Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic

This section provides information about using Microsoft® DirectMusic® to
capture and play sounds in applications written in C and C++.

Information is presented in the following sections:

What's New in DirectMusic. A guide to new features of DirectMusic in
Microsoft DirectX® 9.0.

Introduction to DirectMusic. An overview of DirectMusic: its capabilities,
basic concepts, and architecture, together with an introduction to dynamic
soundtracks. This section focuses on principles rather than on the practical
side of programming for DirectMusic.

Getting Started with DirectMusic. Information on setting up and debugging
DirectMusic projects, and an overview of the programming steps involved
in setting up a DirectMusic performance and playing a sound.

Using DirectMusic. A guide to using the DirectMusic application
programming interface (API). You'll probably want to familiarize yourself
with the table of contents for this section, and then refer to parts of it as you
need specific information. It should be used in conjunction with the
reference section.

Advanced Topics in DirectMusic. Information of interest mostly for
developing specialized applications or applications that need highly
optimized performance.

Related Software. Information about software distributed with the DirectX
SDK that can be used in conjunction with DirectMusic.

DirectMusic C++ Samples. A guide to the sample applications in the SDK,
to point you to the sample code you need. As well as showing how to
implement basic functionality, each sample demonstrates one or more
particular features of DirectMusic.

DirectMusic C++ Tutorials. Step-by-step guides to implementing basic
DirectMusic functionality.

DirectMusic C/C++ Reference. Detailed information about all the API
elements declared in the DirectMusic header files.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

What's New in DirectMusic

The DirectMusic application programming interface (API) has not been
significantly revised for DirectX 9.0. However, many performance
enhancements have been made. The most significant of these is a new low-
latency DirectSound sink, which enables DirectMusic to attain much quicker
response when using audiopaths that play through the software synthesizer. This
enhancement is of particular interest to sound designers and composers who
want to take advantage of the rich DirectMusic feature set but who also require
low latency for sound effects. For more information, see Reducing Latency.

Several new features have been added to content created in DirectMusic
Producer. For example, streamed waves in wave tracks can now be looped for
the easier creation of ambient sounds, and looping can be done in clock time so
that looping waves are not affected by tempo changes. For more information, see
What's New in This Release in the DirectMusic Producer Help.

A large library of DirectMusic styles has been added to the SDK, along with an
application for auditioning them.

In addition, two new tools have been made available in the
\bin\DXUtils\AppWizard folder of the SDK installation:

e DMToolWizard.awx is a wizard for creating DirectMusic tools.
e AEDMOWiz.awx is a wizard for creating effect DMOs.

See Also

e Related Software

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Introduction to DirectMusic

This section provides a quick overview of the capabilities of DirectMusic and
what you need to do to get started with the API. Information is presented in the
following sections:

The Power of DirectMusic
Elements of a DirectMusic Application
Overview of Audio Data Flow

Introduction to Dynamic Musical Soundtracks

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

The Power of DirectMusic

DirectMusic does much more than simply play sounds. It provides a complete
system for implementing a dynamic soundtrack that takes advantage of hardware
acceleration, Downloadable Sounds (DLS), DirectX Media Objects (DMOs),
and advanced 3-D positioning effects.

By using the DirectMusic interfaces in your application, you can do the
following:

Load and play sounds from files or resources in MIDI, WAY, or
DirectMusic Producer run-time format.

Play from multiple sources simultaneously.

Schedule the timing of musical events with high precision.

Send tempo changes, patch changes, and other MIDI events
programmatically.

Use Downloadable Sounds. By using DLS, an application can be sure that
message-based music sounds the same on all computers. An application can
also play an unlimited variety of instruments and even produce unique
sounds for individual notes and velocities.

Locate sounds in a 3-D environment.

Easily apply pitch changes, reverberation, and other effects.

Use more than 16 MIDI channels. DirectMusic makes it possible for any
number of voices to be played simultaneously, up to the limits of the
synthesizer.

Play segments on different audiopaths, so that effects or spatialization can
be applied individually to each sound.

Capture MIDI data, or stream ("thru") it from one port to another.

If you use source files from DirectMusic Producer, you can do much more:

Control many more aspects of playback at run time; for example, by
choosing a different set of musical variations or altering the chord
progression.

Play music that varies subtly each time it repeats.

Play waveforms with variations.

Map performance channels to different buffers within an audiopath, so that

different parts within the same segment can have different effects.

e Compose wholly new pieces of music at run time, not generated
algorithmically but based on elements supplied by a human composer.

e Dynamically compose transitions between existing pieces of music.

e Cue transitions, motifs, and sound effects to occur at specified rhythmic
points in the performance.

These capabilities are the ones most often used by mainstream applications.
DirectMusic is designed to be used easily for the basic tasks, but it also allows
low-level access to those who need it. It is also extensible. Specialized
applications can implement new objects at virtually every stage on the
audiopath, such as the following:

e [oaders to parse data in new or proprietary formats.

e Tracks containing any kind of sequenced data.

e Tools to process messages; for example, to intercept notes and apply
transpositions, or to display lyrics embedded in a segment file.

e Custom sequencer.

e Custom synthesizer.

o Effects filters.

DirectMusic delivers full functionality on Microsoft Windows® 98 and
Microsoft Windows 2000. Support for hardware synthesizers is available only on
Windows 98 Second Edition, Windows 2000, and later operating systems. The
default Microsoft software synthesizer is always available.

Although DirectMusic loads and plays WAV files, applications that need highly
optimized performance or low-level control over sound buffers can still use the
DirectSound API. For a comparison of the two APISs, see the DirectX
documentation.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Elements of a DirectMusic
Application

This section is an introduction to some of the key concepts and code objects of
DirectMusic. Although some interfaces are introduced, this section does not get
into the details of using the API. For practical information on writing
DirectMusic applications, see Using DirectMusic or the specific topics listed
under See Also at the end of each topic.

The following topics are discussed:

Loader

Segments and Segment States
Performance

Messages

Performance Channels
Downloadable Sounds
Instruments and Downloading
Audiopaths and Buffers
Audio Scripts

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Loader

The loader, represented by the IDirectMusicl.oader8 interface, is an object that
gets other objects. It is generally one of the first objects created in a DirectMusic
application. The loader is used to load all audio content, including DirectMusic
segment files, DLS collections, MIDI files, and WAV files. It can also load data
stored in resources or application memory.

Any object that encapsulates data from a file or resource supports the
IDirectMusicObject8 interface. The loader gets this interface and then uses it to
initiate the process of streaming the data into an object in your application. Data
objects parse themselves through their implementations of IPersistStream, and
the entire loading process is carried out automatically. All you need to do is pass
a description of the object to the loader, along with a request for the desired
interface, such as IDirectMusicSegment8.

See Also

e Loading Audio Data

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Segments and Segment States

Segments are objects encapsulating sequenced sound data. The data might be a
MIDI sequence, a waveform, a collection of information originating in a
segment file from DirectMusic Producer, or a piece of music composed at run
time from different components. In general, a segment is a piece of music or
other sound that is played as a unit.

A segment can be played as a primary segment or secondary segment. Only one
primary segment can be played at a time. Secondary segments are typically short
musical motifs or sound effects played over the primary segment.

Segments originating as MIDI or WAV files sound the same each time they are
played, unless the application performs some special processing on them. A
segment authored in DirectMusic Producer, on the other hand, can contain
different musical patterns and other information that allows variation each time
the segment is played.

Segments can combine different kinds of data such as waveforms, patterns,
chord changes, band changes, and tempo changes. Each type of data is
encapsulated in a track object. Applications written in C++ can access individual
tracks, but most do not need to. Segments can also contain information about the
audiopath on which they should be played, including special effects.

DirectMusic Producer segments can also contain references to other loadable
musical components. For example, it is possible to obtain a band object from a
segment authored with that band.

Each time a segment is played, a segment state object is created. The application
can use this object to get information about the state of playback and the
audiopath for that instance of the playing segment.

See Also

e Using Segments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Performance

The performance object manages the flow of data from the source to the
synthesizer. Typically an application has only a single performance.

The performance handles timing, the mapping of data channels to audiopaths,
the routing of messages, tool management, notifications, and other important
tasks.

See Also

¢ Creating the Performance

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Messages

Audio data flows through the performance in the form of messages. Performance
messages are similar to MIDI messages but contain more information and a
greater variety of information. A message could contain information about a
musical note, a waveform, or a controller change. It might even contain text for a
display of lyrics.

Most applications don't deal directly with messages, which are generated by
tracks when a segment is playing. However, it is possible for an application to
insert messages into the performance. It is also possible to intercept messages by
using plug-in components called tools.

Messages are also used for notifications. Applications can request that an event
be signaled whenever certain points in the performance are reached—for
example, on every beat of the music. Information about the event is contained in
a performance message.

See Also

e Notification and Event Handlin
e Using DirectMusic Messages

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Performance Channels

Every playing sound consists of one or more parts. A part might be a MIDI
channel, a part in a DirectMusic Producer segment, or a waveform. Often a part
corresponds to a single musical instrument.

A performance channel controls the route taken by a part through an audiopath.
It maps the part to a resource on the synthesizer (an instrument timbre or a
waveform) and also enables the output of the synthesizer for the part to be sent
through a particular configuration of buffers for the application of effects. Every
message that contains information about a part also specifies the part's
performance channel, so that it can be routed correctly. Every performance
channel has its own settings for pan, volume, and transposition.

Performance channels are similar to MIDI channels, but whereas traditional
MIDI playback is limited to 16 channels, the number of performance channels is
virtually unlimited.

Note The array of performance channels in the DirectMusic API is zero-based,
but in DirectMusic Producer it is one-based. Performance channel 1 in
DirectMusic Producer is performance channel 0 in the API.

See Also

e Using Bands

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Downloadable Sounds

In the past, most computer audio has been produced in one of two fundamentally
different ways, each with its advantages and disadvantages:

e Waveforms are reproduced from digital samples, typically stored in a file
or, in the case of Red Book audio, on a standard CD track. Digital samples
can reproduce any sound, and the output is very similar on all sound cards.
However, they require large amounts of storage and resources for
streaming.

e Musical instrument sounds are synthesized, usually in hardware, in
response to messages, typically from a MIDI file. MIDI files are compact
and require few streaming resources, but the output is limited to the number
of instruments available in the General MIDI set and in the synthesizer, and
may sound very different on different systems.

One way to combine the advantages of digital sampling with the compactness
and flexibility of MIDI is wave-table synthesis, which is the synthesis of
instrument sounds from digital samples. These samples are obtained from
recordings of real instruments and stored on the hardware. The samples are
looped and modulated to produce sounds of any length at different pitches and
volumes.

Wave-table synthesis produces more realistic timbres than algorithmic FM
synthesis but is still limited to a fixed set of instruments. Also, a particular
instrument might sound different on different pieces of hardware, depending on
the manufacturer's implementation of that instrument.

The Downloadable Sounds (DLS) standard, published by the MIDI
Manufacturers Association, is a way of enabling wave-table synthesis to be
based on samples provided at run time rather than hard-wired into the system.
The data describing an instrument is downloaded to the synthesizer, and then the
instrument can be played like any other MIDI instrument. Because DLS data can
be distributed as part of an application, developers can be sure that their
soundtracks will be delivered uniformly on all systems. Moreover, developers
are not limited in their choice of instruments.

A DLS instrument is created from one or more digital samples, typically
representing single pitches, which are then modulated by the synthesizer to
create other pitches. Multiple samples are used to make the instrument sound
realistic over a wide range of pitches. When a DLS instrument is downloaded,
each sample is assigned to a certain range of pitches, called a region.

DLS Level 2 allows every note to occupy its own region. Moreover, the timbre
for each region can be made up of multiple samples, called layers, and different
layers can be triggered depending on the velocity of the note. A single
instrument can thus be used to produce thousands of different sounds.

In addition, samples can be given an articulation, which defines characteristics
that make the sound more like that produced by a real instrument. Articulation
includes envelopes, or shapes, for the volume and pitch of the sound and a low-
frequency oscillator (LFO) to provide vibrato and tremolo.

Samples can be loopable or single-shot. A loopable sample plays repeatedly for
the duration of the note. A single-shot sample plays only once.

DLS data is stored in instrument collections. Individual instruments are assigned
patch numbers and respond to MIDI messages just like traditional MIDI
instruments. However, a DLS instrument does not have to belong to the General
MIDI set. Any sound, even a fragment of speech or a fully composed measure of
music, can be associated with a DLS instrument.

For more information on DLS collections and how instruments are created, see
the documentation for DirectMusic Producer. To learn more about the DLS
standard, consult the document "Downloadable Sounds Level 2," available from
the MIDI Manufacturers Association.

By default, DirectMusic uses the Microsoft software synthesizer, which supports
DLS Level 2.

Note The DLS Level 1 synthesizer used with the DirectX 7 interfaces contains
reverberation capabilities, which are on by default. The Waves TrueVerb
reverberation technology is licensed to Microsoft Corporation as the SimpleVerb
implementation.

The DLS Level 2 synthesizer used with later interfaces does not contain built-in
reverberation capabilities. Reverberation is instead implemented as a

DirectX Media Object. Waves MaxxVerb is licensed to Microsoft Corporation
for this purpose.

See Also

e Using Bands

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Instruments and Downloading

To play an instrument, the synthesizer needs information about how the
instrument should sound. This information, consisting of waveform samples and
articulation data, is stored in DLS collections. Instrument data is made available
to the synthesizer by being downloaded.

By default, the Microsoft software synthesizer takes its DLS data from the
Roland GM/GS collection. The default collection contains DLS data for the 128
instruments defined by the General MIDI standard. Custom collections can
include instruments of any kind. The waveform samples for an instrument do not
have to be based on a musical instrument but can be any recorded sound such as
a sound effect, a fragment of speech, or even a fully formed measure of music.

Most applications do not need to access collections directly, as the necessary
data is either contained in the default collection or referenced by a band object
associated with a segment. A band is a set of instruments and settings mapped to
performance channels. Several techniques are available for ensuring that band
instruments are downloaded before use.

Note The Roland GM/GS Sound Set cannot be modified, due to legal
restrictions.

WAV files and resources also have to be downloaded to the synthesizer before
they can be played.

A band is a collection of performance channel settings that determine how parts
in a sound file are played. For each channel, a band includes an instrument
assignment as well as settings for volume, pan, and transposition. Every part in a
performance is mapped to a performance channel, and each part plays with the
instrument settings applied to its channel by the band.

Although a band can be thought of as a set of instruments, it is not the same as a
DLS collection. A DLS collection is a set of instruments that can be downloaded
to the synthesizer and thus made available to any application. The instruments
themselves contain no information about assignment to performance channels,
volume, pan, or transposition. This data must be supplied by bands for the

channels used by a performance.

Note When bands are downloaded to the synthesizer, it is really the DLS
instruments referenced by the band that are being downloaded.

Bands can be saved as separate files or included in styles or segments.

See Also

e Using Bands

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Audiopaths and Buffers

Each DirectMusic segment plays on an audiopath that controls the flow of
sounds from the performance to the synthesizer, then through DirectSound
buffers where effects can be applied, and finally into the primary buffer, where
the final output is mixed.

Note The buffers referred to here are used for streaming and processing PCM
data after it has left the synthesizer, and these buffers support the
IDirectSoundBuffer8 interface. Another kind of buffer, represented by the
IDirectMusicBuffer8 interface, is used for sequencing message data to the
synthesizer. Most applications do not need access to the second kind of buffer,
which is managed by the DirectMusic performance.

Applications can create standard audiopaths and then play segments on them.
For example, an application could create one audiopath for playing MIDI files to
a buffer with musical reverb and another for playing WAV files to a buffer with
3-D control.

More sophisticated audiopath configurations can be authored into a segment in
DirectMusic Producer. For example, a nonstandard configuration might direct
parts in a segment through different DirectSound buffers to apply different
effects to them.

An audiopath can be seen as a chain of objects through which data is streamed.
An application can gain access to any of these objects. For example, you might
retrieve a buffer object to set 3-D properties of a sound source, or an effect DMO
to change the parameters of the effect.

See Also

e Using Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Audio Scripts

An audio script is a file containing variables and routines that can be accessed
from within an application. Scripts can be written using any Microsoft
ActiveX® Scripting language, but DirectMusic Producer also enables scripting
in a special language called AudioVBScript. The advantage of using
AudioVBScript is that it requires a very small run-time library, which is one of
the DirectMusic system components. AudioVBScript is a subset of Microsoft
Visual Basic® Scripting Edition.

Note Audio scripts are not designed to be used on Web pages.

Scripts implement some of the key DirectMusic objects and can perform basic
functions such as the following:

Creating audiopaths

Setting audiopath volumes

Setting global parameters for the performance
Loading, playing, and stopping segments
Downloading bands

DirectMusic scripts make it easier for application developers and sound
designers to coordinate their efforts. Scripts give sound designers greater and
more immediate control over the soundtrack. The basic functionality of loading
and playing sounds is performed by the script. The application contains
generalized code that calls into the script.

The following scenario is one in which scripting might be helpful. It supposes
that the sound effects for a game are stored as individual WAV files. The game
uses these sounds for events such as weapons firing and monsters grunting.

Using conventional programming techniques, the developers load the individual
sounds by file name and play them as secondary segments at appropriate times
in the game. But now the sound designers want to make some changes. They
decide, for example, that the boss monster should have a different grunt than
normal monsters. The sound designers create the necessary files and hand them
off to the developers, who implement the changes in code. Considerable time

may pass before the sound designers are able to get a newly compiled version of
the game and test it.

Imagine the same scenario using an audio script. Rather than hard-coding the
actual sounds into the application, the developers might write code like the
following to play a grunt. Assume that that szGrunter has been set to a string
constant such as "Player", "Boss", or "NormalMonster", and that pdmScript is an
interface to the script object:

pdmScript->SetVariablevariant("Grunter", szGrunter, NULL);
pdmScript->CallRoutine("PlayGrunt", NULL);

This fragment of code sets the value of the Grunter variable in the script and
calls the PlayGrunt script routine. The script author, who is probably a member
of the sound design team, decides what the routine does. For example, the
routine might test the value of Grunter before deciding what sound to play.

To change the response to the game situation, all that is required is an alteration
in the text of the script, and the new routine can be tested immediately in the
existing application.

The scripting API is documented in the DirectMusic Producer Help file.

See Also

e Using Audio Scripts

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Overview of Audio Data Flow

Typically, a DirectMusic application obtains sounds from one or more of the
following sources:

MIDI files

WAV files

Segment files authored in DirectMusic Producer or a similar application
Component files authored in an application such as DirectMusic Producer
and turned into a complete composition at run time by the DirectMusic
composer object

Note Any of these data sources can be stored in the application as a resource
rather than in a separate file.

Data from these sources is encapsulated in segment objects. Each segment object
represents data from a single source. At any moment in a performance, one
primary segment and any number of secondary segments can be playing. Source
files can be mixed; for example, a secondary segment based on a WAV file can
be played along with a primary segment based on an authored segment file.

A segment comprises one or more tracks, each containing timed data of a
particular kind; for example, notes or tempo changes. Most tracks generate time-
stamped messages when the segment is played by the performance. Other kinds
of tracks supply data only when queried by the performance.

The performance first dispatches the messages to any application-defined tools.
A tool can modify a message and pass it on, delete it, or send a new message.
Tools are arranged in linear sets called toolgraphs. A message might pass
through any or all of the following toolgraphs, in the order given:

e Segment toolgraph. Processes messages from a single segment.
¢ Audiopath toolgraph. Processes messages on a single audiopath.
e Performance toolgraph. Processes all messages in the performance.

Finally, the messages are delivered to the output tool, which converts the data to
MIDI format before passing it to the synthesizer. Channel-specific MIDI

messages are directed to the appropriate channel group on the synthesizer. The
synthesizer creates waveforms and streams them to a device called a sink, which
manages the distribution of data through buses to DirectSound buffers.

There are three kinds of DirectSound buffers:

e Sink-in buffers are DirectSound secondary buffers into which the sink
streams data. These buffers enable the application to control pan, volume,
3-D location, and other properties. They can also pass their data through
effects modules to add effects such as reverberation and echo. The resulting
waveform is passed either directly to the primary buffer or to one or more
mix-in buffers.

e Mix-in buffers receive data from other buffers, apply effects, and mix the
resulting waveforms. These buffers can be used to apply global effects. An
effect achieved by directing data to a mix-in buffer is called a send. Mix-in
buffers can be created only by using audiopath configurations authored in
DirectMusic Producer.

e The primary buffer performs the final mixing on all data and passes it to the
rendering device.

Note Applications are not responsible for managing secondary buffers that are
part of a DirectMusic performance. Although an application can obtain a buffer
object for the purpose of adding effects and changing properties, it cannot lock
the buffer, write to it, start it, or stop it by using the IDirectSoundBuffer8
interface.

The following diagram is a simplified view of the flow of data from files to the
speakers. A single segment is shown, though multiple segments can play at the
same time. The segment gets its data from only one of the four possible sources
shown: a WAV file, a MIDI file, a segment file authored in DirectMusic
Producer, or component files combined by the composer object. In all cases, data
can come from a resource rather than a file.

DMP Template
Bl I segment Wiave Style segm ent Chordimagp
k3
p{ Composer |«
- ¥ ¥ ¥
Segment
Track Track Track ...
Meszage gqueue
Meszages from
other segments
Segment Toolgraphs
graph are optional
]
Audiopath
anc P
performance =" Toolzcan
graphs - discard
Messages

MID| g messages
DLS syrthesizer

Yy v

Secondary
buffers and
effect DO

(any numkber;
can be chained)

Primary butfer

Chtpot

> channelzs
(one ar
mare]

\'L'.E’f';"
I‘\.".'E".l".l"

For a closer look at the flow of messages through the performance, see Using
DirectMusic Messages.

For information on how to implement the process shown in the illustration, see
Loading Audio Data and Playing Sounds.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Introduction to Dynamic Musical
Soundtracks

If you want to take full advantage of DirectMusic, you won't play just MIDI and
WAV files. You'll take elements authored in DirectMusic Producer and use them
to create performances that can be varied or manipulated in countless ways.

Note Throughout this documentation, the human composer of musical elements
is referred to as the author, to avoid confusion with the composer object of
DirectMusic. Similarly, musical elements are said to be authored rather than
composed.

The following brief introduction to the elements of a dynamic soundtrack is
meant to give the application developer an understanding of the material being
used in the performance. For a more detailed view, see the Help for DirectMusic
Producer. For information on how to incorporate these elements in an

application, see Using Compositional Elements.

The following topics are covered:

Styles

Chordmaps

Style-based Segments

Templates

How Music Varies During Playback
Music Values and MIDI Notes

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Styles

A style is a collection of musical patterns that can be used to create a dynamic

score. It also contains a time signature and a tempo, and can contain one or more
bands.

A pattern is a musical figure, one or more measures long, consisting of a basic
sequence of notes for each instrument, or part. These notes are not defined as
fixed pitches; they are described according to the role they play in the chord
structure. The notes are mapped to MIDI values when they are played, after the
current key, chord, and play mode have been taken into account.

A motif is a special type of pattern designed to be played dynamically over the
basic score. Motifs are always played explicitly by the application. Motifs are
often used in interactive applications to mark an event.

Each pattern can have up to 32 variations. At run time, variations are chosen by
the style playback mechanism. However, the author can specify that a variation
must never be chosen when a certain chord is being played.

The author also assigns a groove range to the pattern, specifying the
groove levels at which the pattern can be played.

Any pattern (other than a motif) can be designated as an embellishment. There
are four standard embellishment types: intro, fill, break, and end. In addition,
DirectMusic Producer enables authors to establish up to 100 custom
embellishment types. A pattern can be assigned to one or more of these types.
When a style-based segment is played and a certain type of embellishment is
specified at some point in the segment, only patterns of that type are candidates
for playback.

See Also

e DirectMusic Style Library
e Style-based Segments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Chordmaps

Much modern music, especially music in the popular, rock, folk, and jazz
idioms, is based on the concept of chord progression. All the notes played within
a given span of time are associated with a certain chord, and the music moves
harmoniously from one chord to another.

The notes within a pattern authored for DirectMusic are derived from or
intended to harmonize with a single chord. At run time, however, the pattern is
transposed according to the chord progression; that is, each time the underlying
chord changes, DirectMusic modulates the pitch of the notes accordingly.

A chordmap is a collection of chords that provides multiple potential chord
progressions to a musical piece. Chord progressions are generated from a
chordmap and inserted into the chord track of a segment, either at design time or
at run time.

By using chordmaps, the author of the music can create multiple segments from
a common set of chords. Chordmaps can also be used by the application at run
time to create new segments or to build new chord progressions in existing
segments.

Certain important chords in a chordmap are designated as signposts. These are
chords that must be played at certain points. The music is always moving from
one signpost to the next. Between the signposts, however, the chord progression
can follow various routes from one chord to another, as mapped out by the
author.

A chord in the chordmap can actually consist of several different chords, referred
to as subchords. In order to achieve polytonality by playing different inversions
of the same chord, the author can assign different parts to different subchords.
Each subchord is valid for one or more levels, and these are matched up with
levels assigned to parts in the style.

See Also

e Using Chordmaps

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Style-based Segments

A style-based segment is a largely prebuilt piece of music that the author
constructs from the following elements:

Style. A style consists of general information about the music (such as time
signature and tempo), as well as patterns.

Chord progression. This might be derived automatically by the authoring
tool from a chordmap (by choosing a path through the chord chart), or
entered manually by the author.

Command track. This track, known as the groove track in DirectMusic
Producer, is a series of commands for selecting appropriate patterns at set
times. A characteristic of the patterns in styles is that they can be designated
as embellishments (intro, fill, break, and end) and can also be assigned a
certain groove range by the author. The command track of the segment
might instruct the style playback engine to select an intro pattern and play it
for the first measure, then play only patterns with a groove level of 25 for
the next four measures, then play a break, and so on.

Band. The author can assign instruments and performance channels to all
the parts in the various patterns.

See Also

Chordmaps
Styles

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Templates

A template is a segment that contains a signpost track and, optionally, a
command track. The signpost track can be used to create a new chord
progression, either for the segment that contains the track or for another segment
that does not have a signpost track. The command track supplies groove levels
and embellishments. You can use templates at run time to compose new material.

The signpost track contains a sequence of signpost markers, which mark the
beginning and end of regions in which variations in the chord progression are
possible. Each signpost marker is designated as valid for a particular group of
signpost chords in a chordmap. The author of the content is responsible for
assigning signpost markers and signpost chords to the appropriate groups.

DirectMusic composes a segment by applying the signpost track to a particular
style and chordmap. Each time the composer encounters a pair of signpost
markers along the time line in the template, it searches the chordmap for a pair
of signpost chords that belong to that group. If it finds a pair and the interval
between them fits into the time available, it follows the chord progression
between those two signpost chords, as defined in the chordmap. If it is unable to
find a path that works, or if there is no end signpost marker, the engine plays any
chord from the group of the beginning signpost marker.

For information on composing segments from templates in an application, see

Using Templates.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

How Music Varies During Playback

As DirectMusic plays a style-based segment, changes are made to the basic
harmony and rhythm so that the performance does not sound static. Changes are
partly scripted and partly random.

e Choice of pattern. A typical style contains multiple patterns, which are
selected in response to commands from the command track. For example, if
the command track calls for a break embellishment to be played, the style
playback engine selects a break pattern that is compatible with the current
groove level. (The author specifies which groove levels are appropriate for
each pattern.) If there is more than one suitable pattern, one is chosen
according to rules embedded in the segment by the author. The choice
might be completely or partly random, or patterns might be selected in a
certain sequence.

e Variations within a pattern. Any part within a pattern can have multiple
variations. Variations can play in an order specified by the author; otherwise
the style playback engine makes a random choice of variations on each
repetition of the pattern.

e Groove level. The groove level of the segment determines which of the
patterns in the style can be selected for playback. The current level is set by
the command track, which is normally authored into a segment. The groove
level of a segment can also be changed programmatically, and a modifier
can be applied to all segments by setting the master groove level for the
performance.

e Transposition. As the segment plays, changes are made to the underlying
chord according to the progression in the chord track. The notes in the
current pattern are automatically transposed to harmonize with the new
chord.

e Variations in timing. The playback engine can introduce small random
changes in the start and stop times of individual notes. The degree of
randomness is set by the author of the content.

e Band. The choice of instruments and instrument settings (volume, pan, and
transposition) can be changed as the segment is playing, either by the band
track within an authored segment or dynamically by the application.

In many cases, applications exert control over the music by playing different
segments rather than by manipulating existing segments. For example, to have
the music reflect a change in the intensity of a game, you can simply change to a
new segment authored for that intensity level. You can achieve a similar effect
with a single style-based segment by having the author create patterns with
different groove ranges, and then changing the groove level in response to game
events.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Music Values and MIDI Notes

Notes in a pattern in a DirectMusic style or pattern track are not notes with a
fixed MIDI value. Rather, they are music values that become MIDI notes only
when they are transposed to the current chord according to the current play mode
and subchord level.

A music value is a representation of the note's intended role. For example, a
music value can specify that a note is intended to be played as the second
position in the chord, up one in the scale. When that music value is applied to a
particular chord, it is converted to the appropriate MIDI note—the one in the
second position in the chord, up one in the scale.

The play mode determines how to interpret the note against the chord. For
example, if the mode is DMUS_PLAYMODE_NORMALCHORD, the note is
interpreted against the intervals of the chord and scale, based on the root of the
chord. If the mode is DMUS_PLAYMODE_FIXEDTOKEY, the note is
interpreted as a linear value.

To allow for complex harmonies with multiple parallel chord progressions,
DirectMusic chords can be made up of multiple subchords. The subchord level is
a value in the range from 0 through 31 that determines which subchords of a
chord can be used in establishing the music value. Each subchord is valid for one
or more levels, as defined by the author of the music. DirectMusic Producer
supports up to four subchords per chord.

When a segment is played, each note is encapsulated in a message structure that
specifies the original music value and the final MIDI note along with the play
mode and subchord level that were used in transposition. Most applications don't
deal directly with note messages, but tools can intercept them and alter the notes.
For example, a tool could intercept a note that was transposed in a certain play
mode, change the play mode, and calculate a new MIDI value before passing on
the message.

See Also

e DMUS_NOTE_PMSG

DMUS _PIL.AYMODE_FI.AGS
DMUS_CHORD_PARAM
DMUS_CHORD_KEY
DMUS_SUBCHORD
IDirectMusicPerformance8::MIDIToMusic
IDirectMusicPerformance8::MusicToMIDI
DirectMusic Tools

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Getting Started with DirectMusic

This section gives information on setting up and debugging DirectMusic
projects, as well as a brief overview of the programming steps required to set up
a performance and play sounds.

More information on getting started is included in the following topics:

e Building DirectMusic Projects
e Debugging DirectMusic Projects
e First Steps in DirectMusic Programming

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Building DirectMusic Projects

Projects need to include the Dmusici.h header file, which contains declarations
for the DirectMusic performance layer. Including this file will bring in three
other essential headers:

e Dmusicc.h: declarations for the core layer of DirectMusic.
e Dmerr.h: DirectMusic return values.
e Dsound.h: the DirectSound API.

The following additional headers are not needed by most applications:

e Dmusicf.h: file structures and definitions. This header is needed only by
applications such as music-authoring tools that work directly with files and
don't rely solely on the loaders built into DirectMusic.

e Dmusics.h: declarations for the IDirectMusicSynth and
IDirectMusicSynthSink interfaces, which are used for creating
synthesizers and synthesizer sinks.

e Dmusbuff.h: declaration of the DMUS_EVENTHEADER structure, used
only by applications that are directly sequencing events to the synthesizer.

e Dmksctrl.h: declarations for the IKsControl interface used for port
property sets. You do not need this file if you have included Ksproxy.h and
Ks.h.

e Dmplugin.h: declarations for the IDirectMusicTool8 and
IDirectMusicTrack8 interfaces, which are implemented by add-ons for
advanced applications that need specialized message-processing tools and
track types. Most applications do not use this part of the DirectMusic API.

You must also ensure that your application has access to the GUIDs used by
DirectMusic. Define INITGUID before all other preprocessor directives, or link
to Dxguid.lib.

DirectMusic uses the multithreading capabilities of the Windows 32-bit
operating system. Multithreading allows DirectX to generate, process, and
synthesize music in the background while your application is accomplishing
other tasks. You should develop your project with multithreading in mind. If
nothing else, be sure to link with the appropriate libraries.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Debugging DirectMusic Projects

The DirectMusic dynamic-link libraries (DLLs) installed with the debug version
of the DirectX software development kit (SDK) generate information in the
debug output window as the application is running. These DLLs are available if
you installed the debug version of the DirectX SDK. They can be dynamically
selected through the DirectX property sheet in Control Panel by choosing Use
Debug Version of DirectMusic.

You can control the volume of information that goes to your debug output
window by changing values in Win.ini. The output for each DirectMusic DLL
can be set separately, as in the following example:

[Debug]
DMBAND=1
DMCOMPOS=1
DMIME=1
DMLOADER=0
DMUSIC=1
DMSTYLE=3
DMSYNTH=5

Each value can be in the range from 0 through 5, where 0 produces no
debugging information and 5 the most detailed information. For most purposes it
is unnecessary to set the level higher than 2; output at higher levels does not
pertain to errors or warnings but is purely informational.

If there is no entry in Win.ini, the debug output is at level 0. You can focus on
problems in a particular DLL by setting lower values for the other components.

You can also set the debug level within the range from 0 to 5 by using the Debug
Output Level sliders on the DirectMusic page of the DirectX property sheet in
Control Panel. The slider sets the same value for all DLLs.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

First Steps in DirectMusic
Programming

This topic gives an overview of the basic steps required for setting up a
DirectMusic performance and playing a file. For details, see Using DirectMusic.
For sample code, see Tutorial 1: Playing Audio Files.

To produce a sound, an application needs to do the following:

1.

2.

Initialize COM. There are no helper functions for creating DirectMusic
objects. To initialize COM, you must call ColnitializeEx.

Create and initialize the performance. Most applications have a single
performance object. Create the performance by calling CoCreatelnstance,
obtaining the IDirectMusicPerformance8 interface. Then call
IDirectMusicPerformance8::InitAudio. This method can set up a default
audiopath.

Create the loader. Using CoCreatelnstance, create a loader object and
obtain an IDirectMusicl.oader8 interface. You need to do this only once,
and normally you should keep the same loader object for the life of the
application.

Load a segment. Call IDirectMusicl.oader8::SetSearchDirectory so the
loader can find the data files. Then call IDirectMusicl.oader8::GetObject
to load a segment from a file or resource and obtain its
IDirectMusicSegment8 interface.

Download the band. Download DLS instrument data to the synthesizer so
that notes can be synthesized. WAV files must also be downloaded. The
simplest way to download all instruments and waves is by calling
IDirectMusicSegment8::Download.

Play the segment. Pass the segment pointer to
IDirectMusicPerformance8::PlaySegmentEx.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using DirectMusic

This section is a guide to using the Microsoft® DirectMusic® application
programming interface (API) in application development.

Information is presented in the following topics:

Loading Audio Data
Playing Sounds

Performance Parameters

Using Audiopaths

Using 3-D Sound in DirectMusic
Using Effects in DirectMusic
Buffer Chains

Using Compositional Elements
Using Audio Scripts

Capturing MIDI

For a more general overview, see the following topics:

e Elements of a DirectMusic Application
e First Steps in DirectMusic Programming
e Overview of Audio Data Flow

For information on advanced features used mainly by specialized applications,
see Advanced Topics in DirectMusic.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Loading Audio Data

Many DirectMusic objects have to be loaded from a file or resource before they
can be incorporated into a performance. The IDirectMusicl.oader8 interface is
used to manage the enumeration and loading of such objects, as well as to cache
them so that they are not loaded more than once.

Note Do not load data from untrusted sources. Loading DirectMusic data files
causes objects to be constructed, with the possibility that excessive demand on
resources will lead to degradation of performance or system failure.

An application should have only one instance of the loader in existence at a time.
You should create a single global loader object and not free it until there is no
more loading to be done. This strategy ensures that objects are found and cached
efficiently.

When objects are loaded from a memory location or a stream, the application
should not touch the data until the loader is released. Because of caching and
other internal mechanisms, the loader might try to access the data at a later time.
To load new data, always allocate a new buffer or create a new stream.

The DirectMusic implementation of IStream streams the data from the source.
The parsing of the data is handled by the various objects themselves through
their implementations of IPersistStream. As long as you are dealing only with
standard DirectMusic data, you don't have to use these interfaces directly.

Loading of objects referenced by other objects is handled transparently. For
example, suppose a segment being loaded from a DirectMusic Producer file
contains a reference to a WAV sound in another file. When the segment's
implementation of IPersistStream::L.oad finds the reference, it obtains the
IDirectMusicGetL.oader8 interface from the stream object. Using this interface,
it obtains a pointer to the loader object. Then it calls
IDirectMusicl.oader8::GetObject to load the WAV sound.

More information on using the loader is contained in the following topics:

e Setting the [.oader's Search Directory

Scanning a Directory for Objects

Enumerating Objects

Loading an Object from a File

Loading an Object from a Resource or Memory Address
Containers

Getting Object Descriptors

Cache Management

Garbage Collection

Setting Objects

See Also

e Custom Loading

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Setting the Loader's Search Directory

By default, the loader looks for objects in the current directory unless a full path
is specified in the wszFileName member of the DMUS_OBJECTDESC
structure describing the object being sought. By using the
IDirectMusicl.oader8::SetSearchDirectory method, you can set a different
default path for the IDirectMusicl.oader8::GetObject and
IDirectMusicl.oader8::EnumObject methods. This default path can apply to
all objects, or only to objects of a certain class.

The behavior of IDirectMusicl.oader8::I.oadObjectFromFile is somewhat
different. See the Remarks for that method.

The following example function sets the search path for style files:

HRESULT mySetLoaderPath (IDirectMusiclLoader8 *pILoader)
{

return pILoader->SetSearchDirectory(
CLSID_DirectMusicStyle,
L"c:\\mymusic\\rock",
FALSE);

}

After calling this function, the application can load a style by file name, without
including the full path.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Scanning a Directory for Objects

The IDirectMusicl.oader8::ScanDirectory method scans the current search
directory for objects of a specified class. You can further narrow the search by
providing a subclass and a file extension other than "*".

The method compiles a list of all matching files and uses the
IDirectMusicObject8::ParseDescriptor method to extract the GUID and the
name of the object. These identifiers are retained in an internal database so that
the application can subsequently load objects by GUID or name rather than by
file name. See Loading an Object from a File.

Note If you are working with DirectMusic Producer content, it is always a good
idea to call ScanDirectory before loading any objects. Even though you may be
loading objects explicitly by file name, those objects might contain references to
other objects not identified by file name, and the loader will not be able to find
these referenced objects if ScanDirectory has not been called on every directory
in which the objects might reside.

If you include a pointer to a string in the pwszScanFileName parameter of the
ScanDirectory method, the results of the scan are cached in a file by that name,
to speed up subsequent scans. When a cache file is available, the method updates
object information only for files whose time stamps or sizes have changed.

Note In the current version of DirectMusic, ScanDirectory does not use the
cache file. However, implementing a cache file does no harm.

For an example, see Enumerating Objects.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Enumerating Objects

Use the IDirectMusicl.oader8::EnumQObject method to iterate through all
objects of a specified class, or of all classes, that have previously been listed in
the internal database through a call to IDirectMusicl.oader8::ScanDirectory or
calls to IDirectMusicl.oader8::GetObject. A description of each object found
is returned in a DMUS_OBJECTDESC structure.

Note To be sure of finding all objects, call ScanDirectory first. EnumObject
works by checking the internal database of objects, not by parsing disk files.

The following example enumerates all listed style objects in the current search
directory. The loop continues until there are no more objects of that class to
enumerate.

void ListStyles(IDirectMusicLoader *pILoader)

{
if (pILoader)

HRESULT hr = pILoader->SetSearchDirectory(
CLSID _DirectMusicStyle,
L"c:\\mymusic",

TRUE) ;
if (SUCCEEDED(hr))
{
hr = pILoader->ScanDirectory/(
CLSID_DirectMusicStyle,
L"Sty", *
L"stylecache");
if (hr == S_0OK) // Only if files were found.
{
DWORD dwIndex;
DMUS_OBJECTDESC objDesc;
objDesc.dwSize = sizeof (DMUS_OBJECTDESC);
for (dwIndex = 0; ;dwIndex++)
{
if (S_OK ==(pILoader->EnumObject(
CLSID_DirectMusicStyle,
dwIndex, &objDesc)))
{

// Do something with information from objDesc.

else break;

Notice that the example does not use the SUCCEEDED macro to test the result
of the method call, because EnumObject returns a success code, S_FALSE, for
an index number that is not valid.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Loading an Object from a File

To load an object, first obtain the IDirectMusicl.oader8 interface, as in the
following example:

IDirectMusiclLoader8* g_plLoader;

CoInitializeEx(NULL, 0);
HRESULT hr = CoCreateInstance(
CLSID DirectMusiclLoader,
NULL,
CLSCTX_INPROC,
IID_IDirectMusiclLoaders,
(void**)&g_plLoader);

if (FAILED(hr))
{

}

ErrorExit(hr); // Add error-handling code.

You can then load an object from a file by using either

IDirectMusicl .oader8::1.oadObjectFromFile or
IDirectMusicl.oader8::GetObject. The first of these methods is more
convenient because it does not require you to describe the object by filling out a
DMUS_OBJECTDESC structure.

The following example code loads four segments from a directory previously set
by IDirectMusicl.oader8::SetSearchDirectory:

IDirectMusicSegment8 * g_pSegments[4];

static WCHAR wszNames[4][MAX_PATH] = {
L"AudioPathl.sgt",
L"AudioPath2.sgt",
L"AudioPath3.wav",
L"AudioPath4.sgt"

iy

for (DWORD dwIndex = 0; dwIndex < 4; dwIndex++)
{
hr = g_pLoader->LoadObjectFromFile(
CLSID DirectMusicSegment,
IID_IDirectMusicSegments,

wszNames[dwIndex],
(void**) &g_pSegments[dwIndex]);

if (FAILED(hr))

{

b
}

ErrorExit(hr); // Add error-handling code.

The following example function uses IDirectMusicl.oader8::GetObject to load
a style object from a file. The first parameter receives a pointer to the style.

HRESULT LoadStyle(IDirectMusicStyle8 **ppStyle, IDirectMusiclLoader8

if (pLoader)

}

DMUS_OBJECTDESC objDesc;

// Start by initializing objDesc with the file name and
// class GUID for the style object.

wcsncpy(objDesc.wszFileName, L"c:\\mymusic\\polka.sty",

sizeof (objDesc.wszName) - 1);
objDesc.wszFileName[sizeof(objDesc.wszFileName) - 1] = 0;
objDesc.guidClass = CLSID_DirectMusicStyle;
objDesc.dwSize = sizeof (DMUS_OBJECTDESC);
objDesc.dwvValidData = DMUS_OBJ_CLASS |

DMUS_OBJ_FILENAME |

DMUS_OBJ_FULLPATH;

return pLoader->GetObject(&objbDesc, IID_IDirectMusicStyle8,
(void **) ppStyle);

else return E_INVALIDARG;

}

The example identifies the file by a full path name and indicates this by setting
the DMUS_OBJ_FULLPATH flag.

To identify the particular file object being sought, fill in at least one of
wszName, guidObject, or wszFileName in the DMUS_OBJECTDESC
structure, and set the corresponding flag or flags in the dwValidData member. If
you identify the file by wszName or guidObject, but not by wszFileName, you
must first call the IDirectMusicl.oader8::ScanDirectory method to make the
GUIDs and names in the current directory available. For more information, see

Scanning a Directory for Objects.

See Also

¢ Loading an Object from a Resource or Memory Address.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Loading an Object from a Resource
or Memory Address

Objects stored as resources or at some other location in memory are loaded in
much the same way as file objects. See Loading an Object from a File.

With memory objects, however, the wszName, guidObject, and wszFileName
members of the DMUS_OBJECTDESC structure are irrelevant. Instead, you
must obtain a pointer to the block of memory occupied by the object, and its
size, and put these in the ppbMemData and lIMemLength members respectively.
You must also set the DMUS_OBJ_MEMORY flag in the dwFlags member.

After IDirectMusicl.oader8::GetObject has been called on an object in
memory, the address and size of the memory buffer are privately cached by the
loader. If you then release the buffer, a subsequent memory allocation might use
the same address, and when another object is loaded from that address, the
cached memory size will be used, possibly resulting in an incorrect number of
bytes being loaded. To prevent this from happening, after loading the first object
call IDirectMusicl.oader8::SetObject with the same DMUS_OBJECTDESC
descriptor, but with NULL in pbMemData. For this to work, the object
descriptor must contain a name or GUID when passed to both GetObject and
SetObject.

Note It is usually best not to release or change the contents of memory from
which an object has been loaded, because it is difficult to be sure that the loader
will not need to access the data again. In most cases, you should not release or
reuse memory until after the loader is released. Also, do not load objects from
data passed on the stack.

The following function loads a MIDI file from a resource into a segment:

HRESULT LoadMidi(HMODULE hMod, WORD ResourcelD,
IDirectMusiclLoader8* pLoader, IDirectMusicSegment8*
{

HRESULT hr;
DMUS_OBJECTDESC objDesc;

HRSRC hFound FindResource(hMod, MAKEINTRESOURCE(ResourceID), RT_
HGLOBAL hRes LoadResource(hMod, hFound);
if (NULL == hRes) return E_FAIL;

objDesc.dwSize = sizeof(DMUS_OBJECTDESC);
objDesc.guidClass = CLSID_DirectMusicSegment;
objDesc.dwvalidData = DMUS_OBJ_CLASS | DMUS_OBJ_MEMORY;
objDesc.pbMemData = (BYTE *) LockResource(hRes);
objDesc.l1lMemLength = SizeofResource(hMod, hFound);

if (pLoader && ppSeg)

{
hr = pLoader->GetObject(

&objDesc, IID_IDirectMusicSegment8,
(void**) ppSeg);
return hr;

b
else return E_INVALIDARG;

}

Objects referenced by other objects must be loaded first. For example, if you
load a segment that contains a reference to a style, the style must already be
loaded in order for the segment to play correctly. Alternatively, you can call
IDirectMusicLoader8::SetObject on the style so that the segment can find it.

See Also

e (Cache Management

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Containers

Containers are objects representing files that contain various objects. A container
file might hold all the data necessary for a performance, including segments,
styles, and DLS collections. Container files are typically created in DirectMusic
Producer. Containers can also exist within segment and script files.

You load a container like any other object, using
IDirectMusicl.oader8::GetObject. This method makes all objects in the
container known to the loader, so that you can then use GetObject to retrieve
them by name or GUID.

After you have obtained the IDirectMusicContainer8 interface, you can
enumerate the objects in the container by using

IDirectMusicContainer8::EnumQObject.

The following example function loads a container, retrieves a segment from it by
name, and returns an IDirectMusicSegment interface. For purposes of
demonstration, the container object is created and released within the function;
in practice, this should be done only once during the life of the application, to
prevent duplication of objects.

HRESULT LoadSegmentFromContainer (
IDirectMusiclLoader8* plLoader,
WCHAR* wszFileName,

WCHAR* wszSegmentName,
IDirectMusicSegment** ppSegq)

{
DMUS_OBJECTDESC objDesc;

IDirectMusicContainer8* pContainer = NULL;
// Load the container.

HRESULT hr = pLoader->LoadObjectFromFile(
CLSID_DirectMusicContainer,
IID_IDirectMusicContainers,
wszFileName,

(void**)&pContainer);
if (FAILED(hr)) return hr;

// Describe the segment.

ZeroMemory(&objDesc, sizeof(objDesc));

objDesc.dwSize = sizeof(objDesc);

objDesc.dwvalidData = DMUS_OBJ_CLASS | DMUS_OBJ_NAME;

objDesc.guidClass = CLSID_DirectMusicSegment;

wcsncpy (objDesc.wszName, wszSegmentName,
sizeof(objDesc.wszName) - 1);

objDesc.wszName[sizeof(objDesc.wszName) - 1] = 0;

// Load the segment.

hr = pLoader->GetObject(&objDesc, IID_IDirectMusicSegment,
(void**) ppSeg);

// Release the container from the cache and destroy the object.

if (pContainer)
{
IDirectMusicObject *pObject = NULL;
pContainer->QueryInterface(IID_IDirectMusicObject,
(void **)&pObject);
if (pObject)
{

pLoader->ReleaseObject(pObject);
pObject->Release();

}

pContainer->Release();

}

return hr;

}

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Getting Object Descriptors

After you have loaded an object, you can use its IDirectMusicObject8 interface
to retrieve information about it in a DMUS_OBJECTDESC structure.

The following example function uses the IDirectMusicObject8::GetDescriptor
method to obtain information about the name of a style:

void GetStyleName(IDirectMusicStyle8* pStyle)

{
IDirectMusicObject8 *pIObject;

DMUS_OBJECTDESC objDesc;

if (SUCCEEDED(pStyle->QueryInterface(IID_IDirectMusicObjects,
(void **) &pIObject)))
{

if (SUCCEEDED(pIObject->GetDescriptor(&objDesc)))

if (objDesc.dwvalidData & DMUS_OBJ_NAME)
{
// Do something with objDesc.wszName,
// which now contains the name of the style.
}
}
pIObject->Release();

b
by

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Cache Management

When an object is cached, the same instance of the object is always returned by
the IDirectMusicl.oader8::GetObject method.

The cache stores a pointer to the object. The memory for the object itself is
managed by COM, and is not released until the reference count reaches zero. It
is important to remember that clearing an object from the cache is not the same
as releasing your application's COM reference to it.

Caching is used extensively in the file-loading process to resolve links to
objects. For example, two segments could reference the same style. When the
first segment loads, it calls the loader to get the style. The loader creates a style
object, loads the data from disk, caches a pointer to the style object, and returns
this pointer to the segment. If caching is enabled, when the second segment
loads, it asks for the style, and the loader immediately returns the same pointer.
Now both segments point to the same style. If caching is disabled, the second
segment's request for the style causes a duplicate style object to be loaded from
the file, at a cost in time and memory.

Here's another example. A band object relies on the loader to keep the General
MIDI DLS collection cached. Every time a band has to download a GM
instrument, it gets the collection from the loader. If caching for
CLSID_DirectMusicCollection is disabled, every patch change in a MIDI file
causes a separate copy of the entire GM collection to be created. This is
obviously undesirable.

By default, caching is enabled for all object classes. You can disable caching for
an object class, or for all objects, by using the
IDirectMusicl.oader8::EnableCache method. This method can also be used to
re-enable caching for any or all object classes.

If you want to clear the cache without disabling future caching, use the
IDirectMusicl.oader8::ClearCache method. It's not necessary to call this
method before terminating your application, because the cache is automatically
cleared when the loader is released. ClearCache is only useful if the application
soundtrack is changing completely, with all new instruments and source files.

Note Regardless of whether caching is enabled, the loader keeps a private
cache of object descriptors. When you load an object from a stream, a reference
to the IStream is cached with the descriptor, and if that object is subsequently
reloaded, it will be loaded from the same stream. When you load an object from
a memory location, the address and buffer size are cached, and if the address is
subsequently reused for another object, the incorrect number of bytes might be
loaded. To ensure that the private cache of object descriptors is cleared, you can
do one of the following:

e If caching is enabled, call ClearCache.
e If caching is not enabled, either destroy the loader and create a new one, or

call IDirectMusicl.oader8::SetSearchDirectory with the fClear
parameter set to TRUE.

To cache a single object when general caching is disabled, pass it to the
IDirectMusicl.oader8::CacheObject method.

You can remove an object from the cache, ensuring that it will be loaded again
on the next call to GetObject, by using the
IDirectMusicl.oader8::ReleaseObject or
IDirectMusicl.oader8::ReleaseObjectByUnknown method. It is a good idea
to call one of these methods before calling Release on an object, especially a
segment. If you don't, a reference to the object remains in the cache, so the
object continues to exist. As well as taking up memory, the object might retain
certain state information. In the case of a segment, any instance that you load
later will be taken from the cache, and the start point and loop points will be the
same as they were when the previous instance was destroyed.

See Also

e Garbage Collection
e Loading an Object from a Resource or Memory Address.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Garbage Collection

Caching of loaded objects can lead to wasted memory when an application loads
many objects, particularly objects that reference other objects.

When automatic caching is enabled, as it is by default, every object loaded by
IDirectMusicl.oader8::GetObject is cached, including objects that are loaded
by reference. For example, if you call GetObject on a segment, and that
segment contains a reference to a script, the script is loaded and cached as well.

When you call IDirectMusicl.oader8::ReleaseObject or
IDirectMusicl.oader8::ReleaseObjectByUnknown, however, only the primary
object that was loaded by GetObject is removed from the cache. Referenced
objects are not released, even if they are not being used by other objects.

In order to clean up objects that are not in use, call
IDirectMusicl.oader8::CollectGarbage. This method releases all objects from
the cache except objects directly loaded by GetObject and objects referenced by
them. Objects only referenced by other objects that no longer exist are released.
CollectGarbage clears an object from the cache by releasing the loader's COM
reference to the object. If the object's reference count drops to zero as a result,
the object destroys itself, thus making its memory available again.

In summary, to ensure that loaded objects do not remain in memory when no
longer needed, you must do the following:

e (Call ReleaseObject or ReleaseObjectByUnknown on any object for
which GetObject has been called.

e Call CollectGarbage to release the loader's reference to any objects that
were loaded indirectly.

¢ (Call Release on any pointers held by your application.

A complication arises when objects have circular references to one another.
Suppose the script track of a segment contains a reference to a script object, and
this script object contains a reference to the segment. You load the segment
directly by calling GetObject, and the script is loaded indirectly. Then you
release the segment from the cache by using ReleaseObject, and call Release on

your application's reference to it. The segment continues to exist because there is
still one COM reference to it, which is held by the script object. The script is
now garbage, because it is not referenced by any other object in the cache.
Without taking special measures, however, CollectGarbage could only release
the loader's reference to the script; therefore its reference count would not drop
to zero. The segment and script would continue to be referenced by one another,
and although both were removed from the cache, they would both continue to
exist in memory.

To avoid this problem, CollectGarbage calls an internal method on an object
that forces the object to release its references to other objects. In the example
above, it causes the script to release its reference to the segment. The segment's
reference count drops to zero, and in the course of destroying itself, the segment
releases its reference to the script, thus allowing the script to destroy itself when
the loader releases its reference.

There is one more complication, however. Suppose the application has obtained
an interface to the script that the loader knows nothing about, and the application
neglects to call Release on this pointer. The script continues to exist, but it might
not be able to behave as it should, because it no longer has a reference to the
segment. Calling a method on the script could lead to a fatal error. To prevent
this, CollectGarbage ensures that all methods of the script object return
DMUS_S_GARBAGE_COLLECTED.

This scenario does not affect most applications. However, you should be aware
that calling a method on an object that has been cleared from the cache by
CollectGarbage might not yield the desired result.

In the following example function, assume that the loaded script contains a
reference to a segment. After calling a routine in the script, the function removes
the script object from the cache and then calls CollectGarbage, which releases
the referenced segment. If the segment contains a circular reference to the script,
this is released so that the script can be destroyed, in turn releasing the final
reference to the segment and allowing the segment to be destroyed.

void CallWhistle(IDirectMusiclLoader8* pLoader, IDirectMusicPerforman

{
IDirectMusicScript8 *pScript;

WCHAR wszScript[MAX_PATH] = L"soundfx.spt";

pLoader->LoadObjectFromFile(CLSID_DirectMusicScript,

IID_IDirectMusicScripts,

wszScript, (void**)&pScript);
pScript->Init(pPerformance, NULL);
pScript->CallRoutine(L"Whistle", NULL);

pLoader ->ReleaseObjectByUnknown(pScript);

pLoader->CollectGarbage();
pScript->Release();

}

See Also

e Cache Management

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Setting Objects

Sometimes it is desirable to tell the loader where to get an object, without
actually loading that object, so that the loader can retrieve it if the object is later
referenced by other objects as they are being loaded. You might also want to
give an object a new attribute so that the loader can find it by that attribute.

The IDirectMusicl.oader8::SetObject method takes as a parameter a
DMUS_OBJECTDESC structure that contains two key pieces of information:

e A pointer to the data. This can be either a file path or a pointer to a block of
memory. See Loading an Object from a File and Loading an Object from a
Resource or Memory Address.

¢ An identifier for the object when it is referenced later. This could be a
GUID or a name. Later, the call to IDirectMusicl.oader8::GetObject will
find the stored object by using the same name or GUID. Note that you
cannot change a GUID or name that already exists in the object.

On return, the DMUS_OBJECTDESC structure may contain additional
information about the object gathered by the loader.

The following function assigns a name to an unnamed object (such as a MIDI
file) in a resource:

HRESULT SetObjectFromResource(const GUID* guid, int ID,
char* type, WCHAR* name, IDirectMusiclLoader8* pLoader,
HINSTANCE hInstance)

HRSRC hResource = NULL;
HGLOBAL hData = NULL;
hResource = FindResource(hInstance, MAKEINTRESOURCE(ID), type);
if (hResource != NULL)
{
hData = LoadResource(hInstance, hResource);
if (hData !'= NULL)
{
DMUS_OBJECTDESC objDesc;
if(pLoader && (hResource != NULL) && (hData != NULL))
{
ZeroMemory(&objDesc, sizeof (objDesc));
objDesc.pbMemData = (BYTE*) LockResource(hData);

objDesc.l1lMemLength = SizeofResource(hInstance, hResource);
objDesc.guidClass = (*guid);
objDesc.dwSize = sizeof(objDesc);
objDesc.dwvalidData = DMUS_OBJ_CLASS | DMUS_O0BJ_MEMORY;
if (name)
{
wcsncpy(objDesc.wszName, name, sizeof(objDesc.wszName) - 1
objDesc.wszName[sizeof(objDesc.wszName) - 1] = 0;
objDesc.dwVvalidData |= DMUS_OBJ_NAME;
}
return pLoader->SetObject(&objDesc);
}
}
}
return E_FAIL;

}

The example function could be used to assign a name to a MIDI file stored as a
resource of type "MIDI", as in the following function call:

SetObjectFromResource(CLSID_DirectMusicSegment, 101,
"MIDI", "canyon", g_plLoader, g_hInstance);

The object can now be loaded at any time by name.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Playing Sounds

This section describes basic techniques for playing sounds and coordinating the
different elements of a performance.

The following topics are discussed:

Creating the Performance

Using Segments

Changing the Pitch of Waveforms
Using Bands

Timing

Notification and Event Handling
Troubleshooting Playback

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Creating the Performance

The performance object is the overall manager of playback. Among the tasks it
performs are the following:

e Managing ports and audiopaths
e Mapping channels to audiopaths
¢ Playing and stopping segments
e Dispatching messages

e Managing tools and timing

Most applications have a single performance object, but it is possible to have
more than one performance with different parameters, such as master tempo or
volume.

The following example function creates a performance and returns a pointer to
the IDirectMusicPerformance8 interface:

HRESULT GetPerformance(IDirectMusicPerformance8** ppPerf)
{

return CoCreateInstance(CLSID_DirectMusicPerformance,
NULL, CLSCTX_INPROC, IID_IDirectMusicPerformance8,
(void**)ppPerf);

}

After the performance is created, it must be initialized. If your application is
using audiopaths, you must call the IDirectMusicPerformance8::InitAudio
method. Applications using the earlier channel-to-port mapping model must call
IDirectMusicPerformance8::Init instead.

An important part of initialization is the creation of a DirectMusic object. You
can pass an existing IDirectMusic8 interface pointer to
IDirectMusicPerformance8::InitAudio, but in most cases it is more
convenient to have InitAudio create the DirectMusic object. You can also
choose whether to retrieve a pointer to the IDirectMusic8 interface, depending
on how much control you need over ports and the master clock. Most
applications don't need access to the methods of IDirectMusic8 and can pass
NULL as the ppDirectMusic parameter of InitAudio.

InitAudio can also take an existing DirectSound device object. DirectSound
manages the sound data after it leaves the synthesizer. In most cases you can let
InitAudio create this object. You don't need an interface to it unless you intend
to use DirectSound for other purposes such as playing waveforms directly into
DirectSound secondary buffers rather than through the DirectMusic
performance.

By passing a DMUS_AUDIOPARAMS structure to InitAudio, the application
can request synthesizer capabilities or set a synthesizer other than the default
one. Most applications don't have to do this.

The following example function initializes the performance without retrieving
pointers to the DirectMusic and DirectSound objects. It creates a standard
default audiopath with 16 performance channels and all available features on the
port. The hWnd parameter is the application window handle.

BOOLEAN Init(IDirectMusicPerformance8* pPerf, HWND hwnd)
{
if (FAILED(pPerf->InitAudio(NULL, NULL, hwnd,
DMUS_APATH_SHARED_STEREOPLUSREVERB, 16,
DMUS_AUDIOF_ALL, NULL)))

{
return FALSE;

}

else return TRUE;

}

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Segments

Segments are the basic units of playable data in the DirectMusic performance. A
segment is represented by an IDirectMusicSegment8 interface.

Each segment consists of one or more tracks, each represented by an
IDirectMusicTrack8 interface. Tracks contain most of the data for the segment,
whether that data consists of note events, band changes, tempo changes, or other
timed events. Applications generally don't need to use this interface, because the
tracks are managed through the segment object.

This section provides more information on segments in the following topics:

Creating Segment Objects
Playing Segments
Segment States

Pausing Segments
Control Segments

Self-Controlling Segments
MIDI-Based Segments

WAV-Based Segments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Creating Segment Objects

You can create a segment object in any of the following ways:

Load a file or resource object that supports the IDirectMusicSegment8
interface. Most segments are created this way.

Get a motif from a style by using the IDirectMusicStyle8:: GetMotif
method.

Use methods of the IDirectMusicCompeoser8 interface to create a
composition or transition at run time.

Make a copy of an existing segment by using the
IDirectMusicSegment8::Clone method.

Use the IDirectMusicBand8::CreateSegment method. This method
creates a special type of secondary segment that is used only for making
band changes.

Use the IDirectMusicPatternTrack8::CreateSegment method to create a
segment from a pattern track object. Most applications don't do this,
because pattern track objects usually come from existing segments.
Construct a segment from existing tracks. To do this, create a segment
object by calling CoCreatelnstance, and then add tracks by calling
IDirectMusicSegment8::InsertTrack. This technique is not used by most
applications.

See Also

DirectMusic Tracks
Loading Audio Data
Making Band Changes Programmatically

Using Compositional Elements
Using Templates
Using Transitions

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)
Playing Segments

Segments can perform different roles in the performance. There must always be
a primary segment, which provides the main content of the soundtrack and
normally serves as the control segment, setting global parameters such as tempo.
Secondary segments play along with the primary segment and might provide
sound effects or short musical themes. A special type of secondary segment is
the motif, which is always obtained from a DirectMusic style object.

In addition, three kinds of segments have special roles:

e Transition segment. A short musical transition created at run time by the
DirectMusic composer object and normally played as a primary segment
leading from one segment to another, or from a segment to silence.

¢ Band segment. A set of instruments and instrument settings for the various
channels in the performance. The application can play a band segment as a
secondary segment to execute changes in the band performing the music.

e Template segment. A guide to chord progressions, groove levels, and
embellishments, used in conjunction with a style and chordmap to compose
music at run time.

The playback of segments is controlled by the performance object and begins
with a call to IDirectMusicPerformance8::PlaySegment or
IDirectMusicPerformance8::PlaySegmentEx.

Only one primary segment at a time can be played. When you cue a primary
segment for playback, you can specify that it is to be played after the currently
playing segment is finished, or you can use it to replace the current primary
segment.

Secondary segments, on the other hand, play over the current primary segment,
and any number of secondary segments can be playing simultaneously.

Secondary segments do not normally alter the performance of the primary
segment. For example, a secondary segment can be based on a different style
without affecting the style of the primary segment. However, a secondary

segment can be designated as the control segment, in which case it takes over
certain tasks normally handled by the primary segment.

See Also

Segment Timing

Making Band Changes Programmatically
Using Templates

Using Transitions

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Segment States

When you play a segment, parameters for that instance of the playing segment
(such as the audiopath, start point, and number of repetitions) are stored in an
object called a segment state, represented by an IDirectMusicSegmentState8
interface.

When different instances of a segment are being played on different audiopaths,
you can use the segment state to retrieve a 3-D sound buffer or an effect, and
make changes that apply only to that instance. For example, you might use the
same engine sound for different cars in a race game, playing the sound for each
car on its own audiopath. You can use either
IDirectMusicAudioPath8::GetObjectInPath or
IDirectMusicSegmentState8::GetObjectInPath to retrieve an
IDirectSound3DBuffer8 interface from each audiopath, allowing you to set the
3-D parameters for each car individually.

See Also

e Retrieving Objects from an Audiopath

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Pausing Segments

To pause a segment, you must ascertain the current play position before stopping
the segment. The following example function returns the current play position in

music time.

MUSIC_TIME GetTimeOffset(const MUSIC_TIME mtNow, // From G
const MUSIC_TIME mtStartTime, // From C
const MUSIC_TIME mtStartPoint, // From G
const MUSIC_TIME mtLoopStart, // From C
const MUSIC_TIME mtLoopEnd, // From C
const MUSIC_TIME mtLength, // From C
const DWORD dwLoopRepeats) // From G

// Convert mtNow from absolute time to an offset
// from when the segment started playing.

LONGLONG 110ffset = mtNow - (mtStartTime - mtStartPoint);

// If mtLoopEnd is not zero, set 1lLo
// otherwise use the segment length.

OpEnd to mtLoopEnd;

LONGLONG 1llLoopEnd = mtLoopEnd ? mtLoopEnd : mtLength;

LONGLONG llLoopStart = mtLoopStart;

// Adjust offset to take looping into account.
if ((dwLoopRepeats != 0) & & (llLoopStart < 1llLoopEnd) && (1llLc

if ((dwLoopRepeats != DMUS_SEG_REPEAT_INFINITE)
&& (lloffset > (llLoopStart + (llLoopEnd - 1llLoopStart) *

l10ffset -= (llLoopEnd - llLoopStart) * dwLoopRepeats;
}
else if (1lloffset > 1llLoopStart)
l110ffset = 1lllLoopStart + (llOoffset - llLoopStart) % (1llL

}

110ffset = min(llO0ffset, LONG_MAX); // LONG_MAX is defined in L
return long(lloffset);

}

To restart the segment at the correct position, pass the return value of the sample
function to IDirectMusicSegment8::SetStartPoint before calling
IDirectMusicPerformance8::PlaySegmentEx.

Note The mtLength parameter of the example function will normally be 1 for
segments loaded from WAV files. In this case, before calling SetStartPoint you
must use IDirectMusicSegment8::SetlL.ength to set the length of the segment to
at least 1 tick more than the current offset. For more information, see
IDirectMusicSegment8::SetStartPoint.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Control Segments

The control segment is the source of any data that is shared across tracks by
parameter calls.

The following tracks give their data to the performance not by sending
messages, as most other tracks do, but by responding to parameter calls.

Chord
Command
Mute

Tempo

Time signature

The chord track, for example, answers parameter calls from the style track. To
determine the MIDI value for a note before sending that note, the style track
must determine the current chord. It does so by calling
IDirectMusicPerformance8::GetParam, and this call is relayed to the chord
track in the control segment.

To function as a control segment, a segment must have at least one controlling
track. The chord, command, mute, and tempo tracks are controlling tracks.

The control segment does not affect any aspect of playback that is controlled by
messages. The time signature comes from the control segment only when there
is no time signature track, as is normally the case in segments not based on MIDI
files.

By default, the primary segment is the control segment. However, a secondary
segment can be designated the control segment by passing the
DMUS_SEGF_CONTROL flag to IDirectMusicPerformance8::PlaySegment
or IDirectMusicPerformance8::PlaySegmentEx.

When a secondary segment is the control segment, the primary segment
continues to function as a fallback source of control data. For example, if a
secondary control segment does not contain a tempo track, but the primary

segment does, the tempo comes from the primary segment.
See Also

e DMUS_SEGF_FLAGS

o Self-Controlling Segments
e Track Configuration

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Self-Controlling Segments

A self-controlling segment ignores any control information from the control
segment that duplicates control information in the self-controlling segment. For
example, if the segment has a command track, it can use its own commands
(such as groove levels) rather than the commands in the control segment.

Segments can define for each track where it gets its controlling information, as
follows:

e From tracks in the control segment. This is the default behavior.

e From tracks in the primary segment, regardless of whether it is the control
segment.

e From tracks in the same segment.

Configuring a segment as self-controlling is usually done by the author.
However, applications can configure individual tracks within segments by
setting or clearing the following flags, using the
IDirectMusicSegment8::SetTrackConfig or
IDirectMusicSegmentState8::SetTrackConfig method:

Flag Effect

The track should get
parameters from this
segment before control and
primary segment tracks.

DMUS_TRACKCONFIG_OVERRIDE_ALL

The track should get
parameters from this
segment before primary
segment tracks.

DMUS_TRACKCONFIG_OVERRIDE_PRIMARY

The track should get
parameters from this
segment if the primary and

return the needed

information.

The following example code, where pSegment is an IDirectMusicSegment8
interface pointer, instructs the style track to get all its parameters from other
tracks in the same segment, ensuring that chords, groove levels, and mute
commands do not come from the control segment.

HRESULT hr = pSegment ->SetTrackConfig(CLSID_DirectMusicStyleTrack,
-1, DMUS_SEG_ALLTRACKS, DMUS_TRACKCONFIG_OVERRIDE_ALL, 0);

See Also

e Control Segments
e Track Configuration.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

MIDI-Based Segments

A MIDI-based segment can be created at run time by loading a standard MIDI
(.mid) file. In addition, MIDI-based segment (.sgt) files can be created in
DirectMusic Producer, often by importing MIDI files to which the author might
add tempo, key, and band changes, as well as loop points. Unlike a style-based
segment, a MIDI-based segment has no patterns and no command track. Instead,
it has a sequence track that contains MIDI notes and other commands.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

WAV-Based Segments

DirectMusic can load and play WAV files, but greater flexibility is provided by
DirectMusic Producer segments containing wave tracks. A segment can contain
any number of wave tracks, and a wave track can contain multiple waveforms.

WAV-based DirectMusic Producer segments can be used to create sound effects
and ambient audio that do not sound repetitive. Each part in a wave track can
have up to 32 variations, and every waveform in the part is assigned to one or
more of these variations. Each time the track plays, one of the variations is
selected for each part, and only the waveforms assigned to that variation are
heard. Because different parts can play different variations, a two-part wave
track could play in up to 1024 different ways. For an example of the use of
waveform variations, see the Audio Scripts Sample.

Waveform variations are authored into segments. Applications do not control the
selection of variations.

Another advantage of WAV-based segments over WAV files is that the
waveforms can be in compressed format. The DirectMusic loader can load
compressed waveform audio files in any format supported by the audio
compression manager (ACM).

Segments loaded from WAV files are played just like any other segment. They
pass through the performance as DMUS_WAVE_PMSG messages and are
always played on channel 0 of the audiopath. Although waveforms are not
synthesized in the same sense as musical notes, they do pass through the
synthesizer and can be manipulated by MIDI controllers.

Waveforms are analogous to band instruments and must be downloaded to the
synthesizer before being played. Waveforms are downloaded when the segment's
bands are downloaded.

Waveforms can be either static or streaming. Static waveforms are loaded into
synthesizer memory all at once. Streaming waveforms are loaded piece by piece
as they play. Waveforms saved as DirectMusic Producer files are designated as

static or streaming by the author, who also sets the readahead time; that is, the
maximum amount of data that is copied into memory at one time. Waveforms

from standard WAV files are streamed if longer than 5000 milliseconds, with a
readahead of 500 milliseconds.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Playing WAV Sounds in Music Time

Because a WAV sound has no tempo, the loader cannot calculate the music-time
length of a segment loaded from a WAV file or resource, and it always sets the
length to 1 tick. In consequence, you cannot cue another segment to play
immediately after a WAV segment by using the DMUS_SEGF_QUEUE flag. A
further limitation is that you must play the WAV segment from the beginning,
because IDirectMusicSegment8::SetStartPoint fails with any parameter
greater than the known music-time length of the segment.

To overcome these limitations, you must set the length of the segment to a
music-time value equivalent to the clock-time length of the sound. The length of
the sound can be calculated from the WAV chunk headers. The following sample
function sets the length of a WAV segment whose length is known:

HRESULT SetWAVLength(IDirectMusicSegment8* pSeg,
DWORD tempo, // In beats per minute.
float wavLength) // In seconds.

{
if (pSegq)
{

MUSIC_TIME mt;
mt = (wavLength * DMUS_PPQ * tempo) / 60;
return pSeg->SetLength(mt);

}
else return E_POINTER;

}

See Also

e Clock Time and Music Time
e IDirectMusicSegment8::Setl.ength

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Changing the Pitch of Waveforms

Several techniques can be used to change the pitch of a waveform
programmatically.

If you are playing the waveform as a segment, you can obtain the DirectSound
buffer through which it is playing and use the
IDirectSoundBuffer8::SetFrequency method to change the pitch. Because a
pitch change affects all sounds playing through a buffer, you should play the
sound on its own audiopath, or its own mix group within an audiopath. Different
buffers within a mix group cannot have different frequencies. (For information
on mix groups, see the Help for DirectMusic Producer.)

This technique does not work well with looping segments. Because the
performance does not take into account the actual time it takes for the sound to
finish playing in the buffer, looping continues to happen at intervals based on the
normal length of the sound. When the pitch is lower than the original pitch of the
sound, the whole sound does not play before it loops; when the pitch is higher
than the original, intervals of silence occur between loops. If the entire sound is
looping, you can adjust the intervals by using
IDirectMusicSegment8::SetL.ength before playing the segment; however,
calling this method while the segment is playing will have unpredictable results.

Another technique is to set a MIDI pitch bend on the performance channel on
which the sound is playing. To do so, send a DMUS_MIDI_PMSG message,
specifying OxEOQ as the status byte. The lower seven bits of the two data bytes are
combined as a 14-bit value, where 0x2000 specifies no pitch bend, lower values
represent a lower pitch, and higher values represent a higher pitch. For more
information, see the MIDI specification.

Perhaps the most effective way to control the pitch is to play the waveform as a
DLS instrument created in DirectMusic Producer. You can use the same WAV
sound as the sample for all regions (note ranges), or assign different sounds to
different regions for more realistic effects. You can also create articulations such
as volume envelopes to make the sound start and stop in a more natural way. To
play the sound at different pitches in your application, start and stop different
notes by sending DMUS_NOTE_PMSG messages.

See Also

¢ Changing the Tempo
e Retrieving Objects from an Audiopath

e Using DirectMusic Messages

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Bands

A band is a collection of settings for performance channels. Every part in a
segment or style plays on a single performance channel, and the most recently
applied band determines how sound is synthesized on that channel.

Bands can contain the following information for each channel:

e Instrument, identified by a MIDI patch number and bank select. This setting
does not affect WAV parts playing on the channel.

e DLS collection from which to load the instrument. By default, the DLS
collection is the standard General MIDI collection.

e Volume.

e Pan.

¢ Transposition. If this value is not zero, music notes on the channel are
automatically transposed for the instrument.

A band does not necessarily contain settings for every performance channel in
use, and it does not have to contain every possible setting for channels it does
affect. Settings not explicitly changed by a band remain as they were before the
band was played. For example, if the application plays a band that does not
contain any settings for channel 1, any parts on that channel continue playing on
the last instrument assigned to it, and with the same volume, pan, and
transposition settings. The band could change a single setting, such as the
volume, without affecting any of the other settings currently in effect.

Segments and styles always contain at least one band, called the default band.
Styles can contain additional bands. When you load a segment or style, the
default band and any other bands are automatically loaded as well. However, you
must still download the DLS data for the instruments in any band that you intend
to use.

You can retrieve a pointer to the default band by using the
IDirectMusicStyle8::GetDefaultBand method.

Other bands might be authored into the style, and can be found and retrieved by
using the IDirectMusicStyle8::EnumBand and IDirectMusicStyle8::GetBand

methods. Bands can also be obtained from other style files or from band files.
When you have obtained an IDirectMusicBand8 interface, you have access to
that band and can substitute it for the default band.

See Also

Downloading and Unloading Bands

Making Band Changes Programmatically
Ensuring Timely Band Changes

Playing a MIDI File with Custom Instruments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Downloading and Unloading Bands

Before a band can be used, the instruments it references must be downloaded to
the performance. This step maps the instruments to performance channels and
downloads the DLS data to the synthesizer.

By default, the application is responsible for downloading any band it uses.
However, you can turn on automatic downloading of bands.

Downloading a band makes the band available to the performance but does not
perform any program changes. Program changes take place in response to
messages generated by the segment's band track, which is typically authored into
a segment file. For information on how to make program changes at run time,

see Making Band Changes Programmatically.

Information about how to implement downloading and unloading of bands is
contained in the following topics:

Automatically Downloading Bands
Manually Downloading Bands
Patch Collisions

Unloading Bands

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Automatically Downloading Bands

When automatic downloading is on, the instruments in the band are downloaded
when the segment containing the band is cued. The instruments are
automatically unloaded when the segment is stopped, unless another segment
using the same instruments is cued to play immediately or is currently playing.

Automatic downloading should be used only when the timing of segment starts
is not critical. Repeated loading and unloading of instruments is time-consuming
and can cause serious degradation of performance in complex audio
environments.

Automatic unloading, which is part of the automatic downloading mechanism,
can also lead to undesired results. For example, suppose you play a short
secondary segment that changes the instrument on a channel. The instrument is
automatically downloaded when the secondary segment starts, replacing the
existing instrument. When the secondary segment ends, the instrument is
automatically unloaded, with the result that there is no instrument on that
channel, and the channel plays silence.

You can turn on automatic downloading of bands in one of the following ways:

e (Call the IDirectMusicPerformance8::SetGlobalParam method for the
GUID_PerfAutoDownload parameter.

¢ Enable automatic downloading for a single segment by calling the
IDirectMusicSegment8::SetParam method for the
GUID_Enable_Auto_Download parameter.

In the following example function, the global parameter for the performance is
set to enable automatic downloading of bands in all segments:

HRESULT TurnOnDownload(IDirectMusicPerformance8* pPerf)

{
BOOL fAuto = TRUE;

HRESULT hr = pPerf->SetGlobalParam(
GUID_PerfAutoDownload, &fAuto, sizeof(BOOL));

return hr;

}

See Also

e Setting and Retrieving Global Parameters
e Setting and Retrieving Track Parameters

e Unloading Bands

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Manually Downloading Bands

You can manually download a band in one of the following ways:

¢ (Call IDirectMusicSegment8::Download to download the bands and
waveforms in a segment to either an audiopath or a performance.

e Obtain an IDirectMusicBand8 interface from a loaded object, and call the
IDirectMusicBand8::Download method.

o (Call the IDirectMusicSegment8::SetParam method with the
GUID_Download or GUID_DownloadToAudioPath parameter to download
the band in the segment's first band track. You can also use
IDirectMusicPerformance8::SetParam to set this parameter on the
primary segment, or IDirectMusicTrack8::SetParamEx to set it directly
on a band track. For more information, see Setting and Retrieving Track
Parameters.

If your application creates audiopaths that use more than one port, you must
download bands to the individual audiopaths, not to the performance. However,
most applications use only a single port, and in this case it is safe to download
all instrument data to either an audiopath or the performance. When a band is
downloaded to an audiopath, the instrument data is downloaded to the port on
that audiopath and is then available to any audiopath using the same port.

There is no danger in downloading the same instrument multiple times. If an
instrument appears in one band multiple times or if it appears in multiple bands
that are all opened and downloaded at the same time, only one copy of the
instrument is sent to the synthesizer.

The following example function loads a band from a file and downloads it to the
performance:

HRESULT DownloadBand(
IDirectMusiclLoader8 *plLoader,
IDirectMusicPerformance8 *pPerf,
WCHAR *pwszFile)

{

IDirectMusicBand8* pBand;

HRESULT hr;

hr = pLoader->LoadObjectFromFile(CLSID_DirectMusicBand, IID_IDirec
pwszFile, (void **)&pBand);
if (SUCCEEDED(hr))

{

hr = pBand->Download(pPerf);
}
return hr;

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Patch Collisions

When bands from different segments are downloaded to the same port,
instruments in band can overwrite data from a previously downloaded band.

For example, suppose segment A uses a band that assigns a piano to patch
number 1, and segment B uses a band that assigns a banjo to the same patch. The
application calls IDirectMusicSegment8::Download first for segment A and
then for segment B. Even though the bands might be downloaded to different
audiopaths, the instrument data is downloaded to the same synthesizer, so any
note on a performance channel mapped to patch number 1 will be played by the
banjo.

This potential for patch collisions must be taken into account when the content is
authored. Different segments should not use different instruments with the same
patch number.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Unloading Bands

Bands take up memory and should be unloaded when they are no longer in use.
If you have enabled automatic downloading of bands, the bands associated with
a segment are unloaded automatically when the segment stops. Otherwise, you
can manually unload a band in one of the following ways:

e Call the IDirectMusicSegment8::Unload or IDirectMusicBand8::Unload
method for instruments downloaded by the corresponding Download

method.
e Call the IDirectMusicSegment8::SetParam method for the GUID_Unload

or GUID_UnloadFromAudioPath parameter to unload the band in the
segment's band track. You can also use
IDirectMusicPerformance8::SetParam to set this parameter on the
primary segment, or IDirectMusicTrack8::SetParamEx to set it directly
on a band track.

The IDirectMusicPerformance8::CloseDown method also unloads any
remaining downloaded instruments.

See Also

e Setting and Retrieving Track Parameters

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Making Band Changes Programmatically

In most cases, the band track in a loaded segment performs all necessary
program changes. However, you can also do so manually if you have a band
object. You must create a secondary segment by using
IDirectMusicBand8::CreateSegment, and then play that segment by calling
IDirectMusicPerformance8::PlaySegment or
IDirectMusicPerformance8::PlaySegmentEx. Typically, you would use
DMUS_SEGF_MEASURE or DMUS_SEGF_GRID in the dwFlags parameter
to ensure that the band change takes effect on an appropriate boundary.

The following example function creates a segment from a band and plays it on
the next measure boundary. It is presumed that the instruments have already been
downloaded or that automatic downloading has been enabled.

HRESULT PlayBand(
IDirectMusicBand8 *pBand,
IDirectMusicPerformance8 *pPerf,
REFERENCE_TIME rfTime)

{

IDirectMusicSegment *pSegment;

HRESULT hr = pBand->CreateSegment(&pSegment);
if (SUCCEEDED(hr))

{
hr = pPerf->PlaySegment(pSegment, DMUS_SEGF_MEASURE | DMUS_SEGF_
rfTime, NULL);
pSegment->Release();
}
return hr;
3
See Also

e Patch Collisions

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Ensuring Timely Band Changes

A consideration in playing band segments is the randomness in the timing of
notes played by a style track. For instance, a note that is on measure 1, beat 1
might actually play somewhat earlier than the beat boundary. If you make a band
change at the beat boundary, the note might play with the incorrect instrument.

To prevent this problem, an application should cue the band segment early.
Suppose, for example, that you have a style-based segment pStyleSeg and a band
segment pBandSeg. You want to play both the style segment and the band
segment on the next measure boundary of the performance pPerf. You know that
the style contains notes that could go out up to 30 ticks earlier, in music time,
than the start time of the segment. The following example code ensures that the
band segment is played 31 ticks before the style segment, so that all instruments
are in place before any note is played:

HRESULT CueSegmentAfterBand(IDirectMusicPerformance8* pPerf,
IDirectMusicSegment8* pBandSeg,
IDirectMusicSegment8* pStyleSeg)

REFERENCE_TIME rtResolved;
MUSIC_TIME mtResolved;
HRESULT hr;

hr = pPerf->GetResolvedTime(0, &rtResolved, DMUS_TIME_RESOLVE_MEAS
if (SUCCEEDED(hr))
{
hr = pPerf->ReferenceToMusicTime(rtResolved, &mtResolved);
if (SUCCEEDED(hr))

{
mtResolved -= 31;
hr = pPerf->PlaySegment(pBandSeg, 0, mtResolved, NULL);
if (SUCCEEDED(hr))
{
pPerf->PlaySegment (pStyleSeg, DMUS_TIME_RESOLVE_MEASURE, 0,
}
¥
}

return hr;

}

Note If there is no randomness in the notes played by a segment (for example,
one loaded from a MIDI file), you don't need to worry about the timeliness of a

band segment played at the same time. By default, all band segments start 1 tick
early.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Playing a MIDI File with Custom Instruments

By default, when you play a MIDI file the instruments used are those in the
Roland GM/GS Sound Set, contained in the Gm.dls file. However, you can use
instruments from any DLS collection when playing a MIDI file.

First, load the collection and retrieve a pointer to the IDirectMusicCollection8
interface.

The following example function loads a collection by file name:

HRESULT LoadCollectionByName (
IDirectMusiclLoader8 *pILoader,
char *pszFileName,
IDirectMusicCollection8 **ppICollection)

HRESULT hr;
DMUS_OBJECTDESC objDesc;

mbstowcs(objDesc.wszFileName, pszFileName, DMUS_MAX_FILENAME);
objDesc.dwSize = sizeof (DMUS_OBJECTDESC);
objDesc.guidClass = CLSID_DirectMusicCollection;
objDesc.dwVvalidData = DMUS_OBJ_CLASS

| DMUS_OBJ_FILENAME

| DMUS_OBJ_FULLPATH;

hr = pILoader->GetObject(&objDesc,
IID_IDirectMusicCollections,
(void **) ppICollection);

return hr;

}

Next, you must associate the DLS data with the segment by calling
IDirectMusicSegment8::SetParam, as shown in the following example:

HRESULT ConnectCollection(IDirectMusicSegment8* pSegment,
IDirectMusicCollection8* pCollection)
{

HRESULT hr = pSegment->SetParam(GUID_ConnectToDLSCollection,
OXFFFFFFFF, DMUS_SEG_ALLTRACKS, 0, (void*)pCollection);
return hr;

}

Finally, download the instruments in the collection to the performance or
audiopath by calling IDirectMusicSegment8::Download.

When a custom collection is attached to a MIDI segment, the connection to the
GM collection is not broken. For example, suppose you load a collection
containing a single instrument that has a patch number of 12 and connect this to
the segment. MIDI channels with any patch number other than 12 continue to be
played by the appropriate instruments in the GM collection.

See Also

e Using Instrument Collections.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Timing

This section is an overview of various timing issues in DirectMusic. The
following topics are discussed:

Master Clock

Clock Time and Music Time
Changing the Tempo
Prepare Time

Latency and Bumper Time

Reducing Latency
Segment Timing

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Master Clock

To guarantee accurate timing with an acceptably low latency, DirectMusic
incorporates a master clock in kernel mode. This clock is based on a hardware
timer. DirectMusic automatically selects the system clock as the master clock,
but an application can select a different one, such as the wave-out crystal on a
sound card.

The master clock is a high-resolution timer that is shared by all processes,
devices, and applications that are using DirectMusic. The clock is used to
synchronize all audio playback in the system. It is a standard IReferenceClock
interface. The IReferenceClock::GetTime method returns the current time as a
64-bit integer (defined as the REFERENCE_TIME type) in increments of 100
nanoseconds.

To obtain an interface to the master clock, call the
IDirectMusic8::GetMasterClock method.

You can choose a different master clock for your application, but only if there
are no other DirectMusic applications running. First, you get descriptions of all
devices that can serve as the master clock by using the
IDirectMusic8::EnumMasterClock method. After you have obtained the
GUID of the device that you want to use as the master clock, pass it to the
IDirectMusic8::SetMasterClock method.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Clock Time and Music Time

In DirectX for C++, the time returned by the master clock is a 64-bit value
defined as type REFERENCE_TIME. Reference time is measured in units of
approximately 100 nanoseconds, so the clock ticks about 10 million times each
second. The value returned by the IReferenceClock::GetTime method is
relative to an arbitrary start time.

Music time is a 32-bit value defined as type MUSIC_TIME. It is not an
absolute measure of time but is relative to the tempo. The clock is started when
the performance is initialized and ticks DMUS_PPQ times for each quarter-note.
DMUS_PPQ is defined as 768.

When a performance is initialized, it starts keeping an internal clock. You can
retrieve the current performance time in both reference time and music time by
using the IDirectMusicPerformance8::GetTime method.

The IDirectMusicPerformance8::AdjustTime method can be used to make
small changes to the performance time. Most applications don't need to do this,
but it can be useful when synchronizing to another source.

To convert between the two kinds of time in a performance, you can use the
IDirectMusicPerformance8::MusicToReferenceTime and
IDirectMusicPerformance8::ReferenceToMusicTime methods. These
methods convert between time offsets within the performance, taking into
account all tempo changes that have taken place since the performance started.

When a segment is cued to play by a call to
IDirectMusicPerformance8::PlaySegment or
IDirectMusicPerformance8::PlaySegmentEx and the start time is given in
reference time, DirectMusic must convert the start time to music time. If no
primary segment is currently playing, the conversion is made immediately, based
on the current tempo. Otherwise, if another segment is playing, the start time of
the cued segment is not converted to music time until the start time has been
reached.

If the tempo is changed before the segment starts playing, the actual start time
can be affected, or the segment might not start on the desired boundary. In the
first case, in which the conversion to music time is done immediately, the start
time (in reference time) is advanced if the tempo speeds up and delayed if the
tempo slows down. In the second case, in which conversion is made at start time,
a change in tempo can mean that the segment does not start at correct resolution
boundaries. For example, if the segment is supposed to start on a measure
boundary (as indicated in the dwFlags parameter of PlaySegment or
PlaySegmentEXx), the actual start time (in reference time) is calculated when the
segment is cued. However, if the tempo then changes, a measure boundary might
not fall at that time.

When a primary segment is played with the DMUS_SEGF_QUEUE flag (see
DMUS_SEGF_FLAGS), the i64StartTime parameter is ignored, and the
segment is cued to play after any primary segments whose start times have
already been converted. If a previously cued segment is still stamped in
reference time, that segment will play at its designated time, perhaps interrupting
another segment.

For example, suppose you have three segments, each 10 seconds in length. You
cue segment A to play 5 seconds from now. Because no primary segment is
currently playing, the start time is immediately converted to music time. At 6
seconds, you cue segment B to play at 20 seconds. In this case, because music is
already playing and the tempo might change, the conversion to music time is not
made immediately. Then you cue segment C with the DMUS_SEGF_QUEUE
flag so that it starts immediately after segment A finishes, at 15 seconds. At 20
seconds, segment B starts playing and interrupts segment C.

See Also

e Playing WAV Sounds in Music Time

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Changing the Tempo

The tempo of a performance dictates the conversion between the two types of
time used in DirectMusic, which in turn controls the resolution of events to
musical boundaries. (See Clock Time and Music Time.) The tempo track of the
control segment usually manages the tempo, but it is also possible for an
application to set the tempo dynamically.

There are two ways to change the tempo: by sending a message and by setting a
track parameter on the control segment.

The following example function sends a message to change the tempo, after
disabling the tempo track so that it does not override the new tempo.

HRESULT ChangeTempoByMessage(IDirectMusicPerformance8* pPerformance,
IDirectMusicSegment8* pSegment,
double dblNewTempo)

DMUS_TEMPO_PMSG* pTempoMsg;
HRESULT hr;

if (SUCCEEDED(hr = pSegment->SetParam(GUID_DisableTempo,
OXFFFF, 0, 0, NULL)))
{

if (SUCCEEDED(hr = pPerformance->AllocPMsg(
sizeof (DMUS_TEMPO_PMSG), (DMUS_PMSG**)&pTempoMsg)))
{

// Cue the tempo event.
ZeroMemory(pTempoMsg, sizeof (DMUS_TEMPO_PMSG));
pTempoMsg->dwSize = sizeof (DMUS_TEMPO_PMSG);
pTempoMsg->dblTempo = dblNewTempo;
pTempoMsg->dwFlags = DMUS_PMSGF_REFTIME;
pTempoMsg->dwType = DMUS_PMSGT_TEMPO;
pPerformance->SendPMsg((DMUS_PMSG*)pTempoMsg) ;
}
}

return hr;

}

If the performance has more than one audiopath, the message should be stamped
for delivery to the correct audiopath. For more information, see Application-

Created Messages.

The following example shows how to change the tempo parameter.

HRESULT ChangeTempoParameter (IDirectMusicSegment8* pSegment, double

{
DMUS_TEMPO_PARAM Tempo;

Tempo.dblTempo = dblNewTempo;
HRESULT hr = pSegment->SetParam(GUID_TempoParam, OXFFFF, 0, 0, &Te
return hr;

}

Note DMUS_TEMPO_ PARAM is declared in Dmusicf.h, which is not
automatically included when you include Dmusici.h.

You can also change the master tempo, which adjusts the tempo set by any
control segment.

See Also

e Setting and Retrieving Global Parameters
e Setting and Retrieving Track Parameters

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Prepare Time

As a segment is played, the performance makes repeated calls to the segment's
tracks, causing them to generate messages for a specified time range, which is a
fraction of a second. These messages are then placed in the queue behind those
that were generated in previous calls. By default, about a second's worth of
messages are in the queue at any time.

Each time it calls on a track to play messages, the performance calculates the
end time for that call by adding the prepare time to the current time. For
example, if the current time is 10,000 milliseconds (or the equivalent in
reference time units) and the prepare time is the default 1000 milliseconds, the
end time is at 11,000. The result is that all new messages that are to be played up
to time 11,000 must be prepared and placed in the queue.

Most applications don't need to change the default prepare time, and the process
just described is not visible to the application. However, it is helpful to
understand the concept of prepare time because of the
DMUS_SEGF_AFTERPREPARETIME flag, which the application can pass to
IDirectMusicPerformance8::PlaySegment or
IDirectMusicPerformance8::PlaySegmentEx.

If you set a start time of "now" for the segment without specifying
DMUS_SEGF_AFTERPREPARETIME, the performance invalidates any
messages currently in the queue. Any tracks that are still valid at this point (for
example, tracks of secondary segments, which continue to play) then have to
resend their messages, taking into account any changes made to the environment
by the new segment. This causes extra processing and might also lead to
undesired results.

You can use the DMUS_SEGF_AFTERPREPARETIME flag to specify that the
segment isn't to start playing until all messages currently in the queue have been
processed and passed to the port buffer. If messages up to time 10,000 are in the
queue and the current time is 9,000, a segment cued to play immediately, but
flagged DMUS_SEGF_AFTERPREPARETIME, starts playing just after the
10,000 mark.

See Also

IDirectMusicPerformance8::GetPrepareTime
IDirectMusicPerformance8::SetPrepareTime
Latency and Bumper Time

Segment Timing.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Latency and Bumper Time

Latency is the delay between the time at which the port receives a message and
the time at which it has synthesized enough of a waveform to play. The
IDirectMusicPerformance8::GetLatencyTime method retrieves the current
time plus the latency for the performance as a whole. The latency is based on the
largest value returned by any port's latency clock.

The bumper is an extra amount of time allotted for code to run between the time
that an event is put into the port buffer and the time that the port starts to process
it. By default, the bumper length is 50 milliseconds.

The following example shows how latency time and bumper time are combined.
Suppose an event is cued to play at 10,000 milliseconds. The latency of the port
is known to be 100 ms, and the bumper length is at its default value of 50 ms.
The performance therefore places the message into the port buffer at 9,850 ms.

Any tools that alter the time of messages must take latency and bumper time into
account. If a tool stamps a message with a time that is already past the latency
time, the note or other event will not play at the correct time.

After a message has been placed in the port buffer, it no longer belongs to the
performance and cannot be stopped from playing by using the
IDirectMusicPerformance8::Invalidate method or by stopping the segment.
The first message that can be invalidated has a time stamp equal to or greater
than the current time plus the latency time and the bumper time. This value can
be retrieved by using the IDirectMusicPerformance8::GetQueueTime
method.

The following diagram, not to scale, illustrates the relationship of the times and
durations retrieved by various methods. The current time is at the left, and the
last time for which messages have been prepared is at the right. Remember that
prepare time is only an approximation of the total timespan of messages in the
queue at any moment.

Time

|DirecttuzicP erformance::

S

L

GetPrepareTime

|DirecttuzicP erformance::

Rl G Bumper_encth

port butfer

GetTime

IDiredttusicP erformance::

|DirecttuszicP erformance::
GetlatencyTime

|DirectitusicP erformance::
GetQueueTime

See Also

e Reducing Latency

e IDirectMusicPerformance8:

:GetBumperLength.

¢ IDirectMusicPerformance8::SetBumperLength

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Reducing Latency

The latency in DirectMusic consists of two major components, system-
dependent latency and latency padding.

System-dependent latency is calculated dynamically by approximating the
minimum amount of write-ahead data required for the given system
configuration. This behavior is automatic and not controllable by the application.
The absolute minimum system-dependent latency is 4 milliseconds.

Latency padding ranges from 0 to 100 milliseconds, and is configurable by the
application. This value is added to the system-dependent latency and may be
used to mitigate glitching problems. To ensure maximum compatibility with
older systems, latency padding is set to 55 milliseconds by default. Most
applications do not need to increase the latency padding.

Decreasing the latency padding allows applications to take advantage of the low-
latency capabilities of modern hardware. However, doing so comes at the risk of
glitching on some systems. Only applications that truly need the lowest latency
possible should reduce the latency padding value.

Changing the latency padding value is accomplished by setting the
GUID_DMUS_PROP_WriteLatency property on the port. The following
example code demonstrates the use of this property.

HRESULT SetLatency (IDirectMusicPort8 *pDMPort, DWORD dwLatency)
{

IKsControl* pKSControl;

HRESULT hr;

// Query for IKsControl. All ports that support properties provi
hr = pDMPort->QueryInterface(IID_IKsControl, (void**)&pKSControl
if (SUCCEEDED(hr)) {

KSPROPERTY KSProperty;

ULONG ulDummy;
ZeroMemory (&KSProperty, sizeof(KSProperty));
KSProperty.Set = GUID_DMUS_PROP_WriteLatency;

KSProperty.Flags = KSPROPERTY_TYPE_SET;
hr = pKSControl->KsProperty(&KSProperty, sizeof(KSProperty),

(LPVOID)&dwLatency, sizeof(dwLatency), &ulDummy);
pKSControl->Release();

}

return hr;

}

To attain the absolute minimum latency, applications must also reduce the
wakeup interval of the DirectMusic realtime thread. This is achieved by setting
the GUID_DMUS_PROP_WritePeriod property on the port.

See Also

e KSPROPERTY
e Property Sets for DirectMusic Ports

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Segment Timing

When you cue a segment to play, you have a great deal of control over when the
segment starts, what point in the segment is heard first, how the segment is
aligned rhythmically with currently playing music, and whether any part of the
segment plays more than once.

The following terms are used throughout this section to clarify the relationship
between times within segments and times within the performance.

Start point

The first point in the segment that can be a segment start time. By default this
value is 0, indicating the beginning of the segment. However, it can be changed
by the application.

Segment start time

The point in a segment where it begins producing sounds. This time is usually
the same as the start point, but can be later than the start point if the start point is
deliberately aligned to a play time that is in the past.

Play time

The point in the performance where a segment's start point is cued. In the
DirectMusic API, this time is sometimes called start time.

Resolved time

A specified time (such as the play time) adjusted to a specified boundary. For
example, the resolved time could be the time of the next beat after the specified
time.

Start marker

A marker indicating a valid segment start time in a segment. The marker can be

an enter switch point in the marker track, or a variation switch point in a pattern.
Play marker

A marker in the marker track of a control segment indicating where another
segment's start point can be cued.

Note Start markers and play markers are placed in a segment in DirectMusic
Producer and cannot be changed by the application. They can, however, be
retrieved by using the GUID_Valid_Start_Time and GUID_Play Marker
parameters.

Segments normally play from the beginning. You can make a segment start from
another point by using the IDirectMusicSegment8::SetStartPoint method. The
new start point remains valid until changed.

The play time is determined by two parameters of the
IDirectMusicPerformance8::PlaySegment or
IDirectMusicPerformance8::PlaySegmentEx methods:

e The i64StartTime parameter sets the earliest time at which the segment can
start playing. If i64StartTime is 0, this time is as soon as possible. The
actual time at which the segment can start depends on the type of segment.
If it is a primary segment or a secondary control segment, the earliest play
time is at queue (or flush) time. If it is a noncontrol secondary segment, the
earliest play time is at latency time. For more information on queue time
and latency time, see Latency and Bumper Time.

e The dwFlags parameter specifies how soon after the earliest possible play
time the segment will actually start playing. Usually, you will want to wait
for an appropriate point in the rhythm before introducing a new primary
segment, transition, or motif. You control the delay by setting one or more
flags from the DMUS_SEGF_FLAGS enumeration.

Repeating and Looping

If a repeat count is set by using IDirectMusicSegment8::SetRepeats, the entire
segment repeats that number of times, unless a loop has been defined by a call to
IDirectMusicSegment8::Setl.oopPoints, in which case only the part of the
segment between the loop points repeats.

Aligning a Segment to a Past Time

Rather than forcing the segment start time to the next grid, beat, or measure in
the control segment, you might want the segment to start playing sooner, yet still
match the rhythm of the current segment. You can make the segment do so by
cuing its start point to a rhythmic boundary that has already passed. The rhythm
in the cued segment is thus aligned with that in the current segment, and the new
segment can start playing immediately.

To cue the segment in the past, use the DMUS_SEGF_ALIGN flag. Add one of
DMUS_SEGF_GRID, DMUS_SEGF_BEAT, DMUS_SEGF_SEGMENTEND,
or DMUS_SEGF_MEASURE to cue the start point of the segment at the
appropriate rhythmic boundary. Alternatively, you can use
DMUS_SEGF_MARKER to align the start point to the most recently played
play marker in the control segment.

Note Combining DMUS_SEGF_ALIGN with DMUS_SEGF_SEGMENTEND
causes the beginning of the cued segment to be aligned with the beginning of the
current segment.

Of course, when the start point is in the past, the segment start time has to be
adjusted to fall in the present or the future. The performance uses the following
rules to determine the segment start time. In all cases, "next" means "next
possible"—that is, within the part of the segment that does not fall in the past.

o If a start marker appears in the cued segment before the next resolution
boundary of the specified type, the segment start time falls at that point.
o If there is no valid start marker, the segment start time is at the next start
resolution boundary of the cued segment, as specified by one of the
following flags:
Flag Effect

DMUS_SEGF_VALID START BEAT Puts the segment start time on
the next beat.

Puts the segment start time on
the next grid.

Puts the segment start time on
the next bar line.

Puts the segment start time at

DMUS_SEGF_VALID_START_GRID

DMUS_SEGF_VALID_START_MEASURE

DMUS_SEGF _VALID_START TICK the earliest possible point.

e If there is no valid start marker and no start resolution flag is supplied, the
segment start time is at the next play resolution boundary as specified by
the DMUS_SEGF_GRID, DMUS_SEGF_BEAT, or
DMUS_SEGF_MEASURE flag. If none of these flags is present, the
segment start time is immediate.

Play markers and start markers allow greater flexibility in the cuing of segments,
especially motifs. Suppose a motif is designed to sound best when it starts
playing at the beginning of a measure in the primary segment. If the motif is
cued with the DMUS_SEGF_MEASURE flag, there might be a significant delay
before the next measure boundary is reached and the motif plays. But if the
DMUS_SEGF_ALIGN flag is added, the motif can start playing sooner without
violating the rhythm. Adding the DMUS_SEGF_MARKER flag ensures that the
motif plays at an appropriate boundary within the control segment, rather than
on just any measure, beat, or grid.

For information on how tempo changes can affect segment start times, see Clock
Time and Music Time.

The following diagram shows how the timing is determined for a segment cued
with the DMUS_SEGF_MEASURE, DMUS_SEGF_ALIGN, and
DMUS_SEGF_VALID_START_BEAT flags. The solid vertical lines are
measure boundaries, and the dotted lines are beat boundaries. The start point of
the segment is aligned with the previous measure boundary in the current
primary segment. The segment start time falls at the first beat in the cued
segment after the unresolved play time.

Unresoly ed Actual
play time ii play time

Current
primary
segment

Cued
segment

-

Start point Segment
start time

Logical Time and Actual Time

Some events have both a logical time and an actual time. The actual time is
when the event will take place, and the logical time represents the musical
position where it belongs.

For example, a segment might contain a program change that belongs to the start
of a beat. The logical time is the start of the beat. However, you want to make
sure the program change takes place before the note on the beat is played, so you
assign it a physical time that's a little earlier.

If the segment loops to the logical time (the start of that same beat), the program
change will still go out.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Notification and Event Handling

From time to time, your application may need to respond to a performance
event. For example, you might need to know when the end of a segment has
been reached, or you might want to synchronize graphics with the beat of the
music. You get the desired information by asking DirectMusic to notify you
when a certain type of event occurs.

Note Performance notifications should not be confused with DirectSound
buffer notifications, which are not used by DirectMusic applications.

To specify what types of events you want to be notified of, call the
IDirectMusicPerformance8::AddNotificationType method once for each
desired type of event.

The following example function causes DirectMusic to set segment-related
events. The specific type of event, such as a segment start or a segment end, is
derived later from the notification message.

HRESULT SetSegmentNotification(IDirectMusicPerformance8* pPerformanc

{
GUID guid = GUID_NOTIFICATION_SEGMENT;

return pPerformance->AddNotificationType(guid);

}

You can also add notification types for a particular segment by using the
IDirectMusicSegment8:: AddNotificationType method. You could do this, for
example, to receive notification of when a particular segment stops playing. You
cannot use this method to request GUID_NOTIFICATION_PERFORMANCE
types, because these must come from the performance object.

Note Most applications do not call the
IDirectMusicTrack8::AddNoetificationType method directly.

Information about notifications is sent in DMUS_NOTIFICATION_PMSG
message structures. You can poll for any pending notification messages within
the Windows message loop by calling the

IDirectMusicPerformance8::GetNotificationPMsg method, or you can have
DirectMusic signal an event object in a separate thread when a message is

pending.

If you want to be alerted of pending DirectMusic notification messages by a
Windows event object, you must first obtain an event handle by calling the
CreateEvent function. Typically, you would create an autoreset event with a call
such as the following:

HANDLE g_hNotify = CreateEvent(NULL, FALSE, FALSE, NULL);

After creating the event, assign the handle to the performance by passing it to the
IDirectMusicPerformance8::SetNotificationHandle method. You can use the
second parameter of this method to specify how long DirectMusic should hold
onto the event if it is not retrieved. A value of 0 in this parameter indicates that
the default time of 2 seconds is to be used.

In the following example, g_pPerf is a valid pointer to the
IDirectMusicPerformance8 interface:

HRESULT hr = g_pPerf->SetNotificationHandle(g_hNotify, 0);

The following example function executes repeatedly in its own thread, checking
for signaled events and retrieving notification messages:

void WaitForEvent(LPVOID 1lpv, HANDLE hNotify, IDirectMusicPerformanc

{
DWORD dwResult;

DMUS_NOTIFICATION_PMSG* pPmsg;

while (TRUE)
{
dwResult = wWaitForSingleObject(hNotify, 100);
while (S_OK == pPerformance->GetNotificationPMsg(&pPmsg))

// Check notification type and do something in response.
// Then free the message.
pPerformance->FreePMsg((DMUS_PMSG*)pPmsg);
}
}
}

More than one message might be waiting when an event is signaled or when you
call GetNotificationPMsg in the message loop. To be sure of catching all

notifications, call GetNotificationPMsg repeatedly until it returns S_FALSE.

Multiple messages with the same time stamp are not queued in any particular
order.

It is the application's responsibility to free any messages it retrieves, by calling
the IDirectMusicPerformance8::FreePMsg method.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Troubleshooting Playback

The following are common causes for sounds not playing correctly:

¢ Instruments have not been downloaded. You must download all instruments
and waveforms used by segments, even the default Gm.dls instrument
collection. To ensure that all instruments and waveforms are downloaded,
you can turn on automatic downloading; however, this is not recommended.
A better way is to download each segment when it is loaded, by using
IDirectMusicSegment8::Download. For more information, see

Downloading and Unloading Bands.

There is one case in which automatic downloading might be required: when
a segment trigger track cues other segments that use different instruments or
waveforms. Because your application doesn't obtain an interface to the
triggered segments, it cannot download them manually.

e The loader cannot find needed files. Make sure the loader is searching in
the correct folder by calling IDirectMusicl.oader8::SetSearchDirectory.

e The loader cannot find objects that are used by other objects. Content
authored in DirectMusic Producer can contain references to content in other
files. For example, a script track in a segment might contain calls to play
other segments. If the loader cannot find the referenced segments, it cannot
play them. To ensure that the loader can identify and load all referenced
objects, call IDirectMusicl.oader8::ScanDirectory. For more information,
see Scanning a Directory for Objects.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Performance Parameters

DirectMusic lets you control many aspects of track behavior by changing
parameters during playback, using one of the following SetParam methods:

¢ IDirectMusicPerformance8::SetParam sets data on a specific track
within the current control segment of the performance. The control segment
is normally the primary segment, but a secondary segment can be
designated as the control segment when it is played. See Control Segments.

¢ IDirectMusicSegment8::SetParam sets data on a specific track within the
segment.

e IDirectMusicTrack8::SetParam and IDirectMusicTrack8::SetParamEx
set data on the track represented by the interface. Applications do not
normally have interfaces to individual tracks.

The IDirectMusicPerformance8::SetGlobalParam method enables you to set
values that apply across the entire performance.

The equivalent GetParam and GetGlobalParam methods retrieve current
values for a track or the performance.

To have the music respond immediately to a changed parameter, an application
can flush messages from the queue by using the
IDirectMusicPerformance8::Invalidate method. This method causes all tracks
to resend messages from the specified point forward.

See Also

e Setting and Retrieving Track Parameters

¢ Disabling and Enabling Track Parameters
e Setting and Retrieving Global Parameters

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Setting and Retrieving Track
Parameters

The following methods are used for setting and retrieving track parameters:

IDirectMusicPerformance8::GetParam
IDirectMusicPerformance8::SetParam
IDirectMusicSegment8::GetParam
IDirectMusicSegment8::SetParam
IDirectMusicTrack8::GetParam
IDirectMusicTrack8::SetParam
IDirectMusicTrack8::GetParamEx
IDirectMusicTrack8::SetParamEx

When calling one of these methods on the performance or segment, you can
identify the track by setting the dwGroupBits and dwIndex parameters. Usually,
however, you can let DirectMusic find the appropriate track for you. For more
information, see Identifying the Track.

The track parameter that is being set or retrieved is identified by a GUID in the
rguidType parameter of the method. Each parameter that requires data is
associated with a particular data type, and pParam must point to a variable or
structure of this type. In some cases, part of the data structure must be initialized
even when retrieving the parameter. For some parameters, you must also specify
the time within the track at which the change is to take effect or for which the
parameter is to be retrieved.

For reference information on the data associated with the standard parameter
types, see Standard Track Parameters.

Some parameter changes might not appear to take effect immediately. For
example, changing the groove level does not make a difference until the current
pattern is about to finish playing and the next pattern is chosen. If you want the
change to take effect sooner, you can force the current pattern to be discarded by
calling the IDirectMusicPerformance8::Invalidate method.

To determine whether a particular parameter is supported by a track, use the

IDirectMusicTrack8::IsParamSupported method and check for an S_OK
result.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Identifying the Track

When you set or retrieve a parameter by using
IDirectMusicTrack8::SetParamEx or IDirectMusicTrack8::GetParamEXx,
the parameter is associated with the track on which the method is called.
However, when you call IDirectMusicPerformance8::SetParam,
IDirectMusicPerformance8::GetParam, IDirectMusicSegment8::SetParam,
or IDirectMusicSegment8::GetParam, DirectMusic needs to find the
appropriate track.

Normally, you can let DirectMusic determine which track contains the desired
parameter. To do this, set dwGroupBits to OXFFFFFFFF and dwiIndex to
DMUS_SEG_ANYTRACK or DMUS_SEG_ALLTRACKS. For example, the
following call to IDirectMusicSegment8::SetParam turns off the tempo track
so that looping a segment does not reset the tempo:

HRESULT hr = pIDMSegment->SetParam(GUID _DisableTempo, OXFFFFFFFF,
DMUS_SEG_ALLTRACKS, 0O, NULL);

There are times, however, when you need to specify a track. Typically, this
would be the case when a segment contains multiple tracks of the same type. To
set or retrieve the parameter on the desired track, you must identify it by group
and index value.

Every track belongs to one or more groups, each group being represented by a
bit in the dwGroupBits parameter of one of the methods under discussion. The
track is assigned to a group or groups when it is inserted in the performance. In
the case of segments loaded from a file, track groups are assigned by the author
of the segment.

A track is identified by a zero-based index value within each of the groups it
belongs to. The index value is determined by the order in which the tracks were
inserted.

Suppose a segment contains the tracks shown in the following table.

Track Group

bits
A 0x1
B 0x2
C 0x1
D 0x3

Group 1 contains tracks A, C, and D, and group 2 contains tracks B and D. If
you call GetParam with a value of 1 in dwGroupBits and a value of 0 in
dwIndex, the parameter is retrieved from track A, which is the first track in
group 1. If dwindex is 1, the parameter is retrieved from track C, the second
track in the group. Track D belongs to two groups, 1 and 2, so it can be
identified as either dwGroupBits = 1 and dwindex =2, or dwGroupBits = 2 and
dwindex = 1.

If you set more than one bit in dwGroupBits, the parameter is retrieved from the
nth track containing any of those bits, where n is the value in dwindex.

See Also

e IDirectMusicSegment8::InsertTrack

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Disabling and Enabling Track
Parameters

By setting the GUID_DisableTempo and GUID_DisableTimeSig parameters on
a track, you can disable the setting of tempo and time signature by a control
segment. You might want to do this, for example, when you have set the tempo
dynamically and don't want the primary segment to send tempo messages.

To re-enable the parameter, call one of the set-parameter methods with
GUID_EnableTempo or GUID_EnableTimeSig as the rquidType parameter. You
can also set these parameters to force a segment to send tempo messages even
though it isn't the control segment, or to cause a secondary segment to send time
signature messages.

It is also possible to disable and enable any track parameter by setting the
configuration flags on the track. For more information, see Track Configuration.

See Also

e Control Segments

¢ IDirectMusicTrack8::IsParamSupported
o Setting and Retrieving Track Parameters.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Setting and Retrieving Global
Parameters

By using the IDirectMusicPerformance8::SetGlobalParam and
IDirectMusicPerformance8::GetGlobalParam methods, you can set and
retrieve parameters that affect the entire performance rather than a single track.

The parameter to be set or retrieved is identified by a GUID in the rguidType
parameter of the method. Each parameter is associated with a particular data
type, whose size is given in the dwSize parameter. The predefined GUIDs and
their data types are shown in the following table.

Parameter type GUID Data

(rguidType) (*pParam) Description

This parameter controls whether
instruments are automatically
downloaded when a segment is
played. By default, it is off. See
Downloading and Unloading
Bands.

GUID_PerfAutoDownload BOOL

The master groove level is a value
that is always added to the groove
level established by the command
track. The resulting value is
adjusted, if necessary, to fall within
the range from 1 through 100.

GUID_PerfMasterGrooveLevel char

The master tempo is a scaling
factor applied to the tempo by the
final output tool. By default, it is 1.
A value of 0.5 would halve the
tempo, and a value of 2.0 would
double it. This value can be set in
the range from
DMUS_MASTERTEMPO_MIN
through

GUID_PerfMasterTempo float

DMUS_MASTERTEMPO_MAX.

The master volume is an
amplification or attenuation factor,
in hundredths of a decibel, applied
to the default volume of the entire
performance and any other
performances using the same
synthesizer. The range of permitted
values is determined by the port.
For the default software
synthesizer, the allowed range is
+20db to -200dB, but the useful
range is +10db to -100db.
Hardware MIDI ports do not
support changing master volume.
Setting this parameter is equivalent
to calling
IKsControl::KsProperty for the
GUID_DMUS_PROP_Volume
property set on every port in the
performance.

GUID_PerfMasterVolume long

Applications can also use custom types of global parameters. To create a new
type, establish a GUID and a data type for it.

Note All parameters have to be set before they can be retrieved. When a
parameter is set, the performance allocates memory for the data in a linked list of
items that are identified by GUID. If SetGlobalParam has never been called on
the parameter, it does not appear in this linked list, and GetGlobalParam fails.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Audiopaths

A DirectMusic performance typically contains one or more audiopaths, which
manage the flow of sound data through various objects. An audiopath might
include the performance itself, a segment, toolgraphs, the synthesizer,
DirectSound buffers, effects DMOs, and the primary DirectSound buffer where
the final mixing is done.

If your application does nothing more complicated than playing 2-D sound
effects or MIDI files, you can set up a standard default audiopath and play
everything on it. But to take advantage of the full power of DirectMusic you
may want to use multiple audiopaths and exercise more control over them.

Audiopaths use only the Microsoft software synthesizer. If you want your
application to use another port or ports, you must initialize the performance by
using IDirectMusicPerformance8::Init. For more information, see Using
DirectMusic Ports.

This section is a guide to creating audiopaths, playing segments on them, and
accessing objects within them. The following topics are covered:

Creating Audiopaths
Default Audiopath

Standard Audiopaths

Playing Sounds on Audiopaths
Retrieving Objects from an Audiopath

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Creating Audiopaths

Applications can set up audiopaths in the following ways:

¢ Create one or more standard audiopaths by using
IDirectMusicPerformance8::CreateStandardAudioPath. See Standard
Audiopaths.

e Create a default standard audiopath for the performance in the call to
IDirectMusicPerformance8::InitAudio. See Default Audiopath.

e Have DirectMusic create an audiopath from the segment's audiopath
configuration when the segment is played. Audiopaths created in this way
are temporary and not visible to the application.

¢ Obtain an audiopath configuration from a file authored in DirectMusic
Producer and pass the configuration object to
IDirectMusicPerformance8::CreateAudioPath.

An audiopath configuration object can be loaded just like any other object, by
using IDirectMusicl.oader8::GetObject or
IDirectMusicl.oader8::L.oadObjectFromFile. A configuration embedded in a
segment can be retrieved by using

IDirectMusicSegment8:: GetAudioPathConfig.

The audiopath configuration object does not have a unique interface or methods,
and your application cannot change the configuration in any way. All you can do
with the object is pass it, by its IUnknown interface, to
IDirectMusicPerformance8::CreateAudioPath. For example code, see

Playing Sounds on Audiopaths.

Audiopath configurations are the only means of creating nonstandard
audiopaths. For instance, if different performance channels are to be routed to
different buffers, this mapping must be specified in the audiopath configuration
of a segment.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Default Audiopath

The default audiopath is the one used when a segment is played by using
IDirectMusicPerformance8::PlaySegment, or when no audiopath is specified
in a call to IDirectMusicPerformance8::PlaySegmentEx.

You can create an audiopath and make it the default by specifying a standard
type in the dwDefaultPathType parameter of
IDirectMusicPerformance8::InitAudio.

Any existing audiopath can be made the default audiopath by passing it to
IDirectMusicPerformance8::SetDefaultAudioPath. Retrieve the default
audiopath by using IDirectMusicPerformance8::GetDefaultAudioPath.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Standard Audiopaths

If your application does not play exclusively on audiopaths created from
audiopath configuration objects, you must create one or more standard
audiopaths.

Standard audiopaths are identified by the values passed in the dwType parameter
of IDirectMusicPerformance8::CreateStandardAudioPath or in the
dwDefaultPathType parameter of IDirectMusicPerformance8::InitAudio.

The audiopaths defined by DirectMusic manage the flow of synthesizer output
through combinations of standard buffers, some of which have effect DMOs
attached to them. The following table shows the standard audiopaths and which
standard buffers they contain. Shared buffers can be used by more than one
audiopath.

Standard Buffer

Audiopath type buffers shared?
DMUS_APATH _DYNAMIC_3D 3-D Dry No
DMUS_APATH_DYNAMIC_MONO Mono No
DMUS_APATH_DYNAMIC_STEREO Stereo No
Music Yes

DMUS_ APATH SHARED STEREOPLUSREVERB
Reverb Yes

Characteristics of the standard buffers are shown in the following table, where
the Capabilities column lists values returned in the dwFlags member of the
DSBCAPS structure passed to IDirectSoundBuffer8::GetCaps. The last
column shows interfaces that can be obtained from the buffer object. In addition,
applications can add effects to buffers by using IDirectSoundBuffer8::SetFX,
making other interfaces available. For more information on obtaining interfaces,
see Retrieving Objects from an Audiopath.

Standard

buffer Description Capabilities Interfaces

DSBCAPS_CTRL3D

DSBCAPS_CTRLFREQUENCY IDirectSoun
DSBCAPS_CTRLFX IDirectSoun
DSBCAPS CTRLVOLUME IDirectSoun
DSBCAPS_GLOBALFOCUS

DSBCAPS MUTE3DATMAXDISTANCE

DSBCAPS_CTRLFREQUENCY
Mono buffer DSBCAPS_CTRLFX
Mono with no DSBCAPS_CTRLPAN IDirectSoun
effects DSBCAPS_CTRLVOLUME
DSBCAPS_GLOBALFOCUS

DSBCAPS_CTRLFX
DSBCAPS_CTRLPAN

Mono 3-D

3-D Dry buffer

Stereo buffer

Music llisee\fle;;/)lth DSBCAPS_CTRLVOLUME IDirectSoun
DSBCAPS_GLOBALFOCUS
Stereo buffer DSBCAPS_CTRLFX
Reverb with music DSBCAPS_ CTRLPAN IDirectSoun
reverberation DSBCAPS_CTRLVOLUME IDirectSoun
effect DSBCAPS_GLOBALFOCUS
DSBCAPS_CTRLFREQUENCY,
Stereo buffer DSBCAPS_CTRLFX,
Stereo with no DSBCAPS_CTRLPAN IDirectSoun

effects DSBCAPS_CTRLVOLUME
DSBCAPS_GLOBALFOCUS

More information about the standard audiopaths is available in the following
topics:

e DMUS_APATH _DYNAMIC_3D

e DMUS_APATH DYNAMIC_MONO

e DMUS_APATH DYNAMIC_STEREO

e DMUS_APATH _SHARED_STEREOPLUSREVERB

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DMUS_APATH_DYNAMIC_3D

This standard audiopath sets up a nonshared buffer of type 3-D Dry.

Applications can obtain an interface to the 3-D Dry buffer by calling one of the
GetObjectInPath methods with dwStage set to DMUS_PATH_BUFFER and
dwBuffer set to 0.

The buffer uses the DS3DALG_NO_VIRTUALIZATION algorithm for 3-D
effects, and this property cannot be changed by the application. Other algorithms
can be applied to custom buffers in audiopaths that have been authored in
DirectMusic Producer. For information on 3-D algorithms, see
DSBUFFERDESC in the DirectX documentation.

See Also

e Standard Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DMUS_APATH_DYNAMIC_MONO

This standard audiopath sets up a nonshared buffer of type Mono that has no 3-D
parameters or special effects.

Applications can obtain an interface to the buffer by calling one of the
GetObjectInPath methods with dwStage set to DMUS_PATH_BUFFER and
dwBuffer set to 0.

See Also

e Standard Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DMUS_APATH_DYNAMIC_STEREO

This standard audiopath sets up a nonshared buffer of type Stereo. This
audiopath is intended for sound effects on stereo buffers. No reverberation is
available.

Applications can obtain an interface to the buffer by calling one of the
GetObjectInPath methods with dwStage set to DMUS_PATH_BUFFER and
dwBuffer set to 0.

See Also

e Standard Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DMUS_APATH_SHARED_STEREOPLUSREVERB

This standard audiopath sets up buffers of type Reverb and Stereo.

The Stereo buffer is shared among multiple audiopaths. It is a sink-in buffer,
meaning that it accepts data directly from the synthesizer, not from other buffers.

Applications can obtain an interface to the Stereo buffer by calling one of the
GetObjectInPath methods with dwStage set to DMUS_PATH_BUFFER and
dwBuffer set to 0.

The Reverb buffer is also a shared sink-in buffer. Unlike the Stereo buffer, it
accepts a mono input from the synthesizer and converts the data to stereo format.

Applications can obtain an interface to the Reverb buffer by calling one of the
GetObjectInPath methods with dwStage set to DMUS_PATH_BUFFER and
dwBuffer set to 1.

The following example function retrieves an IDirectSoundFXWavesReverb8
interface to the DMO in the Reverb buffer on a default
DMUS_APATH_SHARED_STEREOPLUSREVERB audiopath:

HRESULT GetDMO(IDirectMusicPerformance8* pPerf,IDirectSoundFXWavesRe
{

IDirectMusicAudioPath8 * pAudioPath;

HRESULT hr;

hr = pPerf->GetDefaultAudioPath(&pAudioPath);

if (SUCCEEDED(hr))

{

HRESULT hr = pAudioPath->GetObjectInPath(DMUS_PCHANNEL_ALL,

DMUS_PATH_BUFFER_DMO, 1,
GUID_All _Objects, 0, IID_IDirectSoundFXWavesReverb8,
(LPVOID*) ppEffectDMO);

}

return hr;

}

See Also

e Standard Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Playing Sounds on Audiopaths

If your application has created a default audiopath in the call to
IDirectMusicPerformance8::InitAudio, you can play a segment on this path
by using IDirectMusicPerformance8::PlaySegment. You can also play a
segment on the default path by passing NULL in the pAudioPath parameter of
IDirectMusicPerformance8::PlaySegmentEx.

If there is no default audiopath, or if you want to play a segment on another path,
you must use PlaySegmentEx rather than PlaySegment. You can specify the
audiopath in two ways:

e Supply a pointer in the pAudioPath parameter. Usually this is the
IDirectMusicAudioPath8 interface pointer you received when the
audiopath was created.

¢ Include DMUS_SEGF_USE_AUDIOPATH in dwFlags. This flag causes
the segment to create an audiopath from a configuration embedded in the
segment object.

Note An audiopath created in response to the
DMUS_SEGF_USE_AUDIOPATH flag is released as soon as the segment has
stopped playing. If the audiopath contains an effect such as reverberation, the
effect is cut short prematurely. To prevent this from happening, the application
should create the audiopath manually and release it only after a suitable delay.

Bands are not downloaded for segments played with the
DMUS_SEGF_USE_AUDIOPATH flag unless automatic downloading is
enabled. For more information, see Automatically Downloading Bands.

The following example function plays a segment on an embedded audiopath
configuration if one is available, or on the default audiopath otherwise:

HRESULT PlayOnEmbedded(IDirectMusicPerformance8* pPerf, IDirectMusic

{
IDirectMusicAudioPath8 * pPath = NULL;

IUnknown *pConfig;
HRESULT hr;

if (pSegq)

}

if (SUCCEEDED(hr = pSeg->GetAudioPathConfig(&pConfig)))

{
hr = pPerf->CreateAudioPath(pConfig, TRUE, &pPath);

pConfig->Release();

}
hr = pPerf->PlaySegmentEx(pSeg, NULL, NULL, O, ©, NULL, NULL, pF

if (pPath)

pPath->Release();
pPath = NULL;

}

return hr;

}

If you have an interface to the audiopath, you can change the volume by using
IDirectMusicAudioPath8::SetVolume. Unlike the global parameter
GUID_PerfMasterVolume, which affects all sounds playing on the synthesizer,
this method sets the volume only on the performance channels playing on this
audiopath.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Retrieving Objects from an
Audiopath

It is often necessary to retrieve an interface to a particular object within the
audiopath. Common reasons to do so include the following:

e To manipulate the 3-D properties of sounds by obtaining an
IDirectSound3DBuffer8 interface.

e To set global 3-D sound properties by obtaining an
IDirectSound3DListener8 interface from the primary buffer.

e To set effects on a secondary buffer by obtaining the IDirectSoundBuffer8
interface.

e To set effect parameters by obtaining an interface to a DMO such as
IDirectSoundFXI3DL2Reverb8.

Objects can be retrieved from an audiopath by calling
IDirectMusicSegmentState8::GetObjectInPath on the segment state that is
playing on the audiopath. You can also call
IDirectMusicAudioPath8::GetObjectInPath on the audiopath object itself.
The following table gives information about the parameters to these two
methods.

dwStage guidObject

DMUS_PATH_AUDIOPATH (*) Ignored
DMUS_PATH_AUDIOPATH_GRAPH Ignored

Tool class ID or
GUID_AII_Objects to enumerate

DMUS_PATH_AUDIOPATH_TOOL

DMUS_PATH_BUFFER Ignored

DMO class ID, such as
DMUS_ PATH BUFFER DMO GUID _DSEFX STANDARD GARG

GUID_AII_Objects to enumerate

DMUS_PATH_MIXIN_BUFFER Ignored

DMO class ID, such as

GUID _DSFX STANDARD I3DL?2]
or

GUID_AII_Objects to enumerate

DMUS_PATH_MIXIN_BUFFER_DMO

DMUS_PATH_PERFORMANCE Ignored
DMUS_PATH_PERFORMANCE_GRAPH Ignored

Tool class ID or
GUID_AII_Objects to enumerate

Port class ID or
GUID_AII_Objects to enumerate

DMUS_PATH_PRIMARY_BUFFER Ignored
DMUS_PATH_SEGMENT (*) Ignored
DMUS_PATH_SEGMENT_GRAPH (*) Ignored

Tool class ID or
GUID_AII_Objects to enumerate

Track class ID or
GUID_AII_Objects to enumerate

DMUS_PATH_PERFORMANCE_TOOL

DMUS_PATH_PORT

DMUS_PATH_SEGMENT_TOOL (*)

DMUS_PATH_SEGMENT_TRACK (*)

Notes (*) Objects in this stage cannot be retrieved by
IDirectMusicAudioPath8::GetObjectInPath.

(**) The standard DMOs provided with DirectX also support the IMediaObject,
IMediaObjectInPlace, and IMediaParams interfaces.

For more information on the values for dwIndex when retrieving standard
buffers, see Standard Audiopaths.

The following example function retrieves a segment from the segment state that
was created when the segment was played:

HRESULT GetSegmentFromState(IDirectMusicSegmentState* pSegState, IDi

{
IDirectMusicSegmentState8* pSegState8;

HRESULT hr;

if (SUCCEEDED(hr = pSegState->QueryInterface(IID_IDirectMusicSegme
(void**) &pSegState8)))
{

hr = SUCCEEDED (pSegState8->GetObjectInPath(®, DMUS_PATH_SEGMENT,
GUID_NULL, O, IID_IDirectMusicSegment, (void**) pp
pSegState8->Release();

}

return hr;

}

If you already have an interface to an effects buffer, it is also possible to retrieve
a DMO interface by using IDirectSoundBuffer8::GetObjectInPath.

You can retrieve an IDirectSoundBuffer8 interface for any buffer in the
audiopath, but some methods are not valid. For more information, see the
IDirectSoundBuffer8 interface in the DirectX documentation.

It is not possible to change parameters of a buffer that were set when the buffer
was created by DirectMusic, such as the 3-D algorithm. However, you can
specify such parameters when creating custom audiopaths in DirectMusic
Producer.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using 3-D Sound in DirectMusic

Using the DirectSound API, you can locate DirectMusic sounds in space and can
apply Doppler shift to moving sounds.

3-D effects are applied to individual DirectSound buffers. Because you can
direct different sounds along different audiopaths, each with its own buffer, it's
easy to apply different parameters to different sounds.

To apply 3-D effects to a buffer, you must obtain an IDirectSound3DBuffer8
interface to a buffer that has 3-D capabilities, such as one in the
DMUS_APATH DYNAMIC_3D standard audiopath. You can also create a
suitable audiopath from a configuration object that specifies 3-D parameters for
a buffer.

The following example code creates a standard audiopath and retrieves an
IDirectSound3DBuffer8 interface. Assume that g _pPerformance is a valid
IDirectMusicPerformance8 pointer.

HRESULT hr;
IDirectMusicAudioPath8* g_p3DAudioPath;
IDirectSound3DBuffer8* g_pDS3DBuffer;

if (SUCCEEDED(hr = g_pPerformance->CreateStandardAudioPath(
DMUS_APATH_DYNAMIC_3D, 64, TRUE, &g_p3DAudioPath)))
{

hr = g_p3DAudioPath->GetObjectInPath(
DMUS_PCHANNEL_ALL, DMUS_PATH_BUFFER, O,
GUID_NULL, O, IID_IDirectSound3DBuffers,
(LPVOID*) &g_pDS3DBuffer);

}
if (FAILED(hr))
{

}

ErrorExit(hr); // Add error-handling code.

To adjust global 3-D parameters and manipulate the position and orientation of
the listener, you must obtain an IDirectSound3DListener8 interface from the
primary buffer in any audiopath by using

IDirectMusicAudioPath8::GetObjectInPath or

IDirectMusicSegmentState8::GetObjectInPath, setting the dwStage
parameter to DMUS_PATH_PRIMARY_BUFFER. The following example

function retrieves the listener from an audiopath:

HRESULT GetListener(IDirectMusicAudioPath8* pPath, IDirectSound3DL1is

{
HRESULT hr = E_INVALIDARG;

if (NULL !'= pPath)

{
hr = pPath->GetObjectInPath(®, DMUS_PATH_PRIMARY_BUFFER, 0,

GUID_NULL, 6, IID_IDirectSound3DList
(LPVOID*) pplListener);
}

return hr;

i3

See Also

e Retrieving Objects from an Audiopath
e Standard Audiopaths.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Effects in DirectMusic

DirectX provides support for effects processing of sounds by DirectX Media
Objects (DMOs). A standard set of effects is available to every DirectX
application. Other DMOs can be registered on the system.

All the standard DMOs can process 8-bit or 16-bit PCM data, as well as 32-bit
floating-point formats, with one or two channels at any sample rate supported by
DirectSound. Waves reverberation does not support 8-bit samples.

Effects are attached to DirectSound buffers in audiopaths. To add, remove, or
modify effects at run time, an application must obtain an interface to the buffer
and use the DirectSound API.

If you are playing segments authored in DirectMusic Producer with audiopath
configurations, any effects are set up when you create the audiopath from the
configuration object. A standard audiopath might also contain effects. However,
in some cases you may prefer to implement an effect on a custom audiopath at
run time or add an effect to a standard audiopath. For example, you might want
to add an effect to a standard audiopath so that you can apply the effect to
standard WAV or MIDI files.

To apply an effect to an audiopath, you must first obtain an
IDirectSoundBuffer8 interface to a buffer on the path. Then set one or more
effects on that buffer by using IDirectSoundBuffer8::SetFX.

To learn how to obtain a buffer interface, see Retrieving Objects from an
Audiopath. For information on how to identify standard audiopath buffers in the
call to GetObjectInPath, see the audiopath types under Standard Audiopaths.

The following example code sets a standard audiopath, retrieves a buffer from
the path, and sets an echo effect on the buffer:

HRESULT SetEchoEffect(IDirectMusicPerformance8 *pPerformance,
IDirectMusicAudioPath* p3DAudioPath,
IDirectSoundBuffer8* pDSBuffer)

{
HRESULT hr;

// Create a standard audiopath with a source and
// environment reverb buffers. Don't activate the path;
// SetFX fails if the buffer is running.

if(FAILED(hr = pPerformance->CreateStandardAudioPath(
DMUS_APATH_DYNAMIC_3D, 64, FALSE, &p3DAudioPath)))
return hr;

// Get the buffer in the audiopath.

if(FAILED(hr = p3DAudioPath->GetObjectInPath(DMUS_PCHANNEL_ALL,
DMUS_PATH_BUFFER, 0, GUID_NULL, 0, IID IDirectSoundBuffers,
(LPVOID*) &pDSBuffer)))
return hr;

// Describe the effect.

DSEFFECTDESC dsEffect;
dseffect.dwSize = sizeof (DSEFFECTDESC);
dseffect.dwFlags = 0;
dseffect.guidDSFXClass GUID_DSFX_STANDARD_ECHO,
dsEffect.dwReservedl =

dsgEffect.dwReserved?2
DWORD dwResults;

// Set the effect.
if (FAILED(hr = pDSBuffer->SetFX(1, &dsEffect, &dwResults)))

{
p3DAudioPath->Activate(TRUE);

return hr;
}

// You can check the value of dwResults here to ascertain
// whether the effect was allocated, and how.

// Activate the path.

p3DAudioPath->Activate(TRUE);
return hr;

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Buffer Chains

A sound does not necessarily go through only a single secondary sound buffer. It
is possible for buffers in an audiopath to send data to other secondary buffers.
The advantage in doing so is that sounds from multiple buffers can be directed to
a shared buffer where common 3-D parameters or special effects can be applied.
Shared buffers can also be more efficient.

Buffer chains are set up automatically when an audiopath is created from an
audiopath configuration embedded in a DirectMusic Producer file. For more
information, see Using Audiopaths.

Buffer chains cannot be created by using the DirectSound API.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Compositional Elements

This section is a guide to using musical components in a DirectMusic application
to create a soundtrack that is, to some extent, composed as it plays. It is
presumed that you have a basic understanding of elements such as chordmaps
and styles. If not, you should first read Introduction to Dynamic Musical
Soundtracks.

It is possible to incorporate files from DirectMusic Producer into applications
without working with individual compositional elements. Many applications use
only fully authored segments. However, using individual components gives
greater control over the performance at run time.

The following topics are discussed in this section:

Music Files for Composition

Overview of Programming for Composition
Using Styles

Using Motifs

Using Chordmaps

Using Templates

Using Transitions

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Music Files for Composition

When programming for DirectMusic composition, you will use a variety of files
created in DirectMusic Producer or a similar application. You load these
elements into the application as COM objects and obtain interfaces to them.

The following table summarizes the types of file objects you will encounter. Any
of these objects can also be obtained from a container file or from a resource.

The class GUID is the value that you put in the guidClass member of the
DMUS_OBJECTDESC structure when loading the object.

Element Class GUID Interface File .
extension
Band CLSID_DirectMusicBand IDirectMusicBand8 .bnd

Chordmap CLSID_DirectMusicChordMap IDirectMusicChordMap8 .cdm
DLS

CLSID_DirectMusicCollection IDirectMusicCollection8 .dls

collection
Segment CLSID_DirectMusicSegment IDirectMusicSegment8 .sgt
Style CLSID_DirectMusicStyle IDirectMusicStyle8 .Sty

Note Bands can be authored as part of a style, in which case they are
automatically loaded when the style is loaded. Similarly, styles and bands can be
authored into a segment, in which case you don't need separate files for those
elements.

Files can also contain references to other files. If a style contains a reference to a
band file, the band is automatically loaded when the style is, provided the loader
can find the band file.

See Also

e Loading Audio Data

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Overview of Programming for
Composition

When you implement music composed at run time, you will use previously
authored objects as building blocks. In consultation with the author or other
content provider, you can choose to get the musical data in the form of small
building blocks that offer you the greatest possible flexibility and variation at run
time, or you can use larger prefabricated elements that define the form of the
music more fully.

Using the largest building blocks, you load highly structured segments based on
styles, MIDI files, or waveforms that contain everything the performance
requires to play the sound. All you have to do is load the segment and query for
the IDirectMusicSegment8 interface. Pass this interface pointer to the
IDirectMusicPerformance8::PlaySegment or
IDirectMusicPerformance8::PlaySegmentEx method. The style playback
engine selects pattern variations from the style and plays them according to a
fixed chord progression—or, in the case of a MIDI-based segment, simply plays
the MIDI sequence. Band changes are usually contained in the segment as well.

If you want to use smaller building blocks, you obtain the following elements:

e Chordmaps, which are used to build chord progressions.

e Styles, which define a basic melody and rhythm with variations, motifs, and
embellishments.

e Template segments, which are structural plans that control various aspects
of playback, including the length of the segment, whether it loops, where
groove level changes and embellishment patterns are to be placed, and what
types of chords in the chordmap are to serve as signposts.

You can construct a segment by combining any chordmap, style, and template,
using the IDirectMusicComposer8::ComposeSegmentFromTemplate
method.

To have even more flexibility in music composition at run time, you can create
segments based on predefined shapes rather than templates, using the

IDirectMusicComposer8::ComposeSegmentFromShape method. The shape
is used in creating the command and signpost tracks, which control the choice of

embellishment patterns, the chord progression, and the frequency of chord
changes.

When playing segments, you can also control the band used to play the parts.
Bands are typically included in styles and templates, but they can also be
supplied as separate files. To make band changes dynamically, create a
secondary segment containing only the band, using the
IDirectMusicBand8::CreateSegment method, and play this segment when it is
time to assign instruments and instrument settings to the primary segment.

DirectMusic provides many options for creating transitions between segments.
When you cue one segment to play after another, or to replace a currently
playing segment, you have very precise control over the timing, and can
synchronize the transition with the rhythm. In addition, you can have the
DirectMusic composer object create a transitional measure.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Styles

The DirectMusic style object represents a collection of musical patterns, usually
including embellishments and motifs, with a time signature, tempo, and band. It
defines the basic rhythm and the notes to be played in each instrument part. For a
conceptual overview, see Styles.

To obtain a style from a segment, use the IDirectMusicSegment8::GetParam
method, as in the following example function, where the dwStyleIndex parameter
specifies the index of the style within the segment:

HRESULT GetStyle(IDirectMusicSegment8* pSegment, DWORD dwStyleIndex,
IDirectMusicStyle8** ppStyle)
{

return pSegment->GetParam(GUID_IDirectMusicStyle, OXFFFFFFFF,
dwStyleIndex, ©, NULL, (LPVOID*)ppStyle)
¥

A style by itself does not contain enough information to create a segment of
music at run time. For this you need two other components: a chordmap, which
is a scheme of possible chord progressions, and a command track to set the
groove level and embellishments as the music plays. The command track can
come from a template or be generated at run time from a shape. The chordmap
generally comes from a chordmap file or resource.

To create a segment with a command track based on a template, call the
IDirectMusicComposer8::ComposeSegmentFromTemplate method.

To create a segment based on a shape, call the
IDirectMusicComposer8::ComposeSegmentFromShape method. You supply
pointers to a style and a chordmap. You also supply a rate of harmonic motion,
which controls the frequency of chord changes, and a shape constant, which
determines the progression of groove levels and embellishments.

See Also

e Using Templates

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Motifs

A motif is a special kind of pattern in a style. A motif is intended to be played
over the basic style pattern, typically in response to an interactive event. Unlike
other patterns, motifs are always selected and played explicitly by the
application. Although a motif can be as complex as any other pattern, even
containing variations and multiple instrument parts, usually it is a short, simple
musical figure that sounds good against a variety of background patterns. It
might also be a sound effect played by a custom DLS instrument or instruments.

All the motifs authored into a style become available to you as soon as you have
loaded that style. To get a particular motif ready for playback, call the
IDirectMusicStyle8:: GetMotif method, passing in the following parameters:

e The name of the motif. You might know this from the documentation for
the style, or you can obtain it from an index value by using the
IDirectMusicStyle8::EnumMotif method.

e A pointer to receive the IDirectMusicSegment8 interface to the segment
object to be created by the method.

The following example function obtains and plays the motif whose name is
passed in as pwszMotifName:

HRESULT PlayMotif(IDirectMusicPerformance8* pPerf,
IDirectMusicStyle8* pStyle,
WCHAR* pwszMotifName)

{

IDirectMusicSegment* pSeg;
HRESULT hr;
if ((pPerf == NULL) || (pStyle == NULL))

return E_INVALIDARG;
b

// Get the motif segment from the style. Check for S_OK
// specifically, because GetMotif() returns S_FALSE if it
// does not find the motif.

hr = pStyle->GetMotif(pwszMotifName, &pSeq);

if (S_OK == hr)

{
hr = pPerf->PlaySegment (pSeg, DMUS_SEGF_BEAT | DMUS_SEGF_SECONDAR
0, NULL);
pSeg->Release();
}
return hr;

}

Note that pSeg is played as a secondary segment, because a motif is normally
played over a primary segment. You cannot play a motif as a primary segment,
because it does not have a chord track or band track. If you do want to play a
motif against silence, create a primary segment from a style that has only blank
patterns, and keep that segment playing while you play the motif.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Chordmaps

A chordmap object represents a collection of chords that provides the foundation
of the harmonic structure and the mood of the music. A chordmap contains
several pathways with many interconnected chords, providing many possibilities
for the composition engine to choose from in determining the chord progression
in a piece of music. For a conceptual overview, see Chordmaps.

For authored segments, applications don't normally need to concern themselves
with chordmaps. The chordmap is used at the authoring stage to create a fixed
chord progression. However, chordmaps can be used to compose segments at run
time and to alter the chord progression of existing segments.

If a chordmap reference has been authored into a style, you can retrieve a pointer
to its IDirectMusicChordMap8 interface by passing its name (assigned by the
author) to the IDirectMusicStyle8::GetChordMap method. You can also use
the IDirectMusicStyle8::EnumChordMap method to search for a particular
chordmap, or the IDirectMusicStyle8::GetDefaultChordMap method to obtain
a pointer to the default chordmap for the style.

Note DirectMusic Producer does not support authoring chordmap references
into style files.

You set the chordmap for a composition when you create a segment by using
either IDirectMusicComposer8::ComposeSegmentFromTemplate or
IDirectMusicComposer8::ComposeSegmentFromShape.

After a segment has been created, you can change its chordmap by calling the
IDirectMusicComposer8::ChangeChordMap method. This has the effect of
changing the mood of the music without altering its basic rhythm and melody.

Every chordmap has an underlying scale, consisting of 24 tones. You can
determine the tones of the scale by using the
IDirectMusicChordMap8::GetScale method. The lower 24 bits of the variable
pointed to by the pdwScale parameter of this method are set or cleared
depending on whether the corresponding tone is part of the scale. The upper 8
bits give the root of the scale as an integer in the range from 0 through 23 (low C

to middle B).

See Also

e Using Styles

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Templates

A template is a segment that can be used in composing a playable segment of
music at run time. The template sets the length of the segment and any loop
points. It can provide the command track, which controls changes in the

groove level and the choice of embellishment patterns. It also prescribes how the
chordmap is used in composing the segment, by specifying from which signpost
group each new chord must come. For a conceptual overview, see Templates.

There are two ways to obtain a template:

e Load it from a segment file or resource, and request the
IDirectMusicSegment8 interface.

¢ Create it from a shape, using the
IDirectMusicComposer8::ComposeTemplateFromShape method. You
choose the length, the overall shape, whether intro and end embellishment
patterns are to be played, and how long the ending is to be. You get back a
pointer to the IDirectMusicSegment interface from which you can obtain
IDirectMusicSegment8.

After you have obtained a template segment object, you can pass it to the
IDirectMusicComposer8:: ComposeSegmentFromTemplate method, along
with pointers to a style and a chordmap. You also supply a rate of harmonic
motion, which sets the frequency of chord changes. The
ComposeSegmentFromTemplate method creates a segment and returns a
pointer to its IDirectMusicSegment interface.

See Also

e Loading Audio Data

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Transitions

To avoid a sudden and perhaps discordant break when stopping one segment and
beginning another, or when bringing the music to a close, you can have the
composer object create an intermediate or closing segment that provides an
appropriate transition.

You have your choice of three techniques for composing transitional segments:

e 89The IDirectMusicPerformance8::PlaySegmentEx method allows you
to specify a segment in the pTransition parameter. This segment is used as a
template for a newly composed transition. The transition is played at
i64StartTime, and then the segment specified by pSource is played.

¢ The IDirectMusicComposer8::AutoTransition method, given a pointer to
the performance, creates a transition from the currently playing segment to
a second segment of your choice, and then automatically cues the
transitional segment and the second segment for playback, returning an
IDirectMusicSegmentState interface for both. The transition begins
playing immediately or on the next boundary, as specified in the dwFlags
parameter. Optionally, the second segment can be NULL so that the
transition is to silence.

¢ The IDirectMusicComposer8::ComposeTransition method composes a
transition from any point in one segment to the beginning of a second
segment, or to silence, and returns an IDirectMusicSegment interface so
that the application can play the transition.

The AutoTransition and ComposeTransition methods both take a chordmap, a
command, and a set of flags as parameters:

e The chordmap is used to create a chord track that defines the chord
progression in the segment.

e The command is one of the DMUS_COMMANDT_TYPES enumeration.
It determines which type of pattern—either an ordinary groove pattern or
one of the embellishments—is called for in the command track of the
transitional segment. When the segment plays, an appropriate pattern is
selected from the style.

e The flags are from the DMUS_COMPOSEF_FLAGS enumeration and

further define the transition, principally its timing. The
DMUS_COMPOSEF_MODULATE flag can be used to cause the transition
to move smoothly from one tonality to another; it cannot be used when
there is no second segment, because there can be no modulation to silence.

Transitions created by AutoTransition and ComposeTransition are normally a
single measure in length. However, they can be longer if the
DMUS_COMPOSEF_LONG flag is included and the embellishment in the style
is more than one measure long. They also contain at least two measures if they
are of type DMUS_COMMANDT_ENDANDINTRO.

DirectMusic also provides many options for controlling the timing of transitions
from one segment to another. For more information, see the following topics:

e Segment Timing
e DMUS SEGF FLAGS

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Track Composition

Most tracks in a segment are fixed and generate the same data each time the
segment is played. However, tracks can generate their data dynamically each
time they start playing or each time they loop, provided they implement the
IDirectMusicTrack8::Compose method and are configured for composition.

One standard track, the signpost track, supports composition. The signpost track
composes a new chord track from a chordmap.

Normally the track configuration is set by the author, but the application can turn
track composition behaviors on and off by passing one or more of the following
flags to IDirectMusicSegment8::SetTrackConfig or
IDirectMusicSegmentState8::SetTrackConfig.

Flag Effect

The track is composed by the
DMUS_TRACKCONFIG_COMPOSING IDirectMusicSegment8::Compao

method.

The track is automatically
DMUS_TRACKCONFIG_LOOP_COMPOSE composed each time the segment

loops.

The track is automatically
DMUS_TRACKCONFIG_PLAY_COMPOSE composed each time the segment

starts.

Automatic composition can take place only when the segment contains a track in
which to put the composed content. When the signpost track is composed, it
requires a chord track for the new chords. You can ensure that the necessary
tracks exist by calling IDirectMusicSegment8::Compose before playing the
segment.

If you choose to do all composition manually, the only configuration flag to set
is DMUS_TRACKCONFIG_COMPOSING. Provided neither of the other two
flags is set, the tracks will be composed only when you call Compose.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Audio Scripts

Scripts are collections of variables and routines authored in DirectMusic
Producer. Although they consist mainly of text, scripts also contain a few binary
parameters. For a conceptual overview, see Audio Scripts.

Load a script by using the IDirectMusicl.oader8::GetObject method. Obtain
the IDirectMusicScript8 interface, then call IDirectMusicScript8::Init to
associate the script with a performance.

The following example function loads and initializes a script.

HRESULT LoadScript(IDirectMusicPerformance8 * pPerf,
IDirectMusiclLoader8* plLoader,
WCHAR* wstrFileName,
IDirectMusicScript8** ppScript)

DMUS_SCRIPT_ERRORINFO errInfo;
HRESULT hr;

if ((NULL == pPerf) || (NULL == pLoader))

{
return E_INVALIDARG;

}
if (SUCCEEDED(hr = pLoader->LoadObjectFromFile(

CLSID_DirectMusicScript, IID_IDirectMusicScripts,
wstrFileName, (LPVOID*) ppScript)))

{
if (FAILED(hr = (*ppScript)->Init(pPerf, &errInfo)))

(*ppScript)->Release();

}
}
return hr;

}

Apart from Init, the methods of IDirectMusicScript8 have three main purposes:

¢ Set and retrieve the value of variables declared in the script. Because script
routines do not accept parameters, variables are the only way for the script
and the application to exchange information.

e (Call routines. A routine must finish executing before the application thread

can continue.
e Enumerate routines and variables. These methods are of interest chiefly to
script-editing applications.

All the methods of IDirectMusicScript8, except the enumeration methods,
retrieve error information in a DMUS_SCRIPT ERRORINFO structure. An
error can occur if a variable is not found or code within a routine fails to execute.

Scripts can also be used without being directly loaded or called by the
application. A segment authored in DirectMusic Producer can contain a script
track that triggers calls to routines in one or more scripts.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Capturing MIDI

To capture MIDI messages from a device such as a keyboard, create a port for
the capture device and use its IDirectMusicPort8::SetReadNotificationHandle
method to cause an event to be signaled whenever messages are available to be
read. In response to the event, call the IDirectMusicPort8::Read method
repeatedly to place pending events into a buffer, until S_FALSE is returned.
Each time Read is called, as many events are put into the buffer as are available,
or as fit into the buffer. If at least one event was put into the buffer, S_OK is
returned.

To retrieve events from the buffer, call the
IDirectMusicBuffer8::GetNextEvent method. Each call retrieves a single
event, until no more are available, at which point S_FALSE is returned.

The following code fragment illustrates this process. Assume that hEvent was
created with CreateEvent and given to the capture port pPort by a call to
SetReadNotificationHandle. Assume also that pBuffer was initialized by
IDirectMusic8::CreateMusicBuffer.

REFERENCE_TIME rt,;
DWORD dwGroup;
DWORD cb;
BYTE *pb;

DWORD dw = WaitForMultipleObjects(1, hEvent, FALSE, INFINITE);
for (/)
{

hr = pPort->Read(pBuffer);

if (hr == S_FALSE)

break; // No more messages to read into the buffer.
}
pBuffer->ResetReadPtr();
for (;7)
{
hr = pBuffer->GetNextEvent(&rt, &dwGroup, &cb, &pb);
if (hr == S_0K)

// pb points to the data structure for the message, and
// you can do anything that you want with it.

// pb[0] is the status byte.
// pb[1] and pb[2] are the data bytes.

}
else if (hr == S_FALSE)
break; // No more messages in the buffer.

}
} // Done with the buffer.
} // Done reading pending events.

If you don't want to intercept messages, but simply want to send them from one
port to another, you can use the IDirectMusicThru8 interface. See
IDirectMusicThru8::ThruChannel for details.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Advanced Topics in DirectMusic

This section contains information needed for specialized applications that need
functionality beyond that covered under Using DirectMusic.

Information is presented in the following topics:

DirectMusic Tracks

Using DirectMusic Messages
Using DirectMusic Ports

Custom Loading

Using Instrument Collections
Low-Level DLS

DirectMusic Tools

Property Sets for DirectMusic Ports

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Tracks

Tracks are the components of a segment that contain its sequenced data,
including information about notes, underlying chords, tempo, patch and band
changes, and everything else that the performance needs to know to play the
sounds.

Each track is represented by an IDirectMusicTrack8 interface. The methods of
this interface are called by the performance, and most applications don't need to
use them directly. This interface is chiefly of interest for plug-in components that
implement their own track types.

When an application calls IDirectMusicPerformance8::PlaySegment or
IDirectMusicPerformance8::PlaySegmentEx, DirectMusic calls the
IDirectMusicTrack8::Play or IDirectMusicTrack8::PlayEx method on the
segment's tracks. Most tracks respond by immediately generating time-stamped
messages containing data that is valid for the part of the segment that is being
played. These messages are placed in a queue. See Message Creation and
Delivery for more information about what happens after that.

A few tracks do not actively generate messages other than notifications in
response to IDirectMusicTrack8::Play or IDirectMusicTrack8::PlayEx, but
instead do most of their work by responding to requests for information that
come from the performance or other tracks. The most important of these are the
chord, mute, and command tracks. The tempo track sends messages but also
responds to parameter requests.

More information is contained in the following topics:

e Standard Track Types
e Track Configuration

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Standard Track Types

The following list describes the standard track types implemented by Microsoft
DirectMusic. The class identifiers, such as CLSID_DirectMusicBandTrack, are
used to identify track types in calls to various methods.

Track
type

Class GUID

Purpose

Band CLSID_DirectMusicBandTrack

Downloads DLS data to the
messages of type DMUS_I
DMUS_TRANSPOSE_PT
DMUS_CHANNEL,_PRI(
DMUS_MIDI_PMSG (for
Used in segments based on

Chord CLSID_DirectMusicChordTrack

Used to convert music valu
values. Sends messages of -
DMUS_NOTIFICATION
GUID_NOTIFICATION_C

Chordmap CLSID_DirectMusicChordMapTrack

Used in template segments
tracks.

Command CLSID_ DirectMusicCommandTrack

Used in template segments
tracks, and in style segmen
patterns are played. Sends 1
DMUS_NOTIFICATION
GUID_NOTIFICATION_C
notifications.

Lyrics CLSID_DirectMusicLyricsTrack

Used to synchronize words
Generates messages of type
DMUS_LYRIC_PMSG.

Marker CLSID_ DirectMusicMarkerTrack

Used for flow control. The
valid start times for the seg
at which new segments can
information, see Segment 1

Used to play motifs to accc
segments. Sends messages

Motif CLSID_

DirectMusicMotifTrack DMUS_CURVE_PMSG,
DMUS_NOTE_PMSG, ar
DMUS_NOTIFICATION
GUID_NOTIFICATION_N\
notifications).

Mute CLSID_

Enables performance chanr
DirectMusicMuteTrack muted. Used with either sty

based segments.

Parameter
control

CLSID_

Controls the settings on toc
DirectMusicParamControlTrack other objects that support tl
interface.

Pattern CLSID

Contains a single musical [
track is similar to a sequenc
music values rather than fi>
makes it possible to auditio
different chords, and is use
authoring applications. It
play an accompaniment. It
own interface, IDirectMus

DirectMusicPatternTrack

Script CLSID_

DirectMusicScriptTrack Calls routines in an audio s

Segment
trigger

CLSID_

Triggers the playback of se
enables the author of a file
within a segment, rather th:
the application developer.

DirectMusicSegmentTriggerTrack

Sequence CLSID_

Sends sequence messages (
DMUS_NOTE_PMSG an
DMUS_MIDI_PMSG. Us
on MIDI files. Also sends 1
DMUS_CURVE_PMSG
the .sgt format.

DirectMusicSeqTrack

Signpost CLSID_

Used in template segments

DirectMusicSignPostTrack
tracks.

Style CLSID_

Fundamental track for segn
Sends messages of type
DMUS_TIMESIG_PMS(
DMUS_CURVE_PMSG,
DMUS_NOTE_PMSG, ar
DMUS_NOTIFICATION

DirectMusicStyleTrack

GUID_NOTIFICATION_N
notifications).

SysEx CLSID_DirectMusicSysExTrack

Sends system exclusive me
DMUS_SYSEX PMSG. (
based on MIDI files.

Tempo CLSID_DirectMusicTempoTrack

Controls the tempo of the p

Time

. CLSID_DirectMusicTimeSigTrack
Signature

Sends messages of type

DMUS_TIMESIG_PMS(
GUID_NOTIFICATION_N
notifications. The time sign
imported MIDI files and au
specifically created with or
style track implements the -
functionality, so it is not ne
that contains a style track tc
signature track as well.

The Time Signature track s
IDirectMusicTrack interfe
IDirectMusicTrack$.

Wave CLSID_DirectMusicWaveTrack

Sends messages of type D]\
to play time-stamped wave

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Track Configuration

Using the IDirectMusicSegment8::SetTrackConfig and
IDirectMusicSegmentState8::SetTrackConfig methods, an application can
modify the behavior of any track in a segment. Configuration options include the
following:

Enable or disable playback.

Enable or disable parameter calls on a track in a control segment.
Enable or disable notifications.

Override notifications in a primary segment with notifications from a
secondary control segment.

¢ Enable or disable track composition.

e Control the start point of track data used in composing transitions.

For a list of the track configuration flags and a table of the flags valid on
standard tracks, see IDirectMusicSegmentState8::SetTrackConfig.

Two of the configuration flags, DMUS_TRACKCONFIG_CONTROL_PLAY
and DMUS_TRACKCONFIG_CONTROL_NOTIFICATION, extend the
powers of secondary control segments. Normally, a secondary control segment
manages only parameters that are obtained by the performance through calls to
IDirectMusicTrack8::GetParam. Like any segment, the control segment can
also make changes to the performance by sending messages. For example, it
might change the volume of the performance. Such changes might appear to be
overriding parameters in the primary segment, but they differ from true control
changes in two ways:

e They are valid only until a similar change is made by another segment.
Control segment parameters cannot be overridden by other segments.

e As long as they are not overridden, they remain valid even after the sending
segment has finished playing. Control segment parameters are valid only
until another segment becomes the control segment.

When the DMUS_TRACKCONFIG_CONTROL_PLAY or
DMUS_TRACKCONFIG_CONTROL_NOTIFICATION flag is set on a track,
the equivalent track on the primary segment is disabled. It is enabled again when

the controlling segment stops.

The SetTrackConfig method is available on the IDirectMusicSegmentState8
interface as well as on IDirectMusicSegment8. The parameters are identical,
but the effect differs as follows:

e If you change a flag on a segment, subsequent instances of playing segment
states inherit the changed flags. However, segment states that are already
playing do not change their behavior.

e If you change a flag on a segment state, the behavior changes only for that
segment state. To ensure that the behavior changes immediately rather than
after prepare time, you can call IDirectMusicPerformance8::Invalidate.

The following example code disables a chord progression track in the segment
addressed by pSegment. Chord progressions are broadcast as control segment
parameters, so the track is disabled by turning off the
DMUS_TRACKCONFIG_CONTROL_ENABLED flag.

HRESULT hr = pSegment->SetTrackConfig(CLSID_DirectMusicChordTrack,
-1, DMUS_SEG_ALLTRACKS, O, DMUS_TRACKCONFIG_CONTROL_ENABLED);

The next example does the opposite, enabling all chord tracks to play:

hr = pSegment->SetTrackConfig(CLSID_DirectMusicChordTrack,
-1, DMUS_SEG_ALLTRACKS, DMUS_TRACKCONFIG_CONTROL_ENABLED, 0);

See Also

e Track Composition

e Control Segments
o Self-Controlling Segments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using DirectMusic Messages

Data passes through the DirectMusic performance and to the synthesizer in the
form of messages. For the most part, messages are created and processed behind
the scenes, and your application might never have to work directly with them.
However, a basic knowledge of messages can help you understand how
DirectMusic works, and a more thorough understanding will enable you to use
messages for greater control over the performance.

DirectMusic uses two different kinds of messages:

e Performance messages. All sequenced data passes through the performance
engine in this form. These messages contain detailed information about
timing and routing of the data.

e Standard MIDI messages. These can be read from a MIDI file or device and
either passed directly (thrued) to another device or converted to
performance message format when played by the performance.

Applications don't deal directly with MIDI messages. When a segment is played,
all its data is in the form of performance messages and stays that way until it
reaches the final output tool, which converts it to MIDI message format before
sequencing it to the synthesizer. However, some performance messages contain
information similar to that in standard MIDI messages. To help you understand
such messages, this section describes some aspects of the MIDI message format.

Note The DMUS_MIDI_PMSG structure contains data equivalent to that in
any standard MIDI message. However, it is used in performance messages.

Most performance messages are sent by a segment's tracks as the segment is
playing. Applications can also send messages to do things like setting a MIDI
controller, playing a single note, or changing the tempo.

Once a message has been sent, the application cannot retrieve or alter it except
by implementing a tool. For example, a segment authored in DirectMusic
Producer might contain a lyrics track that generates DMUS_LYRIC_PMSG
messages. The only way an application can display the lyrics is by implementing
a tool designed for that purpose. For more information, see DirectMusic Tools.

Notifications are an exception to the rule that messages can be intercepted only
by tools. The IDirectMusicPerformance8::GetNotificationPMsg method
enables the application to retrieve DMUS_NOTIFICATION_PMSG messages.

The following topics discuss messages and how they are routed:

Channels
Message Creation and Delivery

Application-Created Messages

Performance Message Types
Curves

MIDI Messages

See Also

e Overview of Audio Data Flow
¢ Notification and Event Handling

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Channels

A channel is a destination for messages that are specific to one or more parts. A
part might contain notes for a single instrument, or it might contain one or more
waveforms.

Under the MIDI 1.0 standard, there are 16 MIDI channels, meaning that no more
than 16 instruments can be playing at one time. To make more channels
available to applications, DirectMusic creates channel groups. Up to 65,536
channel groups can exist at one time, each containing 16 channels, for a total of
over one million channels. A port can be assigned any number of channel
groups, up to its capability to support them. MIDI hardware ports have only a
single channel group.

System-exclusive messages address all 16 channels within a channel group, but
not other channel groups.

Every part in a DirectMusic performance plays on a performance channel,
sometimes called a PChannel. The performance channel represents a particular
MIDI channel in a particular group on a particular port. When a band is selected
by a performance, each instrument in that band is mapped to a performance
channel, so the part on that channel will play on that instrument.

When audiopaths are being used, identical performance channels on different
audiopaths are mapped to different output channels.

Channel Priority

The number of notes that can be played simultaneously is limited by the number
of voices available on the port. A voice is a set of resources dedicated to the
synthesis of a single note or waveform being played on a channel. In the event
that more notes are playing than there are available voices, one or more notes
must be suppressed by the synthesizer. The choice is determined by the priority
of the voice currently playing the note, which is based on the priority of the
channel. By default, channels are ranked according to their index value, except
that channel 10, the MIDI percussion channel, is ranked highest.

Applications and synthesizers can set their own channel priorities.
See Also

e DMUS CHANNEL PRIORITY PMSG
¢ IDirectMusicPort8::GetChannelPriority

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Message Creation and Delivery

When a segment is played, most of its tracks generate messages containing data
about events that are scheduled to take place during playback. For more
information, see DirectMusic Tracks.

A few tracks send more than one kind of message. For example, a style track
sends note messages and time signature messages. In such cases, an application
can disable certain kinds of messages in the track. For more information, see

Disabling and Enabling Track Parameters.

The performance engine determines when each message is to be processed in
clock time. In the case of channel messages, the performance also determines
which performance channel gets the message. This information, along with other
data—including the message type, its source track, and pointers to the first
toolgraph and tool that are to receive it—is stored in the message structure.

Certain messages, such as tempo and time signature changes, are immediately
processed and freed by the performance. Other messages, such as notes and
patch changes, are placed in a queue and processed in order of time stamp.

Note There is no guarantee that messages with the same time stamp will be
processed in any particular order.

Time signature messages are purely informational. The time signature is built
into the segment and cannot be changed.

Messages are first sent to any tools in the segment toolgraph, then to the
audiopath toolgraph, and finally to the performance toolgraph. Audiopath
toolgraphs are optional components of audiopath configurations in DirectMusic
Producer files. The application doesn't need to do anything to implement an
audiopath toolgraph after creating the audiopath.

The first tool in a toolgraph processes the message and then, if it wants to pass it
on, has the toolgraph stamp the message with a pointer to the next tool. The
toolgraph also flags the message with a delivery type that determines when the
message is delivered to the next tool. This flag is based on what delivery type the

tool is expecting, as follows:

o If the message is flagged as DMUS_PMSGF_TOOL_IMMEDIATE, it is
delivered to the next tool immediately.

e If itis flagged as DMUS_PMSGF_TOOL_QUEUE, the message is
delivered just before the time at which it is supposed to play, taking latency
into account. (See Latency and Bumper Time.)

e If itis flagged as DMUS_PMSGF_TOOL_ATTIME, it is delivered at
exactly the time at which it is to be processed. Notification messages are
given this flag, because there is little or no latency involved in processing a
notification.

The current tool can change the delivery type after the toolgraph has finished
stamping and flagging the message.

Finally, the message arrives at the DirectMusic output tool, which converts all
the data it receives into standard MIDI messages and delivers these to the
synthesizer through the port buffer.

See Also

e Overview of Audio Data Flow
e DirectMusic Tools

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Application-Created Messages

Most messages are generated by tracks, but applications can place messages in
the queue directly. You might do this, for example, to change the tempo or to
play a sound effect as a note on a DLS instrument.

When a performance has multiple audiopaths, DirectMusic may not be able to
route application-created messages correctly, because a new message contains no
information about what audiopath it belongs to. Even a channel-specific message
might belong to a performance channel that is mapped to different audiopaths in
different segments.

To ensure that a message is sent to a particular audiopath, first obtain the
toolgraph for a segment or audiopath by calling
IDirectMusicSegmentState8::GetObjectInPath or
IDirectMusicAudioPath8::GetObjectInPath, retrieving the
IDirectMusicGraph8 interface from the DMUS_PATH_AUDIOPATH_GRAPH
or DMUS_PATH_SEGMENT_GRAPH stage in the audiopath. Then pass the

message to IDirectMusicGraph8::StampPMsg.

See Also

¢ IDirectMusicPerformance8::SendPMsg

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Performance Message Types

Messages are stored in various structures derived from DMUS_PMSG. Because
the C programming language does not support inheritance, the members of
DMUS_PMSG are included in the declaration for each message type as the
DMUS_PMSG_PART macro. These members contain data common to all
messages, including the type of the message, time stamps, the

performance channel to which the message is directed, and what toolgraph and
tool are next in line to process the message. The other members contain data
unique to the message type.

The following standard message structures are defined.

Structure Content
DMUS PMSG Simple message with no additional
parameters.
DMUS_CHANNEL_PRIORITY_PMSG Cannel priority change. See
Channels.
DMUS_CURVE_PMSG Curve.
DMUS_LYRIC_PMSG Text.
Any MIDI message that does not
DMUS_MIDI _PMSG have a unique message type—for

example, a control change.

Music note. MIDI note-on and note-
off messages are combined in this
structure, which specifies the
duration of the note.

DMUS_NOTE_PMSG

Notification. See Notification and

DMUS_NOTIFICATION_PMSG

Event Handling.
DMUS_PATCH_PMSG MIDI patch change.
DMUS_SYSEX_ PMSG MIDI system exclusive message.
DMUS_TEMPO_PMSG Tempo change.
DMUS_TIMESIG_PMSG Time signature change.
DMUS_TRANSPOSE_PMSG Transposition.

DMUS_WAVE_PMSG Waveform playback.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Curves

A curve is a series of MIDI controller changes bringing about a smooth
transition from one value to another—for example, volume fade-out or fade-in.

You can execute a curve by sending a single performance message of type
DMUS_CURVE_PMSG. This structure enables you to set the start and end
values, the duration of the curve, and the shape of the curve. Optionally, you can
also set a reset value, which is the value to which the controller will return in
case of an invalidation.

The wMeasure, nOffset, bBeat, bGrid, and mtOriginalStart members of the
message structure are for information only, and do not affect the timing of the
message. They are set in messages sent by DirectMusic Producer segments, and
can be used by tools. Applications can normally set these members to O.

The wMergeIndex member is used to determine whether changes are
cumulative or overriding. Two curve messages with different merge indexes are
cumulative; otherwise, each message in turn overrides settings made by a
previous message.

The bCCData member contains the MIDI controller number for controller
changes, and is otherwise ignored. For information on controller numbers, see
the MIDI specification.

The following example function causes the volume to fade from its current value
to zero over five seconds. If an invalidation occurs during that period, which
might happen if another segment replaces the currently playing segment, full
volume is restored.

HRESULT SendCurveMsg(IDirectMusicPerformance8* pPerf)
{

DMUS_CURVE_PMSG *pCurveMsg;

HRESULT hr;

if (NULL == pPerf) return E_INVALIDARG;

hr = pPerf->AllocPMsg(sizeof (DMUS_CURVE_PMSG),
(DMUS_PMSG**) &pCurveMsg);

if (SUCCEEDED(hr))

ZeroMemory(pCurveMsg, sizeof(DMUS_CURVE_PMSG));
pCurveMsg->dwSize = sizeof (DMUS_CURVE_PMSG);
pCurveMsg->rtTime 0,
pCurveMsg->dwFlags = DMUS_PMSGF_DX8 | DMUS_PMSGF_REFTIME

| DMUS_PMSGF_LOCKTOREFTIME;
pCurveMsg->dwPChannel = DMUS_PCHANNEL_BROADCAST_PERFORMANCE;
pCurveMsg->dwType = DMUS_PMSGT_CURVE;
pCurveMsg->dwGroupID = OXFFFFFFF;
pCurveMsg->mtDuration = 5000;
pCurveMsg->nEndValue = 0;
pCurveMsg->bCurveShape =
pCurveMsg->bCCData = 7;
pCurveMsg->bFlags = DMUS_CURVE_RESET | DMUS_CURVE_START_FROM_CUR
pCurveMsg->bType = DMUS_CURVET_CCCURVE ;
pCurveMsg->mtResetDuration = 0;
pCurveMsg->nResetValue = 127;
hr = pPerf->SendPMsg((DMUS_PMSG*) pCurveMsg);

DMUS_CURVES_LINEAR;

}

return hr;

}

Note A simpler way to implement volume fading is by using
IDirectMusicAudioPath8::SetVolume. This method always uses the linear
shape for the curve.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

MIDI Messages

Most applications don't deal directly with MIDI messages. However, an
application can send a MIDI command as a performance message—for example,
to make a control change.

MIDI messages consist of a status byte and usually one or two data bytes.
System exclusive MIDI messages are of variable length.

The status byte indicates the type of message and, in some cases, the channel
that is to receive the message. When several events of the same kind are in
sequence in the file, the status byte can be omitted. Data bytes are recognizable
because the high bit is always clear, whereas in status bytes it is always set.

The timing of MIDI events is controlled by a number before each message,
indicating how many ticks separate this event from the last. The actual duration
of a tick depends on the time format in the file header.

Note There is no guarantee that MIDI messages will be processed in the same
order in which they occur in the source data. DirectMusic messages are
delivered in order of time stamp, and two MIDI messages with identical times
might not be delivered in the expected order. Care must be taken, in authoring
MIDI content, to leave an interval between events if they must take place
sequentially. For example, don't place a program change at the same time as a
note that depends on the program change.

MIDI messages are divided into two main categories:

e MIDI Channel Messages
e MIDI System Messages

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

MIDI Channel Messages

A channel message is addressed to a particular MIDI channel, which corresponds
to a part in the music.

A channel message can be either a mode message or a voice message.

A mode message specifies how the channel is to respond to subsequent voice
messages. For example, a mode message might instruct the channel to remain
silent, ignoring all note-on messages.

A voice message instructs the channel to begin or stop playing a note or to
modify notes in some way. Most channel messages are voice messages.

The following table describes types of voice messages.

Voice message Command
Note-on Play a note.
Note-off Stop playing the note.
Modify the tone with data from a pedal, lever, or other
Control change device; also used for miscellaneous controls such as
volume and bank select.
Program (patch) Select an instrument for the channel by assigning a patch
change number.

Modify an individual note, or all notes on the channel,
according to the aftertouch of a key.

Pitch bend change Modify the pitch of all notes played on the channel.

Aftertouch

Keep in mind that these descriptions apply to standard MIDI messages, not
MIDI data that has been converted to performance message format. For
example, two MIDI messages to start and stop a note are combined by
DirectMusic into a single performance message that specifies the duration of the
note. Performance messages also contain additional information about timing
and routing.

The following topics contain more information about MIDI channel messages
and how they are implemented in DirectMusic:

MIDI Notes

Program Changes
Bank Selection

DirectMusic Patch Numbers

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

MIDI Notes

The data bytes of a note-on message represent the pitch and velocity. In most
cases, a pitch value of 0 represents C below subcontra C (called CO in MIDI
notation), 12 represents subcontra C (or C1), 60 is middle C (or C5), and so on.
For drum Kkits, the data byte instead represents a particular drum sound. For
example, as long as the General MIDI (GM) percussion key map is being
adhered to, a value of 60 represents a high bongo sound. Channel 10 is reserved
for drum Kkits.

For information on how DirectMusic converts to and from MIDI notes, see
Music Values and MIDI Notes.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Program Changes

Program changes and patch numbers are a key concept in MIDI playback and in
DirectMusic. A program change assigns a particular instrument (also called a
program or timbre) to a channel so that the notes sent to that channel are played
with the appropriate sound. Instruments are identified by patch numbers. If the
GM instrument set is loaded, a program change specifying patch number 1
always causes the channel to play its notes as an acoustic grand piano. The
actual sound produced at the speakers depends on how the instrument is
synthesized.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Bank Selection

Because a single data byte is used to select the patch number in a program
change, and only seven bits in each data byte of a MIDI message are significant,
a program change can select from a maximum of 128 instruments. To provide a
greater choice, the MIDI specification allows for the use of up to 16,384
instrument banks, each containing up to 128 instruments.

To select an instrument from a different bank, the MIDI sequencer must first
send a control change message called bank select. The two data bytes of this
message are referred to as the most significant byte (MSB) and least significant
byte (LSB), and they are combined to identify a bank. Once the bank has been
selected, each subsequent program change selects an instrument from that bank.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Patch Numbers

In DirectMusic, the instrument patch number is not the seven-bit MIDI patch
number but a 32-bit value that packs the MIDI patch number together with the
MSB and LSB of the bank select and a one-bit flag for a drum kit. This extended
patch number is returned by the IDirectMusicCollection8::EnumInstrument,
IDirectMusicCollection8:: GetInstrument, and
IDirectMusicIlnstrument8::GetPatch methods. It can be changed for an
instrument by using the IDirectMusicInstrument8::SetPatch method.

The organization of DirectMusic patch values is shown in the following table.

Bits Purpose

MIDI patch number (bit 7 is always
0-7 0)
8-15 L.SB bank select (bit 15 is always 0)

16-23 MSB bank select (bit 23 is always 0)
24-30 Unused
31 Flag for drum kit

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

MIDI System Messages

System messages are not exclusive to any channel. There are three kinds, as
shown in the following table.

Message type Purpose

System common Miscellaneous commands and data

System exclusive Equipment-specific commands and data
Synchronization of clock-based MIDI

System real-time .
equipment

Unlike other MIDI messages, system exclusive messages can contain any
number of data bytes. After transmitting the data, the sequencer sends a system
common message called an EOX, which signals the end of the system exclusive
message.

In DirectMusic, the DMUS_SYSEX_ PMSG structure contains the length of the
data and a pointer to an array of data bytes.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using DirectMusic Ports

This section covers access to DirectMusic ports, which is usually required only
by applications that do not use audiopaths. A port is a device that sends or
receives data. It can correspond to a hardware device, a software synthesizer, or
a software filter.

Each port in a DirectMusic application is represented by an IDirectMusicPort8
interface. Methods of this interface are used to retrieve information about the
device, manage the memory on the device, download and unload DLS
instruments, read incoming data, and cue playback buffers.

If your application initializes the performance by using
IDirectMusicPerformance8::InitAudio, as is recommended, the audiopath
manages ports and the mapping of performance channels to ports. You can
obtain an interface to a port in the audiopath by using the
IDirectMusicPerformance8::PChannellnfo method.

Every performance must have at least one port. If you want to use a port other
than the default port, or to set special parameters for the default port, first set up
a DMUS_PORTPARAMSS structure. You don't have to fill in all members, but
you must let DirectMusic know which members have valid information by
putting the appropriate flags in the dwValidParams member. Then pass the
structure to the IDirectMusic8::CreatePort method.

The following example function demonstrates how an object might be created
for the default port, setting five channel groups on the port.

HRESULT CreateTypicalPort(IDirectMusic8* pDM)
{

IDirectMusicPort8* pPort;

DMUS_PORTPARAMS dmos;

if (NULL == pDM) return E_INVALIDARG;

ZeroMemory(&dmos, sizeof (DMUS_PORTPARAMS));

dmos.dwSize = sizeof (DMUS_PORTPARAMS);
dmos.dwValidParams = DMUS_PORTPARAMS_CHANNELGROUPS;
dmos.dwChannelGroups = 5;

return pDM->CreatePort(GUID_NULL, &dmos, &pPort, NULL);

}

After creating a port, you must activate it by calling IDirectMusic8::Activate or
IDirectMusicPort8::Activate and then attach it to the performance by using the
IDirectMusicPerformance8::AddPort method.

When you add a port to a performance, assign a block of performance channels
to it by calling the IDirectMusicPerformance8::AssignPChannelBlock
method. The only time this isn't necessary is when you add the default port by
passing NULL to IDirectMusicPerformance8::AddPort. In that case,
PChannels 0 through 15 are assigned to the MIDI channels in the first group on
the port.

You can map PChannels differently, add more PChannels, or assign PChannels
to a different port by using the
IDirectMusicPerformance8::AssignPChannelBlock and
IDirectMusicPerformance8::AssignPChannel methods.

More information about ports is contained in the following topics:

e Default Port
e Property Sets for DirectMusic Ports

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Default Port

Under versions of Windows 98 prior to Windows 98 Second Edition, and always
when hardware that supports DLS is not available, the Microsoft software
synthesizer is the default port. Under other versions of Windows, a hardware
synthesizer could be the default port.

If you want your application to use the default port, you don't have to call the
IDirectMusic8::CreatePort method before adding the port to the performance.
Instead, you can pass NULL to IDirectMusicPerformance8::AddPort.

You can obtain the default port by a call to IDirectMusic8::GetDefaultPort,
and then check its capabilities by using the IDirectMusicPort8::GetCaps
method. If the port does not meet the needs of your application, use the
IDirectMusic8::EnumPort method to find the Microsoft software synthesizer
or another port.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Custom Loading

It might happen that an application needs to manage object loading itself—for
example, because all objects are stored in a special compressed content file. The
application can create its own loader in the form of an object that supports the
IDirectMusicl.oader8 interface, with at least the GetObject method
implemented. This implementation of the loader must also create its own stream
object that has both the IStream and the IDirectMusicGetl.oader8 interfaces.

When GetObject receives a request to load an object from a file or resource, it
creates a stream and passes the IStream pointer to the object's
IPersistStream::Load method. When it receives a request to load an object
from an existing stream created by the application to manage reading from a
custom file, it creates a copy of the IStream with the same seek pointer and
passes this copy to Load.

The stream object's implementation of IDirectMusicGetl.oader8::GetL.oader
is used by loadable objects to retrieve a pointer to the loader that created the
IStream. Objects need this pointer in order to call GetObject recursively when
they find references to other objects. For example, a segment object might
contain references to WAV files, which must be loaded along with the segment.

To support container objects, the loader must also implement the
IDirectMusicl.oader8::SetObject method. The implementation retains all
information in the supplied DMUS_OBJECTDESC structure, copying the
stream pointer if necessary. It then creates the object and calls
IDirectMusicObject8::ParseDescriptor to obtain the rest of the object's
descriptive information. However, the loader should not actually load the object
until GetObject is called. If only containers with embedded objects need to be
handled, only the case where DMUS_OBJ_STREAM is set needs to be
implemented.

For more information, see Custom L.oading in DirectMusic at
msdn.microsoft.com.

© 2004 Microsoft Corporation. All rights reserved.

http://go.microsoft.com/fwlink/?LinkId=8574

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Using Instrument Collections

In most applications, DLS instrument data is associated with bands and is
downloaded to the synthesizer when the band is downloaded. For more
information, see Using Bands.

For specialized DirectMusic applications that do their own DLS management,
two steps must be taken: loading the instrument collection and downloading
instrument data to a port.

These steps are covered in the following sections:

¢ Loading and Downloading Collections
e Working with Instruments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Loading and Downloading
Collections

Collections are loaded like other objects. To load the standard Roland GM/GS
set, pass GUID_DefaultGMCollection to the loader in the guidObject member
of the DMUS_OBJECTDESC structure. If you intend to use the loader to
access this object more than once, make sure that caching is enabled (as it is by
default) so that you don't create another copy of the GM collection each time you
request it.

The following example function illustrates how to load a collection identified by
its GUID:

HRESULT myGetGMCollection(
IDirectMusiclLoader8 *plLoader,
IDirectMusicCollection8 **ppCollection)

HRESULT hr;
DMUS_OBJECTDESC desc;

if ((NULL == pLoader) || (NULL == ppCollection)) return E_INVALIDA
desc.dwSize = sizeof (DMUS_OBJECTDESC);
desc.guidClass = CLSID_DirectMusicCollection;
desc.guidObject = GUID_DefaultGMCollection;
desc.dwValidData = (DMUS_OBJ_CLASS | DMUS_OBJ_OBJECT);
hr = pLoader->GetObject(&desc, IID_IDirectMusicCollection8,
(void **) ppCollection);
return hr;

}

When you have obtained a pointer to the IDirectMusicCollection8 interface,
you have access to all the instruments in the collection. At this point, though,
none of them have been downloaded to a port.

To download an entire collection at once, you must associate the collection with
a segment and then call the IDirectMusicSegment8::Download method. For an
example, see Playing a MIDI File with Custom Instruments.

These steps are necessary only when you want to use a collection other than the

default one. Normally, when you call IDirectMusicSegment8::Download, the
instruments downloaded to the port are from the default collection authored into
the segment, or from the General MIDI set if the segment does not reference a
collection. When you download a band, all DLS data needed by the instruments
in that band is downloaded.

See Also

e Loading Audio Data
e Using Bands

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Working with Instruments

When a collection object is created and loaded from a collection file or resource,
it is not bound to any specific port. You can download different instruments to
different ports or download a single instrument to multiple ports.

You can retrieve the patch number and name of all the available instruments by
using the IDirectMusicCollection8::EnumInstrument method.

The following example function enumerates all instruments in a collection:

void ListInstruments(IDirectMusicCollection8 *pCollection)

{
HRESULT hr = S_OK;

DWORD dwPatch;
WCHAR wszName [MAX_PATH];
DWORD dwIndex;

for (dwIndex = 0; hr == S_OK; dwIndex++)
{

hr = pCollection->EnumInstrument(
dwIndex, &dwPatch, wszName, MAX_PATH);

if (hr == S_0K)

{

// Do something with name of patch in wszName.

b
b
by

Obtain a pointer to a specific instrument by passing its patch number to the
IDirectMusicCollection8::GetInstrument method.

After obtaining an instrument, you can change its patch number by using the
IDirectMusicIlnstrument8::SetPatch method.

To download a single instrument to a port, pass an IDirectMusicInstrument8
interface pointer to the IDirectMusicPort8::DownloadInstrument or
IDirectMusicPerformance8::DownloadInstrument method. This call makes
the DLS data available on the port; it does not associate the instrument with any
particular performance or audiopath.

To save memory, only waveforms and articulation required for given ranges of
notes are downloaded. For example, for a bassoon you might specify that only
data for the note range from low C through middle B is to be downloaded. Data
for regions falling entirely outside that range is not downloaded.

The following code example, given a collection, a patch number, a port, and a
range of notes, retrieves the instrument from the collection and downloads it. It
sets up an array of one DMUS_NOTERANGE structure and passes this to the
IDirectMusicPort8::DownloadInstrument method. Typically, only a single
range of notes is specified, but it is possible to specify multiple ranges. If you
pass NULL instead of an array, the data for all regions is downloaded.

HRESULT DownloadCollection(
IDirectMusicCollection8 *pCollection,
IDirectMusicPort8 *pPort,
IDirectMusicDownloadedInstrument8 **ppDLInstrument,
DWORD dwPatch,
DWORD dwLowNote,
DWORD dwHighNote)

HRESULT hr;
if ((NULL == pCollection) || (NULL == pPort) || (NULL == ppDLInstr

{
return E_INVALIDARG;

}

IDirectMusicInstrument8* pInstrument;
hr = pCollection->GetInstrument(dwPatch, &pInstrument);
if (SUCCEEDED(hr))

{
DMUS_NOTERANGE NoteRange[1];

NoteRange[0] .dwLowNote = dwLowNote;

NoteRange[0] .dwHighNote = dwHighNote;

hr = pPort->DownloadInstrument(pInstrument, ppDLInstrument, Note
pInstrument->Release();

}

return hr;

}

The DownloadInstrument method returns a pointer to the
IDirectMusicDownloadedInstrument8 interface. This pointer has just one
purpose: to identify the instrument in a subsequent call to the
IDirectMusicPort8::UnloadInstrument method, which unloads the instance of
the instrument on a particular port.

The following function downloads an instrument and then unloads it, which is

not useful except to illustrate how the IDirectMusicDownloadedInstrument8
pointer can be used:

HRESULT DownloadAndUnload(
IDirectMusicInstrument8* pInstrument,
IDirectMusicPort8 *pPort)

{
HRESULT hr;
IDirectMusicDownloadedInstrument* pDLInstrument;
if ((NULL == pInstrument) || (NULL == pPort)) return E_INVALIDARG;
hr = pPort->DownloadInstrument(pInstrument, &pDLInstrument, NULL,
if (SUCCEEDED(hr))
{
hr = pPort->UnloadInstrument(pDLInstrument);
pDLInstrument->Release();
}
return hr;
¥

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Low-Level DLS

If you are writing an application that edits DLS collections or creates
instruments from waveform samples at run time, you must be able to download
instrument data to the synthesizer without encapsulating it in a DirectMusic
instrument object.

Working with DLS data requires knowledge of the DLS specification and file
structure. For detailed information on these topics, contact the MIDI
Manufacturers Association.

To download raw instrument data, first get a pointer to the
IDirectMusicPortDownload8 interface, as shown in the following code
example, where it is assumed that pIPort is a valid pointer to an
IDirectMusicPort8 interface:

IDirectMusicPortDownload **ppIDownloadPort;

HRESULT hr = pIPort->QueryInterface(IID_IDirectMusicPortDownload8,
(void **) ppIDownloadPort);

If the HRESULT is not S_OK, the port does not support DLS downloading.

Next, identify the buffers that must be prepared and downloaded. To send an
instrument to the synthesizer, you will create the following buffers:

¢ One instrument buffer, which represents the entire instrument definition
with all the regions and articulations.

e One or more waveform buffers, which describe each waveform that the
instrument references for its regions.

Each buffer must be tagged with a unique identifier. Identifiers are used to
resolve linkages between buffers, in particular the links between regions and
waveforms. Tally the number of buffers that you need to download, and call
IDirectMusicPortDownload8::GetDLId to allocate a range of identifiers. For
example, if you are downloading an instrument with three waveforms, you must
download four buffers in all, so request a set of four identifiers.

For each buffer, calculate the size needed, then call
IDirectMusicPortDownload8:: AllocateBuffer to allocate it. This method
returns an IDirectMusicDownload8 interface representing the buffer. Call
IDirectMusicDownload8:: GetBuffer to access the memory.

Note There are two methods called GetBuffer:

¢ IDirectMusicPortDownload8::GetBuffer returns an
IDirectMusicDownload interface pointer for a buffer object whose
download identifier is known.

¢ IDirectMusicDownload::GetBuffer returns a pointer to the memory in the
buffer.

Now write the data into the buffers. Each buffer starts with a
DMUS_DOWNLOADINFO structure, which defines the size and functionality
of the download. This structure must be prepared as follows:

e Set the dwDLType member to either
DMUS_DOWNLOADINFO_INSTRUMENT? for an instrument or
DMUS_DOWNLOADINFO WAVE for a waveform.

¢ Set the dwDLId member to one of the unique identifiers that you obtained
by using IDirectMusicPortDownload::GetDLId.

e Set the dwWNumOffsetTableEntries member to the number of entries in the
DMUS_OFFSETTABLE structure.

e Set the cbSize member to the size of the download chunk, including
DMUS_DOWNLOADINFO and DMUS_OFFSETTABLE.

The DMUS_DOWNLOADINFO structure is always followed by a
DMUS_OFFSETTABLE structure. This offset table is used to manage all links
within the data. Whenever a structure in the data refers to another structure, it
addresses it with an integer index instead of a pointer. For every structure within
the data that can be referenced, there is a unique index. The
DMUS_OFFSETTABLE translates this integer index into a byte offset into the
data.

The instrument or WAV data follows the DMUS_OFFSETTABLE. If the
download is an instrument, the data starts with the DMUS_INSTRUMENT
structure. Otherwise, it starts with the DMUS_WAVE structure.

The instrument data that follows the DMUS_INSTRUMENT structure is

organized in the following structures:

DMUS_ARTICPARAMS
DMUS_ARTICULATION
DMUS_ARTICULATION2
DMUS_COPYRIGHT
DMUS_EXTENSIONCHUNK
DMUS_INSTRUMENT
DMUS_NOTERANGE
DMUS_REGION

The WAV data pointed to by the DMUS_WAVE structure is organized in a
DMUS_WAVEDATA structure.

When the buffers are all ready, download them by using
IDirectMusicPortDownload8::Download. Download the waveform buffers
first so that they are in place and can be referenced when the instrument is
downloaded.

Once the buffers have been downloaded, the synthesizer is ready to play the
instrument. The memory in the buffer is no longer accessible.

Later, when done playing the instrument, unload the buffers and release them.
First unload the instrument buffer, then all the waveform buffers. To unload, pass
the IDirectMusicDownload8 pointers to
IDirectMusicPortDownload8::Unload. Then release each buffer with a call to
IDirectMusicDownload8::Release.

To update an instrument that has already been downloaded, you cannot write
over the previously downloaded buffer. Instead, replace the instrument, but not
the waveforms. To do this, call IDirectMusicPortDownload8::AllocateBuffer
to allocate a new IDirectMusicDownload8 interface with a buffer of the correct
size. Be sure to generate a new identifier for the buffer with a call to
IDirectMusicPortDownload8::GetDLId. Write the new articulation
information into the buffer; then download it. Then unload the previously
downloaded buffer with a call to IDirectMusicPortDownload8::Unload.

To update a waveform buffer, take one extra step. Create both a new waveform
buffer and an updated instrument buffer that references it. Download the new
waveform, then the new instrument. Then unload the old instrument and the old

waveform.
More information is contained in the following topic:

e Creating DLS Instruments Programmatically

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Creating DLS Instruments
Programmatically

The following example code shows how to create a DLS instrument from a WAV
file and make it available to the performance.

The entry point for the example is the PlayDLSFromWAYV function, which
creates and downloads the instrument and plays two notes on it by sending
performance messages. This function uses two classes defined in the DirectX
sample framework. The pWaveFile parameter is an instance of CWaveFile
representing a WAV file that has already been opened. An instance of
CMusicManager is used to create and initialize the performance.

// Declare data structures for download.

#pragma pack(2)
struct INSTRUMENT_DOWNLOAD

{
DMUS_DOWNLOADINFO dlInfo;
ULONG uloffsetTable[4];
DMUS_INSTRUMENT dmInstrument;
DMUS_REGION dmRegion;
DMUS_ARTICULATION dmArticulation;
DMUS_ARTICPARAMS dmArticParams;

iy

struct WAVE_DOWNLOAD

{
DMUS_DOWNLOADINFO dlInfo;
ULONG uloffsetTable[2];
DMUS_WAVE dmwave;
DMUS_WAVEDATA dmwaveData;

i

#pragma pack()
// Define some values for instrument parameters.

#define FIVE_HERTZ (OxFCACAE9C)

#define ZERO_SECONDS (0x80000000)
#define ONE_MILLISECOND (OxD1490F12)
#define ONE_HUNDRED_PERCENT (0OxO3E80000)

void InitializeInstDownload(INSTRUMENT_DOWNLOAD *pInstDownload, DWOR

{

}

ZeroMemory(pInstbDownload,
pInstDownload->dlInfo.dwDLType
pInstDownload->dlInfo.cbSize =
pInstDownload->dlInfo.dwDLId =

sizeof (INSTRUMENT_DOWNLOAD));

= DMUS_DOWNLOADINFO_INSTRUMENT;
sizeof (INSTRUMENT_DOWNLOAD);
dwDLId;

pInstDownload->dlInfo.dwNumOffsetTableEntries = 4;

pInstDownload->ulOffsetTable[0]
pInstDownload->ulOffsetTable[1]
pInstDownload->ulOffsetTable[2]
pInstDownload->ulOffsetTable[3]

offsetof (INSTRUMENT_DOWNLOAD, d
offsetof (INSTRUMENT_DOWNLOAD, d
offsetof (INSTRUMENT_DOWNLOAD, d
offsetof (INSTRUMENT_DOWNLOAD, d

pInstDownload->dmInstrument.ulFirstRegionIdx = 1;
pInstDownload->dmInstrument.ulGlobalArtIdx = 2;

pInstDownload->dmInstrument.ulPatch =

pInstDownload->dmRegion.
pInstDownload->dmRegion.
pInstDownload->dmRegion.
pInstDownload->dmRegion
pInstDownload->dmRegion.
pInstDownload->dmRegion
pInstDownload->dmRegion
pInstDownload->dmRegion
pInstDownload->dmRegion
pInstDownload->dmRegion
pInstDownload->dmRegion

RangeKey.usHigh =
RangeVelocity.usHigh = 127;
fusOptions =
.WavelLink.ulChannel = 1;
WavelLink.ulTableIndex = dwDLIdWave;
.WavelLink.usPhaseGroup = 0O;
.WSMP.cbSize =
.WSMP. fulOptions =
.WSMP.usUnityNote = 60; // Middle C
.WLOOP[0].cbhSize
.WLOOP[0].ulType

dwPatch;
127;

F_RGN_OPTION_SELFNONEXCLUSI

sizeof (WSMPL);
F_WSMP_NO_TRUNCATION;,

sizeof (WLOOP);
WLOOP_TYPE_FORWARD;

pInstDownload->dmArticulation.ulArt1Idx 3,

pInstDownload->dmArticParams.
pInstDownload->dmArticParams.
pInstDownload->dmArticParams.
pInstDownload->dmArticParams.
pInstDownload->dmArticParams.
pInstDownload->dmArticParams.

pInstDownload->dmArticParams.
pInstDownload->dmArticParams.
pInstDownload->dmArticParams. =
.VOlEG. tcRelease =

pInstDownload->dmArticParams

LFO.tcDelay = ZERO_SECONDS;
LFO.pcFrequency = FIVE_HERTZ,
PitchEG.tcAttack = ZERO_SECONDS;
PitchEG.tcDecay = ZERO_SECONDS;
PitchEG.ptSustain = ONE_HUNDRED_PER
PitchEG.tcRelease = ONE_MILLISECONC
VOlEG.tcAttack = ZERO_SECONDS;
VOlEG.tcDecay = ZERO_SECONDS;
VOlEG.ptSustain = ONE_HUNDRED_PERCE
ONE_MILLISECOND;

void InitializeWaveDownload(WAVE_DOWNLOAD *pWaveDownload, DWORD dwDL

{

ZeroMemory (pWaveDownload, sizeof (WAVE_DOWNLOAD)) ;

pwaveDownload->d1lInfo.dwDLType =

pwaveDownload->d1lInfo.cbSize
pwaveDownload->d1lInfo.dwDLId

DMUS_DOWNLOADINFO_WAVE;
= dwOverallSize;
dwDLId;

pwaveDownload->d1lInfo.dwNumOffsetTableEntries = 2;

pwaveDownload->ulOffsetTable[0]
pwaveDownload->ulOffsetTable[1]

offsetof (WAVE_DOWNLOAD, dmWave)
offsetof (WAVE_DOWNLOAD, dmwWaveC

pwaveDownload->dmwave.ulWaveDataIdx = 1;
memcpy (&pwWaveDownload->dmwWave.WaveformatEx, pwfex, sizeof(WAVEFC

pwaveDownload->dmwWaveData.cbSize = dwWaveSize;

}

void PlayDLSFromwAV(HWND hwWndMain, CWaveFile *pwWaveFile)

{
const DWORD dwPatch = 0x00123456;

// Create and initialize performance.
CMusicManager musicManager;
IDirectMusicPerformance8* pPerf;

HRESULT hr = musicManager.Initialize(hWndMain);
pPerf = musicManager.GetPerformance();

// Get interfaces to the port.

IDirectMusicPort* pIDirectMusicPort = NULL;
if (SUCCEEDED(hr))

{
b

IDirectMusicPortDownload8* pIDirectMusicPortDownload8 = NULL;
if (SUCCEEDED(hr))

{
b

// Reserve two download IDs, and retrieve the first.

hr = pPerf->PChannelInfo(0, &pIDirectMusicPort, NULL, NULL);

hr = pIDirectMusicPort->QueryInterface(IID_IDirectMusicPortC

DWORD dwDLId = O;
if (SUCCEEDED(hr))

{
b

// Allocate a buffer for the instrument data (regions, articulat

hr = pIDirectMusicPortDownload8->GetDLId(&dwDLId, 2);

IDirectMusicDownload8* pIDirectMusicDownloadArticulation = NULL;
if (SUCCEEDED(hr))

{
b

// Allocate a buffer for the WAV data.

hr = pIDirectMusicPortDownload8->AllocateBuffer(sizeof (INST

IDirectMusicDownload8* pIDirectMusicDownloadwWave = NULL;
DWORD dwAppend = 0;
if (SUCCEEDED(hr))

{
hr = pIDirectMusicPortDownload8->GetAppend(&dwAppend);
if (SUCCEEDED(hr))
{
hr = pIDirectMusicPortDownload8->AllocateBuffer(sizeof(\
dwAppend * pWaveFile->GetFormat()->nBlockAlign +
&pIDirectMusicDownloadwave);
}
}

// Read format data from the WAV file into the buffer, and downl

void *pvData NULL;
DWORD dwSize Q;
if (SUCCEEDED(hr))

{
hr = pIDirectMusicDownloadwave->GetBuffer(&pvData, &dwSize
if (SUCCEEDED(hr))
{
InitializewWaveDownload((WAVE_DOWNLOAD*)pvData, dwDLId, p
pwaveFile->GetSize(), dwSize);
DWORD dwRead = 0;
hr = pwWaveFile->Read(((WAVE_DOWNLOAD*)pvData)->dmwWaveDat
pwaveFile->GetSize(), &dwRead);
if (SUCCEEDED(hr) && pWaveFile->GetSize() == dwRead)
{
hr = pIDirectMusicPortDownload8->Download(pIDirectMu
if (hr == DMUS_E_NOTMONO)
{
MessageBox(hwWndMain, "WAV must be mono.", "Error",
}
}
}
¥

// Put instrument data into the buffer and download to the port.

if (SUCCEEDED(hr))
{

hr = pIDirectMusicDownloadArticulation->GetBuffer(&pvData,

if (SUCCEEDED(hr))

{
InitializeInstDownload((INSTRUMENT_DOWNLOAD *)pvData, dw

hr = pIDirectMusicPortDownload8->Download(pIDirectMusicC
¥
// Get the performance toolgraph so messages can be stamped.

IDirectMusicGraph* pIDirectMusicGraph = NULL;
if (SUCCEEDED(hr))

{
b

// Create and send a message to put the instrument on channel 0.

hr = pPerf->QueryInterface(IID_IDirectMusicGraph, (void **)&

DMUS_PATCH_PMSG *pDMUS_PATCH_PMSG = NULL;
if (SUCCEEDED(hr))

{
hr = pPerf->AllocPMsg(sizeof(DMUS_PATCH_PMSG), (DMUS_PMSG *
by
if (SUCCEEDED(hr))
{
pDMUS_PATCH_PMSG->dwType = DMUS_PMSGT_PATCH;
pDMUS_PATCH_PMSG->dwPChannel = 0;
pDMUS_PATCH_PMSG->dwFlags = DMUS_PMSGF_REFTIME ;
pDMUS_PATCH_PMSG->byInstrument = dwPatch & OX7F;
pDMUS_PATCH_PMSG->byLSB = (dwPatch & 0x7f00) >> 8;
pDMUS_PATCH_PMSG->byMSB = (dwPatch & 0x7f0000) >> 16;
hr = pIDirectMusicGraph->StampPMsg((DMUS_PMSG *)pDMUS_PATCH_
by
if (SUCCEEDED(hr))
{
hr = pPerf->SendPMsg((DMUS_PMSG *)pDMUS_PATCH_PMSG);
if (FAILED(hr))
{
pPerf->FreePMsg((DMUS_PMSG *)pDMUS_PATCH_PMSG);
}
¥

// The instrument is now available to be played. The following c
// plays two "notes" at different pitches and durations.

DMUS_NOTE_PMSG *pDMUS_NOTE_PMSG = NULL;
if (SUCCEEDED(hr))

{
b

hr = pPerf->AllocPMsg(sizeof(DMUS_NOTE_PMSG), (DMUS_PMSG **

if (SUCCEEDED(hr))

{
pDMUS_NOTE_PMSG->dwType = DMUS_PMSGT_NOTE;
pDMUS_NOTE_PMSG->dwPChannel = 0;
pDMUS_NOTE_PMSG->dwFlags = DMUS_PMSGF_REFTIME;
pDMUS_NOTE_PMSG->bFlags = DMUS_NOTEF_NOTEON;
pDMUS_NOTE_PMSG->bVelocity = 127;
pDMUS_NOTE_PMSG->bMidivValue = 60;
pDMUS_NOTE_PMSG->mtDuration = DMUS_PPQ * 4; // Whole note
hr = pIDirectMusicGraph->StampPMsg((DMUS_PMSG *)pDMUS_NOTE_F
}
if (SUCCEEDED(hr))
{
hr = pPerf->SendPMsg((DMUS_PMSG *)pDMUS_NOTE_PMSG);
if (FAILED(hr))
{
pPerf->FreePMsg((DMUS_PMSG *)pDMUS_NOTE_PMSG);
}
}
Sleep(16000);

DMUS_NOTE_PMSG *pDMUS_NOTE_PMSG2 = NULL;
if (SUCCEEDED(hr))

{
hr = pPerf->AllocPMsg(sizeof(DMUS_NOTE_PMSG), (DMUS_PMSG **
}
if (SUCCEEDED(hr))
{
pDMUS_NOTE_PMSG2->dwType = DMUS_PMSGT_NOTE;
pDMUS_NOTE_PMSG2->dwPChannel = 0;
pDMUS_NOTE_PMSG2->dwFlags = DMUS_PMSGF_REFTIME;
pDMUS_NOTE_PMSG2->bFlags = DMUS_NOTEF_NOTEON;
pDMUS_NOTE_PMSG2->bMidivValue = 70;
pDMUS_NOTE_PMSG2->bVelocity = 127;
pDMUS_NOTE_PMSG2->mtDuration = DMUS_PPQ * 2; // Half note
hr = pIDirectMusicGraph->StampPMsg((DMUS_PMSG *)pDMUS_NOTE_F
}
if (SUCCEEDED(hr))
{
hr = pPerf->SendPMsg((DMUS_PMSG *)pDMUS_NOTE_PMSG2);
if (FAILED(hr))
{
pPerf->FreePMsg((DMUS_PMSG *)pDMUS_NOTE_PMSG2);
}
}

// Allow time for second note to play before music manager goes
// and shuts down performance.

Sleep(4000);
// Clean up. SAFE_RELEASE is defined in dmutil.h.

SAFE_RELEASE(pIDirectMusicPort);

SAFE_RELEASE (pIDirectMusicPortDownload8);
SAFE_RELEASE (pIDirectMusicbDownloadArticulation);
SAFE_RELEASE (pIDirectMusicDownloadWave);
SAFE_RELEASE (pIDirectMusicGraph);

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Tools

A DirectMusic tool is an object that intercepts messages and handles them in
some way. The tool might alter the message and then pass it on to the next tool,
or free the message, or send a new message based on information in the old one.

DirectMusic has an output tool that is normally the last to receive messages. This
tool converts performance messages to standard MIDI messages and streams
them to the synthesizer. Other tools are implemented by the application or
obtained from libraries.

The following topics provide more information on tools:

e Creating a Tool
e Implementing a Tool in the Client Application

See Also

e Overview of Audio Data Flow

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Creating a Tool

A tool object can reside in a DLL or in the client application. The object
implements the methods of IDirectMusicTool or IDirectMusicTool8. The
purpose of each method is summarized in the following table.

Method Description
Performs any needed initialization of the object. This
method is called when the application adds the tool to
Init a graph by calling

IDirectMusicGraph8::InsertTool. It should always
return S_ OK.

GetMsgDeliveryType

Specifies when the performance should deliver
messages to the tool by calling its ProcessPMsg
method. Most tools can specify
DMUS_PMSGF_TOOL_IMMEDIATE.

GetMediaTypes

Returns an array of message types that the tool
processes. This method is called by the DirectMusic
performance to determine which messages to pass to
the ProcessPMsg method.

GetMediaTypeArraySize Specifies the number of message types in the array.

Processes each message. This method is called by the
performance each time a message that matches the

ProcessPMsg requested types is available. After processing, the
method either requeues or deletes the message.
Specifies the behavior of the tool when it receives a
message sent as a result of an invalidation. This can

Flush happen, for example, when a note or curve is in

progress and the segment stops unexpectedly. Most
tools can simply requeue the message.

When the performance engine is playing a segment, it enables each tool in the
segment toolgraph, and then each tool in the performance toolgraph, to process
each message. When a tool processes a message, it should obtain the
IDirectMusicGraph8 pointer from the pGraph member of the DMUS_PMSG
structure and then call the IDirectMusicGraph8::StampPMsg method to stamp

the message with a pointer to the next tool, if any, that is to receive it.

The following sample code from the tool's implementation of
IDirectMusicTool8::ProcessPMsg stamps the message (pPMsg) for the next
tool, or frees the message if this is not possible.

if ((NULL == pPMsg->pGraph) || (FAILED(pPMsg->pGraph->StampPMsg(pPV
{

}

hr = DMUS_S_FREE;

It's important to stamp the message before reaching any code paths that might
cause the method to return. If the message is not stamped for the next tool when
it is handed back to the queue, it will be sent back to this tool, possibly resulting
in an endless loop. On the other hand, be aware that StampPMsg can change the
value in the dwPChannel member of the message structure. If your tool uses
this value, save it before stamping the message.

Tools process messages in a high-priority thread. Do not call time-consuming
functions, such as those involving graphics or file input/output, from within a
tool's IDirectMusicTool8::ProcessPMsg method. If a tool needs to trigger an
action, it should do so by signaling a different thread, perhaps the application's
main thread.

When implementing the methods of IDirectMusicTool8, take care not to create
circular references to parent objects. Circular references come about when one
object creates another and the child keeps an additional reference to the parent.
For example, suppose a tool creates a new reference to the toolgraph passed into
its IDirectMusicTool8::Init method. If the tool fails to release this reference,
there is a problem when the segment attempts to release the toolgraph. Because
the tool still has a reference to the toolgraph, the toolgraph is not fully released;
and because the toolgraph has a reference to the tool, the tool cannot be released
either.

See Also

e Music Tool Sample
e DirectMusic Tool Wizard

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Implementing a Tool in the Client
Application

All tools other than the output tool are collected in toolgraphs. Even if your
application is using only a single tool, you must create a toolgraph to contain it.
Then add this toolgraph to a segment or the performance. Toolgraphs provide a
convenient mechanism for directing messages from one tool to another.

Note Do not use or distribute tools from non-trusted sources. Tools can contain
unsafe code.

The following sample code is from a client that uses a tool in a DLL. First, the
client creates an object from a known class identifier and a known interface
identifier. It then obtains the IDirectMusicTool8 interface, creates a graph, and
inserts the tool in the graph. It is assumed that the ILyricsReader interface,
together with the CLSID and IID, is declared in an included tool header.

HRESULT SetupLyricsTool(IDirectMusicPerformance8* pPerf)
{

ILyricsReader* pLyricsReader;

IDirectMusicTool* pTool;

IDirectMusicGraph* pGraph;

HRESULT hr;

if (SUCCEEDED(hr = CoCreateInstance(CLSID LyricsReader, NULL,
CLSCTX_INPROC_SERVER, IID_ILyricsReader,
(void **) &pLyricsReader)))
{
if (SUCCEEDED(hr = pLyricsReader->QueryInterface(IID_IDirectMusi
(void**)&pToo0l)))
{

if (SUCCEEDED(hr = CoCreateInstance(CLSID_DirectMusicGraph,
CLSCTX_INPROC, IID IDirectMusicGraph, (void**)&pGraph)))
{

if (SUCCEEDED(pGraph->InsertTool(pTool, NULL, 0, 0)))

{

hr = pPerf->SetGraph(pGraph);
}
pGraph->Release();

}
b

}

return hr;

}

The tool will now process messages from all segments in the performance. To
restrict the application of the tool to a particular segment, use
IDirectMusicSegment8::SetGraph instead.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Property Sets for DirectMusic Ports

Through property sets, DirectMusic is able to support extended services offered
by synthesizers.

Hardware vendors define new capabilities as properties and publish the
specification for these properties. A GUID identifies a property set, and a
ULONG identifies a particular property within the set. Individual properties
may also have associated parameters. The meaning of the parameters is defined
along with the properties.

Use the IKsControl::KsProperty method to find out whether a property is
available and then to set and retrieve values for that property. You can obtain the
IKsControl interface for a port by calling the
IDirectMusicPort8::QuerylInterface method, passing IID_IKsControl as the
interface identifier.

A property set is represented by a GUID, and each item within the set is
represented by a zero-based index. The meaning of the indexed items for a
GUID never changes. For a list of the property sets supported by DirectMusic,
see KSPROPERTY.

All property sets predefined by DirectMusic have only one item, usually at index
0. However, the full definition of kernel-streaming (KS) properties is supported,
and vendors are free to create property sets with any number of items and
instances, and data of any size.

Routing of the property item request to the port varies depending on the port
implementation. No properties are supported by ports that represent DirectMusic
emulation over the Win32® handle-based multimedia calls (the midiOut and
midiln functions).

The following code example uses the IKsControl::KsProperty method to
determine if the port supports General MIDI in hardware:

#include <dmksctrl.h>

BOOL IsGMSupported(IDirectMusicPort8 *pPort)

HRESULT hr;
IKsControl *pControl;
KSPROPERTY ksp;

DWORD dwFlags;

ULONG cb;

BOOL fIsSupported;

hr = pPort->QueryInterface(IID_IKsControl, (void**)&pControl);
if (FAILED(hr))

// Port does not support properties; assume no GM support.
return FALSE;

}
ksp.Set = GUID_DMUS_PROP_GM_Hardware;
ksp.Id = 0;

ksp.Flags = KSPROPERTY_TYPE_BASICSUPPORT;
hr = pControl->KsProperty(&ksp, sizeof(ksp),
&dwFlags, sizeof(dwFlags), &cb);
fIsSupported = FALSE;
if ((SUCCEEDED(hr)) || (cb >= sizeof(dwFlags)))
{
// Set 1is supported.
fIsSupported = (BOOL)(dwFlags & KSPROPERTY_TYPE_GET);
}
pControl->Release();
return fIsSupported;

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Related Software

This section contains brief descriptions of software distributed with the DirectX
SDK that can be used in the development of DirectMusic applications. The
following software is described:

e DirectMusic Producer
e DirectMusic Style Library
e DirectMusic Tool Wizard

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Producer

Microsoft DirectMusic Producer is a powerful authoring application included
with the DirectX SDK. Its enables composers and sound designers to create most
elements of a dynamic soundtrack, including the following:

Audiopath configurations

Bands

Chordmaps

Downloadable Sounds collections
Scripts

Toolgraphs

Styles and style-based segments
MIDI-based segments
Waveform-based segments

For more information, see the DirectMusic Producer Help.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Style Library

The DirectX SDK includes many sample DirectMusic styles and an application,
StylePlayer, that enables you to audition these styles with different chordmaps,
bands, shapes, and motifs.

The style library and StylePlayer are found in the Essentials folder on the
DirectX CD. To use them, copy the DirectMusic Style Library folder to your
hard disk.

For more information, see the StylePlayer.txt file.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Tool Wizard

The DirectMusic Tool Wizard simplifies the task of creating a custom tool that
can be inserted in DirectMusic Producer or in a DirectMusic application to
intercept and process performance messages.

Microsoft Visual C++® 6.0 is required to run the wizard. Select New from the
File menu, and then select DirectMusic Tool Wizard from the Projects tab of the
New dialog box.

The wizard creates a ready-to-compile project containing C++ code that handles
the basic COM component creation and DLL registration as well as the entry
point for the DLL. In addition, the wizard generates the tool's implementation
class with basic services already in place. After the project is created, you must
add code that implements the tool's functionality.

For more information, see the Help for the wizard.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic C++ Samples

The sample applications described in this section demonstrate the use and
capabilities of the Microsoft® DirectMusic® application programming interface
(API) in Microsoft® DirectX® for C++.

The following samples are found on the Start menu under Programs/Microsoft
DirectX 9.0 SDK/C++ Samples/DirectMusic Samples.

3D Audio Sample
Audio Path Sample
Audio Scripts Sample
AudioFX Sample
Cross Fade Sample
Music Tool Sample
Play Audio Sample
Play Motif Sample
Play Multi Sample

The source code is in the following folder, where SDK root is the installation
folder for the DirectX SDK, such as C:\DXSDK:

(SDK root)\samples\C++\DirectMusic

In addition to these samples, the source files for tutorial applications are
contained in the following folder:

(SDK root)\samples\C++\DirectMusic\Tutorials

For more information, see DirectMusic C++ Tutorials.

The samples other than the tutorials use common source files that implement
functions and classes for basic DirectMusic and DirectSound functionality and
for general tasks such as finding digital media files. For more information, see
DirectMusic Sample Framework.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Sample Framework

The core functionality for the DirectMusic samples is in a common set of
classes, declared in Dmutil.h and implemented in Dmutil.cpp. In addition, some
of the samples make use of the DirectSound classes declared in Dsutil.h and
implemented in Dsutil.cpp.

These files are found in the following folders:

(SDK root)\samples\C++\Common\Include
(SDK root)\samples\C++\Common\Src

To use the sample framework, your project must link to Dxerr9.lib and
Winmm.lib

The framework classes provide basic functionality for the samples, and you can
use them as a starting-point for your own applications. However, they are not
intended to be a full-featured wrapper for the DirectMusic API.

The following classes are used in the samples:

Class Description
Contains methods for loading and
CMusicManager Sample Class creating objects, creating the

performance, and managing memory.

Represents a script, and contains
CMusicScript Sample Class methods for getting and setting
variables and calling routines.

Represents a segment playing on a 3-D
C3DMusicSegment Sample Class audiopath. Inherits from
CMusicSegment.

Represents a segment, and contains
methods for downloading and

CMusicSegment Sample Class unloading instruments, playing and
stopping the segment, and retrieving a
style from the segment.

See Also

e DirectMusic C++ Samples

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

CMusicManager Sample Class

The CMusicManager sample class contains methods for loading and creating
objects, creating the performance, and managing memory.

class CMusicManager

{

protected:
BOOL m_bCleanupCOM;
IDirectMusiclLoader8* m_pLoader;
IDirectMusicPerformance8* m_pPerformance;
IDirectSound3DListener* m_pDSListener;
DS3DLISTENER m_dsListenerParams;

public:

CMusicManager();
~CMusicManager();

inline IDirectMusiclLoader8* GetLoader()
{ return m_pLoader; }

inline IDirectMusicPerformance8* GetPerformance()
{ return m_pPerformance; }

inline IDirectSound3DListener* GetListener()

{ return m_pDSListener; }

IDirectMusicAudioPath8* GetDefaultAudioPath();

HRESULT Initialize(HWND hWnd, DWORD dwPChannels = 128,
DWORD dwDefaultPathType = DMUS_APATH_DYNAMIC_STEREO,
LPDIRECTSOUND pDS = NULL);

HRESULT SetSearchDirectory(const TCHAR* strMediaPath);

VOID CollectGarbage();

VOID StopAll();

HRESULT CreateSegmentFromFile(CMusicSegment** ppSegment,
TCHAR* strFileName, BOOL bDownloadNow = TRUE,

BOOL bIsMidiFile = FALSE);

HRESULT Create3DSegmentFromFile(C3DMusicSegment** ppSegment,
TCHAR* strFileName, BOOL bDownloadNow = TRUE,

BOOL bIsMidiFile = FALSE, IDirectMusicAudioPath8* p3DAudioPa

HRESULT CreateScriptFromFile(CMusicScript** ppScript,

TCHAR* strFileName);

HRESULT CreateChordMapFromFile(IDirectMusicChordMap8** ppChordMa
TCHAR* strFileName);

HRESULT CreateStyleFromFile(IDirectMusicStyle8** ppStyle,
TCHAR* strFileName);

HRESULT GetMotifFromStyle(IDirectMusicSegment8** ppMotif,
TCHAR* strStyle, TCHAR* wstrMotif);

HRESULT CreateSegmentFromResource(CMusicSegment** ppSegment,

TCHAR* strResource,

TCHAR* strResourceType,

BOOL bDownloadNow = TRUE, BOOL bIsMidiFile = FALSE);
VOID Set3DParameters(FLOAT fDistanceFactor, FLOAT fDopplerFactor

1

Constructor

The constructor initializes COM and the private data members.

Public Methods

The class contains the following methods, in alphabetical order.

Method Description
Calls the
CollectGarbage IDirectMusicl .oader8::CollectGarbage

method, after ensuring that the loader still
exists.

Create3DSegmentFromFile

Loads an object from a file and encapsulates it
in a C3DMusicSegment object. If instructed to
do so, sets the standard MIDI file parameter
and downloads instruments.

CreateChordMapFromFile

Loads a chordmap from a file and returns the
IDirectMusicChordMap8 interface.

CreateScriptFromFile

Loads a script from a file and encapsulates it in
a CMusicScript object.

CreateSegmentFromFile

Loads an object from a file and encapsulates it
in a CMusicSegment object. If instructed to do
so, sets the standard MIDI file parameter and
downloads instruments.

CreateSegmentFromResource

Loads an object from memory and
encapsulates it in a CMusicSegment object. If
instructed to do so, sets the standard MIDI file
parameter and downloads instruments.

CreateStyleFromFile

Loads a style from a file and returns the
IDirectMusicStyle8 interface.

Returns a pointer to the
IDirectMusicAudioPath8 interface for the

GetDefaultAudioPath

default audiopath created in the Initialize
method.

GetListener

Returns a pointer to the interface.

GetLoader

Returns a pointer to the IDirectMusicl.oader8
interface obtained in the Initialize method.

GetMotifFromStyle

Loads a motif from a style file and returns the
IDirectMusicSegment8 interface.

GetPerformance

Returns a pointer to the
IDirectMusicPerformance8 interface

obtained in the Initialize method.

Initialize

Creates the loader and the performance, and
initializes the performance with the supplied
parameters. Note that in most cases pDs can be
NULL.

Set3DParameters

Sets the distance factor, Doppler factor, and
rolloff factor.

SetSearchDirectory

Sets the search directory for all types of
objects.

StopAll

Stops all playing segments by calling
IDirectMusicPerformance8::Stop, after

ensuring that the performance still exists.

The class is implemented in (SDK root)\samples\C++\Common\Src\Dmutil.cpp.

See Also

e DirectMusic Sample Framework

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

CMusicScript Sample Class

The CMusicScript sample class represents a script, and contains methods for
getting and setting variables and calling routines.

class CMusicScript

{

protected:
IDirectMusicScript8* m_pScript;
IDirectMusiclLoader8* m_pLoader;
IDirectMusicPerformance8* m_pPerformance;

public:

CMusicScript (IDirectMusicPerformance8* pPerformance,
IDirectMusiclLoader8* plLoader,
IDirectMusicScript8* pScript);

virtual ~CMusicScript();

inline IDirectMusicScript8* GetScript() { return m_pScript; }
HRESULT CallRoutine(TCHAR* strRoutine);
HRESULT SetVariableNumber (TCHAR* strVariable, LONG lValue);
HRESULT GetVariableNumber (TCHAR* strVariable, LONG* plValue);
HRESULT SetVariableObject(TCHAR* strVariable, IUnknown *punkValu
HRESULT GetVariableObject(TCHAR* strVariable, REFIID riid,
LPVOID FAR *ppv);
};

Constructor
The constructor stores pointers to the loader, performance, and script objects.

Public Methods

The class contains the following public methods, in alphabetical order.

Method Description
. Calls IDirectMusicScript8::CallRoutine, after
CallRoutine : : :
doing any necessary string type conversion.
GetScript Returns the IDirectMusicScript8 interface pointer.
Calls

GetVariableNumber IDirectMusicScript8::GetVariableNumber, after

doing any necessary string type conversion.

. . Calls IDirectMusicScript8::GetVariableObject,
GetVariableObject)) .
after doing any necessary string type conversion.

. Calls IDirectMusicScript8::SetVariableNumber,
SetVariableNumber .))
after doing any necessary string type conversion.

. . Calls IDirectMusicScript8::SetVariableObject,
SetVariableObject)) .
after doing any necessary string type conversion.

The class is implemented in (SDK root)\samples\C++\Common\Src\Dmutil.cpp.

See Also

e DirectMusic Sample Framework

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

C3DMusicSegment Sample Class

The C3DMusicSegment sample class represents a segment playing on a 3-D
audiopath.

class C3DMusicSegment : public CMusicSegment

{

protected:
IDirectMusicAudioPath8* m_p3DAudioPath;
IDirectSound3DBuffer* m_pDS3DBuffer;
DS3DBUFFER m_dsBufferParams;
BOOL m_bDeferSettings;
BOOL m_bCleanupAudioPath;

public:

C3DMusicSegment (IDirectMusicPerformance8* pPerformance,
IDirectMusiclLoader8* plLoader,
IDirectMusicSegment8* pSegment,
IDirectMusicAudioPath8* pAudioPath);

virtual ~C3DMusicSegment();

HRESULT Init();

IDirectMusicAudioPath8* GetAudioPath() { return m_p3DAudioPath;

HRESULT Play(DWORD dwFlags = DMUS_SEGF_SECONDARY,
IDirectMusicAudioPath8* pAudioPath = NULL);

VOID Set3DParameters(FLOAT fMinDistance, FLOAT fMaxDistance);

VOID SetObjectProperties(D3DVECTOR* pvPosition, D3DVECTOR* pvVel

1

Constructor

The constructor stores pointers to the performance, loader, segment, and
audiopath objects.

Public Methods

In addition to the methods inherited from CMusicSegment, the class contains
the following public methods, in alphabetical order.

Method Description

Returns a pointer to the IDirectMusicAudioPath8
interface in the m_p3DAudioPath member.

GetAudioPath

Creates a 3-D audiopath if one is not already associated
Init with the segment, and retrieves the 3-D buffer in the
m_pDS3DBuffer member.

Plays the segment, using the specified flags and
Play audiopath. If no audiopath is specified, the audiopath in
the m_p3DAudioPath member is used.

Sets the minimum and maximum distances for the 3-D

Set3DParameters buffer.

SetObjectProperties Sets the position and velocity of the 3-D buffer.

The class is implemented in (SDK root)\samples\C++\Common\Src\Dmutil.cpp.
See Also

e DirectMusic Sample Framework

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

CMusicSegment Sample Class

The CMusicSegment sample class represents a segment, and contains methods
for downloading and unloading instruments, playing and stopping the segment,
and retrieving a style from the segment.

class CMusicSegment

{

protected:
IDirectMusicSegment8* m_pSegment ;
IDirectMusiclLoader8* m_pLoader;
IDirectMusicPerformance8* m_pPerformance;
IDirectMusicAudioPath8* m_pEmbeddedAudioPath;
BOOL m_bDownloaded;

public:

CMusicSegment (IDirectMusicPerformance8* pPerformance,
IDirectMusiclLoader8* plLoader,
IDirectMusicSegment8* pSegment);

virtual ~CMusicSegment();

inline IDirectMusicSegment8* GetSegment() { return m_pSegment;
HRESULT GetStyle(IDirectMusicStyle8** ppStyle,
DWORD dwStyleIndex = 0);
HRESULT SetRepeats(DWORD dwRepeats);
HRESULT Play(DWORD dwFlags = DMUS_SEGF_SECONDARY,
IDirectMusicAudioPath8* pAudioPath = NULL);
HRESULT Stop(DWORD dwFlags = 0);
HRESULT Download(IDirectMusicAudioPath8* pAudioPath = NULL);
HRESULT Unload(IDirectMusicAudioPath8* pAudioPath = NULL);
BOOL IsPlaying();

};
Constructor

The constructor stores pointers to the performance, loader, and segment objects.
It also attempts to create an audiopath from an audiopath configuration
embedded in the segment.

Public Methods

The class contains the following public methods, in alphabetical order.

Method

Description

Download

Downloads the segment's instruments to the supplied
audiopath. If no audiopath is supplied, this method
downloads to the embedded audiopath if there is one, or
to the performance otherwise.

GetSegment

Retrieves the IDirectMusicSegment8 interface pointer.

GetStyle

Retrieves a style in the segment, if the segment has a
style track.

IsPlaying

Returns a Boolean variable that specifies whether the
segment is playing. This method calls
IDirectMusicPerformance8::IsPlaying.

Play

Plays the segment, using the specified flags and
audiopath. If no audiopath is specified, this method plays
on the embedded audiopath if there is one, or on the
default audiopath otherwise. The method fails if the
instruments have not been downloaded.

SetRepeats

Calls IDirectMusicSegment8::SetRepeats.

Unload

Unloads instruments from the specified audiopath. If no
audiopath is specified, this method unloads from the
embedded audiopath if there is one, or from the
performance otherwise.

The class is implemented in (SDK root)\samples\C++\Common\Src\Dmutil.cpp.

See Also

e DirectMusic Sample Framework

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

3D Audio Sample

The 3D Audio sample application shows how to create a 3-D audiopath in a
DirectMusic performance, how to obtain an interface to a 3-D buffer and listener
in that path, and how to modify the parameters of the buffer and listener.

Path

Source: (SDK root)\Samples\C++\DirectMusic\3DAudio
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Click Open File and load a WAV, MIDI, or DirectMusic segment file. Play the
segment. The position of the sound source is shown as a red dot on the graph,
where the x-axis is from left to right and the z-axis is from bottom to top.
Change the range of movement on the two axes by using the sliders.

The listener is located at the center of the graph, and has its default orientation,
looking along the positive z-axis; that is, toward the top of the screen. The sound
source moves to the listener's left and right and to the listener's front and rear,
but does not move above and below the listener.

The sliders in the center of the window control the properties of the listener; that
is, the global sound properties. If you click Defer Settings, changes are not
applied until you click Apply Settings.

Programming Notes

The 3D Audio sample is very similar in form to the Play Audio Sample.

See Also

e DirectMusic C++ Samples
e Retrieving Objects from an Audiopath

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Audio Path Sample

The Audio Path sample demonstrates how different sounds can be played on an
audiopath, and how the parameters of all sounds are affected by changes made
on the audiopath.

Path

Source: (SDK root)\Samples\C++\DirectMusic\AudioPath
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Click Lullaby, Snore, and Mumble to play different sounds. Adjust the 3-D
position of the sounds by using the sliders. Click Rude Awakening to play a
different sound and stop all other sounds.

Programming Notes

This sample is very similar in form to the Play Audio Sample. The Audio Path
sample differs by showing some of the various uses of an audiopath.

On WM_INITDIALOG, the OnInitDialog function does the following:

1. Calls IDirectMusicPerformance8::CreateStandardAudioPath, passing
in DMUS_APATH_DYNAMIC_3D to create a 3-D audiopath. The created
IDirectMusicAudioPath8 interface is pointed to by g_p3DAudiopath.

2. Uses the CMusicManager framework class to create CMusicSegment

objects from a list of files.

Gets the IDirectSound3DListener8 interface from the audiopath.

4. Calls IDirectSound3DListener8::SetRolloffFactor to change the rate at
which the amplitude of sounds diminishes over distance.

w

When the 3-D position slider is changed, the SetPosition function does the
following:

1. Calls IDirectMusicAudioPath8::GetObjectInPath to retrieve the

IDirectSound3DBuffer8 interface.

2. Calls IDirectSound3DBuffer8::SetPosition to set the position of the
buffer.

3. Releases the buffer.

When a segment is played, the PlaySegment function does one of the following:

o If the Lullaby button was clicked, the segment is played on the audiopath
as the primary segment.

e [f Snore or Mumble was clicked, a secondary segment is played.

¢ [f Rude Awakening was clicked, all sounds on the audiopath are stopped
because the audiopath is passed to
IDirectMusicPerformance8::PlaySegmentEx as the pFrom parameter.
The alarm sound is then played as a new primary segment.

See Also

e DirectMusic C++ Samples
e Using Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Audio Scripts Sample

The Audio Scripts sample demonstrates how an application and a DirectMusic
script work together. The script reads and writes to variables in the application,
and the application calls routines in the script that play segments.

The sample also demonstrates how waveforms can be played as variations in a
segment.

Path

Source: (SDK root)\Samples\C++\DirectMusic\AudioScripts
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Select ScriptDemoBasic.spt from the Script File list box. Play a segment by
clicking Routine 1. Click Routine 2 to play an ending and to stop playback.
Play the segment again and click Routine 3 several times. Note how Variable 1
reflects the number of times the button has been clicked, and how the music
changes in response to each click.

Select ScriptDemoBaseball.spt from the Script File list box. Click Routine 1 to
play various calls from a vendor. Click Routine 2 to play various musical
motifs. Change the score by entering different values in the Variable 1 and
Variable 2 text boxes. Click Routine 3 to hear the score.

See Also

e DirectMusic C++ Samples
e Using Audio Scripts

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

AudioFX Sample

The AudioFX sample shows how to use DMOs on DirectMusic audiopaths to
add effects to sounds, and how to set effect parameters.

Path

Source: (SDK root)\Samples\C++\DirectMusic\AudioFX
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

A default sound file is loaded when the application is run. You can load a
different one by clicking Open File.

At first, no effects are enabled. Click Play to hear the sound without effects.

Click Stop to stop the buffer. Apply one or more effects by selecting checkboxes
in the Enable column. Play the sound again.

To adjust parameters for an effect, select an option button in the Adjust column
and change the values in the frame on the right side of the window. This can be
done regardless of whether the sound is playing and regardless of whether the
effect has been applied yet.

Programming Notes

The application implements a CSoundFXManager class to manage effects. In
the CSoundFXManager::Initialize method, it retrieves an
IDirectSoundBuffer8 interface from the audiopath. This interface is used to set
effects on the buffer in the CSoundFXManager::ActivateFX method. Effect
parameters are set in the OnEffectChanged function in response to messages
from the interface.

See Also

e DirectMusic C++ Samples

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Cross Fade Sample

The Cross Fade sample shows how to fade out one segment while fading in
another.

Path

Source: (SDK root)\Samples\C++\DirectMusic\CrossFade
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Click Play to play Segment 1. Click Crossfade to fade out Segment 1 and fade
in Segment 2. Click Crossfade again to fade out Segment 2 and fade in Segment
1. You can load different segments by using the Browse buttons.

Programming Notes

The fade is achieved by playing the two segments on different audiopaths, whose
volumes can be controlled separately by sending DMUS_CURVE_PMSG
messages. The IDirectMusicAudioPath8::SetVolume method could be used
instead, but it does not give any control over scheduling the curve. By using a
curve message, the sample can put the starting point of the fade slightly in the
future and make sure fading of both audiopaths happens at exactly the same
time.

See Also

e DirectMusic C++ Samples
e (Curves

e Using Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Music Tool Sample

The Music Tool sample demonstrates how to implement a DirectMusic tool that
intercepts messages.

Path

Source: (SDK root)\Samples\C++\DirectMusic\MusicTool
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Play the default segment, or choose another WAV, MIDI, or DirectMusic
segment file by clicking Open File. Select a tool from the drop-down list. The
Echo Tool adds an echo to the sound. The Measure Tool causes the square to the
right of the drop-down list to flash green on every beat, and red on every
measure boundary.

Programming Notes

The tools are implemented in Echotool.cpp and Meastool.cpp. The Echo Tool
works by copying messages and sending the copies to a different channel group.
The Measure Tool responds to notifications of type

GUID_NOTIFICATION _MEASUREANDBEAT. Notifications don't have to be
intercepted by tools; they can also be retrieved by using
IDirectMusicPerformance8::GetNotificationPMsg, as in the Play Audio

Sample.

See Also

e DirectMusic C++ Samples
e DirectMusic Tools

e Notification and Event Handling

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Play Audio Sample

The Play Audio sample shows how to load a segment and play it on an
audiopath, how to use DirectMusic notifications, and how to change global
performance parameters.

Path

Source: (SDK root)\Samples\C++\DirectMusic\PlayAudio
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Play the default segment, or load another WAV, MIDI, or DirectMusic segment
file by clicking Open File. Adjust the tempo and volume by using the sliders.
The tempo cannot be adjusted for WAV files.

Programming Notes
The OnlInitDialog function does the following:

1. Creates an event, g_hDMusicMessageEvent. This will be used by
DirectMusic to signal the application whenever a DirectMusic notification
comes in.

2. Creates an object of class CMusicManager called g_pMusicManager.

3. Initializes the CMusicManager object. This does the following:

o Creates IDirectMusicl.oader8 by using CoCreateIlnstance.

o Creates IDirectMusicPerformance8 by using CoCreatelnstance.

o Calls IDirectMusicPerformance8::InitAudio to initialize the
performance and create a standard audiopath.

4. Calls IDirectMusicPerformance8::AddNotificationType,requesting
notifications of type GUID_NOTIFICATION_SEGMENT. DirectMusic
will notify the application of all segment events so it can ascertain when the
segment has ended.

5. Calls IDirectMusicPerformance8::SetNotificationHandle, passing in the
event whose handle is in g_hDMusicMessageEvent. This tells DirectMusic

to signal this event when a notification is available.

The WinMain function performs the following tasks:

w

Creates the window by using CreateDialog.

In the messasge loop, calls MsgWaitForMultipleObjects, passing in
g_hDMusicMessageEvent. This will tell us when g_hDMusicMessageEvent
is signaled. DirectMusic signals this event whenever a DirectMusic
notification has come in.

If WAIT_OBJECT_O is returned, calls ProcessDirectMusicMessages.

If WAIT_OBJECT_O + 1 is returned, Windows messages are available. The
function does standard message processing by using PeekMessage.

When Open File is clicked, the OnOpenSoundFile function performs the
following tasks:

1.
2.
3.

4.

Gets the file name.

Releases any previously created segment.

Calls CMusicManager::CollectGarbage in Dmutil.cpp. This calls
IDirectMusicl.oader8::CollectGarbage, which ensures that unused
objects are released. See Garbage Collection.

Calls CMusicManager::SetSearchDirectory. This calls

IDirectMusicl .oader8::SetSearchDirectory, passing in
GUID_DirectMusicAllTypes and a directory. This tells DirectMusic where
to look for files referenced by segments.

Calls CMusicManager::CreateSegmentFromFile to create a
CMusicSegment called g_pMusicSegment. This entails the following steps:

o Call IDirectMusicl.oader8::1.oadObjectFromFile to load the
IDirectMusicSegment8 into pSegment.

o Create a CMusicSegment, passing in pSegment.

o If the file is a pure MIDI file, call
IDirectMusicSegment8::SetParam, passing in
GUID_StandardMIDIFile. This ensures that the file is played
correctly.

o (Call IDirectMusicSegment8::Download, which downloads the
segment's bands to the synthesizer. Some applications might want to
wait before downloading, because the more instruments are
downloaded, the more memory is required.

When Play is clicked, the OnPlayAudio function does the following:

1. If the sound is to be looped, calls CMusicSegment::SetRepeats, passing in
DMUS_SEG_REPEAT_INFINITE. Otherwise repeats are set to zero.

2. Call CMusicSegment::Play, which calls
IDirectMusicPerformance8::PlaySegmentEx.

When a notification is signaled, the ProcessDirectMusicMessages function
looks for a message indicating that a segment has stopped. It performs the
following tasks:

1. Calls IDirectMusicPerformance8::GetNotificationPMsg in a loop to
process each available message. The loop tests for S_OK, because
S_FALSE is returned when no more messages are available.

2. 1f the dwNotificationOption of the DMUS_NOTIFICATION_ PMSG
structure is DMUS_NOTIFICATION_SEGEND, calls QueryInterface on
the punkUser member to obtain the IDirectMusicSegmentState8 interface
of the segment instance that ended. The segment itself is obtained by using
IDirectMusicSegmentState8::GetSegment. This method returns
IDirectMusicSegment, and QuerylInterface must be used to obtain
IDirectMusicSegment8. The application then compares this pointer to the
global primary segment pointer, to ensure that it was indeed the primary
segment that stopped. Segments authored in DirectMusic Producer can
trigger other segments, so we can't be sure that only the primary segment
was playing.

3. Cleans up all the interfaces.

See Also

e DirectMusic C++ Samples

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Play Motif Sample

The Play Motif sample demonstrates how a motif played as a secondary segment
can be aligned to the rhythm of the primary segment in various ways.

Path

Source: (SDK root)\Samples\C++\DirectMusic\PlayMotif
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Play the default segment, or load another DirectMusic segment based on a style
that contains motifs. Select one of the patterns in the list box and one of the
Align Option buttons, and then click Play Motif. Note how the motif does not
begin playing until an appropriate boundary in the primary segment has been
reached.

Programming Notes

The Play Motif sample is very similar in form to the Play Audio Sample.

When loading the file, Play Motif performs the same steps as Play Audio, with
the following additions in the LoadSegmentFile function:

1. Loops through styles in the segment, searching it for motifs. It calls the
CMusicSegment::GetStyle method in the sample framework, which in
turn calls IDirectMusicSegment8::GetParam, passing
GUID_IDirectMusicStyle and an incrementing index to get each of the
styles in turn. The method fails when there are no more styles.

2. For each style, calls IDirectMusicStyle8::EnumMotif, passing an
incrementing motif index. This call retrieves the motif name at that index.
When the call returns S_FALSE, there are no more motifs in the style.

3. Passes the motif name to IDirectMusicStyle8::GetMotif to get an
IDirectMusicSegment8 interface pointer to the motif, and stores this as
data associated with the item in the list box.

When Play Motif is clicked, the OnPlayMotif function performs the following
tasks:

1. Retrieves the desired alignment option from the interface.

2. Gets the selected motif from the listbox, along with its MOTIF_NODE item
data. The MOTIF_NODE structure keeps a count of the number of plays
currently occurring, as well as a pointer to the IDirectMusicSegment
interface of the motif.

3. Calls IDirectMusicPerformance8::PlaySegment, passing the motif's
IDirectMusicSegment and flags, including DMUS_SEGF_SECONDARY
and any alignment option.

DirectMusic notifications are handled much as in Play Audio, but this
application also takes note of any motif starting or stopping, and updates the play
count in the MOTIF_NODE structure. If the play count is greater than zero, then
it updates the user interface to show that the motif is playing.

See Also

e DirectMusic C++ Samples
e Using Motifs

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Play Multi Sample

The Play Multi sample shows how to play multiple segments simultaneously,
one as a primary segment and the others as secondary segments.

Path

Source: (SDK root)\Samples\C++\DirectMusic\PlayMulti
Executable: (SDK root)\Samples\C++\DirectMusic\Bin
User's Guide

Use the default segments, or choose others by using the Browse buttons. The
primary segment should be style-based so that it contains the rhythmic
information necessary for proper cuing of the secondary segments.

Play the primary segment. Select a play boundary for a secondary segment and
play it. Notice that the secondary segment begins playing on the specified
boundary.

Select Controlling Segment to make a secondary segment the control segment.
This will have an effect only if the secondary segment has a mute track,
command track, tempo track, or chord track. Try loading a secondary segment
that has a different tempo than the primary segment and playing it as the control
segment. The tempo of the primary segment changes to match that of the
secondary segment.

Programming Notes

The flags for IDirectMusicPerformance8::PlaySegmentEx are set in the
OnPlay function and passed to the CMusicSegment::Play method in the
sample framework.

See Also

e DirectMusic C++ Samples
e Control Segments

e Using Segments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic C++ Tutorials

This section contains the following tutorials showing how to implement
Microsoft® DirectMusic® in a C++ application:

e Tutorial 1: Playing Audio Files
e Tutorial 2: Using Audiopath Objects

Other, more specialized uses of DirectMusic are demonstrated in the sample
applications provided with the SDK. For a description of these samples, see
DirectMusic C++ Samples.

Note For the sake of simplicity, the tutorial applications perform minimal error
checking when calling DirectX methods. Except for methods that always
succeed, your code should always check the result of method calls and handle
failure appropriately.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Tutorial 1: Playing Audio Files

This tutorial is a step-by-step guide to the most basic tasks in DirectMusic:
initializing a DirectMusic performance and playing an audio file. The tutorial is
presented in the following steps:

Step 1: Initialize
Step 2: Load a File

Step 3: Play the File
Step 4: Close Down

The complete sample code for the tutorial is available in the following folder:

C:\DXSDK\Samples\C++\DirectMusic\Tutorials\Tutoriall

Note If you installed the DirectX SDK in a different root directory, substitute
the name of that directory for "Dxsdk" in the path.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Step 1: Initialize

The following instructions are needed for any application that uses the
DirectMusic API. Including Dmusici.h also causes the other necessary header
files for DirectMusic and DirectSound to be included.

#define INITGUID
#include <dmusici.h>

The tutorial uses three interface pointers, which are declared as follows:

IDirectMusiclLoader8* g_pLoader = NULL;
IDirectMusicPerformance8* g_pPerformance = NULL;
IDirectMusicSegment8* g_pSegment = NULL,

All the code in this simple application is included in the WinMain function. The
application has no main window, so it can proceed straight to the creation of
COM and two objects: the loader and the performance:.

INT APIENTRY WinMain(HINSTANCE hInst, HINSTANCE hPrevInst,
LPSTR pCmdLine, INT nCmdShow)

{
CoInitialize(NULL);

CoCreateInstance(CLSID_DirectMusicLoader, NULL,
CLSCTX_INPROC, IID_IDirectMusiclLoaders8,
(void**)&g_plLoader);

CoCreateInstance(CLSID_DirectMusicPerformance, NULL,
CLSCTX_INPROC, IID_IDirectMusicPerformances8,
(void**)&g_pPerformance);

The next step is to initialize the performance and the synthesizer. The
IDirectMusicPerformance8::InitAudio method performs the following tasks:

e Creates a DirectMusic and a DirectSound object. In most cases you don't
need an interface to those objects, and you can pass NULL in the first two
parameters.

e Associates an application window with the DirectSound object. Normally
the handle of the main application window is passed as the third parameter,
but the tutorial application doesn't have a window, so it passes NULL

instead.

Sets up a default audiopath of a standard type. The tutorial requests a path
of type DMUS_APATH_SHARED_STEREOPLUSREVERB, which is
suitable for music.

Allocates a number of performance channels to the audiopath. WAV files
require only a single performance channel, and MIDI files require up to 16.
Segments created in DirectMusic Producer might need more. No harm is
done by asking for extra channels.

Specifies capabilities and resources of the synthesizer. This can be done in
one of two ways: by setting flags or by supplying a
DMUS_AUDIOPARAMS structure with more detailed information. Most
applications set the DMUS_AUDIOF_ALL flag and let DirectMusic create
the synthesizer with default parameters.

In the tutorial, the call to InitAudio is very simple:

g_

);

pPerformance->InitAudio(

NULL, // IDirectMusic interface not needed.

NULL, // IDirectSound interface not needed.

NULL, // Window handle.
DMUS_APATH_SHARED_STEREOPLUSREVERB, // Default audiopath type.
64, // Number of performance channels.
DMUS_AUDIOF_ALL, // Features on synthesizer.

NULL // Audio parameters; use defaults.

Next: Step 2: L.oad a File

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Step 2: Load a File

The DirectMusic performance and synthesizer are now ready to process sound
data. To get the data, the loader needs to know where to find it. Although a full
path can be provided each time a file is loaded, it is more convenient to establish
a default directory. Do this by using the

IDirectMusicl.oader8::SetSearchDirectory method.

In the sample code, the path to the default Windows media directory is given.
You can change the value of wstrSearchPath to get files from a different folder.

The following code is from the WinMain function in the tutorial sample:

// Find the Windows media directory.

CHAR strPath[512];

if(GetWindowsDirectory(strPath, MAX_PATH+1) == 0)
return 0;

strcat(strPath, "\\media");

// Convert to Unicode.

WCHAR wstrSearchPath[MAX_PATH + 1];

MultiByteTowideChar(CP_ACP, 0, strPath, -1,
wstrSearchPath, MAX_PATH);

wstrSearchPath[MAX_PATH] = 0;

// Set the search directory.

g_plLoader->SetSearchDirectory/(
GUID_DirectMusicAllTypes, // Types of files sought.
wstrSearchPath, // Where to look.
FALSE // Don't clear object data.

);

In the call to SetSearchDirectory, the fClear parameter is set to FALSE because
there is no danger of accidentally reloading objects from the wrong directory.
This is likely to happen only if the application is loading identically named
objects from different folders.

Now that the loader knows where to look for the file, it can load it as a segment:

WCHAR wstrFileName[MAX_PATH] = L"ding.wav";

if (FAILED(g_plLoader->LoadObjectFromFile(
CLSID_DirectMusicSegment, // Class identifier.
IID_IDirectMusicSegment8, // ID of desired interface.
wstrFileName, // Filename.

(LPVOID*) &g_pSegment // Pointer that receives interface.
))

MessageBox(NULL, "Media not found, sample will now quit.",
"DirectMusic Tutorial", MB_OK);

g_pPerformance->CloseDown();

g_plLoader->Release();

g_pPerformance->Release();

CoUninitialize();

return 0;

}

)
{

Next: Step 3: Play the File

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Step 3: Play the File

The WAV file loaded in the previous step is now available to the performance
through its IDirectMusicSegment8 interface.

Before a segment can be played, its band must be downloaded to the synthesizer.
As long as you don't unload the band, this step has to be taken only once for each
segment that uses a unique band.

The following code from the WinMain function in the sample downloads the
band to the performance. Alternatively, it could be downloaded to an audiopath.
As long as only a single synthesizer is in use, it doesn't matter which destination
object you choose:

g_pSegment->Download(g_pPerformance);

To play the file, pass the segment interface to
IDirectMusicPerformance8::PlaySegmentEx. This method offers many
options for playback, but to play a segment immediately on the default
audiopath, all the parameters except the first can be NULL or 0:

g_pPerformance->PlaySegmentEX(
g_pSegment, // Segment to play.

NULL, // Not used.

NULL, // For transitions.

0, // Flags.

Q, // Start time; 0 is immediate.

NULL, // Pointer that receives segment state.
NULL, // Object to stop.

NULL // Audiopath, if not default.

)
MessageBox(NULL, "Click OK to Exit.", "Play Audio", MB_OK);

Next: Step 4: Close Down

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Step 4: Close Down

To exit an audio application cleanly, you must perform five main steps:

1.
2.
3.

4.
5.

Stop any playing segments by calling IDirectMusicPerformance8::Stop.
Unload any segments that were downloaded to the synthesizer.

Close down the performance. The
IDirectMusicPerformance8::CloseDown method performs miscellaneous
cleanup tasks and releases internal references to objects.

Release all interfaces.

Close COM.

The following code from the WinMain function in the tutorial sample is called
when the dialog box is closed.

g_pPerformance->Stop(

);

NULL, // Stop all segments.

NULL, // Stop all segment states.
0, // Do it immediately.

0 // Flags.

g_pSegment->Unload(g_pPerformance);
g_pPerformance->CloseDown();

g_pLoader->Release();
g_pPerformance->Release();
g_pSegment->Release();

CoUninitialize();

return ©; // Return value for WinMain.

}

// End of WinMain.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Tutorial 2: Using Audiopath Objects

This tutorial is a guide to setting up a DirectMusic performance and retrieving an
object—in this case, a 3-D buffer—from an audiopath so that sound parameters
can be changed. The tutorial is presented in the following steps:

e Step 1: Create the Audiopath
e Step 2: Retrieve the Buffer
e Step 3: Change Buffer Parameters

The complete sample code for the tutorial is available in the following folder:

C:\DXSDK\Samples\C++\DirectMusic\Tutorials\Tutorial2

Note If you installed the DirectX SDK in a different root directory, substitute
the name of that directory for "Dxsdk" in the path.

It is assumed that you have already learned the basic steps of creating the
performance and loader objects, and loading and playing a file. These steps are
covered in Tutorial 1: Playing Audio Files.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Step 1: Create the Audiopath

The simplest way to create an audiopath is by passing a flag to
IDirectMusicPerformance8::InitAudio. The tutorial sample passes the

DMUS_APATH_DYNAMIC_STEREO flag, causing InitAudio to set up a
default audiopath that supports stereo sounds:

g_pPerformance->InitAudio(

NULL, // IDirectMusic interface not needed.
NULL, // IDirectSound interface not needed.
NULL, // Window handle.
DMUS_APATH_DYNAMIC_STEREO, // Default audiopath type.
64, // Number of performance channels.
DMUS_AUDIOF_ALL, // Features on synthesizer.

NULL // Audio parameters; use defaults.

);

The default audiopath is suitable for sounds that do not have to be located in
space, such as background music or narration. However, if an application
implements 3-D sound effects, it will play each sound source on its own
audiopath, so that 3-D parameters can be set individually.

The sample creates one such audiopath as follows:

IDirectMusicAudioPath8* p3DAudioPath = NULL;
g_pPerformance->CreateStandardAudioPath(
DMUS_APATH_DYNAMIC_3D, // Path type.

64, // Number of performance channels.
TRUE, // Activate now.
&p3DAudioPath // Pointer that receives audiopath.

);
A segment can now be played on this audiopath as follows:

g_pPerformance->PlaySegmentEX(
g_pSegment, // Segment to play.

NULL, // Not used.

NULL, // For transitions.

Q, // Flags.

o, // Start time; 0 is immediate.

NULL, // Pointer that receives segment state.

NULL, // Object to stop.

p3DAudioPath // Audiopath.
)

Next: Step 2: Retrieve the Buffer

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Step 2: Retrieve the Buffer

By using the IDirectMusicAudioPath8::GetObjectInPath method, you can
retrieve interfaces to objects that form part of the path. In the case of the
DMUS_APATH DYNAMIC_3D standard audiopath type, such objects could
include the secondary buffer itself, the primary buffer, the DirectSound listener,
or any DMOs set on buffers after the audiopath was created. The tutorial sample
obtains the IDirectSound3DBuffer8 interface to the buffer:

IDirectSound3DBuffer8* pDSB = NULL;

p3DAudioPath->GetObjectInPath(
DMUS_PCHANNEL_ALL, // Performance channel.
DMUS_PATH_BUFFER, // Stage in the path.

0, // Index of buffer in chain.
GUID_NULL, // Class of object.

o, // Index of object in buffer; ignored.
IID_IDirectSound3DBuffer, // GUID of desired interface.
(LPVOID*) &pDSB // Pointer that receives interface.

);

The parameters to IDirectMusicAudioPath8::GetObjectInPath can be a little
tricky to set up properly. For information on which parameters are relevant for
objects at different stages in the path, see Retrieving Objects from an Audiopath.

In this case, you are retrieving a secondary buffer that is used by all performance
channels on this audiopath. Set the dwPChannel parameter to
DMUS_PCHANNEL_ALL.

Because the buffer you want is the first and in this case the only buffer in the
chain, you pass 0 as dwBuffer. The DMUS_PATH_BUFFER stage contains only
buffer objects, and not the DMOs attached to those buffers; therefore dwindex is
ignored.

Next: Step 3: Change Buffer Parameters

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

Step 3: Change Buffer Parameters

Now that you have the IDirectSound3DBuffer8 interface, you can use it to
move the sound in space. The tutorial sample application does so when the user
closes a series of message boxes. For example, the following code immediately
moves the sound to the left:

pDSB->SetPosition(-0.1f, 0.0f, 0.0f, DS3D_IMMEDIATE);

The first three parameters specify the new position of the sound source in
relation to the default listener. The default listener is at coordinates (0.0, 0.0,
0.0), facing toward the positive z-axis, with the top of the head toward the
positive y-axis. Distance units are meters by default. Because the x-axis is
positive from left to right, the new position of the sound is 10 centimeters
directly to the left of the listener.

The last parameter of the IDirectSound3DBuffer8::SetPosition method
specifies whether the change is to be made immediately or deferred until all
changes are committed.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic C/C++ Reference

This section contains reference information for the API elements of Microsoft®
DirectMusic®. Reference material is divided into the following categories.

DirectMusic Interfaces
DirectMusic Messages
DirectMusic Structures

DLS Structures

DirectMusic File Format
DirectMusic File Structures
Standard Track Parameters
DirectMusic Enumerated Types
DirectMusic Return Values

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

DirectMusic Interfaces

This section contains references for DirectMusic COM interfaces.

Interfaces in the current version (other than IKsControl and IReferenceClock)
are either declared or defined with names ending in 8. To be sure of using the
latest version of an interface, always include this suffix when declaring the
interface pointer.

Interfaces retrieved by methods are always the base version. Where a newer
version exists, you must call QueryInterface to obtain it, as in the following
example, where [pdmBand is an IDirectMusicBand8 interface pointer:

IDirectMusicSegment * lpdmseg;
IDirectMusicSegment8 * lpdmseg8;

HRESULT hr = lpdmBand->CreateSegment(&lpdmseg);
if (SUCCEEDED(hr))

hr = lpdmseg->QueryInterface(IID_IDirectMusicSegments,
(LPVOID*)&1pdmseg8);
}

Where there is no new version of an interface, the interface name with the suffix
8 is only a define. For example, IDirectMusicGraph8 is equivalent in all
respects to IDirectMusicGraph. In such cases it is not necessary to query for a
new interface, but doing so does no harm and can make your code easier to
maintain for future versions of DirectX.

For information on which methods are supported by earlier versions of an
interface, see the declaration of the interface in the appropriate header file.

When a method takes an interface pointer as an in parameter, you can pass in the
newer version even where the method is declared as accepting the older version.
For example, a pointer to either IDirectMusicSegment or
IDirectMusicSegment8 can be passed to
IDirectMusicPerformance8::PlaySegmentEx.

This documentation contains full reference topics only for the latest versions of

interfaces. Where a define exists, such as IDirectMusicGraph8, the interface is

documented under that name.

Interface

Description

IDirectMusic8

Provides methods for managing buffers,
the master clock.

IDirectMusicAudioPath8

Manages the stages of data flow from th
performance to the final mixer.

IDirectMusicBand8

Represents a DirectMusic band object.

IDirectMusicBuffer8

Represents a buffer containing time-star
(typically in the form of MIDI messages
sequenced to a port.

IDirectMusicChordMap8

Represents a chordmap.

IDirectMusicCollection8

Manages an instance of a DLS file.

IDirectMusicComposer8

Enables access to the composition engin

IDirectMusicContainer8

Provides access to objects in a container
collection of objects used by a segment
performance.

IDirectMusicDownload8

Represents a contiguous memory chunk
downloading to a DLS synthesizer port.

Used to identify an instrument that has t
downloaded to the synthesizer by using

IDirectMusicDownloadedInstrument8 IDirectMusicPort8::DownloadInstrur

IDirectMusicPerformance8::Downloa
method.

IDirectMusicGetLoader8

Used by an object parsing a stream whe
needs to load another object referenced
stream.

IDirectMusicGraph8

Manages the loading and message flow

IDirectMusicInstrument8

Represents an individual instrument froi
collection.

IDirectMusicl.oader8

Used for finding, enumerating, caching,
objects.

IDirectMusicObject8

Used by an object parsing a stream whe
needs to load another object referenced
stream.

IDirectMusicPatternTrack8

Represents a track that contains a single

IDirectMusicPerformance8

Manages playback.

IDirectMusicPort8

Represents a device that sends or receiv:
data.

IDirectMusicPortDownload8

Enables an application to communicate
a port that supports DLS downloading a
download memory chunks directly to th

IDirectMusicScript8

Represents a script containing variables
set and retrieved by the application, and
can be called by the application.

IDirectMusicSegment8

Represents a segment, which is a playat
data made up of multiple tracks.

IDirectMusicSegmentState8

Represents a playing instance of a segm

IDirectMusicStyle8

Represents a style object, which encapst
collection of patterns, motifs, and bands
time composition of musical segments.

IDirectMusicSynth

Implemented by synthesizers.

IDirectMusicSynthSink

Implemented by synthesizer sinks.

Supports thruing of MIDI messages fror

IDirectMusicThru8
port to another port.
IDirectMusicTool8 Represents a tool object that processes r
IDirectMusicTrack8 Represents a track object, which can sto
of data for a segment.
IKsControl Used to get, set, or query the support of
- events, and methods.
IReferenceClock Represents a system reference clock.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8 Interface

The IDirectMusic8 interface provides methods for managing buffers, ports, and
the master clock. There should not be more than one instance of this interface
per application.

IDirectMusic8 supersedes IDirectMusic and adds a new method,
SetExternalMasterClock.

There is no helper function to create this interface. Applications use the COM
CoCreateInstance function, the IDirectMusicPerformance8::Init method, or
the IDirectMusicPerformance8::InitAudio method to create a DirectMusic
object.

In addition to the methods inherited from IUnknown, the IDirectMusic8
interface exposes the following methods.

Ports
Method Description
. Activates or deactivates all ports

Activate .

created from this interface.

ject for a DirectMusi

CreatePort Creates an object for a DirectMusic
- port.

Enumerates and retrieves the
EnumPort capabilities of the DirectMusic ports

connected to the system.

Retri h ID of the defaul
GetDefaultPort etrieves the GUID of the default

output port.
Timing
Method Description

Enumer he clocks that DirectMusi
EnumMasterClock umerates the clocks that DirectMusic

can use as the master clock.

GetMasterClock

Retrieves the GUID and a pointer to the
interface for the current master clock.

SetExternalMasterClock

Sets the DirectMusic master clock to an
existing clock object.

Sets the DirectMusic master clock to a

SetMasterClock clock identified by a call to
EnumMasterClock.

Miscellaneous

Method Description

CreateMusicBuffer Cr.eates an object to hold messages
being sequenced to the port.
Connects DirectMusic to a DirectSound

SetDirectSound device object for output from the

synthesizer.

The LPDIRECTMUSICS type is defined as a pointer to the IDirectMusic8

interface:

typedef IDirectMusic8 *LPDIRECTMUSICS;

Requirements

Header: Declared in dmusicc.h.

See Also

e DirectMusic Interfaces

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::Activate

The Activate method activates or deactivates all ports created from this
interface.

Syntax

HRESULT Activate(
BOOL fEnable

),
Parameters
fEnable

Switch to activate (TRUE) or deactivate (FALSE) all port objects created in this
instance of DirectMusic.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return DSERR_NODRIVER, indicating that no sound
driver is present.

Remarks

Applications should call Activate(FALSE) when they lose input focus if they do
not need to play sounds in the background. This allows another application that
has the input focus to have access to the ports. When the application has input
focus again, it should call Activate(TRUE) to enable all its allocated ports.

Requirements
Header: Declared in dmusicc.h.

See Also

e IDirectMusic8 Interface
e IDirectMusicPort8::Activate

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::CreateMusicBuffer

The CreateMusicBuffer method creates a DirectMusicBuffer object to hold
messages being sequenced to the port. Most applications do not need to call this
method directly, because buffer management is handled by the performance
when a port is added.

Syntax

HRESULT CreateMusicBuffer(
LPDMUS_BUFFERDESC pBufferDesc,
LPDIRECTMUSICBUFFER*. .ppBuffer,
LPUNKNOWN pUnkOuter

),
Parameters
pBufferDesc

Address of the DMUS_BUFFERDESC structure that contains the description
of the buffer to be created. The application must initialize the dwSize member of
this structure before passing the pointer.

ppBuffer

Address of a variable that receives an IDirectMusicBuffer8 interface pointer.

pUnkOuter

Address of the controlling object's IUnknown interface for COM aggregation.
Because aggregation is not currently supported, this value must be set to NULL.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
CLASS_E_NOAGGREGATION
E_INVALIDARG
E_NOINTERFACE
E_OUTOFMEMORY
E_POINTER

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusic8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::CreatePort

The CreatePort method creates an object for a DirectMusic port.

Syntax

HRESULT CreatePort(
REFCLSID rclsidPort,
LPDMUS_PORTPARAMS pPortParams,
LPDIRECTMUSICPORT* ppPort,
LPUNKNOWN pUnkOuter

);
Parameters
rclsidPort

Reference to (C++) or address of (C) the GUID that identifies the port for which
the IDirectMusicPort8 interface is to be created. The GUID is retrieved through
the IDirectMusic8::EnumPort method. If it is GUID_NULL, the returned port

is the default port. For more information, see Default Port.

pPortParams

Address of a DMUS_PORTPARAMSS structure that contains parameters for
the port. The dwSize member of this structure must be initialized to
sizeof(DMUS_PORTPARAMSS) before the method is called.

ppPort
Address of a variable that receives an IDirectMusicPort interface pointer.
pUnkOuter

Address of the controlling object's IUnknown interface for COM aggregation.
Because aggregation is not currently supported, this value must be NULL.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if a requested
parameter is not available.

If it fails, the method can return one of error values in the following table.

Return code
CLASS_E_NOAGGREGATION
DMUS_E_DSOUND_NOT_SET
E_INVALIDARG
E_NOINTERFACE
E_OUTOFMEMORY
E_POINTER

Remarks

By default, the port is inactive when it is created. It must be activated by a call to
IDirectMusic8::Activate or IDirectMusicPort8::Activate.

If not all parameters could be obtained, the DMUS_PORTPARAMSS structure
is changed as follows to match the available parameters of the port.

On entry, the dwValidParams member of the structure indicates which members
in the structure are valid. If the flag is not set for a member of the structure, a
default value is set for that parameter when the port is created.

On return, the flags in dwValidParams show which port parameters were set. If
a particular parameter was not requested but was set to the default, that flag is
added to those passed in.

If the port supports a specified parameter but the given value for the parameter is
out of range, the parameter value in *pPortParams is changed. In this case, the
flag in dwValidParams remains set, but S_FALSE is returned to indicate that
the value has been changed.

Requirements
Header: Declared in dmusicc.h.

See Also

e IDirectMusic8 Interface
e Using DirectMusic Ports

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::EnumMasterClock

The EnumMasterClock method enumerates the clocks that DirectMusic can
use as the master clock. Each time it is called, this method retrieves information
about a single clock.

Syntax

HRESULT EnumMastercClock(
DWORD dwIndex,
LPDMUS_CLOCKINFO IpClockInfo

),
Parameters
dwiIndex

Index of the clock for which the description is to be returned. This parameter
should be 0 on the first call, and then incremented in each subsequent call until
S_FALSE is returned.

IpClockInfo

Address of a DMUS_CLOCKINFOS8 structure that receives the description of
the clock. The application must initialize the dwSize member of this structure
before passing the pointer.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there is no
clock with that index number.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_INVALIDARG

E_NOINTERFACE
E_POINTER

Remarks

Applications should not rely on or store the index number of a clock. Rebooting
or adding and removing hardware can cause the index number of a clock to
change.

Requirements
Header: Declared in dmusicc.h.
See Also

IDirectMusic8 Interface
IDirectMusic8::GetMasterClock
IDirectMusic8::SetMasterClock
Master Clock

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::EnumPort

The EnumPort method enumerates and retrieves the capabilities of the
DirectMusic ports connected to the system. Each time it is called, this method
retrieves information about a single port.

Syntax

HRESULT EnumPort (
DWORD dwIndex,
LPDMUS_PORTCAPS pPortCaps

),
Parameters
dwiIndex

Index of the port for which the capabilities are to be returned. This parameter
should be 0 on the first call, and then incremented in each subsequent call until
S_FALSE is returned.

pPortCaps

Address of the DMUS_PORTCAPS structure that receives the capabilities of
the port. The dwSize member of this structure must be initialized before the
pointer is passed.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there is no port
with that index value.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_INVALIDARG

E_NOINTERFACE
E_POINTER

Remarks

Applications should not rely on or store the index number of a port. Restarting
the system or adding or removing ports could cause the index number of a port

to change.
Requirements

Header: Declared in dmusicc.h.
See Also

e IDirectMusic8 Interface
e Using DirectMusic Ports

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::GetDefaultPort

The GetDefaultPort method retrieves the GUID of the default output port. This
is the port to be created if GUID_INULL is passed to
IDirectMusic8::CreatePort.

Syntax

HRESULT GetDefaultPort(
LPGUID pguidPort

);

Parameters

pguidPort

Address of a variable that receives the default port GUID.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements
Header: Declared in dmusicc.h.
See Also

e Default Port
e IDirectMusic8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::GetMasterClock

The GetMasterClock method retrieves the GUID and a pointer to the
IReferenceClock interface for the clock that is currently set as the DirectMusic
master clock.

Syntax

HRESULT GetMasterClock(
LPGUID pguidClock,
IReferenceClock** ppReferenceClock

),
Parameters
pguidClock

Address of a variable that receives the GUID of the master clock. The
application can pass NULL if this value is not desired.

ppReferenceClock

Address of a variable that receives the IReferenceClock interface pointer for
this clock. The application can pass NULL if this value is not desired.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_NOINTERFACE
E_POINTER

Remarks

The IReferenceClock interface pointer must be released after the application
has finished using the interface.

Requirements
Header: Declared in dmusicc.h.
See Also

¢ IDirectMusic8 Interface
¢ IDirectMusic8::SetMasterClock
e Master Clock

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::SetDirectSound

The SetDirectSound method connects DirectMusic to a DirectSound device
object for output from the synthesizer.

This method is not used by most applications. The DirectSound device object is
normally created and connected to the performance by
IDirectMusicPerformance8::InitAudio.

Syntax

HRESULT SetDirectSound(
LPDIRECTSOUND pDirectSound,
HWND hiwnd

),
Parameters
pDirectSound

Address of the IDirectSound8 interface to use for output. If this parameter is
NULL, the method creates a DirectSound device object and sets the
DSSCL_PRIORITY cooperative level. (See Remarks.) If this parameter contains
an IDirectSound pointer, the caller is responsible for setting the cooperative
level.

hwWnd

Window handle to the DirectSound device object created by this call. If this
value is NULL, the current foreground window is set as the focus window. (See
Remarks.)

If pDirectSound is a valid interface, this parameter is ignored. It is the caller's
responsibility to supply a valid window handle in the call to
IDirectSound8::SetCooperativeLevel.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_DSOUND_AI.READY_ SET.

Remarks

The specified DirectSound device object is the one used for rendering audio on
all ports. This default can be overridden on a particular port by using the
IDirectMusicPort8::SetDirectSound method.

Whenever the IDirectMusic8::SetDirectSound method is called, any existing
DirectSound device object is released.

When pDirectSound is NULL, a new DirectSound device object is not created
until a port that uses DirectSound is activated, and the DirectSound device object
is automatically released when the last port using it is deactivated.

If you created the DirectSound device object yourself, you can release it by
calling this method with NULL in the pDirectSound parameter after deactivating
all ports. (It is an error to call SetDirectSound on an active port.)

You can pass NULL in the hWnd parameter to pass the current foreground
window handle to DirectSound. However, do not assume that the application
window is in the foreground during initialization. In general, the top-level
application window handle should be passed to DirectMusic and DirectSound.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusic8 Interface
e IDirectMusicPerformance8::Init

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::SetExternalMasterClock

The SetExternalMasterClock method sets the DirectMusic master clock to an
existing clock object. There is only one master clock for all DirectMusic
applications.

Syntax

HRESULT SetExternalMasterClock(
IReferenceClock *pClock

),
Parameters
pClock

IReferenceClock interface pointer that specifies the clock.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_PORTS_OPEN.

Remarks

If another running application is also using DirectMusic, it is not possible to
change the master clock until that application is shut down.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusic8 Interface
e IDirectMusic8::EnumMasterClock

e IDirectMusic8::GetMasterClock
e IDirectMusic8::SetMasterClock
e Master Clock

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusic8::SetMasterClock

The SetMasterClock method sets the DirectMusic master clock to a clock
identified by a GUID obtained by using the
IDirectMusic8::EnumMasterClock method. There is only one master clock for
all DirectMusic applications.

Syntax

HRESULT SetMasterClock(
REFGUID rguidClock

);

Parameters
rguidClock

Reference to (C++) or address of (C) the GUID that identifies the clock to set as
the master clock for DirectMusic. This parameter must be a GUID returned by
the IDirectMusic8::EnumMasterClock method.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_PORTS_OPEN.
Remarks

If another running application is also using DirectMusic, it is not possible to
change the master clock until that application is shut down.

Most applications do not need to call SetMasterClock. It should not be called
unless there is a need to synchronize tightly with a hardware timer other than the
system clock.

Requirements

Header: Declared in dmusicc.h.
See Also

IDirectMusic8 Interface
IDirectMusic8::EnumMasterClock
IDirectMusic8::GetMasterClock
IDirectMusic8::SetExternalMasterClock
Master Clock

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicAudioPath8 Interface

The IDirectMusicAudioPath8 interface manages the stages of data flow from
the performance to the final mixer. An audiopath can be created from an
audiopath configuration object by using the
IDirectMusicPerformance8::CreateAudioPath method. A standard audiopath
can be created by using
IDirectMusicPerformance8::CreateStandardAudioPath. A standard default
path can also be created by IDirectMusicPerformance8::InitAudio and then
retrieved by using IDirectMusicPerformance8:: GetDefaultAudioPath.

The IDirectMusicAudioPath8 interface can be passed to
IDirectMusicPerformance8::PlaySegmentEx to play the segment on that
audiopath.

IDirectMusicAudioPath8 is a type definition for IDirectMusicAudioPath. The
two interface names are interchangeable.

In addition to the methods inherited from IUnknown, the
IDirectMusicAudioPath8 interface exposes the following methods.

Method Description
Activate Activates or deactivates the audiopath.

Translates between a

performance channel in a segment and
the equivalent channel allocated in the
performance for the audiopath.

Retrieves an interface for an object in
the audiopath.

SetVolume Sets the audio volume on the audiopath.

ConvertPChannel

GetObjectInPath

Requirements
Header: Declared in dmusici.h.

See Also

e DirectMusic Interfaces
e Using Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicAudioPath8:: Activate

The Activate method activates or deactivates the audiopath.

Syntax

HRESULT Activate(
BOOL fActivate

),

Parameters

fActivate

Boolean that specifies whether to activate (TRUE) or deactivate (FALSE) the
audiopath.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the audiopath
is already in the requested state.

Remarks

The behavior of this method is different from that of
IDirectMusicPort8::Activate. When a port is deactivated, it no longer produces
sound, but the performance can continue playing segments. When an audiopath
is deactivated, all playback stops and any attempt to play a segment will fail.

Requirements
Header: Declared in dmusici.h.
See Also

e IDirectMusicAudioPath8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicAudioPath8::ConvertPChannel

The ConvertPChannel method translates between a performance channel in a
segment and the equivalent channel allocated in the performance for the
audiopath. This method is not typically needed by applications, but can be used
by components such as tracks.

Syntax

HRESULT ConvertPChannel(
DWORD dwPChannellIn,
DWORD *pdwPChannelOut

);

Parameters

dwPChannelln

Value that specifies the performance channel to convert.

pdwPChannelOut

Address of a DWORD variable that receives the virtual performance channel.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E NOT FOUND
E_POINTER

Requirements

Header: Declared in dmusici.h.
See Also

e IDirectMusicAudioPath8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicAudioPath8::GetObjectInPath

The GetObjectInPath method retrieves an interface for an object in the
audiopath.

Syntax

RESULT GetObjectInPath(
DWORD dwPChannel,
DWORD dwStage,

DWORD dwBuffer,
REFGUID guidObject,
DWORD dwIndex,
REFGUID iidInterface,
void ** ppObject

);

Parameters
dwPChannel

Performance channel to search, or DMUS_PCHANNEL _ALL to search all
channels. The first channel is numbered 0. (See Remarks.)

dwStage
Stage in the audiopath. Can be one of the values in the following table.

Value Description

Get the audiopath toolgraph. One is

DMUS PATH AUDIOPATH GRAPH) .
created if none exists.

DMUS._PATH AUDIOPATH TOOL Get a tool from the audiopath

toolgraph.
DMUS_PATH_ BUFFER Get a DirectSound buffer.
DMUS_PATH_BUFFER_DMO Get a DMO in a buffer.
DMUS_PATH_MIXIN BUFFER Get a global mix-in buffer.

Get a DMO in a global mix-in

DMUS_PATH_MIXIN_BUFFER_DMO buffer.

DMUS_PATH PERFORMANCE Get the performance.

DMUS. PATH _PERFORMANCE_GRApy S¢t the performance toolgraph. One
is created if none exists.

Get a tool from the performance

DMUS_PATH_PERFORMANCE_TOOL
toolgraph.

DMUS_PATH_PORT Get the synthesizer.

DMUS_PATH_PRIMARY_BUFFER Get the primary buffer.

dwBuffer

Index of the buffer (if dwStage is DMUS_PATH_BUFFER or
DMUS_PATH_MIXIN_BUFFER), or index of the buffer in which the DMO
resides (if dwStage is DMUS_PATH_BUFFER_DMO or
DMUS_PATH_MIXIN_BUFFER_DMO).

guidObject

Class identifier of the object, or GUID_AIl_Objects to search for an object of
any class. This parameter is ignored if only a single class of object can exist at
the stage specified by dwStage, and can be set to GUID_NULL.

dwilndex

Index of the object within a list of matching objects. Set to O to find the first
matching object. If dwStage is DMUS_PATH_BUFFER or
DMUS_PATH_MIXIN_BUFFER, this parameter is ignored, and the buffer
index is specified by dwBuffer.

iidInterface

Identifier of the desired interface, such as IID_IDirectMusicTool.
ppObject

Address of a variable that receives a pointer to the requested interface.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E_NOT_FOUND
E_INVALIDARG
E_OUTOFMEMORY
E_NOINTERFACE
E_POINTER

Remarks

The value in dwPChannel must be 0 for any stage that is not channel-specific.
Objects in the following stages are channel-specific and can be retrieved by
setting a channel number or DMUS_PCHANNEL_ALL in dwPChannel:

DMUS_PATH_AUDIOPATH_TOOL
DMUS_PATH_BUFFER
DMUS_PATH_BUFFER_DMO
DMUS_PATH_PERFORMANCE_TOOL
DMUS_PATH_PORT

The precedence of the parameters in filtering out unwanted objects is as follows:

1. dwStage.

2. guidObject. If this value is not GUID_AIl_Objects, only objects whose
class identifier equals guidObject are searched. However, this parameter is
ignored for stages where only a single class of object can exist, such as
DMUS_PATH_AUDIOPATH_GRAPH.

3. dwPChannel. If the stage is channel-specific and this value is not
DMUS_PCHANNEL_ALL, only objects on the channel are searched.

4. dwBuffer. This is used only if dwStage is DMUS_PATH_BUFFER,
DMUS_PATH_MIXIN_BUFFER, DMUS_PATH_BUFFER_DMO, or
DMUS_PATH_MIXIN_BUFFER_DMO.

5. dwlindex.

If a matching object is found but the interface specified by iidInterface cannot be
obtained, the method fails.

The following example function shows how to enumerate the buffers in an
audiopath:

void DumpAudioPathBuffers(
IDirectMusicAudioPath *pDirectMusicAudioPath)
{

DWORD dwBuffer = 0;
IDirectSoundBuffer *pDirectSoundBuffer;

while (S_OK == pDirectMusicAudioPath->GetObjectInPath(
DMUS_PCHANNEL_ALL, DMUS_PATH_BUFFER, dwBuffer,
GUID_NULL, O, IID_IDirectSoundBuffer,
(void**) &pDirectSoundBuffer))

// Do something with pDirectSoundBuffer.
// ..

dwBuffer++;
pDirectSoundBuffer->Release();

b
by

Requirements
Header: Declared in dmusici.h.
See Also

e IDirectMusicAudioPath8 Interface

¢ IDirectMusicSegmentState8::GetObjectInPath
e Retrieving Objects from an Audiopath

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicAudioPath8::SetVolume

The SetVolume method sets the audio volume on the audiopath. The volume can
be faded in or out.

Syntax

HRESULT SetVolume(
long 1Volume,
DWORD dwDuration

),
Parameters
[Volume

Value that specifies the attenuation, in hundredths of a decibel. This value must
be in the range from -9600 to 0. Zero is full volume.

dwDuration

Value that specifies the time, in milliseconds, over which the volume change
takes place. A value of 0 ensures maximum efficiency.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS E NOT INIT
E_INVALIDARG

Remarks

This method works by sending a volume curve message. Any volume events
occurring later, such as a band change, override the volume set by this method.
IDirectMusicAudioPath8::SetVolume is useful mainly for adjusting currently
playing sounds; for example, to fade out before stopping a segment. If you want
to make a global change that affects all playback, use one of the following
techniques:

¢ Obtain the buffer object from the audiopath and use
IDirectSoundBuffer8::SetVolume.

e Obtain the port object from the audiopath and use
IKsControl::KsProperty to change the GUID_DMUS_PROP_Volume
property set.

e Set the master volume for the performance. See Setting and Retrieving
Global Parameters.

Requirements
Header: Declared in dmusici.h.
See Also

Cross Fade Sample
Curves
IDirectMusicAudioPath8 Interface

Playing Sounds on Audiopaths

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBand8 Interface

The IDirectMusicBand8 interface represents a DirectMusic band object. A band
is used to set the instrument choices and mixer settings for a set of

performance channels. For an overview, see Using Bands. Bands can be stored
directly in their own files or embedded in a style's band list or a segment's band
track.

IDirectMusicBand8 is a define for IDirectMusicBand. The two interface
names are interchangeable.

The DirectMusicBand object also supports the IPersistStream and
IDirectMusicObject8 interfaces for loading its data.

In addition to the methods inherited from IUnknown, the IDirectMusicBand8
interface exposes the following methods.

Method Description

Creates a segment object that can be

played to dynamically perform the

volume, pan, transposition, and patch

change commands in the band.

Downloads the DLS data for

Download instruments in the band to a
performance object.

Unloads the DLS data for instruments
in the band previously downloaded.

CreateSegment

Unload

Requirements
Header: Declared in dmusici.h.

See Also

e DirectMusic Interfaces
e Using Bands

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBand8::CreateSegment

The CreateSegment method creates a segment object that can be played to
dynamically perform the volume, pan, transposition, and patch change
commands in the band.

Syntax

HRESULT CreateSegment (
IDirectMusicSegment** ppSegment

);

Parameters

ppSegment

Address of a variable that receives a pointer to the created segment.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_FAIL
E_OUTOFMEMORY
E_POINTER

Requirements
Header: Declared in dmusici.h.
See Also

¢ IDirectMusicBand8 Interface

e Making Band Changes Programmatically

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBand8::Download

The Download method downloads the DLS data for instruments in the band to a
performance object.

Syntax

HRESULT Download (
IDirectMusicPerformance* pPerformance

),
Parameters
pPerformance

Performance to which instruments are to be downloaded. The performance
manages the mapping of performance channels to DirectMusic ports.

Return Values

If the method succeeds, the return value is S_OK, or
DMUS_S_PARTIALDOWNLOAD. (See Remarks.)

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E_NOT_INIT
E_OUTOFMEMORY
E_POINTER

Remarks

The method downloads each instrument in the band by calling the
IDirectMusicPerformance8::DownloadInstrument method.
DownloadInstrument, in turn, uses the performance channel of the instrument
to find the appropriate port, and then calls the

IDirectMusicPort8::DownloadInstrument method on that port.

After a band has been downloaded, the instruments in the band can be selected,
either individually with program-change MIDI messages, or all at once by
playing a band segment created through a call to the
IDirectMusicBand8::CreateSegment method.

Because a downloaded band uses synthesizer resources, it should be unloaded
when no longer needed by using the IDirectMusicBand8::Unload method.

This method may return S_OK even though the port does not support DLS.

If the download completely fails, DMUS_E_NOT_INIT is returned. This usually
means that the performance was not properly connected to an initialized port.
Because this is a complete failure, there is no need to call
IDirectMusicBand8::Unload later.

If the download partially succeeds, DMUS_S_PARTIALDOWNLOAD is
returned. This means that some of the instruments successfully downloaded and
others did not. This usually occurs because of programming error in setting up
the performance and port. The best way to find the problem is to set debug traces
to 1 for Dmime.dll, Dmband.dll, and Dmsynth.dll. See Debugging DirectMusic

Projects.

The following are some common causes of a partial download:

e The band has instruments on performance channels that have not been set
up on the performance (by using
IDirectMusicPerformance8::AssignPChannelBlock).

e The band has instruments on performance channels that are on channel
groups not allocated on the port.

e The band has instruments in a DLS format incompatible with the
synthesizer they are being downloaded to.

Requirements
Header: Declared in dmusici.h.

See Also

e Downloading and Unloading Bands
e IDirectMusicBand8 Interface
e IDirectMusicBand8::Unload

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBand8::Unload

The Unload method unloads the DLS data for instruments in the band
previously downloaded by IDirectMusicBand8::Download.

Syntax

HRESULT Unload (
IDirectMusicPerformance* pPerformance

);

Parameters

pPerformance

Performance from which to unload instruments.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS E NOT INIT
DMUS_E NOT FOUND

Requirements
Header: Declared in dmusici.h.

See Also

e Downloading and Unloading Bands
e IDirectMusicBand8 Interface

e IDirectMusicPort8::UnloadInstrument

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8 Interface

The IDirectMusicBuffer8 interface represents a buffer containing time-stamped
data (typically in the form of MIDI messages) being sequenced to a port. The
buffer contains a small amount of data, typically less than 200 milliseconds.
Unless your application is doing its own sequencing, you do not need to use the
methods of this interface.

IDirectMusicBuffer8 is a type definition for IDirectMusicBuffer. The two
interface names are interchangeable.

Buffer objects are completely independent of port objects until the buffer is
passed to the port by a call to the IDirectMusicPort8::PlayBuffer or the
IDirectMusicPort8::Read method. The application is then free to reuse the
buffer.

In addition to the methods inherited from IUnknown, the IDirectMusicBuffer8
interface exposes the following methods.

Method Description

Flush Discards all data in the buffer.

GetBufferFormat Retrieves the GUID that represents the
buffer format.

GetMaxBytes Retrieves the number of bytes that can be

stored in the buffer.

Returns information about the next
GetNextEvent message in the buffer and advances the
read pointer.

Returns a pointer to the underlying buffer

GetRawBufferPtr
data structure.
GetStartTime Retrieves th.e start time of the data in the
buffer, relative to the master clock.
Retri he number of f in
GetUsedBytes etrieves the number of bytes of data

the buffer.

Inserts fixed-length data (typically a
MIDI channel message), along with

PackStructured

timing and routing information, into the
buffer.

Inserts unstructured data (typically a
MIDI system-exclusive message), along

PackUnstructured with timing and routing information, into
the buffer
Sets the read pointer to the start of the
ResetReadPrr data in the buffer.

. Sets the start time of the data in the
SetStartTime buffer, relative to the master clock.
SetUsedBytes Sets the number of bytes of data in the

© buffer.

TotalTime Returns the total time spanned by the data

in the buffer.

The LPDIRECTMUSICBUFFERS type is defined as a pointer to the

IDirectMusicBuffer8 interface:

typedef IDirectMusicBuffer8 *LPDIRECTMUSICBUFFERS;

Requirements

Header: Declared in dmusicc.h.

See Also

e DirectMusic Interfaces

¢ IDirectMusic8::CreateMusicBuffer

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::Flush

The Flush method discards all data in the buffer.

Syntax

HRESULT Flush();
Parameters
None.
Return Values
The method returns S_OK.
Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8:: GetBufferFormat

The GetBufferFormat method retrieves the GUID that represents the buffer
format.

Syntax

HRESULT GetBufferFormat (
LPGUID pGuidFormat

);

Parameters

pGuidFormat

Address of a variable that receives the GUID of the buffer format.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

If the format was not specified when the buffer was created,
KSDATAFORMAT_SUBTYPE_DIRECTMUSIC is returned in *pGuidFormat.

Requirements
Header: Declared in dmusicc.h.
See Also

e DMUS EVENTHEADER
¢ IDirectMusic8::CreateMusicBuffer
e IDirectMusicBuffer8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::GetMaxBytes

The GetMaxBytes method retrieves the number of bytes that can be stored in
the buffer.

Syntax

HRESULT GetMaxBytes (
LPDWORD pcbh

);

Parameters
pcb

Address of a variable that receives the maximum number of bytes that the buffer
can hold.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8:: GetNextEvent

The GetNextEvent method returns information about the next message in the
buffer and advances the read pointer.

Syntax

HRESULT GetNextEvent (
LPREFERENCE_TIME prt,
LPDWORD pdwChannelGroup,
LPDWORD pdwLength,
LPBYTE* ppData

);

Parameters

prt

Address of a variable that receives the time of the message.
pdwChannelGroup

Address of a variable that receives the channel group of the message.
pdwLength

Address of a variable that receives the length, in bytes, of the message.
ppData

Address of a variable that receives a pointer to the message data.
Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there are no
messages in the buffer.

If it fails, the method can return E_POINTER.

Remarks
Any of the passed pointers can be NULL if the item is not needed.
The pointer returned in ppData is valid only for the lifetime of the buffer object.
Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface
e IDirectMusicBuffer8::ResetReadPtr

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8:: GetRawBufferPtr

The GetRawBufferPtr method returns a pointer to the underlying buffer data
structure.

Syntax

HRESULT GetRawBufferPtr(
LPBYTE* ppData

);

Parameters

ppData

Address of a variable that receives a pointer to the buffer's data.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

This method returns a pointer to the raw data of the buffer. The format of the
data depends on the implementation. The lifetime of the data is the same as the
lifetime of the buffer object; therefore, the returned pointer should not be held
after the next call to the IDirectMusicBuffer8::Release method.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::GetStartTime

The GetStartTime method retrieves the start time of the data in the buffer,
relative to the master clock.

Syntax

HRESULT GetStartTime(
LPREFERENCE_TIME prt

);

Parameters

prt

Address of a variable that receives the start time.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS E BUFFER EMPTY
E_POINTER

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface
e IDirectMusicBuffer8::SetStartTime
e IDirectMusicBuffer8::TotalTime

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::GetUsedBytes

The GetUsedBytes method retrieves the number of bytes of data in the buffer.

Syntax

HRESULT GetUsedBytes(
LPDWORD pchb

);

Parameters

pcb

Address of a variable that receives the number of used bytes.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements
Header: Declared in dmusicc.h.
See Also

¢ IDirectMusicBuffer8 Interface
¢ IDirectMusicBuffer8::SetUsedBytes

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::PackStructured

The PackStructured method inserts fixed-length data (typically a MIDI channel
message), along with timing and routing information, into the buffer.

Syntax

HRESULT PackStructured(
REFERENCE_TIME rt,
DWORD dwChannelGroup,
DWORD dwChannelMessage

);

Parameters

rt

Absolute time of the message. (See Remarks.)
dwChannelGroup

Channel group to which the data belongs.
dwChannelMessage

Data (MIDI message) to pack.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS E INVALID EVENT
E_ OUTOFMEMORY

Remarks

At least 32 bytes (the size of DMUS_EVENTHEADER plus
dwChannelMessage) must be free in the buffer.

The rt parameter must contain the absolute time at which the data is to be sent to
the port. To play a message immediately, retrieve the time from the latency
clock, and use this as rt. See IDirectMusicPort8::GetLatencyClock.

Messages stamped with the same time do not necessarily play in the same order
in which they were placed in the buffer.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface
¢ IDirectMusicBuffer8::PackUnstructured

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::PackUnstructured

The PackUnstructured method inserts unstructured data (typically a MIDI
system-exclusive message), along with timing and routing information, into the
buffer.

Syntax

HRESULT PackUnstructured(
REFERENCE_TIME rt,
DWORD dwChannelGroup,
DWORD cb,

LPBYTE Ipb

);

Parameters

rt

Absolute time of the message.
dwChannelGroup

Channel group to which the message belongs.
cb

Size of the data, in bytes.

Ipb

Address of a buffer containing the data.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following

table.

Return code
E_ OUTOFMEMORY
E_POINTER

Remarks

This method can be used to send any kind of data to the port.

At least 28 bytes (the size of DMUS_EVENTHEADER) plus the size of the
data, padded to a multiple of 4 bytes, must be free in the buffer. The buffer space
required can be obtained by using the DMUS_EVENT _SIZE(cb) macro, where
cb is the size of the data.

The rt parameter must contain the absolute time at which the data is to be sent to
the port. To play a message immediately, retrieve the time from the latency
clock, and use this as rt. See IDirectMusicPort8::GetLatencyClock.

Messages stamped with the same time do not necessarily play in the same order
in which they were placed in the buffer.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface
e IDirectMusicBuffer8::PackStructured

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::ResetReadPtr

The ResetReadPtr method sets the read pointer to the start of the data in the
buffer.

Syntax

HRESULT ResetReadPtr()
Parameters
None.
Return Values
The method always returns S_OK.
Requirements

Header: Declared in dmusicc.h.
See Also

¢ IDirectMusicBuffer8 Interface
¢ IDirectMusicBuffer8::GetNextEvent

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::SetStartTime

The SetStartTime method sets the start time of the data in the buffer, relative to
the master clock.

Syntax

HRESULT SetStartTime(
REFERENCE_TIME rt

);

Parameters

rt

New start time for the buffer.
Return Values

The method always returns S_OK.
Remarks

Events already in the buffer are time-stamped relative to the start time and play
at the same offset from the new start time.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface
e IDirectMusicBuffer8::GetStartTime

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::SetUsedBytes

The SetUsedBytes method sets the number of bytes of data in the buffer.

Syntax

HRESULT SetUsedBytes(
DWORD cb

);

Parameters

cb

Number of valid data bytes in the buffer.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return DMUS_E_BUFFER_FULL.

Remarks

This method allows an application to repack a buffer manually. Normally, this
should be done only if the data format in the buffer is different from the default
format provided by DirectMusic.

The method fails if the specified number of bytes exceeds the maximum buffer
size, as returned by the IDirectMusicBuffer8::GetMaxBytes method.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface

¢ IDirectMusicBuffer8::GetUsedBytes

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicBuffer8::TotalTime

The TotalTime method retrieves the total time spanned by the data in the buffer.

Syntax

HRESULT TotalTime(
LPREFERENCE_TIME prtTime

),
Parameters
prtlime

Address of a variable that receives the total time spanned by the buffer, in units
of 100 nanoseconds.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Requirements
Header: Declared in dmusicc.h.
See Also

e IDirectMusicBuffer8 Interface
e IDirectMusicBuffer8::GetStartTime

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicChordMap8 Interface

The IDirectMusicChordMap8 interface represents a chordmap. Chordmaps
provide the composer (represented by the IDirectMusicComposer8 interface)
with the information needed to create chord progressions for segments composed
at run time. Chordmaps can also be used to change the chords in an existing
segment.

The DirectMusicChordMap object also supports the IDirectMusicObject8 and
IPersistStream interfaces for loading its data.

IDirectMusicChordMap8 is a type definition for IDirectMusicChordMap.
The two interface names are interchangeable.

In addition to the methods inherited from IUnknown, the
IDirectMusicChordMap8 interface exposes the following method.

Method Description

Retrieves the scale associated with the
GetScale

chordmap.
Requirements

Header: Declared in dmusici.h.
See Also

e DirectMusic Interfaces
e Using Chordmaps

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicChordMap8::GetScale

The GetScale method retrieves the scale associated with the chordmap.

Syntax

HRESULT GetScale(
DWORD* pdwScale

);

Parameters

pdwScale

Address of a variable that receives the scale value.
Return Values

If the method succeeds, the return value is S_OK.

If the method fails, the return value can be E_POINTER.

Remarks

The scale is defined by the bits in a DWORD, split into a scale pattern in the
lower 24 bits and a root in the upper 8 bits. For the scale pattern, the low bit
(0x0001) is the lowest note in the scale, the next higher (0x0002) is a semitone
higher, and so on for two octaves. The upper 8 bits give the root of the scale as
an integer between 0 and 23 (low C to middle B).

Requirements
Header: Declared in dmusici.h.
See Also

¢ IDirectMusicChordMap8 Interface

e Using Chordmaps

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicCollection8 Interface

The IDirectMusicCollection8 interface manages an instance of a DLS file. The
collection provides methods to access instruments and download them to the
synthesizer by means of the IDirectMusicPort8 interface.

IDirectMusicCollection8 is a type definition for IDirectMusicCollection. The
two interface names are interchangeable.

The DirectMusicCollection object also supports the IDirectMusicObject8 and
IPersistStream interfaces for loading its data.

In addition to the methods inherited from IUnknown, the
IDirectMusicCollection8 interface exposes the following methods.

Method Description

Retrieves the patch and name of an

EnumlInstrument . o . .
instrument by its index in the collection.
i instrument by i h
GetInstrument Retrieves an instrument by its patc
— number.
Requirements

Header: Declared in dmusicc.h.
See Also

e DirectMusic Interfaces
e Using Instrument Collections

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicCollection8:: EnumInstrument

The EnumlInstrument method retrieves the patch number and name of an
instrument by its index in the collection.

Syntax

HRESULT EnumInstrument (
DWORD dwIndex,
DWORD* pdwPatch,
LPWSTR pwszName,
DWORD dwNameLen

);

Parameters

dwindex

Index of the instrument in the collection.

pdwPatch

Address of a variable that receives the patch number.
pwszName

Address of a buffer that receives the instrument name. Can be NULL if the name
is not wanted.

dwNameLen
Number of WCHAR elements in the instrument name buffer.
Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if there is no
instrument with that index number.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks

To enumerate all instruments in a collection, start with a dwIndex of 0 and
increment until EnumInstrument returns S_FALSE.

The patch number returned in pdwPatch describes the full patch address,
including the MIDI parameters for MSB and LSB bank select. For more

information, see MIDI Channel Messages.

Although the ordering of the enumeration is consistent within one instance of a
DLS collection, it has no relationship to the ordering of instruments in the file,
their patch numbers, or their names.

For an example of instrument enumeration, see Working with Instruments.

Requirements
Header: Declared in dmusicc.h.

See Also

e IDirectMusicCollection8 Interface
e Using Instrument Collections

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicCollection8:: GetInstrument

The GetInstrument method retrieves an instrument by its patch number.

Syntax

HRESULT GetInstrument (
DWORD dwPatch,
IDirectMusicInstrument** ppInstrument

);

Parameters

dwPatch

Instrument patch number.
ppInstrument

Address of a variable that receives a pointer to the IDirectMusicInstrument8
interface.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E_INVALIDPATCH
E_FAIL
E_OUTOFMEMORY
E_POINTER

Remarks

The patch number passed in dwPatch describes the full patch address, including
the MIDI parameters for MSB and LSB bank select. MSB is shifted left 16 bits,
and LSB is shifted left 8 bits. In addition, the high bit is set (0x80000000) if the
instrument is specifically a drum kit intended to be played on MIDI channel 10.

For an example of how this method is used, see Working with Instruments.
Requirements
Header: Declared in dmusicc.h.

See Also

e IDirectMusicCollection8 Interface

e MIDI Channel Messages
e Using Instrument Collections

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicComposer8 Interface

The IDirectMusicComposer8 interface enables access to the composition
engine. In addition to building new segments from templates and chordmaps, the
composer can generate transitions between different segments. It can also apply
a chordmap to an existing segment, thus altering the chord progression and the

mood of the music.

IDirectMusicComposer8 is a define for IDirectMusicComposer. The two

interface names are interchangeable.

In addition to the methods inherited from IUnknown, the
IDirectMusicComposer8 interface exposes the following methods.

Method Description
Composes a transition from inside a
performance's primary segment (or from
AutoTransition silence) to another segment, and then

cues the transition and the second
segment to play.

ChangeChordMap

Modifies the chords and scale pattern of
an existing segment to reflect a new

chordmap.

ComposeSegmentFromShape

Creates an original segment from a style
and a chordmap, based on a predefined
shape.

ComposeSegmentFromTemplate

Creates an original segment from a style,
a chordmap, and a template.

ComposeTemplateFromShape

Creates a new template segment, based
on a predefined shape.

ComposeTransition

Composes a transition from a measure
inside one segment to another.

Requirements

Header: Declared in dmusici.h.

See Also

e DirectMusic Interfaces
e Using Compositional Elements

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicComposer8::AutoTransition

The AutoTransition method composes a transition from inside a performance's
primary segment (or from silence) to another segment, and then cues the
transition and the second segment to play.

Syntax

HRESULT AutoTransition(
IDirectMusicPerformance* pPerformance,
IDirectMusicSegment* pToSeg,

WORD wCommand,

DWORD dwFlags,

IDirectMusicChordMap* pChordMap,
IDirectMusicSegment** ppTransSeg,
IDirectMusicSegmentState** ppToSegState,
IDirectMusicSegmentState** ppTransSegState

);

Parameters

pPerformance

Performance in which to make the transition.

pToSeg

Segment to which the transition should smoothly flow. (See Remarks.)
wCommand

Embellishment to use when composing the transition. This can be one of the
values of the DMUS_COMMANDT _TYPES enumeration, or a value defined
in DirectMusic Producer as a custom embellishment. If this value is
DMUS_COMMANDT_ENDANDINTRO, the method composes a segment
containing both an ending to the current primary segment and an introduction to
pToSeg.

dwFlags

Composition options. See DMUS_COMPOSEF_FILAGS.

pChordMap

Pointer to the IDirectMusicChordMap8 interface of the chordmap to be used
when composing the transition.

ppTransSeg

Address of a variable that receives a pointer to the created segment. This value
can be NULL, in which case the pointer is not returned.

ppToSegState

Address of a variable that receives a pointer to the segment state created by the
performance (pPerformance) for the segment following the transition (pToSeg).
(See Remarks.)

ppTransSegState

Address of a variable that receives a pointer to the segment state created by the
performance (pPerformance) for the created segment (ppTransSeg). (See
Remarks.)

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code

DMUS_E_NO _MASTER_CLOCK
E_INVALIDARG

E_POINTER

Remarks

The value in pToSeg can be NULL as long as dwFlags does not include
DMUS_COMPOSEF_MODULATE. If pToSeg is NULL or does not contain a
style track (as would be the case if it is based on a MIDI file), introductory
embellishments are not valid. If the currently playing segment is NULL or does
not contain a style track, then fill, break, end, and groove embellishments are not
valid. If no style track is available either in the currently playing segment or in
the one represented by pToSeg, all embellishments are invalid, and no transition
occurs. In that case, both ppTransSeg and ppTransSegState return NULL, but the
method succeeds and cues the segment represented by pToSeg, if that pointer is
not NULL.

The value in pChordMap can be NULL. If it is, the composition engine attempts
to obtain a chordmap from a chordmap track, first from pToSeg, and then from
the performance's primary segment. If neither of these segments contains a
chordmap track, the chord occurring at the current time in the primary segment
is used as the chord in the transition.

Requirements
Header: Declared in dmusici.h.
See Also

¢ IDirectMusicComposer8 Interface

¢ IDirectMusicComposer8::ComposeTransition
e Using Transitions

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicComposer8::ChangeChordMap

The ChangeChordMap method modifies the chords and scale pattern of an
existing segment to reflect a new chordmap.

Syntax

HRESULT ChangeChordMap (
IDirectMusicSegment* pSegment,
BOOL fTrackScale,
IDirectMusicChordMap* pChordMap

),
Parameters
pSegment

Pointer to the IDirectMusicSegment8 interface of the segment in which to
change the chordmap. This segment must contain a chordmap track and a style.

fTrackScale

If TRUE, the method transposes all the chords to be relative to the root of the
new chordmap's scale, rather than leaving their roots as they were.

pChordMap

Pointer to the IDirectMusicChordMap8 interface of the new chordmap for the
segment.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return E_POINTER.

Remarks

The method can be called while the segment is playing.
Requirements
Header: Declared in dmusici.h.

See Also

¢ IDirectMusicComposer8 Interface
e Using Chordmaps

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicComposer8::ComposeSegmentFromShape

The ComposeSegmentFromShape method creates an original segment from a
style and a chordmap, based on a predefined shape. The shape represents the
way chords and embellishments occur over time across the segment.

Syntax

HRESULT ComposeSegmentFromShape (
IDirectMusicStyle* pStyle,
WORD wNumMeasures,
WORD wShape,
WORD wActivity,
BOOL fIntro,
BOOL fEnd,
IDirectMusicChordMap* pChordMap,
IDirectMusicSegment** ppSegment

);

Parameters

pStyle

Style from which to compose the segment.
wNumMeasures

Length, in measures, of the segment to be composed.
wShape

Shape of the segment to be composed. Possible values are of the
DMUS_SHAPET TYPES enumerated type.

wActivity

Rate of harmonic motion. Valid values are from 0 through 3. Lower values mean
more chord changes.

fIntro

TRUE if an introduction is to be composed for the segment.
fEnd

TRUE if an ending is to be composed for the segment.
pChordMap

Pointer to the IDirectMusicChordMap8 interface of the chordmap from which
to create the segment.

ppSegment

Address of a variable that receives a pointer to the created segment.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Requirements
Header: Declared in dmusici.h.
See Also

IDirectMusicComposer8 Interface

IDirectMusicComposer8::ComposeSegmentFromTemplate
IDirectMusicComposer8::ComposeTemplateFromShape
Using Compositional Elements

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicComposer8::ComposeSegmentFromTemplate

The ComposeSegmentFromTemplate method creates an original segment from
a style, a chordmap, and a template.

Syntax

HRESULT ComposeSegmentFromTemplate(
IDirectMusicStyle* pStyle,
IDirectMusicSegment* pTemplate,
WORD wActivity,
IDirectMusicChordMap* pChordMap,
IDirectMusicSegment** ppSegment

),
Parameters
pStyle

IDirectMusicStyle8 interface pointer that specifies the style from which to
create the segment.

plemplate

IDirectMusicSegment8 interface pointer that specifies the template from which
to create the segment.

wActivity

Rate of harmonic motion. Valid values are 0 through 3. Lower values mean more
chord changes.

pChordMap

IDirectMusicChordMap8 interface pointer that specifies the chordmap from
which to create the segment.

ppSegment

Address of a variable that receives a pointer to the created segment.
Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

If pStyle is not NULL, it is used in composing the segment; if it is NULL, a style
is retrieved from the template specified in pTempSeg. Similarly, if pChordMap is
not NULL, it is used in composing the segment; if it is NULL, a chordmap is
retrieved from the template.

If pStyle is NULL and there is no style track in the template, or pChordMap is
NULL and there is no chordmap track, the method returns E_INVALIDARG.

The length of the segment is equal to the length of the template passed in.

The default start point and loop points of the created segment are 0, regardless of
the values in the template segment.

Requirements
Header: Declared in dmusici.h.
See Also

IDirectMusicComposer8 Interface

IDirectMusicComposer8::ComposeSegmentFromShape
IDirectMusicComposer8::ComposeTemplateFromShape
Using Templates

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicComposer8::ComposeTemplateFromShape

The ComposeTemplateFromShape method creates a new template segment,
based on a predefined shape.

Syntax

HRESULT ComposeTemplateFromShape (
WORD wNumMeasures,
WORD wShape,
BOOL fIntro,
BOOL fEnd,
WORD wEndLength,
IDirectMusicSegment** ppTemplate

);
Parameters
wNumMeasures

Length, in measures, of the segment to be composed. This value must be greater
than O.

wShape

Shape of the segment to be composed. Possible values are of the
DMUS_SHAPET TYPES enumerated type.

fIntro

TRUE if an introduction is to be composed for the segment.
fEnd

TRUE if an ending is to be composed for the segment.

wEndLength

Length in measures of the ending, if one is to be composed. If fEnd is TRUE,
this value must be greater than 0 and equal to or less than the number of
measures available (that is, not used in the introduction). (See Remarks.)

pplemplate

Address of a variable that receives a pointer to the created template segment.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

The value of wEndLength should not be greater than the length of the longest
ending available in any style likely to be associated with this template through

the IDirectMusicComposer8::ComposeSegmentFromTemplate method. The
ending starts playing at wEndLength measures before the end of the segment. If

the ending is less than wEndLength measures long, the music then reverts to
patterns from the basic groove level.

Requirements
Header: Declared in dmusici.h.
See Also

¢ IDirectMusicComposer8 Interface

¢ IDirectMusicComposer8::ComposeSegmentFromTemplate
e Using Templates

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicComposer8::ComposeTransition

The ComposeTransition method composes a transition from a measure inside
one segment to another segment.

Syntax

HRESULT ComposeTransition(
IDirectMusicSegment* pFromSeg,
IDirectMusicSegment* pToSeg,
MUSIC_TIME mtTime,

WORD wCommand,
DWORD dwFlags,
IDirectMusicChordMap* pChordMap,
IDirectMusicSegment** ppTransSeg

);

Parameters

pFromSeg

Segment from which to compose the transition.
pToSeg

Segment to which the transition should smoothly flow. Can be NULL if dwFlags
does not include DMUS_COMPOSEF _MODULATE.

mtTime
Time in pFromSeg from which to compose the transition.
wCommand

Embellishment to use when composing the transition. This can be one of the
DMUS_COMMANDT_ TYPES enumeration, or a value defined in
DirectMusic Producer as a custom embellishment. If this value is
DMUS_COMMANDT_ENDANDINTRO, the method composes a segment

containing both an ending to pFromSeg and an introduction to pToSeg.
dwFlags

Composition options. This parameter can contain one or more values from the
DMUS_COMPOSEF_FLAGS enumerated type.

pChordMap

Pointer to the IDirectMusicChordMap8 interface of the chordmap to be used
when composing the transition. (See Remarks.)

ppTransSeg

Address of a variable that receives a pointer to the created segment.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_INVALIDARG
E_OUTOFMEMORY
E_POINTER

Remarks

The value in pChordMap can be NULL. If it is, an attempt is made to obtain a
chordmap from a chordmap track, first from pToSeg, and then from pFromSeg. If
neither of these segments contains a chordmap track, the chord occurring at
mtTime in pFromSeg is used as the chord in the transition.

The composer looks for a tempo, first in pFromSeg, and then in pToSeg. If
neither of those segments contains a tempo track, the tempo for the transition
segment is taken from the style.

Requirements

Header: Declared in dmusici.h.
See Also

¢ IDirectMusicComposer8 Interface

¢ IDirectMusicComposer8::AutoTransition
e Using Transitions

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicContainer8 Interface

The IDirectMusicContainer8 interface provides access to objects in a
container, which is a collection of objects used by a segment or performance.
The interface can be obtained when a container is loaded by a call to
IDirectMusicl.oader8::GetObject or
IDirectMusicl.oader8::L.oadObjectFromFile.

When a container object is loaded, it makes all its objects available to the loader.
When the container is released, all objects it refers to are released from the
loader. However, any objects still in use when the container is released are not
freed until explicitly released. If they are keeping a stream open, as DLS
collections and streaming waveforms do, the stream also stays open. As a result,
the container file stays locked, just as an individual WAV or DLS file would.

A container can be embedded in a segment. The container is placed in the file
before the segment's tracks, so it can be read and its objects installed in the
loader before the tracks are loaded. When the tracks are loaded, the loader is able
to supply links to referenced objects in the container.

IDirectMusicContainer8 is a type definition for IDirectMusicContainer. The
two interface names are interchangeable.

In addition to the methods inherited from IUnknown, the
IDirectMusicContainer8 interface exposes the following method.

Method Description

Retrieves information about an object in
the container.

EnumOQObject

Requirements
Header: Declared in dmusici.h.
See Also

e (Containers

e DirectMusic Interfaces

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicContainer8::EnumObject

The EnumObject method retrieves information about an object in the container.

Syntax

HRESULT EnumObject (
REFGUID rguidClass,
DWORD dwIndex,
LPDMUS_OBJECTDESC pDesc,
WCHAR* pwszAlias

);

Parameters
rquidClass

Reference to (C++) or address of (C) the unique identifier of the object class, or
GUID_DirectMusicAllTypes to obtain an object of any type. For a list of
standard loadable classes, see IDirectMusicl.oader8.

dwindex
Index of the object among objects of class rguidClass in the container.
pDesc

Pointer to a DMUS_OBJECTDESC structure that receives a description of the
object. This parameter can be NULL if no description is wanted. (See Remarks.)

pwszAlias

Address of a string buffer of size MAX_PATH that receives the object's alias, if
it has one. (An alias is a special name used by a script to refer to the object.) This
parameter can be NULL if no alias is wanted.

Return Values

If the method succeeds, one of the following success codes is returned.

Return code Description

S_OK The object was enumerated.

S_FALSE There is no object with an index of
dwlindex.

DMUS_S_STRING_TRUNCATED The alias is longer than MAX_PATH.
DMUS_S_GARBAGE_COLLECTED See Garbage Collection.

If the method fails, it can return E_ POINTER.

Remarks

You must initialize the dwSize member of the DMUS_OBJECTDESC structure
before passing it to the method. Other members are ignored. You cannot reduce
the scope of the enumeration by, for example, specifying a value in the
wszName member. The description returned by the method can be used to
retrieve the object by calling IDirectMusicl.oader8::GetObject. For sample
code, see Containers.

Requirements
Header: Declared in dmusici.h.
See Also

e (Containers
e IDirectMusicContainer8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicDownload8 Interface

The IDirectMusicDownload8 interface represents a contiguous memory chunk
used for downloading to a DLS synthesizer port.

IDirectMusicDownloads8 is a type definition for IDirectMusicDownload. The
two interface names are interchangeable.

The IDirectMusicDownload8 interface and its contained memory chunk are
created by the IDirectMusicPortDownload8::AllocateBuffer method. The
memory can then be accessed by using the single method of this interface.

This interface is used only by applications that need to access DLS buffers
directly rather than letting the performance, band, and segment objects download
instrument data. For an overview, see Low-Level DLS.

In addition to the methods inherited from IUnknown, the
IDirectMusicDownload8 interface exposes the following method.

Method Description

Retrieves a pointer to a buffer containing
GetBuffer

data to be downloaded.
Requirements

Header: Declared in dmusicc.h.
See Also

e DirectMusic Interfaces
e [ow-Level DLS

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicDownload8:: GetBuffer

The GetBuffer method retrieves a pointer to a buffer containing data to be
downloaded.

Syntax

HRESULT GetBuffer(
void** ppvBuffer,
DWORD* pdwSize

);

Parameters

ppvBuffer

Address of a variable that receives a pointer to the data buffer.

pdwSize

Address of a variable that receives the size of the returned buffer, in bytes.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS E BUFFERNOTAVAILABLE
E_POINTER

Remarks

The method returns DMUS_E_BUFFERNOTAVAILABLE if the buffer has
already been downloaded.

Requirements
Header: Declared in dmusicc.h.

See Also

e IDirectMusicDownload8 Interface
e [ow-Level DLS

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicDownloadedInstrument$8
Interface

The IDirectMusicDownloadedInstrument8 interface is used to identify an
instrument that has been downloaded to the synthesizer by using the
IDirectMusicPort8::DownloadInstrument or the
IDirectMusicPerformance8::DownloadInstrument method. The interface
pointer is then used to unload the instrument through a call to
IDirectMusicPort8::UnloadInstrument. After the instrument has been
unloaded, the interface pointer must be released by the application. For an
example, see Working with Instruments.

IDirectMusicDownloadedInstrument8 is a type definition for
IDirectMusicDownloadedInstrument. The two interface names are
interchangeable.

The IDirectMusicDownloadedInstrument8 interface has no methods other
than those inherited from IUnknown.

Requirements
Header: Declared in dmusicc.h.
See Also

e DirectMusic Interfaces
e [ow-Level DLS

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicGetlL.oader8 Interface

The IDirectMusicGetLoader8 interface is used by an object parsing a stream
when the object needs to load another object referenced by the stream. If a
stream supports the loader, it must provide an IDirectMusicGetLoader8
interface.

For an example of how to obtain the IDirectMusicGetLoader8 interface from
the stream, see IDirectMusicGetl.oader8::Getl.oader.

IDirectMusicGetLoader8 is a type definition for IDirectMusicGetLoader.
The two interface names are interchangeable.

In addition to the methods inherited from IUnknown, the
IDirectMusicGetLoader8 interface exposes the following method.

Method Description

Retrieves a pointer to the loader object
GetlL.oader

that created the stream.
Requirements

Header: Declared in dmusici.h.
See Also

See Also

e Custom Loading
¢ IDirectMusicl.oader8 Interface
e Loading Audio Data

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicGetLoader8::GetLoader

The GetLoader method retrieves a pointer to the loader object that created the
stream.

Syntax

HRESULT GetLoader8(
IDirectMusiclLoader ** pplLoader
);

Parameters
ppLoader

Address of a variable that receives the IDirectMusicLoader interface pointer.
Use QueryInterface to obtain IDirectMusicl.oader8. The reference count of
the interface is incremented.

Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return E_ NOINTERFACE.

Remarks

The following example function finds a reference to an object that needs to be
accessed by the loader:

HRESULT GetReferencedObject(
DMUS_OBJECTDESC *pDesc, // Description of object.
IStream *pIStream, // Stream being parsed.
IDirectMusicObject **ppIObject) // Object to be accessed.
{
IDirectMusicGetLoader *pIGetLoader;
IDirectMusicLoader *pILoader;
ppIObject = NULL;
HRESULT hr = pIStream->QueryInterface(

IID_IDirectMusicGetLoader,
(void **) &pIGetLoader);
if (SUCCEEDED(hr))

{
hr = pIGetLoader->GetLoader (&pILoader);

if (SUCCEEDED(hr))

{
hr = pILoader->GetObject(pDesc, IID_IDirectMusiclLoader,

(void**) ppIObject);
pILoader->Release();

}

pIGetLoader->Release();

}

return hr;

}

Requirements
Header: Declared in dmusici.h.
See Also

e Custom Loading
e IDirectMusicGetl.oader8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicGraph8 Interface

The IDirectMusicGraph8 interface manages the loading and message flow of
tools.

Graphs can occur in two places: performances and segments. The graph of tools
in a performance is global in nature; it processes messages from all segments. A
graph in a segment exists only for playback of that segment.

IDirectMusicGraph8 is a type definition for IDirectMusicGraph. The two
interface names are interchangeable.

In addition to the methods inherited from IUnknown, the IDirectMusicGraph8
interface exposes the following methods.

Method Description

GetTool Retrieves a tool by index.

InsertTool Inserts a tool in the graph.
RemoveTool Removes a tool from the graph.
StampPMs Stamps a message with a pointer to the

next tool that is to receive it.

Requirements
Header: Declared in dmusici.h.
See Also

e DirectMusic Interfaces
e DirectMusic Tools

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicGraph8::GetTool

The GetTool method retrieves a tool by index.

Syntax

HRESULT GetTool(
DWORD dwIndex,
IDirectMusicTool** ppTool

);

Parameters

dwindex

Zero-based index of the requested tool in the graph.
ppTool

Address of a variable that receives a pointer to the tool.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E NOT FOUND
E_POINTER

Remarks
The application is responsible for releasing the retrieved tool.

Requirements

Header: Declared in dmusici.h.
See Also

e DirectMusic Tools
¢ IDirectMusicGraph8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicGraph8::InsertTool

The InsertTool method inserts a tool in the graph.

Note Do not use or distribute tools from untrusted sources. Tools can contain
unsafe code.

Syntax

HRESULT InsertTool(
IDirectMusicTool * pTool,
DWORD * pdwPChannels,

DWORD cPChannels,
LONG IIndex

);

Parameters
plool

Tool to insert.
pdwPChannels

Address of an array of performance channels on which the tool accepts
messages. If the tool accepts messages on all channels, pass NULL.

cPChannels

Count of how many channels are pointed to by pdwPChannels. Ignored if
pdwPChannels is NULL.

IIndex

Position at which to place the tool. This is a zero-based index from the start of
the current tool list or, if it is negative, from the end of the list. If [Index is out of
range, the tool is placed at the beginning or end of the list. To place a tool at the
end of the list, use a value that is larger than the number of tools in the current

tool list.
Return Values
If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E_ALREADY_ EXISTS
E_OUTOFMEMORY
E_POINTER

Remarks
The reference count of the tool is incremented.

This method calls IDirectMusicTool8::Init.

Requirements
Header: Declared in dmusici.h.
See Also

e DirectMusic Tools
¢ IDirectMusicGraph8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicGraph8::RemoveTool

The RemoveTool method removes a tool from the graph.

Syntax

HRESULT RemoveTool(
IDirectMusicTool * pTool

);

Parameters

plool

Tool to remove.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E NOT FOUND
E_POINTER

Remarks
The graph's reference to the tool object is released.
Requirements

Header: Declared in dmusici.h.

See Also

e DirectMusic Tools
e IDirectMusicGraph8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicGraph8::StampPMsg

The StampPMsg method stamps a message with a pointer to the next tool that is
to receive it. After processing a message, a tool must call this method.

Syntax

HRESULT StampPMsg(
DMUS_PMSG* pPMSG

),

Parameters

pPMSG

Address of a structure that contains the message to stamp. This structure is of a
type derived from DMUS_PMSG.

Return Values

If the method succeeds, the return value is S_ OK or DMUS_S_LLAST TOOL.
(See Remarks.)

If it fails, the method can return E_POINTER.

Remarks

On entry, the pTool member of the DMUS_PMSG part of the message structure
points to the current tool. StampPMsg uses this member to find the next tool in
the graph. A value of NULL represents the first tool in the graph.

The object pointed to by the pGraph member represents the graph that contains
the tool. This is stamped inside StampPMsg, along with the tool itself, and can
change while the message travels from the segment state to the performance
because there can be multiple toolgraphs.

The value of dwType equals the media type of the message, and is also used to

find the next tool. The media types supported are those returned by the
IDirectMusicTool8::GetMediaTypes method.

This method calls Release on the current IDirectMusicTool8 pointed to by
pTool, replaces it with the next tool in the graph and calls AddRef on the new
tool. It also flags the message with the correct delivery type, according to what
type the next tool returns in its IDirectMusicTool8::GetMsgDeliveryType
method. This flag determines when the message is delivered to the next tool.

Tools should not call StampPMsg until all other tasks have been performed.
When audiopaths are in use, StampPMsg can have the effect of changing the
value in the dwPChannel member of the message structure. A tool that uses this
value cannot rely on it if StampPMsg has already been called

The implementations of this method in the segment state and performance
objects always return S_OK on success. The implementation in the graph returns
DMUS_S_LAST_TOOL if there is no tool other than the output tool waiting to
receive the message.

Requirements
Header: Declared in dmusici.h.
See Also

e DirectMusic Tools
¢ IDirectMusicGraph8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicInstrument8 Interface

The IDirectMusicInstrument8 interface represents an individual instrument
from a DLS collection.

IDirectMusicInstrument8 is a type definition for IDirectMusicInstrument.
The two interface names are interchangeable.

To create an instrument object, first create a collection object, and then call the
IDirectMusicCollection8::GetInstrument method. GetInstrument creates an
instrument object and returns its IDirectMusicInstrument8 interface pointer.

To download the instrument, pass its interface pointer to the
IDirectMusicPort8::DownloadInstrument or
IDirectMusicPerformance8::DownloadInstrument method. If the method
succeeds, it returns a pointer to an IDirectMusicDownloadedInstrument8
interface, which is used only to unload the instrument.

The methods of IDirectMusicInstrument8 operate only on an instrument that
has not been downloaded. Any instances of the instrument that have been
downloaded to a port are not affected by the
IDirectMusicIlnstrument8::SetPatch method.

In addition to the methods inherited from IUnknown, the
IDirectMusicInstrument8 interface exposes the following methods.

Method Description

GetPatch Retrleves the patch number for the
instrument.

SetPatch Sets the patch number for the
instrument.

The LPDIRECTMUSICINTRUMENTS type is defined as a pointer to this
interface:

typedef IDirectMusicInstrument8 *LPDIRECTMUSICINSTRUMENTS;

Requirements
Header: Declared in dmusicc.h.

See Also

e DirectMusic Interfaces
e Working with Instruments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicInstrument8::GetPatch

The GetPatch method retrieves the patch number for the instrument. The patch
number is an address composed of the MSB and L.SB bank select and the MIDI
patch (program change) number. An optional flag bit indicates that the
instrument is a drum, rather than a melodic instrument.

Syntax

HRESULT GetPatch(
DWORD* pdwPatch

);

Parameters

pdwPatch

Address of a variable that receives the patch number.
Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS E NOT INIT
E_POINTER

Remarks

The patch number returned at pdwPatch describes the full patch address,
including the MIDI parameters for MSB and LSB bank select. In addition, the
high bit is set if the instrument is a drum Kkit.

Requirements

Header: Declared in dmusicc.h.
See Also

¢ IDirectMusicInstrument8 Interface

e MIDI Channel Messages
e Working with Instruments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicInstrument8::SetPatch

The SetPatch method sets the patch number for the instrument. Although each
instrument in a DLS collection has a predefined patch number, the patch number
can be reassigned after the IDirectMusicCollection8::GetInstrument method
has been used to retrieve the instrument from the collection. For more
information on DirectMusic patch numbers, see
IDirectMusicIlnstrument8::GetPatch.

Syntax

HRESULT SetPatch(
DWORD dwPatch

);

Parameters

dwPatch

Patch number to assign.

Return Values

If the method succeeds, the return value is S_OK.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS E NOT INIT
DMUS E INVALIDPATCH

Remarks

The following code example gets an instrument from a collection, remaps its
MSB bank select to a different bank, and then downloads the instrument:

HRESULT RemappedDownload (

}

IDirectMusicCollection8 *pCollection,
IDirectMusicPort8 *pPort,
IDirectMusicDownloadedInstrument8 **ppDLInstrument,
BYTE bMSB,

DWORD dwPatch)

HRESULT hr;
IDirectMusicInstrument8* pInstrument;

hr

= pCollection->GetInstrument(dwPatch, &pInstrument);

if (SUCCEEDED(hr))

{

}

dwPatch &= OXFFOOFFFF;

dwPatch |= bMSB << 16;

pInstrument->SetPatch(dwPatch);

hr = pPort->DownloadInstrument(pInstrument,
ppDLInstrument, NULL, 0);

pInstrument->Release();

return hr;

Requirements

Header: Declared in dmusicc.h.

See Also

IDirectMusicInstrument8 Interface

MIDI Channel Messages
Working with Instruments

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicl.oader8 Interface

The IDirectMusicL.oader8 interface is used for finding, enumerating, caching,
and loading objects. For an overview, see Loading Audio Data.

This interface supersedes IDirectMusicLoader and adds support for garbage

collection.

In addition to the methods inherited from IUnknown, the
IDirectMusicLoader8 interface exposes the following methods.

Method

Description

CacheObject

Stores a reference to an object for later
use, so that the object is not loaded
more than once.

Removes all saved references to a

ClearCache O .
specified object type.

CollectGarbage Removes from the cache objects that
are no longer in use.

EnableCache Enables or disables automatic caching

of all objects loaded.

EnumOQObject

Enumerates all available objects of the
specified type.

GetObject

Retrieves an object from a file or
resource.

LoadObjectFromFile

Retrieves an object from a file.

ReleaseObjectByUnknown

Releases the loader's reference to an

object.
ReleaseObiect Re.leases the loader's reference to an
object.

ScanDirectory

Searches a directory or disk for all files
of a specified class type and file name
extension.

Enables the loader to find an object
when it is later referenced by another

SetObject object that is being loaded, and adds
attributes to an object so that it can be
identified by those attributes.

SetSearchDirectory i
files.

Sets a search path for finding object

The LPDMUS_LOADER type is defined as a pointer to the

IDirectMusicLoader interface:

typedef IDirectMusiclLoader __RPC_FAR *LPDMUS_LOADER;

The following table lists the standard types of loadable objects, together with
their class identifiers (the rguidClass parameter of various methods that deal

with objects) and the usual file name extension.

Object type Class Extension
Audiopath CLSID_DirectMusicAudioPathConfig aud
Band CLSID_DirectMusicBand bnd
Container CLSID DirectMusicContainer con
DLS collection CLSID_DirectMusicCollection dls
Chordmap CLSID_DirectMusicChordMap cdm
Segment CLSID_DirectMusicSegment sgt
Script CLSID_DirectMusicScript spt
Style CLSID_DirectMusicStyle sty
Template CLSID_DirectMusicSegment tpl
Toolgraph CLSID_DirectMusicGraph tgr
Wave CLSID_DirectSoundWave wav
Requirements

Header: Declared in dmusici.h.
See Also

e DirectMusic Interfaces
e Loading Audio Data

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicl.oader8::CacheObject

The CacheObject method stores a reference to an object for later use, so that the
object is not loaded more than once.

Syntax

HRESULT CacheObject(
IDirectMusicObject * pObject

);

Parameters

pObject

Address of the IDirectMusicObject interface of the object to cache. Use
QueryInterface to obtain IDirectMusicObject8.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the object is
already cached.

If it fails, the method can return one of the error values shown in the following
table.

Return code
E_POINTER
DMUS _E LOADER OBJECTNOTFOUND

Requirements
Header: Declared in dmusici.h.
See Also

e Cache Management

IDirectMusicl .oader8 Interface
IDirectMusicl .oader8::ClearCache
IDirectMusicl .oader8::EnableCache
IDirectMusicl.oader8::ReleaseObject

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicLoader8::ClearCache

The ClearCache method removes all saved references to a specified object type.

Syntax
HRESULT ClearCache(

REFGUID rguidClass
);

Parameters
rquidClass

Reference to (C++) or address of (C) the identifier of the class of objects to
clear, or GUID_DirectMusicAllTypes to clear all types. For a list of standard
loadable classes, see IDirectMusicl.oader8.

Return Values
The method returns S_OK.
Remarks

This method clears all objects that are currently being held, but does not turn off
caching. Use the IDirectMusicl.oader8::EnableCache method to turn off
automatic caching.

To clear a single object from the cache, call the
IDirectMusicl.oader8::ReleaseObject method.

Requirements
Header: Declared in dmusici.h.

See Also

e Cache Management
e IDirectMusicl.oader8 Interface
¢ IDirectMusicl.oader8::CacheObject

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicl.oader8::CollectGarbage

The CollectGarbage method removes from the cache objects that are no longer
in use.

Syntax

CollectGarbage();
Parameters

None.

Return Values
None.

Remarks

When an application calls IDirectMusicl.oader8::ReleaseObject, the object is
removed from the cache, and any objects it references become candidates for
removal. IDirectMusicL.oader8::CollectGarbage finds cached objects that are
no longer being used by other objects, removes them from the cache, and
releases them from memory.

Requirements
Header: Declared in dmusici.h.
See Also

e Garbage Collection
¢ IDirectMusicl.oader8 Interface

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicLoader8::EnableCache

The EnableCache method enables or disables automatic caching of all objects it
loads. By default, caching is enabled for all classes.

Syntax

HRESULT EnableCache(
REFGUID rguidClass,
BOOL fEnable

),
Parameters
rquidClass

Reference to (C++) or address of (C) the identifier of the class of objects to
cache or stop caching, or GUID_DirectMusicAllTypes for all types. For a list of
standard loadable classes, see IDirectMusicl .oader8.

fEnable
TRUE to enable caching; FALSE to clear and disable.
Return Values

The method returns S_OK if the cache state is changed, or S_FALSE if the cache
is already in the desired state.

Remarks

When you disable caching for a class, all objects of that class that have already
been cached are released.

To clear the cache without disabling caching, call the
IDirectMusicl .oader8::ClearCache method.

The following code example disables caching only for segment objects so that

they do not stay in memory after the application releases them. Other objects that
should be shared, such as styles, chordmaps, and DLS collections, continue to be
cached. The first call to EnableCache would normally be unnecessary, because
caching is enabled for all objects by default.

void PreparelLoader (IDirectMusiclLoader8 *pILoader)

{
pILoader->EnableCache(GUID_DirectMusicAllTypes, TRUE);
pILoader->EnableCache(CLSID_DirectMusicSegment, FALSE);
3
Requirements

Header: Declared in dmusici.h.
See Also

Cache Management

IDirectMusicl .oader8 Interface
IDirectMusicl.oader8::CacheObject
IDirectMusicl .oader8::ClearCache

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicL.oader8::EnumObject

The EnumObject method enumerates an available object of the requested type.
Objects are available if they have been loaded or if
IDirectMusicl.oader8::ScanDirectory has been called on the search directory.

Syntax

HRESULT EnumObject (
REFGUID rguidClass,
DWORD dwIndex,
LPDMUS_OBJECTDESC pDesc

),
Parameters
rquidClass

Reference to (C++) or address of (C) the identifier for the class of objects to
view. For a list of standard loadable classes, see IDirectMusicl.oader8.

dwindex
Zero-based index into the list of matching objects.
pDesc

Address of a DMUS_OBJECTDESC structure to be filled with data about the
object.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if dwIndex is
past the end of the list.

Requirements

Header: Declared in dmusici.h.

See Also

e Enumerating Objects
e IDirectMusicl.oader8 Interface

¢ IDirectMusicl.oader8::ScanDirectory

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusiclL.oader8::GetObject

The GetObject method retrieves an object from a file or resource and returns the
specified interface.

Syntax
HRESULT GetObject(
LPDMUS_OBJECTDESC pbDesc,

REFIID riid,
LPVOID FAR * ppv

),
Parameters
pDesc

Address of a DMUS_OBJECTDESC structure describing the object.

riid

Unique identifier of the interface. See DirectMusic Interface GUIDs.
ppv
Address of a variable that receives a pointer to the desired interface of the object.

Return Values

If the method succeeds, the return value is S_ OK or DMUS_S_PARTIALLOAD.

DMUS_S_PARTIALLOAD is returned if any referenced object cannot be found,
such as a style referenced in a segment. The loader might fail to find the style if
it is referenced by name but IDirectMusicl.oader8::ScanDirectory has not
been called for styles. DMUS_S_PARTIALLOAD might also mean that the
default instrument collection file, Gm.dls, is not available.

If it fails, the method can return one of the error values shown in the following

table.

Return code
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_TL.OADER_FORMATNOTSUPPORTED
DMUS_E_LOADER_NOCILASSID

E_FAIL

E_INVALIDARG

E_OUTOFMEMORY

E_POINTER

REGDB_E_CI.ASSNOTREG

Remarks

For file objects, it is simpler to use the
IDirectMusicl.oader8::I.oadObjectFromFile method.

DirectMusic does not support loading from URLs. If the dwValidData member
of the DMUS_OBJECTDESC structure contains DMUS_OBJ_URL, the
method returns DMUS_E_LOADER_FORMATNOTSUPPORTED.

The method does not require that all valid members of the
DMUS_OBJECTDESC structure match before retrieving an object. The
dwValidData flags are evaluated in the following order:

DMUS_OBJ_OBJECT

DMUS_OBJ_STREAM

DMUS_OBJ_MEMORY

DMUS_OBJ_FILENAME and DMUS_OBJ_FULLPATH
DMUS_OBJ_NAME and DMUS_OBJ_CATEGORY
DMUS_OBJ_NAME

DMUS_OBJ_FILENAME

NouhkwhE

In other words, the highest priority goes to a unique GUID, followed by a stream
pointer, followed by a resource, followed by the full file path name, followed by
an internal name plus category, followed by an internal name, followed by a
local file name.

Do not load data from untrusted sources. Loading DirectMusic data files causes
objects to be constructed, with the possibility that excessive demand on
resources will lead to degradation of performance or system failure.

Requirements
Header: Declared in dmusici.h.
See Also

IDirectMusicl.oader8 Interface
IDirectMusicl.oader8::L.oadObjectFromFile
IDirectMusicl.oader8::ReleaseObject

IDirectMusicl.oader8::ScanDirectory
Loading Audio Data

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicl.oader8::LoadObjectFromFile

The LoadObjectFromFile method retrieves an object from a file and returns the
specified interface. This method can be used instead of
IDirectMusicl.oader8::GetObject when the object is in a file.

Syntax

HRESULT LoadObjectFromFile(
REFGUID rguidClassID,
REFIID iidInterfacelD,
WCHAR *pwzFilePath,

void ** ppObject

);

Parameters
rguidClassID

Unique identifier for the class of object. For a list of standard loadable classes,
see IDirectMusicl.oader8.

iidInterfacelD

Unique identifier of the interface. See DirectMusic Interface GUIDs.

pwzFilePath

Name of the file that contains the object. The path can be fully qualified or
relative to the search directory. (See Remarks.)

ppObject
Address of a variable that receives a pointer to the desired interface of the object.

Return Values

If the method succeeds, the return value is S_ OK or DMUS_S_PARTIALLOAD.

If it fails, the method can return one of the error values shown in the following
table.

Return code
DMUS_E_LOADER_FAILEDCREATE
DMUS_E_LOADER_FAILEDOPEN
DMUS_E_TL.OADER_FORMATNOTSUPPORTED
DMUS_E_LOADER_NOCILASSID

E_FAIL

E_INVALIDARG

E_OUTOFMEMORY

E_POINTER

REGDB_E_CI.ASSNOTREG

Remarks

Do not load data from untrusted sources. Loading DirectMusic data files causes
objects to be constructed, with the possibility that excessive demand on
resources will lead to degradation of performance or system failure.

When pwzFilePath is an unqualified file name or a relative path, the loader
searches first in the current directory, then in the Windows search path, and
finally in the directory set by the last call to

IDirectMusicl.oader8::SetSearchDirectory.

DMUS_S_PARTIALLOAD is returned if any referenced object cannot be found,
such as a style referenced in a segment. The loader might fail to find the style if
it is referenced by name but IDirectMusicl.oader8::ScanDirectory has not
been called for styles. DMUS_S_PARTIALLOAD might also mean that the
default instrument collection file, Gm.dls, is not available.

Requirements
Header: Declared in dmusici.h.
See Also

e IDirectMusicl.oader8 Interface
¢ IDirectMusicl.oader8::GetObject

¢ IDirectMusicl.oader8::SetSearchDirectory
e Loading an Object from a File

© 2004 Microsoft Corporation. All rights reserved.

Microsoft DirectX 9.0 SDK Update (Summer 2004)

IDirectMusicL.oader8::ReleaseObject

The ReleaseObject method releases the loader's reference to an object.

Syntax

HRESULT ReleaseObject(
IDirectMusicObject * pObject

),
Parameters
pObject

IDirectMusicObject8 interface pointer of the object to release.

Return Values

If the method succeeds, the return value is S_OK, or S_FALSE if the object has
already been released or cannot be found in the cache.

If it fails, the method can return E_POINTER.

Remarks

ReleaseObject is the reciprocal of IDirectMusicl.oader8::CacheObject.

Objects can be cached explicitly by using the CacheObject method, or
automatically by using the IDirectMusicl.oader8::EnableCache method.

To tell the loader to flush all objects of a particular type, call the
IDirectMusicl.oader8::ClearCache method.

Requirements
Header: Declared in dmusici.h.

See Also

Cache Management
IDirectMusicl.oader8 Interface
IDirectMusicl.oader8::GetObject

IDirectMusicl.oade