlay	Networking	Callback	Using
Critical	Section	Objects

Microsoft®	DirectPlay®	networking	and	voice	callback	are	multithreaded.
Therefore,	in	order	to	correctly	and	reliably	access	data	in	DirectPlay
callbacks,	you	are	required	to	implement	a	method	of	multithreading
synchronization.

Currently,	there	are	three	methods	of	synchronizing	mulithreaded
callback	data.

Mutex	objects

Semaphore	objects

Critical	section	objects

The	DirectPlay	voice	samples	that	ship	with	the	Microsoft	DirectX®	SDK
demonstrate	synchronization	using	critical	section	objects,	and	the
following	topics	will	also	demonstrate	how	critical	section	objects	are
used.	If	you	want	to	implement	a	mutex	or	semaphore	object,	these
topics	are	discussed	in	the	Microsoft	Platform	Software	Development	Kit
(SDK)	as	well	as	in	many	reference	books.	Implementing	any	of	these
synchronization	methods	requires	an	expert	knowledge	level	in	these
areas	due	of	the	level	of	complexity	and	difficulty	in	debugging	should
any	issues	arise.

CRITICAL_SECTION	g_csPlayerContext;
InitializeCriticalSectionAndSpinCount(&g_csPlayerContext,	0);

Next,	implement	the	DirectPlay	message	callback	handler.

HRESULT	WINAPI	DirectPlayMessageHandler(PVOID	pvUserContext,	

																																									DWORD	dwMessageId,	
																																									PVOID	pMsgBuffer)
{
				switch(dwMessageId)
				{
								case	DPN_MSGID_CREATE_PLAYER:
								{
													EnterCriticalSection(&g_csPlayerContext);
													//	callback	is	now	locked
													//	perform	operation	on	player	data
													LeaveCriticalSection(&g_csPlayerContext);
								}
				}
}

Finally,	during	application	exit,	ensure	that	you	call	the
DeleteCriticalSection	function	to	free	the	memory	associated	with	your
critical	section	object.

DeleteCriticalSection(&g_csPlayerContext);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	Protocol

Multiplayer	games	require	efficient	and	flexible	network	messaging
services	for	optimal	performance.	The	Microsoft®	DirectPlay®	protocol	is
a	transport-layer	messaging	protocol	that	is	used	for	all	DirectPlay
messaging.	It	provides	your	application	with	the	messaging	support	it
needs	to	make	everything	run	smoothly.	The	DirectPlay	protocol	includes
the	following	messaging	support.

Reliable	and	unreliable	delivery	of	messages

Sequential	and	non-sequential	delivery	of	messages

Message	fragmentation	and	reassembly

Congestion	control

Send	prioritization

Message	timeouts

Note		Before	DirectPlay	8.1,	the	DirectPlay	protocol	was	optional,	and
had	to	be	specified	explicitly.	Since	DirectPlay	8.1,	this	protocol	is	used
for	all	DirectPlay	messaging.

This	document	provides	a	general	description	of	how	the	Microsoft
DirectX®	protocol	works,	and	how	you	can	use	it	in	your	application.

Basic	Message	Handling

Message	Categories

Congestion	Control

Send	Prioritization

Packet	Signing

Monitoring	Messaging	Statistics

Monitoring	the	Pending	Message	Queues

Using	the	DirectX	Protocol	in	an	Application

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Basic	Message	Handling

A	message,	as	the	term	is	used	in	this	document,	is	a	block	of	data	that
needs	to	be	sent	to	another	computer.	A	network	protocol	creates	a
packet	by	adding	some	bits	to	the	data	block	that	hold	information	such
as	the	target's	network	address.	This	packet	is	the	basic	unit	of	network
data.	When	the	target	receives	the	packet,	the	target's	network	protocol
removes	the	extra	bits	and	passes	the	data	block	to	the	receiving
application.

Although	similar	in	usage,	the	terms	message	and	packet	are	not	strictly
interchangeable.	This	document	uses	the	term	message	to	refer	to	the
unit	of	information	that	is	passed	to	and	received	from	the	Microsoft®
DirectPlay®	application	programming	interface	(API).	Packet	refers	to	the
unit	of	information	handled	by	the	network.	DirectPlay	handles	packets
internally.	With	rare	exceptions,	DirectPlay	applications	need	to	deal	only
with	messages.

The	primary	reason	for	the	distinction	between	message	and	packet	is
that	networks	generally	limit	the	maximum	size	of	the	packets	they
handle.	This	size	is	referred	to	as	a	Maximum	Transmission	Unit	(MTU).
If	a	message	is	small,	it	is	sent	in	a	single	packet	and	the	two	terms	are
effectively	synonymous.	However,	large	messages	might	need	to	be
fragmented	into	two	or	more	packets	and	then	be	reassembled	by	the
receiver.	The	DirectPlay	protocol	automatically	handles	fragmentation
and	reassembly	of	messages	as	needed.	As	far	as	your	application	is
concerned,	you	send	a	message,	and	the	target	receives	it.

Note		DirectPlay	delivers	messages	of	any	size.	However,	the	more
packets	that	are	required	for	a	single	message,	the	greater	the	odds	that
one	or	more	packets	will	be	lost	and	have	to	be	retransmitted.	Messages

that	are	large	enough	to	require	fragmentation	and	reassembly	thus
typically	have	more	network	latency	than	single-packet	messages.	If	you
need	to	keep	network	latency	to	a	minimum,	avoid	sending	large
messages,	especially	on	lossy	networks.	You	can	determine	the
maximum	size	that	your	connection	can	accommodate	in	a	single	packet
by	calling	the	GetSPCaps	method	exposed	by	the	IDirectPlay8Peer,
IDirectPlay8Client,	and	IDirectPlay8Server	interfaces.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Message	Categories

The	Microsoft®	DirectPlay®	protocol	is	designed	to	handle	the	following
two	basic	types	of	network	messaging.

Reliable	versus	unreliable	messaging	determines	whether
messages	are	guaranteed	to	be	delivered	to	the	target	application.

Non-sequential	versus	sequential	messaging	determines	whether
messages	are	received	by	the	target	application	in	the	same	order
they	are	sent.

Games	use	messaging	for	a	variety	of	purposes,	each	with	different
demands.	To	support	this	range	of	messaging	needs,	the	DirectPlay
protocol	enables	you	to	designate	a	message	as	belonging	to	one	of	four
categories:

Reliable	and	sequential

Unreliable	and	sequential

Reliable	and	non-sequential

Unreliable	and	non-sequential

The	DirectPlay	protocol	enables	you	to	optimize	your	messaging	strategy
by	assigning	categories	on	a	message-by-message	basis.

Reliable	and	Unreliable	Messaging

Messages	are	sometimes	lost	in	transit.	Reliable	messaging	provides	a
guarantee	that	the	target	will	receive	every	message.	This	type	of
messaging	is	required	when	data	loss	cannot	be	tolerated.	Most	reliable
messaging	schemes	require	the	target	to	acknowledge	receipt	of	each
message.	If	the	sender	does	not	receive	an	acknowledgment	within	a
specified	timeout	period,	it	resends	the	message.	This	process	typically
continues	until	the	sender	receives	an	acknowledgment,	confirming	that
the	message	has	arrived.

The	DirectPlay	protocol	imposes	a	limit	on	the	number	of	resend
attempts.	If	no	acknowledgment	is	received	after	a	reasonable	number	of
attempts,	DirectPlay	assumes	that	the	connection	has	been	lost,	and
closes	it.

Unreliable	messaging	is	the	simplest	form	of	network	communication.	It
might	be	faster	than	reliable	messaging	because	there	is	no	guarantee
that	the	message	will	be	delivered	to	the	target.	The	sender	transmits	the
message.	If	the	target	does	not	receive	the	message,	the	sender	will	not
transmit	the	message	again,	and	the	packet	is	lost.

Unreliable	messaging	is	used	primarily	when	speed	or	bandwidth	is	more
important	than	an	occasional	lost	message.	For	example,	high-bandwidth
streaming	media	applications	often	use	unreliable	messaging.	They
cannot	afford	to	take	up	bandwidth	with	acknowledgments	and
retransmissions,	nor	can	they	wait	for	a	lost	message	to	be	retransmitted.
An	occasional	lost	message	normally	has	only	a	minor	impact	on	quality,
so	it	can	be	ignored.

Sequential	and	Non-Sequential	Messaging

Messages	leave	the	sender	in	a	particular	sequence.	However,	there	is
no	guarantee	that	messages	will	arrive	at	the	target's	computer	in	the
same	order	that	they	are	sent.	For	example,	if	a	message	is	lost	and
must	be	retransmitted,	that	message	will	typically	arrive	later	than
messages	that	followed	it	in	the	original	sequence.

Sequential	messaging	uses	sequencing	information	embedded	in	the
message	to	ensure	that	the	messages	are	presented	to	the	target
application	in	the	correct	order.	This	type	of	messaging	is	required	when
the	target	application	must	receive	messages	in	the	correct	order.	Out-of-
order	messages	are	buffered	until	the	missing	messages	arrive.

Non-sequential	messaging	presents	the	received	messages	to	the	target
as	soon	as	they	arrive	at	the	target	computer,	regardless	of	the	order	in
which	they	were	sent.	Because	there	is	no	need	to	wait	for	a	missing
packet,	applications	often	use	non-sequential	messaging	when	speed	is
more	important	than	an	occasional	out-of-order	message.	The	out-of-
order	message	is	ignored.

Choosing	the	Best	Message	Category

Choosing	the	best	category	for	messages	is	a	core	issue	for	multiplayer
game	developers.	While	DirectPlay	provides	the	tools	to	manage	your
messaging,	the	choice	of	a	message	category	ultimately	depends	on	the
semantic	content	of	the	message	and	the	nature	of	the	game.

The	following	are	general	guidelines	for	choosing	the	best	message
category.

Use	non-guaranteed	messaging	whenever	the	content	permits.
For	example,	your	game	might	send	frequent	player-location
updates.	Each	update	is	independent,	and	it	supersedes	any
previous	updates.	If	an	update	is	lost,	the	next	update	is	sufficient
to	maintain	the	player's	game	state.	A	lost	and	retransmitted
message	might	arrive	later	than	the	subsequent	update	message.

Use	guaranteed	messaging	when	data	loss	cannot	be	tolerated.
For	example,	a	text-based	chat	feature	depends	on	every
character	being	delivered	to	its	target.

Use	sequential	messaging	when	the	order	of	the	messages	is
important.	For	example,	streaming	media	typically	uses	sequential-
unreliable	messaging.	An	occasional	dropped	message	can	be
tolerated,	but	an	out-of-order	message	would	cause	problems.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Congestion	Control

In	an	ideal	world,	your	game	can	send	messages	as	often	as	it	needs	to.
They	arrive	at	the	target	immediately	and	are	processed	instantaneously.
If	all	of	the	computers	in	your	game	have	ample	processing	power	and
are	connected	by	a	lightly	used	high-bandwidth	network	link,	you	might
approach	this	ideal	situation.	You	can	then	send	messages	as	often	as
you	like.	However,	a	number	of	factors	can	create	congestion	and	cause
messaging	to	work	more	slowly	than	this	ideal:

Network	latency.	Even	under	ideal	conditions,	messages	take	a
finite	time	to	traverse	the	network	from	sender	to	target,	especially
over	the	Internet.	There	might	be	further	delays	for
acknowledgments,	retransmission	of	lost	packets,	or	reassembly
of	out-of-order	packets.

Network	bandwidth.	The	network	bandwidth	controls	the	rate	at
which	a	message	can	be	sent	or	received	by	a	computer.	Network
links	have	a	wide	range	of	bandwidths,	and	even	high-bandwidth
networks	might	be	slowed	by	high	traffic	levels.	If	one	or	more	of
your	players	has	a	low-bandwidth	connection,	they	will	be	able	to
send	and	receive	messages	only	at	a	limited	rate.

Processing	speed.	Even	if	network	bandwidth	is	high	and	latency
low,	the	target	application	still	needs	some	time	to	process	a
received	message.	If	one	or	more	of	the	players	in	a	session	is
using	a	relatively	slow	computer,	the	rate	at	which	they	can
process	received	messages	might	be	below	the	rate	at	which
messages	can	be	sent.

Message	Throttling

If	there	is	no	control	over	the	rate	at	which	messages	are	sent,	a	target
can	be	flooded	by	more	messages	than	it	can	handle.	To	prevent	this
situation,	the	Microsoft®	DirectPlay®	protocol	throttles	the	rate	at	which
messages	are	sent.	The	net	effect	of	throttling	is	that	the	rate	at	which
messages	are	sent	is	controlled	by	the	rate	at	which	the	target	can
handle	them.

Throttling	is	implemented	with	a	sliding	window	mechanism.	The	sliding
window	is	basically	a	queue	with	a	limited	number	of	slots	that	holds
messages	that	have	been	sent	but	not	yet	received.	All	outgoing
messages	are	placed	in	this	queue,	regardless	of	their	category.	When
the	sent-message	queue	is	full,	it	accepts	no	more	outgoing	messages
until	one	of	the	messages	in	the	queue	has	been	received.

For	optimal	performance,	the	size	of	the	sliding	window	must	be	matched
to	current	network	conditions.	The	DirectPlay	protocol	automatically
monitors	such	factors	as	the	number	of	messages	and	the	total	number
of	bytes	in	the	sent-message	queue.	This	information	is	then	used	to
dynamically	adjust	the	size	of	the	sliding	window	to	optimize	messaging
for	the	current	network	conditions.

Connection	Checking

If	there	is	no	activity	on	a	link,	the	DirectPlay	protocol	periodically	tests
the	connection	by	sending	an	empty	reliable	packet.	If	no
acknowledgment	is	received	from	the	target	after	a	reasonable	number	of
attempts,	DirectPlay	concludes	that	the	link	has	been	disconnected.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Send	Prioritization

Messages	often	vary	widely	in	importance.	Some	are	time-critical	and
must	be	delivered	as	quickly	as	possible.	Others	can	be	delayed	if
necessary	or,	possibly,	not	sent	at	all.	One	issue	with	congestion	control
algorithms	is	that	an	application	might	create	messages	faster	than	they
can	be	sent.	Unsent	messages	must	then	be	held	in	a	queue	until	an
outgoing	slot	opens	up.	If	all	unsent	messages	are	held	in	a	single
pending-message	queue,	high	priority	messages	might	be	blocked	while
waiting	for	lower	priority	messages	to	be	sent	first.

The	Microsoft®	DirectPlay®	protocol	solves	this	problem	by	having	three
pending	message	queues:	low,	medium,	and	high	priority.	When	a	slot
opens	up	in	the	sent-message	queue,	the	protocol	selects	the	next
message	to	be	sent	as	follows:

1.	 Send	the	oldest	message	in	the	high-priority	queue.

2.	 If	there	are	no	messages	in	the	high-priority	queue,	send	the
oldest	message	in	the	medium-priority	queue.

3.	 If	there	are	no	messages	in	the	medium-priority	queue,	send	the
oldest	message	in	the	low-priority	queue.

This	priority	mechanism	enables	you	to	get	your	time-critical	messages
out	as	quickly	as	possible,	even	when	less	important	messages	have
already	been	submitted.

Note			All	DirectPlay	Voice	messages	are	sent	with	medium	priority	and	a
timeout	value	of	1.5	seconds.	Any	messages	that	should	not	be
preempted	by	voice	traffic	should	be	sent	with	high	priority.

Send	Timeouts

One	of	the	consequences	of	throttling	is	that	messages	might	spend	a
relatively	long	time	in	a	pending-message	queue,	especially	if	they	are
low	priority.	Some	messages	might	stay	long	enough	to	have	been
superseded	by	subsequent	messages.	These	messages	are	no	longer
relevant.	For	example,	your	application	might	periodically	send	player-
location	update	messages.	Each	update	is	independent	of	the	others	and
supersedes	any	previous	updates.	If	you	have	two	player-location
updates	in	the	pending	message	queue,	only	the	most	recent	one	needs
to	be	sent.

The	DirectPlay	protocol	enables	you	to	handle	the	problem	of	outdated
messages	by	adding	an	optional	timeout	value	to	the	message.	If	the
message	is	still	in	a	pending-message	queue	when	the	timeout	expires,
the	message	will	be	canceled.

Disconnection

When	an	application	sends	a	disconnect	message,	the	message	is
placed	at	the	end	of	the	low-priority	pending-message	queue,	and	the
protocol	stops	accepting	outgoing	messages.	This	practice	guarantees
that	all	pending	messages	are	sent	before	the	link	is	disconnected.	The
disconnect	message	is	sent	as	a	reliable	sequential	message	to
guarantee	that	it	arrives,	but	not	before	all	other	messages	in	the	queue
have	been	delivered.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Packet	Signing

Microsoft®	DirectPlay®	provides	packet	signing	to	prevent	malicious
users	from	sending	spoofed	Internet	Protocol	(IP)	packets	that	corrupt
the	link	between	peers	or	between	clients	and	a	server.	Packet	signing	is
performed	by	attaching	a	"signature"	to	each	packet	before	sending.	This
signature	is	8	bytes.	Any	packet	received	without	the	correct	signature	is
silently	ignored	by	DirectPlay.

Packet	signing	does	not	encrypt	the	data	that	is	sent	over	the	link,	nor
does	it	provide	a	form	of	authentication.	It	should	be	used	to	prevent	third
parties	from	inserting	invalid	data	into	a	DirectPlay	game	session.	Some
other	mechanism	needs	to	be	used	if	you	want	the	application	to
authenticate	the	users	connecting	to	the	game.

Packet	signing	is	set	when	the	session	is	started	by	the	host.	The	host
determines	the	type	of	signing	by	setting	either	the
DPNSESSION_FAST_SIGNED	or	DPNSESSION_FULL_SIGNED	flag	in
the	DPN_APPLICATION_DESC	structure	when	calling
IDirectPlay8Peer::Host	or	IDirectPlay8Server::Host.	Players	connecting
to	the	session	can	set	either	flag	when	calling	IDirectPlay8Peer::Connect
or	IDirectPlay8Client::Connect,	but	they	will	use	whichever	type	of
signing	the	host	has	selected.	When	connected,	clients	can	determine
which	type	of	signing	the	session	is	using	by	calling
IDirectPlay8Peer::GetApplicationDesc	or
IDirectPlay8Client::GetApplicationDesc.	The	dwFlags	member	of	the
DPN_APPLICATION_DESC	structure	will	contain	one	of	the	signing
flags.

Note		All	players	must	be	using	Microsoft	DirectX®	9.0	or	later	in	order	to
use	packet	signing	in	a	session.

Fast	Signing

Fast	signing	creates	the	lowest	overhead	on	your	game.	It	merely	adds
the	same	8-byte	value	to	each	packet.	Fast	signing	is	recommended	for
all	DirectPlay	sessions	created.	However,	it	is	vulnerable	to	a	malicious
attack	if	another	user	has	access	to	the	packets	being	exchanged	and
can	determine	the	8-byte	value.

Full	Signing

Full	signing	adds	computational	overhead	to	your	game.	Each	packet
sent	and	received	has	to	be	hashed	over	in	order	to	compute	its
signature.	Full	signing	uses	the	Secure	Hash	Algorithm	version	1.0.
When	the	session	has	been	established,	access	to	the	packets	does	not
enable	another	user	to	compromise	the	link.	However,	if	another	user
reads	the	initial	connection	sequence	between	two	computers,	that	user
may	be	able	to	compromise	the	link.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Monitoring	Messaging	Statistics

While	the	Microsoft®	DirectPlay®	protocol	handles	many	aspects	of
messaging	automatically,	your	application	should	still	monitor	messaging
behavior.	For	example,	if	you	are	consistently	sending	messages	faster
than	they	can	be	delivered,	you	might	need	to	modify	your	messaging
scheme.

Because	network	conditions	change	continuously,	your	application
should	periodically	check	the	behavior	of	the	network	and	adjust	its
messaging	scheme	accordingly.	To	do	so,	call	the	GetConnectionInfo
method	that	is	exposed	by	every	DirectPlay	interface	that	supports
messaging.	GetConnectionInfo	returns	a	structure	that	contains	a	wide
variety	of	statistical	information	that	you	can	use	to	refine	your	messaging
scheme,	including	the	following:

Round	trip	latency

Throughput

Packets	sent

Packets	received

Packets	resent

Packets	dropped

Messages	transmitted	at	different	priority	levels

Note		The	messaging	statistics	are	obtained	by	monitoring	the	actual
network	traffic.	If	you	call	GetConnectionInfo	immediately	after	you
initialize	the	connection,	there	will	have	been	little	time	to	collect	data	and
the	statistics	might	be	misleading.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Monitoring	the	Pending	Message	Queues

You	should	monitor	your	pending	message	queues	to	ensure	that	they	do
not	become	too	large.	The	IDirectPlay8Peer,	IDirectPlay8Client,	and
IDirectPlay8Server	interfaces	all	expose	a	GetSendQueueInfo	method
that	can	be	used	to	check	the	number	of	messages	and	the	number	of
bytes	currently	in	the	queue.	By	default,	the	method	returns	the	total	for
all	three	queues,	but	you	can	also	obtain	values	for	each	of	the	three
priority	levels.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Using	the	DirectX	Protocol	in	an	Application

This	section	covers	how	you	can	use	the	features	of	the	Microsoft®
DirectPlay®	protocol	in	your	application.

You	can	use	five	DirectPlay	interfaces	to	send	messages.

IDirectPlay8Peer

IDirectPlay8Client

IDirectPlay8Server

IDirectPlay8LobbyClient

IDirectPlay8LobbiedApplication

Depending	on	which	interface	your	application	is	using	to	send
messages,	you	send	a	message	by	calling	a	method	named	either	Send,
or	SendTo.	While	the	usage	of	these	five	methods	is	similar,	they	vary	in
detail.	Refer	to	the	appropriate	reference	pages	for	further	discussion.

The	Send/Sendto	method's	parameters	might	allow	you	to	control	many
of	the	DirectPlay	protocol's	features.	For	example,	the	dwFlags	field	of
IDirectPlay8Peer::SendTo	allows	you	to	specify:

The	message's	priority	level.

Whether	the	message	is	reliable	or	unreliable.

Whether	the	message	is	sequential	or	non-sequential.

Refer	to	the	appropriate	method	reference	for	further	details.

When	your	application	receives	a	message,	your	callback	function	will
receive	a	DPN_MSGID_RECEIVE	message.	The	associated	structure
contains	a	pointer	to	the	data	block,	along	with	information	such	as	the
source	of	the	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DP8Sim	Utility

The	DP8Sim	utility	is	an	executable	that	uses	the	methods	of
IDP8SimControl	to	allow	you	to	test	your	application	under	a	variety	of
network	conditions.	Alternatively,	you	can	use	the	DP8Sim	service
provider	and	IDP8SimControl	interface	to	create	your	own	test
environment.	For	more	information,	see	Testing	Network	Performance.

Note		DP8Sim	is	implemented	on	top	of	the	existing	DirectPlay8	TCP/IP
Service	Provider.	The	settings	are	also	applied	on	top	of	the	existing
network	characteristics.	Therefore,	it	is	intended	to	be	used	on	a	high-
speed	local	area	network	(LAN)	where	normal	latency	and	packet	loss
are	negligible.

Path

Executable:	(SDK	root)\bin\dp8simui.exe

DLL:	(SDK	root)\bin\dp8sim.dll

User's	Guide

The	configuration	utility,	Dp8simui.exe,	is	the	user	interface	for	controlling
Dp8sim.dll.	Both	files	must	reside	in	the	same	directory.	When	you	start
the	configuration	utility,	it	will	automatically	register	the	Dp8sim.dll
Component	Object	Model	(COM)	objects.	You	can	also	manually	register
the	dynamic-link	library	(DLL)	by	typing	the	following	command	at	your
Microsoft®	MS-DOS®	prompt.

regsvr32.exe	dp8sim.dll

After	the	Dp8sim.dll	is	registered,	the	DP8Sim	service	provider	will	be
available.	Select	the	"DirectPlay8	TCP/IP	Service	Provider	(Network
Simulator)"	service	provider	from	the	service	providers	returned	by	the
IDirectPlay8Peer::EnumServiceProviders,
IDirectPlay8Client::EnumServiceProviders,	and
IDirectPlay8Server::EnumServiceProviders	methods.	Note	that	Microsoft
DirectPlay®	sessions	cannot	use	the	network	simulator	if	the	DirectPlay
interface	was	created	before	running	the	simulator.

Once	the	simulator	is	running,	you	can	control	various	network	options.
There	are	also	predefined	network	settings	that	may	be	useful.

The	options	for	sending	(receiving)	are:

Bandwidth	(bytes/second).	The	total	available	outbound	(inbound)
bandwidth	for	all	players	in	bytes	per	second.	All	packets	have
their	latency	increased	in	proportion	to	their	size	according	to	this
value.	If	the	application	sends	(receives)	more	than	this	amount,
later	packets	are	queued	behind	earlier	ones.	Use	0	(zero)	for
unlimited	bandwidth,	up	to	the	real	underlying	network	bandwidth.

Drop	percentage	(0	to	100	percent).	The	random	frequency	as	a

percentage	for	an	individual	outbound	(inbound)	packet	to	be
dropped.	Each	packet	stands	the	same	chance	of	being	dropped,
regardless	of	other	packets.	Note	that	this	does	not	necessarily
model	the	behavior	of	all	networks.	Packet	loss	on	the	Internet,	for
example,	tends	to	be	erratic,	with	packet	loss	high	at	some	times
and	low	at	others.	A	value	of	1	means	that	an	average	of	1	out	of
every	100	packets	is	dropped.	A	value	of	100	means	every	packet
is	dropped.	Use	0	if	you	do	not	want	to	drop	any	packets	other
than	loss	due	to	the	real	underlying	network.

Minimum	latency	(milliseconds).	The	minimum	delay	in
milliseconds	for	outbound	(inbound)	packets.	The	actual	delay	for
an	individual	packet	is	chosen	randomly	between	this	minimum
value	and	the	maximum	latency	value.	Note	that	the	delay	is
applied	on	top	of	any	delay	imposed	by	bandwidth	limitations.	Use
0	if	you	do	not	want	to	have	a	lower	bound	for	artificial	latency
beyond	the	real	underlying	network.

Maximum	latency	(milliseconds).	The	maximum	delay	in
milliseconds	for	outbound	(inbound)	packets.	The	actual	delay	for
an	individual	packet	is	chosen	randomly	between	the	minimum
latency	value	and	this	maximum	value.	If	this	value	is	lower	than
the	minimum	latency	value,	it	is	automatically	set	to	equal	the
minimum	value.	Note	that	the	delay	is	applied	on	top	of	any	delay
imposed	by	bandwidth	limitations.	Use	0	if	you	do	not	want	to	have
an	upper	bound	for	artificial	latency	beyond	the	real	underlying
network.

Note		These	options	apply	for	in-game	data	only.	Host	enumerations	and
responses	are	not	subject	to	the	simulation.

To	make	modifications,	use	the	Apply	and	Revert	buttons.	Click	Apply
to	change	the	settings	and	Revert	to	restore	the	previous	settings.	To
save	you	settings,	click	the	Save	As	button.	You	will	be	prompted	to	give
a	name	for	your	settings.

At	the	bottom	of	the	configuration	utility	window,	the	send	and	receive
statistics	for	all	affected	DirectPlay	interfaces	are	displayed.	The	Refresh

button	updates	the	statistics	and	Clear	resets	the	statistics	to	0.

To	unregister	Dp8sim.dll,	type	the	following	at	the	MS-DOS	command
prompt.

regsvr32.exe	/u	dp8sim.dll

Note		The	DP8Sim	utility	provided	with	Microsoft	DirectX®	8.1	will	not
work	with	applications	using	the	DirectX	9.0	DLLs.

For	more	information	about	network	performance,	see	Optimizing
Network	Usage.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Monitoring	DirectPlay	Network	Traffic	with	Network
Monitor

During	game	development,	you	might	find	it	useful	to	monitor	Microsoft®
DirectPlay®	network	traffic,	especially	when	trying	to	understand	bugs.
The	Network	Monitor	is	a	standard	utility	for	analyzing	network	traffic.
DirectPlay	includes	a	set	of	parsers,	that	allow	you	to	use	the	Network
Monitor	to	analyze	four	components	of	DirectPlay	messaging:	the
service	provider	layer,	the	transport	layer,	the	session	layer,	and	the	voice
layer.

http://msdn.microsoft.com/library/en-us/netmon/netmon/network_monitor.asp

How	Network	Monitor	Works	With	DirectPlay

The	DirectPlay	protocol	stack	has	three	basic	layers.

The	voice	and	session	layers	share	the	top	level	of	the	stack.
Normal	messaging	passes	through	the	session	layer,	and	voice-
related	messaging	passes	through	the	voice	layer.

The	transport	layer	is	the	middle	of	the	stack.	Both	voice	and
session	traffic	passes	through	this	layer,	which	is	responsible	for
such	tasks	as	fragmentation	and	reassembly	of	messages	and
retransmission	of	lost	packets.

The	service	provider	layer	is	at	the	bottom	of	the	stack.	All
messaging	is	handled	by	this	layer,	which	is	responsible	for
communicating	with	the	network.	For	example,	for	Transmission
Control	Protocol/Internet	Protocol	(TCP/IP)	networking,	the	service
provider	uses	the	Windows	Sockets	(Winsock)	application
programming	interface	(API)	to	communicate	with	the	network
stack.	The	Network	Monitor	can	only	parse	network	traffic	that	is
carried	on	an	Internet	Protocol	(IP)	or	Internetwork	Packet
Exchange	(IPX)	service	provider.

By	installing	the	DirectPlay	parsers,	you	can	use	the	Network	Monitor	to
analyze	the	network	traffic	as	it	passes	through	any	of	these	four	layers.
You	can	see	all	DirectPlay	traffic	by	selecting	the	service	provider	parser.
However,	by	selecting	one	of	the	higher-level	parsers,	you	can	filter	out
traffic	that	might	not	be	of	interest.

With	the	transport	layer	parser,	you	see	all	voice	and	session	traffic,	but
not	low-level	traffic	such	as	connection	handshaking.	Be	aware	that	the
transport	layer	breaks	messages	that	are	longer	than	the	network's
Maximum	Transmission	Unit	(MTU)	into	one	or	more	fragments.

The	session	and	voice	layer	parsers	enable	you	to	analyze	session	and
voice-related	traffic	separately.	Both	of	these	parsers	are	can	detect

fragmentation,	and	notify	the	user,	but	cannot	parse	fragmented	packets.

Configuring	Network	Monitor	for	DirectPlay

If	you	have	a	Microsoft	Windows®	2000	Server	system,	Network
Monitor	is	already	installed.	For	Windows	2000	Professional,	you	must
purchase	a	copy	of	Systems	Management	Server	(SMS).	For	a	general
discussion	of	how	to	use	Network	Monitor,	see	About	Network	Monitor
2.0.

To	configure	the	Network	Monitor	to	handle	DirectPlay	traffic:

1.	 Copy	Dp8parse.dll	from	(SDK	root)\bin\DXUtils	to	the	appropriate
folder.	The	Network	Monitor	root	folder	is	normally	installed	in
the	\Winnt\System32	folder.	If	you	have	installed	SMS,	the	root
folder	will	be	called	NetMonFull.	For	Windows	2000	Server,	the
root	folder	will	be	called	NetMon.	Depending	on	which	version	of
the	Network	Monitor	you	are	using,	copy	the	parser	dynamic-link
library	(DLL)	to	either	the	...\NetMonFull\Parsers,	or
...\NetMon\parsers	folder.

2.	 Start	the	Network	Monitor.

3.	 Set	the	adapter	to	capture	from	(Capture,	Networks,	Local
Computer).	Be	sure	to	choose	the	adapter	with	the	"Dial-up
Connection"	property	set	to	FALSE.

You	are	now	ready	to	start	capturing	traffic.

http://msdn.microsoft.com/library/en-us/netmon/netmon/about_network_monitor_2_0.asp

Capturing	DirectPlay	Network	Traffic

To	start	the	capture	process,	click	Start	Capture	on	the	Network
Monitor	toolbar	to	open	the	capture	view.	Initially,	you	will	see	all	the
traffic	that	is	passing	through	your	adapter.	You	can	filter	that	raw	traffic
stream	to	focus	on	only	those	packets	that	are	of	interest.	By	installing
the	DirectPlay	parsers,	you	essentially	add	four	DirectPlay-oriented	filters
to	Network	Monitor	that	enable	you	to	filter	everything	but	DirectPlay
traffic	from	your	capture	view.

To	select	a	filter:

1.	 Click	the	Edit	Display	Filter	button	on	the	Network	Monitor
toolbar.

2.	 Double-click	Protocol	==	Any.

3.	 Click	Disable	All.

4.	 Under	Disabled	Protocols,	double-click	DPLAYSESSION,
DPLAYSP,	DPLAYTRANSPORT,	and	DPLAYVOICE.

Click	OK	twice	to	return	to	the	capture	view,	and	you	are	ready	to	start
viewing	DirectPlay	traffic.

You	can	also	apply	a	filter	to	the	capture	process	itself,	rather	than	to	the
capture	view.	This	allows	you,	for	instance,	to	capture	only	IP	packets
with	specified	source	and	destination	ports.	For	details,	see	the	Network
Monitor	documentation.

Tips	for	Using	Network	Monitor	with	DirectPlay

Here	are	a	few	tips	to	using	the	Network	Monitor	with	DirectPlay.

By	default,	the	Network	Monitor	captures	only	1	MB	of	the	most
recent	traffic.	You	will	probably	want	to	increase	this	value	to	at
least	10	to	20	MB.

The	Network	Monitor	doesn't	stream	to	the	hard	drive,	so	all	you
can	see	is	what	is	in	the	capture	buffer.	To	stream	captured	traffic
to	a	hard	drive,	you	need	to	implement	your	own	capturer.	For
details,	see	MSDN®.

By	default,	DirectPlay	parsing	uses	the	[2302,2400]U{6073}
port/socket	range	to	filter	IP	and	IPX	packets.	To	parse	ports	other
than	the	default	DirectPlay	ports,	create	two	new	DWORD	values
under	the
HKEY_CURRENT_USER\Software\Microsoft\DirectPlay\Parsers
key,	as	shown	in	the	following	example.

MinUserPort	=	x

MaxUserPort	=	y

	

The	x-	and	y-data	values	define	the	range	to	parse	in	addition	to
the	default	DirectPlay	ports.	They	can	be	the	same	value	if	you
only	need	one	custom	port.

DirectPlay	parsers	support	both	signed	and	unsigned	traffic.	By
default,	the	parsers	assume	that	packets	are	unsigned.	To	enable
monitoring	of	signed	packets,	set	the	DWORD	value	under	the
HKEY_CURRENT_USER\Software\Microsoft\DirectPlay\Parsers
key,	as	shown	in	the	following	example.

AssumeSigned	=	1

Because	the	DirectPlay	and	Real-time	Transport	Protocol	(RTP)
are	both	layered	on	top	of	the	User	Datagram	Protocol	(UDP),	their
parsers	might	conflict.	You	should	disable	the	RTP	parser	when
analyzing	DirectPlay	traffic,	and	vice	versa.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Network	Address	Translation,	Firewalls,	and	Proxies

Network	Address	Translation	(NAT)	is	a	mechanism	with	which	one
network	can	be	connected	to	another.	This	is	commonly	used	to	connect
a	private	home	or	office	network	to	the	Internet.	The	gateway	between
these	two	networks	modifies	packets	sent	from	the	private	network	to
computers	on	the	Internet	so	that	they	appear	to	have	been	sent	by	the
gateway.	When	packets	are	sent	back	from	the	Internet	to	the	gateway,
the	gateway	forwards	the	packet	on	to	the	associated	private	computer.

The	two	main	reasons	these	NAT	gateways	are	used	are	as	follows:

Improved	security	and	access	control.	NAT	devices	provide	a
central	point	through	which	all	traffic	from	the	unmanaged	Internet
must	flow	to	reach	the	presumably	secure	home	network.	The	NAT
software	frequently	has	capabilities	to	filter	out	any	packets	that
are	potentially	harmful,	as	described	below.

Increased	address	space.	The	explosion	in	popularity	of	the
Internet	means	an	incredible	demand	for	addresses.	Internet
Protocol,	version	4	(IPv4),	the	underlying	protocol	for	today's
Internet,	is	rapidly	running	out	of	available	unique	addresses.	NAT
devices	allow	the	private	computers	to	"share"	a	single	Internet
Protocol	(IP)	address.	Each	computer	does	actually	have	its	own
IP	address,	but	that	address	is	only	valid	within	the	home	network.
Any	computer	outside	the	home	network	uses	the	NAT	device's
public	address	to	communicate	with	those	inside	the	home
network.

Firewalls	are	devices	or	software	that	inspect	incoming	or	outgoing
packets,	and	reject	those	that	are	not	allowed	by	the	firewall
administrator.	Most	of	them	drop	incoming	packets	that	did	not	have	a
previous	outgoing	packet	to	the	same	port	for	security	reasons.	In	this
respect	they	behave	like	NAT	devices,	which	can't	forward	packets

without	knowing	their	intended	target.	Many	NAT	devices	also	implement
firewall	capabilities.

Proxies	relay	requests	to	the	external	network	on	behalf	of	computers	on
the	internal	network.	They	can	cache	some	requests	like	World	Wide
Web	traffic	for	improved	response	time.	They	also	typically	work	in
conjunction	with	proxy	client	software	installed	on	the	internal	computers
for	increased	access	control.	Because	external	computers	only	see	the
proxy's	external	address,	proxies	can	be	thought	of	as	performing	NAT
for	the	internal	computers.

Unfortunately,	all	of	these	mechanisms	are	often	at	odds	with	providing	a
seamless	network	gaming	experience.	For	example,	having	both	a
private	address	as	well	as	a	shared	public	address	can	make	it	hard	to
send	packets	to	the	appropriate	destination.	Sometimes	the	user	is
forced	to	enable	forwarding	for	a	particular	port	in	order	to	play	online.
But	until	the	next	version	of	the	Internet	Protocol,	version	6	(IPv6)
becomes	widely	deployed,	issues	like	address	sharing	will	only	grow
more	common.

Microsoft®	DirectPlay®	provides	many	features	such	as	Universal	Plug
and	Play	(UPnP)	support	that	take	the	hard	work	out	of	supporting	NAT.
This	section	includes	the	following	topics.

Quick	NAT	Compatibility	Guidelines.	Quick	guidelines	that	all	game
developers	should	consider	to	maximize	NAT	compatibility.

Topology	Specific	NAT	Issues.	Breakdown	of	the	issues	affecting
each	topology	architecture.

Using	the	IDirectPlay8NATResolver	Interface.	Help	implementing
IDirectPlay8NATResolver	servers.

Notes	Regarding	Firewalls	and	Proxies.	A	few	notes	about	how

NATs	affect	firewalls	and	proxies.

NAT	Troubleshooting	Techniques	for	Developers	and	End	Users.
Troubleshooting	techniques	for	developers	and	end	users.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Quick	NAT	Compatibility	Guidelines

Following	these	guidelines	will	help	you	maximize	your	application's
compatibility	with	Network	Address	Translation	(NAT)	devices,	proxies,
and	firewalls.

Keep	host	enumerations	active	while	connecting.

Ending	a	call	to	EnumHosts	before	calling
IDirectPlay8Peer::Connect	or	IDirectPlay8Client::Connect	on	the
same	interface	might	close	a	virtual	connection	that	was
established	with	some	NAT	devices.	This	could	prevent	the	call	to
Connect	from	succeeding.	Instead,	specify	INFINITE	for	the
dwEnumCount	parameter	when	calling	EnumHosts	and	let
Microsoft®	DirectPlay®	stop	the	enumeration	for	you	when	the	call
to	Connect	completes	successfully.

Avoid	relying	on	DPNSVR.

DPNSVR	can	simplify	discovering	multiple	hosts	on	a	single
computer	or	a	migrated	host,	but	packets	sent	to	the	DPNSVR	port
can	seem	like	separate	connections	to	many	NAT	devices.	They
might	not	be	forwarded	in	the	same	way	as	packets	sent	directly	to
the	game's	port.	If	you	use	DPNSVR,	you	should	enumerate	both
the	DPNSVR	port	and	the	game	port	when	possible.	See	Using
the	DirectPlay	DPNSVR	Application	for	more	information.

Use	default	ports	but	allow	user	to	override	if	necessary.

You	should	let	DirectPlay	select	the	local	device	port	to	use	by
default.	The	addresses	returned	by
IDirectPlay8Peer::GetLocalHostAddresses	and
IDirectPlay8Server::GetLocalHostAddresses	can	be	used	to

identify	the	port	actually	selected	for	hosts.	Your	game	can	then
use	external	means,	such	as	DirectPlay	Lobby	match-making,	as	a
way	to	get	the	host's	addresses	to	clients.	However,	applications
should	still	provide	the	option	for	users	to	select	a	particular	port.
Some	NAT	scenarios	require	the	end	user	to	manually	set	up	port-
forwarding	and	they	will	appreciate	the	greater	flexibility.	See
DirectPlay	and	Ports	for	more	information.

Use	the	client/server	topology.

Every	player	in	the	peer-to-peer	topology	must	be	able	to
communicate	directly	with	every	other	player.	This	increases	the
chances	that	any	particular	player	is	prevented	from	joining	a
session	successfully	because	of	one	or	more	NAT	devices.	Use
the	IDirectPlay8Client	and	IDirectPlay8Server	interfaces	to	be	sure
that	as	long	as	the	client	can	reach	the	host,	it	can	join	the
session.

Avoid	hosting	behind	NAT	devices	that	are	not	Universal	Plug	and
Play	(UPnP)	compatible	when	possible.

Almost	all	NAT	issues	involve	accepting	inbound	connections
through	a	NAT.	IDirectPlay8Peer	or	IDirectPlay8Server	hosts
require	inbound	connections	by	definition,	and	are	therefore	most
susceptible.	Hosting	only	on	the	open	Internet	or	behind	devices
that	support	UPnP	simplifies	the	NAT	limitations	presented	to	the
user.

Use	match-making	services	to	hide	address	complexity	from	user.

When	NAT	devices	are	involved,	a	player	might	have	multiple
addresses	even	though	the	computer	only	has	a	single	physical
network	interface.	Most	users	will	not	know	which	address	is

correct	for	a	given	situation.	Your	application	should	use	match-
making	services	to	pass	a	combined	address	returned	by
IDirectPlay8Peer::GetLocalHostAddresses	or
IDirectPlay8Server::GetLocalHostAddresses	to	the	client
application	for	a	better	user	experience.	You	can	also	use	match-
making	to	facilitate	advanced	NAT	traversal	techniques.	See
DirectPlay	Lobby	Support	for	more	information	on	match-making.

These	guidelines	and	example	implementations	are	described	in	more
detail	for	each	topology.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Topology	Specific	NAT	Issues

Each	topology	has	different	Network	Address	Translation	(NAT)
requirements,	as	does	each	role	within	the	topology.	This	section	has
been	into	organized	into	the	following	categories.

NAT	Issues	for	Peer	Hosts

NAT	Issues	for	Peer_Clients

NAT	Issues	for	Servers

NAT	Issues	for	Clients

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

NAT	Issues	for	Peer	Hosts

Hosting	with	the	IDirectPlay8Peer	interface	has	many	special	Network
Address	Translation	(NAT)	considerations,	which	are	described	in	the
following	pages.

Basic	NAT	Issues	for	Peer	Hosts

Advanced	NAT	Techniques	for	Peer	Hosts

Peer	Host	NAT	Compatibility	Reference

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Basic	NAT	Issues	for	Peer	Hosts

The	best	Network	Address	Translation	(NAT)	compatibility	for	hosting
with	the	IDirectPlay8Peer	interface	is	when	the	NAT	device	supports	the
use	of	Universal	Plug	and	Play	(UPnP)	by	Microsoft®	DirectPlay®.	Peer
hosts	should	avoid	relying	on	DPNSVR	and	use	a	particular	set	of	ports
to	improve	support	for	NAT	devices	without	UPnP	compatibility.

DPNSVR

The	DPNSVR	helper	application	is	launched	when
IDirectPlay8Peer::Host	is	called	with	a	DPN_APPLICATION_DESC
structure	that	does	not	have	the	DPNSESSION_NODPNSVR	flag	set.
The	DPNSVR	process	listens	for	enumeration	queries	on	a	"well	known"
port,	which	is	the	same	port	that	is	assumed	when	the
DPNA_KEY_PORT	component	is	not	specified	in	the
IDirectPlay8Address	host	object	passed	to
IDirectPlay8Peer::EnumHosts.

When	DPNSVR	receives	an	enumeration	query,	it	is	forwarded	to	all
DPNSVR-enabled	hosts	on	the	local	computer.	Each	host	application
then	replies	to	the	enumerator	directly	from	its	own	port.	However,	some
clients'	NAT	devices	expect	these	replies	to	come	from	the	port	to	which
the	client	originally	sent,	and	might	drop	this	enumeration	response.
Therefore	if	your	application	uses	DPNSVR	to	help	with	session
discovery,	it	should	also	attempt	to	enumerate	the	game	port	directly.
This	requires	that	the	client	knows	the	game's	addresses	in	advance.
See	Client	Issues	for	more	information	on	handling	peer	clients.

Determining	the	Host's	Addresses

A	host	can	determine	the	addresses	on	which	it	is	listening	by	using	the
IDirectPlay8Peer::GetLocalHostAddresses	method.

IDirectPlay8Address	*pDP8AddressHost	=	NULL;
DWORD	dwNumAddresses	=	1;

hr	=	pDP8Peer->GetLocalHostAddresses(&pDP8AddressHost,	&dwNumAddresses,	DPNGETLOCALHOSTADDRESSES_COMBINED);

Specifying	the	DPNGETLOCALHOSTADDRESSES_COMBINED	flag
with	the	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	service
provider	returns	a	single	address	object	that	allows
IDirectPlay8Peer::EnumHosts	or	IDirectPlay8Peer::Connect	to	attempt
all	of	the	host's	addresses	simultaneously.	This	address	can	be
converted	into	a	string	for	easy	transmission	through	a	match-making
service	by	using	the	IDirectPlay8Address::GetURLA	method	as	shown	in
the	following	example.

char	*szHostAddress	=	NULL;
DWORD	dwNumHostAddressChars	=	0;

hr	=	pDP8AddressHost->GetURLA(NULL,	&dwNumHostAddressChars);

szHostAddress	=	LocalAlloc(LPTR,	dwNumHostAddressChars	*	sizeof(char));

hr	=	pDP8AddressHost->GetURLA(szHostAddress,	&dwNumHostAddressChars);

Once	received,	the	client	converts	the	string	back	into	an	object	using
IDirectPlay8Address::BuildFromURLA.	See	Client	Issues	for	more
information	on	handling	peer	clients.

Using	a	Particular	Port

Applications	should	generally	let	DirectPlay	select	a	port	when	hosting.
However,	there	are	some	NAT	scenarios	where	the	user	might	want	to
change	the	port	on	which	the	game	is	hosting.	Also,	if	your	application
does	not	pass	addresses	using	DirectPlay	Lobby	or	other	match-making
service,	it	should	have	a	default	game	port	to	use	for	direct	discovery.
This	can	be	added	to	a	device	address	using	the	DPNA_KEY_PORT
component	as	shown	in	the	following	example.

DWORD	dwUserSelectedPort;	//	value	retrieved	from	user	input

if	(dwUserSelectedPort	!=	0)
{
	 //	User	specified	a	port	value;	use	it.
	 hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_PORT,	&dwUserSelectedPort,	sizeof(dwUserSelectedPort),	DPNA_DATATYPE_DWORD);
}
else
{
	 //	Let	DirectPlay	select;	don't	add	port	component.
}

This	address	object	is	then	passed	to	IDirectPlay8Peer::Host	as	a
device	address	on	which	to	host.

Automatic	UPnP	Port	Forwarding

When	the	host	has	the	Windows	Internet	Connection	Firewall	enabled	or
is	behind	a	UPnP	NAT	device,	DirectPlay	will	attempt	to	enable	port
forwarding	for	your	application	automatically.	This	asks	the	device	to
accept	all	packets	received	from	the	Internet	on	a	particular	port	and
forward	them	to	a	particular	address	and	port	inside	the	private	network.

If	DirectPlay	selected	the	local	port	for	the	host,	then	it	will	select	an
unused	external	port	for	the	NAT	device	to	forward.	The	actual	public	port
number	chosen	will	vary,	and	might	not	be	the	same	as	the	local	port.

If	the	DPNA_KEY_PORT	component	was	set	in	the	device	address
specified	to	IDirectPlay8Peer::Host,	then	DirectPlay	will	ask	the	NAT
device	to	forward	the	same	external	port	number.	If	that	public	port
number	is	in	use	then	the	call	to	IDirectPlay8Peer::Host	will	fail	with
DPNERR_INVALIDDEVICEADDRESS.	This	can	happen	when	another
instance	of	the	application	is	already	hosting	behind	the	same	NAT.

You	should	design	your	application	and	match-making	so	that	they	do	not
require	the	same	port	to	be	used	both	locally	and	on	the	NAT	device.	You
can	then	allow	DirectPlay	to	try	alternate	external	ports	when	the
matching	port	is	not	available	by	using	the
DPNA_KEY_TRAVERSALMODE	device	address	component	as	shown
in	the	following	example.

DWORD	dwTraversalMode	=	DPNA_TRAVERSALMODE_PORTRECOMMENDED;

hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_TRAVERSALMODE,	&dwTraversalMode,	sizeof(dwTraversalMode),	DPNA_DATATYPE_DWORD);

Disabling	Automatic	Traversal

Some	users	know	that	the	hosting	application	is	not	behind	a	UPnP	NAT
device	and	the	Windows	Internet	Connection	Firewall	is	not	enabled.
Others	might	want	to	manually	control	any	mappings	made	for	the	host.
You	can	decrease	the	time	required	by	IDirectPlay8Peer::Host	and
prevent	automated	traversal	by	setting	the
DPNA_KEY_TRAVERSALMODE	component	to
DPNA_TRAVERSALMODE_NONE	as	shown	in	the	following	example.

DWORD	dwTraversalMode	=	DPNA_TRAVERSALMODE_NONE;

hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_TRAVERSALMODE,	&dwTraversalMode,	sizeof(dwTraversalMode),	DPNA_DATATYPE_DWORD);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Advanced	NAT	Techniques	for	Peer	Hosts

Microsoft®	DirectPlay®	cannot	provide	100	percent	connectivity	for	hosts
behind	Network	Address	Translation	(NAT)	devices	that	do	not	support
Universal	Plug	and	Play	(UPnP).	However,	your	application	might	be	able
to	improve	support	for	some	of	these	cases	using	more	elaborate
methods.	The	techniques	described	here	require	additional	development
effort,	as	well	as	external	server	resources.

NAT	Resolver

NAT	devices	create	an	implicit	port	mapping	when	an	internal	computer
sends	a	packet	to	an	external	computer.	Some	NAT	devices	allow	any
external	computer	to	use	this	port	mapping	to	send	to	the	internal
computer,	instead	of	only	forwarding	replies	sent	by	the	original	external
target.	These	are	sometimes	referred	to	as	"loose	NATs."	DirectPlay	can
take	advantage	of	this	behavior	using	the	IDirectPlay8NATResolver
interface	and	address	components	to	allow	hosting	behind	these	devices.

You	must	start	by	implementing	an	IDirectPlay8NATResolver	server	that
will	be	accessible	from	the	Internet.	Then	your	game	application	can	add
the	DPNA_KEY_NAT_RESOLVER	component	to	the	device	address
passed	to	IDirectPlay8Peer::Host.	The	component	data	is	a	string
containing	the	Internet	Protocol	(IP)	address	and	port	for	the	NAT
resolver	to	use,	separated	by	a	colon.	For	example,	the	following	code
specifies	to	use	a	server	located	on	port	5678	at	the	address
123.123.123.123.

	 	 	 	 	 	
WCHAR	*	wszNATResolver	=	L"123.123.123.123:5678";		 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolver)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
	 	 	 	 	 	 wszNATResolver,
	 	 	 	 	 	 dwNATResolverSize,
	 	 	 	 	 	 DPNA_DATATYPE_STRING);
	 	 	 	 	 	

You	can	also	specify	a	hostname	instead	of	a	numerical	IP	address,	as
shown	in	the	following	example.

	 	 	 	 	 	
WCHAR	*	wszNATResolver	=	L"resolver.mydomain.com:5678";	 	 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolver)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
																								wszNATResolver,
																								dwNATResolverSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

For	robustness,	you	might	want	to	have	more	than	one	resolving	servers
to	try.	You	can	specify	multiple	addresses	separated	by	commas	as
shown	in	the	following	example.

	 	 	 	 	 	
WCHAR	*	wszNATResolvers	=	L"123.123.123.123:5678,backupresolver.mydomain.com:6789";	 	 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolvers)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
																								wszNATResolvers,
																								dwNATResolverSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

Each	resolver	is	tried	simultaneously	for	speed,	and	the	first	response	is
used.	If	no	server	responds,	the	IDirectPlay8Peer::Host	call	still
succeeds.

Because	hosting	these	resolving	servers	requires	resources,	you	might
want	to	prevent	arbitrary	players	from	using	the	resolver.	This	can	be
achieved	with	the	DPNA_KEY_NAT_RESOLVER_USER_STRING

address	component.	This	value	is	passed	directly	to	the	resolver	for
verification	in	the	DPN_MSGID_NAT_RESOLVER_QUERY	message,
and	it	can	choose	to	respond	or	ignore	as	appropriate.	The	following
example	shows	how	to	do	this.

	 	 	 	 	 	
WCHAR	*	wszPassword	=	L"MyPassword";	 	 	 	 	 	
DWORD	dwPasswordSize	=	(wcslen(wszPassword)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER_USER_STRING,	 	 	 	 	 	
																								wszPassword,
																								dwPasswordSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

Note		The	user	string	is	passed	in	clear	text	over	the	network,	so	if	the
text	could	contain	sensitive	information,	you	should	encrypt	it	in	some
fashion.

The	host's	NAT	device	generates	a	port	mapping	for	the	NAT	resolver
query.	If	the	NAT	resolver	elects	to	respond	to	the	query,	DirectPlay	will
send	the	mapping's	public	address	back	to	the	querying	host.	The	host
will	then	have	it	included	in	the	addresses	returned	by	the
IDirectPlay8Peer::GetLocalHostAddresses	method.

External	peer	clients	use	the	mapping	address	when	connecting	to	the
internal	host.	However	the	NAT	device	will	expire	the	mapping	if	it	is
inactive,	which	will	prevent	the	clients	from	using	it.	The	actual	expiration
timeout	varies	by	NAT	device.	Generally,	the	external	peer	clients	are
expected	to	begin	connecting	within	30	seconds	of	the
IDirectPlay8Peer::Host	call	completing.

An	example	usage	of	NAT	resolver	address	components	can	be	found	in
the	NATPeer	sample.

Enumerating	Clients	to	Create	Implicit	NAT	Mappings

An	expanded	technique	can	sometimes	be	used	to	host	behind	so-called
"strict	NATs"	that	only	allow	the	target	of	an	outbound	packet	to	send
packets	in	to	the	private	network.	If	the	strict	NAT	device	uses	the	same
external	port	number	for	sending	to	different	external	addresses,	even
though	they	are	using	different	implicit	mappings,	the	host	might	be	able
to	use	the	IDirectPlay8Peer::EnumHosts	method	to	generate	mappings
for	external	peer	clients	that	want	to	join.

The	host	must	know	that	the	external	peer	client	intends	join,	as	well	as
the	address	that	the	client	will	use	when	connecting.	This	is	determined
through	match-making	or	similar	means.	The	client's	address	is	then
passed	as	the	pdpaddrHost	parameter	for
IDirectPlay8Peer::EnumHosts	by	the	host	itself.	See	Enumerating
Hosts	for	more	information.

The	joining	peers	do	not	need	to	send	an	enumeration	response	and	will
not	even	receive	a	query	notification	message	callback.	The	NAT	device
will	merely	create	a	mapping	for	the	outbound	enumeration	packet	from
the	host	that	allows	the	client's	inbound	enumeration	or	connect	requests
to	be	forwarded	to	the	internal	host.	The	host's	reverse
IDirectPlay8Peer::EnumHosts	operation	should	remain	active	until	the
peer	client	successfully	joins	or	stops	attempting	to	join	so	that	the	NAT
mapping	remains	active.

Because	the	address	of	the	external	peer	clients	must	be	determined
beforehand,	the	clients	also	must	not	be	behind	NAT	devices	that	select
different	port	numbers	for	different	external	targets.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Peer	Host	NAT	Compatibility	Reference

The	following	section	outlines	peer	host	Network	Address	Translation
(NAT)	compatibility	for	applications	that	follow	the	guidelines
recommended	in	previous	sections.

Windows	98	Second	Edition	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Microsoft®
Windows®	98	Second	Edition	Internet	Connection	Sharing	(ICS).

Join	from	behind	ICS
computer

Join	from	ICS
computer

Join	from	external	network

Host	behind	ICS
computer

Yes Yes Not	without	manual	port	forwarding

Host	on	ICS
computer

Yes Yes Not	without	manual	port	forwarding	or	by	discovering
game	via	broadcast

Windows	98	Second	Edition	ICS	supports	joining	a	host	on	or	behind	the
ICS	computer	from	the	Internet	only	with	manual	port	forwarding.

The	Advanced	NAT	Techniques	for	Peer	Hosts	section	describes
methods	that	might	be	used	to	allow	external	clients	to	join	the	host
without	manual	port	forwarding	in	some	scenarios.

Windows	2000	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Windows
2000	ICS.

Join	from	behind	ICS
computer

Join	from	ICS
computer

Join	from	external	network

Host	behind	ICS
computer

Yes Yes Not	without	manual	port
forwarding

Host	on	ICS	computer Yes Yes Yes

Windows	2000	ICS	supports	joining	a	host	on	the	ICS	computer	from	the
Internet.	Joining	a	host	behind	the	ICS	computer	requires	manual	port
forwarding.

The	Advanced	NAT	Techniques	for	Peer	Hosts	section	describes
methods	that	can	be	used	to	allow	external	clients	to	join	the	host	without
manual	port	forwarding	in	some	scenarios.

Windows	Millennium	Edition	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Windows
Millennium	Edition	(Windows	Me)	ICS.

Join	from	behind	ICS	computer Join	from	ICS	computer Join	from	external	network
Host	behind	ICS	computer Yes Yes Yes

Host	on	ICS	computer Yes Yes Yes

Hosting	behind	or	on	a	Windows	Me	ICS	computer	is	fully	supported
using	Microsoft	DirectPlay®'s	automatic	traversal.

Windows	XP	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Windows
XP	ICS.

Join	from	behind	ICS	computer Join	from	ICS	computer Join	from	external	network
Host	behind	ICS	computer Yes Yes Yes

Host	on	ICS	computer Yes Yes Yes

Hosting	behind	or	on	a	Windows	XP	ICS	computer	is	fully	supported
using	DirectPlay's	automatic	traversal.

Non-Microsoft	NAT	Device	with	Universal	Plug	and	Play

Hosting	behind	a	non-Microsoft	NAT	device	that	is	compatible	with
DirectPlay's	automatic	traversal	using	Universal	Plug	and	Play	(UPnP)	is
supported.	Refer	to	the	NAT	device's	documentation	for	UPnP
compatibility	information.

Non-Microsoft	NAT	Device	without	Universal	Plug	and	Play

Clients	can	join	a	host	behind	a	non-Microsoft	NAT	device	without	UPnP
support	if	the	clients	are	behind	the	same	device.	External	clients	cannot
join	by	default	unless	port	forwarding	is	manually	configured.	Refer	to	the
NAT	device's	documentation	for	information	on	enabling	port	forwarding.

The	Advanced	NAT	Techniques	for	Peer	Hosts	section	describes
methods	that	can	be	used	to	allow	external	clients	to	join	the	host	without
manual	port	forwarding	in	some	scenarios.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

NAT	Issues	for	Peer	Clients

Clients	using	the	IDirectPlay8Peer	interface	have	many	special	Network
Address	Translation	(NAT)	considerations,	which	are	described	in	the
following	pages.

Basic	NAT	Issues	for	Peer	Clients

Advanced	NAT	Techniques	for	Peer	Clients

Peer	Client	NAT	Compatibility	Reference

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Basic	NAT	Issues	for	Peer	Clients

The	best	Network	Address	Translation	(NAT)	compatibility	for	joining	a
session	with	the	IDirectPlay8Peer	interface	is	when	the	NAT	device
supports	Microsoft®	DirectPlay®'s	use	of	Universal	Plug	and	Play
(UPnP).	Peer	clients	should	keep	enumerations	active	and	avoid	relying
on	DPNSVR	to	improve	support	for	NAT	devices	without	UPnP
compatibility.

Keeping	EnumHosts	Active	While	Connecting
Most	NAT	devices	create	virtual	connections	each	time	an	internal	client
starts	sending	packets	to	a	new	external	address	and	port,	such	as	a
new	IDirectPlay8Peer::EnumHosts	operation.	These	virtual	connections
will	sometimes	be	destroyed	as	soon	as	the
IDirectPlay8Peer::EnumHosts	operation	completes.	If	your	client
application	enumerates	hosts	before	connecting,	you	should	neither
cancel	the	IDirectPlay8Peer::EnumHosts	operation	nor	allow	it	to	time
out	so	that	the	call	to	IDirectPlay8Peer::Connect	can	reuse	the	virtual
connection.	This	requirement	can	be	met	by	specifying	INFINITE	for	the
dwEnumCount	parameter	as	shown	in	the	following	example.

hr	=	pDP8Peer->EnumHosts(&dpnad,
																									pDP8AddressHost,
																									pDP8AddressDevice,
																									NULL,
																									0,
																									INFINITE,
																									0,
																									0,
																									NULL,
																									&dpnhEnumHosts,
																									0);

DirectPlay	will	automatically	cancel	all	outstanding
IDirectPlay8Peer::EnumHosts	operations	for	you	when	the	connect
operation	completes	successfully.	If	the	connect	fails,	the	enumerations
will	continue	running.	You	can	then	cancel	them	using	the
IDirectPlay8Peer::CancelAsyncOperation	method.

To	ensure	that	the	connect	operation	uses	the	same	virtual	connection	as

the	enumeration,	the	host	and	device	address	objects	specified	to
IDirectPlay8Peer::Connect	should	be	the	same	as	those	included	in	the
corresponding	DPN_MSGID_ENUM_HOSTS_RESPONSE	message.
For	examples	of	how	to	add	a	reference	or	duplicate	these	addresses,
see	the	DirectPlay	C++	Samples.

DPNSVR

The	application	sends	enumeration	queries	to	the	DPNSVR	port	when
the	DPNA_KEY_PORT	component	is	not	specified	in	the
IDirectPlay8Address	host	object	passed	to
IDirectPlay8Peer::EnumHosts.	However	the	hosts	reply	from	their
respective	game	ports.	Some	NAT	devices	expect	replies	to	come	from
the	port	to	which	the	client	originally	sent,	and	might	therefore	drop	the
enumeration	response.	If	your	application	uses	DPNSVR	to	help	with
session	discovery,	it	should	also	attempt	to	enumerate	the	game	port
directly.

Enumerating	the	Host's	Game	Port	Directly

The	host	can	retrieve	its	addresses	using
IDirectPlay8Peer::GetLocalHostAddresses	and	pass	it	in	string	format	to
the	client	using	IDirectPlay8Address::GetURLA	through	a	match-making
service.	The	client	can	then	convert	the	string	back	into	an	address	using
the	IDirectPlay8Address::BuildFromURLA	method	as	shown	in	the
following	example.

IDirectPlay8Address	*pDP8AddressHost	=	NULL;

hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	CLSCTX_INPROC_SERVER,	IID_IDirectPlay8Address,	NULL,	(PVOID*)	(&pDP8AddressHost));

hr	=	pDP8AddressHost->BuildFromURLA(szHostAddress);

This	address	object	can	then	be	passed	to
IDirectPlay8Peer::EnumHosts	or	IDirectPlay8Peer::Connect.

Enumerating	or	Connecting	From	a	Particular	Port

Applications	should	almost	always	let	DirectPlay	choose	the	local	port	or
ports	when	enumerating	or	connecting.	However,	the	local	ports	selected
by	DirectPlay	to	connect	to	the	original	host	are	the	same	ones	used	to
listen	for	new	players	once	the	host	migrates.	If	your	application	uses
host	migration	but	does	not	pass	updated	addresses	for	the	new	host	by
a	DirectPlay	Lobby	or	other	match-making	service,	you	might	want	to
allow	the	user	to	select	a	local	port.	This	can	be	added	to	a	device
address	using	the	DPNA_KEY_PORT	component	as	shown	in	the
following	example.

DWORD	dwUserSelectedPort;	//	value	retrieved	from	user	input

if	(dwUserSelectedPort	!=	0)
{
				//	User	specified	a	port	value;	use	it.
				hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_PORT,	&dwUserSelectedPort,	sizeof(dwUserSelectedPort),	DPNA_DATATYPE_DWORD);
}
else
{
				//	Let	DirectPlay	select;	don't	add	port	component.
}

This	address	object	is	then	passed	to	IDirectPlay8Peer::EnumHosts	or
IDirectPlay8Peer::Connect	for	the	device	address	parameter.

Automatic	UPnP	Port	Forwarding

When	the	client	has	Microsoft	Windows®	Internet	Connection	Firewall
enabled	or	is	behind	a	UPnP	NAT	device,	DirectPlay	will	attempt	to
enable	port	forwarding	for	your	application	automatically.	This	asks	the
device	to	accept	all	packets	received	from	the	Internet	on	a	particular	port
and	forward	them	to	a	particular	address	and	port	inside	the	private
network.

If	DirectPlay	selected	the	local	port	for	the	client,	then	it	will	select	an
unused	external	port	for	the	NAT	device	to	forward.	The	actual	public	port
number	chosen	will	vary,	and	might	not	be	the	same	as	the	local	port.

If	the	DPNA_KEY_PORT	component	was	set	in	the	device	address
specified	to	IDirectPlay8Peer::EnumHosts	or
IDirectPlay8Peer::Connect,	then	DirectPlay	will	ask	the	NAT	device	to
forward	the	same	external	port	number.	If	that	public	port	number	is	in
use	then	the	call	to	IDirectPlay8Peer::EnumHosts	or
IDirectPlay8Peer::Connect	will	fail	with
DPNERR_INVALIDDEVICEADDRESS.	This	might	happen	when	another
instance	of	the	application	behind	the	same	NAT	is	already	connected.
You	should	design	your	application	and	match-making	so	that	they	do	not
require	the	same	port	to	be	used	both	locally	and	on	the	NAT	device.	You
can	then	allow	DirectPlay	to	try	alternate	external	ports	when	the
matching	port	is	not	available	by	using	the
DPNA_KEY_TRAVERSALMODE	device	address	component.	This	is
shown	in	the	following	example.

DWORD	dwTraversalMode	=	DPNA_TRAVERSALMODE_PORTRECOMMENDED;

hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_TRAVERSALMODE,	&dwTraversalMode,	sizeof(dwTraversalMode),	DPNA_DATATYPE_DWORD);

Disabling	Automatic	Traversal

Some	users	know	that	the	client	is	not	behind	a	UPnP	NAT	device	and
Windows	Internet	Connection	Firewall	is	not	enabled.	Others	might	want
to	manually	control	any	mappings	made	for	the	client.	You	can	decrease
the	time	required	by	IDirectPlay8Peer::EnumHosts	or
IDirectPlay8Peer::Connect	and	prevent	automated	traversal	by	setting
the	DPNA_KEY_TRAVERSALMODE	component	to
DPNA_TRAVERSALMODE_NONE	as	shown	in	the	following	example.

DWORD	dwTraversalMode	=	DPNA_TRAVERSALMODE_NONE;

hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_TRAVERSALMODE,	&dwTraversalMode,	sizeof(dwTraversalMode),	DPNA_DATATYPE_DWORD);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Advanced	NAT	Techniques	for	Peer	Clients

Microsoft®	DirectPlay®	cannot	provide	100	percent	connectivity	for	peer
clients	behind	Network	Address	Translation	(NAT)	devices	that	do	not
support	Universal	Plug	and	Play	(UPnP).	However,	your	application	might
be	able	to	improve	support	for	some	of	these	cases	using	more	elaborate
methods.	The	techniques	described	here	require	additional	development
effort	as	well	as	external	server	resources.

NAT	Resolver

NAT	devices	create	an	implicit	port	mapping	when	an	internal	computer
sends	a	packet	to	an	external	computer.	Some	NAT	devices	allow	any
external	computer	to	use	this	port	mapping	to	send	to	the	internal
computer,	instead	of	only	forwarding	replies	sent	by	the	original	external
target.	These	are	sometimes	referred	to	as	"loose	NATs."	DirectPlay
automatically	takes	advantage	of	this	behavior	when	the	peer	host	is
outside	of	the	NAT.	Your	application	can	use	the
IDirectPlay8NATResolver	interface	and	address	components	to	also
allow	peer	clients	behind	a	loose	NAT	to	join	a	session	hosted	behind	the
same	NAT	device	with	external	peer	clients	already	connected	to	the
same	session.

You	must	start	by	implementing	an	IDirectPlay8NATResolver	server	that
will	be	accessible	from	the	Internet.	Then	your	game	application	can	add
the	DPNA_KEY_NAT_RESOLVER	component	to	the	device	address
passed	to	IDirectPlay8Peer::EnumHosts	or	IDirectPlay8Peer::Connect.
The	component	data	is	a	string	containing	the	Internet	Protocol	(IP)
address	and	port	for	the	NAT	resolver	to	use,	separated	by	a	colon.	For
example,	the	following	code	specifies	to	use	a	server	located	on	port
5678	at	the	address	123.123.123.123.

	 	 	 	 	 	
WCHAR	*	wszNATResolver	=	L"123.123.123.123:5678";		 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolver)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
																								wszNATResolver,
																								dwNATResolverSize,
																								DPNA_DATATYPE_STRING);

	 	 	 	 	 	

You	can	also	specify	a	hostname	instead	of	a	numerical	IP	address	as
shown	in	the	following	example.

	 	 	 	 	 	
WCHAR	*	wszNATResolver	=	L"resolver.mydomain.com:5678";	 	 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolver)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
																								wszNATResolver,
																								dwNATResolverSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

For	robustness,	you	might	want	to	have	more	than	one	resolving	servers
to	try.	You	can	specify	multiple	addresses	separated	by	commas	as
shown	in	the	following	example.

	 	 	 	 	 	
WCHAR	*	wszNATResolvers	=	L"123.123.123.123:5678,backupresolver.mydomain.com:6789";	 	 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolvers)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
																								wszNATResolvers,
																								dwNATResolverSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

Each	resolver	is	tried	simultaneously	for	speed,	and	the	first	response	is
used.	If	no	server	responds,	the	IDirectPlay8Peer::EnumHosts	or
IDirectPlay8Peer::Connect	call	still	succeeds.

Because	hosting	these	resolving	servers	requires	resources,	you	might
want	to	prevent	arbitrary	players	from	using	the	resolver.	This	can	be
achieved	with	the	DPNA_KEY_NAT_RESOLVER_USER_STRING
address	component.	This	value	is	passed	directly	to	the	resolver	for
verification	in	the	DPN_MSGID_NAT_RESOLVER_QUERY	message,
and	it	can	choose	to	respond	or	ignore	as	appropriate.	The	following
example	shows	how	to	do	this.

	 	 	 	 	 	
WCHAR	*	wszPassword	=	L"MyPassword";	 	 	 	 	 	
DWORD	dwPasswordSize	=	(wcslen(wszPassword)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER_USER_STRING,	 	 	 	 	 	
																								wszPassword,
																								dwPasswordSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

Note		The	user	string	is	passed	in	clear	text	over	the	network,	so	if	the
text	could	contain	sensitive	information,	you	should	encrypt	it	in	some
fashion.

The	peer	client's	NAT	device	generates	a	port	mapping	for	the	NAT
resolver	query.	If	the	NAT	resolver	elects	to	respond	to	the	query,
DirectPlay	will	send	the	mapping's	public	address	back	to	the	querying
peer	client.	The	address	will	then	be	reported	to	the	host	when
connecting	to	the	session	so	external	peer	clients	can	contact	this	joining
internal	client.

An	example	usage	of	NAT	resolver	address	components	can	be	found	in
the	NATPeer	sample.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Peer	Client	NAT	Compatibility	Reference

The	following	section	outlines	peer	client	Network	Address	Translation
(NAT)	compatibility	for	applications	that	follow	the	guidelines
recommended	in	previous	sections.

Windows	98	Second	Edition	Internet	Connection	Sharing

Any	number	of	peer	clients	behind	or	on	the	same	Microsoft®	Windows®
98	Second	Edition	Internet	Connection	Sharing	(ICS)	system	is
supported.	Peer	clients	behind	different	Windows	98	Second	Edition	ICS
computers	are	not	supported.

A	player	behind	or	on	the	Windows	98	Second	Edition	ICS	computer	that
receives	a	DPN_MSGID_HOST_MIGRATE	message	indicating	that	the
host	has	migrated	to	the	local	player	becomes	a	peer	host.	See	the
Windows	98	Second	Edition	Internet	Connection	Sharing	section	in	the
Peer	Host	NAT	Compatibility	Reference	topic.

Windows	2000	Internet	Connection	Sharing

Any	number	of	peer	clients	behind	or	on	the	same	Windows	2000	ICS
system	is	supported.	Peer	clients	behind	different	Windows	2000	ICS
computers	are	not	supported.

A	player	behind	or	on	the	Windows	2000	ICS	computer	that	receives	a
DPN_MSGID_HOST_MIGRATE	message	indicating	that	the	host	has
migrated	to	the	local	player	becomes	a	peer	host.	See	the	Windows	2000
Internet	Connection	Sharing	section	in	the	Peer	Host	NAT	Compatibility
Reference	topic.

Windows	Millennium	Edition	Internet	Connection	Sharing

Any	number	of	peer	clients	behind	or	on	the	same	or	different	Windows
Millennium	Edition	(Windows	Me)	ICS	computers	is	fully	supported	using
Microsoft	DirectPlay®'s	automatic	traversal.

Windows	XP	Internet	Connection	Sharing

Any	number	of	peer	clients	behind	or	on	the	same	or	different	Windows
XP	ICS	computers	is	fully	supported	using	DirectPlay's	automatic
traversal.

Non-Microsoft	NAT	Device	with	Universal	Plug	and	Play

Any	number	of	peer	clients	behind	the	same	or	different	non-Microsoft
NAT	devices	that	are	compatible	with	DirectPlay's	automatic	traversal
using	Universal	Plug	and	Play	(UPnP)	is	supported.	Refer	to	the	NAT
device's	documentation	for	UPnP	compatibility	information.

Non-Microsoft	NAT	Device	without	Universal	Plug	and	Play

Any	number	of	peer	clients	behind	the	same	NAT	device	without	UPnP	is
supported.	Peer	clients	behind	different	NAT	devices	without	UPnP	are
not	supported	but	might	work,	depending	on	the	device	implementation.

The	Advanced	NAT	Techniques	for	Peer	Clients	describes	methods	that
can	be	used	to	allow	clients	to	join	sessions	in	some	scenarios	that	do
not	work	using	default	settings.

A	player	behind	a	non-Microsoft	NAT	device	that	receives	a
DPN_MSGID_HOST_MIGRATE	message	indicating	that	the	host	has
migrated	to	the	local	player	becomes	a	peer	host.	See	the	Third-Party
NAT	Device	Without	Universal	Plug-and-Play	section	in	the	Peer	Host
NAT	Compatibility	Reference	topic.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

NAT	Issues	for	Servers

The	IDirectPlay8Server	interface	has	some	special	Network	Address
Translation	(NAT)	considerations,	which	are	described	in	the	following
pages.

Basic	NAT	Issues	for	Servers

Advanced	NAT	Techniques	for	Servers

Server	NAT	Compatibility	Reference

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Basic	NAT	Issues	for	Servers

The	best	Network	Address	Translation	(NAT)	compatibility	for	hosting
with	the	IDirectPlay8Server	interface	is	when	the	NAT	device	supports
the	use	of	Universal	Plug	and	Play	(UPnP)	by	Microsoft®	DirectPlay®.
Servers	should	avoid	relying	on	DPNSVR	and	use	a	particular	set	of
ports	to	improve	support	for	NAT	devices	without	UPnP	compatibility.

DPNSVR

The	DPNSVR	helper	application	is	launched	when
IDirectPlay8Server::Host	is	called	with	a	DPN_APPLICATION_DESC
structure	that	does	not	have	the	DPNSESSION_NODPNSVR	flag	set.
The	DPNSVR	process	listens	for	enumeration	queries	on	a	"well	known"
port,	which	is	the	same	port	that	is	assumed	when	the
DPNA_KEY_PORT	component	is	not	specified	in	the
IDirectPlay8Address	host	object	passed	to
IDirectPlay8Client::EnumHosts.

When	DPNSVR	receives	an	enumeration	query	it	is	forwarded	to	all
DPNSVR-enabled	hosts	on	the	local	computer.	Each	host	application
then	replies	to	the	enumerator	directly	from	its	own	port.	However,	some
clients'	NAT	devices	expect	these	replies	to	come	from	the	port	to	which
the	client	originally	sent,	and	might	drop	this	enumeration	response.
Therefore	if	your	application	uses	DPNSVR	to	help	with	session
discovery,	it	should	also	attempt	to	enumerate	the	game	port	directly.
This	requires	that	the	client	knows	the	game's	addresses	in	advance.
See	Client	Issues	for	More	Information	on	Handling	Peer	Clients.

Determining	the	Host's	Addresses

A	host	can	determine	the	addresses	on	which	it	is	listening	by	using	the
IDirectPlay8Server::GetLocalHostAddresses	method.

IDirectPlay8Address	*pDP8AddressHost	=	NULL;
DWORD	dwNumAddresses	=	1;

hr	=	pDP8Server->GetLocalHostAddresses(&pDP8AddressHost,	&dwNumAddresses,	DPNGETLOCALHOSTADDRESSES_COMBINED);

Specifying	the	DPNGETLOCALHOSTADDRESSES_COMBINED	flag
with	the	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	service
provider	returns	a	single	address	object	that	allows
IDirectPlay8Client::EnumHosts	or	IDirectPlay8Client::Connect	to
attempt	all	of	the	host's	addresses	simultaneously.	This	address	can	be
converted	into	a	string	for	easy	transmission	through	a	match-making
service	by	using	the	IDirectPlay8Address::GetURLA	method	as	shown	in
the	following	example.

char	*szHostAddress	=	NULL;
DWORD	dwNumHostAddressChars	=	0;

hr	=	pDP8AddressHost->GetURLA(NULL,	&dwNumHostAddressChars);

szHostAddress	=	LocalAlloc(LPTR,	dwNumHostAddressChars	*	sizeof(char));

hr	=	pDP8AddressHost->GetURLA(szHostAddress,	&dwNumHostAddressChars);

Once	received,	the	client	converts	the	string	back	into	an	object	using
IDirectPlay8Address::BuildFromURLA.	See	Client	Issues	for	more

information	on	handling	peer	clients.

Using	a	Particular	Port

Applications	should	generally	let	DirectPlay	select	a	port	when	hosting.
However,	there	are	some	NAT	scenarios	where	the	user	might	want	to
change	the	port	on	which	the	game	is	hosting.	Also,	if	your	application
does	not	pass	addresses	using	DirectPlay	Lobby	or	other	match-making
service,	it	should	have	a	default	game	port	to	use	for	direct	discovery.
This	can	be	added	to	a	device	address	using	the	DPNA_KEY_PORT
component	as	shown	in	the	following	example.

DWORD	dwUserSelectedPort;	//	value	retrieved	from	user	input

if	(dwUserSelectedPort	!=	0)
{
	 //	User	specified	a	port	value;	use	it.
	 hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_PORT,	&dwUserSelectedPort,	sizeof(dwUserSelectedPort),	DPNA_DATATYPE_DWORD);
}
else
{
	 //	Let	DirectPlay	select;	don't	add	port	component.
}

This	address	object	is	then	passed	to	IDirectPlay8Server::Host	as	a
device	address	on	which	to	host.

Automatic	UPnP	Port	Forwarding

When	the	host	has	the	Microsoft	Windows®	Internet	Connection	Firewall
enabled	or	is	behind	a	UPnP	NAT	device,	DirectPlay	will	attempt	to
enable	port	forwarding	for	your	application	automatically.	This	asks	the
device	to	accept	all	packets	received	from	the	Internet	on	a	particular	port
and	forward	them	to	a	particular	address	and	port	inside	the	private
network.

If	DirectPlay	selected	the	local	port	for	the	host,	then	it	will	select	an
unused	external	port	for	the	NAT	device	to	forward.	The	actual	public	port
number	chosen	will	vary,	and	might	not	be	the	same	as	the	local	port.

If	the	DPNA_KEY_PORT	component	was	set	in	the	device	address
specified	to	IDirectPlay8Server::Host,	DirectPlay	will	ask	the	NAT
device	to	forward	the	same	external	port	number.	If	that	public	port
number	is	in	use	then	the	call	to	IDirectPlay8Server::Host	will	fail	with
DPNERR_INVALIDDEVICEADDRESS.	This	can	happen	when	another
instance	of	the	application	is	already	hosting	behind	the	same	NAT.

You	should	design	your	application	and	match-making	so	that	they	do	not
require	the	same	port	to	be	used	both	locally	and	on	the	NAT	device.	You
can	then	allow	DirectPlay	to	try	alternate	external	ports	when	the
matching	port	is	not	available	by	using	the
DPNA_KEY_TRAVERSALMODE	device	address	component	as	shown
in	the	following	example.

DWORD	dwTraversalMode	=	DPNA_TRAVERSALMODE_PORTRECOMMENDED;

hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_TRAVERSALMODE,	&dwTraversalMode,	sizeof(dwTraversalMode),	DPNA_DATATYPE_DWORD);

Disabling	Automatic	Traversal

Some	users	know	that	the	hosting	application	is	not	behind	a	UPnP	NAT
device	and	the	Windows	Internet	Connection	Firewall	is	not	enabled.
Others	might	want	to	manually	control	any	mappings	made	for	the	host.
You	can	decrease	the	time	required	by	IDirectPlay8Server::Host	and
prevent	automated	traversal	by	setting	the
DPNA_KEY_TRAVERSALMODE	component	to
DPNA_TRAVERSALMODE_NONE	as	shown	in	the	following	example.

DWORD	dwTraversalMode	=	DPNA_TRAVERSALMODE_NONE;

hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_TRAVERSALMODE,	&dwTraversalMode,	sizeof(dwTraversalMode),	DPNA_DATATYPE_DWORD);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Advanced	NAT	Techniques	for	Servers

Microsoft®	DirectPlay®	cannot	provide	100	percent	connectivity	for	hosts
behind	Network	Address	Translation	(NAT)	devices	that	do	not	support
Universal	Plug	and	Play	(UPnP).	However,	your	application	might	be	able
to	improve	support	for	some	of	these	cases	using	more	elaborate
methods.	The	techniques	described	here	require	additional	development
effort	as	well	as	external	server	resources.

NAT	Resolver

NAT	devices	create	an	implicit	port	mapping	when	an	internal	computer
sends	a	packet	to	an	external	computer.	Some	NAT	devices	allow	any
external	computer	to	use	this	port	mapping	to	send	to	the	internal
computer,	instead	of	only	forwarding	replies	sent	by	the	original	external
target.	These	are	sometimes	referred	to	as	"loose	NATs."	DirectPlay	can
take	advantage	of	this	behavior	using	the	IDirectPlay8NATResolver
interface	and	address	components	to	allow	hosting	behind	these	devices.

You	must	start	by	implementing	an	IDirectPlay8NATResolver	server	that
will	be	accessible	from	the	Internet.	Then	your	game	application	can	add
the	DPNA_KEY_NAT_RESOLVER	component	to	the	device	address
passed	to	IDirectPlay8Server::Host.	The	component	data	is	a	string
containing	the	Internet	Protocol	(IP)	address	and	port	for	the	NAT
resolver	to	use,	separated	by	a	colon.	For	example,	the	following	code
specifies	to	use	a	server	located	on	port	5678	at	the	address
123.123.123.123.

	 	 	 	 	 	
WCHAR	*	wszNATResolver	=	L"123.123.123.123:5678";		 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolver)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
																								wszNATResolver,
																								dwNATResolverSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

You	can	also	specify	a	hostname	instead	of	a	numerical	IP	address	as
shown	in	the	following	example.

	 	 	 	 	 	
WCHAR	*	wszNATResolver	=	L"resolver.mydomain.com:5678";	 	 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolver)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
																								wszNATResolver,
																								dwNATResolverSize,
																								DPNA_DATATYPE_STRING);
	 	 	 	 	 	

For	robustness,	you	might	want	to	have	more	than	one	resolving	servers
to	try.	You	can	specify	multiple	addresses	separated	by	commas	as
shown	in	the	following	example.

	 	 	 	 	 	
WCHAR	*	wszNATResolvers	=	L"123.123.123.123:5678,backupresolver.mydomain.com:6789";	 	 	 	 	 	
DWORD	dwNATResolverSize	=	(wcslen(wszNATResolvers)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER,	 	 	 	 	 	
	 	 	 	 	 	 wszNATResolvers,
	 	 	 	 	 	 dwNATResolverSize,
	 	 	 	 	 	 DPNA_DATATYPE_STRING);
	 	 	 	 	 	

Each	resolver	is	tried	simultaneously	for	speed,	and	the	first	response	is
used.	If	no	server	responds,	the	IDirectPlay8Server::Host	call	still
succeeds.

Because	hosting	these	resolving	servers	requires	resources,	you	might
want	to	prevent	arbitrary	players	from	using	the	resolver.	This	can	be
achieved	with	the	DPNA_KEY_NAT_RESOLVER_USER_STRING

address	component.	This	value	is	passed	directly	to	the	resolver	for
verification	in	the	DPN_MSGID_NAT_RESOLVER_QUERY	message,
and	it	can	choose	to	respond	or	ignore	as	appropriate.	The	following
example	shows	how	to	do	this.

	 	 	 	 	 	
WCHAR	*	wszPassword	=	L"MyPassword";	 	 	 	 	 	
DWORD	dwPasswordSize	=	(wcslen(wszPassword)	+	1)	*	sizeof(WCHAR);	 	 	 	 	 	
	 	 	 	 	 	
hr	=	pDP8DeviceAddress->AddComponent(DPNA_KEY_NAT_RESOLVER_USER_STRING,	 	 	 	 	 	
	 	 	 	 	 	 wszPassword,
	 	 	 	 	 	 dwPasswordSize,
	 	 	 	 	 	 DPNA_DATATYPE_STRING);
	 	 	 	 	 	

Note		The	user	string	is	passed	in	clear	text	over	the	network,	so	if	the
text	could	contain	sensitive	information,	you	should	encrypt	it	in	some
fashion.

The	host's	NAT	device	generates	a	port	mapping	for	the	NAT	resolver
query.	If	the	NAT	resolver	elects	to	respond	to	the	query,	DirectPlay	will
send	the	mapping's	public	address	back	to	the	querying	host.	The	host
will	then	have	it	included	in	the	addresses	returned	by	the
IDirectPlay8Server::GetLocalHostAddresses	method.

External	clients	use	the	mapping	address	when	connecting	to	the	internal
host.	However	the	NAT	device	will	expire	the	mapping	if	it	is	inactive,
which	will	prevent	external	clients	from	using	it.	The	actual	expiration
timeout	varies	by	NAT	device.	Generally,	the	external	clients	are
expected	to	begin	connecting	within	30	seconds	of	the
IDirectPlay8Server::Host	call	completing.

An	example	usage	of	NAT	resolver	address	components	can	be	found	in
the	NATPeer	sample.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Server	NAT	Compatibility	Reference

The	following	section	outlines	server	Network	Address	Translation	(NAT)
compatibility	for	applications	that	follow	the	guidelines	recommended	in
previous	sections.

Windows	98	Second	Edition	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Microsoft®
Windows®	98	Second	Edition	Internet	Connection	Sharing	(ICS).

Join	from	behind	ICS
computer

Join	from	ICS
computer

Join	from	external	network

Host	behind	ICS
computer

Yes Yes Not	without	manual	port	forwarding

Host	on	ICS
computer

Yes Yes Not	without	manual	port	forwarding	or	by	discovering
game	via	broadcast

Windows	98	Second	Edition	ICS	supports	joining	a	host	on	or	behind	the
ICS	computer	from	the	Internet	only	with	manual	port	forwarding.

The	Advanced	NAT	Techniques	for	Peer	Hosts	section	describes
methods	that	can	be	used	to	allow	external	clients	to	join	the	host	without
manual	port	forwarding	in	some	scenarios.

Windows	2000	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Windows
2000	ICS.

Join	from	behind	ICS
computer

Join	from	ICS
computer

Join	from	external	network

Host	behind	ICS
computer

Yes Yes Not	without	manual	port
forwarding

Host	on	ICS	computer Yes Yes Yes

Windows	2000	ICS	supports	joining	a	host	on	the	ICS	computer	from	the
Internet.	Joining	a	host	behind	the	ICS	computer	requires	manual	port
forwarding.

Windows	Millennium	Edition	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Windows
Millennium	Edition	(Windows	Me)	ICS.

Join	from	behind	ICS	computer Join	from	ICS	computer Join	from	external	network
Host	behind	ICS	computer Yes Yes Yes

Host	on	ICS	computer Yes Yes Yes

Hosting	behind	or	on	a	Windows	Me	ICS	computer	is	fully	supported
using	Microsoft	DirectPlay®'s	automatic	traversal.

Windows	XP	Internet	Connection	Sharing

The	following	table	shows	the	default	support	for	hosts	using	Windows
XP	ICS.

Join	from	behind	ICS	computer Join	from	ICS	computer Join	from	external	network
Host	behind	ICS	computer Yes Yes Yes

Host	on	ICS	computer Yes Yes Yes

Hosting	behind	or	on	a	Windows	XP	ICS	computer	is	fully	supported
using	DirectPlay's	automatic	traversal.

Non-Microsoft	NAT	Device	with	Universal	Plug	and	Play

Hosting	behind	a	non-Microsoft	NAT	device	that	is	compatible	with
DirectPlay's	automatic	traversal	using	Universal	Plug	and	Play	(UPnP)	is
supported.	Refer	to	the	NAT	device's	documentation	for	UPnP
compatibility	information.

Non-Microsoft	NAT	Device	without	Universal	Plug	and	Play

Clients	can	join	a	host	behind	a	non-Microsoft	NAT	device	without	UPnP
support	if	the	clients	are	behind	the	same	device.	External	clients	cannot
join	by	default	unless	port	forwarding	is	manually	configured.	Refer	to	the
NAT	device's	documentation	for	information	on	enabling	port	forwarding.

The	Advanced	NAT	Techniques	for	Servers	section	describes	methods
that	can	be	used	to	allow	external	clients	to	join	the	host	without	manual
port	forwarding	in	some	scenarios.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

NAT	Issues	for	Clients

Clients	using	the	IDirectPlay8Client	interface	have	some	limited	Network
Address	Translation	(NAT)	considerations,	which	are	described	in	the
following	pages.

Basic	NAT	Issues	for	Clients

Client	NAT	Compatibility	Reference

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Basic	NAT	Issues	for	Clients

The	IDirectPlay8Client	interface	has	very	few	Network	Address
Translation	(NAT)	concerns	and	works	in	almost	all	scenarios.	Clients
should	however	keep	enumerations	active	and	avoid	relying	on	DPNSVR
to	ensure	NAT	compatibility.

Keeping	EnumHosts	Active	While	Connecting
Most	NAT	devices	create	virtual	connections	each	time	an	internal	client
starts	sending	packets	to	a	new	external	address	and	port,	such	as	a
new	IDirectPlay8Client::EnumHosts	operation.	These	virtual	connections
will	sometimes	be	destroyed	as	soon	as	the
IDirectPlay8Client::EnumHosts	operation	completes.	If	your	client
application	enumerates	hosts	before	connecting,	you	should	neither
cancel	the	IDirectPlay8Client::EnumHosts	operation	nor	allow	it	to	time
out	so	that	the	call	to	IDirectPlay8Client::Connect	can	reuse	the	virtual
connection.	This	requirement	can	be	met	by	specifying	INFINITE	for	the
dwEnumCount	parameter	as	shown	in	the	following	example.

hr	=	pDP8Client->EnumHosts(&dpnad,
																											pDP8AddressHost,
																											pDP8AddressDevice,
																											NULL,
																											0,
																											INFINITE,
																											0,
																											0,
																											NULL,
																											&dpnhEnumHosts,
																											0);

Microsoft®	DirectPlay®	will	automatically	cancel	all	outstanding
IDirectPlay8Client::EnumHosts	operations	for	you	when	the	connect
operation	completes	successfully.	If	the	connect	fails,	the	enumerations
will	continue	running.	You	can	then	cancel	them	using	the
IDirectPlay8Client::CancelAsyncOperation	method.

To	ensure	that	the	connect	operation	uses	the	same	virtual	connection	as

the	enumeration,	the	host	and	device	address	objects	specified	to
IDirectPlay8Client::Connect	should	be	the	same	as	those	included	in
the	corresponding	DPN_MSGID_ENUM_HOSTS_RESPONSE	message.
For	examples	of	how	to	add	a	reference	or	duplicate	these	addresses,
see	the	DirectPlay	C++	Samples.

DPNSVR

The	application	sends	enumeration	queries	to	the	DPNSVR	port	when
the	DPNA_KEY_PORT	component	is	not	specified	in	the
IDirectPlay8Address	host	object	passed	to
IDirectPlay8Client::EnumHosts.	However	the	hosts	reply	from	their
respective	game	ports.	Some	NAT	devices	expect	replies	to	come	from
the	port	to	which	the	client	originally	sent,	and	might	therefore	drop	the
enumeration	response.	If	your	application	uses	DPNSVR	to	help	with
session	discovery,	it	should	also	attempt	to	enumerate	the	game	port
directly.

Enumerating	the	Host's	Game	Port	Directly

The	host	can	retrieve	its	addresses	using
IDirectPlay8Server::GetLocalHostAddresses	and	pass	it	in	string	format
to	the	client	using	IDirectPlay8Address::GetURLA	through	a	match-
making	service.	The	client	can	then	convert	the	string	back	into	an
address	using	the	IDirectPlay8Address::BuildFromURLA	method	as
shown	in	the	following	example.

IDirectPlay8Address	*pDP8AddressHost	=	NULL;

hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	CLSCTX_INPROC_SERVER,	IID_IDirectPlay8Address,	NULL,	(PVOID*)	(&pDP8AddressHost));

hr	=	pDP8AddressHost->BuildFromURLA(szHostAddress);

This	address	object	can	then	be	passed	to
IDirectPlay8Client::EnumHosts	or	IDirectPlay8Client::Connect.

Enumerating	or	Connecting	from	a	Particular	Port

Applications	should	almost	always	let	DirectPlay	choose	the	local	port	or
ports	when	enumerating	or	connecting.	However,	you	might	want	to	allow
the	user	to	select	a	local	port.	This	can	be	added	to	a	device	address
using	the	DPNA_KEY_PORT	component	as	shown	in	the	following
example.

DWORD	dwUserSelectedPort;	//	value	retrieved	from	user	input

if	(dwUserSelectedPort	!=	0)
{
				//	User	specified	a	port	value;	use	it.
				hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_PORT,	&dwUserSelectedPort,	sizeof(dwUserSelectedPort),	DPNA_DATATYPE_DWORD);
}
else
{
				//	Let	DirectPlay	select;	don't	add	port	component.
}

This	address	object	is	then	passed	to	IDirectPlay8Client::EnumHosts
or	IDirectPlay8Client::Connect	for	the	device	address	parameter.

Disabling	Automatic	Traversal

When	the	client	has	Microsoft	Windows®	Internet	Connection	Firewall
enabled	or	is	behind	a	Universal	Plug	and	Play	(UPnP)	NAT	device,
DirectPlay	will	attempt	to	enable	port	forwarding	for	your	application
automatically.	This	asks	the	device	to	accept	all	packets	received	from
the	Internet	on	a	particular	port	and	forward	them	to	a	particular	address
and	port	inside	the	private	network.	In	many	cases,	this	is	unnecessary,
particularly	when	the	server	is	known	to	be	on	the	open	Internet.	You	can
decrease	the	time	required	by	IDirectPlay8Client::EnumHosts	or
IDirectPlay8Client::Connect	and	prevent	automated	traversal	by	setting
the	DPNA_KEY_TRAVERSALMODE	component	to
DPNA_TRAVERSALMODE_NONE	as	shown	in	the	following	example.

DWORD	dwTraversalMode	=	DPNA_TRAVERSALMODE_NONE;

hr	=	pDP8AddressDevice->AddComponent(DPNA_KEY_TRAVERSALMODE,	&dwTraversalMode,	sizeof(dwTraversalMode),	DPNA_DATATYPE_DWORD);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Client	NAT	Compatibility	Reference

When	following	the	guidelines	listed	in	the	previous	sections,	the
IDirectPlay8Client	interface	supports	all	Network	Address	Translation
(NAT)	device	types.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Using	the	IDirectPlay8NATResolver	Interface

The	IDirectPlay8NATResolver	interface	can	be	used	in	conjunction	with
the	DPNA_KEY_NAT_RESOLVER	and
DPNA_KEY_NAT_RESOLVER_USER_STRING	address	components	to
improve	automated	Network	Address	Translation	(NAT)	support	in	some
cases.	This	section	describes	how	to	implement	a	NAT	resolver
application	that	is	deployed	on	the	Internet.	Hosts	and	clients	use	this
server	to	identify	their	public	address	as	described	in	Advanced	NAT
Techniques	for	Peer	Hosts,	Advanced	NAT	Techniques	for	Peer	Clients,
and	Advanced	NAT	Techniques	for	Servers.

Creating	an	IDirectPlay8NATResolver	Interface
To	prepare	the	NAT	resolver	you	must	first	create	the	interface	object	and
call	IDirectPlay8NATResolver::Initialize	to	specify	a	callback	function.
This	is	shown	in	the	following	example.

hr	=	CoCreateInstance(CLSID_DirectPlay8NATResolver,
																						NULL,	
																						CLSCTX_INPROC_SERVER,
																						IID_IDirectPlay8NATResolver,	
																						(LPVOID*)	&g_pDPNATResolver);

.

.

.
hr	=	g_pDPNATResolver->Initialize(NULL,	DirectPlayMessageHandler,	0);

The	IDirectPlay8ThreadPool	interface	can	be	used	to	control	threading
for	the	IDirectPlay8NATResolver	interface.	If	you	choose	to	use
IDirectPlay8ThreadPool,	that	interface	should	be	initialized	and
configured	first.

Starting	a	NAT	Resolver
Once	the	IDirectPlay8NATResolver	interface	has	been	initialized,	you
should	call	IDirectPlay8NATResolver::Start	to	begin	listening	for	NAT
resolver	queries.	The	device	addresses	passed	to
IDirectPlay8NATResolver::Start	are	similar	to	those	passed	to
IDirectPlay8Peer::Host	or	IDirectPlay8Server::Host,	except	that	they
must	only	be	for	the	Transmission	Control	Protocol/Internet	Protocol
(TCP/IP)	service	provider,	and	Internet	Protocol,	version	6	(IPv6)	device
globally	unique	identifiers	(GUIDs)	are	not	accepted.	You	can	leave	the
device	GUID	unspecified	and	listen	using	all	devices.	You	might	also
choose	to	not	specify	an	address	object	at	all,	and	Microsoft®
DirectPlay®	will	automatically	select	a	port	for	listening	on	all	TCP/IP
protocol	devices.	The	following	example	shows	how	to	optionally	start
listening	on	a	particular	port	specified	by	the	user.

if	(g_dwPort	>	0)
{
				hr	=	pDP8AddrLocal->AddComponent(DPNA_KEY_PORT,	
																																					&g_dwPort,	
																																					sizeof(DWORD),
																																					DPNA_DATATYPE_DWORD);
}
	
hr	=	g_pDPNATResolver->Start(&pDP8AddrLocal,	1,	0);

Handling	queries

The	IDirectPlay8NATResolver	interface	only	generates	one	callback	to
the	application's	message	handler,
DPN_MSGID_NAT_RESOLVER_QUERY.	The	message	contains	the
address	of	the	query	sender	and	the	device	on	which	it	was	received.
The	application	can	allow	DirectPlay	to	respond	to	the	query	by	returning
DPN_OK	from	its	message	handler,	or	ignore	it	by	returning	a	failure
code.	This	is	shown	in	the	following	example.

case	DPN_MSGID_NAT_RESOLVER_QUERY:
{
				DPNMSG_NAT_RESOLVER_QUERY	*pMsgNATResolverQuery	=	(DPNMSG_NAT_RESOLVER_QUERY*)	pMsgBuffer;
				.
				.
				.

	 if	(bIgnoreQuery)
				{
								//	Return	failure	to	ignore	the	query.
								return	DPNERR_GENERIC;
				}
	
	 //	Return	OK	so	that	DirectPlay	will	reply.
	 .
	 .
	 .
}

The	DPNMSG_NAT_RESOLVER_QUERY	structure	also	contains	a
pointer	to	the	user	string,	or	NULL	if	the	string	was	not	specified.	This

string	is	the	same	as	the	DPNA_NAT_RESOLVER_USER_STRING
component	included	in	the	querying	application's	device	address
specified	to	IDirectPlay8Peer::Host,	IDirectPlay8Peer::EnumHosts,
IDirectPlay8Peer::Connect,	IDirectPlay8Server::Host,
IDirectPlay8Client::EnumHosts,	or	IDirectPlay8Client::Connect.	The	user
string	is	sent	in	clear	text,	so	you	should	encrypt	the	string	if	it	contains
sensitive	data.

See	NATResolver	for	an	example	usage	of	this	interface.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Notes	Regarding	Firewalls	and	Proxies

Following	the	guidelines	outlined	for	maximizing	Network	Address
Translation	(NAT)	support	will	maximize	your	application's	firewall	and
proxy	support	as	well.	A	few	issues	specific	to	firewalls	and	proxies	are
described	here.

Windows	Internet	Connection	Firewall

Microsoft®	DirectPlay®	works	with	the	Internet	Connection	Firewall
capabilities	of	Microsoft	Windows®	XP.	When	your	application	begins
hosting,	enumerating,	or	connecting,	the	appropriate	ports	will
automatically	open	and	when	your	application	shuts	down,	these	ports
will	automatically	close.	However,	the	user	launching	the	application	must
be	a	member	of	the	administrator	group	for	the	computer	so	that
DirectPlay	has	the	security	permissions	to	open	the	ports.	If	the	user	is
not	an	administrator,	then	only	IDirectPlay8Client	and	IDirectPlay8Peer
clients	are	supported.

You	can	disable	the	automatic	Internet	Connection	Firewall	traversal
using	the	DPNA_KEY_TRAVERSALMODE	device	address	component
described	in	Basic	NAT	Issues	for	Peer	Hosts,	Basic	NAT	Issues	for	Peer
Clients,	Basic	NAT	Issues	for	Servers,	and	Basic	NAT	Issues	for	Clients.

Non-Microsoft	Firewall	Solutions

DirectPlay	cannot	automatically	configure	non-Microsoft	firewalls.
However,	IDirectPlay8Client	and	IDirectPlay8Peer	clients	are	generally
supported	without	user	intervention,	unless	the	application	relies	on
DirectPlay	Server	(DPNSVR).	See	Basic	NAT	Issues	for	Peer	Clients
or	Basic	NAT	Issues	for	Clients	for	more	information	on	avoiding
DPNSVR.

The	user	should	consult	the	product's	documentation	for	information	on
how	to	allow	hosts	to	traverse	a	particular	non-Microsoft	firewall.

Microsoft	Internet	Security	and	Acceleration	Server

DirectPlay	works	with	Microsoft	Internet	Security	and	Acceleration	(ISA)
Server.	Clients	that	have	the	ISA	Firewall	Client	software	installed	should
not	cancel	the	enumeration	before	connecting	and	should	pass	the
address	objects	from	the	DPN_MSGID_ENUM_HOSTS_RESPONSE
callback	as	described	in	Basic	NAT	Issues	for	Peer	Clients	and	Basic
NAT	Issues	for	Clients.	If	the	enumeration	is	cancelled,	the	ISA	Server
can	close	the	virtual	connection	established	by	the	enumeration	and	the
call	to	IDirectPlay8Peer::Connect	or	IDirectPlay8Client::Connect	will	fail.

DPNSVR	should	also	be	avoided	as	described	in	Basic	NAT	Issues	for
Peer	Hosts,	Basic	NAT	Issues	for	Peer	Clients,	Basic	NAT	Issues	for
Servers,	and	Basic	NAT	Issues	for	Clients.

Hosts	behind	an	ISA	Server	must	manually	configure	the	proxy	to	redirect
traffic	received	externally	to	the	internal	host.	Refer	to	the	ISA	Server
documentation	for	information	on	defining	server	publishing	and	protocol
rules.

Non-Microsoft	Proxies

Applications	should	follow	the	guidelines	described	in	Basic	NAT	Issues
for	Peer	Hosts,	Basic	NAT	Issues	for	Peer	Clients,	Basic	NAT	Issues
for	Servers,	and	Basic	NAT	Issues	for	Clients.

IDirectPlay8Client	and	IDirectPlay8Peer	clients	are	generally
supported,	however	the	user	should	refer	to	the	product's	documentation
for	possible	restrictions.

Hosts	behind	a	non-Microsoft	proxy	must	manually	configure	the	proxy	to
redirect	traffic	received	externally	to	the	internal	host.	The	user	should
refer	to	the	product's	documentation	for	directions	on	how	to	enable	port
forwarding.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

NAT	Troubleshooting	Techniques	for	Developers	and
End	Users

This	topic	contains	techniques	to	help	developers	and	end	users	who	are
trying	to	troubleshoot	Network	Address	Translation	(NAT)	problems.

Verify	simple	connectivity	by	attempting	to	access	the	World	Wide
Web.

Use	the	Ping	system	utility	to	verify	that	packets	can	be	sent	to
and	from	the	computer's	Internet	Protocol	(IP)	gateway.	Also	use
Ping	to	test	the	host	or	player	that	cannot	join.	Note	that	some
firewalls	might	disallow	the	Internet	Control	Message	Protocol
(ICMP)	echo	packets	used	by	Ping	even	though	the	two	computers
can	communicate.

Non-Microsoft	NAT	device	owners	should	download	and	install	the
latest	firmware	revision	available	from	the	manufacturer.

Microsoft®	Windows®	XP	Internet	Connection	Sharing	(ICS)	users
should	ensure	that	the	Allow	other	network	users	to	control	or
disable	the	shared	Internet	connection	box	in	the	shared
connection's	properties	Advanced	tab	is	set.
Running	a	CPU-intensive	application	such	as	a	game	on	the
Windows	ICS	computer	can	impact	NAT	performance.	Clients
behind	the	ICS	computer	might	experience	higher	latency	and
packet	loss	when	the	computer	is	heavily	loaded.

Many	NAT	devices	have	a	Demilitarized	Zone	option	that	forwards
all	packets	to	a	particular	computer.	This	can	be	used	to	ensure
connectivity	for	that	computer	if	all	other	traversal	mechanisms	fail.

When	the	IDirectPlay8Peer::Connect	method	completes	with	the
DPNERR_PLAYERNOTREACHABLE	error	code,	this	means	that
the	host	was	contacted,	but	one	or	more	peers	already	in	the
session	could	not	communicate	with	the	joining	player.	Having	the
players	join	the	session	in	a	different	order	can	prevent	this,	but	it
might	mean	some	of	the	players	are	behind	NAT	devices	that	are

not	compatible.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Optimizing	Network	Usage

Providing	the	best	gaming	experience	normally	means	sending	updates
and	other	information	as	rapidly	as	possible	without	flooding	the	target
with	more	messages	than	it	can	handle.	The	Microsoft®	DirectPlay®
protocol	combined	with	asynchronous	messaging	enables	you	to
dynamically	optimize	your	messaging	strategy	to	provide	your	users	with
the	best	possible	game	experience.

The	bulk	of	your	messaging	will	use	the	IDirectPlay8Peer::SendTo,
IDirectPlay8Client::Send,	or	IDirectPlay8Server::SendTo	methods.	These
methods	normally	work	asynchronously	for	all	message	categories.	They
return	immediately,	and	your	message	handler	receives	a
DPN_MSGID_SEND_COMPLETE	message	when	the	message	is
actually	sent.	You	can	choose	to	send	messages	synchronously	by
setting	the	DPNSEND_SYNC	flag.	If	you	do	so,	the	method	will	block
until	the	message	is	actually	sent.

The	DirectPlay	protocol's	throttling	mechanism	guarantees	that	the	client
will	not	receive	messages	faster	than	they	can	be	handled.	However,	the
throttling	protocol	does	not	control	how	frequently	you	submit	messages
to	the	outgoing	queue.	You	can	easily	end	up	with	a	large	backlog	of
messages	in	your	unsent	message	queues.	You	can	avoid	this	situation
by	sending	messages	as	infrequently	as	possible,	but	then	you	might
unnecessarily	degrade	the	user's	experience.	An	optimal	messaging
strategy	sends	messages	as	fast	as	possible	without	exceeding	the
target's	ability	to	handle	them.

The	following	are	tips	for	optimizing	your	messaging	strategy.

Send	most	if	not	all	of	your	messages	asynchronously.	If	you	send

a	message	synchronously,	the	method	will	block	until	the	throttling
mechanism	allows	the	message	to	be	sent.

Monitor	the	pending	message	queues	and	the	network	statistics.	If
there	are	few	or	no	messages	in	the	queue,	you	can	increase	your
transmission	rate.	If	the	queues	are	large	or	growing	rapidly,
decrease	your	transmission	rate	and	perhaps	cancel	some
messages.	See	the	discussion	of	send	timeouts	in	Send
Prioritization	for	more	information.

Analyze	the	pending	message	queues	on	a	player-by-player	basis.
Some	players	might	be	able	to	receive	messages	at	a	much	higher
rate	than	others.	The	bulk	statistics	might	be	misleading.	Consider
using	directed	sends	rather	than	group	sends.

Choose	the	appropriate	category	for	each	message.	Reserve	the
categories	with	the	highest	overhead	for	the	most	important
messages.

Prioritize	your	messages,	so	that	the	most	important	are	assured
of	being	sent	promptly	and	not	delayed	by	relatively	unimportant
messages.

Do	not	let	the	pending	message	queues	grow	too	large.	In	addition
to	delaying	the	transmission	of	your	messages,	a	large	number	of
pending	messages	might	consume	significant	memory	resources.

Use	the	timeout	feature	of	the	Send	and	SendTo	methods	to
automatically	clear	outdated	messages	from	the	pending	message
queue.

Minimize	the	amount	of	data	per	message.	It	is	usually	better	to
send	frequent	small	messages	than	a	smaller	number	of	large
messages.

Do	not	loop	tightly	when	checking	the	pending	message	queue.
Doing	so	wastes	CPU	cycles.	Instead,	use	a	sleep	period	based
on	how	long	it	typically	takes	the	queue	to	get	down	to	the	level
that	it	will	be	ready	for	another	send.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Testing	Network	Performance

Microsoft®	DirectPlay®	offers	the	DP8Sim	service	provider	that	allows
you	to	test	your	DirectPlay	application	in	a	variety	of	network	conditions,
such	as	high	latency	and	packet	loss.	The	network	simulator	is	not	a
replacement	for	testing	in	the	real	deployment	environment,	but	it	can
help	you	predict	how	your	application	will	perform.

DirectPlay	also	offers	the	DP8Sim	Utility	if	you	don't	want	to	create	your
own	testing	environment.	The	main	advantage	of	using	the
IDP8SimControl	interface	and	the	DP8Sim	service	provider	in	your
application	is	that	it	allows	you	to	integrate	the	network	settings	into	your
application's	debugging	user	interface	(UI),	command	line,	or	scripting
tools	instead	of	having	to	manually	change	the	settings	through	the
DP8Sim	Utility.

Note		The	network	simulator	is	implemented	on	top	of	the	existing
DirectPlay8	TCP/IP	Service	Provider.	The	settings	are	also	applied	on
top	of	the	existing	network	characteristics.	Therefore,	it	is	intended	to	be
used	on	a	high-speed	local	area	network	(LAN)	where	normal	latency
and	packet	loss	are	negligible.

Using	the	DP8Sim	service	provider

You	can	switch	between	the	standard	Transmission	Control
Protocol/Internet	Protocol	(TCP/IP)	service	provider	to	the	DP8Sim
service	provider	to	run	network	simulation	tests	on	your	application.	To
set	the	network	simulator	as	your	service	provider,	you	have	three
choices.

Enumerate	all	service	providers	and	then	select	the	"DirectPlay8
TCP/IP	Service	Provider	(Network	Simulator)."

Explicitly	set	the	service	provider	globally	unique	identifier	(GUID)
with	IDirectPlay8Address::SetSP.

Call	IDirectPlay8Peer::EnumServiceProviders,
IDirectPlay8Server::EnumServiceProviders,	or
IDirectPlay8Client::EnumServiceProviders	with	the
pguidServiceProvider	set	to
CLSID_NETWORKSIMULATOR_DP8SP_TCPIP.

Note		The	DP8Sim	service	providers	enumerated	will	have	the
DPNSPINFO_NETWORKSIMULATORDEVICE	flag	set	in	the	dwFlags
member	of	the	DPN_SERVICE_PROVIDER_INFO	structure.

The	following	example	shows	how	to	explicitly	set	the	service	provider	to
the	network	simulator.

IDirectPlay8Address*		g_pDeviceAddress;
.
.
.
hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	NULL,	
																							CLSCTX_INPROC_SERVER,
																							IID_IDirectPlay8Address,
																							(LPVOID*)	&g_pDeviceAddress);

hr	=	g_pDeviceAddress->SetSP(&CLSID_NETWORKSIMULATOR_DP8SP_TCPIP);

When	using	the	DP8Sim	service	provider,	DirectPlay	will	set	the
DPNSPCAPS_NETWORKSIMULATOR	in	DPN_SP_CAPS.

Note		If	you	host	a	DPNSVR	session	with	the	network	simulator	service
provider,	you	cannot	host	a	DPNSVR	session	with	the	Internet	Protocol
(IP)	service	provider,	and	vice	versa.	All	DPNSVR	sessions	must	be	with
either	the	IP	or	the	network	simulator	service	provider.	This	does	not
affect	your	ability	to	host	an	Internetwork	Packet	Exchange	(IPX)	session
or	sessions	without	DPNSVR.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Using	Player	Context	Values

Most	applications	will	want	to	associate	some	data	with	each	player.
However,	when	you	receive	a	message	that	is	associated	to	a	player,	you
need	some	way	to	access	that	data	quickly.	Player	context	values	are
designed	to	provide	you	with	an	efficient	way	to	access	your	player	data.

Note		Only	the	IDirectPlay8Peer	and	IDirectPlay8Server	interfaces	use
player	context	values.	They	are	not	needed	for	the	IDirectPlay8Client
interface	because	clients	use	this	interface	to	communicate	only	with	the
server,	not	other	clients.

Defining	a	Player	Context	Value

To	user	player	context	values,	you	need	to	have	a	block	of	data	on	your
system	for	each	player,	typically	in	the	form	of	a	structure.	A	player
context	value	is	normally	an	index	into	an	array	of	pointers	to	the	various
players'	data	blocks.	When	you	receive	a	message	from	a	player,	there	is
no	need	for	time-consuming	operations	such	as	searching	for	the	player's
identifier	(ID)	in	a	table.	The	index	contained	in	the	player	context	value
allows	you	to	quickly	obtain	the	necessary	pointer.

You	define	a	player	context	value	when	you	handle	the
DPN_MSGID_CREATE_PLAYER	message	that	notifies	you	that	a	player
has	been	added	to	the	game.	Host's	can	also	define	a	player	context
value	when	they	handle	the	DPN_MSGID_INDICATE_CONNECT
message.	That	player	context	value	will	be	set	in	the	subsequent
DPN_MSGID_CREATE_PLAYER	message.	When	the	host	processes
that	message,	it	has	the	option	of	changing	the	player	context	value.	To
create	a	player	context	value:

Allocate	a	structure	to	hold	the	player's	data.

Add	the	structure	pointer	to	your	player	data	array.

Assign	the	index	of	that	pointer	to	the	pvPlayerContext	member
of	the	message's	DPN_MSGID_CREATE_PLAYER	structure.

Microsoft®	DirectPlay®	does	not	specify	how	you	should	obtain	the	data
to	populate	the	structure.	Each	game	is	responsible	for	handling	that
issue	in	its	own	way.

Note		The	only	place	you	can	define	a	player	context	value	is	in	a
DPN_MSGID_CREATE_PLAYER	or
DPN_MSGID_INDICATE_CONNECT	message	handler.	When	the
DPN_MSGID_CREATE_PLAYER	message	handler	returns,	the	player

context	value	is	set.	For	each	subsequent	message	associated	with	that
player,	the	player	context	value	will	be	the	same	value	that	was	set	by	the
DPN_MSGID_CREATE_PLAYER	message	handler.	You	can	modify	the
contents	of	the	associated	data	structure,	but	you	cannot	change	the
player	context	value	itself.

Managing	Player	Context	Data

While	player	context	values	are	fairly	straightforward	to	handle,	there	are
a	couple	of	issues	that	you	need	to	be	careful	with.

The	player	context	value	provides	you	with	a	quick	way	to	obtain	a	valid
memory	address	that	will	presumably	be	accessed	each	time	a	message
arrives.	However,	you	must	be	careful	that	different	parts	of	your
application	do	not	access	the	data	at	the	same	time.	DirectPlay	serializes
messages	associated	with	a	particular	player,	which	guarantees	that	you
will	never	be	handling	two	messages	from	the	same	player	at	the	same
time.	As	long	as	you	only	access	the	data	structure	from	your	callback
message	handler,	you	can	safely	access	the	structure.	However,	most
applications	will	need	to	access	player	data	outside	the	message	handler.

If	your	application	accesses	the	data	outside	the	callback	message
handler,	you	must	prevent	concurrent	access	by	providing	some	sort	of
global	mechanism	to	lock	the	structure.	Even	if	your	application	does	not
require	such	locking	in	the	early	stages	of	development,	you	should
assume	that	locking	will	eventually	be	required,	and	build	it	in	from	the
beginning.	If	your	player	context	values	that	are	indexes	into	an	array,
you	should	also	make	sure	that	you	read	and	update	that	array	safely.

Don't	deallocate	a	player's	data	structure	prematurely.	When	a	player
leaves	the	game,	you	will	normally	want	to	deallocate	their	data	structure
and	free	the	associated	memory.	However,	be	careful	about	deallocating
the	structure	as	soon	as	you	receive	a
DPN_MSGID_DESTROY_PLAYER	message.	If	your	application
accesses	that	structure	outside	the	callback	message	handler,	that	data
may	still	be	in	use	when	the	message	arrives.	If	you	deallocate	the

structure	as	soon	as	the	message	arrives,	you	may	cause	other	parts	of
your	application	to	fail.

To	avoid	prematurely	deallocating	the	structure,	you	should	not	only
provide	an	application-level	locking	mechanism,	you	should	also
implement	some	sort	of	reference	counting.	Increment	this	reference
count	when	you	create	the	structure,	and	every	time	you	use	it.
Decrement	the	reference	count	every	time	you	have	finished	with	the
structure,	including	in	your	DPN_MSGID_DESTROY_PLAYER	message
handler.	As	long	as	the	reference	count	is	nonzero,	some	part	of	your
application	is	accessing	the	structure.	Do	not	deallocate	the	structure
until	the	reference	count	drops	to	zero.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Using	the	DirectPlay	DPNSVR	Application

Microsoft®	Windows®	allows	one	process	per	Internet	Protocol	(IP)	or
Internetwork	Packet	Exchange	(IPX)	port.	Windows	does	not	allow
multiple	processes	to	share	a	single	port.	To	act	as	a	communication
host,	each	application	must	use	a	separate	port.	This	restriction	creates
several	issues,	especially	when	doing	such	tasks	as	enumerating	running
games.

Avoiding	port	conflicts.	You	must	choose	a	port	that	does	not
conflict	with	other	applications.

Managing	multiple	communications	hosts	on	a	single	system.
Each	instance	of	a	host	must	use	a	different	port.	Client
applications	then	have	to	determine	which	port	a	particular	host	is
using.

Avoiding	ports	that	are	already	in	use.	If	your	preferred	port	is	in
use,	your	application	must	be	able	to	use	another	port.

The	DPNSVR	application	addresses	these	issues	by	acting	as	a
forwarding	service	for	enumeration	requests.	When	an	application	begins
hosting,	it	informs	DPNSVR	on	which	port	it	is	running.	DPNSVR	listens
on	a	well-known	port	and	forwards	any	enumeration	requests	to	all
Microsoft	DirectPlay®	hosts	on	the	system.	Responses	to	enumeration
requests	contain	the	port	number	to	which	the	host	is	actually	connected.

The	following	diagram	illustrates	how	DPNSVR,	on	a	computer	with	two
active	host	applications,	handles	an	enumeration	query	from	a	remote
client.

DPNSVR	offers	developers	the	following	advantages.

You	can	write	generic	enumeration	routines	that	enumerate	all	the
games	running	on	a	particular	system.

You	can	use	DirectPlay	to	select	the	host's	port.	Client	applications
can	use	the	services	of	DPNSVR	to	enumerate	the	running	games
on	a	well-known	port,	and	the	responses	will	contain	the	port
number	to	which	the	host	is	actually	connected.

You	need	not	allow	for	the	situation	where	your	application	does
not	get	the	port	it	requests.

You	need	not	be	concerned	about	conflicts	with	other	applications
on	the	system

While	most	applications	will	want	to	use	the	services	of	DPNSVR,	there
are	some	circumstances	where	you	may	want	to	disable	it.	Two
examples	are:

You	know	what	port	you	want	to	use,	and	only	one	instance	of	your
application	will	be	running	on	the	computer.

You	want	to	restrict	the	ability	of	players	to	enumerate	your
session.	If	you	disable	DPNSVR,	only	those	players	who	know
which	port	your	host	is	connected	to	will	be	able	to	enumerate	your
host.

How	to	Use	DPNSVR

To	determine	whether	DPNSVR	is	supported	by	your	service	provider,
call	the	GetSPCaps	methods	supported	by	the	IDirectPlay8Peer,
IDirectPlay8Client,	or	IDirectPlay8Server	interface.	If	the	service	provider
supports	DPNSVR,	the	DPNSPCAPS_SUPPORTSDPNSRV	flag	will	be
set	in	the	dwFlags	member	of	the	returned	DPN_SP_CAPS	structure.
Only	IP,	IPX,	and	the	network	simulator	service	providers	currently
support	DPNSVR.

Note		If	you	host	a	DPNSVR	session	with	the	network	simulator	service
provider,	you	cannot	host	a	DPNSVR	session	with	the	IP	service	provider
and	vice	versa.	All	DPNSVR	sessions	must	be	with	either	the	IP	or	the
network	simulator	service	provider.	This	does	not	affect	your	ability	to
host	IPX	session	or	sessions	without	DPNSVR.

Using	DPNSVR	requires	no	special	effort,	because	it	is	selected	by
default.	If	you	do	not	want	enumeration	requests	forwarded	to	your	host,
you	must	explicitly	disable	DPNSVR	by	setting	the
DPNSESSION_NODPNSVR	flag	in	the	dwFlags	member	of	the
DPN_APPLICATION_DESC	structure.	Some	additional	characteristics	of
DPNSVR	are:

DPNSVR	does	not	have	a	window	but	it	does	appear	in	the	user's
task	list.

If	no	applications	are	using	DPNSVR,	it	shuts	down	after	30
seconds	of	inactivity.	DPNSVR	is	automatically	started	up	when	an
application	begins	hosting.

You	can	shut	down	DPNSVR	by	running	DPNSVR	/kill	from	the
command	line	and	it	will	shut	down	immediately.	However,	if	you
have	any	host	applications	open	when	you	shut	down	DPNSVR,
they	will	no	longer	be	able	to	receive	enumerations	on	the
DPNSVR	port.

Note		Applications	can	always	enumerate	your	host	if	they	know	the	port
on	which	it	is	running,	even	if	the	DPNSESSION_NODPNSVR	flag	is	set.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	C/C++	Tutorials

This	section	contains	tutorials	that	provide	step-by-step	instructions	for
implementing	basic	Microsoft®	DirectPlay®	functionality	in	a	C	or	C++
application.	Each	tutorial	builds	on	the	previous	tutorials	and	it	is
recommended	that	you	complete	the	tutorials	in	the	order	in	which	they
are	listed.	The	first	eight	tutorials	use	the	IDirectPlay8Peer	interface
methods.	Tutorial	9	uses	the	IDirectPlay8Client	and	IDirectPlay8Server
interface	methods.

Tutorials

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating
Service	Providers

Tutorial	2:	Hosting	a	Session

Tutorial	3:	Enumerating	Hosted	Sessions

Tutorial	4:	Connecting	to	a	Session

Tutorial	5:	Sending	Messages	to	Other	Peers

Tutorial	6:	Handling	Host	Migration

Tutorial	7:	Creating	a	Lobbyable	Application

Tutorial	8:	Direct	Play	Voice

Tutorial	9:	Creating	a	DirectPlay	Client/Server	Session

Tutorial	10:	DirectPlay	Thread	Pool

Note		These	tutorials	are	written	using	C++	style	function	calls.	For
instructions	on	writing	Microsoft	DirectX®	function	calls	in	a	C
environment,	see	Using	C	to	Access	COM	Objects.
For	other	examples,	see	DirectPlay	C++	Samples.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating
Service	Providers

This	series	of	tutorials	demonstrate	how	to	implement	a	simple	peer-to-
peer	multiplayer	game	using	Microsoft®	DirectPlay®.	This	tutorial
outlines	the	initial	steps:	creating	a	DirectPlay	object	and	enumerating	the
available	network	service	providers.	Subsequent	tutorials	build	on	this
foundation	to	take	you	through	the	key	steps	needed	to	construct	a
simple	peer-to-peer	console	application.	Much	of	the	information	in	these
tutorials	can	also	be	applied	to	client/server	applications.	The	complete
sample	code	for	this	tutorial	is	included	with	the	Microsoft
DirectX®	software	development	kit	(SDK)	and	can	be	found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut01_EnumSP.

For	a	general	discussion	of	peer-to-peer	applications,	see	Peer-to-Peer
Sessions.

User's	Guide

Creating	a	DirectPlay	Peer	Object

Enumerating	Service	Providers

Terminating	a	DirectPlay	Application

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	and	the	application
displays	the	service	providers	found	on	your	computer.	To	end	the
tutorial,	click	Exit.

Creating	a	DirectPlay	Peer	Object

One	of	the	first	things	a	peer-to-peer	application	must	do	is	create	and
initialize	a	DirectPlay	peer	object	(CLSID_DirectPlay8Peer).	To	create	a
DirectPlay	peer	object,	call	CoCreateInstance,	and	request	a	pointer	to
an	IDirectPlay8Peer	interface.	All	of	your	subsequent	interaction	with
DirectPlay	and	your	fellow	players	will	be	through	this	interface.

Once	you	have	created	the	peer	object,	you	must	initialize	it	by	calling
the	IDirectPlay8Peer::Initialize	method.	This	method	takes	three
parameters:

A	player	context	value

A	pointer	to	your	callback	message	handling	function

A	flag

The	message	handler	is	a	key	part	of	a	DirectPlay	application.	You
communicate	with	DirectPlay	by	calling	methods	on	a	DirectPlay
interface.	DirectPlay	in	turn	communicates	with	your	application	by
sending	messages	to	your	message	handler,	much	like	Microsoft
Windows®	sends	messages	to	a	window	procedure.	See	DirectPlay
Callback	Functions	and	Multithreading	Issues	for	details	on	how	to
implement	a	message	handler.

The	player	context	value	is	an	application	defined	value	that	is	returned
each	time	a	message	is	sent	to	your	message	handler.	See	Using	Player
Context	Values	for	a	discussion	of	how	to	handle	player	context	values.

There	is	only	one	flag	value	that	can	be	set,
DPNINITIALIZE_DISABLEPARAMVAL.	Setting	this	flag	disables
parameter	validation	for	all	DirectPlay	methods.	While	setting	this	flag

improves	your	application's	performance,	you	should	only	do	so	with	an
application	that	has	been	thoroughly	tested.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	create
and	initialize	a	DirectPlay	peer	object.

#include	<dplay8.h>
.
.
.
//	Create	the	IDirectPlay8Peer	Object
			hr	=	CoCreateInstance(CLSID_DirectPlay8Peer,	NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDirectPlay8Peer,	
																										(LPVOID*)	&g_pDP);

//	Initialize	DirectPlay
			hr	=	g_pDP->Initialize(NULL,	DirectPlayMessageHandler,	0);

Enumerating	Service	Providers

DirectPlay	is	an	application	programming	interface	(API)	that	allows
game	players	to	easily	connect	with	each	other	and	exchange	messages,
regardless	of	the	underlying	transport	protocol.	It	enables	you	to	use	one
or	more	service	providers	when	hosting,	connecting	to,	or	enumerating
sessions.	To	determine	which	service	providers	are	available	on	your
system,	DirectPlay	allows	your	application	to	enumerate	your	system's
valid	installed	service	providers	as	well	as	their	adapters.

To	enumerate	your	service	providers,	call
IDirectPlay8Peer::EnumServiceProviders.	This	method	fills	an
application-supplied	buffer	with	information	about	the	valid	service
providers	on	your	system.	As	you	do	not	know	the	minimum	size	of	the
buffer	prior	to	calling	this	method,	you	should	call	it	twice.	The	first	time,
specify	a	zero-length	buffer	and	the	method	returns	the	required	size.
Use	this	size	value	in	your	second	method	call	and	DirectPlay	fills	the
buffer	with	valid	data.	See	Getting	DirectPlay	Data	for	further	information
about	DirectPlay	enumeration.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to
enumerate	available	service	providers.

				DPN_SERVICE_PROVIDER_INFO*		pdnSPInfo							=	NULL;
				DPN_SERVICE_PROVIDER_INFO*		pdnSPInfoEnum			=	NULL;
				DWORD																							dwItems									=	0;
				DWORD																							dwSize										=	0;
				DWORD																							i;

				//	Determine	the	required	buffer	size
				hr	=	g_pDP->EnumServiceProviders(NULL,	NULL,	NULL,	&dwSize,	&dwItems,	0);

					pdnSPInfo	=	(DPN_SERVICE_PROVIDER_INFO*)	new	BYTE[dwSize];

				//Fill	the	buffer	with	service	provider	information
				hr	=	g_pDP->EnumServiceProviders(NULL,	NULL,	pdnSPInfo,	&dwSize,	&dwItems,	0);

				//	Print	the	provider	descriptions
				pdnSPInfoEnum	=	pdnSPInfo;
				for	(i	=	0;	i	<	dwItems;	i++)
				{
								DXUtil_ConvertWideStringToGenericCch(strBuf,	pdnSPInfoEnum->pwszName,	256);
								SendMessage(GetDlgItem(g_hDlg,	IDC_PROVIDERS),	
																					LB_ADDSTRING,	0,	(LPARAM)	strBuf);
	
								pdnSPInfoEnum++;
				}

Terminating	a	DirectPlay	Application

If	a	DirectPlay	peer	object	was	successfully	initialized	by	calling
IDirectPlay8Peer::Initialize,	it	should	be	closed	by	calling
IDirectPlay8Peer::Close.	You	should	then	release	all	active	objects
before	terminating	the	application.	A	DirectPlay	object	can	be	reused
once	it	has	been	closed,	provided	that	it	is	re-initialized	by	calling
IDirectPlay8Peer::Initialize.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	close	and
release	DirectPlay	objects.

hr	=	g_pDP->Close(0);	

g_pDP->Release();
g_pDP	=	NULL;

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	2:	Hosting	a	Session

This	tutorial	extends	Tutorial	1,	and	discusses	how	to	create	an	address
object	and	advertise	your	application	as	a	session	host.	Refer	to	Tutorial
1:	Creating	a	DirectPlay	Object	and	Enumerating	Service	Providers	for
the	initial	steps	in	this	tutorial.	The	complete	sample	code	for	this	tutorial
is	included	with	the	Microsoft®	DirectX®	software	development	kit	(SDK)
and	can	be	found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut02_Host.

User's	Guide

Creating	an	Address	Object

Hosting	a	Session

Terminating	the	Application

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	which	contains
information	about	the	session	status,	which	initially	will	be	"Not
connected	to	a	session".	To	begin	hosting	a	session,	click	the	Start
Hosting	button.	Once	you	are	hosting	a	session,	the	session	status	will
change	to	"Hosting	a	Session."	To	stop	hosting,	click	Exit.

Creating	an	Address	Object

The	first	step	in	hosting	a	session	is	to	create	a	Microsoft	DirectPlay®
address	object	(CLSID_DirectPlay8Address)	that	contains	the	address	of
of	the	device	that	you	host	the	session	on.	At	a	minimum,	each	address
object	must	contain	a	service	provider.	The	simplest	way	to	specify	a
service	provider	is	to	call	the	address	object's
IDirectPlay8Address::SetSP	method.	You	can	optionally	specify	a
particular	adapter.	If	no	adapter	is	specified,	and	it	is	allowed,	DirectPlay
attempts	to	host	the	session	on	all	adapters	associated	with	the	given
service	provider.	See	DirectPlay	Addressing	for	further	information	about
DirectPlay	addressing.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	create	an
address	object	for	a	Transmission	Control	Protocol/Internet	Protocol
(TCP/IP)	protocol	service	provider.

IDirectPlay8Address*		g_pDeviceAddress	=	NULL;
.
.
.
				//	Create	our	IDirectPlay8Address	Device	Address
							hr	=	CoCreateInstance(CLSID_DirectPlay8Address,	NULL,
																																							CLSCTX_INPROC_SERVER,
																																							IID_IDirectPlay8Address,
																																							(LPVOID*)	&g_pDeviceAddress);	
				//	Set	the	SP	for	our	Device	Address
				hr	=	g_pDeviceAddress->SetSP(&CLSID_DP8SP_TCPIP);

Hosting	a	Session

Once	you	have	created	the	address	object,	you	must	then	create	a
description	of	your	application.	To	do	so,	assign	appropriate	values	to	the
members	of	a	DPN_APPLICATION_DESC	structure.	The	information
that	you	can	provide	includes:

The	application's	globally	unique	identifier	(GUID)

The	maximum	number	of	players	(optional)

The	session	name	(optional)

A	session	password	(optional)

Application-specific	data	(optional)

The	application	GUID	uniquely	identifies	an	application,	not	a	particular
session.	Different	applications	should	not	have	the	same	GUID.	If	you
specify	a	maximum	player	count	of	0,	there	is	no	limit	on	the	number	of
players	that	can	join	the	session.

To	begin	hosting	a	session,	call	IDirectPlay8Peer::Host.	The	following
excerpt	from	the	tutorial	sample	illustrates	how	host	a	session	with	an
unlimited	number	of	players.

				DPN_APPLICATION_DESC				dpAppDesc;
.
.
.
				//	Set	up	the	application	description.
				ZeroMemory(&dpAppDesc,	sizeof(DPN_APPLICATION_DESC));
				dpAppDesc.dwSize	=	sizeof(DPN_APPLICATION_DESC);
				dpAppDesc.guidApplication	=	g_guidApp;

				//	You	are	now	ready	to	host	the	application.

				hr	=	g_pDP->Host(&dpAppDesc,										//	AppDesc
																						&g_pDeviceAddress,	1,//	Device	Address
																						NULL,	NULL,										//	Reserved
																						NULL,																//	Player	Context
																						0);																	//	dwFlags

Hosting	a	DirectPlay	session	causes	a	host	player	to	be	created	with	the
player	name	and	data	specified	when	you	called	the
IDirectPlay8Peer::SetPeerInfo	method.	When	the	player	is	created,	you
are	notified	through	your	DirectPlay	message	handler.

Terminating	the	Application

If	a	DirectPlay	peer	object	was	successfully	initialized,	you	should	first
close	the	object	by	calling	IDirectPlay8Peer::Close;	then	release	all	active
objects	and	terminate	the	application.	See	Tutorial	1	for	further
discussion.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	3:	Enumerating	Hosted	Sessions

Before	your	application	can	join	a	peer-to-peer	session,	you	need	the
address	of	the	session	host.	In	some	cases,	lobby-launched	applications
might	give	you	the	host	address.	With	Microsoft®	DirectPlay®,	you	can
use	that	address	to	connect	to	the	session.	There	is	no	need	to
enumerate	the	available	hosted	sessions.	However,	if	you	do	not	have
the	address	of	a	session	host,	you	must	obtain	it	by	enumerating	the
available	hosted	sessions.	This	tutorial	extends	Tutorial	2,	and	discusses
how	to	enumerate	available	hosts.	The	complete	sample	code	for	this
tutorial	is	included	with	the	Microsoft	DirectX®	software	development	kit
(SDK)	and	can	be	found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut03_EnumHosts.

User's	Guide

Initiating	Host	Enumeration

Handling	Host	Responses

Terminating	the	Application

Refer	to	the	preceding	tutorials	for	a	discussion	of	the	initial	steps	in	the
process:

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating	Service
Providers

Tutorial	2:	Hosting	a	Session

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	and	you	can	choose
to	either	begin	hosting	a	session	or	enumerate	existing	sessions.

To	host,	click	the	Host...	button	and	the	Host	New	Session	window
opens.	Enter	a	session	name	and	click	OK.	the	session	status	will
change	to	'Hosting	Session	"YourSessionName".'

To	enumerate	existing	sessions,	enter	an	Internet	Protocol	(IP)	address
in	the	Search	Address	box	and	click	Search.	The	application	prints	all
the	sessions	found	at	the	address	in	the	Detected	Sessions	box.	The
Search	button	will	turn	grey	while	the	search	is	taking	place.	If	the
address	does	not	exist,	a	message	box	opens	containing	the	error.	If	no
session	is	found	at	the	address,	the	Detected	Sessions	box	will	have	a
message	that	says	"No	hosts	found."

You	can	run	this	sample	twiceonce	to	host	a	session	and	once	to
enumerate	sessions.	When	enumerating,	enter	your	computer's	IP
address.

To	end	the	sample,	click	Exit.

Initiating	Host	Enumeration

To	enumerate	hosts,	you	must	basically	advertise	a	description	of	the
type	of	session	that	you	are	interested	in,	your	target	address,	and	the
device	you	perform	the	enumeration	on.	You	then	wait	for	any	available
hosts	to	respond.

You	describe	your	application	by	assigning	values	to	a
DPN_APPLICATION_DESC	structure,	as	discussed	in	Tutorial	2.	Tutorial
2	also	describes	how	to	create	an	address	object	to	contain	your
address.

To	start	the	host	enumeration,	pass	the	DPN_APPLICATION_DESC
structure	and	your	address	object	to	IDirectPlay8Peer::EnumHosts.	You
can	specify	a	host	address	if	you	want	to	direct	your	enumeration	query
to	a	particular	address.	Otherwise,	host	enumeration	queries	are
broadcast	to	every	address	in	your	Transmission	Control
Protocol/Internet	Protocol	(TCP/IP)	subnet.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	start
enumerating	the	available	hosts	at	a	specified	address.

				ZeroMemory(&dpAppDesc,	sizeof(DPN_APPLICATION_DESC));
				dpAppDesc.dwSize	=	sizeof(DPN_APPLICATION_DESC);
				dpAppDesc.guidApplication	=	g_guidApp;

				hr	=	g_pDP->EnumHosts(&dpAppDesc,										//	pApplicationDesc
																											g_pHostAddress,						//	Host	Address
																											g_pDeviceAddress,				//	Device	Address
																											NULL,	0,													//	pvUserEnumData,	size
																											4,																			//	dwEnumCount
																											0,																			//	dwRetryInterval

																											0,																			//	dwTimeOut
																											NULL,																//	pvUserContext
																											NULL,																//	pAsyncHandle
																											DPNENUMHOSTS_SYNC);	//	dwFlags

	

Handling	Host	Responses

A	host	receives	your	query	in	the	form	of	a
DPN_MSGID_ENUM_HOSTS_QUERY	message	sent	to	the	message
handler.	The	associated	structure	includes	the	information	that	you
passed	to	IDirectPlay8Peer::EnumHosts.	After	examining	this
information,	the	host	can	respond	to	your	query	by	returning	DPN_OK,	or
reject	the	query	by	returning	a	different	value.

When	a	host	responds	affirmatively,	your	application's	message	handler
receives	a	DPN_MSGID_ENUM_HOSTS_RESPONSE	message.	The
structure	associated	with	the	message	contains	information	describing
the	session.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	process	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	message.	Essentially,	the
message	handler	places	the	associated	structure	in	a	list,	to	be	examined
after	the	enumeration	is	finished.	Refer	to	the	tutorial	sample	for	details.

HRESULT	WINAPI	DirectPlayMessageHandler(PVOID	pvUserContext,	DWORD	dwMessageId,	PVOID	pMsgBuffer)
{
.
.
.
		switch(dwMessageId)
				{
								case	DPN_MSGID_ENUM_HOSTS_RESPONSE:
								{
												PDPNMSG_ENUM_HOSTS_RESPONSE					pEnumHostsResponseMsg;
												const	DPN_APPLICATION_DESC*					pAppDesc;
												HOST_NODE*																						pHostNode	=	NULL;

												WCHAR*																										pwszSession	=	NULL;

												pEnumHostsResponseMsg	=	(PDPNMSG_ENUM_HOSTS_RESPONSE)	pMsgBuffer;
												pAppDesc	=	pEnumHostsResponseMsg->pApplicationDescription;
												.
												.
												.
												//	Copy	the	Host	Address
													pEnumHostsResponseMsg->pAddressSender->Duplicate(&pHostNode->pHostAddress);	

													pHostNode->pAppDesc	=	new	DPN_APPLICATION_DESC;

													ZeroMemory(pHostNode->pAppDesc,	sizeof(DPN_APPLICATION_DESC));
													memcpy(pHostNode->pAppDesc,	pAppDesc,	sizeof(DPN_APPLICATION_DESC));						

When	enumeration	is	finished,	the	IDirectPlay8Peer::EnumHosts
method	returns,	and	your	application	can	decide	which	session	to	join.

Terminating	the	Application

If	a	DirectPlay	peer	object	was	successfully	initialized	you	should	first
close	the	object	by	calling	IDirectPlay8Peer::Close.	Then	release	all
active	objects	and	terminate	the	application.	See	Tutorial	1	for	further
discussion.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	4:	Connecting	to	a	Session

If	you	have	found	a	session,	you	can	then	connect	to	it.	This	tutorial
extends	Tutorial	3	and	discusses	how	to	connect	to	a	session.	The
complete	sample	code	for	this	tutorial	is	included	with	the	Microsoft®
DirectX®	software	development	kit	(SDK)	and	can	be	found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut04_Connect.

User's	Guide

Connecting	to	a	Session

Terminating	the	Application

Refer	to	the	preceding	tutorials	for	a	discussion	of	the	initial	steps	in	the
process:

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating	Service
Providers

Tutorial	2:	Hosting	a	Session

Tutorial	3:	Enumerating	Hosted	Sessions

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	and	you	can	choose
to	either	begin	hosting	a	session	or	connect	to	an	existing	session.

To	host,	click	the	Host...	button	and	the	Host	New	Session	window
opens.	Enter	a	session	name	and	click	OK.	the	session	status	will
change	to	'Hosting	Session	"YourSessionName".'

To	connect	to	an	existing	session,	enter	an	Internet	Protocol	(IP)	address
in	the	Search	Address	box	and	click	Search.	The	application	prints	all
the	sessions	found	at	the	address	in	the	Detected	Sessions	box.	The
Search	button	will	turn	grey	while	the	search	is	taking	place.	Select	one
of	the	Detected	Sessions	and	click	Connect.

You	can	run	this	sample	twiceonce	to	host	a	session	and	once	to
connect.	When	connecting,	enter	your	computer's	IP	address.

To	end	the	sample,	click	Exit.

Connecting	to	a	Session

Once	you	have	selected	a	host,	you	can	connect	to	the	session.	To	do
so,	you	will	need:

A	DPN_APPLICATION_DESC	structure.	The	structure	should
include	the	application's	globally	unique	identifier	(GUID)	and	a
password	if	one	is	required	for	joining	the	session.

The	host	address	that	you	received	when	you	enumerated	the
available	hosts.

An	address	object	with	your	device	address.	See	Creating	an
Address	Object	for	a	discussion	of	how	to	create	an	address
object.

To	connect	to	a	session,	call	IDirectPlay8Peer::Connect.	The	host
receives	a	DPN_MSGID_INDICATE_CONNECT	message	with	your
information.	The	host	might	reject	the	connection	at	this	point	by
returning	a	value	other	than	DPN_OK.	In	that	case,	if
IDirectPlay8Peer::Connect	is	called	synchronously,	as	it	is	in	the
tutorial,	the	method	returns	an	error	value.	If	the	connection	is	accepted,
your	Microsoft	DirectPlay®	message	handler	receives	a
DPN_MSGID_CONNECT_COMPLETE	message.	You	also	receive	a
DPN_MSGID_CREATE_PLAYER	messages	for	yourself	and	each	player
already	in	the	session.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	connect
to	a	selected	session.

				DPN_APPLICATION_DESC								dpnAppDesc;
				IDirectPlay8Address*								pHostAddress	=	NULL;
.
.

.
				ZeroMemory(&dpnAppDesc,	sizeof(DPN_APPLICATION_DESC));
				dpnAppDesc.dwSize	=	sizeof(DPN_APPLICATION_DESC);
				dpnAppDesc.guidApplication	=	g_guidApp;
.
.
.
				hr	=	g_pDP->Connect(&dpnAppDesc,				//	Application	Description
																								pHostAddress,							//	Host	Address
																								g_pDeviceAddress,			
																								NULL,		
																								NULL,
																								NULL,	0,	
																								NULL,	
																								NULL,
																								NULL,	
																								DPNCONNECT_SYNC);

								if(FAILED(hr))
												//Failed	Connecting	to	Host
				}
	

Terminating	the	Application

If	a	DirectPlay	peer	object	was	successfully	initialized,	you	should	first
close	the	object	by	calling	IDirectPlay8Peer::Close;	then	release	all	active
objects	and	terminate	the	application.	See	Tutorial	1	for	further
discussion.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	5:	Sending	Messages	to	Other	Peers

Once	you	have	connected	to	a	session,	you	can	begin	game	play	by
sending	messages	to	the	other	peers	in	the	session	for	whom	you	have
received	a	DPN_MSGID_CREATE_PLAYER	message.	This	tutorial
extends	Tutorial	4	and	discusses	how	to	send	messages.	The	complete
sample	code	for	this	tutorial	is	included	with	the	Microsoft®
DirectX®	software	development	kit	(SDK)	and	can	be	found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut05_Send.

User's	Guide

Sending	a	Message

Receiving	a	Message

Terminating	the	Application

Refer	to	the	preceding	tutorials	for	a	discussion	of	the	initial	steps	in	the
process:

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating	Service
Providers

Tutorial	2:	Hosting	a	Session

Tutorial	3:	Enumerating	Hosted	Sessions

Tutorial	4:	Connecting	to	a	Session

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	and	you	have	the
choice	to	either	Host	or	Connect.

If	you	choose	Host:

1.	 A	window	will	open	and	you	should	enter	a	session	name,	then
click	OK.	Your	session	status	will	change	to	'Hosting	Session
"YourSessionName".'

2.	 You	can	now	choose	to	send	a	message	or	disconnect.	If	you
choose	to	send	a	message,	enter	a	text	string	and	click	Send.	If
you	choose	to	disconnect,	click	Disconnect	and	the	session
ends.

3.	 Click	Exit	to	end	the	sample

If	you	choose	Connect:

1.	 The	Connect	to	Session	window	will	open	and	you	should	enter
an	Internet	Protocol	(IP)	address	and	click	Search.	If	any
sessions	are	found	at	that	address,	they	will	be	listed	in	the
Detected	Sessions	box.	Select	a	session	and	click	Connect.	If
the	address	does	not	exist,	a	message	box	opens	with	an	error
message.

2.	 Once	connected,	your	session	status	will	change	to	'Connected	to
Session	"YourSessionName".'	You	can	now	choose	to	send	a
message	or	disconnect.	If	you	choose	to	send	a	message,	enter	a
text	string	and	click	Send.	If	you	choose	to	disconnect,	click
Disconnect.

3.	 Click	Exit	to	end	the	sample.

You	can	run	this	sample	twiceonce	to	host	a	session	and	once	to
connect.	When	connecting,	enter	your	computer's	IP	address.	When
connected,	you	can	send	messages	between	the	host	and	the	client

application.

Sending	a	Message

Once	the	session	is	initiated,	the	peers	manage	the	progress	of	the	game
by	sending	a	stream	of	messages	to	each	other.	The	content	of	the
message	is	up	to	the	application	but	typically	includes	such	information
as	game	state	updates	or	player-to-player	communication.	Sending	a
message	is	straightforward.	Select	the	player	you	want	to	send	the
message	to,	package	your	data	in	a	buffer,	and	pass	the	data	to	the
target	player	by	calling	IDirectPlay8Peer::SendTo.	You	also	have	the
option	of	using	a	single	IDirectPlay8Peer::SendTo	call	to	broadcast	a
message	to	all	players.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	send	a
message	to	every	player	in	the	session.

				DPN_BUFFER_DESC	dpnBuffer;
				WCHAR											wszData[256];

				dpnBuffer.pBufferData	=	(BYTE*)	wszData;
				dpnBuffer.dwBufferSize	=	2	*	(wcslen(wszData)	+	1);

				hr	=	g_pDP->SendTo(DPNID_ALL_PLAYERS_GROUP,	//	dpnid
																																				&dpnBuffer,		//	pBufferDesc
																																				1,											//	cBufferDesc
																																				0,											//	dwTimeOut
																																				NULL,								//	pvAsyncContext
																																				NULL,								//	pvAsyncHandle
																																				DPNSEND_SYNC	|
																																				DPNSEND_NOLOOPBACK);				//	dwFlags
	 	 	 	 	 	 	 	 	

Receiving	a	Message

When	another	player	sends	you	a	message,	your	Microsoft	DirectPlay®
message	handler	receives	a	DPN_MSGID_RECEIVE	message
containing	the	data	buffer.

The	following	excerpt	from	the	tutorial	sample	illustrates	a	simple
message	handler	for	received	messages.

//In	the	receiving	player's	message	handler:

HRESULT	WINAPI	DirectPlayMessageHandler(void	*pvUserContext,	DWORD	dwMessageId,	void	*pMsgBuffer)
{
switch(dwMessageId)
{
case	DPN_MSGID_RECEIVE:
{
	 	case	DPN_MSGID_RECEIVE:
								{
												PDPNMSG_RECEIVE					pMsg;

												pMsg	=	(PDPNMSG_RECEIVE)	pMsgBuffer;
	 	 	 //process	message
	 	 	 	.
	 	 	 	.
	 	 	 	.
												break;
								}

}
}
return(DPN_OK);

}

Terminating	the	Application

If	a	DirectPlay	peer	object	was	successfully	initialized,	you	should	first
close	the	object	by	calling	IDirectPlay8Peer::Close;	then	release	all	active
objects	and	terminate	the	application.	See	Tutorial	1	for	further
discussion.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	6:	Handling	Host	Migration

A	peer-to-peer	session	must	have	a	host.	This	tutorial	extends	Tutorial	5
and	discusses	how	to	handle	the	situation	that	occurs	when	the	host
leaves	the	session.	The	complete	sample	code	for	this	tutorial	is	included
with	the	Microsoft®	DirectX®	software	development	kit	(SDK)	and	can	be
found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut02_HostMigration.

User's	Guide

Host	Migration

Terminating	the	Application

Refer	to	the	preceding	tutorials	for	a	discussion	of	the	initial	steps	in	the
process:

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating	Service
Providers

Tutorial	2:	Hosting	a	Session

Tutorial	3:	Enumerating	Hosted	Sessions

Tutorial	4:	Connecting	to	a	Session

Tutorial	5:	Sending	Messages	to	Other	Peers

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	and	you	have	the
choice	to	either	Host	or	Connect.

If	you	choose	Host:

1.	 A	window	will	open	and	you	should	enter	a	session	name.	Select
the	Migrate	Host	box	to	allow	host	migration	to	take	place	in	this
session.	Then	click	OK.	Your	session	status	will	change	to
'Hosting	Session	"YourSessionName".'

2.	 You	can	now	choose	to	send	a	message	or	disconnect.	If	you
choose	to	send	a	message,	enter	a	text	string	and	click	Send.	If
you	choose	to	disconnect,	click	Disconnect	and	the	session
ends.

3.	 Click	Exit	to	end	the	sample

If	you	choose	Connect:

1.	 The	Connect	to	Session	window	will	open	and	you	should	enter
an	Internet	Protocol	(IP)	address	and	click	Search.	If	any
sessions	are	found	at	that	address,	they	will	be	listed	in	the
Detected	Sessions	box.	Select	a	session	and	click	Connect.	If
the	address	does	not	exist,	a	message	box	opens	with	an	error
message.

2.	 Once	connected,	your	session	status	will	change	to	'Connected	to
Session	"YourSessionName".'	You	can	now	choose	to	send	a
message	or	disconnect.	If	you	choose	to	send	a	message,	enter	a
text	string	and	click	Send.	If	you	choose	to	disconnect,	click
Disconnect.

3.	 Click	Exit	to	end	the	sample.

You	can	run	this	sample	twiceonce	to	host	a	session	and	once	to
connect.	When	connecting,	enter	your	computer's	IP	address.	When
connected,	you	can	send	messages	between	the	host	and	the	client

application.	To	test	host	migration,	close	the	host	application.	The	client
application's	session	status	will	change	to	'Hosting	Session
"YourSessionName".'.

Host	Migration

In	a	peer-to-peer	game,	there	is	nothing	to	prevent	the	session	host	from
leaving	before	the	game	is	finished.	This	situation	typically	occurs	when
the	player	decides	to	leave	the	game	but	might	also	result	from	a	network
problem	that	disconnects	the	player.	Because	a	game	must	have	a	host,
there	are	two	possible	ways	to	deal	with	this	problem:	stop	the	game,	or
choose	a	new	host.	The	process	of	choosing	a	new	host	in	the	middle	of
a	game	is	referred	to	as	"host	migration."

When	a	session	host	initially	advertises	a	session,	it	must	choose
whether	to	allow	host	migration.	If	host	migration	is	not	allowed,	the	game
terminates	when	the	host	leaves.	To	enable	host	migration	in	a	session,
the	original	session	host	must	set	the	DPNSESSION_MIGRATE_HOST
flag	in	the	dwFlag	member	of	the	DPN_APPLICATION_DESC	structure
that	is	passed	to	the	IDirectPlay8Peer::Host.	See	Tutorial	2:	Hosting	a
Session	for	more	discussion	of	how	to	host	a	session.

If	host	migration	is	enabled,	the	host	can	still	force	the	session	to
terminate	by	calling	the	IDirectPlay8Peer::TerminateSession	method.
Otherwise,	Microsoft	DirectPlay®	selects	a	new	session	host.	When	the
host	migrates,	each	remaining	member's	DirectPlay	message	handler
receives	a	DPN_MSGID_HOST_MIGRATE	message.	The	associated
structure	includes	the	identifier	of	the	new	host,	which	may	be	any
remaining	player	in	the	session	including	you.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	handle
DPN_MSGID_HOST_MIGRATE.

HRESULT	WINAPI	DirectPlayMessageHandler(void	*pvUserContext,	DWORD	dwMessageId,	void	*pMsgBuffer)
{

switch(dwMessageId)
{
.
.
.
		case	DPN_MSGID_HOST_MIGRATE:
								{
												PDPNMSG_HOST_MIGRATE				pHostMigrateMsg;

												pHostMigrateMsg	=	(PDPNMSG_HOST_MIGRATE)	pMsgBuffer;

												//	See	if	you	are	the	new	host.
												if(pHostMigrateMsg->dpnidNewHost	==	g_dpnidLocalPlayer)
																//You	are	the	New	Host;
												else
																//The	new	host	is	pHostMigrateMsg->dpnidNewHost

												break;
							}
}
}

Terminating	the	Application

If	a	DirectPlay	peer	object	was	successfully	initialized,	you	should	first
close	the	object	by	calling	IDirectPlay8Peer::Close;	then	release	all	active
objects	and	terminate	the	application.	See	Tutorial	1	for	further
discussion.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	7:	Creating	a	Lobbyable	Application

A	lobby	is	an	application	whose	primary	purpose	is	to	enable	players	to
meet	and	arrange	games.	It	involves	two	separate	application:

A	lobby	server	application.	This	application	is	implemented	by	the
lobby	operator	and	resides	on	a	remote	computer.

A	lobby	client	application.	This	application	is	implemented	by	the
lobby	operator	and	runs	on	client	systems.	It	allows	the	lobby
server	to	communicate	with	client	systems.

In	order	for	a	game	application	to	take	full	advantage	of	lobby	launching,
it	must	be	able	to	communicate	with	the	lobby	client	application.	This
tutorial	extends	Tutorial	6	and	discusses	how	to	use	Microsoft®
DirectPlay®	to	make	a	peer-to-peer	application	"lobbyable".	Much	of	this
information	also	applies	to	client/server	applications.	For	further
information	about	DirectPlay	lobby	support,	see	DirectPlay	Lobby.	The
complete	sample	code	for	this	tutorial	is	included	with	the	Microsoft
DirectX®	software	development	kit	(SDK)	and	can	be	found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut07_LobbyLaunch.

User's	Guide

Detecting	a	Lobby	Launch

Handling	the	DPL_MSGID_CONNECT	Message

Obtaining	Connection	Settings

Starting	the	Session

Terminating	a	Lobbied	Session

Registering	an	Application	as	Lobbyable

Refer	to	the	preceding	tutorials	for	a	discussion	of	the	initial	steps	in	the
process:

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating	Service
Providers

Tutorial	2:	Hosting	a	Session

Tutorial	4:	Connecting	to	a	Session

Tutorial	5:	Sending	Messages	to	Other	Peers

Tutorial	6:	Handling	Host	Migration

The	error	handling	code	for	the	examples	in	this	document	have	been
deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of	the
code.

User's	Guide

This	sample	has	the	same	user	interface	(UI)	as	Tutorial	6:	Handling
Host	Migration.	See	the	Users	Guide	in	Tutorial	6:	Handling	Host
Migration	for	how	to	use	this	sample.

Detecting	a	Lobby	Launch

Once	your	application	is	launched,	you	must	determine	whether	you	were
launched	by	a	lobby,	or	by	some	other	means.	To	detect	a	lobby	launch,
you	must	first	create	a	DirectPlay	lobbied	application	object
(CLSID_DirectPlay8LobbiedApplication).

Once	the	lobbied	application	object	has	been	created,	you	must	initialize
it	by	calling	IDirectPlay8LobbiedApplication::Initialize.	This	call	takes	four
parameters:

A	context	value.	This	value	is	included	with	each	message	that	the
lobbied	application	object	sends	to	your	message	handler.

A	pointer	to	your	lobbied	application	message	handling	function.
This	is	a	standard	DirectPlay	message	handler,	which	processes
messages	from	the	lobbied	application	object.

A	pointer	to	a	lobby	handle.

A	flag	field.

There	is	only	one	flag	value	that	can	be	set,
DPNINITIALIZE_DISABLEPARAMVAL.	Setting	this	flag	disables
parameter	validation	for	methods	on	this	instance	of	the	DirectPlay
lobbied	application	object.	While	setting	this	flag	improves	your
application's	performance,	you	should	only	do	so	with	an	application	that
has	been	thoroughly	tested.

After	the	call	to	IDirectPlay8LobbiedApplication::Initialize	returns,
examine	the	lobby	handle.	If	your	application	was	lobby-launched,	the
variable	is	set	to	a	valid	lobby	handle.	If	your	application	was	not	lobby-
launched,	the	lobby	handle	is	set	to	NULL.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	detect	a

lobby	launch.

#include	<dplay8.h>
#include	<dplobby8.h>

BOOL		g_bLobbyLaunched	=	FALSE;			//	TRUE	if	lobby	launched.

IDirectPlay8lobbiedApplication	*	g_pLobbyApp	=	NULL;
.
.
.
hr	=	CoCreateInstance(CLSID_DirectPlay8LobbiedApplication,	NULL,	
																						CLSCTX_INPROC_SERVER,
																						IID_IDirectPlay8LobbiedApplication,	
																						(LPVOID*)	&g_pLobbyApp);
.
.
.
//	Initialize	the	lobbied	application	object.
hr	=	g_pLobbyApp->Initialize(NULL,	LobbyAppMessageHandler,	&g_hLobbyHandle,	0);

//	Determine	whether	the	application	was	lobby-launched.
if(g_hLobbyHandle	!=	NULL)
				{
								//	Attempt	to	host	or	connect	to	a	session	based	on	the
								//			settings	received	from	the	lobby	client.
								
				}
else
	 	 //	The	application	was	not	lobby-launched.
		

Handling	the	DPL_MSGID_CONNECT	Message

If	you	were	lobby	launched,	your	lobbied	application	message	handler
receives	a	DPL_MSGID_CONNECT	message	following	your	call	to
IDirectPlay8LobbiedApplication::Initialize.	This	message	carries	with
it	a	variety	of	information,	including	the	identifier	(ID)	that	you	use	to	send
messages	to	the	lobby	client.	When	you	process	this	message,	you
should	call	IDirectPlay8Peer::RegisterLobby.	Doing	so	allows
applications	to	automatically	propagate	game	status	to	the	lobby	client
application.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	handle
DPL_MSGID_CONNECT.

HRESULT	WINAPI	LobbyAppMessageHandler(PVOID	pvUserContext,	DWORD	dwMessageId,	PVOID	pMsgBuffer)
{
.
.
.
				switch	(dwMessageId)
				{
	 .
	 .
	 .
								case	DPL_MSGID_CONNECT:
								{
												PDPL_MESSAGE_CONNECT	pConnectMsg;
												DPNHANDLE	 												g_hLobbyClient;
												IDirectPlay8Peer*							g_pDP;

												pConnectMsg	=	(PDPL_MESSAGE_CONNECT)pMsgBuffer;
												PDPL_CONNECTION_SETTINGS	pSettings	=	pConnectMsg->pdplConnectionSettings;

												g_hLobbyClient	=	pConnectMsg->hConnectId;

												//	Register	with	the	lobby.
												hr	=	g_pDP->RegisterLobby(g_hLobbyClient,	g_pLobbiedApp,	DPNLOBBY_REGISTER);

												//	Check	for	connection	settings.												
												if(pSettings	==	NULL)
															{
																//	There	are	no	connection	settings	from	the	lobby.
															}
												else
																{
																	//	You	have	connection	settings.
	 	 	 	 }

Note			Your	message	handler	might	receive	the
DPL_MSGID_CONNECT	message	before	the
IDirectPlay8LobbiedApplication::Initialize	method	returns.	Your
message	handler	should	be	prepared	to	handle	the	message
appropriately.

Obtaining	Connection	Settings

If	your	application	was	lobby-launched,	the	lobby	client	has	the	option	of
providing	you	with	connection	settings.	To	determine	whether	you	have
been	given	connection	settings,	examine	the
DPL_CONNECTION_SETTINGS	structure	that	accompanies	the
message.	If	no	connection	settings	are	specified,	you	must	query	the
user.	See	Tutorial	1	for	details.

The	DPL_CONNECTION_SETTINGS	structure	also	provides	you	with	a
variety	of	other	information	that	you	will	need	to	begin	the	session,
including:

A	flag	indicating	whether	you	are	to	be	the	session	host.

A	DPN_APPLICATION_DESC	structure	with	a	description	of	the
session.

The	address	of	the	host,	unless	you	have	been	selected	as	host.

Starting	the	Session

Once	you	have	selected	your	service	provider,	start	the	session	much
like	you	would	a	non-lobbied	peer-to-peer	session.	You	should	first	create
a	DirectPlay	peer	object,	and	call	IDirectPlay8Peer::SetPeerInfo	to
establish	your	player's	name.	You	should	make	this	method	call
synchronous	by	setting	the	DPNOP_SYNC	flag.	Otherwise,	there	is	a	risk
that	the	method	might	not	return	before	you	attempt	to	connect	to	the
session.

If	the	lobby	has	selected	you	as	host,	you	need	to	start	hosting	the
session	by	calling	IDirectPlay8Peer::Host.	The	other	players	typically
receive	your	address	through	their	lobby	clients	and	send	you	connection
requests.	If	you	are	not	the	host,	get	the	address	of	the	session	host	from
the	DPL_CONNECTION_SETTINGS	structure	and	call	the
IDirectPlay8Peer::Connect	method	to	connect	to	the	session.

From	this	point	on,	the	session	proceeds	much	like	a	non-lobbied
session.	See	the	preceding	tutorials	for	further	details.

Terminating	a	Lobbied	Session

You	should	next	call	IDirectPlay8LobbiedApplication::Close	to	close	the
connection	to	the	lobbied	application	object.	If	a	DirectPlay	peer	object
was	successfully	initialized	you	should	close	the	object	by	calling
IDirectPlay8Peer::Close;	then	release	all	active	objects	and	terminate	the
application.	See	Tutorial	1	for	further	discussion.

Registering	an	Application	as	Lobbyable

An	application	must	be	registered	before	it	can	be	properly	lobby
launched.	You	only	need	to	register	the	application	once,	typically	during
your	installation	procedure.	Registration	provides	DirectPlay	with	a
variety	of	information	about	your	application,	including:

The	application's	unique	globally	unique	identifier	(GUID)

The	application's	name

The	name	and	path	of	the	application's	executable	file

The	name	and	path	of	a	launcher	application	(optional)

To	register	your	application,	you	must	create	a	DirectPlay	lobbied
application	object	and	call
IDirectPlay8LobbiedApplication::RegisterProgram.	Do	not	attempt	to
manually	enter	application	information	in	the	registry.	Failure	to	use
IDirectPlay8LobbiedApplication::RegisterProgram	might	make	your
application	nonportable	and	incompatible	with	later	versions	of
DirectPlay.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	register	a
lobbyable	application.

	 DPL_PROGRAM_DESC	 dplDesc;

	 ZeroMemory(&dplDesc,	sizeof(DPL_PROGRAM_DESC));
	 dplDesc.dwSize	=	sizeof(DPL_PROGRAM_DESC);
	 dplDesc.guidApplication	=	g_guidApp;				//	The	application	GUID
	 dplDesc.pwszApplicationName	=	L"MyApplicationName";
	 dplDesc.pwszExecutableFilename	=	L"MyApp.exe";
	 dplDesc.pwszExecutablePath	=	L"C:\...\MyAppFolder";

	 hr	=	g_pLobbyApp->RegisterProgram(&dplDesc,	0);

When	you	uninstall	a	registered	lobbyable	application,	you	should
unregister	it.	Your	uninstall	procedure	should	create	a	DirectPlay	lobbied
application	object,	and	unregister	the	application	by	calling	the
IDirectPlay8LobbiedApplication::UnRegisterProgram	method.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to
unregister	a	lobbyable	application.

HRESULT	UnRegister()
{
	 HRESULT	 	 hr	=	S_OK;
	 hr	=	g_pLobbyApp->UnRegisterProgram(&g_guidApp,	0);
	 return	hr;
}

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	8:	Direct	Play	Voice

Microsoft®	DirectPlay®	Voice	is	a	full-voice	communications	application
programming	interface	(API)	that	uses	DirectPlay	for	network	session
management	and	network	transport.	This	tutorial	extends	the	preceding
tutorials	to	describe	how	to	add	voice	communications	to	a	peer-to-peer
network	application.	Much	of	this	information	also	applies	to	client/server
applications.	For	further	discussion	of	DirectPlay	Voice,	see	DirectPlay
Voice.	The	complete	sample	code	for	this	tutorial	is	included	with	the
Microsoft	DirectX®	software	development	kit	(SDK)	and	can	be	found	at
(SDK	root)\Samples\C++\DirectPlay\Tutorials\Tut08_Voice.

User's	Guide

Preparing	for	a	DirectPlay	Voice	Session

Creating	a	Voice	Session	Host

Starting	a	Voice	Session

Testing	the	Voice	Setup

Creating	a	DirectPlay	Voice	Client	Object

Connecting	to	a	DirectPlay	Voice	Client	Session

Setting	the	Transmission	Targets	List

Terminating	a	Voice	Session

Refer	to	the	preceding	tutorials	for	a	discussion	of	the	initial	steps	in	the
process.

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating	Service
Providers

Tutorial	2:	Hosting	a	Session

Tutorial	3:	Enumerating	Hosted	Sessions

Tutorial	4:	Connecting	to	a	Session

Tutorial	5:	Sending	Messages	to	Other	Peers

Tutorial	6:	Handling	Host	Migration

Tutorial	7:	Creating	a	Lobbyable	Application

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	and	you	have	the
choice	to	either	Host	or	Connect.

If	you	choose	Host:

1.	 A	window	will	open	and	you	should	enter	a	session	name.	Select
the	Migrate	Host	box	to	allow	host	migration	to	take	place	in	this
session.	Then	click	OK.	If	you	have	not	used	your	sound
hardware	before,	DirectPlay	may	run	the	Sound	Hardware	Test
Wizard	before	you	can	start	a	session.	Once	you	are	hosting,	the
session	status	will	change	to	'Hosting	Session
"YourSessionName".'

2.	 You	can	now	choose	to	send	a	message,	disconnect,	or	speak	to
other	players.	If	you	choose	to	send	a	message,	enter	a	text
string	and	click	Send.	To	speak	to	other	players,	start	talking	into
your	microphone,	voice	recording	starts	automatically.	If	you
choose	to	disconnect,	click	Disconnect	and	the	session	ends.

3.	 Click	Exit	to	end	the	sample

If	you	choose	Connect:

1.	 The	Connect	to	Session	window	will	open	and	you	should	enter
an	Internet	Protocol	(IP)	address	and	click	Search.	If	any
sessions	are	found	at	that	address,	they	will	be	listed	in	the
Detected	Sessions	box.	Select	a	session	and	click	Connect.	If
the	address	does	not	exist,	a	message	box	opens	with	an	error
message.

2.	 Once	connected,	your	session	status	will	change	to	'Connected	to
Session	"YourSessionName".'	You	can	now	choose	to	send	a
message,	disconnect,	or	speak	to	other	players.	If	you	choose	to
send	a	message,	enter	a	text	string	and	click	Send.	To	speak	to
other	players,	start	talking	into	your	microphone,	voice	recording
starts	automatically.	If	you	choose	to	disconnect,	click
Disconnect.

3.	 Click	Exit	to	end	the	sample.

You	can	run	this	sample	twiceonce	to	host	a	session	and	once	to
connect.	When	connecting,	enter	your	computer's	IP	address.	Once	you
start	a	session	and	have	at	least	two	players	connected	(the	host	and	a
client),	the	voice	recording	starts	automatically.	Speak	into	a	microphone
and	your	voice	will	play	out	on	the	speakers.

Preparing	for	a	DirectPlay	Voice	Session

Before	you	can	start	up	a	DirectPlay	Voice	session,	you	must	have	a
valid	DirectPlay	object	connected	to	or	hosting	a	session.	For	full	details
on	creating,	connecting	and	hosting	DirectPlay	objects,	see	previous
tutorials.

Creating	a	Voice	Session	Host

To	enable	voice	communications,	one	peer	in	the	session	must	become
the	Voice	session	host.	To	become	the	host,	you	must	create	a	Voice
server	object	and	obtain	a	pointer	to	its	IDirectPlayVoiceServer	interface.
You	use	this	interface	to	perform	host-specific	tasks	during	the	Voice
session.	You	must	then	call	IDirectPlayVoiceServer::Initialize	to	initialize
the	object.	As	with	most	DirectPlay	objects,	the	primary	purpose	of
initialization	is	to	provide	DirectPlay	with	a	pointer	to	your	Voice	server
callback	message	handler.

Note		The	Voice	server	host	can	be	a	different	peer	than	the	session
host.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	create
and	initialize	a	Voice	server	object.

IDirectPlayVoiceServer*		g_pVoiceServer	=	NULL;
.
.
.
//	Create	the	Voice	server	object.
			hr	=	CoCreateInstance(CLSID_DirectPlayVoiceServer,	NULL,	
																									CLSCTX_INPROC_SERVER,
																									IID_IDirectPlayVoiceServer,
																									(LPVOID*)	&g_pVoiceServer);	 	

//	Initialize	the	object.
			hr	=	g_pVoiceServer->Initialize(g_pDP,	
																																			DirectVoiceServerMessageHandler,	
																																			NULL,	0,	0)	;
	

Starting	a	Voice	Session

Before	any	clients	can	connect	to	a	Voice	session,	the	Voice	session	host
must	start	the	session	by	calling	IDirectPlayVoiceServer::StartSession.
Once	the	session	has	been	started,	Voice	clients	can	connect	to	the
Voice	session.

The	DVSESSIONDESC	structure	that	you	pass	to	this	method	contains
the	information	DirectPlay	needs	to	start	the	session.	In	particular,	you
must	specify	which	of	several	DirectPlay	Voice	topologies	you	want	to
use.	This	tutorial	uses	the	peer-to-peer	topology.	For	further	information
about	this	subject,	see	DirectPlay	Voice	Topologies.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	start	a
peer-to-peer	session	using	the	default	CODEC.

	 	
IDirectPlayVoiceServer*		 g_pVoiceServer	=	NULL;
.
.
.
ZeroMemory(&dvSessionDesc,	sizeof(DVSESSIONDESC));
dvSessionDesc.dwSize	=	sizeof(DVSESSIONDESC);
dvSessionDesc.dwSessionType	=	DVSESSIONTYPE_PEER;
dvSessionDesc.dwBufferQuality	=	DVBUFFERQUALITY_DEFAULT;
dvSessionDesc.guidCT	=	DPVCTGUID_DEFAULT;
dvSessionDesc.dwBufferAggressiveness	=	DVBUFFERAGGRESSIVENESS_DEFAULT;

hr	=	g_pVoiceServer->StartSession(&dvSessionDesc,	0);	

Testing	the	Voice	Setup

Before	connecting	a	Voice	client	to	a	Voice	session,	you	must	test	the
audio	configuration.	To	do	so,	you	must	to	create	an	IDirectPlayVoiceTest
object	and	call	IDirectPlayVoiceTest::CheckAudioSetup.	Call	the	method
first	with	the	DVFLAGS_QUERYONLY	set	to	determine	whether	the	test
has	already	been	run.

If	the	test	has	not	been	run,	the	method	returns	DVERR_RUNSETUP.
You	should	then	call	the	function	again	without	the
DVFLAGS_QUERYONLY	flag,	and	DirectPlay	will	launch	the	Sound
Hardware	Test	Wizard.	If	the	method	returns	a	success	code,	you	can
continue.	Otherwise,	you	must	first	handle	the	error	condition.	After
testing	is	complete,	release	the	IDirectPlayVoiceTest	object.	When	the
audio	configuration	has	been	tested,	your	client	can	connect	to	the	Voice
session.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	test	voice
setup.

IDirectPlayVoiceTest*			pVoiceTest	=	NULL;	
.
.
.
//	Create	the	IDirectPlayVoiceTest	Object.
			hr	=	CoCreateInstance(CLSID_DirectPlayVoiceTest,	NULL,	
																																		CLSCTX_INPROC_SERVER,
																																		IID_IDirectPlayVoiceTest,	
																																	(LPVOID*)	&pVoiceTest);

guidPlayback	=	DSDEVID_DefaultVoicePlayback;

guidCapture	=	DSDEVID_DefaultVoiceCapture;
hr	=	pVoiceTest->CheckAudioSetup(&guidPlayback,
																																	&guidCapture,	
																																	NULL,	DVFLAGS_QUERYONLY);
if(hr	==	DVERR_RUNSETUP)
				{
	 //	The	test	has	not	been	run	yet.
					hr	=	pVoiceTest->CheckAudioSetup(&guidPlayback,
																																						&guidCapture,	
																																						g_hDlg,	DVFLAGS_ALLOWBACK);
				}	
else	if(FAILED(hr))
				{
	 /*	Handle	Errors	*/
				}		
else
				{
	 //	The	test	has	been	passed,	proceed.
				}
.
.
.

Creating	a	DirectPlay	Voice	Client	Object

All	clients	that	want	to	participate	in	the	voice	session	must	connect	to
the	session,	including	the	host.	The	first	step	in	connecting	to	a	voice
session	is	to	create	and	initialize	a	voice	client	object
(CLSID_DirectPlayVoiceClient).

Once	you	have	created	the	object,	initialize	it	by	calling
IDirectPlayVoiceClient::Initialize.	Pass	this	method	a	pointer	to	your	voice
callback	message	handler.	This	message	handler	receives	voice-related
messages	from	DirectPlay	Voice	during	the	voice	session.	You	must	also
pass	the	method	a	pointer	to	an	IDirectPlay8Peer	interface.	The
DirectPlay	object	that	exposes	this	interface	must	be	either	connected	to
or	hosting	a	session	before	you	call	IDirectPlayVoiceClient::Initialize.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	create
and	initialize	a	voice	client	object.

	 	 	 	
//	Create	the	IDirectPlayVoiceClient	object.
IDirectPlayVoiceClient*		 g_pVoiceClient	=	NULL;
.
.
.
hr	=	CoCreateInstance(CLSID_DirectPlayVoiceClient,	NULL,	
																																		CLSCTX_INPROC_SERVER,
																																		IID_IDirectPlayVoiceClient,	
																																		(LPVOID*)	&g_pVoiceClient);
//	Initialize	the	object.
hr	=	g_pVoiceClient->Initialize(g_pDP,
																																DirectVoiceClientMessageHandler,	
																																NULL,	0,	0);

Connecting	to	a	DirectPlay	Voice	Client	Session

Once	the	IDirectPlayVoiceClient	object	is	created	and	initialized,	you	can
connect	your	client	to	the	voice	session	by	calling
IDirectPlayVoiceClient::Connect.	You	need	to	pass	two	structures	to	this
method:	DVSOUNDDEVICECONFIG	and	DVCLIENTCONFIG.	The
structure	contains	information	about	the	sound	device	configuration.	The
structure	is	used	to	configure	run-time	parameters.	When	you	have
initialized	the	structures,	connect	to	the	voice	session	by	passing	the
structures	to	IDirectPlayVoiceClient::Connect.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	initialize
a	structure.	In	this	example,	the	default	voice	capture	device	and	default
voice	playback	device	are	used	for	audio	capture	and	playback.
Additionally,	this	example	enables	automatic	microphone	selection.

	 	 	 	
ZeroMemory(&dvSoundDeviceConfig,	sizeof(DVSOUNDDEVICECONFIG));
dvSoundDeviceConfig.dwSize	=	sizeof(DVSOUNDDEVICECONFIG);
dvSoundDeviceConfig.dwFlags	=	DVSOUNDCONFIG_AUTOSELECT;
dvSoundDeviceConfig.guidPlaybackDevice	=	DSDEVID_DefaultVoicePlayback;
dvSoundDeviceConfig.lpdsPlaybackDevice	=	NULL;
dvSoundDeviceConfig.guidCaptureDevice	=	DSDEVID_DefaultVoiceCapture;
dvSoundDeviceConfig.lpdsCaptureDevice	=	NULL;
dvSoundDeviceConfig.hwndAppWindow	=	g_hDlg;
dvSoundDeviceConfig.lpdsMainBuffer	=	NULL;
dvSoundDeviceConfig.dwMainBufferFlags	=	0;
dvSoundDeviceConfig.dwMainBufferPriority	=	0;	

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	initialize
a	structure.	In	this	example	the	system	is	configured	for	automatic	voice

activation	and	automatic	gain	control.

dvClientConfig.dwSize	=	sizeof(DVCLIENTCONFIG);
dvClientConfig.dwFlags	=	DVCLIENTCONFIG_AUTOVOICEACTIVATED	|	DVCLIENTCONFIG_AUTORECORDVOLUME;
dvClientConfig.lRecordVolume	=	DVRECORDVOLUME_LAST;
dvClientConfig.lPlaybackVolume	=	DVPLAYBACKVOLUME_DEFAULT;
dvClientConfig.dwThreshold	=	DVTHRESHOLD_UNUSED;
dvClientConfig.dwBufferQuality	=	DVBUFFERQUALITY_DEFAULT;
dvClientConfig.dwBufferAggressiveness	=	DVBUFFERAGGRESSIVENESS_DEFAULT;
dvClientConfig.dwNotifyPeriod	=	0;

Setting	the	Transmission	Targets	List

Before	transmitting	audio	to	other	voice	session	clients	you	must	first
create	a	transmission	targets	list	that	specifies	who	should	receive	audio
transmissions.	You	can	send	audio	to	any	combination	of	individual
players	and/or	groups	of	players.	Sending	to	a	group	allows	you	to	reach
multiple	players	with	a	single	send.	Each	player	or	group	is	identified	by	a
DVID	value,	which	corresponds	to	equivalent	DirectPlay	8	DPNID	value.
The	transmission	targets	list	may	contain	up	to	64	players	and/or	groups.
If	no	targets	are	specified,	no	audio	data	is	transmitted.

If	voice	activation	is	enabled,	voice	transmission	begins	when	the	voice
activation	module	detects	speech	activity.	If	voice	activation	is	disabled
voice	transmission	begins	when	valid	set	of	targets	is	specified.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	set	a
client's	transmission	targets	to	all	players	in	the	voice	session.

	 	
DVID	dvid	=	DVID_ALLPLAYERS;
hr	=	g_pVoiceClient->SetTransmitTargets(&dvid,	1,	0);

Terminating	a	Voice	Session

Once	the	session	is	over,	clients,	including	the	host,	must	shut	down	their
voice	client	objects.	To	do	so,	the	client	must	disconnect	from	the
DirectPlay	Voice	session	by	calling	IDirectPlayVoiceClient::Disconnect.
They	can	then	release	the	voice	client	object.

A	voice	session	host	terminates	a	voice	session	by	calling	.	The	session
host	must	then	release	the	DirectPlay	Voice	server	object.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	terminate
a	voice	session	and	shut	down	the	voice	server	and	client	objects.

//	Shut	down	the	voice	client	object.
hr	=	g_pVoiceClient->Disconnect(0);
g_pVoiceClient->Release();

//	Terminate	the	voice	session.	 	 	
hr	=	g_pVoiceServer->StopSession(0);
g_pVoiceServer->Release();	 	 	 	 	 	 	 	

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	9:	Creating	a	DirectPlay	Client/Server	Session

This	tutorial	shows	you	how	to	create	a	simple	client/server	session.
Client/server	sessions	are	often	used	for	creating	large-scale	multiplayer
games.	One	advantage	for	using	a	client/server	game	rather	than	a	peer-
to-peer	game	is	that	the	majority	of	the	processing	can	be	done	on	a
separate	computerthe	serverand	therefore	you	do	not	need	to	rely	on	the
power	of	the	client's	computer.	For	more	information	about	client/server
sessions,	see	Client/Server	Topology	and	Client/Server	Sessions.

Before	beginning	this	tutorial,	you	should	complete	Tutorials	1	through	4,
which	describe	how	to	create	a	peer-to-peer	session.	The	steps	for
creating	a	client/server	session	are	very	similar.	Rather	than	passing
information	directly	from	peer	to	peer	however,	a	client/server	session
requires	clients	to	pass	information	to	each	other	indirectly,	through	the
server.	No	automatic	method	exists	for	the	server	to	pass	information
from	one	client	to	another.	If	you	want	this	feature	available	to	your	users,
you	need	to	implement	it	in	the	server	application.

The	Microsoft®	DirectX®	software	development	kit	(SDK)	includes	the
complete	sample	code	for	this	tutorial.	The	sample	code	can	be	found	at
(SDK	root)\Samples\C++\DirectPlay\Tutorials\Tut09_ClientServer.

This	article	contains	the	following	sections.

User's	Guide

Setting	Up	the	Server

Setting	Up	a	Client

Server	Messages

Client	Messages

Terminating	a	Client/Server	Session

Note		The	error	handling	code	for	the	examples	in	this	article	is	removed
for	clarity.	For	a	complete	version	of	the	code,	see	the	tutorial	sample.

User's	Guide

To	play	this	tutorial	sample,	first	run	the	server	application.	To	host,	click
the	Host...	button	and	the	Host	New	Session	window	opens.	Enter	a
session	name	and	click	OK.	the	session	status	will	change	to	'Hosting
Session	"YourSessionName".'

Once	the	server	is	hosting,	you	can	run	the	client	application.	Click
Connect...	and	the	Connect	to	Session	window	will	open.	Enter	an
Internet	Protocol	(IP)	address	in	the	Search	Address	box	and	click
Search.	The	application	prints	all	the	sessions	found	at	the	address	in
the	Detected	Sessions	box.	The	Search	button	will	turn	grey	while	the
search	is	taking	place.	Select	one	of	the	Detected	Sessions	and	click
Connect.	When	connected,	your	session	status	will	change	to
'Connected	to	Session	"YourSessionName".'

The	server	and	the	clients	can	choose	to	send	a	message	or	disconnect.
If	sending	a	message,	enter	a	text	string	and	click	Send.	If	disconnecting,
click	Disconnect.	Click	Exit	to	end	the	sample.

Setting	Up	the	Server

The	server	application	is	where	the	main	part	of	the	game's	processing
will	most	likely	be	done.	The	server	is	responsible	for	updating	clients
about	the	game	state,	for	example	when	a	player	joins	or	leaves	the
session.	The	following	topics	in	this	section	describe	the	tasks	needed	to
set	up	a	server	application.	Each	task	is	described	in	detail	below.

1.	 Create	a	DirectPlay	Server	Object

2.	 Create	the	Server	Address	Object

3.	 Begin	Hosting

Create	a	DirectPlay	Server	Object

Creating	a	Microsoft	DirectPlay®	server	object	is	similar	to	Creating	a
DirectPlay	Peer	Object.	The	only	difference	is	that	when	you	call
CoCreateInstance,	you	pass	the	class	identifier	of	a	server	object
(CLSID_DirectPlay8Server),	the	identifier	of	the	interface
(IID_IDirectPlay8Server),	and	the	address	of	a	pointer	to	an
IDirectPlay8Server	interface,	instead	of	the	equivalent	peer	parameters.
After	you've	created	the	DirectPlay	server	object,	you	can	initialize	it	by
calling	the	IDirectPlay8Server::Initialize	method.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	create
and	initialize	a	DirectPlay	server	object.

				IDirectPlay8Server	 	 *g_pDPServer	=	NULL;
				.
				.
				.
				//	Create	the	IDirectPlay8Server	object.
				hr	=	CoCreateInstance(CLSID_DirectPlay8Server,	NULL,

																										CLSCTX_INPROC_SERVER,
																										IID_IDirectPlay8Server,	
																										(LPVOID*)	&g_pDPServer);
				

				//	Initialize	DirectPlay.
				hr	=	g_pDPServer->Initialize(NULL,	DirectPlayMessageHandlerServer,	0);
				

In	the	initialization,	you	pass	the	pointer	to	a	Implementing	a	Callback
Function	in	DirectPlay	and	DirectPlay	Voice,
DirectPlayMessageHandlerServer,	which	handles	messages	received	by
the	server.

Create	the	Server	Address	Object

To	host	a	session,	you	must	specify	the	address	of	the	host	device.	Do
this	by	creating	an	IDirectPlay8Address	object	and	calling	the
IDirectPlay8Address::SetSP	method.	This	step	is	identical	to	the	step
Creating	an	Address	Object	in	Tutorial	2:	Hosting	a	Session.

Begin	Hosting

To	begin	hosting	a	DirectPlay	server	session,	call	the
IDirectPlay8Server::Host	method.	This	method	takes	the	following
parameters.

pdnAppDesc:	A	pointer	to	a	DPN_APPLICATION_DESC

prgpDeviceInfo:	A	pointer	to	an	array	of	IDirectPlay8Address
objects

cDeviceInfo:	The	number	of	objects	in	the	array	of
IDirectPlay8Address	objects
pdpSecurity	and	pdpCredentials:	Reserved	parameters	that	must

be	set	to	NULL

pvPlayerContext:	A	pointer	to	the	player	context	value	which	may
be	set	to	NULL

dwFlags:	An	optional	flag

For	more	information	about	the	parameters,	see
IDirectPlay8Server::Host.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	begin
hosting	a	DirectPlay	server	session.

	 WCHAR																			strHost[128]	=	{0};
	 DPN_APPLICATION_DESC				dpAppDesc;
	
				//	Get	the	session	name	from	dialog
				if(IDOK	!=	DialogBox(g_hInst,	MAKEINTRESOURCE(IDD_HOST),	g_hDlg,	HostDlgProc))
								return	S_OK;

				DXUtil_ConvertGenericStringToWideCch(strHost,	g_strSession,	128);

				//	Set	up	the	Application	Description.
				ZeroMemory(&dpAppDesc,	sizeof(DPN_APPLICATION_DESC));
				dpAppDesc.dwSize	=	sizeof(DPN_APPLICATION_DESC);
				dpAppDesc.dwFlags	=	DPNSESSION_CLIENT_SERVER;			//	Flag	describing	the	app
				dpAppDesc.guidApplication	=	g_guidApp;										//	GUID	for	the	application
				dpAppDesc.pwszSessionName	=	strHost;												//	Session	name

				//	Host	the	application.
								hr	=	g_pDPServer->Host(&dpAppDesc,							//	pdnAppDesc
																										&g_pDeviceAddress,	1,		//	prgpDeviceInfo,	cDeviceInfo
																										NULL,	NULL,												//	pdpSecurity,	pdpCredentials
																										NULL,																		//	pvPlayerContext
																										0);																				//	dwFlags

Setting	Up	a	Client

The	client	application	is	responsible	for	handling	the	user	interface	(UI)
and	processing	messages	from	the	server.	The	following	topics	in	this
section	describe	the	tasks	needed	to	create	a	DirectPlay	client
application.	Each	task	is	described	in	detail	below.

1.	 Create	a	DirectPlay	Client	Object

2.	 Create	the	Client	Address	Object

3.	 Create	the	Server	Address	Object

4.	 Enumerate	the	Hosts

5.	 Connect	to	a	Host

Create	a	DirectPlay	Client	Object

Setting	up	a	client	object	is	similar	to	Creating	a	DirectPlay	Peer
Object.	The	only	difference	between	setting	up	a	client	object	and	a	peer
object	is	that	when	you	call	CoCreateInstance,	instead	of	passing	the
equivalent	peer	parameters,	you	pass	the	class	identifier	of	a	client	object
(CLSID_DirectPlay8Client),	the	identifier	of	the	interface
(IID_IDirectPlay8Client),	and	the	address	of	a	pointer	to	an
IDirectPlay8Client	interface.	After	you	create	the	DirectPlay	client	object,
you	can	initialize	it	by	calling	IDirectPlay8Client::Initialize.

The	following	excerpt	from	the	tutorial	sample	illustrates	how	to	create
and	initialize	a	DirectPlay	client	object.

				//	Create	the	IDirectPlay8Client	object.
				hr	=	CoCreateInstance(CLSID_DirectPlay8Client,	NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDirectPlay8Client,	

																										(LPVOID*)	&g_pDPClient);
			
				//	Initialize	IDirectPlay8Client	object.
				hr	=	g_pDPClient->Initialize(NULL,	DirectPlayMessageHandlerClient,	0);

In	the	initialization,	you	pass	the	pointer	to	a	callback	function,
DirectPlayMessageHandlerClient,	which	handles	messages	the	client
receives.	In	this	sample,	the	pvUserContext	parameter	is	set	to	NULL.
However,	if	you	use	the	same	message	handler	function	for	multiple
interfaces,	you	should	specify	a	value	for	pvUserContext.	For	more
information,	see	Using	Player	Context	Values.

Create	the	Client	Device	Address	Object

For	the	client	to	connect	to	the	server,	you	must	specify	the	client's
device	address.	Do	this	by	creating	an	IDirectPlay8Address	object	and
calling	the	IDirectPlay8Address::SetSP	method.	This	step	is	identical	to
the	step	Creating	an	Address	Object	in	Tutorial	2:	Hosting	a	Session.

Create	the	Server	Address	Object

For	the	client	to	connect	to	the	server,	you	must	also	create	an
IDirectPlay8Address	object	for	the	address	of	the	server.	This	step	is
identical	to	the	step	Creating	an	Address	Object	in	Tutorial	2:	Hosting
a	Session.

Enumerate	Hosts

If	you	don't	know	the	address	of	the	server	to	which	you	want	to	connect,
you	can	enumerate	all	of	the	available	servers.	Follow	the	steps	in
Tutorial	3:	Enumerating	Hosted	Sessions	and	replace	all	instances	of	the
pointer	to	an	IDirectPlay8Peer	interface	with	the	pointer	to	an
IDirectPlay8Client	interface.

Connect	to	a	Server

To	connect	to	a	DirectPlay	client/server	session,	follow	the	same	process
you	use	to	connect	to	a	peer-to-peer	session	except	that	the
IDirectPlay8Client::Connect	method	does	not	take	the	pvPlayerContext
parameter.	Therefore,	the	call	to	IDirectPlay8Client::Connect	is	as
follows:

								hr	=	g_pDPClient->Connect(&dpnAppDesc,							//	pdnAppDesc
																																		pHostAddress,						//	pHostAddr
																																		g_pDeviceAddress,		//	pDeviceInfo
																																		NULL,														//	pdnSecurity
																																		NULL,														//	pdnCredentials
																																		NULL,	0,											//	pvUserConnectData,	Size
																																		NULL,														//	pvAsyncContext
																																		NULL,														//	pvAsyncHandle
																																		DPNCONNECT_SYNC);		//	dwFlags

For	more	information,	see	Tutorial	4:	Connecting	to	a	Session.

Server	Messages

After	the	server	is	hosting	and	a	client	is	connected,	the	client	and	server
can	send	messages	to	each	other.	If	more	than	one	client	is	connected,
the	server	can	send	messages	to	a	single	player,	a	group	of	players,	or
all	the	players.

Sending	Messages	from	the	Server	to	Clients

The	server	can	send	a	message	to	clients	using	the
IDirectPlay8Server::SendTo	method.	The	following	excerpt	from	the
client/server	tutorial	sample	illustrates	how	to	call	the
IDirectPlay8Server::SendTo	method.

												hr	=	g_pDPServer->SendTo(DPNID_ALL_PLAYERS_GROUP,	//	dpnid
																																				&dpnBuffer,															//	pBufferDesc
																																				1,																								//	cBufferDesc
																																				0,																								//	dwTimeOut
																																				NULL,																					//	pvAsyncContext
																																				NULL,																					//	pvAsyncHandle
																																				DPNSEND_SYNC	|												//	dwFlags
																																				DPNSEND_NOLOOPBACK);								

Setting	the	dpnid	parameter	to	DPNID_ALL_PLAYERS_GROUP	sends
the	message	to	all	players	connected	to	the	session.	To	specify	a	specific
player	or	group,	set	dpnid	to	the	specific	player	ID	or	group	ID.	The
dpnBuffer	is	a	pointer	to	the	DPN_BUFFER_DESC	structure	that
contains	the	data	to	send.	For	a	description	of	the	message	flags	and	the
other	parameters,	see	IDirectPlay8Server::SendTo.

Receiving	Messages	from	Clients

Messages	received	from	the	clients	are	processed	by	the
DirectPlayMessageHandlerServer	function.	The	message	handler
function	will	typically	take	the	following	form.

HRESULT	WINAPI	DirectPlayMessageHandlerServer(PVOID	pvUserContext,	DWORD	dwMessageId,	PVOID	pMsgBuffer)
{
				switch	(dwMessageId)
				{
								case	DPN_MSGID_RECEIVE:
								{
												PDPNMSG_RECEIVE					pMsg;
												pMsg	=	(PDPNMSG_RECEIVE)	pMsgBuffer;
													//process	data
												break;
								}
							.
							.
							.
							//Other	cases
				}

				return	hr;
}

When	a	message	is	received,	DirectPlay	generates	a
DPN_MSGID_RECEIVE	message.	The
DirectPlayMessageHandlerServer	function	tells	your	application	what	to
do	with	the	data	it	received.	In	this	example,	the	text	in	the	message	data
buffer	displays	on	the	player's	screen.

For	other	messages	that	you	might	want	to	include,	see	Handling
Client/Server	Messages.

Client	Messages

A	client	can	send	messages	to	and	receive	messages	from	only	the
server.	If	a	client	wants	to	send	a	message	to	another	client,	the
message	must	first	be	sent	to	the	server.	The	server	application	can
implement	a	method	to	forward	the	message	to	other	clients.

Sending	Messages	to	the	Server

A	client	can	send	a	message	to	the	server	using	the
IDirectPlay8Client::Send	method.	The	following	example	from	the
client/server	tutorial	sample	illustrates	how	to	call	the
IDirectPlay8Client::Send	method.

													hr	=	g_pDPClient->Send(&dpnBuffer,													//	pBufferDesc
																																				1,																						//	cBufferDesc
																																				0,																						//	dwTimeOut
																																				NULL,																			//	pvAsyncContext
																																				NULL,																			//	pvAsyncHandle
																																				DPNSEND_SYNC|
																																				DPNSEND_NOLOOPBACK);				//	dwFlags

The	pBufferDesc	parameter	is	a	pointer	to	a	DPN_BUFFER_DESC
structure	that	tells	the	application	what	data	to	send.	The	dwTimeOut
parameter	is	set	to	0,	which	means	that	the	message	waits	in	the	queue
until	it	is	either	sent	or	the	connection	ends.	You	can	set	dwTimeOut	to	a
value	so	that	the	message	is	not	sent	unless	it	is	sent	within	the	specified
number	of	milliseconds.	For	a	description	of	the	message	flags	and	the
other	parameters,	see	IDirectPlay8Client::Send.

Receiving	Messages	from	the	Server

Messages	received	from	the	server	are	processed	by	the
DirectPlayMessageHandlerClient	function.	The	client	message	handler
function	takes	the	same	form	as	the	DirectPlayMessageHandlerServer
function.	For	more	information,	see	the	example	of	a	message	handler
function	in	the	Receiving	Messages	from	Clients	section	of	Server
Messages.

Terminating	a	Client/Server	Session

If	a	DirectPlay	client	or	server	object	was	successfully	initialized,	you
should	close	the	object	by	calling	IDirectPlay8Client::Close	or
IDirectPlay8Server::Close,	and	then	release	all	active	objects	and
terminate	the	application.	For	further	discussion	on	closing	and	releasing
DirectPlay	objects,	see	Tutorial	1:	Creating	a	DirectPlay	Object	and
Enumerating	Service	Providers.	When	a	client	closes	the	session,	the
server	receives	the	DPN_MSGID_DESTROY_PLAYER	message	but	the
game	will	continue	if	other	players	are	connected.	When	the	server
closes	the	session,	the	clients	receive	the
DPN_MSGID_TERMINATE_SESSION	message	and	the	session	ends.
For	more	information	about	handling	these	messages,	see	Handling
Client/Server	Messages.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Tutorial	10:	DirectPlay	Thread	Pool

This	tutorial	shows	how	to	use	the	IDirectPlay8ThreadPool	interface	and
avoid	multithreading	by	taking	advantage	of	the
IDirectPlay8ThreadPool::DoWork	method.

Some	Microsoft®	DirectPlay®	games	choose	to	use	DirectPlay's	internal
worker	threads	to	send	and	receive	messages.	These	games	must
implement	synchronization	mechanisms	to	avoid	data	corruption	and
deadlocking.

Because	multithreading	is	a	complex	issue,	DirectPlay	has	implemented
the	IDirectPlay8ThreadPool	interface	to	help	users	managed	their
threads.	One	advantage	to	using	the	IDirectPlay8ThreadPool	interface
is	that	you	can	use	the	IDirectPlay8ThreadPool::SetThreadCount	method
to	disable	all	of	DirectPlay's	internal	threads.	All	you	need	to	do	is	call	the
IDirectPlay8ThreadPool::DoWork	method	regularly	in	your	game	loop
and	DirectPlay	will	perform	networking	tasks	only	during	the	time
specified	and	only	on	the	calling	thread.

This	tutorial	uses	a	peer-to-peer,	lobbied	application,	so	you	should
review	the	following	tutorials	before	beginning	this	one.

Tutorial	1:	Creating	a	DirectPlay	Object	and	Enumerating	Service
Providers

Tutorial	2:	Hosting	a	Session

Tutorial	3:	Enumerating	Hosted	Sessions

Tutorial	4:	Connecting	to	a	Session

Tutorial	5:	Sending	Messages	to	Other	Peers

Tutorial	6:	Handling	Host	Migration

Tutorial	7:	Creating	a	Lobbyable	Application

The	complete	sample	code	for	this	tutorial	is	included	with	the	Microsoft
DirectX®	software	development	kit	(SDK)	and	can	be	found	at	(SDK
root)\Samples\C++\DirectPlay\Tutorials\Tut10_ThreadPool.

This	article	contains	the	following	sections.

User's	Guide

Creating	a	DirectPlay	ThreadPool	Object

Setting	the	Thread	Count

Working	in	DoWork	Mode

Terminating	the	Application

Note		The	error	handling	code	for	the	examples	in	this	document	has
been	deleted	for	clarity.	See	the	tutorial	sample	for	a	complete	version	of
the	code.

User's	Guide

When	you	run	this	tutorial	sample,	a	window	opens	and	you	have	the
choice	to	either	Host	or	Connect.

If	you	choose	Host:

1.	 A	window	will	open	and	you	should	enter	a	session	name.	Select
the	Migrate	Host	box	to	allow	host	migration	to	take	place	in	this
session.	Then	click	OK.	Your	session	status	will	change	to
'Hosting	Session	"YourSessionName".'

2.	 You	can	now	draw	pictures	in	Shared	Canvas.	Select	a	color	by
clicking	on	one	of	the	color	boxes	and	then	hold	the	mouse	down
while	you	move	it	inside	the	canvas	window	to	draw.	To
disconnect,	click	Disconnect	and	the	session	ends.

3.	 Click	Exit	to	end	the	sample

If	you	choose	Connect:

1.	 The	Connect	to	Session	window	will	open	and	you	should	enter
an	Internet	Protocol	(IP)	address	and	click	Search.	If	any
sessions	are	found	at	that	address,	they	will	be	listed	in	the
Detected	Sessions	box.	Select	a	session	and	click	Connect.	If
the	address	does	not	exist,	a	message	box	opens	with	an	error
message.

2.	 Once	connected,	your	session	status	will	change	to	'Connected	to
Session	"YourSessionName".	You	can	now	draw	pictures	in
Shared	Canvas.	Select	a	color	by	clicking	on	one	of	the	color
boxes	and	then	hold	the	mouse	down	while	you	move	it	inside	the
canvas	window	to	draw.	To	disconnect,	click	Disconnect.

3.	 Click	Exit	to	end	the	sample.

You	can	run	this	sample	twiceonce	to	host	a	session	and	once	to
connect.	When	connecting,	enter	your	computer's	IP	address.	When
connected,	you	can	draw	pictures	on	the	canvas	shared	between	the

host	and	the	client	application.	To	test	host	migration,	close	the	host
application.	The	client	application's	session	status	will	change	to	'Hosting
Session	"YourSessionName".'.

Creating	a	DirectPlay	ThreadPool	Object

The	first	step	in	using	the	DirectPlay	thread	pool	is	to	create	and	initialize
an	IDirectPlay8ThreadPool	object.	The	IDirectPlay8ThreadPool	object
must	be	initialized	before	any	other	DirectPlay	object	or	DirectPlay	will
create	its	own	IDirectPlay8ThreadPool	object	when	IDirectPlay8Peer	is
initialized.	There	can	be	only	one	IDirectPlay8ThreadPool	object	per
process	so	if	DirectPlay	has	created	its	own	IDirectPlay8ThreadPool
object	then	a	subsequent	call	to	IDirectPlay8ThreadPool::Initialize	will
return	DPNERR_ALREADYINITIALIZED.

To	create	an	IDirectPlay8ThreadPool	object,	call	CoCreateInstance	
passing	the	class	identifier	(CLSID_DirectPlay8ThreadPool),	the	identifier
of	the	interface	(IID_IDirectPlay8ThreadPool),	and	the	address	of	a
pointer	to	an	IDirectPlay8ThreadPool	object.	The	following	snippet	from
the	tutorial	sample	shows	how	to	create	and	initialize	an
IDirectPlay8ThreadPool	object.

IDirectPlay8ThreadPool*	g_pThreadPool;
.
.
.
//	Create	the	IDirectPlay8ThreadPool	interface
			hr	=	CoCreateInstance(CLSID_DirectPlay8ThreadPool,	NULL,
																										CLSCTX_INPROC_SERVER,
																										IID_IDirectPlay8ThreadPool,
																										(LPVOID*)	&g_pThreadPool);

//	Initialize	ThreadPool
			hr	=	g_pThreadPool->Initialize(NULL,	DirectPlayMessageHandler,	0);
			

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_1nad.asp

Setting	the	Thread	Count

After	initializing	your	DirectPlay	objects,	you	should	you	call
IDirectPlay8ThreadPool::SetThreadCount	and	set	the	thread	count	to
zero.	It	is	recommended	that	you	do	this	before	making	any	networking
calls.

The	following	snippet	from	the	tutorial	sample	shows	how	to	set	the
thread	count	to	zero.

//	Turn	off	worker	DirectPlay	worker	threads	because	you'll	be	using	the	
//			DoWork	method	to	synchronously	handle	network	messages.	
hr	=	g_pThreadPool->SetThreadCount((DWORD)	-1,	0,	0);		
//	dwProcessorNum,	dwNumThreads,	dwFlags

The	dwProcessorNum	parameter	is	set	to	-1	to	change	the	thread	count
for	all	processors.

Working	in	DoWork	Mode

After	you	set	the	thread	count	to	zero,	you	must	call
IDirectPlay8ThreadPool::DoWork	to	perform	any	DirectPlay	tasks.
When	you	call	IDirectPlay8ThreadPool::DoWork,	you	specify	the
amount	of	time	that	the	application	should	spend	on	DirectPlay	tasks.
DirectPlay	will	handle	starting	and	closing	threads	to	perform	various
tasks	such	as	receiving	messages.	If	DirectPlay	finishes	all	the
networking	tasks	before	the	specified	time,	the	method	will	return	early.	If
there	are	any	tasks	left	when	the	time	runs	out,
IDirectPlay8ThreadPool::DoWork	will	return
DPNSUCCESS_PENDING.

The	correct	way	to	use	IDirectPlay8ThreadPool::DoWork	is	to	call	it
within	the	game	loop.	IDirectPlay8ThreadPool::DoWork	will	block	the
application	until	it	returns,	so	you	should	limit	the	time	your	program
spends	on	DirectPlay	tasks.

The	following	snippet	from	the	tutorial	sample	shows	how	to	use
IDirectPlay8ThreadPool::DoWork.

//	Handle	incoming	network	data
//	Here	you're	setting	the	allowed	timeslice	at	100	milliseconds.
//	The	program	will	block	while	DoWork	handles	network	communication
//			so	you	don't	need	to	worry	about	thread	synchronization	issues	as
//			you	have	on	earlier	tutorials.
g_pThreadPool->DoWork(100,	0);		//	dwAllowedTimeSlice,	dwFlags

Terminating	the	Application

If	an	IDirectPlay8ThreadPool	object	was	successfully	initialized,	you
should	call	IDirectPlay8ThreadPool::Close	before	terminating	the
application.	You	should	call	IDirectPlay8ThreadPool::Close	after
terminating	other	DirectPlay	objects.	Before
IDirectPlay8ThreadPool::Close	returns,	all	existing	DirectPlay	threads
will	terminate	and	you	will	receive	a	DPN_MSGID_DESTROY_THREAD
message	for	each	thread.

The	following	snippet	from	the	tutorial	sample	shows	how	to	use
IDirectPlay8ThreadPool::Close.

if(g_pThreadPool)
							g_pThreadPool->Close(0);

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	C++	Samples

The	following	sample	applications	demonstrate	the	use	and	capabilities
of	the	Microsoft®	DirectPlay®	application	programming	interface	for	the
C++	programming	language.	Refer	to	the	Readme.txt	file	in	each	sample
folder	for	details.	All	sample	folders	can	be	found	under	the	SDK	root
directory,	typically	C:\mssdk.

Samples

AddressOverride

ChatPeer

DataRelay

LobbyClient

Maze

NATPeer

NATResolver

SimpleClientServer

SimplePeer

StagedPeer

Throttle

VoiceClientServer

VoiceConnect

VoiceGroup

VoicePosition

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

AddressOverride

AddressOverride	demonstrates	how	to	programmatically	provide	an
address	to	Microsoft®	DirectPlay®	in	order	to	host	or	connect	to	another
session	on	the	network.	The	alternative	is	to	have	DirectPlay	display	a
standard	dialog	box	to	ask	the	user	the	connection	settings.	Most	games
will	set	addresses	directly	so	that	they	can	provide	their	own	user
interface.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\AddressOverride

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

The	AddressOverride	sample	displays	a	dialog	box	that	allows	you	to
select	address	parameters.	To	use	the	dialog	box:

1.	 Enter	the	player's	name	and	session.

2.	 If	you	want	to	be	a	session	host,	select	the	Host	Session	check
box.

3.	 Choose	a	service	provider	from	the	Service	Provider	list.

4.	 Choose	an	adapter	from	the	Adapter	list.

5.	 The	remaining	steps	depend	on	which	service	provider	you
choose.

If	you	choose	the	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP)	service	provider:

To	join	a	session,	select	a	particular	host	by	entering
its	Internet	Protocol	(IP)	address	and	port	in	the
associated	edit	boxes.	You	can	also	have	DirectPlay
search	the	local	network	for	available	hosts	by
leaving	the	IP	address	and	Port	boxes	blank.

To	host	a	session,	you	can	specify	a	port.	If	you
leave	the	Port	box	blank,	DirectPlay	will	select	a	port
for	you.

If	you	choose	the	model	service	provider,	enter	the	phone
number.

If	you	choose	the	Internetwork	Packet	Exchange	(IPX)
service	provider,	enter	the	port.

If	you	choose	the	serial	service	provider,	the	sample	will
launch	the	default	DirectPlay	dialog	box	that	queries	the
user	for	serial	settings.

Once	you	have	finished	filling	in	the	Address	Override	dialog	box,	click

OK	to	start	or	join	a	game.	This	game	is	similar	to	SimplePeer.	See	the
SimplePeer	user's	guide	for	more	details.

Programming	Notes

The	AddressOverride	sample	is	very	similar	to	the	SimplePeer	sample.
See	the	Programming	Notes	section	of	the	SimplePeer	sample	for
details.	AddressOverride	differs	by	programmatically	specifying	an
address,	rather	than	having	DirectPlay	display	the	default	address
selection	dialog	box.

The	following	list	outlines	how	the	AddressOverride	sample	works.	When
the	OK	button	is	pressed,	the	sample:

1.	 Determines	whether	the	user	wants	to	host	or	join	a	session	from
the	Host	Session	check	box.

2.	 Determines	the	service	provider	from	the	Service	Provider	list,
and	selects	the	appropriate	globally	unique	identifier	(GUID).

3.	 Creates	an	IDirectPlay8Address	object	called	pDeviceAddress.

4.	 Calls	that	object's	IDirectPlay8Address::SetSP	method	to	specify
the	service	provider.

5.	 If	the	user	is	hosting	a	session,	creates	an	IDirectPlay8Address
object	called	pHostAddress.	It	then	calls	that	object's
IDirectPlay8Address::SetSP	method	to	specify	the	service
provider.

6.	 If	an	adapter	was	specified,	the	sample	calls	the	pDeviceAddress
object's	IDirectPlay8Address::SetDevice	to	specify	the	adapter.

The	sample	then	calls	IDirectPlay8Address::AddComponent	to	complete
the	initialization	of	the	address	objects.	The	details	depend	on	which
service	provider	was	selected,	and	whether	the	user	is	joining	or	hosting
a	session.

If	the	TCP/IP	service	provider	was	selected	and:

The	user	is	hosting	a	session,	the	user	can	specify	the	port.

If	a	port	was	specified,	set	the	pwszName	parameter
to	DPNA_KEY_PORT	and	call	the	pDeviceAddress
object's	IDirectPlay8Address::AddComponent	to
add	the	user's	port	to	the	address.

The	user	is	joining	a	session,	the	user	can	specify	the	host
IP	address	and	the	port.

If	a	host	IP	address	was	specified,	set	the	pwszName
parameter	to	DPNA_KEY_HOSTNAME	and	call	the
pHostAddress	object's
IDirectPlay8Address::AddComponent	to	add	the
host's	IP	address	to	the	address	object.

If	a	port	was	specified,	set	the	pwszName	parameter
to	DPNA_KEY_PORT	and	call	the	pHostAddress
object's	IDirectPlay8Address::AddComponent
method	to	add	the	host's	port	to	the	address.

If	the	IPX	service	provider	was	selected	and:

The	user	is	hosting	a	session,	the	user	must	specify	a	port.
Set	the	pwszName	parameter	to	DPNA_KEY_PORT	and
call	the	pDeviceAddress	object's
IDirectPlay8Address::AddComponent	method	to	add	the
users	port	to	the	address.

The	user	is	joining	a	session,	the	user	must	specify	a	port.
Set	the	pwszName	parameter	to	DPNA_KEY_PORT	and
call	the	pHostAddress	object's
IDirectPlay8Address::AddComponent	method	to	add	the
users	port	to	the	address.

If	the	modem	service	provider	was	selected	and	the	user	is	joining
a	session,	the	user	must	specify	a	phone	number.	Set	the
pwszName	parameter	to	DPNA_KEY_PHONENUMBER	and	call
the	pHostAddress	object's
IDirectPlay8Address::AddComponent	method	to	add	the	phone
number	to	the	address.

Use	the	device	and	host	address	objects	to	connect	to	the	session,	much

like	the	SimplePeer	sample.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

ChatPeer

The	ChatPeer	sample	is	similar	in	form	to	SimplePeer.	When	a	player
hosts	or	connects	to	a	session,	the	players	can	chat	with	each	other	by
passing	text	strings.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\ChatPeer

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

Enter	the	player's	name	and	choose	a	connection	type.	You	can	choose
"Wait	for	Lobby	Connection"	or	choose	a	service	provider.	Use	the
Multiplayer	Games	dialog	box	to	either	search	for	an	active	game	to	join
or	to	start	a	new	game.	When	you	join	or	start	a	game,	you	can	begin
immediately.	Other	players	can	join	the	game	at	any	time.	If	host
migration	is	on,	the	host	player	can	also	leave	at	any	time,	because
Microsoft®	DirectPlay®	will	automatically	migrate	the	host	session	to
another	player.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

Programming	Notes

The	ChatPeer	sample	is	very	similar	in	form	to	the	SimplePeer	sample.
The	ChatPeer	differs	by	letting	clients	send	text	string	to	all	players
connected	to	the	session.	For	detailed	programming	notes,	see	the
Programming	Notes	section	of	the	SimplePeer	sample.

When	Send	is	pressed,	the	SendChatMessage	function	does	the
following:

1.	 Retrieves	the	text	string	from	the	dialog	box.

2.	 Fills	an	application-defined	structure,	GAMEMSG_CHAT.	This
structure	has	a	message	type	identifier	(ID)	as	the	first	BYTE.
This	lets	the	application	figure	out	what	type	of	application
message	was	received.	However,	ChatPeer	uses	only	one
application-defined	message.	See	StagedPeer	for	a	more
complex	example	of	this	process.

3.	 Fills	out	a	DPN_BUFFER_DESC	structure	using	the
GAMEMSG_CHAT	buffer.

4.	 Calls	IDirectPlay8Peer::SendTo	with	the	DPN_BUFFER_DESC.	It
passes	the	DPNID_ALL_PLAYERS_GROUP	flag,	so	this
message	goes	to	everyone.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DataRelay

The	DataRelay	sample	is	similar	to	SimplePeer	but	differs	by	sending	a
packet	of	data	with	options	specified	in	the	dialog	box's	user	interface
(UI).

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\DataRelay

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

Host	or	connect	to	a	session	in	the	same	manner	as	explained	in
SimplePeer.	When	the	main	dialog	box	appears,	select	the	target,	size,
rate,	and	timeout	values.	Then	click	Push	to	Send.	This	will	send	a
packet	of	data	to	the	targetat	the	rate	specifiedwith	the	specified	size.
Using	the	Connection	Info	drop-down	menu,	specify	a	target	on	which
you	would	like	to	periodically	gather	connection	information.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	Microsoft®	DirectPlay®	perform	a	search	for
the	address,	select	the	use	DPNSVR	check	box.

Programming	Notes

The	DataRelay	sample	is	very	similar	in	form	to	the	SimplePeer	sample.
For	detailed	programming	notes,	see	the	Programming	Notes	section	of
the	SimplePeer	sample.

When	the	Push	to	Send	button	is	clicked,	a	timer	is	created	that	goes	off
every	number	of	milliseconds,	as	indicated	by	the	UI.

When	the	timer	goes	off,	the	callback	function	calls	the
SendNetworkData	function	to	do	the	following	tasks.

1.	 Create	an	application-defined	structure.

2.	 Create	a	GAMEMSG_DATA_NODE,	which	is	handed	off	to	the
application	worker	thread.	That	thread	processes	the	node	and
then	updates	the	UI	to	show	that	a	packet	was	sent.

3.	 A	DPN_BUFFER_DESC	structure	is	filled	out,	passing	in	a
pointer	to	the	application-defined	structure	created	above.

4.	 The	IDirectPlay8Peer::SendTo	method	is	called,	passing	in	the
DPN_BUFFER_DESC	structure.

5.	 The	event	g_hDPDataAvailEvent	is	set,	telling	the	worker	thread
that	there	is	data	ready	to	be	processed.

On	receipt	of	the	g_hDPDataAvailEvent	event,	the	ProcessNetDataProc
function	calls	the	ProcessData	function,	which	does	the	following:

1.	 Enters	the	critical	section,	g_csDataList.

2.	 Runs	through	the	linked	list,	processing	each	node.

3.	 Calls	IDirectPlay8Peer::ReturnBuffer	so	that	DirectPlay	can	free
buffer	space	that	it	passed	in	DPN_MSGID_RECEIVE.

The	DirectPlayMessageHandler	function	handles	different	kinds	of

messages,	such	as	DPN_MSGID_RECEIVE	and
DPN_MSGID_SEND_COMPLETE.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

LobbyClient

LobbyClient	is	a	simple	lobby	client	application.	It	displays	all	registered
Microsoft®	DirectPlay®	applications	on	the	local	system.	It	enables	the
user	to	launch	one	or	more	of	these	applications	using	a	chosen	service
provider.	A	launched	lobbied	application	can	be	told	to	either	join	or	host
a	game.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\LobbyClient

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

The	LobbyClient	sample	displays	a	dialog	box	that	allows	you	to	choose
launch	parameters	before	starting	the	application	by	clicking	Launch
App.	The	Active	Connections	list	will	display	the	handle	to	all	current
lobbied	applications.	Clicking	Send	Message	will	send	a	lobby	message
to	the	lobbied	application.	This	is	done	mainly	for	demonstration
purposes.	In	a	more	complex	lobby	client,	you	might	want	to	use	this
functionality	in	a	more	meaningful	way	by	passing	a	message	to	which
the	lobbied	application	responds.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

Programming	Notes

The	InitDirectPlay	function	does	the	following:

1.	 Initializes	Component	Object	Model	(COM)	with	CoInitialize.

2.	 Creates	an	IDirectPlay8Peer	object	with	CoCreateInstance.

3.	 Calls	IDirectPlay8Peer::Initialize	to	tell	the	interface	about	our
message	handler.

4.	 Creates	an	IDirectPlay8LobbyClient	object	with
CoCreateInstance.

5.	 Calls	IDirectPlay8LobbyClient::Initialize	to	tell	the	interface	about
our	lobby	message	handler.

The	OnInitDialog	function	does	the	following:

1.	 Enumerates	the	registered	lobbied	applications	and	display	them
in	the	list	box.	See	EnumRegisteredApplications.

2.	 Enumerates	the	DirectPlay	service	providers	and	display	them	in
the	list	box.	See	EnumServiceProviders.

3.	 Whenever	a	new	service	provider	is	selected	(and	upon
initialization),	enumerates	the	service	provider's	adapters.	See
EnumAdapters.

When	Launch	App	is	clicked,	the	LaunchApp	function	does	the
following:

1.	 Fills	out	a	DPL_CONNECT_INFO	structure.	This	is	complex
because	it	contains	the	host	and	device	addresses	as	well	as	the
DPN_APPLICATION_DESC.	See	LaunchApp	and
AllocAndInitConnectSettings.

2.	 Calls	IDirectPlay8LobbyClient::ConnectApplication	passing	in	the
DPL_CONNECT_INFO	structure.

3.	 Frees	the	DPL_CONNECT_INFO	structure.	This	is	complex

because	this	structure	has	a	number	of	DirectPlay	addresses.
See	FreeConnectSettings.

The	DirectPlayLobbyMessageHandler	function	can	handle	the	following
messages.

DPL_MSGID_DISCONNECT The	lobbied	application	was	disconnected.	The
pDisconnectMsg>hDisconnectId	parameter	will	contain	the	handle	of	the
lobbied	application	that	was	disconnected	and	the
pDisconnectMsg>hrReason	parameter	will	contain	the	reason.	This	sample
pops	up	a	message	box.

DPL_MSGID_RECEIVE The	lobbied	application	sent	the	client	data.	This	sample	does	not	respond	to
any	message.

DPL_MSGID_SESSION_STATUS A	lobbied	application	has	changed	its	status.	The	pStatusMsg>hSender
parameter	will	be	one	of	several	predefined	status	codes.	This	sample
updates	the	user	interface	(UI),	showing	that	the	lobby	status	has	been
updated.	However,	more	complex	lobby	clients	might	take	action.

DPL_MSGID_CONNECTION_SETTINGS A	lobbied	application	has	changed	its	connection	settings.	This	lobby	client
takes	no	action.	However,	more	complex	clients	might	take	action.

When	Send	Message	is	clicked,	the	SendMsgToApp	function	calls
IDirectPlay8LobbyClient::Send.	The	hConnection	parameter	is	set	to	the
handle	of	the	receiving	lobbied	application	and	the	pBuffer	parameter	is
set	to	the	message	buffer.

When	Disconnect	is	clicked,	the	DisconnectFromApp	function	calls
IDirectPlay8LobbyClient::ReleaseApplication.	The	hApplication
parameter	is	set	to	the	handle	of	the	lobbied	application	from	which	to
disconnect.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Maze

The	maze	sample	is	a	Microsoft®	DirectPlay®	client/server	application.
There	are	two	different	client	applicationsa	console-based	version	and	a
Microsoft	Direct3D®	client.	The	Direct3D	client	can	optionally	be	run	as
screen	saver	by	copying	Mazeclient.exe	to	your	\winnt\system32\	folder
and	renaming	it	Mazeclient.scr.	Doing	so	will	make	it	a	screen	saver	that
can	be	detected	by	the	display	control	panel	application.

Path

Path:	(SDK	root)\Samples\C++\DirectPlay\Maze

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

There	are	three	executable	maze	samplesMazeClient,
MazeConsoleClient,	and	MazeServer.	MazeClient	is	a	self-contained
executable	file	but	MazeServer	and	MazeConsoleClient	must	be	run
together.	Instructions	for	running	each	sample	are	described	below.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

MazeClient

You	can	run	MazeClient	in	three	ways:

Start	MazeClient	from	the	Bin	folder	by	double-clicking	the
MazeClient	icon.	This	runs	the	sample	in	settings	mode.	When	you
click	the	icon,	a	dialog	box	appears.	Choose	the	setting	you	want
and	click	Launch.	This	starts	the	maze	sample.	To	quit	the
sample,	press	any	key	or	click	the	mouse.

To	run	MazeClient	in	test	mode,	at	the	command	prompt	type:

mazeclient.exe	/t	

In	test	mode,	you	can	search	and	join	a	server	game	or	you	can
choose	to	not	connect	to	a	server.	There	are	few	simple
commands	you	can	type	when	running	mazeclient	in	test	mode:

a		will	turn	autopilot	on	or	off,	but	when	moving	about.	There
is	no	collision	detection	code,	so	you	can	go	through	walls.

r		will	turn	reflections	on	or	off.

To	run	MazeClient	in	screen	saver	mode,	at	the	command	prompt

type	the	following:

mazeclient.exe	/s

This	mode	will	autoconnect	to	a	server	using	the	settings	from
settings	mode.	If	a	server	is	not	found,	it	will	run	without	connecting
to	a	server.	It	will	also	exit	upon	mouse	or	keyboard	input.

MazeConsoleClient

Start	MazeConsoleClient	by	double-clicking	the	MazeConsoleClient	icon
in	the	Bin	folder	or	by	typing	at	the	command	prompt:

MazeConsoleClient.exe

MazeConsoleClient	should	automatically	search	for	a	session	on	the
local	network.	If	it	does	not,	at	the	command	prompt	type:

setup

When	asked	if	you	want	to	connect	to	a	local	server,	type:

Yes

If	you	are	already	running	MazeServer,	MazeConsoleClient	will
automatically	connect	and	start.	To	search	for	a	session	at	a	specific
Internet	Protocol	(IP)	address,	type	it	at	the	command	prompt,	for
example,

MazeConsoleClient	255.255.255.255	

If	a	server	is	not	found	or	the	session	is	lost,	it	will	exit	automatically.
Press	CTRL+C	to	close	the	session.

MazeServer

Start	MazeServer	by	double-clicking	the	MazeServer	icon	in	the	Bin
folder	or	typing	at	the	command	prompt:

mazeserver.exe

MazeServer	will	automatically	create	a	host	session	that	clients	can	join.
MazeServer.exe	takes	an	optional	command	prompt	parameter	to	set	the
size	of	the	maze.	For	example,	to	set	the	maze	to	16	wide	and	128	high,
type:

mazeserver.exe	/size	16	128

The	width	and	height	are	restricted	to	these	numbers:	16,	32,	64,	or	128.

Once	started,	the	server	will	display	a	simple	command	prompt	to	control
the	server.	Here	is	the	list	of	commands.

help Lists	simple	commands	you	can	use.

stop Shuts	down	the	server.

stats Displays	how	many	players	are	connected.

sr	or
serverreliable		

Set	what	percentage	of	the	packets	going	from	the	server	to	the	client	have	the
DPNSEND_GUARANTEED	flag.

cr	or
clientreliable

Set	what	percentage	of	the	packets	going	from	every	client	to	the	server	have	the
DPNSEND_GUARANTEED	flag.

cu	or
clientupdate

Set	how	many	milliseconds	pass	between	updates	from	each	client.

ct	or
clienttimeout

Sets	the	timeout	value	of	packets	sent	by	the	clients.

st	or
servertimeout

Sets	the	timeout	value	of	packets	sent	by	the	server.

ci	or
connectioninfo

Displays	information	about	the	connection	from	the	server	to	a	client.	For	example,	ci	00300003.

loglevel Set	how	much	extra	information	it	provides	about	what	is	happening	behind	the	scenes.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

NatPeer

The	NATPeer	sample	allows	the	user	behind	a	Network	Address
Translation	(NAT)	device	to	specify	the	address	and	optional	password	of
an	IDirectPlay8NATResolver	server	to	be	used	for	address	resolution
during	calls	to	Host,	EnumHosts,	and	Connect.	For	more	information
about	NATs,	see	Network	Address	Translation,	Firewalls,	and	Proxies.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\NatPeer

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

When	you	start	the	program,	a	dialog	box	is	displayed	where	you	can
specify	connection	information,	including	an	option	to	enable	NAT
address	resolution.	If	NAT	address	resolution	is	enabled,	the	Server
Address	and	Password	are	used	by	Microsoft®	DirectPlay®	for
resolving	the	external	addresses	of	players	behind	NATs	which	are	not
Universal	Plug	and	Play	(UPnP)	compatible.	If	the	user	chooses	not	to	be
the	session	host,	a	second	dialog	is	displayed	that	allows	users	to	find
and	connect	to	active	sessions.

Once	in	a	session,	the	game	play	is	similar	to	SimplePeer.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

Programming	Notes

If	the	NAT	address	resolution	option	is	checked,	the	Server	Address	and
Password	fields	are	added	as	components	of	the	local	device	address
under	the	DPNA_KEY_NAT_RESOLVER	and
DPNA_KEY_NAT_RESOLVER_USER_STRING	keys.

You	can	also	specify	multiple	comma-delimited	servers	in	the
DPNA_KEY_NAT_RESOLVER	component.	Each	server	is	tried
simultaneously	for	speed,	and	the	first	response	is	used.	If	no	server
responds,	the	Host,	Connect,	or	EnumHosts	call	still	succeeds,	but	only
local	and	UPnP	connectivity	information	is	used.

Because	hosting	these	resolving	servers	require	resources,	you	might
want	to	prevent	arbitrary	players	from	using	the	server.	This	can	be
achieved	with	the	DPNA_KEY_NAT_RESOLVER_USER_STRING
address	component.	This	value	is	passed	directly	to	the	resolving	server
for	verification.	The	server	can	choose	to	respond	as	appropriate.	Note
that	the	user	string	is	passed	in	clear	text	over	the	network,	so	if	the	text
could	contain	sensitive	information,	you	should	encrypt	it	before	sending.

For	an	implementation	of	an	IDirectPlay8NATResolver	server	and	more
information	about	NAT	address	resolution,	check	the	NATResolver
sample	included	with	the	software	development	kit	(SDK).

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

NATResolver

The	NATResolver	sample	shows	how	the	IDirectPlay8NATResolver
interface	can	be	used	to	implement	address	resolution	for	players	behind
Network	Address	Translation	(NAT)	devices.	This	interface	acts	as	a
simple	server,	which	accepts	queries	and	reflects	the	perceived	address
back	to	the	caller.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\NATResolver

Executable:	(SDK	root)\Samples\C++\DirectPlay\NATResolver

User's	Guide

When	the	sample	starts,	an	IDirectPlay8NATResolver	object	is	created
that	waits	for	queries.	The	sample	always	listens	on	all	available	Internet
Protocol,	version	4	(IPv4)	devices	for	incoming	queries.	If	Require
password	is	checked,	queries	are	first	screened	for	the	plain	text
password	before	allowing	Microsoft®	DirectPlay®	to	return	the	resolved
address.

The	dialog	displays	the	list	of	addresses	currently	in	use,	as	well	as	the
number	of	incoming	queries	and	outgoing	responses.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

Programming	Notes

DirectPlay	handles	most	of	the	address	resolution	work,	interrupting	only
to	check	that	incoming	queries	are	from	authorized	clients.	The
IDirectPlay8NATResolver::Initialize	method	sets	up	the	message	callback
for	client	authorization,	and	the	IDirectPlay8NATResolver::Start	method
starts	the	server	on	the	requested	device.

DirectPlay	informs	your	program	about	client	queries	with
DPN_MSGID_NAT_RESOLVER_QUERY	messages,	which	contain	the
client	address	and	given	password.	A	successful	return	value	from	this
callback	instructs	DirectPlay	to	handle	the	address	resolution.	A	failed
return	value	cancels	the	resolution	but	continues	executing	the
associated	DirectPlay	call.	Using	the	password	allows	you	to	deny
access	to	your	resolution	server	for	clients	who	are	not	part	of	your
game.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

SimpleClientServer

The	SimpleClientServer	sample	is	a	simple	client/server	application.	It	is
similar	in	form	to	SimplePeer	but	uses	the	client/server	interfaces.	When
the	user	presses	Wave	to	other	players,	the	game	passes	a	single
Microsoft®	DirectPlay®	message	to	all	connected	players.

Path

Path:	(SDK	root)\Samples\C++\DirectPlay\SimpleClientServer

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

To	run	the	game,	do	the	following:

1.	 Start	the	SimpleServer	by	double-clicking	the	SimpleServer	icon
in	the	Bin	folder.

2.	 Change	the	port	if	desired,	and	click	Start	Server.

3.	 Start	the	SimpleClient	by	double-clicking	the	SimpleClient	icon	in
the	Bin	folder.

4.	 Enter	the	player's	name.

5.	 Type	the	Internet	Protocol	(IP)	address,	or	leave	it	blank	to	search
the	local	network.

6.	 Click	Start	Search.

7.	 Click	Join	when	a	session	appears.

The	game	begins	immediately	after	it	has	been	created.	Other	players
can	join	the	game	at	any	time.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

SimplePeer

The	SimplePeer	sample	illustrates	how	to	implement	a	simple	peer-to-
peer	application.	After	joining	or	creating	a	session,	the	game	begins
immediately.	Other	players	can	join	the	session	at	any	time.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\SimplePeer

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

Enter	the	player's	name	and	choose	a	connection	type.	You	can	choose
Wait	for	lobby	connection	or	choose	a	service	provider.	Use	the
Multiplayer	Games	dialog	box	to	search	for	an	active	game	to	join	or	to
start	a	new	game.	After	the	game	has	been	joined	or	created,	the	game
begins	immediately.	Other	players	can	join	the	game	at	any	time.	If	Host
Migration	is	on,	the	host	player	can	leave	at	any	time	because	Microsoft®
DirectPlay®	will	automatically	migrate	the	host	session	to	another	player.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

Programming	Notes

The	InitDirectPlay	function	does	the	following:

1.	 Initializes	the	Component	Object	Model	(COM)	with	CoInitialize.

2.	 Creates	an	IDirectPlay8Peer	object	with	CoCreateInstance.

3.	 Creates	an	IDirectPlay8LobbiedApplication	object	with
CoCreateInstance.

4.	 Calls	IDirectPlay8Peer::Initialize	and	passes	its	message	handler.

5.	 Calls	IDirectPlay8LobbiedApplication::Initialize	and	passes	its
message	handler.

6.	 Checks	the	return	value	of	the
IDirectPlay8LobbiedApplication::Initialize	method.	If	it	is
successful,	the	application	is	launched	by	a	lobby	client.

If	the	application	is	lobby	launched,	the	connection	settings	can	be
obtained	from	the	lobby	client	by	the	ConnectUsingLobbySetting	function
of	the	CNetConnectWizard.	The	CNetConnectWizard	class	is	a	helper
class.	It	uses	dialog	boxes	to	query	the	user	for	information.	The
ConnectUsingLobbySettings	function	does	the	following:

1.	 Calls	IDirectPlay8LobbiedApplication::GetConnectionSettings	to
get	the	connection	setting	from	the	client.

2.	 Checks	the	dwFlags	member	of	the
DPL_CONNECTION_SETTINGS	structure	for	the
DPLCONNECTIONSETTINGS_HOST	flag	to	see	if	it	should	host.

3.	 Calls	IDirectPlay8Peer::SetPeerInfo.

4.	 Calls	IDirectPlay8Peer::Host	if	hosting,	otherwise
IDirectPlay8Peer::Connect.

5.	 Releases	the	objects	in	DPL_CONNECTION_SETTINGS.

If	the	connection	setting	from	the	lobby	client	is	not	provided,	the
application	calls	the	DoConnectWizard	function	of	the
CNetConnectWizard.	DoConnectWizard	does	the	following:

1.	 Calls	IDirectPlay8Peer::EnumServiceProviders	to	enumerate
service	providers.

2.	 Calls	the	ConnectionDlgOnOk	function,	which	displays	a	dialog
box	where	the	user	can	either	choose	a	service	provider	or
choose	to	use	a	lobby	connection.	If	Wait	for	lobby	connection
is	chosen,	the	function	calls
IDirectPlay8LobbiedApplication::SetAppAvailable	to	tell	the	lobby
client	that	the	application	is	available	for	connection.	If	a	service
provider	is	selected,	the	function	creates	a	DirectPlay	host	and
device	address	objects	by	calling	CoCreateInstance.	Then	it
calls	IDirectPlay8Address::SetSP	to	pass	service	provider's
globally	unique	identifier	(GUID)	into	the	two	DirectPlay	address
objects.

3.	 Calls	IDirectPlay8Peer::EnumHosts	to	enumerate	all	the	games	in
progress	on	that	service	provider.

4.	 Processes	the	DPN_MSGID_ENUM_HOSTS_RESPONSE	that
arrives	in	the	callback	function.

The	wizard	displays	the	list	of	the	current	sessions	and	allows	users	to
choose	a	game	from	the	list	or	create	a	new	one.	If	Join	is	clicked,	the
SessionDlgJoinGame	function	calls	IDirectPlay8Peer::SetPeerInfo	to
set	the	player	name	and	IDirectPlay8Peer::Connect	to	connect	to	a
game.	If	Create	is	clicked,	the	SessionDlgCreateGame	function	calls
IDirectPlay8Peer::SetPeerInfo	to	set	the	player's	name	and
IDirectPlay8Peer::Host	to	begin	hosting	a	game.	A
DPN_APPLICATION_DESC	structure	filled	with	information	such	as	the
game	name,	max	player,	and	the	application	GUID	is	passed	in	the	call	to
Connect.

Once	connected,	if	Wave	to	other	players	is	clicked,	the
WaveToAllPlayers	function	calls	IDirectPlay8Peer::SendTo	with	the	dpnid
parameter	set	to	DPNID_ALL_PLAYERS_GROUP	and	the	pBufferDesc
parameter	pointing	to	a	DWORD	containing	GAME_MSGID_WAVE.

When	you	click	Exit,	all	the	interfaces	are	cleaned	up.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

StagedPeer

The	StagedPeer	sample	connects	players	together	with	dialog	boxes	that
allow	players	to	chat	and	to	start	a	new	game	at	the	same	time.	The	host
can	start	the	game	when	all	the	players	have	joined	and	everyone	is
ready.	The	host	player	can	also	reject	players	or	close	player	slots.	The
game	is	identical	to	the	SimplePeer	game.

When	the	game	starts,	players	can	press	the	Wave	to	other	players
button,	which	sends	a	simple	Microsoft®	DirectPlay®	message	to	all
other	players.

Path

Path:	(SDK	root)\Samples\C++\DirectPlay\StagedPeer

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

Programming	Notes

The	StagedPeer	sample	is	similar	in	form	to	the	SimplePeer	sample.
StagedPeer	differs	only	by	displaying	a	multiplayer	stage	using	a	dialog
box.	See	Netstage.cpp	and	Netstage.h	for	details.	For	more	information,
see	the	Programming	Notes	section	of	the	SimplePeer	sample.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Throttle

The	Throttle	sample	demonstrates	how	to	monitor	the	send	queue	and
scale	the	rate	of	network	communications.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\Throttle

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

Start	the	Throttle	Server	by	double-clicking	on	the	ThrottleServer.exe	in
the	Bin	folder.	Wait	for	a	moment	while	it	connects	to	the	network.	When
the	server	is	ready	to	accept	connection,	the	dialog	user	interface	(UI)	will
appear.	While	the	server	is	running,	you	can	adjust	the	Server	Load
slider	to	simulate	the	processing	load	on	the	server.	The	higher	the	load
setting,	the	slower	the	server	will	handle	incoming	messages.

After	the	server	is	running,	launch	the	Throttle	Client	by	double-clicking
on	the	ThrottleClient.exe	in	the	bin	folder.	The	client	will	prompt	for	the
host	name	or	Internet	Protocol	(IP)	address	where	the	server	is	running.
The	port	number	is	fixed.	When	the	client	is	connected	to	the	server,	the
server	will	indicate	the	added	connection	and	show	the	amount	of
received	data.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	Microsoft®	DirectPlay®	perform	a	search	for
the	address,	select	the	use	DPNSVR	check	box.

You	can	adjust	the	Send	Interval	slider	on	the	Client	window	to	set	the
delay	between	successive	calls	to	IDirectPlay8Client::Send.	With	the
default	settings,	the	server's	receive	buffer	will	quickly	fill	to	capacity,	and
outgoing	messages	will	fill	the	client's	send	queue.	When	the	Regulate
Outgoing	Rate	box	is	checked,	the	program	will	attempt	to	scale	the
number	of	outgoing	messages	to	keep	the	queue	size	below	the	Max
Queue	Size	set	by	the	slider.

Note		Adjustments	to	any	of	the	client	or	server	controls	causes	a
corresponding	change	in	the	queue	size	and	wait	as	reported	in	the
Outgoing	Data	group	box.	Multiple	clients	can	be	connected
simultaneously	to	model	a	typical	multiplayer	session.

Programming	Notes

To	understand	why	you	might	need	to	throttle	outgoing	data	in	your
application,	you	need	to	understand	the	DirectPlay	architecture	and
DirectPlay	Service	Providers.

DPN_SP_CAPS	contains	a	list	of	capabilities	and	settings	for	service
providers.	This	sample	focuses	on	dwNumThreads,
dwBuffersPerThread,	and	dwSystemBufferSize.	During	most
Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	sessions,
DirectPlay	immediately	delivers	messages	to	the	receiver's	system
queue.	The	threads	take	messages	from	the	system	buffer	and	store
them	in	their	own	message	buffers	until	they	can	be	received	by	the
message	handler.

When	the	thread	buffers	fill	up	and	the	system	buffer	fills	up,	DirectPlay
won't	allow	any	further	messages	to	be	delivered.	Any	messages
destined	for	that	target	are	then	stored	in	the	local	send	queue	until
enough	space	frees	up	on	the	remote	computer.

You	can	adjust	these	parameters	to	suit	your	application,	but	increases	in
buffer	size	usually	translate	to	increases	in	game	lag.	Therefore,	it's	best
to	leave	these	values	for	the	service	provider	to	decide	and	concentrate
instead	on	Optimizing	Network	Usage.

Usually,	the	send	queue	is	needed	only	for	temporary	spikes	in	network
traffic.	However,	if	a	player	continues	to	send	messages	faster	than	the
target	can	receive	them,	the	send	queue	will	continue	to	grow.	If	no
precautions	are	taken,	any	outgoing	messages	will	take	several	seconds,
possibly	minutes,	to	make	their	way	through	all	the	queues.	This	will
effectively	end	the	game.

One	easy	way	to	combat	this	is	to	place	a	timeout	value	on	outgoing
messages.	You	can	give	critical	messages	a	higher	timeout	value	and	a
different	priority.	In	extreme	circumstances,	you	can	still	run	into	a
problem	where	messages	consistently	time	out	before	reaching	the
target.	For	the	most	flexibility,	you	should	also	monitor	the	send	queue
and	adjust	the	rate	of	outgoing	data	accordingly.

This	sample	takes	the	simple	approach	of	blocking	a	portion	of	outgoing
data,	based	on	the	current	send	queue	size.	Because	the	application	is
responsible	for	blocking	the	data,	it	would	be	possible	to	store	a	running
total	of	blocked	data	and	send	an	averaged	block	of	data	the	next	time
space	allows.	That	way,	critical	data	is	never	lost	and	minor	update	data
can	be	screened	or	combined	to	ease	the	output	rate.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

VoiceClientServer

The	VoiceClientServer	sample	is	a	simple	Microsoft®	DirectPlay®	voice-
based	client/server	application.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\VoiceClientServer

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

Refer	to	the	User's	Guide	section	of	the	SimpleClientServer	sample	for
basic	information	about	running	client/server	samples.

In	addition	to	what	SimpleClientServer	does,	the	VoiceClientServer
allows	you	to	select	the	voice	codec	you	want	to	use	and	to	select	either
a	forwarding	server	or	a	mixing	server.	For	more	information	about	these
server	types,	see	the	Microsoft	DirectX®	documents.

The	VoiceClient	allows	any	client	to	alter	the	playback	or	capture	settings
by	clicking	Setup	once	the	chat	session	has	begun.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

VoiceConnect

The	VoiceConnect	sample	shows	how	to	network	with	other	players	to
start	a	Microsoft®	DirectPlay®	Voice	chat	session.	After	joining	or
creating	a	session,	the	players	can	use	a	microphone	to	talk	to	one	other.
Other	players	can	join	the	session	at	any	time.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\VoiceConnect

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

For	information	about	how	to	connect,	refer	to	the	User's	Guide	section	of
the	SimplePeer	sample.	After	connecting,	the	host	is	presented	with	a
dialog	box	asking	which	voice	codec	to	use.	Typical	voice	applications
automatically	select	a	voice	codec,	or	present	this	to	the	user	in	some
other	fashion.	When	the	chat	session	begins,	any	client	can	alter	the
playback	or	capture	settings	by	clicking	Setup.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

Programming	Notes

The	VoiceConnect	sample	is	very	similar	in	form	to	the	SimplePeer
sample.	The	VoiceConnect	differs	by	letting	clients	use	DirectPlay	Voice
to	talk	to	each	other	using	a	computer	microphone.	For	detailed
programming	notes,	see	the	Programming	Notes	section	of	the
SimplePeer	sample.

To	create	the	voice	functionality,	the	application	must	first	initialize
DirectPlay	voice.	This	sample	does	this	by	calling	CNetVoice::Init	when
the	main	dialog	is	initialized.	CNetVoice::Init	performs	the	following	tasks.

Calls	the	VoiceSessionTestAudioSetup	function	to	test	the	audio
setup	with	DirectPlay	Voice.	VoiceSessionTestAudioSetup	does
the	following:

Creates	an	IDirectPlayVoiceTest	object	with
CoCreateInstance.

Calls	IDirectPlayVoiceTest::CheckAudioSetup	with	the
DVFLAGS_QUERYONLY	flag	set.	This	will	return
DVERR_RUNSETUP	if	the	setup	wizard	needs	to	be	run.
To	run	the	setup	wizard,	call
IDirectPlayVoiceTest::CheckAudioSetup	again	without
the	DVFLAGS_QUERYONLY	flag.	If	it	returns	successfully,
then	the	VoiceConnect	sample	continues,	otherwise	the
sample	ends.

Releases	the	IDirectPlayVoiceTest	object.

Calls	the	VoiceSessionCreate	function	to	create	the	audio	setup
with	DirectPlay	Voice	if	the	player	is	hosting.	VoiceSessionCreate
does	the	following:

Creates	an	IDirectPlayVoiceServer	with
CoCreateInstance.

Calls	IDirectPlayVoiceServer::Initialize	to	register	the	voice
server	message	handler.	The	DirectPlay	interface	is	also
passed	here.

Fills	out	a	DVSESSIONDESC	structure	with	the	session
type	and	the	desired	voice	codec.

Calls	IDirectPlayVoiceServer::StartSession	passing	in	the
DVSESSIONDESC	structure.

If	the	player	is	either	hosting	or	joining,	the	application	calls	the
VoiceSessionConnect	function,	which	uses	the	following	steps	to
connect	to	the	session.

Create	an	IDirectPlayVoiceClient	with	CoCreateInstance.

Call	IDirectPlayVoiceClient::Initialize	to	register	the	voice
client	message	handler.	The	DirectPlay	interface	is	also
passed	here.

Fill	out	a	DVSOUNDDEVICECONFIG	structure	with	the
globally	unique	identifiers	(GUIDs)	for	the	Microsoft
DirectShow®	playback	and	capture	devices.

Fill	out	a	DVCLIENTCONFIG	structure.	In	this	sample,	this
structure	is	filled	out	when	with	a	dialog	box.	More	complex
applications	might	want	to	do	this	a	different	way.	See	the
VoiceConfigDlgProc	function	in	VoiceConnect.cpp.

Call	IDirectPlayVoiceClient::Connect	passing	the
DVSOUNDDEVICECONFIG	and	DVCLIENTCONFIG
structures.

Call	IDirectPlayVoiceClient::SetTransmitTargets	to	the
desired	default	target.	This	sample	sets	the	target	value	to
DVID_ALLPLAYERS,	which	targets	all	players.

Call	IDirectPlayVoiceClient::GetSoundDeviceConfig.	Check
for	the	DVSOUNDCONFIG_HALFDUPLEX	flag	in	the
dwflags	member	of	the	DVSOUNDDEVICECONFIG
structure	returned	to	figure	out	if	this	client	is	in	half-duplex
mode.	In	half-duplex	mode,	the	client	cannot	talk	but	can
listen.

DirectPlayVoiceClientMessageHandler	handles	different	DirectPlay
messages	such	as:

DVMSGID_CREATEVOICEPLAYER

DVMSGID_DELETEVOICEPLAYER

DVMSGID_HOSTMIGRATED

DVMSGID_GAINFOCUS	and	DVMSGID_LOSTFOCUS

DVMSGID_RECORDSTART

DVMSGID_RECORDSTOP

DVMSGID_PLAYERVOICESTART

DVMSGID_PLAYERVOICESTOP

When	Exit	is	clicked,	the	application	needs	to	clean	up	DirectPlay	Voice
by	calling	CNetVoice::Free,	which	does	the	following:

1.	 Disconnects	the	player	from	the	voice	session.	The
VoiceSessionDisconnect	function	calls
IDirectPlayVoiceClient::Disconnect	and	releases	the
IDirectPlayVoiceClient	object.

2.	 Destroys	the	voice	session	if	this	player	is	the	host.	The
VoiceSessionDestroy	function	calls
IDirectPlayVoiceServer::StopSession	and	releases	the
IDirectPlayVoiceServer	object

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

VoiceGroup

The	VoiceGroup	sample	shows	how	use	Microsoft®	DirectPlay®	Voice	to
enable	users	to	talk	to	a	specific	group	of	players.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\VoiceGroup

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

Refer	to	the	User's	Guide	section	of	the	VoiceConnect	sample	for	basic
information	about	starting	up	the	voice	samples.

With	VoiceGroup,	you	can	click	Cycle	Group	Assignment	to	change	the
local	player's	group	assignment	to	1,	2,	3,	4,	or	5,	or	to	unassigned.	You
can	also	click	Cycle	Target	Assignment	to	change	the	local	player's
voice	target	assignment	to	1,	2,	3,	4,	or	5to	talk	with	only	one	of	those
groups,	or	to	Everyoneto	talk	with	everyone	in	the	session.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

VoicePosition

VoicePosition	is	similar	in	form	to	VoiceConnect.	VoicePosition	shows
how	use	3-D	positioning	with	Microsoft®	DirectPlay®	Voice.	It	uses	a
simple	2-D	grid	to	represent	a	playing	field.	Players	can	move	around	the
playing	field	to	hear	the	effects	of	3-D	spatial	positioning.

Path

Source:	(SDK	root)\Samples\C++\DirectPlay\VoicePosition

Executable:	(SDK	root)\Samples\C++\DirectPlay\Bin

User's	Guide

Refer	to	the	User's	Guide	section	of	the	VoiceConnect	sample	for	basic
information	about	starting	up	the	voice	samples.

With	VoicePosition,	you	can	click	anywhere	on	the	2-D	grid	to	move	your
local	player	on	the	playing	field.	The	player	always	faces	up,	so	players
to	the	left	of	your	player	will	sound	off	from	the	left	speaker.

Note		If	you	choose	the	Internetwork	Packet	Exchange	(IPX)	service
provider	and	want	to	have	DirectPlay	perform	a	search	for	the	address,
select	the	use	DPNSVR	check	box.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay	C/C++	Reference

Reference	material	for	the	Microsoft®	DirectPlay®	C/C++	application
programming	interface	is	divided	into	the	following	categories.

Interfaces

Functions

Callback	Functions

System	Messages

Structures

Return	Values

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Interfaces

This	section	contains	references	for	methods	of	the	Microsoft®
DirectPlay®	interfaces.

Interfaces

IDirectPlay8Address

IDirectPlay8AddressIP

IDirectPlay8Client

IDirectPlay8LobbiedApplication

IDirectPlay8LobbyClient

IDirectPlay8NATResolver

IDirectPlay8Peer

IDirectPlay8Server

IDirectPlay8ThreadPool

IDirectPlayNATHelp

IDirectPlayVoiceClient

IDirectPlayVoiceServer

IDirectPlayVoiceTest

IDP8SimControl

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address	Interface

The	IDirectPlay8Address	interface	contains	generic	addressing
methods	used	to	create	and	manipulate	addresses	for	Microsoft®
DirectPlay®.	This	interface	is	one	of	the	interfaces	available	through	the
CLSID_DirectPlay8Address	Component	Object	Model	(COM)	object.	To
create	an	object	that	supports	this	interface,	use	the
CoCreateInstanceEx	method	for	the	CLSID	CLSID_DirectPlay8Address
that	specifies	the	IID_IDirectPlay8Address	interface.

IDirectPlay8Address	Members

AddComponent Adds	a	component	to	the	address.	If	the	component	is	part	of	the	address,	it	is	replaced
by	the	new	value	in	this	call.

Values	are	specified	in	native	formats	when	making	this	call.	Therefore,	the	lpvData
parameter	should	be	a	recast	pointer	to	a	variable	that	holds	the	data	in	the	native
format.	For	example,	if	the	component	is	a	globally	unique	identifier	(GUID),	the	lpvData
parameter	should	be	a	recast	pointer	to	a	GUID.

This	method	validates	that	the	predefined	component	types	are	the	right	format.

BuildFromDPADDRESS Sets	the	current	object's	internal	address	to	be	the	DirectPlay	8	equivalent	of	the
specified	DirectPlay	4	address.	The	purpose	of	this	method	is	to	allow	lobby	developers
to	launch	games	with	the	new	DirectPlay	interface	using	the	old	lobby	code.

This	method	enumerates	the	address	components	in	the	specified	address	and	adds
the	corresponding	element	to	the	DirectPlay	8	address.

BuildFromURLA Sets	the	object	equal	to	the	specified	DirectPlay			URL	string.	It	erases	the	contents	of
the	object.

BuildFromURLW Sets	the	object	equal	to	the	specified	DirectPlay			URL	string.	It	erases	the	contents	of
the	object.

Clear Resets	the	address	object	to	an	empty	address.

Duplicate Creates	a	DirectPlay	Address	object	that	duplicates	the	address	in	this	object.

GetComponentByIndex Retrieves	information	about	the	component	at	the	specified	index.	Values	for	the
component	are	retrieved	in	their	native	format.	If	the	component	key	is	not	found,	the
method	returns	DPNERR_DOESNOTEXIST.

The	value	of	the	component	is	retrieved	in	its	native	format.	Therefore,	if	the
component's	value	is	a	DWORD,	a	DWORD	is	retrieved	by	this	call.	So	buffer	size	=	4
and	pvBuffer	should	be	a	recast	PDWORD.

GetComponentByName Retrieves	information	about	the	component	at	the	specified	key.	Values	for	the
component	are	retrieved	in	their	native	format.	If	the	component	key	is	not	found,
DPNERR_DOESNOTEXIST	is	returned.

The	value	of	the	component	is	retrieved	in	its	native	format.	Therefore,	if	the
component's	value	is	a	DWORD,	a	DWORD	is	retrieved	by	this	call.	So	buffer	size	=	4
and	pvBuffer	should	be	a	recast	PDWORD.

GetDevice Retrieves	the	local	device	GUID	in	the	address	object.	If	no	device	is	specified,	this
method	returns	DPNERR_DOESNOTEXIST.

GetNumComponents Retrieves	the	number	of	components	in	the	address.

GetSP Retrieves	the	service	provider	GUID	in	the	address	object.	If	no	service	provider	is
specified,	this	method	returns	DPNERR_DOESNOTEXIST.

GetURLA Retrieves	the	DirectPlay	address	URL	string	represented	by	this	object	(ANSI	version).

GetURLW Retrieves	the	DirectPlay	address	URL	string	represented	by	this	object.

GetUserData Retrieves	the	user	data	in	the	address	object.	If	no	user	data	exists	in	this	address
object,	this	method	returns	DPNERR_DOESNOTEXIST.

IsEqual Compares	two	addresses	to	see	if	they	are	equal.

SetDevice Sets	the	local	device	GUID	in	the	address	object.	If	a	local	device	is	specified	for	this
address,	it	is	overwritten	by	this	call.

SetEqual Sets	the	contents	of	the	object	it	is	called	on	to	match	the	contents	of	the	address	object
passed	to	the	method.

SetSP Sets	the	service	provider	GUID	in	the	address	object.	If	a	service	provider	is	specified
for	this	address,	it	is	overwritten	by	this	call.

SetUserData Sets	the	user	data	in	the	address	object.	If	there	is	user	data	in	this	address,	it	is
overwritten	by	this	call.

Remarks

In	order	to	deliver	messages,	each	participant	in	a	multiplayer	game
must	have	a	unique	address.	Addresses	can	refer	either	to	the

computer	that	your	application	is	running	on	(device	address),	or	a
computer	that	your	application	needs	to	communicate	with	(host
address).

DirectPlay	represents	addresses	as	URLs.	These	URLs	are	then
encapsulated	in	the	address	object	so	that	they	can	be	passed	to	or
from	the	DirectPlay	API.	In	general,	address	URLs	are	strings	that
consist	of	three	basic	components	in	the	following	order:	scheme,
scheme	separator,	and	data	string.

All	DirectPlay	addresses	use	"x-directplay"	as	the	scheme,	and	":/"
as	the	scheme	separator.	Using	":/"	as	a	separator	implies	that	the
data	that	follows	is	opaque.	In	other	words,	the	data	string	does	not
conform	to	any	Internet	standard,	and	should	just	be	passed	on	to
the	receiving	application	without	modification.	All	DirectPlay	URLs
thus	have	the	following	general	form:

x-directplay:/[data	string]

There	are	two	basic	approaches	to	handling	address	objects:

Handle	the	data	string	directly,	using	normal	string
manipulation	techniques.

Use	the	methods	exposed	by	IDirectPlay8Address	to	obtain
or	modify	the	individual	elements	of	the	data	string.

For	more	information	about	DirectPlay	addresses,	see	DirectPlay
Addressing.

Interface	Information

Inherits	from IUnknown

Header dpaddr.h

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::AddComponent	Method

Adds	a	component	to	the	address.	If	the	component	is	part	of	the
address,	it	is	replaced	by	the	new	value	in	this	call.

Values	are	specified	in	native	formats	when	making	this	call.	Therefore,
the	lpvData	parameter	should	be	a	recast	pointer	to	a	variable	that	holds
the	data	in	the	native	format.	For	example,	if	the	component	is	a	globally
unique	identifier	(GUID),	the	lpvData	parameter	should	be	a	recast
pointer	to	a	GUID.

This	method	validates	that	the	predefined	component	types	are	the	right
format.

Syntax

HRESULT	AddComponent(
				const	WCHAR	*const	pwszName,
				const	void	*const	lpvData,
				const	DWORD	dwDataSize,
				const	DWORD	dwDataType
);

Parameters

pwszName
[in]	NULL-terminated	Unicode	string	that	contains	the	key	for	the
component.	You	can	set	this	to	a	valid	string	or	use	one	of	the
following	predefined	values.
DPNA_KEY_APPLICATION_INSTANCE
DPNA_KEY_BAUD
DPNA_KEY_DEVICE
DPNA_KEY_FLOWCONTROL
DPNA_KEY_HOSTNAME

DPNA_KEY_NAMEINFO
DPNA_KEY_NAT_RESOLVER
DPNA_KEY_NAT_RESOLVER_USER_STRING
DPNA_KEY_PARITY
DPNA_KEY_PHONENUMBER
DPNA_KEY_PORT
DPNA_KEY_PROCESSOR
DPNA_KEY_PROGRAM
DPNA_KEY_PROVIDER
DPNA_KEY_SCOPE
DPNA_KEY_STOPBITS
DPNA_KEY_TRAVERSALMODE

lpvData
[in]	Pointer	to	a	buffer	that	contains	the	value	associated	with
the	specified	key.	Data	should	be	specified	in	its	native	format.

dwDataSize
[in]	Size,	in	bytes,	of	the	data	in	the	buffer	located	at	lpvData.
The	size	depends	on	the	data	type.	If	the	size	is	not	specified
correctly,	the	method	returns	DPNERR_INVALIDPARAM.
DWORD

Size	=	sizeof(DWORD)
GUID

Size	=	sizeof(GUID)
String

Size	=	size	of	the	string	in	bytes,	including	the	terminating
NULL	character.

dwDataType
[in]	Data	type	of	the	value	associated	with	this	key.	The	data
type	can	be	one	of	the	following:
DPNA_DATATYPE_STRING

Data	is	a	NULL-terminated	string.
DPNA_DATATYPE_STRING_ANSI

Data	is	a	NULL-terminated	ANSI	string.
DPNA_DATATYPE_DWORD

Data	is	a	DWORD.
DPNA_DATATYPE_GUID

Data	is	a	GUID.
DPNA_DATATYPE_BINARY

Data	is	in	raw	binary	format.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

For	a	discussion	of	various	address	components	and	their	keys,	see
Data	Values.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::BuildFromDPADDRESS	Method

Sets	the	current	object's	internal	address	to	be	the	Microsoft®
DirectPlay®	8	equivalent	of	the	specified	DirectPlay	4	address.	The
purpose	of	this	method	is	to	allow	lobby	developers	to	launch	games	with
the	new	DirectPlay	interface	using	the	old	lobby	code.

This	method	enumerates	the	address	components	in	the	specified
address	and	adds	the	corresponding	element	to	the	DirectPlay	8
address.

Syntax

HRESULT	BuildFromDPADDRESS(
				LPVOID	pvAddress,
				DWORD	dwDataSize
);

Parameters

pvAddress
[in]	Pointer	to	a	DirectPlay	4	address	that	will	be	converted	to
the	DirectPlay	8	address	format.

dwDataSize
[in]	Size	of	data	contained	in	the	pvAddress	parameter.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDADDRESSFORMAT The	address	format	is	invalid.

DPNERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

Remarks

This	method	builds	a	DirectPlay	8	address	from	a	DirectPlay	4
address.	This	method	will	clear	the	current	address	of	all	elements
before	building	the	new	address.

This	method	has	the	following	limitations.

The	method	cannot	map	the	DPAID_Modem	address	element
because	DirectPlay	4	used	modem	names,	while	DirectPlay	8
uses	globally	unique	identifiers	(GUIDs)	to	identify	modems.

Elements	of	the	DirectPlay	4	address	that	are	not	part	of	the
predefined	DirectPlay	4	address	elements	will	result	in	an
error	and	a	return	value	of
DPNERR_INVALIDADDRESSFORMAT.	See	DirectPlay	4
documentation	on	DirectPlay	addresses	for	a	complete	list	of
the	DirectPlay	4	address	elements.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::BuildFromURLA	Method

Sets	the	object	equal	to	the	specified	Microsoft®	DirectPlay®			URL
string.	It	erases	the	contents	of	the	object.

Syntax

HRESULT	BuildFromURLA(
				CHAR	*pszSourceURL
);

Parameters

pszSourceURL
[in]	Pointer	to	a	NULL-terminated	ANSI	string	that	contains	a
properly	formatted	DirectPlay	address.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_INVALIDURL Specified	string	is	not	a	valid	DirectPlayURL.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

The	Dpaddr.h	header	file	defines	a	number	of	standard	strings	that
you	can	use	to	construct	your	URL	instead	using	a	literal	string.	All	of
the	string	names	have	the	form	DPNA_xxx.	For	example,
DPNA_HEADER	can	be	used	in	place	of	L"x-directplay:/"	for	the
URL	header.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::BuildFromURLW	Method

Sets	the	object	equal	to	the	specified	Microsoft®	DirectPlay®			URL
string.	It	erases	the	contents	of	the	object.

Syntax

HRESULT	BuildFromURLW(
				WCHAR	*pwszSourceURL
);

Parameters

pwszSourceURL
[in]	Pointer	to	a	NULL-terminated	Unicode	string	that	contains	a
properly	formatted	DirectPlay	address.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_INVALIDURL Specified	string	is	not	a	valid	DirectPlayURL.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

The	Dpaddr.h	header	file	defines	a	number	of	standard	strings	that
you	can	use	to	construct	your	URL	instead	using	a	literal	string.	All	of
the	string	names	have	the	form	DPNA_xxx.	For	example,
DPNA_HEADER	can	be	used	in	place	of	L"x-directplay:/"	for	the
URL	header.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::Clear	Method

Resets	the	address	object	to	an	empty	address.

Syntax

HRESULT	Clear(VOID);

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::Duplicate	Method

Creates	a	Microsoft®	DirectPlay®	Address	object	that	duplicates	the
address	in	this	object.

Syntax

HRESULT	Duplicate(
				PDIRECTPLAY8ADDRESS	*ppdpaNewAddress
);

Parameters

ppdpaNewAddress
[out]	Address	of	a	pointer	to	receive	the	IDirectPlay8Address
pointer	for	the	duplicate	object.	DirectPlay	increments	the
reference	count	for	this	interface.	You	must	release	the	interface
when	you	no	longer	need	it.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_GENERIC An	undefined	error	condition	occurred.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetComponentByIndex	Method

Retrieves	information	about	the	component	at	the	specified	index.	Values
for	the	component	are	retrieved	in	their	native	format.	If	the	component
key	is	not	found,	the	method	returns	DPNERR_DOESNOTEXIST.

The	value	of	the	component	is	retrieved	in	its	native	format.	Therefore,	if
the	component's	value	is	a	DWORD,	a	DWORD	is	retrieved	by	this	call.
So	buffer	size	=	4	and	pvBuffer	should	be	a	recast	PDWORD.

Syntax

HRESULT	GetComponentByIndex(
				const	DWORD	dwComponentID,
				WCHAR	*pwszName,
				PDWORD	pdwNameLen,
				void	*pvBuffer,
				PDWORD	pdwBufferSize,
				PDWORD	pdwDataType
);

Parameters

dwComponentID
[in]	Index	of	the	component	to	retrieve.	This	value	is	zero-based
and	should	be	in	the	range	of	[0..GetNumComponents()-1].

pwszName
[out]	Buffer	to	retrieve	the	name	of	the	component	on	a
successful	call.	To	retrieve	the	size	required,	specify	NULL	for
this	parameter	and	0	for	the	DWORD	pointed	to	by
pdwNameLen.	The	method	returns
DPNERR_BUFFERTOOSMAL	in	this	case.

pdwNameLen
[in,	out]	On	input,	a	pointer	to	a	DWORD	that	contains	the	size
of	the	buffer,	in	characters	including	the	terminating	NULL

character,	pointed	to	by	pwszName.	On	output,	a	pointer	to	a
DWORD	that	contains	the	number	of	characters	written	to	the
buffer,	including	the	terminating	NULL	character,	on	success
and	on	failure,	the	number	of	characters	required,	including	the
terminating	NULL	character,	to	store	this	value.

pvBuffer
[out]	Buffer	to	retrieve	the	data	stored	in	the	value	of	the
component.	To	retrieve	the	size	required,	specify	NULL	for	this
parameter	and	0	for	the	DWORD	pointed	to	by	pdwBufferSize.
The	method	returns	DPNERR_BUFFERTOOSMALL	in	this
case.

pdwBufferSize
[in,	out]	On	input,	a	pointer	to	a	DWORD	containing	the	size	of
the	buffer,	in	bytes,	pointed	to	by	pvBuffer.	On	output,	a	pointer
to	a	DWORD	that	contains	the	number	of	bytes	written	to	the
buffer	on	success	and	on	failure,	the	number	of	bytes	required
to	store	the	data.

pdwDataType
[out]	DWORD	pointed	to	by	this	parameter	that	is	set	to	the	type
of	data	that	is	stored	in	this	component.	This	can	be	one	of	the
following:
DPNA_DATATYPE_STRING

Data	is	a	NULL-terminated	string.
DPNA_DATATYPE_DWORD

Data	is	a	DWORD.
DPNA_DATATYPE_GUID

Data	is	a	globally	unique	identifier	(GUID).
DPNA_DATATYPE_BINARY

Data	is	raw	binary.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_DOESNOTEXIST Requested	element	is	not	part	of	the	address.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetComponentByName	Method

Retrieves	information	about	the	component	at	the	specified	key.	Values
for	the	component	are	retrieved	in	their	native	format.	If	the	component
key	is	not	found,	DPNERR_DOESNOTEXIST	is	returned.

The	value	of	the	component	is	retrieved	in	its	native	format.	Therefore,	if
the	component's	value	is	a	DWORD,	a	DWORD	is	retrieved	by	this	call.
So	buffer	size	=	4	and	pvBuffer	should	be	a	recast	PDWORD.

Syntax

HRESULT	GetComponentByName(
				const	WCHAR	*const	pwszName,
				void	*pvBuffer,
				PDWORD	pdwBufferSize,
				PDWORD	pdwDataType
);

Parameters

pwszName
[in]	String	specifying	the	name	of	the	component	you	want	to
retrieve.

pvBuffer
[out]	Buffer	to	retrieve	the	data	stored	in	the	value	of	the
component.	To	retrieve	the	size	required,	specify	NULL	for	this
parameter	and	0	for	the	DWORD	pointed	to	by	pdwBufferSize.
The	method	returns	DPNERR_BUFFERTOOSMALL	in	this
case.

pdwBufferSize
[in,	out]	On	input,	a	pointer	to	a	DWORD	that	contains	the	size
of	the	buffer,	in	bytes,	pointed	to	by	pvBuffer.	On	output,	a
pointer	to	a	DWORD	that	contains	the	number	of	bytes	written
to	the	buffer	on	success	and	on	failure,	the	number	of	bytes

required	to	store	the	data.
pdwDataType

[out]	DWORD	pointed	to	by	this	parameter	that	is	set	to	the	type
of	data	that	is	stored	in	this	component.	This	can	be	one	of	the
following:
DPNA_DATATYPE_STRING

Data	is	a	NULL-terminated	string.
DPNA_DATATYPE_DWORD

Data	is	a	DWORD.
DPNA_DATATYPE_GUID

Data	is	a	globally	unique	identifier	(GUID).
DPNA_DATATYPE_BINARY

Data	is	raw	binary.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_DOESNOTEXIST Requested	element	is	not	part	of	the	address.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetDevice	Method

Retrieves	the	local	device	globally	unique	identifier	(GUID)	in	the	address
object.	If	no	device	is	specified,	this	method	returns
DPNERR_DOESNOTEXIST.

Syntax

HRESULT	GetDevice(
				GUID	*pguidDevice
);

Parameters

pguidDevice
[out]	Pointer	to	a	GUID	to	receive	the	device	in	the	address
object.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_DOESNOTEXIST Requested	element	is	not	part	of	the	address.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetNumComponents	Method

Retrieves	the	number	of	components	in	the	address.

Syntax

HRESULT	GetNumComponents(
				PDWORD	pdwNumComponents
);

Parameters

pdwNumComponents
[out]	Pointer	to	a	DWORD	to	receive	the	number	of	components
in	this	address	object.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetSP	Method

Retrieves	the	service	provider	globally	unique	identifier	(GUID)	in	the
address	object.	If	no	service	provider	is	specified,	this	method	returns
DPNERR_DOESNOTEXIST.

Syntax

HRESULT	GetSP(
				GUID	*pguidSP
);

Parameters

pguidSP
[out]	Pointer	to	a	GUID	to	receive	the	service	provider	in	the
address	object.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_DOESNOTEXIST Requested	element	is	not	part	of	the	address.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetURLA	Method

Retrieves	the	Microsoft®	DirectPlay®	address	URL	string	represented	by
this	object	(ANSI	version).

Syntax

HRESULT	GetURLA(
				CHAR	*pszURL,
				PDWORD	pdwNumChars
);

Parameters

pszURL
[out]	Address	of	a	pointer	to	receive	the	URL	represented	by	this
object.	This	parameter	can	be	NULL	if	pdwNumChars	points	to
a	DWORD	containing	0.

pdwNumChars
[in,	out]	Pointer	to	a	DWORD	that	contains	the	number	of
characters	the	specified	buffer	can	hold,	including	the
terminating	NULL	character.	On	success	this	value	contains	the
number	of	characters	written	to	the	specified	buffer,	including
the	terminating	NULL	character.	On	failure	this	value	contains
the	number	of	characters,	including	the	terminating	NULL
character,	required	to	hold	the	URL	and	the	method	returns
DPNERR_BUFFERTOOSMALL.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_GENERIC An	undefined	error	condition	occurred.

DPNERR_INVALIDURL Specified	string	is	not	a	valid	DirectPlayURL.

DPNERR_OUTOFMEMORY There	is	insufficient	memory	to	perform	the	requested	operation.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetURLW	Method

Retrieves	the	Microsoft®	DirectPlay®	address	URL	string	represented	by
this	object.

Syntax

HRESULT	GetURLW(
				WCHAR	*pwszURL,
				PDWORD	pdwNumChars
);

Parameters

pwszURL
[out]	Address	of	a	pointer	to	receive	the	URL	represented	by	this
object.	This	parameter	can	be	NULL	if	pdwNumChars	points	to
a	DWORD	containing	0.

pdwNumChars
[in,	out]	Pointer	to	a	DWORD	that	contains	the	number	of
characters	the	specified	buffer	can	hold,	including	the
terminating	NULL	character.	On	success	this	value	contains	the
number	of	characters	written	to	the	specified	buffer,	including
the	terminating	NULL	character.	On	failure	this	value	contains
the	number	of	characters,	including	the	terminating	NULL
character,	required	to	hold	the	URL	and	the	method	returns
DPNERR_BUFFERTOOSMALL.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_GENERIC An	undefined	error	condition	occurred.

DPNERR_INVALIDURL Specified	string	is	not	a	valid	DirectPlayURL.

DPNERR_OUTOFMEMORY There	is	insufficient	memory	to	perform	the	requested	operation.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::GetUserData	Method

Retrieves	the	user	data	in	the	address	object.	If	no	user	data	exists	in	this
address	object,	this	method	returns	DPNERR_DOESNOTEXIST.

Syntax

HRESULT	GetUserData(
				void	*pvUserData,
				PDWORD	pdwBufferSize
);

Parameters

pvUserData
[out]	Pointer	to	a	buffer	to	receive	the	user	data	from	this
address.	To	retrieve	the	required	size,	set	this	parameter	to
NULL	and	the	DWORD	in	pdwBufferSizeto	0.

pdwBufferSize
[in,	out]	Size,	in	bytes,	of	the	buffer	pointed	to	by	pvUserData.	If
pvUserData	is	NULL,	this	parameter	must	point	to	a	DWORD
containing	0.	On	output,	the	contained	DWORD	is	set	to	the
number	of	bytes	written	to	the	buffer.	On	failure,	this	contains
the	number	of	bytes	required	to	retrieve	the	user	data	and	the
method	returns	DPNERR_BUFFERTOOSMALL.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_DOESNOTEXIST Requested	element	is	not	part	of	the	address.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::IsEqual	Method

Compares	two	addresses	to	see	if	they	are	equal.

Syntax

HRESULT	IsEqual(
				PDIRECTPLAY8ADDRESS	pdpaAddress
);

Parameters

pdpaAddress
[in]	Address	to	compare	to	the	address	contained	within	the
object.

Return	Value

If	the	addresses	are	equal	DPNSUCCESS_EQUAL	is	returned.	If	the
addresses	are	not	equal	DPNSUCCESS_NOTEQUAL	is	returned.

If	the	method	fails,	one	of	the	following	error	values	may	be	returned.

DPNERR_INVALIDADDRESSFORMAT The	address	format	is	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

Remarks

This	method	checks	the	contents	of	the	address	specified	by	the
pdpaAddress	parameter	and	compares	it	to	the	address	contained
within	the	object	this	method	was	called	on.	This	method	does	not
affect	the	contents	of	either	address.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::SetDevice	Method

Sets	the	local	device	globally	unique	identifier	(GUID)	in	the	address
object.	If	a	local	device	is	specified	for	this	address,	it	is	overwritten	by
this	call.

Syntax

HRESULT	SetDevice(
				const	GUID	*const	pguidDevice
);

Parameters

pguidDevice
[in]	Pointer	to	a	GUID	of	the	local	device.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::SetEqual	Method

Sets	the	contents	of	the	object	it	is	called	on	to	match	the	contents	of	the
address	object	passed	to	the	method.

Syntax

HRESULT	SetEqual(
				PDIRECTPLAY8ADDRESS	pdpaAddress
);

Parameters

pdpaAddress
[in]	Pointer	to	a	IDirectPlay8Address	object	that	this	object	will
be	set	to.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDADDRESSFORMAT The	address	format	is	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::SetSP	Method

Sets	the	service	provider	globally	unique	identifier	(GUID)	in	the	address
object.	If	a	service	provider	is	specified	for	this	address,	it	is	overwritten
by	this	call.

Syntax

HRESULT	SetSP(
				const	GUID	*const	pguidSP
);

Parameters

pguidSP
[in]	Pointer	to	the	service	provider	GUID.	This	can	be	one	of	the
following	predefined	values.
CLSID_DP8SP_TCPIP

Internet	Protocol	(IP)	service	provider
CLSID_NETWORKSIMULATOR_DP8SP_TCPIP

Network	simulator	IP	service	providers
CLSID_DP8SP_SERIAL

Serial	service	provider
CLSID_DP8SP_MODEM

Modem	service	provider
CLSID_DP8SP_IPX

IPX	service	provider
CLSID_DP8SP_BLUETOOTH

Bluetooth	Service	Provider

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Address::SetUserData	Method

Sets	the	user	data	in	the	address	object.	If	there	is	user	data	in	this
address,	it	is	overwritten	by	this	call.

Syntax

HRESULT	SetUserData(
				const	void	*const	pvUserData,
				const	DWORD	dwDataSize
);

Parameters

pvUserData
[in]	Pointer	to	a	buffer	that	contains	the	data	to	place	in	the	user
data	section	of	the	address.	Set	to	NULL	to	clear	the	user	data.

dwDataSize
[in]	Size,	in	bytes,	of	the	data	in	pvUserData.	If	pvUserData	is
NULL,	this	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8AddressIP	Interface

The	IDirectPlay8AddressIP	interface	is	available	through	the
CLSID_DirectPlay8Address	Component	Object	Model	(COM)	object.
This	interface	is	used	for	Internet	Protocol	(IP)	provider-specific
addressing	services.

IDirectPlay8AddressIP	Members

BuildAddress Builds	a	remote	Microsoft®	DirectPlay®			IP	address	from	a	host	name	and	a	port.

BuildFromSockAddr Builds	a	remote	DirectPlay			IP	address	from	a	valid	SOCKADDR	structure.
BuildLocalAddress Builds	a	local	DirectPlay			IP	address	from	a	device	and	port.

GetAddress Retrieves	the	remote	address	information	from	a	remote	DirectPlay			IP	address.

GetLocalAddress Retrieves	the	local	address	information	from	a	DirectPlay			IP	address.

GetSockAddress Retrieves	a	list	of	SOCKADDR	structures	describing	the	addresses	represented	by	this
object.

Interface	Information

Inherits	from IUnknown

Header dpaddr.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8AddressIP::BuildAddress	Method

Builds	a	remote	Microsoft®	DirectPlay®			Internet	Protocol	(IP)	address
from	a	host	name	and	a	port.

Syntax

HRESULT	BuildAddress(
				const	WCHAR	*const	wszAddress,
				const	USHORT	usPort
);

Parameters

wszAddress
[in]	Remote	host	address	can	be	a	dotted	Internet	addressfor
example,	127.0.0.1or	a	valid	host	namefor	example,
example.microsoft.com.

usPort
[in]	Port	on	the	remote	host	to	which	to	connect.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

The	result	of	a	successful	call	is	a	valid	remote	address	with	the
following	elements.

DPNA_KEY_PROVIDER	=	CLSID_DP8SP_TCPIP

DPNA_KEY_HOSTNAME	=	specified	host	name

DPNA_KEY_PORT	=	specified	port

All	addressing	information	contained	in	the	object	before	the	call	is
erased.

Note		The	DPNSVR	is	a	DirectPlay	feature	that	allows	multiple
processes	to	share	a	single	port	for	enumeration.	Do	not	use	the
DPNA_DPNSVR_PORT	flag	when	constructing	a	device	address,	or
when	making	a	connection.	This	flag	should	only	be	used	for
enumerations.	If	you	do	not	add	a	port	element	to	the	enumeration
address,	the	port	represented	by	the	flag	will	be	automatically	added
to	that	address.	See	Using	the	DirectPlay	DPNSVR	Application	for	a
further	discussion	of	DPNSVR.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8AddressIP::BuildFromSockAddr	Method

Builds	a	remote	Microsoft®	DirectPlay®			Internet	Protocol	(IP)	address
from	a	valid	SOCKADDR	structure.

Syntax

HRESULT	BuildFromSockAddr(
				const	SOCKADDR	*const	pSockAddr
);

Parameters

pSockAddr
[in]	Valid	User	Datagram	Protocol	(UDP)	address	specified	in
SOCKADDR	form.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

The	SOCKADDR	structure	must	specify	an	IP	address.	If	the
address	is	not	in	the	correct	format,	DPNERR_INVALIDPARAM	is
returned.

The	result	of	a	successful	call	is	a	valid	remote	address	with	the
following	elements.

DPNA_KEY_PROVIDER	=	CLSID_DP8SP_TCPIP

DPNA_KEY_HOSTNAME	=	specified	host	name

DPNA_KEY_PORT	=	specified	port

All	addressing	information	contained	in	the	object	before	the	call	is
erased.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8AddressIP::BuildLocalAddress	Method

Builds	a	local	Microsoft®	DirectPlay®			Internet	Protocol	(IP)	address
from	a	device	and	port.

Syntax

HRESULT	BuildLocalAddress(
				const	GUID	*const	pguidAdapter,
				const	USHORT	usPort
);

Parameters

pguidAdapter
[in]	Local	device	identifier	to	host	on.

usPort
[in]	Port	on	the	local	device	to	host	on.	This	value	can	be	set	to
0	to	allow	DirectPlay	to	automatically	select	the	port.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

The	result	of	a	successful	call	is	a	valid	remote	address	with	the
following	elements.

DPNA_KEY_PROVIDER	=	CLSID_DP8SP_TCPIP

DPNA_KEY_DEVICE=	specified	device

DPNA_KEY_PORT	=	specified	port

All	addressing	information	contained	in	the	object	before	the	call	is
erased.

Note		The	DPNSVR	is	a	DirectPlay	feature	that	allows	multiple
processes	to	share	a	single	port	for	enumeration.	Do	not	use	the
DPNA_DPNSVR_PORT	flag	when	constructing	a	device	address,	or
when	making	a	connection.	This	flag	should	only	be	used	for
enumerations.	If	you	do	not	add	a	port	element	to	the	enumeration
address,	the	port	represented	by	the	flag	will	be	automatically	added
to	that	address.	See	Using	the	DirectPlay	DPNSVR	Application	for	a
further	discussion	of	DPNSVR.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8AddressIP::GetAddress	Method

Retrieves	the	remote	address	information	from	a	remote	Microsoft®
DirectPlay®			Internet	Protocol	(IP)	address.

Syntax

HRESULT	GetAddress(
				WCHAR	*wszAddress,
				PDWORD	pdwAddressLength,
				USHORT	*psPort
);

Parameters

wszAddress
[out]	Pointer	to	a	buffer	to	receive	the	host	name.	This
parameter	can	be	NULL	to	retrieve	the	required	size.

pdwAddressLength
[in,	out]	Size,	in	characters,	of	the	buffer	specified	in
wszAddress,	including	the	terminating	NULL	character.	On
success,	this	parameter	contains	the	number	of	characters,
including	the	terminating	NULL	character,	written	to	the
specified	buffer.	On	failure,	this	parameter	contains	the	number
of	characters,	including	the	terminating	NULL	character,
required	to	retrieve	the	host	name.

psPort
[out]	Pointer	to	a	USHORT	to	contain	the	port	specified	in	this
local	address.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

Remarks

To	succeed,	the	contained	address	must	have	at	least	the	following
elements.

DPNA_KEY_PROVIDER

DPNA_KEY_HOSTNAME

DPNA_KEY_PORT	=	specified	port

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8AddressIP::GetLocalAddress	Method

Retrieves	the	local	address	information	from	a	Microsoft®	DirectPlay®		
Internet	Protocol	(IP)	address.

Syntax

HRESULT	GetLocalAddress(
				GUID	*pguidAdapter,
				USHORT	*pusPort
);

Parameters

pguidAdapter
[out]	Pointer	to	a	globally	unique	identifier	(GUID)	to	retrieve	the
GUID	of	the	local	device	specified	in	this	address.

pusPort
[out]	Pointer	to	a	USHORT	to	contain	the	port	specified	in	this
local	address.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

Remarks

To	succeed,	the	contained	address	must	have	at	least	the	following
elements.

DPNA_KEY_PROVIDER

DPNA_KEY_DEVICE

DPNA_KEY_PORT

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8AddressIP::GetSockAddress	Method

Retrieves	a	list	of	SOCKADDR	structures	describing	the	addresses
represented	by	this	object.

Syntax

HRESULT	GetSockAddress(
				SOCKADDR	*psockAddress,
				PDWORD	pdwAddressBufferSize
);

Parameters

psockAddress
[out]	Pointer	to	buffer	to	retrieve	the	array	of	SOCKADDR
structures.	There	is	one	SOCKADDR	structure	for	each	address
the	host	resolves	to.

pdwAddressBufferSize
[in,	out]	Size,	in	bytes,	of	the	buffer	specified	in	psockAddress.
On	success,	this	parameter	contains	the	number	of	bytes	written
to	the	specified	buffer.	On	failure,	this	parameter	contains	the
number	of	bytes	required	to	retrieve	the	array	of	SOCKADDR
structures.	You	can	divide	the	value	of	this	parameter	by	the
size	of	the	SOCKADDR	structure	to	determine	the	number	of
items	present	in	the	returned	array.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

Remarks

If	the	host	name	specified	in	the	object	requires	a	Domain	Name
System	(DNS)	lookup,	it	is	performed.	Therefore,	this	method	may
block	while	the	DNS	is	queried.	It	is	also	possible	for	a	host	name	to
resolve	to	multiple	addresses.

To	succeed,	the	contained	address	must	have	at	least	the	following
elements.

DPNA_KEY_PROVIDER

DPNA_KEY_HOSTNAME

DPNA_KEY_PORT	=	specified	port

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client	Interface

Applications	use	the	methods	of	the	IDirectPlay8Client	interface	to
create	and	manage	client	applications	for	client/server	sessions.

IDirectPlay8Client	Members

CancelAsyncOperation Cancels	asynchronous	requests.

Close Closes	the	open	connection	to	a	session	and	uninitializes	the	IDirectPlay8Client	object.
This	method	must	be	called	on	any	object	that	is	successfully	initialized	with	a	call	to	the
IDirectPlay8Client::Initialize	method.

Connect Establishes	the	connection	to	the	server.

EnumHosts Enumerates	applications	that	host	Microsoft®	DirectPlay®	games.

EnumServiceProviders Enumerates	the	registered	service	providers	available	to	the	application.

GetApplicationDesc Retrieves	the	full	application	description	for	the	connected	application.

GetCaps Retrieves	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current	interface.

GetConnectionInfo Retrieves	statistical	information	about	the	connection	between	the	local	client	and	the
server.

GetSendQueueInfo Used	by	the	application	to	monitor	the	size	of	the	send	queue.	DirectPlay	does	not	send
messages	faster	than	the	receiving	computer	can	process	them.	As	a	result,	if	the
sending	computer	is	sending	faster	than	the	receiver	can	receive,	messages	accumulate
in	the	sender's	queue.	If	the	application	registers	that	the	send	queue	is	growing	too
large,	it	should	decrease	the	rate	that	messages	are	sent.

GetServerAddress Retrieves	the	address	of	the	server	for	the	session.

GetServerInfo Retrieves	the	data	set	for	the	server	set	by	the	call	to	the
IDirectPlay8Server::SetServerInfo	method.

GetSPCaps Retrieves	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Initialize Registers	an	entry	point	in	the	client's	code	that	receives	the	messages	from	the
IDirectPlay8Client	interface	and	from	the	server.	This	method	must	be	called	before
calling	any	other	methods	of	this	interface.

RegisterLobby Allows	launched	applications	to	automatically	propagate	game	status	to	the	lobby.

ReturnBuffer Retrieves	message	buffers	provided	to	the	application	through	the	pReceiveData
member	of	the	DPN_MSGID_RECEIVE	system	message.	If	the	user's	message	handler
returns	DPNSUCCESS_PENDING	to	the	RECEIVE	callback,	DirectPlay	assumes
ownership	of	the	buffer	has	been	transferred	to	the	application,	and	neither	frees	nor
modifies	it	until	ownership	is	returned	to	DirectPlay	through	this	call.

Send Transmits	data	to	the	server.	The	message	can	be	sent	synchronously	or
asynchronously.

SetCaps Sets	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current	interface.

SetClientInfo Sets	the	static	settings	of	a	client	with	an	application.	Call	this	method	before	connecting
to	relay	basic	player	information	to	the	application.	When	the	client	successfully	connects
with	the	application,	the	server	can	retrieve	information	obtained	through	this	method	by
calling	the	IDirectPlay8Server::GetClientInfo	method.

SetSPCaps Sets	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Interface	Information

Inherits	from IUnknown

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::CancelAsyncOperation	Method

Cancels	asynchronous	requests.

Syntax

HRESULT	CancelAsyncOperation(
				const	DPNHANDLE	hAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

hAsyncHandle
[in]	Handle	of	the	asynchronous	operation	to	stop.	You	receive
this	handle	when	you	call	one	of	several	methods	that	support
asynchronous	operations.	This	value	can	be	set	to	NULL	to	stop
all	requests	or	a	particular	type	of	asynchronous	request.	If	a
particular	handle	is	specified,	the	dwFlags	parameter	must	be	0.
If	one	of	the	DPNCANCEL_PLAYER_SENDS	flags	is	specified
in	the	dwFlags	parameter,	hAsyncHandle	must	be	0	to	cancel	all
pending	calls	to	the	server.

dwFlags
[in]	Flag	that	specifies	which	asynchronous	request	to	canceled.
You	can	set	one	of	the	following	flags.
DPNCANCEL_ENUM

Cancel	all	asynchronous	IDirectPlay8Client::EnumHosts
requests.	A	single	IDirectPlay8Client::EnumHosts	request
can	be	canceled	by	specifying	the	handle	returned	from	the
IDirectPlay8Client::EnumHosts	method.

DPNCANCEL_CONNECT
Cancel	an	asynchronous	IDirectPlay8Client::Connect
request.

DPNCANCEL_SEND
Cancel	an	asynchronous	IDirectPlay8Client::Send	request.

DPNCANCEL_PLAYER_SENDS

Cancel	all	asynchronous	IDirectPlay8Client::Send
requests.

DPNCANCEL_PLAYER_SENDS_PRIORITY_LOW
Cancel	low-priority	asynchronous
IDirectPlay8Client::Send	requests.

DPNCANCEL_PLAYER_SENDS_PRIORITY_NORMAL
Cancel	normal-priority	asynchronous
IDirectPlay8Client::Send	requests.

DPNCANCEL_PLAYER_SENDS_PRIORITY_HIGH
Cancel	high-priority	asynchronous
IDirectPlay8Client::Send	requests.

DPNCANCEL_ALL_OPERATIONS
Cancel	all	asynchronous	requests.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_CANNOTCANCEL The	operation	could	not	be	canceled.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNSUCCESS_PENDING An	asynchronous	operation	has	reached	the	point	where	it	is	successfully	queued.

Remarks

Many	methods	of	the	IDirectPlay8Client	interface	run
asynchronously	by	default.	Depending	on	the	situation,	you	might
want	to	cancel	requests	before	they	are	processed.	All	the	methods
of	this	interface	that	can	be	run	asynchronously	return	a
hAsyncHandle	parameter.

Specific	requests	are	canceled	by	passing	the	hAsyncHandle	of	the
request	in	this	method's	hAsyncHandle	parameter.	You	can	cancel
all	pending	asynchronous	operations	by	calling	this	method,
specifying	NULL	in	the	hAsyncHandle	parameter,	and	specifying

DPNCANCEL_ALL_OPERATIONS	in	the	dwFlags	parameter.	If	a
specific	handle	is	provided	to	this	method,	no	flags	should	be	set.

You	can	use	this	method	to	cancel	an	asynchronous	operation	for
the	IDirectPlay8Client::Connect,	IDirectPlay8Client::Send,	and
IDirectPlay8Client::EnumHosts	methods.	Microsoft®	DirectPlay®
does	not	support	cancellation	of	other	asynchronous	operations.

You	can	cancel	a	send	by	providing	the	handle	returned	from
IDirectPlay8Client::Send	method.	A
DPN_MSGID_SEND_COMPLETE	system	message	is	still	posted	to
the	applications	message	handler	for	each	asynchronous	send	that
is	sent	without	the	DPNSEND_NOCOMPLETE	flag	set.	Sends	that
are	canceled	by	this	method	return	DPNERR_USERCANCEL	in
their	hResultCode	member	of	the
DPN_MSGID_SEND_COMPLETE	message.

If	you	set	the	DPNCANCEL_ALL_OPERATIONS,
DPNCANCEL_CONNECT,	DPNCANCEL_SEND,	or
DPNCANCEL_ENUM	flags	in	dwFlags,	DirectPlay	will	attempt	to
cancel	all	matching	operations.	This	method	will	return	an	error	if	any
attempted	cancellation	fails,	even	though	some	cancellations	may
have	been	successful.

Note		The	completion	message	might	not	arrive	until	after	this
method	returns.	Do	not	assume	that	the	operation	has	been
terminated	until	you	have	received	a
DPN_MSGID_SEND_COMPLETE,
DPN_MSGID_CONNECT_COMPLETE,	or
DPN_MSGID_ASYNC_OP_COMPLETE	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::Close	Method

Closes	the	open	connection	to	a	session	and	uninitializes	the
IDirectPlay8Client	object.	This	method	must	be	called	on	any	object	that
is	successfully	initialized	with	a	call	to	the	IDirectPlay8Client::Initialize
method.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	The	following	flag	can	be	specified.
DPNCLOSE_IMMEDIATE

Close	immediately.	Do	not	wait	for	outstanding	calls	to
complete.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

Calling	IDirectPlay8Client::Close	will	cancel	all	outstanding
operations,	including	guaranteed	messages	that	are	in	the	queue
waiting	to	be	sent.	Messages	that	have	already	been	sent	as
guaranteed	will	continue	to	be	retried	until	acknowledgement	of	their

delivery	has	been	received.	To	make	sure	all	messages	are	sent,
wait	for	all	outstanding	IDirectPlay8Client::Send	calls	to	complete
before	calling	IDirectPlay8Client::Close.

If	you	do	not	want	the	application	to	wait,	the	application	should	call
IDirectPlay8Client::CancelAsyncOperation	to	cancel	all	outstanding
sends	prior	to	calling	IDirectPlay8Client::Close	or	doing	a	final
release	call	on	the	IDirectPlay8Client	interface.	Failing	to	do	so
causes	unpredictable	results.

Calling	IDirectPlay8Client::Close	will	invalidate	any	DPN_CAPS,
DPN_CAPS_EX,	and	DPN_SP_CAPS	associated	with	the
IDirectPlay8Client	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::Connect	Method

Establishes	the	connection	to	the	server.

Syntax

HRESULT	Connect(
				const	DPN_APPLICATION_DESC	*const	pdnAppDesc,
				IDirectPlay8Address	*const	pHostAddr,
				IDirectPlay8Address	*const	pDeviceInfo,
				const	DPN_SECURITY_DESC	*const	pdnSecurity,
				const	DPN_SECURITY_CREDENTIALS	*const	pdnCredentials,
				const	void	*const	pvUserConnectData,
				const	DWORD	dwUserConnectDataSize,
				void	*const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pdnAppDesc
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
describes	the	application.	Only	some	of	the	members	of	this
structure	are	used	by	this	method.	The	only	member	of	this
structure	that	you	must	set	is	the	guidApplication	member.	You
can	also	set	guidInstance,	pwszPassword,	dwFlags,	and
dwSize.

pHostAddr
[in]	Pointer	to	an	IDirectPlay8Address	interface	that	specifies	the
addressing	information	to	use	to	connect	to	the	computer	that	is
hosting.	The	user	can	be	queried	for	any	missing	address
information	if	you	set	the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flag	in
the	dwFlags	parameter.

pDeviceInfo

[in]	Pointer	to	an	IDirectPlay8Address	object	that	specifies
what	network	adapter	(for	example,	network	interface	card,
modem,	and	so	on)	to	use	to	connect	to	the	server.	Some
service	providers	allow	this	parameter	to	be	NULL	or	be	an
address	object	containing	only	the	service	provider	component.
In	this	case,	they	will	use	the	most	appropriate	device	to	reach
the	designated	host.	If	you	set	the
DPNCONNECT_OKTOQUERYFORADDRESSING	flag	in
dwFlags,	the	user	can	be	queried	for	any	missing	address
information.

pdnSecurity
[in]	Reserved.	Must	be	NULL.

pdnCredentials
[in]	Reserved.	Must	be	NULL.

pvUserConnectData
[in]	Pointer	to	application-specific	data	provided	to	the	host	or
server	to	further	validate	the	connection.	Microsoft®	DirectPlay®
will	make	a	copy	of	this	data	when	the	method	is	called	and
therefore	you	can	modify	or	destroy	this	data	once	the
connection	is	complete.	This	data	is	sent	to	the
DPN_MSGID_INDICATE_CONNECT	message	in	the
pvUserConnectData	member.	This	parameter	is	optional	and
you	can	pass	NULL	to	bypass	the	connection	validation
provided	by	the	user	code.

dwUserConnectDataSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the	data
contained	in	pvUserConnectData.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_CONNECT_COMPLETE	system	message.	This
parameter	is	optional	and	can	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	When	the	method	returns,
phAsyncHandle	will	point	to	a	handle	that	you	can	pass	to
IDirectPlay8Client::CancelAsyncOperation	to	cancel	the
operation.	This	parameter	must	be	set	to	NULL	if	you	set	the
DPNCONNECT_SYNC	flag	in	dwFlags.

dwFlags

[in]	Flag	that	describes	the	connection	mode.	You	can	set	the
following	flag.
DPNCONNECT_OKTOQUERYFORADDRESSING

Setting	this	flag	will	display	a	standard	DirectPlay	dialog
box,	which	queries	the	user	for	more	information	if	not
enough	information	is	passed	in	this	method.

DPNCONNECT_SYNC
Process	the	connection	request	synchronously.	Setting	this
flag	does	not	generate	a
DPN_MSGID_CONNECT_COMPLETE	system	message.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	If	the	request	is	processed	asynchronously,	S_OK	will	be
returned	if	the	method	is	instantly	processed.	By	default,	this	method
is	run	asynchronously	and	generally	returns
DPNSUCCESS_PENDING	or	one	of	the	following	error	values.

DPNERR_HOSTREJECTEDCONNECTION The	connection	request	was	rejected.	Check	the	ReplyData
member	of	the	DPN_MSGID_CONNECT_COMPLETE	type	for
details.

DPNERR_INVALIDAPPLICATION The	globally	unique	identifier	(GUID)	supplied	for	the	application	is
invalid.

DPNERR_INVALIDDEVICEADDRESS The	address	for	the	local	computer	or	adapter	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHOSTADDRESS The	specified	remote	address	is	invalid.

DPNERR_INVALIDINSTANCE The	GUID	for	the	application	instance	is	invalid.

DPNERR_INVALIDINTERFACE The	interface	parameter	is	invalid.	This	value	will	be	returned	in	a
connect	request	if	the	connecting	player	was	not	a	client	in	a
client/server	game	or	a	peer	in	a	peer-to-peer	game.

DPNERR_INVALIDPASSWORD An	invalid	password	was	supplied	when	attempting	to	join	a	session
that	requires	a	password.

DPNERR_NOCONNECTION No	communication	link	was	established.

DPNERR_NOTHOST The	client	attempted	to	connect	to	a	nonhost	computer.	Additionally,
this	error	value	may	be	returned	by	a	nonhost	that	tried	to	set	the
application	description.

DPNERR_SESSIONFULL The	request	to	connect	to	the	host	or	server	failed	because	the
maximum	number	of	players	allotted	for	the	session	has	been
reached.

DPNERR_ALREADYCONNECTED The	object	is	already	connected	to	the	session.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

Remarks

It	is	not	required	to	enumerate	hosts	before	calling
IDirectPlay8Client::Connect	if	you	know	the	appropriate	host	and
device	information.

If	you	do	call	the	IDirectPlay8Client::EnumHosts	method	and	you
want	to	ensure	better	Network	Address	Translation	(NAT)	and	proxy
support	when	using	the	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP)	service	provider	or	to	prevent	redialing	with	the
modem	service	provider,	keep	the	enumeration	active	when	calling
the	IDirectPlay8Client::Connect	method.	To	prevent	the
enumeration	from	completing,	set	the	dwEnumCount	parameter	to
INFINITE	and	do	not	use	the
IDirectPlay8Client::CancelAsyncOperation	to	terminate	the
enumeration	before	the	connect	operation	has	completed.	You
should	also	pass	the	pAddressSender	and	pAddressDevice
address	objects	in	the	DPNMSG_ENUM_HOSTS_RESPONSE
message	without	modification	into	the	pHostAddr	and	pDeviceInfo
parameters	of	the	IDirectPlay8Client::Connect	method.	To	pass
the	address	objects	to	IDirectPlay8Client::Connect	outside	of	the
callback	function,	use	IDirectPlay8Address::Duplicate	or
IDirectPlay8Address::AddRef	to	prevent	the	object	from	being
destroyed	and	store	the	pointers	using	thread-safe	code.	DirectPlay
will	automatically	cancel	the	enumeration	when	the	connect
completes	with	DPN_OK	or	when	IDirectPlay8Client::Close	is	called.

Before	this	method	is	called,	you	can	obtain	an	application
description	by	calling	IDirectPlay8Client::EnumHosts.	When	you
call	IDirectPlay8Client::EnumHosts,
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages	are	sent	to

your	message	handler	with	the	IDirectPlay8Address	objects	and
the	DPN_APPLICATION_DESC	structure	for	each	host	found.	This
information	can	be	passed	without	modification	to	the
IDirectPlay8Client::Connect	method.

After	a	connection	is	established,	the	communication	channel	on	the
interface	is	open	and	the	application	should	expect	messages	to
arrive	immediately.	No	messages	can	be	sent	by	means	of	the
IDirectPlay8Client::Send	method	until	the	connection	has	completed.

Although	multiple	enumerations	can	be	run	concurrently,	and	can	be
run	across	the	duration	of	a	connection,	only	one	connection	is
allowed	per	interface.	To	establish	a	connection	to	more	than	one
application,	you	must	create	another	interface.

When	this	method	is	called,	a	DPN_MSGID_INDICATE_CONNECT
message	is	posted	to	the	server's	message	handler.	On	retrieval	of
this	message,	the	host	can	pass	back	connection	reply	data	to	the
IDirectPlay8Client::Connect	method.	Connection	reply	data	can
send	a	message	indicating	that	the	host	does	not	approve	the
connection.	The	calling	application	can	then	handle	this	reply
appropriately.

If	IDirectPlay8Client::Connect	is	called	synchronously,	the
following	outcomes	are	possible.

Connection	Successful.	The	application	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	containing
the	success	code	and	the	IDirectPlay8Client::Connect
method	will	return	with	DPN_OK.

Connection	fails	because	the	server	rejects	the	connection.
The	application	will	receive	a

DPN_MSGID_CONNECT_COMPLETE	message	containing
the	DPNERR_HOSTREJECTEDCONNECTION	failure	code.
The	IDirectPlay8Client::Connect	method	will	also	return	with
the	error	code	DPNERR_HOSTREJECTEDCONNECTION.
The	DPN_MSGID_CONNECT_COMPLETE	message
provides	an	opportunity	for	the	client	application	to	inspect	any
data	the	server	returns	with	the	rejection.

Connection	fails	for	any	other	reason.	The	application	will	not
receive	a	DPN_MSGID_CONNECT_COMPLETE	message,
and	the	IDirectPlay8Client::Connect	method	will	return	with
the	appropriate	error	code.

If	IDirectPlay8Client::Connect	is	called	asynchronously,	the
method	returns	immediately	with	DPNSUCCESS_PENDING.	A
DPN_MSGID_CONNECT_COMPLETE	message	will	follow	after	the
connection	completes,	containing	the	result	of	the	connection.	The
only	time	the	method	does	not	return	DPNSUCCESS_PENDING	is
when	validation	of	the	supplied	parameters	fails,	in	which	case	the
appropriate	error	code	is	returned.

When	the	connection	request	completes,	all	outstanding
enumerations	are	canceled	with	the	return	of
DPNERR_USERCANCEL.

The	hResultCode	on	the	completion	will	indicate	S_OK	if	the
Connect()	attempt	was	successful,	or	an	error	otherwise.	If	the	Host
player	returned	anything	other	than	S_OK	from	the
DPN_MSGID_INDICATE_CONNECT	message,	the	likely	error	code
in	the	completion	will	be
DPNERR_HOSTREJECTEDCONNECTION.

When	the	connection	completes,	a
DPN_MSGID_CONNECT_COMPLETE	message	is	sent	to	the

application's	message	handler.	All	outstanding	enumerations	are
canceled	with	the	return	of	DPNERR_USERCANCEL.

To	close	the	connection	established	with	this	method,	call	the
IDirectPlay8Client::Close	method.

Data	Value	Summary	specifies	the	required	addressing	information
for	each	service	provider.

Note		If	you	set	the
DPNCONNECT_OKTOQUERYFORADDRESSING	flag	in	dwFlags,
the	service	provider	might	attempt	to	display	a	dialog	box	to	ask	the
user	to	complete	the	address	information.	You	must	have	a	visible
window	present	when	the	service	provider	tries	to	display	the	dialog
box,	or	your	application	will	lock.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::EnumHosts	Method

Enumerates	applications	that	host	Microsoft®	DirectPlay®	games.

Syntax

HRESULT	EnumHosts(
				PDPN_APPLICATION_DESC	const	pApplicationDesc,
				IDirectPlay8Address	*const	pdpaddrHost,
				IDirectPlay8Address	*const	pdpaddrDeviceInfo,
				PVOID	const	pvUserEnumData,
				const	DWORD	dwUserEnumDataSize,
				const	DWORD	dwEnumCount,
				const	DWORD	dwRetryInterval,
				const	DWORD	dwTimeOut,
				PVOID	const	pvUserContext,
				HANDLE	*const	pAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pApplicationDesc
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
specifies	which	application	hosts	to	enumerate.	You	must	set
the	pApplicationDesc.dwSize	member	to	the	appropriate	value.
To	reduce	the	number	of	responses,	set
pApplicationDesc.guidApplication	to	the	globally	unique
identifier	(GUID)	of	the	application	to	be	found.	If	this	member	is
not	set,	the	search	will	include	all	applications.

pdpaddrHost
[in]	Pointer	to	an	IDirectPlay8Address	object	that	specifies	the
address	of	the	computer	that	is	hosting	the	application.	Some
service	providers	allow	this	parameter	to	be	NULL	or	be	an
address	object	containing	only	the	service	provider	component.
In	this	case,	DirectPlay	will	get	the	information	by	using	a

broadcast	mechanism	or	from	the	pdpaddrDeviceInfo
parameter.	If	you	set	the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flag	in
dwFlags,	the	user	can	be	queried	for	any	missing	address
information.

pdpaddrDeviceInfo
[in]	Pointer	to	an	IDirectPlay8Address	object	that	specifies	the
service	provider	and	local	device	settings	to	use	when
enumerating.	The	user	can	be	queried	for	any	missing	address
information	if	you	set	the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flag	in
the	dwFlags	parameter.

pvUserEnumData
[in]	Pointer	to	a	block	of	data	that	is	sent	in	the	enumeration
request	to	the	host.	The	size	of	the	data	is	limited	depending	on
the	network	type.	Call	IDirectPlay8Client::GetSPCaps	to	obtain
the	exact	value.

dwUserEnumDataSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the	data
pointed	at	in	the	pvUserEnumData	parameter.

dwEnumCount
[in]	Value	specifying	how	many	times	the	enumeration	data	will
be	sent.	Set	this	parameter	to	zero	to	use	the	default	value.	You
can	obtain	the	default	value	for	dwEnumCount	by	calling
IDirectPlay8Client::GetSPCaps.	If	dwEnumCount	is	set	to
INFINITE,	the	enumeration	will	continue	until	canceled.

dwRetryInterval
[in]	Value	specifying	how	many	milliseconds	between
enumeration	retries.	Set	this	parameter	to	zero	to	use	the
default	value.	You	can	obtain	the	default	value	for
dwRetryInterval	by	calling	IDirectPlay8Client::GetSPCaps.

dwTimeOut
[in]	Variable	of	type	DWORD	that	specifies	the	number	of
milliseconds	that	DirectPlay	will	wait	for	replies	after	the	last
enumeration	is	sent.	Set	this	parameter	to	zero	to	use	the
default	value.	You	can	obtain	the	default	value	for	dwTimeOut
by	calling	IDirectPlay8Client::GetSPCaps.	If	INFINITE	is
specified,	the	enumeration	continues	until	it	is	canceled.

pvUserContext

[in]	Context	that	is	provided	in	the	client's	message	handler
when	it	is	called	with	responses	to	the	enumeration.	This	can	be
useful	to	differentiate	replies	from	concurrent	enumerations.

pAsyncHandle
[out]	A	DPNHANDLE.	When	the	method	returns,	pAsyncHandle
will	point	to	a	handle	that	you	can	pass	to
IDirectPlay8Client::CancelAsyncOperation	to	cancel	the
operation.	This	parameter	must	be	set	to	NULL	if	you	set	the
DPNENUMHOSTS_SYNC	flag	in	dwFlags.

dwFlags
[in]	The	following	flags	can	be	set.
DPNENUMHOSTS_SYNC

Causes	the	method	to	process	synchronously.
DPNENUMHOSTS_OKTOQUERYFORADDRESSING

Setting	this	flag	will	display	a	standard	DirectPlay	dialog
box,	which	queries	the	user	for	more	information	if	not
enough	information	is	passed	in	this	method.

DPNENUMHOSTS_NOBROADCASTFALLBACK
If	the	service	provider	supports	broadcasting,	setting	this
flag	will	disable	the	broadcast	capabilities.	Check	to	see	if
broadcasting	is	supported	by	examining	the
DPN_SP_CAPS	structure	before	setting	this	flag.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	one
of	the	following	error	values.

DPNERR_INVALIDDEVICEADDRESS The	address	for	the	local	computer	or	adapter	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHOSTADDRESS The	specified	remote	address	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_ENUMQUERYTOOLARGE The	query	data	specified	is	too	large.

DPNERR_USERCANCEL The	user	canceled	the	operation.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

Remarks

When	an	application	is	found	that	meets	the	enumeration	criteria,	the
application's	message	handler	is	called	with	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	system	message.	The
message	contains	a	DPN_APPLICATION_DESC	structure
describing	the	applications	found	and	IDirectPlay8Address	objects
identifying	the	location	of	the	hosts.

When	an	application	is	found	that	meets	the	enumeration	criteria,	the
application's	message	handler	is	called	with	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	system	message.	The
message	contains	a	DPN_APPLICATION_DESC	structure
describing	the	applications	found	and	IDirectPlay8Address	objects
identifying	the	location	of	the	hosts.

To	ensure	better	Network	Address	Translation	(NAT)	and	proxy
support	when	using	the	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP)	service	provider	or	to	prevent	redialing	with	the
modem	service	provider,	keep	the	enumeration	active	when	calling
the	IDirectPlay8Client::Connect	method.	To	prevent	the	enumeration
from	completing,	set	the	dwEnumCount	parameter	to	INFINITE	and
do	not	use	the	IDirectPlay8Client::CancelAsyncOperation	to
terminate	the	enumeration	before	the	connect	operation	has
completed.	You	should	also	pass	the	pAddressSender	and
pAddressDevice	address	objects	in	the
DPNMSG_ENUM_HOSTS_RESPONSE	message	without
modification	into	the	pHostAddr	and	pDeviceInfo	parameters	of	the
IDirectPlay8Client::Connect	method.	To	pass	the	address	objects
to	IDirectPlay8Client::Connect	outside	of	the	callback	function,	use
IDirectPlay8Address::Duplicate	or	IDirectPlay8Address::AddRef	to

prevent	the	object	from	being	destroyed	and	store	the	pointers	using
thread-safe	code.

Any	number	of	enumerations	can	be	run	concurrently.	The
pvUserContext	value	is	provided	in	the	message	handler	to	help
differentiate	replies	to	different	enumerations.

Because	of	the	variation	in	the	number	of	ways	enumeration	can
happen,	it	is	not	recommended	that	an	application	attempt	to	specify
dwEnumCount,	dwRetryInterval,	or	dwTimeOut	unless	the
application	has	some	specific	media	knowledge.	The	only	exception
is	if	you	want	to	have	the	enumeration	continue	until	explicitly
cancelled,	then	set	dwEnumCount	to	INFINITE.

The	default	enumeration	count	and	timeout	values	will	cause
IDirectPlay8Client::EnumHosts	to	complete	within	a	reasonable
amount	of	time.	These	values	are	set	by	the	service	provider,	and
can	be	obtained	by	calling	IDirectPlay8Client::GetSPCaps.
Asynchronous	enumerations	can	be	stopped	at	any	time	by	calling
IDirectPlay8Client::CancelAsyncOperation	and	either	passing	the
handle	returned	in	the	pAsyncHandle	parameter	or	setting	the
DPNCANCEL_ENUM	flag	in	the	dwFlags	parameter.	An
enumeration	can	also	be	stopped	by	returning	anything	other	than
S_OK	from	the	message	handler	when	processing	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	message.

You	might	receive	multiple
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages	from	the
same	host	during	one	enumeration	session.	The	guidInstance
member	of	the	associated	DPN_APPLICATION_DESC	structure	can
be	used	to	correlate	these	duplicate	responses.

If	you	set	the	DPNENUMHOSTS_OKTOQUERYFORADDRESSING
flag	in	dwFlags,	the	service	provider	might	attempt	to	display	a
dialog	box	to	ask	the	user	to	complete	the	address	information.	You
must	have	a	visible	window	present	when	the	service	provider	tries
to	display	the	dialog	box,	or	your	application	will	lock.

Data	Value	Summary	specifies	the	required	addressing	information
for	each	service	provider.

DPNERR_USERCANCEL	will	be	returned	if	the	enumeration	is
canceled	by	calling	the
IDirectPlay8Client::CancelAsyncOperation	method	or	if	DPN_OK
is	not	returned	when	processing	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::EnumServiceProviders	Method

Enumerates	the	registered	service	providers	available	to	the	application.

Syntax

HRESULT	EnumServiceProviders(
				const	GUID	*const	pguidServiceProvider,
				const	GUID	*const	pguidApplication,
				DPN_SERVICE_PROVIDER_INFO	*const	pSPInfoBuffer,
				PDWORD	const	pcbEnumData,
				PDWORD	const	pcReturned,
				const	DWORD	dwFlags
);

Parameters

pguidServiceProvider
[in]	Pointer	to	a	variable	of	type	GUID	that	specifies	a	service
provider.	This	optional	parameter	forces	the	enumeration	of
subdevices	for	the	specified	service	provider.	You	should
normally	set	this	value	to	NULL,	to	enumerate	all	available
service	providers.	Otherwise,	set	pguidServiceProvider	to	one	of
the	following	predefined	values.
CLSID_DP8SP_TCPIP

Internet	Protocol	(IP)	service	providers
CLSID_NETWORKSIMULATOR_DP8SP_TCPIP

DP8Sim	service	providers
CLSID_DP8SP_SERIAL

Serial	service	providers
CLSID_DP8SP_MODEM

Modem	service	providers
CLSID_DP8SP_IPX

IPX	service	providers
pguidApplication

[in]	Pointer	to	a	variable	of	type	GUID	that	specifies	an

application.	If	a	pointer	is	passed	in	this	parameter,	only	service
providers	who	can	be	connected	to	the	application	are
enumerated.	You	can	also	pass	NULL	to	enumerate	the
registered	service	providers	for	the	system.

pSPInfoBuffer
[out]	Pointer	to	an	array	of	DPN_SERVICE_PROVIDER_INFO
structures	that	will	be	filled	with	service	provider	information.

pcbEnumData
[out]	Pointer	to	DWORD,	which	is	filled	with	the	size	of	the
pSPInfoBuffer	array	if	the	buffer	is	too	small.

pcReturned
[out]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the
number	of	DPN_SERVICE_PROVIDER_INFO	structures
returned	in	the	pSPInfoBuffer	array.

dwFlags
[in]	The	following	flag	can	be	specified.
DPNENUMSERVICEPROVIDERS_ALL

Enumerates	all	the	registered	service	providers	for	the
system,	including	those	that	are	not	available	to	the
application	or	do	not	have	devices	installed.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

Call	this	method	initially	by	specifying	NULL	in	the
pguidServiceProvider	parameter	to	determine	the	base	service
providers	available	to	the	system.	Specific	devices	for	a	service
provider	can	be	obtained	by	passing	a	pointer	to	a	service	provider
globally	unique	identifier	(GUID)	in	the	pguidServiceProvider.	This	is
useful,	for	example,	when	using	the	Modem	Connection	for

Microsoft®	DirectPlay®	service	provider.	You	can	choose	among
different	modems	for	dialing	out	and	select	specific	modems	for
hosting.

If	the	pEnumDatabuffer	is	not	big	enough	to	hold	the	requested
service	provider	information,	the	method	returns
DPNERR_BUFFERTOOSMALL	and	the	cbEnumData	parameter
contains	the	required	buffer	size.	Typically,	the	best	strategy	is	to	call
the	method	once	with	a	zero-length	buffer	to	determine	the	required
size.	Then	call	the	method	again	with	the	appropriate-sized	buffer.

Normally,	this	method	will	return	only	those	service	providers	that
can	be	used	by	the	application.	For	example,	if	the	Internetwork
Packet	Exchange	(IPX)	networking	protocol	is	not	installed,
DirectPlay	will	not	return	the	IPX	service	provider.	To	have	DirectPlay
return	all	service	providers,	even	those	that	cannot	be	used	by	the
application,	set	the	DPNENUMSERVICEPROVIDERS_ALL	flag	in
dwFlags.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::GetApplicationDesc	Method

Retrieves	the	full	application	description	for	the	connected	application.

Syntax

HRESULT	GetApplicationDesc(
				DPN_APPLICATION_DESC	*const	pAppDescBuffer,
				DWORD	*const	pcbDataSize,
				const	DWORD	dwFlags
);

Parameters

pAppDescBuffer
[out]	Pointer	to	a	DPN_APPLICATION_DESC	structure	where
the	application	description	data	is	written.	Set	this	parameter	to
NULL	to	request	only	the	size	of	data.	If	pAppDescBuffer	is	not
set	to	NULL,	you	must	set	the	pAppDescBuffer.dwSize	member
to	an	appropriate	value.	The	pcbDataSize	parameter	is	set	to
the	size	required	to	hold	the	data.

pcbDataSize
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	is	initialized	to
the	size	of	the	buffer	before	calling	this	method.	After	the
method	returns,	this	parameter	is	set	to	the	size,	in	bytes,	of	the
session	data.	If	the	buffer	is	too	small,	this	method	returns	the
DPNERR_BUFFERTOOSMALL	error	value,	and	this	parameter
is	set	to	the	buffer	size	required.	If	this	parameter	is	NULL,	the
method	returns	DPNERR_INVALIDPARAM.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOCONNECTION No	communication	link	was	established.

Remarks

Call	this	method	initially	by	passing	NULL	in	the	pAppDescBuffer
parameter	to	obtain	the	size	of	the	required	buffer.	When	you	call	the
method	a	second	time	to	fill	the	buffer,	be	sure	to	set	the	structures
dwSize	member	to	the	appropriate	value.

The	returned	DPN_APPLICATION_DESC	structure	will	have	the
guidInstance,	guidApplication,	and	pwszSessionName	members
set.	It	will	not	contain	information	about	other	clients	that	are
connected	to	the	session.	That	information,	if	available,	can	be
obtained	only	from	the	server	application.	In	particular,	the
dwCurrentPlayers	member	will	always	be	set	to	0.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::GetCaps	Method

Retrieves	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current
interface.

Syntax

HRESULT	GetCaps(
				DPN_CAPS	*const	pdpnCaps,
				const	DWORD	dwFlags
);

Parameters

pdpnCaps
[out]	Pointer	to	a	DPN_CAPS	or	DPN_CAPS_EX	structure	to
receive	caps	information.	You	must	set	the	dwSize	member	of
this	structure	to	an	appropriate	value.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

A	successful	call	to	IDirectPlay8Client::Initialize	must	be	made
before	this	method	can	be	called.

DirectPlay	will	determine	whether	DPN_CAPS	or	DPN_CAPS_EX	is
being	used,	based	on	the	size	of	the	structure	referenced	by
pdpnCaps.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::GetConnectionInfo	Method

Retrieves	statistical	information	about	the	connection	between	the	local
client	and	the	server.

Syntax

HRESULT	GetConnectionInfo(
				DPN_CONNECTION_INFO	*const	pdnConnectInfo,
				const	DWORD	dwFlags
);

Parameters

pdnConnectInfo
[out]	Pointer	to	a	DPN_CONNECTION_INFO	structure	to
retrieve	information	about	the	specified	connection.	You	must
set	the	dwSize	member	of	this	structure	to	an	appropriate	value.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	can	be	called	only	after	a	successful
IDirectPlay8Client::Connect	call	has	completed.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::GetSendQueueInfo	Method

Used	by	the	application	to	monitor	the	size	of	the	send	queue.	Microsoft®
DirectPlay®	does	not	send	messages	faster	than	the	receiving	computer
can	process	them.	As	a	result,	if	the	sending	computer	is	sending	faster
than	the	receiver	can	receive,	messages	accumulate	in	the	sender's
queue.	If	the	application	registers	that	the	send	queue	is	growing	too
large,	it	should	decrease	the	rate	that	messages	are	sent.

Syntax

HRESULT	GetSendQueueInfo(
				DWORD	*const	pdwNumMsgs,
				DWORD	*const	pdwNumBytes,
				const	DWORD	dwFlags
);

Parameters

pdwNumMsgs
[out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the
number	of	messages	currently	queued.	This	value	is	optional,
and	may	be	set	to	NULL.

pdwNumBytes
[out]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the	total
number	of	bytes	of	data	of	the	messages	currently	queued.	This
value	is	optional,	and	may	be	set	to	NULL.

dwFlags
[in]	You	may	specify	the
DPNGETSENDQUEUEINFO_PRIORITY_NORMAL,
DPNGETSENDQUEUEINFO_PRIORITY_HIGH,	or
DPNGETSENDQUEUEINFO_PRIORITY_LOW	flag	to	inquire
about	specific	messages	of	that	priority.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

You	cannot	set	both	pdwNumMsgsand	pdwNumBytes	to	NULL.	At
least	one	of	them	must	be	set	to	a	valid	pointer.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::GetServerAddress	Method

Retrieves	the	address	of	the	server	for	the	session.

Syntax

HRESULT	GetServerAddress(
				IDirectPlay8Address	**const	ppAddress,
				const	DWORD	dwFlags
);

Parameters

ppAddress
[out]	Address	of	a	pointer	to	an	IDirectPlay8Address	object	that
specifies	the	address	of	the	server.	You	must	release	this	object
when	you	no	longer	need	it.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::GetServerInfo	Method

Retrieves	the	data	set	for	the	server	set	by	the	call	to	the
IDirectPlay8Server::SetServerInfo	method.

Syntax

HRESULT	GetServerInfo(
				DPN_PLAYER_INFO	*const	pdpnPlayerInfo,
				DWORD	*const	pdwSize,
				const	DWORD	dwFlags
);

Parameters

pdpnPlayerInfo
[out]	Pointer	to	a	DPN_PLAYER_INFO	structure	to	be	filled	with
the	server's	information.	If	pdwSize	is	not	set	to	NULL,	you	must
set	pdpnPlayerInfo.dwSize	to	the	size	of	a	DPN_PLAYER_INFO
structure.

pdwSize
[out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the	size
of	the	data	returned	in	the	pdpnPlayerInfo	parameter.	If	this
value	is	too	small,	the	method	returns
DPNERR_BUFFERTOOSMALL,	and	this	parameter	is	set	to	the
required	size	of	the	buffer.

dwFlags
[in]	Reserved.	Must	be	set	to	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

Call	this	method	after	the	client	receives	a
DPN_MSGID_SERVER_INFO	message,	indicating	that	the	server
has	updated	its	information.

Microsoft®	DirectPlay®	returns	the	DPN_PLAYER_INFO	structure
and	the	pointers	assigned	to	the	structure's	pwszName	and	pvData
members	in	a	contiguous	buffer.	If	the	two	pointers	were	set,	you
must	have	allocated	enough	memory	for	the	structure,	plus	the	two
pointers.	The	most	robust	way	to	use	this	method	is	to	first	call	it	with
pdwSize	set	to	NULL.	When	the	method	returns,	pdwSize	will	point
to	the	correct	value.	Use	that	value	to	allocate	memory	for	your
structure	and	call	the	method	a	second	time	to	retrieve	the
information.

When	the	method	returns,	the	dwInfoFlags	member	of	the
DPN_PLAYER_INFO	structure	will	always	have	the
DPNINFO_DATA	and	DPNINFO_NAME	flags	set,	even	if	the
corresponding	pointers	are	set	to	NULL.	These	flags	are	used	when
calling	IDirectPlay8Server::SetServerInfo,	to	notify	DirectPlay	of
which	values	have	changed.

Transmission	of	nonstatic	information	should	be	handled	with	the
IDirectPlay8Server::SendTo	method	because	of	the	high	cost	of
using	the	IDirectPlay8Server::SetServerInfo	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::GetSPCaps	Method

Retrieves	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Syntax

HRESULT	GetSPCaps(
				const	GUID	*const	pguidSP,
				DPN_SP_CAPS	*const	pdpnSPCaps,
				const	DWORD	dwFlags
);

Parameters

pguidSP
[in]	Pointer	to	a	globally	unique	identifier	(GUID)	specifying	the
service	provider	you	want	to	get	information	about.

pdpnSPCaps
[out]	Pointer	to	a	DPN_SP_CAPS	structure	to	receive	the
information	about	the	specified	service	provider.	You	must	set
the	pdpnSPCaps.dwSize	member	to	the	size	of	a
DPN_SP_CAPS	structure.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	retrieves	information	about	the	specified	service
provider.	A	successful	call	to	IDirectPlay8Client::Initialize	must	be
made	before	this	method	can	be	called.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::Initialize	Method

Registers	an	entry	point	in	the	client's	code	that	receives	the	messages
from	the	IDirectPlay8Client	interface	and	from	the	server.	This	method
must	be	called	before	calling	any	other	methods	of	this	interface.

Syntax

HRESULT	Initialize(
				PVOID	const	pvUserContext,
				const	PFNDPNMESSAGEHANDLER	pfn,
				const	DWORD	dwFlags
);

Parameters

pvUserContext
[in]	Pointer	to	the	user-provided	context	value	in	calls	to	the
message	handler.	Providing	a	user-context	value	can	be	useful
to	differentiate	messages	coming	from	multiple	interfaces	to	a
common	message	handler.

pfn
[in]	Pointer	to	a	PFNDPNMESSAGEHANDLER	callback	function
that	receives	all	messages	from	the	server,	and	receives
indications	of	session	changes	from	the	IDirectPlay8Client
interface.

dwFlags
[in]	You	can	specify	the	following	flags.
DPNINITIALIZE_DISABLEPARAMVAL

Disable	parameter	validation	for	the	current	object.
DPNINITIALIZE_HINT_LANSESSION

Opens	a	larger	send	window	for	games	running	on	a	local
area	network	(LAN).

DPNINITIALIZE_DISABLELINKTUNING
Disable	any	attempts	by	Microsoft®	DirectPlay®	to	tune	the
rate	it	sends	at	to	the	observed	network	conditions.

Messages	will	be	pushed	out	onto	the	network	at	the	first
available	opportunity.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

This	is	the	first	method	you	should	call	after	using
CoCreateInstance	to	obtain	the	IDirectPlay8Client	interface.

Specify	the	DPNINITIALIZE_HINT_LANSESSION	flag	for	sessions
where	all	players	will	be	on	the	same	LAN.

Applications	might	want	to	specify	the
DPNINITIALIZE_DISABLELINKTUNING	flag	when	they	send	at	a
fixed	rate	and	do	not	alter	the	rate	based	on	the	network	conditions.
With	this	flag	specified,	DirectPlay	will	always	assume	the	network
has	the	capacity	to	carry	all	the	application	data	and	will	therefore
not	attempt	to	tune	its	send	rate	to	the	network	bandwidth.
Specifying	this	flag	and	then	sending	at	a	rate	that	exceeds	the
capacity	of	the	network	will	lead	to	unpredictable	network	behavior
such	as	higher	latency	and	increased	packet	drop	rates.	Applications
that	monitor	the	send	queues	and	dynamically	adjust	their	send	rate
to	make	best	use	of	the	available	bandwidth	should	not	specify	this
flag.

If	the	DPNINITIALIZE_DISABLELINKTUNING	flag	is	specified,

DirectPlay	features	such	as	message	prioritization,	coalescence,	and
timeout	are	not	useful	because	messages	always	go	directly	to	the
network	and	are	not	queued.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::RegisterLobby	Method

Allows	launched	applications	to	automatically	propagate	game	status	to
the	lobby.

Syntax

HRESULT	RegisterLobby(
				const	DPNHANDLE	dpnHandle,
				IDirectPlay8LobbiedApplication	*const	pIDP8LobbiedApplication,
				const	DWORD	dwFlags
);

Parameters

dpnHandle
[in]	Connection	handle	used	when	making	the	calls	to
IDirectPlay8LobbiedApplication::UpdateStatus.

pIDP8LobbiedApplication
[in]	Pointer	to	the	IDirectPlay8LobbiedApplication	object	that
specifies	the	application.

dwFlags
[in]	One	of	the	following	flags:
DPNLOBBY_REGISTER

Registers	the	lobby	with	the	application.
DPNLOBBY_UNREGISTER

Unregisters	the	lobby	with	the	application.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::ReturnBuffer	Method

Retrieves	message	buffers	provided	to	the	application	through	the
pReceiveData	member	of	the	DPN_MSGID_RECEIVE	system	message.
If	the	user's	message	handler	returns	DPNSUCCESS_PENDING	to	the
RECEIVE	callback,	Microsoft®	DirectPlay®	assumes	ownership	of	the
buffer	has	been	transferred	to	the	application,	and	neither	frees	nor
modifies	it	until	ownership	is	returned	to	DirectPlay	through	this	call.

Syntax

HRESULT	ReturnBuffer(
				const	DPNHANDLE	hBufferHandle,
				const	DWORD	dwFlags
);

Parameters

hBufferHandle
[in]	Variable	of	type	DPNHANDLE	that	specifies	the	buffer
handle	to	the	message.	This	is	obtained	in	the	hBufferHandle
member	of	the	DPN_MSGID_RECEIVE	system	message.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::Send	Method

Transmits	data	to	the	server.	The	message	can	be	sent	synchronously	or
asynchronously.

Syntax

HRESULT	Send(
				const	DPN_BUFFER_DESC	*const	pBufferDesc,
				const	DWORD	cBufferDesc,
				const	DWORD	dwTimeOut,
				void	*const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pBufferDesc
[in]	Pointer	to	a	DPN_BUFFER_DESC	structure	that	describes
the	data	to	send.

cBufferDesc
[in]	Number	of	DPN_BUFFER_DESC	structures	pointed	to	by
pBufferDesc.	There	can	be	up	to	eight	buffers	in	this	version	of
Microsoft®	DirectPlay®.

dwTimeOut
[in]	Number	of	milliseconds	to	wait	for	the	message	to	send.	If
the	message	has	not	been	sent	by	the	dwTimeOut	value,	it	is
deleted	from	the	send	queue.	If	you	set	this	parameter	to	0,	the
message	remains	in	the	send	queue	until	it	is	sent	or	until	the
link	is	dropped.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_SEND_COMPLETE	system	message.

phAsyncHandle

[in,	out]	A	DPNHANDLE.	When	the	method	returns,
phAsyncHandle	will	point	to	a	handle	that	you	can	pass	to
IDirectPlay8Client::CancelAsyncOperation	to	cancel	the
operation.	This	parameter	must	be	set	to	NULL	if	you	set	the
DPNSEND_SYNC	flag	in	dwFlags.

dwFlags
[in]	Flags	that	describe	send	behavior.	You	can	set	one	or	more
of	the	following	flags.
DPNSEND_SYNC

Process	the	IDirectPlay8Client::Send	request
synchronously.

DPNSEND_NOCOPY
Use	the	data	in	the	DPN_BUFFER_DESC	structure	and	do
not	make	an	internal	copy.	This	can	be	a	more	efficient
method	of	sending	data	to	the	server.	However,	it	is	less
robust	because	modifying	or	deleting	the	data	before
receiving	the	DPN_MSGID_SEND_COMPLETE	message
can	cause	erroneous	data	to	be	sent.	This	flag	cannot	be
combined	with	DPNSEND_NOCOMPLETE.

DPNSEND_NOCOMPLETE
Does	not	send	DPN_MSGID_SEND_COMPLETE	to	the
message	handler.	This	flag	cannot	be	used	with
DPNSEND_NOCOPY	or	DPNSEND_GUARANTEED.
Additionally,	when	using	this	flag	pvAsyncContext	must	be
NULL.

DPNSEND_COMPLETEONPROCESS
Send	DPN_MSGID_SEND_COMPLETE	to	the	message
handler	when	this	message	has	been	delivered	to	the	target
and	the	target's	message	handler	returns	from	indicating	its
reception.	There	is	additional	internal	message	overhead
when	this	flag	is	set,	and	the	message	transmission
process	might	become	significantly	slower.	If	you	set	this
flag,	DPNSEND_GUARANTEED	must	also	be	set.

DPNSEND_GUARANTEED
Send	the	message	by	a	guaranteed	method	of	delivery.

DPNSEND_PRIORITY_HIGH
Sets	the	priority	of	the	message	to	high.	This	flag	cannot	be
used	with	DPNSEND_PRIORITY_LOW.

DPNSEND_PRIORITY_LOW

Sets	the	priority	of	the	message	to	low.	This	flag	cannot	be
used	with	DPNSEND_PRIORITY_HIGH.

DPNSEND_NOLOOPBACK
Suppress	the	DPN_MSGID_RECEIVE	system	message	to
your	message	handler	if	you	are	sending	to	yourself.

DPNSEND_NONSEQUENTIAL
If	the	flag	is	not	set,	messages	are	delivered	to	the	target
application	in	the	order	that	they	are	sent,	which	can
necessitate	buffering	out	of	sequence	messages	until	the
missing	messages	arrive.	Messages	are	delivered	to	the
target	application	in	the	order	that	they	are	received.

DPNSEND_COALESCE
Allows	DirectPlay	to	combine	packets	when	sending.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
generally	returns	DPNSUCCESS_PENDING	or	one	of	the	following
error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_TIMEDOUT The	operation	could	not	complete	because	it	has	timed	out.

Remarks

This	method	generates	a	DPN_MSGID_RECEIVE	system	message
in	the	server's	message	handler.	The	data	buffer	is	contained	in	the
pReceiveData	member	of	the	associated	structure.

Messages	can	have	one	of	three	priorities:	low,	normal,	and	high.	To
specify	a	low	or	high	priority	for	the	message,	set	the	appropriate
flag	in	dwFlags.	If	neither	of	the	priority	flags	is	set,	the	message	will
have	normal	priority.	See	Basic	Networking	for	a	discussion	of	send

priorities.

When	the	IDirectPlay8Client::Send	request	is	completed,	a
DPN_MSGID_SEND_COMPLETE	system	message	is	posted	to	the
sender's	message	handler.	The	success	or	failure	of	the	request	is
contained	in	the	hResultCode	member	of	the	associate	structure.
You	can	suppress	the	send	completion	by	setting	the
DPN_NOCOMPLETE	flag	in	dwFlags.

If	a	player	joins	a	game	and	needs	to	send	multiple	messages
immediately,	the	player	should	first	send	a	message	with	the
DPNSEND_COMPLETEONPROCESS	flag	set.	When	the
DPN_MSGID_SEND_COMPLETE	message	is	returned,	the
application	can	begin	sending	messages.	If	the	player	does	not	do
this,	some	of	the	messages	might	need	to	be	queued	on	the	receiver
and,	if	too	much	data	arrives,	the	queue	can	grow	faster	than	the
receiver	can	handle	the	messages.	This	might	result	in	lost	data.
After	a	player	is	established	in	the	game,	however,	throttling	in
DirectPlay	will	control	the	data	flow	by	using	message	timeouts	or
the	GetSendQueueInfo	method.	For	more	information,	see
Optimizing	Network	Usage.

Send	completions	are	typically	posted	on	the	source	computer	as
soon	as	the	message	is	sent.	In	other	words,	a	send	completion
does	not	necessarily	mean	that	the	message	has	been	processed	on
the	target.	It	might	still	be	in	a	queue.	If	you	want	to	be	certain	that
the	message	has	been	processed	by	the	target,	set	the
DPN_COMPLETEONPROCESS	flag	in	dwFlags.	This	flag	ensures
that	the	send	completion	will	not	be	sent	until	the	target's	message
handler	has	processed	the	message	and	returned.

If	the	DPNSEND_COALESCE	flag	is	set	in	dwFlags,	DirectPlay	will
try	to	coalesce	up	to	32	packets	waiting	in	the	queue	into	the
outgoing	frame.	DirectPlay	does	not	guarantee	coalescence,	even	if
the	DPNSEND_COALESCE	flag	is	set.	Packets	will	only	be
coalesced	if	there	is	more	than	one	message	in	the	queue	and	the
player	receiving	is	running	Microsoft	DirectX®	9.0	or	later.	All	voice
packets	can	be	coalesced.	Both	guaranteed	and	non-guaranteed
packets	will	be	coalesced	into	the	same	frame.	If	the	frame	is
dropped	before	it	reaches	its	destination,	only	the	guaranteed	parts
of	the	frame	will	be	resent	and	no	other	data	will	be	coalesced	into
the	frame.

Note		Do	not	assume	that	resources	such	as	the	data	buffer	will
remain	valid	until	the	method	has	returned.	If	you	call	this	method
asynchronously,	the	DPN_MSGID_SEND_COMPLETE	message
can	be	received	and	processed	by	your	message	handler	before	the
call	has	returned.	If	your	message	handler	deallocates	or	otherwise
invalidates	a	resource	such	as	the	data	buffer,	that	resource	can
become	invalid	at	any	time	after	the	method	has	been	called.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::SetCaps	Method

Sets	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current
interface.

Syntax

HRESULT	SetCaps(
				const	DPN_CAPS	*const	pdpCaps,
				const	DWORD	dwFlags
);

Parameters

pdpCaps
[in]	Pointer	to	a	DPN_CAPS	or	DPN_CAPS_EX	structure	used
to	set	the	information	about	the	current	interface.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

A	successful	call	to	IDirectPlay8Client::Initialize	must	be	made
before	this	method	can	be	called.

DirectPlay	will	determine	whether	DPN_CAPS	or	DPN_CAPS_EX	is
being	used	based	on	the	size	of	the	structure	referenced	by
pdpCaps.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::SetClientInfo	Method

Sets	the	static	settings	of	a	client	with	an	application.	Call	this	method
before	connecting	to	relay	basic	player	information	to	the	application.
When	the	client	successfully	connects	with	the	application,	the	server	can
retrieve	information	obtained	through	this	method	by	calling	the
IDirectPlay8Server::GetClientInfo	method.

Syntax

HRESULT	SetClientInfo(
				const	DPN_PLAYER_INFO	*const	pdpnPlayerInfo,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pdpnPlayerInfo
[in]	Pointer	to	a	DPN_PLAYER_INFO	structure	that	contains	the
client	information	to	set.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[in,	out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.
DPNSETCLIENTINFO_SYNC

Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	If	the	request	is	processed	asynchronously,	S_OK	can
return	if	the	method	is	instantly	processed.	By	default,	this	method	is
run	asynchronously	and	generally	returns
DPNSUCCESS_PENDING	or	one	of	the	following	error	values.

DPNERR_NOCONNECTION No	communication	link	was	established.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

This	method	can	be	called	at	any	time	during	the	session.

The	DPN_PLAYER_INFO	structure's	dwPlayerFlags	member	must
be	set	to	zero.

Transmission	of	nonstatic	information	should	be	handled	with	the
IDirectPlay8Client::Send	method	because	of	the	high	cost	of	using
the	IDirectPlay8Client::SetClientInfo	method.

You	can	modify	the	client	information	with	this	method	after
connecting	to	the	application.	Calling	this	method	after	connection
generates	a	DPN_MSGID_CLIENT_INFO	system	message	to	all
players,	informing	them	that	data	has	been	updated.

When	calling	this	method	asynchronously,	the	contents	of	the
pdpnPlayerInfo	and	pvAsyncContext	buffers	will	be	copied	by
DirectPlay	so	that	the	calling	application	can	clean	up	the	buffers
before	the	method	returns.

This	method	is	guaranteed	as	long	as	the	player	is	connected	to	the
session.	DirectPlay	will	ensure	that	this	method	completes	and	that
the	information	is	propagated	to	all	players.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Client::SetSPCaps	Method

Sets	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Syntax

HRESULT	SetSPCaps(
				const	GUID	*const	pguidSP,
				const	DPN_SP_CAPS	*const	pdpnSPCaps,
				const	DWORD	dwFlags
);

Parameters

pguidSP
[in]	Pointer	to	a	globally	unique	identifier	(GUID)	that	specifies
the	service	provider	to	set	information	about.

pdpnSPCaps
[in]	Pointer	to	a	DPN_SP_CAPS	structure	to	set	the	information
about	the	specified	service	provider.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	sets	parameters	for	the	specified	service	provider.	A

successful	call	to	IDirectPlay8Client::Initialize	must	be	made	before
this	method	can	be	called.	Currently,	only	the	dwSystemBufferSize
member	can	be	set	by	this	call.	The	dwNumThreads	member	is	for
legacy	support.	Microsoft	DirectX®	9.0	applications	should	use	the
IDirectPlay8ThreadPool::SetThreadCount	method	to	set	the	number
of	threads.	The	other	members	of	the	DPN_SP_CAPS	structure	are
get-only	or	ignored.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication	Interface

The	IDirectPlay8LobbiedApplication	interface	is	used	by	an	application
that	supports	lobbying.	This	interface	allows	the	application	to	register
with	the	system	so	that	it	can	be	lobby	launched.	Additionally,	it	also	lets
the	application	get	the	connection	information	necessary	to	launch	a
game	without	querying	the	user.	Lastly,	this	interface	allows	the	lobbied
application	to	send	messages	and	notifications	to	the	lobby	client	that
launched	the	application.

IDirectPlay8LobbiedApplication	Members

Close Deletes	the	lobbied	application.

GetConnectionSettings Retrieves	the	set	of	connection	settings	for	the	specified	connection.	These	settings	can
be	set	through	a	call	to	the	IDirectPlay8LobbyClient::ConnectApplication,
IDirectPlay8LobbyClient::SetConnectionSettings,	or
IDirectPlay8LobbiedApplication::SetConnectionSettings	method.

When	you	get	connection	settings,	a	reference	will	be	added	for	each	address	object	that
is	returned	to	the	user.	Therefore,	users	must	be	sure	to	call	Release	on	each	address
object	when	they	are	done	with	the	structure.

Initialize Registers	a	message	handler	function	that	receives	notifications	about	changes	in	the
state	of	the	lobby	client	and	receives	messages	from	the	lobby	client.

RegisterProgram Registers	a	lobby-aware	application	with	Microsoft®	DirectPlay®.	Applications	must	be
registered	to	enable	lobby	launching.

Send Sends	a	message	from	the	lobbied	application	to	the	lobby	client.

SetAppAvailable Makes	an	application	available	or	unavailable	for	a	lobby	client	to	connect	to.	This
method	is	typically	called	if	a	lobbied	application	is	independently	launched,	that	is,	not
launched	by	a	lobby	client.	Additionally,	this	method	should	be	called	if	a	game	has
ended	and	the	lobbied	application	needs	to	be	available	to	connect	to	a	lobby	client	at
the	start	of	another	game.

SetConnectionSettings Sets	the	connection	settings	to	be	associated	with	the	specified	connection.	Calling	this
method	generates	a	DPL_MSGID_CONNECTION_SETTINGS	message	to	be	sent	to
the	client	specified	by	hConnection.

When	you	set	connection	settings,	the	lobby	application	will	add	a	reference	to	each	of

the	address	objects	specified	in	the	call.

UnRegisterProgram Unregisters	a	lobby-aware	application	that	was	registered	through	the
IDirectPlay8LobbiedApplication::RegisterProgram	method.

UpdateStatus Updates	the	status	of	a	connected	lobby	client.

Interface	Information

Inherits	from IUnknown

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::Close	Method

Deletes	the	lobbied	application.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_OUTOFMEMORY There	is	insufficient	memory	to	perform	the	requested	operation.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::GetConnectionSettings
Method

Retrieves	the	set	of	connection	settings	for	the	specified	connection.
These	settings	can	be	set	through	a	call	to	the
IDirectPlay8LobbyClient::ConnectApplication,
IDirectPlay8LobbyClient::SetConnectionSettings,	or
IDirectPlay8LobbiedApplication::SetConnectionSettings	method.

When	you	get	connection	settings,	a	reference	will	be	added	for	each
address	object	that	is	returned	to	the	user.	Therefore,	users	must	be	sure
to	call	Release	on	each	address	object	when	they	are	done	with	the
structure.

Syntax

HRESULT	GetConnectionSettings(
				const	DPNHANDLE	hLobbyClient,
				DPL_CONNECTION_SETTINGS	*const	pdplSessionInfo,
				DWORD	*pdwInfoSize,
				const	DWORD	dwFlags
);

Parameters

hLobbyClient
[in]	Handle	to	the	connection	for	which	to	retrieve	the	settings.

pdplSessionInfo
[out]	Pointer	to	a	DPL_CONNECTION_SETTINGS	structure	to
receive	the	connection	settings	for	the	specified	connection.

pdwInfoSize
[in,	out]	Pointer	to	a	DWORD	containing	the	size,	in	bytes,	of	the
buffer	specified	in	the	pdplSessionInfo	structure.	If	the	buffer	is
not	large	enough	to	hold	the	connection	settings,

DPNERR_BUFFERTOOSMALL	is	returned	and	this	value	will
be	set	to	the	required	buffer	size.	On	success,	this	value	will
contain	the	number	of	bytes	written	to	the	specified	buffer.

dwFlags
[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::Initialize	Method

Registers	a	message	handler	function	that	receives	notifications	about
changes	in	the	state	of	the	lobby	client	and	receives	messages	from	the
lobby	client.

Syntax

HRESULT	Initialize(
				const	PVOID	pvUserContext,
				const	PFNDPNMESSAGEHANDLER	pfn,
				DPNHANDLE	*const	pdpnhConnection,
				const	DWORD	dwFlags
);

Parameters

pvUserContext
[in]	Pointer	to	the	user-provided	context	value	in	calls	to	the
message	handler.	Providing	a	user-context	value	is	useful	to
differentiate	messages	from	multiple	interfaces	to	a	common
message	handler.

pfn
[in]	Pointer	to	a	PFNDPNMESSAGEHANDLER	callback	function
that	receives	all	messages	from	the	IDirectPlay8LobbyClient
interface	and	indications	of	session	changes	from	the
IDirectPlay8LobbiedApplication	interface.

pdpnhConnection
[out]	Value	used	to	detect	if	your	application	was	lobby
launched.	If	your	application	was	lobby	launched,	this	parameter
will	be	set	to	the	connection	handle	to	the	lobby	client.	If	your
process	was	not	lobby	launched,	this	parameter	is	set	to	NULL.

dwFlags
[in]	The	following	flag	can	be	specified.
DPLINITIALIZE_DISABLEPARAMVAL

Disables	parameter	validation.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

Call	this	method	first	after	using	CoCreateInstance	to	obtain	the
IDirectPlay8LobbiedApplication	interface.

This	method	automatically	establishes	a	connection	to	the	lobby
client	if	you	were	lobby	launched.	If	you	call
IDirectPlay8LobbiedApplication::Initialize	and	you	were	lobby
launched	and	the	lobbied	application	interface	is	unable	to	contact
the	lobby	client	process,
IDirectPlay8LobbiedApplication::Initialize	will	time	out	after	four
seconds.	In	this	case,	IDirectPlay8LobbiedApplication::Initialize
will	return	DPNERR_TIMEDOUT	but	will	still	succeed.

Note		Only	one	instance	of	IDirectPlay8LobbyClient	and
IDirectPlay8LobbiedApplication	is	allowed	to	be	running	for	each
process.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::RegisterProgram
Method

Registers	a	lobby-aware	application	with	Microsoft®	DirectPlay®.
Applications	must	be	registered	to	enable	lobby	launching.

Syntax

HRESULT	RegisterProgram(
				PDPL_PROGRAM_DESC	pdplProgramDesc,
				const	DWORD	dwFlags
);

Parameters

pdplProgramDesc
[in]	Pointer	to	the	DPL_PROGRAM_DESC	structure	that
describes	the	lobby-aware	application	to	register.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

The	application	needs	to	register	only	once.	It	should	be
unregistered	with	a	call	to	the
IDirectPlay8LobbiedApplication::UnRegisterProgram	method	when	it

is	uninstalled.

IDirectPlay8LobbiedApplication::RegisterProgram	must	be	used.
You	cannot	manually	enter	application	information	in	the	registry.
Failure	to	use	this	interface	might	make	your	application	nonportable
and	incompatible	with	later	versions	of	DirectPlay.

If	your	application	is	running	on	Microsoft	Windows®	Powered
Pocket	PC	2002,	do	not	set	the	pwszExecutablePath	member	of
the	DPL_PROGRAM_DESC	structure	to	NULL	unless	your
application's	executable	is	located	in	the	Windows	directory
(\Windows).	If	it	is	not	in	that	directory,	set	pwszExecutablePath	to
the	correct	path.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::Send	Method

Sends	a	message	from	the	lobbied	application	to	the	lobby	client.

Syntax

HRESULT	Send(
				const	DPNHANDLE	hConnection,
				BYTE	*const	pBuffer,
				const	DWORD	pBufferSize,
				const	DWORD	dwFlags
);

Parameters

hConnection
[in]	Variable	of	type	DPNHANDLE	that	specifies	the	lobby	client
that	the	message	is	sent	to.	You	may	also	specify	the	following
flag.
DPLHANDLE_ALLCONNECTIONS

The	message	you	have	specified	will	be	sent	to	all	lobby
clients	to	which	you	are	connected.

pBuffer
[in]	Pointer	to	a	variable	of	type	BYTE	that	contains	the
message	buffer.

pBufferSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the
message	buffer	in	the	pBuffer	parameter,	in	bytes.	This
parameter	must	be	at	least	1	byte	and	no	more	than	64	KB.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_SENDTOOLARGE The	buffer	was	too	large.

Remarks

If	the	buffer	size	is	larger	than	64	KB,	the	method	returns
DPNERR_SENDTOOLARGE.	If	the	buffer	size	is	set	to	0,	the
method	returns	DPNERR_INVALIDPARAM.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::SetAppAvailable
Method

Makes	an	application	available	or	unavailable	for	a	lobby	client	to
connect	to.	This	method	is	typically	called	if	a	lobbied	application	is
independently	launched,	that	is,	not	launched	by	a	lobby	client.
Additionally,	this	method	should	be	called	if	a	game	has	ended	and	the
lobbied	application	needs	to	be	available	to	connect	to	a	lobby	client	at
the	start	of	another	game.

Syntax

HRESULT	SetAppAvailable(
				const	BOOL	fAvailable,
				const	DWORD	dwFlags
);

Parameters

fAvailable
[in]	Boolean	value	that	sets	the	availability	of	the	application.	Set
this	value	to	TRUE	to	indicate	that	your	application	is	available,
or	to	FALSE	to	indicate	that	it	is	not	available.

dwFlags
[in]	The	following	flag	can	be	set	for	this	method.
DPLAVAILABLE_ALLOWMULTIPLECONNECT

The	default	behavior	for	this	method	is	to	automatically
mark	the	interface	as	Unavailable	when	the	first	connection
is	established.	By	specifying	this	flag,	the	interface	is	not
automatically	marked	unavailable	after	the	first	connection
is	established,	thereby	allowing	multiple	connections.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::SetConnectionSettings
Method

Sets	the	connection	settings	to	be	associated	with	the	specified
connection.	Calling	this	method	generates	a
DPL_MSGID_CONNECTION_SETTINGS	message	to	be	sent	to	the
client	specified	by	hConnection.

When	you	set	connection	settings,	the	lobby	application	will	add	a
reference	to	each	of	the	address	objects	specified	in	the	call.

Syntax

HRESULT	SetConnectionSettings(
				const	DPNHANDLE	hConnection,
				const	DPL_CONNECTION_SETTINGS	*const	pdplConnectSettings,
				const	DWORD	dwFlags
);

Parameters

hConnection
[in]	Handle	to	the	connection	to	set	the	settings	for.	You	may
also	specify	the	following	flag.
DPLHANDLE_ALLCONNECTIONS

The	connection	settings	will	be	updated	for	all	the	lobby
clients	to	which	you	are	connected.

pdplConnectSettings
[in]	Pointer	to	a	DPL_CONNECTION_SETTINGS	structure
containing	the	settings	associated	with	the	specified	connection.

dwFlags
[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::UnRegisterProgram
Method

Unregisters	a	lobby-aware	application	that	was	registered	through	the
IDirectPlay8LobbiedApplication::RegisterProgram	method.

Syntax

HRESULT	UnRegisterProgram(
				GUID	*pguidApplication,
				const	DWORD	dwFlags
);

Parameters

pguidApplication
[in]	Pointer	to	the	globally	unique	identifier	(GUID)	of	the
application	to	unregister.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbiedApplication::UpdateStatus	Method

Updates	the	status	of	a	connected	lobby	client.

Syntax

HRESULT	UpdateStatus(
				const	DPNHANDLE	hConnection,
				const	DWORD	dwStatus,
				const	DWORD	dwFlags
);

Parameters

hConnection
[in]	Variable	of	type	DPNHANDLE	that	specifies	the	lobby	client.
You	may	also	specify	the	following	flag.
DPLHANDLE_ALLCONNECTIONS

The	status	update	will	be	sent	to	all	lobby	clients	to	which
you	are	connected.

dwStatus
[in]	Variable	of	type	DWORD	that	is	filled	with	one	of	the
following	values	that	indicate	the	status	between	the	lobby	client
and	the	lobbied	application.
DPLSESSION_CONNECTED

The	lobby	client	and	lobbied	application	are	currently
connected.

DPLSESSION_COULDNOTCONNECT
The	lobby	client	was	not	able	to	connect	to	the	lobbied
application.

DPLSESSION_DISCONNECTED
The	lobby	client	and	lobbied	application	are	currently
disconnected.

DPLSESSION_TERMINATED
The	connection	between	the	lobby	client	and	lobbied
application	has	been	terminated.

DPLSESSION_HOSTMIGRATED
The	peer	object	associated	with	the	connection	is	involved
in	a	session	where	a	host	migration	takes	place	and	the
local	client	is	not	the	new	host.

DPLSESSION_HOSTMIGRATEDHERE
The	peer	object	associated	with	the	connection	is	involved
in	a	session	where	a	host	migration	takes	place	and	the
local	client	becomes	the	new	host.

dwFlags
[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient	Interface

Applications	use	methods	of	the	IDirectPlay8LobbyClient	interface	to
enumerate	and	launch	lobby-enabled	games	on	a	local	computer,	and
communicate	with	the	games	when	they	are	running.	The	lobby	client
must	register	a	message-handler	routine	to	process	messages	from	the
lobby	and	the	lobbied	game	application.

IDirectPlay8LobbyClient	Members

Close Deletes	the	lobby	client.

ConnectApplication Connects	a	lobby-enabled	application	to	the	session	specified	in	the
DPL_CONNECT_INFO	structure.	If	the	application	is	not	running,	this	method	can	be
used	to	launch	the	application.

When	the	connection	is	successfully	established,	the	lobbied	application	generates	a
DPL_MSGID_CONNECT	system	message	to	the	message	handler.

EnumLocalPrograms Enumerates	the	lobbied	applications	that	are	registered	on	the	system.

GetConnectionSettings Retrieves	the	set	of	connection	settings	for	the	specified	connection.	These	settings	can
be	set	through	a	call	to	the	IDirectPlay8LobbyClient::ConnectApplication,
IDirectPlay8LobbyClient::SetConnectionSettings,	or
IDirectPlay8LobbiedApplication::SetConnectionSettings	method.

When	you	get	connection	settings,	a	reference	will	be	added	for	each	address	object	that
is	returned	to	the	user.	Therefore,	users	must	be	sure	to	call	Release	on	each	address
object	when	they	are	finished	with	the	structure.

Initialize Registers	an	entry	point	in	the	lobby	client's	code	that	receives	notifications	on	changes
of	state	for	any	launched	applications.	The	message	handler	also	receives	messages
from	the	lobbied	application.	This	method	must	be	called	before	calling	any	other
methods	of	this	interface.

ReleaseApplication Releases	a	lobbied	application	and	closes	the	connection	between	the	lobby	client	and
the	application.	This	method	should	be	called	whenever	a	lobby	client	has	finished	its
session	with	an	application.

Send Sends	a	message	to	a	lobbied	application	that	was	launched	by	this	lobby	client	or	was
connected	by	this	lobby	client.

This	method	sends	a	DPL_MSGID_RECEIVE	system	message	to	the	target's	message
handler.

SetConnectionSettings Sets	the	connection	settings	to	be	associated	with	the	specified	connection.	Calling	this
method	will	generate	a	DPL_MSGID_CONNECTION_SETTINGS	message	to	be	sent	to
the	client	specified	by	hConnection.

When	you	set	connection	settings,	the	lobby	application	will	add	a	reference	to	each	of
the	address	objects	specified	in	the	call.

Interface	Information

Inherits	from IUnknown

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::Close	Method

Deletes	the	lobby	client.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::ConnectApplication	Method

Connects	a	lobby-enabled	application	to	the	session	specified	in	the
DPL_CONNECT_INFO	structure.	If	the	application	is	not	running,	this
method	can	be	used	to	launch	the	application.

When	the	connection	is	successfully	established,	the	lobbied	application
generates	a	DPL_MSGID_CONNECT	system	message	to	the	message
handler.

Syntax

HRESULT	ConnectApplication(
				DPL_CONNECT_INFO	*const	pdplConnectionInfo,
				const	PVOID	pvUserApplicationContext,
				DPNHANDLE	*const	phApplication,
				const	DWORD	dwTimeOut,
				const	DWORD	dwFlags
);

Parameters

pdplConnectionInfo
[in]	Pointer	to	a	DPL_CONNECT_INFO	structure,	which
describes	the	connection	parameters,	including	the	globally
unique	identifier	(GUID)	of	the	application	to	connect	to.

pvUserApplicationContext
[in]	Pointer	to	a	context	value	defined	for	the	lobby	client	that	is
passed	in	calls	to	the	lobby	client's	message	handler.

phApplication
[out]	Pointer	to	a	DPNHANDLE	that	specifies	the	application
connect	handle	that	is	set	if	this	method	succeeds.	This	handle
is	used	for	further	communication	with	the	application.
Additionally,	this	handle	is	used	in	the	phApplication	parameter
in	the	IDirectPlay8LobbyClient::ReleaseApplication	method.

dwTimeOut
[in]	Variable	of	type	DWORD	that	specifies	the	number	of
milliseconds	to	wait	for	the	connection	to	process.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_CANTLAUNCHAPPLICATION The	lobby	cannot	launch	the	specified	application.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_TIMEDOUT The	operation	could	not	complete	because	it	has	timed	out.

DPNERR_NOCONNECTION No	communication	link	was	established.

DPNERR_DOESNOTEXIST Requested	element	is	not	part	of	the	address.

Remarks

When	this	method	returns	DPNERR_NOCONNECTION,	the	reason
is	usually	that	the	application	described	in	the	pdplConnectionInfo
parameter	has	not	called
IDirectPlay8LobbiedApplication::SetAppAvailable.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::EnumLocalPrograms	Method

Enumerates	the	lobbied	applications	that	are	registered	on	the	system.

Syntax

HRESULT	EnumLocalPrograms(
				GUID	*const	pGuidApplication,
				BYTE	*const	pEnumData,
				DWORD	*const	pdwEnumData,
				DWORD	*const	pdwItems,
				const	DWORD	dwFlags
);

Parameters

pGuidApplication
[in]	Pointer	to	a	variable	of	type	globally	unique	identifier	(GUID)
that	specifies	the	lobbied	application	to	enumerate.	This
parameter	is	optional,	and	passing	NULL	enumerates	all
available	lobbied	applications.

pEnumData
[out]	Pointer	to	a	variable	of	type	BYTE,	which	is	filled	with	a
description	of	the	lobbied	application.

pdwEnumData
[in]	Pointer	to	variable	of	type	DWORD	that	specifies	the
number	of	bytes	contained	in	the	pEnumData	buffer.	If	the	buffer
in	pEnumData	is	too	small,	this	method	returns
DPNERR_BUFFERTOOSMALL	and	sets	this	parameter	to	the
size	of	the	required	buffer.

pdwItems
[out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the
number	of	DPL_APPLICATION_INFO	structures	in	the
pEnumData	buffer.	This	parameter	is	filled	only	if	the	method
succeeds.

dwFlags

[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_DOESNOTEXIST Requested	element	is	not	part	of	the	address.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

This	method	is	generally	called	twiceonce	to	obtain	the	size	of	the
required	buffer,	and	then	with	the	correct	buffer	size.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::GetConnectionSettings
Method

Retrieves	the	set	of	connection	settings	for	the	specified	connection.
These	settings	can	be	set	through	a	call	to	the
IDirectPlay8LobbyClient::ConnectApplication,
IDirectPlay8LobbyClient::SetConnectionSettings,	or
IDirectPlay8LobbiedApplication::SetConnectionSettings	method.

When	you	get	connection	settings,	a	reference	will	be	added	for	each
address	object	that	is	returned	to	the	user.	Therefore,	users	must	be	sure
to	call	Release	on	each	address	object	when	they	are	finished	with	the
structure.

Syntax

HRESULT	GetConnectionSettings(
				const	DPNHANDLE	hConnection,
				DPL_CONNECTION_SETTINGS	*const	pdplConnectSettings,
				DWORD	*pdwDataSize,
				const	DWORD	dwFlags
);

Parameters

hConnection
[in]	Handle	to	the	connection	for	which	to	retrieve	the	settings.

pdplConnectSettings
[out]	Pointer	to	a	buffer	to	receive	the	connection	settings	for	the
specified	connection.

pdwDataSize
[in,	out]	Pointer	to	a	DWORD	containing	the	size,	in	bytes,	of	the
buffer	specified	in	the	pdplConnectSettings	structure.	If	the
buffer	is	not	large	enough	to	hold	the	connection	settings,

DPNERR_BUFFERTOOSMALL	is	returned	and	this	value	is	set
to	the	required	buffer	size.	On	success,	this	value	contains	the
number	of	bytes	written	to	the	specified	buffer.

dwFlags
[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::Initialize	Method

Registers	an	entry	point	in	the	lobby	client's	code	that	receives
notifications	on	changes	of	state	for	any	launched	applications.	The
message	handler	also	receives	messages	from	the	lobbied	application.
This	method	must	be	called	before	calling	any	other	methods	of	this
interface.

Syntax

HRESULT	Initialize(
				const	PVOID	pvUserContext,
				const	PFNDPNMESSAGEHANDLER	pfn,
				const	DWORD	dwFlags
);

Parameters

pvUserContext
[in]	Pointer	to	the	user-provided	context	value	provided	in	calls
to	the	message	handler.	Providing	a	user-context	value	is	useful
to	differentiate	messages	from	multiple	interfaces	to	a	common
message	handler.

pfn
[in]	Pointer	to	a	PFNDPNMESSAGEHANDLER	callback	function
that	receives	all	messages	from	the	IDirectPlay8LobbyClient
interface	and	indications	of	session	changes	from	the
IDirectPlay8LobbiedApplication	interface.

dwFlags
[in]	The	following	flag	can	be	specified.
DPLINITIALIZE_DISABLEPARAMVAL

Disables	parameter	validation.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

Call	this	is	method	first	after	using	CoCreateInstance	to	obtain	the
IDirectPlay8LobbyClient	interface.

Note		Only	one	instance	of	IDirectPlay8LobbyClient	and
IDirectPlay8LobbiedApplication	is	allowed	to	be	running	for	each
process.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::ReleaseApplication	Method

Releases	a	lobbied	application	and	closes	the	connection	between	the
lobby	client	and	the	application.	This	method	should	be	called	whenever
a	lobby	client	has	finished	its	session	with	an	application.

Syntax

HRESULT	ReleaseApplication(
				const	DPNHANDLE	hApplication,
				const	DWORD	dwFlags
);

Parameters

hApplication
[in]	The	DPNHANDLE	of	the	lobbied	application	to	release.	This
value	is	set	in	the	phApplication	parameter	of	the
IDirectPlay8LobbyClient::ConnectApplication	method.	You	can
also	specify	the	following	flag.
DPLHANDLE_ALLCONNECTIONS

All	application	connections	will	be	released.
dwFlags

[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::Send	Method

Sends	a	message	to	a	lobbied	application	that	was	launched	by	this
lobby	client	or	was	connected	by	this	lobby	client.

This	method	sends	a	DPL_MSGID_RECEIVE	system	message	to	the
target's	message	handler.

Syntax

HRESULT	Send(
				const	DPNHANDLE	hConnection,
				BYTE	*const	pBuffer,
				const	DWORD	pBufferSize,
				const	DWORD	dwFlags
);

Parameters

hConnection
[in]	Variable	of	type	DPNHANDLE	that	specifies	the	target	for
the	message	transmission.	You	may	also	specify	the	following
flag.
DPLHANDLE_ALLCONNECTIONS

The	message	you	have	specified	will	be	sent	to	all	lobbied
applications	that	are	connected	to	your	lobby	client
application.

pBuffer
[in]	Pointer	to	an	array	of	bytes	that	contains	the	message.

pBufferSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the
message	buffer	in	the	pBuffer	parameter,	in	bytes.	This
parameter	must	be	at	least	1	byte	and	no	more	than	64	KB.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_SENDTOOLARGE The	buffer	was	too	large.

Remarks

If	the	buffer	size	is	larger	than	64	KB,	the	method	returns
DPNERR_SENDTOOLARGE.	If	the	buffer	size	is	set	to	0,	the
method	returns	DPNERR_INVALIDPARAM.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8LobbyClient::SetConnectionSettings	Method

Sets	the	connection	settings	to	be	associated	with	the	specified
connection.	Calling	this	method	will	generate	a
DPL_MSGID_CONNECTION_SETTINGS	message	to	be	sent	to	the
client	specified	by	hConnection.

When	you	set	connection	settings,	the	lobby	application	will	add	a
reference	to	each	of	the	address	objects	specified	in	the	call.

Syntax

HRESULT	SetConnectionSettings(
				const	DPNHANDLE	hConnection,
				const	DPL_CONNECTION_SETTINGS	*const	pdplConnectSettings,
				const	DWORD	dwFlags
);

Parameters

hConnection
[in]	Handle	to	the	connection	to	set	the	settings	for.	You	may
also	specify	the	following	flag.
DPLHANDLE_ALLCONNECTIONS

The	connection	settings	will	be	updated	for	all	the	lobbied
applications	you	are	connected	to.

pdplConnectSettings
[in]	Pointer	to	a	DPL_CONNECTION_SETTINGS	structure
containing	the	settings	associated	with	the	specified	connection.

dwFlags
[in]	Reserved,	must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8NATResolver	Interface

Applications	use	the	methods	of	the	IDirectPlay8NATResolver	interface
to	improve	connectivity	for	players	behind	Network	Address	Translation
(NAT)	devices	that	are	not	Universal	Plug	and	Play	(UPnP).

Note		This	interface	is	only	for	players	using	the	Internet	Protocol,
version	4	(IPv4)	service	provider.

IDirectPlay8NATResolver	Members

Close Closes	the	IDirectPlay8NATResolver	interface.

EnumDevices Enumerates	the	list	of	available	devices	on	which	the	NAT	Resolver	can	be	started.

GetAddresses Retrieves	the	list	of	IDirectPlay8Address	objects	on	which	the	NAT	Resolver	has	been	started.

Initialize Initializes	the	IDirectPlay8NATResolver	interface.	This	method	must	be	called	before	calling	any
other	methods	of	this	interface.

Start Launches	the	NAT	Resolver	server	using	the	specified	device	addresses.

Interface	Information

Inherits	from IUnknown

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8NATResolver::Close	Method

Closes	the	IDirectPlay8NATResolver	interface.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved.	Set	to	NULL.

Return	Value

Returns	DPN_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8NATResolver::EnumDevices	Method

Enumerates	the	list	of	available	devices	on	which	the	Network	Address
Translation	(NAT)	Resolver	can	be	started.

Syntax

HRESULT	EnumDevices(
				DPN_SERVICE_PROVIDER_INFO	*const	pSPInfoBuffer,
				PDWORD	const	pdwBufferSize,
				PDWORD	const	pdwNumDevices,
				const	DWORD	dwFlags
);

Parameters

pSPInfoBuffer
[out]	Pointer	to	an	array	of	DPN_SERVICE_PROVIDER_INFO
structures	that	will	be	filled	with	service	provider	information.

pdwBufferSize
[out]	Pointer	to	DWORD,	which	is	filled	with	the	size	of	the
pSPInfoBuffer	buffer.

pdwNumDevices
Pointer	to	DWORD	which	is	filled	with	the	number	of
DPN_SERVICE_PROVIDER_INFO	structures	returned	in
pSPInfoBuffer.

dwFlags
[in]	Reserved.	Set	to	NULL.

Return	Value

Returns	DPN_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

If	the	value	at	pdwBufferSize	indicates	the	buffer	is	too	small	to	hold
the	list	of	devices,	the	size	required	is	placed	in	pdwBufferSize	and
DPNERR_BUFFERTOOSMALL	is	returned.	Otherwise	the	size
written	is	placed	in	pdwBufferSize

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8NATResolver::GetAddresses	Method

Retrieves	the	list	of	IDirectPlay8Address	objects	on	which	the	Network
Address	Translation	(NAT)	Resolver	has	been	started.

Syntax

HRESULT	GetAddresses(
				IDirectPlay8Address	**const	ppAddresses,
				DWORD	*const	pdwNumAddresses,
				const	DWORD	dwFlags
);

Parameters

ppAddresses
[out]	Receives	an	array	of	IDirectPlay8Address	address
objects.

pdwNumAddresses
[in]	Number	of	address	objects	returned	in	the	ppAddresses.

dwFlags
[in]	Reserved.	Set	to	NULL.

Return	Value

Returns	DPN_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOCONNECTION No	communication	link	was	established.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

IDirectPlay8Address::Release	must	be	called	on	each	of	the	address
interface	pointers	returned	by
IDirectPlay8NATResolver::GetAddresses	when	you	are	finished
with	the	objects.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8NATResolver::Initialize	Method

Initializes	the	IDirectPlay8NATResolver	interface.	This	method	must	be
called	before	calling	any	other	methods	of	this	interface.

Syntax

HRESULT	Initialize(
				const	PVOID	pvUserContext,
				const	PFNDPNMESSAGEHANDLER	pfn,
				const	DWORD	dwFlags
);

Parameters

pvUserContext
[in]	Pointer	to	the	user-provided	context	value	in	calls	to	the
message	handler.	A	user-provided	context	value	can	be	used	to
differentiate	messages	coming	from	multiple	interfaces	to	a
common	message	handler.

pfn
[in]	Pointer	to	a	PFNDPNMESSAGEHANDLER	callback	function
that	is	used	to	receive	all	messages.

dwFlags
[in]	The	following	flag	can	be	set.
DPNINITIALIZE_DISABLEPARAMVAL

Passing	this	flag	will	disable	parameter	validation	for	the
current	object.

Return	Value

Returns	DPN_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8NATResolver::Start	Method

Launches	the	Network	Address	Translation	(NAT)	Resolver	server	using
the	specified	device	addresses.

Syntax

HRESULT	Start(
				IDirectPlay8Address	**const	ppDevices,
				const	DWORD	dwNumDevices,
				const	DWORD	dwFlags
);

Parameters

ppDevices
[in]	An	array	of	IDirectPlay8Address	device	address	objects.	Set
to	NULL	to	use	all	Internet	Protocol	(IP)	devices.	See	Remarks.

dwNumDevices
[in]	Number	of	device	addresses	in	the	ppDevices	array.

dwFlags
[in]	Reserved.	Set	to	NULL.

Return	Value

Returns	DPN_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDDEVICEADDRESS The	address	for	the	local	computer	or	adapter	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

The	ppDevices	parameter	must	contain	address	objects	which	have
called	IDirectPlay8Address::SetSP	with	the	pGuidSP	parameter	set
to	CLSID_DP8SP_TCPIP.	If	IDirectPlay8Address::SetDevice	has	not
been	called	to	set	the	device	globally	unique	identifier	(GUID),	all
adapters	will	be	used.	Only	eight	addresses	can	be	specified
simultaneously.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer	Interface

Applications	use	the	methods	of	the	IDirectPlay8Peer	interface	to	create
a	peer-to-peer	Microsoft®	DirectPlay®	session.

IDirectPlay8Peer	Members

AddPlayerToGroup Adds	a	peer	to	a	group.

When	this	method	is	called,	all	peers	connected	to	the	application	receive	a
DPN_MSGID_ADD_PLAYER_TO_GROUP	message.

CancelAsyncOperation Cancels	asynchronous	requests.	For	instance,	several	methods	of	the
IDirectPlay8Peer	interface	run	asynchronously	by	default.	Depending	on	the
situation,	you	might	want	to	cancel	requests	before	they	are	processed.	All	the
methods	of	this	interface	that	can	run	asynchronously	return	an	hAsyncHandle
parameter.

Specific	requests	are	canceled	by	passing	the	hAsyncHandle	of	the	request	in	this
method's	hAsyncHandle	parameter.	You	can	cancel	all	pending	asynchronous
operations	by	calling	this	method,	specifying	NULL	in	the	hAsyncHandle	parameter,
and	specifying	DPNCANCEL_ALL_OPERATIONS	in	the	dwFlags	parameter.	If	a
specific	handle	is	provided	to	this	method,	no	flags	should	be	set.

Close Closes	the	open	connection	to	a	session	and	uninitializes	the	IDirectPlay8Peer
object.	This	method	must	be	called	on	any	object	successfully	initialized	with
IDirectPlay8Peer::Initialize.

Connect Establishes	the	connection	to	all	the	peers	in	a	peer-to-peer	session.	When	a
connection	is	established,	the	communication	channel	on	the	interface	is	open	and
the	application	should	expect	messages	to	arrive	immediately.	No	messages	can	be
sent	by	way	of	the	IDirectPlay8Peer::SendTo	method	until	the	connection	has
completed.

CreateGroup Creates	a	group	in	the	current	session.	A	group	is	a	logical	collection	of	players.

DestroyGroup Deletes	a	group	created	by	the	IDirectPlay8Peer::CreateGroup	method.	This	method
can	be	called	by	any	peer	in	the	session.

DestroyPeer Deletes	a	peer	from	the	session.

EnumGroupMembers Retrieves	a	list	of	all	players	in	a	group.

EnumHosts Enumerates	applications	that	host	DirectPlay	games.

EnumPlayersAndGroups Retrieves	a	list	of	all	the	player	and/or	group	identifiers	for	the	session.

EnumServiceProviders Enumerates	all	the	registered	service	providers	available	to	the	application.

GetApplicationDesc Retrieves	the	full	application	description	for	the	connected	application.

GetCaps Retrieves	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current	interface.

GetConnectionInfo Retrieves	statistical	information	about	the	connection	between	the	local	application
and	the	specified	remote	player.

GetGroupContext Retrieves	the	group	context	value	for	the	specified	group.

GetGroupInfo Retrieves	a	block	of	data	associated	with	a	group,	including	the	group	name.

This	method	is	typically	called	after	a	DPN_MSGID_GROUP_INFO	system	message
is	received	indicating	that	the	group	data	has	been	modified.

GetLocalHostAddresses Retrieves	the	local	addresses	being	used	to	host	the	session.

GetPeerAddress Retrieves	the	address	for	the	specified	remote	player	in	the	session.

GetPeerInfo Retrieves	peer	information	set	for	the	specified	peer.

GetPlayerContext Retrieves	the	player	context	value	for	the	specified	peer.

GetSendQueueInfo Used	by	the	application	to	monitor	the	size	of	the	send	queue.

GetSPCaps Retrieves	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Host Creates	a	new	peer-to-peer	session,	hosted	by	the	local	computer.

Initialize Registers	an	entry	point	in	the	peer's	code	that	receives	all	the	messages	from	the
IDirectPlay8Peer	interface	and	from	remote	peers.	This	method	must	be	called
before	calling	any	other	methods	of	this	interface.

RegisterLobby Allows	launched	applications	to	automatically	propagate	game	status	to	the	lobby.

RemovePlayerFromGroup Removes	a	peer	from	a	group.

When	this	method	is	called	all	peers	connected	to	the	application	receive	a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message.

ReturnBuffer Retrieves	message	buffers	provided	to	the	application	through	the	pReceiveData
member	of	the	DPN_MSGID_RECEIVE	system	message.	If	the	user's	message
handler	returns	DPNSUCCESS_PENDING	to	the	RECEIVE	callback,	DirectPlay
assumes	that	ownership	of	the	buffer	is	transferred	to	the	application,	and	neither

frees	nor	modifies	it	until	ownership	is	returned	to	DirectPlay	through	this	call.

SendTo Transmits	data	to	another	peer	or	group	within	the	session	by	sending	a	message	to
the	appropriate	message	handlers.	The	message	can	be	sent	synchronously	or
asynchronously.

SetApplicationDesc Changes	the	settings	for	the	application	that	is	being	hosted.	Only	some	settings	can
be	changed.

SetCaps Sets	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current	interface.

SetGroupInfo Sets	a	block	of	data	associated	with	a	group,	including	the	name	of	the	group.

Calling	this	method	generates	a	DPN_MSGID_GROUP_INFO	message,	which	is
sent	to	all	the	peers	connected	to	the	application.

SetPeerInfo Sets	the	static	settings	of	the	local	peer.	Call	this	method	before	connecting	to	relay
basic	player	information	with	the	application.	When	the	peer	successfully	connects
with	the	application,	information	set	through	this	method	can	be	retrieved	by	other
players	by	calling	the	IDirectPlay8Peer::GetPeerInfo	method.

SetSPCaps Sets	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

TerminateSession Terminates	the	current	DirectPlay	session.

Interface	Information

Inherits	from IUnknown

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::AddPlayerToGroup	Method

Adds	a	peer	to	a	group.

When	this	method	is	called,	all	peers	connected	to	the	application	receive
a	DPN_MSGID_ADD_PLAYER_TO_GROUP	message.

Syntax

HRESULT	AddPlayerToGroup(
				const	DPNID	idGroup,
				const	DPNID	idClient,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

idGroup
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	to	add	the	peer	to.

idClient
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
peer	that	is	added	to	the	group.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.	This
parameter	is	optional	and	may	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The

following	flag	can	be	set	for	this	method.
DPNADDPLAYERTOGROUP_SYNC

Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	runs	asynchronously	and	usually
returns	DPNSUCCESS_PENDING.	It	may	also	return	one	of	the
following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game
session.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game
session.

DPNERR_PLAYERALREADYINGROUP The	player	ID	is	already	included	in	the	group.

Remarks

Any	peer	can	add	itself	or	another	peer	to	an	existing	group.	When
the	peer	is	successfully	added	to	the	group,	all	messages	sent	to	the
group	are	also	sent	to	the	peer.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::CancelAsyncOperation	Method

Cancels	asynchronous	requests.	For	instance,	several	methods	of	the
IDirectPlay8Peer	interface	run	asynchronously	by	default.	Depending	on
the	situation,	you	might	want	to	cancel	requests	before	they	are
processed.	All	the	methods	of	this	interface	that	can	run	asynchronously
return	an	hAsyncHandle	parameter.

Specific	requests	are	canceled	by	passing	the	hAsyncHandle	of	the
request	in	this	method's	hAsyncHandle	parameter.	You	can	cancel	all
pending	asynchronous	operations	by	calling	this	method,	specifying
NULL	in	the	hAsyncHandle	parameter,	and	specifying
DPNCANCEL_ALL_OPERATIONS	in	the	dwFlags	parameter.	If	a
specific	handle	is	provided	to	this	method,	no	flags	should	be	set.

Syntax

HRESULT	CancelAsyncOperation(
				const	DPNHANDLE	hAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

hAsyncHandle
[in]	Handle	of	the	asynchronous	operation	to	stop.	You	receive
this	handle	when	you	call	one	of	several	methods	that	support
asynchronous	operations.	This	value	can	be	set	to	NULL	to	stop
all	operations	or	a	particular	type	of	asynchronous	request.	If	a
particular	handle	is	specified,	the	dwFlags	parameter	must	be	0.
If	one	of	the	DPNCANCEL_PLAYER_SENDS	flags	is	specified
in	the	dwFlags	parameter,	hAsyncHandle	must	be	set	to	a
player's	DPNID.

dwFlags
[in]	Flag	that	specifies	which	asynchronous	request	is	to	be
canceled.	One	of	the	following	flags	can	be	set.
DPNCANCEL_ENUM

Cancel	all	asynchronous	IDirectPlay8Peer::EnumHosts
requests.	A	single	IDirectPlay8Peer::EnumHosts	request
can	be	canceled	by	specifying	the	handle	returned	from	the
IDirectPlay8Peer::EnumHosts	method.

DPNCANCEL_CONNECT
Cancel	an	asynchronous	IDirectPlay8Peer::Connect
request.

DPNCANCEL_SEND
Cancel	an	asynchronous	IDirectPlay8Peer::SendTo
request.

DPNCANCEL_PLAYER_SENDS
Cancel	all	asynchronous	IDirectPlay8Peer::SendTo
requests	for	the	player	specified	in	the	hAsyncHandle
parameter.

DPNCANCEL_PLAYER_SENDS_PRIORITY_LOW
Cancel	low-priority	asynchronous
IDirectPlay8Peer::SendTo	requests	for	the	player
specified	in	the	hAsyncHandle	parameter.

DPNCANCEL_PLAYER_SENDS_PRIORITY_NORMAL
Cancel	normal-priority	asynchronous
IDirectPlay8Peer::SendTo	requests	for	the	player
specified	in	the	hAsyncHandle	parameter.

DPNCANCEL_PLAYER_SENDS_PRIORITY_HIGH
Cancel	high-priority	asynchronous
IDirectPlay8Peer::SendTo	requests	for	the	player
specified	in	the	hAsyncHandle	parameter.

DPNCANCEL_ALL_OPERATIONS
Cancel	all	asynchronous	IDirectPlay8Peer::Connect,
IDirectPlay8Peer::SendTo,	and
IDirectPlay8Peer::EnumHosts	operations.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_CANNOTCANCEL The	operation	could	not	be	canceled.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

Remarks

You	can	use	this	method	to	cancel	an	asynchronous	operation	for
the	IDirectPlay8Peer::Connect,	IDirectPlay8Peer::SendTo,	and
IDirectPlay8Peer::EnumHosts	methods.	Microsoft®	DirectPlay®
does	not	support	cancellation	of	other	asynchronous	operations.

You	can	cancel	a	send	request	by	providing	the	handle	returned
from	the	IDirectPlay8Peer::SendTo	method.	A
DPN_MSGID_SEND_COMPLETE,	or
DPN_MSGID_CONNECT_COMPLETE	system	message	is	still
posted	to	the	application's	message	handler	for	each	asynchronous
send	request	that	is	sent	without	the	DPNSEND_NOCOMPLETE
flag	set.	Send	requests	that	are	canceled	by	this	method	return
DPNERR_USERCANCEL	in	the	hResultCode	member	of	the
DPN_MSGID_SEND_COMPLETE	message.

If	you	set	the	DPNCANCEL_ALL_OPERATIONS,
DPNCANCEL_CONNECT,	DPNCANCEL_SEND,	or
DPNCANCEL_ENUM	flags	in	dwFlags,	DirectPlay	will	attempt	to
cancel	all	matching	operations.	This	method	will	return	an	error	if	any
attempted	cancellation	fails,	even	though	some	cancellations	may
have	been	successful.

If	you	set	one	of	the	DPNCANCEL_PLAYER_SENDS	flags	in
dwFlags,	you	must	specify	a	player's	DPNID	in	hAsyncHandle.	This
will	cancel	all	pending	IDirectPlay8Peer::SendTo	requests	where

the	DPNID	specified	in	the	dpnid	parameter	matches	the	value	set	in
the	hAsyncHandle	parameter.

Note		The	completion	message	might	not	arrive	until	after	this
method	returns.	Do	not	assume	that	the	operation	has	been
terminated	until	you	have	received	a
DPN_MSGID_SEND_COMPLETE,
DPN_MSGID_CONNECT_COMPLETE,	or
DPN_MSGID_ASYNC_OP_COMPLETE	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::Close	Method

Closes	the	open	connection	to	a	session	and	uninitializes	the
IDirectPlay8Peer	object.	This	method	must	be	called	on	any	object
successfully	initialized	with	IDirectPlay8Peer::Initialize.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	The	following	flag	can	be	specified.
DPNCLOSE_IMMEDIATE

Close	immediately.	Do	not	wait	for	outstanding	calls	to
complete.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	will	cancel	any	operations	still	outstanding,	including
guaranteed	messages	that	are	in	the	queue	waiting	to	be	sent.
Messages	that	have	already	been	sent	as	guaranteed	will	continue
to	be	retried	until	acknowledgement	of	their	delivery	has	been
received.	To	make	sure	all	messages	are	sent,	wait	for	all

outstanding	IDirectPlay8Peer::SendTo	calls	to	complete	before
calling	IDirectPlay8Peer::Close.

If	this	method	is	called	by	the	host	player	and	host	migration	has
been	enabled,	the	host	will	migrate	and	the	session	will	continue	for
other	players.	If	host	migration	is	not	enabled,	the	session	will
terminate.	If	the	host	player	wants	to	terminate	the	session	without
host	migration,	IDirectPlay8Peer::TerminateSession	should	be	called
before	calling	IDirectPlay8Peer::Close.	See	Host	Migration	for
more	information.

To	start	a	new	session	or	connect	to	another	session	after	calling
IDirectPlay8Peer::Close,	you	must	first	call
IDirectPlay8Peer::Initialize	on	the	IDirectPlay8Peer	object	before
calling	IDirectPlay8Peer::Host	or	IDirectPlay8Peer::Connect.

Calling	IDirectPlay8Peer::Close	will	invalidate	any	DPN_CAPS,
DPN_CAPS_EX,	and	DPN_SP_CAPS	associated	with	the
IDirectPlay8Peer	object.

See	Also

Leaving	a	Peer-to-Peer	Session,	Terminating	a	Peer-to-Peer
Session

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::Connect	Method

Establishes	the	connection	to	all	the	peers	in	a	peer-to-peer	session.
When	a	connection	is	established,	the	communication	channel	on	the
interface	is	open	and	the	application	should	expect	messages	to	arrive
immediately.	No	messages	can	be	sent	by	way	of	the
IDirectPlay8Peer::SendTo	method	until	the	connection	has	completed.

Syntax

HRESULT	Connect(
				const	DPN_APPLICATION_DESC	*const	pdnAppDesc,
				IDirectPlay8Address	*const	pHostAddr,
				IDirectPlay8Address	*const	pDeviceInfo,
				const	DPN_SECURITY_DESC	*const	pdnSecurity,
				const	DPN_SECURITY_CREDENTIALS	*const	pdnCredentials,
				const	void	*const	pvUserConnectData,
				const	DWORD	dwUserConnectDataSize,
				void	*const	pvPlayerContext,
				void	*const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pdnAppDesc
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
describes	the	application.	Only	some	of	the	members	of	this
structure	are	used	by	this	method.	The	only	members	that	you
must	set	are	dwSize	and	guidApplication.	You	can	also	set
guidInstance,	pwszPassword,	and	dwFlags.

pHostAddr
[in]	Pointer	to	an	IDirectPlay8Address	interface	that	specifies	the
addressing	information	to	use	to	connect	to	the	computer	that	is

hosting.	The	user	can	be	queried	for	any	missing	address
information	if	you	set	the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flag	in
the	dwFlags	parameter.

pDeviceInfo
[in]	Pointer	to	an	IDirectPlay8Address	interface	that	specifies
the	network	adapter	(for	example,	network	interface	card,
modem,	and	so	on)	to	use	to	connect	to	the	server.	Some
service	providers	allow	this	parameter	to	be	NULL	or	be	an
address	object	containing	only	the	service	provider	component.
In	this	case,	they	will	use	the	most	appropriate	device	to	reach
the	designated	host.	If	you	set	the
DPNCONNECT_OKTOQUERYFORADDRESSING	flag	in
dwFlags,	the	user	can	be	queried	for	any	missing	address
information.

pdnSecurity
[in]	Reserved.	Must	be	NULL.

pdnCredentials
[in]	Reserved.	Must	be	NULL.

pvUserConnectData
[in]	Pointer	to	application-specific	data	provided	to	the	host	or
server	to	further	validate	the	connection.	Microsoft®	DirectPlay®
will	make	a	copy	of	this	data	when	the	method	is	called	and
therefore	you	can	modify	or	destroy	this	data	once	the
connection	is	complete.	This	data	is	sent	to	the
DPN_MSGID_INDICATE_CONNECT	message	in	the
pvUserConnectData	member.	This	parameter	is	optional	and
can	be	set	to	NULL	if	no	additional	connection	validation	is
provided	by	the	user	code.

dwUserConnectDataSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the	data
contained	in	the	pvUserConnectData	parameter.

pvPlayerContext
[in]	Pointer	to	the	context	value	of	the	local	player.	This	value	is
preset	when	the	local	computer	handles	the
DPN_MSGID_CREATE_PLAYER	message.	This	parameter	is
optional	and	can	be	set	to	NULL.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the

pvUserContext	member	of	the
DPN_MSGID_CONNECT_COMPLETE	system	message.	This
parameter	is	optional	and	can	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	When	the	method	returns,
phAsyncHandle	will	point	to	a	handle	that	you	can	pass	to
IDirectPlay8Peer::CancelAsyncOperation	to	cancel	the
operation.	This	parameter	must	be	set	to	NULL	if	you	set	the
DPNCONNECT_SYNC	flag	in	dwFlags.

dwFlags
[in]	Flag	that	describes	the	connection	mode.	You	can	set	the
following	flags.
DPNCONNECT_OKTOQUERYFORADDRESSING

Setting	this	flag	will	display	a	standard	DirectPlay	dialog
box,	which	queries	the	user	for	more	information	if	not
enough	information	is	passed	in	this	method.

DPNCONNECT_SYNC
Process	the	connection	request	synchronously.	Your
message	handler	still	receives	a
DPN_MSGID_CONNECT_COMPLETE	message,	so	that
you	can	process	any	connection	reply	data	from	the	host.
You	will	receive	this	message	before
IDirectPlay8Peer::Connect	returns.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	runs	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	might	also	return	one
of	the	following	error	values.

DPNERR_HOSTREJECTEDCONNECTION The	connection	request	was	rejected.	Check	the	ReplyData
member	of	the	DPN_MSGID_CONNECT_COMPLETE	type	for
details.

DPNERR_INVALIDAPPLICATION The	globally	unique	identifier	(GUID)	supplied	for	the	application	is
invalid.

DPNERR_INVALIDDEVICEADDRESS The	address	for	the	local	computer	or	adapter	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHOSTADDRESS The	specified	remote	address	is	invalid.

DPNERR_INVALIDINSTANCE The	GUID	for	the	application	instance	is	invalid.

DPNERR_INVALIDINTERFACE The	interface	parameter	is	invalid.	This	value	will	be	returned	in	a
connect	request	if	the	connecting	player	was	not	a	client	in	a
client/server	game	or	a	peer	in	a	peer-to-peer	game.

DPNERR_INVALIDPASSWORD An	invalid	password	was	supplied	when	attempting	to	join	a	session
that	requires	a	password.

DPNERR_NOCONNECTION No	communication	link	was	established.

DPNERR_NOTHOST The	client	attempted	to	connect	to	a	nonhost	computer.	Additionally,
this	error	value	may	be	returned	by	a	nonhost	that	tried	to	set	the
application	description.

DPNERR_SESSIONFULL The	request	to	connect	to	the	host	or	server	failed	because	the
maximum	number	of	players	allotted	for	the	session	has	been
reached.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

Remarks

Before	this	method	is	called,	you	can	obtain	application	descriptions
and	the	addresses	of	the	associated	hosts	by	calling
IDirectPlay8Peer::EnumHosts.	When	you	call
IDirectPlay8Peer::EnumHosts,
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages	are	sent	to
your	message	handler	with	the	IDirectPlay8Address	objects	and
the	DPN_APPLICATION_DESC	structure	for	each	host	found.	This
information	can	be	passed	without	modification	to	the
IDirectPlay8Peer::Connect	method.

It	is	not	required	to	enumerate	hosts	before	calling
IDirectPlay8Peer::Connect	if	you	know	the	appropriate	host	and
device	information.

If	you	do	call	the	IDirectPlay8Peer::EnumHosts	method	and	you
want	to	ensure	better	Network	Address	Translation	(NAT)	and	proxy
support	when	using	the	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP)	service	provider	or	to	prevent	redialing	with	the
modem	service	provider,	keep	the	enumeration	active	when	calling
the	IDirectPlay8Peer::Connect	method.	To	prevent	the

enumeration	from	completing,	set	the	dwEnumCount	parameter	to
INFINITE	and	do	not	use	the
IDirectPlay8Peer::CancelAsyncOperation	to	terminate	the
enumeration	before	the	connect	operation	has	completed.	You
should	also	pass	the	pAddressSender	and	pAddressDevice
address	objects	in	the	DPNMSG_ENUM_HOSTS_RESPONSE
message	without	modification	into	the	pHostAddr	and	pDeviceInfo
parameters	of	the	IDirectPlay8Peer::Connect	method.	To	pass	the
address	objects	to	IDirectPlay8Peer::Connect	outside	of	the
callback	function,	use	IDirectPlay8Address::Duplicate	or
IDirectPlay8Address::AddRef	to	prevent	the	object	from	being
destroyed	and	store	the	pointers	using	thread-safe	code.	DirectPlay
will	automatically	cancel	the	enumeration	when	the	connect
completes	with	DPN_OK	or	when	IDirectPlay8Peer::Close	is	called.

Although	multiple	enumerations	can	be	run	concurrently	and	can	be
run	across	the	duration	of	a	connection,	only	one	connection	is
allowed	per	interface.	To	establish	a	connection	to	more	than	one
application,	you	must	create	another	interface.

When	this	method	is	called,	a	DPN_MSGID_INDICATE_CONNECT
message	is	posted	to	the	host's	message	handler.	When	the	host
handles	this	message,	it	can	specify	connection	reply	data	that	the
player	will	receive	with	the	DPN_MSGID_CONNECT_COMPLETE
message.	If	the	host	accepts	the	connection,	the	connection	reply
data	might	contain	custom	startup	information.	If	the	connection	was
rejected,	the	connection	reply	data	might	contain	an	explanation	of
the	rejection.

If	IDirectPlay8Client::Connect	is	called	synchronously,	the	following
outcomes	are	possible.

Connection	Successful.	The	application	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	containing
the	success	code	and	the	IDirectPlay8Client::Connect
method	will	return	with	DPN_OK.

Connection	fails	because	the	host	rejects	the	connection.	The
application	will	receive	a
DPN_MSGID_CONNECT_COMPLETE	message	containing
the	DPNERR_HOSTREJECTEDCONNECTION	failure	code.
The	IDirectPlay8Client::Connect	method	will	also	return	with
the	error	code	DPNERR_HOSTREJECTEDCONNECTION.
The	DPN_MSGID_CONNECT_COMPLETE	message
provides	an	opportunity	for	the	client	application	to	inspect	any
data	the	host	returns	with	the	rejection.

Connection	fails	for	any	other	reason.	The	application	will	not
receive	a	DPN_MSGID_CONNECT_COMPLETE	message,
and	the	IDirectPlay8Client::Connect	method	will	return	with
the	appropriate	error	code.

If	IDirectPlay8Client::Connect	is	called	asynchronously,	the
method	returns	immediately	with	DPNSUCCESS_PENDING.	A
DPN_MSGID_CONNECT_COMPLETE	message	will	follow	after	the
connection	completes,	containing	the	result	of	the	connection.	The
only	time	the	method	does	not	return	DPNSUCCESS_PENDING	is
when	validation	of	the	supplied	parameters	fails,	in	which	case	the
appropriate	error	code	is	returned.

When	the	connection	request	completes,	all	outstanding
enumerations	are	canceled	with	the	return	of
DPNERR_USERCANCEL.

You	must	call	IDirectPlay8Peer::Close	to	end	the	connection	to	the
host.

Data	Value	Summary	specifies	the	required	addressing	information
for	each	service	provider.

Note		If	you	set	the
DPNCONNECT_OKTOQUERYFORADDRESSING	flag	in	dwFlags,
the	service	provider	might	attempt	to	display	a	dialog	box	to	ask	the
user	to	complete	the	address	information.	You	must	have	a	visible
window	present	when	the	service	provider	tries	to	display	the	dialog
box,	or	your	application	will	lock.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::CreateGroup	Method

Creates	a	group	in	the	current	session.	A	group	is	a	logical	collection	of
players.

Syntax

HRESULT	CreateGroup(
				const	DPN_GROUP_INFO	*const	pdpnGroupInfo,
				VOID	*const	pvGroupContext,
				VOID	*const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pdpnGroupInfo
[in]	Pointer	to	a	DPN_GROUP_INFO	structure	that	contains	the
group	description.

pvGroupContext
[in]	Pointer	to	the	group's	context	value.	This	value	is	preset
when	the	local	application's	message	handler	receives	the
associated	DPN_MSGID_CREATE_GROUP	message.	This
parameter	is	optional	and	may	be	set	to	NULL.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.	This
parameter	is	optional	and	may	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The

following	flag	can	be	set	for	this	method.
DPNCREATEGROUP_SYNC

Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	the
following	error	value.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

Remarks

DirectPlay	does	not	maintain	hierarchical	groups	because	these	can
easily	be	implemented	with	flat	groups	and	expeditious	use	of	the
group	data.

All	peers	receive	a	DPN_MSGID_CREATE_GROUP	message	when
this	method	is	called.

Note		Multicasting	is	not	supported	for	this	release.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::DestroyGroup	Method

Deletes	a	group	created	by	the	IDirectPlay8Peer::CreateGroup	method.
This	method	can	be	called	by	any	peer	in	the	session.

Syntax

HRESULT	DestroyGroup(
				const	DPNID	idGroup,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

idGroup
[in]	Variable	of	type	DPNID	that	should	be	set	to	the	identifier	of
the	group	to	be	deleted.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.	This
parameter	is	optional	and	may	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.
DPNDESTROYGROUP_SYNC

Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	one
of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::DestroyPeer	Method

Deletes	a	peer	from	the	session.

Syntax

HRESULT	DestroyPeer(
				const	DPNID	dpnidClient,
				void	*const	pDestroyInfo,
				const	DWORD	dwDestroyInfoSize,
				const	DWORD	dwFlags
);

Parameters

dpnidClient
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
peer	to	delete.

pDestroyInfo
[in]	Pointer	to	a	value	that	describes	additional	delete	data
information.

dwDestroyInfoSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the	data
contained	in	the	pDestroyInfo	parameter.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_NOTHOST The	client	attempted	to	connect	to	a	nonhost	computer.	Additionally,	this	error	value
may	be	returned	by	a	nonhost	that	tried	to	set	the	application	description.

Remarks

A	player	can	only	be	deleted	by	the	session	host.	The	deleted	player
will	be	notified	through	a	DPN_MSGID_TERMINATE_SESSION
message.	The	structure	associated	with	the	message	will	contain	the
data	passed	through	the	pDestroyInfo	parameter.	If	any	other
session	member	calls	this	method,	it	will	fail,	and	return
DPNERR_NOTHOST.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::EnumGroupMembers	Method

Retrieves	a	list	of	all	players	in	a	group.

Syntax

HRESULT	EnumGroupMembers(
				const	DPNID	dpnid,
				DPNID	*const	prgdpnid,
				DWORD	*const	pcdpnid,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	group	that	contains
the	players	to	enumerate.

prgdpnid
[out]	Pointer	to	an	array	that	will	contain	the	identifiers	of	the
group's	players.

pcdpnid
[in]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the
number	of	identifiers	that	can	be	contained	in	the	buffer	pointed
to	by	dpnid.	If	the	buffer	is	too	small,	this	method	returns
DPNERR_BUFFERTOOSMALL	and	this	parameter	contains	the
number	of	entries	that	are	required.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

Remarks

Because	player	information	changes	frequently,	the	required	buffer
size	returned	may	change	between	subsequent	calls.	Check	and
reallocate	the	buffer	until	the	method	succeeds.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::EnumHosts	Method

Enumerates	applications	that	host	Microsoft®	DirectPlay®	games.

Syntax

HRESULT	EnumHosts(
				PDPN_APPLICATION_DESC	const	pApplicationDesc,
				IDirectPlay8Address	*const	pdpaddrHost,
				IDirectPlay8Address	*const	pdpaddrDeviceInfo,
				PVOID	const	pvUserEnumData,
				const	DWORD	dwUserEnumDataSize,
				const	DWORD	dwEnumCount,
				const	DWORD	dwRetryInterval,
				const	DWORD	dwTimeOut,
				PVOID	const	pvUserContext,
				HANDLE	*const	pAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pApplicationDesc
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
specifies	which	application	hosts	to	enumerate.	You	must	set
the	pApplicationDesc.dwSize	member	to	the	appropriate	value.
To	reduce	the	number	of	responses,	set
pApplicationDesc.guidApplication	to	the	globally	unique
identifier	(GUID)	of	the	application	to	be	found.	If	this	member	is
not	set,	the	search	will	include	all	applications.

pdpaddrHost
[in]	Pointer	to	an	IDirectPlay8Address	object	that	specifies	the
address	of	the	computer	that	is	hosting	the	application.	Some
service	providers	allow	this	parameter	to	be	NULL	or	be	an
address	object	containing	only	the	service	provider	component.
In	this	case,	DirectPlay	will	get	the	information	by	using	a

broadcast	mechanism	or	from	the	pdpaddrDeviceInfo
parameter.	If	you	set	the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flag	in
dwFlags,	the	user	can	be	queried	for	any	missing	address
information.

pdpaddrDeviceInfo
[in]	Pointer	to	an	IDirectPlay8Address	object	that	specifies	the
service	provider	and	local	device	settings	to	use	when
enumerating.	The	user	can	be	queried	for	any	missing	address
information	if	you	set	the
DPNENUMHOSTS_OKTOQUERYFORADDRESSING	flag	in
the	dwFlags	parameter.

pvUserEnumData
[in]	Pointer	to	a	block	of	data	that	is	sent	in	the	enumeration
request	to	the	host.	The	size	of	the	data	is	limited	depending	on
the	network	type.	Call	IDirectPlay8Peer::GetSPCaps	to	obtain
the	exact	value.

dwUserEnumDataSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the	data
pointed	at	in	the	pvUserEnumData	parameter.

dwEnumCount
[in]	Value	specifying	how	many	times	that	the	enumeration	data
will	be	sent.	Set	this	parameter	to	zero	to	use	the	default	value.
You	can	obtain	the	default	value	for	dwEnumCount	by	calling
IDirectPlay8Peer::GetSPCaps.	If	dwEnumCount	is	set	to
INFINITE,	the	enumeration	will	continue	until	canceled.

dwRetryInterval
[in]	Value	specifying	how	many	milliseconds	between
enumeration	retries.	Set	this	parameter	to	zero	to	use	the
default	value.	You	can	obtain	the	default	value	for
dwRetryInterval	by	calling	IDirectPlay8Peer::GetSPCaps.

dwTimeOut
[in]	Variable	of	type	DWORD	that	specifies	the	number	of
milliseconds	that	DirectPlay	will	wait	for	replies	after	the	last
enumeration	is	sent.	Set	this	parameter	to	zero	to	use	the
default	value.	You	can	obtain	the	default	value	for	dwTimeOut
by	calling	IDirectPlay8Peer::GetSPCaps.	If	INFINITE	is
specified,	the	enumeration	continues	until	it	is	canceled.

pvUserContext

[in]	Context	that	is	provided	in	the	peer's	message	handler	when
it	is	called	with	responses	to	the	enumeration.	This	can	be
useful	to	differentiate	replies	from	concurrent	enumerations.

pAsyncHandle
[out]	A	DPNHANDLE.	When	the	method	returns,	pAsyncHandle
will	point	to	a	handle	that	you	can	pass	to
IDirectPlay8Peer::CancelAsyncOperation	to	cancel	the
operation.	This	parameter	must	be	set	to	NULL	if	you	set	the
DPNENUMHOSTS_SYNC	flag	in	dwFlags.

dwFlags
[in]	The	following	flags	can	be	set.
DPNENUMHOSTS_SYNC

Causes	the	method	to	process	synchronously.
DPNENUMHOSTS_OKTOQUERYFORADDRESSING

Setting	this	flag	will	display	a	standard	DirectPlay	dialog
box,	which	queries	the	user	for	more	information	if	not
enough	information	is	passed	in	this	method.

DPNENUMHOSTS_NOBROADCASTFALLBACK
If	the	service	provider	supports	broadcasting,	setting	this
flag	will	disable	the	broadcast	capabilities.	Check	to	see	if
broadcasting	is	supported	by	examining	the
DPN_SP_CAPS	structure	before	setting	this	flag.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	one
of	the	following	error	values.

DPNERR_INVALIDDEVICEADDRESS The	address	for	the	local	computer	or	adapter	is	invalid.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHOSTADDRESS The	specified	remote	address	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_ENUMQUERYTOOLARGE The	query	data	specified	is	too	large.

DPNERR_USERCANCEL The	user	canceled	the	operation.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

Remarks

When	an	application	is	found	that	meets	the	enumeration	criteria,	the
application's	message	handler	is	called	with	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	system	message.	The
message	contains	a	DPN_APPLICATION_DESC	structure
describing	the	applications	found	and	IDirectPlay8Address	objects
identifying	the	location	of	the	hosts.

To	ensure	better	Network	Address	Translation	(NAT)	and	proxy
support	when	using	the	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP)	service	provider	or	to	prevent	redialing	with	the
modem	service	provider,	keep	the	enumeration	active	when	calling
the	IDirectPlay8Peer::Connect	method.	To	prevent	the	enumeration
from	completing,	set	the	dwEnumCount	parameter	to	INFINITE	and
do	not	use	the	IDirectPlay8Peer::CancelAsyncOperation	to
terminate	the	enumeration	before	the	connect	operation	has
completed.	You	should	also	pass	the	pAddressSender	and
pAddressDevice	address	objects	in	the
DPNMSG_ENUM_HOSTS_RESPONSE	message	without
modification	into	the	pHostAddr	and	pDeviceInfo	parameters	of	the
IDirectPlay8Peer::Connect	method.	To	pass	the	address	objects	to
IDirectPlay8Peer::Connect	outside	of	the	callback	function,	use
IDirectPlay8Address::Duplicate	or	IDirectPlay8Address::AddRef	to
prevent	the	object	from	being	destroyed	and	store	the	pointers	using
thread-safe	code.

Any	number	of	enumerations	can	be	run	concurrently.	The
pvUserContext	value	is	provided	in	the	message	handler	to	help
differentiate	replies	to	different	enumerations.

Because	of	the	variation	in	the	number	of	ways	enumeration	can
happen,	an	application	should	not	attempt	to	specify	dwEnumCount,
dwRetryInterval,	or	dwTimeOut	unless	the	application	has	some
specific	media	knowledge.	The	only	exception	is	if	you	want	to	have
the	enumeration	continue	until	explicitly	cancelled,	then	set
dwEnumCount	to	INFINITE.

The	default	enumeration	count	and	timeout	values	will	cause
IDirectPlay8Peer::EnumHosts	to	complete	within	a	reasonable
amount	of	time.	These	values	are	set	by	the	service	provider,	and
can	be	obtained	by	calling	IDirectPlay8Peer::GetSPCaps.
Asynchronous	enumerations	can	be	stopped	at	any	time	by	calling
IDirectPlay8Peer::CancelAsyncOperation	and	either	passing	the
handle	returned	in	the	pAsyncHandle	parameter	or	setting	the
DPNCANCEL_ENUM	flag	in	the	dwFlags	parameter.	An
enumeration	can	also	be	stopped	by	returning	anything	other	than
S_OK	from	the	message	handler	when	processing	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	message.

You	might	receive	multiple
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages	from	the
same	host	during	one	enumeration	session.	The	guidInstance
member	of	the	associated	DPN_APPLICATION_DESC	structure	can
be	used	to	correlate	these	duplicate	responses.

If	you	set	the	DPNENUMHOSTS_OKTOQUERYFORADDRESSING
flag	in	dwFlags,	the	service	provider	might	attempt	to	display	a
dialog	box	to	ask	the	user	to	complete	the	address	information.	You
must	have	a	visible	window	present	when	the	service	provider	tries
to	display	the	dialog	box	or	your	application	will	lock.

Data	Value	Summary	specifies	the	required	addressing	information
for	each	service	provider.

DPNERR_USERCANCEL	will	be	returned	if	the	enumeration	is
canceled	by	calling	the	IDirectPlay8Peer::CancelAsyncOperation
method	or	if	DPN_OK	is	not	returned	when	processing	a
DPN_MSGID_ENUM_HOSTS_RESPONSE	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::EnumPlayersAndGroups	Method

Retrieves	a	list	of	all	the	player	and/or	group	identifiers	for	the	session.

Syntax

HRESULT	EnumPlayersAndGroups(
				DPNID	*const	prgdpnid,
				DWORD	*const	pcdpnid,
				const	DWORD	dwFlags
);

Parameters

prgdpnid
[out]	Pointer	to	an	array	that	will	be	filled	with	the	session's
group	and/or	player	identifiers.

pcdpnid
[in]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the
number	of	identifiers	that	can	be	contained	in	the	buffer	pointed
to	by	prgdpnid.	If	the	buffer	is	too	small,	this	method	returns
DPNERR_BUFFERTOOSMALL	and	this	parameter	contains	the
number	of	entries	that	are	required.

dwFlags
[in]	Flag	that	describes	enumeration	behavior.	You	can	set	one
or	both	of	the	following	flags.
DPNENUM_PLAYERS

Return	a	list	of	player	identifiers.
DPNENUM_GROUPS

Return	a	list	of	group	identifiers.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

Remarks

Because	group	and	player	information	changes	frequently,	the
required	buffer	size	returned	may	change	between	subsequent	calls.
Check	and	reallocate	the	buffer	until	the	method	succeeds.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::EnumServiceProviders	Method

Enumerates	all	the	registered	service	providers	available	to	the
application.

Syntax

HRESULT	EnumServiceProviders(
				const	GUID	*const	pguidServiceProvider,
				const	GUID	*const	pguidApplication,
				const	DPN_SERVICE_PROVIDER_INFO	*const	pSPInfoBuffer,
				DWORD	*const	pcbEnumData,
				DWORD	*const	pcReturned,
				const	DWORD	dwFlags
);

Parameters

pguidServiceProvider
[in]	Pointer	to	a	variable	of	type	globally	unique	identifier	(GUID)
that	specifies	a	service	provider.	This	optional	parameter	forces
the	enumeration	of	subdevices	for	the	specified	service	provider.
You	should	normally	set	this	value	to	NULL,	to	enumerate	all
available	service	providers.	Otherwise,	set	pguidServiceProvider
to	one	of	the	following	predefined	values.
CLSID_DP8SP_TCPIP

Internet	Protocol	(IP)	service	providers
CLSID_NETWORKSIMULATOR_DP8SP_TCPIP

DP8Sim	service	providers
CLSID_DP8SP_SERIAL

Serial	service	providers
CLSID_DP8SP_MODEM

Modem	service	providers
CLSID_DP8SP_IPX

IPX	service	providers
pguidApplication

[in]	Pointer	to	a	variable	of	type	GUID	that	specifies	an
application.	If	a	pointer	is	passed	in	this	parameter,	only	service
providers	who	can	be	connected	by	the	application	are
enumerated.	You	can	also	pass	NULL	to	enumerate	all	the
registered	service	providers	for	the	system.

pSPInfoBuffer
[out]	Pointer	to	an	array	of	DPN_SERVICE_PROVIDER_INFO
structures	that	will	be	filled	with	service	provider	information.

pcbEnumData
[out]	Pointer	to	DWORD	that	is	filled	with	the	size	of	the
pSPInfoBuffer	buffer	if	the	buffer	is	too	small.

pcReturned
[out]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the
number	of	DPN_SERVICE_PROVIDER_INFO	structures
returned	in	the	pcbEnumData	array.

dwFlags
[in]	The	following	flag	can	be	specified.
DPNENUMSERVICEPROVIDERS_ALL

Enumerates	all	the	registered	service	providers	for	the
system,	including	those	that	are	not	available	to	the
application	or	do	not	have	devices	installed.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

Call	this	method	initially	by	specifying	NULL	in	the
pguidServiceProvider	parameter	to	determine	the	base	service
providers	available	to	the	system.	Specific	devices	for	a	service
provider	can	then	be	obtained	by	passing	a	pointer	to	a	service
provider	GUID	in	the	pguidServiceProvider.	This	is	useful,	for

example,	when	using	the	Modem	Connection	for	Microsoft®
DirectPlay®	service	provider.	You	can	choose	different	modems	for
dialing	out	and	specific	modems	for	hosting.

If	the	pcbEnumData	buffer	is	not	big	enough	to	hold	the	requested
service	provider	information,	the	method	returns
DPNERR_BUFFERTOOSMALL	and	the	pcbEnumData	parameter
contains	the	required	buffer	size.	Typically,	the	best	strategy	is	to	call
the	method	once	with	a	zero-length	buffer	to	determine	the	required
size.	Then	call	it	again	with	the	appropriate-sized	buffer.

Typically,	this	method	will	return	only	those	service	providers	that
can	be	used	by	the	application.	For	example,	if	the	Internetwork
Packet	Exchange	(IPX)	networking	protocol	is	not	installed,
DirectPlay	will	not	return	the	IPX	service	provider.	To	have	DirectPlay
return	all	service	providers,	even	those	that	cannot	be	used	by	the
application,	set	the	DPNENUMSERVICEPROVIDERS_ALL	flag	in
dwFlags.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetApplicationDesc	Method

Retrieves	the	full	application	description	for	the	connected	application.

Syntax

HRESULT	GetApplicationDesc(
				DPN_APPLICATION_DESC	*const	pAppDescBuffer,
				DWORD	*const	pcbDataSize,
				const	DWORD	dwFlags
);

Parameters

pAppDescBuffer
[out]	Pointer	to	a	DPN_APPLICATION_DESC	structure	where
the	application	description	data	is	to	be	written.	Set	this
parameter	to	NULL	to	request	only	the	size	of	data.	If
pAppDescBuffer	is	not	set	to	NULL,	you	must	set	the
pAppDescBuffer.dwSize	member	to	an	appropriate	value.	The
pcbDataSize	parameter	is	set	to	the	size	required	to	hold	the
data.

pcbDataSize
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	is	initialized	to
the	size	of	the	buffer	before	calling	this	method.	After	the
method	returns,	this	parameter	is	set	to	the	size,	in	bytes,	of	the
session	data.	If	the	buffer	is	too	small,	this	method	returns	the
DPNERR_BUFFERTOOSMALL	error	value,	and	this	parameter
is	set	to	the	buffer	size	required.	If	this	parameter	is	NULL,	the
method	returns	DPNERR_INVALIDPARAM.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOCONNECTION No	communication	link	was	established.

Remarks

Call	this	method	initially	by	passing	NULL	in	the	pAppDescBuffer
parameter	to	obtain	the	size	of	the	required	buffer.	When	you	call	the
method	a	second	time	to	fill	the	buffer,	be	sure	to	set	the	structures
dwSize	member	to	the	appropriate	value.

The	returned	DPN_APPLICATION_DESC	structure	will	have	the
guidInstance,	guidApplication,	and	pwszSessionName	members
set.	It	will	not	contain	information	about	other	clients	that	are
connected	to	the	session.	That	information,	if	available,	can	be
obtained	only	from	the	server	application.	In	particular,	the
dwCurrentPlayers	member	will	always	be	set	to	0.

To	avoid	accidentally	overwriting	the	application	description,
applications	should	call	IDirectPlay8Peer::GetApplicationDesc
and	fill	in	the	DPN_APPLICATION_DESC	structure	before	calling
IDirectPlay8Peer::SetApplicationDesc.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetCaps	Method

Retrieves	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current
interface.

Syntax

HRESULT	GetCaps(
				DPN_CAPS	*const	pdpnCaps,
				const	DWORD	dwFlags
);

Parameters

pdpnCaps
[out]	Pointer	to	a	DPN_CAPS	or	DPN_CAPS_EX	structure	to
receive	caps	information.	You	must	set	the	dwSize	member	of
this	structure	to	an	appropriate	value.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

A	successful	call	to	IDirectPlay8Peer::Initialize	must	be	made	before
this	method	can	be	called.

DirectPlay	will	determine	whether	DPN_CAPS	or	DPN_CAPS_EX	is
being	used	based	on	the	size	of	the	structure	referenced	by
pdpnCaps.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetConnectionInfo	Method

Retrieves	statistical	information	about	the	connection	between	the	local
application	and	the	specified	remote	player.

Syntax

HRESULT	GetConnectionInfo(
				const	DPNID	dpnidEndPoint,
				DPN_CONNECTION_INFO	*const	pdnConnectInfo,
				const	DWORD	dwFlags
);

Parameters

dpnidEndPoint
[in]	The	DPNID	of	the	remote	player	whose	connection
information	will	be	retrieved.

pdnConnectInfo
[out]	Pointer	to	a	DPN_CONNECTION_INFO	structure	to
retrieve	information	about	the	specified	connection.	The	dwSize
member	of	this	structure	must	be	set	to	the	size	of	a
DPN_CONNECTION_INFO	structure.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

Remarks

This	method	can	be	called	only	after	a	successful
IDirectPlay8Peer::Host	or	IDirectPlay8Peer::Connect	call	has
completed.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetGroupContext	Method

Retrieves	the	group	context	value	for	the	specified	group.

Syntax

HRESULT	GetGroupContext(
				const	DPNID	dpnid,
				PVOID	*const	ppvGroupContext,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	to	retrieve	context	data	for.

ppvGroupContext
[out]	Pointer	to	the	context	value	of	the	group.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOTREADY The	object	is	not	ready	for	use.

Remarks

Group	context	values	are	set	by	pointing	the	pvGroupContext
member	of	the	DPN_MSGID_CREATE_GROUP	system	message	to

the	context	value	data.

This	method	returns	DPNERR_NOTREADY	when	it	is	called	before
a	DPN_MSGID_CREATE_GROUP	message	is	received	by
Microsoft®	DirectPlay®	for	the	group	specified	in	dpnid.	Call
IDirectPlay8Peer::GetGroupContext	again,	allowing	task	switching
so	that	the	thread	carrying	the	message	can	return.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetGroupInfo	Method

Retrieves	a	block	of	data	associated	with	a	group,	including	the	group
name.

This	method	is	typically	called	after	a	DPN_MSGID_GROUP_INFO
system	message	is	received	indicating	that	the	group	data	has	been
modified.

Syntax

HRESULT	GetGroupInfo(
				const	DPNID	dpnid,
				DPN_GROUP_INFO	*const	pdpnGroupInfo,
				DWORD	*const	pdwSize,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	whose	data	block	will	be	retrieved.

pdpnGroupInfo
[out]	Pointer	to	a	DPN_GROUP_INFO	structure	that	describes
the	group	data.	If	pdwSize	is	not	set	to	NULL,	you	must	set
pdpnGroupInfo.dwSize	to	the	size	of	a	DPN_GROUP_INFO
structure.

pdwSize
[out]	Pointer	to	a	variable	of	type	DWORD	that	returns	the	size
of	the	data	in	the	pdpnGroupInfo	parameter.	If	the	buffer	is	too
small,	this	method	returns	DPNERR_BUFFERTOOSMALL	and
this	parameter	contains	the	required	size.

dwFlags
[in]	Reserved.	Set	to	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

Remarks

Microsoft®	DirectPlay®	returns	the	DPN_GROUP_INFO	structure,
and	the	pointers	assigned	to	the	structure's	pwszName	and	pvData
members	in	a	contiguous	buffer.	If	the	two	pointers	were	set,	you
must	have	allocated	enough	memory	for	the	structure,	plus	the	two
pointers.	The	most	robust	way	to	use	this	method	is	to	first	call	it	with
pdwSize	set	to	NULL.	When	the	method	returns,	pdwSize	will	point
to	the	correct	value.	Use	that	value	to	allocate	memory	for	your
structure	and	call	the	method	a	second	time	to	retrieve	the
information.

When	the	method	returns,	the	dwInfoFlags	member	of	the
DPN_GROUP_INFO	structure	will	always	have	the	DPNINFO_DATA
and	DPNINFO_NAME	flags	set,	even	if	the	corresponding	pointers
are	set	to	NULL.	These	flags	are	used	when	calling
IDirectPlay8Peer::SetGroupInfo,	to	notify	DirectPlay	which	values
have	changed.

Transmission	of	nonstatic	information	should	be	handled	with	the
IDirectPlay8Peer::SendTo	method	because	of	the	high	cost	of	using
the	IDirectPlay8Peer::SetGroupInfo	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetLocalHostAddresses	Method

Retrieves	the	local	addresses	being	used	to	host	the	session.

Syntax

HRESULT	GetLocalHostAddresses(
				IDirectPlay8Address	**const	prgpAddress,
				DWORD	*const	pcAddress,
				const	DWORD	dwFlags
);

Parameters

prgpAddress
[out]	Pointer	to	an	array	of	IDirectPlay8Address	objects	that
specify	the	local	host	addresses.	You	must	release	these
objects	when	you	no	longer	need	them,	or	you	will	create
memory	leaks.

pcAddress
[in,	out]	Maximum	number	of	address	objects	that	can	be
returned	in	the	array	pointed	to	by	prgpAddress.	If	the	buffer	is
too	small,	this	method	returns	DPNERR_BUFFERTOOSMALL
and	this	parameter	contains	the	required	size.

dwFlags
[in]	The	following	flag	can	be	specified	when	using	the
Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)
service	provider.	This	method	will	return
DPNERR_UNSUPPORTED	if	this	flag	is	used	with	any	other
service	provider.
DPNGETLOCALHOSTADDRESSES_COMBINED

Return	all	listening	addresses	combined	into	one
IDirectPlay8Address	object.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_UNSUPPORTED The	function	or	feature	is	not	available	in	this	implementation	or	on	this	service
provider.

DPNERR_NOTHOST The	client	attempted	to	connect	to	a	nonhost	computer.	Additionally,	this	error
value	may	be	returned	by	a	nonhost	that	tried	to	set	the	application	description.

Remarks

The	most	robust	way	to	use	this	method	is	to	call	it	first	with
pcAddress	set	to	0.	When	the	method	returns,	pcAddress	will	point
to	the	correct	value,	and	you	can	use	that	value	to	call	the	method	a
second	time	to	retrieve	the	information.

If	the	calling	application	is	not	the	session	host,	the	method	returns
DPNERR_NOTHOST.	Use	IDirectPlay8Peer::GetPeerAddress	to
retrieve	the	address	of	a	remote	player.

If	DPNGETLOCALHOSTADDRESSES_COMBINED	is	specified,	the
address	object	returned	will	contain	all	listening	host	addresses.	For
example,	the	host	might	have	multiple	addresses	if	it	is	behind	a
Network	Address	Translation	(NAT)	device	or	if	it	has	multiple
network	cards.	In	this	case,	players	can	connect	to	the	host	faster	if
they	can	try	all	of	the	addresses	simultaneously.	The	application
must	provide	its	own	mechanism	for	passing	the	combined	address
object	to	the	connecting	players.	One	way	to	do	this	is	by	using
IDirectPlay8Address::GetURLA	or	IDirectPlay8Address::GetURLW
and	IDirectPlay8Address::BuildFromURLA	or
IDirectPlay8Address::BuildFromURLW	to	create	a	string	to	pass

using	a	Web	page	or	lobby	mechanism.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetPeerAddress	Method

Retrieves	the	address	for	the	specified	remote	player	in	the	session.

Syntax

HRESULT	GetPeerAddress(
				const	DPNID	dpnid,
				IDirectPlay8Address	**const	pAddress,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	specifying	the	identification	of	the
player.

pAddress
[out]	Address	of	a	pointer	to	an	IDirectPlay8Address	object	that
specifies	the	address	of	the	peer.	You	must	release	this	object
when	you	no	longer	need	it.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	cannot	be	used	to	retrieve	the	address	of	the	local
player.	If	the	player	calls	this	method	on	his	or	her	own	identifier	(ID),
it	returns	a	DPNERR_INVALIDPLAYER	error	message.

Use	IDirectPlay8Peer::GetLocalHostAddresses	to	retrieve	addresses
that	can	be	used	to	connect	to	the	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetPeerInfo	Method

Retrieves	peer	information	set	for	the	specified	peer.

Syntax

HRESULT	GetPeerInfo(
				const	DPNID	dpnid,
				DPN_PLAYER_INFO	*const	pdpnPlayerInfo,
				DWORD	*const	pdwSize,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
peer	whose	information	will	be	retrieved.

pdpnPlayerInfo
[out]	Pointer	to	a	DPN_PLAYER_INFO	structure	to	fill	with	peer
information.	If	pdwSize	is	not	set	to	NULL,	you	must	set
pdpnPlayerInfo.dwSize	to	the	size	of	a	DPN_PLAYER_INFO
structure.

pdwSize
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the
size	of	the	peer	data	returned	in	the	pdpnPlayerInfo	parameter.
If	the	buffer	is	too	small	this	method	returns
DPNERR_BUFFERTOOSMALL	and	this	parameter	contains	the
size	of	the	required	buffer.

dwFlags
[in]	Reserved.	Set	to	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_CONNECTING The	method	is	in	the	process	of	connecting	to	the	network.

Remarks

Call	this	method	after	the	peer	receives	a
DPN_MSGID_PEER_INFO	message	from	the	application,	which
indicates	a	peer	has	updated	their	information.

Calling	IDirectPlay8Peer::GetPeerInfo	before	the	host	has	returned
from	IDirectPlay8Peer::Host	will	cause	this	method	to	fail	with
DPNERR_CONNECTING.	If	this	happens,	try	calling
IDirectPlay8Peer::GetPeerInfo	again.

Microsoft®	DirectPlay®	returns	the	DPN_PLAYER_INFO	structure,
and	the	pointers	assigned	to	the	structure's	pwszName	and	pvData
members	in	a	contiguous	buffer.	If	the	two	pointers	were	set,	you
must	have	allocated	enough	memory	for	the	structure,	plus	the	two
pointers.	The	most	robust	way	to	use	this	method	is	to	first	call	it	with
pdwSize	set	to	NULL.	When	the	method	returns,	pdwSize	will	point
to	the	correct	value.	Use	that	value	to	allocate	memory	for	the
structure	and	call	the	method	a	second	time	to	retrieve	the
information.

When	the	method	returns,	the	dwInfoFlags	member	of	the
DPN_PLAYER_INFO	structure	will	always	have	the
DPNINFO_DATA	and	DPNINFO_NAME	flags	set,	even	if	the
corresponding	pointers	are	set	to	NULL.	These	flags	are	used	when
calling	IDirectPlay8Peer::SetPeerInfo,	to	notify	DirectPlay	of	which

values	have	changed.

Transmission	of	nonstatic	information	should	be	handled	with	the
IDirectPlay8Peer::SendTo	method	because	of	the	high	cost	of	using
the	IDirectPlay8Peer::SetPeerInfo	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetPlayerContext	Method

Retrieves	the	player	context	value	for	the	specified	peer.

Syntax

HRESULT	GetPlayerContext(
				const	DPNID	dpnid,
				PVOID	*const	ppvPlayerContext,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
player	to	get	context	data	for.

ppvPlayerContext
[out]	Pointer	to	the	context	data	of	the	peer.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_NOTREADY The	object	is	not	ready	for	use.

Remarks

Player	context	values	are	set	by	pointing	the	pvPlayerContext
member	of	the	DPN_MSGID_CREATE_PLAYER	system	message

to	the	context	value	data.

This	method	returns	DPNERR_NOTREADY	when	it	is	called	before
a	DPN_MSGID_CREATE_PLAYER	message	is	received	by
Microsoft®	DirectPlay®	for	the	player	specified	in	dpnid.	Call
IDirectPlay8Peer::GetPlayerContext	again	allowing	task	switching
so	that	the	thread	carrying	the	message	can	return.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetSendQueueInfo	Method

Used	by	the	application	to	monitor	the	size	of	the	send	queue.

Syntax

HRESULT	GetSendQueueInfo(
				const	DPNID	dpnid,
				DWORD	*const	pdwNumMsgs,
				DWORD	*const	pdwNumBytes,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	DPNID	of	the	player	to	get	send	queue	information	for.

pdwNumMsgs
[out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the
number	of	messages	currently	queued.	This	value	is	optional,
and	can	be	set	to	NULL.

pdwNumBytes
[out]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the	total
number	of	bytes	of	data	of	the	messages	currently	queued.	This
value	is	optional,	and	can	be	set	to	NULL.

dwFlags
[in]	You	can	specify	the
DPNGETSENDQUEUEINFO_PRIORITY_NORMAL,
DPNGETSENDQUEUEINFO_PRIORITY_HIGH,	or
DPNGETSENDQUEUEINFO_PRIORITY_LOW	flag	to	inquire
about	specific	messages	of	that	priority.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

Microsoft®	DirectPlay®	will	not	send	messages	faster	than	the
receiving	computer	can	process	them.	As	a	result,	if	the	sending
computer	is	sending	faster	than	the	receiver	can	receive,	messages
accumulate	in	the	sender's	queue.	If	the	application	registers	that	the
send	queue	is	growing	too	large,	it	should	slow	the	rate	that
messages	are	sent.

You	cannot	set	both	pdwNumMsgs	and	pdwNumBytes	to	NULL.	At
least	one	of	them	must	be	set	to	a	valid	pointer.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::GetSPCaps	Method

Retrieves	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Syntax

HRESULT	GetSPCaps(
				const	GUID	*const	pguidSP,
				DPN_SP_CAPS	*const	pdpnSPCaps,
				const	DWORD	dwFlags
);

Parameters

pguidSP
[in]	Pointer	to	a	globally	unique	identifier	(GUID)	specifying	the
service	provider	you	want	to	get	information	about.

pdpnSPCaps
[out]	Pointer	to	a	DPN_SP_CAPS	structure	to	receive	the
information	about	the	specified	service	provider.	You	must	set
the	pdpnSPCaps.dwSize	member	of	the	structure.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	retrieves	information	about	the	specified	service
provider.	A	successful	call	to	IDirectPlay8Peer::Initialize	must	be
made	before	this	method	can	be	called.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::Host	Method

Creates	a	new	peer-to-peer	session,	hosted	by	the	local	computer.

Syntax

HRESULT	Host(
				const	DPN_APPLICATION_DESC	*const	pdnAppDesc,
				IDirectPlay8Address	**const	prgpDeviceInfo,
				const	DWORD	cDeviceInfo,
				const	DPN_SECURITY_DESC	*const	pdpSecurity,
				const	DPN_SECURITY_CREDENTIALS	*const	pdpCredentials,
				VOID	*const	pvPlayerContext,
				const	DWORD	dwFlags
);

Parameters

pdnAppDesc
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
describes	the	application.

prgpDeviceInfo
[in]	Pointer	to	an	array	of	IDirectPlay8Address	objects
containing	the	device	addresses	that	should	be	used	to	host	the
application.	You	must	release	these	objects	when	you	no	longer
need	them.

cDeviceInfo
[in]	Variable	of	type	DWORD	that	specifies	the	number	of	device
address	objects	in	the	array	pointed	to	by	prgpDeviceInfo.

pdpSecurity
[in]	Reserved.	Must	be	NULL.

pdpCredentials
[in]	Reserved.	Must	be	NULL.

pvPlayerContext
[in]	Pointer	to	the	context	value	of	the	local	player.	This	value	is
preset	when	the	local	computer	handles	the

DPN_MSGID_CREATE_PLAYER	message.	This	parameter	is
optional	and	may	be	set	to	NULL.

dwFlags
[in]	The	following	flag	can	be	specified.
DPNHOST_OKTOQUERYFORADDRESSING

Setting	this	flag	will	display	a	standard	Microsoft®
DirectPlay®	dialog	box,	which	queries	the	user	for	more
information	if	not	enough	information	is	passed	in	this
method.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_DATATOOLARGE The	application	data	is	too	large	for	the	service	provider's	Maximum
Transmission	Unit.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDDEVICEADDRESS The	address	for	the	local	computer	or	adapter	is	invalid.

DPNERR_DPNSVRNOTAVAILABLE Port	6073	is	already	in	use.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

Remarks

Do	not	set	the	guidInstance	member	of	the
DPN_APPLICATION_DESC	structure	when	calling
IDirectPlay8Peer::Host	because	DirectPlay	will	ignore	any	value
passed	in	and	determine	its	own	globally	unique	identifier	(GUID).
The	only	way	to	retrieve	the	guidInstance	is	by	calling
IDirectPlay8Peer::GetApplicationDesc.

If	you	set	the	DPNHOST_OKTOQUERYFORADDRESSING	flag	in
dwFlags,	the	service	provider	might	attempt	to	display	a	dialog	box
to	ask	the	user	to	complete	the	address	information.	You	must	have
a	visible	window	present	when	the	service	provider	tries	to	display
the	dialog	box,	or	your	application	will	lock.

Data	Value	Summary	specifies	the	required	addressing	information
for	each	service	provider.

The	maximum	size	of	the	application	data	that	you	assign	to	the
pvApplicationReservedData	member	of	the
DPN_APPLICATION_DESC	structure	is	limited	by	the	service
provider's	Maximum	Transmission	Unit.	If	your	application	data	is	too
large,	the	method	will	fail	and	return	DPNERR_DATATOOLARGE.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::Initialize	Method

Registers	an	entry	point	in	the	peer's	code	that	receives	all	the	messages
from	the	IDirectPlay8Peer	interface	and	from	remote	peers.	This	method
must	be	called	before	calling	any	other	methods	of	this	interface.

Syntax

HRESULT	Initialize(
				PVOID	const	pvUserContext,
				const	PFNDPNMESSAGEHANDLER	pfn,
				const	DWORD	dwFlags
);

Parameters

pvUserContext
[in]	Pointer	to	the	user-provided	context	value	in	calls	to	the
message	handler.	A	user-provided	context	value	can	be	used	to
differentiate	messages	coming	from	multiple	interfaces	to	a
common	message	handler.

pfn
[in]	Pointer	to	a	PFNDPNMESSAGEHANDLER	callback	function
that	is	used	to	receive	all	messages	from	remote	peers	and
indications	of	session	changes	from	the	IDirectPlay8Peer
interface.

dwFlags
[in]	You	can	specify	the	following	flags.
DPNINITIALIZE_DISABLEPARAMVAL

Passing	this	flag	will	disable	parameter	validation	for	the
current	object.

DPNINITIALIZE_HINT_LANSESSION
Opens	a	larger	send	window	for	games	running	on	a	local
area	network	(LAN).

DPNINITIALIZE_DISABLELINKTUNING
Disable	any	attempts	by	Microsoft®	DirectPlay®	to	tune	the

rate	it	sends	at	to	the	observed	network	conditions.
Messages	will	be	pushed	out	onto	the	network	at	the	first
available	opportunity.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

Call	this	method	first	after	using	CoCreateInstance	to	obtain	the
IDirectPlay8Peer	interface.

Specify	the	DPNINITIALIZE_HINT_LANSESSION	flag	for	sessions
where	all	players	will	be	on	the	same	LAN.

Applications	might	want	to	specify	the
DPNINITIALIZE_DISABLELINKTUNING	flag	when	they	send	at	a
fixed	rate	and	do	not	alter	the	rate	based	on	the	network	conditions.
With	this	flag	specified,	DirectPlay	will	always	assume	the	network
has	the	capacity	to	carry	all	the	application	data	and	will	therefore
not	attempt	to	tune	its	send	rate	to	the	network	bandwidth.
Specifying	this	flag	and	then	sending	at	a	rate	that	exceeds	the
capacity	of	the	network	will	lead	to	unpredictable	network	behavior
such	as	higher	latency	and	increased	packet	drop	rates.	Applications
that	monitor	the	send	queues	and	dynamically	adjust	their	send	rate
to	make	best	use	of	the	available	bandwidth	should	not	specify	this
flag.

If	the	DPNINITIALIZE_DISABLELINKTUNING	flag	is	specified,

DirectPlay	features	such	as	message	prioritization,	coalescence,	and
timeout	are	not	useful	because	messages	always	go	directly	to	the
network	and	are	not	queued.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::RegisterLobby	Method

Allows	launched	applications	to	automatically	propagate	game	status	to
the	lobby.

Syntax

HRESULT	RegisterLobby(
				const	DPNHANDLE	dpnHandle,
				IDirectPlay8LobbiedApplication	*const	pIDP8LobbiedApplication,
				const	DWORD	dwFlags
);

Parameters

dpnHandle
[in]	The	connection	handle	used	when	making	the	calls	to
IDirectPlay8LobbiedApplication::UpdateStatus.

pIDP8LobbiedApplication
[in]	Pointer	to	the	IDirectPlay8LobbiedApplication	object	that
specifies	the	application.

dwFlags
[in]	One	of	the	following	flags:
DPNLOBBY_REGISTER

Registers	the	lobby	with	the	application.
DPNLOBBY_UNREGISTER

Unregisters	the	lobby	with	the	application.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::RemovePlayerFromGroup	Method

Removes	a	peer	from	a	group.

When	this	method	is	called	all	peers	connected	to	the	application	receive
a	DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message.

Syntax

HRESULT	RemovePlayerFromGroup(
				const	DPNID	idGroup,
				const	DPNID	idClient,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

idGroup
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	that	the	peer	will	be	removed	from.

idClient
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
peer	that	will	be	removed	from	the	group.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.

DPNREMOVEPLAYERFROMGROUP_SYNC
Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	one
of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_PLAYERNOTINGROUP The	player	ID	is	not	included	in	the	group.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::ReturnBuffer	Method

Retrieves	message	buffers	provided	to	the	application	through	the
pReceiveData	member	of	the	DPN_MSGID_RECEIVE	system	message.
If	the	user's	message	handler	returns	DPNSUCCESS_PENDING	to	the
RECEIVE	callback,	Microsoft®	DirectPlay®	assumes	that	ownership	of
the	buffer	is	transferred	to	the	application,	and	neither	frees	nor	modifies
it	until	ownership	is	returned	to	DirectPlay	through	this	call.

Syntax

HRESULT	ReturnBuffer(
				const	DPNHANDLE	hBufferHandle,
				const	DWORD	dwFlags
);

Parameters

hBufferHandle
[in]	Variable	of	type	DPNHANDLE	that	specifies	the	buffer
handle	to	the	message.	This	is	obtained	in	the	hBufferHandle
member	of	the	DPN_MSGID_RECEIVE	system	message.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::SendTo	Method

Transmits	data	to	another	peer	or	group	within	the	session	by	sending	a
message	to	the	appropriate	message	handlers.	The	message	can	be
sent	synchronously	or	asynchronously.

Syntax

HRESULT	SendTo(
				const	DPNID	dpnid,
				const	DPN_BUFFER_DESC	*const	pBufferDesc,
				const	DWORD	cBufferDesc,
				const	DWORD	dwTimeOut,
				void	*const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Identifier	of	the	peer	or	group	that	receives	data.	Set	this
parameter	to	DPNID_ALL_PLAYERS_GROUP	to	send	a
message	to	all	players	in	the	session.

pBufferDesc
[in]	Pointer	to	a	DPN_BUFFER_DESC	structure	that	contains
the	data	to	be	sent.

cBufferDesc
[in]	Number	of	DPN_BUFFER_DESC	structures	pointed	to	by
pBufferDesc.	There	can	be	up	to	eight	buffers	in	this	version	of
Microsoft®	DirectPlay®.

dwTimeOut
[in]	Number	of	milliseconds	to	wait	for	the	message	to	send.	If
the	message	has	not	been	sent	by	the	dwTimeOut	value,	it	is
deleted	from	the	send	queue.	If	you	set	this	parameter	to	0,	the
message	remains	in	the	send	queue	until	it	is	sent	or	until	the

link	is	dropped.
pvAsyncContext

[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_SEND_COMPLETE	system	message.	This
parameter	is	optional	and	can	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	When	the	method	returns,
phAsyncHandle	will	point	to	a	handle	that	you	can	pass	to
IDirectPlay8Peer::CancelAsyncOperation	to	cancel	the
operation.	This	parameter	must	be	set	to	NULL	if	you	set	the
DPNSEND_SYNC	flag	in	dwFlags.

dwFlags
[in]	Flags	that	describe	send	behavior.	You	can	set	one	or	more
of	the	following	flags.
DPNSEND_SYNC

Process	the	IDirectPlay8Peer::SendTo	request
synchronously.

DPNSEND_NOCOPY
Use	the	data	in	the	DPN_BUFFER_DESC	structure	and	do
not	make	an	internal	copy.	This	can	be	a	more	efficient
method	of	sending	data.	However,	it	is	less	robust	because
modifying	or	deleting	the	data	before	receiving	the
DPN_MSGID_SEND_COMPLETE	message	can	cause
erroneous	data	to	be	sent.	This	flag	cannot	be	combined
with	DPNSEND_NOCOMPLETE.

DPNSEND_NOCOMPLETE
Does	not	send	the	DPN_MSGID_SEND_COMPLETE	to
the	message	handler.	This	flag	cannot	be	used	with
DPNSEND_NOCOPY	or	DPNSEND_GUARANTEED.
Additionally,	when	using	this	flag	the	pvAsyncContext	must
be	NULL.

DPNSEND_COMPLETEONPROCESS
Sends	the	DPN_MSGID_SEND_COMPLETE	to	the
message	handler	when	this	message	has	been	delivered	to
the	target	and	the	target's	message	handler	returns	from
indicating	its	reception.	There	is	additional	internal	message
overhead	when	this	flag	is	set,	and	the	message
transmission	process	might	become	significantly	slower.	If

you	set	this	flag,	DPNSEND_GUARANTEED	must	also	be
set.

DPNSEND_GUARANTEED
Sends	the	message	by	a	guaranteed	method	of	delivery.

DPNSEND_PRIORITY_HIGH
Sets	the	priority	of	the	message	to	high.	This	flag	cannot	be
used	with	DPNSEND_PRIORITY_LOW.

DPNSEND_PRIORITY_LOW
Sets	the	priority	of	the	message	to	low.	This	flag	cannot	be
used	with	DPNSEND_PRIORITY_HIGH.

DPNSEND_NONSEQUENTIAL
If	this	flag	is	set,	the	target	application	will	receive	the
messages	in	the	order	that	they	arrive	at	the	user's
computer.	If	this	flag	is	not	set,	messages	are	delivered
sequentially,	and	will	be	received	by	the	target	application	in
the	order	that	they	were	sent.	Doing	so	might	require
buffering	incoming	messages	until	missing	messages
arrive.

DPNSEND_NOLOOPBACK
Suppresses	the	DPN_MSGID_RECEIVE	system	message
to	your	message	handler	when	you	are	sending	to	a	group
that	includes	the	local	player.	For	example,	this	flag	is
useful	if	you	are	broadcasting	to	the	entire	session.

DPNSEND_COALESCE
Allows	DirectPlay	to	combine	packets	when	sending.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	one
of	the	following	error	values.

DPNERR_CONNECTIONLOST The	service	provider	connection	was	reset	while	data	was	being	sent.

DPNERR_GENERIC An	undefined	error	condition	occurred.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_TIMEDOUT The	operation	could	not	complete	because	it	has	timed	out.

Remarks

This	method	generates	a	DPN_MSGID_RECEIVE	system	message
in	the	receiver's	message	handler.	The	data	buffer	is	contained	in	the
pReceiveData	member	of	the	associated	structure.

Messages	can	have	one	of	three	priorities:	low,	normal,	and	high.	To
specify	a	low	or	high	priority	for	the	message,	set	the	appropriate
flag	in	dwFlags.	If	neither	of	the	priority	flags	is	set,	the	message	will
have	normal	priority.	See	Basic	Networking	for	a	discussion	of	send
priorities.

When	the	IDirectPlay8Peer::SendTo	request	is	completed,	a
DPN_MSGID_SEND_COMPLETE	system	message	is	normally
posted	to	the	sender's	message	handler.	The	success	or	failure	of
the	request	is	contained	in	the	hResultCode	member	of	the
associated	structure.	You	can	suppress	send	completions	by	setting
the	DPNSEND_NOCOMPLETE	flag	in	dwFlags.

Send	completions	are	typically	posted	on	the	source	computer	as
soon	as	the	message	is	sent.	In	other	words,	a	send	completion
does	not	necessarily	mean	that	the	message	has	been	processed	on
the	target.	It	might	still	be	in	a	queue.	If	you	want	to	be	certain	that
the	message	has	been	processed	by	the	target,	set	the
DPNSEND_COMPLETEONPROCESS	flag	in	dwFlags.	This	flag
ensures	that	the	send	completion	will	not	be	sent	until	the	target's
message	handler	has	processed	the	message	and	returned.

If	the	DPNSEND_COALESCE	flag	is	set	in	dwFlags,	DirectPlay	will

try	to	coalesce	up	to	32	packets	waiting	in	the	queue	into	the
outgoing	frame.	DirectPlay	does	not	guarantee	coalescence,	even	if
the	DPNSEND_COALESCE	flag	is	set.	Packets	will	only	be
coalesced	if	there	is	more	than	one	message	in	the	queue	and	the
player	receiving	is	running	Microsoft	DirectX®	9.0	or	later.	All	voice
packets	can	be	coalesced.	Both	guaranteed	and	non-guaranteed
packets	will	be	coalesced	into	the	same	frame.	If	the	frame	is
dropped	before	it	reaches	its	destination,	only	the	guaranteed	parts
of	the	frame	will	be	resent	and	no	other	data	will	be	coalesced	into
the	frame.

Note		Do	not	assume	that	resources	such	as	the	data	buffer	will
remain	valid	until	the	method	has	returned.	If	you	call	this	method
asynchronously,	the	DPN_MSGID_SEND_COMPLETE	message
can	be	received	and	processed	by	your	message	handler	before	the
call	has	returned.	If	your	message	handler	deallocates	or	otherwise
invalidates	a	resource	such	as	the	data	buffer,	that	resource	can
become	invalid	at	any	time	after	the	method	has	been	called.

This	method	returns	a	DPNERR_GENERIC	error	value	if	the	send
computer	is	host	with	no	other	player	connected	and
DPNSEND_SYNC	and	DPNSEND_NOLOOPBACK	flags	are	set.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::SetApplicationDesc	Method

Changes	the	settings	for	the	application	that	is	being	hosted.	Only	some
settings	can	be	changed.

Syntax

HRESULT	SetApplicationDesc(
				const	DPN_APPLICATION_DESC	*const	pad,
				const	DWORD	dwFlags
);

Parameters

pad
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
describes	the	application	settings	to	modify.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_DATATOOLARGE The	application	data	is	too	large	for	the	service	provider's	Maximum	Transmission
Unit.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOTHOST The	client	attempted	to	connect	to	a	nonhost	computer.	Additionally,	this	error
value	may	be	returned	by	a	nonhost	that	tried	to	set	the	application	description.

Remarks

You	can	use	this	method	to	modify	only	the	following	members	of	the
DPN_APPLICATION_DESC	structure.

dwMaxPlayers
pwszSessionName
pwszPassword
pvApplicationReservedData
dwApplicationReservedDataSize

When	IDirectPlay8Peer::SetApplicationDesc	is	called,	Microsoft®
DirectPlay®	makes	a	copy	of	the	data	pad	points	to.	You	do	not
need	to	save	the	DPN_APPLICATION_DESC	structure	once
IDirectPlay8Peer::SetApplicationDesc	returns.

You	cannot	set	the	dwMaxPlayers	member	to	a	smaller	value	than
the	current	number	of	players	in	the	session.

The	maximum	size	of	the	application	data	that	you	assign	to	the
pvApplicationReservedData	member	of	the
DPN_APPLICATION_DESC	structure	is	limited	by	the	service
provider's	Maximum	Transmission	Unit.	If	your	application	data	is	too
large,	the	method	will	fail	and	return	DPNERR_DATATOOLARGE.

To	avoid	accidentally	overwriting	the	application	description,
applications	should	call	IDirectPlay8Peer::GetApplicationDesc	and
fill	in	the	DPN_APPLICATION_DESC	structure	before	calling
IDirectPlay8Peer::SetApplicationDesc.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::SetCaps	Method

Sets	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current
interface.

Syntax

HRESULT	SetCaps(
				const	DPN_CAPS	*const	pdpCaps,
				const	DWORD	dwFlags
);

Parameters

pdpCaps
[in]	Pointer	to	a	DPN_CAPS	or	DPN_CAPS_EX	structure	used
to	set	the	information	about	the	current	interface.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

A	successful	call	to	IDirectPlay8Peer::Initialize	must	be	made	before
this	method	can	be	called.

DirectPlay	will	determine	whether	DPN_CAPS	or	DPN_CAPS_EX	is
being	used	based	on	the	size	of	the	structure	referenced	by
pdpCaps.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::SetGroupInfo	Method

Sets	a	block	of	data	associated	with	a	group,	including	the	name	of	the
group.

Calling	this	method	generates	a	DPN_MSGID_GROUP_INFO	message,
which	is	sent	to	all	the	peers	connected	to	the	application.

Syntax

HRESULT	SetGroupInfo(
				const	DPNID	dpnid,
				DPN_GROUP_INFO	*const	pdpnGroupInfo,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	whose	data	block	will	be	modified.

pdpnGroupInfo
[in]	Pointer	to	a	DPN_GROUP_INFO	structure	that	describes
the	group	data	to	set.	To	change	the	values	of	the	pwszName
or	pvData	members,	you	must	set	the	corresponding
DPNINFO_NAME	or	DPNINFO_DATA	flags	in	the	dwInfoFlags
member.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this

operation,	so	the	value	cannot	be	used.
dwFlags

[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method:
DPNSETGROUPINFO_SYNC

Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	one
of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

Remarks

Transmission	of	nonstatic	information	should	be	handled	with	the
IDirectPlay8Peer::SendTo	method	because	of	the	high	cost	of	using
the	IDirectPlay8Peer::SetGroupInfo	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::SetPeerInfo	Method

Sets	the	static	settings	of	the	local	peer.	Call	this	method	before
connecting	to	relay	basic	player	information	with	the	application.	When
the	peer	successfully	connects	with	the	application,	information	set
through	this	method	can	be	retrieved	by	other	players	by	calling	the
IDirectPlay8Peer::GetPeerInfo	method.

Syntax

HRESULT	SetPeerInfo(
				const	DPN_PLAYER_INFO	*const	pdpnPlayerInfo,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pdpnPlayerInfo
[in]	Pointer	to	a	DPN_PLAYER_INFO	structure	that	contains	the
peer	information	to	set.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.
DPNSETPEERINFO_SYNC

Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
normally	returns	DPNSUCCESS_PENDING.	It	can	also	return	one
of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOCONNECTION No	communication	link	was	established.

Remarks

This	method	can	be	called	at	any	time	during	the	session.

Transmission	of	nonstatic	information	should	be	handled	with	the
IDirectPlay8Peer::SendTo	method	because	of	the	high	cost	of	using
the	IDirectPlay8Peer::SetPeerInfo	method.

The	DPN_PLAYER_INFO	structure's	dwPlayerFlags	member	must
be	set	to	zero.

You	can	modify	the	peer	information	with	this	method	after
connecting	to	the	application.	Calling	this	method	after	connection
generates	a	DPN_MSGID_PEER_INFO	system	message	to	all
players,	informing	them	that	data	has	been	updated.	The
dwPlayerFlags	method	in	the	DPN_PLAYER_INFO	structure	must
be	set	to	0	when	making	this	call.

When	calling	this	method	asynchronously,	the	contents	of	the
pdpnPlayerInfo	and	pvAsyncContext	buffers	will	be	copied	by
DirectPlay	so	that	the	calling	application	can	clean	up	the	buffers

before	the	method	returns.

This	method	is	guaranteed	as	long	as	the	player	is	connected	to	the
session.	Even	if	this	method	is	called	during	a	host	migration,
DirectPlay	will	ensure	that	this	method	completes	and	that	the
information	is	propagated	to	all	players.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::SetSPCaps	Method

Sets	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Syntax

HRESULT	SetSPCaps(
				const	GUID	*const	pguidSP,
				const	DPN_SP_CAPS	*const	pdpSPCaps,
				const	DWORD	dwFlags
);

Parameters

pguidSP
[in]	Pointer	to	a	globally	unique	identifier	(GUID)	that	specifies
the	service	provider	to	set	information	about.

pdpSPCaps
[in]	Pointer	to	a	DPN_SP_CAPS	structure	to	set	the	information
about	the	specified	service	provider.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

A	successful	call	to	IDirectPlay8Peer::Initialize	must	be	made	before

this	method	can	be	called.	Currently,	only	the	dwSystemBufferSize
member	can	be	set	by	this	call.	The	dwNumThreads	member	is	for
legacy	support.	Microsoft	DirectX®	9.0	applications	should	use	the
IDirectPlay8ThreadPool::SetThreadCount	method	to	set	the	number
of	threads.	The	other	members	of	the	DPN_SP_CAPS	structure	are
get-only	or	ignored.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Peer::TerminateSession	Method

Terminates	the	current	Microsoft®	DirectPlay®	session.

Syntax

HRESULT	TerminateSession(
				void	*const	pvTerminateData,
				const	DWORD	dwTerminateDataSize,
				const	DWORD	dwFlags
);

Parameters

pvTerminateData
[in]	Pointer	to	termination	data.	This	data	is	also	sent	in	the
pvTerminateData	member	of	the
DPN_MSGID_TERMINATE_SESSION	system	message.

dwTerminateDataSize
[in]	Size	of	data	contained	in	the	pvTerminateData	parameter.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	an	error	value	otherwise.	

Remarks

This	method	may	be	called	only	by	the	host	player.

This	method	terminates	the	session	even	if	host	migration	is
enabled.	To	close	the	host	player's	connection	to	the	session	and
allow	host	migration	to	take	place,	call	IDirectPlay8Peer::Close
instead.

When	this	method	is	called,	the
DPN_MSGID_TERMINATE_SESSION	will	be	sent	to	the	message
handler	of	each	player	in	the	session.

Players	should	call	IDirectPlay8Peer::Close	after	receiving	the
DPN_MSGID_TERMINATE_SESSION	message	to	uninitialize	the
IDirectPlay8Peer	object.

See	Also

Host	Migration,	Leaving	a	Peer-to-Peer	Session,	Terminating	a	Peer-
to-Peer	Session

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server	Interface

Applications	use	the	methods	of	the	IDirectPlay8Server	interface	to
create	and	manage	the	server	for	a	Microsoft®	DirectPlay®	client/server
transport	session.

IDirectPlay8Server	Members

AddPlayerToGroup Adds	a	client	to	a	group.	After	the	client	is	successfully	added	to	the	group,	all
messages	sent	to	the	group	are	sent	to	the	client.

CancelAsyncOperation Cancels	asynchronous	requests.	Many	methods	of	the	IDirectPlay8Server	interface
run	asynchronously	by	default.	Depending	on	the	situation,	you	might	want	to	cancel
requests	before	they	are	processed.	All	the	methods	of	this	interface	that	can	be	run
asynchronously	return	an	hAsyncHandle	parameter.

Specific	requests	are	canceled	by	passing	the	hAsyncHandle	of	the	request	in	this
method's	hAsyncHandle	parameter.	You	can	cancel	all	pending	asynchronous
operations	by	calling	this	method,	specifying	NULL	in	the	hAsyncHandle	parameter,
and	specifying	DPNCANCEL_ALL_OPERATIONS	in	the	dwFlags	parameter.	If	a
specific	handle	is	provided	to	this	method,	no	flags	should	be	set.

Close Closes	the	open	connection	to	a	session	and	uninitializes	the	IDirectPlay8Server
object.

CreateGroup Creates	a	group	in	the	current	session.	When	this	method	is	called,	the	server's
message	handler	receives	a	DPN_MSGID_CREATE_GROUP	message.

DestroyClient Deletes	a	client	from	the	session.

DestroyGroup Deletes	a	group	created	by	the	IDirectPlay8Server::CreateGroup	method.

EnumGroupMembers Retrieves	a	list	of	all	players	in	a	group.

EnumPlayersAndGroups Retrieves	a	list	of	all	the	player	and/or	group	identifiers	for	the	application.

EnumServiceProviders Enumerates	the	registered	service	providers	available	to	the	application.

GetApplicationDesc Retrieves	the	full	application	description	for	the	connected	application.

GetCaps Retrieves	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current	interface.

GetClientAddress Retrieves	the	address	for	the	specified	player	in	the	session.

GetClientInfo

Retrieves	the	client	information	set	for	the	specified	client.

GetConnectionInfo Retrieves	statistical	information	about	the	connection	between	the	local	server	and
the	specified	remote	client.

GetGroupContext Retrieves	the	group	context	value	for	a	group.

GetGroupInfo Retrieves	a	block	of	data	associated	with	a	group,	including	the	group	name.

This	method	is	typically	called	after	a	DPN_MSGID_GROUP_INFO	system	message
is	received,	indicating	that	the	group	data	has	been	modified.

GetLocalHostAddresses Retrieves	the	local	addresses	being	used	to	host	the	session.

GetPlayerContext Retrieves	the	player	context	value	for	a	client.

GetSendQueueInfo Used	by	the	application	to	monitor	the	size	of	the	send	queue.	DirectPlay	does	not
send	messages	faster	than	the	receiving	computer	can	process	them.	As	a	result,	if
the	sending	computer	is	sending	faster	than	the	receiver	can	receive,	messages
accumulate	in	the	sender's	queue.	If	the	application	registers	that	the	send	queue	is
growing	too	large,	it	should	slow	the	rate	that	messages	are	sent.

GetSPCaps Retrieves	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Host Creates	a	new	client/server	session,	hosted	by	the	local	computer.

Initialize Registers	an	entry	point	in	the	server's	code	that	receives	the	messages	from	the
IDirectPlay8Server	interface	and	from	remote	clients.	This	method	must	be	called
before	calling	any	other	methods	of	this	interface.

RegisterLobby Allows	launched	applications	to	automatically	propagate	game	status	to	the	lobby.

RemovePlayerFromGroup Removes	a	client	from	a	group.

ReturnBuffer Retrieves	message	buffers	provided	to	the	application	through	the	pReceiveData
member	of	the	DPN_MSGID_RECEIVE	system	message.	If	the	user's	message
handler	returns	DPNSUCCESS_PENDING	to	the	RECEIVE	callback,	DirectPlay
assumes	ownership	of	the	buffer	has	been	transferred	to	the	application,	and	neither
frees	nor	modifies	it	until	ownership	is	returned	to	DirectPlay	through	this	call.

SendTo Transmits	data	to	a	client	or	group	within	the	session.	The	message	can	be	sent
synchronously	or	asynchronously.

SetApplicationDesc Changes	the	settings	for	the	application	that	is	being	hosted.	Only	some	settings	can
be	changed.

SetCaps Sets	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current	interface.

SetGroupInfo Sets	a	block	of	data	associated	with	a	group,	including	the	name	of	the	group.

SetServerInfo Sets	the	static	settings	of	a	server	with	an	application.	After	clients	successfully
connect	to	the	server,	they	can	retrieve	the	information	set	by	this	method	by	calling
theIDirectPlay8Client::GetServerInfo	method.

SetSPCaps Sets	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Interface	Information

Inherits	from IUnknown

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::AddPlayerToGroup	Method

Adds	a	client	to	a	group.	After	the	client	is	successfully	added	to	the
group,	all	messages	sent	to	the	group	are	sent	to	the	client.

Syntax

HRESULT	AddPlayerToGroup(
				const	DPNID	idGroup,
				const	DPNID	idClient,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

idGroup
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	to	add	the	client	to.

idClient
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
client	to	add	to	the	group.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.	This
parameter	is	optional	and	can	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.
DPNADDPLAYERTOGROUP_SYNC

Causes	this	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
generally	returns	DPNSUCCESS_PENDING	or	one	of	the	following
error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game
session.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game
session.

DPNERR_PLAYERALREADYINGROUP The	player	ID	is	already	included	in	the	group.

Remarks

The	server	can	add	itself	or	a	client	to	an	existing	group.	After	a
player	is	successfully	added	to	a	group,	all	messages	sent	to	the
group	will	be	received	by	the	player.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::CancelAsyncOperation	Method

Cancels	asynchronous	requests.	Many	methods	of	the
IDirectPlay8Server	interface	run	asynchronously	by	default.	Depending
on	the	situation,	you	might	want	to	cancel	requests	before	they	are
processed.	All	the	methods	of	this	interface	that	can	be	run
asynchronously	return	an	hAsyncHandle	parameter.

Specific	requests	are	canceled	by	passing	the	hAsyncHandle	of	the
request	in	this	method's	hAsyncHandle	parameter.	You	can	cancel	all
pending	asynchronous	operations	by	calling	this	method,	specifying
NULL	in	the	hAsyncHandle	parameter,	and	specifying
DPNCANCEL_ALL_OPERATIONS	in	the	dwFlags	parameter.	If	a
specific	handle	is	provided	to	this	method,	no	flags	should	be	set.

Syntax

HRESULT	CancelAsyncOperation(
				const	DPNHANDLE	hAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

hAsyncHandle
[in]	Handle	of	the	asynchronous	operation	to	stop.	This	value
can	be	NULL	to	stop	all	requests	or	a	particular	type	of
asynchronous	request.	If	a	specific	handle	is	specified,	the
dwFlags	parameter	must	be	0.	You	will	receive	this	handle	when
you	call	one	of	several	methods	that	support	asynchronous
operations.	If	one	of	the	DPNCANCEL_PLAYER_SENDS	flags
is	specified	in	the	dwFlags	parameter,	hAsyncHandle	must	be
set	to	a	player's	DPNID.

dwFlags
[in]	Flag	that	specifies	which	asynchronous	request	to	cancel.
You	can	set	one	of	the	following	flags.
DPNCANCEL_SEND

Cancel	an	asynchronous	IDirectPlay8Server::SendTo
request.

DPNCANCEL_PLAYER_SENDS
Cancel	all	asynchronous	IDirectPlay8Server::SendTo
requests	for	the	player	specified	in	the	hAsyncHandle
parameter.

DPNCANCEL_PLAYER_SENDS_PRIORITY_LOW
Cancel	low-priority	asynchronous
IDirectPlay8Server::SendTo	requests	for	the	player
specified	in	the	hAsyncHandle	parameter.

DPNCANCEL_PLAYER_SENDS_PRIORITY_NORMAL
Cancel	normal-priority	asynchronous
IDirectPlay8Server::SendTo	requests	for	the	player
specified	in	the	hAsyncHandle	parameter.

DPNCANCEL_PLAYER_SENDS_PRIORITY_HIGH
Cancel	high-priority	asynchronous
IDirectPlay8Server::SendTo	requests	for	the	player
specified	in	the	hAsyncHandle	parameter.

DPNCANCEL_ALL_OPERATIONS
Cancel	all	asynchronous	requests.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_CANNOTCANCEL The	operation	could	not	be	canceled.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNSUCCESS_PENDING An	asynchronous	operation	has	reached	the	point	where	it	is	successfully	queued.

Remarks

You	can	use	this	method	to	cancel	an	asynchronous	operation	for

the	IDirectPlay8Server::SendTo	method.	Microsoft®	DirectPlay®
does	not	support	cancellation	of	other	asynchronous	operations.

You	can	cancel	a	IDirectPlay8Server::SendTo	request	by	providing
the	handle	returned	from	IDirectPlay8Server::SendTo	method.	A
DPN_MSGID_SEND_COMPLETE	system	message	is	still	posted	to
the	applications	message	handler	for	each	asynchronous
IDirectPlay8Server::SendTo	request	that	is	sent	without	the
DPNSEND_NOCOMPLETE	flag	set.	Send	requests	that	are
canceled	by	this	method	return	DPNERR_USERCANCEL	in	their
hResultCode	member	of	the	DPN_MSGID_SEND_COMPLETE
message.

If	you	set	the	DPNCANCEL_ALL_OPERATIONS	or
DPNCANCEL_SEND	flags	in	dwFlags,	DirectPlay	will	attempt	to
cancel	all	matching	operations.	This	method	will	return	an	error	if	any
attempted	cancellation	fails,	even	though	some	cancellations	may
have	been	successful.

If	you	set	one	of	the	DPNCANCEL_PLAYER_SENDS	flags	in
dwFlags,	you	must	specify	a	player's	DPNID	in	hAsyncHandle.	This
will	cancel	all	pending	IDirectPlay8Server::SendTo	requests	where
the	DPNID	specified	in	the	dpnid	parameter	matches	the	value	set	in
the	hAsyncHandle	parameter.

Note		The	completion	message	might	not	arrive	until	after	this
method	returns.	Do	not	assume	that	the	operation	has	been
terminated	until	you	have	received	a
DPN_MSGID_SEND_COMPLETE,
DPN_MSGID_CONNECT_COMPLETE,	or
DPN_MSGID_ASYNC_OP_COMPLETE	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::Close	Method

Closes	the	open	connection	to	a	session	and	uninitializes	the
IDirectPlay8Server	object.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	The	following	flag	can	be	specified.
DPNCLOSE_IMMEDIATE

Close	immediately.	Do	not	wait	for	outstanding	calls	to
complete.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	must	be	called	on	any	object	successfully	initialized
with	IDirectPlay8Server::Initialize.

This	method	is	a	counterpart	to	IDirectPlay8Server::Host.	It	closes	all
active	network	connections	hosted	by	the	server.	This	method	is
synchronous,	and	will	not	return	until	the	server	has	processed	all

DPN_MSGID_DESTROY_PLAYER	messages.	This	feature
guarantees	that	when	IDirectPlay8Server::Close	returns,	you	can
safely	shut	down	the	server	application.

Calling	IDirectPlay8Server::Close	will	cancel	all	outstanding
operations,	including	guaranteed	messages	that	are	in	the	queue
waiting	to	be	sent.	Messages	that	have	already	been	sent	as
guaranteed	will	continue	to	be	retried	until	acknowledgement	of	their
delivery	has	been	received.	To	make	sure	all	messages	are	sent,
wait	for	all	outstanding	IDirectPlay8Server::SendTo	calls	to	complete
before	calling	IDirectPlay8Server::Close.

Calling	IDirectPlay8Server::Close	will	invalidate	any	DPN_CAPS,
DPN_CAPS_EX,	and	DPN_SP_CAPS	associated	with	the
IDirectPlay8Server	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::CreateGroup	Method

Creates	a	group	in	the	current	session.	When	this	method	is	called,	the
server's	message	handler	receives	a	DPN_MSGID_CREATE_GROUP
message.

Syntax

HRESULT	CreateGroup(
				const	DPN_GROUP_INFO	const	*const	pdpnGroupInfo,
				VOID	*const	pvGroupContext,
				VOID	*const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pdpnGroupInfo
[in]	Pointer	to	a	DPN_GROUP_INFO	structure	that	contains	the
group	description.

pvGroupContext
[in]	Pointer	to	the	context	value	for	the	group.	This	value	is
preset	when	the	local	application's	message	handler	processes
the	DPN_MSGID_CREATE_GROUP	message.	This	parameter
is	optional	and	may	be	set	to	NULL.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The

following	flag	can	be	set	for	this	method.
DPNCREATEGROUP_SYNC

Causes	this	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
generally	returns	DPNSUCCESS_PENDING	or	the	following	error
value.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

Remarks

DirectPlay	does	not	maintain	hierarchical	groups	because	these	can
easily	be	implemented	with	flat	groups	and	expeditious	use	of	the
group	data.

Note		Multicasting	is	not	supported	for	this	release.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::DestroyClient	Method

Deletes	a	client	from	the	session.

Syntax

HRESULT	DestroyClient(
				const	DPNID	dpnidClient,
				const	VOID	*const	pDestroyInfo,
				const	DWORD	dwDestroyInfoSize,
				const	DWORD	dwFlags
);

Parameters

dpnidClient
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
client	to	delete.

pDestroyInfo
[in]	Pointer	that	describes	additional	delete	data	information.

dwDestroyInfoSize
[in]	Variable	of	type	DWORD	that	specifies	the	size	of	the	data
in	the	pDestroyInfo	parameter.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_NOTHOST The	client	attempted	to	connect	to	a	nonhost	computer.	Additionally,	this	error	value
may	be	returned	by	a	nonhost	that	tried	to	set	the	application	description.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::DestroyGroup	Method

Deletes	a	group	created	by	the	IDirectPlay8Server::CreateGroup	method.

Syntax

HRESULT	DestroyGroup(
				const	DPNID	idGroup,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

idGroup
[in]	DPNID	of	the	group	to	delete.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.	This
parameter	is	optional	and	may	be	set	to	NULL.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.
DPNDESTROYGROUP_SYNC

Causes	the	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and

generally	returns	DPNSUCCESS_PENDING	or	one	of	the	following
error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::EnumGroupMembers	Method

Retrieves	a	list	of	all	players	in	a	group.

Syntax

HRESULT	EnumGroupMembers(
				const	DPNID	dpnid,
				DPNID	*const	prgdpnid,
				DWORD	*const	pcdpnid,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	group	that	contains
the	players	to	enumerate.

prgdpnid
[out]	Pointer	to	an	array	that	contains	the	identifiers	of	the
group's	players.

pcdpnid
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the
number	of	player	identifiers	in	the	prgdpnid	parameter.	If	the
buffer	is	too	small,	this	method	returns
DPNERR_BUFFERTOOSMALL	and	this	parameter	is	set	to	the
number	of	entries	that	are	required.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::EnumPlayersAndGroups	Method

Retrieves	a	list	of	all	the	player	and/or	group	identifiers	for	the
application.

Syntax

HRESULT	EnumPlayersAndGroups(
				DPNID	*const	prgdpnid,
				DWORD	*const	pcdpnid,
				const	DWORD	dwFlags
);

Parameters

prgdpnid
[out]	Pointer	to	an	array	that	will	be	filled	with	the	session's
group	and/or	player	identifiers.

pcdpnid
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the
number	of	identifiers	in	the	prgdpnid	parameter.	If	the	buffer	is
too	small,	this	method	returns	DPNERR_BUFFERTOOSMALL
and	this	parameter	contains	the	number	of	entries	that	are
required.

dwFlags
[in]	Flag	that	describes	enumeration	behavior.	You	can	set	one
or	both	of	the	following	flags.
DPNENUM_PLAYERS

Return	a	list	of	player	identifiers.
DPNENUM_GROUPS

Return	a	list	of	group	identifiers.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

Remarks

Because	group	and	player	information	changes	frequently,	the
required	buffer	size	returned	may	change	between	subsequent	calls.
Check	and	reallocate	the	buffer	until	the	method	succeeds.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::EnumServiceProviders	Method

Enumerates	the	registered	service	providers	available	to	the	application.

Syntax

HRESULT	EnumServiceProviders(
				const	GUID	*const	pguidServiceProvider,
				const	GUID	*const	pguidApplication,
				DPN_SERVICE_PROVIDER_INFO	*const	pSPInfoBuffer,
				PDWORD	const	pcbEnumData,
				PDWORD	const	pcReturned,
				const	DWORD	dwFlags
);

Parameters

pguidServiceProvider
[in]	Pointer	to	a	variable	of	type	globally	unique	identifier	(GUID)
that	specifies	a	service	provider.	This	optional	parameter	forces
the	enumeration	of	subdevices	for	the	specified	service	provider.
You	should	normally	set	this	value	to	NULL,	to	enumerate	all
available	service	providers.	Otherwise,	set	pguidServiceProvider
to	one	of	the	following	predefined	values.
CLSID_DP8SP_TCPIP

Internet	Protocol	(IP)	service	providers
CLSID_NETWORKSIMULATOR_DP8SP_TCPIP

DP8Sim	service	providers
CLSID_DP8SP_SERIAL

Serial	service	providers
CLSID_DP8SP_MODEM

Modem	service	providers
CLSID_DP8SP_IPX

IPX	service	providers
pguidApplication

[in]	Pointer	to	a	variable	of	type	GUID	that	specifies	an

application.	If	a	pointer	is	passed	in	this	parameter,	only	service
providers	who	can	be	connected	to	the	application	are
enumerated.	You	can	also	pass	NULL	to	enumerate	the
registered	service	providers	for	the	system.

pSPInfoBuffer
[out]	Pointer	to	an	array	of	DPN_SERVICE_PROVIDER_INFO
structures	that	will	be	filled	with	service	provider	information.

pcbEnumData
[out]	Pointer	to	DWORD,	which	is	filled	with	the	size	of	the
pSPInfoBuffer	buffer	if	the	buffer	is	too	small.

pcReturned
[out]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the
number	of	DPN_SERVICE_PROVIDER_INFO	structures
returned	in	the	pcbEnumData	array.

dwFlags
[in]	The	following	flag	can	be	specified.
DPNENUMSERVICEPROVIDERS_ALL

Enumerates	all	the	registered	service	providers	for	the
system	including	those	that	are	not	available	to	the
application	or	do	not	have	devices	installed.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

Call	this	method	initially	by	specifying	NULL	in	the
pguidServiceProvider	parameter	to	determine	the	base	service
providers	available	to	the	system.	Specific	devices	for	a	service
provider	can	be	obtained	by	passing	a	pointer	to	a	specific	service
provider	GUID	in	the	pguidServiceProvider.	This	is	useful,	for
example,	when	using	the	Modem	Connection	for	Microsoft®

DirectPlay®	service	provider.	You	can	choose	between	different
modems	for	dialing	out	and	select	specific	modems	for	hosting.

If	the	pcbEnumData	buffer	is	not	big	enough	to	hold	the	requested
service	provider	information,	the	method	returns
DPNERR_BUFFERTOOSMALL	and	the	pcbEnumData	parameter
contains	the	required	buffer	size.	Typically,	the	best	strategy	is	to	call
the	method	once	with	a	zero-length	buffer	to	determine	the	required
size.	Then	call	the	method	again	with	the	appropriate	sized	buffer.

Normally,	this	method	will	return	only	those	service	providers	that
can	be	used	by	the	application.	For	example,	if	the	Internetwork
Packet	Exchange	(IPX)	networking	protocol	is	not	installed,
DirectPlay	will	not	return	the	IPX	service	provider.	To	have	DirectPlay
return	all	service	providers,	even	those	that	cannot	be	used	by	the
application,	set	the	DPNENUMSERVICEPROVIDERS_ALL	flag	in
dwFlags.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetApplicationDesc	Method

Retrieves	the	full	application	description	for	the	connected	application.

Syntax

HRESULT	GetApplicationDesc(
				DPN_APPLICATION_DESC	*const	pAppDescBuffer,
				DWORD	*const	pcbDataSize,
				const	DWORD	dwFlags
);

Parameters

pAppDescBuffer
[out]	Pointer	to	a	DPN_APPLICATION_DESC	structure	where
the	application	description	data	is	to	be	written.	Set	this
parameter	to	NULL	to	request	only	the	size	of	data.	If
pAppDescBuffer	is	not	set	to	NULL,	you	must	set	the
pAppDescBuffer.dwSize	member	to	an	appropriate	value.	The
pcbDataSize	parameter	is	set	to	the	size	required	to	hold	the
data.

pcbDataSize
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	is	initialized	to
the	size	of	the	buffer	before	calling	this	method.	After	the
method	returns,	this	parameter	is	set	to	the	size,	in	bytes,	of	the
session	data.	If	the	buffer	is	too	small,	this	method	returns	the
DPNERR_BUFFERTOOSMALL	error	value,	and	this	parameter
is	set	to	the	buffer	size	required.	If	this	parameter	is	NULL,	the
method	returns	DPNERR_INVALIDPARAM.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOCONNECTION No	communication	link	was	established.

Remarks

Call	this	method	initially	by	passing	NULL	in	the	pcbDataSize
parameter	to	obtain	the	size	of	the	required	buffer.	When	you	call	the
method	a	second	time	to	fill	the	buffer,	be	sure	to	set	the	structures
dwSize	member	to	the	appropriate	value.

To	avoid	accidentally	overwriting	the	application	description,
applications	should	call	IDirectPlay8Server::GetApplicationDesc
and	fill	in	the	DPN_APPLICATION_DESC	structure	before	calling
IDirectPlay8Server::SetApplicationDesc.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetCaps	Method

Retrieves	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current
interface.

Syntax

HRESULT	GetCaps(
				DPNCAPS	*const	pdpnCaps,
				const	DWORD	dwFlags
);

Parameters

pdpnCaps
[out]	Pointer	to	a	DPN_CAPS	or	DPN_CAPS_EX	structure	to
receive	caps	information.	You	must	set	the	dwSize	member	of
this	structure	to	an	appropriate	value.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

A	successful	call	to	IDirectPlay8Server::Initialize	must	be	made
before	this	method	can	be	called.

DirectPlay	will	determine	whether	DPN_CAPS	or	DPN_CAPS_EX	is
being	used,	based	on	the	size	of	the	structure	referenced	by
pdpnCaps.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetClientAddress	Method

Retrieves	the	address	for	the	specified	player	in	the	session.

Syntax

HRESULT	GetClientAddress(
				const	DPNID	dpnid,
				IDirectPlay8Address	**const	pAddress,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	specifying	the	identification	of	the
player.

pAddress
[out]	Address	of	a	pointer	to	an	IDirectPlay8Address	object	that
specifies	the	address	of	the	client.	You	must	release	this	object
when	you	no	longer	need	it.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

Use	the	IDirectPlay8Server::GetLocalHostAddresses	method	to
retrieve	addresses	that	can	be	used	to	connect	to	the	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetClientInfo	Method

Retrieves	the	client	information	set	for	the	specified	client.

Syntax

HRESULT	GetClientInfo(
				const	DPNID	dpnid,
				DPN_PLAYER_INFO	*const	pdpnPlayerInfo,
				DWORD	*const	pdwSize,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
client	to	retrieve	the	information	for.

pdpnPlayerInfo
[out]	Pointer	to	a	DPN_PLAYER_INFO	structure	that	is	filled
with	client	information.	If	pdwSize	is	not	set	to	NULL,	you	must
set	pdpnPlayerInfo.dwSize	to	an	appropriate	value.

pdwSize
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the
size	of	the	client	data	returned	in	the	pdpnPlayerInfo	parameter.
If	the	buffer	is	too	small,	this	method	returns
DPNERR_BUFFERTOOSMALL	and	this	parameter	contains	the
size	of	the	required	buffer.

dwFlags
[in]	Flags	describing	the	information	returned	for	the	client.
Currently,	both	of	the	following	flags	are	returned.
DPNINFO_NAME

The	DPN_PLAYER_INFO	structure	contains	the	name	set
for	the	client.

DPNINFO_DATA
The	DPN_PLAYER_INFO	structure	contains	the	data	set

for	the	client.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

Remarks

Call	this	method	after	the	server	receives	a
DPN_MSGID_CLIENT_INFO	message	from	the	application.	This
message	indicates	that	a	client	has	updated	its	information.

Microsoft®	DirectPlay®	returns	the	DPN_PLAYER_INFO	structure,
and	the	pointers	assigned	to	the	structure's	pwszName	and	pvData
members	in	a	contiguous	buffer.	If	the	two	pointers	were	set,	you
must	have	allocated	enough	memory	for	the	structure,	plus	the	two
pointers.	The	most	robust	way	to	use	this	method	is	to	first	call	it	with
pdwSize	set	to	NULL.	When	the	method	returns,	pdwSize	will	point
to	the	correct	value.	Use	that	value	to	allocate	memory	for	the
structure	and	call	the	method	a	second	time	to	retrieve	the
information.

When	the	method	returns,	the	dwInfoFlags	member	of	the
DPN_PLAYER_INFO	structure	will	always	have	the
DPNINFO_DATA	and	DPNINFO_NAME	flags	set,	even	if	the
corresponding	pointers	are	set	to	NULL.	These	flags	are	used	when
calling	IDirectPlay8Client::SetClientInfo,	to	notify	DirectPlay	of	which
values	have	changed.

Transmission	of	nonstatic	information	should	be	handled	with	the
IDirectPlay8Client::Send	method	because	of	the	high	cost	of	using
the	IDirectPlay8Peer::SetPeerInfo	method.

The	player	sets	the	information	by	calling
IDirectPlay8Client::SetClientInfo.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetConnectionInfo	Method

Retrieves	statistical	information	about	the	connection	between	the	local
server	and	the	specified	remote	client.

Syntax

HRESULT	GetConnectionInfo(
				const	DPNID	dpnidEndPoint,
				DPN_CONNECTION_INFO	*const	pdnConnectInfo,
				const	DWORD	dwFlags
);

Parameters

dpnidEndPoint
[in]	DPNID	of	the	player	whose	connection	information	will	be
retrieved.

pdnConnectInfo
[out]	Pointer	to	a	DPN_CONNECTION_INFO	structure	to
retrieve	information	about	the	specified	connection.	The	dwSize
member	of	this	structure	must	be	set	to	the	size	of	a
DPN_CONNECTION_INFO	structure.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	can	be	called	only	after	a	successful
IDirectPlay8Server::Host	call	has	completed.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetGroupContext	Method

Retrieves	the	group	context	value	for	a	group.

Syntax

HRESULT	GetGroupContext(
				const	DPNID	dpnid,
				PVOID	*const	ppvGroupContext,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	to	get	context	data	for.

ppvGroupContext
[out]	Pointer	to	the	context	value	of	the	group.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOTREADY The	object	is	not	ready	for	use.

Remarks

Group	context	values	are	set	by	pointing	the	pvGroupContext
member	of	the	DPN_MSGID_CREATE_GROUP	system	message	to

the	context	value	data.

This	method	returns	DPNERR_NOTREADY	when	it	is	called	before
a	DPN_MSGID_CREATE_GROUP	message	is	received	by
Microsoft®	DirectPlay®	for	the	group	specified	in	dpnid.	Call
IDirectPlay8Server::GetGroupContext	again	allowing	task
switching	so	that	the	thread	carrying	the	message	can	return.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetGroupInfo	Method

Retrieves	a	block	of	data	associated	with	a	group,	including	the	group
name.

This	method	is	typically	called	after	a	DPN_MSGID_GROUP_INFO
system	message	is	received,	indicating	that	the	group	data	has	been
modified.

Syntax

HRESULT	GetGroupInfo(
				const	DPNID	dpnid,
				DPN_GROUP_INFO	*const	pdpnGroupInfo,
				DWORD	*const	pdwSize,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	whose	data	block	will	be	retrieved.

pdpnGroupInfo
[out]	Pointer	to	a	DPN_GROUP_INFO	structure	that	describes
the	group	data.	If	pdwSize	is	not	set	to	NULL,	you	must	set
pdpnGroupInfo.dwSize	to	the	size	of	a	DPN_GROUP_INFO
structure.

pdwSize
[in,	out]	Pointer	to	a	variable	of	type	DWORD	that	returns	the
size	of	the	data	in	the	pdpnGroupInfo	parameter.	If	the	buffer	is
too	small,	this	method	returns	DPNERR_BUFFERTOOSMALL
and	this	parameter	contains	the	required	size.

dwFlags
[in]	Flags	describing	the	information	returned	for	the	group.

Currently,	both	of	the	following	flags	are	returned.
DPNINFO_NAME

The	DPN_PLAYER_INFO	structure	contains	the	name	set
for	the	client.

DPNINFO_DATA
The	DPN_PLAYER_INFO	structure	contains	the	data	set
for	the	client.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

Remarks

Microsoft®	DirectPlay®	returns	the	DPN_GROUP_INFO	structure,
and	the	pointers	assigned	to	the	structure's	pwszName	and	pvData
members	in	a	contiguous	buffer.	If	the	two	pointers	were	set,	you
must	have	allocated	enough	memory	for	the	structure,	plus	the	two
pointers.	The	most	robust	way	to	use	this	method	is	to	first	call	it	with
pdwSize	set	to	NULL.	When	the	method	returns,	pdwSize	will	point
to	the	correct	value.	Use	that	value	to	allocate	memory	for	the
structure	and	call	the	method	a	second	time	to	retrieve	the
information.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetLocalHostAddresses	Method

Retrieves	the	local	addresses	being	used	to	host	the	session.

Syntax

HRESULT	GetLocalHostAddresses(
				IDirectPlay8Address	**const	prgpAddress,
				DWORD	*const	pcAddress,
				const	DWORD	dwFlags
);

Parameters

prgpAddress
[out]	Address	of	a	pointer	to	an	array	of	IDirectPlay8Address
objects	that	specify	the	local	host	addresses.	You	must	release
these	objects	when	you	no	longer	need	them	or	you	will	create
memory	leaks.

pcAddress
[in,	out]	Maximum	number	of	address	objects	that	can	be
contained	in	the	array	pointed	to	by	prgpAddress.	If	the	buffer	is
too	small,	the	method	returns	DPNERR_BUFFERTOOSMALL,
and	pcAddress	will	be	set	to	the	required	value.

dwFlags
[in]	The	following	flag	can	be	specified	when	using	the
Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)
service	provider.	This	method	will	return
DPNERR_UNSUPPORTED	if	this	flag	is	used	with	any	other
service	provider.
DPNGETLOCALHOSTADDRESSES_COMBINED

Return	all	listening	addresses	combined	into	one
IDirectPlay8Address	object.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_UNSUPPORTED The	function	or	feature	is	not	available	in	this	implementation	or	on	this	service
provider.

Remarks

The	most	robust	way	to	use	this	method	is	to	first	call	it	with
pcAddress	set	to	0.	When	the	method	returns,	pcAddress	will	point
to	the	required	value.	You	can	use	that	value	when	you	call	the
method	for	a	second	time	to	retrieve	the	information.

If	DPNGETLOCALHOSTADDRESSES_COMBINED	is	specified,	the
address	object	returned	will	contain	all	listening	server	addresses.
For	example,	the	server	might	have	multiple	addresses	if	it	is	behind
a	Network	Address	Translation	(NAT)	device	or	if	it	has	multiple
network	cards.	In	this	case,	players	can	connect	to	the	server	faster
if	they	can	try	all	of	the	addresses	simultaneously.	The	application
must	provide	its	own	mechanism	for	passing	the	combined	address
object	to	the	connecting	players.	One	way	to	do	this	is	by	using
IDirectPlay8Address::GetURLA	or	IDirectPlay8Address::GetURLW
and	IDirectPlay8Address::BuildFromURLA	or
IDirectPlay8Address::BuildFromURLW	to	create	a	string	to	pass
using	a	Web	page	or	lobby	mechanism.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetPlayerContext	Method

Retrieves	the	player	context	value	for	a	client.

Syntax

HRESULT	GetPlayerContext(
				const	DPNID	dpnid,
				PVOID	*const	ppvPlayerContext,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
player	to	get	context	data	for.

ppvPlayerContext
[out]	Pointer	to	the	context	data	of	the	client.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_NOTREADY The	object	is	not	ready	for	use.

Remarks

Player	context	values	are	set	by	pointing	the	pvPlayerContext
member	of	the	DPN_MSGID_CREATE_PLAYER	system	message

to	the	context	value	data.

This	method	returns	DPNERR_NOTREADY	when	it	is	called	before
a	DPN_MSGID_CREATE_PLAYER	message	is	received	by
Microsoft®	DirectPlay®	for	the	player	specified	in	dpnid.	Call
IDirectPlay8Server::GetPlayerContext	again	allowing	task
switching	so	that	the	thread	carrying	the	message	can	return.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetSendQueueInfo	Method

Used	by	the	application	to	monitor	the	size	of	the	send	queue.	Microsoft®
DirectPlay®	does	not	send	messages	faster	than	the	receiving	computer
can	process	them.	As	a	result,	if	the	sending	computer	is	sending	faster
than	the	receiver	can	receive,	messages	accumulate	in	the	sender's
queue.	If	the	application	registers	that	the	send	queue	is	growing	too
large,	it	should	slow	the	rate	that	messages	are	sent.

Syntax

HRESULT	GetSendQueueInfo(
				const	DPNID	dpnid,
				DWORD	*const	pdwNumMsgs,
				DWORD	*const	pdwNumBytes,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
player	to	get	the	send-queue	information	for.

pdwNumMsgs
[out]	Pointer	to	a	variable	of	type	DWORD	that	contains	the
number	of	messages	currently	queued.	This	value	is	optional,
and	may	be	set	to	NULL.

pdwNumBytes
[out]	Pointer	to	a	variable	of	type	DWORD	that	specifies	the	total
number	of	bytes	of	data	of	the	messages	currently	queued.	This
value	is	optional,	and	may	be	set	to	NULL.

dwFlags
[in]	You	may	specify	the
DPNGETSENDQUEUEINFO_PRIORITY_NORMAL,
DPNGETSENDQUEUEINFO_PRIORITY_HIGH,	or

DPNGETSENDQUEUEINFO_PRIORITY_LOW	flag	to	inquire
about	specific	messages	of	that	priority.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

You	cannot	set	both	pdwNumMsgs	and	pdwNumBytes	to	NULL.	At
least	one	of	them	must	be	set	to	a	valid	pointer.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::GetSPCaps	Method

Retrieves	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Syntax

HRESULT	GetSPCaps(
				const	GUID	*const	pguidSP,
				DPN_SP_CAPS	*const	pdpnSPCaps,
				const	DWORD	dwFlags
);

Parameters

pguidSP
[in]	Pointer	to	a	globally	unique	identifier	(GUID)	specifying	the
service	provider	you	want	to	get	information	about.

pdpnSPCaps
[out]	Pointer	to	a	DPN_SP_CAPS	structure	to	receive	the
information	about	the	specified	service	provider.	You	must	set
the	pdpnSPCaps.dwSize	member	of	this	structure	to	an
appropriate	value.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	retrieves	information	about	the	specified	service
provider.	A	successful	call	to	IDirectPlay8Server::Initialize	must	be
made	before	this	method	can	be	called.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::Host	Method

Creates	a	new	client/server	session,	hosted	by	the	local	computer.

Syntax

HRESULT	Host(
				const	DPN_APPLICATION_DESC	*const	pdnAppDesc,
				IDirectPlay8Address	**const	prgpDeviceInfo,
				const	DWORD	cDeviceInfo,
				const	DPN_SECURITY_DESC	*const	pdpSecurity,
				const	DPN_SECURITY_CREDENTIALS	*const	pdpCredentials,
				VOID	*const	pvPlayerContext,
				const	DWORD	dwFlags
);

Parameters

pdnAppDesc
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
describes	the	application.

prgpDeviceInfo
[in]	Pointer	to	an	array	of	IDirectPlay8Address	objects
containing	device	addresses	that	should	be	used	to	host	the
application.

cDeviceInfo
[in]	Variable	of	type	DWORD	that	specifies	the	number	of	device
address	objects	in	the	array	pointed	to	by	prgpDeviceInfo.

pdpSecurity
[in]	Reserved.	Must	be	set	to	NULL.

pdpCredentials
[in]	Reserved.	Must	be	set	to	NULL.

pvPlayerContext
[in]	Pointer	to	the	context	value	of	the	player.	This	value	is
preset	when	the	local	computer	handles	the
DPN_MSGID_CREATE_PLAYER	message.	This	parameter	is

optional,	and	may	be	set	to	NULL.
dwFlags

[in]	The	following	flag	can	be	specified.
DPNHOST_OKTOQUERYFORADDRESSING

Setting	this	flag	will	display	a	standard	Microsoft®
DirectPlay®	dialog	box,	which	queries	the	user	for	more
information	if	not	enough	information	is	passed	in	this
method.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_DATATOOLARGE The	application	data	is	too	large	for	the	service	provider's	Maximum
Transmission	Unit.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_DPNSVRNOTAVAILABLE Port	6073	is	already	in	use.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

Remarks

Do	not	set	the	guidInstance	member	of	the
DPN_APPLICATION_DESC	structure	when	calling
IDirectPlay8Server::Host	because	DirectPlay	will	ignore	any	value
passed	in	and	determine	its	own	globally	unique	identifier	(GUID).
The	only	way	to	retrieve	the	guidInstance	is	by	calling
IDirectPlay8Server::GetApplicationDesc.

If	you	set	the	DPNHOST_OKTOQUERYFORADDRESSING	flag	in
dwFlags,	the	service	provider	might	attempt	to	display	a	dialog	box
to	ask	the	user	to	complete	the	address	information.	You	must	have
a	visible	window	present	when	the	service	provider	tries	to	display
the	dialog	box,	or	your	application	will	lock.

Data	Value	Summary	specifies	the	required	addressing	information

for	each	service	provider.

The	maximum	size	of	the	application	data	that	you	assign	to	the
pvApplicationReservedData	member	of	the
DPN_APPLICATION_DESC	structure	is	limited	by	the	service
provider's	Maximum	Transmission	Unit.	If	your	application	data	is	too
large,	the	method	will	fail	and	return	DPNERR_DATATOOLARGE.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::Initialize	Method

Registers	an	entry	point	in	the	server's	code	that	receives	the	messages
from	the	IDirectPlay8Server	interface	and	from	remote	clients.	This
method	must	be	called	before	calling	any	other	methods	of	this	interface.

Syntax

HRESULT	Initialize(
				PVOID	const	pvUserContext,
				const	PFNDPNMESSAGEHANDLER	pfn,
				const	DWORD	dwFlags
);

Parameters

pvUserContext
[in]	Pointer	to	the	user-provided	context	value	in	calls	to	the
message	handler.	Providing	a	user-context	value	is	useful	to
differentiate	messages	from	multiple	interfaces	to	a	common
message	handler.

pfn
[in]	Pointer	to	a	PFNDPNMESSAGEHANDLER	callback	function
that	receives	all	messages	from	remote	clients	and	indications
of	session	changes	from	the	IDirectPlay8Server	interface.

dwFlags
[in]	You	can	specify	the	following	flags.
DPNINITIALIZE_DISABLEPARAMVAL

Passing	this	flag	will	disable	parameter	validation	for	the
current	object.

DPNINITIALIZE_HINT_LANSESSION
Opens	a	larger	send	window	for	games	running	on	a	local
area	network	(LAN).

DPNINITIALIZE_DISABLELINKTUNING
Disable	any	attempts	by	Microsoft®	DirectPlay®	to	tune	the
rate	it	sends	at	to	the	observed	network	conditions.

Messages	will	be	pushed	out	onto	the	network	at	the	first
available	opportunity.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

Call	this	method	first	after	using	CoCreateInstance	to	obtain	the
IDirectPlay8Server	interface.

Applications	might	want	to	specify	the
DPNINITIALIZE_DISABLELINKTUNING	flag	when	they	send	at	a
fixed	rate	and	do	not	alter	the	rate	based	on	the	network	conditions.
With	this	flag	specified,	DirectPlay	will	always	assume	the	network
has	the	capacity	to	carry	all	the	application	data	and	will	therefore
not	attempt	to	tune	its	send	rate	to	the	network	bandwidth.
Specifying	this	flag	and	then	sending	at	a	rate	that	exceeds	the
capacity	of	the	network	will	lead	to	unpredictable	network	behavior
such	as	higher	latency	and	increased	packet	drop	rates.	Applications
that	monitor	the	send	queues	and	dynamically	adjust	their	send	rate
to	make	best	use	of	the	available	bandwidth	should	not	specify	this
flag.

If	the	DPNINITIALIZE_DISABLELINKTUNING	flag	is	specified,
DirectPlay	features	such	as	message	prioritization,	coalescence,	and
timeout	are	not	useful	because	messages	always	go	directly	to	the
network	and	are	not	queued.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::RegisterLobby	Method

Allows	launched	applications	to	automatically	propagate	game	status	to
the	lobby.

Syntax

HRESULT	RegisterLobby(
				const	DPNHANDLE	dpnHandle,
				IDirectPlay8LobbiedApplication	*const	pIDP8LobbiedApplication,
				const	DWORD	dwFlags
);

Parameters

dpnHandle
[in]	Connection	handle	used	when	making	the	calls	to
IDirectPlay8LobbiedApplication::UpdateStatus.

pIDP8LobbiedApplication
[in]	Pointer	to	the	IDirectPlay8LobbiedApplication	object	that
specifies	the	application.

dwFlags
[in]	One	of	the	following	flags.
DPNLOBBY_REGISTER

Registers	the	lobby	with	the	application.
DPNLOBBY_UNREGISTER

Unregisters	the	lobby	with	the	application.

Return	Value

Returns	S_OK	if	successful,	or	the	following	error	value.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::RemovePlayerFromGroup	Method

Removes	a	client	from	a	group.

Syntax

HRESULT	RemovePlayerFromGroup(
				const	DPNID	idGroup,
				const	DPNID	idClient,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

idGroup
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	to	remove	the	client	from.

idClient
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
client	to	remove	from	the	group.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.
DPNREMOVEPLAYERFROMGROUP_SYNC

Causes	this	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
generally	returns	DPNSUCCESS_PENDING	or	one	of	the	following
error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_PLAYERNOTINGROUP The	player	ID	is	not	included	in	the	group.

Remarks

When	this	method	is	called,	the	server's	message	handler	receives	a
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::ReturnBuffer	Method

Retrieves	message	buffers	provided	to	the	application	through	the
pReceiveData	member	of	the	DPN_MSGID_RECEIVE	system	message.
If	the	user's	message	handler	returns	DPNSUCCESS_PENDING	to	the
RECEIVE	callback,	Microsoft®	DirectPlay®	assumes	ownership	of	the
buffer	has	been	transferred	to	the	application,	and	neither	frees	nor
modifies	it	until	ownership	is	returned	to	DirectPlay	through	this	call.

Syntax

HRESULT	ReturnBuffer(
				const	DPNHANDLE	hBufferHandle,
				const	DWORD	dwFlags
);

Parameters

hBufferHandle
[in]	Variable	of	type	DPNHANDLE	that	specifies	the	buffer
handle	to	the	message.	This	is	obtained	in	the	hBufferHandle
member	of	the	DPN_MSGID_RECEIVE	system	message.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDHANDLE The	handle	specified	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::SendTo	Method

Transmits	data	to	a	client	or	group	within	the	session.	The	message	can
be	sent	synchronously	or	asynchronously.

Syntax

HRESULT	SendTo(
				const	DPNID	dpnid,
				const	DPN_BUFFER_DESC	*const	pBufferDesc,
				const	DWORD	cBufferDesc,
				const	DWORD	dwTimeOut,
				void	*const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Identifier	of	the	client	or	group	to	receive	data.	Set	this
parameter	to	DPNID_ALL_PLAYERS_GROUP	to	send	a
message	to	all	players	in	the	session.

pBufferDesc
[in]	Pointer	to	a	DPN_BUFFER_DESC	structure	that	describes
the	data	to	send.

cBufferDesc
[in]	Number	of	DPN_BUFFER_DESC	structures	pointed	to	by
pBufferDesc.	There	can	be	up	to	eight	buffers	in	this	version	of
Microsoft®	DirectPlay®.

dwTimeOut
[in]	Number	of	milliseconds	to	wait	for	the	message	to	send.	If
the	message	has	not	been	sent	by	the	dwTimeOut	value,	it	is
deleted	from	the	send	queue.	If	you	set	this	parameter	to	0,	the
message	remains	in	the	send	queue	until	it	is	sent	or	until	the
link	is	dropped.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_SEND_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	When	the	method	returns,
phAsyncHandle	will	point	to	a	handle	that	you	can	pass	to
IDirectPlay8Server::CancelAsyncOperation	to	cancel	the
operation.	This	parameter	must	be	set	to	NULL	if	you	set	the
DPNSEND_SYNC	flag	in	dwFlags.

dwFlags
[in]	Flags	that	describe	send	behavior.	You	can	set	one	or	more
of	the	following	flags.
DPNSEND_SYNC

Process	the	IDirectPlay8Server::SendTo	request
synchronously.

DPNSEND_NOCOPY
Use	the	data	in	the	DPN_BUFFER_DESC	structure	and	do
not	make	an	internal	copy.	This	can	be	a	more	efficient
method	of	sending	data.	However,	it	is	less	robust	because
modifying	or	deleting	the	data	before	receiving	the
DPN_MSGID_SEND_COMPLETE	message	can	cause
erroneous	data	to	be	sent.	This	flag	cannot	be	used	with
DPNSEND_NOCOMPLETE.

DPNSEND_NOCOMPLETE
Do	not	send	the	DPN_MSGID_SEND_COMPLETE
structure	to	the	message	handler.	This	flag	cannot	be	used
with	DPNSEND_NOCOPY	or	DPNSEND_GUARANTEED.
Additionally,	when	using	this	flag	pvAsyncContext	must	be
NULL.

DPNSEND_COMPLETEONPROCESS
Send	the	DPN_MSGID_SEND_COMPLETE	to	the
message	handler	when	this	message	has	been	delivered	to
the	target	and	the	target's	message	handler	returns	from
indicating	its	reception.	There	is	additional	internal	message
overhead	when	this	flag	is	set,	and	the	message
transmission	process	might	become	significantly	slower.	If
you	set	this	flag,	DPNSEND_GUARANTEED	must	also	be
set.

DPNSEND_GUARANTEED
Send	the	message	by	a	guaranteed	method	of	delivery.

DPNSEND_PRIORITY_HIGH
Sets	the	priority	of	the	message	to	high.	This	flag	cannot	be
used	with	DPNSEND_PRIORITY_LOW.

DPNSEND_PRIORITY_LOW
Sets	the	priority	of	the	message	to	low.	This	flag	cannot	be
used	with	DPNSEND_PRIORITY_HIGH.

DPNSEND_NOLOOPBACK
Suppress	the	DPN_MSGID_RECEIVE	system	message	to
your	message	handler	when	you	are	sending	to	a	group
that	includes	the	local	player.	For	example,	this	flag	is
useful	if	you	are	broadcasting	to	the	entire	session.

DPNSEND_NONSEQUENTIAL
If	this	flag	is	set,	the	target	application	will	receive	the
messages	in	the	order	that	they	arrive	at	the	user's
computer.	If	this	flag	is	not	set,	messages	are	delivered
sequentially,	and	will	be	received	by	the	target	application	in
the	order	that	they	were	sent.	Doing	so	might	require
buffering	incoming	messages	until	missing	messages
arrive.

DPNSEND_COALESCE
Allows	DirectPlay	to	combine	packets	when	sending.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
generally	returns	DPNSUCCESS_PENDING	or	one	of	the	following
error	values.

DPNERR_CONNECTIONLOST The	service	provider	connection	was	reset	while	data	was	being	sent.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPLAYER The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this	game	session.

DPNERR_TIMEDOUT The	operation	could	not	complete	because	it	has	timed	out.

Remarks

This	method	generates	a	DPN_MSGID_RECEIVE	system	message
in	the	receiver's	message	handler.	The	data	is	contained	in	the
pReceiveData	member	of	the	associated	structure.

Messages	can	have	one	of	three	priorities:	low,	normal,	and	high.	To
specify	a	low	or	high	priority	for	the	message	set	the	appropriate	flag
in	dwFlags.	If	neither	of	the	priority	flags	is	set,	the	message	will
have	normal	priority.	For	a	discussion	of	send	priorities,	see	Basic
Networking.

When	the	IDirectPlay8Server::SendTo	request	is	completed,	a
DPN_MSGID_SEND_COMPLETE	system	message	is	posted	to	the
sender's	message	handler.	The	success	or	failure	of	the	request	is
contained	in	the	hResultCode	member	of	the	associated	structure.
You	can	suppress	the	send	completion	by	setting	the
DPNSEND_NOCOMPLETE	flag	in	dwFlags.

Send	completions	are	typically	posted	on	the	source	computer	as
soon	as	the	message	is	sent.	In	other	words,	a	send	completion
does	not	necessarily	mean	that	the	message	has	been	processed	on
the	target.	It	might	still	be	in	a	queue.	If	you	want	to	be	certain	that
the	message	has	been	processed	by	the	target,	set	the
DPNSEND_COMPLETEONPROCESS	flag	in	dwFlags.	This	flag
ensures	that	the	send	completion	will	not	be	sent	until	the	target's
message	handler	has	processed	the	message	and	returned.

If	the	DPNSEND_COALESCE	flag	is	set	in	dwFlags,	DirectPlay	will
try	to	coalesce	up	to	32	packets	waiting	in	the	queue	into	the
outgoing	frame.	DirectPlay	does	not	guarantee	coalescence,	even	if

the	DPNSEND_COALESCE	flag	is	set.	Packets	will	only	be
coalesced	if	there	is	more	than	one	message	in	the	queue	and	the
player	receiving	is	running	Microsoft	DirectX®	9.0	or	later.	All	voice
packets	can	be	coalesced.	Both	guaranteed	and	non-guaranteed
packets	will	be	coalesced	into	the	same	frame.	If	the	frame	is
dropped	before	it	reaches	its	destination,	only	the	guaranteed	parts
of	the	frame	will	be	resent	and	no	other	data	will	be	coalesced	into
the	frame.

Note		Do	not	assume	that	resources	such	as	the	data	buffer	will
remain	valid	until	the	method	has	returned.	If	you	call	this	method
asynchronously,	the	DPN_MSGID_SEND_COMPLETE	message
can	be	received	and	processed	by	your	message	handler	before	the
call	has	returned.	If	your	message	handler	deallocates	or	otherwise
invalidates	a	resource	such	as	the	data	buffer,	that	resource	can
become	invalid	at	any	time	after	the	method	has	been	called.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::SetApplicationDesc	Method

Changes	the	settings	for	the	application	that	is	being	hosted.	Only	some
settings	can	be	changed.

Syntax

HRESULT	SetApplicationDesc(
				const	DPN_APPLICATION_DESC	*const	pad,
				const	DWORD	dwFlags
);

Parameters

pad
[in]	Pointer	to	a	DPN_APPLICATION_DESC	structure	that
describes	the	application	settings	to	modify.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_DATATOOLARGE The	application	data	is	too	large	for	the	service	provider's	Maximum	Transmission
Unit.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

Remarks

You	can	use	this	method	to	modify	only	the	following	members	of	the
DPN_APPLICATION_DESC	structure.

dwMaxPlayers

pwszSessionName
pwszPassword
pvApplicationReservedData
dwApplicationReservedDataSize

When	IDirectPlay8Server::SetApplicationDesc	is	called,
Microsoft®	DirectPlay®	makes	a	copy	of	the	data	pad	points	to.	You
do	not	need	to	save	the	DPN_APPLICATION_DESC	structure	once
IDirectPlay8Server::SetApplicationDesc	returns.

You	cannot	set	the	dwMaxPlayers	member	to	a	smaller	value	than
the	current	number	of	players	in	the	session.

The	maximum	size	of	the	application	data	that	you	assign	to	the
pvApplicationReservedData	member	of	the
DPN_APPLICATION_DESC	structure	is	limited	by	the	service
provider's	Maximum	Transmission	Unit.	If	your	application	data	is	too
large,	the	method	will	fail	and	return	DPNERR_DATATOOLARGE.

To	avoid	accidentally	overwriting	the	application	description,
applications	should	call	IDirectPlay8Server::GetApplicationDesc	and
fill	in	the	DPN_APPLICATION_DESC	structure	before	calling
IDirectPlay8Server::SetApplicationDesc.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::SetCaps	Method

Sets	the	DPN_CAPS	or	DPN_CAPS_EX	structure	for	the	current
interface.

Syntax

HRESULT	SetCaps(
				const	DPNCAPS	*const	pdpCaps,
				const	DWORD	dwFlags
);

Parameters

pdpCaps
[in]	Pointer	to	a	DPN_CAPS	or	DPN_CAPS_EX	structure	used
to	set	the	information	about	the	current	interface.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

A	successful	call	to	IDirectPlay8Server::Initialize	must	be	made
before	this	method	can	be	called.

DirectPlay	will	determine	whether	DPN_CAPS	or	DPN_CAPS_EX	is
being	used,	based	on	the	size	of	the	structure	referenced	by
pdpCaps.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::SetGroupInfo	Method

Sets	a	block	of	data	associated	with	a	group,	including	the	name	of	the
group.

Syntax

HRESULT	SetGroupInfo(
				const	DPNID	dpnid,
				DPN_GROUP_INFO	*const	pdpnGroupInfo,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

dpnid
[in]	Variable	of	type	DPNID	that	specifies	the	identifier	of	the
group	whose	data	block	will	be	modified.

pdpnGroupInfo
[in]	Pointer	to	a	DPN_GROUP_INFO	structure	that	describes
the	group	data	to	set.	To	change	the	values	of	the	pwszName
or	pvData	members	of	this	structure,	you	must	set	the
corresponding	DPNINFO_NAME	OR	DPNINFO_DATA	flag	in
the	dwInfoFlags	member.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The

following	flag	can	be	set	for	this	method.
DPNSETGROUPINFO_SYNC

Causes	this	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	By	default,	this	method	is	run	asynchronously	and
generally	returns	DPNSUCCESS_PENDING	or	one	of	the	following
error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::SetServerInfo	Method

Sets	the	static	settings	of	a	server	with	an	application.	After	clients
successfully	connect	to	the	server,	they	can	retrieve	the	information	set
by	this	method	by	calling	theIDirectPlay8Client::GetServerInfo	method.

Syntax

HRESULT	SetServerInfo(
				const	DPN_PLAYER_INFO	*const	pdpnPlayerInfo,
				PVOID	const	pvAsyncContext,
				DPNHANDLE	*const	phAsyncHandle,
				const	DWORD	dwFlags
);

Parameters

pdpnPlayerInfo
[in]	Pointer	to	a	DPN_PLAYER_INFO	structure	that	contains	the
server	information	to	set.

pvAsyncContext
[in]	Pointer	to	the	user-supplied	context,	which	is	returned	in	the
pvUserContext	member	of	the
DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

phAsyncHandle
[out]	A	DPNHANDLE.	A	value	will	be	returned.	However,
Microsoft®	DirectPlay®	does	not	permit	cancellation	of	this
operation,	so	the	value	cannot	be	used.

dwFlags
[in]	Flag	that	controls	how	this	method	is	processed.	The
following	flag	can	be	set	for	this	method.
DPNSETSERVERINFO_SYNC

Causes	this	method	to	process	synchronously.

Return	Value

Returns	S_OK	if	this	method	is	processed	synchronously	and	is
successful.	If	the	request	is	processed	asynchronously,	S_OK	can
return	if	the	method	is	instantly	processed.	By	default,	this	method	is
run	asynchronously	and	generally	returns
DPNSUCCESS_PENDING	or	one	of	the	following	error	values.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOCONNECTION No	communication	link	was	established.

Remarks

This	method	may	be	called	before	calling	IDirectPlay8Server::Host,
and	at	any	time	during	the	session.

The	DPN_PLAYER_INFO	structure's	dwPlayerFlags	member	must
be	set	to	zero.

Handle	transmission	of	nonstatic	information	with	the
IDirectPlay8Server::SendTo	method	because	of	the	high	cost	of
using	the	IDirectPlay8Server::SetServerInfo	method.

You	can	modify	the	server	information	with	this	method	after	clients
have	connected	to	the	application.	Calling	this	method	after
connection	generates	a	DPN_MSGID_SERVER_INFO	system
message	to	all	players,	informing	them	that	data	has	been	updated.

When	calling	this	method	asynchronously,	the	contents	of	the
pdpnPlayerInfo	and	pvAsyncContext	buffers	will	be	copied	by
DirectPlay	so	that	the	calling	application	can	clean	up	the	buffers
before	the	method	returns.

This	method	is	guaranteed	as	long	as	the	player	is	connected	to	the
session.	DirectPlay	will	ensure	that	this	method	completes	and	that
the	information	is	propagated	to	all	players.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8Server::SetSPCaps	Method

Sets	the	DPN_SP_CAPS	structure	for	the	specified	service	provider.

Syntax

HRESULT	SetSPCaps(
				const	GUID	*const	pguidSP,
				const	DPN_SP_CAPS	*const	pdpnSPCaps,
				const	DWORD	dwFlags
);

Parameters

pguidSP
[in]	Pointer	to	a	globally	unique	identifier	(GUID)	specifying	the
service	provider	you	want	to	set	information	about.

pdpnSPCaps
[in]	Pointer	to	a	DPN_SP_CAPS	structure	to	set	the	information
about	the	specified	service	provider.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	S_OK	if	successful,	or	one	of	the	following	error	values.

DPNERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_INVALIDPOINTER Pointer	specified	as	a	parameter	is	invalid.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

Remarks

This	method	sets	parameters	for	the	specified	service	provider.	A

successful	call	to	IDirectPlay8Server::Initialize	must	be	made	before
this	method	can	be	called.	Currently,	only	the	dwSystemBufferSize
member	can	be	set	by	this	call.	The	dwNumThreads	member	is	for
legacy	support.	Microsoft	DirectX®	9.0	applications	should	use	the
IDirectPlay8ThreadPool::SetThreadCount	method	to	set	the	number
of	threads.	The	other	members	of	the	DPN_SP_CAPS	structure	are
get-only	or	ignored.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8ThreadPool	Interface

Applications	use	the	methods	of	the	IDirectPlay8ThreadPool	interface
to	manage	threads	in	a	Microsoft®	DirectPlay®	application.

IDirectPlay8ThreadPool	Members

Close Closes	the	IDirectPlay8ThreadPool	object.
DoWork Performs	work	that	is	currently	scheduled.

GetThreadCount Retrieves	the	number	of	threads	for	the	specified	processor	or	all	processors.

Initialize Initializes	the	thread	pool	interface	for	the	process.

SetThreadCount Changes	the	number	of	threads	for	a	specified	processor	or	all	processors.

Remarks

The	serial	and	modem	service	providers	do	not	support	the
IDirectPlay8ThreadPool	interface.	Therefore,	if	you	use	these
service	providers,	you	must	handle	multithreaded	callbacks	from
threads	that	did	not	generate	a	DPN_MSGID_CREATE_THREAD
message	when	created.

DirectPlay	Voice	uses	a	different	set	of	threads	to	perform	audio
capture,	playback,	and	message	notification.	If	you	use	the
IDirectPlayVoiceClient	or	IDirectPlayVoiceServer	interface,	you	must
handle	multithreaded	callbacks	from	threads	that	did	not	generate	a
DPN_MSGID_CREATE_THREAD	message	when	created.

Interface	Information

Inherits	from IUnknown

Header dplay8.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8ThreadPool::Close	Method

Closes	the	IDirectPlay8ThreadPool	object.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DPN_OK	if	successful.	Otherwise,	returns	one	of	the
following	errors.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

Any	threads	that	exist	will	send	a
DPN_MSGID_DESTROY_THREAD	message	before	this	method
will	return.

DPNERR_NOTALLOWED	is	returned	if	this	method	is	called	when
there	is	an	outstanding	call	to	IDirectPlay8ThreadPool::DoWork	or	if
this	method	is	called	from	an	IDirectPlay8ThreadPool	thread.

Always	close	the	IDirectPlay8ThreadPool	interface	after	closing	all
of	the	other	Microsoft®	DirectPlay®	objects	used	by	the	process.
Closing	an	IDirectPlay8ThreadPool	interface	that	was	in	a
IDirectPlay8ThreadPool::DoWork	call	before	closing	an
IDirectPlay8Peer,	IDirectPlay8Client,	or	IDirectPlay8Server	interface
can	cause	the	IDirectPlay8ThreadPool	interface	to	appear	to	hang.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8ThreadPool::DoWork	Method

Performs	work	that	is	currently	scheduled.

Syntax

HRESULT	DoWork(
				const	DWORD	dwAllowedTimeSlice,
				const	DWORD	dwFlags
);

Parameters

dwAllowedTimeSlice
[in]	Specifies	the	time	allowed	for	the	work	to	complete.	Set	to
INFINITE	to	allow	all	immediately	available	items	to	be	run.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DPN_OK	if	no	additional	work	is	immediately	available.	If
dwAllowedTimeSlice	is	not	set	to	INFINITE	and	the	time	specified
has	expired,	leaving	outstanding	work	items,
DPNSUCCESS_PENDING	will	be	returned.	Otherwise,	returns	one
of	the	following	errors.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_NOTREADY The	object	is	not	ready	for	use.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

This	method	allows	Microsoft®	DirectPlay®	to	operate	without	any
threads	of	its	own.	It	is	expected	that	this	method	will	be	called	at
regular	intervals	so	that	time	critical	operations	can	be	performed
with	reasonable	accuracy.

The	dwAllowedTimeSlice	parameter	must	be	between	0	and	60,000
milliseconds	(1	minute)	or	it	can	be	set	to	INFINITE.	If	it	is	set	to	0,	at
most	the	first	work	item	will	be	performed.

This	method	cannot	be	called	unless	the	thread	count	has	been	set
to	0.	It	will	return	DPNERR_NOTREADY	if	there	are	threads
currently	active.

If	an	attempt	is	made	to	call	this	method	by	more	than	one	thread
simultaneously,	recursively,	or	within	a	DirectPlay	callback,
DPNERR_NOTALLOWED	is	returned.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8ThreadPool::GetThreadCount	Method

Retrieves	the	number	of	threads	for	the	specified	processor	or	all
processors.

Syntax

HRESULT	GetThreadCount(
				const	DWORD	dwProcessorNum,
				DWORD	*const	pdwNumThreads,
				const	DWORD	dwFlags
);

Parameters

dwProcessorNum
[in]	Specifies	the	processor	number.	Set	to	-1	to	retrieve	the
thread	count	for	all	processors.

pdwNumThreads
[out]	Receives	the	current	number	of	threads	for	the	processor
specified	in	dwProcessorNum.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DPN_OK	if	successful.	Otherwise,	returns	one	of	the
following	errors.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8ThreadPool::Initialize	Method

Initializes	the	thread	pool	interface	for	the	process.

Syntax

HRESULT	Initialize(
				PVOID	const	pvUserContext,
				const	PFNDPNMESSAGEHANDLER	pfn,
				const	DWORD	dwFlags
);

Parameters

pvUserContext
[in]	User	context	for	all	message	callbacks.

pfn
[in]	Pointer	to	a	PFNDPNMESSAGEHANDLER	function	to
handle	thread	pool	messages.

dwFlags
[in]	The	following	flag	can	be	specified.
DPNINITIALIZE_DISABLEPARAMVAL

Disables	parameter	validation.

Return	Value

Returns	DPN_OK	if	successful.	Otherwise,	returns	one	of	the
following	errors.

DPNERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

Only	one	IDirectPlay8ThreadPool	object	is	allowed	in	a	process.
DPNERR_ALREADYINITALIZED	is	returned	if
IDirectPlay8ThreadPool::Initialize	is	called	on	a	second
IDirectPlay8ThreadPool	object.

If	a	Microsoft®	DirectPlay®	object	has	already	created	threads,	the
IDirectPlay8ThreadPool	object	cannot	be	initialized.	If	the
IDirectPlay8ThreadPool	object	has	not	been	initialized,
DPNERR_NOTALLOWED	will	be	returned.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlay8ThreadPool::SetThreadCount	Method

Changes	the	number	of	threads	for	a	specified	processor	or	all
processors.

Syntax

HRESULT	SetThreadCount(
				const	DWORD	dwProcessorNum,
				const	DWORD	dwNumThreads,
				const	DWORD	dwFlags
);

Parameters

dwProcessorNum
[in]	Specifies	the	processor	number.	Set	to	-1	to	change	the	total
thread	count	for	all	processors.

dwNumThreads
[in]	Specifies	the	new	thread	count.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DPN_OK	if	successful.	Otherwise,	returns	one	of	the
following	errors.

DPNERR_UNINITIALIZED The	requested	object	has	not	been	initialized.

DPNERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DPNERR_NOTALLOWED This	function	is	not	allowed	on	this	object.

Remarks

If	the	value	in	the	dwNumThreads	parameter	is	larger	than	the
current	thread	count,	the	new	threads	will	be	started,	generating	a
DPN_MSGID_CREATE_THREAD	message	for	each	new	thread
before	this	method	returns.

If	the	value	in	the	dwNumThreads	parameter	is	smaller	than	the
current	thread	count,	the	excess	threads	will	be	shut	down,
generating	a	DPN_MSGID_DESTROY_THREAD	message	for	each
closed	thread	before	this	method	returns.

If	the	thread	count	is	set	to	0,	Microsoft®	DirectPlay®	will	not	create
any	threads	in	the	application.	Therefore,	to	make	anything	happen
in	the	application,	you'll	need	to	call
IDirectPlay8ThreadPool::DoWork	regularly.

DirectPlay	performs	tasks	differently	when	the	thread	count	set	to	0
than	when	you	are	using	DirectPlay	threads.	Therefore,	it	is
recommended	that	you	do	not	switch	between	zero	thread	count
mode	and	multithread	count	mode	once	a	session	has	been	created.

DPNERR_NOTALLOWED	is	returned	if	this	method	is	called	when
there	is	an	outstanding	call	to	IDirectPlay8ThreadPool::DoWork	on
a	thread.	In	this	case,	the	thread	count	will	not	change.

DPNERR_NOTALLOWED	is	returned	if	dwNumThreads	parameter
is	smaller	than	the	current	thread	count	and	this	method	is	called
from	an	IDirectPlay8ThreadPool	thread.	In	this	case,	the	thread
count	will	not	change.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp	Interface

Applications	use	the	methods	of	the	IDirectPlayNATHelp	interface	to
simplify	traversal	through	the	Internet	Connection	Sharing	(ICS)	features
available	in	Microsoft®	Windows®	Millennium	Edition	(Windows	Me)	and
Windows	XP.

IDirectPlayNATHelp	Members

Close Closes	and	unregisters	this	application	with	any	Internet	gateway	servers.	This	method
must	be	called	on	any	object	successfully	initialized	with	IDirectPlayNATHelp.

GetCaps Retrieves	the	capabilities	of	the	Internet	gateway	server(s)	and	information	about
leased	ports.

GetRegisteredAddresses Returns	the	current	public	address	mappings	for	the	specified	registered	port	group.

Initialize Initializes	an	IDirectPlayNATHelp	object.	This	method	must	be	called	before	using	any
other	functions.

QueryAddress Determine	a	private	alias	for	a	given	public	address.

RegisterPorts Asks	for	public	realm	port(s)	that	are	aliases	for	the	local	port(s)	on	this	private	realm
node.

SetAlertEvent Specifies	an	event	that	will	be	set	when	maintenance	needs	to	be	performed.

Interface	Information

Inherits	from IUnknown

Header dpnathlp.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp::Close	Method

Closes	and	unregisters	this	application	with	any	Internet	gateway
servers.	This	method	must	be	called	on	any	object	successfully	initialized
with	IDirectPlayNATHelp.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DPNH_OK	if	successful,	or	one	of	the	following	error	values.

DPNHERR_GENERIC An	error	occurred	while	closing.

DPNHERR_INVALIDFLAGS Invalid	flags	were	specified.

DPNHERR_INVALIDOBJECT The	interface	object	is	invalid.

DPNHERR_INVALIDPARAM An	invalid	parameter	was	specified.

DPNHERR_NOTINITIALIZED The	object	has	not	been	initialized.

DPNHERR_OUTOFMEMORY There	is	not	enough	memory	to	perform	this	operation.

DPNHERR_REENTRANT The	interface	has	been	re-entered	on	the	same	thread.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp::GetCaps	Method

Retrieves	the	capabilities	of	the	Internet	gateway	server(s)	and
information	about	leased	ports.

Syntax

HRESULT	GetCaps(
				PPDPNHCAPS	*const	pdpnhcaps,
				const	DWORD	dwFlags
);

Parameters

pdpnhcaps
[in]	Pointer	to	a	DPNHCAPS	structure	to	be	filled	with	Network
Address	Translation	(NAT)	helper's	capabilities.	The	dwSize
member	of	the	structure	must	be	set.

dwFlags
[in]	May	be	the	following	value.
DPNHGETCAPS_UPDATESERVERSTATUS

Automatically	extend	expiring	leases	and	detect	changes	in
the	server	status.

Return	Value

Returns	DPNH_OK	if	successful,	or	one	of	the	following	error	values.

DPNHERR_GENERIC An	error	occurred	while	closing.

DPNHERR_INVALIDFLAGS Invalid	flags	were	specified.

DPNHERR_INVALIDOBJECT The	interface	object	is	invalid.

DPNHERR_INVALIDPARAM An	invalid	parameter	was	specified.

DPNHERR_INVALIDPOINTER An	invalid	pointer	was	specified.

DPNHERR_NOTINITIALIZED The	object	has	not	been	initialized.

DPNHERR_OUTOFMEMORY There	is	not	enough	memory	to	perform	this	operation.

DPNHERR_REENTRANT The	interface	has	been	re-entered	on	the	same	thread.

Remarks

This	method	should	be	called	periodically	with	the
DPNHGETCATS_UPDATESERVERSTATUS	flag	set	to
automatically	extend	port	leases	that	are	about	to	expire.	The
DPNHGETCATS_UPDATESERVERSTATUS	flag	also	causes
detection	of	changes	in	the	status	of	the	servers	since	the	last	call	to
IDirectPlayNATHelp::GetCaps.	If	a	new	server	becomes	available,
an	existing	server	becomes	unavailable,	or	a	server's	public	address
changes	in	a	way	that	affects	an	existing	registered	port	mapping,
then	DPNHSUCCESS_ADDRESSESCHANGED	is	returned	instead
of	DPNH_OK.

If	DPNHSUCCESS_ADDRESSESCHANGED	is	returned,	the	user
should	call	IDirectPlayNATHelp::GetRegisteredAddresses	to	update
port	binding	information.

When	the	DPNHGETCATS_UPDATESERVERSTATUS	flag	is	set,
this	method	may	stall	while	attempts	are	made	to	communicate	with
the	server.

This	method	must	be	called	with	the
DPNHGETCATS_UPDATESERVERSTATUS	flag	set	at	least	once
before	calling	IDirectPlayNATHelp::GetRegisteredAddresses	or
IDirectPlayNATHelp::QueryAddress.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp::GetRegisteredAddresses	Method

Returns	the	current	public	address	mappings	for	the	specified	registered
port	group.

Syntax

HRESULT	GetRegisteredAddresses(
				const	DPNHANDLE	hRegisteredPorts,
				SOCKADDR	*const	paPublicAddresses,
				DWORD	*const	pdwPublicAddressSize,
				DWORD	*const	pdwAddressTypeFlags,
				DWORD	*const	pdwLeaseTimeRemaining,
				const	DWORD	dwFlags
);

Parameters

hRegisteredPorts
[in]	Handle	to	a	specific	binding	returned	by
IDirectPlayNATHelp::RegisterPorts.

paPublicAddresses
[out]	Buffer	to	receive	assigned	public	realm	addresses.	Set	to
NULL	if	not	desired.

pdwPublicAddressSize
[in,	out]	Pointer	to	a	size	of	paPublicAddresses	buffer	on	input.
On	output,	receives	the	size	written	to	paPublicAddresses	or	the
size	required	if	the	buffer	is	too	small.	Can	be	NULL	only	if
paPublicAddresses	is	NULL.

pdwAddressTypeFlags
[out]	Receives	flags	describing	the	address	types	returned.	Set
to	NULL	if	not	desired.	The	following	values	can	be	returned.
DPNHANDLEADDRESSTYPE_TCP

The	mappings	are	for	TCP	ports	instead	of	User	Datagram
Protocol	(UDP)	ports.

DPNHANDLEADDRESSTYPE_FIXEDPORTS

The	mappings	are	for	ports	which	are	the	same	on	the
Internet	gateway.

DPNHANDLEADDRESSTYPE_SHAREDPORTS
The	mappings	are	for	shared	UDP	fixed	ports.

DPNHANDLEADDRESSTYPE_LOCALFIREWALL
The	addresses	are	opened	on	a	local	firewall.

DPNHANDLEADDRESSTYPE_GATEWAY
The	addresses	are	registered	with	an	Internet	gateway.

DPNHANDLEADDRESSTYPE_GATEWAYISLOCAL
The	Internet	gateway	is	local.

pdwLeaseTimeRemaining
[out]	Receives	time	remaining	in	the	port	lease	in	milliseconds.
Set	to	NULL	if	not	desired.	Call	IDirectPlayNATHelp::GetCaps	to
automatically	extend	leases.

dwFlags
[in]	Can	be	the	following	value.
DPNHGETREGISTEREDADDRESSES_LOCALFIREWALLREMAPONLY

Retrieve	the	public	address	for	the	local	firewall	only,	even	if
mapped	on	remote	Internet	gateway.

Return	Value

Returns	DPNH_OK	if	successful,	or	one	of	the	following	error	values.

DPNHERR_GENERIC An	error	occurred	while	closing.

DPNHERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DPNHERR_INVALIDFLAGS Invalid	flags	were	specified.

DPNHERR_INVALIDOBJECT The	interface	object	is	invalid.

DPNHERR_INVALIDPARAM An	invalid	parameter	was	specified.

DPNHERR_NOMAPPING The	server	does	not	have	valid	public	interfaces.

DPNHERR_NOTINITIALIZED The	object	has	not	been	initialized.

DPNHERR_OUTOFMEMORY There	is	not	enough	memory	to	perform	this	operation.

DPNHERR_REENTRANT The	interface	has	been	re-entered	on	the	same	thread.

DPNHERR_SERVERUNAVAILABLE No	servers	are	currently	present.

DPNHERR_UPDATESERVERSTATUS IDirectPlayNATHelp::GetCaps	has	not	been	called	with	the
DPNHGETCAPS_UPDATESERVERSTATUS	flag	set.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp::Initialize	Method

Initializes	an	IDirectPlayNATHelp	object.	This	method	must	be	called
before	using	any	other	functions.

Syntax

HRESULT	Initialize(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]		Can	be	one	of	the	following	values.
DPNHINITIALIZE_DISABLEGATEWAYSUPPORT

Do	not	attempt	to	traverse	the	Internet	gateway.
DPNHINITIALIZE_DISABLELOCALFIREWALLSUPPORT

Do	not	attempt	to	traverse	a	local	firewall.

Return	Value

Returns	DPNH_OK	if	successful,	or	one	of	the	following	error	values.

DPNHERR_ALREADYINITIALIZED This	object	has	already	been	initialized.

DPNHERR_GENERIC An	error	occurred	while	closing.

DPNHERR_INVALIDFLAGS Invalid	flags	were	specified.

DPNHERR_INVALIDOBJECT The	interface	object	is	invalid.

DPNHERR_INVALIDPARAM An	invalid	parameter	was	specified.

DPNHERR_OUTOFMEMORY There	is	not	enough	memory	to	perform	this	operation.

DPNHERR_REENTRANT The	interface	has	been	re-entered	on	the	same	thread.

Remarks

This	method	does	not	attempt	to	contact	any	Internet	gateway

servers.

Call	IDirectPlayNATHelp::GetCaps	with	the
DPNHGETCAPS_UPDATESERVERSTATUS	flag	set	to	search	for	a
server.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp::QueryAddress	Method

Determine	a	private	alias	for	a	given	public	address.

Syntax

HRESULT	QueryAddress(
				const	SOCKADDR	*const	pSourceAddress,
				const	SOCKADDR	*const	pQueryAddress,
				SOCKADDR	*const	pResponseAddress,
				const	int	iAddressSize,
				const	DWORD	dwFlags
);

Parameters

pSourceAddress
[in]	Address	for	the	network	interface	that	is	using	the	desired
address.	This	can	be	set	to	INADDR_ANY	in	which	case	the
best	server	will	be	used.

pQueryAddress
[in]	Address	to	look	up.	Do	not	set	this	value	to	INADDR_ANY	or
INADDR_BROADCAST.

pResponseAddress
[out]	Receives	the	private	alias	to	the	public	address	specified.

iAddressSize
[in]	Size	of	the	SOCKADDR	structure	used	for	the
pSourceAddress,	pQueryAddress,	and	pResponseAddress
buffers.

dwFlags
[in]	Set	to	0	to	query	for	a	User	Datagram	Protocol	(UDP)	port.
Otherwise,	set	to	one	of	the	following	values.
DPNHQUERYADRESS_TCP

Query	for	a	TCP	port.
DPNHQUERYADRESS_CACHEFOUND

Cache	the	address	if	a	mapping	is	found.

DPNHQUERYADRESS_CACHENOTFOUND
Cache	the	address	if	a	mapping	is	not	found.

DPNHQUERYADRESS_CHECKFORPRIVATEBUTUNMAPPED
Determine	if	an	address	is	private	when	no	specific
mapping	is	found.

Return	Value

Returns	DPNH_OK	if	successful,	or	one	of	the	following	error	values.

DPNHERR_GENERIC An	error	occurred	while	closing.

DPNHERR_INVALIDFLAGS Invalid	flags	were	specified.

DPNHERR_INVALIDOBJECT The	interface	object	is	invalid.

DPNHERR_INVALIDPARAM An	invalid	parameter	was	specified.

DPNHERR_INVALIDPOINTER An	invalid	pointer	was	specified.

DPNHERR_NOMAPPING The	server	does	not	have	valid	public	interfaces.

DPNHERR_NOMAPPINGBUTPRIVATE The	server	indicated	that	no	mapping	was	found,	but	it	is	a	private
address.

DPNHERR_NOTINITIALIZED The	object	has	not	been	initialized.

DPNHERR_OUTOFMEMORY There	is	not	enough	memory	to	perform	this	operation.

DPNHERR_REENTRANT The	interface	has	been	re-entered	on	the	same	thread.

DPNHERR_SERVERUNAVAILABLE No	servers	are	currently	present.

DPNHERR_UPDATESERVERSTATUS IDirectPlayNATHelp::GetCaps	has	not	been	called	with	the
DPNHGETCAPS_UPDATESERVERSTATUS	flag	set.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp::RegisterPorts	Method

Asks	for	public	realm	port(s)	that	are	aliases	for	the	local	port(s)	on	this
private	realm	node.

Syntax

HRESULT	RegisterPorts(
				const	SOCKADDR	*const	aLocalAddress,
				const	DWORD	dwAddressesSize,
				const	DWORD	dwNumAddresses,
				const	DWORD	dwLeaseTime,
				DPNHANDLE	*const	phRegisteredPorts,
				const	DWORD	dwFlags
);

Parameters

aLocalAddress
[in]	Array	of	local	address	and	port	tuples	for	which	remote	ports
are	selected.

dwAddressesSize
[in]	Size	of	entire	local	addresses	array.

dwNumAddresses
[in]	Number	of	SOCKADDR	structures	in	local	addresses	array.

dwLeaseTime
[in]	Requested	time	to	lease	the	ports,	in	milliseconds.	If
IDirectPlayNATHelp::GetCaps	is	called	before	this	time	expires,
the	lease	will	automatically	be	renewed.

phRegisteredPorts
[in]	Place	to	store	an	identifier	for	this	binding	which	can	be	used
to	query	or	release	the	binding.

dwFlags
[in]	Set	to	0	for	User	Datagram	Protocol	(UDP)	ports	or	one	of
the	following	values.
DPNHREGISTERPORTS_TCP

TCP	ports.
DPNHREGISTERPORTS_FIXEDPORTS

Asks	the	server	to	use	the	same	port	on	the	public
interface.

DPNHREGISTERPORTS_SHAREDPORTS
Allow	the	UDP	fixed	port	to	be	shared.

Return	Value

Returns	DPNH_OK	if	successful,	or	one	of	the	following	error	values.

DPNHERR_GENERIC An	error	occurred	while	closing.

DPNHERR_INVALIDFLAGS Invalid	flags	were	specified.

DPNHERR_INVALIDOBJECT The	interface	object	is	invalid.

DPNHERR_INVALIDPARAM An	invalid	parameter	was	specified.

DPNHERR_NOTINITIALIZED The	object	has	not	been	initialized.

DPNHERR_OUTOFMEMORY There	is	not	enough	memory	to	perform	this	operation.

DPNHERR_PORTALREADYREGISTERED At	least	one	of	the	ports	has	already	been	registered	in	a	different
address	array	or	order.

DPNHERR_REENTRANT The	interface	has	been	re-entered	on	the	same	thread.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayNATHelp::SetAlertEvent	Method

Specifies	an	event	that	will	be	set	when	maintenance	needs	to	be
performed.

Syntax

HRESULT	SetAlertEvent(
				const	HANDLE	hEvent,
				const	DWORD	dwFlags
);

Parameters

hEvent
[in]	Handle	to	the	event	to	signal	when
IDirectPlayNATHelp::GetCaps	is	to	be	called.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DPNH_OK	if	successful,	or	one	of	the	following	error	values.

DPNHERR_GENERIC An	error	occurred	while	closing.

DPNHERR_INVALIDFLAGS Invalid	flags	were	specified.

DPNHERR_INVALIDOBJECT The	interface	object	is	invalid.

DPNHERR_INVALIDPARAM An	invalid	parameter	was	specified.

DPNHERR_NOTINITIALIZED The	object	has	not	been	initialized.

DPNHERR_OUTOFMEMORY There	is	not	enough	memory	to	perform	this	operation.

DPNHERR_REENTRANT The	interface	has	been	re-entered	on	the	same	thread.

Remarks

Call	IDirectPlayNATHelp::GetCaps	using	the

DPNHGETCAPS_UPDATESERVERSTATUS	flag	when	the	event	is
signalled.

This	method	is	used	in	addition	to	the	regular	polling	by
IDirectPlayNATHelp::GetCaps.	It	allows	the	polling	to	be	less
frequent.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient	Interface

Applications	use	the	methods	of	the	IDirectPlayVoiceClient	interface	to
manage	clients	in	a	voice	session.

IDirectPlayVoiceClient	Members

Connect Connects	the	client	to	a	Microsoft®	DirectPlay®	Voice	session.

Create3DSoundBuffer Retrieves	a	3-D	sound	buffer	for	a	player	or	group.	You	can	use	the	methods	of	the	3-D
sound	buffer	object	to	change	the	virtual	3-D	position	of	incoming	voice	transmissions
from	the	specified	group	or	player.

Delete3DSoundBuffer Returns	exclusive	control	of	the	3-D	sound	buffer	object	to	the	DirectPlay	voice	client
object.

Disconnect Disconnects	the	DirectPlay	Voice	client	from	the	existing	DirectPlay	Voice	session.

GetCaps Retrieves	the	DirectPlay	Voice	capabilities.

GetClientConfig Retrieves	the	client	configuration.

GetCompressionTypes Retrieves	the	available	compression	types	on	the	system.

GetSessionDesc Retrieves	the	session	properties.

GetSoundDeviceConfig Retrieves	the	sound	device	configuration	of	the	session.

GetTransmitTargets Retrieves	the	transmit	targets,	if	any,	of	the	voice	stream	from	this	client.

Initialize Initializes	the	DirectPlayVoiceClient	object	by	associating	it	with	a	DirectPlay	object.
Additionally,	this	method	registers	a	message	handler	with	the	DirectPlayVoiceClient
object.

SetClientConfig Sets	the	client	configuration.

SetNotifyMask Specifies	which	messages	are	sent	to	the	message	handler.

SetTransmitTargets Specifies	which	players	and/or	groups	receive	audio	transmissions	from	the	local	client.

Interface	Information

Inherits	from IUnknown

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::Connect	Method

Connects	the	client	to	a	Microsoft®	DirectPlay®	Voice	session.

Syntax

HRESULT	Connect(
				PDVSOUNDDEVICECONFIG	pSoundDeviceConfig,
				PDVCLIENTCONFIG	pdvClientConfig,
				DWORD	dwFlags
);

Parameters

pSoundDeviceConfig
[in]	Pointer	to	a	DVSOUNDDEVICECONFIG	structure	that
describes	the	sound	device	configuration.

pdvClientConfig
[in]	Pointer	to	a	DVCLIENTCONFIG	structure	that	describes	the
general	configuration	of	the	client.

dwFlags
[in]	Flag.	You	can	specify	the	following	flag.
DVFLAGS_SYNC

The	method	does	not	return	until	the	operation	is
completed.

Return	Value

If	the	method	is	processed	synchronously	and	is	successful,	it
returns	DV_OK.	By	default,	this	method	is	run	asynchronously	and
returns	DV_PENDING.	On	error,	this	method	will	return	one	of	the
following	values.

DVERR_ALREADYPENDING An	asynchronous	call	of	this	type	is	already	pending.

DVERR_COMPRESSIONNOTSUPPORTED The	specified	compression	type	is	not	supported	on	the	local
computer.

DVERR_INCOMPATIBLEVERSION The	client	connected	to	a	voice	session	that	is	incompatible	with
the	host.

DVERR_INVALIDDEVICE The	specified	device	is	invalid.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or
IDirectPlayVoiceServer::Initialize	method	must	be	called	before
calling	this	method.

DVERR_OUTOFMEMORY There	is	insufficient	memory	to	perform	the	requested	operation.

DVERR_RUNSETUP The	specified	audio	configuration	has	not	been	tested.	Call	the
IDirectPlayVoiceTest::CheckAudioSetup	method.

DVERR_SENDERROR An	error	occurred	while	sending	data.

DVERR_SOUNDINITFAILURE A	failure	was	encountered	initializing	the	sound	card.

DVERR_TIMEOUT The	operation	could	not	be	performed	in	the	specified	time.

DVERR_TRANSPORTNOPLAYER The	specified	transport	is	connected/hosting	but	no	local	player
exists.

DVERR_TRANSPORTNOSESSION The	specified	transport	is	valid	but	is	not	connected/hosting.

DVERR_CONNECTED The	DirectPlay	Voice	object	is	connected.

DVERR_NOVOICESESSION The	session	specified	is	not	a	voice	session.

Remarks

If	you	call	this	method	asynchronously	and	it	returns
DVERR_PENDING,	you	will	receive	a
DVMSGID_CONNECTRESULT	message	with	the	result	of	the
connection	attempt.	This	message	can	arrive	before	or	after	the
method	returns	DVERR_PENDING.	If	you	call	this	method
asynchronously,	you	will	not	receive	a
DVMSGID_CONNECTRESULT	message.

You	must	test	the	sound	devices	selected	for	playback	and	capture
by	invoking	the	setup	wizard	before	connecting	the	client	to	the
DirectPlay	Voice	session.	On	application	startup,	check	the	audio
configuration	by	using	IDirectPlayVoiceTest::CheckAudioSetup.	If
this	method	returns	DVERR_RUNSETUP,	the	sound	configuration
specified	has	not	been	tested.	The	setup	wizard	needs	to	be	run	only

once	for	any	configuration.

If	you	specify	a	buffer	that	is	not	the	right	format,	the	method	will
return	DVERR_INVALIDBUFFER.

If	the	buffer	or	a	portion	of	the	buffer	is	locked	when	DirectPlay	Voice
attempts	to	write	to	it,	the	method	will	return
DVERR_INVALIDBUFFER,	and	DirectPlay	Voice	will	disconnect
from	the	session.	You	will	also	receive	a	DVMSGID_SESSIONLOST
message.	The	hResult	member	of	the	associated	structure	will	be
set	to	DVERR_LOCKEDBUFFER.	Subsequent	method	calls	will
return	a	DVERR_NOTCONNECTED	error	code.

If	full	duplex	operation	is	not	supported,	DirectPlay	Voice	falls	back
to	half	duplex	(listen	only)	mode.	To	determine	if	you	are	in	half-
duplex	mode,	call	IDirectPlayVoiceClient::GetSoundDeviceConfig
after	you	have	completed	the	connection.	If	you	are	in	half-duplex
mode,	the	DVSOUNDDEVICECONFIG	structure's	dwFlags	member
will	have	the	DVSOUNDCONFIG_HALFDUPLEX	flag	set.

Regardless	of	how	the	interfaces	are	obtained,	the
DirectPlayVoiceClient	object	maintains	a	reference,	through	a	call	to
AddRef,	to	the	IDirectSound	and	IDirectSoundCapture	interfaces
it	uses	until	IDirectPlayVoiceClient::Disconnect	is	called.	When
IDirectPlayVoiceClient::Disconnect	is	called,	the
DirectPlayVoiceClient	object	calls	Release	on	both	interfaces.

Any	calls	to	IDirectPlayVoiceClient::Connect	while	a	connection	is
pending	return	DVERR_ALREADYPENDING.	Additionally,	only	one
connection	can	be	pending	at	a	time.

A	transport	session	must	be	started	on	the	specified	DirectPlay

object	before	calling	this	method.	A	successful	call	to
IDirectPlayVoiceClient::Initialize	must	be	made	before	calling	the
Connect	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::Create3DSoundBuffer	Method

Retrieves	a	3-D	sound	buffer	for	a	player	or	group.	You	can	use	the
methods	of	the	3-D	sound	buffer	object	to	change	the	virtual	3-D	position
of	incoming	voice	transmissions	from	the	specified	group	or	player.

Syntax

HRESULT	Create3DSoundBuffer(
				DVID	dvID,
				LPDIRECTSOUNDBUFFER	lpdsSourceBuffer,
				DWORD	dwPriority,
				DWORD	dwFlags,
				LPDIRECTSOUND3DBUFFER	*lpUserBuffer
);

Parameters

dvID
[in]	Variable	of	type	DVID	that	specifies	the	identification	of	the
player	or	group	that	the	user	wants	to	reserve	a	buffer	for.	You
can	also	specify	DVID_REMAINING	to	create	a	3-D	user	buffer
for	all	players	or	groups	that	do	not	have	a	user	buffer.	If
DVID_REMAINING	is	specified,	the	lpdsSourceBuffer
parameter	must	be	set	to	NULL	and	the	dwPriority	and	dwFlags
parameters	must	be	set	to	0.

lpdsSourceBuffer
[in]	Pointer	to	an	IDirectSoundBuffer	interface,	which	is	used	to
create	the	Microsoft®	DirectPlay®	Voice	main	buffer.	This	can
be	either	NULL	or	a	user-created	Microsoft	DirectSound®	buffer.
If	this	member	is	set	to	NULL,	then	DirectPlay	Voice	creates	a
buffer	for	you.

dwPriority
[in]	Direct	pass-through.	This	value	is	passed	in	the	dwPriority
parameter	when	the	call	to	IDirectSoundBuffer::Play	is	made.
For	more	information,	see	IDirectSoundBuffer8::Play.	This

parameter	must	be	0	if	lpdsSourceBuffer	is	NULL.
dwFlags

[in]	Direct	pass-through.	This	value	is	passed	to	the
dwFlagsparameter	when	the	call	to	IDirectSoundBuffer::Play
is	made.	For	more	information,	see	IDirectSoundBuffer8::Play.
This	parameter	must	be	0	if	lpdsSourceBuffer	is	NULL.

lpUserBuffer
[out]	Pointer	to	memory	where	the	reserved	buffer	is	placed.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_ALREADYBUFFERED There	is	already	a	user	buffer	for	the	specified	ID.

DVERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTALLOWED The	object	does	not	have	the	permission	to	perform	this	operation.

DVERR_NOTCONNECTED The	DirectPlay	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_OUTOFMEMORY There	is	insufficient	memory	to	perform	the	requested	operation.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

If	the	DirectPlay	voice	session	is	a	mixing	server	session,	this
method	fails	and	returns	DVERR_NOTALLOWED.

Although	you	can	access	all	the	member	functions	of	the	3-D	sound
buffer	object,	because	the	DirectPlay	voice	client	uses	the	buffer	to
stream	incoming	audio,	do	not	use	the	Lock,	UnLock,	or	Play
methods	of	the	DirectSound3DBuffer	object.

If	the	user	specifies	a	buffer,	DirectPlay	uses	that	buffer	for	the
player's	or	group's	buffer.	User-created	buffers	have	the	following

restrictions.

The	buffer	must	be	22	kilohertz,	16-bit,	Mono	format.

The	buffer	must	be	at	least	1	second	in	length.

The	buffer	must	have	been	created	with	the
DSBCAPS_GETCURRENTPOSITION2	and
DSBCAPS_CTRL3D	flags.

The	buffer	must	not	be	a	primary	buffer.

The	buffer	must	not	be	playing	when	it	is	passed	to	DirectPlay.

If	the	buffer	is	not	the	right	format,	the	method	will	return
DVERR_INVALIDBUFFER.

The	buffer	must	not	be	locked	when	you	pass	it	to	DirectPlay.	When
the	buffer	for	the	individual	user	is	no	longer	required	or	when	a
player	leaves	the	voice	session,	it	is	important	to	call
IDirectPlayVoiceClient::Delete3DSoundBuffer	to	free	up
resources.

If	the	buffer	or	a	portion	of	the	buffer	is	locked	when	DirectPlay	Voice
attempts	to	write	to	it,	the	method	will	return
DVERR_INVALIDBUFFER.	If	you	lock	the	buffer	after	the	method
has	returned,	you	will	receive	a	DVMSGID_SESSIONLOST
message.	The	hResult	member	of	the	associated	structure	will	be
set	to	DVERR_LOCKEDBUFFER.	Subsequent	method	calls	will
return	a	DVERR_NOTCONNECTED	error	code.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::Delete3DSoundBuffer	Method

Returns	exclusive	control	of	the	3-D	sound	buffer	object	to	the	Microsoft®
DirectPlay®	voice	client	object.

Syntax

HRESULT	Delete3DSoundBuffer(
				DVID	dvID,
				LPDIRECTSOUND3DBUFFER	*lpUserBuffer
);

Parameters

dvID
[in]	DVID	of	the	player	or	group	that	the	user	wants	to	delete	a
buffer	for.

lpUserBuffer
[in]	Pointer	to	the	user	buffer	to	delete.	This	must	be	a	user
buffer	obtained	through	the
IDirectPlayVoiceClient::Create3DSoundBuffer	method.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_ALREADYBUFFERED There	is	already	a	user	buffer	for	the	specified	ID.

DVERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTALLOWED The	object	does	not	have	the	permission	to	perform	this	operation.

DVERR_NOTBUFFERED There	is	no	user	buffer	for	the	specified	ID.

DVERR_NOTCONNECTED The	DirectPlay	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

If	the	DirectPlay	Voice	session	is	a	mixing	server	session,	this
method	fails	and	returns	DVERR_NOTALLOWED.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::Disconnect	Method

Disconnects	the	Microsoft®	DirectPlay®	Voice	client	from	the	existing
DirectPlay	Voice	session.

Syntax

HRESULT	Disconnect(
				DWORD	dwFlags
);

Parameters

dwFlags
[in]	Flag.	You	can	specify	the	following	flag.
DVFLAGS_SYNC

Do	not	return	until	the	operation	is	completed.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_ALREADYPENDING An	asynchronous	call	of	this	type	is	already	pending.

DVERR_CONNECTABORTING The	connection	is	being	disconnected.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_NOTCONNECTED The	DirectPlay	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_PENDING Not	an	error,	this	return	indicates	that	an	asynchronous	operation	has	reached
the	point	where	it	is	successfully	queued.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

DVERR_TIMEOUT The	operation	could	not	be	performed	in	the	specified	time.

Remarks

On	calling	this	method,	all	recording	and	playback	is	stopped.	If	a
connection	is	being	processed,	it	is	canceled	by	this	call.

Unless	the	DVFLAGS_SYNC	is	specified,	calling	this	method
immediately	returns	a	DVERR_PENDING	error	value	and	proceeds
to	process	the	disconnection	request	in	the	background.	The	status
of	the	disconnection	is	not	known	until	the	DirectPlay	Voice	client
generates	a	DVMSGID_DISCONNECTRESULT	message	that
contains	the	disconnection	result.	Only	one	disconnection	can	be
pending	at	a	time.	If	you	call	IDirectPlayVoiceClient::Disconnect
while	a	disconnect	is	pending,	DirectPlay	will	return	a
DVERR_ALREADYPENDING	error	value.

If	this	method	is	called	synchronously	by	setting	the
DVFLAGS_SYNC	flag,	the	method	does	not	return	until	the
IDirectPlayVoiceClient::Disconnect	method	completes.	The	result
of	the	disconnection	is	the	return	value	from	this	method.	No
DVMSGID_DISCONNECTRESULT	message	is	generated.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::GetCaps	Method

Retrieves	the	Microsoft®	DirectPlay®	Voice	capabilities.

Syntax

HRESULT	GetCaps(
				PDVCAPS	pCaps
);

Parameters

pCaps
[out]	Pointer	to	the	DVCAPS	structure	that	contains	the
capabilities	of	the	DirectPlayVoiceClient	object.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::GetClientConfig	Method

Retrieves	the	client	configuration.

Syntax

HRESULT	GetClientConfig(
				PDVCLIENTCONFIG	pClientConfig
);

Parameters

pClientConfig
[out]	Pointer	to	a	DVCLIENTCONFIG	structure	that	contains	the
configuration	of	the	local	client.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTCONNECTED The	Microsoft®	DirectPlay®	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

Before	calling	this	method,	you	must	set	the	DVCLIENTCONFIG
structure's	dwSize	member.

You	can	call	this	method	only	after	a	connection	is	successfully
established	with	a	DirectPlay	Voice	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::GetCompressionTypes	Method

Retrieves	the	available	compression	types	on	the	system.

Syntax

HRESULT	GetCompressionTypes(
				PVOID	pData,
				PDWORD	pdwDataSize,
				PDWORD	pdwNumElements,
				DWORD	dwFlags
);

Parameters

pData
[out]	Pointer	to	buffer	that	receives	an	array	of
DVCOMPRESSIONINFO	structures,	one	structure	for	every
compression	type	supported	through	this	object.

pdwDataSize
[in]	Pointer	to	a	DWORD	that	contains	the	size	of	the	buffer,	in
bytes,	passed	in	the	pData	parameter.

pdwNumElements
[out]	Pointer	to	a	DWORD	where	the	method	writes	the	number
of	elements	returned	in	the	array	of	DVCOMPRESSIONINFO
structures.	This	contains	the	number	of	structures	only	if	the
buffer	specified	in	the	pData	is	large	enough	to	hold	the
information.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DP_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

Remarks

If	the	buffer	passed	is	not	large	enough	to	store	the	list	of
compression	types,	the	method	returns
DVERR_BUFFERTOOSMALL	and	the	pdwDataSize	parameter	is
set	to	the	minimum	required	size.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::GetSessionDesc	Method

Retrieves	the	session	properties.

Syntax

HRESULT	GetSessionDesc(
				PDVSESSIONDESC	pvSessionDesc
);

Parameters

pvSessionDesc
[out]	Pointer	to	a	DVSESSIONDESC	structure	to	receive	the
session	description.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTCONNECTED The	Microsoft®	DirectPlay®	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

Before	calling	this	method,	make	sure	to	set	the	DVSESSIONDESC
structure's	dwSize	member.

This	method	may	be	called	only	after	a	connection	is	successfully
established	with	a	DirectPlay	Voice	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::GetSoundDeviceConfig	Method

Retrieves	the	sound	device	configuration	of	the	session.

Syntax

HRESULT	GetSoundDeviceConfig(
				PDVSOUNDDEVICECONFIG	pSoundDeviceConfig,
				PDWORD	pdwSize
);

Parameters

pSoundDeviceConfig
[out]	Pointer	to	a	DVSOUNDDEVICECONFIG	structure	that	is
filled	with	the	configuration	of	the	sound	device.

pdwSize
[in,	out]	Pointer	to	a	DWORD	that	specifies	the	size	of	the	buffer
in	pSoundDeviceConfig	parameter.	If	the	buffer	is	too	small,	the
method	returns	DVERR_BUFFERTOOSMALL	and	this
parameter	contains	the	size	of	the	required	buffer.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTCONNECTED The	Microsoft®	DirectPlay®	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

You	can	call	this	method	only	after	a	connection	is	successfully

established	with	a	DirectPlay	Voice	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::GetTransmitTargets	Method

Retrieves	the	transmit	targets,	if	any,	of	the	voice	stream	from	this	client.

Syntax

HRESULT	GetTransmitTargets(
				PDVID	pdvIDTargets,
				PDWORD	pdwNumTargets,
				DWORD	dwFlags
);

Parameters

pdvIDTargets
[out]	Member	to	fill	with	an	array	of	DVIDs	that	specify	the
targets	that	were	set	by	the
IDirectPlayVoiceClient::SetTransmitTargets	or
IDirectPlayVoiceServer::SetTransmitTargets	method.	You	can
retrieve	the	number	of	targets	by	specifying	NULL	for	this
parameter.

pdwNumTargets
[in,	out]	Number	of	DVIDs	in	the	pdvIDTargets	array.	If	the	call	is
successful,	when	the	method	return,	this	parameter	will	be	set	to
the	number	of	elements	in	the	pdvIDTargets	array.	If	the	array	is
too	small,	the	method	returns	DVERR_BUFFERTOOSMALL,
and	pdwNumTargets	will	be	set	to	the	required	number	of
elements.	If	pdvIDTargets	is	NULL,	this	must	be	0.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTALLOWED The	object	does	not	have	the	permission	to	perform	this	operation.

DVERR_NOTCONNECTED The	Microsoft®	DirectPlay®	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

Remarks

The	value	returned	in	the	pdvIDTargets	parameter	can	be	player	or
group	DVIDs	or	the	DVID_ALLPLAYERS	constant.

If	the	buffer	specified	in	pdvIDTargets	is	not	large	enough	to	store
the	list	of	targets,	this	method	returns	DVERR_BUFFERTOOSMALL
and	pdwNumTargets	is	set	to	the	required	number	of	elements.

If	there	is	no	target	specified,	pdwNumTargets	is	set	to	0	and	the
return	value	is	DV_OK.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::Initialize	Method

Initializes	the	DirectPlayVoiceClient	object	by	associating	it	with	a
Microsoft®	DirectPlay®	object.	Additionally,	this	method	registers	a
message	handler	with	the	DirectPlayVoiceClient	object.

Syntax

HRESULT	Initialize(
				LPUNKNOWN	pVoid,
				PDVMESSAGEHANDLER	pMessageHandler,
				PVOID	pUserContext,
				PDWORD	pdwMessageMask,
				DWORD	dwMessageMaskElements
);

Parameters

pVoid
[in]	Pointer	to	the	IUnknown	interface	for	the	DirectPlay	object
that	this	DirectPlayVoiceClient	object	should	use.

pMessageHandler
[in]	User-defined	callback	function	that	is	called	when	there	is	a
DirectPlayVoiceClient	message	to	be	processed.	Threads	within
the	DirectPlayVoiceClient	object	call	the	callback	function,	so	it
will	not	be	called	in	the	context	of	your	process's	main	thread.

pUserContext
[in]	Pointer	to	an	application-defined	structure	that	is	passed	to
the	callback	function	each	time	the	function	is	called.

pdwMessageMask
[in]	Array	of	DWORD	values	that	contains	the	message
identifiers	that	you	want	DirectPlay	Voice	to	send	to	your
callback	function.	If	a	message	identifier	is	not	specified	in	this
array,	it	is	not	sent.	Each	message	identifier	should	appear	only
once	in	the	array	and	only	valid	message	identifiers	are	allowed.
For	example,	DVMSGID_CONNECTRESULT	is	not	valid	for	the

server	interface,	but	is	for	the	client	interface.	To	enable	all
messages,	specify	NULL	for	this	value.

dwMessageMaskElements
[in]	DWORD	value	specifying	the	number	of	elements	in	the
pdwMessageMask	parameter.	If	pdwMessageMask	is	NULL,
this	must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

DVERR_GENERIC An	undefined	error	condition	occurred.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOCALLBACK This	operation	cannot	be	performed	because	no	callback	function	was
specified.

DVERR_TRANSPORTNOTINIT The	specified	transport	is	not	yet	initialized.

Remarks

This	method	must	be	called	successfully	before
IDirectPlayVoiceClient::Connect	method	is	called.

You	can	call	IDirectPlayVoiceClient::SetNotifyMask	to	change	the
notify	mask	during	the	course	of	the	voice	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::SetClientConfig	Method

Sets	the	client	configuration.

Syntax

HRESULT	SetClientConfig(
				PDVCLIENTCONFIG	pClientConfig
);

Parameters

pClientConfig
[in]	Pointer	to	a	DVCLIENTCONFIG	structure	that	contains	the
configuration	description	to	set.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTCONNECTED The	Microsoft®	DirectPlay®	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

You	can	call	this	method	only	after	a	connection	is	successfully
established	with	a	DirectPlay	Voice	session.

Calling	this	method	sets	all	the	parameters	in	the
DVCLIENTCONFIG	structure.	Therefore,	to	leave	a	setting

unmodified,	you	must	retrieve	the	current	configuration	with
IDirectPlayVoiceClient::GetClientConfig.	Then	modify	the	parameters
to	change	and	call	IDirectPlayVoiceClient::SetClientConfig.

If	the	session	is	running	in	half	duplex	mode,	the	members	of	the
DVCLIENTCONFIG	structure	related	to	recording	are	ignored.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::SetNotifyMask	Method

Specifies	which	messages	are	sent	to	the	message	handler.

Syntax

HRESULT	SetNotifyMask(
				PDWORD	pdwMessageMask,
				DWORD	dwMessageMaskElements
);

Parameters

pdwMessageMask
[in]	Pointer	to	an	array	of	DWORD	values	containing	the
message	identifiers	that	you	want	Microsoft®	DirectPlay®	Voice
to	send	to	your	callback	function.	If	a	message	identifier	is	not
specified	in	this	array,	it	is	not	sent.	Each	message	identifier
should	appear	only	once	in	the	array,	and	only	valid	message
identifiers	are	allowed.	For	example,
DVMSGID_CONNECTRESULT	is	not	valid	for	the	server
interface,	but	is	for	the	client	interface.	To	enable	all	messages,
set	this	value	to	NULL.

dwMessageMaskElements
[in]	DWORD	value	specifying	the	number	of	elements	in	the
pdwMessageMask	parameter.	If	pdwMessageMask	is	NULL,
this	parameter	must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOCALLBACK This	operation	cannot	be	performed	because	no	callback	function	was	specified.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceClient::SetTransmitTargets	Method

Specifies	which	players	and/or	groups	receive	audio	transmissions	from
the	local	client.

Syntax

HRESULT	SetTransmitTargets(
				PDVID	pdvIDTargets,
				DWORD	dwNumTargets,
				DWORD	dwFlags
);

Parameters

pdvIDTargets
[in]	Pointer	to	an	array	of	DVIDs	that	specify	your	targets.	To
target	all	players	in	the	session,	use	a	single	element	array,	with
the	value	of	that	element	set	to	DVID_ALLPLAYERS.	To	target
no	players,	set	this	parameter	to	NULL.

dwNumTargets
[in]	Number	of	DVIDs	in	the	array.	This	value	cannot	exceed	64.
If	pdvIDTargets	is	NULL,	this	parameter	must	be	set	to	0.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_INVALIDTARGET The	specified	target	is	not	a	valid	player	ID	or	group	ID	for	this	voice	session.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

Remarks

The	number	of	individual	targets	that	you	can	transmit	to	is	limited	to
64.	If	you	exceed	this	value,	the	method	will	fail,	and	return
DVERR_NOTALLOWED.	However,	you	can	transmit	to	more	than
64	players.	To	do	this,	form	the	players	into	groups,	and	then	use	the
groups	as	your	target.

The	pdvIDTargets	parameter	specifies	an	array	of	player	and/or
group	DVIDs.	There	must	be	no	duplicate	targets	in	this	parameter,
and	all	entries	must	be	valid	DVIDs.	If	a	target	contains	a	player	as
its	individual	DVID	and	through	a	group	that	the	target	belongs	to,
Microsoft®	DirectPlay®	Voice	ensures	duplicate	speech	packets	are
not	sent	to	the	player.

If	the	session	was	created	with	the
DVSESSION_SERVERCONTROLTARGET	flag,	only	the	server	can
set	the	targets	for	this	local	client.	A	call	to	this	method	returns
DVERR_NOTALLOWED.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer	Interface

Applications	use	the	methods	of	the	IDirectPlayVoiceServer	interface	to
manage	the	host	of	the	voice	session.

IDirectPlayVoiceServer	Members

GetCaps Retrieves	the	capabilities	of	the	Microsoft®	DirectPlay®	Voice	server	for	this	system.

GetCompressionTypes Retrieves	available	compression	types	for	the	system.

GetSessionDesc Retrieves	the	DirectPlay	Voice	session	settings.

GetTransmitTargets Retrieves	the	transmit	targets,	if	any,	of	the	voice	stream	for	a	player	in	a	session.

Initialize Initializes	the	DirectPlayVoiceServer	object	by	associating	it	with	a	DirectPlay	object.
Additionally,	this	method	registers	a	message	handler	with	this	interface.

SetNotifyMask Specifies	which	messages	are	sent	to	the	message	handler.

SetSessionDesc Sets	the	session	settings.

SetTransmitTargets Controls	the	transmission	of	audio	from	the	client	to	the	specified	members	of	the
session.

StartSession Starts	an	initialized	DirectPlay	Voice	session	within	a	running	DirectPlay	transport
session.	This	method	must	be	successfully	called	before	the	clients	can	complete	a
connection	to	the	voice	session.

StopSession Stops	the	DirectPlay	Voice	session.

Interface	Information

Inherits	from IUnknown

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::GetCaps	Method

Retrieves	the	capabilities	of	the	Microsoft®	DirectPlay®	Voice	server	for
this	system.

Syntax

HRESULT	GetCaps(
				PDVCAPS	pDVCaps
);

Parameters

pDVCaps
[out]	Pointer	to	the	DVCAPS	structure	that	contains	the
capabilities	of	the	DirectPlayVoiceServer	object.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::GetCompressionTypes	Method

Retrieves	available	compression	types	for	the	system.

Syntax

HRESULT	GetCompressionTypes(
				PVOID	pData,
				PDWORD	pdwDataSize,
				PDWORD	pdwNumElements,
				DWORD	dwFlags
);

Parameters

pData
[out]	Pointer	to	the	buffer	that	receives	an	array	of
DVCOMPRESSIONINFO	structures	that	describe	the
compression	types	supported	by	this	object.

pdwDataSize
[in]	Pointer	to	a	DWORD	value	that	contains	the	size	of	the
buffer,	in	bytes,	passed	in	the	pData	parameter.

pdwNumElements
[out]	Pointer	to	a	DWORD	value	where	the	method	writes	the
number	of	elements	returned	in	the	array	of
DVCOMPRESSIONINFO	structures.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

Remarks

If	the	buffer	is	not	large	enough	to	store	the	list	of	compression
types,	the	method	returns	DVERR_BUFFERTOOSMALL	and	the
pdwDataSize	parameter	is	set	to	the	minimum	required	size.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::GetSessionDesc	Method

Retrieves	the	Microsoft®	DirectPlay®	Voice	session	settings.

Syntax

HRESULT	GetSessionDesc(
				PDVSESSIONDESC	pvSessionDesc
);

Parameters

pvSessionDesc
[out]	Pointer	to	a	DVSESSIONDESC	structure	to	receive	the
session	description.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTHOSTING The	object	is	not	the	host	of	the	session.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

Before	calling	this	method,	make	sure	to	set	the	DVSESSIONDESC
structure's	dwSize	member.

A	successful	call	to	IDirectPlayVoiceServer::StartSession	must	be
made	before	this	method	can	be	called.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::GetTransmitTargets	Method

Retrieves	the	transmit	targets,	if	any,	of	the	voice	stream	for	a	player	in	a
session.

Syntax

HRESULT	GetTransmitTargets(
				DVID	dvSource,
				PDVID	pdvIDTargets,
				PDWORD	pdwNumTargets,
				DWORD	dwFlags
);

Parameters

dvSource
[in]	DVID	of	the	user	or	group	whose	target	is	returned.

pdvIDTargets
[out]	Array	of	DVIDs	that	will	contain	the	current	targets	of	the
player	or	group	that	were	set	by	the
IDirectPlayVoiceServer::SetTransmitTargets	method.	You	can
retrieve	the	number	of	targets	by	specifying	NULL	for	this
parameter.

pdwNumTargets
[in,	out]	Number	of	DVIDs	in	the	pdvIDTargets	array.	If	the	call	is
successful,	when	the	method	return,	this	parameter	will	be	set	to
the	number	of	elements	in	the	pdvIDTargets	array.	If	the	array	is
too	small,	the	method	returns	DVERR_BUFFERTOOSMALL,
and	pdwNumTargets	will	be	set	to	the	required	number	of
elements.	If	pdvIDTargets	is	NULL,	this	must	be	0.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_BUFFERTOOSMALL The	supplied	buffer	is	not	large	enough	to	contain	the	requested	data.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTALLOWED The	object	does	not	have	the	permission	to	perform	this	operation.

DVERR_NOTCONNECTED The	Microsoft®	DirectPlay®	Voice	object	is	not	connected.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

Remarks

This	method	can	be	used	only	if	the
DVSESSION_SERVERCONTROLTARGET	flag	is	specified	on
creation	of	the	DirectPlay	Voice	session.	If	the	flag	is	not	specified,
this	method	returns	DVERR_NOTALLOWED.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::Initialize	Method

Initializes	the	DirectPlayVoiceServer	object	by	associating	it	with	a
Microsoft®	DirectPlay®	object.	Additionally,	this	method	registers	a
message	handler	with	this	interface.

Syntax

HRESULT	Initialize(
				LPUNKNOWN	lpVoid,
				PDVMESSAGEHANDLER	pMessageHandler,
				PVOID	pUserContext,
				LPDWORD	lpdwMessageMask,
				DWORD	dwMessageMaskElements
);

Parameters

lpVoid
[in]	Pointer	to	the	IUnknown	interface	for	the	DirectPlay	object
that	this	DirectPlayVoiceServer	object	should	use.

pMessageHandler
[in]	User-defined	callback	function	that	is	called	when	there	is	a
DirectPlayVoiceClient	message	to	process.	A	thread	within	the
DirectPlayVoiceClient	object	calls	the	callback	function,	so	it	is
not	called	in	the	context	of	your	process's	main	thread.

pUserContext
[in]	Pointer	to	an	application-defined	structure	that	is	passed	to
the	callback	function	each	time	the	method	is	called.

lpdwMessageMask
[in]	Array	of	DWORD	values	that	contain	the	message	identifiers
that	you	want	DirectPlay	Voice	to	send	to	your	callback	function.
If	a	message	identifier	is	not	specified	in	this	array,	it	is	not	sent.
Each	message	identifier	should	appear	only	once	in	the	array,
and	only	valid	message	identifiers	are	allowed.	For	example,
DVMSGID_CONNECTRESULT	is	not	valid	for	the	server

interface	but	is	for	the	client	interface.	To	enable	all	messages,
specify	NULL	for	this	value.

dwMessageMaskElements
[in]	DWORD	value	that	specifies	the	number	of	elements	in	the
lpdwMessageMask	parameter.	If	lpdwMessageMask	is	NULL,
this	must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_ALREADYINITIALIZED The	object	has	already	been	initialized.

DVERR_GENERIC An	undefined	error	condition	occurred.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOCALLBACK This	operation	cannot	be	performed	because	no	callback	function	was
specified.

DVERR_TRANSPORTNOTINIT The	specified	transport	is	not	yet	initialized.

Remarks

You	can	call	IDirectPlayVoiceServer::SetNotifyMask	to	change	the
notify	mask	during	the	course	of	the	voice	session.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::SetNotifyMask	Method

Specifies	which	messages	are	sent	to	the	message	handler.

Syntax

HRESULT	SetNotifyMask(
				PDWORD	pdwMessageMask,
				DWORD	dwMessageMaskElements
);

Parameters

pdwMessageMask
[in]	Pointer	to	an	array	of	DWORD	values	that	contain	the
message	identifiers	that	you	want	Microsoft®	DirectPlay®	Voice
to	send	to	your	callback	function.	If	a	message	identifier	is	not
specified	in	this	array,	it	is	not	sent.	Each	message	identifier
should	appear	only	once	in	the	array,	and	only	valid	message
identifiers	are	allowed.	For	example,
DVMSGID_CONNECTRESULT	is	not	valid	for	the	server
interface	but	is	for	the	client	interface.	To	enable	all	messages,
specify	NULL	for	this	value.

dwMessageMaskElements
[in]	DWORD	value	that	specifies	the	number	of	elements	in	the
pdwMessageMask	parameter.	If	pdwMessageMask	is	NULL,
this	must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOCALLBACK This	operation	cannot	be	performed	because	no	callback	function	was	specified.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::SetSessionDesc	Method

Sets	the	session	settings.

Syntax

HRESULT	SetSessionDesc(
				PDVSESSIONDESC	pSessionDesc
);

Parameters

pSessionDesc
[in]	Pointer	to	a	DVSESSIONDESC	structure	that	contains	the
session	description.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDOBJECT The	Microsoft®	DirectPlay®	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTHOSTING The	object	is	not	the	host	of	the	session.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

After	the	DirectPlay	voice	session	has	started,	only	some	of	the
session	properties	of	the	DVSESSIONDESC	structure	can	be
changed.	For	more	information,	see	DVSESSIONDESC.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::SetTransmitTargets	Method

Controls	the	transmission	of	audio	from	the	client	to	the	specified
members	of	the	session.

Syntax

HRESULT	SetTransmitTargets(
				DVID	dvSource,
				PDVID	pdvIDTargets,
				DWORD	dwNumTargets,
				DWORD	dwFlags
);

Parameters

dvSource
[in]	DVID	of	the	user	whose	targets	are	set.

pdvIDTargets
[in]		Pointer	to	an	array	of	DVIDs	that	specify	your	targets.	To
target	all	players	in	the	session,	use	a	single	element	array	with
the	value	of	that	element	set	to	DVID_ALLPLAYERS.	To	target
no	players,	set	this	parameter	to	NULL.

dwNumTargets
[in]	Number	of	DVIDs	in	the	array.	This	value	cannot	exceed	64.
If	pdvIDTargets	is	NULL,	this	must	be	0.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_INVALIDTARGET The	specified	target	is	not	a	valid	player	ID	or	group	ID	for	this	voice	session.

DVERR_NOTALLOWED The	object	does	not	have	the	permission	to	perform	this	operation.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

Remarks

The	number	of	individual	targets	that	you	can	transmit	to	is	limited	to
64.	If	you	exceed	this	value,	the	method	will	fail,	and	return
DVERR_NOTALLOWED.	However,	you	can	transmit	to	more	than
64	players.	To	do	so,	form	the	players	into	groups,	and	then	use	the
group	as	your	target.

There	must	be	no	duplicate	targets	in	this	parameter,	and	all	entries
must	be	valid	DVIDs.	If	a	target	contains	a	player	as	its	individual
DVID	and	through	a	group	that	the	target	belongs	to,	Microsoft®
DirectPlay®	Voice	ensures	duplicate	speech	packets	are	not	sent	to
the	player.

This	method	can	be	used	only	if	the
DVSESSION_SERVERCONTROLTARGET	flag	is	specified	on
creation	of	the	DirectPlay	Voice	session.	If	the	flag	is	not	specified,
this	method	returns	DVERR_NOTALLOWED.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::StartSession	Method

Starts	an	initialized	Microsoft®	DirectPlay®	Voice	session	within	a
running	DirectPlay	transport	session.	This	method	must	be	successfully
called	before	the	clients	can	complete	a	connection	to	the	voice	session.

Syntax

HRESULT	StartSession(
				PDVSESSIONDESC	pSessionDesc,
				DWORD	dwFlags
);

Parameters

pSessionDesc
[in]	Pointer	to	a	DVSESSIONDESC	structure	that	contains	the
session	description.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_ALREADYPENDING An	asynchronous	call	of	this	type	is	already	pending.

DVERR_HOSTING The	object	is	the	host	of	the	session.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_INVALIDPOINTER The	pointer	specified	is	invalid.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or
IDirectPlayVoiceServer::Initialize	method	must	be	called	before
calling	this	method.

DVERR_COMPRESSIONNOTSUPPORTED The	specified	compression	type	is	not	supported	on	the	local
computer.

Remarks

The	IDirectPlayVoiceServer::Initialize	method	must	be	called
before	this	method	is	called.	The	voice	session	can	be	hosted	on
any	client	in	the	session	if	the	voice	session	is	peer-to-peer.	If	the
voice	session	is	not	peer-to-peer,	it	must	be	hosted	on	the	transport
client,	which	is	the	host	of	a	active	transport	session.

The	DVSESSIONDESC	structure	contains	the	type	of	voice	session
to	start.	The	type	of	voice	session	can	have	a	dramatic	effect	on	the
CPU	and	bandwidth	usage	for	both	the	client	and	the	server.	To	use
the	default	compression	type,	set	the	DVSESSIONDESC	structure's
guidCT	member	to	DPVCTGUID_DEFAULT.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceServer::StopSession	Method

Stops	the	Microsoft®	DirectPlay®	Voice	session.

Syntax

HRESULT	StopSession(
				DWORD	dwFlags
);

Parameters

dwFlags
[in]	Flag.	The	following	flag	can	be	set.
DVFLAGS_NOHOSTMIGRATE

The	host	will	not	migrate	regardless	of	session	and
transport	settings.	Use	this	flag	when	you	want	to	shut
down	the	voice	session	completely.

Return	Value

Returns	DV_OK	if	successful,	or	one	of	the	following	error	values.

DVERR_ALREADYPENDING An	asynchronous	call	of	this	type	is	already	pending.

DVERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDOBJECT The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_NOTHOSTING The	object	is	not	the	host	of	the	session.

DVERR_NOTINITIALIZED The	IDirectPlayVoiceClient::Initialize	or	IDirectPlayVoiceServer::Initialize	method
must	be	called	before	calling	this	method.

DVERR_SESSIONLOST The	transport	has	lost	the	connection	to	the	session.

Remarks

This	method	returns	DVERR_ALREADYPENDING	if	it	is	called	while
another	thread	is	processing	a

IDirectPlayVoiceServer::StopSession	request.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceTest	Interface

Applications	use	the	IDirectPlayVoiceTest::CheckAudioSetup	method	of
the	IDirectPlayVoiceTest	interface	to	test	the	Microsoft®	DirectPlay®
Voice	audio	configuration.

IDirectPlayVoiceTest	Members

CheckAudioSetup Runs	the	Audio	Setup	Wizard	on	the	specified	devices.	This	wizard	runs	a	series	of	tests	on
the	devices	to	determine	if	they	are	capable	of	full	duplex	audio	and	to	ensure	that	the
microphone	is	plugged	in	and	working	correctly	on	the	capture	device.

Interface	Information

Inherits	from IUnknown

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDirectPlayVoiceTest::CheckAudioSetup	Method

Runs	the	Audio	Setup	Wizard	on	the	specified	devices.	This	wizard	runs
a	series	of	tests	on	the	devices	to	determine	if	they	are	capable	of	full
duplex	audio	and	to	ensure	that	the	microphone	is	plugged	in	and
working	correctly	on	the	capture	device.

Syntax

HRESULT	CheckAudioSetup(
				const	GUID	*pguidPlaybackDevice,
				const	GUID	*pguidCaptureDevice,
				HWND	hwndParent,
				DWORD	dwFlags
);

Parameters

pguidPlaybackDevice
[in]	Pointer	to	the	globally	unique	identifier	(GUID)	that	identifies
the	playback	device	to	test.	If	NULL	is	passed	for	this
parameter,	Microsoft®	DirectPlay®	Voice	tests	the	system
default	playback	device	defined	by	Microsoft	DirectSound®.	You
can	also	pass	one	of	the	DirectSound	default	GUIDs:
DSDEVID_DefaultPlayback

The	system	default	playback	device.
DSDEVID_DefaultVoicePlayback

The	default	voice	playback	device.
pguidCaptureDevice

[in]	Pointer	to	the	GUID	that	identifies	the	capture	device	to	test.
If	NULL	is	passed	for	this	parameter,	DirectPlay	Voice	tests	the
system	default	capture	device	defined	by	DirectSound.	You	can
also	pass	one	of	the	DirectSound	default	GUIDs:
DSDEVID_DefaultCapture

The	default	system	capture	device.	You	can	also	specify

this	device	by	passing	a	NULL	pointer	in	the	device	GUID
parameter.

DSDEVID_DefaultVoiceCapture
The	default	voice	communications	capture	device.	Typically,
this	is	a	secondary	device	such	as	a	USB	headset	with
microphone.

hwndParent
[in]	The	test	wizard	invoked	by	this	method	is	modal.	If	the
calling	application	has	a	window	that	should	be	the	parent
window	of	the	wizard,	it	should	pass	a	handle	to	that	window	in
this	parameter.	If	the	calling	application	does	not	have	a	window,
it	can	pass	NULL.	If	the	DVFLAGS_QUERYONLY	flag	is
specified,	this	parameter	is	not	used	and	the	application	can
pass	NULL.

dwFlags
[in]	Flags.	The	following	flags	can	be	set.
DVFLAGS_QUERYONLY

Audio	setup	is	not	run.	Instead,	the	method	checks	the
registry	to	see	if	the	devices	have	been	tested.	If	the
devices	have	not	been	tested,	the	method	returns
DVERR_RUNSETUP.	If	the	devices	have	been	tested,	the
method	returns	DV_FULLDUPLEX	if	the	devices	support
full	duplex	audio,	or	DV_HALFDUPLEX	if	the	devices	do
not	support	full	duplex	audio.

DVFLAGS_ALLOWBACK
Passing	this	flag	enables	the	Back	button	on	the	wizard's
Welcome	page.	If	the	user	clicks	the	Back	button	on	the
Welcome	page,	the	wizard	exits,	and
IDirectPlayVoiceTest::CheckAudioSetup	returns
DVERR_USERBACK.

Return	Value

Returns	DV_OK,	DV_FULLDUPLEX,	DV_HALFDUPLEX	if
successful,	or	one	of	the	following	error	values.

DVERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DVERR_RUNSETUP The	specified	audio	configuration	has	not	been	tested.	Call	the
IDirectPlayVoiceTest::CheckAudioSetup	method.

DVERR_INVALIDDEVICE The	specified	device	is	invalid.

Remarks

This	method	contains	user	interface	(UI)	elements	and	displays
dialog	boxes.	If	the	DVFLAGS_QUERYONLY	flag	is	specified,	the
tests	are	not	actually	run	and	no	UI	is	raised.	Instead,	the	registry	is
checked	to	determine	the	results	of	a	previous	test	of	these	devices.

If	the	user	cancels	the	wizard,	the
IDirectPlayVoiceTest::CheckAudioSetup	call	returns
DVERR_USERCANCEL.	The	calling	application	can	then	handle	the
situation	appropriately.	For	example,	in	DirectPlay	Voice	part	of	the
gaming	options	control	panel	application,	if	the	user	clicks	Cancel,
the	dialog	box	displays	a	message	indicating	that	voice	cannot	be
used	because	the	wizard	has	been	canceled.

This	method	might	return	DVERR_INVALIDDEVICE	if	the	device
specified	does	not	exist.	Also,	if	you	specify	the	default	device	and
this	method	still	returns	this	error,	then	there	are	no	sound	devices
on	the	system.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDP8SimControl	Interface

Applications	use	methods	of	the	IDP8SimControl	interface	to	create	a
DP8Sim	session	and	test	applications	under	a	variety	of	network
conditions.

IDP8SimControl	Members

ClearAllStatistics Clears	all	of	the	current	DP8Sim	statistics.

Close Closes	the	open	connection	to	a	session.	This	method	must	be	called	on	any	object
successfully	initialized	with	IDP8SimControl::Initialize.

GetAllParameters Retrieves	all	of	the	current	DP8Sim	settings.

GetAllStatistics Retrieves	all	of	the	current	DP8Sim	statistics.

Initialize Initializes	the	IDP8SimControl	interface.	This	method	must	be	called	before	calling	any	other
methods	of	this	interface.

SetAllParameters Modifies	all	of	the	current	DP8Sim	settings.

Interface	Information

Inherits	from IUnknown

Header dp8sim.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/library/en-us/com/htm/cmi_q2z_9dwu.asp

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDP8SimControl::ClearAllStatistics	Method

Clears	all	of	the	current	DP8Sim	statistics.

Syntax

HRESULT	ClearAllStatistics(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DP8SIM_OK	if	successful,	or	one	of	the	following	error
values.

DP8SIMERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DP8SIMERR_INVALIDOBJECT The	DP8Sim	control	object	specified	is	invalid.

DP8SIMERR_NOTINITIALIZED The	DP8Sim	control	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDP8SimControl::Close	Method

Closes	the	open	connection	to	a	session.	This	method	must	be	called	on
any	object	successfully	initialized	with	IDP8SimControl::Initialize.

Syntax

HRESULT	Close(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DP8SIM_OK	if	successful,	or	one	of	the	following	error
values.

DP8SIMERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DP8SIMERR_INVALIDOBJECT The	DP8Sim	control	object	specified	is	invalid.

DP8SIMERR_NOTINITIALIZED The	DP8Sim	control	object	has	not	been	initialized.

Remarks

This	method	will	cancel	any	operations	still	outstanding.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDP8SimControl::GetAllParameters	Method

Retrieves	all	of	the	current	DP8Sim	settings.

Syntax

HRESULT	GetAllParameters(
				DP8SIM_PARAMETERS	*const	pdp8spSend,
				DP8SIM_PARAMETERS	*const	pdp8spReceive,
				const	DWORD	dwFlags
);

Parameters

pdp8spSend
[out]	Pointer	to	a	DP8SIM_PARAMETERS	structure	to	be	filled
with	the	current	send	parameters.

pdp8spReceive
[out]	Pointer	to	a	DP8SIM_PARAMETERS	structure	to	be	filled
with	the	current	receive	parameters.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DP8SIM_OK	if	successful,	or	one	of	the	following	error
values.

DP8SIMERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DP8SIMERR_INVALIDOBJECT The	DP8Sim	control	object	specified	is	invalid.

DP8SIMERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DP8SIMERR_INVALIDPOINTER A	pointer	specified	as	a	parameter	is	invalid.

DP8SIMERR_NOTINITIALIZED The	DP8Sim	control	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDP8SimControl::GetAllStatistics	Method

Retrieves	all	of	the	current	DP8Sim	statistics.

Syntax

HRESULT	GetAllStatistics(
				DP8SIM_STATISTICS	*const	pdp8ssSend,
				DP8SIM_STATISTICS	*const	pdp8ssReceive,
				const	DWORD	dwFlags
);

Parameters

pdp8ssSend
[out]	Pointer	to	a	DP8SIM_STATISTICS	structure	to	be	filled
with	the	current	send	statistics.

pdp8ssReceive
[out]	Pointer	to	a	DP8SIM_STATISTICS	structure	to	be	filled
with	the	current	receive	statistics.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DP8SIM_OK	if	successful,	or	one	of	the	following	error
values.

DP8SIMERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DP8SIMERR_INVALIDOBJECT The	DP8Sim	control	object	specified	is	invalid.

DP8SIMERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DP8SIMERR_INVALIDPOINTER A	pointer	specified	as	a	parameter	is	invalid.

DP8SIMERR_NOTINITIALIZED The	DP8Sim	control	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDP8SimControl::Initialize	Method

Initializes	the	IDP8SimControl	interface.	This	method	must	be	called
before	calling	any	other	methods	of	this	interface.

Syntax

HRESULT	Initialize(
				const	DWORD	dwFlags
);

Parameters

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DP8SIM_OK	if	successful,	or	one	of	the	following	error
values.

DP8SIMERR_ALREADYINITIALIZED The	DP8Sim	control	object	has	already	been	initialized.

DP8SIMERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DP8SIMERR_INVALIDOBJECT The	DP8Sim	control	object	specified	is	invalid.

DP8SIMERR_MISMATCHEDVERSION A	different	version	of	DP8Sim	is	already	in	use	on	this	system.

Remarks

Call	this	method	first	after	using	CoCreateInstance	to	obtain	the
IDP8SimControl	interface.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

IDP8SimControl::SetAllParameters	Method

Modifies	all	of	the	current	DP8Sim	settings.

Syntax

HRESULT	SetAllParameters(
				const	DP8SIM_PARAMETERS	*const	pdp8spSend,
				const	DP8SIM_PARAMETERS	*const	pdp8spReceive,
				const	DWORD	dwFlags
);

Parameters

pdp8spSend
[out]	Pointer	to	a	DP8SIM_PARAMETERS	structure	containing
the	send	parameters	to	set.

pdp8spReceive
[out]	Pointer	to	a	DP8SIM_PARAMETERS	structure	containing
the	receive	parameters	to	set.

dwFlags
[in]	Reserved.	Must	be	0.

Return	Value

Returns	DP8SIM_OK	if	successful,	or	one	of	the	following	error
values.

DP8SIMERR_INVALIDFLAGS The	flags	passed	to	this	method	are	invalid.

DP8SIMERR_INVALIDOBJECT The	DP8Sim	control	object	specified	is	invalid.

DP8SIMERR_INVALIDPARAM One	or	more	of	the	parameters	passed	to	the	method	are	invalid.

DP8SIMERR_INVALIDPOINTER A	pointer	specified	as	a	parameter	is	invalid.

DP8SIMERR_NOTINITIALIZED The	DP8Sim	control	object	has	not	been	initialized.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Functions

This	section	contains	functions	that	are	used	to	create	Microsoft®
DirectPlay®	interface	objects.

Functions

DirectPlay8AddressCreate

DirectPlay8Create

DirectPlay8LobbyCreate

DirectPlayVoiceCreate

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay8AddressCreate	Function

Not	currently	supported.

Users	should	instead	use	CoCreateInstance	to	create	the	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay8Create	Function

Not	currently	supported.

Users	should	instead	use	CoCreateInstance	to	create	the	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlay8LobbyCreate	Function

Not	currently	supported.

Users	should	instead	use	CoCreateInstance	to	create	the	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DirectPlayVoiceCreate	Function

Not	currently	supported.

Users	should	instead	use	CoCreateInstance	to	create	the	object.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Callback	Functions

This	section	contains	Microsoft®	DirectPlay®	prototype	callback
functions	that	are	used	in	Peer-to-Peer,	Client/Server,	Lobbied,	and	Voice
sessions.

Functions

PDVMESSAGEHANDLER

PFNDPNMESSAGEHANDLER

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

PDVMESSAGEHANDLER	Prototype

PDVMESSAGEHANDLER	is	an	application-defined	callback	function
used	by	the	IDirectPlayVoiceClient	and	IDirectPlayVoiceServer	interfaces
to	send	messages	to	the	user.

Syntax

typedef	HRESULT	(CALLBACK	*PDVMESSAGEHANDLER)(
				LPVOID	pvUserContext,
				DWORD	dwMessageType,
				LPVOID	lpMessage
);

Parameters

pvUserContext
Pointer	to	the	application-defined	structure	that	will	be	passed	to
this	callback	function.	This	is	defined	in	the	lpUserContext
parameter	of	the	IDirectPlayVoiceServer::Initialize	and
IDirectPlayVoiceClient::Initialize	methods.

dwMessageType
One	of	the	following	message	types.
DVMSGID_CONNECTRESULT
DVMSGID_CREATEVOICEPLAYER
DVMSGID_DELETEVOICEPLAYER
DVMSGID_DISCONNECTRESULT
DVMSGID_GAINFOCUS
DVMSGID_HOSTMIGRATED
DVMSGID_INPUTLEVEL
DVMSGID_LOCALHOSTSETUP
DVMSGID_LOSTFOCUS
DVMSGID_OUTPUTLEVEL
DVMSGID_PLAYEROUTPUTLEVEL
DVMSGID_PLAYERVOICESTART
DVMSGID_PLAYERVOICESTOP

DVMSGID_RECORDSTART
DVMSGID_RECORDSTOP
DVMSGID_SESSIONLOST
DVMSGID_SETTARGETS

lpMessage
Structure	containing	message	information.

Return	Value

See	the	documentation	for	the	individual	messages	for	appropriate
return	values.	Unless	otherwise	noted,	this	function	should	return
DV_OK.

Remarks

When	implementing	this	callback	function,	you	must	first	view	the
message	type	returned	in	the	dwMessageType	parameter	and	then
cast	the	message	structure	(lpMessage)	to	that	type	to	obtain
message	information.	Some	messages	don't	have	a	defined
structure	because	they	have	no	parameters.	For	these	messages,
the	lpMessage	parameter	is	NULL.

Note		This	function	may	be	called	on	multiple	different	threads	at	the
same	time.	It	must	thus	be	threadsafe	and	reentrant.

All	message	structures	have	the	same	name	as	the	corresponding
message	types	except	the	prefix	is	DVMSG_	instead	of	DVMSGID_.
For	example,	the	structure	for	DVMSGID_RECORDSTART	is
DVMSG_RECORDSTART.

The	structure	sent	to	the	message	handler	is	valid	only	for	the
duration	of	the	call.	Therefore,	if	you	want	to	use	any	of	the

information	passed	into	the	function	after	the	handler	function	has
returned	you	must	make	a	copy	of	the	data.

Callback	messages	from	the	same	player	are	serialized.	When	you
receive	a	message	from	a	player,	you	will	not	receive	another	until
you	have	handled	the	first	message,	and	the	callback	function	has
returned.

Only	messages	that	are	specified	in	the	message	mask	through	a
call	to	the	IDirectPlayVoiceClient::Initialize,
IDirectPlayVoiceServer::Initialize,
IDirectPlayVoiceClient::SetNotifyMask	and
IDirectPlayVoiceServer::SetNotifyMask	methods	are	sent	to	this
callback	function.

The	DVMSGID_GAINFOCUS	and	DVMSGID_LOSTFOCUS
message	structures	have	not	been	implemented	in	this	release	of
Microsoft®	DirectPlay®.

Prototype	Information

Header dvoice.h

Import	library None

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

PFNDPNMESSAGEHANDLER	Prototype

PFNDPNMESSAGEHANDLER	is	an	application-defined	callback
function	used	by	the	IDirectPlay8Peer,	IDirectPlay8Client,
IDirectPlay8Server,	IDirectPlay8LobbyClient,	and
IDirectPlay8LobbiedApplication	interfaces	to	process	messages.

Syntax

typedef	HRESULT	(CALLBACK	*PFNDPNMESSAGEHANDLER)(
				PVOID	pvUserContext,
				DWORD	dwMessageType,
				PVOID	pMessage
);

Parameters

pvUserContext
Pointer	to	the	application-defined	structure	that	will	be	passed	to
this	callback	function.	This	is	defined	in	the	pvUserContext
parameter	of	the	Initialize	method.

dwMessageType
One	of	the	following	DPN_	message	types	that	are	generated
by	the	IDirectPlay8Peer,	IDirectPlay8Client,	and
IDirectPlay8Server	interfaces.	Each	interface	uses	a	different
subset	of	the	available	DPN_	messages.	Refer	to	the	interface
documentation	for	details.	Additionally,	if	the	application
supports	Microsoft®	DirectPlay®	lobby	functionality,	this
parameter	can	specify	one	of	the	following	DPL_	message	types
that	are	generated	by	the	IDirectPlay8LobbyClient	and
IDirectPlay8LobbiedApplication	interfaces.	Each	lobby
interface	uses	a	different	subset	of	the	available	DPL_
messages.	Refer	to	the	interface	documentation	for	details.
DPN_MSGID_ADD_PLAYER_TO_GROUP
DPN_MSGID_ASYNC_OP_COMPLETE

DPN_MSGID_CLIENT_INFO
DPN_MSGID_CONNECT_COMPLETE
DPN_MSGID_CREATE_GROUP
DPN_MSGID_CREATE_PLAYER
DPN_MSGID_DESTROY_GROUP
DPN_MSGID_DESTROY_PLAYER
DPN_MSGID_ENUM_HOSTS_QUERY
DPN_MSGID_ENUM_HOSTS_RESPONSE
DPN_MSGID_GROUP_INFO
DPN_MSGID_HOST_MIGRATE
DPN_MSGID_INDICATE_CONNECT
DPN_MSGID_INDICATED_CONNECT_ABORTED
DPN_MSGID_PEER_INFO
DPN_MSGID_RECEIVE
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
DPN_MSGID_RETURN_BUFFER
DPN_MSGID_SEND_COMPLETE
DPN_MSGID_SERVER_INFO
DPN_MSGID_TERMINATE_SESSION
DPL_MSGID_CONNECT
DPL_MSGID_CONNECTION_SETTINGS
DPL_MSGID_DISCONNECT
DPL_MSGID_RECEIVE
DPL_MSGID_SESSION_STATUS

pMessage
Structure	containing	message	information.

Return	Value

See	the	documentation	for	the	individual	messages	for	appropriate
return	values.	Unless	otherwise	noted,	this	function	should	return
S_OK.

Remarks

This	function	must	be	threadsafe	because	it	might	be	called
reentrantly	through	multiple	threads.

Callback	messages	from	the	same	player	are	serialized.	When	you
receive	a	message	from	a	player,	you	will	not	receive	another	until
you	have	handled	the	first	message,	and	the	callback	function	has
returned.

The	message	structures	have	the	same	name	as	the	message	type
except	the	"DPN_MSGID"	is	replaces	with	"DPNMSG".	For	example,
the	DPN_MSGID_TERMINATE_SESSION	message	type	uses	the
DPNMSG_TERMINATE_SESSION	message	structure	to	convey	the
actual	message	information.

When	implementing	this	callback	function,	first	view	the	message
type	returned	in	the	dwMessageType	parameter	and	then	cast	the
message	structure	(pMessage)	to	that	type	to	obtain	message
information.	Some	messages	don't	have	a	defined	structure	because
they	have	no	parameters.	For	these	messages,	the	pMessage
parameter	is	NULL.

Prototype	Information

Header dplay8.h

Import	library None

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

System	Messages

This	section	contains	Microsoft®	DirectPlay®	messages	that	are
received	by	a	DirectPlay	callback	message	handler.	DirectPlay	uses
these	messages	to	convey	information	from	the	system	to	a	DirectPlay
application.

DirectPlay	Core	Messages

DirectPlay	Lobby	Messages

DirectPlay	Voice	Messages

DirectPlay	Core	Messages

The	following	messages	can	be	processed	by	the	DirectPlay	core
callback	message	handlers.

Messages

DPN_MSGID_ADD_PLAYER_TO_GROUP

DPN_MSGID_APPLICATION_DESC

DPN_MSGID_ASYNC_OP_COMPLETE

DPN_MSGID_CLIENT_INFO

DPN_MSGID_CONNECT_COMPLETE

DPN_MSGID_CREATE_GROUP

DPN_MSGID_CREATE_PLAYER

DPN_MSGID_CREATE_SENDER_CONTEXT

DPN_MSGID_CREATE_THREAD

DPN_MSGID_DESTROY_GROUP

DPN_MSGID_DESTROY_PLAYER

DPN_MSGID_DESTROY_THREAD

DPN_MSGID_ENUM_HOSTS_QUERY

DPN_MSGID_ENUM_HOSTS_RESPONSE

DPN_MSGID_GROUP_INFO

DPN_MSGID_HOST_MIGRATE

DPN_MSGID_INDICATE_CONNECT

DPN_MSGID_INDICATED_CONNECT_ABORTED

DPN_MSGID_NAT_RESOLVER_QUERY

DPN_MSGID_PEER_INFO

DPN_MSGID_RECEIVE

DPN_MSGID_REMOVE_PLAYER_FROM_GROUP

DPN_MSGID_RETURN_BUFFER

DPN_MSGID_SEND_COMPLETE

DPN_MSGID_SERVER_INFO

DPN_MSGID_TERMINATE_SESSION

DirectPlay	Lobby	Messages

The	following	messages	are	handled	by	lobby	client	and	lobbied
application	callback	message	handlers.

Lobby	Messages

DPL_MSGID_CONNECT

DPL_MSGID_CONNECTION_SETTINGS

DPL_MSGID_DISCONNECT

DPL_MSGID_RECEIVE

DPL_MSGID_SESSION_STATUS

DirectPlay	Voice	Messages

The	following	messages	are	handled	by	DirectPlay	voice	callback
message	handlers.

Voice	Messages

DVMSGID_CONNECTRESULT

DVMSGID_CREATEVOICEPLAYER

DVMSGID_DELETEVOICEPLAYER

DVMSGID_DISCONNECTRESULT

DVMSGID_GAINFOCUS

DVMSGID_HOSTMIGRATED

DVMSGID_INPUTLEVEL

DVMSGID_LOCALHOSTSETUP

DVMSGID_LOSTFOCUS

DVMSGID_OUTPUTLEVEL

DVMSGID_PLAYEROUTPUTLEVEL

DVMSGID_PLAYERVOICESTART

DVMSGID_PLAYERVOICESTOP

DVMSGID_RECORDSTART

DVMSGID_RECORDSTOP

DVMSGID_SESSIONLOST

DVMSGID_SETTARGETS

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_MSGID_CONNECT	Message

Microsoft®	DirectPlay®	generates	a	DPL_MSGID_CONNECT	message
when	a	lobby	client	connects	to	the	lobbied	application	through	the
IDirectPlay8LobbyClient::ConnectApplication	method.

The	DPL_MESSAGE_CONNECT	structure	is	passed	with	the
DPL_MSGID_CONNECT	message.

Syntax

typedef	struct	_DPL_MESSAGE_CONNECT	{
				DWORD	dwSize;
				DPNHANDLE	hConnectId;
				PDPL_CONNECTION_SETTINGS	pdplConnectionSettings;
				PVOID	pvLobbyConnectData;
				DWORD	dwLobbyConnectDataSize;
				PVOID	pvConnectionContext;
}		DPL_MESSAGE_CONNECT,	*PDPL_MESSAGE_CONNECT;

Members

dwSize
Size	of	the	DPL_MESSAGE_CONNECT	message	structure.
The	application	must	set	this	member	before	it	uses	the
structure.

hConnectId
Handle	used	to	identify	the	connection.	This	handle	is	used	in
subsequent	calls	to	IDirectPlay8LobbyClient::Send	and
IDirectPlay8LobbyClient::ReleaseApplication.

pdplConnectionSettings
Pointer	to	a	DPL_CONNECTION_SETTINGS	structure	with
connection	information.

pvLobbyConnectData
Pointer	to	lobby	connection	data.

dwLobbyConnectDataSize
Variable	of	type	DWORD	specifying	the	size	of	the	data
contained	in	the	pvLobbyConnectData	member.

pvConnectionContext
Context	value	associated	with	this	connection.	For	lobbied
applications,	set	this	parameter	when	this	message	is	received
in	your	message	handler	to	associate	the	context	value	with	the
connection.	This	may	be	set	to	NULL	to	disable	context	values.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_MSGID_CONNECTION_SETTINGS	Message

The	DPL_MSGID_CONNECTION_SETTINGS	message	is	sent	from	the
lobby	client	to	the	lobby	application	when
IDirectPlay8LobbyClient::SetConnectionSettings	is	called.	It	is	also	sent
from	the	lobby	application	to	the	lobby	client	when
IDirectPlay8LobbiedApplication::SetConnectionSettings	is	called.

The	DPL_MESSAGE_CONNECTION_SETTINGS	structure	is	passed
with	the	DPL_MSGID_CONNECTION_SETTINGS	message.

Syntax

typedef	struct	_DPL_MESSAGE_CONNECTION_SETTINGS	{
				DWORD	dwSize;
				DPNHANDLE	hSender;
				PDPL_CONNECTION_SETTINGS	pdplConnectionSettings;
				PVOID	pvConnectionContext;
}		DPL_MESSAGE_CONNECTION_SETTINGS,	*PDPL_MESSAGE_CONNECTION_SETTINGS;

Members

dwSize
Contains	the	size	of	the
DPL_MESSAGE_CONNECTION_SETTINGS	structure.	It
should	be	set	to	sizeof(
DPL_MESSAGE_CONNECTION_SETTINGS).

hSender
Contains	the	handle	to	the	connection	that	sent	this	message.

pdplConnectionSettings
Contains	a	pointer	to	a	DPL_CONNECTION_SETTINGS
structure	describing	the	connection	settings	for	the	specified
connection.

pvConnectionContext
Pointer	to	a	context	value	that	has	been	set	for	the	connection.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

The	contents	of	the	message	are	valid	only	for	the	duration	of	the
message	callback.	Therefore,	if	you	want	to	use	the	data	contained
in	the	message,	you	must	make	a	copy	before	returning.	In	addition,
if	you	want	to	use	the	addressing	objects	you	must	call	AddRef	on
each	address	to	ensure	you	retain	a	reference.

For	lobbied	applications,	the	context	value	is	set	through	the
pvConnectionContext	member	of	the	DPL_MESSAGE_CONNECT
structure.	When	your	message	handler	receives	this	message,
whatever	you	set	this	member	to	before	returning	will	be	the	context
value	for	that	connection.

For	lobby	clients,	the	pvConnectionContext	parameter	in	the
IDirectPlay8LobbyClient::ConnectApplication	method	will	be	used	as
the	connection's	context	value	if	the	connection	is	successful.

Context	values	are	not	shared	between	the	lobby	client	and	lobbied
application.	For	example,	if	you	set	your	context	value	for	a	lobby
connection	in	your	IDirectPlay8LobbyClient	interface	to	pointer	A	and
in	your	IDirectPlay8LobbiedApplication	interface	you	set	it	to	pointer
B,	indications	in	your	IDirectPlay8LobbyClient	interface	will	have
pointer	A	as	their	context	value	and,	in	your
IDirectPlay8LobbiedApplication	interface,	pointer	B	will	be	the
context	value.

You	can	also	set	your	context	values	to	NULL	if	you	do	not	want	to
use	this	feature.

Message	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_MSGID_DISCONNECT	Message

Microsoft®	DirectPlay®	generates	a	DPL_MSGID_DISCONNECT
message	when	a	lobby	client	disconnects	from	a	lobbied	application
through	the	IDirectPlay8LobbyClient::ReleaseApplication	method.

The	DPL_MESSAGE_DISCONNECT	structure	contains	information	for
the	DPL_MSGID_DISCONNECT	system	message.

Syntax

typedef	struct	_DPL_MESSAGE_DISCONNECT	{
				DWORD	dwSize;
				DPNHANDLE	hDisconnectId;
				HRESULT	hrReason;
				PVOID	pvConnectionContext;
}		DPL_MESSAGE_DISCONNECT,	*PDPL_MESSAGE_DISCONNECT;

Members

dwSize
Size	of	the	DPL_MESSAGE_DISCONNECT	message	structure.
The	application	must	set	this	member	before	it	uses	the
structure.

hDisconnectId
Handle	specifying	the	disconnection	identifier	(ID).

hrReason
Reason	for	the	disconnection.
DPN_OK

It	was	a	standard	disconnection.
DPNERR_CONNECTIONLOST

This	will	be	set	if	the	process	running	the	client	or
application	exited	abnormally.

pvConnectionContext
Context	value	that	has	been	set	for	the	connection.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

For	lobbied	applications,	the	context	value	is	set	through	the
pvConnectionContext	member	of	the	DPL_MESSAGE_CONNECT
structure.	When	your	message	handler	receives	this	message,
whatever	you	set	this	member	to	before	returning	will	be	the	context
value	for	that	connection.

For	lobby	clients,	the	pvConnectionContext	parameter	in	the
IDirectPlay8LobbyClient::ConnectApplication	method	will	be	used	as
the	connection's	context	value	if	the	connection	is	successful.

Context	values	are	not	shared	between	lobby	client	and	lobbied
application.	For	example,	if	you	set	your	context	value	for	a	lobby
connection	in	your	IDirectPlay8LobbyClient	interface	to	pointer	A	and
in	your	IDirectPlay8LobbiedApplication	interface	you	set	it	to	pointer
B,	indications	in	your	IDirectPlay8LobbyClient	interface	will	have
pointer	A	as	their	context	value	and,	in	your
IDirectPlay8LobbiedApplication	interface,	pointer	B	will	be	the
context	value.

You	can	also	set	your	context	values	to	NULL	if	you	do	not	want	to
use	this	feature.

Message	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_MSGID_RECEIVE	Message

Microsoft®	DirectPlay®	generates	the	DPL_MSGID_RECEIVE	message
when	the	target	receives	a	message	sent	by	the
IDirectPlay8LobbyClient::Send	or	IDirectPlay8LobbiedApplication::Send
method.

The	DPL_MESSAGE_RECEIVE	structure	contains	information	for	the
DPL_MSGID_RECEIVE	system	message.

Syntax

typedef	struct	_DPL_MESSAGE_RECEIVE	{
				DWORD	dwSize;
				DPNHANDLE	hSender;
				BYTE	*pBuffer;
				DWORD	dwBufferSize;
				PVOID	pvConnectionContext;
}		DPL_MESSAGE_RECEIVE,	*PDPL_MESSAGE_RECEIVE;

Members

dwSize
Size	of	the	DPL_MESSAGE_RECEIVE	message	structure.	The
application	must	set	this	member	before	it	uses	the	structure.

hSender
Handle	of	the	client	that	sent	the	message.

pBuffer
Pointer	to	message	data.

dwBufferSize
Size	of	the	message	data	contained	in	the	pBuffer.

pvConnectionContext
Context	value	that	has	been	set	for	the	connection.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

For	lobbied	applications,	the	context	value	is	set	through	the
pvConnectionContext	member	of	the	DPL_MESSAGE_CONNECT
structure.	When	your	message	handler	receives	this	message,
whatever	you	set	this	member	to	before	returning	will	be	the	context
value	for	that	connection.

For	lobby	clients,	the	pvConnectionContext	parameter	in	the
IDirectPlay8LobbyClient::ConnectApplication	method	will	be	used	as
the	connection's	context	value	if	the	connection	is	successful.

Context	values	are	not	shared	between	the	lobby	client	and	lobbied
application.	For	example,	if	you	set	your	context	value	for	a	lobby
connection	in	your	IDirectPlay8LobbyClient	interface	to	pointer	A,
and	in	your	IDirectPlay8LobbiedApplication	interface	you	set	it	to
pointer	B,	indications	in	your	IDirectPlay8LobbyClient	interface	will
have	pointer	A	as	their	context	value,	and	in	your
IDirectPlay8LobbiedApplication	interface,	pointer	B	will	be	the
context	value.

You	can	also	set	your	context	values	to	NULL	if	you	do	not	want	to
use	this	feature.

Message	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_MSGID_SESSION_STATUS	Message

Microsoft®	DirectPlay®	generates	the	DPL_MSGID_SESSION_STATUS
message	when	the	session	has	been	updated	with	a	call	to	the
IDirectPlay8LobbiedApplication::UpdateStatus	method.

The	DPL_MESSAGE_SESSION_STATUS	structure	contains	the
information	for	the	DPL_MSGID_SESSION_STATUS	system	message.

Syntax

typedef	struct	_DPL_MESSAGE_SESSION_STATUS	{
				DWORD	dwSize;
				DPNHANDLE	hSender;
				DWORD	dwStatus;
				PVOID	pvConnectionContext;
}		DPL_MESSAGE_SESSION_STATUS,	*PDPL_MESSAGE_SESSION_STATUS;

Members

dwSize
Size	of	the	DPL_MESSAGE_SESSION_STATUS	message
structure.	The	application	must	set	this	member	before	it	uses
the	structure.

hSender
The	handle	of	the	application	that	sent	the	status	update
message.

dwStatus
Updated	status	of	the	session.	This	member	can	be	set	to	one
of	the	following	values.
DPLSESSION_CONNECTED

The	lobbied	application	is	currently	connected	to	a	session.
DPLSESSION_COULDNOTCONNECT

The	lobbied	application	could	not	connect	to	the	session.
DPLSESSION_DISCONNECTED

The	lobbied	application	is	currently	disconnected	from	the
session.

DPLSESSION_TERMINATED
The	connection	between	session	host	and	the	lobbied
application	has	been	terminated.

DPLSESSION_HOSTMIGRATED
The	host	of	a	peer-to-peer	session	has	migrated.	The	local
client	is	not	the	new	host.

DPLSESSION_HOSTMIGRATEDHERE
The	host	of	a	peer-to-peer	session	has	migrated.	The	local
client	is	the	new	host.

pvConnectionContext
Context	value	that	has	been	set	for	the	connection.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

For	lobbied	applications,	the	context	value	is	set	through	the
pvConnectionContext	member	of	the	DPL_MESSAGE_CONNECT
structure.	When	your	message	handler	receives	this	message,
whatever	you	set	this	member	to	before	returning	will	be	the	context
value	for	that	connection.

For	lobby	clients,	the	pvConnectionContext	parameter	in	the
IDirectPlay8LobbyClient::ConnectApplication	method	will	be	used	as
the	connection's	context	value	if	the	connection	is	successful.

Context	values	are	not	shared	between	lobby	client	and	lobbied
application.	For	example,	if	you	set	your	context	value	for	a	lobby
connection	in	your	IDirectPlay8LobbyClient	interface	to	pointer	A	and
in	your	IDirectPlay8LobbiedApplication	interface	you	set	it	to	pointer
B,	indications	in	your	IDirectPlay8LobbyClient	interface	will	have
pointer	A	as	their	context	value	and	in	your

IDirectPlay8LobbiedApplication	interface	pointer	B	will	be	the
context	value.

You	can	also	set	your	context	values	to	NULL	if	you	do	not	want	to
use	this	feature.

Message	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_ADD_PLAYER_TO_GROUP	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_ADD_PLAYER_TO_GROUP	message	when	a	player	has
been	added	to	a	group	in	a	peer-to-peer	or	client/server	session.

The	DPNMSG_ADD_PLAYER_TO_GROUP	structure	contains
information	for	the	DPN_MSGID_ADD_PLAYER_TO_GROUP	system
message.

Syntax

typedef	struct	_DPNMSG_ADD_PLAYER_TO_GROUP	{
				DWORD	dwSize;
				DPNID	dpnidGroup;
				PVOID	pvGroupContext;
				DPNID	dpnidPlayer;
				PVOID	pvPlayerContext;
}		DPNMSG_ADD_PLAYER_TO_GROUP,	*PDPNMSG_ADD_PLAYER_TO_GROUP;

Members

dwSize
Size	of	this	structure.

dpnidGroup
DPNID	of	the	group	to	add	the	player.

pvGroupContext
Group	context	value.

dpnidPlayer
DPNID	of	the	player	added	to	the	group.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_APPLICATION_DESC	Message

This	message	indicates	that	the	application	description	has	been
changed.	There	is	no	accompanying	structure.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

To	determine	the	new	application	description,	call	the
GetApplicationDesc	method	exposed	by	IDirectPlay8Peer,
IDirectPlay8Client,	or	IDirectPlay8Server	interfaces.

Message	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_ASYNC_OP_COMPLETE	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_ASYNC_OP_COMPLETE	message	when	an
asynchronous	request	has	completed.

The	DPNMSG_ASYNC_OP_COMPLETE	structure	contains	information
for	the	DPN_MSGID_ASYNC_OP_COMPLETE	system	message.

Syntax

typedef	struct	_DPNMSG_ASYNC_OP_COMPLETE	{
				DWORD	dwSize;
				DPNHANDLE	hAsyncOp;
				PVOID	pvUserContext;
				HRESULT	hResultCode;
}		DPNMSG_ASYNC_OP_COMPLETE,	*PDPNMSG_ASYNC_OP_COMPLETE;

Members

dwSize
Size	of	this	structure.

hAsyncOp
Asynchronous	operation	handle.

pvUserContext
Supplied	user	context.

hResultCode
HRESULT	indicating	the	result	of	the	asynchronous	operation.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_CLIENT_INFO	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_CLIENT_INFO
message	when	client	data	is	modified	during	a	client/server	session.

The	DPNMSG_CLIENT_INFO	structure	contains	information	for	the
DPN_MSGID_CLIENT_INFO	system	message.

Syntax

typedef	struct	_DPNMSG_CLIENT_INFO	{
				DWORD	dwSize;
				DPNID	dpnidClient;
				PVOID	pvPlayerContext;
}		DPNMSG_CLIENT_INFO,	*PDPNMSG_CLIENT_INFO;

Members

dwSize
Size	of	this	structure.

dpnidClient
DPNID	of	the	client	for	client	information.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_CONNECT_COMPLETE	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_CONNECT_COMPLETE	message	when	the	connection
attempt	has	been	completed	in	a	peer-to-peer	or	client/server	session.

The	DPNMSG_CONNECT_COMPLETE	structure	contains	information
for	the	DPN_MSGID_CONNECT_COMPLETE	system	message.

Syntax

typedef	struct	_DPNMSG_CONNECT_COMPLETE	{
				DWORD	dwSize;
				DPNHANDLE	hAsyncOp;
				PVOID	pvUserContext;
				HRESULT	hResultCode;
				PVOID	pvApplicationReplyData;
				DWORD	dwApplicationReplyDataSize;
				DPNID	dpnidLocal;
}		DPNMSG_CONNECT_COMPLETE,	*PDPNMSG_CONNECT_COMPLETE;

Members

dwSize
Size	of	this	structure.

hAsyncOp
Asynchronous	operation	handle.

pvUserContext
User	context	supplied	when	the	IDirectPlay8Peer::Connect	or
IDirectPlay8Client::Connect	methods	are	called.

hResultCode
HRESULT	describing	the	result	of	the	connection	attempt.	See
the	Return	Values	section	in	the	IDirectPlay8Peer::Connect	or
IDirectPlay8Client::Connect	method	for	more	information.
Additionally,	DPNERR_PLAYERNOTREACHABLE	will	be

returned	if	a	player	has	tried	to	join	a	peer-to-peer	session
where	at	least	one	other	existing	player	in	the	session	cannot
connect	to	the	joining	player.

pvApplicationReplyData
Connection	reply	data	returned	from	the	host	or	server.

dwApplicationReplyDataSize
Size	of	the	data,	in	bytes,	of	the	pvApplicationReplyData
member.

dpnidLocal
Specifies	the	DPNID	of	the	local	player.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

This	message	is	generated	whether	or	not	the	connection	was
successful.

Message	Information

Header dplay8.h

Minimum	availability DirectX	9.0

Minimum	operating	systems Windows	2000,	Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_CREATE_GROUP	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_CREATE_GROUP
message	when	a	group	is	created.

The	DPNMSG_CREATE_GROUP	structure	contains	information	for	the
DPN_MSGID_CREATE_GROUP	system	message.

Syntax

typedef	struct	_DPNMSG_CREATE_GROUP	{
				DWORD	dwSize;
				DPNID	dpnidGroup;
				DPNID	dpnidOwner;
				PVOID	pvGroupContext;
				PVOID	pvOwnerContext;
}		DPNMSG_CREATE_GROUP,	*PDPNMSG_CREATE_GROUP;

Members

dwSize
Size	of	this	structure.

dpnidGroup
DPNID	of	the	of	the	created	group.

dpnidOwner
DPNID	of	the	of	the	group's	owner.	This	value	is	only	set	for
groups	that	have	the	DPNGROUP_AUTODESTRUCT	flag	set	in
the	dwGroupFlags	member	of	the	DPN_GROUP_INFO
structure.

pvGroupContext
Group	context	value.

pvOwnerContext
Owner	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

The	only	method	of	setting	the	group	context	value	is	through	this
system	message.	Once	set,	group	context	values	cannot	be
changed.

Message	Information

Header dplay8.h

Minimum	availability DirectX	9.0

Minimum	operating	systems Windows	2000,	Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_CREATE_PLAYER	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_CREATE_PLAYER
message	when	a	player	is	added	to	a	peer-to-peer	or	client/server
session.

The	DPNMSG_CREATE_PLAYER	structure	contains	information	for	the
DPN_MSGID_CREATE_PLAYER	system	message.

Syntax

typedef	struct	_DPNMSG_CREATE_PLAYER	{
				DWORD	dwSize;
				DPNID	dpnidPlayer;
				PVOID	pvPlayerContext;
}		DPNMSG_CREATE_PLAYER,	*PDPNMSG_CREATE_PLAYER;

Members

dwSize
Size	of	this	structure.

dpnidPlayer
DPNID	of	the	player	that	was	added	to	the	session.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

The	only	method	of	setting	the	player	context	value	is	through	this
message.	You	can	either	set	the	player	context	value	directly,
through	this	message,	or	indirectly	through
DPN_MSGID_INDICATE_CONNECT.	Once	a	player	context	value

has	been	set,	it	cannot	be	changed.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_CREATE_SENDER_CONTEXT
Message

Microsoft®	DirectPlay®	generates	a
DPN_MSGID_CREATE_SENDER_CONTEXT	message	when	another
player	is	recognized	by	the	local	player.

Syntax

typedef	struct	_DPNMSG_CREATE_SENDER_CONTEXT	{
				DWORD	dwSize;
				PVOID	pvSenderContext;
}		DPNMSG_CREATE_SENDER_CONTEXT,	*PDPNMSG_CREATE_SENDER_CONTEXT;

Members

dwSize
Size	of	this	structure.

pvSenderContext
Sender	context	value.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_CREATE_THREAD	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_CREATE_THREAD
message	when	a	new	thread	is	created.

The	DPNMSG_CREATE_THREAD	structure	contains	information	for	the
DPN_MSGID_CREATE_THREAD	system	message.

Syntax

typedef	struct	_DPNMSG_CREATE_THREAD	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwProcessorNum;
				PVOID	pvUserContext;
}		DPNMSG_CREATE_THREAD,	*PDPNMSG_CREATE_THREAD;

Members

dwSize
Size	of	this	structure.

dwFlags
Reserved.	Must	be	0.

dwProcessorNum
Specifies	the	processor	index	to	which	this	thread	is	bound.

pvUserContext
Thread	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	availability DirectX	9.0

Minimum	operating	systems Windows	2000,	Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_DESTROY_GROUP	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_DESTROY_GROUP	message	when	a	group	is	destroyed
from	a	peer-to-peer	or	client/server	session.

The	DPNMSG_DESTROY_GROUP	structure	contains	information	for	the
DPN_MSGID_DESTROY_GROUP	system	message.

Syntax

typedef	struct	_DPNMSG_DESTROY_GROUP	{
				DWORD	dwSize;
				DPNID	dpnidGroup;
				PVOID	pvGroupContext;
				DWORD	dwReason;
}		DPNMSG_DESTROY_GROUP,	*PDPNMSG_DESTROY_GROUP;

Members

dwSize
Size	of	this	structure.

dpnidGroup
DPNID	of	the	group	deleted	from	the	session.

pvGroupContext
Group	context	value.

dwReason
The	following	flag	can	be	set	to	indicate	why	the	player	was
destroyed.
DPNDESTROYGROUPREASON_SESSIONTERMINATED

The	group	is	being	destroyed	because	the	session	was
terminated.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_DESTROY_PLAYER	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_DESTROY_PLAYER	message	when	a	player	leaves	a
peer-to-peer	or	client/server	session.

The	DPNMSG_DESTROY_PLAYER	structure	contains	information	for
the	DPN_MSGID_DESTROY_PLAYER	system	message.

Syntax

typedef	struct	_DPNMSG_DESTROY_PLAYER	{
				DWORD	dwSize;
				DPNID	dpnidPlayer;
				PVOID	pvPlayerContext;
				DWORD	dwReason;
}		DPNMSG_DESTROY_PLAYER,	*PDPNMSG_DESTROY_PLAYER;

Members

dwSize
Size	of	this	structure.

dpnidPlayer
DPNID	of	the	player	deleted	from	the	session.

pvPlayerContext
Player	context	value.

dwReason
One	of	the	following	flags	indicating	why	the	player	was
destroyed.
DPNDESTROYPLAYERREASON_NORMAL

The	player	is	being	deleted	for	normal	reasons.
DPNDESTROYPLAYERREASON_CONNECTIONLOST

The	player	is	being	deleted	because	the	connection	was
lost.

DPNDESTROYPLAYERREASON_SESSIONTERMINATED

The	player	is	being	deleted	because	the	session	was
terminated.

DPNDESTROYPLAYERREASON_HOSTDESTROYEDPLAYER
The	player	is	being	deleted	because	the	host	called
IDirectPlay8Peer::DestroyPeer.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

In	client/server	mode,	this	message	is	received	only	by	the	server.	In
peer-to-peer	mode,	all	players	receive	this	message.

When	the	server	closes	a	session,	it	receives	a
DPN_MSGID_DESTROY_PLAYER	message	for	all	connected
players.	Because	the	server	knows	that	it	is	disconnecting,	this	is
normal	behavior,	and	the	dwReason	member	of	the	associated
structure	is	set	to	DPNDESTROYPLAYERREASON_NORMAL.	The
DPNDESTROYPLAYERREASON_SESSIONTERMINATED	value	is
only	set	for	unexpected	disconnections.

You	might	receive	DPN_MSGID_CREATE_PLAYER	and
DPN_MSGID_DESTROY_PLAYER	messages	on	different	threads.
However,	you	will	not	receive	a	DPN_MSGID_DESTROY_PLAYER
message	before	your	callback	function	has	returned	from	receiving	a
DPN_MSGID_CREATE_PLAYER	message.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_DESTROY_THREAD	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_DESTROY_THREAD	message	when	a	thread	is	shut
down.

The	DPNMSG_DESTROY_THREAD	structure	contains	information	for
the	DPN_MSGID_DESTROY_THREAD	system	message.

Syntax

typedef	struct	_DPNMSG_DESTROY_THREAD	{
				DWORD	dwSize;
				DWORD	dwProcessorNum;
				PVOID	pvUserContext;
}		DPNMSG_DESTROY_THREAD,	*PDPNMSG_DESTROY_THREAD;

Members

dwSize
Size	of	this	structure.

dwProcessorNum
Specifies	the	processor	index	to	which	this	thread	is	bound.

pvUserContext
Thread	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	availability DirectX	9.0

Minimum	operating	systems Windows	2000,	Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_ENUM_HOSTS_QUERY	Message

Microsoft®	DirectPlay®	sends	the
DPN_MSGID_ENUM_HOSTS_QUERY	message	to	the	host's	message
handler	when	a	peer	or	client	is	enumerating	the	available	hosts.

The	DPNMSG_ENUM_HOSTS_QUERY	structure	contains	information
for	the	DPN_MSGID_ENUM_HOSTS_QUERY	system	message.

Syntax

typedef	struct	_DPNMSG_ENUM_HOSTS_QUERY	{
				DWORD	dwSize;
				IDirectPlay8Address	*pAddressSender;
				IDirectPlay8Address	*pAddressDevice;
				PVOID	pvReceivedData;
				DWORD	dwReceivedDataSize;
				DWORD	dwMaxResponseDataSize;
				PVOID	pvResponseData;
				DWORD	dwResponseDataSize;
				PVOID	pvResponseContext;
}		DPNMSG_ENUM_HOSTS_QUERY,	*PDPNMSG_ENUM_HOSTS_QUERY;

Members

dwSize
Size	of	this	structure.

pAddressSender
Pointer	an	IDirectPlay8Address	interface	specifying	the	address
of	the	sender.	You	must	call	IDirectPlay8Address::AddRef	to
increment	the	interface's	reference	count.	Call
IDirectPlay8Address::Release	when	you	no	longer	need	the
interface.

pAddressDevice
Pointer	an	IDirectPlay8Address	interface	specifying	the

address	of	the	device.	You	must	call
IDirectPlay8Address::AddRef	to	increment	the	interface's
reference	count.	Call	IDirectPlay8Address::Release	when	you
no	longer	need	the	interface.

pvReceivedData
Pointer	to	the	data	received	from	the	enumeration.

dwReceivedDataSize
Size	of	the	data	pointed	to	in	the	pvReceivedData	member.

dwMaxResponseDataSize
Maximum	allowed	size	for	the	enumeration	response.

pvResponseData
Pointer	to	the	response	data	from	the	enumeration.	This	data
must	be	valid	beyond	the	scope	of	the	callback	message
handler.	It	cannot	be	stack-based.	You	will	receive	a
DPN_MSGID_RETURN_BUFFER	message	when	DirectPlay	is
finished	with	this	buffer.

dwResponseDataSize
Size	of	the	data	pointed	to	in	the	pvResponseData	member.

pvResponseContext
Pointer	to	a	response	context	value.	This	value	will	be	passed	to
the	host's	message	handler	with	the
DPN_MSGID_RETURN_BUFFER	message	as	the
pvUserContext	member	of	the	associated	structure.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

When	you	respond	normally	to	this	query,	DirectPlay	will	send	you	a
DPN_MSGID_RETURN_BUFFER	message	once	the	buffer	is	no
longer	needed.	You	can	then	safely	free	the	buffer.

You	can	reject	the	query	by	returning	a	value	that	is	not	equal	to
DPN_OK.	However,	when	you	reject	a	query,	DirectPlay	does	not
send	a	reply,	does	not	need	a	reply	buffer,	and	does	not	generate	a
DPN_MSGID_RETURN_BUFFER	message.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_ENUM_HOSTS_RESPONSE	Message

Microsoft®	DirectPlay®	sends	the
DPN_MSGID_ENUM_HOSTS_RESPONSE	message	to	a	peer	or
client's	message	handler	to	convey	the	host's	response	to	an
enumeration	request.

The	DPNMSG_ENUM_HOSTS_RESPONSE	structure	contains
information	for	the	DPN_MSGID_ENUM_HOSTS_RESPONSE	system
message.

Syntax

typedef	struct	_DPNMSG_ENUM_HOSTS_RESPONSE	{
				DWORD	dwSize;
				IDirectPlay8Address	*pAddressSender;
				IDirectPlay8Address	*pAddressDevice;
				const	DPN_APPLICATION_DESC	*pApplicationDescription;
				PVOID	pvResponseData;
				DWORD	dwResponseDataSize;
				PVOID	pvUserContext;
				DWORD	dwRoundTripLatencyMS;
}		DPNMSG_ENUM_HOSTS_RESPONSE,	*PDPNMSG_ENUM_HOSTS_RESPONSE;

Members

dwSize
Size	of	this	structure.

pAddressSender
Pointer	to	an	IDirectPlay8Address	interface	specifying	the
address	of	the	host	responding	to	the	enumeration.	You	must
call	IDirectPlay8Address::AddRef	to	increment	the	interface's
reference	count.	Call	IDirectPlay8Address::Release	when	you
no	longer	need	the	interface.

pAddressDevice

Pointer	an	IDirectPlay8Address	interface	specifying	the
address	of	the	device.	You	must	call
IDirectPlay8Address::AddRef	to	increment	the	interface's
reference	count.	Call	IDirectPlay8Address::Release	when	you
no	longer	need	the	interface.

pApplicationDescription
Pointer	to	a	DPN_APPLICATION_DESC	structure	containing
the	application	description.

pvResponseData
Pointer	to	the	response	data	from	the	enumeration.

dwResponseDataSize
Size	of	the	data	pointed	to	in	the	pvResponseData	member.

pvUserContext
Pointer	to	the	user	context	value.	This	value	is	the	same	as	the
user	context	value	passed	to	IDirectPlay8Peer::EnumHosts	or
IDirectPlay8Client::EnumHosts.

dwRoundTripLatencyMS
Latency	measured	in	milliseconds.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Because	there	is	no	buffer	to	fill,	this	message	does	not	generate	a
DPN_MSGID_RETURN_BUFFER	message.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_GROUP_INFO	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_GROUP_INFO
message	when	group	data	is	modified	during	a	peer-to-peer	or
client/server	session.

The	DPNMSG_GROUP_INFO	structure	contains	information	for	the
DPN_MSGID_GROUP_INFO	system	message.

Syntax

typedef	struct	_DPNMSG_GROUP_INFO	{
				DWORD	dwSize;
				DPNID	dpnidGroup;
				PVOID	pvGroupContext;
}		DPNMSG_GROUP_INFO,	*PDPNMSG_GROUP_INFO;

Members

dwSize
Size	of	this	structure.

dpnidGroup
DPNID	of	the	group	for	group	information.

pvGroupContext
Group	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_HOST_MIGRATE	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_HOST_MIGRATE
message	if	the	DPNSESSION_MIGRATE_HOST	flag	is	set	in	the
DPN_APPLICATION_DESC	structure	and	the	host	has	migrated.

The	DPNMSG_HOST_MIGRATE	structure	contains	information	for	the
DPN_MSGID_HOST_MIGRATE	system	message.

Syntax

typedef	struct	_DPNMSG_HOST_MIGRATE	{
				DWORD	dwSize;
				DPNID	dpnidNewHost;
				PVOID	pvPlayerContext;
}		DPNMSG_HOST_MIGRATE,	*PDPNMSG_HOST_MIGRATE;

Members

dwSize
Size	of	this	structure.

dpnidNewHost
DPNID	of	the	player	that	is	now	hosting	the	session.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_INDICATED_CONNECT_ABORTED
Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_INDICATED_CONNECT_ABORTED	message	if	a	player's
connection	drops	after	it	was	indicated	on	the	host,	but	prior	to	being
added	to	the	session	though	DPN_MSGID_CREATE_PLAYER.

The	DPNMSG_INDICATED_CONNECT_ABORTED	structure	contains
information	for	the	DPN_MSGID_INDICATED_CONNECT_ABORTED
system	message.

Syntax

typedef	struct	_DPNMSG_INDICATED_CONNECT_ABORTED	{
				DWORD	dwSize;
				PVOID	pvPlayerContext;
}		DPNMSG_INDICATED_CONNECT_ABORTED,	*PDPNMSG_INDICATED_CONNECT_ABORTED;

Members

dwSize
Size	of	this	structure.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_INDICATE_CONNECT	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_INDICATE_CONNECT	message	when	a	player	attempts
to	connect	to	a	peer-to-peer	or	client/server	session.

The	DPNMSG_INDICATE_CONNECT	structure	contains	information	for
the	DPN_MSGID_INDICATE_CONNECT	system	message.

Syntax

typedef	struct	_DPNMSG_INDICATE_CONNECT	{
				DWORD	dwSize;
				PVOID	pvUserConnectData;
				DWORD	dwUserConnectDataSize;
				PVOID	pvReplyData;
				DWORD	dwReplyDataSize;
				PVOID	pvReplyContext;
				PVOID	pvPlayerContext;
				IDirectPlay8Address	*pAddressPlayer;
				IDirectPlay8Address	*pAddressDevice;
}		DPNMSG_INDICATE_CONNECT,	*PDPNMSG_INDICATE_CONNECT;

Members

dwSize
Size	of	this	structure.

pvUserConnectData
Data	of	the	connecting	player.

dwUserConnectDataSize
Size	of	the	data,	in	bytes,	contained	in	the	pvUserConnectData
member.

pvReplyData
Connection	reply	data.	This	data	must	be	valid	beyond	the
scope	of	the	callback	message	handler.	You	will	receive	a

DPN_MSGID_RETURN_BUFFER	message	when	DirectPlay	is
finished	with	this	buffer.

dwReplyDataSize
Size	of	the	data,	in	bytes,	contained	in	the	pvReplyData
member.

pvReplyContext
Buffer	context	for	pvReplyData.	This	value	will	be	passed	to	the
host's	message	handler	with	the
DPN_MSGID_RETURN_BUFFER	message	as	the
pvUserContext	member	of	the	associated	structure.

pvPlayerContext
Player	context	preset.

pAddressPlayer
Pointer	to	an	IDirectPlay8Address	interface	for	the	connecting
player.	You	must	call	IDirectPlay8Address::AddRef	to	increment
the	interface's	reference	count.	Call
IDirectPlay8Address::Release	when	you	no	longer	need	the
interface.

pAddressDevice
Pointer	to	an	IDirectPlay8Address	interface	for	the	device
receiving	the	connect	attempt.	You	must	call
IDirectPlay8Address::AddRef	to	increment	the	interface's
reference	count.	Call	IDirectPlay8Address::Release	when	you
no	longer	need	the	interface.

Remarks

Return	DPN_OK	to	allow	the	player	to	join	the	session.	Any	other
return	value	will	reject	the	requested	connection.

The	hResultCode	member	of	the	structure	associated	with	the
DPN_MSGID_CONNECT_COMPLETE	message	that	is	sent	to	the
player	requesting	a	connection	will	be	set	to	S_OK	if	the	connection
was	successful.	If	the	connection	is	rejected,	hResultCode	will	be
set	to	DPNERR_HOSTREJECTEDCONNECTION,	not	the	value	you
return	from	this	message.

When	an	DPN_MSGID_INDICATE_CONNECT	notification	arrives
on	the	host	player's	message	handler,	setting	pvPlayerContext
before	returning	the	thread	will	preset	the	player	context	value	on	the
respective	DPN_MSGID_CREATE_PLAYER	notification.	This
feature	allows	you	to	pass	a	player	context	value	to
DPN_MSGID_CREATE_PLAYER.

If	you	set	a	player	context	value,	that	value	is	not	frozen	until	the
subsequent	DPN_MSGID_CREATE_PLAYER	message	has	been
processed.	You	thus	have	the	option	of	modifying	this	player	context
value	when	you	process	DPN_MSGID_CREATE_PLAYER.

If	a	client	drops	the	connection	after	the	server	has	processed	the
DPN_MSGID_INDICATE_CONNECT	message	but	before	it	has
processed	DPN_MSGID_CREATE_PLAYER,	the	server	will	receive
a	DPN_MSGID_INDICATED_CONNECT_ABORTED	message.	If
you	receive	this	message,	free	any	memory	that	you	allocated	while
processing	DPN_MSGID_INDICATE_CONNECT.	When
DPN_MSGID_CREATE_PLAYER	has	been	processed,	this	memory
should	be	freed	when	you	process
DPN_MSGID_DESTROY_PLAYER.

If	you	specify	a	value	for	pvUserConnectData,	you	will
subsequently	be	sent	a	DPN_MSGID_RETURN_BUFFER	message
to	notify	you	that	you	can	safely	free	the	buffer.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_NAT_RESOLVER_QUERY	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_NAT_RESOLVER_QUERY	message	when	a	player	using
the	Network	Address	Translation	(NAT)	Resolver	calls	Host,
EnumHosts,	or	Connect.

The	DPNMSG_NAT_RESOLVER_QUERY	structure	contains	information
for	the	DPN_MSGID_NAT_RESOLVER_QUERY	system	message.

Syntax

typedef	struct	_DPNMSG_NAT_RESOLVER_QUERY	{
				DWORD	dwSize;
				IDirectPlay8Address	pAddressSender;
				IDirectPlay8Address	pAddressDevice;
				WCHAR	pwszUserString;
}		DPNMSG_NAT_RESOLVER_QUERY,	*PDPNMSG_NAT_RESOLVER_QUERY;

Members

dwSize
Size	of	this	structure.

pAddressSender
Address	of	the	client	that	sent	the	query.

pAddressDevice
Address	of	the	device	that	received	the	query.

pwszUserString
User	specified	string	or	NULL	if	no	string	was	specified.

Remarks

Return	from	the	message	callback	function	with	DPN_OK

A	player	will	be	using	the	NAT	Resolver	if	they	have	called
IDirectPlay8Address::AddComponent	with	the	pwszName	parameter
set	to	DPNA_KEY_NAT_RESOLVER	on	the	device	address.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_PEER_INFO	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_PEER_INFO
message	when	peer	data	is	modified	during	a	peer-to-peer	session.

The	DPNMSG_PEER_INFO	structure	contains	information	for	the
DPN_MSGID_PEER_INFO	system	message.

Syntax

typedef	struct	_DPNMSG_PEER_INFO	{
				DWORD	dwSize;
				DPNID	dpnidPeer;
				PVOID	pvPlayerContext;
}		DPNMSG_PEER_INFO,	*PDPNMSG_PEER_INFO;

Members

dwSize
Size	of	this	structure.

dpnidPeer
DPNID	of	the	peer	for	peer	information.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_RECEIVE	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_RECEIVE	message
when	a	message	has	been	processed	by	the	receiver.

The	DPNMSG_RECEIVE	structure	contains	information	for	the
DPN_MSGID_RECEIVE	system	message.

Syntax

typedef	struct	_DPNMSG_RECEIVE	{
				DWORD	dwSize;
				DPNID	dpnidSender;
				PVOID	pvPlayerContext;
				PBYTE	pReceiveData;
				DWORD	dwReceiveDataSize;
				DPNHANDLE	hBufferHandle;
				DWORD	dwReceiveFlags;
}		DPNMSG_RECEIVE,	*PDPNMSG_RECEIVE;

Members

dwSize
Size	of	this	structure.

dpnidSender
DPNID	of	the	player	that	sent	the	message.

pvPlayerContext
Player	context	value	of	the	player	that	sent	the	message.

pReceiveData
Pointer	to	the	message	data	buffer.	This	buffer	is	normally	only
valid	while	the	DPN_MSGID_RECEIVE	message	is	being
processed	by	the	callback	message	handler.

dwReceiveDataSize
Size	of	the	data,	in	bytes,	of	the	pReceiveData	member.

hBufferHandle
Buffer	handle	to	the	pReceiveData	member.	If	you	have

returned	DPNSUCCESS_PENDING	,	pass	this	value	to	the
appropriate	ReturnBuffer	method	to	notify	DirectPlay	to	free	the
buffer.

dwReceiveFlags
The	following	flags	can	be	specified	to	describe	how	messages
are	received.
DPNRECEIVE_GUARANTEED

The	message	received	was	sent	guaranteed.
DPNRECEIVE_COALESCED

The	message	received	was	coalesced	for	sending.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Because	you	should	not	spend	large	amounts	of	time	processing
messages,	you	should	copy	this	data,	and	process	the	message.
Alternatively,	you	can	return	DPNSUCCESS_PENDING	from	the
callback	message	handler.	Doing	so	transfers	ownership	of	the
buffer	to	the	application.	If	you	return	DPNSUCCESS_PENDING,
you	must	call	IDirectPlay8Peer::ReturnBuffer,
IDirectPlay8Client::ReturnBuffer,	or	IDirectPlay8Server::ReturnBuffer
when	you	are	finished	with	the	buffer.	Pass	the	method	the	value	you
receive	in	the	hBufferHandle	member	to	identify	the	buffer.	If	you
fail	to	call	ReturnBuffer,	you	will	create	a	memory	leak.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_REMOVE_PLAYER_FROM_GROUP	message	when	a
player	has	been	deleted	from	a	group	in	a	peer-to-peer	or	client/server
session.

The	DPNMSG_REMOVE_PLAYER_FROM_GROUP	structure	contains
information	for	the	DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
system	message.

Syntax

typedef	struct	_DPNMSG_REMOVE_PLAYER_FROM_GROUP	{
				DWORD	dwSize;
				DPNID	dpnidGroup;
				PVOID	pvGroupContext;
				DPNID	dpnidPlayer;
				PVOID	pvPlayerContext;
}		DPNMSG_REMOVE_PLAYER_FROM_GROUP,	*PDPNMSG_REMOVE_PLAYER_FROM_GROUP;

Members

dwSize
Size	of	this	structure.

dpnidGroup
DPNID	of	the	group	that	the	player	was	deleted	from.

pvGroupContext
Group	context	value.

dpnidPlayer
DPNID	of	the	player	deleted	from	the	group.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_RETURN_BUFFER	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_RETURN_BUFFER
message	when	DirectPlay	is	done	with	a	user	buffer.

The	DPNMSG_RETURN_BUFFER	structure	contains	information	for	the
DPN_MSGID_RETURN_BUFFER	message.

Syntax

typedef	struct	_DPNMSG_RETURN_BUFFER	{
				DWORD	dwSize;
				HRESULT	hResultCode;
				PVOID	pvBuffer;
				PVOID	pvUserContext;
}		DPNMSG_RETURN_BUFFER,	*PDPNMSG_RETURN_BUFFER;

Members

dwSize
Size	of	this	structure.

hResultCode
Return	value	of	the	operation.	This	will	be	set	to
DPNERR_ENUMRESPONSETOOLARGE	if	the	response	to	a
DPN_MSGID_ENUM_HOSTS_QUERY	message	is	too	large.

pvBuffer
Pointer	to	the	buffer	being	returned.

pvUserContext
Context	value	associated	with	the	buffer.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_SEND_COMPLETE	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_SEND_COMPLETE
message	when	an	asynchronous	send	message	request	has	completed.

The	DPNMSG_SEND_COMPLETE	structure	contains	information	for	the
DPN_MSGID_SEND_COMPLETE	system	message.

Syntax

typedef	struct	_DPNMSG_SEND_COMPLETE	{
				DWORD	dwSize;
				DPNHANDLE	hAsyncOp;
				PVOID	pvUserContext;
				HRESULT	hResultCode;
				DWORD	dwSendTime;
				DWORD	dwFirstFrameRTT;
				DWORD	dwFirstRetryCount;
				DWORD	dwSendCompleteFlags;
				const	DPN_BUFFER_DESC	pBuffers;
				DWORD	dwNumBuffers;
}		DPNMSG_SEND_COMPLETE,	*PDPNMSG_SEND_COMPLETE;

Members

dwSize
Size	of	this	structure.

hAsyncOp
Asynchronous	operation	handle.

pvUserContext
User	context	supplied	in	the	IDirectPlay8Client::Send,
IDirectPlay8Peer::SendTo	and	IDirectPlay8Server::SendTo
methods.

hResultCode
HRESULT	indicating	the	result	of	the	send	message	request.

dwSendTime

Total	time,	in	milliseconds,	between	send	call	and	completion.
dwFirstFrameRTT

The	measured	round-trip	time	for	this	message,	if	it	is	available.
It	will	only	be	available	for	reliable	messages	that	arrive	on	the
first	try	and	therefore	do	not	need	to	be	retransmitted.	For	all
other	messages	this	field	is	set	to	-1.	For	large	messages	that
span	multiple	frames,	this	value	will	reflect	the	measured	round-
trip	time	for	the	first	frame	sent.

dwFirstRetryCount
For	reliable	messages,	this	gives	the	number	of	times	DirectPlay
had	to	retransmit	the	message	before	it	was	successfully
delivered.	For	unreliable	messages,	this	field	is	always	set	to	-1.

dwSendCompleteFlags
Specify	the	following	flags	that	describe	how	the	message	was
sent.
DPNSENDCOMPLETE_GUARANTEED

The	message	was	sent	guaranteed.
DPNSENDCOMPLETE_COALESCED

The	message	was	coalesced	for	sending.
pBuffers

Pointer	to	array	of	DPN_BUFFER_DESC	structures	sent.
dwNumBuffers

Number	of	DPN_BUFFER_DESC	structures	in	the	pBuffers
array.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

If	the	DPNSEND_NOCOPY	flag	was	specified	when
IDirectPlay8Peer::SendTo,	IDirectPlay8Client::Send,	or
IDirectPlay8Server::SendTo	was	called,	the	pBuffers	and
dwNumBuffers	members	refer	to	an	array	that	contains	the	same
buffer	pointers	and	sizes	that	were	passed	when	the	send	call	was
made.	If	the	DPNSEND_NOCOPY	flag	was	not	specified,	pBuffers
is	set	to	NULL	and	dwNumBuffers	is	set	to	0.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_SERVER_INFO	Message

Microsoft®	DirectPlay®	generates	the	DPN_MSGID_SERVER_INFO
message	when	server	data	is	modified	during	a	client/server	session.

The	DPNMSG_SERVER_INFO	structure	contains	information	for	the
DPN_MSGID_SERVER_INFO	system	message.

Syntax

typedef	struct	_DPNMSG_SERVER_INFO	{
				DWORD	dwSize;
				DPNID	dpnidServer;
				PVOID	pvPlayerContext;
}		DPNMSG_SERVER_INFO,	*PDPNMSG_SERVER_INFO;

Members

dwSize
Size	of	this	structure.

dpnidServer
DPNID	of	the	server	for	server	information.

pvPlayerContext
Player	context	value.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_MSGID_TERMINATE_SESSION	Message

Microsoft®	DirectPlay®	generates	the
DPN_MSGID_TERMINATE_SESSION	message	when	a	session	is
terminated	by	the	host.

The	DPNMSG_TERMINATE_SESSION	structure	contains	information
for	the	DPN_MSGID_TERMINATE_SESSION	system	message.

Syntax

typedef	struct	_DPNMSG_TERMINATE_SESSION	{
				DWORD	dwSize;
				HRESULT	hResultCode;
				PVOID	pvTerminateData;
				DWORD	dwTerminateDataSize;
}		DPNMSG_TERMINATE_SESSION,	*PDPNMSG_TERMINATE_SESSION;

Members

dwSize
Size	of	this	structure.

hResultCode
Specifies	how	the	session	was	terminated.	This	member	is	set
to	DPNERR_HOSTTERMINATEDSESSION	if	the	session	was
peer-to-peer,	and	the	host	called
IDirectPlay8Peer::TerminateSession.	If	the	session	was	ended
by	the	host	calling	IDirectPlay8Peer::Close,	or	if	the	host	stops
responding,	hResultCode	is	set	to
DPNERR_CONNECTIONLOST.

pvTerminateData
Termination	data.	If	hResultCode	is	set	to
DPNERR_HOSTTERMINATEDSESSION,	pvTerminateData
points	to	the	data	block	that	the	host	passed	through	the
pvTerminateData	parameter	of

IDirectPlay8Peer::TerminateSession.
dwTerminateDataSize

Size	of	the	data	block	pointed	to	by	pvTerminateData.	This
member	will	be	zero	if	pvTerminateData	is	set	to	NULL.

Remarks

Return	from	the	message	callback	function	with	DPN_OK.

In	a	peer-peer	game	that	permits	host-migration,	if	the	current	host
calls	IDirectPlay8Peer::Close	or	stops	responding,	the	session
does	not	terminate.	Instead,	the	host	migrates	and	all	nonhost
players	receive	a	DPN_MSGID_DESTROY_PLAYER	message	for
the	host's	players,	and	a	DPN_MSGID_HOST_MIGRATE	message
for	the	new	host.	To	prevent	host	migration,	the	host	must	shut	down
the	session	by	calling	IDirectPlay8Peer::TerminateSession.	When
the	host	terminates	a	session	this	way,	all	players	receive	a
DPN_MSGID_TERMINATE_SESSION	message	with	hResultCode
set	to	DPNERR_HOSTTERMINATEDSESSION.	The	session	will
terminate,	generating	DPN_MSGID_DESTROY_PLAYER	messages
for	every	player.

In	a	peer-peer	game	that	does	not	permit	host-migration,	the	session
is	terminated	if	the	host	calls	IDirectPlay8Peer::Close,	or	stops
responding.	In	that	case,	DPN_MSGID_TERMINATE_SESSION	is
sent	to	all	players	with	hResultCode	set	to
DPNERR_CONNECTIONLOST.	The	session	will	terminate,
generating	DPN_MSGID_DESTROY_PLAYER	messages	for	every
player.

In	a	client/server	game,	the	session	is	also	terminated	if	the	host
calls	IDirectPlay8Server::Close	or	stops	responding.	In	that	case,

DPN_MSGID_TERMINATE_SESSION	is	sent	to	all	connected
clients	with	hResultCode	set	to	DPNERR_CONNECTIONLOST.
The	DPN_MSGID_DESTROY_PLAYER	message	not	sent	to
clients.	If	the	server	disconnected	by	calling
IDirectPlay8Server::Close,	it	will	receive
DPN_MSGID_DESTROY_PLAYER	messages	for	all	players,
including	its	own.	Otherwise,	the	server	will	only	receive
DPN_MSGID_DESTROY_PLAYER	for	the	clients'	players.

Note			The	DPN_MSGID_TERMINATE_SESSION	message	typically
arrives	before	any	DPN_MSGID_DESTROY_PLAYER	messages.
However,	the	order	of	arrival	is	not	guaranteed.

Message	Information

Header dplay8.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_CONNECTRESULT	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_CONNECTRESULT	message	when	the	connect	request
generated	through	a	call	to	the	IDirectPlayVoiceClient::Connect	method
has	completed.

The	DVMSG_CONNECTRESULT	structure	contains	information	for	the
DVMSGID_CONNECTRESULT	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				HRESULT	hrResult;
}		DVMSG_CONNECTRESULT	*LPDVMSG_CONNECTRESULT,	*PDVMSG_CONNECTRESULT;

Members

dwSize
Size	of	the	DVMSG_CONNECTRESULT	message	structure.

hrResult
HRESULT	that	specifies	the	outcome	of	the	connection	attempt.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

This	message	is	sent	only	if	the	IDirectPlayVoiceClient::Connect
method	is	called	asynchronously.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_CREATEVOICEPLAYER	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_CREATEVOICEPLAYER	message	when	a	new	player	joins
the	voice	session.

The	DVMSG_CREATEVOICEPLAYER	structure	contains	information	for
the	DVMSGID_CREATEVOICEPLAYER	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DVID	dvidPlayer;
				DWORD	dwFlags;
				PVOID	pvPlayerContext;
}		DVMSG_CREATEVOICEPLAYER	*LPDVMSG_CREATEVOICEPLAYER,	*PDVMSG_CREATEVOICEPLAYER;

Members

dwSize
Size	of	the	this	message	structure.

dvidPlayer
DVID	of	the	player	who	connected.

dwFlags
Flag	specifying	information	about	the	player:
DVPLAYERCAPS_HALFDUPLEX

The	specified	player	is	running	in	half	duplex	mode.	The
player	will	only	be	able	to	receive	voice,	not	transmit	it.

DVPLAYERCAPS_LOCAL
The	player	is	the	local	player.

pvPlayerContext
Player	context	value	for	the	player	in	the	voice	session.	This
value	is	set	through	this	parameter	when	this	message	is
received.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

Upon	connecting	to	a	voice	session,	clients	receive	one	of	these
messages	for	each	player	in	the	voice	session.	These	messages	are
sent	only	to	clients	in	peer-to-peer	voice	sessions.

The	host	receives	these	messages	when	players	join	the	voice
session.

Players	do	not	join	the	voice	session	until	they	have	called
IDirectPlayVoiceClient::Connect.	Therefore,	it	is	possible	for	a	player
to	be	in	the	transport	session	but	not	part	of	the	voice	session.

DirectPlay	and	DirectPlay	Voice	sessions	are	separate	entities.
While	there	are	guarantees	about	message	order	for	each	interface,
there	are	no	guarantees	about	message	order	between	interfaces.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_DELETEVOICEPLAYER	Message

For	clients,	Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_DELETEVOICEPLAYER	message	when	a	player	quits	the
voice	session.	This	message	is	available	only	to	clients	in	peer-to-peer
voice	sessions.

For	the	host,	DirectPlay	Voice	generates	the
DVMSGID_DELETEVOICEPLAYER	message	when	a	player	quits	the
voice	session.

The	DVMSG_DELETEVOICEPLAYER	structure	contains	information	for
the	DVMSGID_DELETEVOICEPLAYER	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DVID	dvidPlayer;
				PVOID	pvPlayerContext;
}		DVMSG_DELETEVOICEPLAYER	*LPDVMSG_DELETEVOICEPLAYER,	*PDVMSG_DELETEVOICEPLAYER;

Members

dwSize
Size	of	the	DVMSG_DELETEVOICEPLAYER	message
structure.

dvidPlayer
DVID	of	player	who	disconnected.

pvPlayerContext
Pointer	to	the	context	value	set	for	the	player.	This	value	is	set
through	the	pvPlayerContext	member	of	the
DVMSGID_CREATEVOICEPLAYER	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

Players	do	not	leave	the	voice	session	until	they	have	called
IDirectPlayVoiceClient::Disconnect	or	they	have	disconnected	from
the	transport	session.	Therefore,	a	client	might	be	part	of	the
transport	session	but	not	part	of	the	voice	session.

DirectPlay	and	DirectPlay	Voice	sessions	are	separate	entities.
While	there	are	guarantees	about	message	order	for	each	interface,
there	are	no	guarantees	about	message	order	between	interfaces.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_DISCONNECTRESULT	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_DISCONNECTRESULT	message	when	the	disconnect
request	generated	through	a	call	to	the
IDirectPlayVoiceClient::Disconnect	method	has	completed.

The	DVMSG_DISCONNECTRESULT	structure	contains	information	for
the	DVMSGID_DISCONNECTRESULT	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				HRESULT	hrResult;
}		DVMSG_DISCONNECTRESULT	*LPDVMSG_DISCONNECTRESULT,	*PDVMSG_DISCONNECTRESULT;

Members

dwSize
Size	of	the	DVMSG_DISCONNECTRESULT	message
structure.

hrResult
Result	of	the	disconnect	request.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

This	message	is	sent	only	if	the
IDirectPlayVoiceClient::Disconnect	method	is	called
asynchronously

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_GAINFOCUS	Message

This	message	is	sent	to	notify	you	that	you	have	begun	capturing	audio.
There	is	no	data	associated	with	this	message.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

This	message	is	sent	when	an	application	that	has	lost	capture	focus
recovers	it.	Refer	to	the	Microsoft®	DirectSound®	documentation	for
more	information	about	capturing	audio.

Message	Information

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_HOSTMIGRATED	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_HOSTMIGRATED	message	when	the	voice	host	has
migrated.

The	DVMSG_HOSTMIGRATED	structure	contains	information	for	the
DVMSGID_HOSTMIGRATED	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DVID	dvidNewHostID;
				LPDIRECTPLAYVOICESERVER	pdvServerInterface;
}		DVMSG_HOSTMIGRATED	*LPDVMSG_HOSTMIGRATED,	*PDVMSG_HOSTMIGRATED;

Members

dwSize
Size	of	the	DVMSG_HOSTMIGRATED	message	structure.

dvidNewHostID
DVID	of	the	new	host.

pdvServerInterface
If	the	local	client	has	become	the	new	voice	session	host,	this
member	will	point	to	a	newly	created	IDirectPlayVoiceServer
object	that	can	be	used	by	the	local	client	for	providing	host
services.	If	the	local	client	is	not	the	new	host,	this	member	will
be	NULL.	If	this	parameter	points	to	an	IDirectPlayVoiceServer
interface,	you	must	call	IDirectPlayVoiceServer::AddRef	to
increment	the	interface's	reference	count.	Call
IDirectPlayVoiceServer::Release	when	you	no	longer	need	the
interface.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

DirectPlay	and	DirectPlay	Voice	sessions	are	separate	entities.
While	there	are	guarantees	about	message	order	for	each	interface,
there	are	no	guarantees	about	message	order	between	interfaces.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_INPUTLEVEL	Message

Microsoft®	DirectPlay®	Voice	generates	the	DVMSGID_INPUTLEVEL
message	periodically	to	notify	the	user	of	the	input	level	from	the
microphone.

The	DVMSG_INPUTLEVEL	structure	contains	information	for	the
DVMSGID_INPUTLEVEL	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwPeakLevel;
				LONG	lRecordVolume;
				PVOID	pvLocalPlayerContext;
}		DVMSG_INPUTLEVEL	*LPDVMSG_INPUTLEVEL,	*PDVMSG_INPUTLEVEL;

Members

dwSize
Size	of	the	DVMSG_INPUTLEVEL	message	structure.

dwPeakLevel
Integer	value	representing	peak	level	across	the	current	frame,
which	corresponds	to	approximately	1/10	second	of	audio
stream.	The	current	frame	typically	lags	50-200	ms	behind	real-
time.	This	value	can	range	from	0	through	99,	with	0	being
completely	silent	and	99	being	the	highest	possible	input	level.

lRecordVolume
Current	recording	volume	for	the	client.	The	value	can	range
from	-10,000	to	0.	This	member	is	available	even	when
automatic	gain	control	is	active.

pvLocalPlayerContext
Pointer	to	the	context	value	set	for	the	local	player.	This	value	is
set	through	the	pvPlayerContext	member	of	the

DVMSGID_CREATEVOICEPLAYER	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

The	period	of	notification	is	set	by	the	dwNotifyPeriod	member	of
the	DVCLIENTCONFIG	structure.	If	the	notification	period	is	set	to	0,
this	message	will	not	be	sent.	In	addition,	if	the	client	is	running	in
half	duplex	mode,	this	message	is	not	available.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_LOCALHOSTSETUP	Message

The	DVMSGID_LOCALHOSTSETUP	message	is	sent	when	the	local
client	is	selected	as	the	new	voice	host	during	host	migration.

The	DVMSG_LOCALHOSTSETUP	structure	contains	information	for	the
DVMSGID_LOCALHOSTSETUP	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				PVOID	pvContext;
				PDVMESSAGEHANDLER	pMessageHandler;
}		DVMSG_LOCALHOSTSETUP	*LPDVMSG_LOCALHOSTSETUP,	*PDVMSG_LOCALHOSTSETUP;

Members

dwSize
Size	of	the	DVMSG_LOCALHOSTSETUP	message	structure.

pvContext
Pointer	to	the	context	value	you	want	to	set	for	the	new	server.

pMessageHandler
Pointer	to	the	callback	function	to	be	used	for	the	new	server.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

The	message	is	sent	before	the	DVMSGID_HOSTMIGRATED
message	and	gives	you	the	chance	to	set	the	callback	function	and
context	value	that	will	be	used	when	creating	the	new	host	object.	If
you	do	not	set	either	of	the	values,	then	the	new	server	interface	will
have	no	callback	function.	When	the	application	returns	from

handling	this	message,	it	will	receive	the
DVMSGID_HOSTMIGRATED	message.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_LOSTFOCUS	Message

The	DVMSGID_LOSTFOCUS	message	is	sent	to	notify	you	that	you
have	stopped	capturing	audio.	There	is	no	data	associated	with	this
message.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

This	message	is	sent	when	an	application	that	has	capture	focus
loses	it	to	another	application.	Refer	to	the	Microsoft®	DirectSound®
documentation	for	more	information	about	capturing	audio.

Message	Information

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_OUTPUTLEVEL	Message

Microsoft®	DirectPlay®	Voice	generates	the	DVMSGID_OUTPUTLEVEL
message	periodically	to	notify	the	user	of	the	output	level	of	playback.

The	DVMSG_OUTPUTLEVEL	structure	contains	information	for	the
DVMSGID_OUTPUTLEVEL	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwPeakLevel;
				LONG	lOutputVolume;
				PVOID	pvLocalPlayerContext;
}		DVMSG_OUTPUTLEVEL	*LPDVMSG_OUTPUTLEVEL,	*PDVMSG_OUTPUTLEVEL;

Members

dwSize
Size	of	the	DVMSG_OUTPUTLEVEL	message	structure.

dwPeakLevel
Integer	representing	the	current	output	level	of	playback.	This
value	must	be	in	the	range	from	0	through	99.	0	indicates
complete	silence	and	99	indicates	the	highest	possible	output
level.

lOutputVolume
Current	playback	volume	for	the	client.

pvLocalPlayerContext
Pointer	to	the	context	value	set	for	the	local	player.	This	value	is
set	through	the	pvPlayerContext	member	of	the
DVMSG_CREATEVOICEPLAYER	message	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

The	period	of	notification	is	set	by	the	dwNotifyPeriod	member	of
the	DVCLIENTCONFIG	structure.	If	the	notification	period	is	set	to	0,
this	message	will	not	be	sent.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_PLAYEROUTPUTLEVEL	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_PLAYEROUTPUTLEVEL	message	periodically	to	notify	the
user	of	the	output	level	of	an	individual	player's	voice	stream.

The	DVMSG_PLAYEROUTPUTLEVEL	structure	contains	information	for
the	DVMSGID_PLAYEROUTPUTLEVEL	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DVID	dvidSourcePlayerID;
				DWORD	dwPeakLevel;
				PVOID	pvPlayerContext;
}		DVMSG_PLAYEROUTPUTLEVEL	*LPDVMSG_PLAYEROUTPUTLEVEL,	*PDVMSG_PLAYEROUTPUTLEVEL;

Members

dwSize
Size	of	the	DVMSG_PLAYEROUTPUTLEVEL	message
structure.

dvidSourcePlayerID
DVID	of	the	player	whose	voice	is	being	played	back.

dwPeakLevel
Integer	representing	the	current	output	level	of	the	player's	voice
stream.	This	value	must	be	in	the	range	from	0	through	99,	with
0	being	completely	silent	and	99	being	the	highest	possible
output	level.

pvPlayerContext
Pointer	to	the	context	value	set	for	the	player.	This	value	is	set
through	the	pvPlayerContext	member	of	the
DVMSGID_CREATEVOICEPLAYER	message	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

This	message	is	generated	while	voice	is	being	played	back	for	an
individual	player.	If	multiple	player	voices	are	being	played,	one
message	for	each	player	speaking	will	be	sent	each	notification
period.

The	period	of	notification	is	set	by	the	dwNotifyPeriod	member	of
the	DVCLIENTCONFIG	structure.	If	the	notification	period	is	set	to	0,
this	message	will	not	be	sent.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_PLAYERVOICESTART	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_PLAYERVOICESTART	message	when	an	incoming	audio
stream	begins	playing	back.

The	DVMSG_PLAYERVOICESTART	structure	contains	information	for
the	DVMSGID_PLAYERVOICESTART	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DVID	dvidSourcePlayerID;
				PVOID	pvPlayerContext;
}		DVMSG_PLAYERVOICESTART	*LPDVMSG_PLAYERVOICESTART,	*PDVMSG_PLAYERVOICESTART;

Members

dwSize
Size	of	the	DVMSG_PLAYERVOICESTART	message	structure.

dvidSourcePlayerID
DVID	of	the	player	where	the	voice	transmission	originated.

pvPlayerContext
Pointer	to	the	context	value	set	for	the	player.	This	value	is	set
through	the	pvPlayerContext	member	of	the
DVMSGID_CREATEVOICEPLAYER	message	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_PLAYERVOICESTOP	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_PLAYERVOICESTOP	message	when	an	incoming	audio
stream	stops.

The	DVMSG_PLAYERVOICESTOP	structure	contains	information	for	the
DVMSGID_PLAYERVOICESTOP	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DVID	dvidSourcePlayerID;
				PVOID	pvPlayerContext;
}		DVMSG_PLAYERVOICESTOP	*LPDVMSG_PLAYERVOICESTOP,	*PDVMSG_PLAYERVOICESTOP;

Members

dwSize
Size	of	the	DVMSG_PLAYERVOICESTOP	message	structure.

dvidSourcePlayerID
DVID	of	the	player	where	the	voice	transmission	originated.

pvPlayerContext
Pointer	to	the	context	value	set	for	the	player.	This	value	is	set
through	the	pvPlayerContext	member	of	the
DVMSGID_CREATEVOICEPLAYER	message	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_RECORDSTART	Message

Microsoft®	DirectPlay®	Voice	generates	the
DVMSGID_RECORDSTART	message	when	audio	input	on	the	local
client	begins.

The	DVMSG_RECORDSTART	structure	contains	information	for	the
DVMSGID_RECORDSTART	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwPeakLevel;
				PVOID	pvLocalPlayerContext;
}		DVMSG_RECORDSTART	*LPDVMSG_RECORDSTART,	*PDVMSG_RECORDSTART;

Members

dwSize
Size	of	the	DVMSG_RECORDSTART	message	structure.

dwPeakLevel
Voice	activation	level	that	caused	the	transmission	to	begin.	In
push-to-talk	mode,	this	value	is	0.

pvLocalPlayerContext
Pointer	to	the	context	value	set	for	the	player.	This	value	is	set
through	the	pvPlayerContext	member	of	the
DVMSGID_CREATEVOICEPLAYER	message	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

This	message	can	be	sent,	for	instance,	when	the	voice	activation

sensitivity	level	is	exceeded	or	when	a	valid	target	is	specified	in
push-to-talk	mode.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_RECORDSTOP	Message

Microsoft®	DirectPlay®	Voice	generates	the	DVMSGID_RECORDSTOP
message	when	audio	input	on	the	local	client	stops.

The	DVMSG_RECORDSTOP	structure	contains	information	for	the
DVMSGID_RECORDSTOP	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwPeakLevel;
				PVOID	pvLocalPlayerContext;
}		DVMSG_RECORDSTOP	*LPDVMSG_RECORDSTOP,	*PDVMSG_RECORDSTOP;

Members

dwSize
Size	of	the	DVMSG_RECORDSTOP	message	structure.

dwPeakLevel
Voice	activation	level	that	caused	the	transmission	to	stop.	In
push-to-talk	mode,	this	value	is	0.

pvLocalPlayerContext
Pointer	to	the	context	value	set	for	the	player.	This	value	is	set
through	the	pvPlayerContext	member	of	the
DVMSGID_CREATEVOICEPLAYER	message	structure.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

This	message	can	be	generated	when	the	voice	activation	sensitivity
level	is	not	being	reached	or	when	a	target	is	deselected	in	push-to-

talk	mode.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_SESSIONLOST	Message

Microsoft®	DirectPlay®	Voice	generates	the	DVMSGID_SESSIONLOST
message	when	the	voice	session	terminates.

The	DVMSG_SESSIONLOST	structure	contains	information	for	the
DVMSGID_SESSIONLOST	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				HRESULT	hrResult;
}		DVMSG_SESSIONLOST	*LPDVMSG_SESSIONLOST,	*PDVMSG_SESSIONLOST;

Members

dwSize
Size	of	the	DVMSG_SESSIONLOST	message	structure.

hrResult
HRESULT	value	indicating	why	the	session	was	terminated.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

DirectPlay	and	DirectPlay	Voice	sessions	are	separate	entities.
While	there	are	guarantees	about	message	order	for	each	interface,
there	are	no	guarantees	about	message	order	between	interfaces.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVMSGID_SETTARGETS	Message

Microsoft®	DirectPlay®	Voice	generates	the	DVMSGID_SETTARGETS
message	when	the	IDirectPlayVoiceClient::SetTransmitTargets	or
IDirectPlayVoiceServer::SetTransmitTargets	methods	are	called.

The	DVMSG_SETTARGETS	structure	contains	information	for	the
DVMSGID_SETTARGETS	system	message.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwNumTargets;
				PDVID	pdvidTargets;
}		DVMSG_SETTARGETS	*LPDVMSG_SETTARGETS,	*PDVMSG_SETTARGETS;

Members

dwSize
Size	of	the	DVMSG_SETTARGETS	message	structure.

dwNumTargets
Number	of	DVIDs	contained	in	the	pdvidTargets	member.

pdvidTargets
Array	of	DVIDs	specifying	the	set	targets.	This	can	also	be	set
to	NULL	if	there	are	no	targets.

Remarks

Return	from	the	message	callback	function	with	DV_OK.

Message	Information

Header dvoice.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Structures

This	section	contains	Microsoft®	DirectPlay®	structures.

Structures

DP8SIM_PARAMETERS

DP8SIM_STATISTICS

DPL_APPLICATION_INFO

DPL_CONNECT_INFO

DPL_CONNECTION_SETTINGS

DPL_PROGRAM_DESC

DPN_APPLICATION_DESC

DPN_BUFFER_DESC

DPN_CAPS

DPN_CAPS_EX

DPN_CONNECTION_INFO

DPN_GROUP_INFO

DPN_PLAYER_INFO

DPN_SECURITY_CREDENTIALS

DPN_SECURITY_DESC

DPN_SERVICE_PROVIDER_INFO

DPN_SP_CAPS

DPNHCAPS

DVCAPS

DVCLIENTCONFIG

DVCOMPRESSIONINFO

DVSESSIONDESC

DVSOUNDDEVICECONFIG

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DP8SIM_PARAMETERS	Structure

Used	to	set	and	retrieve	DP8Sim	settings.

Syntax

typedef	struct	_DP8SIM_PARAMTERS	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwPacketHeaderSize;
				DWORD	dwBandwidthBPS;
				FLOAT	fPcketLossPercent;
				DWORD	dwMinLatencyMS;
				DWORD	dwMaxLatencyMS;
}	DP8SIM_PARAMETERS,	*PDP8SIM_PARAMETERS;

Members

dwSize
Must	be	set	the	to	size	of	this	structure,	in	bytes,	before	using
this	structure.

dwFlags
Unused.	Must	be	zero.

dwPacketHeaderSize
Fixed	transport	packet	header	size	for	packet	size	calculations,
or	0	to	calculate	based	on	Microsoft®	DirectPlay®	headers	and
payload	only.	The	following	values	are	defined	for	convenience.
DP8SIMPACKETHEADERSIZE_IP

Represents	the	standard	Internet	Protocol	(IP)	header	size,
20	bytes.

DP8SIMPACKETHEADERSIZE_UDP
Represents	the	standard	User	Datagram	Protocol	(UDP)
header	size,	8	bytes.

DP8SIMPACKETHEADERSIZE_IP_UDP
Represents	the	standard	IP	and	UDP	header	size,	28
bytes.	This	is	the	recommended	value.

dwBandwidthBPS
Bandwidth	limit	in	bytes	per	second.	Set	to	0	for	no	limit.

fPcketLossPercent
Percentage	of	packets	to	drop.	Can	be	a	value	between	0.0	and
100.0.

dwMinLatencyMS
Minimum	artificial	latency,	in	milliseconds.	This	value	is	in
addition	to	any	latency	cause	by	bandwidth	settings.

dwMaxLatencyMS
Maximum	artificial	latency,	in	milliseconds.	This	value	is	in
addition	to	any	latency	cause	by	bandwidth	settings.

Structure	Information

Header dp8sim.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DP8SIM_STATISTICS	Structure

Used	to	set	and	retrieve	DP8Sim	statistics.

Syntax

typedef	struct	_DP8SIM_STATISTICS	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwTransmittedPackets;
				DWORD	dwTransmittedBytes;
				DWORD	dwDroppedPackets;
				DWORD	dwDroppedBytes;
				DWORD	dwTotalDelayMS;
}	DP8SIM_STATISTICS,	*PDP8SIM_STATISTICS;

Members

dwSize
Must	be	set	the	to	size	of	this	structure,	in	bytes,	before	using
this	structure.

dwFlags
Reserved.	Must	be	zero.

dwTransmittedPackets
Number	of	packets	sent	or	received.

dwTransmittedBytes
Number	of	bytes	sent	or	received.

dwDroppedPackets
Number	of	packets	intentionally	dropped.

dwDroppedBytes
Number	of	bytes	intentionally	dropped.

dwTotalDelayMS
Total	number	of	milliseconds	delay	added	due	to	bandwidth
limitations	or	random	latency	settings.

Structure	Information

Header dp8sim.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_APPLICATION_INFO	Structure

Used	in	the	pEnumData	parameter	of	the
IDirectPlay8LobbyClient::EnumLocalPrograms	method	to	describe	the
lobbied	application.

Syntax

typedef	struct	_DPL_APPLICATION_INFO	{
				GUID	guidApplication;
				PWSTR	pwszApplicationName;
				DWORD	dwNumRunning;
				DWORD	dwNumWaiting;
				DWORD	dwFlags;
}	DPL_APPLICATION_INFO,	*PDPL_APPLICATION_INFO;

Members

guidApplication
Variable	of	type	GUID	specifying	the	lobbied	application.

pwszApplicationName
Pointer	to	a	variable	of	type	WSTR	containing	the	name	of	the
lobbied	application.

dwNumRunning
Number	of	instances	of	the	application.

dwNumWaiting
Number	of	clients	waiting	to	connect	to	the	lobbied	application.

dwFlags
Reserved.	Must	be	0.

Structure	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_CONNECT_INFO	Structure

Used	to	specify	connection	information	for	a	lobby	client	when	connecting
to	the	lobby	application	in	the
IDirectPlay8LobbyClient::ConnectApplication	method.

Syntax

typedef	struct	_DPL_CONNECT_INFO	{
				DWORD	dwSize;
				DWORD	dwFlags;
				GUID	guidApplication;
				PDPL_CONNECTION_SETTINGS	pdplConnectionSettings;
				PVOID	pvLobbyConnectData;
				DWORD	dwLobbyConnectDataSize;
}	DPL_CONNECT_INFO,	*PDPL_CONNECT_INFO;

Members

dwSize
Size	of	the	DPL_CONNECT_INFO	structure.	The	application
must	set	this	member	before	it	uses	the	structure.

dwFlags
One	of	the	following	flags,	which	determine	connection	behavior.
DPLCONNECT_LAUNCHNEW

Launches	a	new	instance	of	the	application.
DPLCONNECT_LAUNCHNOTFOUND

Launches	a	new	instance	of	the	application	only	if	there	is
currently	no	application	running	that	can	supply	launch
settings.

guidApplication
Variable	of	type	globally	unique	identifier	(GUID)	specifying	the
application.

pdplConnectionSettings
Contains	the	connection	settings	you	want	to	associate	with	the
connection	when	it	is	established.

pvLobbyConnectData
Pointer	to	connection	data	passed	to	the	lobbied	application.

dwLobbyConnectDataSize
Variable	of	type	DWORD	specifying	the	size	of	the	data	buffer	in
the	pvLobbyConnectData	member.

Structure	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_CONNECTION_SETTINGS	Structure

Used	to	specify	the	settings	you	want	to	associate	with	a	connection.
These	settings	contain	all	the	information	required	to	create,	initialize	and
connect/host	a	Microsoft®	DirectPlay®	object.

Syntax

typedef	struct	_DPL_CONNECTION_SETTINGS	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DPN_APPLICATION_DESC	dpnAppDesc;
				IDirectPlay8Address	*pdp8HostAddress;
				IDirectPlay8Address	*ppdp8DeviceAddresses;
				DWORD	cNumDeviceAddresses;
				PWSTR	pwszPlayerName;
}	DPL_CONNECTION_SETTINGS,	*PDPL_CONNECTION_SETTINGS;

Members

dwSize
Size	of	the	DPL_CONNECTION_SETTINGS	structure.	The
application	must	set	this	to	sizeof(
DPL_CONNECTION_SETTINGS)	before	using	this	structure.

dwFlags
The	following	flag	can	be	specified.
DPLCONNECTSETTINGS_HOST

The	application	should	host	the	session.
dpnAppDesc

Pointer	to	the	application	description	that	should	be	passed	to
the	Connect	or	Host	call	when	DirectPlay	initialized.

pdp8HostAddress
If	DPLCONNECTSETTINGS_HOST	is	not	specified,	this	is	the
address	of	the	session	the	client	should	connect	to.	If
DPLCONNECTSETTINGS_HOST	is	specified,	this	member
must	be	NULL.

ppdp8DeviceAddresses
This	structure	contains	an	array	of	pointers	to	device	addresses.
If	DPLCONNECTSETTINGS_HOST	is	specified,	this	member
will	contain	the	addresses	the	host	should	listen	on.	If
DPLCONNECTSETTINGS_HOST	is	not	specified,	this	member
will	contain	the	address	of	the	devices	the	client	should	use
when	connecting.

cNumDeviceAddresses
Number	of	addresses	specified	in	the	ppdp8DeviceAddresses
member.

pwszPlayerName
Can	be	used	to	pass	the	player	name	you	want	the	DirectPlay
object	to	use	when	launching.	This	member	can	be	NULL.

Structure	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPL_PROGRAM_DESC	Structure

Describes	a	Microsoft®	DirectPlay®	lobby-aware	application.

Syntax

typedef	struct	_DPL_PROGRAM_DESC	{
				DWORD	dwSize;
				DWORD	dwFlags;
				GUID	guidApplication;
				PWSTR	pwszApplicationName;
				PWSTR	pwszCommandLine;
				PWSTR	pwszCurrentDirectory;
				PWSTR	pwszDescription;
				PWSTR	pwszExecutableFilename;
				PWSTR	pwszExecutablePath;
				PWSTR	pwszLauncherFilename;
				PWSTR	pwszLauncherPath;
}	DPL_PROGRAM_DESC,	*PDPL_PROGRAM_DESC;

Members

dwSize
Size	of	the	DPL_PROGRAM_DESC	structure.	The	application
must	set	this	member	before	it	uses	the	structure.

dwFlags
Reserved.	Must	be	0.

guidApplication
Variable	of	type	GUID	specifying	the	application.

pwszApplicationName
Pointer	to	the	application	name.

pwszCommandLine
Pointer	to	the	command-line	arguments.

pwszCurrentDirectory
Pointer	to	the	directory	that	should	be	set	as	the	application's
working	directory..

pwszDescription
Pointer	to	the	application	description.

pwszExecutableFilename
Pointer	to	the	file	name	of	the	application	executable.

pwszExecutablePath
Pointer	to	the	path	of	the	application	executable.

pwszLauncherFilename
Pointer	to	the	file	name	of	the	launcher	executable.

pwszLauncherPath
Pointer	to	the	path	of	the	launcher	executable.

Structure	Information

Header dplobby8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_APPLICATION_DESC	Structure

Describes	the	settings	for	a	Microsoft®	DirectPlay®	application.

Syntax

typedef	struct	_DPN_APPLICATION_DESC	{
				DWORD	dwSize;
				DWORD	dwFlags;
				GUID	guidInstance;
				GUID	guidApplication;
				DWORD	dwMaxPlayers;
				DWORD	dwCurrentPlayers;
				WCHAR	*pwszSessionName;
				WCHAR	*pwszPassword;
				PVOID	pvReservedData;
				DWORD	dwReservedDataSize;
				PVOID	pvApplicationReservedData;
				DWORD	dwApplicationReservedDataSize;
}	DPN_APPLICATION_DESC,	*PDPN_APPLICATION_DESC;

Members

dwSize
Size	of	the	DPN_APPLICATION_DESC	structure.	The
application	must	set	this	member	before	it	uses	the	structure.

dwFlags
One	of	the	following	flags	describing	application	behavior.
DPNSESSION_CLIENT_SERVER

This	type	of	session	is	client/server.	This	flag	cannot	be
combined	with	DPNSESSION_MIGRATE_HOST.

DPNSESSION_MIGRATE_HOST
Used	in	peer-to-peer	sessions,	enables	host	migration.	This
flag	cannot	be	combined	with
DPNSESSION_CLIENT_SERVER.

DPNSESSION_NODPNSVR

Do	not	forward	enumerations	to	your	host	from	DPNSVR.
See	Using	the	DirectPlay	DPNSVR	Application	for	details.

DPNSESSION_REQUIREPASSWORD
The	session	is	password	protected.	If	this	flag	is	set,
pwszPassword	must	be	set	to	a	valid	string.

DPNSESSION_NOENUMS
Do	not	allow	DirectPlay	to	start	enumeration	queries.

DPNSESSION_FAST_SIGNED
Add	an	8	byte	value	to	each	packet.	The	packet	must
contain	this	value	before	a	receiver	accepts	it.

DPNSESSION_FULL_SIGNED
Add	a	rolling	8	byte	SHA1	hash	value	based	on	the
contents	of	the	packet.	The	packet	must	have	the	correct
SHA1	signature	before	it	is	accepted.

guidInstance
Globally	unique	identifier	(GUID)	that	is	generated	by	DirectPlay
at	startup	.	This	member	is	an	[out]	parameter	when	calling
IDirectPlay8Peer::GetApplicationDesc,
IDirectPlay8Client::GetApplicationDesc,	or
IDirectPlay8Server::GetApplicationDesc.	It	is	an	optional	[in]
parameter	when	calling	the	IDirectPlay8Peer::Connect	and
IDirectPlay8Client::Connect	methods.	It	must	be	set	to
GUID_NULL	when	you	call	the
IDirectPlay8Peer::SetApplicationDesc	or
IDirectPlay8Server::SetApplicationDesc	methods.	You	cannot
obtain	this	GUID	by	calling	the	IDirectPlay8Server::Host	or
IDirectPlay8Peer::Host	methods.	You	must	obtain	the	GUID	by
calling	a	GetApplicationDesc	method.

guidApplication
Application	GUID.

dwMaxPlayers
Variable	of	type	DWORD,	specifying	the	maximum	number	of
players	allowed	in	the	session.	Set	this	member	to	0	to	specify
an	unlimited	number	of	players.

dwCurrentPlayers
Variable	of	type	DWORD	specifying	the	number	of	players
currently	connected	to	the	session.	This	member	is	is	set	only
by	the	IDirectPlay8Peer::GetApplicationDesc,
IDirectPlay8Client::GetApplicationDesc,	and

IDirectPlay8Server::GetApplicationDesc	methods.
pwszSessionName

Pointer	to	a	variable	of	type	WCHAR	specifying	the	name	of	the
session.	This	member	is	set	by	the	host	or	server	only	for
informational	purposes.	A	client	cannot	use	this	name	to
connect	to	a	host	or	server.

pwszPassword
Pointer	to	a	variable	of	type	WCHAR	specifying	the	Unicode
password	that	is	required	to	connect	to	the	session.	This	must
be	NULL	if	the	DPNSESSION_REQUIREPASSWORD	is	not	set
in	the	dwFlags	member.

pvReservedData
Pointer	to	DirectPlay	reserved	data.	An	application	should	never
modify	this	value.

dwReservedDataSize
Variable	of	type	DWORD	specifying	the	size	of	data	contained	in
the	pvReservedData	member.	An	application	should	never
modify	this	value.

pvApplicationReservedData
Pointer	to	application-specific	reserved	data.	This	value	is
optional	and	may	be	set	to	NULL.

dwApplicationReservedDataSize
Variable	of	type	DWORD	specifying	the	size	of	the	data	in	the
pvApplicationReservedData	member.	This	value	is	optional
and	may	be	set	to	0.

Remarks

Multiple	instances	of	the	application	can	run	simultaneously	in	a
session.	If	multiple	instances	are	running,	each	will	have	a	unique
DPN_APPLICATION_DESC	structure	associated	with	it.
"Application"	refers	to	a	specific	instance	of	an	application.

The	dwMaxPlayers,	pvApplicationReservedData,
dwApplicationReservedDataSize,	pwszPassword,	and
pwszSessionName	members	can	be	set	when	calling	the

IDirectPlay8Peer::Host,	IDirectPlay8Server::Host,
IDirectPlay8Peer::SetApplicationDesc,	or
IDirectPlay8Server::SetApplicationDesc	methods.

Setting	either	the	DPNSESSION_FAST_SIGNED	or	the
DPNSESSION_FULL_SIGNED	flag	prevents	players	using	Microsoft
DirectX®	8.1	or	earlier	versions	from	being	able	to	connect	to	the
session.	These	flags	cannot	be	used	together.

	Security	Alert		When	connecting	to	a	password-
protected	session,	the	data	in	the	pwszPassword	member	is
transmitted	in	clear	text	to	the	host.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_BUFFER_DESC	Structure

Used	by	Microsoft®	DirectPlay®	for	generic	buffer	information.

Syntax

typedef	struct	_BUFFERDESC	{
				DWORD	dwBufferSize;
				BYTE	*pBufferData;
}	DPN_BUFFER_DESC,	BUFFERDESC;

Members

dwBufferSize
Variable	of	type	DWORD	that	specifies	the	size	of	the	data
buffer	in	the	pBufferData	member.

pBufferData
Pointer	to	a	variable	of	type	BYTE	that	contains	the	buffer	data.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_CAPS	Structure

Used	when	setting	and	retrieving	general	parameters	for	Microsoft®
DirectPlay®.

Syntax

typedef	struct	_DPN_CAPS	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwConnectTimeout;
				DWORD	dwConnectRetries;
				DWORD	dwTimeoutUntilKeepAlive;
}	DPN_CAPS,	*PDPN_CAPS;

Members

dwSize
This	value	must	be	set	to	the	size	of	the	structure.

dwFlags
Reserved,	this	must	be	0.

dwConnectTimeout
Number	of	milliseconds	DirectPlay	should	wait	before	it	retries	a
connection	request.

dwConnectRetries
Number	of	connection	retries	DirectPlay	should	make	during	the
connection	process.

dwTimeoutUntilKeepAlive
Number	of	milliseconds	DirectPlay	waits	since	the	last	time	it
received	a	packet	from	an	endpoint,	before	it	sends	a	keep	alive
message.	The	actual	delay	can	vary	from	the	specified	value	to
as	much	as	twice	the	specified	value.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_CAPS_EX	Structure

Used	when	setting	and	retrieving	parameters	to	tune	the	Microsoft®
DirectPlay®	protocol.

Syntax

typedef	struct	_DPN_CAPS_EX	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwConnectTimeout;
				DWORD	dwConnectRetries;
				DWORD	dwTimeoutUntilKeepAlive;
				DWORD	dwMaxRecvMsgSize;
				DWORD	dwNumSendRetries;
				DWORD	dwMaxSendRetryInterval;
				DWORD	dwDropThresholdRate;
				DWORD	dwThrottleRate;
				DWORD	dwNumHardDisconnectSends;
				DWORD	dwMaxHardDisconnectPeriod;
}	DPN_CAPS_EX,	*PDPN_CAPS_EX;

Members

dwSize
Value,	which	must	be	set	to	the	size	of	the	structure.

dwFlags
Reserved;	this	must	be	0.

dwConnectTimeout
Number	of	milliseconds	DirectPlay	should	wait	before	it	retries	a
connection	request.

dwConnectRetries
Number	of	connection	retries	DirectPlay	should	make	during	the
connection	process.

dwTimeoutUntilKeepAlive
Number	of	milliseconds	DirectPlay	waits	since	the	last	time	it

received	a	packet	from	an	endpoint,	before	it	sends	a	keep-alive
message.	The	actual	delay	can	vary	from	the	specified	value	to
as	much	as	twice	the	specified	value.

dwMaxRecvMsgSize
Maximum	size	of	received	messages,	in	bytes.

dwNumSendRetries
Maximum	number	of	times	applications	can	try	to	send	a
message	before	the	connection	is	considered	dead.

dwMaxSendRetryInterval
Maximum	number	of	milliseconds	between	attempts	to	resend
messages.

dwDropThresholdRate
Percentage	of	dropped	packets	allowed	before	Message
Throttling	is	applied.

dwThrottleRate
Percentage	to	reduce	the	send	queue	when	applying	message
throttling.

dwNumHardDisconnectSends
Number	of	hard	disconnect	frames	to	send	when	the
DPNCLOSE_IMMEDIATE	flag	is	specified.

dwMaxHardDisconnectPeriod
Maximum	time,	in	milliseconds,	between	each	hard	disconnect
frame	sent.

Remarks

When	using	the	DPN_CAPS_EX	structure	with	IDirectPlay8Peer	or
IDirectPlay8Client	objects,	the	dwMaxRecvMsgSize	member	is
ignored.	Callback	functions	for	IDirectPlay8Peer	and
IDirectPlay8Client	will	receive	messages	of	any	size,	even	those
larger	than	dwMaxRecvMsgSize.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_CONNECTION_INFO	Structure

Used	to	retrieve	statistics	for	the	connection	between	you	and	a	remote
computer	that	you	are	connected	to.

Syntax

typedef	struct	_DPN_CONNECTION_INFO	{
				DWORD	dwSize;
				DWORD	dwRoundTripLatencyMS;
				DWORD	dwThroughputBPS;
				DWORD	dwPeakThroughputBPS;
				DWORD	dwBytesSentGuaranteed;
				DWORD	dwPacketsSentGuaranteed;
				DWORD	dwBytesSentNonGuaranteed;
				DWORD	dwPacketsSentNonGuaranteed;
				DWORD	dwBytesRetried;
				DWORD	dwPacketsRetried;
				DWORD	dwBytesDropped;
				DWORD	dwPacketsDropped;
				DWORD	dwMessagesTransmittedHighPriority;
				DWORD	dwMessagesTimedOutHighPriority;
				DWORD	dwMessagesTransmittedNormalPriority;
				DWORD	dwMessagesTimedOutNormalPriority;
				DWORD	dwMessagesTransmittedLowPriority;
				DWORD	dwMessagesTimedOutLowPriority;
				DWORD	dwBytesReceivedGuaranteed;
				DWORD	dwPacketsReceivedGuaranteed;
				DWORD	dwBytesReceivedNonGuaranteed;
				DWORD	dwPacketsReceivedNonGuaranteed;
				DWORD	dwMessagesReceived;
}	DPN_CONNECTION_INFO,	*PDPN_CONNECTION_INFO;

Members

dwSize

Size	of	the	structure.
dwRoundTripLatencyMS

Approximate	time,	in	milliseconds	(ms),	it	takes	a	packet	to
reach	the	remote	computer	and	be	returned	to	the	local
computer.	This	number	will	change	throughout	the	session	as
link	conditions	change.

dwThroughputBPS
Approximate	throughput,	in	bytes	per	second	(Bps),	for	the	link.
This	number	will	change	throughout	the	session	as	link
conditions	change.	This	value	is	approximate,	and	you	may
want	to	calculate	your	own	value	for	greater	accuracy.

dwPeakThroughputBPS
Peak	throughput,	in	bytes	per	second	(Bps)	for	the	link.	This
number	will	change	throughout	the	session	as	link	conditions
change.	This	value	is	approximate,	and	you	may	want	to
calculate	your	own	value	for	greater	accuracy.

dwBytesSentGuaranteed
Amount,	in	bytes,	of	guaranteed	messages	that	have	been	sent.

dwPacketsSentGuaranteed
Number	of	packets	of	guaranteed	messages	that	have	been
sent.

dwBytesSentNonGuaranteed
Amount,	in	bytes,	of	nonguaranteed	messages	that	have	been
sent.

dwPacketsSentNonGuaranteed
Number	of	packets	of	nonguaranteed	messages	that	have	been
sent.

dwBytesRetried
Amount,	in	bytes,	of	messages	that	have	been	retried.

dwPacketsRetried
Amount	of	packets	that	have	been	retried.

dwBytesDropped
Amount,	in	bytes,	of	messages	that	have	been	dropped.

dwPacketsDropped
Number	of	packets	that	have	been	dropped.

dwMessagesTransmittedHighPriority
Number	of	high-priority	messages	that	have	been	transmitted.

dwMessagesTimedOutHighPriority
Number	of	high-priority	messages	that	have	timed	out.

dwMessagesTransmittedNormalPriority
Number	of	normal-priority	messages	that	have	been
transmitted.

dwMessagesTimedOutNormalPriority
Number	of	normal-priority	messages	that	have	timed	out.

dwMessagesTransmittedLowPriority
Number	of	low-priority	messages	that	have	been	transmitted.

dwMessagesTimedOutLowPriority
Number	of	low	priority	messages	that	have	timed	out.

dwBytesReceivedGuaranteed
Amount,	in	bytes,	of	guaranteed	messages	that	have	been
received.

dwPacketsReceivedGuaranteed
Number	of	packets	of	guaranteed	messages	that	have	been
received.

dwBytesReceivedNonGuaranteed
Amount,	in	bytes,	of	nonguaranteed	messages	that	have	been
received.

dwPacketsReceivedNonGuaranteed
Number	of	packets	of	nonguaranteed	messages	that	have	been
received.

dwMessagesReceived
Number	of	messages	that	have	been	received.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_GROUP_INFO	Structure

Describes	static	group	information.

Syntax

typedef	struct	_DPN_GROUP_INFO	{
				DWORD	dwSize;
				DWORD	dwInfoFlags;
				PWSTR	pwszName;
				PVOID	pvData;
				DWORD	dwDataSize;
				DWORD	dwGroupFlags;
}	DPN_GROUP_INFO,	*PDPN_GROUP_INFO;

Members

dwSize
Variable	of	type	DWORD	describing	the	size	of	this	structure.

dwInfoFlags
Variable	of	type	DWORD	containing	flags	that	specify	the	type
of	information	contained	in	this	structure.	When	the
IDirectPlay8Peer::GetGroupInfo	or
IDirectPlay8Server::GetGroupInfo	method	returns,	the
dwInfoFlags	member	of	the	DPN_GROUP_INFO	will	always
have	both	flags	set,	even	if	the	corresponding	pointers	are	set	to
NULL.	These	flags	are	used	when	calling
IDirectPlay8Peer::SetGroupInfo,	to	notify	Microsoft®
DirectPlay®	of	which	values	have	changed.
DPNINFO_NAME

The	pwszName	member	contains	valid	data.
DPNINFO_DATA

The	pvData	member	contains	valid	data.
pwszName

Pointer	to	a	variable	of	type	PWSTR	specifying	the	Unicode
name	of	the	group.

pvData
Pointer	to	the	data	describing	the	group.

dwDataSize
Variable	of	type	DWORD	that	specifies	the	size	of	the	data
contained	in	the	pvData	member.

dwGroupFlags
Variable	of	type	DWORD	that	can	be	set	to	the	following
description	flag.
DPNGROUP_AUTODESTRUCT

Causes	the	group	to	be	automatically	destroyed	when	the
group	creator	leaves	the	group.

Remarks

When	using	this	structure	in	the	IDirectPlay8Peer::GetGroupInfo
and	IDirectPlay8Server::GetGroupInfo	methods,	dwInfoFlags
must	be	set	to	0.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_PLAYER_INFO	Structure

Describes	static	player	information.

Syntax

typedef	struct	_DPN_PLAYER_INFO	{
				DWORD	dwSize;
				DWORD	dwInfoFlags;
				PWSTR	pwszName;
				PVOID	pvData;
				DWORD	dwDataSize;
				DWORD	dwPlayerFlags;
}	DPN_PLAYER_INFO,	*PDPN_PLAYER_INFO;

Members

dwSize
Variable	of	type	DWORD	describing	the	size	of	this	structure.

dwInfoFlags
Variable	of	type	DWORD	containing	flags	that	specify	the	type
of	information	contained	in	this	structure.	When	the
IDirectPlay8Peer::GetPeerInfo	or
IDirectPlay8Server::GetClientInfo	method	returns,	the
dwInfoFlags	member	of	the	DPN_PLAYER_INFO	will	always
have	both	flags	set,	even	if	the	corresponding	pointers	are	set	to
NULL.	These	flags	are	used	when	calling
IDirectPlay8Peer::SetPeerInfo,	to	notify	Microsoft®	DirectPlay®
which	values	have	changed.
DPNINFO_NAME

The	pwszName	member	contains	valid	data.
DPNINFO_DATA

The	pvData	member	contains	valid	data.
pwszName

Pointer	to	a	variable	of	type	PWSTR	specifying	the	Unicode
name	of	the	player.

pvData
Pointer	to	the	data	describing	the	player.

dwDataSize
Variable	of	type	DWORD	that	specifies	the	size	of	the	data
contained	in	the	pvData	member.

dwPlayerFlags
Variable	of	type	DWORD	that	may	contain	one	of	the	following
flags.
DPNPLAYER_LOCAL

This	information	is	for	the	local	player.
DPNPLAYER_HOST

This	player	is	the	host	for	the	application.

Remarks

When	using	this	structure	in	the	IDirectPlay8Peer::GetPeerInfo	and
IDirectPlay8Server::GetClientInfo	methods,	dwInfoFlags	must	be
set	to	0.

When	using	this	structure	in	the	IDirectPlay8Client::SetClientInfo,
IDirectPlay8Peer::SetPeerInfo,	or
IDirectPlay8Server::SetServerInfo	methods,	dwPlayerFlags	should
be	set	to	zero.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_SECURITY_CREDENTIALS	Structure

Not	currently	implemented.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_SECURITY_DESC	Structure

Not	currently	implemented.

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_SERVICE_PROVIDER_INFO	Structure

Used	when	enumerating	information	for	a	specific	service	provider.

Syntax

typedef	struct	_DPN_SERVICE_PROVIDER_INFO	{
				DWORD	dwFlags;
				GUID	guid;
				WCHAR	*pwszName;
				PVOID	pvReserved;
				DWORD	dwReserved;
}	DPN_SERVICE_PROVIDER_INFO,	*PDPN_SERVICE_PROVIDER_INFO;

Members

dwFlags
Describes	the	service	provider.
DPNSPINFO_NETWORKSIMULATORDEVICE

Device	is	available	to	the	DP8Sim	service	provider.
guid

GUID	for	the	service	provider.
pwszName

Name	of	the	service	provider.
pvReserved

Reserved.	Must	be	0.
dwReserved

Reserved.	Must	be	0.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPN_SP_CAPS	Structure

Used	to	set	and	retrieve	parameters	for	service	providers.

Syntax

typedef	struct	_DPN_SP_CAPS	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwNumThreads;
				DWORD	dwDefaultEnumCount;
				DWORD	dwDefaultEnumRetryInterval;
				DWORD	dwDefaultEnumTimeout;
				DWORD	dwMaxEnumPayloadSize;
				DWORD	dwBuffersPerThread;
				DWORD	dwSystemBufferSize;
}	DPN_SP_CAPS,	*PDPN_SP_CAPS;

Members

dwSize
Value	must	be	set	to	the	size	of	the	structure.

dwFlags
Can	be	a	combination	of	the	following	flags.
DPNSPCAPS_SUPPORTSDPNSRV

DPNSVR.EXE	will	provide	port	sharing	for	the	given	SP.
Currently	this	flag	is	available	on	Internet	Protocol	(IP)	and
Internetwork	Packet	Exchange	(IPX)	only.	See	Using	the
DirectPlay	DPNSVR	Application	for	a	further	discussion	of
DPNSVR.

DPNSPCAPS_SUPPORTSBROADCAST
On	IP	and	IPX	applications,	the	service	provider	has	the
ability	to	broadcast	to	find	games	if	not	enough	addressing
information	is	passed.

DPNSPCAPS_SUPPORTSALLADAPTERS
The	service	provider	will	use	all	devices	on	the	system.

There	is	no	need	to	specify	a	device	element.
DPNSPCAPS_SUPPORTSTHREADPOOL

The	service	provider	will	support	the	thread	pool.
DPNSPCAPS_NETWORKSIMULATOR

Specifies	the	DP8Sim	service	provider.
dwNumThreads

Number	of	threads	the	service	provider	will	use	for	servicing
network	requests.	The	default	value	for	this	is	based	on	an
algorithm	that	takes	into	account	the	number	of	processors	on
the	system.	Most	applications	will	not	need	to	modify	this	value.

After	a	service	provider	is	active	in	your	process,	you	can	only
increase	this	value.	Decreasing	the	value	will	have	no	effect.
The	setting	is	process	wide,	which	means	it	will	affect	your
current	Microsoft®	DirectPlay®	object	and	any	other	DirectPlay
objects	in	your	process.

You	can	specify	a	lower	value	than	the	default	if	you	call	the
SetSPCaps	method	before	you	call	an	EnumHosts,	Connect,
or	Host	method.

dwDefaultEnumCount
Default	enumeration	count.

dwDefaultEnumRetryInterval
Default	retry	interval,	in	milliseconds.

dwDefaultEnumTimeout
Default	enumeration	timeout	value,	in	milliseconds.

dwMaxEnumPayloadSize
Maximum	size	of	the	payload	information	that	can	be	sent	in	the
pvResponseData	member	of	the	structures	that	accompany	the
DPN_MSGID_ENUM_HOSTS_QUERY	and
DPN_MSGID_ENUM_HOSTS_RESPONSE	messages.

dwBuffersPerThread
The	number	of	outstanding	receive	buffers	allocated	for	each
DirectPlay	thread.	If	you	increase	the	number	of	receive	buffers,
DirectPlay	can	pull	more	data	out	of	the	operating	system
buffers.	However,	you	can	also	increase	latency	if	data	is

arriving	faster	than	your	application	can	process	it.
dwSystemBufferSize

The	size	of	the	operating	system	buffer.	This	buffer	holds	data
from	the	communications	device	when	your	application	cannot
process	data	as	fast	as	it	arrives.	The	purpose	of	this	buffer	is	to
prevent	data	loss	if	you	receive	a	sudden	burst	of	data,	or	if	the
receive	threads	are	momentarily	stalled.	Increasing
dwSystemBufferSize	can	increase	latency	if	your	application
cannot	process	the	received	data	fast	enough.	You	can
eliminate	the	operating	system	buffer	by	setting
dwSystemBufferSize	to	0.	However,	if	you	do	so,	you	run	the
risk	of	losing	data	if	you	cannot	process	the	received	data	as
fast	as	it	arrives.

Remarks

The	dwBuffersPerThread	and	dwSystemBufferSize	members	are
used	only	by	IP	and	IPX	service	providers.	The	default	values	for
these	members	are	set	by	the	service	provider.	To	determine	the
default	value,	call	the	appropriate	GetSPCaps	method.	Most
applications	should	use	the	default	values	for	these	two	members.
They	are	intended	primarily	for	use	by	developers	writing	server
applications	for	massively-multiplayer	games.

Structure	Information

Header dplay8.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DPNHCAPS	Structure

Used	to	set	and	retrieve	parameters	for	service	providers.

Syntax

typedef	struct	_DPNHCAPS	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwNumRegisteredPorts;
				DWORD	dwMinLeaseTimeRemaining;
				DWORD	dwRecommendedGetCapsInterval;
}	DPNHCAPS,	*PDPNHCAPS;

Members

dwSize
Size	of	this	structure.	Must	be	filled	prior	to	calling
IDirectPlayNATHelp::GetCaps.

dwFlags
Flags	indicating	capabilities	of	the	Internet	gateway	server.
Possible	values	are:
DPNHCAPSFLAGS_LOCALFIREWALLPRESENT

At	least	one	network	connection	has	a	local	firewall	present.
DPNHCAPSFLAGS_GATEWAYPRESENT

At	least	one	network	connection	has	an	Internet	gateway
present.

DPNHCAPSFLAGS_GATEWAYISLOCAL
A	detected	Internet	gateway	is	local.

DPNHCAPSFLAGS_PUBLICADDRESSAVAILABLE
At	least	one	server	has	a	valid	public	address	for	registered
mappings.

DPNHCAPSFLAGS_NOTALLSUPPORTACTIVENOTIFY
At	least	one	available	server	does	not	support	an	active
notification	mechanism	and	must	be	polled.

dwNumRegisteredPorts

Number	of	ports	currently	registered,	including	multiple	ports
registered	at	the	same	time.

dwMinLeaseTimeRemaining
Time	remaining	on	the	lease	that	will	expire	first,	in	milliseconds.

dwRecommendedGetCapsInterval
Recommended	time	between	calls	to
IDirectPlayNATHelp::GetCaps,	in	milliseconds.

Structure	Information

Header dpnathlp.h

Minimum	operating	systems Windows	98,	Pocket	PC	2002

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVCAPS	Structure

Describes	the	capabilities	of	the	Microsoft®	DirectPlay®	VoiceClient
object.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwFlags;
}	DVCAPS,	*LPDVCAPS,	*PDVCAPS;

Members

dwSize
Must	be	set	the	to	size	of	this	structure,	in	bytes,	before	using
this	structure.

dwFlags
Reserved.	Must	be	0.

Structure	Information

Header dvoice8.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVCLIENTCONFIG	Structure

Controls	the	run-time	parameters	for	the	client.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwFlags;
				LONG	lRecordVolume;
				LONG	lPlaybackVolume;
				DWORD	dwThreshold;
				DWORD	dwBufferQuality;
				DWORD	dwBufferAggressiveness;
				DWORD	dwNotifyPeriod;
}	DVCLIENTCONFIG,	*LPDVCLIENTCONFIG,	*PDVCLIENTCONFIG;

Members

dwSize

Must	be	set	to	the	size	of	this	structure,	in	bytes,	before	using
this	structure.

dwFlags
Combination	of	the	following	flags.	Possible	values	include
the	following:

DVCLIENTCONFIG_AUTORECORDVOLUME

Activates	automatic	gain	control.	With	automatic
gain	control,	Microsoft®	DirectPlay®	Voice	adjusts
the	hardware	input	volume	on	your	sound	card
automatically	to	get	the	best	input	level	possible.
You	can	determine	the	current	input	volume	by
looking	at	the	lRecordVolume	member	of	this
structure	after	calling
IDirectPlayVoiceClient::GetClientConfig,	or	by
looking	at	the	lRecordVolume	member	of	the
structure	that	accompanies	a
DVMSGID_INPUTLEVEL	message.

DVCLIENTCONFIG_ECHOSUPPRESSION

Activates	the	echo	suppression	mode.	This	mode
reduces	echo	introduced	by	configurations	with
external	speakers	and	extremely	sensitive
microphones.	While	remote	players'	voices	are
being	played	back	on	the	local	speaker,	the
microphone	is	automatically	muted.	If	the	local
player	is	transmitting,	the	playback	of	remote
player	voices	is	buffered	until	local	input	stops.
After	local	input	stops,	playback	resumes.

DVCLIENTCONFIG_MUTEGLOBAL

Mutes	playback	of	the	main	sound	buffer.	Only
sound	buffers	created	through	calls	to
IDirectPlayVoiceClient::Create3DSoundBuffer	will
be	heard.

DVCLIENTCONFIG_PLAYBACKMUTE

Mutes	playback	of	all	DirectPlay	Voice	output	and
stops	playback.	This	also	stops	decompression	of
incoming	packets	so	CPU	usage	is	reduced.
Packets	are	effectively	discarded	while	this	flag	is
specified.

DVCLIENTCONFIG_RECORDMUTE

Mutes	input	from	the	microphone	and	stops
recording.	This	also	stops	compression	so	CPU
usage	is	reduced.

In	addition	to	the	preceding	flags,	the	method	of
transmission	is	controlled	by	setting	only	one	of	the
following	flags	or	by	not	specifying	either	flag.	Possible
values	include	the	following:

DVCLIENTCONFIG_AUTOVOICEACTIVATED

Places	the	transmission	control	system	into
automatic	voice	activation	mode.	In	this	mode,
the	sensitivity	of	voice	activation	is	determined
automatically	by	the	system.	The	input	level	is
adaptive,	adjusting	itself	automatically	to	the	input
signal.	For	most	applications	this	should	be	the
setting	used.	This	flag	is	mutually	exclusive	with
the
DVCLIENTCONFIG_MANUALVOICEACTIVATED
flag.

DVCLIENTCONFIG_MANUALVOICEACTIVATED

Places	the	transmission	control	system	into
manual	voice	activation	mode.	In	this	mode,
transmission	of	voice	begins	when	the	input	level
passes	the	level	specified	by	the	dwThreshold
member.	When	input	levels	drop	below	the
specified	level,	transmission	stops.	This	flag	is
mutually	exclusive	with	the
DVCLIENTCONFIG_AUTOVOICEACTIVATED
flag.

If	you	do	not	specify	either
DVCLIENTCONFIG_MANUALVOICEACTIVATED	or
DVCLIENTCONFIG_AUTOVOICEACTIVATED,	the	system
will	operate	in	push-to-talk	mode.	In	push-to-talk	mode,	as
long	as	there	is	a	valid	target	specified	the	input	from	the
microphone	will	be	transmitted.	Voice	transmission	stops
when	a	NULL	target	is	set	or	the	current	target	leaves	the
session	or	is	destroyed.

lRecordVolume

LONG	value	that	specifies	to	what	level	the	volume	of	the
recording	should	be	set.	See	the
IDirectSoundBuffer8::SetVolume	method	for	valid	values.

If	automatic	gain	control	is	enabled,	this	value	can	be	set	to
DVRECORDVOLUME_LAST,	which	tells	the	system	to	use	the
current	volume	as	determined	by	the	automatic	gain	control
algorithm.	If	a	value	other	than	DVRECORDVOLUME_LAST	is
specified	in	combination	with	automatic	gain	control,	this	value
will	be	used	to	restart	the	algorithm	at	the	specified	value.

On	return	from	a	call	to
IDirectPlayVoiceClient::GetClientConfig,	this	value	will
contain	the	current	recording	volume.	When	adjusting	the
recording	volume,	DirectPlay	Voice	will	adjust	the	volume	for	the
microphone	(if	a	microphone	volume	is	present	for	the	card)	and
the	master	recording	volume	(if	one	is	present	on	the	card).	If
neither	a	microphone	volume	nor	a	master	record	volume	is
present,	DirectPlay	Voice	will	be	unable	to	adjust	the	recording
volume.

lPlaybackVolume

Value	indicating	to	what	level	the	playback	volume	should	be
set.	Adjusting	this	volume	adjusts	both	the	main	buffer	and	all	3-
D	sound	buffers.	See	the	IDirectSoundBuffer8::SetVolume
method	for	valid	values.	You	can	specify
DVPLAYBACKVOLUME_DEFAULT	to	use	a	default	value	that	is
appropriate	for	most	situations	(full	volume).

dwThreshold

Input	level	used	to	trigger	voice	transmission	if	the
DVCLIENTCONFIG_MANUALVOICEACTIVATED	flag	is
specified	in	the	dwFlags	member.	When	the	flag	is	specified,
this	can	be	set	to	any	value	within	the	range	of
DVTHRESHOLD_MIN	to	DVTHRESHOLD_MAX.	Additionally,
DVTHRESHOLD_DEFAULT	can	be	set	to	use	a	default	value.	If
DVCLIENTCONFIG_MANUALVOICEACTIVATED	or
DVCLIENTCONFIG_AUTOVOICEACTIVATED	is	not	specified
in	the	dwFlags	member.	When	the	flag	is	specified,	this	can	be
set	to	any	value	within	the	range	member	of	this	structure
(indicating	push-to-talk	mode)	this	value	must	be	set	to
DVTHRESHOLD_UNUSED.

dwBufferQuality

Not	implemented.

dwBufferAggressiveness

Not	implemented.

dwNotifyPeriod

Value	indicating	how	often	you	want	to	receive

DVMSGID_OUTPUTLEVEL	and	DVMSGID_INPUTLEVEL	(if
session	is	full	duplex)	messages.	If	this	value	is	set	to	0,	these
messages	are	disabled.	The	value	specifies	the	number	of
milliseconds	between	these	messages.
DVNOTIFYPERIOD_MINPERIOD	specifies	the	minimum
allowable	period	between	messages.

Remarks

This	structure	is	first	used	in	the	call	to
IDirectPlayVoiceClient::Connect,	where	it	sets	the	initial	state	of
these	parameters.	The	structure	can	be	retrieved	after	a	connection
has	been	made	by	calling
IDirectPlayVoiceClient::GetClientConfig,	and	set	using
IDirectPlayVoiceClient::SetClientConfig.

Structure	Information

Header dvoice8.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVCOMPRESSIONINFO	Structure

Describes	the	attributes	of	a	specific	Microsoft®	DirectPlay®	Voice
compression	type.

Syntax

typedef	struct	{
				DWORD	dwSize;
				GUID	guidType;
				LPWSTR	lpszName;
				LPWSTR	lpszDescription;
				DWORD	dwFlags;
				DWORD	dwMaxBitsPerSecond;
}	DVCOMPRESSIONINFO,	*LPDVCOMPRESSIONINFO,	*PDVCOMPRESSIONINFO;

Members

dwSize
Must	be	set	the	to	size	of	this	structure,	in	bytes,	before	using
this	structure.

guidType
GUID	used	to	identify	this	compression	type	by	DirectPlay
Voice.

lpszName
Pointer	to	a	name	describing	the	codec.

lpszDescription
Pointer	to	a	longer	name	of	the	codec.

dwFlags
Reserved;	must	be	0.

dwMaxBitsPerSecond
Maximum	number	of	bits	per	second	claimed	by	the	codec.

Structure	Information

Header dvoice8.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVSESSIONDESC	Structure

Describes	the	desired	or	current	session	settings	for	the	Microsoft®
DirectPlay®	Voice	server.	This	structure	is	used	by	the	voice	session	host
to	configure	the	session,	and	by	the	session	host	and	clients	to	retrieve
information	about	the	current	session.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwFlags;
				DWORD	dwSessionType;
				GUID	guidCT;
				DWORD	dwBufferQuality;
				DWORD	dwBufferAggressiveness;
}	DVSESSIONDESC,	*LPDVSESSIONDESC,	*PDVSESSIONDESC;

Members

dwSize
Must	be	set	the	to	size	of	this	structure,	in	bytes,	before	using
this	structure.

dwFlags
Combination	of	the	following	flags.
DVSESSION_NOHOSTMIGRATION

The	voice	host	will	not	migrate	regardless	of	the	transport
settings.	If	this	flag	is	not	specified,	the	voice	host	will
migrate	if	the	transport	supports	it.

DVSESSION_SERVERCONTROLTARGET
The	clients	are	unable	to	control	the	target	of	their	speech.
Only	the	server	player	can	control	the	target	of	their
speech.	If	the	server	does	not	specify	this	flag,	only	the
clients	can	control	the	target	of	their	speech.	This	flag	can
be	specified	only	in	multicast	and	mixing	sessions.

dwSessionType
The	type	of	DirectPlay	Voice	session	to	run.	The
DVSESSIONTYPE_PEER	flag	is	not	available	in	client/server
sessions;	all	other	flags	are	valid	for	all	session	types.	This
member	can	be	one	of	the	following	values.
DVSESSIONTYPE_PEER

Voice	messages	will	be	sent	directly	between	players.
DVSESSIONTYPE_MIXING

Voice	session	will	use	a	mixing	server.	In	this	mode	of
operation,	all	voice	messages	are	sent	to	the	server,	which
mixes	them	and	then	forwards	a	single,	premixed	stream	to
each	client.	This	reduces	the	bandwidth	and	CPU	usage	on
clients	significantly	at	the	cost	of	increased	bandwidth	and
CPU	usage	on	the	server.

DVSESSIONTYPE_FOWARDING
Voice	messages	will	be	routed	through	the	session	host.
This	will	save	bandwidth	on	the	clients	at	the	expense	of
bandwidth	usage	on	the	server.	This	option	is	only	useful	if
the	session	host	has	a	high-speed	connection.

guidCT
GUID	specifying	the	compression	type	of	the	session.	To	select
the	default	compression	codec,	set	this	member	to
DPVCTGUID_DEFAULT.

dwBufferQuality
The	buffer	quality	setting.	This	member	is	unused	for	all	session
types	except	mixing	sessions.	For	all	sessions	except	mixing
sessions,	set	this	member	to	DVBUFFERQUALITY_DEFAULT.

Allowable	values	are	between	DVBUFFERQUALITY_MIN	and
DVBUFFERQUALITY_MAX.	Additionally,	this	member	can	be
set	to	the	following	value.

DVBUFFERQUALITY_DEFAULT
Specifying	this	value	tells	DirectPlay	Voice	to	use	the
system	default	for	this	value,	which	is	adjustable	through	a
registry	entry	that	can	also	be	set	through	Sounds	and
Multimedia	in	Control	Panel.

dwBufferAggressiveness

Buffer	aggressiveness	setting.	This	member	is	unused	for	all
session	types	except	mixing	sessions.	For	all	sessions	except
mixing	sessions,	set	this	member	to
DVBUFFERAGGRESSIVENESS_DEFAULT.

Allowable	values	are	between	DVBUFFERAGGRESSIVENESS
_MIN	and	DVBUFFERAGGRESSIVENESS	_MAX.	Additionally,
this	member	can	be	set	to	the	following	value.

DVBUFFERAGGRESSIVENESS_DEFAULT
Specifying	this	value	tells	DirectPlay	Voice	to	use	the
system	default	for	this	value,	which	is	adjustable	through	a
registry	entry	that	can	also	be	set	through	Control	Panel.

Remarks

The	dwFlags,	dwSessionType,	and	guidCT	members	can	only	be
set	when	the	host	starts	the	voice	session.	The	host	can	change	the
buffer	settings	at	any	time.

Structure	Information

Header dvoice8.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

DVSOUNDDEVICECONFIG	Structure

Used	to	set	and	retrieve	information	about	the	sound	device	configuration
and	cannot	be	changed	once	a	connection	has	been	made.	After	a
connection	is	made,	you	can	retrieve	the	current	sound	device
configuration	by	calling	IDirectPlayVoiceClient::GetSoundDeviceConfig.

Syntax

typedef	struct	{
				DWORD	dwSize;
				DWORD	dwFlags;
				GUID	guidPlaybackDevice;
				LPDIRECTSOUND	lpdsPlaybackDevice;
				GUID	guidCaptureDevice;
				LPDIRECTSOUNDCAPTURE	lpdsCaptureDevice;
				HWND	hwndAppWindow;
				LPDIRECTSOUNDBUFFER	lpdsMainBuffer;
				DWORD	dwMainBufferFlags;
				DWORD	dwMainBufferPriority;
}	DVSOUNDDEVICECONFIG,	*LPDVSOUNDDEVICECONFIG,	*PDVSOUNDDEVICECONFIG;

Members

dwSize
Must	be	set	the	to	size	of	this	structure,	in	bytes,	before	using
this	structure.

dwFlags
A	combination	of	the	following	flags.
DVSOUNDCONFIG_AUTOSELECT

Tells	Microsoft®	DirectPlay®	Voice	to	attempt	to
automatically	select	(or	un-mute)	the	microphone	line	in	the
mixer	for	the	specified	recording	device.

DVSOUNDCONFIG_HALFDUPLEX
Tells	DirectPlay	Voice	to	initialize	itself	in	half-duplex	mode.

In	half-duplex	mode	no	recording	takes	place.	If	the
initialization	of	the	sound	system	fails	in	full-duplex	mode,
this	flag	will	be	set	by	the	system.

DVSOUNDCONFIG_NORMALMODE
Tells	DirectPlay	Voice	to	use	Microsoft	DirectSound®
Normal	Mode	when	initializing	the	DirectSound	object.	If
this	flag	is	not	specified,	the	DirectSound	object	is	initialized
with	DirectSound	Priority	Mode.	See	documentation	for
IDirectSound8::SetCooperativeLevel	for	more
information.	If	a	valid	DirectSound	object	is	specified	in	the
lpdsPlaybackDevice	member,	this	flag	is	ignored.

DVSOUNDCONFIG_SETCONVERSIONQUALITY
Enables	better	quality	audio	at	the	expense	of	higher	CPU
usage.

DVSOUNDCONFIG_NORECVOLAVAILABLE
Set	by	DirectPlay	Voice	if	there	are	no	volume	controls
available	on	the	recording	device	you	specified.	You	cannot
set	this	flag.

DVSOUNDCONFIG_NOFOCUS
The	voice	application	will	never	go	out	of	focus.	In	other
words,	the	application	will	never	release	the	sound	capture
device.	Use	of	this	flag	is	not	recommended.

DVSOUNDCONFIG_STRICTFOCUS
The	voice	application	will	lose	focus	whenever	its	window	is
not	the	foreground	window.

guidPlaybackDevice

When	this	structure	is	used	in	the
IDirectPlayVoiceClient::GetSoundDeviceConfig	method,	this
member	contains	the	actual	device	globally	unique	identifier
(GUID)	used	for	playback.

When	this	structure	is	used	in	the
IDirectPlayVoiceClient::Connect	method,	this	member	specifies
the	GUID	of	the	device	used	for	playback.	This	must	be
specified	even	if	the	lpdsPlaybackDevice	member	is	used.	You
can	also	specify	the	following	default	GUIDs	provided	by
DirectSound.

DSDEVID_DefaultPlayback
The	system	default	playback	device.

DSDEVID_DefaultVoicePlayback
The	default	voice	playback	device.

lpdsPlaybackDevice
When	this	structure	is	used	in	the
IDirectPlayVoiceClient::Connect	method,	this	member
specifies	the	DirectSound	object	you	want	DirectPlay	Voice	to
use	for	playback.	The	GUID	specified	in	guidPlaybackDevice
must	match	the	one	used	to	create	the	device	specified	by	this
parameter.	If	you	used	NULL	when	specifying	the	device	when
you	created	your	DirectSound	object,	pass
DSDEVID_DefaultPlayback	for	this	member.

When	this	structure	is	used	in	the
IDirectPlayVoiceClient::GetSoundDeviceConfig	method,	this
member	contains	a	pointer	to	the	DirectSound	object	being	used
by	DirectPlay	Voice.	This	will	either	be	a	pointer	to	the	object
specified	when	Connect	was	called	or	a	pointer	to	a	newly
created	and	initialized	DirectSound	object.	If	you	want	to	use
this	DirectSound	object,	you	must	store	the	pointer	and
increment	the	reference	count	by	calling	AddRef	on	the
DirectSound	interface.

guidCaptureDevice
When	this	structure	is	used	in
IDirectPlayVoiceClient::Connect	method,	this	member
specifies	the	GUID	of	the	device	used	for	capture.	This	must	be
specified	even	if	the	lpdsCaptureDevice	member	is	used.	If
you	used	NULL	when	specifying	the	device	when	you	created
your	DirectSoundCapture	object,	pass
DSDEVID_DefaultCapture	for	this	member.

When	this	structure	is	used	in	the
IDirectPlayVoiceClient::GetSoundDeviceConfig	method,	this
member	will	contain	the	actual	device	GUID	used	for	capture.

lpdsCaptureDevice
When	this	structure	is	used	in	the
IDirectPlayVoiceClient::Connect	method,	this	member
specifies	the	DirectSound	object	you	want	DirectPlay	Voice	to
use	for	capture.	The	GUID	specified	in	guidCaptureDevice
must	match	the	one	used	to	create	the	device	specified	by	this
parameter.	If	you	want	to	have	DirectPlay	Voice	create	the
DirectSoundCapture	object	for	you,	specify	NULL	for	this
member.

When	this	structure	is	used	in	the
IDirectPlayVoiceClient::GetSoundDeviceConfig	method,	this
member	contains	a	pointer	to	the	DirectSoundCapture	object
being	used	by	DirectPlay	Voice.	This	will	either	be	a	pointer	to
the	object	specified	when	Connect	was	called	or	a	pointer	to	a
newly	created	and	initialized	DirectSoundCapture	object.	If	you
want	to	use	this	DirectSoundCapture	object,	you	must	store	the
pointer	and	increment	the	reference	count	by	calling	AddRef	on
the	IDirectSoundCapture8	interface.	If	the	DirectPlay	Voice
object	is	operating	in	half	duplex	mode,	this	member	will	be
NULL.

hwndAppWindow
Must	be	set	to	the	handle	of	the	window	that	will	be	used	to
determine	focus	for	sound	playback.	See
IDirectSound8::SetCooperativeLevel	for	information	about
DirectSound	focus.	If	you	do	not	have	a	window	to	use	for	focus,
use	GetDesktopWindow	to	use	the	desktop	window.

lpdsMainBuffer
Pointer	to	an	IDirectSoundBuffer8	interface,	which	is	used	to
create	the	DirectPlay	Voice	main	buffer.	This	can	be	either	NULL
or	a	user-created	DirectSound	buffer.	If	this	member	is	set	to
NULL,	DirectPlay	Voice	will	create	a	buffer	for	the	main	voice
buffer.	If	users	specify	a	buffer	here,	DirectPlay	Voice	will	use
their	buffer	for	the	main	voice	buffer.	User-created	buffers	have
the	following	restrictions.

The	buffer	must	be	22	kilohertz,	16-bit,	Mono	format.

The	buffer	must	be	at	least	1	second	in	length.

The	buffer	must	have	been	created	with	the
DSBCAPS_GETCURRENTPOSITION2	and
DSBCAPS_CTRL3D	flags.

The	buffer	must	not	be	a	primary	buffer.

The	buffer	must	not	be	playing	when	it	is	passed	to	the
DirectPlay	Voice	software.

The	buffer	must	not	be	locked	when	it	is	passed	to	the
DirectPlay	Voice	software.

dwMainBufferFlags
Passed	directly	to	the	dwFlags	parameter	of	the
IDirectSoundBuffer8::Play	method	when	Play	is	called	for	the
main	buffer.	The	DSBPLAY_LOOPING	flag	is	automatically
added	to	this	field.	See	the	documentation	on
IDirectSoundBuffer8::Play	for	details.	This	parameter	must	be
0	if	the	lpdsMainBuffer	member	of	this	structure	is	NULL.

dwMainBufferPriority
Passed	directly	to	the	dwPriority	parameter	of	the
IDirectSoundBuffer8::Play	method	when	Play	is	called	on	the
main	buffer.	See	documentation	for	IDirectSoundBuffer8::Play
for	more	information.	This	member	must	be	set	to	0	if
lpdsMainBufferDesc	is	NULL.

Remarks

Note		Applications	should	set	the	DVSOUNDCONFIG_NOFOCUS
or	DVSOUNDCONFIG_STRICTFOCUS	flags	only	when	strictly
necessary.	Instead,	you	should	normally	use	the	default	behavior
that	results	when	neither	flag	is	set.

Structure	Information

Header dvoice8.h

Minimum	operating	systems Windows	98

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Return	Values	Enumerated	Type

Errors	are	represented	by	negative	values	and	cannot	be	combined.

Many	of	the	Microsoft®	DirectPlay®	samples	include	a
GetDirectPlayErrStr	function	that	converts	HRESULT	values	to	string
names	for	the	DirectPlay	errors.	You	can	copy	this	code	into	your	own
applications	for	diagnostic	traces	or	error	reports.

Syntax

typedef	enum	{
				DPNSUCCESS_PENDING,
				DPN_OK,
				DPNERR_ABORTED,
				DPNERR_ADDRESSING,
				DPNERR_ALREADYCONNECTED,
				DPNERR_ALREADYCLOSING,
				DPNERR_ALREADYDISCONNECTING,
				DPNERR_ALREADYINITIALIZED,
				DPNERR_BUFFERTOOSMALL,
				DPNERR_CANNOTCANCEL,
				DPNERR_CANTCREATEGROUP,
				DPNERR_CANTCREATEPLAYER,
				DPNERR_CANTLAUNCHAPPLICATION,
				DPNERR_CONNECTING,
				DPNERR_CONNECTIONLOST,
				DPNERR_DATATOOLARGE,
				DPNERR_DOESNOTEXIST,
				DPNERR_DPNSVRNOTAVAILABLE,
				DPNERR_ENUMQUERYTOOLARGE,
				DPNERR_ENUMRESPONSETOOLARGE,
				DPNERR_EXCEPTION,
				DPNERR_GENERIC,
				DPNERR_GROUPNOTEMPTY,
				DPNERR_HOSTREJECTEDCONNECTION,

				DPNERR_HOSTTERMINATEDSESSION,
				DPNERR_INCOMPLETEADDRESS,
				DPNERR_INVALIDADDRESSFORMAT,
				DPNERR_INVALIDAPPLICATION,
				DPNERR_INVALIDCOMMAND,
				DPNERR_INVALIDDEVICEADDRESS,
				DPNERR_INVALIDFLAGS,
				DPNERR_INVALIDGROUP,
				DPNERR_INVALIDHANDLE,
				DPNERR_INVALIDHOSTADDRESS,
				DPNERR_INVALIDINSTANCE,
				DPNERR_INVALIDINTERFACE,
				DPNERR_INVALIDOBJECT,
				DPNERR_INVALIDPARAM,
				DPNERR_INVALIDPASSWORD,
				DPNERR_INVALIDPLAYER,
				DPNERR_INVALIDPOINTER,
				DPNERR_INVALIDPRIORITY,
				DPNERR_INVALIDSTRING,
				DPNERR_INVALIDURL,
				DPNERR_INVALIDVERSION,
				DPNERR_NOCAPS,
				DPNERR_NOCONNECTION,
				DPNERR_NOHOSTPLAYER,
				DPNERR_NOINTERFACE,
				DPNERR_NORESPONSE,
				DPNERR_NOTALLOWED,
				DPNERR_NOTHOST,
				DPNERR_NOTREADY,
				DPNERR_OUTOFMEMORY,
				DPNERR_PENDING,
				DPNERR_PLAYERALREADYINGROUP,
				DPNERR_PLAYERNOTINGROUP,
				DPNERR_PLAYERLOST,
				DPNERR_PLAYERNOTREACHABLE,
				DPNERR_SESSIONFULL,
				DPNERR_TIMEDOUT,
				DPNERR_UNINITIALIZED,
				DPNERR_UNSUPPORTED,

				DPNERR_USERCANCEL,
				DV_OK,
				DV_FULLDUPLEX,
				DV_HALFDUPLEX,
				DV_PENDING,
				DVERR_BUFFERTOOSMALL,
				DVERR_EXCEPTION,
				DVERR_GENERIC,
				DVERR_INVALIDFLAGS,
				DVERR_INVALIDOBJECT,
				DVERR_INVALIDPARAM,
				DVERR_INVALIDPLAYER,
				DVERR_INVALIDGROUP,
				DVERR_INVALIDHANDLE,
				DVERR_OUTOFMEMORY,
				DVERR_PENDING,
				DVERR_NOTSUPPORTED,
				DVERR_NOINTERFACE,
				DVERR_SESSIONLOST,
				DVERR_NOVOICESESSION,
				DVERR_CONNECTIONLOST,
				DVERR_NOTINITIALIZED,
				DVERR_CONNECTED,
				DVERR_NOTCONNECTED,
				DVERR_CONNECTABORTING,
				DVERR_NOTALLOWED,
				DVERR_INVALIDTARGET,
				DVERR_TRANSPORTNOTHOST,
				DVERR_COMPRESSIONNOTSUPPORTED,
				DVERR_ALREADYPENDING,
				DVERR_ALREADYINITIALIZED,
				DVERR_SOUNDINITFAILURE,
				DVERR_TIMEOUT,
				DVERR_CONNECTABORTED,
				DVERR_NO3DSOUND,
				DVERR_ALREADYBUFFERED,
				DVERR_NOTBUFFERED,
				DVERR_HOSTING,
				DVERR_NOTHOSTING,

				DVERR_INVALIDDEVICE,
				DVERR_RECORDSYSTEMERROR,
				DVERR_PLAYBACKSYSTEMERROR,
				DVERR_SENDERROR,
				DVERR_USERCANCEL,
				DVERR_UNKNOWN,
				DVERR_RUNSETUP,
				DVERR_INCOMPATIBLEVERSION,
				DVERR_INITIALIZED,
				DVERR_INVALIDPOINTER,
				DVERR_NOTRANSPORT,
				DVERR_NOCALLBACK,
				DVERR_TRANSPORTNOTINIT,
				DVERR_TRANSPORTNOSESSION,
				DVERR_TRANSPORTNOPLAYER,
				DP8SIM_OK,
				DP8SIMERR_ALREADYINITIALIZED,
				DP8SIMERR_INVALIDFLAGS,
				DP8SIMERR_INVALIDOBJECT,
				DP8SIMERR_MISMATCHEDVERSION,
				DP8SIMERR_NOTINITIALIZED,
				DP8SIMERR_INVALIDPARAM,
				DP8SIMERR_INVALIDPOINTER
}	Return	Values;

Constants

DPNSUCCESS_PENDING

An	asynchronous	operation	has	reached	the	point	where	it	is
successfully	queued.

DPN_OK

The	operation	completed	successfully.	This	value	is	equal	to	the
S_OK	standard	Component	Object	Model	(COM)	return	value.

DPNERR_ABORTED

The	operation	was	canceled	before	it	could	be	completed.

DPNERR_ADDRESSING

The	address	specified	is	invalid.

DPNERR_ALREADYCONNECTED

The	object	is	already	connected	to	the	session.

DPNERR_ALREADYCLOSING

An	attempt	to	call	the	Close	method	on	a	session	has	been
made	more	than	once.

DPNERR_ALREADYDISCONNECTING

The	client	is	already	disconnecting	from	the	session.

DPNERR_ALREADYINITIALIZED

The	object	has	already	been	initialized.

DPNERR_BUFFERTOOSMALL

The	supplied	buffer	is	not	large	enough	to	contain	the	requested
data.

DPNERR_CANNOTCANCEL

The	operation	could	not	be	canceled.

DPNERR_CANTCREATEGROUP

A	new	group	cannot	be	created.

DPNERR_CANTCREATEPLAYER

A	new	player	cannot	be	created.

DPNERR_CANTLAUNCHAPPLICATION

The	lobby	cannot	launch	the	specified	application.

DPNERR_CONNECTING

The	method	is	in	the	process	of	connecting	to	the	network.

DPNERR_CONNECTIONLOST

The	service	provider	connection	was	reset	while	data	was	being
sent.

DPNERR_DATATOOLARGE

The	application	data	is	too	large	for	the	service	provider's
Maximum	Transmission	Unit.

DPNERR_DOESNOTEXIST

Requested	element	is	not	part	of	the	address	or	the	requested
application	globally	unique	identifier	(GUID)	is	not	registered.

DPNERR_DPNSVRNOTAVAILABLE

Port	6073	is	already	in	use.

DPNERR_ENUMQUERYTOOLARGE

The	query	data	specified	is	too	large.

DPNERR_ENUMRESPONSETOOLARGE

The	response	to	an	enumeration	query	is	too	large.

DPNERR_EXCEPTION

An	exception	occurred	when	processing	the	request.

DPNERR_GENERIC

An	undefined	error	condition	occurred.

DPNERR_GROUPNOTEMPTY

The	specified	group	is	not	empty.

DPNERR_HOSTREJECTEDCONNECTION

The	DPN_MSGID_INDICATE_CONNECT	system	message
returned	something	other	than	S_OK	in	response	to	a	connect
request.

DPNERR_HOSTTERMINATEDSESSION

The	host	in	a	peer	session	(with	host	migration	enabled)
terminated	the	session.

DPNERR_INCOMPLETEADDRESS

The	address	specified	is	not	complete.

DPNERR_INVALIDADDRESSFORMAT

The	address	format	is	invalid.

DPNERR_INVALIDAPPLICATION

The	GUID	supplied	for	the	application	is	invalid.

DPNERR_INVALIDCOMMAND

The	command	specified	is	invalid.

DPNERR_INVALIDDEVICEADDRESS

The	address	for	the	local	computer	or	adapter	is	invalid.

DPNERR_INVALIDFLAGS

The	flags	passed	to	this	method	are	invalid.

DPNERR_INVALIDGROUP

The	group	identifier	(ID)	is	not	recognized	as	a	valid	group	ID	for

this	game	session.

DPNERR_INVALIDHANDLE

The	handle	specified	is	invalid.

DPNERR_INVALIDHOSTADDRESS

The	specified	remote	address	is	invalid.

DPNERR_INVALIDINSTANCE

The	GUID	for	the	application	instance	is	invalid.

DPNERR_INVALIDINTERFACE

The	interface	parameter	is	invalid.	This	value	will	be	returned	in
a	connect	request	if	the	connecting	player	was	not	a	client	in	a
client/server	game	or	a	peer	in	a	peer-to-peer	game.

DPNERR_INVALIDOBJECT

The	DirectPlay	object	pointer	is	invalid.

DPNERR_INVALIDPARAM

One	or	more	of	the	parameters	passed	to	the	method	are
invalid.

DPNERR_INVALIDPASSWORD

An	invalid	password	was	supplied	when	attempting	to	join	a
session	that	requires	a	password.

DPNERR_INVALIDPLAYER

The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this
game	session.

DPNERR_INVALIDPOINTER

The	pointer	specified	as	a	parameter	is	invalid.

DPNERR_INVALIDPRIORITY

The	specified	priority	is	not	within	the	range	of	allowed	priorities,
which	is	inclusively	from	0	through	65535.

DPNERR_INVALIDSTRING

String	specified	as	a	parameter	is	invalid.

DPNERR_INVALIDURL

Specified	string	is	not	a	valid	DirectPlay	URL.

DPNERR_INVALIDVERSION

There	was	an	attempt	to	connect	to	an	invalid	version	of
DirectPlay.

DPNERR_NOCAPS

The	communication	link	that	DirectPlay	is	attempting	to	use	is
not	capable	of	this	function.

DPNERR_NOCONNECTION

No	communication	link	was	established.

DPNERR_NOHOSTPLAYER

There	is	currently	no	player	acting	as	the	host	of	the	session.

DPNERR_NOINTERFACE

The	interface	is	not	supported.

DPNERR_NORESPONSE

There	was	no	response	from	the	specified	target.

DPNERR_NOTALLOWED

This	function	is	not	allowed	on	this	object.

DPNERR_NOTHOST

An	attempt	by	the	client	to	connect	to	a	nonhost	computer.
Additionally,	this	error	value	can	be	returned	by	a	nonhost	that
tries	to	set	the	application	description.

DPNERR_NOTREADY

The	object	is	not	ready	for	use.

DPNERR_OUTOFMEMORY

There	is	insufficient	memory	to	perform	the	requested	operation.

DPNERR_PENDING

Not	an	error,	this	return	indicates	that	an	asynchronous
operation	has	reached	the	point	where	it	is	successfully	queued.
SUCCEEDED(DPNERR_PENDING)	will	return	TRUE.	This
error	value	has	been	superseded	by	DPNERR_SUCCESS,
which	should	be	used	by	all	new	applications.
DPNERR_PENDING	is	only	included	for	backward	compatibility.

DPNERR_PLAYERALREADYINGROUP

The	player	ID	is	already	included	in	the	group.

DPNERR_PLAYERNOTINGROUP

The	player	ID	is	not	included	in	the	group.

DPNERR_PLAYERLOST

A	player	has	lost	the	connection	to	the	session.

DPNERR_PLAYERNOTREACHABLE

A	player	has	tried	to	join	a	peer-peer	session	where	at	least	one
other	existing	player	in	the	session	cannot	connect	to	the	joining
player.

DPNERR_SESSIONFULL

The	request	to	connect	to	the	host	or	server	failed	because	the
maximum	number	of	players	allotted	for	the	session	has	been
reached.

DPNERR_TIMEDOUT

The	operation	could	not	complete	because	it	has	timed	out.

DPNERR_UNINITIALIZED

The	requested	object	has	not	been	initialized.

DPNERR_UNSUPPORTED

The	function	or	feature	is	not	available	in	this	implementation	or
on	this	service	provider.

DPNERR_USERCANCEL

The	user	canceled	the	operation.

DV_OK

The	request	completed	successfully.

DV_FULLDUPLEX

The	sound	card	is	capable	of	full-duplex	operation.

DV_HALFDUPLEX

The	sound	card	can	only	be	run	in	half-duplex	mode.

DV_PENDING

An	asynchronous	operation	has	reached	the	point	where	it	is
successfully	queued.

DVERR_BUFFERTOOSMALL

The	supplied	buffer	is	not	large	enough	to	contain	the	requested
data.

DVERR_EXCEPTION

An	exception	occurred	when	processing	the	request.

DVERR_GENERIC

An	undefined	error	condition	occurred.

DVERR_INVALIDFLAGS

The	flags	passed	to	this	method	are	invalid.

DVERR_INVALIDOBJECT

The	DirectPlay	object	pointer	is	invalid.

DVERR_INVALIDPARAM

One	or	more	of	the	parameters	passed	to	the	method	are
invalid.

DVERR_INVALIDPLAYER

The	player	ID	is	not	recognized	as	a	valid	player	ID	for	this
game	session.

DVERR_INVALIDGROUP

The	group	ID	is	not	recognized	as	a	valid	group	ID	for	this	game
session.

DVERR_INVALIDHANDLE

The	handle	specified	is	invalid.

DVERR_OUTOFMEMORY

There	is	insufficient	memory	to	perform	the	requested	operation.

DVERR_PENDING

Not	an	error,	this	return	indicates	that	an	asynchronous
operation	has	reached	the	point	where	it	is	successfully	queued.
This	error	value	has	been	deprecated.	It	has	been	replaced	by
DV_PENDING.

DVERR_NOTSUPPORTED

The	operation	is	not	supported.

DVERR_NOINTERFACE

The	specified	interface	is	not	supported.	Could	indicate	using
the	wrong	version	of	DirectPlay.

DVERR_SESSIONLOST

The	transport	has	lost	the	connection	to	the	session.

DVERR_NOVOICESESSION

The	session	specified	is	not	a	voice	session.

DVERR_CONNECTIONLOST

The	connection	to	the	voice	session	has	been	lost.

DVERR_NOTINITIALIZED

The	IDirectPlayVoiceClient::Initialize
IDirectPlayVoiceClient8::Initialize	or
IDirectPlayVoiceServer::Initialize

IDirectPlayVoiceServer8::Initialize	method	must	be	called	before
calling	this	method.

DVERR_CONNECTED

The	DirectPlay	Voice	object	is	connected.

DVERR_NOTCONNECTED

The	DirectPlay	Voice	object	is	not	connected.

DVERR_CONNECTABORTING

The	connection	is	being	disconnected.

DVERR_NOTALLOWED

The	object	does	not	have	the	permission	to	perform	this
operation.

DVERR_INVALIDTARGET

The	specified	target	is	not	a	valid	player	ID	or	group	ID	for	this
voice	session.

DVERR_TRANSPORTNOTHOST

The	object	is	not	the	host	of	the	voice	session.

DVERR_COMPRESSIONNOTSUPPORTED

The	specified	compression	type	is	not	supported	on	the	local
computer.

DVERR_ALREADYPENDING

An	asynchronous	call	of	this	type	is	already	pending.

DVERR_ALREADYINITIALIZED

The	object	has	already	been	initialized.

DVERR_SOUNDINITFAILURE

A	failure	was	encountered	initializing	the	sound	card.

DVERR_TIMEOUT

The	operation	could	not	be	performed	in	the	specified	time.

DVERR_CONNECTABORTED

The	connect	operation	was	canceled	before	it	could	be
completed.

DVERR_NO3DSOUND

The	local	computer	does	not	support	3-D	sound.

DVERR_ALREADYBUFFERED

There	is	already	a	user	buffer	for	the	specified	ID.

DVERR_NOTBUFFERED

There	is	no	user	buffer	for	the	specified	ID.

DVERR_HOSTING

The	object	is	the	host	of	the	session.

DVERR_NOTHOSTING

The	object	is	not	the	host	of	the	session.

DVERR_INVALIDDEVICE

The	specified	device	is	invalid.

DVERR_RECORDSYSTEMERROR

An	error	in	the	recording	system	occurred.

DVERR_PLAYBACKSYSTEMERROR

An	error	in	the	playback	system	occurred.

DVERR_SENDERROR

An	error	occurred	while	sending	data.

DVERR_USERCANCEL

The	user	canceled	the	operation.

DVERR_UNKNOWN

An	unknown	error	occurred.

DVERR_RUNSETUP

The	specified	audio	configuration	has	not	been	tested.	Call	the
IDirectPlayVoiceTest::CheckAudioSetup	method.

DVERR_INCOMPATIBLEVERSION

The	client	connected	to	a	voice	session	that	is	incompatible	with
the	host.

DVERR_INITIALIZED

The	Initialize	method	failed	because	the	object	has	already	been
initialized.

DVERR_INVALIDPOINTER

The	pointer	specified	is	invalid.

DVERR_NOTRANSPORT

The	specified	object	is	not	a	valid	transport.

DVERR_NOCALLBACK

This	operation	cannot	be	performed	because	no	callback
function	was	specified.

DVERR_TRANSPORTNOTINIT

The	specified	transport	is	not	yet	initialized.

DVERR_TRANSPORTNOSESSION

The	specified	transport	is	valid	but	is	not	connected/hosting.

DVERR_TRANSPORTNOPLAYER

The	specified	transport	is	connected/hosting	but	no	local	player
exists.

DP8SIM_OK

The	DP8Sim	control	object	was	successfully	initialized.

DP8SIMERR_ALREADYINITIALIZED

The	DP8Sim	control	object	has	already	been	initialized.

DP8SIMERR_INVALIDFLAGS

The	flags	passed	to	this	method	are	invalid.

DP8SIMERR_INVALIDOBJECT

The	DP8Sim	control	object	specified	is	invalid.

DP8SIMERR_MISMATCHEDVERSION

A	different	version	of	DP8Sim	is	already	in	use	on	this	system.

DP8SIMERR_NOTINITIALIZED

The	DP8Sim	control	object	has	not	been	initialized.

DP8SIMERR_INVALIDPARAM

One	or	more	of	the	parameters	passed	to	the	method	are
invalid.

DP8SIMERR_INVALIDPOINTER

A	pointer	specified	as	a	parameter	is	invalid.

Remarks

The	following	table	lists	the	interfaces	to	which	the	error	codes	listed
apply.

Interface
IDirectPlay8Address

IDirectPlay8AddressIP

IDirectPlay8Client

IDirectPlay8LobbiedApplication

IDirectPlay8LobbyClient

IDirectPlay8Peer

IDirectPlay8Server

IDirectPlayVoiceClient

IDirectPlayVoiceServer

IDirectPlayVoiceTest

IDP8SimControl

For	a	list	of	the	error	codes	each	method	can	return,	see	the
individual	method	descriptions.

Enumerated	Type	Information

Minimum	operating	systems Windows	98,	Windows	NT	2000,	Windows	XP

©	2003	Microsoft	Corporation.	All	rights	reserved.

	

Microsoft	DirectX	9.0	SDK	Update	(Summer	2003)

Basic	Networking

This	section	covers	some	basic	networking	technology	topics	that	you
need	to	understand	to	write	Microsoft®	DirectPlay®	applications.	For	a
general	discussion	of	networking	technology,	see	one	of	the	standard
texts	on	the	subject,	such	as	Computer	Networks	by	Andrew
Tannenbaum.

DirectPlay	Addressing

DirectPlay	Protocol

Optimizing	Network	Usage

Network	Address	Translation,	Firewalls,	and	Proxies

Using	the	DirectX	Protocol	in	an	Application

©	2003	Microsoft	Corporation.	All	rights	reserved.

	DirectPlay
	What's New in DirectPlay
	Basic Concepts in DirectPlay
	DirectPlay Network Communication
	Communicating with DirectPlay Objects
	Creating and Managing Sessions
	Peer-to-Peer Topology
	Client/Server Topology

	Getting DirectPlay Data

	Architect Your DirectPlay Application
	Peer-to-Peer Sessions
	Initiating a Peer-to-Peer Session
	Enumerating Hosts
	Selecting a Service Provider for a Peer-to-Peer Session
	Selecting a Host for a Peer-to-Peer Session
	Connecting to a Peer-to-Peer Session
	Managing a Peer-to-Peer Session
	Handling DirectPlay Messaging
	Handling Standard Peer-to-Peer Messages
	Peer-to-Peer Host Messages

	Host Migration
	Normal Peer-to-Peer Game Play
	Leaving a Peer-to-Peer Session
	Terminating a Peer-to-Peer Session

	Client/Server Sessions
	Initiating a Client/Server Session
	Selecting a Service Provider for a Client
	Selecting a Client/Server Host
	Connecting to a Client/Server Session
	Managing a Client/Server Session
	Handling Client/Server Messages
	Normal Client/Server Game Play
	Leaving a Client/Server Session
	Terminating a Client/Server Session

	DirectPlay Lobby
	DirectPlay Lobby Architecture
	DirectPlay Lobby Support
	Implementing a Lobby Client
	Initializing a Lobby Client
	Launching a Lobbied Application
	Implementing a Lobby Client Message Handler
	A Sample Lobby Client Message Handler

	Communicating with a Lobbied Application
	Closing Down a Lobby Client

	Implementing a Lobbyable Application
	Registering a Lobbyable Application
	Handling Lobby Launching
	Implementing a Lobbied Application Callback Message Handler
	A Sample Lobbied Application Message Handler

	Communicating with a Lobby Client
	Closing Down a Lobbied Application

	Lobby Clients
	Lobby Servers
	Lobbyable Applications

	DirectPlay Voice
	Audio Device Testing
	Automatic Gain Control
	Capture Focus
	Configuring the Windows Sound Mixer
	Creating a 3-D Voice Session
	DirectPlay Voice Communication
	DirectPlay Voice Topologies
	Forwarding Server Voice Topology
	Mixing Server Sessions
	Peer-to-Peer Voice Topology

	Fast User Switching
	Handling Voice Client Messages
	Handling Voice Host Messages
	Jitter Buffers
	Sharing the Audio Capture Device
	Transmission Control
	Voice Codecs
	Voice Host Migration
	Working Set Guidelines

	DirectPlay for Pocket PC 2002
	Bluetooth Service Provider

	Advanced Topics in DirectPlay
	DirectPlay Addressing
	DirectPlay Service Providers
	DirectPlay and Ports
	Internet Protocol Version 6
	DirectPlay URLs
	Data Strings
	Sample URLs

	Handling Addresses
	DirectPlay Address Objects
	Creating TCP/IP Address Objects
	Creating Modem Address Objects
	Creating IPX Address Objects
	Creating Serial Address Objects

	Data Value Summary
	Data Values

	DirectPlay Callback Functions and Multithreading Issues
	Implementing a Callback Function in DirectPlay and DirectPlay Voice
	Implementing a DirectPlay Networking Callback Using Critical Section Objects

	DirectPlay Protocol
	Basic Message Handling
	Message Categories
	Congestion Control
	Send Prioritization
	Packet Signing
	Monitoring Messaging Statistics
	Monitoring the Pending Message Queues
	Using the DirectX Protocol in an Application

	DP8Sim Utility
	Monitoring DirectPlay Network Traffic with Network Monitor
	Network Address Translation, Firewalls, and Proxies
	Quick NAT Compatibility Guidelines
	Topology Specific NAT Issues
	NAT Issues for Peer Hosts
	Basic NAT Issues for Peer Hosts
	Advanced NAT Techniques for Peer Hosts
	Peer Host NAT Compatibility Reference

	NAT Issues for Peer Clients
	Basic NAT Issues for Peer Clients
	Advanced NAT Techniques for Peer Clients
	Peer Client NAT Compatibility Reference

	NAT Issues for Servers
	Basic NAT Issues for Servers
	Advanced NAT Techniques for Servers
	Server NAT Compatibility Reference

	NAT Issues for Clients
	Basic NAT Issues for Clients
	Client NAT Compatibility Reference

	Using the IDirectPlay8NATResolver Interface
	Notes Regarding Firewalls and Proxies
	NAT Troubleshooting Techniques for Developers and End Users

	Optimizing Network Usage
	Packet Signing
	Testing Network Performance
	Using Player Context Values
	Using the DirectPlay DPNSVR Application

	DirectPlay C/C++ Tutorials
	Tutorial 1: Creating a DirectPlay Object and Enumerating Service Providers
	Tutorial 2: Hosting a Session
	Tutorial 3: Enumerating Hosted Sessions
	Tutorial 4: Connecting to a Session
	Tutorial 5: Sending Messages to Other Peers
	Tutorial 6: Handling Host Migration
	Tutorial 7: Creating a Lobbyable Application
	Tutorial 8: Direct Play Voice
	Tutorial 9: Creating a DirectPlay Client/Server Session
	Tutorial 10: DirectPlay Thread Pool

	DirectPlay C++ Samples
	AddressOverride
	ChatPeer
	DataRelay
	LobbyClient
	Maze
	NatPeer
	NATResolver
	SimpleClientServer
	SimplePeer
	StagedPeer
	Throttle
	VoiceClientServer
	VoiceConnect
	VoiceGroup
	VoicePosition

	DirectPlay C/C++ Reference
	Interfaces
	IDirectPlay8Address
	AddComponent
	BuildFromDPADDRESS
	BuildFromURLA
	BuildFromURLW
	Clear
	Duplicate
	GetComponentByIndex
	GetComponentByName
	GetDevice
	GetNumComponents
	GetSP
	GetURLA
	GetURLW
	GetUserData
	IsEqual
	SetDevice
	SetEqual
	SetSP
	SetUserData

	IDirectPlay8AddressIP
	BuildAddress
	BuildFromSockAddr
	BuildLocalAddress
	GetAddress
	GetLocalAddress
	GetSockAddress

	IDirectPlay8Client
	CancelAsyncOperation
	Close
	Connect
	EnumHosts
	EnumServiceProviders
	GetApplicationDesc
	GetCaps
	GetConnectionInfo
	GetSendQueueInfo
	GetServerAddress
	GetServerInfo
	GetSPCaps
	Initialize
	RegisterLobby
	ReturnBuffer
	Send
	SetCaps
	SetClientInfo
	SetSPCaps

	IDirectPlay8LobbiedApplication
	Close
	GetConnectionSettings
	Initialize
	RegisterProgram
	Send
	SetAppAvailable
	SetConnectionSettings
	UnRegisterProgram
	UpdateStatus

	IDirectPlay8LobbyClient
	Close
	ConnectApplication
	EnumLocalPrograms
	GetConnectionSettings
	Initialize
	ReleaseApplication
	Send
	SetConnectionSettings

	IDirectPlay8NATResolver
	Close
	EnumDevices
	GetAddresses
	Initialize
	Start

	IDirectPlay8Peer
	AddPlayerToGroup
	CancelAsyncOperation
	Close
	Connect
	CreateGroup
	DestroyGroup
	DestroyPeer
	EnumGroupMembers
	EnumHosts
	EnumPlayersAndGroups
	EnumServiceProviders
	GetApplicationDesc
	GetCaps
	GetConnectionInfo
	GetGroupContext
	GetGroupInfo
	GetLocalHostAddresses
	GetPeerAddress
	GetPeerInfo
	GetPlayerContext
	GetSendQueueInfo
	GetSPCaps
	Host
	Initialize
	RegisterLobby
	RemovePlayerFromGroup
	ReturnBuffer
	SendTo
	SetApplicationDesc
	SetCaps
	SetGroupInfo
	SetPeerInfo
	SetSPCaps
	TerminateSession

	IDirectPlay8Server
	AddPlayerToGroup
	CancelAsyncOperation
	Close
	CreateGroup
	DestroyClient
	DestroyGroup
	EnumGroupMembers
	EnumPlayersAndGroups
	EnumServiceProviders
	GetApplicationDesc
	GetCaps
	GetClientAddress
	GetClientInfo
	GetConnectionInfo
	GetGroupContext
	GetGroupInfo
	GetLocalHostAddresses
	GetPlayerContext
	GetSendQueueInfo
	GetSPCaps
	Host
	Initialize
	RegisterLobby
	RemovePlayerFromGroup
	ReturnBuffer
	SendTo
	SetApplicationDesc
	SetCaps
	SetGroupInfo
	SetServerInfo
	SetSPCaps

	IDirectPlay8ThreadPool
	Close
	DoWork
	GetThreadCount
	Initialize
	SetThreadCount

	IDirectPlayNATHelp
	Close
	GetCaps
	GetRegisteredAddresses
	Initialize
	QueryAddress
	RegisterPorts
	SetAlertEvent

	IDirectPlayVoiceClient
	Connect
	Create3DSoundBuffer
	Delete3DSoundBuffer
	Disconnect
	GetCaps
	GetClientConfig
	GetCompressionTypes
	GetSessionDesc
	GetSoundDeviceConfig
	GetTransmitTargets
	Initialize
	SetClientConfig
	SetNotifyMask
	SetTransmitTargets

	IDirectPlayVoiceServer
	GetCaps
	GetCompressionTypes
	GetSessionDesc
	GetTransmitTargets
	Initialize
	SetNotifyMask
	SetSessionDesc
	SetTransmitTargets
	StartSession
	StopSession

	IDirectPlayVoiceTest
	CheckAudioSetup

	IDP8SimControl
	ClearAllStatistics
	Close
	GetAllParameters
	GetAllStatistics
	Initialize
	SetAllParameters

	Functions
	DirectPlay8AddressCreate
	DirectPlay8Create
	DirectPlay8LobbyCreate
	DirectPlayVoiceCreate

	Callback Functions
	PDVMESSAGEHANDLER
	PFNDPNMESSAGEHANDLER

	System Messages
	DPL_MSGID_CONNECT
	DPL_MSGID_CONNECTION_SETTINGS
	DPL_MSGID_DISCONNECT
	DPL_MSGID_RECEIVE
	DPL_MSGID_SESSION_STATUS
	DPN_MSGID_ADD_PLAYER_TO_GROUP
	DPN_MSGID_APPLICATION_DESC
	DPN_MSGID_ASYNC_OP_COMPLETE
	DPN_MSGID_CLIENT_INFO
	DPN_MSGID_CONNECT_COMPLETE
	DPN_MSGID_CREATE_GROUP
	DPN_MSGID_CREATE_PLAYER
	DPN_MSGID_CREATE_SENDER_CONTEXT
	DPN_MSGID_CREATE_THREAD
	DPN_MSGID_DESTROY_GROUP
	DPN_MSGID_DESTROY_PLAYER
	DPN_MSGID_DESTROY_THREAD
	DPN_MSGID_ENUM_HOSTS_QUERY
	DPN_MSGID_ENUM_HOSTS_RESPONSE
	DPN_MSGID_GROUP_INFO
	DPN_MSGID_HOST_MIGRATE
	DPN_MSGID_INDICATED_CONNECT_ABORTED
	DPN_MSGID_INDICATE_CONNECT
	DPN_MSGID_NAT_RESOLVER_QUERY
	DPN_MSGID_PEER_INFO
	DPN_MSGID_RECEIVE
	DPN_MSGID_REMOVE_PLAYER_FROM_GROUP
	DPN_MSGID_RETURN_BUFFER
	DPN_MSGID_SEND_COMPLETE
	DPN_MSGID_SERVER_INFO
	DPN_MSGID_TERMINATE_SESSION
	DVMSGID_CONNECTRESULT
	DVMSGID_CREATEVOICEPLAYER
	DVMSGID_DELETEVOICEPLAYER
	DVMSGID_DISCONNECTRESULT
	DVMSGID_GAINFOCUS
	DVMSGID_HOSTMIGRATED
	DVMSGID_INPUTLEVEL
	DVMSGID_LOCALHOSTSETUP
	DVMSGID_LOSTFOCUS
	DVMSGID_OUTPUTLEVEL
	DVMSGID_PLAYEROUTPUTLEVEL
	DVMSGID_PLAYERVOICESTART
	DVMSGID_PLAYERVOICESTOP
	DVMSGID_RECORDSTART
	DVMSGID_RECORDSTOP
	DVMSGID_SESSIONLOST
	DVMSGID_SETTARGETS

	Structures
	DP8SIM_PARAMETERS
	DP8SIM_STATISTICS
	DPL_APPLICATION_INFO
	DPL_CONNECT_INFO
	DPL_CONNECTION_SETTINGS
	DPL_PROGRAM_DESC
	DPN_APPLICATION_DESC
	DPN_BUFFER_DESC
	DPN_CAPS
	DPN_CAPS_EX
	DPN_CONNECTION_INFO
	DPN_GROUP_INFO
	DPN_PLAYER_INFO
	DPN_SECURITY_CREDENTIALS
	DPN_SECURITY_DESC
	DPN_SERVICE_PROVIDER_INFO
	DPN_SP_CAPS
	DPNHCAPS
	DVCAPS
	DVCLIENTCONFIG
	DVCOMPRESSIONINFO
	DVSESSIONDESC
	DVSOUNDDEVICECONFIG

	Return Values

