
	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic
This	section	provides	information	about	using	Microsoft®	DirectMusic®	to
capture	and	play	sounds	in	applications	written	in	C	and	C++.

Information	is	presented	in	the	following	sections:

What's	New	in	DirectMusic.	A	guide	to	new	features	of	DirectMusic	in
Microsoft	DirectX®	9.0.
Introduction	to	DirectMusic.	An	overview	of	DirectMusic:	its	capabilities,
basic	concepts,	and	architecture,	together	with	an	introduction	to	dynamic
soundtracks.	This	section	focuses	on	principles	rather	than	on	the	practical
side	of	programming	for	DirectMusic.
Getting	Started	with	DirectMusic.	Information	on	setting	up	and	debugging
DirectMusic	projects,	and	an	overview	of	the	programming	steps	involved
in	setting	up	a	DirectMusic	performance	and	playing	a	sound.
Using	DirectMusic.	A	guide	to	using	the	DirectMusic	application
programming	interface	(API).	You'll	probably	want	to	familiarize	yourself
with	the	table	of	contents	for	this	section,	and	then	refer	to	parts	of	it	as	you
need	specific	information.	It	should	be	used	in	conjunction	with	the
reference	section.
Advanced	Topics	in	DirectMusic.	Information	of	interest	mostly	for
developing	specialized	applications	or	applications	that	need	highly
optimized	performance.
Related	Software.	Information	about	software	distributed	with	the	DirectX
SDK	that	can	be	used	in	conjunction	with	DirectMusic.
DirectMusic	C++	Samples.	A	guide	to	the	sample	applications	in	the	SDK,
to	point	you	to	the	sample	code	you	need.	As	well	as	showing	how	to
implement	basic	functionality,	each	sample	demonstrates	one	or	more
particular	features	of	DirectMusic.
DirectMusic	C++	Tutorials.	Step-by-step	guides	to	implementing	basic
DirectMusic	functionality.
DirectMusic	C/C++	Reference.	Detailed	information	about	all	the	API
elements	declared	in	the	DirectMusic	header	files.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

What's	New	in	DirectMusic
The	DirectMusic	application	programming	interface	(API)	has	not	been
significantly	revised	for	DirectX	9.0.	However,	many	performance
enhancements	have	been	made.	The	most	significant	of	these	is	a	new	low-
latency	DirectSound	sink,	which	enables	DirectMusic	to	attain	much	quicker
response	when	using	audiopaths	that	play	through	the	software	synthesizer.	This
enhancement	is	of	particular	interest	to	sound	designers	and	composers	who
want	to	take	advantage	of	the	rich	DirectMusic	feature	set	but	who	also	require
low	latency	for	sound	effects.	For	more	information,	see	Reducing	Latency.

Several	new	features	have	been	added	to	content	created	in	DirectMusic
Producer.	For	example,	streamed	waves	in	wave	tracks	can	now	be	looped	for
the	easier	creation	of	ambient	sounds,	and	looping	can	be	done	in	clock	time	so
that	looping	waves	are	not	affected	by	tempo	changes.	For	more	information,	see
What's	New	in	This	Release	in	the	DirectMusic	Producer	Help.

A	large	library	of	DirectMusic	styles	has	been	added	to	the	SDK,	along	with	an
application	for	auditioning	them.

In	addition,	two	new	tools	have	been	made	available	in	the
\bin\DXUtils\AppWizard	folder	of	the	SDK	installation:

DMToolWizard.awx	is	a	wizard	for	creating	DirectMusic	tools.
AEDMOWiz.awx	is	a	wizard	for	creating	effect	DMOs.

See	Also

Related	Software

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Introduction	to	DirectMusic
This	section	provides	a	quick	overview	of	the	capabilities	of	DirectMusic	and
what	you	need	to	do	to	get	started	with	the	API.	Information	is	presented	in	the
following	sections:

The	Power	of	DirectMusic
Elements	of	a	DirectMusic	Application
Overview	of	Audio	Data	Flow
Introduction	to	Dynamic	Musical	Soundtracks

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

The	Power	of	DirectMusic
DirectMusic	does	much	more	than	simply	play	sounds.	It	provides	a	complete
system	for	implementing	a	dynamic	soundtrack	that	takes	advantage	of	hardware
acceleration,	Downloadable	Sounds	(DLS),	DirectX	Media	Objects	(DMOs),
and	advanced	3-D	positioning	effects.

By	using	the	DirectMusic	interfaces	in	your	application,	you	can	do	the
following:

Load	and	play	sounds	from	files	or	resources	in	MIDI,	WAV,	or
DirectMusic	Producer	run-time	format.
Play	from	multiple	sources	simultaneously.
Schedule	the	timing	of	musical	events	with	high	precision.
Send	tempo	changes,	patch	changes,	and	other	MIDI	events
programmatically.
Use	Downloadable	Sounds.	By	using	DLS,	an	application	can	be	sure	that
message-based	music	sounds	the	same	on	all	computers.	An	application	can
also	play	an	unlimited	variety	of	instruments	and	even	produce	unique
sounds	for	individual	notes	and	velocities.
Locate	sounds	in	a	3-D	environment.
Easily	apply	pitch	changes,	reverberation,	and	other	effects.
Use	more	than	16	MIDI	channels.	DirectMusic	makes	it	possible	for	any
number	of	voices	to	be	played	simultaneously,	up	to	the	limits	of	the
synthesizer.
Play	segments	on	different	audiopaths,	so	that	effects	or	spatialization	can
be	applied	individually	to	each	sound.
Capture	MIDI	data,	or	stream	("thru")	it	from	one	port	to	another.

If	you	use	source	files	from	DirectMusic	Producer,	you	can	do	much	more:

Control	many	more	aspects	of	playback	at	run	time;	for	example,	by
choosing	a	different	set	of	musical	variations	or	altering	the	chord
progression.
Play	music	that	varies	subtly	each	time	it	repeats.
Play	waveforms	with	variations.
Map	performance	channels	to	different	buffers	within	an	audiopath,	so	that

different	parts	within	the	same	segment	can	have	different	effects.
Compose	wholly	new	pieces	of	music	at	run	time,	not	generated
algorithmically	but	based	on	elements	supplied	by	a	human	composer.
Dynamically	compose	transitions	between	existing	pieces	of	music.
Cue	transitions,	motifs,	and	sound	effects	to	occur	at	specified	rhythmic
points	in	the	performance.

These	capabilities	are	the	ones	most	often	used	by	mainstream	applications.
DirectMusic	is	designed	to	be	used	easily	for	the	basic	tasks,	but	it	also	allows
low-level	access	to	those	who	need	it.	It	is	also	extensible.	Specialized
applications	can	implement	new	objects	at	virtually	every	stage	on	the
audiopath,	such	as	the	following:

Loaders	to	parse	data	in	new	or	proprietary	formats.
Tracks	containing	any	kind	of	sequenced	data.
Tools	to	process	messages;	for	example,	to	intercept	notes	and	apply
transpositions,	or	to	display	lyrics	embedded	in	a	segment	file.
Custom	sequencer.
Custom	synthesizer.
Effects	filters.

DirectMusic	delivers	full	functionality	on	Microsoft	Windows®	98	and
Microsoft	Windows	2000.	Support	for	hardware	synthesizers	is	available	only	on
Windows	98	Second	Edition,	Windows	2000,	and	later	operating	systems.	The
default	Microsoft	software	synthesizer	is	always	available.

Although	DirectMusic	loads	and	plays	WAV	files,	applications	that	need	highly
optimized	performance	or	low-level	control	over	sound	buffers	can	still	use	the
DirectSound	API.	For	a	comparison	of	the	two	APIs,	see	the	DirectX
documentation.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Elements	of	a	DirectMusic
Application
This	section	is	an	introduction	to	some	of	the	key	concepts	and	code	objects	of
DirectMusic.	Although	some	interfaces	are	introduced,	this	section	does	not	get
into	the	details	of	using	the	API.	For	practical	information	on	writing
DirectMusic	applications,	see	Using	DirectMusic	or	the	specific	topics	listed
under	See	Also	at	the	end	of	each	topic.

The	following	topics	are	discussed:

Loader
Segments	and	Segment	States
Performance
Messages
Performance	Channels
Downloadable	Sounds
Instruments	and	Downloading
Audiopaths	and	Buffers
Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Loader
The	loader,	represented	by	the	IDirectMusicLoader8	interface,	is	an	object	that
gets	other	objects.	It	is	generally	one	of	the	first	objects	created	in	a	DirectMusic
application.	The	loader	is	used	to	load	all	audio	content,	including	DirectMusic
segment	files,	DLS	collections,	MIDI	files,	and	WAV	files.	It	can	also	load	data
stored	in	resources	or	application	memory.

Any	object	that	encapsulates	data	from	a	file	or	resource	supports	the
IDirectMusicObject8	interface.	The	loader	gets	this	interface	and	then	uses	it	to
initiate	the	process	of	streaming	the	data	into	an	object	in	your	application.	Data
objects	parse	themselves	through	their	implementations	of	IPersistStream,	and
the	entire	loading	process	is	carried	out	automatically.	All	you	need	to	do	is	pass
a	description	of	the	object	to	the	loader,	along	with	a	request	for	the	desired
interface,	such	as	IDirectMusicSegment8.

See	Also

Loading	Audio	Data

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Segments	and	Segment	States
Segments	are	objects	encapsulating	sequenced	sound	data.	The	data	might	be	a
MIDI	sequence,	a	waveform,	a	collection	of	information	originating	in	a
segment	file	from	DirectMusic	Producer,	or	a	piece	of	music	composed	at	run
time	from	different	components.	In	general,	a	segment	is	a	piece	of	music	or
other	sound	that	is	played	as	a	unit.

A	segment	can	be	played	as	a	primary	segment	or	secondary	segment.	Only	one
primary	segment	can	be	played	at	a	time.	Secondary	segments	are	typically	short
musical	motifs	or	sound	effects	played	over	the	primary	segment.

Segments	originating	as	MIDI	or	WAV	files	sound	the	same	each	time	they	are
played,	unless	the	application	performs	some	special	processing	on	them.	A
segment	authored	in	DirectMusic	Producer,	on	the	other	hand,	can	contain
different	musical	patterns	and	other	information	that	allows	variation	each	time
the	segment	is	played.

Segments	can	combine	different	kinds	of	data	such	as	waveforms,	patterns,
chord	changes,	band	changes,	and	tempo	changes.	Each	type	of	data	is
encapsulated	in	a	track	object.	Applications	written	in	C++	can	access	individual
tracks,	but	most	do	not	need	to.	Segments	can	also	contain	information	about	the
audiopath	on	which	they	should	be	played,	including	special	effects.

DirectMusic	Producer	segments	can	also	contain	references	to	other	loadable
musical	components.	For	example,	it	is	possible	to	obtain	a	band	object	from	a
segment	authored	with	that	band.

Each	time	a	segment	is	played,	a	segment	state	object	is	created.	The	application
can	use	this	object	to	get	information	about	the	state	of	playback	and	the
audiopath	for	that	instance	of	the	playing	segment.

See	Also

Using	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Performance
The	performance	object	manages	the	flow	of	data	from	the	source	to	the
synthesizer.	Typically	an	application	has	only	a	single	performance.

The	performance	handles	timing,	the	mapping	of	data	channels	to	audiopaths,
the	routing	of	messages,	tool	management,	notifications,	and	other	important
tasks.

See	Also

Creating	the	Performance

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Messages
Audio	data	flows	through	the	performance	in	the	form	of	messages.	Performance
messages	are	similar	to	MIDI	messages	but	contain	more	information	and	a
greater	variety	of	information.	A	message	could	contain	information	about	a
musical	note,	a	waveform,	or	a	controller	change.	It	might	even	contain	text	for	a
display	of	lyrics.

Most	applications	don't	deal	directly	with	messages,	which	are	generated	by
tracks	when	a	segment	is	playing.	However,	it	is	possible	for	an	application	to
insert	messages	into	the	performance.	It	is	also	possible	to	intercept	messages	by
using	plug-in	components	called	tools.

Messages	are	also	used	for	notifications.	Applications	can	request	that	an	event
be	signaled	whenever	certain	points	in	the	performance	are	reached—for
example,	on	every	beat	of	the	music.	Information	about	the	event	is	contained	in
a	performance	message.

See	Also

Notification	and	Event	Handling
Using	DirectMusic	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Performance	Channels
Every	playing	sound	consists	of	one	or	more	parts.	A	part	might	be	a	MIDI
channel,	a	part	in	a	DirectMusic	Producer	segment,	or	a	waveform.	Often	a	part
corresponds	to	a	single	musical	instrument.

A	performance	channel	controls	the	route	taken	by	a	part	through	an	audiopath.
It	maps	the	part	to	a	resource	on	the	synthesizer	(an	instrument	timbre	or	a
waveform)	and	also	enables	the	output	of	the	synthesizer	for	the	part	to	be	sent
through	a	particular	configuration	of	buffers	for	the	application	of	effects.	Every
message	that	contains	information	about	a	part	also	specifies	the	part's
performance	channel,	so	that	it	can	be	routed	correctly.	Every	performance
channel	has	its	own	settings	for	pan,	volume,	and	transposition.

Performance	channels	are	similar	to	MIDI	channels,	but	whereas	traditional
MIDI	playback	is	limited	to	16	channels,	the	number	of	performance	channels	is
virtually	unlimited.

Note			The	array	of	performance	channels	in	the	DirectMusic	API	is	zero-based,
but	in	DirectMusic	Producer	it	is	one-based.	Performance	channel	1	in
DirectMusic	Producer	is	performance	channel	0	in	the	API.

See	Also

Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Downloadable	Sounds
In	the	past,	most	computer	audio	has	been	produced	in	one	of	two	fundamentally
different	ways,	each	with	its	advantages	and	disadvantages:

Waveforms	are	reproduced	from	digital	samples,	typically	stored	in	a	file
or,	in	the	case	of	Red	Book	audio,	on	a	standard	CD	track.	Digital	samples
can	reproduce	any	sound,	and	the	output	is	very	similar	on	all	sound	cards.
However,	they	require	large	amounts	of	storage	and	resources	for
streaming.
Musical	instrument	sounds	are	synthesized,	usually	in	hardware,	in
response	to	messages,	typically	from	a	MIDI	file.	MIDI	files	are	compact
and	require	few	streaming	resources,	but	the	output	is	limited	to	the	number
of	instruments	available	in	the	General	MIDI	set	and	in	the	synthesizer,	and
may	sound	very	different	on	different	systems.

One	way	to	combine	the	advantages	of	digital	sampling	with	the	compactness
and	flexibility	of	MIDI	is	wave-table	synthesis,	which	is	the	synthesis	of
instrument	sounds	from	digital	samples.	These	samples	are	obtained	from
recordings	of	real	instruments	and	stored	on	the	hardware.	The	samples	are
looped	and	modulated	to	produce	sounds	of	any	length	at	different	pitches	and
volumes.

Wave-table	synthesis	produces	more	realistic	timbres	than	algorithmic	FM
synthesis	but	is	still	limited	to	a	fixed	set	of	instruments.	Also,	a	particular
instrument	might	sound	different	on	different	pieces	of	hardware,	depending	on
the	manufacturer's	implementation	of	that	instrument.

The	Downloadable	Sounds	(DLS)	standard,	published	by	the	MIDI
Manufacturers	Association,	is	a	way	of	enabling	wave-table	synthesis	to	be
based	on	samples	provided	at	run	time	rather	than	hard-wired	into	the	system.
The	data	describing	an	instrument	is	downloaded	to	the	synthesizer,	and	then	the
instrument	can	be	played	like	any	other	MIDI	instrument.	Because	DLS	data	can
be	distributed	as	part	of	an	application,	developers	can	be	sure	that	their
soundtracks	will	be	delivered	uniformly	on	all	systems.	Moreover,	developers
are	not	limited	in	their	choice	of	instruments.

A	DLS	instrument	is	created	from	one	or	more	digital	samples,	typically
representing	single	pitches,	which	are	then	modulated	by	the	synthesizer	to
create	other	pitches.	Multiple	samples	are	used	to	make	the	instrument	sound
realistic	over	a	wide	range	of	pitches.	When	a	DLS	instrument	is	downloaded,
each	sample	is	assigned	to	a	certain	range	of	pitches,	called	a	region.

DLS	Level	2	allows	every	note	to	occupy	its	own	region.	Moreover,	the	timbre
for	each	region	can	be	made	up	of	multiple	samples,	called	layers,	and	different
layers	can	be	triggered	depending	on	the	velocity	of	the	note.	A	single
instrument	can	thus	be	used	to	produce	thousands	of	different	sounds.

In	addition,	samples	can	be	given	an	articulation,	which	defines	characteristics
that	make	the	sound	more	like	that	produced	by	a	real	instrument.	Articulation
includes	envelopes,	or	shapes,	for	the	volume	and	pitch	of	the	sound	and	a	low-
frequency	oscillator	(LFO)	to	provide	vibrato	and	tremolo.

Samples	can	be	loopable	or	single-shot.	A	loopable	sample	plays	repeatedly	for
the	duration	of	the	note.	A	single-shot	sample	plays	only	once.

DLS	data	is	stored	in	instrument	collections.	Individual	instruments	are	assigned
patch	numbers	and	respond	to	MIDI	messages	just	like	traditional	MIDI
instruments.	However,	a	DLS	instrument	does	not	have	to	belong	to	the	General
MIDI	set.	Any	sound,	even	a	fragment	of	speech	or	a	fully	composed	measure	of
music,	can	be	associated	with	a	DLS	instrument.

For	more	information	on	DLS	collections	and	how	instruments	are	created,	see
the	documentation	for	DirectMusic	Producer.	To	learn	more	about	the	DLS
standard,	consult	the	document	"Downloadable	Sounds	Level	2,"	available	from
the	MIDI	Manufacturers	Association.

By	default,	DirectMusic	uses	the	Microsoft	software	synthesizer,	which	supports
DLS	Level	2.

Note			The	DLS	Level	1	synthesizer	used	with	the	DirectX	7	interfaces	contains
reverberation	capabilities,	which	are	on	by	default.	The	Waves	TrueVerb
reverberation	technology	is	licensed	to	Microsoft	Corporation	as	the	SimpleVerb
implementation.

The	DLS	Level	2	synthesizer	used	with	later	interfaces	does	not	contain	built-in
reverberation	capabilities.	Reverberation	is	instead	implemented	as	a

DirectX	Media	Object.	Waves	MaxxVerb	is	licensed	to	Microsoft	Corporation
for	this	purpose.

See	Also

Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Instruments	and	Downloading
To	play	an	instrument,	the	synthesizer	needs	information	about	how	the
instrument	should	sound.	This	information,	consisting	of	waveform	samples	and
articulation	data,	is	stored	in	DLS	collections.	Instrument	data	is	made	available
to	the	synthesizer	by	being	downloaded.

By	default,	the	Microsoft	software	synthesizer	takes	its	DLS	data	from	the
Roland	GM/GS	collection.	The	default	collection	contains	DLS	data	for	the	128
instruments	defined	by	the	General	MIDI	standard.	Custom	collections	can
include	instruments	of	any	kind.	The	waveform	samples	for	an	instrument	do	not
have	to	be	based	on	a	musical	instrument	but	can	be	any	recorded	sound	such	as
a	sound	effect,	a	fragment	of	speech,	or	even	a	fully	formed	measure	of	music.

Most	applications	do	not	need	to	access	collections	directly,	as	the	necessary
data	is	either	contained	in	the	default	collection	or	referenced	by	a	band	object
associated	with	a	segment.	A	band	is	a	set	of	instruments	and	settings	mapped	to
performance	channels.	Several	techniques	are	available	for	ensuring	that	band
instruments	are	downloaded	before	use.

Note			The	Roland	GM/GS	Sound	Set	cannot	be	modified,	due	to	legal
restrictions.

WAV	files	and	resources	also	have	to	be	downloaded	to	the	synthesizer	before
they	can	be	played.

A	band	is	a	collection	of	performance	channel	settings	that	determine	how	parts
in	a	sound	file	are	played.	For	each	channel,	a	band	includes	an	instrument
assignment	as	well	as	settings	for	volume,	pan,	and	transposition.	Every	part	in	a
performance	is	mapped	to	a	performance	channel,	and	each	part	plays	with	the
instrument	settings	applied	to	its	channel	by	the	band.

Although	a	band	can	be	thought	of	as	a	set	of	instruments,	it	is	not	the	same	as	a
DLS	collection.	A	DLS	collection	is	a	set	of	instruments	that	can	be	downloaded
to	the	synthesizer	and	thus	made	available	to	any	application.	The	instruments
themselves	contain	no	information	about	assignment	to	performance	channels,
volume,	pan,	or	transposition.	This	data	must	be	supplied	by	bands	for	the

channels	used	by	a	performance.

Note			When	bands	are	downloaded	to	the	synthesizer,	it	is	really	the	DLS
instruments	referenced	by	the	band	that	are	being	downloaded.

Bands	can	be	saved	as	separate	files	or	included	in	styles	or	segments.

See	Also

Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Audiopaths	and	Buffers
Each	DirectMusic	segment	plays	on	an	audiopath	that	controls	the	flow	of
sounds	from	the	performance	to	the	synthesizer,	then	through	DirectSound
buffers	where	effects	can	be	applied,	and	finally	into	the	primary	buffer,	where
the	final	output	is	mixed.

Note			The	buffers	referred	to	here	are	used	for	streaming	and	processing	PCM
data	after	it	has	left	the	synthesizer,	and	these	buffers	support	the
IDirectSoundBuffer8	interface.	Another	kind	of	buffer,	represented	by	the
IDirectMusicBuffer8	interface,	is	used	for	sequencing	message	data	to	the
synthesizer.	Most	applications	do	not	need	access	to	the	second	kind	of	buffer,
which	is	managed	by	the	DirectMusic	performance.

Applications	can	create	standard	audiopaths	and	then	play	segments	on	them.
For	example,	an	application	could	create	one	audiopath	for	playing	MIDI	files	to
a	buffer	with	musical	reverb	and	another	for	playing	WAV	files	to	a	buffer	with
3-D	control.

More	sophisticated	audiopath	configurations	can	be	authored	into	a	segment	in
DirectMusic	Producer.	For	example,	a	nonstandard	configuration	might	direct
parts	in	a	segment	through	different	DirectSound	buffers	to	apply	different
effects	to	them.

An	audiopath	can	be	seen	as	a	chain	of	objects	through	which	data	is	streamed.
An	application	can	gain	access	to	any	of	these	objects.	For	example,	you	might
retrieve	a	buffer	object	to	set	3-D	properties	of	a	sound	source,	or	an	effect	DMO
to	change	the	parameters	of	the	effect.

See	Also

Using	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Audio	Scripts
An	audio	script	is	a	file	containing	variables	and	routines	that	can	be	accessed
from	within	an	application.	Scripts	can	be	written	using	any	Microsoft
ActiveX®	Scripting	language,	but	DirectMusic	Producer	also	enables	scripting
in	a	special	language	called	AudioVBScript.	The	advantage	of	using
AudioVBScript	is	that	it	requires	a	very	small	run-time	library,	which	is	one	of
the	DirectMusic	system	components.	AudioVBScript	is	a	subset	of	Microsoft
Visual	Basic®	Scripting	Edition.

Note			Audio	scripts	are	not	designed	to	be	used	on	Web	pages.

Scripts	implement	some	of	the	key	DirectMusic	objects	and	can	perform	basic
functions	such	as	the	following:

Creating	audiopaths
Setting	audiopath	volumes
Setting	global	parameters	for	the	performance
Loading,	playing,	and	stopping	segments
Downloading	bands

DirectMusic	scripts	make	it	easier	for	application	developers	and	sound
designers	to	coordinate	their	efforts.	Scripts	give	sound	designers	greater	and
more	immediate	control	over	the	soundtrack.	The	basic	functionality	of	loading
and	playing	sounds	is	performed	by	the	script.	The	application	contains
generalized	code	that	calls	into	the	script.

The	following	scenario	is	one	in	which	scripting	might	be	helpful.	It	supposes
that	the	sound	effects	for	a	game	are	stored	as	individual	WAV	files.	The	game
uses	these	sounds	for	events	such	as	weapons	firing	and	monsters	grunting.

Using	conventional	programming	techniques,	the	developers	load	the	individual
sounds	by	file	name	and	play	them	as	secondary	segments	at	appropriate	times
in	the	game.	But	now	the	sound	designers	want	to	make	some	changes.	They
decide,	for	example,	that	the	boss	monster	should	have	a	different	grunt	than
normal	monsters.	The	sound	designers	create	the	necessary	files	and	hand	them
off	to	the	developers,	who	implement	the	changes	in	code.	Considerable	time

may	pass	before	the	sound	designers	are	able	to	get	a	newly	compiled	version	of
the	game	and	test	it.

Imagine	the	same	scenario	using	an	audio	script.	Rather	than	hard-coding	the
actual	sounds	into	the	application,	the	developers	might	write	code	like	the
following	to	play	a	grunt.	Assume	that	that	szGrunter	has	been	set	to	a	string
constant	such	as	"Player",	"Boss",	or	"NormalMonster",	and	that	pdmScript	is	an
interface	to	the	script	object:

pdmScript->SetVariableVariant("Grunter",	szGrunter,	NULL);

pdmScript->CallRoutine("PlayGrunt",	NULL);

This	fragment	of	code	sets	the	value	of	the	Grunter	variable	in	the	script	and
calls	the	PlayGrunt	script	routine.	The	script	author,	who	is	probably	a	member
of	the	sound	design	team,	decides	what	the	routine	does.	For	example,	the
routine	might	test	the	value	of	Grunter	before	deciding	what	sound	to	play.

To	change	the	response	to	the	game	situation,	all	that	is	required	is	an	alteration
in	the	text	of	the	script,	and	the	new	routine	can	be	tested	immediately	in	the
existing	application.

The	scripting	API	is	documented	in	the	DirectMusic	Producer	Help	file.

See	Also

Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Overview	of	Audio	Data	Flow
Typically,	a	DirectMusic	application	obtains	sounds	from	one	or	more	of	the
following	sources:

MIDI	files
WAV	files
Segment	files	authored	in	DirectMusic	Producer	or	a	similar	application
Component	files	authored	in	an	application	such	as	DirectMusic	Producer
and	turned	into	a	complete	composition	at	run	time	by	the	DirectMusic
composer	object

Note			Any	of	these	data	sources	can	be	stored	in	the	application	as	a	resource
rather	than	in	a	separate	file.

Data	from	these	sources	is	encapsulated	in	segment	objects.	Each	segment	object
represents	data	from	a	single	source.	At	any	moment	in	a	performance,	one
primary	segment	and	any	number	of	secondary	segments	can	be	playing.	Source
files	can	be	mixed;	for	example,	a	secondary	segment	based	on	a	WAV	file	can
be	played	along	with	a	primary	segment	based	on	an	authored	segment	file.

A	segment	comprises	one	or	more	tracks,	each	containing	timed	data	of	a
particular	kind;	for	example,	notes	or	tempo	changes.	Most	tracks	generate	time-
stamped	messages	when	the	segment	is	played	by	the	performance.	Other	kinds
of	tracks	supply	data	only	when	queried	by	the	performance.

The	performance	first	dispatches	the	messages	to	any	application-defined	tools.
A	tool	can	modify	a	message	and	pass	it	on,	delete	it,	or	send	a	new	message.
Tools	are	arranged	in	linear	sets	called	toolgraphs.	A	message	might	pass
through	any	or	all	of	the	following	toolgraphs,	in	the	order	given:

Segment	toolgraph.	Processes	messages	from	a	single	segment.
Audiopath	toolgraph.	Processes	messages	on	a	single	audiopath.
Performance	toolgraph.	Processes	all	messages	in	the	performance.

Finally,	the	messages	are	delivered	to	the	output	tool,	which	converts	the	data	to
MIDI	format	before	passing	it	to	the	synthesizer.	Channel-specific	MIDI

messages	are	directed	to	the	appropriate	channel	group	on	the	synthesizer.	The
synthesizer	creates	waveforms	and	streams	them	to	a	device	called	a	sink,	which
manages	the	distribution	of	data	through	buses	to	DirectSound	buffers.

There	are	three	kinds	of	DirectSound	buffers:

Sink-in	buffers	are	DirectSound	secondary	buffers	into	which	the	sink
streams	data.	These	buffers	enable	the	application	to	control	pan,	volume,
3-D	location,	and	other	properties.	They	can	also	pass	their	data	through
effects	modules	to	add	effects	such	as	reverberation	and	echo.	The	resulting
waveform	is	passed	either	directly	to	the	primary	buffer	or	to	one	or	more
mix-in	buffers.
Mix-in	buffers	receive	data	from	other	buffers,	apply	effects,	and	mix	the
resulting	waveforms.	These	buffers	can	be	used	to	apply	global	effects.	An
effect	achieved	by	directing	data	to	a	mix-in	buffer	is	called	a	send.	Mix-in
buffers	can	be	created	only	by	using	audiopath	configurations	authored	in
DirectMusic	Producer.
The	primary	buffer	performs	the	final	mixing	on	all	data	and	passes	it	to	the
rendering	device.

Note			Applications	are	not	responsible	for	managing	secondary	buffers	that	are
part	of	a	DirectMusic	performance.	Although	an	application	can	obtain	a	buffer
object	for	the	purpose	of	adding	effects	and	changing	properties,	it	cannot	lock
the	buffer,	write	to	it,	start	it,	or	stop	it	by	using	the	IDirectSoundBuffer8
interface.

The	following	diagram	is	a	simplified	view	of	the	flow	of	data	from	files	to	the
speakers.	A	single	segment	is	shown,	though	multiple	segments	can	play	at	the
same	time.	The	segment	gets	its	data	from	only	one	of	the	four	possible	sources
shown:	a	WAV	file,	a	MIDI	file,	a	segment	file	authored	in	DirectMusic
Producer,	or	component	files	combined	by	the	composer	object.	In	all	cases,	data
can	come	from	a	resource	rather	than	a	file.

For	a	closer	look	at	the	flow	of	messages	through	the	performance,	see	Using
DirectMusic	Messages.

For	information	on	how	to	implement	the	process	shown	in	the	illustration,	see
Loading	Audio	Data	and	Playing	Sounds.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Introduction	to	Dynamic	Musical
Soundtracks
If	you	want	to	take	full	advantage	of	DirectMusic,	you	won't	play	just	MIDI	and
WAV	files.	You'll	take	elements	authored	in	DirectMusic	Producer	and	use	them
to	create	performances	that	can	be	varied	or	manipulated	in	countless	ways.

Note			Throughout	this	documentation,	the	human	composer	of	musical	elements
is	referred	to	as	the	author,	to	avoid	confusion	with	the	composer	object	of
DirectMusic.	Similarly,	musical	elements	are	said	to	be	authored	rather	than
composed.

The	following	brief	introduction	to	the	elements	of	a	dynamic	soundtrack	is
meant	to	give	the	application	developer	an	understanding	of	the	material	being
used	in	the	performance.	For	a	more	detailed	view,	see	the	Help	for	DirectMusic
Producer.	For	information	on	how	to	incorporate	these	elements	in	an
application,	see	Using	Compositional	Elements.

The	following	topics	are	covered:

Styles
Chordmaps
Style-based	Segments
Templates
How	Music	Varies	During	Playback
Music	Values	and	MIDI	Notes

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Styles
A	style	is	a	collection	of	musical	patterns	that	can	be	used	to	create	a	dynamic
score.	It	also	contains	a	time	signature	and	a	tempo,	and	can	contain	one	or	more
bands.

A	pattern	is	a	musical	figure,	one	or	more	measures	long,	consisting	of	a	basic
sequence	of	notes	for	each	instrument,	or	part.	These	notes	are	not	defined	as
fixed	pitches;	they	are	described	according	to	the	role	they	play	in	the	chord
structure.	The	notes	are	mapped	to	MIDI	values	when	they	are	played,	after	the
current	key,	chord,	and	play	mode	have	been	taken	into	account.

A	motif	is	a	special	type	of	pattern	designed	to	be	played	dynamically	over	the
basic	score.	Motifs	are	always	played	explicitly	by	the	application.	Motifs	are
often	used	in	interactive	applications	to	mark	an	event.

Each	pattern	can	have	up	to	32	variations.	At	run	time,	variations	are	chosen	by
the	style	playback	mechanism.	However,	the	author	can	specify	that	a	variation
must	never	be	chosen	when	a	certain	chord	is	being	played.

The	author	also	assigns	a	groove	range	to	the	pattern,	specifying	the
groove	levels	at	which	the	pattern	can	be	played.

Any	pattern	(other	than	a	motif)	can	be	designated	as	an	embellishment.	There
are	four	standard	embellishment	types:	intro,	fill,	break,	and	end.	In	addition,
DirectMusic	Producer	enables	authors	to	establish	up	to	100	custom
embellishment	types.	A	pattern	can	be	assigned	to	one	or	more	of	these	types.
When	a	style-based	segment	is	played	and	a	certain	type	of	embellishment	is
specified	at	some	point	in	the	segment,	only	patterns	of	that	type	are	candidates
for	playback.

See	Also

DirectMusic	Style	Library
Style-based	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Chordmaps
Much	modern	music,	especially	music	in	the	popular,	rock,	folk,	and	jazz
idioms,	is	based	on	the	concept	of	chord	progression.	All	the	notes	played	within
a	given	span	of	time	are	associated	with	a	certain	chord,	and	the	music	moves
harmoniously	from	one	chord	to	another.

The	notes	within	a	pattern	authored	for	DirectMusic	are	derived	from	or
intended	to	harmonize	with	a	single	chord.	At	run	time,	however,	the	pattern	is
transposed	according	to	the	chord	progression;	that	is,	each	time	the	underlying
chord	changes,	DirectMusic	modulates	the	pitch	of	the	notes	accordingly.

A	chordmap	is	a	collection	of	chords	that	provides	multiple	potential	chord
progressions	to	a	musical	piece.	Chord	progressions	are	generated	from	a
chordmap	and	inserted	into	the	chord	track	of	a	segment,	either	at	design	time	or
at	run	time.

By	using	chordmaps,	the	author	of	the	music	can	create	multiple	segments	from
a	common	set	of	chords.	Chordmaps	can	also	be	used	by	the	application	at	run
time	to	create	new	segments	or	to	build	new	chord	progressions	in	existing
segments.

Certain	important	chords	in	a	chordmap	are	designated	as	signposts.	These	are
chords	that	must	be	played	at	certain	points.	The	music	is	always	moving	from
one	signpost	to	the	next.	Between	the	signposts,	however,	the	chord	progression
can	follow	various	routes	from	one	chord	to	another,	as	mapped	out	by	the
author.

A	chord	in	the	chordmap	can	actually	consist	of	several	different	chords,	referred
to	as	subchords.	In	order	to	achieve	polytonality	by	playing	different	inversions
of	the	same	chord,	the	author	can	assign	different	parts	to	different	subchords.
Each	subchord	is	valid	for	one	or	more	levels,	and	these	are	matched	up	with
levels	assigned	to	parts	in	the	style.

See	Also

Using	Chordmaps

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Style-based	Segments
A	style-based	segment	is	a	largely	prebuilt	piece	of	music	that	the	author
constructs	from	the	following	elements:

Style.	A	style	consists	of	general	information	about	the	music	(such	as	time
signature	and	tempo),	as	well	as	patterns.
Chord	progression.	This	might	be	derived	automatically	by	the	authoring
tool	from	a	chordmap	(by	choosing	a	path	through	the	chord	chart),	or
entered	manually	by	the	author.
Command	track.	This	track,	known	as	the	groove	track	in	DirectMusic
Producer,	is	a	series	of	commands	for	selecting	appropriate	patterns	at	set
times.	A	characteristic	of	the	patterns	in	styles	is	that	they	can	be	designated
as	embellishments	(intro,	fill,	break,	and	end)	and	can	also	be	assigned	a
certain	groove	range	by	the	author.	The	command	track	of	the	segment
might	instruct	the	style	playback	engine	to	select	an	intro	pattern	and	play	it
for	the	first	measure,	then	play	only	patterns	with	a	groove	level	of	25	for
the	next	four	measures,	then	play	a	break,	and	so	on.
Band.	The	author	can	assign	instruments	and	performance	channels	to	all
the	parts	in	the	various	patterns.

See	Also

Chordmaps
Styles

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Templates
A	template	is	a	segment	that	contains	a	signpost	track	and,	optionally,	a
command	track.	The	signpost	track	can	be	used	to	create	a	new	chord
progression,	either	for	the	segment	that	contains	the	track	or	for	another	segment
that	does	not	have	a	signpost	track.	The	command	track	supplies	groove	levels
and	embellishments.	You	can	use	templates	at	run	time	to	compose	new	material.

The	signpost	track	contains	a	sequence	of	signpost	markers,	which	mark	the
beginning	and	end	of	regions	in	which	variations	in	the	chord	progression	are
possible.	Each	signpost	marker	is	designated	as	valid	for	a	particular	group	of
signpost	chords	in	a	chordmap.	The	author	of	the	content	is	responsible	for
assigning	signpost	markers	and	signpost	chords	to	the	appropriate	groups.

DirectMusic	composes	a	segment	by	applying	the	signpost	track	to	a	particular
style	and	chordmap.	Each	time	the	composer	encounters	a	pair	of	signpost
markers	along	the	time	line	in	the	template,	it	searches	the	chordmap	for	a	pair
of	signpost	chords	that	belong	to	that	group.	If	it	finds	a	pair	and	the	interval
between	them	fits	into	the	time	available,	it	follows	the	chord	progression
between	those	two	signpost	chords,	as	defined	in	the	chordmap.	If	it	is	unable	to
find	a	path	that	works,	or	if	there	is	no	end	signpost	marker,	the	engine	plays	any
chord	from	the	group	of	the	beginning	signpost	marker.

For	information	on	composing	segments	from	templates	in	an	application,	see
Using	Templates.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

How	Music	Varies	During	Playback
As	DirectMusic	plays	a	style-based	segment,	changes	are	made	to	the	basic
harmony	and	rhythm	so	that	the	performance	does	not	sound	static.	Changes	are
partly	scripted	and	partly	random.

Choice	of	pattern.	A	typical	style	contains	multiple	patterns,	which	are
selected	in	response	to	commands	from	the	command	track.	For	example,	if
the	command	track	calls	for	a	break	embellishment	to	be	played,	the	style
playback	engine	selects	a	break	pattern	that	is	compatible	with	the	current
groove	level.	(The	author	specifies	which	groove	levels	are	appropriate	for
each	pattern.)	If	there	is	more	than	one	suitable	pattern,	one	is	chosen
according	to	rules	embedded	in	the	segment	by	the	author.	The	choice
might	be	completely	or	partly	random,	or	patterns	might	be	selected	in	a
certain	sequence.
Variations	within	a	pattern.	Any	part	within	a	pattern	can	have	multiple
variations.	Variations	can	play	in	an	order	specified	by	the	author;	otherwise
the	style	playback	engine	makes	a	random	choice	of	variations	on	each
repetition	of	the	pattern.
Groove	level.	The	groove	level	of	the	segment	determines	which	of	the
patterns	in	the	style	can	be	selected	for	playback.	The	current	level	is	set	by
the	command	track,	which	is	normally	authored	into	a	segment.	The	groove
level	of	a	segment	can	also	be	changed	programmatically,	and	a	modifier
can	be	applied	to	all	segments	by	setting	the	master	groove	level	for	the
performance.
Transposition.	As	the	segment	plays,	changes	are	made	to	the	underlying
chord	according	to	the	progression	in	the	chord	track.	The	notes	in	the
current	pattern	are	automatically	transposed	to	harmonize	with	the	new
chord.
Variations	in	timing.	The	playback	engine	can	introduce	small	random
changes	in	the	start	and	stop	times	of	individual	notes.	The	degree	of
randomness	is	set	by	the	author	of	the	content.
Band.	The	choice	of	instruments	and	instrument	settings	(volume,	pan,	and
transposition)	can	be	changed	as	the	segment	is	playing,	either	by	the	band
track	within	an	authored	segment	or	dynamically	by	the	application.

In	many	cases,	applications	exert	control	over	the	music	by	playing	different
segments	rather	than	by	manipulating	existing	segments.	For	example,	to	have
the	music	reflect	a	change	in	the	intensity	of	a	game,	you	can	simply	change	to	a
new	segment	authored	for	that	intensity	level.	You	can	achieve	a	similar	effect
with	a	single	style-based	segment	by	having	the	author	create	patterns	with
different	groove	ranges,	and	then	changing	the	groove	level	in	response	to	game
events.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Music	Values	and	MIDI	Notes
Notes	in	a	pattern	in	a	DirectMusic	style	or	pattern	track	are	not	notes	with	a
fixed	MIDI	value.	Rather,	they	are	music	values	that	become	MIDI	notes	only
when	they	are	transposed	to	the	current	chord	according	to	the	current	play	mode
and	subchord	level.

A	music	value	is	a	representation	of	the	note's	intended	role.	For	example,	a
music	value	can	specify	that	a	note	is	intended	to	be	played	as	the	second
position	in	the	chord,	up	one	in	the	scale.	When	that	music	value	is	applied	to	a
particular	chord,	it	is	converted	to	the	appropriate	MIDI	note—the	one	in	the
second	position	in	the	chord,	up	one	in	the	scale.

The	play	mode	determines	how	to	interpret	the	note	against	the	chord.	For
example,	if	the	mode	is	DMUS_PLAYMODE_NORMALCHORD,	the	note	is
interpreted	against	the	intervals	of	the	chord	and	scale,	based	on	the	root	of	the
chord.	If	the	mode	is	DMUS_PLAYMODE_FIXEDTOKEY,	the	note	is
interpreted	as	a	linear	value.

To	allow	for	complex	harmonies	with	multiple	parallel	chord	progressions,
DirectMusic	chords	can	be	made	up	of	multiple	subchords.	The	subchord	level	is
a	value	in	the	range	from	0	through	31	that	determines	which	subchords	of	a
chord	can	be	used	in	establishing	the	music	value.	Each	subchord	is	valid	for	one
or	more	levels,	as	defined	by	the	author	of	the	music.	DirectMusic	Producer
supports	up	to	four	subchords	per	chord.

When	a	segment	is	played,	each	note	is	encapsulated	in	a	message	structure	that
specifies	the	original	music	value	and	the	final	MIDI	note	along	with	the	play
mode	and	subchord	level	that	were	used	in	transposition.	Most	applications	don't
deal	directly	with	note	messages,	but	tools	can	intercept	them	and	alter	the	notes.
For	example,	a	tool	could	intercept	a	note	that	was	transposed	in	a	certain	play
mode,	change	the	play	mode,	and	calculate	a	new	MIDI	value	before	passing	on
the	message.

See	Also

DMUS_NOTE_PMSG

DMUS_PLAYMODE_FLAGS
DMUS_CHORD_PARAM
DMUS_CHORD_KEY
DMUS_SUBCHORD
IDirectMusicPerformance8::MIDIToMusic
IDirectMusicPerformance8::MusicToMIDI
DirectMusic	Tools

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Getting	Started	with	DirectMusic
This	section	gives	information	on	setting	up	and	debugging	DirectMusic
projects,	as	well	as	a	brief	overview	of	the	programming	steps	required	to	set	up
a	performance	and	play	sounds.

More	information	on	getting	started	is	included	in	the	following	topics:

Building	DirectMusic	Projects
Debugging	DirectMusic	Projects
First	Steps	in	DirectMusic	Programming

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Building	DirectMusic	Projects
Projects	need	to	include	the	Dmusici.h	header	file,	which	contains	declarations
for	the	DirectMusic	performance	layer.	Including	this	file	will	bring	in	three
other	essential	headers:

Dmusicc.h:	declarations	for	the	core	layer	of	DirectMusic.
Dmerr.h:	DirectMusic	return	values.
Dsound.h:	the	DirectSound	API.

The	following	additional	headers	are	not	needed	by	most	applications:

Dmusicf.h:	file	structures	and	definitions.	This	header	is	needed	only	by
applications	such	as	music-authoring	tools	that	work	directly	with	files	and
don't	rely	solely	on	the	loaders	built	into	DirectMusic.
Dmusics.h:	declarations	for	the	IDirectMusicSynth	and
IDirectMusicSynthSink	interfaces,	which	are	used	for	creating
synthesizers	and	synthesizer	sinks.
Dmusbuff.h:	declaration	of	the	DMUS_EVENTHEADER	structure,	used
only	by	applications	that	are	directly	sequencing	events	to	the	synthesizer.
Dmksctrl.h:	declarations	for	the	IKsControl	interface	used	for	port
property	sets.	You	do	not	need	this	file	if	you	have	included	Ksproxy.h	and
Ks.h.
Dmplugin.h:	declarations	for	the	IDirectMusicTool8	and
IDirectMusicTrack8	interfaces,	which	are	implemented	by	add-ons	for
advanced	applications	that	need	specialized	message-processing	tools	and
track	types.	Most	applications	do	not	use	this	part	of	the	DirectMusic	API.

You	must	also	ensure	that	your	application	has	access	to	the	GUIDs	used	by
DirectMusic.	Define	INITGUID	before	all	other	preprocessor	directives,	or	link
to	Dxguid.lib.

DirectMusic	uses	the	multithreading	capabilities	of	the	Windows	32-bit
operating	system.	Multithreading	allows	DirectX	to	generate,	process,	and
synthesize	music	in	the	background	while	your	application	is	accomplishing
other	tasks.	You	should	develop	your	project	with	multithreading	in	mind.	If
nothing	else,	be	sure	to	link	with	the	appropriate	libraries.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Debugging	DirectMusic	Projects
The	DirectMusic	dynamic-link	libraries	(DLLs)	installed	with	the	debug	version
of	the	DirectX	software	development	kit	(SDK)	generate	information	in	the
debug	output	window	as	the	application	is	running.	These	DLLs	are	available	if
you	installed	the	debug	version	of	the	DirectX	SDK.	They	can	be	dynamically
selected	through	the	DirectX	property	sheet	in	Control	Panel	by	choosing	Use
Debug	Version	of	DirectMusic.

You	can	control	the	volume	of	information	that	goes	to	your	debug	output
window	by	changing	values	in	Win.ini.	The	output	for	each	DirectMusic	DLL
can	be	set	separately,	as	in	the	following	example:

[Debug]

DMBAND=1

DMCOMPOS=1

DMIME=1

DMLOADER=0

DMUSIC=1

DMSTYLE=3

DMSYNTH=5

Each	value	can	be	in	the	range	from	0	through	5,	where	0	produces	no
debugging	information	and	5	the	most	detailed	information.	For	most	purposes	it
is	unnecessary	to	set	the	level	higher	than	2;	output	at	higher	levels	does	not
pertain	to	errors	or	warnings	but	is	purely	informational.

If	there	is	no	entry	in	Win.ini,	the	debug	output	is	at	level	0.	You	can	focus	on
problems	in	a	particular	DLL	by	setting	lower	values	for	the	other	components.

You	can	also	set	the	debug	level	within	the	range	from	0	to	5	by	using	the	Debug
Output	Level	sliders	on	the	DirectMusic	page	of	the	DirectX	property	sheet	in
Control	Panel.	The	slider	sets	the	same	value	for	all	DLLs.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

First	Steps	in	DirectMusic
Programming
This	topic	gives	an	overview	of	the	basic	steps	required	for	setting	up	a
DirectMusic	performance	and	playing	a	file.	For	details,	see	Using	DirectMusic.
For	sample	code,	see	Tutorial	1:	Playing	Audio	Files.

To	produce	a	sound,	an	application	needs	to	do	the	following:

1.	 Initialize	COM.	There	are	no	helper	functions	for	creating	DirectMusic
objects.	To	initialize	COM,	you	must	call	CoInitializeEx.

2.	 Create	and	initialize	the	performance.	Most	applications	have	a	single
performance	object.	Create	the	performance	by	calling	CoCreateInstance,
obtaining	the	IDirectMusicPerformance8	interface.	Then	call
IDirectMusicPerformance8::InitAudio.	This	method	can	set	up	a	default
audiopath.

3.	 Create	the	loader.	Using	CoCreateInstance,	create	a	loader	object	and
obtain	an	IDirectMusicLoader8	interface.	You	need	to	do	this	only	once,
and	normally	you	should	keep	the	same	loader	object	for	the	life	of	the
application.

4.	 Load	a	segment.	Call	IDirectMusicLoader8::SetSearchDirectory	so	the
loader	can	find	the	data	files.	Then	call	IDirectMusicLoader8::GetObject
to	load	a	segment	from	a	file	or	resource	and	obtain	its
IDirectMusicSegment8	interface.

5.	 Download	the	band.	Download	DLS	instrument	data	to	the	synthesizer	so
that	notes	can	be	synthesized.	WAV	files	must	also	be	downloaded.	The
simplest	way	to	download	all	instruments	and	waves	is	by	calling
IDirectMusicSegment8::Download.

6.	 Play	the	segment.	Pass	the	segment	pointer	to
IDirectMusicPerformance8::PlaySegmentEx.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	DirectMusic
This	section	is	a	guide	to	using	the	Microsoft®	DirectMusic®	application
programming	interface	(API)	in	application	development.

Information	is	presented	in	the	following	topics:

Loading	Audio	Data
Playing	Sounds
Performance	Parameters
Using	Audiopaths
Using	3-D	Sound	in	DirectMusic
Using	Effects	in	DirectMusic
Buffer	Chains
Using	Compositional	Elements
Using	Audio	Scripts
Capturing	MIDI

For	a	more	general	overview,	see	the	following	topics:

Elements	of	a	DirectMusic	Application
First	Steps	in	DirectMusic	Programming
Overview	of	Audio	Data	Flow

For	information	on	advanced	features	used	mainly	by	specialized	applications,
see	Advanced	Topics	in	DirectMusic.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Loading	Audio	Data
Many	DirectMusic	objects	have	to	be	loaded	from	a	file	or	resource	before	they
can	be	incorporated	into	a	performance.	The	IDirectMusicLoader8	interface	is
used	to	manage	the	enumeration	and	loading	of	such	objects,	as	well	as	to	cache
them	so	that	they	are	not	loaded	more	than	once.

Note			Do	not	load	data	from	untrusted	sources.	Loading	DirectMusic	data	files
causes	objects	to	be	constructed,	with	the	possibility	that	excessive	demand	on
resources	will	lead	to	degradation	of	performance	or	system	failure.

An	application	should	have	only	one	instance	of	the	loader	in	existence	at	a	time.
You	should	create	a	single	global	loader	object	and	not	free	it	until	there	is	no
more	loading	to	be	done.	This	strategy	ensures	that	objects	are	found	and	cached
efficiently.

When	objects	are	loaded	from	a	memory	location	or	a	stream,	the	application
should	not	touch	the	data	until	the	loader	is	released.	Because	of	caching	and
other	internal	mechanisms,	the	loader	might	try	to	access	the	data	at	a	later	time.
To	load	new	data,	always	allocate	a	new	buffer	or	create	a	new	stream.

The	DirectMusic	implementation	of	IStream	streams	the	data	from	the	source.
The	parsing	of	the	data	is	handled	by	the	various	objects	themselves	through
their	implementations	of	IPersistStream.	As	long	as	you	are	dealing	only	with
standard	DirectMusic	data,	you	don't	have	to	use	these	interfaces	directly.

Loading	of	objects	referenced	by	other	objects	is	handled	transparently.	For
example,	suppose	a	segment	being	loaded	from	a	DirectMusic	Producer	file
contains	a	reference	to	a	WAV	sound	in	another	file.	When	the	segment's
implementation	of	IPersistStream::Load	finds	the	reference,	it	obtains	the
IDirectMusicGetLoader8	interface	from	the	stream	object.	Using	this	interface,
it	obtains	a	pointer	to	the	loader	object.	Then	it	calls
IDirectMusicLoader8::GetObject	to	load	the	WAV	sound.

More	information	on	using	the	loader	is	contained	in	the	following	topics:

Setting	the	Loader's	Search	Directory

Scanning	a	Directory	for	Objects
Enumerating	Objects
Loading	an	Object	from	a	File
Loading	an	Object	from	a	Resource	or	Memory	Address
Containers
Getting	Object	Descriptors
Cache	Management
Garbage	Collection
Setting	Objects

See	Also

Custom	Loading

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Setting	the	Loader's	Search	Directory
By	default,	the	loader	looks	for	objects	in	the	current	directory	unless	a	full	path
is	specified	in	the	wszFileName	member	of	the	DMUS_OBJECTDESC
structure	describing	the	object	being	sought.	By	using	the
IDirectMusicLoader8::SetSearchDirectory	method,	you	can	set	a	different
default	path	for	the	IDirectMusicLoader8::GetObject	and
IDirectMusicLoader8::EnumObject	methods.	This	default	path	can	apply	to
all	objects,	or	only	to	objects	of	a	certain	class.

The	behavior	of	IDirectMusicLoader8::LoadObjectFromFile	is	somewhat
different.	See	the	Remarks	for	that	method.

The	following	example	function	sets	the	search	path	for	style	files:

HRESULT	mySetLoaderPath	(IDirectMusicLoader8	*pILoader)

{

		return	pILoader->SetSearchDirectory(

						CLSID_DirectMusicStyle,

						L"c:\\mymusic\\rock",

						FALSE);

}

After	calling	this	function,	the	application	can	load	a	style	by	file	name,	without
including	the	full	path.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Scanning	a	Directory	for	Objects
The	IDirectMusicLoader8::ScanDirectory	method	scans	the	current	search
directory	for	objects	of	a	specified	class.	You	can	further	narrow	the	search	by
providing	a	subclass	and	a	file	extension	other	than	"*".

The	method	compiles	a	list	of	all	matching	files	and	uses	the
IDirectMusicObject8::ParseDescriptor	method	to	extract	the	GUID	and	the
name	of	the	object.	These	identifiers	are	retained	in	an	internal	database	so	that
the	application	can	subsequently	load	objects	by	GUID	or	name	rather	than	by
file	name.	See	Loading	an	Object	from	a	File.

Note			If	you	are	working	with	DirectMusic	Producer	content,	it	is	always	a	good
idea	to	call	ScanDirectory	before	loading	any	objects.	Even	though	you	may	be
loading	objects	explicitly	by	file	name,	those	objects	might	contain	references	to
other	objects	not	identified	by	file	name,	and	the	loader	will	not	be	able	to	find
these	referenced	objects	if	ScanDirectory	has	not	been	called	on	every	directory
in	which	the	objects	might	reside.

If	you	include	a	pointer	to	a	string	in	the	pwszScanFileName	parameter	of	the
ScanDirectory	method,	the	results	of	the	scan	are	cached	in	a	file	by	that	name,
to	speed	up	subsequent	scans.	When	a	cache	file	is	available,	the	method	updates
object	information	only	for	files	whose	time	stamps	or	sizes	have	changed.

Note			In	the	current	version	of	DirectMusic,	ScanDirectory	does	not	use	the
cache	file.	However,	implementing	a	cache	file	does	no	harm.

For	an	example,	see	Enumerating	Objects.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Enumerating	Objects
Use	the	IDirectMusicLoader8::EnumObject	method	to	iterate	through	all
objects	of	a	specified	class,	or	of	all	classes,	that	have	previously	been	listed	in
the	internal	database	through	a	call	to	IDirectMusicLoader8::ScanDirectory	or
calls	to	IDirectMusicLoader8::GetObject.	A	description	of	each	object	found
is	returned	in	a	DMUS_OBJECTDESC	structure.

Note			To	be	sure	of	finding	all	objects,	call	ScanDirectory	first.	EnumObject
works	by	checking	the	internal	database	of	objects,	not	by	parsing	disk	files.

The	following	example	enumerates	all	listed	style	objects	in	the	current	search
directory.	The	loop	continues	until	there	are	no	more	objects	of	that	class	to
enumerate.

void	ListStyles(IDirectMusicLoader	*pILoader)

{

		if	(pILoader)

		{

				HRESULT	hr	=	pILoader->SetSearchDirectory(

								CLSID_DirectMusicStyle,

								L"c:\\mymusic",

								TRUE);

				if	(SUCCEEDED(hr))

				{

						hr	=	pILoader->ScanDirectory(

										CLSID_DirectMusicStyle,

										L"sty",*

										L"stylecache");

						if	(hr	==	S_OK)		//	Only	if	files	were	found.

						{

								DWORD	dwIndex;

								DMUS_OBJECTDESC	objDesc;

								objDesc.dwSize	=	sizeof(DMUS_OBJECTDESC);

								for	(dwIndex	=	0;	;dwIndex++)

								{

										if	(S_OK	==(pILoader->EnumObject(

														CLSID_DirectMusicStyle,

														dwIndex,	&objDesc)))

										{

													//	Do	something	with	information	from	objDesc.

												.

												.

												.

										}

										else	break;

								}

						}

				}

		}

}

Notice	that	the	example	does	not	use	the	SUCCEEDED	macro	to	test	the	result
of	the	method	call,	because	EnumObject	returns	a	success	code,	S_FALSE,	for
an	index	number	that	is	not	valid.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Loading	an	Object	from	a	File
To	load	an	object,	first	obtain	the	IDirectMusicLoader8	interface,	as	in	the
following	example:

IDirectMusicLoader8*	g_pLoader;

	

CoInitializeEx(NULL,	0);

HRESULT	hr	=	CoCreateInstance(

				CLSID_DirectMusicLoader,

				NULL,

				CLSCTX_INPROC,	

				IID_IDirectMusicLoader8,

				(void**)&g_pLoader);

	

if	(FAILED(hr))

{

		ErrorExit(hr);		//	Add	error-handling	code.

}

You	can	then	load	an	object	from	a	file	by	using	either
IDirectMusicLoader8::LoadObjectFromFile	or
IDirectMusicLoader8::GetObject.	The	first	of	these	methods	is	more
convenient	because	it	does	not	require	you	to	describe	the	object	by	filling	out	a
DMUS_OBJECTDESC	structure.

The	following	example	code	loads	four	segments	from	a	directory	previously	set
by	IDirectMusicLoader8::SetSearchDirectory:

IDirectMusicSegment8	*	g_pSegments[4];

	

static	WCHAR		wszNames[4][MAX_PATH]	=	{

				L"AudioPath1.sgt",

				L"AudioPath2.sgt",

				L"AudioPath3.wav",

				L"AudioPath4.sgt"

};

	

for	(DWORD	dwIndex	=	0;	dwIndex	<	4;	dwIndex++)

{

		hr	=	g_pLoader->LoadObjectFromFile(

						CLSID_DirectMusicSegment,

						IID_IDirectMusicSegment8,

						wszNames[dwIndex],

						(void**)	&g_pSegments[dwIndex]);

		if	(FAILED(hr))

		{

				ErrorExit(hr);		//	Add	error-handling	code.

		}

}

The	following	example	function	uses	IDirectMusicLoader8::GetObject	to	load
a	style	object	from	a	file.	The	first	parameter	receives	a	pointer	to	the	style.

HRESULT	LoadStyle(IDirectMusicStyle8	**ppStyle,	IDirectMusicLoader8	*pLoader)

{

		if	(pLoader)

		{

				DMUS_OBJECTDESC	objDesc;

	

				//	Start	by	initializing	objDesc	with	the	file	name	and	

				//	class	GUID	for	the	style	object.

	

				wcsncpy(objDesc.wszFileName,	L"c:\\mymusic\\polka.sty",

								sizeof(objDesc.wszName)	-	1);

				objDesc.wszFileName[sizeof(objDesc.wszFileName)	-	1]	=	0;

				objDesc.guidClass	=	CLSID_DirectMusicStyle;	

				objDesc.dwSize	=	sizeof	(DMUS_OBJECTDESC);

				objDesc.dwValidData	=	DMUS_OBJ_CLASS	|	

								DMUS_OBJ_FILENAME	|	

								DMUS_OBJ_FULLPATH;

	

				return	pLoader->GetObject(&objDesc,	IID_IDirectMusicStyle8,

								(void	**)	ppStyle);

		}

		else	return	E_INVALIDARG;

}

The	example	identifies	the	file	by	a	full	path	name	and	indicates	this	by	setting
the	DMUS_OBJ_FULLPATH	flag.

To	identify	the	particular	file	object	being	sought,	fill	in	at	least	one	of
wszName,	guidObject,	or	wszFileName	in	the	DMUS_OBJECTDESC
structure,	and	set	the	corresponding	flag	or	flags	in	the	dwValidData	member.	If
you	identify	the	file	by	wszName	or	guidObject,	but	not	by	wszFileName,	you
must	first	call	the	IDirectMusicLoader8::ScanDirectory	method	to	make	the
GUIDs	and	names	in	the	current	directory	available.	For	more	information,	see
Scanning	a	Directory	for	Objects.

See	Also

Loading	an	Object	from	a	Resource	or	Memory	Address.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Loading	an	Object	from	a	Resource
or	Memory	Address
Objects	stored	as	resources	or	at	some	other	location	in	memory	are	loaded	in
much	the	same	way	as	file	objects.	See	Loading	an	Object	from	a	File.

With	memory	objects,	however,	the	wszName,	guidObject,	and	wszFileName
members	of	the	DMUS_OBJECTDESC	structure	are	irrelevant.	Instead,	you
must	obtain	a	pointer	to	the	block	of	memory	occupied	by	the	object,	and	its
size,	and	put	these	in	the	pbMemData	and	llMemLength	members	respectively.
You	must	also	set	the	DMUS_OBJ_MEMORY	flag	in	the	dwFlags	member.

After	IDirectMusicLoader8::GetObject	has	been	called	on	an	object	in
memory,	the	address	and	size	of	the	memory	buffer	are	privately	cached	by	the
loader.	If	you	then	release	the	buffer,	a	subsequent	memory	allocation	might	use
the	same	address,	and	when	another	object	is	loaded	from	that	address,	the
cached	memory	size	will	be	used,	possibly	resulting	in	an	incorrect	number	of
bytes	being	loaded.	To	prevent	this	from	happening,	after	loading	the	first	object
call	IDirectMusicLoader8::SetObject	with	the	same	DMUS_OBJECTDESC
descriptor,	but	with	NULL	in	pbMemData.	For	this	to	work,	the	object
descriptor	must	contain	a	name	or	GUID	when	passed	to	both	GetObject	and
SetObject.

Note			It	is	usually	best	not	to	release	or	change	the	contents	of	memory	from
which	an	object	has	been	loaded,	because	it	is	difficult	to	be	sure	that	the	loader
will	not	need	to	access	the	data	again.	In	most	cases,	you	should	not	release	or
reuse	memory	until	after	the	loader	is	released.	Also,	do	not	load	objects	from
data	passed	on	the	stack.

The	following	function	loads	a	MIDI	file	from	a	resource	into	a	segment:

HRESULT	LoadMidi(HMODULE	hMod,	WORD	ResourceID,	

																	IDirectMusicLoader8*	pLoader,	IDirectMusicSegment8**	ppSeg)

{

		HRESULT						hr;

		DMUS_OBJECTDESC		objDesc;

	

		HRSRC	hFound	=	FindResource(hMod,	MAKEINTRESOURCE(ResourceID),	RT_RCDATA);

		HGLOBAL	hRes	=	LoadResource(hMod,	hFound);

		if	(NULL	==	hRes)	return	E_FAIL;	

	

		objDesc.dwSize	=	sizeof(DMUS_OBJECTDESC);

		objDesc.guidClass	=	CLSID_DirectMusicSegment;

		objDesc.dwValidData	=	DMUS_OBJ_CLASS	|	DMUS_OBJ_MEMORY;

		objDesc.pbMemData	=	(BYTE	*)	LockResource(hRes);

		objDesc.llMemLength	=	SizeofResource(hMod,	hFound);

	

		if	(pLoader	&&	ppSeg)

		{

				hr	=	pLoader->GetObject(

								&objDesc,	IID_IDirectMusicSegment8,	

								(void**)	ppSeg);

				return	hr;

		}

		else	return	E_INVALIDARG;		

}

Objects	referenced	by	other	objects	must	be	loaded	first.	For	example,	if	you
load	a	segment	that	contains	a	reference	to	a	style,	the	style	must	already	be
loaded	in	order	for	the	segment	to	play	correctly.	Alternatively,	you	can	call
IDirectMusicLoader8::SetObject	on	the	style	so	that	the	segment	can	find	it.

See	Also

Cache	Management

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Containers
Containers	are	objects	representing	files	that	contain	various	objects.	A	container
file	might	hold	all	the	data	necessary	for	a	performance,	including	segments,
styles,	and	DLS	collections.	Container	files	are	typically	created	in	DirectMusic
Producer.	Containers	can	also	exist	within	segment	and	script	files.

You	load	a	container	like	any	other	object,	using
IDirectMusicLoader8::GetObject.	This	method	makes	all	objects	in	the
container	known	to	the	loader,	so	that	you	can	then	use	GetObject	to	retrieve
them	by	name	or	GUID.

After	you	have	obtained	the	IDirectMusicContainer8	interface,	you	can
enumerate	the	objects	in	the	container	by	using
IDirectMusicContainer8::EnumObject.

The	following	example	function	loads	a	container,	retrieves	a	segment	from	it	by
name,	and	returns	an	IDirectMusicSegment	interface.	For	purposes	of
demonstration,	the	container	object	is	created	and	released	within	the	function;
in	practice,	this	should	be	done	only	once	during	the	life	of	the	application,	to
prevent	duplication	of	objects.

HRESULT	LoadSegmentFromContainer	(

				IDirectMusicLoader8*	pLoader,	

				WCHAR*	wszFileName,	

				WCHAR*	wszSegmentName,

				IDirectMusicSegment**	ppSeg)

	

{

		DMUS_OBJECTDESC	objDesc;	

		IDirectMusicContainer8*	pContainer	=	NULL;

//	Load	the	container.

	

		HRESULT	hr	=	pLoader->LoadObjectFromFile(

						CLSID_DirectMusicContainer,

						IID_IDirectMusicContainer8,

						wszFileName,

						(void**)&pContainer);

		if	(FAILED(hr))	return	hr;

	

//	Describe	the	segment.

	

		ZeroMemory(&objDesc,	sizeof(objDesc));

		objDesc.dwSize	=	sizeof(objDesc);

		objDesc.dwValidData	=	DMUS_OBJ_CLASS	|	DMUS_OBJ_NAME;

		objDesc.guidClass	=	CLSID_DirectMusicSegment;

		wcsncpy	(objDesc.wszName,	wszSegmentName,	

						sizeof(objDesc.wszName)	-	1);

		objDesc.wszName[sizeof(objDesc.wszName)	-	1]	=	0;

	

//	Load	the	segment.

	

		hr	=	pLoader->GetObject(&objDesc,	IID_IDirectMusicSegment,	

						(void**)	ppSeg);

	

//	Release	the	container	from	the	cache	and	destroy	the	object.

		if	(pContainer)

		{		

				IDirectMusicObject	*pObject	=	NULL;

				pContainer->QueryInterface(IID_IDirectMusicObject,

								(void	**)&pObject);

				if	(pObject)

				{

						pLoader->ReleaseObject(pObject);

						pObject->Release();

				}

				pContainer->Release();

		}

		return	hr;

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Getting	Object	Descriptors
After	you	have	loaded	an	object,	you	can	use	its	IDirectMusicObject8	interface
to	retrieve	information	about	it	in	a	DMUS_OBJECTDESC	structure.

The	following	example	function	uses	the	IDirectMusicObject8::GetDescriptor
method	to	obtain	information	about	the	name	of	a	style:

void	GetStyleName(IDirectMusicStyle8*	pStyle)

{

		IDirectMusicObject8	*pIObject;

		DMUS_OBJECTDESC	objDesc;

	

		if	(SUCCEEDED(pStyle->QueryInterface(IID_IDirectMusicObject8,

						(void	**)	&pIObject)))

		{

				if	(SUCCEEDED(pIObject->GetDescriptor(&objDesc)))

				{

						if	(objDesc.dwValidData	&	DMUS_OBJ_NAME)

						{

								//	Do	something	with	objDesc.wszName,	

								//	which	now	contains	the	name	of	the	style.

						}

				}

				pIObject->Release();

		}

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Cache	Management
When	an	object	is	cached,	the	same	instance	of	the	object	is	always	returned	by
the	IDirectMusicLoader8::GetObject	method.

The	cache	stores	a	pointer	to	the	object.	The	memory	for	the	object	itself	is
managed	by	COM,	and	is	not	released	until	the	reference	count	reaches	zero.	It
is	important	to	remember	that	clearing	an	object	from	the	cache	is	not	the	same
as	releasing	your	application's	COM	reference	to	it.

Caching	is	used	extensively	in	the	file-loading	process	to	resolve	links	to
objects.	For	example,	two	segments	could	reference	the	same	style.	When	the
first	segment	loads,	it	calls	the	loader	to	get	the	style.	The	loader	creates	a	style
object,	loads	the	data	from	disk,	caches	a	pointer	to	the	style	object,	and	returns
this	pointer	to	the	segment.	If	caching	is	enabled,	when	the	second	segment
loads,	it	asks	for	the	style,	and	the	loader	immediately	returns	the	same	pointer.
Now	both	segments	point	to	the	same	style.	If	caching	is	disabled,	the	second
segment's	request	for	the	style	causes	a	duplicate	style	object	to	be	loaded	from
the	file,	at	a	cost	in	time	and	memory.

Here's	another	example.	A	band	object	relies	on	the	loader	to	keep	the	General
MIDI	DLS	collection	cached.	Every	time	a	band	has	to	download	a	GM
instrument,	it	gets	the	collection	from	the	loader.	If	caching	for
CLSID_DirectMusicCollection	is	disabled,	every	patch	change	in	a	MIDI	file
causes	a	separate	copy	of	the	entire	GM	collection	to	be	created.	This	is
obviously	undesirable.

By	default,	caching	is	enabled	for	all	object	classes.	You	can	disable	caching	for
an	object	class,	or	for	all	objects,	by	using	the
IDirectMusicLoader8::EnableCache	method.	This	method	can	also	be	used	to
re-enable	caching	for	any	or	all	object	classes.

If	you	want	to	clear	the	cache	without	disabling	future	caching,	use	the
IDirectMusicLoader8::ClearCache	method.	It's	not	necessary	to	call	this
method	before	terminating	your	application,	because	the	cache	is	automatically
cleared	when	the	loader	is	released.	ClearCache	is	only	useful	if	the	application
soundtrack	is	changing	completely,	with	all	new	instruments	and	source	files.

Note			Regardless	of	whether	caching	is	enabled,	the	loader	keeps	a	private
cache	of	object	descriptors.	When	you	load	an	object	from	a	stream,	a	reference
to	the	IStream	is	cached	with	the	descriptor,	and	if	that	object	is	subsequently
reloaded,	it	will	be	loaded	from	the	same	stream.	When	you	load	an	object	from
a	memory	location,	the	address	and	buffer	size	are	cached,	and	if	the	address	is
subsequently	reused	for	another	object,	the	incorrect	number	of	bytes	might	be
loaded.	To	ensure	that	the	private	cache	of	object	descriptors	is	cleared,	you	can
do	one	of	the	following:

If	caching	is	enabled,	call	ClearCache.
If	caching	is	not	enabled,	either	destroy	the	loader	and	create	a	new	one,	or
call	IDirectMusicLoader8::SetSearchDirectory	with	the	fClear
parameter	set	to	TRUE.

To	cache	a	single	object	when	general	caching	is	disabled,	pass	it	to	the
IDirectMusicLoader8::CacheObject	method.

You	can	remove	an	object	from	the	cache,	ensuring	that	it	will	be	loaded	again
on	the	next	call	to	GetObject,	by	using	the
IDirectMusicLoader8::ReleaseObject	or
IDirectMusicLoader8::ReleaseObjectByUnknown	method.	It	is	a	good	idea
to	call	one	of	these	methods	before	calling	Release	on	an	object,	especially	a
segment.	If	you	don't,	a	reference	to	the	object	remains	in	the	cache,	so	the
object	continues	to	exist.	As	well	as	taking	up	memory,	the	object	might	retain
certain	state	information.	In	the	case	of	a	segment,	any	instance	that	you	load
later	will	be	taken	from	the	cache,	and	the	start	point	and	loop	points	will	be	the
same	as	they	were	when	the	previous	instance	was	destroyed.

See	Also

Garbage	Collection
Loading	an	Object	from	a	Resource	or	Memory	Address.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Garbage	Collection
Caching	of	loaded	objects	can	lead	to	wasted	memory	when	an	application	loads
many	objects,	particularly	objects	that	reference	other	objects.

When	automatic	caching	is	enabled,	as	it	is	by	default,	every	object	loaded	by
IDirectMusicLoader8::GetObject	is	cached,	including	objects	that	are	loaded
by	reference.	For	example,	if	you	call	GetObject	on	a	segment,	and	that
segment	contains	a	reference	to	a	script,	the	script	is	loaded	and	cached	as	well.

When	you	call	IDirectMusicLoader8::ReleaseObject	or
IDirectMusicLoader8::ReleaseObjectByUnknown,	however,	only	the	primary
object	that	was	loaded	by	GetObject	is	removed	from	the	cache.	Referenced
objects	are	not	released,	even	if	they	are	not	being	used	by	other	objects.

In	order	to	clean	up	objects	that	are	not	in	use,	call
IDirectMusicLoader8::CollectGarbage.	This	method	releases	all	objects	from
the	cache	except	objects	directly	loaded	by	GetObject	and	objects	referenced	by
them.	Objects	only	referenced	by	other	objects	that	no	longer	exist	are	released.
CollectGarbage	clears	an	object	from	the	cache	by	releasing	the	loader's	COM
reference	to	the	object.	If	the	object's	reference	count	drops	to	zero	as	a	result,
the	object	destroys	itself,	thus	making	its	memory	available	again.

In	summary,	to	ensure	that	loaded	objects	do	not	remain	in	memory	when	no
longer	needed,	you	must	do	the	following:

Call	ReleaseObject	or	ReleaseObjectByUnknown	on	any	object	for
which	GetObject	has	been	called.
Call	CollectGarbage	to	release	the	loader's	reference	to	any	objects	that
were	loaded	indirectly.
Call	Release	on	any	pointers	held	by	your	application.

A	complication	arises	when	objects	have	circular	references	to	one	another.
Suppose	the	script	track	of	a	segment	contains	a	reference	to	a	script	object,	and
this	script	object	contains	a	reference	to	the	segment.	You	load	the	segment
directly	by	calling	GetObject,	and	the	script	is	loaded	indirectly.	Then	you
release	the	segment	from	the	cache	by	using	ReleaseObject,	and	call	Release	on

your	application's	reference	to	it.	The	segment	continues	to	exist	because	there	is
still	one	COM	reference	to	it,	which	is	held	by	the	script	object.	The	script	is
now	garbage,	because	it	is	not	referenced	by	any	other	object	in	the	cache.
Without	taking	special	measures,	however,	CollectGarbage	could	only	release
the	loader's	reference	to	the	script;	therefore	its	reference	count	would	not	drop
to	zero.	The	segment	and	script	would	continue	to	be	referenced	by	one	another,
and	although	both	were	removed	from	the	cache,	they	would	both	continue	to
exist	in	memory.

To	avoid	this	problem,	CollectGarbage	calls	an	internal	method	on	an	object
that	forces	the	object	to	release	its	references	to	other	objects.	In	the	example
above,	it	causes	the	script	to	release	its	reference	to	the	segment.	The	segment's
reference	count	drops	to	zero,	and	in	the	course	of	destroying	itself,	the	segment
releases	its	reference	to	the	script,	thus	allowing	the	script	to	destroy	itself	when
the	loader	releases	its	reference.

There	is	one	more	complication,	however.	Suppose	the	application	has	obtained
an	interface	to	the	script	that	the	loader	knows	nothing	about,	and	the	application
neglects	to	call	Release	on	this	pointer.	The	script	continues	to	exist,	but	it	might
not	be	able	to	behave	as	it	should,	because	it	no	longer	has	a	reference	to	the
segment.	Calling	a	method	on	the	script	could	lead	to	a	fatal	error.	To	prevent
this,	CollectGarbage	ensures	that	all	methods	of	the	script	object	return
DMUS_S_GARBAGE_COLLECTED.

This	scenario	does	not	affect	most	applications.	However,	you	should	be	aware
that	calling	a	method	on	an	object	that	has	been	cleared	from	the	cache	by
CollectGarbage	might	not	yield	the	desired	result.

In	the	following	example	function,	assume	that	the	loaded	script	contains	a
reference	to	a	segment.	After	calling	a	routine	in	the	script,	the	function	removes
the	script	object	from	the	cache	and	then	calls	CollectGarbage,	which	releases
the	referenced	segment.	If	the	segment	contains	a	circular	reference	to	the	script,
this	is	released	so	that	the	script	can	be	destroyed,	in	turn	releasing	the	final
reference	to	the	segment	and	allowing	the	segment	to	be	destroyed.

void	CallWhistle(IDirectMusicLoader8*	pLoader,	IDirectMusicPerformance8*	pPerformance)

{	

		IDirectMusicScript8	*pScript;

		WCHAR	wszScript[MAX_PATH]	=	L"soundfx.spt";

	

		pLoader->LoadObjectFromFile(CLSID_DirectMusicScript,	

																														IID_IDirectMusicScript8,	

																														wszScript,	(void**)&pScript);

		pScript->Init(pPerformance,	NULL);

		pScript->CallRoutine(L"Whistle",	NULL);

	

		pLoader->ReleaseObjectByUnknown(pScript);

		pLoader->CollectGarbage();

		pScript->Release();

}

See	Also

Cache	Management

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Setting	Objects
Sometimes	it	is	desirable	to	tell	the	loader	where	to	get	an	object,	without
actually	loading	that	object,	so	that	the	loader	can	retrieve	it	if	the	object	is	later
referenced	by	other	objects	as	they	are	being	loaded.	You	might	also	want	to
give	an	object	a	new	attribute	so	that	the	loader	can	find	it	by	that	attribute.

The	IDirectMusicLoader8::SetObject	method	takes	as	a	parameter	a
DMUS_OBJECTDESC	structure	that	contains	two	key	pieces	of	information:

A	pointer	to	the	data.	This	can	be	either	a	file	path	or	a	pointer	to	a	block	of
memory.	See	Loading	an	Object	from	a	File	and	Loading	an	Object	from	a
Resource	or	Memory	Address.
An	identifier	for	the	object	when	it	is	referenced	later.	This	could	be	a
GUID	or	a	name.	Later,	the	call	to	IDirectMusicLoader8::GetObject	will
find	the	stored	object	by	using	the	same	name	or	GUID.	Note	that	you
cannot	change	a	GUID	or	name	that	already	exists	in	the	object.

On	return,	the	DMUS_OBJECTDESC	structure	may	contain	additional
information	about	the	object	gathered	by	the	loader.

The	following	function	assigns	a	name	to	an	unnamed	object	(such	as	a	MIDI
file)	in	a	resource:

HRESULT	SetObjectFromResource(const	GUID*	guid,	int	ID,

				char*	type,	WCHAR*	name,	IDirectMusicLoader8*	pLoader,

				HINSTANCE	hInstance)

{

		HRSRC	hResource	=	NULL;

		HGLOBAL	hData	=	NULL;

		hResource	=	FindResource(hInstance,	MAKEINTRESOURCE(ID),	type);

		if	(hResource	!=	NULL)

		{

				hData	=	LoadResource(hInstance,	hResource);	

				if	(hData	!=	NULL)

				{

						DMUS_OBJECTDESC	objDesc;

						if(pLoader	&&	(hResource	!=	NULL)	&&	(hData	!=	NULL))

						{

								ZeroMemory(&objDesc,sizeof(objDesc));

								objDesc.pbMemData	=	(BYTE*)	LockResource(hData);

								objDesc.llMemLength	=	SizeofResource(hInstance,	hResource);

								objDesc.guidClass	=	(*guid);

								objDesc.dwSize	=	sizeof(objDesc);

								objDesc.dwValidData	=	DMUS_OBJ_CLASS	|	DMUS_OBJ_MEMORY;

								if	(name)

								{

										wcsncpy(objDesc.wszName,	name,	sizeof(objDesc.wszName)	-	1);

										objDesc.wszName[sizeof(objDesc.wszName)	-	1]	=	0;

										objDesc.dwValidData	|=	DMUS_OBJ_NAME;

								}

								return	pLoader->SetObject(&objDesc);

						}

				}

		}

		return	E_FAIL;

}

The	example	function	could	be	used	to	assign	a	name	to	a	MIDI	file	stored	as	a
resource	of	type	"MIDI",	as	in	the	following	function	call:

SetObjectFromResource(CLSID_DirectMusicSegment,	101,

				"MIDI",	"canyon",	g_pLoader,	g_hInstance);

The	object	can	now	be	loaded	at	any	time	by	name.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Playing	Sounds
This	section	describes	basic	techniques	for	playing	sounds	and	coordinating	the
different	elements	of	a	performance.

The	following	topics	are	discussed:

Creating	the	Performance
Using	Segments
Changing	the	Pitch	of	Waveforms
Using	Bands
Timing
Notification	and	Event	Handling
Troubleshooting	Playback

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Creating	the	Performance
The	performance	object	is	the	overall	manager	of	playback.	Among	the	tasks	it
performs	are	the	following:

Managing	ports	and	audiopaths
Mapping	channels	to	audiopaths
Playing	and	stopping	segments
Dispatching	messages
Managing	tools	and	timing

Most	applications	have	a	single	performance	object,	but	it	is	possible	to	have
more	than	one	performance	with	different	parameters,	such	as	master	tempo	or
volume.

The	following	example	function	creates	a	performance	and	returns	a	pointer	to
the	IDirectMusicPerformance8	interface:

HRESULT	GetPerformance(IDirectMusicPerformance8**	ppPerf)

{

		return	CoCreateInstance(CLSID_DirectMusicPerformance,

																NULL,	CLSCTX_INPROC,	IID_IDirectMusicPerformance8,

															(void**)ppPerf);

}

After	the	performance	is	created,	it	must	be	initialized.	If	your	application	is
using	audiopaths,	you	must	call	the	IDirectMusicPerformance8::InitAudio
method.	Applications	using	the	earlier	channel-to-port	mapping	model	must	call
IDirectMusicPerformance8::Init	instead.

An	important	part	of	initialization	is	the	creation	of	a	DirectMusic	object.	You
can	pass	an	existing	IDirectMusic8	interface	pointer	to
IDirectMusicPerformance8::InitAudio,	but	in	most	cases	it	is	more
convenient	to	have	InitAudio	create	the	DirectMusic	object.	You	can	also
choose	whether	to	retrieve	a	pointer	to	the	IDirectMusic8	interface,	depending
on	how	much	control	you	need	over	ports	and	the	master	clock.	Most
applications	don't	need	access	to	the	methods	of	IDirectMusic8	and	can	pass
NULL	as	the	ppDirectMusic	parameter	of	InitAudio.

InitAudio	can	also	take	an	existing	DirectSound	device	object.	DirectSound
manages	the	sound	data	after	it	leaves	the	synthesizer.	In	most	cases	you	can	let
InitAudio	create	this	object.	You	don't	need	an	interface	to	it	unless	you	intend
to	use	DirectSound	for	other	purposes	such	as	playing	waveforms	directly	into
DirectSound	secondary	buffers	rather	than	through	the	DirectMusic
performance.

By	passing	a	DMUS_AUDIOPARAMS	structure	to	InitAudio,	the	application
can	request	synthesizer	capabilities	or	set	a	synthesizer	other	than	the	default
one.	Most	applications	don't	have	to	do	this.

The	following	example	function	initializes	the	performance	without	retrieving
pointers	to	the	DirectMusic	and	DirectSound	objects.	It	creates	a	standard
default	audiopath	with	16	performance	channels	and	all	available	features	on	the
port.	The	hWnd	parameter	is	the	application	window	handle.

BOOLEAN	Init(IDirectMusicPerformance8*	pPerf,	HWND	hWnd)

{

		if	(FAILED(pPerf->InitAudio(NULL,	NULL,	hWnd,	

						DMUS_APATH_SHARED_STEREOPLUSREVERB,	16,	

						DMUS_AUDIOF_ALL,	NULL)))

		{

				return	FALSE;

		}

		else	return	TRUE;

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Segments
Segments	are	the	basic	units	of	playable	data	in	the	DirectMusic	performance.	A
segment	is	represented	by	an	IDirectMusicSegment8	interface.

Each	segment	consists	of	one	or	more	tracks,	each	represented	by	an
IDirectMusicTrack8	interface.	Tracks	contain	most	of	the	data	for	the	segment,
whether	that	data	consists	of	note	events,	band	changes,	tempo	changes,	or	other
timed	events.	Applications	generally	don't	need	to	use	this	interface,	because	the
tracks	are	managed	through	the	segment	object.

This	section	provides	more	information	on	segments	in	the	following	topics:

Creating	Segment	Objects
Playing	Segments
Segment	States
Pausing	Segments
Control	Segments
Self-Controlling	Segments
MIDI-Based	Segments
WAV-Based	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Creating	Segment	Objects

You	can	create	a	segment	object	in	any	of	the	following	ways:

Load	a	file	or	resource	object	that	supports	the	IDirectMusicSegment8
interface.	Most	segments	are	created	this	way.
Get	a	motif	from	a	style	by	using	the	IDirectMusicStyle8::GetMotif
method.
Use	methods	of	the	IDirectMusicComposer8	interface	to	create	a
composition	or	transition	at	run	time.
Make	a	copy	of	an	existing	segment	by	using	the
IDirectMusicSegment8::Clone	method.
Use	the	IDirectMusicBand8::CreateSegment	method.	This	method
creates	a	special	type	of	secondary	segment	that	is	used	only	for	making
band	changes.
Use	the	IDirectMusicPatternTrack8::CreateSegment	method	to	create	a
segment	from	a	pattern	track	object.	Most	applications	don't	do	this,
because	pattern	track	objects	usually	come	from	existing	segments.
Construct	a	segment	from	existing	tracks.	To	do	this,	create	a	segment
object	by	calling	CoCreateInstance,	and	then	add	tracks	by	calling
IDirectMusicSegment8::InsertTrack.	This	technique	is	not	used	by	most
applications.

See	Also

DirectMusic	Tracks
Loading	Audio	Data
Making	Band	Changes	Programmatically
Using	Compositional	Elements
Using	Templates
Using	Transitions

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Playing	Segments

Segments	can	perform	different	roles	in	the	performance.	There	must	always	be
a	primary	segment,	which	provides	the	main	content	of	the	soundtrack	and
normally	serves	as	the	control	segment,	setting	global	parameters	such	as	tempo.
Secondary	segments	play	along	with	the	primary	segment	and	might	provide
sound	effects	or	short	musical	themes.	A	special	type	of	secondary	segment	is
the	motif,	which	is	always	obtained	from	a	DirectMusic	style	object.

In	addition,	three	kinds	of	segments	have	special	roles:

Transition	segment.	A	short	musical	transition	created	at	run	time	by	the
DirectMusic	composer	object	and	normally	played	as	a	primary	segment
leading	from	one	segment	to	another,	or	from	a	segment	to	silence.
Band	segment.	A	set	of	instruments	and	instrument	settings	for	the	various
channels	in	the	performance.	The	application	can	play	a	band	segment	as	a
secondary	segment	to	execute	changes	in	the	band	performing	the	music.
Template	segment.	A	guide	to	chord	progressions,	groove	levels,	and
embellishments,	used	in	conjunction	with	a	style	and	chordmap	to	compose
music	at	run	time.

The	playback	of	segments	is	controlled	by	the	performance	object	and	begins
with	a	call	to	IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx.

Only	one	primary	segment	at	a	time	can	be	played.	When	you	cue	a	primary
segment	for	playback,	you	can	specify	that	it	is	to	be	played	after	the	currently
playing	segment	is	finished,	or	you	can	use	it	to	replace	the	current	primary
segment.

Secondary	segments,	on	the	other	hand,	play	over	the	current	primary	segment,
and	any	number	of	secondary	segments	can	be	playing	simultaneously.

Secondary	segments	do	not	normally	alter	the	performance	of	the	primary
segment.	For	example,	a	secondary	segment	can	be	based	on	a	different	style
without	affecting	the	style	of	the	primary	segment.	However,	a	secondary

segment	can	be	designated	as	the	control	segment,	in	which	case	it	takes	over
certain	tasks	normally	handled	by	the	primary	segment.

See	Also

Segment	Timing
Making	Band	Changes	Programmatically
Using	Templates
Using	Transitions

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Segment	States

When	you	play	a	segment,	parameters	for	that	instance	of	the	playing	segment
(such	as	the	audiopath,	start	point,	and	number	of	repetitions)	are	stored	in	an
object	called	a	segment	state,	represented	by	an	IDirectMusicSegmentState8
interface.

When	different	instances	of	a	segment	are	being	played	on	different	audiopaths,
you	can	use	the	segment	state	to	retrieve	a	3-D	sound	buffer	or	an	effect,	and
make	changes	that	apply	only	to	that	instance.	For	example,	you	might	use	the
same	engine	sound	for	different	cars	in	a	race	game,	playing	the	sound	for	each
car	on	its	own	audiopath.	You	can	use	either
IDirectMusicAudioPath8::GetObjectInPath	or
IDirectMusicSegmentState8::GetObjectInPath	to	retrieve	an
IDirectSound3DBuffer8	interface	from	each	audiopath,	allowing	you	to	set	the
3-D	parameters	for	each	car	individually.

See	Also

Retrieving	Objects	from	an	Audiopath

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Pausing	Segments

To	pause	a	segment,	you	must	ascertain	the	current	play	position	before	stopping
the	segment.	The	following	example	function	returns	the	current	play	position	in
music	time.

MUSIC_TIME	GetTimeOffset(const	MUSIC_TIME	mtNow,											//	From	GetTime

																									const	MUSIC_TIME	mtStartTime,					//	From	GetStartTime

																									const	MUSIC_TIME	mtStartPoint,				//	From	GetStartPoint

																									const	MUSIC_TIME	mtLoopStart,					//	From	GetLoopPoints

																									const	MUSIC_TIME	mtLoopEnd,							//	From	GetLoopPoints

																									const	MUSIC_TIME	mtLength,								//	From	GetLength

																									const	DWORD	dwLoopRepeats)								//	From	GetRepeats

{

				//	Convert	mtNow	from	absolute	time	to	an	offset

				//	from	when	the	segment	started	playing.

	

				LONGLONG	llOffset	=	mtNow	-	(mtStartTime	-	mtStartPoint);

	

				//	If	mtLoopEnd	is	not	zero,	set	llLoopEnd	to	mtLoopEnd;

				//	otherwise	use	the	segment	length.

	

				LONGLONG	llLoopEnd	=	mtLoopEnd	?	mtLoopEnd	:	mtLength;

	

				LONGLONG	llLoopStart	=	mtLoopStart;

	

				//	Adjust	offset	to	take	looping	into	account.

	

				if	((dwLoopRepeats	!=	0)	&&		(llLoopStart	<	llLoopEnd)	&&		(llLoopEnd	>	mtStartPoint))

				{

								if	((dwLoopRepeats	!=	DMUS_SEG_REPEAT_INFINITE)

										&&		(llOffset	>	(llLoopStart	+	(llLoopEnd	-	llLoopStart)	*(signed)dwLoopRepeats)))

								{

												llOffset	-=	(llLoopEnd	-	llLoopStart)	*	dwLoopRepeats;

								}

								else	if	(llOffset	>	llLoopStart)

								{

												llOffset	=	llLoopStart	+	(llOffset	-	llLoopStart)	%	(llLoopEnd	-	llLoopStart);

								}

				}

				llOffset	=	min(llOffset,	LONG_MAX);		//	LONG_MAX	is	defined	in	Limits.h.

				return	long(llOffset);

}

To	restart	the	segment	at	the	correct	position,	pass	the	return	value	of	the	sample
function	to	IDirectMusicSegment8::SetStartPoint	before	calling
IDirectMusicPerformance8::PlaySegmentEx.

Note			The	mtLength	parameter	of	the	example	function	will	normally	be	1	for
segments	loaded	from	WAV	files.	In	this	case,	before	calling	SetStartPoint	you
must	use	IDirectMusicSegment8::SetLength	to	set	the	length	of	the	segment	to
at	least	1	tick	more	than	the	current	offset.	For	more	information,	see
IDirectMusicSegment8::SetStartPoint.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Control	Segments

The	control	segment	is	the	source	of	any	data	that	is	shared	across	tracks	by
parameter	calls.

The	following	tracks	give	their	data	to	the	performance	not	by	sending
messages,	as	most	other	tracks	do,	but	by	responding	to	parameter	calls.

Chord
Command
Mute
Tempo
Time	signature

The	chord	track,	for	example,	answers	parameter	calls	from	the	style	track.	To
determine	the	MIDI	value	for	a	note	before	sending	that	note,	the	style	track
must	determine	the	current	chord.	It	does	so	by	calling
IDirectMusicPerformance8::GetParam,	and	this	call	is	relayed	to	the	chord
track	in	the	control	segment.

To	function	as	a	control	segment,	a	segment	must	have	at	least	one	controlling
track.	The	chord,	command,	mute,	and	tempo	tracks	are	controlling	tracks.

The	control	segment	does	not	affect	any	aspect	of	playback	that	is	controlled	by
messages.	The	time	signature	comes	from	the	control	segment	only	when	there
is	no	time	signature	track,	as	is	normally	the	case	in	segments	not	based	on	MIDI
files.

By	default,	the	primary	segment	is	the	control	segment.	However,	a	secondary
segment	can	be	designated	the	control	segment	by	passing	the
DMUS_SEGF_CONTROL	flag	to	IDirectMusicPerformance8::PlaySegment
or	IDirectMusicPerformance8::PlaySegmentEx.

When	a	secondary	segment	is	the	control	segment,	the	primary	segment
continues	to	function	as	a	fallback	source	of	control	data.	For	example,	if	a
secondary	control	segment	does	not	contain	a	tempo	track,	but	the	primary

segment	does,	the	tempo	comes	from	the	primary	segment.

See	Also

DMUS_SEGF_FLAGS
Self-Controlling	Segments
Track	Configuration

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Self-Controlling	Segments

A	self-controlling	segment	ignores	any	control	information	from	the	control
segment	that	duplicates	control	information	in	the	self-controlling	segment.	For
example,	if	the	segment	has	a	command	track,	it	can	use	its	own	commands
(such	as	groove	levels)	rather	than	the	commands	in	the	control	segment.

Segments	can	define	for	each	track	where	it	gets	its	controlling	information,	as
follows:

From	tracks	in	the	control	segment.	This	is	the	default	behavior.
From	tracks	in	the	primary	segment,	regardless	of	whether	it	is	the	control
segment.
From	tracks	in	the	same	segment.

Configuring	a	segment	as	self-controlling	is	usually	done	by	the	author.
However,	applications	can	configure	individual	tracks	within	segments	by
setting	or	clearing	the	following	flags,	using	the
IDirectMusicSegment8::SetTrackConfig	or
IDirectMusicSegmentState8::SetTrackConfig	method:

Flag Effect

DMUS_TRACKCONFIG_OVERRIDE_ALL

The	track	should	get
parameters	from	this
segment	before	control	and
primary	segment	tracks.

DMUS_TRACKCONFIG_OVERRIDE_PRIMARY

The	track	should	get
parameters	from	this
segment	before	primary
segment	tracks.

DMUS_TRACKCONFIG_FALLBACK

The	track	should	get
parameters	from	this
segment	if	the	primary	and
control	segments	do	not
return	the	needed

information.

The	following	example	code,	where	pSegment	is	an	IDirectMusicSegment8
interface	pointer,	instructs	the	style	track	to	get	all	its	parameters	from	other
tracks	in	the	same	segment,	ensuring	that	chords,	groove	levels,	and	mute
commands	do	not	come	from	the	control	segment.

HRESULT	hr	=	pSegment	->SetTrackConfig(CLSID_DirectMusicStyleTrack,

				-1,	DMUS_SEG_ALLTRACKS,	DMUS_TRACKCONFIG_OVERRIDE_ALL,	0);

See	Also

Control	Segments
Track	Configuration.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

MIDI-Based	Segments

A	MIDI-based	segment	can	be	created	at	run	time	by	loading	a	standard	MIDI
(.mid)	file.	In	addition,	MIDI-based	segment	(.sgt)	files	can	be	created	in
DirectMusic	Producer,	often	by	importing	MIDI	files	to	which	the	author	might
add	tempo,	key,	and	band	changes,	as	well	as	loop	points.	Unlike	a	style-based
segment,	a	MIDI-based	segment	has	no	patterns	and	no	command	track.	Instead,
it	has	a	sequence	track	that	contains	MIDI	notes	and	other	commands.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

WAV-Based	Segments

DirectMusic	can	load	and	play	WAV	files,	but	greater	flexibility	is	provided	by
DirectMusic	Producer	segments	containing	wave	tracks.	A	segment	can	contain
any	number	of	wave	tracks,	and	a	wave	track	can	contain	multiple	waveforms.

WAV-based	DirectMusic	Producer	segments	can	be	used	to	create	sound	effects
and	ambient	audio	that	do	not	sound	repetitive.	Each	part	in	a	wave	track	can
have	up	to	32	variations,	and	every	waveform	in	the	part	is	assigned	to	one	or
more	of	these	variations.	Each	time	the	track	plays,	one	of	the	variations	is
selected	for	each	part,	and	only	the	waveforms	assigned	to	that	variation	are
heard.	Because	different	parts	can	play	different	variations,	a	two-part	wave
track	could	play	in	up	to	1024	different	ways.	For	an	example	of	the	use	of
waveform	variations,	see	the	Audio	Scripts	Sample.

Waveform	variations	are	authored	into	segments.	Applications	do	not	control	the
selection	of	variations.

Another	advantage	of	WAV-based	segments	over	WAV	files	is	that	the
waveforms	can	be	in	compressed	format.	The	DirectMusic	loader	can	load
compressed	waveform	audio	files	in	any	format	supported	by	the	audio
compression	manager	(ACM).

Segments	loaded	from	WAV	files	are	played	just	like	any	other	segment.	They
pass	through	the	performance	as	DMUS_WAVE_PMSG	messages	and	are
always	played	on	channel	0	of	the	audiopath.	Although	waveforms	are	not
synthesized	in	the	same	sense	as	musical	notes,	they	do	pass	through	the
synthesizer	and	can	be	manipulated	by	MIDI	controllers.

Waveforms	are	analogous	to	band	instruments	and	must	be	downloaded	to	the
synthesizer	before	being	played.	Waveforms	are	downloaded	when	the	segment's
bands	are	downloaded.

Waveforms	can	be	either	static	or	streaming.	Static	waveforms	are	loaded	into
synthesizer	memory	all	at	once.	Streaming	waveforms	are	loaded	piece	by	piece
as	they	play.	Waveforms	saved	as	DirectMusic	Producer	files	are	designated	as

static	or	streaming	by	the	author,	who	also	sets	the	readahead	time;	that	is,	the
maximum	amount	of	data	that	is	copied	into	memory	at	one	time.	Waveforms
from	standard	WAV	files	are	streamed	if	longer	than	5000	milliseconds,	with	a
readahead	of	500	milliseconds.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Playing	WAV	Sounds	in	Music	Time

Because	a	WAV	sound	has	no	tempo,	the	loader	cannot	calculate	the	music-time
length	of	a	segment	loaded	from	a	WAV	file	or	resource,	and	it	always	sets	the
length	to	1	tick.	In	consequence,	you	cannot	cue	another	segment	to	play
immediately	after	a	WAV	segment	by	using	the	DMUS_SEGF_QUEUE	flag.	A
further	limitation	is	that	you	must	play	the	WAV	segment	from	the	beginning,
because	IDirectMusicSegment8::SetStartPoint	fails	with	any	parameter
greater	than	the	known	music-time	length	of	the	segment.

To	overcome	these	limitations,	you	must	set	the	length	of	the	segment	to	a
music-time	value	equivalent	to	the	clock-time	length	of	the	sound.	The	length	of
the	sound	can	be	calculated	from	the	WAV	chunk	headers.	The	following	sample
function	sets	the	length	of	a	WAV	segment	whose	length	is	known:

HRESULT	SetWAVLength(IDirectMusicSegment8*	pSeg,	

								DWORD	tempo,								//	In	beats	per	minute.

								float	wavLength)				//	In	seconds.

{

		if	(pSeg)

		{

				MUSIC_TIME	mt;

				mt	=	(wavLength	*	DMUS_PPQ	*	tempo)	/	60;

				return	pSeg->SetLength(mt);

		}

		else	return	E_POINTER;

}

See	Also

Clock	Time	and	Music	Time
IDirectMusicSegment8::SetLength

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Changing	the	Pitch	of	Waveforms
Several	techniques	can	be	used	to	change	the	pitch	of	a	waveform
programmatically.

If	you	are	playing	the	waveform	as	a	segment,	you	can	obtain	the	DirectSound
buffer	through	which	it	is	playing	and	use	the
IDirectSoundBuffer8::SetFrequency	method	to	change	the	pitch.	Because	a
pitch	change	affects	all	sounds	playing	through	a	buffer,	you	should	play	the
sound	on	its	own	audiopath,	or	its	own	mix	group	within	an	audiopath.	Different
buffers	within	a	mix	group	cannot	have	different	frequencies.	(For	information
on	mix	groups,	see	the	Help	for	DirectMusic	Producer.)

This	technique	does	not	work	well	with	looping	segments.	Because	the
performance	does	not	take	into	account	the	actual	time	it	takes	for	the	sound	to
finish	playing	in	the	buffer,	looping	continues	to	happen	at	intervals	based	on	the
normal	length	of	the	sound.	When	the	pitch	is	lower	than	the	original	pitch	of	the
sound,	the	whole	sound	does	not	play	before	it	loops;	when	the	pitch	is	higher
than	the	original,	intervals	of	silence	occur	between	loops.	If	the	entire	sound	is
looping,	you	can	adjust	the	intervals	by	using
IDirectMusicSegment8::SetLength	before	playing	the	segment;	however,
calling	this	method	while	the	segment	is	playing	will	have	unpredictable	results.

Another	technique	is	to	set	a	MIDI	pitch	bend	on	the	performance	channel	on
which	the	sound	is	playing.	To	do	so,	send	a	DMUS_MIDI_PMSG	message,
specifying	0xE0	as	the	status	byte.	The	lower	seven	bits	of	the	two	data	bytes	are
combined	as	a	14-bit	value,	where	0x2000	specifies	no	pitch	bend,	lower	values
represent	a	lower	pitch,	and	higher	values	represent	a	higher	pitch.	For	more
information,	see	the	MIDI	specification.

Perhaps	the	most	effective	way	to	control	the	pitch	is	to	play	the	waveform	as	a
DLS	instrument	created	in	DirectMusic	Producer.	You	can	use	the	same	WAV
sound	as	the	sample	for	all	regions	(note	ranges),	or	assign	different	sounds	to
different	regions	for	more	realistic	effects.	You	can	also	create	articulations	such
as	volume	envelopes	to	make	the	sound	start	and	stop	in	a	more	natural	way.	To
play	the	sound	at	different	pitches	in	your	application,	start	and	stop	different
notes	by	sending	DMUS_NOTE_PMSG	messages.

See	Also

Changing	the	Tempo
Retrieving	Objects	from	an	Audiopath
Using	DirectMusic	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Bands
A	band	is	a	collection	of	settings	for	performance	channels.	Every	part	in	a
segment	or	style	plays	on	a	single	performance	channel,	and	the	most	recently
applied	band	determines	how	sound	is	synthesized	on	that	channel.

Bands	can	contain	the	following	information	for	each	channel:

Instrument,	identified	by	a	MIDI	patch	number	and	bank	select.	This	setting
does	not	affect	WAV	parts	playing	on	the	channel.
DLS	collection	from	which	to	load	the	instrument.	By	default,	the	DLS
collection	is	the	standard	General	MIDI	collection.
Volume.
Pan.
Transposition.	If	this	value	is	not	zero,	music	notes	on	the	channel	are
automatically	transposed	for	the	instrument.

A	band	does	not	necessarily	contain	settings	for	every	performance	channel	in
use,	and	it	does	not	have	to	contain	every	possible	setting	for	channels	it	does
affect.	Settings	not	explicitly	changed	by	a	band	remain	as	they	were	before	the
band	was	played.	For	example,	if	the	application	plays	a	band	that	does	not
contain	any	settings	for	channel	1,	any	parts	on	that	channel	continue	playing	on
the	last	instrument	assigned	to	it,	and	with	the	same	volume,	pan,	and
transposition	settings.	The	band	could	change	a	single	setting,	such	as	the
volume,	without	affecting	any	of	the	other	settings	currently	in	effect.

Segments	and	styles	always	contain	at	least	one	band,	called	the	default	band.
Styles	can	contain	additional	bands.	When	you	load	a	segment	or	style,	the
default	band	and	any	other	bands	are	automatically	loaded	as	well.	However,	you
must	still	download	the	DLS	data	for	the	instruments	in	any	band	that	you	intend
to	use.

You	can	retrieve	a	pointer	to	the	default	band	by	using	the
IDirectMusicStyle8::GetDefaultBand	method.

Other	bands	might	be	authored	into	the	style,	and	can	be	found	and	retrieved	by
using	the	IDirectMusicStyle8::EnumBand	and	IDirectMusicStyle8::GetBand

methods.	Bands	can	also	be	obtained	from	other	style	files	or	from	band	files.
When	you	have	obtained	an	IDirectMusicBand8	interface,	you	have	access	to
that	band	and	can	substitute	it	for	the	default	band.

See	Also

Downloading	and	Unloading	Bands
Making	Band	Changes	Programmatically
Ensuring	Timely	Band	Changes
Playing	a	MIDI	File	with	Custom	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Downloading	and	Unloading	Bands

Before	a	band	can	be	used,	the	instruments	it	references	must	be	downloaded	to
the	performance.	This	step	maps	the	instruments	to	performance	channels	and
downloads	the	DLS	data	to	the	synthesizer.

By	default,	the	application	is	responsible	for	downloading	any	band	it	uses.
However,	you	can	turn	on	automatic	downloading	of	bands.

Downloading	a	band	makes	the	band	available	to	the	performance	but	does	not
perform	any	program	changes.	Program	changes	take	place	in	response	to
messages	generated	by	the	segment's	band	track,	which	is	typically	authored	into
a	segment	file.	For	information	on	how	to	make	program	changes	at	run	time,
see	Making	Band	Changes	Programmatically.

Information	about	how	to	implement	downloading	and	unloading	of	bands	is
contained	in	the	following	topics:

Automatically	Downloading	Bands
Manually	Downloading	Bands
Patch	Collisions
Unloading	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Automatically	Downloading	Bands

When	automatic	downloading	is	on,	the	instruments	in	the	band	are	downloaded
when	the	segment	containing	the	band	is	cued.	The	instruments	are
automatically	unloaded	when	the	segment	is	stopped,	unless	another	segment
using	the	same	instruments	is	cued	to	play	immediately	or	is	currently	playing.

Automatic	downloading	should	be	used	only	when	the	timing	of	segment	starts
is	not	critical.	Repeated	loading	and	unloading	of	instruments	is	time-consuming
and	can	cause	serious	degradation	of	performance	in	complex	audio
environments.

Automatic	unloading,	which	is	part	of	the	automatic	downloading	mechanism,
can	also	lead	to	undesired	results.	For	example,	suppose	you	play	a	short
secondary	segment	that	changes	the	instrument	on	a	channel.	The	instrument	is
automatically	downloaded	when	the	secondary	segment	starts,	replacing	the
existing	instrument.	When	the	secondary	segment	ends,	the	instrument	is
automatically	unloaded,	with	the	result	that	there	is	no	instrument	on	that
channel,	and	the	channel	plays	silence.

You	can	turn	on	automatic	downloading	of	bands	in	one	of	the	following	ways:

Call	the	IDirectMusicPerformance8::SetGlobalParam	method	for	the
GUID_PerfAutoDownload	parameter.
Enable	automatic	downloading	for	a	single	segment	by	calling	the
IDirectMusicSegment8::SetParam	method	for	the
GUID_Enable_Auto_Download	parameter.

In	the	following	example	function,	the	global	parameter	for	the	performance	is
set	to	enable	automatic	downloading	of	bands	in	all	segments:

HRESULT	TurnOnDownload(IDirectMusicPerformance8*	pPerf)

{

		BOOL	fAuto	=	TRUE;

		HRESULT	hr	=	pPerf->SetGlobalParam(

				GUID_PerfAutoDownload,	&fAuto,	sizeof(BOOL));

		return	hr;

}

See	Also

Setting	and	Retrieving	Global	Parameters
Setting	and	Retrieving	Track	Parameters
Unloading	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Manually	Downloading	Bands

You	can	manually	download	a	band	in	one	of	the	following	ways:

Call	IDirectMusicSegment8::Download	to	download	the	bands	and
waveforms	in	a	segment	to	either	an	audiopath	or	a	performance.
Obtain	an	IDirectMusicBand8	interface	from	a	loaded	object,	and	call	the
IDirectMusicBand8::Download	method.
Call	the	IDirectMusicSegment8::SetParam	method	with	the
GUID_Download	or	GUID_DownloadToAudioPath	parameter	to	download
the	band	in	the	segment's	first	band	track.	You	can	also	use
IDirectMusicPerformance8::SetParam	to	set	this	parameter	on	the
primary	segment,	or	IDirectMusicTrack8::SetParamEx	to	set	it	directly
on	a	band	track.	For	more	information,	see	Setting	and	Retrieving	Track
Parameters.

If	your	application	creates	audiopaths	that	use	more	than	one	port,	you	must
download	bands	to	the	individual	audiopaths,	not	to	the	performance.	However,
most	applications	use	only	a	single	port,	and	in	this	case	it	is	safe	to	download
all	instrument	data	to	either	an	audiopath	or	the	performance.	When	a	band	is
downloaded	to	an	audiopath,	the	instrument	data	is	downloaded	to	the	port	on
that	audiopath	and	is	then	available	to	any	audiopath	using	the	same	port.

There	is	no	danger	in	downloading	the	same	instrument	multiple	times.	If	an
instrument	appears	in	one	band	multiple	times	or	if	it	appears	in	multiple	bands
that	are	all	opened	and	downloaded	at	the	same	time,	only	one	copy	of	the
instrument	is	sent	to	the	synthesizer.

The	following	example	function	loads	a	band	from	a	file	and	downloads	it	to	the
performance:

HRESULT	DownloadBand(

		IDirectMusicLoader8	*pLoader,

		IDirectMusicPerformance8	*pPerf,

		WCHAR	*pwszFile)

{

		IDirectMusicBand8*	pBand;

		HRESULT	hr;

		hr	=	pLoader->LoadObjectFromFile(CLSID_DirectMusicBand,	IID_IDirectMusicBand8,

																																			pwszFile,	(void	**)&pBand);

		if	(SUCCEEDED(hr))

		{

				hr	=	pBand->Download(pPerf);

		}

		return	hr;

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Patch	Collisions

When	bands	from	different	segments	are	downloaded	to	the	same	port,
instruments	in	band	can	overwrite	data	from	a	previously	downloaded	band.

For	example,	suppose	segment	A	uses	a	band	that	assigns	a	piano	to	patch
number	1,	and	segment	B	uses	a	band	that	assigns	a	banjo	to	the	same	patch.	The
application	calls	IDirectMusicSegment8::Download	first	for	segment	A	and
then	for	segment	B.	Even	though	the	bands	might	be	downloaded	to	different
audiopaths,	the	instrument	data	is	downloaded	to	the	same	synthesizer,	so	any
note	on	a	performance	channel	mapped	to	patch	number	1	will	be	played	by	the
banjo.

This	potential	for	patch	collisions	must	be	taken	into	account	when	the	content	is
authored.	Different	segments	should	not	use	different	instruments	with	the	same
patch	number.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Unloading	Bands

Bands	take	up	memory	and	should	be	unloaded	when	they	are	no	longer	in	use.
If	you	have	enabled	automatic	downloading	of	bands,	the	bands	associated	with
a	segment	are	unloaded	automatically	when	the	segment	stops.	Otherwise,	you
can	manually	unload	a	band	in	one	of	the	following	ways:

Call	the	IDirectMusicSegment8::Unload	or	IDirectMusicBand8::Unload
method	for	instruments	downloaded	by	the	corresponding	Download
method.
Call	the	IDirectMusicSegment8::SetParam	method	for	the	GUID_Unload
or	GUID_UnloadFromAudioPath	parameter	to	unload	the	band	in	the
segment's	band	track.	You	can	also	use
IDirectMusicPerformance8::SetParam	to	set	this	parameter	on	the
primary	segment,	or	IDirectMusicTrack8::SetParamEx	to	set	it	directly
on	a	band	track.

The	IDirectMusicPerformance8::CloseDown	method	also	unloads	any
remaining	downloaded	instruments.

See	Also

Setting	and	Retrieving	Track	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Making	Band	Changes	Programmatically

In	most	cases,	the	band	track	in	a	loaded	segment	performs	all	necessary
program	changes.	However,	you	can	also	do	so	manually	if	you	have	a	band
object.	You	must	create	a	secondary	segment	by	using
IDirectMusicBand8::CreateSegment,	and	then	play	that	segment	by	calling
IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx.	Typically,	you	would	use
DMUS_SEGF_MEASURE	or	DMUS_SEGF_GRID	in	the	dwFlags	parameter
to	ensure	that	the	band	change	takes	effect	on	an	appropriate	boundary.

The	following	example	function	creates	a	segment	from	a	band	and	plays	it	on
the	next	measure	boundary.	It	is	presumed	that	the	instruments	have	already	been
downloaded	or	that	automatic	downloading	has	been	enabled.

HRESULT	PlayBand(

		IDirectMusicBand8	*pBand,

		IDirectMusicPerformance8	*pPerf,

		REFERENCE_TIME	rfTime)

{

		IDirectMusicSegment	*pSegment;

	

		HRESULT	hr	=	pBand->CreateSegment(&pSegment);

		if	(SUCCEEDED(hr))

		{

				hr	=	pPerf->PlaySegment(pSegment,	DMUS_SEGF_MEASURE	|	DMUS_SEGF_SECONDARY,

																												rfTime,	NULL);

				pSegment->Release();

		}

		return	hr;

}

See	Also

Patch	Collisions

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Ensuring	Timely	Band	Changes

A	consideration	in	playing	band	segments	is	the	randomness	in	the	timing	of
notes	played	by	a	style	track.	For	instance,	a	note	that	is	on	measure	1,	beat	1
might	actually	play	somewhat	earlier	than	the	beat	boundary.	If	you	make	a	band
change	at	the	beat	boundary,	the	note	might	play	with	the	incorrect	instrument.

To	prevent	this	problem,	an	application	should	cue	the	band	segment	early.
Suppose,	for	example,	that	you	have	a	style-based	segment	pStyleSeg	and	a	band
segment	pBandSeg.	You	want	to	play	both	the	style	segment	and	the	band
segment	on	the	next	measure	boundary	of	the	performance	pPerf.	You	know	that
the	style	contains	notes	that	could	go	out	up	to	30	ticks	earlier,	in	music	time,
than	the	start	time	of	the	segment.	The	following	example	code	ensures	that	the
band	segment	is	played	31	ticks	before	the	style	segment,	so	that	all	instruments
are	in	place	before	any	note	is	played:

HRESULT	CueSegmentAfterBand(IDirectMusicPerformance8*	pPerf,

																												IDirectMusicSegment8*	pBandSeg,

																												IDirectMusicSegment8*	pStyleSeg)

{

		REFERENCE_TIME	rtResolved;

		MUSIC_TIME	mtResolved;

		HRESULT	hr;

	

		hr	=	pPerf->GetResolvedTime(0,	&rtResolved,	DMUS_TIME_RESOLVE_MEASURE);

		if	(SUCCEEDED(hr))

		{

				hr	=	pPerf->ReferenceToMusicTime(rtResolved,	&mtResolved);

			if	(SUCCEEDED(hr))

			{

						mtResolved	-=	31;	

						hr	=	pPerf->PlaySegment(pBandSeg,	0,	mtResolved,	NULL);

						if	(SUCCEEDED(hr))

						{

								pPerf->PlaySegment(pStyleSeg,	DMUS_TIME_RESOLVE_MEASURE,	0,	NULL);

						}

				}

		}

		return	hr;

}

Note			If	there	is	no	randomness	in	the	notes	played	by	a	segment	(for	example,
one	loaded	from	a	MIDI	file),	you	don't	need	to	worry	about	the	timeliness	of	a
band	segment	played	at	the	same	time.	By	default,	all	band	segments	start	1	tick
early.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Playing	a	MIDI	File	with	Custom	Instruments

By	default,	when	you	play	a	MIDI	file	the	instruments	used	are	those	in	the
Roland	GM/GS	Sound	Set,	contained	in	the	Gm.dls	file.	However,	you	can	use
instruments	from	any	DLS	collection	when	playing	a	MIDI	file.

First,	load	the	collection	and	retrieve	a	pointer	to	the	IDirectMusicCollection8
interface.

The	following	example	function	loads	a	collection	by	file	name:

HRESULT	LoadCollectionByName(

				IDirectMusicLoader8	*pILoader,	

				char	*pszFileName,	

				IDirectMusicCollection8	**ppICollection)

{

		HRESULT	hr;

		DMUS_OBJECTDESC	objDesc;

	

		mbstowcs(objDesc.wszFileName,pszFileName,DMUS_MAX_FILENAME);

		objDesc.dwSize	=	sizeof(DMUS_OBJECTDESC);

		objDesc.guidClass	=	CLSID_DirectMusicCollection;		

		objDesc.dwValidData	=	DMUS_OBJ_CLASS	

						|	DMUS_OBJ_FILENAME	

						|	DMUS_OBJ_FULLPATH;

	

		hr	=	pILoader->GetObject(&objDesc,	

				IID_IDirectMusicCollection8,

				(void	**)	ppICollection);

		return	hr;

}

Next,	you	must	associate	the	DLS	data	with	the	segment	by	calling
IDirectMusicSegment8::SetParam,	as	shown	in	the	following	example:

HRESULT	ConnectCollection(IDirectMusicSegment8*	pSegment,	

																										IDirectMusicCollection8*	pCollection)

{

		HRESULT	hr	=	pSegment->SetParam(GUID_ConnectToDLSCollection,

						0xFFFFFFFF,	DMUS_SEG_ALLTRACKS,	0,	(void*)pCollection);

		return	hr;

}

Finally,	download	the	instruments	in	the	collection	to	the	performance	or
audiopath	by	calling	IDirectMusicSegment8::Download.

When	a	custom	collection	is	attached	to	a	MIDI	segment,	the	connection	to	the
GM	collection	is	not	broken.	For	example,	suppose	you	load	a	collection
containing	a	single	instrument	that	has	a	patch	number	of	12	and	connect	this	to
the	segment.	MIDI	channels	with	any	patch	number	other	than	12	continue	to	be
played	by	the	appropriate	instruments	in	the	GM	collection.

See	Also

Using	Instrument	Collections.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Timing
This	section	is	an	overview	of	various	timing	issues	in	DirectMusic.	The
following	topics	are	discussed:

Master	Clock
Clock	Time	and	Music	Time
Changing	the	Tempo
Prepare	Time
Latency	and	Bumper	Time
Reducing	Latency
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Master	Clock

To	guarantee	accurate	timing	with	an	acceptably	low	latency,	DirectMusic
incorporates	a	master	clock	in	kernel	mode.	This	clock	is	based	on	a	hardware
timer.	DirectMusic	automatically	selects	the	system	clock	as	the	master	clock,
but	an	application	can	select	a	different	one,	such	as	the	wave-out	crystal	on	a
sound	card.

The	master	clock	is	a	high-resolution	timer	that	is	shared	by	all	processes,
devices,	and	applications	that	are	using	DirectMusic.	The	clock	is	used	to
synchronize	all	audio	playback	in	the	system.	It	is	a	standard	IReferenceClock
interface.	The	IReferenceClock::GetTime	method	returns	the	current	time	as	a
64-bit	integer	(defined	as	the	REFERENCE_TIME	type)	in	increments	of	100
nanoseconds.

To	obtain	an	interface	to	the	master	clock,	call	the
IDirectMusic8::GetMasterClock	method.

You	can	choose	a	different	master	clock	for	your	application,	but	only	if	there
are	no	other	DirectMusic	applications	running.	First,	you	get	descriptions	of	all
devices	that	can	serve	as	the	master	clock	by	using	the
IDirectMusic8::EnumMasterClock	method.	After	you	have	obtained	the
GUID	of	the	device	that	you	want	to	use	as	the	master	clock,	pass	it	to	the
IDirectMusic8::SetMasterClock	method.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Clock	Time	and	Music	Time

In	DirectX	for	C++,	the	time	returned	by	the	master	clock	is	a	64-bit	value
defined	as	type	REFERENCE_TIME.	Reference	time	is	measured	in	units	of
approximately	100	nanoseconds,	so	the	clock	ticks	about	10	million	times	each
second.	The	value	returned	by	the	IReferenceClock::GetTime	method	is
relative	to	an	arbitrary	start	time.

Music	time	is	a	32-bit	value	defined	as	type	MUSIC_TIME.	It	is	not	an
absolute	measure	of	time	but	is	relative	to	the	tempo.	The	clock	is	started	when
the	performance	is	initialized	and	ticks	DMUS_PPQ	times	for	each	quarter-note.
DMUS_PPQ	is	defined	as	768.

When	a	performance	is	initialized,	it	starts	keeping	an	internal	clock.	You	can
retrieve	the	current	performance	time	in	both	reference	time	and	music	time	by
using	the	IDirectMusicPerformance8::GetTime	method.

The	IDirectMusicPerformance8::AdjustTime	method	can	be	used	to	make
small	changes	to	the	performance	time.	Most	applications	don't	need	to	do	this,
but	it	can	be	useful	when	synchronizing	to	another	source.

To	convert	between	the	two	kinds	of	time	in	a	performance,	you	can	use	the
IDirectMusicPerformance8::MusicToReferenceTime	and
IDirectMusicPerformance8::ReferenceToMusicTime	methods.	These
methods	convert	between	time	offsets	within	the	performance,	taking	into
account	all	tempo	changes	that	have	taken	place	since	the	performance	started.

When	a	segment	is	cued	to	play	by	a	call	to
IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx	and	the	start	time	is	given	in
reference	time,	DirectMusic	must	convert	the	start	time	to	music	time.	If	no
primary	segment	is	currently	playing,	the	conversion	is	made	immediately,	based
on	the	current	tempo.	Otherwise,	if	another	segment	is	playing,	the	start	time	of
the	cued	segment	is	not	converted	to	music	time	until	the	start	time	has	been
reached.

If	the	tempo	is	changed	before	the	segment	starts	playing,	the	actual	start	time
can	be	affected,	or	the	segment	might	not	start	on	the	desired	boundary.	In	the
first	case,	in	which	the	conversion	to	music	time	is	done	immediately,	the	start
time	(in	reference	time)	is	advanced	if	the	tempo	speeds	up	and	delayed	if	the
tempo	slows	down.	In	the	second	case,	in	which	conversion	is	made	at	start	time,
a	change	in	tempo	can	mean	that	the	segment	does	not	start	at	correct	resolution
boundaries.	For	example,	if	the	segment	is	supposed	to	start	on	a	measure
boundary	(as	indicated	in	the	dwFlags	parameter	of	PlaySegment	or
PlaySegmentEx),	the	actual	start	time	(in	reference	time)	is	calculated	when	the
segment	is	cued.	However,	if	the	tempo	then	changes,	a	measure	boundary	might
not	fall	at	that	time.

When	a	primary	segment	is	played	with	the	DMUS_SEGF_QUEUE	flag	(see
DMUS_SEGF_FLAGS),	the	i64StartTime	parameter	is	ignored,	and	the
segment	is	cued	to	play	after	any	primary	segments	whose	start	times	have
already	been	converted.	If	a	previously	cued	segment	is	still	stamped	in
reference	time,	that	segment	will	play	at	its	designated	time,	perhaps	interrupting
another	segment.

For	example,	suppose	you	have	three	segments,	each	10	seconds	in	length.	You
cue	segment	A	to	play	5	seconds	from	now.	Because	no	primary	segment	is
currently	playing,	the	start	time	is	immediately	converted	to	music	time.	At	6
seconds,	you	cue	segment	B	to	play	at	20	seconds.	In	this	case,	because	music	is
already	playing	and	the	tempo	might	change,	the	conversion	to	music	time	is	not
made	immediately.	Then	you	cue	segment	C	with	the	DMUS_SEGF_QUEUE
flag	so	that	it	starts	immediately	after	segment	A	finishes,	at	15	seconds.	At	20
seconds,	segment	B	starts	playing	and	interrupts	segment	C.

See	Also

Playing	WAV	Sounds	in	Music	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Changing	the	Tempo

The	tempo	of	a	performance	dictates	the	conversion	between	the	two	types	of
time	used	in	DirectMusic,	which	in	turn	controls	the	resolution	of	events	to
musical	boundaries.	(See	Clock	Time	and	Music	Time.)	The	tempo	track	of	the
control	segment	usually	manages	the	tempo,	but	it	is	also	possible	for	an
application	to	set	the	tempo	dynamically.

There	are	two	ways	to	change	the	tempo:	by	sending	a	message	and	by	setting	a
track	parameter	on	the	control	segment.

The	following		example	function	sends	a	message	to	change	the	tempo,	after
disabling	the	tempo	track	so	that	it	does	not	override	the	new	tempo.

HRESULT	ChangeTempoByMessage(IDirectMusicPerformance8*	pPerformance,	

																				IDirectMusicSegment8*	pSegment,	

																				double	dblNewTempo)

{

			DMUS_TEMPO_PMSG*	pTempoMsg;

			HRESULT	hr;

			if	(SUCCEEDED(hr	=	pSegment->SetParam(GUID_DisableTempo,	

										0xFFFF,	0,	0,	NULL)))

			{

				if	(SUCCEEDED(hr	=	pPerformance->AllocPMsg(

								sizeof(DMUS_TEMPO_PMSG),	(DMUS_PMSG**)&pTempoMsg)))

				{

						//	Cue	the	tempo	event.

						ZeroMemory(pTempoMsg,	sizeof(DMUS_TEMPO_PMSG));

						pTempoMsg->dwSize	=	sizeof(DMUS_TEMPO_PMSG);

						pTempoMsg->dblTempo	=	dblNewTempo;

						pTempoMsg->dwFlags	=	DMUS_PMSGF_REFTIME;

						pTempoMsg->dwType	=	DMUS_PMSGT_TEMPO;

						pPerformance->SendPMsg((DMUS_PMSG*)pTempoMsg);

				}

		}

		return	hr;

}

If	the	performance	has	more	than	one	audiopath,	the	message	should	be	stamped
for	delivery	to	the	correct	audiopath.	For	more	information,	see	Application-

Created	Messages.

The	following	example	shows	how	to	change	the	tempo	parameter.

HRESULT	ChangeTempoParameter(IDirectMusicSegment8*	pSegment,	double	dblNewTempo)

{

		DMUS_TEMPO_PARAM	Tempo;

		Tempo.dblTempo	=	dblNewTempo;

		HRESULT	hr	=	pSegment->SetParam(GUID_TempoParam,	0xFFFF,	0,	0,	&Tempo);

		return	hr;

}

Note			DMUS_TEMPO_PARAM	is	declared	in	Dmusicf.h,	which	is	not
automatically	included	when	you	include	Dmusici.h.

You	can	also	change	the	master	tempo,	which	adjusts	the	tempo	set	by	any
control	segment.

See	Also

Setting	and	Retrieving	Global	Parameters
Setting	and	Retrieving	Track	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Prepare	Time

As	a	segment	is	played,	the	performance	makes	repeated	calls	to	the	segment's
tracks,	causing	them	to	generate	messages	for	a	specified	time	range,	which	is	a
fraction	of	a	second.	These	messages	are	then	placed	in	the	queue	behind	those
that	were	generated	in	previous	calls.	By	default,	about	a	second's	worth	of
messages	are	in	the	queue	at	any	time.

Each	time	it	calls	on	a	track	to	play	messages,	the	performance	calculates	the
end	time	for	that	call	by	adding	the	prepare	time	to	the	current	time.	For
example,	if	the	current	time	is	10,000	milliseconds	(or	the	equivalent	in
reference	time	units)	and	the	prepare	time	is	the	default	1000	milliseconds,	the
end	time	is	at	11,000.	The	result	is	that	all	new	messages	that	are	to	be	played	up
to	time	11,000	must	be	prepared	and	placed	in	the	queue.

Most	applications	don't	need	to	change	the	default	prepare	time,	and	the	process
just	described	is	not	visible	to	the	application.	However,	it	is	helpful	to
understand	the	concept	of	prepare	time	because	of	the
DMUS_SEGF_AFTERPREPARETIME	flag,	which	the	application	can	pass	to
IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx.

If	you	set	a	start	time	of	"now"	for	the	segment	without	specifying
DMUS_SEGF_AFTERPREPARETIME,	the	performance	invalidates	any
messages	currently	in	the	queue.	Any	tracks	that	are	still	valid	at	this	point	(for
example,	tracks	of	secondary	segments,	which	continue	to	play)	then	have	to
resend	their	messages,	taking	into	account	any	changes	made	to	the	environment
by	the	new	segment.	This	causes	extra	processing	and	might	also	lead	to
undesired	results.

You	can	use	the	DMUS_SEGF_AFTERPREPARETIME	flag	to	specify	that	the
segment	isn't	to	start	playing	until	all	messages	currently	in	the	queue	have	been
processed	and	passed	to	the	port	buffer.	If	messages	up	to	time	10,000	are	in	the
queue	and	the	current	time	is	9,000,	a	segment	cued	to	play	immediately,	but
flagged	DMUS_SEGF_AFTERPREPARETIME,	starts	playing	just	after	the
10,000	mark.

See	Also

IDirectMusicPerformance8::GetPrepareTime
IDirectMusicPerformance8::SetPrepareTime
Latency	and	Bumper	Time
Segment	Timing.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Latency	and	Bumper	Time

Latency	is	the	delay	between	the	time	at	which	the	port	receives	a	message	and
the	time	at	which	it	has	synthesized	enough	of	a	waveform	to	play.	The
IDirectMusicPerformance8::GetLatencyTime	method	retrieves	the	current
time	plus	the	latency	for	the	performance	as	a	whole.	The	latency	is	based	on	the
largest	value	returned	by	any	port's	latency	clock.

The	bumper	is	an	extra	amount	of	time	allotted	for	code	to	run	between	the	time
that	an	event	is	put	into	the	port	buffer	and	the	time	that	the	port	starts	to	process
it.	By	default,	the	bumper	length	is	50	milliseconds.

The	following	example	shows	how	latency	time	and	bumper	time	are	combined.
Suppose	an	event	is	cued	to	play	at	10,000	milliseconds.	The	latency	of	the	port
is	known	to	be	100	ms,	and	the	bumper	length	is	at	its	default	value	of	50	ms.
The	performance	therefore	places	the	message	into	the	port	buffer	at	9,850	ms.

Any	tools	that	alter	the	time	of	messages	must	take	latency	and	bumper	time	into
account.	If	a	tool	stamps	a	message	with	a	time	that	is	already	past	the	latency
time,	the	note	or	other	event	will	not	play	at	the	correct	time.

After	a	message	has	been	placed	in	the	port	buffer,	it	no	longer	belongs	to	the
performance	and	cannot	be	stopped	from	playing	by	using	the
IDirectMusicPerformance8::Invalidate	method	or	by	stopping	the	segment.
The	first	message	that	can	be	invalidated	has	a	time	stamp	equal	to	or	greater
than	the	current	time	plus	the	latency	time	and	the	bumper	time.	This	value	can
be	retrieved	by	using	the	IDirectMusicPerformance8::GetQueueTime
method.

The	following	diagram,	not	to	scale,	illustrates	the	relationship	of	the	times	and
durations	retrieved	by	various	methods.	The	current	time	is	at	the	left,	and	the
last	time	for	which	messages	have	been	prepared	is	at	the	right.	Remember	that
prepare	time	is	only	an	approximation	of	the	total	timespan	of	messages	in	the
queue	at	any	moment.

See	Also

Reducing	Latency
IDirectMusicPerformance8::GetBumperLength.
IDirectMusicPerformance8::SetBumperLength

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Reducing	Latency

The	latency	in	DirectMusic	consists	of	two	major	components,	system-
dependent	latency	and	latency	padding.

System-dependent	latency	is	calculated	dynamically	by	approximating	the
minimum	amount	of	write-ahead	data	required	for	the	given	system
configuration.	This	behavior	is	automatic	and	not	controllable	by	the	application.
The	absolute	minimum	system-dependent	latency	is	4	milliseconds.

Latency	padding	ranges	from	0	to	100	milliseconds,	and	is	configurable	by	the
application.	This	value	is	added	to	the	system-dependent	latency	and	may	be
used	to	mitigate	glitching	problems.	To	ensure	maximum	compatibility	with
older	systems,	latency	padding	is	set	to	55	milliseconds	by	default.	Most
applications	do	not	need	to	increase	the	latency	padding.

Decreasing	the	latency	padding	allows	applications	to	take	advantage	of	the	low-
latency	capabilities	of	modern	hardware.	However,	doing	so	comes	at	the	risk	of
glitching	on	some	systems.	Only	applications	that	truly	need	the	lowest	latency
possible	should	reduce	the	latency	padding	value.

Changing	the	latency	padding	value	is	accomplished	by	setting	the
GUID_DMUS_PROP_WriteLatency	property	on	the	port.	The	following
example	code	demonstrates	the	use	of	this	property.

HRESULT	SetLatency	(IDirectMusicPort8	*pDMPort,	DWORD	dwLatency)

{

				IKsControl*	pKSControl;

				HRESULT	hr;

				//	Query	for	IKsControl.	All	ports	that	support	properties	provide	this	interface.

				hr	=	pDMPort->QueryInterface(IID_IKsControl,	(void**)&pKSControl);

				if	(SUCCEEDED(hr))	{

								KSPROPERTY	KSProperty;

								ULONG						ulDummy;

								ZeroMemory(&KSProperty,	sizeof(KSProperty));

								KSProperty.Set			=	GUID_DMUS_PROP_WriteLatency;

								KSProperty.Flags	=	KSPROPERTY_TYPE_SET;

								hr	=	pKSControl->KsProperty(&KSProperty,	sizeof(KSProperty),

																(LPVOID)&dwLatency,	sizeof(dwLatency),	&ulDummy);

								pKSControl->Release();

				}

				return	hr;

}

To	attain	the	absolute	minimum	latency,	applications	must	also	reduce	the
wakeup	interval	of	the	DirectMusic	realtime	thread.	This	is	achieved	by	setting
the	GUID_DMUS_PROP_WritePeriod	property	on	the	port.

See	Also

KSPROPERTY
Property	Sets	for	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Segment	Timing

When	you	cue	a	segment	to	play,	you	have	a	great	deal	of	control	over	when	the
segment	starts,	what	point	in	the	segment	is	heard	first,	how	the	segment	is
aligned	rhythmically	with	currently	playing	music,	and	whether	any	part	of	the
segment	plays	more	than	once.

The	following	terms	are	used	throughout	this	section	to	clarify	the	relationship
between	times	within	segments	and	times	within	the	performance.

Start	point

The	first	point	in	the	segment	that	can	be	a	segment	start	time.	By	default	this
value	is	0,	indicating	the	beginning	of	the	segment.	However,	it	can	be	changed
by	the	application.

Segment	start	time

The	point	in	a	segment	where	it	begins	producing	sounds.	This	time	is	usually
the	same	as	the	start	point,	but	can	be	later	than	the	start	point	if	the	start	point	is
deliberately	aligned	to	a	play	time	that	is	in	the	past.

Play	time

The	point	in	the	performance	where	a	segment's	start	point	is	cued.	In	the
DirectMusic	API,	this	time	is	sometimes	called	start	time.

Resolved	time

A	specified	time	(such	as	the	play	time)	adjusted	to	a	specified	boundary.	For
example,	the	resolved	time	could	be	the	time	of	the	next	beat	after	the	specified
time.

Start	marker

A	marker	indicating	a	valid	segment	start	time	in	a	segment.	The	marker	can	be

an	enter	switch	point	in	the	marker	track,	or	a	variation	switch	point	in	a	pattern.

Play	marker

A	marker	in	the	marker	track	of	a	control	segment	indicating	where	another
segment's	start	point	can	be	cued.

Note			Start	markers	and	play	markers	are	placed	in	a	segment	in	DirectMusic
Producer	and	cannot	be	changed	by	the	application.	They	can,	however,	be
retrieved	by	using	the	GUID_Valid_Start_Time	and	GUID_Play_Marker
parameters.

Segments	normally	play	from	the	beginning.	You	can	make	a	segment	start	from
another	point	by	using	the	IDirectMusicSegment8::SetStartPoint	method.	The
new	start	point	remains	valid	until	changed.

The	play	time	is	determined	by	two	parameters	of	the
IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx	methods:

The	i64StartTime	parameter	sets	the	earliest	time	at	which	the	segment	can
start	playing.	If	i64StartTime	is	0,	this	time	is	as	soon	as	possible.	The
actual	time	at	which	the	segment	can	start	depends	on	the	type	of	segment.
If	it	is	a	primary	segment	or	a	secondary	control	segment,	the	earliest	play
time	is	at	queue	(or	flush)	time.	If	it	is	a	noncontrol	secondary	segment,	the
earliest	play	time	is	at	latency	time.	For	more	information	on	queue	time
and	latency	time,	see	Latency	and	Bumper	Time.
The	dwFlags	parameter	specifies	how	soon	after	the	earliest	possible	play
time	the	segment	will	actually	start	playing.	Usually,	you	will	want	to	wait
for	an	appropriate	point	in	the	rhythm	before	introducing	a	new	primary
segment,	transition,	or	motif.	You	control	the	delay	by	setting	one	or	more
flags	from	the	DMUS_SEGF_FLAGS	enumeration.

Repeating	and	Looping

If	a	repeat	count	is	set	by	using	IDirectMusicSegment8::SetRepeats,	the	entire
segment	repeats	that	number	of	times,	unless	a	loop	has	been	defined	by	a	call	to
IDirectMusicSegment8::SetLoopPoints,	in	which	case	only	the	part	of	the
segment	between	the	loop	points	repeats.

Aligning	a	Segment	to	a	Past	Time

Rather	than	forcing	the	segment	start	time	to	the	next	grid,	beat,	or	measure	in
the	control	segment,	you	might	want	the	segment	to	start	playing	sooner,	yet	still
match	the	rhythm	of	the	current	segment.	You	can	make	the	segment	do	so	by
cuing	its	start	point	to	a	rhythmic	boundary	that	has	already	passed.	The	rhythm
in	the	cued	segment	is	thus	aligned	with	that	in	the	current	segment,	and	the	new
segment	can	start	playing	immediately.

To	cue	the	segment	in	the	past,	use	the	DMUS_SEGF_ALIGN	flag.	Add	one	of
DMUS_SEGF_GRID,	DMUS_SEGF_BEAT,	DMUS_SEGF_SEGMENTEND,
or	DMUS_SEGF_MEASURE	to	cue	the	start	point	of	the	segment	at	the
appropriate	rhythmic	boundary.	Alternatively,	you	can	use
DMUS_SEGF_MARKER	to	align	the	start	point	to	the	most	recently	played
play	marker	in	the	control	segment.

Note			Combining	DMUS_SEGF_ALIGN	with	DMUS_SEGF_SEGMENTEND
causes	the	beginning	of	the	cued	segment	to	be	aligned	with	the	beginning	of	the
current	segment.

Of	course,	when	the	start	point	is	in	the	past,	the	segment	start	time	has	to	be
adjusted	to	fall	in	the	present	or	the	future.	The	performance	uses	the	following
rules	to	determine	the	segment	start	time.	In	all	cases,	"next"	means	"next
possible"—that	is,	within	the	part	of	the	segment	that	does	not	fall	in	the	past.

If	a	start	marker	appears	in	the	cued	segment	before	the	next	resolution
boundary	of	the	specified	type,	the	segment	start	time	falls	at	that	point.
If	there	is	no	valid	start	marker,	the	segment	start	time	is	at	the	next	start
resolution	boundary	of	the	cued	segment,	as	specified	by	one	of	the
following	flags:
Flag Effect

DMUS_SEGF_VALID_START_BEAT Puts	the	segment	start	time	on
the	next	beat.

DMUS_SEGF_VALID_START_GRID Puts	the	segment	start	time	on
the	next	grid.

DMUS_SEGF_VALID_START_MEASUREPuts	the	segment	start	time	onthe	next	bar	line.
Puts	the	segment	start	time	at

DMUS_SEGF_VALID_START_TICK the	earliest	possible	point.

If	there	is	no	valid	start	marker	and	no	start	resolution	flag	is	supplied,	the
segment	start	time	is	at	the	next	play	resolution	boundary	as	specified	by
the	DMUS_SEGF_GRID,	DMUS_SEGF_BEAT,	or
DMUS_SEGF_MEASURE	flag.	If	none	of	these	flags	is	present,	the
segment	start	time	is	immediate.

Play	markers	and	start	markers	allow	greater	flexibility	in	the	cuing	of	segments,
especially	motifs.	Suppose	a	motif	is	designed	to	sound	best	when	it	starts
playing	at	the	beginning	of	a	measure	in	the	primary	segment.	If	the	motif	is
cued	with	the	DMUS_SEGF_MEASURE	flag,	there	might	be	a	significant	delay
before	the	next	measure	boundary	is	reached	and	the	motif	plays.	But	if	the
DMUS_SEGF_ALIGN	flag	is	added,	the	motif	can	start	playing	sooner	without
violating	the	rhythm.	Adding	the	DMUS_SEGF_MARKER	flag	ensures	that	the
motif	plays	at	an	appropriate	boundary	within	the	control	segment,	rather	than
on	just	any	measure,	beat,	or	grid.

For	information	on	how	tempo	changes	can	affect	segment	start	times,	see	Clock
Time	and	Music	Time.

The	following	diagram	shows	how	the	timing	is	determined	for	a	segment	cued
with	the	DMUS_SEGF_MEASURE,	DMUS_SEGF_ALIGN,	and
DMUS_SEGF_VALID_START_BEAT	flags.	The	solid	vertical	lines	are
measure	boundaries,	and	the	dotted	lines	are	beat	boundaries.	The	start	point	of
the	segment	is	aligned	with	the	previous	measure	boundary	in	the	current
primary	segment.	The	segment	start	time	falls	at	the	first	beat	in	the	cued
segment	after	the	unresolved	play	time.

Logical	Time	and	Actual	Time

Some	events	have	both	a	logical	time	and	an	actual	time.	The	actual	time	is
when	the	event	will	take	place,	and	the	logical	time	represents	the	musical
position	where	it	belongs.

For	example,	a	segment	might	contain	a	program	change	that	belongs	to	the	start
of	a	beat.	The	logical	time	is	the	start	of	the	beat.	However,	you	want	to	make
sure	the	program	change	takes	place	before	the	note	on	the	beat	is	played,	so	you
assign	it	a	physical	time	that's	a	little	earlier.

If	the	segment	loops	to	the	logical	time	(the	start	of	that	same	beat),	the	program
change	will	still	go	out.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Notification	and	Event	Handling
From	time	to	time,	your	application	may	need	to	respond	to	a	performance
event.	For	example,	you	might	need	to	know	when	the	end	of	a	segment	has
been	reached,	or	you	might	want	to	synchronize	graphics	with	the	beat	of	the
music.	You	get	the	desired	information	by	asking	DirectMusic	to	notify	you
when	a	certain	type	of	event	occurs.

Note			Performance	notifications	should	not	be	confused	with	DirectSound
buffer	notifications,	which	are	not	used	by	DirectMusic	applications.

To	specify	what	types	of	events	you	want	to	be	notified	of,	call	the
IDirectMusicPerformance8::AddNotificationType	method	once	for	each
desired	type	of	event.

The	following	example	function	causes	DirectMusic	to	set	segment-related
events.	The	specific	type	of	event,	such	as	a	segment	start	or	a	segment	end,	is
derived	later	from	the	notification	message.

HRESULT	SetSegmentNotification(IDirectMusicPerformance8*	pPerformance)

{

		GUID	guid	=	GUID_NOTIFICATION_SEGMENT;

		return	pPerformance->AddNotificationType(guid);

}

You	can	also	add	notification	types	for	a	particular	segment	by	using	the
IDirectMusicSegment8::AddNotificationType	method.	You	could	do	this,	for
example,	to	receive	notification	of	when	a	particular	segment	stops	playing.	You
cannot	use	this	method	to	request	GUID_NOTIFICATION_PERFORMANCE
types,	because	these	must	come	from	the	performance	object.

Note			Most	applications	do	not	call	the
IDirectMusicTrack8::AddNotificationType	method	directly.

Information	about	notifications	is	sent	in	DMUS_NOTIFICATION_PMSG
message	structures.	You	can	poll	for	any	pending	notification	messages	within
the	Windows	message	loop	by	calling	the

IDirectMusicPerformance8::GetNotificationPMsg	method,	or	you	can	have
DirectMusic	signal	an	event	object	in	a	separate	thread	when	a	message	is
pending.

If	you	want	to	be	alerted	of	pending	DirectMusic	notification	messages	by	a
Windows	event	object,	you	must	first	obtain	an	event	handle	by	calling	the
CreateEvent	function.	Typically,	you	would	create	an	autoreset	event	with	a	call
such	as	the	following:

HANDLE	g_hNotify	=	CreateEvent(NULL,	FALSE,	FALSE,	NULL);

After	creating	the	event,	assign	the	handle	to	the	performance	by	passing	it	to	the
IDirectMusicPerformance8::SetNotificationHandle	method.	You	can	use	the
second	parameter	of	this	method	to	specify	how	long	DirectMusic	should	hold
onto	the	event	if	it	is	not	retrieved.	A	value	of	0	in	this	parameter	indicates	that
the	default	time	of	2	seconds	is	to	be	used.

In	the	following	example,	g_pPerf	is	a	valid	pointer	to	the
IDirectMusicPerformance8	interface:

HRESULT	hr	=	g_pPerf->SetNotificationHandle(g_hNotify,	0);

The	following	example	function	executes	repeatedly	in	its	own	thread,	checking
for	signaled	events	and	retrieving	notification	messages:

void	WaitForEvent(LPVOID	lpv,	HANDLE	hNotify,	IDirectMusicPerformance8*	pPerformance)

{

		DWORD	dwResult;

		DMUS_NOTIFICATION_PMSG*	pPmsg;

	

		while	(TRUE)

		{

				dwResult	=	WaitForSingleObject(hNotify,	100);

				while	(S_OK	==	pPerformance->GetNotificationPMsg(&pPmsg))

				{

						//	Check	notification	type	and	do	something	in	response.

						//	Then	free	the	message.

						pPerformance->FreePMsg((DMUS_PMSG*)pPmsg);	

				}

		}

}

More	than	one	message	might	be	waiting	when	an	event	is	signaled	or	when	you
call	GetNotificationPMsg	in	the	message	loop.	To	be	sure	of	catching	all

notifications,	call	GetNotificationPMsg	repeatedly	until	it	returns	S_FALSE.

Multiple	messages	with	the	same	time	stamp	are	not	queued	in	any	particular
order.

It	is	the	application's	responsibility	to	free	any	messages	it	retrieves,	by	calling
the	IDirectMusicPerformance8::FreePMsg	method.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Troubleshooting	Playback
The	following	are	common	causes	for	sounds	not	playing	correctly:

Instruments	have	not	been	downloaded.	You	must	download	all	instruments
and	waveforms	used	by	segments,	even	the	default	Gm.dls	instrument
collection.	To	ensure	that	all	instruments	and	waveforms	are	downloaded,
you	can	turn	on	automatic	downloading;	however,	this	is	not	recommended.
A	better	way	is	to	download	each	segment	when	it	is	loaded,	by	using
IDirectMusicSegment8::Download.	For	more	information,	see
Downloading	and	Unloading	Bands.

There	is	one	case	in	which	automatic	downloading	might	be	required:	when
a	segment	trigger	track	cues	other	segments	that	use	different	instruments	or
waveforms.	Because	your	application	doesn't	obtain	an	interface	to	the
triggered	segments,	it	cannot	download	them	manually.

The	loader	cannot	find	needed	files.	Make	sure	the	loader	is	searching	in
the	correct	folder	by	calling	IDirectMusicLoader8::SetSearchDirectory.
The	loader	cannot	find	objects	that	are	used	by	other	objects.	Content
authored	in	DirectMusic	Producer	can	contain	references	to	content	in	other
files.	For	example,	a	script	track	in	a	segment	might	contain	calls	to	play
other	segments.	If	the	loader	cannot	find	the	referenced	segments,	it	cannot
play	them.	To	ensure	that	the	loader	can	identify	and	load	all	referenced
objects,	call	IDirectMusicLoader8::ScanDirectory.	For	more	information,
see	Scanning	a	Directory	for	Objects.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Performance	Parameters
DirectMusic	lets	you	control	many	aspects	of	track	behavior	by	changing
parameters	during	playback,	using	one	of	the	following	SetParam	methods:

IDirectMusicPerformance8::SetParam	sets	data	on	a	specific	track
within	the	current	control	segment	of	the	performance.	The	control	segment
is	normally	the	primary	segment,	but	a	secondary	segment	can	be
designated	as	the	control	segment	when	it	is	played.	See	Control	Segments.
IDirectMusicSegment8::SetParam	sets	data	on	a	specific	track	within	the
segment.
IDirectMusicTrack8::SetParam	and	IDirectMusicTrack8::SetParamEx
set	data	on	the	track	represented	by	the	interface.	Applications	do	not
normally	have	interfaces	to	individual	tracks.

The	IDirectMusicPerformance8::SetGlobalParam	method	enables	you	to	set
values	that	apply	across	the	entire	performance.

The	equivalent	GetParam	and	GetGlobalParam	methods	retrieve	current
values	for	a	track	or	the	performance.

To	have	the	music	respond	immediately	to	a	changed	parameter,	an	application
can	flush	messages	from	the	queue	by	using	the
IDirectMusicPerformance8::Invalidate	method.	This	method	causes	all	tracks
to	resend	messages	from	the	specified	point	forward.

See	Also

Setting	and	Retrieving	Track	Parameters
Disabling	and	Enabling	Track	Parameters
Setting	and	Retrieving	Global	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Setting	and	Retrieving	Track
Parameters
The	following	methods	are	used	for	setting	and	retrieving	track	parameters:

IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParam
IDirectMusicTrack8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

When	calling	one	of	these	methods	on	the	performance	or	segment,	you	can
identify	the	track	by	setting	the	dwGroupBits	and	dwIndex	parameters.	Usually,
however,	you	can	let	DirectMusic	find	the	appropriate	track	for	you.	For	more
information,	see	Identifying	the	Track.

The	track	parameter	that	is	being	set	or	retrieved	is	identified	by	a	GUID	in	the
rguidType	parameter	of	the	method.	Each	parameter	that	requires	data	is
associated	with	a	particular	data	type,	and	pParam	must	point	to	a	variable	or
structure	of	this	type.	In	some	cases,	part	of	the	data	structure	must	be	initialized
even	when	retrieving	the	parameter.	For	some	parameters,	you	must	also	specify
the	time	within	the	track	at	which	the	change	is	to	take	effect	or	for	which	the
parameter	is	to	be	retrieved.

For	reference	information	on	the	data	associated	with	the	standard	parameter
types,	see	Standard	Track	Parameters.

Some	parameter	changes	might	not	appear	to	take	effect	immediately.	For
example,	changing	the	groove	level	does	not	make	a	difference	until	the	current
pattern	is	about	to	finish	playing	and	the	next	pattern	is	chosen.	If	you	want	the
change	to	take	effect	sooner,	you	can	force	the	current	pattern	to	be	discarded	by
calling	the	IDirectMusicPerformance8::Invalidate	method.

To	determine	whether	a	particular	parameter	is	supported	by	a	track,	use	the
IDirectMusicTrack8::IsParamSupported	method	and	check	for	an	S_OK
result.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Identifying	the	Track

When	you	set	or	retrieve	a	parameter	by	using
IDirectMusicTrack8::SetParamEx	or	IDirectMusicTrack8::GetParamEx,
the	parameter	is	associated	with	the	track	on	which	the	method	is	called.
However,	when	you	call	IDirectMusicPerformance8::SetParam,
IDirectMusicPerformance8::GetParam,	IDirectMusicSegment8::SetParam,
or	IDirectMusicSegment8::GetParam,	DirectMusic	needs	to	find	the
appropriate	track.

Normally,	you	can	let	DirectMusic	determine	which	track	contains	the	desired
parameter.	To	do	this,	set	dwGroupBits	to	0xFFFFFFFF	and	dwIndex	to
DMUS_SEG_ANYTRACK	or	DMUS_SEG_ALLTRACKS.	For	example,	the
following	call	to	IDirectMusicSegment8::SetParam	turns	off	the	tempo	track
so	that	looping	a	segment	does	not	reset	the	tempo:

HRESULT	hr	=	pIDMSegment->SetParam(GUID_DisableTempo,	0xFFFFFFFF,	

				DMUS_SEG_ALLTRACKS,	0,	NULL);

There	are	times,	however,	when	you	need	to	specify	a	track.	Typically,	this
would	be	the	case	when	a	segment	contains	multiple	tracks	of	the	same	type.	To
set	or	retrieve	the	parameter	on	the	desired	track,	you	must	identify	it	by	group
and	index	value.

Every	track	belongs	to	one	or	more	groups,	each	group	being	represented	by	a
bit	in	the	dwGroupBits	parameter	of	one	of	the	methods	under	discussion.	The
track	is	assigned	to	a	group	or	groups	when	it	is	inserted	in	the	performance.	In
the	case	of	segments	loaded	from	a	file,	track	groups	are	assigned	by	the	author
of	the	segment.

A	track	is	identified	by	a	zero-based	index	value	within	each	of	the	groups	it
belongs	to.	The	index	value	is	determined	by	the	order	in	which	the	tracks	were
inserted.

Suppose	a	segment	contains	the	tracks	shown	in	the	following	table.

Track Group
bits

A 0x1
B 0x2
C 0x1
D 0x3

Group	1	contains	tracks	A,	C,	and	D,	and	group	2	contains	tracks	B	and	D.	If
you	call	GetParam	with	a	value	of	1	in	dwGroupBits	and	a	value	of	0	in
dwIndex,	the	parameter	is	retrieved	from	track	A,	which	is	the	first	track	in
group	1.	If	dwIndex	is	1,	the	parameter	is	retrieved	from	track	C,	the	second
track	in	the	group.	Track	D	belongs	to	two	groups,	1	and	2,	so	it	can	be
identified	as	either	dwGroupBits	=	1	and	dwIndex	=2,	or	dwGroupBits	=	2	and
dwIndex	=	1.

If	you	set	more	than	one	bit	in	dwGroupBits,	the	parameter	is	retrieved	from	the
nth	track	containing	any	of	those	bits,	where	n	is	the	value	in	dwIndex.

See	Also

IDirectMusicSegment8::InsertTrack

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Disabling	and	Enabling	Track
Parameters
By	setting	the	GUID_DisableTempo	and	GUID_DisableTimeSig	parameters	on
a	track,	you	can	disable	the	setting	of	tempo	and	time	signature	by	a	control
segment.	You	might	want	to	do	this,	for	example,	when	you	have	set	the	tempo
dynamically	and	don't	want	the	primary	segment	to	send	tempo	messages.

To	re-enable	the	parameter,	call	one	of	the	set-parameter	methods	with
GUID_EnableTempo	or	GUID_EnableTimeSig	as	the	rguidType	parameter.	You
can	also	set	these	parameters	to	force	a	segment	to	send	tempo	messages	even
though	it	isn't	the	control	segment,	or	to	cause	a	secondary	segment	to	send	time
signature	messages.

It	is	also	possible	to	disable	and	enable	any	track	parameter	by	setting	the
configuration	flags	on	the	track.	For	more	information,	see	Track	Configuration.

See	Also

Control	Segments
IDirectMusicTrack8::IsParamSupported
Setting	and	Retrieving	Track	Parameters.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Setting	and	Retrieving	Global
Parameters
By	using	the	IDirectMusicPerformance8::SetGlobalParam	and
IDirectMusicPerformance8::GetGlobalParam	methods,	you	can	set	and
retrieve	parameters	that	affect	the	entire	performance	rather	than	a	single	track.

The	parameter	to	be	set	or	retrieved	is	identified	by	a	GUID	in	the	rguidType
parameter	of	the	method.	Each	parameter	is	associated	with	a	particular	data
type,	whose	size	is	given	in	the	dwSize	parameter.	The	predefined	GUIDs	and
their	data	types	are	shown	in	the	following	table.

Parameter	type	GUID
(rguidType)

Data
(*pParam) Description

GUID_PerfAutoDownload BOOL

This	parameter	controls	whether
instruments	are	automatically
downloaded	when	a	segment	is
played.	By	default,	it	is	off.	See
Downloading	and	Unloading
Bands.

GUID_PerfMasterGrooveLevel char

The	master	groove	level	is	a	value
that	is	always	added	to	the	groove
level	established	by	the	command
track.	The	resulting	value	is
adjusted,	if	necessary,	to	fall	within
the	range	from	1	through	100.

GUID_PerfMasterTempo float

The	master	tempo	is	a	scaling
factor	applied	to	the	tempo	by	the
final	output	tool.	By	default,	it	is	1.
A	value	of	0.5	would	halve	the
tempo,	and	a	value	of	2.0	would
double	it.	This	value	can	be	set	in
the	range	from
DMUS_MASTERTEMPO_MIN
through

DMUS_MASTERTEMPO_MAX.

GUID_PerfMasterVolume long

The	master	volume	is	an
amplification	or	attenuation	factor,
in	hundredths	of	a	decibel,	applied
to	the	default	volume	of	the	entire
performance	and	any	other
performances	using	the	same
synthesizer.	The	range	of	permitted
values	is	determined	by	the	port.
For	the	default	software
synthesizer,	the	allowed	range	is
+20db	to	-200dB,	but	the	useful
range	is	+10db	to	-100db.
Hardware	MIDI	ports	do	not
support	changing	master	volume.
Setting	this	parameter	is	equivalent
to	calling
IKsControl::KsProperty	for	the
GUID_DMUS_PROP_Volume
property	set	on	every	port	in	the
performance.

Applications	can	also	use	custom	types	of	global	parameters.	To	create	a	new
type,	establish	a	GUID	and	a	data	type	for	it.

Note			All	parameters	have	to	be	set	before	they	can	be	retrieved.	When	a
parameter	is	set,	the	performance	allocates	memory	for	the	data	in	a	linked	list	of
items	that	are	identified	by	GUID.	If	SetGlobalParam	has	never	been	called	on
the	parameter,	it	does	not	appear	in	this	linked	list,	and	GetGlobalParam	fails.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Audiopaths
A	DirectMusic	performance	typically	contains	one	or	more	audiopaths,	which
manage	the	flow	of	sound	data	through	various	objects.	An	audiopath	might
include	the	performance	itself,	a	segment,	toolgraphs,	the	synthesizer,
DirectSound	buffers,	effects	DMOs,	and	the	primary	DirectSound	buffer	where
the	final	mixing	is	done.

If	your	application	does	nothing	more	complicated	than	playing	2-D	sound
effects	or	MIDI	files,	you	can	set	up	a	standard	default	audiopath	and	play
everything	on	it.	But	to	take	advantage	of	the	full	power	of	DirectMusic	you
may	want	to	use	multiple	audiopaths	and	exercise	more	control	over	them.

Audiopaths	use	only	the	Microsoft	software	synthesizer.	If	you	want	your
application	to	use	another	port	or	ports,	you	must	initialize	the	performance	by
using	IDirectMusicPerformance8::Init.	For	more	information,	see	Using
DirectMusic	Ports.

This	section	is	a	guide	to	creating	audiopaths,	playing	segments	on	them,	and
accessing	objects	within	them.	The	following	topics	are	covered:

Creating	Audiopaths
Default	Audiopath
Standard	Audiopaths
Playing	Sounds	on	Audiopaths
Retrieving	Objects	from	an	Audiopath

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Creating	Audiopaths
Applications	can	set	up	audiopaths	in	the	following	ways:

Create	one	or	more	standard	audiopaths	by	using
IDirectMusicPerformance8::CreateStandardAudioPath.	See	Standard
Audiopaths.
Create	a	default	standard	audiopath	for	the	performance	in	the	call	to
IDirectMusicPerformance8::InitAudio.	See	Default	Audiopath.
Have	DirectMusic	create	an	audiopath	from	the	segment's	audiopath
configuration	when	the	segment	is	played.	Audiopaths	created	in	this	way
are	temporary	and	not	visible	to	the	application.
Obtain	an	audiopath	configuration	from	a	file	authored	in	DirectMusic
Producer	and	pass	the	configuration	object	to
IDirectMusicPerformance8::CreateAudioPath.

An	audiopath	configuration	object	can	be	loaded	just	like	any	other	object,	by
using	IDirectMusicLoader8::GetObject	or
IDirectMusicLoader8::LoadObjectFromFile.	A	configuration	embedded	in	a
segment	can	be	retrieved	by	using
IDirectMusicSegment8::GetAudioPathConfig.

The	audiopath	configuration	object	does	not	have	a	unique	interface	or	methods,
and	your	application	cannot	change	the	configuration	in	any	way.	All	you	can	do
with	the	object	is	pass	it,	by	its	IUnknown	interface,	to
IDirectMusicPerformance8::CreateAudioPath.	For	example	code,	see
Playing	Sounds	on	Audiopaths.

Audiopath	configurations	are	the	only	means	of	creating	nonstandard
audiopaths.	For	instance,	if	different	performance	channels	are	to	be	routed	to
different	buffers,	this	mapping	must	be	specified	in	the	audiopath	configuration
of	a	segment.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Default	Audiopath
The	default	audiopath	is	the	one	used	when	a	segment	is	played	by	using
IDirectMusicPerformance8::PlaySegment,	or	when	no	audiopath	is	specified
in	a	call	to	IDirectMusicPerformance8::PlaySegmentEx.

You	can	create	an	audiopath	and	make	it	the	default	by	specifying	a	standard
type	in	the	dwDefaultPathType	parameter	of
IDirectMusicPerformance8::InitAudio.

Any	existing	audiopath	can	be	made	the	default	audiopath	by	passing	it	to
IDirectMusicPerformance8::SetDefaultAudioPath.	Retrieve	the	default
audiopath	by	using	IDirectMusicPerformance8::GetDefaultAudioPath.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Standard	Audiopaths
If	your	application	does	not	play	exclusively	on	audiopaths	created	from
audiopath	configuration	objects,	you	must	create	one	or	more	standard
audiopaths.

Standard	audiopaths	are	identified	by	the	values	passed	in	the	dwType	parameter
of	IDirectMusicPerformance8::CreateStandardAudioPath	or	in	the
dwDefaultPathType	parameter	of	IDirectMusicPerformance8::InitAudio.

The	audiopaths	defined	by	DirectMusic	manage	the	flow	of	synthesizer	output
through	combinations	of	standard	buffers,	some	of	which	have	effect	DMOs
attached	to	them.	The	following	table	shows	the	standard	audiopaths	and	which
standard	buffers	they	contain.	Shared	buffers	can	be	used	by	more	than	one
audiopath.

Audiopath	type Standard
buffers

Buffer
shared?

DMUS_APATH_DYNAMIC_3D 3-D	Dry No
DMUS_APATH_DYNAMIC_MONO Mono No
DMUS_APATH_DYNAMIC_STEREO Stereo No

DMUS_APATH_SHARED_STEREOPLUSREVERBMusic
Reverb

Yes
Yes

Characteristics	of	the	standard	buffers	are	shown	in	the	following	table,	where
the	Capabilities	column	lists	values	returned	in	the	dwFlags	member	of	the
DSBCAPS	structure	passed	to	IDirectSoundBuffer8::GetCaps.	The	last
column	shows	interfaces	that	can	be	obtained	from	the	buffer	object.	In	addition,
applications	can	add	effects	to	buffers	by	using	IDirectSoundBuffer8::SetFX,
making	other	interfaces	available.	For	more	information	on	obtaining	interfaces,
see	Retrieving	Objects	from	an	Audiopath.

Standard
buffer Description Capabilities Interfaces

DSBCAPS_CTRL3D

3-D	Dry Mono	3-D
buffer

DSBCAPS_CTRLFREQUENCY
DSBCAPS_CTRLFX
DSBCAPS_CTRLVOLUME
DSBCAPS_GLOBALFOCUS
DSBCAPS_MUTE3DATMAXDISTANCE

IDirectSound3DBuffer8
IDirectSoundBuffer8
IDirectSound3DBuffer8

Mono
Mono	buffer
with	no
effects

DSBCAPS_CTRLFREQUENCY
DSBCAPS_CTRLFX
DSBCAPS_CTRLPAN
DSBCAPS_CTRLVOLUME
DSBCAPS_GLOBALFOCUS

IDirectSoundBuffer8

Music
Stereo	buffer
used	with
Reverb

DSBCAPS_CTRLFX
DSBCAPS_CTRLPAN
DSBCAPS_CTRLVOLUME
DSBCAPS_GLOBALFOCUS

IDirectSoundBuffer8

Reverb

Stereo	buffer
with	music
reverberation
effect

DSBCAPS_CTRLFX
DSBCAPS_CTRLPAN
DSBCAPS_CTRLVOLUME
DSBCAPS_GLOBALFOCUS

IDirectSoundFXWavesReverb8
IDirectSoundBuffer8

Stereo
Stereo	buffer
with	no
effects

DSBCAPS_CTRLFREQUENCY,
DSBCAPS_CTRLFX,
DSBCAPS_CTRLPAN
DSBCAPS_CTRLVOLUME
DSBCAPS_GLOBALFOCUS

IDirectSoundBuffer8

More	information	about	the	standard	audiopaths	is	available	in	the	following
topics:

DMUS_APATH_DYNAMIC_3D
DMUS_APATH_DYNAMIC_MONO
DMUS_APATH_DYNAMIC_STEREO
DMUS_APATH_SHARED_STEREOPLUSREVERB

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_APATH_DYNAMIC_3D

This	standard	audiopath	sets	up	a	nonshared	buffer	of	type	3-D	Dry.

Applications	can	obtain	an	interface	to	the	3-D	Dry	buffer	by	calling	one	of	the
GetObjectInPath	methods	with	dwStage	set	to	DMUS_PATH_BUFFER	and
dwBuffer	set	to	0.

The	buffer	uses	the	DS3DALG_NO_VIRTUALIZATION	algorithm	for	3-D
effects,	and	this	property	cannot	be	changed	by	the	application.	Other	algorithms
can	be	applied	to	custom	buffers	in	audiopaths	that	have	been	authored	in
DirectMusic	Producer.	For	information	on	3-D	algorithms,	see
DSBUFFERDESC	in	the	DirectX	documentation.

See	Also

Standard	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_APATH_DYNAMIC_MONO

This	standard	audiopath	sets	up	a	nonshared	buffer	of	type	Mono	that	has	no	3-D
parameters	or	special	effects.

Applications	can	obtain	an	interface	to	the	buffer	by	calling	one	of	the
GetObjectInPath	methods	with	dwStage	set	to	DMUS_PATH_BUFFER	and
dwBuffer	set	to	0.

See	Also

Standard	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_APATH_DYNAMIC_STEREO

This	standard	audiopath	sets	up	a	nonshared	buffer	of	type	Stereo.	This
audiopath	is	intended	for	sound	effects	on	stereo	buffers.	No	reverberation	is
available.

Applications	can	obtain	an	interface	to	the	buffer	by	calling	one	of	the
GetObjectInPath	methods	with	dwStage	set	to	DMUS_PATH_BUFFER	and
dwBuffer	set	to	0.

See	Also

Standard	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_APATH_SHARED_STEREOPLUSREVERB

This	standard	audiopath	sets	up	buffers	of	type	Reverb	and	Stereo.

The	Stereo	buffer	is	shared	among	multiple	audiopaths.	It	is	a	sink-in	buffer,
meaning	that	it	accepts	data	directly	from	the	synthesizer,	not	from	other	buffers.

Applications	can	obtain	an	interface	to	the	Stereo	buffer	by	calling	one	of	the
GetObjectInPath	methods	with	dwStage	set	to	DMUS_PATH_BUFFER	and
dwBuffer	set	to	0.

The	Reverb	buffer	is	also	a	shared	sink-in	buffer.	Unlike	the	Stereo	buffer,	it
accepts	a	mono	input	from	the	synthesizer	and	converts	the	data	to	stereo	format.

Applications	can	obtain	an	interface	to	the	Reverb	buffer	by	calling	one	of	the
GetObjectInPath	methods	with	dwStage	set	to	DMUS_PATH_BUFFER	and
dwBuffer	set	to	1.

The	following	example	function	retrieves	an	IDirectSoundFXWavesReverb8
interface	to	the	DMO	in	the	Reverb	buffer	on	a	default
DMUS_APATH_SHARED_STEREOPLUSREVERB	audiopath:

HRESULT	GetDMO(IDirectMusicPerformance8*	pPerf,IDirectSoundFXWavesReverb8**	ppEffectDMO)

{

		IDirectMusicAudioPath8	*	pAudioPath;

		HRESULT	hr;

	

		hr	=	pPerf->GetDefaultAudioPath(&pAudioPath);

		if	(SUCCEEDED(hr))

		{

				HRESULT	hr	=	pAudioPath->GetObjectInPath(DMUS_PCHANNEL_ALL,

						DMUS_PATH_BUFFER_DMO,	1,

						GUID_All_Objects,	0,	IID_IDirectSoundFXWavesReverb8,

						(LPVOID*)	ppEffectDMO);

		}

		return	hr;

}

See	Also

Standard	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Playing	Sounds	on	Audiopaths
If	your	application	has	created	a	default	audiopath	in	the	call	to
IDirectMusicPerformance8::InitAudio,	you	can	play	a	segment	on	this	path
by	using	IDirectMusicPerformance8::PlaySegment.	You	can	also	play	a
segment	on	the	default	path	by	passing	NULL	in	the	pAudioPath	parameter	of
IDirectMusicPerformance8::PlaySegmentEx.

If	there	is	no	default	audiopath,	or	if	you	want	to	play	a	segment	on	another	path,
you	must	use	PlaySegmentEx	rather	than	PlaySegment.	You	can	specify	the
audiopath	in	two	ways:

Supply	a	pointer	in	the	pAudioPath	parameter.	Usually	this	is	the
IDirectMusicAudioPath8	interface	pointer	you	received	when	the
audiopath	was	created.
Include	DMUS_SEGF_USE_AUDIOPATH	in	dwFlags.	This	flag	causes
the	segment	to	create	an	audiopath	from	a	configuration	embedded	in	the
segment	object.

Note			An	audiopath	created	in	response	to	the
DMUS_SEGF_USE_AUDIOPATH	flag	is	released	as	soon	as	the	segment	has
stopped	playing.	If	the	audiopath	contains	an	effect	such	as	reverberation,	the
effect	is	cut	short	prematurely.	To	prevent	this	from	happening,	the	application
should	create	the	audiopath	manually	and	release	it	only	after	a	suitable	delay.

Bands	are	not	downloaded	for	segments	played	with	the
DMUS_SEGF_USE_AUDIOPATH	flag	unless	automatic	downloading	is
enabled.	For	more	information,	see	Automatically	Downloading	Bands.

The	following	example	function	plays	a	segment	on	an	embedded	audiopath
configuration	if	one	is	available,	or	on	the	default	audiopath	otherwise:

HRESULT	PlayOnEmbedded(IDirectMusicPerformance8*	pPerf,	IDirectMusicSegment8	*pSeg)

{

		IDirectMusicAudioPath8	*	pPath	=		NULL;

		IUnknown	*pConfig;

		HRESULT	hr;

	

		if	(pSeg)

		{

				if	(SUCCEEDED(hr	=	pSeg->GetAudioPathConfig(&pConfig)))

				{

						hr	=	pPerf->CreateAudioPath(pConfig,	TRUE,	&pPath);

						pConfig->Release();

				}	

				hr	=	pPerf->PlaySegmentEx(pSeg,	NULL,	NULL,	0,	0,	NULL,	NULL,	pPath);

				if	(pPath)	

				{

						pPath->Release();

						pPath	=	NULL;

				}

		}

		return	hr;

}

If	you	have	an	interface	to	the	audiopath,	you	can	change	the	volume	by	using
IDirectMusicAudioPath8::SetVolume.	Unlike	the	global	parameter
GUID_PerfMasterVolume,	which	affects	all	sounds	playing	on	the	synthesizer,
this	method	sets	the	volume	only	on	the	performance	channels	playing	on	this
audiopath.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Retrieving	Objects	from	an
Audiopath
It	is	often	necessary	to	retrieve	an	interface	to	a	particular	object	within	the
audiopath.	Common	reasons	to	do	so	include	the	following:

To	manipulate	the	3-D	properties	of	sounds	by	obtaining	an
IDirectSound3DBuffer8	interface.
To	set	global	3-D	sound	properties	by	obtaining	an
IDirectSound3DListener8	interface	from	the	primary	buffer.
To	set	effects	on	a	secondary	buffer	by	obtaining	the	IDirectSoundBuffer8
interface.
To	set	effect	parameters	by	obtaining	an	interface	to	a	DMO	such	as
IDirectSoundFXI3DL2Reverb8.

Objects	can	be	retrieved	from	an	audiopath	by	calling
IDirectMusicSegmentState8::GetObjectInPath	on	the	segment	state	that	is
playing	on	the	audiopath.	You	can	also	call
IDirectMusicAudioPath8::GetObjectInPath	on	the	audiopath	object	itself.
The	following	table	gives	information	about	the	parameters	to	these	two
methods.

dwStage guidObject

DMUS_PATH_AUDIOPATH	(*) Ignored
DMUS_PATH_AUDIOPATH_GRAPH Ignored

DMUS_PATH_AUDIOPATH_TOOL Tool	class	ID	or
GUID_All_Objects	to	enumerate

DMUS_PATH_BUFFER Ignored

DMUS_PATH_BUFFER_DMO
DMO	class	ID,	such	as
GUID_DSFX_STANDARD_GARGLE,	or

GUID_All_Objects	to	enumerate

DMUS_PATH_MIXIN_BUFFER Ignored

DMUS_PATH_MIXIN_BUFFER_DMO

DMO	class	ID,	such	as
GUID_DSFX_STANDARD_I3DL2REVERB,
or
GUID_All_Objects	to	enumerate

DMUS_PATH_PERFORMANCE Ignored
DMUS_PATH_PERFORMANCE_GRAPHIgnored

DMUS_PATH_PERFORMANCE_TOOL Tool	class	ID	or
GUID_All_Objects	to	enumerate

DMUS_PATH_PORT Port	class	ID	or
GUID_All_Objects	to	enumerate

DMUS_PATH_PRIMARY_BUFFER Ignored
DMUS_PATH_SEGMENT	(*) Ignored
DMUS_PATH_SEGMENT_GRAPH	(*) Ignored

DMUS_PATH_SEGMENT_TOOL	(*) Tool	class	ID	or
GUID_All_Objects	to	enumerate

DMUS_PATH_SEGMENT_TRACK	(*) Track	class	ID	or
GUID_All_Objects	to	enumerate

Notes			(*)	Objects	in	this	stage	cannot	be	retrieved	by
IDirectMusicAudioPath8::GetObjectInPath.

(**)	The	standard	DMOs	provided	with	DirectX	also	support	the	IMediaObject,
IMediaObjectInPlace,	and	IMediaParams	interfaces.

For	more	information	on	the	values	for	dwIndex	when	retrieving	standard
buffers,	see	Standard	Audiopaths.

The	following	example	function	retrieves	a	segment	from	the	segment	state	that
was	created	when	the	segment	was	played:

HRESULT	GetSegmentFromState(IDirectMusicSegmentState*	pSegState,	IDirectMusicSegment8**	ppSeg)

{

		IDirectMusicSegmentState8*	pSegState8;

		HRESULT	hr;

		if	(SUCCEEDED(hr	=	pSegState->QueryInterface(IID_IDirectMusicSegmentState8,	

																(void**)	&pSegState8)))

		{

				hr	=	SUCCEEDED(pSegState8->GetObjectInPath(0,	DMUS_PATH_SEGMENT,	0,	

																		GUID_NULL,	0,	IID_IDirectMusicSegment,	(void**)	ppSeg));

				pSegState8->Release();

		}

		return	hr;

}

If	you	already	have	an	interface	to	an	effects	buffer,	it	is	also	possible	to	retrieve
a	DMO	interface	by	using	IDirectSoundBuffer8::GetObjectInPath.

You	can	retrieve	an	IDirectSoundBuffer8	interface	for	any	buffer	in	the
audiopath,	but	some	methods	are	not	valid.	For	more	information,	see	the
IDirectSoundBuffer8	interface	in	the	DirectX	documentation.

It	is	not	possible	to	change	parameters	of	a	buffer	that	were	set	when	the	buffer
was	created	by	DirectMusic,	such	as	the	3-D	algorithm.	However,	you	can
specify	such	parameters	when	creating	custom	audiopaths	in	DirectMusic
Producer.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	3-D	Sound	in	DirectMusic
Using	the	DirectSound	API,	you	can	locate	DirectMusic	sounds	in	space	and	can
apply	Doppler	shift	to	moving	sounds.

3-D	effects	are	applied	to	individual	DirectSound	buffers.	Because	you	can
direct	different	sounds	along	different	audiopaths,	each	with	its	own	buffer,	it's
easy	to	apply	different	parameters	to	different	sounds.

To	apply	3-D	effects	to	a	buffer,	you	must	obtain	an	IDirectSound3DBuffer8
interface	to	a	buffer	that	has	3-D	capabilities,	such	as	one	in	the
DMUS_APATH_DYNAMIC_3D	standard	audiopath.	You	can	also	create	a
suitable	audiopath	from	a	configuration	object	that	specifies	3-D	parameters	for
a	buffer.

The	following	example	code	creates	a	standard	audiopath	and	retrieves	an
IDirectSound3DBuffer8	interface.	Assume	that	g_pPerformance	is	a	valid
IDirectMusicPerformance8	pointer.

HRESULT																		hr;

IDirectMusicAudioPath8*		g_p3DAudioPath;

IDirectSound3DBuffer8*			g_pDS3DBuffer;	

if	(SUCCEEDED(hr	=	g_pPerformance->CreateStandardAudioPath(

				DMUS_APATH_DYNAMIC_3D,	64,	TRUE,	&g_p3DAudioPath)))

{

		hr	=	g_p3DAudioPath->GetObjectInPath(

						DMUS_PCHANNEL_ALL,	DMUS_PATH_BUFFER,	0,

						GUID_NULL,	0,	IID_IDirectSound3DBuffer8,	

						(LPVOID*)	&g_pDS3DBuffer);

}

if	(FAILED(hr))

{

		ErrorExit(hr);		//	Add	error-handling	code.

}

To	adjust	global	3-D	parameters	and	manipulate	the	position	and	orientation	of
the	listener,	you	must	obtain	an	IDirectSound3DListener8	interface	from	the
primary	buffer	in	any	audiopath	by	using
IDirectMusicAudioPath8::GetObjectInPath	or

IDirectMusicSegmentState8::GetObjectInPath,	setting	the	dwStage
parameter	to	DMUS_PATH_PRIMARY_BUFFER.	The	following	example
function	retrieves	the	listener	from	an	audiopath:

HRESULT	GetListener(IDirectMusicAudioPath8*	pPath,	IDirectSound3DListener8**	ppListener)

{

		HRESULT	hr	=	E_INVALIDARG;

		if	(NULL	!=	pPath)

		{

				hr	=	pPath->GetObjectInPath(0,	DMUS_PATH_PRIMARY_BUFFER,	0,

																																GUID_NULL,	0,	IID_IDirectSound3DListener8,	

																																(LPVOID*)	ppListener);

		}

		return	hr;

}}

See	Also

Retrieving	Objects	from	an	Audiopath
Standard	Audiopaths.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Effects	in	DirectMusic
DirectX	provides	support	for	effects	processing	of	sounds	by	DirectX	Media
Objects	(DMOs).	A	standard	set	of	effects	is	available	to	every	DirectX
application.	Other	DMOs	can	be	registered	on	the	system.

All	the	standard	DMOs	can	process	8-bit	or	16-bit	PCM	data,	as	well	as	32-bit
floating-point	formats,	with	one	or	two	channels	at	any	sample	rate	supported	by
DirectSound.	Waves	reverberation	does	not	support	8-bit	samples.

Effects	are	attached	to	DirectSound	buffers	in	audiopaths.	To	add,	remove,	or
modify	effects	at	run	time,	an	application	must	obtain	an	interface	to	the	buffer
and	use	the	DirectSound	API.

If	you	are	playing	segments	authored	in	DirectMusic	Producer	with	audiopath
configurations,	any	effects	are	set	up	when	you	create	the	audiopath	from	the
configuration	object.	A	standard	audiopath	might	also	contain	effects.	However,
in	some	cases	you	may	prefer	to	implement	an	effect	on	a	custom	audiopath	at
run	time	or	add	an	effect	to	a	standard	audiopath.	For	example,	you	might	want
to	add	an	effect	to	a	standard	audiopath	so	that	you	can	apply	the	effect	to
standard	WAV	or	MIDI	files.

To	apply	an	effect	to	an	audiopath,	you	must	first	obtain	an
IDirectSoundBuffer8	interface	to	a	buffer	on	the	path.	Then	set	one	or	more
effects	on	that	buffer	by	using	IDirectSoundBuffer8::SetFX.

To	learn	how	to	obtain	a	buffer	interface,	see	Retrieving	Objects	from	an
Audiopath.	For	information	on	how	to	identify	standard	audiopath	buffers	in	the
call	to	GetObjectInPath,	see	the	audiopath	types	under	Standard	Audiopaths.

The	following	example	code	sets	a	standard	audiopath,	retrieves	a	buffer	from
the	path,	and	sets	an	echo	effect	on	the	buffer:

HRESULT	SetEchoEffect(IDirectMusicPerformance8	*pPerformance,

				IDirectMusicAudioPath*	p3DAudioPath,

				IDirectSoundBuffer8*	pDSBuffer)

{

		HRESULT							hr;

	

		//	Create	a	standard	audiopath	with	a	source	and	

		//	environment	reverb	buffers.	Don't	activate	the	path;

		//	SetFX	fails	if	the	buffer	is	running.	

	

		if(FAILED(hr	=	pPerformance->CreateStandardAudioPath(

						DMUS_APATH_DYNAMIC_3D,	64,	FALSE,	&p3DAudioPath)))

				return	hr;

			

		//	Get	the	buffer	in	the	audiopath.

	

		if(FAILED(hr	=	p3DAudioPath->GetObjectInPath(DMUS_PCHANNEL_ALL,

						DMUS_PATH_BUFFER,	0,	GUID_NULL,	0,	IID_IDirectSoundBuffer8,	

						(LPVOID*)	&pDSBuffer)))

				return	hr;

	

		//	Describe	the	effect.

	

		DSEFFECTDESC	dsEffect;

		dsEffect.dwSize	=	sizeof(DSEFFECTDESC);

		dsEffect.dwFlags	=	0;

		dsEffect.guidDSFXClass	=	GUID_DSFX_STANDARD_ECHO;

		dsEffect.dwReserved1	=	0;

		dsEffect.dwReserved2	=	0;

	

		DWORD	dwResults;

	

		//	Set	the	effect.

		if	(FAILED(hr	=	pDSBuffer->SetFX(1,	&dsEffect,	&dwResults)))

		{

				p3DAudioPath->Activate(TRUE);

				return	hr;

		}

		//	You	can	check	the	value	of	dwResults	here	to	ascertain	

		//	whether	the	effect	was	allocated,	and	how.

	

		//	Activate	the	path.

	

		p3DAudioPath->Activate(TRUE);

		return	hr;

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Buffer	Chains
A	sound	does	not	necessarily	go	through	only	a	single	secondary	sound	buffer.	It
is	possible	for	buffers	in	an	audiopath	to	send	data	to	other	secondary	buffers.
The	advantage	in	doing	so	is	that	sounds	from	multiple	buffers	can	be	directed	to
a	shared	buffer	where	common	3-D	parameters	or	special	effects	can	be	applied.
Shared	buffers	can	also	be	more	efficient.

Buffer	chains	are	set	up	automatically	when	an	audiopath	is	created	from	an
audiopath	configuration	embedded	in	a	DirectMusic	Producer	file.	For	more
information,	see	Using	Audiopaths.

Buffer	chains	cannot	be	created	by	using	the	DirectSound	API.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Compositional	Elements
This	section	is	a	guide	to	using	musical	components	in	a	DirectMusic	application
to	create	a	soundtrack	that	is,	to	some	extent,	composed	as	it	plays.	It	is
presumed	that	you	have	a	basic	understanding	of	elements	such	as	chordmaps
and	styles.	If	not,	you	should	first	read	Introduction	to	Dynamic	Musical
Soundtracks.

It	is	possible	to	incorporate	files	from	DirectMusic	Producer	into	applications
without	working	with	individual	compositional	elements.	Many	applications	use
only	fully	authored	segments.	However,	using	individual	components	gives
greater	control	over	the	performance	at	run	time.

The	following	topics	are	discussed	in	this	section:

Music	Files	for	Composition
Overview	of	Programming	for	Composition
Using	Styles
Using	Motifs
Using	Chordmaps
Using	Templates
Using	Transitions

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Music	Files	for	Composition
When	programming	for	DirectMusic	composition,	you	will	use	a	variety	of	files
created	in	DirectMusic	Producer	or	a	similar	application.	You	load	these
elements	into	the	application	as	COM	objects	and	obtain	interfaces	to	them.

The	following	table	summarizes	the	types	of	file	objects	you	will	encounter.	Any
of	these	objects	can	also	be	obtained	from	a	container	file	or	from	a	resource.

The	class	GUID	is	the	value	that	you	put	in	the	guidClass	member	of	the
DMUS_OBJECTDESC	structure	when	loading	the	object.

Element Class	GUID Interface File
extension

Band CLSID_DirectMusicBand IDirectMusicBand8 .bnd
Chordmap CLSID_DirectMusicChordMap IDirectMusicChordMap8 .cdm
DLS
collection CLSID_DirectMusicCollection IDirectMusicCollection8 .dls

Segment CLSID_DirectMusicSegment IDirectMusicSegment8 .sgt
Style CLSID_DirectMusicStyle IDirectMusicStyle8 .sty

Note			Bands	can	be	authored	as	part	of	a	style,	in	which	case	they	are
automatically	loaded	when	the	style	is	loaded.	Similarly,	styles	and	bands	can	be
authored	into	a	segment,	in	which	case	you	don't	need	separate	files	for	those
elements.

Files	can	also	contain	references	to	other	files.	If	a	style	contains	a	reference	to	a
band	file,	the	band	is	automatically	loaded	when	the	style	is,	provided	the	loader
can	find	the	band	file.

See	Also

Loading	Audio	Data

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Overview	of	Programming	for
Composition
When	you	implement	music	composed	at	run	time,	you	will	use	previously
authored	objects	as	building	blocks.	In	consultation	with	the	author	or	other
content	provider,	you	can	choose	to	get	the	musical	data	in	the	form	of	small
building	blocks	that	offer	you	the	greatest	possible	flexibility	and	variation	at	run
time,	or	you	can	use	larger	prefabricated	elements	that	define	the	form	of	the
music	more	fully.

Using	the	largest	building	blocks,	you	load	highly	structured	segments	based	on
styles,	MIDI	files,	or	waveforms	that	contain	everything	the	performance
requires	to	play	the	sound.	All	you	have	to	do	is	load	the	segment	and	query	for
the	IDirectMusicSegment8	interface.	Pass	this	interface	pointer	to	the
IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx	method.	The	style	playback
engine	selects	pattern	variations	from	the	style	and	plays	them	according	to	a
fixed	chord	progression—or,	in	the	case	of	a	MIDI-based	segment,	simply	plays
the	MIDI	sequence.	Band	changes	are	usually	contained	in	the	segment	as	well.

If	you	want	to	use	smaller	building	blocks,	you	obtain	the	following	elements:

Chordmaps,	which	are	used	to	build	chord	progressions.
Styles,	which	define	a	basic	melody	and	rhythm	with	variations,	motifs,	and
embellishments.
Template	segments,	which	are	structural	plans	that	control	various	aspects
of	playback,	including	the	length	of	the	segment,	whether	it	loops,	where
groove	level	changes	and	embellishment	patterns	are	to	be	placed,	and	what
types	of	chords	in	the	chordmap	are	to	serve	as	signposts.

You	can	construct	a	segment	by	combining	any	chordmap,	style,	and	template,
using	the	IDirectMusicComposer8::ComposeSegmentFromTemplate
method.

To	have	even	more	flexibility	in	music	composition	at	run	time,	you	can	create
segments	based	on	predefined	shapes	rather	than	templates,	using	the

IDirectMusicComposer8::ComposeSegmentFromShape	method.	The	shape
is	used	in	creating	the	command	and	signpost	tracks,	which	control	the	choice	of
embellishment	patterns,	the	chord	progression,	and	the	frequency	of	chord
changes.

When	playing	segments,	you	can	also	control	the	band	used	to	play	the	parts.
Bands	are	typically	included	in	styles	and	templates,	but	they	can	also	be
supplied	as	separate	files.	To	make	band	changes	dynamically,	create	a
secondary	segment	containing	only	the	band,	using	the
IDirectMusicBand8::CreateSegment	method,	and	play	this	segment	when	it	is
time	to	assign	instruments	and	instrument	settings	to	the	primary	segment.

DirectMusic	provides	many	options	for	creating	transitions	between	segments.
When	you	cue	one	segment	to	play	after	another,	or	to	replace	a	currently
playing	segment,	you	have	very	precise	control	over	the	timing,	and	can
synchronize	the	transition	with	the	rhythm.	In	addition,	you	can	have	the
DirectMusic	composer	object	create	a	transitional	measure.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Styles
The	DirectMusic	style	object	represents	a	collection	of	musical	patterns,	usually
including	embellishments	and	motifs,	with	a	time	signature,	tempo,	and	band.	It
defines	the	basic	rhythm	and	the	notes	to	be	played	in	each	instrument	part.	For	a
conceptual	overview,	see	Styles.

To	obtain	a	style	from	a	segment,	use	the	IDirectMusicSegment8::GetParam
method,	as	in	the	following	example	function,	where	the	dwStyleIndex	parameter
specifies	the	index	of	the	style	within	the	segment:

HRESULT	GetStyle(IDirectMusicSegment8*	pSegment,	DWORD	dwStyleIndex,	

																	IDirectMusicStyle8**	ppStyle)

{

		return	pSegment->GetParam(GUID_IDirectMusicStyle,	0xFFFFFFFF,

																												dwStyleIndex,	0,	NULL,	(LPVOID*)ppStyle);

}

A	style	by	itself	does	not	contain	enough	information	to	create	a	segment	of
music	at	run	time.	For	this	you	need	two	other	components:	a	chordmap,	which
is	a	scheme	of	possible	chord	progressions,	and	a	command	track	to	set	the
groove	level	and	embellishments	as	the	music	plays.	The	command	track	can
come	from	a	template	or	be	generated	at	run	time	from	a	shape.	The	chordmap
generally	comes	from	a	chordmap	file	or	resource.

To	create	a	segment	with	a	command	track	based	on	a	template,	call	the
IDirectMusicComposer8::ComposeSegmentFromTemplate	method.

To	create	a	segment	based	on	a	shape,	call	the
IDirectMusicComposer8::ComposeSegmentFromShape	method.	You	supply
pointers	to	a	style	and	a	chordmap.	You	also	supply	a	rate	of	harmonic	motion,
which	controls	the	frequency	of	chord	changes,	and	a	shape	constant,	which
determines	the	progression	of	groove	levels	and	embellishments.

See	Also

Using	Templates

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Motifs
A	motif	is	a	special	kind	of	pattern	in	a	style.	A	motif	is	intended	to	be	played
over	the	basic	style	pattern,	typically	in	response	to	an	interactive	event.	Unlike
other	patterns,	motifs	are	always	selected	and	played	explicitly	by	the
application.	Although	a	motif	can	be	as	complex	as	any	other	pattern,	even
containing	variations	and	multiple	instrument	parts,	usually	it	is	a	short,	simple
musical	figure	that	sounds	good	against	a	variety	of	background	patterns.	It
might	also	be	a	sound	effect	played	by	a	custom	DLS	instrument	or	instruments.

All	the	motifs	authored	into	a	style	become	available	to	you	as	soon	as	you	have
loaded	that	style.	To	get	a	particular	motif	ready	for	playback,	call	the
IDirectMusicStyle8::GetMotif	method,	passing	in	the	following	parameters:

The	name	of	the	motif.	You	might	know	this	from	the	documentation	for
the	style,	or	you	can	obtain	it	from	an	index	value	by	using	the
IDirectMusicStyle8::EnumMotif	method.
A	pointer	to	receive	the	IDirectMusicSegment8	interface	to	the	segment
object	to	be	created	by	the	method.

The	following	example	function	obtains	and	plays	the	motif	whose	name	is
passed	in	as	pwszMotifName:

HRESULT	PlayMotif(IDirectMusicPerformance8*	pPerf,	

			IDirectMusicStyle8*	pStyle,	

			WCHAR*	pwszMotifName)

{

		IDirectMusicSegment*	pSeg;

		HRESULT	hr;

	

		if	((pPerf	==	NULL)	||	(pStyle	==	NULL))

		{

					return	E_INVALIDARG;

		}

		//	Get	the	motif	segment	from	the	style.	Check	for	S_OK	

		//	specifically,	because	GetMotif()	returns	S_FALSE	if	it	

		//	does	not	find	the	motif.

		

		hr	=	pStyle->GetMotif(pwszMotifName,	&pSeg);

		if	(S_OK	==	hr)

		{

				hr	=	pPerf->PlaySegment(pSeg,DMUS_SEGF_BEAT	|	DMUS_SEGF_SECONDARY,

																												0,	NULL);

				pSeg->Release();

		}

		return	hr;

}

Note	that	pSeg	is	played	as	a	secondary	segment,	because	a	motif	is	normally
played	over	a	primary	segment.	You	cannot	play	a	motif	as	a	primary	segment,
because	it	does	not	have	a	chord	track	or	band	track.	If	you	do	want	to	play	a
motif	against	silence,	create	a	primary	segment	from	a	style	that	has	only	blank
patterns,	and	keep	that	segment	playing	while	you	play	the	motif.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Chordmaps
A	chordmap	object	represents	a	collection	of	chords	that	provides	the	foundation
of	the	harmonic	structure	and	the	mood	of	the	music.	A	chordmap	contains
several	pathways	with	many	interconnected	chords,	providing	many	possibilities
for	the	composition	engine	to	choose	from	in	determining	the	chord	progression
in	a	piece	of	music.	For	a	conceptual	overview,	see	Chordmaps.

For	authored	segments,	applications	don't	normally	need	to	concern	themselves
with	chordmaps.	The	chordmap	is	used	at	the	authoring	stage	to	create	a	fixed
chord	progression.	However,	chordmaps	can	be	used	to	compose	segments	at	run
time	and	to	alter	the	chord	progression	of	existing	segments.

If	a	chordmap	reference	has	been	authored	into	a	style,	you	can	retrieve	a	pointer
to	its	IDirectMusicChordMap8	interface	by	passing	its	name	(assigned	by	the
author)	to	the	IDirectMusicStyle8::GetChordMap	method.	You	can	also	use
the	IDirectMusicStyle8::EnumChordMap	method	to	search	for	a	particular
chordmap,	or	the	IDirectMusicStyle8::GetDefaultChordMap	method	to	obtain
a	pointer	to	the	default	chordmap	for	the	style.

Note			DirectMusic	Producer	does	not	support	authoring	chordmap	references
into	style	files.

You	set	the	chordmap	for	a	composition	when	you	create	a	segment	by	using
either	IDirectMusicComposer8::ComposeSegmentFromTemplate	or
IDirectMusicComposer8::ComposeSegmentFromShape.

After	a	segment	has	been	created,	you	can	change	its	chordmap	by	calling	the
IDirectMusicComposer8::ChangeChordMap	method.	This	has	the	effect	of
changing	the	mood	of	the	music	without	altering	its	basic	rhythm	and	melody.

Every	chordmap	has	an	underlying	scale,	consisting	of	24	tones.	You	can
determine	the	tones	of	the	scale	by	using	the
IDirectMusicChordMap8::GetScale	method.	The	lower	24	bits	of	the	variable
pointed	to	by	the	pdwScale	parameter	of	this	method	are	set	or	cleared
depending	on	whether	the	corresponding	tone	is	part	of	the	scale.	The	upper	8
bits	give	the	root	of	the	scale	as	an	integer	in	the	range	from	0	through	23	(low	C

to	middle	B).

See	Also

Using	Styles

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Templates
A	template	is	a	segment	that	can	be	used	in	composing	a	playable	segment	of
music	at	run	time.	The	template	sets	the	length	of	the	segment	and	any	loop
points.	It	can	provide	the	command	track,	which	controls	changes	in	the
groove	level	and	the	choice	of	embellishment	patterns.	It	also	prescribes	how	the
chordmap	is	used	in	composing	the	segment,	by	specifying	from	which	signpost
group	each	new	chord	must	come.	For	a	conceptual	overview,	see	Templates.

There	are	two	ways	to	obtain	a	template:

Load	it	from	a	segment	file	or	resource,	and	request	the
IDirectMusicSegment8	interface.
Create	it	from	a	shape,	using	the
IDirectMusicComposer8::ComposeTemplateFromShape	method.	You
choose	the	length,	the	overall	shape,	whether	intro	and	end	embellishment
patterns	are	to	be	played,	and	how	long	the	ending	is	to	be.	You	get	back	a
pointer	to	the	IDirectMusicSegment	interface	from	which	you	can	obtain
IDirectMusicSegment8.

After	you	have	obtained	a	template	segment	object,	you	can	pass	it	to	the
IDirectMusicComposer8::ComposeSegmentFromTemplate	method,	along
with	pointers	to	a	style	and	a	chordmap.	You	also	supply	a	rate	of	harmonic
motion,	which	sets	the	frequency	of	chord	changes.	The
ComposeSegmentFromTemplate	method	creates	a	segment	and	returns	a
pointer	to	its	IDirectMusicSegment	interface.

See	Also

Loading	Audio	Data

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Transitions
To	avoid	a	sudden	and	perhaps	discordant	break	when	stopping	one	segment	and
beginning	another,	or	when	bringing	the	music	to	a	close,	you	can	have	the
composer	object	create	an	intermediate	or	closing	segment	that	provides	an
appropriate	transition.

You	have	your	choice	of	three	techniques	for	composing	transitional	segments:

89The	IDirectMusicPerformance8::PlaySegmentEx	method	allows	you
to	specify	a	segment	in	the	pTransition	parameter.	This	segment	is	used	as	a
template	for	a	newly	composed	transition.	The	transition	is	played	at
i64StartTime,	and	then	the	segment	specified	by	pSource	is	played.
The	IDirectMusicComposer8::AutoTransition	method,	given	a	pointer	to
the	performance,	creates	a	transition	from	the	currently	playing	segment	to
a	second	segment	of	your	choice,	and	then	automatically	cues	the
transitional	segment	and	the	second	segment	for	playback,	returning	an
IDirectMusicSegmentState	interface	for	both.	The	transition	begins
playing	immediately	or	on	the	next	boundary,	as	specified	in	the	dwFlags
parameter.	Optionally,	the	second	segment	can	be	NULL	so	that	the
transition	is	to	silence.
The	IDirectMusicComposer8::ComposeTransition	method	composes	a
transition	from	any	point	in	one	segment	to	the	beginning	of	a	second
segment,	or	to	silence,	and	returns	an	IDirectMusicSegment	interface	so
that	the	application	can	play	the	transition.

The	AutoTransition	and	ComposeTransition	methods	both	take	a	chordmap,	a
command,	and	a	set	of	flags	as	parameters:

The	chordmap	is	used	to	create	a	chord	track	that	defines	the	chord
progression	in	the	segment.
The	command	is	one	of	the	DMUS_COMMANDT_TYPES	enumeration.
It	determines	which	type	of	pattern—either	an	ordinary	groove	pattern	or
one	of	the	embellishments—is	called	for	in	the	command	track	of	the
transitional	segment.	When	the	segment	plays,	an	appropriate	pattern	is
selected	from	the	style.
The	flags	are	from	the	DMUS_COMPOSEF_FLAGS	enumeration	and

further	define	the	transition,	principally	its	timing.	The
DMUS_COMPOSEF_MODULATE	flag	can	be	used	to	cause	the	transition
to	move	smoothly	from	one	tonality	to	another;	it	cannot	be	used	when
there	is	no	second	segment,	because	there	can	be	no	modulation	to	silence.

Transitions	created	by	AutoTransition	and	ComposeTransition	are	normally	a
single	measure	in	length.	However,	they	can	be	longer	if	the
DMUS_COMPOSEF_LONG	flag	is	included	and	the	embellishment	in	the	style
is	more	than	one	measure	long.	They	also	contain	at	least	two	measures	if	they
are	of	type	DMUS_COMMANDT_ENDANDINTRO.

DirectMusic	also	provides	many	options	for	controlling	the	timing	of	transitions
from	one	segment	to	another.	For	more	information,	see	the	following	topics:

Segment	Timing
DMUS_SEGF_FLAGS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Track	Composition
Most	tracks	in	a	segment	are	fixed	and	generate	the	same	data	each	time	the
segment	is	played.	However,	tracks	can	generate	their	data	dynamically	each
time	they	start	playing	or	each	time	they	loop,	provided	they	implement	the
IDirectMusicTrack8::Compose	method	and	are	configured	for	composition.

One	standard	track,	the	signpost	track,	supports	composition.	The	signpost	track
composes	a	new	chord	track	from	a	chordmap.

Normally	the	track	configuration	is	set	by	the	author,	but	the	application	can	turn
track	composition	behaviors	on	and	off	by	passing	one	or	more	of	the	following
flags	to	IDirectMusicSegment8::SetTrackConfig	or
IDirectMusicSegmentState8::SetTrackConfig.

Flag Effect

DMUS_TRACKCONFIG_COMPOSING
The	track	is	composed	by	the
IDirectMusicSegment8::Compose
method.

DMUS_TRACKCONFIG_LOOP_COMPOSE
The	track	is	automatically
composed	each	time	the	segment
loops.

DMUS_TRACKCONFIG_PLAY_COMPOSE
The	track	is	automatically
composed	each	time	the	segment
starts.

Automatic	composition	can	take	place	only	when	the	segment	contains	a	track	in
which	to	put	the	composed	content.	When	the	signpost	track	is	composed,	it
requires	a	chord	track	for	the	new	chords.	You	can	ensure	that	the	necessary
tracks	exist	by	calling	IDirectMusicSegment8::Compose	before	playing	the
segment.

If	you	choose	to	do	all	composition	manually,	the	only	configuration	flag	to	set
is	DMUS_TRACKCONFIG_COMPOSING.	Provided	neither	of	the	other	two
flags	is	set,	the	tracks	will	be	composed	only	when	you	call	Compose.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Audio	Scripts
Scripts	are	collections	of	variables	and	routines	authored	in	DirectMusic
Producer.	Although	they	consist	mainly	of	text,	scripts	also	contain	a	few	binary
parameters.	For	a	conceptual	overview,	see	Audio	Scripts.

Load	a	script	by	using	the	IDirectMusicLoader8::GetObject	method.	Obtain
the	IDirectMusicScript8	interface,	then	call	IDirectMusicScript8::Init	to
associate	the	script	with	a	performance.

The	following	example	function	loads	and	initializes	a	script.

HRESULT	LoadScript(IDirectMusicPerformance8	*	pPerf,	

																																IDirectMusicLoader8*	pLoader,	

																																WCHAR*	wstrFileName,

																																IDirectMusicScript8**	ppScript)

{

		DMUS_SCRIPT_ERRORINFO	errInfo;

		HRESULT	hr;

	

		if	((NULL	==	pPerf)	||	(NULL	==	pLoader))

		{

				return	E_INVALIDARG;

		}

		if	(SUCCEEDED(hr	=	pLoader->LoadObjectFromFile(

				CLSID_DirectMusicScript,	IID_IDirectMusicScript8,

				wstrFileName,	(LPVOID*)	ppScript)))

		{

				if	(FAILED(hr	=	(*ppScript)->Init(pPerf,	&errInfo)))

				{

						(*ppScript)->Release();

				}

		}

		return	hr;

}

Apart	from	Init,	the	methods	of	IDirectMusicScript8	have	three	main	purposes:

Set	and	retrieve	the	value	of	variables	declared	in	the	script.	Because	script
routines	do	not	accept	parameters,	variables	are	the	only	way	for	the	script
and	the	application	to	exchange	information.
Call	routines.	A	routine	must	finish	executing	before	the	application	thread

can	continue.
Enumerate	routines	and	variables.	These	methods	are	of	interest	chiefly	to
script-editing	applications.

All	the	methods	of	IDirectMusicScript8,	except	the	enumeration	methods,
retrieve	error	information	in	a	DMUS_SCRIPT_ERRORINFO	structure.	An
error	can	occur	if	a	variable	is	not	found	or	code	within	a	routine	fails	to	execute.

Scripts	can	also	be	used	without	being	directly	loaded	or	called	by	the
application.	A	segment	authored	in	DirectMusic	Producer	can	contain	a	script
track	that	triggers	calls	to	routines	in	one	or	more	scripts.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Capturing	MIDI
To	capture	MIDI	messages	from	a	device	such	as	a	keyboard,	create	a	port	for
the	capture	device	and	use	its	IDirectMusicPort8::SetReadNotificationHandle
method	to	cause	an	event	to	be	signaled	whenever	messages	are	available	to	be
read.	In	response	to	the	event,	call	the	IDirectMusicPort8::Read	method
repeatedly	to	place	pending	events	into	a	buffer,	until	S_FALSE	is	returned.
Each	time	Read	is	called,	as	many	events	are	put	into	the	buffer	as	are	available,
or	as	fit	into	the	buffer.	If	at	least	one	event	was	put	into	the	buffer,	S_OK	is
returned.

To	retrieve	events	from	the	buffer,	call	the
IDirectMusicBuffer8::GetNextEvent	method.	Each	call	retrieves	a	single
event,	until	no	more	are	available,	at	which	point	S_FALSE	is	returned.

The	following	code	fragment	illustrates	this	process.	Assume	that	hEvent	was
created	with	CreateEvent	and	given	to	the	capture	port	pPort	by	a	call	to
SetReadNotificationHandle.	Assume	also	that	pBuffer	was	initialized	by
IDirectMusic8::CreateMusicBuffer.

REFERENCE_TIME	rt;

DWORD				dwGroup;

DWORD				cb;

BYTE				*pb;

	

DWORD	dw	=	WaitForMultipleObjects(1,	hEvent,	FALSE,	INFINITE);

for	(;;)

{

		hr	=	pPort->Read(pBuffer);

		if	(hr	==	S_FALSE)

		{

				break;		//	No	more	messages	to	read	into	the	buffer.

		}

		pBuffer->ResetReadPtr();

		for	(;;)

		{

				hr	=	pBuffer->GetNextEvent(&rt,	&dwGroup,	&cb,	&pb);

				if	(hr	==	S_OK)

				{

						//	pb	points	to	the	data	structure	for	the	message,	and

						//	you	can	do	anything	that	you	want	with	it.

						//	pb[0]	is	the	status	byte.

						//	pb[1]	and	pb[2]	are	the	data	bytes.

				}

				else	if	(hr	==	S_FALSE)

				{

						break;		//	No	more	messages	in	the	buffer.

				}

		}		//	Done	with	the	buffer.

}		//	Done	reading	pending	events.

If	you	don't	want	to	intercept	messages,	but	simply	want	to	send	them	from	one
port	to	another,	you	can	use	the	IDirectMusicThru8	interface.	See
IDirectMusicThru8::ThruChannel	for	details.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Advanced	Topics	in	DirectMusic
This	section	contains	information	needed	for	specialized	applications	that	need
functionality	beyond	that	covered	under	Using	DirectMusic.

Information	is	presented	in	the	following	topics:

DirectMusic	Tracks
Using	DirectMusic	Messages
Using	DirectMusic	Ports
Custom	Loading
Using	Instrument	Collections
Low-Level	DLS
DirectMusic	Tools
Property	Sets	for	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Tracks
Tracks	are	the	components	of	a	segment	that	contain	its	sequenced	data,
including	information	about	notes,	underlying	chords,	tempo,	patch	and	band
changes,	and	everything	else	that	the	performance	needs	to	know	to	play	the
sounds.

Each	track	is	represented	by	an	IDirectMusicTrack8	interface.	The	methods	of
this	interface	are	called	by	the	performance,	and	most	applications	don't	need	to
use	them	directly.	This	interface	is	chiefly	of	interest	for	plug-in	components	that
implement	their	own	track	types.

When	an	application	calls	IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx,	DirectMusic	calls	the
IDirectMusicTrack8::Play	or	IDirectMusicTrack8::PlayEx	method	on	the
segment's	tracks.	Most	tracks	respond	by	immediately	generating	time-stamped
messages	containing	data	that	is	valid	for	the	part	of	the	segment	that	is	being
played.	These	messages	are	placed	in	a	queue.	See	Message	Creation	and
Delivery	for	more	information	about	what	happens	after	that.

A	few	tracks	do	not	actively	generate	messages	other	than	notifications	in
response	to	IDirectMusicTrack8::Play	or	IDirectMusicTrack8::PlayEx,	but
instead	do	most	of	their	work	by	responding	to	requests	for	information	that
come	from	the	performance	or	other	tracks.	The	most	important	of	these	are	the
chord,	mute,	and	command	tracks.	The	tempo	track	sends	messages	but	also
responds	to	parameter	requests.

More	information	is	contained	in	the	following	topics:

Standard	Track	Types
Track	Configuration

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Standard	Track	Types
The	following	list	describes	the	standard	track	types	implemented	by	Microsoft
DirectMusic.	The	class	identifiers,	such	as	CLSID_DirectMusicBandTrack,	are
used	to	identify	track	types	in	calls	to	various	methods.

Track
type Class	GUID Purpose

Band CLSID_DirectMusicBandTrack

Downloads	DLS	data	to	the	performance.	Sends
messages	of	type	DMUS_PATCH_PMSG
DMUS_TRANSPOSE_PMSG
DMUS_CHANNEL_PRIORITY_PMSG
DMUS_MIDI_PMSG	(for	volume	and	pan).
Used	in	segments	based	on	MIDI	files	and	

Chord CLSID_DirectMusicChordTrack

Used	to	convert	music	values
values.	Sends	messages	of	type
DMUS_NOTIFICATION_PMSG
GUID_NOTIFICATION_CHORD	notifications).

ChordmapCLSID_DirectMusicChordMapTrack Used	in	template	segments	to	compose	chord
tracks.

Command CLSID_DirectMusicCommandTrack

Used	in	template	segments	to	compose	chord
tracks,	and	in	style	segments	to	determine	which
patterns	are	played.	Sends	messages	of	type
DMUS_NOTIFICATION_PMSG
GUID_NOTIFICATION_COMMAND
notifications.

Lyrics CLSID_DirectMusicLyricsTrack
Used	to	synchronize	words	with	music.
Generates	messages	of	type
DMUS_LYRIC_PMSG.

Marker CLSID_DirectMusicMarkerTrack

Used	for	flow	control.	The	marker	track	can	hold
valid	start	times	for	the	segment,	and	play	times
at	which	new	segments	can	be	cued.	For	more
information,	see	Segment	Timing
Used	to	play	motifs	to	accompany	other
segments.	Sends	messages	of	type

Motif CLSID_DirectMusicMotifTrack DMUS_CURVE_PMSG,
DMUS_NOTE_PMSG,	and
DMUS_NOTIFICATION_PMSG
GUID_NOTIFICATION_MEASUREANDBEAT
notifications).

Mute CLSID_DirectMusicMuteTrack
Enables	performance	channels
muted.	Used	with	either	style-based	or	MIDI-
based	segments.

Parameter
control CLSID_DirectMusicParamControlTrack

Controls	the	settings	on	tools,	effects,	and	any
other	objects	that	support	the	
interface.

Pattern CLSID_DirectMusicPatternTrack

Contains	a	single	musical	pattern
track	is	similar	to	a	sequence	track,	but	contains
music	values	rather	than	fixed	notes.	This	track
makes	it	possible	to	audition	a	pattern	against
different	chords,	and	is	used	mostly	by	music-
authoring	applications.	It	might	also	be	used	to
play	an	accompaniment.	It	is	represented	by	its
own	interface,	IDirectMusicPatternTrack8

Script CLSID_DirectMusicScriptTrack Calls	routines	in	an	audio	script.

Segment
trigger CLSID_DirectMusicSegmentTriggerTrack

Triggers	the	playback	of	segments.	This	track
enables	the	author	of	a	file	to	cue	a	segment	from
within	a	segment,	rather	than	leaving	this	up	to
the	application	developer.

Sequence CLSID_DirectMusicSeqTrack

Sends	sequence	messages	of	type
DMUS_NOTE_PMSG	and
DMUS_MIDI_PMSG.	Used	in	segments	based
on	MIDI	files.	Also	sends	messages	of	type
DMUS_CURVE_PMSG	for	segments	saved	in
the	.sgt	format.

Signpost CLSID_DirectMusicSignPostTrack Used	in	template	segments	to	compose	chord
tracks.

Style CLSID_DirectMusicStyleTrack

Fundamental	track	for	segments	based	on	
Sends	messages	of	type
DMUS_TIMESIG_PMSG
DMUS_CURVE_PMSG,
DMUS_NOTE_PMSG,	and
DMUS_NOTIFICATION_PMSG

GUID_NOTIFICATION_MEASUREANDBEAT
notifications).

SysEx CLSID_DirectMusicSysExTrack
Sends	system	exclusive	messages	of	type
DMUS_SYSEX_PMSG.	Used	in	segments
based	on	MIDI	files.

Tempo CLSID_DirectMusicTempoTrack Controls	the	tempo	of	the	performance.

Time
Signature CLSID_DirectMusicTimeSigTrack

Sends	messages	of	type
DMUS_TIMESIG_PMSG
GUID_NOTIFICATION_MEASUREANDBEAT
notifications.	The	time	signature	track	exists	in
imported	MIDI	files	and	authored	segments
specifically	created	with	one.	In	most	cases,	the
style	track	implements	the	time	signature	track's
functionality,	so	it	is	not	necessary	for	a	segment
that	contains	a	style	track	to	contain	a	time
signature	track	as	well.

The	Time	Signature	track	supports	the
IDirectMusicTrack	interface,	but	not
IDirectMusicTrack8.

Wave CLSID_DirectMusicWaveTrack Sends	messages	of	type	DMUS_WAVE_PMSG
to	play	time-stamped	wave	sounds.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Track	Configuration
Using	the	IDirectMusicSegment8::SetTrackConfig	and
IDirectMusicSegmentState8::SetTrackConfig	methods,	an	application	can
modify	the	behavior	of	any	track	in	a	segment.	Configuration	options	include	the
following:

Enable	or	disable	playback.
Enable	or	disable	parameter	calls	on	a	track	in	a	control	segment.
Enable	or	disable	notifications.
Override	notifications	in	a	primary	segment	with	notifications	from	a
secondary	control	segment.
Enable	or	disable	track	composition.
Control	the	start	point	of	track	data	used	in	composing	transitions.

For	a	list	of	the	track	configuration	flags	and	a	table	of	the	flags	valid	on
standard	tracks,	see	IDirectMusicSegmentState8::SetTrackConfig.

Two	of	the	configuration	flags,	DMUS_TRACKCONFIG_CONTROL_PLAY
and	DMUS_TRACKCONFIG_CONTROL_NOTIFICATION,	extend	the
powers	of	secondary	control	segments.	Normally,	a	secondary	control	segment
manages	only	parameters	that	are	obtained	by	the	performance	through	calls	to
IDirectMusicTrack8::GetParam.	Like	any	segment,	the	control	segment	can
also	make	changes	to	the	performance	by	sending	messages.	For	example,	it
might	change	the	volume	of	the	performance.	Such	changes	might	appear	to	be
overriding	parameters	in	the	primary	segment,	but	they	differ	from	true	control
changes	in	two	ways:

They	are	valid	only	until	a	similar	change	is	made	by	another	segment.
Control	segment	parameters	cannot	be	overridden	by	other	segments.
As	long	as	they	are	not	overridden,	they	remain	valid	even	after	the	sending
segment	has	finished	playing.	Control	segment	parameters	are	valid	only
until	another	segment	becomes	the	control	segment.

When	the	DMUS_TRACKCONFIG_CONTROL_PLAY	or
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION	flag	is	set	on	a	track,
the	equivalent	track	on	the	primary	segment	is	disabled.	It	is	enabled	again	when

the	controlling	segment	stops.

The	SetTrackConfig	method	is	available	on	the	IDirectMusicSegmentState8
interface	as	well	as	on	IDirectMusicSegment8.	The	parameters	are	identical,
but	the	effect	differs	as	follows:

If	you	change	a	flag	on	a	segment,	subsequent	instances	of	playing	segment
states	inherit	the	changed	flags.	However,	segment	states	that	are	already
playing	do	not	change	their	behavior.
If	you	change	a	flag	on	a	segment	state,	the	behavior	changes	only	for	that
segment	state.	To	ensure	that	the	behavior	changes	immediately	rather	than
after	prepare	time,	you	can	call	IDirectMusicPerformance8::Invalidate.

The	following	example	code	disables	a	chord	progression	track	in	the	segment
addressed	by	pSegment.	Chord	progressions	are	broadcast	as	control	segment
parameters,	so	the	track	is	disabled	by	turning	off	the
DMUS_TRACKCONFIG_CONTROL_ENABLED	flag.

HRESULT	hr	=	pSegment->SetTrackConfig(CLSID_DirectMusicChordTrack,

				-1,	DMUS_SEG_ALLTRACKS,	0,	DMUS_TRACKCONFIG_CONTROL_ENABLED);

The	next	example	does	the	opposite,	enabling	all	chord	tracks	to	play:

hr	=	pSegment->SetTrackConfig(CLSID_DirectMusicChordTrack,	

				-1,	DMUS_SEG_ALLTRACKS,	DMUS_TRACKCONFIG_CONTROL_ENABLED,	0);

See	Also

Track	Composition
Control	Segments
Self-Controlling	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	DirectMusic	Messages
Data	passes	through	the	DirectMusic	performance	and	to	the	synthesizer	in	the
form	of	messages.	For	the	most	part,	messages	are	created	and	processed	behind
the	scenes,	and	your	application	might	never	have	to	work	directly	with	them.
However,	a	basic	knowledge	of	messages	can	help	you	understand	how
DirectMusic	works,	and	a	more	thorough	understanding	will	enable	you	to	use
messages	for	greater	control	over	the	performance.

DirectMusic	uses	two	different	kinds	of	messages:

Performance	messages.	All	sequenced	data	passes	through	the	performance
engine	in	this	form.	These	messages	contain	detailed	information	about
timing	and	routing	of	the	data.
Standard	MIDI	messages.	These	can	be	read	from	a	MIDI	file	or	device	and
either	passed	directly	(thrued)	to	another	device	or	converted	to
performance	message	format	when	played	by	the	performance.

Applications	don't	deal	directly	with	MIDI	messages.	When	a	segment	is	played,
all	its	data	is	in	the	form	of	performance	messages	and	stays	that	way	until	it
reaches	the	final	output	tool,	which	converts	it	to	MIDI	message	format	before
sequencing	it	to	the	synthesizer.	However,	some	performance	messages	contain
information	similar	to	that	in	standard	MIDI	messages.	To	help	you	understand
such	messages,	this	section	describes	some	aspects	of	the	MIDI	message	format.

Note			The	DMUS_MIDI_PMSG	structure	contains	data	equivalent	to	that	in
any	standard	MIDI	message.	However,	it	is	used	in	performance	messages.

Most	performance	messages	are	sent	by	a	segment's	tracks	as	the	segment	is
playing.	Applications	can	also	send	messages	to	do	things	like	setting	a	MIDI
controller,	playing	a	single	note,	or	changing	the	tempo.

Once	a	message	has	been	sent,	the	application	cannot	retrieve	or	alter	it	except
by	implementing	a	tool.	For	example,	a	segment	authored	in	DirectMusic
Producer	might	contain	a	lyrics	track	that	generates	DMUS_LYRIC_PMSG
messages.	The	only	way	an	application	can	display	the	lyrics	is	by	implementing
a	tool	designed	for	that	purpose.	For	more	information,	see	DirectMusic	Tools.

Notifications	are	an	exception	to	the	rule	that	messages	can	be	intercepted	only
by	tools.	The	IDirectMusicPerformance8::GetNotificationPMsg	method
enables	the	application	to	retrieve	DMUS_NOTIFICATION_PMSG	messages.

The	following	topics	discuss	messages	and	how	they	are	routed:

Channels
Message	Creation	and	Delivery
Application-Created	Messages
Performance	Message	Types
Curves
MIDI	Messages

See	Also

Overview	of	Audio	Data	Flow
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Channels
A	channel	is	a	destination	for	messages	that	are	specific	to	one	or	more	parts.	A
part	might	contain	notes	for	a	single	instrument,	or	it	might	contain	one	or	more
waveforms.

Under	the	MIDI	1.0	standard,	there	are	16	MIDI	channels,	meaning	that	no	more
than	16	instruments	can	be	playing	at	one	time.	To	make	more	channels
available	to	applications,	DirectMusic	creates	channel	groups.	Up	to	65,536
channel	groups	can	exist	at	one	time,	each	containing	16	channels,	for	a	total	of
over	one	million	channels.	A	port	can	be	assigned	any	number	of	channel
groups,	up	to	its	capability	to	support	them.	MIDI	hardware	ports	have	only	a
single	channel	group.

System-exclusive	messages	address	all	16	channels	within	a	channel	group,	but
not	other	channel	groups.

Every	part	in	a	DirectMusic	performance	plays	on	a	performance	channel,
sometimes	called	a	PChannel.	The	performance	channel	represents	a	particular
MIDI	channel	in	a	particular	group	on	a	particular	port.	When	a	band	is	selected
by	a	performance,	each	instrument	in	that	band	is	mapped	to	a	performance
channel,	so	the	part	on	that	channel	will	play	on	that	instrument.

When	audiopaths	are	being	used,	identical	performance	channels	on	different
audiopaths	are	mapped	to	different	output	channels.

Channel	Priority

The	number	of	notes	that	can	be	played	simultaneously	is	limited	by	the	number
of	voices	available	on	the	port.	A	voice	is	a	set	of	resources	dedicated	to	the
synthesis	of	a	single	note	or	waveform	being	played	on	a	channel.	In	the	event
that	more	notes	are	playing	than	there	are	available	voices,	one	or	more	notes
must	be	suppressed	by	the	synthesizer.	The	choice	is	determined	by	the	priority
of	the	voice	currently	playing	the	note,	which	is	based	on	the	priority	of	the
channel.	By	default,	channels	are	ranked	according	to	their	index	value,	except
that	channel	10,	the	MIDI	percussion	channel,	is	ranked	highest.

Applications	and	synthesizers	can	set	their	own	channel	priorities.

See	Also

DMUS_CHANNEL_PRIORITY_PMSG
IDirectMusicPort8::GetChannelPriority

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Message	Creation	and	Delivery
When	a	segment	is	played,	most	of	its	tracks	generate	messages	containing	data
about	events	that	are	scheduled	to	take	place	during	playback.	For	more
information,	see	DirectMusic	Tracks.

A	few	tracks	send	more	than	one	kind	of	message.	For	example,	a	style	track
sends	note	messages	and	time	signature	messages.	In	such	cases,	an	application
can	disable	certain	kinds	of	messages	in	the	track.	For	more	information,	see
Disabling	and	Enabling	Track	Parameters.

The	performance	engine	determines	when	each	message	is	to	be	processed	in
clock	time.	In	the	case	of	channel	messages,	the	performance	also	determines
which	performance	channel	gets	the	message.	This	information,	along	with	other
data—including	the	message	type,	its	source	track,	and	pointers	to	the	first
toolgraph	and	tool	that	are	to	receive	it—is	stored	in	the	message	structure.

Certain	messages,	such	as	tempo	and	time	signature	changes,	are	immediately
processed	and	freed	by	the	performance.	Other	messages,	such	as	notes	and
patch	changes,	are	placed	in	a	queue	and	processed	in	order	of	time	stamp.

Note			There	is	no	guarantee	that	messages	with	the	same	time	stamp	will	be
processed	in	any	particular	order.

Time	signature	messages	are	purely	informational.	The	time	signature	is	built
into	the	segment	and	cannot	be	changed.

Messages	are	first	sent	to	any	tools	in	the	segment	toolgraph,	then	to	the
audiopath	toolgraph,	and	finally	to	the	performance	toolgraph.	Audiopath
toolgraphs	are	optional	components	of	audiopath	configurations	in	DirectMusic
Producer	files.	The	application	doesn't	need	to	do	anything	to	implement	an
audiopath	toolgraph	after	creating	the	audiopath.

The	first	tool	in	a	toolgraph	processes	the	message	and	then,	if	it	wants	to	pass	it
on,	has	the	toolgraph	stamp	the	message	with	a	pointer	to	the	next	tool.	The
toolgraph	also	flags	the	message	with	a	delivery	type	that	determines	when	the
message	is	delivered	to	the	next	tool.	This	flag	is	based	on	what	delivery	type	the

tool	is	expecting,	as	follows:

If	the	message	is	flagged	as	DMUS_PMSGF_TOOL_IMMEDIATE,	it	is
delivered	to	the	next	tool	immediately.
If	it	is	flagged	as	DMUS_PMSGF_TOOL_QUEUE,	the	message	is
delivered	just	before	the	time	at	which	it	is	supposed	to	play,	taking	latency
into	account.	(See	Latency	and	Bumper	Time.)
If	it	is	flagged	as	DMUS_PMSGF_TOOL_ATTIME,	it	is	delivered	at
exactly	the	time	at	which	it	is	to	be	processed.	Notification	messages	are
given	this	flag,	because	there	is	little	or	no	latency	involved	in	processing	a
notification.

The	current	tool	can	change	the	delivery	type	after	the	toolgraph	has	finished
stamping	and	flagging	the	message.

Finally,	the	message	arrives	at	the	DirectMusic	output	tool,	which	converts	all
the	data	it	receives	into	standard	MIDI	messages	and	delivers	these	to	the
synthesizer	through	the	port	buffer.

See	Also

Overview	of	Audio	Data	Flow
DirectMusic	Tools

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Application-Created	Messages
Most	messages	are	generated	by	tracks,	but	applications	can	place	messages	in
the	queue	directly.	You	might	do	this,	for	example,	to	change	the	tempo	or	to
play	a	sound	effect	as	a	note	on	a	DLS	instrument.

When	a	performance	has	multiple	audiopaths,	DirectMusic	may	not	be	able	to
route	application-created	messages	correctly,	because	a	new	message	contains	no
information	about	what	audiopath	it	belongs	to.	Even	a	channel-specific	message
might	belong	to	a	performance	channel	that	is	mapped	to	different	audiopaths	in
different	segments.

To	ensure	that	a	message	is	sent	to	a	particular	audiopath,	first	obtain	the
toolgraph	for	a	segment	or	audiopath	by	calling
IDirectMusicSegmentState8::GetObjectInPath	or
IDirectMusicAudioPath8::GetObjectInPath,	retrieving	the
IDirectMusicGraph8	interface	from	the	DMUS_PATH_AUDIOPATH_GRAPH
or	DMUS_PATH_SEGMENT_GRAPH	stage	in	the	audiopath.	Then	pass	the
message	to	IDirectMusicGraph8::StampPMsg.

See	Also

IDirectMusicPerformance8::SendPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Performance	Message	Types
Messages	are	stored	in	various	structures	derived	from	DMUS_PMSG.	Because
the	C	programming	language	does	not	support	inheritance,	the	members	of
DMUS_PMSG	are	included	in	the	declaration	for	each	message	type	as	the
DMUS_PMSG_PART	macro.	These	members	contain	data	common	to	all
messages,	including	the	type	of	the	message,	time	stamps,	the
performance	channel	to	which	the	message	is	directed,	and	what	toolgraph	and
tool	are	next	in	line	to	process	the	message.	The	other	members	contain	data
unique	to	the	message	type.

The	following	standard	message	structures	are	defined.

Structure Content

DMUS_PMSG Simple	message	with	no	additional
parameters.

DMUS_CHANNEL_PRIORITY_PMSGChannel	priority	change.	See
Channels.

DMUS_CURVE_PMSG Curve.
DMUS_LYRIC_PMSG Text.

DMUS_MIDI_PMSG
Any	MIDI	message	that	does	not
have	a	unique	message	type—for
example,	a	control	change.

DMUS_NOTE_PMSG

Music	note.	MIDI	note-on	and	note-
off	messages	are	combined	in	this
structure,	which	specifies	the
duration	of	the	note.

DMUS_NOTIFICATION_PMSG Notification.	See	Notification	and
Event	Handling.

DMUS_PATCH_PMSG MIDI	patch	change.
DMUS_SYSEX_PMSG MIDI	system	exclusive	message.
DMUS_TEMPO_PMSG Tempo	change.
DMUS_TIMESIG_PMSG Time	signature	change.
DMUS_TRANSPOSE_PMSG Transposition.
DMUS_WAVE_PMSG Waveform	playback.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Curves
A	curve	is	a	series	of	MIDI	controller	changes	bringing	about	a	smooth
transition	from	one	value	to	another—for	example,	volume	fade-out	or	fade-in.

You	can	execute	a	curve	by	sending	a	single	performance	message	of	type
DMUS_CURVE_PMSG.	This	structure	enables	you	to	set	the	start	and	end
values,	the	duration	of	the	curve,	and	the	shape	of	the	curve.	Optionally,	you	can
also	set	a	reset	value,	which	is	the	value	to	which	the	controller	will	return	in
case	of	an	invalidation.

The	wMeasure,	nOffset,	bBeat,	bGrid,	and	mtOriginalStart	members	of	the
message	structure	are	for	information	only,	and	do	not	affect	the	timing	of	the
message.	They	are	set	in	messages	sent	by	DirectMusic	Producer	segments,	and
can	be	used	by	tools.	Applications	can	normally	set	these	members	to	0.

The	wMergeIndex	member	is	used	to	determine	whether	changes	are
cumulative	or	overriding.	Two	curve	messages	with	different	merge	indexes	are
cumulative;	otherwise,	each	message	in	turn	overrides	settings	made	by	a
previous	message.

The	bCCData	member	contains	the	MIDI	controller	number	for	controller
changes,	and	is	otherwise	ignored.	For	information	on	controller	numbers,	see
the	MIDI	specification.

The	following	example	function	causes	the	volume	to	fade	from	its	current	value
to	zero	over	five	seconds.	If	an	invalidation	occurs	during	that	period,	which
might	happen	if	another	segment	replaces	the	currently	playing	segment,	full
volume	is	restored.

HRESULT	SendCurveMsg(IDirectMusicPerformance8*	pPerf)

{

		DMUS_CURVE_PMSG	*pCurveMsg;

		HRESULT	hr;

		if	(NULL	==	pPerf)	return	E_INVALIDARG;

		hr	=	pPerf->AllocPMsg(sizeof(DMUS_CURVE_PMSG),	

						(DMUS_PMSG**)	&pCurveMsg);

		if	(SUCCEEDED(hr))

		{

				ZeroMemory(pCurveMsg,	sizeof(DMUS_CURVE_PMSG));

				pCurveMsg->dwSize	=	sizeof(DMUS_CURVE_PMSG);

				pCurveMsg->rtTime	=	0;

				pCurveMsg->dwFlags	=	DMUS_PMSGF_DX8	|	DMUS_PMSGF_REFTIME

																									|	DMUS_PMSGF_LOCKTOREFTIME;

				pCurveMsg->dwPChannel	=	DMUS_PCHANNEL_BROADCAST_PERFORMANCE;

				pCurveMsg->dwType	=	DMUS_PMSGT_CURVE;

				pCurveMsg->dwGroupID	=	0xFFFFFFF;

				pCurveMsg->mtDuration	=	5000;

				pCurveMsg->nEndValue	=	0;

				pCurveMsg->bCurveShape	=	DMUS_CURVES_LINEAR;

				pCurveMsg->bCCData	=	7;

				pCurveMsg->bFlags	=	DMUS_CURVE_RESET	|	DMUS_CURVE_START_FROM_CURRENT;

				pCurveMsg->bType	=	DMUS_CURVET_CCCURVE	;

				pCurveMsg->mtResetDuration	=	0;

				pCurveMsg->nResetValue	=	127;

				hr	=	pPerf->SendPMsg((DMUS_PMSG*)	pCurveMsg);

		}

		return	hr;	

}

Note			A	simpler	way	to	implement	volume	fading	is	by	using
IDirectMusicAudioPath8::SetVolume.	This	method	always	uses	the	linear
shape	for	the	curve.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

MIDI	Messages
Most	applications	don't	deal	directly	with	MIDI	messages.	However,	an
application	can	send	a	MIDI	command	as	a	performance	message—for	example,
to	make	a	control	change.

MIDI	messages	consist	of	a	status	byte	and	usually	one	or	two	data	bytes.
System	exclusive	MIDI	messages	are	of	variable	length.

The	status	byte	indicates	the	type	of	message	and,	in	some	cases,	the	channel
that	is	to	receive	the	message.	When	several	events	of	the	same	kind	are	in
sequence	in	the	file,	the	status	byte	can	be	omitted.	Data	bytes	are	recognizable
because	the	high	bit	is	always	clear,	whereas	in	status	bytes	it	is	always	set.

The	timing	of	MIDI	events	is	controlled	by	a	number	before	each	message,
indicating	how	many	ticks	separate	this	event	from	the	last.	The	actual	duration
of	a	tick	depends	on	the	time	format	in	the	file	header.

Note			There	is	no	guarantee	that	MIDI	messages	will	be	processed	in	the	same
order	in	which	they	occur	in	the	source	data.	DirectMusic	messages	are
delivered	in	order	of	time	stamp,	and	two	MIDI	messages	with	identical	times
might	not	be	delivered	in	the	expected	order.	Care	must	be	taken,	in	authoring
MIDI	content,	to	leave	an	interval	between	events	if	they	must	take	place
sequentially.	For	example,	don't	place	a	program	change	at	the	same	time	as	a
note	that	depends	on	the	program	change.

MIDI	messages	are	divided	into	two	main	categories:

MIDI	Channel	Messages
MIDI	System	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

MIDI	Channel	Messages

A	channel	message	is	addressed	to	a	particular	MIDI	channel,	which	corresponds
to	a	part	in	the	music.

A	channel	message	can	be	either	a	mode	message	or	a	voice	message.

A	mode	message	specifies	how	the	channel	is	to	respond	to	subsequent	voice
messages.	For	example,	a	mode	message	might	instruct	the	channel	to	remain
silent,	ignoring	all	note-on	messages.

A	voice	message	instructs	the	channel	to	begin	or	stop	playing	a	note	or	to
modify	notes	in	some	way.	Most	channel	messages	are	voice	messages.

The	following	table	describes	types	of	voice	messages.

Voice	message Command
Note-on Play	a	note.
Note-off Stop	playing	the	note.

Control	change
Modify	the	tone	with	data	from	a	pedal,	lever,	or	other
device;	also	used	for	miscellaneous	controls	such	as
volume	and	bank	select.

Program	(patch)
change

Select	an	instrument	for	the	channel	by	assigning	a	patch
number.

Aftertouch Modify	an	individual	note,	or	all	notes	on	the	channel,
according	to	the	aftertouch	of	a	key.

Pitch	bend	change Modify	the	pitch	of	all	notes	played	on	the	channel.

Keep	in	mind	that	these	descriptions	apply	to	standard	MIDI	messages,	not
MIDI	data	that	has	been	converted	to	performance	message	format.	For
example,	two	MIDI	messages	to	start	and	stop	a	note	are	combined	by
DirectMusic	into	a	single	performance	message	that	specifies	the	duration	of	the
note.	Performance	messages	also	contain	additional	information	about	timing
and	routing.

The	following	topics	contain	more	information	about	MIDI	channel	messages
and	how	they	are	implemented	in	DirectMusic:

MIDI	Notes
Program	Changes
Bank	Selection
DirectMusic	Patch	Numbers

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

MIDI	Notes

The	data	bytes	of	a	note-on	message	represent	the	pitch	and	velocity.	In	most
cases,	a	pitch	value	of	0	represents	C	below	subcontra	C	(called	C0	in	MIDI
notation),	12	represents	subcontra	C	(or	C1),	60	is	middle	C	(or	C5),	and	so	on.
For	drum	kits,	the	data	byte	instead	represents	a	particular	drum	sound.	For
example,	as	long	as	the	General	MIDI	(GM)	percussion	key	map	is	being
adhered	to,	a	value	of	60	represents	a	high	bongo	sound.	Channel	10	is	reserved
for	drum	kits.

For	information	on	how	DirectMusic	converts	to	and	from	MIDI	notes,	see
Music	Values	and	MIDI	Notes.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Program	Changes

Program	changes	and	patch	numbers	are	a	key	concept	in	MIDI	playback	and	in
DirectMusic.	A	program	change	assigns	a	particular	instrument	(also	called	a
program	or	timbre)	to	a	channel	so	that	the	notes	sent	to	that	channel	are	played
with	the	appropriate	sound.	Instruments	are	identified	by	patch	numbers.	If	the
GM	instrument	set	is	loaded,	a	program	change	specifying	patch	number	1
always	causes	the	channel	to	play	its	notes	as	an	acoustic	grand	piano.	The
actual	sound	produced	at	the	speakers	depends	on	how	the	instrument	is
synthesized.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Bank	Selection

Because	a	single	data	byte	is	used	to	select	the	patch	number	in	a	program
change,	and	only	seven	bits	in	each	data	byte	of	a	MIDI	message	are	significant,
a	program	change	can	select	from	a	maximum	of	128	instruments.	To	provide	a
greater	choice,	the	MIDI	specification	allows	for	the	use	of	up	to	16,384
instrument	banks,	each	containing	up	to	128	instruments.

To	select	an	instrument	from	a	different	bank,	the	MIDI	sequencer	must	first
send	a	control	change	message	called	bank	select.	The	two	data	bytes	of	this
message	are	referred	to	as	the	most	significant	byte	(MSB)	and	least	significant
byte	(LSB),	and	they	are	combined	to	identify	a	bank.	Once	the	bank	has	been
selected,	each	subsequent	program	change	selects	an	instrument	from	that	bank.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Patch	Numbers

In	DirectMusic,	the	instrument	patch	number	is	not	the	seven-bit	MIDI	patch
number	but	a	32-bit	value	that	packs	the	MIDI	patch	number	together	with	the
MSB	and	LSB	of	the	bank	select	and	a	one-bit	flag	for	a	drum	kit.	This	extended
patch	number	is	returned	by	the	IDirectMusicCollection8::EnumInstrument,
IDirectMusicCollection8::GetInstrument,	and
IDirectMusicInstrument8::GetPatch	methods.	It	can	be	changed	for	an
instrument	by	using	the	IDirectMusicInstrument8::SetPatch	method.

The	organization	of	DirectMusic	patch	values	is	shown	in	the	following	table.

Bits Purpose

0-7 MIDI	patch	number	(bit	7	is	always
0)

8-15 LSB	bank	select	(bit	15	is	always	0)
16-23 MSB	bank	select	(bit	23	is	always	0)
24-30 Unused
31 Flag	for	drum	kit

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

MIDI	System	Messages

System	messages	are	not	exclusive	to	any	channel.	There	are	three	kinds,	as
shown	in	the	following	table.

Message	type Purpose
System	common Miscellaneous	commands	and	data
System	exclusive Equipment-specific	commands	and	data

System	real-time Synchronization	of	clock-based	MIDI
equipment

Unlike	other	MIDI	messages,	system	exclusive	messages	can	contain	any
number	of	data	bytes.	After	transmitting	the	data,	the	sequencer	sends	a	system
common	message	called	an	EOX,	which	signals	the	end	of	the	system	exclusive
message.

In	DirectMusic,	the	DMUS_SYSEX_PMSG	structure	contains	the	length	of	the
data	and	a	pointer	to	an	array	of	data	bytes.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	DirectMusic	Ports
This	section	covers	access	to	DirectMusic	ports,	which	is	usually	required	only
by	applications	that	do	not	use	audiopaths.	A	port	is	a	device	that	sends	or
receives	data.	It	can	correspond	to	a	hardware	device,	a	software	synthesizer,	or
a	software	filter.

Each	port	in	a	DirectMusic	application	is	represented	by	an	IDirectMusicPort8
interface.	Methods	of	this	interface	are	used	to	retrieve	information	about	the
device,	manage	the	memory	on	the	device,	download	and	unload	DLS
instruments,	read	incoming	data,	and	cue	playback	buffers.

If	your	application	initializes	the	performance	by	using
IDirectMusicPerformance8::InitAudio,	as	is	recommended,	the	audiopath
manages	ports	and	the	mapping	of	performance	channels	to	ports.	You	can
obtain	an	interface	to	a	port	in	the	audiopath	by	using	the
IDirectMusicPerformance8::PChannelInfo	method.

Every	performance	must	have	at	least	one	port.	If	you	want	to	use	a	port	other
than	the	default	port,	or	to	set	special	parameters	for	the	default	port,	first	set	up
a	DMUS_PORTPARAMS8	structure.	You	don't	have	to	fill	in	all	members,	but
you	must	let	DirectMusic	know	which	members	have	valid	information	by
putting	the	appropriate	flags	in	the	dwValidParams	member.	Then	pass	the
structure	to	the	IDirectMusic8::CreatePort	method.

The	following	example	function	demonstrates	how	an	object	might	be	created
for	the	default	port,	setting	five	channel	groups	on	the	port.

HRESULT	CreateTypicalPort(IDirectMusic8*	pDM)

{

		IDirectMusicPort8*		pPort;

		DMUS_PORTPARAMS		dmos;

	

		if	(NULL	==	pDM)	return	E_INVALIDARG;

		ZeroMemory(&dmos,	sizeof(DMUS_PORTPARAMS));

		dmos.dwSize	=	sizeof(DMUS_PORTPARAMS);

		dmos.dwValidParams	=	DMUS_PORTPARAMS_CHANNELGROUPS;

		dmos.dwChannelGroups	=	5;

		return	pDM->CreatePort(GUID_NULL,	&dmos,	&pPort,	NULL);

}

After	creating	a	port,	you	must	activate	it	by	calling	IDirectMusic8::Activate	or
IDirectMusicPort8::Activate	and	then	attach	it	to	the	performance	by	using	the
IDirectMusicPerformance8::AddPort	method.

When	you	add	a	port	to	a	performance,	assign	a	block	of	performance	channels
to	it	by	calling	the	IDirectMusicPerformance8::AssignPChannelBlock
method.	The	only	time	this	isn't	necessary	is	when	you	add	the	default	port	by
passing	NULL	to	IDirectMusicPerformance8::AddPort.	In	that	case,
PChannels	0	through	15	are	assigned	to	the	MIDI	channels	in	the	first	group	on
the	port.

You	can	map	PChannels	differently,	add	more	PChannels,	or	assign	PChannels
to	a	different	port	by	using	the
IDirectMusicPerformance8::AssignPChannelBlock	and
IDirectMusicPerformance8::AssignPChannel	methods.

More	information	about	ports	is	contained	in	the	following	topics:

Default	Port
Property	Sets	for	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Default	Port
Under	versions	of	Windows	98	prior	to	Windows	98	Second	Edition,	and	always
when	hardware	that	supports	DLS	is	not	available,	the	Microsoft	software
synthesizer	is	the	default	port.	Under	other	versions	of	Windows,	a	hardware
synthesizer	could	be	the	default	port.

If	you	want	your	application	to	use	the	default	port,	you	don't	have	to	call	the
IDirectMusic8::CreatePort	method	before	adding	the	port	to	the	performance.
Instead,	you	can	pass	NULL	to	IDirectMusicPerformance8::AddPort.

You	can	obtain	the	default	port	by	a	call	to	IDirectMusic8::GetDefaultPort,
and	then	check	its	capabilities	by	using	the	IDirectMusicPort8::GetCaps
method.	If	the	port	does	not	meet	the	needs	of	your	application,	use	the
IDirectMusic8::EnumPort	method	to	find	the	Microsoft	software	synthesizer
or	another	port.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Custom	Loading
It	might	happen	that	an	application	needs	to	manage	object	loading	itself—for
example,	because	all	objects	are	stored	in	a	special	compressed	content	file.	The
application	can	create	its	own	loader	in	the	form	of	an	object	that	supports	the
IDirectMusicLoader8	interface,	with	at	least	the	GetObject	method
implemented.	This	implementation	of	the	loader	must	also	create	its	own	stream
object	that	has	both	the	IStream	and	the	IDirectMusicGetLoader8	interfaces.

When	GetObject	receives	a	request	to	load	an	object	from	a	file	or	resource,	it
creates	a	stream	and	passes	the	IStream	pointer	to	the	object's
IPersistStream::Load	method.	When	it	receives	a	request	to	load	an	object
from	an	existing	stream	created	by	the	application	to	manage	reading	from	a
custom	file,	it	creates	a	copy	of	the	IStream	with	the	same	seek	pointer	and
passes	this	copy	to	Load.

The	stream	object's	implementation	of	IDirectMusicGetLoader8::GetLoader
is	used	by	loadable	objects	to	retrieve	a	pointer	to	the	loader	that	created	the
IStream.	Objects	need	this	pointer	in	order	to	call	GetObject	recursively	when
they	find	references	to	other	objects.	For	example,	a	segment	object	might
contain	references	to	WAV	files,	which	must	be	loaded	along	with	the	segment.

To	support	container	objects,	the	loader	must	also	implement	the
IDirectMusicLoader8::SetObject	method.	The	implementation	retains	all
information	in	the	supplied	DMUS_OBJECTDESC	structure,	copying	the
stream	pointer	if	necessary.	It	then	creates	the	object	and	calls
IDirectMusicObject8::ParseDescriptor	to	obtain	the	rest	of	the	object's
descriptive	information.	However,	the	loader	should	not	actually	load	the	object
until	GetObject	is	called.	If	only	containers	with	embedded	objects	need	to	be
handled,	only	the	case	where	DMUS_OBJ_STREAM	is	set	needs	to	be
implemented.

For	more	information,	see	Custom	Loading	in	DirectMusic	at
msdn.microsoft.com.

©	2004	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=8574

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Using	Instrument	Collections
In	most	applications,	DLS	instrument	data	is	associated	with	bands	and	is
downloaded	to	the	synthesizer	when	the	band	is	downloaded.	For	more
information,	see	Using	Bands.

For	specialized	DirectMusic	applications	that	do	their	own	DLS	management,
two	steps	must	be	taken:	loading	the	instrument	collection	and	downloading
instrument	data	to	a	port.

These	steps	are	covered	in	the	following	sections:

Loading	and	Downloading	Collections
Working	with	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Loading	and	Downloading
Collections
Collections	are	loaded	like	other	objects.	To	load	the	standard	Roland	GM/GS
set,	pass	GUID_DefaultGMCollection	to	the	loader	in	the	guidObject	member
of	the	DMUS_OBJECTDESC	structure.	If	you	intend	to	use	the	loader	to
access	this	object	more	than	once,	make	sure	that	caching	is	enabled	(as	it	is	by
default)	so	that	you	don't	create	another	copy	of	the	GM	collection	each	time	you
request	it.

The	following	example	function	illustrates	how	to	load	a	collection	identified	by
its	GUID:

HRESULT	myGetGMCollection(

				IDirectMusicLoader8	*pLoader,	

				IDirectMusicCollection8	**ppCollection)

{

		HRESULT	hr;

		DMUS_OBJECTDESC	desc;

	

		if	((NULL	==	pLoader)	||	(NULL	==	ppCollection))	return	E_INVALIDARG;

		desc.dwSize	=	sizeof(DMUS_OBJECTDESC);

		desc.guidClass	=	CLSID_DirectMusicCollection;

		desc.guidObject	=	GUID_DefaultGMCollection;

		desc.dwValidData	=	(DMUS_OBJ_CLASS	|	DMUS_OBJ_OBJECT);

		hr	=	pLoader->GetObject(&desc,	IID_IDirectMusicCollection8,

										(void	**)	ppCollection);

		return	hr;

}

When	you	have	obtained	a	pointer	to	the	IDirectMusicCollection8	interface,
you	have	access	to	all	the	instruments	in	the	collection.	At	this	point,	though,
none	of	them	have	been	downloaded	to	a	port.

To	download	an	entire	collection	at	once,	you	must	associate	the	collection	with
a	segment	and	then	call	the	IDirectMusicSegment8::Download	method.	For	an
example,	see	Playing	a	MIDI	File	with	Custom	Instruments.

These	steps	are	necessary	only	when	you	want	to	use	a	collection	other	than	the

default	one.	Normally,	when	you	call	IDirectMusicSegment8::Download,	the
instruments	downloaded	to	the	port	are	from	the	default	collection	authored	into
the	segment,	or	from	the	General	MIDI	set	if	the	segment	does	not	reference	a
collection.	When	you	download	a	band,	all	DLS	data	needed	by	the	instruments
in	that	band	is	downloaded.

See	Also

Loading	Audio	Data
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Working	with	Instruments
When	a	collection	object	is	created	and	loaded	from	a	collection	file	or	resource,
it	is	not	bound	to	any	specific	port.	You	can	download	different	instruments	to
different	ports	or	download	a	single	instrument	to	multiple	ports.

You	can	retrieve	the	patch	number	and	name	of	all	the	available	instruments	by
using	the	IDirectMusicCollection8::EnumInstrument	method.

The	following	example	function	enumerates	all	instruments	in	a	collection:

void	ListInstruments(IDirectMusicCollection8	*pCollection)

{

		HRESULT	hr	=	S_OK;

		DWORD	dwPatch;

		WCHAR	wszName[MAX_PATH];

		DWORD	dwIndex;

	

		for	(dwIndex	=	0;	hr	==	S_OK;	dwIndex++)

		{

				hr	=	pCollection->EnumInstrument(

						dwIndex,	&dwPatch,	wszName,	MAX_PATH);

				if	(hr	==	S_OK)

				{

						//	Do	something	with	name	of	patch	in	wszName.

				}

		}

}

Obtain	a	pointer	to	a	specific	instrument	by	passing	its	patch	number	to	the
IDirectMusicCollection8::GetInstrument	method.

After	obtaining	an	instrument,	you	can	change	its	patch	number	by	using	the
IDirectMusicInstrument8::SetPatch	method.

To	download	a	single	instrument	to	a	port,	pass	an	IDirectMusicInstrument8
interface	pointer	to	the	IDirectMusicPort8::DownloadInstrument	or
IDirectMusicPerformance8::DownloadInstrument	method.	This	call	makes
the	DLS	data	available	on	the	port;	it	does	not	associate	the	instrument	with	any
particular	performance	or	audiopath.

To	save	memory,	only	waveforms	and	articulation	required	for	given	ranges	of
notes	are	downloaded.	For	example,	for	a	bassoon	you	might	specify	that	only
data	for	the	note	range	from	low	C	through	middle	B	is	to	be	downloaded.	Data
for	regions	falling	entirely	outside	that	range	is	not	downloaded.

The	following	code	example,	given	a	collection,	a	patch	number,	a	port,	and	a
range	of	notes,	retrieves	the	instrument	from	the	collection	and	downloads	it.	It
sets	up	an	array	of	one	DMUS_NOTERANGE	structure	and	passes	this	to	the
IDirectMusicPort8::DownloadInstrument	method.	Typically,	only	a	single
range	of	notes	is	specified,	but	it	is	possible	to	specify	multiple	ranges.	If	you
pass	NULL	instead	of	an	array,	the	data	for	all	regions	is	downloaded.

HRESULT	DownloadCollection(

				IDirectMusicCollection8	*pCollection,

				IDirectMusicPort8	*pPort,

				IDirectMusicDownloadedInstrument8	**ppDLInstrument,	

				DWORD	dwPatch,

				DWORD	dwLowNote,

				DWORD	dwHighNote)

	{

		HRESULT	hr;

		if	((NULL	==	pCollection)	||	(NULL	==	pPort)	||	(NULL	==	ppDLInstrument))

		{

				return	E_INVALIDARG;

		}

		IDirectMusicInstrument8*	pInstrument;

		hr	=	pCollection->GetInstrument(dwPatch,	&pInstrument);

		if	(SUCCEEDED(hr))

		{

				DMUS_NOTERANGE	NoteRange[1];

				NoteRange[0].dwLowNote	=	dwLowNote;

				NoteRange[0].dwHighNote	=	dwHighNote;

				hr	=	pPort->DownloadInstrument(pInstrument,	ppDLInstrument,	NoteRange,	1);

				pInstrument->Release();

		}

		return	hr;

}

The	DownloadInstrument	method	returns	a	pointer	to	the
IDirectMusicDownloadedInstrument8	interface.	This	pointer	has	just	one
purpose:	to	identify	the	instrument	in	a	subsequent	call	to	the
IDirectMusicPort8::UnloadInstrument	method,	which	unloads	the	instance	of
the	instrument	on	a	particular	port.

The	following	function	downloads	an	instrument	and	then	unloads	it,	which	is

not	useful	except	to	illustrate	how	the	IDirectMusicDownloadedInstrument8
pointer	can	be	used:

HRESULT	DownloadAndUnload(

				IDirectMusicInstrument8*	pInstrument,

				IDirectMusicPort8	*pPort)

{

		HRESULT	hr;

		IDirectMusicDownloadedInstrument*	pDLInstrument;

		

		if	((NULL	==	pInstrument)	||	(NULL	==	pPort))	return	E_INVALIDARG;

		hr	=	pPort->DownloadInstrument(pInstrument,	&pDLInstrument,	NULL,	0);

		if	(SUCCEEDED(hr))

		{

				hr	=	pPort->UnloadInstrument(pDLInstrument);

				pDLInstrument->Release();

		}

		return	hr;

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Low-Level	DLS
If	you	are	writing	an	application	that	edits	DLS	collections	or	creates
instruments	from	waveform	samples	at	run	time,	you	must	be	able	to	download
instrument	data	to	the	synthesizer	without	encapsulating	it	in	a	DirectMusic
instrument	object.

Working	with	DLS	data	requires	knowledge	of	the	DLS	specification	and	file
structure.	For	detailed	information	on	these	topics,	contact	the	MIDI
Manufacturers	Association.

To	download	raw	instrument	data,	first	get	a	pointer	to	the
IDirectMusicPortDownload8	interface,	as	shown	in	the	following	code
example,	where	it	is	assumed	that	pIPort	is	a	valid	pointer	to	an
IDirectMusicPort8	interface:

IDirectMusicPortDownload	**ppIDownloadPort;

	

HRESULT	hr	=	pIPort->QueryInterface(IID_IDirectMusicPortDownload8,

				(void	**)	ppIDownloadPort);

If	the	HRESULT	is	not	S_OK,	the	port	does	not	support	DLS	downloading.

Next,	identify	the	buffers	that	must	be	prepared	and	downloaded.	To	send	an
instrument	to	the	synthesizer,	you	will	create	the	following	buffers:

One	instrument	buffer,	which	represents	the	entire	instrument	definition
with	all	the	regions	and	articulations.
One	or	more	waveform	buffers,	which	describe	each	waveform	that	the
instrument	references	for	its	regions.

Each	buffer	must	be	tagged	with	a	unique	identifier.	Identifiers	are	used	to
resolve	linkages	between	buffers,	in	particular	the	links	between	regions	and
waveforms.	Tally	the	number	of	buffers	that	you	need	to	download,	and	call
IDirectMusicPortDownload8::GetDLId	to	allocate	a	range	of	identifiers.	For
example,	if	you	are	downloading	an	instrument	with	three	waveforms,	you	must
download	four	buffers	in	all,	so	request	a	set	of	four	identifiers.

For	each	buffer,	calculate	the	size	needed,	then	call
IDirectMusicPortDownload8::AllocateBuffer	to	allocate	it.	This	method
returns	an	IDirectMusicDownload8	interface	representing	the	buffer.	Call
IDirectMusicDownload8::GetBuffer	to	access	the	memory.

Note			There	are	two	methods	called	GetBuffer:

IDirectMusicPortDownload8::GetBuffer	returns	an
IDirectMusicDownload	interface	pointer	for	a	buffer	object	whose
download	identifier	is	known.
IDirectMusicDownload::GetBuffer	returns	a	pointer	to	the	memory	in	the
buffer.

Now	write	the	data	into	the	buffers.	Each	buffer	starts	with	a
DMUS_DOWNLOADINFO	structure,	which	defines	the	size	and	functionality
of	the	download.	This	structure	must	be	prepared	as	follows:

Set	the	dwDLType	member	to	either
DMUS_DOWNLOADINFO_INSTRUMENT2	for	an	instrument	or
DMUS_DOWNLOADINFO_WAVE	for	a	waveform.
Set	the	dwDLId	member	to	one	of	the	unique	identifiers	that	you	obtained
by	using	IDirectMusicPortDownload::GetDLId.
Set	the	dwNumOffsetTableEntries	member	to	the	number	of	entries	in	the
DMUS_OFFSETTABLE	structure.
Set	the	cbSize	member	to	the	size	of	the	download	chunk,	including
DMUS_DOWNLOADINFO	and	DMUS_OFFSETTABLE.

The	DMUS_DOWNLOADINFO	structure	is	always	followed	by	a
DMUS_OFFSETTABLE	structure.	This	offset	table	is	used	to	manage	all	links
within	the	data.	Whenever	a	structure	in	the	data	refers	to	another	structure,	it
addresses	it	with	an	integer	index	instead	of	a	pointer.	For	every	structure	within
the	data	that	can	be	referenced,	there	is	a	unique	index.	The
DMUS_OFFSETTABLE	translates	this	integer	index	into	a	byte	offset	into	the
data.

The	instrument	or	WAV	data	follows	the	DMUS_OFFSETTABLE.	If	the
download	is	an	instrument,	the	data	starts	with	the	DMUS_INSTRUMENT
structure.	Otherwise,	it	starts	with	the	DMUS_WAVE	structure.

The	instrument	data	that	follows	the	DMUS_INSTRUMENT	structure	is

organized	in	the	following	structures:

DMUS_ARTICPARAMS
DMUS_ARTICULATION
DMUS_ARTICULATION2
DMUS_COPYRIGHT
DMUS_EXTENSIONCHUNK
DMUS_INSTRUMENT
DMUS_NOTERANGE
DMUS_REGION

The	WAV	data	pointed	to	by	the	DMUS_WAVE	structure	is	organized	in	a
DMUS_WAVEDATA	structure.

When	the	buffers	are	all	ready,	download	them	by	using
IDirectMusicPortDownload8::Download.	Download	the	waveform	buffers
first	so	that	they	are	in	place	and	can	be	referenced	when	the	instrument	is
downloaded.

Once	the	buffers	have	been	downloaded,	the	synthesizer	is	ready	to	play	the
instrument.	The	memory	in	the	buffer	is	no	longer	accessible.

Later,	when	done	playing	the	instrument,	unload	the	buffers	and	release	them.
First	unload	the	instrument	buffer,	then	all	the	waveform	buffers.	To	unload,	pass
the	IDirectMusicDownload8	pointers	to
IDirectMusicPortDownload8::Unload.	Then	release	each	buffer	with	a	call	to
IDirectMusicDownload8::Release.

To	update	an	instrument	that	has	already	been	downloaded,	you	cannot	write
over	the	previously	downloaded	buffer.	Instead,	replace	the	instrument,	but	not
the	waveforms.	To	do	this,	call	IDirectMusicPortDownload8::AllocateBuffer
to	allocate	a	new	IDirectMusicDownload8	interface	with	a	buffer	of	the	correct
size.	Be	sure	to	generate	a	new	identifier	for	the	buffer	with	a	call	to
IDirectMusicPortDownload8::GetDLId.	Write	the	new	articulation
information	into	the	buffer;	then	download	it.	Then	unload	the	previously
downloaded	buffer	with	a	call	to	IDirectMusicPortDownload8::Unload.

To	update	a	waveform	buffer,	take	one	extra	step.	Create	both	a	new	waveform
buffer	and	an	updated	instrument	buffer	that	references	it.	Download	the	new
waveform,	then	the	new	instrument.	Then	unload	the	old	instrument	and	the	old

waveform.

More	information	is	contained	in	the	following	topic:

Creating	DLS	Instruments	Programmatically

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Creating	DLS	Instruments
Programmatically
The	following	example	code	shows	how	to	create	a	DLS	instrument	from	a	WAV
file	and	make	it	available	to	the	performance.

The	entry	point	for	the	example	is	the	PlayDLSFromWAV	function,	which
creates	and	downloads	the	instrument	and	plays	two	notes	on	it	by	sending
performance	messages.	This	function	uses	two	classes	defined	in	the	DirectX
sample	framework.	The	pWaveFile	parameter	is	an	instance	of	CWaveFile
representing	a	WAV	file	that	has	already	been	opened.	An	instance	of
CMusicManager	is	used	to	create	and	initialize	the	performance.

//	Declare	data	structures	for	download.

	

#pragma	pack(2)

struct	INSTRUMENT_DOWNLOAD

{

				DMUS_DOWNLOADINFO			dlInfo;

				ULONG															ulOffsetTable[4];

				DMUS_INSTRUMENT					dmInstrument;

				DMUS_REGION									dmRegion;

				DMUS_ARTICULATION			dmArticulation;

				DMUS_ARTICPARAMS				dmArticParams;

};

	

struct	WAVE_DOWNLOAD

{

				DMUS_DOWNLOADINFO			dlInfo;

				ULONG															ulOffsetTable[2];

				DMUS_WAVE											dmWave;

				DMUS_WAVEDATA							dmWaveData;

};

#pragma	pack()

//	Define	some	values	for	instrument	parameters.

#define	FIVE_HERTZ	(0xFCACAE9C)

#define	ZERO_SECONDS	(0x80000000)

#define	ONE_MILLISECOND	(0xD1490F12)

#define	ONE_HUNDRED_PERCENT	(0x03E80000)

void	InitializeInstDownload(INSTRUMENT_DOWNLOAD	*pInstDownload,	DWORD	dwDLId,	DWORD	dwPatch,	DWORD	dwDLIdWave)

{

				ZeroMemory(pInstDownload,	sizeof(INSTRUMENT_DOWNLOAD));

				pInstDownload->dlInfo.dwDLType	=	DMUS_DOWNLOADINFO_INSTRUMENT;

				pInstDownload->dlInfo.cbSize	=	sizeof(INSTRUMENT_DOWNLOAD);

				pInstDownload->dlInfo.dwDLId	=	dwDLId;

				pInstDownload->dlInfo.dwNumOffsetTableEntries	=	4;

				pInstDownload->ulOffsetTable[0]	=	offsetof(INSTRUMENT_DOWNLOAD,dmInstrument);

				pInstDownload->ulOffsetTable[1]	=	offsetof(INSTRUMENT_DOWNLOAD,dmRegion);

				pInstDownload->ulOffsetTable[2]	=	offsetof(INSTRUMENT_DOWNLOAD,dmArticulation);

				pInstDownload->ulOffsetTable[3]	=	offsetof(INSTRUMENT_DOWNLOAD,dmArticParams);

				

				pInstDownload->dmInstrument.ulFirstRegionIdx	=	1;

				pInstDownload->dmInstrument.ulGlobalArtIdx	=	2;

				pInstDownload->dmInstrument.ulPatch	=	dwPatch;

				pInstDownload->dmRegion.RangeKey.usHigh	=	127;

				pInstDownload->dmRegion.RangeVelocity.usHigh	=	127;

				pInstDownload->dmRegion.fusOptions	=	F_RGN_OPTION_SELFNONEXCLUSIVE;

				pInstDownload->dmRegion.WaveLink.ulChannel	=	1;

				pInstDownload->dmRegion.WaveLink.ulTableIndex	=	dwDLIdWave;

				pInstDownload->dmRegion.WaveLink.usPhaseGroup	=	0;

				pInstDownload->dmRegion.WSMP.cbSize	=	sizeof(WSMPL);

				pInstDownload->dmRegion.WSMP.fulOptions	=	F_WSMP_NO_TRUNCATION;

				pInstDownload->dmRegion.WSMP.usUnityNote	=	60;	//	Middle	C

				pInstDownload->dmRegion.WLOOP[0].cbSize	=	sizeof(WLOOP);

				pInstDownload->dmRegion.WLOOP[0].ulType	=	WLOOP_TYPE_FORWARD;

				pInstDownload->dmArticulation.ulArt1Idx	=	3;

				pInstDownload->dmArticParams.LFO.tcDelay	=	ZERO_SECONDS;

				pInstDownload->dmArticParams.LFO.pcFrequency	=	FIVE_HERTZ;

				pInstDownload->dmArticParams.PitchEG.tcAttack	=	ZERO_SECONDS;

				pInstDownload->dmArticParams.PitchEG.tcDecay	=	ZERO_SECONDS;

				pInstDownload->dmArticParams.PitchEG.ptSustain	=	ONE_HUNDRED_PERCENT;

				pInstDownload->dmArticParams.PitchEG.tcRelease	=	ONE_MILLISECOND;

				pInstDownload->dmArticParams.VolEG.tcAttack	=	ZERO_SECONDS;

				pInstDownload->dmArticParams.VolEG.tcDecay	=	ZERO_SECONDS;

				pInstDownload->dmArticParams.VolEG.ptSustain	=	ONE_HUNDRED_PERCENT;

				pInstDownload->dmArticParams.VolEG.tcRelease	=	ONE_MILLISECOND;

}

void	InitializeWaveDownload(WAVE_DOWNLOAD	*pWaveDownload,	DWORD	dwDLId,	WAVEFORMATEX	*pwfex,	DWORD	dwWaveSize,	DWORD	dwOverallSize)

{

				ZeroMemory(pWaveDownload,sizeof(WAVE_DOWNLOAD));

				pWaveDownload->dlInfo.dwDLType	=	DMUS_DOWNLOADINFO_WAVE;

				pWaveDownload->dlInfo.cbSize	=	dwOverallSize;

				pWaveDownload->dlInfo.dwDLId	=	dwDLId;

				pWaveDownload->dlInfo.dwNumOffsetTableEntries	=	2;

				pWaveDownload->ulOffsetTable[0]	=	offsetof(WAVE_DOWNLOAD,dmWave);

				pWaveDownload->ulOffsetTable[1]	=	offsetof(WAVE_DOWNLOAD,dmWaveData);

				pWaveDownload->dmWave.ulWaveDataIdx	=	1;

				memcpy(&pWaveDownload->dmWave.WaveformatEx,	pwfex,	sizeof(WAVEFORMATEX));

				pWaveDownload->dmWaveData.cbSize	=	dwWaveSize;

}

void	PlayDLSFromWAV(HWND	hWndMain,	CWaveFile	*pWaveFile)

{

				const	DWORD	dwPatch	=	0x00123456;

				//	Create	and	initialize	performance.	

				CMusicManager	musicManager;

				IDirectMusicPerformance8*	pPerf;

				HRESULT	hr	=	musicManager.Initialize(hWndMain);

				pPerf	=	musicManager.GetPerformance();

				//	Get	interfaces	to	the	port.

				IDirectMusicPort*	pIDirectMusicPort	=	NULL;

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->PChannelInfo(0,	&pIDirectMusicPort,	NULL,	NULL);

				}

				IDirectMusicPortDownload8*	pIDirectMusicPortDownload8	=	NULL;

				if	(SUCCEEDED(hr))

				{

								hr	=	pIDirectMusicPort->QueryInterface(IID_IDirectMusicPortDownload8,	(void	**)&pIDirectMusicPortDownload8);

				}

				//	Reserve	two	download	IDs,	and	retrieve	the	first.

				DWORD	dwDLId	=	0;

				if	(SUCCEEDED(hr))

				{

								hr	=	pIDirectMusicPortDownload8->GetDLId(&dwDLId,	2);

				}

				//	Allocate	a	buffer	for	the	instrument	data	(regions,	articulations,	and	so	on.)

				

				IDirectMusicDownload8*	pIDirectMusicDownloadArticulation	=	NULL;

				if	(SUCCEEDED(hr))

				{

								hr	=	pIDirectMusicPortDownload8->AllocateBuffer(sizeof(INSTRUMENT_DOWNLOAD),	&pIDirectMusicDownloadArticulation);

				}

				//	Allocate	a	buffer	for	the	WAV	data.

				IDirectMusicDownload8*	pIDirectMusicDownloadWave	=	NULL;

				DWORD	dwAppend	=	0;

				if	(SUCCEEDED(hr))

				{

								hr	=	pIDirectMusicPortDownload8->GetAppend(&dwAppend);

								if	(SUCCEEDED(hr))

								{

												hr	=	pIDirectMusicPortDownload8->AllocateBuffer(sizeof(WAVE_DOWNLOAD)	+	

																				dwAppend	*	pWaveFile->GetFormat()->nBlockAlign	+	pWaveFile->GetSize(),

																				&pIDirectMusicDownloadWave);

								}

				}

				//	Read	format	data	from	the	WAV	file	into	the	buffer,	and	download	it	to	the	port.

				void	*pvData	=	NULL;

				DWORD	dwSize	=	0;

				if	(SUCCEEDED(hr))

				{

								hr	=	pIDirectMusicDownloadWave->GetBuffer(&pvData,	&dwSize);

								if	(SUCCEEDED(hr))

								{

												InitializeWaveDownload((WAVE_DOWNLOAD*)pvData,	dwDLId,	pWaveFile->GetFormat(),

																				pWaveFile->GetSize(),	dwSize);

												DWORD	dwRead	=	0;

												hr	=	pWaveFile->Read(((WAVE_DOWNLOAD*)pvData)->dmWaveData.byData,	

																				pWaveFile->GetSize(),	&dwRead);

												if	(SUCCEEDED(hr)	&&	pWaveFile->GetSize()	==	dwRead)

												{

																hr	=	pIDirectMusicPortDownload8->Download(pIDirectMusicDownloadWave);

																if	(hr	==	DMUS_E_NOTMONO)	

																{

																		MessageBox(hWndMain,	"WAV	must	be	mono.",	"Error",	0);

																}

												}

								}

				}

				//	Put	instrument	data	into	the	buffer	and	download	to	the	port.

				if	(SUCCEEDED(hr))

				{

								hr	=	pIDirectMusicDownloadArticulation->GetBuffer(&pvData,	&dwSize);

								if	(SUCCEEDED(hr))

								{

												InitializeInstDownload((INSTRUMENT_DOWNLOAD	*)pvData,	dwDLId	+	1,	dwPatch,	dwDLId);

												hr	=	pIDirectMusicPortDownload8->Download(pIDirectMusicDownloadArticulation);

								}

				}

				//	Get	the	performance	toolgraph	so	messages	can	be	stamped.

				IDirectMusicGraph*	pIDirectMusicGraph	=	NULL;

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->QueryInterface(IID_IDirectMusicGraph,	(void	**)&pIDirectMusicGraph);

				}

				//	Create	and	send	a	message	to	put	the	instrument	on	channel	0.

				DMUS_PATCH_PMSG	*pDMUS_PATCH_PMSG	=	NULL;

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->AllocPMsg(sizeof(DMUS_PATCH_PMSG),	(DMUS_PMSG	**)&pDMUS_PATCH_PMSG);

				}

				if	(SUCCEEDED(hr))

				{

								pDMUS_PATCH_PMSG->dwType	=	DMUS_PMSGT_PATCH;

								pDMUS_PATCH_PMSG->dwPChannel	=	0;

								pDMUS_PATCH_PMSG->dwFlags	=	DMUS_PMSGF_REFTIME	;

								pDMUS_PATCH_PMSG->byInstrument	=	dwPatch	&	0x7F;

								pDMUS_PATCH_PMSG->byLSB	=	(dwPatch	&	0x7f00)	>>	8;

								pDMUS_PATCH_PMSG->byMSB	=	(dwPatch	&	0x7f0000)	>>	16;

								hr	=	pIDirectMusicGraph->StampPMsg((DMUS_PMSG	*)pDMUS_PATCH_PMSG);

				}

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->SendPMsg((DMUS_PMSG	*)pDMUS_PATCH_PMSG);

								if	(FAILED(hr))

								{

												pPerf->FreePMsg((DMUS_PMSG	*)pDMUS_PATCH_PMSG);

								}

				}

				//	The	instrument	is	now	available	to	be	played.	The	following	code

				//	plays	two	"notes"	at	different	pitches	and	durations.

				DMUS_NOTE_PMSG	*pDMUS_NOTE_PMSG	=	NULL;

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->AllocPMsg(sizeof(DMUS_NOTE_PMSG),	(DMUS_PMSG	**)&pDMUS_NOTE_PMSG);

				}

				if	(SUCCEEDED(hr))

				{

								pDMUS_NOTE_PMSG->dwType	=	DMUS_PMSGT_NOTE;

								pDMUS_NOTE_PMSG->dwPChannel	=	0;

								pDMUS_NOTE_PMSG->dwFlags	=	DMUS_PMSGF_REFTIME;

								pDMUS_NOTE_PMSG->bFlags	=	DMUS_NOTEF_NOTEON;

								pDMUS_NOTE_PMSG->bVelocity	=	127;

								pDMUS_NOTE_PMSG->bMidiValue	=	60;

								pDMUS_NOTE_PMSG->mtDuration	=	DMUS_PPQ	*	4;	//	Whole	note

								hr	=	pIDirectMusicGraph->StampPMsg((DMUS_PMSG	*)pDMUS_NOTE_PMSG);

				}

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->SendPMsg((DMUS_PMSG	*)pDMUS_NOTE_PMSG);

								if	(FAILED(hr))

								{

												pPerf->FreePMsg((DMUS_PMSG	*)pDMUS_NOTE_PMSG);

								}

				}

				Sleep(1000);

				DMUS_NOTE_PMSG	*pDMUS_NOTE_PMSG2	=	NULL;

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->AllocPMsg(sizeof(DMUS_NOTE_PMSG),	(DMUS_PMSG	**)&pDMUS_NOTE_PMSG2);

				}

				if	(SUCCEEDED(hr))

				{

								pDMUS_NOTE_PMSG2->dwType	=	DMUS_PMSGT_NOTE;

								pDMUS_NOTE_PMSG2->dwPChannel	=	0;

								pDMUS_NOTE_PMSG2->dwFlags	=	DMUS_PMSGF_REFTIME;

								pDMUS_NOTE_PMSG2->bFlags	=	DMUS_NOTEF_NOTEON;

								pDMUS_NOTE_PMSG2->bMidiValue	=	70;

								pDMUS_NOTE_PMSG2->bVelocity	=	127;

								pDMUS_NOTE_PMSG2->mtDuration	=	DMUS_PPQ	*	2;	//	Half	note

								hr	=	pIDirectMusicGraph->StampPMsg((DMUS_PMSG	*)pDMUS_NOTE_PMSG2);

				}

				if	(SUCCEEDED(hr))

				{

								hr	=	pPerf->SendPMsg((DMUS_PMSG	*)pDMUS_NOTE_PMSG2);

								if	(FAILED(hr))

								{

												pPerf->FreePMsg((DMUS_PMSG	*)pDMUS_NOTE_PMSG2);

								}

				}

				//	Allow	time	for	second	note	to	play	before	music	manager	goes	out	of	scope

				//	and	shuts	down	performance.

				Sleep(4000);

				//	Clean	up.	SAFE_RELEASE	is	defined	in	dmutil.h.

				SAFE_RELEASE(pIDirectMusicPort);

				SAFE_RELEASE(pIDirectMusicPortDownload8);			

				SAFE_RELEASE(pIDirectMusicDownloadArticulation);

				SAFE_RELEASE(pIDirectMusicDownloadWave);

				SAFE_RELEASE(pIDirectMusicGraph);

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Tools
A	DirectMusic	tool	is	an	object	that	intercepts	messages	and	handles	them	in
some	way.	The	tool	might	alter	the	message	and	then	pass	it	on	to	the	next	tool,
or	free	the	message,	or	send	a	new	message	based	on	information	in	the	old	one.

DirectMusic	has	an	output	tool	that	is	normally	the	last	to	receive	messages.	This
tool	converts	performance	messages	to	standard	MIDI	messages	and	streams
them	to	the	synthesizer.	Other	tools	are	implemented	by	the	application	or
obtained	from	libraries.

The	following	topics	provide	more	information	on	tools:

Creating	a	Tool
Implementing	a	Tool	in	the	Client	Application

See	Also

Overview	of	Audio	Data	Flow

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Creating	a	Tool
A	tool	object	can	reside	in	a	DLL	or	in	the	client	application.	The	object
implements	the	methods	of	IDirectMusicTool	or	IDirectMusicTool8.	The
purpose	of	each	method	is	summarized	in	the	following	table.

Method Description

Init

Performs	any	needed	initialization	of	the	object.	This
method	is	called	when	the	application	adds	the	tool	to
a	graph	by	calling
IDirectMusicGraph8::InsertTool.	It	should	always
return	S_OK.

GetMsgDeliveryType

Specifies	when	the	performance	should	deliver
messages	to	the	tool	by	calling	its	ProcessPMsg
method.	Most	tools	can	specify
DMUS_PMSGF_TOOL_IMMEDIATE.

GetMediaTypes

Returns	an	array	of	message	types	that	the	tool
processes.	This	method	is	called	by	the	DirectMusic
performance	to	determine	which	messages	to	pass	to
the	ProcessPMsg	method.

GetMediaTypeArraySizeSpecifies	the	number	of	message	types	in	the	array.

ProcessPMsg

Processes	each	message.	This	method	is	called	by	the
performance	each	time	a	message	that	matches	the
requested	types	is	available.	After	processing,	the
method	either	requeues	or	deletes	the	message.

Flush

Specifies	the	behavior	of	the	tool	when	it	receives	a
message	sent	as	a	result	of	an	invalidation.	This	can
happen,	for	example,	when	a	note	or	curve	is	in
progress	and	the	segment	stops	unexpectedly.	Most
tools	can	simply	requeue	the	message.

When	the	performance	engine	is	playing	a	segment,	it	enables	each	tool	in	the
segment	toolgraph,	and	then	each	tool	in	the	performance	toolgraph,	to	process
each	message.	When	a	tool	processes	a	message,	it	should	obtain	the
IDirectMusicGraph8	pointer	from	the	pGraph	member	of	the	DMUS_PMSG
structure	and	then	call	the	IDirectMusicGraph8::StampPMsg	method	to	stamp

the	message	with	a	pointer	to	the	next	tool,	if	any,	that	is	to	receive	it.

The	following	sample	code	from	the	tool's	implementation	of
IDirectMusicTool8::ProcessPMsg	stamps	the	message	(pPMsg)	for	the	next
tool,	or	frees	the	message	if	this	is	not	possible.

if	((NULL	==	pPMsg->pGraph)	||	(FAILED(pPMsg->pGraph->StampPMsg(pPMsg))))

{

				hr	=	DMUS_S_FREE;

}

It's	important	to	stamp	the	message	before	reaching	any	code	paths	that	might
cause	the	method	to	return.	If	the	message	is	not	stamped	for	the	next	tool	when
it	is	handed	back	to	the	queue,	it	will	be	sent	back	to	this	tool,	possibly	resulting
in	an	endless	loop.	On	the	other	hand,	be	aware	that	StampPMsg	can	change	the
value	in	the	dwPChannel	member	of	the	message	structure.	If	your	tool	uses
this	value,	save	it	before	stamping	the	message.

Tools	process	messages	in	a	high-priority	thread.	Do	not	call	time-consuming
functions,	such	as	those	involving	graphics	or	file	input/output,	from	within	a
tool's	IDirectMusicTool8::ProcessPMsg	method.	If	a	tool	needs	to	trigger	an
action,	it	should	do	so	by	signaling	a	different	thread,	perhaps	the	application's
main	thread.

When	implementing	the	methods	of	IDirectMusicTool8,	take	care	not	to	create
circular	references	to	parent	objects.	Circular	references	come	about	when	one
object	creates	another	and	the	child	keeps	an	additional	reference	to	the	parent.
For	example,	suppose	a	tool	creates	a	new	reference	to	the	toolgraph	passed	into
its	IDirectMusicTool8::Init	method.	If	the	tool	fails	to	release	this	reference,
there	is	a	problem	when	the	segment	attempts	to	release	the	toolgraph.	Because
the	tool	still	has	a	reference	to	the	toolgraph,	the	toolgraph	is	not	fully	released;
and	because	the	toolgraph	has	a	reference	to	the	tool,	the	tool	cannot	be	released
either.

See	Also

Music	Tool	Sample
DirectMusic	Tool	Wizard

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Implementing	a	Tool	in	the	Client
Application
All	tools	other	than	the	output	tool	are	collected	in	toolgraphs.	Even	if	your
application	is	using	only	a	single	tool,	you	must	create	a	toolgraph	to	contain	it.
Then	add	this	toolgraph	to	a	segment	or	the	performance.	Toolgraphs	provide	a
convenient	mechanism	for	directing	messages	from	one	tool	to	another.

Note			Do	not	use	or	distribute	tools	from	non-trusted	sources.	Tools	can	contain
unsafe	code.

The	following	sample	code	is	from	a	client	that	uses	a	tool	in	a	DLL.	First,	the
client		creates	an	object	from	a	known	class	identifier	and	a	known	interface
identifier.	It	then	obtains	the	IDirectMusicTool8	interface,	creates	a	graph,	and
inserts	the	tool	in	the	graph.	It	is	assumed	that	the	ILyricsReader	interface,
together	with	the	CLSID	and	IID,	is	declared	in	an	included	tool	header.

HRESULT	SetupLyricsTool(IDirectMusicPerformance8*	pPerf)

{	

		ILyricsReader*	pLyricsReader;

		IDirectMusicTool*	pTool;

		IDirectMusicGraph*	pGraph;

		HRESULT	hr;

	

		if	(SUCCEEDED(hr	=	CoCreateInstance(CLSID_LyricsReader,	NULL,

																CLSCTX_INPROC_SERVER,	IID_ILyricsReader,	

															(void	**)	&pLyricsReader)))

		{

				if	(SUCCEEDED(hr	=	pLyricsReader->QueryInterface(IID_IDirectMusicTool8,

						(void**)&pTool)))

				{

						if	(SUCCEEDED(hr	=	CoCreateInstance(CLSID_DirectMusicGraph,	NULL,

										CLSCTX_INPROC,	IID_IDirectMusicGraph,	(void**)&pGraph)))

						{

								if	(SUCCEEDED(pGraph->InsertTool(pTool,	NULL,	0,	0)))

								{

										hr	=	pPerf->SetGraph(pGraph);

								}

								pGraph->Release();

						}

				}

		}

		return	hr;

}

The	tool	will	now	process	messages	from	all	segments	in	the	performance.	To
restrict	the	application	of	the	tool	to	a	particular	segment,	use
IDirectMusicSegment8::SetGraph	instead.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Property	Sets	for	DirectMusic	Ports
Through	property	sets,	DirectMusic	is	able	to	support	extended	services	offered
by	synthesizers.

Hardware	vendors	define	new	capabilities	as	properties	and	publish	the
specification	for	these	properties.	A	GUID	identifies	a	property	set,	and	a
ULONG	identifies	a	particular	property	within	the	set.	Individual	properties
may	also	have	associated	parameters.	The	meaning	of	the	parameters	is	defined
along	with	the	properties.

Use	the	IKsControl::KsProperty	method	to	find	out	whether	a	property	is
available	and	then	to	set	and	retrieve	values	for	that	property.	You	can	obtain	the
IKsControl	interface	for	a	port	by	calling	the
IDirectMusicPort8::QueryInterface	method,	passing	IID_IKsControl	as	the
interface	identifier.

A	property	set	is	represented	by	a	GUID,	and	each	item	within	the	set	is
represented	by	a	zero-based	index.	The	meaning	of	the	indexed	items	for	a
GUID	never	changes.	For	a	list	of	the	property	sets	supported	by	DirectMusic,
see	KSPROPERTY.

All	property	sets	predefined	by	DirectMusic	have	only	one	item,	usually	at	index
0.	However,	the	full	definition	of	kernel-streaming	(KS)	properties	is	supported,
and	vendors	are	free	to	create	property	sets	with	any	number	of	items	and
instances,	and	data	of	any	size.

Routing	of	the	property	item	request	to	the	port	varies	depending	on	the	port
implementation.	No	properties	are	supported	by	ports	that	represent	DirectMusic
emulation	over	the	Win32®	handle-based	multimedia	calls	(the	midiOut	and
midiIn	functions).

The	following	code	example	uses	the	IKsControl::KsProperty	method	to
determine	if	the	port	supports	General	MIDI	in	hardware:

#include	<dmksctrl.h>

BOOL	IsGMSupported(IDirectMusicPort8	*pPort)	

{	

		HRESULT			hr;	

		IKsControl		*pControl;	

		KSPROPERTY		ksp;	

		DWORD			dwFlags;	

		ULONG			cb;	

		BOOL				fIsSupported;

	

		hr	=	pPort->QueryInterface(IID_IKsControl,	(void**)&pControl);	

		if	(FAILED(hr))	

		{	

				//	Port	does	not	support	properties;	assume	no	GM	support.

				return	FALSE;	

		}

		ksp.Set	=	GUID_DMUS_PROP_GM_Hardware;	

		ksp.Id		=	0;	

		ksp.Flags	=	KSPROPERTY_TYPE_BASICSUPPORT;

		hr	=	pControl->KsProperty(&ksp,	sizeof(ksp),

				&dwFlags,	sizeof(dwFlags),	&cb);

		fIsSupported	=	FALSE;	

		if	((SUCCEEDED(hr))	||	(cb	>=	sizeof(dwFlags)))

		{

				//	Set	is	supported.

				fIsSupported	=	(BOOL)(dwFlags	&	KSPROPERTY_TYPE_GET);

		}

		pControl->Release();

		return	fIsSupported;

}

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Related	Software
This	section	contains	brief	descriptions	of	software	distributed	with	the	DirectX
SDK	that	can	be	used	in	the	development	of	DirectMusic	applications.	The
following	software	is	described:

DirectMusic	Producer
DirectMusic	Style	Library
DirectMusic	Tool	Wizard

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Producer
Microsoft	DirectMusic	Producer	is	a	powerful	authoring	application	included
with	the	DirectX	SDK.	Its	enables	composers	and	sound	designers	to	create	most
elements	of	a	dynamic	soundtrack,	including	the	following:

Audiopath	configurations
Bands
Chordmaps
Downloadable	Sounds	collections
Scripts
Toolgraphs
Styles	and	style-based	segments
MIDI-based	segments
Waveform-based	segments

For	more	information,	see	the	DirectMusic	Producer	Help.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Style	Library
The	DirectX	SDK	includes	many	sample	DirectMusic	styles	and	an	application,
StylePlayer,	that	enables	you	to	audition	these	styles	with	different	chordmaps,
bands,	shapes,	and	motifs.

The	style	library	and	StylePlayer	are	found	in	the	Essentials	folder	on	the
DirectX	CD.	To	use	them,	copy	the	DirectMusic	Style	Library	folder	to	your
hard	disk.

For	more	information,	see	the	StylePlayer.txt	file.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Tool	Wizard
The	DirectMusic	Tool	Wizard	simplifies	the	task	of	creating	a	custom	tool	that
can	be	inserted	in	DirectMusic	Producer	or	in	a	DirectMusic	application	to
intercept	and	process	performance	messages.

Microsoft	Visual	C++®	6.0	is	required	to	run	the	wizard.	Select	New	from	the
File	menu,	and	then	select	DirectMusic	Tool	Wizard	from	the	Projects	tab	of	the
New	dialog	box.

The	wizard	creates	a	ready-to-compile	project	containing	C++	code	that	handles
the	basic	COM	component	creation	and	DLL	registration	as	well	as	the	entry
point	for	the	DLL.	In	addition,	the	wizard	generates	the	tool's	implementation
class	with	basic	services	already	in	place.	After	the	project	is	created,	you	must
add	code	that	implements	the	tool's	functionality.

For	more	information,	see	the	Help	for	the	wizard.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	C++	Samples
The	sample	applications	described	in	this	section	demonstrate	the	use	and
capabilities	of	the	Microsoft®	DirectMusic®	application	programming	interface
(API)	in	Microsoft®	DirectX®	for	C++.

The	following	samples	are	found	on	the	Start	menu	under	Programs/Microsoft
DirectX	9.0	SDK/C++	Samples/DirectMusic	Samples.

3D	Audio	Sample
Audio	Path	Sample
Audio	Scripts	Sample
AudioFX	Sample
Cross	Fade	Sample
Music	Tool	Sample
Play	Audio	Sample
Play	Motif	Sample
Play	Multi	Sample

The	source	code	is	in	the	following	folder,	where	SDK	root	is	the	installation
folder	for	the	DirectX	SDK,	such	as	C:\DXSDK:

(SDK	root)\samples\C++\DirectMusic

In	addition	to	these	samples,	the	source	files	for	tutorial	applications	are
contained	in	the	following	folder:

(SDK	root)\samples\C++\DirectMusic\Tutorials

For	more	information,	see	DirectMusic	C++	Tutorials.

The	samples	other	than	the	tutorials	use	common	source	files	that	implement
functions	and	classes	for	basic	DirectMusic	and	DirectSound	functionality	and
for	general	tasks	such	as	finding	digital	media	files.	For	more	information,	see
DirectMusic	Sample	Framework.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Sample	Framework
The	core	functionality	for	the	DirectMusic	samples	is	in	a	common	set	of
classes,	declared	in	Dmutil.h	and	implemented	in	Dmutil.cpp.	In	addition,	some
of	the	samples	make	use	of	the	DirectSound	classes	declared	in	Dsutil.h	and
implemented	in	Dsutil.cpp.

These	files	are	found	in	the	following	folders:

(SDK	root)\samples\C++\Common\Include

(SDK	root)\samples\C++\Common\Src

To	use	the	sample	framework,	your	project	must	link	to	Dxerr9.lib	and
Winmm.lib

The	framework	classes	provide	basic	functionality	for	the	samples,	and	you	can
use	them	as	a	starting-point	for	your	own	applications.	However,	they	are	not
intended	to	be	a	full-featured	wrapper	for	the	DirectMusic	API.

The	following	classes	are	used	in	the	samples:

Class Description

CMusicManager	Sample	Class
Contains	methods	for	loading	and
creating	objects,	creating	the
performance,	and	managing	memory.

CMusicScript	Sample	Class
Represents	a	script,	and	contains
methods	for	getting	and	setting
variables	and	calling	routines.

C3DMusicSegment	Sample	Class
Represents	a	segment	playing	on	a	3-D
audiopath.	Inherits	from
CMusicSegment.

CMusicSegment	Sample	Class

Represents	a	segment,	and	contains
methods	for	downloading	and
unloading	instruments,	playing	and
stopping	the	segment,	and	retrieving	a
style	from	the	segment.

See	Also

DirectMusic	C++	Samples

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

CMusicManager	Sample	Class
The	CMusicManager	sample	class	contains	methods	for	loading	and	creating
objects,	creating	the	performance,	and	managing	memory.

class	CMusicManager

{

protected:

				BOOL																						m_bCleanupCOM;

				IDirectMusicLoader8*						m_pLoader;

				IDirectMusicPerformance8*	m_pPerformance;

				IDirectSound3DListener*			m_pDSListener;

				DS3DLISTENER														m_dsListenerParams;

public:

				CMusicManager();

				~CMusicManager();

				inline	IDirectMusicLoader8*		GetLoader()

								{	return	m_pLoader;	}

				inline	IDirectMusicPerformance8*	GetPerformance()

								{	return	m_pPerformance;	}

				inline	IDirectSound3DListener*			GetListener()

								{	return	m_pDSListener;	}

				IDirectMusicAudioPath8*	GetDefaultAudioPath();

				HRESULT	Initialize(HWND	hWnd,	DWORD	dwPChannels	=	128,	

								DWORD	dwDefaultPathType	=	DMUS_APATH_DYNAMIC_STEREO,	

								LPDIRECTSOUND	pDS	=	NULL);

				HRESULT	SetSearchDirectory(const	TCHAR*	strMediaPath);

				VOID				CollectGarbage();

				VOID				StopAll();

				HRESULT	CreateSegmentFromFile(CMusicSegment**	ppSegment,	

								TCHAR*	strFileName,	BOOL	bDownloadNow	=	TRUE,	

								BOOL	bIsMidiFile	=	FALSE);

				HRESULT	Create3DSegmentFromFile(C3DMusicSegment**	ppSegment,

								TCHAR*	strFileName,	BOOL	bDownloadNow	=	TRUE,	

								BOOL	bIsMidiFile	=	FALSE,	IDirectMusicAudioPath8*	p3DAudioPath

				HRESULT	CreateScriptFromFile(CMusicScript**	ppScript,	

								TCHAR*	strFileName);

				HRESULT	CreateChordMapFromFile(IDirectMusicChordMap8**	ppChordMap

								TCHAR*	strFileName);

				HRESULT	CreateStyleFromFile(IDirectMusicStyle8**	ppStyle,	

								TCHAR*	strFileName);

				HRESULT	GetMotifFromStyle(IDirectMusicSegment8**	ppMotif,	

								TCHAR*	strStyle,	TCHAR*	wstrMotif);

				HRESULT	CreateSegmentFromResource(CMusicSegment**	ppSegment,	

								TCHAR*	strResource,	TCHAR*	strResourceType,	

								BOOL	bDownloadNow	=	TRUE,	BOOL	bIsMidiFile	=	FALSE);

				VOID	Set3DParameters(FLOAT	fDistanceFactor,	FLOAT	fDopplerFactor

};

Constructor

The	constructor	initializes	COM	and	the	private	data	members.

Public	Methods

The	class	contains	the	following	methods,	in	alphabetical	order.

Method Description

CollectGarbage

Calls	the
IDirectMusicLoader8::CollectGarbage
method,	after	ensuring	that	the	loader	still
exists.

Create3DSegmentFromFile

Loads	an	object	from	a	file	and	encapsulates	it
in	a	C3DMusicSegment	object.	If	instructed	to
do	so,	sets	the	standard	MIDI	file	parameter
and	downloads	instruments.

CreateChordMapFromFile Loads	a	chordmap	from	a	file	and	returns	the
IDirectMusicChordMap8	interface.

CreateScriptFromFile Loads	a	script	from	a	file	and	encapsulates	it	in
a	CMusicScript	object.

CreateSegmentFromFile

Loads	an	object	from	a	file	and	encapsulates	it
in	a	CMusicSegment	object.	If	instructed	to	do
so,	sets	the	standard	MIDI	file	parameter	and
downloads	instruments.

CreateSegmentFromResource

Loads	an	object	from	memory	and
encapsulates	it	in	a	CMusicSegment	object.	If
instructed	to	do	so,	sets	the	standard	MIDI	file
parameter	and	downloads	instruments.

CreateStyleFromFile Loads	a	style	from	a	file	and	returns	the
IDirectMusicStyle8	interface.
Returns	a	pointer	to	the
IDirectMusicAudioPath8	interface	for	the

GetDefaultAudioPath default	audiopath	created	in	the	Initialize
method.

GetListener Returns	a	pointer	to	the	interface.

GetLoader Returns	a	pointer	to	the	IDirectMusicLoader8
interface	obtained	in	the	Initialize	method.

GetMotifFromStyle Loads	a	motif	from	a	style	file	and	returns	the
IDirectMusicSegment8	interface.

GetPerformance
Returns	a	pointer	to	the
IDirectMusicPerformance8	interface
obtained	in	the	Initialize	method.

Initialize

Creates	the	loader	and	the	performance,	and
initializes	the	performance	with	the	supplied
parameters.	Note	that	in	most	cases	pDs	can	be
NULL.

Set3DParameters Sets	the	distance	factor,	Doppler	factor,	and
rolloff	factor.

SetSearchDirectory Sets	the	search	directory	for	all	types	of
objects.

StopAll
Stops	all	playing	segments	by	calling
IDirectMusicPerformance8::Stop,	after
ensuring	that	the	performance	still	exists.

The	class	is	implemented	in	(SDK	root)\samples\C++\Common\Src\Dmutil.cpp.

See	Also

DirectMusic	Sample	Framework

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

CMusicScript	Sample	Class
The	CMusicScript	sample	class	represents	a	script,	and	contains	methods	for
getting	and	setting	variables	and	calling	routines.

class	CMusicScript

{

protected:

				IDirectMusicScript8*						m_pScript;

				IDirectMusicLoader8*						m_pLoader;

				IDirectMusicPerformance8*	m_pPerformance;

public:

				CMusicScript(IDirectMusicPerformance8*	pPerformance,	

																		IDirectMusicLoader8*	pLoader,

																		IDirectMusicScript8*	pScript);

				virtual	~CMusicScript();

				inline		IDirectMusicScript8*	GetScript()	{	return	m_pScript;	}

				HRESULT	CallRoutine(TCHAR*	strRoutine);

				HRESULT	SetVariableNumber(TCHAR*	strVariable,	LONG	lValue);

				HRESULT	GetVariableNumber(TCHAR*	strVariable,	LONG*	plValue);

				HRESULT	SetVariableObject(TCHAR*	strVariable,	IUnknown	*punkValue

				HRESULT	GetVariableObject(TCHAR*	strVariable,	REFIID	riid,	

								LPVOID	FAR	*ppv);

};

Constructor

The	constructor	stores	pointers	to	the	loader,	performance,	and	script	objects.

Public	Methods

The	class	contains	the	following	public	methods,	in	alphabetical	order.

Method Description

CallRoutine Calls	IDirectMusicScript8::CallRoutine,	after
doing	any	necessary	string	type	conversion.

GetScript Returns	the	IDirectMusicScript8	interface	pointer.

GetVariableNumber
Calls
IDirectMusicScript8::GetVariableNumber,	after

doing	any	necessary	string	type	conversion.

GetVariableObject Calls	IDirectMusicScript8::GetVariableObject,
after	doing	any	necessary	string	type	conversion.

SetVariableNumber Calls	IDirectMusicScript8::SetVariableNumber,
after	doing	any	necessary	string	type	conversion.

SetVariableObject Calls	IDirectMusicScript8::SetVariableObject,
after	doing	any	necessary	string	type	conversion.

The	class	is	implemented	in	(SDK	root)\samples\C++\Common\Src\Dmutil.cpp.

See	Also

DirectMusic	Sample	Framework

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

C3DMusicSegment	Sample	Class
The	C3DMusicSegment	sample	class	represents	a	segment	playing	on	a	3-D
audiopath.

class	C3DMusicSegment	:	public	CMusicSegment

{

protected:

				IDirectMusicAudioPath8*	m_p3DAudioPath;

				IDirectSound3DBuffer*			m_pDS3DBuffer;

				DS3DBUFFER														m_dsBufferParams;

				BOOL																				m_bDeferSettings;

				BOOL																				m_bCleanupAudioPath;

public:

				C3DMusicSegment(IDirectMusicPerformance8*	pPerformance,	

																			IDirectMusicLoader8*	pLoader,

																			IDirectMusicSegment8*	pSegment,

																			IDirectMusicAudioPath8*	pAudioPath);

				virtual	~C3DMusicSegment();

				HRESULT	Init();

				IDirectMusicAudioPath8*	GetAudioPath()	{	return	m_p3DAudioPath;	}

				HRESULT	Play(DWORD	dwFlags	=	DMUS_SEGF_SECONDARY,	

												IDirectMusicAudioPath8*	pAudioPath	=	NULL);

				VOID	Set3DParameters(FLOAT	fMinDistance,	FLOAT	fMaxDistance);

				VOID	SetObjectProperties(D3DVECTOR*	pvPosition,	D3DVECTOR*	pvVelocity

};

Constructor

The	constructor	stores	pointers	to	the	performance,	loader,	segment,	and
audiopath	objects.

Public	Methods

In	addition	to	the	methods	inherited	from	CMusicSegment,	the	class	contains
the	following	public	methods,	in	alphabetical	order.

Method Description

GetAudioPath Returns	a	pointer	to	the	IDirectMusicAudioPath8
interface	in	the	m_p3DAudioPath	member.

Init
Creates	a	3-D	audiopath	if	one	is	not	already	associated
with	the	segment,	and	retrieves	the	3-D	buffer	in	the
m_pDS3DBuffer	member.

Play
Plays	the	segment,	using	the	specified	flags	and
audiopath.	If	no	audiopath	is	specified,	the	audiopath	in
the	m_p3DAudioPath	member	is	used.

Set3DParameters Sets	the	minimum	and	maximum	distances	for	the	3-D
buffer.

SetObjectProperties Sets	the	position	and	velocity	of	the	3-D	buffer.

The	class	is	implemented	in	(SDK	root)\samples\C++\Common\Src\Dmutil.cpp.

See	Also

DirectMusic	Sample	Framework

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

CMusicSegment	Sample	Class
The	CMusicSegment	sample	class	represents	a	segment,	and	contains	methods
for	downloading	and	unloading	instruments,	playing	and	stopping	the	segment,
and	retrieving	a	style	from	the	segment.

class	CMusicSegment

{

protected:

				IDirectMusicSegment8*					m_pSegment;

				IDirectMusicLoader8*						m_pLoader;

				IDirectMusicPerformance8*	m_pPerformance;

				IDirectMusicAudioPath8*			m_pEmbeddedAudioPath;

				BOOL																						m_bDownloaded;

public:

				CMusicSegment(IDirectMusicPerformance8*	pPerformance,	

																		IDirectMusicLoader8*	pLoader,

																		IDirectMusicSegment8*	pSegment);

				virtual	~CMusicSegment();

	

				inline		IDirectMusicSegment8*	GetSegment()	{	return	m_pSegment;	}

				HRESULT	GetStyle(IDirectMusicStyle8**	ppStyle,	

								DWORD	dwStyleIndex	=	0);

				HRESULT	SetRepeats(DWORD	dwRepeats);

				HRESULT	Play(DWORD	dwFlags	=	DMUS_SEGF_SECONDARY,

								IDirectMusicAudioPath8*	pAudioPath	=	NULL);

				HRESULT	Stop(DWORD	dwFlags	=	0);

				HRESULT	Download(IDirectMusicAudioPath8*	pAudioPath	=	NULL);

				HRESULT	Unload(IDirectMusicAudioPath8*	pAudioPath	=	NULL);

				BOOL				IsPlaying();

};

Constructor

The	constructor	stores	pointers	to	the	performance,	loader,	and	segment	objects.
It	also	attempts	to	create	an	audiopath	from	an	audiopath	configuration
embedded	in	the	segment.

Public	Methods

The	class	contains	the	following	public	methods,	in	alphabetical	order.

Method Description

Download

Downloads	the	segment's	instruments	to	the	supplied
audiopath.	If	no	audiopath	is	supplied,	this	method
downloads	to	the	embedded	audiopath	if	there	is	one,	or
to	the	performance	otherwise.

GetSegment Retrieves	the	IDirectMusicSegment8	interface	pointer.

GetStyle Retrieves	a	style	in	the	segment,	if	the	segment	has	a
style	track.

IsPlaying
Returns	a	Boolean	variable	that	specifies	whether	the
segment	is	playing.	This	method	calls
IDirectMusicPerformance8::IsPlaying.

Play

Plays	the	segment,	using	the	specified	flags	and
audiopath.	If	no	audiopath	is	specified,	this	method	plays
on	the	embedded	audiopath	if	there	is	one,	or	on	the
default	audiopath	otherwise.	The	method	fails	if	the
instruments	have	not	been	downloaded.

SetRepeats Calls	IDirectMusicSegment8::SetRepeats.

Unload

Unloads	instruments	from	the	specified	audiopath.	If	no
audiopath	is	specified,	this	method	unloads	from	the
embedded	audiopath	if	there	is	one,	or	from	the
performance	otherwise.

The	class	is	implemented	in	(SDK	root)\samples\C++\Common\Src\Dmutil.cpp.

See	Also

DirectMusic	Sample	Framework

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

3D	Audio	Sample
The	3D	Audio	sample	application	shows	how	to	create	a	3-D	audiopath	in	a
DirectMusic	performance,	how	to	obtain	an	interface	to	a	3-D	buffer	and	listener
in	that	path,	and	how	to	modify	the	parameters	of	the	buffer	and	listener.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\3DAudio

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Click	Open	File	and	load	a	WAV,	MIDI,	or	DirectMusic	segment	file.	Play	the
segment.	The	position	of	the	sound	source	is	shown	as	a	red	dot	on	the	graph,
where	the	x-axis	is	from	left	to	right	and	the	z-axis	is	from	bottom	to	top.
Change	the	range	of	movement	on	the	two	axes	by	using	the	sliders.

The	listener	is	located	at	the	center	of	the	graph,	and	has	its	default	orientation,
looking	along	the	positive	z-axis;	that	is,	toward	the	top	of	the	screen.	The	sound
source	moves	to	the	listener's	left	and	right	and	to	the	listener's	front	and	rear,
but	does	not	move	above	and	below	the	listener.

The	sliders	in	the	center	of	the	window	control	the	properties	of	the	listener;	that
is,	the	global	sound	properties.	If	you	click	Defer	Settings,	changes	are	not
applied	until	you	click	Apply	Settings.

Programming	Notes

The	3D	Audio	sample	is	very	similar	in	form	to	the	Play	Audio	Sample.

See	Also

DirectMusic	C++	Samples
Retrieving	Objects	from	an	Audiopath

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Audio	Path	Sample
The	Audio	Path	sample	demonstrates	how	different	sounds	can	be	played	on	an
audiopath,	and	how	the	parameters	of	all	sounds	are	affected	by	changes	made
on	the	audiopath.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\AudioPath

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Click	Lullaby,	Snore,	and	Mumble	to	play	different	sounds.	Adjust	the	3-D
position	of	the	sounds	by	using	the	sliders.	Click	Rude	Awakening	to	play	a
different	sound	and	stop	all	other	sounds.

Programming	Notes

This	sample	is	very	similar	in	form	to	the	Play	Audio	Sample.	The	Audio	Path
sample	differs	by	showing	some	of	the	various	uses	of	an	audiopath.

On	WM_INITDIALOG,	the	OnInitDialog	function	does	the	following:

1.	 Calls	IDirectMusicPerformance8::CreateStandardAudioPath,	passing
in	DMUS_APATH_DYNAMIC_3D	to	create	a	3-D	audiopath.	The	created
IDirectMusicAudioPath8	interface	is	pointed	to	by	g_p3DAudiopath.

2.	 Uses	the	CMusicManager	framework	class	to	create	CMusicSegment
objects	from	a	list	of	files.

3.	 Gets	the	IDirectSound3DListener8	interface	from	the	audiopath.
4.	 Calls	IDirectSound3DListener8::SetRolloffFactor	to	change	the	rate	at

which	the	amplitude	of	sounds	diminishes	over	distance.

When	the	3-D	position	slider	is	changed,	the	SetPosition	function	does	the
following:

1.	 Calls	IDirectMusicAudioPath8::GetObjectInPath	to	retrieve	the

IDirectSound3DBuffer8	interface.
2.	 Calls	IDirectSound3DBuffer8::SetPosition	to	set	the	position	of	the

buffer.
3.	 Releases	the	buffer.

When	a	segment	is	played,	the	PlaySegment	function	does	one	of	the	following:

If	the	Lullaby	button	was	clicked,	the	segment	is	played	on	the	audiopath
as	the	primary	segment.
If	Snore	or	Mumble	was	clicked,	a	secondary	segment	is	played.
If	Rude	Awakening	was	clicked,	all	sounds	on	the	audiopath	are	stopped
because	the	audiopath	is	passed	to
IDirectMusicPerformance8::PlaySegmentEx	as	the	pFrom	parameter.
The	alarm	sound	is	then	played	as	a	new	primary	segment.

See	Also

DirectMusic	C++	Samples
Using	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Audio	Scripts	Sample
The	Audio	Scripts	sample	demonstrates	how	an	application	and	a	DirectMusic
script	work	together.	The	script	reads	and	writes	to	variables	in	the	application,
and	the	application	calls	routines	in	the	script	that	play	segments.

The	sample	also	demonstrates	how	waveforms	can	be	played	as	variations	in	a
segment.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\AudioScripts

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Select	ScriptDemoBasic.spt	from	the	Script	File	list	box.	Play	a	segment	by
clicking	Routine	1.	Click	Routine	2	to	play	an	ending	and	to	stop	playback.
Play	the	segment	again	and	click	Routine	3	several	times.	Note	how	Variable	1
reflects	the	number	of	times	the	button	has	been	clicked,	and	how	the	music
changes	in	response	to	each	click.

Select	ScriptDemoBaseball.spt	from	the	Script	File	list	box.	Click	Routine	1	to
play	various	calls	from	a	vendor.	Click	Routine	2	to	play	various	musical
motifs.	Change	the	score	by	entering	different	values	in	the	Variable	1	and
Variable	2	text	boxes.	Click	Routine	3	to	hear	the	score.

See	Also

DirectMusic	C++	Samples
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

AudioFX	Sample
The	AudioFX	sample	shows	how	to	use	DMOs	on	DirectMusic	audiopaths	to
add	effects	to	sounds,	and	how	to	set	effect	parameters.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\AudioFX

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

A	default	sound	file	is	loaded	when	the	application	is	run.	You	can	load	a
different	one	by	clicking	Open	File.

At	first,	no	effects	are	enabled.	Click	Play	to	hear	the	sound	without	effects.

Click	Stop	to	stop	the	buffer.	Apply	one	or	more	effects	by	selecting	checkboxes
in	the	Enable	column.	Play	the	sound	again.

To	adjust	parameters	for	an	effect,	select	an	option	button	in	the	Adjust	column
and	change	the	values	in	the	frame	on	the	right	side	of	the	window.	This	can	be
done	regardless	of	whether	the	sound	is	playing	and	regardless	of	whether	the
effect	has	been	applied	yet.

Programming	Notes

The	application	implements	a	CSoundFXManager	class	to	manage	effects.	In
the	CSoundFXManager::Initialize	method,	it	retrieves	an
IDirectSoundBuffer8	interface	from	the	audiopath.	This	interface	is	used	to	set
effects	on	the	buffer	in	the	CSoundFXManager::ActivateFX	method.	Effect
parameters	are	set	in	the	OnEffectChanged	function	in	response	to	messages
from	the	interface.

See	Also

DirectMusic	C++	Samples

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Cross	Fade	Sample
The	Cross	Fade	sample	shows	how	to	fade	out	one	segment	while	fading	in
another.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\CrossFade

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Click	Play	to	play	Segment	1.	Click	Crossfade	to	fade	out	Segment	1	and	fade
in	Segment	2.	Click	Crossfade	again	to	fade	out	Segment	2	and	fade	in	Segment
1.	You	can	load	different	segments	by	using	the	Browse	buttons.

Programming	Notes

The	fade	is	achieved	by	playing	the	two	segments	on	different	audiopaths,	whose
volumes	can	be	controlled	separately	by	sending	DMUS_CURVE_PMSG
messages.	The	IDirectMusicAudioPath8::SetVolume	method	could	be	used
instead,	but	it	does	not	give	any	control	over	scheduling	the	curve.	By	using	a
curve	message,	the	sample	can	put	the	starting	point	of	the	fade	slightly	in	the
future	and	make	sure	fading	of	both	audiopaths	happens	at	exactly	the	same
time.

See	Also

DirectMusic	C++	Samples
Curves
Using	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Music	Tool	Sample
The	Music	Tool	sample	demonstrates	how	to	implement	a	DirectMusic	tool	that
intercepts	messages.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\MusicTool

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Play	the	default	segment,	or	choose	another	WAV,	MIDI,	or	DirectMusic
segment	file	by	clicking	Open	File.	Select	a	tool	from	the	drop-down	list.	The
Echo	Tool	adds	an	echo	to	the	sound.	The	Measure	Tool	causes	the	square	to	the
right	of	the	drop-down	list	to	flash	green	on	every	beat,	and	red	on	every
measure	boundary.

Programming	Notes

The	tools	are	implemented	in	Echotool.cpp	and	Meastool.cpp.	The	Echo	Tool
works	by	copying	messages	and	sending	the	copies	to	a	different	channel	group.
The	Measure	Tool	responds	to	notifications	of	type
GUID_NOTIFICATION_MEASUREANDBEAT.	Notifications	don't	have	to	be
intercepted	by	tools;	they	can	also	be	retrieved	by	using
IDirectMusicPerformance8::GetNotificationPMsg,	as	in	the	Play	Audio
Sample.

See	Also

DirectMusic	C++	Samples
DirectMusic	Tools
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Play	Audio	Sample
The	Play	Audio	sample	shows	how	to	load	a	segment	and	play	it	on	an
audiopath,	how	to	use	DirectMusic	notifications,	and	how	to	change	global
performance	parameters.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\PlayAudio

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Play	the	default	segment,	or	load	another	WAV,	MIDI,	or	DirectMusic	segment
file	by	clicking	Open	File.	Adjust	the	tempo	and	volume	by	using	the	sliders.
The	tempo	cannot	be	adjusted	for	WAV	files.

Programming	Notes

The	OnInitDialog	function	does	the	following:

1.	 Creates	an	event,	g_hDMusicMessageEvent.	This	will	be	used	by
DirectMusic	to	signal	the	application	whenever	a	DirectMusic	notification
comes	in.

2.	 Creates	an	object	of	class	CMusicManager	called	g_pMusicManager.
3.	 Initializes	the	CMusicManager	object.	This	does	the	following:

Creates	IDirectMusicLoader8	by	using	CoCreateInstance.
Creates	IDirectMusicPerformance8	by	using	CoCreateInstance.
Calls	IDirectMusicPerformance8::InitAudio	to	initialize	the
performance	and	create	a	standard	audiopath.

4.	 Calls	IDirectMusicPerformance8::AddNotificationType,requesting
notifications	of	type	GUID_NOTIFICATION_SEGMENT.	DirectMusic
will	notify	the	application	of	all	segment	events	so	it	can	ascertain	when	the
segment	has	ended.

5.	 Calls	IDirectMusicPerformance8::SetNotificationHandle,	passing	in	the
event	whose	handle	is	in	g_hDMusicMessageEvent.	This	tells	DirectMusic

to	signal	this	event	when	a	notification	is	available.

The	WinMain	function	performs	the	following	tasks:

1.	 Creates	the	window	by	using	CreateDialog.
2.	 In	the	messasge	loop,	calls	MsgWaitForMultipleObjects,	passing	in
g_hDMusicMessageEvent.	This	will	tell	us	when	g_hDMusicMessageEvent
is	signaled.	DirectMusic	signals	this	event	whenever	a	DirectMusic
notification	has	come	in.

3.	 If	WAIT_OBJECT_0	is	returned,	calls	ProcessDirectMusicMessages.
4.	 If	WAIT_OBJECT_0	+	1	is	returned,	Windows	messages	are	available.	The

function	does	standard	message	processing	by	using	PeekMessage.

When	Open	File	is	clicked,	the	OnOpenSoundFile	function	performs	the
following	tasks:

1.	 Gets	the	file	name.
2.	 Releases	any	previously	created	segment.
3.	 Calls	CMusicManager::CollectGarbage	in	Dmutil.cpp.	This	calls

IDirectMusicLoader8::CollectGarbage,	which	ensures	that	unused
objects	are	released.	See	Garbage	Collection.

4.	 Calls	CMusicManager::SetSearchDirectory.	This	calls
IDirectMusicLoader8::SetSearchDirectory,	passing	in
GUID_DirectMusicAllTypes	and	a	directory.	This	tells	DirectMusic	where
to	look	for	files	referenced	by	segments.

5.	 Calls	CMusicManager::CreateSegmentFromFile	to	create	a
CMusicSegment	called	g_pMusicSegment.	This	entails	the	following	steps:

Call	IDirectMusicLoader8::LoadObjectFromFile	to	load	the
IDirectMusicSegment8	into	pSegment.
Create	a	CMusicSegment,	passing	in	pSegment.
If	the	file	is	a	pure	MIDI	file,	call
IDirectMusicSegment8::SetParam,	passing	in
GUID_StandardMIDIFile.	This	ensures	that	the	file	is	played
correctly.
Call	IDirectMusicSegment8::Download,	which	downloads	the
segment's	bands	to	the	synthesizer.	Some	applications	might	want	to
wait	before	downloading,	because	the	more	instruments	are
downloaded,	the	more	memory	is	required.

When	Play	is	clicked,	the	OnPlayAudio	function	does	the	following:

1.	 If	the	sound	is	to	be	looped,	calls	CMusicSegment::SetRepeats,	passing	in
DMUS_SEG_REPEAT_INFINITE.	Otherwise	repeats	are	set	to	zero.

2.	 Call	CMusicSegment::Play,	which	calls
IDirectMusicPerformance8::PlaySegmentEx.

When	a	notification	is	signaled,	the	ProcessDirectMusicMessages	function
looks	for	a	message	indicating	that	a	segment	has	stopped.	It	performs	the
following	tasks:

1.	 Calls	IDirectMusicPerformance8::GetNotificationPMsg	in	a	loop	to
process	each	available	message.	The	loop	tests	for	S_OK,	because
S_FALSE	is	returned	when	no	more	messages	are	available.

2.	 If	the	dwNotificationOption	of	the	DMUS_NOTIFICATION_PMSG
structure	is	DMUS_NOTIFICATION_SEGEND,	calls	QueryInterface	on
the	punkUser	member	to	obtain	the	IDirectMusicSegmentState8	interface
of	the	segment	instance	that	ended.	The	segment	itself	is	obtained	by	using
IDirectMusicSegmentState8::GetSegment.	This	method	returns
IDirectMusicSegment,	and	QueryInterface	must	be	used	to	obtain
IDirectMusicSegment8.	The	application	then	compares	this	pointer	to	the
global	primary	segment	pointer,	to	ensure	that	it	was	indeed	the	primary
segment	that	stopped.	Segments	authored	in	DirectMusic	Producer	can
trigger	other	segments,	so	we	can't	be	sure	that	only	the	primary	segment
was	playing.

3.	 Cleans	up	all	the	interfaces.

See	Also

DirectMusic	C++	Samples

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Play	Motif	Sample
The	Play	Motif	sample	demonstrates	how	a	motif	played	as	a	secondary	segment
can	be	aligned	to	the	rhythm	of	the	primary	segment	in	various	ways.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\PlayMotif

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Play	the	default	segment,	or	load	another	DirectMusic	segment	based	on	a	style
that	contains	motifs.	Select	one	of	the	patterns	in	the	list	box	and	one	of	the
Align	Option	buttons,	and	then	click	Play	Motif.	Note	how	the	motif	does	not
begin	playing	until	an	appropriate	boundary	in	the	primary	segment	has	been
reached.

Programming	Notes

The	Play	Motif	sample	is	very	similar	in	form	to	the	Play	Audio	Sample.

When	loading	the	file,	Play	Motif	performs	the	same	steps	as	Play	Audio,	with
the	following	additions	in	the	LoadSegmentFile	function:

1.	 Loops	through	styles	in	the	segment,	searching	it	for	motifs.	It	calls	the
CMusicSegment::GetStyle	method	in	the	sample	framework,	which	in
turn	calls	IDirectMusicSegment8::GetParam,	passing
GUID_IDirectMusicStyle	and	an	incrementing	index	to	get	each	of	the
styles	in	turn.	The	method	fails	when	there	are	no	more	styles.

2.	 For	each	style,	calls	IDirectMusicStyle8::EnumMotif,	passing	an
incrementing	motif	index.	This	call	retrieves	the	motif	name	at	that	index.
When	the	call	returns	S_FALSE,	there	are	no	more	motifs	in	the	style.

3.	 Passes	the	motif	name	to	IDirectMusicStyle8::GetMotif	to	get	an
IDirectMusicSegment8	interface	pointer	to	the	motif,	and	stores	this	as
data	associated	with	the	item	in	the	list	box.

When	Play	Motif	is	clicked,	the	OnPlayMotif	function	performs	the	following
tasks:

1.	 Retrieves	the	desired	alignment	option	from	the	interface.
2.	 Gets	the	selected	motif	from	the	listbox,	along	with	its	MOTIF_NODE	item

data.	The	MOTIF_NODE	structure	keeps	a	count	of	the	number	of	plays
currently	occurring,	as	well	as	a	pointer	to	the	IDirectMusicSegment
interface	of	the	motif.

3.	 Calls	IDirectMusicPerformance8::PlaySegment,	passing	the	motif's
IDirectMusicSegment	and	flags,	including	DMUS_SEGF_SECONDARY
and	any	alignment	option.

DirectMusic	notifications	are	handled	much	as	in	Play	Audio,	but	this
application	also	takes	note	of	any	motif	starting	or	stopping,	and	updates	the	play
count	in	the	MOTIF_NODE	structure.	If	the	play	count	is	greater	than	zero,	then
it	updates	the	user	interface	to	show	that	the	motif	is	playing.

See	Also

DirectMusic	C++	Samples
Using	Motifs

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Play	Multi	Sample
The	Play	Multi	sample	shows	how	to	play	multiple	segments	simultaneously,
one	as	a	primary	segment	and	the	others	as	secondary	segments.

Path

Source:	(SDK	root)\Samples\C++\DirectMusic\PlayMulti

Executable:	(SDK	root)\Samples\C++\DirectMusic\Bin

User's	Guide

Use	the	default	segments,	or	choose	others	by	using	the	Browse	buttons.	The
primary	segment	should	be	style-based	so	that	it	contains	the	rhythmic
information	necessary	for	proper	cuing	of	the	secondary	segments.

Play	the	primary	segment.	Select	a	play	boundary	for	a	secondary	segment	and
play	it.	Notice	that	the	secondary	segment	begins	playing	on	the	specified
boundary.

Select	Controlling	Segment	to	make	a	secondary	segment	the	control	segment.
This	will	have	an	effect	only	if	the	secondary	segment	has	a	mute	track,
command	track,	tempo	track,	or	chord	track.	Try	loading	a	secondary	segment
that	has	a	different	tempo	than	the	primary	segment	and	playing	it	as	the	control
segment.	The	tempo	of	the	primary	segment	changes	to	match	that	of	the
secondary	segment.

Programming	Notes

The	flags	for	IDirectMusicPerformance8::PlaySegmentEx	are	set	in	the
OnPlay	function	and	passed	to	the	CMusicSegment::Play	method	in	the
sample	framework.

See	Also

DirectMusic	C++	Samples
Control	Segments

Using	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	C++	Tutorials
This	section	contains	the	following	tutorials	showing	how	to	implement
Microsoft®	DirectMusic®	in	a	C++	application:

Tutorial	1:	Playing	Audio	Files
Tutorial	2:	Using	Audiopath	Objects

Other,	more	specialized	uses	of	DirectMusic	are	demonstrated	in	the	sample
applications	provided	with	the	SDK.	For	a	description	of	these	samples,	see
DirectMusic	C++	Samples.

Note			For	the	sake	of	simplicity,	the	tutorial	applications	perform	minimal	error
checking	when	calling	DirectX	methods.	Except	for	methods	that	always
succeed,	your	code	should	always	check	the	result	of	method	calls	and	handle
failure	appropriately.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Tutorial	1:	Playing	Audio	Files
This	tutorial	is	a	step-by-step	guide	to	the	most	basic	tasks	in	DirectMusic:
initializing	a	DirectMusic	performance	and	playing	an	audio	file.	The	tutorial	is
presented	in	the	following	steps:

Step	1:	Initialize
Step	2:	Load	a	File
Step	3:	Play	the	File
Step	4:	Close	Down

The	complete	sample	code	for	the	tutorial	is	available	in	the	following	folder:

C:\DXSDK\Samples\C++\DirectMusic\Tutorials\Tutorial1

Note			If	you	installed	the	DirectX	SDK	in	a	different	root	directory,	substitute
the	name	of	that	directory	for	"Dxsdk"	in	the	path.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Step	1:	Initialize
The	following	instructions	are	needed	for	any	application	that	uses	the
DirectMusic	API.	Including	Dmusici.h	also	causes	the	other	necessary	header
files	for	DirectMusic	and	DirectSound	to	be	included.

#define	INITGUID

#include	<dmusici.h>

The	tutorial	uses	three	interface	pointers,	which	are	declared	as	follows:

IDirectMusicLoader8*		g_pLoader											=	NULL;

IDirectMusicPerformance8*	g_pPerformance		=	NULL;

IDirectMusicSegment8*			g_pSegment								=	NULL;

All	the	code	in	this	simple	application	is	included	in	the	WinMain	function.	The
application	has	no	main	window,	so	it	can	proceed	straight	to	the	creation	of
COM	and	two	objects:	the	loader	and	the	performance:.

INT	APIENTRY	WinMain(HINSTANCE	hInst,	HINSTANCE	hPrevInst,	

		LPSTR	pCmdLine,	INT	nCmdShow)

{

		CoInitialize(NULL);

		

		CoCreateInstance(CLSID_DirectMusicLoader,	NULL,	

							CLSCTX_INPROC,	IID_IDirectMusicLoader8,

							(void**)&g_pLoader);

		CoCreateInstance(CLSID_DirectMusicPerformance,	NULL,

							CLSCTX_INPROC,	IID_IDirectMusicPerformance8,

							(void**)&g_pPerformance);

The	next	step	is	to	initialize	the	performance	and	the	synthesizer.	The
IDirectMusicPerformance8::InitAudio	method	performs	the	following	tasks:

Creates	a	DirectMusic	and	a	DirectSound	object.	In	most	cases	you	don't
need	an	interface	to	those	objects,	and	you	can	pass	NULL	in	the	first	two
parameters.
Associates	an	application	window	with	the	DirectSound	object.	Normally
the	handle	of	the	main	application	window	is	passed	as	the	third	parameter,
but	the	tutorial	application	doesn't	have	a	window,	so	it	passes	NULL

instead.
Sets	up	a	default	audiopath	of	a	standard	type.	The	tutorial	requests	a	path
of	type	DMUS_APATH_SHARED_STEREOPLUSREVERB,	which	is
suitable	for	music.
Allocates	a	number	of	performance	channels	to	the	audiopath.	WAV	files
require	only	a	single	performance	channel,	and	MIDI	files	require	up	to	16.
Segments	created	in	DirectMusic	Producer	might	need	more.	No	harm	is
done	by	asking	for	extra	channels.
Specifies	capabilities	and	resources	of	the	synthesizer.	This	can	be	done	in
one	of	two	ways:	by	setting	flags	or	by	supplying	a
DMUS_AUDIOPARAMS	structure	with	more	detailed	information.	Most
applications	set	the	DMUS_AUDIOF_ALL	flag	and	let	DirectMusic	create
the	synthesizer	with	default	parameters.

In	the	tutorial,	the	call	to	InitAudio	is	very	simple:

		g_pPerformance->InitAudio(

				NULL,														//	IDirectMusic	interface	not	needed.

				NULL,														//	IDirectSound	interface	not	needed.

				NULL,														//	Window	handle.

				DMUS_APATH_SHARED_STEREOPLUSREVERB,		//	Default	audiopath	type.

				64,																//	Number	of	performance	channels.

				DMUS_AUDIOF_ALL,			//	Features	on	synthesizer.

				NULL															//	Audio	parameters;	use	defaults.

);

Next:	Step	2:	Load	a	File

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Step	2:	Load	a	File
The	DirectMusic	performance	and	synthesizer	are	now	ready	to	process	sound
data.	To	get	the	data,	the	loader	needs	to	know	where	to	find	it.	Although	a	full
path	can	be	provided	each	time	a	file	is	loaded,	it	is	more	convenient	to	establish
a	default	directory.	Do	this	by	using	the
IDirectMusicLoader8::SetSearchDirectory	method.

In	the	sample	code,	the	path	to	the	default	Windows	media	directory	is	given.
You	can	change	the	value	of	wstrSearchPath	to	get	files	from	a	different	folder.

The	following	code	is	from	the	WinMain	function	in	the	tutorial	sample:

		//	Find	the	Windows	media	directory.

	

		CHAR	strPath[512];

		if(GetWindowsDirectory(strPath,	MAX_PATH+1)	==	0)

								return	0;

		strcat(strPath,	"\\media");

	

	//	Convert	to	Unicode.

	

		WCHAR	wstrSearchPath[MAX_PATH	+	1];

		MultiByteToWideChar(CP_ACP,	0,	strPath,	-1,	

									wstrSearchPath,	MAX_PATH);

		wstrSearchPath[MAX_PATH]	=	0;

		//	Set	the	search	directory.

	

		g_pLoader->SetSearchDirectory(

				GUID_DirectMusicAllTypes,	//	Types	of	files	sought.

				wstrSearchPath,											//	Where	to	look.

				FALSE																					//	Don't	clear	object	data.

);

In	the	call	to	SetSearchDirectory,	the	fClear	parameter	is	set	to	FALSE	because
there	is	no	danger	of	accidentally	reloading	objects	from	the	wrong	directory.
This	is	likely	to	happen	only	if	the	application	is	loading	identically	named
objects	from	different	folders.

Now	that	the	loader	knows	where	to	look	for	the	file,	it	can	load	it	as	a	segment:

		WCHAR	wstrFileName[MAX_PATH]	=	L"ding.wav";

	

		if	(FAILED(g_pLoader->LoadObjectFromFile(

				CLSID_DirectMusicSegment,	//	Class	identifier.

				IID_IDirectMusicSegment8,	//	ID	of	desired	interface.

				wstrFileName,													//	Filename.

				(LPVOID*)	&g_pSegment					//	Pointer	that	receives	interface.

)))

		{

				MessageBox(NULL,	"Media	not	found,	sample	will	now	quit.",	

										"DirectMusic	Tutorial",	MB_OK);

				g_pPerformance->CloseDown();

				g_pLoader->Release();	

				g_pPerformance->Release();

				CoUninitialize();

				return	0;

		}

Next:	Step	3:	Play	the	File

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Step	3:	Play	the	File
The	WAV	file	loaded	in	the	previous	step	is	now	available	to	the	performance
through	its	IDirectMusicSegment8	interface.

Before	a	segment	can	be	played,	its	band	must	be	downloaded	to	the	synthesizer.
As	long	as	you	don't	unload	the	band,	this	step	has	to	be	taken	only	once	for	each
segment	that	uses	a	unique	band.

The	following	code	from	the	WinMain	function	in	the	sample	downloads	the
band	to	the	performance.	Alternatively,	it	could	be	downloaded	to	an	audiopath.
As	long	as	only	a	single	synthesizer	is	in	use,	it	doesn't	matter	which	destination
object	you	choose:

		g_pSegment->Download(g_pPerformance);

To	play	the	file,	pass	the	segment	interface	to
IDirectMusicPerformance8::PlaySegmentEx.	This	method	offers	many
options	for	playback,	but	to	play	a	segment	immediately	on	the	default
audiopath,	all	the	parameters	except	the	first	can	be	NULL	or	0:

		g_pPerformance->PlaySegmentEx(

						g_pSegment,		//	Segment	to	play.

						NULL,								//	Not	used.

						NULL,								//	For	transitions.	

						0,											//	Flags.

						0,											//	Start	time;	0	is	immediate.

						NULL,								//	Pointer	that	receives	segment	state.

						NULL,								//	Object	to	stop.

						NULL									//	Audiopath,	if	not	default.

);		

		MessageBox(NULL,	"Click	OK	to	Exit.",	"Play	Audio",	MB_OK);

	

Next:	Step	4:	Close	Down

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Step	4:	Close	Down
To	exit	an	audio	application	cleanly,	you	must	perform	five	main	steps:

1.	 Stop	any	playing	segments	by	calling	IDirectMusicPerformance8::Stop.
2.	 Unload	any	segments	that	were	downloaded	to	the	synthesizer.
3.	 Close	down	the	performance.	The

IDirectMusicPerformance8::CloseDown	method	performs	miscellaneous
cleanup	tasks	and	releases	internal	references	to	objects.

4.	 Release	all	interfaces.
5.	 Close	COM.

The	following	code	from	the	WinMain	function	in	the	tutorial	sample	is	called
when	the	dialog	box	is	closed.

		g_pPerformance->Stop(

						NULL,	//	Stop	all	segments.

						NULL,	//	Stop	all	segment	states.

						0,				//	Do	it	immediately.

						0					//	Flags.

);

	

		g_pSegment->Unload(g_pPerformance);

		g_pPerformance->CloseDown();

	

		g_pLoader->Release();	

		g_pPerformance->Release();

		g_pSegment->Release();

	

		CoUninitialize();

				

		return	0;		//	Return	value	for	WinMain.

}						//	End	of	WinMain.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Tutorial	2:	Using	Audiopath	Objects
This	tutorial	is	a	guide	to	setting	up	a	DirectMusic	performance	and	retrieving	an
object—in	this	case,	a	3-D	buffer—from	an	audiopath	so	that	sound	parameters
can	be	changed.	The	tutorial	is	presented	in	the	following	steps:

Step	1:	Create	the	Audiopath
Step	2:	Retrieve	the	Buffer
Step	3:	Change	Buffer	Parameters

The	complete	sample	code	for	the	tutorial	is	available	in	the	following	folder:

C:\DXSDK\Samples\C++\DirectMusic\Tutorials\Tutorial2

Note			If	you	installed	the	DirectX	SDK	in	a	different	root	directory,	substitute
the	name	of	that	directory	for	"Dxsdk"	in	the	path.

It	is	assumed	that	you	have	already	learned	the	basic	steps	of	creating	the
performance	and	loader	objects,	and	loading	and	playing	a	file.	These	steps	are
covered	in	Tutorial	1:	Playing	Audio	Files.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Step	1:	Create	the	Audiopath
The	simplest	way	to	create	an	audiopath	is	by	passing	a	flag	to
IDirectMusicPerformance8::InitAudio.	The	tutorial	sample	passes	the
DMUS_APATH_DYNAMIC_STEREO	flag,	causing	InitAudio	to	set	up	a
default	audiopath	that	supports	stereo	sounds:

g_pPerformance->InitAudio(

				NULL,								//	IDirectMusic	interface	not	needed.

				NULL,								//	IDirectSound	interface	not	needed.

				NULL,								//	Window	handle.

				DMUS_APATH_DYNAMIC_STEREO,	//	Default	audiopath	type.

				64,										//	Number	of	performance	channels.

				DMUS_AUDIOF_ALL,					//	Features	on	synthesizer.

				NULL									//	Audio	parameters;	use	defaults.

);

The	default	audiopath	is	suitable	for	sounds	that	do	not	have	to	be	located	in
space,	such	as	background	music	or	narration.	However,	if	an	application
implements	3-D	sound	effects,	it	will	play	each	sound	source	on	its	own
audiopath,	so	that	3-D	parameters	can	be	set	individually.

The	sample	creates	one	such	audiopath	as	follows:

IDirectMusicAudioPath8*	p3DAudioPath	=	NULL;

g_pPerformance->CreateStandardAudioPath(

				DMUS_APATH_DYNAMIC_3D,		//	Path	type.

				64,																					//	Number	of	performance	channels.

				TRUE,																			//	Activate	now.

				&p3DAudioPath											//	Pointer	that	receives	audiopath.

);

A	segment	can	now	be	played	on	this	audiopath	as	follows:

g_pPerformance->PlaySegmentEx(

				g_pSegment,		//	Segment	to	play.

				NULL,								//	Not	used.

				NULL,								//	For	transitions.	

				0,											//	Flags.

				0,											//	Start	time;	0	is	immediate.

				NULL,								//	Pointer	that	receives	segment	state.

				NULL,								//	Object	to	stop.

				p3DAudioPath	//	Audiopath.

);		

Next:	Step	2:	Retrieve	the	Buffer

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Step	2:	Retrieve	the	Buffer
By	using	the	IDirectMusicAudioPath8::GetObjectInPath	method,	you	can
retrieve	interfaces	to	objects	that	form	part	of	the	path.	In	the	case	of	the
DMUS_APATH_DYNAMIC_3D	standard	audiopath	type,	such	objects	could
include	the	secondary	buffer	itself,	the	primary	buffer,	the	DirectSound	listener,
or	any	DMOs	set	on	buffers	after	the	audiopath	was	created.	The	tutorial	sample
obtains	the	IDirectSound3DBuffer8	interface	to	the	buffer:

IDirectSound3DBuffer8*	pDSB	=	NULL;

	

p3DAudioPath->GetObjectInPath(

				DMUS_PCHANNEL_ALL,		//	Performance	channel.

				DMUS_PATH_BUFFER,			//	Stage	in	the	path.

				0,																		//	Index	of	buffer	in	chain.

				GUID_NULL,										//	Class	of	object.

				0,																		//	Index	of	object	in	buffer;	ignored.

				IID_IDirectSound3DBuffer,	//	GUID	of	desired	interface.

				(LPVOID*)	&pDSB					//	Pointer	that	receives	interface.

);

The	parameters	to	IDirectMusicAudioPath8::GetObjectInPath	can	be	a	little
tricky	to	set	up	properly.	For	information	on	which	parameters	are	relevant	for
objects	at	different	stages	in	the	path,	see	Retrieving	Objects	from	an	Audiopath.

In	this	case,	you	are	retrieving	a	secondary	buffer	that	is	used	by	all	performance
channels	on	this	audiopath.	Set	the	dwPChannel	parameter	to
DMUS_PCHANNEL_ALL.

Because	the	buffer	you	want	is	the	first	and	in	this	case	the	only	buffer	in	the
chain,	you	pass	0	as	dwBuffer.	The	DMUS_PATH_BUFFER	stage	contains	only
buffer	objects,	and	not	the	DMOs	attached	to	those	buffers;	therefore	dwIndex	is
ignored.

Next:	Step	3:	Change	Buffer	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Step	3:	Change	Buffer	Parameters
Now	that	you	have	the	IDirectSound3DBuffer8	interface,	you	can	use	it	to
move	the	sound	in	space.	The	tutorial	sample	application	does	so	when	the	user
closes	a	series	of	message	boxes.	For	example,	the	following	code	immediately
moves	the	sound	to	the	left:

pDSB->SetPosition(-0.1f,	0.0f,	0.0f,	DS3D_IMMEDIATE);

The	first	three	parameters	specify	the	new	position	of	the	sound	source	in
relation	to	the	default	listener.	The	default	listener	is	at	coordinates	(0.0,	0.0,
0.0),	facing	toward	the	positive	z-axis,	with	the	top	of	the	head	toward	the
positive	y-axis.	Distance	units	are	meters	by	default.	Because	the	x-axis	is
positive	from	left	to	right,	the	new	position	of	the	sound	is	10	centimeters
directly	to	the	left	of	the	listener.

The	last	parameter	of	the	IDirectSound3DBuffer8::SetPosition	method
specifies	whether	the	change	is	to	be	made	immediately	or	deferred	until	all
changes	are	committed.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	C/C++	Reference
This	section	contains	reference	information	for	the	API	elements	of	Microsoft®
DirectMusic®.	Reference	material	is	divided	into	the	following	categories.

DirectMusic	Interfaces
DirectMusic	Messages
DirectMusic	Structures
DLS	Structures
DirectMusic	File	Format
DirectMusic	File	Structures
Standard	Track	Parameters
DirectMusic	Enumerated	Types
DirectMusic	Return	Values

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Interfaces
This	section	contains	references	for	DirectMusic	COM	interfaces.

Interfaces	in	the	current	version	(other	than	IKsControl	and	IReferenceClock)
are	either	declared	or	defined	with	names	ending	in	8.	To	be	sure	of	using	the
latest	version	of	an	interface,	always	include	this	suffix	when	declaring	the
interface	pointer.

Interfaces	retrieved	by	methods	are	always	the	base	version.	Where	a	newer
version	exists,	you	must	call	QueryInterface	to	obtain	it,	as	in	the	following
example,	where	lpdmBand	is	an	IDirectMusicBand8	interface	pointer:

IDirectMusicSegment	*	lpdmseg;

IDirectMusicSegment8	*	lpdmseg8;

	

HRESULT	hr	=	lpdmBand->CreateSegment(&lpdmseg);

if	(SUCCEEDED(hr))	

{

		hr	=	lpdmseg->QueryInterface(IID_IDirectMusicSegment8,	

				(LPVOID*)&lpdmseg8);

}

Where	there	is	no	new	version	of	an	interface,	the	interface	name	with	the	suffix
8	is	only	a	define.	For	example,	IDirectMusicGraph8	is	equivalent	in	all
respects	to	IDirectMusicGraph.	In	such	cases	it	is	not	necessary	to	query	for	a
new	interface,	but	doing	so	does	no	harm	and	can	make	your	code	easier	to
maintain	for	future	versions	of	DirectX.

For	information	on	which	methods	are	supported	by	earlier	versions	of	an
interface,	see	the	declaration	of	the	interface	in	the	appropriate	header	file.

When	a	method	takes	an	interface	pointer	as	an	in	parameter,	you	can	pass	in	the
newer	version	even	where	the	method	is	declared	as	accepting	the	older	version.
For	example,	a	pointer	to	either	IDirectMusicSegment	or
IDirectMusicSegment8	can	be	passed	to
IDirectMusicPerformance8::PlaySegmentEx.

This	documentation	contains	full	reference	topics	only	for	the	latest	versions	of

interfaces.	Where	a	define	exists,	such	as	IDirectMusicGraph8,	the	interface	is
documented	under	that	name.

Interface Description

IDirectMusic8 Provides	methods	for	managing	buffers,	ports,	and
the	master	clock.

IDirectMusicAudioPath8 Manages	the	stages	of	data	flow	from	the
performance	to	the	final	mixer.	

IDirectMusicBand8 Represents	a	DirectMusic	band	object.

IDirectMusicBuffer8
Represents	a	buffer	containing	time-stamped	data
(typically	in	the	form	of	MIDI	messages)	being
sequenced	to	a	port.

IDirectMusicChordMap8 Represents	a	chordmap.
IDirectMusicCollection8 Manages	an	instance	of	a	DLS	file.
IDirectMusicComposer8 Enables	access	to	the	composition	engine.

IDirectMusicContainer8
Provides	access	to	objects	in	a	container,	which	is	a
collection	of	objects	used	by	a	segment	or
performance.

IDirectMusicDownload8 Represents	a	contiguous	memory	chunk	used	for
downloading	to	a	DLS	synthesizer	port.

IDirectMusicDownloadedInstrument8

Used	to	identify	an	instrument	that	has	been
downloaded	to	the	synthesizer	by	using	the
IDirectMusicPort8::DownloadInstrument
IDirectMusicPerformance8::DownloadInstrument
method.

IDirectMusicGetLoader8
Used	by	an	object	parsing	a	stream	when	the	object
needs	to	load	another	object	referenced	by	the
stream.

IDirectMusicGraph8 Manages	the	loading	and	message	flow	of	tools.

IDirectMusicInstrument8 Represents	an	individual	instrument	from	a	DLS
collection.

IDirectMusicLoader8 Used	for	finding,	enumerating,	caching,	and	loading
objects.

IDirectMusicObject8
Used	by	an	object	parsing	a	stream	when	the	object
needs	to	load	another	object	referenced	by	the
stream.

IDirectMusicPatternTrack8 Represents	a	track	that	contains	a	single	

IDirectMusicPerformance8 Manages	playback.

IDirectMusicPort8 Represents	a	device	that	sends	or	receives	sound
data.

IDirectMusicPortDownload8
Enables	an	application	to	communicate	directly	with
a	port	that	supports	DLS	downloading	and	to
download	memory	chunks	directly	to	the	port.

IDirectMusicScript8
Represents	a	script	containing	variables	that	can	be
set	and	retrieved	by	the	application,	and	routines	that
can	be	called	by	the	application.

IDirectMusicSegment8 Represents	a	segment,	which	is	a	playable	unit	of
data	made	up	of	multiple	tracks.

IDirectMusicSegmentState8 Represents	a	playing	instance	of	a	segment.

IDirectMusicStyle8
Represents	a	style	object,	which	encapsulates	a
collection	of	patterns,	motifs,	and	bands	used	in	run-
time	composition	of	musical	segments.

IDirectMusicSynth Implemented	by	synthesizers.
IDirectMusicSynthSink Implemented	by	synthesizer	sinks.

IDirectMusicThru8 Supports	thruing	of	MIDI	messages	from	a	capture
port	to	another	port.

IDirectMusicTool8 Represents	a	tool	object	that	processes	messages.

IDirectMusicTrack8 Represents	a	track	object,	which	can	store	any	kind
of	data	for	a	segment.

IKsControl Used	to	get,	set,	or	query	the	support	of	properties,
events,	and	methods.

IReferenceClock Represents	a	system	reference	clock.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8	Interface
The	IDirectMusic8	interface	provides	methods	for	managing	buffers,	ports,	and
the	master	clock.	There	should	not	be	more	than	one	instance	of	this	interface
per	application.

IDirectMusic8	supersedes	IDirectMusic	and	adds	a	new	method,
SetExternalMasterClock.

There	is	no	helper	function	to	create	this	interface.	Applications	use	the	COM
CoCreateInstance	function,	the	IDirectMusicPerformance8::Init	method,	or
the	IDirectMusicPerformance8::InitAudio	method	to	create	a	DirectMusic
object.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusic8
interface	exposes	the	following	methods.

Ports

Method Description

Activate Activates	or	deactivates	all	ports
created	from	this	interface.

CreatePort Creates	an	object	for	a	DirectMusic
port.

EnumPort
Enumerates	and	retrieves	the
capabilities	of	the	DirectMusic	ports
connected	to	the	system.

GetDefaultPort Retrieves	the	GUID	of	the	default
output	port.

Timing

Method Description

EnumMasterClock Enumerates	the	clocks	that	DirectMusic
can	use	as	the	master	clock.

GetMasterClock Retrieves	the	GUID	and	a	pointer	to	the
interface	for	the	current	master	clock.

SetExternalMasterClock Sets	the	DirectMusic	master	clock	to	an
existing	clock	object.

SetMasterClock
Sets	the	DirectMusic	master	clock	to	a
clock	identified	by	a	call	to
EnumMasterClock.

Miscellaneous

Method Description

CreateMusicBuffer Creates	an	object	to	hold	messages
being	sequenced	to	the	port.

SetDirectSound
Connects	DirectMusic	to	a	DirectSound
device	object	for	output	from	the
synthesizer.

The	LPDIRECTMUSIC8	type	is	defined	as	a	pointer	to	the	IDirectMusic8
interface:

typedef	IDirectMusic8	*LPDIRECTMUSIC8;

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::Activate

The	Activate	method	activates	or	deactivates	all	ports	created	from	this
interface.

Syntax

HRESULT	Activate(

		BOOL	fEnable

);

Parameters

fEnable

Switch	to	activate	(TRUE)	or	deactivate	(FALSE)	all	port	objects	created	in	this
instance	of	DirectMusic.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DSERR_NODRIVER,	indicating	that	no	sound
driver	is	present.

Remarks

Applications	should	call	Activate(FALSE)	when	they	lose	input	focus	if	they	do
not	need	to	play	sounds	in	the	background.	This	allows	another	application	that
has	the	input	focus	to	have	access	to	the	ports.	When	the	application	has	input
focus	again,	it	should	call	Activate(TRUE)	to	enable	all	its	allocated	ports.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
IDirectMusicPort8::Activate

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::CreateMusicBuffer

The	CreateMusicBuffer	method	creates	a	DirectMusicBuffer	object	to	hold
messages	being	sequenced	to	the	port.	Most	applications	do	not	need	to	call	this
method	directly,	because	buffer	management	is	handled	by	the	performance
when	a	port	is	added.

Syntax

HRESULT	CreateMusicBuffer(

		LPDMUS_BUFFERDESC	pBufferDesc,	

		LPDIRECTMUSICBUFFER*..ppBuffer,	

		LPUNKNOWN	pUnkOuter	

);

Parameters

pBufferDesc

Address	of	the	DMUS_BUFFERDESC	structure	that	contains	the	description
of	the	buffer	to	be	created.	The	application	must	initialize	the	dwSize	member	of
this	structure	before	passing	the	pointer.

ppBuffer

Address	of	a	variable	that	receives	an	IDirectMusicBuffer8	interface	pointer.

pUnkOuter

Address	of	the	controlling	object's	IUnknown	interface	for	COM	aggregation.
Because	aggregation	is	not	currently	supported,	this	value	must	be	set	to	NULL.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
CLASS_E_NOAGGREGATION
E_INVALIDARG
E_NOINTERFACE
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::CreatePort

The	CreatePort	method	creates	an	object	for	a	DirectMusic	port.

Syntax

HRESULT	CreatePort(

		REFCLSID	rclsidPort,

		LPDMUS_PORTPARAMS	pPortParams,

		LPDIRECTMUSICPORT*		ppPort,

		LPUNKNOWN	pUnkOuter

);

Parameters

rclsidPort

Reference	to	(C++)	or	address	of	(C)	the	GUID	that	identifies	the	port	for	which
the	IDirectMusicPort8	interface	is	to	be	created.	The	GUID	is	retrieved	through
the	IDirectMusic8::EnumPort	method.	If	it	is	GUID_NULL,	the	returned	port
is	the	default	port.	For	more	information,	see	Default	Port.

pPortParams

Address	of	a	DMUS_PORTPARAMS8	structure	that	contains	parameters	for
the	port.	The	dwSize	member	of	this	structure	must	be	initialized	to
sizeof(DMUS_PORTPARAMS8)	before	the	method	is	called.

ppPort

Address	of	a	variable	that	receives	an	IDirectMusicPort	interface	pointer.

pUnkOuter

Address	of	the	controlling	object's	IUnknown	interface	for	COM	aggregation.
Because	aggregation	is	not	currently	supported,	this	value	must	be	NULL.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	a	requested
parameter	is	not	available.

If	it	fails,	the	method	can	return	one	of	error	values	in	the	following	table.

Return	code
CLASS_E_NOAGGREGATION
DMUS_E_DSOUND_NOT_SET
E_INVALIDARG
E_NOINTERFACE
E_OUTOFMEMORY
E_POINTER

Remarks

By	default,	the	port	is	inactive	when	it	is	created.	It	must	be	activated	by	a	call	to
IDirectMusic8::Activate	or	IDirectMusicPort8::Activate.

If	not	all	parameters	could	be	obtained,	the	DMUS_PORTPARAMS8	structure
is	changed	as	follows	to	match	the	available	parameters	of	the	port.

On	entry,	the	dwValidParams	member	of	the	structure	indicates	which	members
in	the	structure	are	valid.	If	the	flag	is	not	set	for	a	member	of	the	structure,	a
default	value	is	set	for	that	parameter	when	the	port	is	created.

On	return,	the	flags	in	dwValidParams	show	which	port	parameters	were	set.	If
a	particular	parameter	was	not	requested	but	was	set	to	the	default,	that	flag	is
added	to	those	passed	in.

If	the	port	supports	a	specified	parameter	but	the	given	value	for	the	parameter	is
out	of	range,	the	parameter	value	in	*pPortParams	is	changed.	In	this	case,	the
flag	in	dwValidParams	remains	set,	but	S_FALSE	is	returned	to	indicate	that
the	value	has	been	changed.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
Using	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::EnumMasterClock

The	EnumMasterClock	method	enumerates	the	clocks	that	DirectMusic	can
use	as	the	master	clock.	Each	time	it	is	called,	this	method	retrieves	information
about	a	single	clock.

Syntax

HRESULT	EnumMasterClock(

		DWORD	dwIndex,

		LPDMUS_CLOCKINFO	lpClockInfo

);

Parameters

dwIndex

Index	of	the	clock	for	which	the	description	is	to	be	returned.	This	parameter
should	be	0	on	the	first	call,	and	then	incremented	in	each	subsequent	call	until
S_FALSE	is	returned.

lpClockInfo

Address	of	a	DMUS_CLOCKINFO8	structure	that	receives	the	description	of
the	clock.	The	application	must	initialize	the	dwSize	member	of	this	structure
before	passing	the	pointer.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	there	is	no
clock	with	that	index	number.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG

E_NOINTERFACE
E_POINTER

Remarks

Applications	should	not	rely	on	or	store	the	index	number	of	a	clock.	Rebooting
or	adding	and	removing	hardware	can	cause	the	index	number	of	a	clock	to
change.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
IDirectMusic8::GetMasterClock
IDirectMusic8::SetMasterClock
Master	Clock

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::EnumPort

The	EnumPort	method	enumerates	and	retrieves	the	capabilities	of	the
DirectMusic	ports	connected	to	the	system.	Each	time	it	is	called,	this	method
retrieves	information	about	a	single	port.

Syntax

HRESULT	EnumPort(

		DWORD	dwIndex,	

		LPDMUS_PORTCAPS	pPortCaps	

);

Parameters

dwIndex

Index	of	the	port	for	which	the	capabilities	are	to	be	returned.	This	parameter
should	be	0	on	the	first	call,	and	then	incremented	in	each	subsequent	call	until
S_FALSE	is	returned.

pPortCaps

Address	of	the	DMUS_PORTCAPS	structure	that	receives	the	capabilities	of
the	port.	The	dwSize	member	of	this	structure	must	be	initialized	before	the
pointer	is	passed.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	there	is	no	port
with	that	index	value.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG

E_NOINTERFACE
E_POINTER

Remarks

Applications	should	not	rely	on	or	store	the	index	number	of	a	port.	Restarting
the	system	or	adding	or	removing	ports	could	cause	the	index	number	of	a	port
to	change.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
Using	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::GetDefaultPort

The	GetDefaultPort	method	retrieves	the	GUID	of	the	default	output	port.	This
is	the	port	to	be	created	if	GUID_NULL	is	passed	to
IDirectMusic8::CreatePort.

Syntax

HRESULT	GetDefaultPort(

		LPGUID	pguidPort

);

Parameters

pguidPort

Address	of	a	variable	that	receives	the	default	port	GUID.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

Default	Port
IDirectMusic8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::GetMasterClock

The	GetMasterClock	method	retrieves	the	GUID	and	a	pointer	to	the
IReferenceClock	interface	for	the	clock	that	is	currently	set	as	the	DirectMusic
master	clock.

Syntax

HRESULT	GetMasterClock(

		LPGUID		pguidClock,

		IReferenceClock**		ppReferenceClock

);

Parameters

pguidClock

Address	of	a	variable	that	receives	the	GUID	of	the	master	clock.	The
application	can	pass	NULL	if	this	value	is	not	desired.

ppReferenceClock

Address	of	a	variable	that	receives	the	IReferenceClock	interface	pointer	for
this	clock.	The	application	can	pass	NULL	if	this	value	is	not	desired.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_NOINTERFACE
E_POINTER

Remarks

The	IReferenceClock	interface	pointer	must	be	released	after	the	application
has	finished	using	the	interface.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
IDirectMusic8::SetMasterClock
Master	Clock

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::SetDirectSound

The	SetDirectSound	method	connects	DirectMusic	to	a	DirectSound	device
object	for	output	from	the	synthesizer.

This	method	is	not	used	by	most	applications.	The	DirectSound	device	object	is
normally	created	and	connected	to	the	performance	by
IDirectMusicPerformance8::InitAudio.

Syntax

HRESULT	SetDirectSound(

		LPDIRECTSOUND	pDirectSound,

		HWND	hWnd

);

Parameters

pDirectSound

Address	of	the	IDirectSound8	interface	to	use	for	output.	If	this	parameter	is
NULL,	the	method	creates	a	DirectSound	device	object	and	sets	the
DSSCL_PRIORITY	cooperative	level.	(See	Remarks.)	If	this	parameter	contains
an	IDirectSound	pointer,	the	caller	is	responsible	for	setting	the	cooperative
level.

hWnd

Window	handle	to	the	DirectSound	device	object	created	by	this	call.	If	this
value	is	NULL,	the	current	foreground	window	is	set	as	the	focus	window.	(See
Remarks.)

If	pDirectSound	is	a	valid	interface,	this	parameter	is	ignored.	It	is	the	caller's
responsibility	to	supply	a	valid	window	handle	in	the	call	to
IDirectSound8::SetCooperativeLevel.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DMUS_E_DSOUND_ALREADY_SET.

Remarks

The	specified	DirectSound	device	object	is	the	one	used	for	rendering	audio	on
all	ports.	This	default	can	be	overridden	on	a	particular	port	by	using	the
IDirectMusicPort8::SetDirectSound	method.

Whenever	the	IDirectMusic8::SetDirectSound	method	is	called,	any	existing
DirectSound	device	object	is	released.

When	pDirectSound	is	NULL,	a	new	DirectSound	device	object	is	not	created
until	a	port	that	uses	DirectSound	is	activated,	and	the	DirectSound	device	object
is	automatically	released	when	the	last	port	using	it	is	deactivated.

If	you	created	the	DirectSound	device	object	yourself,	you	can	release	it	by
calling	this	method	with	NULL	in	the	pDirectSound	parameter	after	deactivating
all	ports.	(It	is	an	error	to	call	SetDirectSound	on	an	active	port.)

You	can	pass	NULL	in	the	hWnd	parameter	to	pass	the	current	foreground
window	handle	to	DirectSound.	However,	do	not	assume	that	the	application
window	is	in	the	foreground	during	initialization.	In	general,	the	top-level
application	window	handle	should	be	passed	to	DirectMusic	and	DirectSound.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
IDirectMusicPerformance8::Init

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::SetExternalMasterClock

The	SetExternalMasterClock	method	sets	the	DirectMusic	master	clock	to	an
existing	clock	object.	There	is	only	one	master	clock	for	all	DirectMusic
applications.

Syntax

HRESULT	SetExternalMasterClock(

		IReferenceClock	*pClock

);

Parameters

pClock

IReferenceClock	interface	pointer	that	specifies	the	clock.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DMUS_E_PORTS_OPEN.

Remarks

If	another	running	application	is	also	using	DirectMusic,	it	is	not	possible	to
change	the	master	clock	until	that	application	is	shut	down.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
IDirectMusic8::EnumMasterClock

IDirectMusic8::GetMasterClock
IDirectMusic8::SetMasterClock
Master	Clock

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusic8::SetMasterClock

The	SetMasterClock	method	sets	the	DirectMusic	master	clock	to	a	clock
identified	by	a	GUID	obtained	by	using	the
IDirectMusic8::EnumMasterClock	method.	There	is	only	one	master	clock	for
all	DirectMusic	applications.

Syntax

HRESULT	SetMasterClock(

		REFGUID	rguidClock

);

Parameters

rguidClock

Reference	to	(C++)	or	address	of	(C)	the	GUID	that	identifies	the	clock	to	set	as
the	master	clock	for	DirectMusic.	This	parameter	must	be	a	GUID	returned	by
the	IDirectMusic8::EnumMasterClock	method.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DMUS_E_PORTS_OPEN.

Remarks

If	another	running	application	is	also	using	DirectMusic,	it	is	not	possible	to
change	the	master	clock	until	that	application	is	shut	down.

Most	applications	do	not	need	to	call	SetMasterClock.	It	should	not	be	called
unless	there	is	a	need	to	synchronize	tightly	with	a	hardware	timer	other	than	the
system	clock.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8	Interface
IDirectMusic8::EnumMasterClock
IDirectMusic8::GetMasterClock
IDirectMusic8::SetExternalMasterClock
Master	Clock

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicAudioPath8	Interface
The	IDirectMusicAudioPath8	interface	manages	the	stages	of	data	flow	from
the	performance	to	the	final	mixer.	An	audiopath	can	be	created	from	an
audiopath	configuration	object	by	using	the
IDirectMusicPerformance8::CreateAudioPath	method.	A	standard	audiopath
can	be	created	by	using
IDirectMusicPerformance8::CreateStandardAudioPath.	A	standard	default
path	can	also	be	created	by	IDirectMusicPerformance8::InitAudio	and	then
retrieved	by	using	IDirectMusicPerformance8::GetDefaultAudioPath.

The	IDirectMusicAudioPath8	interface	can	be	passed	to
IDirectMusicPerformance8::PlaySegmentEx	to	play	the	segment	on	that
audiopath.

IDirectMusicAudioPath8	is	a	type	definition	for	IDirectMusicAudioPath.	The
two	interface	names	are	interchangeable.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicAudioPath8	interface	exposes	the	following	methods.

Method Description
Activate Activates	or	deactivates	the	audiopath.

ConvertPChannel

Translates	between	a
performance	channel	in	a	segment	and
the	equivalent	channel	allocated	in	the
performance	for	the	audiopath.

GetObjectInPath Retrieves	an	interface	for	an	object	in
the	audiopath.

SetVolume Sets	the	audio	volume	on	the	audiopath.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
Using	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicAudioPath8::Activate

The	Activate	method	activates	or	deactivates	the	audiopath.

Syntax

HRESULT	Activate(

		BOOL	fActivate

);

Parameters

fActivate

Boolean	that	specifies	whether	to	activate	(TRUE)	or	deactivate	(FALSE)	the
audiopath.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	audiopath
is	already	in	the	requested	state.

Remarks

The	behavior	of	this	method	is	different	from	that	of
IDirectMusicPort8::Activate.	When	a	port	is	deactivated,	it	no	longer	produces
sound,	but	the	performance	can	continue	playing	segments.	When	an	audiopath
is	deactivated,	all	playback	stops	and	any	attempt	to	play	a	segment	will	fail.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicAudioPath8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicAudioPath8::ConvertPChannel

The	ConvertPChannel	method	translates	between	a	performance	channel	in	a
segment	and	the	equivalent	channel	allocated	in	the	performance	for	the
audiopath.	This	method	is	not	typically	needed	by	applications,	but	can	be	used
by	components	such	as	tracks.

Syntax

HRESULT	ConvertPChannel(

		DWORD	dwPChannelIn,

		DWORD	*pdwPChannelOut

);

Parameters

dwPChannelIn

Value	that	specifies	the	performance	channel	to	convert.

pdwPChannelOut

Address	of	a	DWORD	variable	that	receives	the	virtual	performance	channel.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicAudioPath8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicAudioPath8::GetObjectInPath

The	GetObjectInPath	method	retrieves	an	interface	for	an	object	in	the
audiopath.

Syntax

RESULT	GetObjectInPath(

		DWORD	dwPChannel,

		DWORD	dwStage,

		DWORD	dwBuffer,

		REFGUID	guidObject,

		DWORD	dwIndex,

		REFGUID	iidInterface,

		void	**	ppObject

);

Parameters

dwPChannel

Performance	channel	to	search,	or	DMUS_PCHANNEL_ALL	to	search	all
channels.	The	first	channel	is	numbered	0.	(See	Remarks.)

dwStage

Stage	in	the	audiopath.	Can	be	one	of	the	values	in	the	following	table.

Value Description

DMUS_PATH_AUDIOPATH_GRAPH Get	the	audiopath	toolgraph.	One	is
created	if	none	exists.

DMUS_PATH_AUDIOPATH_TOOL Get	a	tool	from	the	audiopath
toolgraph.

DMUS_PATH_BUFFER Get	a	DirectSound	buffer.
DMUS_PATH_BUFFER_DMO Get	a	DMO	in	a	buffer.
DMUS_PATH_MIXIN_BUFFER Get	a	global	mix-in	buffer.

Get	a	DMO	in	a	global	mix-in

DMUS_PATH_MIXIN_BUFFER_DMO buffer.

DMUS_PATH_PERFORMANCE Get	the	performance.

DMUS_PATH_PERFORMANCE_GRAPHGet	the	performance	toolgraph.	One
is	created	if	none	exists.

DMUS_PATH_PERFORMANCE_TOOL Get	a	tool	from	the	performance
toolgraph.

DMUS_PATH_PORT Get	the	synthesizer.
DMUS_PATH_PRIMARY_BUFFER Get	the	primary	buffer.

dwBuffer

Index	of	the	buffer	(if	dwStage	is	DMUS_PATH_BUFFER	or
DMUS_PATH_MIXIN_BUFFER),	or	index	of	the	buffer	in	which	the	DMO
resides	(if	dwStage	is	DMUS_PATH_BUFFER_DMO	or
DMUS_PATH_MIXIN_BUFFER_DMO).

guidObject

Class	identifier	of	the	object,	or	GUID_All_Objects	to	search	for	an	object	of
any	class.	This	parameter	is	ignored	if	only	a	single	class	of	object	can	exist	at
the	stage	specified	by	dwStage,	and	can	be	set	to	GUID_NULL.

dwIndex

Index	of	the	object	within	a	list	of	matching	objects.	Set	to	0	to	find	the	first
matching	object.	If	dwStage	is	DMUS_PATH_BUFFER	or
DMUS_PATH_MIXIN_BUFFER,	this	parameter	is	ignored,	and	the	buffer
index	is	specified	by	dwBuffer.

iidInterface

Identifier	of	the	desired	interface,	such	as	IID_IDirectMusicTool.

ppObject

Address	of	a	variable	that	receives	a	pointer	to	the	requested	interface.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_INVALIDARG
E_OUTOFMEMORY
E_NOINTERFACE
E_POINTER

Remarks

The	value	in	dwPChannel	must	be	0	for	any	stage	that	is	not	channel-specific.
Objects	in	the	following	stages	are	channel-specific	and	can	be	retrieved	by
setting	a	channel	number	or	DMUS_PCHANNEL_ALL	in	dwPChannel:

DMUS_PATH_AUDIOPATH_TOOL
DMUS_PATH_BUFFER
DMUS_PATH_BUFFER_DMO
DMUS_PATH_PERFORMANCE_TOOL	
DMUS_PATH_PORT

The	precedence	of	the	parameters	in	filtering	out	unwanted	objects	is	as	follows:

1.	 dwStage.
2.	 guidObject.	If	this	value	is	not	GUID_All_Objects,	only	objects	whose

class	identifier	equals	guidObject	are	searched.	However,	this	parameter	is
ignored	for	stages	where	only	a	single	class	of	object	can	exist,	such	as
DMUS_PATH_AUDIOPATH_GRAPH.

3.	 dwPChannel.	If	the	stage	is	channel-specific	and	this	value	is	not
DMUS_PCHANNEL_ALL,	only	objects	on	the	channel	are	searched.

4.	 dwBuffer.	This	is	used	only	if	dwStage	is	DMUS_PATH_BUFFER,
DMUS_PATH_MIXIN_BUFFER,	DMUS_PATH_BUFFER_DMO,	or
DMUS_PATH_MIXIN_BUFFER_DMO.

5.	 dwIndex.

If	a	matching	object	is	found	but	the	interface	specified	by	iidInterface	cannot	be
obtained,	the	method	fails.

The	following	example	function	shows	how	to	enumerate	the	buffers	in	an
audiopath:

void	DumpAudioPathBuffers(

				IDirectMusicAudioPath	*pDirectMusicAudioPath)

{

		DWORD	dwBuffer	=	0;

		IDirectSoundBuffer	*pDirectSoundBuffer;

	

		while	(S_OK	==	pDirectMusicAudioPath->GetObjectInPath(

						DMUS_PCHANNEL_ALL,	DMUS_PATH_BUFFER,	dwBuffer,

						GUID_NULL,	0,	IID_IDirectSoundBuffer,	

						(void**)	&pDirectSoundBuffer))

		{

				//	Do	something	with	pDirectSoundBuffer.

				//	.	.	.

				dwBuffer++;

				pDirectSoundBuffer->Release();

		}

}

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicAudioPath8	Interface
IDirectMusicSegmentState8::GetObjectInPath
Retrieving	Objects	from	an	Audiopath

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicAudioPath8::SetVolume

The	SetVolume	method	sets	the	audio	volume	on	the	audiopath.	The	volume	can
be	faded	in	or	out.

Syntax

HRESULT	SetVolume(

		long	lVolume,

		DWORD	dwDuration

);

Parameters

lVolume

Value	that	specifies	the	attenuation,	in	hundredths	of	a	decibel.	This	value	must
be	in	the	range	from	-9600	to	0.	Zero	is	full	volume.

dwDuration

Value	that	specifies	the	time,	in	milliseconds,	over	which	the	volume	change
takes	place.	A	value	of	0	ensures	maximum	efficiency.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_INVALIDARG

Remarks

This	method	works	by	sending	a	volume	curve	message.	Any	volume	events
occurring	later,	such	as	a	band	change,	override	the	volume	set	by	this	method.
IDirectMusicAudioPath8::SetVolume	is	useful	mainly	for	adjusting	currently
playing	sounds;	for	example,	to	fade	out	before	stopping	a	segment.	If	you	want
to	make	a	global	change	that	affects	all	playback,	use	one	of	the	following
techniques:

Obtain	the	buffer	object	from	the	audiopath	and	use
IDirectSoundBuffer8::SetVolume.
Obtain	the	port	object	from	the	audiopath	and	use
IKsControl::KsProperty	to	change	the	GUID_DMUS_PROP_Volume
property	set.
Set	the	master	volume	for	the	performance.	See	Setting	and	Retrieving
Global	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Cross	Fade	Sample
Curves
IDirectMusicAudioPath8	Interface
Playing	Sounds	on	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBand8	Interface
The	IDirectMusicBand8	interface	represents	a	DirectMusic	band	object.	A	band
is	used	to	set	the	instrument	choices	and	mixer	settings	for	a	set	of
performance	channels.	For	an	overview,	see	Using	Bands.	Bands	can	be	stored
directly	in	their	own	files	or	embedded	in	a	style's	band	list	or	a	segment's	band
track.

IDirectMusicBand8	is	a	define	for	IDirectMusicBand.	The	two	interface
names	are	interchangeable.

The	DirectMusicBand	object	also	supports	the	IPersistStream	and
IDirectMusicObject8	interfaces	for	loading	its	data.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicBand8
interface	exposes	the	following	methods.

Method Description

CreateSegment

Creates	a	segment	object	that	can	be
played	to	dynamically	perform	the
volume,	pan,	transposition,	and	patch
change	commands	in	the	band.

Download
Downloads	the	DLS	data	for
instruments	in	the	band	to	a
performance	object.

Unload Unloads	the	DLS	data	for	instruments
in	the	band	previously	downloaded.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBand8::CreateSegment

The	CreateSegment	method	creates	a	segment	object	that	can	be	played	to
dynamically	perform	the	volume,	pan,	transposition,	and	patch	change
commands	in	the	band.

Syntax

HRESULT	CreateSegment(

		IDirectMusicSegment**	ppSegment

);

Parameters

ppSegment

Address	of	a	variable	that	receives	a	pointer	to	the	created	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicBand8	Interface

Making	Band	Changes	Programmatically

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBand8::Download

The	Download	method	downloads	the	DLS	data	for	instruments	in	the	band	to	a
performance	object.

Syntax

HRESULT	Download(

		IDirectMusicPerformance*	pPerformance

);

Parameters

pPerformance

Performance	to	which	instruments	are	to	be	downloaded.	The	performance
manages	the	mapping	of	performance	channels	to	DirectMusic	ports.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or
DMUS_S_PARTIALDOWNLOAD.	(See	Remarks.)

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

Remarks

The	method	downloads	each	instrument	in	the	band	by	calling	the
IDirectMusicPerformance8::DownloadInstrument	method.
DownloadInstrument,	in	turn,	uses	the	performance	channel	of	the	instrument
to	find	the	appropriate	port,	and	then	calls	the

IDirectMusicPort8::DownloadInstrument	method	on	that	port.

After	a	band	has	been	downloaded,	the	instruments	in	the	band	can	be	selected,
either	individually	with	program-change	MIDI	messages,	or	all	at	once	by
playing	a	band	segment	created	through	a	call	to	the
IDirectMusicBand8::CreateSegment	method.

Because	a	downloaded	band	uses	synthesizer	resources,	it	should	be	unloaded
when	no	longer	needed	by	using	the	IDirectMusicBand8::Unload	method.

This	method	may	return	S_OK	even	though	the	port	does	not	support	DLS.

If	the	download	completely	fails,	DMUS_E_NOT_INIT	is	returned.	This	usually
means	that	the	performance	was	not	properly	connected	to	an	initialized	port.
Because	this	is	a	complete	failure,	there	is	no	need	to	call
IDirectMusicBand8::Unload	later.

If	the	download	partially	succeeds,	DMUS_S_PARTIALDOWNLOAD	is
returned.	This	means	that	some	of	the	instruments	successfully	downloaded	and
others	did	not.	This	usually	occurs	because	of	programming	error	in	setting	up
the	performance	and	port.	The	best	way	to	find	the	problem	is	to	set	debug	traces
to	1	for	Dmime.dll,	Dmband.dll,	and	Dmsynth.dll.	See	Debugging	DirectMusic
Projects.

The	following	are	some	common	causes	of	a	partial	download:

The	band	has	instruments	on	performance	channels	that	have	not	been	set
up	on	the	performance	(by	using
IDirectMusicPerformance8::AssignPChannelBlock).
The	band	has	instruments	on	performance	channels	that	are	on	channel
groups	not	allocated	on	the	port.
The	band	has	instruments	in	a	DLS	format	incompatible	with	the
synthesizer	they	are	being	downloaded	to.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Downloading	and	Unloading	Bands
IDirectMusicBand8	Interface
IDirectMusicBand8::Unload

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBand8::Unload

The	Unload	method	unloads	the	DLS	data	for	instruments	in	the	band
previously	downloaded	by	IDirectMusicBand8::Download.

Syntax

HRESULT	Unload(

		IDirectMusicPerformance*	pPerformance

);

Parameters

pPerformance

Performance	from	which	to	unload	instruments.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
DMUS_E_NOT_FOUND

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Downloading	and	Unloading	Bands
IDirectMusicBand8	Interface
IDirectMusicPort8::UnloadInstrument

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8	Interface
The	IDirectMusicBuffer8	interface	represents	a	buffer	containing	time-stamped
data	(typically	in	the	form	of	MIDI	messages)	being	sequenced	to	a	port.	The
buffer	contains	a	small	amount	of	data,	typically	less	than	200	milliseconds.
Unless	your	application	is	doing	its	own	sequencing,	you	do	not	need	to	use	the
methods	of	this	interface.

IDirectMusicBuffer8	is	a	type	definition	for	IDirectMusicBuffer.	The	two
interface	names	are	interchangeable.

Buffer	objects	are	completely	independent	of	port	objects	until	the	buffer	is
passed	to	the	port	by	a	call	to	the	IDirectMusicPort8::PlayBuffer	or	the
IDirectMusicPort8::Read	method.	The	application	is	then	free	to	reuse	the
buffer.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicBuffer8
interface	exposes	the	following	methods.

Method Description
Flush Discards	all	data	in	the	buffer.

GetBufferFormat Retrieves	the	GUID	that	represents	the
buffer	format.

GetMaxBytes Retrieves	the	number	of	bytes	that	can	be
stored	in	the	buffer.

GetNextEvent
Returns	information	about	the	next
message	in	the	buffer	and	advances	the
read	pointer.

GetRawBufferPtr Returns	a	pointer	to	the	underlying	buffer
data	structure.

GetStartTime Retrieves	the	start	time	of	the	data	in	the
buffer,	relative	to	the	master	clock.

GetUsedBytes Retrieves	the	number	of	bytes	of	data	in
the	buffer.
Inserts	fixed-length	data	(typically	a
MIDI	channel	message),	along	with

PackStructured timing	and	routing	information,	into	the
buffer.

PackUnstructured

Inserts	unstructured	data	(typically	a
MIDI	system-exclusive	message),	along
with	timing	and	routing	information,	into
the	buffer

ResetReadPtr Sets	the	read	pointer	to	the	start	of	the
data	in	the	buffer.

SetStartTime Sets	the	start	time	of	the	data	in	the
buffer,	relative	to	the	master	clock.

SetUsedBytes Sets	the	number	of	bytes	of	data	in	the
buffer.

TotalTime Returns	the	total	time	spanned	by	the	data
in	the	buffer.

The	LPDIRECTMUSICBUFFER8	type	is	defined	as	a	pointer	to	the
IDirectMusicBuffer8	interface:

typedef	IDirectMusicBuffer8	*LPDIRECTMUSICBUFFER8;

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces
IDirectMusic8::CreateMusicBuffer

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::Flush

The	Flush	method	discards	all	data	in	the	buffer.

Syntax

HRESULT	Flush();		

Parameters

None.

Return	Values

The	method	returns	S_OK.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::GetBufferFormat

The	GetBufferFormat	method	retrieves	the	GUID	that	represents	the	buffer
format.

Syntax

HRESULT	GetBufferFormat(

		LPGUID	pGuidFormat

);

Parameters

pGuidFormat

Address	of	a	variable	that	receives	the	GUID	of	the	buffer	format.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

If	the	format	was	not	specified	when	the	buffer	was	created,
KSDATAFORMAT_SUBTYPE_DIRECTMUSIC	is	returned	in	*pGuidFormat.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DMUS_EVENTHEADER
IDirectMusic8::CreateMusicBuffer
IDirectMusicBuffer8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::GetMaxBytes

The	GetMaxBytes	method	retrieves	the	number	of	bytes	that	can	be	stored	in
the	buffer.

Syntax

HRESULT	GetMaxBytes(

		LPDWORD	pcb

);

Parameters

pcb

Address	of	a	variable	that	receives	the	maximum	number	of	bytes	that	the	buffer
can	hold.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::GetNextEvent

The	GetNextEvent	method	returns	information	about	the	next	message	in	the
buffer	and	advances	the	read	pointer.

Syntax

HRESULT	GetNextEvent(

		LPREFERENCE_TIME	prt,	

		LPDWORD	pdwChannelGroup,	

		LPDWORD	pdwLength,	

		LPBYTE*	ppData

);

Parameters

prt

Address	of	a	variable	that	receives	the	time	of	the	message.

pdwChannelGroup

Address	of	a	variable	that	receives	the	channel	group	of	the	message.

pdwLength

Address	of	a	variable	that	receives	the	length,	in	bytes,	of	the	message.

ppData

Address	of	a	variable	that	receives	a	pointer	to	the	message	data.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	there	are	no
messages	in	the	buffer.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

Any	of	the	passed	pointers	can	be	NULL	if	the	item	is	not	needed.

The	pointer	returned	in	ppData	is	valid	only	for	the	lifetime	of	the	buffer	object.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::ResetReadPtr

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::GetRawBufferPtr

The	GetRawBufferPtr	method	returns	a	pointer	to	the	underlying	buffer	data
structure.

Syntax

HRESULT	GetRawBufferPtr(

		LPBYTE*	ppData

);

Parameters

ppData

Address	of	a	variable	that	receives	a	pointer	to	the	buffer's	data.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

This	method	returns	a	pointer	to	the	raw	data	of	the	buffer.	The	format	of	the
data	depends	on	the	implementation.	The	lifetime	of	the	data	is	the	same	as	the
lifetime	of	the	buffer	object;	therefore,	the	returned	pointer	should	not	be	held
after	the	next	call	to	the	IDirectMusicBuffer8::Release	method.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::GetStartTime

The	GetStartTime	method	retrieves	the	start	time	of	the	data	in	the	buffer,
relative	to	the	master	clock.

Syntax

HRESULT	GetStartTime(

		LPREFERENCE_TIME	prt

);

Parameters

prt

Address	of	a	variable	that	receives	the	start	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_BUFFER_EMPTY
E_POINTER

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::SetStartTime
IDirectMusicBuffer8::TotalTime

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::GetUsedBytes

The	GetUsedBytes	method	retrieves	the	number	of	bytes	of	data	in	the	buffer.

Syntax

HRESULT	GetUsedBytes(

		LPDWORD	pcb

);

Parameters

pcb

Address	of	a	variable	that	receives	the	number	of	used	bytes.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::SetUsedBytes

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::PackStructured

The	PackStructured	method	inserts	fixed-length	data	(typically	a	MIDI	channel
message),	along	with	timing	and	routing	information,	into	the	buffer.

Syntax

HRESULT	PackStructured(

		REFERENCE_TIME	rt,

		DWORD	dwChannelGroup,

		DWORD	dwChannelMessage

);

Parameters

rt

Absolute	time	of	the	message.	(See	Remarks.)

dwChannelGroup

Channel	group	to	which	the	data	belongs.

dwChannelMessage

Data	(MIDI	message)	to	pack.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_INVALID_EVENT
E_OUTOFMEMORY

Remarks

At	least	32	bytes	(the	size	of	DMUS_EVENTHEADER	plus
dwChannelMessage)	must	be	free	in	the	buffer.

The	rt	parameter	must	contain	the	absolute	time	at	which	the	data	is	to	be	sent	to
the	port.	To	play	a	message	immediately,	retrieve	the	time	from	the	latency
clock,	and	use	this	as	rt.	See	IDirectMusicPort8::GetLatencyClock.

Messages	stamped	with	the	same	time	do	not	necessarily	play	in	the	same	order
in	which	they	were	placed	in	the	buffer.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::PackUnstructured

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::PackUnstructured

The	PackUnstructured	method	inserts	unstructured	data	(typically	a	MIDI
system-exclusive	message),	along	with	timing	and	routing	information,	into	the
buffer.

Syntax

HRESULT	PackUnstructured(

		REFERENCE_TIME	rt,	

		DWORD	dwChannelGroup,

		DWORD	cb,	

		LPBYTE	lpb

);

Parameters

rt

Absolute	time	of	the	message.

dwChannelGroup

Channel	group	to	which	the	message	belongs.

cb

Size	of	the	data,	in	bytes.

lpb

Address	of	a	buffer	containing	the	data.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following

table.

Return	code
E_OUTOFMEMORY
E_POINTER

Remarks

This	method	can	be	used	to	send	any	kind	of	data	to	the	port.

At	least	28	bytes	(the	size	of	DMUS_EVENTHEADER)	plus	the	size	of	the
data,	padded	to	a	multiple	of	4	bytes,	must	be	free	in	the	buffer.	The	buffer	space
required	can	be	obtained	by	using	the	DMUS_EVENT_SIZE(cb)	macro,	where
cb	is	the	size	of	the	data.

The	rt	parameter	must	contain	the	absolute	time	at	which	the	data	is	to	be	sent	to
the	port.	To	play	a	message	immediately,	retrieve	the	time	from	the	latency
clock,	and	use	this	as	rt.	See	IDirectMusicPort8::GetLatencyClock.

Messages	stamped	with	the	same	time	do	not	necessarily	play	in	the	same	order
in	which	they	were	placed	in	the	buffer.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::PackStructured

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::ResetReadPtr

The	ResetReadPtr	method	sets	the	read	pointer	to	the	start	of	the	data	in	the
buffer.

Syntax

HRESULT	ResetReadPtr()		

Parameters

None.

Return	Values

The	method	always	returns	S_OK.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::GetNextEvent

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::SetStartTime

The	SetStartTime	method	sets	the	start	time	of	the	data	in	the	buffer,	relative	to
the	master	clock.

Syntax

HRESULT	SetStartTime(

		REFERENCE_TIME	rt

);

Parameters

rt

New	start	time	for	the	buffer.

Return	Values

The	method	always	returns	S_OK.

Remarks

Events	already	in	the	buffer	are	time-stamped	relative	to	the	start	time	and	play
at	the	same	offset	from	the	new	start	time.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::GetStartTime

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::SetUsedBytes

The	SetUsedBytes	method	sets	the	number	of	bytes	of	data	in	the	buffer.

Syntax

HRESULT	SetUsedBytes(

		DWORD	cb

);	

Parameters

cb

Number	of	valid	data	bytes	in	the	buffer.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DMUS_E_BUFFER_FULL.

Remarks

This	method	allows	an	application	to	repack	a	buffer	manually.	Normally,	this
should	be	done	only	if	the	data	format	in	the	buffer	is	different	from	the	default
format	provided	by	DirectMusic.

The	method	fails	if	the	specified	number	of	bytes	exceeds	the	maximum	buffer
size,	as	returned	by	the	IDirectMusicBuffer8::GetMaxBytes	method.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface

IDirectMusicBuffer8::GetUsedBytes

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicBuffer8::TotalTime

The	TotalTime	method	retrieves	the	total	time	spanned	by	the	data	in	the	buffer.

Syntax

HRESULT	TotalTime(

		LPREFERENCE_TIME	prtTime

);

Parameters

prtTime

Address	of	a	variable	that	receives	the	total	time	spanned	by	the	buffer,	in	units
of	100	nanoseconds.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicBuffer8	Interface
IDirectMusicBuffer8::GetStartTime

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicChordMap8	Interface
The	IDirectMusicChordMap8	interface	represents	a	chordmap.	Chordmaps
provide	the	composer	(represented	by	the	IDirectMusicComposer8	interface)
with	the	information	needed	to	create	chord	progressions	for	segments	composed
at	run	time.	Chordmaps	can	also	be	used	to	change	the	chords	in	an	existing
segment.

The	DirectMusicChordMap	object	also	supports	the	IDirectMusicObject8	and
IPersistStream	interfaces	for	loading	its	data.

IDirectMusicChordMap8	is	a	type	definition	for	IDirectMusicChordMap.
The	two	interface	names	are	interchangeable.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicChordMap8	interface	exposes	the	following	method.

Method Description

GetScale Retrieves	the	scale	associated	with	the
chordmap.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
Using	Chordmaps

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicChordMap8::GetScale

The	GetScale	method	retrieves	the	scale	associated	with	the	chordmap.

Syntax

HRESULT	GetScale(

		DWORD*	pdwScale

);

Parameters

pdwScale

Address	of	a	variable	that	receives	the	scale	value.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	the	method	fails,	the	return	value	can	be	E_POINTER.

Remarks

The	scale	is	defined	by	the	bits	in	a	DWORD,	split	into	a	scale	pattern	in	the
lower	24	bits	and	a	root	in	the	upper	8	bits.	For	the	scale	pattern,	the	low	bit
(0x0001)	is	the	lowest	note	in	the	scale,	the	next	higher	(0x0002)	is	a	semitone
higher,	and	so	on	for	two	octaves.	The	upper	8	bits	give	the	root	of	the	scale	as
an	integer	between	0	and	23	(low	C	to	middle	B).

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicChordMap8	Interface

Using	Chordmaps

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicCollection8	Interface
The	IDirectMusicCollection8	interface	manages	an	instance	of	a	DLS	file.	The
collection	provides	methods	to	access	instruments	and	download	them	to	the
synthesizer	by	means	of	the	IDirectMusicPort8	interface.

IDirectMusicCollection8	is	a	type	definition	for	IDirectMusicCollection.	The
two	interface	names	are	interchangeable.

The	DirectMusicCollection	object	also	supports	the	IDirectMusicObject8	and
IPersistStream	interfaces	for	loading	its	data.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicCollection8	interface	exposes	the	following	methods.

Method Description

EnumInstrument Retrieves	the	patch	and	name	of	an
instrument	by	its	index	in	the	collection.

GetInstrument Retrieves	an	instrument	by	its	patch
number.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces
Using	Instrument	Collections

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicCollection8::EnumInstrument

The	EnumInstrument	method	retrieves	the	patch	number	and	name	of	an
instrument	by	its	index	in	the	collection.

Syntax

HRESULT	EnumInstrument(

		DWORD	dwIndex,

		DWORD*	pdwPatch,

		LPWSTR	pwszName,

		DWORD	dwNameLen

);

Parameters

dwIndex

Index	of	the	instrument	in	the	collection.

pdwPatch

Address	of	a	variable	that	receives	the	patch	number.

pwszName

Address	of	a	buffer	that	receives	the	instrument	name.	Can	be	NULL	if	the	name
is	not	wanted.

dwNameLen

Number	of	WCHAR	elements	in	the	instrument	name	buffer.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	there	is	no
instrument	with	that	index	number.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks

To	enumerate	all	instruments	in	a	collection,	start	with	a	dwIndex	of	0	and
increment	until	EnumInstrument	returns	S_FALSE.

The	patch	number	returned	in	pdwPatch	describes	the	full	patch	address,
including	the	MIDI	parameters	for	MSB	and	LSB	bank	select.	For	more
information,	see	MIDI	Channel	Messages.

Although	the	ordering	of	the	enumeration	is	consistent	within	one	instance	of	a
DLS	collection,	it	has	no	relationship	to	the	ordering	of	instruments	in	the	file,
their	patch	numbers,	or	their	names.

For	an	example	of	instrument	enumeration,	see	Working	with	Instruments.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicCollection8	Interface
Using	Instrument	Collections

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicCollection8::GetInstrument

The	GetInstrument	method	retrieves	an	instrument	by	its	patch	number.

Syntax

HRESULT	GetInstrument(

		DWORD	dwPatch,

		IDirectMusicInstrument**	ppInstrument

);

Parameters

dwPatch

Instrument	patch	number.

ppInstrument

Address	of	a	variable	that	receives	a	pointer	to	the	IDirectMusicInstrument8
interface.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_INVALIDPATCH
E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks

The	patch	number	passed	in	dwPatch	describes	the	full	patch	address,	including
the	MIDI	parameters	for	MSB	and	LSB	bank	select.	MSB	is	shifted	left	16	bits,
and	LSB	is	shifted	left	8	bits.	In	addition,	the	high	bit	is	set	(0x80000000)	if	the
instrument	is	specifically	a	drum	kit	intended	to	be	played	on	MIDI	channel	10.

For	an	example	of	how	this	method	is	used,	see	Working	with	Instruments.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicCollection8	Interface
MIDI	Channel	Messages
Using	Instrument	Collections

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicComposer8	Interface
The	IDirectMusicComposer8	interface	enables	access	to	the	composition
engine.	In	addition	to	building	new	segments	from	templates	and	chordmaps,	the
composer	can	generate	transitions	between	different	segments.	It	can	also	apply
a	chordmap	to	an	existing	segment,	thus	altering	the	chord	progression	and	the
mood	of	the	music.

IDirectMusicComposer8	is	a	define	for	IDirectMusicComposer.	The	two
interface	names	are	interchangeable.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicComposer8	interface	exposes	the	following	methods.

Method Description

AutoTransition

Composes	a	transition	from	inside	a
performance's	primary	segment	(or	from
silence)	to	another	segment,	and	then
cues	the	transition	and	the	second
segment	to	play.

ChangeChordMap
Modifies	the	chords	and	scale	pattern	of
an	existing	segment	to	reflect	a	new
chordmap.

ComposeSegmentFromShape
Creates	an	original	segment	from	a	style
and	a	chordmap,	based	on	a	predefined
shape.

ComposeSegmentFromTemplate Creates	an	original	segment	from	a	style,
a	chordmap,	and	a	template.

ComposeTemplateFromShape Creates	a	new	template	segment,	based
on	a	predefined	shape.

ComposeTransition Composes	a	transition	from	a	measure
inside	one	segment	to	another.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
Using	Compositional	Elements

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicComposer8::AutoTransition

The	AutoTransition	method	composes	a	transition	from	inside	a	performance's
primary	segment	(or	from	silence)	to	another	segment,	and	then	cues	the
transition	and	the	second	segment	to	play.

Syntax

HRESULT	AutoTransition(

		IDirectMusicPerformance*	pPerformance,

		IDirectMusicSegment*	pToSeg,

		WORD	wCommand,

		DWORD	dwFlags,

		IDirectMusicChordMap*	pChordMap,

		IDirectMusicSegment**	ppTransSeg,

		IDirectMusicSegmentState**	ppToSegState,	

		IDirectMusicSegmentState**	ppTransSegState

);

Parameters

pPerformance

Performance	in	which	to	make	the	transition.

pToSeg

Segment	to	which	the	transition	should	smoothly	flow.	(See	Remarks.)

wCommand

Embellishment	to	use	when	composing	the	transition.	This	can	be	one	of	the
values	of	the	DMUS_COMMANDT_TYPES	enumeration,	or	a	value	defined
in	DirectMusic	Producer	as	a	custom	embellishment.	If	this	value	is
DMUS_COMMANDT_ENDANDINTRO,	the	method	composes	a	segment
containing	both	an	ending	to	the	current	primary	segment	and	an	introduction	to
pToSeg.

dwFlags

Composition	options.	See	DMUS_COMPOSEF_FLAGS.

pChordMap

Pointer	to	the	IDirectMusicChordMap8	interface	of	the	chordmap	to	be	used
when	composing	the	transition.

ppTransSeg

Address	of	a	variable	that	receives	a	pointer	to	the	created	segment.	This	value
can	be	NULL,	in	which	case	the	pointer	is	not	returned.

ppToSegState

Address	of	a	variable	that	receives	a	pointer	to	the	segment	state	created	by	the
performance	(pPerformance)	for	the	segment	following	the	transition	(pToSeg).
(See	Remarks.)

ppTransSegState

Address	of	a	variable	that	receives	a	pointer	to	the	segment	state	created	by	the
performance	(pPerformance)	for	the	created	segment	(ppTransSeg).	(See
Remarks.)

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NO_MASTER_CLOCK
E_INVALIDARG
E_POINTER

Remarks

The	value	in	pToSeg	can	be	NULL	as	long	as	dwFlags	does	not	include
DMUS_COMPOSEF_MODULATE.	If	pToSeg	is	NULL	or	does	not	contain	a
style	track	(as	would	be	the	case	if	it	is	based	on	a	MIDI	file),	introductory
embellishments	are	not	valid.	If	the	currently	playing	segment	is	NULL	or	does
not	contain	a	style	track,	then	fill,	break,	end,	and	groove	embellishments	are	not
valid.	If	no	style	track	is	available	either	in	the	currently	playing	segment	or	in
the	one	represented	by	pToSeg,	all	embellishments	are	invalid,	and	no	transition
occurs.	In	that	case,	both	ppTransSeg	and	ppTransSegState	return	NULL,	but	the
method	succeeds	and	cues	the	segment	represented	by	pToSeg,	if	that	pointer	is
not	NULL.

The	value	in	pChordMap	can	be	NULL.	If	it	is,	the	composition	engine	attempts
to	obtain	a	chordmap	from	a	chordmap	track,	first	from	pToSeg,	and	then	from
the	performance's	primary	segment.	If	neither	of	these	segments	contains	a
chordmap	track,	the	chord	occurring	at	the	current	time	in	the	primary	segment
is	used	as	the	chord	in	the	transition.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicComposer8	Interface
IDirectMusicComposer8::ComposeTransition
Using	Transitions

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicComposer8::ChangeChordMap

The	ChangeChordMap	method	modifies	the	chords	and	scale	pattern	of	an
existing	segment	to	reflect	a	new	chordmap.

Syntax

HRESULT	ChangeChordMap(

		IDirectMusicSegment*	pSegment,	

		BOOL	fTrackScale,	

		IDirectMusicChordMap*	pChordMap

);

Parameters

pSegment

Pointer	to	the	IDirectMusicSegment8	interface	of	the	segment	in	which	to
change	the	chordmap.	This	segment	must	contain	a	chordmap	track	and	a	style.

fTrackScale

If	TRUE,	the	method	transposes	all	the	chords	to	be	relative	to	the	root	of	the
new	chordmap's	scale,	rather	than	leaving	their	roots	as	they	were.

pChordMap

Pointer	to	the	IDirectMusicChordMap8	interface	of	the	new	chordmap	for	the
segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	method	can	be	called	while	the	segment	is	playing.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicComposer8	Interface
Using	Chordmaps

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicComposer8::ComposeSegmentFromShape

The	ComposeSegmentFromShape	method	creates	an	original	segment	from	a
style	and	a	chordmap,	based	on	a	predefined	shape.	The	shape	represents	the
way	chords	and	embellishments	occur	over	time	across	the	segment.

Syntax

HRESULT	ComposeSegmentFromShape(

		IDirectMusicStyle*	pStyle,	

		WORD	wNumMeasures,	

		WORD	wShape,

		WORD	wActivity,

		BOOL	fIntro,

		BOOL	fEnd,

		IDirectMusicChordMap*	pChordMap,

		IDirectMusicSegment**	ppSegment

);

Parameters

pStyle

Style	from	which	to	compose	the	segment.

wNumMeasures

Length,	in	measures,	of	the	segment	to	be	composed.

wShape

Shape	of	the	segment	to	be	composed.	Possible	values	are	of	the
DMUS_SHAPET_TYPES	enumerated	type.

wActivity

Rate	of	harmonic	motion.	Valid	values	are	from	0	through	3.	Lower	values	mean
more	chord	changes.

fIntro

TRUE	if	an	introduction	is	to	be	composed	for	the	segment.

fEnd

TRUE	if	an	ending	is	to	be	composed	for	the	segment.

pChordMap

Pointer	to	the	IDirectMusicChordMap8	interface	of	the	chordmap	from	which
to	create	the	segment.

ppSegment

Address	of	a	variable	that	receives	a	pointer	to	the	created	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicComposer8	Interface
IDirectMusicComposer8::ComposeSegmentFromTemplate
IDirectMusicComposer8::ComposeTemplateFromShape
Using	Compositional	Elements

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicComposer8::ComposeSegmentFromTemplate

The	ComposeSegmentFromTemplate	method	creates	an	original	segment	from
a	style,	a	chordmap,	and	a	template.

Syntax

HRESULT	ComposeSegmentFromTemplate(

		IDirectMusicStyle*	pStyle,	

		IDirectMusicSegment*	pTemplate,	

		WORD	wActivity,	

		IDirectMusicChordMap*	pChordMap,	

		IDirectMusicSegment**	ppSegment

);

Parameters

pStyle

IDirectMusicStyle8	interface	pointer	that	specifies	the	style	from	which	to
create	the	segment.

pTemplate

IDirectMusicSegment8	interface	pointer	that	specifies	the	template	from	which
to	create	the	segment.

wActivity

Rate	of	harmonic	motion.	Valid	values	are	0	through	3.	Lower	values	mean	more
chord	changes.

pChordMap

IDirectMusicChordMap8	interface	pointer	that	specifies	the	chordmap	from
which	to	create	the	segment.

ppSegment

Address	of	a	variable	that	receives	a	pointer	to	the	created	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

If	pStyle	is	not	NULL,	it	is	used	in	composing	the	segment;	if	it	is	NULL,	a	style
is	retrieved	from	the	template	specified	in	pTempSeg.	Similarly,	if	pChordMap	is
not	NULL,	it	is	used	in	composing	the	segment;	if	it	is	NULL,	a	chordmap	is
retrieved	from	the	template.

If	pStyle	is	NULL	and	there	is	no	style	track	in	the	template,	or	pChordMap	is
NULL	and	there	is	no	chordmap	track,	the	method	returns	E_INVALIDARG.

The	length	of	the	segment	is	equal	to	the	length	of	the	template	passed	in.

The	default	start	point	and	loop	points	of	the	created	segment	are	0,	regardless	of
the	values	in	the	template	segment.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicComposer8	Interface
IDirectMusicComposer8::ComposeSegmentFromShape
IDirectMusicComposer8::ComposeTemplateFromShape
Using	Templates

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicComposer8::ComposeTemplateFromShape

The	ComposeTemplateFromShape	method	creates	a	new	template	segment,
based	on	a	predefined	shape.

Syntax

HRESULT	ComposeTemplateFromShape(

		WORD	wNumMeasures,

		WORD	wShape,

		BOOL	fIntro,

		BOOL	fEnd,

		WORD	wEndLength,	

		IDirectMusicSegment**	ppTemplate

);

Parameters

wNumMeasures

Length,	in	measures,	of	the	segment	to	be	composed.	This	value	must	be	greater
than	0.

wShape

Shape	of	the	segment	to	be	composed.	Possible	values	are	of	the
DMUS_SHAPET_TYPES	enumerated	type.

fIntro

TRUE	if	an	introduction	is	to	be	composed	for	the	segment.

fEnd

TRUE	if	an	ending	is	to	be	composed	for	the	segment.

wEndLength

Length	in	measures	of	the	ending,	if	one	is	to	be	composed.	If	fEnd	is	TRUE,
this	value	must	be	greater	than	0	and	equal	to	or	less	than	the	number	of
measures	available	(that	is,	not	used	in	the	introduction).	(See	Remarks.)

ppTemplate

Address	of	a	variable	that	receives	a	pointer	to	the	created	template	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

The	value	of	wEndLength	should	not	be	greater	than	the	length	of	the	longest
ending	available	in	any	style	likely	to	be	associated	with	this	template	through
the	IDirectMusicComposer8::ComposeSegmentFromTemplate	method.	The
ending	starts	playing	at	wEndLength	measures	before	the	end	of	the	segment.	If
the	ending	is	less	than	wEndLength	measures	long,	the	music	then	reverts	to
patterns	from	the	basic	groove	level.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicComposer8	Interface
IDirectMusicComposer8::ComposeSegmentFromTemplate
Using	Templates

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicComposer8::ComposeTransition

The	ComposeTransition	method	composes	a	transition	from	a	measure	inside
one	segment	to	another	segment.

Syntax

HRESULT	ComposeTransition(

		IDirectMusicSegment*	pFromSeg,	

		IDirectMusicSegment*	pToSeg,	

		MUSIC_TIME	mtTime,	

		WORD	wCommand,	

		DWORD	dwFlags,	

		IDirectMusicChordMap*	pChordMap,	

		IDirectMusicSegment**	ppTransSeg

);

Parameters

pFromSeg

Segment	from	which	to	compose	the	transition.

pToSeg

Segment	to	which	the	transition	should	smoothly	flow.	Can	be	NULL	if	dwFlags
does	not	include	DMUS_COMPOSEF_MODULATE.

mtTime

Time	in	pFromSeg	from	which	to	compose	the	transition.

wCommand

Embellishment	to	use	when	composing	the	transition.	This	can	be	one	of	the
DMUS_COMMANDT_TYPES	enumeration,	or	a	value	defined	in
DirectMusic	Producer	as	a	custom	embellishment.	If	this	value	is
DMUS_COMMANDT_ENDANDINTRO,	the	method	composes	a	segment

containing	both	an	ending	to	pFromSeg	and	an	introduction	to	pToSeg.

dwFlags

Composition	options.	This	parameter	can	contain	one	or	more	values	from	the
DMUS_COMPOSEF_FLAGS	enumerated	type.

pChordMap

Pointer	to	the	IDirectMusicChordMap8	interface	of	the	chordmap	to	be	used
when	composing	the	transition.	(See	Remarks.)

ppTransSeg

Address	of	a	variable	that	receives	a	pointer	to	the	created	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

The	value	in	pChordMap	can	be	NULL.	If	it	is,	an	attempt	is	made	to	obtain	a
chordmap	from	a	chordmap	track,	first	from	pToSeg,	and	then	from	pFromSeg.	If
neither	of	these	segments	contains	a	chordmap	track,	the	chord	occurring	at
mtTime	in	pFromSeg	is	used	as	the	chord	in	the	transition.

The	composer	looks	for	a	tempo,	first	in	pFromSeg,	and	then	in	pToSeg.	If
neither	of	those	segments	contains	a	tempo	track,	the	tempo	for	the	transition
segment	is	taken	from	the	style.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicComposer8	Interface
IDirectMusicComposer8::AutoTransition
Using	Transitions

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicContainer8	Interface
The	IDirectMusicContainer8	interface	provides	access	to	objects	in	a
container,	which	is	a	collection	of	objects	used	by	a	segment	or	performance.
The	interface	can	be	obtained	when	a	container	is	loaded	by	a	call	to
IDirectMusicLoader8::GetObject	or
IDirectMusicLoader8::LoadObjectFromFile.

When	a	container	object	is	loaded,	it	makes	all	its	objects	available	to	the	loader.
When	the	container	is	released,	all	objects	it	refers	to	are	released	from	the
loader.	However,	any	objects	still	in	use	when	the	container	is	released	are	not
freed	until	explicitly	released.	If	they	are	keeping	a	stream	open,	as	DLS
collections	and	streaming	waveforms	do,	the	stream	also	stays	open.	As	a	result,
the	container	file	stays	locked,	just	as	an	individual	WAV	or	DLS	file	would.

A	container	can	be	embedded	in	a	segment.	The	container	is	placed	in	the	file
before	the	segment's	tracks,	so	it	can	be	read	and	its	objects	installed	in	the
loader	before	the	tracks	are	loaded.	When	the	tracks	are	loaded,	the	loader	is	able
to	supply	links	to	referenced	objects	in	the	container.

IDirectMusicContainer8	is	a	type	definition	for	IDirectMusicContainer.	The
two	interface	names	are	interchangeable.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicContainer8	interface	exposes	the	following	method.

Method Description

EnumObject Retrieves	information	about	an	object	in
the	container.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Containers

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicContainer8::EnumObject

The	EnumObject	method	retrieves	information	about	an	object	in	the	container.

Syntax

HRESULT	EnumObject(

		REFGUID	rguidClass,	

		DWORD	dwIndex,	

		LPDMUS_OBJECTDESC	pDesc,

		WCHAR*	pwszAlias

);

Parameters

rguidClass

Reference	to	(C++)	or	address	of	(C)	the	unique	identifier	of	the	object	class,	or
GUID_DirectMusicAllTypes	to	obtain	an	object	of	any	type.	For	a	list	of
standard	loadable	classes,	see	IDirectMusicLoader8.

dwIndex

Index	of	the	object	among	objects	of	class	rguidClass	in	the	container.

pDesc

Pointer	to	a	DMUS_OBJECTDESC	structure	that	receives	a	description	of	the
object.	This	parameter	can	be	NULL	if	no	description	is	wanted.	(See	Remarks.)

pwszAlias

Address	of	a	string	buffer	of	size	MAX_PATH	that	receives	the	object's	alias,	if
it	has	one.	(An	alias	is	a	special	name	used	by	a	script	to	refer	to	the	object.)	This
parameter	can	be	NULL	if	no	alias	is	wanted.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned.

Return	code Description
S_OK The	object	was	enumerated.

S_FALSE There	is	no	object	with	an	index	of
dwIndex.

DMUS_S_STRING_TRUNCATED The	alias	is	longer	than	MAX_PATH.
DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	it	can	return	E_POINTER.

Remarks

You	must	initialize	the	dwSize	member	of	the	DMUS_OBJECTDESC	structure
before	passing	it	to	the	method.	Other	members	are	ignored.	You	cannot	reduce
the	scope	of	the	enumeration	by,	for	example,	specifying	a	value	in	the
wszName	member.	The	description	returned	by	the	method	can	be	used	to
retrieve	the	object	by	calling	IDirectMusicLoader8::GetObject.	For	sample
code,	see	Containers.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Containers
IDirectMusicContainer8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicDownload8	Interface
The	IDirectMusicDownload8	interface	represents	a	contiguous	memory	chunk
used	for	downloading	to	a	DLS	synthesizer	port.

IDirectMusicDownload8	is	a	type	definition	for	IDirectMusicDownload.	The
two	interface	names	are	interchangeable.

The	IDirectMusicDownload8	interface	and	its	contained	memory	chunk	are
created	by	the	IDirectMusicPortDownload8::AllocateBuffer	method.	The
memory	can	then	be	accessed	by	using	the	single	method	of	this	interface.

This	interface	is	used	only	by	applications	that	need	to	access	DLS	buffers
directly	rather	than	letting	the	performance,	band,	and	segment	objects	download
instrument	data.	For	an	overview,	see	Low-Level	DLS.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicDownload8	interface	exposes	the	following	method.

Method Description

GetBuffer Retrieves	a	pointer	to	a	buffer	containing
data	to	be	downloaded.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicDownload8::GetBuffer

The	GetBuffer	method	retrieves	a	pointer	to	a	buffer	containing	data	to	be
downloaded.

Syntax

HRESULT	GetBuffer(

		void**	ppvBuffer,

		DWORD*	pdwSize

);

Parameters

ppvBuffer

Address	of	a	variable	that	receives	a	pointer	to	the	data	buffer.

pdwSize

Address	of	a	variable	that	receives	the	size	of	the	returned	buffer,	in	bytes.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_BUFFERNOTAVAILABLE
E_POINTER

Remarks

The	method	returns	DMUS_E_BUFFERNOTAVAILABLE	if	the	buffer	has
already	been	downloaded.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicDownload8	Interface
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicDownloadedInstrument8
Interface
The	IDirectMusicDownloadedInstrument8	interface	is	used	to	identify	an
instrument	that	has	been	downloaded	to	the	synthesizer	by	using	the
IDirectMusicPort8::DownloadInstrument	or	the
IDirectMusicPerformance8::DownloadInstrument	method.	The	interface
pointer	is	then	used	to	unload	the	instrument	through	a	call	to
IDirectMusicPort8::UnloadInstrument.	After	the	instrument	has	been
unloaded,	the	interface	pointer	must	be	released	by	the	application.	For	an
example,	see	Working	with	Instruments.

IDirectMusicDownloadedInstrument8	is	a	type	definition	for
IDirectMusicDownloadedInstrument.	The	two	interface	names	are
interchangeable.

The	IDirectMusicDownloadedInstrument8	interface	has	no	methods	other
than	those	inherited	from	IUnknown.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicGetLoader8	Interface
The	IDirectMusicGetLoader8	interface	is	used	by	an	object	parsing	a	stream
when	the	object	needs	to	load	another	object	referenced	by	the	stream.	If	a
stream	supports	the	loader,	it	must	provide	an	IDirectMusicGetLoader8
interface.

For	an	example	of	how	to	obtain	the	IDirectMusicGetLoader8	interface	from
the	stream,	see	IDirectMusicGetLoader8::GetLoader.

IDirectMusicGetLoader8	is	a	type	definition	for	IDirectMusicGetLoader.
The	two	interface	names	are	interchangeable.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicGetLoader8	interface	exposes	the	following	method.

Method Description

GetLoader Retrieves	a	pointer	to	the	loader	object
that	created	the	stream.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

See	Also

Custom	Loading
IDirectMusicLoader8	Interface
Loading	Audio	Data

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicGetLoader8::GetLoader

The	GetLoader	method	retrieves	a	pointer	to	the	loader	object	that	created	the
stream.

Syntax

HRESULT	GetLoader8(

		IDirectMusicLoader	**	ppLoader

);

Parameters

ppLoader

Address	of	a	variable	that	receives	the	IDirectMusicLoader	interface	pointer.
Use	QueryInterface	to	obtain	IDirectMusicLoader8.	The	reference	count	of
the	interface	is	incremented.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_NOINTERFACE.

Remarks

The	following	example	function	finds	a	reference	to	an	object	that	needs	to	be
accessed	by	the	loader:

HRESULT	GetReferencedObject(

		DMUS_OBJECTDESC	*pDesc,										//	Description	of	object.

		IStream	*pIStream,															//	Stream	being	parsed.

		IDirectMusicObject	**ppIObject)		//	Object	to	be	accessed.

{

		IDirectMusicGetLoader	*pIGetLoader;

		IDirectMusicLoader	*pILoader;

		ppIObject	=	NULL;

		HRESULT	hr	=	pIStream->QueryInterface(

					IID_IDirectMusicGetLoader,

					(void	**)	&pIGetLoader);

		if	(SUCCEEDED(hr))

		{

				hr	=	pIGetLoader->GetLoader(&pILoader);

				if	(SUCCEEDED(hr))

				{

				hr	=	pILoader->GetObject(pDesc,	IID_IDirectMusicLoader,

						(void**)	ppIObject);

				pILoader->Release();

				}

				pIGetLoader->Release();

		}

		return	hr;

}

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Custom	Loading
IDirectMusicGetLoader8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicGraph8	Interface
The	IDirectMusicGraph8	interface	manages	the	loading	and	message	flow	of
tools.

Graphs	can	occur	in	two	places:	performances	and	segments.	The	graph	of	tools
in	a	performance	is	global	in	nature;	it	processes	messages	from	all	segments.	A
graph	in	a	segment	exists	only	for	playback	of	that	segment.

IDirectMusicGraph8	is	a	type	definition	for	IDirectMusicGraph.	The	two
interface	names	are	interchangeable.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicGraph8
interface	exposes	the	following	methods.

Method Description
GetTool Retrieves	a	tool	by	index.
InsertTool Inserts	a	tool	in	the	graph.
RemoveTool Removes	a	tool	from	the	graph.

StampPMsg Stamps	a	message	with	a	pointer	to	the
next	tool	that	is	to	receive	it.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
DirectMusic	Tools

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicGraph8::GetTool

The	GetTool	method	retrieves	a	tool	by	index.

Syntax

HRESULT	GetTool(

		DWORD	dwIndex,

		IDirectMusicTool**	ppTool

);

Parameters

dwIndex

Zero-based	index	of	the	requested	tool	in	the	graph.

ppTool

Address	of	a	variable	that	receives	a	pointer	to	the	tool.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_POINTER

Remarks

The	application	is	responsible	for	releasing	the	retrieved	tool.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Tools
IDirectMusicGraph8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicGraph8::InsertTool

The	InsertTool	method	inserts	a	tool	in	the	graph.

Note			Do	not	use	or	distribute	tools	from	untrusted	sources.	Tools	can	contain
unsafe	code.

Syntax

HRESULT	InsertTool(

		IDirectMusicTool	*	pTool,

		DWORD	*	pdwPChannels,

		DWORD	cPChannels,

		LONG	lIndex

);

Parameters

pTool

Tool	to	insert.

pdwPChannels

Address	of	an	array	of	performance	channels	on	which	the	tool	accepts
messages.	If	the	tool	accepts	messages	on	all	channels,	pass	NULL.

cPChannels

Count	of	how	many	channels	are	pointed	to	by	pdwPChannels.	Ignored	if
pdwPChannels	is	NULL.

lIndex

Position	at	which	to	place	the	tool.	This	is	a	zero-based	index	from	the	start	of
the	current	tool	list	or,	if	it	is	negative,	from	the	end	of	the	list.	If	lIndex	is	out	of
range,	the	tool	is	placed	at	the	beginning	or	end	of	the	list.	To	place	a	tool	at	the
end	of	the	list,	use	a	value	that	is	larger	than	the	number	of	tools	in	the	current

tool	list.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_ALREADY_EXISTS
E_OUTOFMEMORY
E_POINTER

Remarks

The	reference	count	of	the	tool	is	incremented.

This	method	calls	IDirectMusicTool8::Init.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Tools
IDirectMusicGraph8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicGraph8::RemoveTool

The	RemoveTool	method	removes	a	tool	from	the	graph.

Syntax

HRESULT	RemoveTool(

		IDirectMusicTool	*	pTool

);

Parameters

pTool

Tool	to	remove.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_POINTER

Remarks

The	graph's	reference	to	the	tool	object	is	released.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Tools
IDirectMusicGraph8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicGraph8::StampPMsg

The	StampPMsg	method	stamps	a	message	with	a	pointer	to	the	next	tool	that	is
to	receive	it.	After	processing	a	message,	a	tool	must	call	this	method.

Syntax

HRESULT	StampPMsg(

		DMUS_PMSG*	pPMSG

);

Parameters

pPMSG

Address	of	a	structure	that	contains	the	message	to	stamp.	This	structure	is	of	a
type	derived	from	DMUS_PMSG.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or	DMUS_S_LAST_TOOL.
(See	Remarks.)

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

On	entry,	the	pTool	member	of	the	DMUS_PMSG	part	of	the	message	structure
points	to	the	current	tool.	StampPMsg	uses	this	member	to	find	the	next	tool	in
the	graph.	A	value	of	NULL	represents	the	first	tool	in	the	graph.

The	object	pointed	to	by	the	pGraph	member	represents	the	graph	that	contains
the	tool.	This	is	stamped	inside	StampPMsg,	along	with	the	tool	itself,	and	can
change	while	the	message	travels	from	the	segment	state	to	the	performance
because	there	can	be	multiple	toolgraphs.

The	value	of	dwType	equals	the	media	type	of	the	message,	and	is	also	used	to

find	the	next	tool.	The	media	types	supported	are	those	returned	by	the
IDirectMusicTool8::GetMediaTypes	method.

This	method	calls	Release	on	the	current	IDirectMusicTool8	pointed	to	by
pTool,	replaces	it	with	the	next	tool	in	the	graph	and	calls	AddRef	on	the	new
tool.	It	also	flags	the	message	with	the	correct	delivery	type,	according	to	what
type	the	next	tool	returns	in	its	IDirectMusicTool8::GetMsgDeliveryType
method.	This	flag	determines	when	the	message	is	delivered	to	the	next	tool.

Tools	should	not	call	StampPMsg	until	all	other	tasks	have	been	performed.
When	audiopaths	are	in	use,	StampPMsg	can	have	the	effect	of	changing	the
value	in	the	dwPChannel	member	of	the	message	structure.	A	tool	that	uses	this
value	cannot	rely	on	it	if	StampPMsg	has	already	been	called

The	implementations	of	this	method	in	the	segment	state	and	performance
objects	always	return	S_OK	on	success.	The	implementation	in	the	graph	returns
DMUS_S_LAST_TOOL	if	there	is	no	tool	other	than	the	output	tool	waiting	to
receive	the	message.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Tools
IDirectMusicGraph8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicInstrument8	Interface
The	IDirectMusicInstrument8	interface	represents	an	individual	instrument
from	a	DLS	collection.

IDirectMusicInstrument8	is	a	type	definition	for	IDirectMusicInstrument.
The	two	interface	names	are	interchangeable.

To	create	an	instrument	object,	first	create	a	collection	object,	and	then	call	the
IDirectMusicCollection8::GetInstrument	method.	GetInstrument	creates	an
instrument	object	and	returns	its	IDirectMusicInstrument8	interface	pointer.

To	download	the	instrument,	pass	its	interface	pointer	to	the
IDirectMusicPort8::DownloadInstrument	or
IDirectMusicPerformance8::DownloadInstrument	method.	If	the	method
succeeds,	it	returns	a	pointer	to	an	IDirectMusicDownloadedInstrument8
interface,	which	is	used	only	to	unload	the	instrument.

The	methods	of	IDirectMusicInstrument8	operate	only	on	an	instrument	that
has	not	been	downloaded.	Any	instances	of	the	instrument	that	have	been
downloaded	to	a	port	are	not	affected	by	the
IDirectMusicInstrument8::SetPatch	method.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicInstrument8	interface	exposes	the	following	methods.

Method Description

GetPatch Retrieves	the	patch	number	for	the
instrument.

SetPatch Sets	the	patch	number	for	the
instrument.

The	LPDIRECTMUSICINTRUMENT8	type	is	defined	as	a	pointer	to	this
interface:

typedef	IDirectMusicInstrument8	*LPDIRECTMUSICINSTRUMENT8;

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces
Working	with	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicInstrument8::GetPatch

The	GetPatch	method	retrieves	the	patch	number	for	the	instrument.	The	patch
number	is	an	address	composed	of	the	MSB	and	LSB	bank	select	and	the	MIDI
patch	(program	change)	number.	An	optional	flag	bit	indicates	that	the
instrument	is	a	drum,	rather	than	a	melodic	instrument.

Syntax

HRESULT	GetPatch(

		DWORD*	pdwPatch

);

Parameters

pdwPatch

Address	of	a	variable	that	receives	the	patch	number.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_POINTER

Remarks

The	patch	number	returned	at	pdwPatch	describes	the	full	patch	address,
including	the	MIDI	parameters	for	MSB	and	LSB	bank	select.	In	addition,	the
high	bit	is	set	if	the	instrument	is	a	drum	kit.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicInstrument8	Interface
MIDI	Channel	Messages
Working	with	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicInstrument8::SetPatch

The	SetPatch	method	sets	the	patch	number	for	the	instrument.	Although	each
instrument	in	a	DLS	collection	has	a	predefined	patch	number,	the	patch	number
can	be	reassigned	after	the	IDirectMusicCollection8::GetInstrument	method
has	been	used	to	retrieve	the	instrument	from	the	collection.	For	more
information	on	DirectMusic	patch	numbers,	see
IDirectMusicInstrument8::GetPatch.

Syntax

HRESULT	SetPatch(

		DWORD	dwPatch

);

Parameters

dwPatch

Patch	number	to	assign.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
DMUS_E_INVALIDPATCH

Remarks

The	following	code	example	gets	an	instrument	from	a	collection,	remaps	its
MSB	bank	select	to	a	different	bank,	and	then	downloads	the	instrument:

HRESULT	RemappedDownload(

				IDirectMusicCollection8	*pCollection,

				IDirectMusicPort8	*pPort,

				IDirectMusicDownloadedInstrument8	**ppDLInstrument,

				BYTE	bMSB,

				DWORD	dwPatch)

	

{

		HRESULT	hr;

		IDirectMusicInstrument8*	pInstrument;

		hr	=	pCollection->GetInstrument(dwPatch,	&pInstrument);

		if	(SUCCEEDED(hr))

		{

				dwPatch	&=	0xFF00FFFF;

				dwPatch	|=	bMSB	<<	16;

				pInstrument->SetPatch(dwPatch);

				hr	=	pPort->DownloadInstrument(pInstrument,	

																																			ppDLInstrument,	NULL,	0);

				pInstrument->Release();

		}

		return	hr;

}

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicInstrument8	Interface
MIDI	Channel	Messages
Working	with	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8	Interface
The	IDirectMusicLoader8	interface	is	used	for	finding,	enumerating,	caching,
and	loading	objects.	For	an	overview,	see	Loading	Audio	Data.

This	interface	supersedes	IDirectMusicLoader	and	adds	support	for	garbage
collection.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicLoader8	interface	exposes	the	following	methods.

Method Description

CacheObject
Stores	a	reference	to	an	object	for	later
use,	so	that	the	object	is	not	loaded
more	than	once.

ClearCache Removes	all	saved	references	to	a
specified	object	type.

CollectGarbage Removes	from	the	cache	objects	that
are	no	longer	in	use.

EnableCache Enables	or	disables	automatic	caching
of	all	objects	loaded.

EnumObject Enumerates	all	available	objects	of	the
specified	type.

GetObject Retrieves	an	object	from	a	file	or
resource.

LoadObjectFromFile Retrieves	an	object	from	a	file.

ReleaseObjectByUnknown Releases	the	loader's	reference	to	an
object.

ReleaseObject Releases	the	loader's	reference	to	an
object.

ScanDirectory
Searches	a	directory	or	disk	for	all	files
of	a	specified	class	type	and	file	name
extension.
Enables	the	loader	to	find	an	object
when	it	is	later	referenced	by	another

SetObject object	that	is	being	loaded,	and	adds
attributes	to	an	object	so	that	it	can	be
identified	by	those	attributes.

SetSearchDirectory Sets	a	search	path	for	finding	object
files.

The	LPDMUS_LOADER	type	is	defined	as	a	pointer	to	the
IDirectMusicLoader	interface:

typedef	IDirectMusicLoader	__RPC_FAR	*LPDMUS_LOADER;

The	following	table	lists	the	standard	types	of	loadable	objects,	together	with
their	class	identifiers	(the	rguidClass	parameter	of	various	methods	that	deal
with	objects)	and	the	usual	file	name	extension.

Object	type Class Extension
Audiopath CLSID_DirectMusicAudioPathConfig aud
Band CLSID_DirectMusicBand bnd
Container CLSID_DirectMusicContainer con
DLS	collectionCLSID_DirectMusicCollection dls
Chordmap CLSID_DirectMusicChordMap cdm
Segment CLSID_DirectMusicSegment sgt
Script CLSID_DirectMusicScript spt
Style CLSID_DirectMusicStyle sty
Template CLSID_DirectMusicSegment tpl
Toolgraph CLSID_DirectMusicGraph tgr
Wave CLSID_DirectSoundWave wav

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
Loading	Audio	Data

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::CacheObject

The	CacheObject	method	stores	a	reference	to	an	object	for	later	use,	so	that	the
object	is	not	loaded	more	than	once.

Syntax

HRESULT	CacheObject(

		IDirectMusicObject	*	pObject

);

Parameters

pObject

Address	of	the	IDirectMusicObject	interface	of	the	object	to	cache.	Use
QueryInterface	to	obtain	IDirectMusicObject8.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	object	is
already	cached.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
DMUS_E_LOADER_OBJECTNOTFOUND

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Cache	Management

IDirectMusicLoader8	Interface
IDirectMusicLoader8::ClearCache
IDirectMusicLoader8::EnableCache
IDirectMusicLoader8::ReleaseObject

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::ClearCache

The	ClearCache	method	removes	all	saved	references	to	a	specified	object	type.

Syntax

HRESULT	ClearCache(

		REFGUID	rguidClass	

);

Parameters

rguidClass

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	class	of	objects	to
clear,	or	GUID_DirectMusicAllTypes	to	clear	all	types.	For	a	list	of	standard
loadable	classes,	see	IDirectMusicLoader8.

Return	Values

The	method	returns	S_OK.

Remarks

This	method	clears	all	objects	that	are	currently	being	held,	but	does	not	turn	off
caching.	Use	the	IDirectMusicLoader8::EnableCache	method	to	turn	off
automatic	caching.

To	clear	a	single	object	from	the	cache,	call	the
IDirectMusicLoader8::ReleaseObject	method.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Cache	Management
IDirectMusicLoader8	Interface
IDirectMusicLoader8::CacheObject

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::CollectGarbage

The	CollectGarbage	method	removes	from	the	cache	objects	that	are	no	longer
in	use.

Syntax

CollectGarbage();		

Parameters

None.

Return	Values

None.

Remarks

When	an	application	calls	IDirectMusicLoader8::ReleaseObject,	the	object	is
removed	from	the	cache,	and	any	objects	it	references	become	candidates	for
removal.	IDirectMusicLoader8::CollectGarbage	finds	cached	objects	that	are
no	longer	being	used	by	other	objects,	removes	them	from	the	cache,	and
releases	them	from	memory.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Garbage	Collection
IDirectMusicLoader8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::EnableCache

The	EnableCache	method	enables	or	disables	automatic	caching	of	all	objects	it
loads.	By	default,	caching	is	enabled	for	all	classes.

Syntax

HRESULT	EnableCache(

		REFGUID	rguidClass,

		BOOL	fEnable

);

Parameters

rguidClass

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	class	of	objects	to
cache	or	stop	caching,	or	GUID_DirectMusicAllTypes	for	all	types.	For	a	list	of
standard	loadable	classes,	see	IDirectMusicLoader8.

fEnable

TRUE	to	enable	caching;	FALSE	to	clear	and	disable.

Return	Values

The	method	returns	S_OK	if	the	cache	state	is	changed,	or	S_FALSE	if	the	cache
is	already	in	the	desired	state.

Remarks

When	you	disable	caching	for	a	class,	all	objects	of	that	class	that	have	already
been	cached	are	released.

To	clear	the	cache	without	disabling	caching,	call	the
IDirectMusicLoader8::ClearCache	method.

The	following	code	example	disables	caching	only	for	segment	objects	so	that

they	do	not	stay	in	memory	after	the	application	releases	them.	Other	objects	that
should	be	shared,	such	as	styles,	chordmaps,	and	DLS	collections,	continue	to	be
cached.	The	first	call	to	EnableCache	would	normally	be	unnecessary,	because
caching	is	enabled	for	all	objects	by	default.

void	PrepareLoader(IDirectMusicLoader8	*pILoader)

{

		pILoader->EnableCache(GUID_DirectMusicAllTypes,	TRUE);

		pILoader->EnableCache(CLSID_DirectMusicSegment,	FALSE);

}

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Cache	Management
IDirectMusicLoader8	Interface
IDirectMusicLoader8::CacheObject
IDirectMusicLoader8::ClearCache

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::EnumObject

The	EnumObject	method	enumerates	an	available	object	of	the	requested	type.
Objects	are	available	if	they	have	been	loaded	or	if
IDirectMusicLoader8::ScanDirectory	has	been	called	on	the	search	directory.

Syntax

HRESULT	EnumObject(

		REFGUID	rguidClass,	

		DWORD	dwIndex,	

		LPDMUS_OBJECTDESC	pDesc

);

Parameters

rguidClass

Reference	to	(C++)	or	address	of	(C)	the	identifier	for	the	class	of	objects	to
view.	For	a	list	of	standard	loadable	classes,	see	IDirectMusicLoader8.

dwIndex

Zero-based	index	into	the	list	of	matching	objects.

pDesc

Address	of	a	DMUS_OBJECTDESC	structure	to	be	filled	with	data	about	the
object.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	dwIndex	is
past	the	end	of	the	list.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Enumerating	Objects
IDirectMusicLoader8	Interface
IDirectMusicLoader8::ScanDirectory

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::GetObject

The	GetObject	method	retrieves	an	object	from	a	file	or	resource	and	returns	the
specified	interface.

Syntax

HRESULT	GetObject(

		LPDMUS_OBJECTDESC	pDesc,

		REFIID	riid,

		LPVOID	FAR	*	ppv

);

Parameters

pDesc

Address	of	a	DMUS_OBJECTDESC	structure	describing	the	object.

riid

Unique	identifier	of	the	interface.	See	DirectMusic	Interface	GUIDs.

ppv

Address	of	a	variable	that	receives	a	pointer	to	the	desired	interface	of	the	object.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or	DMUS_S_PARTIALLOAD.

DMUS_S_PARTIALLOAD	is	returned	if	any	referenced	object	cannot	be	found,
such	as	a	style	referenced	in	a	segment.	The	loader	might	fail	to	find	the	style	if
it	is	referenced	by	name	but	IDirectMusicLoader8::ScanDirectory	has	not
been	called	for	styles.	DMUS_S_PARTIALLOAD	might	also	mean	that	the
default	instrument	collection	file,	Gm.dls,	is	not	available.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following

table.

Return	code
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FORMATNOTSUPPORTED
DMUS_E_LOADER_NOCLASSID
E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER
REGDB_E_CLASSNOTREG

Remarks

For	file	objects,	it	is	simpler	to	use	the
IDirectMusicLoader8::LoadObjectFromFile	method.

DirectMusic	does	not	support	loading	from	URLs.	If	the	dwValidData	member
of	the	DMUS_OBJECTDESC	structure	contains	DMUS_OBJ_URL,	the
method	returns	DMUS_E_LOADER_FORMATNOTSUPPORTED.

The	method	does	not	require	that	all	valid	members	of	the
DMUS_OBJECTDESC	structure	match	before	retrieving	an	object.	The
dwValidData	flags	are	evaluated	in	the	following	order:

1.	 DMUS_OBJ_OBJECT
2.	 DMUS_OBJ_STREAM
3.	 DMUS_OBJ_MEMORY
4.	 DMUS_OBJ_FILENAME	and	DMUS_OBJ_FULLPATH
5.	 DMUS_OBJ_NAME	and	DMUS_OBJ_CATEGORY
6.	 DMUS_OBJ_NAME
7.	 DMUS_OBJ_FILENAME

In	other	words,	the	highest	priority	goes	to	a	unique	GUID,	followed	by	a	stream
pointer,	followed	by	a	resource,	followed	by	the	full	file	path	name,	followed	by
an	internal	name	plus	category,	followed	by	an	internal	name,	followed	by	a
local	file	name.

Do	not	load	data	from	untrusted	sources.	Loading	DirectMusic	data	files	causes
objects	to	be	constructed,	with	the	possibility	that	excessive	demand	on
resources	will	lead	to	degradation	of	performance	or	system	failure.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicLoader8	Interface
IDirectMusicLoader8::LoadObjectFromFile
IDirectMusicLoader8::ReleaseObject
IDirectMusicLoader8::ScanDirectory
Loading	Audio	Data

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::LoadObjectFromFile

The	LoadObjectFromFile	method	retrieves	an	object	from	a	file	and	returns	the
specified	interface.	This	method	can	be	used	instead	of
IDirectMusicLoader8::GetObject	when	the	object	is	in	a	file.

Syntax

HRESULT	LoadObjectFromFile(

		REFGUID	rguidClassID,	

		REFIID	iidInterfaceID,	

		WCHAR	*pwzFilePath,	

		void	**	ppObject

);

Parameters

rguidClassID

Unique	identifier	for	the	class	of	object.	For	a	list	of	standard	loadable	classes,
see	IDirectMusicLoader8.

iidInterfaceID

Unique	identifier	of	the	interface.	See	DirectMusic	Interface	GUIDs.

pwzFilePath

Name	of	the	file	that	contains	the	object.	The	path	can	be	fully	qualified	or
relative	to	the	search	directory.	(See	Remarks.)

ppObject

Address	of	a	variable	that	receives	a	pointer	to	the	desired	interface	of	the	object.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or	DMUS_S_PARTIALLOAD.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FORMATNOTSUPPORTED
DMUS_E_LOADER_NOCLASSID
E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER
REGDB_E_CLASSNOTREG

Remarks

Do	not	load	data	from	untrusted	sources.	Loading	DirectMusic	data	files	causes
objects	to	be	constructed,	with	the	possibility	that	excessive	demand	on
resources	will	lead	to	degradation	of	performance	or	system	failure.

When	pwzFilePath	is	an	unqualified	file	name	or	a	relative	path,	the	loader
searches	first	in	the	current	directory,	then	in	the	Windows	search	path,	and
finally	in	the	directory	set	by	the	last	call	to
IDirectMusicLoader8::SetSearchDirectory.

DMUS_S_PARTIALLOAD	is	returned	if	any	referenced	object	cannot	be	found,
such	as	a	style	referenced	in	a	segment.	The	loader	might	fail	to	find	the	style	if
it	is	referenced	by	name	but	IDirectMusicLoader8::ScanDirectory	has	not
been	called	for	styles.	DMUS_S_PARTIALLOAD	might	also	mean	that	the
default	instrument	collection	file,	Gm.dls,	is	not	available.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicLoader8	Interface
IDirectMusicLoader8::GetObject

IDirectMusicLoader8::SetSearchDirectory
Loading	an	Object	from	a	File

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::ReleaseObject

The	ReleaseObject	method	releases	the	loader's	reference	to	an	object.

Syntax

HRESULT	ReleaseObject(

		IDirectMusicObject	*	pObject

);

Parameters

pObject

IDirectMusicObject8	interface	pointer	of	the	object	to	release.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	object	has
already	been	released	or	cannot	be	found	in	the	cache.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

ReleaseObject	is	the	reciprocal	of	IDirectMusicLoader8::CacheObject.

Objects	can	be	cached	explicitly	by	using	the	CacheObject	method,	or
automatically	by	using	the	IDirectMusicLoader8::EnableCache	method.

To	tell	the	loader	to	flush	all	objects	of	a	particular	type,	call	the
IDirectMusicLoader8::ClearCache	method.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Cache	Management
IDirectMusicLoader8	Interface
IDirectMusicLoader8::GetObject
IDirectMusicLoader8::ReleaseObjectByUnknown

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::ReleaseObjectByUnknown

The	ReleaseObjectByUnknown	method	releases	the	loader's	reference	to	an
object.	This	method	is	similar	to	IDirectMusicLoader8::ReleaseObject	and	is
suitable	for	releasing	objects	for	which	the	IDirectMusicObject8	interface	is
not	readily	available.

Syntax

HRESULT	ReleaseObject(

		IUnknown	*	pObject

);

Parameters

pObject

Address	of	the	IUnknown	interface	pointer	of	the	object	to	release.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	object	has
already	been	released	or	cannot	be	found	in	the	cache.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Cache	Management
IDirectMusicLoader8	Interface
IDirectMusicLoader8::GetObject

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::ScanDirectory

The	ScanDirectory	method	searches	a	directory	or	disk	for	all	files	of	a
specified	class	type	and	file	name	extension.	For	each	file	found,	it	calls	the
IDirectMusicObject8::ParseDescriptor	method	to	extract	the	GUID	and	name
of	the	object.	This	information	is	stored	in	an	internal	database.	After	a	directory
has	been	scanned,	all	files	of	the	requested	type	become	available	for
enumeration	through	the	IDirectMusicLoader8::EnumObject	method;	in
addition,	an	object	can	be	retrieved	by	using
IDirectMusicLoader8::GetObject,	even	without	a	file	name.

Syntax

HRESULT	ScanDirectory(

		REFGUID	rguidClass,

		WCHAR*	pwzFileExtension,

		WCHAR*	pwzScanFileName

);

Parameters

rguidClass

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	class	of	objects.	For	a
list	of	standard	loadable	classes,	see	IDirectMusicLoader8.

pwzFileExtension

File	name	extension	for	the	type	of	file	to	look	for.	Use	L"*"	to	look	in	files	with
any	or	no	extension.	(See	Remarks.)

pwzScanFileName

Name	of	a	file	to	use	for	cached	file	information.	This	file	is	created	by	the	first
call	to	ScanDirectory	and	used	by	subsequent	calls.	Pass	NULL	if	a	cache	file	is
not	wanted.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	no	files	were
found.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_FAIL
E_OUTOFMEMORY
E_POINTER
REGDB_E_CLASSNOTREG

Remarks

The	IDirectMusicLoader8::SetSearchDirectory	method	must	be	called	first	to
set	the	location	to	search.

The	scanned	information	can	be	stored	in	a	cache	file	defined	by
pwzScanFileName.	After	it	has	been	stored,	subsequent	calls	to	ScanDirectory
are	much	quicker	because	only	files	that	have	changed	are	scanned	(the	cache
file	stores	the	file	size	and	date	for	each	object,	so	it	can	tell	if	a	file	has
changed).

GUID_DirectMusicAllTypes	is	not	a	valid	value	for	rguidClass.

If	the	file	type	has	more	than	one	possible	extension,	call	ScanDirectory	once
for	each	file	name	extension.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicLoader8	Interface
Scanning	a	Directory	for	Objects

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::SetObject

The	SetObject	method	enables	the	loader	to	find	an	object	when	it	is	later
referenced	by	another	object	that	is	being	loaded,	and	adds	attributes	to	an	object
so	that	it	can	be	identified	by	those	attributes.

Syntax

HRESULT	SetObject(

		LPDMUS_OBJECTDESC	pDesc	

);

Parameters

pDesc

Address	of	a	DMUS_OBJECTDESC	structure	describing	the	object.	On	entry,
this	structure	contains	any	information	the	application	has	about	the	object.	On
return,	it	can	contain	additional	information.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_LOADER_FORMATNOTSUPPORTED
DMUS_E_LOADER_NOCLASSID
E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

REGDB_E_CLASSNOTREG

Remarks

This	method	can	be	used	to	set	attributes	that	are	not	currently	valid	for	an
object.	For	example,	you	can	supply	a	value	in	the	wszName	member	of	the
DMUS_OBJECTDESC	structure	to	assign	an	internal	name	to	an	unnamed
object,	such	as	a	segment	based	on	a	MIDI	file.	However,	the	method	cannot	be
used	to	change	existing	attributes.	Most	authored	segments,	for	example,	already
have	names,	and	these	cannot	be	changed	by	the	application.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicLoader8	Interface
IDirectMusicLoader8::GetObject
Setting	Objects

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicLoader8::SetSearchDirectory

The	SetSearchDirectory	method	sets	a	search	path	for	finding	object	files.	The
search	path	can	be	set	for	one	object	file	type	or	for	all	files.

Syntax

HRESULT	SetSearchDirectory(

		REFGUID	rguidClass,

		WCHAR*	pwszPath,

		BOOL	fClear

);

Parameters

rguidClass

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	class	of	objects	that	the
call	pertains	to.	GUID_DirectMusicAllTypes	specifies	all	objects.	For	a	list	of
standard	loadable	classes,	see	IDirectMusicLoader8.

pwszPath

File	path	for	directory.	Must	be	a	valid	directory	and	must	be	less	than
MAX_PATH	in	length.	The	path,	if	not	fully	qualified,	is	relative	to	the	current
directory	when	IDirectMusicLoader8::ScanDirectory	is	called.

fClear

If	TRUE,	clears	all	information	about	objects	before	setting	the	directory.	This
prevents	the	loader	from	accessing	objects	in	a	previous	directory	when	those
objects	have	the	same	name.	However,	objects	are	not	removed	from	the	cache.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	search
directory	is	already	set	to	pwszPath.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_LOADER_BADPATH
E_OUTOFMEMORY
E_POINTER

Remarks

After	a	search	path	is	set,	the	loader	does	not	need	a	full	path	every	time	it	is
given	an	object	to	load	by	file	name.	This	enables	objects	that	refer	to	other
objects	to	find	them	by	file	name	without	knowing	the	full	path.

When	this	method	has	been	called,	the	loader	expects	the	wszFileName	member
of	the	DMUS_OBJECTDESC	structure	to	contain	only	a	file	name	or	a	path
relative	to	the	search	directory,	unless	the	DMUS_OBJ_FULLPATH	flag	is	set	in
the	dwValidData	member.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicLoader8	Interface
IDirectMusicLoader8::ScanDirectory
Setting	the	Loader's	Search	Directory

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicObject8	Interface
The	IDirectMusicObject8	interface	is	a	generic	object	interface.	All
DirectMusic	objects	that	can	be	loaded	from	a	file	or	resource	support	the
IDirectMusicObject8	interface	so	that	they	can	work	with	the	DirectMusic
loader.	New	types	of	objects	must	implement	this	interface.

Most	applications	do	not	use	the	methods	of	this	interface	directly.	However,
IDirectMusicObject8::GetDescriptor	can	be	used	to	query	an	object	for
information,	including	its	name,	GUID,	file	path,	and	version.

The	IDirectMusicObject8	interface	is	usually	obtained	by	calling	another
interface's	QueryInterface	method.	It	cannot	be	obtained	by	using
CoCreateInstance.	The	interface	is	also	returned	by
IDirectMusicContainer8::EnumObject.

IDirectMusicObject8	is	a	define	for	IDirectMusicObject.	The	two	interface
names	are	interchangeable.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicObject8
interface	exposes	the	following	methods.

Method Description

GetDescriptor Retrieves	the	object's	internal
description.

ParseDescriptor
Given	a	file	stream,	scans	the	file	for
data	that	it	can	store	in	the
DMUS_OBJECTDESC	structure.

SetDescriptor Sets	some	or	all	members	of	the	object's
internal	description.

The	LPDMUS_OBJECT	type	is	defined	as	a	pointer	to	the
IDirectMusicObject	interface:

typedef	IDirectMusicObject	__RPC_FAR	*LPDMUS_OBJECT;

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Custom	Loading
DirectMusic	Interfaces
Loading	Audio	Data

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicObject8::GetDescriptor

The	GetDescriptor	method	retrieves	the	object's	internal	description.

Syntax

HRESULT	GetDescriptor(

		LPDMUS_OBJECTDESC	pDesc

);

Parameters

pDesc

Address	of	a	DMUS_OBJECTDESC	structure	to	be	filled	with	data	about	the
object.	Depending	on	the	implementation	of	the	object	and	how	it	was	loaded
from	a	file,	some	or	all	of	the	standard	parameters	are	filled	by	GetDescriptor.
Check	the	flags	in	the	dwValidData	member	to	ascertain	which	other	members
are	valid.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or
DMUS_S_GARBAGE_COLLECTED.	See	Garbage	Collection.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Getting	Object	Descriptors
IDirectMusicObject8	Interface
IDirectMusicObject8::SetDescriptor

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicObject8::ParseDescriptor

Given	a	file	stream,	the	ParseDescriptor	method	scans	the	file	for	data	that	it
can	store	in	the	DMUS_OBJECTDESC	structure.	All	members	that	are
supplied	are	marked	with	the	appropriate	flags	in	dwValidData.

This	method	is	primarily	used	by	the	loader	when	scanning	a	directory	for
objects,	and	is	not	normally	used	directly	by	an	application.	However,	if	an
application	implements	an	object	type	in	DirectMusic,	it	should	support	this
method.

Syntax

HRESULT	ParseDescriptor(

		LPSTREAM	pStream,	

		LPDMUS_OBJECTDESC	pDesc

);

Parameters

pStream

Stream	source	for	the	file.

pDesc

Address	of	a	DMUS_OBJECTDESC	structure	that	receives	data	about	the	file.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or
DMUS_S_GARBAGE_COLLECTED.	See	Garbage	Collection.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code

DMUS_E_CHUNKNOTFOUND
DMUS_E_INVALID_BAND
DMUS_E_INVALIDFILE
DMUS_E_NOTADLSCOL
E_FAIL
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicObject8	Interface
IDirectMusicObject8::SetDescriptor

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicObject8::SetDescriptor

The	SetDescriptor	method	sets	some	or	all	members	of	the	object's	internal
description.

This	method	is	primarily	used	by	the	loader	when	creating	an	object,	and	is	not
normally	used	directly	by	an	application.	However,	if	an	application	implements
an	object	type	in	DirectMusic,	it	should	support	this	method.

Syntax

HRESULT	SetDescriptor(

		LPDMUS_OBJECTDESC	pDesc

);

Parameters

pDesc

Address	of	a	DMUS_OBJECTDESC	structure	that	receives	data	about	the
object.	Data	is	copied	to	all	members	that	are	enabled	in	the	dwValidData
member.

Return	Values

If	the	method	succeeds,	one	of	the	values	in	the	following	table	is	returned.

Return	code Description
S_OK The	descriptor	was	set.
S_FALSE See	Remarks.
DMUS_S_GARBAGE_COLLECTEDSee	Garbage	Collection.

If	it	fails,	the	method	can	return	one	of	the	error	values	in	the	following	table.

Return	code
E_INVALIDARG

E_POINTER

Remarks

Applications	do	not	normally	call	this	method	on	standard	objects.	Although	it	is
possible	to	change	the	object	descriptor	returned	by
IDirectMusicObject8::GetDescriptor,	the	new	description	cannot	successfully
be	passed	to	the	IDirectMusicLoader8::GetObject	method.	For	example,	you
could	change	the	name	of	an	object,	but	GetObject	will	still	find	the	object	only
under	its	original	name,	because	it	relies	on	the	object's	own	implementation	of
SetDescriptor.

Members	that	are	not	copied	keep	their	previous	values.	For	example,	an	object
might	already	have	its	name	and	GUID	stored	internally.	A	call	to	its
SetDescriptor	method	with	a	new	name	and	file	path	(and	DMUS_OBJ_NAME
|	DMUS_OBJ_FILENAME	in	the	dwValidData	member)	would	replace	the
name,	supply	a	file	name,	and	leave	the	GUID	as	it	is.

If	the	object	is	unable	to	set	one	or	more	members,	it	sets	the	members	that	it
does	support,	clears	the	flags	in	dwValidData	that	it	does	not	support,	and
returns	S_FALSE.	An	application-defined	object	should	support	at	least
DMUS_OBJ_NAME	and	DMUS_OBJ_OBJECT.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicObject8	Interface
IDirectMusicObject8::GetDescriptor
IDirectMusicObject8::ParseDescriptor

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPatternTrack8	Interface
The	IDirectMusicPatternTrack8	interface	represents	a	track	that	contains	a
single	pattern.	A	pattern	track	is	similar	to	a	sequence	track,	but	because	it
contains	music	values	rather	than	fixed	notes,	it	responds	to	chord	changes.

You	can	obtain	this	interface	by	passing	IID_IDirectMusicPatternTrack	to	the
IDirectMusicTrack8::QueryInterface	method	of	the	track.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicPatternTrack8	interface	exposes	the	following	methods.

Method Description
CreateSegment Creates	a	segment	containing	the	pattern	track.
SetPatternByName Sets	the	pattern	to	be	played	by	the	track.

SetVariation Sets	the	variations	to	be	played	by	a	part	in	the
track.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPatternTrack8::CreateSegment

The	CreateSegment	method	creates	a	segment	containing	the	pattern	track.

Syntax

HRESULT	CreateSegment(

		IDirectMusicStyle*	pStyle,

		IDirectMusicSegment**	ppSegment

);

Parameters

pStyle

Style	to	use	in	creating	the	segment.

ppSegment

Address	of	a	variable	that	receives	an	IDirectMusicSegment	interface	pointer
for	the	created	segment.	Use	QueryInterface	to	obtain	IDirectMusicSegment8.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_OUTOFMEMORY

Remarks

A	pattern	track	is	usually	obtained	from	a	segment	object	loaded	from	a	file	or
resource,	in	which	case	the	application	already	has	the	IDirectMusicSegment

interface.	This	method	is	used	for	creating	a	segment	when	the	pattern	track
object	has	been	created	by	using	CoCreateInstance.

This	method	does	not	assign	a	pattern	to	the	track.	The	style	in	pStyle	provides
only	the	tempo,	time	signature,	and	band.	To	assign	a	pattern,	use
IDirectMusicPatternTrack8::SetPatternByName.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPatternTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPatternTrack8::SetPatternByName

The	SetPatternByName	method	sets	the	pattern	to	be	played	by	the	track.	The
pattern	comes	from	a	style.

Syntax

HRESULT	SetPatternByName(

		IDirectMusicSegmentState*	pSegState,

		WCHAR*	wszName,

		IDirectMusicStyle*	pStyle,

		DWORD	dwPatternType,

		DWORD*	pdwLength

);

Parameters

pSegState

Address	of	the	IDirectMusicSegmentState8	interface	representing	the	playing
instance	of	the	segment	that	contains	the	track.

wszName

Name	of	the	pattern	to	set.	The	name	can	be	obtained	by	using
IDirectMusicStyle8::EnumPattern.

pStyle

Address	of	the	IDirectMusicStyle	or	IDirectMusicStyle8	interface	of	the	style
containing	the	pattern.

dwPatternType

One	of	the	DMUS_STYLET_TYPES	enumerations	that	specifies	the	type	of
pattern.

pdwLength

Address	of	a	variable	that	receives	the	length	of	the	pattern,	in	music	time	ticks.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPatternTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPatternTrack8::SetVariation

The	SetVariation	method	sets	the	variations	to	be	played	by	a	part	in	the	track.

Syntax

HRESULT	SetVariation(

		IDirectMusicSegmentState*	pSegState,

		DWORD	dwVariationFlags,

		DWORD	dwPart

);

Parameters

pSegState

Address	of	the	IDirectMusicSegmentState8	interface	representing	the	playing
instance	of	the	segment	that	contains	the	track.

dwVariationFlags

Bitmask	where	a	bit	is	set	for	each	variation	that	is	to	be	played.

dwPart

Identifier	for	the	part	containing	the	variations.	This	is	the	number	assigned	to
the	part	in	the	authoring	application,	and	is	equivalent	to	the
performance	channel.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT

E_POINTER

Remarks

Variations	can	be	set	for	only	one	part	at	a	time.	Each	time	this	method	is	called,
it	overrides	previous	calls.

The	following	example	code	plays	variations	16	and	32	on	performance	channel
1.

//	pPattern	is	an	IDirectMusicPatternTrack8	pointer.

//	pSegmentState	is	an	IDirectMusicSegmentState8	pointer.

	

#define	VARIATION(v)		(1	<<	((v)	-	1))

	

HRESULT	hr	=	pPattern->SetVariation(

				pSegmentState,	VARIATION(32)	|	VARIATION(16),	1);

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPatternTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8	Interface
The	IDirectMusicPerformance8	interface	is	the	overall	manager	of	playback.	It
is	used	for	adding	and	removing	ports,	mapping	performance	channels	to	ports,
playing	segments,	dispatching	messages	and	routing	them	through	tools,
requesting	and	receiving	event	notification,	and	setting	and	retrieving	various
parameters.	It	also	has	several	methods	for	getting	information	about	timing	and
for	converting	time	and	music	values	from	one	system	to	another.

If	an	application	needs	two	complete	sets	of	music	playing	at	the	same	time,	it
can	do	so	by	creating	more	than	one	performance.	Separate	performances	have
separate	tempos,	whereas	all	segments	within	one	performance	must	play	at	the
same	tempo.

IDirectMusicPerformance8	supersedes	the	IDirectMusicPerformance
interface	and	adds	new	methods.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicPerformance8	interface	exposes	the	following	methods,	arranged
by	category.

Audiopaths

Method Description

CreateAudioPath Creates	an	audiopath	from	a
configuration	object.

CreateStandardAudioPath Creates	an	audiopath	with	a	standard
configuration.

GetDefaultAudioPath Retrieves	the	default	audiopath.

SetDefaultAudioPath Sets	and	activates	the	default	audiopath
for	the	performance.

Messages

Method Description

AllocPMsg Allocates	memory	for	a	performance
message.

ClonePMsg Makes	a	copy	of	a	performance
message.

FreePMsg Frees	memory	allocated	for	a
performance	message.

SendPMsg Sends	a	performance	message.

MIDI	conversion

Method Description

MIDIToMusic

Converts	a	MIDI	note	value	to	a
DirectMusic	music	value,	using	a
supplied	chord,	subchord	level,	and
play	mode.

MusicToMIDI Converts	a	DirectMusic	music	value	to
a	MIDI	note	value.

Notifications

Method Description

AddNotificationType Adds	a	notification	type	to	the
performance.

GetNotificationPMsg Retrieves	a	pending	notification
message.

RemoveNotificationType Removes	a	previously	added
notification	type	from	the	performance.

SetNotificationHandle Sets	the	event	handle	for	notifications.

Parameters

Method Description
Retrieves	global	values	from	the

GetGlobalParam performance.

GetParam Retrieves	data	from	a	track.

GetParamEx Retrieves	data	from	a	track,	with
support	for	self-controlling	segments.

SetGlobalParam Sets	global	values	for	the	performance.

SetParam Sets	data	on	a	track	in	the	control
segment.

Performance	channels

Method Description

AssignPChannel
Assigns	a	single	performance	channel
to	the	performance	and	maps	it	to	a
port,	group,	and	MIDI	channel.

AssignPChannelBlock
Assigns	a	block	of	16	performance
channels	to	the	performance	and	maps
them	to	a	port	and	a	channel	group.

PChannelInfo
Retrieves	the	port,	group,	and	MIDI
channel	for	a	given	performance
channel.

Playback

Method Description

GetSegmentState
Retrieves	the	currently	playing	primary
segment	state	or	the	primary	segment
state	that	is	playing	at	a	given	time.

IsPlaying
Ascertains	whether	a	specified	segment
or	segment	state	is	currently	being
heard	from	the	speakers.

PlaySegment Begins	playback	of	a	segment.

PlaySegmentEx Begins	playback	of	a	segment,	with
options	for	transition	and	audiopath.

Stop Stops	playback	of	a	segment	or	segment
state.

StopEx Stops	playback	of	a	segment,	segment
state,	or	audiopath.

Ports

Method Description
AddPort Assigns	a	port	to	the	performance.
RemovePort Removes	a	port	from	the	performance.

Timing

Method Description

AdjustTime Adjusts	the	internal	performance	time
forward	or	backward.

GetBumperLength

Retrieves	the	interval	between	the	time
at	which	messages	are	placed	in	the	port
buffer	and	the	time	at	which	they	begin
to	be	processed	by	the	port.

GetLatencyTime

Retrieves	the	latency	time,	which	is	the
performance	time	being	heard	from	the
speakers	plus	the	time	required	to	queue
and	render	messages.

GetPrepareTime
Retrieves	the	interval	between	the	time
when	messages	are	sent	by	tracks	and
the	time	when	the	sound	is	heard.

GetQueueTime Retrieves	the	earliest	time	in	the	queue
at	which	messages	can	be	flushed.

GetResolvedTime Resolves	a	given	time	to	a	given
boundary.

GetTime Retrieves	the	current	time	of	the
performance.
Converts	a	performance	time	in

MusicToReferenceTime MUSIC_TIME	format	to	performance
time	in	REFERENCE_TIME	format.

ReferenceToMusicTime

Converts	a	performance	time	in
REFERENCE_TIME	format	to	a
performance	time	in	MUSIC_TIME
format.

RhythmToTime Converts	rhythm	time	to	music	time.

SetBumperLength

Sets	the	interval	between	the	time	at
which	messages	are	placed	in	the	port
buffer	and	the	time	at	which	they	begin
to	be	processed	by	the	port.

SetPrepareTime
Sets	the	interval	between	the	time	when
messages	are	sent	by	tracks	and	the
time	when	the	sound	is	heard.

TimeToRhythm Converts	music	time	to	rhythm	time.

Toolgraphs

Method Description

GetGraph Retrieves	the	toolgraph	of	a
performance.

SetGraph Replaces	the	performance's	toolgraph.

Miscellaneous

Method Description
CloseDown Closes	down	the	performance	object.

DownloadInstrument Downloads	DLS	instrument	data	to	a
port.

InitAudio Initializes	the	performance	and
optionally	sets	up	a	default	audiopath.

Invalidate

Flushes	all	queued	messages	from	the
supplied	time	forward	and	causes	all
tracks	of	all	segments	to	resend	their

data	from	the	given	time	forward.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::AddNotificationType

The	AddNotificationType	method	adds	a	notification	type	to	the	performance.
All	segments	and	tracks	are	automatically	updated	with	the	new	notification	by
an	internal	call	to	their	AddNotificationType	methods.

Syntax

HRESULT	AddNotificationType(

		REFGUID	rguidNotificationType

);

Parameters

rguidNotificationType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	notification	type	to
add.	For	the	defined	types,	see	DMUS_NOTIFICATION_PMSG.	Applications
can	also	define	their	own	types	for	custom	tracks.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::RemoveNotificationType
IDirectMusicSegment8::AddNotificationType
IDirectMusicTrack8::AddNotificationType
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::AddPort

The	AddPort	method	assigns	a	port	to	the	performance.	This	method	is	valid
only	for	performances	that	do	not	use	audiopaths.	Such	performances	are
initialized	by	using	IDirectMusicPerformance8::Init.

Syntax

HRESULT	AddPort(

		IDirectMusicPort*	pPort

);

Parameters

pPort

IDirectMusicPort8	interface	pointer	of	the	port	to	add.	If	NULL,	the	default
port	is	added.	See	Remarks.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_CANNOT_OPEN_PORT
DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

Remarks

When	the	default	port	is	specified	by	passing	NULL	in	pPort,	it	is	assigned	one
channel	group.	If	no	performance	channels	have	been	set	up	for	any	other	port,

channels	0	through	15	are	assigned	to	MIDI	channels	0	through	15.

If	pPort	is	not	NULL,	it	must	be	a	port	created	by	the	same	DirectMusic	object
that	was	passed	to,	or	created	by,	IDirectMusicPerformance8::Init.	The	port
must	be	activated	by	a	call	to	IDirectMusicPort8::Activate,	and	a	block	of
channels	must	be	assigned	by	a	call	to
IDirectMusicPerformance8::AssignPChannelBlock.

This	method	creates	a	reference	to	IDirectMusicPort8	that	is	released	by
IDirectMusicPerformance8::RemovePort	or
IDirectMusicPerformance8::CloseDown.	However,	if	NULL	is	passed	to
AddPort,	the	port	cannot	be	removed	by	RemovePort,	because	the	application
has	no	reference	to	pass	to	RemovePort.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::RemovePort
Default	Port

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::AdjustTime

The	AdjustTime	method	adjusts	the	internal	performance	time	forward	or
backward.	This	is	mostly	used	to	compensate	for	drift	when	synchronizing	to
another	source.

Syntax

HRESULT	AdjustTime(

		REFERENCE_TIME	rtAmount

);

Parameters

rtAmount

Amount	of	time	to	add.	This	can	be	a	value	in	the	range	from	-10,000,000	to
10,000,000	(–1	second	to	+1	second).

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_INVALIDARG.

Remarks

The	adjusted	time	is	used	internally	by	DirectMusic.	It	is	not	reflected	in	the
time	retrieved	by	the	IDirectMusicPerformance8::GetTime	method.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface

IDirectMusicPerformance8::GetTime
Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::AllocPMsg

The	AllocPMsg	method	allocates	memory	for	a	performance	message.

Syntax

HRESULT	AllocPMsg(

		ULONG	cb,

		DMUS_PMSG**	ppPMSG

);

Parameters

cb

Size	of	the	message	structure.	This	structure	is	of	a	type	derived	from
DMUS_PMSG.

ppPMSG

Address	of	a	variable	that	receives	the	pointer	to	the	allocated	message	structure.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

The	dwSize	member	of	the	message	structure	is	set	to	the	value	of	cb.	Other

members	are	not	necessarily	initialized	to	zero,	because	of	internal	caching.

After	the	message	is	sent	by	IDirectMusicPerformance8::SendPMsg,	the
application	no	longer	owns	the	memory	and	is	not	responsible	for	freeing	the
message.	However,	a	tool	can	free	a	message	within	its
IDirectMusicTool8::Flush	or	its	IDirectMusicTool8::ProcessPMsg	method.
Applications	are	also	responsible	for	freeing	notification	messages.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::FreePMsg
IDirectMusicPerformance8::SendPMsg
DirectMusic	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::AssignPChannel

The	AssignPChannel	method	assigns	a	single	performance	channel	to	the
performance	and	maps	it	to	a	port,	group,	and	MIDI	channel.

This	method	is	not	used	by	applications	that	route	their	data	through	audiopaths.

Syntax

HRESULT	AssignPChannel(

		DWORD	dwPChannel,	

		IDirectMusicPort*	pPort,

		DWORD	dwGroup,	

		DWORD	dwMChannel

);

Parameters

dwPChannel

Performance	channel	to	assign.

pPort

Pointer	to	the	IDirectMusicPort8	interface	of	the	port	to	which	the	channel	is
assigned.

dwGroup

Channel	group	on	the	port.

dwMChannel

Channel	in	the	group.	Must	be	in	the	range	from	0	through	15.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	(see	Remarks).

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_POINTER

Remarks

The	method	returns	S_FALSE	if	dwGroup	is	out	of	the	range	of	the	port.	The
channel	has	been	assigned,	but	the	port	cannot	play	this	group.

The	method	returns	E_INVALIDARG	if	dwMChannel	is	out	of	range	or	the	port
has	not	been	added	to	the	performance	through	a	call	to	the
IDirectMusicPerformance8::AddPort	method.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Channels
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::AssignPChannelBlock
IDirectMusicPerformance8::PChannelInfo

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::AssignPChannelBlock

The	AssignPChannelBlock	method	assigns	a	block	of	16	performance	channels
to	the	performance	and	maps	them	to	a	port	and	a	channel	group.	This	method	is
valid	only	for	performances	that	do	not	use	audiopaths;	that	is,	performances
initialized	by	using	IDirectMusicPerformance8::Init.

Syntax

HRESULT	AssignPChannelBlock(

		DWORD	dwBlockNum,

		IDirectMusicPort*	pPort,

		DWORD	dwGroup

);

Parameters

dwBlockNum

Block	number,	in	which	0	represents	channels	0	through	15,	1	represents
channels	16	through	31,	and	so	on.

pPort

IDirectMusicPort8	interface	pointer	of	the	port	to	which	the	channels	are
assigned.

dwGroup

Channel	group	on	the	port.	Must	be	1	or	greater.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or	S_FALSE	(see	Remarks).

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_POINTER

Remarks

This	method	must	be	called	when	a	port	has	been	added	to	a	performance,
except	when	the	default	port	has	been	added	by	passing	NULL	to
IDirectMusicPerformance8::AddPort.

The	method	returns	S_FALSE	if	dwGroup	is	out	of	the	range	of	the	port.	The
channels	have	been	assigned,	but	the	port	cannot	play	this	group.

The	method	returns	E_INVALIDARG	if	the	port	has	not	been	added	to	the
performance	through	a	call	to	the	IDirectMusicPerformance8::AddPort
method.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Channels
Default	Port
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::AssignPChannel
IDirectMusicPerformance8::PChannelInfo

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::ClonePMsg

The	ClonePMsg	method	makes	a	copy	of	a	performance	message.

Syntax

HRESULT	ClonePMsg(

		DMUS_PMSG*	pSourcePMSG,

		DMUS_PMSG**	ppCopyPMSG

);

Parameters

pSourcePMSG

Message	to	copy.

ppCopyPMSG

Address	of	a	variable	that	receives	a	pointer	to	the	copied	message.

Return	Values

If	it	succeeds,	the	method	returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::CloseDown

The	CloseDown	method	closes	down	the	performance	object.	An	application
that	created	the	performance	object	and	called
IDirectMusicPerformance8::Init	or	IDirectMusicPerformance8::InitAudio
on	it	must	call	CloseDown	before	the	performance	is	released.

Syntax

HRESULT	CloseDown();		

Parameters

This	method	returns	no	parameters.

Return	Values

The	method	returns	S_OK.

Remarks

Failure	to	call	CloseDown	can	cause	memory	leaks	or	program	failures.

CloseDown	handles	the	release	of	the	IDirectMusic8	interface	if	this	reference
was	created	by	IDirectMusicPerformance8::Init	or
IDirectMusicPerformance8::InitAudio.	If	the	application	explicitly	created	the
DirectMusic	object,	the	application	is	responsible	for	releasing	the	reference.

If	the	DirectSound	device	object	was	created	in	the	call	to	Init	or	InitAudio	but
no	reference	was	returned	to	the	application,	CloseDown	also	releases	the
DirectSound	device	and	all	DirectSound	buffers.	If	your	application	has	obtained
any	interfaces	to	DirectSound	buffers,	it	should	release	them	before	calling
Closedown.

If	the	application	created	the	DirectSound	device	object	explicitly,	or	obtained	a
reference	form	Init	or	InitAudio,	it	is	responsible	for	releasing	the	DirectSound
device.

The	method	releases	any	downloaded	instruments	that	have	not	been	unloaded.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::CreateAudioPath

The	CreateAudioPath	method	creates	an	audiopath	from	a	configuration	object.

Syntax

HRESULT	CreateAudioPath(

		IUnknown	*pSourceConfig,	

		BOOL	fActivate,

		IDirectMusicAudioPath	**ppNewPath

);

	

Parameters

pSourceConfig

Address	of	an	interface	that	represents	the	audiopath	configuration.	See
Remarks.

fActivate

Boolean	value	that	specifies	whether	to	activate	the	path	on	creation.

ppNewPath

Address	of	a	variable	that	receives	an	IDirectMusicAudioPath8	interface
pointer	for	the	audiopath.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_AUDIOPATHS_NOT_VALID

DMUS_E_NOT_INIT
DSERR_BUFFERLOST
E_NOINTERFACE
E_OUTOFMEMORY
E_POINTER

Remarks

The	object	addressed	by	pSourceConfig	can	be	obtained	from	a	segment	by
using	the	IDirectMusicSegment8::GetAudioPathConfig	method	or	can	be
loaded	directly	from	a	file.

The	method	fails	with	DSERR_BUFFERLOST	if	any	application	has	initialized
DirectSound	with	the	write-primary	cooperative	level.

If	the	audiopath	configuration	specifies	a	sound	device	that	is	not	available,	the
method	returns	E_NOINTERFACE.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::CreateStandardAudioPath
Creating	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::CreateStandardAudioPath

The	CreateStandardAudioPath	method	creates	an	audiopath	with	a	standard
configuration.

Syntax

HRESULT		CreateStandardAudioPath(

		DWORD	dwType,	

		DWORD	dwPChannelCount,	

		BOOL		fActivate,

		IDirectMusicAudioPath	**ppNewPath

);

	

Parameters

dwType

Type	of	the	path.	The	following	values	are	defined.

Value Description

DMUS_APATH_DYNAMIC_3D
One	bus	to	a	3-D	buffer.
Does	not	send	to
environmental	reverb.

DMUS_APATH_DYNAMIC_MONO One	bus	to	a	mono	buffer.

DMUS_APATH_DYNAMIC_STEREO Two	buses	to	a	stereo
buffer.

DMUS_APATH_SHARED_STEREOPLUSREVERB
Ordinary	music	setup
with	stereo	outs	and
reverb.

dwPChannelCount

Number	of	performance	channels	in	the	path.

fActivate

Boolean	value	that	specifies	whether	to	activate	the	path	on	creation.

ppNewPath

Address	of	a	variable	that	receives	an	IDirectMusicAudioPath	interface	pointer
for	the	audiopath.	See	IDirectMusicAudioPath8.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_AUDIOPATHS_NOT_VALID
DMUS_E_NOT_INIT
DSERR_BUFFERLOST
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

The	method	fails	with	DSERR_BUFFERLOST	if	any	application	has	initialized
DirectSound	with	the	write-primary	cooperative	level.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::CreateAudioPath
Standard	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::DownloadInstrument

The	DownloadInstrument	method	downloads	DLS	instrument	data	to	a	port.

Syntax

HRESULT	DownloadInstrument(

		IDirectMusicInstrument*	pInst,

		DWORD	dwPChannel,

		IDirectMusicDownloadedInstrument**	ppDownInst,

		DMUS_NOTERANGE*	pNoteRanges,	

		DWORD	dwNumNoteRanges,	

		IDirectMusicPort**	ppPort,

		DWORD*	pdwGroup,

		DWORD*	pdwMChannel

);

Parameters

pInst

Pointer	to	the	IDirectMusicInstrument8	interface	of	the	instrument	to
download.

dwPChannel

Performance	channel	to	which	the	instrument	is	assigned.

ppDownInst

Address	of	a	variable	that	receives	an	IDirectMusicDownloadedInstrument8
pointer	to	the	downloaded	instrument.

pNoteRanges

Address	of	an	array	of	DMUS_NOTERANGE	structures.	Each	entry	in	the
array	specifies	a	contiguous	range	of	MIDI	note	messages	to	which	the
instrument	must	respond.	An	instrument	region	is	downloaded	only	if	at	least
one	note	in	that	region	is	specified	in	the	DMUS_NOTERANGE	structures.

dwNumNoteRanges

Number	of	DMUS_NOTERANGE	structures	in	the	array	pointed	to	by
pNoteRanges.	If	this	value	is	set	to	0,	the	pNoteRanges	parameter	is	ignored,	and
all	regions	are	downloaded.

ppPort

Address	of	a	variable	that	receives	a	pointer	to	the	port	to	which	the	instrument
was	downloaded.

pdwGroup

Address	of	a	variable	that	receives	the	channel	group	to	which	the	instrument
was	assigned.

pdwMChannel

Address	of	a	variable	that	receives	the	MIDI	channel	to	which	the	instrument
was	assigned.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_POINTER

Remarks

Most	applications	do	not	need	to	use	this	method,	because	instrument
downloading	is	normally	handled	by	bands.

The	method	returns	E_INVALIDARG	if	the	performance	channel	is	not	assigned
to	a	port.

To	prevent	loss	of	resources,	unload	the	instrument	by	using	the
IDirectMusicPort8::UnloadInstrument	method	when	the	instrument	is	no
longer	needed.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Downloading	and	Unloading	Bands
IDirectMusicPerformance8	Interface
IDirectMusicPort8::DownloadInstrument
IDirectMusicPort8::UnloadInstrument
Working	with	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::FreePMsg

The	FreePMsg	method	frees	memory	allocated	for	a	performance	message.

Syntax

HRESULT	FreePMsg(

		DMUS_PMSG*	pPMSG

);	

Parameters

pPMSG

Pointer	to	the	message	to	free.	This	message	must	have	been	allocated	using	the
IDirectMusicPerformance8::AllocPMsg	method.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_CANNOT_FREE
E_POINTER

Remarks

Most	messages	are	released	automatically	by	the	performance	after	they	have
been	processed,	and	IDirectMusicPerformance8::FreePMsg	must	not	be
called	on	a	message	that	has	been	sent	by	using
IDirectMusicPerformance8::SendPMsg.	However,
IDirectMusicPerformance8::FreePMsg	can	be	used	within
IDirectMusicTool8::ProcessPMsg	or	IDirectMusicTool8::Flush	to	free	a
message	that	is	no	longer	needed.	It	must	also	be	used	to	free	notification

messages.

The	method	returns	DMUS_E_CANNOT_FREE	in	the	following	cases:

If	pPMSG	is	not	a	message	allocated	by	AllocPMsg.
If	it	is	in	the	performance	queue	because
IDirectMusicPerformance8::SendPMsg	was	called	on	it.	However,
applications	cannot	assume	that	FreePMsg	will	return
DMUS_E_CANNOT_FREE	for	all	sent	messages,	because	SendPMsg	is
not	synchronous.
If	it	has	already	been	freed.

If	there	is	a	value	in	the	pTool,	pGraph,	or	punkUser	members	(see
DMUS_PMSG),	each	referenced	object	is	released.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Messages
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::AllocPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetBumperLength

The	GetBumperLength	method	retrieves	the	interval	between	the	time	at	which
messages	are	placed	in	the	port	buffer	and	the	time	at	which	they	begin	to	be
processed	by	the	port.

Syntax

HRESULT	GetBumperLength(

		DWORD*	pdwMilliSeconds

);

Parameters

pdwMilliSeconds

Address	of	a	variable	to	receive	the	buffer	length.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	default	value	is	50	milliseconds.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::SetBumperLength
Latency	and	Bumper	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetDefaultAudioPath

The	GetDefaultAudioPath	method	retrieves	the	default	audiopath	set	by
IDirectMusicPerformance8::InitAudio	or
IDirectMusicPerformance8::SetDefaultAudioPath.

Syntax

HRESULT	GetDefaultAudioPath(

		IDirectMusicAudioPath**		ppAudioPath

);

Parameters

ppAudioPath

Address	of	a	variable	that	receives	the	IDirectMusicAudioPath8	interface
pointer	of	the	default	audiopath.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_AUDIOPATHS_NOT_VALID
DMUS_E_NOT_INIT
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Default	Audiopath
IDirectMusicPerformance8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetGlobalParam

The	GetGlobalParam	method	retrieves	a	global	parameter	that	has	been	set	by
IDirectMusicPerformance8::SetGlobalParam.

Syntax

HRESULT	GetGlobalParam(

		REFGUID	rguidType,	

		void*	pParam,

		DWORD	dwSize

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data.

pParam

Pointer	to	the	allocated	memory	that	receives	a	copy	of	the	data.	This	must	be
the	correct	size,	which	is	constant	for	each	type	of	data.	This	parameter	contains
information	that	was	passed	in	to	the
IDirectMusicPerformance8::SetGlobalParam	method.

dwSize

Size	of	the	data.	This	is	constant	for	each	rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code

E_INVALIDARG
E_POINTER

Remarks

Do	not	assume	that	any	parameter	has	a	default	value	that	can	be	retrieved	by
using	GetGlobalParam.	If	SetGlobalParam	has	never	been	called	for
rguidType,	the	parameter	might	not	be	in	the	list	of	global	data	being	handled	by
this	performance,	and	GetGlobalParam	might	return	E_INVALIDARG.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetGlobalParam
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetGraph

The	GetGraph	method	retrieves	the	toolgraph	of	a	performance.

Syntax

HRESULT	GetGraph(

		IDirectMusicGraph**	ppGraph

);

Parameters

ppGraph

Address	of	a	variable	that	receives	a	pointer	to	the	toolgraph.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_POINTER

Remarks

The	reference	count	of	the	graph	is	incremented.

The	performance	object	implements	IDirectMusicGraph	directly	This	interface
is	used	primarily	to	call	the	IDirectMusicGraph8::StampPMsg	method
directly	on	the	performance.	This	has	nothing	to	do	with	a	graph	object	that
might	be	embedded	in	the	performance.	If	you	want	to	access	an	embedded
object,	you	are	accessing	a	different	IDirectMusicGraph	interface	because	it	is
an	interface	on	the	embedded	graph	object,	not	the	performance	itself.	To	obtain

an	interface	to	an	embedded	audiopath,	use	the
IDirectMusicAudioPath8::GetObjectInPath	or
IDirectMusicSegmentState8::GetObjectInPath	method.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Tools
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::SendPMsg
IDirectMusicPerformance8::SetGraph
IDirectMusicSegment8::GetGraph

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetLatencyTime

The	GetLatencyTime	method	retrieves	the	latency	time,	which	is	the
performance	time	being	heard	from	the	speakers	plus	the	time	required	to	queue
and	render	messages.

Syntax

HRESULT	GetLatencyTime(

		REFERENCE_TIME*		prtTime

);

Parameters

prtTime

Address	of	a	variable	that	receives	the	current	latency	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NO_MASTER_CLOCK
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Latency	and	Bumper	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetNotificationPMsg

The	GetNotificationPMsg	method	retrieves	a	pending	notification	message.

Syntax

HRESULT	GetNotificationPMsg(

		DMUS_NOTIFICATION_PMSG**		ppNotificationPMsg

);

Parameters

ppNotificationPMsg

Address	of	a	variable	that	receives	a	pointer	to	a
DMUS_NOTIFICATION_PMSG	structure.	The	application	retrieving	this
message	is	responsible	for	calling	IDirectMusicPerformance8::FreePMsg	on
it.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	there	are	no
more	notification	events	to	return.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

For	most	notifications,	the	segment	state	that	generated	the	notification	can	be
retrieved	from	the	punkUser	member	of	the	message	structure,	and	the	segment
can	be	retrieved	by	using	IDirectMusicSegmentState8::GetSegment.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetParam

The	GetParam	method	retrieves	data	from	a	track	inside	the	control	segment.

Syntax

HRESULT	GetParam(

		REFGUID	rguidType,	

		DWORD	dwGroupBits,

		DWORD	dwIndex,	

		MUSIC_TIME	mtTime,

		MUSIC_TIME*	pmtNext,

		void*	pParam

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	retrieve.
See	Standard	Track	Parameters.

dwGroupBits

Group	of	the	track	from	which	to	retrieve	the	data	(see	Remarks).	Set	this	value
to	0xFFFFFFFF	for	all	groups.

dwIndex

Index	of	the	track	in	the	group	from	which	to	retrieve	the	data,	or
DMUS_SEG_ANYTRACK	to	find	the	first	track	that	contains	the	parameter.

mtTime

Time	from	which	to	retrieve	the	data,	in	performance	time.

pmtNext

Address	of	a	variable	that	receives	the	time	(relative	to	mtTime)	until	which	the
data	is	valid.	If	this	returns	a	value	of	0,	either	the	data	is	always	valid,	or	it	is
not	known	when	it	might	become	invalid.	If	this	information	is	not	needed,
pmtNext	can	be	set	to	NULL.	See	Remarks.

pParam

Address	of	an	allocated	structure	in	which	the	data	is	to	be	returned.	The
structure	must	be	of	the	appropriate	kind	and	size	for	the	data	type	identified	by
rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_GET_UNSUPPORTED
DMUS_E_NO_MASTER_CLOCK
DMUS_E_NOT_FOUND
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks

Normally,	the	primary	segment	is	the	control	segment.	However,	a	secondary
segment	can	be	designated	as	a	control	segment	when	it	is	played.

The	data	returned	in	*pParam	can	become	invalid	before	the	time	returned	in
*pmtNext	if	another	control	segment	is	cued.

Each	track	belongs	to	one	or	more	groups,	and	each	group	is	represented	by	a	bit
in	dwGroupBits.	For	more	information,	see
IDirectMusicSegment8::InsertTrack	and	Identifying	the	Track.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Control	Segments
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetParamEx
IDirectMusicPerformance8::GetTime
IDirectMusicPerformance8::SetGlobalParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicTrack8::GetParamEx
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetParamEx

The	GetParamEx	method	retrieves	data	from	a	track.	This	method	is	similar	to
IDirectMusicPerformance8::GetParam	but	adds	support	for	self-controlling
segments.	It	is	used	chiefly	by	tools.

Syntax

HRESULT	GetParamEx(

		REFGUID	rguidType,	

		DWORD	dwTrackID,

		DWORD	dwGroupBits,

		DWORD	dwIndex,	

		MUSIC_TIME	mtTime,

		MUSIC_TIME*	pmtNext,

		void*	pParam

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	obtain.
See	Standard	Track	Parameters.

dwTrackID

Unique	identifier	of	a	track	within	the	segment	state	from	which	the	parameter	is
to	be	obtained.	Every	performance	message	that	originates	from	a	track	carries
an	identifier	of	the	track	instance	that	generated	the	message.	This	identifier	is
kept	in	the	dwVirtualTrackID	member	of	the	DMUS_PMSG	part	of	the
message	structure.	When	this	value	is	passed	to	GetParamEx,	the	method	is
able	to	determine	whether	the	track	is	self-controlling,	in	which	case	it	gets	its
data	from	another	track	in	the	same	segment	rather	than	from	one	in	the	control
segment.

dwGroupBits

Group	that	the	track	is	in	(see	Remarks).	Set	this	value	to	0xFFFFFFFF	for	all
groups.

dwIndex

Index	of	the	track	in	the	group.

mtTime

Time	from	which	to	obtain	the	data,	in	performance	time.

pmtNext

Address	of	a	variable	that	receives	the	time	(relative	to	mtTime)	until	which	the
data	is	valid.	If	this	returns	a	value	of	0,	either	the	data	is	always	valid,	or	it	is
not	known	when	it	might	become	invalid.	If	this	information	is	not	needed,
pmtNext	can	be	set	to	NULL.	See	Remarks.

pParam

Address	of	an	allocated	structure	in	which	the	data	is	to	be	returned.	The
structure	must	be	of	the	appropriate	kind	and	size	for	the	data	type	identified	by
rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_GET_UNSUPPORTED
DMUS_E_NO_MASTER_CLOCK
DMUS_E_NOT_FOUND
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks

Each	track	belongs	to	one	or	more	groups,	and	each	group	is	represented	by	a	bit
in	dwGroupBits.	For	more	information,	see
IDirectMusicSegment8::InsertTrack	and	Identifying	the	Track.

The	data	returned	in	*pParam	can	become	invalid	before	the	time	returned	in
*pmtNext	if	another	control	segment	is	cued.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Control	Segments
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetTime
IDirectMusicPerformance8::SetGlobalParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicTrack8::GetParamEx
Performance	Parameters
Self-Controlling	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetPrepareTime

The	GetPrepareTime	method	retrieves	the	interval	between	the	time	when
messages	are	sent	by	tracks	and	the	time	when	the	sound	is	heard.	This	interval
allows	sufficient	time	for	the	message	to	be	processed	by	tools.

Syntax

HRESULT	GetPrepareTime(

		DWORD*	pdwMilliSeconds

);

Parameters

pdwMilliSeconds

Address	of	a	variable	that	receives	the	amount	of	prepare	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	default	value	is	1000	milliseconds.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::SetPrepareTime
Prepare	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetQueueTime

The	GetQueueTime	method	retrieves	the	current	flush	time,	which	is	the
earliest	time	in	the	queue	at	which	messages	can	be	flushed.	Messages	that	have
time	stamps	earlier	than	this	time	have	already	been	sent	to	the	port	and	cannot
be	invalidated.

Syntax

HRESULT	GetQueueTime(

		REFERENCE_TIME	*	prtTime

);

Parameters

prtTime

Address	of	a	variable	that	receives	the	current	flush	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NO_MASTER_CLOCK
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface

IDirectMusicPerformance8::Invalidate
Latency	and	Bumper	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetResolvedTime

The	GetResolvedTime	method	resolves	a	given	time	to	a	given	boundary.

Syntax

HRESULT	GetResolvedTime(

		REFERENCE_TIME	rtTime,

		REFERENCE_TIME*	prtResolved,

		DWORD	dwTimeResolveFlags

);

Parameters

rtTime

Time	to	resolve.	If	this	is	less	than	the	current	time,	the	current	time	is	used.

prtResolved

Address	of	a	variable	that	receives	the	resolved	time.

dwTimeResolveFlags

One	or	more	DMUS_TIME_RESOLVE_FLAGS	describing	the	resolution
desired.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetSegmentState

The	GetSegmentState	method	retrieves	the	currently	playing	primary	segment
state	or	the	primary	segment	state	that	is	playing	at	a	given	time.

Syntax

HRESULT	GetSegmentState(

		IDirectMusicSegmentState	**	ppSegmentState,	

		MUSIC_TIME	mtTime

);

Parameters

ppSegmentState

Address	of	a	variable	that	receives	a	pointer	to	the	segment	state.	The	caller	is
responsible	for	calling	Release	on	this	pointer.

mtTime

Time	for	which	the	segment	state	is	to	be	retrieved.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_POINTER

Remarks

To	get	the	currently	playing	segment	state,	pass	the	time	returned	by	the

IDirectMusicPerformance8::GetTime	method.	Because	of	latency,	the
currently	playing	segment	state	is	not	necessarily	the	one	being	heard.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Segment	States

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::GetTime

The	GetTime	method	retrieves	the	current	time	of	the	performance.	Events	cued
at	this	time	are	now	being	performed.

Syntax

HRESULT	GetTime(

		REFERENCE_TIME*	prtNow,	

		MUSIC_TIME*	pmtNow

);

Parameters

prtNow

Address	of	a	variable	that	receives	the	current	time	in	REFERENCE_TIME
format.	Can	be	NULL.

pmtNow

Address	of	a	variable	that	receives	the	current	time	in	MUSIC_TIME	format.
Can	be	NULL.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NO_MASTER_CLOCK
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::Init

The	Init	method	associates	the	performance	with	a	DirectMusic	object	and	a
DirectSound	device	object.	If	the	application	is	not	using	audiopaths,	this
method	must	be	called	before	the	performance	can	play.

For	applications	that	use	audiopaths,	this	method	has	been	superseded	by
IDirectMusicPerformance8::InitAudio.

Syntax

HRESULT	Init(

		IDirectMusic**	ppDirectMusic,

		LPDIRECTSOUND	pDirectSound,

		HWND	hWnd

);

Parameters

ppDirectMusic

Address	of	a	variable	that	specifies	or	receives	an	interface	pointer	to	a
DirectMusic	object.

If	the	variable	pointed	to	by	ppDirectMusic	contains	a	valid	IDirectMusic	or
IDirectMusic8	interface	pointer,	the	existing	object	is	assigned	to	the
performance.	The	reference	count	of	the	interface	is	incremented.	Ports	passed	to
the	IDirectMusicPerformance8::AddPort	method	must	be	created	from	this
DirectMusic	object.

If	the	variable	pointed	to	by	ppDirectMusic	contains	NULL,	a	DirectMusic
object	is	created	and	an	IDirectMusic	interface	pointer	is	returned.	Use
QueryInterface	to	obtain	IDirectMusic8.

If	ppDirectMusic	is	NULL,	a	DirectMusic	object	is	created	and	used	internally
by	the	performance.

See	Remarks.

pDirectSound

IDirectSound8	interface	pointer	to	use	by	default	for	waveform	output.	If	this
value	is	NULL,	DirectMusic	creates	a	DirectSound	device	object.	There	should,
however,	be	only	one	DirectSound	device	object	per	process.	If	your	application
uses	DirectSound	separately,	it	should	pass	in	that	interface	here,	or	to
IDirectMusic8::SetDirectSound	if	the	application	creates	the	DirectMusic
object	explicitly.

hWnd

Window	handle	to	be	used	for	the	creation	of	DirectSound.	This	parameter	can
be	NULL,	in	which	case	the	foreground	window	is	used.	See	Remarks.

This	parameter	is	ignored	if	pDirectSound	is	not	NULL,	in	which	case	the
application	is	responsible	for	setting	the	window	handle	in	a	call	to
IDirectSound8::SetCooperativeLevel.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_ALREADY_INITED
E_OUTOFMEMORY
E_POINTER

Remarks

This	method	can	be	called	only	once.	It	cannot	be	used	to	retrieve	an	existing
IDirectMusic8	interface.

A	DirectMusic	object	can	be	associated	with	the	performance	in	any	of	the
following	ways:

The	application	creates	its	own	DirectMusic	object	and	gives	it	to	the
performance	by	passing	the	address	of	the	IDirectMusic8	pointer	in
ppDirectMusic.	In	this	case,	the	pDirectSound	and	hWnd	parameters	are
ignored	because	the	application	is	responsible	for	calling
IDirectMusic8::SetDirectSound.
The	application	allows	the	performance	to	create	the	DirectMusic	object
and	needs	a	pointer	to	that	object.	In	this	case,	*ppDirectMusic	is	NULL	on
entry,	and	contains	the	IDirectMusic	pointer	on	exit.
The	application	allows	the	performance	to	initialize	itself	and	does	not	need
a	DirectMusic	object	pointer.	In	this	case,	ppDirectMusic	is	NULL.

The	performance	must	be	terminated	by	using	the
IDirectMusicPerformance8::CloseDown	method	before	being	released.

You	can	pass	NULL	in	the	hWnd	parameter	to	pass	the	current	foreground
window	handle	to	DirectSound.	However,	do	not	assume	that	the	application
window	will	be	in	the	foreground	during	initialization.	It	is	best	to	pass	the	top-
level	application	window	handle.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::InitAudio

The	InitAudio	method	initializes	the	performance	and	optionally	sets	up	a
default	audiopath.	This	method	must	be	called	before	the	performance	can	play
using	audiopaths.

This	method	should	be	used	in	most	cases	instead	of
IDirectMusicPerformance8::Init.

Syntax

HRESULT	InitAudio(

		IDirectMusic**	ppDirectMusic,

		IDirectSound**	ppDirectSound,

		HWND	hWnd,

		DWORD	dwDefaultPathType,

		DWORD	dwPChannelCount,

		DWORD	dwFlags,

		DMUS_AUDIOPARAMS	*pParams

);

Parameters

ppDirectMusic

Address	of	a	variable	that	specifies	or	receives	an	interface	pointer	to	a
DirectMusic	object.

If	the	variable	pointed	to	by	ppDirectMusic	contains	a	valid	IDirectMusic	or
IDirectMusic8	interface	pointer,	the	existing	object	is	assigned	to	the
performance.	The	reference	count	of	the	interface	is	incremented.

If	the	variable	pointed	to	by	ppDirectMusic	contains	NULL,	a	DirectMusic
object	is	created	and	the	IDirectMusic	interface	pointer	is	returned.	Use
QueryInterface	to	obtain	IDirectMusic8.

If	ppDirectMusic	is	NULL,	a	DirectMusic	object	is	created	and	used	internally
by	the	performance.

See	Remarks.

ppDirectSound

Address	of	a	variable	that	specifies	or	receives	an	IDirectSound	interface
pointer	for	a	DirectSound	device	object	to	use	by	default	for	waveform	output.	If
this	parameter	contains	a	NULL	pointer,	DirectMusic	creates	a	private
DirectSound	device	object.	If	the	variable	pointed	to	contains	NULL,
DirectMusic	creates	a	DirectSound	device	object	and	returns	the	interface
pointer.	See	Remarks.

hWnd

Window	handle	to	use	for	the	creation	of	DirectSound.	This	parameter	can	be
NULL,	in	which	case	the	foreground	window	is	used.	See	Remarks.

This	parameter	is	ignored	if	an	IDirectSound	interface	pointer	is	passed	to	the
method	in	ppDirectSound.	In	that	case	the	application	is	responsible	for	setting
the	window	handle	by	using	IDirectSound8::SetCooperativeLevel.

dwDefaultPathType

Value	that	specifies	the	default	audiopath	type.	Can	be	zero	if	no	default	path
type	is	wanted.	For	a	list	of	defined	values,	see
IDirectMusicPerformance8::CreateStandardAudioPath.

dwPChannelCount

Value	that	specifies	the	number	of	performance	channels	to	allocate	to	the	path,
if	dwDefaultPathType	is	not	zero.

dwFlags

Flags	that	specify	requested	features.	If	pParams	is	not	NULL,	this	value	is
ignored	and	the	requested	features	are	specified	in	the	dwFeatures	member	of
the	DMUS_AUDIOPARAMS	structure.	The	values	listed	in	the	following	table
are	defined	for	use	in	this	parameter.

Value Description
3-D	buffers.	This	flag	is	not

DMUS_AUDIOF_3D implemented.	Buffers	in	3-D	audiopaths
always	have	3-D	capabilities.

DMUS_AUDIOF_ALL All	features.
DMUS_AUDIOF_BUFFERS Multiple	buffers.

DMUS_AUDIOF_DMOS Additional	DMOs.	This	flag	is	not
implemented.

DMUS_AUDIOF_ENVIRON Environmental	modeling.	This	flag	is
not	implemented.

DMUS_AUDIOF_EAX
Support	for	Environmental	Audio
Extensions	(EAX).	This	flag	is	not
implemented.

DMUS_AUDIOF_STREAMING Support	for	streaming	waveforms.

pParams

Address	of	a	DMUS_AUDIOPARAMS	structure	that	specifies	parameters	for
the	synthesizer	and	receives	information	about	what	parameters	were	set.	Can	be
NULL	if	the	default	parameters	are	wanted.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_ALREADY_INITED
DSERR_BUFFERLOST
DSERR_PRIOLEVELNEEDED
DSERR_UNINITIALIZED
E_NOINTERFACE
E_OUTOFMEMORY
E_POINTER

Remarks

This	method	can	be	called	only	once.	It	cannot	be	used	to	retrieve	an	existing
IDirectMusic8	interface.

A	DirectMusic	object	can	be	associated	with	the	performance	in	the	following
ways.

The	application	allows	the	performance	to	create	the	DirectMusic	object
and	needs	a	pointer	to	that	object.	In	this	case,	*ppDirectMusic	is	NULL	on
entry	and	contains	the	IDirectMusic	pointer	on	exit.
The	application	allows	the	performance	to	initialize	itself	and	does	not	need
a	DirectMusic	object	pointer.	In	this	case,	ppDirectMusic	is	NULL.
The	application	creates	its	own	DirectMusic	object	and	gives	it	to	the
performance	by	passing	the	address	of	the	IDirectMusic8	pointer	in
ppDirectMusic.	Most	applications	do	not	use	this	technique.

If	you	specify	an	interface	pointer	in	ppDirectSound,	it	must	be	an	interface	to	an
object	of	class	CLSID_DirectSound8.	Objects	of	this	class	support	both
IDirectSound	and	IDirectSound8,	but	the	IDirectSound	interface	must	be
passed.	The	DirectSound	device	object	must	be	fully	initialized	before	being
passed	to	InitAudio.	If	the	object	was	created	by	using	CoCreateInstance,	call
IDirectSound8::Initialize.	Set	the	cooperative	level	to	DSSCL_PRIORITY	by
using	IDirectSound8::SetCooperativeLevel.

You	can	pass	NULL	in	the	hWnd	parameter	to	pass	the	current	foreground
window	handle	to	DirectSound.	However,	do	not	assume	that	the	application
window	will	be	in	the	foreground	during	initialization.	It	is	best	to	pass	the	top-
level	application	window	handle.

The	parameters	set	in	dwFlags	and	pParams	apply	to	the	default	audiopath	and
any	audiopaths	created	subsequently.

The	method	fails	with	DSERR_BUFFERLOST	if	a	value	other	than	zero	is
passed	in	dwDefaultPathType	and	any	application	has	initialized	DirectSound
with	the	write-primary	cooperative	level.

The	performance	must	be	terminated	by	using	the
IDirectMusicPerformance8::CloseDown	method	before	being	released.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Creating	the	Performance
IDirectMusicPerformance8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::Invalidate

The	Invalidate	method	flushes	all	queued	messages	from	the	specified	time
forward	and	causes	all	tracks	of	all	segments	to	resend	their	data.

Syntax

HRESULT	Invalidate(

		MUSIC_TIME	mtTime,	

		DWORD	dwFlags

);

Parameters

mtTime

Time	from	which	to	invalidate,	adjusted	by	dwFlags.	Setting	this	value	to	0
causes	immediate	invalidation.

dwFlags

Flag	that	aligns	mtTime	to	the	next	measure,	beat,	or	grid.	This	value	can	be	0	or
one	of	the	following	members	of	the	DMUS_SEGF_FLAGS	enumeration:

DMUS_SEGF_MEASURE
DMUS_SEGF_BEAT
DMUS_SEGF_GRID

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DMUS_E_NO_MASTER_CLOCK.

Remarks

If	mtTime	is	so	long	ago	that	it	is	impossible	to	invalidate	that	time,	the	earliest
possible	time	is	used.

Notes	that	have	already	been	sent	to	the	port	are	normally	cut	off	by
invalidation;	that	is,	any	pending	note-off	message	is	immediately	sent.
However,	this	behavior	can	be	overridden	by	using	one	of	the
DMUS_NOTEF_FLAGS	flags	in	the	message	structure.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Latency	and	Bumper	Time
Prepare	Time
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::IsPlaying

The	IsPlaying	method	ascertains	whether	a	specified	segment	or	segment	state
is	currently	being	heard	from	the	speakers.

Syntax

HRESULT	IsPlaying(

		IDirectMusicSegment*	pSegment,

		IDirectMusicSegmentState*	pSegState

);

Parameters

pSegment

Segment	to	check.	If	NULL,	check	only	pSegState.

pSegState

Segment	state	to	check.	If	NULL,	check	only	pSegment.

Return	Values

If	the	method	succeeds	and	the	requested	segment	or	segment	state	is	playing,
the	return	value	is	S_OK.	If	neither	is	playing	or	only	one	was	requested	and	it	is
not	playing,	the	return	value	is	S_FALSE.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
DMUS_E_NO_MASTER_CLOCK

Remarks

The	method	returns	S_OK	only	if	the	segment	or	segment	state	is	actually
playing	at	the	speakers.	Because	of	latency,	this	method	might	return	S_FALSE
even	though	IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx	has	just	been	called	on	the
segment.	Similarly,	the	method	returns	S_OK	as	long	as	the	segment	is	being
heard,	even	though	all	messages	might	already	have	been	dispatched.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::MIDIToMusic

The	MIDIToMusic	method	converts	a	MIDI	note	value	to	a	DirectMusic
music	value,	using	a	supplied	chord,	subchord	level,	and	play	mode.

Syntax

HRESULT	MIDIToMusic(

		BYTE	bMIDIValue,

		DMUS_CHORD_KEY*	pChord,

		BYTE	bPlayMode,

		BYTE	bChordLevel,

		WORD	*pwMusicValue

);	

Parameters

bMIDIValue

MIDI	note	value	to	convert,	in	the	range	from	0	through	127.

pChord

Address	of	a	DMUS_CHORD_KEY	structure	containing	information	about	the
chord	and	key	structure	to	be	used	in	translating	the	note.	This	includes	the
underlying	scale.	For	example,	if	the	chord	is	a	CM7,	the	note	is	interpreted
against	the	chord	positions	for	root	note	C,	chord	intervals	of	a	major	seventh.
The	structure	carries	up	to	DMUS_MAXSUBCHORD	parallel	subchords,	with
chord	intervals,	root,	scale,	and	inversion	flags	for	each.	It	also	carries	the
overall	key	root.

bPlayMode

Play	mode	determining	how	the	music	value	is	derived	from	the	chord.	For	a	list
of	values,	see	DMUS_PLAYMODE_FLAGS.

bChordLevel

Subchord	level,	defining	which	subchords	can	be	used.	See
DMUS_SUBCHORD.

pwMusicValue

Address	of	a	variable	that	receives	the	music	value.	For	information	on	this
value,	see	DMUS_NOTE_PMSG.

Return	Values

If	the	method	succeeds,	the	return	value	is	one	of	the	following.	See	Remarks.

Return	code
S_OK
DMUS_S_DOWN_OCTAVE
DMUS_S_UP_OCTAVE

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_CANNOT_CONVERT
E_INVALIDARG

Remarks

If	the	method	fails,	*pwMusicValue	is	not	changed.

If	the	return	value	is	DMUS_S_UP_OCTAVE	or	DMUS_DOWN_OCTAVE,	the
note	conversion	generated	a	note	value	that	is	less	than	0	or	greater	than	127,	so
it	has	been	adjusted	up	or	down	one	or	more	octaves	to	be	in	the	proper	MIDI
range	of	from	0	through	127.	This	can	occur	when	using	play	modes
DMUS_PLAYMODE_FIXEDTOCHORD	and
DMUS_PLAYMODE_FIXEDTOKEY,	both	of	which	return	MIDI	values	in
*pwMusicValue.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::MusicToMIDI
Music	Values	and	MIDI	Notes

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::MusicToMIDI

The	MusicToMIDI	method	converts	a	DirectMusic	music	value	to	a	MIDI	note
value.

Syntax

HRESULT	MusicToMIDI(

		WORD	wMusicValue,

		DMUS_CHORD_KEY*		pChord,

		BYTE	bPlayMode,

		BYTE	bChordLevel,

		BYTE*		pbMIDIValue

);

Parameters

wMusicValue

Music	value	to	convert.	For	information	on	music	values,	see
DMUS_NOTE_PMSG.

pChord

Address	of	a	DMUS_CHORD_KEY	structure	containing	information	about	the
chord	and	key	structure	to	be	used	in	translating	the	note.	This	includes	the
underlying	scale.	For	example,	if	the	chord	is	a	CM7,	the	note	is	interpreted
against	the	chord	positions	for	root	note	C,	chord	intervals	of	a	major	seventh.
The	structure	carries	up	to	DMUS_MAXSUBCHORD	parallel	subchords,	with
chord	intervals,	root,	scale,	and	inversion	flags	for	each.	It	also	carries	the
overall	key	root.

bPlayMode

Play	mode	determining	how	the	music	value	is	related	to	the	chord.	For	a	list	of
values,	see	DMUS_PLAYMODE_FLAGS.

bChordLevel

Subchord	level,	defining	which	subchords	can	be	used.	See
DMUS_SUBCHORD.

pbMIDIValue

Address	of	a	variable	that	receives	the	MIDI	value,	in	the	range	from	0	through
127.

Return	Values

If	the	method	succeeds,	the	return	value	is	one	of	the	following.	See	Remarks.

Return	code
S_OK
DMUS_S_OVER_CHORD
DMUS_S_DOWN_OCTAVE
DMUS_S_UP_OCTAVE

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_CANNOT_CONVERT
E_INVALIDARG

Remarks

If	the	method	fails	or	returns	DMUS_S_OVER_CHORD,	*pwMIDIValue	is	not
changed.

The	method	returns	DMUS_S_OVER_CHORD	if	no	note	has	been	calculated
because	the	music	value	has	the	note	at	a	position	higher	than	the	top	note	of	the
chord.	This	applies	only	to	DMUS_PLAYMODE_NORMALCHORD	play
mode.	The	caller	should	not	do	anything	with	the	note,	which	is	not	meant	to	be
played	against	this	chord.

If	the	return	value	is	DMUS_S_UP_OCTAVE	or	DMUS_DOWN_OCTAVE,	the
note	conversion	generated	a	note	value	that	is	less	than	0	or	greater	than	127,	so

it	has	been	adjusted	up	or	down	one	or	more	octaves	to	be	in	the	proper	MIDI
range	of	0	through	127.	This	can	occur	when	using	any	play	mode	except
DMUS_PLAYMODE_FIXED.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::MIDIToMusic
Music	Values	and	MIDI	Notes

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::MusicToReferenceTime

The	MusicToReferenceTime	method	converts	a	performance	time	in
MUSIC_TIME	format	to	performance	time	in	REFERENCE_TIME	format.

Syntax

HRESULT	MusicToReferenceTime(

		MUSIC_TIME	mtTime,

		REFERENCE_TIME*	prtTime

);

Parameters

mtTime

Time	in	MUSIC_TIME	format	to	convert.

prtTime

Address	of	a	variable	that	receives	the	converted	time	in	REFERENCE_TIME
format.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
DMUS_E_NO_MASTER_CLOCK

Remarks

Because	reference	time	has	a	greater	precision	than	music	time,	a	time	that	has

been	converted	from	reference	time	to	music	time,	and	then	back	again,	probably
does	not	have	its	original	value.

This	method	converts	a	time	offset	from	the	start	of	the	performance,	not	a
duration.	Because	the	ratio	between	music	time	and	reference	time	units	depends
on	the	tempo,	DirectMusic	takes	into	account	all	tempo	changes	since	the	start	of
the	performance	when	calculating	prtTime.	If	a	master	tempo	has	been	set	for	the
performance,	it	is	taken	into	account	as	well.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Clock	Time	and	Music	Time
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::ReferenceToMusicTime

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::PChannelInfo

The	PChannelInfo	method	retrieves	the	port,	group,	and	MIDI	channel	for	a
given	performance	channel.

Syntax

HRESULT	PChannelInfo(

		DWORD	dwPChannel,	

		IDirectMusicPort**	ppPort,

		DWORD*	pdwGroup,

		DWORD*	pdwMChannel

);

Parameters

dwPChannel

Performance	channel	for	which	information	is	desired.

ppPort

Address	of	a	variable	that	receives	an	IDirectMusicPort8	pointer.	This	value
can	be	NULL	if	the	pointer	is	not	wanted.	If	a	non-NULL	pointer	is	returned,	the
reference	count	is	incremented,	and	it	is	the	responsibility	of	the	application	to
call	Release	on	the	pointer.	See	Remarks.

pdwGroup

Address	of	a	variable	that	receives	the	group	on	the	port.	Can	be	NULL	if	this
value	is	not	wanted.

pdwMChannel

Address	of	a	variable	that	receives	the	MIDI	channel	on	the	group.	Can	be
NULL	if	this	value	is	not	wanted.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_POINTER

Remarks

A	NULL	pointer	is	returned	in	*ppPort	if	the	port	has	been	removed	by	a	call	to
IDirectMusicPerformance8::RemovePort,	but	the	method	succeeds.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::AssignPChannel
IDirectMusicPerformance8::AssignPChannelBlock

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::PlaySegment

The	PlaySegment	method	begins	playback	of	a	segment.

Syntax

HRESULT	PlaySegment(

		IDirectMusicSegment*	pSegment,

		DWORD	dwFlags,

		__int64	i64StartTime,

		IDirectMusicSegmentState**	ppSegmentState

);

Parameters

pSegment

Segment	to	play.

dwFlags

Flags	that	modify	the	method's	behavior.	See	DMUS_SEGF_FLAGS.

i64StartTime

Performance	time	at	which	to	begin	playing	the	segment,	adjusted	to	any
resolution	boundary	specified	in	dwFlags.	The	time	is	in	music	time	unless	the
DMUS_SEGF_REFTIME	flag	is	set.	A	value	of	0	causes	the	segment	to	start
playing	as	soon	as	possible.

ppSegmentState

Address	of	a	variable	that	receives	a	pointer	to	the	segment	state	for	this	instance
of	the	playing	segment.	This	field	can	be	NULL.	If	it	is	non-NULL,	the	segment
state	pointer	is	returned,	and	the	application	must	call	Release	on	it.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_OUTOFMEMORY
E_POINTER
DMUS_E_NO_MASTER_CLOCK
DMUS_E_SEGMENT_INIT_FAILED
DMUS_E_TIME_PAST

Remarks

Do	not	play	segments	from	untrusted	sources.	Improperly	written	segments	can
make	excessive	demands	on	system	resources,	resulting	in	degradation	of
performance	or	system	failure.

Segments	should	be	greater	than	250	milliseconds	in	length.

The	boundary	resolutions	in	dwFlags	are	relative	to	the	current	primary	segment.

If	a	primary	segment	is	scheduled	to	play	while	another	primary	segment	is
playing,	the	first	one	stops	unless	you	set	the	DMUS_SEGF_QUEUE	flag	for
the	second	segment,	in	which	case	it	plays	as	soon	as	the	first	one	finishes.

For	more	information	on	the	exact	start	time	of	segments,	see	Segment	Timing.
For	information	on	how	the	start	time	of	segments	can	be	affected	by	tempo
changes,	see	Clock	Time	and	Music	Time.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::PlaySegmentEx
Playing	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::PlaySegmentEx

The	PlaySegmentEx	method	begins	playback	of	a	segment.	The	method	offers
greater	functionality	than	IDirectMusicPerformance8::PlaySegment.

Syntax

HRESULT	PlaySegmentEx(

		IUnknown*	pSource,

		WCHAR	*pwzSegmentName,

		IUnknown*	pTransition,

		DWORD	dwFlags,

		__int64	i64StartTime,

		IDirectMusicSegmentState**	ppSegmentState,

		IUnknown*	pFrom,	

		IUnknown*	pAudioPath

);

Parameters

pSource

Address	of	the	IUnknown	interface	of	the	object	to	play.

pwzSegmentName

Reserved.	Set	to	NULL.

pTransition

IUnknown	interface	pointer	of	a	template	segment	to	use	in	composing	a
transition	to	this	segment.	Can	be	NULL.	See	Remarks.

dwFlags

Flags	that	modify	the	method's	behavior.	See	DMUS_SEGF_FLAGS.

i64StartTime

Performance	time	at	which	to	begin	playing	the	segment,	adjusted	to	any
resolution	boundary	specified	in	dwFlags.	The	time	is	in	music	time	unless	the
DMUS_SEGF_REFTIME	flag	is	set.	A	value	of	zero	causes	the	segment	to	start
playing	as	soon	as	possible.

ppSegmentState

Address	of	a	variable	that	receives	an	IDirectMusicSegmentState	interface
pointer	for	this	instance	of	the	playing	segment.	Use	QueryInterface	to	obtain
IDirectMusicSegmentState8.	The	reference	count	of	the	interface	is
incremented.	This	parameter	can	be	NULL	if	no	segment	state	pointer	is	wanted.

pFrom

IUnknown	interface	pointer	of	a	segment	state	or	audiopath	to	stop	when	the
new	segment	begins	playing.	If	it	is	an	audiopath,	all	segment	states	playing	on
that	audiopath	are	stopped.	This	value	can	be	NULL.	See	Remarks.

pAudioPath

IUnknown	interface	pointer	of	an	object	that	represents	the	audiopath	on	which
to	play,	or	NULL	to	play	on	the	default	path.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_AUDIOPATH_INACTIVE
DMUS_E_AUDIOPATH_NOPORT
DMUS_E_NO_MASTER_CLOCK
DMUS_E_SEGMENT_INIT_FAILED
DMUS_E_TIME_PAST
E_OUTOFMEMORY
E_POINTER

Remarks

Do	not	play	segments	from	untrusted	sources.	Improperly	written	segments	can
make	excessive	demands	on	system	resources,	resulting	in	degradation	of
performance	or	system	failure.

Segments	should	be	greater	than	250	milliseconds	in	length.

The	boundary	resolutions	in	dwFlags	are	relative	to	the	primary	segment.

If	a	primary	segment	is	scheduled	to	play	while	another	primary	segment	is
playing,	the	first	one	stops	unless	you	set	the	DMUS_SEGF_QUEUE	flag	for
the	second	segment,	in	which	case	it	plays	as	soon	as	the	first	one	finishes.

For	more	information	on	the	exact	start	time	of	segments,	see	Segment	Timing.
For	information	on	how	the	start	time	of	segments	can	be	affected	by	tempo
changes,	see	Clock	Time	and	Music	Time.

If	DMUS_SEGF_AUTOTRANSITION	is	specified	in	dwFlags	and	a	segment	is
already	playing	at	i64StartTime	and	is	being	interrupted,	the	method	composes	a
transition	between	the	two	segments	and	plays	it	before	playing	pSource.	The
transition	is	based	on	a	template	provided	at	pTransition.

The	method	can	be	used	to	play	on	a	performance	that	does	not	use	audiopaths;
that	is,	one	initialized	by	using	IDirectMusicPerformance8::Init.	In	this	case
the	pAudioPath	parameter	must	be	NULL.

When	the	segment	is	being	cued	as	a	secondary	segment,	the	pFrom	parameter
can	be	used	to	specify	the	segment	state	of	another	secondary	segment	against
which	to	cue	the	new	segment,	as	in	the	following	example	function.

HRESULT	CueOneAfterAnother(IDirectMusicSegment8*	pSegmentA,

								IDirectMusicSegmentState8*	pSegmentStateB,	

								IDirectMusicPerformance8*	pPerf)

{

		HRESULT	hr	=	pPerf->PlaySegmentEx(

				pSegmentA,

				NULL,	NULL,

				DMUS_SEGF_QUEUE	|	DMUS_SEGF_SECONDARY,

				0,	NULL,

				pSegmentStateB,

				NULL);

		return	hr;

}

In	the	example,	pSegmentStateB	plays	to	the	end	before	stopping	because	the
DMUS_SEGF_QUEUE	flag	has	been	set.	If	you	set	a	different	flag	such	as
DMUS_SEGF_MEASURE,	pSegmentStateB	stops	as	soon	as	the	boundary	is
reached	and	the	new	secondary	segment	begins	playing.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Playing	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::ReferenceToMusicTime

The	ReferenceToMusicTime	method	converts	a	performance	time	in
REFERENCE_TIME	format	to	a	performance	time	in	MUSIC_TIME	format.

Syntax

HRESULT	ReferenceToMusicTime(

		REFERENCE_TIME	rtTime,

		MUSIC_TIME*	pmtTime

);

Parameters

rtTime

Time	in	REFERENCE_TIME	format.

pmtTime

Address	of	a	variable	that	receives	the	converted	time	in	MUSIC_TIME	format.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
DMUS_E_NO_MASTER_CLOCK

Remarks

Because	music	time	is	less	precise	than	reference	time,	rounding	occurs.

This	method	converts	a	time	offset	from	the	start	of	the	performance,	not	a
duration.	Because	the	ratio	between	music	time	and	reference	time	units	depends
on	the	tempo,	DirectMusic	takes	into	account	all	tempo	changes	since	the	start	of
the	performance	when	calculating	prtTime.	If	a	master	tempo	has	been	set	for	the
performance,	it	is	taken	into	account	as	well.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Clock	Time	and	Music	Time
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::MusicToReferenceTime

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::RemoveNotificationType

The	RemoveNotificationType	method	removes	a	previously	added	notification
type	from	the	performance.	All	segments	and	tracks	are	updated	by	a	call	to	their
RemoveNotificationType	methods.

Syntax

HRESULT	RemoveNotificationType(

		REFGUID	rguidNotificationType

);

Parameters

rguidNotificationType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	notification	type	to
remove.	(For	the	defined	types,	see	DMUS_NOTIFICATION_PMSG.)	If	this
value	is	GUID_NULL,	all	notifications	are	removed.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or	S_FALSE	(see	Remarks).

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

S_FALSE	is	returned	when	rguidNotificationType	is	not	an	active	notification.

If	a	notification	was	added	to	a	segment	that	has	stopped	playing,	the
performance	cannot	remove	the	notification	type	from	that	segment	because	it
no	longer	has	a	reference	to	the	segment.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::AddNotificationType
IDirectMusicSegment8::RemoveNotificationType
IDirectMusicTrack8::RemoveNotificationType
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::RemovePort

The	RemovePort	method	removes	a	port	from	the	performance.	Any
performance	channels	that	map	to	this	port	are	invalidated,	and	messages	on
those	channels	are	not	performed.

Syntax

HRESULT	RemovePort(

		IDirectMusicPort*	pPort

);

Parameters

pPort

Port	to	remove.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_POINTER

Remarks

A	port	added	by	passing	NULL	to	IDirectMusicPerformance8::AddPort
cannot	be	removed	by	passing	NULL	to	RemovePort.

This	method	should	not	be	called	by	applications	that	use	audiopaths.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::AddPort

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::RhythmToTime

The	RhythmToTime	method	converts	rhythm	time	to	music	time.

Syntax

HRESULT	RhythmToTime(

		WORD	wMeasure,

		BYTE	bBeat,

		BYTE	bGrid,

		short	nOffset,

		DMUS_TIMESIGNATURE	*pTimeSig,

		MUSIC_TIME	*pmtTime

);

Parameters

wMeasure

Measure	of	the	time	to	convert.

bBeat

Beat	of	the	time	to	convert.

bGrid

Grid	of	the	time	to	convert.

nOffset

Offset	from	the	grid,	in	music-time	ticks,	of	the	time	to	convert.

pTimeSig

Address	of	a	DMUS_TIMESIGNATURE	structure	containing	information
about	the	time	signature.

pmtTime

Address	of	a	variable	that	receives	the	music	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	method	calculates	a	duration	from	the	supplied	measure,	beat,	grid,	and
offset,	and	adds	the	value	in	the	mtTime	member	of	the
DMUS_TIMESIGNATURE	structure.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::TimeToRhythm

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SendPMsg

The	SendPMsg	method	sends	a	performance	message.	This	method	is	called	by
tracks	when	they	are	played.	It	can	also	be	called	by	an	application	or	tool	to
insert	data	into	a	performance.

Syntax

HRESULT	SendPMsg(

		DMUS_PMSG*	pPMSG

);

Parameters

pPMSG

Message	allocated	by	IDirectMusicPerformance8::AllocPMsg.		This	structure
is	of	a	type	derived	from	DMUS_PMSG.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NO_MASTER_CLOCK
DMUS_E_ALREADY_SENT
E_INVALIDARG
E_POINTER

Remarks

The	dwFlags	member	(see	DMUS_PMSG)	must	contain	either
DMUS_PMSGF_MUSICTIME	or	DMUS_PMSGF_REFTIME,	depending	on

whether	the	time	stamp	is	in	rtTime	or	mtTime.	The	dwFlags	member	should
also	contain	the	appropriate	delivery	type—DMUS_PMSGF_TOOL_QUEUE,
DMUS_PMSGF_TOOL_ATTIME,	or	DMUS_PMSGF_TOOL_IMMEDIATE—
depending	on	the	type	of	message.	If	none	is	selected,
DMUS_PMSGF_TOOL_IMMEDIATE	is	used	by	default.

If	the	time	of	the	message	is	set	to	0	and	the	dwFlags	member	contains
DMUS_PMSGF_REFTIME,	it	is	assumed	that	this	message	is	cued	to	go	out
immediately.

In	most	cases,	the	IDirectMusicGraph8::StampPMsg	method	should	be	called
on	the	message	before	SendPMsg	is	called.	If	the	message	is	not	stamped,	it	is
not	delivered	to	any	tools	implemented	by	the	application,	and	might	not	play	on
the	correct	performance	channel.	If	you	want	the	message	to	pass	only	through
the	performance	toolgraph,	obtain	the	IDirectMusicGraph8	interface	by	calling
IDirectMusicPerformance8::QueryInterface.	Otherwise,	obtain	it	by	calling
IDirectMusicSegmentState8::QueryInterface.	Do	not	attempt	to	obtain	the
interface	by	calling	IDirectMusicPerformance8::GetGraph	or
IDirectMusicSegment8::GetGraph;	these	methods	return	a	pointer	to	the
graph	object,	rather	than	to	the	implementation	of	the	IDirectMusicGraph8
interface	on	the	performance	or	segment.

If	you	are	using	audiopaths,	it	is	generally	best	not	to	send	a	message	directly	to
the	performance,	because	the	performance	channels	may	have	been	remapped,
and	messages	sent	to	a	particular	channel	may	not	be	played.	Instead,	obtain	the
IDirectMusicGraph8	interface	from	IDirectMusicAudioPath8.	The	audiopath
then	manages	the	remapping	of	the	performance	channel.

Normally,	the	performance	frees	the	message	after	it	has	been	processed.	For
more	information,	see	the	Remarks	for
IDirectMusicPerformance8::FreePMsg.

The	following	example	function	shows	how	to	allocate	and	send	a	system
exclusive	message	to	the	performance	graph.

HRESULT	SendSysexMessage(IDirectMusicPerformance8*	pPerformance,	

				MUSIC_TIME	mtTime,	DWORD	pbSysExData[],	DWORD	dwSysExLength)

{	

		IDirectMusicGraph*	pGraph;

		HRESULT	hr;

	

		if	(SUCCEEDED(hr	=	pPerformance->QueryInterface(IID_IDirectMusicGraph,

																																																		(void**)&pGraph)))

		{

				DMUS_SYSEX_PMSG*	pSysEx;

				if	(SUCCEEDED(hr	=	pPerformance->AllocPMsg(

																				sizeof(DMUS_SYSEX_PMSG)	+	dwSysExLength,

																				(DMUS_PMSG**)&pSysEx)))

				{

						ZeroMemory(pSysEx,	sizeof(DMUS_SYSEX_PMSG));

						pSysEx->dwLen	=	dwSysExLength;

						pSysEx->mtTime	=	mtTime;

						pSysEx->dwFlags	=	DMUS_PMSGF_MUSICTIME;

						pSysEx->dwType	=	DMUS_PMSGT_SYSEX;

						memcpy(pSysEx->abData,	pbSysExData,	dwSysExLength);

						pGraph->StampPMsg((DMUS_PMSG*)pSysEx);

						if	(FAILED(hr	=	pPerformance->SendPMsg((DMUS_PMSG*)pSysEx)))

						{

								pPerformance->FreePMsg((DMUS_PMSG*)pSysEx);

						}

				}

				pGraph->Release();

		}

		return	hr;

}

The	next	example	function	sends	a	note	message	associated	with	the	track
identified	by	dwTrackID.	The	virtual	track	ID	should	be	0	if	the	message	is	not
being	generated	from	a	DirectMusicTrack	object.

HRESULT	CreateNotePMsg(IDirectMusicPerformance8*	pPerformance,

				MUSIC_TIME	mtTime,	DWORD	dwTrackID)	

{

		//	Allocate	a	Note	PMessage.

		DMUS_NOTE_PMSG*	pNote	=	NULL;

		HRESULT	hr	=	pPerformance->AllocPMsg(sizeof(DMUS_NOTE_PMSG),

						(DMUS_PMSG**)	&pNote);

		if	(FAILED(hr))	return	hr;

	

		pNote->rtTime	=	0;																						//	Ignored.

		pNote->mtTime	=	mtTime;																	//	When	to	play	the	note.

		pNote->dwFlags	=	DMUS_PMSGF_MUSICTIME;		//	Use	the	mtTime	field.

		pNote->dwPChannel	=	5;																		//	Play	on	PChannel	5.

		pNote->dwVirtualTrackID	=	dwTrackID;				//	Track	ID	from	parameter.

	

		//	The	following	two	fields	should	be	set	to	NULL	when	a	

		//	message	is	initially	sent.	They	will	be	updated	in

		//	IDirectMusicGraph::StampPMsg.

		pNote->pTool	=	NULL;	

		pNote->pGraph	=	NULL;

		pNote->dwType	=	DMUS_PMSGT_NOTE;	

		pNote->dwVoiceID	=	0;											//	Always	0.

		pNote->dwGroupID	=	0xFFFFFFFF;		//	All	track	groups.

		pNote->punkUser	=	NULL;									//	Always	NULL.

	

		//	Get	the	current	time	signature	from	the	performance

		//	to	compute	measure	and	beat	information.

		DMUS_TIMESIGNATURE	TimeSig;

		MUSIC_TIME	mtNext;

		hr	=	pPerformance->GetParam(GUID_TimeSignature,	0xFFFFFFFF,	

				0,	mtTime,	&mtNext,	&TimeSig);

		if	(FAILED(hr))	return	hr;

	

		//	Recompute	TimeSig.mtTime	to	have	the	value	expected	

		//	by	pPerformance->TimeToRhythm.

		TimeSig.mtTime	+=	mtTime;

	

		//	Get	the	current	chord	from	the	performance	

		//	to	create	a	note	value.

		DMUS_CHORD_KEY	Chord;

		hr	=	pPerformance->GetParam(GUID_ChordParam,	0xFFFFFFFF,	0,	

						mtTime,	&mtNext,	&Chord);

		if	(FAILED(hr))	return	hr;

	

		//	Create	a	note	with	octave	5,	chord	tone	2	(fifth),	scale	

		//	offset	1	(=>	sixth),	and	no	accidentals.

		WORD	wMusicValue	=	0x5210;

	

		//	Use	DMUS_PLAYMODE_PEDALPOINT	as	your	play	mode

		//	in	pPerformance->MusicToMIDI.

		BYTE	bPlayModeFlags	=	DMUS_PLAYMODE_PEDALPOINT;

	

		//	Fill	in	the	fields	specific	to	DMUS_NOTE_PMSG.

		pNote->wMusicValue	=	wMusicValue;	

		hr	=	pPerformance->MusicToMIDI(

						wMusicValue,

						&Chord,

						bPlayModeFlags,

						0,

						&(pNote->bMidiValue));

		if	(FAILED(hr))	return	hr;

	

		hr	=	pPerformance->TimeToRhythm(

						TimeSig.mtTime,

						&TimeSig,

						&(pNote->wMeasure),

						&(pNote->bBeat),

						&(pNote->bGrid),

						&(pNote->nOffset));

		if	(FAILED(hr))	return	hr;

	

		pNote->mtDuration	=	DMUS_PPQ;						//	Quarter	note	duration.

		pNote->bVelocity	=	120;												//	MIDI	velocity	(0	to	127).

		pNote->bFlags	=	DMUS_NOTEF_NOTEON;	//	Always	set	to	this	value.

		pNote->bTimeRange	=	250;											//	Randomize	start	time	a	lot.

		pNote->bDurRange	=	5;														//	Randomize	duration	a	little.

		pNote->bVelRange	=	0;														//	Don't	randomize	velocity.

		pNote->bPlayModeFlags	=	bPlayModeFlags;	

		pNote->bSubChordLevel	=	0;									//	Note	uses	subchord	level	0.

		pNote->cTranspose	=	0;													//	No	transposition.

	

		//	Stamp	the	message	with	the	performance	graph.

		IDirectMusicGraph*	pGraph;

		hr	=	pPerformance->QueryInterface(IID_IDirectMusicGraph,

						(void**)&pGraph);

		if	(FAILED(hr))	return	hr;

	

		pGraph->StampPMsg((DMUS_PMSG*)pNote);

		pGraph->Release();

		//	Finally,	send	the	message.

		hr	=	pPerformance->SendPMsg((DMUS_PMSG*)pNote);

		if	(FAILED(hr))

		{

				pPerformance->FreePMsg((DMUS_PMSG*)pNote);

				return	hr;

		}

		return	S_OK;

}

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Messages
DirectMusic	Tools
IDirectMusicPerformance8	Interface
IDirectMusicTool8::ProcessPMsg
Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SetBumperLength

The	SetBumperLength	method	sets	the	interval	between	the	time	at	which
messages	are	placed	in	the	port	buffer	and	the	time	at	which	they	begin	to	be
processed	by	the	port.

Syntax

HRESULT	SetBumperLength(

		DWORD	dwMilliSeconds

);

Parameters

dwMilliSeconds

Buffer	length,	in	milliseconds.	The	default	value	is	50.

Return	Values

The	method	returns	S_OK.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetBumperLength
IDirectMusicPerformance8::SetPrepareTime
Latency	and	Bumper	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SetDefaultAudioPath

The	SetDefaultAudioPath	method	sets	and	activates	the	default	audiopath	for
the	performance.

Syntax

HRESULT	SetDefaultAudioPath(

		IDirectMusicAudioPath	*pAudioPath

);

Parameters

pAudioPath

Pointer	to	the	IDirectMusicAudioPath8	interface	of	the	default	audiopath,	or
NULL	to	remove	the	current	default	audiopath.

Return	Values

If	it	succeeds,	the	method	returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_AUDIOPATH_NOPORT
DMUS_E_AUDIOPATHS_NOT_VALID
DMUS_E_NOT_INIT
E_INVALIDARG
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Default	Audiopath
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetDefaultAudioPath
IDirectMusicPerformance8::InitAudio

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SetGlobalParam

The	SetGlobalParam	method	sets	global	values	for	the	performance.

Syntax

HRESULT	SetGlobalParam(

		REFGUID	rguidType,	

		void*	pParam,	

		DWORD	dwSize

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data.

pParam

Address	of	data	to	be	copied	and	stored	by	the	performance.

dwSize

Size	of	the	data.	This	is	constant	for	each	rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_POINTER
E_OUTOFMEMORY

Remarks

The	dwSize	parameter	is	needed	because	the	performance	does	not	know	about
all	types	of	data.	New	types	can	be	created	as	needed.

For	the	parameters	defined	by	DirectMusic	and	their	associated	data	types,	see
Setting	and	Retrieving	Global	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetGlobalParam
IDirectMusicPerformance8::SetParam
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SetGraph

The	SetGraph	method	replaces	the	performance's	toolgraph.

Syntax

HRESULT	SetGraph(

		IDirectMusicGraph*	pGraph

);

Parameters

pGraph

Toolgraph	to	set.	Can	be	set	to	NULL	to	clear	the	graph	from	the	performance.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

Any	messages	flowing	through	tools	in	the	current	toolgraph	are	deleted.

Because	the	graph's	reference	count	is	incremented	by	this	method,	it	is	safe	to
release	the	original	reference.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Tools
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetGraph

IDirectMusicPerformance8::SendPMsg
IDirectMusicSegment8::SetGraph

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SetNotificationHandle

The	SetNotificationHandle	method	sets	the	event	handle	for	notifications.

Syntax

HRESULT	SetNotificationHandle(

		HANDLE	hNotification,

		REFERENCE_TIME	rtMinimum

);

Parameters

hNotification

Event	handle	created	by	CreateEvent,	or	0	to	clear	out	an	existing	handle.

rtMinimum

Minimum	time	that	the	performance	should	hold	onto	old	notify	events	before
discarding	them.	The	value	0	means	to	use	the	default	minimum	time	of
20,000,000	reference	time	units,	which	is	2	seconds,	or	the	previous	value	if	this
method	has	been	called	previously.	If	the	application	has	not	called
GetNotificationPMsg	by	this	time,	the	event	is	discarded	to	free	the	memory.

Return	Values

The	method	returns	S_OK.

Remarks

When	the	event	is	signaled,	the	application	should	call	the
IDirectMusicPerformance8::GetNotificationPMsg	method	to	retrieve	the
notification	event.

It	is	the	application's	responsibility	to	call	the	Win32	CloseHandle	function	on
the	notification	handle	when	it	is	no	longer	needed.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SetParam

The	SetParam	method	sets	data	on	a	track	in	the	control	segment.

Syntax

HRESULT	SetParam(

		REFGUID	rguidType,

		DWORD	dwGroupBits,

		DWORD	dwIndex,

		MUSIC_TIME	mtTime,

		void*	pParam

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	set.	See
Standard	Track	Parameters.

dwGroupBits

Group	that	the	desired	track	is	in.

dwIndex

Index	of	the	track	in	the	group	identified	by	dwGroupBits	in	which	data	is	to	be
set,	or	DMUS_SEG_ALLTRACKS	to	set	the	parameter	on	all	tracks	in	the
group	that	contain	the	parameter.

mtTime

Time	at	which	to	set	the	data.	Unlike	IDirectMusicSegment8::SetParam,	this
time	is	in	performance	time.	The	start	time	of	the	segment	is	subtracted	from	this
time,	and	the	result	is	passed	to	IDirectMusicSegment8::SetParam.

pParam

Address	of	a	structure	containing	the	data.	This	structure	must	be	of	the
appropriate	kind	and	size	for	the	data	type	identified	by	rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NO_MASTER_CLOCK
DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks

Normally	the	primary	segment	is	the	control	segment.	However,	a	secondary
segment	can	be	designated	as	the	control	segment	when	it	is	played.

For	an	explanation	of	dwGroupBits	and	dwIndex,	see	Identifying	the	Track.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Control	Segments
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::GetTime
IDirectMusicPerformance8::SetGlobalParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::SetParamEx
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::SetPrepareTime

The	SetPrepareTime	method	sets	the	interval	between	the	time	when	messages
are	sent	by	tracks	and	the	time	when	the	sound	is	heard.	This	interval	allows
sufficient	time	for	the	message	to	be	processed	by	tools.

Syntax

HRESULT	SetPrepareTime(

		DWORD	dwMilliSeconds

);

Parameters

dwMilliSeconds

Amount	of	prepare	time,	in	milliseconds.	The	default	value	is	1000.

Return	Values

The	method	returns	S_OK.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::GetPrepareTime
IDirectMusicPerformance8::SetBumperLength
Prepare	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::Stop

The	Stop	method	stops	playback	of	a	segment	or	segment	state.

This	method	has	been	superseded	by	IDirectMusicPerformance8::StopEx,
which	can	stop	playback	of	a	segment,	segment	state,	or	audiopath.

Syntax

HRESULT	Stop(

		IDirectMusicSegment*	pSegment,	

		IDirectMusicSegmentState*	pSegmentState,	

		MUSIC_TIME	mtTime,	

		DWORD	dwFlags

);

Parameters

pSegment

Segment	to	stop	playing.	All	segment	states	based	on	this	segment	are	stopped	at
mtTime.	See	Remarks.

pSegmentState

Segment	state	to	stop	playing.	See	Remarks.

mtTime

Time	at	which	to	stop	the	segment,	segment	state,	or	both.	If	the	time	is	in	the
past	or	if	0	is	passed	in	this	parameter,	the	specified	segment	and	segment	states
stop	playing	immediately.

dwFlags

Flag	that	indicates	when	the	stop	should	occur.	Boundaries	are	in	relation	to	the
current	primary	segment.	For	a	list	of	values,	see
IDirectMusicPerformance8::StopEx.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

If	pSegment	and	pSegmentState	are	both	NULL,	all	music	stops,	and	all
currently	cued	segments	are	released.	If	either	pSegment	or	pSegmentState	is	not
NULL,	only	the	requested	segment	states	are	removed	from	the	performance.	If
both	are	non-NULL	and	DMUS_SEGF_DEFAULT	is	used,	the	default
resolution	from	the	pSegment	is	used.

If	you	set	all	parameters	to	NULL	or	0,	everything	stops	immediately,	and
controller	reset	messages	and	note-off	messages	are	sent	to	all	mapped
performance	channels.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DMUS_SEGF_FLAGS
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::PlaySegmentEx
IDirectMusicPerformance8::PlaySegment
IDirectMusicPerformance8::StopEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::StopEx

The	StopEx	method	stops	playback	of	a	segment,	segment	state,	or	audiopath.

Syntax

HRESULT	StopEx(

		IUnknown	*pObjectToStop,

		__int64	i64StopTime,	

		DWORD	dwFlags

);

Parameters

pObjectToStop

Pointer	to	the	IUnknown	interface	of	the	segment,	segment	state,	or	audiopath
to	stop.

i64StopTime

Time	at	which	to	stop.	If	the	time	is	in	the	past	or	if	0	is	passed	in	this	parameter,
the	object	stops	playing	immediately.

dwFlags

Flags	that	adjust	the	time	when	the	stop	should	occur.	Boundaries	are	in	relation
to	the	current	primary	segment.	Can	be	0	or	one	of	the	following	values.
DMUS_SEGF_REFTIME	can	be	combined	with	one	other	flag.

Value Description
DMUS_SEGF_AUTOTRANSITIONNot	implemented.

DMUS_SEGF_BEAT Stop	on	the	next	beat	boundary	at	or	after
i64StopTime.

DMUS_SEGF_DEFAULT
Stop	on	the	default	boundary,	as	set	by	the
IDirectMusicSegment8::SetDefaultResolution
method.

DMUS_SEGF_GRID Stop	on	the	next	grid	boundary	at	or	after
i64StopTime.

DMUS_SEGF_MEASURE Stop	on	the	next	measure	boundary	at	or	after
i64StopTime.

DMUS_SEGF_REFTIME The	value	in	i64StopTime	is	in	reference	time.
DMUS_SEGF_SEGMENTEND Stop	at	the	end	of	the	primary	segment.
DMUS_SEGF_MARKER Stop	at	the	next	marker.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

Stopping	a	segment	stops	all	instances	that	are	playing.	Stopping	an	audiopath
stops	all	segments	playing	on	that	audiopath.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DMUS_SEGF_FLAGS
IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::PlaySegmentEx
IDirectMusicPerformance8::Stop

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPerformance8::TimeToRhythm

The	TimeToRhythm	method	converts	music	time	to	rhythm	time.

Syntax

HRESULT	TimeToRhythm(

		MUSIC_TIME	mtTime,

		DMUS_TIMESIGNATURE	*pTimeSig,

		WORD	*pwMeasure,

		BYTE	*pbBeat,

		BYTE	*pbGrid,

		short	*pnOffset

);

Parameters

mtTime

Time	to	convert.

pTimeSig

Address	of	a	DMUS_TIMESIGNATURE	structure	that	contains	information
about	the	time	signature.

pwMeasure

Address	of	a	variable	that	receives	the	measure	in	which	the	time	falls.

pbBeat

Address	of	a	variable	that	receives	the	beat	at	which	the	time	falls.

pbGrid

Address	of	a	variable	that	receives	the	grid	at	which	the	time	falls.

pnOffset

Address	of	a	variable	that	receives	the	offset	from	the	grid	(in	music-time	ticks)
at	which	the	time	falls.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8	Interface
IDirectMusicPerformance8::RhythmToTime

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8	Interface
The	IDirectMusicPort8	interface	represents	a	device	that	sends	or	receives
sound	data.	Examples	are	the	input	port	of	an	MPU-401,	the	output	port	of	an
MPU-401,	the	Microsoft	software	synthesizer,	and	an	IHV-provided	filter.	A
physical	device	such	as	an	MPU-401	might	provide	multiple	ports.	A	single	port,
however,	cannot	both	capture	and	render	data.

IDirectMusicPort8	is	a	define	for	IDirectMusicPort.	The	two	interface	names
are	interchangeable.

The	interface	is	typically	obtained	by	using	the	IDirectMusic8::CreatePort
method.

For	an	overview,	see	Using	DirectMusic	Ports.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicPort8
interface	exposes	the	following	methods,	arranged	by	category.

Buffers

Method Description
PlayBuffer Cues	a	buffer	for	playback	by	the	port.
Read Fills	a	buffer	with	incoming	MIDI	data.

SetReadNotificationHandle
Specifies	an	event	that	is	to	be	set	when
MIDI	messages	are	available	to	be	read
with	the	Read	method.

Devices

Method Description
Activate Activates	or	deactivates	the	port.

DeviceIoControl
Calls	the	Win32	DeviceIoControl
function	on	the	underlying	file	handle
implementing	the	port.

SetDirectSound
Overrides	the	default	DirectSound
device	object	or	buffer,	or	both,	to
which	a	port's	waveform	data	is
streamed.

DLS	data

Method Description

Compact

Instructs	the	port	to	compact	DLS	or
wave-table	memory,	thus	making	the
largest	possible	contiguous	chunk	of
memory	available	for	new	instruments
to	be	downloaded.

DownloadInstrument Downloads	an	instrument	to	the	DLS
device.

UnloadInstrument Unloads	a	previously	downloaded	DLS
instrument.

Information	retrieval

Method Description
GetCaps Retrieves	the	port's	capabilities.

GetFormat

Retrieves	information	about	the	WAV
format	specified	in	the
DMUS_PORTPARAMS8	structure
passed	to	IDirectMusic8::CreatePort,
and	the	recommended	size	of	the	buffer
to	use	for	waveform	output.

GetLatencyClock Retrieves	a	pointer	to	the	port's	latency
clock.

GetRunningStats Retrieves	information	about	the	state	of
the	synthesizer.

MIDI	Channels

Method Description

GetChannelPriority Retrieves	the	priority	of	a	MIDI
channel.

GetNumChannelGroups Retrieves	the	number	of	channel	groups
on	the	port.

SetChannelPriority Sets	the	priority	of	a	MIDI	channel.

SetNumChannelGroups Changes	the	number	of	channel	groups
that	the	application	needs	on	the	port.

The	LPDIRECTMUSICPORT8	type	is	defined	as	a	pointer	to	the
IDirectMusicPort8	interface.

typedef	IDirectMusicPort8	*LPDIRECTMUSICPORT8;

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::Activate

The	Activate	method	activates	or	deactivates	the	port.

Syntax

HRESULT	Activate(

		BOOL	fActive

);

Parameters

fActive

Switch	to	activate	(TRUE)	or	deactivate	(FALSE)	the	port.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DSERR_NODRIVER,	indicating	that	no	sound
driver	is	present.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface
IDirectMusic8::Activate
Using	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::Compact

The	Compact	method	instructs	the	port	to	compact	DLS	or	wave-table	memory,
thus	making	the	largest	possible	contiguous	chunk	of	memory	available	for	new
instruments	to	be	downloaded.

Syntax

HRESULT	Compact();		

Parameters

None.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY

Remarks

This	method	affects	only	DLS	devices	that	need	to	manage	their	own	DLS
wavetable	memory.	On	ports	that	do	not	manage	their	own	memory	(such	as
software	synthesizers	or	hardware	synthesizers	that	use	host	system	memory),
the	method	returns	E_NOTIMPL.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::DeviceIoControl

The	DeviceIoControl	method	calls	the	Win32	DeviceIoControl	function	on	the
underlying	file	handle	implementing	the	port.

Syntax

HRESULT	DeviceIoControl(

		DWORD								dwIoControlCode,	

		LPVOID							lpInBuffer,	

		DWORD								nInBufferSize,	

		LPVOID							lpOutBuffer,	

		DWORD								nOutBufferSize,	

		LPDWORD						lpBytesReturned,	

		LPOVERLAPPED	lpOverlapped

);

Parameters

dwIoControlCode

Control	code	of	the	operation	to	perform.

lpInBuffer

Buffer	that	contains	input	data.

nInBufferSize

Size	of	input	buffer.

lpOutBuffer

Buffer	that	receives	output	data.

nOutBufferSize

Size	of	the	output	buffer.

lpBytesReturned

Address	of	a	variable	that	receives	the	output	byte	count.

lpOverlapped

Address	of	an	OVERLAPPED	structure	for	asynchronous	operation.
OVERLAPPED	is	defined	in	Winbase.h.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_NOTIMPL

Remarks

This	method	is	supported	only	on	ports	implemented	by	a	Windows	Driver
Model	(WDM)	filter	graph.	In	the	case	of	a	WDM	filter	graph,	the	file	handle
used	is	the	topmost	pin	in	the	graph.

DirectMusic	can	refuse	to	perform	defined	kernel	streaming	operations	on	a	pin
that	might	collide	with	operations	that	it	is	performing	on	the	filter	graph.	User-
defined	operations,	however,	are	never	blocked.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::DownloadInstrument

The	DownloadInstrument	method	downloads	an	instrument	to	the	DLS	device.
Downloading	an	instrument	means	handing	the	data	that	makes	up	the
instrument	to	the	DLS	device.	This	includes	articulation	data	and	all	waveforms
needed	by	the	instrument.	To	conserve	resources,	only	waveforms	and
articulation	required	for	a	range	are	downloaded.	The	method	returns	an
IDirectMusicDownloadedInstrument8	interface	pointer,	which	is	later	used	to
unload	the	instrument.

Syntax

HRESULT	DownloadInstrument(

		IDirectMusicInstrument*	pInstrument,

		IDirectMusicDownloadedInstrument**	ppDownloadedInstrument,

		DMUS_NOTERANGE*	pNoteRanges,

		DWORD	dwNumNoteRanges;

);

Parameters

pInstrument

Pointer	to	the	IDirectMusicInstrument8	interface	of	the	instrument	whose	data
is	downloaded.

ppDownloadedInstrument

Address	of	a	variable	that	receives	a	pointer	to	the
IDirectMusicDownloadedInstrument8	interface.

pNoteRanges

Address	of	an	array	of	DMUS_NOTERANGE	structures.	Each	entry	in	the
array	specifies	a	contiguous	range	of	MIDI	note	messages	to	which	the
instrument	must	respond.	An	instrument	region	is	downloaded	only	if	at	least
one	note	in	that	region	is	specified	in	the	DMUS_NOTERANGE	structures.

dwNumNoteRanges

Number	of	DMUS_NOTERANGE	structures	in	the	array	pointed	to	by
pNoteRanges.	If	this	value	is	set	to	0,	the	pNoteRanges	parameter	is	ignored,	and
all	regions	and	waveform	data	for	the	instrument	are	downloaded.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_OUTOFMEMORY
E_NOTIMPL

Remarks

To	prevent	memory	loss,	the	instrument	must	be	unloaded	by	calling	both
IDirectMusicPort8::UnloadInstrument	and
IDirectMusicDownloadedInstrument8::Release	when	it	is	no	longer	needed.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface
IDirectMusicPort8::Compact
Working	with	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::GetCaps

The	GetCaps	method	retrieves	the	port's	capabilities.

Syntax

HRESULT	GetCaps(

		LPDMUS_PORTCAPS	pPortCaps

);

Parameters

pPortCaps

Address	of	a	DMUS_PORTCAPS	structure	that	receives	the	capabilities	of	the
port.	The	dwSize	member	of	this	structure	must	be	properly	initialized	before
the	method	is	called.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_INVALIDARG

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::GetChannelPriority

The	GetChannelPriority	method	retrieves	the	priority	of	a	MIDI	channel.	For
an	overview,	see	Channels.

Syntax

HRESULT	GetChannelPriority(

		DWORD	dwChannelGroup,	

		DWORD	dwChannel,	

		LPDWORD	pdwPriority

);

Parameters

dwChannelGroup

Group	that	the	channel	is	in.

dwChannel

Index	of	the	channel	on	the	group.

pdwPriority

Address	of	a	variable	that	receives	the	priority	ranking.	See	Remarks.

Return	Values

The	return	value	is	S_OK.

Remarks

The	following	values,	defined	in	Dmusicc.h,	each	represent	a	range	of	priorities.
They	are	listed	here	in	descending	order	of	priority.

Value
DAUD_CRITICAL_VOICE_PRIORITY

DAUD_HIGH_VOICE_PRIORITY
DAUD_STANDARD_VOICE_PRIORITY
DAUD_LOW_VOICE_PRIORITY
DAUD_PERSIST_VOICE_PRIORITY

The	following	values	express	the	default	ranking	of	the	channels	within	a	range,
according	to	the	DLS	standard.	They	are	listed	here	in	descending	order.
Channel	10,	the	percussion	channel,	has	the	highest	priority.

Value
DAUD_CHAN10_VOICE_PRIORITY_OFFSET
DAUD_CHAN1_VOICE_PRIORITY_OFFSET
DAUD_CHAN2_VOICE_PRIORITY_OFFSET
DAUD_CHAN3_VOICE_PRIORITY_OFFSET
DAUD_CHAN4_VOICE_PRIORITY_OFFSET
DAUD_CHAN5_VOICE_PRIORITY_OFFSET
DAUD_CHAN6_VOICE_PRIORITY_OFFSET
DAUD_CHAN7_VOICE_PRIORITY_OFFSET
DAUD_CHAN8_VOICE_PRIORITY_OFFSET
DAUD_CHAN9_VOICE_PRIORITY_OFFSET
DAUD_CHAN11_VOICE_PRIORITY_OFFSET
DAUD_CHAN12_VOICE_PRIORITY_OFFSET
DAUD_CHAN13_VOICE_PRIORITY_OFFSET
DAUD_CHAN14_VOICE_PRIORITY_OFFSET
DAUD_CHAN15_VOICE_PRIORITY_OFFSET
DAUD_CHAN16_VOICE_PRIORITY_OFFSET

The	priority	of	a	channel	is	represented	by	a	range	plus	an	offset.	For	example,
DAUD_HIGH_VOICE_PRIORITY	combined	with
DAUD_CHAN10_VOICE_PRIORITY_OFFSET	represents	the	highest	priority
within	the	high	range.	Combined	range	and	offset	values	for	the	standard	range
are	defined	for	convenience	in	Dmusicc.h	as
DAUD_CHAN1_DEF_VOICE_PRIORITY,
.DAUD_CHAN2_DEF_VOICE_PRIORITY,	and	so	on.

Channels	that	have	the	same	priority	value	have	equal	priority,	regardless	of
which	channel	group	they	belong	to.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface
IDirectMusicPort8::SetChannelPriority

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::GetFormat

The	GetFormat	method	retrieves	information	about	the	WAV	format	specified
in	the	DMUS_PORTPARAMS8	structure	passed	to
IDirectMusic8::CreatePort,	and	the	recommended	size	of	the	buffer	to	use	for
waveform	output.	The	information	can	be	used	to	create	a	compatible
DirectSound	buffer	for	the	port.

Syntax

HRESULT	GetFormat(

		LPWAVEFORMATEX	pWaveFormatEx,

		LPDWORD	pdwWaveFormatExSize

		LPDWORD	pdwBufferSize

);

Parameters

pWaveFormatEx

Address	of	the	WAVEFORMATEX	structure	that	receives	information	about
the	format.	This	value	can	be	NULL.	See	Remarks.

pdwWaveFormatExSize

Address	of	a	variable	that	specifies	or	receives	the	size	of	the	structure.	See
Remarks.

pdwBufferSize

Address	of	a	variable	that	receives	the	recommended	size	of	the	DirectSound
buffer.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	WAVEFORMATEX	structure	can	have	a	variable	length	that	depends	on
the	details	of	the	format.	Before	retrieving	the	format	description,	the	application
should	query	the	synthesizer	object	for	the	size	of	the	format	by	calling	this
method	and	specifying	NULL	for	the	pWaveFormatEx	parameter.	The	size	of	the
structure	is	returned	in	the	variable	pointed	to	by	pdwWaveFormatExSize.	The
application	can	then	allocate	sufficient	memory	and	call	GetFormat	again	to
retrieve	the	format	description.

If	pWaveFormatEx	is	not	NULL,	DirectMusic	writes,	at	most,
pdwWaveFormatExSize	bytes	to	the	structure.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface
IDirectMusicPort8::SetDirectSound

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::GetLatencyClock

The	GetLatencyClock	method	retrieves	an	IReferenceClock	interface	pointer
to	the	port's	latency	clock.	The	latency	clock	specifies	the	nearest	time	in	the
future	at	which	a	message	can	be	played	on	time.	The	latency	clock	is	based	on
the	DirectMusic	master	clock,	which	is	set	by	using	the
IDirectMusic8::SetMasterClock	method.

Syntax

HRESULT	GetLatencyClock(

		IReferenceClock**	ppClock

);

Parameters

ppClock

Address	of	a	variable	that	receives	the	latency	clock's	IReferenceClock
interface	pointer.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

In	accordance	with	COM	rules,	GetLatencyClock	increments	the	reference
count	of	the	returned	interface.	Therefore,	the	application	must	call	Release	on
the	IReferenceClock	interface	at	some	point.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface
Latency	and	Bumper	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::GetNumChannelGroups

The	GetNumChannelGroups	method	retrieves	the	number	of	channel	groups
on	the	port.

Syntax

HRESULT	GetNumChannelGroups(

		LPDWORD	pdwChannelGroups

);

Parameters

pdwChannelGroups

Address	of	a	variable	that	receives	the	number	of	channel	groups.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

Channels

IDirectMusicPort8	Interface
IDirectMusicPort8::SetNumChannelGroups

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::GetRunningStats

The	GetRunningStats	method	retrieves	information	about	the	state	of	the
synthesizer.

Syntax

HRESULT	GetRunningStats(

		LPDMUS_SYNTHSTATS	pStats

);

Parameters

pStats

Address	of	a	DMUS_SYNTHSTATS8	structure	that	receives	running	statistics
of	the	synthesizer.	The	dwSize	member	of	this	structure	must	be	properly
initialized	before	the	method	is	called.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_INVALIDARG
E_NOTIMPL

Remarks

Some	hardware	synthesizers	might	continue	to	report	running	statistics	even
though	the	port	has	been	deactivated.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::PlayBuffer

The	PlayBuffer	method	cues	a	buffer	for	playback	by	the	port.

Syntax

HRESULT	PlayBuffer(

		LPDIRECTMUSICBUFFER	pBuffer

);

Parameters

pBuffer

Address	of	an	IDirectMusicBuffer8	interface	pointer	of	the	buffer	to	be	added
to	the	port's	playback	queue.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY

Remarks

The	buffer	is	in	use	by	the	system	only	for	the	duration	of	this	method	and	can
be	reused	after	the	method	returns.

If	no	start	time	has	been	set	by	using	the	IDirectMusicBuffer8::SetStartTime
method,	the	start	time	is	the	time	of	the	earliest	event	in	the	buffer,	as	set	by	the

IDirectMusicBuffer8::PackStructured	or	the
IDirectMusicBuffer8::PackUnstructured	method.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusic8::CreateMusicBuffer
IDirectMusicBuffer8	Interface
IDirectMusicPort8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::Read

The	Read	method	fills	a	buffer	with	incoming	MIDI	data.	The	method	should	be
called	with	new	buffer	objects	until	no	more	data	is	available	to	be	read.

Syntax

HRESULT	Read(

		LPDIRECTMUSICBUFFER	pBuffer

);

Parameters

pBuffer

Address	of	the	IDirectMusicBuffer8	interface	pointer	of	the	buffer	object	to	be
filled	with	the	incoming	MIDI	data.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	there	is	no
more	data	to	read.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_NOTIMPL

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

Capturing	MIDI

IDirectMusicPort8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::SetChannelPriority

The	SetChannelPriority	method	sets	the	priority	of	a	MIDI	channel.	For	an
overview,	see	Channels.

Syntax

HRESULT	SetChannelPriority(

		DWORD		dwChannelGroup,	

		DWORD		dwChannel,	

		DWORD		dwPriority

);

Parameters

dwChannelGroup

Group	that	the	channel	is	in.	This	value	must	be	1	or	greater.

dwChannel

Index	of	the	channel	on	the	group.

dwPriority

The	priority	ranking.	See	Remarks	for
IDirectMusicPort8::GetChannelPriority.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL

E_INVALIDARG
E_OUTOFMEMORY
E_NOTIMPL

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DMUS_CHANNEL_PRIORITY_PMSG
IDirectMusicPort8	Interface
IDirectMusicPort8::GetChannelPriority

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::SetDirectSound

The	SetDirectSound	method	overrides	the	default	DirectSound	device	object	or
buffer,	or	both,	to	which	a	port's	waveform	data	is	streamed.	This	method	is	also
used	to	disconnect	the	port	from	DirectSound.

Syntax

HRESULT	SetDirectSound(

		LPDIRECTSOUND	pDirectSound,	

		LPDIRECTSOUNDBUFFER	pDirectSoundBuffer

);

Parameters

pDirectSound

Address	of	the	IDirectSound8	interface	of	the	DirectSound	device	object	to
which	the	port	is	to	be	connected,	or	NULL	to	disconnect	and	release	the
existing	DirectSound	device	object.

pDirectSoundBuffer

Address	of	the	IDirectSoundBuffer8	interface	to	connect	the	port	to.	This	value
can	be	NULL,	and	must	be	NULL	if	pDirectSound	is	NULL.	This	parameter	is
not	used	if	the	port	is	the	Microsoft	software	synthesizer	in	DirectX	8.0	or	later.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or
DMUS_S_NOBUFFERCONTROL.	See	Remarks.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_ALREADY_ACTIVATED

E_INVALIDARG

Remarks

If	a	valid	pointer	is	passed	in	pDirectSoundBuffer,	the	method	returns
DMUS_S_NOBUFFERCONTROL	if	control	changes	in	the	buffer	such	as	pan
and	volume	do	not	affect	DirectMusic	playback.	This	affects	only	Windows
Driver	Model	(WDM)	ports.

When	the	port	is	activated,	the	primary	DirectSound	buffer	is	upgraded,	if
necessary,	to	support	the	sample	rate	and	channel	information	for	this	port
(specified	in	the	DMUS_PORTPARAMS8	structure	passed	to
IDirectMusic8::CreatePort).

The	buffer	pointed	to	by	pDirectSoundBuffer	must	be	a	secondary	streaming
buffer	with	a	format	that	matches	the	sample	rate	and	channel	information	for
this	port.	If	this	parameter	is	NULL,	an	appropriate	IDirectSoundBuffer
instance	is	created	internally.

Neither	the	IDirectSound	nor	the	IDirectSoundBuffer	can	be	changed	after	the
port	has	been	activated.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface
IDirectMusicPort8::Activate
IDirectMusicPort8::GetFormat

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::SetNumChannelGroups

The	SetNumChannelGroups	method	changes	the	number	of	channel	groups
that	the	application	needs	on	the	port.

Syntax

HRESULT	SetNumChannelGroups(

		DWORD	dwChannelGroups

);

Parameters

dwChannelGroups

Number	of	channel	groups	on	this	port	that	the	application	wants	to	allocate.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

Channels

IDirectMusicPort8	Interface
IDirectMusicPort8::GetNumChannelGroups

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::SetReadNotificationHandle

The	SetReadNotificationHandle	method	specifies	an	event	that	is	to	be	set
when	MIDI	messages	are	available	to	be	read	with	the
IDirectMusicPort8::Read	method.	The	event	is	signaled	whenever	new	data	is
available.	To	turn	off	event	notification,	call	SetReadNotificationHandle	with	a
NULL	value	for	the	hEvent	parameter.

Syntax

HRESULT	SetReadNotificationHandle(

		HANDLE	hEvent

);

Parameters

hEvent

Event	handle	obtained	from	a	call	to	the	Win32	CreateEvent	function.	It	is	the
application's	responsibility	to	close	this	handle	after	the	port	has	been	released.

Return	Values

If	it	succeeds,	the	method	returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_DMUSIC_RELEASED
E_NOTIMPL

Remarks

A	return	value	of	E_NOTIMPL	can	mean	the	port	is	not	an	input	port.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

Capturing	MIDI
IDirectMusicPort8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPort8::UnloadInstrument

The	UnloadInstrument	method	unloads	a	previously	downloaded	DLS
instrument.

Syntax

HRESULT	UnloadInstrument(

		IDirectMusicDownloadedInstrument	*pDownloadedInstrument

);

Parameters

pDownloadedInstrument

Address	of	an	IDirectMusicDownloadedInstrument8	interface,	obtained	when
the	instrument	was	downloaded	by	calling	the
IDirectMusicPort8::DownloadInstrument	method.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_DOWNLOADED_TO_PORT
E_POINTER
E_NOTIMPL

Remarks

This	method	must	be	called	to	free	memory	allocated	by
IDirectMusicPort8::DownloadInstrument.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPort8	Interface
Working	with	Instruments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPortDownload8
Interface
The	IDirectMusicPortDownload8	interface	enables	an	application	to
communicate	directly	with	a	port	that	supports	DLS	downloading	and	to
download	memory	chunks	directly	to	the	port.	The	interface	is	used	primarily	by
authoring	applications	that	edit	DLS	instruments	directly.

To	obtain	the	IDirectMusicPortDownload8	interface,	call	the
IDirectMusicPort8::QueryInterface	method,	passing	in
IID_IDirectMusicPortDownload8	as	the	interface	GUID.	If	the	port	does	not
support	DLS	downloading,	this	call	might	fail.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicPortDownload8	interface	exposes	the	following	methods.

Buffers

Method Description

AllocateBuffer Creates	a	buffer	for	downloading	DLS
data	to	the	port.

GetAppend
Retrieves	the	amount	of	memory	that
the	port	needs	to	be	appended	to	the	end
of	a	download	buffer.

GetBuffer Retrieves	the	pointer	of	a	buffer	whose
unique	identifier	is	known.

GetDLId Obtains	sequential	identifiers	for	one	or
more	download	buffers.

Data

Method Description

Download Downloads	a	waveform	or	instrument
definition	to	the	port.

Unload Unloads	a	buffer	that	was	previously
downloaded.

The	LPDIRECTMUSICPORTDOWNLOAD8	type	is	defined	as	a	pointer	to	this
interface.

typedef	IDirectMusicPortDownload8	*LPDIRECTMUSICPORTDOWNLOAD8;

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPortDownload8::AllocateBuffer

The	AllocateBuffer	method	allocates	a	chunk	of	memory	for	downloading	DLS
data	to	the	port	and	returns	an	IDirectMusicDownload8	interface	pointer	that
allows	access	to	this	buffer.

Syntax

HRESULT	AllocateBuffer(

		DWORD	dwSize,

		IDirectMusicDownload**	ppIDMDownload

);

Parameters

dwSize

Requested	size	of	buffer.

ppIDMDownload

Address	of	a	variable	that	receives	the	IDirectMusicDownload8	interface
pointer.

Return	Values

If	the	method	succeeds,	it	returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_INVALIDARG
E_OUTOFMEMORY

Remarks

After	a	buffer	has	been	allocated,	its	size	cannot	change.

The	buffer	is	freed	when	the	IDirectMusicDownload8	interface	is	released.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPortDownload8	Interface
IDirectMusicPortDownload8::GetBuffer
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPortDownload8::Download

The	Download	method	downloads	a	waveform	or	instrument	definition	to	the
port.	The	memory	must	first	be	allocated	by	using	the
IDirectMusicPortDownload8::AllocateBuffer	method.

Syntax

HRESULT	Download(

		IDirectMusicDownload*	pIDMDownload

);

Parameters

pIDMDownload

Address	of	the	IDirectMusicDownload8	interface	for	the	buffer.

Return	Values

Return	values	are	determined	by	the	implementation	of	the	port.

If	the	method	succeeds,	it	returns	S_OK.

If	the	method	fails,	it	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_FAIL
DMUS_E_ALREADY_DOWNLOADED
DMUS_E_BADARTICULATION
DMUS_E_BADINSTRUMENT
DMUS_E_BADOFFSETTABLE
DMUS_E_BADWAVE
DMUS_E_BADWAVELINK

DMUS_E_BUFFERNOTSET
DMUS_E_NOARTICULATION
DMUS_E_NOTMONO
DMUS_E_NOTPCM
DMUS_E_UNKNOWNDOWNLOAD

Remarks

For	more	information	on	how	to	prepare	the	data	to	be	downloaded,	see	Low-
Level	DLS.

After	the	memory	has	been	downloaded,	you	cannot	do	anything	more	with	it.
To	update	the	download,	you	must	create	a	new	buffer	and	assign	it	a	new
download	ID	obtained	by	using	the	IDirectMusicPortDownload8::GetDLId
method,	and	then	send	it	down.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DMUS_DOWNLOADINFO
DMUS_OFFSETTABLE
IDirectMusicPortDownload8	Interface
IDirectMusicPortDownload8::Unload

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPortDownload8::GetAppend

The	GetAppend	method	retrieves	the	amount	of	memory	that	the	port	needs	to
be	appended	to	the	end	of	a	download	buffer.	This	extra	memory	can	be	used	by
the	port	to	interpolate	across	a	loop	boundary.

Syntax

HRESULT	GetAppend(

		DWORD*	pdwAppend

);

Parameters

pdwAppend

Address	of	a	variable	that	receives	the	number	of	appended	samples	for	which
memory	is	required.	The	amount	of	memory	can	be	calculated	from	the	WAV
format.

Return	Values

Return	values	are	determined	by	the	port	implementation.

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_NOTIMPL

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPortDownload8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPortDownload8::GetBuffer

The	GetBuffer	method	retrieves	the	IDirectMusicDownload8	interface	pointer
of	a	buffer	whose	unique	identifier	is	known.

Syntax

HRESULT	GetBuffer(

		DWORD	dwDLId,

		IDirectMusicDownload**	ppIDMDownload

);

Parameters

dwDLId

Download	identifier	of	the	buffer.	See	DMUS_DOWNLOADINFO.

ppIDMDownload

Address	of	a	variable	that	receives	the	IDirectMusicDownload8	interface
pointer	for	the	buffer.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
DMUS_E_INVALID_DOWNLOADID
DMUS_E_NOT_DOWNLOADED_TO_PORT

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPortDownload8	Interface
IDirectMusicDownload8::GetBuffer
IDirectMusicPortDownload8::GetDLId
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPortDownload8::GetDLId

The	GetDLId	method	obtains	sequential	identifiers	for	one	or	more	download
buffers.

Every	memory	chunk	downloaded	to	the	synthesizer	must	have	a	unique
identifier	placed	in	its	DMUS_DOWNLOADINFO	structure.	The	GetDLId
method	guarantees	that	no	two	downloads	have	the	same	identifier.

Syntax

HRESULT	GetDLId(

		DWORD*	pdwStartDLId,	

		DWORD	dwCount

);

Parameters

pdwStartDLId

Address	of	a	variable	that	receives	the	first	identifier.

dwCount

Number	of	identifiers	to	reserve.	You	might	plan	to	download	a	whole	series	of
chunks	at	once.	Instead	of	calling	GetDLId	for	each	chunk,	set	dwCount	to	the
number	of	chunks.	GetDLId	returns	the	first	ID	of	the	set,	and	the	additional
identifiers	are	automatically	reserved	up	through	*pdwStartDLId	plus	dwCount.
A	subsequent	call	to	GetDLId	would	skip	past	the	reserved	values.

Return	Values

If	the	method	succeeds,	it	returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_INVALIDARG

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPortDownload8	Interface
IDirectMusicPortDownload8::GetBuffer
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicPortDownload8::Unload

The	Unload	method	unloads	a	buffer	that	was	previously	downloaded	by	using
IDirectMusicPortDownload8::Download.

Syntax

HRESULT	Unload(

		IDirectMusicDownload*	pIDMDownload

);

Parameters

pIDMDownload

Address	of	the	IDirectMusicDownload8	interface	for	the	buffer.

Return	Values

Return	values	are	determined	by	the	port	implementation.

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	following	values:

Return	code
E_NOINTERFACE
DMUS_E_SYNTHNOTCONFIGURED

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IDirectMusicPortDownload8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8	Interface
The	IDirectMusicScript8	interface	represents	a	script	containing	variables	that
can	be	set	and	retrieved	by	the	application,	and	routines	that	can	be	called	by	the
application.

Typically	the	interface	is	obtained	by	using	IDirectMusicLoader8::GetObject
to	load	a	script	file.	The	application	then	calls	IDirectMusicScript8::Init	to
associate	the	script	with	the	DirectMusicPerformance	object	that	performs	the
actual	playback.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusic8
interface	exposes	the	following	methods.

Method Description
CallRoutine Executes	a	routine	in	the	script.

EnumRoutine Retrieves	the	name	of	a	routine	in	a
script.

EnumVariable Retrieves	the	name	of	a	variable	in	a
script.

GetVariableNumber Retrieves	a	32-bit	signed	value	from	a
variable	declared	in	the	script.

GetVariableObject

Retrieves	an	object	pointer	from	a
variable	declared	in	the	script,	or
retrieves	an	object	embedded	or
referenced	in	the	script	file.

GetVariableVariant Retrieves	a	variant	value	from	a
variable	declared	in	the	script.

Init Associates	the	script	with	the
performance	that	will	play	the	sounds.

SetVariableNumber Assigns	a	32-bit	signed	value	to	a
variable	declared	in	the	script.

SetVariableObject Assigns	an	object	interface	pointer	to	a
variable	declared	in	the	script.
Assigns	a	variant	value	to	a	variable

SetVariableVariant declared	in	the	script.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

See	Also

DirectMusic	Interfaces
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::CallRoutine

The	CallRoutine	method	executes	a	routine	in	the	script.

Syntax

HRESULT	CallRoutine(

		WCHAR	*pwszRoutineName,

		DMUS_SCRIPT_ERRORINFO	*pErrInfo

);

Parameters

pwszRoutineName

Name	of	the	routine.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	parameter	to	NULL	if	you	do	not	want
error	information.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or
DMUS_S_GARBAGE_COLLECTED.	See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	those	in	the	following	table.

Return	code
DMUS_E_AUDIOVBSCRIPT_OPERATIONFAILURE
DMUS_E_AUDIOVBSCRIPT_RUNTIMEERROR
DMUS_E_AUDIOVBSCRIPT_SYNTAXERROR
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_ERROR_IN_SCRIPT

DMUS_E_SCRIPT_ROUTINE_NOT_FOUND
E_POINTER

Remarks

Control	does	not	return	to	the	application	until	the	routine	finishes	running.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::EnumRoutine

The	EnumRoutine	method	retrieves	the	name	of	a	routine	in	a	script.	This
method	might	be	used	by	authoring	applications	that	need	to	enumerate	all
routines	in	a	script.

Syntax

HRESULT	EnumRoutine(

		DWORD	dwIndex,	

		WCHAR	*pwszName

);

Parameters

dwIndex

Zero-based	index	of	the	routine.

pwszName

Pointer	to	a	string	buffer	that	receives	the	name	of	the	routine.	Must	contain	at
least	MAX_PATH	elements.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	routine	was	enumerated.

S_FALSE There	is	no	routine	with	the	supplied
index	value.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

DMUS_S_STRING_TRUNCATED The	name	is	longer	than
MAX_PATH.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::EnumVariable
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::EnumVariable

The	EnumVariable	method	retrieves	the	name	of	a	variable	in	a	script.	This
method	might	be	used	by	authoring	applications	that	need	to	enumerate	all
variables	in	a	script.

Syntax

HRESULT	EnumVariable(

		DWORD	dwIndex,	

		WCHAR	*pwszName

);

Parameters

dwIndex

Zero-based	index	of	the	variable.

pwszName

Address	of	a	string	buffer	that	receives	the	name	of	the	variable.	Must	contain	at
least	MAX_PATH	elements.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	routine	was	enumerated.

S_FALSE There	is	no	routine	with	the	supplied
index	value.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

DMUS_S_STRING_TRUNCATED The	name	is	longer	than
MAX_PATH.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::EnumRoutine
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::GetVariableNumber

The	GetVariableNumber	method	retrieves	a	32-bit	signed	value	from	a	variable
declared	in	the	script.

Syntax

HRESULT	GetVariableNumber(

		WCHAR	*pwszVariableName,

		LONG	*plValue,

		DMUS_SCRIPT_ERRORINFO	*pErrInfo

);

Parameters

pwszVariableName

Name	of	the	script	variable.

plValue

Address	of	a	variable	that	receives	the	value.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	member	to	NULL	if	you	do	not	want	error
information.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	value	was	retrieved.

S_FALSE The	variable	does	not	exist	in	the
script.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DISP_E_TYPEMISMATCH	(See	Winerror.h.)
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::SetVariableNumber
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::GetVariableObject

The	GetVariableObject	method	retrieves	an	object	pointer	from	a	variable
declared	in	the	script,	or	retrieves	an	object	embedded	or	referenced	in	the	script
file.

Syntax

HRESULT	GetVariableObject(

		WCHAR*	pwszVariableName,

		REFIID	riid,

		LPVOID	FAR*	ppv,

		DMUS_SCRIPT_ERRORINFO*	pErrInfo

);

Parameters

pwszVariableName

Name	of	the	script	variable	or	of	the	object	referenced	or	embedded	in	the	script.

riid

Unique	identifier	of	the	interface.	See	DirectMusic	Interface	GUIDs.

ppv

Address	of	a	variable	that	receives	a	pointer	to	the	desired	interface	of	the	object.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	member	to	NULL	if	you	do	not	want	error
information.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	value	was	retrieved.

S_FALSE The	variable	does	not	exist	in	the
script.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
E_NOINTERFACE
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::SetVariableObject
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::GetVariableVariant

The	GetVariableVariant	method	retrieves	a	variant	value	from	a	variable
declared	in	the	script.

Syntax

HRESULT	GetVariableVariant(

		WCHAR	*pwszVariableName,

		VARIANT	*pvarValue,

		DMUS_SCRIPT_ERRORINFO	*pErrInfo

);

Parameters

pwszVariableName

Name	of	the	script	variable.

pvarValue

Address	of	a	variable	that	receives	the	value.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	member	to	NULL	if	you	do	not	want	error
information.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	value	was	retrieved.

S_FALSE The	variable	does	not	exist	in	the
script.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_CONTENT_READONLY
DMUS_E_SCRIPT_UNSUPPORTED_VARTYPE
DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::SetVariableVariant
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::Init

The	Init	method	associates	the	script	with	the	performance	that	will	play	the
sounds.

Syntax

HRESULT	Init(

		IDirectMusicPerformance*	pPerformance,

		DMUS_SCRIPT_ERRORINFO*	pErrInfo

);

Parameters

pPerformance

Address	of	the	IDirectMusicPerformance8	interface	of	the	performance	object.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	member	to	NULL	if	you	do	not	want	error
information.

Requirements

		Header:	Declared	in	dmusici.h.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	script	was	initialized.

S_FALSE The	script	has	already	been	attached
to	a	different	performance.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_CONTENT_READONLY
DMUS_E_SCRIPT_ERROR_IN_SCRIPT
DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
E_POINTER
E_NOINTERFACE

See	Also

IDirectMusicScript8	Interface
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::SetVariableNumber

The	SetVariableNumber	method	assigns	a	32-bit	signed	value	to	a	variable
declared	in	the	script.

Syntax

HRESULT	SetVariableNumber(

		WCHAR	*pwszVariableName,

		LONG	lValue,	

		DMUS_SCRIPT_ERRORINFO	*pErrInfo

);

Parameters

pwszVariableName

Name	of	the	script	variable.

lValue

Value	to	assign	to	the	variable.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	member	to	NULL	if	you	do	not	want	error
information.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	value	was	set.

S_FALSE The	variable	does	not	exist	in	the
script.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_CONTENT_READONLY
DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::GetVariableNumber
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::SetVariableObject

The	SetVariableObject	method	assigns	an	object	interface	pointer	to	a	variable
declared	in	the	script.

Syntax

HRESULT	SetVariableObject(

		WCHAR*	pwszVariableName,

		IUnknown*	punkValue,

		DMUS_SCRIPT_ERRORINFO*	pErrInfo

);

Parameters

pwszVariableName

Name	of	the	script	variable.

punkValue

Interface	pointer	to	assign	to	the	variable.	This	can	be	an	interface	of	one	of	the
DirectMusic	objects	supported	by	the	script	engine,	such	as
IDirectMusicSegment8,	or	an	interface	of	any	other	object	that	implements	the
IDispatch	interface.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	member	to	NULL	if	you	do	not	want	error
information.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description

S_OK The	value	was	set.

S_FALSE The	variable	does	not	exist	in	the
script.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_CONTENT_READONLY
DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::GetVariableObject
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicScript8::SetVariableVariant

The	SetVariableVariant	method	assigns	a	variant	value	to	a	variable	declared	in
the	script.

Syntax

HRESULT	SetVariableVariant(

		WCHAR*	pwszVariableName,

		VARIANT	varValue,	

		BOOL	fSetRef,

		DMUS_SCRIPT_ERRORINFO*	pErrInfo

);

Parameters

pwszVariableName

Name	of	the	script	variable.

varValue

Value	to	assign	to	the	variable.

fSetRef

TRUE	if	the	variable	is	to	be	set	by	reference,	FALSE	if	by	value.	Only	objects
can	be	set	by	reference.	This	flag	should	always	be	TRUE	for	DirectMusic
objects	and	FALSE	for	other	variants.

pErrInfo

Address	of	a	DMUS_SCRIPT_ERRORINFO	structure	that	receives
information	if	an	error	occurs.	Set	this	member	to	NULL	if	you	do	not	want	error
information.

Return	Values

If	the	method	succeeds,	one	of	the	following	success	codes	is	returned:

Return	code Description
S_OK The	value	was	set.

S_FALSE The	variable	does	not	exist	in	the
script.

DMUS_S_GARBAGE_COLLECTED See	Garbage	Collection.

If	the	method	fails,	return	values	can	include	the	following:

Return	code
DMUS_E_NOT_INIT
DMUS_E_SCRIPT_CONTENT_READONLY
DMUS_E_SCRIPT_NOT_A_REFERENCE
DMUS_E_SCRIPT_UNSUPPORTED_VARTYPE
DMUS_E_SCRIPT_VALUE_NOT_SUPPORTED
DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicScript8	Interface
IDirectMusicScript8::GetVariableObject
Using	Audio	Scripts

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8	Interface
The	IDirectMusicSegment8	interface	represents	a	segment,	which	is	a	playable
unit	of	data	made	up	of	multiple	tracks.

The	segment	object	also	supports	the	IDirectMusicObject8	and	IPersistStream
interfaces	for	loading	its	data.

IDirectMusicSegment8	supersedes	the	IDirectMusicSegment	interface	and
introduces	new	methods.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicSegment8	interface	exposes	the	following	methods,	arranged	by
category.

Instrument	data

Method Description

Download Downloads	band	data	to	a	performance
or	audiopath.

Unload Unloads	instrument	data	from	a
performance	or	audiopath.

Notification

Method Description

AddNotificationType Adds	a	type	of	event	for	which
notifications	are	required.

RemoveNotificationType Removes	a	a	type	of	event	for	which
notifications	are	required.

Timing	and	looping

Method Description

GetDefaultResolution

Retrieves	the	default	resolution	of	the
segment.	This	is	the	value	used	to
determine	how	times	such	as	the
segment	start	time	are	adjusted	for
synchronization	with	the	rhythm.

GetLength Retrieves	the	length	of	the	segment.
GetLoopPoints Retrieves	the	start	and	end	loop	points.

GetRepeats
Retrieves	the	number	of	times	the
looping	portion	of	the	segment	is	set	to
repeat.

GetStartPoint Retrieves	the	point	within	the	segment
at	which	it	starts	playing.

SetDefaultResolution Sets	the	default	resolution	of	the
segment.

SetLength Sets	the	length,	in	music	time,	of	the
segment.

SetLoopPoints Sets	the	start	and	end	points	of	the	part
of	the	segment	that	repeats.

SetRepeats Sets	the	number	of	times	the	looping
portion	of	the	segment	is	to	repeat.

SetStartPoint Sets	the	point	within	the	segment	at
which	it	starts	playing.

Toolgraphs

Method Description
GetGraph Retrieves	the	segment's	toolgraph.
SetGraph Assigns	a	toolgraph	to	the	segment.

Track	parameters

Method Description

GetParam Retrieves	data	from	a	track	inside	this
segment.

SetParam Sets	data	on	a	track	inside	this	segment.

Tracks

Method Description

GetTrack

Searches	the	list	of	tracks	for	the	one
with	the	specified	type,	group,	and
index,	and	retrieves	an	interface	to	the
track.

GetTrackGroup Retrieves	the	group	bits	set	on	a	track
inside	the	segment.

InsertTrack Inserts	the	specified	track	into	the
segment's	list	of	tracks.

RemoveTrack Removes	a	track	from	the	segment's
track	list.

SetTrackConfig Sets	the	onfiguration	of	a	track	for
miscellaneous	behaviors.

Miscellaneous

Method Description
Clone Copies	all	or	part	of	the	segment.

Compose

Composes	all	tracks	flagged	as
DMUS_TRACKCONFIG_COMPOSING
and	places	the	composed	tracks	in	this
segment	or	in	a	copy	of	this	segment.

GetAudioPathConfig
Retrieves	an	object	that	represents	an
audiopath	configuration	embedded	in	the
segment.

InitPlay Initializes	the	play	state.

SetPChannelsUsed Sets	the	performance	channels	that	this
segment	uses.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
Using	Segments

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::AddNotificationType

The	AddNotificationType	method	adds	a	type	of	event	for	which	notifications
are	required.	This	method	is	called	by	the
IDirectMusicPerformance8::AddNotificationType	method,	allowing	the
segment	to	generate	notifications.	The	segment	calls	each	track's
IDirectMusicTrack8::AddNotificationType	method.

Syntax

HRESULT	AddNotificationType(

		REFGUID	rguidNotificationType

);

Parameters

rguidNotificationType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	notification	type	to
add.	For	the	defined	types,	see	DMUS_NOTIFICATION_PMSG.	Applications
can	also	define	their	own	types	for	custom	tracks.

Return	Values

If	the	method	succeeds,	it	returns	S_OK,	or	S_FALSE	if	the	type	was	already
added.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_OUTOFMEMORY

Remarks

Segments	cannot	generate	notifications	of	type

GUID_NOTIFICATION_PERFORMANCE.	To	get	notifications	of	this	type,
you	must	call	IDirectMusicPerformance8::AddNotificationType.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::Clone

The	Clone	method	copies	all	or	part	of	the	segment.

Syntax

HRESULT	Clone(

		MUSIC_TIME	mtStart,	

		MUSIC_TIME	mtEnd,	

		IDirectMusicSegment**	ppSegment

);

Parameters

mtStart

Start	of	the	part	to	copy.	If	this	value	is	less	than	0	or	greater	than	the	length	of
the	segment,	the	segment	is	copied	from	the	beginning.

mtEnd

End	time	of	the	part	to	copy.	If	this	value	is	past	the	end	of	the	segment,	or	0,	or
less	than	mtStart,	the	segment	is	copied	to	the	end.

ppSegment

Address	of	a	variable	that	receives	a	pointer	to	the	IDirectMusicSegment
interface	of	the	created	segment.	Use	QueryInterface	to	obtain
IDirectMusicSegment8.	It	is	the	caller's	responsibility	to	call	Release	when
finished	with	the	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	some	tracks
failed	to	copy.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_OUTOFMEMORY
E_POINTER

Remarks

Properties	of	the	original	segment,	including	start	and	loop	points,	number	of
repeats,	and	any	toolgraph	and	default	audiopath,	are	copied.

For	style-based	segments,	if	mtStart	is	greater	than	0,	it	should	be	on	a	measure
boundary.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::Compose

The	Compose	method	composes	all	tracks	flagged	as
DMUS_TRACKCONFIG_COMPOSING	and	places	the	composed	tracks	in	this
segment	or	in	a	copy	of	this	segment.

Syntax

HRESULT	Compose(

		MUSIC_TIME	mtTime,

		IDirectMusicSegment*	pFromSegment,

		IDirectMusicSegment*	pToSegment,

		IDirectMusicSegment**	ppComposedSegment

);

Parameters

mtTime

Value	of	type	MUSIC_TIME	that	specifies	the	time	in	pFromSegment	at	which
to	compose	a	transition.	Set	to	0	if	pFromSegment	is	NULL.

pFromSegment

Pointer	to	an	IDirectMusicSegment8	interface	that	specifies	the	segment
leading	to	a	transition.	This	value	is	NULL	if	the	calling	segment	is	not	a
transition.

pToSegment

Pointer	to	the	IDirectMusicSegment8	interface	that	specifies	the	segment
following	a	transition.	This	value	is	NULL	if	the	calling	segment	is	not	a
transition	or	if	the	transition	is	an	ending.

ppComposedSegment

Address	of	a	variable	that	receives	the	IDirectMusicSegment8	interface	pointer
of	the	composed	segment,	or	NULL	if	the	calling	segment	is	to	be	recomposed.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks

If	the	pointer	parameters	are	all	NULL,	the	segment	calls
IDirectMusicTrack8::Compose	on	all	its	tracks.	Any	composing	tracks	search
for	other	tracks	necessary	for	composition;	if	a	needed	track	is	not	found,
DMUS_E_NOT_FOUND	is	returned.

If	ppComposedSegment	is	not	NULL,	the	method	creates	a	copy	of	the	original
segment	that	contains	the	recomposed	tracks.	If	either	pFromSegment	or
pToSegment	is	not	NULL,	the	calling	segment	is	assumed	to	be	a	transition	and
might	include	tracks	that	contain	only	headers	referring	to	one	of	the	bracketing
segments.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::SetTrackConfig
IDirectMusicTrack8::Compose
Track	Composition

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::Download

The	Download	method	downloads	band	data	to	a	performance	or	audiopath.

Syntax

HRESULT	Download(

		IUnknown*	pAudioPath

);

Parameters

pAudioPath

Pointer	to	the	IUnknown	interface	of	the	performance	or	audiopath	that	receives
the	data.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or
DMUS_S_PARTIALDOWNLOAD.	See	Remarks	for
IDirectMusicBand8::Download.

If	it	fails,	the	method	may	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks

All	bands	and	waveform	data	in	the	segment	are	downloaded.

Always	call	IDirectMusicSegment8::Unload	before	releasing	the	segment.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetAudioPathConfig

The	GetAudioPathConfig	method	retrieves	an	object	that	represents	an
audiopath	configuration	embedded	in	the	segment.	The	object	can	be	passed	to
IDirectMusicPerformance8::CreateAudioPath.

Syntax

HRESULT	GetAudioPathConfig(

		IUnknown**	ppAudioPathConfig

);

Parameters

ppAudioPathConfig

Address	of	a	variable	that	receives	a	pointer	to	the	IUnknown	interface	of	the
audiopath	configuration	object.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	may	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NO_AUDIOPATH_CONFIG
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface

Creating	Audiopaths

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetDefaultResolution

The	GetDefaultResolution	method	retrieves	the	default	resolution	of	the
segment.	This	is	the	value	used	to	determine	how	times	such	as	the	segment	start
time	are	adjusted	for	synchronization	with	the	rhythm.

Syntax

HRESULT	GetDefaultResolution(

		DWORD*	pdwResolution

);

Parameters

pdwResolution

Address	of	a	variable	that	receives	the	default	resolution.	This	value	can	be	0	or
one	of	the	members	of	the	DMUS_SEGF_FLAGS	enumeration	shown	in	the
following	table.

Value Description
DMUS_SEGF_MEASURE Resolve	times	to	next	measure.
DMUS_SEGF_BEAT Resolve	times	to	next	beat.
DMUS_SEGF_GRID Resolve	times	to	next	grid.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::SetDefaultResolution
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetGraph

The	GetGraph	method	retrieves	the	segment's	toolgraph.

Syntax

HRESULT	GetGraph(

		IDirectMusicGraph**	ppGraph

);

Parameters

ppGraph

Address	of	a	variable	that	receives	a	pointer	to	the	toolgraph.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_POINTER

Remarks

If	there	is	no	graph	in	the	segment,	the	method	returns
DMUS_E_NOT_FOUND.

The	reference	count	of	the	toolgraph	is	incremented.

The	segment	object	implements	IDirectMusicGraph	directly	This	interface	is
used	primarily	to	call	the	IDirectMusicGraph8::StampPMsg	method	directly
on	the	segment.	This	has	nothing	to	do	with	a	graph	object	that	might	be

embedded	in	the	segment.	If	you	want	to	access	an	embedded	object,	you	are
accessing	a	different	IDirectMusicGraph	interface	because	it	is	an	interface	on
the	embedded	graph	object,	not	the	segment	itself.	To	obtain	an	interface	to	an
embedded	audiopath,	use	the	IDirectMusicAudioPath8::GetObjectInPath	or
IDirectMusicSegmentState8::GetObjectInPath	method.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::SetGraph
DirectMusic	Tools

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetLength

The	GetLength	method	retrieves	the	length	of	the	segment.

Syntax

HRESULT	GetLength(

		MUSIC_TIME*	pmtLength

);

Parameters

pmtLength

Address	of	a	variable	that	receives	the	segment's	length	in	music	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	method	always	returns	1	in	*pmtLength	for	segments	created	from	WAV
files.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::SetLength

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetLoopPoints

The	GetLoopPoints	method	retrieves	the	start	and	end	points	of	the	part	of	the
segment	that	repeats	the	number	of	times	set	by	the
IDirectMusicSegment8::SetRepeats	method.

Syntax

HRESULT	GetLoopPoints(

		MUSIC_TIME*	pmtStart,	

		MUSIC_TIME*	pmtEnd

);

Parameters

pmtStart

Address	of	a	variable	that	receives	the	start	point	of	the	loop.

pmtEnd

Address	of	a	variable	that	receives	the	end	point	of	the	loop.	A	value	of	0
indicates	that	the	entire	segment	loops.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::SetLoopPoints

Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetParam

The	GetParam	method	retrieves	data	from	a	track	inside	this	segment.

Syntax

HRESULT	GetParam(

		REFGUID	rguidType,

		DWORD	dwGroupBits,

		DWORD	dwIndex,

		MUSIC_TIME	mtTime,	

		MUSIC_TIME*	pmtNext,

		void*	pParam

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	obtain.
See	Standard	Track	Parameters.

dwGroupBits

Group	that	the	desired	track	is	in.	Use	0xFFFFFFFF	for	all	groups.	For	more
information,	see	Identifying	the	Track.

dwIndex

Index	of	the	track	in	the	group	identified	by	dwGroupBits	from	which	to	obtain
the	data,	or	DMUS_SEG_ANYTRACK	to	find	the	first	track	that	contains	the
parameter.

mtTime

Time	from	which	to	obtain	the	data.

pmtNext

Address	of	a	variable	that	receives	the	segment	time	(relative	to	mtTime)	until
which	the	data	is	valid.	If	this	returns	a	value	of	0,	it	means	either	that	the	data	is
always	valid,	or	that	it	is	unknown	when	it	might	become	invalid.	If	this
information	is	not	needed,	pmtNext	can	be	set	to	NULL.	See	Remarks.

pParam

Address	of	an	allocated	structure	in	which	the	data	is	to	be	returned.	The
structure	must	be	of	the	appropriate	kind	and	size	for	the	data	type	identified	by
rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks

The	data	can	become	invalid	before	the	time	returned	in	*pmtNext	if	another
control	segment	is	cued.	For	more	information,	see	Control	Segments.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicPerformance8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetRepeats

The	GetRepeats	method	retrieves	the	number	of	times	the	looping	portion	of	the
segment	is	set	to	repeat.

Syntax

HRESULT	GetRepeats(

		DWORD*	pdwRepeats

);

Parameters

pdwRepeats

Address	of	a	variable	that	receives	the	number	of	times	that	the	looping	portion
of	the	segment	is	set	to	repeat.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::SetRepeats

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetStartPoint

The	GetStartPoint	method	retrieves	the	point	within	the	segment	at	which	it
starts	playing.

Syntax

HRESULT	GetStartPoint(

		MUSIC_TIME*	pmtStart

);

Parameters

pmtStart

Address	of	a	variable	that	receives	the	time	within	the	segment	at	which	it	starts
playing.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::SetStartPoint
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetTrack

The	GetTrack	method	searches	the	list	of	tracks	for	the	one	with	the	specified
type,	group,	and	index,	and	retrieves	an	interface	to	the	track	object.

Syntax

HRESULT	GetTrack(

		REFGUID	rguidType,

		DWORD	dwGroupBits,

		DWORD	dwIndex,

		IDirectMusicTrack**	ppTrack

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	class	identifier	of	the	track	to	find.	A
value	of	GUID_NULL	retrieves	any	track.	For	track	identifiers,	see	Standard
Track	Types.

dwGroupBits

Track	groups	in	which	to	scan	for	the	track.	A	value	of	0	is	invalid.	Each	bit	in
dwGroupBits	corresponds	to	a	track	group.	To	scan	all	tracks,	regardless	of
groups,	set	this	parameter	to	0xFFFFFFFF.

dwIndex

Zero-based	index	into	the	list	of	tracks	of	type	rguidType	and	in	group
dwGroupBits	to	return.	If	multiple	groups	are	selected	in	dwGroupBits,	this
index	indicates	the	nth	track	of	type	rguidType	encountered	in	the	union	of	the
groups	selected.	See	Remarks.

ppTrack

Address	of	a	variable	that	receives	a	pointer	to	the	track.	The	variable	is	set	to

NULL	if	the	track	is	not	found.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_FAIL
E_POINTER

Remarks

To	enumerate	all	tracks,	use	GUID_NULL	for	the	rguidType	and	0xFFFFFFFF
for	dwGroupBits.	Call	GetTrack	starting	with	0	for	dwIndex,	incrementing
dwIndex	until	the	method	no	longer	returns	a	success	code.

Tracks	in	segments	created	by	DirectMusic	Producer	are	not	necessarily	in	the
same	order	as	they	were	in	that	application.	Do	not	rely	on	dwIndex	alone	to	find
a	particular	track.

For	more	information	on	track	groups,	see	Identifying	the	Track.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::InsertTrack
DirectMusic	Tracks

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::GetTrackGroup

The	GetTrackGroup	method	retrieves	the	group	bits	set	on	a	track	inside	the
segment.

Syntax

HRESULT	GetTrackGroup(

		IDirectMusicTrack*	pTrack,	

		DWORD*	pdwGroupBits

);

Parameters

pTrack

Track	for	which	to	find	the	group	bits.

pdwGroupBits

Address	of	a	variable	that	receives	the	groups.	Each	bit	in	the	DWORD
corresponds	to	a	track	group.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_INVALIDARG

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::InsertTrack
Identifying	the	Track

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::InitPlay

The	InitPlay	method	initializes	the	play	state.	This	method	was	for	internal	use
and	is	not	implemented	in	versions	later	than	DirectX	7.0.

Syntax

HRESULT	InitPlay(

		IDirectMusicSegmentState**	ppSegState,	

		IDirectMusicPerformance*	pPerformance,

		DWORD	dwFlags

);

Parameters

ppSegState

Address	of	a	variable	that	receives	a	pointer	to	the	IDirectMusicSegmentState8
interface	that	is	created	in	response	to	this	method	call	and	is	used	to	hold	state
data.	It	is	returned	with	a	reference	count	of	1,	so	a	call	to	its	Release	method
fully	releases	it.

pPerformance

Address	of	the	IDirectMusicPerformance8	interface.	This	is	needed	by	the
segment	and	segment	state	to	call	methods	on	the	performance	object.

dwFlags

DMUS_SEGF_FLAGS	that	modify	the	track's	behavior.

Return	Values

In	DirectX	8.0	and	later,	the	method	returns	E_NOTIMPL.

In	earlier	versions,	if	the	method	succeeds,	the	return	value	is	S_OK.	If	it	fails,	it
can	return	one	of	the	error	values	shown	in	the	following	table.

Return	code
E_POINTER
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::InsertTrack

The	InsertTrack	method	inserts	the	specified	track	into	the	segment's	list	of
tracks.

Syntax

HRESULT	InsertTrack(

		IDirectMusicTrack*	pTrack,

		DWORD	dwGroupBits

);

Parameters

pTrack

Track	to	add	to	the	segment.

dwGroupBits

Group	or	groups	into	which	to	insert	the	track.	This	value	cannot	be	0.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_FAIL
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

Tracks	are	put	in	groups	to	link	them	correctly.	For	example,	a	segment	might
contain	two	style	tracks	and	two	mute	tracks.	Each	style	track	would	be	put	in	a
different	group,	along	with	its	associated	mute	track.	For	more	information	on
track	groups,	see	Identifying	the	Track.

If	the	segment	is	currently	playing,	the	new	track	is	not	included	in	playback
because	the	segment	state	was	not	initialized	with	the	new	track.

This	method	initializes	the	track.	However,	if	the	track	data	is	subsequently
changed,	the	application	must	initialize	it	again	by	calling
IDirectMusicTrack8::Init.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::GetTrackGroup
IDirectMusicSegment8::RemoveTrack

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::RemoveNotificationType

The	RemoveNotificationType	method	removes	a	type	of	data	for	which
notifications	are	required.	This	method	is	called	by	the
IDirectMusicPerformance8::RemoveNotificationType	method,	allowing	the
segment	to	remove	notifications.	The	segment	calls	each	track's
IDirectMusicTrack8::RemoveNotificationType	method.

Syntax

HRESULT	RemoveNotificationType(

		REFGUID	rguidNotificationType

);

Parameters

rguidNotificationType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	notification	type	to
remove.	(For	the	defined	types,	see	DMUS_NOTIFICATION_PMSG.)	Setting
this	value	to	GUID_NULL	causes	all	notifications	to	be	removed.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	notification
type	was	not	previously	set.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::RemoveTrack

The	RemoveTrack	method	removes	a	track	from	the	segment's	track	list.

Syntax

HRESULT	RemoveTrack(

		IDirectMusicTrack*	pTrack

);

Parameters

pTrack

Track	to	remove	from	the	segment's	track	list.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	specified
track	is	not	in	the	track	list.

If	the	method	fails,	the	return	value	can	be	E_POINTER.

Remarks

The	track	is	released	when	removed.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::InsertTrack

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetDefaultResolution

The	SetDefaultResolution	method	sets	the	default	resolution	of	the	segment.
This	is	the	value	used	to	determine	how	times	such	as	the	segment	start	time	are
adjusted	for	synchronization	with	the	rhythm.

Syntax

HRESULT	SetDefaultResolution(

		DWORD	dwResolution

);

Parameters

dwResolution

Default	resolution.	This	value	can	be	0	or	one	of	the	members	of	the
DMUS_SEGF_FLAGS	enumeration	shown	in	the	following	table.

Value Description
DMUS_SEGF_MEASURE Resolve	times	to	next	measure.
DMUS_SEGF_BEAT Resolve	times	to	next	beat.
DMUS_SEGF_GRID Resolve	times	to	next	grid.

Return	Values

The	method	returns	S_OK.

Remarks

This	method	is	used	primarily	by	secondary	segments	to	specify	whether	they
are	synchronized	to	the	measure,	beat,	or	grid	of	the	primary	segment	by	default.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::GetDefaultResolution
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetGraph

The	SetGraph	method	assigns	a	toolgraph	to	the	segment.

Syntax

HRESULT	SetGraph(

		IDirectMusicGraph*	pGraph

);

Parameters

pGraph

Toolgraph	pointer.	Can	be	set	to	NULL	to	clear	the	segment	graph.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

Any	messages	flowing	through	tools	in	the	current	toolgraph	are	deleted.

The	graph's	reference	count	is	incremented,	so	it	is	safe	to	release	the	original
reference.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicPerformance8::SetGraph
DirectMusic	Tools

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetLength

The	SetLength	method	sets	the	length,	in	music	time,	of	the	segment.	This
method	is	usually	called	by	the	loader,	which	retrieves	the	segment	length	from
the	file	and	passes	it	to	the	segment	object.

Syntax

HRESULT	SetLength(

		MUSIC_TIME	mtLength

);

Parameters

mtLength

Desired	length.	Must	be	greater	than	0.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
DMUS_E_OUT_OF_RANGE

Remarks

The	length	does	not	affect	the	time	for	which	the	segment	plays,	but	it	is	used	to
determine	when	the	segment	ends	for	purposes	of	synchronization;	for	example,
when	another	segment	is	cued	with	the	DMUS_SEGF_QUEUE	flag.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::GetLength

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetLoopPoints

The	SetLoopPoints	method	sets	the	start	and	end	points	of	the	part	of	the
segment	that	repeats	the	number	of	times	set	by	the
IDirectMusicSegment8::SetRepeats	method.

Syntax

HRESULT	SetLoopPoints(

		MUSIC_TIME	mtStart,

		MUSIC_TIME	mtEnd

);

Parameters

mtStart

Point	at	which	to	begin	the	loop.

mtEnd

Point	at	which	to	end	the	loop.	A	value	of	0	loops	the	entire	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DMUS_E_OUT_OF_RANGE.

Remarks

When	the	segment	is	played,	it	plays	from	the	segment	start	time	until	mtEnd,
then	loops	to	mtStart,	plays	the	looped	portion	the	number	of	times	set	by
IDirectMusicSegment8::SetRepeats,	and	then	plays	to	the	end.

The	default	values	are	set	to	loop	the	entire	segment	from	beginning	to	end.

The	method	fails	if	mtStart	is	greater	than	or	equal	to	the	length	of	the	segment,

or	if	mtEnd	is	greater	than	the	length	of	the	segment.	If	mtEnd	is	0,	mtStart	must
be	0	as	well.

This	method	does	not	affect	any	currently	playing	segment	states	created	from
this	segment.

The	loop	points	of	a	cached	segment	persist	even	if	the	segment	is	released,	and
then	reloaded.	To	ensure	that	a	segment	is	not	subsequently	reloaded	from	the
cache,	call	IDirectMusicLoader8::ReleaseObject	on	it	before	releasing	it.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::GetLoopPoints
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetParam

The	SetParam	method	sets	data	on	a	track	inside	this	segment.

Syntax

HRESULT	SetParam(

		REFGUID	rguidType,

		DWORD	dwGroupBits,

		DWORD	dwIndex,

		MUSIC_TIME	mtTime,

		void*	pParam

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	type	of	data	to	set.	See	Standard	Track
Parameters.

dwGroupBits

Group	that	the	desired	track	is	in.	Use	0xFFFFFFFF	for	all	groups.	For	more
information,	see	Identifying	the	Track.

dwIndex

Index	of	the	track	in	the	group	identified	by	dwGroupBits	in	which	to	set	the
data,	or	DMUS_SEG_ALLTRACKS	to	set	the	parameter	on	all	tracks	in	the
group	that	contain	the	parameter.

mtTime

Time	at	which	to	set	the	data.

pParam

Address	of	a	structure	containing	the	data,	or	NULL	if	no	data	is	required	for	this
parameter.	The	structure	must	be	of	the	appropriate	kind	and	size	for	the	data
type	identified	by	rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_SET_UNSUPPORTED
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicTrack8::SetParamEx
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetPChannelsUsed

The	SetPChannelsUsed	method	sets	the	performance	channels	that	this	segment
uses.	This	method	is	usually	called	by	a	track	in	the	IDirectMusicTrack8::Init
method	to	inform	the	segment	of	which	channels	the	track	uses.

Syntax

HRESULT	SetPChannelsUsed(

		DWORD	dwNumPChannels,

		DWORD*	paPChannels

);

Parameters

dwNumPChannels

Number	of	performance	channels	to	set.	This	must	be	equal	to	the	number	of
members	in	the	array	pointed	to	by	paPChannels.

paPChannels

Address	of	an	array	of	performance	channel	identifiers.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

This	method	enables	the	performance	to	ascertain	which	ports	are	being	used	by
the	segment	so	that	it	can	determine	the	actual	latency,	rather	than	providing	for
the	worst	case.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
Channels
Latency	and	Bumper	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetRepeats

The	SetRepeats	method	sets	the	number	of	times	the	looping	portion	of	the
segment	is	to	repeat.

Syntax

HRESULT	SetRepeats(

		DWORD	dwRepeats

);

Parameters

dwRepeats

Number	of	times	that	the	looping	portion	of	the	segment	is	to	repeat,	or
DMUS_SEG_REPEAT_INFINITE	to	repeat	until	explicitly	stopped.	A	value	of
0	specifies	a	single	play	with	no	repeats.

Return	Values

The	method	returns	S_OK.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::GetRepeats
IDirectMusicSegment8::SetLoopPoints
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetStartPoint

The	SetStartPoint	method	sets	the	point	within	the	segment	at	which	it	starts
playing.

Syntax

HRESULT	SetStartPoint(

		MUSIC_TIME	mtStart

);

Parameters

mtStart

Point	within	the	segment	at	which	it	is	to	start	playing.	Must	be	greater	than	or
equal	to	0	and	less	than	the	length	of	the	segment.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	DMUS_E_OUT_OF_RANGE.

Remarks

The	start	point	is	the	first	point	in	the	segment	that	can	possibly	be	heard.
However,	the	actual	first	point	heard	may	be	later,	if	the	start	point	of	the
segment	is	aligned	to	a	past	time.	For	more	information,	see	Segment	Timing.

By	default,	the	start	point	is	0,	meaning	that	the	segment	starts	from	the
beginning.

If	the	segment	does	not	already	have	a	length,
IDirectMusicSegment8::SetLength	must	be	called	before	SetStartPoint	can
be	called.	SetLength	is	normally	called	by	the	loader.	However,	when	a	WAV
file	is	loaded,	the	length	is	always	set	to	1,	because	a	WAV	file	is	played	in	clock

time	and	has	no	inherent	music-time	length.	If	you	want	to	set	the	start	point	for
a	WAV	file	to	some	value	other	than	0,	you	must	first	call	SetLength,	setting	the
length	to	some	value	greater	than	the	desired	start	point.	The	length	you	set	does
not	have	to	be	the	actual	length	of	the	sound	unless	you	intend	to	cue	another
segment	after	it.	When	the	segment	is	played,	the	conversion	of	the	start	point	to
clock-time	units	is	based	on	a	tempo	of	120.	Alternatively,	you	can	use
DirectMusic	Producer	to	create	a	segment	file	that	has	a	wave	track;	in	this	case,
the	loader	will	set	the	correct	music-time	length	based	on	the	tempo	of	the
segment.

The	method	does	not	affect	any	currently	playing	segment	states	created	from
this	segment.

The	start	point	of	a	cached	segment	persists	even	if	the	segment	is	released	and
then	reloaded.	To	ensure	that	a	segment	is	not	subsequently	reloaded	from	the
cache,	call	IDirectMusicLoader8::ReleaseObject	on	it	before	releasing	it.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::GetStartPoint
IDirectMusicSegment8::SetLength
IDirectMusicSegment8::SetLoopPoints
IDirectMusicSegmentState8::GetStartPoint
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::SetTrackConfig

The	SetTrackConfig	method	sets	the	configuration	of	a	track	for	miscellaneous
behaviors.

Syntax

HRESULT	SetTrackConfig(

		REFGUID	rguidTrackClassID,

		DWORD	dwGroupBits,	

		DWORD	dwIndex,

		DWORD	dwFlagsOn,

		DWORD	dwFlagsOff

);

Parameters

rguidTrackClassID

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	track	class.	For	a	list	of
values,	see	Standard	Track	Types.

dwGroupBits

Groups	to	which	the	track	belongs.

dwIndex

Index	of	the	track	within	the	group,	or	DMUS_SEG_ALLTRACKS	to	set	the
configuration	of	all	tracks	in	the	group.

dwFlagsOn

Configuration	flags	to	set.	See	Remarks.

dwFlagsOff

Configuration	flags	to	clear.	See	Remarks.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_TRACK_NOT_FOUND
E_INVALIDARG

Remarks

If	you	change	a	flag	on	a	segment,	subsequent	instances	of	segment	states	inherit
the	change.	However,	segment	states	that	are	already	playing	do	not	change	their
behavior.

The	following	flags	are	defined:

Value Description
DMUS_TRACKCONFIG_COMPOSING Use	this	track	to	compose	other	tracks.
DMUS_TRACKCONFIG_CONTROL_ENABLED Enable	IDirectMusicTrack8::GetParamEx

DMUS_TRACKCONFIG_CONTROL_NOTIFICATION When	played	in	a	control	segment,	override	notification
of	primary	segment	tracks.

DMUS_TRACKCONFIG_CONTROL_PLAY When	played	in	a	control	segment,	override	playback	of
primary	segment	tracks.

DMUS_TRACKCONFIG_DEFAULT

The	combination	of
DMUS_TRACKCONFIG_CONTROL_ENABLED	|
DMUS_TRACKCONFIG_PLAY_ENABLED	|
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED.

DMUS_TRACKCONFIG_FALLBACK
The	track	tries	to	get	parameters	from	this	segment	if	the
primary	and	control	segments	don't	return	the	requested
information.

DMUS_TRACKCONFIG_LOOP_COMPOSE Regenerate	data	each	time	the	track	repeats.
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED Enable	notifications.

DMUS_TRACKCONFIG_OVERRIDE_ALL The	track	tries	to	get	parameters	from	this	segment	before
the	control	and	primary	segment.
The	track	tries	to	get	parameters	from	this	segment	before

DMUS_TRACKCONFIG_OVERRIDE_PRIMARY the	primary	segment.

DMUS_TRACKCONFIG_PLAY_CLOCKTIME Play	in	clock	time,	not	music	time.
DMUS_TRACKCONFIG_PLAY_COMPOSE Regenerate	data	each	time	the	track	starts	playing.
DMUS_TRACKCONFIG_PLAY_ENABLED Enable	track	to	send	messages.

DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENTIn	composing	transitions,	get	track	information	from	thecurrent	place	in	the	first	segment.

DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART In	composing	transitions,	get	track	information	from	the
start	of	the	first	segment.

DMUS_TRACKCONFIG_TRANS1_TOSEGSTART In	composing	transitions,	get	track	information	from	the
start	of	the	second	segment.

The	following	table	shows	which	track	configuration	flags	are	valid	for	standard
tracks.

Track Valid	flags

Band

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED
DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT
DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Chord

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT
DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Chordmap

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT
DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Command

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT

DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Lyrics DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

Marker DMUS_TRACKCONFIG_CONTROL_ENABLED

Melody
formulation
(Not	implemented
for	this	release)

DMUS_TRACKCONFIG_COMPOSING
DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_LOOP_COMPOSE
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_PLAY_COMPOSE	
DMUS_TRACKCONFIG_PLAY_ENABLED
DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT
DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Motif

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_FALLBACK
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_OVERRIDE_ALL	
DMUS_TRACKCONFIG_OVERRIDE_PRIMARY
DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

Mute DMUS_TRACKCONFIG_CONTROL_ENABLED

Parameter	control DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

Pattern

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_FALLBACK
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_OVERRIDE_ALL	
DMUS_TRACKCONFIG_OVERRIDE_PRIMARY
DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED
DMUS_TRACKCONFIG_PLAY_CLOCKTIME

Script DMUS_TRACKCONFIG_PLAY_ENABLED

Segment	Trigger DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

Sequence

DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_FALLBACK
DMUS_TRACKCONFIG_OVERRIDE_ALL	
DMUS_TRACKCONFIG_OVERRIDE_PRIMARY
DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

Signpost

DMUS_TRACKCONFIG_COMPOSING
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_LOOP_COMPOSE
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_PLAY_COMPOSE	
DMUS_TRACKCONFIG_PLAY_ENABLED
DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT
DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Style

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_FALLBACK
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_OVERRIDE_ALL	
DMUS_TRACKCONFIG_OVERRIDE_PRIMARY
DMUS_TRACKCONFIG_PLAY_ENABLED
DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT
DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Sysex
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

Tempo

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

DMUS_TRACKCONFIG_TRANS1_FROMSEGCURRENT
DMUS_TRACKCONFIG_TRANS1_FROMSEGSTART
DMUS_TRACKCONFIG_TRANS1_TOSEGSTART

Time	signature

DMUS_TRACKCONFIG_CONTROL_ENABLED
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION
DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_NOTIFICATION_ENABLED
DMUS_TRACKCONFIG_PLAY_ENABLED

Wave

DMUS_TRACKCONFIG_CONTROL_PLAY
DMUS_TRACKCONFIG_FALLBACK
DMUS_TRACKCONFIG_OVERRIDE_ALL	
DMUS_TRACKCONFIG_OVERRIDE_PRIMARY
DMUS_TRACKCONFIG_PLAY_CLOCKTIME
DMUS_TRACKCONFIG_PLAY_ENABLED

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegmentState8::SetTrackConfig
Self-Controlling	Segments
Track	Configuration

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegment8::Unload

The	Unload	method	unloads	instrument	data	from	a	performance	or	audiopath.

Syntax

HRESULT	Unload(

		IUnknown	*pAudioPath

);

Parameters

pAudioPath

Pointer	to	the	IUnknown	interface	of	the	performance	or	audiopath	from	which
to	unload	the	instrument	data.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_TRACK_NOT_FOUND
E_POINTER

Remarks

The	method	succeeds	even	if	no	data	was	previously	downloaded.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicSegment8::Download
Downloading	and	Unloading	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8	Interface
The	IDirectMusicSegmentState8	interface	represents	a	playing	instance	of	a
segment.	When	the	IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx	method	is	called,	the
performance	creates	a	segment	state	object	that	tracks	the	state	of	the	playing
segment.	This	object	be	passed	toIDirectMusicPerformance8::StopEx.

IDirectMusicSegmentState8	supersedes	IDirectMusicSegmentState	and	adds
new	methods.

In	addition	to	the	methods	inherited	from	IUnknown,	the
IDirectMusicSegmentState8	interface	exposes	the	following	methods.

Method Description

GetObjectInPath
Retrieves	an	interface	for	an	object	in
the	audiopath	on	which	this	segment
state	is	playing.

GetRepeats
Retrieves	the	number	of	times	that	the
looping	portion	of	the	segment	is	set	to
repeat.

GetSeek Retrieves	the	seek	pointer	in	the
segment	state.

GetSegment Retrieves	a	pointer	to	the	segment	that
owns	this	segment	state.

GetStartPoint Retrieves	the	time	within	the	segment	at
which	it	started	playing.

GetStartTime Retrieves	the	performance	time	at
which	the	segment	started	playing.

SetTrackConfig Sets	the	configuration	of	a	track	in	the
parent	segment.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8::GetObjectInPath

The	GetObjectInPath	method	retrieves	an	interface	for	an	object	in	the
audiopath	on	which	this	segment	state	is	playing.

Syntax

HRESULT	GetObjectInPath(

		DWORD	dwPChannel,

		DWORD	dwStage,

		DWORD	dwBuffer,

		REFGUID	guidObject,

		DWORD	dwIndex,

		REFGUID	iidInterface,

		Void**	ppObject

);

Parameters

dwPChannel

Performance	channel	to	search,	or	DMUS_PCHANNEL_ALL	to	search	all
channels.	The	first	channel	is	numbered	0.	See	Remarks.

dwStage

Stage	in	the	path.	Can	be	one	of	the	values	listed	in	the	following	table.

Value Description

DMUS_PATH_AUDIOPATH The	audiopath	on	which	the
segment	state	is	playing.

DMUS_PATH_AUDIOPATH_GRAPH The	audiopath	toolgraph.	One	is
created	if	none	exists.

DMUS_PATH_AUDIOPATH_TOOL A	tool	from	the	audiopath	toolgraph.
DMUS_PATH_BUFFER A	DirectSound	buffer.
DMUS_PATH_BUFFER_DMO A	DMO	in	the	buffer.
DMUS_PATH_MIXIN_BUFFER A	global	mix-in	buffer.

DMUS_PATH_MIXIN_BUFFER_DMO A	DMO	in	a	global	mix-in	buffer.
DMUS_PATH_PERFORMANCE The	performance.

DMUS_PATH_PERFORMANCE_GRAPHThe	performance	toolgraph.	One	is
created	if	none	exists.

DMUS_PATH_PERFORMANCE_TOOL A	tool	in	the	performance	graph.
DMUS_PATH_PORT The	synthesizer.
DMUS_PATH_PRIMARY_BUFFER The	primary	buffer.

DMUS_PATH_SEGMENT The	segment	that	owns	this	segment
state.

DMUS_PATH_SEGMENT_GRAPH The	segment	toolgraph.	One	is
created	if	none	exists.	See	Remarks.

DMUS_PATH_SEGMENT_TOOL A	tool	from	the	segment	graph.	See
Remarks.

DMUS_PATH_SEGMENT_TRACK A	track	from	the	segment.	See
Remarks.

dwBuffer

If	dwStage	is	DMUS_PATH_BUFFER_DMO	or
DMUS_PATH_MIXIN_BUFFER_DMO,	the	index	of	the	buffer	in	which	that
DMO	resides.	If	dwStage	is	DMUS_PATH_BUFFER	or
DMUS_PATH_MIXIN_BUFFER,	the	index	of	the	buffer.	Otherwise	must	be	0.

guidObject

Class	identifier	of	the	objector	GUID_All_Objects	to	search	for	an	object	of	any
class.	This	parameter	is	ignored	if	only	a	single	class	of	object	can	exist	at	the
stage	specified	by	dwStage,	and	can	be	set	to	GUID_NULL.

dwIndex

Index	of	the	object	in	the	list	of	matching	objects.	Set	to	0	to	find	the	first
matching	object.	If	dwStage	is	DMUS_PATH_BUFFER	or
DMUS_PATH_MIXIN_BUFFER,	this	parameter	is	ignored,	and	the	buffer
index	is	specified	by	dwBuffer.

iidInterface

Identifier	of	the	desired	interface,	such	as	IID_IDirectMusicGraph.

ppObject

Address	of	a	variable	that	receives	a	pointer	to	the	requested	interface.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or
DMUS_S_GARBAGE_COLLECTED.	See	Garbage	Collection.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_INVALIDARG
E_NOINTERFACE
E_OUTOFMEMORY

Remarks

The	value	in	dwPChannel	must	be	0	for	any	stage	that	is	not	channel-specific.
Objects	in	the	following	stages	are	channel-specific	and	can	be	retrieved	by
setting	a	channel	number	or	DMUS_PCHANNEL_ALL	in	dwPChannel:

Value
DMUS_PATH_AUDIOPATH_TOOL
DMUS_PATH_BUFFER
DMUS_PATH_BUFFER_DMO
DMUS_PATH_PERFORMANCE_TOOL
DMUS_PATH_PORT
DMUS_PATH_SEGMENT_TOOL

The	precedence	of	the	parameters	in	filtering	out	unwanted	objects	is	as	follows:

1.	 dwStage.

2.	 guidObject.	If	this	value	is	not	GUID_All_Objects,	only	objects	whose
class	identifier	equals	guidObject	are	searched.	However,	this	parameter	is
ignored	when	only	a	single	class	of	object	can	exist	at	the	specified	stage.

3.	 dwPChannel.	If	the	stage	is	channel-specific	and	this	value	is	not
DMUS_PCHANNEL_ALL,	only	objects	on	the	channel	are	searched.

4.	 dwBuffer.	This	is	used	only	if	dwStage	is	DMUS_PATH_BUFFER,
DMUS_PATH_MIXIN_BUFFER,	DMUS_PATH_BUFFER_DMO,	or
DMUS_PATH_MIXIN_BUFFER_DMO.

5.	 dwIndex.	Note	that	tracks	in	segments	created	by	DirectMusic	Producer	are
not	necessarily	in	the	same	order	as	they	were	in	that	application.	Do	not
rely	on	dwIndex	alone	to	find	a	particular	track	at	stage
DMUS_PATH_SEGMENT_TRACK.

If	a	matching	object	is	found	but	the	interface	specified	by	iidInterface	cannot	be
obtained,	the	method	fails.

The	object	returned	when	DMUS_PATH_SEGMENT_GRAPH	or
DMUS_PATH_SEGMENT_TOOL	is	specified	in	dwStage	might	not	be	the
same	one	returned	for	a	different	segment	state	based	on	the	same	segment.
When	a	segment	is	played,	its	toolgraph	is	copied	and	any	tools	that	support	the
IDirectMusicTool8::Clone	method	are	also	cloned.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegmentState8	Interface
IDirectMusicAudioPath8::GetObjectInPath
Retrieving	Objects	from	an	Audiopath

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8::GetRepeats

The	GetRepeats	method	retrieves	the	number	of	times	that	the	looping	portion
of	the	segment	is	set	to	repeat.

Syntax

HRESULT	GetRepeats(

		DWORD*	pdwRepeats

);

Parameters

pdwRepeats

Address	of	a	variable	that	receives	the	repeat	count.	A	value	of	0	indicates	that
the	segment	is	to	play	through	only	once,	with	no	portion	repeated.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	the	method	fails,	the	return	value	can	be	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegmentState8	Interface
IDirectMusicSegment8::SetRepeats

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8::GetSeek

The	GetSeek	method	retrieves	the	seek	pointer	in	the	segment	state.	This	is	the
value	that	is	passed	in	the	mtStart	parameter	of	IDirectMusicTrack8::Play	the
next	time	that	method	is	called.	It	does	not	take	into	account	looping	and
repeating;	if	the	entire	segment	state	repeats	to	the	beginning,	the	seek	pointer	is
reset	to	0.

Syntax

HRESULT	GetSeek(

		MUSIC_TIME*	pmtSeek

);

Parameters

pmtSeek

Address	of	a	variable	that	receives	the	seek	pointer.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	the	method	fails,	the	return	value	can	be	E_POINTER.

Remarks

This	method	is	not	an	accurate	way	of	determining	the	current	play	position,
because	it	seeks	beyond	the	prepare	time.	For	a	better	way	to	determine	the
current	play	position,	see	Pausing	Segments.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegmentState8	Interface
Prepare	Time

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8::GetSegment

The	GetSegment	method	retrieves	a	pointer	to	the	segment	that	generated	this
segment	state.

Syntax

HRESULT	GetSegment(

		IDirectMusicSegment**	ppSegment

);

Parameters

ppSegment

Address	of	a	variable	that	receives	a	pointer	to	the	IDirectMusicSegment
interface.	Use	QueryInterface	to	obtain	IDirectMusicSegment8	interface.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
E_POINTER

Remarks

The	pointer	returned	in	ppSegment	must	be	released	by	the	application.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegmentState8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8::GetStartPoint

The	GetStartPoint	method	retrieves	the	time	within	the	segment	at	which	it
started	playing.

Syntax

HRESULT	GetStartPoint(

		MUSIC_TIME	*	pmtStart

);

Parameters

pmtStart

Address	of	a	variable	that	receives	the	music-time	offset	from	the	start	of	the
segment	at	which	play	will	begin	or	began.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	start	point	is	the	first	point	in	the	segment	that	can	possibly	be	heard.
However,	the	actual	first	point	heard	may	be	later,	if	the	start	point	of	the
segment	is	aligned	to	a	past	time.	For	more	information,	see	Segment	Timing.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegmentState8	Interface

IDirectMusicSegment8::SetStartPoint
IDirectMusicSegmentState8::GetStartTime
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8::GetStartTime

The	GetStartTime	method	retrieves	the	performance	time	at	which	the	segment
started	playing.

Syntax

HRESULT	GetStartTime(

		MUSIC_TIME*	pmtStart

);

Parameters

pmtStart

Address	of	a	variable	that	receives	the	music-time	offset	stored	in	this	segment
state.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	time	retrieved	by	this	method	is	the	resolved	play	time	within	the
performance	where	the	segment	start	time	was	cued.	For	more	information,	see
Segment	Timing.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegmentState8	Interface

IDirectMusicSegment8::GetStartPoint
IDirectMusicSegment8::SetStartPoint
IDirectMusicSegmentState8::GetStartPoint

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSegmentState8::SetTrackConfig

The	SetTrackConfig	method	sets	the	configuration	of	a	track	in	the	parent
segment.

Syntax

HRESULT	SetTrackConfig(

		REFGUID	rguidTrackClassID,

		DWORD	dwGroupBits,	

		DWORD	dwIndex,

		DWORD	dwFlagsOn,

		DWORD	dwFlagsOff

);

Parameters

rguidTrackClassID

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	track	class.	For	a	list	of
values,	see	Standard	Track	Types.

dwGroupBits

Groups	to	which	the	track	belongs.

dwIndex

Index	of	the	track	within	the	group,	or	DMUS_SEG_ALLTRACKS	to	set	the
configuration	of	all	tracks	in	the	group.

dwFlagsOn

Configuration	flags	to	set.	For	a	list	of	values,	see
IDirectMusicSegment8::SetTrackConfig.

dwFlagsOff

Configuration	flags	to	clear.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_TRACK_NOT_FOUND
E_INVALIDARG

Remarks

Any	change	in	configuration	takes	effect	after	prepare	time.	If	you	want	the
change	to	take	effect	immediately,	call
IDirectMusicPerformance8::Invalidate.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegmentState8	Interface
IDirectMusicSegment8::SetTrackConfig
Self-Controlling	Segments
Track	Configuration

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8	Interface
The	IDirectMusicStyle8	interface	represents	a	collection	of	patterns,	motifs,	and
bands	used	in	run-time	composition	of	musical	segments.	For	an	overview,	see
Using	Styles.

Style	objects	also	support	the	IDirectMusicObject8	and	IPersistStream
interfaces	for	loading	their	data.

IDirectMusicStyle8	supersedes	the	IDirectMusicStyle	interface	and	provides	a
new	method,	EnumPattern.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicStyle8
interface	exposes	the	following	methods,	arranged	by	category.

Data	retrieval

Method Description
GetBand Retrieves	a	band	specified	by	name.

GetChordMap Retrieves	a	chordmap	specified	by
name.

GetDefaultBand Retrieves	the	style's	default	band.
GetDefaultChordMap Retrieves	the	style's	default	chordmap.

GetEmbellishmentLength
Finds	the	shortest	and	longest	lengths
for	patterns	of	the	specified
embellishment	type	and	groove	level.

GetMotif Creates	a	segment	containing	a	motif
specified	by	name.

GetTempo Retrieves	the	recommended	tempo	of
the	style.

GetTimeSignature Retrieves	the	style's	time	signature.

Enumeration

Method Description

EnumBand Retrieves	the	name	of	the	band	with	a
specified	index	value.

EnumChordMap Retrieves	the	name	of	the	chordmap
with	a	specified	index	value.

EnumMotif Retrieves	the	name	of	a	motif	with	a
specified	index	value.

EnumPattern Retrieves	the	name	of	a	pattern	with	a
specified	index	value	and	type.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::EnumBand

The	EnumBand	method	retrieves	the	name	of	the	band	with	a	specified	index
value.

Syntax

HRESULT	EnumBand(

		DWORD	dwIndex,	

		WCHAR	*	pwszName

);

Parameters

dwIndex

Zero-based	index	into	the	style's	band	list.

pwszName

Address	of	a	buffer	that	receives	the	band	name.	This	should	be	of	size
MAX_PATH.

Return	Values

If	the	method	succeeds,	it	returns	S_OK,	S_FALSE	if	there	is	no	band	with	the
given	index	value,	or	DMUS_S_STRING_TRUNCATED	if	the	length	of	the
name	is	greater	than	MAX_PATH.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_TYPE_UNSUPPORTED
E_POINTER

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::EnumChordMap

The	EnumChordMap	method	retrieves	the	name	of	the	chordmap	with	a
specified	index	value.

Syntax

HRESULT	EnumChordMap(

		DWORD	dwIndex,	

		WCHAR	*	pwszName

);

Parameters

dwIndex

Zero-based	index	of	the	chordmap	in	the	style's	chordmap	list.

pwszName

Address	of	a	buffer	that	receives	the	chordmap	name.	This	should	be	of	size
MAX_PATH.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	S_FALSE	if	there	is	no
chordmap	with	the	given	index	value,	or	DMUS_S_STRING_TRUNCATED	if
the	length	of	the	name	is	greater	than	MAX_PATH.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_TYPE_UNSUPPORTED
E_POINTER

Remarks

DirectMusic	Producer	does	not	support	embedding	chordmap	references	in	style
files.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::EnumMotif

The	EnumMotif	method	retrieves	the	name	of	a	motif	with	a	specified	index
value.

Syntax

HRESULT	EnumMotif(

		DWORD	dwIndex,

		WCHAR*	pwszName

);

Parameters

dwIndex

Zero-based	index	into	the	style's	motif	list.

pwszName

Address	of	a	buffer	that	receives	the	motif	name.	This	should	be	of	size
MAX_PATH.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	S_FALSE	if	there	is	no	motif
with	the	given	index	value,	or	DMUS_S_STRING_TRUNCATED	if	the	length
of	the	motif	name	is	greater	than	MAX_PATH.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface

IDirectMusicStyle8::GetMotif
Using	Motifs

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::EnumPattern

The	EnumPattern	method	retrieves	the	name	of	a	pattern	with	a	specified	index
value	and	type.	The	name	can	be	passed	to	the
IDirectMusicPatternTrack8::SetPatternByName	method.

Syntax

HRESULT	EnumPattern(

		DWORD	dwIndex,	

		DWORD	dwPatternType,

		WCHAR*	pwszName

);

Parameters

dwIndex

Zero-based	index	into	the	style's	pattern	list.

dwPatternType

One	of	the	DMUS_STYLET_TYPES	enumeration	that	specifies	the	type	of
pattern.

pwszName

Address	of	a	buffer	that	receives	the	pattern	name.	The	buffer	should	be	of	size
MAX_PATH.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	S_FALSE	if	there	is	no	pattern
with	the	given	index	value	and	type,	or	DMUS_S_STRING_TRUNCATED	if
the	length	of	the	motif	name	is	greater	than	MAX_PATH.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetBand

The	GetBand	method	retrieves	a	band	specified	by	name.

Syntax

HRESULT	GetBand(

		WCHAR*	pwszName,	

		IDirectMusicBand**	ppBand

);

Parameters

pwszName

Name	of	the	band	to	retrieve.	This	name	is	created	by	the	author	of	the	style.

ppBand

Address	of	a	variable	that	receives	the	IDirectMusicBand8	interface.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	if	a	band	is	returned,	or
S_FALSE	if	there	is	no	band	with	that	name.

If	the	method	fails,	the	return	value	can	be	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface
IDirectMusicStyle8::GetDefaultBand
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetChordMap

The	GetChordMap	method	retrieves	a	chordmap	specified	by	name.

Syntax

HRESULT	GetChordMap(

		WCHAR*	pwszName,

		IDirectMusicChordMap**	ppChordMap

);

Parameters

pwszName

Name	of	the	chordmap	to	retrieve.	This	name	is	created	by	the	author	of	the
style.

ppChordMap

Address	of	a	variable	that	receives	a	pointer	to	the	IDirectMusicChordMap8
interface.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	if	a	chordmap	is	returned,	or
S_FALSE	if	there	is	no	chordmap	by	that	name.

If	ppChordMap	is	not	a	valid	pointer,	the	method	returns	E_POINTER.

Remarks

DirectMusic	Producer	does	not	support	embedding	chordmap	references	in	style
files.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface
IDirectMusicStyle8::GetDefaultChordMap
Using	Chordmaps

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetDefaultBand

The	GetDefaultBand	method	retrieves	the	style's	default	band.

Syntax

HRESULT	GetDefaultBand(

		IDirectMusicBand	**	ppBand

);

Parameters

ppBand

Address	of	a	variable	that	receives	the	IDirectMusicBand8	interface	pointer	for
the	default	band.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	if	a	band	is	returned,	or
S_FALSE	if	the	style	does	not	have	a	default	band.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface
IDirectMusicStyle8::GetBand
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetDefaultChordMap

The	GetDefaultChordMap	method	retrieves	the	style's	default	chordmap.

Syntax

HRESULT	GetDefaultChordMap(

		IDirectMusicChordMap**	ppChordMap

);

Parameters

ppChordMap

Address	of	a	variable	that	receives	a	pointer	to	the	IDirectMusicChordMap8
interface.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	if	a	chordmap	is	returned,	or
S_FALSE	if	the	style	does	not	have	a	default	chordmap.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

DirectMusic	Producer	does	not	support	embedding	chordmap	references	in	style
files.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface
IDirectMusicStyle8::GetChordMap

Using	Chordmaps

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetEmbellishmentLength

The	GetEmbellishmentLength	method	finds	the	shortest	and	longest	lengths
for	patterns	of	the	specified	embellishment	type	and	groove	level.

Syntax

HRESULT	GetEmbellishmentLength(

		DWORD	dwType,	

		DWORD	dwLevel,	

		DWORD*	pdwMin,	

		DWORD*	pdwMax

);

Parameters

dwType

Embellishment	type.	This	can	be	one	of	the	DMUS_COMMANDT_TYPES
enumeration,	or	a	value	defined	in	DirectMusic	Producer	as	a	custom
embellishment.

dwLevel

Groove	level,	in	the	range	from	1	through	100.	Ignored	if	dwType	is	not
DMUS_COMMANDT_GROOVE.

pdwMin

Address	of	a	variable	that	receives	the	length,	in	measures,	of	the	shortest	pattern
of	the	specified	type	and	groove	level.

pdwMax

Address	of	a	variable	that	receives	the	length,	in	measures,	of	the	longest	pattern
of	the	specified	type	and	groove	level.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or	S_FALSE.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

If	there	are	no	patterns	of	the	specified	type	and	groove	level,	the	method	returns
S_FALSE.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetMotif

The	GetMotif	method	creates	a	segment	containing	a	motif	specified	by	name.

Syntax

HRESULT	GetMotif(

		WCHAR*	pwszName,	

		IDirectMusicSegment**	ppSegment

);

Parameters

pwszName

Name	of	the	motif.

ppSegment

Address	of	a	variable	that	receives	a	pointer	to	a	segment	containing	the	named
motif.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK	or	S_FALSE.

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	method	searches	the	style's	list	of	motifs	for	one	whose	name	matches
pwszName.	If	one	is	found,	a	segment	is	created	containing	a	motif	track.	The
track	references	the	style	as	its	associated	style	and	the	motif	as	its	pattern.

If	there	is	no	motif	with	the	name,	the	method	returns	S_FALSE.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8	Interface
IDirectMusicStyle8	Interface
Using	Motifs

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetTempo

The	GetTempo	method	retrieves	the	recommended	tempo	of	the	style.

Syntax

HRESULT	GetTempo(

		double*	pTempo

);

Parameters

pTempo

Address	of	a	variable	that	receives	the	recommended	tempo	of	the	style.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	pTempo	is	not	a	valid	pointer,	the	method	returns	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicStyle8::GetTimeSignature

The	GetTimeSignature	method	retrieves	the	time	signature	of	the	style.

Syntax

HRESULT	GetTimeSignature(

		DMUS_TIMESIGNATURE*	pTimeSig

);

Parameters

pTimeSig

Address	of	a	DMUS_TIMESIGNATURE	structure	that	receives	data.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicStyle8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSynth	Interface
The	IDirectMusicSynth	interface	is	implemented	by	synthesizers.	Applications
do	not	use	this	interface	but	communicate	with	the	port	by	using
IDirectMusicPort8.

For	more	information,	see	the	following	topic	on	mdsn.microsoft.com:

DirectMusic	User	Mode	Synth	and	Synth	Sink	Interfaces

Requirements

		Header:	Declared	in	dmusics.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=8422

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicSynthSink	Interface
The	IDirectMusicSynthSink	interface	is	implemented	by	a	synthesizer	sink,
which	pull	data	from	a	synthesizer.	Applications	do	not	use	this	interface.

A	custom	sink	for	the	default	DirectX	7.0	synthesizer	(created	by	calling
IDirectMusicPerformance8::Init)	must	implement	this	interface.	Such	a	sink
will	not	work	with	the	default	synthesizer	for	DirectX	8.0	and	later	(created	by
calling	IDirectMusicPerformance8::InitAudio).	To	capture	output	from	the
later	version	of	the	synthesizer,	you	must	implement	a	DMO	on	the	primary
buffer.

For	more	information,	see	the	following	topic	on	mdsn.microsoft.com:

DirectMusic	User	Mode	Synth	and	Synth	Sink	Interfaces

Requirements

		Header:	Declared	in	dmusics.h.

See	Also

DirectMusic	Interfaces

©	2004	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=8422

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicThru8	Interface
The	IDirectMusicThru8	interface	supports	thruing	of	MIDI	messages	from	a
capture	port	to	another	port.	It	is	obtained	by	calling	QueryInterface	on	the
IDirectMusicPort8	interface	for	the	capture	port.	For	an	example,	see	the
Remarks	for	IDirectMusicThru8::ThruChannel.

IDirectMusicThru8	is	a	type	definition	for	IDirectMusicThru.	The	two
interface	names	can	be	used	interchangeably.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicThru8
interface	exposes	the	following	methods.

Method Description

ThruChannel

Establishes	or	breaks	a	thruing
connection	between	a	channel	on	a
capture	port	and	a	channel	on	another
port.

The	LPDIRECTMUSICTHRU8	type	is	defined	as	a	pointer	to	this	interface.

typedef	IDirectMusicThru8	*LPDIRECTMUSICTHRU8;

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Interfaces
Capturing	MIDI

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicThru8::ThruChannel

The	ThruChannel	method	establishes	or	breaks	a	thruing	connection	between	a
channel	on	a	capture	port	and	a	channel	on	another	port.

Syntax

HRESULT	ThruChannel(

		DWORD	dwSourceChannelGroup,	

		DWORD	dwSourceChannel,	

		DWORD	dwDestinationChannelGroup,

		DWORD	dwDestinationChannel,

		LPDIRECTMUSICPORT	pDestinationPort

);

Parameters

dwSourceChannelGroup

Channel	group	on	the	capture	port.	This	value	is	always	1.

dwSourceChannel

Source	channel.

dwDestinationChannelGroup

Channel	group	on	the	destination	port.

dwDestinationChannel

Destination	channel.

pDestinationPort

Address	of	the	IDirectMusicPort8	interface	for	the	destination	channel.	Set	this
value	to	NULL	to	break	an	existing	thruing	connection.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_NOTIMPL
E_INVALIDARG
DMUS_E_PORT_NOT_RENDER

Remarks

System-exclusive	messages	are	not	transmitted	to	the	destination	port.

Thruing	to	the	Microsoft	software	synthesizer	or	other	synthesizers	that	do	not
have	a	constant	latency	is	not	recommended.	Thruing	is	done	as	soon	as	possible
upon	reception	of	the	incoming	MIDI	events.	Because	of	the	comparatively	high
latency	of	the	software	synthesizer	(compared	with	a	hardware	port)	and	the	fact
that	it	renders	blocks	of	audio	data	at	the	same	time,	each	event	is	delayed	by	a
small,	essentially	random	amount	of	time	before	it	plays.	This	random	offset
shows	up	as	jitter	in	the	playback	of	the	data.	Latency	of	other	devices	(such	as
an	MPU-401	port)	is	small	enough	that	jitter	does	not	occur.

If	an	application	needs	to	thru	to	the	software	synthesizer,	it	should	add	a	small
offset	to	the	incoming	note	event	time	stamps	to	compensate	for	the	rendering
latency	of	the	synthesizer.

The	following	code	example	obtains	the	IDirectMusicThru8	interface	and
establishes	a	thru	connection	between	all	channels	on	group	1	of	the	capture	port
and	the	equivalent	channels	on	a	destination	port.

HRESULT	SetupOneToOneThru(

				IDirectMusicPort8	*pCapturePort,

				IDirectMusicPort8	*pRenderPort)

{

		HRESULT	hr;

		IDirectMusicThru8	*pThru;

	

		hr	=	pCapturePort->QueryInterface(IID_IDirectMusicThru8,

						(void**)&pThru);

		if	(FAILED(hr))	return	hr;

		for	(DWORD	dwChannel	=	0;	dwChannel	<	16;	dwChannel++)

		{

				hr	=	pThru->ThruChannel(1,	dwChannel,

								1,	dwChannel,	(IDirectMusicPort*)pRenderPort);

				if	(FAILED(hr))	break;		

		}

		pThru->Release();

		return	hr;

}

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicThru8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8	Interface
The	IDirectMusicTool8	interface	represents	a	tool	object	that	processes
messages.

Methods	of	this	interface	are	implemented	by	tools	and	are	generally	called	by
the	performance.	The	application	only	needs	to	insert	the	tool	in	the	message
path	by	using	IDirectMusicGraph8::InsertTool.

IDirectMusicTool8	supersedes	the	IDirectMusicTool	interface	and	adds	a	new
method.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicTool8
interface	exposes	the	following	methods.

Method Description
Clone Creates	a	new	instance	of	the	tool.

Flush Flushes	messages	from	the	queue	when
the	performance	stops.

GetMediaTypeArraySize

Retrieves	the	size	of	the	array	that	must
be	passed	in	to	the
IDirectMusicTool8::GetMediaTypes
method.

GetMediaTypes Retrieves	a	list	of	the	types	of	messages
that	this	tool	supports.

GetMsgDeliveryType
Retrieves	the	tool's	delivery	type,	which
determines	when	messages	are	to	be
delivered	to	the	tool.

Init Initializes	the	tool.
ProcessPMsg Performs	the	main	task	of	the	tool.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

DirectMusic	Interfaces
DirectMusic	Tools
Message	Creation	and	Delivery

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8::Clone

The	Clone	method	creates	a	new	instance	of	the	tool.

Syntax

HRESULT	Clone(

		IDirectMusicTool**	ppTool	

);

Parameters

ppTool

Address	of	a	variable	that	receives	a	pointer	to	the	IDirectMusicTool	interface
of	the	new	instance	of	the	tool.	Use	QueryInterface	to	obtain
IDirectMusicTool8.

Return	Values

Return	values	are	determined	by	the	implementation.	If	it	succeeds,	the	method
should	return	S_OK.	If	it	fails,	the	return	value	might	be	E_POINTER	or
E_OUTOFMEMORY.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTool8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8::Flush

The	Flush	method	flushes	messages	from	the	queue	when	the	performance
stops.	The	tool	can	use	the	method	to	do	whatever	is	necessary	to	flush	the
message.	For	instance,	the	output	tool	uses	this	method	to	ensure	that	any
pending	note-off	messages	are	processed	immediately.

Syntax

HRESULT	Flush(

		IDirectMusicPerformance*	pPerf,	

		DMUS_PMSG*	pPMSG,

		REFERENCE_TIME	rtTime

);

Parameters

pPerf

Address	of	the	IDirectMusicPerformance8	interface.

pPMSG

Message	to	flush.

rtTime

Time	at	which	to	flush.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	the
return	value	can	be	one	of	the	following:

Return	code
DMUS_S_REQUEUE
DMUS_S_FREE

S_OK

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

The	message	will	have	DMUS_PMSGF_TOOL_FLUSH	set	in	its	dwFlags
member.	See	DMUS_PMSG.

If	the	method	returns	DMUS_S_REQUEUE,	the	message	is	placed	back	in	the
queue.	The	tool	can	put	a	new	time	stamp	and	parameters	on	the	message,	or
change	the	delivery	type.

If	the	return	value	is	DMUS_S_FREE,	the	message	is	freed	by	the	performance.

If	the	return	value	is	S_OK,	the	message	is	not	freed	by	the	performance.	The
tool	might	be	holding	onto	the	message	for	some	reason,	or	the	tool	might
already	have	freed	the	message.

Be	sure	not	to	create	a	circular	reference	to	the	performance	represented	by
pPerf.	For	more	information,	see	DirectMusic	Tools.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTool8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8::GetMediaTypeArraySize

The	GetMediaTypeArraySize	method	retrieves	the	size	of	the	array	that	must
be	passed	in	to	the	IDirectMusicTool8::GetMediaTypes	method.	A	return
value	of	0	indicates	that	the	tool	handles	all	types,	and	it	is	unnecessary	to	call
GetMediaTypes.

Syntax

HRESULT	GetMediaTypeArraySize(

		DWORD*	pdwNumElements

);

Parameters

pdwNumElements

Address	of	a	variable	that	receives	the	number	of	media	types.	If	0	is	returned	in
this	field,	all	types	are	supported.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.	If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTool8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8::GetMediaTypes

The	GetMediaTypes	method	retrieves	a	list	of	the	types	of	messages	that	this
tool	supports.

Syntax

HRESULT	GetMediaTypes(

		DWORD**	padwMediaTypes,

		DWORD	dwNumElements

);

Parameters

padwMediaTypes

Address	of	an	array	of	DWORDs.	The	method	fills	this	array	with	the	media
types	supported	by	this	tool.	For	media	types,	see	DMUS_PMSGT_TYPES.

dwNumElements

Number	of	elements	in	the	padwMediaTypes	array.	This	value	is	equal	to	the
number	returned	by	the	IDirectMusicTool8::GetMediaTypeArraySize	method.
If	dwNumElements	is	less	than	this	number,	the	method	cannot	return	all	the
message	types	that	are	supported.	If	it	is	greater	than	this	number,	the	extra
elements	in	the	array	should	be	set	to	0.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK,	or	S_FALSE	if	the	method	could	not	fill	in	all	values	because
dwNumElements	was	too	small.	If	it	fails,	the	method	can	return	one	of	the	error
values	shown	in	the	following	table.

Return	code
E_POINTER
E_INVALIDARG

E_NOTIMPL

Remarks

If	the	method	returns	E_NOTIMPL,	the	tool	processes	all	media	types.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTool8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8::GetMsgDeliveryType

The	GetMsgDeliveryType	method	retrieves	the	tool's	delivery	type,	which
determines	when	messages	are	to	be	delivered	to	the	tool.

Syntax

HRESULT	GetMsgDeliveryType(

		DWORD*	pdwDeliveryType

);

Parameters

pdwDeliveryType

Address	of	a	variable	that	receives	the	delivery	type.	The	returned	value	must	be
DMUS_PMSGF_TOOL_IMMEDIATE,	DMUS_PMSGF_TOOL_QUEUE,	or
DMUS_PMSGF_TOOL_ATTIME.	An	unrecognized	value	in	*pdwDeliveryType
is	treated	as	DMUS_PMSGF_TOOL_IMMEDIATE	by	the	graph.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.	If	it	fails,	the	method	can	return	E_POINTER.

Remarks

For	an	overview	of	the	delivery	mechanism,	see	Message	Creation	and	Delivery.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTool8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8::Init

The	Init	method	initializes	the	tool.	This	method	is	called	when	the	tool	is
inserted	into	the	graph,	giving	the	tool	an	opportunity	to	perform	any	necessary
initialization.

Syntax

HRESULT	Init(

		IDirectMusicGraph*	pGraph

);

Parameters

pGraph

Calling	graph.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.	If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in
the	following	table.

Return	code
E_FAIL
E_NOTIMPL

Remarks

Because	a	tool	can	be	inserted	into	more	than	one	graph,	this	method	must	be
able	to	deal	gracefully	with	multiple	calls.

Be	sure	not	to	create	a	circular	reference	to	the	graph	represented	by	pGraph.
For	more	information,	see	DirectMusic	Tools.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicGraph8::InsertTool
IDirectMusicTool8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTool8::ProcessPMsg

The	ProcessPMsg	method	performs	the	main	task	of	the	tool.	It	is	called	from
inside	the	performance's	real-time	thread	for	all	messages	that	match	the	types
specified	by	IDirectMusicTool8::GetMediaTypes.

Syntax

HRESULT	ProcessPMsg(

		IDirectMusicPerformance*	pPerf,

		DMUS_PMSG*	pPMSG

);

Parameters

pPerf

Performance	that	is	generating	messages.

pPMSG

Message	to	process.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	the
return	value	can	be	one	of	the	following:

Return	code
DMUS_S_REQUEUE
DMUS_S_FREE
S_OK

If	it	fails,	the	method	can	return	E_POINTER.

Remarks

If	the	method	returns	DMUS_S_REQUEUE,	the	message	is	placed	back	in	the
queue.	The	tool	can	put	a	new	time	stamp	and	parameters	on	the	message,	or
change	the	delivery	type.

If	the	return	value	is	DMUS_S_FREE,	the	message	is	freed	by	the	performance.

If	the	return	value	is	S_OK,	the	message	is	not	freed	by	the	performance.	The
tool	might	be	holding	onto	the	message	for	some	reason,	or	the	tool	might
already	have	freed	the	message.

Tools	should	not	perform	time-consuming	activities	because	doing	so	can
severely	affect	overall	performance.	Also	be	sure	not	to	create	a	circular
reference	to	the	performance	represented	by	pPerf.	For	more	information,	see
DirectMusic	Tools.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTool8	Interface
IDirectMusicPerformance8::SendPMsg
Message	Creation	and	Delivery
Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8	Interface
The	IDirectMusicTrack8	interface	represents	a	track	object,	which	can	store
any	kind	of	data	for	a	segment.

The	methods	of	this	interface	are	typically	not	called	directly	by	applications.
However,	if	you	want	to	install	your	own	data	playback	mechanism	in
DirectMusic,	you	must	create	a	track	object	to	represent	it.	The	track	object	must
also	support	the	IPersistStream	interface	for	loading	its	data.

IDirectMusicTrack8	supersedes	the	IDirectMusicTrack	interface	and	adds
new	methods.

Note			When	implementing	methods	of	the	IDirectMusicTrack8	interface,	be
sure	not	to	hold	onto	references	to	objects	passed	in.	For	example,	if
IDirectMusicTrack8::Init	adds	a	reference	to	the	IDirectMusicSegment
interface	that	it	receives	as	a	parameter,	ensure	that	this	reference	is	released.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IDirectMusicTrack8
interface	exposes	the	following	methods,	arranged	by	category.

Notification

Method Description

AddNotificationType Adds	a	type	of	event	for	which
notifications	are	required.

RemoveNotificationType Removes	a	type	of	event	for	which
notifications	are	required.

Parameters

Method Description

GetParam Retrieves	data	from	a	track,	in	music
time.
Retrieves	data	from	a	track,	in	either

GetParamEx music	time	or	reference	time.

IsParamSupported Ascertains	whether	the	track	supports	a
given	data	type.

SetParam Sets	data	on	a	track,	in	music	time.

SetParamEx Sets	data	on	a	track,	in	either	clock	or
music	time.

Playback

Method Description

EndPlay
Called	when	the	object	that	originally
called	IDirectMusicTrack8::InitPlay
is	destroyed.

InitPlay Called	when	a	track	is	ready	to	start
playing.

Play
Called	when	the	object	that	originally
called	IDirectMusicTrack8::InitPlay
is	destroyed.

PlayEx Causes	the	track	to	play	in	clock	time.

Miscellaneous

Method Description
Clone Makes	a	copy	of	the	track.

Compose Recomposes	the	track	based	on	data
from	a	segment.

Init Initializes	the	track.
Join Appends	one	track	to	another.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

DirectMusic	Interfaces
DirectMusic	Tracks
Setting	and	Retrieving	Track	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::AddNotificationType

The	AddNotificationType	method	adds	a	type	of	event	for	which	notifications
are	required.	It	is	similar	to,	and	called	by,	the
IDirectMusicSegment8::AddNotificationType	method.

Syntax

HRESULT	AddNotificationType(

		REFGUID	rguidNotificationType

);

Parameters

rguidNotificationType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	notification	type	to
add.	For	the	defined	types,	see	DMUS_NOTIFICATION_PMSG.	Applications
can	also	define	their	own	types	for	custom	tracks.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	track	does
not	support	the	notification	type.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_NOTIMPL

Remarks

If	the	track	does	not	support	notifications,	the	method	returns	E_NOTIMPL.	A
motif	or	style	track	returns	DMUS_E_NOT_INIT	if	it	has	not	been	initialized.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicTrack8::RemoveNotificationType
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::Clone

The	Clone	method	makes	a	copy	of	the	track.

Syntax

HRESULT	Clone(

		MUSIC_TIME	mtStart,

		MUSIC_TIME	mtEnd,

		IDirectMusicTrack**	ppTrack

);

Parameters

mtStart

Start	of	the	part	to	copy.	It	should	be	0	or	greater	and	less	than	the	length	of	the
track.

mtEnd

End	of	the	part	to	copy.	It	should	be	greater	than	mtStart	and	less	than	the	length
of	the	track.

ppTrack

Address	of	a	variable	that	receives	a	pointer	to	the	created	track,	if	successful.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL

E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

It	is	the	caller's	responsibility	to	call	Release	when	finished	with	the	track.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::Compose

The	Compose	method	recomposes	the	track	based	on	data	from	a	segment.
DirectMusic	implements	this	method	on	the	signpost	track	to	compose	a	chord
track.

Syntax

HRESULT	Compose(

		IUnknown*	pContext,

		DWORD	dwTrackGroup,

		IDirectMusicTrack**	ppResultTrack

);

Parameters

pContext

IUnknown	interface	pointer	of	the	object	to	use	in	the	composition.	This	is
usually	the	segment	that	owns	this	track.

dwTrackGroup

DWORD	value	that	specifies	group	bits	for	the	track.	For	more	information	on
group	bits,	see	Identifying	the	Track.

ppResultTrack

Address	of	a	variable	that	receives	the	IDirectMusicTrack	interface	of	the
composed	track.	Use	QueryInterface	to	obtain	IDirectMusicTrack8.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_INVALIDARG
E_POINTER

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicSegment8::Compose

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::EndPlay

The	EndPlay	method	called	when	the	object	that	originally	called
IDirectMusicTrack8::InitPlay	is	destroyed.

Syntax

HRESULT	EndPlay(

		void	*	pStateData

);

Parameters

pStateData

Pointer	to	state	data	returned	from	IDirectMusicTrack8::InitPlay.	This	data
should	be	freed	in	the	EndPlay	method.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	E_POINTER.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::GetParam

The	GetParam	method	retrieves	data	from	a	track,	in	music	time.

Syntax

HRESULT	GetParam(

		REFGUID	rguidType,	

		MUSIC_TIME	mtTime,	

		MUSIC_TIME*	pmtNext,

		void*	pParam

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	obtain.
See	Standard	Track	Parameters.

mtTime

Time,	in	track	time,	from	which	to	obtain	the	data.

pmtNext

Address	of	a	variable	that	receives	the	track	time	(relative	to	the	current	time)
until	which	the	data	is	valid.	If	this	returns	a	value	of	0,	either	the	data	is	always
valid,	or	it	is	unknown	when	it	might	become	invalid.	If	this	information	is	not
needed,	pmtNext	can	be	set	to	NULL.

pParam

Address	of	an	allocated	structure	in	which	the	data	is	to	be	returned.	The
structure	must	be	of	the	appropriate	kind	and	size	for	the	data	type	identified	by
rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
DMUS_E_NOT_INIT
DMUS_E_TYPE_DISABLED
DMUS_E_GET_UNSUPPORTED
E_POINTER

Remarks

The	IDirectMusicTrack8::GetParamEx	method	can	be	used	for	greater
functionality.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicPerformance8::GetParam
IDirectMusicSegment8::GetParam
IDirectMusicTrack8::IsParamSupported
IDirectMusicTrack8::SetParam
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::GetParamEx

The	GetParamEx	method	retrieves	data	from	a	track,	in	either	music	time	or
reference	time.

Syntax

HRESULT	GetParamEx(

		REFGUID	rguidType,	

		REFERENCE_TIME	rtTime,	

		REFERENCE_TIME*	prtNext,	

		void	*	pParam

		void	*	pStateData,

		DWORD	dwFlags

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	obtain.
See	Standard	Track	Parameters.

rtTime

Time	from	which	to	obtain	the	data.	Unless
DMUS_TRACK_PARAMF_CLOCK	is	set	in	dwFlags,	this	value	is	in	music
time.

prtNext

Address	of	a	variable	that	receives	the	time	until	which	the	data	is	valid.	If	this
returns	a	value	of	0,	either	the	data	is	always	valid,	or	it	is	unknown	when	it
might	become	invalid.	If	this	information	is	not	needed,	prtNext	can	be	set	to
NULL.

pParam

Address	of	an	allocated	structure	in	which	the	data	is	to	be	returned.	The
structure	must	be	of	the	appropriate	kind	and	size	for	the	data	type	identified	by
rguidType.

pStateData

Address	of	a	buffer	containing	state	data	for	the	track	instance.	This	value	is
obtained	from	IDirectMusicTrack8::InitPlay.

dwFlags

Can	be	0	or	the	following	flag.

Value Description
DMUS_TRACK_PARAMF_CLOCKThe	value	in	rtTime	is	in	clock	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_FOUND
DMUS_E_NOT_INIT
DMUS_E_TYPE_DISABLED
DMUS_E_GET_UNSUPPORTED
DMUS_E_TRACK_NO_CLOCKTIME_SUPPORT
E_POINTER

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface

IDirectMusicTrack8::GetParam
IDirectMusicTrack8::SetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::Init

The	Init	method	initializes	the	track.	This	method	is	called	by	a	segment	when	a
track	is	added.

Syntax

HRESULT	Init(

		IDirectMusicSegment*	pSegment

);

Parameters

pSegment

Segment	to	which	this	track	belongs.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

Remarks

If	the	track	plays	messages,	it	should	call
IDirectMusicSegment8::SetPChannelsUsed	in	the	Init	method.

This	method	should	be	called	whenever	track	data	is	changed	after	the	track	is
inserted	in	a	segment.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::InitPlay

The	IDirectMusicTrack8::InitPlay	method	is	called	when	a	track	is	ready	to
start	playing.	The	method	returns	a	pointer	to	state	data.

Syntax

HRESULT	InitPlay(

		IDirectMusicSegmentState*	pSegmentState,

		IDirectMusicPerformance*	pPerformance,

		void**	ppStateData,

		DWORD	dwVirtualTrackID,

		DWORD	dwFlags

);

Parameters

pSegmentState

Address	of	the	calling	IDirectMusicSegmentState	or
IDirectMusicSegmentState8	interface.

pPerformance

Address	of	the	calling	IDirectMusicPerformance	or
IDirectMusicPerformance8	interface.

ppStateData

Address	of	a	variable	that	receives	a	pointer	to	state	information.	The	format	and
use	of	the	data	is	specific	to	the	track.	The	data	should	be	created	in	the	InitPlay
method	and	freed	in	the	IDirectMusicTrack8::EndPlay	method.	The	pointer	is
passed	to	the	IDirectMusicTrack8::Play	and	IDirectMusicTrack8::PlayEx
methods.

dwVirtualTrackID

Virtual	track	ID	assigned	to	this	track	instance.

dwFlags

DMUS_SEGF_FLAGS	that	control	the	track's	behavior.	See	Remarks.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

Remarks

The	dwFlags	parameter	passes	the	flags	that	were	handed	to	the	performance	in
the	call	to	IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx.	The	track	determines	how	it
should	perform,	based	on	the	DMUS_SEGF_CONTROL	and
DMUS_SEGF_SECONDARY	flags.	For	example,	the	tempo	track	automatically
plays	the	tempo	changes	only	if	it	is	part	of	a	primary	segment	or	a	secondary
control	segment	(DMUS_SEGF_SECONDARY	is	not	set,	or
DMUS_SEGF_CONTROL	is	set).

A	track	can	return	NULL	in	*ppStateData.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::IsParamSupported

The	IsParamSupported	method	ascertains	whether	the	track	supports	a	given
data	type.

Syntax

HRESULT	IsParamSupported(

		REFGUID	rguidType

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data.	See
Standard	Track	Parameters.

Return	Values

If	the	method	succeeds	and	the	type	is	supported,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_TYPE_DISABLED
DMUS_E_TYPE_UNSUPPORTED
E_POINTER
E_NOTIMPL

Remarks

If	a	parameter	has	been	disabled	by	using	one	of	the	SetParam	methods,	the
IDirectMusicTrack8::IsParamSupported	method	returns
DMUS_E_TYPE_DISABLED	when	passed	the	corresponding	parameter	type

(either	GUID_TempoParam	or	GUID_TimeSignature).

The	method	also	returns	DMUS_E_TYPE_DISABLED	if	passed
GUID_DisableTempo	when	that	parameter	has	already	been	disabled,	or	if
passed	GUID_EnableTempo	when	that	parameter	is	currently	enabled.	The	same
is	true	for	GUID_DisableTimeSig	and	GUID_EnableTimeSig.

The	method	returns	DMUS_E_TYPE_UNSUPPORTED	when	the	track	does	not
support	the	parameter	referred	to	by	a	GUID_EnableTempo,
GUID_EnableTimeSig,	GUID_DisableTempo,	or	GUID_DisableTimeSig
parameter	call.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicTrack8::GetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParam
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::Join

The	Join	method	appends	one	track	to	another.

Syntax

HRESULT	Join(

		IDirectMusicTrack*	pNewTrack,

		MUSIC_TIME	mtJoin,

		IUnknown*	pContext,

		DWORD	dwTrackGroup,

		IDirectMusicTrack**	ppResultTrack)

);

Parameters

pNewTrack

Pointer	to	an	IDirectMusicTrack8	interface	that	specifies	the	track	to	append	to
this	one.

mtJoin

Time	within	this	track	where	pNewTrack	is	to	begin.

pContext

IUnknown	interface	pointer	of	the	context	segment.	This	object	determines	the
time	signature	for	tracks	that	use	measures	and	beats,	such	as	the	signpost	track.

dwTrackGroup

Group	or	groups	to	which	the	new	track	belongs.	For	more	information	on	track
groups,	see	IDirectMusicSegment8::InsertTrack	and	Identifying	the	Track.

ppResultTrack

Address	of	a	variable	that	receives	the	IDirectMusicTrack	interface	of	the

concatenated	track.	Use	QueryInterface	to	obtain	IDirectMusicTrack8.	If
NULL,	no	new	track	is	created	and	the	current	track	becomes	the	concatenated
track.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_POINTER
E_INVALIDARG
E_OUTOFMEMORY

Remarks

This	method	is	supported	by	the	band,	chordmap,	tempo,	style,	chord,	signpost,
and	command	tracks.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::Play

The	Play	method	causes	the	track	to	play.	It	performs	any	work	that	the	track
must	do	when	the	segment	is	played,	such	as	creating	and	sending	messages.

Syntax

HRESULT	Play(

		void*	pStateData,	

		MUSIC_TIME	mtStart,

		MUSIC_TIME	mtEnd,

		MUSIC_TIME	mtOffset

		DWORD	dwFlags,	

		IDirectMusicPerformance*	pPerf,	

		IDirectMusicSegmentState*	pSegSt,

		DWORD	dwVirtualID

);

Parameters

pStateData

Pointer	to	state	data	from	the	IDirectMusicTrack8::InitPlay	method.	The
format	and	use	of	the	data	is	specific	to	the	track.

mtStart

Start	time.

mtEnd

End	time.

mtOffset

Offset	to	add	to	all	messages	sent	to	IDirectMusicPerformance8::SendPMsg.

dwFlags

Flags	that	indicate	the	state	of	this	call.	See	DMUS_TRACKF_FLAGS.	A
value	of	0	indicates	that	this	call	to	Play	continues	playback	from	the	previous
call.

pPerf

Performance	used	to	allocate	and	send	messages.

pSegSt

Segment	state	that	this	track	belongs	to.	The
IDirectMusicSegmentState8::QueryInterface	method	can	be	called	to	obtain
an	IDirectMusicGraph8	interface—to	call
IDirectMusicGraph8::StampPMsg,	for	instance.

dwVirtualID

Virtual	identifier	of	the	track.	This	value	must	be	put	in	the	dwVirtualTrackID
member	of	any	message	(see	DMUS_PMSG)	that	is	sent	by
IDirectMusicPerformance8::SendPMsg.

Return	Values

If	the	method	succeeds,	the	return	value	can	be	S_OK	or	DMUS_S_END.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_POINTER

Remarks

If	the	track	is	empty,	the	method	returns	DMUS_S_END.

Tracks	generate	messages	in	a	medium-priority	thread.	You	can	call	time-
consuming	functions,	such	as	code	to	stream	data	from	a	file,	from	within	a
track's	Play	method.	However,	be	sure	to	follow	the	guidelines	for	safe
multithreading.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicTrack8::PlayEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::PlayEx

The	PlayEx	method	causes	the	track	to	play	in	clock	time.	It	performs	any	work
that	the	track	must	do	when	the	segment	is	played,	such	as	creating	and	sending
messages.

Syntax

HRESULT	PlayEx(

		void*	pStateData,	

		REFERENCE_TIME	rtStart,	

		REFERENCE_TIME	rtEnd,	

		REFERENCE_TIME	rtOffset,	

		DWORD	dwFlags,	

		IDirectMusicPerformance*	pPerf,	

		IDirectMusicSegmentState*	pSegSt,	

		DWORD	dwVirtualID

);

Parameters

pStateData

Pointer	to	state	data	from	the	IDirectMusicTrack8::InitPlay	method.	The
format	and	use	of	the	data	is	specific	to	the	track.

rtStart

Start	time.

rtEnd

End	time.

rtOffset

Offset	to	add	to	all	messages	sent	to	IDirectMusicPerformance8::SendPMsg.

dwFlags

Flags	that	indicate	the	state	of	this	call.	See	DMUS_TRACKF_FLAGS.	A
value	of	0	indicates	that	this	call	to	PlayEx	continues	playback	from	the
previous	call.

pPerf

Performance	used	to	allocate	and	send	messages.

pSegSt

Segment	state	that	this	track	belongs	to.	The
IDirectMusicSegmentState8::QueryInterface	method	can	be	called	to	obtain
an	IDirectMusicGraph8	interface—for	instance,	to	call
IDirectMusicGraph8::StampPMsg.

dwVirtualID

Virtual	identifier	of	the	track.	This	value	must	be	put	in	the	dwVirtualTrackID
member	of	any	message	(see	DMUS_PMSG)	that	is	sent	by
IDirectMusicPerformance8::SendPMsg.

Return	Values

If	the	method	succeeds,	the	return	value	can	be	S_OK	or	DMUS_S_END.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_NOT_INIT
E_POINTER

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicTrack8::Play

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::RemoveNotificationType

The	RemoveNotificationType	method	removes	a	type	of	event	for	which
notifications	are	required..	It	is	similar	to,	and	called	by,	the
IDirectMusicSegment8::RemoveNotificationType	method.

Syntax

HRESULT	RemoveNotificationType(

		REFGUID	rguidNotificationType

);

Parameters

rguidNotificationType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	notification	type	to
remove.	For	the	defined	types,	see	DMUS_NOTIFICATION_PMSG.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK,	or	S_FALSE	if	the	track	does
not	support	the	notification	type.

If	the	track	does	not	support	notifications,	the	method	returns	E_NOTIMPL.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicTrack8::AddNotificationType
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::SetParam

The	SetParam	method	sets	data	on	a	track,	in	music	time.

Syntax

HRESULT	SetParam(

		REFGUID	rguidType,

		MUSIC_TIME	mtTime,

		void*	pParam

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	set.	See
Standard	Track	Parameters.

mtTime

Time,	in	track	time,	at	which	to	set	the	data.

pParam

Address	of	a	structure	containing	the	data,	or	NULL	if	no	data	is	required	for	this
parameter.	The	structure	must	be	of	the	appropriate	kind	and	size	for	the	data
type	identified	by	rguidType.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_SET_UNSUPPORTED

DMUS_E_TYPE_DISABLED
E_OUTOFMEMORY
E_POINTER

Remarks

The	IDirectMusicTrack8::SetParamEx	method	can	be	used	for	greater
functionality.

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::IsParamSupported
IDirectMusicTrack8::SetParamEx
Setting	and	Retrieving	Track	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IDirectMusicTrack8::SetParamEx

The	SetParamEx	method	sets	data	on	a	track,	in	either	clock	or	music	time.

Syntax

HRESULT	SetParamEx(

		REFGUID	rguidType,	

		REFERENCE_TIME	rtTime,	

		void*	pParam,

		void	*	pStateData,	

		DWORD	dwFlags

);

Parameters

rguidType

Reference	to	(C++)	or	address	of	(C)	the	identifier	of	the	type	of	data	to	set.	See
Standard	Track	Parameters.

rtTime

Time	at	which	to	set	the	data.	Unless	DMUS_TRACK_PARAMF_CLOCK	is	set
in	dwFlags,	this	is	in	music	time.

pParam

Address	of	a	structure	that	contains	the	data,	or	NULL	if	no	data	is	required	for
this	parameter.	The	structure	must	be	of	the	appropriate	kind	and	size	for	the
data	type	identified	by	rguidType.

pStateData

Pointer	to	a	buffer	that	contains	state	data	for	the	track.

dwFlags

Can	be	0	or	the	following	flag.

Value Description
DMUS_TRACK_PARAMF_CLOCKThe	value	in	rtTime	is	in	clock	time.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
DMUS_E_SET_UNSUPPORTED
DMUS_E_TYPE_DISABLED
E_OUTOFMEMORY
E_POINTER

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

IDirectMusicTrack8	Interface
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParam

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IKsControl	Interface
The	IKsControl	interface	is	used	to	get,	set,	or	query	the	support	of	properties,
events,	and	methods.	This	interface	is	part	of	the	Windows	Driver	Model	kernel
streaming	architecture,	but	is	also	used	by	DirectMusic	to	expose	properties	of
DirectMusic	ports.	To	retrieve	this	interface,	call	the
IDirectMusicPort8::QueryInterface	method	with	IID_IKsControl	in	the	riid
parameter.

Routing	of	the	property	item	request	to	the	port	varies,	depending	on	the	port
implementation.	No	properties	are	supported	by	ports	that	represent	DirectMusic
emulation	on	top	of	the	Win32	handle-based	multimedia	calls	(midiOut	and
midiIn	functions).

Property	item	requests	to	a	port	that	represents	a	pluggable	software	synthesizer
are	answered	totally	in	user	mode.	The	topology	of	this	type	of	port	is	a
synthesizer	(represented	by	an	IDirectMusicSynth	interface)	connected	to	a
sink	node	(an	IDirectMusicSynthSink	interface).	The	property	request	is	given
first	to	the	synthesizer	node,	and	then	to	the	sink	node	if	it	is	not	recognized	by
the	synthesizer.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IKsControl	interface
exposes	the	following	methods.

Method Description
KsProperty Retrieves	or	sets	the	value	of	a	property.
KsEvent Not	supported	by	DirectMusic.
KsMethod Not	supported	by	DirectMusic.

Requirements

		Header:	Declared	in	dmksctrl.h.

See	Also

DirectMusic	Interfaces
Property	Sets	for	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IKsControl::KsProperty

The	KsProperty	method	retrieves	or	sets	the	value	of	a	property.	For	an
overview,	see	Property	Sets	for	DirectMusic	Ports.

Syntax

HRESULT	KsProperty(

		PKSPROPERTY	pProperty,	

		ULONG	ulPropertyLength,

		LPVOID	pvPropertyData,

		ULONG	ulDataLength,

		PULONG	pulBytesReturned

);

Parameters

pProperty

Address	of	a	KSPROPERTY	structure	that	gives	the	property	set,	item,	and
operation	to	perform.	If	this	property	contains	instance	data,	that	data	should
reside	in	memory	immediately	following	the	structure.

ulPropertyLength

Length	of	the	memory	pointed	to	by	pProperty,	including	any	instance	data.

pvPropertyData

For	a	set	operation,	the	address	of	a	memory	buffer	containing	data	that
represents	the	new	value	of	the	property.	For	a	get	operation,	the	address	of	a
memory	buffer	big	enough	to	hold	the	value	of	the	property.	For	a	basic	support
query,	the	address	of	a	buffer	at	least	a	DWORD	in	size.

ulDataLength

Length	of	the	buffer	pointed	to	by	pvPropertyData.

pulBytesReturned

On	a	KSPROPERTY_TYPE_GET	or	KSPROPERTY_TYPE_BASICSUPPORT
call,	address	of	a	variable	that	receives	the	number	of	bytes	returned	in
pvPropertyData	by	the	port.

Return	Values

If	the	method	succeeds,	it	returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_INVALIDARG
E_NOTIMPL
E_OUTOFMEMORY
E_POINTER
DMUS_E_UNKNOWN_PROPERTY

Requirements

		Header:	Declared	in	dmksctrl.h.

See	Also

IKsControl	Interface
Property	Sets	for	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IReferenceClock	Interface
The	IReferenceClock	interface	represents	a	system	reference	clock.	The
DirectMusic	master	clock	and	a	port's	latency	clock	implement	this	interface.

In	addition	to	the	methods	inherited	from	IUnknown,	the	IReferenceClock
interface	exposes	the	following	methods.

Method Description
GetTime Retrieves	the	current	time.

AdviseTime Requests	an	asynchronous	notification
that	a	time	has	elapsed.

AdvisePeriodic Requests	an	asynchronous,	periodic
notification	that	a	duration	has	elapsed.

Unadvise Cancels	a	request	for	notification.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Interfaces
IDirectMusic8::GetMasterClock
IDirectMusicPort8::GetLatencyClock
Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IReferenceClock::AdvisePeriodic

The	AdvisePeriodic	method	requests	an	asynchronous,	periodic	notification	that
a	duration	has	elapsed.

Syntax

HRESULT	AdvisePeriodic(

		REFERENCE_TIME	startTime,

		REFERENCE_TIME	periodTime,

		HANDLE	hSemaphore,

		DWORD	*	pdwAdviseCookie

);

Parameters

startTime

Time	when	notification	should	begin.

periodTime

Period	of	time	between	notifications.

hSemaphore

Handle	of	a	semaphore	through	which	to	advise.

pdwAdviseCookie

Address	of	a	variable	that	receives	the	identifier	of	the	request.	This	is	used	to
identify	this	call	to	AdvisePeriodic	in	the	future—for	example,	to	cancel	it.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_POINTER
E_INVALIDARG
E_NOTIMPL

Remarks

When	the	time	indicated	by	startTime	is	reached,	the	semaphore	whose	handle	is
set	as	hSemaphore	is	released.	Thereafter,	the	semaphore	is	released	repetitively
with	a	period	of	periodTime.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IReferenceClock	Interface
IReferenceClock::Unadvise

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IReferenceClock::AdviseTime

The	AdviseTime	method	requests	an	asynchronous	notification	that	a	time	has
elapsed.

Syntax

HRESULT	AdviseTime(

		REFERENCE_TIME	baseTime,

		REFERENCE_TIME	streamTime,

		HANDLE	hEvent,

		DWORD	*	pdwAdviseCookie

);

Parameters

baseTime

Base	reference	time.

streamTime

Stream	offset	time.

hEvent

Handle	to	an	event	through	which	to	advise.

pdwAdviseCookie

Address	of	a	variable	that	receives	the	identifier	of	the	request.	This	is	used	to
identify	this	call	to	AdviseTime	in	the	future—for	example,	to	cancel	it.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_POINTER
E_INVALIDARG
E_NOTIMPL

Remarks

When	the	time	baseTime	plus	streamTime	is	reached,	the	event	whose	handle	is
hEvent	is	set.	If	the	time	has	already	passed,	the	event	is	set	immediately.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IReferenceClock	Interface
IReferenceClock::Unadvise

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IReferenceClock::GetTime

The	GetTime	method	retrieves	the	current	time.

Syntax

HRESULT	GetTime(

		REFERENCE_TIME	*	pTime

);

Parameters

pTime

Address	of	a	variable	that	receives	the	current	time.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_POINTER
E_INVALIDARG
E_NOTIMPL

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IReferenceClock	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

IReferenceClock::Unadvise

The	Unadvise	method	cancels	a	request	for	notification.

Syntax

HRESULT	Unadvise(

		DWORD	dwAdviseCookie

);

Parameters

dwAdviseCookie

Identifier	of	the	request	that	is	to	be	canceled,	as	set	in	the
IReferenceClock::AdviseTime	or	the	IReferenceClock::AdvisePeriodic
method.

Return	Values

Return	values	are	determined	by	the	implementation.	If	the	method	succeeds,	it
returns	S_OK.

If	it	fails,	the	method	can	return	one	of	the	error	values	shown	in	the	following
table.

Return	code
E_FAIL
E_POINTER
E_INVALIDARG
E_NOTIMPL

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

IReferenceClock	Interface

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Messages
DirectMusic	message	structures	are	all	based	on	the	DMUS_PMSG	structure.
Because	C	does	not	support	inheritance,	the	members	of	this	structure	are
included	in	each	derived	structure	as	the	DMUS_PMSG_PART	macro.

For	an	overview	of	messages,	see	Using	DirectMusic	Messages.

This	section	contains	information	about	the	following	structures	used	to	contain
message	information.

Structure Description

DMUS_CHANNEL_PRIORITY_PMSGContains	message	data	about	a
channel	priority	change.

DMUS_CURVE_PMSG Contains	message	data	for	a	curve.
DMUS_LYRIC_PMSG Contains	message	data	for	a	string.

DMUS_MIDI_PMSG
Contains	data	for	a	standard	MIDI
message	such	as	a	control	change	or
pitch	bend.

DMUS_NOTE_PMSG Contains	message	data	for	a	MIDI
note.

DMUS_NOTIFICATION_PMSG Contains	message	data	for	a
notification.

DMUS_PATCH_PMSG Contains	message	data	for	a	MIDI
program	change.

DMUS_PMSG Contains	information	common	to	all
DirectMusic	messages.

DMUS_SYSEX_PMSG Contains	data	for	a	MIDI	system
exclusive	message.

DMUS_TEMPO_PMSG Contains	data	for	a	message	that
controls	the	performance's	tempo.

DMUS_TIMESIG_PMSG
Contains	data	for	a	message	that
controls	the	time	signature	of	the
performance.
Contains	message	data	for	a

DMUS_TRANSPOSE_PMSG transposition.

DMUS_WAVE_PMSG Contains	message	data	for	a	wave
sound.

See	Also

IDirectMusicPerformance8::AllocPMsg
IDirectMusicPerformance8::FreePMsg
IDirectMusicPerformance8::SendPMsg
IDirectMusicTool8::ProcessPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CHANNEL_PRIORITY_PMSG
The	DMUS_CHANNEL_PRIORITY_PMSG	structure	contains	message	data
about	a	channel	priority	change.

Syntax

typedef	struct	_DMUS_CHANNEL_PRIORITY_PMSG	{

		DMUS_PMSG_PART

		DWORD	dwChannelPriority;

}	DMUS_CHANNEL_PRIORITY_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

dwChannelPriority

Priority	of	the	channel.	For	a	list	of	defined	values,	see	the	Remarks	for
IDirectMusicPort8::GetChannelPriority.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg
IDirectMusicPort8::SetChannelPriority

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CURVE_PMSG
The	DMUS_CURVE_PMSG	structure	contains	message	data	for	a	curve.

Syntax

typedef	struct	DMUS_CURVE_PMSG	{

		DMUS_PMSG_PART

		MUSIC_TIME	mtDuration;

		MUSIC_TIME	mtOriginalStart;

		MUSIC_TIME	mtResetDuration;

		short		nStartValue;

		short		nEndValue;

		short		nResetValue;

		WORD			wMeasure;

		short		nOffset;

		BYTE			bBeat;

		BYTE			bGrid;

		BYTE			bType;

		BYTE			bCurveShape;

		BYTE			bCCData;

		BYTE			bFlags;

		WORD			wParamType;

		WORD			wMergeIndex;	

}	DMUS_CURVE_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

mtDuration

Duration	of	the	curve.	This	value	is	in	music	time	unless
DMUS_PMSGF_LOCKTOREFTIME	is	present	in	the	dwFlags	member	of
DMUS_PMSG_PART,	in	which	case	the	duration	is	in	milliseconds	and	is
unaffected	by	a	change	in	tempo.

mtOriginalStart

Original	start	time.	Must	be	set	to	either	zero	when	this	message	is	created,	or	to

the	original	start	time	of	the	curve.

mtResetDuration

Length	of	time	after	the	end	of	the	curve	during	which	a	reset	can	take	place	in
response	to	an	invalidation.	Ignored	if	DMUS_CURVE_RESET	is	not	in	bFlags.
This	value	is	in	music	time	unless	DMUS_PMSGF_LOCKTOREFTIME	is
present	in	the	dwFlags	member	of	DMUS_PMSG_PART,	in	which	case	it	is	in
milliseconds	and	is	unaffected	by	a	change	in	tempo.

nStartValue

Start	value	of	the	curve.

nEndValue

End	value	of	the	curve.

nResetValue

Value	to	set	upon	a	flush	or	invalidation.	Ignored	if	DMUS_CURVE_RESET	is
not	in	bFlags.

wMeasure

Measure	in	which	this	curve	occurs.

nOffset

Offset	from	the	grid	at	which	this	curve	occurs,	in	music	time.

bBeat

Beat	count	(within	a	measure)	at	which	this	curve	occurs.

bGrid

Grid	offset	from	the	beat	at	which	this	curve	occurs.

bType

Type	of	curve.	This	can	be	one	of	the	following	values.

Value Description

DMUS_CURVET_CCCURVE
Continuous	controller	curve	(MIDI
Control	Change	channel	voice	message;
status	byte	&HBn.).

DMUS_CURVET_MATCURVE
Monophonic	aftertouch	curve	(MIDI
Channel	Pressure	channel	voice	message;
status	byte	&HDn).

DMUS_CURVET_PATCURVE
Polyphonic	aftertouch	curve	(MIDI	Poly
Key	Pressure	channel	voice	message,
status	byte	&HDn).

DMUS_CURVET_PBCURVE
Pitch-bend	curve	(MIDI	Pitch	Bend
channel	voice	message;	status	byte
&HEn).

DMUS_CURVET_RPNCURVE RPN	curve	of	type	defined	in
wParamType.

DMUS_CURVET_NRPNCURVE NRPN	curve	of	type	defined	in
wParamType.

bCurveShape

Shape	of	curve.	This	can	be	one	of	the	following	values.

Value Description
DMUS_CURVES_EXP Exponential	curve	shape.

DMUS_CURVES_INSTANT
Instant	curve	shape	(beginning	and	end
of	curve	happen	at	essentially	the	same
time).

DMUS_CURVES_LINEAR Linear	curve	shape.
DMUS_CURVES_LOG Logarithmic	curve	shape.
DMUS_CURVES_SINE Sine	curve	shape.

bCCData

Controller	number	if	bType	is	DMUS_CURVET_CCCURVE;	otherwise
ignored.

bFlags

Can	be	zero,	or	one	or	more	of	the	following	values.

Value Description

DMUS_CURVE_RESET

The	value	of	nResetValue	must
be	set	when	the	time	is	reached
or	an	invalidation	occurs	because
of	a	transition.	If	this	flag	is	not
set,	the	curve	stays	permanently
at	the	new	value.

DMUS_CURVE_START_FROM_CURRENT

Ignore	nStartValue	and	start	the
curve	at	the	current	value.
Implemented	for	volume,
expression,	pitch	bend,	filter
cutoff,	pan,	and	mod	wheel.	See
Remarks.

wParamType

MIDI	parameter	number.	This	value	is	significant	only	if	DMUS_PMSGF_DX8
is	present	in	the	dwFlags	member	of	the	DMUS_PMSG	part	of	this	structure.
See	Remarks.

wMergeIndex

Merge	index.	Supported	for	transpose,	pitch	bend,	volume,	expression,	pan,
filter,	mod	wheel,	chorus,	and	reverb	controllers.	This	value	is	significant	only	if
DMUS_PMSGF_DX8	is	present	in	the	dwFlags	member	of	the	DMUS_PMSG
part	of	this	structure.	See	Remarks.

Remarks

An	RPN	or	NRPN	curve	type	in	wParamType	is	stored	as	two	bytes	with	seven
significant	bits.	For	example,	if	the	MSB	is	0x23	and	the	LSB	is	0x74,	the	value
in	wParamType	is	0x2374.

Data	in	nStartValue,	nEndValue,	and	nResetValue	is	limited	to	14	bits.	For

MIDI	data	consisting	of	two	seven-bit	bytes,	the	value	is	stored	as	a	word	with
the	upper	two	bits	empty.

All	curves	with	wMergeIndex	of	0	override	each	other.	If	wMergeIndex	is
another	value,	the	values	generated	by	the	curve	are	added	to	the	values	for
merge	index	0.	For	example,	if	an	application	uses	curves	with	0	and	3,	the	0
curves	always	replace	each	other	but	add	to	the	3	curves,	and	the	3	curves	also
always	replace	each	other	and	add	to	the	0	curves.

The	DMUS_CURVE_START_FROM_CURRENT	flag	does	not	cause	the
current	controller	value	to	be	saved	in	the	message.	Therefore	tools	do	not	have
access	to	this	data	unless	they	store	the	last	known	value.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg
Curves

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_LYRIC_PMSG
The	DMUS_LYRIC_PMSG	structure	contains	message	data	for	a	string.

Syntax

typedef	struct	_DMUS_LYRIC_PMSG	{

		DMUS_PMSG_PART

		WCHAR		wszString[1];	

}	DMUS_LYRIC_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

wszString

Null-terminated	Unicode	string.	The	array	is	sized	when	the	message	is	created.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_MIDI_PMSG
The	DMUS_MIDI_PMSG	structure	contains	data	for	a	standard	MIDI	message
such	as	a	control	change	or	pitch	bend.

Syntax

typedef	struct	DMUS_MIDI_PMSGG	{

		DMUS_PMSG_PART

		BYTE		bStatus;

		BYTE		bByte1;

		BYTE		bByte2;

		BYTE		bPad[1];

}	DMUS_MIDI_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

bStatus

Standard	MIDI	status	byte.

bByte1

First	byte	of	the	MIDI	message.	Ignored	for	MIDI	messages	that	do	not	require
it.

bByte2

Second	byte	of	the	MIDI	message.	Ignored	for	MIDI	messages	that	do	not
require	it.

bPad

Padding	to	a	WORD	boundary.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg
MIDI	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_NOTE_PMSG
The	DMUS_NOTE_PMSG	structure	contains	message	data	for	a	MIDI	note.

Syntax

typedef	struct	DMUS_NOTE_PMSG	{

		DMUS_PMSG_PART

		MUSIC_TIME	mtDuration;

		WORD			wMusicValue;

		WORD			wMeasure;

		short		nOffset;

		BYTE			bBeat;

		BYTE			bGrid;

		BYTE			bVelocity;

		BYTE			bFlags;

		BYTE			bTimeRange;

		BYTE			bDurRange;

		BYTE			bVelRange;

		BYTE			bPlayModeFlags;

		BYTE			bSubChordLevel;

		BYTE			bMidiValue;

		char			cTranspose;

}	DMUS_NOTE_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

mtDuration

Duration	of	the	note.

wMusicValue

Description	of	the	note.	In	most	play	modes,	this	is	a	packed	array	of	4-bit
values,	as	follows.

Value Description

Octave In	the	range	from	–2	through	14.	The	note	is
transposed	up	or	down	by	the	octave	times	12.

Chord	position In	the	range	from	0	through	15,	although	it	should
never	be	above	3.	The	first	position	in	the	chord	is	0.

Scale	position

In	the	range	from	0	through	15.	Typically	it	is	only
from	0	through	2,	but	it	is	possible	to	have	a	one-note
chord	and	have	everything	above	the	chord	be
interpreted	as	a	scale	position.

Accidental
In	the	range	from	–8	through	7,	but	typically	in	the
range	from	–2	through	2.	This	represents	an	offset	that
takes	the	note	out	of	the	scale.

In	the	fixed-play	modes,	the	music	value	is	a	MIDI	note	value	in	the	range	from
0	through	127.

wMeasure

Measure	in	which	this	note	occurs.

nOffset

Offset	from	the	grid	at	which	this	note	occurs,	in	music	time.

bBeat

Beat	(in	measure)	at	which	this	note	occurs.

bGrid

Grid	offset	from	the	beat	at	which	this	note	occurs.

bVelocity

Note	velocity.

bFlags

See	DMUS_NOTEF_FLAGS.

bTimeRange

Range	by	which	to	randomize	the	time	at	which	the	note	plays.

bDurRange

Range	by	which	to	randomize	the	duration	of	the	note.

bVelRange

Range	by	which	to	randomize	the	velocity	of	the	note.

bPlayModeFlags

Play	mode	determining	how	the	music	value	is	related	to	the	chord	and
subchord.	For	a	list	of	values,	see	DMUS_PLAYMODE_FLAGS.

bSubChordLevel

Subchord	level	that	the	note	uses.	See	DMUS_SUBCHORD.

bMidiValue

MIDI	note	value,	converted	from	wMusicValue.

cTranspose

Transposition	to	add	to	bMidiValue	after	conversion	from	wMusicValue.

Remarks

When	the	output	tool	receives	a	message	with	DMUS_NOTEF_NOTEON	in
bFlags,	it	sends	a	MIDI	note-on	message	to	the	synthesizer.	It	then	clears	the
DMUS_NOTEF_NOTEON	flag,	adds	mtDuration	to	the	time	stamp,	and
requeues	the	message	so	that	the	note	is	turned	off	at	the	appropriate	time.

The	values	in	bTimeRange	and	bDurRange	have	a	logarithmic	relationship	to
actual	time.	A	value	of	255	specifies	that	the	time	can	be	randomized	by	up	to
825	music	time	ticks	in	either	direction.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg
Music	Values	and	MIDI	Notes

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_NOTIFICATION_PMSG
The	DMUS_NOTIFICATION_PMSG	structure	contains	message	data	for	a
notification.

Syntax

typedef	struct	DMUS_NOTIFICATION_PMSG	{

		DMUS_PMSG_PART

		GUID	guidNotificationType;

		DWORD		dwNotificationOption;

		DWORD		dwField1;

		DWORD		dwField2;

}	DMUS_NOTIFICATION_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

guidNotificationType

Identifier	of	the	notification	type.	The	following	types	are	defined.

Value Description
GUID_NOTIFICATION_CHORD Chord	change.
GUID_NOTIFICATION_COMMAND Command	event.
GUID_NOTIFICATION_MEASUREANDBEATMeasure	and	beat	event.

GUID_NOTIFICATION_PERFORMANCE
Performance	event,	further
defined	in
dwNotificationOption.

GUID_NOTIFICATION_RECOMPOSE A	track	has	been	recomposed.

GUID_NOTIFICATION_SEGMENT Segment	event,	further	defined
in	dwNotificationOption.

dwNotificationOption

Identifier	of	the	notification	subtype.	If	the	notification	type	is
GUID_NOTIFICATION_SEGMENT,	this	member	can	contain	one	of	the
following	values.

Value Description

DMUS_NOTIFICATION_SEGABORT
The	segment	was	stopped
prematurely,	or	was	removed
from	the	primary	segment	queue.

DMUS_NOTIFICATION_SEGALMOSTENDThe	segment	has	reached	the	endminus	the	Prepare	Time.
DMUS_NOTIFICATION_SEGEND The	segment	has	ended.
DMUS_NOTIFICATION_SEGLOOP The	segment	has	looped.
DMUS_NOTIFICATION_SEGSTART The	segment	has	started.

If	the	notification	type	is	GUID_NOTIFICATION_COMMAND,	this	member
can	contain	one	of	the	following	values.

Value Description
DMUS_NOTIFICATION_GROOVE Groove	level	change.

DMUS_NOTIFICATION_EMBELLISHMENTEmbellishment	command	(intro,fill,	break,	or	end).

If	the	notification	type	is	GUID_NOTIFICATION_PERFORMANCE,	this
member	can	contain	one	of	the	following	values.

Value Description

DMUS_NOTIFICATION_MUSICALMOSTEND

The	currently	playing	primary
segment	has	reached	the	end
minus	the	prepare	time,	and
no	more	primary	segments
are	cued	to	play.

DMUS_NOTIFICATION_MUSICSTARTED Playback	has	started.
DMUS_NOTIFICATION_MUSICSTOPPED Playback	has	stopped.

If	the	notification	type	is	GUID_NOTIFICATION_MEASUREANDBEAT,	this

member	contains	DMUS_NOTIFICATION_MEASUREBEAT.	No	other
subtypes	are	defined.

If	the	notification	type	is	GUID_NOTIFICATION_CHORD,	this	member
contains	DMUS_NOTIFICATION_CHORD.	No	other	subtypes	are	defined.

If	the	notification	type	is	GUID_NOTIFICATION_RECOMPOSE,	this	member
contains	DMUS_NOTIFICATION_RECOMPOSE.	No	other	subtypes	are
defined.

dwField1

Extra	data	specific	to	the	type	of	notification.	For
GUID_NOTIFICATION_MEASUREANDBEAT	notifications,	this	member
returns	the	beat	number	within	the	measure.

dwField2

Extra	data	specific	to	the	type	of	notification.	Reserved	for	future	or	application-
defined	use.

Remarks

For	most	notifications,	the	punkUser	member	(see	DMUS_PMSG)	contains	the
IUnknown	pointer	of	the	segment	state.	This	is	especially	useful	in	the	cases	of
chords	and	commands,	in	which	you	can	query	for	the
IDirectMusicSegmentState8	interface,	call
IDirectMusicSegmentState8::GetSegment	to	get	the	IDirectMusicSegment8
pointer,	and	then	call	the	IDirectMusicSegment8::GetParam	method	to	get	the
chord	or	command	at	the	time	given	in	the	notification	message's	mtTime
member.

For	notifications	of	type	GUID_NOTIFICATION_PERFORMANCE,	the
punkUser	member	is	always	NULL.

Applications	can	define	their	own	notification	message	types	and	subtypes	and
use	dwField1	and	dwField2	for	extra	data.	Such	custom	notification	messages
can	be	allocated	and	sent	like	any	other	message.	Application-defined	tracks	can
send	messages	of	a	particular	type	after	the	GUID	(guidNotificationType)	has
been	handed	to	IDirectMusicTrack8::AddNotificationType.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg
Notification	and	Event	Handling

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PATCH_PMSG
The	DMUS_PATCH_PMSG	structure	contains	message	data	for	a	MIDI
program	change.

Syntax

typedef	struct	DMUS_PATCH_PMSG	{

		DMUS_PMSG_PART

		BYTE		byInstrument;

		BYTE		byMSB;

		BYTE		byLSB;

		BYTE		byPad[1];

}	DMUS_PATCH_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

byInstrument

Patch	number	of	the	instrument.

byMSB

Most	significant	byte	of	bank	select.

byLSB

Least	significant	byte	of	bank	select.

byPad

Padding	to	a	WORD	boundary.	This	value	is	ignored.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DMUS_MIDI_PMSG
IDirectMusicPerformance8::SendPMsg
MIDI	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PMSG
The	DMUS_PMSG	structure	contains	information	common	to	all	DirectMusic
messages.	Because	C	does	not	support	inheritance,	the	members	of	this	structure
are	contained	in	all	message	types	(including	DMUS_PMSG	itself)	as	the
DMUS_PMSG_PART	macro,	which	expands	to	the	syntax	shown	here.

Syntax

typedef	struct	DMUS_PMSG	{

		DWORD						dwSize;

		REFERENCE_TIME			rtTime;

		MUSIC_TIME	mtTime;

		DWORD						dwFlags;

		DWORD						dwPChannel;

		DWORD						dwVirtualTrackID;

		IDirectMusicTool*		pTool;

		IDirectMusicGraph*	pGraph;

		DWORD						dwType;

		DWORD						dwVoiceID;

		DWORD						dwGroupID;

		IUnknown*		punkUser;

}	DMUS_PMSG;

Members

dwSize

Size	of	the	structure,	in	bytes.	This	member	is	initialized	by
IDirectMusicPerformance8::AllocPMsg.

rtTime

Reference	time	at	which	the	message	is	to	be	played,	modified	by	dwFlags.
Used	only	if	DMUS_PMSGF_REFTIME	is	present	in	dwFlags.

mtTime

Music	time	at	which	the	message	is	to	be	played,	modified	by	dwFlags.	Used
only	if	DMUS_PMSGF_MUSICTIME	is	present	in	dwFlags.

dwFlags

Flags	from	the	DMUS_PMSGF_FLAGS	or
DMUS_TIME_RESOLVE_FLAGS	enumeration.	It	must	contain
DMUS_PMSGF_REFTIME	or	DMUS_PMSGF_MUSICTIME.

dwPChannel

Performance	channel.	The	port,	channel	group,	and	MIDI	channel	can	be	derived
from	this	value	by	using	the	IDirectMusicPerformance8::PChannelInfo
method.	Set	this	value	to	zero	for	messages	that	are	not	channel-specific,	such	as
tempo	messages.	To	send	the	message	to	more	than	channel,	use	one	of	the
following	values.

Value Description

DMUS_PCHANNEL_BROADCAST_AUDIOPATH

Send	a	copy	of	the
message	to	all
channels	of	the
audiopath.

DMUS_PCHANNEL_BROADCAST_GROUPS

Send	a	copy	of	the
message	to	each
channel	group	in	the
performance.	Used	for
messages	that	need	to
be	sent	only	once	per
channel	group,	such
as	system	exclusive
messages.

DMUS_PCHANNEL_BROADCAST_PERFORMANCE

Send	a	copy	of	the
message	to	all
channels	of	the
performance.

DMUS_PCHANNEL_BROADCAST_SEGMENT

Send	a	copy	of	the
message	to	all
channels	of	the
segment.

dwVirtualTrackID

Identifier	of	the	track.	Set	to	zero	if	the	message	is	not	being	sent	by	a	track.

pTool

Address	of	the	tool	interface.	Can	be	set	by	using
IDirectMusicGraph8::StampPMsg,	or	can	be	NULL	if	the	message	is	not	to
go	to	tools	other	than	the	output	tool.

pGraph

Address	of	the	tool	graph	interface.	Can	be	set	by	using
IDirectMusicGraph8::StampPMsg,	or	can	be	NULL	if	the	message	is	not	to
go	to	tools	other	than	the	output	tool.

dwType

Message	type	(see	DMUS_PMSGT_TYPES).

dwVoiceID

Reserved.	Must	be	zero.

dwGroupID

Identifier	of	the	track	group	or	groups	that	the	message	belongs	to	if	the	message
is	being	generated	by	a	track.	(Tracks	are	assigned	to	groups	in	the
IDirectMusicSegment8::InsertTrack	method.)	For	most	purposes,	this	value
can	be	0xFFFFFFFF.

punkUser

Address	of	an	IUnknown	interface	supplied	by	the	application.	This	pointer	is
always	released	when	the	message	is	freed.	If	the	application	wants	to	retain	the
object,	it	should	call	AddRef	before	the	message	is	freed.	If	the	message	does
not	need	a	COM	pointer,	this	value	should	be	NULL.

Remarks

The	DMUS_PMSG	structure	is	used	by	itself	for	messages	containing	the
following	values	in	the	dwType	member.

Value Description

DMUS_PMSGT_STOP Sending	a	message	of	this	type	stops	the	performance
at	the	specified	time.

DMUS_PMSGT_DIRTY

When	a	control	segment	starts	or	ends,	all	tools	in	the
segment	and	performance	graphs	receive	a	message	of
this	type,	indicating	that	if	they	cache	data	from	get-
parameter	calls,	they	must	call	the	method	again	to
refresh	their	data.	Tools	that	want	to	receive	this
message	type	must	indicate	this	through	a	call	to
IDirectMusicTool8::GetMediaTypes.	Tools	in	the
performance	graph	receive	one	copy	of	the	message
for	each	segment	in	the	performance.	Such	tools	can
safely	ignore	the	extra	messages	with	the	same	time
stamp.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_SYSEX_PMSG
The	DMUS_SYSEX_PMSG	structure	contains	data	for	a	MIDI	system-
exclusive	message.

Syntax

typedef	struct	DMUS_SYSEX_PMSG	{

		DMUS_PMSG_PART

		DWORD	dwLen;

		BYTE		abData[1];

}	DMUS_SYSEX_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

dwLen

Length	of	the	data,	in	bytes.

abData

Array	of	data.	For	an	example	of	how	to	allocate	memory	and	copy	data	to	this
member,	see	the	Remarks	for	IDirectMusicPerformance8::SendPMsg.

Remarks

The	data	part	of	a	system	exclusive	message	must	begin	with	the	System
Exclusive	identifier	(0xF0)	and	end	with	EOX	(0xF7).

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DMUS_MIDI_PMSG
DMUS_PATCH_PMSG
IDirectMusicPerformance8::SendPMsg
MIDI	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_TEMPO_PMSG
The	DMUS_TEMPO_PMSG	structure	contains	data	for	a	message	that
controls	the	performance's	tempo.

Syntax

typedef	struct	DMUS_TEMPO_PMSG	{

		DMUS_PMSG_PART

		double	dblTempo;

}	DMUS_TEMPO_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

dblTempo

Tempo,	in	the	range	from	DMUS_TEMPO_MIN	through
DMUS_TEMPO_MAX.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_TIMESIG_PMSG
The	DMUS_TIMESIG_PMSG	structure	contains	data	for	a	message	that
controls	the	time	signature	of	the	performance.

Syntax

typedef	struct	_DMUS_TIMESIG_PMSG	{

		DMUS_PMSG_PART

		BYTE	bBeatsPerMeasure;

		BYTE	bBeat;

		WORD	wGridsPerBeat;

}	DMUS_TIMESIG_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

bBeatsPerMeasure

Beats	per	measure	(top	of	the	time	signature).

bBeat

Note	that	receives	the	beat	(bottom	of	the	time	signature),	where	1	is	a	whole
note,	2	is	a	half	note,	4	is	a	quarter	note,	and	so	on.	Zero	is	a	256th	note.

wGridsPerBeat

Grids	(subdivisions)	per	beat.	This	value	determines	the	timing	resolution	for
certain	music	events—for	example,	segments	cued	with	the
DMUS_SEGF_GRID	flag	(see	DMUS_SEGF_FLAGS).

Remarks

Time	signature	messages	are	generated	by	the	time	signature	track	and	the	style
track.	In	general,	a	segment	contains	one	or	the	other,	but	not	both.	A	segment

representing	a	MIDI	file	has	a	time	signature	track,	but	most	segments	authored
with	an	application	such	as	DirectMusic	Producer	contain	time	signature
information	in	the	style	track.

By	default,	only	the	primary	segment	sends	time	signature	messages.	For
information	on	how	to	change	this	behavior,	see	Disabling	and	Enabling	Track
Parameters.

The	time	signature	is	used	by	the	performance	to	resolve	time	to	measure,	beat,
and	grid	boundaries	in	all	methods	in	which	the	time	can	be	adjusted	by
DMUS_SEGF_FLAGS	or	DMUS_TIME_RESOLVE_FLAGS.	The	time
signature	and	style	tracks	also	use	the	time	signature	to	generate	notifications	on
measure	and	beat	boundaries.	For	more	informaton,	see	the
DMUS_NOTIFICATION_PMSG	structure.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DMUS_TIMESIGNATURE
IDirectMusicPerformance8::SendPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_TRANSPOSE_PMSG
The	DMUS_TRANSPOSE_PMSG	structure	contains	message	data	for	a
transposition.

Syntax

typedef	struct	_DMUS_TRANSPOSE_PMSG	{

		DMUS_PMSG_PART

		short	nTranspose;

		WORD	wMergeIndex;

}	DMUS_TRANSPOSE_PMSG;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.

nTranspose

Number	of	semitones	by	which	to	transpose.	This	can	be	a	negative	value.

wMergeIndex

Merge	index.	When	a	transpose	message	follows	a	preceding	message	with	the
same	wMergeIndex,	the	value	in	nTranspose	becomes	the	new	setting.	When
the	second	transpose	message	has	a	different	wMergeIndex,	the	value	in
nTranspose	is	added	to	the	previous	setting.	This	member	is	significant	only	if
DMUS_PMSGF_DX8	is	present	in	the	dwFlags	member	of	the	DMUS_PMSG
part	of	this	structure.

Remarks

If	the	transposition	of	a	note	puts	it	outside	the	standard	MIDI	range	from	0
through	127,	it	does	not	play.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicPerformance8::SendPMsg

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_WAVE_PMSG
The	DMUS_WAVE_PMSG	structure	contains	message	data	for	a	wave	sound.

Syntax

typedef	struct	_DMUS_WAVE_PMSG	{

		DMUS_PMSG_PART

		REFERENCE_TIME	rtStartOffset;

		REFERENCE_TIME	rtDuration;

		long		lOffset;

		long		lVolume;

		long		lPitch;

		BYTE		bFlags;

}	DMUS_WAVE_PMSG;

;

Members

DMUS_PMSG_PART

Macro	for	common	message	members.	See	DMUS_PMSG.	The	punkUser
member	contains	the	address	of	the	IUnknown	interface	of	the	voice	object
associated	with	the	wave.

rtStartOffset

How	far	into	the	wave	to	start,	in	reference	time	units	only.

rtDuration

Duration	of	the	wave.	If	DMUS_PMSGF_LOCKTOREFTIME	is	present	in	the
dwFlags	member	of	DMUS_PMSG_PART,	this	value	is	in	reference	time
units.	Otherwise	it	is	in	music	time.

lOffset

Offset	from	actual	time	to	logical	time,	in	either	reference	or	music	time.

lVolume

Initial	volume,	in	hundredths	of	a	decibel.

lPitch

Transposition	of	the	pitch,	in	hundredths	of	a	semitone.

bFlags

Can	be	zero	or	one	of	the	following	values.

Value Description

DMUS_WAVEF_IGNORELOOPS Wave	is	not	invalidated	when	a	segment
loop	point	is	reached.

DMUS_WAVEF_NOINVALIDATE Wave	is	not	invalidated.

DMUS_WAVEF_OFF This	message	is	stopping	playback	of
the	wave.

DMUS_WAVEF_STREAMING Wave	is	streaming.

Remarks

Applications	cannot	send	messages	of	this	type	by	using
IDirectMusicPerformance8::SendPMsg,	because	they	have	no	way	of
obtaining	a	pointer	to	a	wave	object.	However,	tools	can	process	wave	messages.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Structures
This	section	contains	reference	information	for	the	following	run-time	structures
used	in	DirectMusic.

Structure Description

DMUS_AUDIOPARAMS Describes	required	resources	for	the	default
synthesizer	and	buffers	of	a	performance.

DMUS_BAND_PARAM Used	to	set	and	retrieve	band	parameters.

DMUS_BUFFERDESC
Describes	a	buffer	for	the
IDirectMusic8::CreateMusicBuffer
method.

DMUS_CHORD_KEY

Describes	a	chord	in	the
IDirectMusicPerformance8::MIDIToMusic
and
IDirectMusicPerformance8::MusicToMIDI
methods.

DMUS_CHORD_PARAM Used	to	set	and	retrieve	chord	parameters.
Equivalent	to	DMUS_CHORD_KEY.

DMUS_CLOCKINFO8
Contains	information	about	a	clock
enumerated	by	using	the
IDirectMusic8::EnumMasterClock	method.

DMUS_COMMAND_PARAM Used	to	set	and	retrieve	command	track
parameters.

DMUS_COMMAND_PARAM_2
Used	to	set	and	retrieve	command	track
parameters	with	additional	timing
information.

DMUS_EVENTHEADER Describes	an	event	in	a	port	buffer.

DMUS_MUTE_PARAM Used	to	set	and	retrieve	mute	track
parameters.

DMUS_NOTERANGE Specifies	a	range	of	notes	that	an	instrument
must	respond	to.

DMUS_OBJECTDESC Describe	a	loadable	object.
DMUS_PLAY_MARKER_PARAM Contains	information	about	a	play	marker.

DMUS_PORTCAPS Contains	information	about	an	enumerated
port.

DMUS_PORTPARAMS8 Specifies	parameters	for	the	opening	of	a
DirectMusic	port.

DMUS_RHYTHM_PARAM Contains	parameters	for	chord	rhythm.
DMUS_SCRIPT_ERRORINFO Contains	information	about	a	script	error.
DMUS_SUBCHORD Describes	a	subchord.
DMUS_SYNTHSTATS8 Describes	the	status	of	a	synthesizer.

DMUS_TEMPO_PARAM Used	to	set	and	retrieve	tempo	track
parameters.

DMUS_TIMESIGNATURE Contains	information	about	a	time	signature
in	a	style,	style	track,	or	time	signature	track.

DMUS_VALID_START_PARAM Used	to	retrieve	valid	start	times	from	a
marker	track.

DMUS_VARIATIONS_PARAM Contains	information	about	variations
associated	with	channels.

DMUS_VERSION Contains	version	information	for	an	object.

DMUS_WAVES_REVERB_PARAMSContains	information	about	reverberationeffects	on	a	DirectX	7.0	synthesizer.

KSPROPERTY Used	by	the	IKsControl::KsProperty
method	to	identify	a	property	and	operation.

Special	categories	of	structures	are	contained	in	the	following	sections:

DirectMusic	Messages
DirectMusic	File	Structures
DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_AUDIOPARAMS
The	DMUS_AUDIOPARAMS	structure	describes	required	resources	for	the
default	synthesizer	and	buffers	of	a	performance.	It	is	passed	to	the
IDirectMusicPerformance8::InitAudio	method	to	request	desired	features	and
to	receive	information	about	what	requests	were	granted.

Syntax

typedef	struct	_DMUS_AUDIOPARAMS	{

		DWORD		dwSize;

		BOOL	fInitNow;

		DWORD		dwValidData;

		DWORD		dwFeatures;

		DWORD		dwVoices;

		DWORD		dwSampleRate;

		CLSID		clsidDefaultSynth;

}	DMUS_AUDIOPARAMS;

Members

dwSize

Size	of	the	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_AUDIOPARAMS)	before	the	structure	is	used.

fInitNow

Boolean	value	that	specifies	whether	the	sink	and	synthesizer	are	created
immediately.	If	so,	results	are	returned	in	this	structure.

dwValidData

Flags	that	specify	which	members	of	this	structure	are	valid.	If	fInitNow	is
TRUE	when	the	structure	is	passed,	this	member	receives	flags	that	specify	what
members	received	data.	The	following	values	are	defined.

Flag Description
The	dwFeatures	member

DMUS_AUDIOPARAMS_FEATURES contains	or	has	received	data.

DMUS_AUDIOPARAMS_VOICES The	dwVoices	member	contains
or	has	received	data.

DMUS_AUDIOPARAMS_SAMPLERATE The	dwSampleRate	member
contains	or	has	received	data.

DMUS_AUDIOPARAMS_DEFAULTSYNTH

The	clsidDefaultSynth	member
contains	or	has	received	data.	If
this	flag	is	not	set,	the	Microsoft
software	synthesizer	is	the
default	synthesizer.

dwFeatures

Flags	that	specify	required	capabilities.	The	following	values	are	defined.

Value Description

DMUS_AUDIOF_3D
3-D	buffers.	This	flag	is	not
implemented.	Buffers	in	3-D	audiopaths
always	have	3-D	capabilities.

DMUS_AUDIOF_ALL All	features.
DMUS_AUDIOF_BUFFERS Multiple	buffers.

DMUS_AUDIOF_DMOS Additional	DMOs.	This	flag	is	not
implemented.

DMUS_AUDIOF_ENVIRON Environmental	modeling.	This	flag	is
not	implemented.

DMUS_AUDIOF_EAX
Support	for	Environmental	Audio
Extensions	(EAX).	This	flag	is	not
implemented.

DMUS_AUDIOF_STREAMING Support	for	streaming	waveforms.

dwVoices

Number	of	voices.	The	default	value	is	64.

dwSampleRate

Sample	rate	of	the	sink	and	synthesizer,	in	the	range	from	11,025	to	96,000	kHz.
The	default	value	is	22,050.

clsidDefaultSynth

Class	identifier	of	the	default	synthesizer.	This	is	the	synthesizer	used	by
standard	audiopaths	and	audiopaths	created	from	configurations	that	request	the
default	synthesizer.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_BAND_PARAM
The	DMUS_BAND_PARAM	structure	is	used	as	the	pParam	parameter	in	calls
to	the	various	get-parameter	and	set-parameter	methods	when	the	track	is	a	band
track	and	rguidType	is	GUID_BandParam.

Syntax

typedef	struct	_DMUS_BAND_PARAM	{

		MUSIC_TIME	mtTimePhysical;

		IDirectMusicBand	*pBand;

}	DMUS_BAND_PARAM;

Members

mtTimePhysical

Actual	time	at	which	the	band	change	will	be	made.	See	Remarks.

pBand

Address	of	the	IDirectMusicBand8	interface	of	the	band.	When	this	structure	is
retrieved	by	a	GetParam	call,	a	reference	to	the	band	object	is	added.	The
application	is	responsible	for	releasing	this	reference.

Remarks

The	value	in	mtTimePhysical	is	the	actual	time	at	which	the	band	change	will
be	made,	whereas	the	value	in	the	mtTime	parameter	of	the	set-parameter	method
is	the	point	in	the	performance	where	the	change	belongs,	for	example,
synchronized	with	a	beat	or	measure.	You	can	set	mtTimePhysical	to	a	time
slightly	before	mtTime	to	ensure	that	notes	are	always	played	by	the	correct
band,	even	when	a	band	change	is	made	at	the	start	of	a	loop.

If	the	track	is	a	clock-time	track,	mtTimePhysical	is	interpreted	in	the	track's
internal	time	format.	This	is	the	number	of	milliseconds	after	the	beginning	of
playback.	Because	this	can	be	confusing,	it	is	recommended	that
GUID_BandParam	not	be	used	with	clock-time	tracks.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_BUFFERDESC
The	DMUS_BUFFERDESC	structure	is	used	to	describe	a	buffer	for	the
IDirectMusic8::CreateMusicBuffer	method.

Syntax

typedef	struct	_DMUS_BUFFERDESC	{

		DWORD	dwSize;

		DWORD	dwFlags;

		GUID		guidBufferFormat;

		DWORD	cbBuffer;

}	DMUS_BUFFERDESC,	*LPDMUS_BUFFERDESC;

Members

dwSize

Size	of	this	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_BUFFERDESC)	before	the	structure	is	used.

dwFlags

No	flags	are	defined.

guidBufferFormat

Identifier	of	the	KS	format	of	the	buffer.	The	value	GUID_NULL	represents
KSDATAFORMAT_SUBTYPE_DIRECTMUSIC.

If	guidBufferFormat	represents	a	KS	format	other	than
KSDATAFORMAT_SUBTYPE_DIRECTMUSIC,	the	application	must	verify
that	the	port	playing	back	the	data	understands	the	specified	format;	if	not,	the
buffer	is	ignored.	To	find	out	whether	the	port	supports	a	specific	KS	format,	use
the	IKsControl::KsProperty	method.

cbBuffer

Minimum	size	of	the	buffer,	in	bytes.	The	amount	of	memory	allocated	can	be

slightly	higher	because	the	system	pads	the	buffer	to	a	multiple	of	4	bytes.	The
buffer	must	be	at	least	32	bytes	to	accommodate	a	single	MIDI	channel	message,
and	at	least	28	bytes	plus	the	size	of	the	data	to	accommodate	a	system	exclusive
message	or	other	unstructured	data.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures
DMUS_EVENTHEADER
IDirectMusicBuffer8::PackStructured
IDirectMusicBuffer8::PackUnstructured

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CHORD_KEY
The	DMUS_CHORD_KEY	structure	is	used	to	describe	a	chord	in	the
IDirectMusicPerformance8::MIDIToMusic	and
IDirectMusicPerformance8::MusicToMIDI	methods.

Syntax

typedef	struct	_DMUS_CHORD_KEY	{

		WCHAR									wszName[16];

		WORD										wMeasure;

		BYTE										bBeat;

		BYTE										bSubChordCount;

		DMUS_SUBCHORD	SubChordList[DMUS_MAXSUBCHORD];

		DWORD									dwScale;	

		BYTE										bKey;

		BYTE										bFlags;

}	DMUS_CHORD_KEY;

Members

wszName

Name	of	the	chord	as	specified	in	the	Chordmap	Designer	component	of
DirectMusic	Producer;	for	example,	2CM.

wMeasure

Measure	that	the	chord	falls	on.

bBeat

Beat	that	the	chord	falls	on.

bSubChordCount

Number	of	chords	in	the	chord's	list	of	subchords.

SubChordList

Array	of	DMUS_SUBCHORD	structures,	describing	the	components	that	make
up	the	chord.

dwScale

Scale	underlying	the	entire	chord.	Each	of	the	lower	24	bits	represents	a	note	in	a
two-octave	scale,	where	position	0	is	the	root	note	of	the	scale.

bKey

Key	underlying	the	entire	chord,	where	0	is	C,	1	is	C#	or	Bb,	and	so	on.

bFlags

Can	be	zero,	or	DMUS_CHORDKEYF_SILENT	if	the	chord	is	silent.	See
Remarks.

Remarks

This	structure	is	also	defined	as	a	DMUS_CHORD_PARAM	structure	for	use
in	setting	and	retrieving	the	GUID_ChordParam	track	parameter.

If	a	chord	is	flagged	as	a	silent	chord,	it	is	not	taken	into	consideration	when	a
pattern	is	selected	to	be	played.	For	instance,	if	there	is	a	chord	change	on	beat	1
and	the	silent	chord	is	on	beat	3,	a	pattern	with	a	whole	measure	chord	rhythm
can	still	be	played.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CHORD_PARAM
The	DMUS_CHORD_PARAM	structure	is	used	as	the	pParam	parameter	in
calls	to	the	various	get-parameter	and	set-parameter	methods	when	the	track	is	a
chord	track	and	rguidType	is	GUID_ChordParam.

Syntax

typedef	DMUS_CHORD_KEY	DMUS_CHORD_PARAM;	

Members

See	DMUS_CHORD_KEY.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx
Performance	Parameters

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CLOCKINFO8
The	DMUS_CLOCKINFO8	structure	contains	information	about	a	clock
enumerated	by	using	the	IDirectMusic8::EnumMasterClock	method.

Syntax

typedef	struct	_DMUS_CLOCKINFO{

		DWORD											dwSize;

		DMUS_CLOCKTYPE		ctType;

		GUID												guidClock;

		WCHAR											wszDescription[DMUS_MAX_DESCRIPTION];

		DWORD											dwFlags;

}	DMUS_CLOCKINFO8,	*LPDMUS_CLOCKINFO8;

	

typedef	DMUS_CLOCKINFO8	DMUS_CLOCKINFO;

typedef	DMUS_CLOCKINFO	*LPDMUS_CLOCKINFO;

Members

dwSize

Size	of	the	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_CLOCKINFO8)	before	the	structure	is	passed	to	a	method.

ctType

Member	of	the	DMUS_CLOCKTYPE	enumeration	specifying	the	type	of
clock.

guidClock

Identifier	of	the	clock.	This	value	can	be	passed	to	the
IDirectMusic8::SetMasterClock	method	to	set	the	master	clock	for
DirectMusic.

wszDescription

Description	of	the	clock.

dwFlags

Flags.	Can	be	0	or	DMUS_CLOCKF_GLOBAL.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_COMMAND_PARAM
The	DMUS_COMMAND_PARAM	structure	is	used	as	the	pParam	parameter
in	calls	to	various	get-parameter	and	set-parameter	methods	when	the	track	is	a
command	track	and	the	rguidType	parameter	is	GUID_CommandParam.

Syntax

typedef	struct	{

		BYTE	bCommand;

		BYTE	bGrooveLevel;

		BYTE	bGrooveRange;

		BYTE	bRepeatMode;

}	DMUS_COMMAND_PARAM;

Members

bCommand

Command	type.	See	DMUS_COMMANDT_TYPES.

bGrooveLevel

Groove	level	of	the	command.	The	groove	level	is	a	value	in	the	range	from	1
through	100.

bGrooveRange

Amount	by	which	the	groove	level	can	be	randomized.	For	instance,	if	the
groove	level	is	35	and	the	range	is	4,	the	actual	groove	level	could	be	anywhere
from	33	through	37.	If	bGrooveRange	is	an	odd	number,	1	is	subtracted	from	it.

bRepeatMode

Flag	that	specifies	how	patterns	are	selected	from	among	multiple	matching
patterns.	See	DMUS_PATTERNT_TYPES.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_COMMAND_PARAM_2
The	DMUS_COMMAND_PARAM_2	structure	is	used	as	the	pParam
parameter	in	calls	to	various	get-parameter	and	set-parameter	methods	when	the
track	is	a	command	track	and	the	rguidType	parameter	is
GUID_CommandParam2.

Syntax

typedef	struct	_DMUS_COMMAND_PARAM_2	{

		MUSIC_TIME	mtTime;

		BYTE	bCommand;

		BYTE	bGrooveLevel;

		BYTE	bGrooveRange;

		BYTE	bRepeatMode;

}	DMUS_COMMAND_PARAM_2;

Members

mtTime

Time	of	the	command.

bCommand

Command	type.	See	DMUS_COMMANDT_TYPES.

bGrooveLevel

Groove	level	of	the	command.	The	groove	level	is	a	value	in	the	range	from	1
through	100.

bGrooveRange

Amount	by	which	the	groove	level	can	be	randomized.	For	instance,	if	the
groove	level	is	35	and	the	range	is	4,	the	groove	level	could	be	anywhere	from
33	through	37.	If	bGrooveRange	is	an	odd	number,	1	is	subtracted	from	it.

bRepeatMode

Flag	that	specifies	how	patterns	are	selected	for	repetition.	See
DMUS_PATTERNT_TYPES.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_EVENTHEADER
The	DMUS_EVENTHEADER	structure	precedes	and	describes	an	event	in	a
port	buffer.

Syntax

typedef	struct	_DMUS_EVENTHEADER	{

		DWORD					cbEvent;

		DWORD					dwChannelGroup;

		REFERENCE_TIME		rtDelta;

		DWORD					dwFlags;

}	DMUS_EVENTHEADER,	*LPDMUS_EVENTHEADER;

Members

cbEvent

Number	of	bytes	in	the	event.

dwChannelGroup

Group	to	which	the	event	belongs.

rtDelta

Offset	from	the	start	time	of	the	buffer.

dwFlags

Set	to	DMUS_EVENT_STRUCTURED	if	the	event	is	parsable	MIDI	data.

Remarks

The	Pshpack4.h	header	file	is	included	before	the	declaration	of	this	structure	to
turn	off	automatic	alignment	of	structures	so	that	the	data	immediately	follows
the	header.	(For	more	information,	see	the	comments	in	Pshpack4.h.)	Poppack.h
is	then	included	to	turn	alignment	back	on,	and	the	entire	structure	(header	plus
event)	is	padded	to	an	8-byte	boundary.

Requirements

		Header:	Declared	in	dmusbuff.h.

See	Also

DirectMusic	Structures
IDirectMusicBuffer8::GetNextEvent
IDirectMusicBuffer8::PackStructured
IDirectMusicBuffer8::PackUnstructured

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_MUTE_PARAM
The	DMUS_MUTE_PARAM	structure	is	used	as	the	pParam	parameter	in
calls	to	the	various	get-parameter	and	set-parameter	methods	when	the	track	is	a
mute	track	and	rguidType	is	GUID_MuteParam.

Syntax

typedef	struct	_DMUS_MUTE_PARAM	{

		DWORD		dwPChannel;

		DWORD		dwPChannelMap;

		BOOL	fMute;

}	DMUS_MUTE_PARAM;

Members

dwPChannel

Performance	channel	to	mute	or	remap.	If	the	structure	is	being	passed	to	a	get
method,	this	member	must	be	initialized.

dwPChannelMap

Channel	to	which	dwPChannel	is	being	mapped.	This	member	is	ignored	if
fMute	is	TRUE.

fMute

TRUE	if	dwPChannel	is	being	muted.

Remarks

If	you	want	all	the	notes	on	channel	3	to	play	on	channel	9	instead,	set
dwPChannel	to	3	and	dwPChannelMap	to	9	before	passing	the	structure	to	one
of	the	set	methods.	If	you	want	to	mute	the	notes	on	PChannel	8,	set
dwPChannel	to	8	and	dwPChannelMap	to	0xFFFFFFFF.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_NOTERANGE
The	DMUS_NOTERANGE	structure	specifies	a	range	of	notes	that	an
instrument	must	respond	to.	An	array	of	these	structures	is	passed	to	the
IDirectMusicPerformance8::DownloadInstrument	and
IDirectMusicPort8::DownloadInstrument	methods	to	specify	what	notes	the
instrument	should	respond	to	and,	therefore,	what	instrument	regions	need	to	be
downloaded.

Syntax

typedef	struct	_DMUS_NOTERANGE	{

		DWORD	dwLowNote;

		DWORD	dwHighNote;

}	DMUS_NOTERANGE,	*LPDMUS_NOTERANGE;

Members

dwLowNote

Low	note	for	this	range	of	MIDI	notes	to	which	the	instrument	must	respond.

dwHighNote

High	note	for	this	range	of	MIDI	notes	to	which	the	instrument	must	respond.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_OBJECTDESC
The	DMUS_OBJECTDESC	structure	is	used	to	describe	a	loadable	object.
This	structure	is	passed	to	the	IDirectMusicLoader8::GetObject	method	to
identify	the	object	that	the	loader	should	retrieve	from	storage.	Information
about	an	object	is	retrieved	in	this	structure	by	the
IDirectMusicLoader8::EnumObject	and
IDirectMusicObject8::GetDescriptor	methods.

Syntax

typedef	struct	_DMUS_OBJECTDESC	{

		DWORD									dwSize;

		DWORD									dwValidData;

		GUID										guidObject;

		GUID										guidClass;

		FILETIME						ftDate;

		DMUS_VERSION		vVersion;

		WCHAR									wszName[DMUS_MAX_NAME];

		WCHAR									wszCategory[DMUS_MAX_CATEGORY];

		WCHAR									wszFileName[DMUS_MAX_FILENAME];

		LONGLONG						llMemLength;

		LPBYTE								pbMemData;

		IStream*						pStream

}	DMUS_OBJECTDESC,	*LPDMUS_OBJECTDESC;

Members

dwSize

Size	of	the	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_OBJECTDESC)	before	the	structure	is	passed	to	any	method.

dwValidData

Flags	describing	which	members	are	valid	and	giving	further	information	about
some	members.	The	following	values	are	defined:

Flag Description
DMUS_OBJ_CATEGORY The	wszCategory	member	is	valid.

DMUS_OBJ_CLASS The	guidClass	member	is	valid.
DMUS_OBJ_DATE The	ftDate	member	is	valid.

DMUS_OBJ_FILENAME
The	wszFileName	member	is	valid.	The
presence	of	this	flag	is	assumed	if
DMUS_OBJ_FULLPATH	is	set.

DMUS_OBJ_FULLPATH

The	wszFileName	member	contains	either	the
full	path	of	a	file	or	a	path	relative	to	the
application	directory.	The	directory	set	by
IDirectMusicLoader8::SetSearchDirectory	is
not	searched.	If	this	flag	is	not	set,
wszFilename	is	always	assumed	to	be	relative
to	the	application	directory,	or	to	the	search
directory	if	SetSearchDirectory	has	been
called	for	this	object	type.

DMUS_OBJ_LOADED The	object	is	currently	loaded	in	memory.

DMUS_OBJ_MEMORY The	object	is	in	memory,	and	llMemLength
and	pbMemData	are	valid.

DMUS_OBJ_NAME The	wszName	member	is	valid.
DMUS_OBJ_OBJECT The	guidObject	member	is	valid.

DMUS_OBJ_STREAM The	pStream	member	contains	a	pointer	to	the
data	stream.

DMUS_OBJ_URL
The	wszFileName	member	contains	a	URL.
URLs	are	not	currently	supported	by	the
DirectMusic	loader.

DMUS_OBJ_VERSION The	vVersion	member	is	valid.

guidObject

Unique	identifier	for	this	object.

guidClass

Unique	identifier	for	the	class	of	object.	See	DirectMusic	Component	GUIDs.

ftDate

Date	that	the	object	was	last	edited.

vVersion

DMUS_VERSION	structure	containing	version	information.

wszName

Name	of	the	object.

wszCategory

Category	for	the	object.

wszFileName

File	path.	If	DMUS_OBJ_FULLPATH	is	set,	this	is	the	full	path;	otherwise,	it	is
the	file	name.	If	the	IDirectMusicLoader8::SetSearchDirectory	method	has
been	called,	this	member	must	contain	only	a	file	name.

llMemLength

Size	of	data	in	memory.

pbMemData

Pointer	to	data	in	memory.	Do	not	use	this	value	except	when	loading	from	a
resource	contained	in	the	executable	file.

pStream

Address	of	the	IStream	interface	of	a	custom	stream	that	can	be	used	to	load	the
object	into	memory.	In	most	cases	this	value	should	be	NULL.See	Remarks.

Remarks

At	least	one	of	wszName,	guidObject,	and	wszFileName	must	contain	valid
data	to	retrieve	the	object	by	using	the	IDirectMusicLoader8::GetObject
method.

The	name	and	category	strings	use	16-bit	characters	in	the	WCHAR	format,	not
8-bit	ANSI	characters.	Be	sure	to	convert	as	appropriate.	You	can	use	the	C
library	mbstowcs	function	to	convert	from	multibyte	to	Unicode	and	the

wcstombs	function	to	convert	from	Unicode	back	to	multibyte.

Instead	of	passing	on	object	descriptor	to	IDirectMusicLoader8::GetObject	or
IDirectMusicLoader8::SetObject	with	a	filename	or	memory	pointer,	an
application	can	pass	a	stream.	This	is	done	by	setting	the
DMUS_OBJ_STREAM	flag	in	dwValidData	and	a	pointer	to	the	stream	in
pStream.	When	the	application	calls	GetObject,	the	loader	saves	the	stream's
current	location,	reads	the	object	from	the	stream,	and	then	restores	the	saved
location.	The	application	can	continue	reading	from	the	stream	without	being
affected	by	the	call	to	GetObject.

When	SetObject	is	called	with	a	stream,	the	loader	makes	a	clone	of	the	stream
object,	and	this	clone	is	used	if	the	object	is	later	loaded.	Thus	an	application	can
release	a	stream	or	continue	to	read	from	it	after	passing	it	to	the	loader	by	using
SetObject.	The	actual	data	of	the	stream	is	not	copied,	so	the	application	should
not	change	or	delete	the	data.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PLAY_MARKER_PARAM
The	DMUS_PLAY_MARKER_PARAM	structure	contains	information	about
a	play	marker.

Syntax

typedef	struct	_DMUS_PLAY_MARKER_PARAM	{

		MUSIC_TIME	mtTime;

}	DMUS_PLAY_MARKER_PARAM;

Members

mtTime

Time	of	the	first	legal	segment	play	marker	before	or	at	the	requested	time.	The
value	is	an	offset	from	the	requested	time.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures
GUID_Play_Marker

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PORTCAPS
The	DMUS_PORTCAPS	structure	contains	information	about	a	port
enumerated	by	a	call	to	the	IDirectMusic8::EnumPort	method.	The	structure	is
also	used	to	return	information	through	the	IDirectMusicPort8::GetCaps
method.

Syntax

typedef	struct	_DMUS_PORTCAPS	{

		DWORD	dwSize;

		DWORD	dwFlags;

		GUID		guidPort;

		DWORD	dwClass;

		DWORD	dwType;

		DWORD	dwMemorySize;

		DWORD	dwMaxChannelGroups;

		DWORD	dwMaxVoices;

		DWORD	dwMaxAudioChannels;

		DWORD	dwEffectFlags;

		WCHAR	wszDescription[DMUS_MAX_DESCRIPTION];

}	DMUS_PORTCAPS,	*LPDMUS_PORTCAPS;

Members

dwSize

Size	of	the	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_PORTCAPS)	before	the	structure	is	passed	to	any	method.

dwFlags

Flags	describing	various	capabilities	of	the	port.	This	field	can	contain	one	or
more	of	the	following	values:

Flag Description

DMUS_PC_AUDIOPATH Multiple	outputs	can	be	connected	to
DirectSound	for	audiopaths.

DMUS_PC_DIRECTSOUND The	port	supports	streaming	waveform
data	to	DirectSound.

DMUS_PC_DLS The	port	supports	DLS	Level	1	sample
collections.

DMUS_PC_DLS2 The	port	supports	DLS	Level	2	sample
collections.

DMUS_PC_EXTERNAL

The	port	connects	to	devices	outside	the
host—for	example,	devices	connected
over	an	external	MIDI	port	such	as	the
MPU-401.

DMUS_PC_GMINHARDWARE
The	synthesizer	has	its	own	GM
instrument	set,	so	GM	instruments	do
not	need	to	be	downloaded.

DMUS_PC_GSINHARDWARE This	port	contains	the	Roland	GS	sound
set	in	hardware.

DMUS_PC_MEMORYSIZEFIXED Memory	available	for	DLS	instruments
cannot	be	adjusted.

DMUS_PC_SHAREABLE

More	than	one	port	can	be	created	that
uses	the	same	range	of	channel	groups
on	the	device.	Unless	this	bit	is	set,	the
port	can	be	opened	only	in	exclusive
mode.	In	exclusive	mode,	an	attempt	to
create	a	port	fails	unless	free	channel
groups	are	available	to	assign	to	the
create	request.

DMUS_PC_SOFTWARESYNTH The	port	is	a	software	synthesizer.

DMUS_PC_WAVE Streaming	and	one-shot	waveforms	are
supported.

DMUS_PC_XGINHARDWARE The	port	contains	the	Yamaha	XG
extensions	in	hardware.

guidPort

Identifier	of	the	port.	This	value	can	be	passed	to	the
IDirectMusic8::CreatePort	method	to	get	an	IDirectMusicPort8	interface	for
the	port.

dwClass

Class	of	this	port.	The	following	classes	are	defined:

Value Description
DMUS_PC_INPUTCLASS Input	port.
DMUS_PC_OUTPUTCLASSOutput	port.

dwType

Type	of	this	port.	The	following	types	are	defined:

Value Description
DMUS_PORT_WINMM_DRIVER Windows	multimedia	driver.
DMUS_PORT_USER_MODE_SYNTHUser-mode	synthesizer.
DMUS_PORT_KERNEL_MODE WDM	driver.

dwMemorySize

Amount	of	memory	available	to	store	DLS	instruments.	If	the	port	is	using
system	memory	and	the	amount	is	therefore	limited	only	by	the	available	system
memory,	this	member	contains	DMUS_PC_SYSTEMMEMORY.

dwMaxChannelGroups

Maximum	number	of	channel	groups	supported	by	this	port.	A	channel	group	is
a	set	of	16	MIDI	channels.

dwMaxVoices

Maximum	number	of	voices	that	can	be	allocated	when	this	port	is	opened.	The
value	can	be	–1	if	the	driver	does	not	support	returning	this	parameter.

dwMaxAudioChannels

Maximum	number	of	audio	channels	that	can	be	rendered	by	the	port.	The	value
can	be	–1	if	the	driver	does	not	support	returning	this	parameter.

dwEffectFlags

Flags	indicating	what	audio	effects	are	available	on	the	port.

The	following	flags	are	defined:

Flag Description
DMUS_EFFECT_NONE No	effects	are	supported.
DMUS_EFFECT_REVERB The	port	supports	reverb.
DMUS_EFFECT_CHORUSThe	port	supports	chorus.
DMUS_EFFECT_DELAY The	port	supports	delay.

wszDescription

Description	of	the	port.	This	can	be	a	system-generated	name,	such	as	L"MPU-
401	Output	Port	[330]",	or	a	user-specified	friendly	name,	such	as	L"Port	w/
External	SC-55".

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PORTPARAMS8
The	DMUS_PORTPARAMS8	structure	contains	parameters	for	the	opening	of
a	DirectMusic	port.	These	parameters	are	passed	in	when	the
IDirectMusic8::CreatePort	method	is	called.

The	define	DMUS_PORTPARAMS	resolves	to	DMUS_PORTPARAMS8.
This	structure	supersedes	the	earlier	version	of	DMUS_PORTPARAMS,	which
is	now	declared	as	DMUS_PORTPARAMS7.

Syntax

typedef	struct	_DMUS_PORTPARAMS8	{

		DWORD	dwSize;

		DWORD	dwValidParams;

		DWORD	dwVoices;

		DWORD	dwChannelGroups;

		DWORD	dwAudioChannels;

		DWORD	dwSampleRate;

		DWORD	dwEffectFlags;

		DWORD	fShare;

		DWORD	dwFeatures;

}	DMUS_PORTPARAMS8;

	

typedef	DMUS_PORTPARAMS8	DMUS_PORTPARAMS;

typedef	DMUS_PORTPARAMS	*LPDMUS_PORTPARAMS;

Members

dwSize

Size	of	the	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_PORTPARAMS8)	before	the	structure	is	passed	to	a	method.

dwValidParams

Specifies	which	members	in	this	structure	are	valid.	Setting	the	flag	for	a
particular	port	parameter	means	that	you	want	to	have	this	parameter	set	on	the
method	call	or	want	to	override	the	default	value	when	the	port	is	created.	The
following	flags	have	been	defined:

DMUS_PORTPARAMS_VOICES
DMUS_PORTPARAMS_CHANNELGROUPS
DMUS_PORTPARAMS_AUDIOCHANNELS
DMUS_PORTPARAMS_SAMPLERATE
DMUS_PORTPARAMS_EFFECTS
DMUS_PORTPARAMS_SHARE
DMUS_PORTPARAMS_FEATURES

dwVoices

Number	of	voices	required	on	this	port.	This	is	not	an	absolute	maximum;	the
port	can	create	additional	temporary	voices	to	enable	smooth	transitions	when
lower-priority	voices	have	to	be	dropped.

dwChannelGroups

Number	of	channel	groups	to	be	allocated	on	this	port.	Must	be	less	than	or
equal	to	the	number	of	channel	groups	specified	in	the	DMUS_PORTCAPS
structure	returned	by	the	IDirectMusic8::EnumPort	and
IDirectMusicPort8::GetCaps	methods.

dwAudioChannels

Desired	number	of	output	channels.

dwSampleRate

Desired	sample	rate,	in	hertz.

dwEffectFlags

Flags	indicating	which	special	effects	are	wanted.	The	following	values	are
defined:

Flag Description
DMUS_EFFECT_NONE No	effects	are	wanted.
DMUS_EFFECT_REVERB Reverb	is	wanted.
DMUS_EFFECT_CHORUSChorus	is	wanted.
DMUS_EFFECT_DELAY Delay	is	wanted.

fShare

If	TRUE,	all	ports	use	the	channel	groups	assigned	to	this	port.	If	FALSE,	the
port	is	opened	in	exclusive	mode,	and	the	use	of	the	same	channel	groups	by
other	ports	is	forbidden.

dwFeatures

Miscellaneous	capabilities	of	the	port.	The	following	values	are	defined.

Flag Description

DMUS_PORT_FEATURE_AUDIOPATH Supports	an	audiopath	connection	to
DirectSound	buffers.

DMUS_PORT_FEATURE_STREAMINGSupports	streaming	waveformsthrough	the	synthesizer.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Structures
DMUS_PORTCAPS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_RHYTHM_PARAM
The	DMUS_RHYTHM_PARAM	structure	is	used	as	the	pParam	parameter	in
calls	to	the	various	get-parameter	methods	when	the	track	is	a	chord	track	and
rguidType	is	GUID_RhythmParam.

Syntax

typedef	struct	{

		DMUS_TIMESIGNATURE		TimeSig;

		DWORD		dwRhythmPattern;

}	DMUS_RHYTHM_PARAM;

Members

TimeSig

DMUS_TIMESIGNATURE	structure	containing	the	time	signature	of	the
rhythm	parameter.	This	structure	must	be	initialized	before	the
DMUS_RHYTHM_PARAM	structure	is	passed	to	the	get	method.

dwRhythmPattern

Rhythm	pattern	for	a	sequence	of	chords.	Each	bit	represents	a	beat	in	one	or
more	measures,	with	1	signifying	a	chord	on	the	beat	and	0	signifying	no	chord.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_SCRIPT_ERRORINFO
The	DMUS_SCRIPT_ERRORINFO	structure	contains	information	about	a
script	error.

Syntax

typedef	struct	_DMUS_SCRIPT_ERRORINFO	{

		DWORD			dwSize;

		HRESULT	hr;

		ULONG			ulLineNumber;

		LONG				ichCharPosition;

		WCHAR			wszSourceFile[DMUS_MAX_FILENAME];

		WCHAR			wszSourceComponent[DMUS_MAX_FILENAME];

		WCHAR			wszDescription[DMUS_MAX_FILENAME];

		WCHAR			wszSourceLineText[DMUS_MAX_FILENAME];

}	DMUS_SCRIPT_ERRORINFO;

Members

dwSize

Size	of	this	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_SCRIPT_ERRORINFO)	before	the	structure	is	passed	to	any	of
the	IDirectMusicScript8	methods.

hr

Result	code	obtained	from	DirectMusic	or	the	script	engine.

ulLineNumber

Line	number	in	the	script	where	the	error	occurred.

ichCharPosition

Position	in	the	line	where	a	syntax	error	was	found,	if	wszSourceLineText
contains	a	string.

wszSourceFile

File	name	of	the	script.

wszSourceComponent

Name	of	the	component	that	generated	the	error.	For	example,	this	could	be
DirectMusic	or	the	script	parsing	engine.

wszDescription

Description	of	the	error.

wszSourceLineText

Text	of	the	script	line	where	a	syntax	error	occurred.	If	the	error	is	not	in	the
syntax,	this	is	an	empty	string.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_SUBCHORD
The	DMUS_SUBCHORD	structure	is	used	in	the	SubChordList	member	of	a
DMUS_CHORD_PARAM	structure.

Syntax

typedef	struct	{

		DWORD	dwChordPattern;

		DWORD	dwScalePattern;

		DWORD	dwInversionPoints;

		DWORD	dwLevels;

		BYTE		bChordRoot;

		BYTE		bScaleRoot;

}	DMUS_SUBCHORD;

Members

dwChordPattern

Notes	in	the	subchord.	Each	of	the	lower	24	bits	represents	a	semitone,	starting
with	the	root	at	the	least	significant	bit,	and	the	bit	is	set	if	the	note	is	in	the
chord.

dwScalePattern

Notes	in	the	scale.	Each	of	the	lower	24	bits	represents	a	semitone,	starting	with
the	root	at	the	least	significant	bit,	and	the	bit	is	set	if	the	note	is	in	the	scale.

dwInversionPoints

Points	in	the	scale	at	which	inversions	can	occur.	Bits	that	are	off	signify	that	the
notes	in	the	interval	cannot	be	inverted.	Thus,	the	pattern	100001111111
indicates	that	inversions	are	allowed	anywhere	except	between	the	fifth	and
seventh	degrees	of	a	major	scale.

dwLevels

Bit	field	showing	which	levels	are	supported	by	this	subchord.	Each	part	in	a

style	is	assigned	a	level,	and	this	chord	is	used	only	for	parts	whose	levels	are
contained	in	this	member.

bChordRoot

Root	of	the	subchord,	in	which	0	is	the	lowest	C	in	the	range	and	23	is	the	top	B.

bScaleRoot

Root	of	the	scale,	in	which	0	is	the	lowest	C	in	the	range	and	23	is	the	top	B.

Remarks

Chords	authored	in	DirectMusic	Producer	can	have	up	to	four	component
subchords,	each	assigned	to	a	different	level.	Different	parts	in	a	pattern	can	be
assigned	to	different	chord	levels,	so	that	when	the	pattern	plays,	the
transpositions	within	different	parts	may	vary.	In	the	DirectMusic	API,	complex
chords	can	be	added	to	a	track	by	using	the	GUID_ChordParam	parameter.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_SYNTHSTATS8
The	DMUS_SYNTHSTATS8	structure	is	used	by	the
IDirectMusicPort8::GetRunningStats	method	to	return	the	current	running
status	of	a	synthesizer.

Syntax

typedef	struct	DMUS_SYNTHSTATS	{

		DWORD	dwSize;	

		DWORD	dwValidStats;

		DWORD	dwVoices;

		DWORD	dwTotalCPU;

		DWORD	dwCPUPerVoice;

		DWORD	dwLostNotes;

		DWORD	dwFreeMemory;

		long		lPeakVolume;

		DWORD	dwSynthMemUse;

}	DMUS_SYNTHSTATS8;

	

typedef	struct	_DMUS_SYNTHSTATS8	*LPDMUS_SYNTHSTATS8;

Members

dwSize

Size	of	the	structure,	in	bytes.	This	member	must	be	initialized	to
sizeof(DMUS_SYNTHSTATS)	before	the	structure	is	passed	to	a	method.

dwValidStats

Flags	that	specify	which	fields	in	this	structure	have	been	filled	in	by	the
synthesizer.	The	following	flags	have	been	defined:

DMUS_SYNTHSTATS_VOICES
DMUS_SYNTHSTATS_TOTAL_CPU
DMUS_SYNTHSTATS_CPU_PER_VOICE
DMUS_SYNTHSTATS_FREE_MEMORY
DMUS_SYNTHSTATS_LOST_NOTES
DMUS_SYNTHSTATS_PEAK_VOLUME

dwVoices

Average	number	of	voices	playing.

dwTotalCPU

Total	percentage	of	the	CPU	being	consumed,	multiplied	by	100.

dwCPUPerVoice

Percentage	of	the	CPU	being	consumed	per	voice,	multiplied	by	100.

dwLostNotes

Number	of	notes	lost.	Notes	can	be	dropped	because	of	voice-stealing	or	because
too	much	of	the	CPU	is	being	consumed.

dwFreeMemory

Amount	of	memory	currently	available	to	store	DLS	instruments.	If	the
synthesizer	is	using	system	memory	and	the	amount	is	therefore	limited	only	by
the	available	system	memory,	this	value	is	set	to
DMUS_SYNTHSTATS_SYSTEMMEMORY.

lPeakVolume

Peak	volume,	measured	in	hundredths	of	decibels.

dwSynthMemUse

Memory	used	by	synthesizer	waveform	data.

Remarks

All	the	running	status	parameters,	with	the	exception	of	dwFreeMemory,	are
refreshed	every	second.	For	example,	dwLostNotes	provides	the	total	number	of
notes	lost	over	a	one-second	period.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_TEMPO_PARAM
The	DMUS_TEMPO_PARAM	structure	is	used	as	the	pParam	parameter	in
calls	to	the	various	get-parameter	and	set-parameter	methods	when	the	track	is	a
tempo	track	and	rguidType	is	GUID_TempoParam.

Syntax

typedef	struct	_DMUS_TEMPO_PARAM	{

		MUSIC_TIME		mtTime;

		double		dblTempo;

}	DMUS_TEMPO_PARAM;

Members

mtTime

Time	for	which	the	tempo	was	retrieved.	This	is	an	offset	from	the	time
requested	in	the	mtTime	parameter	of	the	GetParam	or	GetParamEx	method.
This	member	is	ignored	in	calls	to	SetParam.

dblTempo

The	tempo,	in	the	range	from	DMUS_TEMPO_MIN	through
DMUS_TEMPO_MAX.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_TIMESIGNATURE
The	DMUS_TIMESIGNATURE	structure	is	used	by	the
IDirectMusicStyle8::GetTimeSignature	method	to	retrieve	information	about
a	style's	time	signature.	It	is	also	used	in	the	DMUS_RHYTHM_PARAM
structure	and	in	the	various	get-parameter	methods	when	the	rguidType
parameter	is	GUID_TimeSignature	and	the	track	is	a	time	signature	or	style
track.

Syntax

typedef	struct	_DMUS_TIMESIGNATURE	{

		MUSIC_TIME	mtTime;

		BYTE		bBeatsPerMeasure;

		BYTE		bBeat;

		WORD		wGridsPerBeat;

}	DMUS_TIMESIGNATURE;

Members

mtTime

Music	time	at	which	this	time	signature	occurs.

bBeatsPerMeasure

Top	of	time	signature.

bBeat

Bottom	of	time	signature.

wGridsPerBeat

Grids	(subdivisions)	per	beat.	This	value	determines	the	timing	resolution	for
certain	music	events—for	example,	segments	cued	with	the
DMUS_SEGF_GRID	flag	(see	DMUS_SEGF_FLAGS).

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures
DMUS_TIMESIG_PMSG
IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParamEx,	IDirectMusicTrack8::SetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_VALID_START_PARAM
The	DMUS_VALID_START_PARAM	structure	is	used	as	the	pParam
parameter	in	calls	to	various	get-parameter	methods	when	rguidType	is
GUID_Valid_Start_Time.

Syntax

typedef	struct	_DMUS_VALID_START_PARAM	{

		MUSIC_TIME	mtTime;

}	DMUS_VALID_START_PARAM;

Members

mtTime

Next	valid	point	at	which	the	segment	can	start.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures
IDirectMusicPerformance8::GetParam
IDirectMusicSegment8::GetParam
IDirectMusicTrack8::GetParamEx

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_VARIATIONS_PARAM
The	DMUS_VARIATIONS_PARAM	structure	contains	information	about
variations	associated	with	channels.	It	is	used	when	retrieving	the
GUID_Variations	parameter.

Syntax

typedef	struct	_DMUS_VARIATIONS_PARAM	{

		DWORD			dwPChannelsUsed;

		DWORD*		padwPChannels;

		DWORD*		padwVariations;

}	DMUS_VARIATIONS_PARAM;

Members

dwPChannelsUsed

The	number	of	performance	channels	in	use.

padwPChannels

Address	of	an	array	of	performance	channels	in	use.

padwVariations

Address	of	an	array	of	variations	in	effect	for	each	channel,	where	each	bit	set
represents	a	variation.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_VERSION
The	DMUS_VERSION	structure	contains	version	information	for	an	object
described	in	the	DMUS_OBJECTDESC	structure.

Syntax

typedef	struct	_DMUS_VERSION	{

		DWORD		dwVersionMS;

		DWORD		dwVersionLS;

}	DMUS_VERSION,	FAR	*LPDMUS_VERSION;

Members

dwVersionMS

Most	significant	DWORD	of	the	version	number.

dwVersionLS

Least	significant	DWORD	of	the	version	number.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_WAVES_REVERB_PARAMS
The	DMUS_WAVES_REVERB_PARAMS	structure	contains	information
about	reverberation	effects	in	the	Microsoft	software	synthesizer	provided	with
DirectX	7.0.

Syntax

typedef	struct	_DMUS_WAVES_REVERB_PARAMS	{

		float		fInGain;

		float		fReverbMix;

		float		fReverbTime;

		float		fHighFreqRTRatio;

}	DMUS_WAVES_REVERB_PARAMS;

Members

fInGain

Input	gain,	in	decibels.	The	default	value	is	0.

fReverbMix

Reverb	mix,	in	decibels.	A	value	of	0	means	100	percent	wet	reverb	(no	direct
signal).	Negative	values	give	a	drier	signal.	The	coefficients	are	calculated	so
that	the	overall	output	level	stays	approximately	constant,	regardless	of	the
amount	of	reverb	mix.	The	default	value	is	–10.0.

fReverbTime

Reverb	decay	time,	in	milliseconds.	The	default	value	is	1000.

fHighFreqRTRatio

Ratio	of	the	high	frequencies	to	the	global	reverb	time.	Unless	a	very	bright
reverb	is	wanted,	this	should	be	set	to	a	value	less	than	1.	For	example,	if
fReverbTime	is	1000	ms	and	dHighFreqRTRatio	is	0.1,	the	decay	time	for
high	frequencies	is	100	ms.	The	default	value	is	0.001.

Remarks

The	TrueVerb	reverberation	technology	from	Waves	is	licensed	to	Microsoft	as
the	SimpleVerb	implementation	for	use	in	the	Microsoft	software	synthesizer.

In	DirectX	8.0	and	later,	music	reverberation	is	handled	by	a	DMO.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

KSPROPERTY
The	KSPROPERTY	structure	is	used	by	the	IKsControl::KsProperty	method
to	identify	a	property	and	operation.

KSPROPERTY	is	defined	as	a	KSIDENTIFIER	structure,	which	is	declared
as	follows.

Syntax

typedef	struct	{

		union	{

				struct	{

				GUID			Set;

				ULONG		Id;

				ULONG		Flags;

				};

				LONGLONG		Alignment;

		};

}	KSIDENTIFIER,	*PKSIDENTIFIER;

Members

Set

Identifier	of	the	property	set.	The	following	property-set	GUIDs	are	predefined
by	DirectMusic:

Value Description

GUID_DMUS_PROP_DLS1
Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	downloading
DLS	level	1	samples.

GUID_DMUS_PROP_DLS2
Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	downloading
DLS	level	2	samples.

GUID_DMUS_PROP_Effects

Item	0	contains
DMUS_EFFECT_NONE	or	one	or
more	effects	flags	(see	the
dwEffectFlags	member	of

DMUS_PORTCAPS).	This	property	is
used	to	set	or	retrieve	the	current	state
of	the	effects.

GUID_DMUS_PROP_GM_Hardware
Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	GM	in
hardware.

GUID_DMUS_PROP_GS_Capable

Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	the	minimum
Requirements	for	Roland	GS
extensions.

GUID_DMUS_PROP_GS_Hardware
Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	Roland	GS
extensions	in	hardware.

GUID_DMUS_PROP_INSTRUMENT2

Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	downloading
samples	using	the
DMUS_ARTICULATION2	structure.

GUID_DMUS_PROP_LegacyCaps

Item	0	is	the	MIDIINCAPS	or
MIDIOUTCAPS	structure	that
describes	the	underlying	Windows
multimedia	device	implementing	this
port.	A	MIDIINCAPS	structure	is
returned	if	dwClass	is
DMUS_PC_INPUTCLASS	in	this
port's	capabilities	structure.	Otherwise,
a	MIDIOUTCAPS	structure	is
returned.

GUID_DMUS_PROP_MemorySize Item	0	is	the	number	of	bytes	of	sample
RAM	free	on	this	device.

GUID_DMUS_PROP_SampleMemorySize
Item	0	is	the	number	of	bytes	of	sample
RAM,	both	free	and	used,	available	on
this	device.

GUID_DMUS_PROP_SamplePlaybackRate

Item	0	is	the	synthesizer's	sample	rate.
The	DLS	level	2	file	format	supports
conditional	chunks	to	determine
whether	a	region	or	articulation	should
be	downloaded.	This	allows	authors	to
create	optional	waveforms	intended	for

different	sample	rates.	Setting	a	sample
rate	of	96	kHz	or	greater	may	cause
reverberation	effects	to	fail.

GUID_DMUS_PROP_SynthSink_DSOUNDItem	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	DirectSound.

GUID_DMUS_PROP_SynthSink_WAVE
Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	waveform
output	using	the	waveOut	functions.

GUID_DMUS_PROP_Volume

Item	1	(DMUS_ITEM_Volume)	is	a
LONG	in	the	range	from
DMUS_VOLUME_MAX	through
DMUS_VOLUME_MIN.	This	is	the
signed	value,	in	hundredths	of	a	decibel,
which	is	added	to	the	gain	of	all	voices
after	all	DLS	articulation	has	been
performed.	By	default,	when	a	port	is
added	to	the	performance,	this	property
is	set	to	the	master	volume.	For	master
volume,	see	Setting	and	Retrieving
Global	Parameters.

GUID_DMUS_PROP_WavesReverb
Item	0	is	a
DMUS_WAVES_REVERB_PARAMS
structure	containing	reverb	parameters.

GUID_DMUS_PROP_WriteLatency

Item	0	is	a	user-defined	value	in
milliseconds	(in	the	range	0	to	100)	that
is	added	to	the	latency	of	a	user-mode
synthesizer	that	sends	its	output	to
DirectSound.	The	default	value	is	55.
The	latency	is	the	delay	between	when
the	synthesizer	writes	data	to	a	buffer
and	when	the	data	is	sent	to	the	device.
Increasing	the	latency	can	solve	some
sound	breakup	problems.	The	property
must	be	reset	each	time	the	port	is
activated.
Item	0	is	the	period,	in	milliseconds	(in
the	range	2	to	100),	at	which	the
processing	thread	runs	when	the

GUID_DMUS_PROP_WritePeriod

synthesizer	is	a	user-mode	synthesizer
that	sends	its	output	to	DirectSound.
The	default	value	is	10.	If	your
application	requires	the	absolute	lowest
latency	possible,	you	can	set	this
property	to	values	smaller	than	the
default	value	of	10	to	process	data	more
often,	but	performance	will	suffer
because	of	frequent	context	switching.
To	reduce	CPU	consumption	at	the
expense	of	latency,	set	this	property	to
more	than	10.	The	value	is	the	same	for
all	port	instances	that	use	the	standard
DirectSound	sink.	The	property	must	be
set	each	time	the	port	is	activated.

GUID_DMUS_PROP_XG_Capable

Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	the	minimum
Requirements	for	Yamaha	XG
extensions.

GUID_DMUS_PROP_XG_Hardware
Item	0	is	a	Boolean	indicating	whether
or	not	this	port	supports	Yamaha	XG
extensions	in	hardware.

Id

Item	within	the	property	set.

Flags

One	of	the	following	flags	to	specify	the	operation:

Flag Description

KSPROPERTY_TYPE_GET Retrieve	the	given	property	item's
value.

KSPROPERTY_TYPE_SET Set	the	given	property	item's	value.
Ascertain	the	type	of	support
available	for	the	property	set.	The
data	returned	by
IKsControl::KsProperty	in

KSPROPERTY_TYPE_BASICSUPPORT*pvPropertyData	is	a	DWORD
containing	one	or	both	of
KSPROPERTY_TYPE_GET	and
KSPROPERTY_TYPE_SET,
indicating	which	operations	are
possible.

Alignment

Not	used	in	DirectMusic.

Requirements

		Header:	Declared	in	dmksctrl.h.

See	Also

DirectMusic	Structures
Property	Sets	for	DirectMusic	Ports

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DLS	Structures
This	section	contains	reference	information	for	structures	used	with
Downloadable	Sounds.	Most	applications	do	not	need	to	use	these	structures,
because	DirectMusic	handles	the	details	of	loading	DLS	collections	and
downloading	instruments	to	the	synthesizer.	They	are	of	interest	chiefly	for
applications	that	edit	DLS.

For	an	overview	of	using	DLS	data,	see	Low-Level	DLS.

For	more	information	on	DLS	data	formats,	see	the	specification	from	the	MIDI
Manufacturers	Association.

The	following	structures	are	included	in	this	section.

Structure Description

DMUS_ARTICPARAMS Describes	parameters	for	a	DLS
articulation	chunk.

DMUS_ARTICULATION Describes	a	DLS	level	1	articulation
chunk.

DMUS_ARTICULATION2 Describes	a	DLS	level	1	or	level	2
articulation	chunk.

DMUS_COPYRIGHT Describes	an	optional	copyright	chunk
in	DLS	data

DMUS_DOWNLOADINFO Used	as	a	header	for	DLS	data	to	be
downloaded	to	a	port.

DMUS_EXTENSIONCHUNK Describes	a	DLS	extension	chunk.

DMUS_INSTRUMENT Contains	an	instrument	definition	in	a
DLS	download	chunk.

DMUS_LFOPARAMS Defines	the	low-frequency	oscillator	for
a	DLS	articulation	chunk

DMUS_MSCPARAMS Defines	the	pan	for	a	DLS	articulation
chunk.

DMUS_OFFSETTABLE Used	in	the	header	of	DLS	instrument
data	being	downloaded	to	a	port.

DMUS_PEGPARAMS Defines	the	pitch	envelope	for	a	DLS
level	1	articulation	chunk.

DMUS_REGION Defines	a	region	for	a	DLS	download.

DMUS_VEGPARAMS Defines	a	volume	envelope	for	a	DLS
level	1	articulation	chunk.

DMUS_WAVE Defines	a	wave	chunk	for	a	DLS
download.

DMUS_WAVEARTDL Contains	information	for	downloading
waveform	articulation.

DMUS_WAVEDATA Contains	a	data	chunk	for	a	DLS
waveform	download.

DMUS_WAVEDL ontains	information	about	waveform
data	downloaded	to	the	synthesizer

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_ARTICPARAMS
The	DMUS_ARTICPARAMS	structure	describes	parameters	for	a	DLS	level	1
articulation	chunk.	All	parameters	for	articulation	are	stored	in	one	chunk,	which
comprises	a	series	of	structures	defining	each	functional	area	of	the	articulation.
If	an	instrument	or	region	uses	articulation,	it	references	this	chunk	by	index
from	the	DMUS_ARTICULATION	chunk.

Syntax

typedef	struct	{

		DMUS_LFOPARAMS	LFO;

		DMUS_VEGPARAMS	VolEG;

		DMUS_PEGPARAMS	PitchEG;

		DMUS_MSCPARAMS	Misc;

}	DMUS_ARTICPARAMS;

Members

LFO

DMUS_LFOPARAMS	structure	containing	parameters	for	a	low-frequency
oscillator.

VolEG

DMUS_VEGPARAMS	structure	containing	parameters	for	a	volume-envelope
generator.

PitchEG

DMUS_PEGPARAMS	structure	containing	parameters	for	a	pitch-envelope
generator.

Misc

DMUS_MSCPARAMS	structure	containing	the	initial	pan	position.

Remarks

DLS	level	2	articulation	is	handled	differently	and	does	not	use	this	structure.
See	DMUS_ARTICULATION2.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_ARTICULATION
The	DMUS_ARTICULATION	structure	describes	a	DLS	instrument
articulation	chunk.	It	is	used	when	the	format	identifier	in	the	dwDLType
member	of	the	DMUS_DOWNLOADINFO	structure	is
DMUS_DOWNLOADINFO_INSTRUMENT.	This	chunk	connects	all	available
DLS	articulation	data	in	one	list.	For	example,	it	might	have	a	DLS	Level	1
chunk	and	a	manufacturer's	proprietary	articulation	chunk.	The	DLS	chunk	is
referenced	by	ulArt1Idx,	and	all	additional	articulation	chunks	are	referenced
by	the	list	that	starts	with	ulFirstExtCkIdx.

Syntax

typedef	struct	{

		ULONG	ulArt1Idx;

		ULONG	ulFirstExtCkIdx;

}	DMUS_ARTICULATION;

Members

ulArt1Idx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	DLS	articulation	chunk.
If	0,	there	is	no	DLS	articulation.

ulFirstExtCkIdx

Index	of	the	first	third-party	extension	chunk.	If	0,	there	are	no	third-party
extension	chunks	associated	with	the	articulation.

Remarks

The	articulation	chunk	consists	of	a	DMUS_ARTICPARAMS	structure.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures
DMUS_ARTICULATION2

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_ARTICULATION2
The	DMUS_ARTICULATION2	structure	describes	a	DLS	instrument
articulation	chunk.	This	structure	is	used	when	the	format	identifier	in	the
dwDLType	member	of	the	DMUS_DOWNLOADINFO	structure	is
DMUS_DOWNLOADINFO_INSTRUMENT2.	The	DLS	level	1	chunk	is
referenced	by	ulArt1Idx,	and	all	additional	articulation	chunks	are	referenced
by	the	list	that	starts	with	ulFirstExtCkIdx.	DLS	level	2	articulation	chunks
also	use	ulNextArtIdx.

Syntax

typedef	struct	{

		ULONG	ulArt1Idx;

		ULONG	ulFirstExtCkIdx;

		ULONG	ulNextArtIdx;

}	DMUS_ARTICULATION;

Members

ulArt1Idx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	DLS	articulation	chunk.
If	0,	there	is	no	DLS	level	1	or	2	articulation.

ulFirstExtCkIdx

Index	of	the	first	third-party	extension	chunk.	If	0,	there	are	no	third-party
extension	chunks	associated	with	the	articulation.	DLS	level	2	chunks	can	also
be	placed	here.

ulNextArtIdx

Index	of	additional	articulation	chunks	to	better	support	DLS	level	2
articulations.

Remarks

The	articulation	chunk	consists	of	a	CONNECTIONLIST	structure	followed	by

an	array	of	CONNECTION	structures.	These	structures	are	declared	in	Dls1.h.
For	more	information,	see	the	Downloadable	Sounds	Level	2	specification,
published	by	the	MIDI	Manufacturers	Association.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures
DMUS_ARTICULATION

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_COPYRIGHT
The	DMUS_COPYRIGHT	structure	describes	an	optional	copyright	chunk	in
DLS	data.

Syntax

typedef	struct	{

		ULONG	cbSize;

		BYTE		byCopyright[];

}	DMUS_COPYRIGHT;

Members

cbSize

Size	of	data.

byCopyright[]

Copyright	data.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_DOWNLOADINFO
The	DMUS_DOWNLOADINFO	structure	is	used	as	a	header	for	DLS	data	to
be	downloaded	to	a	port.	It	defines	the	size	and	functionality	of	the	download
and	is	always	followed	by	a	DMUS_OFFSETTABLE	chunk.

Syntax

typedef	struct	_DMUS_DOWNLOADINFO	{

		DWORD	dwDLType;

		DWORD	dwDLId;

		DWORD	dwNumOffsetTableEntries;

		DWORD	cbSize;

}	DMUS_DOWNLOADINFO;

Members

dwDLType

Type	of	data	being	downloaded.	The	following	types	are	defined:

Value Description

DMUS_DOWNLOADINFO_INSTRUMENT

Instrument	definition,	starting
with	the
DMUS_INSTRUMENT
structure.

DMUS_DOWNLOADINFO_INSTRUMENT2

Instrument	definition	supporting
DLS	level	2	articulation,	starting
with	the
DMUS_INSTRUMENT
structure.

DMUS_DOWNLOADINFO_WAVE
PCM	waveform	data,	starting
with	the	DMUS_WAVE
structure.

dwDLId

Unique	32-bit	identifier	for	the	object.	See	Remarks.

dwNumOffsetTableEntries

Number	of	entries	in	the	DMUS_OFFSETTABLE	structure	that	follows.

cbSize

Total	size	of	DMUS_DOWNLOADINFO,	DMUS_OFFSETTABLE,	and	the
actual	data	chunk.

Remarks

The	identifier	in	dwDLId	is	used	to	connect	objects	and	is	obtained	by	using	the
IDirectMusicPortDownload8::GetDLId	method.	Primarily	it	connects	the
regions	in	an	instrument	to	wave	chunks.	For	example,	if	a	download	is	given	a
dwDLId	of	3,	an	instrument	chunk	downloads	with	the	value	3	placed	in	the
WaveLink.ulTableIndex	member	of	one	of	its	DMUS_REGION	structures.
This	indicates	that	the	region	is	connected	to	the	wave	chunk.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_EXTENSIONCHUNK
The	DMUS_EXTENSIONCHUNK	structure	describes	a	DLS	extension	chunk.
All	extensions	to	the	DLS	file	format	that	are	unknown	to	DirectMusic	are
downloaded	in	this	variable-size	chunk.

Syntax

typedef	struct	{

		ULONG		cbSize;

		ULONG		ulNextExtCkIdx;

		FOURCC	ExtCkID;

		BYTE	byExtCk[];

}	DMUS_EXTENSIONCHUNK;

Members

cbSize

Size	of	chunk.

ulNextExtCkIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	next	extension	chunk.	If
0,	there	are	no	more	third-party	extension	chunks.

ExtCkID

Chunk	identifier.

byExtCk[]

Data.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_INSTRUMENT
The	DMUS_INSTRUMENT	structure	contains	an	instrument	definition	in	a
DLS	download	chunk.

Syntax

typedef	struct	{

		ULONG	ulPatch;

		ULONG	ulFirstRegionIdx;

		ULONG	ulGlobalArtIdx;

		ULONG	ulFirstExtCkIdx;

		ULONG	ulCopyrightIdx;

		ULONG	ulFlags;

}	DMUS_INSTRUMENT;

Members

ulPatch

Patch	number	of	instrument.

ulFirstRegionIdx

Index	of	first	region	chunk	(see	DMUS_REGION)	within	the	instrument.	There
should	always	be	a	region,	but	for	compatibility	with	future	synthesizer
architectures,	it	is	acceptable	to	have	0	in	this	member.

ulGlobalArtIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	global	articulation
chunk	(see	DMUS_ARTICULATION	and	DMUS_ARTICULATION2)	for
the	instrument.	If	0,	the	instrument	does	not	have	global	articulation.

ulFirstExtCkIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	first	extension	chunk
(see	DMUS_EXTENSIONCHUNK)	within	the	instrument.	This	is	used	to	add
new	chunks	that	DirectMusic	is	unaware	of.	If	0,	no	third-party	extension	chunks

are	associated	with	the	instrument.

ulCopyrightIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	an	optional	copyright	chunk
(see	DMUS_COPYRIGHT).	If	0,	no	copyright	information	is	associated	with
the	instrument.

ulFlags

Additional	flags	for	the	instrument.	The	following	flag	is	defined:

Flag Description

DMUS_INSTRUMENT_GM_INSTRUMENT

The	instrument	is	a	standard
General	MIDI	instrument.	In	the
case	of	patch	overlap,	GM
instruments	always	have	lower
priority	than	other	DLS
instruments.	For	example,	if	a
GM	instrument	is	downloaded
with	patch	0	and	a	non-GM
instrument	is	also	downloaded	at
patch	0,	the	non-GM	instrument
is	always	selected	for	playback.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_LFOPARAMS
The	DMUS_LFOPARAMS	structure	defines	the	low-frequency	oscillator	for	a
DLS	articulation	chunk.	It	is	used	in	the	DMUS_ARTICPARAMS	structure.

Syntax

typedef	struct	{

		PCENT	pcFrequency;

		TCENT	tcDelay;

		GCENT	gcVolumeScale;

		PCENT	pcPitchScale;

		GCENT	gcMWToVolume;

		PCENT	pcMWToPitch;

}	DMUS_LFOPARAMS;

Members

pcFrequency

Frequency,	in	pitch	units.	See	Remarks.

tcDelay

Initial	delay,	in	time	cents.	See	Remarks.

gcVolumeScale

Scaling	of	output	to	control	tremolo,	in	attenuation	units.	See	Remarks.

pcPitchScale

Scaling	of	LFO	output	to	control	vibrato,	in	pitch	units.	See	Remarks.

gcMWToVolume

Modulation	wheel	range	to	control	tremolo,	in	attenuation	units.	See	Remarks.

pcMWToPitch

Modulation	wheel	range	to	control	tremolo,	in	attenuation	units.	See	Remarks.

Remarks

The	DLS	Level	1	specification	defines	time	cents,	pitch	cents,	and	attenuation	as
32-bit	logarithmic	values.	See	the	specification	from	the	MIDI	Manufacturers
Association	for	details.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures
DMUS_ARTICPARAMS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_MSCPARAMS
The	DMUS_MSCPARAMS	structure	defines	the	pan	for	a	DLS	articulation
chunk.	This	structure	is	used	in	the	DMUS_ARTICPARAMS	structure.

Syntax

typedef	struct	{

		PERCENT	ptDefaultPan;

}	DMUS_MSCPARAMS;

Members

ptDefaultPan

Default	pan,	ranging	from	–50	through	50	percent,	in	units	of	0.1	percent	shifted
left	by	16.

Remarks

PERCENT	is	defined	as	long.	For	more	information	about	pan	values,	see	the
DLS	specification	from	the	MIDI	Manufacturers	Association.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures
DMUS_ARTICPARAMS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_OFFSETTABLE
The	DMUS_OFFSETTABLE	structure	is	used	in	the	header	of	DLS	instrument
data	being	downloaded	to	a	port.

Syntax

typedef	struct	_DMUS_OFFSETTABLE	{

		ULONG	ulOffsetTable[DMUS_DEFAULT_SIZE_OFFSETTABLE];

}	DMUS_OFFSETTABLE;

Members

ulOffsetTable

Array	of	byte	offsets	into	the	data.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures
Low-Level	DLS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PEGPARAMS
The	DMUS_PEGPARAMS	structure	defines	the	pitch	envelope	for	a	DLS	level
1	articulation	chunk.	It	is	used	in	the	DMUS_ARTICPARAMS	structure.

Syntax

typedef	struct	{

		TCENT	tcAttack;

		TCENT	tcDecay;

		PERCENT	ptSustain;

		TCENT	tcRelease;

		TCENT	tcVel2Attack;

		TCENT	tcKey2Decay;

		PCENT	pcRange;

}	DMUS_PEGPARAMS;

Members

tcAttack

Attack	time,	in	time	cents.	See	Remarks.

tcDecay

Decay	time,	in	time	cents.	See	Remarks.

ptSustain

Sustain,	in	hundredths	of	a	percent	shifted	left	by	16.

tcRelease

Release	time,	in	time	cents.	See	Remarks.

tcVel2Attack

Velocity	to	attack,	in	time	cents.	See	Remarks.

tcKey2Decay

Key	to	decay,	in	time	cents.	See	Remarks.

pcRange

Envelope	range,	in	pitch	units.	See	Remarks.

Remarks

The	DLS	Level	1	specification	defines	time	cents	and	pitch	cents	as	32-bit
logarithmic	values.	See	the	specification	from	the	MIDI	Manufacturers
Association	for	details	about	the	values	in	this	structure.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures
DMUS_ARTICPARAMS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_REGION
The	DMUS_REGION	structure	defines	a	region	for	a	DLS	download.	One	or
more	regions	can	be	embedded	in	an	instrument	buffer	and	referenced	by	the
instrument	header	chunk,	DMUS_INSTRUMENT.

Syntax

typedef	struct	{

		RGNRANGE	RangeKey;

		RGNRANGE	RangeVelocity;

		USHORT	fusOptions;

		USHORT	usKeyGroup;

		ULONG		ulRegionArtIdx;

		ULONG		ulNextRegionIdx;

		ULONG		ulFirstExtCkIdx;

		WAVELINK	WaveLink;

		WSMPL		WSMP;

		WLOOP		WLOOP[1];

}	DMUS_REGION;

Members

RangeKey

Key	range	for	this	region.

RangeVelocity

Velocity	range	for	this	region.

fusOptions

Options	for	the	synthesis	of	this	region.	The	following	flag	is	defined:

Flag Description

F_RGN_OPTION_SELFNONEXCLUSIVE

If	a	second	note-on	for	the	same
note	is	received	by	the	synthesis
engine,	the	second	note	is	played,
as	well	as	the	first.	This	option	is

off	by	default	so	that	the	synthesis
engine	forces	a	note-off	of	the	first
note.

usKeyGroup

Key	group	for	a	drum	instrument.	Key	group	values	allow	multiple	regions
within	a	drum	instrument	to	belong	to	the	same	group.	If	a	synthesis	engine	is
instructed	to	play	a	note	with	a	key	group	setting	and	any	other	notes	are
currently	playing	with	this	same	key	group,	the	synthesis	engine	turns	off	all
notes	with	the	same	key	group	value	as	soon	as	possible.	Currently,	key	groups
from	1	through	15	are	legal,	and	0	indicates	no	key	group.

ulRegionArtIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	global	articulation
chunk	for	the	region.	If	0,	the	region	does	not	have	an	articulation	and	relies	on
the	instrument's	global	articulation.

ulNextRegionIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	next	region	in	the
region	list.	If	0,	there	are	no	more	regions.

ulFirstExtCkIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	the	third-party	extension
chunk	list.	If	0,	no	extension	chunks	are	associated	with	the	region.

WaveLink

Standard	DLS	structure	(declared	in	the	Dls1.h	header	file)	for	managing	a	link
from	the	region	to	a	waveform.	The	ulTableIndex	member	of	the	WAVELINK
structure	contains	the	download	identifier	of	the	associated	buffer.	(For	more
information,	see	DMUS_DOWNLOADINFO	and	Low-Level	DLS.)

WSMP

Standard	DLS	structure	(declared	in	Dls1.h)	for	managing	the	playback	of	the
waveform.	If	the	cSampleLoops	member	is	1,	the	following	WLOOP	structure

carries	the	loop	start	and	end	points.

WLOOP[]

Structure	describing	a	loop.	The	WLOOP	type	is	declared	in	Dls1.h.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_VEGPARAMS
The	DMUS_VEGPARAMS	structure	defines	a	volume	envelope	for	a	DLS
level	1	articulation	chunk.

Syntax

typedef	struct	{

		TCENT	tcAttack;

		TCENT	tcDecay;

		PERCENT	ptSustain;

		TCENT	tcRelease;

		TCENT	tcVel2Attack;

		TCENT	tcKey2Decay;

}	DMUS_VEGPARAMS;

Members

tcAttack

Attack	time,	in	time	cents.	See	Remarks.

tcDecay

Decay	time,	in	time	cents.	See	Remarks.

ptSustain

Sustain,	in	hundredths	of	a	percent	and	shifted	left	by	16.

tcRelease

Release	time,	in	time	cents.	See	Remarks.

tcVel2Attack

Velocity	to	attack,	in	time	cents.	See	Remarks.

tcKey2Decay

Key	to	decay,	in	time	cents.	See	Remarks.

Remarks

The	DLS	Level	1	specification	defines	time	cents	as	a	32-bit	logarithmic	value.
See	the	specification	from	the	MIDI	Manufacturers	Association	for	details	about
the	values	in	this	structure.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DMUS_ARTICPARAMS

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_WAVE
The	DMUS_WAVE	structure	defines	a	wave	chunk	for	a	DLS	download.

Syntax

typedef	struct	{

		ULONG		ulFirstExtCkIdx;

		ULONG		ulCopyrightIdx;

		ULONG		ulWaveDataIdx;

		WAVEFORMATEX		WaveformatEx;

}	DMUS_WAVE;

Members

ulFirstExtCkIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	third-party	extension
chunks.	If	0,	no	extension	chunks	are	associated	with	the	waveform.

ulCopyrightIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	copyright	chunks.	If	0,	no
copyright	information	is	associated	with	the	waveform.

ulWaveDataIdx

Index,	in	the	DMUS_OFFSETTABLE	structure,	of	waveform	data.	See
DMUS_WAVEDATA.

WaveformatEx

WAVEFORMATEX	structure	that	specifies	the	WAV	format	of	the	chunk.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_WAVEARTDL
The	DMUS_WAVEARTDL	structure	contains	information	for	downloading
waveform	articulation.

Syntax

typedef	struct	_DMUS_WAVEARTDL	{

		ULONG	ulDownloadIdIdx;

		ULONG	ulBus;

		ULONG	ulBuffers;

		ULONG	ulMasterDLId;

		USHORT		usOptions

}	DMUS_WAVEARTDL,	*LPDMUS_WAVEARTDL;

Members

ulDownloadIdIdx

Download	identifiers	of	each	buffer.

ulBus

Playback	bus.

ulBuffers

Buffers.

ulMasterDLId

Download	identifier	of	master	voice	of	subordinate	group.

usOptions

Downloadable	Sounds	Level	2	region	options.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_WAVEDATA
The	DMUS_WAVEDATA	structure	contains	a	data	chunk	for	a	DLS	waveform
download.	The	nature	of	the	data	is	defined	by	the	WaveformatEx	member	of
the	DMUS_WAVE	structure.

Syntax

typedef	struct	{

		ULONG	cbSize;

		BYTE	byData[];

}	DMUS_WAVEDATA;

Members

cbSize

Size	of	data.

byData[]

PCM	waveform	data.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_WAVEDL
ontains	information	about	waveform	data	downloaded	to	the	synthesizer.

Syntax

typedef	struct	_DMUS_WAVEDL	{

		ULONG		cbWaveData;

}	DMUS_WAVEDL,	*LPDMUS_WAVEDL;

Members

cbWaveData

Number	of	bytes	of	data.

Requirements

		Header:	Declared	in	dmdls.h.

See	Also

DLS	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	File	Format
This	section	describes	the	format	of	files	created	in	DirectMusic	Producer	and
read	by	DirectMusic	when	IDirectMusicLoader8::GetObject	or
IDirectMusicLoader8::LoadObjectFromFile	is	called.	Most	applications	don't
parse	these	files	directly.	This	format	information	is	included	for	developers	of
music-authoring	applications	or	DirectMusic	plug-ins	who	want	to	be	able	to
save	data	in	a	compatible	format	or	load	data	into	their	own	objects.

DirectMusic	data	is	stored	in	the	resource	interchange	file	format	(RIFF).	The
following	topics	contain	general	information	about	RIFF	files:

About	RIFF
RIFF	Notation

The	following	topics	describe	how	DirectMusic	data	is	organized	in	RIFF
chunks:

Common	Chunks
Audiopath	Form
Band	Form
Chordmap	Form
Container	Form
DirectSound	Buffer	Configuration	Form
Effects	Form
Reference	List
Script	Form
Segment	Form
Style	Form
Tool	Form
Toolgraph	Form
Track	Form
Wave	Header	Chunk

The	following	section	is	a	reference	to	structures	used	to	contain	data	in	RIFF
chunks:

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

About	RIFF
The	basic	building	block	of	a	RIFF	file	is	a	chunk.	A	chunk	is	a	logical	unit	of
data.	Each	chunk	contains	the	following	fields:

A	four-character	code	(FOURCC)	specifying	the	chunk	identifier.
Conventionally,	this	is	uppercase	for	registered	chunk	types,	and	lowercase
otherwise.
A	DWORD	value	specifying	the	size	of	the	data	member	in	the	chunk.
The	data.

A	chunk	contained	in	another	chunk	is	a	subchunk.	The	only	chunks	allowed	to
contain	subchunks	are	those	with	a	chunk	identifier	of	RIFF	or	LIST.

The	first	chunk	in	a	file	must	be	identified	as	RIFF.	All	other	chunks	in	the	file
are	subchunks	of	this	chunk.	RIFF	chunks	are	also	called	forms.

A	LIST	chunk	is	a	grouping	of	subchunks.	Some	of	these	subchunks	might
appear	multiple	times,	but	a	LIST	is	not	an	array.	The	terminology	can	be
confusing.	You	might	expect	the	chunk	labeled	<part-list>,	for	example,	to	be	a
list	of	musical	parts.	In	fact,	it	is	a	list	of	the	elements	of	a	"part"	chunk,	which
describes	a	single	part.

RIFF	chunks	include	an	additional	field	in	the	first	4	bytes	of	the	data	field.	This
additional	field	provides	the	form	type	of	the	chunk.	The	form	type	is	a	four-
character	code	identifying	the	format	of	the	data	stored	in	the	file.	For	example,
DirectMusic	styles	have	the	form	type	DMST.

LIST	chunks	also	include	an	additional	field	in	the	first	4	bytes	of	the	data	field.
This	field	contains	the	list	type	of	the	field.	The	list	type	is	a	four-character	code
identifying	the	contents	of	the	list.	For	example,	DirectMusic	styles	have	a	LIST
chunk	with	a	list	type	of	"part"	that	contains	data	pertaining	to	a	particular	part
(instrument	track)	in	the	performance.

Note			Every	four-character	code	used	in	DirectMusic	files	has	a	corresponding
macro	in	Dmusicf.h.	For	example,	the	FOURCC	for	DMST	is	returned	by	the
DMUS_FOURCC_STYLE_FORM	macro.

For	more	information	on	RIFF	files	in	general,	see	Resource	Interchange	File
Format	Services	in	the	Platform	SDK	documentation.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

RIFF	Notation
The	descriptions	of	DirectMusic	files	in	the	following	sections	use	a	subset	of
the	conventional	notation	for	RIFF	files.	The	principal	parts	of	this	notation	are
shown	in	the	following	table.

Notation Description

<element> File	element	labeled	"element",	or	of
type	element.

[<element>] Optional	file	element.

<element>... One	or	more	copies	of	the	specified
element.

[<element>]... Zero	or	more	copies	of	the	specified
element.

name,	'name',	NAME,	or	'NAME' FOURCC	identifier	of	a	form	type,	list
type,	or	chunk.

//	Comment Comment.

Labels	are	used	only	in	the	notation,	not	in	the	files	themselves.	The	label	<cheh-
ck>	refers	to	a	chunk	with	a	unique	FOURCC	identifier	and	format.	Wherever	a
chunk	of	this	kind	occurs	in	the	notation,	the	same	label	is	used.

The	data	or	subelements	associated	with	a	label	are	shown	as	in	the	following
example:

<cheh-ck>	->	cheh(<DMUS_IO_CHORDENTRY>)

This	notation	indicates	that	the	chunk	labeled	<cheh-ck>	consists	of	the
FOURCC	identifier	"cheh"	followed	by	a	DMUS_IO_CHORDENTRY
structure.

Note			The	data	in	every	chunk	is	preceded	by	a	DWORD	showing	the	size	of
the	data.	This	element	is	not	shown	in	the	notation.

The	next	example	shows	a	list	element,	consisting	of	the	FOURCC	"LIST"
followed	by	the	list	identifier	"cmap"	and	one	or	more	elements	labeled	<choe-

list>.	The	<choe-list>	element	would	be	expanded	elsewhere.

<cmap-list>	->	LIST('cmap'	

		<choe-list>...)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Common	Chunks
The	following	chunks	occur	in	various	list	chunks	and	forms.

<guid-ck>

This	is	the	GUID	identifier	of	the	element.

<guid-ck>	->	guid(<GUID>)

<vers-ck>

This	chunk	contains	version	information	for	the	element.

<vers-ck>	->	vers(<DMUS_IO_VERSION>)

<UNFO-list>

The	UNFO	chunk	is	like	a	standard	RIFF	INFO	list,	except	that	it	uses	Unicode
characters.	INFO	and	UNFO	lists	consist	of	various	chunks	that	contain	null-
terminated	strings.

<UNFO-list>	->	LIST('UNFO'	

		<unfo-text-ck>...	

)	

See	Also

Reference	List

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Audiopath	Form
The	following	notation	shows	the	organization	of	the	audiopath	form.

RIFF('DMAP'	

		[<guid-ck>]				//	GUID	for	path.

		[<vers-ck>]				//	Version	information.

		[<UNFO-list>]		//	Name,	author,	copyright,	comments.

		[<DMTG-form>]		//	Toolgraph.

		[<pcsl-list>]		//	Port	configurations.

		[<dbfl-list>]...	//	DirectSound	buffer	descriptors.

)

All	elements	are	optional.

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<DMTG-form>

See	Toolgraph	Form.

<pcsl-list>

Information	about	the	configuration	of	ports	is	stored	in	this	list.

<pcsl-list>	->	LIST('pcsl'

		<pcfl-list>...

)

The	port	configuration	list	consists	of	an	array	of	lists	in	the	following	format:

LIST('pcfl'	

		<pcfh-ck>				//	Header	chunk.

		<pprh-ck>				//	Port	parameters	used	to	create	the	port.

		[<dbfl-list>]...	//	DirectSound	buffer	descriptors.

		[<pchl-list>]		//	Pchannel-to-buffer	assignments.

)

The	port	configuration	list	consists	of	several	chunks,	starting	with	headers

describing	the	port	configuration	and	parameters:

<pcfh-ck>	->	pcfh(<DMUS_IO_PORTCONFIG_HEADER>)

	

<pprh-ck>	->	pprh(<DMUS_PORTPARAMS8>)

The	optional	buffer	descriptors	are	each	contained	in	a	chunk	with	the	following
format.

<dbfl-list>	->	LIST('dbfl'

		<ddah-ck>			//	Buffer	attributes	header	

		[<DSBC-form>]	//	Buffer	configuration

)

This	buffer	description	list	begins	with	a	header	describing	buffer	attributes.

<ddah-ck>	->	('ddah'	<	DMUS_IO_BUFFER_ATTRIBUTES_HEADER	>)

The	header	is	followed	by	an	optional	DirectSound	Buffer	Configuration	Form.
This	is	not	required	for	standard	buffer	types.

The	final	chunk	in	the	port	configuration	list	is	a	list	containing	one	or	more
assignments	of	performance	channels	to	buffers.

pchl-list	->	LIST('pchl'

		<pchh-ck>...		

)

This	list	consists	of	an	array	of	chunks,	each	of	which	describes	one	assignment
of	channels	to	buffers.

<pchh-ck>	->	pchh(

		<DMUS_IO_PCHANNELTOBUFFER_HEADER>

		<GUID>...	//	Array	of	GUIDs	specifying	the	buffers.

)

<dbfl-list>

The	last	part	of	the	audiopath	form	consists	of	optional	buffer	descriptors
identical	in	format	to	those	in	the	port	configuration	list,	<pcsl-list>.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Band	Form
The	following	notation	shows	the	format	of	the	top-level	chunk,	or	form,	of	a
band	file.	Band	forms	can	also	be	contained	in	other	chunks.

RIFF('DMBD'

		[<guid-ck>]			//	GUID	for	band

		[<vers-ck>]			//	Optional	version	information

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments

		<lbil-list>			//	Instruments

)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<lbil-list>

The	data	is	contained	in	an	array	of	lists.

<lbil-list>	->	LIST('lbil'

		<lbin-list>...

)

Each	instrument	is	described	in	a	list	that	has	the	following	format:

<lbin-list>	->	LIST('lbin'

		<bins-ck>

		[<DMRF-list>]	

)

Within	the	instrument	list,	the	following	chunk	contains	a	header	describing	the
instrument:

<bins-ck>	->	bins(<DMUS_IO_INSTRUMENT>)

The	instrument	list	can	also	contain	<DMRF-list>,	which	in	this	case	is	a
reference	to	a	DLS	file.	See	Reference	List.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Chordmap	Form
The	following	notation	shows	the	organization	of	the	top-level	chunk,	or	form,
of	a	chordmap	file:

RIFF('DMPR'

		<perh-ck>			//	Chordmap	header	chunk

		[<guid-ck>]	//	GUID	chunk

		[<vers-ck>]	//	Version	chunk

		[<UNFO-list>]	//	UNFO	list

		<chdt-ck>			//	Chord	data	chunk

		<chpl-list>			//	Chord	palette

		<cmap-list>			//	Chord	graph

		<spsq-list>			//	Signpost	list

)

<perh-ck>

This	is	the	basic	header	information	for	a	chordmap.

<perh-ck>	->	perh(<DMUS_IO_CHORDMAP>)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<chdt-ck>

<chdt-ck>	->	chdt(

		<WORD>		//	Size	of	DMUS_IO_CHORDMAP_SUBCHORD.

		<DMUS_IO_CHORDMAP_SUBCHORD>...	

)

The	<chdt-ck>	chunk	contains	a	WORD	indicating	the	number	of	bytes	per
subchord	followed	by	an	array	of	unique	subchords.	The	subchord	identifiers
referred	to	in	other	parts	of	this	file	all	correspond	directly	to	an	index	into	this
array.

<chpl-list>

<chpl-list>	->	LIST('chpl'	

		<chrd-list>...	

)

This	list	contains	the	chord	palette.	There	must	be	exactly	24	items	in	this	list.

<chrd-list>	->	LIST('chrd'

		<UNAM-ck>		//	Chord	name	

		<sbcn-ck>		//	Subchord	indexes

)

This	list	contains	the	basic	chord	information.	This	information	is	simply	the
chord's	name	and	a	list	of	identifiers	for	the	subchords	it	comprises.

<UNAM-ck>	->	UNAM	(<WCHAR>...)

The	UNAM	chunk	stores	the	name	of	the	chord.

<sbcn-ck>	->	sbcn(<WORD>...)

The	"sbcn"	chunk	contains	one	or	more	subchord	identifiers.	These	correspond
directly	to	an	index	into	the	array	found	in	<chdt-ck>.	A	maximum	of	four
chords	is	supported.

<cmap-list>

This		list	contains	the	entire	chord	connection	graph	for	the	chordmap.	The	bulk
of	the	data	for	the	chordmap	resides	in	this	chunk.

<cmap-list>		->		LIST('cmap'	

		<choe-list>...	

)

Each	list	contains	data	for	a	single	entry	in	the	chord	graph,	along	with	pointers
to	all	the	chords	that	can	occur	next	in	the	chord	graph.

<choe-list>	->	LIST('choe'

		<cheh-ck>		//	Chord	entry	data.

		<chrd-list>		//	Chord	data;	see	above.

		<ncsq-ck>		//	Next	chord	list.

)

<cheh-ck>	->	cheh(<DMUS_IO_CHORDENTRY>)

This	is	the	chord	entry	header.	The	identifier	in	the	structure	is	the	identifier	for

the	chord	connection	graph,	not	a	subchord	identifier.

<ncsq-ck>	->	ncsq	(

		<WORD>			//	Size	of	DMUS_IO_NEXTCHORD.

		<DMUS_IO_NEXTCHORD>...	

)

The	"ncsq"	chunk	contains	data	that	connects	one	chord	in	the	connection	graph
to	another.	Each	chord	in	the	connection	graph	is	represented	by	a	16-bit
identifier.

<spsq-list>

This	chunk	contains	data	for	each	of	the	signposts.

<spsq-list>	->	LIST('spsq'	

		<spst-list>...	

)

The	<spst-list>	contains	data	for	a	single	signpost,	consisting	of	a	header,	chord
information,	and	optional	cadence	chords.

<spst-list>		->		LIST('spst'

		<spsh-ck>

		<chrd-list>			//	Chord	data

		[<cade-list>]	//	Cadence	chords

)

The	<spsh-ck>	contains	the	signpost	data.

<spsh-ck>	->	spsh(<DMUS_IO_CHORDMAP_SIGNPOST>)

For	<chrd-list>,	see	<chpl-list>,	described	previously.

The	<cade-list>	chunk	contains	the	chord	information	for	cadence	chords.
Support	for	up	to	two	cadence	chords	in	this	list	is	provided.	Any	additional
chords	are	ignored.

<cade-list>	->	LIST('cade'	

		<chrd-list>...	

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Container	Form
The	container	form	is	a	chunk	that	contains	other	chunks	such	as	segment	or
style	forms.	It	can	be	contained	within	a	segment	or	script	file.	It	is	organized	as
follows:

RIFF	('DMCN'	

		<conh-ck>			//	Container	header	chunk.

		[<guid-ck>]			//	GUID	for	container.

		[<vers-ck>]			//	Optional	version	information.

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments.

		<cosl-list>			//	List	of	objects.

)

<conh-ck>

This	chunk	contains	a	header	structure.

<conh-ck>	->	'conh'	(<DMUS_IO_CONTAINER_HEADER>)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<cosl-list>

The	final	element	of	the	container	form	is	an	array	of	chunks	that	describe	the
objects	in	the	container.

<cosl-list>	->	LIST	('cosl'

		<cobl-list>...	

)

Each	object	is	stored	in	the	following	format:

<cobl-list>	->	LIST('cobl'

		[<coba-ck>]		

		<cobh-ck>			//	Required	header

		[<data>]	or	[DMRF-list]

The	first	element	is	an	alias,	or	alternative	name	by	which	this	object	is	known

within	the	container.

<coba-ck>	->	coba(<WCHAR>...)		//	Null-terminated	string

The	second	element	header	for	the	object.

<cobh-ck>	->	cobh	(<DMUS_IO_CONTAINED_OBJECT_HEADER>)

The	header	is	normally	followed	by	object	data	of	the	type	specified	in	<cobh-
ck>.	This	can	be	in	the	form	of	a	RIFF	chunk	such	as	a	Segment	Form	or	a	Style
Form.	If	it	is	a	DMRF-list,	it	is	a	reference	to	the	object.	For	more	information
on	DMRF,	see	Reference	List.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectSound	Buffer	Configuration
Form
The	following	notation	shows	the	organization	of	a	chunk	containing
information	about	a	DirectSound	buffer	configuration.

RIFF	('DSBC'		

		[<guid-ck>]			//	GUID	identifier	for	this	buffer	configuration.

		[<vers-ck>]			//	Optional	version	information.

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments.

		<dsbd-ck>			//	DirectSound	buffer	descriptor.	

		[<bsid-ck>]			//	Bus	identifiers.

		[<ds3d-ck>]			//	3-D	parameters.

		[<fxls-list>]	//	Effect	descriptors.

)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<dsbd-ck>

The	DirectSound	buffer	descriptor	is	organized	as	follows:

<dsbd-ck>	->	'dsbd'	(

		<DSOUND_IO_DSBUFFERDESC>

)

<bsid-ck>

The	bus	identifiers	are	stored	in	the	following	chunk.

<bsid-ck>	->	'bsid'	(<DSOUND_IO_DSBUSID>)

The	DSOUND_IO_DSBUSID	structure	is	an	array	of	bytes	whose	size	is
specified	by	the	chunk	size.

<ds3d-ck>

The	3-D	parameters	of	the	buffer	are	stored	in	the	following	chunk.

<ds3d-ck>	->	'ds3d'(<DSOUND_IO_3D>)

<fxls-list>

The	next	list	contains	information	about	DMOs	associated	with	the	buffer.

<fxls-list>	->	LIST	('fxls'

		<DSFX-form>...		

)

Each	DMO	is	stored	in	an	Effects	Form.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Effects	Form
The	effects	form	describes	a	DMO	effect.

RIFF	('DSFX'

		<fxhr-ck>	

		[<data-ck>]

)

<fxhr-ck>

The	header	chunk	describes	the	effect.

<fxhr-ck>	->	fxhr	(<DSOUND_IO_DXDMO_HEADER>)

<data-ck>

The	data	chunk	is	an	optional	set	of	values	for	the	effect	parameters	in	the	format
expected	by	the	DMO.

<data-ck>	->	data	(<DSOUND_IO_DXDMO_DATA>)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Reference	List
The	reference	list	chunk	contains	information	about	a	reference	to	an	object	in
another	file.	For	example,	a	band	object	might	contain	a	reference	to	a	DLS
collection	in	a	separate	file.	This	subchunk	is	used	in	many	different	chunks.

The	notation	for	a	reference	list	is	as	follows:

<DMRF-list>	->LIST('DMRF'

		<refh-ck>			//	Reference	header

		[<guid-ck>]			//	Object	GUID

		[<date-ck>]			//	File	date

		[<name-ck>]			//	Name

		[<file-ck>]			//	File	name

		[<catg-ck>]			//	Category	name

		[<vers-ck>]			//	Version	information

)

<refh-ck>

The	data	begins	with	a	header	that	includes	information	about	the	object	being
referred	to:

<refh-ck>	->	refh(<DMUS_IO_REFERENCE>)

All	other	chunks	are	optional.

<guid-ck>

See	Common	Chunks.

<date-ck>

The	date	chunk	contains	a	date	in	a	FILETIME	structure.

<date-ck>	->	date(<FILETIME>)

<name-ck>,	<file-ck>,	<catg-ck>

The	name,	file	name,	and	category	name	are	null-terminated	strings.

<name-ck>	->	name(<WCHAR>...)

<file-ck>	->	file(<WCHAR>...)		//	Null-terminated	string

<catg-ck>	->	catg(<WCHAR>...)		//	Null-terminated	string

<vers-ck>

See	Common	Chunks.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Script	Form
This	section	describes	the	organization	of	a	chunk	containing	information	about
a	DirectMusic	script.

RIFF	('DMSC'

		<schd-ck>			//	Script	header	chunk.

		[<guid-ck>]			//	GUID	for	script.

		[<vers-ck>]			//	Optional	version	information.

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments.

		<scve-ck>			//	Version	of	DirectMusic.

		<DMCN-form>			//	Container	of	content	referenced	by	the	script.

		<scla-ck>			//	Scripting	language.

		<scsr-ck>	or	<DMRF>	//	Source	code.

)

<schd-ck>

The	header	chunk	contains	flags	in	a	DMUS_IO_SCRIPT_HEADER	structure.

<schd-ck>	->	schd(<DMUS_IO_SCRIPT_HEADER>)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<scve-ck>

This	chunk	describes	the	version	of	DirectMusic	against	which	the	script	was
authored.

<scve-ck>	->	scve(<DMUS_IO_VERSION>)

<DMCN-form>

For	information	on	this	chunk,	see	Container	Form.

<scla-ck>

This	chunk	consists	of	a	null-terminated	string	describing	the	scripting	language.

<scla-ck>	->	scla(<WCHAR>...)

<scsr-ck>	or	<DMRF>

The	final	chunk	can	contain	the	source	code	as	a	null-terminated	array	of
WCHAR	values.

<scsr-ck>	->	scsr(<WCHAR>...)

Alternatively,	the	final	chunk	can	be	a	Reference	List	chunk	pointing	to	a	text
file	containing	the	script	code.	The	guidClassID	member	of	the
DMUS_IO_REFERENCE	must	be	GUID_NULL,	because	this	text	file	is	not	a
DirectMusic	object.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Segment	Form
The	following	notation	shows	the	organization	of	the	top-level	chunk	of	a
segment	file.	This	form	can	also	be	contained	within	a	Container	Form.

RIFF('DMSG'

		<segh-ck>			//	Segment	header	chunk.

		[<guid-ck>]			//	GUID	for	the	segment.

		[<vers-ck>]			//	Optional	version	information.

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments.

		[<DMCN-form>]	//	Optional	container	of	objects	embedded	in	file.

		<trkl-list>			//	Tracks.

		[<DMTG-form>]	//	Optional	toolgraph.

		[<DMAP-form>]	//	Optional	audiopath.

)

<segh-ck>

This	chunk	contains	the	basic	header	information	for	a	segment.

<segh-ck>	->	segh(<DMUS_IO_SEGMENT_HEADER>)

<guid-ck>,	<vers-ck>,	<UNFO-list>

See	Common	Chunks.

<DMCN-form>

See	Container	Form.

<trkl-list>

This	is	the	track	list.	Each	track	is	encapsulated	in	a	Track	Form.

<trkl-list>	->	LIST('trkl'

		<DMTK-form>...	

)

<DMTG-form>

See	Toolgraph	Form.

<DMAP-form>

See	Audiopath	Form.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Style	Form
The	following	notation	shows	the	organization	of	the	top-level	chunk	of	a	style
file.	This	form	can	also	be	contained	within	a	Container	Form.

RIFF('DMST'

		<styh-ck>			//	Style	header	chunk

		<guid-ck>			//	Unique	identifier

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments

		[<vers-ck>]			//	Version	chunk

		<part-list>...		//	Array	of	parts	in	the	style,	used	by	patterns

		<pttn-list>...		//	Array	of	patterns	in	the	style

		<DMBD-form>...		//	List	of	bands	in	the	style

		[<prrf-list>]	//	List	of	chordmap	references	in	the	style

)

<styh-ck>

This	chunk	contains	the	basic	header	information	for	a	style.

<styh-ck>	->	styh(<DMUS_IO_STYLE>)

<guid-ck>,<UNFO-list>,	<vers-ck>

For	information	on	these	three	chunks,	see	Common	Chunks.

<part-list>

Each	musical	part	in	the	style	is	described	in	a	chunk	with	the	following	format.

<part-list>	->	LIST('part'

		<prth-ck>			//	Part	header	chunk

		[<UNFO-list>]

		[<note-ck>]			//	Notes	in	part.

		[<crve-ck>]			//	Curves	in	part.

		[<mrkr-ck>]			//	Markers	in	part.

		[<rsln-ck>]			//	Variation	resolutions	in	part.

		[<anpn-ck>]			//	Resolution	anticipations	in	part.

)

The	part	list	includes	a	header,	an	optional	UNFO	chunk,	and	a	list	of	elements,
as	shown	in	the	following	notation.	(For	the	UNFO	list,	see	Common	Chunks.)

<prth-ck>	->	prth(<DMUS_IO_STYLEPART>)

	

<note-ck>	->	note(

		<	DWORD	>		//	Size	of	DMUS_IO_STYLENOTE

		<	DMUS_IO_STYLENOTE	>...

)

	

<crve-ck>	->	crve(

		<	DWORD	>		//	Size	of	DMUS_IO_STYLECURVE.

		<	DMUS_IO_STYLECURVE	>...

)

	

<mrkr-ck>	->	mrkr(

		<	DWORD	>	//	Size	of	DMUS_IO_STYLEMARKER.

		<	DMUS_IO_STYLEMARKER	>...

)

	

<rsln-ck>	->	rsln(

		<	DWORD	>	//	Size	of	DMUS_IO_STYLERESOLUTION.

		<	DMUS_IO_STYLERESOLUTION	>...

)

<anpn-ck>	->	anpn(

		<	DWORD	>	Size	of	DMUS_IO_STYLE_ANTICIPATION.

		<	DMUS_IO_STYLE_ANTICIPATION	>...

)

<pttn-list>

Each	pattern	is	described	in	a	chunk	with	the	following	format.

<pttn-list>	->	LIST('pttn'

		<ptnh-ck>			//	Pattern	header	chunk.

		<rhtm-ck>			//	List	of	rhythms	for	chord	matching.

		[<UNFO-list>]

		[<mtfs-ck>]			//	Motif	settings	chunk.

		[<DMBD-form>]	//	Band	to	be	associated	with	the	pattern	

																//			(for	motifs).

		<pref-list>...		//	Array	of	part	reference	Ids.

)

The	first	chunk	of	the	pattern	list	is	a	header:

<ptnh-ck>	->	ptnh(<DMUS_IO_PATTERN>)

The	second	chunk	is	a	rhythm	list:

<rhtm-ck>	->	rhtm(<DWORD>...)

This	chunk	consists	of	an	array	of	DWORDs,	one	for	each	measure,	giving	the
rhythm	pattern.	For	information	on	the	arrangement	of	the	bits,	see	the
dwRhythmPattern	member	of	DMUS_RHYTHM_PARAM.

For	the	optional	UNFO	list,	see	Common	Chunks.

The	next	chunk	of	the	pattern	list	describes	the	motif	settings:

<mtfs-ck>	->	mtfs(<DMUS_IO_MOTIFSETTINGS>)

	

For	the	<DMBD-form>	chunk	of	the	pattern	list,	see	Band	Form.

The	last	chunk	of	the	pattern	list	is	a	part	reference	list.

<pref-list>	->	LIST('pref'

		<prfc-ck>	//	Part	reference	chunk

)

The	only	element	is	a	part	reference.

<prfc-ck>	->	prfc(<DMUS_IO_PARTREF>)

<DMBD-form>

The	next	chunk	in	the	style	form	is	a	Band	Form.

<prrf-list>

The	final	chunk	contains	an	array	of	chordmap	references:

<prrf-list>	->	LIST('prrf'

		<DMRF-list>...

)

For	more	information	on	<DMRF-list>,	see	Reference	List.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Tool	Form
The	tool	form	contains	information	about	tools.	Tools	can	be	embedded	in	a
Toolgraph	Form	or	stored	as	separate	files.

<DMTL-form>	->	RIFF('DMTL'

		<tolh-ck>

		[<data>]				//	Tool	data

)

<tolh-ck>

This	is	the	tool	header	chunk.

<tolh-ck>	->	tolh(<DMUS_IO_TOOL_HEADER>)

<data>

The	<data>	element	is	a	chunk	of	the	type	identified	in	the
DMUS_IO_TOOL_HEADER	structure.	The	format	of	this	chunk	depends	on
the	definition	of	the	tool.	It	can	be	a	list	or	a	normal	chunk.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Toolgraph	Form
A	toolgraph	chunk	can	occur	either	as	a	top-level	form	or	as	a	subchunk	of	a
Segment	Form	or	Container	Form.

RIFF('DMTG'

		[<guid-ck>]			//	GUID	for	toolgraph.

		[<vers-ck>]			//	Version	information.

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments.

		<toll-list>			//	List	of	tools.

)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<toll-list>

The	main	and	only	required	part	of	the	toolgraph	chunk	is	the	tool	list,	which
consists	of	an	array	of	tool	forms:

<toll-list>	->	LIST('toll'

		<DMTL-form>...	

)

For	more	information	on	the	<DMTL-form>	chunk,	see	Tool	Form.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Track	Form
The	track	form	contains	information	about	a	single	track.	It	can	be	embedded	in
a	Segment	Form	or	stored	in	its	own	file.

<DMTK-form>	->	RIFF('DMTK'

		<trkh-ck>

		[<trkx-ck>]			//	Optional	track	flags.

		[<guid-ck>]			//	GUID	for	track	object	instance.

		[<vers-ck>]			//	Version	information.

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments.

		[<data>]				//	Track	data.	

)

<trkh-ck>

The	first	chunk	contains	the	basic	header	information	for	a	track.

<trkh-ck>	->	trkh(<DMUS_IO_TRACK_HEADER>)

<trkx-ck>

This	optional	chunk	contains	flags	for	the	track.

<trkx-ck>	->	trkx(<DMUS_IO_TRACK_EXTRAS_HEADER>)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<data>

The	last	element	in	the	track	form	is	the	data	for	the	track.	The	chunk	type	used
for	the	data	is	identified	in	the	DMUS_IO_TRACK_HEADER	structure.	The
following	standard	track	chunks	are	defined:

Band	Track	Form
Chord	Track	List
Chordmap	Track	List
Command	Track	Chunk

Lyrics	Track	List
Marker	Track	List
Mute	Track	Chunk
Parameter	Control	Track	List
Pattern	Track	Form
Script	Track	List
Segment	Trigger	Track	List
Sequence	Track	Chunk
Signpost	Track	Chunk
Style	Track	List
Sysex	Track	Chunk
Tempo	Track	Chunk
Time	Signature	Track	List
Wave	Track	List

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Band	Track	Form

The	band	track	form	can	be	a	top-level	form	but	is	also	found	as	the	data	part	of
a	Track	Form.	It	is	organized	as	follows:

RIFF('DMBT'

		[<bdth-ck>]			//	Band	track	header.

		[<guid-ck>]			//	GUID	for	band	track.

		[<vers-ck>]			//	Version	information.

		[<UNFO-list>]	//	Name,	author,	copyright	information,	comments.

		<lbdl-list>			//	List	of	band	lists.

)

<bdth-ck>

This	optional	chunk	contains	header	information	for	a	band	track.	The	only	data
in	the	structure	is	a	flag	for	automatic	downloading.

<bnth-ck>	->	bdth(<DMUS_IO_BAND_TRACK_HEADER>)

<guid-ck>,	<vers-ck>,	<UNFO-list>

For	information	on	these	three	chunks,	see	Common	Chunks.

<lbdl-list>

The	last	chunk	contains	one	or	more	bands.

<lbdl-list>	->	LIST('lbdl'

		<lbnd-list>...

)

Each	band	is	encapsulated	in	a	list	of	the	following	type.

<lbnd-list>	->	LIST('lbnd'

		<bdih-ck>	or	<bd2h-ck>

		<DMBD-form>

)

The	band	list	begins	with	a	header.	In	older	files,	this	is	<bdih-ck>;	newer

content	uses	<bd2h-ck>.

<bdih-ck>	->	(<DMUS_IO_BAND_ITEM_HEADER>)

	

<bd2h-ck>	->	(<DMUS_IO_BAND_ITEM_HEADER2>)

The	header	is	followed	by	a	Band	Form	containing	information	about	the
instruments	in	the	band.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Chord	Track	List

The	chord	track	list	contains	chord	data	for	a	Track	Form.	It	is	organized	as
follows:

<cord-list>	->	LIST('cord'

		<crdh-ck>				//	Header

		<crdb-ck>...	//	Chord	body	chunks

)

<crdh-ck>

<crdh-ck>	->	crdh	(<DWORD>)

The	header	is	a	DWORD	containing	the	chord	root	in	the	upper	8	bits	and	the
scale	in	the	lower	24	bits.	For	an	explanation	of	what	these	bits	represent,	see
DMUS_IO_SUBCHORD.

The	body	of	data	for	the	chord	track	list	consists	of	information	about	a	chord
change	and	the	component	subchords:

<crdb-ck>	->	crdb(

		<DWORD>					//	Size	of	DMUS_IO_CHORD

		<DMUS_IO_CHORD>

		<DWORD>					//	Number	of	subchords

		<DWORD>					//	Size	of	DMUS_IO_SUBCHORD

		<DMUS_IO_SUBCHORD>...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Chordmap	Track	List

The	chordmap	track	list	contains	data	for	a	Track	Form.	It	is	organized	as
follows:

<pftr-list>	->	LIST('pftr'

		<pfrf-list>...

)

The	data	consists	of	one	or	more	lists	containing	time	stamps	and	references	to
chordmaps:

<pfrf-list>	->	LIST('pfrf'

		<stmp-ck>

		<DMRF-list>

)

The	notation	for	the	time	stamp	chunk	is	as	follows:

<stmp-ck>	->	stmp(<DWORD>)

For	information	on	<DMRF-list>,	see	Reference	List.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Command	Track	Chunk

The	command	track	chunk	contains	data	for	a	Track	Form.	It	is	organized	as
follows:

<cmnd-ck>	->	cmnd(

		<DWORD>		//Size	of	DMUS_IO_COMMAND

		<DMUS_IO_COMMAND>...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Lyrics	Track	List

The	lyrics	track	list	contains	data	for	a	Track	Form.

<lyrt-list>	->	LIST('lyrt'

		<lyrl-list>

)

The	sole	chunk	in	the	lyrics	track	list	is	another	list	containing	an	array	of	lyrics
events:

<lyrl-list>	->	LIST(

		<lyre-list>...

)

Each	lyrics	event	is	stored	in	another	list,	as	follows:

<lyre-list>	->	LIST(

		<lyrh-ck>			//	Event	header	chunk

		<lyrn-ck>			//	Notification	text

)

The	first	chunk	is	a	header:

<lyrh-ck>	->	lyrh(<DMUS_IO_LYRICSTRACK_EVENTHEADER>)

The	second	chunk	contains	the	text	associated	with	the	event,	in	a	null-
terminated	string:

<lyrn-ck>	->	lyrn(<WCHAR>...)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Marker	Track	List

The	marker	track	list	contains	data	for	a	Track	Form.	It	is	organized	as	follows:

<mark-list>	->	LIST	('MARK'

		[<vals-ck>]	

		[<play-ck>]	

)

The	first	element	in	the	list	is	an	array	of	chunks	defining	valid	start	points:

<vals-ck>	->	vals(

		DWORD		//	size	of	DMUS_IO_VALID_START

		<DMUS_IO_VALID_START>...

)

The	second	element	is	an	array	of	chunks	defining	valid	play	points.

<play-ck>	->	play(

		DWORD		//	size	of	DMUS_IO_PLAYMARKER

		<DMUS_IO_PLAYMARKER>...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Mute	Track	Chunk

The	mute	track	chunk	contains	data	for	a	Track	Form.	It	is	organized	as	follows:

<mute-ck>	->	mute(

		<DWORD>		//Size	of	DMUS_IO_MUTE

		<DMUS_IO_MUTE>...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Parameter	Control	Track	List

The	parameter	control	track	list	contains	data	for	a	Track	Form.

<prmt-list>	->	LIST('prmt'

		<prol-list>...

)

The	list	contains	an	array	of	lists,	each	of	which	describes	an	object.

<prol-list>	->	LIST('proh'

		<proh-ck>			//	Object	header	chunk.

		<prpl-list>...		//	Array	of	parameters.

)

The	first	chunk	in	the	object	list	is	a	header.

<proh-ck>	->	proh(<DMUS_IO_PARAMCONTROLTRACK_OBJECTHEADER>)

	

The	second	chunk	contains	parameter	lists,	organized	as	shown	in	the	following
notation:

<prpl-list>	->	LIST('prpl'

		<prph-ck>			//	Parameter	header.

		<prcc-ck>			//	Array	of	curves.

)

The	header	of	the	parameter	list	is	described	as	follows:

<prph-ck>	->	prph(<DMUS_IO_PARAMCONTROLTRACK_PARAMHEADER>)

The	array	of	curves	is	described	in	the	following	chunk.

<prcc-ck>	->	prcc(

		<DWORD>	//	Size	of	DMUS_IO_PARAMCONTROLTRACK_CURVEINFO.

	<DMUS_IO_PARAMCONTROLTRACK_CURVEINFO>...	//	Curves,	sorted	in	order	of	mtTime.

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Pattern	Track	Form

The	pattern	track	form	can	be	a	top-level	form	but	is	also	found	as	data	for	a
Track	Form.	It	is	organized	as	follows:

RIFF('DMPT'

		<styh-ck>					//	Style	header	chunk

		<pttn-list>			//	The	pattern

)

For	information	on	<styh-ck>,	see	Style	Form.

The	<pattn-list>	used	in	the	pattern	track	is	not	the	same	as	the	one	used	in	the
Style	Form.	The	pattern	track	version	also	contains	part	lists.

<pttn-list>	->	LIST('pttn'

		<ptnh-ck>						//	Pattern	header	chunk.

		<rhtm-ck>						//	List	of	rhythms	for	chord	matching.

		[<UNFO-list>]

		<part-list>...	//	Array	of	parts	in	the	pattern;	see	Style	Form.

		[<mtfs-ck>]				//	Motif	settings	chunk.

		[<DMBD-form>]		//	Band	to	be	associated	with	the	pattern	

																	//			(for	motifs).

		<pref-list>...	//	Array	of	part	reference	IDs.

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Script	Track	List

The	script	track	list	contains	data	for	a	Track	Form.

<scrt-list>	->	LIST('scrt'

		<scrl-list>		

)

The	list	contains	another	list	that	contains	an	array	of	script	events.

<scrl-list>	->	LIST('scrl'

		<scre-list>...		

)

Each	<scre-list>	chunk	describes	an	event	as	follows:

<scre-list>	->	LIST('scre'

		<scrh-ck>			//	Event	header	chunk

		<DMRF>						//	Reference	

		<scrn-ck>			//	Routine	name

)

Each	script	track	event	begins	with	a	header:

<scrh-ck>	->	'scrh'(<DMUS_IO_SCRIPTTRACK_EVENTHEADER>)

For	information	on	the	DMRF	chunk,	see	Reference	List.

The	last	chunk	of	the	script	track	event	is	the	null-terminated	name	of	a	routine:

<scrn-ck>	->	'scrn'(<WCHAR>...)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Segment	Trigger	Track	List

The	segment	trigger	track	list	contains	data	for	a	Track	Form.	It	is	organized	as
follows:

<SEGT-list>	->	LIST('segt'

		[<sgth-ck>]			//	Segment	track	header.

		<lsgl-list>			//	List	of	segment	lists.

)	

The	first	chunk	is	the	track	header:

<sgth-ck>	->	'sgth'	(<DMUS_IO_SEGMENT_TRACK_HEADER>)

The	next	chunk	is	a	list	containing	an	array	of	segments:

<lsgl-list>	->	LIST('lsgl'

		<lseg-list>...

)

Each	"lseg"	list	describes	a	single	segment	item:

<lseg-list>	->	LIST('lseg'

		<sgih-ck>

		<DMRF-list>

		[<snam-ck>]		//	Motif	name

)

The	first	chunk	of	the	segment	item	is	a	header:

<sgih-ck>	->	(<DMUS_IO_SEGMENT_ITEM_HEADER>)

This	is	followed	by	a	reference	to	a	segment	file	or	a	style	file.	It	is	a	reference
to	a	style	if	the	DMUS_SEGMENTTRACKF_MOTIF	flag	is	present	in	the	item
header.	For	more	information,	see	Reference	List.

The	last	chunk	of	the	segment	item	contains	the	null-terminated	name	of	a	motif,
if	the	DMUS_SEGMENTTRACKF_MOTIF	flag	is	present	in	the	item	header.

<snam-ck>	->	(<WCHAR>...)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Sequence	Track	Chunk

The	sequence	track	chunk	contains	data	for	a	Track	Form.	It	is	organized	as
follows:

<seqt>	->	seqt(

		<evtl-ck>

		<curl-ck>

)

The	sequence	track	chunk	can	contain	two	chunks,	one	for	sequence	items	and
one	for	curve	items:

<evtl-ck>	->	evtl(

		<DWORD>			//	Size	of	DMUS_IO_SEQ_ITEM

		<DMUS_IO_SEQ_ITEM>...

)

	

<curl-ck>	->	curl(

		<DWORD>			//	Size	of	DMUS_IO_CURVE_ITEM

		<DMUS_IO_CURVE_ITEM>...

)

Note			The	sequence	track	chunk	does	not	conform	to	the	convention	that	only
RIFF	and	LIST	chunks	can	have	subchunks.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Signpost	Track	Chunk

The	signpost	track	chunk	contains	data	for	a	Track	Form.	It	is	organized	as
follows:

<sgnp-list>	->	sgnp(

		<DWORD>		//	Size	of	DMUS_IO_SIGNPOST.

		<DMUS_IO_SIGNPOST>...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Style	Track	List

The	style	track	list	contains	data	for	a	Track	Form.	It	is	organized	as	follows:

<sttr-list>	->	LIST('sttr'(

		<strf-list>...

)

The	data	consists	of	one	or	more	lists	containing	time	stamps	and	references	to
styles:

<strf-list>	->	LIST('strf'(

		<stmp-ck>

		<DMRF-list>

)

The	first	chunk	contains	time	stamp	data,	as	follows:

<stmp-ck>	->	stmp(<DWORD>)

For	information	on	<DMRF-list>,	see	Reference	List.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Sysex	Track	Chunk

The	sysex	track	chunk	contains	data	for	a	Track	Form.	It	is	an	array	of	system
exclusive	message	items,	each	consisting	of	a	DMUS_IO_SYSEX_ITEM
structure	followed	by	the	number	of	bytes	specified	in	the	dwSysExLength
member.

<syex-ck>	->	'syex'	(

		{

		<DMUS_IO_SYSEX_ITEM>

		<BYTE>...			//	Data

		}...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Tempo	Track	Chunk

The	tempo	track	chunk	contains	data	for	a	Track	Form.	It	is	organized	as
follows:

<tetr-ck>	->	tetr(

		<DWORD>		//	Size	of	DMUS_IO_TEMPO_ITEM.

		<DMUS_IO_TEMPO_ITEM>...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Time	Signature	Track	List

The	time	signature	track	list	contains	data	for	a	Track	Form.	It	is	organized	as
follows:

<tims-list>	->	LIST('TIMS'

		<tims-ck>	//	Time	signatures

)

The	time	signature	array	is	contained	in	the	following	chunk:

<tims-ck>	->	tims	(

		<DWORD>		//	Size	of	DMUS_IO_TIMESIGNATURE_ITEM.

		<DMUS_IO_TIMESIGNATURE_ITEM>...

)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Wave	Track	List

The	following	notation	shows	the	organization	of	a	chunk	containing	data	for	a
wave	track:

<wavt-list>	->	LIST	('wavt'

		<wath-ck>						//	Wave	track	header

		<wavp-list>...	//	Wave	parts	

		}

<wath-ck>

This	chunk	contains	header	information	for	a	wave.	It	is	followed	by	an	array	of
lists	describing	wave	parts:

<wath-ck>	->	wath(<DMUS_IO_WAVE_TRACK_HEADER>)

<wavp-list>

<wavp-list>	->	LIST	('wavp'

		<waph-ck>			//	Wave	part	header

		<wavi-list>			//	Wave	items

)

The	wave	part	list	begins	with	a	header.

<waph-ck>	->	'waph'	(<DMUS_IO_WAVE_PART_HEADER>)

	

The	second	part	of	the	wave	part	list	is	an	array	of	wave	items:

<wavi-list>	->	LIST('wavi'

		<wave-list>...		

)

Each	wave	item	is	described	in	a	list	chunk	as	follows:

<wave-list>	->	LIST('wave'

		<waih-ck>			//	Wave	item	header.

		<DMRF-list>			//	Reference	to	wave	object.

)

The	wave	description	begins	with	a	header	chunk:

<waih-ck>	->	(<DMUS_IO_WAVE_ITEM_HEADER>)

For	more	information	on	<DMRF-list>,	see	Reference	List.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Wave	Header	Chunk
The	wave	header	chunk	is	a	special	chunk	added	to	WAV	files	for	DirectMusic.
It	specifies	streaming	capabilities.

<wavh-ck>	->	(<DMUS_IO_WAVE_HEADER>)

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	File	Structures
This	section	contains	reference	information	for	data	structures	used	in
DirectMusic	files.	Most	applications	do	not	need	to	know	about	these	structures
because	each	standard	DirectMusic	object	handles	the	loading	of	its	own	data
through	its	IPersistStream	interface.	The	structures	are	chiefly	of	interest	for
music-authoring	applications	that	need	to	save	data	in	a	format	compatible	with
DirectMusic.

The	following	structures	are	used	in	DirectMusic	files:

Structure Description

DMUS_IO_BAND_ITEM_HEADER
Contains	information	about	a	band
change.	Superseded	by
DMUS_IO_BAND_ITEM_HEADER2

DMUS_IO_BAND_ITEM_HEADER2 Contains	information	about	a	band
change.

DMUS_IO_BAND_TRACK_HEADER Contains	information	about	the	default
behavior	of	a	band	track.

DMUS_IO_BUFFER_ATTRIBUTES_HEADER Describes	attributes	of	a	DirectSound
buffer.

DMUS_IO_CHORD Contains	information	about	a	chord
change.

DMUS_IO_CHORDENTRY Contains	information	about	a	chord
entry.

DMUS_IO_CHORDMAP Contains	information	about	a	

DMUS_IO_CHORDMAP_SIGNPOST Contains	information	about	a	signpost
chord	in	a	chordmap.

DMUS_IO_CHORDMAP_SUBCHORD Contains	information	about	a	subchord.

DMUS_IO_COMMAND Contains	information	about	a	command
event.

DMUS_IO_CONTAINED_OBJECT_HEADER Used	before	each	object	in	a	Container
Form.

DMUS_IO_CONTAINER_HEADER Used	in	the	Container	Form.
Contains	information	about	a	curve	event

DMUS_IO_CURVE_ITEM in	a	track.

DMUS_IO_INSTRUMENT Contains	information	about	an
instrument.

DMUS_IO_LYRICSTRACK_EVENTHEADER Used	in	a	Lyrics	Track	List.
DMUS_IO_MOTIFSETTINGS Contains	information	about	a	motif.

DMUS_IO_MUTE Contains	information	about	a	mute	event
on	a	channel.

DMUS_IO_NEXTCHORD Contains	information	about	the	next
chord	in	a	chord	graph.

DMUS_IO_PARAMCONTROLTRACK_CURVEINFO Used	in	a	Parameter	Control	Track	List.
DMUS_IO_PARAMCONTROLTRACK_OBJECTHEADERUsed	in	a	Parameter	Control	Track	List.
DMUS_IO_PARAMCONTROLTRACK_PARAMHEADER Used	in	a	Parameter	Control	Track	List.

DMUS_IO_PARTREF Contains	information	about	a	part
reference.

DMUS_IO_PATTERN Contains	information	about	a	pattern.

DMUS_IO_PCHANNELTOBUFFER_HEADER Defines	a	range	of	
and	the	buffers	they	connect	to.

DMUS_IO_PLAYMARKER

Contains	information	about	a	play
marker,	which	is	a	point	within	a	primary
segment	where	a	new	segment	is
permitted	to	start	playing.

DMUS_IO_PORTCONFIG_HEADER Contains	information	about	a	port
configuration.

DMUS_IO_REFERENCE
Contains	information	about	a	reference
to	another	object	that	might	be	stored	in
another	file.

DMUS_IO_SCRIPT_HEADER Used	in	the	Script	Form.
DMUS_IO_SCRIPTTRACK_EVENTHEADER Used	in	a	Script	Track	List
DMUS_IO_SEGMENT_HEADER Contains	information	about	a	segment.

DMUS_IO_SEGMENT_ITEM_HEADER
Contains	information	about	a	segment
referenced	in	a	Segment	Trigger	Track
List.

DMUS_IO_SEGMENT_TRACK_HEADER Contains	information	about	a	Segment
Trigger	Track	List.

DMUS_IO_SEQ_ITEM Contains	information	about	an	item	of
data	in	a	sequence	track.

DMUS_IO_SIGNPOST
Contains	information	about	a	signpost	in
a	signpost	track	to	associate	it	with
signpost	chords	in	a	chordmap.

DMUS_IO_STYLE Contains	information	about	the	time
signature	and	tempo	of	a	

DMUS_IO_STYLE_ANTICIPATION Describes	a	resolution	anticipation.

DMUS_IO_STYLECURVE Contains	information	about	a	curve	in	a
style.

DMUS_IO_STYLEMARKER Contains	information	about	a	marker	in	a
style.

DMUS_IO_STYLENOTE Contains	information	about	a	note	in	a
style.

DMUS_IO_STYLEPART Contains	information	about	a	musical
part.

DMUS_IO_STYLERESOLUTION Describes	a	style	resolution.
DMUS_IO_SUBCHORD Contains	information	about	a	subchord.

DMUS_IO_SYSEX_ITEM Contains	information	about	a	system
exclusive	MIDI	message.

DMUS_IO_TEMPO_ITEM Contains	information	about	a	tempo
change	in	a	track.

DMUS_IO_TIMESIG Contains	information	about	the	time
signature	of	a	segment.

DMUS_IO_TIMESIGNATURE_ITEM Contains	information	about	a	time
signature	change.

DMUS_IO_TOOL_HEADER Contains	information	about	a	tool.
DMUS_IO_TRACK_EXTRAS_HEADER Used	in	the	Track	Form
DMUS_IO_TRACK_HEADER Contains	information	about	a	track.

DMUS_IO_VALID_START
Contains	information	about	a	valid	start
point	in	a	segment	that	is	to	be	cued	to	a
rhythm.

DMUS_IO_VERSION Contains	the	version	number	of	the	data.

DMUS_IO_WAVE_HEADER Describes	streaming	characteristics	of	a
wave.

DMUS_IO_WAVE_ITEM_HEADER Contains	data	for	a	wave	sound	in	a
Wave	Track	List

DMUS_IO_WAVE_PART_HEADER Contains	data	for	a	Wave	Track	List.

DMUS_IO_WAVE_TRACK_HEADER Contains	data	for	a	wave	track	in	a	Wave
Track	List.

DSOUND_IO_3D Contains	3-D	parameters	for	a
DirectSound	buffer.

DSOUND_IO_DSBUFFERDESC Describes	a	DirectSound	buffer.
DSOUND_IO_DSBUSID Contains	bus	identifiers.
DSOUND_IO_DXDMO_DATA Contains	data	for	a	DMO.
DSOUND_IO_DXDMO_HEADER Contains	header	information	for	a	DMO.

See	Also

DirectMusic	File	Format

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_BAND_ITEM_HEADER
The	DMUS_IO_BAND_ITEM_HEADER	structure	contains	information	about
a	band	change.	Used	in	the	Band	Track	Form	of	older	files.	It	has	been
superseded	by	DMUS_IO_BAND_ITEM_HEADER2.

Syntax

typedef	struct	_DMUS_IO_BAND_ITEM_HEADER	{

		MUSIC_TIME	lBandTime;

}	DMUS_IO_BAND_ITEM_HEADER;

Members

lBandTime

Time	of	the	band	change.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_BAND_ITEM_HEADER2
The	DMUS_IO_BAND_ITEM_HEADER2	structure	contains	information
about	a	band	change.	Used	in	the	Band	Track	Form.

Syntax

typedef	struct	_DMUS_IO_BAND_ITEM_HEADER2	{

		MUSIC_TIME	lBandTimeLogical;

		MUSIC_TIME	lBandTimePhysical;

}	DMUS_IO_BAND_ITEM_HEADER2;

Members

lBandTimeLogical

Time	in	the	music	with	which	the	band	change	is	associated.

lBandTimePhysical

Precise	time	when	band	change	will	take	effect.	Should	be	close	to	logical	time.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_BAND_TRACK_HEADER
The	DMUS_IO_BAND_TRACK_HEADER	structure	contains	information
about	the	default	behavior	of	a	band	track.	Used	in	the	Band	Track	Form.

Syntax

typedef	struct	_DMUS_IO_BAND_TRACK_HEADER	{

		BOOL	bAutoDownload;

}	DMUS_IO_BAND_TRACK_HEADER;

Members

bAutoDownload

Flag	for	automatic	downloading	of	instruments	when	a	segment	is	played.

Remarks

For	more	information	on	automatic	downloading,	see	Using	Bands.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_BUFFER_ATTRIBUTES_HEADER
The	DMUS_IO_BUFFER_ATTRIBUTES_HEADER	structure	describes
attributes	of	a	DirectSound	buffer.	Used	in	the	Audiopath	Form.

Syntax

typedef	struct	_DMUS_IO_BUFFER_ATTRIBUTES_HEADER	{

		GUID		guidBufferID;

		DWORD	dwFlags;

}	DMUS_IO_BUFFER_ATTRIBUTES_HEADER;

Members

guidBufferID

Unique	identifier	of	the	buffer	configuration.	The	following	values	are	defined
for	standard	buffer	types.

Value
GUID_Buffer_Reverb
GUID_Buffer_EnvReverb
GUID_Buffer_Stereo
GUID_Buffer_3D_Dry
GUID_Buffer_Mono

dwFlags

Flags	describing	the	buffer.	The	following	values	are	defined.

Value Description
DMUS_BUFFERF_DEFINED One	of	the	standard	buffer	types.
DMUS_BUFFERF_MIXIN Mix-in	buffer.
DMUS_BUFFERF_SHARED Buffer	shared	among	audiopaths.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CHORD
The	DMUS_IO_CHORD	structure	contains	information	about	a	chord	change.
Used	in	the	Chord	Track	List.

Syntax

typedef	struct	_DMUS_IO_CHORD	{

		WCHAR			wszName[16];

		MUSIC_TIME		mtTime;

		WORD				wMeasure;

		BYTE				bBeat;

		BYTE				bFlags

}	DMUS_IO_CHORD;

Members

wszName

Name	of	the	chord.

mtTime

Time	of	the	chord.

wMeasure

Measure	that	the	chord	falls	on.

bBeat

Beat	that	the	chord	falls	on.

bFlags

Flags.	The	following	value	is	defined	as	shown.

Value Description
The	chord	is	silent.	See	the	Remarks	for

DMUS_CHORDKEYF_SILENT DMUS_CHORD_KEY.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CHORDENTRY
The	DMUS_IO_CHORDENTRY	structure	contains	information	about	a	chord
entry.	Used	in	the	Chordmap	Form.

Syntax

typedef	struct	_DMUS_IO_CHORDENTRY	{

		DWORD	dwFlags;

		WORD		wConnectionID;	

}	DMUS_IO_CHORDENTRY;

Members

dwFlags

Flag	indicating	whether	the	chord	is	a	starting	chord	(bit	2	set)	or	an	ending
chord	(bit	3	set)	in	the	chord	graph.

wConnectionID

Replaces	the	run-time	pointer	to	this.	Each	chord	entry	is	tagged	with	a	unique
connection	identifier.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CHORDMAP
The	DMUS_IO_CHORDMAP	structure	contains	information	about	a
chordmap.	Used	in	the	Chordmap	Form.

Syntax

typedef	struct	_DMUS_IO_CHORDMAP	{

		WCHAR	wszLoadName[20];

		DWORD	dwScalePattern;

		DWORD	dwFlags;

}	DMUS_IO_CHORDMAP;

Members

wszLoadName

Name	of	the	chordmap,	used	in	the	object	description	when	the	chordmap	is
loaded.

dwScalePattern

Scale	associated	with	the	chordmap.	Each	of	the	lower	24	bits	represents	a
semitone,	starting	with	the	root	at	the	least	significant	bit,	and	the	bit	is	set	if	the
note	is	in	the	scale.

dwFlags

Flags.	Can	be	zero	or	the	following	value.

Value Description

DMUS_CHORDMAPF_VERSION8 The	chordmap	was	created	for	DirectX
8.0	or	later.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CHORDMAP_SIGNPOST
The	DMUS_IO_CHORDMAP_SIGNPOST	structure	contains	information
about	a	signpost	chord	in	a	chordmap.	Used	in	the	Chordmap	Form.

Syntax

typedef	struct	_DMUS_IO_CHORDMAP_SIGNPOST	{

		DWORD	dwChords;

		DWORD	dwFlags;

}	DMUS_IO_CHORDMAP_SIGNPOST;

Members

dwChords

Types	of	signpost	supported	by	this	chord.	The	values	are	used	to	match	against
the	same	values	as	they	appear	in	templates.	Composing	from	template	consists
of	(among	other	things)	looking	for	these	values	in	the	template	and	finding
actual	chords	in	the	chordmap	that	match	these	values.	The	following	flags	are
defined.

Value
DMUS_SIGNPOSTF_A
DMUS_SIGNPOSTF_B
DMUS_SIGNPOSTF_C
DMUS_SIGNPOSTF_D
DMUS_SIGNPOSTF_E
DMUS_SIGNPOSTF_F
DMUS_SIGNPOSTF_LETTER
DMUS_SIGNPOSTF_1
DMUS_SIGNPOSTF_2
DMUS_SIGNPOSTF_3
DMUS_SIGNPOSTF_4
DMUS_SIGNPOSTF_5
DMUS_SIGNPOSTF_6

DMUS_SIGNPOSTF_7
DMUS_SIGNPOSTF_ROOT
DMUS_SIGNPOSTF_CADENCE

dwFlags

Flags	defining	whether	this	chord	is	to	be	preceded	by	cadence	chords.	Signpost
chords	can	have	up	to	two	cadence	chords.	This	value	can	be
SPOST_CADENCE1	(first	cadence),	SPOST_CADENCE2	(second	cadence),	or
a	combination	of	these	two	flags.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

See	Also

DirectMusic	File	Structures
DMUS_IO_SIGNPOST

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CHORDMAP_SUBCHORD
The	DMUS_IO_CHORDMAP_SUBCHORD	structure	contains	information
about	a	subchord.	Used	in	the	Chordmap	Form.

Syntax

typedef	struct	_DMUS_IO_CHORDMAP_SUBCHORD	{

		DWORD	dwChordPattern;

		DWORD	dwScalePattern;

		DWORD	dwInvertPattern;

		BYTE		bChordRoot;

		BYTE		bScaleRoot;

		WORD		wCFlags;

		DWORD	dwLevels;	

}	DMUS_IO_CHORDMAP_SUBCHORD;

Members

dwChordPattern

Notes	in	the	subchord.	Each	of	the	lower	24	bits	represents	a	semitone,	starting
with	the	root	at	the	least	significant	bit,	and	the	bit	is	set	if	the	note	is	in	the
chord.

dwScalePattern

Notes	in	the	scale.	Each	of	the	lower	24	bits	represents	a	semitone,	starting	with
the	root	at	the	least	significant	bit,	and	the	bit	is	set	if	the	note	is	in	the	scale.

dwInvertPattern

Points	in	the	scale	at	which	inversions	can	occur.	Bits	that	are	off	signify	that	the
notes	in	the	interval	cannot	be	inverted.	Thus,	the	pattern	100001111111
indicates	that	inversions	are	allowed	anywhere	except	between	the	fifth	and
seventh	degrees	of	a	major	scale.

bChordRoot

Root	of	the	subchord,	where	0	is	the	lowest	C	in	the	range	and	23	is	the	top	B.

bScaleRoot

Root	of	the	scale,	where	0	is	the	lowest	C	in	the	range	and	23	is	the	top	B.

wCFlags

Reserved	for	future	use.

dwLevels

Bit	field	showing	which	levels	are	supported	by	this	subchord.	Each	part	in	a
style	is	assigned	a	level,	and	this	chord	is	used	only	for	parts	whose	levels	are
contained	in	this	member.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_SUBCHORD

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_COMMAND
The	DMUS_IO_COMMAND	structure	contains	information	about	a	command
event.	Used	in	the	Command	Track	Chunk.

Syntax

typedef	struct	_DMUS_IO_COMMAND	{

		MUSIC_TIME		mtTime;	

		WORD				wMeasure;

		BYTE				bBeat;	

		BYTE				bCommand;

		BYTE				bGrooveLevel;

		BYTE				bGrooveRange;

		BYTE				bRepeatMode;

}	DMUS_IO_COMMAND;

Members

mtTime

Time	of	the	command.

wMeasure

Measure	that	the	command	falls	on.

bBeat

Beat	that	the	command	falls	on.

bCommand

Command	type.	See	DMUS_COMMANDT_TYPES.

bGrooveLevel

Groove	level,	or	0	if	the	command	is	not	a	groove	command.

bGrooveRange

Size	of	the	range	within	which	the	groove	level	can	be	randomized.	If	this	value
is	an	odd	number,	the	groove	range	is	bGrooveRange	–	1.	For	instance,	if	the
groove	level	is	35	and	bGrooveRange	is	5,	the	adjusted	groove	range	is	4	and
the	groove	level	could	be	anywhere	from	33	to	37.

bRepeatMode

Flag	that	specifies	how	patterns	are	selected	for	repetition.	See
DMUS_PATTERNT_TYPES.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CONTAINED_OBJECT_HEADER
The	DMUS_IO_CONTAINED_OBJECT_HEADER	structure	is	used	before
each	object	in	a	Container	Form.

Syntax

typedef	struct	_DMUS_IO_CONTAINED_OBJECT_HEADER	{

		GUID				guidClassID;

		DWORD			dwFlags;

		FOURCC		ckid;

		FOURCC		fccType;

}	DMUS_IO_CONTAINED_OBJECT_HEADER;

Members

guidClassID

Class	identifier	of	the	object.

dwFlags

Can	be	zero	or	the	following	flag.

Value Description

DMUS_CONTAINED_OBJF_KEEP Keep	the	object	cached	in	the	loader
after	the	container	is	released.

ckid

Identifier	of	the	data	chunk.	If	this	value	is	zero,	it	is	assumed	that	the	chunk	is
of	type	LIST,	so	fccType	is	valid	and	must	be	nonzero.

fccType

List	type.	If	this	value	is	zero,	ckid	is	valid	and	must	be	nonzero.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CONTAINER_HEADER
The	DMUS_IO_CONTAINER_HEADER	structure	is	used	in	the	Container
Form.

Syntax

typedef	struct	_DMUS_IO_CONTAINER_HEADER	{

		DWORD			dwFlags;

}	DMUS_IO_CONTAINER_HEADER;

Members

dwFlags

DWORD	value	that	specifies	flags.	Can	be	zero	or	the	following	value.

Value Description

DMUS_CONTAINER_NOLOADS

Contained	items	are	not	loaded	when
the	container	is	loaded.	Entries	are
created	in	the	loader,	but	the	objects	are
not	created	until	they	are	specifically
loaded.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_CURVE_ITEM
The	DMUS_IO_CURVE_ITEM	structure	contains	information	about	a	curve
event	in	a	track.	Used	in	the	Sequence	Track	Chunk.

Syntax

typedef	struct	_DMUS_IO_CURVE_ITEM	{

		MUSIC_TIME		mtStart;

		MUSIC_TIME		mtDuration;

		MUSIC_TIME		mtResetDuration;

		DWORD			dwPChannel;

		short			nOffset;

		short			nStartValue;

		short			nEndValue;

		short			nResetValue;

		BYTE				bType;

		BYTE				bCurveShape;

		BYTE				bCCData;

		BYTE				bFlags;

		WORD				wParamType;

		WORD				wMergeIndex

}	DMUS_IO_CURVE_ITEM;

Members

mtStart

Start	time	of	the	curve.

mtDuration

Duration	of	the	curve.

mtResetDuration

Time	after	the	curve	is	finished	during	which	a	reset	can	occur.

dwPChannel

Performance	channel	for	the	event.

nOffset

Offset	from	the	grid	boundary	at	which	the	curve	occurs,	in	music	time.	Because
MIDI	curves	are	associated	with	the	closest	grid	when	loaded,	this	value	can	be
positive	or	negative.

nStartValue

Start	value.

nEndValue

End	value.

nResetValue

Reset	value,	set	upon	a	flush	or	invalidation	within	the	time	set	by
mtResetDuration.

bType

Type	of	curve.	The	following	types	are	defined	as	shown.

Type Description

DMUS_CURVET_CCCURVE

Continuous	controller	curve	(MIDI
Control	Change	channel	voice	message;
status	byte	&HBn,	where	n	is	the
channel	number).

DMUS_CURVET_MATCURVE
Monophonic	aftertouch	curve	(MIDI
Channel	Pressure	channel	voice
message;	status	byte	&HDn).

DMUS_CURVET_PATCURVE
Polyphonic	aftertouch	curve	(MIDI
Poly	Key	Pressure	channel	voice
message,	status	byte	&HDn).

DMUS_CURVET_PBCURVE
Pitch-bend	curve	(MIDI	Pitch	Bend
channel	voice	message;	status	byte
&HEn).

DMUS_CURVET_NRPNCURVE NRPN	curve.
DMUS_CURVET_RPNCURVE RPN	curve.

bCurveShape

Shape	of	curve.	The	following	shapes	are	defined	as	shown.

Shape Description
DMUS_CURVES_EXP Exponential	curve	shape.

DMUS_CURVES_INSTANT
Instant	curve	shape	(beginning	and	end
of	curve	happen	at	essentially	the	same
time).

DMUS_CURVES_LINEAR Linear	curve	shape.
DMUS_CURVES_LOG Logarithmic	curve	shape.
DMUS_CURVES_SINE Sine	curve	shape.

bCCData

CC	number	if	this	is	a	control	change	type.

bFlags

Set	to	DMUS_CURVE_RESET	if	the	nResetValue	must	be	set	when	an
invalidation	occurs	because	of	a	transition.	If	0,	the	curve	stays	permanently	at
the	new	value.	All	other	bits	are	reserved.

wParamType

Parameter	number	for	RPN	and	NRPN	types.

wMergeIndex

Merge	index.	Supported	for	mod	wheel,	reverb	send,	chorus	send,	pitch	bend,
volume,	and	expression	controllers.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

Curves
DMUS_IO_SEQ_ITEM

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_INSTRUMENT
The	DMUS_IO_INSTRUMENT	structure	contains	information	about	an
instrument.	Used	in	the	Band	Form.

Syntax

typedef	struct	_DMUS_IO_INSTRUMENT	{

		DWORD		dwPatch;

		DWORD		dwAssignPatch;

		DWORD		dwNoteRanges[4];

		DWORD		dwPChannel;

		DWORD		dwFlags;	

		BYTE	bPan;

		BYTE	bVolume;

		short		nTranspose;

		DWORD		dwChannelPriority;

		short		nPitchBendRange;

}	DMUS_IO_INSTRUMENT;

Members

dwPatch

MSB,	LSB,	and	program	change	to	define	instrument.

dwAssignPatch

MSB,	LSB,	and	program	change	to	assign	to	instrument	when	downloading.

dwNoteRanges

128	bits;	one	for	each	MIDI	note	that	the	instrument	must	be	able	to	play.

dwPChannel

Performance	channel	that	the	instrument	plays	on.

dwFlags

Control	flags.	The	following	values	are	defined	as	shown.

Value Description

DMUS_IO_INST_ASSIGN_PATCH The	dwAssignPatch	member	is
valid.

DMUS_IO_INST_BANKSELECT
The	dwPatch	member	contains	a
valid	bank	select,	both	MSB	and
LSB.

DMUS_IO_INST_CHANNEL_PRIORITY The	dwChannelPriority
member	is	valid.

DMUS_IO_INST_GM Instrument	is	from	the	General
MIDI	collection.

DMUS_IO_INST_GS Instrument	is	from	the	Roland
GS	collection.

DMUS_IO_INST_NOTERANGES The	dwNoteRanges	member	is
valid.

DMUS_IO_INST_PAN The	bPan	member	is	valid.
DMUS_IO_INST_PATCH The	dwPatch	member	is	valid.

DMUS_IO_INST_PITCHBENDRANGE The	nPitchBendRange	member
is	valid.

DMUS_IO_INST_TRANSPOSE The	nTranspose	member	is
valid.

DMUS_IO_INST_USE_DEFAULT_GM_SET

The	default	General	MIDI
instrument	set	should	be
downloaded	to	the	port,	even	if
the	port	has	GM	in	hardware.
When	a	MIDI	file	that	contains
an	XG	or	GS	reset		is	parsed,	the
bank-select	message	is	sent,
whether	or	not
GUID_StandardMIDIFile	was
commanded	on	the	band.	In	other
words,	GUID_StandardMIDIFile
is	effective	only	for	pure	GM
files.

DMUS_IO_INST_VOLUME The	bVolume	member	is	valid.

DMUS_IO_INST_XG Instrument	is	from	the	Yamaha
XG	collection.

bPan

Pan	for	the	instrument.

bVolume

Volume	for	the	instrument.

nTranspose

Number	of	semitones	to	transpose	notes.

dwChannelPriority

Channel	priority.	For	a	list	of	defined	values,	see
IDirectMusicPort8::GetChannelPriority.

nPitchBendRange

Number	of	semitones	shifted	by	pitch	bend.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_LYRICSTRACK_EVENTHEADER
The	DMUS_IO_LYRICSTRACK_EVENTHEADER	structure	is	used	in	a
Lyrics	Track	List.

Syntax

typedef	struct	_DMUS_IO_LYRICSTRACK_EVENTHEADER	{

		DWORD	dwFlags;

		DWORD	dwTimingFlags;

		MUSIC_TIME	lTimeLogical;

		MUSIC_TIME	lTimePhysical;

}	DMUS_IO_LYRICSTRACK_EVENTHEADER;

Members

dwFlags

Reserved;	must	be	zero.

dwTimingFlags

Flags	to	determine	the	timing	of	the	notification.	Can	be	one	or	more	of	the
members	of	the	DMUS_PMSGF_FLAGS	enumeration	shown	in	the	following
table.

Value Description

DMUS_PMSGF_TOOL_IMMEDIATE
Message	should	be	processed
immediately,	regardless	of	its	time
stamp.

DMUS_PMSGF_TOOL_QUEUE
Message	should	be	processed	just
before	its	time	stamp,	allowing	for	port
latency.

DMUS_PMSGF_TOOL_ATTIME Message	should	be	processed	at	the
time	stamp.

lTimeLogical

Time	in	the	music	with	which	the	event	is	associated.

lTimePhysical

Precise	time	when	the	event	will	be	triggered.	This	should	be	close	to	logical
time.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_MOTIFSETTINGS
The	DMUS_IO_MOTIFSETTINGS	structure	contains	information	about	a
motif.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_MOTIFSETTINGS	{

		DWORD			dwRepeats;

		MUSIC_TIME		mtPlayStart;

		MUSIC_TIME		mtLoopStart;

		MUSIC_TIME		mtLoopEnd;

		DWORD			dwResolution;

}	DMUS_IO_MOTIFSETTINGS;

Members

dwRepeats

Number	of	repetitions.

mtPlayStart

Start	of	playback,	normally	0.

mtLoopStart

Start	of	looping	portion,	normally	0.

mtLoopEnd

End	of	looping	portion.	Must	be	greater	than	mtLoopStart,	or	zero	to	loop	the
entire	motif.

dwResolution

Default	resolution.	See	DMUS_TIME_RESOLVE_FLAGS.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
IDirectMusicSegment8::SetLoopPoints

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_MUTE
The	DMUS_IO_MUTE	structure	contains	information	about	a	mute	event	on	a
channel.	Used	in	the	Mute	Track	Chunk.

Syntax

typedef	struct	_DMUS_IO_MUTE	{

		MUSIC_TIME		mtTime;

		DWORD			dwPChannel;

		DWORD			dwPChannelMap;

}	DMUS_IO_MUTE;

Members

mtTime

Time	of	the	event.

dwPChannel

Performance	channel	to	mute	or	remap.

dwPChannelMap

Channel	to	which	dwPChannel	is	being	mapped,	or	0xFFFFFFFF	if
dwPChannel	is	to	be	muted.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_MUTE_PARAM

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_NEXTCHORD
The	DMUS_IO_NEXTCHORD	structure	contains	information	about	the	next
chord	in	a	chord	graph.	Used	in	the	Chordmap	Form.

Syntax

typedef	struct	_DMUS_IO_NEXTCHORD	{

		DWORD	dwFlags;

		WORD		nWeight;

		WORD		wMinBeats;

		WORD		wMaxBeats;

		WORD		wConnectionID;

}	DMUS_IO_NEXTCHORD;

Members

dwFlags

Reserved	for	future	use.

nWeight

Likelihood	(in	the	range	from	1	through	100)	that	this	link	is	followed	when
traversing	the	chord	graph.

wMinBeats

Smallest	number	of	beats	that	this	chord	is	allowed	to	play	in	a	composed
segment.

wMaxBeats

Largest	number	of	beats	that	this	chord	is	allowed	to	play	in	a	composed
segment.

wConnectionID

Refers	to	the	wConnectionID	member	of	a	DMUS_IO_CHORDENTRY

structure.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PARAMCONTROLTRACK_CURVEINFO
The	DMUS_IO_PARAMCONTROLTRACK_CURVEINFO	structure	is	used
in	a	Parameter	Control	Track	List.

Syntax

typedef	struct	_DMUS_IO_PARAMCONTROLTRACK_CURVEINFO	{

		MUSIC_TIME		mtStartTime;

		MUSIC_TIME		mtEndTime;

		float			fltStartValue;

		float			fltEndValue;

		DWORD			dwCurveType;

		DWORD			dwFlags;

}	DMUS_IO_PARAMCONTROLTRACK_CURVEINFO;

Members

mtStartTime

Start	time	of	the	curve.

mtEndTime

End	time	of	the	curve.

fltStartValue

Start	value	of	the	curve.

fltEndValue

End	value	of	the	curve.

dwCurveType

Item	from	the	MP_CURVE_TYPE	enumeration.	See	MP_CURVE_TYPE	in
the	DirectShow	documentation.

dwFlags

Combination	of	the	MPF_ENVLP_*	constants.	See	Envelope	Flags	in	the
DirectShow	documentation.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PARAMCONTROLTRACK_OBJECTHEADER
The	DMUS_IO_PARAMCONTROLTRACK_OBJECTHEADER	structure
is	used	in	a	Parameter	Control	Track	List.

Syntax

typedef	struct	_DMUS_IO_PARAMCONTROLTRACK_OBJECTHEADER	{

		DWORD	dwFlags;	

		GUID	guidTimeFormat;

		DWORD	dwPChannel;

		DWORD	dwStage;

		DWORD	dwBuffer;

		GUID	guidObject;

		DWORD	dwIndex;

}	DMUS_IO_PARAMCONTROLTRACK_OBJECTHEADER;

Members

dwFlags

Reserved;	must	be	zero.

guidTimeFormat

Time	format	to	set	the	object	to.	Must	be	GUID_TIME_REFERENCE	or
GUID_TIME_MUSIC,	which	are	defined	in	Medparam.h.	

dwPChannel

Performance	channel,	0,	or	DMUS_PCHANNEL_ALL.

dwStage

Stage	in	the	path.

dwBuffer

Index	of	the	buffer,	if	there	is	more	than	one.

guidObject

Class	identifier	of	the	object,	such	as	GUID_DSFX_STANDARD_CHORUS.

dwIndex

Index	of	the	object	in	the	list	of	matching	objects.

Remarks

For	more	information	on	the	possible	values	for	each	member,	see
IDirectMusicSegmentState8::GetObjectInPath.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PARAMCONTROLTRACK_PARAMHEADER
The	DMUS_IO_PARAMCONTROLTRACK_PARAMHEADER	structure	is
used	in	a	Parameter	Control	Track	List.

Syntax

typedef	struct	_DMUS_IO_PARAMCONTROLTRACK_PARAMHEADER	{

		DWORD	dwFlags;

		DWORD	dwIndex;

}	DMUS_IO_PARAMCONTROLTRACK_PARAMHEADER;

Members

dwFlags

Reserved;	must	be	zero.

dwIndex

Index	number	of	the	parameter	on	the	object.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PARTREF
The	DMUS_IO_PARTREF	structure	contains	information	about	a	part
reference.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_PARTREF	{

		GUID		guidPartID;

		WORD		wLogicalPartID;

		BYTE		bVariationLockID;

		BYTE		bSubChordLevel;

		BYTE		bPriority;

		BYTE		bRandomVariation;	

		WORD		wPad;	

		DWORD	dwPChannel;

}	DMUS_IO_PARTREF;

Members

guidPartID

Identifier	of	the	part.

wLogicalPartID

Identifier	corresponding	to	a	particular	MIDI	channel	on	a	port.	This	member
has	been	superseded	by	dwPChannel	and	is	no	longer	used.

bVariationLockID

Variation	lock	identifier.	Parts	with	the	same	value	in	this	member	always	play
the	same	variation.	A	value	of	0	means	that	the	part	plays	its	variations
independently	of	all	other	parts.

bSubChordLevel

Subchord	level	that	this	part	wants.	See	Remarks.

bPriority

Reserved	for	future	use.

bRandomVariation

Can	be	0,	meaning	that	matching	variations	play	sequentially,	or	one	of	the
members	of	the	DMUS_VARIATIONT_TYPES	enumeration.

wPad

Padding	for	alignment;	value	not	used.

dwPChannel

Performance	channel	of	the	part.

Remarks

The	bSubChordLevel	member	contains	a	zero-based	index	value.	At	run	time,
1	is	shifted	left	by	this	value	to	yield	a	1-bit	value	for	comparison	with	the
dwLevels	member	of	a	DMUS_SUBCHORD	structure.	Thus,	a	part	with	a
bSubChordLevel	of	0	would	be	mapped	to	any	subchord	that	contained	1	in
dwLevels.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PATTERN
The	DMUS_IO_PATTERN	structure	contains	information	about	a	pattern.
Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_PATTERN	{

		DMUS_IO_TIMESIG		timeSig;

		BYTE					bGrooveBottom;

		BYTE					bGrooveTop;

		WORD					wEmbellishment;

		WORD					wNbrMeasures;

		BYTE					bDestGrooveBottom;

		BYTE					bDestGrooveTop;

		DWORD				dwFlags;

}	DMUS_IO_PATTERN;

Members

timeSig

DMUS_IO_TIMESIG	structure	containing	a	time	signature	to	override	the
style's	default	time	signature.

bGrooveBottom

Bottom	of	the	groove	range.

bGrooveTop

Top	of	the	groove	range.

wEmbellishment

Type	of	embellishment.	One	or	more	of	the	constants	from	the
DMUS_EMBELLISHT_TYPES	enumeration,	or	a	value	defined	by	the
content	provider,	such	as	a	custom	embellishment	number	assigned	in
DirectMusic	Producer.

wNbrMeasures

Length	of	the	pattern	in	measures.

bDestGrooveBottom

Bottom	of	groove	range	for	next	pattern.

bDestGrooveTop

Top	of	groove	range	for	next	pattern.

dwFlags

Flags.	Can	be	zero	or	the	value	shown	in	the	following	table.

Value Description

DMUS_PATTERNF_PERSIST_CONTROL
Variation	settings	in	the	state	data
of	a	pattern-based	track	persist	in
the	track	after	it	stops	playing.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PCHANNELTOBUFFER_HEADER
The	DMUS_IO_PCHANNELTOBUFFER_HEADER	structure	defines	a
range	of	performance	channels	and	the	buffers	they	connect	to.	Used	in	the	port
configuration	list	of	an	Audiopath	Form.

Syntax

typedef	struct	_DMUS_IO_PCHANNELTOBUFFER_HEADER	{

		DWORD		dwPChannelBase;

		DWORD		dwPChannelCount;

		DWORD		dwBufferCount;

		DWORD		dwFlags;

}	DMUS_IO_PCHANNELTOBUFFER_HEADER;

Members

dwPChannelBase

First	performance	channel.

dwPChannelCount

Number	of	performance	channels.

dwBufferCount

Number	of	buffers	the	channels	connect	to.

dwFlags

Reserved.	Must	be	0.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PLAYMARKER
The	DMUS_IO_PLAYMARKER	structure	contains	information	about	a	play
marker,	which	is	a	point	within	a	primary	segment	where	a	new	segment	is
permitted	to	start	playing.	Used	in	the	Marker	Track	List.

Syntax

typedef	struct	_DMUS_IO_PLAY_MARKER	{

		MUSIC_TIME	mtTime;	

}	DMUS_IO_PLAY_MARKER;

Members

mtTime

Time	of	legal	play	point.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_PORTCONFIG_HEADER
The	DMUS_IO_PORTCONFIG_HEADER	structure	contains	information
about	a	port	configuration.	It	is	used	in	the	Audiopath	Form.

Syntax

typedef	struct	_DMUS_IO_PORTCONFIG_HEADER	{

		GUID		guidPort;

		DWORD	dwPChannelBase;

		DWORD	dwPChannelCount;	

		DWORD	dwFlags;	

}	DMUS_IO_PORTCONFIG_HEADER;

Members

guidPort

Unique	identifier	of	port.

dwPChannelBase

First	performance	channel.

dwPChannelCount

Number	of	performance	channels.

dwFlags

Configuration	flags.	The	following	values	are	defined.

Value Description
DMUS_PORTCONFIGF_DRUMSON10 Drums	are	on	channel	10.
DMUS_PORTCONFIGF_USEDEFAULTUse	the	default	port.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_REFERENCE
The	DMUS_IO_REFERENCE	structure	contains	information	about	a
reference	to	another	object	that	might	be	stored	in	another	file.	Used	in	the
Reference	List	chunk.

Syntax

typedef	struct	_DMUS_IO_REFERENCE	{

		GUID		guidClassID;	

		DWORD	dwValidData;

}	DMUS_IO_REFERENCE;

Members

guidClassID

Class	identifier.

dwValidData

Flags	to	indicate	which	data	chunks	for	the	reference	are	present.	For	a	list	of
values,	see	the	corresponding	member	of	DMUS_OBJECTDESC.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SCRIPT_HEADER
The	DMUS_IO_SCRIPT_HEADER	structure	is	used	in	the	Script	Form.

Syntax

typedef	struct	_DMUS_IO_SCRIPT_HEADER	{

		DWORD		dwFlags;	

}	DMUS_IO_SCRIPT_HEADER;

Members

dwFlags

DWORD	value	that	specifies	the	loading	behavior	of	the	script.	Can	be	one	or
more	of	the	values	shown	in	the	following	table.

Value Description
DMUS_SCRIPTIOF_LOAD_ALL_CONTENT All	content	in	the	script's	container	is	loaded.

DMUS_SCRIPTIOF_DOWNLOAD_ALL_SEGMENTS

If	DMUS_SCRIPTIOF_LOAD_ALL_CONTENT	is	set,
the	bands	from	all	the	segments	in	the	script's	container
are	downloaded	when	the	script	is	initialized.	Otherwise,
a	segment's	bands	are	downloaded	when	the	script	loads
the	segment.

If
DMUS_SCRIPTIOF_DOWNLOAD_ALL_SEGMENTS
is	not	set,	the	script	must	manually	download	and	unload
the	segment's	bands.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SCRIPTTRACK_EVENTHEADER
The	DMUS_IO_SCRIPTTRACK_EVENTHEADER	structure	is	used	in	a
Script	Track	List.

Syntax

typedef	struct	_DMUS_IO_SCRIPTTRACK_EVENTHEADER	{

		DWORD	dwFlags;

		MUSIC_TIME	lTimeLogical;

		MUSIC_TIME	lTimePhysical;

}	DMUS_IO_SCRIPTTRACK_EVENTHEADER;

Members

dwFlags

Flag	that	determines	when	the	event	is	set.	Can	be	one	of	the	values	shown	in	the
following	table.

Value Description

DMUS_IO_SCRIPTTRACKF_PREPARE

Fire	the	event	in	advance	of	the	time
stamp,	at	prepare	time.	This	is	the
default	because	it	leaves	the	script
enough	time	to	change	the	music
happening	at	the	target	time.

DMUS_IO_SCRIPTTRACKF_QUEUE Fire	the	event	just	before	the	time
stamp,	at	queue	time.

DMUS_IO_SCRIPTTRACKF_ATTIME Fire	the	event	exactly	at	the	time
stamp.

lTimeLogical

Logical	time	of	the	event.

lTimePhysical

Actual	time	of	the	event.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

Segment	Timing

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SEGMENT_HEADER
The	DMUS_IO_SEGMENT_HEADER	structure	contains	information	about	a
segment.	Used	in	the	Segment	Form.

Syntax

typedef	struct	_DMUS_IO_SEGMENT_HEADER	{

		DWORD				dwRepeats;

		MUSIC_TIME			mtLength;

		MUSIC_TIME			mtPlayStart;

		MUSIC_TIME			mtLoopStart;

		MUSIC_TIME			mtLoopEnd;

		DWORD				dwResolution;

		REFERENCE_TIME	rtLength;

		DWORD				dwFlags;

		DWORD				dwReserved;	

		REFERENCE_TIME	rtLoopStart;

		REFERENCE_TIME	rtLoopEnd;

		REFERENCE_TIME	rtPlayStart;

}	DMUS_IO_SEGMENT_HEADER;

Members

dwRepeats

Number	of	repetitions.

mtLength

Length	of	the	segment.

mtPlayStart

Start	of	playback,	normally	0.

mtLoopStart

Start	of	the	looping	portion,	normally	0.

mtLoopEnd

End	of	the	looping	portion.	Must	be	greater	than	mtPlayStart,	or	zero	to	loop
the	entire	segment.

dwResolution

Default	resolution.	See	DMUS_TIME_RESOLVE_FLAGS.

rtLength

Length	of	the	segment	in	reference	time.	Valid	if	the
DMUS_SEGIOF_REFLENGTH	flag	is	set.

dwFlags

Can	be	0	or	one	or	more	of	the	following	flags.

Value Description

DMUS_SEGIOF_REFLENGTH The	value	in	rtLength	overrides
mtLength.

DMUS_SEGIOF_CLOCKTIME The	segment	is	played	in	clock	time.

dwReserved

Reserved.

rtLoopStart

Loop	start	in	clock	time.

rtLoopEnd

Loop	end	in	clock	time.

rtPlayStart

Start	point	in	clock	time.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DMUS_IO_MOTIFSETTINGS
IDirectMusicSegment8::SetLoopPoints

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SEGMENT_ITEM_HEADER
The	DMUS_IO_SEGMENT_ITEM_HEADER	structure	contains	information
about	a	segment	referenced	in	the	Segment	Trigger	Track	List.

Syntax

typedef	struct	_DMUS_IO_SEGMENT_ITEM_HEADER{

		MUSIC_TIME		lTimeLogical;

		MUSIC_TIME		lTimePhysical;

		DWORD					dwPlayFlags;

		DWORD					dwFlags;

}	DMUS_IO_SEGMENT_ITEM_HEADER;

Members

lTimeLogical

Time	in	the	music	with	which	the	event	is	associated.

lTimePhysical

Actual	time	at	which	the	segment	is	to	play.

dwPlayFlags

Flags	that	will	be	passed	to	IDirectMusicPerformance8::PlaySegmentEx.	See
DMUS_SEGF_FLAGS.

dwFlags

Can	be	zero	or	the	following	value.

Value Description

DMUS_SEGMENTTRACKF_MOTIF
The	DMRF	chunk	is	a	link	to	a	style,
and	the	'snam'	chunk	is	the	name	of	a
motif	within	the	style.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SEGMENT_TRACK_HEADER
The	DMUS_IO_SEGMENT_TRACK_HEADER	structure	contains
information	about	a	Segment	Trigger	Track	List.

Syntax

typedef	struct	_DMUS_IO_SEGMENT_TRACK_HEADER	{

		DWORD	dwFlags;

}	DMUS_IO_SEGMENT_TRACK_HEADER;

Members

dwFlags

Reserved.	Must	be	zero.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SEQ_ITEM
The	DMUS_IO_SEQ_ITEM	structure	contains	information	about	an	item	of
data	in	a	sequence	track.	Used	in	the	Sequence	Track	Chunk.

Syntax

typedef	struct	_DMUS_IO_SEQ_ITEM	{

		MUSIC_TIME		mtTime;

		MUSIC_TIME		mtDuration;

		DWORD			dwPChannel;

		short			nOffset

		BYTE				bStatus;

		BYTE				bByte1;

		BYTE				bByte2;

}	DMUS_IO_SEQ_ITEM;

Members

mtTime

Logical	time	of	the	event.

mtDuration

Duration	for	which	the	event	is	valid.

dwPChannel

Performance	channel	for	the	event.

nOffset

Offset	from	mtTime	at	which	the	note	is	played,	in	music	time.

bStatus

MIDI	event	type.	Equivalent	to	the	MIDI	status	byte,	but	without	channel
information.

bByte1

First	byte	of	the	MIDI	data.

bByte2

Second	byte	of	the	MIDI	data.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_IO_CURVE_ITEM
MIDI	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SIGNPOST
The	DMUS_IO_SIGNPOST	structure	contains	information	about	a	signpost	in
a	signpost	track	to	associate	it	with	signpost	chords	in	a	chordmap.	Used	in	the
Signpost	Track	Chunk.

Syntax

typedef	struct	_DMUS_IO_SIGNPOST	{

		MUSIC_TIME		mtTime;

		DWORD			dwChords;

		WORD				wMeasure;

}	DMUS_IO_SIGNPOST;

Members

mtTime

Time	of	the	signpost.

dwChords

Types	of	signpost	chords	allowed	to	be	associated	with	this	signpost.	The	values
are	used	to	match	against	the	same	values	as	they	appear	in	templates.
Composing	from	a	template	consists	of	(among	other	things)	looking	for	these
values	in	the	template	and	finding	actual	chords	in	the	chordmap	that	match
these	values.	The	following	flags	are	defined	as	shown.

Value
DMUS_SIGNPOSTF_A
DMUS_SIGNPOSTF_B
DMUS_SIGNPOSTF_C
DMUS_SIGNPOSTF_D
DMUS_SIGNPOSTF_E
DMUS_SIGNPOSTF_F
DMUS_SIGNPOSTF_LETTER
DMUS_SIGNPOSTF_1

DMUS_SIGNPOSTF_2
DMUS_SIGNPOSTF_3
DMUS_SIGNPOSTF_4
DMUS_SIGNPOSTF_5
DMUS_SIGNPOSTF_6
DMUS_SIGNPOSTF_7
DMUS_SIGNPOSTF_ROOT
DMUS_SIGNPOSTF_CADENCE

wMeasure

Measure	on	which	the	signpost	falls.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_IO_CHORDMAP_SIGNPOST

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_STYLE
The	DMUS_IO_STYLE	structure	contains	information	about	the	time	signature
and	tempo	of	a	style.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_STYLE	{

		DMUS_IO_TIMESIG		timeSig;

		double					dblTempo;	

}	DMUS_IO_STYLE;

Members

timeSig

DMUS_IO_TIMESIG	structure	containing	the	default	time	signature	for	the
style.

dblTempo

Tempo	of	the	style.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_STYLE_ANTICIPATION
The	DMUS_IO_STYLE_ANTICIPATION	structure	describes	a	resolution
anticipation.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_STYLE_ANTICIPATION	{

		MUSIC_TIME		mtGridStart;

		DWORD			dwVariation;

		short			nTimeOffset;

		BYTE				bTimeRange;

}	DMUS_IO_STYLE_ANTICIPATION;

Members

mtGridStart

Offset	within	the	part,	in	grids,	at	which	the	event	is	to	play.	See	Remarks.

dwVariation

Variations,	where	each	bit	set	specifies	a	valid	variation.

nTimeOffset

Offset	of	the	time	from	mtGridStart.

bTimeRange

Range	by	which	to	randomize	time.	See	Remarks.

Remarks

The	time	of	the	event	can	be	calculated	as	follows,	where	TimeSig	is	a
DMUS_IO_TIMESIG	structure	containing	the	time	signature:

mtEventTime	=	nTimeOffset	+	((mtGridStart	/	TimeSig.wGridsPerBeat)	*	

((DMUS_PPQ	*	4)	/	TimeSig.bBeat)	+	(mtGridStart	%	

TimeSig.wGridsPerBeat)	*	(((DMUS_PPQ	*	4)/	TimeSig.bBeat)	/	

TimeSig.wGridsPerBeat))

The	value	in	bTimeRange	is	converted	to	music	time	when	the	event	occurs,
according	to	the	formula	given	in	the	Remarks	to	DMUS_IO_STYLENOTE.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_STYLECURVE
The	DMUS_IO_STYLECURVE	structure	contains	information	about	a	curve
in	a	style.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_STYLECURVE	{

		MUSIC_TIME		mtGridStart;

		DWORD			dwVariation;

		MUSIC_TIME		mtDuration;

		MUSIC_TIME		mtResetDuration;

		short			nTimeOffset;

		short			nStartValue;

		short			nEndValue;

		short			nResetValue;	

		BYTE				bEventType;

		BYTE				bCurveShape;

		BYTE				bCCData;

		BYTE				bFlags;

		WORD				wParamType;

		WORD				wMergeIndex;

}	DMUS_IO_STYLECURVE;

Members

mtGridStart

Offset,	in	grids,	at	which	the	curve	occurs.

dwVariation

Variations	that	this	curve	belongs	to.	Each	bit	corresponds	to	one	of	32
variations.

mtDuration

Duration	of	the	curve.

mtResetDuration

Time	after	the	curve	is	finished	during	which	a	reset	can	occur.

nTimeOffset

Offset	from	mtGridStart	at	which	the	curve	occurs.	See	the	Remarks	for
DMUS_IO_STYLE_ANTICIPATION.

nStartValue

Start	value.

nEndValue

End	value.

nResetValue

Reset	value,	set	upon	a	flush	or	invalidation	during	the	time	specified	by
mtResetDuration.

bEventType

Type	of	curve.	See	DMUS_IO_CURVE_ITEM.

bCurveShape

Shape	of	curve.	See	DMUS_IO_CURVE_ITEM.

bCCData

CC	number	if	this	is	a	control	change	type.

bFlags

Set	to	DMUS_CURVE_RESET	if	the	nResetValue	must	be	set	when	an
invalidation	occurs	because	of	a	transition.	If	0,	the	curve	stays	permanently	at
the	new	value.	All	other	bits	are	reserved.

wParamType

RPN	or	NRPN	parameter	number.

wMergeIndex

Merge	index.	Supported	for	mod	wheel,	reverb	send,	chorus	send,	pitch	bend,
volume,	and	expression	controllers.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_CURVE_PMSG
DMUS_IO_CURVE_ITEM

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_STYLEMARKER
The	DMUS_IO_STYLEMARKER	structure	contains	information	about	a
marker	in	a	style.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_STYLEMARKER	{

		MUSIC_TIME		mtGridStart;	

		DWORD			dwVariation;

		WORD				wMarkerFlags;

}	DMUS_IO_STYLEMARKER;

Members

mtGridStart

Offset,	in	grids,	at	which	the	marker	occurs.

dwVariation

Variations	that	this	marker	belongs	to.	Each	bit	corresponds	to	one	of	32
variations.

wMarkerFlags

Flags	that	specify	behavior	of	the	marker.	Can	be	zero	or	one	or	more	of	the
following	values.	If	zero,	the	behavior	is	as	it	was	in	DirectX	version	7.0.

Value Description
DMUS_MARKERF_START Start	a	variation.
DMUS_MARKERF_STOP Stop	a	variation.

DMUS_MARKERF_CHORD_ALIGN

New	variations	must	align	with	a	chord.
This	flag	is	ignored	unless	combined
with	one	or	both	of
DMUS_MARKERF_START	and
DMUS_MARKERF_STOP.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_STYLENOTE
The	DMUS_IO_STYLENOTE	structure	contains	information	about	a	note	in	a
style.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_STYLENOTE	{

		MUSIC_TIME		mtGridStart;

		DWORD			dwVariation;

		MUSIC_TIME		mtDuration;	

		short			nTimeOffset;

		WORD				wMusicValue;	

		BYTE				bVelocity;

		BYTE				bTimeRange;

		BYTE				bDurRange;

		BYTE				bVelRange;	

		BYTE				bInversionID;

		BYTE				bPlayModeFlags;	

		BYTE				bNoteFlags;

}	DMUS_IO_STYLENOTE;

Members

mtGridStart

Offset,	in	grids,	at	which	the	note	occurs.

dwVariation

Variations	that	this	note	belongs	to.	Each	bit	corresponds	to	one	of	32	variations.

mtDuration

Duration	of	the	note.

nTimeOffset

Time	after	mtGridStart	at	which	the	event	occurs.	See	the	Remarks	for
DMUS_IO_STYLE_ANTICIPATION.

wMusicValue

Position	in	the	scale.

bVelocity

Note	velocity.

bTimeRange

Range	within	which	to	randomize	start	time.	See	Remarks.

bDurRange

Range	within	which	to	randomize	duration.	See	Remarks.

bVelRange

Range	within	which	to	randomize	velocity.

bInversionID

Identifier	of	inversion	group	to	which	this	note	belongs.

bPlayModeFlags

Flags	to	override	the	play	mode	of	the	part.	For	a	list	of	values,	see
DMUS_PLAYMODE_FLAGS.

bNoteFlags

Flags.	See	DMUS_NOTEF_FLAGS.

Remarks

The	values	in	bTimeRange	and	bDurRange	are	converted	to	music	time	when
the	note	is	played,	using	the	following	function:

int	StoredRangeToActualRange(BYTE	bRange)

{

		int	nResult	=	0;

		if	(0	<=	bRange	&&	bRange	<=	190)

		{

				nResult	=	bRange;

		}

		else	if	(191	<=	bRange	&&	bRange	<=	212)

		{

				nResult	=	((bRange	-	190)	*	5)	+	190;

		}

		else	if	(213	<=	bRange	&&	bRange	<=	232)

		{

				nResult	=	((bRange	-	212)	*	10)	+	300;

		}

		else	//	bRange	>	232

		{

				nResult	=	((bRange	-	232)	*	50)	+	500;

		}

		return	nResult;

}

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_STYLEPART
The	DMUS_IO_STYLEPART	structure	contains	information	about	a	musical
part.	Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_STYLEPART	{

		DMUS_IO_TIMESIG		timeSig;

		DWORD				dwVariationChoices[32];

		GUID					guidPartID;

		WORD					wNbrMeasures;

		BYTE					bPlayModeFlags;

		BYTE					bInvertUpper;

		BYTE					bInvertLower;

		BYTE					bPad[3];

		DWORD				dwFlags;

}	DMUS_IO_STYLEPART;

Members

timeSig

DMUS_IO_TIMESIG	structure	containing	a	time	signature	to	override	the
style's	default	time	signature.

dwVariationChoices

Each	element	corresponds	to	one	of	32	possible	variations.	The	flags	set	in	each
element	indicate	which	types	of	chord	are	supported	by	that	variation	(see
Remarks).	One	of	the	mode	masks	is	also	set	to	indicate	whether	the	variations
are	in	DirectMusic	or	IMA	mode.

The	following	flags	are	defined	as	shown.

Value Description

DMUS_VARIATIONF_MAJOR Seven	positions	in	the	scale	for	major
chords.

DMUS_VARIATIONF_MINOR Seven	positions	in	the	scale	for	minor

chords.

DMUS_VARIATIONF_OTHER Seven	positions	in	the	scale	for	other
chords.

DMUS_VARIATIONF_ROOT_SCALE Handles	chord	roots	in	the	scale.

DMUS_VARIATIONF_ROOT_FLAT Handles	flat	chord	roots	(based	on	scale
notes).

DMUS_VARIATIONF_ROOT_SHARP Handles	sharp	chord	roots	(based	on
scale	notes).

DMUS_VARIATIONF_TYPE_TRIAD Handles	simple	chords	for	triads.
DMUS_VARIATIONF_TYPE_6AND7 Handles	simple	chords	for	6	and	7.
DMUS_VARIATIONF_TYPE_COMPLEXHandles	complex	chords.
DMUS_VARIATIONF_DEST_TO1 Handles	transitions	to	the	1	chord.
DMUS_VARIATIONF_DEST_TO5 Handles	transitions	to	the	5	chord.
DMUS_VARIATIONF_MODES Mode	mask.	Obsolete.
DMUS_VARIATIONF_MODES_EX Mode	mask.

DMUS_VARIATIONF_IMA25_MODE

Mode	mask.	If	(dwVariationChoices
DMUS_VARIATIONF_MODES_EX)
==
DMUS_VARIATIONF_IMA25_MODE,
the	variations	are	in	Interactive	Music
Architecture	mode.

DMUS_VARIATIONF_DMUS_MODE

Mode	mask.	If	dwVariationChoices
contains	this	mask,	the	variations	are	in
DirectMusic	mode.	All	variations
authored	in	DirectMusic	Producer	use
this	mode.

guidPartID

Unique	identifier	of	the	part.

wNbrMeasures

Length	of	the	part,	in	measures.

bPlayModeFlags

Flags	to	define	the	play	mode.	For	a	list	of	values,	see

DMUS_PLAYMODE_FLAGS.

bInvertUpper

Upper	limit	of	inversion.

bInvertLower

Lower	limit	of	inversion.

bPad

Unused.

dwFlags

Flags	that	specify	the	behavior	of	the	part.	Can	include	the	values	shown	in	the
following	table.

Value Description
DMUS_PARTF_USE_MARKERS Part	uses	marker	events.

DMUS_PARTF_ALIGN_CHORDS Part	is	allowed	to	switch	only	on	chord-
aligned	markers.

Remarks

The	flags	in	dwVariationChoices	determine	the	types	of	chords	supported	by	a
given	variation	in	DirectMusic	mode.	The	first	seven	flags	(bits	1	through	7)	are
set	if	the	variation	supports	major	chords	rooted	in	scale	positions.	For	example,
if	bits	1,	2,	and	4	are	set,	the	variation	supports	major	chords	rooted	in	the	tonic,
second,	and	fourth	scale	positions.

The	next	seven	flags	serve	the	same	purpose	for	minor	chords,	and	the	following
seven	flags	serve	the	same	purpose	for	chords	that	are	not	major	or	minor	(for
example,	SUS	4	chords).	Bits	22,	23,	and	24	are	set	if	the	variation	supports
chords	rooted	in	the	scale,	chords	rooted	sharp	of	scale	tones,	and	chords	rooted
flat	of	scale	tones,	respectively.	For	example,	to	support	a	C#	minor	chord	in	the
scale	of	C	major,	bits	8	(for	tonic	minor)	and	24	(for	sharp)	must	be	set.	Bits	25,
26,	and	27	handle	chords	that	are	triads,	sixth	or	seventh	chords,	and	chords	with

extensions,	respectively.	Bits	28	and	29	handle	chords	that	are	followed	by	tonic
and	dominant	chords,	respectively.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_STYLERESOLUTION
The	DMUS_IO_STYLERESOLUTION	structure	describes	a	style	resolution.
Used	in	the	Style	Form.

Syntax

typedef	struct	_DMUS_IO_STYLERESOLUTION	{

		DWORD		dwVariation;

		WORD	wMusicValue;

		BYTE	bInversionID;

		BYTE	bPlayModeFlags;

}	DMUS_IO_STYLERESOLUTION;

Members

dwVariation

Variations,	where	each	bit	specifies	a	valid	variation.

wMusicValue

Position	in	scale.

bInversionID

Inversion	group	to	which	this	note	belongs.

bPlayModeFlags

Play	mode	flags.	See	DMUS_PLAYMODE_FLAGS.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SUBCHORD
The	DMUS_IO_SUBCHORD	structure	contains	information	about	a	subchord.
Used	in	the	Chord	Track	List.

Syntax

typedef	struct	_DMUS_IO_SUBCHORD	{

		DWORD	dwChordPattern;	

		DWORD	dwScalePattern;	

		DWORD	dwInversionPoints;	

		DWORD	dwLevels;	

		BYTE		bChordRoot;

		BYTE		bScaleRoot;

}	DMUS_IO_SUBCHORD;

Members

dwChordPattern

Notes	in	the	subchord.	Each	of	the	lower	24	bits	represents	a	semitone,	starting
with	the	root	at	the	least	significant	bit,	and	the	bit	is	set	if	the	note	is	in	the
chord.

dwScalePattern

Notes	in	the	scale.	Each	of	the	lower	24	bits	represents	a	semitone,	starting	with
the	root	at	the	least	significant	bit,	and	the	bit	is	set	if	the	note	is	in	the	scale.

dwInversionPoints

Points	in	the	scale	at	which	inversions	can	occur.	Bits	that	are	off	signify	that	the
notes	in	the	interval	cannot	be	inverted.	Thus,	the	pattern	100001111111
indicates	that	inversions	are	allowed	anywhere	except	between	the	fifth	and
seventh	degrees	of	a	major	scale.

dwLevels

Which	levels	are	supported	by	this	subchord.	Certain	instruments	can	be

assigned	different	levels	(such	as	to	play	only	the	lower	subchords	of	a	chord),
and	this	value	is	a	way	of	mapping	subchords	to	those	levels.

bChordRoot

Root	of	the	subchord,	where	0	is	the	lowest	C	in	the	range	and	23	is	the	top	B.

bScaleRoot

Root	of	the	scale,	where	0	is	the	lowest	C	in	the	range	and	23	is	the	top	B.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_SUBCHORD

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_SYSEX_ITEM
The	DMUS_IO_SYSEX_ITEM	structure	contains	information	about	a	system
exclusive	MIDI	message.	Used	in	the	Sysex	Track	Chunk.

Syntax

typedef	struct	_DMUS_IO_SYSEX_ITEM	{

		MUSIC_TIME		mtTime;

		DWORD			dwPChannel;

		DWORD			dwSysExLength;

}	DMUS_IO_SYSEX_ITEM;

Members

mtTime

Time	of	the	message.

dwPChannel

Performance	channel	of	the	event.

dwSysExLength

Length	of	the	data,	in	bytes.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
MIDI	System	Messages

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_TEMPO_ITEM
The	DMUS_IO_TEMPO_ITEM	structure	contains	information	about	a	tempo
change	in	a	track.	Used	in	the	Tempo	Track	Chunk.

Syntax

typedef	struct	_DMUS_IO_TEMPO_ITEM	{

		MUSIC_TIME		lTime;

		double		dblTempo;

}	DMUS_IO_TEMPO_ITEM;

Members

lTime

Time	of	the	tempo	change.

dblTempo

Tempo,	in	beats	per	minute.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_TIMESIG
The	DMUS_IO_TIMESIG	structure	contains	information	about	the	time
signature	of	a	segment.	Used	in	the	DMUS_IO_STYLE,
DMUS_IO_VERSION,	and	DMUS_IO_PATTERN	structures.

Syntax

typedef	struct	_DMUS_IO_TIMESIG	{

		BYTE		bBeatsPerMeasure;

		BYTE		bBeat;

		WORD		wGridsPerBeat;

}	DMUS_IO_TIMESIG;

Members

bBeatsPerMeasure

Beats	per	measure	(top	of	time	signature).

bBeat

Note	that	receives	the	beat	(bottom	of	the	time	signature),	where	1	is	a	whole
note,	2	is	a	half	note,	4	is	a	quarter	note,	and	so	on.	Zero	is	a	256th	note.

wGridsPerBeat

Grids	(subdivisions)	per	beat.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_IO_TIMESIGNATURE_ITEM

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_TIMESIGNATURE_ITEM
The	DMUS_IO_TIMESIGNATURE_ITEM	structure	contains	information
about	a	time	signature	change.	Used	in	the	Time	Signature	Track	List.

Syntax

typedef	struct	_DMUS_IO_TIMESIGNATURE_ITEM	{

		MUSIC_TIME		lTime;

		BYTE				bBeatsPerMeasure;

		BYTE				bBeat;

		WORD				wGridsPerBeat;

}	DMUS_IO_TIMESIGNATURE_ITEM;

Members

lTime

Time	of	the	event.

bBeatsPerMeasure

Beats	per	measure	(top	of	time	signature).

bBeat

Note	that	receives	the	beat	(bottom	of	the	time	signature),	where	1	is	a	whole
note,	2	is	a	half	note,	4	is	a	quarter	note,	and	so	on.	Zero	is	a	256th	note.

wGridsPerBeat

Grids	(subdivisions)	per	beat.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
DMUS_IO_TIMESIG
DMUS_TIMESIG_PMSG

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_TOOL_HEADER
The	DMUS_IO_TOOL_HEADER	structure	contains	information	about	a	tool.
Used	in	the	Tool	Form.

Syntax

typedef	struct	_DMUS_IO_TOOL_HEADER	{

		GUID		guidClassID;

		long		lIndex;

		DWORD	cPChannels;

		FOURCC		ckid;

		FOURCC		fccType;	

		DWORD	dwPChannels[1];	

}	DMUS_IO_TOOL_HEADER;

Members

guidClassID

Class	identifier	of	the	tool.

lIndex

Position	in	the	graph.

cPChannels

Number	of	items	in	the	dwPChannels	array.

ckid

Identifier	of	tool's	data	chunk.	If	this	value	is	0,	it	is	assumed	that	the	chunk	is	of
type	LIST,	so	fccType	is	valid	and	must	be	nonzero.

fccType

List	type.	If	this	value	is	0,	ckid	is	valid	and	must	be	nonzero.

dwPChannels

Array	of	performance	channels	for	which	the	tool	is	valid.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
IDirectMusicGraph8::InsertTool

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_TRACK_EXTRAS_HEADER
The	DMUS_IO_TRACK_EXTRAS_HEADER	structure	is	used	in	the	Track
Form.

Syntax

typedef	struct	_DMUS_IO_TRACK_EXTRAS_HEADER	{

		DWORD		dwFlags;

		DWORD		dwPriority;

}	DMUS_IO_TRACK_EXTRAS_HEADER;

Members

dwFlags

Flags	for	control	tracks.	For	possible	values,	see
IDirectMusicSegment8::SetTrackConfig.

dwPriority

Priority	for	composition.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_TRACK_HEADER
The	DMUS_IO_TRACK_HEADER	structure	contains	information	about	a
track.	Used	in	the	Track	Form.

Syntax

typedef	struct	_DMUS_IO_TRACK_HEADER	{

		GUID			guidClassID;

		DWORD		dwPosition;

		DWORD		dwGroup;

		FOURCC	ckid;

		FOURCC	fccType;

}	DMUS_IO_TRACK_HEADER;

Members

guidClassID

Class	identifier	of	the	track.

dwPosition

Position	in	the	track	list.

dwGroup

Group	bits	for	the	track.

ckid

Identifier	of	the	track's	data	chunk.	If	this	value	is	0,	it	is	assumed	that	the	chunk
is	of	type	LIST,	so	fccType	is	valid	and	must	be	nonzero.

fccType

List	type.	If	this	value	is	0,	ckid	is	valid	and	must	be	nonzero.

See	Also

DirectMusic	File	Structures
IDirectMusicSegment8::GetTrackGroup
IDirectMusicSegment8::InsertTrack
Track	Form

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_VALID_START
The	DMUS_IO_VALID_START	structure	contains	information	about	a	valid
start	point	in	a	segment	that	is	to	be	cued	to	a	rhythm.	Used	in	the	Marker	Track
List.

Syntax

typedef	struct	_DMUS_IO_VALID_START	{

		MUSIC_TIME	mtTime;	

}	DMUS_IO_VALID_START;

Members

mtTime

Time	of	the	start	point.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_VERSION
The	DMUS_IO_VERSION	structure	contains	the	version	number	of	the	data.
Used	in	the	version	subchunk	of	various	chunks.	See	Common	Chunks.

Syntax

typedef	struct	_DMUS_IO_VERSION	{

		DWORD		dwVersionMS;

		DWORD		dwVersionLS;

}	DMUS_IO_VERSION;

Members

dwVersionMS

High-order	32	bits	of	the	version	number.

dwVersionLS

Low-order	32	bits	of	the	version	number.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_WAVE_HEADER
The	DMUS_IO_WAVE_HEADER	structure	describes	streaming	characteristics
of	a	wave.	It	is	used	in	the	Wave	Header	Chunk	of	a	WAV	file.

Syntax

typedef	struct	_DMUS_IO_WAVE_HEADER	{

		REFERENCE_TIME		rtReadAhead;

		DWORD					dwFlags;

}	DMUS_IO_WAVE_HEADER;

Members

rtReadAhead

Time	to	read	ahead	in	a	streaming	wave.

dwFlags

Flags.	Can	be	zero	or	one	or	more	of	the	following	values.

Value Description

DMUS_WAVEF_NOPREROLL Preroll	data	is	not	downloaded	with	the
wave.

DMUS_WAVEF_STREAMING The	wave	is	streamed.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_WAVE_ITEM_HEADER
The	DMUS_IO_WAVE_ITEM_HEADER	structure	contains	data	for	a	wave
sound	in	a	Wave	Track	List.

Syntax

typedef	struct	_DMUS_IO_WAVE_ITEM_HEADER	{

		long					lVolume;

		long					lPitch;

		DWORD				dwVariations;

		REFERENCE_TIME	rtTime;

		REFERENCE_TIME	rtStartOffset;	

		REFERENCE_TIME	rtReserved;

		REFERENCE_TIME	rtDuration;

		MUSIC_TIME			mtLogicalTime;

		DWORD				dwLoopStart;

		DWORD				dwLoopEnd;

		DWORD				dwFlags;

		WORD					wVolumeRange;

		WORD					wPitchRange;

}	DMUS_IO_WAVE_ITEM_HEADER;

Members

lVolume

Gain,	in	hundredths	of	a	decibel.	Must	be	a	negative	value.

lPitch

Pitch	offset,	in	hundredths	of	a	semitone.

dwVariations

Variation	flags.	One	bit	is	set	for	each	variation	this	wave	belongs	to.

rtTime

Start	time,	in	reference	time	if	the	track	is	in	clock	time	format;	otherwise	in
music	time.

rtStartOffset

Distance	into	wave	to	start	playback,	in	reference	time.

rtReserved

Not	used.

rtDuration

Duration,	in	reference	time	if	the	track	is	in	clock	time	format;	otherwise	in
music	time.

mtLogicalTime

Musical	boundary	where	this	belongs.	Ignored	if	the	track	is	in	clock	time
format.

dwLoopStart

Start	point	for	a	looping	wave.

dwLoopEnd

End	point	for	a	looping	wave.

dwFlags

Flags.	Can	be	0	or	one	of	the	values	in	the	following	table.

Value Description

DMUS_WAVEF_IGNORELOOPS Wave	is	not	invalidated	when	a	segment
loop	point	is	reached.

DMUS_WAVEF_NOINVALIDATE This	wave	is	not	to	be	invalidated.
DMUS_WAVEF_STREAMING Wave	is	streaming.

wVolumeRange

Amount	by	which	volume	can	be	randomized,	in	hundredths	of	a	decibel.

wPitchRange

Amount	by	which	pitch	can	be	randomized,	in	hundredths	of	a	semitone.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_WAVE_PART_HEADER
The	DMUS_IO_WAVE_PART_HEADER	structure	contains	data	for	a	Wave
Track	List.

Syntax

typedef	struct	_DMUS_IO_WAVE_PART_HEADER	{

		long	lVolume;

		DWORD		dwVariations;

		DWORD		dwPChannel;

		DWORD		dwLockToPart;

		DWORD		dwFlags;	

		DWORD		dwIndex;

}	DMUS_IO_WAVE_PART_HEADER;

Members

lVolume

Gain,	in	hundredths	of	a	decibel,	to	apply	to	all	waves	in	this	wave	part.	This
must	be	a	negative	value.

dwVariations

Active	variations.	One	bit	is	set	for	each	active	variation.

dwPChannel

Performance	channel	of	the	part.

dwLockToPart

Variation	lock	identifier.	Parts	with	the	same	value	in	this	member	always	play
the	same	variation.	A	value	of	0	means	that	the	part	plays	its	variations
independently	of	all	other	parts.

dwFlags

Flags	for	managing	how	variations	are	chosen,	in	the	lower	four	bits.	See

DMUS_VARIATIONT_TYPES.

dwIndex

Index	for	distinguishing	multiple	parts	on	the	same	performance	channel.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_IO_WAVE_TRACK_HEADER
The	DMUS_IO_WAVE_TRACK_HEADER	structure	contains	data	for	a	wave
track	in	a	Wave	Track	List.

Syntax

typedef	struct	_DMUS_IO_WAVE_TRACK_HEADER	{

		long	lVolume;	

		DWORD		dwFlags;

}	DMUS_IO_WAVE_TRACK_HEADER;

Members

lVolume

Gain,	hundredths	of	a	decibel,	to	be	applied	to	all	waves.

dwFlags

Flags.	Can	be	0	or	one	or	more	of	the	values	shown	in	the	following	table.

Value Description

DMUS_WAVETRACKF_SYNC_VAR

The	track	gets	its	variations
from	a	pattern	track.	For	more
information,	see
GUID_Variations.

DMUS_WAVETRACKF_PERSIST_CONTROL
Variation	control	information
persists	from	one	playback
instance	to	the	next.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DSOUND_IO_3D
The	DSOUND_IO_3D	structure	contains	3-D	parameters	for	a	DirectSound
buffer	in	a	DirectSound	Buffer	Configuration	Form.

Syntax

typedef	struct	_DSOUND_IO_3D	{

		GUID	guid3DAlgorithm;	

		DS3DBUFFER	ds3d;	

}	DSOUND_IO_3D;

Members

guid3DAlgorithm

Unique	identifier	of	the	3-D	algorithm	to	use.

ds3d

DS3DBUFFER	structure	that	contains	the	parameters.	This	information	is	valid
only	if	DSBCAPS_CTRL3D	is	set	in	the	buffer	description.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DSOUND_IO_DSBUFFERDESC
The	DSOUND_IO_DSBUFFERDESC	structure	describes	a	DirectSound
buffer.	Used	in	the	DirectSound	Buffer	Configuration	Form.

Syntax

typedef	struct	_DSOUND_IO_DSBUFFERDESC	{

		DWORD	dwFlags;

		WORD	nChannels;

		LONG	lVolume;

		LONG	lPan;

		DWORD	dwReserved;

}	DSOUND_IO_DSBUFFERDESC;

Members

dwFlags

Buffer	creation	flags.

nChannels

Number	of	channels.	Other	parameters	of	the	format	are	determined	by	the	sink
that	owns	the	buffer.

lVolume

Initial	volume.	Used	only	if	DSBCAPS_CTRLVOLUME	is	in	dwFlags.

lPan

Initial	pan.	Used	only	if	DSBCAPS_CTRLPAN	is	in	dwFlags.

dwReserved

Reserved.	Must	be	0.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DSOUND_IO_DSBUSID
The	DSOUND_IO_DSBUSID	structure	contains	bus	identifiers.	Used	in	the
DirectSound	Buffer	Configuration	Form.

Syntax

typedef	struct	_DSOUND_IO_DSBUSID	{

		DWORD	busid[1];

}	DSOUND_IO_DSBUSID;

Members

busid

Array	of	DWORDs	containing	the	bus	identifiers.	The	size	of	the	array	can	be
determined	from	the	chunk	size.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DSOUND_IO_DXDMO_DATA
The	DSOUND_IO_DXDMO_DATA	structure	contains	data	for	a	DMO.

Syntax

typedef	struct	_DSOUND_IO_DXDMO_DATA	{

		DWORD	data[1];

}	DSOUND_IO_DXDMO_DATA;

Members

data

Array	of	DWORD	values	containing	the	data.	The	size	of	the	array	can	be
determined	from	the	chunk	size.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DSOUND_IO_DXDMO_HEADER
The	DSOUND_IO_DXDMO_HEADER	structure	contains	header	information
for	a	DMO	chunk	in	an	Effects	Form.

Syntax

typedef	struct	_DSOUND_IO_DXDMO_HEADER	{

		DWORD	dwEffectFlags;

		GUID	guidDSFXClass;

		GUID	guidReserved;

		GUID	guidSendBuffer;

		DWORD	dwReserved;

}	DSOUND_IO_DXDMO_HEADER;

Members

dwEffectFlags

Effect	creation	flags.

guidDSFXClass

Class	identifier	of	the	effect.

guidReserved

Reserved.	Must	be	GUID_NULL.

guidSendBuffer

Unique	identifier	of	the	buffer	to	send	to,	if	this	is	a	send	effect.

dwReserved

Reserved.	Must	be	0.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	File	Structures

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

Standard	Track	Parameters
This	section	describes	the	standard	track	parameters	that	can	be	set	and	retrieved
by	using	the	following	methods.

IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::GetParamEx
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParam
IDirectMusicTrack8::SetParamEx

Parameter	types	are	listed	in	this	section	under	their	GUIDs,	as	specified	in	the
rGuidType	parameter	of	the	method	call.

The	following	information	is	given	for	each	parameter	type:

Element Description

Track	type

Tracks	to	which	the	parameters	apply.	See	Standard	Track
Types.	Although	parameters	are	always	associated	with
particular	tracks,	applications	usually	call	the	method	on	the
segment	or	the	performance	and	let	DirectMusic	find	the
appropriate	track.	See	Identifying	the	Track.

Data	type Type	of	data	pointed	to	by	the	pParam	parameter	of	the
method	call	by	which	the	parameter	is	set	or	retrieved.

mtTime Significance,	if	any,	of	the	mtTime	parameter	of	the	method
call	by	which	the	parameter	is	set	or	retrieved.

The	standard	parameter	types	are	listed	in	the	following	table.

Parameter	GUID Description
GUID_BandParam Sets	or	retrieves	a	band.
GUID_ChordParam Sets	or	retrieves	a	chord	change.

GUID_Clear_All_Bands Clears	all	bands	from	the	track.

GUID_CommandParam Sets	or	retrieves	a	groove	or
embellishment	command.

GUID_CommandParam2
Sets	or	retrieves	a	groove	or
embellishment	command,	with
additional	timing	information.

GUID_CommandParamNext
Sets	or	retrieves	a	groove	or
embellishment	command	to	follow	all
other	commands	in	the	command	track.

GUID_ConnectToDLSCollection Connects	all	bands	in	the	track	to	a
DLS	collection.

GUID_Disable_Auto_Download Disables	automatic	downloading	of
instruments	and	waves.

GUID_DisableTempo Disables	tempo	messages.
GUID_DisableTimeSig Disables	time	signature	messages.

GUID_Download Downloads	instrument	data	or	wave
data	to	the	performance.

GUID_DownloadToAudioPath Downloads	instrument	data	or	wave
data	to	an	audiopath.

GUID_Enable_Auto_Download Enables	automatic	downloading	of
instruments	and	waves.

GUID_EnableTempo Enables	tempo	messages.
GUID_EnableTimeSig Enables	time	signature	messages.
GUID_IDirectMusicBand Sets	a	band.
GUID_IDirectMusicChordMap Sets	or	retrieves	the	chordmap.
GUID_IDirectMusicStyle Sets	or	retrieves	the	style.

GUID_MuteParam Sets	or	retrieves	channel-mapping	and
muting	information.

GUID_Play_Marker
Retrieves	the	next	point	in	the	currently
playing	segment	at	which	a	new
segment	can	start.

GUID_RhythmParam
Retrieves	the	rhythm	pattern	for	a
sequence	of	chords	stored	in	a	measure
in	the	track.

GUID_SeedVariations Seeds	the	random	number	generator	for
variation	selection.

GUID_StandardMIDIFile Ensures	that	a	standard	MIDI	file	plays
correctly.

GUID_TempoParam Sets	or	retrieves	the	tempo.
GUID_TimeSignature Retrieves	the	time	signature.

GUID_Unload Unloads	instrument	or	wave	data	from
the	performance.

GUID_UnloadFromAudioPath Unloads	instrument	or	wave	data	from
an	audiopath.

GUID_Valid_Start_Time Retrieves	the	next	valid	point	within	a
segment	at	which	it	can	start.

GUID_Variations Retrieves	the	variations	in	effect	across
performance	channels.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_BandParam
Sets	or	retrieves	a	band.

Element Description
Track	type Band
Data	type	(*pParam) DMUS_BAND_PARAM

mtTime Logical	time	at	which	to	set	the	band,	or	the	time
for	which	to	retrieve	the	band.

Remarks

When	this	parameter	is	retrieved	by	a	GetParam	call,	a	reference	to	the	band
object	is	created	in	DMUS_BAND_PARAM.pBand.	The	application	is
responsible	for	releasing	this	reference.

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_ChordParam
Sets	or	retrieves	a	chord	change.

Element Description
Track	type Chord
Data	type	(*pParam) DMUS_CHORD_PARAM

mtTime
The	time,	in	track	time,	at	which	to	add	the	chord	to
the	track,	or	the	time	at	or	directly	after	the	chord	to
be	retrieved	from	the	track.

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Clear_All_Bands
Clears	all	bands	from	the	track.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Band
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_CommandParam
Sets	or	retrieves	a	groove	or	embellishment	command.

Element Description
Track	type Command
Data	type	(*pParam) DMUS_COMMAND_PARAM

mtTime
The	time,	in	track	time,	at	which	to	add	the
command	to	the	track,	or	the	time	at	or	directly	after
the	command	to	be	retrieved	from	the	track

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_CommandParam2
Sets	or	retrieves	a	groove	or	embellishment	command.

Element Description
Track	type Command

Data	type	(*pParam)
DMUS_COMMAND_PARAM_2.	The	mtTime
member	of	this	structure	gives	the	actual	time	of	the
command.

mtTime
The	time,	in	track	time,	at	which	to	add	the
command	to	the	track,	or	the	time	at	or	directly	after
the	command	to	be	retrieved	from	the	track

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_CommandParamNext
Sets	or	retrieves	a	groove	or	embellishment	command	to	follow	all	other
commands	in	the	command	track.

Element Description
Track	type Command
Data	type	(*pParam)DMUS_COMMAND_PARAM_2
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_ConnectToDLSCollection
Connects	all	bands	in	the	track	to	a	DLS	collection.	This	parameter	can	be	set
but	not	retrieved.

Element Description
Track	type Band

Data	type	(*pParam) IDirectMusicCollection8	interface
pointer

mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Playing	a	MIDI	File	with	Custom	Instruments.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Disable_Auto_Download
Disables	automatic	downloading	of	instruments	and	waves.	This	parameter	can
be	set	but	not	retrieved.

Element Description
Track	type Band,	wave
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

GUID_Enable_Auto_Download
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_DisableTempo
Disables	tempo	messages.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Tempo
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Disabling	and	Enabling	Track	Parameters
GUID_EnableTempo

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_DisableTimeSig
Disables	time	signature	messages.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Pattern,	time	signature,	style,	motif
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Disabling	and	Enabling	Track	Parameters
GUID_EnableTimeSig

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Download
Downloads	instrument	data	or	wave	data.	This	parameter	can	be	set	but	not
retrieved.

Element Description
Track	type Band,	wave

Data	type	(*pParam) IDirectMusicPerformance8	interface
pointer

mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8::Download

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_DownloadToAudioPath
Downloads	instrument	data	or	wave	data.	This	parameter	can	be	set	but	not
retrieved.

Element Description
Track	type Band,	wave

Data	type	(*pParam) IDirectMusicAudioPath8	interface
pointer

mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8::Download

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Enable_Auto_Download
Enables	automatic	downloading	of	instruments	and	waves.	This	parameter	can
be	set	but	not	retrieved.

Element Description
Track	type Band,	wave
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

GUID_Disable_Auto_Download
Using	Bands

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_EnableTempo
Enables	tempo	messages.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Tempo
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Disabling	and	Enabling	Track	Parameters
GUID_DisableTempo

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_EnableTimeSig
Enables	time	signature	messages.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Pattern,	time	signature,	style,	motif
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Disabling	and	Enabling	Track	Parameters
GUID_DisableTimeSig

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_IDirectMusicBand
Sets	a	band.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Band
Data	type	(*pParam) IDirectMusicBand8	interface	pointer

mtTime The	time,	in	track	time,	at	which	to	add	the	band	to
the	track.

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

This	parameter	has	been	superseded	by	GUID_BandParam,	which	allows	you	to
specify	the	physical	time.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_IDirectMusicChordMap
Sets	or	retrieves	the	chordmap.

Element Description
Track	type Chordmap

Data	type	(*pParam) IDirectMusicChordMap8	interface	pointer	or
address	of	a	variable	to	receive	this	pointer.

mtTime
The	time,	in	track	time,	at	which	to	add	the
chordmap	to	the	track,	or	the	time	at	or	directly
after	the	chordmap	to	be	retrieved	from	the	track.

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_IDirectMusicStyle
Sets	or	retrieves	the	style.

Element Description
Track	type Style

Data	type	(*pParam) IDirectMusicStyle8	interface	pointer	or	address	of
a	variable	to	receive	this	pointer

mtTime
The	time,	in	track	time,	at	which	to	add	the	style	to
the	track,	or	the	time	at	or	directly	after	the	style	to
be	retrieved	from	the	track

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_MuteParam
Sets	or	retrieves	channel-mapping	and	muting	information.

Element Description
Track	type Mute.

Data	type	(*pParam)
DMUS_MUTE_PARAM.	The	dwPChannel
member	must	be	initialized	before	this	structure	is
passed	to	the	get	method.

mtTime
The	time,	in	track	time,	at	which	to	add	the	mute
event	to	the	track,	or	the	time	at	or	directly	after	the
mute	event	to	be	retrieved	from	the	track.

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

You	cannot	dynamically	change	the	mapping	or	muting	of	a	channel	by	setting
this	parameter	while	the	mute	track	is	playing.	Parameters	in	the	mute	track	are
retrieved	by	internal	GetParam	calls	from	other	tracks,	and	the	application	has
no	control	over	the	timing	of	such	calls.	Changes	in	the	mapping	or	muting	of
channels	should	be	authored	into	the	mute	track	of	a	segment	played	as	a
controlling	segment,	or	done	at	run	time	by	tools.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Play_Marker
Retrieves	the	next	point	in	the	currently	playing	segment	at	which	a	new
segment	can	start.	This	parameter	can	be	retrieved	but	not	set.

Element Description
Track	type Marker
Data	type	(*pParam) DMUS_PLAY_MARKER_PARAM
mtTime Track	time	at	which	to	start	seeking	a	marker

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_RhythmParam
Retrieves	the	rhythm	pattern	for	a	sequence	of	chords	stored	in	a	measure	in	the
track.	This	parameter	can	be	retrieved	but	not	set.

Element Description
Track	type Chord

Data	type	(*pParam)
DMUS_RHYTHM_PARAM.	The	TimeSig
member	must	be	initialized	before	this	structure	is
passed	to	the	get	method.

mtTime
The	time,	in	track	time,	at	or	directly	after	the
beginning	of	the	measure	containing	the	rhythm
pattern	to	be	retrieved	from	the	track

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_SeedVariations
Seeds	the	random	number	generator	for	variation	selection.	A	nonzero	value	is
used	as	the	seed.	A	value	of	0	resets	the	default	behavior	of	getting	the	seed	from
the	system	clock.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Pattern,	style,	motif
Data	type	(*pParam)Long
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Setting	this	parameter	to	nonzero	is	useful	for	testing	because	it	ensures	that	the
same	sequence	of	random	numbers	is	generated	each	time.	The	parameter	should
be	set	only	once,	before	the	track	is	played.	The	style	and	command	track	must
be	designed	so	that	each	time	that	the	segment	is	played,	the	same	patterns	are
chosen	at	the	same	places	in	the	segment.	Each	loop	plays	different	variations
than	the	one	before	it	does,	but	each	time	the	entire	segment	is	replayed	from	the
beginning,	each	loop	sounds	the	same	as	the	first	time	the	segment	was	played.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_StandardMIDIFile
Ensures	that	a	standard	MIDI	file	(one	not	authored	specifically	for
DirectMusic)	plays	correctly.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Band
Data	type	(*pParam)None
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Setting	this	parameter	ensures	that	channels	do	not	play	silently	if	the	file
contains	no	patch	changes.	It	also	causes	bank	selects	to	be	ignored.	The
parameter	must	be	set	before	any	instruments	are	downloaded.

Do	not	set	this	parameter	if	the	file	might	contain	DLS	instrument	data.	Doing	so
causes	the	DSL	instruments	to	be	ignored	and	standard	GM	instruments	to	be
used.

If	you	are	writing	an	application	to	play	MIDI	content	that	might	or	might	not
contain	DLS	instruments,	you	should	ascertain	for	each	file	whether	or	not	the
file	contains	a	DLS	chunk.	The	four-character	code	for	this	chunk	is	"DLS	",
defined	as	FOURCC_DLS	in	Dls1.h.	If	the	file	contains	this	chunk,	do	not	set
the	GUID_StandardMIDIFile	parameter.

See	Also

About	RIFF

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_TempoParam
Sets	or	retrieves	the	tempo.

Element Description
Track	type Tempo

Data	type	(*pParam)

DMUS_TEMPO_PARAM.	When	setting	the
parameter,	the	mtTime	member	of	the	structure	is
ignored.	When	getting	the	parameter,	the	mtTime
member	receives	the	offset	of	the	tempo	change
from	the	requested	time	and	is	always	0	or	less.

mtTime
The	time,	in	track	time,	at	which	to	set	the	tempo,	or
the	time	at	or	directly	after	the	tempo	change	to
retrieve

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_TimeSignature
Retrieves	the	time	signature.	This	parameter	can	be	retrieved	but	not	set.

Element Description
Track	type Time	signature	and	style

Data	type	(*pParam)

DMUS_TIMESIGNATURE.	The	mtTime
member	receives	the	offset	of	the	time	signature
change	from	the	requested	time	and	is	always	0	or
less.

mtTime
The	time,	in	track	time,	at	which	to	set	the	time
signature,	or	the	time	at	or	directly	after	the	time
signature	change	to	retrieve

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Unload
Unloads	instrument	or	wave	data.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Band,	wave

Data	type	(*pParam) IDirectMusicPerformance8	interface
pointer

mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8::Unload

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_UnloadFromAudioPath
Unloads	instrument	or	wave	data.	This	parameter	can	be	set	but	not	retrieved.

Element Description
Track	type Band,	wave

Data	type	(*pParam) IDirectMusicAudioPath8	interface
pointer

mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

IDirectMusicSegment8::Unload

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Valid_Start_Time
Retrieves	the	next	valid	point	within	a	segment	at	which	it	can	start.	This
parameter	can	be	retrieved	but	not	set.

Element Description
Track	type Marker,	motif,	pattern
Data	type	(*pParam)DMUS_VALID_START_PARAM
mtTime Not	used

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

GUID_Variations
Retrieves	the	variations	in	effect	across	performance	channels.	This	parameter
can	be	retrieved	but	not	set.

Element Description
Track	type Pattern
Data	type	(*pParam)DMUS_VARIATIONS_PARAM
mtTime Not	used.

Remarks

For	an	explanation	of	the	table,	see	Standard	Track	Parameters.

Requirements

		Header:	Declared	in	dmusici.h.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Enumerated	Types
This	section	contains	references	for	the	following	enumerated	types.

Enumerated	Type Description

DMUS_CHORDKEYF_FLAGS Used	in	the	bFlags	member	of	the	DMUS_CHORD_KEY
structure.

DMUS_CLOCKTYPE Used	in	the	ctType	member	of	the
DMUS_CLOCKINFO8	structure.

DMUS_COMMANDT_TYPES

Used	in	the	wCommand	parameter	of	the
IDirectMusicComposer8::AutoTransition
IDirectMusicComposer8::ComposeTransition
and	in	the	bCommand	member	of	the
DMUS_COMMAND_PARAM	structure.

DMUS_COMPOSEF_FLAGS
Used	in	the	dwFlags	parameter	of	the
IDirectMusicComposer8::AutoTransition
IDirectMusicComposer8::ComposeTransition

DMUS_CURVE_FLAGS Used	in	the	bFlags	member	of	the
DMUS_CURVE_PMSG	structure.

DMUS_EMBELLISHT_TYPES Used	in	the	wEmbellishment	member	of	the
DMUS_IO_PATTERN	structure.

DMUS_NOTEF_FLAGS Used	in	the	bFlags	member	of	the	DMUS_NOTE_PMSG
structure.

DMUS_PATTERNT_TYPES Used	in	various	command	structures	to	control	the	way
patterns	are	selected	in	sequential	commands.

DMUS_PLAYMODE_FLAGS Used	in	various	structures	to	specify	play	modes.

DMUS_PMSGF_FLAGS Used	in	the	dwFlags	member	of	the	DMUS_PMSG
structure.

DMUS_PMSGT_TYPES Used	in	the	dwType	member	of	the	DMUS_PMSG
structure	to	identify	the	type	of	message.

DMUS_SEGF_FLAGS
Passed	to	various	methods	of	IDirectMusicPerformance8
to	control	the	timing	and	other	aspects	of	actions	on	a
segment.
Used	in	the	wShape	parameter	of	the
IDirectMusicComposer8::ComposeSegmentFromShape

DMUS_SHAPET_TYPES and
IDirectMusicComposer8::ComposeTemplateFromShape
methods	to	specify	the	desired	pattern	of	the	

DMUS_STYLET_TYPES

Used	in	the
IDirectMusicPatternTrack8::SetPatternByName
IDirectMusicStyle8::EnumPattern	methods	to	specify	a
type	of	pattern.

DMUS_TIME_RESOLVE_FLAGS
Used	in	the	dwFlags	member	of	the	DMUS_PMSG
structure	and	in	the	dwTimeResolveFlags	parameter	of	the
IDirectMusicPerformance8::GetResolvedTime

DMUS_TRACKF_FLAGS
Used	in	the	dwFlags	parameter	of	the
IDirectMusicTrack8::Play	and
IDirectMusicTrack8::PlayEx	methods.

DMUS_VARIATIONT_TYPES Used	in	the	DMUS_IO_PARTREF	structure	to	specify	the
way	variations	are	selected	in	sequential	commands.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CHORDKEYF_FLAGS
The	DMUS_CHORDKEYF_FLAGS	enumerated	type	is	used	in	the	bFlags
member	of	the	DMUS_CHORD_KEY	structure.

Syntax

typedef	enum	enumDMUS_CHORDKEYF_FLAGS	{

		DMUS_CHORDKEYF_SILENT		=	1,

}	DMUS_CHORDKEYF_FLAGS;

Constants

DMUS_CHORDKEYF_SILENT

The	chord	is	silent.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CLOCKTYPE
The	DMUS_CLOCKTYPE	enumerated	type	is	used	in	the	ctType	member	of
the	DMUS_CLOCKINFO8	structure.

Syntax

typedef	enum	{

		DMUS_CLOCK_SYSTEM	=	0,

		DMUS_CLOCK_WAVE			=	1

}	DMUS_CLOCKTYPE;

Constants

DMUS_CLOCK_SYSTEM

Clock	is	the	system	clock.

DMUS_CLOCK_WAVE

Clock	is	on	a	waveform-playback	device.

Requirements

		Header:	Declared	in	dmusicc.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_COMMANDT_TYPES
The	DMUS_COMMANDT_TYPES	enumerated	type	is	used	in	the
wCommand	parameter	of	the	IDirectMusicComposer8::AutoTransition	and
IDirectMusicComposer8::ComposeTransition	methods	and	in	the
bCommand	member	of	the	DMUS_COMMAND_PARAM	structure.

Syntax

typedef	enum	enumDMUS_COMMANDT_TYPES	{	

		DMUS_COMMANDT_GROOVE						=	0,

		DMUS_COMMANDT_FILL								=	1,

		DMUS_COMMANDT_INTRO							=	2,

		DMUS_COMMANDT_BREAK							=	3,

		DMUS_COMMANDT_END									=	4,

		DMUS_COMMANDT_ENDANDINTRO	=	5

}	DMUS_COMMANDT_TYPES;

Constants

DMUS_COMMANDT_GROOVE

The	command	is	a	groove	command.

DMUS_COMMANDT_FILL

The	command	is	a	fill.

DMUS_COMMANDT_INTRO

The	command	is	an	introduction.

DMUS_COMMANDT_BREAK

The	command	is	a	break.

DMUS_COMMANDT_END

The	command	is	an	ending.

DMUS_COMMANDT_ENDANDINTRO

The	command	is	an	ending	and	an	introduction.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_COMPOSEF_FLAGS
The	DMUS_COMPOSEF_FLAGS	enumerated	type	is	used	in	the	dwFlags
parameter	of	the	IDirectMusicComposer8::ComposeTransition	and
IDirectMusicComposer8::AutoTransition	methods.

Syntax

typedef	enum	enumDMUS_COMPOSEF_FLAGS	{	

		DMUS_COMPOSEF_NONE																=							0,

		DMUS_COMPOSEF_ALIGN															=						0x1,

		DMUS_COMPOSEF_OVERLAP													=						0x2,

		DMUS_COMPOSEF_IMMEDIATE											=						0x4,

		DMUS_COMPOSEF_GRID																=						0x8,

		DMUS_COMPOSEF_BEAT																=					0x10,

		DMUS_COMPOSEF_MEASURE													=					0x20,

		DMUS_COMPOSEF_AFTERPREPARETIME				=					0x40,

		DMUS_COMPOSEF_VALID_START_BEAT				=					0x80,

		DMUS_COMPOSEF_VALID_START_GRID				=				0x100,

		DMUS_COMPOSEF_VALID_START_TICK				=				0x200,

		DMUS_COMPOSEF_SEGMENTEND										=				0x400,

		DMUS_COMPOSEF_MARKER														=				0x800,

		DMUS_COMPOSEF_MODULATE												=			0x1000,

		DMUS_COMPOSEF_LONG																=			0x2000,

		DMUS_COMPOSEF_ENTIRE_TRANSITION			=			0x4000,

		DMUS_COMPOSEF_1BAR_TRANSITION					=			0x8000,

		DMUS_COMPOSEF_ENTIRE_ADDITION					=		0x10000,

		DMUS_COMPOSEF_1BAR_ADDITION							=		0x20000,

		DMUS_COMPOSEF_VALID_START_MEASURE	=		0x40000,

		DMUS_COMPOSEF_DEFAULT													=		0x80000,

		DMUS_COMPOSEF_NOINVALIDATE								=	0x100000,

		DMUS_COMPOSEF_USE_AUDIOPATH							=	0x200000,

		DMUS_COMPOSEF_INVALIDATE_PRI						=	0x400000	

}		DMUS_COMPOSEF_FLAGS;

Constants

DMUS_COMPOSEF_NONE

No	flags.	By	default,	the	transition	starts	on	a	measure	boundary.

DMUS_COMPOSEF_ALIGN

Align	transition	to	the	time	signature	of	the	currently	playing	segment.

DMUS_COMPOSEF_OVERLAP

Overlap	the	transition	into	pToSeg.	Not	implemented.

DMUS_COMPOSEF_IMMEDIATE

AutoTransition	only.	Start	transition	immediately.

DMUS_COMPOSEF_GRID

AutoTransition	only.	Start	transition	on	a	grid	boundary.

DMUS_COMPOSEF_BEAT

AutoTransition	only.	Start	transition	on	a	beat	boundary.

DMUS_COMPOSEF_MEASURE

AutoTransition	only.	Start	transition	on	a	measure	boundary.

DMUS_COMPOSEF_AFTERPREPARETIME

AutoTransition	only.	Use	the	DMUS_SEGF_AFTERPREPARETIME	flag
when	cueing	the	transition.

DMUS_COMPOSEF_VALID_START_BEAT

Allow	the	switch	to	occur	on	any	beat.	Used	in	conjunction	with
DMUS_COMPOSEF_ALIGN.

DMUS_COMPOSEF_VALID_START_GRID

Allow	the	switch	to	occur	on	any	grid.	Used	in	conjunction	with
DMUS_COMPOSEF_ALIGN.

DMUS_COMPOSEF_VALID_START_TICK

Allow	the	switch	to	occur	at	any	time.	Used	in	conjunction	with
DMUS_COMPOSEF_ALIGN.

DMUS_COMPOSEF_SEGMENTEND

Play	the	transition	at	the	end	of	the	current	segment.

DMUS_COMPOSEF_MARKER

Play	the	transition	at	the	next	marker	in	the	current	segment.

DMUS_COMPOSEF_MODULATE

Compose	a	transition	that	modulates	smoothly	from	pFromSeg	to	pToSeg,	using
the	chord	of	pToSeg.

DMUS_COMPOSEF_LONG

Composes	a	long	transition.	If	this	flag	is	not	set,	the	length	of	the	transition	is	at
most	one	measure	unless	the	wCommand	parameter	of	ComposeTransition	or
AutoTransition	specifies	an	ending	and	the	style	contains	an	ending	of	greater
than	one	measure.	If	this	flag	is	set,	the	length	of	the	transition	increases	by	one
measure.

DMUS_COMPOSEF_ENTIRE_TRANSITION

Include	the	entire	transition	pattern.

DMUS_COMPOSEF_1BAR_TRANSITION

Include	one	bar	of	the	transition	pattern.

DMUS_COMPOSEF_ENTIRE_ADDITION

Include	the	additional	transition	pattern	in	its	entirety.	Used	in	combination	with
DMUS_COMPOSEF_LONG.

DMUS_COMPOSEF_1BAR_ADDITION

Include	one	bar	of	the	additional	transition	pattern.	This	is	the	default	behavior
when	DMUS_COMPOSEF_LONG	is	specified.

DMUS_COMPOSEF_VALID_START_MEASURE

Allow	the	switch	to	occur	on	any	bar.		Used	in	combination	with
DMUS_COMPOSEF_ALIGN.

DMUS_COMPOSEF_DEFAULT

Use	the	segment's	default	boundary.

DMUS_COMPOSEF_NOINVALIDATE

Do	not	invalidate	segments	that	are	playing.

DMUS_COMPOSEF_USE_AUDIOPATH

Use	the	audiopaths	embedded	in	the	segments.

DMUS_COMPOSEF_INVALIDATE_PRI

Invalidate	only	the	primary	segment	when	transitioning	to	a	new	segment.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types
DMUS_SEGF_FLAGS

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_CURVE_FLAGS
The	DMUS_CURVE_FLAGS	enumerated	type	is	used	in	the	bFlags	member
of	the	DMUS_CURVE_PMSG	structure.

Syntax

typedef	enum	enumDMUS_CURVE_FLAGS	{

		DMUS_CURVE_RESET														=	1,

		DMUS_CURVE_START_FROM_CURRENT	=	2,

}	DMUS_CURVE_FLAGS;

Constants

DMUS_CURVE_RESET

The	value	of	DMUS_CURVE_PMSG.nResetValue	must	be	set	when	the	time
is	reached	or	an	invalidation	occurs	because	of	a	transition.	If	this	flag	is	not	set,
the	curve	stays	permanently	at	the	new	value.

DMUS_CURVE_START_FROM_CURRENT

Ignore	DMUS_CURVE_PMSG.nStartValue	and	start	the	curve	at	the	current
value.	This	works	only	for	volume,	expression,	and	pitch	bend.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_EMBELLISHT_TYPES
The	DMUS_EMBELLISHMENT_TYPES	enumerated	type	is	used	in	the
wEmbellishment	member	of	the	DMUS_IO_PATTERN	structure.

Syntax

typedef	enum	enumDMUS_EMBELLISHT_TYPES	{

				DMUS_EMBELLISHT_NORMAL	=						0,

				DMUS_EMBELLISHT_FILL			=						1,

				DMUS_EMBELLISHT_BREAK		=						2,

				DMUS_EMBELLISHT_INTRO		=						4,

				DMUS_EMBELLISHT_END				=						8,

				DMUS_EMBELLISHT_MOTIF		=					16,

				DMUS_EMBELLISHT_ALL				=	0xFFFF

}	DMUS_EMBELLISHT_TYPES;

Constants

DMUS_EMBELLISHT_NORMAL

Normal	pattern.

DMUS_EMBELLISHT_FILL

Fill	pattern.

DMUS_EMBELLISHT_BREAK

Break	pattern.

DMUS_EMBELLISHT_INTRO

Intro	pattern.

DMUS_EMBELLISHT_END

End	pattern.

DMUS_EMBELLISHT_MOTIF

Motif	pattern.

DMUS_EMBELLISHT_ALL

Combination	of	all	types.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_NOTEF_FLAGS
The	DMUS_NOTEF_FLAGS	enumerated	type	is	used	in	the	bFlags	member
of	the	DMUS_NOTE_PMSG	structure.

Syntax

typedef	enum	enumDMUS_NOTEF_FLAGS	{

		DMUS_NOTEF_NOTEON															=				1,

		DMUS_NOTEF_NOINVALIDATE									=				2,

		DMUS_NOTEF_NOINVALIDATE_INSCALE	=				4,

		DMUS_NOTEF_NOINVALIDATE_INCHORD	=				8,

		DMUS_NOTEF_REGENERATE											=	0x10,

}	DMUS_NOTEF_FLAGS;

Constants

DMUS_NOTEF_NOTEON

MIDI	note-on.	When	a	DMUS_NOTE_PMSG	is	first	sent	by	the
IDirectMusicPerformance8::SendPMsg	method,	this	flag	should	be	set.	If	the
flag	is	not	set,	the	message	is	a	note-off.

DMUS_NOTEF_NOINVALIDATE

Do	not	invalidate	the	note.

DMUS_NOTEF_NOINVALIDATE_INSCALE

Do	not	invalidate	if	the	note	is	still	within	the	scale.

DMUS_NOTEF_NOINVALIDATE_INCHORD

Do	not	invalidate	if	the	note	is	still	within	the	chord.

DMUS_NOTEF_REGENERATE

Regenerate	the	note	when	a	chord	change	occurs.	The	note's	music	value,
subchord	level,	and	play	mode	flags	are	used	to	construct	a	new	note	according

to	the	new	chord	and	scale.	If	the	original	note	had	a	timing	offset,	this	is	applied
to	the	start	time	of	the	new	note.

Remarks

The	NOINVALIDATE	flags	ensure	that	the	note	plays	for	its	full	duration	even
when	messages	are	invalidated.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PATTERNT_TYPES
The	DMUS_PATTERNT_TYPES	enumerated	type	is	used	in	various
command	structures	to	control	the	way	patterns	are	selected	in	sequential
commands.

Syntax

typedef	enum	enumDMUS_PATTERNT_TYPES	{

		DMUS_PATTERNT_RANDOM							=	0,

		DMUS_PATTERNT_REPEAT							=	1,

		DMUS_PATTERNT_SEQUENTIAL			=	2,

		DMUS_PATTERNT_RANDOM_START	=	3,

		DMUS_PATTERNT_NO_REPEAT				=	4,

		DMUS_PATTERNT_RANDOM_ROW			=	5

}	DMUS_PATTERNT_TYPES;

Constants

DMUS_PATTERNT_RANDOM

Select	a	random	matching	pattern.	This	is	the	behavior	in	versions	prior	to
DirectX	8.0.

DMUS_PATTERNT_REPEAT

Repeat	the	last	matching	pattern.

DMUS_PATTERNT_SEQUENTIAL

Play	matching	patterns	sequentially,	in	the	order	loaded,	starting	with	the	first.

DMUS_PATTERNT_RANDOM_START

Play	matching	patterns	sequentially,	in	the	order	loaded,	starting	at	a	random
point	in	the	sequence.

DMUS_PATTERNT_NO_REPEAT

Play	randomly,	but	do	not	play	the	same	pattern	twice.

DMUS_PATTERNT_RANDOM_ROW

Play	randomly,	but	do	not	repeat	any	pattern	until	all	have	played.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	Enumerated	Types
DMUS_COMMAND_PARAM_2
DMUS_COMMAND_PARAM
DMUS_IO_COMMAND
DMUS_VARIATIONT_TYPES

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PLAYMODE_FLAGS
The	DMUS_PLAYMODE_FLAGS	enumerated	type	is	used	in	various
structures	to	specify	play	modes.	The	play	mode	determines	how	a	music	value
is	transposed	to	a	MIDI	note.	

Syntax

typedef	enum	enumDMUS_PLAYMODE_FLAGS	{

		DMUS_PLAYMODE_KEY_ROOT								=		1,

		DMUS_PLAYMODE_CHORD_ROOT						=		2,

		DMUS_PLAYMODE_SCALE_INTERVALS	=		4,

		DMUS_PLAYMODE_CHORD_INTERVALS	=		8,

		DMUS_PLAYMODE_NONE												=	16,

}	DMUS_PLAYMODE_FLAGS;

Constants

DMUS_PLAYMODE_KEY_ROOT

Transpose	over	the	key	root.

DMUS_PLAYMODE_CHORD_ROOT

Transpose	over	the	chord	root.

DMUS_PLAYMODE_SCALE_INTERVALS

Use	scale	intervals	from	a	scale	pattern.

DMUS_PLAYMODE_CHORD_INTERVALS

Use	chord	intervals	from	a	chord	pattern.

DMUS_PLAYMODE_NONE

No	mode.	Indicates	that	the	parent	part's	mode	should	be	used.

Remarks

The	following	defined	values	represent	combinations	of	play	mode	flags:

DMUS_PLAYMODE_ALWAYSPLAY

Combination	of	DMUS_PLAYMODE_SCALE_INTERVALS,
DMUS_PLAYMODE_CHORD_INTERVALS,	and
DMUS_PLAYMODE_CHORD_ROOT.	If	it	is	desirable	to	play	a	note	that	is
above	the	top	of	the	chord,	this	mode	finds	a	position	for	the	note	by	using
intervals	from	the	scale.	Essentially,	this	mode	is	a	combination	of	the	normal
and	melodic	playback	modes,	in	which	a	failure	in	normal	mode	causes	a	second
try	in	melodic	mode.

DMUS_PLAYMODE_FIXED

Interpret	the	music	value	as	a	MIDI	value.	This	is	defined	as	0	and	signifies	the
absence	of	other	flags.	This	flag	is	used	for	drums,	sound	effects,	and	sequenced
notes	that	should	not	be	transposed	by	the	chord	or	scale.

DMUS_PLAYMODE_FIXEDTOCHORD

Same	as	DMUS_PLAYMODE_CHORD_ROOT.	The	music	value	is	a	fixed
MIDI	value,	but	it	is	transposed	over	the	chord	root.

DMUS_PLAYMODE_FIXEDTOKEY

Same	as	DMUS_PLAYMODE_KEY_ROOT.	The	music	value	is	a	fixed	MIDI
value,	but	it	is	transposed	over	the	key	root.

DMUS_PLAYMODE_MELODIC

Combination	of	DMUS_PLAYMODE_CHORD_ROOT	and
DMUS_PLAYMODE_SCALE_INTERVALS.	The	chord	root	is	used,	but	the
notes	track	only	the	intervals	in	the	scale.	The	key	root	and	chord	intervals	are
ignored.	This	is	useful	for	melodic	lines	that	play	relative	to	the	chord	root.

DMUS_PLAYMODE_NORMALCHORD

Combination	of	DMUS_PLAYMODE_CHORD_ROOT	and
DMUS_PLAYMODE_CHORD_INTERVALS.	This	is	the	prevalent	playback
mode.	The	notes	track	the	intervals	in	the	chord,	which	is	based	on	the	chord

root.	If	the	music	value	has	a	scale	component,	the	additional	intervals	are	pulled
from	the	scale	and	added.	If	the	chord	does	not	have	an	interval	to	match	the
chord	component	of	the	music	value,	the	note	is	silent.

DMUS_PLAYMODE_PEDALPOINT

Combination	of	DMUS_PLAYMODE_KEY_ROOT	and
DMUS_PLAYMODE_SCALE_INTERVALS.	The	key	root	is	used,	and	the
notes	track	only	the	intervals	in	the	scale.	The	chord	root	and	intervals	are
ignored.	This	is	useful	for	melodic	lines	that	play	relative	to	the	key	root.

DMUS_PLAYMODE_PEDALPOINTALWAYS

Combination	of	DMUS_PLAYMODE_PEDALPOINT	and
DMUS_PLAYMODE_PEDALPOINTCHORD.	Chord	intervals	are	used	if
possible;	otherwise	scale	intervals	are	used.

DMUS_PLAYMODE_PEDALPOINTCHORD

Combination	of	DMUS_PLAYMODE_MELODIC	and
DMUS_PLAYMODE_NORMALCHORD.	The	key	root	is	used	and	the	notes
track	only	the	intervals	in	the	chord.	The	chord	root	and	scale	intervals	are
completely	ignored.	This	is	useful	for	chordal	lines	that	play	relative	to	the	key
root.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types
DMUS_IO_STYLENOTE
DMUS_IO_STYLEPART
DMUS_NOTE_PMSG
IDirectMusicPerformance8::MIDIToMusic
IDirectMusicPerformance8::MusicToMIDI
Music	Values	and	MIDI	Notes

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PMSGF_FLAGS
The	DMUS_PMSGF_FLAGS	enumerated	type	is	used	in	the	dwFlags	member
of	the	DMUS_PMSG	structure.

Syntax

typedef	enum	enumDMUS_PMSGF_FLAGS	{

		DMUS_PMSGF_REFTIME				=	1,

		DMUS_PMSGF_MUSICTIME		=	2,

		DMUS_PMSGF_TOOL_IMMEDIATE	=	4,

		DMUS_PMSGF_TOOL_QUEUE			=	8,

		DMUS_PMSGF_TOOL_ATTIME		=	0x10,

		DMUS_PMSGF_TOOL_FLUSH			=	0x20,

		DMUS_PMSGF_LOCKTOREFTIME		=	0x40,

		DMUS_PMSGF_DX8				=	0x80

}	DMUS_PMSGF_FLAGS;

Constants

DMUS_PMSGF_REFTIME

The	rtTime	member	is	valid.

DMUS_PMSGF_MUSICTIME

The	mtTime	member	is	valid.

DMUS_PMSGF_TOOL_IMMEDIATE

Message	should	be	processed	immediately,	regardless	of	its	time	stamp.

DMUS_PMSGF_TOOL_QUEUE

Message	should	be	processed	just	before	its	time	stamp,	allowing	for	port
latency.

DMUS_PMSGF_TOOL_ATTIME

Message	should	be	processed	at	the	time	stamp.

DMUS_PMSGF_TOOL_FLUSH

Message	is	being	flushed.

DMUS_PMSGF_LOCKTOREFTIME

Value	in	rtTime	cannot	be	overridden	by	a	tempo	change.

DMUS_PMSGF_DX8

Message	has	valid	members	not	present	in	versions	prior	to	DirectX	8.0.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

See	Also

DirectMusic	Enumerated	Types
IDirectMusicPerformance8::SendPMsg
IDirectMusicTool8::GetMsgDeliveryType

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_PMSGT_TYPES
The	DMUS_PMSGT_TYPES	enumerated	type	is	used	in	the	dwType	member
of	the	DMUS_PMSG	structure	to	identify	the	type	of	message.

Syntax

typedef	enum	enumDMUS_PMSGT_TYPES	{

		DMUS_PMSGT_MIDI					=	0,

		DMUS_PMSGT_NOTE					=	1,

		DMUS_PMSGT_SYSEX				=	2,

		DMUS_PMSGT_NOTIFICATION			=	3,

		DMUS_PMSGT_TEMPO				=	4,

		DMUS_PMSGT_CURVE				=	5,

		DMUS_PMSGT_TIMESIG				=	6,

		DMUS_PMSGT_PATCH				=	7,

		DMUS_PMSGT_TRANSPOSE				=	8,

		DMUS_PMSGT_CHANNEL_PRIORITY	=	9,

		DMUS_PMSGT_STOP					=	10,

		DMUS_PMSGT_DIRTY				=	11,

		DMUS_PMSGT_WAVE					=	12,

		DMUS_PMSGT_LYRIC				=	13,

		DMUS_PMSGT_SCRIPTLYRIC		=	14,

		DMUS_PMSGT_USER					=	255

}	DMUS_PMSGT_TYPES;

Constants

DMUS_PMSGT_MIDI

MIDI	channel	message.	See	DMUS_MIDI_PMSG.

DMUS_PMSGT_NOTE

Music	note.	See	DMUS_NOTE_PMSG.

DMUS_PMSGT_SYSEX

MIDI	system	exclusive	message.	See	DMUS_SYSEX_PMSG.

DMUS_PMSGT_NOTIFICATION

Notification	message.	See	DMUS_NOTIFICATION_PMSG.

DMUS_PMSGT_TEMPO

Tempo	message.	See	DMUS_TEMPO_PMSG.

DMUS_PMSGT_CURVE

Control	change	and	pitch-bend	curve.	See	DMUS_CURVE_PMSG.

DMUS_PMSGT_TIMESIG

Time	signature.	See	DMUS_TIMESIG_PMSG.

DMUS_PMSGT_PATCH

Patch	change.	See	DMUS_PATCH_PMSG.

DMUS_PMSGT_TRANSPOSE

Transposition.	See	DMUS_TRANSPOSE_PMSG.

DMUS_PMSGT_CHANNEL_PRIORITY

Channel	priority	change.	See	DMUS_CHANNEL_PRIORITY_PMSG.

DMUS_PMSGT_STOP

Stop	message.	See	DMUS_PMSG.

DMUS_PMSGT_DIRTY

A	control	segment	has	started	or	ended.	See	DMUS_PMSG.

DMUS_PMSGT_WAVE

Control	information	for	playing	a	waveform.	See	DMUS_WAVE_PMSG.

DMUS_PMSGT_LYRIC

Lyric	message.	See	DMUS_LYRIC_PMSG.

DMUS_PMSGT_SCRIPTLYRIC

Lyric	message	sent	by	a	script.	See	DMUS_LYRIC_PMSG.

DMUS_PMSGT_USER

User-defined	message.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_SEGF_FLAGS
The	DMUS_SEGF_FLAGS	enumerated	type	is	passed	to	various	methods	of
IDirectMusicPerformance8	to	control	the	timing	and	other	aspects	of	actions
on	a	segment.

Syntax

typedef	enum	enumDMUS_SEGF_FLAGS	{

		DMUS_SEGF_REFTIME													=	1<<6,

		DMUS_SEGF_SECONDARY											=	1<<7,

		DMUS_SEGF_QUEUE															=	1<<8,

		DMUS_SEGF_CONTROL													=	1<<9,

		DMUS_SEGF_AFTERPREPARETIME				=	1<<10,

		DMUS_SEGF_GRID																=	1<<11,

		DMUS_SEGF_BEAT																=	1<<12,

		DMUS_SEGF_MEASURE													=	1<<13,

		DMUS_SEGF_DEFAULT													=	1<<14,

		DMUS_SEGF_NOINVALIDATE								=	1<<15,

		DMUS_SEGF_ALIGN															=	1<<16,

		DMUS_SEGF_VALID_START_BEAT				=	1<<17,

		DMUS_SEGF_VALID_START_GRID				=	1<<18,

		DMUS_SEGF_VALID_START_TICK				=	1<<19,

		DMUS_SEGF_AUTOTRANSITION						=	1<<20,

		DMUS_SEGF_AFTERQUEUETIME						=	1<<21,

		DMUS_SEGF_AFTERLATENCYTIME				=	1<<22,

		DMUS_SEGF_SEGMENTEND										=	1<<23,

		DMUS_SEGF_MARKER														=	1<<24,

		DMUS_SEGF_TIMESIG_ALWAYS						=	1<<25,

		DMUS_SEGF_USE_AUDIOPATH							=	1<<26,

		DMUS_SEGF_VALID_START_MEASURE	=	1<<27,

		DMUS_SEGF_INVALIDATE_PRI						=	1<<28

}	DMUS_SEGF_FLAGS;

Constants

DMUS_SEGF_REFTIME

Time	parameter	is	in	reference	time.

DMUS_SEGF_SECONDARY

Secondary	segment.

DMUS_SEGF_QUEUE

For	a	primary	segment,	play	at	the	end	of	the	primary	segment	queue.	For	a
secondary	segment,	play	at	the	end	of	the	secondary	segment	specified	in	the
pFrom	parameter	of	IDirectMusicPerformance8::PlaySegmentEx.

DMUS_SEGF_CONTROL

Play	as	a	control	segment.	Valid	for	secondary	segments	only.	See	Remarks.

DMUS_SEGF_AFTERPREPARETIME

Resolve	time	to	a	time	after	the	prepare	time.	See
IDirectMusicPerformance8::GetPrepareTime.

DMUS_SEGF_GRID

Resolve	time	to	a	grid	boundary.

DMUS_SEGF_BEAT

Resolve	time	to	a	beat	boundary.

DMUS_SEGF_MEASURE

Resolve	time	to	a	measure	boundary.

DMUS_SEGF_DEFAULT

Use	flags	embedded	in	the	segment.	This	resolves	the	time	to	the	segment's
default	boundary	and	also	causes	the	segment	to	play	on	its	embedded
audiopath,	if	it	was	configured	to	do	so	in	the	authoring	application.

DMUS_SEGF_NOINVALIDATE

Setting	this	flag	in	IDirectMusicPerformance8::PlaySegment	or
IDirectMusicPerformance8::PlaySegmentEx	for	a	primary	or	control	segment
causes	the	new	segment	not	to	cause	an	invalidation.	Without	this	flag,	an
invalidation	occurs,	cutting	off	and	resetting	any	currently	playing	curve	or	note.
This	flag	should	be	combined	with	DMUS_SEGF_AFTERPREPARETIME	so
that	notes	in	the	new	segment	do	not	play	over	notes	played	by	the	old	segment.

DMUS_SEGF_ALIGN

The	beginning	of	the	segment	can	be	aligned	with	a	boundary,	such	as	measure
or	beat,	that	has	already	passed.	For	this	to	happen,	the	segment	must	have	a
valid	start	point	that	falls	before	the	next	boundary.	Start	points	can	be	defined	in
the	segment,	or	one	of	the	DMUS_SEGF_VALID_START_*	flags	can	be	used
to	define	the	granularity	of	valid	start	points.	Any
DMUS_SEGF_VALID_START_*	flag	takes	effect	only	if	a	valid	start	point	is
not	defined	in	the	segment.

DMUS_SEGF_VALID_START_BEAT

Allow	the	start	to	occur	on	any	beat.	Used	in	combination	with
DMUS_SEGF_ALIGN.

DMUS_SEGF_VALID_START_GRID

Allow	the	start	to	occur	on	any	grid.	Used	in	combination	with
DMUS_SEGF_ALIGN.

DMUS_SEGF_VALID_START_TICK

Allow	the	start	to	occur	at	any	time.	Used	in	combination	with
DMUS_SEGF_ALIGN.

DMUS_SEGF_AUTOTRANSITION

Compose	and	play	a	transition	segment,	using	the	transition	template.

DMUS_SEGF_AFTERQUEUETIME

Resolve	time	to	a	time	after	the	queue	time.	This	is	the	default	for	primary
segments.	Ignored	if	DMUS_SEGF_AFTERPREPARETIME	is	also	set.

DMUS_SEGF_AFTERLATENCYTIME

Resolve	time	to	a	time	after	the	latency	time.	This	is	true	for	all	segments,	so	this
flag	currently	has	no	effect.

DMUS_SEGF_SEGMENTEND

Play	at	the	end	of	the	primary	segment	that	is	playing	at	the	start	time.	If	the	new
segment	is	being	played	as	a	primary	segment,	any	primary	segments	already
queued	after	the	currently	playing	primary	segment	are	flushed.	If	no	primary
segment	is	playing,	use	other	resolution	flags.	When	combined	with
DMUS_SEGF_ALIGN,	this	flag	causes	the	beginning	of	the	cued	segment	to	be
aligned	with	the	beginning	of	the	current	primary	segment.

DMUS_SEGF_MARKER

Resolve	time	to	the	next	marker	in	the	primary	segment.	If	there	are	no	markers,
use	other	resolution	flags.

DMUS_SEGF_TIMESIG_ALWAYS

Align	start	time	with	current	time	signature,	even	if	there	is	no	primary	segment.

DMUS_SEGF_USE_AUDIOPATH

Use	the	audiopath	embedded	in	the	segment.	Automatic	downloading	of	bands
must	be	enabled	to	ensure	that	the	segment	plays	correctly.

DMUS_SEGF_VALID_START_MEASURE

Allow	the	start	to	occur	at	the	beginning	of	a	measure.	Used	in	combination	with
DMUS_SEGF_ALIGN.

DMUS_SEGF_INVALIDATE_PRI

Invalidate	only	the	primary	segment	when	transitioning	to	a	new	segment.

Remarks

The	primary	segment	is	the	default	control	segment.	The
DMUS_SEGF_CONTROL	flag	can	be	used	to	make	a	secondary	segment	the
control	segment.	If	the	DMUS_SEGF_CONTROL	flag	is	set,
DMUS_SEGF_SECONDARY	is	assumed.	For	more	information,	see	Control
Segments.

No	more	than	one	flag	from	each	of	the	following	groups	should	be	specified.

Boundary

This	flag	controls	the	point	in	the	currently	playing	primary	segment	at	which
the	start	point	of	the	cued	segment	falls.	It	can	be	combined	with
DMUS_SEGF_MARKER,	in	which	case	the	boundary	flag	will	be	used	only	if
no	marker	exists	in	the	primary	segment.

DMUS_SEGF_BEAT
DMUS_SEGF_DEFAULT
DMUS_SEGF_GRID
DMUS_SEGF_MEASURE
DMUS_SEGF_QUEUE
DMUS_SEGF_SEGMENTEND

Alignment

This	flag	controls	the	segment	start	time	of	the	cued	segment,	when	its	play	time
falls	in	the	past.	It	must	be	combined	with	DMUS_SEGF_ALIGN.

DMUS_SEGF_VALID_START_BEAT
DMUS_SEGF_VALID_START_GRID
DMUS_SEGF_VALID_START_MEASURE
DMUS_SEGF_VALID_START_TICK

It	is	possible	to	combine	one	flag	from	each	group.	For	example,	combining
DMUS_SEGF_MEASURE	with	DMUS_SEGF_ALIGN	and
DMUS_SEGF_VALID_START_BEAT	causes	the	start	point	of	the	cued
segment	to	fall	at	a	measure	boundary	in	the	current	primary	segment.	If	this
boundary	has	already	passed,	the	cued	segment	starts	playing	at	the	next	beat
boundary	within	itself	that	is	not	aligned	to	a	past	time.	For	more	information,
see	Segment	Timing.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types
DMUS_TIME_RESOLVE_FLAGS

IDirectMusicPerformance8::Invalidate
IDirectMusicPerformance8::PlaySegment
IDirectMusicPerformance8::PlaySegmentEx
IDirectMusicPerformance8::Stop
IDirectMusicSegment8::GetDefaultResolution
IDirectMusicSegment8::SetDefaultResolution
Segment	Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_SHAPET_TYPES
The	DMUS_SHAPET_TYPES	enumerated	type	is	used	in	the	wShape
parameter	of	the	IDirectMusicComposer8::ComposeSegmentFromShape	and
IDirectMusicComposer8::ComposeTemplateFromShape	methods	to	specify
the	desired	pattern	of	the	groove	level.

Syntax

typedef	enum	enumDMUS_SHAPET_TYPES	{

		DMUS_SHAPET_FALLING		=	0,

		DMUS_SHAPET_LEVEL				=	1,

		DMUS_SHAPET_LOOPABLE	=	2,

		DMUS_SHAPET_LOUD					=	3,

		DMUS_SHAPET_QUIET				=	4,

		DMUS_SHAPET_PEAKING		=	5,

		DMUS_SHAPET_RANDOM			=	6,

		DMUS_SHAPET_RISING			=	7,

		DMUS_SHAPET_SONG					=	8

}	DMUS_SHAPET_TYPES;

Constants

DMUS_SHAPET_FALLING

Groove	level	falls.

DMUS_SHAPET_LEVEL

Groove	level	remains	even.

DMUS_SHAPET_LOOPABLE

Segment	is	arranged	to	loop	back	to	the	beginning.

DMUS_SHAPET_LOUD

Groove	level	is	high.

DMUS_SHAPET_QUIET

Groove	level	is	low.

DMUS_SHAPET_PEAKING

Groove	level	rises	to	a	peak,	and	then	falls.

DMUS_SHAPET_RANDOM

Groove	level	is	random.

DMUS_SHAPET_RISING

Groove	level	rises.

DMUS_SHAPET_SONG

Segment	is	in	a	song	form.	Several	phrases	of	6	to	8	bars	are	composed	and	put
together	to	give	a	verse-chorus	effect,	with	variations	in	groove	level.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_STYLET_TYPES
The	DMUS_STYLET_TYPES	enumerated	type	is	used	in	the
IDirectMusicPatternTrack8::SetPatternByName	and
IDirectMusicStyle8::EnumPattern	methods	to	specify	a	type	of	pattern.

Syntax

typedef	enum	enumDMUS_STYLET_TYPES	{

		DMUS_STYLET_PATTERN		=	0,

		DMUS_STYLET_MOTIF				=	1,

}	DMUS_STYLET_TYPES;

Constants

DMUS_STYLET_PATTERN

Normal	pattern.

DMUS_STYLET_MOTIF

Motif	pattern.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_TIME_RESOLVE_FLAGS
The	DMUS_TIME_RESOLVE_FLAGS	enumerated	type	is	used	in	the
dwFlags	member	of	the	DMUS_PMSG	structure	and	in	the
dwTimeResolveFlags	parameter	of	the
IDirectMusicPerformance8::GetResolvedTime	method.

Syntax

typedef	enum	enumDMUS_TIME_RESOLVE_FLAGS	{

		DMUS_TIME_RESOLVE_AFTERPREPARETIME	=	DMUS_SEGF_AFTERPREPARETIME,

		DMUS_TIME_RESOLVE_AFTERQUEUETIME			=	DMUS_SEGF_AFTERQUEUETIME,

		DMUS_TIME_RESOLVE_AFTERLATENCYTIME	=	DMUS_SEGF_AFTERLATENCYTIME,

		DMUS_TIME_RESOLVE_GRID													=	DMUS_SEGF_GRID,

		DMUS_TIME_RESOLVE_BEAT													=	DMUS_SEGF_BEAT,

		DMUS_TIME_RESOLVE_MEASURE										=	DMUS_SEGF_MEASURE

		DMUS_TIME_RESOLVE_MARKER											=	DMUS_SEGF_MARKER,

		DMUS_TIME_RESOLVE_SEGMENTEND							=	DMUS_SEGF_SEGMENTEND,

}	DMUS_TIME_RESOLVE_FLAGS;

Constants

DMUS_TIME_RESOLVE_AFTERPREPARETIME

Resolve	to	a	time	after	the	prepare	time.

DMUS_TIME_RESOLVE_AFTERQUEUETIME

Resolve	to	a	time	after	the	queue	time.

DMUS_TIME_RESOLVE_AFTERLATENCYTIME

Resolve	to	a	time	after	the	latency	time.

DMUS_TIME_RESOLVE_GRID

Resolve	to	a	time	on	a	grid	boundary.

DMUS_TIME_RESOLVE_BEAT

Resolve	to	a	time	on	a	beat	boundary.

DMUS_TIME_RESOLVE_MEASURE

Resolve	to	a	time	on	a	measure	boundary.

DMUS_TIME_RESOLVE_MARKER

Resolve	to	a	marker.

DMUS_TIME_RESOLVE_SEGMENTEND

Resolve	to	the	end	of	the	segment.

Remarks

These	flags	can	be	used	interchangeably	with	the	corresponding
DMUS_SEGF_FLAGS.

Requirements

		Header:	Declared	in	dmusici.h.

See	Also

DirectMusic	Enumerated	Types
Timing

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_TRACKF_FLAGS
The	DMUS_TRACKF_FLAGS	enumerated	type	is	used	in	the	dwFlags
parameter	of	the	IDirectMusicTrack8::Play	and	IDirectMusicTrack8::PlayEx
methods.

Syntax

typedef	enum	enumDMUS_TRACKF_FLAGS	{

		DMUS_TRACKF_SEEK			=	1,

		DMUS_TRACKF_LOOP			=	2,

		DMUS_TRACKF_START		=	4,

		DMUS_TRACKF_FLUSH		=	8,

		DMUS_TRACKF_DIRTY		=	0x10,

		DMUS_TRACKF_NOTIFY_OFF	=	0x20,

		DMUS_TRACKF_PLAYOFF		=	0x40,

		DMUS_TRACKF_LOOPEND		=	0x80,

		DMUS_TRACKF_STOP			=	0x100,

		DMUS_TRACKF_RECOMPOSE		=	0x200,

		DMUS_TRACKF_CLOCK		=	0x400,

}	DMUS_TRACKF_FLAGS;

Constants

DMUS_TRACKF_SEEK

IDirectMusicTrack8::Play	was	called	in	response	to	seeking,	meaning	that	the
mtStart	parameter	is	not	necessarily	the	same	as	the	mtEnd	of	the	previous	call.

DMUS_TRACKF_LOOP

Play	was	called	in	response	to	a	loop.

DMUS_TRACKF_START

This	is	the	first	call	to	IDirectMusicTrack8::Play.	DMUS_TRACKF_SEEK
can	also	be	set	if	the	track	is	not	playing	from	the	beginning.

DMUS_TRACKF_FLUSH

Play	was	called	in	response	to	a	flush	or	invalidation	that	requires	the	track	to
replay	something	that	it	played	previously.	In	this	case,
DMUS_TRACKF_SEEK	is	set,	as	well.

DMUS_TRACKF_DIRTY

A	control	segment	has	begun	or	ended.	Tracks	that	normally	wait	until	mtNext
to	call	IDirectMusicTrack8::GetParam	or
IDirectMusicTrack8::GetParamEx	should	make	the	call	right	away,	instead	of
waiting,	because	their	data	might	now	be	invalid.	For	more	information	on
setting	control	segments,	see	DMUS_SEGF_FLAGS.

DMUS_TRACKF_NOTIFY_OFF

Track	is	not	to	send	notifications.

DMUS_TRACKF_PLAYOFF

Track	is	not	to	play,	but	can	still	send	notifications.

DMUS_TRACKF_LOOPEND

End	of	range	is	also	a	loop	end.

DMUS_TRACKF_STOP

End	of	range	is	also	end	of	playing	this	segment.

DMUS_TRACKF_RECOMPOSE

Track	should	be	recomposed	on	each	loop.	A	signpost	track	is	recomposed	using
a	different	chord	progression,	and	a	melody	formulation	track	is	recomposed
using	different	melody	fragments.

DMUS_TRACKF_CLOCK

Time	parameters	are	in	reference	time.	Valid	only	for
IDirectMusicTrack8::PlayEx.

Remarks

When	Play	is	called	in	response	to	a	repeat,	DMUS_TRACKF_LOOP	and
DMUS_TRACKF_SEEK	are	set.

To	support	invalidation,	tracks	must	support	seeking..

Requirements

		Header:	Declared	in	dmplugin.h.

See	Also

DirectMusic	Enumerated	Types

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DMUS_VARIATIONT_TYPES
The	DMUS_VARIATIONT_TYPES	enumerated	type	is	used	in	the
DMUS_IO_PARTREF	structure	to	specify	the	way	variations	are	selected	in
sequential	commands.

Syntax

typedef	enum	enumDMUS_VARIATIONT_TYPES

{

		DMUS_VARIATIONT_SEQUENTIAL			=	0,

		DMUS_VARIATIONT_RANDOM							=	1,

		DMUS_VARIATIONT_RANDOM_START	=	2,

		DMUS_VARIATIONT_NO_REPEAT				=	3,

		DMUS_VARIATIONT_RANDOM_ROW			=	4

}	DMUS_VARIATIONT_TYPES;

Constants

DMUS_VARIATIONT_SEQUENTIAL

Play	matching	variations	sequentially,	in	the	order	loaded,	starting	with	the	first.

DMUS_VARIATIONT_RANDOM

Select	a	random	matching	variation.	This	is	the	behavior	in	versions	prior	to
DirectX	8.0.

DMUS_VARIATIONT_RANDOM_START

Play	matching	variations	sequentially,	in	the	order	loaded,	starting	at	a	random
point	in	the	sequence.

DMUS_VARIATIONT_NO_REPEAT

Play	randomly,	but	do	not	play	the	same	variation	twice.

DMUS_VARIATIONT_RANDOM_ROW

Play	randomly,	but	do	not	repeat	any	variation	until	all	have	played.

Requirements

		Header:	Declared	in	dmusicf.h.

See	Also

DirectMusic	Enumerated	Types
DMUS_COMMAND_PARAM_2
DMUS_COMMAND_PARAM
DMUS_IO_COMMAND
DMUS_PATTERNT_TYPES

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	GUIDs
This	section	lists	globally	unique	identifiers	used	in	DirectMusic.	The	following
topics	are	covered:

DirectMusic	Interface	GUIDs
DirectMusic	Component	GUIDs

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Interface	GUIDs
The	following	GUIDs	are	used	as	interface	identifiers	(IIDs)	to	obtain
DirectMusic	interfaces.

IID Interface
IID_IDirectMusic8 IDirectMusic8
IID_IDirectMusicAudioPath8 IDirectMusicAudioPath8
IID_IDirectMusicBand8 IDirectMusicBand8
IID_IDirectMusicBuffer8 IDirectMusicBuffer8
IID_IDirectMusicChordMap8 IDirectMusicChordMap8
IID_IDirectMusicCollection8 IDirectMusicCollection8
IID_IDirectMusicComposer8 IDirectMusicComposer8
IID_IDirectMusicContainer8 IDirectMusicContainer8
IID_IDirectMusicDownload8 IDirectMusicDownload8
IID_IDirectMusicDownloadedInstrument8 IDirectMusicDownloadedInstrument8
IID_IDirectMusicGetLoader8 IDirectMusicGetLoader8
IID_IDirectMusicGraph8 IDirectMusicGraph8
IID_IDirectMusicInstrument8 IDirectMusicInstrument8
IID_IDirectMusicLoader8 IDirectMusicLoader8
IID_IDirectMusicObject8 IDirectMusicObject8
IID_IDirectMusicPatternTrack8 IDirectMusicPatternTrack8
IID_IDirectMusicPerformance8 IDirectMusicPerformance8
IID_IDirectMusicPort8 IDirectMusicPort8
IID_IDirectMusicPortDownload8 IDirectMusicPortDownload8
IID_IDirectMusicScript8 IDirectMusicScript8
IID_IDirectMusicSegment8 IDirectMusicSegment8
IID_IDirectMusicSegmentState8 IDirectMusicSegmentState8
IID_IDirectMusicStyle8 IDirectMusicStyle8
IID_IDirectMusicThru8 IDirectMusicThru8
IID_IDirectMusicTool8 IDirectMusicTool8
IID_IDirectMusicTrack8 IDirectMusicTrack8
IID_IKsControl IKsControl

IID_IReferenceClock IReferenceClock

Note			Where	different	versions	of	an	interface	are	available,	the	identifier	is
shown	only	for	the	most	recent	one.	Where	an	interface	has	not	changed	from
previous	versions	of	DirectX,	the	IID	in	the	table	is	defined	as	the	original	IID.
For	example,	IID_IDirectMusicInstrument8	is	defined	as
IID_IDirectMusicInstrument	in	Dmusicc.h,	because	IDirectMusicInstrument8
is	the	same	as	IDirectMusicInstrument.

A	few	alternative	identifiers,	such	as	IID_IDirectMusicPerformance2,	are
defined	for	obtaining	special	implementations	of	interfaces.	Most	applications
should	not	use	these	implementations.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Component	GUIDs
The	following	GUIDS	are	used	as	class	identifiers	(CLSIDs)	of	DirectMusic
components.

CLSID Component
CLSID_DirectMusic DirectMusic	object
CLSID_DirectMusicAudioPathConfig Audiopath	configuration
CLSID_DirectMusicBand Band
CLSID_DirectMusicBandTrack Band	track
CLSID_DirectMusicChordMap Chordmap
CLSID_DirectMusicChordMapTrack Chordmap	track
CLSID_DirectMusicChordTrack Chord	track
CLSID_DirectMusicCollection Collection
CLSID_DirectMusicCommandTrack Command	(groove)	track
CLSID_DirectMusicComposer Composer
CLSID_DirectMusicContainer Container
CLSID_DirectMusicGraph Toolgraph
CLSID_DirectMusicLoader Loader
CLSID_DirectMusicLyricsTrack Lyric	track
CLSID_DirectMusicMarkerTrack Marker	track
CLSID_DirectMusicMotifTrack Motif	track
CLSID_DirectMusicMuteTrack Mute	track
CLSID_DirectMusicParamControlTrack Parameter	control	track
CLSID_DirectMusicPatternTrack Pattern	track
CLSID_DirectMusicPerformance Performance
CLSID_DirectMusicScript Script
CLSID_DirectMusicScriptTrack Script	track
CLSID_DirectMusicSegment Segment
CLSID_DirectMusicSegmentState Segment	state
CLSID_DirectMusicSegmentTriggerTrackSegment	trigger	track
CLSID_DirectMusicSeqTrack Sequence	track
CLSID_DirectMusicSignPostTrack Signpost	track

CLSID_DirectMusicStyle Style
CLSID_DirectMusicStyleTrack Style	track
CLSID_DirectMusicSynth Synthesizer
CLSID_DirectMusicSysExTrack Sysex	track
CLSID_DirectMusicTempoTrack Tempo	track
CLSID_DirectMusicTimeSigTrack Time	signature	track
CLSID_DirectMusicWaveTrack Wave	track
CLSID_DirectSoundWave Wave

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Return	Values
This	section	provides	a	brief	explanation	of	the	various	error	codes	that	can	be
returned	by	DirectMusic	methods.	For	a	list	of	the	specific	codes	that	each
method	can	return,	see	the	individual	method	descriptions.	The	lists	given	there
are	not	necessarily	comprehensive.

Error	codes	are	presented	in	the	following	sections:

DirectMusic	Return	Values	by	Number
DirectMusic	Return	Values	by	Name

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Return	Values	by
Number
The	following	table	lists	DirectMusic	return	values	sorted	by	hexadecimal	value.
For	a	description,	click	on	the	constant.

Hexadecimal Constant
0x00000000 S_OK
0x00000001 S_FALSE
0x08781091 DMUS_S_PARTIALLOAD
0x08781092 DMUS_S_PARTIALDOWNLOAD
0x08781200 DMUS_S_REQUEUE
0x08781201 DMUS_S_FREE
0x08781202 DMUS_S_END
0x08781210 DMUS_S_STRING_TRUNCATED
0x08781211 DMUS_S_LAST_TOOL
0x08781212 DMUS_S_OVER_CHORD
0x08781213 DMUS_S_UP_OCTAVE
0x08781214 DMUS_S_DOWN_OCTAVE
0x08781215 DMUS_S_NOBUFFERCONTROL
0x08781216 DMUS_S_GARBAGE_COLLECTED
0x80004001 E_NOTIMPL
0x80004002 E_NOINTERFACE
0x80004003 E_POINTER
0x80040110 CLASS_E_NOAGGREGATION
0x80040110 CLASS_E_NOAGGREGATION
0x80040154 REGDB_E_CLASSNOTREG
0x8007000E E_OUTOFMEMORY
0x80070057 E_FAIL
0x80070057 E_INVALIDARG
0x88781101 DMUS_E_DRIVER_FAILED
0x88781102 DMUS_E_PORTS_OPEN

0x88781103 DMUS_E_DEVICE_IN_USE
0x88781104 DMUS_E_INSUFFICIENTBUFFER
0x88781105 DMUS_E_BUFFERNOTSET
0x88781106 DMUS_E_BUFFERNOTAVAILABLE
0x88781108 DMUS_E_NOTADLSCOL
0x88781109 DMUS_E_INVALIDOFFSET
0x88781111 DMUS_E_ALREADY_LOADED
0x88781113 DMUS_E_INVALIDPOS
0x88781114 DMUS_E_INVALIDPATCH
0x88781115 DMUS_E_CANNOTSEEK
0x88781116 DMUS_E_CANNOTWRITE
0x88781117 DMUS_E_CHUNKNOTFOUND
0x88781119 DMUS_E_INVALID_DOWNLOADID
0x88781120 DMUS_E_NOT_DOWNLOADED_TO_PORT
0x88781121 DMUS_E_ALREADY_DOWNLOADED
0x88781122 DMUS_E_UNKNOWNDOWNLOAD
0x88781123 DMUS_E_SET_UNSUPPORTED
0x88781124 DMUS_E_GET_UNSUPPORTED
0x88781125 DMUS_E_NOTMONO
0x88781126 DMUS_E_BADARTICULATION
0x88781127 DMUS_E_BADINSTRUMENT
0x88781128 DMUS_E_BADWAVELINK
0x88781128 DMUS_E_BUFFER_EMPTY
0x88781129 DMUS_E_NOARTICULATION
0x8878112A DMUS_E_NOTPCM
0x8878112B DMUS_E_BADWAVE
0x8878112C DMUS_E_BADOFFSETTABLE
0x8878112D DMUS_E_UNKNOWN_PROPERTY
0x8878112E DMUS_E_NOSYNTHSINK
0x8878112F DMUS_E_ALREADYOPEN
0x88781130 DMUS_E_ALREADYCLOSED
0x88781131 DMUS_E_SYNTHNOTCONFIGURED
0x88781132 DMUS_E_SYNTHACTIVE
0x88781133 DMUS_E_CANNOTREAD

0x88781134 DMUS_E_DMUSIC_RELEASED
0x88781136 DMUS_E_BUFFER_FULL
0x88781137 DMUS_E_PORT_NOT_CAPTURE
0x88781138 DMUS_E_PORT_NOT_RENDER
0x88781139 DMUS_E_DSOUND_NOT_SET
0x8878113A DMUS_E_ALREADY_ACTIVATED
0x8878113B DMUS_E_INVALIDBUFFER
0x8878113C DMUS_E_WAVEFORMATNOTSUPPORTED
0x8878113D DMUS_E_SYNTHINACTIVE
0x8878113E DMUS_E_DSOUND_ALREADY_SET
0x8878113F DMUS_E_INVALID_EVENT
0x88781150 DMUS_E_UNSUPPORTED_STREAM
0x88781151 DMUS_E_ALREADY_INITED
0x88781152 DMUS_E_INVALID_BAND
0x88781155 DMUS_E_TRACK_HDR_NOT_FIRST_CK
0x88781156 DMUS_E_TOOL_HDR_NOT_FIRST_CK
0x88781157 DMUS_E_INVALID_TRACK_HDR
0x88781158 DMUS_E_INVALID_TOOL_HDR
0x88781159 DMUS_E_ALL_TOOLS_FAILED
0x88781160 DMUS_E_ALL_TRACKS_FAILED
0x88781161 DMUS_E_NOT_FOUND
0x88781162 DMUS_E_NOT_INIT
0x88781163 DMUS_E_TYPE_DISABLED
0x88781164 DMUS_E_TYPE_UNSUPPORTED
0x88781165 DMUS_E_TIME_PAST
0x88781166 DMUS_E_TRACK_NOT_FOUND
0x88781167 DMUS_E_TRACK_NO_CLOCKTIME_SUPPORT
0x88781170 DMUS_E_NO_MASTER_CLOCK
0x88781180 DMUS_E_LOADER_NOCLASSID
0x88781181 DMUS_E_LOADER_BADPATH
0x88781182 DMUS_E_LOADER_FAILEDOPEN
0x88781183 DMUS_E_LOADER_FORMATNOTSUPPORTED
0x88781184 DMUS_E_LOADER_FAILEDCREATE
0x88781185 DMUS_E_LOADER_OBJECTNOTFOUND

0x88781186 DMUS_E_LOADER_NOFILENAME
0x88781200 DMUS_E_INVALIDFILE

0x88781201 DMUS_E_ALREADY_EXISTS
0x88781202 DMUS_E_OUT_OF_RANGE
0x88781203 DMUS_E_SEGMENT_INIT_FAILED
0x88781204 DMUS_E_ALREADY_SENT
0x88781205 DMUS_E_CANNOT_FREE
0x88781206 DMUS_E_CANNOT_OPEN_PORT
0x88781207 DMUS_E_CANNOT_CONVERT
0x88781210 DMUS_E_DESCEND_CHUNK_FAIL
0x88781211 DMUS_E_NOT_LOADED
0x88781213 DMUS_E_SCRIPT_LANGUAGE_INCOMPATIBLE
0x88781214 DMUS_E_SCRIPT_UNSUPPORTED_VARTYPE
0x88781215 DMUS_E_SCRIPT_ERROR_IN_SCRIPT
0x88781216 DMUS_E_SCRIPT_CANTLOAD_OLEAUT32
0x88781217 DMUS_E_SCRIPT_LOADSCRIPT_ERROR
0x88781218 DMUS_E_SCRIPT_INVALID_FILE
0x88781219 DMUS_E_INVALID_SCRIPTTRACK
0x8878121A DMUS_E_SCRIPT_VARIABLE_NOT_FOUND
0x8878121B DMUS_E_SCRIPT_ROUTINE_NOT_FOUND
0x8878121C DMUS_E_SCRIPT_CONTENT_READONLY
0x8878121D DMUS_E_SCRIPT_NOT_A_REFERENCE
0x8878121E DMUS_E_SCRIPT_VALUE_NOT_SUPPORTED
0x88781220 DMUS_E_INVALID_SEGMENTTRIGGERTRACK
0x88781221 DMUS_E_INVALID_LYRICSTRACK
0x88781222 DMUS_E_INVALID_PARAMCONTROLTRACK
0x88781223 DMUS_E_AUDIOVBSCRIPT_SYNTAXERROR
0x88781224 DMUS_E_AUDIOVBSCRIPT_RUNTIMEERROR
0x88781225 DMUS_E_AUDIOVBSCRIPT_OPERATIONFAILURE
0x88781226 DMUS_E_AUDIOPATHS_NOT_VALID
0x88781227 DMUS_E_AUDIOPATHS_IN_USE
0x88781228 DMUS_E_NO_AUDIOPATH_CONFIG
0x88781229 DMUS_E_AUDIOPATH_INACTIVE
0x8878122A DMUS_E_AUDIOPATH_NOBUFFER

0x8878122B DMUS_E_AUDIOPATH_NOPORT
0x8878122C DMUS_E_NO_AUDIOPATH
0x8878122D DMUS_E_INVALIDCHUNK
0x8878122E DMUS_E_AUDIOPATH_NOGLOBALFXBUFFER
0x8878122F DMUS_E_INVALID_CONTAINER_OBJECT

©	2004	Microsoft	Corporation.	All	rights	reserved.

	
Microsoft	DirectX	9.0	SDK	Update	(Summer	2004)

DirectMusic	Return	Values	by	Name
The	following	list	describes	all	DirectMusic	return	values.	To	find	a	constant
from	its	value,	see	DirectMusic	Return	Values	by	Number.

CLASS_E_NOAGGREGATION

Aggregation	is	not	supported.	The	LPUNKNOWN	parameter	should	be	set	to
NULL.

DMUS_E_ALL_TOOLS_FAILED

The	graph	object	was	unable	to	load	all	tools	from	the	IStream	object	data,
perhaps	because	of	errors	in	the	stream	or	because	the	tools	are	incorrectly
registered	on	the	client.

DMUS_E_ALL_TRACKS_FAILED

The	segment	object	was	unable	to	load	all	tracks	from	the	IStream	object	data,
perhaps	because	of	errors	in	the	stream	or	because	the	tracks	are	incorrectly
registered	on	the	client.

DMUS_E_ALREADY_ACTIVATED

The	port	has	been	activated,	and	the	parameter	cannot	be	changed.

DMUS_E_ALREADY_DOWNLOADED

The	buffer	has	already	been	downloaded.

DMUS_E_ALREADY_EXISTS

The	tool	is	already	contained	in	the	graph.	You	must	create	a	new	instance.

DMUS_E_ALREADY_INITED

The	object	has	already	been	initialized.

DMUS_E_ALREADY_LOADED

A	DLS	collection	is	already	open.

DMUS_E_ALREADY_SENT

The	message	has	already	been	sent.

DMUS_E_ALREADYCLOSED

The	port	is	not	open.

DMUS_E_ALREADYOPEN

The	port	is	already	open.

DMUS_E_AUDIOPATH_INACTIVE

The	audiopath	is	inactive,	perhaps	because	the	performance	has	been	closed
down.

DMUS_E_AUDIOPATH_NOBUFFER

The	audiopath	could	not	be	created	because	a	requested	buffer	could	not	be
created.

DMUS_E_AUDIOPATH_NOGLOBALFXBUFFER

An	attempt	was	made	to	create	an	audiopath	that	sends	to	a	nonexistent	global
effects	buffer.

DMUS_E_AUDIOPATH_NOPORT

The	audiopath	could	not	be	used	for	playback	because	it	lacked	port
assignments.

DMUS_E_AUDIOPATHS_IN_USE

The	performance	has	set	up	audiopaths,	so	performance	channels	cannot	be
allocated.

DMUS_E_AUDIOPATHS_NOT_VALID

Performance	channels	have	been	set	up	by	using
IDirectMusicPerformance8::AssignPChannel,	so	the	performance	cannot
support	audiopaths.

DMUS_E_AUDIOVBSCRIPT_OPERATIONFAILURE

A	script	routine	written	in	AudioVBScript	failed	because	a	function	outside	the
script	failed	to	complete.

DMUS_E_AUDIOVBSCRIPT_RUNTIMEERROR

A	script	routine	written	in	AudioVBScript	failed	because	an	invalid	operation
occurred—for	example,	adding	an	integer	to	an	object,	or	attempting	to	call	a
routine	that	does	not	exist.

DMUS_E_AUDIOVBSCRIPT_SYNTAXERROR

A	script	routine	written	in	AudioVBScript	could	not	be	read	because	it	contained
a	statement	not	allowed	by	the	language.

DMUS_E_BADARTICULATION

Invalid	articulation	chunk	in	DLS	collection.

DMUS_E_BADINSTRUMENT

Invalid	instrument	chunk	in	DLS	collection.

DMUS_E_BADOFFSETTABLE

The	offset	table	has	errors.

DMUS_E_BADWAVE

Corrupt	wave	header.

DMUS_E_BADWAVELINK

The	wave-link	chunk	in	DLS	collection	points	to	invalid	wave.

DMUS_E_BUFFER_EMPTY

There	is	no	data	in	the	buffer.

DMUS_E_BUFFER_FULL

The	specified	number	of	bytes	exceeds	the	maximum	buffer	size.

DMUS_E_BUFFERNOTAVAILABLE

The	buffer	is	not	available	for	download.

DMUS_E_BUFFERNOTSET

No	buffer	was	prepared	for	the	data.

DMUS_E_CANNOT_CONVERT

The	requested	conversion	between	music	and	MIDI	values	could	not	be	made.
This	usually	occurs	when	the	provided	DMUS_CHORD_KEY	structure	has	an
invalid	chord	or	scale	pattern.

DMUS_E_CANNOT_FREE

The	message	could	not	be	freed,	either	because	it	was	not	allocated	or	because	it
has	already	been	freed.

DMUS_E_CANNOT_OPEN_PORT

The	default	system	port	could	not	be	opened.

DMUS_E_CANNOTREAD

An	error	occurred	when	trying	to	read	from	the	IStream	object.

DMUS_E_CANNOTSEEK

The	IStream	object	does	not	support	Seek.

DMUS_E_CANNOTWRITE

The	IStream	object	does	not	support	Write.

DMUS_E_CHUNKNOTFOUND

A	chunk	with	the	specified	header	could	not	be	found.

DMUS_E_DESCEND_CHUNK_FAIL

An	attempt	to	descend	into	a	chunk	failed.

DMUS_E_DEVICE_IN_USE

The	device	is	in	use,	possibly	by	a	non-DirectMusic	client,	and	cannot	be	opened
again.

DMUS_E_DMUSIC_RELEASED

The	operation	cannot	be	performed	because	the	final	instance	of	the	DirectMusic
object	was	released.	Ports	cannot	be	used	after	final	release	of	the	DirectMusic
object.

DMUS_E_DRIVER_FAILED

An	unexpected	error	was	returned	from	a	device	driver,	indicating	possible
failure	of	the	driver	or	hardware.

DMUS_E_DSOUND_ALREADY_SET

A	DirectSound	object	has	already	been	set.

DMUS_E_DSOUND_NOT_SET

The	port	could	not	be	created	because	no	DirectSound	object	has	been	specified.

DMUS_E_GET_UNSUPPORTED

Getting	the	parameter	is	not	supported.

DMUS_E_INSUFFICIENTBUFFER

The	buffer	is	not	large	enough	for	the	requested	operation.

DMUS_E_INVALID_BAND

The	file	does	not	contain	a	valid	band.

DMUS_E_INVALID_CONTAINER_OBJECT

The	file	does	not	contain	a	valid	container	object.

DMUS_E_INVALID_DOWNLOADID

An	invalid	download	identifier	was	used	in	the	process	of	creating	a	download
buffer.

DMUS_E_INVALID_EVENT

The	event	either	is	not	a	valid	MIDI	message	or	makes	use	of	running	status	and
cannot	be	packed	into	the	buffer.

DMUS_E_INVALID_LYRICSTRACK

The	file	contains	an	invalid	lyrics	track.

DMUS_E_INVALID_PARAMCONTROLTRACK

The	file	contains	an	invalid	parameter	control	track.

DMUS_E_INVALID_SCRIPTTRACK

The	file	contains	an	invalid	script	track.

DMUS_E_INVALID_SEGMENTTRIGGERTRACK

The	file	contains	an	invalid	segment	trigger	track.

DMUS_E_INVALID_TOOL_HDR

The	IStream	object's	data	contains	an	invalid	tool	header	and	cannot	be	read	by
the	graph	object.

DMUS_E_INVALID_TRACK_HDR

The	IStream	object's	data	contains	an	invalid	track	header	and	cannot	be	read	by
the	segment	object.

DMUS_E_INVALIDBUFFER

An	invalid	DirectSound	buffer	was	handed	to	a	port.

DMUS_E_INVALIDCHUNK

Invalid	data	was	found	in	a	RIFF	file	chunk.

DMUS_E_INVALIDFILE

Not	a	valid	file.

DMUS_E_INVALIDOFFSET

Wave	chunks	in	the	DLS	collection	file	are	at	incorrect	offsets.

DMUS_E_INVALIDPATCH

No	instrument	in	the	collection	matches	the	patch	number.

DMUS_E_INVALIDPOS

Error	reading	wave	data	from	a	DLS	collection.	Indicates	bad	file.

DMUS_E_LOADER_BADPATH

The	file	path	is	invalid.

DMUS_E_LOADER_FAILEDCREATE

The	object	could	not	be	found	or	created.

DMUS_E_LOADER_FAILEDOPEN

File	open	failed	because	the	file	does	not	exist	or	is	locked.

DMUS_E_LOADER_FORMATNOTSUPPORTED

The	object	cannot	be	loaded	because	the	data	format	is	not	supported.

DMUS_E_LOADER_NOCLASSID

No	class	identifier	was	supplied	in	the	object	description.

DMUS_E_LOADER_NOFILENAME

No	file	name	was	supplied	in	the	object	description.

DMUS_E_LOADER_OBJECTNOTFOUND

The	object	was	not	found.

DMUS_E_NO_AUDIOPATH

An	attempt	was	made	to	play	on	a	nonexistent	audiopath.

DMUS_E_NO_AUDIOPATH_CONFIG

The	object	does	not	contain	an	embedded	audiopath	configuration.

DMUS_E_NO_MASTER_CLOCK

There	is	no	master	clock	in	the	performance.	Be	sure	to	call	the
IDirectMusicPerformance8::Init	method.

DMUS_E_NOARTICULATION

Articulation	missing	from	an	instrument	in	the	DLS	collection.

DMUS_E_NOSYNTHSINK

No	sink	is	connected	to	the	synthesizer.

DMUS_E_NOT_DOWNLOADED_TO_PORT

The	object	cannot	be	unloaded	because	it	is	not	present	on	the	port.

DMUS_E_NOT_FOUND

The	requested	item	is	not	contained	by	the	object.

DMUS_E_NOT_INIT

A	required	object	is	not	initialized	or	failed	to	initialize.

DMUS_E_NOT_LOADED

An	attempt	to	use	this	object	failed	because	it	was	not	loaded.

DMUS_E_NOTADLSCOL

The	object	being	loaded	is	not	a	valid	DLS	collection.

DMUS_E_NOTMONO

The	wave	chunk	has	more	than	one	interleaved	channel.	DLS	format	requires
mono.

DMUS_E_NOTPCM

Waveform	data	is	not	in	PCM	format.

DMUS_E_OUT_OF_RANGE

The	requested	time	is	outside	the	range	of	the	segment.

DMUS_E_PORT_NOT_CAPTURE

The	port	is	not	a	capture	port.

DMUS_E_PORT_NOT_RENDER

The	port	is	not	an	output	port.

DMUS_E_PORTS_OPEN

The	requested	operation	cannot	be	performed	while	there	are	instantiated	ports
in	any	process	in	the	system.

DMUS_E_SCRIPT_CANTLOAD_OLEAUT32

Loading	of	Oleaut32.dll	failed.	ActiveX	scripting	languages	require	use	of
oleaut32.dll.	On	platforms	where	this	file	is	not	present,	only	the	AudioVBScript
language	can	be	used.

DMUS_E_SCRIPT_CONTENT_READONLY

Script	variables	for	content	referenced	or	embedded	in	a	script	cannot	be	set.

DMUS_E_SCRIPT_ERROR_IN_SCRIPT

An	error	was	encountered	while	parsing	or	executing	the	script.

DMUS_E_SCRIPT_INVALID_FILE

The	script	file	is	invalid.

DMUS_E_SCRIPT_LANGUAGE_INCOMPATIBLE

The	ActiveX	scripting	engine	for	the	script's	language	is	not	compatible	with
DirectMusic.

DMUS_E_SCRIPT_LOADSCRIPT_ERROR

The	script	that	was	loaded	contains	an	error.

DMUS_E_SCRIPT_NOT_A_REFERENCE

An	attempt	was	made	to	set	a	script's	variable	by	reference	to	a	value	that	is	not
an	object	type.

DMUS_E_SCRIPT_ROUTINE_NOT_FOUND

The	script	does	not	contain	a	routine	with	the	specified	name.

DMUS_E_SCRIPT_UNSUPPORTED_VARTYPE

A	variant	was	used	that	had	a	type	not	supported	by	DirectMusic.

DMUS_E_SCRIPT_VALUE_NOT_SUPPORTED

An	attempt	was	made	to	set	a	script's	variable	by	value	to	an	object	that	does	not

support	a	default	value	property.

DMUS_E_SCRIPT_VARIABLE_NOT_FOUND

The	script	does	not	contain	a	variable	with	the	specified	name.

DMUS_E_SEGMENT_INIT_FAILED

Segment	initialization	failed,	probably	because	of	a	critical	memory	situation.

DMUS_E_SET_UNSUPPORTED

Setting	the	parameter	is	not	supported.

DMUS_E_SYNTHACTIVE

The	synthesizer	has	been	activated,	and	the	parameter	cannot	be	changed.

DMUS_E_SYNTHINACTIVE

The	synthesizer	has	not	been	activated	and	cannot	process	data.

DMUS_E_SYNTHNOTCONFIGURED

The	synthesizer	is	not	properly	configured	or	opened.

DMUS_E_TIME_PAST

The	time	requested	is	in	the	past.

DMUS_E_TOOL_HDR_NOT_FIRST_CK

The	stream	object's	data	does	not	have	a	tool	header	as	the	first	chunk	and,
therefore,	cannot	be	read	by	the	graph	object.

DMUS_E_TRACK_HDR_NOT_FIRST_CK

The	stream	object's	data	does	not	have	a	track	header	as	the	first	chunk	and,
therefore,	cannot	be	read	by	the	segment	object.

DMUS_E_TRACK_NO_CLOCKTIME_SUPPORT

The	track	does	not	support	clock-time	playback	or	parameter	retrieval.

DMUS_E_TRACK_NOT_FOUND

There	is	no	track	of	the	requested	type.

DMUS_E_TYPE_DISABLED

A	track	parameter	is	unavailable	because	it	has	been	disabled.

DMUS_E_TYPE_UNSUPPORTED

Parameter	is	unsupported	on	this	track.

DMUS_E_UNKNOWN_PROPERTY

The	property	set	or	item	is	not	implemented	by	this	port.

DMUS_E_UNKNOWNDOWNLOAD

The	synthesizer	does	not	support	this	type	of	download.

DMUS_E_UNSUPPORTED_STREAM

The	IStream	object	does	not	contain	data	supported	by	the	loading	object.

DMUS_E_WAVEFORMATNOTSUPPORTED

Invalid	buffer	format	was	handed	to	the	synthesizer	sink.

DMUS_S_DOWN_OCTAVE

The	note	has	been	lowered	by	one	or	more	octaves	to	fit	within	the	range	of
MIDI	values.

DMUS_S_END

The	operation	succeeded	and	reached	the	end	of	the	data.

DMUS_S_FREE

The	allocated	memory	should	be	freed.

DMUS_S_GARBAGE_COLLECTED

The	requested	operation	was	not	performed	because	the	object	has	been	released.

DMUS_S_LAST_TOOL

There	are	no	more	tools	in	the	graph.

DMUS_S_NOBUFFERCONTROL

Although	the	audio	output	from	the	port	is	routed	to	the	same	device	as	the	given
DirectSound	buffer,	buffer	controls	such	as	pan	and	volume	do	not	affect	the
output.

DMUS_S_OVER_CHORD

No	MIDI	values	have	been	calculated	because	the	music	value	has	the	note	at	a
position	higher	than	the	top	note	of	the	chord.

DMUS_S_PARTIALDOWNLOAD

Some	instruments	could	not	be	downloaded	to	the	port.

DMUS_S_PARTIALLOAD

The	object	could	only	load	partially.	This	can	happen	if	some	components,	such
as	embedded	tracks	and	tools,	are	not	registered	properly.	It	can	also	happen	if
some	content	is	missing;	for	example,	if	a	segment	uses	a	DLS	collection	that	is
not	in	the	loader's	current	search	directory.

DMUS_S_REQUEUE

The	message	should	be	passed	to	the	next	tool.

DMUS_S_STRING_TRUNCATED

The	method	succeeded,	but	the	returned	string	was	truncated.

DMUS_S_UP_OCTAVE

The	note	has	been	raised	by	one	or	more	octaves	to	fit	within	the	range	of	MIDI
values.

E_FAIL

The	method	did	not	succeed.

E_INVALIDARG

Invalid	argument.	Often,	this	error	results	from	failing	to	initialize	the	dwSize
member	of	a	structure	before	passing	it	to	the	method.

E_NOINTERFACE

No	object	interface	is	available.

E_NOTIMPL

The	method	is	not	implemented.	This	value	might	be	returned	if	a	driver	does
not	support	a	feature	necessary	for	the	operation.

E_OUTOFMEMORY

Insufficient	memory	to	complete	the	task.

E_POINTER

An	invalid	pointer,	usually	NULL,	was	passed	as	a	parameter.

REGDB_E_CLASSNOTREG

The	object	class	is	not	registered.

S_FALSE

The	method	succeeded,	but	there	was	nothing	to	do.

S_OK

The	operation	was	completed	successfully.

©	2004	Microsoft	Corporation.	All	rights	reserved.

	DirectMusic
	What's New in DirectMusic
	Introduction to DirectMusic
	The Power of DirectMusic
	Elements of a DirectMusic Application
	Loader
	Segments and Segment States
	Performance
	Messages
	Performance Channels
	Downloadable Sounds
	Instruments and Downloading
	Audiopaths and Buffers
	Audio Scripts

	Overview of Audio Data Flow
	Introduction to Dynamic Musical Soundtracks
	Styles
	Chordmaps
	Style-based Segments
	Templates
	How Music Varies During Playback
	Music Values and MIDI Notes

	Getting Started with DirectMusic
	Building DirectMusic Projects
	Debugging DirectMusic Projects
	First Steps in DirectMusic Programming

	Using DirectMusic
	Loading Audio Data
	Setting the Loader's Search Directory
	Scanning a Directory for Objects
	Enumerating Objects
	Loading an Object from a File
	Loading an Object from a Resource or Memory Address
	Containers
	Getting Object Descriptors
	Cache Management
	Garbage Collection
	Setting Objects

	Playing Sounds
	Creating the Performance
	Using Segments
	Creating Segment Objects
	Playing Segments
	Segment States
	Pausing Segments
	Control Segments
	Self-Controlling Segments
	MIDI-Based Segments
	WAV-Based Segments
	Playing WAV Sounds in Music Time

	Changing the Pitch of Waveforms
	Using Bands
	Downloading and Unloading Bands
	Automatically Downloading Bands
	Manually Downloading Bands
	Patch Collisions
	Unloading Bands

	Making Band Changes Programmatically
	Ensuring Timely Band Changes
	Playing a MIDI File with Custom Instruments

	Timing
	Master Clock
	Clock Time and Music Time
	Changing the Tempo
	Prepare Time
	Latency and Bumper Time
	Reducing Latency
	Segment Timing

	Notification and Event Handling
	Troubleshooting Playback

	Performance Parameters
	Setting and Retrieving Track Parameters
	Identifying the Track

	Disabling and Enabling Track Parameters
	Setting and Retrieving Global Parameters

	Using Audiopaths
	Creating Audiopaths
	Default Audiopath
	Standard Audiopaths
	DMUS_APATH_DYNAMIC_3D
	DMUS_APATH_DYNAMIC_MONO
	DMUS_APATH_DYNAMIC_STEREO
	DMUS_APATH_SHARED_STEREOPLUSREVERB

	Playing Sounds on Audiopaths
	Retrieving Objects from an Audiopath

	Using 3-D Sound in DirectMusic
	Using Effects in DirectMusic
	Buffer Chains
	Using Compositional Elements
	Music Files for Composition
	Overview of Programming for Composition
	Using Styles
	Using Motifs
	Using Chordmaps
	Using Templates
	Using Transitions
	Track Composition

	Using Audio Scripts
	Capturing MIDI

	Advanced Topics in DirectMusic
	DirectMusic Tracks
	Standard Track Types
	Track Configuration

	Using DirectMusic Messages
	Channels
	Message Creation and Delivery
	Application-Created Messages
	Performance Message Types
	Curves
	MIDI Messages
	MIDI Channel Messages
	MIDI Notes
	Program Changes
	Bank Selection
	DirectMusic Patch Numbers

	MIDI System Messages

	Using DirectMusic Ports
	Default Port

	Custom Loading
	Using Instrument Collections
	Loading and Downloading Collections
	Working with Instruments

	Low-Level DLS
	Creating DLS Instruments Programmatically

	DirectMusic Tools
	Creating a Tool
	Implementing a Tool in the Client Application

	Property Sets for DirectMusic Ports

	Related Software
	DirectMusic Producer
	DirectMusic Style Library
	DirectMusic Tool Wizard

	DirectMusic C++ Samples
	DirectMusic Sample Framework
	CMusicManager Sample Class
	CMusicScript Sample Class
	C3DMusicSegment Sample Class
	CMusicSegment Sample Class

	3D Audio Sample
	Audio Path Sample
	Audio Scripts Sample
	AudioFX Sample
	Cross Fade Sample
	Music Tool Sample
	Play Audio Sample
	Play Motif Sample
	Play Multi Sample

	DirectMusic C++ Tutorials
	Tutorial 1: Playing Audio Files
	Step 1: Initialize
	Step 2: Load a File
	Step 3: Play the File
	Step 4: Close Down

	Tutorial 2: Using Audiopath Objects
	Step 1: Create the Audiopath
	Step 2: Retrieve the Buffer
	Step 3: Change Buffer Parameters

	DirectMusic C/C++ Reference
	DirectMusic Interfaces
	IDirectMusic8 Interface
	IDirectMusic8::Activate
	IDirectMusic8::CreateMusicBuffer
	IDirectMusic8::CreatePort
	IDirectMusic8::EnumMasterClock
	IDirectMusic8::EnumPort
	IDirectMusic8::GetDefaultPort
	IDirectMusic8::GetMasterClock
	IDirectMusic8::SetDirectSound
	IDirectMusic8::SetExternalMasterClock
	IDirectMusic8::SetMasterClock

	IDirectMusicAudioPath8 Interface
	IDirectMusicAudioPath8::Activate
	IDirectMusicAudioPath8::ConvertPChannel
	IDirectMusicAudioPath8::GetObjectInPath
	IDirectMusicAudioPath8::SetVolume

	IDirectMusicBand8 Interface
	IDirectMusicBand8::CreateSegment
	IDirectMusicBand8::Download
	IDirectMusicBand8::Unload

	IDirectMusicBuffer8 Interface
	IDirectMusicBuffer8::Flush
	IDirectMusicBuffer8::GetBufferFormat
	IDirectMusicBuffer8::GetMaxBytes
	IDirectMusicBuffer8::GetNextEvent
	IDirectMusicBuffer8::GetRawBufferPtr
	IDirectMusicBuffer8::GetStartTime
	IDirectMusicBuffer8::GetUsedBytes
	IDirectMusicBuffer8::PackStructured
	IDirectMusicBuffer8::PackUnstructured
	IDirectMusicBuffer8::ResetReadPtr
	IDirectMusicBuffer8::SetStartTime
	IDirectMusicBuffer8::SetUsedBytes
	IDirectMusicBuffer8::TotalTime

	IDirectMusicChordMap8 Interface
	IDirectMusicChordMap8::GetScale

	IDirectMusicCollection8 Interface
	IDirectMusicCollection8::EnumInstrument
	IDirectMusicCollection8::GetInstrument

	IDirectMusicComposer8 Interface
	IDirectMusicComposer8::AutoTransition
	IDirectMusicComposer8::ChangeChordMap
	IDirectMusicComposer8::ComposeSegmentFromShape
	IDirectMusicComposer8::ComposeSegmentFromTemplate
	IDirectMusicComposer8::ComposeTemplateFromShape
	IDirectMusicComposer8::ComposeTransition

	IDirectMusicContainer8 Interface
	IDirectMusicContainer8::EnumObject

	IDirectMusicDownload8 Interface
	IDirectMusicDownload8::GetBuffer

	IDirectMusicDownloadedInstrument8 Interface
	IDirectMusicGetLoader8 Interface
	IDirectMusicGetLoader8::GetLoader

	IDirectMusicGraph8 Interface
	IDirectMusicGraph8::GetTool
	IDirectMusicGraph8::InsertTool
	IDirectMusicGraph8::RemoveTool
	IDirectMusicGraph8::StampPMsg

	IDirectMusicInstrument8 Interface
	IDirectMusicInstrument8::GetPatch
	IDirectMusicInstrument8::SetPatch

	IDirectMusicLoader8 Interface
	IDirectMusicLoader8::CacheObject
	IDirectMusicLoader8::ClearCache
	IDirectMusicLoader8::CollectGarbage
	IDirectMusicLoader8::EnableCache
	IDirectMusicLoader8::EnumObject
	IDirectMusicLoader8::GetObject
	IDirectMusicLoader8::LoadObjectFromFile
	IDirectMusicLoader8::ReleaseObject
	IDirectMusicLoader8::ReleaseObjectByUnknown
	IDirectMusicLoader8::ScanDirectory
	IDirectMusicLoader8::SetObject
	IDirectMusicLoader8::SetSearchDirectory

	IDirectMusicObject8 Interface
	IDirectMusicObject8::GetDescriptor
	IDirectMusicObject8::ParseDescriptor
	IDirectMusicObject8::SetDescriptor

	IDirectMusicPatternTrack8 Interface
	IDirectMusicPatternTrack8::CreateSegment
	IDirectMusicPatternTrack8::SetPatternByName
	IDirectMusicPatternTrack8::SetVariation

	IDirectMusicPerformance8 Interface
	IDirectMusicPerformance8::AddNotificationType
	IDirectMusicPerformance8::AddPort
	IDirectMusicPerformance8::AdjustTime
	IDirectMusicPerformance8::AllocPMsg
	IDirectMusicPerformance8::AssignPChannel
	IDirectMusicPerformance8::AssignPChannelBlock
	IDirectMusicPerformance8::ClonePMsg
	IDirectMusicPerformance8::CloseDown
	IDirectMusicPerformance8::CreateAudioPath
	IDirectMusicPerformance8::CreateStandardAudioPath
	IDirectMusicPerformance8::DownloadInstrument
	IDirectMusicPerformance8::FreePMsg
	IDirectMusicPerformance8::GetBumperLength
	IDirectMusicPerformance8::GetDefaultAudioPath
	IDirectMusicPerformance8::GetGlobalParam
	IDirectMusicPerformance8::GetGraph
	IDirectMusicPerformance8::GetLatencyTime
	IDirectMusicPerformance8::GetNotificationPMsg
	IDirectMusicPerformance8::GetParam
	IDirectMusicPerformance8::GetParamEx
	IDirectMusicPerformance8::GetPrepareTime
	IDirectMusicPerformance8::GetQueueTime
	IDirectMusicPerformance8::GetResolvedTime
	IDirectMusicPerformance8::GetSegmentState
	IDirectMusicPerformance8::GetTime
	IDirectMusicPerformance8::Init
	IDirectMusicPerformance8::InitAudio
	IDirectMusicPerformance8::Invalidate
	IDirectMusicPerformance8::IsPlaying
	IDirectMusicPerformance8::MIDIToMusic
	IDirectMusicPerformance8::MusicToMIDI
	IDirectMusicPerformance8::MusicToReferenceTime
	IDirectMusicPerformance8::PChannelInfo
	IDirectMusicPerformance8::PlaySegment
	IDirectMusicPerformance8::PlaySegmentEx
	IDirectMusicPerformance8::ReferenceToMusicTime
	IDirectMusicPerformance8::RemoveNotificationType
	IDirectMusicPerformance8::RemovePort
	IDirectMusicPerformance8::RhythmToTime
	IDirectMusicPerformance8::SendPMsg
	IDirectMusicPerformance8::SetBumperLength
	IDirectMusicPerformance8::SetDefaultAudioPath
	IDirectMusicPerformance8::SetGlobalParam
	IDirectMusicPerformance8::SetGraph
	IDirectMusicPerformance8::SetNotificationHandle
	IDirectMusicPerformance8::SetParam
	IDirectMusicPerformance8::SetPrepareTime
	IDirectMusicPerformance8::Stop
	IDirectMusicPerformance8::StopEx
	IDirectMusicPerformance8::TimeToRhythm

	IDirectMusicPort8 Interface
	IDirectMusicPort8::Activate
	IDirectMusicPort8::Compact
	IDirectMusicPort8::DeviceIoControl
	IDirectMusicPort8::DownloadInstrument
	IDirectMusicPort8::GetCaps
	IDirectMusicPort8::GetChannelPriority
	IDirectMusicPort8::GetFormat
	IDirectMusicPort8::GetLatencyClock
	IDirectMusicPort8::GetNumChannelGroups
	IDirectMusicPort8::GetRunningStats
	IDirectMusicPort8::PlayBuffer
	IDirectMusicPort8::Read
	IDirectMusicPort8::SetChannelPriority
	IDirectMusicPort8::SetDirectSound
	IDirectMusicPort8::SetNumChannelGroups
	IDirectMusicPort8::SetReadNotificationHandle
	IDirectMusicPort8::UnloadInstrument

	IDirectMusicPortDownload8 Interface
	IDirectMusicPortDownload8::AllocateBuffer
	IDirectMusicPortDownload8::Download
	IDirectMusicPortDownload8::GetAppend
	IDirectMusicPortDownload8::GetBuffer
	IDirectMusicPortDownload8::GetDLId
	IDirectMusicPortDownload8::Unload

	IDirectMusicScript8 Interface
	IDirectMusicScript8::CallRoutine
	IDirectMusicScript8::EnumRoutine
	IDirectMusicScript8::EnumVariable
	IDirectMusicScript8::GetVariableNumber
	IDirectMusicScript8::GetVariableObject
	IDirectMusicScript8::GetVariableVariant
	IDirectMusicScript8::Init
	IDirectMusicScript8::SetVariableNumber
	IDirectMusicScript8::SetVariableObject
	IDirectMusicScript8::SetVariableVariant

	IDirectMusicSegment8 Interface
	IDirectMusicSegment8::AddNotificationType
	IDirectMusicSegment8::Clone
	IDirectMusicSegment8::Compose
	IDirectMusicSegment8::Download
	IDirectMusicSegment8::GetAudioPathConfig
	IDirectMusicSegment8::GetDefaultResolution
	IDirectMusicSegment8::GetGraph
	IDirectMusicSegment8::GetLength
	IDirectMusicSegment8::GetLoopPoints
	IDirectMusicSegment8::GetParam
	IDirectMusicSegment8::GetRepeats
	IDirectMusicSegment8::GetStartPoint
	IDirectMusicSegment8::GetTrack
	IDirectMusicSegment8::GetTrackGroup
	IDirectMusicSegment8::InitPlay
	IDirectMusicSegment8::InsertTrack
	IDirectMusicSegment8::RemoveNotificationType
	IDirectMusicSegment8::RemoveTrack
	IDirectMusicSegment8::SetDefaultResolution
	IDirectMusicSegment8::SetGraph
	IDirectMusicSegment8::SetLength
	IDirectMusicSegment8::SetLoopPoints
	IDirectMusicSegment8::SetParam
	IDirectMusicSegment8::SetPChannelsUsed
	IDirectMusicSegment8::SetRepeats
	IDirectMusicSegment8::SetStartPoint
	IDirectMusicSegment8::SetTrackConfig
	IDirectMusicSegment8::Unload

	IDirectMusicSegmentState8 Interface
	IDirectMusicSegmentState8::GetObjectInPath
	IDirectMusicSegmentState8::GetRepeats
	IDirectMusicSegmentState8::GetSeek
	IDirectMusicSegmentState8::GetSegment
	IDirectMusicSegmentState8::GetStartPoint
	IDirectMusicSegmentState8::GetStartTime
	IDirectMusicSegmentState8::SetTrackConfig

	IDirectMusicStyle8 Interface
	IDirectMusicStyle8::EnumBand
	IDirectMusicStyle8::EnumChordMap
	IDirectMusicStyle8::EnumMotif
	IDirectMusicStyle8::EnumPattern
	IDirectMusicStyle8::GetBand
	IDirectMusicStyle8::GetChordMap
	IDirectMusicStyle8::GetDefaultBand
	IDirectMusicStyle8::GetDefaultChordMap
	IDirectMusicStyle8::GetEmbellishmentLength
	IDirectMusicStyle8::GetMotif
	IDirectMusicStyle8::GetTempo
	IDirectMusicStyle8::GetTimeSignature

	IDirectMusicSynth Interface
	IDirectMusicSynthSink Interface
	IDirectMusicThru8 Interface
	IDirectMusicThru8::ThruChannel

	IDirectMusicTool8 Interface
	IDirectMusicTool8::Clone
	IDirectMusicTool8::Flush
	IDirectMusicTool8::GetMediaTypeArraySize
	IDirectMusicTool8::GetMediaTypes
	IDirectMusicTool8::GetMsgDeliveryType
	IDirectMusicTool8::Init
	IDirectMusicTool8::ProcessPMsg

	IDirectMusicTrack8 Interface
	IDirectMusicTrack8::AddNotificationType
	IDirectMusicTrack8::Clone
	IDirectMusicTrack8::Compose
	IDirectMusicTrack8::EndPlay
	IDirectMusicTrack8::GetParam
	IDirectMusicTrack8::GetParamEx
	IDirectMusicTrack8::Init
	IDirectMusicTrack8::InitPlay
	IDirectMusicTrack8::IsParamSupported
	IDirectMusicTrack8::Join
	IDirectMusicTrack8::Play
	IDirectMusicTrack8::PlayEx
	IDirectMusicTrack8::RemoveNotificationType
	IDirectMusicTrack8::SetParam
	IDirectMusicTrack8::SetParamEx

	IKsControl Interface
	IKsControl::KsProperty

	IReferenceClock Interface
	IReferenceClock::AdvisePeriodic
	IReferenceClock::AdviseTime
	IReferenceClock::GetTime
	IReferenceClock::Unadvise

	DirectMusic Messages
	DMUS_CHANNEL_PRIORITY_PMSG
	DMUS_CURVE_PMSG
	DMUS_LYRIC_PMSG
	DMUS_MIDI_PMSG
	DMUS_NOTE_PMSG
	DMUS_NOTIFICATION_PMSG
	DMUS_PATCH_PMSG
	DMUS_PMSG
	DMUS_SYSEX_PMSG
	DMUS_TEMPO_PMSG
	DMUS_TIMESIG_PMSG
	DMUS_TRANSPOSE_PMSG
	DMUS_WAVE_PMSG

	DirectMusic Structures
	DMUS_AUDIOPARAMS
	DMUS_BAND_PARAM
	DMUS_BUFFERDESC
	DMUS_CHORD_KEY
	DMUS_CHORD_PARAM
	DMUS_CLOCKINFO8
	DMUS_COMMAND_PARAM
	DMUS_COMMAND_PARAM_2
	DMUS_EVENTHEADER
	DMUS_MUTE_PARAM
	DMUS_NOTERANGE
	DMUS_OBJECTDESC
	DMUS_PLAY_MARKER_PARAM
	DMUS_PORTCAPS
	DMUS_PORTPARAMS8
	DMUS_RHYTHM_PARAM
	DMUS_SCRIPT_ERRORINFO
	DMUS_SUBCHORD
	DMUS_SYNTHSTATS8
	DMUS_TEMPO_PARAM
	DMUS_TIMESIGNATURE
	DMUS_VALID_START_PARAM
	DMUS_VARIATIONS_PARAM
	DMUS_VERSION
	DMUS_WAVES_REVERB_PARAMS
	KSPROPERTY

	DLS Structures
	DMUS_ARTICPARAMS
	DMUS_ARTICULATION
	DMUS_ARTICULATION2
	DMUS_COPYRIGHT
	DMUS_DOWNLOADINFO
	DMUS_EXTENSIONCHUNK
	DMUS_INSTRUMENT
	DMUS_LFOPARAMS
	DMUS_MSCPARAMS
	DMUS_OFFSETTABLE
	DMUS_PEGPARAMS
	DMUS_REGION
	DMUS_VEGPARAMS
	DMUS_WAVE
	DMUS_WAVEARTDL
	DMUS_WAVEDATA
	DMUS_WAVEDL

	DirectMusic File Format
	About RIFF
	RIFF Notation
	Common Chunks
	Audiopath Form
	Band Form
	Chordmap Form
	Container Form
	DirectSound Buffer Configuration Form
	Effects Form
	Reference List
	Script Form
	Segment Form
	Style Form
	Tool Form
	Toolgraph Form
	Track Form
	Band Track Form
	Chord Track List
	Chordmap Track List
	Command Track Chunk
	Lyrics Track List
	Marker Track List
	Mute Track Chunk
	Parameter Control Track List
	Pattern Track Form
	Script Track List
	Segment Trigger Track List
	Sequence Track Chunk
	Signpost Track Chunk
	Style Track List
	Sysex Track Chunk
	Tempo Track Chunk
	Time Signature Track List
	Wave Track List

	Wave Header Chunk

	DirectMusic File Structures
	DMUS_IO_BAND_ITEM_HEADER
	DMUS_IO_BAND_ITEM_HEADER2
	DMUS_IO_BAND_TRACK_HEADER
	DMUS_IO_BUFFER_ATTRIBUTES_HEADER
	DMUS_IO_CHORD
	DMUS_IO_CHORDENTRY
	DMUS_IO_CHORDMAP
	DMUS_IO_CHORDMAP_SIGNPOST
	DMUS_IO_CHORDMAP_SUBCHORD
	DMUS_IO_COMMAND
	DMUS_IO_CONTAINED_OBJECT_HEADER
	DMUS_IO_CONTAINER_HEADER
	DMUS_IO_CURVE_ITEM
	DMUS_IO_INSTRUMENT
	DMUS_IO_LYRICSTRACK_EVENTHEADER
	DMUS_IO_MOTIFSETTINGS
	DMUS_IO_MUTE
	DMUS_IO_NEXTCHORD
	DMUS_IO_PARAMCONTROLTRACK_CURVEINFO
	DMUS_IO_PARAMCONTROLTRACK_OBJECTHEADER
	DMUS_IO_PARAMCONTROLTRACK_PARAMHEADER
	DMUS_IO_PARTREF
	DMUS_IO_PATTERN
	DMUS_IO_PCHANNELTOBUFFER_HEADER
	DMUS_IO_PLAYMARKER
	DMUS_IO_PORTCONFIG_HEADER
	DMUS_IO_REFERENCE
	DMUS_IO_SCRIPT_HEADER
	DMUS_IO_SCRIPTTRACK_EVENTHEADER
	DMUS_IO_SEGMENT_HEADER
	DMUS_IO_SEGMENT_ITEM_HEADER
	DMUS_IO_SEGMENT_TRACK_HEADER
	DMUS_IO_SEQ_ITEM
	DMUS_IO_SIGNPOST
	DMUS_IO_STYLE
	DMUS_IO_STYLE_ANTICIPATION
	DMUS_IO_STYLECURVE
	DMUS_IO_STYLEMARKER
	DMUS_IO_STYLENOTE
	DMUS_IO_STYLEPART
	DMUS_IO_STYLERESOLUTION
	DMUS_IO_SUBCHORD
	DMUS_IO_SYSEX_ITEM
	DMUS_IO_TEMPO_ITEM
	DMUS_IO_TIMESIG
	DMUS_IO_TIMESIGNATURE_ITEM
	DMUS_IO_TOOL_HEADER
	DMUS_IO_TRACK_EXTRAS_HEADER
	DMUS_IO_TRACK_HEADER
	DMUS_IO_VALID_START
	DMUS_IO_VERSION
	DMUS_IO_WAVE_HEADER
	DMUS_IO_WAVE_ITEM_HEADER
	DMUS_IO_WAVE_PART_HEADER
	DMUS_IO_WAVE_TRACK_HEADER
	DSOUND_IO_3D
	DSOUND_IO_DSBUFFERDESC
	DSOUND_IO_DSBUSID
	DSOUND_IO_DXDMO_DATA
	DSOUND_IO_DXDMO_HEADER

	Standard Track Parameters
	GUID_BandParam
	GUID_ChordParam
	GUID_Clear_All_Bands
	GUID_CommandParam
	GUID_CommandParam2
	GUID_CommandParamNext
	GUID_ConnectToDLSCollection
	GUID_Disable_Auto_Download
	GUID_DisableTempo
	GUID_DisableTimeSig
	GUID_Download
	GUID_DownloadToAudioPath
	GUID_Enable_Auto_Download
	GUID_EnableTempo
	GUID_EnableTimeSig
	GUID_IDirectMusicBand
	GUID_IDirectMusicChordMap
	GUID_IDirectMusicStyle
	GUID_MuteParam
	GUID_Play_Marker
	GUID_RhythmParam
	GUID_SeedVariations
	GUID_StandardMIDIFile
	GUID_TempoParam
	GUID_TimeSignature
	GUID_Unload
	GUID_UnloadFromAudioPath
	GUID_Valid_Start_Time
	GUID_Variations

	DirectMusic Enumerated Types
	DMUS_CHORDKEYF_FLAGS
	DMUS_CLOCKTYPE
	DMUS_COMMANDT_TYPES
	DMUS_COMPOSEF_FLAGS
	DMUS_CURVE_FLAGS
	DMUS_EMBELLISHT_TYPES
	DMUS_NOTEF_FLAGS
	DMUS_PATTERNT_TYPES
	DMUS_PLAYMODE_FLAGS
	DMUS_PMSGF_FLAGS
	DMUS_PMSGT_TYPES
	DMUS_SEGF_FLAGS
	DMUS_SHAPET_TYPES
	DMUS_STYLET_TYPES
	DMUS_TIME_RESOLVE_FLAGS
	DMUS_TRACKF_FLAGS
	DMUS_VARIATIONT_TYPES

	DirectMusic GUIDs
	DirectMusic Interface GUIDs
	DirectMusic Component GUIDs

	DirectMusic Return Values
	DirectMusic Return Values by Number
	DirectMusic Return Values by Name

